COMMISSIONS 27 AND 42 OF THE I. A. U.

INFORMATION BULLETIN ON VARIABLE STARS

Nos. 5901 - 6000

2009 August – 2011 September

EDITORS: K. OLÁH, J. JURCSIK TECHNICAL EDITOR: A. HOLL TYPESETTING, SUBSCRIPTIONS: O. RIBÁRIK

EDITORIAL BOARD 2009: B. Gänsicke, G. Handler (chair), L. Kiss, S.S. Saar, M. Schreiber, D. Sasselov, B. Skiff,

C. Aerts (Comm. 27.), J. Christensen-Dalsgaard (Div. V.), A. Giménez (Comm. 42.),

D. Kurtz (advisor), N.N. Samus (advisor), C. Sterken (advisor), L. Szabados (advisor) *EDITORIAL BOARD 2010-2011*: B. Gaensicke (chair)

G. Handler (ex officio, Comm. 27.), S. Kawaler (ex officio, Div. V.), D. Kurtz (advisor),

L. Kiss, R. Mennickent, A. Prsa, I. Ribas (ex officio, Comm. 42.), S. Rucinski, N.N. Samus (advisor), C. Sterken (advisor)

> H–1525 BUDAPEST XII, Box 67, HUNGARY URL http://www.konkoly.hu/IBVS/IBVS.html

> > HU ISSN 0374-0676

COPYRIGHT NOTICE

IBVS is published on behalf of Commissions 27 and 42 of the IAU, by the Konkoly Observatory, Budapest, Hungary.

Individual issues may be downloaded for scientific and educational purposes free of charge. Bibliographic information of the recent issues can be entered to indexing systems. No IBVS issues may be stored in a public retrieval system, in any form or by any means, electronic or otherwise, without the prior written permission of the publishers. Prior written permission of the publishers is required to enter IBVS issues 1-4000 to an electronic indexing or bibliographic system too.

CONTENTS

2009

5901 SAMEC, RONALD G.; FIGG, EVAN R.; FAULKNER, DANNY R.; VANHAMME, WALTER: ROBB, BUSSELL:	
Photometric and Spectroscopic Study of the W type, W UMa Binary	
TYC 2853-18-1 $\dots 1 - 4$	1
5902 SOYDUGAN, E.; SOYDUGAN, F.; ŞENYÜZ, T.; PÜSKÜLLÜ, Ç.;	
TÜYSÜZ, M.; BAKIŞ, V.; BİLİR, S.; DEMİRCAN, O.:	
Discovery of δ Scuti Type Oscillations in Two Algol-type Binaries:	
DY Aqr and BG Peg $\ldots 1 - 4$	1
5903 HÄUSSLER, K.; BERTHOLD, T.; KROLL, P.:	
Elements for 6 Pulsating Stars $\ldots 1 - 4$	1
5904 SİPAHİ, ESİN; DAL, HASAN ALİ; ÖZDARCAN, ORKUN:	
Photoelectric Minima of Some Eclipsing Binary Stars 1 – 2	2
5905 GRANKIN, K. N.; ARTEMENKO, S. A.:	
New Extreme Outburst of Z CMa 1 – 4	1
5906 GUERRERO, G.:	
Brightness Variations of SAO 53210 1 – 4	1
5907 GRANKIN, K. N.; ARTEMENKO, S. A.:	
Drastic Changes in Photometric Variability of V410 Tau 1 – 4	1
5908 CAPEZZALI, DANIELE; CAROSATI, DANIELE;	
FIORUCCI, MASSIMO:	
Photometric Analysis of USNO-B1.0 1323-0548678 $\dots 1 - 4$	1
5909 KOZYREVA, V. S.; KUSAKIN, A. V.; BAGAEV, L. A. :	
The New Eccentric Eclipsing Binary GSC 3152 1202 $\dots 1-3$	3
5910 LACY, C. H. S.:	
New Times of Minima of Some Eclipsing Variables $\dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots$	3
5911 BUGNO, J. L.; HINTZ, E. G.; JONER, M. D.:	
Optical Light Curves of the High Mass X-Ray Binary 4U $2206+54$ $1-4$	1
5912 HECKERT, PAUL A.:	
2007 Photometry of UV Leonis $\dots 1 - 4$	1
5913 ANTIPIN, S.V.; BERDNIKOV, L.N.; SOKOLOVSKY, K.V.:	
Period Changes in the Eclipsing Binary System V861 Her $\dots 1 - 4$	1
5914 WILS, PATRICK; HENDEN, ARNE A.:	
V1032 Oph Is A Dwarf Nova $\dots 1 - 2$	2
5915 FERNÁNDEZ-LAJÚS, E.; FARIÑA, C.; SCHWARTZ, M. A.;	
GIUDICI, F.; SALERNO, N.; SCALIA, M. C.; PERI, C.; VON	
ESSEN, C.; CALDERÓN, J. P.:	
The Recovery Phase after the 2009.0-event of η Carinae 1 – 4	1
5916 WILS, PATRICK:	
New Cataclysmic Variables from 6dFGS Spectroscopy $\dots 1 - 4$	1

5917 MARINO, G.; ARENA, C.; BELLIA, I.; BENINTENDE, G.;	
CREMASCHINI, C.; FOGLIA, S.; LO SAVIO, E.; MILANI, G.;	
PAPINI, R.; SALVAGGIO, F.; SPAMPINATO, S.A.; ZARA, F.:	
CCD Minima of Eclipsing Binary Stars 1 –	4
5918 HÜBSCHER, JOACHIM; LEHMANN, PETER B.; MONNINGER,	
GEROLD: STEINBACH, HANS-MEREYNTJE: WALTER, FRANK:	
BAV-Results of Observations - Photoelectric Minima of Selected Eclipsing	
Binaries and Maxima of Pulsating Stars $1-1$	6
5010 SZABÓ CV M \cdot HAIA O \cdot SZATMÁRV K \cdot PÁL A \cdot KISS L L \cdot	.0
Limits on Transit Timing Variations in HAT P.6 and WASP 1	2
Emits on transit timing variations in trat-1-0 and wast-1 $\dots 1 = 5000$ DIETHELM DOCED.	5
J920 DIETHELM, ROGER.	7
Timings of Minima of Echpsing Dinaries	1
$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} $	
CSS091215:060708-060335 : An Optically Emergent Eruptive Near	
the Head of Herbig Haro 806 West	4
5922 GOKAY, G.; DEMIRCAN, Y.; TERZIOGLU, Z.; GURSOYTRAK, H.;	
OKAN, A.; ÇOKER, D.; SARAL, G.; GUROL, B.; DERMAN, E.:	
Minima Times of Some Eclipsing Binary Stars 1 –	2
5923 THORNE, K.; GARNAVICH, P.; MOHRIG, K. :	
The Polar CSS $081231:071126+440405$ at a Low Accretion Rate $\dots 1 - 1$	3
5924 ERKAN, N.; ERDEM, A.; AKIN, T.; ALIÇAVUŞ, F.; SOYDUGAN, F.:	
New Times of Minima of Some Eclipsing Binary Stars 1 –	2
5925 DIMITROV, D.; KRAICHEVA, Z.; POPOV, V.; GENKOV, V.:	
Short-period Oscillations in the Algol-type Systems V: SX Draconis $\dots 1 -$	4
5926 HAUSSLER, K.; BERTHOLD, T.; KROLL, P.:	
8 RR Lyrae Stars with Variable Periods $\dots 1 -$	7
5927 KILKENNY, D.; FONTAINE, G.; GREEN, E. M.; SCHUH, S.:	
A Proposed Uniform Nomenclature for Pulsating Hot Subdwarf Stars $\dots 1$ –	3
5928 WILS, PATRICK; HAMBSCH, FRANZ-JOSEF; LAMPENS, PATRICIA;	
VAN CAUTEREN, PAUL; STAELS, BART; PICKARD, ROGER D.;	
KLEIDIS, STELIOS; VAN WASSENHOVE, JEROEN; OTERO,	
SEBASTIÁN A.; BELLOCCHIO, EZEQUIEL; THIENPONT,	
EMMANUEL; VANLEENHOVE, MAARTEN:	
Maxima of High-Amplitude Delta Scuti Stars 1 –	6
5929 NELSON, ROBERT H.:	
CCD Minima for Selected Eclipsing Binaries in 2009 1 –	4
5930 MUNARI, U.; DALLAPORTA, S.; CASTELLANI, F.:	
$BVR_{C}I_{C}$ Photometric Evolution and Flickering during the 2010 Outburst	
of the Recurrent Nova U Scorpii 1 –	4
5931 ZASCHE, P.:	
101 Minima Times of Eclipsing Binaries Observed by INTEGRAL/OMC . 1 –	3
5932 MUNARI, U.; DALLAPORTĂ, S.:	
BVR _C I _C Photometric Evolution of the Verv Fast Nova	
Ophiuchi 2010 N.1 = V2673 Oph 1 –	4
1 I	

5933 LAMPENS, P.; KLEIDIS, S.; VAN CAUTEREN, P.; HAMBSCH,
FJ.; VANLEENHOVE, M.; DUFOER, S.:
New Times of Minima of 36 Eclipsing Binary Systems $\dots 1 - 4$
5934 LE BORGNE, J. F.; KLOTZ, A.; BOER, M.:
The GEOS RR Lyr Survey $\dots 1-5$
5935 KINMAN, T. D.; BROWN, WARREN, R.:
Radial Velocities for Twelve Pulsating Variables in the Anticenter $\dots 1-5$
5936 SIVIERO, A.; DALLAPORTA, S.; MUNARI, U.:
Discovery and Photometric Orbital Solution of a New Double-Lined and
Highly Eccentric B5V Eclipsing Binary 1 – 4
5937 CHADIMA, P.; HARMANEC, P.; YANG, S.; BENNETT, P.D.;
BOŽIĆ, H.; RUŽDJAK, D.; SUDAR, D.; ŠKODA, P.; ŠLECHTA, M.;
WOLF, M.; LEHKÝ, M.; DUBOVSKY, P.:
A New Ephemeris and an Orbital Solution of ϵ Aurigae
5938 DVORAK, S. W.:
Times of Minima for Eclipsing Binaries 2009 $\dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots$
5939 SEMKOV, E. H.; PENEVA, S. P.:
Optical Photometry of Parsamian 21 $\dots 1 - 4$
5940 WILS, PATRICK; LAMPENS, PATRICIA; VAN CAUTEREN, PAUL;
SOUTHWORTH, JOHN:
The Highly Active Low-Mass Eclipsing Binary BS UMa 1-4
5941 HÜBSCHER, JOACHIM; LEHMANN, PETER B.; MONNINGER,
GEROLD; STEINBACH, HANS-MEREYNTJE; WALTER, FRANK:
BAV-Results of Observations - Photoelectric Minima of Selected Eclipsing
Binaries and Maxima of Pulsating Stars $\dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots$
5942 PAUNZEN, E.: HARETER, M.: STÜTZ, CH.:
MOST Observations of the λ Bootis Star HD 142703 1 – 3
5943 LIAKOS. A.: NIARCHOS. P.:
CCD Times of Minima of Several Eclipsing Binaries
5944 MUNARI U · DALLAPORTA S · OCHNER P ·
Absolute Spectrophotometry and BVR _c I _c photometric Evolution of the
Fast Nova Ophiuchi 2010 N 2 (V2674 Oph) $1-4$
5945 DIETHELM ROGER:
Timings of Minima of Eclipsing Binaries $1 - 9$
5946 FREV I B · ANGIONE B I · SIEVERS I B ·
Simultaneous Photometric and Spectroscopic Solution for AW Cam 1 – 6
5047 KIZILOČI U Ü · KIZILOČI U N ·
Observations of Mira Variable V407 Cyc 1 4
5048 FERNANDEZ M A \cdot WILLIAMSON C O \cdot BEAKV M M \cdot
Fuidence for a Variable Component in the Felinging Binary System
V_{417} Aurime $1 - 2$
V417 Aurigae $1 - 3$
DALLE, VI EIDIG, CTELLOG, DODEDTGON, C.W., VDALCI, TOM.
PAUL; KLEIDIS, STELIUS; KUBEKISUN, U.W.; KKAJUI, TUM;
WILD, PATKIUK:
Detection of a Kapidiy Pulsating Component in the Algol-Type Eclipsing
ыnary үү воо 1-6

5950 KARITSKAYA, EUGENIA A.; BOCHKAREV, NIKOLAI G.; HUBRIG,
SWETLANA; GNEDIN, YURY N.; POGODIN, MICHAIL A.; YUDIN,
RUSLAN V.; AGAFONOV, MICHAIL I.; SHAROVA, OLGA I.:
The First Discovery of a Variable Magnetic Field in X-ray Binary
Cyg X-1=V1357 Cyg $1-4$
5951 NELSON, ROBERT H.:
AC Bootis – An Unevolved W-Type Overcontact Eclipsing Binary
with a High Mass Transfer Rate $\dots 1 - 8$
5952 KRYACHKO, T.; SAMOKHVALOV, A.; SATOVSKIY, B.:
The New Eclipsing Variable Star USNO-A2.0 0825-18396733,
a Probable Polar $1-3$
5953 TAŞ, GÜNAY; EVREN, SERDAR:
The Long-term Multi-Colour Variation of Three Bright RS CVn Type
Systems $\dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots$
5954 SĘKALSKA, JUSTYNA; DIMITROV, WOJCIECH; FAGAS, MONIKA;
KRUSZEWSKI, ADRIAN; PRZYBYSZEWSKA, ANNA; KURZAWA,
KRYSTIAN; ZYWUCKA, NATALIA; ROZEK, AGATA; BORCZYK,
WOJCIECH; BARTCZAK, PRZEMYSŁAW; BĄKOWSKA, KAROLINA;
HIRSCH, ROMAN; KAMINSKI, KRZYSZTOF; KWIATKOWSKI,
TOMASZ; SCHWARZENBERG-CZERNY, ALEKSANDER:
Spectroscopy of Eclipsing Binary DY Lyncis Third Component Detected . $1-6$
5955 WILS, PATRICK:
New Double-Mode and Other RR Lyrae Stars from WASP Data $\dots 1-8$
5956 ZUBAREVA, A. M.; ANTIPIN, S. V.:
Photometric Study of a Nova-Like Cataclysmic Variable Star NSV 25181 . $1-4$
5957 CIESLINSKI, D.; RODRIGUES, C. V.; SILVA, K. M. G.; DIAZ, M. P.:
Time-Resolved Spectroscopy of the Polar RBS 0324
$(=1RXS J023052.9 - 684203) \dots 1 - 4$
5958 LIAKOS, A.; NIARCHOS, P.:
CCD Times of Minima of Eclipsing Binaries and Maxima of
Pulsating Stars $\ldots 1-4$

5959 HÜBSCHER, JOACHIM; MONNINGER, GEROLD:
BAV-Results of Observations - Photoelectric Minima of Selected Eclipsing
Binaries and Maxima of Pulsating Stars $\dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots$
5960 DIETHELM, ROGER:
Timings of Minima of Eclipsing Binaries $\dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots$
5961 SOLOVYOV, V.; SAMOKHVALOV, A.; SATOVSKIY, B. :
USNO-A2.0 1425-04279615 and USNO-A2.0 1425-04280420:
Two New Short-Period Eclipsing RS CVn Variables $\dots 1-4$
5962 BLOOMER, R. H; DELLA-ROSE, D. J.; TODT, A.; ZIMMERMAN,
J. D.; HITEFIELD, S. D.:
Study of the Eccentric-Orbit Binary GSC 03152-01202 $\dots 1-4$
5963 SAMEC, RONALD G.; OLIVER, BRUCE; FIGG, EVAN R.;
FAULKNER, DANNY R.; VAN HAMME, WALTER V.:
Photometric Analysis and Evidence for a Third, Dwarf Component
in the FY Boo System $\dots 1-4$
5964 JEFFERY, C. SIMON:
Photometric Variability of the Chemically Peculiar Hot Subdwarf
$LS IV-14^{\circ}116 \dots 1-3$
5965 DEMİRCAN, Y.; GÜROL, B.; GÖKAY, G.; TERZİOĞLU, Z.; SARAL,
G.; GÜRSOYTRAK, H.; OKAN, A.; DEMİRHAN, U.; ÇOKER, D.;
DERMAN, E.:
Minima Times of Some Eclipsing Binary Stars $\dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots$
5966 NELSON, ROBERT H.:
CCD Minima for Selected Eclipsing Binaries in 2010 $\dots 1 - 3$
5967 LIAKOS, A.; NIARCHOS, P.:
New Multicolour CCD Photometric Analysis of BI CMi $\dots 1-4$
5968 ZUBAREVA, A. M.; ANTIPIN, S. V.:
Periodicities of a Nova-Like Cataclysmic Variable Star
RX J1951.7+3716 $1-4$
5969 KAZAROVETS, E. V.; SAMUS, N. N.; DURLEVICH, O. V.; KIREEVA,
N. N.; PASTUKHOVA, E. N.:
The 80th Name-List of Variable Stars. Part I — RA 0^{n} to 6^{n} 1 – 21
5970 NELSON, ROBERT H.; TERRELL, D.; GROSS, JOHN:
The Absolute Dimensions of CU Sge $\dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots$
5971 SILVA, K. M. G.; RODRIGUES, C. V.; JABLONSKI, F. J.;
D'AMICO, F.; CIESLINSKI, D.; BAPTISTA, R.; DE ALMEIDA, L. A.:
Differential Photometry of 2MASS J09440940-5617117 $\dots 1 - 4$
5972 LACY, C. H. S.:
New Times of Minima of Some Eclipsing Variables $\dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots$
5973 ASLAN, Z.:
New Radial Velocities of Some Semi-Regular Variable Stars $\dots 1-3$
5974 DVOKAK, S. W.:
Times of Minima for Eclipsing Binaries 2010 $\dots 1-2$
5975 KEED, PHILLIP A.:
A 110 Year Record of Mass Transfer in R Arae $\dots $ $1-4$

5976 VOLKOVA, NATALIA; VOLKOV, IGOR:
V974 Cyg - A Triple System with Apsidal Motion $\dots 1 - 4$
5977 WILS, PATRICK; HAMBSCH, FRANZ-JOSEF; ROBERTSON, C. W.;
LAMPENS, PATRICIA; VAN CAUTEREN, PAUL; HAUTECLER,
HUBERT; PANAGIOTOPOULOS, KOSTAS; VAN WASSENHOVE,
JEROEN; STAELS, BART; VANLEENHOVE, MAARTEN; HOSTE,
SERGE; PICKARD, ROGER D.; KLEIDIS, STELIOS;
AYIOMAMITIS, ANTHONY: NIEUWENHOUT, FRANS:
STRIGACHEV, ANTON: BERNHARD, KLAUS:
Maxima of High-Amplitude Delta Scuti Stars $\dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots$
5978 BOZKURT ZEYNEP
Photoelectric Minima of Some Eccentric Eclipsing Binary Systems $1-2$
5979 BORKOVITS TAMÁS: BÍRÓ IMBE BABNA: HEGEDÜS TIBOB:
KISS ZOLTÁN TAMÁS: SZAKÁTS RÓBERT: REGÁLV ZSOLT:
PATKÓS LÁSZLÓ: KLACVIVIK PÉTEB: SIMITY SZABOLCS:
CREZSA TAMÁS: CERCELV CÁROR: LUKÁCS KATALIN:
Now and Unpublished Times of Minima of Felipsing Binary Systems 1 4
New and Onpublished Times of Minima of Echpsing Dinary Systems \dots $1-4$ 5080 DADIMUCHA Č. DUDOVSKÝ D. VAŇKO M. DDIDULLA T.
VIDZEL I. DADCA D.
KUDZEJ, I.; DARSA, R.: Minima Timor of Calacted Folinging Dinarias
$MIRINA I Intes of Selected Eclipsing Diffarres \dots 1 - ($
5981 LEBZELTER, 1.; ANDRONACHE, S.:
A Search for Period Changes in Long Period Variables 1 – 4
5982 WILS, PATRICK; KRAJCI, TOM; HAMBSCH, FRANZ-JOSEF;
MUYLLAERT, EDDY:
The Eclipsing Cataclysmic Variables PHL 1445 and
$GALEX J003535.7 + 462353 \dots 1 - 4$
5983 SPOGLI, C.; FIORUCCI, M.; ROCCHI, G.; CIPRINI, S.; BRUNOZZI, P.;
FAGOTTI, P.; MANCINELLI, V.; VERGARI, D.; CAPEZZALI, D.:
On the Optical Variations of AH Herculis $\dots 1-3$
5984 HUBSCHER, JOACHIM:
BAV-Results of Observations - Photoelectric Minima of Selected Eclipsing
Binaries and Maxima of Pulsating Stars $\dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots$
5985 KAFKA, S.; HONEYCUTT, R. K.:
PQ Ser Unveiled - Not a Cataclysmic Variable $\dots 1 - 3$
5986 LE BORGNE, J. F.; KLOTZ, A.; BOER, M.:
The GEOS RR Lyr Survey $\dots 1-7$
5987 RUCINSKI, SLAVEK; GRUBERBAUER, MICHAEL; GUENTHER,
DAVID B.; KUSCHNIG, RAINER; MATTHEWS, JAYMIE M.;
MOFFAT, ANTHONY F. J.; ROWE, JASON F.; SASSELOV,
DIMITAR; WEISS, WERNER W.:
"MOST" Satellite Photometry of Regulus $\dots 1 - 3$
5988 DOĞRU, S. S.; ERDEM, A.; ALİÇAVUŞ, F.; AKIN, T.;
KANVERMEZ, Ç.:
CCD Times of Minima of Some Eclipsing Variables $\dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots$
5989 LAWSON, W. A.; CRAUSE, L. A.:
Rotational Variability in Pre-Main-Sequence Stars: TWA 6 in 2008 $\dots 1-4$
5990 LIAKOS, A.; NIARCHOS, P.:
CCD Times of Minima of Eclipsing Binaries and Maxima of Pulsating
Stars 1-4

5991 ZASCHE, P.:
V407 Peg and LU Vir: Two Contact Binaries with Displaced Secondary
Minima $1-4$
5992 DIETHELM, ROGER:
Timings of Minima of Eclipsing Binaries $\dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots$
5993 KONDRATYEVA, L.:
Hen2-446 – a B[e] Star with a Variable V/R Ratio $\dots 1 - 4$
5994 NELSON, ROBERT H.:
V456 Cyg – A Detached Eclipsing Binary $\dots 1 - 4$
5995 ZAMANOV, R.; BOEVA, S.; LATEV, G.; STOYANOV, K.; BODE, M.F.;
ANTOV, A.; BACHEV, R. :
UBVRI Observations of the Flickering of the Symbiotic Star MWC 560 \dots 1 – 4
5996 ZEJDA, MILOSLAV; DOMINGO, ALBERT:
Reference Frame and Time Standard Used in INTEGRAL/OMC Datasets $1-2$
5997 ARENA, C.; ACETI, P.; BANFI, M.; BELLIA, I.; BIANCIARDI, G.;
CORFINI, G.; MARCHINI, A.; MARINO, G.; MARTINENGO, M.;
PAPINI, R.; PESENTI, L.; ROMEO, G.; RUOCCO, N.; VINCENZI, M.;
ZAMBELLI, R.:
Minima of Eclipsing Binaries, Variability of V840 Her and NSV5740,
New Ephemerides for V997 Cyg, V1037, V1098, V1100 Her $\dots 1-8$
5998 Reports on New Discoveries $\dots 1-6$
5999 Observations of Variables $\dots 1-3$
6000 STERKEN, C.:
Just One New Measurement of the B[e] Supergiant Hen-S22 $\dots 1-8$

AUTHOR INDEX

Aceti, P.	5997	Chadima, P.	5937
Agafonov, M. I.	5950	Cieslinski, D.	5957 5971
Akin, T.	5924 5988	Ciprini, S.	5983
Aliçavuş, F.	5924 5988	Çoker, D.	5922 5965
Andronache, S.	5981	Corfini, G.	5997
Angione, R. J.	5946	Crause, L. A.	5989
Antipin, S. V.	5913 5956 5968	Cremaschini, C.	5917
Antov, A.	5995	D'amico, F.	5971
Arena, C.	5917 5997	Dal, H. A.	5904
Artemenko, S. A.	5905 5907	Dallaporta, S.	5930 5932 5936 5944
Aslan, Z.	5973	de Almeida, L. A.	5971
Ayiomamitis, A.	5977	Della-Rose, D. J.	5962
Bachev, R.	5995	Demircan, O.	5902
Bagaev, L. A.	5909	Demircan, Y.	5922 5965
Bakiş, V.	5902	Demirhan, U.	5965
Bąkowska, K.	5954	Derman, E.	5922 5965
Banfi, M.	5997	Diaz, M. P.	5957
Baptista, R.	5971	Diethelm, R.	5920 5945 5960 5992
Barsa, R.	5980	Dimitrov, D.	5925
Bartczak, P.	5954	Dimitrov, W.	5954
Beaky, M. M.	5948	Doğru, S. S.	5988
Bellia, I.	5917 5997	Domingo, A.	5996
Bellocchio, E.	5928	Dubovsky, P.	5937 5980
Benintende, G.	5917	Dufoer, S.	5933
Bennett, P. D.	5937	Durlevich, O. V.	5969
Berdnikov, L. N.	5913	Dvorak, S. W.	5938 5974
Bernhard, K.	5977	Erdem, A.	5924 5988
Berthold, T.	5903 5926	Erkan, N.	5924
Bianciardi, G.	5997	Evren, S.	5953
Bilir, S.	5902	Fagas, M.	5954
Bíró, I. B.	5979	Fagotti, P.	5983
Bloomer, R. H	5962	Farina, C.	5915
Bochkarev, N. G.	5950	Faulkner, D. R.	5901 5963
Bode, M. F.	5995	Fernandez, M. A.	5948
Boër, M.	5934 5986	Fernández-Lajús, E.	5915
Boeva, S.	5995	Figg, E. R.	5901 5963
Borczyk, W.	5954	Fiorucci, M.	5908 5983
Borkovits, T.	5979	Foglia, S.	5917
Božić, H.	5937	Fontaine, G.	5927
Bozkurt, Z.	5978	Frey, J. R.	5946
Brown, W. R.	5935	Garnavich, P.	5923
Brunozzi, P.	5983	Genkov, V.	5925
Bugno, J. L.	5911	Gergely, G.	5979
Calderon, J. P.	5915	Gludici, F. \mathbf{C}	5915
Capezzali, D.	5908 5983	Gnedin, Y. N.	5950
Carosati, D.	5908	Gokay, G.	5922 5965
Castellani, F.	5930	Grankin, K. N.	5905 5907

Greaves, J.			5921	Kudzej, I.					5980
Green, E. M.			5927	Kurzawa, K.					5954
Grezsa, T.			5979	Kusakin, A. V.					5909
Gross, J.			5970	Kuschnig, R.					5987
Gruberbauer, M.			5987	Kwiatkowski, T	•				5954
Guenther, D. B.			5987	Lacy, C. H. S.				5910	5972
Guerrero, G.			5906	Lampens, P.	5928	5933	5940	5949	5977
Gürol, B.		5922	5965	Latev, G.					5995
Gürsoytrak, H.		5922	5965	Lawson, W. A.					5989
Haja, O.			5919	Le Borgne, J. F	•			5934	5986
Hambsch, FJ. 5928	5933 5949	5977	5982	Lebzelter, T.					5981
Hareter, M.			5942	Lehký, M.					5937
Harmanec, P.			5937	Lehmann, P. B.				5918	5941
Häussler, K.		5903	5926	Liakos, A.		5943	5958	5967	5990
Hautecler, H.			5977	Lo Savio, E.					5917
Heckert, P. A.			5912	Lukács, K.					5979
Hegedüs, T.			5979	Mancinelli, V.					5983
Henden, A. A.			5914	Marchini, A.					5997
Hintz, E. G.			5911	Marino, G.				5917	5997
Hirsch, R.			5954	Martinengo, M.					5997
Hitefield, S. D.			5962	Matthews, J. M	•				5987
Honeycutt, R. K.			5985	Milani, G.					5917
Hoste, S.			5977	Moffat, A. F. J.					5987
Hubrig, S.			5950	Mohrig, K.					5923
Hübscher, J.	5918 5941	5959	5984	Monninger, G.			5918	5941	5959
Jablonski, F. J.			5971	Munari, U.		5930	5932	5936	5944
Jeffery, C. S.			5964	Muyllaert, E.					5982
Joner, M. D.			5911	Nelson, R. H.	5929	5951	5966	5970	5994
Kafka, S.			5985	Niarchos, P.		5943	5958	5967	5990
Kamiński, K.			5954	Nieuwenhout, F	•				5977
Kanvermez, Ç.			5988	Ochner, P.					5944
Karitskaya, E. A.			5950	Okan, A.				5922	5965
Kazarovets, E. V.			5969	Oliver, B.					5963
Kilkenny, D.			5927	Otero, S.					5928
Kinman, T. D.			5935	Ozdarcan, O.					5904
Kireeva, N. N.			5969	Pál, A.					5919
Kiss, L. L.		5919	5979	Panagiotopoulos	5, K.				5977
Kiziloğlu, N.			5947	Papini, R.				5917	5997
Kiziloğlu, U.			5947	Parimucha, S.					5980
Klagyivik, P.			5979	Pastukhova, E.	Ν.				5969
Kleidis, S.	5928 5933	5949	5977	Patkós, L.					5979
Klotz, A.		5934	5986	Paunzen, E.					5942
Kondratyeva, L.			5993	Peneva, S. P.					5939
Kozyreva, V. S.			5909	Peri, C.					5915
Kraicheva, Z.			5925	Pesenti, L.					5997
Krajci, T.		5949	5982	Pickard, R. D.				5928	5977
Kroll, P.		5903	5926	Pogodin, M. A.					5950
Kruszewski, A.			5954	Popov, V.					5925
Kryachko, T.			5952	Pribulla, T.					5980

Przybyszewska, A.	5954	Stütz, Ch.	5942
Püsküllü, Ç.	5902	Sudar, D.	5937
Reed, Ph. A.	5975	Szabó, Gy. M.	5919
Regály, Zs.	5979	Szakáts, R.	5979
Robb, R.	5901	Szatmáry, K.	5919
Robertson, C. W.	5949 5977	Taş, G.	5953
Rocchi, G.	5983	Terrell, D.	5970
Rodrigues, C. V.	5957 5971	Terzioğlu, Z.	5922 5965
Romeo, G.	5997	Thienpont, E.	5928
Rowe, J. F.	5987	Thorne, K.	5923
Rożek, A.	5954	Todt, A.	5962
Rucinski, S.	5987	Tüysüz, M.	5902
Ruocco, N.	5997	Van Cauteren, P.	$5928 \ 5933 \ 5940 \ 5949$
Ruždjak, D.	5937		5977
Salerno, N.	5915	Van Hamme, W. V.	5901 5963
Salvaggio, F.	5917	Van Wassenhove, J.	5928 5977
Samec, R. G.	$5901 \ 5963$	Vaňko, M.	5980
Samokhvalov, A.	5952 5961	Vanleenhove, M.	5928 5933 5977
Samus, N. N.	5969	Vergari, D.	5983
Saral, G.	5922 5965	Vincenzi, M.	5997
Sasselov. D.	5987	Volkov, I.	5976
Satovskiv. B.	5952 5961	Volkova, N.	5976
Scalia, M. C.	5915	von Essen, C.	5915
Schub S	5927	Walter, F.	5901 5918 5941 5963
Schwartz M A	5915	Weiss, W. W.	5987
Schwarzenberg-Czerny A	5954	Williamson, C. O.	5948
Sekalska J	5954	Wils, P.	5914 5916 5928 5940
Semkov E H	5939	,	5949 5955 5977 5982
Senviz T	5902	Wolf, M.	5937
Sharova O I	5950	Yang, S.	5937
Sievers I B	5946	Yudin, R. V.	5950
Silva K M C	5957 5971	Zamanov, R.	5995
Simity Sz	5070	Zambelli, R.	5997
Sinahi F	5919 5004	Zara, F.	5917
Sipan, E. Siviero A	5036	Zasche, P.	5931 5991
Škoda P	5037	Zeida. M.	5996
Šlochta M	5027	Zimmerman, J. D.	5962
Section, M. Solvolovsky, K. V	5012	Zubareva. A. M.	5956 5968
Sokolovsky, K. V.	5061	Żywucka. N.	5954
Solovyov, v.	5901 5040		0001
Southworth, J.	5940		
Soydugan, E.	5902		
Soyuugan, F.	0902 0924 5017		
Spampinato, S. A.	5000 5917		
Spogli, C.	0983 5008 5077		
Staels, D.	0928 0977 5019 5041		
Stembach, HM.	0918 0941 6000		
Sterken, U.	0000		
Stoyanov, K.	5995		
Strigachev, A.	5977		

INDEX OF VARIABLES

Star	IBVS No.	AH Her	5983
		V553 Her	5903
		V558 Her	5926
V454 And	5906	V621 Her	5903
lambda And	5953	V797 Her	5955
		V861 Her	5913
DY Aqr	5902		
UX Aal	5981	BG Hya	5981
V540 Agl	5981		
V DIO TIQI	0001	CW Hyı	5957
R Ara	5975	UV Leo	5912
		alpha Leo	5987
UX Ari	5999	1	
TTTTT A	F 000	AX Lib	5981
WW Aur	5999	HR Lib	5942
V417 Aur	5948		
epsilon Aur	5937	DQ Lyn	5935
		DY Lyn	5954
YY Boo	5949	EN Lyn	5935
AC Boo	5951		
		BF Mon	5981
AW Cam	5946	V694 Mon	5995
Z CMa	5905	AX Mus	5981
BI CMi	5967	V762 Oph	5926
		V771 Oph	5926
TX Cap	5981	V870 Oph	5926
Ĩ		V878 Oph	5926
eta Car	5915	V964 Oph	5926
		V1032 Oph	5914
ES Cen	5981	V1068 Oph	5903
V433 Cen	5981	V2121 Oph	5981
V633 Cen	5955	V2673 Oph	5932
		V2674 Oph	5944
KR Cvg	5999	v2011 0 pm	0011
V407 Cvg	5947	BG Peg	5902
V456 Cvg	5994	V407 Peg	5991
V548 Cvg	5925	101108	0001
V728 Cyg	5925	UV Phe	5955
V974 Cyg	5976		0500
, or i 0,8	0010	RX PsA	5981
SX Dra	5925		0001
	00-0	CU Sge	5970
sigma Gem	5953		0010
~		AM Sgr	5981

BM Sgr	5981	Cyg X-1	5950
CX Sgr	5981		
$V2030 \ Sgr$	5981	GALEX J003535.7+462353	5982
$V3190 \ Sgr$	5981		
$V3343 \ Sgr$	5981	GSC 03152-01202	5962
		GSC 3152-1202	5909
U Sco	5930	GSC 3671-0099	5936
CO Sco	5981		
		HAT-P-6b	5919
BD Ser	5981		
WY Ser	5981	HD33486	6000
PQ Ser	5985	HD 34144	6000
		HD34664	6000
V410 Tau	5907	HD 185587	5998
V711 Tau	5953 5999	HD 269209	6000
UV Tuc	5981	Hen2-446	5993
BN UMa	5935	HE 0414-2958	5955
BS UMa	5940		
CK UMa	5935	HH 866	5921
DM UMa	5999		
		IRAS 06046-0603	5921
RT UMi	5925		
		LS IV	5964
LU Vir	5991		
		Mon R2	5921
1RXS J101345.7-275750	5916		
		NSV 8590	5926
2MASX J06070812-0603352	5921	NSV 8861	5903
2MASS J09440940-5617117	5971	NSV 9125	5903
		NSV 9613	5926
4U 2206+54	5911	NSV 9827	5903
		NSV 12753	5955
6dFGS gJ000207.4-374917	5916	NSV 17902	5935
6dFGS gJ043139.6-301514	5916	NSV 25181	5956
6dFGS gJ191522.7-263015	5916		
		NSVS 4732626	5935
BPS BS 16478-0018	5955	NSVS 4814234	5935
BPS BS 16466-0019	5955	NSVS 4819931	5935
BPS BS 16927-123	5935	NSVS 4820967	5935
		NSVS 4822969	5935
Case A-F 232	5935		
		Parsamian 21	5939
CSS 081231:071126+440405	5923		
CSS 091215:060708-060335	5921	PHL 1445	5916 5982
	F 001		FOOD
[C2000b] 11	5921	RX J1951.7+3716	5968

TYC 2853-18-1	5901
TWA 6	5989
USNO-A2.0 0825-18396733 USNO-A2.0 1425-04279615 USNO-A2.0 1425-04280420 USNO-B1.0 1323-0548678	5952 5961 5961 5908
WASP-1b	5919

Number 5901

Konkoly Observatory Budapest 24 August 2009 *HU ISSN 0374 - 0676*

PHOTOMETRIC AND SPECTROSCOPIC STUDY OF THE W-TYPE, W UMa BINARY, TYC 2853-18-1

SAMEC, RONALD G.¹; FIGG, EVAN R.¹; FAULKNER, DANNY R.²; VANHAMME, WALTER³; ROBB, RUSSELL⁴

¹ Astronomy program, Department of Physics, Bob Jones University, Greenville, SC 29614

 2 University of South Carolina, Lancaster

³ Florida International University

⁴ University of Victoria

TYC 2853-18-1 (GSC 2853 0018, $\alpha(2000)=02^{h}47^{m}07.996$, $\delta(2000)=+41^{\circ}22'32''.80$) was recently discovered by TYCHO-2 as an eclipsing binary (Nicholson, Varley, 2006). The V magnitude range is 10.8 – 11.5 and the variable was identified as an EW-Type with the following ephemeris:

HJD Tmin I = $2451370.87525 + 0.2949d \times E.$ (1)

Figure 1. Finding Chart, TYC 2853-18-1 Variable (V), Comparison (C) and Check (K).

The LSPM North Catalog (Lépine and Shara, 2005) gives a Vmag of 11.05 and a V-J of 1.61 for the variable, and TYCHO-2 gives an estimated B-V of 0.799. These color indices all confirm that the variable is of spectral type \sim K0V. Finally, the spectra of TYC 2853-18-1 and 54 Piscium were observed with the Dominion Astrophysical Observatory's (DAO) 1.8m telescope at 60Å/mm and are shown in Figure 2. The midtime of observation was 09:00 22 November 08, 2008 UT, which corresponds to a phase of approximately zero. The strength of the G band, Calcium H&K lines and the Calcium I 4227Å line and the H γ to Fe I 4384Å line all indicate a K0V±1 spectral class or $T = 5150 \pm 150$ for the effective temperature at phase zero where the primary, more massive component is eclipsing the hotter less massive secondary.

Figure 2. Optical Spectra of TYC 2853-18-1 at phase zero.

Our U, B, V, R_C, I_C light curves were taken at Lowell Observatory with the 0.81-m reflector with NURO time on 20 and 27 December, 2007 and via remote observing to Kitt Peak from South Carolina with the SARA 25 November, 3 December, 2007 and 19 February, 2008. NURO observations were take with the thermoelectrically cooled (< -100° C) 2K×2K CCD NASACAM. Ninety-five observations were taken in U, 217 observations were taken in B, 207 in V, 194 in R and 214 in I. Photometric precision was better than 1% in all filters. Our observations are given in Table 1, in delta magnitudes, variable minus comparison star. (The table is available through the IBVS website as 5901-t1.tex.)

Our comparison star (marked C on the finder chart given as Figure 1) was GSC 2853 0765 $[\alpha(2000) = 02^{h}46^{m}58^{s}.481, \delta(2000) = +41^{\circ}28'26''.69, \text{TYCHO } B - V = 0.741, \sim \text{G8V}].$ The check star was GSC 2853 0312 (K) $[\alpha(2000) = 02^{h}47^{m}08^{s}.413, \delta(2000) = +41^{\circ}20'49''.71$ TYCHO $B - V = 0.591, \sim \text{G0V}].$ The variable is given as V.

We determined five times of minimum light from our present observations using parabola fits, which are given in Table 2.

We calculated the following ephemeris from all the available times of minimum light including the epoch given in Table 3.

HJD Tmin I =
$$2451370.875 \pm 0.001 + 0.2949039 \pm 0.0000001 d \times E$$
 (2)

Our O - C residuals calculated from Equation 2 are given in Table 2.

	Epochs	Errors	Cycles	Linear	Reference
				residuals	
1	2451370.8753		0.0	0.0000	IBVS 5700 (2006)
2	2454455.7199	0.0006	10460.5	0.0028	This paper
3	2454516.6131	0.0005	10667.0	-0.0016	This paper
4	2454438.7605	0.0001	10403.0	0.0004	This paper
5	2454440.5298	0.0005	10409.0	0.0002	This paper
6	2454462.6464	0.0003	10484.0	-0.0009	This paper
7	2454462.7943	0.0002	10484.5	-0.0005	This paper

Table 2. O - C Linear Residuals, Eq. 2

Our UBVRI phased light curves, Phase versus Delta Magnitudes, in the sense of V - K, are given as Figures 6-8. (Available through the IBVS website as 5901-f6.eps -- 5901-f8.eps.)

The V - C curves in V showed scatter whose source is unknown, so we switched to the V - K for modeling purposes. The light curves show some intrinsic effects of variability possibly due to magnetic spots. A brief total eclipse occurred in the primary eclipse

Parameters	BVRI Solution	U Solution	
$\delta B, \delta V, \delta R, \delta I \text{ (nm)}$	440, 550, 640, 790	360	
$x\mathrm{bol}_{1,2}, y\mathrm{bol}_{1,2}$	0.645, 0.645, 0.17, 0.17	0.647, 0.647, 0.176, 0.176	
$x_{1I,2I}, y_{1I,2I}$	0.637, 0.637, 0.208, 0.208	_	
$x_{1R,2R}, y_{1R,2R}$	0.724, 0.724, 0.200, 0.200	-	
$x_{1V,2V}, y_{1V,2V}$	$0.790, 0.790 \; 0.159, 0.159$	-	
$x_{1B,2B}, y_{1B,2B}$	0.851, 0.851, 0.044, 0.044	_	
$x_{1B,2B}, y_{1B,2B}$	0.870, 0.870, -0.117, -0.117	_	
$g_1=g_2$	0.32	0.32	
$A_1 = A_2$	0.50	0.50	
Inclination $(^{\circ})$	$81.63 {\pm} 0.09$	85 ± 2	
T_1, T_2 (K)	$5150 \pm 150^*, 5023 \pm 5$	$5250 \pm 150^*, 5219 \pm 14$	
Potentials, ω_1, ω_2	$6.057{\pm}0.025$	$6.16{\pm}0.04$	
q(m2/m1)	$2.62 {\pm} 0.02$	$2.69{\pm}0.03$	
fill-out	$5.5{\pm}4\%$	$6{\pm}6\%$	
$L_1/(L_1+L_2)_I$	$0.31 {\pm} 0.06$	_	
$L_1/(L_1+L_2)_R$	$0.32 {\pm} 0.04$	_	
$L_1/(L_1+L_2)_V$	$0.32 {\pm} 0.02$	_	
$L_1/(L_1+L_2)_B$	$0.32 {\pm} 0.04$	_	
$L_1/(L_1+L_2)_U$	-	$0.30{\pm}0.03$	
$JD_0 (days)$	2454440.529	8 ± 0.0005	
Period (days)	$0.29489998 \pm$	0.0000005	
$r_1, r_2 $ (pole)	$0.282{\pm}0.001,0.440{\pm}0.001$	$0.280{\pm}0.004,0.441{\pm}0.003$	
$r_1, r_2 $ (side)	$0.295{\pm}0.002,0.471{\pm}0.001$	$0.292{\pm}0.004,0.472{\pm}0.004$	
$r_1, r_2 \;(\mathrm{back})$	$0.326{\pm}0.007,0.499{\pm}0.005$	$0.326 {\pm} 0.007, 0.499 {\pm} 0.005$	
Sum of square res	3.753	54	

 $(\sim 8.5 \text{ m})$ shows this is a W-Type W UMa. The angularity in the shoulder at \sim phase 0.12 reveals that this is a very shallow fill-out contact binary. Table 3. Synthetic Curve Parameters for TYC 2853-180-1

*Estimated from the spectroscopy. The Wilson code period shows formal errors that are calculated from the variability of differentially corrected parameters as listed in the table. These have little to do with observational scatter. For example, while the Wilson code assigns an error to T2 of only 5K. However, the observational scatter would suggest about 150K from the spectral observations. All the other uncertainties, including the phasing period should be regarded the same way. Actual observational errors can be 10 times or more greater than those found from numerical calculations in such a synthetic code. I have exaggerated the errors by listing errors from the full set of corrections and not from the subsets in order to minimize this effect.

Binary Maker 3.0 (Bradstreet, 2002) was used to find initial fits for modeling. Representative values were then entered into the 2004 version of the Wilson Code (Wilson and Devinney, 1971 (WD); Wilson, 1990, 1994; Van Hamme and Wilson, 1998; Wilson, and Van Hamme 2003). We ran a full UBVRI simultaneous solution. However, the U solution did not fit the data well so a BVRI synthetic simultaneous solution was calculated. The T2 is an estimate from our spectroscopic observations. Following our first solution, we ran 23 additional solutions with q fixed and spanning the mass ratio range of 0.3 to 3.25. This "q-search" was used to determine the best q value for our BVRI light curves. See Figure 3. Our best synthetic light curve solution is seen overlaying the normalized flux curves are shown as Figure 4 and 5. The complete solution table is given as Table 3. A Roche-lobe model for the binary is shown as Figure 9 (Available through the IBVS website as 5901-f9.eps.) We decided to run a U curve solution separately just to see how different it was. The U solution is found to be very similar (See Table 3.) to the BVRI with a 3 degree increase in inclination, while other values are overlapping or nearly overlapping the earlier ones. So we see no major differences to further comment on.

TYC 2853-18-1 is found to be among the W-type W UMa contact binaries. (Our solution reveals that the less massive, slightly hotter component is eclipsed at phase zero.) The mass ratio has reached 2.6 (m_1/m_2) and is likely tending toward larger mass ratios as the secondary component is consumed by the primary. Thus, TYC 2853-18-1 may be a

prototype of an AW UMa-type system. The driving mechanism for this supposed process is the torque supplied by out flowing winds along 'stiff' field lines originating from the solar-type stars.

Acknowledgements: We wish to thank NURO and DAO for their allocation of observing time, and the American Astronomical Society for a small research grant for student travel expenses for this observing run.

Q-Search, TYC 2853-18-1

Figure 3. Plot of the results of our q-search for the best fiting mass ratio.

(B-V)_{flux}

1.2

1.1 B_{flux} 0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2 L -0.25

0.1

0.0

-0.1

-0.2

-0.3

-0.4

-0.5

-0.6

-0.7

-0.8

-0.9 l

Figure 4. B,V,R,I synthetic light curve solutions overlaying the normalized flux curves.

Figure 5. B,V,R,I synthetic light curve solutions overlaying the normalized flux curves.

0.25

PHASE

0.50

0.00

TYC2853 1801

1.4

1.3

1.2

1.1

1.0

0.9

0.7 0.6

0.5

0.8^Vflux

References:

Nicholson, M., Varley, H., 2006, *IBVS*, 5700

- Bradstreet, D. H., 2002, AAS, 201, 7502
- Lépine, S., Shara, M., 2005, AJ, 129, 1483
- Van Hamme, W. V., Wilson, R.E, 1998, BAAS, 30, 1402
- Wilson, R. E., 1994, PASP, 106, 921
- Wilson, R. E. & Devinney, E. J., 1971, ApJ, 166, 605.
- Wilson, R. E., 1990, ApJ, **356**, 613.
- Wilson, R. E., W. Van Hamme, 2003, Computing Binary Star Observables, 2003 January Revision of the Wilson Code Manual.

Number 5902

Konkoly Observatory Budapest 1 September 2009 *HU ISSN 0374 - 0676*

DISCOVERY OF δ SCUTI TYPE OSCILLATIONS IN TWO ALGOL-TYPE BINARIES: DY Aqr and BG Peg

SOYDUGAN, E.^{1,2}; SOYDUGAN, F.^{1,2}; ŞENYÜZ, T.²; PÜSKÜLLÜ, Ç.^{1,2}; TÜYSÜZ, M.^{1,2}; BAKIŞ, V.^{1,2}; BİLİR, S.³; DEMİRCAN, O.^{1,2}

¹ Çanakkale Onsekiz Mart University, Faculty of Arts and Sciences, Department of Physics, 17100 Çanakkale, Turkey, email: esoydugan@comu.edu.tr

 2 Çanakkale Onsekiz Mart University Observatory, 17100 Çanakkale, Turkey

 3 İstanbul University, Faculty of Sciences, Department of Astronomy and Space Science, 34119, İstanbul, Turkey

Algol type binaries with one of the components indicating δ Scuti type pulsations have been found attractive to observe, since both pulsational and eclipsing behaviours in their light and radial velocity curves provide reliable stellar and pulsational parameters. However, it is difficult to measure the pulsations in these systems, because their variations are of such low amplitude. So Algols with δ Scuti components have been studied extensively for only about ten years, although they were known since the 1970s (Tempesti, 1971). Pulsational variability may be expected in Algol type light curves, since their hotter components are mostly located in the δ Scuti region of the instability strip (Soydugan et al., 2006) and sometimes even both components. In recent photometric surveys to detect pulsational variations in Algols several systems with δ Scuti type pulsators were discovered (e.g. Sumter & Beaky, 2007; Turcu et al., 2008; Liakos & Niarchos, 2009). In this work, we report δ Scuti type variability in the primaries of the two Algol type binaries DY Aqr and BG Peg for the first time.

Figure 1. Differential light variation of DY Aqr (V - C1) and also differential magnitudes between comparison and check stars (C1 - C2) in the V filter.

ID	Name	RA (J2000)	DEC $(J2000)$	V_T^*	$(B-V)_T^*$
Var	DY Aqr	$22^{h}19^{m}04.3^{s}$	$-02^{\circ}38'30''_{}0$	10.51	0.16
C1	GSC 5228-137	$22^{h}18^{m}51^{s}.2$	$-02^{\circ}47'35''_{}6$	11.06	0.50
C2	GSC 5228-188	$22^{\rm h}18^{\rm m}27^{\rm s}.7$	$-02^{\circ}43'15''.7$	10.89	1.01
C3	GSC 5228-263	$22^{h}19^{m}32.4$	$-02^{\circ}49'08''_{\cdot}2$	10.09	1.89
Var	$\operatorname{BG}\operatorname{Peg}$	$22^{h}52^{m}47^{s}.3$	$+15^{\circ}39'34''_{\cdot}0$	11.39	0.32
C1	TYC 1698-1052	$22^{h}53^{m}23.9$	$+15^{\circ}33'14''_{\cdot}0$	10.98	0.19
C2	TYC 1698-1142	$22^{h}52^{m}58.4$	$+15^{\circ}32'53''_{\cdot}1$	12.18	0.52

 Table 1. Basic information of the variable, comparison, and check stars used for the CCD photometry

*: The V_T and $(B - V)_T$ values denote Tycho data.

Photometric observations of DY Aqr and BG Peg were carried out at the Çanakkale Onsekiz Mart University Observatory using the 40 cm Schmidt-Cassegrain telescope equipped with a CCD camera SBIG STL-1001E (1024×1024 pixels, 24 μ m pixel size). All observations were made with the Johnson *B* and *V* filters. While DY Aqr was observed during 14 nights in July-September 2008, the observing run of BG Peg was covered between September and December 2008. The basic information on the variable, comparison and check stars are given in Table 1. All parameters in this table were taken from Hog et al. (2000). Reduction of the CCD frames was carried out using the MUNIPACK (http://integral.sci.muni.cz/cmunipack) software. The comparison and check stars selected for each system did not show any significant light variations between themselves during the observations. The atmospheric extinction coefficients in *B* and *V* filters for each observational night were calculated from the observations of the comparison star using common methods (cf. e.g. Budding & Demircan, 2007). Then, all the differential *B* and *V* magnitudes (in the sense variable minus comparison) were corrected for atmospheric extinction.

DY Aqr (HD 211705) is an Algol type binary system with orbital period of about 2.1597 d (Kreiner, 2004). The depth of the primary minimum in V is about 0.6 mag in our data. We found no previously published spectroscopic and photometric studies of the system. Pulsational light variability of the primary component of DY Aqr is here noted for the first time and shown in Fig 1. To determine the pulsational period, primary eclipses were excluded from the V data. Period analysis was carried out using the PERIOD04 program (Lenz & Breger, 2005) on data obtained over 11 nights. As a result, it was found that the primary of DY Aqr has a frequency of about 23.39 c/d (1.03 hour period) and a pulsational amplitude of about 0.013 mag. The spectral window and power spectrum for the system can be seen in Fig 2.

The Algol type binary system BG Peg was listed as a candidate Algol having a pulsating component in the Catalogue of Close Binaries in the δ Scuti region of the Cepheid Instability Strip (Soydugan et al., 2006). BG Peg has an orbital period of 1.952443 d (Kreiner, 2004), and we measured the depth of the primary minimum as 0.96 mag. In the Algols catalogue of Budding et al. (2004), the spectral type of BG Peg is given as A2. We couldn't find any previous detailed study for the system in relevant literature. The system was observed during 13 nights in 2008. The pulsational behaviour of the hotter component of BG Peg is indicated in Fig 3. A frequency search was made using the V data from 10 nights. We found the primary component of BG Peg to show a pulsational frequency of about 25.54 c/d (1.34 hour period), with an amplitude of about 0.03 mag. The spectral window and power spectrum of this star is shown in Fig 4. Candidate oscillating Algol systems selected from the Catalogue of Soydugan et al. (2006) will be searched and any further new discoveries should be announced in due course.

Figure 2. a) The spectral window, (b)Power spectrum and the significance limit (horizontal line) for the data of DY Aqr.

Figure 3. As per Fig.1 but for BG Peg

Acknowledgements We thank Prof. Dr. Edwin Budding for his contributions. We wish to thank the Turkish Scientific and Technical Research Council (TÜBİTAK) for supporting this work as a career project through grant no. 107T634.

Figure 4. a) The spectral window, (b)Power spectrum and the significance limit (the horizontal line) for the data of BG Peg.

References:

- Budding, E., Erdem, A., Çiçek, C. et al., 2004, A&A, 417, 263
- Budding, E. & Demircan, O., 2007, *Introduction to Astronomical Photometry*, second ed. Cambridge University Press.
- Hog, E., Fabricius, C., Makarov, V.V. et al., 2000, A&A, 355, L27
- Kreiner, J.M., 2004, AcA, 54, 207
- Lenz, P. & Breger, M., 2005, CoAst, 146, 53
- Liakos, A. & Niarchos, P., 2009, CoAst, 160, 2
- Mkrtichian, D. E., Kusakin, A. V., Janiashvili, E. B. et al., 1998, Contrib. Astron. Obs. Skalnate Pleso, 27, 238
- Mkrtichian, D. E., Kusakin, A. V., Rodriguez, E. et al., 2004, A&A, 419, 1015
- Samus, N.N., Goranskii, V.P., Durlevich, O.V. et al. 2003, AstL, 29, 468
- Soydugan, E., Ibanoglu, C., Soydugan, F., Akan, M. C., Demircan, O., 2006, *MNRAS*, **366**, 1289
- Soydugan, E., Tuysuz, M., Bakis, V. et al., 2008, CoAst, 157, 379
- Sumter, G.C. & Beaky, M.M., 2007, *IBVS*, 5798
- Turcu, V., Pop A. & Moldovan, D., 2008, IBVS, 5826

Number 5903

Konkoly Observatory Budapest 7 September 2009 *HU ISSN 0374 - 0676*

ELEMENTS FOR 6 PULSATING STARS

HÄUSSLER, K.¹; BERTHOLD, T.^{1,2}; KROLL, P.²

¹ Bruno-H.-Bürgel-Sternwarte, Töpelstr. 46, D-04746 Hartha, Germany

 2 Sternwarte Sonneberg, Sternwartestr
. 32, D-96515 Sonneberg, Germany

email: info@sternwarte-hartha.de, tb@4pisysteme.de, pk@4pisysteme.de

These stars were discovered and reported to be variable by Boyce & Huruhata (1942), Hoffmeister (1967, 1968) and Morgenroth (1933).

Except some remarks concerning the supposed type of variability no further observations or ephemeris have been published until today.

Photographic plates of a field centered at α Oph, taken with the Sonneberg Observatory 40-cm Astrographs during three intervals spread over the years from 1964 to 1994, were used to investigate the behaviour of these objects (see Table 1).

The given elements were obtained by means of least-squares solutions. Photographic amplitudes were derived with respect to magnitudes of the comparison stars given in Table 2. An extensive list holding the times of maxima derived can be retrieved as 5903-t3.txt, using the link in the HTML version of this paper. Individual data are available upon request.

Remarks:

V553 Her

A paper of Patterson (1979) dealing with the Nova Her 1963 = V533 Her has been erroneously cited a few times. The publications of Warner & Wickramasinghe (1991), Idan & Shavin (1996) and Mobberley (1999) refer to V553 Her spuriously.

V553 Her was discovered by Hoffmeister (1967) as RR Lyrae type variable. According to the observations presented in this paper it is of SR type.

V621 Her, V1068 Oph, NSV 9827

Brightness in minimum light below the plate limit.

NSV 9125

Suspected to be of RR Lyrae type by Boyce & Huruhata (1942).

This research made use of the SIMBAD data base, operated by the CDS at Strasbourg, France.

Figure 1. Light curve of V553 Her

Figure 2. Light curve of V621 Her

12.50

13.00

Figure 3. Light curve of V1068 Oph

Figure 4. Light curve of NSV 8861

Figure 5. Light curve of NSV 9125

Figure 6. Light curve of NSV 9827

	Table 1. Summary of this paper							
Star	Type	Epoch	Period	Max.	Min.	M - m	No. of	Former
		2400000 +	(day)				Plates	classification
V553 Her	SR	49231.2	220.7	$14.^{\mathrm{m}}5$	$16^{m}_{\cdot}1$		178	RR:
		± 9.9	± 0.4					
V621 Her	Μ	49100.2	295.5	$13 \stackrel{\mathrm{m}}{\cdot} 0$	$[16^{m}_{\cdot}8$	$0^{p}.25:$	201	Μ
		± 2.3	$\pm .3$					
V1068 Oph	Μ	46659.4	246.2	$12.^{\mathrm{m}}8$	$[16^{m}_{\cdot}6$	$0^{p}.30:$	245	Μ
		± 4.2	$\pm .3$					
NSV 8861	CWB	46704.325	1.573369	$14^{\rm m}_{\cdot}3$	$15^{m}_{\cdot}3$	$0^{\mathrm{p}}_{\cdot}40$	235	
		± 14	± 5					
NSV 9125	CWB	49488.233	3.532940	$14^{\rm m}_{\cdot}2$	$15^{\mathrm{m}}_{\cdot}0$	$0^{\mathrm{p}}_{\cdot}30$	253	RR:
		± 83	± 37					
NSV 9827	SR	49207.3	346.1	$14^{\rm m}_{\cdot}3$	$[16^{m}_{\cdot}4]$	$0^{p}.40:$	150	М
		± 21.2	± 2.1		-			

Table 1. Summary of this paper

T 11 A	α ·	1		C
	1 omnoridon	atora ond	oroga ro	torongog
	VIUIDALISUIL	stats and	-UUDAA LEI	lerences.
10000 10 10	0011100110011	Storrs orres		

	V553 Her		V621 Her	
	S 9808		S 10332	
	USNO 1050-0881332		USNO 1050-08539397	
Comp. No.	USNO	m^*	USNO	m^*
1	1050-08816021	14 ^m 1	1050 - 08540184	$12^{\mathrm{m}}_{\cdot}7$
2	1050 - 08817448	14····································	1050 - 08538893	$13^{\mathrm{m}}_{\cdot}2$
3	1050 - 08812489	$15^{\mathrm{m}}_{\cdot}2$	1050 - 08537841	$14.^{\mathrm{m}}5$
4	1050 - 08815816	$15.^{\mathrm{m}}7$	1050 - 08537958	$15^{\mathrm{m}}_{\cdot}2$
5	1050 - 08812817	$16.^{\mathrm{m}}6$	1050 - 08539865	$16^{\mathrm{m}}_{\cdot}2$
6			1050-08540191	$17.^{\mathrm{m}}5$
	V1068 Oph		NSV 8861	
	S 9817		HV 10947	
			USNO 0975-09260404	
Comp. No.	USNO	m^*	USNO	m^*
1	0975 - 09553402	$12^{\mathrm{m}}_{\cdot}7$	0975 - 09257894	$14.^{m}4$
2	$0975 \hbox{-} 09550091$	$13.^{\mathrm{m}}0$	0975 - 09260358	$15^{\mathrm{m}}_{\cdot}1$
3	0975 - 09562065	$13.^{\mathrm{m}}7$	0975 - 09258828	$15^{\mathrm{m}}_{\cdot}5$
4	$0975 extrm{-}09558584$	14····2		
5	$0975 extrm{-}09555861$	14·m 7		
6	0975-09552696	16.0		
	NSV 9125		NSV 9827	
	HV 10968		358.1933	
	USNO 0975-09346163		USNO 1050-09322332	
Comp. No.	USNO	m^*	USNO 1050-09322332	m^*
1	0975 - 09346685	$14.^{\mathrm{m}}2$	1050 - 09328723	$14.^{\mathrm{m}}1$
2	$0975 \hbox{-} 09344458$	$14.^{\mathrm{m}}6$	1050 - 09323681	$14.^{m}4$
3	0975 - 09342260	$14.^{\mathrm{m}}8$	1050 - 09332256	$14.^{\mathrm{m}}9$
4	0975 - 09346609	$15.^{\mathrm{m}}2$	1050 - 09327165	$15^{\mathrm{m}}_{\cdot}2$
5			1050 - 09326294	$15^{\mathrm{m}}_{\cdot}7$
6			1050 - 09323255	$16^{m}_{1}4$

 * Magnitudes refer to the B values of the USNO–A2.0 catalogue

References:

Boyce, E.H., Huruhata, M., 1942, Harvard Annals, 109, 19

- Hoffmeister, C., 1967, Astron. Nachr., 290, 43
- Hoffmeister, C., 1968, Astron. Nachr., 290, 277
- Idan, I., Shavin, G., 1996, MNRAS, 281, 604
- Mobberley, M., 1999, Journ. Br. Astron. Assoc., 109, 57
- Morgenroth, O., 1933, Astron. Nachr., 250, 75
- Patterson, J., 1979, Astrophys. Journ., 233, L13
- Warner, B., Wickramasinghe, D.T., 1991, MNRAS, 248, 370

Number 5904

Konkoly Observatory Budapest 16 September 2009 *HU ISSN 0374 - 0676*

PHOTOELECTRIC MINIMA OF SOME ECLIPSING BINARY STARS

SİPAHİ, ESİN; DAL, HASAN ALİ; ÖZDARCAN, ORKUN

Ege University Observatory, 35100, Bornova, İzmir, TURKEY; e-mail: esin.sipahi@mail.ege.edu.tr

Observatory and telescope:
30-cm, 35-cm, 40-cm MEADE LX200 telescopes and 48-cm Cassegrain telescope of
the Ege University Observatory

Detector:	SSP-5 photoelectric photometer,	high-speed three channel
	photometer and Alta U47 CCD	

Method of data reduction:

Reduction of the observations were made in the usual way (Hardie, 1962). Reduction of the CCD frames was done with CMunipack programme.

Method of minimum determination:

The minima times were calculated using Kwee & van Woerden's (1956) method.

Times of a	Times of minima:						
Star name	Time of min.	Error	Type	Filter	Rem.		
	HJD 2400000+						
BD And	54702.4229	0.0001	Ι	BVR			
	54703.3488	0.0002	Ι	BVR			
	54707.5158	0.0002	Ι	BVR			
	54709.3668	0.0001	Ι	BVR			
	54714.4586	0.0002	Ι	BVR			
	54752.4148	0.0002	Ι	BVR			
	54753.3401	0.0003	Ι	BVR			
ET Boo	54177.4445	0.0002	Ι	UBVR			
	54178.4119	0.0003	II	UBVR			
	54197.4411	0.0002	Ι	UBVR			
	54198.4076	0.0002	II	UBVR			
	54615.4295	0.0004	Ι	UBVR			
DK CVn	54168.4007	0.0010	Ι	BVR			
	54217.4049	0.0005	Ι	VR			
	54220.3725	0.0003	Ι	VR			
	54564.3733	0.0008	Ι	BVR			
	54619.3154	0.0010	Ι	VR			

Times of minima:								
Star name	Time of min.	Error	Type	Filter	Rem.			
	HJD 2400000+							
EG Cep	54643.3409	0.0005	II	BVRI				
	54676.5637	0.0006	II	BVRI				
	54699.4367	0.0005	II	BVRI				
	54714.4119	0.0001	Ι	BVRI				
	54752.2627	0.0004	II	BVRI				
	54760.4327	0.0003	II	BVRI				
	54776.2253	0.0003	II	BVRI				
	54776.4962	0.0002	Ι	BVRI				
	54786.2995	0.0002	Ι	BVRI				
	54787.3890	0.0001	Ι	BVRI				
	54804.2721	0.0002	Ι	BVRI				
KR Cyg	53195.3598	0.0006	II	UBVR				
	53585.3955	0.0005	Ι	UBVR				
	53593.4249	0.0008	II	UBVR				
	53891.3416	0.0007	Ι	uvby				
	53937.4060	0.0010	II	uvby				
	54682.4095	0.0001	Ι	BVR				
	54762.2706	0.0005	II	BVR				
	55036.5296	0.0001	Ι	BVR				
V346 Cyg	54681.3689	0.0002	Ι	BVR				
XX Leo	54587.3608	0.0009	Ι	BVR				
	54622.3209	0.0011	Ι	BVR				
GSC 2038 293	54213.4434	0.0014	Ι	BVR				
	54219.3903	0.0032	Ι	BVR				
	54226.3264	0.0014	Ι	BVR				
	54526.5460	0.0008	Ι	BVR				
	54587.4837	0.0007	Ι	BVR				
	54621.4215	0.0019	II	Ι				
	54651.3956	0.0067	Ι	BVRI				
	54659.3202	0.0038	Ι	BVRI				
	54671.4488	0.0097	II	BVRI				
GSC 4589 2999	54752.2629	0.0003	Ι	BVRI				
	54833.3082	0.0073	Ι	BVRI				
	55055.3703	0.0007	II	Ι				
SAO 67556	54652.3522	0.0004	Ι	UBVR				
	54667.4148	0.0005	II	UBVR				
	55052.4561	0.0002	Ι	UBVR				
	55078.2683	0.0004	Ι	UBVR				

References:

Hardie, R.H., 1962, in Astronomical Techniques, Chicago University Press, ed. Hiltner, W.A.

Kwee, K.K., van Woerden, H., 1956, BAN, 12, 327

Number 5905

Konkoly Observatory Budapest 17 September 2009 *HU ISSN 0374 - 0676*

NEW EXTREME OUTBURST OF Z CMa

GRANKIN, K. N.; ARTEMENKO, S. A.

Crimean Astrophysical Observatory, 98409 Nauchny, Crimea, Ukraine, email: kgrankin@crao.crimea.ua, sartem@crao.crimea.ua

Z CMa is an 0.1 arcsec pre-main sequence binary system (Koresko et al., 1991). It is a young stellar system consisting of a $16M_{\odot}$ B0 IIIe primary and a $\sim 3M_{\odot}$ secondary companion at an age of ~ 0.3 Myr (Hartmann et al., 1989; Whitney et al., 1993; van den Ancker et al., 2004). The high resolution spectroscopy showed that Z CMa has the doublepeaked emission line profiles whose shapes and widths are characteristic of FU Ori objects (Hartmann et al., 1989). The currently accepted interpretation for the FU Ori objects is that they are T Tau stars undergoing episodes of very rapid disk accretion. Indeed, under this interpretation, Z CMa has one of the highest accretion rates, $M_{acc} \simeq 10^{-4} M_{\odot} yr^{-1}$, observed in FU Ori systems (Hartmann and Kenyon, 1996).

On large scales, this system displays a collimated outflow (Cohen and Bieging, 1986; Poetzel et al., 1989) and has a roughly 400 AU disk-like structure (Malbet et al., 1993). The major axis of this disk-like structure is perpendicular to the large-scale bipolar jet. Recently, interferometric observations of both components have been obtained, probing their environment on AU scales (Millan-Gabet et al., 2006). Both components have been spatially resolved by these observations, but detailed analysis has revealed that both components are more complex than previously thought.

The photometric variations of the system have been monitored for 21 years (1983-2004) at Mt. Maidanak (Uzbekistan). The mean magnitude of the system has been continuously decreasing from 1983 to 1997 (from $V 9^{\text{m}}3$ to $V 10^{\text{m}}4$) and then remained nearly constant till a short duration (6 month) outburst in 1999/2000 when it has increased up to $V 9^{\text{m}}5$ (see Figure 1 in van den Ancker et al., 2004). Based on high resolution spectroscopy, this outburst was identified as resulting from a large scale accretion instability in the circumstellar disk of the massive primary. Our last Mt. Maidanak observations of Z CMa in 2004 have shown that the average brightness of this system was $9^{\text{m}}94$ in V band.

We have decided to continue some patrol UBVR observations of this star at Crimean Astrophysical Observatory (CrAO) in Ukraine since 2008. In September-November 2008 we have discovered that the Z CMa is again exhibiting an extreme outburst with an amplitude more than $1^{m}7-1^{m}9$, i.e., larger than any photometric variations recorded in the last 25 years. The statistical and photometric properties of the long-term light curve taken at Mt. Maidanak and at CrAO are presented in Table 1.

On November, 19th 2008 we have spread the information about this extreme outburst to all interested researchers and have suggested to make some simultaneous photometric, spectroscopic and interferometric observations of this star. Such coordinated observations took place within December 2008 - January 2009. We report here multi-color photometric observations of Z CMa taken during this unprecedented outburst state (see Table 2).

Table 1. Statistical properties of Z CMa light curve. Columns are: Year - observation season, N_{obs} - number of observations, \overline{V} - mean magnitude in V, σ_V - standard deviation in V, V_{max} - maximum brightness in V, ΔV - photometric amplitude in V, $\overline{U-B}$, $\overline{B-V}$, $\overline{V-R}$ - mean color index in U-B, B-V, and V-R accordingly.

Year	N_{obs}	\overline{V}	σ_V	V_{max}	ΔV	$\overline{U-B}$	$\overline{B-V}$	$\overline{V-R}$
1983	11	9.301	0.043	9.237	0.124	0.678	1.233	1.200
1984	10	9.337	0.046	9.243	0.140	0.672	1.236	1.218
1985	22	9.110	0.115	8.920	0.330	0.374	1.177	1.228
1986	9	9.027	0.209	8.745	0.533	0.403	1.136	1.182
1987	17	9.540	0.023	9.504	0.087	0.538	1.270	1.242
1988	35	9.551	0.040	9.492	0.148	0.752	1.295	1.197
1989	40	9.631	0.054	9.492	0.275	0.749	1.330	1.206
1990	32	9.592	0.024	9.542	0.102	0.692	1.321	1.221
1991	24	9.556	0.081	9.447	0.304	0.496	1.258	1.257
1992	21	10.055	0.018	10.023	0.063	0.797	1.391	1.232
1994	10	9.979	0.011	9.964	0.033	0.495	1.317	1.318
1995	23	10.169	0.039	10.031	0.190	0.608	1.348	1.300
1996	21	10.231	0.020	10.204	0.069	0.370	1.264	1.288
1997	19	10.412	0.028	10.309	0.127	0.421	1.277	1.337
1998	17	10.337	0.014	10.305	0.049	0.258	1.130	1.322
1999	23	9.491	0.182	9.224	0.676	0.468	1.044	1.207
2000	10	9.655	0.393	9.299	0.943	0.233	0.969	0.957
2001	15	10.081	0.075	9.961	0.224	0.319	1.088	1.251
2002	7	10.100	0.030	10.060	0.087	-0.055	0.913	1.291
2003	5	10.333	0.029	10.307	0.076	0.190	1.054	1.333
2004	11	9.940	0.023	9.906	0.073	-0.045	0.959	1.357
2008	10	8.662	0.215	8.408	0.633	0.034	0.804	0.896
2009	8	8.432	0.043	8.397	0.098	0.005	0.750	0.821

Table 2. Multi-color photometric observations of Z CMa at CrAO

Date	JDH2400000+	V_{mag}	U-B	B-V	V - R
30-Sep-2008	54740.6353	8.806	0.104	0.866	0.939
01-Oct- 2008	54741.6449	8.786	0.139	0.833	0.924
23-Oct- 2008	54763.6639	8.849	0.060	0.821	0.907
30-Oct-2008	54770.5778	8.888	0.077	0.834	0.898
07-Nov-2008	54778.6044	8.930	0.042	0.862	0.927
01-Dec-2008	54802.6248	9.041	0.051	0.868	0.982
12-Dec-2008	54813.5285	8.581	-0.080	0.761	0.879
12-Dec-2008	54813.5385	8.583	-0.038	0.772	0.873
12-Dec-2008	54813.5480	8.587		0.778	0.874
30-Dec-2008	54831.4622	8.434		0.816	0.853
21-Jan- 2009	54853.3282	8.408	0.000	0.774	0.896
21-Jan- 2009	54853.3414	8.425	0.004	0.766	0.882
05-Feb- 2009	54868.2754	8.468	0.025	0.752	0.854
05-Feb- 2009	54868.2809	8.476	0.028	0.751	0.861
04-Mar- 2009	54895.2343	8.425	0.005	0.747	0.843
04-Mar- 2009	54895.2463	8.412	0.006	0.743	0.840
21-Mar- 2009	54912.2527	8.397		0.746	0.790
24-Mar- 2009	54915.2456	8.495		0.763	0.812

It is visible from Table 1 that in the end of 2008 the mean magnitude of the system was V 8.7, and in the beginning of 2009 it has achieved a value of V 8.4. As the number of our multi-color data points are not numerous enough for the analysis of photometric behaviour of this star, we used all V-band data from the All Sky Automated Survey (ASAS) catalogue (see for example Pojmanski, 2002). The optical V light curve of Z CMa spanning the period 1998-2009 is shown in the top panel of Figure 1. We conclude from this Figure 1 that the new outburst (2008/2009) is really the brightest and longest lived within the last ten years. The duration of the new outburst exceeds 430 days (see bottom panel of Figure 1). It should be noted that the current outburst (2008/2009) and an optical light curve for the last seven years was published first by Stelzer et al. (2009). They used the visual photometry from the American Association of Variable Star Observers (AAVSO) and a few photoelectric CCD observations obtained by Czech observers. We tried to use the AAVSO data in our analysis too. But we have ascertained that these visual data have low precision and are suitable to check variations of an average level of light. However, the overall structure of the long-term light curve is well visible in Figure 1 of Stelzer et al. (2009) and in good conformity with our light curve.

Figure 1. Optical V light curve of Z CMa spanning the period 1998-2009 (top panel) and new outburst (bottom panel). Data from the All Sky Automated Survey (ASAS) are indicated by the grey circles, data from Maidanak Observatory by black squares, and our new data points obtained at CrAO are indicated by the black circles.

Besides, the ASAS data show at least three more short-term outbursts during 2003-2006. The amplitudes of these outbursts are comparable or exceed the amplitude of the well studied 1999/2000 outburst. Unfortunately, we cannot tell anything about the color changes during these short-term outbursts because the ASAS data comprise only the V-band. Nevertheless, we can compare the color behaviour of two outbursts (1999/2000 and 2008/2009) on our multi-color observations at Maidanak and CrAO (see Figure 2).

Multi-color photometry indicates that the system is currently brighter and bluer (2008/2009 outburst) than it has ever been in the past (1999/2000 outburst). Besides, both outbursts show an uniform dependence on the color-magnitude and the color-color diagrams. It specifies the same mechanism of the photometric variability during these two outbursts. At the same time we see that the photometric variability during a quiet state (outside of outbursts) shows another dependence. It is visible especially clearly on the V, U - B and V, B - V diagrams. This may not be surprising, since we are probably observing the result of two independently varying sources, a FUor secondary component which usually dominates the visual continuum and a Be-type primary star in a large dust cocoon, which is dominating the near- and far-infrared part of the spectrum.

Figure 2. Optical color-magnitude and color-color diagrams of Z CMa using photometric data from the period 1998-2009. Data from the 1999/2000 outburst are indicated by the open squares, data from the 2008/2009 outburst by black circles, and other data outside of outbursts are indicated by the black squares. The arrows indicate the direction of interstellar reddening.

We expect that the recent IR photometric, high resolution spectroscopic and VLTI interferometric observations taken during the integrated observational campaign in 2008-2009 will allow us to understand the physics of this phenomenon more deeply.

References:

Cohen, M. and Bieging, J.H., 1986, AJ, **92**, 1396 Hartmann, L. et al., 1989, ApJ, **338**, 1001 Hartmann, L. and Kenyon, S.J., 1996, ARA & A, **34**, 207 Koresko, C. D. et al., 1991, AJ, **102**, 2073 Malbet, F. et al., 1993, A & A, **271**, L9 Millan-Gabet, R. et al., 2006, ApJ, **641**, 547 Poetzel, R. et al., 1989, A & A, **224**, L13 Pojmanski, G., 2002, Acta Astronomica, **52**, 397 Stelzer, B. et al., 2009, A & A, **499**, 529 van den Ancker, M.E. et al., 2004, MNRAS, **349**, 1516 Whitney, B. A. et al., 1993, ApJ, **417**, 687

Number 5906

Konkoly Observatory Budapest 17 September 2009 *HU ISSN 0374 - 0676*

BRIGHTNESS VARIATIONS OF SAO 53210

GUERRERO, G.

INAF Osservatorio Astronomico di Brera via E. Bianchi 46- 23807 Merat
e $\rm (LC)$ - Italy; e-mail:giannantonio.guerrero@brera.inaf.it

With the aim to test the physical nature of some of the stellar serendipitous X-ray sources detected by EXOSAT (Giommi et al., 1991), our group collected, during the years 1990-1992, several photometric and spectroscopic observations at the Observatorio Astronomico National, UNAM (San Pedro Martir, BC, Mexico). For each star of our sample only few observations were obtained, but in many cases they were sufficient to point out the presence of some photoelectric variability (Cutispoto et al., 2000). So we decided to plan, during the following years, further observations to determine more precisely the variation characteristics and possibly the nature of the stars.

The X-ray source SAO 53210 (EXO 233530.1+4555.4) is classified as BY Dra type variable, with the name V454 And, in the 78th Name List of Variable Stars (Kazarovets et al., 2006), on the basis of our Mexican observations. These observations were very limited: in total five data points on August 1990 and six on October 1991, distributed in seven days for both observing runs. As a consequence, the period suggested in Cutispoto et al. (2000) was inevitably very tentative. The new data discussed here completely superseed this earlier attempt.

Following the ADS Abstract Service (Centre de Données Astronomiques de Strasbourg), no other report about the photometric variability of this star has been published after Cutispoto et al. (2000), except an analysis by Percy (1993), which suggests a variability of SAO 53210 up to $0^{m}05$ in V and B on a timescale of months.

The colours derived by the Hipparcos Catalogue are consistent with the spectral type G3/4V.

SAO 53210 was observed during 30 nights in September-October 1992 at the Brera Astronomical Observatory in Merate, using a digital photon-counting photometer at the 50 cm. reflector and a Stromgren y filter. The comparison and check stars were SAO 53147 and SAO 53149, respectively. For details on the observing technique and data handling, see Cereda et al., 1988. As a rule, about ten observations of the variable were performed in alternation with the comparison star: these Δm magnitudes have been averaged to give one or two y-normal points for every night.

Table 1 shows these y-normal points (y-np) with the observational times and the standard errors σ . Also the Mexican observations: J.D....126-...133 and J.D....556-...563, related to August 1990 and October 1991 respectively, are reported in this Table.

Figure 1 presents the light curves derived from our 1992 observations: the magnitude differences variable minus comparison (top) is compared, in the same scale, with the difference check minus comparison (bottom).

J.D.(8000+)	<i>u</i> -np	σ	J.D.(8000+)	<i>v</i> -np	$\overline{\sigma}$
126.8610	0.352	0.003	892.4853	0.336	0.001
127.8660	0.356	0.001	893.4015	0.339	0.003
130.7910	0.356	0.003	893.5812	0.339	0.001
132.8370	0.351	0.001	894.4886	0.344	0.002
133.7990	0.345	0.001	896.4068	0.347	0.003
556.7710	0.338	0.001	896.5714	0.349	0.001
558.7450	0.340	0.004	898.4044	0.323	0.001
559.7390	0.345	0.002	898.4634	0.323	0.004
560.8400	0.327	0.003	899.6105	0.325	0.002
562.8360	0.329	0.002	901.3950	0.344	0.001
563.7190	0.334	0.001	901.5980	0.348	0.003
870.5428	0.341	0.003	909.4569	0.331	0.002
871.5931	0.347	0.002	911.3985	0.320	0.002
872.6163	0.349	0.002	911.5500	0.325	0.001
873.5012	0.337	0.001	914.3890	0.345	0.002
882.5884	0.342	0.004	914.5420	0.364	0.003
883.4500	0.350	0.002	915.4653	0.339	0.004
883.5963	0.351	0.003	917.4243	0.332	0.002
884.4430	0.345	0.002	918.4039	0.340	0.001
884.6137	0.347	0.001	918.5315	0.338	0.003
885.5330	0.331	0.003	919.4419	0.348	0.005
887.4850	0.325	0.001	920.3918	0.346	0.001
887.5830	0.326	0.002	920.5290	0.343	0.002
888.5705	0.333	0.004	922.3873	0.322	0.002
889.5380	0.349	0.002	923.3940	0.322	0.002
890.4740	0.347	0.002	923.5355	0.325	0.003
890.6200	0.346	0.002	925.4335	0.340	0.001

Table 1. y-normal points (y-np) with observational times and standard errors σ

Table 2. The two solutions for the light curve of SAO 53210

Epoch	Period	Amplitude	Phase
1992 only	$P_1 = 11.8 d \pm 0.1$	$0^{\rm m}_{\cdot}0060 \pm 0.0005$	-3.125 ± 0.085
1992 only	$P_2 = 5.9 d \pm 0.2$	$0^{\rm m}_{\cdot}0100 \pm 0.0004$	-2.596 ± 0.056
1990 + 1991 + 1992	$P_1 = 12.1 \text{d} \pm 0.01$	$0^{\rm m}_{\cdot}0069 \pm 0.0009$	-2.993 ± 0.130
1990 + 1991 + 1992	$P_2 = 6.1 d \pm 0.02$	$0^{\rm m}_{\cdot}0009 \ \pm 0.0008$	-2.592 ± 0.100

Table 3. Details of the frequency analysis for the two different epochs of observation

Epoch	T_o	Initial $r.m.s.$ res.	Final $r.m.s.$ res.	Total variance
1992 only	JD2448899.5450	$0^{\rm m}_{\cdot}0096$	$0^{\rm m}_{\cdot}0031$	89%
1990 + 1991 + 1992	JD2448899.5450	$0^{\rm m}_{\cdot}0099$	$0^{\rm m}_{\cdot}0041$	83%

Figure 1. The light curves derived from our 1992 observations: the magnitude differences variable minus comparison (top) is compared with the difference check minus comparison (bottom).

The data of Table 1 were analysed in two steps: at first considering only the more meaningful group of 1992 observations and then all the data together (1990+1991+1992). The analysis was performed by means of the "Multifre code" (Bossi et al., 2009), which searches for the least squares best fit of a time series using a finite number of sinusoids.

In Figure 2 the periodogram related to the complete data set is presented, while Tables 2 and 3 show the results of the two separate analyses.

Finally, Figure 3 shows the synthetized light curve and the phased *y*-normal points, computed according to the data of Tables 2 and 3, and related to the whole set of observations reported in Table 1. Here open and filled circles represent the 1990 and 1992 measures, while crosses describe the 1991 data. A similar plot using only the 1992 observations does not show significant differences.

As a preliminary conclusion, Table 2 and 3 show that the light curve parameters based on the 1992 observations represent quite well also the 1990 and 1991 light variations. This could indicate that the same periodic physical phenomenon acted continuously over at least three years.

As a second important point, the light variations of SAO 53210 are satisfactorily explained by means of a double wave in which the two frequencies are not independent, but represent the fundamental frequency and its first harmonic.

The deviations of the 1990 observations (open circles in Figure 2) from the fit could be explained by a modulation of the light variation amplitude.

This picture seems to agree with the classification of SAO 53210 as a BY Dra type variable (Kazarovets et al., 2006), or as some other type of rotating variable stars. Further observations would clearly be important in order to improve the model of the star.

Figure 2. The periodogram of the complete set of observations

Figure 3. The light curve of SAO53210. The solid line is the synthetized light curve obtained according to to the data of Tables 2 and 3, and related to the whole set of observations. The open and filled circles represent the 1990 and 1992 observations, while the crosses correspond to 1991 data.

References:

Bossi, M., Nunez, N., 2009, private communication Cereda, L., Mistó, A., Niarchos, P.G., and Poretti, E., 1988, A&AS, **76**, 255 Cutispoto, G., Pastori, L., Guerrero, G. et al., 2000, A&A, **364**, 205 Giommi, P., Tagliaferri, G., Beuermann, K. et al., 1991, ApJ, **378**, 77 Kazarovets, E.V., Samus, N.N., Durlevich, O.V., 2006, *IBVS*, **5721**, 1 Percy, J.R., 1993, *PASP*, **105**, 1422

Number 5907

Konkoly Observatory Budapest 29 September 2009 *HU ISSN 0374 - 0676*

DRASTIC CHANGES IN PHOTOMETRIC VARIABILITY OF V410 Tau

GRANKIN, K. N.; ARTEMENKO, S. A.

Crimean Astrophysical Observatory, 98409 Nauchny, Crimea, Ukraine email: kgrankin@crao.crimea.ua, sartem@crao.crimea.ua

V410 Tau is a weak emission-line T Tauri star with a spectral type K4, lithium in absorption and a weak H_{α} emission (Herbig and Kameswara Rao, 1972; Cohen and Kuhi, 1979; Holtzman, Herbst, and Booth, 1986), it is also a source of highly variable, nonthermal, radio emission (Cohen, Bieging, and Schwartz, 1982; Becker and White, 1985), but exhibits no infrared excess (Rucinski, 1985). V410 Tau is a fast rotating star $(v \sin i \sim 70 \text{ km/s}; \text{Hartmann et al., 1986})$ with a 1.872 day rotational period derived from its photometric variability (Rydgren and Vrba, 1983; Vrba et al., 1988; Bouvier and Bertout, 1989). The periodic light variations have an amplitude of 0.2-0.6 mag in the V-band, which is attributed to cold stellar spots that cover at least 29% of the stellar surface (Grankin, 1999). This young rapidly-rotating star thus exhibits intense surface magnetic activity, also witnessed by its large X-ray luminosity $(3 \times 10^{30} \text{ erg/s}, \text{ Stelzer et})$ al., 2003) and strong flares in the U-band (Fernandez et al., 2004). V410 Tau is indeed an ideal candidate for an in-depth study of magnetic activity in cool stars: it is relatively bright, well situated for observation from the northern hemisphere and has exhibited the largest amplitude of variability among all known spotted variables (including RS CVn and BY Dra stars).

The photometric variations of this star have been monitored for 20 years (1986-2006) at Maidanak Observatory (Uzbekistan) and continued at Crimean Astrophysical Observatory (CrAO) in Ukraine since 2007. Over nearly 18 years (1986-2004), V410 Tau has exhibited smooth periodic light variations resulting from cool spotted regions on its surface (see Grankin et al., 2008). Model calculations (Grankin, 1999) show that, (1) the spot temperature is lower than the photospheric temperature by at least 1450 K, and (2) spotted regions cover from 29% to 67% of the visible stellar hemisphere. Small variations in the mean brightness level and in the shape of the light curve over the period 1986-2004 suggest limited spot evolution over the years.

However, drastic changes started to occur in the light curve of V410 Tau from 2005 on. While the photometric variations were quite smooth, sinusoidal and repeatable over the time period 1986-2004 (see Fig. 3 in Grankin et al., 2008), the amplitude suddenly started to decrease quite significantly in 2005, reaching a minimum in 2007-2008. The optical V light curve based on photoelectric observations of 1981-2008 is shown in Figure 1. The statistical properties of long-term photometric behaviour of V410 Tau are presented in Table 1. Individual data are available upon request. It is visible from Figure 1 and Table 1 that the amplitude of variability has reached a record minimum in 2007/2008 $(0^m.08-0^m.06)$ while the maximal amplitude was observed in 1998/1999 $(0^m.63-0^m.62)$. The mean brightness level has been changed very little during this time interval.

Table 1. The long-term photometric behaviour of V410 Tau. Columns are: Year - observation season, N_{obs} - number of observations, \overline{V} - mean magnitude in V, σ_V - standard deviation in V, V_{max} - maximum brightness in V, ΔV - photometric amplitude in V, $\overline{U-B}$, $\overline{B-V}$, $\overline{V-R}$ - mean color index in U-B, B-V, and V-R accordingly.

Year	N_{obs}	\overline{V}	σ_V	V_{max}	ΔV	$\overline{U-B}$	$\overline{B-V}$	$\overline{V-R}$
1981	26	10.939	0.066	10.822	0.221	0.935	1.221	1.054
1983	38	10.886	0.067	10.760	0.250	0.940	1.213	1.046
1984	59	10.895	0.086	10.770	0.320	0.918	1.211	1.041
1985	35	10.925	0.151	10.710	0.420	0.850	1.211	1.052
1986	150	10.897	0.176	10.620	0.590	0.917	1.193	1.047
1987	86	10.936	0.191	10.630	0.605	0.894	1.157	1.044
1988	104	10.934	0.135	10.690	0.461	0.929	1.165	1.039
1989	75	10.884	0.127	10.691	0.388	0.942	1.161	1.033
1990	78	10.886	0.121	10.672	0.483	0.927	1.152	1.043
1991	68	10.904	0.158	10.694	0.475	0.930	1.157	1.040
1992	77	10.853	0.169	10.612	0.540	0.912	1.151	1.036
1993	56	10.864	0.211	10.582	0.600	9.999	1.141	1.033
1994	32	10.796	0.199	10.519	0.628	0.915	1.140	1.016
1995	52	10.820	0.192	10.582	0.573	0.886	1.140	1.028
1996	42	10.872	0.180	10.634	0.548	0.917	1.147	1.039
1997	48	10.896	0.175	10.641	0.576	0.928	1.152	1.036
1998	37	10.816	0.223	10.581	0.630	9.999	1.148	1.017
1999	49	10.832	0.227	10.555	0.624	0.923	1.154	1.020
2000	21	10.830	0.191	10.613	0.504	0.884	1.149	1.025
2001	44	10.833	0.163	10.643	0.531	0.842	1.166	1.024
2002	49	10.872	0.158	10.628	0.596	0.960	1.166	1.066
2003	39	10.821	0.153	10.578	0.471	0.951	1.184	1.035
2004	27	10.823	0.144	10.597	0.443	0.971	1.180	1.049
2005	14	10.847	0.075	10.729	0.249	9.999	1.203	1.054
2006	20	10.879	0.079	10.701	0.265	9.999	1.206	1.058
2007	14	10.880	0.022	10.838	0.081	0.910	1.189	1.032
2008	42	10.852	0.031	10.805	0.055	0.922	1.172	1.046

These drastic changes in the amplitude of variability during 2005-2008 were accompanied by significant evolution of the shape of the phase light curve (see Figure 2). During the 2005/2006 and 2006/2007 seasons the phase light curve had a complex shape in the sense that two maxima and two minima were observed per cycle. Such shapes of the light curves can be a result of the existence of two extended spotted regions on opposite sides of the star. Similar light curves were observed during 1981-1985 (see Herbst, 1989). This ~ 23 yr evolution (from 1983 till 2006) possibly reflects a long term activity cycle similar to the 11-yr cycle occurring in the Sun. Recently some publications informs on the detection of shorter cycles of activity for this star within the range of 4-13 years (Stelzer et al., 2003; Sokoloff et al., 2008; Oláh et al., 2009). In any case, to check if V410 Tau indeed has a cycle with a quasi period of ~ 23 yr it is necessary to use photographic and photometric data from other observatories.

Figure 2. Phased light curves of V410 Tau for the last eight seasons, with JD (Hel.) min = $2452234.28597 + 1.87197 \times E$.

What happens to the spot configuration and to the underlying magnetic field distribution during the last 4 years (2005-2008) of perturbations should therefore give us hints on how dynamo processes are operating in young active stars, something on which very few constraints have been obtained so far. At least 2 possible interpretations can be put forward to explain the sudden decrease in amplitude of variability: either large monolithic spots have drifted exactly to the stellar poles, or many small spots are now nearly evenly distributed over the stellar surface. These two possible, nearly axisymmetric configurations would produce little modulation of the light curve, as observed in 2007-2008.

Preliminary simple modeling of the light curve of V410 Tau (cf. Grankin et al. 2008) showed that:

(i) The amplitude of the phased light curve depends on the degree of non-uniformity in the spot distribution more strongly than on the star's total spot area. An increase in amplitude was accompanied by an increase in the degree of non-uniformity in the spot distribution over the stellar surface from 4 to 37%.

(ii) The decrease in average magnitude is attributable to the increase in total spot area from 44 to 53% and that it is essentially independent of the degree of non-uniformity in the spot distribution over the surface (see Figure 3).

These two results shows, that the second interpretation is more likely, than the first one.

Figure 3. Plots of the amplitude of V410 Tau against the non-uniformity in the spot distribution (left) and the average level of brightness against the total spot area (right), see Grankin et al. (2008) Fig. 10. for comparison.

In order to decide between these alternatives, we need to obtain Doppler maps of the stellar surface, or even better, a Doppler-Zeeman map during several seasons. We will then be able to understand how the cool polar spots or equatorial regions develop and extend with time, how much toroidal and poloidal fields of the magnetic topology contains at each stage of the evolution process, and how much the surface of V410 Tau is sheared by differential rotation, a crucial ingredient for the dynamo process.

References:

Becker, R.H. and White R.L., 1985, ApJ, 297, 649 Bouvier, J. and Bertout, C., 1989, A&A, **211**, 99 Bouvier, J., Bertout, C. and Bouchet, P., 1988, A&AS, 75, 1 Cohen, M. and Kuhi, L.V., 1979, ApJ Suppl., 41, 743 Cohen, M., Bieging, J.H. and Schwartz, P.R., 1982, ApJ, 253, 707 Fernandez, M., Stelzer, B., Henden, A. et al., 2004, A&A, 427, 263 Grankin, K.N., 1999, Astron. Lett., 25, 526 Grankin, K.N., Bouvier, J., Herbst, W. and Melnikov, S.Yu., 2008, A&A, 479, 827 Hartmann, L., Hewett, R., Stahler, S. et al., 1986, ApJ, 309, 275 Herbig, G.H. and Kameswara Rao, N., 1972, ApJ, **174**, 401 Herbst, W., 1989, AJ, 98, 2268 Holtzman, J.A., Herbst, W., and Booth, J.F., 1986, AJ, 92, 1387 Oláh, K., Kolláth, Z., Granzer, T. et al., 2009, A&A, 501, 703 Rucinski, S.M., 1985, AJ, 90, 2321 Rvdgren, A.E., and Vrba, F.J., 1983, ApJ, 267, 191 Sokoloff, D.D., Nefedov, S.N., Ermash, A.A. et al., 2008, Astronomy Letters, 34, 761 Stelzer, B., Fernandez, M., Costa, V.M. et al., 2003, A&A, 411, 517 Vrba, F.J., Herbst, W., and Booth, J.F., 1988, AJ, 96, 1032

Number 5908

Konkoly Observatory Budapest 7 October 2009 *HU ISSN 0374 - 0676*

PHOTOMETRIC ANALYSIS OF USNO-B1.0 1323-0548678

CAPEZZALI, DANIELE^{1,2}; CAROSATI, DANIELE^{3,4}; FIORUCCI, MASSIMO^{1,5}

¹ Physics Department University of Perugia, Perugia, Italy

² Porziano Astronomical Observatory, Assisi, Italy

³ Armenzano Astronomical Observatory, Assisi, Italy

 4 EPT Observatories, Tijarafe, La Palma, Spain

⁵ INAF Osservatorio Astronomico di Padova, Asiago, Italy

In the last years we have repetitively observed the variability of USNO-B1.0 1323-0548678 (J2000.0 $\alpha = 22^{h}02^{m}27^{s}8$; $\delta = +42^{\circ}18'03''$) during a program to study the well known extragalactic object BL Lac. The source has been already identified by Sokolovsky & Amirkhanyan (2006) as an EW eclipsing variable, and now we are able to give the first results about the physical parameters of components in this close binary system.

The data have been obtained at the Armenzano Astronomical Observatory with the 0.40 m Ritchey-Chrétien telescope equipped with an Apogee AP47p (Marconi 47-10 of 1024×1024 pixels), and at the Porziano Astronomical Observatory with the 0.35 m Schmidt-Cassegrain telescope equipped with a QSI532WS CCD camera (Kodak Kaf 3002me of 2184×1472 pixels). Both the instruments are provided with standard BVR_CI_C Johnson-Cousins broad-band filters, and the simultaneous results show small differences within the corresponding standard deviations. The CCD frames were first corrected for standard de-biasing and flat-fielding, then processed for aperture photometry and differential photometry using the comparison stars already calibrated for BL Lac (Fiorucci & Tosti, 1996). The typical standard deviation is of the order of 0.02 magnitudes. The 698 photometric points are reported in Table 4 (available in electronic form only through the IBVS website as 5908-t4.txt), and briefly resumed in Table 1. Time has been converted to Heliocentric Julian Days.

The first important step in our analysis was to estimate the intrinsic colors of the system. Table 2 shows optical color indices and the JHK_s colors reported by 2MASS (Cutri et al., 2003). Optical photometry suggests a spectral classification ~ K2 V, while the near-infrared colors are consistent with an higher average temperature: a spectral

filter	N of data			max	min
moor	Armenzano	Porziano	TOT	max	
В	29	51	80	$16.64 {\pm} 0.03$	$16.93 {\pm} 0.04$
V	147	35	182	$15.67 {\pm} 0.02$	$15.98 {\pm} 0.02$
R_C	258	59	317	$15.20 {\pm} 0.01$	$15.51{\pm}0.01$
I_C	75	44	119	$14.72 {\pm} 0.02$	$15.03 {\pm} 0.02$

Table 1Photometric observations of USNO-B1.01323-0548678

E(B-V)	B - V	$V - R_C$	$V - I_C$	J - H	$J - K_s$
0.00	0.95	0.45	0.95	0.39	0.45
0.10	0.85	0.38	0.81	0.35	0.41

Table 2Observed and dereddened colors of USNO-B1.01323-0548678

classification ~ G8 V. It is extremely probable that the variable is reddened by the interstellar matter in the Lacerta region (Schlegel et al., 1998, report a Galactic extinction $A_V \simeq 1.1$), so we computed the dereddened colors (Fiorucci & Munari, 2003) changing the E(B-V) parameter from 0 to 0.40, step 0.01. Comparing the dereddened colors with the expected ones for the various MK spectral types we verified that the best fit is achieved for E(B-V) = 0.10, corresponding to the spectral type G6 V, a value that now allows a good agreement between optical and near-infrared dereddened color indices (see Table 2).

W UMa stars are close contact binary systems, with components that generally belong to main-sequence stars of spectral type from late A to middle K. They are among the most numerous variable stars in the sky, $\sim 95\%$ of all variable stars in the solar neighborhood (Hoffman et al., 2009). They can be easily identified by spectroscopic observations, while the photometric classification is usually performed by visual inspection of the light curve profile and by the identification of the spectral type. With our estimation of the spectral type, and taking into account of the typical patterns in the light curve, we can confirm that USNO-B1.0 1323-0548678 is a close binary system. The minima in the light curve have almost exactly the same depth indicating very similar temperatures of the components. The minima are not flat-bottomed, and the overall variations are less than 0.3 mag in all the bands, indicating a moderate orbital inclination. Since much information is obtained from observations of the eclipses, we expect that the quality of determination of the geometrical and physical parameters of the system will not be as good as for systems with higher inclination. The beginning and end of eclipses are barely visible in the light curve, which may suggest a small overfilling configuration for this system. With our observations, together with the historical data reported by Sokolovsky & Amirkhanyan (2006), we are able to considerably improve the period by means of the Fourier periodogram:

 $P = 0.354632 \pm 0.000001 \text{ days} (8^{h}30^{m}40^{s}2)$

 $\Phi_0 = \text{HJD} \ 2453999.06601 \pm 0.00001$

We analyzed our observations with the 2003 version of the Wilson-Devinney program (Wilson & Devinney, 1971; Wilson, 1990). We used mode 3, appropriate for over-contact binaries of this type, and adjusted the parameters shown in Table 3. As explained before, we have estimated the system as a G6 V MK spectral type, so we can set the mean effective temperature of star 1 equal to 5600 K. Unadjusted parameters such as the gravity darkening exponents and bolometric albedos were set to their theoretically expected values for this type of star. Limb darkening coefficients were taken from the tables presented by Van Hamme (1993). Only the principal parameters were iterated: phase of the primary conjunction ϕ_0 , inclination *i*, average temperature of the secondary star T_2 , surface potential $\Omega_1 = \Omega_2$, mass ratio *q*, and relative monochromatic luminosity of the primary star L_1 in the B, V, R_C and I_C bands. Figure 1 shows the best fit to the BVR_CI_C normalized flux versus phase. The geometrical representation is given in Figure 2. This is our best fit, obtained after a deep sampling of a large range of parameters. However, further photometric and spectroscopic observations could be useful since acceptable fits can be

Figure 1. Comparison between theoretical (lines) and observed (circles) BVR_CI_C phase diagrams

Figure 2. Geometrical representation of USNO-B1.0 1323-0548678 during the maximum (left) and the secondary minimum (right). It is worth to note the small filling factor ($\simeq 1.1\%$).

Parameter	Value	Std. Error*
i	$63^{\circ}_{\cdot}7$	$0^{\circ}.6$
T_1	$5600~{ m K}$	(assumed)
T_2	$5428~{ m K}$	$32~{ m K}$
$q = M_2/M_1$	5.009	0.031
$\Omega_1 = \Omega_2$	9.157	0.013
$L_1(B)$	2.607	0.046
$L_1(V)$	2.535	0.033
$L_1(R_C)$	2.494	0.027
$L_1(I_C)$	2.463	0.027
$L_2(B)$	9.317	0.085
$L_2(V)$	9.452	0.076
$L_2(R_C)$	9.531	0.062
$L_2(I_C)$	9.593	0.065
r_1^{pole}	0.2337	0.0002
$r_2^{\overline{pole}}$	0.4881	0.0002
$r_1^{\tilde{side}}$	0.2432	0.0002
r_2^{iide}	0.5312	0.0002
$r_1^{\tilde{b}ack}$	0.2764	0.0002
$r_2^{\dot{b}ack}$	0.5540	0.0002

 Table 3 Adjusted Parameters from the Wilson-Devinney code

* Formal errors from the differential corrections solution.

achieved for a large range of mass ratio values, thus resulting in significantly differences in the other parameters.

Our solution indicates that USNO-B1.0 1323-0548678 is a W-type W UMa contact binary: the primary minimum corresponds to an occultation eclipse of the larger secondary in front of the smaller primary component (using the definition of components required by the W-D code). These variables usually have surface temperatures equal or less than 6200 K, in agreement with the estimate obtained considering the interstellar extinction. The temperature difference between the two components is relatively small (\simeq 170 K) and this is in agreement with a good thermal contact. Like many W-type systems, also this system shows rapid changes within the two observed light curve maxima.

References:

Cutri, R. M. et al., 2003, 2MASS All Sky Catalog of point sources
Fiorucci, M. & Tosti, G., 1996, A&ASS, 116, 403
Fiorucci, M. & Munari, U., 2003, A&A, 401, 781
Hoffman, D.I., Harrison, T.E., McNamara, B.J., 2009, AJ, 138, 466
Schlegel, D.J., Finkbeiner, D.P., Davis, M., 1998, ApJ, 500, 525
Sokolovsky, K.V., Amirkhanyan, V.R., 2006, Peremennye Zvezdy Prilozhenie, 6, 1
Van Hamme, W., 1993, AJ, 106, 2096.
Wilson, R.E., 1990, ApJ, 356, 613
Wilson, R.E. & Devinney, E.J., 1971, ApJ, 166, 605

Number 5909

Konkoly Observatory Budapest 29 October 2009 *HU ISSN 0374 - 0676*

THE NEW ECCENTRIC ECLIPSING BINARY GSC 3152 1202

KOZYREVA, V. S.¹; KUSAKIN, A. V.²; BAGAEV, L. A.¹

¹ Sternberg Astronomical Institute, Moscow University, 13, Universitetsky Ave., Moscow 119899, Russia [valq@sai.msu.ru],[baglev@yandex.ru]

National Space Agency, Republic of Kazakhstan, JSCNCSRT, Department "V.G. Fesenkov Astrophysical Institute", Almaty 050068, Kazakhstan [un7gbd@gmail.com]

The recently discovered binary system (GSC 3152 1202, $\alpha_{2000} = 20^{h}27^{m}173$, $\delta_{2000} = +37^{\circ}56'27''$, P = 2.094) belongs to the list of "50 new eccentric eclipsing binaries found in the ASAS, Hipparcos and NSVS databases" published by Otero et al. (2006). The star is a rather faint eclipsing binary. The only photometric measurement available is the original ROTSE1 magnitude (12^m69).

We performed measurements in the V band at the Crimea Station of the Sternberg Astronomical Institute using the Zeiss-600 + an Ap47 CCD array in June 2009 and at the Tien Shan Astronomical Observatory using a Ritchey-Chretien-350 + an ST-402 CCD array in August 2009. The nearest neighbors GSC 3152 1174 ("c1") and GSC 3152 0488 ("c2") were used as comparison stars initially. We found the rms deviation of $\Delta m(var-c2)$ outside minima to reach 0^m008. The rms-scatter $\Delta m(var - c1)$ reached 0^m011. However, on June 22 the $\Delta m(var - c2)$ values had a trend of about 0^m1 in 2.5 hours in contrast to the $\Delta m(var - c1)$ values. This behavior must be due to the variability of the star "c2". In any case in this study we used only "c1" (GSC 3152 1174) as the comparison star. The joint light curve is shown in Fig. 1. The data of individual measurements are accessible at the IBVS website as 5909-t2.txt.

Only one star in the CCD-images has a known spectral type (BD $+37^{\circ}3937$, Sp G0). The information is obtained from the SIMBAD Astronomical Database (operated at Strasburg, France). Some of our observations outside minima were made in U, B and R bands. Our study has limited a range of a spectral type of the star under investigation from G0 to K2 with high probability.

We see from Fig. 1 that the depths of minima are close to each other. Thus we are dealing with a binary system composed of two stars with similar masses and spectra.

The photometric elements of the system have been derived by minimizing a functional depending on the measured and theoretical magnitude differences (Kozyreva, Zakharov, 2001).

The coefficients of limb-darkening u_1 and u_2 of the component stars (spectral types from G0 until K2) were chosen according to Grygar et al. (1972) and were fixed during calculations. We found the correlation between the derived photometric elements and the adopted limb-darkening parameters to be rather weak.

Figure 1. The summary V-light curve of GSC 3152 1202 obtained at the Tian-Shan observatory and at the Crimea observatory in summer 2009

The elements of the system are presented in Tab. 1: the radii (r_1, r_2) , inclination (i), the eccentricity (e), longitude of periastron of the orbit (ω) , luminosities of the components (L_1, L_2) and the "third light", L_3). In addition the table includes the interval of the fixed limb-darkening parameters (u_1, u_2) , according to adopted spectral types of the components), the shift of the secondary minimum ϕ_{II} and the standard deviation (σ_{o-c}) of the solution. The solution corresponds to the average time of our observations (July 2009). Since the light curve is based on a compilation of measurements obtained on different instruments during several months, we expect some systematic errors to be present in the derived photometric elements.

Element	Value	Element	Value
$egin{array}{c} \mathbf{r}_1 \ \mathbf{r}_2 \ \mathbf{i} \ \mathbf{e} \ \mathbf{\omega} \ \mathbf{\phi}_{II} \end{array}$	$\begin{array}{c} 0.241 \pm 0.003 \\ 0.216 \pm 0.005 \\ 85^{\circ}.3 \pm 0^{\circ}.3 \\ 0.084 \pm 0.001 \\ 332^{\circ}.7 \pm 0^{\circ}.2 \\ 0.^{p}.5475 {\pm} 0.0005 \end{array}$	$egin{array}{c} \mathrm{L}_1 \ \mathrm{L}_2 \ \mathrm{L}_3 \ \mathrm{u}_1 \ \mathrm{u}_2 \ \sigma_{o-c} \end{array}$	$\begin{array}{c} 0.560 \pm 0.020 \\ 0.410 \pm 0.020 \\ 0.030 \pm 0.030 \\ 0.61 \div 0.72 (\text{fixed}) \\ 0.61 \div 0.72 (\text{fixed}) \\ 0.0107 \end{array}$

Table 1: The photometric elements of the star GSC 3152 1202.

The only available data besides our observations of this star are the time of the primary minimum (JDH 51478.596) and the shift of the secondary minimum ($\phi_{II} = 0.489$) published by Otero et al. (2006).

The change in the phase of the secondary minimum for the two epochs of observations is significant, indicating the existence of apsidal motion of the orbit. Given the calculated eccentricity e = 0.084, the shift of the secondary minimum $(\phi_{II} = 0.489)$ agrees with two values of the longitude of periastron located in quadrants II and III. The apsidal period is equal to either 15 or 50 years correspondingly. Thus we can give only the upper limit for the apsidal period: $U \leq 50$ years.

We derived, along with other photometric elements, the time of conjunction of the components at primary eclipse (T_1) . The time of secondary conjunction of the components (T_2) was inferred via well-known relation from Kopal (1978) with the derived values of orbital elements (Tab.1):

$$T_2 = T_1 + \frac{P}{2} + \frac{2Pe\cos\omega}{\pi} - \frac{2Pe^3(1+3\sqrt{1-e^2})}{3\pi(1+\sqrt{1-e^2})^3}\cos 3\omega + \dots$$
(1)

The period P_1 was calculated using two moments of primary minima.

$$\begin{split} \mathrm{Min}\, I &= \mathrm{JD}_\odot\, 2455004.4386(2) \\ \mathrm{Min}\, \mathrm{II} &= \mathrm{JD}_\odot\, 2455066.3026(3) \end{split}$$

 $P_I = 2^{\rm d}.093731(1)$

In conclusion we note that this eclipsing binary system (GSC 3152 1202) is a very good object for rapid detection of apsidal motion.

Acknowledgements: We wish to thank A.I. Zakharov, S.E. Leont'ev for the help on development of computer programs, V.B. Sekirov for the excellent Ritchey-Chretien telescope, which he made with his own hands, M.A. Krugova for providing technical equipment and K.S. Kuratov for his hospitality during our stay at the Tien Shan astronomical observatory.

References:

Grygar, J., Cooper, M.L., Jurkevich, I., 1972, Bull.Astron.Inst.Czech., 23, 147 Kopal, Z., 1978, ASSL, 68, Dordrecht, Reidel, Dynamics of Close Binary Systems Kozyreva, V.S., Zakharov, A.I., 2001, Ast. Letters, 27, 712 Otero, S. A., Wils, P., Hoogeveen, G., Dubovsky, P. A., 2006, IBVS, 5681

Number 5910

Konkoly Observatory Budapest 6 November 2009 *HU ISSN 0374 - 0676*

NEW TIMES OF MINIMA OF SOME ECLIPSING VARIABLES

LACY, C. H. S.

Department of Physics, University of Arkansas, Fayetteville, Arkansas 72701, USA; e-mail: clacy@uark.edu

Observatory and telescope:
URSA: URSA Observatory at the University of Arkansas (ursa.uark.edu); 10-inch
Schmidt-Cassegrain reflector.
NFO: NFO WebScope near Silver City, NM, USA (www.nfo.edu); 24-inch classical
Cassegrain.

Detector:	URSA: 1020×1530 pixels SBIG ST8EN CCD cooled to
	(typ.) -20° C; 1.15 arcsec square pixels; $20'$ (N-S) $\times 30'$ (E-
	W) field of view.
	NFO: 2102×2092 pixels Kodak KAF 4300E CCD cooled
	to (typ.) -20 C; 0.78 arcsec square pixels; 27' square field
	of view.

Method of data reduction:

Virtual measuring engine (Measure 2.0) written by C.H.S. Lacy (2005).

Method of minimum determination:

Kwee & van Woerden (1956)

Times of r	Times of minima:							
Star name	Time of min.	Error	Type	Filter	Rem.			
	m HJD~2400000+							
AP And	54285.9143	0.0002	1	V	NFO			
	54289.8826	0.0003	2	V	URSA			
	54317.6601	0.0004	1	V	URSA			
	54327.9778	0.0002	2	V	NFO			
	54328.7708	0.0002	1	V	URSA			
	54328.7713	0.0002	1	V	NFO			
	54331.9456	0.0002	1	V	NFO			
	54339.8823	0.0002	1	V	URSA			
	54339.8830	0.0004	1	V	NFO			
	54343.8510	0.0002	2	V	NFO			
	54347.8194	0.0005	1	V	NFO			
	54367.6601	0.0001	2	V	NFO			
	54371.6281	0.0002	1	V	NFO			
	54386.7074	0.0002	2	V	NFO			
	54389.8824	0.0002	2	V	NFO			
	54393.8503	0.0002	1	V	NFO			
	54394.6440	0.0002	2	V	NFO			
	54398.6122	0.0002	1	V	URSA			
	54401.7867	0.0002	1	V	URSA			

Times of minima:							
Star name	Time of min.	Error	Type	Filter	Rem.		
	HJD 2400000+		. 1				
	54401 7865	0.0002	1	V	NFO		
	54405 7550	0.0001	2	V	NFO		
	54409 7229	0.0001	1	, V	NFO		
	54413 6914	0.0002	2	V	URSA		
	54413 6911	0.0001	2	V	NFO		
	544216278	0.0002	2	V	URSA		
	54459 7226	0.0002	2	V	NEO		
	54463 6000	0.0002	1	V V	NFO		
	54405.0909	0.0001	1	V V	NFO		
	54475.5954	0.0002	1	V	NEO		
	04490.0110 EE007 0140	0.0002	1	V V	NEO		
CO And	00097.0142 54201.0000	0.0002	2	V	NFU UDGA		
	04021.002U 5.4000.0474	0.0003	2	V	URSA		
	54552.8474	0.0003	2	V			
	54343.8131	0.0003	2	V	URSA		
	54305.7450	0.0003	2	V	URSA		
	54365.7456	0.0002	2	V	NFO		
	54387.6785	0.0002	2	V	NFO		
	54409.6103	0.0003	2	V	URSA		
	54418.7474	0.0004	1	V	NFO		
	54420.5760	0.0005	2	V	URSA		
	54734.9352	0.0003	2	V	NFO		
	54736.7608	0.0003	1	V	URSA		
	54745.9002	0.0003	2	V	NFO		
	54747.7290	0.0002	1	V	NFO		
	54756.8668	0.0002	2	V	NFO		
	54758.6957	0.0002	1	V	NFO		
	54767.8323	0.0002	2	V	NFO		
	54778.8003	0.0005	2	V	URSA		
	54778.7987	0.0002	2	V	NFO		
	54789.7646	0.0003	2	V	NFO		
	54800.7295	0.0003	2	V	NFO		
	54811.6962	0.0003	2	V	NFO		
	54822.6622	0.0005	2	V	URSA		
CG Aur	54386.9152	0.0004	$\overline{2}$	V	NFO		
0.0.111	54406 7684	0.0005	$\frac{1}{2}$	V	URSA		
	54413 9894	0.0006	2	V	NFO		
	544238644	0.0000	1	V	NFO		
	54453 6973	0.0000	2	V	URSA		
	54480 7714	0.0001	2	V	NFO		
	54480 7049	0.0005	2	V V	UBSA		
	54596 7496	0.0000	∠ 1	v V	NEO		
	54526 7990 54526 7990	0.0000	1 0	V V	NEO		
	54550.1220 54746 0401	0.0009	∠ 1	V 17	NEO		
	04740.9401 54755 0500	0.0003	1	V 17	NFO NEO		
	04/00.909U	0.0006	1	V			
	04700.9411 F 4767 7 479		2	V 17	UKSA		
	54/0/.7473	0.0011	2	V TZ	UKSA		
	54793.8649	0.0002	1	V	URSA		
	54811.9147	0.0005	1	V	NFO		
	54820.9374	0.0006	1	V	NFO		
	54821.8891	0.0006	2	V	NFO		
	54832.7197	0.0004	2	V	URSA		
	54842.5937	0.0004	1	V	URSA		
	54869.6646	0.0005	1	V	NFO		
	54907.5671	0.0007	1	V	URSA		

Times of minima:					
Star name	Time of min.	Error	Type	Filter	Rem.
	HJD 2400000+				
HP Aur	54387.8986	0.0003	1	V	NFO
	54397.8588	0.0002	1	V	URSA
	54404.9722	0.0002	1	V	URSA
	54404.9720	0.0002	1	, V	NFO
	544327178	0.0002	2	V	URSA
	54469 7110	0.0002	2	, V	URSA
	54486 7847	0.0001 0.0007	2	, V	URSA
	54489 6304	0.0001	2	V	URSA
	54521 6429	0.0000	1	V	NFO
	54536 5843	0.0002	2	V	URSA
	54737 0104	0.0004	1	V	URSA
	54769 9220	0.0001	2	V	URSA
	54777 7496	0.0002	1	V	URSA
	54770 8821	0.0002	2	V	URSA
	54787 7004	0.0000	1	V	URSA
	54780 8428	0.0001	2	V	URSA
	54840 6013	0.0003	2	V V	URSA
	54866 6736	0.0002	2	V V	URSA
	54881 6145	0.0003	2 1	V V	
	54008 6470	0.0002	1	V V	
IIW Boo	54006 8208	0.0002	1	V V	NFO
V_{3} V_{2	54900.8298	0.0010	2	V V	
V 561 Cas	54354.9247	0.0003	∠ 1	V V	
V USI Cas	54202 8280	0.0001	1	V V	
	54402 8002	0.0001	1	V V	URSA
	54402.8002	0.0002	1	V V	URSA
	54400.7011	0.0001	1	V V	URSA
	54466 5055	0.0001	1	V V	URSA
	54460.5955	0.0001	1	V V	URSA
	54460 5857	0.0002	1	V	URSA
	54797 7609	0.0001	1	V	URSA
	54739 7434	0.0001	1	V V	URSA
	54735 7344	0.0001	1	V	URSA
	54750 6865	0.0001	1	V V	URSA
	54766 6355	0.0001	1	V	URSA
	54767 6325	0.0002	1	V	URSA
	54769 6261	0.0001 0.0002	1	V	URSA
	54779 5931	0.0002	1	V	URSA
	54786 5713	0.0002	1	V	URSA
	54792 5522	0.0001	1	V	URSA
	54793 5490	0.0001	1	V	URSA
	54795 5495	0.0001	1	V	URSA
WW Cen	54304 6991	0.0001	1	V	URSA
www.cep	54320 8000	0.0005	2	V	URSA
	54334 6067	0.0003	$\frac{2}{2}$	v V	URSA
	54403 6196	0.0000	2	v V	UBSA
	54419 7208	0.0007	- 1	v V	URSA
	54479 5987	0.0002	1 1	v V	UBSA
	54649 7619	0.0000	1 1	v V	UBSA
	54732 5776	0.0001	1 1	v V	URSA
	54741 7704	0.0001	1 1	v V	URSA
WY Cen	54324 7841	0.0001	1 1	v V	URSA
11 T Ceb	54327 9077	0.0003	2	, V	URSA
1	5 -5 - 1 -0 0 1 1	0.0000	-	,	C 10011

Times of minima:						
Star name	Time of min.	Error	Туре	Filter	Rem.	
	HJD 2400000+					
V456 Cyg	54227.9184	0.0001	1	V	NFO	
	54320.6032	0.0003	1	V	URSA	
	54373.6286	0.0002	2	V	NFO	
V974 Cvg	54636.8342	0.0005	1	V	NFO	
V1136 Cvg	54612.7989	0.0006	1	V	NFO	
BF Dra	54260.8543	0.0005	1	V	URSA	
	54305 6982	0.0003	1	V	URSA	
	54344 7510	0.0006	2	V	URSA	
	54361 7525	0.0004	1	, V	NFO	
	54406 5972	0.0001	1	V	URSA	
	54406 5976	0.0000	1	V	NFO	
	54613 8163	0.0002	2	V	NFO	
	54731 7160	0.0004	1	V	NFO	
	54038 0325	0.0002 0.0012	2	V V	NFO	
AC Com	54466 6004	0.0012	2 1	V V	NFO	
AC Gem	54400.0994 54725.0124	0.0004	1	V V		
IV II.on	54755.9154 54991 7090	0.0000	1	V TZ	URSA NEO	
LV Her	04001.7009 54000 CE40	0.0003	2	V TZ	NEO	
	54508.0548	0.0002	2	V TZ	NFO NEO	
	54589.8873	0.0002	2	V	NFO	
	54647.7332	0.0002	1	V	URSA	
	54647.7328	0.0006	1	V		
11/7 T	54868.9645	0.0007	1	V	URSA	
WZ Leo	54483.9779	0.0013	2	V	NFO	
	54495.9464	0.0003	1	V	NFO	
	54502.9877	0.0007	1	V	NFO	
	54507.9173	0.0006	2	V	NFO	
	54567.7639	0.0003	1	V	NFO	
	54584.6621	0.0003	1	V	\mathbf{URSA}	
	54584.6630	0.0003	1	V	NFO	
	54591.7031	0.0003	1	V	NFO	
V501 Mon	54422.8674	0.0005	2	V	NFO	
	54450.9531	0.0007	2	V	NFO	
	54454.8302	0.0004	1	V	NFO	
	54475.8934	0.0008	1	V	NFO	
	54787.9741	0.0006	2	V	NFO	
	54791.8490	0.0010	1	V	NFO	
V506 Oph	54179.9684	0.0001	1	V	NFO	
	54195.8747	0.0002	1	V	\mathbf{URSA}	
	54222.9155	0.0002	2	V	NFO	
	54237.7616	0.0002	2	V	URSA	
	54238.8222	0.0002	2	V	URSA	
	54240.9431	0.0002	2	V	NFO	
	54256.8503	0.0002	2	V	NFO	
	54275.9374	0.0002	2	V	NFO	
	54289.7228	0.0002	2	V	URSA	
	54290.7834	0.0002	2	V	URSA	
	54306.6892	0.0002	2	V	URSA	
	54323.6566	0.0002	2	V	URSA	
	54556.9504	0.0002	2	V	NFO	
	54564.9038	0.0004	1	V	NFO	
	54572.8568	0.0003	2	V	NFO	
	54582.9305	0.0002	1	$\overset{\cdot}{V}$	NFO	
	54590.8842	0.0001	2	\dot{V}	URSA	
	54600.9580	0.0002	$\overline{1}$	$\overset{\cdot}{V}$	NFO	

Times of minima:						
Star name	Time of min.	Error	Type	Filter	Rem.	
	HJD $2400000+$					
	54605.7299	0.0002	2	V	URSA	
	54607.8509	0.0003	2	V	URSA	
	54625.8780	0.0002	2	V	URSA	
	54625.8782	0.0002	2	V	NFO	
	54631.7105	0.0003	1	V	NFO	
	54632.7710	0.0002	1	V	NFO	
	54648.6772	0.0002	1	V	URSA	
	54648.6765	0.0003	1	V	NFO	
	54726.6186	0.0002	2	V	URSA	
	54727.6783	0.0003	2	V	NFO	
	54752.5992	0.0001	1	V	NFO	
	54865.0047	0.0003	1	\dot{V}	URSA	
	54881.9711	0.0002	1	V	URSA	
	54915.9048	0.0002	1	V	URSA	
	54916.9655	0.0002	1	V	NFO	
	54924.9187	0.0002	2	V	NFO	
	54974 7598	0.0006	2	, V	NFO	
	54984 8325	0.0003	1	, V	NFO	
	54999 6791	0.0000	1	V	NFO	
IM Per	54364 7974	0.0000	2	V	URSA	
	54373 8136	0.0004	$\frac{2}{2}$	V	NFO	
	54302 0735	0.0002	1	V	NFO	
	54400 8664	0.0002	2	V V	NFO	
	54400.0004	0.0003	2 1	V V	NFO	
	54400.7555	0.0002	1	V		
	54409.0010	0.0005	2	V TZ	ULSA NEO	
	54409.0027	0.0004	2	V TZ	NEO	
	54410.0450	0.0004	ے 1	V TZ	NEO	
	54505 6866	0.0003	1	V	NFO	
	04000.0000 EE100.0001	0.0003	1	V V	NFO NEO	
V 499 Dam	00109.0221 54102.6216	0.0007	1	V V	NFO NEO	
V 462 Per	54195.0510	0.0000	ے 1	V TZ	NEO	
	54402.8237	0.0003	1	V TZ		
	54408.9423	0.0004	2	V	URSA	
	54764.9399	0.0005	1	V	URSA	
	54764.9392	0.0004	1	V	NFO	
	54774.7265	0.0006	1	V	URSA	
	54786.9621	0.0005	1	V	NFO	
	54801.6414	0.0008	1	V	NFO	
	54812.6523	0.0006	2	V	URSA	
	54840.7884	0.0005	1	V	URSA	
	54840.7874	0.0005	1	V	NFO	
	54845.6802	0.0004	1	V	NFO	
	54867.7018	0.0004	1	V	URSA	
	54867.7024	0.0004	1	V	NFO	
V514 Per	54370.8736	0.0004	2	V	NFO	
	54411.8034	0.0005	1	V	NFO	
	54412.7129	0.0007	2	V	NFO	
	54422.7193	0.0006	1	V	URSA	
	54422.7215	0.0010	1	V	NFO	
	54503.6717	0.0005	2	V	NFO	
	54733.7953	0.0005	1	V	URSA	
	54742.8921	0.0004	1	V	URSA	
	54742.8907	0.0010	1	V	NFO	
	54753.8085	0.0006	1	V	NFO	

Times of 1	minima:				
Star name	Time of min.	Error	Type	Filter	Rem.
	$\rm HJD~2400000+$				
	54762.9037	0.0005	1	V	NFO
	54794.7391	0.0009	2	V	NFO
	54795.6452	0.0005	1	V	NFO
	54803.8337	0.0012	2	V	NFO
	54865.6842	0.0005	2	V	NFO
	55094.8967	0.0005	2	V	NFO
	55104.9025	0.0009	1	V	NFO
	55105.8154	0.0006	2	V	NFO
AQ Ser	54210.7929	0.0003	2	V	URSA
Ū	54221.7613	0.0004	1	V	NFO
	54242.8536	0.0002	2	V	NFO
	54259.7283	0.0003	$\overline{2}$	\dot{V}	NFO
V335 Ser	54616.7031	0.0002	1	V	URSA
1000 1000	54616.7032	0.0002	1	V	NFO
TY Tau	54403.7429	0.0005	$\overline{2}$	V	URSA
11 100	54404.9722	0.0002	2	V	URSA
	54410 7442	0.0002	1	, V	URSA
	54411 8215	0.0003	1	, V	URSA
	54412 8000	0.0000	1	V	URSA
	54412.0550 54413.0757	0.0002	1	V	URSA
	54410 9011	0.0000	2	V V	URSA
	54413.3011	0.0004	1	V V	URSA
	54451 6840	0.0002	1	V	URSA
	54453 8400	0.0002	1	V V	URSA
	54465 6806	0.0003	1	V V	URSA
	54466 7673	0.0003	1	V V	URSA
	54477 5404	0.0002	1	V V	URSA
	54479 6050	0.0004	1	V V	URSA
	54486 6060	0.0005	2	V V	URSA
	54400.0909	0.0000	2	V V	URSA
	54506 6208	0.0000	1	V V	URSA
	54526 5625	0.0002 0.0007	1 9	V V	URSA
	54722 8767	0.0007	2 1	V V	UIDGA
	54732.0101	0.0004	1	V V	UNSA
	54755.9552	0.0003	1	V V	UDGA
	54740.9554 54766 9191	0.0000	2	V V	URSA
	54700.0121	0.0003	2	V	UNSA
	54769 0672	0.0004	2	V	UNSA
	04700.9070 E 4774 9020	0.0010	ے 1	V V	URSA
	54774.8930	0.0003	1	V	URSA
	54779.7399	0.0005	2 1	V	URSA
	54/80./440	0.0002	1	V	URSA
	54/8/.8229	0.0003	1	V	URSA
	54792.6688	0.0004	2	V	URSA
	54795.9019	0.0008	2	V	URSA
	54822.8342	0.0009	2	V	URSA
	04042.(00)	0.0004	1	V	UKSA
	54848.6930	0.0005	2	V TZ	URSA
	54849.7702	0.0006	2	V	URSA
	54853.5409	0.0004	1	V	URSA
	54882.6298	0.0002	1	V	URSA
CF Tau	54384.8710	0.0004	1	V	NFO
	54406.9206	0.0003	1	V	NFO
	54734.8615	0.0004	1	V	URSA

Times of minima:						
Star name	Time of min.	Error	Type	Filter	Rem.	
	m HJD~2400000+					
V1094 Tau	54438.6645	0.0002	1	V	URSA	
	54447.6544	0.0003	1	V	NFO	
BP Vul	54346.7370	0.0002	1	V	NFO	
	54347.6682	0.0002	2	V	NFO	
	54380.6558	0.0006	2	V	NFO	
	54381.6640	0.0001	1	V	NFO	
	54632.9003	0.0002	2	V	NFO	
	54740.6289	0.0001	1	V	URSA	
	55097.6520	0.0003	1	V	NFO	
BT Vul	54206.8771	0.0004	1	V	URSA	
	54234.8349	0.0003	2	V	URSA	
	54314.7229	0.0007	2	V	URSA	
	54319.8561	0.0002	1	V	URSA	
	54326.7036	0.0002	1	V	URSA	
	54327.8448	0.0001	1	V	NFO	
	54346.6742	0.0006	2	V	URSA	
	54346.6746	0.0002	2	V	NFO	
	54358.6558	0.0002	1	V	NFO	
	54362.6500	0.0002	2	V	NFO	
	54370.6370	0.0002	2	V	NFO	
	54379.7680	0.0004	2	V	NFO	
	54382.6213	0.0002	1	V	NFO	
	54398.5972	0.0003	1	V	NFO	
	54402.5932	0.0004	2	V	URSA	
	54402.5930	0.0004	2	V	NFO	
	54410.5817	0.0004	2	V	NFO	
	54458.5123	0.0007	2	V	URSA	
	54586.8975	0.0004	1	V	NFO	
	54594.8854	0.0002	1	V	NFO	
	54614.8562	0.0004	2	V	NFO	
	54618.8507	0.0002	1	V	NFO	
	54642.8155	0.0003	2	V	NFO	
	54722.6994	0.0003	1	V	NFO	
	54726.6930	0.0007	2	V	URSA	
	54734.6810	0.0005	2	V	URSA	
	54739.8167	0.0005	1	V	NFO	
	54746.6643	0.0003	1	V	NFO	
	54754.6533	0.0002	1	V	NFO	
	54762.6415	0.0002	1	V	NFO	
	54774.6239	0.0004	2	V	URSA	
	54778.6189	0.0001	1	V	NFO	
	54794.5946	0.0002	1	V	NFO	
	54986.8895	0.0005	2	V	NFO	
	54998.8704	0.0002	1	V	NFO	
	55106.7132	0.0004	2	V	NFO	

Remarks:

A sample of the observations has been published by Lacy, Hood & Straughn (2001). Mean deviations between independently timed eclipses by the two telescopes (URSA & NFO) are not significantly larger than expected based on the error estimates, implying that the estimated timing errors are realistic.

Acknowledgements:

Construction and operation of the URSA telescope were partially funded by the National Science Foundation and the University of Arkansas, Fayetteville. Construction and operation of the NFO telescope were partially funded by the National Science Foundation, the Arkansas Center for Space and Planetary Sciences, the NASA Arkansas Space Grant Consortium, the University of Arkansas, Fayetteville, the University of Arkansas at Little Rock, and the Harvard-Smithsonian Center for Astrophysics. We are grateful to Bill Neely for initial processing of the images and maintenance of the NFO equipment and software.

References:

Kwee, K. K. & van Woerden, H., 1956, *BAN*, **12**, 327 Lacy, C. H. S., 2005, http://ursa.uark.edu Lacy, C. H. S., Hood, B. & Straughn, A., 2001, *IBVS*, No. 5067

Number 5911

Konkoly Observatory Budapest 16 November 2009 *HU ISSN 0374 - 0676*

OPTICAL LIGHT CURVES OF THE HIGH MASS X-RAY BINARY 4U 2206+54

BUGNO, J. L.; HINTZ, E. G.; JONER, M. D.

Brigham Young University, Dept. of Physics and Astronomy, Provo, UT 84602, USA; e-mail: batgirl3220@aim.com; doctor@tardis.byu.edu; jonerm@forty-two.byu.edu

The high-mass X-ray binary system (HMXB) 4U 2206+54 (BD 53°2790) was first seen as an X-ray source in *Uhuru* observations examined in Giacconi et al. (1972). The system has been examined for periodicity a number of times using X-ray data. Corbet & Peele (2001) reported a period of 9.568 ± 0.004 days from Rossi X-ray Timing Explorer (RXTE) All-Sky Monitor (ASM) data. Corbet et al. (2007) found that data from the Swift Burst Alert Telescope (BAT) along with recent ASM data indicate a period of 19.25 ± 0.08 days and note that this is almost exactly double the previous period. They conclude that the lengthening is likely a recent secular change. In Negueruela & Reig (2001) they report published optical photometry of this system and report all observations at that time were consistent with no optical variability. However, Blay et al. (2006) report seven optical measurements over an eleven year time line that show a long term change, but with insufficient coverage to estimate any periodicity. They also report that their IR data, when folded with the 9.6 days period, showed no clear pattern. As part of an undergraduate summer research program, we examined the HMXB system 4U 2206+54 with time-series observations in the V filter to check for possible correlations in variability with the X-ray data.

The observation and data reduction details for the 22 nights secured for this study have been previously given in Hintz et al. (2009). Although it should be noted here that reductions were done using IRAF aperture photometry packages. The only differences between the two data sets are that there are two additional nights of 0.41-m data and the data for three of the 0.31-m nights were saturated for the bright star 4U 2206+54 in the current study. The finder chart for $4U \ 2206+54$ can be found in Hintz et al. (2009). As noted by Hintz et al. (2009), all observations were done using a standard V filter (Bessell, 1990). Since 4U 2206+54 shows variations during a single night it is hard to get an estimate of the error per observation from this object. However, for star #6, a star about two magnitudes fainter, we find single night error per observation values on the order of 0.003 to 0.004 mag, with the majority nearer 0.003 mag. From the one relatively flat night for 4U 2206+54 on HJD2454658 we find an error per observation of 0.0038 mag, or a value consistent with those seen for star #6. The standard deviation in the nightly zeropoint correction values ranged from 0.003 to 0.005 mag, except for one poor night of data with a zeropoint error of 0.012 (HJD2454651). The observational data are available on the IBVS website as 5911-t1.txt.

The light curves for each of the 22 nights are presented in Fig. 1. It should be noted that it is not possible to distinguish differences in the dense portions of the curves when simultaneous data were obtained with different combinations of three different telescopes. Each of the graph panels is scaled to cover 6 hours of time. There is variation within each night as well as night to night variation for 4U 2206+54. In Fig. 2, we show the long term run of data for 4U 2206+54 and comparison star #6 over the 55 days covered by this study. Even though star #6 is almost two magnitudes fainter than 4U 2206+54, it is clear from the internal scatter within each night that the variation for the comparison star is smaller than for the HMXB. Further, the night to night variation is present in the data for 4U 2206+54, while the fainter comparison star is flat within the size of the errors. We do note one night, HJD2454651, for star #6 which is systematically higher. This is the previously reported night with an exceptionally high zeropoint error. Finally, from our analysis of the δ Scuti variable star, GSC 3973-1698 (Hintz et al., 2009), we see no zero point drift from night to night. Based on these three evidences, we judge the variations seen for 4U 2206+54 to be actual variability and not an observational artifact due to photometric error.

Using the Period04 package (Lenz & Breger, 2005), we looked for the most likely period of 4U 2206+54 and found 25.1 ± 0.1 days to be the best fit for the visual data. It is possible that the visual and X-ray data are not well correlated. In Fig. 3 we show a phased light curve for the visual data using our period of 25.1 days along with published periods of 9.568 days and 19.25 days. We selected a starting epoch for phasing of HJD2454679.0 since this was near a maximum brightness point in our data curve. It is worth noting that both of the X-ray periods connect some of the data in an interesting manner but in general produce an irregular phase curve.

An examination of the individual curves shown in Fig. 1 reveals that many nights show short term variation. This could be an indication of more complex variability. After removing the long 25.1 day curve, we examined the remaining variations using Period04. We found a frequency of 2.5726 ± 0.0005 cycles/day, or a period of 9.33 hours. The signal-to-noise ratio for this frequency was found to be 5.5, which puts it near the cut-off point for significance detailed by Breger et al. (1993, 2007). A much larger data set would be needed to confirm this underlying oscillation.

Although we do find a period of 25.1 days in the visual data for 4U 2206+54, we must note this is a preliminary result covering just over two of the proposed cycles. A longer data run covering more cycles, over a number of years, would help in the determination of a period of the optical light variation. The larger data set might also help clarify the short period variation suspected in our data set. In addition, it would be useful to examine this system in different wavelengths in order to search for better correlations with the X-ray observations.

Acknowledgements We would like to acknowledge the Brigham Young University Department of Physics and Astronomy for its continued support. We acknowledge a grant from the Theodore Dunham, Jr. Grant for Research in Astronomy. Finally, we acknowledge NSF grant PHY-0552795 for providing REU student support as well as NSF grant AST-0618209 for observing support at the West Mountain Observatory.

Figure 1. The 22 reported nights of V filter photometry for $4U \ 2206+54$ plotted on the same scale in both time and magnitude. Each tick mark on the time axis is 0.03 days and each panel covers 6 hours.

Figure 2. Magnitudes of 4U 2206+54 and the fainter comparison star #6 over 55 days.

Figure 3. Phased light curves for 4U 2206+54 calculated with different periods as noted. The starting epoch in all cases is 2454679.0.

References:

Corbet, R. H. D. & Peele, 2001, ApJ, 562, 936
Corbet, R. H. D., Markwardt, C. B. & Tueller, J., 2007, ApJ, 655, 458
Bessell, M. S., 1990, PASP, 102, 1181
Blay, P. et al., 2006, A&A, 446, 1095
Breger, M. et al., 1993, A&A, 271, 482
Breger, M., Rucinski, S. M. & Reegen, P., 2007, AJ, 134, 1994
Giacconi, R. et al., 1972, ApJ, 178, 281
Hintz, E. G., Bugno, J. L. & Joner, M. D., 2009, IBVS, 5891, 1
Lenz, P. & Breger, M., 2005, Commun. Asteroseismol., 146, 53
Negueruela, I. & Reig, P., 2001, A&A, 371, 1056

Number 5912

Konkoly Observatory Budapest 23 November 2009 *HU ISSN 0374 - 0676*

2007 PHOTOMETRY OF UV LEONIS

HECKERT, PAUL A.

Dept. of Chem. & Physics, Western Carolina University, Cullowhee, NC 28723 USA

UV Leo is a member of the short period eclipsing group of RS CVn systems. McCluskey (1966) performed an early photometric study and summarized earlier work on UV Leo. Frederik and Etzel (1996) performed a complete optical photometric study of this system.

Kjurkchieva et al. (2007) performed an optical photometric and spectroscopic study of this system. Their photometry was on the nights of April 4, 14, and 15, 2007. For this work, I collected new optical photometry of UV Leo in 2007. This new photometry, collected about a month later, can tell us something about how rapidly the spots on UV Leo evolve.

I observed UV Leo with the San Diego State University 61-cm telescope on Mt. Laguna. The light curves were obtained on the nights of May 8, 9, 11, 13, 16, 23, & 28, 2007. I used SAO 99225 as the comparison star and SAO 99223 as the check. Using standards of Landolt (1983), I calibrated the comparison star magnitudes: B = 9.26, V = 8.20, R=7.61, and I = 7.11. The calibrated check star magnitudes are: B = 8.77, V = 8.33, R = 8.04, and I = 7.77. The complete four filter light curves, with 120 data points per filter, are plotted in Figure 1. The data are differential magnitudes (var-comp) in the standard Johnson-Cousins system. I used the ephemeris of McClusky (1966):

 $\phi_0 = 2438440.7275 + 0.6000855E.$

Figure 1 shows considerable variations in the out of eclipse portion of the light curve between phases 0.6 and 0.9. To check if these variations are scatter in the data or changes in the light curve, Figure 2 shows the V band data divided into three groups. Group 1 includes the data from the first four nights, May 8, 9, 11, and 13. Group 2 includes the data from May 16, and Group 3 includes the data from May 23 and 28. It is apparent that the out of eclipse portions of the light curve changed during the nearly three weeks between the beginning and end of the observations.

Because the period is so close to 0.6 days the same phases are available to observe in a three night repeating cycle. It was therefore not possible to fill in the small gaps in the light curves that occurred when the phase at the start of a night was a little after the phase at the end of a previous night. Hence removing the later nights in Group 3 only slightly affects the phases covered, however the photometry is less dense. To completely cover the light curve, it was also necessary to observe at a higher than optimal air mass at the ends of the nights. Therefore the last few data points for each night have more scatter than most of the data for the night. These data are at phases are 0.80, 0.47, 0.57, 0.97, and 0.11. The data deviating most from the models in the clean fits (See Figure 4.) were at these phases. However removing these data would have made the light curves to be modeled even more sparse.

I modeled the 90 data points from Groups 1 and 2 using Budding and Zeilik's (1987) Information Limit Optimization Technique (ILOT). Initial values for stellar parameters were in most cases taken from Kjurkchieva et al. (2007). I used $k(=r_2/r_1) = 0.9668$, $r_1 = 0.30, i = 84^{\circ}.2, q(= m_2/m_1) = 0.954, T_1 = 6000, and T_2 = 5970.$ I adopted the limb darkening coefficients for each wavelength from Frederik and Etzel (1996). After the initial fit, the ILOT extracts a distortion wave which I then, in an iterative procedure, fit for two circular 3400K spots. The fits for each color are performed independently. The reported longitude, latitude, and radius of each spot are in degrees. The latitude is the most difficult spot parameter to fit. Attempts to fit the spot latitudes produced errors that were in some cases larger than the possible range of latitudes. The preliminary fits however yielded mid range latitude values, so I fixed the spot latitudes at 45° for the final spot models. Figure 3 shows the V band spot fit. For the spot fits I get:

2007	B band	V band	R band	I band
$Longitude_1$	260.9 ± 3.3	260.0 ± 4.1	$258.4{\pm}4.2$	$255.9 {\pm} 4.6$
$Radius_1$	$17.4{\pm}0.9$	$16.6 {\pm} 1.0$	$17.7 {\pm} 1.0$	17.3 ± 1.1
$\operatorname{Longitude}_2$	$47.8 {\pm} 7.6$	47.4 ± 9.4	$41.2 {\pm} 7.7$	40.7 ± 8.4
Radius_2	$9.8 {\pm} 1.5$	$9.4{\pm}1.7$	12.1 ± 1.5	$12.4{\pm}1.6$
χ^2	234.4	105.6	189.9	192.8

Spot Fits

Kjurkchieva et al. (2007) find two spots near the equator at longitudes of 0° and 110° and radii of 27° and 24° . Because my data were taken only about a month after the Kjurkchieva et al. (2007) data, comparing the spot models tells us that the spots on UV Leo can changed considerably in this short time.

It should be noted that they used Binarymaker 3.0 to model their data, and this code uses a different convention for latitude and longitude than the ILOT code. The ILOT code measures latitude north and south from the equator and longitude from phase 0.0 increasing with phase. The Binarymaker code uses the Wilson-Devinney code convention. Latitude is measured south from the north pole, and longitude on the primary star is measured from the primary eclipse increasing in the direction of orbital motion. So longi $tude(Binmaker) = 360^{\circ}-longitude(ILOT)$ and $latitude(Binmaker) = 90^{\circ}-latitude(ILOT)$.

The latitude comparison is not definitive because I used a fixed latitude.

To definitively compare the spot longitudes, one should note that I used the original McClusky (1966) ephemeris, while Kjurkchieva et al. (2007) cite an updated ephemeris. The ILOT clean fits, after correcting for the spots, compute the best fit for the phase correction correction needed so that the primary and secondary eclipses occur at phases 0.0 and 0.5. For these light curves, this correction is -7° .1. Therefore the longitudes in the above table should be reduced by 7°.1 for direct comparison to the longitudes reported by Kjurkchieva et al. (2007). Hence the Kjurkchieva et al. (2007) spot at 110° longitude is at 250° longitude in the ILOT convention and is very nearly the same longitude as the 253° longitude of my spot corrected as above. The other spot however migrated nearly 40° from the primary eclipse in about a month. Hence one of the spot longitudes changed significantly.

The spots also became smaller in size, and at the same time cooler, during the month between the two sets of light curves.

The ILOT can estimate spot temperatures by comparing infrared models to visual models. Using the initial values of 0K spot parameters at a visual wavelength, I fit infrared data for the unit of light and flux ratio. The value of the spot temperature can be found from the flux ratio of the star's photospheric temperature and the spot temperature. Comparing the R to V data did not give a valid fit. I compared the R to B, I to V, and I to B fits. The reported spot temperature is the average of these three comparisons. Doing so I find an average value of the spot temperature of $T_s = 3400 \pm 300$ K. In an iterative procedure, I then fit the other spot parameters to 3400K spots. In this second iteration the spot longitudes and sizes differed from the values found in the first iteration by less than the reported errors. Hence, I made no further iterations. The spot parameters in the table above are for 3400K spots.

After the spot fits, I performed clean fits to the light curves removing the effects of the distortion wave from the spot as modeled in that filter. I fit each wavelength independently and averaged the color independent parameters. The mass ratio, q, is difficult to determine photometrically, so I fixed this parameter at q=0.954, the value found spectroscopically by Kjurkchieva et al. (2007). For the other color independent parameters, I get: $k(=r_2/r_1) = 0.920 \pm 0.007$, $r_1 = 0.291 \pm 0.002$, and $i = 83^{\circ}.4 \pm 0^{\circ}.2$. Figure 4 shows the V band clean fits.

My value for the inclination, $i = 83^{\circ}.4 \pm 0^{\circ}.2$, is between the values found by Kjurkchieva et al. (2007), 84°.2, and Frederik and Etzel (1996), 82°.6.

The ratio of the radii, $k(=r_2/r_1)$, provides the most astrophysically interesting comparison with previous results. In this work, I get k = 0.920. Frederik and Etzel (1996) find k = 1.097, so that the secondary star is larger, even though less massive, than the primary. Kjurkchieva et al. (2007), on the other hand, find that $k = 0.967 \pm 0.064$ $(r_1 = 0.30 \pm 0.01$ and $r_2 = 0.29 \pm 0.01$), which agrees to within the errors with my result. In any case the two components of this system are close to the same radius and mass.

This work shows that the spot structure on UV Leo can evolve on time scales of a few weeks. The modeled stellar parameters are consistent with previous work.

I thank Paul Etzel for scheduling generous amounts of observing time at Mt. Laguna. I also acknowledge support from Western Carolina University and the American Astronomical Society Small Research Grant Program.

Figure 1. BVRI light curves of UV Leo

Figure 2. UV Leo V data grouped by date

Figure 3. UV Leo V spot fit

Figure 4. UV Leo V clean fit

References:

Budding, E. and Zeilik, M., 1987, Astrophys. J., **319**, 827
Frederik, M.C. and Etzel, P.B., 1996, Astron. J., **111**, 2081
Kjurkchieva, D.P., Marchev, D.V., 2007, MNRAS., **381**, 663
Landolt, A.U., 1983, Astron. J., **88**, 439
McCluskey, Jr., G.E., 1966, Astron. J., **71**, 536

Number 5913

Konkoly Observatory Budapest 9 December 2009 *HU ISSN 0374 - 0676*

PERIOD CHANGES IN THE ECLIPSING BINARY SYSTEM V861 Her

ANTIPIN, S.V.^{1,2}; BERDNIKOV, L.N.¹; SOKOLOVSKY, K.V.^{3,4}

¹ Sternberg Astronomical Institute, 13, University Ave., 119992 Moscow, Russia

² Institute of Astronomy, Russian Academy of Sciences, 48, Pyatnitskaya Str., 119017 Moscow, Russia

 3 Max Planck Institute for Radio Astronomy, Auf dem Hügel 69, 53121 Bonn, Germany

⁴ Astro Space Center of Lebedev Physical Institute, 84/32, Profsoyuznaya Str., 117997 Moscow, Russia

email: antipin@sai.msu.ru, berdnik@sai.msu.ru, ksokolov@mpifr-bonn.mpg.de

The variability of eclipsing binary V861 Her (GSC 3079-00201; $\alpha = 16^{h}51^{m}12^{s}80$, $\delta = +41^{\circ}17'58''_{2}$; J2000.0) was discovered and initially investigated on the photographic plates of Moscow collection by Antipin (1996). Later, Csizmadia et al. (2004) analyzed CCD observations and times of minima published by Csizmadia et al. (2002) and Borkovits et al. (2003). The authors gave following light elements:

 $MinI = HJD2451690.5276 + 0^{d}344824 \times E$ (1),

that differ considerably from the ephemeris published by Antipin (1996):

 $MinI = HJD2443684.325 + 0^{d}3446322 \times E \quad (2).$

Assuming probable strong variations of the period, we undertook additional CCD observations.

Our CCD photometry was carried out using a Pictor 416XTE camera at the 50-cm Maksutov telescope of the Crimean Laboratory (Sternberg Astronomical Institute). The observations in the Johnson V band continued for three years. 475 brightness measurements were obtained on five nights in 2004 (JD2453195–212), 257 ones – on four nights in 2005 (JD2453561–570), and 166 more – on two nights in 2006 (JD2453552 and 53945). The images were dark subtracted, flat-fielded and analyzed with the aperture photometry package developed by V.P. Goranskij. GSC 3079-00194 was used as a comparison star, the same star was selected for comparison by Csizmadia et al. (2002) and Borkovits et al. (2003). We observed seven primary and two secondary minima, the times of minima determined from our observations (with Gaussian fitting) are marked tp (this paper) in the last column of Table 1.

Phased light curves for each season and for all our observations are shown in Figure 1. The curve was plotted for the elements:

 $MinI = HJD2453212.336 + 0^{d}3446322 \times E \quad (3).$

The O'Connell effect mentioned by Csizmadia et al. (2004) is presented in our data too. The period (but not the epoch) is in agreement with that from Antipin (1996) and contradicts the ephemeris published by Csizmadia et al. (2004).

To study period changes of V861 Her in detail, we re-analyzed the photographic data (Antipin, 1996). The observations were divided in parts (seasonal in most cases), then the time of minimum for each of the parts was determined using Hertzsprung's method in conjunction with a computer algorithm developed and described by Berdnikov (1992). The same technique was used by us to determine the time of minimum from NSVS/ROTSE-I online data (Wozniak et al., 2004). Furthermore, we collected all published times of minima of the variable. The results are summarized in Table 1. The last columns of the table contains a reference to the source of information: (pg) photographic observations; (NSVS) NSVS/ROTSE-I data (Woźniak et al., 2004); (C&) Csizmadia et al. (2002); (D1) Diethelm (2002); (B&) Borkovits et al. (2003); (tp) this paper, our CCD observations; (HSW) Hübscher et al. (2009); (D2) Diethelm (2009).

The O-C residuals were calculated for the linear light elements (3). The corresponding O-C diagram is shown in Fig. 2. Variations of the orbital period in the binary system are clearly seen. The remarkable changes occurred between JD2445869 and JD2452344. The diagram corresponds to abrupt period changes not periodic ones. The linear ephemeris (3) can be accepted as current light elements.

Note that neither primary nor secondary minima from Csizmadia et al. (2002) and Borkovits et al. (2003) are in agreement with all other available observations. Apparently, these times of minima are erroneous.

Figure 1. Phased light curves for each season and for all our CCD observations.

Acknowledgements: S. Antipin is grateful to the Russian Foundation of Basic Research (grant No. 08-02-00375) for partial support of this study.

Figure 2. The O - C diagram. Open circles: the photographic times of minima; filled circles: CCD times of minima: (1) NSVS data (Woźniak et al., 2004), (2) and (2^{*}) primary and secondary minima from Csizmadia et al. (2002), (3) Diethelm (2002), (4) and (4^{*}) primary and secondary minima from Borkovits et al. (2003), (5) this paper, (6) Hübscher, Steinbach & Walter (2009), (7) Diethelm (2009).

HJD(UT)24	Err, d	Min	Ε	0–C, d	0-С, р	Err, p	Source
37105.9730	0.016	Ι	-46735	0.0229	0.0663	0.0464	pg
40484.0487	0.008	Ι	-36933	0.0137	0.0399	0.0232	pg
41080.2799	0.003	Ι	-35203	0.0312	0.0906	0.0087	pg
41578.9624	0.003	Ι	-33756	0.0309	0.0898	0.0087	pg
41813.3132	0.002	Ι	-33076	0.0319	0.0924	0.0058	pg
41950.1339	0.002	Ι	-32679	0.0336	0.0974	0.0058	pg
42272.0141	0.002	Ι	-31745	0.0273	0.0792	0.0058	pg
42665.9314	0.003	Ι	-30602	0.0300	0.0870	0.0087	pg
42961.9720	0.004	Ι	-29743	0.0315	0.0915	0.0116	pg
43431.7086	0.005	Ι	-28380	0.0344	0.0999	0.0145	pg
44414.6013	0.005	Ι	-25528	0.0361	0.1047	0.0145	pg
45571.8791	0.002	Ι	-22170	0.0390	0.1131	0.0058	pg
45868.9552	0.020	Ι	-21308	0.0421	0.1222	0.0580	pg
48124.5836	0.004	Ι	-14763	0.0528	0.1531	0.0116	pg
49923.1935	0.004	Ι	-9544	0.0272	0.0790	0.0116	pg
51322.3798	0.001	Ι	-5484	0.0068	0.0197	0.0029	NSVS
51690.5276	0.0002	Ι	-4416	0.0874	0.2536	0.0006	C&
51695.5268	0.0006	II	-4401	-0.0829	-0.2405	0.0017	C&
52344.5532	0.0008	Ι	-2518	0.0011	0.0031	0.0023	D1
52693.6196	0.0004	Ι	-1505	-0.0449	-0.1304	0.0012	B&
52696.5519	0.0004	II	-1497	0.1303	0.3781	0.0012	B&
53195.4489	0.0004	Ι	-49	-0.0001	-0.0003	0.0012	tp
53203.3751	0.0003	Ι	-26	-0.0005	-0.0013	0.0009	tp
53208.3742	0.0002	II	-11	-0.1708	-0.4957	0.0006	tp
53212.3360	0.0002	Ι	0	0.0000	0.0000	0.0006	tp
53564.3795	0.0003	II	1022	-0.1706	-0.4950	0.0009	tp
53569.3744	0.0002	Ι	1036	-0.0006	-0.0016	0.0006	tp
53570.4085	0.0002	Ι	1039	-0.0004	-0.0010	0.0006	tp
53937.4425	0.0003	Ι	2104	0.0004	0.0010	0.0009	tp
53945.3686	0.0002	Ι	2127	-0.0001	-0.0003	0.0006	tp
54596.3771	0.0019	Ι	4016	-0.0018	-0.0053	0.0055	HSW
54596.5511	0.0024	II	4017	-0.1724	-0.5004	0.0070	HSW
54990.6430	0.008	Ι	5160	0.0049	0.0141	0.0232	D2
54990.8089	0.0005	Π	5161	-0.1739	-0.5045	0.0014	D2

Table 1. Times of minima and O - C residuals.

References:

Antipin, S.V., 1996, IBVS, 4360 Berdnikov, L.N., 1992, Soviet Astron. Lett., 18, 207 Borkovits, T., Bíró, I.B., Hegedüs, T., et al., 2003, IBVS, 5434 Csizmadia, Sz., Patkós, L., Moór, A., Könyves, V., 2004, A&A, 417, 745 Csizmadia, Sz., Zhou, A.Y., Könyves, V., et al., 2002, *IBVS*, **5230** Diethelm, R., 2002, BBSAG Bull., 127 Diethelm, R., 2009, *IBVS*, **5894** Hübscher, J., Steinbach, H.-M., Walter, F., 2009, IBVS, 5874 Woźniak, P.R., Vestrand, W.T., Akerlof, C.W., et al., 2004, AJ, 127, 2436

_

Number 5914

Konkoly Observatory Budapest 9 December 2009 HU ISSN 0374 - 0676

V1032 OPH IS A DWARF NOVA

WILS, PATRICK¹; HENDEN, ARNE A.²

¹ Vereniging Voor Sterrenkunde, Belgium; e-mail: patrickwils@yahoo.com

² American Association of Variable Star Observers

V1032 Oph was discovered by Kinman et al. (1965, their star number 40) as a possible RR Lyrae type variable. It had however an unusually large photographic amplitude of about two magnitudes and Kinman et al. could not find a suitable period. GALEX (Martin et al., 2005) visited the object three times, with near UV magnitudes nuv = 18.9 and 17.8 on two occasions in 2005 (and no far UV magnitude fuv determined), and with $fuv = 20.4 \pm 0.4$ and $nuv = 20.2 \pm 0.2$ in 2007. The Catalina Real-time Transient Survey (CRTS; Drake et al., 2009) rediscovered V1032 Oph recently (as CSS080426:162610-035325). The CRTS light curve was not characteristic for RR Lyrae type stars.

V1032 Oph was therefore selected for follow-up observations using the robotic mode of the C14 telescope at the Sonoita Research Observatory (SRO). Photometry was performed using a SBIG STL-1001E CCD camera equipped with B and V filters. The stars USNO-B1.0 0861-0298934 ($V = 14.98 \pm 0.02$, $B - V = 0.97 \pm 0.05$, star "a" of Kinman et al.) and USNO-B1.0 0860-0285298 ($V = 15.88 \pm 0.13$, $B - V = 0.81 \pm 0.05$) were used as comparison stars for the SRO observations. Their B and V magnitudes were determined from absolute photometry at SRO. In general two B and two V images with exposures of 300 seconds were made each available night. These observations, taken in the first half of 2009, are available from the IBVS website.

The light curve of V1032 Oph presented in Fig. 1 is similar to that of SU UMa, with frequent short outbursts and a generally fairly small amplitude for a dwarf nova (V varies between 15.1 and 19.0, but maxima are generally around mag. 16 and minima around mag. 18.5). Also the data of Kinman et al. (1965) and early CRTS observations are compatible with this interpretation. The outburst that started at the end of March 2009 and lasted into April, was brighter and lasted longer than any of the other outbursts. This could therefore have been a superoutburst. The CRTS light curve shows a period of about four months in the first half of 2007 when the object was always near minimum without any outbursts (unfiltered mag. 17-17.5; note that the unfiltered CRTS observations have the object in general about one magnitude brighter than in V). Also SU UMa has experienced such extended spells in quiescence in the past. During maximum V1032 Oph has $B-V = 0.26 \pm 0.10$ on average, within the range of cataclysmic variables. This value may need to be corrected for interstellar extinction (E(B-V) = 0.282 in the direction of V1032 Oph, according to Schlegel et al., 1998).

Figure 1. Light curve of V1032 Oph in the first half of 2009 from CRTS (open circles; unfiltered) and SRO data (filled circles) using nightly averages. To guide the eye, some points have been connected by lines.

Acknowledgements: This study made use of the Simbad and VizieR database (Ochsenbein et al., 2000), and of data provided by the Catalina Real-time Transient Survey and the NASA GALEX mission.

References:

Drake A.J., Djorgovski S.G., Mahabal A., Beshore E., Larson S., Graham M.J., Williams R., Christensen E., Catelan M., Boattini A., Gibbs A., Hill R., Kowalski R., 2009, ApJ, **696**, 870

Kinman T.D., Wirtanen C.A., Janes K.A., 1965, ApJ Suppl, 11, 223

Martin D.C., Fanson J., Schiminovich D., Morrissey P., Friedman P.G., Barlow T.A., Conrow T., Grange R., Jelinsky P.N., Milliard B., Siegmund O.H.W., Bianchi L., Byun Y.-I., Donas J., Forster K., Heckman T.M., Lee Y.-W., Madore B.F., Malina R.F., Neff S.G., Rich R.M., Small T., Surber F., Szalay A.S., Welsh B., Wyder T.K., 2005, ApJ, 619, L1

Ochsenbein F., Bauer P., Marcout J., 2000, A&A Suppl., 143, 23

Schlegel D.J., Finkbeiner D.P., Davis M., 1998, ApJ, 500, 525

Number 5915

Konkoly Observatory Budapest 18 December 2009 *HU ISSN 0374 - 0676*

THE RECOVERY PHASE AFTER THE 2009.0-EVENT OF η CARINÆ

FERNÁNDEZ-LAJÚS, E.^{1,2,3}; FARIÑA, C.^{1,2}; SCHWARTZ, M. A.¹; GIUDICI, F.¹; SALERNO, N.¹; SCALIA, M. C.¹; PERI, C.¹; VON ESSEN, C.¹; CALDERÓN, J. P.¹

 1 Facultad de Ciencias Astronómicas y Geofísicas - Universidad Nacional de La Plata

² Instituto de Astrofísica de La Plata (CCT La Plata - CONICET/UNLP)

³ e-mail: eflajus@fcaglp.unlp.edu.ar

It is currently accepted that the massive and luminous star η Carinæ is comprised of at least a binary system, with a 5.5 years orbital period (e.g. Damineli et al., 2000). This assertion was firstly based on the evidence of many optical spectroscopic events registered since 1948 (Gaviola, 1953) up to the present (see Damineli et al., 2008 and references therein). Observations performed in other wavelengths from X-rays to mm-wavelengths confirmed that related events occurred with the same period and almost at the same orbital phase. Particularly, we reported the occurrence of a photometric event at the time of an expected spectroscopic event for 2003.5 (Fernández-Lajús et al., 2003).

At the beginning of 2009, η Car experienced a new "event", which was detected in different spectral regions (Corcoran, 2009; Fernández-Lajús et al., 2010, hereafter Paper II; Abraham, Breaklini and Miceli, 2009). This event indicates the starting of "cycle 12", enumerating the cycles since 1948 (Groh and Damineli, 2004). In Paper II, we presented the CCD optical ground-based photometry of the complete event, showing an "eclipselike" feature similar to that we recorded in 2003.5. After the 2009.0 event, we continued the observations to register the light curves behaviour during the recovery phase after the "eclipse-like" event and to compare the evolution at the same orbital phases of the previous cycle reported by Fernández-Lajús et al. (2009, hereafter Paper I).

In this paper, we present the BVRI and H α CCD photometry of the recovery phase after the 2009.0 event, up to the end of our η Car 2009 observing season. The CCD images were acquired using the "Virpi S. Niemela" telescope at La Plata Observatory, with the same instrumental configuration already described in detail in Papers I and II. More than 8500 images were obtained during 79 nights between March 31 and August 25, 2009. As stated in Paper I, bias, dark and 'twilight' flat-field frames were meant to be acquired every night. However, on several occasions bad weather conditions prevented us from obtaining good quality flat-fields images. Even though we attempted to process images with Master calibrations frames, the resulting light curves presented a large number of points out of scale as a consequence of many bad quality flat-fields. For this reason, we decided to present only the data obtained from the uncalibrated images, considering that the light curves were practically the same as those obtained with the calibrated images. However, the calibration images were used to check the overall behaviour of the telescope and detector. The resulting BVRI and $H\alpha$ light curves are depicted in Fig. 1. The η Car differential magnitudes, their mean values and its rms errors were determined as explained in Paper I. The typical rms errors of our data (also represented in Fig. 1) are: $\epsilon_B = 0.015$, $\epsilon_V = 0.006$, $\epsilon_R = 0.010$, $\epsilon_I = 0.015$ and $\epsilon_{H\alpha} = 0.015$ mag. The light curves are smoothed using natural cubic splines. These splines were extended backward using the data published in Paper II, in order to display the 2009.0 "eclipse-like" event observed during our 2009 observing season. The orbital phases are marked in the top axis. They are determined using the ephemeris given in Paper II and adding '11', which is the number of cycles from the first event registered in 1948 up to the date of the event (JD 2452819.8 or $\phi = 0$) related with that ephemeris (see Damineli et al., 2008).

The light curves of Fig. 1 show that the system keeps a brightening trend in the five photometric bands. It is remarkable that the brightening rate during this phase is higher than 0.4 mag year⁻¹ in the BVR bands, 0.3 mag year⁻¹ in I, and almost 0.9 mag year⁻¹ in H α . Thus, η Car has reached the magnitude $V \sim 4.6$, the maximum brightness achieved in the last one and a half century.

The differential photometry data of η Car and the two other nearby stars in the field, namely CPD-59 2627 and CPD-59 2628, are available online as an electronic table (5915-t1.txt) at the IBVS website. An example of the table is shown in Table 2 in Paper I.

The new time-series presented in this paper together with those already published in Papers I and II constitute the longest based-time of self-consistent photometric data of η Car currently available, which are useful for a better understanding of the present state of this object.

The authors acknowledge the authorities of the Facultad de Ciencias Astronómicas y Geofísicas - Universidad Nacional de La Plata, for the observational facilities at the Observatorio Astronómico de La Plata. We want to thank the participation of Maximiliano Haucke during the observations, and the technical staff for the maintenance of the telescope and equipment. We are grateful to A. Cuestas and G. Bosch for the English review and suggestions.

Figure 1. BVRI and $H\alpha$ light curves of η Car observed between March 31 and August 25, 2009. Bars represent the standard deviations of the mean values. The data were smoothed using splines. Along the top axis, orbital phases are indicated according to Paper II. The previous cycle light curves (dashed lines) were y-shifted to display them together for comparison.

References:

- Abraham Z., Beaklini P.P., Miceli C., 2009, private communication, see presentation at IAU Joint Discussion 13, "Eta Carinae in the Context of the Most Massive Stars", 13-14 August 2009, Rio de Janeiro, Brazil.
- Corcoran, M. F., 2009, private communication, see http://asd.gsfc.nasa.gov/Michael.Corcoran/

- Damineli, A., Kaufer, A., Wolf, B., Stahl, O., Lopes, D. & de Araújo, F., 2000, ApJ, **528**, L101
- Damineli A., Hillier D. J., Corcoran M. F., Stahl O., Levenhagen R. S., Leister N. V., Groh J. H., Teodoro M., Albacete Colombo J. F., Gonzalez F., Arias J., Levato H., Grosso M., Morrell N., Gamen R., Wallerstein G., Niemela V., 2008, MNRAS, 384, 1649
- Fernández-Lajús, E., Gamen, R., Schwartz, M., Salerno, N., Llinares, C., Fariña, C., Amorín, R., Niemela, V., 2003, *IBVS* 5477, 1
- Fernández-Lajús, E., Fariña, C., Torres, A.F., Schwartz, M.A., Salerno, N., Calderón, J.P., von Essen, C., Calcaferro, L.M., Giudici, F., Llinares, C., Niemela, V., 2009, *A&A*, 493, 1093 (Paper I)
- Fernández-Lajús, E., Fariña, C., Calderón, J. P., Salerno, N., Torres, A. F., Schwartz. M. A., von Essen, C., Giudici, F., Bareilles, F. A., 2010, New Astronomy, 15, 108 (Paper II)

Gaviola, E., 1953, ApJ, 118, 234.

Groh, J.H., Damineli, A., 2004, IBVS, 5492.

ERRATUM FOR IBVS 5838

In IBVS 5838, first page, third paragraph, the comparison star of V841 Cen is mentioned with two different HD numbers. The correct name of the star is HD 128227.

The Editors

eta_car/etacar_rxte_lightcurve/index.html

Number 5916

Konkoly Observatory Budapest 22 December 2009 *HU ISSN 0374 - 0676*

NEW CATACLYSMIC VARIABLES FROM 6dFGS SPECTROSCOPY

WILS, PATRICK

Vereniging Voor Sterrenkunde, Belgium; e-mail: patrickwils@yahoo.com

To understand the distribution and evolution of close binaries and cataclysmic variables (CVs) in particular, it is important to have as complete a sample of these stars as possible. Through the Sloan Digital Sky Survey (SDSS) a large number of CVs have been discovered spectroscopically (see e.g. Szkody et al., 2009), revealing quite a different population from the objects discovered before (Gänsicke et al., 2009). As a by-product, the 6dF Galaxy Survey (6dFGS; Jones et al., 2004 and 2009) revealed seven hitherto unknown CVs spectroscopically. In addition the survey contains spectra for another 28 known CVs. Recently a dwarf nova was found by Wils et al. (2009), for which also a 6dFGS spectrum was available, suggesting that not all CVs in that survey have been identified. To look for further CVs, all the 6dFGS spectra originating from Galactic sources (those with Quality = 6) were examined. This turned up another five new CVs, so that a total of 13 previously unknown CVs have been found in the 6dFGS spectra. The five new CVs are listed in Table 1. The ultraviolet magnitudes given in the table have been extracted from GALEX data (Martin et al., 2005).

The spectra for the five systems are given in Figs. 1 and 2, and except for 6dFGS g1915227-263015, all are fairly typical for dwarf novae in quiescence. The object 6dFGS g0242429-114646, which is identical to PHL 1445 (Haro & Luyten, 1962) = PB 9151 (Berger & Fringant, 1984), has double-peaked emission lines, indicating a high inclination system. 6dFGS g1013459-275758 coincides with the X-ray source

1RXS J101345.7-275750. For 6dFGS g1915227-263015 three spectra are available, shown in Fig. 2. Only one of those three is a typical CV spectrum. The He II emission is an indication that it is possibly a magnetic CV, but because it is not particularly strong, it might be an intermediate polar or an SW Sextantis type star. There are four objects within a radius of less than 10 arc seconds around the 6dFGS position, among them is a galaxy. The fibres used to measure the spectra have a diameter of 7 arc seconds. It is suggested that the CV spectrum originated from the object USNO-B1.0 0634-0894139 at the position given in Table 1, and the two other spectra correspond to the brighter K-type star USNO-B1.0 0634-0894149 five arc seconds to the East. Further observations are needed to confirm this.

All objects were examined on images of the United States Naval Observatory, Flagstaff Station and the Near Earth Asteroid Tracking (NEAT) for possible outbursts. A.J. Drake kindly provided observations of 6dFGS g0242429-114646 from the Catalina Real-time Transient Survey (CRTS; Drake et al., 2009) from 2004 to 2009. Data for the other objects were not available from CRTS. Approximate magnitude ranges in Table 1 are

Position	n (2000)	fuv	nuv	Mag. range	
$00 \ 02 \ 07.39$	$-37 \ 49 \ 16.7$	18.10	17.94	16.8 - 17.3	
$02 \ 42 \ 42.86$	$-11 \ 46 \ 45.5$	19.15	18.72	15.7 - 18.9	
$04 \ 31 \ 39.55$	$-30 \ 15 \ 14.0$	20.76	20.12	17.2 - 18.6	
$10 \ 13 \ 45.91$	-27 57 58.0	20.61	20.35	17.8 - 18.2	
$19\ 15\ 22.18$	$-26 \ 30 \ 13.9$	—	—	16.4 - 16.9	
	Position 00 02 07.39 02 42 42.86 04 31 39.55 10 13 45.91 19 15 22.18	Position (2000)00 02 07.39-37 49 16.702 42 42.86-11 46 45.504 31 39.55-30 15 14.010 13 45.91-27 57 58.019 15 22.18-26 30 13.9	Position (2000) fuv 00 02 07.39 $-37 49 16.7$ 18.1002 42 42.86 $-11 46 45.5$ 19.1504 31 39.55 $-30 15 14.0$ 20.7610 13 45.91 $-27 57 58.0$ 20.6119 15 22.18 $-26 30 13.9$ $-$	Position (2000) fuv nuv 00 02 07.39 $-37 49 16.7$ 18.1017.9402 42 42.86 $-11 46 45.5$ 19.1518.7204 31 39.55 $-30 15 14.0$ 20.7620.1210 13 45.91 $-27 57 58.0$ 20.6120.3519 15 22.18 $-26 30 13.9$ $ -$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Table 1: New cataclysmic variables identified from 6dFGS spectra.

taken from the CRTS data for 6dFGS g0242429-114646, and from the USNO-B1.0 catalogue values for the other objects. Only 6dFGS g0242429-114646 has been observed in outburst, on only one occasion by CRTS. Some of the data points are anomalously faint, so it may be a deeply eclipsing dwarf nova, in agreement with the broad double-peaked emission lines in the spectrum. The light curve is shown in Fig. 3.

Figure 1. 6dFGS spectra for four cataclysmic variables identified in this paper. For clarity the vertical axis scales are plotted on alternate sides.

Acknowledgements: Boris Gänsicke is gratefully acknowledged for helpful remarks, Heath Jones for commenting on the spectra of 6dFGS g1915227-263015 and Andrew Drake for extracting the CRTS data. Funding for the CRTS survey is provided by the U.S. National Science Foundation under grant AST-0909182.

Figure 2. 6dFGS spectra for 6dFGS g1915227-263015 on three different dates in 2002. The line near 560 nm is an artefact of stitching two independent spectra together.

Figure 3. Light curve of PHL $1445 = 6dFGS \ g0242429-114646$ from CRTS data. Each point is the average of four observations from the same night, the error bars indicate the brightest and faintest points.

This study made use of the Simbad and VizieR database (Ochsenbein et al., 2000), the Image and Catalogue Archive operated by the United States Naval Observatory, Flagstaff Station (http://www.nofs.navy.mil/data/fchpix/), optical images generated by the Near Earth Asteroid Tracking (NEAT) through the Skymorph website (http://skyview.gsfc.nasa.gov/skymorph/skymorph.html) and of data provided by the GALEX mission and the Sloan Digital Sky Survey (SDSS). GALEX (Galaxy Evolution Explorer) is a NASA Small Explorer, launched in April 2003.

References:

Berger, J., Fringant, A.-M., 1984, A&A Suppl., 58, 565

- Drake, A.J., Djorgovski, S.G., Mahabal, A., Beshore, E., Larson, S., Graham, M.J., Williams, R., Christensen, E., Catelan, M., Boattini, A., Gibbs, A., Hill, R., Kowalski, R., 2009, ApJ, 696, 870
- Gänsicke, B.T., Dillon, M., Southworth, J., Thorstensen, J.R., Rodrýguez-Gil, P., Aungwerojwit, A., Marsh, T.R., Szkody, P., Barros, S.C.C., Casares, J., de Martino, D., Groot, P.J., Hakala, P., Kolb, U., Littlefair, S.P., Martýnez-Pais, I.G., Nelemans, G., Schreiber, M.R., 2009, MNRAS, 397, 2170
- Haro, G., Luyten, W.J., 1962, Bol. Obs. Tonantz. Tacub., 3, 37
- Jones, D.H., Saunders, W., Colless, M. et al., 2004, MNRAS, 355, 747
- Jones, D.H., Read, M.A., Saunders, W. et al., 2009, MNRAS, 399, 683
- Martin, D.C., Fanson, J., Schiminovich, D., Morrissey, P., Friedman, P.G., Barlow, T.A., Conrow, T., Grange, R., Jelinsky, P.N., Milliard, B., Siegmund, O.H.W., Bianchi, L., Byun, Y.-I., Donas, J., Forster, K., Heckman, T.M., Lee, Y.-W., Madore, B.F., Malina, R.F., Neff, S.G., Rich, R.M., Small, T., Surber, F., Szalay, A.S., Welsh, B., Wyder, T.K., 2005, ApJ, 619, L1
- Ochsenbein, F., Bauer, P., Marcout, J., 2000, A&A Suppl., 143, 23
- Szkody, P., Anderson, S.F., Hayden, M., Kronberg, M., McGurk, R., Riecken, T., Schmidt, G.D., West, A.A., Gänsicke, B.T., Nebot, Gomez-Moran A., Schneider, D.P., Schreiber, M.R., Schwope, A.D., 2009, AJ, 137, 4011
- Wils, P., Gänsicke, B.T., Drake, A.J., Southworth, J., 2009, arXiv:0910.3218v1 [astroph.SR]

Number 5917

Konkoly Observatory Budapest 6 January 2010 *HU ISSN 0374 - 0676*

CCD MINIMA OF ECLIPSING BINARY STARS

MARINO, G.^{1,2}; ARENA, C.²; BELLIA, I.^{1,3}; BENINTENDE, G.^{1,2}; CREMASCHINI, C.⁴; FOGLIA, S.⁵; LO SAVIO, E.^{1,2}; MILANI, G.¹; PAPINI, R.^{1,5}; SALVAGGIO, F.^{1,2}; SPAMPINATO, S.A.¹; ZARA, F.²

¹ Unione Astrofili Italiani, via Fosso del Cavaliere, 100 I-00133 Roma, Italy, e-mail: info@uai.it

² Gruppo Astrofili Catanesi, via Milo, 28 I-95125 Catania, Italy, e-mail: giumar690gmail.com

³ Skylive Project, Catania, Italy, e-mail: skylive@skylive.it

⁴ Osservatorio Astronomico Serafino Zani, Lumezzane (BS), Italy, e-mail: osservatorio@serafinozani.it

⁵ GRAV-Gruppo Astrofili Variabilisti, Italy, e-mail: riccardo.papini@yahoo.it

We present 76 CCD minimum times of eclipsing binaries collected during a campaign of Unione Astrofili Italiani (UAI). The data cover time span from May 2003 to October 2009.

All the observations were made by private observatories. 25 light curves were remotely obtained (via Internet) by using the Italian and Australian telescopes of the Skylive-UAI Project, that are publicly available on the web site www.skylive.it.

All moments of minimum presented in Table are heliocentric.

Both geocentric and heliocentric photometric data can be requested via e-mail to Giuseppe Marino (giumar69@gmail.com).

Observatory and telescope:

40-cm Ritchey-Chrétien telescope (RC40) of Lumezzane Observatory (Italy) 30-cm Schmidt-Cassegrain, 20-cm Newton-Cassegrain and 9-cm apochromatic refractor telescopes (SC30, NC20, Rfr9, respectively) of the Skylive-UAI Project (Italy)

13-cm and 9-cm apochromatic refractor telescopes (AP13 and AP9, respectively) 25-cm and 23-cm Schmidt-Cassegrain telescopes (SC25 and SC23, respectively) 20-cm Newton telescope (NW20)

8-cm semi-apochromatic refractor telescope (ED8)

Detector:	Kaf400e CCD camera (Kaf)
	SBIG ST-10XME CCD camera (ST10)
	Starlight XPress HX916 CCD camera (HX916)
	HiSis23 CCD camera (HiS23)
	SBIG ST-7XME CCD Camera (ST7)
	Meade DSI Pro II Monochromatic CCD camera (DSI)

Method of data reduction:

Data reduction, consisting in differential photometry on each CCD image, was made by means of the softwares Maxim DL, Iris (occasionally) and, in one case, AIP. When dark and flat field corrections were not been performed, the flatness of the interested detector's area and/or the stability of the comparison-check stars were accurately checked. No reduction to photometric standard system was performed.

Method of minimum determination:

The minimum times (in days) reported in Table were computed by KvW method (Kwee & van Woerden, 1956) and, occasionally, by Avalon neuronal networks fitting program (Gaspani, 1995). For the KvW method we used a DOS program available at AAVSO, whose results were found to be consistent with those produced by the AVE (Barberá, 1996) and Peranso (www.peranso.com) softwares.

The error in the timing of each minimum was determined following Arlot's method (Arlot *et al.*, 2009): we calculated the noise on magnitudes from their standard deviation σ_m within a stable range of the light curve (at the deepest part of the minimum or at the maximum) and transformed it into an error time, through the value of the speed of decrease in magnitude $\frac{\Delta m}{\Delta t}$, by adopting the formula $\sigma_{ToM} = \frac{\sigma_m}{\Delta m} \Delta t$.

The effects of different data sampling/selection and of asymmetry of some minima were evaluated in a sample of light curves and found within the reported errors.

We note that the errors in Table do *not* include systematic errors, depending on the time synchronization accuracy (estimated within ± 0.5 s), the shutter latency time (measured between -0.2 to -0.5 s) and the difference between the heliocentric and the barycentric light time (up to ~ 5 s).

The type of each minimum is assumed according to the updated elements of Kreiner (2004).

Times of r	ninima:				
Star name	Time of min.	Error	Type	Filter	Rem.
	m HJD~2400000+				
AB And	55111.3770	0.0007	Ι		Sal-Los/SC23/ST7
OO Aql	52784.5735	0.0005	Ι	V	m Fog-Cre/RC40/Kaf
	53184.4335	0.0006	Ι	V	Pap/SC25/HX916
	53218.3895	0.0008	Ι	V	Pap/SC25/HX916
	53220.4148	0.0005	Ι		Ben et al./AP13/ST10
	53258.4244	0.0006	Ι	V	Pap/SC25/HX916
	53591.387	0.001	Ι	V	Pap/SC25/HX916
	53966.4152	0.0006	Ι	RG9	Mil/NW20/HiS23
	53967.429	0.001	Ι	-IR	Bel/AP9/ST7
	53968.4424	0.0005	Ι	-IR	Bel/AP9/ST7
	54000.3692	0.0002	Ι	V	Pap/SC25/HX916
	54978.4790	0.0004	Ι		Sal/SC23/ST7
ZZ Aur	$:\!54529.3864$	0.0003	Ι		Sal/SC30/ST10
TY Boo	54639.3687	0.0001	Ι	R	Mar/SC30/ST10
TZ Boo	$:\!54642.422$	0.001	Ι	R	Mar/SC30/ST10
VW Boo	54610.3792	0.0007	Ι	-IR	Sal/AP9/ST7
AC Boo	54938.3649	0.0005	II	R	Sal-Los/SC23/ST7
CW Cas	55023.4699	0.0007	Ι		Are/NW20/DSI
V523 Cas	55022.5079	0.0003	II		Are/NW20/DSI
BE Cep	55009.4351	0.0009	Ι		Are/NW20/DSI
CW Cep	53972.542	0.003	Ι		Mar-Los/SC25/ST7
GK Cep	53971.513	0.004	II		Mar-Los/SC25/ST7
	54001.470	0.004	II		Mar-Sal/SC23/ST7

Times of m	ninima:				
Star name	Time of min.	Error	Type	Filter	Rem.
	HJD $2400000+$				
RW CrB	54572.431	0.001	Ι		Sal/SC30/ST10
VZ CVn	54191.4775	0.0009	Ι		Mar/NC20/ST10
GM Cyg	54974.579	0.001	Ι		Mar/NW20/ST7
GO Cyg	54715.475	0.001	Ι		Are/NW20/ST7
V548 Cyg	54318.498	0.001	Ι		Mar/SC23/ST7
	54652.4695	0.0007	Ι	R	Are/SC30/ST10
V836 Cyg	54319.4897	0.0008	Ι		Mar/SC23/ST7
10	55006.554	0.002	II		Are/NW20/DSI
RZ Dra	54641.4491	0.0003	Ι	R	Mar/SC30/ST10
UX Eri	54791.2726	0.0009	II		Sal/SC23/ST7
QW Gem	54544.3746	0.0009	Ι		Sal-Mar/SC30/ST10
SZ Her	54905.5884	0.0004	Ι		Are/NW20/DSI
AK Her	54198.5863	0.0009	Ι	-IR	Mar/AP9/ST7
V829 Her	54938.476	0.002	Ι	R	Sal-Los-Mar/SC23/ST7
SW Lac	54327.4341	0.0004	Ī		Mar/SC23/ST7
	54327.5955	0.0003	I		Mar/SC23/ST7
	54718.3917	0.0008	Ī		Are/NW20/ST7
XY Leo	54954 429	0.001	T		Are/NW20/DSI
DU Leo	54157 3373	0.0009	T		Mar/NC20/ST10
D C LCC	54201 3100	0.0000	T		Mar/NC20/ST10
VZ Lib	54667 3531	0.0007	Î		Sal/SC23/ST7
VW LMi	54192 352	0.0001	II		Mar/NC20/ST10
UV Lyn	54164 293	0.001	T	-IR	Mar/AP9/ST7
V400 Lyr	55014 433	0.000	Î	110	Are/NW20/DSI
V 100 Ly1	55014 559	0.001	T		Are/NW20/DSI
	55015 446	0.001	Î		Are/NW20/DSI
	55015.440	0.001	T		Are/NW20/DSI
V576 Lyr	5/078 / 373	0.002	T		SalLos/SC23/ST7
V508 Oph	54721 3643	0.002 0.007	TT I	R	Sal-Are/NW20/ST7
V830 Oph	54038 536	0.0001	T	R	Sal Los Mar /SC/ST7
EB Ori	54791 4350	0.001	TT I	10	Sal/SC23/ST7
$\Delta \Omega$ Peg	54001 365	0.0002	T	V	$P_{ap}/SC25/HX916$
AT Peg	54370 3224	0.001	T	V	$Z_{ar}/NC20/ST10$
IP Pog	54413 4150	0.001	T		Sal Mar $(SC23/ST7)$
V357 Pog	54373 396	0.0001	T		Sal-Mar/5025/517 Sal/SC23/ST7
10011eg	54275 252	0.003	TT I		Sal/SC23/S17 Sal/SC23/ST7
AZ Pup	54542 026	0.002	T		$S_{2}/SC_{2}/ST_{1}$
AUSor	54078 3680	0.004	TT I		$S_{a1} S_{c3} $
	54513 3301	0.0000	T		$S_{2}/SC_{2}/ST_{1}$
AN Tau	54447 409	0.0004	T		$S_{a1}/SC_{30}/ST_{10}$
AN Iau DV Tr;	52746 2086	0.001	T	\overline{V}	$D_{ab}/SC25/HX016$
NV III	55740.5000	0.0002	I T	V	$P_{ap}/SC25/HX916$
W IIM.	54010.3013	0.0005	I T	V ID	$M_{em}/\Lambda D0/ST7$
w Uma	54200.5725	0.0000	I T	-1n	Mar at al /ED8 /UV016
V7 IIMa	04902.0009 E4174 E941	0.001	I T		$\frac{\text{Mar}}{\text{R}} \frac{et}{ut} \frac{ut}{ED0} \frac{1}{10}$
AL UMA	54174.0041	0.0009	I T	D	Bel/NC20/ST10
AC Vin	54175.5540	0.0007	I T	п	$\frac{\text{Del}/\text{NO20}/\text{ST10}}{\text{Sel Man Lag}/\text{SC22}/\text{ST7}}$
	04020.080 54161 6949	0.004	і тт	τD	$\operatorname{Sat-War-Los}/\operatorname{SU}23/\operatorname{ST}/$ Mon / A D0 / 977
	04101.0242 54571.2400	0.0000	11 T	-1K	$\frac{Mar}{Ar9} \frac{51}{51}$
AA VII UT V:	04071.049U 54074.419	0.0009	L T		581/5030/5110 Man /NW20/977
	049/4.418 54150.696	0.002	L T		$M_{ar}/NC20/ST/$
$\frac{1}{7} \frac{1}{1} \frac{1}$	04109.030 52045 5752	0.003	1 T		Mar/NO20/ST10 Mar/QO25/QD7
∠ vui	00940.0705 54660 4140	0.0004	L T	ת	$\frac{1}{2} \frac{1}$
	ə400∠.4148	0.0007	T	κ	Are/5030/5110

Explanation of the remarks in the table: Observer[s] (as the first letters of authors' surname)/Telescope/Detector ^a + TYC 323.830.1 : uncertain

References:

Arlot, J.-E. et al., 2009, A&A, 493, 1171

Barberá, R., 1996, AVE home page http://www.astrogea.org/soft/ave/introave.htm

Gaspani, A., 1995, 3rd GEOS Workshop on Variable Stars Data Acquisition and Processing, San Pellegrino Terme

Kreiner, 2004, Acta Astronomica, 54, 207, http://www.as.up.krakow.pl/ephem Kwee, K.K., van Woerden, H., 1956, Bull. Astr. Inst. Neth., 12, 327, (No. 464)

Number 5918

Konkoly Observatory Budapest 6 January 2010 *HU ISSN 0374 - 0676*

BAV-RESULTS OF OBSERVATIONS - PHOTOELECTRIC MINIMA OF SELECTED ECLIPSING BINARIES AND MAXIMA OF PULSATING STARS (BAV MITTEILUNGEN NO. 209)

HÜBSCHER, JOACHIM; LEHMANN, PETER B.; MONNINGER, GEROLD; STEINBACH, HANS-MEREYNTJE; WALTER, FRANK

Bundesdeutsche Arbeitsgemeinschaft für Veränderliche Sterne e.V. (BAV), Munsterdamm 90, 12169 Berlin, Germany, publikat@bav-astro.de

In this 65th compilation of BAV results, photoelectric observations obtained in the year 2009 are presented on 521 variable stars giving 871 minima on eclipsing binaries and maxima on pulsating stars. All moments of minima and maxima are heliocentric. The errors are tabulated in column ' \pm '. The values in column 'O - C' are determined without incorporation of nonlinear terms. The references are given in the section 'Remarks'. All information about photometers and filters are specified in the column 'Rem'. The observations were made at private observatories. The photoelectric measurements and all the light curves with evaluations can be obtained from the office of the BAV for inspection.

Variable	HJD 24	\pm	Obs	O - C		Bibliography	Fil	n	Rem
AB And	54844.3698	.0003	AG	-0.0235	\mathbf{S}	GCVS 1985	V	62	21)
BD And	54676.4992	.0001	RAT RCR	+0.0160		GCVS 1985	-U-I	115	4)
	54728.3450	.0002	RAT RCR	+0.0168		GCVS 1985	-U-I	66	4)
	54834.3488	.0007	AG	+0.0160		GCVS 1985	-Ir	70	21)
CO And	54718.4853	.0002	RAT RCR	+0.0169		GCVS 1985	-U-I	105	4)
GZ And	54829.2290	.0001	RAT RCR	-0.0095		GCVS 1985	-U-I	38	4)
LO And	54784.4251	.0003	RAT RCR	-0.0262	\mathbf{s}	GCVS 1985	-U-I	42	4)
EX Aqr	54671.4649	.0002	RAT RCR	+0.0397		GCVS 2007	-U-I	102	4)
OO Aql	54976.4513	.0007	PGL	+0.0426		GCVS 1985	0	277	13)
V343 Aql	54627.5052	.0001	RAT RCR	-0.0514		GCVS 1985	-U-I	119	4)
V417 Aql	55041.3924	.0001	WTR	-0.0547	\mathbf{s}	BAVR 33,152	-Ir	66	19)
V1353 Aql	55016.4794	.0042	PGL	+0.0204	\mathbf{s}	BAVR 44,62	0	559	13)
AH Aur	54831.3225	.0007	AG	-0.0187		BAVR 35,41	\mathbf{V}	29	21)
	54832.3117	.0006	AG	-0.0178		BAVR 35,41	-Ir	79	21)
	54832.5543	.0011	AG	-0.0223	\mathbf{s}	BAVR 35,41	-Ir	79	21)
	54857.5068	.0004	AG	-0.0250		BAVR 35,41	-Ir	55	21)
AP Aur	54881.4687	.0021	SCI	+0.0879	\mathbf{s}	IBVS 3942	0	133	5)
CI Aur	54857.2833	.0009	AG	+0.1255		GCVS 2007	-Ir	66	21)
EM Aur	54858.3509	.0011	MS FR	-0.1923		GCVS 1985	0	561	11)
EP Aur	54829.3847	.0056	\mathbf{FR}	+0.0251	\mathbf{s}	GCVS 1985	-Ir	51	21)
	54829.6608	.0012	\mathbf{FR}	+0.0057		GCVS 1985	-Ir	51	18)
	54831.4398	.0063	AG	+0.0117		GCVS 1985	\mathbf{V}	28	21)
	54832.3266	.0006	AG	+0.0120	\mathbf{s}	GCVS 1985	-Ir	77	21)
	54832.6226	.0017	AG	+0.0125		GCVS 1985	-Ir	77	21)
	54840.3049	.0011	\mathbf{FR}	+0.0117		GCVS 1985	-Ir	43	18)

Table 1: Times of minima of eclipsing binaries

Table 1: (cont.)

Variable	HJD 24	±	Obs	O-C		Bibliography	Fil	n	Ren
EP Aur	54857.4451	.0002	AG	+0.0127		GCVS 1985	-1r	58	21
GI Aur	54857.3096	.0008	AG	+0.0238		GCVS 2007	-Ir	58	21
ar i	54857.3102	.0010	JU	+0.0244		GCVS 2007	0	132	5
GX Aur	54507.3594	.0005	RAT RCR	+0.0691		BAVM 69	-lr	110	1
	54531.3656	.0001	RAT RCR	+0.0670		BAVM 69	-lr	160	7
HL Aur	54507.5479	.0004	RAT RCR	-0.0085		GCVS 1985	-lr	172	7
HP Aur	54857.4262	.0001	WN	+0.0525		GCVS 1985	V	100	16
[Y Aur	54865.2908	.0030	JU	-0.1256		GCVS 1985	0	80	5
	54865.2948	.0020	SCI	-0.1216		GCVS 1985	0	69	5
IZ Aur	54529.3802	.0004	RAT RCR				-Ir	94	7
KO Aur	54842.4047	.0003	FR	+0.0493		GCVS 1985	-Ir	96	21
KU Aur	54832.4321	.0022	AG	+0.0218	\mathbf{S}	GCVS 1985	-Ir	80	21
	54857.5033	.0016	AG	+0.0210	\mathbf{S}	GCVS 1985	-Ir	51	21
LY Aur	54847.2920	.0015	\mathbf{FR}	-0.0095		GCVS 1985	-Ir	169	18
MU Aur	54866.5114	.0005	AG	+0.0400		GCVS 2007	-Ir	53	21
NN Aur	54840.6224	.0008	\mathbf{FR}				-Ir	65	21
V379 Aur	54840.3321	.0005	MS FR				0	660	11
V410 Aur	54829.3130	.0001	RAT RCR				-U-I	67	4
V432 Aur	54844.2306	.0007	\mathbf{FR}	-0.0002		IBVS 5319	-Ir	105	18) 1
V534 Aur	54866.5277	.0006	AG				-Ir	53	21
SU Boo	54861.5077	.0003	MS FR	+0.0202		GCVS 1985	0	396	11
TU Boo	54941.3650	.0010	AG	+0.0328	\mathbf{s}	GCVS 1985	-Ir	40	21
	54941.5280	.0008	AG	+0.0336		GCVS 1985	-Ir	40	21
TY Boo	54943 3541	0002	MS FB	-0.0303	s	BAVM 68	0	560	11
TZ Boo	54512 5565	0002	MS FR	-0.0486	s	BAVM 68	0	392	11
IW Boo	54514 4850	.0005	MS FR	-0.0073	5	CCVS 1085	0	336	11
C W D00	54843 5088	.0001	MS FR	-0.0073	0	CCVS 1985	0	560	11
	54012 3408	.0014		-0.0203	ъ	GCVS 1985 CCVS 1985	U Ir	64	11 91
WW Boo	54512.3490	.0003	AG DAT DCD	-0.0079	a	GUVS 1960 DAVD 22 122	-11 In	04 75	21
VW DOO	54505.4505	.0001	DAT DCD	-0.0590	5	DAVIN 32,122	-11 In	106	
VV Dee	54597.5715	.0001	DAT DOD	-0.0000	~	CCVS 1085	-11 Tm	100	
AY BOO	54509.5410	.0004	KAI KUK	-0.0479	s	GUVS 1985	-1r	189	11
AC Boo	54843.7305	.0001	MSFR	-0.0226		GCVS 1985	0	495	11
	54931.4908	.0019	SCI	-0.0172		GCVS 1985	0	106	5
	54932.3711	.0012	SCI	-0.0180	\mathbf{S}	GCVS 1985	0	76	5
	54932.5485	.0017	SCI	-0.0168		GCVS 1985	0	99	5
	54936.4253	.0001	FR	-0.0167		GCVS 1985	-lr	222	21
	54936.6015	.0001	FR	-0.0168	\mathbf{S}	GCVS 1985	-Ir	222	21
	54941.3584	.0014	PGL	-0.0176		GCVS 1985	0	467	13
	54947.3504	.0021	PGL	-0.0169		GCVS 1985	0	199	13
	54950.3467	.0014	PGL	-0.0163	\mathbf{S}	GCVS 1985	0	328	13
AD Boo	54933.4210:	.0100	AG	+0.0347		GCVS 1985	-Ir	41	21
AR Boo	54924.3468	.0012	AG	+0.1013		GCVS 2007	-Ir	38	21
	54924.5222	.0012	AG	+0.0684	\mathbf{S}	GCVS 2007	-Ir	38	21
BW Boo	54937.3127	.0009	\mathbf{FR}	-0.0161		GCVS 1985	-Ir	179	18
CV Boo	54931.4325	.0004	QU	-0.0103		BAVR 49,117	V	66	6
	54939.4791	.0007	PGL	-0.0102	\mathbf{S}	BAVR 49,117	0	413	13
	54940.3252	.0021	PGL	-0.0111	\mathbf{S}	BAVR 49,117	0	220	13
	54948.3723	.0014	PGL	-0.0104		BAVR 49,117	0	417	13
	54956.4184	.0007	PGL	-0.0107	\mathbf{S}	BAVR 49,117	0	519	13
ET Boo	54936.3367	.0005	\mathbf{FR}			,	-Ir	135	21
	54982.4556	.0019	JU				0	55	Ę
GK Boo	54937.3112	.0020	\mathbf{FR}				-Ir	202	18
	54937.5462	.0005	\mathbf{FR}				-Ir	202	18
GM Boo	54933.5024	.0004	AG				-Ir	41	21
2.1.1 200	54968.5305	.0004	AG				-Ir	37	2
GN Boo	54829 6623	.0001	MS FR				0	540	1
GI1 D00	54968 3000	0003	AG				_Ir	38	1. 9'
	54068 5404	0000	AG				-11 _Tr	30 30	2. ೧
CP Boo	54022 4021	0009	AG				-11 Tr	00 /1	2.
CO Boo	54900.4901 54000.4047	.0009	AG MS FD				-11	41 /05	21 11
99 D00	54000.4041	0002	AC				U Im	400	11
			(1) T				- 1 1	41	

Table 1: (cont.)

Variable	HJD 24	±	Obs	O - C		Bibliography	Fil	n	Rem
GQ Boo	54945.4105	.0002	MS FR			0 1 0	0	522	11)
·	54968.4890	.0005	AG				-Ir	38	21)
GR Boo	54516.5074	.0002	MS FR				0	385	11)
	54933.4813	.0005	AG				-Ir	41	21)
	54968.5119	.0010	AG				-Ir	38	21)
GS Boo	54591.3852	.0001	BAT RCR				-Ir	79	7)
GV Boo	54924 3933	0009	AG	-0.0510		GCVS 2007	-Ir	38	21)
GI DOO	54924 5841	0006	AG	-0.0441	c	GCVS 2007	_Ir	38	(21)
	54941 5038	.0000	AG	-0.0441	2	GCVS 2007	-11 _Ir	11 1	$\frac{21}{21}$
CX Boo	54024 4414	0021	AC	-0.0366	6	GCVS 2007	-11 Ir	38	$\frac{21}{21}$
HH Boo	54513 5136	.0025	RAT RCR	-0.0300	0	GCVS 2007	-11 Ir	139	21) 7)
IIII Doo	54012 2222	2000		-0.0490	5	CCVS 2007	-11 Ir	64	21)
	54012 4835	.0008	AG	± 0.0097 ± 0.0106	0	GCVS 2007	-11 Ir	64	$\frac{21}{21}$
	54027 2202	.0003	FD	+0.0100	3	GCVS 2007	-11 I.v	119	$\frac{21}{21}$
IID Dee	54957.5592	.0002	rn AC	± 0.0141	8	GCV5 2007	-11 Tm	112	$\frac{21}{21}$
пћ 600	04900.4227 E4022 E901	.0000	AG				-11 I	40	$\frac{21}{21}$
	54955.5801	.0011	AG				-11 T.,	40	21)
VO	54908.4959	.0007	AG	10.9400		COVO 1005	-1r	38	21)
Y Cam	54844.3441	.0004	AG	+0.3496	\mathbf{s}	GCVS 1985	-1r	140	21) 1C)
SV Cam	54902.3547	.0003	WN	+0.0553	\mathbf{s}	GCVS 1985	V	144	16)
AK Cam	54947.4553	.0007	AG	+0.0328		BAVM 69	-lr	99	21)
AL Cam	54589.4255	.0001	RATRCR	-0.0329		GCVS 1985	-lr	84	7)
AO Cam	54843.2395	.0004	AG	-0.0688	\mathbf{s}	GCVS 1985	-lr	141	21)
	54843.4048	.0002	AG	-0.0685		GCVS 1985	-lr	141	21)
	54843.5689	.0003	AG	-0.0693	\mathbf{S}	GCVS 1985	-lr	141	21)
AQ Cam	54843.4644	.0004	AG	+0.0275		GCVS 2007	-lr	135	21)
AY Cam	54947.4771	.0011	AG	+0.0133		GCVS 1985	-lr	99	21)
CD Cam	54844.3403	.0014	AG				-lr	140	21)
DN Cam	54881.3423	.0014	JU				0	80	5)
NR Cam	54947.3562	.0006	AG				-lr	99	21)
	54947.4823	.0004	AG				-Ir	99	21)
TX Cnc	54831.4140	.0002	RAT RCR	+0.0372		GCVS 1985	-U-I	62	4)
WW Cnc	54830.5542	.0001	RAT RCR	-0.0766		BAVR 32,36	-U-I	102	4)
WX Cnc	54514.5614	.0004	RAT RCR	+0.0117		GCVS 1985	-Ir	172	7)
WY Cnc	54923.3667	.0001	WN	-0.0320		GCVS 1985	V	180	16)
AH Cnc	54513.3642	.0004	RAT RCR				-Ir	150	7)
EV Cnc	54513.3950	.0044	RAT RCR				-Ir	150	7)
GW Cnc	54506.3336	.0006	RAT RCR				-Ir	61	7)
IL Cnc	54500.4124	.0004	RAT RCR	+0.0400		GCVS 2007	-Ir	103	7)
VZ CVn	54924.4181	.0009	AG	-0.0016		GCVS 1985	-Ir	38	21)
YZ CVn	54924.3921	.0005	AG	-0.0127		GCVS 2007	-Ir	38	21)
	54941.4403	.0047	AG	-0.0101	\mathbf{S}	GCVS 2007	-Ir	40	21)
BI CVn	54971.5196	.0028	\mathbf{FR}	-0.0035		GCVS 1985	-Ir	45	18)
DX CVn	54589.5241	.0004	RAT RCR	+0.0054	\mathbf{S}	GCVS 2007	-Ir	140	7)
EE CVn	54924.4239	.0005	AG	-0.0050		GCVS 2007	-Ir	38	21)
	54924.5636	.0012	AG	-0.0055	\mathbf{s}	GCVS 2007	-Ir	38	21)
EF CVn	54505.5544	.0005	RAT RCR	-0.0039		GCVS 2007	-Ir	149	7)
	54594.3781	.0002	RAT RCR	-0.0043	\mathbf{S}	GCVS 2007	-Ir	79	7)
	54924.3727	.0014	AG	-0.0056	\mathbf{s}	GCVS 2007	-Ir	38	21)
	54924.5085	.0005	AG	-0.0058		GCVS 2007	-Ir	38	21)
	54941.3746	.0015	AG	-0.0068		GCVS 2007	-Ir	41	21)
	54941.5118	.0013	AG	-0.0056	\mathbf{s}	GCVS 2007	-Ir	41	21)
EH CVn	54924.4239	.0017	AG	-0.0453	\mathbf{s}	GCVS 2007	-Ir	38	21)
	54924.5582	.0026	AG	-0.0428		GCVS 2007	-Ir	38	21)
UZ CMi	54829.4492	.0002	RAT RCR	+0.0026		GCVS 2007	-U-I	74	4)
CZ CMi	54510.3661	.0006	RAT RCR	+0.0392	\mathbf{s}	IBVS 5366	-Ir	96	7)
ZZ Cas	54840.4491	.0014	AG	-0.0109	\mathbf{s}	GCVS 1985	-Ir	43	21)
	54847.2898	.0008	AG	-0.0096		GCVS 1985	-Ir	58	21)
AT Cas	54847.3859	.0035	AG	-0.0840		GCVS 2007	-Ir	58	21)
AX Cas	54847.4669	.0011	AG	-0.0967	\mathbf{s}	GCVS 1985	-Ir	57	21)
BG Cas	54841.4926	.0023	AG	+0.4174		GCVS 2007	-Ir	74	21)
BH Cas	54830.3532	.0008	AG				-Ir	130	21)

Table 1: (cont.)

Variable	HJD 24	±	Obs	O-C		Bibliography	Fil	n	Rem
BH Cas	54830.5598	.0018	AG				-Ir	130	21)
	54841.3161	.0017	AG				-Ir	49	21)
	54841.5154	.0023	AG				-Ir	49	21)
BI Cas	54847.5146	.0019	AG	-1.0713	\mathbf{s}	GCVS 2007	-Ir	58	21)
CW Cas	54847.3004	.0005	AG	-0.0498		GCVS 1985	-Ir	58	21)
	54847.4608	.0005	AG	-0.0488	\mathbf{S}	GCVS 1985	-Ir	58	21)
EG Cas	54832.4031	.0004	AG	+0.1095	\mathbf{S}	GCVS 1985	-Ir	66	21)
EP Cas	54788.3770	.0006	RAT RCR	-0.0347		GCVS 1985	-U-I	51	4)
	54832.3020	.0005	AG	-0.0354		GCVS 1985	-Ir	28	21)
i R Cas	54685.4927	.0002	RAT RCR	+0.0119	\mathbf{S}	GCVS 1985	-U-I	100	4)
LR Cas	54847.6183	.0028	AG	+0.0143	\mathbf{s}	GCVS 1985	-Ir	89	21)
MS Cas	54830.3011	.0003	AG	+0.0391		GCVS 2007	-Ir	130	21)
	54840.2726	.0019	AG	+0.0424	\mathbf{S}	GCVS 2007	-Ir	43	21)
	54841.4452	.0015	AG	+0.0422	\mathbf{S}	GCVS 2007	-Ir	48	21)
MU Cas	54830.3894	.0010	AG	+0.1029	\mathbf{s}	GCVS 2007	-Ir	130	21)
vIV Cas	54840.4539	.0005	AG	-0.0897		GCVS 2007	-Ir	51	21)
OR Cas	54841.2705	.0002	AG	-0.0213		GCVS 1985	-Ir	50	21)
	54847.4985	.0005	AG	-0.0219		GCVS 1985	-Ir	58	21)
OX Cas	54835.3558	.0007	AG	+0.0473	\mathbf{S}	GCVS 1985	-Ir	48	21)
QQ Cas	54840.4305	.0010	AG	+0.1078		BAVR 35,1	-Ir	62	21)
	54841.5121	.0042	AG	+0.1183	\mathbf{S}	BAVR 35,1	-Ir	60	21)
V336 Cas	54830.4277	.0002	AG	-0.0145		GCVS 2008	-Ir	130	21)
	54841.4809	.0055	AG	-0.0111	\mathbf{S}	GCVS 2008	-Ir	60	21)
V360 Cas	54737.5172	.0002	RAT RCR	-0.1037		GCVS 2007	-U-I	159	4)
$\sqrt{375}$ Cas	54840.2822	.0012	AG	+0.2112	\mathbf{S}	BAVR 32,36	-Ir	66	21)
/381 Cas	54861.3087	.0009	JU	-0.0039		BAVR 32,36	0	56	5)
/473 Cas	54829.2928	.0002	AG	-0.0168		IBVS 4669	-Ir	48	21)
	54829.5019	.0017	AG	-0.0155	\mathbf{S}	IBVS 4669	-Ir	48	21)
V520 Cas	54832.3569	.0009	AG	-0.1094	\mathbf{s}	GCVS 1985	-Ir	28	21)
SY Cep	54925.4103	.0003	AG	-2.0332		GCVS 2007	-Ir	27	21)
3R Cep	54925.4980	.0010	AG	+0.0117		GCVS 2007	-Ir	50	21)
ЭК Сер	54925.6107	.0001	AG	+0.0332		GCVS 1985	-Ir	53	21)
EF Cep	54925.4148	.0003	AG	-0.1103	\mathbf{S}	GCVS 1985	-Ir	58	21)
	54934.5063	.0008	AG	-0.1098	\mathbf{s}	GCVS 1985	-Ir	37	21)
EY Cep	54925.5242	.0012	AG	+1.3320	\mathbf{S}	GCVS 2007	-Ir	51	21)
V489 Cep	54925.3998	.0014	AG	+0.1169		IBVS 4406	-Ir	48	21)
ΓV Cet	54835.2549	.0014	\mathbf{FR}	-0.0006	\mathbf{S}	GCVS 1985	-Ir	107	18)
RW Com	54933.4180	.0012	AG	-0.0171		GCVS 1985	-Ir	45	21)
	54933.5372	.0009	AG	-0.0166	\mathbf{S}	GCVS 1985	-Ir	45	21)
	54937.4535	.0001	AG	-0.0165		GCVS 1985	-Ir	33	21)
	54937.5707	.0014	AG	-0.0180	\mathbf{S}	GCVS 1985	-Ir	33	21)
	54964.3908	.0001	WN	-0.0180	\mathbf{S}	GCVS 1985	V	129	16)
UX Com	54857.5449	.0005	MS FR	-0.1008		BAVM 69	0	795	11)
	54908.5382	.0016	AG	-0.1014		BAVM 69	-Ir	40	21)
	54910.3751	.0024	MS FR	+1.7355		BAVM 69	0	330	11)
$AQ \operatorname{Com}$	54831.6443	.0005	MS FR	+0.0602	\mathbf{S}	GCVS 2007	0	354	11)
CC Com	54934.3808	.0006	DIE	-0.0149		GCVS 1985	0	22	14)
CI Com	54941.5726	.0021	AG				-Ir	50	21)
CN Com	54941.4910	.0025	AG	+0.0594	\mathbf{S}	GCVS 2007	-Ir	50	21)
	54976.4239	.0010	JU	+0.0589		GCVS 2007	0	51	5)
DD Com	54505.5301	.0002	MS FR	-0.0587	\mathbf{S}	GCVS 2008	0	324	11)
DG Com	54847.6088	.0006	MS FR	-0.0516	\mathbf{S}	GCVS 2007	0	348	11)
EK Com	54500.5529	.0004	RAT RCR				-Ir	135	7)
	54908.4430	.0008	AG				-Ir	39	21)
	54908.5757	.0004	AG				-Ir	39	21)
	54933.3769	.0008	AG				-Ir	45	21)
	54933.5111	.0012	AG				-Ir	45	21)
	54937.3770	.0062	AG				-Ir	34	21)
	54937.5115	.0014	AG				-Ir	34	21)
EQ Com	54830.5685	.0005	MS FR	-0.0094		GCVS 2007	0	650	11)
LL Com	54908.4487	.0007	AG	+0.0064		IBVS 4386	-Ir	39	21)

Table 1: (cont.)

Variable	HJD 24	±	Obs	O - C		Bibliography	Fil	n	Rem
LL Com	54908.6508	.0017	AG	+0.0050	\mathbf{S}	IBVS 4386=BAVM 88	-lr	39	21)
LO Com	54933.4783	.0007	AG				-lr	45	21)
	54933.6215	.0003	AG				-lr	45	21)
	54937.4867	.0009	AG				-Ir	34	21)
LP Com	54933.3659	.0012	AG				-lr	45	21)
	54933.5335	.0015	AG				-lr	45	21)
	54937.4205	.0024	AG				-lr	33	21)
	54937.5879	.0021	AG				-Ir	33	21)
LQ Com	54933.4060	.0006	AG				-Ir	46	21)
	54933.5853	.0011	AG				-Ir	46	21)
	54937.5099	.0009	AG				-Ir	35	21)
LT Com	54933.4407	.0020	AG				-Ir	40	21)
	54937.5337	.0025	AG				-Ir	34	21)
MM Com	54908.5121	.0007	AG	-0.0118	\mathbf{S}	GCVS 2007	-Ir	39	21)
	54908.6596	.0042	AG	-0.0153		GCVS 2007	-Ir	39	21)
MR Com	54512.5209	.0004	RAT RCR	-0.0276		GCVS 2007	-Ir	153	7)
	54908.5487	.0004	AG	-0.0324	\mathbf{S}	GCVS 2007	-Ir	39	21)
U CrB	54936.3422	.0006	\mathbf{FR}	+0.1193		GCVS 1985	-Ir	200	18)
RT CrB	54974.5574	.0012	\mathbf{FR}	-0.0213		GCVS 1985	-Ir	54	21)
RW CrB	54596.4007	.0001	RAT RCR	-0.0044		GCVS 1985	-Ir	100	7)
	54974.5022	.0005	FR	+0.0000	\mathbf{s}	GCVS 1985	-Ir	41	21)
ΓU CrB	54932.5806	.0002	$\overline{\mathrm{AG}}$	+0.1172	s	GCVS 2007	-Ir	53	21)
TW CrB	54924.5009	.0001	FR	+0.0399		GCVS 2007	-Ir	94	18)
YY CrB	54931.4002	.0001	FR	1 010000		0.01.0 2000	-Ir	109	21)
11 012	549315875	0001	FB				-Ir	100	(21)
	54958 5128	0020	SCI				0	123	-1) 5)
AB CrB	54924 4480	0004	FB	-0.0033		GCVS 2007	_Ir	80	18)
III OID	54924.4400	0001	FR	-0.0035	e	GCVS 2007	-11 _Ir	88	18)
	54043 5105	.0001	AC	-0.0037	ъ	GCVS 2007	-11 Ir	46	$\frac{10}{21}$
AS CrB	54032 4535	.0002	AG	-0.0047 ± 0.0056		GCVS 2007	-11 Ir	40 53	$\frac{21}{21}$
AV CrB	54042 4972	.0003	AG	+0.0030		CCVS 2007	-11 Ir	16 16	$\frac{21}{21}$
AV CID	54945.4272	.0004	AG	-0.0132	G	GCVS 2007	-11 In	40	$\frac{21}{21}$
	54945.5769	.0005	AG	-0.0130	s	GCVS 2007	-11 I	40 50	21)
	04900.0094 E4069 E401	.0007	AG	-0.0147	~	GCVS 2007	-11 I	50	21)
V. Chara	54908.5421	.0005	AG	-0.0101	s	GCVS 2007	-11 T.,	50 70	21)
Y Cyg	54705.6035	.0004	FK DATE DOD	+0.0682	\mathbf{s}	GCVS 1985	-Ir	18	21)
JW Cyg	54784.3197	.0001	RAT RCR	+0.0249		GCVS 1985	-U-1	84	4)
AE Cyg	54736.5224	.0002	RAT RCR	-0.0039		GCVS 1985	-U-I	105	4)
JG Cyg	54709.5243	.0001	RAT RCR	+0.0606		GCVS 1985	-U-I	118	4)
V370 Cyg	54765.2554	.0003	RAT RCR	-0.0238		GCVS 1985	-U-I	47	4)
V387 Cyg	54662.4759	.0001	RAT RCR	+0.0184		GCVS 1985	-U-I	120	4)
V456 Cyg	54706.4907	.0002	RAT RCR	+0.0442		GCVS 1985	-U-I	36	4)
V477 Cyg	54788.2515	.0001	RAT RCR	-0.0219		GCVS 1985	-U-I	112	4)
V484 Cyg	54984.4677	.0003	MS FR	+0.1144		GCVS 2007	0	750	11)
V488 Cyg	54983.5541	.0006	MS FR	+0.0610		GCVS 1985	0	675	11)
V496 Cyg	54976.5061	.0001	MS FR	+0.0073		GCVS 2008	0	798	11)
V500 Cyg	54942.5629	.0002	MS FR	+0.1061		GCVS 1985	0	480	11)
V693 Cyg	54974.4677	.0006	MS FR	+0.0067		GCVS 2007	0	644	11)
V906 Cyg	54908.6273	.0002	MS FR	+0.0607		GCVS 2007	0	348	11)
V931 Cyg	54512.6809	.0011	MS FR	+0.0155		GCVS 1985	0	196	11)
V934 Cyg	50369.2750	.0007	\mathbf{FR}	-0.0663	\mathbf{S}	GCVS 1985	-Ir	42	18) 1)
	50370.3391	.0005	\mathbf{FR}	-0.0532		GCVS 1985	-Ir	38	17)
	50371.3791	.0009	\mathbf{FR}	-0.0643	\mathbf{s}	GCVS 1985	-Ir	25	17)
	50390.2962	.0012	\mathbf{FR}	-0.0661	\mathbf{S}	GCVS 1985	-Ir	32	17)
	50391.3522	.0005	\mathbf{FR}	-0.0611		GCVS 1985	-Ir	58	17)
V1004 Cvg	54941.503:	.000	MS FR	-0.167		GCVS 1985	0	486	11)
-10	54985.388 :	.000	MS FR	-0.167		GCVS 1985	0	618	11)
V1141 Cvg	54801.2337	.0006	RAT RCB	+0.0246	s	GCVS 2007	-U-I	65	4)
V1305 Cvg	54981 4718	.0006	MS FR	-0.0128	~	GCVS 2007	0	765	11)
V1877 Cvg	54705 5069	0000	FR	0.0120		G 0 1 0 2001	-Ir	78	21)
V1918 Cvg	54776 2503	0002	BAT RCR				_U_I	66	21) (1)
V2021 Cvg	54663 4498	0002	BAT RCR				_U_I	48	
, LULL UYS	01000.1100	.0004	10111 10010				0-1	10	±)

Table 1: (cont.)

Variable	HJD 24	±	Obs	O-C		Bibliography	Fil	n	Rem
V2422 Cyg	53258.5458	.0027	AG	-0.0567	\mathbf{s}	GCVS 2007	0	21	4)
	53258.5458	.0027	AG	-0.0567	\mathbf{s}	GCVS 2007	0	21	4)
	54707.4439	.0010	AG	-0.1274		GCVS 2007	-Ir	20	21)
TT Del	54652.4715	.0003	RAT RCR	-0.0889		GCVS 1985	0	82	7)
RZ Dra	54936.4440	.0031	AG	+0.0477	\mathbf{S}	GCVS 1985	-Ir	71	21)
TW Dra	54959.5258	.0015	AG	+0.0288		GCVS 1985	-Ir	131	21)
AR Dra	54924.5195	.0001	AG	+0.0188		GCVS 2007	-Ir	77	21)
AU Dra	54943.4491	.0003	AG	+0.0898		GCVS 2007	-Ir	75	21)
AX Dra	54924.4244	.0005	AG	-0.0033	\mathbf{S}	BAVR 32,36	-Ir	77	21)
BE Dra	54943.5380	.0013	AG	-0.1152		GCVS 1985	-Ir	75	21)
BF Dra	55034.4126	.0001	WTR	+0.2360		GCVS 1985	-Ir	82	19)
CV Dra	54936.4911	.0006	AG	+0.0019		BAVM 69	-Ir	71	21)
EF Dra	54943.5757	.0010	AG	+0.0641		IBVS 3811	-Ir	75	21)
FU Dra	54540.6021	.0001	RAT RCR				-Ir	163	7)
	54959.4243	.0004	AG				-Ir	131	21)
GM Dra	54936.4621	.0011	AG				-Ir	71	21)
NN Dra	54924.3581	.0003	AG				-Ir	77	21)
	54924.5491	.0001	AG				-Ir	77	21)
RW Gem	54866.4016	.0002	AG	+0.0023		GCVS 1985	-Ir	53	21)
SX Gem	54830.4167	.0024	AG	-0.0454	\mathbf{S}	GCVS 1985	-Ir	64	21)
WW Gem	54829.6196	.0016	AG	+0.0340	\mathbf{S}	GCVS 1985	V	90	21)
	54857.4671	.0003	AG	+0.0307		GCVS 1985	-Ir	55	21)
AF Gem	54861.2804	.0013	MS FR	-0.0691		GCVS 1985	0	468	11)
AH Gem	54830.4442	.0010	AG	+0.0394	\mathbf{S}	GCVS 2008	-lr	64	21)
	54830.6150	.0012	AG	+0.0418		GCVS 2008	-lr	64	21)
AI Gem	54830.3638	.0004	AG	-0.0337	\mathbf{S}	GCVS 2008	-lr	64	21)
	54843.4000	.0014	AG	-0.0475	\mathbf{S}	GCVS 2008	-lr	57	21)
	54856.4361	.0008	AG	-0.0614	\mathbf{S}	GCVS 2008	-lr	55	21)
AL Gem	54830.2578	.0017	AG	+0.0679		GCVS 1985	-lr	65 54	21)
AV Gem	54843.3693	.0012	AG	-0.0282		GCVS 2007	-1r	54	21)
B1 Gem	54831.2880	.0017	AG	-0.0073		GCVS 2007	V T	28	21)
CD Com	54857.2633	.0033	AG	-0.0083		GCVS 2007	-1r	55 C 4	21)
CY Cem	54850.5209	.0005	AG	-0.0112	a	GCVS 2007	-11 In	04 65	$\frac{21}{21}$
DC Com	54030.4322	.0032	AG	-0.0107	8	GCVS 1965 CCVS 2007	-11 In	65	$\frac{21}{21}$
DG Geill	54858 5147	.0007	AG FR	-0.7710 0.7801		GCVS 2007	-11 Ir	150	$\frac{21}{21}$
FC Com	54856 5460	.0003	AC	± 0.7301 ± 0.2777		GCVS 2007 CCVS 1985	-11 Ir	50	$\frac{21}{21}$
EG Gem	54830 3667	.0011	AG	+0.2117 -0.2217		GCVS 1985 CCVS 1985	-11 Ir	64	$\frac{21}{21}$
EN Gem	54830 3649	0007	AG	-0.0434		GCVS 1985	-11 -Tr	63	$\frac{21}{21}$
EG Gem	54827 4310	0001	MS FR	-0.0283		GCVS 1985	0	504	11)
i o oem	54843 4104	0037	AG	-0.0200	S	GCVS 1985	-Ir	57	21)
	54856 5122	0010	AG	-0.0210	S	GCVS 1985	-Ir	59	$\frac{21}{21}$
HI Gem	54845 4545	0009	AG	0.0201	5	GC VD 1900	-Ir	86	$\frac{21}{21}$
HR Gem	54829.4202	.0005	AG	+0.0141	s	GCVS 2007	V	93	$\frac{-1}{21}$
1110 0.0111	54835.2975	.0006	AG	+0.0121	D	GCVS 2007	-Ir	44	$\frac{-1}{21}$
	54866.2980	.0006	AG	+0.0126		GCVS 2007	-Ir	54	$\frac{21}{21}$
KQ Gem	54830.3160	.0015	AG	-0.0764	s	GCVS 2007	-Ir	63	$\frac{21}{21}$
	54830.5157	.0007	AG	-0.0807	~	GCVS 2007	-Ir	63	21)
KV Gem	54843.3029	.0014	AG	-0.0152		BAVR 52.95	-Ir	56	21)
	54843.4809	.0005	AG	-0.0165	s	BAVR 52.95	-Ir	56	21)
	54856.3877	.0005	AG	-0.0166	s	BAVR 52,95	-Ir	57	21)
LO Gem	54829.3347	.0005	AG			,	V	92	21)
	54857.3058	.0004	AG				-Ir	55	21)
SZ Her	54933.4040	.0001	\mathbf{FR}	-0.0212		GCVS 1985	-Ir	164	21)
TT Her	55011.4431	.0020	SIR	+0.0368		GCVS 1985	-Ir	322	12)
TU Her	54931.5389	.0002	AG	-0.1905		GCVS 1985	-Ir	43	21)
	54947.4076	.0004	AG	-0.1908		GCVS 1985	-Ir	36	21)
UX Her	54987.4616	.0020	SIR	+0.0750		GCVS 1985	-Ir	420	12)
AK Her	54971.4510	.0016	AG	+0.0177	\mathbf{S}	GCVS 1985	-Ir	29	21)
BO Her	54959.4743	.0004	AG	-0.0377		GCVS 1985	-Ir	86	21)
EF Her	54971.4620	.0010	AG	+0.4317		GCVS 2007	-Ir	29	21)

Table 1: (cont.)

Variable	H.ID 24	+	Obs	O - C		Bibliography	Fil	n	Rem
GU Her	54931 5040	0009	AG	+0.8158		GCVS 1985	-Ir	43	21)
IK Her	549475676	0008	AG	+0.2420		GCVS 2007	-Ir	36	$\frac{21}{21}$
LT Her	54555.5385	.0003	BAT BCB	-0.0297		BAVM 69	-Ir	136	7)
MS Her	54619.4732	.0004	RAT RCR	-0.1172	s	GCVS 1985	-U-I	115	4)
MT Her	54595.5143	.0001	BAT RCR	+0.0162	~	GCVS 1985	-Ir	158	7)
MX Her	54506.5931	.0001	MS FR	-0.5304		GCVS 1985	0	650	11)
	54971.4072	.0005	AG	-0.5517		GCVS 1985	-Ir	37	(21)
V338 Her	54591 5169	0001	BAT BCB	+0.0822		GCVS 1985	-Ir	159	7)
1000 1101	54744.2907	.0001	RAT RCR	+0.0845		GCVS 1985	-U-I	58	4)
	54937.5431	.0002	AG	+0.0875		GCVS 1985	-Ir	38	$21)^{-1}$
	55039.3908	.0001	WTR	+0.0875		GCVS 1985	-Ir	74	19)
V359 Her	54908.5697	.0010	AG	+0.1894		GCVS 1985	-Ir	38	21)
V387 Her	54910.5727	.0001	MS FR	+0.0698	s	GCVS 1985	0	558	11)
V412 Her	54513.5982	.0001	MS FR	+0.0808	~	GCVS 2007	0	658	11)
V502 Her	54947.4145	.0006	AG	+0.0211		GCVS 2007	-Ir	36	(21)
1002 1101	54947.6009	.0006	AG	+0.0228	s	GCVS 2007	-Ir	36	(21)
V643 Her	54924.5189	.0017	SCI	+0.2807	s	GCVS 2007	0	46	5)
V719 Her	54908.4961	.0011	AG	+0.0259	D	GCVS 2007	-Ir	38	21)
1110 1101	54937.3581	.0010	AG	+0.0030		GCVS 2007	-Ir	37	(21)
	54937.5646	.0005	AG	+0.0416	s	GCVS 2007	-Ir	37	(21)
V728 Her	54718.3524	.0002	RAT RCR	+0.0594	s	IBVS 3234	-U-I	84	4)
	54908.5187	.0008	AG	+0.0615	~	IBVS 3234	-Ir	38	$21)^{-1}$
	54942.4519	.0004	MS FR	+0.0621		IBVS 3234	0	468	11)
V731 Her	54937.5272	.0008	AG	-0.0468		GCVS 2007	-Ir	38	21)
V829 Her	54934.3612	.0018	AG	+0.0333	s	IBVS 5496	-Ir	53	$\frac{-1}{21}$
	54947.4281	.0009	AG	+0.0277	~	IBVS 5496	-Ir	36	21)
V842 Her	54709.3615	.0001	BAT BCB	-0.0464		BAVB 49.180	-U-I	94	4)
1012 1101	54940.4614	.0007	PGL	-0.0474	s	BAVB 49,180	0	247	13)
V856 Her	54908.5203	.0005	AG	0.0111	D	211110 10,100	-Ir	37	21)
V857 Her	54908.5260	.0007	AG				-Ir	38	$\frac{-1}{21}$
	54932.4135	.0008	AG				-Ir	52	21)
	54932.6095	.0016	AG				-Ir	52^{-1}	21)
V878 Her	54928.3621	.0015	SCI				0	153	5)
	54932.5981	.0002	\mathbf{FR}				-Ir	95	21)
	54933.3945	.0010	\mathbf{FR}				-Ir	89	18)
	54971.5224	.0018	AG				-Ir	37	21)
V899 Her	54931.3946	.0005	\mathbf{FR}				-Ir	177	18)
	54931.6258	.0007	\mathbf{FR}				-Ir	177	18)
V1024 Her	54935.3908	.0004	\mathbf{FR}				-Ir	51	21)
V1032 Her	54934.5507	.0025	AG				-Ir	53	21)
V1033 Her	54931.4127	.0006	AG				-Ir	43	21)
	54931.5596	.0010	AG				-Ir	43	21)
V1038 Her	54931.4510	.0012	AG				-Ir	43	21)
	54931.5878	.0008	AG				-Ir	43	21)
	54934.4019	.0009	AG				-Ir	52	21)
	54934.5380	.0006	AG				-Ir	52	21)
	54947.4100	.0007	AG				-Ir	36	21)
	54947.5424	.0014	AG				-Ir	36	21)
V1039 Her	54971.4130	.0005	AG				-Ir	29	21)
V1044 Her	54908.5497	.0003	AG				-Ir	38	21)
V1045 Her	54706.3830	.0004	RAT RCR				-U-I	87	4)
V1047 Her	54931.4448	.0014	AG				-Ir	43	21)
	54931.6048	.0009	AG				-Ir	43	21)
	54947.4789	.0004	AG				-Ir	35	21)
V1054 Her	54971.4425	.0003	AG				-Ir	27	21)
V1055 Her	54737.3523	.0002	RAT RCR				-U-I	95	4)
	54908.4623	.0010	AG				-Ir	38	21)
	54908.6173	.0004	AG				-Ir	38	21)
	54937.4804	.0006	AG				-Ir	37	21)
V1062 Her	54937.4422	.0008	AG				-Ir	40	21)
V1067 Her	54937.4208	.0005	AG				-Ir	39	21)

Table 1: (cont.)

			Table	L: (cont.)					
Variable	HJD 24	±	Obs	O - C		Bibliography	Fil	n	Rem
V1067 Her	54937.5507	.0009	AG				-Ir	39	21)
V1068 Her	54971.4666	.0009	AG				-Ir	37	21)
V1088 Her	54931.5029	.0011	AG	+0.0170		GCVS 2007	-Ir	43	21)
	54934.3763	.0022	AG	+0.0165		GCVS 2007	-Ir	52	21)
	54934.5546	.0011	AG	+0.0152	\mathbf{s}	GCVS 2007	-Ir	52	21)
	54947.4864	.0009	AG	+0.0147	\mathbf{S}	GCVS 2007	-Ir	36	21)
V1091 Her	54908.5612	.0015	AG	-0.0154		GCVS 2007	-Ir	33	21)
	54934.5371	.0006	AG	-0.0125		GCVS 2007	-Ir	53	21)
	54947.5256	.0016	AG	-0.0105		GCVS 2007	-Ir	36	21)
V1092 Her	54947 4747	0004	AG	-0.0090	s	GCVS 2007	-Ir	35	$\frac{-1}{21}$
V1092 Her V1094 Her	54947 5200	0005	AG	-0.0000	D	GCVS 2007	_Ir	36	$\frac{21}{21}$
V1094 Her V1095 Hor	54008 4630	.0000	AG	-0.0178	e	GCVS 2007	-11 Ir	34	$\frac{21}{21}$
v 1055 Hei	54037 5400	.0008		-0.0178	а С	GCVS 2007	-11 Ir	37	$\frac{21}{21}$
V1006 Har	54957.5409	.0004	AG	-0.0175	ъ	GCVS 2007	-11 T.,	24	21) 91)
v 1090 Her	54908.4999	.0009	AG	+0.0188	_	GCVS 2007	-11 T.,	04 94	21)
	54908.0159	.0004	AG	+0.0141	s	GCVS 2007	-1r	34	21)
	54937.4700	.0008	AG	+0.0191		GCVS 2007	-Ir	37	21)
	54937.5854	.0010	AG	+0.0138	\mathbf{S}	GCVS 2007	-lr	37	21)
V1100 Her	54937.4637	.0011	AG	+0.0400		GCVS 2007	-lr	36	21)
V1102 Her	54971.5024	.0007	AG	+0.0066	\mathbf{S}	GCVS 2007	-Ir	37	21)
V1103 Her	54593.5145	.0001	RAT RCR	-0.0054		GCVS 2007	-Ir	156	7)
V1104 Her	54971.4262	.0008	AG	-0.0033	\mathbf{S}	GCVS 2007	-Ir	37	21)
	54971.5377	.0011	AG	-0.0057		GCVS 2007	-Ir	37	21)
UW Hya	54866.4380	.0004	FR	+0.0060		GCVS 2007	-Ir	74	21)
VZ Hya	54866.3976	.0003	\mathbf{FR}	+0.0046		GCVS 1985	-Ir	61	21)
CQ Hya	54866.4545	.0047	\mathbf{FR}	+0.1743	\mathbf{s}	GCVS 2007	-Ir	34	21)
DF Hya	54815.5121	.0002	RAT RCR	+0.0320	\mathbf{s}	GCVS 1985	-U-I	114	4)
SW Lac	54844.2761	.0003	AG	+0.0600	\mathbf{s}	GCVS 1985	V	62	21)
VX Lac	54763.5076	.0001	RAT RCR	+0.0659		GCVS 1985	-U-I	142	4)́
AW Lac	54801.3575	.0003	RAT RCR	+0.0429		BAVR 35.1	-U-I	82	4)
FL Lac	54834.3510:	.0020	AG	-0.0584		GCVS 1985	-Ir	70	21)
NR Lac	54834.3920	.0006	AG	+0.0687		GCVS 2008	-Ir	70	21)
OX Lac	54834 4434	0006	AG	+0.1442		GCVS 2007	-Ir	80	$\frac{-1}{21}$
PP Lac	54834 3719	0002	AG	-0.0506	s	GCVS 1985	-Ir	70	$\frac{-1}{21}$
	54834 5722	0006	AG	-0.0509	D	GCVS 1985	-Ir	70	(21)
UV Loo	54880 3801	0014	PCL	± 0.0003	e	IBVS 5338	0	618	13)
	54820 5157	.0014	PAT BCB	+0.0023	а С	CCVS 1085		149	4)
	54007 3024	.0003	SIP	0 1008	а С	CCVS 1985	-0-1 Ir	142	$(\frac{4}{10})$
	54907.3924	.0030	MC ED	-0.1098	5	GCVS 1985	-11	192	12) 11)
V7 Las	54912.5508	.0001	MS F L DAT DOD	-0.1097	s	GCVS 1965	U Tm	432	11)
AZ Leo	54009.4125	.0004	NAI NUN	+0.0455		GCVS 1965	-11	95	()
	54831.5634	.0001	RAT RUR	+0.0473	\mathbf{s}	GCVS 1985	-U-I	129	4)
	54908.3830	.0001	MS FR	+0.0487		GCVS 1985	0	420	11)
AM Leo	54876.3709	.0021	PGL	+0.0083		GCVS 1985	0	820	13)
	54911.3048	.0035	PGL	+0.0086	\mathbf{S}	GCVS 1985	0	157	13)
BW Leo	54891.4349	.0028	SCI	+0.0576	\mathbf{S}	GCVS 2007	0	32	5)
	54891.6111	.0014	SCI	+0.0651		GCVS 2007	0	23	5)
	54910.4967	.0017	SCI	+0.0664		GCVS 2007	0	48	5)
CE Leo	54832.5546	.0002	RAT RCR	-0.0080	\mathbf{S}	GCVS 2007	-U-I	51	4)
GV Leo	54506.4949	.0004	RAT RCR	+0.0384	\mathbf{S}	GCVS 2007	-Ir	135	7)
HI Leo	54555.3732	.0001	RAT RCR	+0.0007		GCVS 2007	-Ir	78	7)
RT LMi	54512.3908	.0004	RAT RCR	-0.0064	\mathbf{s}	GCVS 1985	-Ir	100	7)
VW LMi	54931.3618	.0002	WTR				-Ir	58	19)
WZ LMi	54912.4115	.0006	AG	+0.0509	\mathbf{s}	GCVS 2007	-Ir	68	21)
	54942.3750	.0013	AG	+0.0513	\mathbf{s}	GCVS 2007	-Ir	58	21)
	54942.5704	.0026	AG	+0.0521		GCVS 2007	-Ir	58	21)
XX LMi	54942.4133	.0011	AG	+0.0046		GCVS 2007	-Ir	58	21)
XY LMi	54505.4479	.0004	RAT RCB	-0.0112		GCVS 2007	-Ir	96	7)
	54912 4083	.0005	AG	-0.0135	s	GCVS 2007	-Ir	68	21)
	54942 5510	0008	AG	-0.0153	2	GCVS 2007	_Ir	60	$\frac{21}{21}$
RV Lym	54516 5274	0000	RAT RCP	-0.0100	ъ	GCVS 1085	-11 _Tr	910	21) 7)
RZ Lyn	54049 2647	0014	AG	-0.1195		CCVS 102F	-11 _Tr	219 78	1) 91)
III Lyn	54094 4197 54094 4197	0014	SCI	-0.1120 -0.0119		CCAS 100E	-11	10	∠1) ⊑)
оо Lyn	04924.413 <i>(</i>	.0022	301	-0.0112		GUVS 1985	o	44	Э)

Table 1: (cont.)

Variable	HJD 24	±	Obs	O - C		Bibliography	Fil	n	Rem
UU Lvn	54942.4533	.0016	AG	-0.0073	s	GCVS 1985	-Ir	78	21)
UV Lvn	54865.4123	.0013	SCI	+0.0690	s	GCVS 1985	0	63	5)
5	54865.6194	.0021	SCI	+0.0686		GCVS 1985	0	84	5)
AH Lyn	54509.2891	.0001	MS FR				0	322	11)
CC Lyn	54936.4409	.0038	SCI				0	70	5)
DE Lvn	54927.3657	.0031	SCI				0	88	5)
UZ Lvr	54744.4041	.0002	RAT RCR	-0.0263		GCVS 1985	-U-I	73	4)
- 5	54763.3171	.0013	RAT RCR	-0.0261		GCVS 1985	-U-I	112	4)
BV Lvr	54628.4534	.0004	RAT RCR	+0.0258		GCVS 2007	-U-I	100	4)
EW Lyr	54598.5705	.0001	RAT RCR	+0.2366		GCVS 1985	-Ir	140	7)
0	54760.3153	.0001	RAT RCR	+0.2374		GCVS 1985	-U-I	97	4)
	54943.4964	.0001	FR	+0.2385		GCVS 1985	-Ir	64	18)
MZ Lyr	54959.5119	.0004	AG	-0.0071		GCVS 2007	-Ir	86	21)
V401 Lyr	54509.6397	.0007	MS FR	+0.1576	\mathbf{s}	GCVS 2007	0	333	11)
V431 Lyr	54911.5912	.0005	MS FR	+0.0017		GCVS 2007	0	360	11)
v	54945.5149	.0012	MS FR	+0.0015		GCVS 2007	0	522	11)
V563 Lyr	54738.3467	.0003	RAT RCR				-U-I	85	4)
V592 Lyr	54596.5001	.0001	RAT RCR	+0.0088		GCVS 2007	-Ir	151	7)
RW Mon	54830.4014	.0004	RAT RCR	-0.0671		GCVS 1985	-U-I	87	4)́
	54891.3959	.0001	WTR	-0.0676		GCVS 1985	-Ir	106	19)
AO Mon	54847.4992	.0005	AG	-0.0136	\mathbf{S}	BAVR 51,38	-Ir	40	21)
AY Mon	54843.5360:	.0030	AG	+0.0532	\mathbf{s}	GCVS 2007	-Ir	54	21)
BM Mon	54479.4111	.0001	RAT RCR	+0.0441		GCVS 1985	-Ir	72	7)
CP Mon	54841.4560	.0009	AG	+0.0182		GCVS 2007	-Ir	45	21)
	54841.4582	.0005	MS FR	+0.0204		GCVS 2007	0	510	11)
DD Mon	54840.3953	.0009	AG	+0.1393		GCVS 1985	-Ir	63	21)
	54841.5474	.0006	AG	-0.1286	\mathbf{s}	GCVS 1985	-Ir	46	21)
GH Mon	54847.4440	.0017	AG	-0.0809	\mathbf{s}	GCVS 2007	-Ir	45	21)
GU Mon	54840.3975	.0009	AG	-0.0461	\mathbf{s}	GCVS 1985	-Ir	63	21)
	54841.3011	.0019	AG	-0.0392	\mathbf{S}	GCVS 1985	-Ir	46	21)
	54866.4012	.0006	AG	-0.0462	\mathbf{s}	GCVS 1985	-Ir	59	21)
HM Mon	54866.3406	.0003	AG	+0.0017		GCVS 1985	-Ir	59	21)
	54866.5462	.0012	AG	+0.0034	\mathbf{S}	GCVS 1985	-Ir	59	21)
IL Mon	54506.3224	.0006	MS FR	-0.0495		GCVS 1985	0	600	11)
IX Mon	54882.3766	.0027	AG	-0.0350	\mathbf{S}	GCVS 2007	-Ir	26	21)
NN Mon	54847.5962	.0016	AG	+0.1674		GCVS 2007	-Ir	44	21)
V384 Mon	54847.3769	.0013	AG	-0.0373		GCVS 1985	-Ir	44	21)
	54866.3896	.0009	AG	-0.0388		GCVS 1985	-Ir	59	21)
V395 Mon	54841.5381	.0014	AG	+0.0439		GCVS 2007	-Ir	46	21)
V396 Mon	54505.3422	.0004	RAT RCR	-0.0736		GCVS 1985	-Ir	58	7)
	54840.4509	.0016	AG	-0.0746	\mathbf{S}	GCVS 1985	-Ir	63	21)
	54841.4409	.0014	AG	-0.0754		GCVS 1985	-Ir	45	21)
V404 Mon	54866.3051	.0010	AG	+0.0138		GCVS 2007	-Ir	59	21)
V442 Mon	54840.3422	.0028	AG	+0.0433	\mathbf{S}	GCVS 1985	-Ir	63	21)
V448 Mon	54847.4316	.0009	AG	+0.0598		GCVS 1985	-Ir	42	21)
V450 Mon	54841.5516	.0029	AG	+0.0073	\mathbf{S}	GCVS 1985	-Ir	45	21)
V453 Mon	54832.4175	.0001	RAT RCR	+0.1586		GCVS 1985	-U-I	83	4)
V496 Mon	54840.5507	.0020	AG	-0.0353	\mathbf{S}	GCVS 1985	-Ir	62	21)
	54841.5455	.0007	AG	-0.0317		GCVS 1985	-Ir	45	21)
V507 Mon	54841.4107	.0019	AG	-0.0407		GCVS 2007	-Ir	46	21)
V514 Mon	54840.5593	.0022	AG	+0.0434		GCVS 1985	-Ir	63	21)
	54841.4016	.0015	AG	+0.0497	\mathbf{S}	GCVS 1985	-Ir	46	21)
V521 Mon	54866.4432	.0012	AG	-0.1084		GCVS 1985	-Ir	59	21)
V528 Mon	54841.4233	.0011	AG	-0.2197		GCVS 2007	-Ir	45	21)
V532 Mon	54847.3512	.0012	AG	-0.0027		GCVS 1985	-Ir	43	21)
	54847.5790	.0017	AG	-0.0084	\mathbf{S}	GCVS 1985	-Ir	43	21)
	54862.2925	.0002	MS FR	-0.0049		GCVS 1985	0	455	11)
	54866.4956	.0007	AG	-0.0046		GCVS 1985	-Ir	57	21)
V634 Mon	54847.3986	.0014	AG	+0.0772		GCVS 1985	-Ir	44	21)
V714 Mon	54509.3321	.0001	RAT RCR				-Ir	92	7)
	54840.4036	.0005	AG				-Ir	63	21)

Table 1: (cont.)

Variable	UID 94		Oba			Dibliggrouphy	E :1	5	Dom
Variable	HJD 24	工 001C	ODS AC	0-0		ыбнодгарну	<u>г</u> п	 	nem 01)
V/14 Mon	54840.5757	.0016	AG	0.0500			-1r	63	21)
V843 Mon	54843.5561	.0029	AG	-0.0508		BAVM 147	-lr	54	21)
V449 Oph	55042.3804	.0001	WTR	+0.0874		GCVS 1985	-lr	53	19)
V2553 Oph	54971.4790	.0015	AG				-lr	27	21)
UW Ori	54829.5604	.0009	AG	+0.0522		GCVS 1985	V	88	21)
DN Ori	54845.2800:	.0100	AG	-0.0053		GCVS 1985	-Ir	65	21)
EG Ori	54829.2893	.0003	MS FR	-0.0847		GCVS 1985	0	530	11)
EY Ori	54842.4255	.0024	AG	-0.0393		GCVS 2007	-Ir	61	21)
FF Ori	54843.4298	.0022	\mathbf{FR}	-0.8662		GCVS 1985	-Ir	42	21)
FR Ori	54815.4130	.0002	RAT RCR	+0.0277		GCVS 1985	-U-I	70	4)
	54845,4408	.0006	AG	+0.0280		GCVS 1985	-Ir	63	21)
FT Ori	54829 3235	0004	AG	+0.0144		GCVS 1985	V	90	(21)
FZ Ori	54842 4372	0012	AG	-0.0587		GCVS 1985	_Ir	61	21) 21)
CUOri	54845 3560	0005		0.0001		00101000	In	65	$\frac{21}{21}$
V202 Ori	54845.5500	.0005	AG	1.0.0022		COVS 1085	-11 V	00 80	$\frac{21}{21}$
V 592 OFI	54629.5977	.0000	AG MC ED	+0.0052		GCVS 1965	v	09 419	21) 11)
V645 Ori	54828.4343	.0001	MS FR	+0.0559		GCVS 2007	0	413	11)
V647 Ori	54500.3022	.0004	RAT RCR	-0.2458		GCVS 1985	-lr	96	7)
	54840.4916	.0005	AG	-0.2493		GCVS 1985	-Ir	53	21)
V1353 Ori	54842.3667	.0017	AG				-Ir	61	21)
UX Peg	54719.3559	.0002	RAT RCR	-0.0088		GCVS 1987	-U-I	73	4)
VW Peg	54844.3466	.0008	AG	-4.8170	\mathbf{S}	BAVM 129	V	63	21)
GP Peg	54844.2506	.0002	AG	-0.0446		GCVS 1987	V	63	21)
WY Per	54842.4669	.0003	AG	-0.1612		GCVS 2007	-Ir	63	21)
BB Per	54516.4071	.0004	RAT RCR				-Ir	170	7)
BP Per	54815 2873	0002	BAT BCB	-0.0287		GCVS 1987	-U-I	85	4)
BV Por	54820 3071	0001	AC	± 0.0201		GCVS 2008	Ir	48	21)
CC Por	54820 2827	.0001	AG	+0.0243		GCV5 2008	-11 Ir	40	$\frac{21}{21}$
US Don	54829.2851	.0014	AG	-0.3408		GCV5 2007	-11 In	40	$\frac{21}{21}$
п5 Per	54629.4651	.0002	AG MC ED	0.9500		COVC 2007	-11	40	21) 11)
HV Per	53989.5311	.0015	MS FR	-0.2590		GCVS 2007	0	484	11)
	54828.2829	.0002	MS FR	-0.2813		GCVS 2007	0	576	11)
IM Per	54830.2946	.0004	RAT RCR	+0.0909		GCVS 1987	-U-I	96	4)
IQ Per	54841.4993	.0008	\mathbf{FR}	+0.8105		GCVS 1987	-Ir	62	21)
IT Per	54784.5079	.0005	RAT RCR	-0.0041		GCVS 1987	-U-I	99	4)
IU Per	54831.3228	.0002	RAT RCR	+0.0108		GCVS 1987	-U-I	111	4)
	54831.3236	.0002	AG	+0.0116		GCVS 1987	-Ir	88	21)
	54842.4640	.0005	AG	+0.0106		GCVS 1987	-Ir	64	21)
IZ Per	54829.3209	.0013	AG	+0.0026		GCVS 1987	-Ir	48	21)
KN Per	54521.3093	.0004	RAT RCR	+0.0101	\mathbf{S}	BAVR 52,93	-Ir	174	7)
	54817.6387	.0006	AG	+0.0085	\mathbf{s}	BAVR 52.93	-Ir	99	(4) 21)
	54831 5097	0010	AG	+0.0161	s	BAVB 52 93	-Ir	94	21)
	5/8/2 3322	0012	AG	± 0.0101	5	BAVR 52.03	_Ir	68	21) 21)
	54845 3671	00012	WTB	± 0.0010	e	BAVE 52.03	-11 Ir	131	$\frac{21}{10}$
KD Don	54897 9479	.0004	MS ED	+0.0100	6	CCVS 1087	-11	469	13)
OT Der	54621.2415	.0001	MS FR MS FR	-0.0172	~	GCVS 1967	0	200	11)
Q1 Per	54642.2550	.0000	MSFR	-0.1254	s	GCVS 2007	0	390	11)
QU Per	54831.4892	.0002	AG	-0.0020		GCVS 2007	-lr	98	21)
	54842.3006	.0040	AG	+0.0052	\mathbf{S}	GCVS 2007	-lr	64	21)
V432 Per	54514.3379	.0004	RAT RCR	-0.0128		IBVS 3797	-Ir	93	7)
	54827.3088	.0002	RAT RCR	-0.0164	\mathbf{S}	IBVS 3797	-U-I	88	4)
	54831.3352	.0004	AG	-0.0148		IBVS 3797	-Ir	99	21)
	54831.5255	.0004	AG	-0.0161	\mathbf{S}	IBVS 3797	-Ir	99	21)
	54842.2597	.0006	AG	-0.0147	\mathbf{s}	IBVS 3797	-Ir	63	21)
	54842.4516	.0006	AG	-0.0144		IBVS 3797	-Ir	63	21)
V450 Per	54831.3219	.0014	AG	+0.0958	\mathbf{s}	GCVS 1987	-Ir	98	$21^{'}$
	54842 2314	.0002	AG	+0.0956		GCVS 1987	-Ir	64	21)
V570 Per	54845 4945	00002	FB	10:0000		3015 1001	-Ir	60	$\frac{21}{21}$
AO Sor	54500 3865	0003	RAT ROP	_0.0101		GCVS 1097	-11 _Tr	50	21) 7)
	54505 2000	0001	BAT DOD	0.0000		CCVC 1007	-11 T~	90 90	() 7)
AB Ber	54595.5892	10001	RAL RUK	-0.0099		GUV5 198/	-11' T	00	()
v 384 Ser	54934.3748	.0003	FK	+0.0024	\mathbf{s}	GUVS 2007	-1r	134	21)
	54934.5081	.0001	FR	+0.0014		GCVS 2007	-lr	134	21)
	54943.3768	.0008	AG	+0.0020		GCVS 2007	-lr	46	21)
			A ()	$+ \alpha \alpha \alpha 10$	~	UUUVS 9007	1.00	16	

Table 1: (cont.)

Variable	HJD 24	±	Obs	O - C		Bibliography	Fil	n	Rem
V384 Ser	54959.4998	.0003	FR	+0.0013		GCVS 2007	-Ir	103	21)
	54996.4497	.0003	\mathbf{FR}	+0.0009	\mathbf{S}	GCVS 2007	-Ir	49	21)
	55029.3681	.0003	\mathbf{FR}	+0.0000		GCVS 2007	-Ir	135	21)
	55029.5003	.0003	\mathbf{FR}	-0.0021	\mathbf{s}	GCVS 2007	-Ir	135	21)
SV Tau	54866.3135	.0007	AG	-0.0183		GCVS 1987	-Ir	52	21)
WY Tau	54857.4015	.0004	AG	+0.0565	\mathbf{S}	GCVS 1987	-Ir	56	21)
	54866.4074	.0003	AG	+0.0565	\mathbf{S}	GCVS 1987	-Ir	54	21)
AL Tau	54847.3682	.0005	MS FR	+0.0460		GCVS 2007	0	413	11)
AM Tau	54835.2900	.0003	AG	-0.0521		GCVS 1987	-Ir	47	21)
	54845.5092	.0021	AG	-0.0525		GCVS 1987	-Ir	65	21)
AQ Tau	54857.3714	.0004	\overline{AG}	-0.0925		GCVS 1987	-Ir	66	21)
AS Tau	54857.3675	.0004	AG	+0.5007		GCVS 2007	-Ir	65	21)
CF Tau	54842.3397	.0019	FR	-0.0099		BAVR 35.1	-Ir	50	18)
CR Tau	54479 2836	0002	BAT BCB	-0.0022		IBVS 4778	-Ir	107	7)
On Tau	54835 3164	0018	AC	± 0.0022	e	IBVS 4778	-11 Ir	101	21)
	54857 5004	.0013	AG	+0.0001	5	IBVS 4778	-11 Ir	52	$\frac{21}{21}$
	54657.5004 E4066 2752	.0003	AG	-0.0031		IDVS 4778	-11 T.,	55	$\frac{21}{21}$
OT T	04000.3/03 E40E7 0045	.0003	AG	-0.0034		1DV5 4/78	-1ľ	04 EF	21) 01)
UI Iau	0480(.2945	.0004	AG	-0.0508		GUVS 1987	-1r	00 40	21) 01)
	54805.2974	.0012	AG DATE DOD	-0.0501	\mathbf{s}	GUVS 1987	-1r	49	21)
CU Tau	54832.2743	.0003	RAT RCR	+0.0829		GUVS 1987	-U-I	59	7)
EN Tau	54829.4404	.0003	AG	+0.0012		BAVR 52,49	V	91	21)
EO Tau	54866.4649	.0010	AG				-lr	55	21)
V1112 Tau	54860.3314	.0003	MS FR				0	315	11)
V Tri	54857.3034	.0011	FR	-0.0037	\mathbf{S}	GCVS 1987	-Ir	39	18)
RS Tri	54857.3361	.0001	WN	-0.0331		GCVS 1987	V	102	16)
	54857.3372	.0002	\mathbf{FR}	-0.0320		GCVS 1987	-Ir	48	18)
RU Tri	54830.4173	.0036	\mathbf{FR}	-0.8263		GCVS 2007	-Ir	29	18)
W UMa	54844.4545	.0004	AG	-0.0088	\mathbf{S}	BAVR 44,156	V	44	21)
TY UMa	54947.3936	.0001	WTR	-0.0871		GCVS 1987	-Ir	88	19)
UY UMa	54956.4040	.0010	JU	-0.0786	\mathbf{s}	GCVS 1987	0	61	5)
XY UMa	54922.3724	.0013	SCI	+0.0340		GCVS 1987	0	166	5)
111 01010	54922 6131	0017	SCI	+0.0352	s	GCVS 1987	0	157	5)
ZZ UMa	54844 5010	0003	AG	-0.0024	5	GCVS 1987	V	43	21)
	54941 3544	0008	SCI	± 0.0021		GCVS 1987	0	100	5)
	54041 5803	0017	SCI	± 0.0313	e	GCVS 1987	0	07	5)
AW IIMo	54941.5695 54866 5150	.0017	SCI	+0.0383	ъ	GCVS 1987	0	97 107	5)
AW UMa	54000.5150 E4021 4264	.0015		-0.0707		GCVS 1967	U Tm	107	0) 01)
DQ UMa	54951.4504	.0007	AG	-0.1154		GCVS 2007	-11 T.,	00	21)
bs Uma	54951.5051	.0000	AG	+0.0000	_	GCVS 2007	-11 T.,	05	21)
DO ID (54931.5403	.0003	AG	+0.0220	\mathbf{s}	GCVS 2007	-1r	65	21)
ES UMa	54586.4317	.0001	RAT RCR				-1r	177	(1)
TT 7 T T 7	54925.4245	.0013	SCI				0	166	5)
IY UMa	54942.3580	.0002	SHT				-Ir	102	8)
KM UMa	54847.4663	.0003	MS FR				0	336	11)
LO UMa	54942.4844	.0004	AG				-Ir	39	21)
LP UMa	54844.4609	.0015	AG				V	41	21)
	54866.3138	.0031	JU				0	60	5)
MQ UMa	54931.4375	.0007	AG	+0.0693		GCVS 2007	-Ir	67	21)
MS UMa	54932.4150	.0002	AG	+0.0329		GCVS 2007	-Ir	101	21)
	54932.6207	.0010	AG	+0.0334	\mathbf{S}	GCVS 2007	-Ir	101	21)
W UMi	54936.4233	.0008	AG	-0.1628		GCVS 1987	В	25	21)
	54936.4248	.0011	AG	-0.1613		GCVS 1987	V	25	21)
RT UMi	54977.4614	.0018	JU	+0.1292		GCVS 1987	0	51	5)
RZ UMi	54936.4228	.0010	AG	+0.0466	\mathbf{s}	GCVS 2007	В	23	21
	54936.4234	.0006	AG	+0.0472	S	GCVS 2007	V	24	$21)^{-1}$
AH Vir	54912 5044	0003	MS FR	+0.0412	ç	GCVS 1987	,	424	11)
· · · · · · · · · · · · · · · · · · ·	54094 2922	0014	PGL	± 0.0033	5 6	GCVS 1087	0	366	19)
	54041 4401	00014	AC	± 0.0101 ± 0.0110	3 6	CCVS 1087	J.	500	10) 91)
DT V:-	54941.4401	0017		± 0.0110	ъ	GCVS 1901	-11 T.,	40	21) 01)
rı Vir	04941.3804 E4041 E200	.0017	AG	-0.0791		GUVS 2007	-1r T	49	21) 01)
OV V	54941.5366	.0022		+0.0771			-1r	49	21)
QA VII	54590.4080	1000.	KAT KCR	+0.0050		GUVS 2007	-1r	67	()
AY Vul	54624.5027	.0003	KAT RCR	-0.0735		GCVS 1987	-U-I	75	4)

Table 1: (cont.)

Variable	HJD 24	±	Obs	O-C		Bibliography	Fil	n	Rem
BO Vul	55041.4016	.0020	SIR	-0.0328		GCVS 1987	-Ir	58	12)
CD Vul	54639.5102	.0002	RAT RCR	-0.0001		GCVS 1987	-U-I	110	4)
GP Vul	54648.4861	.0001	RAT RCR	-0.0601		GCVS 1987	0	117	7)
$GSC \ 0005900024$	54835.2618	.0012	\mathbf{FR}				-Ir	95	18)
GSC 0021501230	54866.4106	.0007	\mathbf{FR}				-Ir	58	21)
	54866.5453	.0005	\mathbf{FR}				-Ir	58	21)
GSC 0064600946	54800.2853	.0007	\mathbf{FR}				-Ir	38	18)
GSC 0080801106	54513.4518	.0003	\mathbf{FR}				-Ir	77	21)
GSC 0087500978	54971.4980	.0020	\mathbf{FR}				-Ir	49	21)
	54972.4422	.0012	\mathbf{FR}				-Ir	46	21)
GSC 0133000287	54809.5916	.0003	AG	-0.0025		BAVR 54.105	-Ir	51	21)
	54843.4176	.0013	AG	-0.0009		BAVR 54.105	-Ir	56	21)
	54843.5947	.0006	AG	+0.0019	\mathbf{s}	BAVR 54.105	-Ir	56	21)
	54856.4965	.0003	AG	+0.0016	\mathbf{S}	BAVR 54.105	-Ir	57	21)
GSC 0138300181	54544.4356	.0002	\mathbf{FR}				-Ir	41	21)
GSC 0139500877	54531.4411	.0004	\mathbf{FR}				-Ir	90	21)
	54531.6121	.0017	\mathbf{FR}				-Ir	90	21)
GSC 0186401065	54509.3620	.0002	\mathbf{FR}				V	89	10)
	54509.5439	.0004	\mathbf{FR}				V	89	10)
GSC 0203800293	54610.517	.001	\mathbf{FR}	+0.004	\mathbf{S}	BAVM 177	-Ir	56	21)
	54636.5298	.0009	\mathbf{FR}	+0.0083		BAVM 177	-Ir	50	21)
	54703.4093	.0008	\mathbf{FR}	+0.0074		BAVM 177	-Ir	22	21)
	54959.5359	.0003	\mathbf{FR}	+0.0071		BAVM 177	-Ir	63	21)
	55029.3875	.0009	\mathbf{FR}	+0.0058		BAVM 177	-Ir	55	21)
GSC 0203800800	54935.4010	.0001	\mathbf{FR}				-Ir	51	21)
GSC 0214001485	54658.4718	.0004	AG	+0.0610		BAV unpb.	-Ir	42	21)
GSC 0215700014	54709.4601	.0003	\mathbf{FR}				-Ir	97	21)
GSC 0267700988	54763.3777	.0005	\mathbf{FR}				-Ir	137	21)
GSC 0310100683	54591.5278	.0001	RAT RCR				-Ir	159	7)
	54744.2977	.0004	RAT RCR				-U-I	48	4)
GSC 0367501186	54815.3403	.0010	AG	+0.0139	\mathbf{S}	BAV unpb.	-Ir	60	21)
	54815.4902	.0011	AG	+0.0152		BAV unpb.	-Ir	60	21)
	54829.3050	.0011	AG	+0.0149	\mathbf{s}	BAV unpb.	-Ir	48	21)
	54829.4536	.0007	AG	+0.0149		BAV unpb.	-Ir	48	21)
GSC 0367901920	54815.5807	.0027	AG				-Ir	60	21)
GSC 0403002020	54673.5509	.0004	AG	-0.0289		BAV unpb.	-Ir	30	21)
	54776.3525	.0004	AG	-0.0173		BAV unpb.	-Ir	48	21)
	54776.4901	.0007	AG	-0.0149	\mathbf{S}	BAV unpb.	-Ir	48	21)
	54835.2734	.0007	AG	-0.0654		BAV unpb.	-Ir	49	21)
	54847.3039	.0004	AG	+0.0631		BAV unpb.	-Ir	57	21)
	54847.4412	.0001	AG	-0.0701		BAV unpb.	-Ir	57	21)
	54847.5771	.0004	AG	+0.0658		BAV unpb.	-Ir	57	21)
GSC 0453001042	54192.3835	.0001	RAT RCR				-Ir	73	4)
GSC 0455200118	54583.4549	.0001	RAT RCR				-Ir	179	7)
GSC 0492200116	54514.4252	.0013	FR				-Ir	38	21)
NSV 26190	54337.3854	.0040	MZ				V	32	15)
	54338.4406	.0030	MZ				V	23	15)
	54342.3324	.0030	MZ				V	29	15)
	54342.5072	.0030	MZ				V	29	15)
U-A2 1200-07442402	54943.4044	.0007	MS FR				0	560	11)
U-A2 1200-13084491	54365.5196	.0017	\mathbf{FR}				-Ir	48	10) 1)
U-A2 1275-15124020	54648.4741	.0006	AG	-0.3914	\mathbf{S}	BAV unpb.	-Ir	46	21)
U-A2 1275-15134722	54648.4638	.0013	AG	-0.0711		BAV unpb.	-Ir	36	21)
U-A2 1500-0005759	54718.5144	.0015	AG	-0.0594		BAV unpb.	-Ir	63	21)
	54830.4028	.0012	AG	-0.1598		BAV unpb.	-Ir	130	21)
	54840.3694	.0002	AG	+0.1411	\mathbf{S}	BAV unpb.	-Ir	43	21)
	54841.3271	.0024	AG	+0.0989		BAV unpb.	-Ir	48	21)
U-A2 1500-01208912	54776.3946	.0008	AG	+0.0367	\mathbf{S}	BAV unpb.	-Ir	48	21)
	54835.3360	.0008	AG	-0.0027	\mathbf{S}	BAV unpb.	-Ir	44	21)
	54847.4263	.0011	AG	+0.0164		BAV unpb.	-Ir	58	21)
U-A2 1508-0029126	54776.3341	.0013	\overline{AG}	-0.0663		BAV unpb.	-Ir	48	21)

Table 1: (cont.)

				()					
Variable	HJD 24	±	Obs	O - C		Bibliography	Fil	n	Rem
U-A2 1508-0029126	54776.4952	.0017	AG	+0.0948		BAV unpb.	-Ir	46	21)
	54841.3669	.0013	AG	-0.0537	\mathbf{s}	BAV unpb.	-Ir	50	21)
	54841.5225	.0019	AG	-0.0563		BAV unpb.	-Ir	50	21)
	54847.4093	.0011	AG	-0.0229	\mathbf{s}	BAV unpb.	-Ir	58	21)

Table 2: Times of maxima of pulsating stars

Variable	HJD 24	±	Obs	O - C	Bibliography	Fil	n	Rem
GP And	54853.2793	.0011	WN	+0.0051	GCVS 1985	V	51	16)
	54862.2498	.0008	WN	+0.0058	GCVS 1985	V	88	16)
OV And	54857.2696	.0024	WN	-0.0238	MVS 11,133	V	106	16)
TU Ari	54861.346	.004	SB	+0.219	GCVS 2007	-Ir	154	20)
	54862.282	.004	SB	+0.212	GCVS 2007	-Ir	144	20)
TZ Aur	54852.3507	.0014	PGL	+0.0091	GCVS 1985	0	244	13)
	54865.2791	.0014	PGL	+0.0122	GCVS 1985	0	376	13)
	54866.4031	.0022	ALH	-0.0388	GCVS 1985	0	203	9)
RS Boo	54934.3308	.0021	PGL	+0.0085	BAVR 36,157	0	141	13)
	54946.4035	.0014	PGL	+0.0063	BAVR 36,157	0	192	13)
	54981.4977	.0022	WN	+0.0080	BAVR 36,157	V	93	16)
SV Boo	54942.3771	.0010	MZ	+0.0038	GCVS 2007	-Ir	91	5)
SZ Boo	54933.525	.002	AG	+0.009	GCVS 2007	-Ir	41	21)
UU Boo	54956.3552	.0014	PGL	+0.2147	GCVS 1985	0	324	13)
VY Boo	54996.4416	.0010	MZ			-Ir	71	5)
WW Boo	54933.587	.002	AG	+0.146	GCVS 2007	-Ir	41	21)
YZ Boo	54982.4079	.0050	SIR	+0.0025	GCVS 1985	-Ir	218	12)
CG Boo	54505.6630	.0013	MS FR	·		0	500	11)
CM Boo	54964.4149	.0021	PGL	-0.1110	GCVS 1985	0	258	13)
CQ Boo	54981.4007	.0007	MZ	-0.0565	BAVR 48,189	-Ir	151	5)
Ū	54981.4022	.0030	ALH	-0.0550	BAVR 48,189	В	190	9)
	54981.4368	.0007	MZ	-0.0204	BAVR 48,189	-Ir	121	5)
	54981.4382	.0030	ALH	-0.0190	BAVR 48,189	В	190	9)
	54981.4382	.0030	ALH	-0.0190	BAVR 48.189	В	190	9)
	55005.3995	.0010	MZ	-0.0178	BAVR 48.189	-Ir	103	5)
CS Boo	54947.3941	.0021	PGL	-0.0012	IBVS 2855	0	146	13)
CU Boo	54968.5394	.0035	ALH	0.00		0	209	9)
	54971.4997	.0030	ALH			0	253	9)
DD Boo	54933.410	.003	AG			-Ir	41	21)
UY Cam	54844.272	.002	AG	+0.065	BAVR 49.41	-Ir	140	21)
	54844.543	.002	AG	+0.069	BAVR 49.41	-Ir	140	21)
AH Cam	54843.467	.002	AG	-0.062	GCVS 1985	-Ir	137	21)
EW Cam	54844 324	002	AG	0.002	00101000	-Ir	140	$\frac{21}{21}$
BW Cnc	54876 4510	0007	PGL	± 0.2066	GCVS 1985	0	246	$\frac{21}{13}$
1000 0110	54910 3755	0011	WN	+0.2000 +0.2048	GCVS 1985	V	73	16)
	54922 4218	0026	WN	+0.2010 +0.2127	GCVS 1985	v	124	16)
TT Cnc	54907 4320	0023	ALH	-0.0066	A&A 476 307 2007	v	191	9)
11 One	54911 3762	0018	WN	-0.0066	A&A 476 307 2007	v	67	16)
CO Cnc	54924 340	.0010	SB	-0.023	BAVR 49.41	v	120	20)
W CVn	54946 4975	0022	WN	-0.020	SAC Vol 70	v	100	$\frac{20}{16}$
ST CVn	54041 538	0022	AC	-0.0203 -0.063	BAVE 40 105	v Ir	41	$\frac{10}{21}$
VW CVn	54024 504	.005	AG	-0.003 ± 0.132	BAVR 49,105	-11 Ir	38	$\frac{21}{21}$
VW CVII XX CVn	54924.594 54041 533	.010	AG	+0.132	CCVS 1085	-11 Ir		$\frac{21}{21}$
X7 CVn	54041-449	004		+0.000	CCVG 1005	-11 I.v	'±⊥ ∕11	21) 21)
$PS C_{22}$	54890 406	.003 009		0.000	CCAS 2000	-11 I.v	41 19	$\frac{21}{21}$
ro Cas V262 Car	54023.490 54020 200	.002		-0.200	GUVD 40 41	-11 I	40 190	21) 21)
V 303 Cas	04000.309 54000-400	.002	AG	+0.019	DAVK 49,41	-1ľ I	130	∠1) 21)
V470 Cas	04029.402 54797 4674	.003		+0.218	1DVS 4332	-1ľ TT T	49 150	∠1)
vori Cas	04/07.40/4 54727 5021	.0020	NALKUK			-U-I	159	4) 4)
	04737.5931	.0008	KAI KUR			-U-I	198	4)

Table 2: (cont.)

					,			
Variable	HJD 24	±	Obs	O-C	Bibliography	Fil	n	Rem
RZ Cep	54997.4922	.0021	PGL	-0.1107	GCVS 1985	0	732	13)
EZ Cep	54934.342	.002	AG	+0.085	GCVS 2007	-Ir	37	21)
S Com	54937.441	.002	AG	+0.011	SAC Vol.73	-Ir	33	21)
S Com	54964.4196	.0017	WN	+0.0070	SAC Vol.73	V	129	16)
	54981.4294	.0026	WN	+0.0058	SAC Vol.73	V	87	16)
U Com	54933.464	.002	AG	+0.004	BAVR 49,41	-Ir	46	21)
	54937.557	.003	AG	-0.001	BAVR 49,41	-Ir	35	21)
UW Com	54908.546	.002	AG	+0.067	GCVS 2007	-Ir	39	21)
CZ Com	54937.496	.005	AG	-0.021	GCVS 2007	-Ir	34	21)
HY Com	54941.517	.003	AG			-Ir	50	21)
IS Com	54908.613	.002	AG			-Ir	39	21)
RV CrB	54943.569	.003	AG	-0.007	GCVS 1985	-Ir	46	21)
SU CrB	54932.460	.002	AG	+0.025	GCVS 2007	-Ir	50	21)
SZ CrB	54943.395	.002	AG	+0.012	BAVR 49,41	-Ir	46	21)
UY CrB	54943.484	.002	AG			-Ir	46	21)
	54996.436	.003	SB			V	206	20)
AQ CrB	54924.484	.003	\mathbf{FR}	+0.001	GCVS 2007	-Ir	67	18)
RR Gem	54845.497	.002	AG	-0.009	BAVR 47,67	-Ir	60	21)
SZ Gem	54910.3239	.0010	WN	+0.0092	BAVR 48,65	V	87	16)
	54911.3255	.0001	WN	+0.0085	BAVR 48,65	V	90	16)
	54912.3279	.0015	WN	+0.0086	BAVR 48,65	\mathbf{V}	118	16)
	54921.3487	.0015	WN	+0.0091	BAVR 48,65	V	142	16)
	54922.3546	.0017	WN	+0.0127	BAVR 48,65	V	120	16)
DT Gem	54831.434	.004	AG	-0.275	GCVS 2007	V	28	21)
TW Her	54945.3974	.0035	PGL	-0.0117	GCVS 1985	0	259	13)
VX Her	54954.4717	.0021	PGL	+0.0245	GCVS 1985	0	407	13)
AR Her	54925.4928	.0021	PGL	+0.0473	BAVR 52.3	0	403	13)
	54934.4233	.0021	PGL	+0.0481	BAVR 52.3	0	529	13)
	54935.3607	.0021	PGL	+0.0455	BAVR 52.3	0	422	13)
	54939.5772	.0021	PGL	+0.0322	BAVR 52.3	0	465	13)
	54941.4561	.0021	PGL	+0.0312	BAVR 52.3	0	343	13)
	54942.3910	.0014	PGL	+0.0261	BAVR 52.3	0	405	13)
	54965.4354	.0021	PGL	+0.0412	BAVR 52.3	0	419	13)
	54988.4676	.0021	PGL	+0.0442	BAVR 52.3	0	494	13)
	55004.4410	.0069	PGL	+0.0381	BAVR 52.3	0	319	13)
DY Her	54983.4269	.0050	SIR	-0.0045	BAVR 48.189	-Ir	176	12)
GZ Her	54968.498	.003	AG	-0.115	GCVS 2007	-Ir	50	21)
HN Her	54934.548	.002	AG	-0.148	GCVS 2008	-Ir	52	21)
	54947.447	.002	AG	-0.147	GCVS 2008	-Ir	36	21)
LS Her	54974.579:	.007	FR	-0.018	GCVS 1985	-Ir	55	18)
V394 Her	54971.533	.001	AG	-0.142	GCVS 2007	-Ir	27	21)
WZ Hya	54912.4481	.0060	SIR	-0.0015	GCVS 1985	-Ir	191	$\frac{-1}{12}$
CR Hya	54866.387	.002	FR	-0.188	GCVS 2007	-Ir	61	(21)
BR Leo	54908.4344	.0014	PGL	+0.0053	A&A 476.307 2007	0	551	$\frac{-1}{13}$
1010 1000	54932 4117	0007	OU	+0.0053	A&A 476 307 2007	V	62	6)
SS Leo	54911 3953	0035	PGL	-0.0651	GCVS 1985	0	524	13)
55 100	54921 4177	0014	PGL	-0.0641	GCVS 1985	0	3/8	13)
	54921.4177	0026	WN	-0.0623	GCVS 1985	V	75	16)
ST Loo	54880 4564	0020	PCI	0.0020	CCVS 1985	•	200	12)
ST LEO	54037 3362	.0028	PCI	-0.0202	CCVS 1985	0	300 977	13)
	54957.5502	.0021	WN	-0.0203	CCVS 1985	V	211	10) 16)
ACIAS	54940.4170	.0015		-0.0208	GCVS 1965 CCVS 2007	V Tm	01	10)
CM Loo	54945.4208	.0004	MZ	+0.0550	GCVS 2007	-11 In	05	5)
CM Leo	54694.4546 E401E 4990	.0050	MZ	+0.0512	GCVS 2007	-11 I	90 106	5) E)
DMI	54915.4229	.0010	MZ	+0.0588	GCVS 2007	-1r	100	5) 5)
DM Leo	54910.3868	.0020	MZ	0.017	DAVD 40 41	-Ir	135	5)
I LMI	04912.401 E4044 2040	.002	AG M7	-0.017	DAVE 49,41	-1r T	07	21)
3737 7 3 4	54944.3940	.0010	MZ	-0.0141	BAVK 49,41	-1r	1/2	5)
VY LM1	54911.3454	.0001	MZ	10.0100		-1r	148	5) 10)
SZ Lyn	54869.3692	.0021	PGL	+0.0188	GCVS 1985	0	696	13)
	54871.4191	.0014	PGL	+0.0196	GCVS 1985	0	461	13)
	54910.4749	.0013	WN	+0.0221	GCVS 1985	V	62	16)

Table 2: (cont.)

			rabie i	. (como)				
Variable	HJD 24	±	Obs	O-C	Bibliography	Fil	n	Rem
SZ Lyn	54911.4396	.0020	WN	+0.0225	GCVS 1985	V	66	16)
	54912.4054	.0009	WN	+0.0241	GCVS 1985	V	84	16)
	54924.3380	.0008	WN	+0.0237	GCVS 1985	V	71	16)
	54943.3822	.0007	WN	+0.0234	GCVS 1985	V	115	16)
ΓT Lyn	54942.382	.005	AG	-0.024	GCVS 2007	-Ir	73	21)
BE Lyn	54871.3883	.0014	PGL			0	590	13)
	54946.3594	.0009	WN			V	75	16)
RZ Lyr	54962.4133	.0014	PGL	-0.0160	BAVR 48,189	0	183	13)
	54963.4356	.0021	PGL	-0.0162	BAVR 48,189	0	246	13)
WW Lyr	54945.5170	.0025	MS FR	+0.1032	GCVS 2007	0	513	11)
CN Lyr	55007.456	.010	PGL	+0.000	A&A 476.307 2007	0	126	13)
EZ Lyr	54946.4541	.0035	PGL	+0.0293	BAVR 34,145	0	371	13)
KR Lyr	54943.531	.002	\mathbf{FR}	-0.090	GCVS 1985	-Ir	64	21)
V462 Lyr	54943.557	.004	\mathbf{FR}	+0.082	GCVS 1985	-Ir	63	21)
V1640 Ori	54828.4738	.0020	MZ	-0.0855	BAVM 149	-Ir	79	5)
CV Peg	54779.3535	.0010	MZ	-0.0604	GCVS 2007	-Ir	70	5)
AR Per	54857.2260	.0021	PGL	+0.0555	GCVS 1987	0	122	13)
	54862.3325	.0015	WN	+0.0554	GCVS 1987	V	99	16)
	54908.2930	.0013	WN	+0.0565	GCVS 1987	V	73	16)
AN Ser	54954.4099	.0028	PGL	+0.0029	GCVS 1987	0	217	13)
	54968.5043	.0014	PGL	+0.0013	GCVS 1987	0	476	13)
3H Ser	54968.4348	.0014	PGL	+0.0993	GCVS 1987	0	149	13)
Г Sex	54891.4066	.0020	ALH	-0.0968	BAVR 51.247	V	612	9)
	54898.5496	.0030	ALH	-0.0974	BAVR 51,247	В	437	9)
AI Tau	54829.2499	.0008	MZ	-0.1144	GCVS 2007	-Ir	207	5)
	54842.3248	.0008	MZ	-0.1162	GCVS 2007	-Ir	79	5)
	54843.4716	.0020	MZ	-0.1065	GCVS 2007	-Ir	56	5)
3R Tau	54830.4320	.0040	MZ	+0.0119	GCVS 2008	-Ir	96	5)
CV Tau	54861.4601	.0008	MZ			-Ir	151	5)
Y Tau	54862.2870	.0005	MZ	+0.1130	GCVS 2007	-Ir	283	5)
	54912.3606	.0010	MZ	+0.1134	GCVS 2007	-Ir	71	5)
U Tri	54830.333:	.010	\mathbf{FR}	-0.011	BAVR 49,105	-Ir	77	21)
ГU UMa	54925.4104	.0021	PGL	-0.0285	GCVS 1987	0	584	13)
AE UMa	54894.4412	.0005	SCI	+0.0069	BAVR 48,189	0	53	5)
	54894.5227	.0005	SCI	+0.0023	BAVR 48,189	0	42	5)
	54894.6071	.0006	SCI	+0.0007	BAVR 48,189	0	43	5)
	54898.3084	.0004	SCI	+0.0033	BAVR 48,189	0	40	5)
	54904.4199	.0007	SCI	+0.0076	BAVR 48,189	0	44	5)
	54904.5006	.0004	SCI	+0.0023	BAVR 48,189	0	48	5)
	54909.3147	.0004	SCI	-0.0006	BAVR 48,189	0	25	5)
	54909.4087	.0006	SCI	+0.0074	BAVR 48.189	0	$\frac{-9}{39}$	5)
	54909.4895	.0006	SCI	+0.0022	BAVR 48.189	0	64	5)
	54910.4335	.0008	WN	+0.0000	BAVR 48.189	V	48	16)
	54912.3323	.0012	SCI	+0.0064	BAVR 48.189	0	48	5)
	54912 4146	0004	SCI	+0.0027	BAVB 48 189	0	30	5)
	54924 3742	0010	WN	+0.0021 +0.0059	BAVR 48 189	V	59	16)
XZ Vir	54912 4356	0040	MZ	10.0000	DIIVIC 10,100	-Ir	49	5)
	549224714	0010	MZ			-Ir	114	5)
AT Vir	5/02/ 3060	0014	PGL	± 0.2382	GCVS 1987	0	283	13)
FII Vir	54941 475	003	AG	-0.153	BAVB 49 105	-Ir	200 49	21)
GSC 0256601398	54954 3988	0008	SCI	0.100	DIIVIC 15,100	0	58	5)
020001000	54954 4910	.0000	SCI			0	33	5)
	54954 5789	0010	SCI			0	38	5)
3SC 0297700238	54953 4979	0005	SCI			0	66	5)
C 0297700238	54946 3740	0000 0006	SCI			0	10	5)
350 0507400114	54046 4941	.0000	SCI			0	19 17	5) E)
	54046 4769	0004	SCI			0	11 21	5)
	04940.4708 54046 5202	.0002	SCI			U	ე4 ეი) E
	04940.03UZ	.0010	SOL			0	ა2 ეე	5) E)
CCC 0202000150	04940.0790 54056 4070	.0004	SOL			0	32 E0	5) E)
390 0999200192	04900.4272 54056 5109	.0000	SCI			U C	00 ह9	ی د)
	04900.0183	.0004	501			0	53	э)

Remark	KS:		
AG:	Agerer, F., Tiefenbach	RAT:	Rätz, M., Herges-Hallenberg
ALH:	Alich, K., Schaffhausen (CH)	RCR:	Rätz, K., Herges-Hallenberg
DIE:	Dietrich, M., Radebeul	SB:	Steinbach, Dr. H., Neu-Anspach
FR:	Frank, P., Velden	SCI:	Schmidt, U., Karlsruhe
JU:	Jungbluth, Dr. H., Karlsruhe	SHT:	Scharnhorst, D., Erfurt
MS:	Moschner, W., Lennestadt	SIR:	Schirmer, J., Willisau (CH)
MZ:	Maintz, Dr. G., Bonn	WN:	Wischnewski, M., Wennigsen
PGL:	Pagel, Dr. L., Klockenhagen	WTR:	Walter, F., München
QU:	Quester, W., Esslingen		
:	uncertain		Filter
s	secondary minimum	0	without filter
\mathbf{C}	CCD-camera	В	B-filter
1)	normal minimum	V	V-filter
2)	normal maximum	-Ir	-Ir-filter
3)	double maxima	-U-I	-U and -Ir-filter
,	CCD-Cameras		
4)	ST-6 chip 375×242	13)	Artemis 4021
5)	ST-7	14)	Canon EOS D60
6)	ST-7E	15)	holicam
7)	ST-8E	16)	Meade DSI Pro2
8)	ST-8E chip KAF1602E	17)	OES-LcCCD11
9)	ST-8XMEI chip KAF1603ME	18)	OES-LcCCD12
10)	ST-9	19)	Pictor 416XT
11)	ST-9XE chip 512×512	20)	Sigma 402ME
12)	AlphaMaxi	21)	Sigma 1603
Referen	ices:		
A&A	Astronomy & Astrophy	ysics	
BAVM	nnn BAV Mitteilungen No.	nnn	

Astronomy & Astrophysics
BAV Mitteilungen No. nnn
BAV Rundbrief volume, pages
BAV unpublished
General Catalogue of Variable Stars, yyyy
The HST Guide star Catalogue 1.2
Information Bulletin on Variable Stars No. nnnn
Mitteilungen ueber Veraenderliche Sterne, volume,page
Rocznik Astronomiczny No. vv, Krakow (SAC)
USNO A2.0 catalogue

ERRATA FOR IBVS 5889 (BAVM 203)

SV Cam	$54760.3081 \ SG$	correct value:	54760.3068
AI Dra	$54758.3120 \ SG$	correct value:	54758.3134

ERRATUM FOR IBVS 5918 (BAVM 209)

RR Lyr 54866.4031 ALH has to be deleted

ERRATUM FOR IBVS 5918 (BAVM 209)

DD Mon 54840.3953 AG has to be deleted

Number 5919

Konkoly Observatory Budapest 7 January 2010 *HU ISSN 0374 - 0676*

LIMITS ON TRANSIT TIMING VARIATIONS IN HAT-P-6 AND WASP-1

SZABÓ, GY. M.^{1,2}; HAJA, O.²; SZATMÁRY, K.²; PÁL, A.^{1,3}; KISS, L. L.¹

 1 Konkoly Observatory of the Hungarian Academy of Sciences, P.O. Box 67, H-1525 Budapest, Hungary; e-mail:szgy@konkoly.hu

² Dept. Experimental Physics. & Astronomical Obs., Univ. of Szeged, 6720 Szeged Dóm tér 9, Hungary

³ Department of Astronomy, Loránd Eötvös University, Pázmány P. st. 1/A, H-1117 Budapest, Hungary

The study of Transit Timing Variations (TTV, e.g. Díaz et al., 2008; Sozzetti et al., 2009) is important because it may reveal the effect of other perturbing planets in the exoplanetary systems (Steffen and Agol, 2005), or moons of the transiting exoplanet (e.g. Szabó et al., 2006; Simon et al., 2007; Kipping et al., 2009ab). We present new transit times and Transit Timing Variation analysis of two exoplanets, HAT-P-6b and WASP-1b.

Time series were taken at two different sites. On 19/20 August, 2008, HAT-P-6 was observed with the 0.6 m Schmidt telescope of the Konkoly Observatory, Piszkéstető mountain station. The integration time was 15 s through Johnson R filter. On 3/4 November, 2008, we observed WASP-1 with the 0.4 m telescope of the Szeged Observatory, equipped with an ST-7E CCD camera. The integration time was 30 s through Johnson I filter.

The data were analysed with aperture photometry in IRAF, with an ensemble of comparison stars. Stellar magnitudes were obtained with multiple apertures. The optimal aperture size was determined with minimizing the *rms* scatter of the residuals. In both cases, the aperture radius was 4 pixels, corresponding to 4 arc seconds with the 0.6 m Schmidt and 5.3 arc seconds with the 0.4 m Newtonian. The scatter of the raw light curves is $\approx \pm 0.005$ mag for HAT-P-6 and $\approx \pm 0.008$ mag for WASP-1. After calculating 3-minute averages, these values are reduced to $\approx \pm 0.0025$ mag (HAT-P-6) and $\approx \pm 0.004$ (WASP-1).

Times of minima were determined by fitting a model light curve. To reduce the degree of freedom of fitting, the shape of the model was not adjusted; we used previously published parameters. The model was shifted in time, minimising the rms scatter of the measurements.

The log of observations is summarised in Table 1, light curves and TTV diagrams are shown in Fig 1.

Notes on individual exoplanets:

HAT-P-6b is a hot Jupiter known for its very low density. One time of mid-transit at HJD 2454035.67575 \pm 0.00028 was published by Noyes et al (2008), who determined a period of 3.852985 \pm 0.000005 days. They also published a second light curve starting from 2454347.7. We have re-fitted the publicly available photometry simultaneously with our new data by assuming the same transit geometry parameters (duration,

Figure 1. Light curves of the observed transits and fitted models (top panels) and O - C diagrams of the exoplanet systems (bottom panels).

Planet	Date	HJD	duration	number	transit time
		(first point)	(hour)	of points	$\mathrm{HJD}\!-\!2450000$
HAT-P-6b	2008.08.19	2454698.30	4.5	647	$4698.3908 {\pm} 0.0011$
WASP-1b	2008.11.04	2454774.22	5.2	351	$4774.3448{\pm}0.0023$

Table 1: The log of observations

depth, impact parameter) but independent transit times. The resulted transit times are $2454035.67571 \pm 0.00027$, $2454347.76763 \pm 0.00042$ and 2454698.3908 ± 0.0011 . The data do not indicate any departure from constant orbital period.

WASP-1b: is supposed to be a hot Jupiter with metal-rich atmosphere, little or no core, and its age is less than 1.5 Gyr. (Cameron et al., 2007; Stempels et al., 2007). Two transits at 2453912.514 \pm 0.001 and 2454005.75196 \pm 0.00045 were published by Charbonneau et al. (2007), who adopted a period of 2.51997 days. Shporer et al. (2007) published a transit time at 2454013.31269 \pm 0.00047 and determined a period of 2.519961 \pm 0.000018. Cameron et al. (2007) have also published measurements from 2004 with a pre-discovery transit at 2453151.486 \pm 0.006 (the numerical value is available at exoplanet.eu); the resulting period was 2.51995 \pm 0.00001 days.

We measured a transit at HJD 2454774.3448 ± 0.0023 and determined a new period of 2.519970 ± 0.000003 days. All transit times are compatible with the updated ephemeris. The pre-discovery transit time is well off a linear fit, but the large error bar preclude any conclusion on TTV. By neglecting this first point, the best-fitting period is 2.519973 ± 0.000003 days and the earliest point is a significant outlier. At this moment it is unclear whether there is period change in the system, hence further monitoring is necessary.

Acknowledgements The research was supported by the "Lendület" Program of the Hungarian Academy of Sciences, Hungarian OTKA Grant K76816 and the "Bolyai János" postdoctoral fellowship of the Hungarian Academy of Sciences.

References:

Cameron, A. C., Bouchy, F., Hébrard, G., et al., 2007, MNRAS, 375, 951
Cameron, A. C., Pollacco, D., Hellier, C., et al., 2009, IAUS, 253, 29
Charbonneau, D., Winn, J. N., Mark, E. E., et al., 2007, ApJ, 658, 1322
Díaz, R. F., Rojo, P., Melita, M., et al., 2008, ApJ, 682, L49
Kipping, D. M., 2009a, MNRAS, 392, 181
Kipping, D. M., 2009b, MNRAS, 396, 1797
Noyes, R. W., Bakos, G. Á., Torres, G., et al., 2008, ApJ, 673, L79
Shporer, A., Tamuz, O., Zucker, S., Mazeh T., 2007, MNRAS, 376, 1296
Simon, A., Szatmáry, K., Szabó, Gy. M., 2007, A&A, 470, 727
Sozzetti, A., 2009, ApJ, 691, 1145
Steffen, J. H., Agol, E., 2005, MNRAS, 364, L96
Stempels, H. C., Collier Cameron, A., Hebb, L., et al., 2007, MNRAS, 379, 773
Szabó, Gy. M., Szatmáry, K., Divéki, Zs., Simon, A., 2006, A&A, 450, 395

Number 5920

Konkoly Observatory Budapest 7 January 2010 *HU ISSN 0374 - 0676*

TIMINGS OF MINIMA OF ECLIPSING BINARIES

DIETHELM, ROGER

Bahnhofstrasse 3, CH-4118 Rodersdorf, Switzerland

The following Table lists timings of minima of eclipsing binaries secured by CCD photometry, obtained in the second half of 2009. The given O - C values generally refer to the linear elements of the 2008 electronic version of the GCVS (Samus et al., 2009), except for the cases stated in the remarks, where the determination of current elements made use of the up-to-date ASAS data (http://www.astrouw.edu.pl/asas/) and the Lafler-Kinman algorithm of the PERANSO software (http://www.peranso.com/). All times given are heliocentric UTC.

Variable	Type	HJD 24	±	0 – C	n	Obs	Remarks
AA And	р	55137.6993	0.0002	-0.0039	45	RD	V
AP And	р	55144.6406	0.0003	+0.0018	34	RD	V
BD And	р	55135.6958	0.0002	-0.0137	12	RD	V
DS And	р	55114.8953	0.0004	-0.0002	26	RD	V
EP And	р	55102.8861	0.0002	-0.0065	37	RD	V; el.: IBVS 5184; $d=0.02d$
FL And	р	55158.6960	0.0003	+0.0097	27	RD	V
GZ And	s	55114.8785	0.0004	0.0000	14	RD	V
LM And	р	55102.9086	0.0002	-0.0089	41	RD	V
GSC 3627-1727	р	55135.5821	0.0009	+0.0031	15	RD	V; el.: $2451400.783 + 0.396770 * E$
GSC 3638-2422	\mathbf{s}	55144.6505	0.0003	-0.0081	32	RD	V; el.: $2451453.635 + 0.3380213*E$
$GSC \ 3641-587$	р	55144.7207	0.0003	-0.0098	30	RD	V; el.: $2451443.74 + 0.6945 * E$
UU Aqr	р	55114.687:	0.003	-0.002	4	RD	V
GH Aqr	s	55121.7061	0.0005	+0.0003	22	RD	V
GM Aqr	s	55119.6768	0.0009	-0.0269	8	RD	V
HV Aqr	р	55102.6932	0.0005	-0.0083	27	RD	V; d=0.03d
NN Aqr	s	55119.6416	0.0003	-0.0045	22	RD	V; el.: $2451487.689 + 0.306792 * E$
NQ Aqr	р	55102.6687	0.0005	-0.0035	25	RD	V
NW Aqr	s	55137.5768	0.0006	+0.0245	15	RD	V
	р	55137.7247	0.0005	+0.0216	26	RD	V
GSC 568-1328	р	55137.6597	0.0005	0.0000	29	RD	V; el.: $2454365.632 + 0.284671 * E$
GSC 5804-102	р	55121.6580	0.0004	-0.0258	33	RD	V; el.: $2453660.670 + 2.554220 * E$
V346 Aql	р	55100.6909	0.0003	-0.0083	23	RD	V
V765 Aql	р	55100.7001	0.0005	+0.0082	35	RD	V: el.: $2453166.803 + 0.878242 * E$
$GSC \ 1083-2003$	р	55100.7107	0.0003	-0.0047	31	RD	V; el.: $2454338.656 + 0.670237 * E$
GSC 5725-698	s	55100.7901	0.0006	-0.0032	21	RD	V; el.: $2454675.780 + 1.281847 * E$
GSC 1209-1201	р	55114.9059	0.0003	+0.0268	26	RD	V; el.: $2453329.629 + 0.351086 * E$
GSC 1216-409	р	55181.7073	0.0003	+0.0117	27	RD	V; el.: $2454436.722 + 0.528725 * E$; d=0.03d
$GSC \ 1217-696$	s	55181.6474	0.0004	-0.0074	39	RD	V; el.: $2454683.903 + 0.395198 * E$; d=0.03d
GSC 1221-1118	s	55181.7103	0.0004	-0.0073	27	RD	V; el.: $2454392.681 + 0.380167 * E$; d=0.025d
RY Aur	р	55137.9515	0.0003	+0.0213	34	RD	V
CI Aur	р	55135.9202	0.0002	+0.1301	39	RD	V
CP Aur	р	55158.995:	0.010:	+0.072	40	RD	V; el.: IBVS 5652; $d=0.095d$

Table 1: Minima of eclipsing binaries

Table 1: Minima of eclipsing binaries (continued)

Variable	Туре	HJD 24	±	O - C	n	Obs	Remarks
EP Aur	p	55158.8584	0.0002	+0.0224	23	RD	V; el.: IBVS 4099
FO Aur	р	55140.0051	0.0002	+0.1867	12	RD	V
FP Aur	р	55144.9515	0.0001	-0.0718	34	RD	V
HP Aur	\mathbf{s}	55139.8572	0.0003	+0.0550	23	RD	V
HU Aur	р	55137.8799	0.0004	-0.0127	34	RD	V; el.: IBVS 3666
HW Aur	s	55137.9601	0.0005	+0.0246	31	RD	V; el.: IBVS 5016
V576 Aur	s	55158.0064	0.0007	-0.1334	15	RD	V; el.: ASAS
GSC 2393-680	s	55137.9229	0.0006	+0.0103	21	RD	V; el.: IBVS 5699
$GSC \ 3751-178$	s	55158.9510	0.0003	+0.0017	29	RD	V; el.: $2453285.2664 + 0.327997*E$
GM Boo	\mathbf{S}	55015.4787	0.0004	+0.0542	12	EB1	C; el.: IBVS 5125
GN Boo	р	55015.4454	0.0005	+0.0055	15	EBl	C; el.: IBVS 5125
GQ Boo	р	55015.408	0.004	-0.011	8	EBl	C; el.: IBVS 5125
$\mathrm{GR}~\mathrm{Boo}$	\mathbf{s}	55015.4062	0.0005	+0.0005	9	EBI	C; el.: IBVS 5125
GSC 2013-288	\mathbf{s}	55015.3713	0.0010	-0.0056	10	EBI	C; el.: IBVS 5699
	р	55015.5221	0.0008	-0.0064	12	EBl	С
UU Cam	s	55121.9640	0.0006	-0.0545	22	RD	V; el.: CoSka 33, 38
AO Cam	\mathbf{s}	55135.8636	0.0006	-0.0415	22	RD	V; el.: PASP 97, 648
NO Cam	s	55127.8930	0.0002	+0.0041	38	RD	V; el.: IBVS 5894
GSC 3715-1039	р	55121.9522	0.0003	+0.0656	27	RD	V; el.: $2451453.283 + 0.4255427*E$
NSV 3715	\mathbf{p}	55181.9031	0.0002	+0.0047	16	RD	V; el.: IBVS 5894
GSC 2544-1090	р	55015.4736	0.0011	+0.0194	11	EBI	C; el.: IBVS 5699
GSC 2545-970	\mathbf{S}	55015.4361	0.0003	-0.0114	13	EBI	C; el.: IBVS 5699
GSC 3034-299	s	55015.4601	0.0004	-0.0057	11	EBI	C; el.: IBVS 5699
AK CMi	р	55181.8645	0.0009	-0.0214	18	RD	V
AM CMi	s	55181.9082	0.0010	+0.1953	38	RD	V
CW CMi	р	55181.9020	0.0006	+0.0054	18	RD	V; el.: IBVS 5871
AL Cas	s	55100.9053	0.0006	+0.0071	30	RD	
BH Cas	р	55158.7231	0.0003	+0.0255	27	RD DD	V; el.: $IBVS 4482$
CW Cas	р	55158.6693	0.0005	-0.0497	27	RD DD	V; el.: JAAVSO 21, 34
DZ Cas	s	55144.6460	0.0006	-0.1030	40	RD DD	
Er Cas	p	55155.7040 EE100.8860	0.0003	+0.0330	37	RD DD	
IL Cas	p	55100.8809 FE110.86E0	0.0009	-0.0059	27	RD DD	V; el.: BAV Rdb. 2002-1, 1
LA Cas	p	55100 8605	0.0009	+0.0504	20		v V
LI Cas MN Cas	p	55100.8095	0.0008	+0.1240	21		V V
MIN Cas MS Cas	p n	55158 6657	0.0009	± 0.0103 ± 0.0375	$\frac{20}{25}$	RD RD	v V
NN Cas	p n	55158 6349	0.0003	± 0.0373 ± 0.1228	20 22	RD RD	v V
PV Cas	P D	55139 6207	0.0005	-0.0365	31	RD	V: non-circ
V345 Cas	P D	55139.6271	0.0000	-0.0200	35	RD	V
V471 Cas	Р 5	55106 9030	0.0000	+0.1025	34	RD	V
V520 Cas	s	551536841	0.0002	+0.1020 +0.0575	43	RD	V. el · BBB 117_9
V541 Cas	Ď	55119.9340	0.0004	+0.0200	26	RD	V: el.: IBVS 2652
V608 Cas	Р S	55100.8897	0.0006	+0.0038	$\frac{1}{19}$	RD	V: el.: IBVS 5151
V821 Cas	s	55153.6590	0.0002	-0.1939	12	RD	V: el.: IBVS 5386: non-circ.
V961 Cas	s	55158.6349	0.0007	-0.1619	34	RD	V; el.: IBVS 5437
TV Cep	g	55127.737	0.010	+0.075	42	RD	v
WZ Cep	p	55144.6758	0.0001	-0.0819	45	RD	V; el.: AAS 131, 17
BE Cep	s	55135.6906	0.0003	-0.1024	17	RD	V
DY Cep	р	55153.549	0.002	-0.196	9	RD	V
GI Cep	s	55102.7080	0.0005	-0.1053	26	RD	V
GS Cep	s	55139.7283	0.0005	-0.0021	25	RD	V; el.: IBVS 3596
GW Cep	\mathbf{s}	55106.8831	0.0002	-0.0037	26	RD	V; el.: IBVS 4293
IP Cep	s	55121.7019	0.0010	-0.0222	32	RD	V; el.: IBVS 5016
MT Cep	р	55106.7109	0.0005	-0.0019	23	RD	V; el.: $2434240.4258 + 1.2064227*E$
V744 Cep	р	55127.7447	0.0005	+0.0194	18	RD	V; el.: $2451426.642 + 0.62455 * E$
$V746 \ Cep$	р	55137.7185	0.0003	+0.0571	36	RD	V; el.: IBVS 5644
GSC 4286-49	\mathbf{S}	55137.6896	0.0003	-0.0591	42	RD	V; el.: IBVS 5570; non-circ.
$GSC \ 4502-138$	s	55102.9565	0.0001	+0.0849	23	RD	V; el.: IBVS 5700
TT Cet	р	55102.8983	0.0001	-0.0606	40	RD	V
XY Cet	\mathbf{s}	55197.6567	0.0005	+0.0097	42	RD	V
$GSC \ 44-1052$	\mathbf{S}	55106.8638	0.0002	-0.0267	18	RD	V; el.: $2453389.554 + 0.818754^*E$

Table 1: Minima of eclipsing binaries (continued)

	-				sing	Dinari	
Variable	Type	HJD 24	±	U = C	n	Obs	Kemarks
AR CrB	р	55038.4884	0.0004	-0.0029	29	EBI	C; el.: IBVS 5295
AS CrB	\mathbf{s}	55038.4675	0.0007	+0.0063	26	EBI	C; el.: IBVS 5295
AV CrB	\mathbf{s}	55038.5036	0.0002	-0.0144	24	EBI	C; el.: IBVS 5295
DK Cyg	\mathbf{S}	55114.6800	0.0004	+0.0817	40	RD	V
PW Cyg	р	55100.7184	0.0007	-0.0286	28	RD	V
m V680~Cyg	р	55106.7021	0.0005	+0.0646	27	RD	V
V706 Cyg	\mathbf{s}	55114.6896	0.0005	-0.0267	18	RD	V
V1416 Cyg	р	55119.7376	0.0003	+0.1787	18	RD	V
V1616 Cyg	р	55102.7318	0.0006	+0.0099	19	RD	V
V1815 Cyg	s	55119.7015	0.0005	+0.0006	27	RD	V; el.: BAVSR 55, 1
V2280 Cyg	g	55154.2636	0.0005	+0.0629	22	EBI	C; el.: IBVS 4996
V2284 Cyg	q	55109.2829	0.0007	-0.0015	14	EBI	C; el.: IBVS 4985
	s	55154.2612	0.0004	+0.0024	30	EBI	Ċ
	D	55154.4183	0.0005	+0.0060	11	EBI	С
MU Dra	n	55104.3112	0.0011	-0.0356	10	EBI	C: el.: IBVS 5232
GSC 3523-505	r S	55083.425	0.002	+0.007	11	EBI	C: el.: IBVS 5699
GSC 3552-321	s	55083.461	0.002	-0.004	10	EBI	C; el.: IBVS 5699
GSC 3888-464	s	55074 3322	0.0006	+0.0122	19	EBI	C: el: IBVS 5505
	n	55074 4914	0.0006	± 0.0122	15	EBI	
GSC 3905-60	P S	55083 3878	0.0000	-0.0136	28	EBI	C el : IBVS 5699
BU Fri	n	55127 8520	0.0001	-0.0020	20	BD	V
IIV Er;	Р	55110 8042	0.0005	-0.0271	20	RD RD	V
UA En:	5	55119.0942 EE144.9609	0.0005	+0.1000	96 96		V V. d. 0.06Ed
VV VV EITI	Р	55144.0000	0.0004	+0.0043	20 1.0		v; d=0.005d
AM En	s	55127.8030	0.0000	-0.0949	10	RD DD	V V
BC Eri	s	55139.9219	0.0001	+0.0483	40 95	RD DD	V V -l. IDVC 4097
BZ ETI	р	55137.9278	0.0002	+0.0032	20	RD DD	V; el.: 1BVS 4937
CD Eri	р	55128.013	0.003	+0.048	8	RD	
GSC 5297-974	р	55119.9109	0.0005	+0.0033	27	RD DD	V; el.: IBVS 5894
NSV 1864	р	55135.9103	0.0003	+0.0108	44	RD	V; el.: $2455125.794 + 0.594444^{E}$; d=0.04d
EL Gem	р	55158.8795	0.0002	+0.0342	36	RD	V
NSV 3744	р	55181.9101	0.0003	+0.0323	37	RD	V; el.: ASAS
V1033 Her	р	55049.4384	0.0013	-0.0145	9	EBI	C; el.: IBVS 5146
V1036 Her	\mathbf{s}	55049.529	0.002	+0.003	11	EBI	C; el.: IBVS 5146
V1038 Her	\mathbf{s}	55049.4529	0.0006	+0.0079	13	EBI	C; el.: IBVS 5146
V1039 Her	\mathbf{s}	55049.3515	0.0004	+0.0025	12	EBI	C; el.: BBSAG Bull. 128, 10
V1044 Her	р	55049.4431	0.0016	-0.0058	8	EBI	C; el.: IBVS 5192
	\mathbf{S}	55049.561	0.004	-0.009	8	EBI	С;
V1047 Her	р	55049.4770	0.0009	-0.0057	9	EBI	C; el.: IBVS 5192
V1053 Her	р	55049.4727	0.0009	+0.0040	11	EBI	C; el.: BBSAG Bull. 128, 10
V1055 Her	S	55049.4493	0.0018	+0.0076	12	EBI	C; el.: IBVS 5192
V1062 Her	р	55067.4384	0.0015	-0.0029	10	EBI	C; el.: IBVS 4965
V1067 Her	s	55067.3817	0.0004	+0.0032	10	EBI	C; el.: IBVS 4966
	р	55067.5087	0.0010	+0.0012	17	EBI	С
V1073 Her	р	55067.4803	0.0003	+0.0168	12	EBI	C; el.: IBVS 4975
V1094 Her	\mathbf{S}	55059.4657	0.0013	-0.0070	21	EBI	C; el.: IBVS 5306
V1095 Her	р	55059.4512	0.0007	-0.0215	29	EBI	C; el.: IBVS 5306
V1096 Her	р	55059.3874	0.0011	+0.0219	15	EBl	C; el.: IBVS 5306
	s	55059.5012	0.0008	+0.0150	12	EBl	\mathbf{C}
V1097 Her	р	55059.3463	0.0002	+0.0062	19	EBl	C; el.: IBVS 5306
	s	55059.5273	0.0008	+0.0067	20	EBl	С
V1101 Her	s	55067.5124	0.0008	+0.0143	16	EBl	C; el.: IBVS 5333
V1102 Her	р	55067.4443	0.0012	+0.0025	13	EBl	C; el.: IBVS 5333
V1103 Her	s	55067.4051	0.0010	-0.0005	16	EBI	C; el.: IBVS 5333
	р	55067.5437	0.0008	-0.0076	11	EBl	С
V1104 Her	s	55067.3635	0.0018	-0.0020	11	EBI	C; el.: IBVS 5333
	q	55067.4729	0.0005	-0.0066	13	EBI	Ċ
GSC 963-246	s	55074.3618	0.0006	+0.0228	21	EBI	C; el.: IBVS 5799
GSC 1518-913	р	55049.4517	0.0009	-0.0214	16	EBI	C; el.: $2453900.5264 + 0.321204*E$

Table 1: Minima of eclipsing binaries (continued)

		Table 1: Mil	nima or	echpsing	Dinar	ies (co	ontinued)
Variable	Type	HJD 24	±	O - C	n	Obs	Remarks
GSC 1537-1557	р	55074.4589	0.0008	+0.0051	22	EBl	C; el.: IBVS 5505
GSC 1549-121	\mathbf{s}	55074.4374	0.0006	-0.0061	33	\mathbf{EBl}	C; el.: IBVS 5505
GSC 2587-289	р	55049.3992	0.0003	-0.0024	13	\mathbf{EBl}	C; el.: IBVS 5799
GSC 2587-1888	D D	55049.3702	0.0016	+0.0097	14	EBl	C: el.: 2453877.4694+0.310764*E
	r S	55049.5223	0.0009	+0.0065	11	EBI	C
CSC 2614 1360	0	55059 3788	0.0007	± 0.0000	14	EBI	C al : IBVS 5516
050 2014-1505	5 12	55059,5700	0.0004	+0.0020	14	FDI	C, el.: 1BV5 5510
000 001F 1001	р	55059.5599	0.0011	-0.0034	14	EDI	
GSC 2010-1821	р	55059.5020	0.0003	+0.0006	10	EBI	C; el.: IBVS 5516
GSC 2618-1385	р	55059.4478	0.0007	-0.0057	15	EBI	C; el.: IBVS 5516
GSC 3097-1297	р	55067.4500	0.0011	+0.0024	22	EBI	C; el.: IBVS 5564
$GSC \ 3101-547$	\mathbf{p}	55067.4980	0.0008	+0.0071	15	\mathbf{EBl}	C; el.: IBVS 5564
GSC 3106-1368	\mathbf{s}	55067.3976	0.0011	-0.0012	17	\mathbf{EBl}	C; el.: $2453229.5392 + 0.358362^*E$
$GSC \ 3510-5$	\mathbf{s}	55067.3895	0.0008	+0.0316	14	\mathbf{EBl}	C; el.: IBVS 5564
GSC 3510-1283	s	55059.344	0.002	-0.008	12	\mathbf{EBl}	C; el.: IBVS 5516
	р	55059.4790	0.0007	-0.0121	16	\mathbf{EBl}	С
GSC 3532-553	D D	55083.3376	0.0005	+0.0035	14	EBl	C: el.: IBVS 5699
	r	55083.4951	0.0013	+0.0022	13	EBI	Ċ
GSC 196-894	n	55181 8166	0.0009	+0.0097	8	RD	V: el : $2455131.642 \pm 0.414586*E$
000 100 001	P	55182 0272	0.0000	+ 0.0001	11	RD RD	V
VV Lee	2	55162.0272	0.0009	± 0.0130	11 E0		V al. MAYS 10 F4
	р	55157.0690	0.0001	+0.0001	5Z		v; el.: Mv5 10, 54
AG Lac	s	55106.7072	0.0008	-0.3847	23	RD	
BS Lac	\mathbf{p}	55106.757	0.002	-0.174	13	RD	V; $d=0.06d$
CG Lac	\mathbf{p}	55135.6488	0.0005	-0.1546	35	RD	V
CO Lac	\mathbf{s}	55135.7336	0.0008	+0.0010	10	RD	V; non-circ.
HR Lac	р	55106.6705	0.0012	+0.1092	20	RD	V
HX Lac	р	55127.7587	0.0010	+0.0082	11	RD	V
IP Lac	s	55119.6894	0.0006	+0.0764	23	RD	V
IU Lac	р	55114.6896	0.0004	+0.0145	25	RD	V
LU Lac	s	55121.564	0.003	+0.030	5	RD	V
	D	55121.7134	0.0001	+0.0301	20	RD	V
LZ Lac	r n	55127 7550	0.0010	+0.3180	14	BD	V
NR Lac	P D	55121.6725	0.00010	± 0.0100	30	RD	V
V364 Lac	P	55127 5022	0.0004	+0.0512	- 00 - 08	RD RD	V non circ
7 Lon	P	55125 9691	0.0010	+0.0542	20		$V_{\rm r}$ also IA AVSO 21 111
д цер	P	55155.0001	0.0005	+0.0372	37 99		V; el.: JAAVSO 21, 111
KK Lep	р	55144.9477	0.0003	-0.0342	33	RD DD	
GSC 5337-1744	s	55153.8559	0.0002	-0.0062	20	RD	V; el.: IBVS 5871
GSC 5361-545	\mathbf{s}	55153.8689	0.0006	+0.0066	25	RD	V; el.: IBVS 5871
V400 Lyr	\mathbf{S}	55104.3987	0.0008	-0.0541	13	EBl	C; el.: IBVS 4995
V574 Lyr	\mathbf{s}	55104.3183	0.0012	-0.0076	14	\mathbf{EBl}	C; el.: IBVS 4976
	р	55104.4565	0.0009	-0.0060	10	EBl	С
V579 Lyr	\mathbf{s}	55104.4012	0.0013	-0.0226	22	\mathbf{EBl}	C; el.: IBVS 4982
V580 Lyr	р	55104.2982	0.0013	-0.0296	13	EBl	C; el.: IBVS 4982
	s	55104.4509	0.0012	-0.0214	16	\mathbf{EBl}	C
V582 Lvr	g	55104.3537	0.0012	+0.0566	17	EBl	C: el.: IBVS 4985
J	S	55104.482	0.002	+0.057	10	EBI	Ċ
V591 Lyr	n	55104 3046	0.0014	+0.0059	11	EBI	C el IBVS 5232
VODI LIJI	P	55104 4454	0.0006	-0.0034	12	EBI	
V502 L	o n	55104.4404	0.0000	+0.0034	12	FBI	C al ϵ IBVS 5222
V592 Ly1	Р	55104.4195	0.0010	+0.0144	10	EDI	$C_{\rm r}$ el. IDVS 5252 $C_{\rm r}$ el. IDVS 5252
	s	55104.5555	0.0008	+0.0077	14		
GSU 3108-57	\mathbf{p}	55083.4085	0.0004	-0.0061	21	EBI	O; el.: IBVS 5525
GSC 3109-859	\mathbf{s}	55083.4443	0.0007	-0.0087	26	EBI	C; el.: IBVS 5525
GSC 3526-1995	р	55083.3954	0.0013	-0.0152	13	EBl	C; el.: IBVS 5525
GSC 3526-2369	\mathbf{s}	55083.4454	0.0003	+0.0339	19	EBl	C; el.: IBVS 5525
V498 Mon	р	55158.8996	0.0003	-0.1355	44	RD	V
$GSC \ 145-685$	р	55158.9059	0.0001	+0.0160	43	RD	V; el.: $2454459.712 + 1.159499 * E$
GSC 4839-280	р	55181.9467	0.0007	+0.0104	21	RD	V; el.: IBVS 5894
ER Ori	s	55139.9017	0.0003	+0.0821	35	RD	V
FF Ori	р	55144.8754	0.0006	+0.0325	28	RD	V

Table 1:	Minima	of	eclipsing	binaries	(continued))
10010 10		~		~~~~~~~~~	00	

		1451			ipsin	5 DIII0	
Variable	Type	HJD 24	±	O - C	n	Obs	Remarks
V343 Ori	р	55153.9044	0.0002	+0.0033	44	RD	V; el.: $2453704.726 + 0.809143*E$
V392 Ori	\mathbf{s}	55158.9118	0.0004	+0.0330	50	RD	V; el.: PASJ 54, 139
V517 Ori	р	55137.8570	0.0003	-0.0081	25	RD	V; el.: IBVS 5871
V641 Ori	р	55153.8776	0.0004	-0.0090	28	RD	V; el.: $2454750.858 + 0.450815^{*}E$
V1799 Ori	\mathbf{s}	55135.7727	0.0004		9	RD	V
	р	55135.9187	0.0005		17	RD	V
GSC 104-1999	р	55137.8535	0.0006	-0.0044	23	RD	V; el.: IBVS 5871
GSC 107-596	р	55139.8154	0.0005	-0.0037	9	RD	V; el.: IBVS 5799
	\mathbf{s}	55139.9516	0.0006	-0.0007	14	RD	V
GSC 702-1892	s	55144.9085	0.0002	+0.0009	26	RD	V; IBVS 5493
GSC 706-845	р	55135.9090	0.0006	-0.0035	30	RD	V; el.: IBVS 5799
GSC 1283-53	s	55144.9170	0.0004	-0.0086	32	RD	V; el.: IBVS 5799
BN Peg	p	55102.7190	0.0004	+0.0035	24	RD	V
BX Peg	g	55121.6025	0.0007	-0.0006	20	RD	V; el.: IBVS 5668
0	s	55121.7390	0.0004	-0.0044	18	RD	v
CF Peg	s	55102.6650	0.0007	-0.1090	26	RD	V
DV Peg	D	55114.6664	0.0003	+0.0495	36	RD	V
FL Peg	S	55114.6242	0.0005	+0.0014	15^{-1}	RD	V
KW Peg	n	55121.6584	0.0003	+0.1518	17	RD	V: el.: IBVS 3579
GSC 563-861	Р р	55127 6711	0.0004	-0.0016	$\frac{1}{22}$	RD	V: el.: 2454597.915+0.368399*E
GSC 573-1241	Р Р	55119 6655	0.0011	+0.0021	14	RD	V: el : $2454815539 \pm 0.309384*E$
GSC 1141-480	P	55114 7090	0.0002		31	RD	V. el : $2454403614\pm0.386679*E$
CSC 1170 123	P D	55144 6565	0.0002	-0.0003	25	RD	$V_{10} = 2454320$ 822 + 0.368362*E
GSC 1170-125	p	55152 6204	0.0002	± 0.0078	25		V_{1} el. 2454525.052 \pm 0.500502 E
GSC 1174-344	5	55155.0294 EE1E2 GEGQ	0.0002	+0.0039	ეე ექ		V_{1} el. 2454299.824+0.388710 E; $d=0.03d$
GSC 1176-1206	p	00100.0000 EE107 6644	0.0005	-0.0034	⊿⊥ 19		V_{1} el.: 2454456.559 \pm 0.277710 E
GSC 1080-1001	s	55127.0044	0.0000	+0.0013	15		V; el.: 2454427.554+0.262559°E
GSC 1694-992	р	55100.0839	0.0005	+0.0038	27	RD DD	V; el.: 2453912.803+0.346453*E
GSC 1715-1370	s	55139.6420	0.0008	+0.0047	10	RD DD	V; el.: 2454305.775+0.357344*E
GSC 1716-1457	s	55144.6998	0.0001	+0.0114	39	RD	V; el.: 2454681.775+0.408393*E; d=0.03d
GSC 1718-1664	р	55139.6312	0.0003	-0.0027	13	RD	V; el.: 2454372.596+0.258175*E
666 a a a a a a -	s	55139.7653	0.0007	+0.0023	13	RD	
GSC 2223-87	р	55127.6815	0.0002	-0.0104	39	RD	V; el.: 2454985.901+0.564904*E
GSC 2225-1482	р	55139.6622	0.0003	-0.0074	43	RD	V; el.: 2454761.568+0.748716*E
GSC 2226-2148	\mathbf{s}	55121.6857	0.0004	+0.0163	21	RD	V; el.: 2452860.717+0.311791*E
GSC 2244-1064	\mathbf{p}	55139.6523	0.0003	+0.0071	43	RD	V; el.: $2453596.695 + 0.425994^{*}E$; d=0.03d
GSC 2258-1489	s	55158.6320	0.0002	-0.0342	27	RD	V; el.: $2452645.587 + 0.273741^*E$
GSC 2766-775	$\mathbf{p}?$	55135.5792	0.0012	+0.0568	13	RD	V; el.: $2453254.588 + 0.375736^*E$
GSC 2766*1184	р	55144.6644	0.0004	-0.0304	48	RD	V; el.: $2453255.588 + 0.801828^{*}E$; d=0.05:d
BE Per	р	55121.8690	0.00004	+0.0157	26	RD	V; MVS 11, 38
EX Per	р	55106.817:	0.005	-0.662	8	RD	V
HK Per	р	55135.8551	0.0003	+0.0913	37	RD	V
IU Per	s	55197.7015	0.0018	+0.0113	34	RD	V
PS Per	р	55114.8667	0.0006	+0.0627	12	RD	V
QT Per	р	55119.8568	0.0006	-0.0460	18	RD	V; el: MVS 11, 65
QW Per	р	55192.6677	0.0006	+0.0165	17	RD	V
V427 Per	р	55197.6373	0.0005	+0.0149	35	RD	V
V432 Per	p	55181.6748	0.0001	-0.0077	42	RD	V; el.: BAV Rb. 43, 104
V434 Per	p	55197.6269	0.0008	-0.0762	30	RD	V
V680 Per	p	55114.9429	0.0002	+0.0488	20	RD	V; el.: IBVS 5610
	p	55119.809	0.002	+0.053	6	RD	V
	s	55119.9950	0.0002	+0.0522	8	RD	V
	s	55121.8660	0.0003	+0.0533	24	RD	V
V737 Per	s	55127 9249	0.0002	+0.0449	$\frac{-1}{32}$	RD	V. el.: IBVS 5894
GSC 2853-18	s	55197 6874	0.0001	-0.0081	17	RD	V: el : IBVS 5901
GSC 3708-1325	G	55102 0207	0.0004	-0.4083	31	RD	V: e] : $2451421708\pm 302356*$ E: non circ
GDC 0100-1040	G	55152.3431	0.0004	-0.4 <i>3</i> 00 ⊥∩∩∩1ջ	२1	BD 11D	$V_{10} = 2454727700 \pm 0.02000 \pm 0.00000000000000000000000$
GSC 8 448	c	55153 6777					
GSC 8-448 GSC 14 479	S	55153.6777 55153.7275	0.0005	± 0.0013 ± 0.0189	01 91	RD	$V_{1} = 1.2454727.733 \pm 0.401203 E, u = 0.0350$

Table 1: Minima of eclipsing binaries (continued)

Variable	Type	HJD 24	±	O - C	n	Obs	Remarks
GSC 575-429	р	55137.6044	0.0003	+0.0008	18	RD	V; el.: 2455014.843+0.234276*E
	s	55137.7179	0.0004	-0.0029	19	RD	V
GSC 621-834	р	55106.8948	0.0005	+0.0072	28	RD	V; el.: $2453651.723 + 0.282666*E$
GN Sge	р	55100.6849	0.0004	-0.0003	37	RD	V
V384 Ser	р	55029.3688	0.0004	+0.0007	13	EB1	C; el.: IBVS 5295
	s	55038.3694	0.0006	-0.0011	9	EBl	С
	р	55038.5057	0.0004	+0.0008	21	EB1	С
RZ Tau	р	55127.8954	0.0002	+0.0575	35	RD	V
WY Tau	s	55153.9012	0.0002	+0.0556	41	RD	V
AH Tau	р	55192.6539	0.0004	+0.0115	20	RD	V; el.: IBVS 5554
AP Tau	р	55144.8719	0.0003	+0.0261	32	RD	V
BV Tau	р	55139.8956	0.0005	-0.0003	42	RD	V; el.: $2452622.09 + 0.930453 * E$; d=0.05d
CC Tau	р	55144.8755	0.0001	-0.0044	33	RD	V; d=0.03d
CU Tau	р	55121.8645	0.0008	-0.0005	20	RD	V; el.: AJ 130, 224
EQ Tau	р	55192.695	0.003	-0.026	5	RD	V
GR Tau	s	55127.8923	0.0006	-0.0280	34	RD	V; d=0.05d
V1222 Tau	s	55121.9539	0.0008	-0.0563	20	RD	V; el.: IBVS 5871; $d=0.03d$
V1223 Tau	р	55100.9035	0.0002	+0.0032	30	RD	V; el.: $2454377.787 + 0.446918*E$
V1241 Tau	\mathbf{s}	55181.6530	0.0007	+0.0186	37	RD	V; formerly WX Eri
V1260 Tau	р	55139.9050	0.0003	+0.0269	47	RD	V; el.: 2453347.724+5.43077*E; non-circ.
GSC 67-348	р	55192.5590	0.0003	+0.0043	11	RD	V; el.: $2454388.813 + 0.282709 * E$
$GSC \ 658-185$	s	55192.6464	0.0004	+0.0028	27	RD	V; el.: $2454305.915 + 0.443032*E$
GSC 659-262	\mathbf{s}	55197.6383	0.0008	-0.0129	21	RD	V; el.: $2454167.516 + 0.386760*E$
GSC 663-23	р	55197.6661	0.0004	-0.0050	44	RD	V; el.: $2453751.610 + 0.619829*E$
GSC 1256-188	s	55192.6434	0.0002	+0.0061	29	RD	V; el.: $2454758.781 + 0.373531^*E$
GSC 1841-879	р	55127.9213	0.0001	-0.1113	37	RD	V; el.: $2452623.651 + 0.935518*E$
GSC 1848-1264	\mathbf{s}	55153.9349	0.0004	+0.0024	25	RD	V; el.: IBVS 5699
V Tri	р	55106.8932	0.0003	-0.0041	30	RD	V
RV Tri	р	55102.8993	0.0002	-0.0311	35	RD	V
RW Tri	р	55181.7186	0.0002	-0.0050	10	RD	V
ST Tri	р	55114.9106	0.0003	+0.0015	20	RD	V
	s	55119.9430	0.0007	+0.0039	25	RD	V
	s	55121.8550	0.0003	-0.0003	22	RD	V
VW Tri	р	55102.8981	0.0003	-0.0302	27	RD	V; el.: MVS 11, 1
VZ Tri	р	55102.8667	0.0004	-0.0087	23	RD	V; el.: OEJV 107
GSC 1774-845	р	55181.6550	0.0003	-0.0055	39	RD	V; el.: $2454823.626 + 0.468019^{*}E$

Observers:

EB1:	E. Blättler	Wald, Switzerland
RD :	R. Diethelm	Rodersdorf, Switzerland;
		R. Szafraniec Obs. operated at Astrokolkhoz Obs., Cloudcroft, N.M., USA

References:

Agerer, F., Hübscher, J., 2001, IBVS, No. 5016 Blättler, E., Diethelm, R., 2000a, IBVS, No. 4965 Blättler, E., Diethelm, R., 2000b, IBVS, No. 4966 Blättler, E., Diethelm, R., 2000c, IBVS, No. 4975 Blättler, E., Diethelm, R., 2000d, IBVS, No. 4976 Blättler, E., Diethelm, R., 2000e, IBVS, No. 4982 Blättler, E., Diethelm, R., 2000f, IBVS, No. 4985 Blättler, E., Diethelm, R., 2000g, IBVS, No. 4985 Blättler, E., Diethelm, R., 2000g, IBVS, No. 4995 Blättler, E., Diethelm, R., 2000h, IBVS, No. 4996 Blättler, E., Diethelm, R., 2001a, IBVS, No. 5125 Blättler, E., Diethelm, R., 2001b, IBVS, No. 5146 Blättler, E., Diethelm, R., 2001c, IBVS, No. 5151 Blättler, E., Diethelm, R., 2001d, *IBVS*, No. 5192 Blättler, E., Diethelm, R., 2002a, IBVS, No. 5232 Blättler, E., Diethelm, R., 2002b, IBVS, No. 5295 Blättler, E., Diethelm, R., 2002c, *IBVS*, No. 5306 Blättler, E., Diethelm, R., 2002d, IBVS, No. 5333 Blättler, E., Diethelm, R., 2004a, *IBVS*, No. 5505 Blättler, E., Diethelm, R., 2004b, IBVS, No. 5516 Blättler, E., Diethelm, R., 2004c, IBVS, No. 5525 Blättler, E., Diethelm, R., 2004d, *IBVS*, No. 5564 Blättler, E., Diethelm, R., 2006, *IBVS*, No. 5699 Blättler, E., Diethelm, R., 2007, IBVS, No. 5799 Brat, L., Motl, D., Smelcer, L., 2005, *IBVS*, No. 5700 Brat, L. et al., 2009, OEJV, 107 Byboth, K. N., Markworth, N. L., Bruton, W. B., 2004, IBVS, No. 5554 Dahm, M., 1994, BAV Rb., 43, 104 Degirmenci, O. et al., 2003, IBVS, No. 5386 Diethelm, R., 1998, BBSAG Bull., 117, 9 Diethelm, R., 2009a, *IBVS*, No. 5871 Diethelm, R., 2009b, *IBVS*, No. 5894 Evans III, E., Grossoehme, D. H., Moyer, E. J. Jr., 1985, PASP, 97, 648 Gessner, H., 1987a, MVS, 11, 38 Gessner, H., 1987b, MVS, 11, 65 Gonzalez-Rojas, D. et al., 2003, IBVS, No. 5437 Hanzl, D. et al., 1991, *IBVS*, No. 3596 Haussler, K., Berthold, T., Kroll, P., 2002, IBVS, No. 5350 Hoogeveen, G.J., 2005, *IBVS*, No. 5652 Metcalfe, T.S., 1997, *IBVS*, No. 4482 Meinunger, I., 1986, MVS, 11, 1 Nagai, K., Kiyota, S., 2000, IBVS, No. 4937 Nakamura, Y., Kontoh, N., 1991, IBVS, No. 3666 Narusawa, S. et al., 2002, PAS Japan, 54, 139 Nelson, R. H., 2004, *IBVS*, No. 5493 Otero, S. A., Wils, P., Dubovsky, P. A., 2004, *IBVS*, No. 5570 Otero, S. A., Wils, P., 2005, *IBVS*, No. 5644 Pribulla, T., Kreiner, J.M., Tremko, J., 2003, CoSka, 33, 38 Pribulla, T., Vanko, M., Parimucha, S., 2001, IBVS, No. 5184 Pribulla, T. et al., 2005, *IBVS*, No. 5668 Qian, S.-B. et al., 2005, AJ, **130**, 224 Quester, W., Jungbluth, H., 2002, BAV Rdb., 2002-1, 1 Ragazzoni, R., Barbieri, C., 1996, *IBVS*, No. 4293 Rössiger, S., 1984, MVS, 10, 54 Samec, R. G. et al., 2005, *IBVS*, No. 5610 Samec, R. G., 2009, *IBVS*, No. 5901 Samolyk, G., 1992a, JAAVSO, 21, 34 Samolyk, G., 1992b, JAAVSO, 21, 111 Samus, N.N. et al., 2009, General Catalogue of Variable Stars, von Poschinger, K., Husar, D., Maintz, G., 2006, BAVSR, 55, 1 Zhang, J.-T. et al., 1985, *IBVS*, No. 2652 Zhang, R.-X. et al., 1994, *IBVS*, No. 4099
Number 5921

Konkoly Observatory Budapest 14 January 2010 *HU ISSN 0374 - 0676*

CSS091215:060708-060335 : AN OPTICALLY EMERGENT ERUPTIVE NEAR THE HEAD OF HERBIG HARO 866 WEST

GREAVES, J.

Northants, UK

CSS091215:060708-060335 ($\alpha_{2000} = 06^{h}07^{m}08.1$; $\delta_{2000} = -06^{\circ}03'35''$ good to one arcsecond).

Public Catalina RealTime Transient Survey optical data (Drake *et al.*, 2009) reveal a faint and slowly brightening object which was first detected in Autumn 2006 whilst not having been detected previously in unfiltered optical data from the Catalina Sky Survey 0.7 meter telescope (albeit with gaps) back to January 2005, as illustrated in Figure 1 and provided in Table 1 (available through the IBVS website as 5921-t1.txt).

Figure 1. CRTS observations of CSS091215:060708-060335, filled circles are measurements, 'V' symbols are upper limits. Errors on each measure range from nearly a quarter up to at most half a magnitude

Investigation of archival POSS I and SERC/AAO Schmidt red and blue plates showed nothing in the region down to limiting magnitudes of 20 to 21. Images from the 2MASS All Sky Survey (Skrutskie *et al.*, 2006) show an object just visible in the J band, however it begins to appear more firmly in the H band and is most evident in the K_s band all from images taken in November 1998, lying very adjacent to the 2MASS Extended Catalog object 2MASX J06070812-0603352. SPITZER IRAC 3.6, 4.5, 5.8 and 8.0 micron March 2005 images (Werner *et al.*, 2004) also show the object well, but it is not evident on the same date MIPS 24 micron image, although apparently appearing on the 70 micron image, however this image does not cover the whole field (Figure 2). The extended object is always most evident around the two to four micron passbands, being faint to invisible at longer and shorter wavelengths, with public April 2007 AKARI mission images (Murakami, H. *et al.*, 2007), for example, showing it best at 3.2 and 4.1 microns and barely present at 7.0 microns, whilst HH 866 becomes increasingly much brighter towards the longer passbands (Figure 3).

Figure 2. Optical and SPITZER IRAC and MIPS images of the region surrounding CSS091215:060708-060335. From left to right, in top to bottom rows, CSS 0.7m Telescope unfiltered optical image, POSS I E (red) plate image, 2MASS K_s image, SPITZER IRAC 3.6, 4.5, 5.8 and 8.0 micron images, SPITZER MIPS 24 and 70 micron images. The arrow in the 2MASS image points to the CRTS object position, HH denotes Herbig Haro objects with HH 866 southmost. The ellipses are 2MASX objects shown at centre and Northeast of centre respectively, the diamond denotes the SIMBAD position for IRAS 06046-0603, the circle the SIMBAD position for [C2001b] 11, with all images orientated and scaled via Aladin, except for the CRTS image which was done by hand

Wang et al. (2005) imaged the region of this suspected embedded infrared cluster, [C2000b] 11 (Carpenter, 2000), as part of a search for Herbig Haro Objects in the more general Monoceros R2 region, finding in particular one just South of this position detected in [SII] and H α images which they denoted HH 866. Hodapp (2007) examined this object and the area immediately around [C2000b] 11 (amongst others) in more detail using UKIRT WFCAM K band images in October 2005. Hodapp (2007) classifies the main HH 866 as HH 866 West to differentiate it from a newly detected East object, and as can be seen in Figure 17 of that paper, and the image also reveals an extended region extending slightly East from the tip of the North-South aligned HH 866 jet. Hodapp (2007) further notes :

"To the east of this position is a large, rather poorly defined bow shock at $6^{h}7^{m}08^{s}1$, $-6^{\circ}03'36''$ that appears to be associated with more shock emission knots further east of it."

which lies within 1'' of the CRTS position for CSS091215:060708-060335.

Figure 3. JAXA AKARI IRC images of the region surrounding CSS091215:060708-060335 in various passbands. From left to right, in top to bottom rows, 2MASS Ks positional reference image, AKARI IRC N3 3.2 micron image, N4 4.1 micron image and S7 7.0 micron image.

Given the general and immediate environments to CSS091215:060708-060335, its passband specific visibility, and its recent optical expression, it is possible that CSS091215:060708-060335 is an active pre-main sequence star currently emerging from the circumstellar material it is embedded within. In recent Catalina Sky Survey optical images the object appears stellar enough at core, albeit somewhat similar to a very compact nebulosity. Given the extent of the brightening so far, an increasingly illuminated knot of nebulosity is a possibility, but not a certain one given an absence of any evident illuminating star. Further, although the literature states both implicitly and at times explicitly that the various denoted Herbig Haro objects associated with HH 866 are being energised by the same object or region, said Herbig Haro objects appearing quite plainly and distinctly in emission line images, whilst there being no distinct object at the CRTS transient position in the same images, yet none of these various Herbig Haro objects can be seen in the CRTS image, which would mean this was a case of the energising object causing a new knot to brighten more than the other objects it impinges upon, with these somehow remaining unaffected.

An uninformative and very red optical spectrum having no sign of emission lines taken with the Palomar 5m telescope (Drake, A.J., pers. comm.) suggests that near infrared spectroscopy would be more suitable for discerning the character of this new transient.

Acknowledgements:

This research utilised data and images from the Catalina RealTime Transient Survey. The Aladin utility and SIMBAD data via the IAU funded CDS at Strasbourg were also utilised. 2MASS all sky data is courtesy of a NASA/NSF funded project of the University of Massachusetts and IPAC/CalTech. NASA SPITZER IRAC and MIPS post-BCD images were also used and accessed via the NASA IRSA IPAC interface. The research also further made use of observations made with AKARI, a JAXA project with the participation of ESA with the images served via the Data ARchives and Transmission System (DARTS), provided by Center for Science-satellite Operation and Data Archives (C-SODA) at ISAS/JAXA. Andrew J. Drake of CRTS kindly provided the CRTS photometry for the object upon request.

References:

Carpenter, J. M., 2000, AJ, **120**, 3139

Drake, A. J., Djorgovski, S. G., Mahabal, A., Beshore, E., Larson, S., Graham, M. J., Williams, R., Christensen, E., Catelan, M., Boattini, A., Gibbs, A., Hill, R., Kowalski, R., 2009, ApJ, 696, 870

Hodapp, K. W., 2007, AJ, **134**, 2020

Murakami, H., Baba, H., Barthel, P., Clements, D. L. et al., 2007, PASJ, 59, S369

Skrutskie, M. F., Cutri, R. M., Stiening, R., Weinberg, M. D. et al., 2006, AJ, **131**, 1163 Wang H., Stecklum B., Henning T., 2005, A&A, **437**, 169

Werner, M. W., Roellig, T. L., Low, F. J., Rieke, G. H. et al., 2004, ApJS, 154, 1

Number 5922

Konkoly Observatory Budapest 29 January 2010 *HU ISSN 0374 - 0676*

MINIMA TIMES OF SOME ECLIPSING BINARY STARS

GÖKAY, G.; DEMİRCAN, Y.; TERZİOĞLU, Z.; GÜRSOYTRAK, H.; OKAN, A.; ÇOKER, D.; SARAL, G.; GÜROL, B.; DERMAN, E.

Ankara University Observatory, Faculty of Science, Astronomy and Space Sciences Department 06100, Tandoğan, Ankara, TÜRKİYE; e-mail: ggokay@science.ankara.edu.tr

Observatory and telescope:

AUG: 16" Schmidt/Cassegrain telescope at Ankara University Observatory TUG: 16" Meade LX200-GPS Telescope of the TÜBİTAK National Observatory

Detector:	AUG: Apogee ALTA U47+ back illuminated CCD cam-
	era, Peltier cooling, E2V CCD47-10 chip, 1024 \times 1024
	pixels.TUG: ST8-E CCD Camera

Method of data reduction:

Reduction of the CCD frames was made with IRAF¹ CCDRED and DAOPHOT packages.

Method of minimum determination:

The minima times were computed with several methods in Minima25b (Nelson, 2006) (parabolic fit, tracing paper, bisectors of chords, Kwee and van Woerden method (Kwee & van Woerden, 1956), Fourier fit and sliding integrations technique). Then weighted mean minimum-time value calculated for all filters used.

Times of n	Times of minima:							
Star name	Time of min.	Error	Type	Filter	Rem.			
	HJD $2400000+$							
QX And	55114.4307	0.0001	II	BVRI-AUG	YD			
V1073 Cyg	55089.4572	0.0008	II	BVRI-AUG	DÇ-GG			
V1191 Cyg	54353.4729	0.0002	II	BVR-TUG	ED-GG			
	54356.4476	0.0003	Ι	BVR-TUG	ED-GG			
V566 Oph	55032.3375	0.0002	Ι	BVRI-AUG	GG-ZT			
	55033.3618	0.0001	II	BVRI-AUG	GG-GS			
TV UMi	55064.3009	0.0008	II	BVRI-AUG	YD			
	55064.5059	0.0002	Ι	BVRI-AUG	YD			
	55075.3133	0.0010	Ι	BVRI-AUG	GG-GS			
	55075.5133	0.0004	II	BVRI-AUG	GG-GS			

¹IRAF is distributed by the National Optical Astronomical Observatories, operated by the Association of the Universities for Research in Astronomy, inc., under cooperative agreement with the National Science Foundation

Times of minima:					
Star name	Time of min.	Error	Type	Filter	Rem.
	m HJD~2400000+				
ASAS 013630+0150.3	54354.5494	0.0001	Ι	BVR-TUG	ED-GG
	54355.3508	0.0004	Ι	BVR-TUG	ED-GG
	54355.4833	0.0001	II	BVR-TUG	ED-GG
	54355.6183	0.0005	Ι	BVR-TUG	ED-GG
ASAS $061245 + 1134.0$	54422.3961	0.0003	II	VRI-TUG	ED-GG
	54426.5140	0.0050	Ι	VRI-TUG	ED-GG
ASAS 225832+0552.4	54354.3047	0.0001	II	BVR-TUG	ED-GG
	54354.4223	0.0001	Ι	BVR-TUG	ED-GG
	55092.2714	0.0001	II	BVRI-AUG	ZT-DÇ
	55092.5051	0.0004	II	BVRI-AUG	ZT-DÇ
	55098.3619	0.0003	II	BVRI-AUG	AO-YD
	55098.4792	0.0003	Ι	BVRI-AUG	AO-YD
	55099.2988	0.0001	II	BVRI-AUG	\mathbf{ZT} - \mathbf{HG}
	55099.4161	0.0002	Ι	BVRI-AUG	ZT-HG
	55099.5334	0.0002	II	BVRI-AUG	$\rm ZT-HG$
	55110.4266	0.0004	Ι	BVRI-AUG	GS
ASAS 225956+1418.2	55112.3540	0.0002	II	BVRI-AUG	ZT-UD
$BD+42\ 2782$	54356.3481	0.0002	Ι	BVR-AUG	ED-GG
$GSC \ 2331-0731$	55108.4808	0.0025	Ι	BVRI-AUG	HG
$GSC \ 2587-1888$	55015.3399	0.0003	Ι	BVRI-AUG	BG-YD-AO-HG-ZT
	55015.4937	0.0009	II	BVRI-AUG	BG-YD-AO-HG-ZT
	55021.3987	0.0004	II	BVRI-AUG	YD-AO-HG-ZT
$GSC \ 2750-0854$	55106.3084	0.0007	Ι	BVRI-AUG	GG-AMÖ
GSC 3526-2369	55014.4217	0.0002	II	BVRI-AUG	BG-YD-AO-DÇ-HG-ZT
	55022.3478	0.0001	II	BVRI-AUG	BG-YD-AO-DÇ-HG-ZT
GSC 3996-0574	55122.2975	0.0019	Ι	BVRI-AUG	GG
	55122.5093	0.0002	II	BVRI-AUG	GG
TYC 1761-1246-1	55080.5182	0.0001	Ι	BVRI-AUG	AO-GS
	55103.4279	0.0003	Ι	BVRI-AUG	GG
	55103.5887	0.0004	II	BVRI-AUG	GG
	55144.3189	0.0008	II	BVRI-AUG	HG

Explanation of the remarks in the table:

Observers: AMÖ: A.Mithat ÖZ, AO: Abdullah OKAN, BG: Birol GÜROL, DÇ: Deniz ÇOKER, ED: Ethem DERMAN, GG: Gökhan GÖKAY, GS: Gözde SARAL, HG: Hande GÜRSOYTRAK, UD: Utku DEMİRHAN, YD: Yahya DEMİRCAN, ZT: Zahide TERZİOĞLU

Remarks:

The times of minima are weighted averages from all filters observed.

Acknowledgements:

We are grateful to TÜBİTAK National Observatory and Ankara University Observatory for use of the telescope time allocation and other facilities.

References:

Kwee, K. K., van Woerden, H., 1956, *Bull. Astron. Inst. Neth.*, **12**, 327. Nelson, B., 2006, Software, http://members.shaw.ca/bob.nelson/software1.htm

Number 5923

Konkoly Observatory Budapest 1 February 2010 *HU ISSN 0374 - 0676*

THE POLAR CSS 081231:071126+440405 AT A LOW ACCRETION RATE

THORNE, K.; GARNAVICH, P.; MOHRIG, K.

University of Notre Dame, Notre Dame, IN 46556; e-mail: kthorne@nd.edu

CSS 081231:071126+440405 (AAVSO Alert Notice #142) is a suspected polar that went into bright outburst in early 2009. A polar is an accreting white dwarf with a strong magnetic field that disrupts the accretion disk, funneling material directly on to the magnetic poles. CSS 081231:071126+440405 shows deep eclipses with a period of about 1.94 hours and reached a peak brightness of $V \sim 14^{\text{m}8}$ in March, 2009 (AAVSO Special Notice #149).

We imaged CSS 081231:071126+440405 with the Vatican Advanced Technology Telescope (VATT) over four consecutive nights 2009 October 22-25 (UT) using the VATT4K CCD. The CCD was binned by two pixels and only the first 512 pixels were read out, reducing the overhead to 10 sec. We continuously took 30 sec exposures in the V band spanning 3.5 hours on the first two nights, then switched to 20 sec exposures in the *B*-band for the final two nights. Using images of the Landolt (1992) standard region SA113, we estimated a zeropoint for the VATT photometry. For the star at the USNO-B.1 coordinates $\alpha = 7^{h}11^{m}22^{s}839$, $\delta = +44^{\circ}04'12''.45$ (30 arcsec west of the variable) we find $V = 16.57 \pm 0.05$ mag and B - V = 0.36 mag.

The V-band light curve is shown Figure 1. Two short, deep eclipses are clearly seen each night and the heliocentric corrected times of mid-eclipse are given in Table 1. We derived a period of 117.181 ± 0.004 minutes and used it to phase the photometric data. The eclipse times in Table 1 provide an ephemeris in heliocentric Julian days of

 $HJD = 2455126.8960(1) + E \times 0.081376(3)$

where the numbers in parentheses are the uncertainties on the final decimal place. We find the full eclipse length is 0.058 ± 0.001 in phase or 6.80 ± 0.12 minutes.

The light curve from Oct. 22-23 shows a bright plateau between phases -0.25 and +0.25 surrounding the eclipse. During the plateau, the star is strongly variable but shows a dip in brightness near phase +0.1 which is likely to be self-absorption by the accretion column. Between phases +0.25 and +0.75 the star displays a slow, steady rise of 0.1 mag and a brightness that is extremely consistent from orbit to orbit.

The light curve is similar to the eclipsing polar HU Aqr in its low accretion state (Schwope et al., 2001). We expect CSS 081231:071126+440405 has a single hotspot on the accreting white dwarf which is in synchronous rotation with the secondary star. The hotspot is occulted by the white dwarf for half the spin period, opposite the phase of the eclipse, suggesting that the accreting magnetic pole is nearly facing the secondary star.

Figure 1. The phased V-band light curve from the first two nights of VATT observations. The accreting hotspot is visible on each side of the eclipse but is occulted by the white dwarf for half the orbit. The dotted lines marks phases $\pm 90^{\circ}$ to show that the hotspot lags the companion by 10° .

A careful look at the light curve shows that the occultation of the hotspot is shifted by 10.5 degrees (0.03 in phase) relative to the eclipse. This implies that the hotspot trails the line between the primary and secondary stars by about 10° . In HU Aqr, the accretion spot leads the secondary by 30° to 50° .

The time it takes for the plateau phase to rise to full brightness or disappear depends on the size of the hotspot as it is revealed or blocked by the white dwarf limb. The hotspot latitude and vertical displacement also affect the timing of the hotspot occultation (Schwope et al., 2003). We estimate the ingress/egress of the hotspot takes about 0.05 ± 0.01 in phase. While the hotspot is occulted there is a 10% rise in brightness suggesting that temperature varies with longitude on the white dwarf. The color of the system while the hotspot is occulted is $B - V = 0.17 \pm 0.02$ mag.

Figure 2 shows that the *B*-band phased light curve from Oct. 24-25 differs significantly from the previous two nights. While the plateau from the hotspot is present during the first orbit each night, it is essentially gone on the second cycle. This suggests the mass transfer is "sputtering" as it ends an active accretion phase. The star is three magnitudes fainter than its peak in 2009 March, and the accretion may be becoming sporadic at this low rate.

Assuming the eclipse is total, we estimated the brightness and color of the secondary star. At minimum the star is very faint, so the eight to ten individual short exposures during each eclipse were added together to improve the signal-to-noise ratio. The secondary star's brightness is $V = 20^{\text{m}}86 \pm 0^{\text{m}}05$ and $B = 22^{\text{m}}6 \pm 0^{\text{m}}2$, consistent with a late M-type dwarf star (note that reddening in this direction is as much as E(B - V)=0.075 mag (Schlegel et al., 1998)). Correcting for the contribution of the secondary star, the color of the white dwarf plus accretion stream is B - V=0.09 mag, but at this low accretion rate the light is likely dominated by the white dwarf.

Figure 2. The *B*-band light curves from the last two nights of VATT observations. A gap in the Oct. 25 light curve around 11 UT was caused by clouds. On both nights the hotspot is very weak during the first orbit but has recovered on the second orbit suggesting the mass transfer is becoming sporadic.

10,510	1. 0000170	Table I. Obberved Times of find Lonpse							
Date	Bandpass	Epoch	HJD	error					
(UT)				(days)					
2009 Oct. 22	V	0	2455126.8960	0.0001					
2009 Oct. 22	V	1	2455126.9773	0.0001					
2009 Oct. 23	V	12	2455127.8724	0.0001					
2009 Oct. 23	V	13	2455127.9539	0.0001					
2009 Oct. 24	B	25	2455128.9303	0.0001					
2009 Oct. 24	B	26	2455129.0117	0.0001					
2009 Oct. 25	B	37	2455129.9069	0.0001					
2009 Oct. 25	B	38	2455129.9883	0.0002					

Table 1. Observed Times of Mid-Eclipse

References:

Landolt, A., 1992, AJ, **104**, 340 Schlegel, D. et al., 1998, ApJ, **500**, 525 Schwope, A. D., Schwarz, R., Sirk, M. and Howell, S. B., 2001, A&A, **375**, 419 Schwope, A. D. et al., 2003, A&A, **402**, 201

Number 5924

Konkoly Observatory Budapest 12 February 2010 HU ISSN 0374 – 0676

NEW TIMES OF MINIMA OF SOME ECLIPSING BINARY STARS

ERKAN, N.; ERDEM, A.; AKIN, T.; ALİÇAVUŞ, F.; SOYDUGAN, F.

Department of Physics, Faculty of Arts and Sciences, Çanakkale Onsekiz Mart University and Çanakkale Onsekiz Mart University Observatory, Terzioğlu Campus, TR-17100, Çanakkale, Turkey; e-mail: dogru@comu.edu.tr

Observatory and telescope:						
30-cm Cassegrain-Schm	idt (T30), 40-cm Cassegrain-Schmidt (T40) and 122-cm					
Cassegrain-Nasmyth (T122) telescopes of the Çanakkale University Observatory.						
Detector:	-ST237 camera, Peltier cooling, TC237 chip, $11' \times 8'$ FOV,					
	640×480 pixels, (ST).					
	-ALTA U47 camera, Peltier cooling, E2V CCD47-10 chip,					
	$15' \times 15'$ FOV, 1024×1024 pixels, (ALTA).					
	-STL1001E camera, Peltier cooling, KAF-1001E chip,					
	$28' \times 28'$ FOV, 1024×1024 pixels, (STL).					

Method of data reduction: Reduction of the CCD frames was made with C-MUNIPACK¹ software.

Method of minimum determination:

Kwee – van Woerden method (Kwee & van Woerden, 1956).

Times of minima:						
Star name	Time of min.	Error	Type	Filter	Rem.	
	HJD 2400000+					
XZ And	55140.4666	0.0002	Ι	С	T40-ST	
	55187.2939	0.0003	II	\mathbf{C}	T40-ST	
KO Aql	55079.3683	0.0004	Ι	\mathbf{C}	T40-ST	
OO Aql	55018.5154	0.0004	Ι	\mathbf{C}	T40-ST	
CL Aur	55154.4182	0.0001	Ι	\mathbf{C}	T40-ST	
SX Aur	55173.3918	0.0002	Ι	\mathbf{C}	T40-ST	
DO Cas	55104.5485	0.0002	Ι	\mathbf{C}	T40-ST	
IV Cas	55070.5110	0.0001	Ι	\mathbf{C}	T40-ST	
	55161.3769	0.0001	Ι	\mathbf{C}	T40-ST	
RZ Cas	55157.6186	0.0001	Ι	\mathbf{C}	T40-ST	
TV Cas	55133.6118	0.0001	Ι	\mathbf{C}	T40-ST	
ZZ Cas	55159.4127	0.0002	Ι	\mathbf{C}	T40-ST	
RY Cnc	55157.5175	0.0001	Ι	\mathbf{C}	T40-ST	
V909 Cyg	55077.3184	0.0002	Ι	\mathbf{C}	T40-ST	
BR Cyg	55074.3206	0.0001	Ι	\mathbf{C}	T40-ST	
CG Cyg	55105.2521	0.0001	Ι	\mathbf{C}	T40-ST	
DK Cyg	55075.3783	0.0003	Ι	\mathbf{C}	T40-ST	
GO Cyg	55071.4840	0.0004	Ι	\mathbf{C}	T40-ST	

¹Motl, D., 2004, C-MUNIPACK, http://integral.sci.muni.cz/munipack/

Times of minima:						
Star name	Time of min.	Error	Type	Filter	Rem.	
	HJD 2400000+		• 1			
UW Cyg	55091.4404	0.0001	Ι	С	T40-ST	
WW Cyg	55042.5055	0.0002	Ι	R	T30-ALTA	
	55042.5055	0.0002	Ι	V	T30-ALTA	
	55062.4132	0.0002	Ι	\mathbf{C}	T40-ST	
WZ Cyg	55079.4924	0.0003	Ι	\mathbf{C}	T40-ST	
ZZ Cyg	55071.3670	0.0002	Ι	\mathbf{C}	T40-ST	
	55127.3118	0.0002	Ι	\mathbf{C}	T40-ST	
TY Del	55105.4205	0.0001	Ι	\mathbf{C}	T40-ST	
RR Dra	55160.3391	0.0002	Ι	\mathbf{C}	T40-ST	
TZ Eri	55163.4249	0.0002	Ι	\mathbf{C}	T40-ST	
AK Her	55018.4482	0.0015	Ι	\mathbf{C}	T40-ST	
SZ Her	55091.2964	0.0001	Ι	\mathbf{C}	T40-ST	
DG Lac	55088.4013	0.0002	II	\mathbf{R}	T122- STL	
RW Mon	55133.4676	0.0001	Ι	\mathbf{C}	T40-ST	
V501 Oph	55042.3905	0.0003	Ι	\mathbf{R}	T30-ALTA	
	55042.3904	0.0003	Ι	V	T30-ALTA	
FH Ori	55123.5334	0.0002	Ι	\mathbf{C}	T40-ST	
FL Ori	55157.3903	0.0001	Ι	\mathbf{C}	T40-ST	
AT Peg	55070.4057	0.0001	Ι	\mathbf{C}	T40-ST	
BG Peg	55077.4601	0.0001	Ι	\mathbf{C}	T40-ST	
DI Peg	55044.4620	0.0001	Ι	\mathbf{R}	T30-ALTA	
	55044.4620	0.0001	Ι	V	T30-ALTA	
	55116.3557	0.0001	Ι	\mathbf{C}	T40-ST	
TY Peg	55133.3197	0.0001	Ι	\mathbf{C}	T40-ST	
RT Per	55116.5253	0.0001	Ι	\mathbf{C}	T40-ST	
	55163.2421	0.0001	Ι	\mathbf{C}	T40-ST	
XZ Per	55105.5329	0.0001	Ι	\mathbf{C}	T40-ST	
Z Per	55173.2947	0.0002	Ι	\mathbf{C}	T40-ST	
ZX Per	55127.4097	0.0002	Ι	\mathbf{C}	T40-ST	
UZ Sge	55114.3830	0.0001	Ι	\mathbf{C}	T40-ST	
AC Tau	55154.6017	0.0001	Ι	\mathbf{C}	T40-ST	
X Tri	55104.4290	0.0000	Ι	\mathbf{C}	T40-ST	
AX Vul	55044.3720	0.0003	Ι	\mathbf{R}	T30-ALTA	
	55044.3725	0.0004	Ι	V	T30-ALTA	
BO Vul	55154.2614	0.0000	Ι	\mathbf{C}	T40-ST	
AY Vul	55138.3466	0.0001	Ι	С	T40-ST	

Remarks:

We present 54 minima times of 44 eclipsing binaries. In the Remarks column of Times of Minima table, telescopes and detectors used in the observations are given.

Acknowledgements:

This study was supported by the Turkish TUBITAK under the grant no. 108T714, and it was also partly supported by the Research Found of Çanakkale Onsekiz Mart University.

Reference:

Kwee, K. K., & van Woerden, H., 1956, Bull. Astron. Inst. Neth., 12, 327.

ERRATUM FOR IBVS 5924

ZX Per should be changed as XZ Per.

Number 5925

Konkoly Observatory Budapest 12 February 2010 *HU ISSN 0374 - 0676*

SHORT-PERIOD OSCILLATIONS IN THE ALGOL-TYPE SYSTEMS V: SX DRACONIS

DIMITROV, D.; KRAICHEVA, Z.; POPOV, V.; GENKOV, V.

Institute of Astronomy, BAS, Tsarigradsko Shossee 72, 1784 Sofia, Bulgaria, e-mail: dinko@astro.bas.bg; zk@astro.bas.bg; vpopov@astro.bas.bg; vgenkov@astro.bas.bg

In the course of a programme for search of short-period oscillations in newly discovered Algols based on NSVS data (Wozniak et al., 2004) we selected as candidates four already known Algols: SX Dra, RT UMi, V548 Cyg, and V728 Cyg. Only RT UMi was included in the catalogue of Soydugan et al. (2006) as candidate for a system with pulsations. The NSVS light curves of the stars are shown on Fig. 2. For SX Draconis, known to have very rapid period increase of 94.2 sec/century (Shengbang, 2002), an ephemeris, based on NSVS data is computed:

$$HJD(MinI) = 2451275.9851(\pm 0.0013) + 5.169196(\pm 0.000062)E$$
(1)

Time-series CCD observations of the selected stars were obtained at NAO Rozhen and AO Belogradchik. The astrometric and photometric data[†] for the variables and comparison stars (Table 1) are taken from NOMAD catalogue (Zacharias et al., 2005). The CCD photometry (in V and B bands) was carried out with the 60cm Cassegrain telescopes, equipped with the CCD cameras FLI PL09000 (3056×3056 , 12μ pixel), and Bessell (1990) standard UBVRI filters. Standard IDL procedures were used for the reduction of the photometric data. Several stars from the fields around the variables with $\sigma < 0.01$ mag were selected to create ensemble standard stars (Everett & Howell, 2001).

During the campaign short-period oscillations with a peak-to-peak amplitude up to 0.040 mag in V were detected in the time-series of SX Dra only (Table 2). Six of the V patrols of SX Dra are shown on Fig. 3. The frequency-analysis of the residual light curves of the variables, performed with the PERIOD-04 software (Lenz & Breger, 2005), revealed significant peaks in the power spectrum of SX Dra (Fig. 4). The frequency interval is $22 \div 24$ c/d or about 63 min.

Acknowledgements This study made use of the SIMBAD, ADS, and VSX databases, and GCVS catalogue. V.G. acknowledges N. Kacharov for the assistance in the Belogradchik observations.

 $^{^{\}dagger}$ Photometric data for SX Dra are available through the IBVS website as 5925-t3.txt

10010 11	2 000 101 011		a comp					p
ID	Name	RA (J2000) DEC	(J2000)	V	B - V	V - R	Sp. type
Var	SX Dra	$18^{ m h}04^{ m m}33.8$	$87 + 58^{\circ}$	$23'54''_{\cdot}2$	10.411	0.313	0.201	A9V
$\operatorname{Std1}$	TYC 3915-58	$8-1$ $18^{h}05^{m}01^{s}$	$78 + 58^{\circ}$	$27'01''_{}6$	11.007	1.343	0.827	
$\operatorname{Std2}$	TYC 3915-69	$6-1 18^{h}04^{m}34^{s}$	$20 + 58^{\circ}$	$27'19''_{7}$	11.707	0.669	0.447	
$\operatorname{Std3}$	TYC 3915-96	$6-1 18^{h}03^{m}59^{s}$	$-180 + 58^{\circ}$	$23'05''_{\cdot}4$	11.976	0.135	0.076	
$\operatorname{Std4}$	TYC 3915-157	72-1 $18^{h}04^{m}42^{s}$	$51 + 58^{\circ}$	$23'26''_{}2$	12.606	0.526	0.346	
$\operatorname{Std5}$	GSC 3915-10	$18^{h}04^{m}44^{s}$	$42 + 58^{\circ}$	$23'14''_{\cdot}9$	13.110	0.200	0.350	
Var	RT UMi	$17^{ m h}04^{ m m}05^{ m s}$	$51 + 80^{\circ}$	$0.19'45''_{2}$	10.893	0.238	0.153	F0
$\operatorname{Std1}$	GSC 4576-01	$51 17^{\rm h} 05^{\rm m} 14.0$	$62 + 80^{\circ}$	$0.17'12''_{}9$	13.040	0.520	0.130	
$\operatorname{Std2}$	GSC 4576-01	$21 17^{h}07^{m}03^{s}$	$47 + 80^{\circ}$	$21'26''_{5}$	12.770	0.570	0.330	
$\operatorname{Std3}$	TYC 4576-13	$7-1 17^{\rm h}08^{\rm m}06^{\rm s}$	$75 + 80^{\circ}$	$20'16''_{}3$	12.922	0.821	0.532	
$\operatorname{Std4}$	TYC 4576-11	$8-1$ $17^{\rm h}09^{\rm m}17^{\rm s}$	$25 + 80^{\circ}$	$0.13'00''_{1}$	11.310	0.414	0.270	
Var	V548 Cyg	$19^{ m h}56^{ m m}58^{ m s}$:	$31 + 54^{\circ}$	$47'58''_{3}$	8.617	0.092	0.047	A1V
$\operatorname{Std1}$	TYC 3939-44	$2-1$ $19^{h}57^{m}15^{s}$	$31 + 54^{\circ}$	248'55''.7	10.315	0.632	0.415	
$\operatorname{Std2}$	TYC 3939-133	$32-1$ $19^{h}56^{m}44.8$	$87 + 54^{\circ}$	$52'35''_{4}$	10.749	1.003	0.619	
$\operatorname{std3}$	GSC 3939-13	$57 19^{h}56^{m}54$.	-54°	$52'05''_{5}$	12.680	0.190	0.680	
Var	V728 Cyg	$20^{ m h}26^{ m m}40^{ m s}$	$13 + 58^{\circ}$	$946'47''_{}9$	10.514	0.207	0.134	A0
$\operatorname{Std1}$	GSC 3949-07	$20^{h}26^{m}22^{s}$	$72 + 58^{\circ}$	$248'25''_{\cdot}4$	12.330	0.540	-0.580	
$\operatorname{Std2}$	GSC 3962-12	$80 20^{h}27^{m}01^{s}$	$49 + 58^{\circ}$	$^{\circ}47'58''_{\cdot}6$	11.790	0.610	0.480	
Table	e 2. Observa	tional runs of	SX Dra	a, RT U	JMi, V5	48 Cyg	; and \mathbf{V}	728 Cyg
Variable	Date	HJD(start)	Length	Filter	$\operatorname{Exp.}[\mathbf{s}]$	N A	$A_{osc}(\max)$	Telescope
SX Dra	25.08.2009	2455069.28986	$03^{\rm h}24^{\rm m}$	V	45	240	0.040	60cm Bel
SX Dra	22.09.2009	2455097.42745	$01^{ m h}38^{ m m}$	V	50	108	0.025	60cm Bel
SX Dra	23.09.2009	2455098.24907	$03^{h}03^{m}$	V	50	198	0.040	60cm Bel
SX Dra	24.10.2009	2455129.30177	$01^{ m h}21^{ m m}$	V	60	73	-	$60 \mathrm{cm} \mathrm{NAO}$
SX Dra	22.11.2009	2455158.15639	$03^{h}16^{m}$	V	120	93	-	$60 \mathrm{cm} \mathrm{NAO}$
SX Dra	23.11.2009	2455159.16581	$03^{h}52^{m}$	V	30	400	0.030	$60 \mathrm{cm} \mathrm{NAO}$
SX Dra	25.11.2009	2455161.15522	$02^{h}59^{m}$	V	60	170	0.020	$60 \mathrm{cm} \mathrm{NAO}$
SX Dra	26.11.2009	2455162.17403	$02^{h}36^{m}$	V	60	147	0.035	60cm NAO
RT UMi	23.06.2009	2455006.31125	$03^{h}01^{m}$	V	60	150	-	60cm NAO
RT UMi	22.08.2009	2455066.32643	$03^{h}05^{m}$	V	60	146	-	$60 \mathrm{cm} \mathrm{Bel}$
RT UMi	27.08.2009	2455071.28892	$03^{h}12^{m}$	V	60	175	-	60cm Bel
RT UMi	29.08.2009	2455073.24592	$08^{h}53^{m}$	B	120	239	-	$60 \mathrm{cm} \mathrm{NAO}$
RT UMi	22.09.2009	2455097.29443	$02^{h}59^{m}$	V	60	159	-	60cm Bel
RT UMi	26.09.2009	2455101.48473	$01^{h}45^{m}$	V	60	100	-	60cm Bel
V548 Cyg	22.08.2009	$2\overline{455066.47921}$	$02^{h}57^{m}$	\overline{V}	30	230	-	60cm Bel
$V548 \ Cyg$	27.08.2009	2455071.43507	$03^{\mathrm{h}}10^{\mathrm{m}}$	V	30	325	-	$60 \mathrm{cm} \mathrm{Bel}$
V548 Cyg	24.09.2009	2455099.25112	$03^{ m h}01^{ m m}$	V	30	309	-	60cm Bel
V548 Cyg	26.09.2009	2455101.34676	$02^{h}21^{m}$	V	30	251	-	60cm Bel
V728 Cvg			hm			2.2.2		40 D I
. 0	25.08.2009	2455069.43906	$03^{n}34^{m}$	V	60	233	-	60cm Bel
V728 Cyg	$25.08.2009 \\ 24.09.2009$	$2455069.43906 \\ 2455099.39883$	$03^{\rm m}34^{ m m}$ $03^{ m h}54^{ m m}$	$V \\ V$	$\begin{array}{c} 60 \\ 60 \end{array}$	$\frac{233}{215}$	-	60cm Bel 60cm Bel

Table 1. Data for the variables and comparison stars used in the CCD photometry

References:

Bessell, M., S., 1990, PASP, 102, 1181
Everett, M., Howell, S., 2001, PASP, 113, 1428
Lenz, P., Breger, M., 2005, CoAst, 146, 53
Shengbang, Q., 2002, ApSS, 282, 399
Soydugan, E., Soydugan, F., Demircan, O., and Ibanoglu, C., 2006, MNRAS, 370, 2013
Wozniak, P., Vestrand, W., Akerlof, C. et al., 2004, AJ, 127, 2436
Zacharias, N., Monet, D., Levine, S. et al., 2004, AAS, 205, 4815

_

Figure 1. Field around the eclipsing binary SX Dra.

Figure 2. Light curves of SX Dra, RT UMi, V548 Cyg and V728 Cyg in the NSVS instrumental system R'.

Figure 3. Sample V light curves of SX Dra (diamonds), and properly shifted Std4 for the Belogradchik data and Std2 for Rozhen data (crosses).

Figure 4. Power spectra of SX Dra, RT UMi, V548 Cyg, and V728 Cyg Rozhen data after subtracting the corresponding trends.

Number 5926

Konkoly Observatory Budapest 12 February 2010 *HU ISSN 0374 - 0676*

8 RR LYRAE STARS WITH VARIABLE PERIODS

HÄUSSLER, K.¹; BERTHOLD, T.^{1,2}; KROLL, P.²

¹ Bruno-H.-Bürgel-Sternwarte, Töpelstr. 46, D-04746 Hartha, Germany

 2 Sternwarte Sonneberg, Sternwartestr
. 32, D-96515 Sonneberg, Germany

email: info@sternwarte-hartha.de, tb@4pisysteme.de, pk@4pisysteme.de

No ephemerides were published for the stars analysed in this paper except for V870 Oph, V878 Oph and V964 Oph. Elements of these three stars, published and included in the General Catalogue of Variable Stars (Samus et al., 2009) were found to be erroneous. Indications of more or less intense period variations were detected in all cases.

Photographic plates of fields centered around α Oph, κ Oph and 67 Oph, taken with the Sonneberg Observatory 40cm Astrograph during several intervals spread over the years from 1938–1994, were used to check the behaviour of these objects (see Table 1). The elements listed below were obtained by means of least-squares solutions.

Straight lines in the (O-C) diagrams mark the scopes of the linear subsets according to Table 1.

Photographic amplitudes were derived with respect to magnitudes of the comparison stars given in Table 2. An extensive list holding the times of the new found maxima can be retrieved as 5926-t3.txt, using the link in the HTML version of this paper. Individual data are available upon request.

Remarks:

V558 Her

Discovered by Hoffmeister (1967). The data in the (O–C)-diagram were calculated using mean linear elements

Max. J.D. hel = $2438524.597 + 0.473106 \times E$

A sinusoidal fit is also possible for the whole range of observations.

Max. J.D. hel = $2438524.525 + 0.473106 - 0.074 \times \sin(0.000306 \times E - 2.12)$

Elements listed in Table 1 are valid for J.D. 2438500-2441200, J.D. 2441200-2446700 and 2446700-2449500 resp.

V762 Oph

Discovered by Boyce and Huruhata (1942). Although a precise time of the period change can not be deduced from the (O-C)-diagram, the composite light curve drawn with these period values gives some hints to assume a period change took place around J.D. 2440000. Elements are at least valid for J.D. 2438500-2440000 and J.D. 2440000-2449500, resp.

V771 Oph

Discovered by Luyten (1937). Subtle to observe due to a close and bright neighboring star. Elements are at least valid for J.D. 2438000-2442000 and J.D. 2442000-2449500, resp.

V870 Oph

Independently from Boyce and Huruhata (1942) discovered by Hoffmeister (1949). Elements derived by Götz et al. (1957) have turned out to be inaccurate. Götz's observations made on Astrograph plates have been reexamined; those made with the 170mm Triplet (Designation "A" in the paper of Götz et al.) have been included in our analysis to enlarge the time base to derive the first subset of elements.

Elements listed in Table 1 are valid for J.D. 2425000-2429000, J.D. 2429000-2438000 and 2438000-2449500 resp.

V878 Oph

Type of variability and first elements derived by Götz et al. (1957) have turned out to be wrong. The elements given below are at least valid for J.D. 2429000-2432000 and J.D. 2438500-2449500, resp. Unfortunately there were no plates available in between these times. So, the (O-C)-diagram represents only one reasonable version of the star's period history.

V964 Oph

Elements derived by Götz et al. (1957) are not accurate and the period has to be halved. The elements given below are at least valid for J.D. 2429000-2444100 and J.D. 2443000-2449500, resp.

NSV 8590

Discovered by Boyce and Huruhata (1942). Subtle to observe due to a close neighboring star. Coordinates published in the General Catalogue of Variable Stars (Samus et al., 2009) are improper; right position is 17:23:55 +09:46:39 (2000.0). The elements given below are at least valid for J.D. 2438500-2440000 and J.D. 2440500-2449500, resp.

NSV~9613

ASAS measurements were included in this analysis. The preliminary ID refers to the paper of Grubissich (1958). The elements given below are at least valid for the intervals of JD 2429000-2447000 and J.D. 2447000-2453600.

Star	Type	Epoch	Period	Max.	Min.	M-m	No. of
		2400000 +	(day)				Plates
V558 Her (1)	RRab	39299.513	0.473134	$14^{\rm m}_{.}3$	$15.^{m}8$	$0^{\mathrm{p}}_{\cdot}22$	87
		± 6	± 3				
V558 Her (2)		45871.424	0.473093				119
		± 7	± 2				
V558 Her (3)		49214.409	0.473117				38
		± 4	± 1				
V762 Oph (1)	RRab	38503.558	0.499951	$14.^{\mathrm{m}}6$	$16.^{\mathrm{m}}0$	$0^{\mathrm{p}}_{\cdot}30$	80
		± 5	± 7				
V762 Oph (2)		48357.608	0.500021				130
		± 27	± 6				
V771 Oph (1)	RRab	38524.550	0.460735	$13^{\rm m}_{\cdot}2$	$14.^{m}4$	$0^{\mathrm{p}}_{\cdot}25$	103
		± 13	± 3				
V771 Oph (2)		49484.449	0.460822				188
		± 18	± 3				
V870 Oph(1)	RRab	29786.507	0.320631	$15.^{m}1$	$16.^{m}2$	$0^{\rm p}_{\cdot}25$	
		± 16	± 2				
V870 Oph (2)		38258.409	0.320735				42
		±8	±1				1.00
V870 Oph (3)		48356.584	0.320729				120
		±13	±1	1 (200	1 000 0	00.00	10
V878 Oph (1)	RRab	29785.521	0.633563	149	16.10	0º22	42
		±2	±1				110
V878 Oph (2)		49124.465	0.633573				112
$\mathbf{V} \mathbf{O} \mathbf{C} \mathbf{I} \mathbf{O} \mathbf{I} \mathbf{I} \mathbf{I}$	חח	±8	± 1	1 F m ()	1 Cm 1	0000	110
V964 Opn (1)	RRC	29790.439	0.254484	150	10.1	0º30	112
$V_{0}C_{4} \cap 1$ (9)		±0	±1				C 4
V904 Opn(2)		44022.482	0.204488				04
NGV OFOO (1)	DDah	± 13	± 1	1 4m 1	1.4m7	0010	01
NSV 8590 (1)	nnad		0.495091	14:1	14.77	0º 19	81
NGV 8500 (2)		±11 40000 452	± 14 0 402515				190
1157 0090 (2)		42900.400 ⊥04	0.490010 ⊥/				100
NSV 0612 (1)	BBab	± 24	工4 0 574765	15^{m}	15m5	0p95	160
1101 2019 (1)	man	23013.009 ⊥24	0.014100 49	10. 0	10.0	0.20	100
NSV 9613 (2)		± 54 49475 591	1 574744				30
1101 3013 (2)		120.021 10	1.014144 1.014144				04
		±9					

Table 1. Summary of this paper

	V558 Her	V762 Oph			
	S 9827				
	USNO 0975-09760289		USNO 0975-09206057		
Comp. No.	USNO	m^*	USNO	m^*	
1	0975 - 09754037	$14^{m}_{\cdot}4$	0975 - 09206984	$14.^{m}8$	
2	0975 - 09754926	$14^{\mathrm{m}}_{\cdot}8$	0975 - 09205488	$15^{\rm m}_{\cdot}4$	
3	$0975 \hbox{-} 09756549$	$15^{\mathrm{m}}_{\cdot}5$	0975 - 09205008	$16^{m}_{\cdot}3$	
4	0975 - 09758451	$16.^{\rm m}4$			
	V771 Oph		V870 Oph		
	183.1937		HV 11042 / S 4181		
	USNO 0975-09337118		USNO 0900-10501915		
Comp. No.	USNO	m^*	USNO	m^*	
1	0975 - 09338753	$12^{m}_{\cdot}9$	0900 - 10502097	$14.^{m}8$	
2	0975 - 09338860	$13^{\mathrm{m}}_{\cdot}7$	0900 - 10503177	$15.^{m}3$	
3	0975 - 09333498	$14.^{\mathrm{m}}8$	0900 - 10504815	$16.^{m}7$	
-	V878 Oph		V964 Oph		
	S 4221		$S \ 4219$		
	USNO 0900-12249555		USNO 0900-12201787		
Comp. No.	USNO	m^*	USNO	m^*	
1	0900 - 12233849	$14.^{m}4$	0900 - 12191210	$14^{\rm m}_{\cdot}5$	
2	0900 - 12249979	$15^{\mathrm{m}}_{\cdot}1$	0900 - 12198837	$15^{\mathrm{m}}_{\cdot}2$	
3	0900 - 12242643	$15.^{\mathrm{m}}9$	0900 - 12203760	$15.^{\mathrm{m}}8$	
4	0900 - 12243574	$16.^{\mathrm{m}}4$	0900 - 12199688	$15.^{\mathrm{m}}9$	
	NSV 8590		NSV 9613		
	$HV \ 10935$		3(SA 109)		
	USNO 0975-09152532		USNO 0900-10436490		
Comp. No.	USNO	m^*	USNO	m*	
1	0975 - 09147252	$13^{\rm m}_{\cdot}8$	0900 - 10431734	14 ^m 9	
2	0975 - 09149633	$14^{\rm m}_{\cdot}4$	0900 - 10436319	$15.^{\mathrm{m}}1$	
3	0975 - 09151256	$14^{\rm m}_{\cdot}6$	0900 10440956	$15.^{\mathrm{m}}5$	
4	0975 - 09154060	$14 \cdot 8$			

Table 2. Comparison stars and cross references

* Magnitudes refer to the B values of the USNO-A2.0 catalogue

This research made use of Aladin and the SIMBAD data base, operated at CDS, Strasbourg, France.

Figure 1. Composite light curve of V558 Her

Figure 3. Composite light curve of V762 Oph

Figure 5. Composite light curve of V771 Oph

Figure 7. Composite light curve of V870 Oph

Figure 2. (O–C) diagram for V558 Her

Figure 4. (O-C) diagram for V762 Oph

Figure 6. (O-C) diagram for V771 Oph

Figure 8. (O-C) diagram for V870 Oph

Figure 9. Composite light curve of V878 Oph

Figure 11. Composite light curve of V964 Oph

Figure 13. Composite light curve of NSV 8590

Figure 15. Composite light curve of NSV 9613

Figure 10. (O–C) diagram for V878 Oph

Figure 12. (O–C) diagram for V964 Oph

Figure 14. (O–C) diagram for NSV 8590

Figure 16. (O–C) diagram for NSV 9613

References:

Boyce, E.H., Huruhata, M., 1942, Harvard Annals, 109, 19

- Götz, W., Huth, H., Hoffmeister, C., 1957, Veröff. Sternw. Sonneberg, 4, 123, (H2)
- Grubissich, C., 1958, Asiago Contr, No.99
- Hoffmeister, C., 1949, Erg. Astron. Nachr., 12, 1
- Hoffmeister, C., 1967, Astron. Nachr., 290, 43
- Luyten, W.J., 1937, Astron. Nachr., 264, 63
- Samus, N.N., Durlevich O.V. et al., 2009, http://www.sai.msu.su/gcvs/gcvs/
- The All Sky Automated Survey, http://www.astrouw.edu.pl/~gp/asas/asas.html

Number 5927

Konkoly Observatory Budapest 8 March 2010 *HU ISSN 0374 - 0676*

A PROPOSED UNIFORM NOMENCLATURE FOR PULSATING HOT SUBDWARF STARS

KILKENNY, D.¹; FONTAINE, G.²; GREEN, E. M.³; SCHUH, S.^{4,5}

¹ Department of Physics, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa. e-mail: dkilkenny@uwc.ac.za

² Département de Physique, Université de Montréal, Montréal, Québec H3C 3J7, Canada. e-mail: fontaine@astro.umontreal.ca

 3 Steward Observatory, University of Arizona, Tucson AZ
85721, USA. e-mail: bgreen@as.arizona.edu

⁴ TEA Visiting Professor, Kepler Center for Astro and Particle Physics, Institut für Astronomie und Astrophysik, Eberhard-Karls-Universität Tübingen, Sand 1, 72076 Tübingen, Germany.

⁵ Georg-August-Universität Göttingen, Institut für Astrophysik, 37077 Göttingen, Germany. e-mail: schuh@astro.physik.uni-goettingen.de

The first rapidly-pulsating sdB stars were found accidentally in the mid-1990s (Kilkenny et al., 1997 and following papers). At the same time – and independently – the Montreal group was showing that these stars should pulsate (see the review by Charpinet et al., 2001). Over 40 such stars are now known; they are *p*-mode pulsators with periods ~ 2 - 5 minutes, though periods as long as 9 minutes are known. They can exhibit anywhere from one to over 40 pulsation modes and occur amongst the hotter sdB stars with 28000 < $T_{\rm eff}$ < 35000 and 5.2 < log *g* < 6.1.

The slowly-pulsating sdB stars were also discovered serendipitously during a search for sdB binaries by looking for eclipses, ellipsoidal and reflection effects (Green et al., 2003). Over 30 slow pulsators are now known, though it is possible that a large fraction of the cooler sdB stars might pulsate. They are g-mode pulsators and typically have periods $\sim 1-2$ hours. Like the rapid pulsators, they are multi-periodic but occur amongst sdB stars with $T_{\rm eff} < 27000$ and log $g \sim 5.4$, and there appears to be a good separation between the rapidly- and slowly-pulsating sdBs in a $T_{\rm eff}/\log g$ diagram (see Fig. 3 in Schuh et al., 2006, for example).

An exciting discovery was that some sdB stars exhibit both p- and g-mode pulsations (Schuh et al., 2005; Oreiro et al., 2005). The oddly-named Balloon 090100001 exhibits many modes; Baran et al. (2009) recently listed 73 p-modes in the range $2800 - 5500\mu$ Hz, 24 g-modes in the range $100 - 400\mu$ Hz, and 17 combination frequencies. A handful of these stars are now known and all lie on the temperature boundary between rapidly- and slowly- pulsating stars.

The first (and only known) variable helium-rich sdB star, LSIV-14°116, was found by Ahmad & Jeffery (2005). From the discovery observations, these authors find two periods - 1950s and 2900s (amplitudes ~ 0.004 mag) - and suggest that these are q-modes. This is in accord with the long periods, but the star has $T_{\text{eff}} = 32500$ K which puts it in the rapidly-pulsating zone (for normal sdB stars). However, recent sdB models indicate that g-modes should be stable at this temperature (Fontaine et al., 2003).

Most recently, the discovery was announced of the first (and only known) pulsating sdO star, SDSS J160043.6+074802.9 (Woudt et al., 2006). Variability was discovered (again serendipitously) during a search for new AM CVn stars amongst Sloan Digital Sky Survey stars of appropriate colour. This star shows a strong 2 minute oscillation (of large amplitude ~ 0.04 mag) with a clear first harmonic near 1 minute. Woudt et al. (2006) find at least another 8 frequencies between the main oscillation and its harmonic and show that, spectroscopically, the star is a classical sdO star.

The relatively rapid discovery of a new genus – the pulsating hot subdwarfs – comprising several species, sdB (slow, fast and "hybrid"), He-sdB and sdO – has resulted in a confusion over nomenclature. The rapidly-pulsating sdB stars have been widely referred to as "EC14026 stars" after the prototype, and "sdBV stars"; the compilers of the General Catalogue of Variable Stars tentatively labeled them "RPHS" (very rapidly pulsating hot (subdwarf B) stars) but that name was never used – and the GCVS had already asked for suggestions for a better designation (Kazarovets, Samus & Durlevich, 2000). The slowly-pulsating stars have been called "PG1716 stars" after the prototype, or "Betsy stars" after the discoverer, Dr. Elizabeth M. Green, and also "lpsdBV" stars – where the "long-period" (lp) serves to separate these objects from the (rapidly-pulsating) sdBV stars. The sdB stars which show both rapid and slow pulsations – all fairly recent discoveries –have been widely referred to as "hybrid" pulsators. There is no clearly standardised nomenclature and this lack was raised for discussion at the Vienna pulsation meeting (Kilkenny, 2007) and the third and fourth meetings on pulsating hot subdwarfs (Fontaine et al., 2008; Kilkenny, 2009).

Table 1 summarises the problem and suggests a solution. It is common usage in variable star research to use "prototype" names – Cepheids, Miras, δ Scuti stars, and so on. In some cases, these are also the prototype *variable* star name – RR Lyrae stars, for example. Using prototype names for the hot subdwarf variables would, in some cases, be terribly unwieldy (e.g. "SDSS J160043.6+074802.6 stars") and prototype variable star names are less easy to remember in the cases of these late arrivals on the variable star stage (e.g "V1093 Her stars"). The informal names ("EC14026" and "Betsy" stars) have been a pleasant way of linking the stars to their discoverers but perhaps should now be replaced by a more systematic nomenclature.

By analogy with the white dwarf stars (DAV, DBV, etc.), we suggest that the simplest expedient is to add "V" to the spectral designation to indicate a *photometric* variability. One problem is that we have effectively three different types of pulsators within the sdB class. It is here suggested that we add the subscripts "r", "s" or "rs" – for rapid, slow and hybrid pulsators. The subscripts need not be added to the He-sdBV or sdOV designations unless new discoveries make this useful. (We suggest subscripts, rather than straightforward letters because these qualify the "V" designation, rather than the spectral type).

The use of "r" and "s" is, perhaps, not optimum; "fast" is a more direct antonym of "slow" than "rapid" – and "s" could be misinterpreted as short (period) rather than slow (pulsation). But the usage suggested in Table 1 already exists in variable star nomenclature in the form of the rapidly-oscillating Ap stars (roAp) and the slowly-pulsating B stars (spB) and is therefore more appropriate.

Dulastor	Drototypo	Variable	Informal	Dropogod
1 uisatoi	rototype	variable	mormar	TToposed
Type	Name	Star Name	Usage	Nomenclature
sdB (rapid)	$EC \ 14026-2647 =$	V361 Hya	EC14026	$\rm sdBV_r$
(p-mode)			sdBV	
sdB (slow)	PG 1716 + 426 =	V1093 Her	PG1716	$\rm sdBV_s$
$(g\operatorname{-mode})$			"Betsy"	
			lpsdBV	
sdB (both)	HS $0702 + 6043 =$	DW Lyn	"Hybrid"	$\mathrm{sdBV}_{\mathrm{rs}}$
(p and g)				
He-sdB	LSIV $-14^{\circ}116$			He-sdBV
(g-mode ?)				
sdO	SDSS J160043.6+074802.9			sdOV
(p-mode)				

Table 1. Photometrically variable Subdwarf Types.

Acknowledgment: D.K. acknowledges support from the National Research Foundation of South Africa.

References:

- Ahmad, A., Jeffery C.S., 2005, A&A, 437, L51
- Baran, A. et al., 2009, MNRAS, 392, 1092
- Charpinet, S., Fontaine G., Brassard P., 2001, PASP, 113, 775
- Fontaine, G. et al., 2003, ApJ, 597, 518
- Fontaine, G. et al., 2008, ASP Conf. Ser., 392, 231, in The Third Meeting on Hot Subdwarf Stars and Related Objects, eds. U. Heber, C.S. Jeffery & R. Napiwotzki Green et al., 2003, ApJ, 583, L31
- Kazarovets E.V., Samus N.N., Durlevich O.V., 2000, IBVS, 4870
- Kilkenny, D., 2007, Comm. Asteroseismology, **150**, 234, in The Vienna Workshop on the Future of Asteroseismology, eds. G. Handler & G. Houdek,
- Kilkenny, D., 2009, in The Fourth Meeting on Hot Subdwarf Stars and Related Objects, eds. ApSpSci, (in press)
- Kilkenny, D., Koen C., O'Donoghue D., Stobie R.S., 1997, MNRAS, 285, 640

Oreiro, R. et al., 2005, $A \, \mathscr{C}A, \, {\bf 438}, \, 257$

- Schuh, S. et al., 2005, ASP Conf. Ser., **334**, 530, in The 14th European Workshop on White Dwarf Stars, eds. D. Koester & S. Moehler
- Schuh, S. et al., 2006, A&A, 445, L31
- Woudt, P.A. et al., 2006, MNRAS, 371, 1497

Number 5928

Konkoly Observatory Budapest 8 March 2010 *HU ISSN 0374 - 0676*

MAXIMA OF HIGH-AMPLITUDE DELTA SCUTI STARS

WILS, PATRICK¹; HAMBSCH, FRANZ-JOSEF^{1,2}; LAMPENS, PATRICIA^{3,4}; VAN CAUTEREN, PAUL^{1,4}; STAELS, BART^{1,5}; PICKARD, ROGER D.⁶; KLEIDIS, STELIOS^{7,8}; VAN WASSENHOVE, JEROEN¹; OTERO, SEBASTIÁN A.^{9,10}; BELLOCCHIO, EZEQUIEL¹⁰; THIENPONT, EMMANUEL¹; VANLEENHOVE, MAARTEN¹

- ¹ Vereniging Voor Sterrenkunde, Belgium; e-mail: patrickwils@yahoo.com
- ² Bundesdeutsche Arbeitsgemeinschaft für Veränderliche Sterne e.V. Germany
- 3 Royal Observatory of Belgium, Brussels, Belgium
- 4 Beersel Hills Observatory, Beersel, Belgium
- ⁵ Center for Backyard Astrophysics
- ⁶ British Astronomical Association, UK
- ⁷ Zagori Observatory, Epirus, Greece
- 8 Helliniki Astronomiki Enosi, Athens, Greece
- ⁹ Asociación Cielo Sur, Grupo Wezen 1 88, Buenos Aires, Argentina
- 10 Astropilar Observatory, Buenos Aires, Argentina

We report further times of maximum for a number of High-Amplitude Delta Scuti Stars (HADS), following the report of Wils et al. (2009). For the first time, time series photometry was obtained for GSC 2815-790 (Khruslov, 2008), and for the following objects found to be variable in ASAS-3 data (Pojmanski, 2002): GSC 2108-1564 (= HD 343024 = ASAS 184744+2313.2), GSC 4923-693 (= ASAS 112518-0047.3), GSC 6678-0579 (= ASAS 115336-2905.9) and GSC 7027-0700 (= ASAS 033219-3539.3), confirming these

stars to be δ Scuti stars. Three stars known to be multi-periodic are included as well in this paper. For these stars a second frequency was not detected in our data (AN Lyn, see Zhou, 2002 and V1162 Ori, see Arentoft, 2001), or, in the case of BL Cam, the amplitude of the secondary frequency is so low compared to the main frequency, that it does not significantly alter the time of maximum. Although we have only one night of data, GSC 6678-0579 is likely to be multiperiodic as well.

The method used to calculate the times of maximum is described in Wils et al. (2009). The templates used to fit the light curves for those stars not included in that paper are available electronically through the IBVS website as 5928-t3.txt These have been calculated using Period04 (Lenz & Breger, 2005).

The observers and their instruments are given in Table 1. The 218 times of maximum obtained for 25 HADS are listed in Table 2. When the same maximum was observed in more than one filter, the table shows the average value of the times obtained in each filter individually. The suggestion of a companion in a 22-year orbit around AN Lyn (Hintz et al., 2005) does not seem to be confirmed by our data. A linear ephemeris which better fits the available data since 2000 (Zhou, 2002; Agerer & Hübscher, 2003; Hintz et al., 2005; Hübscher, 2005; Hübscher et al., 2005, 2006; Klingenberg et al., 2006 and from this paper) is given by:

$$HJD Max = 2451583.0767(3) + 0.098274972(13) \times E$$
(1)

Fig. 1 shows an O - C plot using this ephemeris of these data, and also including older data discussed by Hintz et al. (2005). The period is slightly longer (0.18 seconds) than the one derived by these authors. The O - C plot also assumes that they miscounted the number of cycles in the ten year gap between the observations in the 1980s and 1990s (one cycle too many).

~ .					0.075
Code	Observers	Telescope type	$\operatorname{Aperture}$	Observatory	CCD
AO1	SO+EB	Refractor	$9~{ m cm}$	Astropilar Observatory	SBIG ST-10XME
AO2	$_{\rm SO+EB}$	Catadioptric	$25~{ m cm}$	Astropilar Observatory	SBIG ST-10XME
BHO1	PL+PVC	Refractor	$18~{ m cm}$	Beersel Hills Observatory	SBIG ST-10XME
BHO2	PL+PVC	Newton	$40~{ m cm}$	Beersel Hills Observatory	SBIG ST-10XME
\mathbf{ET}	\mathbf{ET}	Newton	$25~{ m cm}$	Pegasus Observatory Brakel	SBIG ST402-ME
HMB	FJH	Cassegrain	28, 35, 40 cm	Mol, Belgium	SBIG ST-8
HMB2	FJH	Ritchey-Chrétien	$50~{ m cm}$	New Mexico, USA	STL11000XM
HO18	PL+PVC	Refractor	$18~{ m cm}$	R.O.BHumain	SBIG ST-10XME
HO40	PL+PVC	Newton	$40~{ m cm}$	R.O.BHumain	SBIG ST-10XME
$_{\rm JVW}$	JVW	Refractor	$8~{ m cm}$	Hooglede, Belgium	SBIG ST-7XME
MVL	MVL	Catadioptric	$26~{ m cm}$	Willebroek Observatory	SBIG ST-10XME
\mathbf{RP}	RDP	Catadioptric	$30~{ m cm}$	Shobdon, UK	Starlight XPress SXV-H9
SBL	BS	Cassegrain	28, 23.5 cm	Patrick Mergan Observatory	Starlight XPress MX-716
SK	$_{\rm SK}$	Catadioptric	$30~{ m cm}$	Zagori Observatory	SBIG ST-7XMEI

Table 1: List of instruments used for the observations.

Figure 1. O - C curve of AN Lyn with respect to the elements given in Eq. 1.

Acknowledgements:

This work has made use of the SIMBAD database, operated at CDS, Strasbourg, France. PVC is grateful for support from Astrotechniek. and Baader Planetarium PL thanks the directors of the Royal Observatory of Belgium (ROB) for purchasing and operating an optical telescope at the radio-astronomy site of Humain under the project name *HOACS* (Humain Optical Observatory for Astrophysics of Coeval Stars). The BHO and *HOACS* data were acquired with equipment purchased thanks to a research fund financed by the Belgian National Lottery (1999).

Table 2: Observed times of maximum (Epoch = HJD - 2400000).

Star	Enoch	Inc.		Filter	l Star	$\frac{1 - 115D - 24}{Enoch}$	<u>IInc</u>	Obs	Filtor
GP And	55155 3448	0.0007	HMR	r mer	AN Lyn	5/800 6107		HMR9	r mer BV
Gr Allu	55155 5017	0.0007	IMD UMD	V	AN Lyn	54890.0197	0.0000	IIMD2 UMD9	
	55155.5017	0.0009		V		54690.7170	0.0012	IIMD2	
	00172.0092	0.0009		V		54691.7000	0.0010	IIMD2	
	55172.4183	0.0013	HMB	V		54892.6821	0.0018	HMB2	BV
	55204.3636	0.0013	HMB	V		54893.6677	0.0019	HMB2	BV
V460 And	55192.3112	0.0005	HMB	V		54901.6265	0.0026	HMB2	V
	55192.3863	0.0012	HMB	V		54901.7236	0.0023	HMB2	V
YZ Boo	54891.5364	0.0008	HMB	V		54901.8180	0.0020	HMB2	V
	54891.6405	0.0006	HMB	V		54901.9206	0.0036	HMB2	V
	54906.5261	0.0007	$_{\mathrm{SBL}}$	V		54928.6517	0.0013	HMB2	BV
	54906.6292	0.0007	SBL	V		54928.7482	0.0025	HMB2	BV
	54931.4034	0.0008	SBL	V		54934.6456	0.0009	HMB2	BV
	54931.5075	0.0009	SBL	V		54934.7457	0.0025	HMB2	BV
	54974.4971	0.0008	\mathbf{ET}	V	V593 Lyr	54941.5634	0.0007	HMB	V
BL Cam	54896.3796	0.0008	\mathbf{RP}	С	Ū.	54942.5858	0.0011	HMB	V
	54896.4187	0.0008	\mathbf{RP}	С	V337 Ori	54837.4619	0.0016	\mathbf{ET}	V
	54896.4585	0.0008	RP	\mathbf{C}		54873.4822	0.0020	RР	V
	54896 4965	0.0012	RP	Ĉ		54892 4001	0.0047	RP	Ċ
	54896 5360	0.0011	RP	Ĉ		54893 4088	0.0001	HMB	v
	54806 5753	0.0011	RP	c	V1162 Ori	51553 3517	0.0005	BHO2	v
	55200 2658	0.0009		C	V1102 OII	51552 4907	0.0000	DIIO2	v
	55200.5058	0.0015		d		51555.4297	0.0008		v
	55200.4054	0.0009	RP	C		51508.3020	0.0008	BHO2	V
	55200.4446	0.0006	RP	C		51568.3803	0.0008	BHO2	V
	55200.4840	0.0007	RP 	C		52223.5414	0.0007	BHO2	V
	55200.5232	0.0012	RP	С		52228.4989	0.0008	BHO2	V
	55200.5616	0.0006	RP	С		52228.5780	0.0008	BHO2	V
	55200.6017	0.0008	\mathbf{RP}	\mathbf{C}		52254.3889	0.0008	BHO2	V
AD CMi	54891.3291	0.0007	HMB	V		52254.4652	0.0008	BHO2	V
	54893.4197	0.0009	HMB	V		52254.5444	0.0007	BHO2	V
	55180.6865	0.0007	HMB	V		52254.6220	0.0005	BHO2	V
XX Cyg	55044.4658	0.0007	HMB	V		52257.4561	0.0007	BHO2	V
LW Dra	54922.3613	0.0008	HMB	V		52257.5342	0.0007	BHO2	V
	54922.4799	0.0007	HMB	V		52257.6124	0.0011	BHO2	V
	54922.5975	0.0010	HMB	V		52258.4006	0.0009	BHO2	V
	54946.4652	0.0007	JVW	V		52258.4786	0.0007	BHO2	V
	54953,4358	0.0009	JVW	V		52258.5582	0.0010	BHO2	v
	54960 4069	0.0008	JVW	v		52270 3625	0.0009	BHO2	v
	54960 5249	0.0000	IVW	v		52270.3029	0.0000	BHO2	v
97 I un	54012 5263	0.0000	J WB	V		52270.4500	0.0003	BHO2	v
SZ Lyn	54912.5205	0.0009		v		52270.5174	0.0009	DIIO2	v
	55169.5254	0.0008		V		52211.3041	0.0008	DIIO2	V
	55191.4519	0.0004	HMB	V		52277.4445	0.0008	BHO2	V
	55191.5722	0.0006	HMB	V		52279.3314	0.0009	BHO2	V
	55191.6931	0.0005	HMB	V		52279.4101	0.0009	BHO2	V
AN Lyn	54848.4592	0.0009	SK	V		52279.4896	0.0007	BHO2	V
	54848.5573	0.0008	SK	V		54829.4874	0.0008	BHO2	V
	54848.6570	0.0010	SK	V		54829.5674	0.0008	BHO2	V
	54858.3862	0.0009	SK	V		54833.4990	0.0009	BHO2	V
	54858.4834	0.0008	SK	V		54838.3803	0.0007	BHO2	V
	54858.5838	0.0009	SK	V		54838.4570	0.0008	BHO2	V
	54882.6568	0.0019	HMB2	V		54838.5365	0.0007	BHO2	V
	54882.7551	0.0016	HMB2	V		54841.3694	0.0007	BHO2	V
	54882.8526	0.0025	HMB2	V		54841.4495	0.0008	BHO2	V
	54883 6408	0.0018	HMR9	BV	DY Peg	55069 3734	0.0004	SBL	V
	5/883 7389	0.0010	HMB0	BV	21108	55060 4459	0.0004	SBL	v
	54887 6704	0.0013	11101D2 ЦМД9	вv вv		55060 5100	0.0000	CBI	v
	04001.0104 E1007.7074	0.0014				99008.9180	0.0002	SDL CDT	V V
	54887.7674	0.0017	HMB2	БV DV		55069.5923 FF119.4905	0.0002	SBL	V
	54889.0375	0.0007	HMB2	БV		55113.4203	0.0009	SRF	V
	6 / VVD 7 7 / O	11 11 (191	<u>ы м</u> (129)	81/	1	551137033	0.0006	SBL	V

Ct	El	T.T	Oha	T:14	C+	D1	TT	Oha	T:14
Star	Epoch	Unc.	Obs.	Filter	Star	Epoch	Unc.	Ubs.	Filter
DY Peg	55130.2666	0.0003	SBL	V	GSC 2977-0238	55244.5580	0.0000	HMB	VR
	55132.3811	0.0006	SBL	V		55244.6337	0.0000	HMB	VR
	55143.3929	0.0007	JVW	V	GSC 3074-0114	54921.4442	0.0006	HO40	C
	55155.3534	0.0004	HMB	VR		54921.4953	0.0005	HO40	С
	55155.4266	0.0001	HMB	VR		54944.5786	0.0007	HMB	V
	55177.3767	0.0007	$_{\rm JVW}$	V		54944.6299	0.0002	HMB	V
	55180.2940	0.0008	HMB	VR		54945.5532	0.0006	HMB	V
	55180.3671	0.0006	HMB	VR		54945.6044	0.0005	HMB	V
	55192.2535	0.0002	HMB	VR	GSC 3755-0845	54841.2752	0.0009	BHO1	V
	55192.3270	0.0006	HMB	VR		54862.2796	0.0008	SBL	V
GW UMa	54838.5450	0.0009	MVL	V		54862.3559	0.0010	SBL	V
	54877.3546	0.0013	HMB	V		54862.4318	0.0007	SBL	V
	54891.3755	0.0016	HMB	V		55132.5017	0.0014	SBL	V
	54891.5794	0.0019	HMB	V		55132.5772	0.0013	SBL	V
	55198.6049	0.0050	HMB	V		55153.3524	0.0012	SBL	V
	55223.3947	0.0015	HMB	V		55153.4283	0.0010	SBL	V
	55233 3504	0.0017	HMB	v		55153 5046	0.0016	SBL	v
GSC 2108-1564	55047 4141	0.0021	HMB	v		55153 5801	0.0015	SBL	v
050 2100 1001	55047 5122	0.0021	HMB	v	GSC 3832-0152	54881 3444	0.0010	HMB	v
CSC 2566 1308	54801 5362	0.0011	HMB	v	0.50 0002-0102	54010 3000	0.0001	SBL	v
050 2000-1000	54011 4028	0.0000	SBI	V		54910.5909	0.0000	SBI	V
	54911.4920	0.0008	SDL	V		54910.4825	0.0008	SDL	V
	54911.5651	0.0008	CDI	V		54910.5750	0.0007		V
	54911.0740	0.0007	ODI	V		55255.4079	0.0005		V
	54912.4904	0.0007	SBL	V	000 4550 1110	55233.5592	0.0004	HMB	V
	54941.4279	0.0011	SBL	V	GSC 4556-1113	54842.2812	0.0006	HMB	V
	54944.4213	0.0006	SBL	V		54843.3171	0.0006	HMB	V
	54944.5120	0.0005	SBL	V		54843.4034	0.0008	HMB	V
	54945.4191	0.0008	SBL	V		54850.3111	0.0009	HMB	V
	54945.5098	0.0007	SBL	V		54850.3971	0.0009	HMB	V
	54946.4169	0.0008	SBL	V		54856.3553	0.0010	HMB	V
	54946.5077	0.0006	SBL	V		54856.4415	0.0008	HMB	V
$GSC \ 2815-0790$	55117.3778	0.0024	RP	V		54856.5272	0.0008	HMB	V
	55117.4844	0.0018	\mathbf{RP}	V		54856.6129	0.0008	HMB	V
	55117.5916	0.0015	\mathbf{RP}	V		54858.4273	0.0007	HMB	V
	55121.3342	0.0018	RP	V		54858.5135	0.0008	HMB	V
	55227.3099	0.0012	RP	V		54858.5998	0.0009	HMB	V
	55227.4170	0.0013	\mathbf{RP}	V		54858.6862	0.0008	HMB	V
GSC 2977-0238	54922.3720	0.0002	HO40	V		54860.3263	0.0009	HMB	V
	54922.4481	0.0003	HO40	V		54860.4133	0.0007	HMB	V
	54922.5240	0.0003	HO40	V		54860.4995	0.0008	HMB	V
	54930.2691	0.0007	SK	V		54860.5855	0.0010	HMB	V
	54930.3447	0.0010	SK	V		54861.2763	0.0007	HMB	V
	54930.4209	0.0008	SK	V		54861.3627	0.0007	HMB	V
	54963.3004	0.0008	SK	V		54861.4489	0.0009	HMB	V
	55223.2964	0.0008	HO18	V		54861.5354	0.0008	HMB	V
	55223.3725	0.0008	HO18	V		54861.6217	0.0006	HMB	V
	55233.3197	0.0005	HMB	V	GSC 4923-0693	54138.8439	0.0003	HMB2	С
	55233.6236	0.0004	HMB	v	GSC 6678-0579	54953.5297	0.0011	AO2	Ċ
	55244.3300	0.0001	HMB	VR		54953.5991	0.0012	AO2	Ē
	55244 4060	0.0001	HMB	VB	GSC 7027-0700	55151 7081	0.0004	AO1	$\tilde{\mathbf{C}}$
	55244 4819	0.0001	HMR	VR		55151 7624	0.0004	AO1	č
	22211.1010	0.0001				JOI 0 1 0 1 1 0 1 1	0.0001		~

Table 2: Observed times of maximum (continued).

References:

Agerer F., Hübscher J., 2003, IBVS, 5485

- Arentoft T., Sterken C., Handler G., Freyhammer L.M., Bruch A., Niarchos P., Gazeas K., Manimanis V., Van Cauteren P., Poretti E., Dawson D.W., Liu Z.L., Zhou A.Y., Du B.T., Shobbrook R.R., Garrido R., Fried R., Akan M.C., Ibanoglu C., Evren S., Tas G., Johnson D., Blake C., Kurtz D.W., 2001, A&A, 374, 1056
- Hintz, E.G., Bush T.C., Rose M.B., 2005, AJ, 130, 2876
- Hübscher J., 2005, *IBVS*, 5643
- Hübscher J., Paschke A., Walter F., 2005, IBVS, 5657
- Hübscher J., Paschke A., Walter F., 2006, IBVS, 5731
- Khruslov A.V., 2008, PZP, 8, 5
- Klingenberg G., Dvorak S.W., Robertson C.W., 2006, IBVS, 5701
- Lenz P., Breger M., 2005, Comm. in Asteroseismology, 146, 53
- Pojmanski G., 2002, Acta Astron., 52, 397
- Wils P., Kleidis S., Hambsch F.-J., Vidal-Sáinz J., Vanleenhove M., Lampens P., Van Cauteren P., Robertson C.W., Staels B., Pickard R.D., Rozakis I., Dufoer S., Groenendaels R., Gómez-Forrellad J.M., García-Melendo E., Hautecler H., Van der Looy J., 2009, *IBVS*, 5878
- Zhou A.-Y., 2002, A&A, 385, 503

^{*}This version of the paper contains corrections, and differs from the one appeared on-line originally. Date of last modification: Wed Mar 10 08:19:53 Europe/Budapest 2010

Number 5929

Konkoly Observatory Budapest 12 March 2010 *HU ISSN 0374 - 0676*

CCD MINIMA FOR SELECTED ECLIPSING BINARIES IN 2009

NELSON, ROBERT H.

 1 1393 Garvin Street, Prince George, BC, Canada, V2M 3Z1 e-mail: bob . nelson @ shaw . ca

Observatory and telescope:
Sylvester Robotic Observatory (SRO): $33 \text{ cm f}/4.5$ Newtonian on Paramount ME
mount

Detector:	SRO: SBIG ST-7XME,	$1^{\prime\prime}_{25}$ pixels,	$15'.8 \times$	10'.5 FOV,
	cooled $-10 < T < -30^{\circ}$	С		

Method of data reduction:

Aperture photometry using MIRA, by Mirametrics.

Method of minimum determination:

Digital tracing paper method, bisection of chords, curve fitting, and (occasionally) Kwee and van Woerden (1956)

Times of minima:								
Star name	Time of min.	Error	Type	Filter	Rem.			
	HJD $2400000+$							
QR And	55109.745	0.001	II	С				
ZZ Aur	54880.7941	0.0005	II	с				
DN Aur	55109.9052	0.0003	Ι	с				
HP Aur	54888.7294	0.0002	Ι	с				
V0560 Aur	54889.6840	0.0004	Ι	\mathbf{R}				
V0567 Aur	54890.648	0.001	Ι	\mathbf{R}				
TU Boo	54895.8029	0.0002	II	\mathbf{R}				
TZ Boo	54877.9187	0.0003	II	\mathbf{R}				
XY Boo	54872.8873	0.0003	Ι	с				
DN Boo	54899.8538	0.0004	Ι	\mathbf{R}				
FY Boo	54901.8492	0.0004	II	\mathbf{R}				
FY Boo	54912.8242	0.0003	Ι	\mathbf{R}				
GM Boo	54888.9036	0.0003	Ι	с				
GN Boo	54889.8313	0.0002	II	\mathbf{R}				
GN Boo	54858.0134	0.0002	Ι	с				
GR Boo	54937.8123	0.0001	Ι	\mathbf{R}				
HR Boo	54900.8755	0.0005	Ι	\mathbf{R}				
AO Cam	55149.7175	0.0001	II	\mathbf{R}				
CD Cam	55166.825	0.002	Ι	с				
MP Cam	55108.7950	0.0003	Ι	с				
NO Cam	55108.9387	0.0001	II	с				
ZZ Cas	55114.6494	0.0003	Ι	\mathbf{R}				
DN Cas	55087.890	0.001	Ι	\mathbf{R}				

Times of minima:					
Star name	Time of min.	Error	Type	Filter	Rem.
	HJD $2400000+$				
V0520 Cas	55046.9002	0.0003	II	R	
V0608 Cas	55170.6927	0.0002	Ι	с	
V1009 Cas	55113.7607	0.0002	II	с	
V1011 Cas	55171.588	0.001	Ι	с	
GSC2.2 N311332336840	55050.8578	0.0003	II	\mathbf{R}	
SU Cep	54986.8694	0.0002	II	\mathbf{R}	
V0738 Cep	55000.839	0.002	II	\mathbf{R}	
XZ CMi	54862.7529	0.0002	Ι	с	
CZ CMi	55159.977	0.001	Ι	\mathbf{R}	
AH Cnc	54883.7412	0.0003	Ι	с	
EH Cnc	54882.8580	0.0002	II	с	
G1927-0862	54884.9130	0.0002	II	с	
IR Cnc	54879.6708	0.0003	II	с	
AS CrB	54945.7762	0.0002	Ι	\mathbf{R}	
AV CrB	54948.8171	0.0002	II	\mathbf{R}	
VW CVn	54916.7284	0.0004	II	\mathbf{R}	
BO CVn	54950.7803	0.0003	Ι	\mathbf{R}	
CX CVn	54913.8222	0.0004	Ι	\mathbf{R}	
DE CVn	54937.709	0.001	Ι	\mathbf{R}	
DF CVn	54879.8491	0.0002	II	с	
EE CVn	54883.8805	0.0003	II	с	
G2544-1007	54913.7168	0.0004	Ι	\mathbf{R}	
G2544-1090	54918.7859	0.0003	II	\mathbf{R}	
G2545-0970	54857.0824	0.0004	Ι	\mathbf{R}	
G2545-0970	54936.7183	0.0003	Ι	\mathbf{R}	
G2545-0970	54856.9018	0.0004	II	\mathbf{R}	
G3034-0299	54879.9715	0.0001	II	с	
ZZ Cyg	54990.9041	0.0001	Ι	\mathbf{R}	
CV Cyg	54911.9944	0.0004	Ι	\mathbf{R}	
DO Cyg	55087.7001	0.0003	Ι	\mathbf{R}	
V0841 Cyg	54984.8749	0.0004	II	\mathbf{R}	
V1171 Cyg	54979.8017	0.0002	Ι	\mathbf{R}	
V1191 Cyg	55086.8059	0.0002	II	\mathbf{R}	
V1305 Cyg	55115.7064	0.0003	Ι	с	
V1763 Cyg	54950.8897	0.0003	Ι	\mathbf{R}	
V1823 Cyg	54978.8404	0.0002	II	\mathbf{R}	
V2197 Cyg	54951.9013	0.0001	Ι	\mathbf{R}	
G3550-1770	54937.9371	0.0003	Ι	\mathbf{R}	
G3575-3593	54992.821	0.001	Ι	\mathbf{R}	
G3576-0170	54990.796	0.001	II	\mathbf{R}	
BV Dra	54943.7793	0.0001	Ι	\mathbf{R}	
CV Dra	54896.0395	0.0002	II	\mathbf{R}	
FU Dra	54949.7633	0.0003	II	\mathbf{R}	
G3552-0321	54998.8293	0.0003	Ι	\mathbf{R}	
G3905-0060	54982.8120	0.0001	Ι	\mathbf{R}	
AF Gem	54888.6372	0.0005	Ι	с	
V0345 Gem	54862.638	0.001	II	с	
V0367 Gem	55159.8243	0.0003	Ι	\mathbf{R}	
V0373 Gem	54876.8499	0.0005	II	\mathbf{R}	
V0390 Gem	55172.8410	0.0003	Ι	с	
G1330-0287	55159.8652	0.0005	II	с	
G1356-2826	54857.7415	0.0004	II	\mathbf{R}	
IT Her	54953.9334	0.0003	II	\mathbf{R}	
V0829 Her	54901.9444	0.0001	Ι	R	

Times of minima:								
Star name	Time of min.	Error	Type	Filter	Rem.			
	$\rm HJD~2400000+$							
V0842 Her	54872.9947	0.0001	II	с				
V0856 Her	54953.7837	0.0002	Ι	\mathbf{R}				
V0857 Her	54916.9348	0.0001	II	R				
V1033 Her	54882.9794	0.0003	II	с				
V1036 Her	54951.8058	0.0003	Ι	\mathbf{R}				
V1052 Her	54948.9056	0.0002	II	R				
V1094 Her	54952.8124	0.0003	II	R				
V1094 Her	54949.8726	0.0002	II	R				
V1103 Her	54985.8244	0.0003	II	R				
G1518-0913	54916.8018	0.0005	II	R				
G2587-1888	54945.8825	0.0005	II	R				
G2614-1369	54889.0091	0.0005	II	с				
G2618-1385	54895.9315	0.0002	Ι	R				
G3101-0547	54919.9164	0.0003	Ι	R				
G3532-0553	54912.9464	0.0002	Ī	R				
IZ Lac	55062.815	0.001	II	R				
XY Leo	54908.6876	0.0003	T	R				
GV Leo	54900.7214	0.0002	Ī	R				
BY Lyn	54919.7707	0.0001	T	R				
EL Lyn	55184 876	0.002	Ī	c				
IW Lyr	55065.781	0.001	Ī	Ř				
V0563 Lyr	54952 9401	0.0002	Ī	R				
V0592 Lyr	55049 8215	0.0002	Ī	R				
G3109-0859	54918 8899	0.0002	II	B				
IX Mon	55149 9177	0.0000	T	c II				
V0448 Mon	54882 6631	0.0001	Î	C C				
V0530 Mon	54875 6770	0.0003	II	C C				
V0392 Ori	55163 853	0.0000	T	R				
V1799 Ori	55113 8532	0.001	11?	C II				
PU Peg	55108 70	0.0000	II. II	v				
G2765-0348	55046 7953	0.01	T	Ŗ				
V0427 Per	55166 7236	0.0002	Ī	c II				
V0432 Per	55065 9185	0.0002	T	B				
V0492 1 cr V0680 Per	55171 8248	0.0002	I	C II				
V0740 Per	55159 7533	0.0000	T	R				
RV Psc	55185 5696	0.0001	T	R				
CP Psc	55188 7005	0.0002 0.0002	T	R				
DS Psc	55170 6345	0.0002	T	C II				
DZ Psc	55171 7433	0.0000	T	c				
AS Tau	54881 7521	0.0002	T	c				
EN Tau	54856 6068	0.0004	T	R				
EO Tau	55171 8795	0.0002	T	n c				
HV Tau	55170 7839	0.0002	T	c				
III Iau II Tau	55114 0225	0.0003	T	c				
C1874 0300	55184 7375	0.0002	TT	c				
$\frac{\text{G1074-0599}}{\text{UV IIM}_2}$	54857 8866	0.0003	II T	c				
VV UMa	55166 003	0.0002	TT	v				
$\mathbf{Z}\mathbf{Z}$ IIMa	54876 6009	0.001	T	P				
$ES IIM_{2}$	55188 7099	0.0003	ı TT	n R				
$\mathbf{H}\mathbf{H}\mathbf{H}\mathbf{M}_{\mathbf{n}}$	54879 7267	0.0004	11 TT	n c				
III UMa IDIMa	54014.1301 54884 7505	0.0004	11 TT	U C				
$\Omega \Omega$ IMa	54004.7303 54806 7607	0.0000	11 TT	U D				
	04090.1001 54090 0696	0.0002	11 т	п D				
	J4900.0030 55166 6001	0.0001	1 TT	n c				
G2140-1400 C2144 1400	54083 2020	0.0004	11 T	U D				
G2144-1499	04900.0009	0.0000	T	n				

Explanation of the remarks in the table:

All elements can be found in Nelson, R.H., 2010.

Acknowledgements:

Thanks are due to Environment Canada for the website satellite views (see reference below) that were essential in predicting clear times for observing runs in this cloudy locale. Thanks are also due to Atilla Danko for his 'Clear Sky Clocks', (see below). This research has made use of the SIMBAD database, operated at CDS, Strasbourg, France.

References:

Danko, A., Clear Sky Clocks, http://cleardarksky.com/ Kwee, K.K., & van Woerden, H., 1956, B.A.N., 12, (464), 327-330 Nelson, R.H., 2010, Eclipsing Binary O - C Files, http://www.aavso.org/observing/programs/eclipser/omc/ Satellite Images for North America,

http://www.weatheroffice.gc.ca/satellite/index_e.html

Number 5930

Konkoly Observatory Budapest 12 March 2010 *HU ISSN 0374 - 0676*

BVR_cI_c Photometric evolution and flickering during

THE 2010 OUTBURST OF THE RECURRENT NOVA U SCORPII

MUNARI, U.¹; DALLAPORTA, S.²; CASTELLANI, F.²

¹ INAF Osservatorio Astronomico di Padova, Sede di Asiago, I-36032 Asiago (VI), Italy

 2 ANS Collaboration, c/o Astronomical Observatory, 36012 Asiago (VI), Italy

The 2010 outburst of the recurrent nova U Scorpii was discovered by B.G. Harris (New Smyrna Beach, FL, USA) on Jan. 28.4385 UT, when the star was measured at V = 8.05 (cf Schaefer, 2010). On Jan 27.63 UT, i.e. 0.80 days earlier, the nova was still at quiescence brightness ($V \ge 16.5$ mag, Linnolt, 2010).

This is the 10th recorded outburst of U Scorpii. Previous ones occurred on 1863, 1906, 1917, 1936, 1945, 1969, 1979, 1987 and 1999 according to the recent summary by Schaefer (2009). The last outburst has been the best observed one, with detailed reports being provided by Munari U. et al. (1999), Kiyota (1999), Lépine et al. (1999), Anupama and Dewangan (2000), Hachisu et al. (2000), Evans et al. (2001) and Iijima (2002).

We obtained accurate BVR_CI_C of U Sco with a 0.30-m Meade RCX-400 f/8 Schmidt-Cassegrain telescope equipped with a SBIG ST-9 CCD camera. The photometry was accurately corrected for color equations using nightly calibration on Landolt (1992) standard stars. The data are presented in Table 1, and plotted in Figure 1. The external errors (always less than 0.02 mag) do not exceed the dimension of the symbols in Figure 1.

In Figure 1 the time is counted from the discovery of U Sco in outburst on Jan. 28.4385 UT (t=0.00 days), that we assume as the time of actual maximum, there being no earlier observations of U Sco or reporting it brighter than V=8.05. The light curve in Figure 1 is characterized by a smooth decline, similar to that of previous outbursts (cf Munari et al. 1999; Kiyota 1999). The decline times $(\pm 0.1 \text{ days})$ are:

$$t_2^V = 1.8 \qquad t_3^V = 4.1 \text{ days}$$
(1)

that are significantly slower than $t_2=1.2$, $t_3=2.6$ days reported by Schaefer (2009) as typical values for previous outbursts, and instead much closer to the $t_2=2.2$, $t_3=4.3$ days derived by Munari et al. (1999) for the 1999 outburst. The light-curve in Figure 1 exhibits a plateau phase extending from day +12 to day +20, during which the mean colors are

$$=14.25 \quad =+0.16 \quad =+0.35 \quad =+0.41 \quad (2)$$

This phase corresponds to the white dwarf still burning hydrogen in the envelope and the ejecta being transparent to soft X-rays. In fact, on day +12, Schlegel et al. (2010) found U Sco to have become a super-soft X-ray source with a brightness 100 time larger

Figure 1. BVR_CI_C photometric evolution of the 2010 outburst of the recurrent nova U Scorpii according to our observations listed in Table 1. The point at t=0.0 days, V=8.05 is taken from IAUC 9111, that at t=0.54 days, V=8.76 from ATel 2412.
than a previous observation on day +8. Osborne et al. (2010) found U Sco still in super-soft conditions at day +17.5. A plateau was observed also during the 1999 outburst (Kiyota 1999, and Hachisu et al. 2000), but at a fainter mean magnitude ($\langle V \rangle = 14.75$), lasting slightly longer (11 days) and starting appreciably later, on day +17.

With a 0.40-m f/8 Ritchey-Chrétien telescope located on Monte Baldo (Verona, Italy), and equipped with a Finger Lake Instruments ML1001E CCD camera, we carried out three runs in B and $I_{\rm C}$ filters looking for short time variations in U Sco. The results are presented in Figure 2.

Figure 2. Results of searches for flickering carried out on days +4.8, +11.8 and +15.7 in the B and $I_{\rm C}$ bands. The dots represents measurements of U Sco, the circles those of nearby field stars to monitor photometric stability.

HJD	date HUT	V	B - V	$V - R_{\rm C}$	$V - I_{\rm C}$	$R_{\rm C} - I_{\rm C}$
113D225.6933228.7090229.6861230.6817231.6799235.6682240.6921	2010 01 29.19 2010 02 01.21 2010 02 02.19 2010 02 03.18 2010 02 04.18 2010 02 08.17 2010 02 13.19	$\begin{array}{c} 9.140\\ 10.888\\ 11.401\\ 11.632\\ 12.059\\ 13.592\\ 14.207 \end{array}$	D = V 0.201 -0.347 -0.441 -0.495 -0.405 -0.487 0.128	$\begin{array}{c} 0.831\\ 0.751\\ 0.582\\ 0.572\\ 0.365\\ 0.347\end{array}$	$\begin{array}{c} 0.586\\ 0.546\\ 0.455\\ 0.477\\ 0.410\\ 0.391 \end{array}$	$\begin{array}{c} -0.300 \\ -0.217 \\ -0.239 \\ -0.146 \\ 0.022 \\ 0.038 \end{array}$
241.6912 242.6575 248.6599 254.6492 264.6344	$\begin{array}{c} 2010 \ 02 \ 14.19 \\ 2010 \ 02 \ 15.16 \\ 2010 \ 02 \ 21.16 \\ 2010 \ 02 \ 27.15 \\ 2010 \ 03 \ 09.13 \end{array}$	$14.349 \\ 14.184 \\ 14.912 \\ 15.674 \\ 17.197$	$\begin{array}{c} 0.113 \\ 0.236 \\ 0.035 \end{array}$	$0.286 \\ 0.275 \\ 0.227$	$\begin{array}{c} 0.423 \\ 0.366 \\ 0.344 \\ 0.545 \\ 0.467 \end{array}$	$\begin{array}{c} 0.078 \\ 0.062 \\ 0.317 \end{array}$

Table 1. Our $BVR_{\rm C}I_{\rm C}$ of U Scorpii

No flickering was detected on day +4.8, while the short term variability was clearly present on day +11.8 (at the beginning of the plateau phase). Worters et al. (2010) reported that the flickering became visible on day +8, and they attributed it to an accretion disk that had already been re-established and was visible through optically thin ejecta. Our last observing run on day +15.7 (and additional three scattered points around day +19.8), at the center of the plateau phase, did not however show any short term variability, which cast doubts on the Worters et al. interpretation in terms of re-established accretion. The flickering we observed had a characteristic time scale of ~half an hour, and a larger amplitude in $I_{\rm C}$ ($\Delta m=1.0$ mag) than in B band ($\Delta m=0.5$ mag).

References:

Anupama G. C., Dewangan G. C., 2000, AJ, 119, 1359
Evans A., Krautter J., Vanzi L., Starrfield S., 2001, A&A, 378, 132
Iijima T., 2002, A&A, 387, 1013
Hachisu I., Kato M., Kato T., Matsumoto K., 2000, ApJ, 528, L97
Kiyota S., 1999, IBVS, 4736, 1
Landolt, A.U., 1992, AJ, 104, 340
Lépine S., Shara M. M., Livio M., Zurek D., 1999, ApJ, 522, L121
Linnolt, M. 2010, IAUC, 9111
Munari U., Zwitter, T., Tomov, T. et al., 1999, A&A, 347, L39
Osborne, J.P., Page, K.L., Wynn, W. et al., 2010, ATel, 2442
Schaefer, B.E., 2010, IAUC, 9111
Schlegel, E.M., Schaefer, B.E., Pagnotta, A. et al., 2010, ATel, 2430
Worters, H.L., Eyres, S.P.S., Rushton, M.T., 2010, IAUC, 9114

Number 5931

Konkoly Observatory Budapest 24 March 2010 *HU ISSN 0374 - 0676*

101 MINIMA TIMES OF ECLIPSING BINARIES OBSERVED BY INTEGRAL/OMC

ZASCHE, P.

Institute of Astronomy, Charles University, Prague, V Holešovičkách 2, 18000 Prague 8, Czech Republic; e-mail: zasche@sirrah.troja.mff.cuni.cz

Observatory and telescope:

ESA INTEGRAL Satellite, 50mm Optical Monitoring Camera (OMC)

Method of data reduction:

Data processing was done by Off-line Scientific Analysis package (OSA 6.0) on Laboratory for Space Astrophysics and Theoretical Physics (LAEFF), Spain.

Method of minimum determination:

The minima times were computed with the Kwee – van Woerden method (Kwee & van Woerden, 1956).

Times of minima:							
Star name	Time of min.	Error	Type	Filter	Rem.		
	HJD 2400000+						
FZ CMa	54583.4293	0.0008	Prim	V			
FZ CMa	54584.0635	0.0007	Sec	V			
SW Car	53159.6271	0.0023	Prim	V			
HP Car	52816.2368	0.0024	Prim	V	New		
HP Car	53150.7342	0.0019	Prim	V	New		
HP Car	53157.9383	0.0061	Sec	V	New		
HP Car	54183.0304	0.0020	Prim	V	New		
ZZ Cas	53047.2980	0.0035	Sec	V			
ZZ Cas	53711.9445	0.0018	Prim	V			
ZZ Cas	53722.5179	0.0031	Sec	V			
ZZ Cas	53729.9650	0.0028	Sec	V			
ZZ Cas	53740.5445	0.0011	Prim	V			
AQ Cas	53920.9538	0.0145	Prim	V			
BM Cas	54575.783	0.132	Prim	V			
MN Cen	52793.2792	0.0007	Prim	V			
MN Cen	53541.7131	0.0014	Sec	V			
MN Cen	53850.4754	0.0023	Prim	V			
DE Cep	54504.4557	0.0014	Prim	V			
BN Cir	53433.2098	0.0018	Prim	V			
CE Cir	54683.7038	0.0029	Prim	V			
RW Cra	54161.7400	0.0012	Prim	V			
$AE \ Cru$	53546.1185	0.0058	Prim	V			

Times of m	linima:				
Star name	Time of min.	Error	Type	Filter	Rem.
DV Corr	$\frac{110000000}{10000000}$	0.0019	Duine	N	
PV Cyg	52008.4109	0.0013		V	
PV Cyg	52609.7044	0.0017	Prim	V	
PV Cyg	52614.9786	0.0025	Prim	V	
PV Cyg	52616.3005	0.0013	Prim	V	
V367 Cyg	53040.9777	0.0456	Sec	V	
V367 Cyg	53133.8367	0.0272	Sec	V	
V367 Cyg	53198.9077	0.0315	Prim	V	
V367 Cyg	54445.0398	0.0277	Prim	V	
V478 Cyg	53969.0142	0.0219	Sec	V	
V536 Cyg	54098.7977	0.0013	Prim	V	
V536 Cyg	54261.0784	0.0016	Prim	V	
V537 Cyg	54104.4789	0.0043	Prim	V	
V616 Cyg	54093.3891	0.0046	Prim	V	
V616 Cyg	54247.2789	0.0010	Prim	V	
$V703 \ Cyg$	54087.6494	0.0036	Prim	V	New
V909 Cyg	54004.2649	0.0045	Sec	V	
V1061 Cyg	54087.9706	0.0007	Prim	V	
RR Dra	54613.9033	0.0012	Prim	V	
CV Gem	53300.8039	0.0022	\mathbf{Prim}	V	
${ m HZ}~{ m Her}$	54347.7557	0.0020	Prim	V	
HZ Her	54351.1664	0.0054	Prim	V	
HZ Her	54350 3407	0.0045	Sec	v	
V359 Her	54346 7169	0.0019	Prim	v	
V359 Her	54348 4681	0.0014	Prim	v	
V359 Her	54350 2285	0.0011	Prim	v	
V359 Her	54351 9894	0.0020 0.0021	Prim	v	
CY Lac	54086 9743	0.0021 0.0046	Prim	V	
CV Lac	54220 0027	0.0040	Drim	v	
DG Lac	54248 8118	0.0000	Prim	v V	
	54234 6880	0.0011 0.0077	Drim	V	
TV Lib	54486 2026	0.0017	Drim	V	
	54480.3020	0.0010	Drim	V	
	52064 0410	0.0025		V	
	00904.9410	0.0022	P rim C	V	
гу Lup 117 г	00222.040	0.012	Duine	V	
UZ Lyr	52028.0745	0.0012	Prim D:	V	
AI Mon	54417.2529	0.0018	Prim	V	
Z Nor	53414.4988	0.0018	Sec	V	
Z Nor	53423.4596	0.0011	Prim	V	
Z Nor	53962.9722	0.0010	Prim	V	
UU Oph	53260.4096	0.0025	Prim	V	
V456 Oph	54742.8314	0.0009	Prim	V	
V456 Oph	54766.7134	0.0012	Sec	V	
V456 Oph	54769.7640	0.0011	Sec	V	
V2383 Oph	54334.0179	0.0004	Prim	V	
V2383 Oph	54363.3928	0.0007	Sec	V	
V2383 Oph	54366.4077	0.0006	Sec	V	
V2383 Oph	54402.8144	0.0004	Prim	V	
V2383 Oph	54535.9003	0.0012	Prim	V	

Times of 1	ninima:				
Star name	Time of min.	Error	Type	Filter	Rem.
	HJD 2400000+				
EQ Ori	54153.1670	0.0005	Prim	V	
FF Ori	54154.5213	0.0010	Prim	V	
FF Ori	54330.1376	0.0005	Prim	V	
FF Ori	54507.5728	0.0005	Prim	V	
V640 Ori	54710.1407	0.0037	Prim	V	
AG Per	54493.9598	0.0028	Sec	V	
QW Per	52717.2704	0.0022	Prim	V	
MX Pav	54406.9713	0.0055	Prim	V	
SU Pic	53922.3609	0.0017	Prim	V	
RS Sgr	53782.7242	0.0028	Prim	V	
WY Sgr	52893.6725	0.0021	Prim	V	
XZ Sgr	54180.5234	0.0004	Prim	V	
EG Sgr	54423.0396	0.0014	Prim	V	
V524 Sgr	54596.0211	0.0009	Prim	V	
V1133 Sgr	54420.5870	0.0016	Prim	V	
V1133 Sgr	54421.3895	0.0006	Prim	V	
V1133 Sgr	54423.0026	0.0006	Prim	V	
V1133 Sgr	54595.3458	0.0009	Prim	V	
V1647 Sgr	53809.5808	0.0004	Sec	V	
RW Tau	54494.4145	0.0100	Prim	V	
CR Tau	54179.5731	0.0015	Prim	V	
GN Tra	54291.5804	0.0018	Prim	V	
MN Tra	53397.7452	0.0010	Sec	V	
BY Vel	53859.9681	0.0014	Prim	V	
BY Vel	53870.3350	0.0012	Prim	V	
ET Vel	53687.4309	0.0032	Sec	V	
ET Vel	53688.9301	0.0117	Prim	V	
ET Vel	53691.9958	0.0019	Prim	V	
ET Vel	53693.5956	0.0095	Sec	V	
ET Vel	53704.3077	0.0013	Prim	V	
GT Vel	53693.9383	0.0004	Sec	V	

Remarks:

Ephemerides: Paschke & Brát,	2006
New ephemerides for the stars:	V703 Cyg: $2433214.191 + 4.14566 \cdot E$
	HP Car: $2453150.7342 + 1.60046 \cdot E$.

Acknowledgements:

Based on data from the OMC Archive at LAEFF, pre-processed by ISDC. This work was supported by the Czech Science Foundation (grant no. P209/10/0715).

References:

Kwee, K. K., van Woerden, H., 1956, Bull. Astron. Inst. Neth., **12**, 327. Paschke, A., Brát, L., 2006, Open European Journal on Variable Stars, **23**, 13

Number 5932

Konkoly Observatory Budapest 26 March 2010 *HU ISSN 0374 - 0676*

$BVR_{C}I_{C}$ PHOTOMETRIC EVOLUTION OF THE VERY FAST NOVA OPHIUCHI 2010 N.1 = V2673 Oph

MUNARI, U.¹; DALLAPORTA, S.²

¹ INAF Osservatorio Astronomico di Padova, Sede di Asiago, I-36032 Asiago (VI), Italy

 2 ANS Collaboration, c/o Astronomical Observatory, 36012 Asiago (VI), Italy

Nova Ophiuchi 2010 N.1 (= V2673 Oph) was discovered by H. Nishimura on Jan. 15.9 UT (cf. Nakano, 2010) and confirmed spectroscopically by H. Maehara (2010) as a "Fe II" class nova.

We obtained $BVR_{\rm C}I_{\rm C}$ photometry of Nova Ophiuchi 2010 N.1 with a 0.30-m Meade RCX-400 f/8 Schmidt-Cassegrain telescope equipped with a SBIG ST-9 CCD camera. The photometry was accurately corrected for color equations using nightly calibrations on Landolt (1992, 2009) standard stars. The data are presented in Table 1, and plotted in Figure 1. The combined (Poissonian + transformation) errors (always less than 0.03 mag) do not exceed the dimension of the symbols in Figure 1. The zero points of the photometry are scaled on the nearby star TYC 6260-1846-1, for which we adopted: $B = 11^{\rm m}550$, $V = 10^{\rm m}963$, $R_{\rm C} = 10^{\rm m}574$ and $I_{\rm C} = 10^{\rm m}222$. The B and V are the values recommended by AAVSO for this star, the $R_{\rm C}$ and $I_{\rm C}$ are derived combining B, V with J, H, K from 2MASS following the recipes by Caldwell et al. (1993).

We started our observations immediately past maximum, and thus to reconstruct the whole light curve as presented in Figure 1, we had to integrate them with the published data.

Various estimates, based on unfiltered CCD observations secured around the time of discovery with digital cameras by Japanese amateurs, were published in CBET 2128. These observations are generally calibrated against the $R_{\rm C}$ band values of field stars as listed by the USNO catalog. We have measured the field stars around Nova Ophiuchi 2010 N.1 and found a mean $\langle V - R_{\rm C} \rangle = +0.57$ for them. We thus applied this shift to the unfiltered photometry of CBET 2128 and inserted it as open circles in Figure 1.

Four approximately V-band observations were obtained by Vollmann (2010) from the green channel of color CCD images obtained with a DSLR camera. Comparison with our simultaneous photometry indicates that Vollmann values need to be corrected by +0.1 mag to be placed onto the V photometric scale. We applied such a correction and plotted the data as star symbols in Figure 1.

The VSNET organization collected some BVR_CI_C CCD photometric data of Nova Ophiuchi 2010 N.1, with observers S. Kiyota and H. Maehara (cf. March 1, 2010 summary in [vsnet-recent-nova 35402] at http://www.kusastro.kyoto-u.ac.jp/vsnet/). The data obtained by observer S. Kiyota were corrected for instrumental color equations, and are inserted in Figure 1 as asterisks. They did not require adjustments, as it also was for V band data by VSNET observer H. Maehara. The B, R_C and I_C data of the latter, however, need the application of a shift to be brought in agreement with the rest of the data. The shift we applied amounts to +0.32 mag in B, $+0.34 \text{ in } R_{\text{C}}$, and $+0.45 \text{ mag} \text{ in } I_{\text{C}}$.

In Figure 1 the time is counted from maximum brightness that was reached on Jan. 18.3, 2010 at V=8.5. At that time the colors were B - V = +0.95, $V - R_{\rm C} = +0.75$, and $V - I_{\rm C} = +1.50$.

HJD	V	B - V	$V - R_{\rm C}$	$V - I_{\rm C}$
$\begin{array}{c} 2455216.7306\\ 2455218.7244\\ 2455223.7142\\ 2455225.7166\\ 2455229.7095\\ 2455231.7104\\ 2455235.6959\\ 2455242.6834\\ 2455248.6852\\ 2455261.6320\\ 2455264.6855\end{array}$	$\begin{array}{r} 9.15\\ 9.51\\ 10.28\\ 10.60\\ 10.85\\ 10.90\\ 11.31\\ 11.79\\ 12.19\\ 12.91\\ 12.91\\ 12.92\end{array}$	+0.86 +0.74 +0.69 +0.70 +0.72 +0.66 +0.67 +0.61 +0.56 +0.53	+1.01 +1.00 +1.04 +1.13 +1.29 +1.49 +1.96 +1.90	$+1.61 \\ +1.68 \\ +1.65 \\ +1.64 \\ +1.60 \\ +1.57 \\ +1.71 \\ +1.91 \\ +2.13 \\ +2.11 \\ +2.01$
2400204.0020	12.95	± 0.49	± 1.09	± 2.01

Table 1. Our $BVR_{C}I_{C}$ of Nova Oph 2010 N.1

van den Bergh and Younger (1987) derived a mean intrinsic color $(B - V)_{\circ} = +0.23 \pm 0.06$ for novae at the time of maximum, and $(B - V)_{\circ} = -0.02 \pm 0.04$ at t_2 . Comparing with B - V = +0.95 at maximum and B - V = +0.68 at t_2 from Figure 1, the reddening affecting Nova Oph 2010 N.1 is $E_{B-V} = 0.71$, and the extinction (assuming a standard $R_V = 3.1$ interstellar law) is therefore $A_V = 2.2$ mag.

The light curve in Figure 1 is characterized by a rapid rise (the last 2.2 mag in V band were covered in 3.4 days) and by a smooth decline, regulated by the decline times

$$t_2^V = 10.0$$
 $t_3^V = 23.5$ days

which are the time taken by the nova to decline, in the V band, by two and three magnitudes, respectively, from maximum brightness. These t_2^V and t_3^V values for Nova Oph 2010 are in the normal proportion found for typical novae. Given t_2^V , the Warner (1995) relation would predict $t_3^V = 20.8$, while Munari et al. (2008) relation would give $t_3^V = 23.1$. According to the classification of Warner (1995, his Table 5.4), a $t_2^V = 10$ days qualifies Nova Oph 2010 N.1 to be classed among the very fast novae.

Published relations between the absolute magnitude and the rate of decline generally take the form $M_{\text{max}} = \alpha_n \log t_n + \beta_n$. Using the Cohen (1988) $V - t_2$ relation, the distance to the nova is 8.3 kpc, and 7.5 kpc according to the Schmidt (1957) $V - t_3$ relation.

Buscombe and de Vaucouleurs (1955) suggested that all novae have the same absolute magnitude 15 days after maximum light. The mean value of the calibrations presented by Buscombe and de Vaucouleurs (1955), Cohen (1985), van den Bergh and Younger (1987), van den Bergh (1988), and Capaccioli et al. (1989) is $M_{15}^V = -5.42 \pm 0.09$, which provides a distance of 6.5 kpc to Nova Oph 2010 N.1 when compared to $V_{15} = 10.85$ from Figure 1. Taking the mean of these three determinations, the distance to Nova Oph 2010 N.1 is d = 7.4 kpc. At a galactic latitude b = 4.92 deg, it corresponds to an height over the

Figure 1. $BVR_{C}I_{C}$ photometric evolution of the outburst of Nova Ophiuchi 2010 N.1. For the literature data, see text for details.

Galactic equatorial plane of z = 0.6 kpc, well within the range of heights reported by della Valle and Livio (1998) for novae of the Fe II type.

References:

Buscombe, W., de Vaucouleurs, G., 1955, Obs., 75, 170 Caldwell, J.A.R., Cousins, A.W.J., Ahlers, C.C. et al., 1993, SAAO Circ., 15, 1 Capaccioli, M. et al., 1989, AJ, 97, 1622 Cohen, J.G., 1985, ApJ, 292, 90 Cohen, J.G., 1988, ASP Conf Ser, 4, 114 della Valle, M., Livio, M., 1998, ApJ, 506, 818 Landolt, A.U., 1992, AJ, 104, 340 Landolt, A.U., 2009, AJ, 137, 4186 Maehara, H., 2010, IAUC, 9111 Munari, U. et al., 2008, A&A, 492, 145 Nakano, S., 2010, IAUC, 9111 Schmidt, T., 1957, ZA, 41, 182 van den Bergh, S., Younger, P.F., 1987, A&AS, 70, 125 van den Bergh, S., 1988, PASP, 100, 8 Vollmann, W., 2010, CBET, 2139 Warner, B., 1995, Cataclysmic Variable Stars, Cambridge Univ. Press

Number 5933

Konkoly Observatory Budapest 13 April 2010 *HU ISSN 0374 - 0676*

NEW TIMES OF MINIMA OF 36 ECLIPSING BINARY SYSTEMS

LAMPENS, P.^{1,4}; KLEIDIS, S.^{2,3}; VAN CAUTEREN, P.^{4,5}; HAMBSCH, F.-J.⁵; VANLEENHOVE, M.⁵; DUFOER, S.⁵

¹ Koninklijke Sterrenwacht van België, Brussel, Belgium; e-mail: patricia.lampens@oma.be

² Zagori Observatory, Epirus, Greece

³ Elliniki Astronomiki Enosi, Athens, Greece

⁴ Beersel Hills Observatory, Beersel, Belgium

⁵ Vereniging Voor Sterrenkunde, Belgium

Observatory and telescope:

0.3-m Schmidt-Cassegrain (Kle30) equipped with SBIG-ST7 camera

0.13-m refractor (BHO13) 0.18-m refractor (BHO18) 0.40-m Newtonian (BHO40) 0.13-m refractor (Hum13) 0.40-m Newtonian (Hum40) with SBIG-ST10XME and STL6303e cameras

0.14-m refractor (HMB14) 0.20-m refractor (HMB20) 0.28-m Schmidt-Cassegrain (HMB28) with SBIG-ST10XME, STL6303e and STL11000 cameras

0.26-m Maksutov-Cassegrain (Vlh26) 0.28-m Schmidt-Cassegrain (Vlh28) with SBIG-ST10XME camera

0.08-m refractor (Duf08) 0.20-m Newtonian (Duf20) with SBIG-ST10XME camera

Detector:	SBIG-ST7 camera, Peltier cooling, KAF-400 chip,
	$765 \times 510 \text{ pixels}^2$
	SBIG-ST10XME camera, Peltier cooling, KAF-3200ME
	chip, $2184 \times 1472 \text{ pixels}^2$
	SBIG-STL6303E camera, Peltier cooling, KAF-6303E
	chip, $3060 \times 2040 \text{ pixels}^2$
	SBIG-STL11000 camera, Peltier cooling, KAI-11000 chip,
	$4008 \times 2672 \text{ pixels}^2$

Method of data reduction:

Reduction of the CCD frames was made with the following packages: AIP4WIN for Kle30; Mira-AP7¹ software for BHO13/BHO18/BHO40 and Hum13/Hum40; MaximDL4 for HMB14/HMB20/HMB28, Vlh26/Vlh28 and Duf08/Duf20.

Method of minimum determination:

The times of minima were computed with a parabolic fitting, in some cases (Kle30) also complemented with a few other methods available in the software *Minima* (cf. http://members.shaw.ca/bob.nelson/software1.htm).

¹Mira-AP7 is distributed by Axiom Research Inc.

Times of minima:					
Star name	Time of min.	Error	Type	Filter	Rem.
	HJD 2400000+				
CL Aur	54512.3138	0.0002	1	V	Vlh28
CL Aur	54522.2690	0.0001	1	V	Kle30
CL Aur	54858.2534	0.0001	1	V	Kle30
CL Aur	55104.6421	0.0004	1	V	Kle30
HP Aur	54522.3559	0.0001	2	V	Kle30
HP Aur	55155.5075	0.0006	2	V	Kle30
IU Aur	54495.3575	0.0002	2	B	Kle30
IU Aur	54496.2615	0.0001	1	B	Kle30
IU Aur	54505.3240	0.0002	1	V	Vlh28
IU Aur	54513.4762	0.0003	2	V	Vlh28
IU Aur	54514.3778	0.0006	1	V	Vlh28
IU Aur	54777.9493	0.0048	$\overline{2}$	V	HMB20
IU Aur	54778 8542	0.0027	1	, V	HMB20
IU Aur	54782 4751	0.0021	1	V	HMB28
IU Aur	54787 9143	0.0026	1	V	HMB20
IU Aur	54788 8166	0.0000	2	V	HMB20
IU Aur	54817 8060	0.0000	$\frac{2}{2}$	V V	HMR20
IU Aur	54828 6684	0.0000	2	V V	$\frac{1101D20}{Vlb26}$
IU Aur	54821 2847	0.0003	∠ 1	V V	V11120 V1h26
IU Aur	54051.3047	0.0002	1	V V	VIII20 UMD90
IU Aur	04800.9180 E4947 6962	0.0082	ے 1		$\Pi M D 20$
IU Aur	54847.0803	0.0043	1	V	HMB20
IU Aur	54851.3094	0.0001	1	V	Kle30
IU Aur	54861.2703	0.0013	2	V	BHO18
IU Aur	55079.5586	0.0001	1	V	Kle30
AS Cam	54897.4283	0.0010	2	V	Dut20
AB Cas	54506.5768	0.0004	1	V	Vlh28
AE Cas	54843.3705	0.0037	1	V	HMB28
AE Cas	54843.3719	0.0022	1	R	HMB28
DN Cas	54838.3062	0.0007	1	V	BHO13
IT Cas	54669.4909	0.0001	2	V	Kle30
IT Cas	55041.4219	0.0006	1	V	Kle30
IV Cas	54506.3577	0.0001	1	V	Vlh28
IV Cas	54508.3542	0.0003	1	V	Vlh28
IV Cas	54509.3526	0.0002	1	V	Vlh28
IV Cas	54828.3764	0.0006	2	V	Vlh26
MU Cas	54749.4874	0.0001	2	V	Kle30
OX Cas	54499.3016	0.0001	2	V	Vlh28
OX Cas	55074.3340	0.0003	2	V	Kle30
PV Cas	54649.4909	0.0001	1	V	Kle30
PV Cas	54762.4303	0.0001	2	V	Vlh26
PV Cas	55077.5149	0.0004	2	V	Kle30
V821 Cas	54663.4449	0.0002	2	B	Kle30
V442 Cvg	55106 3494	0.0007	$\frac{1}{2}$	\overline{V}	Kle30
V961 Cvg	54994 4216	0.0006	-	\dot{V}	Kle30
V961 Cyg	54995 4417	0.0001	$\frac{1}{2}$, V	Kle30
V974 Cyg	54670 3887	0.0005	$\frac{2}{2}$	V	Kle30
V974 Cyg	54702 4295	0.0000	$\frac{2}{2}$	$\overset{\mathbf{v}}{C}$	$D_{11}f08$
V074 Cyc	55077 3/03		2	U V	K1250
vər4 Oyg	00011.0490	0.0000	4	V	171690

m•

0

Times of minima:								
Star name	Time of min.	Error	Type	Filter	Rem.			
	HJD 2400000+							
V1136 Cyg	54978.4275	0.0006	2	V	Kle30			
CT Her	54643.4882	0.0001	1	V	Vlh26			
RX Her	55026.3856	0.0006	2	V	Kle30			
AU Lac	54746.4515	0.0001	1	V	Kle30			
CO Lac	54614.4697	0.0001	2	V	Kle30			
CO Lac	54644.5300	0.0001	1	V	Kle30			
CO Lac	54746.3164	0.0001	1	V	Kle30			
CO Lac	55015.4415	0.0006	2	V	Kle30			
CO Lac	55022.3730	0.0005	1	V	Kle30			
UU Lyn	54848.5266	0.0001	1	V	Kle30			
UU Lyn	54858.3645	0.0001	1	V	Kle30			
FL Lvr	54201.5793	0.0020	2	V	BHO13			
FL Lvr	54359.4960	0.0005	1	B	BHO40			
FL Lvr	54381.2785	0.0003	1	B	BHO40			
IU Per	54502.22271	0.00023	1	BVR_CI_C	Kle30			
IU Per	54751.6224	0.0003	1	B	Hum40			
IU Per	54755.4849	0.0002	2	\overline{V}	Kle30			
IU Per	54759 3359	0.0002	1	, V	BHO18			
IU Per	54775 61885	0.0002	1	BVRala	Kle30			
IU Per	548274647	0.00010 0.0005	2	V	Hum40			
IU Per	54830 4665	0.0005	1	V	Hum40			
IU Per	54843 3216	0.0000	1	V V	RHO18			
IU Per	54861 3177	0.0000	1	V V	HMR28			
AO Ser	$54612\ 5770$	0.0010	1	V V	Kle30			
AO Ser	54614 3375	0.0001	1	V V	Kle30			
AO Ser	54628 4051	0.0001	1	V V	Kle30			
AO Ser	54074 4272	0.0000	$\frac{1}{2}$	V V	$H_{11}m/10$			
SV Tau	54401 4415	0.0000	2 1	V V	Klo20			
DC Tri	55041 5456	0.0004	1 0	V V	Klo20			
RS III RS IIMa	54022 5014	0.0020	乙 1	V V	$H_{\rm H} = 10$			
BS UMa BS UMa	54925.5014	0.0004 0.0007	1	V V	$H_{\rm H} = 10$			
DS UMA DS UMA	54942.5750	0.0007	1 0	V V	$\Pi u I I 40$ $\Pi u m 40$			
DS UMA	54942.5400	0.0005	ے 1	V	пиш40 Ц., 40			
DS UMA	04940.4200 54040 5071	0.0007	1	V	пиш40 Ц., 40			
DS UMA	54945.3971	0.0009	ے 1	V	пиш40 Ц., 40			
BS UMA	54944.4 <i>(22</i>	0.0007	1		HUM40			
DN UMA	54508.4886	0.0005	2	BV	BHU13 DHO19			
DN UMA	54514.5462	0.0014	1	BV	BHOI3			
DN UMA	54515.4132	0.0013	2	V	BHOI3			
DN UMa	54944.5637	0.0014	2	V	Hum13			
VV UMa	54592.4439	0.0031	1	V	Duf08			
VV UMa	54605.5044	0.0004	1	V	Duf08			
VV UMa	54862.5833	0.0009	1	V	HMB14			
VV UMa	54893.5156	0.0037	1	V	HMB14			
VV UMa	54897.6402	0.0020	1	V	HMB14			
VV UMa	54910.3563	0.0013	2	V	HMB14			
VV UMa	54911.3875	0.0022	1	V	HMB14			
VV UMa	54927.5435	0.0030	2	V	Duf08			
$\rm XZ~UMa$	54911.5821	0.0016	1	V	HMB14			

Times of minima:										
Star name	Time of min.	Error	Type	Filter	Rem.					
	${ m HJD}~2400000+$									
XZ UMa	54927.4703	0.0008	1	V	Duf08					
GSC 143 226	55126.5304	0.0001	1	V	Kle30					
GSC 3612 1565	55078.4828	0.0009	2	V	Kle30					
GSC 4487 347	54743.4548	0.0001	2	V	Kle30					
GSC 4550 1408	54861.4032	0.0027	1	V	HMB28					
NSV 26199	55104.4202	0.0002	1	V	Kle30					

Explanation of the remarks in the table:

Observers: Kle = Kleidis, S.; BHO/Hum = Lampens, P. & Van Cauteren, P.; HMB = Hambsch, J.; Vlh = Vanleenhove, M.; Duf = Dufoer, S.

Remarks:

We use filters B, V, R_C and I_C according to the specifications given by Bessell (1995). The monitoring of IU Aur is part of an international campaign organised by Hegedüs et al. (Baja Observatory, Hungary) and is still on-going. AB Cas, IV Cas, CT Her, AO Ser, IU Per, VV UMa and GSC 4550 1408 are members of the class of oEA stars (Mkrtichian et al., 2004). In the majority of cases, we used ephemerides based on Nelson's *Eclipsing Binary O-C Files*. In the case of BS UMa, the eclipse type does not follow the convention of the *O-C Gateway* (Paschke & Brát), but our determination is based on the clear distinction between primary and secondary eclipse from light curves obtained during several consecutive hours.

Acknowledgements:

PVC is grateful for support from Astrotechniek (http://www.astrotechniek.net) and Baader Planetarium (http://www.baader-planetarium.de). PL thanks the directors of the Royal Observatory of Belgium (ROB) for purchasing and operating an optical telescope at the radio-astronomy site of Humain under the project name HOACS (*Humain Optical Observatory for Astrophysics of Coeval Stars*). The BHO and HOACS data were acquired with equipment purchased thanks to a research fund financed by the Belgian National Lottery (1999). This work has made use of the SIMBAD database, operated at CDS, Strasbourg, France. The authors thank Patrick Wils for providing useful software.

References:

Bessell, M., 1995, *CCD Astronomy*, **2**, No. 4, 20

- Mkrtichian, D. E., Kusakin, A. V., Rodríguez, E. et al., 2004, A&A, 419, 1015
- Nelson, B., Eclipsing Binary O C Files

(http://www.aavso.org/observing/programs/eclipser/omc/)

Paschke, A. & Brát, L., O - C Gateway: database of times of minima (E) and maxima (RR) (http://astro.sci.muni.cz/variables/ocgate/)

^{*}This version of the paper contains corrections, and differs from the one appeared on-line originally. Date of last modification: Thu Apr 15 07:37:16 MEST 2010

Number 5934

Konkoly Observatory Budapest 19 April 2010 *HU ISSN 0374 - 0676*

THE GEOS RR Lyr SURVEY

Twelfth list of maxima of RR Lyr stars observed by the automated telescopes TAROT

(GEOS Circular RR 43)

LE BORGNE, J. F.^{1,2}; KLOTZ, A.^{3,4}; BOËR, M.³

¹ GEOS (Groupe Européen d'Observations Stellaires), 23 Parc de Levesville, 28300 Bailleau l'Évêque, France

² LATT, Université de Toulouse, CNRS, Toulouse, France

³ Observatoire de Haute-Provence, Saint Michel l'Observatoire, France

 4 CESR, Université de Toulouse, CNRS, Toulouse, France

We present here the twelfth list of light maxima of RR Lyrae stars from the GEOS RR Lyr Survey (Le Borgne et al. 2007), a GEOS program (http://geos.webs.upv.es/, Boninsegna et al., 2002) of observations of RR Lyr stars using the automatic telescopes TAROT (http://tarot.obs-hp.fr, Klotz et al., 2009). The present list contains 364 maxima observed mainly between July and December 2009 (Table 1).

A description of the present list may be found in the former lists (for example Le Borgne et al. 2008). The data are also available in the GEOS RR Lyr web database (http://rr-lyr.ast.obs-mip.fr/dbrr/dbrr-V1.0_0.php). The O - C's are computed with the GCVS elements (Kholopov et al., 1985) when available. Otherwise, the reference of the elements, if exists, is given as a footnote of Table 1.

References:

Agerer, F., Moschner, W., 1996, *IBVS*, **4391**

Baldwin, M.E., Samolyk, G., 2003, AAVSO RR Lyrae Monographs, 1

- Boninsegna, R., Vandenbroere, J., Le Borgne, J. F., The Geos Team, 2002, ASP Conf. Ser., 259, 166, IAU Colloq. 185
- Kholopov, P. N., et al., 1985, General Catalogue of Variable Stars, Moscow: Nauka Publishing House, 1988, 4th ed., edited by Kholopov, P. N.; and 2008 web edition (http://www.sai.msu.su/groups/cluster/gcvs/).

Klotz, A., Boër, M., Atteia, J. L., Gendre, B., 2009, AJ 137, 4100

Le Borgne, J. F., Klotz, A., Boër, 2008, IBVS, 5823

Le Borgne, J. F., Paschke, A., Vandenbroere, J., Poretti, E., Klotz, A., Boër, M., Damerdji, Y., Martignoni, M., Acerbi, F., 2007, A&A, 476, 307

Meinunger L., 1984, MVS, 10, 56

Table 1: maxima of RR Lyrae stars

Variable	Maximum	0 – C	Е	Obs.	Variable	Maximum	0 – C	Е	Obs.
star	HJD 24	(days)			star	HJD 24	(days)		
SW And	$55045.523{\pm}0.002$	-0.796	83462.	С	TT Cnc	$55156.488{\pm}0.004$	0.114	26998.	С
SW And	$55088.426{\pm}0.002$	-0.794	83559.	\mathbf{C}	TT Cnc	$55191.405{\pm}0.003$	0.097	27060.	\mathbf{C}
SW And	$55156.532{\pm}0.002$	-0.800	83713.	\mathbf{C}	AA CMi	$55175.489{\pm}0.002$	0.066	39047.	\mathbf{C}
SW And	$55158.299{\pm}0.002$	-0.802	83717.	\mathbf{C}	AA CMi	$55184.538{\pm}0.003$	0.065	39066.	\mathbf{C}
XX And	$55044.489{\pm}0.003$	0.241	22078.	\mathbf{C}	IU Car	$55131.641{\pm}0.005$	0.285	18227.	LS
XX And	$55078.461 {\pm} 0.003$	0.243	22125.	\mathbf{C}	IU Car	$55139.748{\pm}0.004$	0.284	18238.	LS
XX And	$55180.370{\pm}0.004$	0.245	22266.	\mathbf{C}	IU Car	$55148.586{\pm}0.003$	0.276	18250.	\mathbf{LS}
AT And	$55078.390{\pm}0.004$	-0.002	20643.	\mathbf{C}	V363 Cas	$55044.568{\pm}0.005$	0.599	34584.	\mathbf{C}
AT And	$55086.411 {\pm} 0.004$	-0.001	20656.	\mathbf{C}	V363 Cas	$55078.458{\pm}0.004$	0.604	34646.	\mathbf{C}
AT And	$55160.436{\pm}0.005$	-0.005	20776.	\mathbf{C}	V363 Cas	$55080.644{\pm}0.003$	0.604	34650.	\mathbf{C}
AT And	$55170.309{\pm}0.004$	-0.003	20792.	\mathbf{C}	V363 Cas	$55159.351{\pm}0.006$	0.610	34794.	\mathbf{C}
CI And	$55051.562{\pm}0.004$	0.117	39885.	\mathbf{C}	RR Cet	$55088.514{\pm}0.002$	0.006	39613.	\mathbf{C}
CI And	$55052.530{\pm}0.002$	0.115	39887.	\mathbf{C}	RR Cet	$55157.644{\pm}0.004$	0.008	39738.	\mathbf{LS}
CI And	$55087.427{\pm}0.002$	0.112	39959.	\mathbf{C}	RR Cet	$55159.299{\pm}0.005$	0.004	39741.	\mathbf{C}
CI And	$55155.287{\pm}0.002$	0.112	40099.	\mathbf{C}	RR Cet	$55185.295{\pm}0.003$	0.007	39788.	\mathbf{C}
CI And	$55170.313 {\pm} 0.003$	0.112	40130.	\mathbf{C}	RU Cet	$55093.822{\pm}0.003$	0.094	26041.	\mathbf{LS}
NX And 1	$55180.339{\pm}0.004$	0.002	25521.	\mathbf{C}	RU Cet	$55096.761{\pm}0.008$	0.101	26046.	\mathbf{LS}
SW Aqr	$55037.515{\pm}0.002$	0.000	65186.	\mathbf{C}	RU Cet	$55140.732{\pm}0.004$	0.101	26121.	\mathbf{LS}
SW Aqr	$55055.427{\pm}0.002$	-0.000	65225.	\mathbf{C}	RU Cet	$55150.706{\pm}0.004$	0.108	26138.	\mathbf{LS}
SW Aqr	$55082.523{\pm}0.002$	-0.003	65284.	\mathbf{C}	RU Cet	$55153.629{\pm}0.002$	0.100	26143.	\mathbf{LS}
SW Aqr	$55088.497 {\pm} 0.002$	0.000	65297.	\mathbf{C}	RV Cet	$55095.765{\pm}0.009$	0.219	25637.	\mathbf{LS}
SX Aqr	$55033.526{\pm}0.003$	-0.119	28443.	\mathbf{C}	RV Cet	$55155.623{\pm}0.010$	0.231	25733.	\mathbf{LS}
SX Aqr	$55061.384{\pm}0.002$	-0.118	28495.	\mathbf{C}	RV Cet	$55168.721{\pm}0.005$	0.237	25754.	LS
SX Aqr	$55085.489{\pm}0.002$	-0.121	28540.	\mathbf{C}	RX Cet	$55093.733 {\pm} 0.005$	-0.259	26091.	LS
SX Aqr	$55095.670 {\pm} 0.005$	-0.118	28559.	LS	RX Cet	$55139.613{\pm}0.005$	-0.274	26171.	\mathbf{LS}
TZ Aqr	$55043.453{\pm}0.003$	0.014	30628.	\mathbf{C}	RX Cet	$55151.652{\pm}0.003$	-0.283	26192.	\mathbf{LS}
TZ Aqr	$55056.585{\pm}0.003$	0.009	30651.	\mathbf{C}	RZ Cet	$55101.672{\pm}0.005$	-0.161	41509.	\mathbf{LS}
TZ Aqr	$55083.430{\pm}0.002$	0.007	30698.	\mathbf{C}	RZ Cet	$55156.300{\pm}0.003$	-0.169	41616.	\mathbf{C}
YZ Aqr	$55096.603 {\pm} 0.003$	0.057	35751.	LS	RZ Cet	$55157.323{\pm}0.002$	-0.167	41618.	\mathbf{C}
AA Aqr	$55096.559 {\pm} 0.005$	-0.125	56411.	LS	RZ Cet	$55158.351{\pm}0.003$	-0.160	41620.	\mathbf{C}
AA Aqr	$55127.612 {\pm} 0.003$	-0.126	56462.	LS	RZ Cet	$55170.599{\pm}0.003$	-0.167	41644.	LS
BN Aqr	$55056.447{\pm}0.003$	0.598	36588.	\mathbf{C}	UU Cet	$55093.750 {\pm} 0.004$	-0.142	22910.	$_{\rm LS}$
BN Aqr	$55086.505 {\pm} 0.002$	0.599	36652.	\mathbf{C}	UU Cet	$55098.597{\pm}0.005$	-0.143	22918.	LS
BN Aqr	$55098.719 {\pm} 0.003$	0.602	36678.	LS	UU Cet	$55101.624{\pm}0.005$	-0.147	22923.	LS
BO Aqr	$55098.561 {\pm} 0.005$	0.162	19419.	LS	UU Cet	$55127.690{\pm}0.003$	-0.142	22966.	LS
BR Aqr	$55090.657 {\pm} 0.004$	-0.165	36222.	LS	RW Col	$55154.654{\pm}0.004$	0.089	51671.	LS
CP Aqr	$55029.445 {\pm} 0.002$	-0.116	36998.	\mathbf{C}	RW Col	$55155.743 {\pm} 0.005$	0.120	51673.	LS
CP Aqr	$55035.469 {\pm} 0.002$	-0.116	37011.	\mathbf{C}	RX Col	$55162.699{\pm}0.003$	0.167	44357.	LS
CP Aqr	$55081.345 {\pm} 0.002$	-0.118	37110.	\mathbf{C}	RX Col	$55187.620{\pm}0.002$	0.138	44399.	$_{\rm LS}$
CP Aqr	$55097.561 {\pm} 0.003$	-0.121	37145.	LS	RY Col	$55149.770 {\pm} 0.003$	-0.177	43519.	\mathbf{LS}
GP Aqr	$55045.520{\pm}0.004$			С	RY Col	$55151.680{\pm}0.002$	-0.183	43523.	\mathbf{LS}
GP Aqr	$55056.461 {\pm} 0.005$			С	RY Col	$55164.602 {\pm} 0.003$	-0.190	43550.	\mathbf{LS}
GP Aqr	$55086.432{\pm}0.005$			\mathbf{C}	RY Col	$55175.607 {\pm} 0.002$	-0.198	43573.	$_{\rm LS}$
GP Aqr	$55094.543 {\pm} 0.004$			LS	AV Col	$55153.754{\pm}0.003$			$_{\rm LS}$
GP Aqr	$55098.598{\pm}0.005$			LS	AV Col	$55162.662 {\pm} 0.002$			\mathbf{LS}
OX Aqr	$55095.872 {\pm} 0.009$			LS	AV Col	$55168.753 {\pm} 0.002$			\mathbf{LS}
OX Aqr	$55129.716 {\pm} 0.006$			LS	AV Col	$55169.691{\pm}0.003$			LS
AA Aql	$55083.398 {\pm} 0.002$	0.035	84956.	\mathbf{C}	AV Col	$55178.597 {\pm} 0.002$			LS
AA Aql	$55088.463 {\pm} 0.002$	0.035	84970.	С	AV Col	$55185.630 {\pm} 0.002$			LS
V341 Aql	55029.474 ± 0.002	0.035	23932.	C	UY Cyg	$55017.466 {\pm} 0.003$	0.063	58112.	C
V341 Aql	$55055.484{\pm}0.003$	0.035	23977.	С	UY Cyg	$55026.437 {\pm} 0.003$	0.063	58128.	С
X Ari	$55088.599 {\pm} 0.003$	0.362	26883.	C	UY Cyg	$55035.403 {\pm} 0.004$	0.057	58144.	C
X Ari	$55159.575 {\pm} 0.003$	0.364	26992.	C	UY Cyg	$55081.385 {\pm} 0.003$	0.061	58226.	C
TZ Aur	55157.472 ± 0.002	0.016	90011.	C	UY Cyg	$55086.430 {\pm} 0.002$	0.060	58235.	C
TZ Aur	$55159.430 {\pm} 0.002$	0.015	90016.	С	XZ Cyg ²	$55025.521{\pm}0.003$	0.006	13834.	С
AH Cam	$55162.406 {\pm} 0.001$	-0.447	44567.	\mathbf{C}	XZ Cyg ²	$55033.443 {\pm} 0.003$	-0.004	13851.	\mathbf{C}

Variable	Maximum	O - C	Е	Obs.	Variable	Maximum	0 – C	Е	Obs.
star	HJD 24	(days)			star	HJD 24	(days)		
XZ Cyg ²	$55047.434{\pm}0.002$	-0.011	13881.	С	BB Eri	$55149.663{\pm}0.002$	0.242	27356.	LS
XZ Cyg ²	$55080.576 {\pm} 0.003$	0.002	13952.	С	BB Eri	$55165.626{\pm}0.005$	0.248	27384.	LS
$\rm XZ \ Cyg^{-2}$	$55082.444 {\pm} 0.004$	0.004	13956.	\mathbf{C}	BB Eri	$55169.610 {\pm} 0.002$	0.243	27391.	LS
DM Cyg	$55017.470{\pm}0.002$	0.070	29617.	\mathbf{C}	RX For	$55095.747 {\pm} 0.009$	0.001	25555.	LS
DM Cyg	$55043.494{\pm}0.002$	0.063	29679.	С	RX For	$55129.776 {\pm} 0.003$	-0.017	25612.	$_{\rm LS}$
DM Cyg	$55048.535 {\pm} 0.002$	0.066	29691.	\mathbf{C}	RX For	$55153.644{\pm}0.004$	-0.042	25652.	LS
DM Cyg	$55054.412{\pm}0.002$	0.065	29705.	С	SS For	$55122.601 {\pm} 0.004$	-0.142	33211.	$_{ m LS}$
DM Cyg	$55085.483{\pm}0.002$	0.066	29779.	С	SS For	$55166.699 {\pm} 0.003$	-0.138	33300.	$_{ m LS}$
DM Cyg	$55087.581{\pm}0.003$	0.065	29784.	С	SS For	$55167.692{\pm}0.005$	-0.135	33302.	$_{ m LS}$
V939 Cyg ³	$55033.465 {\pm} 0.009$	0.013	13534.	С	SS For	$55168.683 {\pm} 0.004$	-0.135	33304.	LS
V939 Cyg ³	$55047.439 {\pm} 0.003$	0.036	13570.	С	SW For	$55132.752 {\pm} 0.006$	0.427	25865.	LS
DX Del	$55037.481 {\pm} 0.002$	0.061	33156.	С	SW For	$55140.791{\pm}0.009$	0.429	25875.	$_{ m LS}$
DX Del	$55038.426 {\pm} 0.002$	0.060	33158.	С	SW For	$55149.629 {\pm} 0.003$	0.425	25886.	$_{ m LS}$
DX Del	$55044.568 {\pm} 0.003$	0.058	33171.	С	SW For	$55169.722 {\pm} 0.006$	0.425	25911.	$_{ m LS}$
DX Del	55046.460 ± 0.004	0.060	33175.	С	SX For	$55101.711 {\pm} 0.005$	0.043	26338.	LS
DX Del	$55056.389{\pm}0.002$	0.064	33196.	С	SX For	$55158.618 {\pm} 0.003$	0.048	26432.	$_{ m LS}$
DX Del	$55081.433 {\pm} 0.002$	0.059	33249.	С	SX For	$55164.669 {\pm} 0.003$	0.046	26442.	$_{ m LS}$
RT Dor	$55129.707 {\pm} 0.002$	-0.072	50457.	LS	SX For	$55170.729 {\pm} 0.003$	0.052	26452.	LS
RT Dor	$55140.810 {\pm} 0.004$	-0.074	50480.	LS	SX For	$55184.647 {\pm} 0.005$	0.047	26475.	LS
RT Dor	$55153.848 {\pm} 0.004$	-0.072	50507.	LS	RR Gem	$55180.413 {\pm} 0.004$	-0.420	34793.	С
VW Dor	$55106.767 {\pm} 0.002$	-0.118	29315.	LS	SZ Gem	$55177.429 {\pm} 0.003$	-0.060	55840.	С
VW Dor	$55138.717 {\pm} 0.002$	-0.122	29371.	LS	SZ Gem	$55191.459 {\pm} 0.002$	-0.062	55868.	С
VW Dor	$55158.692{\pm}0.003$	-0.119	29406.	LS	SZ Gem	$55192.463 {\pm} 0.002$	-0.060	55870.	С
VW Dor	$55182.652{\pm}0.003$	-0.124	29448.	LS	GI Gem	$55157.645 {\pm} 0.002$	0.069	57265.	С
VW Dor	$55187.794{\pm}0.003$	-0.118	29457.	LS	GI Gem	$55158.511 {\pm} 0.001$	0.069	57267.	С
RW Dra	$55024.526 {\pm} 0.002$	0.206	35327.	С	GI Gem	$55160.678 {\pm} 0.004$	0.070	57272.	С
XZ Dra	$55021.433 {\pm} 0.003$	-0.126	27478.	С	RW Gru	$55093.569 {\pm} 0.003$	-0.148	37676.	LS
XZ Dra	55042.392 ± 0.002	-0.132	27522.	С	RW Gru	55099.627 ± 0.005	-0.143	37687.	LS
XZ Dra	55050.488 ± 0.002	-0.137	27539.	С	TW Her	55022.521 ± 0.003	-0.011	83777.	C
BC Dra	55016.468 ± 0.007	0.091	17702.	С	TW Her	55024.518 ± 0.002	-0.012	83782.	C
BC Dra	55047.415 ± 0.005	0.096	17745.	С	TW Her	55034.511 ± 0.002	-0.009	83807.	C
BC Dra	55054.603 ± 0.005	0.088	17755.	С	TW Her	55046.495 ± 0.002	-0.013	83837.	C
BC Dra	55057.477 ± 0.006	0.084	17759.	C	TW Her	55050.490 ± 0.002	-0.014	83847.	C
BC Dra	55085.549 ± 0.006	0.092	17798.	С	VX Her	55020.501 ± 0.002	-0.431	73062.	C
BC Dra	55155.348 ± 0.006	0.092	17895.	C	VX Her	55021.412 ± 0.002	-0.431	73064.	C
BC Dra	55159.660 ± 0.007	0.087	17901.	C	VZ Her	55022.505 ± 0.002	0.069	41409.	C
BC Dra	55160.386 ± 0.007	0.093	17902.	C	DL Her	55038.507 ± 0.002	0.041	28447.	C
BC Dra	55168.299 ± 0.003	0.091	17913.	C	V650 Her	55021.397 ± 0.002	0.029	30021.	C
BC Dra	55170.457 ± 0.008	0.090	17916.	C	UU Hor	55127.659 ± 0.002	0.163	47236.	
BD Dra	55023.498 ± 0.002	0.688	22491.	C	UU Hor	55165.637 ± 0.003	0.164	47295	
BD Dra	55026.444 ± 0.002	0.689	22496.	C	DD Hya	55160.500 ± 0.002	-0.163	26835.	C
BD Dra	55043.482 ± 0.005	0.645	22525.	C	DD Hya	55162.508 ± 0.003	-0.162	26839.	C
BD Dra	55079.454 ± 0.003	0.685	22586.	C	DD Hya	55167.528 ± 0.002	-0.160	26849.	C
BD Dra	55080.629 ± 0.002	0.681	22588.	C	RR Leo	55167.661 ± 0.002	0.102	26243.	C
BD Dra	55155.433 ± 0.004	0.676	22715.	C	V LM1	55157.598 ± 0.004	0.038	65501.	C
BD Dra	55159.525 ± 0.004	0.644	22722.	C	U Lep	55132.798 ± 0.005	0.048	23699.	
BK Dra	55016.506 ± 0.002	-0.155	49813.	C	U Lep	55149.657 ± 0.002	0.044	23728.	
BK Dra	55038.410 ± 0.002	-0.158	49850.	C	U Lep	55181.641 ± 0.004	0.047	23783.	
BK Dra	55048.476 ± 0.002	-0.157	49867. 5 <i>6</i> 072	U	TT Lyn	55155.053 ± 0.008	-0.037	30973.	C
KX Eri	55149.648±0.004	-0.010	56973. F 6000		TT Lyn	55167.596 ± 0.002	-0.043	30993.	C
KX Eri	55159.629 ± 0.004	-0.012	56990.		TT Lyn	55192.692 ± 0.005	-0.039	31035.	C
KX Eri	55180.775 ± 0.003	-0.007	57026		TW Lyn	55155.558±0.005	0.066	21029.	C
SV Eri	55098.812 ± 0.005	0.816	27383.		TW Lyn	55157.475 ± 0.003	0.056	21033.	C
SV Eri	55151.625 ± 0.004	0.808	27457.		TW Lyn	55158.441 ± 0.003	0.058	21035.	C
SV Eri	55158.777 ± 0.007	0.822	27467.	LS	DZI	55183.497 ± 0.003	0.057	21087.	C
BB EII	00129.719±0.005	0.245	2/321.	LS	к⊿ Lyr	55035.520 ± 0.004	-0.016	⊿7095.	U
					1				

Table 1 (cont.): maxima of RR Lyrae stars

Variable	Maximum	O - C	Е	Obs.	Variable	Maximum	O - C	Е	Obs.
star	HJD 24	(davs)	-	0.55	star	HJD 24	(davs)	-	0.55
RZ Lvr	55036.547 ± 0.002	-0.012	27097.	С	VV Peg	55034.443 ± 0.003	-0.023	32034.	С
RZ Lvr	$55051.362{\pm}0.002$	-0.023	27126.	С	VV Peg	$55057.398{\pm}0.002$	-0.023	32081.	С
AW Lyr	55079.443 ± 0.003	-0.021	59801.	С	VV Peg	55167.287 ± 0.002	-0.021	32306.	\mathbf{C}
AW Lyr	$55080.438 {\pm} 0.002$	-0.021	59803.	С	AV Peg	$55059.386{\pm}0.002$	0.124	28867.	С
AW Lyr	$55081.432{\pm}0.002$	-0.022	59805.	С	AV Peg	$55082.419 {\pm} 0.002$	0.124	28926.	С
CN Lyr	$55014.454{\pm}0.004$	0.024	25592.	\mathbf{C}	AV Peg	$55083.590{\pm}0.002$	0.124	28929.	С
CN Lyr	$55021.442{\pm}0.005$	0.018	25609.	С	AV Peg	$55087.494{\pm}0.002$	0.125	28939.	С
CN Lyr	55023.502 ± 0.002	0.021	25614.	С	AV Peg	55166.351 ± 0.002	0.126	29141.	\mathbf{C}
CN Lyr	$55025.561{\pm}0.003$	0.024	25619.	С	BH Peg	$55060.522{\pm}0.005$	-0.113	24486.	С
CN Lyr	$55037.487{\pm}0.003$	0.019	25648.	\mathbf{C}	BH Peg	$55085.522{\pm}0.004$	-0.111	24525.	С
CN Lyr	$55047.362{\pm}0.003$	0.021	25672.	\mathbf{C}	BH Peg	$55155.384{\pm}0.005$	-0.118	24634.	С
CN Lyr	$55049.422{\pm}0.003$	0.024	25677.	\mathbf{C}	CG Peg	$55014.476 {\pm} 0.002$	-0.049	34063.	\mathbf{C}
CN Lyr	$55053.528{\pm}0.003$	0.017	25687.	\mathbf{C}	CG Peg	$55034.561{\pm}0.002$	-0.050	34106.	С
CN Lyr	$55054.353{\pm}0.003$	0.019	25689.	\mathbf{C}	CG Peg	$55048.576 {\pm} 0.003$	-0.050	34136.	\mathbf{C}
CN Lyr	$55056.411{\pm}0.004$	0.020	25694.	\mathbf{C}	CG Peg	$55083.610{\pm}0.003$	-0.051	34211.	С
CN Lyr	$55079.454{\pm}0.005$	0.025	25750.	\mathbf{C}	CG Peg	$55084.544{\pm}0.002$	-0.051	34213.	\mathbf{C}
CRLvr	$55034.579{\pm}0.004$	-0.026	51224.	\mathbf{C}	CG Peg	$55157.416{\pm}0.004$	-0.053	34369.	\mathbf{C}
CR Lyr	$55035.559{\pm}0.003$	-0.033	51226.	\mathbf{C}	CV Peg	$55057.420{\pm}0.005$	-0.057	53853.	С
CR Lyr	$55036.543{\pm}0.002$	-0.035	51228.	\mathbf{C}	DZ Peg	$55046.479 {\pm} 0.002$	0.161	34832.	\mathbf{C}
CR Lyr	$55037.526{\pm}0.003$	-0.039	51230.	\mathbf{C}	DZ Peg	$55060.447 {\pm} 0.002$	0.160	34855.	С
CR Lyr	$55038.515{\pm}0.002$	-0.037	51232.	\mathbf{C}	DZ Peg	$55085.349{\pm}0.002$	0.161	34896.	\mathbf{C}
CR Lyr	$55045.415 {\pm} 0.005$	-0.045	51246.	\mathbf{C}	DZ Peg	$55156.409 {\pm} 0.002$	0.162	35013.	С
CR Lyr	$55047.391{\pm}0.003$	-0.043	51250.	\mathbf{C}	DZ Peg	$55170.375 {\pm} 0.003$	0.159	35036.	С
CR Lyr	$55048.380{\pm}0.004$	-0.041	51252.	\mathbf{C}	AR Per	$55156.389{\pm}0.002$	0.057	65608.	С
CR Lyr	$55049.366{\pm}0.004$	-0.041	51254.	\mathbf{C}	AR Per	$55159.369{\pm}0.004$	0.059	65615.	\mathbf{C}
CR Lyr	$55079.471 {\pm} 0.005$	-0.035	51315.	\mathbf{C}	AR Per	$55162.348 {\pm} 0.001$	0.059	65622.	С
IO Lyr	$55027.501{\pm}0.003$	-0.032	26699.	\mathbf{C}	RV Phe	$55099.756 {\pm} 0.003$	-0.190	22106.	LS
IO Lyr	$55049.431{\pm}0.002$	-0.032	26737.	\mathbf{C}	RV Phe	$55151.642{\pm}0.003$	-0.192	22193.	LS
IO Lyr	$55060.393{\pm}0.002$	-0.036	26756.	\mathbf{C}	TZ Phe	$55092.781{\pm}0.006$			LS
V340 Lyr	$55035.551{\pm}0.003$	-0.044	42996.	\mathbf{C}	TZ Phe	$55097.712 {\pm} 0.005$			LS
Z Mic	$55092.624{\pm}0.003$	-0.125	22993.	\mathbf{LS}	TZ Phe	$55158.649{\pm}0.005$			LS
Z Mic	$55099.665 {\pm} 0.005$	-0.128	23005.	\mathbf{LS}	TZ Phe	$55166.648 {\pm} 0.004$			LS
RY Oct	$55132.653{\pm}0.005$	0.081	48175.	LS	U Pic	$55127.777 {\pm} 0.003$	0.067	30568.	LS
RY Oct	$55150.696{\pm}0.005$	0.093	48207.	LS	U Pic	$55131.739 {\pm} 0.002$	0.066	30577.	LS
RY Oct	$55154.630{\pm}0.002$	0.083	48214.	\mathbf{LS}	U Pic	$55139.667{\pm}0.003$	0.067	30595.	LS
SS Oct	$55094.833{\pm}0.003$	-0.034	43540.	LS	U Pic	$55154.638{\pm}0.002$	0.066	30629.	LS
SS Oct	$55106.649{\pm}0.004$	-0.033	43559.	LS	U Pic	$55157.725{\pm}0.003$	0.070	30636.	LS
SS Oct	$55129.660{\pm}0.003$	-0.030	43596.	\mathbf{LS}	U Pic	$55169.610{\pm}0.002$	0.065	30663.	\mathbf{LS}
SS Oct	$55149.566{\pm}0.003$	-0.022	43628.	\mathbf{LS}	U Pic	$55180.622{\pm}0.004$	0.068	30688.	LS
SS Oct	$55162.621{\pm}0.002$	-0.025	43649.	LS	U Pic	$55187.667{\pm}0.003$	0.067	30704.	LS
SS Oct	$55167.599{\pm}0.003$	-0.022	43657.	LS	HH Pup	$55157.772{\pm}0.003$	0.009	42630.	LS
UW Oct	$55097.749 {\pm} 0.005$	-0.010	46706.	LS	HH Pup	$55195.676{\pm}0.003$	0.011	42727.	LS
UW Oct	$55122.637{\pm}0.003$	-0.013	46762.	LS	HK Pup	$55180.657{\pm}0.004$	-0.281	25295.	LS
UW Oct	$55138.636{\pm}0.003$	-0.016	46798.	LS	X Ret	$55094.783{\pm}0.005$	0.225	31822.	LS
UW Oct	$55162.642{\pm}0.003$	-0.012	46852.	LS	X Ret	$55132.682{\pm}0.003$	0.241	31899.	LS
$V455 { m ~Oph}$	$55022.391{\pm}0.004$	-0.278	29057.	\mathbf{C}	V1646~Sgr	$55107.587{\pm}0.003$	0.173	38173.	LS
V455 Oph	$55027.392{\pm}0.003$	-0.270	29068.	\mathbf{C}	UZ Scl	$55094.721{\pm}0.005$	0.037	35586.	LS
TY Pav	$55122.523{\pm}0.005$	0.228	19130.	LS	VW Scl	$55092.732{\pm}0.004$	-0.005	53401.	LS
BN Pav	$55090.525{\pm}0.004$	-0.106	47171.	LS	VW Scl	$55139.727{\pm}0.005$	-0.014	53493.	LS
BP Pav	$55121.579{\pm}0.002$	-0.141	49846.	LS	VW Scl	$55157.612{\pm}0.002$	-0.011	53528.	LS
BP Pav	$55131.595{\pm}0.002$	0.201	49864.	LS	VW Scl	$55158.636{\pm}0.002$	-0.009	53530.	LS
BP Pav	$55132.649{\pm}0.002$	0.181	49866.	\mathbf{LS}	VX Scl	$55151.705{\pm}0.002$	-0.898	21242.	\mathbf{LS}
BP Pav	$55140.558{\pm}0.004$	0.029	49881.	LS	VX Scl	$55167.629{\pm}0.004$	-0.907	21267.	\mathbf{LS}
BP Pav	$55150.572{\pm}0.003$	-0.168	49900.	LS	AE Scl	$55128.658{\pm}0.010$	0.252	25288.	\mathbf{LS}
DN Pav	$55097.652{\pm}0.002$	0.104	29703.	LS	AE Scl	$55155.610{\pm}0.003$	0.250	25337.	LS
DN Pav	$55150.588{\pm}0.002$	0.106	29816.	LS	AE Scl	$55166.605{\pm}0.002$	0.243	25357.	LS

		~ ~	-	01					1
Variable	Maximum	O - C	E	Obs.	Variable	Maximum	O = C	E	Obs.
star	HJD 24	(days)			star	HJD 24	(days)		
HY Tel	$55093.659{\pm}0.002$	0.053	65518.	LS	AE Tuc	$55164.676 {\pm} 0.002$	0.090	50418.	LS
W Tuc	$55093.529{\pm}0.002$	0.174	28362.	LS	AE Tuc	$55166.748 {\pm} 0.003$	0.090	50423.	\mathbf{LS}
W Tuc	$55127.564{\pm}0.002$	0.171	28415.	\mathbf{LS}	AE Tuc	$55167.579 {\pm} 0.002$	0.093	50425.	\mathbf{LS}
W Tuc	$55139.764{\pm}0.003$	0.169	28434.	\mathbf{LS}	AE Tuc	$55169.647 {\pm} 0.001$	0.089	50430.	\mathbf{LS}
W Tuc	$55148.754{\pm}0.003$	0.167	28448.	LS	AE Tuc	$55191.616 {\pm} 0.001$	0.097	50483.	\mathbf{LS}
W Tuc	$55157.751{\pm}0.004$	0.173	28462.	\mathbf{LS}	EX UMa	$55160.589 {\pm} 0.006$	0.032	11325.	\mathbf{C}
W Tuc	$55159.681{\pm}0.005$	0.176	28465.	\mathbf{LS}	EX UMa	$55167.644 {\pm} 0.005$	0.030	11338.	\mathbf{C}
W Tuc	$55168.663{\pm}0.005$	0.167	28479.	\mathbf{LS}	SV Vol	$55182.648 {\pm} 0.003$	0.064	35509.	\mathbf{LS}
YY Tuc	$55094.791{\pm}0.003$	0.112	20787.	\mathbf{LS}	BN Vul	$55029.406 {\pm} 0.002$	0.068	15988.	\mathbf{C}
AE Tuc	$55100.837{\pm}0.001$	0.063	50264.	LS	BN Vul	$55036.535 {\pm} 0.002$	0.068	16000.	\mathbf{C}
AE Tuc	$55121.563{\pm}0.002$	0.071	50314.	LS	BN Vul	$55042.477 {\pm} 0.003$	0.069	16010.	\mathbf{C}
AE Tuc	$55128.610{\pm}0.005$	0.074	50331.	LS	BN Vul	$55045.448 {\pm} 0.004$	0.069	16015.	\mathbf{C}
AE Tuc	$55138.559{\pm}0.003$	0.078	50355.	LS	BN Vul	$55080.498 {\pm} 0.003$	0.065	16074.	\mathbf{C}
AE Tuc	$55159.699{\pm}0.001$	0.085	50406.	\mathbf{LS}	BN Vul	$55086.440 {\pm} 0.002$	0.066	16084.	\mathbf{C}
	* C = Calern, LS	= La Si	lla		•				
	1 Meinunger, 198	4							
	2 Baldwin and Sa	molyk, 2	003						
	3 Agerer and Mos	chner, 1	996						

Table 1 (cont.): maxima of RR Lyrae stars

Number 5935

Konkoly Observatory Budapest 21 April 2010 *HU ISSN 0374 - 0676*

RADIAL VELOCITIES FOR TWELVE PULSATING VARIABLES IN THE ANTICENTER

KINMAN, T. D.¹; BROWN, WARREN, R.²

 1 Kitt Peak National Observatory, NOAO 1, P.O.Box 26732, Tucson, Arizona 85726, USA, email: kinman@noao.edu

 2 Smithsonian Astrophysical Observatory, 60 Garden St., Cambridge, MA 02138, USA.

The kinematics of the *outer* halo can be studied by using the radial velocities of tracers such as RR Lyrae stars in the direction of the Anticenter. Radial velocities of distant Anticenter RR Lyraes have been given by Pier et al. (2003). In this paper we give radial velocities for twelve more pulsating variables in the Anticenter ($171^{\circ} < l < 186^{\circ}$). Eleven are RR Lyrae variables and one (NSVS 48209670) is a δ -Scuti (DSCT) star. Five have been previously identified as RR Lyrae stars: DQ Lyn (Kinman, 1998), NSV 17902 and EN Lyn (Kinemuchi et al., 2006), BN UMa (McClusky, 2008) and CK UMa (Hoffleit, 1972).

Table 1. Identifications and positions for the variables

No.	Identification	R.A.	Dec.	Other ID
		J 2	000	
01	NSVS 4732626 ^a	$08^{h}01^{m}56.2$	$+41^{\circ}01'18''$	
02	DQ Lyn	$08^{h}23^{m}41.0^{s}$	$+37^{\circ}28'11''$	
03	NSV 17902^{b}	$08^{h}30^{m}41^{s}.7$	$+40^{\circ}24'25''$	NSVS 4812548^{a}
04	Case A-F 232^c	$08^{h}31^{m}52.2$	$+38^{\circ}32'14''$	NSVS 4812987^{a}
05	NSVS 4814234^{a}	$08^{h}32^{m}49.6$	$+43^{\circ}16'02''$	
06	NSVS 4819931^{a}	$08^{h}43^{m}56.7$	$+43^{\circ}22'13''$	
07	NSVS 4820967^{a}	$08^{h}46^{m}10.2$	$+43^{\circ}04'31''$	
08	EN Lyn	$08^{h}46^{m}07.0$	$+38^{\circ}02'53''$	
09	NSVS 4822969^{a}	$08^{h}50^{m}39.5$	$+43^{\circ}40^{\prime}03^{\prime\prime}$	
10	NSVS 4894895^{a}	$09^{h}44^{m}36.3$	$+41^{\circ}08^{\prime}35^{\prime\prime}$	BPS 16927-123 d
11	BN UMa	$11^{\rm h}16^{\rm m}22.9$	$+41^{\circ}14'02''$	
12	CK UMa	$12^{h}01^{m}36.4$	$+31^{\circ}54'12''$	

^a Northern Sky Variability Survey, (Wozniak et al., 2004).

- ^b New Catalogue of Suspected Variables, (Kholopov, 1982).
- ^c Case A-F star.(Pesch and Sanduleak, 1989).
- ^d HB-star candidate. (Beers et al., 1996).

¹The National Optical Astronomy Observatories are operated by the Association of Universities for Research in Astronomy, Inc., under cooperative agreement with the National Science Foundation

The remainder are A-F stars identified in the Case low-dispersion Northern Sky Survey (Pesch & Sanduleak, 1989) or unpublished stars from this survey that were kindly made available by P. Pesch (private communication, 1997). Identifications and coordinates of these stars are given in Table 1.

Most of the spectra from which the radial velocities were obtained were taken in the interval 2009 November 15 to 18 UT with the MMT blue-channel spectrograph. This gave flux-calibrated spectra that cover $\lambda\lambda$ 3600 – 4500 with a spectral resolution of 1.0Å. The spectra had a S/N in the range 50 to 100 which give radial velocities with a precision of 2 to 3 km s⁻¹. The spectra of NSVS 4822969 and CK UMa were taken on 2009 December 19 UT with the FAST spectrograph on the Whipple Observatory 1.5-m telescope. These spectra cover $\lambda\lambda$ 3600 – 5500, and have a spectral resolution of 2.3 Å and a S/N of 30. The radial velocities from these spectra have a precision of 5 km s⁻¹. The heliocentric radial velocities are presented in Table 2.

No.	JDH^{a}	$\operatorname{Exp.}^{b}$	RV^{c}	ϕ^d	No.	JDH^a	$\operatorname{Exp.}^{b}$	RV^c	ϕ^d
	+2400000.	(sec)	${\rm km~s^{-1}}$			+2400000.	(sec)	$\rm km~s^{-1}$	
01	55154.046	210	+67	0.366	07	55152.040	150	-37	0.268
02	55151.049	30	+56	0.408	08	55154.048	90	-43	0.941
03	55151.046	150	+38	0.320	09	55185.058	570	+46	0.245
04	55151.038	300	+316	0.875	10	55154.035	60	+61	0.181
05	55151.042	130	+10	0.472	11	55154.038	90	+7	0.936
06	55152.043	120	-203	0.530	12	55185.049	180	-10	0.018

 Table 2. Spectroscopic Observations

^{*a*} Heliocentric Julian Date of mid-exposure;

^b Exposure time;

^c Heliocentric radial velocity;

 d Phase of mid-exposure

The variability type of the new RR Lyrae stars was established by photometry in the 1990's but the ephemerides derived from these observations are now out of date. New photometric data were therefore needed to establish the phases of the spectroscopic observations. The JD(hel.), phases and V magnitudes of these new data are given in Table 3 (available electronically through the IBVS website as 5935-t3.txt) and were obtained with the commercial robotic f/7 0.8-m telescope of the Tenagra Observatory in Arizona which has a 1024×1024 SITe CCD. Details of similar photometry with this telescope are given by Kinman & Brown (2010). Periods were determined using the periodogram program of Horne & Baliunas (1986); in the case of previously known variables, these were in satisfactory agreement with those found earlier. The JDH of the maxima of var. 6 and 9 take into account NSVS photometry and the 1990's photometry referred to above.

Phases for the times of observation of these spectra were derived from new ephemerides and are shown by vertical lines in the light curves (Fig. 1). The velocities of the type *ab* variables were then corrected to γ - velocities by the method given by Liu (1991) which scales the velocity amplitude against the V-mag. amplitude. In the case of the type *c* and type *d* variables, we took the known γ velocity and radial velocity curve of the type *c* variable T Sex (Liu & Janes, 1989, 1990) and scaled the correction to the γ -velocity by the ratio of the V- mag. amplitudes. As the referee has pointed out, these corrections can only be approximate — particularly for stars showing Blazhko effect (Jurcsik et al., 2002). These heliocentric γ -velocities are given with the new ephemerides and V_{max} and V_{min} in Table 4. 14.4 14.6

1

11.2

Figure 1. Light curves of variables (ordinate V magnitude).

No	ID	Dariad	IDU Mor	V	V	$\mathbf{D}V^{\dagger}$	DD	Notor
mo.	ID	renou	JDH Max	Vmax	Vmin	nv'	nn	notes
		(days)	+2400000.	(mag)	(mag)	$\rm km~s^{-1}$	type	
01	NSVS 4732626	0.5945	55149.667	14.6	15.5	+69	$\mathrm{RR}ab$	
02	DQ Lyn	0.4948041	55153.816	11.23	11.60	+53	$\operatorname{RR} c$	(1)
03	NSV 17902	0.6292137	52999.563	14.15	14.8	+42	$\mathrm{RR}ab$	(2)
04	Case A-F 232	0.2887838	53000.790	15.18	15.47	+316	$\operatorname{RR} c$	
05	NSVS 4814234	0.3091869	53000.192	14.20	14.72	+3	$\operatorname{RR} c$	
06	NSVS 4819931	0.2831657	51274.504	14.0	14.3	-211	$\operatorname{RR} c$	(3)
07	NSVS 4820967	0.087382	55153.939	14.44	14.62	-33	DSCT	
08	EN Lyn	0.6251465	55153.460	13.18	13.70	-32	$\mathrm{RR}ab$	(4)
09	NSVS 4822969	0.497256	49338.200	14.30	15.46	+60	$\mathrm{RR}ab$	
10	$NSVS \ 4894895$	0.35881	55208.509	13.02	13.48	+70	$\operatorname{RR} c$	
11	BN UMa	0.39966	55208.817	13.25	13.75	+19	$\operatorname{RR} d$	(5)
12	CK UMa	0.61031	55208.840	13.82	14.35	+16	$\mathrm{RR}ab$	(6)

 Table 4. Radial Velocities and Ephemerides for the Variables

[†] Heliocentric γ radial velocity.

Notes:

(1) Period = 0.49489 days (Wils et al., 2006).

(2) Period = 0.62941 days (Kinemuchi et al., 2006).

(3) The considerable scatter appears to be caused by a Blazhko effect with a period of a few days.

(4) Period = 0.62532 days (Kinemuchi et al., 2006).

(5) McCluskey (2008) gives a fundamental period of 0.535786 days and a first overtone period of 0.39966 days. The first overtone has an amplitude of 2.48 times that of the fundamental.

(6) The adopted period is that given by Hoffleit (1972).

Acknowledgements: We are most grateful to Dr Peter Pesch for sending us the identifications of his new A-F stars in advance of publication. This research has made use of the SIMBAD database, operated at CDS Strasbourg, France. References:

Beers, T.C., Wilhelm, R., Doinidis, S.P., Mattson, C.J., 1996, *ApJS*, **103**, 433 Hoffleit, D., 1972, *IBVS*, 735

Horne, J.H., Baliunas, S.L., 1986, ApJ, 302, 757

Jurcsik, J., Benko, J.M., Szeidl, B., 2002, A&A, 390, 133

Kinemuchi, K., Smith, H.A., Wozniak, P.R., McKay, T.A., 2006, AJ, 132, 1202

Kinman, T.D., 1998, PASP, 110, 1277

Kinman, T.D., Brown, W.R, 2010, AJ, 139, 2014

Kholopov, P.N., 1982, New Catalogue of Suspected Variables, (Moscow:Nauka)

Liu, T., Janes, K.A., 1989, ApJS, 69, 593

Liu, T., Janes, K.A., 1990, ApJ, 354, 273

Liu, T., 1991, PASP, 103, 205

McCluskey, J.V., 2008, IBVS, 5825

Pesch, P., Sanduleak, N., 1989, ApJS, 71, 549

Pier, J.R., Saha, A., Kinman, T.D., 2003, IBVS, 5459

Wils, P., Lloyd, C., Bernhard, K., 2006, MNRAS, 368, 1757

Wozniak, P.R. et al., 2004, AJ, 127, 2436

^{*}This version of the paper contains corrections, and differs from the one appeared on-line originally.

IBVS 5935

Date of last modification: Thu Apr 22 14:27:16 Europe/Budapest 2010

Number 5936

Konkoly Observatory Budapest 27 April 2010 *HU ISSN 0374 - 0676*

DISCOVERY AND PHOTOMETRIC ORBITAL SOLUTION OF A NEW DOUBLE-LINED AND HIGHLY ECCENTRIC B5V ECLIPSING BINARY

SIVIERO, A.¹; DALLAPORTA, S.²; MUNARI, U.¹

¹ INAF Osservatorio Astronomico di Padova, Sede di Asiago, I-36032 Asiago (VI), Italy

² ANS Collaboration, c/o Osservatorio Astronomico, I-36032 Asiago (VI), Italy

ANS (Asiago Novae and Symbiotic stars) Collaboration is monitoring in $UBVR_{\rm C}I_{\rm C}$ bands the photometric evolution of the 80 symbiotic stars for which Henden and Munari (2000, 2001, 2006) provided calibration photometric sequences. While observing the symbiotic star AX Per, it was noted that the star *b* of the photometric sequence by Henden and Munari (2006), located at RA=01^h36^m42^s4 and DEC=+54°15′21″.0 (J2000.0) and coincident with GSC 3671.0099 (= 3UC 289-030898 in the UCAC3 catalog), was indeed variable. Henden and Munari sequences, while accurately placed on the Landolt (1992) equatorial photometric standards, have been built from only three separate epoch observations. Unknown eclipsing binaries could easily pass undetected when only few observations are available, and Henden and Munari warned against the risk.

Figure 1. The photometric observations from Table 1 are plotted together with the light-curves corresponding to the photometric orbital solution from Table 2.

$T_0(\mathrm{HJD})$	2454158.301	±	0.275	$T_2(K)$	14480	\pm	60
P(d)	4.30885	\pm	0.00001	Ω_1	9.07	\pm	0.08
Phase shift	0.911	\pm	0.064	Ω_2	8.34	\pm	0.10
e	0.284	\pm	0.002	$R_1({ m R}_{\odot})$	3.08	\pm	0.03
$\omega(\deg)$	201.67	\pm	0.95	$R_2({ m R}_\odot)$	3.41	\pm	0.05

Table 2. Photometric orbital solution for the eccentric eclipsing binary GSC 3671.0099.

After the serendipitous discovery of its variability (to which contributed the ANS Collaboration members G. Cherini, G.L. Righetti, S. Tomaselli, S. Moretti, A. Vagnozzi and S. Bacci), we started an intensive monitoring of GSC 3671.0099. During 135 different nights, we obtained 201 observations in B and 212 in V band with a 30cm telescope located in Cembra (Trento, Italy) and equipped with a SBIG ST-9 CCD camera, 512×512 array, 20 μ m pixels $\equiv 1''.72$ /pix, with a field of view of $13' \times 13'$. The B filter was from Omega and the V filter from Custom Scientific. The data are given in Table 1 (available in electronic form through the IBVS website as 5936-t1.txt). А Deeming-Fourier analysis promptly revealed the variability to be periodic with a period P=4.30885 days. Figure 1 plots the data in phase with the ephemeris for the primary minima $t_{minI} = 2454158.30072 + 4.30885 \times E$. The light-curve shows GSC 3671.0099 to be a highly eccentric eclipsing binary, with secondary eclipse occurring photometric phase 0.33. The mean brightness values away from eclipses are V = 13.046 and B - V = +0.047, and the depth of the primary eclipse is $\Delta m = 0.65$. The star does not change color during both eclipses, or away from them.

To classify the variable, a low resolution, wide wavelength range spectrum of GSC 3671.0099 was obtained with the AFOSC imager+spectrograph mounted on the Asiago 1.82m telescope. The spectrum is presented in Figure 2. Comparison with the MK spectral atlas by Yamashita et al. (1977) shows the spectrum to be that of a normal B5V star. The intrinsic color of a B5V star is $(B - V)_{\circ} = -0.16$ (Fitzgerald, 1970), and therefore the reddening affecting GSC 3671.0099 is $E_{B-V} = +0.21$. This is close to $E_{B-V} = +0.27$ generally accepted for the nearby symbiotic star AX Per (Skopal et al., 2001; Mikołajewska & Kenyon, 1992).

Figure 2. Low-resolution spectrum of the discovered new eclipsing star GSC 3671.0099. The insert highlights the wavelength range adopted by Yamashita et al. (1977) for spectral classification.

Figure 3. Observed H_{α} profiles and heliocentric radial velocities for GSC 3671.0099.

The presence of equally deep primary and secondary eclipses led to expect a doublelined nature for the newly discovered eclipsing binary. To verify this, three medium resolution spectra were obtained with the B&C spectrograph mounted on 1.22m Asiago telescope, and equipped with an ANDOR iDus 440A CCD camera, housing a EEV 42-10BU back-illuminated chip, 2048×512 pixels of 13.5 μ m size. A 1200 ln/mm grating provided a dispersion of 0.61 Å/pix and a covered wavelength range of 5640-6860 Å. On these spectra, only H α turned out to be strong enough to allow a meaningful profile to be recorded. The H α profiles for the three spectra are presented in Figure 3, were heliocentric radial velocities and orbital phases are also provided. Figure 3 gives three strong indications: the system is double-lined as expected, the velocity separation of the two components support a mass ratio very close to 1.0, the luminosities of the two components are similar. However, given the low signal-to-noise ratio of the three spectra we avoid to use them to improve the orbital solution.

The WD98k93d code (Wilson and Devinney, 1971) was used to obtain only a photometric solution of the new eclipsing binary. From the B5V spectral classification and the calibrations of Straižys and Kuriliene (1981), we adopted as starting values for the primary a temperature T_{eff} =15400 K and a mass M=4.79 M_{\odot}. The linear limb darkening coefficients were taken from Van Hamme (1993). The best fit to the light-curves was found for a mass ratio q = 0.7 and individual masses of M₁=5.62 M_{\odot} and M₂=3.93 M_{\odot}. These nicely bracket the M=4.79 M_{\odot} corresponding to B5V the spectral classification and are in visual good agreement with the radial velocity curves showed in Figure. 4. The semi-major axis is $a = a_1 + a_2 = 23.62 R_{\odot}$. The orbital inclination is not a critical parameter for deeply eclipsing binary stars. We obtained a set of different solutions for different values of the inclination and we found that i = 87.5 was the one best fitting the observed data. Finally, we assumed a periastron-syncronized rotation, with gravity brightening and albedo values equal to 1. The photometric orbital solution is given in Tab. 2. The radii of the stars are similar and close to the R=3.16 R_☉ radius listed by Straižys and Kuriliene (1981) as typical for B5V stars. They are far smaller than their Roche lobe radii, and both component stars are not deformed by binary interaction. The light-curves corresponding to the orbital solution are overplotted to the *B* and *V* data in Figure 1 and show an excellent match.

The radial velocity curves corresponding to the photometric orbital solution of Table 2 are presented in Figure 4, where the measured radial velocities from Figure 3 are overplotted. The spectrum for Sept 22, 2009, secured at photometric orbital phase 0.950, corresponds to passage at stellar conjunction, and thus fixed to -101 km/sec the barycentric velocity of GSC 3671.0099. The model radial velocity curves were scaled to this value. The radial velocities at the other two observing dates well match the computed radial velocity curves. Given the limited resolution and S/N of the spectroscopic observations, and the fact that we were able to measure just one line (H α), we do not attach more significance to this match than that of a welcome support to the photometric orbital solution. More accurate and far more numerous radial velocities, well distributed in orbital phase, are necessary to justify a combined photometric/orbital solution for this binary. The acquisition of the necessary spectroscopic observations are encouraged.

Figure 4. Radial velocity curves predicted from the orbital solution compared to observations of GSC 3671.0099 from Figure 3 (filled circles: primary component, stars: secondary component). The dashed lines marked the phases of eclipses from Figure 1.

References:

Fitzgerald, M.P., 1970, A&A, 4, 234
Henden, A., Munari, U., 2000, A&AS, 143, 343
Henden, A., Munari, U., 2001, A&A, 372, 145
Henden, A., Munari, U., 2006, A&A, 458, 339
Landolt, A. U., 1992, AJ, 104, 340
Mikołajewska, J., Kenyon, S. J., 1992, AJ, 103, 579
Skopal, A. et al., 2001, A&A, 367, 199
Straižys, V., Kuriliene, G., 1981, Ap&SS, 80, 353
Van Hamme, W., 1993, AJ, 106, 2096
Wilson, R. E., Devinney, E. J., 1971, ApJ, 166, 605
Yamashita, Y. et al., 1977, An Atlas of Representative Stellar Spectra, Univ. Tokyo Press

Number 5937

Konkoly Observatory Budapest 29 April 2010 *HU ISSN 0374 - 0676*

A NEW EPHEMERIS AND AN ORBITAL SOLUTION OF ϵ AURIGAE

CHADIMA, P.¹; HARMANEC, P.¹; YANG, S.²; BENNETT, P.D.³; BOŽIĆ, H.⁴; RUŽDJAK, D.⁴; SUDAR, D.⁴; ŠKODA, P.⁵; ŠLECHTA, M.⁵; WOLF, M.¹; LEHKÝ, M.⁶; DUBOVSKY, P.⁷

¹ Astronomical Institute of the Charles University, Faculty of Mathematics and Physics, V Holešovičkách 2, CZ-180 00 Praha 8, Czech Republic, e-mail: pavel.chadima@gmail.com

 2 Department of Physics and Astronomy, University of Victoria, P.O. Box 3055 STN CSC, Victoria, B.C., Canada V8W 3P6

³ Department of Astronomy & Physics, Saint Mary's University, Halifax, NS, B3H 3C3 Canada

 4 Hvar Observatory, Faculty of Geodesy, Kačićeva 26, 10000 Zagreb, Croatia

 5 Astronomical Institute of the Academy of Sciences, CZ-251 65 Ondřejov, Czech Republic

 6 Severní 765, CZ-500 03 Hradec Králové, Czech Republic

⁷ Vihorlat Observatory, Mierova 4, Humenné, Slovakia

The bright star ϵ Aur (7 Aur, HD 31964, HR 1605; $V_{\text{max}} = 3^{\text{m}}0$; F0Ia+?) is an unusual eclipsing binary with a very long orbital period of 27.1 years (see Guinan & Dewarf 2002 for a recent review). Its primary eclipse started in the summer 2009 and has naturally attracted the interest of many astronomers all over the world. The aim of this paper is to present our analysis of an extensive collection of archival and new photometry, and radial velocities (RVs), and provide a new, more precise ephemeris and orbital solution for the prediction of the current and future primary eclipses and a (not yet observed) secondary eclipse. Just prior to submission of this paper, Stefanik et al. (2010; hereafter ST) published their analysis of a comparable dataset for this same star. ST presented a new orbital solution and improved ephemeris for the binary but because the data analysis approach presented here is significantly different and may provide a more accurate ephemeris, we have proceeded to publish our results also.

We compiled and digitized a large collection of RVs from the literature, including ST's dataset of 515 RVs obtained at the Harvard-Smithsonian Center for Astrophysics (CfA). These data were augmented by our new series of electronic spectra from the Dominion Astrophysical Observatory (DAO) and the Ondřejov Observatory. Altogether, these RVs span an interval of 110 years. These RV observations are summarized in Table 1 and are plotted vs. time in Figure 1¹. We also collected and digitized light curves from all six previously observed eclipses. Additionally, for the 2010 eclipse, we used standard photoelectric V photometry obtained by PC, HB, DR, DS and MW at Hvar Observatory, CCD V-band photometry obtained by ML at the Hradec Králové Observatory, and visual observations by PD reduced to Johnson V magnitude. These observations are listed in Table 2 and the individual eclipses are plotted in Figure 2².

¹RVs obtained during primary eclipse were not used in our solution because they are known to deviate from purely orbital motion. These eclipse RVs are not included in Table 1 or Figure 1.

 $^{^{2}}$ Some observations were not included because of their large scatter and/or unsufficient coverage of a particular eclipse. We have also omitted extended datasets outside eclipse. These omitted data do not appear in either Table 2 or Figure 2.

from years	observatory	No.	reference
1899 - 1932	Yerkes	298	Frost et al. (1929)
1901 - 1913	$\operatorname{Postdam}$	173	Ludendorff (1924)
1928 - 1958	Mt.Wilson	53	Struve et al. $(1958)^*$
1970 - 1971	Haute Provence	18	Castelli (1977)
1989 - 2009	CfA	515	Stefanik et al. (2010)
1994 - 2009	DAO	99	this paper ^{$**$}
2006 - 2009	Ondřejov	109	this paper ^{**}

Table 1. Journal of available RVs.

* RVs computed from the mean of 6 lines — Fe II 4123, Mg II 4481, Fe II 4508, Fe II 4515, Fe II 4576 and Fe II 4629 Å.
** RVs computed from the mean of 5 lines — Si II 6347, Si II 6371, Fe II 6417, Fe II 6433 and Fe II 6456 Å.

mid-eclipse	observer	$passband^*$	No.	reference
1848	J.F.J.Schmidt	pv	39	Ludendorff (1912)
1875	$\rm J.F.J.Schmidt$	$\mathbf{p}\mathbf{v}$	69	Ludendorff (1912)
1902	J.Plassmann	$\mathbf{p}\mathbf{v}$	29	Ludendorff (1903)
1902	F.Schwab	$\mathbf{p}\mathbf{v}$	38	Ludendorff (1903)
1929	C.M.Huffer & J.Stebbins	\mathbf{pe}	98	Huffer (1932)
1956	K.Gyldenkerne	V	131	Gyldenkerne (1970)
1956	G.Larsson-Leander	V	106	Larsson-Leander (1959)
1983	J.L.Hopkins	V	130	Schmidtke (1985)
1983	S.Ingvarsson	V	119	Schmidtke (1985)
2010	Hvar Obs.	V	100	this paper
2010	M.Lehký	V	21	this paper
2010	P.Dubovský	$\operatorname{pv}(V)$	28	this paper

Table 2. Journal of photometric observations during primary eclipses.

* Abbreviations 'pv' and 'pe' stand for photovisual and photoelectric, respectively.

Here we provide more details of the new datasets. The DAO CCD spectra were obtained by SY and PDB and have a linear dispersion of 10 Å mm⁻¹. The Ondřejov CCD spectra were obtained by PH, PŠ, MŠ, MW and a few other observers and have a dispersion of 17 Å mm^{-1} . Both the DAO and Ondřejov datasets cover the spectral region around 6300–6700 Å. Their initial reductions were carried by SY and MŠ in IRAF. Rectification and RV measurements of the spectra were carried out by PC using the SPEFO (Horn et al. 1996, Skoda 1996) program's capability to compare direct and inverted line profiles. The zero point of the RV scale was determined by measurement of selected telluric lines (Horn et al. 1996). The Hvar dataset is actually UBV photometry carefully reduced to the standard system (Harmanec, Horn and Juza 1994). The Hradec Králové CCD BVRI photometry was obtained with a 2.8/29 Pentacon auto lens and SBIG ST-5C CCD camera. The visual estimates by PD, reduced to Johnson V-band magnitude scale, were carried out using a modified version of Argelander's method developed by S. Otero (Stefl et al. 2003). It is based on a cone vision and calibration technique used to minimize the effects of extinction and colour differences. We are making all new RVs and photometric datasets available with the electronic version of this paper³; the remaining RV and photometric data are already accessible from the electronic version of ST.

 $^{3}5937\text{-t1.txt} - \text{t5.txt}$

Figure 1. RVs used in the orbital solution and the derived PHOEBE fit (curve). The vertical lines denote individual eclipses (during which RVs were not used in the solution). Plotted RVs are corrected for their individual γ velocities.

We used two independent programs, PHOEBE 0.31 (Prša & Zwitter 2005) and FOTEL (Hadrava 2004), to derive new orbital solutions and formal light-curve solutions. All data sets were assigned weights inversely proportional to the squares of their rms errors derived from preliminary solutions. In FOTEL, we allowed calculations of individual systemic (γ) velocities for individual spectrographs. Since PHOEBE can treat only a single RV set, we used RVs with individual γ velocities subtracted. It turned out that the rms errors per observation for the RV sets in Table 1 were between 4 and 6 km s⁻¹. This indicates that the scatter is dominated by the intrinsic variations of the F star because the actual measurement errors are typically less than 1 km s^{-1} . The RV solutions were used to derive the orbital eccentricity (e), longitude of periastron (ω) and RV semiamplitude of a primary K_1 , and the resulting values were then held fixed in the light-curve (LC) solutions. This is because the photometric data used only covers orbital phases near primary eclipse and, therefore, these data do not constrain the eccentric orbit. LC solutions were used to derive an improved ephemeris, assuming a mass ratio fixed at unity, and inclination fixed at 87°. The derived photometric period was held fixed again for the final iteration of the orbital solution, evaluated using the unconstrained system option in PHOEBE.

The final photometric ephemerides (based exclusively on the LC solutions) are: $T_{\rm prim.min.} = {\rm HJD} \ (2455402.8 \pm 1.0) + (9890^{d}26 \pm 0^{d}62) \times E \ ({\rm PHOEBE}),$ $T_{\rm prim.min.} = {\rm HJD} \ (2455403.7 \pm 1.1) + (9890^{d}98 \pm 0^{d}50) \times E \ ({\rm FOTEL}).$

The epoch of primary minimum was allowed to vary independently for both the RV and LC solutions. We strongly prefer the more accurate value from photometry. For instance, the epoch of the primary minimum from the final RV solution in FOTEL at HJD 2455347 differs significantly from the above ephemerides. ST arrived at the same conclusions from their orbital solution; they obtained the epoch of the primary minimum at JD 2455136 (compared to their photometric minimum at JD 2455413). ST suggested that the gravitating companion responsible for the orbital motion need not be the same as the extended gaseous structure responsible for the eclipses. However, they also noted that intrinsic radial velocity variations in the F supergiant's atmosphere might bias the orbital solution, thereby accounting for the discrepancy between the photometric and RV solutions. We carried out an orbital solution in which the epoch of photometric mideclipse was held fixed and found that the resulting rms error was virtually identical to that of a solution converged with the epoch free to vary. This result strongly suggests that the discrepancy is due to intrinsic RV variations of the F supergiant and not due to asymmetry in the companion's structure.

Figure 2. Light curves from the last 6 eclipses, the current 2010 eclipse, and the PHOEBE fit (solid curve) are shown. Each measurement set is corrected to its individual 'zero level' magnitude. Mid-eclipse epochs have been centered using the new ephemeris and have been plotted on the same magnitude scale to facilitate visual comparison.

element	PHOEBE	FOTEL	Wright	$\operatorname{Stefanik}$
$T_{ m periastron}$	$2454596 \pm 23^*$	$2454622 \pm 97^*$	$2453130 \pm 280 ^{*}_{\#}$	$2454515 \pm 80^{*}_{\#}$
$T_{\rm prim.min.}$	2455402.8 ± 1.0	2455403.7 ± 1.1	$2455323_{\#}$	2455413.8 ± 4.8
$T_{\rm sec.min.}$	$2451681 \pm 120^{*}_{+}$	$2451610 \pm 180^{*}_{+}$	_	—
P (d)	9890.26 ± 0.62	9890.98 ± 0.50	$9890 \ (assumed)$	9896.0 ± 1.6
e	0.256 ± 0.012	0.249 ± 0.015	0.200 ± 0.034	0.227 ± 0.011
ω (°)	41.2 ± 3.1	43.3 ± 4.0	$346{\pm}11$	39.2 ± 3.4
$K_1 \; ({\rm km \; s^{-1}})$	14.40 ± 0.38	14.30 ± 0.25	15.00 ± 0.58	13.84 ± 0.23

Table 3. New RV and LC solutions compared to those of Wright and Stefanik.

* Errors from RV solutions. + Errors are semianalytical estimates. # Epochs recalculated for the authors' original periods.

2.8 3.2 3.4 3.6 3.8 4 -0.1 -0.05 0 0.05 0.1 orbital phase

Figure 3. A phase plot of all RVs used in the orbital solution, and the derived PHOEBE fit (solid curve). Plotted RVs have been corrected for their individual γ velocities. Note that PHOEBE also accounts for rotational effect during eclipse.

Figure 4. A phase plot of all photometric observations used in the ephemeris calculation. Each measurement set has been corrected for individual 'zero level' magnitude.

We present our orbital solutions in Table 3, along with those of Wright (1970) and ST. A phase plot, using our new ephemeris from PHOEBE, of all RVs and photometry is shown in Figure 3. Note that our new solutions, obtained with two independent programs, agree within their respective errors. Our ephemerides predict the next primary mid-eclipse will occur on July 25-26, 2010, and the next secondary mid-eclipse in 2027. The previous secondary eclipse should have occurred in 2000. When compared to Wright, we obtain a significantly different orientation of the orbit in space (longitude of periastron ω), a higher eccentricity (e), and a different epoch of the primary minimum. Our results are much closer to the ST solution, but we still disagree with ST by more than the estimated errors. At the request of the referee, we mention that the resulting relative photometric radii from the LC solutions were 0.045 and 0.216 from PHOEBE, and 0.058 and 0.218 from FOTEL. We caution the reader, however, not to give these values much weight since neither program can treat disks; both assume two stellar bodies.

Two important conclusions about ϵ Aur, which disagree with the generally accepted model, follow from our study:

1. Inspection of Figs. 2 and 3 shows that the idea of a central brightening inside the eclipse, interpreted as evidence of a hole in the disk (see, e.g., Carroll et al. 1991), should be reconsidered. Note that the 'flat' part of each recorded eclipse is different and what is seen are most probably the physical light variations, similar to the out-of-eclipse

variability. Of course, the final conclusion will come from a detailed analysis of colour changes and other types of observations and from the photometry secured this summer.

2. The right panel of Figure 3 shows that claims of variability in the width and duration of individual observed eclipses, which have been used to infer a decline in the primary's radius over time (Saito 1986), are not supported by the data. It is apparent that the cyclic but irregular physical light variations affected the different eclipses differently. It will be difficult to obtain a 'pure' eclipsing light curve without a better understanding and quantitative description of these light changes.

Acknowledgements. We acknowledge the use of the programs PHOEBE and FOTEL made available by their authors Drs. Andrej Prša and Petr Hadrava. We profited from the use of the bibliography maintained by the NASA/ADS system and the CDS in Strasbourg. We would like to express our admire and gratitude to our predecessors who carefully accumulated a large body of observational data used in this study. Our special thanks go to Mr. Jeff Hopkins for his observations and the creation of the web page with detailed and updated information on ϵ Aur (www.hposoft.com/Campaign09.html). Drs. A. Kawka and P. Mayer and students E. Arazimová, B. Kučerová and J. Polster obtained a few Ondřejov spectra. ML acknowledges the use of a telescope with a CCD camera of the Hradec Králové Observatory and Astronomical Society of Hradec Králové and the help of Dr. M. Brož with the reductions. Our thanks are also due to Dr. Martin Šolc for his help with a translation of papers written in German. The Czech authors were supported by the grants 205/06/0304, 205/08/H005, and P209/10/0715 of the Czech Science Foundation and also from the research programs AV0Z10030501 and MSM0021620860.

References:

Carroll, S.M. et al., 1991, ApJ, 367, 278. Castelli, F., 1977, ApSS, 49, 179. Frost, E.B. et al., 1929, Publ. Yerkes Obs., 7, 81. Guinan, E.F., Dewarf, L.E., 2002, ASP Conf. Series, 279, 121. Gyldenkerne, K., 1970, Vistas in Astronomy, 12, 199. Hadrava, P., 2004, Publications Astron. Inst. Czechosl. Acad. Sci., 92, 1. Harmanec, P., Horn, J., Juza, K., 1994, A&AS, 104, 121. Horn, J. et al., 1996, A&A, **309**, 521. Huffer, C.M., 1932, ApJ, 76, 1. Larsson-Leander, G., 1959, Arkiv Astron., 2, 283. Ludendorff, H., 1903, AN, 164, 81. Ludendorff, H., 1912, AN, **192**, 389. Ludendorff, H., 1924, Sitzungsber. der Preuss. Akad. der Wissensch., 49 Prša, A., Zwitter, T., 2005, ApJ, 628, 426. Saito, M., Kitamura, M., 1986, Astrophys. and Space Science, 122, 387. Schmidtke, P.C., 1985, eepa.rept, 67. http://www.hposoft.com/Astro/PEP/EAur82-88.html Škoda, P., 1996, ASP Conf. Series, 101, 187. Stefanik, R.P. et al., 2010, AJ, 139, 1254. Štefl, S. et al., 2003, A&A, **402**, 253. Struve, O. et al., 1958, ApJ, **128**, 287. Wright, K.O., 1970, Vistas in Astronomy, 12, 147.

^{*}This version of the paper contains corrections, and differs from the one appeared on-line originally. Date of last modification: Sat May 1 22:27:41 MEST 2010

Number 5938

Konkoly Observatory Budapest 14 May 2010 *HU ISSN 0374 - 0676*

TIMES OF MINIMA FOR ECLIPSING BINARIES 2009

DVORAK, S. W.

Rolling Hills Observatory, Clermont, FL USA; e-mail: sdvorak@rollinghillsobs.org

Observatory and telescope:					
25cm catadioptric telescope at Rolling Hills Observatory (RHO)					
Detector:	SBIG ST-9XE, Peltier cooling, Kodak KAF-0261 chip, $18'.5 \times 18'.5$ FOV, 512×512 pixels.				

Method of data reduction:

Reduction of the CCD frames was done with sextractor and custom-written applications $^{1}\,.$

Method of minimum determination:

The heliocentric times of minima and the error estimates were computed using the Kwee and van Woerden method as implemented in a custom-written C application. A floor of 0.0001d (~8 seconds) was applied to the error estimates to allow for the error contribution due to barycentric variation, and as somewhat arbitrary allowance for timing errors and the overly optimistic error estimates of the Kwee and van Woerden method.

Times of n	ninima:				
Star name	Time of min.	Error	Type	Filter	Rem.
	${ m HJD}~2400000+$				
BX And	54842.5615	0.0001	Ι	V	
	54860.5621	0.0001	II	V	
CN And	54848.5527	0.0001	II	V	
V0376 And	54846.6108	0.0001	II	V	
V0417 Aur	54866.6169	0.0001	II	B	
HL Aur	54901.5814	0.0001	Ι	V	
HW Aur	54893.6411	0.0001	Ι	V	
IU Aur	54876.6797	0.0001	Ι	V	
ZZ Aur	54869.6709	0.0001	Ι	V	
AC Boo	54862.9405	0.0001	II	V	
UW Boo	54898.7873	0.0002	II	V	
AY Cam	54899.6132	0.0002	II	V	
AZ Cam	54888.6301	0.0001	Ι	V	
CD Cam	54883.6928	0.0001	II	V	
	54896.6875	0.0001	II	V	

¹sextractor is written by Emmanuel Bertin and is available from http://terapix.iap.fr/

Times of m	inima:				
Star name	Time of min.	Error	Type	Filter	Rem.
	HJD 2400000+				
DN Cam	54867.6387	0.0001	II	V	
	54886.5728	0.0001	II	V	
FN Cam	54895.6165	0.0001	II	V	
EG Cep	54915.9218	0.0001	Ι	V	
AK CMi	54853.6479	0.0001	Ι	V	
BF CMi	54868.8339	0.0003	Ι	V	
UZ CMi	54925.6602	0.0001	II	V	
XZ CMi	54894.5864	0.0001	Ι	V	
AH Cnc	54946.6421	0.0001	I?	V	
W Crv	54934.690	0.001	Ι	V	
BI CVn	54871.8029	0.0001	Ι	V	
DF CVn	54950.6199	0.0001	Ι	V	
V0836 Cvg	55010.8009	0.0001	Ι	V	
AR Dra	54886.6715	0.0001	Ī	\dot{V}	
BH Dra	54944 7758	0.0001	Ī	\dot{V}	
BV Dra	54898 7971	0.0001	Î	, V	
BW Dra	54897 8187	0.0001	T	V	
FU Dra	54901 7606	0.0001	T	V	
	54937 8016	0.0001	II	V V	
UZ Dra	54962 8256	0.0001	II	V V	
AF Com	54857 5408	0.0001	T	V V	
FC Com	54057.5430	0.0001	T T	V V	
CX Com	54070.5707	0.0001	I TT	V V	
UD Com	54072.3017	0.0001	11 T	V V	
OW Carr	54654.5594 E4870.690	0.0001	L T		
QW Gem	54670.020 E404E 7046	0.002	L T		
LI Her	04940.7940 E4026 8E0E	0.0001	L T		
SZ ner	54920.8595	0.0001	I T		
UA Her	54937.8978	0.0001		V	
V0728 Her	54897.9138	0.0001		V	
	54915.8265	0.0001		B	
	54981.8063	0.0002		V	
	54982.7488	0.0001		V	
V0842 Her	55010.6476	0.0001	l	V	
V0899 Her	54899.8229	0.0002	l	V	
Z Lep	54868.5639	0.0001	l	V	
VW LMi	54871.6723	0.0001	l	V	
RY Lyn	54945.6002	0.0001	Ι	V	
SW Lyn	54902.6246	0.0001	Ι	V	
UV Lyn	54887.6127	0.0001	Ι	V	
V0714 Mon	54841.6094	0.0003	II	V	
ER Ori	54842.6693	0.0001	II	V	
V0647 Ori	54854.6654	0.0001	II	V	
V1363 Ori	54872.6159	0.0001	Ι	V	
IK Per	54879.5353	0.0001	Ι	V	
IQ Per	54868.5899	0.0001	Ι	B	
NZ Per	54849.5927	0.0001	Ι	V	

m.

C

Times of minima:					
Star name	Time of min.	Error	Type	Filter	Rem.
	HJD 2400000+				
RV Per	54870.6687	0.0001	Ι	V	
V0432 Per	54841.6843	0.0001	Ι	V	
	54871.5814	0.0001	Ι	V	
UZ Pup	54863.6964	0.0001	II	V	
AC Tau	54834.7884	0.001	II	V	
AH Tau	54848.6737	0.0001	Ι	V	
CT Tau	54880.6329	0.0001	Ι	V	
WY Tau	54898.5490	0.0002	Ι	V	
V Tri	54867.5444	0.0001	Ι	V	
AA UMa	54854.7488	0.0001	Ι	V	
AW UMa	54921.7947	0.0002	Ι	V	
II UMa	54949.6403	0.0001	Π	V	
KM UMa	54901.6523	0.0001	Ι	V	
UY UMa	54880.8244	0.0001	Ι	V	
	54886.8404	0.0001	Ι	V	
VV UMa	54870.8314	0.0002	Ι	V	
HW Vir	54841.8577	0.0001	II	V	
	54841.9159	0.0001	Ι	V	
	54841.9743	0.0001	II	V	
HT Vir	54909.8015	0.0001	Ι	V	
NN Vir	54926.821	0.001	Ι	V	
VV Vir	54920.8037	0.0001	Ι	V	

Reference:

Kwee, K. K. & van Woerden, H., 1956, $BAN,\,\mathbf{12},\,327$
Number 5939

Konkoly Observatory Budapest 17 May 2010 *HU ISSN 0374 - 0676*

OPTICAL PHOTOMETRY OF PARSAMIAN 21

SEMKOV, E. H.; PENEVA, S. P.

Institute of Astronomy, Bulgarian Academy of Sciences, 72, Tsarigradsko Shose blvd., BG-1784 Sofia, Bulgaria, e-mail: esemkov@astro.bas.bg, speneva@astro.bas.bg,

One of the most impressive events during the early stages of stellar evolution is the FU Orionis (FUors) outbursts (Herbig, 1977). The main characteristics of FUors are an increase in optical brightness of about 4-5 mag, a F-G supergiant spectrum with broad blueshifted Balmer lines, strong infrared excess, and connection with reflection nebulae. The light curves of FUors are characterized by a rapid rise in brightness to the maximal light (outburst) followed by a relatively slow decrease in brightness after the outburst (Clarke et al., 2005). According to Hartmann & Kenyon (1985) the FUor outburst is a result of a major increase of accretion from a circumstellar disk on the stellar surface.

Parsamian 21 is a young stellar object surrounded by an extended reflection nebula, located in a small dark cloud in Aquila. The object was discovered on the plates from the Palomar Observatory Sky Survey and included in the catalog of cometary nebulae (Parsamian, 1965). On the basis of optical spectroscopic and far-infrared properties Parsamian 21 was classified as a FUor object (Staude & Neckel, 1992). Results supporting the FUor nature of Parsamian 21 were published in Kóspál et al. (2008). Parsamian 21 was a subject of many studies, but very few optical photometric data have been published to the present (Parsamian & Petrosian, 1978, Neckel & Staude, 1984). Since no outburst was observed at optical wavelengths in most of the studies Parsamian 21 is classified as FUor-like object (Greene et al., 2008).

In this paper we present BVRI photometric data of Parsamian 21 obtained in the period Feb. 2003 - Jul. 2009. Our observations were performed with two telescopes: the 2-m RCC telescope of the National Astronomical Observatory Rozhen (Bulgaria) and the 1.3-m RC telescope of the Skinakas Observatory¹ of the Institute of Astronomy, University of Crete (Greece). Three different CCD cameras were used during the period of our photometric observations. The technical parameters and chip specifications for the CCD cameras used are summarized in Table 1. All frames were taken through a standard Johnson-Cousins set of filters. Aperture photometry was performed using IDL DAOPHOT routines. The procedure used calculate the centroid of stellar object and the mean value of the background around it. The digitized plates from the Palomar Schmidt telescope, available via the website of the Space Telescope Science Institute, are used, too.

In order to facilitate transformation from instrumental measurements to the standard system a sequence of sixteen comparison stars in the field of Parsamian 21 was calibrated in BVRI bands. Calibrations were made with the 1.3 m RC telescope during nine clear

¹Skinakas Observatory is a collaborative project of the University of Crete, the Foundation for Research and Technology - Hellas, and the Max-Planck-Institut für Extraterrestrische Physik.

Figure 1. A finding chart of the comparison sequence in the field of Parsamian 21

Table 1. CCD cameras and chip specifications

Telescope	CCD type	Size	Pixel size	Field	RON
2-m RCC	Photometrics AT200	1024×1024	$24 \mu { m m}$	$5'.6 \times 5'.6$	3.9ADU/rms
1.3-m RC	Photometrics CH360	1024×1024	$24 \mu { m m}$	8'.5 imes 8'.5	2.6ADU/rms
1.3-m RC	ANDOR DZ436-BV	2048×2048	$13.5 \mu { m m}$	$9'.6 \times 9'.6$	$5.3 \mathrm{ADU/rms}$

nights in 2007, 2008 and 2009. Standard stars from Landolt (1992) were used as a reference. The finding chart of the comparison sequence is presented in Fig. 1. The chart is retrieved from the STScI Digitized Sky Survey Second Generation Red. The field is $8'.0 \times 8'.0$, centered on Parsamian 21. North is at the top and east to the left. Table 2 contains the coordinates and the photometric data for the *BVRI* comparison sequence. The corresponding mean errors of the mean are listed, too. The comparison sequence contains stars both redder and bluer than Parsamian 21, labeled from A to P in order of their V-band magnitude.

The results from our CCD photometric observations are given in Table 3. The table contains Date, the Julian Date, the *Ic*, *Rc*, *V* and *B* magnitudes. In order to minimize the light from the surrounding nebula we used a 2".5 radius aperture. The background is taken between radii 10" and 12".5. The typical seeing during our observations vary between 1".5 and 2". The typical instrumental errors from CCD photometry are in the range 0^{m} 01- 0^{m} 02 for *I* and *R*, 0^{m} 03- 0^{m} 05 for *V* and 0^{m} 05- 0^{m} 09 for *B* filter. Aperture photometry of the digitized plates from POSS-I, POSS-II and Quick-V sky surveys was performed with the same parameters as for the CCD observations. The *BVRI* comparison sequence reported in the present paper was used as a reference. The results of estimating magnitudes of the Palomar photographic plates are summarized in Table 4. The light curves of Parsamian 21 from all observations are plotted on Fig. 2. The photometric data published by Parsamian & Petrosian (1978) and Neckel & Staude (1984) are not consistent with our observations due to the different parameters of measurements (aperture radius and background position).

Figure 2. B/pg, V, R and I light curves of Parsamian 21.

Our CCD photometric observations of Parsamian 21 in the period 2003 - 2009 show that the brightness of the star is almost steady. We observed only low amplitude fluctuations of about $0^{m}07$ (I) around the middle values. Comparing our CCD photometric observations with the data from Palomar plates showed no significant change in the brightness of the star for a very long period (57 years). Due to the small number of objects known as FUors their classification is very difficult. The shape of observed light curves of FUors may vary considerably from object to object. The results from our study suggest that the photometric behaviour of Parsamian 21 appears different from the well studied FUors (FU Ori, V1515 Cyg and V1057 Cyg). Another object with a similar photometric behaviour is the classical FUor star V1735 Cyg (Peneva et al., 2009). We conclude that Parsamian 21 is probably a member of the group of long-lived FUors and that the time-scale of the FUor phenomenon in some cases is much longer than that predicted in

Table 2. VIcRcB photometric data for the comparison sequence

Star	R.A.(2000)	DEC.(2000)	V	σ_V	Ic	σ_I	Rc	σ_R	В	σ_B
А	$19:\!28:\!51.92$	09:40:45.3	14.418	0.020	13.210	0.023	13.838	0.027	15.411	0.047
В	$19:\!28:\!57.51$	$09{:}41{:}15.3$	14.474	0.028	12.569	0.026	13.500	0.037	16.229	0.064
\mathbf{C}	$19:\!28:\!59.17$	09:36:00.8	14.969	0.039	12.422	0.040	13.676	0.044	17.160	0.021
D	$19:\!29:\!01.43$	09:37:26.4	15.138	0.015	14.071	0.016	14.606	0.025	16.049	0.035
\mathbf{E}	$19:\!29:\!08.80$	$09:\!38:\!37.7$	15.402	0.043	12.514	0.043	14.008	0.045	17.730	0.044
\mathbf{F}	$19:\!28:\!52.86$	$09:\!38:\!51.3$	15.450	0.036	13.172	0.035	14.270	0.042	17.449	0.053
G	$19:\!28:\!55.53$	09:40:02.8	16.325	0.028	14.826	0.040	15.596	0.033	17.546	0.040
Η	$19:\!28:\!57.29$	09:39:25.5	16.536	0.035	14.560	0.044	15.519	0.045	18.239	0.080
Ι	$19:\!28:\!57.77$	09:39:10.3	16.698	0.051	15.158	0.033	15.920	0.035	18.044	0.175
J	$19:\!28:\!54.35$	09:38:37.2	16.934	0.041	14.821	0.023	15.843	0.049	18.700	0.207
Κ	$19:\!29:\!01.73$	09:40:26.8	16.943	0.028	14.680	0.039	15.778	0.042	18.911	0.114
\mathbf{L}	$19:\!29:\!04.29$	09:37:07.1	17.429	0.026	15.300	0.043	16.366	0.045	19.247	0.074
Μ	$19:\!29:\!05.72$	09:37:08.1	17.560	0.056	15.386	0.037	16.461	0.048	19.472	0.300
Ν	$19:\!29:\!02.01$	09:40:44.9	17.746	0.042	16.270	0.062	17.045	0.055	18.891	0.094
Ο	$19:\!29:\!04.25$	$09{:}40{:}01.5$	17.937	0.063	16.535	0.058	17.157	0.073	19.346	0.149
Ρ	$19:\!29:\!03.50$	$09{:}40{:}15.6$	18.311	0.038	16.225	0.099	17.246	0.039	20.069	0.217

previous studies.

Date	J.D.(245)	Ic	Rc	V	B	CCD	Tel.
$2003 { m \ Feb} { m \ } 27$	2698.614	12.69	13.61	14.41	15.85	Photometrics	2m RCC
2006 Jul 21	3938.353	12.74	13.64	14.47	15.75	Photometrics	2m RCC
2007 Jun 26	4278.322	12.78	_	14.51	15.76	Photometrics	1.3m RC
2007 Jul 03	4285.313	12.76	13.67	14.50	15.79	Photometrics	1.3m RC
2008 Jun 28	4646.310	12.68	13.57	14.42	—	ANDOR	$1.3 \mathrm{m} \mathrm{RC}$
2008 Jul 05	4653.313	12.68	13.56	14.40	_	ANDOR	$1.3 \mathrm{m} \mathrm{RC}$
2008 Jul 06	4654.325	12.67	13.56	14.41	—	ANDOR	$1.3 \mathrm{m} \mathrm{RC}$
$2008{\rm Jul}24$	4672.316	12.63	13.51	14.37	_	ANDOR	$1.3 \mathrm{m} \mathrm{RC}$
2008 Jul 25	4673.310	12.63	13.52	14.37	_	ANDOR	$1.3 \mathrm{m} \mathrm{RC}$
$2009 { m Jun} 14$	4997.515	12.74	13.58	14.40	_	ANDOR	$1.3 \mathrm{m} \mathrm{RC}$
2009 Jun 26	5009.503	12.74	13.59	14.43	15.75	ANDOR	$1.3 \mathrm{m} \mathrm{RC}$
2009 Jul 01	5014.502	12.76	13.62	14.45	15.77	ANDOR	$1.3 \mathrm{m} \mathrm{RC}$
2009 Jul 31	5044.309	12.71	13.49	14.45	15.77	ANDOR	$1.3 \mathrm{m} \mathrm{RC}$

Table 3. CCD photometric observations of Parsamian 21

Table 4. Photographic observations of Parsamian 21 from the Palomar Schmidt plates

Plate No.	Band	Date	J.D. (24)	Magnitude
$506\mathrm{E}$	R	1952 May 25	34742.016	$13.49{\pm}0.09$
506O	pg	$1952 { m May} 25$	34742.032	$15.80 {\pm} 0.10$
573V	V	1983 Aug 11	45557.972	$14.17 {\pm} 0.09$
1333	В	1987 Jul 30	47006.938	$15.65 {\pm} 0.10$
3991	Ι	1988 Aug 19	47393.032	$12.65 {\pm} 0.08$
4712	\mathbf{R}	1991 Jul 17	48455.032	$13.53 {\pm} 0.08$

Acknowledgements: This work was partly supported by grants DO 02-85, DO 02-273 and DO 02-362 of the National Science Fund of the Ministry of Education, Youth and Science, Bulgaria. The authors thank the Director of Skinakas Observatory Prof. I. Papamastorakis and Prof. I. Papadakis for the telescope time. The Digitized Sky Survey was produced at the Space Telescope Science Institute under U.S. Government grant NAG W-2166. The images of these surveys are based on photographic data obtained using the Oschin Schmidt Telescope on Palomar Mountain and the UK Schmidt Telescope. The plates were processed into the present compressed digital form with the permission of these institutions. This research has made use of NASA's Astrophysics Data System.

References:

Clarke, C., Lodato, G., Melnikov, S. Y., Ibrahimov, M. A., 2005, MNRAS, 361, 942

- Greene, T. P., Aspin, C., Reipurth, B., 2008, AJ, 135, 1421
- Hartmann, L., Kenyon, S. J., 1985, ApJ, 299, 462
- Herbig, G. H., 1977, ApJ, **217**, 693
- Kóspál, Á., Ábrahám, P., Apai, D., Ardila, D. R., Grady, C. A., Henning, Th., Juhász, A., Miller, D. W., Moór, A., 2008, MNRAS, 383, 1015

Landolt, A. U., 1992, AJ, **104**, 340

Neckel, T., Staude, H. J., 1984, A&A, 131, 200

Parsamian, E. S., 1965, Izv. Akad. Nauk Armyan. SSR., Ser. Fiz.-Math., 18, 146

Parsamian, E. S., Petrosian, V. M., 1978, Astrofizika, 14, 521

Peneva, S. P., Semkov, E. H., Stavrev, K. Y., 2009, Ap&SS, 323, 329,

Staude, H. J., Neckel, Th., 1992, ApJ, 400, 556

Number 5940

Konkoly Observatory Budapest 26 May 2010 *HU ISSN 0374 - 0676*

THE HIGHLY ACTIVE LOW-MASS ECLIPSING BINARY BS UMa

WILS, PATRICK¹; LAMPENS, PATRICIA²; VAN CAUTEREN, PAUL^{1,3}; SOUTHWORTH, JOHN⁴

¹ Vereniging Voor Sterrenkunde, Belgium; e-mail: patrickwils@yahoo.com

² Koninklijke Sterrenwacht, Brussel, Belgium; email: patricia.lampensComa.be

³ Beersel Hills Observatory, Beersel, Belgium

⁴ Keele University, Newcastle-under-Lyme, UK; email: jkt@astro.keele.ac.uk

BS UMa was found to be a short-period eclipsing binary by Meinunger and Wenzel (1968). They gave a period of 0.437016 days, but later on this turned out to be a spurious period. The correct period of 0.34951 days was given by Diethelm (2009). Lampens et al. (2010) noted that the given ephemeris is in fact that for the secondary minimum.

Figure 1. Spectrum of BS UMa taken on JD 2454512.5 with WHT/ISIS, total exposure time 1500 seconds. The spectrum was flux-calibrated with SP0946+139 and telluric lines were removed. For details of the data reduction method see Southworth et al. (2007a & 2007b).

From a simple black body fit to the available photometry in the literature (2MASS, SDSS, CMC, GALEX) and the low-resolution spectrum discussed below, a temperature of $T_1 = 3800 \pm 100K$ can be estimated for the brightest star in the BS UMa system, making it of late K to early M spectral type. Interstellar extinction has been neglected in this, as E(B - V) = 0.018 in the direction of the object (Schlegel et al., 1998). BS UMa is also known as the X-ray source 1RXS J112540.3+423449, indicating chromospheric activity.

Low-mass eclipsing binaries are of interest because they can provide the necessary physical parameters to test the evolutionary models for the low-mass main-sequence stars. Until recently very few were known (see e.g. Dimitrov & Kjurkchieva, 2010). Therefore BS UMa was chosen as a target for further study.

A low-resolution spectrum was taken with the ISIS double-beam spectrograph on the William Herschel Telescope (WHT) at La Palma in February 2008 (see Fig. 1). It shows the Balmer lines in emission, another indication of chromospheric activity.

BS UMa was observed photometrically on 5 nights in April 2009 and on 4 nights in April 2010 at the Humain site of the Royal Observatory in Belgium. A 40-cm Newtonian was used, equipped with an SBIG ST-10XME CCD camera and B and V filters. GSC 3059-1349, with $V = 11.50 \pm 0.11$ and $B - V = 0.62 \pm 0.18$ (derived from Tycho photometry, Høg et al., 2000), was used as comparison star and GSC 3059-1419 as check star. Image processing and photometric analysis were done using Mira AP Pro from Mirametrics Inc. All the photometric data obtained for this study are available as electronic tables (5940-t3.txt and 5940-t4.txt) from the IBVS website.

The light curve obtained during 2009 already showed small changes after three weeks. But as shown in Fig. 2, the light curve obtained in 2010 differs dramatically from the one obtained the year before. Consequently, BS UMa is a highly active system with rapidly changing spots significantly altering the shape of the light curve.

Figure 2. Light curve of BS UMa. B (bottom) and V (top) data from April 2009 are given as filled circles, whereas V data obtained in April 2010 are shown as open circles. The full lines show the model light curves discussed in the text.

Because of this changing aspect of the light curve, several models involving dark spots can explain the light curve equally well. Radial velocity data will be needed, but also more photometry to establish a "quiescent" light curve. Because of the symmetric nondistorted shape of the light curve obtained by SuperWASP (Norton et al., 2007) in 2004 (see Fig. 3), it may be considered to be close to such a quiescent state. Calculations done using Phoebe (Prša & Zwitter, 2005) resulted in the following model parameters (with formal uncertainties): $i = 72.5 \pm 0.2^{\circ}$, $T_2 = 3550 \pm 10K$, $\Omega_1 = 4.50 \pm 0.03$, $\Omega_2 = 3.85 \pm 0.02$. Lacking radial velocity data, a mass ratio of 1 was assumed. Building further on this configuration, one spot on each star was introduced to separately model the distorted light curves seen in 2009 and 2010. Because of the uncertainty already present in the quiescent model, on which the models with spots are heavily dependent, only a rough fit was aimed for, and no attempt was made to fit the observations exactly. This would

Table 1: Spot parameters. Coordinates and radii are expressed in degrees.

Year	Star	Colatitude	Longitude	Radius	Temperature factor
2009	Primary	80	285	25	0.80
	Secondary	40	205	60	0.95
2010	Primary	30	160	25	0.65
	Secondary	60	235	20	0.75

probably require a larger number of spots and would likely not lead to a unique solution. Such a detailed model would also fairly soon be made oblivious by the rapid evolution of the spots. The spot parameters from the simple model are listed in Table 1. As can be expected, these spots differ wildly between 2009 and 2010. Unfortunately nothing can be said about the intermediate evolution between the two snapshots.

Figure 3. Phase plot of BS UMa from SuperWASP data obtained during May-July 2004.

The secondary in this model is fairly close to filling its Roche lobe (fill-out factor = -0.2). With the fairly limited data set at hand, and depending on the mass ratio, it cannot be entirely excluded that the system is semi-detached, or that this is the case at least part of the time, depending on the activity. Some of the distortions in the light curve could then be explained by gas streams from the secondary impacting on the primary and thereby creating a hot spot, such as in V361 Lyr (Andronov & Richter, 1987) and DK CVn (Terrell et al., 2005).

The times of minimum obtained during 2009 were published by Lampens et al. (2010). Those obtained this year are given in Table 2 (all were obtained from V data only). Together with the times of minimum listed in the O - C Gateway since 1999, a new ephemeris for the primary minimum could be calculated as follows:

HJD Min =
$$24553134.7088(5) + 0^{d}34950987(9) \times E$$
 (1)

Except for one point, all available times deviate less than 0.004 days from this ephemeris. This is well within the accuracy of the observed times, taking into account the varying shape of the light curve. From the available data, there is therefore no indication of a changing period at present. The O - C values in Table 2 correspond to the ephemeris above.

HJD - 2400000	Uncertainty	Type	O - C
55292.4086	0.0004	II	0.0006
55292.5810	0.0003	Ι	-0.0017
55293.4569	0.0004	II	0.0004
55303.4158	0.0002	Ι	-0.0017
55305.3399	0.0005	II	0.0001
55305.5130	0.0002	Ι	-0.0016

Table 2: New times of minimum of BS UMa.

BS UMa is a highly interesting object worthy of further study.

Acknowledgements:

PL thanks the directors of the Royal Observatory of Belgium (ROB) for purchasing and operating an optical telescope at the radio-astronomy site of Humain under the project name HOACS (Humain Optical Observatory for Astrophysics of Coeval Stars). The HOACS data were acquired with equipment purchased thanks to a research fund financed by the Belgian National Lottery (1999).

This study is based in part on observations made with the William Herschel Telescope, which is operated on the island of La Palma by the Isaac Newton Group in the Spanish Observatorio del Roque de los Muchachos (ORM) of the Instituto de Astrofýsica de Canarias (IAC).

This work has made use of the SIMBAD and VizieR databases operated at CDS, Strasbourg, France and of the *O-C Gateway*, created by A. Paschke and L. Brát. We have used data from the WASP public archive in this research. The WASP consortium comprises of the University of Cambridge, Keele University, University of Leicester, The Open University, The Queen's University Belfast, St. Andrews University and the Isaac Newton Group. Funding for WASP comes from the consortium universities and from the UK's Science and Technology Facilities Council.

PVC is grateful for support from Baader Planetarium.

References:

Andronov, I.L., Richter, G.A., 1987, Astron. Nachrichten, 308, 235

- Diethelm, R., 2009, IBVS, 5894
- Dimitrov, D., Kjurkchieva, D., 2010, *MNRAS*, to be published (arXiv:1005.0260v1 [astro-ph.SR])
- Høg, E., Fabricius, C., Makarov, V.V., et al., 2000, A&A, 355, L27
- Lampens, P., Kleidis, S., Van Cauteren, P., Hambsch, F.-J., Vanleenhove, M., Dufoer, S., 2010, *IBVS*, 5933
- Meinunger, L., Wenzel, W., 1968, Veröff. Sternwarte Sonneberg, 7, 385
- Norton, A.J., Wheatley, P.J., West, R.G. et al., 2007, A&A, 467, 785
- Prša, A., Zwitter, T., 2005, ApJ, 628, 426
- Schlegel, D.J., Finkbeiner, D.P., Davis, M., 1998, ApJ, 500, 525
- Southworth, J., Gänsicke, B.T., Marsh, T.R., de Martino, D., Aungwerojwit, A., 2007a, MNRAS, **378**, 635
- Southworth, J., Marsh, T.R., Gänsicke, B.T., Aungwerojwit, A., Hakala, P., de Martino, D., Lehto, H., 2007b, MNRAS, **382**, 1145
- Terrell, D., Koff, R.A., Henden, A.A., Hager, T., Kaiser, D.H., Howell, J.A., Gross, J., Cooney, W.R., Munari, U., Siviero, A., 2005, *IBVS*, 5642

Number 5941

Konkoly Observatory Budapest 4 June 2010 HU ISSN 0374 – 0676

BAV-RESULTS OF OBSERVATIONS - PHOTOELECTRIC MINIMA OF SELECTED ECLIPSING BINARIES AND MAXIMA OF PULSATING STARS (BAV MITTEILUNGEN NO. 212)

HÜBSCHER, JOACHIM; LEHMANN, PETER B.; MONNINGER, GEROLD; STEINBACH, HANS-MEREYNTJE; WALTER, FRANK

Bundesdeutsche Arbeitsgemeinschaft für Veränderliche Sterne e.V. (BAV), Munsterdamm 90, 12169 Berlin, Germany, www.bav-astro.de, publikat@bav-astro.de

In this 66th compilation of BAV results, photoelectric observations obtained in the years 2009 and 2010 are presented on 452 variable stars giving 838 minima on eclipsing binaries and maxima on pulsating stars. All moments of minima and maxima are heliocentric. The errors are tabulated in column ' \pm '. The values in column 'O - C' are determined without incorporation of nonlinear terms. The references are given in the section 'Remarks'. All information about photometers and filters are specified in the column 'Rem'. The observations were made at private observatories. The photoelectric measurements and all the light curves with evaluations can be obtained from the office of the BAV for inspection.

_	Table	- 1. 111	nes or mi		cnp	sing binaries			
Variable	HJD 24	±	Obs	O - C		Bibliography	Fil	n	Rem
RT And	55066.3799	.0021	PGL	+0.0422		GCVS 2009	V	735	16)
	55097.5110	.0008	AG	+0.0417	\mathbf{s}	GCVS 2009	-Ir	55	17)
TT And	55039.4804	.0003	MS FR	+0.0037		GCVS 2009	0	480	9)
WZ And	55154.5407	.0008	AG	+0.0032	\mathbf{s}	GCVS 2009	-Ir	77	17)
AA And	55039.5145	.0004	AG	-0.0036		GCVS 2009	-Ir	31	17)
	55141.4409	.0004	AG	-0.0027		GCVS 2009	-Ir	46	17)
AB And	55057.4429	.0035	PGL	-0.0046	\mathbf{s}	GCVS 2009	V	125	16)
	55114.3656	.0035	PGL	-0.0012		GCVS 2009	V	122	16)
AD And	55141.4827	.0003	AG	-0.0517		GCVS 2009	-Ir	50	17)
	55154.3025	.0010	JU	-0.0525		GCVS 2009	0	81	7)
BD And	55039.4130	.0007	AG	-0.0121		GCVS 2009	-Ir	31	17)
	55071.3532	.0001	MS FR	-0.0124		GCVS 2009	0	205	9)
BL And	55039.5310	.0005	AG	-0.0016		GCVS 2009	-Ir	31	17)
	55141.3862	.0003	AG	-0.0014		GCVS 2009	-Ir	52	17)
BO And	55141.4982	.0018	AG	+0.0951		GCVS 2009	-Ir	50	17)
CN And	55154.4593	.0011	AG	-0.0050	\mathbf{s}	GCVS 2009	-Ir	71	17)
HS And	55154.4308	.0009	AG	+0.0041		GCVS 2009	-Ir	80	17)
KN And	55067.5685	.0001	MS FR	+0.0911		BAVR 39,19	0	513	9)
KP And	55082.4143	.0011	\mathbf{FR}	+0.0430		GCVS 2009	-Ir	54	17)
LM And	55059.5203	.0004	MS FR	-0.0097		GCVS 2009	0	564	9)
MO And	55045.5863	.0017	MS FR	+0.0004		GCVS 2009	0	345	9)
V404 And	55154.4264	.0006	AG	+0.0060		GCVS 2009	-Ir	80	17)
V422 And	55141.5550	.0049	AG	+0.0058	\mathbf{s}	GCVS 2009	-Ir	52	17)
V440 And	55154.4819	.0001	AG	-0.0337	\mathbf{s}	GCVS 2009	-Ir	73	17)
V441 And	55154.3104	.0005	AG	+0.0290	\mathbf{s}	GCVS 2009	-Ir	80	17)

Table 1: Times of minima of eclipsing binaries

Table 1: (cont.)

Variable	HJD 24	±	Obs	O-C		Bibliography	Fil	n	Rem
V441 And	55154.5444	.0005	AG	+0.0282		GCVS 2009	-Ir	80	17)
HS Aqr	55041.3878	.0012	\mathbf{FR}	-0.0028	\mathbf{s}	GCVS 2009	-Ir	47	12)
LL Aqr	54735.339 :	.003	BKN	-0.019		IBVS 5557	V	240	14)
V1075 Aql	55067.4082	.0003	AG	-0.0352		GCVS 2009	-Ir	23	17)
V1097 Aql	55067.3592	.0014	AG	-0.0654		GCVS 2009	-Ir	23	17)
V1353 Aql	55067.3984	.0003	BRL	+0.0065	\mathbf{S}	BAVR 44,62	0	31	20)
1	55067.4090	.0030	WTR	+0.0171	\mathbf{S}	BAVR 44,62	-Ir	75	13)
	55072.3650	.0024	BRL	+0.0213		BAVR 44.62	0	48	20)
BC Aur	54829 6857	0007	FB	-0.6804	s	GCVS 2009	-Ir	37	17)
EM Aur	55164 4382	0035	PGL	-0.1983	D	GCVS 2009	V	387	16)
III Aur	54908 3706	0042	ATB	-0.0066	S	GCVS 2009	,	88	6)
KO Aur	55083 5852	00012	MS FR	± 0.0000	5	GCVS 2009	0	363	0) 0)
TZ Boo	54648 5005	0002	CB	-0.0428		BAVM 68	V	000	6)
12 000	54658 4660	.0002	CP	-0.0440	a	DAVM 68	v	0	6)
	54056.4000	.0002	CD	-0.0430	8	DAVM 69	$\mathbf{D} + \mathbf{V}$	0	() ()
	54000.0247	.0005	GD CD	-0.0423	_	DAVM CO	D+V D+V	0	() ()
	54921.4526	.0002	GB	-0.0400	\mathbf{s}	BAVM 68	B+V	0	6) ()
	54921.6020	.0007	GB	-0.0392		BAVM 68	B+V	0	6)
	54924.4240	.0003	GB	-0.0402	\mathbf{S}	BAVM 68	B+V	0	6)
	54924.5734	.0002	GB	-0.0394		BAVM 68	B+V	0	6)
	54928.4367	.0003	GB	-0.0391		BAVM 68	B+V	0	6)
	54928.5855	.0007	GB	-0.0389	\mathbf{S}	BAVM 68	B+V	0	6)
AC Boo	54928.4989	.0001	GB	-0.0135	\mathbf{S}	GCVS 2009	B+V	0	6)
	54931.4908	.0001	MS FR	-0.0172		GCVS 2009	0	495	9)
	54933.4300	.0002	GB	-0.0164	\mathbf{S}	GCVS 2009	B+V	0	6)
BG Boo	55012.4328	.0070	JU	-0.0178	\mathbf{s}	GCVS 2009	0	46	7)
UU Cam	55125.3768	.0016	AG	+0.0069		GCVS 2009	-Ir	33	17)
VZ CVn	54972.4395	.0004	AG	-0.0005		GCVS 2009	-Ir	38	17)
EE CVn	54972.3989	.0001	AG	-0.0062		GCVS 2009	-Ir	38	17)
	54972.5392	.0007	AG	-0.0062	s	GCVS 2009	-Ir	38	17)
EF CVn	54972.3898	.0008	AG	-0.0052	~	GCVS 2009	-Ir	38	17)
	54972 5251	0005	AG	-0.0059	S	GCVS 2009	-Ir	38	17)
FH CVn	54072 3070	0006	AC	-0.0441	0	GCVS 2009	Ir	38	17)
	54072 5202	.0000	AC	-0.0441	5	GCVS 2009	-11 Ir	38	17)
FI CVn	54072 4345	.0007		-0.0440		CCVS 2009	-11 Ir	30	17)
EIUVII	54972.4545	.0005	AG	-0.0143	~	GCVS 2009	-11 T.,	00 90	17)
TW C.	54972.3040	.0004	AG FLO	-0.0132	8	GCVS 2009	-11 V	00 010	17)
TW Cas	55070.3996	.0002	FLG	-0.0107		GCVS 2009	V	218	15)
AA Cas	55154.6029	.0014	AG	+0.0162		GCVS 2009	-1r	45	17)
ZZ Cas	55108.4344	.0014	AG	-0.0056		GCVS 2009	-Ir	48	17)
AE Cas	55060.4764	.0003	AG	+0.0656		GCVS 2009	-Ir	57	17)
	55073.3818	.0003	JU	+0.0660		GCVS 2009	0	46	7)
AQ Cas	55081.3180	.0080	AG	-0.0476		GCVS 2009	-ſr	119	17)
AX Cas	55154.5556	.0010	AG	-0.1003		GCVS 2009	-Ir	45	17)
BH Cas	55029.4444	.0014	AG				-Ir	44	17)
	55096.4225	.0014	AG				-Ir	48	17)
	55096.6184	.0020	AG				-Ir	48	17)
BS Cas	55049.4897	.0002	MS FR	-0.0153	\mathbf{S}	IBVS 4778	0	540	9)
	55124.3673	.0014	JU	-0.0176	\mathbf{s}	IBVS 4778	0	85	7)
BU Cas	55154.4159	.0023	AG	-0.0231		GCVS 2009	-Ir	45	17)
BW Cas	55059.5049	.0003	AG	+0.4199		GCVS 2009	-Ir	68	17)
	55155.4815	.0028	SCI	-0.2485		GCVS 2009	0	60	7)
BZ Cas	55059.4279	.0004	AG	+0.2764		GCVS 2009	-Ir	68	17)
CR Cas	55082.3348	.0010	JU	+0.1369		GCVS 2009	0	70	7)
CW Cas	55029.5291	.0001	AG	-0.0409	\mathbf{S}	GCVS 2009	-Ir	44	17)
DZ Cas	55063.3971	.0016	AG	-0.1762		GCVS 2009	-Ir	30	17)
EG Cas	55049 4661	0007	AG	± 0.1060	s	GCVS 2009	-Ir	43	17)
10 000	55063 5305	0010	AG	± 0.1000	ы с	GCVS 2009	_Ir	30	17)
	55067 5070	0010		± 0.1009 ± 0.1009	3	CCVS 2009	-11 In	30 20	17)
	55077 5950	0000		± 0.1069	a	CCVS 2009	-11 Ir	04 //1	17)
FK Car	55067 1444	.0000		T0.1000	8	CCVS 2009	-11 I	41 75	17)
EN Cas	55155 4750	.0100	AG	-0.2002		GUVS 2009	-11' I	10 10	17)
EN Cas	00100.4709	.0017	AG	+0.2721		GCV5 2009	-11' T.,	48	17)
LF Cas	00049.4897	.0005	AG	-0.0360		GUVS 2009	-1r	43	1()

Table 1: (cont.)

Variable	HJD 24	±	Obs	O - C		Bibliography	Fil	n	Rem
EP Cas	55067.3854	.0009	AG	-0.0360		GCVS 2009	-Ir	33	17)
ES Cas	55049.5616	.0025	AG	-0.4487		GCVS 2009	-Ir	43	17)
EY Cas	55063.5764	.0013	AG	+0.0344		GCVS 2009	-Ir	30	17)
	55067.4309	.0011	AG	+0.0331		GCVS 2009	-Ir	33	17)
GH Cas	55141.4236	.0007	AG	-0.5770		GCVS 2009	-Ir	65	17)
GK Cas	55075 4062	0002	MS FR	-0.3265		GCVS 2009	0	660	9)
GU Cas	55067 3473	0035	AG	-0.3429		GCVS 2009	_Ir	33	17)
IO Cas	55154 6432	.0055	AG	-0.2418		GCVS 2009	-11 Ir	64	17)
IQ Cas	55154.0452	00020		-0.2410		GCVS 2009	-11 I.,	04 91	17)
In Cas	55059.4450	.0000	AG	+0.0084	s	GCVS 2009	-11 ⁻	51	17)
	55141.5477	.0007	AG	+0.0077	s	GCVS 2009	-1r	50	17)
IS Cas	55058.3938	.0006	AG	+0.0658		GCVS 2009	-1r	50	17)
IT Cas	55125.3986	.0035	PGL	+0.2602	\mathbf{S}	GCVS 2009	V	171	19)
	55154.4254	.0002	FR	+0.0622		GCVS 2009	-Ir	71	17)
IV Cas	55060.5282	.0001	MS FR	-0.0769		GCVS 2009	0	482	9)
	55157.3840	.0001	WTR	-0.0779		GCVS 2009	-Ir	119	13)
KL Cas	55154.5653	.0038	AG	-0.0188	\mathbf{S}	GCVS 2009	-Ir	44	17)
LR Cas	55081.5291	.0023	AG	-0.0031		GCVS 2009	-Ir	46	17)
MS Cas	55058.3987	.0015	AG	+0.0395	\mathbf{S}	GCVS 2009	-Ir	54	17)
	55096.5121	.0016	AG	+0.0390		GCVS 2009	-Ir	48	17)
MT Cas	55067.4622	.0014	AG	+0.0188	\mathbf{S}	GCVS 2009	-Ir	33	17)
	55074.3675	.0006	AG	+0.0188	\mathbf{s}	GCVS 2009	-Ir	41	17)
	55074.5247	.0004	AG	+0.0191		GCVS 2009	-Ir	41	17)
MU Cas	55029.4201	.0017	AG	+0.2846		GCVS 2009	-Ir	44	17)
	55058 3791	.0036	AG	+0.2851	s	GCVS 2009	-Ir	51	17)
MV Cas	55020 5362	0005	AG	-0.0910	5	GCVS 2009	_Ir	44	17)
WIV Cas	55108 5087	.0005	AG	-0.0887		GCVS 2009	-11 Ir	18	17)
NN Coc	55062 4071	.0014		-0.0007		GCVS 2009	-11 In	20	17)
NT Cas	55005.4971 EE1EE 6999	.0052	AG	+0.1255		GCVS 2009	-11	30 92	17)
NI Cas	55155.0252	.0020		+0.0248	_	GCVS 2009	0 	23 40	() 17)
NU Cas	55147.4105	.0009	AG	-0.1423	s	GCVS 2009	-1r	40	17)
OD G	55147.4185	.0031	SCI	-0.1398	\mathbf{s}	GCVS 2009	0	35	7)
OR Cas	55029.3718	.0013	AG	-0.0224		GCVS 2009	-Ir	43	17)
	55108.4699	.0014	AG	-0.0270	\mathbf{S}	GCVS 2009	-lr	48	17)
OX Cas	55125.3390	.0035	PGL	+0.0220		GCVS 2009	V	398	19)
PV Cas	55098.5216	.0013	AG	+0.0005	\mathbf{S}	GCVS 2009	-Ir	41	17)
	55134.3712	.0007	SIR	-0.0345		GCVS 2009	-Ir	323	11)
	55135.2801	.0010	JU	-0.0009	\mathbf{S}	GCVS 2009	0	70	7)
QQ Cas	55096.4094	.0019	AG	+0.1121	\mathbf{s}	BAVR 35,1	-Ir	48	17)
V336 Cas	55096.5187	.0025	AG	-0.0152	\mathbf{S}	GCVS 2009	-Ir	48	17)
	55108.4691	.0014	AG	-0.0105	\mathbf{S}	GCVS 2009	-Ir	48	17)
V337 Cas	55063.4174	.0012	AG	-0.0646		GCVS 2009	-Ir	30	17)
V345 Cas	55039.4661	.0005	AG	-0.0176	\mathbf{s}	GCVS 2009	-Ir	31	17)
	55097.3199	.0011	AG	-0.0196	\mathbf{S}	GCVS 2009	-Ir	55	17)
	55141.4011	.0021	AG	-0.0189	s	GCVS 2009	-Ir	50	$17)^{-}$
V350 Cas	55097.5041	.0002	AG	-0.0443		GCVS 2009	-Ir	55	17)
V355 Cas	55067.3733	.0008	AG	-0.1304		GCVS 2009	-Ir	32	17)
	55076 4035	.0026	AG	-0.1382		GCVS 2009	-Ir	19	17)
	55155 4022	0005	AG	-0.1316		GCVS 2009	_Ir	45	17)
V357 Cas	55067 5507	0033	AG	-0.2608		GCVS 2009	_Tr	30	17)
V350 Cas	55072 4352	00000	MS FP	1.2090 10.000		IBVS 5016	-11	 ∕11∕	
v 559 Oas	55072.4302	0001	AC	-0.0000 -0.0000	c	IDVG E016	Т.,	414 1	9) 17)
	JJU14.J88U	.0020	AG	-0.0020	s	IDVS 5010	-11 T	41	1 <i>1</i>)
	00070.3472	.0019	AG	+0.0009		$10 \times 5 010$	-1r	19	17)
Vaci C	00098.0140	.0009	AG MO DD	+0.0024		1BVS 5010	-1r	41	1()
V361 Cas	55047.5512	.0001	MS FR	-0.2000		GUVS 2009	0	405	9)
	55063.5278	.0010	AG	-0.2002		GCVS 2009	-lr	30	17)
V374 Cas	55049.4637	.0004	AG	+0.0175		GCVS 2009	-Ir	43	17)
	55063.5679	.0027	AG	+0.0167	\mathbf{S}	GCVS 2009	-Ir	30	17)
	55074.5402	.0005	AG	+0.0185		GCVS 2009	-Ir	41	17)
	55155.5159	.0042	AG	+0.0215	\mathbf{S}	GCVS 2009	-Ir	49	17)
W375 Cas		0019	10	+0.2224	e	BAVB 32 36	-Ir	48	17)
V 515 Cas	55108.4494	.0013	AG	± 0.2254	а	D1111102,00		10	11)
V384 Cas	55108.4494 55124.5807	.0013 .0014	AG SCI	+0.2254 -0.1482	5	GCVS 2009	0	61	7)

Table 1: (cont.)

Variable	HJD 24	±	Obs	O-C		Bibliography	Fil	n	Rem
V423 Cas	55059.4823	.0010	AG	-0.0874	\mathbf{S}	GCVS 2009	-Ir	68	17)
V449 Cas	55154.4709	.0022	AG				-Ir	44	17)
V471 Cas	55141.3835	.0007	AG	-0.0248	\mathbf{S}	GCVS 2009	-Ir	63	17)
	55141.5843	.0012	AG	+0.0080		GCVS 2009	-Ir	63	17)
V473 Cas	55141.3018	.0008	AG	-0.0188		IBVS 4669	-Ir	65	17)
	55141.5099	.0018	AG	-0.0185	\mathbf{s}	IBVS 4669	-Ir	65	17)
V520 Cas	55063.5544	.0017	AG	+0.0016	\mathbf{s}	GCVS 2009	-Ir	29	17)
	55067.4756	.0009	AG	+0.0061	\mathbf{s}	GCVS 2009	-Ir	31	17)
V546 Cas	55096.5573	.0025	AG	-0.0033		GCVS 2009	-Ir	48	17)
V651 Cas	55098.5733	.0008	AG	+0.0027		IBVS 3554	-Ir	42	17)
	55155.3914	.0003	AG	+0.0027		IBVS 3554	-Ir	48	17)
V654 Cas	55058.3900	.0016	AG				-Ir	52	17)
V776 Cas	55154.3451	.0028	SCI				0	99	$\overrightarrow{7}$
U Cep	55067.4176	.0024	FLG	+0.1680		GCVS 2009	V	277	15)
SU Cep	55058.5355	.0022	AG	+0.0090		GCVS 2009	-Ir	50	17)
VW Cen	55053 3838	0021	PGL	-0.0458		GCVS 2009	V	378	16)
viii eep	55068 4114	0003	FLG	-0.0472		GCVS 2009	v	156	15)
AI Con	55058 5260	.0000	AC	± 0.0472		GCVS 2009	v Ir	52	17)
BF Con	55007 4071	.0020		+0.1003	G	GCVS 2009	-11 Ir	55	17)
ьп Сер	55002 5501	0004		-0.1003	a	CCVS 2009	-11 Tr	00 //1	17)
$CO C_{m}$	55064 5791	.0002 0005		0.1000		CCVS 2009	-11 In	41 51	17)
CO Cep	55002 2004	.0003	AG	-0.1684	c	CCVS 2009	-1f T	01 70	17)
DVC	00083.3994	.0004	AG	-0.1954	\mathbf{s}	GUVS 2009	-1ľ	19	17)
DV Cep	55028.4772	.0004	AG	+0.0066		BAVR 50,159	-lr	44	17)
GS Cep	55051.4333	.0002	AG	-0.0461	\mathbf{s}	GCVS 2009	-lr	39	17)
~~~~~	55098.5267	.0011	AG	-0.0448	$\mathbf{s}$	GCVS 2009	-lr	41	17)
GW Cep	55064.4796	.0006	AG	-0.0122	$\mathbf{s}$	BAVR 33,160	-lr	51	17)
	55083.4513	.0004	AG	-0.0109		BAVR 33,160	-Ir	79	17)
	55103.3781	.0009	AG	-0.0111	$\mathbf{S}$	BAVR 33,160	-Ir	64	17)
LM Cep	55045.4643	.0002	$\operatorname{AG}$	+0.1060		GCVS 2009	-Ir	61	17)
NR Cep	55060.5145	.0005	AG	-0.0489		GCVS 2009	-Ir	57	17)
ZZ Cyg	55075.4530	.0015	AG	-0.0540	$\mathbf{S}$	GCVS 2009	-Ir	38	17)
BO Cyg	54749.383	.010	BKN	-0.781		GCVS 2009	V	147	14)
	54815.2342	.0002	BKN	+0.0890		GCVS 2009	$\mathbf{V}$	79	14)
	55051.4496	.0012	AG	-0.7862		GCVS 2009	-Ir	52	17)
CG Cyg	55068.3322	.0011	$\mathbf{FR}$	+0.0648	$\mathbf{s}$	GCVS 2009	-Ir	25	17)
CV Cyg	55062.4548	.0003	$\mathbf{FR}$	-0.2614		GCVS 2009	-Ir	55	17)
DK Cyg	55050.4319	.0008	JU	+0.0552		BAVR 35,1	0	50	7)
10	55058.4350	.0019	SCI	+0.0565		BAVR 35,1	0	160	$\overrightarrow{7}$
	55083.3824	.0003	$\mathbf{FR}$	+0.0573		BAVR 35.1	-Ir	69	12)
	55083.6205	.0004	FR	+0.0601	s	BAVR 35.1	-Ir	69	12)
DL Cvg	55081.5687	.0016	AG	+0.1046		GCVS 2009	-Ir	59	$17)^{-1}$
~,8	55098 4811	.0073	AG	+0.1106	s	GCVS 2009	-Ir	27	17)
DO Cvo	55125 3208	.0001	AG	-0.0228	5	GCVS 2009	-Ir	50	17)
DP Cvg	55071 3618	.0017	AG	0.0220	s	0015 2005	-Ir	42	17)
ы сув	55195 3400	2001	AC		3 0		-11 _Tr	50	17)
DX Curr	55072 2750	0000	SCI	_0.0744	a	CCVS 2000	-11	50 77	11) 7)
EN Cyc	55068 5177	00011		-0.0744		CCVS 2009	U Tr	11 27	17)
en Oyg	55006 4911	.0002 0005		$\pm 0.4390$ $\pm 0.1979$		CCVS 2009	-11 Tr	57 EA	17)
GG Uyg CM C	55050.4211	.0000	AG	+0.1373		CCVS 2009	-1ſ T.	04 41	1 <i>1</i> )
GM Uyg	00000.0134	.0012	AG	-0.2299		GUVS 2009	-11° T	41	17)
GT Cyg	55083.4792	.0026	AG	-0.0253	$\mathbf{S}$	GUVS 2009	-Ir	41	17)
GV Cyg	55050.5301	.0004	AG	+0.1604	$\mathbf{S}$	GUVS 2009	-Ir	31	17)
	55059.4457	.0004	AG	+0.1599	$\mathbf{s}$	GCVS 2009	-lr	33	17)
	55062.4175	.0007	AG	+0.1597	$\mathbf{S}$	GCVS 2009	-lr	32	17)
	55064.3989	.0011	AG	+0.1597	$\mathbf{s}$	GCVS 2009	-Ir	32	17)
	55102.5397	.0017	AG	+0.1594		GCVS 2009	-Ir	58	17)
KR Cyg	55075.4040	.0001	$\mathbf{FR}$	+0.0147		GCVS $2009$	-Ir	58	17)
	55096.5329	.0003	AG	+0.0148		GCVS 2009	-Ir	53	17)
LO Cyg	55027.4156	.0002	AG	+0.0066	$\mathbf{S}$	GCVS 2009	-Ir	35	17)
	55032.4491	.0010	AG	+0.0063	$\mathbf{S}$	GCVS $2009$	-Ir	49	17)
	55042 5176	0002	$\mathbf{AG}$	+0.0071	s	GCVS 2009	-Ir	35	17)
	00042.0110	.0002	110	10.0011	~	0010 -000		00	11)

Table 1: (cont.)

Variable	HJD 24	±	Obs	O-C		Bibliography	Fil	n	Rem
MR Cyg	55059.4878	.0009	AG	-0.0009	s	GCVS 2009	-Ir	33	17)
PQ Cvg	55071.4698	.0031	SCI	+0.0291		GCVS 2009	0	32	7)
OS Cvg	55101.4886	.0020	SCI	-0.0254		GCVS 2009	0	77	7)
QU Cvg	54922 6161	0002	MS FB	-0.0711		GCVS 2009	0	570	9)
QU Cyg	55062 4673	0008	FB	-0.0726	e	GCVS 2009	_Ir	52	17)
W345 Curr	55006 5220	.0008		-0.0120	ъ	IBVS 5016	-11 Ir	52	17)
V345 Cyg	55090.5250	.0012	AG	+0.0444	_	IDVS 5010	-11 T.,	00 20	17)
v 300 Cyg	55104 2051	.0053	AG	-0.0050	s	GCVS 2009	-1r	39	1()
	55124.3251	.0014	SCI	-0.0044		GCVS 2009	0	110	()
V370 Cyg	54996.4592	.0021	AG	-0.0214	$\mathbf{S}$	GCVS 2009	-lr	56	17)
V388 Cyg	55048.4145	.0010	JU	-0.0859		GCVS 2009	0	50	7)
	55063.4496	.0013	$\mathbf{FR}$	-0.0839	$\mathbf{S}$	GCVS 2009	-Ir	40	12)
V401 Cyg	55103.4137	.0013	AG	+0.0594		GCVS 2009	-Ir	24	17)
V435 Cyg	54995.5385	.0035	SCI	+0.2128		GCVS 2009	0	39	7)
V442 Cyg	55063.4046	.0006	$\mathbf{FR}$	-0.0394	$\mathbf{S}$	GCVS 2009	-Ir	73	17)
V444 Cyg	55084.5104	.0034	$\mathbf{FR}$	+0.2233	$\mathbf{s}$	GCVS 2009	-Ir	52	17)
V454 Cyg	55082.4439	.0013	SCI	-0.0078		GCVS 2009	0	126	$\overrightarrow{7}$
V456 Cvg	55050.4922	.0007	AG	+0.0455		GCVS 2009	-Ir	40	17)
V463 Cvg	55048 4178	0019	SCI	+0.0562		GCVS 2009	0	218	7)
v 100 Cyg	55084 4140	00013	FB	$\pm 0.0502$		GCVS 2009	_Ir	30	17)
VA66 Cyre	55076 2002	0003		T 0.0000		CCVS 2009	-11 Tr	17	17)
v 400 Cyg	55006 4061	0012		+0.0000		CCVS 2009	-11 T	11	17)
V411 Uyg	55090.4001	.0010	AG	$\pm 0.0709$		GUVS 2009	-11	00 105	1() 7)
v 483 Cyg	55000.4777	.0017	SUI	+0.0054		GUVS 2009	0 T	105	()
V488 Cyg	55096.4975	.0004	AG	+0.0610	$\mathbf{S}$	GCVS 2009	-1r	50	17)
V490 Cyg	55096.4362	.0004	AG	+0.1683		GCVS 2009	-lr	50	17)
V508 Cyg	55075.5525	.0004	$\operatorname{AG}$	-0.0173		GCVS 2009	-Ir	39	17)
V509 Cyg	55075.4765	.0025	AG	+0.1984	$\mathbf{S}$	GCVS 2009	-Ir	35	17)
V512 Cyg	55075.5807	.0005	AG	+0.1134		GCVS 2009	-Ir	38	17)
	55075.5885	.0027	SCI	+0.1212		GCVS 2009	0	157	7)
V519 Cyg	55075.4786	.0009	AG	-0.2254	$\mathbf{s}$	GCVS 2009	-Ir	39	17)
	55102.4484	.0024	SCI	-0.2242		GCVS 2009	0	115	$\overrightarrow{7}$
V526 Cvg	55059.3864	.0025	SCI	+0.0469		GCVS 2009	0	53	$\vec{7)}$
20	55102.5528	.0006	AG	+0.0421		GCVS 2009	-Ir	58	17)
V534 Cvg	55059 5413	0002	FB	+0.1807		GCVS 2009	-Ir	62	17)
V536 Cyg	55084 5057	0024	SCI	$\pm 0.1001$ $\pm 0.4101$		GCVS 2009	0	150	7)
V000 Cyg	55102 5335	0004		+0.4163		CCVS 2009	Ir	58	17)
	55102.5555 EE109 E440	.0004		+0.4105		GCVS 2009	-11 T.,	44	17)
MENT C	55108.5449	.0009	AG	+0.4175		GCVS 2009	-11 [°]	44	17)
V537 Cyg	55108.5259	.0025	AG	+0.5373		GCVS 2009	-1r	44	17)
V541 Cyg	55066.5740	.0024	AG	+0.0594		GCVS 2009	-1r	49	1()
V587 Cyg	55074.5098	.0011	AG	+0.2173		GCVS 2009	-Ir	36	17)
V616 Cyg	55064.4998	.0005	AG	-0.3182		GCVS 2009	-lr	31	17)
	55074.4553	.0012	AG	-0.3126	$\mathbf{S}$	GCVS 2009	-Ir	36	17)
	55102.3088	.0018	AG	+0.3445		GCVS $2009$	-Ir	58	17)
V628 Cyg	54931.5818	.0013	MS FR	+0.0018		IBVS 4381	0	300	9)
	55050.4679	.0009	AG	-0.0028		IBVS $4381$	-Ir	31	17)
V635 Cyg	55042.4851	.0004	AG	-0.0495		GCVS 2009	-Ir	35	17)
	55059.5900	.0026	AG	-0.0527	$\mathbf{S}$	GCVS 2009	-Ir	33	17)
	55064.5350	.0008	AG	-0.0501		GCVS 2009	-Ir	32	17)
	55074.4198	.0005	AG	-0.0500		GCVS 2009	-Ir	36	17)
	55083.5444	.0004	AG	-0.0497		GCVS 2009	-Ir	41	17)
	55102 5525	0005	AG	_0.0406		GCVS 2000	_Ir	58	17)
	55108 6940	0017	AC	-0.0490		GCVS 2009	-11 . Tr	11	17)
V661 C	55009 5900	.0017		-0.0020		CCVS 2009	-11 T	44	17)
VOIL Cyg	00000.0000	.0020	AG	+0.0284		GUVS 2009	-11 T	40	17)
VOID Cyg	55059.5185	.0012	AG	+0.0075		GUVS 2009	-1r	33	1()
V680 Cyg	55063.5310	.0005	AG	+0.0192		BAVR 32,36	-1r	45	17)
V699 Cyg	55050.4695	.0056	SCI	-0.0825		GCVS 2009	0	66	7)
	55067.5843	.0031	SCI	-0.0344		GCVS $2009$	0	66	7)
V700 Cyg	55050.4457	.0009	AG	-0.0609	$\mathbf{s}$	GCVS 2009	-Ir	41	17)
	55050.5908	.0009	AG	-0.0858		GCVS 2009	-Ir	41	17)
			10	0.0504		CCVS 2000	Ir	18	17)
	55073.4063	.0004	AG	-0.0534		GC V 5 2009	-11	40	1()
	55073.4063 55073.5506	.0004 .0007	AG AG	$-0.0534 \\ -0.0791$	$\mathbf{s}$	GCVS 2009 GCVS 2009	-11 -Ir	48 48	17) 17)

Table 1: (cont.)

Variable	HJD 24	±	Obs	O - C		Bibliography	Fil	n	Rem
V704 Cyg	55074.5432	.0008	AG	+0.0320	$\mathbf{S}$	GCVS 2009	-Ir	36	17)
V705 Cyg	55051.4630	.0008	AG	-0.3000	$\mathbf{S}$	GCVS 2009	-Ir	52	17)
V706 Cyg	55051.4876	.0006	AG	-0.0510		GCVS 2009	-Ir	52	17)
00	55062.4443	.0004	AG	-0.0513	$\mathbf{s}$	GCVS 2009	-Ir	88	17)
	55074.3327	.0001	MS FR	-0.0525		GCVS 2009	0	420	9)
V711 Cvg	55050 4503	0068	AG	-0.0276		GCVS 2009	-Ir	28	17)
	55062 4368	0003	AG	-0.0290	S	GCVS 2009	-Ir	32	17)
	55064 5082	0014	AG	-0.0200	5	GCVS 2009	Ir	32	17)
	55004.5082	.0014	AG	-0.0245		GCVS 2009	-11 I.,	04 94	17)
170C C	55074.4550	.0000	AG	-0.0208		GCVS 2009	-11 L.	34 40	17)
v 726 Cyg	55075.4074	.0002	AG	+0.0418		GCVS 2009	-1r	49	17)
V728 Cyg	55045.3985	.0002	AG	+0.0539		GCVS 2009	-lr	61	17)
V749 Cyg	55073.5737	.0013	AG	-0.0394	$\mathbf{s}$	GCVS 2009	-lr	58	17)
V787 Cyg	55075.3598	.0011	AG	+0.0018		GCVS 2009	-lr	39	17)
$V828 \ \mathrm{Cyg}$	55059.4263	.0011	JU	+0.1216	$\mathbf{S}$	GCVS 2009	0	86	7)
V842 Cyg	54937.5723	.0004	MS FR	+0.0299		GCVS 2009	0	540	9)
	55060.4318	.0003	AG	+0.0327		GCVS 2009	-Ir	35	17)
$V850 \mathrm{Cyg}$	55066.5153	.0012	AG	+0.6453		GCVS 2009	-Ir	45	17)
$V856 \mathrm{Cyg}$	55068.4650	.0009	AG	+0.0864		GCVS 2009	-Ir	37	17)
$V859 \mathrm{Cyg}$	55097.3786	.0043	$\mathbf{FR}$	+0.0078		GCVS 2009	-Ir	42	12)
V869 Cyg	55063.4184	.0024	SCI	+0.1229		GCVS 2009	0	34	7)
/873 Cvg	54996.5357	.0023	SCI	+0.0264		GCVS 2009	0	44	7)
V877 Cvg	55068.4991	.0022	AG	+0.0245	$\mathbf{s}$	GCVS 2009	-Ir	36	17)
V880 Cvg	54943,5499	.0001	MS FR	-0.0027		GCVS 2009	0	504	9)
7891 Cvg	55097 2948	0014	FR	+0.0458		GCVS 2009	-Ir	26	12)
V906 Cyg	55074 4128	0008	SCI	+0.0400		GCVS 2009	0	56	7)
v 900 Oyg	55074.5057	.0008	SCI	+0.0003	0	GCVS 2009	0	56	7)
7000 Curr	55060 4962	.0011		+0.0003	3	DAVD 47.2	U In	25	17)
V 909 Cyg	55000.4805	.0011	AG	-0.0194	s	DAV ft 47,2	-11	30 70	17)
v 912 Cyg	55001.4172	.0021		-0.1107		GCVS 2009	0	70	() 17)
	55066.4690	.0004	AG	-0.1153		GCVS 2009	-1r	51	1()
V940 Cyg	55125.3967	.0014	SCI	+0.0509	$\mathbf{s}$	GCVS 2009	0	38	(7)
/941 Cyg	55060.3824	.0019	AG	-0.0700		GCVS 2009	-lr	35	17)
	55103.3897	.0005	AG	-0.0700		GCVS 2009	-lr	22	17)
/961 Cyg	54996.4601	.0003	AG	-0.0788		GCVS 2009	-Ir	57	17)
$V962 \ \mathrm{Cyg}$	55060.5454	.0022	AG	-0.1984		GCVS 2009	-Ir	34	17)
V965 Cyg	55084.598 :	.001	$\mathbf{FR}$	-0.128	$\mathbf{S}$	GCVS 2009	-Ir	60	17)
/1004 Cyg	55096.4691	.0004	AG	-0.1691		GCVS 2009	-Ir	54	17)
V1011 Cyg	55049.5452	.0049	SCI	+0.0371		GCVS 2009	0	123	7)
	55075.4612	.0008	$\mathbf{FR}$	+0.0382		GCVS 2009	-Ir	43	17)
V1013 Cyg	55075.3545	.0002	$\mathbf{FR}$	+0.1541		GCVS 2009	-Ir	87	17)
	55096.4268	.0015	AG	+0.1678	$\mathbf{s}$	GCVS 2009	-Ir	54	17)
V1034 Cvg	55075.3711	.0016	$\mathbf{FR}$	+0.0098	s	GCVS 2009	-Jr	35	17)
	55096 3645	.0005	AG	-0.0008	5	GCVS 2009	-Ir	53	17)
V1048 Cive	55073 5378	0045	AG	+0.0073	c	GCVS 2009	_Ir	58	17)
, 1010 Uyg	55075 3009	0010	AG	$\pm 0.0010$	5	GCVS 2009	_Ir	30	17)
V1061 Cw	54305 296	.0010	BKN	0.0042		CCVS 2009	V	53 67	14)
V1066 C	J4J9J.J0U 55050 5597	.004 0006	DUUN	-0.039			V T	20	14) 17)
$v_{1000} \text{ Cyg}$	00009.000/ EE000 ECOE	.0000	гл FD	+0.0773		GUVS 2009	-1r T	39 69	1()
V1073 Cyg	55083.5635	.0005	FR	-0.1262		GCVS 2009	-1r	68	12)
/1083 Cyg	55041.4207	.0019	AG	-0.0594	$\mathbf{s}$	GCVS 2009	-lr	41	17)
	55063.3659	.0010	AG	-0.0632		GCVS 2009	-Ir	44	17)
V1136 Cyg	55066.4248	.0003	AG	+0.0832		GCVS 2009	-Ir	50	17)
	55068.4650	.0014	$\operatorname{AG}$	+0.3920	$\mathbf{S}$	GCVS 2009	-Ir	37	17)
V1171 Cyg	55062.4181	.0014	$\mathbf{FR}$	-0.0482	$\mathbf{S}$	GCVS 2009	-Ir	39	12)
	55067.5288	.0006	$\mathbf{FR}$	-0.0550		GCVS 2009	-Ir	48	17)
	55075.5724	.0004	$\mathbf{FR}$	-0.0531	$\mathbf{S}$	GCVS 2009	-Ir	47	17)
	55103.3536	.0020	AG	-0.0522	$\mathbf{S}$	GCVS 2009	-Ir	21	17)
V1188 Cvg	55075.3371	.0014	AG	-0.0178		GCVS 2009	-Ir	39	17)
V1189 Cvg	55073.4151	.0008	AG	-0.0509		GCVS 2009	-Ir	55	17)
V1193 Cvg	55045.4725	.0001	AG	-0.1605	s	GCVS 2009	-Jr	61	17)
V1321 Cvg	55073 4045	.0008	AG	+0.0825	~	GCVS 2009	-Ir	37	17)
V1326 Cyg	55073 5038	0020	AG	-0.0020		GCVS 2009	_Ir	58	17)
V1401 Cvc	55050 5221	0020	AC	$\pm 0.0012$		GCVS 2009	-11 . In	30	17)
v 1401 Uyg	1666.06000	.0000	ло	$\pm 0.2432$		GU V B 2009	-11	-00	11)

Table 1: (cont.)

Variable	HJD 24	$\pm$	Obs	O - C		Bibliography	Fil	n	Rem
V1401 Cvg	55062.3636	.0033	AG	+0.2438		GCVS 2009	-Ir	32	17)
20	55063.5442	.0008	AG	+0.2414		GCVS 2009	-Ir	46	17)
	55075.3732	.0020	AG	+0.2405		GCVS 2009	-Ir	56	17)
	55102.5767	.0029	AG	+0.2352		GCVS 2009	-Ir	58	17)
	55108.4995	.0023	AG	+0.2430		GCVS 2009	-Ir	44	17)
V1411 Cvg	55064 4099	0004	AG	-0.1650	s	GCVS 2009	-Ir	32	17)
V1414 Cvg	55032 4628	0011	AG	+0.0459	5	GCVS 2009	-Ir	51	17)
V1417 Cyg	55049 5022	0015	AG	+0.0400 +0.1600		GCVS 2009	-Ir	28	17)
viiii Oyg	55064 3006	0002	AC	$\pm 0.1585$	e	GCVS 2009	Ir	32	17)
V1787 Cym	55073 5221	.0002	AG	$\pm 0.1303$	a	GC V 5 2003	-11 Ir	55	17) 17)
V2031 Cyg	55084 4838	.0005	FR				-11 Ir	78	17) 12)
V2051 Cyg	54212 2707	.0014	FR	+0.0067		BAVB 50.45	-11 Ir	10	12) 12)
v2101 Oyg	55006 4720	00020		+0.0001	6	BAVR 50,45	-11 Ir	52	12) 17)
V2220 Cug	55082 4363	.0000	SCI	$\pm 0.0110$		DAVIT 50,45	-11	130	7)
v 2239 Cyg	55008 2112	.0029	SCI				0	159	7)
V2240 Cug	55050 4386	.0011					U Ir	41	(17)
v 2240 Cyg	55082 3760	.0023	SCI				-11	41 66	7)
	55062.5709	.0030	SCI				0	64	7)
	55062.5046	.0028	SCI				0	04 66	() 7)
	22097.2220	.0014	SCI				0	00 61	() 7)
	00097.0240 EE000.2000	.0031	SCI				0	01	() 7)
	00090.0209 EE000 E20E	.0030	SCI				0	00 75	() 7)
110047 (1	55098.5325	.0038	SUI ED				0 T	75 60	()
V2247 Cyg	55050.3899	.0011	FR				-Ir	60	17)
V2280 Cyg	55066.4552	.0005	AG				-Ir	44	17)
V2284 Cyg	55066.4613	.0005	AG	0.0105		C CT VC 2000	-lr	45	17)
V2364 Cyg	55066.4561	.0006	AG	-0.0105		GCVS 2009	-1r	44	17)
V2422 Cyg	55067.5873	.0029	SCI	-0.1382	$\mathbf{s}$	GCVS 2009	0	95	(7)
TO LEA C	55073.4007	.0011	AG	-0.1460		GCVS 2009	-lr	48	17)
V2456 Cyg	55083.3673	.0004	FR	+0.0811		GCVS 2009	-lr	42	12)
LS Del	55050.5164	.0007	FR	+0.0830		GCVS 2009	-lr	63	17)
	55059.4202	.0006	FR	+0.0737	$\mathbf{S}$	GCVS 2009	-lr	125	17)
	55059.6131	.0007	$\mathbf{FR}$	+0.0847		GCVS 2009	-Ir	125	17)
RZ Dra	54972.5267	.0003	AG	+0.0482		GCVS 2009	-lr	53	17)
BE Dra	55034.4507	.0007	AG	-0.1160		GCVS 2009	-Ir	123	17)
BF Dra	55034.4138	.0004	AG	+0.2373		GCVS 2009	-Ir	123	17)
BS Dra	55028.4844	.0057	AG	-0.0002		GCVS 2009	-Ir	42	17)
GQ Dra	54995.4150	.0010	JU				0	46	7)
KK Dra	54972.5063	.0002	AG				-Ir	53	17)
LZ Dra	55028.5066	.0007	AG				-Ir	42	17)
BT Gem	55192.4721	.0008	MS FR	-0.0091		GCVS 2009	0	500	9)
KV Gem	54910.3465	.0007	ATB	-0.0156		BAVR 52,95	0	104	6)
	54910.3597	.0042	ATB	-0.0024		BAVR $52,95$	0	102	6)
	54910.3696	.0014	ATB	+0.0075		BAVR $52,95$	0	101	6)
TX Her	55058.360 :	.000	$\operatorname{FR}$	-0.002	$\mathbf{S}$	GCVS 2009	-Ir	279	17)
	55125.3017	.0007	$\operatorname{FR}$	-0.0041		GCVS 2009	-Ir	56	17)
AD Her	55096.3967	.0002	$\operatorname{FR}$	-0.0455		GCVS 2009	-Ir	20	52)
DD Her	54999.4611	.0027	SCI	+0.3723		SAC Vol.63	0	92	7)
MM Her	54976.4415	.0010	$\operatorname{AG}$	-0.0011		GCVS 2009	-Ir	38	17)
V342 Her	54516.6832	.0011	MS FR	+0.0102		GCVS 2009	0	396	9)
V643 Her	54976.4996	.0025	AG	-0.3323	$\mathbf{S}$	GCVS 2009	-Ir	40	17)
V719 Her	54932.3537	.0003	MS FR	+0.0367		GCVS 2009	0	300	9)
V728 Her	55058.3907	.0003	$\mathbf{FR}$	+0.0643		IBVS 3234	-Ir	65	17)
	55125.3152	.0004	$\mathbf{FR}$	+0.0661		IBVS 3234	-Ir	44	17)
V829 Her	55049.4928	.0014	$\mathbf{FR}$	+0.0196		IBVS $5496$	-Ir	42	17)
V842 Her	54937.313 :	.000	MS FR	-0.053		BAVR 49,180	0	556	9)
V1032 Her	55033.5533	.0017	AG				-Ir	27	17)
V1038 Her	55033.4959	.0007	AG				-Ir	31	17)
V1049 Her	55033.414 :	.005	$\mathbf{FR}$				-Ir	28	12)
V1055 Her	55125.3043	.0004	$\mathbf{FR}$				-Ir	50	17)
V1091 Her	55033.5120	.0036	AG	-0.0104	$\mathbf{s}$	GCVS 2009	-Ir	29	$17^{(-)}$
V1106 Her	54976.5253	.0004	AG	+0.0072		GCVS 2009	-Ir	38	17)

Table 1: (cont.)

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c} 52\\ 50\\ 60\\ 53\\ 349\\ 80\\ 80\\ 43\\ 35\\ 44\\ 22\\ 116\\ 32\\ 41\\ 44\\ 76\\ 51\\ 27\\ 31\\ 585\\ 44\\ 423\\ 51\\ 51\\ 35\\ 265\\ 31\\ 33\\ 42\\ 54\\ 41\\ \end{array}$	$\begin{array}{c} 17)\\ 17)\\ 20)\\ 17)\\ 20)\\ 17)\\ 16)\\ 17)\\ 17)\\ 17)\\ 17)\\ 17)\\ 17)\\ 17)\\ 17$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 50\\ 60\\ 53\\ 349\\ 80\\ 43\\ 35\\ 44\\ 22\\ 116\\ 32\\ 41\\ 44\\ 76\\ 51\\ 27\\ 31\\ 585\\ 44\\ 423\\ 51\\ 51\\ 35\\ 265\\ 31\\ 33\\ 42\\ 54\\ 41\\ \end{array}$	17) 17) 20) 17) 16) 17) 17) 17) 17) 17) 17) 17) 17
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 60\\ 53\\ 349\\ 80\\ 80\\ 43\\ 35\\ 44\\ 22\\ 116\\ 32\\ 41\\ 44\\ 76\\ 51\\ 27\\ 31\\ 585\\ 44\\ 423\\ 51\\ 51\\ 35\\ 265\\ 31\\ 33\\ 42\\ 54\\ 41\\ \end{array}$	$\begin{array}{c} 1.7 \\ 20 \\ 17 \\ 16 \\ 17 \\ 17 \\ 17 \\ 17 \\ 17 \\ 17$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 53\\ 53\\ 349\\ 80\\ 80\\ 43\\ 35\\ 44\\ 22\\ 116\\ 32\\ 41\\ 44\\ 76\\ 51\\ 27\\ 31\\ 585\\ 44\\ 423\\ 51\\ 51\\ 35\\ 265\\ 31\\ 33\\ 42\\ 54\\ 41\\ \end{array}$	$\begin{array}{c} 20)\\ 17)\\ 16)\\ 17)\\ 17)\\ 17)\\ 17)\\ 17)\\ 17)\\ 17)\\ 17$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 349\\ 80\\ 80\\ 43\\ 35\\ 44\\ 22\\ 116\\ 32\\ 41\\ 44\\ 76\\ 51\\ 27\\ 31\\ 585\\ 44\\ 423\\ 51\\ 51\\ 35\\ 265\\ 31\\ 33\\ 42\\ 54\\ 41\\ \end{array}$	$\begin{array}{c} 17)\\ 16)\\ 17)\\ 17)\\ 17)\\ 17)\\ 17)\\ 17)\\ 17)\\ 17$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 343\\ 80\\ 80\\ 43\\ 35\\ 44\\ 22\\ 116\\ 32\\ 41\\ 44\\ 76\\ 51\\ 27\\ 31\\ 585\\ 44\\ 423\\ 51\\ 51\\ 35\\ 265\\ 31\\ 33\\ 42\\ 54\\ 41\\ \end{array}$	$\begin{array}{c} 10) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 80\\ 80\\ 43\\ 35\\ 44\\ 22\\ 116\\ 32\\ 41\\ 44\\ 76\\ 51\\ 27\\ 31\\ 585\\ 44\\ 423\\ 51\\ 51\\ 35\\ 265\\ 31\\ 33\\ 42\\ 54\\ 41\\ \end{array}$	$\begin{array}{c} 17)\\ 17)\\ 17)\\ 17)\\ 17)\\ 17)\\ 17)\\ 17)\\$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 30\\ 43\\ 35\\ 44\\ 22\\ 116\\ 32\\ 41\\ 44\\ 76\\ 51\\ 27\\ 31\\ 585\\ 44\\ 423\\ 51\\ 51\\ 35\\ 265\\ 31\\ 33\\ 42\\ 54\\ 41\\ \end{array}$	$\begin{array}{c} 17)\\ 7)\\ 17)\\ 17)\\ 17)\\ 21)\\ 17)\\ 17)\\ 17)\\ 17)\\ 17)\\ 17)\\ 17)\\ 1$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 43\\ 35\\ 44\\ 22\\ 116\\ 32\\ 41\\ 44\\ 76\\ 51\\ 27\\ 31\\ 585\\ 44\\ 423\\ 51\\ 51\\ 35\\ 265\\ 31\\ 33\\ 42\\ 54\\ 41\\ \end{array}$	<pre>17) 17) 17) 17) 17) 17) 17) 17) 17) 17)</pre>
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 33\\ 44\\ 22\\ 116\\ 32\\ 41\\ 44\\ 76\\ 51\\ 27\\ 31\\ 585\\ 44\\ 423\\ 51\\ 51\\ 35\\ 265\\ 31\\ 33\\ 42\\ 54\\ 41\\ \end{array}$	$\begin{array}{c} 17)\\ 17)\\ 17)\\ 17)\\ 17)\\ 17)\\ 17)\\ 17)\\$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 44\\ 22\\ 116\\ 32\\ 41\\ 44\\ 76\\ 51\\ 27\\ 31\\ 585\\ 44\\ 423\\ 51\\ 51\\ 35\\ 265\\ 31\\ 33\\ 42\\ 54\\ 41\\ \end{array}$	$\begin{array}{c} 17)\\ 21)\\ 17)\\ 17)\\ 17)\\ 17)\\ 17)\\ 17)\\ 17)\\ 1$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 22\\ 116\\ 32\\ 41\\ 44\\ 76\\ 51\\ 27\\ 31\\ 585\\ 44\\ 423\\ 51\\ 51\\ 35\\ 265\\ 31\\ 33\\ 42\\ 54\\ 41\\ \end{array}$	$\begin{array}{c} 21)\\ 17)\\ 17)\\ 17)\\ 17)\\ 17)\\ 17)\\ 17)\\ 1$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 110\\ 32\\ 41\\ 44\\ 76\\ 51\\ 27\\ 31\\ 585\\ 44\\ 423\\ 51\\ 51\\ 35\\ 265\\ 31\\ 33\\ 42\\ 54\\ 41\\ \end{array}$	$     \begin{array}{r}       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\      1$
AC Lac $55071.5882$ .0035       AG $-0.0245$ s       GCVS 2009       -In $55108.4856$ .0006       AG $-0.0268$ GCVS 2009       -Ir         AW Lac $55038.5017$ .0002       AG $+0.0447$ BAVR 35,1       -Ir $55058.5012$ .0011       AG $+0.0443$ BAVR 35,1       -Ir         BB Lac $55049.5467$ .0032       AG $-0.1767$ GCVS 2009       -Ir $55050.4704$ .0003       MS FR $-0.1767$ GCVS 2009       o       -         CG Lac $55073.3785$ .0002       MS FR $-0.1510$ GCVS 2009       o       -         CM Lac $55051.499$ .0005       FR $-0.0538$ GCVS 2009       o       -         CM Lac $55051.490$ .0005       FR $-0.0530$ GCVS 2009       o       -       -       Ir       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       - <td< td=""><td>32 $41$ $44$ $76$ $51$ $27$ $31$ $585$ $44$ $423$ $51$ $51$ $35$ $265$ $31$ $33$ $42$ $54$ $41$</td><td>$\begin{array}{c} 17)\\ 17)\\ 17)\\ 17)\\ 17)\\ 17)\\ 17)\\ 17)\\$</td></td<>	32 $41$ $44$ $76$ $51$ $27$ $31$ $585$ $44$ $423$ $51$ $51$ $35$ $265$ $31$ $33$ $42$ $54$ $41$	$\begin{array}{c} 17)\\ 17)\\ 17)\\ 17)\\ 17)\\ 17)\\ 17)\\ 17)\\$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c} 41\\ 44\\ 76\\ 51\\ 27\\ 31\\ 585\\ 44\\ 423\\ 51\\ 35\\ 265\\ 31\\ 33\\ 42\\ 54\\ 41\\ \end{array} $	$     \begin{array}{r}       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       9) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       1$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 44\\ 76\\ 51\\ 27\\ 31\\ 585\\ 44\\ 423\\ 51\\ 51\\ 35\\ 265\\ 31\\ 33\\ 42\\ 54\\ 41\\ \end{array}$	$     \begin{array}{r}       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       9) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       1$
Aw Lac $55053.5012$ $.00011$ AG $+0.0447$ $BAVR 35,1$ $-Ir$ BB Lac $55049.5467$ $.0032$ AG $-0.5658$ $GCVS 2009$ $-Ir$ BS Lac $55050.4697$ $.0008$ AG $-0.1767$ $GCVS 2009$ $-Ir$ $55050.4704$ $.0003$ MS FR $-0.1760$ $GCVS 2009$ $o$ $55050.4704$ $.0003$ MS FR $-0.1760$ $GCVS 2009$ $o$ $55095.4978$ $.0005$ AG $-0.1758$ $GCVS 2009$ $o$ CG Lac $55073.3785$ $.0002$ MS FR $-0.1510$ $GCVS 2009$ $o$ CM Lac $55051.4490$ $.0005$ FR $-0.0034$ $s$ $GCVS 2009$ $-Ir$ CN Lac $55042.5444$ $.0018$ AG $-0.0519$ $s$ $GCVS 2009$ $-Ir$ $55045.4115$ $.0002$ MS FR $-0.0530$ $GCVS 2009$ $-Ir$ $55050.5103$ $.0004$ AG $-0.0528$ $GCVS 2009$ $-Ir$ $55051.4490$ $.0007$ AG $-0.0528$ $GCVS 2009$ $-Ir$ $55059.4340$ $.0007$ AG $-0.0528$ $GCVS 2009$ $-Ir$ $55083.3342$ $.0018$ AG $-0.0518$ $GCVS 2009$ $-Ir$ $55095.4499$ $.0013$ AG $-0.0518$ $GCVS 2009$ $-Ir$ $55081.4196$ $.0003$ AG $-0.0032$ $GCVS 2009$ $-Ir$ $55083.342$ $.0003$ $JU$ $-0.2194$ $GCVS 2009$ $-Ir$ $55085.4329$ $.0003$ AG $-0.0032$	70 51 27 31 585 44 423 51 51 35 265 31 33 42 54 42	$     \begin{array}{r}       17) \\       17) \\       17) \\       17) \\       9) \\       17) \\       9) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17) \\       17$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	51 27 31 585 44 423 51 51 35 265 31 33 42 54 41	$ \begin{array}{c} 17)\\ 17)\\ 17)\\ 9)\\ 17)\\ 9)\\ 17)\\ 17)\\ 17)\\ 17)\\ 17)\\ 17)\\ 17)\\ 17$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	27 31 585 44 423 51 51 35 265 31 33 42 54 41	$ \begin{array}{c} 17)\\ 17)\\ 9)\\ 17)\\ 9)\\ 17)\\ 17)\\ 17)\\ 17)\\ 17)\\ 17)\\ 17)\\ 17$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	31 585 44 423 51 51 35 265 31 33 42 54 41	$ \begin{array}{c} 17)\\ 9)\\ 17)\\ 9)\\ 17)\\ 17)\\ 17)\\ 17)\\ 17)\\ 17)\\ 17)\\ 17$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	585 44 423 51 51 35 265 31 33 42 54 41	$\begin{array}{c} 9) \\ 17) \\ 9) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \end{array}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{r} 44\\ 423\\ 51\\ 51\\ 35\\ 265\\ 31\\ 33\\ 42\\ 54\\ 41\\ \end{array} $	$ \begin{array}{c} 17) \\ 9) \\ 17) \\ 17) \\ 17) \\ 9) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ 17) \\ $
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{r} 423 \\ 51 \\ 51 \\ 35 \\ 265 \\ 31 \\ 33 \\ 42 \\ 54 \\ 41 \\ \end{array} $	9) 17) 17) 17) 9) 17) 17) 17) 17) 17)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	51 51 35 265 31 33 42 54 41	17)     17)     17)     17)     9)     17)     17)     17)     17)     17)     17)     17)     17)     17)     17)     17)     17)     17)     17)     17)     17)     17)     17)     17)     17)     17)     17)     17)     17)     17)     17)     17)     17)     17)     17)     17)     17)     17)     17)     17)     17)     17)     17)     17)     17)     17)     17)     17)     17)     17)     17)     17)     17)     17)     17)     17)     17)     17)     17)     17)     17)     17)     17)     17)     17)     17)     17)     17)     17)     17)     17)     17)     17)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	51 35 265 31 33 42 54 41	17)     17)     17)     9)     17)     17)     17)     17)     17)     17)     17)     17)     17)     17)     17)     17)     17)     17)     17)     17)     17)     17)     17)     17)     17)     17)     17)     17)     17)     17)     17)     17)     17)     17)     17)     17)     17)     17)     17)     17)     17)     17)     17)     17)     17)     17)     17)     17)     17)     17)     17)     17)     17)     17)     17)     17)     17)     17)     17)     17)     17)     17)     17)     17)     17)     17)     17)     17)     17)     17)     17)     17)     17)     17)     17)     17)     17)     17)     17)     17)     17)     17)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$35 \\ 265 \\ 31 \\ 33 \\ 42 \\ 54 \\ 41$	17) 9) 17) 17) 17) 17)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	265 31 33 42 54 41	9) 17) 17) 17) 17)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$31 \\ 33 \\ 42 \\ 54 \\ 41$	17) 17) 17) 17) 17) 17) 17) 17) 17) 17)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$     \begin{array}{r}       33 \\       42 \\       54 \\       41     \end{array} $	$17) \\ 17) \\ 17) \\ 17)$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$42 \\ 54 \\ 41$	$17) \\ 17)$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	54     41	171
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	41	17)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		17)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	44	17)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	44	17)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	162	11)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	75	7)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	41	17)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	56	17)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	41	17)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	39	17)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	45	17)
55071.4749 .0005 AG $-0.3737$ GCVS 2009 -1r	76	17)
	41	17)
EQ Lac $55095.5696$ .0008 AG $+0.0183$ GCVS 2009 -Ir	44	17)
55108.5864 .0003 AG +0.0169 GCVS 2009 -1r	44	17)
ER Lac $55033.4942$ .0006 AG $-0.5128$ GCVS 2009 -Ir	29	17)
ES Lac $55034.4866$ .0005 AG $+0.1262$ GCVS 2009 -Ir	76	17)
55068.4649 .0024 AG $+0.6594$ s GCVS 2009 -Ir	45	17)
EX Lac $55039.4548$ .0016 AG $+0.2285$ s GCVS 2009 -Ir	31	17)
EY Lac $55033.5400$ .0006 AG $-0.4109$ s GCVS 2009 -Ir	32	17)
FL Lac 55051.3887 .0011 AG -0.0560 GCVS 2009 -Ir	39	17)
GX Lac 55097.3028 .0011 AG $-0.0385$ GCVS 2009 -Ir	68	17)
HX Lac $55041.5187$ .0003 MS FR $+0.0089$ s GCVS 2009 o	846	9)
IL Lac 55071.3655 .0019 AG -Ir	40	17)
55075.5408 .0013 AG -Ir	56	17)
55108.3479 .0021 AG -Ir	44	17)
IM Lac 55075.4351 .0003 AG $-0.1825$ GCVS 2009 -Ir	56	17)
55108.4117 .0008 AG $-0.1830$ GCVS 2009 -Ir	44	17)
IP Lac 55071.5537 .0006 AG $+0.0793$ GCVS 2009 -Ir	42	17)
IU Lac 55058.4830 .0004 AG $+0.0133$ GCVS 2009 -Ir	57	17)
55062.3594 .0029 AG $+0.0134$ GCVS 2009 -Ir	32	17)
IZ Lac 55050.4316 .0008 AG $+0.0109$ s GCVS 2009 -Ir	30	17)

Table 1: (cont.)

	Variable	HJD 24	±	Obs	O-C		Bibliography	Fil	n	Rem
	IZ Lac	55058.4206	.0005	AG	+0.0111	$\mathbf{S}$	GCVS 2009	-Ir	54	17)
		55062.4149	.0011	AG	+0.0110	$\mathbf{S}$	GCVS 2009	-Ir	32	17)
		55141.5086	.0007	$\mathbf{FR}$	+0.0158	$\mathbf{S}$	GCVS 2009	-Ir	67	17)
	KS Lac	55033.4633	.0011	AG	+0.1781		GCVS 2009	-Ir	30	17)
		55049.4859	.0023	AG	+0.1755		GCVS 2009	-Ir	28	17)
LU Lac         55049.407         .0008         AG         +0.0313		55051.4876	.0030	AG	+0.1740	$\mathbf{S}$	GCVS 2009	-Ir	39	17)
	LU Lac	55049.4047	.0002	MS FR	+0.0313		GCVS 2009	0	378	9)
5507.457         .0012         AG         +0.2309         GCVS 2009         -Ir         50         17)           LZ Lac         55031.6302         .0001         AG         +0.1585         GCVS 2009         -Ir         76         17)           NR Lac         55041.5382         .0002         AG         +0.0667         s         GCVS 2009         -Ir         78         35         17)           55042.442         .0007         AG         +0.0667         s         GCVS 2009         -Ir         39         17)           S5063.51297         .0011         AG         +0.3216         s         GCVS 2009         -Ir         39         17)           OS Lac         55035.43503         .0010         AG         +0.3216         s         GCVS 2009         -Ir         28         17)           55063.4455         .0007         FR         -0.0941         GCVS 2009         -Ir         30         17)           V342 Lac         55053.4456         .0002         FR         -0.0943         s         GCVS 2009         -Ir         30         17)           55054.477         .0014         AG         -0.0943         s         GCVS 2009         -Ir         31         <	LY Lac	55049.4457	.0008	AG	+0.2307		GCVS 2009	-Ir	28	17)
		55097.3457	.0013	AG	+0.2309		GCVS 2009	-Ir	55	17)
MZ Lac       55041.5202       .0001       AG       +0.1585       GCVS 2009       -Ir       76       17         S5041.5382       .0022       AG       +0.0674       GCVS 2009       -Ir       35       17         S5042.4432       .0007       AG       +0.0674       GCVS 2009       -Ir       35       17         S5043.5027       .0011       AG       +0.0507       s       GCVS 2009       -Ir       33       17         OS Lac       55043.5039       .0010       AG       +0.3229       s       GCVS 2009       -Ir       28       17         S5043.5039       .0010       AG       +0.3215       s       GCVS 2009       -Ir       28       17         S5053.4353       .0012       AG       -0.0947       GCVS 2009       -Ir       49       17         S5054.4353       .0007       FR       -0.0984       s       GCVS 2009       -Ir       51       17         S5054.4317       .0004       AG       -0.0984       s       GCVS 2009       -Ir       72       17         S5054.4317       .0004       AG       -0.0984       s       GCVS 2009       -Ir       72       17 <td< td=""><td>LZ Lac</td><td>55051.4639</td><td>.0012</td><td>AG</td><td>+0.3196</td><td></td><td>GCVS 2009</td><td>-Ir</td><td>39</td><td>17)</td></td<>	LZ Lac	55051.4639	.0012	AG	+0.3196		GCVS 2009	-Ir	39	17)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	MZ Lac	55034.5202	.0001	AG	+0.1585		GCVS 2009	-Ir	76	17)
	NR Lac	55041.5382	.0022	AG	+0.0696	$\mathbf{S}$	GCVS 2009	-Ir	40	17)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		55042.4432	.0007	AG	+0.0674		GCVS 2009	-Ir	35	17)
NS Lac         55061,7297         .0011         AG         +0.1500         GCVS 2009         -Ir         39         17)           OS Lac         55035,5297         .0010         AG         +0.3229         s         GCVS 2009         -Ir         33         17)           55043,3503         .0010         AG         +0.3229         s         GCVS 2009         -Ir         38         17)           55075,3586         .0010         AG         +0.3215         s         GCVS 2009         -Ir         30         17)           V342 Lac         55050,4365         .0007         FR         -0.0984         s         GCVS 2009         -Ir         40         17)           55131,4545         .0006         AG         -0.0984         s         GCVS 2009         -Ir         54         17)           55141,4546         .0003         FR         -0.0945         GCVS 2009         -Ir         32         17)           55141,4566         .0003         FR         +0.0914         GCVS 2009         -Ir         32         17)           55141,5065         .0003         FR         +0.0914         GCVS 2009         -Ir         39         17)           V345 Lac		55049.4007	.0027	AG	+0.0697	$\mathbf{s}$	GCVS 2009	-Ir	28	17)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	NS Lac	55067.4115	.0002	MS FR	-0.2240		GCVS 2009	0	513	9)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	OO Lac	55051.5297	.0011	AG	+0.1500		GCVS 2009	-Ir	39	17)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	OS Lac	55033.5039	.0010	AG	+0.3229	$\mathbf{S}$	GCVS 2009	-Ir	33	17)
		55049.3905	.0030	AG	+0.3215	$\mathbf{S}$	GCVS 2009	-Ir	28	17)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		55075.3886	.0010	AG	+0.3211	$\mathbf{S}$	GCVS 2009	-Ir	56	17)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	PP Lac	55068.4485	.0008	AG	-0.0526		GCVS 2009	-Ir	45	17)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	V342 Lac	55050.3793	.0012	AG	-0.0947		GCVS 2009	-Ir	30	17)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		55051.4265	.0007	$\mathbf{FR}$	-0.0984	$\mathbf{S}$	GCVS 2009	-Ir	49	17)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		55058.4317	.0004	AG	-0.0989	$\mathbf{S}$	GCVS 2009	-Ir	54	17)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		55125.3425	.0006	AG	-0.0933		GCVS 2009	-Ir	50	17)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		55141.4546	.0003	$\mathbf{FR}$	-0.0945		GCVS 2009	-Ir	72	17)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	V344 Lac	55033.4456	.0026	AG	+0.0911		GCVS 2009	-Ir	32	17)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		55051.4876	.0003	$\mathbf{FR}$	+0.0907		GCVS 2009	-Ir	56	17)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		55062.4707	.0005	AG	+0.0914		GCVS 2009	-Ir	32	17)
		55141.3114	.0009	FR	-0.1018	$\mathbf{S}$	GCVS 2009	-Ir	72	17)
	TTO (# T	55141.5065	.0003	FR	+0.0933	$\mathbf{s}$	GCVS 2009	-lr	72	17)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	V345 Lac	55051.3743	.0008	AG	+0.1687	$\mathbf{s}$	GCVS 2009	-lr	39	17)
	V364 Lac	55071.4412	.0004	FR	-0.0109		BAVR 47,33	-lr	50	17)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	TTIOL T	55082.5585	.0006	FR	+0.0790	$\mathbf{s}$	BAVR 47,33	-lr	47	17)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	V401 Lac	55041.5060	.0041	AG				-lr	41	17)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	17400 1	55042.4909	.0012	AG				-lr	34	17)
V441 Lac55058.5.37.0012AG $\pm 0.0584$ $\pm BVS 5024$ $-4r$ $57$ $17$ 55062.3821.0011AG $\pm 0.0556$ sIBVS 5024 $-4r$ $32$ $17$ UZ Lyr55075.3757.0003JU $-0.0275$ GCVS 2009o607AA Lyr55074.4975.0010FR $\pm 0.1535$ sGCVS 2009o607BV Lyr55068.4881.0028AG $\pm 0.0303$ sGCVS 2009 $-4r$ $36$ $17$ FH Lyr54932.5299.0003MS FR $\pm 0.0247$ GCVS 2009o $765$ 9PS Lyr55060.4250.0010JU $\pm 0.0118$ GCVS 2009o $50$ 755076.3420.0026AG $\pm 0.0120$ GCVS 2009 $-4r$ $17$ $17$ QU Lyr55074.3207.0003FR $\pm 0.0028$ sGCVS 2009 $-4r$ $114$ 755075.3207.0003FR $\pm 0.0028$ sGCVS 2009 $-4r$ $114$ 7QU Lyr55074.320.0007MZ $-0.0021$ sGCVS 2009 $-4r$ $114$ 7 $55074.3316$ .0007MZ $-0.0021$ sGCVS 2009 $-4r$ $114$ 7 $55074.5381$ .0005FR $\pm 0.1982$ GCVS 2009 $-4r$ $53$ $17$ $V412$ Lyr55063.3997.0004JUo $51$ $7$ $V579$ Lyr $54996.4256$ .0004AG $\pm 0.042$	V402 Lac	55051.5025	.0004	FR	0.0504		IDVG FOOA	-lr	71	17)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	V441 Lac	55058.5237	.0012	AG	+0.0584		IBVS 5024	-lr	57	17)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		55062.3821	.0011	AG	+0.0550	$\mathbf{s}$	IBVS 5024	-1r	32	17)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	UZ Lem	55062.5379 EEO7E 27E7	.0010	AG	+0.0309		1BVS 5024	-1r	32 60	1()
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		55075.5757	.0003	JU ED	-0.0275	~	GCVS 2009	0 	50 E 4	() 17)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	AA Lyr DV Lum	55069 4975	.0010		+0.1000	s	GCVS 2009	-11 In	04 26	17)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	EH Lyr	54032 5200	.0028	AG MS FR	$\pm 0.0303$ $\pm 0.0247$	s	GCVS 2009	-11	30 765	(17)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	PS Lyr	55060 4250	.0005		$\pm 0.0247$ $\pm 0.0118$		GCVS 2009 GCVS 2009	0	50	3) 7)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	I S Lyi	55076 3420	0026	AC	$\pm 0.0110$ $\pm 0.0120$		GCVS 2009	Ir	17	17)
QU Lyr $55092.3996$ $.0007$ MZ $-0.0021$ s $GCVS 2009$ $-Ir$ $114$ $7$ ) $55130.3186$ $.0010$ MZ $+0.0028$ s $GCVS 2009$ $-Ir$ $114$ $7$ ) $V412$ Lyr $55074.5381$ $.0005$ FR $+0.1982$ $GCVS 2009$ $-Ir$ $98$ $7$ ) $V579$ Lyr $54996.4256$ $.0004$ JUo $62$ $7$ ) $V580$ Lyr $55063.3997$ $.0004$ JUo $51$ $7$ ) $55087.3935$ $.0008$ JUo $54$ $7$ ) $V423$ Oph $55029.5126$ $.0006$ AG $+0.0424$ $GCVS 2009$ $-Ir$ $51$ $V579$ Oph $55045.4768$ $.0005$ AG $+0.0424$ $GCVS 2009$ $-Ir$ $42$ $17$ ) $V579$ Oph $55041.5209$ $.0010$ AG $-0.0087$ $GCVS 2009$ $-Ir$ $42$ $17$ ) $V577$ Oph $55041.5208$ $.0008$ AG $+0.0824$ $s$ $GCVS 2009$ $-Ir$ $45$ $17$ ) $V2612$ Oph $55041.5208$ $.0008$ AG $+0.0824$ $s$ $GCVS 2009$ $-Ir$ $55$ $17$ ) $VV$ Ori $55175.3728$ $.0011$ FR $-0.0271$ $GCVS 2009$ $-Ir$ $121$ $12$ ) $GG$ Ori $52655.4238$ $.0005$ FR $+0.0836$ $GCVS 2009$ $-Ir$ $53$ $17$ ) $V1353$ Ori $55175.4493$ $.0006$ FR $-Ir$ $-Ir$ $70$ $17$ )		55097 3207	00020	FR	$\pm 0.0120$ $\pm 0.0095$	e	GCVS 2009 GCVS 2009	-11 _Tr	100	17) 17)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	OU Lyr	55092 3996	0007	MZ	-0.0021	s	GCVS 2009	-Ir	114	7)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	QC LJ1	55130 3186	0010	MZ	+0.0021	s	GCVS 2009	-Ir	98	7)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	V412 Lyr	55074.5381	.0005	FR	+0.1982	5	GCVS 2009	-Ir	53	17)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	V579 Lyr	54996.4256	.0004	JU	10.1002		0.010 2000	0	62	7)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	V580 Lyr	55063.3997	.0004	JU				0	51	7)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	· • • • • - j -	55087.3935	.0008	JU				0	54	7)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	V423 Oph	55029.5126	.0006	AG	+0.0424		GCVS 2009	-Ir	51	17)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	V509 Oph	55045.4768	.0005	AG	+0.0562		GCVS 2009	-Ir	42	$17)^{'}$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	V577 Oph	55041.5209	.0010	AG	-0.0087		GCVS 2009	-Ir	55	$17)^{'}$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	V969 Oph	55045.4115	.0004	AG	+0.0179	$\mathbf{s}$	GCVS 2009	-Ir	45	17)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	V2612  Oph	55041.5208	.0008	AG	+0.0824	$\mathbf{S}$	GCVS 2009	-Ir	55	$17)^{-}$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	VV Ori	55175.3728	.0011	$\mathbf{FR}$	-0.0271		GCVS 2009	-Ir	121	$12)^{'}$
55175.3830         .0005         FR         +0.0836         GCVS 2009         -Ir         53         17           V1353 Ori         55175.4493         .0006         FR         -Ir         70         17	GG Ori	52655.4238	.0005	$\mathbf{FR}$	+0.0830		GCVS 2009	-Ir	62	12) 1)
V1353 Ori 55175.4493 .0006 FR -Ir 70 17)		55175.3830	.0005	$\mathbf{FR}$	+0.0836		GCVS 2009	-Ir	53	17)
	V1353 Ori	55175.4493	.0006	$\mathbf{FR}$				-Ir	70	17)

Table 1: (cont.)

Variable	HJD 24	±	Obs	O-C		Bibliography	Fil	n	Rem
U Peg	54839.2897	.0035	ATB	-0.0162	$\mathbf{S}$	BAVR 45,3	0	42	6)
	55059.4707	.0021	PGL	-0.0170		BAVR 45,3	V	371	16)
	55063.4060	.0007	FLG	-0.0169	$\mathbf{S}$	BAVR 45,3	V	106	15)
AT Peg	55093.3274	.0035	PGL	+0.0231		GCVS 2009	V	482	16)
	55141.4661	.0004	$\mathbf{FR}$	+0.0265		GCVS 2009	-Ir	79	12)
3K Peg	54829.3925	.0007	BKN	+0.0073		GCVS 2009	V	233	14)
BY Peg	55060.4037	.0002	MS FR	-0.0265		GCVS 2009	0	385	9)
CE Peg	55048.4709	.0003	MS FR	+0.1473	$\mathbf{S}$	GCVS 2009	0	720	9) 1)
CU Peg	55155.2625	.0031	SCI	+0.0152		GCVS 2009	0	41	7)
	55155.2625	.0031	SCI	+0.0152		GCVS 2009	0	41	7)
DF Peg	55083.4191	.0007	$\mathbf{FR}$	+0.1075		GCVS 2009	-Ir	32	17)
DI Peg	55064.3920	.0014	PGL	-0.0123		GCVS 2009	V	553	16)
	55064.3929	.0001	FLG	-0.0114		GCVS 2009	V	89	15)
DM Peg	55154.4139	.0012	$\mathbf{FR}$	+0.0383	$\mathbf{S}$	GCVS 2009	-Ir	27	12)
GH Peg	55084.3655	.0007	SIR	+0.0061		GCVS 2009	-Ir	268	11)
LS Peg	55068.4350	.0005	$\mathbf{FR}$				-Ir	353	17)
0	55068.6083	.0005	$\mathbf{FR}$				-Ir	353	17)
AG Per	55155.3272	.0011	$\mathbf{FR}$	+0.1557	$\mathbf{s}$	GCVS 2009	-Ir	23	12)
BP Per	55073.5374	.0004	MS FR	-0.0269	s	GCVS 2009	0	252	9)
	55074.5233	.0002	MS FR	-0.0305	-	GCVS 2009	0	675	9)
FW Per	55066 5850	0003	MS FR	-0.0530		GCVS 2009	0	476	9)
HS Per	55141 5318	0004	AG	0.0000		GC ( 5 2005	-Ir	65	17)
IK Por	55155 4131	0001	MS FR	-0.1760		CCVS 2000	0	500	0)
KN Por	55048 5408	.0002	MS FR	-0.1700 $\pm 0.0067$		BAVE 52.03	0	186 	<i>3)</i>
KIN I EI	55155 5626	.0004		+0.0007	a	DAVIC 52,95	0 In	54	9) 17)
OT Don	55058 5472	.0011	AG MC FD	+0.0121	8	CCVS 2000	-11	500	17)
JI Per	00000.0470	.0004	MSFR	+0.1865		GCVS 2009	0 T	500	9) 17)
JU Per	55155.6128	.0010	AG	-0.0048		GCVS 2009	-lr	54	17)
V337 Per	55155.4929	.0004	AG	-0.0404		GCVS 2009	-lr	54	17)
V427 Per	55155.4856	.0005	AG	+0.0140		GCVS 2009	-lr	54	17)
V432 Per	55155.4190	.0005	AG	-0.0215	$\mathbf{S}$	IBVS 3797	-lr	54	17)
	55155.6122	.0011	AG	-0.0200		IBVS 3797	-lr	54	17)
V449 Per	55155.4906	.0026	AG	+0.0483	$\mathbf{S}$	GCVS 2009	-Ir	50	17)
V450 Per	55075.6073	.0002	MS FR	+0.0997		GCVS 2009	0	477	9)
	55155.2975	.0007	AG	+0.1019		GCVS 2009	-Ir	54	17)
U Sge	54697.5417	.0012	$\operatorname{FR}$	-0.0020	$\mathbf{S}$	GCVS 2009	-Ir	43	12) 1)
	55042.3649	.0012	$\mathbf{FR}$	-0.0020	$\mathbf{S}$	GCVS 2009	-Ir	43	12) 1)
V Sge	55028.4893	.0009	AG	-0.0596		GCVS 2009	-Ir	34	17)
	55097.3965	.0019	AG	-0.0546		GCVS 2009	-Ir	67	17)
UZ Sge	55032.4024	.0001	AG	+0.0716		GCVS 2009	-Ir	44	17)
BR Sge	55097.4465	.0008	AG	-0.5564		GCVS 2009	-Ir	67	17)
CK Sge	55032.4838	.0054	AG	-0.0386		GCVS 2009	-Ir	36	17)
CW Sge	55028.4412	.0011	AG	+0.0285		GCVS 2009	-Ir	33	17)
DE Sge	55042.4051	.0011	AG	-0.4060		GCVS 2009	-Ir	42	17)
DK Sge	55028.5049	.0004	AG	-0.1544		GCVS 2009	-Ir	35	17)
0	55042.4928	.0005	AG	+0.1535		GCVS 2009	-Ir	42	17)
	55067.3653	.0015	AG	+0.1532		GCVS 2009	-Ir	24	17)
DM See	55045 4258	0005	JU	+0.0110		GCVS 2009	0	60	7)
FF See	55042 4384	0011	AG	+0.0358	S	GCVS 2009	-Ir	42	17)
FL Sge	55067 5008	0182	AG	$\pm 0.1159$	b	GCVS 2009	_Ir	23	17)
CN Sco	55042 4657	0011		+ 0.0033	G	CCVS 2009	-11 Ir	49	17)
	55028 5227	.0011	AG	+0.0033	5	GCVS 2009	-11 In	42 95	17)
	55020.5527	.0009	AG	-0.0705	8	GCVS 2009	-11 T.,	ა <u>ე</u> იე	17)
v 505 Sge	00028.4220	.0004	AG	-0.0433	_	GCVS 2009	-11 T.,	ა∠ იე	17)
vm·	0007.3000	.0014	AG EL C	-0.0439	$\mathbf{s}$	GUVS 2009	-1r	23 140	1()
A Tri	55071.3962	.0001	FLG	-0.0756		GUVS 2009	V	148	15)
KS UMi	55095.4970	.0015	AG	+0.1516		GCVS 2009	-lr	152	17)
rv UMi	55095.4628	.0047	AG			01 01	-Ir	38	17)
RS Vul	55064.5034	.0003	$\mathbf{FR}$	-0.0158	$\mathbf{S}$	GCVS 2009	-Ir	25	17)
AB Vul	55060.4105	.0006	AG	-0.0310		GCVS 2009	-Ir	34	17)
AW Vul	55039.4813	.0001	$\mathbf{FR}$	-0.0138		GCVS $2009$	-Ir	73	17)
				0 0000		COLLO DODO	т	~ -	
	55041.5014	.0012	$\mathbf{FR}$	-0.0098	$\mathbf{s}$	GCVS 2009	-1r	37	17)

Table 1: (cont.)

Variable		1	Oha			Dibligmanhar	T:1	10	Dama
Variable DC Val	HJD 24	±		U - C		Bibliography	F11 In	n 50	17)
DG VUI	55071.5557	.0000	AG	+0.0724	a	GCVS 2009	-11 In	52 52	17)
DS Vul	55071.3331	.0004	AG	+0.0722	s	GCVS 2009	-11	02 20	17)
	55020 4550	.0010	JU	-0.0234		GCVS 2009	0 In	30 49	() 17)
Dr. vui	55089.4559	.0003	гn Ш	$\pm 0.1272$	a	GCVS 2009	-11	40	17)
FM Val	55060 5407	.0010		+0.2107	5	GCVS 2009	0 In	25	() 17)
r wr vur	55068 3873	.0009	AG	$\pm 0.0285$ $\pm 0.0287$		GCVS 2009 GCVS 2009	-11 Ir	36	17) 17)
FO Vul	55060 4085	.0000	AC	+0.0287 -0.1275		GCVS 2009	-11 Ir	35	17) 17)
FR Vul	55066 5274	0002	AG	-0.1275 -0.0065		GCVS 2009	-11 Ir	48 - 18	17) 17)
rit vui	55068 4100	0012	AG	-0.0005 -0.0076		GCVS 2009 GCVS 2009	-11 _Ir	36	17) 17)
GP Vul	54996 4388	.0012	AG	-0.0070		GCVS 2009 GCVS 2009	-11 _Ir	42	17) 17)
GR Vul	55068 4968	0011	AG	-0.0345		GCVS 2009	-11 -Ir	37	17)
GV Vul	54996 4857	0003	MS FR	+0.0685		GCVS 2009	0	630	9)
V403 Vul	55059 5176	0011	FR	10.0000		00152005	-Ir	83	17)
V467 Vul	55071 3523	0013	AG	-0.0248	S	GCVS 2009	-11 -Ir	53	17)
V IOT VIII	55071.5622	0007	AG	-0.0236	5	GCVS 2009	-Ir	53	17)
GSC 00238-00793	52338 3977	0012	AG	+0.0015		PZP 10.4	0	24	6)
0.50 00-00 00100	52338 5566	0007	AG	-0.0005	s	PZP 10.4	0	24	6)
	52344.3450	.0008	AG	-0.0020	s	PZP 10.4	0	31	6)
	52344.5069	.0009	AG	-0.0009	5	PZP 10.4	0	31	$\begin{pmatrix} 0 \\ 6 \end{pmatrix}$
	52345.3179	.0018	AG	+0.0059	s	PZP 10.4	Ŭ	31	6)
	52345.4718	.0015	AG	-0.0010	~	PZP 10.4	B+V	65	6)
	52347.4022	.0012	AG	-0.0006		PZP 10.4	0	61	6)
	52371.3733	.0010	AG	+0.0067	$\mathbf{s}$	PZP 10.4	0	74	6)
	52696.4064	.0005	AG	+0.0004	~	PZP 10.4	0	183	6)
	54136.4845	.0009	AG	-0.0023		PZP 10.4	-Ir	55	6)
	54171.3920	.0019	AG	+0.0049	$\mathbf{s}$	PZP 10.4	-Ir	59	6)
	54171.5437	.0036	AG	-0.0043		PZP 10.4	-Ir	59	6)
	54173.3208	.0020	AG	+0.0037	$\mathbf{s}$	PZP 10.4	-Ir	29	6)
	54173.4805	.0026	AG	+0.0026		PZP 10.4	-Ir	29	6)
	54506.3938	.0010	AG	-0.0043		PZP 10.4	-Ir	70	6)
	54506.5609	.0022	AG	+0.0020	$\mathbf{s}$	PZP 10.4	-Ir	70	6)
GSC 00434-03766	55029.5113	.0017	AG				-Ir	51	17)
	55045.4855	.0012	AG				-Ir	42	17)
GSC 0113-400160	55068.3614	.0007	$\mathbf{FR}$				-Ir	73	17)
	55068.5360	.0007	$\mathbf{FR}$				-Ir	73	17)
	55083.3827	.0003	$\mathbf{FR}$				-Ir	66	17)
	55083.5560	.0006	$\mathbf{FR}$				-Ir	66	17)
GSC 01134-00352	55068.4426	.0003	$\mathbf{FR}$				-Ir	40	17)
	55083.3845	.0004	$\mathbf{FR}$				-Ir	45	17)
GSC 01330-00293	52690.3790	.0013	AG	+0.0004		BAVR 57.232	-Ir	39	6)
	52691.3015	.0021	AG	-0.0013		BAVR 57.232	-Ir	34	6)
	52692.4621	.0033	AG	+0.0040	$\mathbf{S}$	BAVR 57.232	-Ir	43	6)
	52721.3403	.0015	AG	+0.0002		BAVR 57.232	0	19	6)
	53028.4182	.0016	AG	+0.0051	$\mathbf{S}$	BAVR 57.232	-Ir	29	6)
	53055.4549	.0009	AG	+0.0083		BAVR 57.232	-Ir	40	6)
	53410.3457	.0013	AG	-0.0025		BAVR 57.232	-Ir	57	6)
	54505.3276	.0040	$\mathrm{QU}$	+0.0064	$\mathbf{S}$	BAVR 57.232	V	76	8)
	54507.3974	.0010	QU	-0.0033		BAVR 57.232	V	84	8)
	54509.4793	.0020	QU	-0.0009	$\mathbf{S}$	BAVR 57.232	V	96	8)
	54515.4886	.0020	QU	+0.0010	$\mathbf{S}$	BAVR 57.232	V	75	8)
	54516.4142	.0020	QU	+0.0023	$\mathbf{S}$	BAVR 57.232	V	90	8)
	54520.3369	.0015	QU	-0.0029		BAVR 57.232	V	75	8)
	54531.4262	.0010	QU	-0.0043		BAVR 57.232	В	70	8)
	54809.6201	.0020	AG	-0.0015		BAVR 57.232	-Ir	52	17)
	54843.3513	.0008	AG	-0.0044		BAVR 57.232	-Ir	56	17)
	54843.5860	.0029	AG	-0.0008	$\mathbf{S}$	BAVR 57.232	-Ir	56	17)
	54856.5263	.0014	AG	+0.0004	$\mathbf{S}$	BAVR 57.232	-Ir	57	17)
GSC 01643-01880	54682.5753	.0005	AG				-Ir	46	17)
	55067.3648	.0019	AG				-Ir	24	17)
GSC 02149-00720	54697.4274	.0008	$\overline{AG}$				-Ir	38	17)

Table 1: (cont.)

Variable	HJD 24	±	Obs	$\overline{O} - C$		Bibliography	Fil	n	Rem
GSC 02161-01310	55039.5590	.0010	FR				-lr	113	17)
	55041.4276	.0014	FR				-lr	56	17)
<u>aaa ooron ooroo</u>	55063.4519	.0005	FR				-lr	61	17)
GSC 02537-00520	54924.5164	.0016	AG	0.0001		DED 10.4	-Ir	38	$\Gamma()$
GSC 02569-00553	52721.5577	.0015	AG	-0.0021	$\mathbf{S}$	PZP 10.4	0	29	6)
	52722.4429	.0025	AG	-0.0036	$\mathbf{S}$	PZP 10.4	0	42	6)
	52722.5925	.0018	AG	-0.0018		PZP 10.4	0	42	6)
	52723.4834	.0017	AG	+0.0024		PZP 10.4	0	41	6)
	52724.3594:	.0100	AG	-0.0083		PZP 10.4	0	16	6)
	52725.3976	.0017	AG	-0.0046	$\mathbf{S}$	PZP 10.4	0	37	6)
	52725.5564	.0042	AG	+0.0064		PZP 10.4	0	37	6)
	52726.4395	.0044	AG	+0.0028		PZP 10.4	0	29	6)
	52726.5862	.0021	AG	+0.0017	$\mathbf{S}$	PZP 10.4	0	29	6)
	52730.4248	.0018	AG	-0.0021	$\mathbf{S}$	PZP 10.4	0	36	6)
	52730.5744	.0040	AG	-0.0003		PZP 10.4	0	36	6)
	52743.4312	.0027	AG	-0.0008	$\mathbf{S}$	PZP 10.4	0	54	6)
	52747.4302	.0016	AG	+0.0080		PZP 10.4	0	48	6)
	52764.4143	.0010	AG	-0.0033	$\mathbf{s}$	PZP 10.4	0	37	6)
	52784.5163	.0023	AG	-0.0001	$\mathbf{s}$	PZP 10.4	0	38	6)
	52827.5248	.0020	AG	+0.0028		PZP 10.4	0	33	6)
	52834.4706	.0072	AG	+0.0027	$\mathbf{s}$	PZP 10.4	0	26	6)
	53097.3810	.0016	AG	+0.0027		PZP 10.4	0	43	6)
	53097.5256	.0030	AG	-0.0005	$\mathbf{s}$	PZP 10.4	0	43	6)
	53110.3840	.0030	AG	+0.0006		PZP 10.4	0	22	6)
	53145.4166	.0034	AG	+0.0080	$\mathbf{s}$	PZP 10.4	0	24	6)
	53151.4671	.0019	AG	-0.0007		PZP 10.4	0	39	6)
	53475.4126	.0034	AG	-0.0010		PZP 10.4	-Ir	32	6)
	53475.5592	.0018	AG	-0.0022	$\mathbf{S}$	PZP 10.4	-Ir	32	6)
GSC 02656-04286	55084.5602	.0009	$\mathbf{FR}$	-0.0037	$\mathbf{s}$	IBVS 5900 No.4	-Ir	30	17)
GSC 02673-02495	53659.3408	.0030	AG	+0.0000		PZP 10.4	-Ir	30	6)
GSC 02677-00988	55067.3630	.0010	$\mathbf{FR}$				-Ir	48	17)
	55075.4953	.0018	$\mathbf{FR}$				-Ir	30	17)
GSC 02712-02018	55083.4194	.0010	$\mathbf{FR}$				-Ir	66	12)
GSC 02712-02166	55083.2952	.0068	$\mathbf{FR}$				-Ir	60	52)
	55083.5097	.0015	FR				-Ir	60	12)
GSC 03137-00126	55062.5665	.0005	FR				-Ir	96	17)
GSC 03575-03593	55075 3760	0028	AG	+0.0022	s	IBVS 5700 No 74	-Ir	39	17)
GSC 03575-06239	52859.4347	.0002	AG	-0.0003	5	PZP 10.4	-Ir	30	6)
	52886.4693	.0001	AG	+0.0011		PZP 10.4	0	26	6)
	55074 4202	.0024	AG	-0.0076	s	PZP 10.4	-Ir	36	17)
GSC 03576-00170	55075 4466	0008	AG	-0.0444	2	IBVS 5724	_Ir	38	17)
GSC 03612-00014	54031 3994	00/6	AG	-0.0030	0	PZP 10 /	_Ir	19	6)
0.00012-00014	55063 3704	0014	AG	$\pm 0.0030$		PZP 10.4	-Ir	46	17)
GSC 03618-00162	52617 3227	0050	AG	+0.0004		PZP 10.4	_Ir	19	-1) 6)
GSC 00010-00102	52011.0221	0000		-0.0019	c	PZP 10.4	-11 _Tr	10	6)
	52000.4901 52006 4120	0001		-0.0073	5	$\mathbf{D}\mathbf{D}\mathbf{D}\mathbf{D}\mathbf{D}\mathbf{I}\mathbf{D}\mathbf{A}$	-11 Ire	19 19	6)
	5220.4152	.0001	AG	-0.0090	ъ	D7D 10.4	-11 Tn	10	6)
	52220.5572	.0009	AG	-0.0034		FZF 10.4 P7P 10.4	-11 Tn	10	6)
	52030.0207	.0014	AG	-0.0023		FZF 10.4 P7P 10.4	-11 Tn	10	6)
	55242.4555	.0058	AG	+0.0002		FZF 10.4	-11 T.,	10	17)
	55069 51940	.0007	AG	$\pm 0.0020$	~	ГДГ 10.4 D7D 10 4	-11 T.	ა∠ ეე	1 <i>()</i> 17)
CC 09610 00440	50601.0000	.0013	AG	+0.0010	s	ГДГ 10.4 D7D 10.4	-11 T	პ∠ ეი	1() C)
550 03018-00448	02021.2009	.0010	AG	+0.0130	$\mathbf{s}$	ГДГ 10.4 D7D 10.4	-1r T	20 10	() ()
	02800.0410	.0003	AG	-0.0115		PZP 10.4	-1r	19	6) ()
	53233.5060	.0009	AG	+0.0035	$\mathbf{s}$	PZP 10.4	-ir	18	6)
	53242.4638	.0057	AG	-0.0168		PZP 10.4	-lr	15	6)
	53284.4781	.0004	AG	+0.0031	$\mathbf{S}$	PZP 10.4	-lr	22	6)
	53653.4550	.0036	AG	+0.0085	$\mathbf{S}$	PZP 10.4	-lr	30	6)
	54712.5701	.0030	AG	-0.0039		PZP 10.4	-lr	22	17)
	54738.3559	.0034	AG	+0.0060	$\mathbf{S}$	PZP 10.4	-Ir	67	17)
	54798.2931	.0011	AG	-0.0074		PZP 10.4	-Ir	75	17)
	55062.4201	.0013	AG	-0.0106		PZP 10.4	-Ir	32	17)

Table 1: (cont.)

Variable	HJD 24	±	Obs	O-C		Bibliography	Fil	n	Rem
GSC 03618-00448	55098.6275	.0018	AG	-0.0053	$\mathbf{S}$	PZP 10.4	-Ir	29	17)
	55125.2893	.0032	AG	+0.0118	$\mathbf{s}$	PZP 10.4	-Ir	50	17)
	55141.5031	.0016	$\mathbf{FR}$	+0.0071	$\mathbf{s}$	PZP 10.4	-Ir	50	17)
GSC 03619-00047	53256.5804	.0010	AG	-0.0106		PZP 10.4	-Ir	21	6)
	54035.3425	.0016	AG	+0.0053		PZP 10.4	-Ir	35	6)
	54035.5994	.0046	AG	+0.0198	$\mathbf{s}$	PZP 10.4	-Ir	35	6)
	54080.4337	.0020	AG	+0.0010		PZP 10.4	-Ir	46	6)
	55033.4988	.0032	$\operatorname{AG}$	-0.0009	$\mathbf{S}$	PZP 10.4	-Ir	29	17)
	55051.4442	.0008	$\mathbf{FR}$	+0.0033	$\mathbf{S}$	PZP 10.4	-Ir	56	17)
	55098.4750	.0064	$\mathbf{AG}$	-0.0011	$\mathbf{S}$	PZP 10.4	-Ir	27	17)
	55108.4148	.0021	AG	-0.0017		PZP 10.4	-Ir	44	17)
	55141.3861	.0012	$\mathbf{FR}$	-0.0034		PZP 10.4	-Ir	79	17)
GSC 03675-01186	55141.4089	.0013	AG	+0.0189		IBVS 5700 No.67	-Ir	65	17)
	55141.5589	.0010	AG	+0.0203	$\mathbf{S}$	IBVS 5700 No.67	-Ir	65	17)
GSC 03679-02129	54815.3248	.0024	AG				-Ir	60	17)
	54815.5227	.0023	AG				-Ir	60	17)
	54829.3199	.0024	AG				-lr	49	17)
	54829.3199	.0024	AG				-lr	49	17)
	54829.5127	.0028	AG				-lr	49	17)
000 09600 01104	54829.5127	.0028	AG	10.0054		D7D 10 4	-lr	49	(17)
GSC 03688-01184	53636.4490	.0004	AG	+0.0054	$\mathbf{s}$	PZP 10.4	-lr	24	6) C)
	53654.4093	.0022	AG	-0.0013	$\mathbf{s}$	PZP 10.4	-Ir	50	6) C)
	53654.5956	.0009	AG	+0.0053	_	PZP 10.4 DZD 10.4	-1r	5U 27	6) C)
	53059.4410	.0020	AG	+0.0002	s	PZP 10.4 DZD 10.4	-Ir	37 99	6) 6)
	54020.3202	.0038	AG	-0.0024	s	PZP 10.4 DZD 10.4	-1r	23 91	0) 6)
	04000.0000 54115 4949	.0029	AG	+0.0000	G	PZP 10.4 PZP 10.4	-11 In	21 40	6)
	04110.4040 54915 4970	.0022	AG	-0.0108	s	PZP 10.4 PZP 10.4	-11 In	49 50	0) 17)
	54820 2774	.0012	AG	-0.0042	8	PZP 10.4	-11 Ir	-09 -48	17)
	54829.2114	0012	AG	$\pm 0.0014$ $\pm 0.0010$	e	PZP 10.4	-11 _Ir	40	17) 17)
	55141 3685	0030	AG	+0.0010 +0.0048	2	PZP 10.4	-11 -Ir	63	17)
	55141.5009 55141.5462	0025	AG	+0.0010 +0.0028	b	PZP 10.4	-Ir	63	17)
GSC 04009-00670	53349.2934	.0042	AG	-0.0045	s	PZP 10.4	-Ir	23	6)
	53656.4158	.0049	AG	+0.0051	Б	PZP 10.4	-Ir	30	6)
GSC 04030-02020	55081.3444	.0010	AG	1 0.000-			-Ir	46	17)
0.0000000000000000000000000000000000000	55081.4805	.0010	AG				-Ir	46	17)
	55081.6183	.0028	AG				-Ir	46	17)
	55154.3459	.0021	AG				-Ir	45	$17)^{(-)}$
	55154.4840	.0006	AG				-Ir	45	17)
	55154.6182	.0022	AG				-Ir	45	17)
GSC 04285-00122	53768.3875	.0002	AG	+0.0029		PZP 10.4	-Ir	22	6)
	54003.4629	.0017	AG	-0.0008	$\mathbf{s}$	PZP 10.4	-Ir	63	6)
	54035.3089	.0031	$\operatorname{AG}$	+0.0018	$\mathbf{s}$	PZP 10.4	-Ir	45	6)
	54035.4900	.0018	$\mathbf{AG}$	-0.0044		PZP 10.4	-Ir	45	6)
	54085.5048	.0023	AG	-0.0024	$\mathbf{S}$	PZP 10.4	-Ir	30	6)
	54218.5056	.0012	AG	+0.0055	$\mathbf{S}$	PZP 10.4	-Ir	41	6)
	54718.4394	.0013	$\operatorname{AG}$	-0.0018		PZP 10.4	-Ir	63	17)
	54840.3874	.0026	AG	+0.0048	$\mathbf{S}$	PZP 10.4	-Ir	66	17)
	54840.5703	.0050	AG	+0.0004		PZP 10.4	-Ir	66	17)
GSC 04497-00283	55064.5253	.0014	AG				-Ir	51	17)
	55083.4777	.0004	AG				-lr	79	17)
000 04500 00100	55103.3541	.0015	AG	0.0040		IDIA FROM N. O	-lr	67	17)
GSU 04502-00138	54080.2646	.0005	AG	-0.0848		1BVS 5700 No.8	-lr	45	6)
	54080.4572	.0009	AG	-0.0887	$\mathbf{S}$	1BVS 5700 No.8	-lr	45 45	6)
	54080.6555	.0012	AG	-0.0868		IBVS 5700 No.8	-1r	45 E 1	6) 17)
	55064.4471	.0008	AG	-0.1108		IBVS 5700 No.8	-1r	51 64	17)
CSC 04502 01040	00103.3007 54090 2960	0100.	AG AC	-0.1103	c	1DVS 5700 No.8	-11 Im	04 45	1() 6)
350 04002-01040	54000.3000 54000 5150	.0028 0007		$\pm 0.0490$ $\pm 0.0449$	ъ	IBVS 5700 No.60	-11 In	40 45	6)
	54080.5158	,0007 8000	AG AC	$\pm 0.0442$ $\pm 0.0407$	c	IBVS 5700 No.60	-11 _Tr	40 45	6)
	55064 4131	0007	AC	+0.0497	a a	IBVS 5700 No 60	_Ir	-10 51	17)
	1011-10100	.0001	110	10.0049	G	TD 10 0100 110.00	.11	91	11)

Table 1: (cont.)

			Table	1. (cont.)				
Variable	HJD 24	±	Obs	O - C	Bibliography	Fil	n	Rem
GSC 04502-01040	55064.5544	.0017	AG	+0.0390	IBVS 5700 No.60	-Ir	51	17)
GSC 04816-02749	54507.4583	.0015	AG			-Ir	24	6)
TYC 4015-0998	55096.6179	.0182	AG			-Ir	48	17)

Table 2: Times of maxima of pulsating stars

Variable	H.ID 24	+	Obs	O - C	Bibliography	Fil	n	Rem
OV And	55063 3839	0035	PGL	-0.0240	MVS 11 133	V	242	16)
AA Aql	55071.4592	.0030	ALH	+0.0042	BAVM 78	v	190	10)
V341 Aal	55041.6020:	.0100	FR	+0.0055	BAVR 45.74	-Ir	56	12)
, on no	55062 4116	0011	FLG	+0.0064	BAVR 45 74	V	227	15)
V525 Aal	55066 4590	0060	SB	+0.0001 +0.1361	GCVS 2009	v	76	15(1)
V672 Aql	55067 3939	0006	MZ	-0.2628	GCVS 2009	-Ir	102	10) 1) 7)
TZ Aur	55123 3915	0021	PGL	+0.0110	GCVS 2009	V	233	19)
YZ Boo	$54952\ 4272$	0016	FLG	+0.0002	GCVS 2009	v	<u>-</u> 52	15)
CM Boo	54953 4486	0022	FLG	-0.1138	GCVS 2009	v	183	15)
CO Boo	54981 4007	00022	MZ	-0.0565	BAVB 48 189	-Ir	151	7)(1)
0 Q 200	54981 4368	0007	MZ	-0.0204	BAVB 48 189	-Ir	121	7) 1)
ST CVn	54972.468	.002	AG	-0.065	BAVR 49,105	-Ir	38	(17)
PS Cas	55141 389	005	AG	-0.192	GCVS 2009	-Ir	65	17)
V363 Cas	55108 525	003	AG	+0.037	BAVB 49 41	-Ir	48	17)
RZ Cep	55068 4860	0035	PGL	-0.1145	GCVS 2009	V	844	16(3)
112 сор	55070.3691	.0035	PGL	-0.0835	GCVS 2009	v	479	16) 4)
	55083.3100	.0035	PGL	-0.1074	GCVS 2009	v	477	16) 5)
	55091.3321	.0042	PGL	-0.1111	GCVS 2009	v	613	16) 5)
	55094.4275	.0056	PGL	-0.1026	GCVS 2009	v	545	16) 5)
	55099.360:	.006	PGL	-0.109	GCVS 2009	0	135	16) 5)
RV CrB	54972.4318	.0030	ALH	+0.0098	GCVS 2009	V	171	10) 4)
UY Cvg	55063.4239	.0030	ALH	+0.0429	GCVS 2009	v	332	10)
XZ Cvg	55119.3035	.0005	MOO	+0.0402	BAVB 48.189	0	60	15)
DM Cvg	55059.4525	.0030	ALH	-0.0015	A&A 476.307 2007	V	128	10)
V833 Cvg	55082.3600	.0010	MZ	-0.1580	GCVS 2009	-Ir	251	(7) (1)
	55083.4372	.0015	MZ	-0.1571	GCVS 2009	-Ir	61	7)
V838 Cvg	55101.4494	.0007	MZ	+0.0288	GCVS 2009	-Ir	80	7)
	55102.4128	.0007	MZ	+0.0317	GCVS 2009	-Ir	75	7)
V1949 Cvg	55119.4790	.0010	MZ	,	0.01.0 2000	-Ir	72	7)
78	55119.4790	.0010	MZ			-Ir	72	7)
	55130.4645	.0026	MZ			-Ir	47	7)
	55130.4645	.0026	MZ			-Ir	47	7)
DD Dra	54972.453	.003	AG	+0.064	BAVR 49.6	-Ir	53	17)
RR Gem	55164.5212	.0021	PGL	-0.0107	BAVR 47,67	V	379	19)
SZ Gem	54922.3515	.0032	MOO	+0.0096	BAVR 48,65	0	33	18)
TW Her	55066.4339	.0020	MOO	-0.0541	GCVS 2009	0	76	18)
VZ Her	54709.4292	.0014	ATB	+0.0667	GCVS 2009	0	75	6)
AR Her	55051.4351	.0035	PGL	+0.0337	BAVR 52,3	0	676	16)
	55060.3762	.0021	PGL	+0.0452	BAVR 52,3	0	441	16)
	55066.4812	.0035	PGL	+0.0403	BAVR 52,3	0	419	16)
	55067.4170	.0035	PGL	+0.0362	BAVR 52,3	0	264	16)
	55068.3528	.0035	PGL	+0.0320	BAVR 52,3	0	235	16)
DY Her	55028.4606	.0011	BRL	-0.0061	BAVR 48,189	0	50	20)
V392 Her	55066.3618	.0008	MZ	-0.1313	GCVS 2009	-Ir	104	7)
	55101.3251	.0006	MZ	-0.1311	GCVS 2009	-Ir	86	7)
V862 Her	55100.3747	.0070	MZ			-Ir	67	7) 2)
	55100.3925	.0007	MZ			-Ir	67	7) 2)
CQ Lac	54834.4017	.0028	ATB	+0.1385	GCVS 2009	0	137	6)
CZ Lac	55141.556	.003	$\mathbf{FR}$	-0.162	BAVR 53,12	-Ir	79	17)
GP Leo	54922.327	.003	MS FR	+0.301	IBVS $5114$	0	628	9)
CG Lyr	55074.3750	.0002	MZ	+0.1108	GCVS 2009	-Ir	79	7)
CX Lyr	55062.3950	.0010	MZ	+0.2607	BAVR 49,41	-Ir	113	7)
EZ Lyr	55059.3820	.0014	FLG	+0.0255	BAVR 34,145	V	122	15)
			-					

Table 2: (cont.)

Variable	H.ID 24	+	Obs	O - C	Bibliography	Fil	n	Bem
FN Lyr	54735 4498	0021	ATR	$\pm 0.0244$	GCVS 2009	0	41	6)
I O Lyr	54700 5058	0021	ATR	+0.0244 -0.0322	GCVS 2009	0	52	6)
IO Lyi	55083 4786	0024	ALH	-0.0322	GCVS 2009	V	255	10)
OV Lyr	55002 3008	.0050	MZ	$\pm 0.0049$	GCVS 2009 GCVS 2009	-Ir	132	7)
QV Lyi	55130 3561	.0005	MZ	+0.1047	CCVS 2009	-11 In	110	7)
WZ Dog	54921 2017	.0009		$\pm 0.1035$	DAVD 40 41	-11	01	() ()
	54051.2017	.0030	DCI	-0.0114	CAC Val 79	0 V	01 649	16)
CG Peg	55050.4419	.0055	PGL	-0.0514	GOVG 2000	V	040	10)
DH Peg	55097.4007	.0030	ALH	-0.0021	GCVS 2009	V	398	10) 2)
	55097.4288	.0030	ALH	+0.0260	GCVS 2009	V	398	10) 2)
	55141.378	.003	$\mathbf{FR}$	+0.027	GCVS 2009	-Ir	47	12)
DY Peg	55068.4982	.0010	BRL	-0.0093	GCVS 2009	0	41	20)
	55091.3980	.0009	BRL	-0.0083	GCVS 2009	0	64	20)
	55091.4707	.0007	BRL	-0.0085	GCVS 2009	0	36	20)
	55091.5436	.0007	BRL	-0.0086	GCVS 2009	0	65	20)
	55093.3656	.0035	PGL	-0.0097	GCVS 2009	V	79	16)
	55097.3769	.0021	PGL	-0.0094	GCVS 2009	m	218	16)
AR Per	55155.538	.002	$\mathbf{FR}$	+0.058	GCVS 2009	-Ir	101	17)
	55168.3042	.0035	PGL	+0.0574	GCVS 2009	V	464	16)
V375 Per	55155.265	.001	AG	-0.258	GCVS 2009	-Ir	54	17)
EV Psc	55082.4053	.0030	MZ	-0.0105	GCVS 2009	-Ir	121	7)
	55097.4178	.0030	MZ	-0.0046	GCVS 2009	-Ir	127	7)
V1025 Sgr	55042.530	.006	$\mathbf{FR}$	-0.027	GCVS 2009	-Ir	90	17)
GSC 01666-00929	55083.617	.005	$\mathbf{FR}$			-Ir	208	17)
GSC 02681-00859	55062.426	.002	$\mathbf{FR}$			-Ir	52	17)
	55062.558	.002	$\mathbf{FR}$			-Ir	52	17)

#### **Observers:**

- AG: Agerer, F., Tiefenbach
- ALH: Alich, K., Schaffhausen (CH)
- ATB: Achterberg, H., Norderstedt
- BKN: Bakan, S., Wedel
- BRL: Brettel, Dr. G., Schwarzenbek
- DIE: Dietrich, M., Radebeul
- FLG: Flechsig, Dr. G., Teterow
- FR: Frank, P., Velden
- GB: Gröbel, R., Eckental
- JU: Jungbluth, Dr. H., Karlsruhe
- MOO: Moos, C., Netphen
- MS: Moschner, W., Lennestadt
- MZ: Maintz, Dr. G., Bonn
- PGL: Pagel, Dr. L., Klockenhagen
- QU: Quester, W., Esslingen
- SB: Steinbach, Dr. H., Neu-Anspach
- SCI: Schmidt, U., Karlsruhe
- SIR: Schirmer, J., Willisau (CH)
- WTR: Walter, F., München

#### **Remarks:**

- uncertain
- s secondary minimum
- 1) normal maximum or minimum
- 2) double maxima: time of the first and the second maximum
- 3) double maxima: time of the first maximum
- 4) double maxima: time of the second maximum
- 5) double maxima: time of the middle of both maxima CCD-Cameras
- 6) ccd-camera ST-6: chip 375*242 uncoated
- 7) ccd-camera ST-7
- 8) ccd-camera ST-7E
- 9) ccd-camera ST-9E
- 10) ccd-camera ST-8XMEI: chip KAF1603ME
- 11) ccd-camera Alpha Maxi: chip KAF401e
- 12) ccd-camera OES-LcCCD12
- 13) ccd-camera Pictor 416XT
- 14) ccd-camera Meade DSI Pro 2
- 15) ccd-camera SIGMA 402
- 16) ccd-camera Artemis 4021
- 17) ccd-camera Sigma 1603
- 18) ccd-camera Canon EOS 350D
- 19) ccd-camera AlCCD6c
- 20) ccd-camera Canon EOS 450D
- 21)  $\quad$  ccd-camera Meade 1616XTE
- Filter
- o without filter
- B B-filter
- V V-filter
- -Ir -Ir-filter
- m multiple filter

#### **References:**

A&A	Astronomy & Astrophysics
AJ vvv,ppp	Astronomical Journal volume, pages
BAVM nnn	BAV Mitteilungen No. nnn
BAVR vv,ppp	BAV Rundbrief volume, pages
GCVS 2009	General Catalogue of Variable Stars, version: iii.dat 20.11.2009
IBVS nnnn	Information Bulletin on Variable Stars No. nnnn
MVS vv,ppp	Mitteilungen ueber Veraenderliche Sterne, volume, page
SAC vv	Rocznik Astronomiczny No. vv, Krakow (SAC)
	Star catalogues
GSC	The HST Guide star Catalogue 1.2
TYC	Tycho ctalogue

#### ERRATUM FOR IBVS 5918 (BAVM 209)

RR Lyr 54866.4031 ALH has to be deleted

## ERRATUM FOR IBVS 5941 (BAVM 212)

TW Her 55066.4339 MOO has to be deleted

#### ERRATUM FOR IBVS 5941 (BAVM 212)

KV Gem 54910.3597 ATB has to be deleted KV Gem 54910.3696 ATB has to be deleted

Number 5942

Konkoly Observatory Budapest 17 June 2010 *HU ISSN 0374 - 0676* 

#### MOST OBSERVATIONS OF THE $\lambda$ BOOTIS STAR HD 142703

PAUNZEN, E.; HARETER, M.; STÜTZ, CH.

Institut für Astronomie der Universität Wien, Türkenschanzstr. 17, A-1180 Wien, Austria. e-mail: ernst.paunzen@univie.ac.at

For the first time, we present photometric data of a space mission (MOST satellite) for a member, HD 142703 (HR Lib, V = 6.12), of the  $\lambda$  Bootis group. The latter comprises late B- to early F-type, Population I stars which are generally metal weak and show underbundances as particularly the iron group elements, but not in C, N, O and S. Only a maximum of about 2% of all objects in the relevant spectral domain are believed to be  $\lambda$  Bootis type stars (Paunzen 2001).

At least 70% of all  $\lambda$  Bootis type stars inside the classical instability strip pulsate with rather typical  $\delta$  Scuti type characteristics (Paunzen et al., 2002).

In the past, three different IBVS notes reported ground-based observations for this object. A summary is given in Paunzen & Handler (1996) who list detected frequencies of 16.5, 18 and  $31.5 \,d^{-1}$ . The highest of these published frequencies, however, was probable due to a misidentification or alias in the periodogram and is two times the "true" one. The amplitudes were found to be between 8 and 10 mmag for Strömgren v and b, respectively.

The MOST observations were carried out from May 18 to 28, 2007. HD 142703 was observed as a switch target, this means: MOST switches between two targets every orbit (101.4 min). One target benefits from the low stray light phase, while the light curve of the other target suffers from high stray light. In our case HD 142703 was observed in the latter phase. As for the published ground-based observations, HD 142640, was used as a comparison star. The reduction and all instrumental corrections were done in the standard way for this instrument and the given settings (Rowe et al., 2006). The final light curve is shown in Fig. 1.

The time series analysis was performed within the CINDERELLA (Comparison of INDEpendent RELative Least-squares Amplitudes) programme package (Reegen et al., 2008) which is optimized for these data sets. In addition, a Fourier technique and the Phase-Dispersion-Minimization was applied.

All methods yield comparable results. Two frequencies of 16.99 and  $18.35 d^{-1}$  are detected, with a high significance (12 and  $8\sigma$ ), in the light curve. Both compare well, within the errors, to the previously reported ones. The phase diagram of the observations folded with the main frequency is shown in Fig. 2. Furthermore, no significant frequencies, which do not correspond to known artefacts due to the experimental design, can be detected. The limited of the detectable amplitude for the data set is about 0.8 mmag.

The amplitudes of the MOST data are a factor two smaller than the previously reported ones. This result can be understand due to the fact that MOST measures the integrated light from 350 to 700 nm, only.



Figure 1. The MOST observations of HD 142703.



Figure 2. The MOST observations of HD 142703 folded with the main frequency.

Taking the basic astrophysical parameters of HD 142703 from Paunzen et al. (2002), we get Q values of 0.024 and 0.022, as well as  $\log \rho / \rho_{\odot} = -0.80$ , respectively. These values correspond to the second to fourth overtone for classical  $\delta$  Scuti type pulsation (Fitch, 1981).

We conclude that for HD 142702, two frequencies are well established. The pulsation characteristics seems very similar to another member of the  $\lambda$  Bootis group, HD 210111 (Breger et al., 2006). In both cases, there is one domination frequency, but all others only have very small amplitudes.

Acknowledgements This work was supported by the financial contributions of the Austrian Agency for International Cooperation in Education and Research (WTZ CZ-10/2010 and HR-14/2010). Based on data from the MOST satellite, a Canadian Space Agency mission, jointly operated by Dynacon Inc., the University of Toronto Institute for Aerospace Studies and the University of British Columbia with the assistance of the University of Vienna.

References:

Breger, M., Beck, P., Lenz, P. et al., 2006, A&A, 455, 673
Fitch, W.S., 1981, ApJ, 249, 218
Paunzen, E., 2001, A&A, 373, 633
Paunzen, E., Handler, G., 1996, IBVS, No. 4318
Paunzen, E., Handler, G., Weiss, W.W. et al., 2002, A&A, 392, 515
Reegen, P., Gruberbauer, M., Schneider, L., Weiss, W.W., 2008, A&A, 484, 601
Rowe, J.F., Matthews, J.M., Kuschnig, R. et al., 2006, MmSAI, 77, 282

Number 5943

Konkoly Observatory Budapest 23 June 2010 *HU ISSN 0374 - 0676* 

## CCD TIMES OF MINIMA OF SEVERAL ECLIPSING BINARIES

#### LIAKOS, A.; NIARCHOS, P.

Department of Astrophysics, Astronomy and Mechanics, National and Kapodistrian University of Athens, GR 157 84 Zografos, Athens, Hellas; e-mail: alliakos@phys.uoa.gr, pniarcho@phys.uoa.gr

Observatory and telescope:						
<b>T1</b> : 40 cm Cassegrain t	elescope, and					
<b>T2</b> : 20 cm Newtonian r	eflector telescope, both at the University of Athens Obser-					
vatory						
Detector:	C1: ST-10XME CCD camera, Peltier cooling, KAF-					
	$3200 \text{ME chip}, 16' \times 11' \text{ and } 25' \times 17' \text{ (using a focal reducer)}$					
	$F_{0}V_{2}$ 2184 $\times$ 1472 pixels Bossell UBVRI filters and					

FoV,  $2184 \times 1472$  pixels, Bessell UBVRI filters, and C2: ST-8XMEI CCD camera, Peltier cooling, KAF-1603ME chip,  $46' \times 32'$  and  $23' \times 15'$  FoV,  $1530 \times 1020$ pixels, Bessell UBVRI filters

## Method of data reduction:

The reduction of the CCD frames was made using the software Muniwin v.1.1.23 (Hroch, 1998).

## Method of minimum determination:

The minima times were computed using the Kwee & van Woerden (1956) method.

Table 1:	Times	of	minima
----------	-------	----	--------

System	HJD	Error	Type	Filters	Remark
2MASS J00511854+5022580	2455109.3990	0.0006	II	В	T1 + C1
	2455138.2859	0.0007	II	VI	T1 + C1
	2455140.2623	0.0004	Ι	VI	T1 + C1
	2455140.4152	0.0004	II	VI	T1 + C1
	2455156.2276	0.0004	Ι	R	T1 + C1
	2455156.3797	0.0002	II	R	T1 + C1
	2455158.2029	0.0006	Ι	В	T1 + C1
	2455158.3572	0.0004	II	В	T1 + C1
2MASS J07083972+1214429	2454115.5301	0.0005	Ι	$\mathbf{R}$	T1 + C1
	2454468.5781	0.0011	II	V	T1 + C1
	2454477.4864	0.0017	II	VR	T1 + C1
	2454492.5078	0.0018	Ι	VRI	T1 + C1
	2454522.3797	0.0016	II	VRI	T1 + C1
	2454773.5715	0.0007	II	Ι	T1 + C1
	2454783.5875	0.0008	II	Ι	T1 + C1
	2455149.6162	0.0005	Ι	Ι	T1 + C1
	2455155.5516	0.0009	Ι	Ι	T1 + C1

Table 1: cont.

C		<b>F</b>	• 	EV:14	D '
System	HJD	Error	Type	Filters	Kemark
	2455158.5221	0.0007	1	1	T1 + C1
V0417 Aur	2455118.4598	0.0002	11	В	T1 + C1
	2455147.3744	0.0004	Ι	BVRI	T1 + C1
	2455148.3154	0.0006	II	$\operatorname{RI}$	T1 + C1
	2455157.6332	0.0004	II	BVRI	T1 + C1
44i Boo	2455272.3703	0.0007	Ι	UBVRI	T2 + C2
	2455272.5030	0.0005	II	UBVRI	T2 + C2
TX Cnc	2455289.3403	0.0003	Ι	BVRI	T1 + C1
YY CMi	2455231.4317	0.0002	Ι	BVRI	T2 + C2
	2455232.5252	0.0004	Ι	BVRI	T2 + C2
	2455254.4055	0.0003	Ι	BVRI	T2 + C2
	2455258.2379	0.0009	II	В	T2 + C2
	2455271.3642	0.0003	II	BVRI	T2 + C2
AB Cas	2455148.3371	0.0012	II	$\operatorname{RI}$	T2 + C2
	2455157.2167	0.0002	Ι	BVRI	T2 + C2
V0523 Cas	2455126.2678	0.0001	II	BVI	T2 + C2
	2455126.3843	0.0001	Ι	BVI	T2 + C2
V0405 Cep	2455124.4902	0.0007	II	BVRI	T1 + C1
1	2455126.5541	0.0003	Ι	BVRI	T1 + C1
HZ Dra	2455343.5529	0.0003	Ι	В	T2 + C2
	2455360.5596	0.0006	Ι	BVRI	T2 + C2
AL Gem	2455246.2693	0.0001	Ī	BVRI	T1 + C1
	2455273.3935	0.0009	Ī	BVRI	T1 + C1
GSC 0199-2035	2455231.2721	0.0007	I	BVRI	$T_{2}^{-1} + C_{2}^{-1}$
	2455232 2829	0.0005	Ī	BVRI	$T_2 + C_2$
	2455245 4475	0.0006	Ī	BVRI	$T_{2}^{-1} + C_{2}^{-1}$
	2455246 4603	0.0000	T	BVRI	$T_{2}^{-1} + C_{2}^{-1}$
	24552712688	0.0021	I	BVRI	$T_{2}^{-12} + C_{2}^{-12}$
	2455272 2836	0.0000	II	BVRI	$T_{2}^{-12} + C_{2}^{-12}$
GSC 0770-0523	2456212.2000	0.0000	II	R	$T_{1}^{12} + C_{1}^{12}$
	2454107.6502	0.0004	T	R	T1 + C1 $T1 \pm C1$
	2454107.0002	0.0005	T	R	T1 + C1 $T1 \pm C1$
	2454115.4502		I II	VP	T1 + C1 T1 + C1
	2454477.4050		II T	VIU	T1 + C1 T1 + C1
	2454485.5202		I T	VBI	T1 + C1 T1 + C1
	2454400.4025	0.0003	I T	VIU	T1 + C1 T1 + C1
	2454492.5014	0.0011	I TT	VI VDI	T1 + C1
	2404022.0024	0.0010			TI + OI
	2400149.0108 2455155 5060		11 T	L T	TI + OI TI + OI
	2400100.0000 0455159 5560	0.0010	L T	Ц т	TI + OI
	2400108.0002	0.0005	1 т	І т	TI + CI
000 1005 1041	2455296.2998	0.0011	l T	l T	TT + CI
GSC 1025-1841	2455013.4801	0.0012	1	BI	11 + Cl
	2455014.5168	0.0015	11	BI	TT + C1
$GSC \ 4516 - 2121$	2455123.4148	0.0012	11	BVRI	T1 + C1
	2455124.3793	0.0011	II -	BVRI	T1 + C1
	2455126.5573	0.0008	1	BVRI	T1 + C1
	2455149.3063	0.0007	Ι	$\mathbf{R}$	T1 + C1

Table 1: cont.

System	HJD	Error	Type	Filters	Remark
	2455149.5512	0.0005	II	R	T1 + C1
	2455155.3601	0.0007	II	Ι	T1 + C1
AK Her	2455343.4415	0.0002	Ι	BVRI	T1 + C1
	2455344.4973	0.0002	II	BVRI	T1 + C1
V0948 Her	2455360.4494	0.0005	Ι	BVRI	T1 + C1
	2455365.5491	0.0002	Ι	В	T1 + C1
V0972 Her	2455344.4602	0.0011	Ι	UBVRI	T2 + C2
CM Lac	2455063.4844	0.0001	Ι	BVRI	T1 + C1
	2455068.2982	0.0001	Ι	BVRI	T1 + C1
	2455072.3081	0.0002	II	BVRI	T1 + C1
SW Lac	2455124.2633	0.0001	Ι	BVRI	T2 + C2
UU Leo	2455249.3034	0.0004	Ι	BVRI	T1 + C1
	2455285.4185	0.0012	II	VRI	T1 + C1
SX Lyn	2455158.4123	0.0012	II	Ι	T2 + C2
ER Ori	2455198.3340	0.0001	II	BVRI	T1 + C1
	2455199.3924	0.0001	Ι	BVRI	T1 + C1
	2455232.2062	0.0003	II	BVRI	T1 + C1
	2455232.3864	0.0001	Ι	BVRI	T1 + C1
V1128 Tau	2454426.4313	0.0001	Ι	BVRI	T1 + C1
	2454426.5844	0.0002	II	BVRI	T1 + C1
	2454438.3409	0.0002	Ι	BVRI	T1 + C1
	2454438.4937	0.0003	II	BVRI	T1 + C1
	2455127.4110	0.0002	II	VRI	T2 + C2
IO UMa	2455298.3910	0.0013	II	Ι	T1 + C1
	2455309.4246	0.0010	II	$\operatorname{RI}$	T1 + C1
	2455320.4844	0.0007	II	Ι	T1 + C1
	2455334.2764	0.0005	Ι	BVRI	T1 + C1
	2455345.3144	0.0016	Ι	BVRI	T1 + C1
	2455356.3482	0.0018	Ι	BVRI	T1 + C1
VV UMa	2455276.3859	0.0001	Ι	В	T1 + C1
	2455277.4173	0.0003	II	В	T1 + C1
	2455284.2907	0.0004	II	В	T1 + C1
TU UMi	2455276.4687	0.0009	Ι	BVRI	T2 + C2
	2455277.4066	0.0010	II	BVRI	T2 + C2
	2455285.5216	0.0009	Ι	BVRI	T2 + C2
	2455289.4796	0.0012	II	BVRI	T2 + C2

## Explanation of the remarks in the table:

T1, T2, C1 and C2 refer to the instrumentation (telescope and CCD camera) used for each case.

#### **Remarks:**

The systems: 2MASS J00511854+5022580, 2MASS J07083972+1214429, GSC 0770-0523, GSC 1025-1841, GSC 4516-2121 are newly discovered eclipsing binaries (Liakos & Niarchos, 2010).

#### Acknowledgements:

This work has been financially supported by the Special Account for Research Grants No 70/4/9709 of the National & Kapodistrian University of Athens, Hellas.

# References:

Hroch, F., 1998, Proceedings of the 29th Conference on Variable Star Research, 30
Kwee, K., van Woerden, H., 1956, Bulletin of the Astronomical Institutes of the Netherlands, 12, 327

Liakos, A., Niarchos, P., 2010, Peremennye Zvezdy Prilozhenie, 10, 9

Number 5944

Konkoly Observatory Budapest 1 July 2010 *HU ISSN 0374 - 0676* 

# ABSOLUTE SPECTROPHOTOMETRY AND BVR_CI_C PHOTOMETRIC EVOLUTION OF THE FAST NOVA OPHIUCHI 2010 N.2 (V2674 Oph)

MUNARI, U.¹; DALLAPORTA, S.²; OCHNER, P.¹

 1 INAF Osservatorio Astronomico di Padova, Sede di Asiago, I-36032 Asiago (VI), Italy

² ANS Collaboration, c/o Astronomical Observatory, 36012 Asiago (VI), Italy

Nova Ophiuchi 2010 N.2 (= V2674 Oph) was discovered by H. Nishimura on UT 18.85 Feb 2010 (cf. Nakano, 2010) and confirmed spectroscopically on UT 19.85 Feb 2010 by Imamura, Tanabe and Fujii (2010) as a Fe II class nova.

We obtained  $BVR_{\rm C}I_{\rm C}$  photometry of Nova Ophiuchi 2010 N.2 with a 0.30-m Meade RCX-400 f/8 Schmidt-Cassegrain telescope equipped with a SBIG ST-9 CCD camera. The photometry was accurately corrected for color equations using nightly calibrations on Landolt (1992, 2009) standard stars. The data are presented in Table 1, and plotted in Figure 1. The combined Poissonian + transformation errors were always less than 0.025 mag. The zero points of the photometry were scaled on the nearby star HD 157866, for which we adopted: V=9.849, B-V=+0.004,  $V-R_{\rm C}=+0.158$  and  $V-I_{\rm C}=+0.327$ . The B and V were obtained from Tycho-2 photometry transformed to Johnson system following Bessell (2000), and the  $R_{\rm C}$  and  $I_{\rm C}$  were derived combining B, V with J, H, K from 2MASS following the recipes of Caldwell et al. (1993).

Our light-curve in Figure 1 indicates a very smooth evolution for Nova Oph 2010 N.2. The time of maximum brightness seems coincident with that of our first observation. This is supported by the zoomed view in the V-band panel of Figure 1 where our early observations are compared to those collected by VSNET (http://www.kusastro.kyoto-u.ac.jp/vsnet/). In spite to their much larger dispersion, interpolations of VSNET observations following different statistical criteria consistently indicate that our Feb 21.2 UT observation (HJD 2455248.7) marks the actual maximum V band brightness, from which time is counted in Figure 1 and in the rest of this paper.

The decline times are

$$t_2^V = 18 \qquad t_3^V = 31 \text{ days}$$
 (1)

which are the times taken by the nova to decline, in the V band, by two and three magnitudes, respectively, from maximum brightness. The  $t_3^V/t_2^V$  ratio for Nova Oph 2010 N.2 is somewhat smaller than observed in other novae. In fact, given  $t_2^V$ , the Warner (1995) relation would predict  $t_3^V=35$ , while Munari et al. (2008) relation would give  $t_3^V=38$ . According to the classification of Warner (1995, his Table 5.4),  $t_2^V = 10$  days qualifies Nova Oph 2010 N.2 to be classed among the *fast* novae.

Van den Bergh and Younger (1987) derived a mean intrinsic color  $(B-V)_{\circ}=+0.23\pm0.06$ for novae at the time of maximum, and  $(B-V)_{\circ}=-0.02\pm0.04$  at  $t_2$ . Comparing with B-V=+1.07 at maximum and B-V=+0.57 at  $t_2$  from Figure 1, the reddening affecting Nova Oph 2010 N.2 is  $E_{B-V}=0.7\pm0.1$ , and the extinction (assuming a standard  $R_V=3.1$ interstellar law) is therefore  $A_V=2.2$  mag.



Figure 1.  $BVR_CI_C$  photometric evolution of the outburst of Nova Ophiuchi 2010 N.2. The dots represent the data in Table 1. The insert zooms on the earliest evolution of the outburst in the V band, where the crosses are VSNET V estimates.

HJD	V	B-V	$V-R_C$	$V-I_C$	HJD	V	B-V	$V-R_C$	$V-I_C$
2455248.7012 2455254.6787 2455261.6759 2455269.6603 2455298.6337	9.26 10.08 10.79 11.52 13.21	$1.07 \\ 0.78 \\ 0.61 \\ 0.56 \\ 0.64$	$0.58 \\ 0.65 \\ 0.57 \\ 0.84 \\ 1.51$	$1.12 \\ 1.24 \\ 1.16 \\ 1.39 \\ 1.77$	$\begin{array}{c} 2455302.5948\\ 2455306.5942\\ 2455337.4588\\ 2455358.4332\end{array}$	$13.30 \\ 13.49 \\ 13.95 \\ 14.34$	$\begin{array}{c} 0.60 \\ 0.64 \\ 0.40 \\ 0.32 \end{array}$	$1.52 \\ 1.56 \\ 1.48 \\ 1.28$	$1.80 \\ 1.78 \\ 1.22 \\ 0.94$

Table 1. Our  $BVR_{\rm C}I_{\rm C}$  of Nova Oph 2010 N.2



Figure 2. Absolute spectrophotometry of Nova Ophiuchi 2010 N.2 for 16.128 April 2010 UT. The spectrum is also plotted at  $10 \times$  expanded scale to emphasize the visibility of weaker features.

Table 2. Integrated fluxes of the emission line (in erg cm⁻² sec⁻¹) of Nova Oph 2010 N.2 on the spectrum of Figure 2 for 16.128 April 2010 UT

$\lambda_{\circ}$	ion	flux	$\lambda_{\circ}$	ion	flux	$\lambda_{\circ}$	ion	flux
$\begin{array}{c} 4101 \\ 4340 \\ 4650 \\ 4861 \\ 4924 \\ 5018 \\ 5169 \\ 5235 \end{array}$	$ \begin{array}{l} \mathrm{H}\delta \\ \mathrm{H}\gamma \\ \mathrm{NII,  NIII} \\ \mathrm{H}\beta \\ \mathrm{FeII} \ 42 \\ \mathrm{FeII} \ 42 \\ \mathrm{FeII} \ 42 \\ \mathrm{FeII} \ 42 \\ \mathrm{FeII} \ 42 \\ \mathrm{FeII} \ 49 \end{array} $	3.21E-13 4.45E-13 5.69E-13 1.53E-12 6.01E-13 1.06E-12 6.00E-13 2.79E-13	5276 5317 5535 5577 5679 5755 5893	FeII 49 FeII 49 FeII 55 [OI] NII [NII] NaI	2.29E-13 4.88E-13 1.80E-13 1.65E-13 2.77E-13 2.31E-12 6.17E-13	$\begin{array}{c} 6148 \\ 6245 \\ 6300 \\ 6364 \\ 6563 \\ 7065 \\ 7323 \end{array}$	$\begin{array}{c} \text{FeII 74} \\ \text{FeII 74} \\ [\text{OI}] \\ [\text{OI}] \\ \text{H}\alpha \\ \text{HeI} \\ [\text{OII}] \end{array}$	2.57E-13 1.95E-13 1.85E-12 9.73E-13 4.22E-11 1.89E-13 2.77E-12

Published relations between the absolute magnitude and the rate of decline generally take the form  $M_{\text{max}} = \alpha_n \log t_n + \beta_n$ . Using the Cohen (1988) V- $t_2$  relation, the distance to the nova is 8.8 kpc, and 9.2 kpc according to the Schmidt (1957) V- $t_3$  relation. Buscombe and de Vaucouleurs (1955) suggested that all novae have the same absolute magnitude 15 days after maximum light. The most recent calibrations for it are those of Capaccioli et al. (1989, on M31 novae) and Duerbeck and Downes (2000, on galactic novae), that give  $M_{\text{max}}^V = 5.69 \pm 0.14$  and  $6.05 \pm 0.44$ , respectively. The brightness of Nova Oph 2010 N.2 15 days after V maximum light was  $V_{15} = 10.98$ , which corresponds the respective distances of 7.8 and 9.2 kpc. Taking the mean of these four determinations, the distance to Nova Oph 2010 N.1 is d=9 kpc. At a galactic latitude b=3.6 deg, it corresponds to an height over the Galactic equatorial plane of z=0.55 kpc, well within the range of heights reported by della Valle and Livio (1998) for novae of the Fe II type.

An absolutely fluxed, low resolution spectrum of Nova Oph 2010 N.2 was obtained on UT 16.128 April 2010 (day +53.9) with the B&C+CCD spectrograph attached to the Asiago 1.22m telescope. The spectrum is presented in Figure 1. At that time the nova was well past  $t_3^V$ , being 4.1 mag fainter than at maximum brightness, but the spectrum was still that of optically thick ejecta and consistent with a FeII classification. The integrated absolute flux of the strongest emission lines is given in Table 2.

The brightness decline in Figure 1 is well represented by a

$$F_{\lambda} \propto t^{-1.55} \tag{2}$$

power-law, which is significantly less steep than the dilution  $t^{-3}$  power-law that represents the continuum emission from optically thin gas in the advanced decline stages. This is nicely consistent with the optically thick characteristics of the spectrum in Figure 2. The stable  $t^{-1.55}$  power-law could be used to speculate that the spectrum of Nova Oph 2010 N.2 was not yet optically thin at the time of the last photometric observations in Table 1.

The FWHM of H $\alpha$  in the spectrum of Figure 2 is 1650 km/s, and 1570 for H $\beta$ . [OI] and [NII] lines present a distinctive rectangular profile with a FWHM of 1800 and 1950 km/s, respectively. The expansion velocities they indicate nicely agree with the ~850 km/s reported for the bulk velocity of P-Cyg absorption in the early spectra described by Imamura, Tanabe and Fujii (2010).

References:

Buscombe, W., de Vaucouleurs, G., 1955, Obs., 75, 170
Bessell, M.S., 2000, PASP, 112, 961
Caldwell, J.A.R., Cousins, A.W.J., Ahlers, C.C. et al., 1993, SAAO Circ., 15, 1
Capaccioli, M. et al., 1989, AJ, 97, 1622
Cohen, J.G., 1988, ASP Conf Ser, 4, 114
della Valle, M., Livio, M., 1998, ApJ, 506, 818
Downes, R.A., Duerbeck, H.W., 2000, AJ, 120, 2007
Imamura, K., Tanabe, K., Fujii, M., 2010, IAUC, 9119
Landolt, A.U., 1992, AJ, 104, 340
Landolt, A.U., 2009, AJ, 137, 4186
Munari, U. et al., 2008, A&A, 492, 145
Nakano, S., 2010, CBET, 2176
Schmidt, T., 1957, ZA, 41, 182
van den Bergh, S., Younger, P.F., 1987, A&AS, 70, 125
Warner, B., 1995, Cataclysmic Variable Stars, Cambridge Univ. Press

Number 5945

Konkoly Observatory Budapest 12 July 2010 *HU ISSN 0374 - 0676* 

## TIMINGS OF MINIMA OF ECLIPSING BINARIES

#### DIETHELM, ROGER

Bahnhofstrasse 3, CH-4118 Rodersdorf, Switzerland

The following Table lists timings of minima of eclipsing binaries secured by CCD photometry, obtained in the first half of 2010. The given O - C values generally refer to the linear elements of the 2008 electronic version of the GCVS (Samus et al., 2009), except for the cases stated in the remarks, where the determination of current elements made use of the up-to-date ASAS data (http://www.astrouw.edu.pl/asas/) and the Lafler-Kinman algorithm of the PERANSO software (http://www.peranso.com/). All times given are heliocentric UTC.

Variable	Тур	e HJD 24	±	O - C	n	Obs	Remarks
MU Aqr	р	55366.7925	0.0002	-0.0037	20	RD	V
V476 Aql	р	55341.8217	0.0005	-0.0113	26	RD	V; el.: 2454338.576+0.624693*E; d=0.043d
V688 Aql	s	55358.7799	0.0014	+0.0061	50	RD	V; non-circular
V724 Aql	$\mathbf{s}$	55358.8183	0.0004	-0.0370	29	RD	V; el.: IBVS 3555
V770 Aql	р	55360.7828	0.0004	+0.3686	30	RD	V
V802 Aql	р	55341.7791	0.0006	-0.0172	18	RD	V; el.: IBVS 5527
V871 Aqr	$\mathbf{s}$	55341.8256	0.0004	-0.2529	29	RD	V; non-circular
V873 Aql	$\mathbf{s}$	55340.8097	0.0004	+0.0577	22	RD	V
V1075 Aql	р	55360.7714	0.0003	-0.0387	29	RD	V
V1184 Aql	р	55342.8369	0.0004	+0.0246	25	RD	V
V1341 Aql	$\mathbf{s}$	55342.8461	0.0002	+0.0035	18	RD	V; d=0.018d
V1665 Aql	р	55341.8114	0.0010	+0.0013	33	RD	V; el.: $2452810.87 + 3.88181 * E$
GSC 496-696	р	55362.7816	0.0003	+0.0044	31	RD	V; el.: $2454609.835 + 0.819306^{*}E$ ; d=0.054d
GSC 499-1563	р	55362.8549	0.0001	+0.0087	21	RD	V; el.: $2453866.859 + 0.467204^{*}E$
$GSC \ 1071-183$	8 p	55360.7855	0.0004	+0.0041	22	RD	V; el.: $2453585.729 + 0.535784^*E$
GSC 1083-200	3 p	55360.7620	0.0002	-0.0055	26	RD	V; el.: IBVS 5920; d=0.02d
GSC 5115-246	s	55340.7736	0.0003	-0.0049	24	RD	V; el.: $2454386.525 + 1.161599^{*}E$
NSV 11636	р	55342.8226	0.0002	+0.0084	31	RD	V; el.: $2452384.140 + 0.357933^{*}E$ ; d=0.02d
TX Ari	р	55201.6072	0.0005	-0.0099	26	RD	V
GSC 1240-657	' p	55201.6964	0.0002	+0.0003	36	RD	V; el.: $2453338.636 + 0.453520^*E$
AP Aur	р	55273.776	0.003	+0.140	10	RD	V
EU Aur	р	55240.6299	0.0006	+0.5966	18	RD	V
V364 Aur	р	55245.6773	0.0004	-0.0186	21	RD	V; el.: IBVS 5894
TY Boo	$\mathbf{s}$	55364.8441	0.0002	-0.0337	21	RD	V; el.: BAV Mitt. 68
UW Boo	р	55243.9016	0.0010	-0.0107	9	RD	V
XY Boo	р	55352.7810	0.0005	-0.0079	31	RD	V; el.: $2453903.474 + 0.370574^{*}E$ ; d=0.02d
AC Boo	р	55364.8277	0.0003	+0.1839	36	RD	V; d=0.022d
AD Boo	р	55364.7629	0.0004	-0.0197	33	RD	V; el.: Chin. AA 6, 366
AR Boo	р	55352.8514	0.0005	+0.0309	20	RD	V; el.: IBVS 4601
EF Boo	р	55243.8792	0.0008	+0.1743	21	RD	V; el.: IBVS 4811
GH Boo	$\mathbf{s}$	55352.7824	0.0003	-0.0425	32	RD	V; el.: IBVS 5060
GR Boo	р	55364.7682	0.0004	+0.0011	25	RD	V; el.: IBVS 5125

Table 1: Minima of eclipsing binaries
Table 1: Minima of eclipsing binaries (continued)

Variable	Туре	e HJD 24	±	0 – C	n	Obs	Remarks
GW Boo	s	55352.864	0.005	+0.002	13	RD	V; el.: $2454555.809 + 0.531546*E$
HH Boo	$\mathbf{S}$	55243.8920	0.0002	+0.0563	19	RD	V
$GSC \ 921-412$	р	55364.7996	0.0002	+0.0264	17	RD	V: el.: IBVS 5894
GSC 1467-1309	) s	55352.7602	0.0003	+0.0040	21	RD	V; el.: $2454543.813 + 0.397808*E$ ; d=0.038d
$GSC \ 1470-582$	р	55352.7842	0.0002	+0.0082	20	RD	V; el.: $2453762.875 + 0.299360^{*}E$ ; d=0.015d
AZ Cam	$\mathbf{s}$	55205.9031	0.0002	+0.0207	40	RD	V
NR Cam	$\mathbf{s}$	55277.7032	0.0003	+0.0036	15	RD	V; el.: IBVS 5894
NSV 4638	$\mathbf{s}$	55298.7044	0.0018	-0.0001	31	RD	V; el.: $2454849.619 + 0.390005 * E$
TY Cnc	р	55201.8866	0.0003	-0.2141	32	RD	V; d=0.043d
${ m GQ}$ ${ m Cnc}$	$\mathbf{s}$	55245.8432	0.0003	+0.0041	16	RD	V; el.: Acta Astr. 54, 207
IL Cnc	р	55245.8286	0.0009	+0.0509	11	RD	V; el.: IBVS 5428
IM Cnc	р	55290.7298	0.0004	-0.0119	26	RD	V
IO Cnc	$\mathbf{p}$	55205.9378	0.0002	+0.0427	24	RD	V; el.: IBVS 5428
IU Cnc	р	55245.8507	0.0003	-0.0119	20	RD	V; d=0.024d
GSC 224-44	$\mathbf{s}$	55290.7127	0.0006	-0.0168	22	RD	V; el.: $2453855.549 + 0.286092 * E$
GSC 819-595	р	55205.8960	0.0005	+0.0162	30	RD	V; el.: $2453442.665 + 1.194590^{*}E$
GSC 1397-1030	) s	55290.7349	0.0003	-0.0176	19	RD	V; el.: $2453526.468 + 0.291016*E$
GSC 1407-222	р	55201.9105	0.0005	-0.0176	24	RD	V; el.: ASAS
NSV 4158	$\mathbf{s}$	55201.9069	0.0006	+0.0223	15	RD	V; el.: IBVS 5871
BICVn	$\mathbf{p}$	55283.6760	0.0002	+0.0473	20	RD	V; el.: IBVS 4554
CICVn	$\mathbf{p}$	55283.6958	0.0004	-0.0236	26	RD	V
DF CVn	$\mathbf{p}$	55283.7282	0.0001	-0.0007	34	RD	V; el.: IBVS 5894
DH CVn	$\mathbf{p}$	55290.8569	0.0007	-0.0181	22	RD	V; el.: IBVS 5149
DI CVn	$\mathbf{s}$	55276.6782	0.0005	-0.0034	17	RD	V; el.: IBVS 5224
DQ CVn	$\mathbf{s}$	55280.7095	0.0004	+0.0063	20	RD	V; el.: IBVS 5541
DR CVn	$\mathbf{s}$	55290.8408	0.0004	+0.0441	15	RD	
ELCVn	р	55243.8837	0.0010	-0.0246	9	RD	V; el.: IBVS 5403
UZ CM1	р	55277.7076	0.0001	+0.0161	31	RD DD	V; el.: IBVS 5894
AV CM1	р	55273.7081	0.0002	+0.0145	41	RD DD	V; el.: $2454437.759 \pm 2.277751^{*}E$ ; $e \neq 0$
CZ CMi	р	55268.7142	0.0001	+0.0563	29	RD DD	V; el.: IBVS 5300 $V_{1}$ = 0.452010 5.41 + 0.20000000
GSC 107-251	s	55268.7385	0.0008	-0.0045	17	RD DD	V; e1.: $2453818.541 \pm 0.289600^{\circ}E$
GSC 176-801	s	55268.6794	0.0004	-0.0027	19	RD DD	V; el.: $2453743.088 \pm 0.274050^{\circ}E$
GSC 181-1939	s	55211.1382	0.0004	+0.0037	23 99	RD DD	V; e1.: $2454200.001\pm0.740713^{\circ}$ E
GSC 702-998	p	20200.7337	0.0003	+0.0044	22 17		V; el.: $2453759.500\pm0.445859^{\circ}$ E V; el.: $2453759.500\pm0.445859^{\circ}$ E
GSC 772-425 DW Com	p	55992 7449	0.0001	+0.0455	19		$V$ ; e1.: 2454810.705 $\pm$ 0.280810 E; $d\equiv$ 0.0240
R7 Com	р	55280 6007	0.0008	-0.0133	18	RD RD	V d=0.017d
IIX Com	s n	55283 6022	0.0004	+0.0449	21	RD	$V_{\rm r}$ al $\cdot$ BAV Mitt 60
AO Com	P D	55276 7070	0.0000	-0.0094	15	RD	$V_{1}$ el : IBVS 5684
AQ Com	P	55276 6670	0.0005	-0.0094	19	RD	V, el.: IDV5 5064
00 00111	P	55276 7750	0.0001	-0.0152	9	RD	V
CM Com	o n	55329 8255	0.0000	-0.0133	23	RD	V el · IBVS 5894
DD Com	P S	55269 6738	0.0003	+0.0781	15	RD	V
EK Com	n	55280 7291	0.0003	-0.0606	26	RD	V. el · IBVS 4167· d=0 021d
LO Com	P S	55276 6807	0.0003	+0.0123	10	RD	V: el : IBVS 5052
LP Com	s	55276 7103	0.0016	-0.0120	18	RD	V: el : IBVS 5052
MM Com	p	55280.7124	0.0005	-0.0141	17	RD	V; el.: IBVS 5224: $d=0.024d$
GSC 871-248	P S	55267 7087	0.0003	+0.0233	16	RD	V; el: $2453438689\pm0252746^{*}E$ ; d=0.023d
GSC 881-218	s	55283.6985	0.0002	-0.0087	23	RD	V: el.: IBVS 5894
GSC 1445-866	s	55276.6494	0.0004	+0.0034	8	RD	V; el.: IBVS 5894
GSC 1446-1499	) s	55280.7154	0.0003	+0.0087	23	RD	V: el.: IBVS 5894
GSC 1446-2377	7 D	55269.6994	0.0006	-0.0031	15	RD	V: el.: IBVS 5894
TU CrB	р р	55269.8241	0.0007	-0.7079	13	RD	V
TW CrB	r S	55269.8772	0.0003	+0.0421	$19^{-5}$	RD	V
YY CrB	n	55267.8569	0.0005	-0.1018	$17^{-10}$	RD	V: el.: IBVS 5152
AR CrB	r D	55296.7665	0.0004	-0.0036	19	RD	V; el.: IBVS 5295
AS CrB	D	55296.7443	0.0002	+0.0067	34	RD	V; el.: IBVS 5295
AV CrB	r D	55276.8849	0.0007	-0.0203	$14^{-1}$	RD	V; el.: IBVS 5295
GSC 880-55	D	55329.8293	0.0004	+0.0003	$23^{-1}$	RD	V; el.: IBVS 5894
W Crv	р	55320.8182	0.0006	+0.0198	16	RD	v
AC Crt	р	55268.8889	0.0004	+0.0011	22	RD	V; el.: $2453762.771 + 0.617261^*E$

Table 1: Minima of eclipsing binaries (continued)

Variable	Τγρε	e HJD 24	±	0 – C	n	Obs	Remarks
GO Cyg	s	55366.8495	0.0006	+0.0686	28	RD	V
KR Cyg	р	55362.7581	0.0004	-0.0133	28	RD	V; el.: IBVS 4961; d=0.03d
NZ Cyg	s	55358.7366	0.0003	+0.0038	24	RD	V; el.: $2450681.384 + 0.405967^*E$
PY Cyg	р	55358.8579	0.0004	-0.0566	19	RD	V; d=0.05d
QU Cyg	р	55360.7638	0.0009	-0.0712	15	RD	V
$V454 \ Cyg$	р	55362.7891	0.0003	-0.0068	43	RD	V
$V508 \ Cyg$	р	55366.7537	0.0005	-0.0227	29	RD	V; el.: AJ 110, 346; d=0.018d
m V726~Cyg	р	55362.7865	0.0001	+0.0398	29	RD	V
V1023 Cyg	р	55360.7740	0.0006	-0.0473	30	RD	V
V2181 Cyg	$\mathbf{S}$	55362.8529	0.0009	+0.0090	17	RD	V; el.: BAV Mitt. 105
V2239 Cyg	$\mathbf{S}$	55362.6996	0.0012	+0.2511	8	RD	V; el.: IBVS 4819
EX Del	р	55362.7759	0.0003	+0.0058	28	RD	V; el.: BBSAG Bull. 114, 11
$GSC \ 1633-1579$	9 p	55366.8508	0.0006	+0.0001	20	RD	V; el.: $2454411.538 + 0.310368*E$ ; d=0.024d
NSV 13339	s	55366.7833	0.0002	+0.0007	25	RD	V; el.: $2454389.579+0.357361^{*}E$ ; GSC 1647-488
Z Dra	р	55329.7709	0.0003	-0.1942	36	RD	V
XY Dra	р	55333.7978	0.0002	+0.0116	45	RD	V; d=0.051d
AX Dra	р	55329.8113	0.0003	-0.0562	29	RD	V
EF Dra	р	55327.7494	0.0006	+0.0138	28	RD	V; el.: IBVS 5668
IV Dra	$\mathbf{S}$	55267.8540	0.0002	+0.0032	22	RD	V; el.: IBVS 5894
ZZ Eri	р	55240.6724	0.0010	-0.0144	14	RD	V
BL Eri	р	55209.6550	0.0002	+0.0611	32	RD	V; el IBVS 4104
KQ Gem	р	55259.7207	0.0004	-0.0838	31	RD	V; d=0.03d
KV Gem	$\mathbf{s}$	55259.7210	0.0004	+0.0224	31	RD	V; el.: IBVS 5894
MM Dra	$\mathbf{s}$	55360.7610	0.0005	-0.0128	15	RD	V; el.: IBVS 4848
V383~Gem	$\mathbf{s}$	55259.7346	0.0005	-0.0013	24	RD	V; el.: IBVS 5630
GSC 774-58		55268.7458	0.0003	+0.0305	18	RD	V; el.: $2454798.805 + 0.381266^*E$
GSC 777-1088	р	55273.7263	0.0003	-0.0015	32	RD	V; el.: $2453744.682 + 0.569265 * E$
$GSC \ 1368-1823$	5 s	55273.6867	0.0004	+0.0046	29	RD	V; el.: $2454864.621 + 0.352791^*E$
GSC 1888-1148	8 p	55259.7125	0.0008	+0.0130	18	RD	V; el.: $2452624.731 + 0.338337^*E$
$GSC \ 1894-297$	7 s	55259.7448	0.0005	+0.0177	18	RD	V; el.: $2454535.579 + 0.270659^{*}E$
FN Her	р	55283.8840	0.0001	+0.0910	36	RD	V
HS Her	$\mathbf{S}$	55342.8187	0.0013	-0.0048	39	RD	V; non-circular orbit
HZ Her	р	55311.730	0.002	-0.086	35	RD	V
IT Her	р	55339.8224	0.0003	+0.0013	30	RD	V; el.: $2451362.4511+0.339395*E: d=0.04d$
V357 Her	$\mathbf{S}$	55340.8183	0.0003	-0.0193	20	RD	V; el.: IBVS 5280
V366 Her	р	55311.8069	0.0003	-0.1327	39	RD	V
V687 Her	р	55276.8424	0.0004	-0.1574	16	RD	V
V719 Her	$\mathbf{S}$	55311.8299	0.0005	-0.0220	29	RD	V
V731 Her	р	55312.7610	0.0002	-0.0114	23	RD	V; el.: IBVS 5592
V732 Her	р	55321.714	0.002	+0.001	20	RD DD	V; el.: 2451040.421+0.356834*E
V789 Her	s	55311.7580	0.0004	+0.0182	21	RD DD	V; el.: IBVS $5/41$
V857 Her	s	00200.0701	0.0004	+0.0303	31 17	RD DD	V; el.: IBVS 4304; $d=0.044d$
V801 Her V879 Her	s	55276.8522	0.0003	-0.0385	17	RD DD	V; el.: IBVS 4300 $\mathbf{N}_{\rm el}$ IBVS 4984
V8/8 Her V1005 Her	p	55521.7029	0.0005	-0.0341	31 15	RD DD	V; el.: IBVS 4284 V. el.: IBVS 4611
V1005 Her V1024 Her	p	55260.8933	0.0003	+0.0033	10		$V_{1}$ el. IDVS 4011 $V_{1}$ el. IDVS 5804
V1024 Hei V1022 Hor	р	55209.8110	0.0001	+0.0434	0		$V_{1}$ el. IDVS 5094 $V_{2}$ el. IDVS 5146
V1035 Her V1026 Her	5	55211 7579	0.0005	-0.0111	20		$V_{\rm r}$ el. IDVS 5140 $V_{\rm r}$ el. IDVS 5146
V1030 Her V1038 Her	р	55283 8413	0.0005	$\pm 0.0039$	30 25	RD RD	$V_{1}$ el. IBVS 5146
V1042 Her	د ہ	55311 7739	0.0002	$\pm 0.0079$ $\pm 0.0220$	20 21	RD	$V_{1}$ el : IBVS 4008
V1042 Her V1044 Her	e e	55212 8277	0.0003	-0.0220	97	RD RD	$V_{\rm r}$ el. IDVS 4338 $V_{\rm r}$ el. IBVS 5109
V1044 1101 V1047 Hor	ð N	55319 7088	0.0002	-0.0027 -0.0000	$\frac{4}{37}$	RD	V. el · IBVS 5192 d=0 024d
V1053 Her	P	55312 8083	0.0000	$\pm 0.0030$ $\pm 0.0067$	27	RD	$V \cdot el \cdot BBSAG Bull 128 10$
V1055 Her	P n	55321 8000	0 0004	+0.0034	29	RD	V el · IBVS 5192
V1094 Her	Р S	55321 7976	0.0004	-0.0061	29	RD	V: el.: IBVS 5306: $d=0.04d$
V1095 Her	s	55321.7605	0.0004	-0.0253	$\frac{1}{28}$	RD	V: el.: IBVS 5306
V1096 Her	n	55321.8037	0.0001	+0.0201	15	RD	V: el.: IBVS 5306
V1102 Her	г S	55327.7830	0.0003	+0.0045	22	RD	V; el.: IBVS 5333
V1119 Her	s	55283.8934	0.0006	+0.0004	30	RD	V; el.: $2453185.651 + 0.723407*E$
V1134 Her	р	55336.8169	0.0002	-0.0056	38	RD	V; el.: IBVS 5630; d=0.026d

Table 1:	Minima	of	eclipsing	binaries (	(continued)	)

$ \begin{array}{c} {\rm GSC} \ 0.00163 \ p \ 55280.8641 \ 0.0001 \ + 0.0051 \ 23 \ RD \ v; cl. 245340 \ 0.787+0.32701^{D}t \\ {\rm GSC} \ 0.665.71277 \ s \ 55280.7877 \ 0.0002 \ + 0.0061 \ 26 \ RD \ v; cl. 2454671 \ 0.227-0.8118372 \ E \\ {\rm GSC} \ 0.685.733 \ p \ 55287.7877 \ 0.0001 \ + 0.00151 \ 28 \ RD \ v; cl. 2454671 \ 0.227-0.801667^{E} \ d = 0.025d \ C \\ {\rm GSC} \ 0.685.733 \ p \ 55512.7499 \ 0.0002 \ + 0.00191 \ 28 \ RD \ v; cl. 245168 \ 2014-0.01667^{E} \ d = 0.025d \ C \\ {\rm GSC} \ 0.685.733 \ p \ 55512.7501 \ 0.0001 \ + 0.0005 \ 21 \ RD \ v; cl. 149V \ 5894 \ 0.55732.7701 \ 0.0001 \ + 0.0005 \ 21 \ RD \ v; cl. 245168 \ 3894 \ 0.55732.771 \ 0.0001 \ + 0.0005 \ 21 \ RD \ v; cl. 245168 \ 3894 \ 0.55730.71^{E} \ C \\ {\rm GSC} \ 1540.433 \ p \ 55523.83661 \ 0.0002 \ - 0.0016 \ 27 \ RD \ v; cl. 245168 \ 3874 \ 0.55730.71^{E} \ C \\ {\rm GSC} \ 1540.433 \ p \ 55523.83661 \ 0.0002 \ - 0.0016 \ 21 \ RD \ v; cl. 245167 \ 372 \ -10.00071^{E} \ C \\ {\rm GSC} \ 1540.432 \ p \ 55527.8230 \ 0.0003 \ - 0.0018 \ 23 \ RD \ v; cl. 245167 \ 372 \ -10.00071^{E} \ C \\ {\rm GSC} \ 1546.6166 \ p \ 55527.8230 \ 0.0003 \ - 0.0018 \ 23 \ RD \ v; cl. 245167 \ 372 \ -10.00071^{E} \ C \\ {\rm GSC} \ 1548.6169 \ p \ 55527.8520 \ 0.0003 \ - 0.0018 \ 23 \ RD \ v; cl. 245167 \ 372 \ -10.71012^{E} \ C \\ {\rm GSC} \ 1548.6169 \ p \ 55527.8520 \ 0.0003 \ - 0.0018 \ 24 \ RD \ v; cl. 245287 \ 372 \ -10.0071^{E} \ C \ C \ C \ 355282 \ 0.0003 \ - 0.0018 \ 24 \ RD \ v; cl. 245287 \ 372 \ -10.07112^{E} \ C \ C \ C \ 35520 \ 0.0003 \ - 0.0018 \ 24 \ RD \ v; cl. 245287 \ 372 \ -10.07112^{E} \ C \ C \ C \ 25520 \ 0.0007 \ - 0.0085 \ 31 \ RD \ v; cl. 245287 \ 372 \ -10.075 \ -10.00071^{E} \ C \ C \ 25520 \ -10.0007 \ -10.0000 \ -10.0000 \ 27 \ RD \ v; cl. 245287 \ -10.075 \ -10.00071^{E} \ C \ C \ 25520 \ -10.0000 \ -0.0005 \ 17 \ RD \ v; cl. 245370 \ -10.075 \ -10.00071^{E} \ C \ C \ 25520 \ -10.000 \ -10.0000 \ -10.0000 \ -10.0000 \ -10.0000 \ -10.0000 \ -10.0000 \ -10.0000 \ -10.0000 \ -10.0000 \ -10.0000 \ -10.00000 \ -10.0000 \ -10.0000 \ -10.0000 \ -10.0000 \ -10.0000 \ -$	Variable T	ype	HJD 24	±	0 – C	n	Obs	Remarks
GSC 060-1531         s         55200.8116         0.0005         4.0.0050         10         RD         V; cl. 2454367.140-0.834647E           GSC 067.177         s         55200.8720         0.0002         4.0.001         28         RD         V; cl. 2454367.140-0.434647E           GSC 086.576         s         55312.7701         0.0001         4.0.000         21         RD         V; cl. 19VS 8894           GSC 1505.565         p         55312.8701         0.0002         4.0.012         31         RD         V; cl. 245382.7884+0.501487'E           GSC 1505.565         p         55320.8704         0.0002         4.0.018         16         RD         V; cl. 245382.7884+0.501487'E           GSC 1505.182         s         55321.8708         0.0003         4.0.020         23         RD         V; cl. 245387.584+0.50037'E           GSC 1569.138         p         55323.7830         0.0003         -0.0020         23         RD         V; cl. 245387.584+0.400915'E           GSC 1569.138         p         55323.7830         0.0003         -0.0020         23         RD         V; cl. 245387.584+0.400915'E           GSC 1569.138         p         55323.7830         0.0003         -0.0085         33         RD         V; cl. 2453876.004+0.	GSC 960-163	p	55280.8684	0.0001	+0.0013	23	RD	V; el.: 2453490.787+0.327015*E
$ \begin{array}{c} \mathrm{GSC}\ 0.067+1277 & \mathrm{s}\ 55290.7507 & 0.0002 & -0.0061 & 24 & \mathrm{RD} & \mathrm{V};\ cl. 245460.807+0.40460*E;\ d-0.025d \\ \mathrm{GSC}\ 0.085+333 & \mathrm{p}\ 55512.7549 & 0.0004 & -0.0051 & 24 & \mathrm{RD} & \mathrm{V};\ cl. 11WS\ 5894 \\ \mathrm{GSC}\ 0.087+1532 & \mathrm{p}\ 55512.7547 & 0.0001 & -0.0052 & 18 & \mathrm{DV} & \mathrm{vl};\ cl. 12WS\ 5894 \\ \mathrm{GSC}\ 0.087+1532 & \mathrm{p}\ 55521.8306 & 0.0004 & -0.0015 & 16 & \mathrm{RD} & \mathrm{V};\ cl. 12353827.894 - 0.03165*E \\ \mathrm{GSC}\ 0.155-0.2362 & \mathrm{s}\ 55521.8008 & 0.0003 & -0.0016 & 16 & \mathrm{RD} & \mathrm{V};\ cl. 2454563\ 58361-0.55761*E \\ \mathrm{GSC}\ 0.155-0.2362 & \mathrm{s}\ 55521.8203 & 0.0003 & -0.0016 & 16 & \mathrm{RD} & \mathrm{V};\ cl. 245563827.894 - 0.0300671*E \\ \mathrm{GSC}\ 0.155-0.2362 & \mathrm{s}\ 55521.8203 & 0.0003 & -0.0012 & 23 & \mathrm{RD} & \mathrm{V};\ cl. 2455638382.894 + 0.53701*E \\ \mathrm{GSC}\ 0.155-0.4166 & \mathrm{p}\ 55527.8230 & 0.0003 & -0.0018 & 21 & \mathrm{RD} & \mathrm{V};\ cl. 2453807.894 + 0.0300671*E \\ \mathrm{GSC}\ 0.156-0.016 & \mathrm{p}\ 55527.8230 & 0.0003 & -0.0018 & 21 & \mathrm{RD} & \mathrm{V};\ cl. 2454203\ 5724+0.300671*E \\ \mathrm{GSC}\ 0.158-0.106 & \mathrm{p}\ 55527.8230 & 0.0003 & -0.0008 & 14 & \mathrm{RD} & \mathrm{V};\ cl. 2454223\ 5382.844+1.10243*E \\ \mathrm{GSC}\ 0.0043 & -0.0008 & 14 & \mathrm{RD} & \mathrm{V};\ cl. 2454223\ 758+0.418522*E \\ \mathrm{GSC}\ 0.0041 & \mathrm{p}\ 555240.837 & 0.0002 & -0.0078 & 31 & \mathrm{RD} & \mathrm{V};\ cl. 2454223\ 758+0.418522*E \\ \mathrm{GSC}\ 0.03427 & \mathrm{p}\ 55240.837 & 0.0002 & -0.0078 & 31 & \mathrm{RD} & \mathrm{V};\ cl. 2453790.997+0.275410*E \\ \mathrm{GSC}\ 0.243-247 & \mathrm{p}\ 55240.837 & 0.0002 & -0.0078 & 31 & \mathrm{RD} & \mathrm{V};\ cl. 2453790.997+0.275410*E \\ \mathrm{GSC}\ 0.243-248 & \mathrm{p}\ 55240.837 & 0.0003 & -0.0003 & 17 & \mathrm{RD} & \mathrm{V};\ cl. 2453790.997+0.275410*E \\ \mathrm{GSC}\ 0.243-248 & \mathrm{p}\ 55240.837 & 0.0003 & -0.0003 & 17 & \mathrm{RD} & \mathrm{V};\ cl. 2453790.997+0.275410*E \\ \mathrm{GSC}\ 0.483-48 & \mathrm{p}\ 55240.837 & 0.0003 & -0.0005 & 18 & \mathrm{RD} & \mathrm{V};\ cl. 2453790.997+0.275410*E \\ \mathrm{GSC}\ 0.483-44 & \mathrm{p}\ 55240.837 & 0.0001 & -0.0027 & 28 \\ \mathrm{GSC}\ 0.487-44 & \mathrm{p}\ 55240.837 & 0.0001 & -0.0028 & 21 & \mathrm{RD} & \mathrm{V};\ cl. 2453790.997+0.275410*E \\ \mathrm{GSC}\ 0.483-44 & \mathrm{p}\ 55240.8374 & 0.0001 & -0.0021 & 18 \\ C$	GSC 960-1531	s	55280.8416	0.0005	+0.0050	19	RD	V; el.: $2454671.622 + 0.381833*E$
GSC 968-876         s         55280.8729         0.0002         + 0.0009         42         RD         V; el: 18V 5 8844           GSC 985-158         s         55312.7761         0.0001         + 0.0024         31         RD         V; el: 18V 5 8844           GSC 985-158         s         55312.7761         0.0001         + 0.0024         31         RD         V; el: 245438.8984-05014897'E           GSC 1505-152         s         55323.7531         0.0002         - 0.0112         18         RD         V; el: 245387.524-0.4030677'E           GSC 1502-162         s         55327.7537         0.0003         - 0.0016         21         RD         V; el: 245437.827-0.4030677'E           GSC 1508-164         p         55327.7537         0.0003         - 0.0016         21         RD         V; el: 2454367.524-0.40011'E           GSC 158-862         s         55340.8250         0.0001         - 0.0032         25         RD         V; el: 1245437.874-0.40011'E           GSC 158-862         s         55340.8250         0.0002         - 0.0033         33         RD         V; el: 1245378.741-0.4011'E           GSC 138-862         s         55340.920         0.0002         - 0.0273         33         RD         V; el: 245378.751-0.373 <td>GSC 967-1277</td> <td>$\mathbf{s}$</td> <td>55296.7807</td> <td>0.0002</td> <td>+0.0091</td> <td>26</td> <td>RD</td> <td>V; el.: 2454602.718+0.433648*E</td>	GSC 967-1277	$\mathbf{s}$	55296.7807	0.0002	+0.0091	26	RD	V; el.: 2454602.718+0.433648*E
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	GSC 968-876	$\mathbf{s}$	55280.8729	0.0002	+0.0051	28	RD	V; el.: 2454564.806+0.404669*E; d=0.025d
$ \begin{array}{rcrcrc} \mathrm{GSC} & 95.712.7761 & 0.0001 & +0.0050 & 21 & \mathrm{RD} & \mathrm{V}; \ dc1; \ 115YS 5894 & \\ \mathrm{GSC} & 95.7132.826 & 0.0004 & +0.0024 & 36 & \mathrm{RD} & \mathrm{V}; \ dc1; \ 2454158.8984-0.501489^{\mathrm{TE}} \\ \mathrm{GSC} & 1550.2362 & s & 55327.5874 & 0.0002 & -0.0016 & 7 & \mathrm{RD} & \mathrm{V}; \ dc1; \ 24543582.7894-0.53701^{\mathrm{TE}} \\ \mathrm{GSC} & 1550.2362 & s & 55327.537 & 0.0003 & +0.0020 & 23 & \mathrm{RD} & \mathrm{V}; \ dc1; \ 2453686.7946-0.53701^{\mathrm{TE}} \\ \mathrm{GSC} & 1556.56116 & p & 55337.5370 & 0.0003 & -0.0008 & 27 & \mathrm{RD} & \mathrm{V}; \ dc1; \ 2453686.7946-0.300671^{\mathrm{TE}} \\ \mathrm{GSC} & 1556.5737 & 55333.7850 & 0.0003 & -0.0008 & 27 & \mathrm{RD} & \mathrm{V}; \ dc1; \ 2453686.7946-0.409915^{\mathrm{TE}} \\ \mathrm{GSC} & 1576.373 & 55333.7850 & 0.0003 & -0.0008 & 27 & \mathrm{RD} & \mathrm{V}; \ dc1; \ 2453686.7946-0.409915^{\mathrm{TE}} \\ \mathrm{GSC} & 0.1573.73 & 55333.7850 & 0.0003 & -0.0008 & 27 & \mathrm{RD} & \mathrm{V}; \ dc1; \ 2454329.784-0.418522^{\mathrm{TE}} \\ \mathrm{GSC} & 0.1573.73 & 55333.7850 & 0.0009 & -0.0008 & 17 & \mathrm{RD} & \mathrm{V}; \ dc1; \ 2453286.744-0.418522^{\mathrm{TE}} \\ \mathrm{GSC} & 0.013.277 & 55276.8862 & 0.0009 & +0.0038 & 17 & \mathrm{RD} & \mathrm{V}; \ dc1; \ 245328.884+1.419237^{\mathrm{TE}} \\ \mathrm{GSC} & 0.038.37 & 0.002 & -0.0028 & 33 & \mathrm{RD} & \mathrm{V}; \ dc1; \ MV & \mathrm{SD} & 55205.8899 & 0.00009 & +0.2487 & \mathrm{IS} & \mathrm{RD} & \mathrm{V}; \ dc1; \ MV & \mathrm{SD} & 55205.8890 & 0.0000 & +0.0131 & \mathrm{IS} & \mathrm{RD} & \mathrm{V}; \ dc1; \ MSS & 5804 \\ \mathrm{GSC} & 0.37.74 & 9 & 55204.0337 & 0.002 & -0.0036 & \mathrm{IR} & \mathrm{RD} & \mathrm{V}; \ dc1; \ 245379.597+0.275416^{\mathrm{TE}} \\ \mathrm{GSC} & 438888 & \mathrm{S} & 55204.9837 & 0.0009 & +0.0105 & \mathrm{IR} & \mathrm{RD} & \mathrm{V}; \ dc1; \ 245379.597+0.275416^{\mathrm{TE}} \\ \mathrm{GSC} & 438488 & \mathrm{P} & 55240.9037 & 0.0000 & +0.0105 & \mathrm{IR} & \mathrm{RD} & \mathrm{V}; \ dc1; \ 245379.679+0.265578+ \\ \mathrm{GSC} & 448488 & \mathrm{P} & 55240.9036 & 0.00004 & +0.0006 & 2 & \mathrm{RD} & \mathrm{V}; \ dc1; \ 245371.84187+03744474E \\ \mathrm{GSC} & 4483488 & \mathrm{P} & 55240.9036 & 0.00004 & +0.0006 & 12 & \mathrm{RD} & \mathrm{V}; \ dc1; \ 245371.84187+03744474E \\ \mathrm{GSC} & 4485.484 & \mathrm{P} & 55240.90467 & 0.00004 & -0.0007 & 12 & \mathrm{RD} & \mathrm{V}; \ dc1; \ 245371.44187+03744074E \\ \mathrm{GSC} & 4485$	GSC 985-533	р	55312.7949	0.0004	+0.0090	42	RD	V; el.: IBVS 5894
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	GSC 990-480	р	55312.7761	0.0001	+0.0050	21	RD	V; el.: IBVS 5894
$ \begin{array}{rcrcrc} \mathrm{GSC} 150-565 & \mathrm{p} & 5226.7916 & 0.0002 & +0.0188 & 16 & \mathrm{RD} & \mathrm{V}; el: 245382,789-0.236165^{\mathrm{E}} \\ \mathrm{GSC} 1530-2802 & \mathrm{s} & 55321.8009 & 0.0005 & +0.0049 & 16 & \mathrm{RD} & \mathrm{V}; el: 245453836-0.587301^{\mathrm{E}} \\ \mathrm{GSC} 1552-862 & \mathrm{s} & 55327.7537 & 0.0003 & -0.0016 & 31 & \mathrm{RD} & \mathrm{V}; el: 2452867.524+0.400915^{\mathrm{TE}} \\ \mathrm{GSC} 1556-8641 & \mathrm{p} & 55333.7530 & 0.0003 & -0.0088 & 27 & \mathrm{RD} & \mathrm{V}; el: 2452867.524+0.400915^{\mathrm{TE}} \\ \mathrm{GSC} 1578-737 & \mathrm{p} & 5536.7582 & 0.0001 & -0.0005 & 31 & \mathrm{RD} & \mathrm{V}; el: 2452867.524+0.418522^{\mathrm{TE}} \\ \mathrm{GSC} 1578-737 & \mathrm{p} & 5532.6582 & 0.0003 & -0.0038 & 25 & \mathrm{RD} & \mathrm{V}; el: 2452875.524+0.418522^{\mathrm{TE}} \\ \mathrm{GSC} 2035-247 & \mathrm{p} & 55276.582 & 0.0001 & -0.0005 & 33 & \mathrm{RD} & \mathrm{V}; el: 2452875.524+0.418522^{\mathrm{TE}} \\ \mathrm{GSC} 3080-1410 & \mathrm{p} & 55320.5280 & 0.0009 & +0.0388 & 14 & \mathrm{RD} & \mathrm{V}; el: 24532879.549.41^{\mathrm{CM}} \\ \mathrm{GSC} 3080-1410 & \mathrm{p} & 55203.63890 & 0.0009 & +0.2487 & 18 & \mathrm{RD} & \mathrm{V}; el: 2453799.597+0.275416^{\mathrm{TE}} \\ \mathrm{GSC} 217.449 & \mathrm{p} & 55203.037 & 0.002 & +0.0134 & 18 & \mathrm{RD} & \mathrm{V}; el: 2453799.597+0.275416^{\mathrm{TE}} \\ \mathrm{GSC} 4381-488 & \mathrm{p} & 55201.0548 & 0.0004 & +0.0036 & 17 & \mathrm{RD} & \mathrm{V}; el: 2453799.597+0.275416^{\mathrm{TE}} \\ \mathrm{GSC} 4382-488 & \mathrm{p} & 55201.0548 & 0.0004 & +0.0006 & 12 & \mathrm{RD} & \mathrm{V}; el: 245379.597^{\mathrm{T}}-0.275416^{\mathrm{TE}} \\ \mathrm{GSC} 4382-488 & \mathrm{p} & 55201.0548 & 0.0004 & +0.0007 & 20 & \mathrm{RD} & \mathrm{V}; el: 2453027.61^{\mathrm{C}}-0.33408^{\mathrm{TE}} \\ \mathrm{GSC} 4382-488 & \mathrm{p} & 55201.0548 & 0.0004 & +0.0007 & 12 & \mathrm{RD} & \mathrm{V}; el: 245302.761^{\mathrm{C}}-0.33408^{\mathrm{TE}} \\ \mathrm{GSC} 5457.59 & \mathrm{p} & 55201.0548 & 0.0004 & +0.0005 & 12 & \mathrm{RD} & \mathrm{V}; el: 245302.761^{\mathrm{C}}-0.33408^{\mathrm{TE}} \\ \mathrm{GSC} 5457.59 & \mathrm{p} & 55201.3548 & 0.0004 & +0.0005 & 12 & \mathrm{RD} & \mathrm{V}; el: 2453375.410^{\mathrm{C}}-0.33408^{\mathrm{TE}} \\ \mathrm{GSC} 5457.59 & \mathrm{p} & 55201.3548 & 0.0004 & +0.0002 & 10 & \mathrm{RD} & \mathrm{V}; el: 2453375.410^{\mathrm{C}}-0.33428^{\mathrm{TE}} \\ \mathrm{GSC} 5457.59 & \mathrm{p} & 55201.3548 & 0.0004 & +0.0005 & 12 & \mathrm{RD} & \mathrm{V}; el: 2453375.410^{-0.33404} \\ \mathrm{GSC} 6457.448 & \mathrm{p} & $	GSC 987-1582	р	55311.8236	0.0004	+0.0024	35	RD	V; el.: $2454158.898 + 0.501489^{*}E$
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	$GSC \ 1505-565$	р	55296.7916	0.0002	+0.0158	16	RD	V; el.: $2453832.789 + 0.236165 * E$
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	GSC 1540-1433	р	55283.8654	0.0002	-0.0016	27	RD	V; el.: $2454563.836 + 0.587301^{*}E$
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	$GSC \ 1550-2362$	$\mathbf{s}$	55321.8009	0.0005	+0.0049	16	RD	V; el.: $2454197.827 + 0.309676^* E$
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	$GSC \ 1552-862$	$\mathbf{S}$	55327.7537	0.0003	+0.0020	23	RD	V; el.: $2453896.708 + 0.300671^*E$
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	$GSC \ 1556-1186$	р	55327.8293	0.0002	-0.0066	31	RD	V; el.: $2452867.526 + 0.409915^*E$
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	$GSC \ 1568-694$	р	55333.7830	0.0003	-0.0048	27	RD	V; el.: $2454679.672 + 0.377012*E$
$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$GSC \ 1578-2373$	р	55336.7852	0.0001	+0.0095	23	RD	V; el.: $2454229.785 + 0.418522 * E$
$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$GSC \ 1588-632$	$\mathbf{S}$	55340.8259	0.0003	-0.0038	25	RD	V; el.: $2453832.884 + 1.419243^{*}E$
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	$GSC \ 2043-227$	р	55276.8862	0.0009	+0.0038	14	RD	V; el.: IBVS 5894
	GSC 3080-1410	р	55312.8179	0.0002	-0.0085	33	RD	V; el.: AJ 133, 255
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	UW Hya	р	55290.7230	0.0002	+0.0278	31	RD	V; el.: MVS 12, 48
	AV Hya	$\mathbf{S}$	55205.8899	0.0009	+0.2487	18	RD	V; el: ApSS 76, 173
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	V404 Hya	$\mathbf{S}$	55240.837	0.002	+0.131	12	RD	V
$ \begin{array}{llllllllllllllllllllllllllllllllllll$		р	55240.975	0.003	+0.114	8	RD	V
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	GSC 217-849	р	55290.7029	0.0005	+0.0036	17	RD	V; el.: $2453799.597 + 0.275416*E$
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	GSC 235-461	р	55245.9206	0.0007	+0.0340	16	RD	V; el.: IBVS 5894
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	GSC 4872-764	р	55201.8548	0.0004	+0.0058	24	RD	V; el.: 2451964.63+3.712407*E
$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	GSC 4881-888	$\mathbf{S}$	55240.9035	0.0009	+0.0105	11	RD	V; el.: 2453028.761+0.265578*E
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	GSC 4882-488	р	55201.9634	0.0001	+0.0127	29	RD	V; el.: 2453714.818+0.374404*E
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	GSC 4887-1149	р	55240.8855	0.0004	-0.0070	22	RD	V: el.: 2454856.744+0.336088*E
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	GSC 5457-59	р	55240.8971	0.0005	+0.0096	12	RD	V; el.: $2453699.803 \pm 0.311645^{E}$
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	GSC 5458-351	s	55290.7480	0.0003	-0.0055	18	RD DD	V; el.: $2453875.501 \pm 0.343285^{\circ}E$
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	GSC 5403-45	p 	55209.8304	0.0004	-0.0131	10	RD DD	V; el.: $2453412.804 \pm 0.433023^{\circ}$ E
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	GSC 5408-1340	p	55205.9029	0.0008	+0.0045	20 10	RD DD	V; el.: $2453411.731\pm0.501805^{\circ}$ E V; el.: $2453411.731\pm0.721481*$ E
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	GSC 5472-900 CSC 6027 124	p	55240.9105	0.0010	+0.0022	17		V; e1.: $2453750.700\pm0.731461^{\circ}E$ V; e1.: $2453750.700\pm0.731461^{\circ}E$
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	GSC 6027-134 CSC 6020 311	5	55205 8883	0.0012		20	RD RD	$V$ ; el.: 2452615.46 $\pm$ 1.015424 E V: al : 2452465 610 $\pm$ 0.480142*E
$\begin{array}{llllllllllllllllllllllllllllllllllll$	UZ Loo	5 D	55273 0002	0.0004	$\pm 0.0000$	29 93	RD	V, EL. 2403405.010+0.480145 E
$\begin{array}{llllllllllllllllllllllllllllllllllll$	WZ Leo	р р	55240.8761	0.0000	$\pm 0.2070$ $\pm 0.0016$	23 10	RD RD	V el : Acta Astr 54 207
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	XX Leo	P s	55259 8887	0.0006	+0.0010 +0.0069	29	RD	V; el : 2454470 837+0 971132; d=0 07d
$\begin{array}{llllllllllllllllllllllllllllllllllll$	XZ Leo	s	55243 7032	0.0000	+0.0000	$\frac{25}{37}$	RD	V
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	XY Leo	n	55298 7640	0.0001	+0.0010 +0.0154	18	RD	V. el · 2454646 455+0 284100*E
AL Leop $55243.7065$ $0.003$ $+0.0103$ $37$ RDV; el.: IBVS 3401AM Leop $55268.8716$ $0.0003$ $+0.0084$ $14$ RDVAP Leop $55243.7034$ $0.0003$ $-0.0303$ $28$ RDVBL Leos $55290.9056$ $0.0008$ $-0.0257$ $14$ RDVBW Leos $55277.8974$ $0.0008$ $+0.0648$ $16$ RDVCE Leos $55267.6741$ $0.0007$ $-0.0057$ $17$ RDVGU Leop $55243.7354$ $0.0004$ $+0.0792$ $16$ RDV; el.: IBVS 5329GV Leop $55243.7354$ $0.0004$ $+0.0795$ $29$ RDV; el.: IBVS 5455HI Leop $55268.9122$ $0.0001$ $+0.0562$ $19$ RDV; el.: IBVS 5455HS Leos $55273.8430$ $0.0001$ $+0.0562$ $19$ RDV; el.: IBVS 5894GSC 262-948p $55320.7995$ $0.0002$ $+0.0495$ $26$ RDV; el.: IBVS 5894GSC 265-617s $55273.8941$ $0.0002$ $-0.0017$ $19$ RDV; el.: IBVS 5894GSC 265-617s $55273.8941$ $0.0007$ $+0.0292$ $15$ RDV; el.: IBVS 5894; d=0.04ds $55277.8571$ $0.0007$ $+0.0292$ $15$ RDV; el.: IBVS 5894; d=0.04dgSC 270-9s $55208.828$ $0.0007$ $+0.0292$ $15$ RDV; el.: 2453800.731+0.276	AG Leo	Р D	55243 7350	0.0001	+0.0101 +0.0208	27	RD	V; el: $2454205596+3392543*E$
$\begin{array}{llllllllllllllllllllllllllllllllllll$	AL Leo	Р D	55243 7065	0.0003	+0.0200 +0.0103	37	RD	V: el : IBVS 3401
$\begin{array}{llllllllllllllllllllllllllllllllllll$	AM Leo	р D	55268.8716	0.0008	+0.0084	14	RD	V
BL Leos $5290.9056$ $0.0008$ $-0.0257$ $14$ RDVBW Leos $55277.8974$ $0.0008$ $+0.0648$ $16$ RDVCE Leos $55267.6741$ $0.0007$ $-0.0057$ $17$ RDVGU Leop $55245.9143$ $0.0003$ $+0.0722$ $16$ RDV; el.: IBVS $5329$ GV Leop $55243.7354$ $0.0044$ $-0.0795$ $29$ RDV; el.: IBVS $5697$ HI Leop $55268.9122$ $0.0014$ $+0.0099$ $17$ RDV; el.: IBVS $5455$ HS Leos $55273.8430$ $0.0001$ $+0.0562$ $19$ RDV; el.: IBVS $5894$ GSC 262-948p $55320.7995$ $0.0002$ $+0.0495$ $26$ RDV; el.: IBVS $5894$ GSC 265-617s $55277.8580$ $0.0003$ $-0.0076$ $25$ RDV; el.: IBVS $5894$ GSC 267-162p $55273.9463$ $0.0007$ $+0.0292$ $15$ RDV; el.: 2454505.748+0.290910*EGSC 270-9s $55209.8298$ $0.0007$ $+0.0292$ $15$ RDV; el.: IBVS $5894;$ d=0.04ds $55277.8371$ $0.0005$ $+0.0674$ $18$ RDV; el.: 2453800.731+0.276671*EGSC 270-593s $55273.8669$ $0.0006$ $+0.0011$ $12$ RDV; el.: 2453805.664+0.487784*EGSC 828-1721p $55245.9192$ $0.0002$ $+0.0041$ $12$ RDV; el.: 2454892.634+0	AP Leo	p	55243.7034	0.0003	-0.0303	28	RD	V
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	BL Leo	s	55290.9056	0.0008	-0.0257	14	RD	V
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	BW Leo	$\mathbf{s}$	55277.8974	0.0008	+0.0648	16	RD	V
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	CE Leo	s	55267.6741	0.0007	-0.0057	17	RD	V
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	GU Leo	р	55245.9143	0.0003	+0.0722	16	RD	V; el.: IBVS 5329
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	GV Leo	p	55243.7354	0.0004	-0.0795	29	RD	V; el.: IBVS 5697
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	HI Leo	p	55268.9122	0.0001	+0.0009	17	RD	V; el.: IBVS 5455
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	HS Leo	s	55273.8430	0.0001	+0.0562	19	RD	V; el.: Per. Zv. 25, 2
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$GSC \ 262-948$	р	55320.7995	0.0002	+0.0495	26	RD	V; el.: IBVS 5894
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$GSC \ 263-585$	р	55277.8580	0.0003	-0.0076	25	RD	V; el.: IBVS 5894
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$GSC \ 265-617$	$\mathbf{s}$	55273.8941	0.0002	-0.0017	19	RD	V; el.: $2454505.748 + 0.290910^{*}E$
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	$GSC \ 267-162$	р	55273.9463	0.0007	+0.0292	15	RD	V; el.: $2452755.600 + 1.402181^{*}E$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	GSC 270-9	$\mathbf{s}$	55209.8298	0.0007	+0.1223	15	RD	V; el.: IBVS 5894; d=0.04d
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		$\mathbf{s}$	55277.8371	0.0005	+0.0674	18	RD	V; d=0.042d
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	GSC 270-593	$\mathbf{s}$	55273.8669	0.0006	+0.0011	12	RD	V; el.: $2453800.731 + 0.276671^*E$
$ \begin{array}{ccccccc} {\rm GSC} \ 828-1721 & p & 55245.9192 & 0.0004 & +0.0051 & 15 & {\rm RD} & {\rm V}; \ el.: \ 2454892.634+0.694067^*{\rm E} \\ {\rm GSC} \ 835-652 & p & 55298.7559 & 0.0002 & +0.0229 & 15 & {\rm RD} & {\rm V}; \ el.: \ 2454228.534+0.257507^*{\rm E} \\ {\rm GSC} \ 840-216 & p & 55268.9114 & 0.0005 & +0.0041 & 17 & {\rm RD} & {\rm V}; \ el.: \ 2454566.575+0.349593^*{\rm E} \end{array} $	GSC 270-777	р	55209.8542	0.0002	+0.0041	12	RD	V; el.: $2453859.664 + 0.487784^*E$
$\begin{array}{llllllllllllllllllllllllllllllllllll$	GSC 828-1721	р	55245.9192	0.0004	+0.0051	15	RD	V; el.: $2454892.634 + 0.694067*E$
$\mathrm{GSC}\ 840\text{-}216  \mathrm{p}  55268.9114  0.0005  +0.0041  17  \mathrm{RD}  \mathrm{V};\ \mathrm{el.:}\ 2454566.575 + 0.349593^{*}\mathrm{E}$	GSC 835-652	р	55298.7559	0.0002	+0.0229	15	RD	V; el.: $2454228.534 + 0.257507*E$
	GSC 840-216	р	55268.9114	0.0005	+0.0041	17	RD	V; el.: $2454566.575 + 0.349593^*E$

Variable	<b>D</b>	. 11 10. 94	1	0 0		Oha	Demontra
	rype	55268 8770	±	0 - 0	20		V. al. 2454521 724 + 0 212145*E
GSC 847-307	5	55200.0110	0.0002	+0.0125	20 20		$V_{1}$ el. 2454531.754 $\pm$ 0.512145 E $V_{2}$ el. 2454642.474 $\pm$ 0.512507*E
GSC 001-700	р	20273.0003	0.0002	+0.0037	22		V; el.: $2454042.474\pm0.512507^{\circ}$ E V; el.: $2454042.474\pm0.220054*$ E
GSC 839-1100	s	55520.6225	0.0001	+0.0080	აა ეუ		$V$ ; el.: 2454551.006 $\pm$ 0.559954 $^{\circ}$ E
GSC 870-349	s	55209.7002	0.0004	-0.0110	27 10		V; el.: $1DVS 0094$ V; el.: $9454176 557 \pm 0.652746*D$
GSC 1410-439	р	55240.0404	0.0015	-0.0071	10		V; el.: 2454170.557+0.055740° E V; el.: 2454170.657+0.025948*E
GSC 1417-401	s	55259.0052	0.0002	+0.0030	41 10		V; e1.: $2454910.055 \pm 0.255246^{\circ}$ E
GSC 1419-000	p	55259.8393	0.0000	+0.0042	10	RD DD	V; el.: $2453853.592 \pm 0.317007^{\circ}$ E
GSC 1422-142	p	55275.9047	0.0001	+0.0018	10		V; el.: 2454177.061+0.300000° E V; el.: 2452220.861+0.280487*E
GSC 1429-137	p	55290.6969	0.0005	+0.0079	10		V; el.: $2453529.801 \pm 0.8675928$ E
GSC 1434-1034	p	55290.8510	0.0003	-0.0040	14 95		V; el.: $2454556.094 \pm 0.607525^{\circ}$ E
GSC 1437-805	p	22329.790 55329.790	0.008	+0.031	⊿ə 91	RD DD	V; e1.: $2454850.805 \pm 2.004010^{\circ}$ E V; e1.: $2452428680 \pm 0.268207$ *E
GSC 1441-914	p	55207.7505	0.0000	-0.0015	21 94		V; el.: $2453436.069 \pm 0.206307^{\circ}$ E V; el.: $2452175 \pm 600 \pm 0.225545^{\circ}$ E
GSC 1443-07	p	55209.7211	0.0005	-0.0189	24 14		V; el.: $2455175.509\pm0.525545^{\circ}$ E V; el.: $2455175.509\pm0.525545^{\circ}$ E
GSC 1909-579 CSC 1071 016	р	55242 642	0.0004	+0.0207	14		$V_{1}$ el. 2454665.716 $\pm$ 0.366442 E $V_{2}$ el. 2454572 558 $\pm$ 0.620688 $\pm$ E
GSC 1971-910	5	55245.042	0.004	+0.018	0		V; el. 2454575.556+0.059066 E
GSC 1970-1010	s	55277 0018	0.0005	-0.0170	9		V; el.: 2454959.591+0.541707 E V; el.: 2454907 676 + 0.260606*E
G5U 1961-257 TTM:	5	55205 8521	0.0008	+0.0350	14		V; EL. 2454907.070+0.200000 E
	р р	55245 0178	0.0008	0.0065	10	RD	V = d = 0.02d
TT LIMI TV IM;	Р	55268 0036	0.0004	0.0005	10 25	RD	$V_{1,0} = 0.02 u$ V. ol. IBVS 5411
AI LIVII NGV 7491	5	55206.9030	0.0011	-0.0203	20 6		$V_{1}$ el. IDVS 5411 $V_{2}$ el. IDVS 5904
NSV 7401 DE Lun	-	55220.739	0.003	+0.019	0 95		V; el.: 1DVS 5094
Dr Lyr FY Lun	5	55220 7882	0.0000	+0.0324	20		V V. al. IDVS 5712
EA Lyr HT Lur	р р	55222 8281	0.0004	-0.0201	54 96	RD	$\mathbf{V}$ ; el.: IDVS 5715
пт Lyr Ктттир	р р	55228 7671	0.0004	-0.0221	20		V V
IXI Lyr MN Lyn	p n	55241 9179	0.0000	-0.0082	21		V V
V406 Lyr	р р	55338 7679	0.0000	+0.0436	20 28	RD	V V. al.: IBVS 4132
V400 Lyr V412 Lyr	р р	55342 8078	0.0004	-0.0131	20 28	RD	V; en. 1DV5 4152 V: non circular orbit
V412 Lyr V477 Lyr	P D	55338 8087	0.0003	$\pm 0.2049$ $\pm 0.0010$	7	RD	V, $al \in IRVS 4062; D=0.032d$
V477 Lyr V507 Lyr	P D	55330 7835	0.0001	$\pm 0.0010$	1 92	RD	V. al. IBVS 5547
V563 Lyr	Р	55340 8273	0.0000	+0.0107	∠ວ 28	RD	$\mathbf{V}$ ; el.: IDVS 5547 V
V505 Lyr V574 Lyr	5 0	55336 7406	0.0003	-0.0200	$\frac{20}{25}$	RD	V V. ol.: IBVS 4076
V014 Dyl	o n	55336 888	0.0000	-0.0075	20	RD	V
V570 Lyr	P	55330 7746	0.000	-0.000	21	RD	V ol · IBVS 4082
V580 Lyr	o n	55342 7674	0.0000	-0.0203	13	RD	V. el · IBVS 4982
V589 Lyr	р р	55341 8320	0.0000	$\pm 0.0500$	а а	RD	V. el · IBVS 4985
V502 Lyr V591 Lyr	P D	55336 8077	0.0000	+0.0033	19	RD	V; el : IBVS 5232
V591 Lyr V592 Lyr	P D	55338 8124	0.0004	$\pm 0.0000$	25	RD	V; el : IBVS 5232
V592 Lyr V596 Lyr	р р	553/1 7907	0.0001	$\pm 0.0120$ $\pm 0.0045$	20	RD	V = 0 + IBVS 5232
GSC 2115-1000	P S	55340 8366	0.0002 0.0004	+0.0040 +0.0015	$\frac{20}{22}$	RD	V; el : 2452853 598+0 328717*E: DS
GSC 3104-1085	5	55336 8087	0.0001	10.0010	39	RD	V; comp. of V591 Lyr
BM Mon	n	55268.7068	0.0002	+0.0462	$\frac{28}{28}$	RD	V
FW Mon	р р	55277.7471	0.0005	-0.0115	19	RD	V
V464 Mon	Р D	55273.6634	0.0007	-0.1150	16	RD	V
V514 Mon	Р D	55259.7195	0.0002	+0.0597	30	RD	V
V532 Mon	r D	55273.6923	0.0008	-0.0186	30	RD	V
GSC 4840-528	r D	55277.6888	0.0005	-0.0115	24	RD	V: el.: 2454204.554+0.567502*E
V456 Oph	r S	55342.7859	0.0002	+0.0232	26	RD	V
V508 Oph	s	55327.8487	0.0003	-0.0200	20	RD	V
V1022 Oph	p	55276.8814	0.0008	-0.0042	10	RD	V: el.: IBVS 5690
V1125 Oph	р	55283.933	0.005	-0.001	20	RD	V; el.: GEOS EB 28
V2332 Oph	p	55327.7702	0.0002	-0.0799	26	RD	V: el.: IBVS 4345
V2553 Oph	p	55321.7816	0.0004	+0.0048	34	RD	V: el.: ASAS
GSC 398-1236	p	55283.8461	0.0004	+0.0065	$\overline{25}$	RD	V; el.: IBVS 5894
GSC 403-1109	S	55312.8418	0.0004	-0.0056	$21^{-1}$	RD	V; el.: IBVS 5894
GSC 429-1488	$\mathbf{s}$	55327.7789	0.0005	+0.0068	20	RD	V; el.: $2454532.894 + 0.251186^*E$
GSC 436-1066	р	55333.8095	0.0004	+0.0049	21	RD	V; el.: $2454740.524 + 0.549843^*$ E
GSC 979-1273	s	55311.8275	0.0004	+0.0103	31	RD	V; el.: IBVS 5894
GSC 998-2391	$\mathbf{s}$	55327.7957	0.0005	+0.0179	29	RD	V; el.: 2454568.844+0.490109*E; d=0.056d
GSC 1010-1632	р	55333.8172	0.0004	+0.0043	15	RD	V; el.: $2453523.779 + 0.254540^{*}E$

Table 1: Minima of eclipsing binaries (continued)

				1 0			,
Variable	Туре	HJD 24	±	O - C	n	Obs	Remarks
$GSC \ 1010-2098$	р	55336.7929	0.0002	-0.0081	39	RD	V; el.: $2454943.855 + 0.982365 * E$
$GSC \ 1031-1526$	$\mathbf{s}$	55338.8124	0.0001	+0.0051	25	RD	V; el.: $2453877.758 + 0.547312*E$ ;
							d=0.02d
NSV 7727	р	55276.8767	0.0004	+0.0165	14	RD	V; el.: $2451938.070 + 0.348808*E$ ;
							$d{=}0.025d$
NSV 7838	р	55280.8591	0.0004	-0.0059	21	RD	V; el.: $2454156.867 + 0.692117*E$
NSV 8733	р	55321.8094	0.0004	-0.0071	21	RD	V; el.: 2454364.558+0.357186*E;
							d=0.014d
V1353 Ori	р	55245.6939	0.0004	-0.0062	26	RD	V; el.: IBVS 5313
GSC 122-419	s	55245.6689	0.0007	-0.0001	16	RD	V; el.: $2453763.617 + 0.398991^{*}E$
GSC 4753-984	р	55245.7008	0.0006	+0.0059	28	RD	V; el.: IBVS 5871
ST Per	p	55201.6836	0.0001	+0.2173	38	RD	V; d=0.041d
XZ Per	p	55205.7253	0.0001	-0.0515	29	RD	v
BO Per	p	55240.6576	0.0005	-0.0797	28	RD	V
FQ Per	D	55201.7136	0.0005	+0.7151	36	RD	V: $d=0.12d$
FW Per	r D	55240.6584	0.0005	-0.0484	21	RD	v
II Per	p	55209.6478	0.0003	+0.0015	32	$\mathbf{R}\mathbf{D}$	V: IBVS 5741
NP Per	r S	55209.6845	0.0002	-0.0539	31	RD	V
NZ Per	n	55240.7018	0.0003	+0.0407	$\overline{27}$	RD	V
V462 Per	р р	55205.7320	0.0002	-0.3505	$\frac{-1}{26}$	RD	V: d=0.05d
NSV 3765	r n	55277 7185	0.0004	-0.0203	31	RD	V: el $\cdot$ 2451874 00+3 396945*E
GSC 1621-2192	Р D	55362 8485	0.0002	+0.0233	23	RD	V: el : $2454933908\pm0452922*$ E:
	Р	00002.0100	0.0002	10.0200	20	пъ	d=0.021d
XX Sct	s	55339 7765	0.0006	-0.1257	23	ВD	V
CW Sct	n	55342 8556	0.0000	-0.1230	20	RD	v V
EV Sct	P	55341 8435	0.0011	$\pm 0.1230$	22	RD	$V_{\rm t} d = 0.020d$
FG Sct	P	55340 8212	0.0002	$\pm 0.0101$	15	RD	$V_{1} = 0.0204$ $V_{2} = 0.0204$ $V_{2} = 0.0204$ $V_{2} = 0.0204$
AS Ser	0 0	55267 0365	0.0000	$\pm 0.0049$ $\pm 0.0082$	11	RD	$V_{1} = 1 + 24536325.000 \pm 0.2705717 E$
AU Ser	0 0	55267 8523	0.0003	-0.1049	14	RD	V
V384 Ser	o n	55269 8770	0.0000	-0.1049	15	RD	V = 0 · IBVS 5205
V413 Sor	P D	55336 8469	0.0001	+0.0050	25	RD	V, en. inv 5 5255
CSC 255 082	P	55267 8150	0.0010	+0.0255	0	RD	$V_{1} = 0.011 + 0.0101$ $V_{1} = 0.02454312.553 + 0.248116*$
GPC 222-202	Р	55267 0385	0.0008	+0.0134	9 10	RD	V, etc. 2454512.555+0.246110 E
CSC 257 169	ھ د	55260 8836	0.0008	+0.0149	18	RD	V V. al. IBVS 5804
CSC 366 106	о С	55206 8308	0.0003	$\pm 0.0011$	12	RD	$V_{1} = 0.110 V 5 5054$ $V_{2} = 0.275462 * F$
CSC 300-190	5 10	55276 9729	0.0007	$\pm 0.0010$	10		$V_{1,0} = 1.2454151.072 \pm 0.275402$
CSC 270 468	р	55206 8020	0.0000	-0.0030	24		$V_{1} = 0.2453500.570 \pm 0.278757 E$ $V_{1} = 0.2454702.561 \pm 0.288876 \pm E$
CSC 433 512	ھ د	55336 8285	0.0003	$\pm 0.0110$	04 92	RD	$V_{1} = 0.2454705.501 \pm 0.3000701 \pm 0.000521 * E$
CSC 433-312	5 	55550.8285 EEOOG 7699	0.0003	$\pm 0.0003$	20 10		$V_{1} = 1$ , $DVC = 204$
CSC 949-1089	p	55267 8727	0.0002	$\pm 0.0077$	10		$V_{1} = 0.1 \text{ (DVS 5894)}$
GSC 1499-854	Р	55201.0121	0.0003	+0.0002	41 14		$V_{1} = 1$ , IDVS 5094
GSC 2034-1070	р	55209.0040	0.0000	-0.0004	14		$V_{1} = 0.11 \text{ (DVS 5094)}$
GSC 5017-129	р	55207.6512	0.0004	-0.0094	24 10		$V_{1} = 0.027 d$ $V_{2} = 0.027 d$ $V_{2} = 0.027 d$
	5	55290.040	0.005	-0.004	10		V; el 2454589.500+0.419820 E
WW Sex	р	55209.8309	0.0000	-0.0325	15	RD DD	
CSC 244 424	р	00290.000 EE000 SEE	0.005	-0.000	10		$V_{1} = 0.1 + 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.0000 = 0.000 = 0.000 = 0.000 = 0.000 = 0.0000 = 0.0000 = 0.0000 = 0.0000 = 0.0000 = 0.0000 = 0.0000 = 0.0000 = 0.0000 = 0.0000 = 0.0000 = 0.0000 = 0.0000 = 0.0000 = 0.0000 = 0.0000 = 0.0000 = 0.0000 = 0.0000 = 0.0000 = 0.0000 = 0.0000 = 0.0000 = 0.0000 = 0.0000 = 0.0000 = 0.0000 = 0.0000 = 0.0000 = 0.0000 = 0.0000 = 0.0000 = 0.0000 = 0.0000 = 0.0000 = 0.0000 = 0.0000 = 0.0000 = 0.0000 = 0.0000 = 0.0000 = 0.0000 = 0.0000 = 0.0000 = 0.0000 = 0.0000 = 0.00000 = 0.00000 = 0.00000 = 0.00000 = 0.00000 = 0.00000 = 0.000000 = 0.000000 = 0.0000000 = 0.00000000$
GSC 244-434	р	00298.800 FF0F0 00F0	0.000	-0.018	12	RD DD	V; e1.: 2454580.571+0.003015 E
GSC 240-90	s	55259.8858	0.0005	-0.0038	10	RD DD	V; el.: 2454880.711+0.295587 E
GSC 250-668	р	55298.8326	0.0006	+0.0025	18	RD	V; el.: $2454227.561 \pm 0.304165 ^{\text{*}}\text{E};$
and are ore			0.0001		1 🖛		
GOU 203-07U	р	00209.9227	0.0001	+0.0033	17	кD	v; ei.: 2494139.807+0.268870 [*] E
GSC 256-41	р	55259.8417	0.0003	-0.0000	17	RD DD	V; el.: 2454837.816+0.321666 3 E
GSU 4911-1235 A.C. III	р	55268.8976	0.0010	+0.0017	17	KD DD	V; el.: IBVS 5894
AU Tau	р	55205.6846	0.0003	+0.0585	35	КD ББ	V
AL Tau	р	55245.6911	0.0003	+0.0473	26	RD DD	
GW Tau	р	55240.7311	0.0004	-0.0765	22	RD RE	V; $d=0.045d$
V1022 Tau	р	55205.7162	0.0004	-0.0669	17	КD ББ	v; el.: PASP 101, 177
V1123 Tau	$\mathbf{s}$	55201.7135	0.0004	-0.0000	33	RD	V; el.: IBVS 5688
V1220 Tau	р	55201.6466	0.0003	-0.0451	47	RD	V; el.: IBVS 5455; d=0.08d
V1237 Tau	р	55245.7046	0.0005	-0.0110	23	RD	V; el.: IBVS 5271
V1250 Tau	$\mathbf{s}$	55209.7012	0.0003	+0.0111	33	RD	V; el.: $2452661.589 + 2.04093 * E$
ASAS J054432+1305.7	$\mathbf{s}$	55245.7084	0.0003	-0.0002	24	RD	V; el.: $2453660.814 + 0.300141^{*}E$

Variable	Тур	e HJD 24	±	0 – C	n	Obs	Remarks
GSC 72-521	s	55205.7032	0.0005	+0.0063	31	RD	V; el.: 2455122.864+0.375659*E
GSC 74-465	$\mathbf{s}$	55240.6654	0.0010	+0.0227	16	RD	V; el.: 2454146.555+0.230942*E
GSC 76-527	р	55205.6339	0.0003	-0.0033	22	RD	V; el.: 2454720.879+0.309157*E
GSC 650-1226	s	55205.6296	0.0006	+0.0119	16	RD	V; el.: 2453740.638+0.390193*E
$GSC \ 661-580$	$\mathbf{s}$	55201.6540	0.0005	+0.0015	25	RD	V; el.: 2454817.639+0.404864*E
GSC 663-23	g	55205.7248	0.0002	-0.0041	29	RD	V; el.: IBVS 5920
GSC 664-423	a a	55240.6343	0.0009	+0.0020	10	RD	V; el.: 2454502.533+0.350641*E
$GSC \ 681-692$	a a	55209.6716	0.0004	+0.0014	11	RD	V; el.: 2454473.688+0.247389*E
TY UMa	a a	55267.7336	0.0004	+0.1341	19	RD	V; el.: MNRAS 317, 111
XY UMa	s	55201.8690	0.0007	+0.0373	12	RD	V
AA UMa	$\mathbf{s}$	55201.8680	0.0003	+0.0393	18	RD	V
BM UMa	g	55243.7073	0.0003	+0.0075	23	RD	V
	s	55329.8208	0.0004	+0.0085	13	RD	V
BS UMa	p	55277.9023	0.0004	-0.0013	12	RD	V: el.: IBVS 5894
ES UMa	b	55298.7926	0.0002	-0.0902	64	RD	V: el.: IBVS 3914
IW UMa	b	55240.8300	0.0004	+0.0139	9	RD	V: el.: IBVS 4402
KM UMa	b	55269.6948	0.0003	-0.0200	15	RD	V: el.: IBVS 4810
LO UMa	b	55259.8273	0.0010	+0.0014	12	RD	v
MS UMa	s	55243.6924	0.0005	+0.0341	29	$\mathbf{R}\mathbf{D}$	V
MT UMa	s	55320.8284	0.0005	+0.1374	69	RD	V
RU UMi	s	55352.8011	0.0008	-0.0133	38	RD	V
AH Vir	p	55269.7070	0.0002	+0.0197	20	RD	V: d=0.022d
IR Vir	r D	55280.7006	0.0002	+0.0094	21	RD	V: el.: IBVS 5894
PS Vir	P S	55267.7136	0.0003	-0.0078	$\frac{-}{20}$	RD	V
OX Vir	Ď	55364.8025	0.0006	+0.0047	14	RD	V: el.: IBVS 5894
GSC 272-94	р р	55267.6803	0.0003	+0.0025	$\frac{1}{20}$	RD	V: el.: $2453499.648 \pm 0.339875^{*}E$
GSC 272-630	P S	55267.6998	0.0001	+0.0103	$\frac{-}{22}$	RD	V: el.: $2453442.690+0.370220*E$
GSC 274-437	n	55277.8920	0.0005	+0.0136	$29^{$	RD	V: el.: 2453899.549+0.544579*E:
	Р	0021110020	010000	1 010 100		102	d=0.037d
GSC 279-35	n	55320.8401	0.0002	-0.0002	41	RD	V: el.: 2454852.850+2.239188*E
GSC 279-822	P S	55269.7011	0.0006	-0.0006	23	RD	V: el. $2453432.751+0.370465*E$
GSC 291-860	p	55280.6899	0.0001	-0.0050	17	RD	V: el.: 2453912.622+0.247257*E
GSC 296-9	r S	55276.7013	0.0005	+0.0028	$20^{-1}$	RD	V: el.: IBVS 5894: d=0.02d
GSC 304-73	Ď	55283.6781	0.0006	+0.0029	$\frac{1}{19}$	RD	V: el.: $2454611.579 \pm 0.408073^{*}E$
GSC 317-1142	р р	55243.8410	0.0004	+0.0166	$\frac{1}{20}$	RD	V: el.: $2454914.788 \pm 0.301133^{*}E$
GSC 318-1169	р р	55243.8925	0.0008	-0.0006	14	RD	V: el.: IBVS 5894
GSC 322-760	р р	55352 8379	0.0002	+0.0080	21	RD	V: el: $2453093752 \pm 0.341302*$ E:
	Р	00002.0010	0.0002	10.0000	21	TUD	d=0.015d
GSC 323-602	$\mathbf{s}$	55243.9150	0.0005	+0.0033	15	RD	V; el.: 2453896.597+0.333535*E
GSC 329-256	р	55364.8249	0.0004	+0.0379	25	RD	V; el.: IBVS 5894
GSC 873-411	p	55269.6927	0.0005	-0.0012	17	RD	V; el.: 2452764.597+0.336933*E
GSC 881-920	s	55280.7190	0.0005	-0.0068	30	RD	V; el.: 2454623.595+0.387345*E
GV Vul	р	55358.7784	0.0004	+0.0705	43	RD	V; d=0.036d
IM Vul	p	55366.7613	0.0003	+0.0072	32	RD	V
GSC 1624-493	s	55358.7342	0.0007	+0.0780	22	RD	V; el.: IBVS 5860; non-circular
GSC 1646-52	p	55366.7985	0.0001	+0.0074	33	RD	V; el.: 2453880.830+0.833405*E
GSC 2140-1485	5 S	55358.7665	0.0002	+0.0090	26	RD	V; el.: 2453593.569+0.301201*E
GSC 2171-397	р	55366.8093	0.0005	+0.0014	28	RD	V; el.: $2454602.892 + 0.411371^*E$

Observers: RD : R. Diethelm

helm Rodersdorf, Switzerland;

R. Szafraniec Obs. operated at Astrokolkhoz Obs., Cloudcroft, N.M., USA

References:

Agerer, F., Lichtenknecker, D., 1989, IBVS, No. 3401

- Agerer, F., Lichtenknecker, D., 1991, IBVS, No. 3555
- Agerer, F., 1994, BAV Mitt., 68, 21

Agerer, F., Kleikamp, W., Moschner, W., 1994, IBVS, No. 4132

Antipin, S.V., 1996, *IBVS*, No. 4345 Antipin, S.V., 1996, *IBVS*, No. 4360 Bernasconi, L., Behrend, R., 2003, IBVS, No. 5411 Biro, I.B. et al., 2006, *IBVS*, No. 5684 Blättler, E., Diethelm, R., 2000, *IBVS*, No. 4976 Blättler, E., Diethelm, R., 2000, IBVS, No. 4982 Blättler, E., Diethelm, R., 2000, *IBVS*, No. 4985 Blättler, E., Diethelm, R., 2001, *IBVS*, No. 5052 Blättler, E., Diethelm, R., 2001, *IBVS*, No. 5125 Blättler, E., Diethelm, R., 2001, *IBVS*, No. 5146 Blättler, E., Diethelm, R., 2001, IBVS, No. 5192 Blättler, E., Diethelm, R., 2002, *IBVS*, No. 5232 Blättler, E., Diethelm, R., 2002, *IBVS*, No. 5295 Blättler, E., Diethelm, R., 2002, *IBVS*, No. 5306 Blättler, E., Diethelm, R., 2002, IBVS, No. 5333 Blättler, E., Diethelm, R., 2003, *IBVS*, No. 5403 Blättler, E., Diethelm, R., 2004, IBVS, No. 5541 Blättler, E., Diethelm, R., 2006, *IBVS*, No. 5699 Bloomer, R. et al., 2001, *IBVS*, No. 5149 Borkovits, T. et al., 2002, *IBVS*, No. 5313 Borovicka, J., Sarounova, L., 1996, IBVS, No. 4402 Branicki, A., Pigulsiki, A., 2002, IBVS, No. 5280 Demeautis, Ch., Bernasconi, L., Behrend, R., 2002, *IBVS*, No. 5329 Diethelm, R., 2001, IBVS, No. 5060 Diethelm, R., 2006, *IBVS*, No. 5713 Diethelm, R., 2009, IBVS, No. 5871 Diethelm, R., 2009, *IBVS*, No. 5894 Diethelm, R., 2010, *IBVS*, No. 5920 Escola Sirisi, E., Garcia-Melendo, E., 1999, IBVS, No. 4810 Erdem, A. et al., 2001, *IBVS*, No. 5152 Frank, P., 1997, BAV Mitt., No. 105 Fuhrmeister, T., 1990, MVS, 12, 48 Garcia-Lastra, A. et al., 2003, IBVS, No. 5455 Goderya, S.N., Leung, K.C., Schmidt, E.G., 1995, AJ, 110, 346 Gomez-Forrelad, J.M., Garcia-Melendo, E., 1996, IBVS, No. 4364 Kaiser, D.H., Lubcke, G., Williams, D.B., 1996, *IBVS*, No. 4284 Kazarovets, E.V., Pastukhova, E.N., Samus, N.N., 2005, Per. Zv., 25, 2 Kiss, L.L., Kasza, J., Borza, S., 2000, IBVS, No. 4962 Koff, R.A. et al., 2002, *IBVS*, No. 5271 Kleidis, S., Robertson, C.W., Wils, P., 2008, *IBVS*, No. 5860 Krajci, T., 2005, IBVS, No. 5592 Krajci, T., 2006, IBVS, No. 5690 Kreiner, J.M., 2004, Acta Astr., 54, 207 Lee, H.J., Lee, M.G., Kim, S., 2000, *IBVS*, No. 4848 Liu Q. et al., 1994, *IBVS*, No. 4104 Lister, T.A., McDermid, R.M., Hilditch, R.W., 2000, MNRAS, 317, 111 Lloyd, C. et al., 2003, *IBVS*, No. 5366 Locher K., Blättler, E., Diethelm, R., 2002, BBSAG Bull., 128, 10 Lu, W., Hrivnak, B. J., Rush, B. W., 2007, AJ, 133, 255 Lubcke, G.C. et al., 2000, *IBVS*, No. 4998

Mikulasek, Z., Hanzl, D., 1993, *IBVS*, No. 3914 Nelson, R. H., 2002, *IBVS*, No. 5224 Otero, S. A., Wils, P., 2005, *IBVS*, No. 5630 Ozdarcan, O. et al., 2006, IBVS, No. 5688 Pensado, J., Lahulla, J.F., 1989, PASP, 101, 177 Pribulla, T. et al., 2005, *IBVS*, No. 5668 Rinner, C. et al., 2003, *IBVS*, No. 5428 Safar, J., 1999, *IBVS*, No. 4819 Samec, R.G. et al., 1995, *IBVS*, No. 4167 Samec, R.G., Faulkner, D., 1998, *IBVS*, No. 4611 Samec, R.G. et al., 1999, *IBVS*, No. 4811 Samec, R.G., Martin, M., Faulkner, D.R., 2004, IBVS, No. 5527 Samec, R.G. et al., 2006, *IBVS*, No. 5697 Samus, N.N. et al., 2009, General catalogue of Variable Stars Sipahi, E., Gulmen, O., 2000, IBVS, No. 4961 Srivastava, J.B., Kandpal, C.D., 1981, Ap&SS, 76, 173 Stark, M.A. et al., 2000, *JAAVSO*, 28, 25 Vandenbroere, J., 1998, IBVS, No. 4554 Wolf, M. et al., 1998, *IBVS*, No. 4601 Wetterer, C.J. et al., 2004, *IBVS*, No. 5547 Zejda, M., Mikulasek, Z., Wolf, M., 2006, IBVS, No. 5741 Zhai, D., Zhang, R., Zhang, J., 1982, Chin. AA, 6, 366

^{*}This version of the paper contains corrections, and differs from the one appeared on-line originally. Date of last modification: Wed Aug 4 14:30:14 MEST 2010

Number 5946

Konkoly Observatory Budapest 23 July 2010 *HU ISSN 0374 - 0676* 

### SIMULTANEOUS PHOTOMETRIC AND SPECTROSCOPIC SOLUTION FOR AW CAM

FREY, J.R.¹; ANGIONE, R.J.¹; SIEVERS, J.R.²

¹ Department of Astronomy, San Diego State University, San Diego, California 92182 USA

² Department of Physical Sciences, San Diego Mesa College, San Diego, California 92111 USA

The eclipsing binary system AW Cam (HD 48049) was discovered by Strohmeier et al. (1963). It was observed with yellow and blue filters by Harris (1968) who used the Russell Model to analyze his data. Mammano et al. (1967) obtained a spectroscopic orbit solution. Russo and Milano (1983) analyzed the Harris data with the W-D model (Wilson & Devinney, 1971) finding a semi-detached system with a mass ratio of 0.22. The next study of the system was done by Oprescu & Suran (1992) using U,B,V filters and the Wood Model finding a mass ratio of 0.5. Djurasevic et al. (2006) reanalyzed the Harris data using a variation of the W-D model, and a q-search method, they found a mass ratio of 0.36 and a detached configuration.

AW Cam was observed photoelectrically by one of us (JRF) on four nights from March 13 through April 17, 2004. The Mount Laguna Observatory 0.6-m Smith reflector was used with a thermoelectrically cooled Hammamatsu R943-02 tube and Stromgren *uvby* filters. 115 individual observations per filter were made. All photometry was carried out in pulse-counting mode. HD 48586 was used as the comparison star and HD 46046 as the check star. These stars were found to be constant in brightness. The observations were not transformed, and mean extinction coefficients were used.

Using the method of Kwee & Van Woerden (1956) we determined a time of primary minimum  $HJD = 2453077.7837 \pm 0.0005$ . Batten, et al. (1978) reported an eccentricity of 0.12. Again using the method of Kwee & Van Woerden (1956) the time of secondary minimum was  $HJD = 2453079.7122 \pm 0.0004$ , which corresponds to a phase of  $0.5002 \pm 0.0003$ . Therefore, we found no evidence of the reported eccentricity.

O-C data has been collected by Kreiner (2004) and shows no evidence of period change. We used the period given by Oprescu et. al. (1992). The epoch was chosen from our observed time of minimum and the phases were calculated using the ephemeris:

Min I(HJD) = 2453077.7837 + 0.7713468E.

We used the ELC code (Orosz and Hauschildt, 2000) to model the system. This code does not use limb darkening laws, but rather calculates it directly from the model atmospheres. We did a simultaneous solution using all four light curves and the velocity curve with a genetic optimizer algorithm. The radial velocity data and weights were taken from Mammano et al. (1967). The starting value of temperature  $T_1 = 9750K$  was adopted for the primary from Cox (2000) based on the reported spectral type of A0V from Mammano et al. (1967). Hilditch and Hill (1975) reported an average b - y = 0.022, which corresponds to a system temperature of 9200K (Cox, 2000). Since this b - y neglects reddening and includes the cooler star, this temperature is consistent with our

adopted value. The starting value of  $T_2 = 6500K$  was based on previous published W-D solutions.

Bolometric albedo  $A_1 = 1.0$  was set to the value for a radiative atmosphere (Kallrath and Milone, 1999) and  $A_2 = 0.5$  was set to the value for a convective atmosphere (Rucinski, 1969). The gravity-darkening coefficients,  $g_1 = 1.0$  and  $g_2 = 0.32$  were set to the usual values for a radiative primary (von Zeipel, 1924) and convective secondary (Lucy, 1967) respectively. Synchronous rotation was assumed for both stars. The free parameters were orbital inclination i,  $T_1$ ,  $T_2$ , velocity semi-amplitude  $K_1$ , primary mass, and the ELC fill factors. The results are given in Table 1 in which the fill factors have been converted to potentials. Contrary to some previous work, the ELC simultaneous light and velocity solution gave a detached configuration with a mass ratio q = 0.45 and  $K_1 = 110 \pm 5$  km/s. Representative light curves and solutions for the y and v filters are shown in Figure 1 and Figure 2, and the radial velocity curve is shown in Figure 3. Figure 4 presents the system at phase 0.25.



Figure 1. Light curve and ELC solution for AW Cam in the y filter. The circles represent the data points and the solid line the model fit. The lower plot presents the O-C residuals. All y-axis values are in magnitudes.

As a check, the light curves were also modeled using the W-D program (Wilson & Devinney 1971, Wilson 1992). Simultaneous solutions were performed using all four *uvby* light curves. E. C. Olson (see Etzel & Olson 1995) provided the version of W-D program used in this study. This version added stellar atmosphere parameters based on the Kurucz (1979) models. An integration grid size of 30x30 was used. The input parameters were the same as for the ELC code. Limb darkening coefficients were taken from Van Hamme (1993). Using the results from ELC, W-D solutions were made for a detached system,



Figure 2. Light curve and ELC solution for AW Cam in the v filter. The circles represent the data points and the solid line the model fit. The lower plot presents the O-C residuals. All y-axis values are in magnitudes.



Figure 3. Radial velocity solution using the data from Mammano et al. (1967).



Figure 4. Roche surfaces of AW Cam using Binary Maker 3.0 (Bradstreet, 2004).

Mode 2. The free parameters were i,  $T_2$ , potentials  $\Omega_1$ ,  $\Omega_2$ , and primary star luminosity  $L_1$ . A grid approach was used to determine the mass ratio, which yielded q = 0.45, this value was the same as found with the ELC code. The W-D results are given in Tables 1 and 2. We also attempted a Mode 5 solution because some previously published studies using the W-D code (see Introduction) found this system to be semi-detached (Mode 5) for the mass ratios they used. A grid approach in Mode 5 yielded a mass ratio q = 0.5. However, the Mode 5 solution ( $\Sigma W(O - C)^2 = 0.027$ ) was not as good as the Mode 2 solution ( $\Sigma W(O - C)^2 = 0.021$ ). Therefore the W-D solutions also indicate a detached system.

Previously published results have indicated both semi-detached and detached systems with mass ratios ranging from 0.22 to 0.5. Our simultaneous photometric and spectroscopic solution gave a detached system with a q = 0.45. This was also consistent with our W-D, Mode 2 (detached) grid approach. Our value for  $K_1 = 110$  km/s, is essentially the same as the 112 km/s found by Mammano et al. (1967). However, inspection of Figure 3 shows that there is large uncertainty in the original data. Our analysis also determined new temperatures indicating spectral types A1 and F8 for the primary and secondary stars rather than the previously reported A0 and F2. Using our  $K_1 = 110$  km/s and q =0.45 values, the masses for the primary and secondary are 2.76 and 1.24 and the radii are 2.18 and 1.41 in solar units respectively. The value of  $K_1$ , along with the temperature, radius, and bolometric magnitude from the ELC solution, place both the primary and secondary in the main sequence band (e.g. Hilditch et al., 1988).

We thank the editor of the IBVS for supplying us with the radial velocity data. Use was made of the SIMBAD database and the NASA Astrophysics Data System Abstract Service.

Parameter	W-D	Error	ELC	Error*
i	75.37	$\pm 0.1$	74.68	$\pm 0.02$
q	0.45	$\pm 0.01$	0.45	$\pm 0.01$
$T_1$	9550	Fixed	9550	$\pm 1$
$T_2$	6162	$\pm 20$	6109	$\pm 1$
$\Omega_1$	3.094	$\pm 0.005$	3.101	$\pm 0.006$
$\Omega_2$	3.169	$\pm 0.007$	3.095	$\pm 0.003$
$g_1$	1.00	Fixed	1.00	Fixed
$g_2$	0.32	Fixed	0.32	Fixed
$A_1$	1.0	Fixed	1.0	Fixed
$A_2$	0.5	Fixed	0.5	Fixed
$F_1$	1.0	Fixed	1.0	Fixed
$F_2$	1.0	Fixed	1.0	Fixed
$r_1(\text{pole})$	0.374	$\pm 0.001$	0.373	$\pm 0.001$
$r_1(\mathrm{pnt})$	0.420	$\pm 0.001$	0.418	$\pm 0.001$
$r_1(side)$	0.390	$\pm 0.001$	NA	
$r_1(\mathrm{back})$	0.404	$\pm 0.001$	0.403	$\pm 0.001$
$r_2(\mathrm{pole})$	0.234	$\pm 0.001$	0.242	$\pm 0.001$
$r_2(\mathrm{pnt})$	0.256	$\pm 0.001$	0.268	$\pm 0.001$
$r_2(\mathrm{side})$	0.239	$\pm 0.001$	NA	
$r_2(\mathrm{back})$	0.250	$\pm 0.001$	0.261	$\pm 0.001$
$\Sigma W (O - C)^2$	0.021		NA	

 Table 1 Wavelength-Independent Parameters

 $\mathbf{b}$ 

* Formal errors from solutions.

Parameter	y	b	v	u
$x_1$	0.430	0.494	0.514	0.470
$x_2$	0.574	0.669	0.756	0.775
$L_1^a$	0.930	0.947	0.957	0.954
$L_2^a$	0.070	0.053	0.043	0.046
$l_{1}^{b}$	0.923	0.941	0.952	0.949
$l_2^{\overline{b}}$	0.077	0.059	0.048	0.051

 Table 2 Mode 2 Wavelength-Dependent Parameters

a Normalized monochromatic luminosities over  $4\pi$  steradians b Normalized fractional light at phase 0.25 Probable errors for luminosities are  $\pm 0.01$ .

References:

- Batten A. H. et al. 1978, Publ. Dom. Astrophys. Obs., 15, 121, (No. 5), Seventh Catalogue of the Orbital Elements of Spectroscopic Binary Systems
- Bradstreet, D.H. 2004, Binary Maker 3.0 Light Curve Analysis Program (Contact Software, Norristown, PA)
- Cox, A.N., ed. 2000, Allen's Astrophysical Quantities 4th ed.; New York: Springer
- Djurasevic, et al. 2006, A&A, 445, 291
- Etzel, P.B., & Olson, E.C. 1995, AJ, 110, 1809
- Harris, A.J. 1968, AJ, 73, 164
- Hilditch, R.W. & Hill, G. 1975, MmRAS, 79, 101
- Hilditch, R.W., King, D.J. & McFarlane, T.M. 1988, MNRAS, 231, 341
- Kallrath, J. & Milone, E.F. 1999, Eclipsing Binary Stars New York, Springer, 100
- Kreiner, J.M. 2004, Acta Astron., 54, 207
- Kurucz, R.L. 1979, ApJS, 40, 1
- Kwee, K.K., & Van Woerden, H. 1956, Bull. Astron. Inst. Netherlands, 12, 327
- Lucy, L.B. 1967, Zeitschr. f. Astrophys., 65, 89
- Mammano, A., Margoni, R., & Stagni, R. 1967, Mem. Soc. Astr. Ital., 38, 509
- Oprescu, G. & Suran, M. 1992, IBVS, No. 3782
- Orosz, J.A. & Hauschildt, P.H. 2000, A&A, 364, 265
- Rucinski, S.M. 1969, Acta Astronomica, 19, 245
- Russo, G. & Milano, L. 1983, A&AS, 52, 311
- Strohmeier, W., Knigge, R., & Ott, H. 1963, Veroff. Remeis-Sternwarte Bamberg, V, No.16
- Van Hamme, W. 1993, AJ, 106, 2096
- Wilson, R.E. & Devinney, E.J. 1971, ApJ, 166, 605
- Wilson, R.E. 1992, Documentation of Eclipsing Binary Computer Model University of Florida, Gainesville
- von Zeipel, H. 1924, MNRAS, 84, 702

Number 5947

Konkoly Observatory Budapest 28 July 2010 *HU ISSN 0374 - 0676* 

### **OBSERVATIONS OF MIRA VARIABLE V407 CYG**

KIZILOĞLU, Ü.¹; KIZILOĞLU, N.²

¹ Physics Dept., Middle East Technical University, Ankara 06531, Turkey; e-mail: umk@metu.edu.tr

 2 e-mail: nil@astroa.physics.metu.edu.tr

V407 Cyg is a symbiotic binary system consisting of a white dwarf and a red giant which transfers material to the hot component either by Roche lobe overflow or by stellar wind. The red giant is a Mira variable with a pulsation period of about 745 d (Meinunger 1966). The system was detected and discovered by Hoffmeister (Ahnert et al., 1949) in 1936. In August 1994, Munari et al. (1994) reported the bright and active phase of V407 Cyg. The next active phase of the system occurred in 1998 (Kolotilov et al. 2003; Tatarnikova et al. 2003). During this phase (1998-2002) emission lines, superimposed on the M6-M7 red giant continuum (Kolotilov et al. 1998), were observed. The binary is inside a nebula which is formed by the red giant wind. Munari et al. (1990) suggested an orbital period of 43 years considering the time between two minima of the mean system brightness.

V407 Cyg has been recently detected in bright optical outburst (Nishiyama et al., 2010) on March 10, 2010 (JD 2455266). In the present study, we report observations of V407 Cyg obtained in the period 2004-2010. The observations were carried out by the 45 cm robotic ROTSEIIId telescope (located at Bakırlıtepe, Turkey¹) which operates without filters (Akerlof et al. 2003). After the report of the outburst of V407 Cyg, we analyzed the observations of V407 Cyg which is found in the same CCD frames with our target, the Be-X ray binary system SAX J2103.5+4545 (Kızıloğlu et al. 2009). ROTSEIIId magnitudes were calibrated by comparing all the field stars against USNO A2.0 R-band catalog, after obtaining the instrumental magnitudes by aperture photometry. Details on the reduction of data were given previously in several studies (Kızıloğlu et al. 2005; Baykal et al. 2005).

The behavior of the binary system V407 Cyg in the period 2004-2010 is presented in Fig.1. As apparent from the figure the pulsations are seen superimposed on an increased mean brightness of the system. The bottom panel in Fig.1. shows high time variability in the minimum state of its brightness. There is an inflection during the rise to the maximum of pulsation. When we fit a parabola to each of these three inflection minima, we find minima times as JD 2453520.6, 2454310.2, and JD 2455077.3. The average time interval between the two inflection minima is found as 778 days. These inflection features can be due to the newly formed dust layers or are caused by shock waves in the stellar atmosphere (Feuchtinger et al. 1993; Smith et al. 2002).

¹http://www.tug.tubitak.gov.tr

The parabolic fit is also applied to the two pulsation minima and the times of the two minima are found as JD 2453275.9 and JD 2454815.4 giving an average time interval of 769.8 d between the two pulsation minima. We give an ephemeris for the minima of pulsations as T= 2453275.9 + 769.8 E d. However, the other ephemerides given for the pulsation maxima T= 2429710 + 745 E d in R and B band (Munari and Jurdana-Sepic 2002; Munari et al. 1990) and T= 2445326 + 762.9 E d in K band (Kolotilov et al. 2003) differ from our findings. Munari and Jurdana-Sepic (2002) gives a pulsation period in R band similar to the value given from blue photographic observations (Meinunger 1966). The discrepancy in R band between the pulsation periods in two different studies could be due to the dust envelope, beating phenomena and difficulty in determining the minima (or maxima) positions of the pulsations.



Figure 1. ROTSEIIId light curve of the binary system V407 Cyg. Downward and upward arrows show the pulsation minimum and inflection minimum, respectively.

Kolotilov et al (2003), making a Fourier analysis of the light curve of V407 Cyg, found periods of 18 and 33 minutes. Gromadzki et al (2006) determined periods of 2h, 72 and 45 minutes. We searched for any time variability using Period04², Scargle (Scargle 1982) and Clean (Roberts et al. 1987) algorithms. We used differential magnitudes for the time series analysis. No short term variability was found in our light curve. We also searched for a possible variability during the first brightness minimum between JD 2453220 and JD 2453330 which is shown in the bottom panel of Fig.1. Two periodic variations at 5.261 d and 21.497 d were detected. These variations can be due to the Mira. In Fig.2 the power spectrum by clean algorithm is shown together with the light curves folded with the given periods.

²http://www.univie.ac.at/tops/period04



Figure 2. Upper panel: Power spectra of V407 Cyg obtained in the period between JD 2453220 and JD 2453330. Lower panel: Light curves with the given periods. Ephemerides for the minimum brightness are, T=JD 2453175.0 + 5.261 E d and T=JD 2453182.6 + 21.497 E d, respectively.

Acknowledgments: This project utilizes data obtained by the Robotic Optical Transient Search Experiment. ROTSE is a collaboration of Lawrence Livermore National Lab, Los Alamos National Lab and the University of Michigan (http://www.rotse.net). We thank the Turkish National Observatory of TÜBİTAK for running the optical facilities.

References:

- Akerlof, C.W., Kehoe, R.L., McKay, T.A., Rykoff, E.S., Smith, D.A., et al., 2003, PASP, 115, 132
- Baykal, A., Kızıloğlu, U., Kızıloğlu, N., 2005, IBVS, 5615
- Feuchtinger, M. U., Dorfi, E. A., Hofner, S. 1993, A&A, 273, 513
- Gromadzki, M., Mikolajewski, M., Tomov, T. et al. 2006, Acta Astron., 56, 97
- Ahnert, P. et al., 1949, Veroff. Sternw. Sonneberg, 1, 157
- Kızıloğlu, U., Kızıloğlu, N., Baykal, A. 2005, AJ, 130, 2766
- Kızıloğlu, U., Ozbilgen, S., Kızıloğlu, N., Baykal, A. 2009, A&A, 508, 895
- Kolotilov, E.A., Munari, Y., Popova, A.A. et al. 1998, Astron. Lett., 24, 451
- Kolotilov, E.A., Shenavrin, V.I., Shugarov, S.Yu., Yudin, B.F. 2003, Astron. Rep., 47, 777
- Meinunger, L. 1966, Mitt. Veranderl. Sterne., 3, 111
- Munari, U., Margoni, R., Stagni, R. 1990, MNRAS, 242, 653
- Munari, U., Bragaglia, A., Guarnieri, M.D., et al., 1994, IAU Circ., 6049
- Munari, U., Jurdana-Sepic, R. 2002, A&A, 386, 237
- Nishiyama, K., Kabashima, F. et al., 2010, IAU Circ., 9130
- Roberts D.H., Lehar J., Dreher J.W., 1987, AJ, 93, 968
- Scargle, J.D., 1982, ApJ, 263, 835
- Smith, B. J., Leisawitz, D., Castelaz, M. W., Luttermoser, D. 2002, AJ, 123, 948
- Tatarnikova, A.A., Marrese, P.M., Munari, U., Tomov, T., Yudin, B.F. 2003, Astron. Rep., 47, 889

Number 5948

Konkoly Observatory Budapest 10 August 2010 *HU ISSN 0374 - 0676* 

# EVIDENCE FOR A VARIABLE COMPONENT IN THE ECLIPSING BINARY SYSTEM V417 AURIGAE

FERNANDEZ, M. A.; WILLIAMSON, C. O.; BEAKY, M. M.

Truman State University, Kirksville, MO

The bright eclipsing binary star V417 Aurigae (HD 33671; RA=05^h13^m31^s80, Dec=+35°39'11''.0; V = 7.9 - 8.2; period 1.86553 days; spectral type A0) was identified by E. Soydugan et al. (2006a) as a likely candidate to contain a pulsating  $\delta$  Scuti component. This system appears in Soydugan's Table 5, which uses B - V colors and spectral type information from the Hipparcos mission to identify those Hipparcos eclipsing binary systems where one or both of the components lies in the  $\delta$  Scuti region of the Cepheid instability strip.

Recently, Dvorak (2009) published the results of a search for pulsations in 35 eclipsing binary systems from the Soydugan catalog, including several from the Hipparcos list. Dvorak observed V417 Aur for five nights, but reported finding no statistically significant evidence of pulsations with frequencies between 6 and 50 cycles/day.



Figure 1. B and I light curves of V417 Aur, phased according to the eclipsing binary period.

Independent of Dvorak's investigations, a study of V417 Aurigae was undertaken at the Truman State University Observatory. V417 Aur was observed on four nights between November 2009 and February 2010, for no less than seven hours each night. All data were acquired with a 20-cm Meade LX200GPS Schmidt-Cassegrain telescope with an SBIG-ST9 CCD using Bessell standard B and I filters. The star HD 33688 was used as a comparison, and HD 280704 was used as a check star. All images were processed using normal dark and flat frame processing; differential magnitudes for the target and check stars were produced with MaximDL.¹

Figure 1 shows all of the data acquired for V417 Aur (which is available through the IBVS website as 5948-t1.txt), phased according to the eclipsing binary period of 1.86553 days. Significant out-of-eclipse variations are evident in both *B* and *I* filter data, indicating that one of the stars in the binary system is a short period, low amplitude variable star. Analysis of the out-of-eclipse variations with the period search software Peranso² using the Lomb-Scargle method generated the power spectrum shown in Figure 2, resulting in a most probably frequency of  $f = 4.7808\pm0.0192$  cycles/day, with a peak-to-peak amplitude of approximately 0.02 in B and 0.05 in *I*. The phased light curves for the oscillating component are presented in Figure 3.



Figure 2. Lomb-Scargle power spectrum of small-amplitude oscillations of V417 Aur (I filter).

Despite the fact that V417 Aur appears in Soydugan's catalog of candidate eclipsing binary systems with  $\delta$  Scuti components, it is not possible to definitively classify the variable component as a  $\delta$  Scuti star based upon the photometric data alone. The apparent pulsation period (5.020±0.020 hours) is at the generally accepted upper limit of  $\delta$  Scuti variable periods; in fact, it seems likely that Dvorak failed to recognize the oscillating nature of one of the stars in the V417 Aur system because he only searched his data for periods up to 4 hours. The B - V color of 0.100 and A0 spectral type derived by Hipparcos place V417 Aur just outside the  $\delta$  Scuti region of the Cepheid instability strip (Rodríguez & Breger, 2001). Furthermore, the amplitude of pulsation for  $\delta$  Scuti variables is generally larger at shorter wavelengths, while for V417 Aur the amplitude is larger in infrared than in blue.

V417 Aurigae merits follow-up observation for several reasons. First, of course, it is important to accurately classify the putative pulsating star in this eclipsing binary system. Second, although the smoothness and symmetry of the light curve near primary eclipse suggest that the primary star in the system is the oscillating component, this cannot be confirmed without photometric observations at secondary eclipse. Finally, it has been noted that there exists an approximately linear relationship between the orbital

¹Diffraction Limited, Ottawa, Ontario, Canada, http://www.cyanogen.com

²T. Vanmunster, Landen, Belgium, http://www.peranso.com

period and the pulsation period for those eclipsing binary systems that contain a  $\delta$  Scuti component (Soydugan et al., 2006b; Hoffman & Harrison, 2009). If it happens that the variable component of V417 Aur is indeed a  $\delta$  Scuti star, it would stand well apart from similar systems on a plot of the pulsation period versus the orbital period.



Figure 3. B and I light curves for the oscillating component of V417 Aur. Data has been folded with a period of 5.020 hours.

References:

Dvorak, S., 2009, CoAst, 160, 64

Hoffman, D. I. & Harrison, T. E., 2009, AIP Conf. Ser., 1170, 429, "Stellar Pulsation: Challenges for Theory and Observation"

Rodríguez, E. & Breger, M., 2001, A&A, 366, 178

- Soydugan, E., Soydugan, F., Demircan, O. & İbanoğlu, C., 2006a, MNRAS, 370, 2013
- Soydugan, E., İbanoğlu, C., Soydugan, F., Akan, M. C. & Demircan, O., 2006b, MNRAS, **366**, 1289

Number 5949

Konkoly Observatory Budapest 12 August 2010 *HU ISSN 0374 - 0676* 

# DETECTION OF A RAPIDLY PULSATING COMPONENT IN THE ALGOL-TYPE ECLIPSING BINARY YY Boo

HAMBSCH, FRANZ-JOSEF^{1,2}; LAMPENS, PATRICIA³; VAN CAUTEREN, PAUL^{1,4}; KLEIDIS, STELIOS^{5,6}; ROBERTSON, C.W.⁷; KRAJCI, TOM⁸; WILS, PATRICK¹

¹ Vereniging Voor Sterrenkunde, Belgium

 2 Bundesdeutsche Arbeitsgemeinschaft für Veränderliche Sterne e.V. Germany

- ³ Koninklijke Sterrenwacht, Ringlaan 3, B-1180 Brussels, Belgium
- ⁴ Beersel Hills Observatory, Beersel, Belgium
- ⁵ Zagori Observatory, Epirus, Greece
- ⁶ Helliniki Astronomiki Enosi, Athens, Greece
- ⁷ SETEC Observatory, Goddard, Kansas, USA

⁸ Astrokolkhoz, New Mexico, USA

YY Boo is an Algol-type eclipsing binary which was discovered by Hoffmeister (1949). Götz and Wenzel (1969) determined the spectral type to be A4. Halbedel (1984) lists four radial velocity measurements (ranging from -59.5 km/s to +29.9 km/s) and a spectral type A7 (III), while also possibly detecting an F or G type companion. The spectral type F9IV given by Simbad refers to the earliest possible spectral type of the companion (Halbedel, 1984). Because of the spectral type of the primary component, it is a potential oscillating Algol-type eclipsing binary (oEA star, see Mkrtichian et al., 2004). However it is neither listed in the recent catalogue of pulsating components in binary systems (Zhou, 2010), nor as a candidate for pulsation in the catalogue of close eclipsing binary systems with at least one component located in the lower Cepheid instability strip (Soydugan et al., 2006), probably due to its Simbad classification as of spectral type F9IV.

YY Boo was observed unfiltered out-of-eclipse on February 5/6, 2010. Rapid variations were detected with an amplitude of  $\approx 0.1$  mag and a period of around 88 minutes. Following this detection, a follow-up campaign was initiated using *B* and *V* filters. The contributing observatories and the instruments used are listed in Table 1, as well as the number of nights and hours the target was observed. The rapid variability was confirmed during the following nights. Standard aperture photometry was applied to all the frames to obtain differential instrumental magnitudes with respect to the comparison stars GSC 3059-614 and GSC 3059-615. A light curve acquired in the *B* passband, after removal of a synthetic binary light curve (see below), is shown for illustration in Fig. 1. It is a typical light curve of a  $\delta$  Scuti star with a fairly high amplitude.

After three months of intensive photometric observations, an almost complete eclipsing binary light curve has been obtained in both filters (see Fig. 2). Even during the descending and ascending branches of the primary eclipse, the pulsations could be clearly



Figure 1. Light curve of YY Boo in B with a synthetic binary light curve subtracted. The full line shows the light curve based on the elements listed in Table 2.

detected (see Fig. 3). Without detailed radial velocity data it is difficult to determine an accurate value of the mass ratio, and it is therefore not the purpose of this paper to present a reliable binary solution. However the photometry is still useful to calculate a rough binary model, which can then be used to disentangle the pulsations and the variations due to the binary motion. To calculate these binary model parameters the following iterative method was used. In the first step, all data were used uncorrected in PHOEBE (Prša & Zwitter, 2005), to find initial parameters. The second step was then to subtract the synthetic light curve thus obtained from the data and use the points outside of the primary and secondary eclipses to calculate the pulsation parameters with PERIOD04 (Lenz & Breger, 2005). In step three, those pulsations were then subtracted from the original data. For observations during primary eclipse, a reduced amplitude was taken into account, as the primary is partly hidden by the companion. This reduced amplitude can be computed approximately by using the previously obtained synthetic light curve and the average radius of the primary (illustrated in Fig. 4; note that YY Boo is rather faint during primary minimum for the instruments used). This is strictly correct only if the light variations are caused solely by temperature changes and if the disc has a uniform temperature (disregarding limb darkening effects). In reality of course the star expands and contracts, and therefore the correction is only an approximation. In principle this would allow to measure the relative change in radius of the primary during the pulsation cycle and the phase of maximum radius (if the change in temperature is known). This is however beyond the scope of this paper, as more precise photometry is needed and detailed spectroscopic observations are required as well. The slightly enhanced amplitude during the secondary eclipse (because the main star dominates the total light even more, as part of the light of the companion is blocked) has been neglected as the change in brightness is at most 3 mmag in both B and V, less than the precision of the photome-

Observer	Telescope	Aperture	Observatory	CCD	Filter	Nights	Hours
Initials	$\operatorname{type}$	(cm)		(SBIG)			
HMB	Catadioptric	28	Mol, Belgium	ST-10XME	В	17	86.8
PL & PVC	Newtonian	40	R.O.BHumain	ST-10XME	V	6	35.3
PL & PVC	Refractor	18	R.O.BHumain	ST-10XME	V	2	7.4
PL & PVC	Newtonian	25	Beersel Hills	ST-10XME	V	5	14.0
SK	Catadioptric	30	Zagori	ST-7XMEI	B	8	38.0
SK	Catadioptric	30	Zagori	ST-7XMEI	V	11	57.9
CWR	Catadioptric	40	SETEC	ST-8XME	B	4	28.8
CWR	Catadioptric	30	SETEC	ST-8XMEI	V	3	20.6
$\mathrm{TK}$	Catadioptric	30	$\operatorname{Astrokolkhoz}$	ST-9XME	B	5	13.9
TK	Catadioptric	30	$\operatorname{Astrokolkhoz}$	ST-9XME	V	5	14.0

Table 1: List of the instruments used for the observations.

try. With the light curve corrected for the pulsations, a new eclipsing binary model was then calculated. Step two and further above were then repeated until convergence was obtained.

The resulting pulsation parameters are presented in Table 2. An ephemeris for the pulsation maxima was derived from our data, supplemented with SuperWASP data from 2004 and 2007 (Norton et al., 2007), as follows:

$$HJD Max Pulsation = 2455244.5033(1) + 0.06128095(2) \times E$$
(1)

Because of the fairly large amplitude, the pulsation mode is most likely a radial one. For the calculation of the binary parameters, a semi-detached configuration was assumed, with the secondary filling its Roche lobe. The following ephemeris (derived from our data) was used:

$$HJD Min I = 2455265.3796(2) + 3^{d}.933049(12) \times E$$
(2)

The temperature  $T_1$  of the main component was taken to be 8000K in accordance with its mid A spectral type. Calculations done using the Wilson-Devinney method as implemented in PHOEBE (Prša & Zwitter, 2005), resulted in the following model parameters (with formal uncertainties):  $q = M_2/M_1 = 0.29 \pm 0.01$ ,  $i = 81.7 \pm 0.1^\circ$ ,  $T_2 = 4650 \pm 10K$ ,  $\Omega_1 = 7.03 \pm 0.01$ . The uncertainty on  $T_1$  is on the order of a few 100K and this will make the real uncertainties larger than the given values. The eclipses are partial, with 92% of the pulsator's disc eclipsed by the companion at minimum light. The limited radial velocity data from Halbedel (1984), only four points, were not used for the modeling. After subtracting the synthetic binary model and the fit to the pulsations the residual standard deviations (RMS) in both B and V are 7 millimag.

YY Boo is a new member of the group of mass-accreting pulsating components in Algol-type eclipsing binary systems (Mkrtichian et al., 2004). As such, it has the second largest pulsation amplitude among the known oEA stars after BO Her (Sumter & Beaky, 2007). It is therefore an ideal target to study the physical pulsation characteristics, taking advantage of the changing geometric aspects. A further campaign for spectroscopic followup has been started at the National Astrophysical Observatory (NAO) in Rozhen, in cooperation with Dr. Z. Kraicheva et al. of the Institute of Astronomy (Sofia, Bulgaria).



Figure 2. Phased light curve (upper panel) of YY Boo in B (lower curve) and V (upper curve) with the pulsations as described by Table 2 subtracted. The full line shows the model binary light curve. The bottom panel shows the residuals with both the pulsations and the binary model subtracted.

Table 2: Pulsation frequencies and associated parameters (details following the convention of PERIOD04 (Lenz & Breger, 2005). Uncertainties between brackets (in units of the last displayed decimal) are derived from Monte-Carlo simulations in PERIOD04.

Identification	Frequency	Filter	Semi-amplitude	Phase
	(c/d)		(mmag)	$(HJD_0=0)$
f	16.31828(2)	В	58.4(2)	0.7830(6)
		V	39.6(2)	0.7829(10)
2f	32.63656	B	4.2(3)	0.923(8)
-		V	3.1(2)	0.924(13)



Figure 3. Light curve of YY Boo in V during the descending branch of an eclipse. The pulsations are still clearly seen during the fading.



Figure 4. Light curve of YY Boo in V during primary eclipse with a synthetic binary light curve subtracted, based on 5-point averages (the uncertainties shown are the standard deviation on these averages). The full line shows the theoretical pulsation light curve taking into account that the primary is partly hidden by the companion (see text for details). Note the larger error bars at the phase of primary minimum.

#### Acknowledgements:

PL thanks the directors of the Royal Observatory of Belgium (ROB) for purchasing and operating an optical telescope at the radio-astronomy site of Humain under the project name HOACS (Humain Optical Observatory for Astrophysics of Coeval Stars). The HOACS data were acquired with equipment purchased thanks to a research fund financed by the Belgian National Lottery (1999).

PVC is grateful for support from Astrotechniek and Baader Planetarium.

Part of the data used in this study were obtained through AAVSONet, the Robotic Telescope Network of the American Association of Variable Star Observers.

We have also used data from the WASP public archive in this research. The WASP consortium comprises of the University of Cambridge, Keele University, University of Leicester, The Open University, The Queen's University Belfast, St. Andrews University and the Isaac Newton Group. Funding for WASP comes from the consortium universities and from the UK's Science and Technology Facilities Council.

This work has further made use of the SIMBAD and VizieR databases operated at CDS, Strasbourg, France.

#### References:

Götz, V.W., Wenzel, W., 1969, Mitt. Veränder. Sterne, 5, 51

Halbedel, E.M., 1984, PASP, 96, 98

Hoffmeister, C., 1949, Astron. Abh. Ergänzungshefte z.d. Astron. Nach., **12**, No. 1, A3 Kreiner, J., 2004, AcA, 54, 207

Lenz, P., Breger, M., 2005, Comm. in Asteroseismology, 146, 53

Mkrtichian, D.E., Kusakin, A.V., Rodríguez, E. et al., 2004, A&A, 419, 1015

Norton, A.J., Wheatley, P.J., West, R.G. et al., 2007, A&A, 467, 785

Prša, A., Zwitter, T., 2005, ApJ, 628, 426

Soydugan, E., Soydugan, F., Demircan, O., Ibanoğlu, C., 2006, MNRAS, 370, 2013

Sumter, G.C., Beaky, M.M., 2007, *IBVS*, 5798

Zhou, A.-Y., 2010, arXiv:1002.2729v2 [astro-ph.SR]

Number 5950

Konkoly Observatory Budapest 19 August 2010 *HU ISSN 0374 – 0676* 

# THE FIRST DISCOVERY OF A VARIABLE MAGNETIC FIELD IN X-RAY BINARY Cyg X-1=V1357 Cyg

KARITSKAYA, EUGENIA A.¹; BOCHKAREV, NIKOLAI G.²; HUBRIG, SWETLANA ³; GNEDIN, YURY N.⁴; POGODIN, MICHAIL A.⁴; YUDIN, RUSLAN V.⁴; AGAFONOV, MICHAIL I.⁵; SHAROVA, OLGA I.⁵

¹ Astronomical Institute of Russian Academy of Sciences, 48 Pyatnitskaya str., Moscow 119017, Russia

- 2  Sternberg Astronomical Institute, Moscow, Russia
- ³ Astrophysical Institute Potsdam, Potsdam, Germany
- ⁴ Pulkovo Observatory of Russian Academy of Sciences, St. Petersburg, Russia
- ⁵ Radiophysical Research Institute (NIRFI), Nizhny Novgorod, Russia

The X-ray binary Cyg X-1=V1357 Cyg=HDE 226868 is a microquasar containing the historically first black-hole candidate. Theoretical models describing processes in objects with black holes, like microquasars or active galactic nuclei, are dominated with the magnetic-disk-accretion paradigm. Nevertheless, no reliable measurements of magnetic fields in these systems were available so far. Shvartsman (1971) was the first to predict the existence of a magnetic field for Cyg X-1. He wrote that flickering X-ray emission from Cyg X-1 evidenced for the presence of a black hole and indicated the role of the magnetic field in accretion onto a black hole (Pustilnik & Shvartsman, 1974; Kaplan & Shvartsman, 1976). Since then, there were many attempts to search for the magnetic field of the optical component of the Cyg X-1 binary (the O9.7Iab supergiant), but all these efforts resulted in upper limits only.

Our spectropolarimetric observations were performed with the 8.2-m Very Large Telescope (VLT) of the European Southern Observatory (Cerro Paranal, Chile) in its service mode with the FORS 1 spectrograph in June/July, 2007 and in July, 2008 (Table 1). The spectra were obtained in the 3680–5129 Å spectral range with the spectral resolution of R = 4000 and the signal-to-noise ratio S/N = 1500-3500 for spectra of intensity (Stokes parameter I). Cyg X-1 was in its X-ray "hard state" at that time. 13 spectropolarimetric spectra with exposure times of ~ 1 hour were obtained during 13 nights.

The details on the observing technique with FORS 1 and data reduction can be found, for example, in Hubrig (2004); see also references therein. Using the method described there, we obtained the mean longitudinal magnetic field  $\langle B_z \rangle$ ; it is the magnetic field component along the line of sight, averaged over the visible stellar hemisphere and weighted by the local emergent spectral line intensity. It is diagnosed from the slope of the linear regression of V/I versus  $-\frac{g_{\text{eff}}e}{4\pi m_e c^2}\lambda^2 \frac{1}{I}\frac{dI}{d\lambda} \langle B_z \rangle + V_0/I_0$ , where V is the Stokes parameter measuring the circular polarization; I, the intensity observed in unpolarized light;  $g_{\text{eff}}$ , the effective Landé factor; e, the electron charge;  $\lambda$ , the wavelength;  $m_e$ , the electron mass; c, the speed of light;  $dI/d\lambda$ , the derivative of the Stokes I parameter;  $V_0/I_0$ , a constant; and  $\langle B_z \rangle$  is the mean longitudinal field. The method is statistical: to increase the sensitivity, we used all observed spectral lines simultaneously. Cyg X-1 possesses a strong interstellar/circumstellar linear polarization that can produce a cross-talk with circular polarization within the FORS 1 analyzing equipment. Moreover, the derived  $\langle B_z \rangle$  is relatively low. For this reasons, we had to take certain precautions in our magnetic field measurements of the binary and to adjust the method to such conditions. We removed all spectral features not belonging to the photosphere of the Cyg X-1 optical component (O9.7 Iab): interstellar lines, CCD flaws, the He II  $\lambda$ 4686 Å emission line, lines with strong P Cyg components. Telluric lines being rather weak in the considered spectral range, we find no pollution from these lines in our low-resolution spectra.

Before applying the procedures for the magnetic field measurements, we removed linear trends, mainly caused by the cross-talk between linear and circular polarization within the FORS 1, from our V/I-spectra. This seems to be an appropriate step since, as follows from Nagae *et al.* (2009), the optical-range linear polarization of Cyg X-1 has no significant spectral line features. Therefore, according to our estimates, the cross-talk can produce only a false V continuum slope and does not significantly distort the S-shaped V profiles of spectral lines caused by Zeeman effect (hereafter, Zeeman S-waves). The Stokes I spectra were normalized to the pseudo-continuum  $I_c$ , which is produced by the source energy distribution, interstellar reddening, broad diffuse interstellar bands (DIBs), as well as atmospheric extinction and detector sensitivity. After these reductions, the residual deviations of the least-squares linear regression follow the Gauss function up to  $\pm 3.6\sigma(V/I)$ , where  $\sigma(V/I)$  is the standard deviation of V/I, i.e. the level of significance corresponds to the Gauss statistics now.

Date	JD*	Orbital phase	$\langle B_z \rangle$ , G	$\sigma, G$	significance $ \langle B_z \rangle / \sigma $
18-19 June 2007	2454270.768	0.650	-6	28	0.2
19-20 June 2007	2454271.778	0.830	37	22	1.7
20-21 June 2007	2454272.760	0.006	58	21	2.8
25-26 June 2007	2454277.808	0.907	22	28	0.8
29-30 June 2007	2454281.707	0.603	48	20	2.4
9-10 July 2007	2454291.766	0.400	101	18	5.5
14-15 July 2008	2454662.711	0.641	49	23	2.1
15-16 July 2008	2454663.684	0.816	22	22	1.0
16-17 July 2008	2454664.692	0.995	80	23	3.5
17-18 July 2008	2454665.692	0.174	24	19	1.3
23-24 July 2008	2454671.704	0.247	-16	20	0.8
24-25 July 2008	2454672.728	0.430	27	19	1.4
30-31 July 2008	2454678.676	0.500	128	21	6.2

Table 1. Magnetic field from VLT spectropolarimetric observations of the X-ray binary Cyg X-1.

*JD is the Julian date of the middle of observation; orbital phases  $\varphi$  are according to the ephemeris from Brocksopp *et al.* (1999):  $\varphi=0$  corresponds to the optical component in front;  $\sigma$  is the standard deviation.

To verify our results (see Table 1), we used several tests: (1) each spectrum was subdivided in two halves at mid-wavelength to check that  $\langle B_z \rangle$  values determined over each half separately were in agreement within error bars. (2) We repeated  $\langle B_z \rangle$  calculations using fragments of spectra that include strong absorption lines (deeper than 4%) only: ~1/3 spectral points were used and  $\langle B_z \rangle$  values were found in agreement with our earlier measurements using the whole spectral range within 1.5  $\sigma(\langle B_z \rangle)$ . (3) Zeeman S-waves were found for the strongest lines. Our measurements of  $\langle B_z \rangle$  at different orbital phases,  $\varphi$ , are presented in Table 1 and Fig.1 a. It follows from Fig.1 a that  $\langle B_z \rangle$  varies periodically with the orbital phase (two waves for period), reaching 130 G ( $\sigma = 20$  G) at phase 0.5. Figure 1 b, presenting movingaverage points (calculated as the mean of each consecutive 3 points of Fig.1 a), shows the regular variability component clearer. The dependence of  $\langle B_z \rangle$  on  $\varphi$  is more complicated than for a magnetic dipole and has probably changed from 2007 to 2008.



Figure 1. a, The mean longitudinal magnetic field of the Cyg X-1 optical component  $\langle B_z \rangle$  (in Gauss) vs. the orbital phase  $\varphi$  for 2007 and 2008. b, The moving average points calculated as the mean of each consecutive 3 points of the panel a. c: The He II  $\lambda 4686$  Å spectral line profile  $I/I_c$  for June 18, 2007 (top); the solid curve in the bottom panel shows the observed V/I spectrum smoothed over 3 Å. The dashed curve displays the expected Zeeman S-wave shape  $(dI/d\lambda)/I \propto V/I$ , where I is smoothed over 3 Å. The good agreement between these curves demonstrates the possible existence of a rather large magnetic field in the region of forming He II  $\lambda 4686$  Å emission.

At the next step of our study, we investigated the He II  $\lambda 4686$  Å spectral line separately. Due to the presence of a strong emission component in the line profile, it was omitted from the earlier analysis. In fact, this line has a compound profile consisting of absorption (originating in the stellar photosphere) and emission (originating in the accretion structure) components. Certainly, the accuracy of the magnetic-field measurements using just a single line is considerably worse compared to those using the whole spectrum. Nevertheless, our analysis shows the results for the two spectra at the  $4\sigma$  level:  $\langle B_z \rangle = -730 \pm 170$  G for the orbital phase  $\varphi = 0.65$  in 2007 and  $\langle B_z \rangle = -420 \pm 106$  G for  $\varphi = 0.43$  in 2008. The Zeeman S-wave in the V-spectrum smoothed over 3 Å and its correspondence to the  $dI/d\lambda$  wave is presented in Fig.1 c for June 18, 2007.

To exclude the influence of the stellar-photosphere absorption component of

He II  $\lambda 4686$  Å, we subtracted the model-atmosphere line profile for each  $\varphi$ . We calculated it by the method described, for example, in Karitskaya *et al.* (2005). The subtraction changes numerical values of  $\langle B_z \rangle$  but does not distort the qualitative result: the presence of a magnetic field of the order of (300 - 1000) G, on a significance level about  $(2.5-3.5)\sigma$  in the region of formation of the  $\lambda 4686$  Å emission. The emission component of He II  $\lambda 4686$  Å originates in the outer part of the accretion structure. This is demonstrated with the Doppler tomogram (the binary system image in velocity space) constructed by us on the base of He II  $\lambda 4686$  Å profiles for Cyg X-1 from our VLT observations (Karitskaya *et al.*, 2009) and Terskol observations (Karitskaya *et al.*, 2005).

Consequently,  $\langle B_z \rangle$  derived from the He II emission line is located in outer parts of the accretion structure. Its value, ~ 600 G, is in agreement with Shvartsman's ideas (Kaplan & Shvartsman, 1976) that the gas stream carries the magnetic field to the accretion structure and the gas is compressed by a factor of ~ 10 due to interaction with the structure of the outer rim. Along with the increase of gas density, the magnetic field is increased to  $B \sim 600$  G. It takes place at a distance  $6 \times 10^{11}$  cm =  $2 \times 10^5 R_g$  from the black hole (Bochkarev, Karitskaya & Shakura, 1975), where  $R_g$  is the gravitation radius. According to Shakura & Sunyaev (1973), we get  $B \sim 10^9$  G at  $3R_g$  for the magnetized accretion disc standard model. Taking into account the radiative pressure predominance inside ~  $10 - 20R_g$ , we get  $B(3R_g) \sim (2-3) \times 10^8$  G. Then the magnetic energy flux is  $10^{37}$  erg/s, equal to or exceeding the luminosity of the X-ray flickering component. Actually, the region of main energy release for X-ray binaries extends from  $5R_g$  to  $27R_g$ , and there should be a maximal frequency  $F \sim 100$  Hz for Cyg X-1 (e.g., Sunyaev & Revnivtsev 2000). Thus, magnetic energy dissipation permits to account for the X-ray flickering.

Our results demonstrate that the VLT FORS1 observations of 2007–2008 permit to detect the presence of a magnetic field in Cyg X-1. These are the pioneer measurements in a black hole system. The field can be responsible for X-ray flickering. Our results point to necessity of taking into account the impact of the magnetic field on the matter-flow structure in Cyg X-1.

Acknowledgements: We would like to acknowledge ESO for granting VLT observations in service mode. The work was partially supported by RFBR grants 06-02-16843, 09-02-01136, 09-02-00993, 07-02-00535, and the grant of Support to Leading Scientific Schools of Russia 6110.2008.2.

#### References:

Bochkarev, N.G., Karitskaya, E.A. & Shakura, N.I., 1975, Sov. Astr. Lett., 1, 118

Brocksopp, C. et al., 1999, A&A, **343**, 861

Hubrig, S., Kurtz, D. W., Bagnulo, S. et al., 2004, A&A, 415, 661

Karitskaya, E.A. et al., 2005, As.Ap. Trans., 24, 383

Karitskaya, E.A. et al., 2009, arXiv:0908.2719v1 [astro-ph.SR]

Kaplan, S.A. & Shvartsman, V.F., 1976, In: Origin and evolution of galaxies and stars (Nauka, Moscow), 319

Nagae, O. et al., 2009, A.J., **137**, 3509

Pustilnik, L.A. & Shvartsman, V.F., 1974, IAU Symp., 64, 213, In: C.Dewitt-Morrette (Ed.), Gravitational radiation and gravitational collapse. 64 (Dordrecht, Reidel)

Shakura, N.I. & Sunyaev, R.A., 1973, A&A, 24, 337

Shvartsman, V.F., 1971, Soviet Astr., 15, 377

Sunyaev, R. & Revnivtsev, M., 2000, A&A, 358, 617

Number 5951

Konkoly Observatory Budapest 21 September 2010 *HU ISSN 0374 – 0676* 

# AC BOOTIS – AN UNEVOLVED W-TYPE OVERCONTACT ECLIPSING BINARY WITH A HIGH MASS TRANSFER RATE

NELSON, ROBERT H.^{1,2}

¹ 1393 Garvin Street, Prince George, BC, Canada, V2M 3Z1 email: b-o-b.nelson@shaw.ca [remove dashes]

 2 Guest investigator, Dominion Astrophysical Observatory, Herzberg Institute of Astrophysics, National Research Council of Canada

The variability of AC Boo (= BD + $46^{\circ}2004$  = TYC 3474-905-1 = HIP 73103, Sp. F8V) was discovered by Geyer (1955, as reported in Mauder, 1964). Zessewitsch (1956) first identified the system as a W-UMa-type and attempted to determine its period, getting values of 0.38514 and 0.4278192 days. Mauder (1964) secured light curves in B and V photoelectrically and determined the correct period of 0.352429 days. He went on to do an analysis of the light curves using the rectification method. Lacking radial velocities, he was forced to estimate the mass ratio by indirect methods. Binnendijk (1965) used the 28-inch reflector at the Flower and Cook Observatory to secure a photoelectric light curves in two colours and derived orbital elements from the rectification method. Mancuso et al. (1974, 1977, 1978) determined times of minima and full light curves photoelectrically. They classified the system as W-type and went on to use the methods of Wood (1971) and Wilson-Devinney (1971, 1990, hereafter WD) to analyze their light curves, taken in 1972 and 1973, and also those of Binnendijk (1965). Assuming a spectral type of F0 (attributed to Mauder, 1964), they used fixed parameters  $i = 85^{\circ}.47$ ,  $\Omega_1 = 7.330$ ,  $T_1 = 6100$  K, and mass ratio  $q = M_2/M_1 = 3.57$ . (The temperature was estimated from the colour index, and the others indirectly from Russell-Merrill (1952) analysis.) Noting the variation in the light curves over time, they obtained temperatures of the secondary varying from  $T_2 = 5735$  to 6055 K. Schieven et al. (1983) secured further light curves photoelectrically, analyzed some period changes, and performed a light curve synthesis using the methods of Rucinski (1976a, b, and c). They also noted the variability of the light curves (on a time scale of days) and also the presence of an asymmetry in the portion of the light curve following the primary (flat-bottomed) minimum. They attributed the latter to the presence of starspots. They obtained two values of the mass ratio: 0.31 and 0.28. (Note that these values <1 imply an A-type system.) Linnell, et al. (1990) report modelling with their (unpublished) photometric data and the mass ratio of 0.41 (A-type) = 2.44 (W-type) of Hrivnak (1993) requiring a complex set of dark spots and third light. No error estimate was provided. Finally, Hrivnak (1993), using crosscorrelation techniques, derived RV values which fit a double sine curve somewhat poorly, resulting in an rms deviation of 16.7 km/s and the above reported mass ratio.

With improved versions of the WD code that support star spots, and the opportunity to obtain new radial velocities (RVs) using analysis by the modern broadening functions due to Rucinski (1976a, 1976b, 1976c, 1992, 2004), an updated study was deemed important.

Minima	Error (days)	Cycle	Туре
55300.8561	0.0002	28893	I (occultation - flat bottom)
55301.7380	0.0005	28895.5	II (transit)
55312.8395	0.0002	28927	I (occultation - flat bottom)

 Table 1. New times of minima for AC Boo

This system has shown significant period change since 1929 when the first visual observations were recorded. Altogether 246 times of minimum have been entered into the Excel worksheet that is part of the "Eclipsing Binary O - C Files" (observed minus calculated) database at the AAVSO site that is maintained by the author (Nelson, 2010 – updated annually). These include three new times of minimum determined during light curve acquisition and reported here – see Table 1.

Throughout the years, a total of 10 elements (epoch, period) have been used by various authors; some give the (incorrect) phase 0.5 of the deeper, or flat-bottomed minima (and of course, 0.0 for the shallower minima). The elements of Schieven et al. (1983) seem to give the best results (but note that there seems to have been a typo in  $HJD_0$  – the correct value, as determined from his data, is given in Equation 1). As corrected, the elements give correct phases for the minima of Mauder (1964) and Binnendijk (1965), (subject to the requirement to adjust the cycle counts by + or - 0.5 for various ranges to obtain a contiguous relationship):

J.D. Hel. min I = 
$$2445117.781(1) + 0.3524321(2)E$$
 (1)

The results are plotted in Figure 1. The reader will note, as mentioned by various authors, that the period seems to have been constant from 1929 to 1982 (cycle counts from -54880 to 0); the best-fit period in this interval was 0.3524294 (1) days. Close to cycle 0 there was a sudden rise in the period; after that, the period displayed a slow, steady increase over time. The abrupt change of period can be explained by an episodal mass interchange, possibly as the two stars established contact (but see below). The portion of the curve after cycle 200 (and especially after cycle 1400) can be fitted closely by a parabola – denoting a constant rate of change. (Assuming no other cause, this implies a constant mass transfer rate; this is calculated later.) The elements best describing the curved section are given in Equation 2. (Then  $dP/dE = 2 \times$  the quadratic coefficient =  $8.13 \times 10^{-10}$  days/cycle.)

J.D. Hel. min I = 
$$2445117.8019(1) + 0.3524305(1)E + 4.1(3) \times 10^{-10}E^2$$
 (2)

During September of 2008 and 2009, the author took six spectra (10 Å/mm reciprocal dispersion, resolving power 10,000) at the Dominion Astrophysical Observatory (DAO) in Victoria, British Columbia, Canada; he then used the Rucinski broadening functions (Rucinski, 2004) to obtain radial velocity (RV) curves (see Nelson et al., 2006 for details). The spectral range was 5014-5261 Å. A log of DAO observations and RV results is presented in Table 2. An anonymous referee has pointed out that – due to the short period of the system – the one hour exposures represent a significant fraction of a period (0.118) and that excessive "phase smearing" of RVs might occur. A simple analysis reveals that, for circular orbits and assuming that neither star is undergoing an eclipse during any part of the exposure, the derived (averaged) RV values are reduced by a factor  $f = \sin X/X$  from the instantaneous values (where  $X = \pi t/P$ , with t = exposure time and P = period).



**Figure 1.** Observed - Computed (O - C) plot for AC Boo

DAO	Mid Time	Exposure	Phase at	$V_1$	$V_2$
Image $\#$	(HJD-2400000)	(sec)	Mid-exp	$(\rm km/s)$	(km/s)
4786*	54568.8890	3600	0.192	-275.7	50.2
4854*	54571.9030	3600	0.743	232.1	-109.9
5369	54927.8462	3600	0.655	200.6	-96.9
5381	54928.0313	1693	0.180	-266.4	32.5
5402	54928.9480	1800	0.781	221.2	-95.6
5420	54929.8189	3600	0.252	-278.2	56.6

Ta	bl	e	<b>2</b>

*Taken in 2008

Note that factor f is independent of phase (subject to the above conditions). Therefore, corrected RVs were obtained by simply dividing all the derived RVs by f. (Note that, for t = 3600 seconds, f = 0.977. Note also that neglecting this correction factor cannot affect the derived value for the mass ratio but does affect the derived values of mass, etc.; therefore this correction is needed.)

On seven nights April of 2010, the author took a total of 241 CCD images of the field in V, 266 in  $R_C$  and 238 in  $I_C$  (both Cousins) at his private observatory in Prince George, British Columbia, Canada. The telescope was a 33 cm f/4.5 Newtonian on a Paramount ME mount; the detector was a SBIG ST-7XME CCD cooled to  $-20^{\circ}$ C. Reduction software was MIRA by Mirametrics, Inc., and light-box flats were used. A list of the Variable, Comparison and Check stars appears in Table 3.

The following elements were used for phasing the light curves (see Nelson, 2010 for the O - C relation):

JD Hel Min I = 
$$2455312.8409(1) + 0.3524320(1)E$$
 (3)

The author used the 2004 version of the Wilson-Devinney (WD) light curve and radial velocity analysis program with the Kurucz atmospheres (Wilson and Devinney, 1971, Wilson, 1990, Kallrath, et al., 1998) as implemented in the Windows software WDwint (Nelson, 2009) to analyze the data. To get started, a spectral type F8 V (SIMBAD

Table 3.

Type	TYC	R.A.	Dec.	V	B-V
	3474 -	J2000	J2000	Mags	Mags
Variable	905	$14^{h}56^{m}28.341s$	46°21′44″.1	10.0 - 10.62	0.592
Comparison	835	$14^{h}56^{m}07.846s$	$46^{\circ}21'26''_{\cdot}2$	11.18	0.549
Check	966	$14^{h}56^{m}26.300s$	$46^{\circ}26'50''.7$	9.39	0.358

Table	<b>4</b> .
-------	------------

Quantity	Value		
	Star 1	Star 2	
g	0.500	0.500	
A	1.000	1.000	
$x_{\rm bol}$	0.137	0.137	
$y_{ m bol}$	0.581	0.581	
$x_{ m V}$	0.148	0.148	
$y_{ m V}$	0.665	0.665	
$x_{ m Rc}$	0.049	0.049	
$y_{ m Rc}$	0.696	0.596	
$x_{ m Ic}$	-0.018	-0.018	
$y_{ m Ic}$	0.678	0.678	

- no reference given) and a temperature  $\mathbf{T_1} = \mathbf{6250} \pm \mathbf{240}$  K were used; interpolated tables from Cox (2000) which gave  $\log g = 4.368$  were used; an interpolation program by Terrell (1994) gave the (van Hamme, 1993) limb darkening values; and finally, a square root (LD=3) law for the limb darkening coefficients was selected, appropriate for hotter stars (Bessell, 1979). (The logarithmic LD=2 coefficients were tried but gave identical results.) Radiative envelopes were chosen for both stars, again appropriate for hotter stars (convective envelopes were tried but gave much poorer results.) The parameters are listed in Table 4.

Mode 3 (for overcontact binaries) was chosen, based on the general appearance of the light curves.

Because of the asymmetry of the light curves (unequal maxima and distorted light curve from about phase 0.25 to 0.50), noted by other authors, it was necessary to add a bright spot (a plage) on the more massive star (star 2). After a number of adjustments, the computed curved fit the observed values very closely indeed. The fit for the same spot put on star 1 was poorer, and a dark spot anywhere on the system did not give any kind of fit at all. It was also necessary to add third light; the values of  $l_3$  are well above the 3 sigma values – see Table 4.

Convergence by the method of multiple subsets was reached in a large number of iterations (owing to the many parameters to adjust -17). It was noted that identical values (to 3 figures) for the mass ratio were obtained from the photometric only WD solution, RV curve-fitting (alone), and the combined solution. This agreement reinforces the validity of the solution.

A plot of the  $VR_CI_C$  light curves and WD fit are shown in Figure 2; the RVs are shown in Figure 3 (the rms deviation from the fitted curve was 3.7 km/s). A three dimensional representation from Binary Maker 3 (Bradstreet, 1993) is shown in Figure 4.



Figure 2. AC Boo: V, R, I Light Curves – Data and WD Fit



Figure 3. AC Boo: Radial Velocity Curves – Data and WD Fit.
Quantity.	Value	Error	Quantity	Value	Error
$T_1$ (K)	6250		a (solar radii)	2.43	0.04
$T_2$ (K)	6241	6	$V_{\gamma} ~(\mathrm{km/s})$	-25.8	0.1
$\Omega_1 = \Omega_2$	7.034	0.004	Spot Co-latitude	75	40
$q = M_2/M_1$	3.340	0.004	Spot Longitude	31	4
i  (deg)	86.3	0.5	Spot Radius	40	2
$L_1/(L_1+L_2)(V)$	0.251	0.0006	Spot Temp. Factor	1.019	.007
$L_1/(L_1+L_2)(R)$	0.250	0.0005	$R_1$ (pole)	0.263	0.001
$L_1/(L_1+L_2)(I)$	0.250	0.0004	$R_1$ (side)	0.274	0.001
$l_3/(L_1+L_2)(V)$	0.0013	0.0001	$R_1$ (back)	0.308	0.001
$l_3/(L_1+L_2)(R)$	0.0012	0.0001	$R_2$ (pole)	0.458	0.001
$l_3/(L_1+L_2)(I)$	0.0009	0.0001	$R_2$ (side)	0.493	0.001
$\Sigma \omega_{\rm res}^2$	0.00665		$R_2$ (back)	0.518	0.001





Figure 4. Binary Maker 3 representation of the system – at phases 0.24 and 0.44.

Final WD output parameters are listed in Table 5 with formal errors; the real error of the temperatures are around  $\pm 250K$  as noted above.

The WD output fundamental parameters are listed in Table 6 along with those from the properties of zero age main sequence stars (ZAMS; Cox, 2000). The more massive star's mass and radius correspond closely to the tabular values (confirming its spectral type and its unevolved status), but it's overluminous by 3%. This may be due to the hot spot, or just to random error. In estimating the distance, galactic extinction was ignored, owing to the high galactic latitude  $(58^{\circ})$ .

In an effort to understand the period behaviour of this system, the author scanned the data of Binnendijk (1965) [early data only – later data required a spot] and Schieven (1983), and ran the same WD package, starting at the above solution set of parameters. The results were (somewhat gratifyingly) almost identical with the above. The system in 1965 and 1983 was overcontact then as well. However, that does nothing to explain why the period could be constant for so long, suffer some kind of jump around cycle 0 (1982) and then display a constant rate of increase after that.

The calculation of the mass transfer rate for the curved part of the O - C curve (i.e. after cycle 0) proceeded as follows:

It is not difficult to show that, under the assumptions of mass and angular momentum conservation of the system as a whole, and using basic physics:

Table 6.

Fundamental	Star 1	Star 1	Star 1	Star 2	Star 2	Star 2
Quantity	Tabular	WD	error	Tabular	WD	Error
Sp. Type	F8 V			F8 V		
Mass $(M_{\odot})$		0.36	0.03	1.18	1.20	0.05
Radius $(R_{\odot})$		0.69	0.01	1.18	1.19	0.01
$M_{\rm bol}$		5.26	0.17	3.84	4.07	0.17
Log g (cgs)		4.32	0.004	4.388	4.36	0.004
Luminosity $(L_{\odot})$		0.65	0.09	1.89	1.94	0.28
Distance (pc)		182	13			

$$(M_1 M_2)^3 P = \text{constant} \tag{4}$$

where  $M_1$  and  $M_2$  = masses (any units), and P= period. Taking the natural logarithm of both sides of the equation and differentiating by time, and using the fact that  $dM_2 = -dM_1$ , one gets:

$$\frac{\mathrm{d}M_1}{\mathrm{d}t} = \frac{1}{3P} \left(\frac{1}{M_2} - \frac{1}{M_1}\right)^{-1} \frac{\mathrm{d}P}{\mathrm{d}t}$$
(5)

Substituting the values from Table 5, and using the derived value of  $dP/dt = +8.16(6) \times 10^{-7}$  days/year (taken from fitting the O-C curve with a parabola), one gets a value of  $-3.9(3) \times 10^{-7}$  solar masses/year for the mass transfer rate of the primary (less massive) star (i.e., mass is transferred from the less to the more massive star). This value is consistent with those of a number of other overcontact binaries (Schieven et al., 1983; Pribulla and Vanko, 2002).

In conclusion, AC Bootis is a subtype W overcontact binary comprised of unevolved stars. A full solution for its fundamental parameters has been obtained. It has been shown that it is undergoing mass transfer from the less massive to the more massive star at a rate of  $3.9 \times 10^{-7}$  solar masses per year.

Acknowledgements: It is a pleasure to thank the staff members at the DAO (especially Dr. Dmitry Monin and Les Saddlemyer) for their usual splendid help and assistance. Thanks also to Dr. Dirk Terrell for his suggestions and comments. An anonymous referee made a number of useful suggestions plus provided a reference (Hrivnak, 1993) that was, for some reason, not given in SIMBAD.

References:

Bessell, M.S., 1979, *PASP*, **91**, 589

- Binnendijk, L., 1965, AJ, 70, No. 3, 201
- Bradstreet, D.H.; 1993, Binary Maker 2.0 An Interactive Graphical Tool for Preliminary Light Curve Analysis, in Milone, E.F. (ed.) Light Curve Modelling of Eclipsing Binary Stars, pp 151-166 (Springer, New York)

Cox, A.N., ed, 2000, Allen's Astrophysical Quantities, 4th ed., (Athlone Press, London).

Geyer, E., 1955, Kleine Veröff. Bamberg, 9, 4

Hrivnak, B.J., 1993, ASP Conf. Ser., 38, 269, in New Frontiers in Binary Star Research, ed. Leung, J.C. and Nha, I.-S.

Kallrath, J., Milone, E.F., Terrell, D., and Young, A.T., 1998, *ApJ*, **508**, 308.

- Linnell, A.P., Hrivnak, B.J. and Olson, E.C., 1990, BAAS, 22, 1291
- Mauder, H., 1964, ZA, 60, 222 [in German]
- Mancuso, S. and Milano, L., 1974, *IBVS*, 904
- Mancuso, S., Milano, L. and Russo, G, 1977, A&AS, 29, 57
- Mancuso, S., Milano, L. and Russo, G, 1978, A&A, 63, 193
- Nelson, R.H. et al., 2006, *IBVS*, 5715
- Nelson, R.H., 2009, Software, by Bob Nelson,
- http://members.shaw.ca/bob.nelson/software1.htm Nelson, R.H., 2010, *Eclipsing Binary* O - C *Files*,
  - http://www.aavso.org/bob-nelsons-o-c-files
- Pribulla, T and Vanko, M., 2002, CoSka, 32, 79
- Rucinski, S. M., 1976a, PASP, 88, 244
- Rucinski, S. M., 1976b, Acta Astron., 26, 227
- Rucinski, S. M., 1976c, PASP, 88, 777
- Rucinski, S. M., 1992, AJ, 104, 1968
- Rucinski, S. M. 2004, IAU Symp., 215, 17
- Russell, H.N. & Merrill, J.E., 1952, Contr. Princeton Obs., No. 26.
- Schieven, G., Morton, J.C., McLean, B.J., and Hughes, V.A., 1983, A&ASS, 52, 463
- Terrell, D., 1994, Van Hamme Limb Darkening Tables, vers. 1.1.
- van Hamme, 1993, AJ, **106**, 2096
- Wilson, R.E., and Devinney, E.J., 1971, ApJ, 166, 605
- Wilson, R.E., 1990, ApJ, 356, 613
- Wood, B.F., 1971, AJ, 76, 701
- Zessewitsch, W.P., 1956, AZ Kasan, 171

Number 5952

Konkoly Observatory Budapest 24 September 2010 *HU ISSN 0374 – 0676* 

## THE NEW ECLIPSING VARIABLE STAR USNO-A2.0 0825-18396733, A PROBABLE POLAR

#### KRYACHKO, T.; SAMOKHVALOV, A.; SATOVSKIY, B.

Astrotel-Caucasus Observatory, Karachay-Cherkessiya, Russia.

During observation of a field in Aquila, we found a new eclipsing variable star with an extremely short period, 0.0840. Its USNO-A2.0 coordinates are:  $\alpha = 20^{h}31^{m}37.59$ ,  $\delta = -0^{\circ}05'11.2$  (J2000). Our observations were carried out at the Astrotel–Caucasus observatory using an 0.3-m Ritchey–Chretien telescope, equipped with an unfiltered Apogee Alta U9000 CCD camera. A total of 98 images with 5-minute exposures were obtained on JD 2455384–2455397. For basic reductions for dark current, flat fields, bias and for removing cosmic rays hits, we use IRAF routines. For photometry of the new variable star, we applied VaST software by Sokolovsky and Lebedev (2005). The comparison star was USNO-A2.0 0900-18617527 = USNO-B1.0 0904-0528702 ( $\alpha = 20^{h}30^{m}53.81$ ,  $\delta = +0^{\circ}25'33.77$  (J2000, 2MASS);  $R_1 = 14.24$ ,  $R_2 = 14.44$  (USNO-B1.0)). Unfiltered magnitudes were calibrated using the comparison star, assuming  $R_{\rm comp} = 14.34$ . To search for period and derive epochs of minima, we use Peranso software (www.peranso.com). During our observing campaign, we detected three primary minima, listed in Table 1.

Table 1. CCD minima of USNO-A2.0 0825-18396733

HJD(TT)	±
2455387.3976	0.0004
2455388.4050	0.0006
2455397.398	0.002

All moments in the Table 1 are expressed in terrestrial time in accordance with IAU recommendations (resolution B1 XXIII IAU GA). The light curve of the star is presented in Fig. 1; Fig. 2 is the finding chart. The light elements are:

Borisov and Shimansky (2010) have kindly made available to us their spectroscopy of the star performed on JD 2455412 with the 6-m telescope. They observed the one-peak  $H\beta$  and HeII (4686Å) emission lines approximately of equal intensity, weaker HeI emission lines (4471,4921,5015 Å), and the CNO blend (4640-4650 Å). The general appearance of the spectra is characteristic of polars. Thus, the star is probably a magnetic cataclysmic variable. The spectra of the star are presented in Fig. 3.



Figure 1.



Figure 2.



Figure 3.

Acknowledgements We would like to thank V. Chavushyan and S. Zharikov (Observatorio Astronomico Nacional, San Pedro Martir, B.C., Mexico) for heplful discussion, V. Shimansky and N. Borisov (Special Astrophysical Observatory, Russian Academy of Sciences) for obtained spectra and commenting it, and N. Samus (Institute of Astronomy, Russian Academy of Sciences) for assistance in the preparation of this article.

## References:

Sokolovsky, K., Lebedev, A., 2005, in 12th Young Scientists' Conference on Astronomy and Space Physics, Kyiv, Ukraine, April 19–23, 2005, eds.: Simon, A.; Golovin, A., p.79.

Borisov N., Shimansky, V., 2010, private communication

Number 5953

Konkoly Observatory Budapest 15 October 2010 HU ISSN 0374 – 0676

# THE LONG-TERM MULTI-COLOUR VARIATION OF THREE BRIGHT RS CVn TYPE SYSTEMS

#### TAŞ, GÜNAY; EVREN, SERDAR

Ege University, Department of Astronomy and Space Sciences, 35100 Bornova - Izmir-TURKEY e-mail: gunay.tas@ege.edu.tr, serdar.evren@ege.edu.tr

Name of the object: HR 1099,  $\sigma$  Gem,  $\lambda$  And

#### Observatory and telescope:

Ege University Observatory, 48-cm Cassegrain telescope and 35-cm Schmidt-Cassegrain telescope

Detector:	SSP-5	photomultiplier,	high-speed	three-channel
	photome	eter		

Filter(s):BVR, U (from 2000)

Date(s) of the observation(s): 1996-2005

## Availability of the data:

Available at the IBVS website (5953-t1.txt - 5953-t6.txt)

**Type of variability:** RS CVn

**Table 1.** The information log of the observations. The first three columns list the target, comparison and check stars, while the last four columns in Table show the averages of yearly errors for observations in each filter.

Variable	Comparison	Check	$\operatorname{err}_U$	$\operatorname{err}_B$	$\operatorname{err}_V$	$\operatorname{err}_R$
stars	stars	stars	(mag)	(mag)	(mag)	(mag)
HR 1099	10 Tau	11 Tau	0.019	0.017	0.013	0.014
$\lambda$ And	$\psi$ And	$\kappa$ And	0.018	0.015	0.012	0.012
$\sigma$ Gem	$HD \ 60318$	HD $60522$	0.020	0.018	0.013	0.012



Figure 1. (a) The V brightness variation and (b) the (U-B), (c) (B-V), (d) (V-R) colour variations of the  $\sigma$  Gem between the years 1996 and 2005. The larger filled circles denote the seasonal averages of observations.



Figure 2. Definitions of the panels in the figure are the same as in Figure 1, but it is for  $\lambda$  And.



Figure 3. Definitions of the panels in the figure are the same as in Figure 1, but it is for HR 1099.

## Remarks:

The short- and long-term light and colour variation of active stars is a very important subject, because they yield valuable information about their evolution in time and the distribution of different temperature structures on the stellar surface. Observations spanning for decades help to find the activity cycles. Since stars with longer periods have generally longer cycles, we think all data are important. Our stars is also difficult to observe because of their brightness, like  $\lambda$  And.

 $\sigma$  Gem. The results of our observations show no evident correlation between the long-term V light and colour variations for  $\sigma$  Gem (see Figure 1).

 $\lambda$  And. For this star also, no color index variations is seen which exceeds the limit (see Figure 2 and the error values in Table 1).

 $HR \ 1099 = V711 \ Tau$ . HR 1099 was observed with its visual component, which is a K3 V single star located 6 arcseconds away in the sky. Our observations show that when V brightness of the system decreases, than the U - B colour index becomes redder, in accordance with the observations of Messina obtained between 1997-2005 (2008, Fig. 3. upper panel) which shows continuous decrease (reddening) during this time interval. In the same time our B - V colour indices show marginal or no variations, while that of Messina's values are also constant except the last two years when the star seem to be slightly bluer. Our data in 2005 show a slight reddening, but this change is within  $3\sigma$  of the measurements. The V - R colour does not show a clear variation.

## Acknowledgements:

The authors would like to thank the staff of the Ege University Observatory for their contributions and supports, and Dr. K. Oláh for valuable advices and comments.

Reference:

Messina, S., 2008, A&A, 480, 495

Number 5954

Konkoly Observatory Budapest 26 October 2010 HU ISSN 0374 – 0676

# SPECTROSCOPY OF ECLIPSING BINARY DY LYNCIS THIRD COMPONENT DETECTED

SĘKALSKA, JUSTYNA¹; DIMITROV, WOJCIECH¹; FAGAS, MONIKA¹; KRUSZEWSKI, ADRIAN¹; PRZYBYSZEWSKA, ANNA¹; KURZAWA, KRYSTIAN¹; ŻYWUCKA, NATALIA¹; ROŻEK, AGATA¹; BORCZYK, WOJCIECH¹; BARTCZAK, PRZEMYSŁAW¹; BĄKOWSKA, KAROLINA¹; HIRSCH, ROMAN¹; KAMIŃSKI, KRZYSZTOF¹; KWIATKOWSKI, TOMASZ¹; SCHWARZENBERG-CZERNY, ALEKSANDER^{1,2}

¹ Astronomical Observatory, Adam Mickiewicz University, Słoneczna 36, 60-186 Poznań, Poland

² Nicolaus Copernicus Astronomical Center, Bartycka 18, 00-716 Warsaw, Poland

The following paper¹ presents the results of spectroscopic observations of DY Lyncis (HD 65498). The object is listed in SIMBAD database as an eclipsing binary of Algol type with V magnitude of 9^m67, color index  $(B - V) = 0^m$ 56 and with equatorial coordinates RA = 08^h00^m46^s, *Dec* = +42°10'33". Eclipsing nature of HD 65498 was detected by SAVS (Semi-Automatic Variability Search described by Maciejewski et al., 2003). The light curve is typical of detached binaries and suggests similar components and partial eclipses with amplitude of 0.4 mag. According to Maciejewski et al. (2003) the orbital period of HD 65498 is 31.5 hours and the ephemeris is:

To determine the spectral type of the star spectroscopic observations were made. The obtained spectrum corresponds to F5V star (Maciejewski et al., 2003). There are also seven measurements of the times of minima (Gurol et al., 2007; Brat et al., 2008; Brat et al., 2009)

Our spectroscopic observations were made during 13 nights (between March 21 and April 13 in 2009). All data were collected at Borowiec station of the Poznań University Observatory. HD 65948 was observed spectroscopically with PST (Poznań Spectroscopic Telescope; Baranowski et al., 2009) equipped with 0.5m mirror and fiber-fed echelle spectrograph. The exposure time was 1800s and the spectra cover range from 4500 to 8250 Å. The thorium argon lamp provides calibration of the spectra with sigma RV of 100m/s. The spectrograph box is thermally stabilized on the level of 0.5 deg. Data reduction was performed with IRAF echelle package based script. For the RV measurement we have used IRAF FXCOR task. Cross correlation functions reveal three peaks (Figure 4). Two of them (low and broad) are connected with the eclipsing pair and the central one - with

¹Based on PST spectroscopic and SAVS photometric data.

http://www.astro.amu.edu.pl/PST/

http://www.astri.uni.torun.pl/~gm/SAVS

Correspondence to: dimitrov@amu.edu.pl

the detected third component (the peak is high and narrow). Due to faster rotation (tidal effects) and possible higher  $\sin i$  value, the eclipsing stars have wider peaks. The shape of the  $H_{\alpha}$  (Figure 3) and  $H_{\beta}$  profile is also triple.

The light curve and radial velocities enable us to obtain Wilson-Devinney model of the system (Wilson & Devinney, 1971). We treat the third body as a third light. The third component can be dynamically connected with the eclipsing pair or be just in the same line of sight. Radial velocities of the third component are decreasing with time. This phenomenon can be explained by the mutual orbital motion. The time span of our spectra is about twenty days, they can be affected by the light-time effect.

Our spectroscopic data is shifted with respect to the ephemeris. In order to make a simultaneous solution we calculated a new ephemeris based on both photometric and spectroscopic observations:

Time span between spectroscopic and photometric data is about 6 years and the ephemeris has been probably affected by the light-time effect.

The eclipsing pair consists of two similar components with masses  $1.02M_{\odot}$ ,  $1.05M_{\odot}$  and radii  $1.28R_{\odot}$ ,  $1.26R_{\odot}$ , respectively (Table 2). The components are slightly evolved. We have no direct information on the color index of the eclipsing pair. The temperature of the first component was obtained from evolutionary tracks, which were computed for the derived masses and radii. The temperature of the second component was fitted during the modelling. We found the third light to be  $0.364\pm0.016$  (normalization  $l_1+l_2+l_3=1$ ). The color index of the system  $(B-V=0.47\pm0.05, \text{Tycho})$  suggests that the third component is hotter than the eclipsing pair. The temperature must be higher than 6500 K due to the mixing of light of the three components (the eclipsing pair is cooler). We think that the mass of the third body must be higher than one solar mass. Further spectroscopic and photometric observations will enable us to measure the mutual orbit and the light-time effect, respectively.

The mass and radii of the eclipsing pair suggest that the system is quite old. Luminosities of the three stars are comparable but the temperature of the third component is significantly higher and inconsistent with stellar evolution theory. The existence of additional white dwarf component is a possible explanation of high B - V index. The white dwarf is a source of a blue continuum light but it is not adding its lines to the triple lined spectrum of the object.

HJD (+2454900)	RV1 (km/s)	RV2 (km/s)	RV3 (km/s)
12.319274	-103.9	145.7	58.0
12.474967	-54.6	91.6	58.3
12.504987	-37.2	95.7	59.3
16.330385	-81.7	121.4	56.6
16.356517	-70.6	111.0	57.2
16.383448	-61.0	120.0	58.4
24.527291	91.8	-14.4	55.4
24.569706	93.1	-45.8	55.6
25.413819	-110.1	155.3	55.6
25.440946	-114.6	157.3	55.5
35.327167	133.0	-100.7	52.3
35.353276	128.1	-93.4	51.9
35.379281	117.5	-79.4	52.5

Table 1. Absolute radial velocity measurements from PST (template: o Aquilae).

Table 2. Preliminary solution for the eclipsing pair and formal errors outputted by the WD code.

parameter	component 1	component $2$
i	89°.2	$\pm 1.5$
q	1.03 =	$\pm 0.13$
$a(R_{\odot})$	6.42 =	$\pm 0.09$
$V_{\gamma} \ (km/s)$	23.2 :	$\pm 1.4$
Ω	$6.07\pm0.22$	$6.27\pm0.62$
$l_V$	$0.330\pm0.016$	$0.306\pm0.016$
T(K)	5400(fixed)	$5340\pm10$
$M(M_{\odot})$	$1.017\pm0.050$	$1.048\pm0.050$
$R(R_{\odot})$	$1.280\pm0.054$	$1.260\pm0.123$



Figure 1. Light curve of HD 65498 from SAVS compared with the synthetic curve based on the derived model.



Figure 2. Absolute radial velocity curve for the three components of HD 65498. The solid line presents RV measurements for the eclipsing pair and the dashed line corresponds to the third component.



Figure 3. The  $H_{\alpha}$  line profile (smoothed) is triple, we can see two shallow lines caused by the eclipsing pair and deep central line by the third component (x signs present the original not smoothed spectrum).



Figure 4. The cross correlation function for the same spectrum as in figure 3. We have the low and broad peaks of the eclipsing pair and the high and thin peak of the third component.



Figure 5. Radial velocity of the third component is decreasing with time (mutual orbit motion).

References:

Baranowski, R. et al., 2009, MNRAS, 396, 2194
Brat L. et al., 2008, OEJV, 94
Brat L. et al., 2009, OEJV, 107
Gurol B. et al., 2007, IBVS, No. 5791
Maciejewski, G., Czart, K., Niedzielski, A., Karska, A., 2003, IBVS, No. 5431
Prša, A., Zwitter, T., 2005, ApJ, 628, 426
Wilson, S. E., Devinney, E. J., 1971, ApJ, 166, 605

Number 5955

Konkoly Observatory Budapest 3 November 2010 HU ISSN 0374 – 0676

# NEW DOUBLE-MODE AND OTHER RR LYRAE STARS FROM WASP DATA

WILS, PATRICK

Vereniging Voor Sterrenkunde, Belgium; e-mail: patrickwils@yahoo.com

The data from the first public data release of the exoplanet transit survey WASP (Wide Angle Search for Planets; Butters et al., 2010) were studied for a number of known and suspected RR Lyrae stars (types RR, RRab and RRc), and for a number of Horizontal Branch stars (Beers et al., 1988, 1996; Christlieb et al., 2005), in order to find previously unrecognized double-mode RR Lyrae (RRd) stars. In the analysis only TAMUZ (Collier Cameron et al., 2006) corrected data were used for which the uncertainty on the magnitude was less than 0.1. The period analysis was done using PERIOD04 (Lenz & Breger, 2005).

Seven previously unidentified RRd stars were found in this way: four among previously known RR Lyrae stars, and three more among the Horizontal Branch stars. Details of these seven stars are all listed in Table 1. After the name the WASP identification is given, followed by the full magnitude range (unfiltered WASP magnitude) and the periods of the fundamental and first overtone modes. The last column contains a sequence number used in Tables 2 and 3. These tables contain respectively the amplitudes and phases of the detected frequencies. Uncertainties are given between parentheses in units of the last decimal. These were calculated using the Monte Carlo simulations provided by PERIOD04. As is usual for RRd stars, the first overtone mode has a larger amplitude than the fundamental mode, except in the case of HE 0414-2958 = BPS CS 22182-17, in which both frequencies have similar amplitudes. As an illustration, phased light curves of V797 Her are provided in Fig. 1. Note also that BPS BS 16478-18 = BPS BS 16553-34 has a double identifier in Beers et al. (1996).

Among the 3670 Horizontal Branch stars from Beers et al. (1988, 1996) and Christlieb et al. (2005) for which there were enough WASP observations, 108 RRab, 77 RRc and 5 RRd stars were identified. Not all of these RR Lyrae stars are however new discoveries. Besides the three RRd stars from those catalogues mentioned in Table 1, also the RRd stars BS Com = BPS BS 15626-36 (Dékány, 2007) and GSC 7509-299 = BPS CS 22888-11 (Bernhard & Wils, 2006) were recovered. The relatively high number of RRc stars compared to the number of RRab stars may be a selection effect, as the objective prism and interference filter technique with which these stars were identified may favour the hotter RRc stars. For comparison, the Large Magellanic Cloud contains 17693 RRab, 4958 RRc and 986 RRd stars (Soszyński et al., 2009), while the Small Magellanic Cloud contains 1933 RRab, 175 RRc and 258 RRd stars (Soszyński et al., 2010).

Star	1SWASP	Range	$P_0$	$P_1$	Ν
UV Phe	J011210.74 - 411326.1	14.3 - 14.8	0.534254(5)	0.398668(1)	1
HE 0414-2958	J041649.58 - 295129.1	14.4 - 15.0	0.477467(6)	0.354824(4)	2
BPS BS 16478-18	J105743.63 + 384648.3	13.6 - 14.4	0.494909(14)	0.368498(5)	3
BPS BS 16466-19	J124322.85 + 345717.0	13.9 - 14.6	0.486651(2)	0.362228(1)	4
V633 Cen	J141302.53 - 434817.7	13.2 - 13.8	0.480517(3)	0.357379(1)	5
V797 Her	J171608.40 + 481752.7	14.2 - 14.9	0.532299(5)	0.397058(1)	6
NSV 12753	J200447.74 - 371503.4	14.7 - 15.1	0.474658(11)	0.353082(4)	7

Table 1: New double-mode RR Lyrae stars identified in WASP data.



Figure 1. Light curve of V797 Her. Top: phased with the fundamental period and prewhitened with the first overtone mode and its harmonics. Bottom: as above, but now phased with the first overtone period and prewhitened with the fundamental mode and its harmonics. Each point is the average of 10 consecutive WASP observations.

Freq.	1	2	3	4	5	6	7
$f_0$	0.074(2)	0.164(5)	0.164(3)	0.132(5)	0.118(2)	0.103(2)	0.053(4)
$f_1$	0.140(2)	0.158(5)	0.209(3)	0.188(4)	0.156(2)	0.200(2)	0.088(4)
$f_0 + f_1$	0.032(2)	0.071(4)	0.061(3)	0.057(4)	0.045(2)	0.041(2)	0.022(4)
$f_1 - f_0$	0.028(2)	0.048(5)	0.046(3)	0.041(5)	0.030(2)	0.035(2)	_
$2f_0$	0.010(2)	0.047(5)	0.027(3)	0.026(4)	0.023(2)	0.016(2)	—
$2f_1$	0.027(2)	0.034(4)	0.044(3)	0.028(5)	0.025(2)	0.044(2)	0.013(3)
$3f_1$	0.009(2)	—	—	—	0.009(2)	0.014(2)	—
$f_0 + 2f_1$	0.015(2)	0.025(5)	0.028(3)	—	0.018(2)	0.015(2)	—
$2f_0 + f_1$	—	0.025(5)	0.016(3)	0.020(4)	0.010(2)	—	—
$2f_0 + 2f_1$	—	_	0.018(3)	_	0.010(2)	—	—
$3f_0 + f_1$	_	_	—	_	0.006(2)	_	_

Table 2: Semi-amplitudes of the frequencies detected in the WASP data of the new RRd stars. The number above each column refers to the stars in Table 1.

Table 3: Phases of the detected frequencies of the new RRd stars. These are given following the convention used by PERIOD04 and with  $T_0$  = HJD 2450000.

Freq.	1	2	3	4	5	6	7
$f_0$	0.077(4)	0.944(4)	0.032(3)	0.358(5)	0.393(3)	0.059(4)	0.916(9)
$f_1$	0.111(2)	0.678(4)	0.030(2)	0.346(4)	0.836(2)	0.767(2)	0.181(6)
$f_0 + f_1$	0.570(8)	0.002(12)	0.443(8)	0.106(12)	0.615(6)	0.229(9)	0.464(27)
$f_1 - f_0$	0.890(9)	0.624(17)	0.864(9)	0.896(16)	0.322(10)	0.558(10)	_
$2f_0$	0.491(28)	0.242(16)	0.443(16)	0.114(26)	0.156(13)	0.539(21)	—
$2f_1$	0.737(11)	0.869(22)	0.577(10)	0.265(22)	0.222(10)	0.076(7)	0.760(38)
$3f_1$	0.297(32)	_	_	_	0.519(27)	0.331(23)	_
$f_0 + 2f_1$	0.126(19)	0.139(32)	0.913(15)	—	0.910(17)	0.477(22)	—
$2f_0 + f_1$	_	0.360(28)	0.904(27)	0.929(33)	0.393(27)	_	—
$2f_0 + 2f_1$	_	_	0.440(22)	_	0.772(31)	_	_
$3f_0 + f_1$	_	_	_	_	0.379(48)	_	_

For completeness, the other RR Lyrae stars found among the Horizontal Branch stars that were not included in the AAVSO Variable Star Index at the time of writing, are listed in Tables 4 (42 RRab) and 5 (46 RRc). When stars appear in two of the Horizontal Branch star lists, the designation of Christlieb et al. (2005) is given in the tables. Due to the fairly low resolution of the WASP instruments, in some cases the magnitude range and the WASP coordinates may be affected by nearby stars.

A Petersen diagram of all known Galactic RRd stars is plotted in Fig. 2. Apart from the stars from Table 1 and those listed in the references cited by Dékány (2009), the RRd stars given by Wu et al. (2005), Gruberbauer et al. (2007), Pilecki & Szczygieł (2007), Szczygieł & Fabrycky (2007), McClusky (2008), Sokolovsky et al. (2009) and Khruslov (2010) are included, 75 in total. In addition the brightest RRd stars with respectively I < 18.0 and I < 18.5 in the LMC and SMC catalogues (Soszyński et al., 2009 and 2010) were considered to be Galactic foreground objects. This gives 14 additional stars (7 from each of the LMC and SMC lists).

Table 4: New RR Lyrae stars pulsating in the fundamental mode (RRab) identified in WASP data among Field Horizontal Branch Stars (Beers et al., 1988, 1996, Christlieb et al., 2005). The epoch of maximum is given as HJD - 2450000. The letter B at the end of the line denotes stars that show the Blazhko effect.

Star	1SWASP	Range	Period	Epoch	
BPS CS 22876-029	J000157.75 - 364042.4	13.5 - 14.0	0.63752	4001.56	В
HE 0001-4300	J000400.87 - 424356.7	14.3 - 14.8	0.51895	3880.61	
HE 0007-3416	J000944.08 - 335920.1	13.9 - 15.0	0.60493	4270.57	
HE 0147-3030	J014926.72 - 301600.0	14.0-15.2	0.57693	3981.48	
HE 0155-2108	J015744.41 - 205346.5	14.7 - 15.0	0.35943	4379.60	
HE 0200-4322	J020236.92 - 430755.8	14.6 - 15.0	0.67014	3999.57	
HE 0210-3735	J021237.64 - 372112.7	13.6 - 13.8	0.50770	4050.38	
HE 0314-2836	J031616.36 - 282534.8	14.2 - 14.5	0.59432	4090.31	
HE 0332-2129	J033419.05 - 211959.8	14.4 - 15.2	0.54191	4353.56	В
HE 0333-4650	J033452.98 - 464023.5	13.9-14.8	0.48951	4484.32	В
HE 0441-3136	J044255.90 - 313118.3	14.8 - 16.3	0.34337	4412.44	
HE 0443-2513	J044505.91 - 250823.0	15.0 - 15.3	0.32996	4110.35	
HE 0504-3113	J050606.02 - 310953.5	14.2 - 14.7	0.56835	4136.41	
HE 0510-4101	J051207.76 - 405759.8	14.5 - 15.1	0.68467	4029.44	
HE 0549-3927	J055104.65 - 392620.9	14.8 - 15.4	0.56970	4522.28	
HE 1015-2201	J101812.69 - 221619.7	14.2 - 15.0	0.56692	4522.48	
HE 1104-3222	J110703.96 - 323902.0	14.0-14.4	0.56947	3862.05	
BPS BS 16545-047	J111329.97 + 353434.7	13.1 - 13.3	0.45695	4140.71	
HE 1111-2927	J111352.38 - 294334.3	14.8 - 14.9	0.47236	4155.51	
HE 1112-1950	J111451.40 - 200704.1	15.0-15.4	0.30855	4564.38	
HE 1157-2813	J115953.34 - 282929.3	13.6 - 13.9	0.52957	3898.24	
HE 1157-2519	J115958.37 - 253547.3	14.5 - 14.7	0.51239	3890.22	
HE 1233-2316	J123636.50 - 233238.7	14.9 - 15.4	0.60441	4586.24	
HE 1239-2151	J124201.81 - 220748.5	12.4 - 12.5	0.55074	4495.54	
HE 1338-2727	J134100.84 - 274233.2	14.2 - 15.1	0.62896	4562.38	
HE 1351-2348	J135421.23 - 240323.4	14.0-14.8	0.46064	4588.43	
HE 1354-2320	J135702.57 - 233448.1	14.6 - 15.1	0.60405	4562.50	
HE 1358-2125	J140049.44 - 214009.5	13.9 - 15.1	0.47163	4572.53	
BPS BS 16554-067	J140655.96 + 205658.6	13.6 - 13.7	0.33906	4261.54	
BPS CS 22936-279	J190129.86 - 354511.2	13.8 - 14.2	0.64767	4250.67	
BPS CS 22885-084	J202501.21 - 422417.9	14.4 - 14.6	0.49462	4387.26	
BPS CS 22955-119	J203041.85 - 235720.2	14.1 - 14.7	0.60865	3960.46	В
BPS CS 22955-139	J203637.65 - 240537.0	13.7 - 15.1	0.46782	4301.35	
BPS CS 22880-004	J203911.98 - 212449.7	13.6 - 14.4	0.61036	3891.58	
BPS CS 29501-046	J211204.06 - 370008.1	14.0-14.8	0.54534	4271.70	
BPS CS 22948-023	J213530.97 - 390630.5	14.5 - 15.0	0.57652	4300.53	В
BPS CS 22948-084	J214600.39 - 401553.4	14.0-15.0	0.66984	4300.39	
HE 2150-3053	J215320.37 - 303914.1	14.1 - 14.7	0.64148	3960.32	
HE 2217-3717	J222042.00 - 370204.2	15.1 - 15.2	0.55321	3999.29	
HE 2317-4517	J231959.89 - 450045.8	14.1 - 14.3	0.62527	3954.56	
HE 2325-4624	J232746.99 - 460800.7	14.4 - 15.0	0.29106	3909.61	В
BPS CS 22876-023	J235742.03 - 340111.2	14.4 - 15.2	0.27802	3953.60	

Star	1SWASP	Range	Period	Epoch	
BPS CS 29509-039	J005441.47 - 281354.6	14.0-14.2	0.27286	4083.31	
HE 0055-3951	J005749.63 - 393531.4	14.0-14.4	0.36111	4041.51	
HE 0145-2946	J014754.61 - 293131.2	14.5 - 14.9	0.34140	4000.45	
HE 0222-2507	J022440.34 - 245403.6	14.7 - 15.1	0.29095	3996.58	
HE 0250-3150	J025212.05 - 313827.5	14.8 - 15.2	0.29625	4007.53	
HE 0311-2333	J031347.95 - 232239.6	14.4-14.8	0.33963	4353.55	
HE 0351-3512	J035256.91 - 350327.9	14.7 - 15.2	0.30276	4421.28	
HE 0428-3926	J042952.36 - 392004.6	13.7-13.8	0.27715	4488.35	
HE 0442-3801	J044357.89 - 375609.2	14.2 - 14.5	0.27606	4444.55	
HE 0505-3833b	J050712.81 - 382956.0	14.0-14.2	0.27391	4454.30	
BPS BS 16473-027	J084337.67 + 465824.3	14.6-14.9	0.28122	4501.39	
BPS BS 16468-023	J090600.07 + 392758.6	14.0-14.4	0.35638	4092.66	
BPS BS 16468-121	J092321.37 + 383836.6	14.6 - 15.0	0.29065	4157.65	
BPS BS 16927-028	J093240.67 + 422108.4	12.2-12.6	0.25399	4533.39	
HE 1046-2228	J104833.88 - 224414.8	14.5 - 14.9	0.33384	4110.55	В
BPS BS 16478-017	J105520.01 + 383039.0	14.3-14.8	0.27416	4203.42	
BPS BS 16545-066	J112042.66 + 344712.6	12.7-13.0	0.33970	4168.41	
HE 1122-2844	J112439.10 - 290048.2	13.9-14.2	0.37957	4572.13	
BPS BS 16077-009	J113525.85 + 304318.1	13.3-13.7	0.31215	4167.42	
HE 1222-2649	J122535.83 - 270549.7	14.3-14.8	0.33595	4572.50	
HE 1228-2341	J123046.18 - 235743.6	14.7-14.9	0.30872	4558.58	
BPS BS 16032-029	J124643.41 + 282809.8	14.1-14.6	0.35752	4216.63	
HE 1302-2257	J130442.80 - 231336.6	13.8-14.2	0.27356	4554.32	
BPS BS 16938-029	J130508.41 + 391533.1	14.5 - 14.9	0.31621	3153.38	
BPS BS 16076-087	J130753.93 + 221007.1	14.0-14.5	0.40112	4218.38	
BPS BS 15623-004	J141022.29 + 254433.1	14.3-14.6	0.34471	4216.42	
BPS BS 16084-087	J161635.47 + 542258.4	12.0-12.3	0.30627	4626.60	
BPS CS 22936-325	J190329.08 - 332433.8	14.1-14.4	0.31945	3919.59	
BPS CS 22955-036	J202146.61 - 234129.5	14.3 - 14.5	0.38810	4002.28	
BPS CS 22943-115	J202210.82 - 451849.2	13.4 - 13.5	0.32715	3897.43	
BPS CS 22885-200	J202301.74 - 415448.5	14.8-15.0	0.31697	4272.51	
BPS CS 22955-094	J203037.02 - 271349.3	14.9 - 15.1	0.26593	4592.52	
BPS CS 22880-076	J204825.07 - 204635.4	14.5-14.9	0.27237	4361.27	
BPS CS 29501-083	J211730.39 - 351757.9	14.9-15.2	0.36968	4292.43	
HE 2115-4535	J211910.34 - 452233.7	14.5-14.9	0.30140	3999.35	
HE 2126-4428	J213012.04 - 441520.4	13.9-14.5	0.30029	4238.60	
BPS CS 29495-050	J214006.88 - 265319.3	14.3-14.7	0.32103	4296.67	
BPS CS 29495-090	J214935.24 - 233018.7	13.9-14.2	0.26758	3925.49	
BPS CS 22951-097	J215736.58 - 453236.0	13.9-14.2	0.31660	4364.42	
HE 2201-2717	J220442.48 - 270233.3	14.3-14.9	0.29918	3965.34	
HE 2309-3753	J231214.23 - 373719.5	14.6 - 15.1	0.29260	4273.54	
HE 2316-3757	J231917.06 - 374047.9	13.7-14.1	0.34475	4338.42	
BPS CS 29496-026	J234648.67 - 300028.7	14.5-15.0	0.29756	3943.60	
HE 2344-2511	J234735.06 - 245507.8	14.1-14.4	0.37096	4352.52	
HE 2349-4236	J235223.86 - 422000.8	14.7-15.0	0.26362	3919.53	
HE 2356-4456	J235856.59 - 444014.6	14.4-14.8	0.33155	3953.54	

Table 5: New RR Lyrae stars pulsating in the first overtone mode (RRc). For details, see Table 4.

Three Galactic RRd stars have a higher period ratio than what can be expected from the other stars. The one with the highest ratio, [C2001c] vd05f715 (Cseresnjes, 2001), has noisy data, so that one of the frequencies may well turn out to be spurious. The limited number of data points for [IGF2000] 91 (Wu et al., 2005) may have resulted in inaccurate frequencies as well. The most interesting of the outlier objects is likely OGLE BUL-SC39 V1568 (Mizerski, 2003), as the OGLE II data (Udalski et al., 1997 and Szymański, 2005) for this object show additional frequencies very close to the main ones, an indication of a rapidly changing period. In that case, the period ratio may not be reliable. More observations of this object are highly recommended.



Figure 2. Petersen diagram of 89 Galactic RRd stars. The stars from Table 1 are shown as black squares, foreground stars to the LMC and SMC as up- and downward pointing triangles resp., the Sgr foreground stars (Cseresnjes, 2001) as crosses, and other previously known RRd stars as open circles. For comparison, the RRd stars of the LMC and SMC (Soszyński et al., 2009, 2010) are plotted as small dots.

The distribution of the periods of the Galactic RRd stars in Fig. 2 appears to be bimodal, with the majority of stars having a fundamental period around 0.48 days, a lack of stars with periods around 0.52-0.53 days and a substantial number of stars with periods around 0.55 days. This is clearly evident as well when comparing the cumulative distribution of the Galactic RRd stars with those from the Large and Small Magellanic Clouds (Soszyński et al., 2009, 2010) in Fig. 3. Although there is a small increase of SMC RRd stars with a period near 0.56 days, this increase is less pronounced than in the Galactic case. The LMC does not show this bimodality.

Because many of the Galactic RRd stars have been found in data from surveys that make at most a few observations per night, the apparent lack of RRd stars with a fundamental period near 0.52 days (or a first overtone period near 0.39 days) could be attributed to a selection effect. However it is more likely that variable stars with a period very close to an integer fraction of a day (e.g. 0.50 or 0.33 days) would go undetected. Also the RRab stars found in data from the Northern Sky Variability Survey (Wils et al., 2006 and Kinemuchi et al., 2006) do not show fewer stars with periods near 0.39 or 0.52 days. But the sample of Galactic RRd stars is certainly not a homogeneous sample as is the case for those found in the Magellanic Clouds, so this will need to be explored further. In addition, the relative number of known RRd stars with respect to RRab or RRc stars is still relatively small in the Galaxy compared to those in the Magellanic Clouds.



Figure 3. Cumulative distribution of the periods of the fundamental mode of the double-mode RR Lyrae stars in the Magellanic Clouds (Soszyński et al., 2009, 2010), in the Sagittarius (Cseresnjes, 2001) and the Sculptor dwarf galaxies (Kovács, 2001) and in the Galactic Field.

The RRd stars in the Sagittarius dwarf galaxy (Cseresnjes, 2001) show a similar bimodal distribution (Fig. 3). In this case the gap is symmetrically located around a fundamental period of 0.50 days, so that this could really be a selection effect as described above. But again, the distribution of periods of RRab stars in the same field does not show a lack of stars with periods around 0.50 days (Cseresnjes, 2000). Also the double-mode RR Lyrae stars in the Sculptor dwarf galaxy (Kovács, 2001) show a bimodal distribution, but with only 18 objects (including only two stars with a longer period) this sample is too small for definite conclusions.

The globular cluster IC 4449 contains only 13 short period RRd stars, while the 9 in M68 and the 8 in M15 have long periods (Clement et al., 1993). This could be explained in terms of the Oosterhoff dichotomy for those globular clusters (Oosterhoff, 1939), with longer period stars in metal-poor Oosterhoff type II clusters, and shorter period stars in relatively metal-rich Oosterhoff type I clusters. The RRab population in the solar neighbourhood has been described as a mixture of metal-rich (Thick Disc), Oosterhoff I, and Oosterhoff II stars (Kinemuchi et al., 2006). The bimodality in the period distribution of Galactic Field RRd stars may also be a consequence of this.

In Fig. 3 also an obvious shift of about 0.02 days can be seen between the average periods of the RRd stars in the SMC and the other galaxies (the LMC in particular). The

difference of the mean RRd period between the LMC and SMC is significant to better than the 99% confidence level. It may be due to the different metallicities of stars in the Magellanic Clouds. Dékány (2009) derived tight relations for the radius and density of double-mode RR Lyrae stars as a function of their fundamental period. Based on the longer period of the SMC stars, these relations indicate a higher mass, and from Dékány's (2009) mass-metallicity graphs also a lower metallicity on average for the SMC, as is generally accepted.

Acknowledgements: Data from the WASP public archive has been used in this research. The WASP consortium comprises of the University of Cambridge, Keele University, University of Leicester, The Open University, The Queens University Belfast, St. Andrews University and the Isaac Newton Group. Funding for WASP comes from the consortium universities and from the UK's Science and Technology Facilities Council.

This study made use of data provided by the Simbad and VizieR databases maintained by the Centre de Données Astronomiques in Strasbourg (France).

The anonymous referee is acknowledged for useful suggestions to improve the paper.

#### References:

- Beers T. C., Preston G. W., Shectman S. A., 1988, ApJ Suppl., 67, 461
- Beers T. C., Wilhelm R., Doinidis S. P., Mattson C. J., 1996, *ApJ Suppl.*, 103, 433
- Bernhard K., Wils P., 2006, IBVS, 5698
- Butters O. W., West R. G., Anderson D. R. et al., 2010, A&A, 520, L10
- Christlieb N., Beers T. C., Thom C., Wilhelm R., Rossi S., Flynn C., Wisotzki L., Reimers D., 2005, A&A, 431, 143
- Clement C. M., Ferance S., Simon N. R., 1993, ApJ, 412, 183
- Collier Cameron A., Pollacco D., Street R. A. et al., 2006, MNRAS, 373, 799
- Cseresnjes P., 2000, A&A, 357, 871
- Cseresnjes P., 2001, A&A, 375, 909
- Dékány I., 2007, Astron. Nachr., 328, 833
- Dékány I., 2009, AIP Conference Proceedings, 1170, 245
- Gruberbauer M., Kolenberg K., Rowe J. F. et al., 2007, MNRAS, 379, 1498
- Kinemuchi K., Smith H. A., Woźniak P. R., McKay T. A., 2006, AJ, 132, 1202
- Khruslov A.V., 2010, *PZP*, **10**, 11
- Kovács G., 2001, A&A, **375**, 469
- Lenz P., Breger M., 2005, Comm. in Asteroseismology, 146, 53
- McClusky J.V., 2008, IBVS, 5825
- Mizerski T., 2003, Acta Astron., 53, 307
- Oosterhoff P. T., 1939, The Observatory, 62, 104
- Pilecki B., Szczygieł D. M., 2007, *IBVS*, 5785
- Sokolovsky K.V., Elenin L., Virnina N., 2009, PZP, 9, 20
- Soszyński I., Udalski A., Szymański M. K. et al., 2009, Acta Astron., 59, 1
- Soszyński I., Udalski A., Szymański M. K. et al., 2010, Acta Astron., 60, 165
- Szczygieł D. M., Fabrycky D. C., 2007, MNRAS, 377, 1263
- Szymański M. K., 2005, Acta Astron., 55, 43
- Udalski A., Kubiak M., Szymański M., 1997, Acta Astron., 47, 319
- Wils P., Lloyd C., Bernhard K., 2006, MNRAS, 368, 1757
- Wu C., Qiu Y. L., Deng J. S., Hu J. Y., Zhao Y. H., 2005, AJ, 130, 1640

Number 5956

Konkoly Observatory Budapest 9 December 2010 HU ISSN 0374 – 0676

# PHOTOMETRIC STUDY OF A NOVA-LIKE CATACLYSMIC VARIABLE STAR NSV 25181

ZUBAREVA, A. M.¹; ANTIPIN, S. V.^{2,1}

¹ Institute of Astronomy, Russian Academy of Sciences, 48, Pyatnitskaya Str., 119017 Moscow, Russia

 2  Sternberg Astronomical Institute, 13, University Ave., 119992 Moscow, Russia

email: zubareva@inasan.ru, antipin@sai.msu.ru

Cyg1 ( $\alpha = 20^{h}34^{m}14.51$ ,  $\delta = +50^{\circ}48'06''_{2}$ ; J2000.0) is mentioned in the Archival edition of the Catalog and Atlas of Cataclysmic Variables (Downes et al., 2006) as a cataclysmic variable without subtype specification. This information is based on the study by Downes (1986), who found out that spectra of Cyg1 were typical for cataclysmic binaries, the Balmer lines were in emission, their intensity was variable. Downes referred to a private communication by J. Patterson who observed the star flickering. Cyg1 resembles a dwarf nova in minimum light, although an examination of almost 300 plates from Harvard plate collection did not reveal any outburst of the star during the time interval from 1890 to 1962. The orbital period of the system is still unknown. The star was designated as NSV 25181 (Kazarovets et al., 1998).

To investigate the star more carefully, we have started our CCD photometry. NSV 25181 was observed at the 60-cm telescope of the Crimean Laboratory (Sternberg Astronomical Institute) equipped with an Apogee AP-47p CCD camera. Our observations cover eight nights on August 4–20, 2010 (JD 2455413–429). 1112 frames were taken with 120-second exposures in Johnson R filter. The images were debiased, dark-subtracted, flat-fielded and than analyzed in MaxIm DL4 package. USNO-A2.0 1350-12565617 ( $\alpha = 20^{h}34^{m}10^{s}56$ ,  $\delta = +50^{\circ}47'27'_{.0}$ ; J2000.0; photographic R magnitudes: 15^m3 in the USNO-A2.0 and 15^m03 and 15^m17 in the USNO-B1.0 catalog) was used for comparison. The accuracy of photometry is between 0^m01 and 0^m07 depending on weather conditions. The summary light curve is given in Fig. 1. The full amplitude of light variation is 0^m34.

On the basis of our analysis, we consider NSV 25181 as a nova-like cataclysmic variable. Three kinds of variations were detected. Firstly, brightness slowly changes from night to night. Nightly average brightness varies within 0^m.115 for our interval of observations. Secondly, strong flickering takes place on time scale of minutes. Several individual night light curves are shown in Fig. 2. On some nights, the amplitude of variability reaches 0^m.27, mostly because of flickering. There is no evidence of the orbital variability in our photometry.

After whitening the light curve for night-to-night changes, we have analyzed our observational run for periodicity using the method by Deeming (1975). The third kind of variability of NSV 25181 was found. Most significant peaks in the power spectrum (Fig. 3) correspond to periods of 28.32 min (amplitude 0.032) and 24.58 min (amplitude 0.026). The corresponding phased light curves are shown in Fig. 4. The nature of these oscillations remains unknown. One of possible reasons for them are non-radial pulsations of the white dwarf in the cataclysmic system (Arras et al., 2006; Gänsicke et al., 2006 and references therein). The double periodicity, values of the periods and their amplitudes are consistent with ZZ Cet type.

The periodic variability of NSV 25181 needs to be confirmed. We plan to continue our observations of this interesting variable.



Figure 1. The summary light curve.



Figure 2. Individual light curves for four nights of observations.



Figure 3. The power spectrum.



Figure 4. The phased light curves for two found periodicities. Bottom panels are constructed for the data whitened for the 28.32-minute variability.

Acknowledgements: We thank N.N. Samus for useful discussion. The study was supported in part by the Russian Foundation for Basic Research (grant No. 08-02-00375).

References:

Arras, P., Townsley, D.M., Bildsten, L., 2006, Astrophys. J., 643, L119

Deeming, T.J., 1975, Astrophys. and Space Science, 36, 137

Downes, R.A., 1986, Astrophys. J., 307, 170

Downes, R.A., Webbink, R.F., Shara M.M. et al., 2006, *VizieR On-line Data Catalog* V/123A

Gänsicke, B.T., Rodríguez-Gil, P., Marsh, T.R. et al., 2006, MNRAS, 365, 969

Kazarovets, E.V., Samus, N.N., Durlevich, O.V., 1998, IBVS, 4655

Number 5957

Konkoly Observatory Budapest 17 December 2010 HU ISSN 0374 – 0676

# TIME-RESOLVED SPECTROSCOPY OF THE POLAR RBS $0324(=1RXS J023052.9-684203)^{\dagger}$

CIESLINSKI, D.¹; RODRIGUES, C. V.¹; SILVA, K. M. G.¹; DIAZ, M. P.²

 1 Instituto Nacional de Pesquisas Espaciais, Divisão de Astrofísica, Brazil

² Instituto de Astronomia, Geofísica e Ciências Atmosféricas, Universidade de São Paulo, Brazil

AM Herculis stars or polars are the cataclysmic variables whose white dwarf presents the strongest superficial magnetic field. The intensity of this field varies from ~10 to 200 MG and is enough to prevent the formation of an accretion disc (with the material coming from the secondary star through  $L_1$ ) around the white dwarf and to lead the flux through the magnetic lines. A shock occurs near the white dwarf, resulting in an increase of density and temperature of the gas. This region emits strong X-rays as well as polarised radiation in the visible region, consequently, such characteristics are used to identify objects of this class. In fact, several variables of this type have been firstly discovered by their X-ray emission. This is the case of RBS 0324, which was identified as a polar candidate in the course of the ROSAT Bright Survey (RBS) (Schwope et al., 2000). For reviews on polars and cataclysmic variables, see Cropper (1990), Hellier (2001) and Warner (2005).

The confirmation that RBS 0324 is really a polar was done by Schwope et al. (2002). The object shows broad, asymmetric emission lines of the Balmer series, HeI and HeII. They are typical of polars in the state of high accretion rate. Photometric and polarimetric observations revealed variations of brightness with timescales of minutes to hours and amplitude of 2 magnitudes, as well circular polarisation reaching 20% in certain phases, all modulated with a period of 181.8 min, which was considered as the orbital period of the binary.

The fact that RBS 0324 is a poorly known polar motivated us to include it in our photometric, polarimetric and spectroscopic observational programs whose objective is better characterize magnetic cataclysmic variables and/or candidates to this class. In this letter, we present spectroscopic observations of this object.

Spectra of RBS 0324 were collected on 2009, September 26 (UT) using the Goodman spectrograph at the 4.1-m SOAR telescope, Chile. We used the 1200 l/mm transmission VPH grating and a 0.84 arcsec long slit. The detector was a Fairchild  $4096 \times 4096$  CCD, with 15 micron/pixel (0.15 arcsec/pixel). This instrumental setup provided a spectral coverage from 4280 to 5580 Å with a reciprocal dispersion of 0.31 Å/pixel and a spectral resolution of 1.5 Å. A total of 12 spectra was collected using an integration time of 15 minutes. The data cover more than one cycle of the 181.8 min orbital period.

[†]Based on observations collected at the Southern Astrophysical Research Telescope (SOAR), Cerro Pachón, Chile.

The reduction was done in the usual manner using the IRAF package¹ and consisted of zero and flat corrections, extraction to unidimensional spectrum, and finally wavelength and flux calibrations.



Figure 1. Average spectrum of RBS 0324.

The average spectrum of RBS 0324 is shown in Figure 1. Emission lines of Balmer series, HeI and HeII are very prominent, with HeII  $\lambda$ 4686 so intense as H $\beta$ . This is usually seen in others magnetic cataclysmic variables and is used as one of the criteria for select candidates to this class. The individual spectra around the H $\gamma$ , HeII  $\lambda$ 4686 and H $\beta$  spectral regions are shown in Figure 2. They are ordinated in phase using the ephemeris given by Schwope et al. (2002): HJD = 2452262.0 + 0.126245 × E. The profiles are complex, presenting broad and narrow components, and are highly variable with the orbital phase. The profiles for the three lines are similar, this is particularly evident for HeII  $\lambda$ 4686 and H $\beta$  lines whose signal-to-noise ratios are better.

We have determined the radial velocity of the H $\beta$  and HeII  $\lambda$ 4686 lines. Initially, each spectrum was continuum subtracted and smoothed due to the oversampling of the spectral PSF. To have an estimate of the radial velocity of each line, we calculated the flux weighted centroid as well as the line peak velocity. The resulting centroid radial velocity curves are shown in Figure 3 (top panel), where we used the same ephemeris as above. The two curves have the same pattern, with a semi-amplitude of about 250 km/s. An estimate of the uncertainty in the velocities was done by checking the dispersion of the sky line in  $\lambda$ 5577. This provides an error of  $\sim$ 20–30 km/s for the individual velocities. A sinusoid fit to the H $\beta$  narrow peak velocities suggests that the inferior conjunction of the secondary star occurs around phase 0.92±0.10. However, better S/N data is required to confirm the absolute phasing for this system.

Figure 3 (bottom panel) shows the continuum variation along the orbital cycle. The continuum magnitude was estimated using a square band of 660 Å width centred at 5230 Å. We performed flux calibration using spectrophotometric standard stars (Hamuy et al., 1994). However, we do not consider the absolute calibration trustful due to significant slit losses. Even so, there is a clear modulation with orbital period with an amplitude of about 1.5 mag. This amplitude is compatible with that presented by Schwope et al. (2002) and shows its maximum around phase 0.55. The light and polarization curves of

¹IRAF is distributed by the National Optical Astronomy Observatories, which are operated by the Association of Universities for Research in Astronomy, Inc., under cooperative agreement with the National Science Foundation.

RBS 0324 (Schwope et al., 2002) are typical of cyclotron emission in polars. Therefore the origin of the modulation shown in Figure 3 should be cyclotron. However, around phase 0.55 the observer sees the illuminated surface of the secondary, which can also contribute to the flux modulation.

These data represent the first approach on time-resolved spectroscopy of RBS 0324. The very complex line emission profiles put this object as a potential target for future and more detailed spectroscopic studies, such as Doppler tomography. These studies are important to understand the accretion structure in magnetic compact binaries.

Acknowledgements. We thank the SOAR staff, particularly Luciano Fraga and Sérgio Scarano, for support during the observations. C.V. Rodrigues and K.M.G. Silva acknowledge CNPq and FAPESP grants, Processes 308005/2009-0 and 2008/09619-5, respectively. M.P. Diaz thanks the support under CNPq grant 305725.



Figure 2. H $\gamma$  (left), HeII  $\lambda$ 4686 (middle) and H $\beta$  (right) profiles as a function of the orbital phase of RBS 0324. The phases,  $\phi$ , were calculated using the ephemeris HJD = 2452262.0 + 0.126245 × E (Schwope et al., 2002). The individual spectra were continuum subtracted and are arbitrarily shifted for better visualisation.



Figure 3. The top panel shows the phase diagram of the radial velocities of RBS 0324 using H $\beta$  (filled circle) and HeII  $\lambda$ 4686 (open square). The bottom panel shows the phase diagram of the continuum in the interval from 4900 to 5560 Å. The phases were calculated using the ephemeris provided by Schwope et al. (2002).

**References:** 

Schwope, A.D., Hasinger, G., Lehmann, I. et al., 2000, AN, 321, 1

- Schwope, A.D., Brunner, H., Buckley, D., Greiner, J., v.d. Heyden, K., Neizvestny, S., Potter, S., Schwarz, R., 2002, A&A, 396, 895
- Cropper, M., The Polars, 1990, Space Science Reviews, 54, 195
- Hamuy, M., Suntzeff, N. B., Heathcote, S. R., Walker, A. R., Gigoux, P., Phillips, M. M., 1994, *PASP*, **106**, 566

Hellier, C., 2001, *Cataclysmic variable stars*, Chichester: Spring

Warner, B., 1995, Cataclysmic variable stars, Cambridge University Press, Cambridge.

Number 5958

Konkoly Observatory Budapest 20 December 2010 *HU ISSN 0374 – 0676* 

# CCD TIMES OF MINIMA OF ECLIPSING BINARIES AND MAXIMA OF PULSATING STARS

#### LIAKOS, A.; NIARCHOS, P.

Department of Astrophysics, Astronomy and Mechanics, National and Kapodistrian University of Athens, GR 157 84 Zografos, Athens, Hellas; e-mail: alliakos@phys.uoa.gr, pniarcho@phys.uoa.gr

#### Observatory and telescope:

**T1**: 40cm Cassegrain telescope (f/8.1),

**T2**: 25cm Newtonian reflector telescope (f/4.7),

**T3**: 20cm Newtonian reflector telescope (f/5) at the University of Athens Observatory, and

**T4**: 1.2m Cassegrain telescope (f/13) at the Kryonerion observatory, Mt. Killini, Corinthia, Hellas, of the Astronomical Institute of the National Observatory of Athens.

Detector:	C1: ST-10XME CCD camera, Peltier cooling, KAF-
	3200ME chip, $16' \times 11'$ and $25' \times 17'$ (using a focal reducer)
	FoV with T1, $2184 \times 1472$ pixels,
	C2: ST-8XMEI CCD camera, Peltier cooling, KAF-
	1603ME chip, $40' \times 26'$ FoV with T2, $46' \times 32'$ FoV with
	T3, $1530 \times 1020$ pixels and
	C3: AP47p CCD camera, Peltier cooling, Marconi 47-10
	chip, $3' \times 3'$ FoV with T4. All CCDs are equipped with
	the Bessell UBVRI filters.

#### Method of data reduction:

Differential photometry with the software Muniwin v.1.1.26 (Hroch, 1998).

# Method of minimum determination:

Kwee & van Woerden (1956).

#### Table 1: Times of maxima of pulsating stars

System	HJD	Error	Filters	Remark
BH Peg	2455446.3910	0.0009	BRI	C2+T2
	2455449.5890	0.0014	BVRI	C2+T2
	2455457.2877	0.0012	BVRI	C1+T1
	2455460.4890	0.0011	BVRI	C2+T2
	2455467.5438	0.0021	BVRI	C2+T2
	2455503.4367	0.0009	BV	C2+T2
	2455505.3686	0.0012	BVRI	C1+T1

	Table 2: Times of imminia of echpsing binaries							
System	HJD	Error	Type	Filters	Remark			
2MASS J20275736+2453029	2455380.5448	0.0015	l	В	C2+T3			
	2455384.5349	0.0027	l	BI	C2+T3			
	2455392.5100	0.0013	l	RAKI	C2+T3			
	2455396.4925	0.0007	l	R	C2+T3			
V0395 And	2455460.3447	0.0016	I	UB	C2+T2			
CZ Aqr	2455504.3318	0.0002	l	В	C1+T1			
	2455505.1932	0.0003	I	В	C1+T1			
	2455536.2532	0.0000	Ι	В	C1+T1			
	2455539.2757	0.0004	II	В	C1+T1			
GK Cep	2455395.4022	0.0005	II	UBVRI	C2+T3			
	2455403.3591	0.0006	Ι	UBVRI	C2+T3			
	2455408.5084	0.0005	II	UBVRI	C2+T3			
UW Cyg	2455393.3837	0.0011	II	BVI	C1+T1			
	2455398.5593	0.0002	Ι	BVI	C1+T1			
	2455412.3625	0.0001	Ι	В	C1+T1			
HL Dra	2455402.3768	0.0007	II	BVRI	C1+T1			
	2455408.5157	0.0003	Ι	BVRI	C1+T1			
	2455437.3170	0.0003	II	BV	C1+T1			
	2455454.3142	0.0005	II	BVRI	C1+T1			
	2455461.3952	0.0003	Ι	BVRI	C1+T1			
HZ Dra	2455367.5164	0.0004	Ι	В	C2+T3			
	2455376.4063	0.0007	II	BVRI	C2+T3			
GSC 0198-2061	2455228.3940	0.0006	Ι	BVRI	C2+T3			
	2455231.3374	0.0005	Ι	BVRI	C2+T3			
	2455232.3812	0.0007	II	BVRI	C2+T3			
	2455246.4542	0.0015	Ι	Ι	C2+T3			
	2455254.4114	0.0010	Ι	BVRI	C2+T3			
	2455258.3992	0.0013	II	BVRI	C2+T3			
	2455271.4020	0.0006	II	Ι	C2+T3			
GSC 0770-0523	2455522.5382	0.0003	Ι	Ι	C1+T1			
	2455537.5631	0.0003	II	Ι	C1+T1			
	2455538.4351	0.0008	II	Ι	C1+T1			
$GSC \ 3164-1558$	2455383.5280	0.0005	Ι	BI	C1+T1			
	2455392.4036	0.0002	II	В	C1+T1			
	2455403.4968	0.0005	II	BVI	C1+T1			
	2455412.3732	0.0004	II	В	C1+T1			
GSC 3208-1986	2455399.5143	0.0017	II	В	C2+T3			
	2455400.3400	0.0011	II	BVR	C2+T3			
	2455400.5362	0.0007	Ι	BVRI	C2+T3			
	2455401.5482	0.0010	II	BRI	C2+T3			
	2455402.3560	0.0007	II	BVRI	C2+T3			
	2455402.5593	0.0003	Ι	BVRI	C2+T3			
	2455410.4484	0.0004	II	BVRI	C2+T3			
	2455411.4593	0.0003	Ι	BVRI	C2+T3			
GSC 3208-2644	2455399.4813	0.0005	Ι	BVRI	C2+T3			
	2455402.3817	0.0013	II	BVRI	C2+T3			
GSC 3913-0160	2455448.4226	0.0007	II	В	C1+T1			
	2455454.4395	0.0009	II	BR	C1+T1			

Table 2: Times of minima of eclipsing binaries

Table 2: cont.

System	HJD	Error	Type	Filters	Remark
	2455459.3952	0.0004	Ι	BVRI	C1+T1
	2455461.3330	0.0004	II	BVRI	C1+T1
	2455466.2811	0.0004	Ι	BVRI	C1+T1
	2455467.3551	0.0013	II	BVRI	C1+T1
GSC 4465-1210	2455401.3630	0.0009	II	VRI	C2+T3
	2455403.3954	0.0009	II	UBVRI	C2+T3
	2455408.4700	0.0007	Ι	UBVRI	C2+T3
	2455410.4986	0.0005	II	UBVRI	C2+T3
V0948 Her	2455376.3885	0.0013	II	BVRI	C1+T1
V0973 Her	2455368.3877	0.0002	Ι	BV	C2+T3
	2455374.3660	0.0009	II	UBVRI	C2+T3
AU Lac	2455404.3869	0.0003	II	В	C3+T4
	2455406.4674	0.0001	Ι	В	C3+T4
	2455436.4096	0.0013	II	BVRI	C1+T1
	2455438.4932	0.0002	Ι	BVRI	C1+T1
	2455441.2780	0.0006	Ι	BVRI	C1+T1
	2455450.3232	0.0018	II	BVRI	C1+T1
	2455457.2910	0.0010	II	BVRI	C1+T1
	2455507.4374	0.0003	II	В	C3+T4
V0407 Lac	2455400.4772	0.0020	II	BVRI	C2+T3
	2455402.5188	0.0018	Ι	BVRI	C2+T3
	2455411.4614	0.0010	Ι	BVRI	C2+T3
AT Peg	2455436.5775	0.0005	II	BR	C2+T3
	2455439.4392	0.0004	Ι	BR	C2+T3
	2455442.2968	0.0008	II	$\mathbf{BR}$	C2+T3
	2455447.4616	0.0001	Ι	BR	C2+T2
BG Peg	2455443.5417	0.0015	II	VRI	C1+T1
	2455446.4710	0.0003	Ι	BVRI	C1+T1
	2455449.3997	0.0011	II	VRI	C2+T2
	2455450.3762	0.0005	Ι	BVRI	C2+T2
	2455494.3133	0.0013	II	RI	C2+T2
RZ Tau	2455505.5412	0.0002	II	В	C2+T2
	2455536.2999	0.0002	II	В	C2+T2
	2455536.5080	0.0001	Ι	В	C2+T2
	2455537.3392	0.0001	Ι	BVI	C2+T2
	2455537.5471	0.0002	II	BVI	C2+T2
IO UMa	2455367.3954	0.0010	Ι	BVRI	C1+T1
USNO-A2.0 1350-16144088	2455439.5919	0.0014	Ι	BV	C1+T1
	2455441.3565	0.0010	Ι	BVRI	C1+T1
	2455448.4193	0.0018	Ι	BVRI	C1+T1
	2455450.4064	0.0018	II	BVRI	C1+T1
	2455457.2512	0.0020	I	В	C1+T1
	2455457.4717	0.0012	II	BVRI	C1+T1
AW Vul	2455381.4155	0.0002	I	BVRI	C2+T3
	2455383.4316	0.0011	II	BVRI	C2+T3
	2455391.4986	0.0012	II	BVRI	C2+T3
	2455393.5121	0.0011	Ι	BVRI	C2+T3
	2455394.3186	0.0010	Ι	BVRI	C2+T3

#### Explanation of the remarks in the table:

T1, T2, T3, T4, C1, C2 and C3 refer to the instrumentation (telescope and CCD camera) used for each case.

#### **Remarks:**

The system GSC 0770-0523 was discovered by Liakos & Niarchos (2010a), the systems 2MASS J20275736+2453029, GSC 0198-2061, GSC 3164-1558, GSC 3208-2644 and USNO-A2.0 1350-16144088 by Liakos & Niarchos (2010b), the systems GSC 3208-1986 and GSC 3913-0160 by Gettel et al. (2006), and the system GSC 4465-1210 by Khruslov (2007).

#### Acknowledgements:

This work has been financially supported by the Special Account for Research Grants No 70/4/9709 of the National & Kapodistrian University of Athens, Hellas.

References:

Gettel, S.J., Geske, M.T., McKay, T.A., 2006, Astronomical Journal, 131, 621
Hroch, F., 1998, Proceedings of the 29th Conference on Variable Star Research, 30
Khruslov, A.V., 2007, Peremennye Zvezdy Prilozhenie, 7, 13
Kwee, K., van Woerden, H., 1956, Bulletin of the Astronomical Institutes of the Netherlands, 12, 327, (No. 464)
Liakos, A., Niarchos, P., 2010a, Peremennye Zvezdy Prilozhenie, 10, 9

Liakos, A., Niarchos, P., 2010b, IBVS, No 5998, in press

^{*}This version of the paper contains corrections, and differs from the one appeared on-line originally. Date of last modification: Mar 11 15:24:48 CET 2013

Number 5959

Konkoly Observatory Budapest 5 January 2011 HU ISSN 0374 – 0676

# BAV-RESULTS OF OBSERVATIONS - PHOTOELECTRIC MINIMA OF SELECTED ECLIPSING BINARIES AND MAXIMA OF PULSATING STARS

(BAV MITTEILUNGEN NO. 214)

#### HÜBSCHER, JOACHIM; MONNINGER, GEROLD

Bundesdeutsche Arbeitsgemeinschaft für Veränderliche Sterne e.V. (BAV), Munsterdamm 90, 12169 Berlin, Germany, www.bav-astro.de, publikat@bav-astro.de

In this 68th compilation of BAV results, photoelectric observations obtained in the year 2010 are presented on 436 variable stars giving 784 minima on eclipsing binaries and maxima on pulsating stars. All moments of minima and maxima are heliocentric. The errors are tabulated in column ' $\pm$ '. The values in column 'O - C' are determined without incorporation of nonlinear terms. The references are given in the section 'Remarks'. All information about photometers and filters are specified in the column 'Rem'. The observations were made at private observatories. The photoelectric measurements and all the lightcurves with evaluations can be obtained from the office of the BAV for inspection.

Variable	HJD 24	±	Obs	O - C		Bibliography	Fil	n	Rem
RT And	55381.4694	.0049	PGL	+0.0421		GCVS 2009	V	212	15)
AA And	54841.2736	.0002	RAT RCR	-0.0039		GCVS 2009	-U-I	82	4)
AS And	55102.3361	.0001	MS FR				0	488	9)
V452 And	55071.5098	.0004	$\mathbf{FR}$	+0.0832		GCVS 2009	-Ir	29	16)
V463 And	55124.4122	.0019	RAT RCR	-0.0731		GCVS 2009	-U-I	173	4)
	55124.6061	.0004	RAT RCR	-0.0823	$\mathbf{s}$	GCVS 2009	-U-I	173	4)
	55125.4198	.0002	RAT RCR	-0.0808	$\mathbf{s}$	GCVS 2009	-U-I	197	4)
UU Ant	54968.3130	.0020	HND	-0.0281		GCVS 2009	0	52	7)
	54983.3170	.0020	HND	-0.0294		GCVS 2009	0	76	7)
MU Aqr	55029.5140	.0005	RAT RCR	-0.0016		GCVS 2009	-U-I	109	4)
KP Aql	55410.3796	.0030	WTR	-0.0194	$\mathbf{s}$	GCVS 2009	-Ir	46	12)
QY Aql	55353.4883	.0005	AG	-0.1815		GCVS 2009	-Ir	31	16)
V340 Aql	55352.4696	.0005	AG	+0.0153		GCVS 2009	-Ir	43	16)
V346 Aql	55430.3848	.0010	WTR	-0.0105		GCVS 2009	-Ir	77	12)
V724 Aql	55017.4646	.0004	RAT RCR	-0.0333		IBVS $3555$	-U-I	90	4)
V805 Aql	55409.4168	.0040	WTR	+0.0109	$\mathbf{s}$	GCVS 2009	-Ir	81	12)
V962 Aql	55374.4966	.0014	AG	-0.1204		GCVS 2009	-Ir	33	16)
V1045 Aql	55353.4470	.0038	AG	-0.0131	$\mathbf{s}$	GCVS 2009	-Ir	31	16)
V1097 Aql	55353.4483	.0121	AG	-0.0698	$\mathbf{s}$	GCVS 2009	-Ir	31	16)
V1184 Aql	55359.5221	.0003	AG	+0.1240		GCVS 2009	-Ir	31	16)
	55374.5108	.0097	AG	+0.1065		GCVS 2009	-Ir	33	16)
V1299 Aql	55352.4665	.0009	AG	-0.0470		GCVS 2009	-Ir	27	16)
TT Aur	54840.4918	.0001	RAT RCR	-0.0139		GCVS 2009	m	190	4)
ZZ Aur	54843.5204	.0007	RAT RCR	+0.0185	$\mathbf{s}$	GCVS 2009	-U-I	111	4)
AP Aur	54841.6138	.0003	RAT RCR	+0.0888	$\mathbf{s}$	IBVS 3942	-U-I	158	4)

Table 1: Times of minima of eclipsing binaries
Table 1: (cont.)

Variable	HJD 24	±	Obs	O-C		Bibliography	Fil	n	Rem
AP Aur	54911.3657	.0002	RAT RCR	+0.0931		IBVS 3942	-U-I	87	4)
EM Aur	54909.3642	.0010	RAT RCR	-0.1946		GCVS 2009	-U-I	80	4)
HL Aur	54910.3029	.0002	RAT RCR	-0.0148		GCVS 2009	-U-I	44	4)
KU Aur	54838.3742	.0002	RAT RCR	+0.0258		GCVS 2009	-U-I	77	4)
NN Aur	55295.4256	.0004	$\mathbf{FR}$				-Ir	40	16)
SU Boo	54947.3748	.0005	RAT RCR	+0.0187		GCVS 2009	-U-I	85	4)
ГҮ Воо	55281.4350	.0022	AG	-0.0321	$\mathbf{s}$	BAVM 68	-Ir	58	16)
	55281.5912	.0010	AG	-0.0345		BAVM 68	-Ir	58	16)
'Z Boo	55311.4755	.0002	GB	-0.0352		BAVM 68	V	100	5)
	55313.4059	.0002	GB	-0.0364	$\mathbf{s}$	BAVM 68	V	121	5)
	55314.4476	.0046	AG	-0.0347		BAVM 68	-Ir	99	16)
	55314.4476	.0002	GB	-0.0347		BAVM 68	V	131	5)
	55314.5953	.0010	AG	-0.0356	$\mathbf{S}$	BAVM 68	-Ir	99	16)
	55315.4863	.0001	GB	-0.0361	$\mathbf{S}$	BAVM 68	V	85	5)
	55316.3772	.0001	GB	-0.0366	$\mathbf{s}$	BAVM 68	V	83	5)
	55316.5284	.0021	AG	-0.0340		BAVM 68	-Ir	56	16)
	55352.4844	.0002	GB	-0.0340		BAVM 68	V	85	5)
	55358.4273	.0001	GB	-0.0342		BAVM 68	V	81	5)
	55362.4378	.0001	GB	-0.0353	$\mathbf{S}$	BAVM 68	V	95	5)
/W Boo	54953.3787	.0003	RAT RCR	-0.0655		BAVR 32,122	-U-I	61	4)
XY Boo	55294.4146	.0014	$\operatorname{AG}$	+0.0073	$\mathbf{S}$	GCVS 2009	V	63	16)
	55294.5997	.0023	$\operatorname{AG}$	+0.0071		GCVS 2009	V	63	16)
	55310.5361	.0035	$\operatorname{AG}$	+0.0100		GCVS 2009	-Ir	35	16)
Y Boo	55316.5096	.0038	AG	-0.1053		GCVS 2009	-Ir	56	16)
AC Boo	55301.3887	.0021	PGL	+0.0060	$\mathbf{S}$	GCVS 2009	V	213	18)
.Q Boo	55294.4080	.0032	AG				-Ir	63	16)
	55294.5743	.0022	AG				-Ir	63	16)
	55310.3964	.0044	AG				-Ir	35	16)
	55310.5638	.0012	AG				-Ir	35	16)
R Boo	55310.4363	.0042	AG	+0.0970	$\mathbf{s}$	GCVS 2009	-Ir	36	16)
	55310.6074	.0001	AG	+0.0597		GCVS 2009	-Ir	36	16)
)U Boo	55341.4260	.0018	JU				0	40	5)
W Boo	55073.3606	.0002	RAT RCR				-U-I	104	20)
	55314.4498	.0075	AG				-lr	99	16)
Y Boo	55310.3770	.0004	AG				-lr	36	16)
	55310.4990	.0009	AG				-lr	36	16)
зм Воо	55315.3853	.0031	AG				-lr	50	16)
NN D	55315.5660	.0060	AG				-lr	50	16)
JN Boo	55315.3905	.0010	AG				-lr	50	16)
	55315.5408	.0007	AG				-lr	50	16)
JP BOO	55315.4505	.0130	AG				-lr	50	16) 16)
JQ BOO	55315.4348	.0039	AG				-1r	50	16) 16)
яТ В00	55314.4104	.0085	AG				-lr	99	16) 16)
W D.	55316.4070	.0060	AG	10.1044		COVC 2000	-Ir	55 62	16) 16)
лW В00	55294.3962	.0058	AG	+0.1044		GUVS 2009	V T	03	10)
	55310.4000	.0030	AG	+0.1074	_	GUVS 07	-1r	40	10)
IV D.	55310.5829	.0011	AG	+0.0779	s	GCVS 2009	-1r	40	16) 16)
JA B00	55310.5412	.0042	AG	-0.0017	s	GCVS 2009	-1r	30	10)
IK B00	55315.4281	.0047	AG	-0.0398		GUVS 2009	-1r V	00 62	10)
O Cam	55227.5471	.0055	FGL DAT DCD	+0.0454	s	GUVS 09	V TT T	49	10)
to Cam	04044.2204 55104 4199	.0002	NAI NUN	-0.0097	S	CCVS 2009	-0-1 V	42	4) 19)
	00194.4182 55969 9661	.0001	VV IN TI T	-0.0808			v	103 E0	13) E)
W Com	00200.3001 54000 2000	.0012	JU DAT DOD	-0.0910			U TT T	02 109	ت م
TD Com	J4900.J002 55962 4060	.0002 0146	AC	-0.0087		GU V S 2009	-0-1 Ir	104 69	4) 16)
JO Cam	00200.4909 55962 2779	.0140	AG			CCVC 2000	-11 I	02 61	10) 16)
vų Cam	00200.0112 55969 EERE	.0010	AG	+0.0901	~		-1f T.,	01 61	10) 16)
	00200.0080 55316 4951	.0013 2001	AG	$\pm 0.0904$ $\pm 0.0019$	S	CCVS 07	-11 In	01 51	10) 16)
VR Com	57010.4701 20010 3200	.0039 0009	AG RAT RCP	$\pm 0.0918$	3	CCVS 2000	-11. -11.	91 945	10) 4)
vii Ualli	54910.5790	0002	RAT RCR	+0.0024 +0.0024	c	GCVS 2009	-U-I _II.I	240 245	4) 4)
	54910 6361	0002	RAT RCR	+0.0031	G	GCVS 2009	_11_1	245	
	04010.0001	.0000	TUTT HOIL	10.0000		GC ( D 2003	-0-1	2±0	÷,

Table 1: (cont.)

	Variable	HJD 24	±	Obs	O - C		Bibliography	Fil	n	Rem
	NS Cam	55263.3587	.0056	AG	-0.0487		GCVS 2009	-Ir	66	16)
	NU Cam	54911.5670	.0005	RAT RCR	+0.0358		GCVS 2009	-U-I	184	4)
	TX Cnc	55192.4713	.0001	RAT RCR	+0.0372		GCVS 2009	-U-I	95	20)
	WX Cnc	54881.3266	.0003	RAT RCR	+0.0125	$\mathbf{S}$	GCVS 2009	-U-I	115	4)
	AH Cnc	54173.4445	.0017	SCI	+0.0372		GCVS 2009	0	77	5)
	EH Cnc	54857.3580	.0003	RAT RCR				-U-I	86	4)
	FF Cnc	55279.4636	.0002	$\mathbf{FR}$	-0.1897		IBVS 3859	-Ir	62	16)
	GQ Cnc	55275.3979	.0015	AG				-Ir	23	16)
	HN Cnc	54861.3853	.0003	RAT RCR	-0.0166		IBVS $5260$	-U-I	96	4)
	IL Cnc	54866.4299	.0003	RAT RCR	+0.0461	$\mathbf{S}$	GCVS 2009	-U-I	84	4)
		55275.4110	.0013	AG	+0.0580	$\mathbf{S}$	GCVS 2009	-Ir	25	16)
		55295.3479	.0010	AG	+0.0550		GCVS 2009	-Ir	45	16)
		55295.4840	.0009	AG	+0.0573	$\mathbf{S}$	GCVS 2009	-Ir	45	16)
	IM Cnc	55275.4354	.0001	AG	-0.0028	$\mathbf{S}$	GCVS 2009	-Ir	24	16)
	IO Cnc	55295.4652	.0022	AG	+0.0091	$\mathbf{S}$	GCVS 2009	-Ir	43	16)
	IT Cnc	55275.4235	.0019	AG	-0.0488	$\mathbf{S}$	GCVS 2009	-Ir	27	16)
		55295.4284	.0023	AG	-0.0460	$\mathbf{S}$	GCVS 2009	-Ir	43	16)
	$VZ \ CVn$	54943.3740	.0002	RAT RCR	-0.0011	$\mathbf{S}$	GCVS 2009	m	65	4)
	BI CVn	55309.4183	.0039	AG	+0.0264	$\mathbf{S}$	GCVS 2009	-Ir	59	16)
	BO CVn	55294.3759	.0091	AG				-Ir	154	16)
	DF CVn	55309.3901	.0012	AG				-Ir	59	16)
		55309.5525	.0010	AG				-Ir	59	16)
	DR CVn	55309.4294	.0044	AG	+0.0412		GCVS 2009	-Ir	59	16)
		55309.5967	.0017	AG	+0.0440	$\mathbf{S}$	GCVS 2009	-Ir	59	16)
	DX CVn	54941.3625	.0004	RAT RCR	+0.0013		GCVS 2009	-U-I	77	4)
		55309.4697	.0018	AG	+0.0050		GCVS 2009	-Ir	59	16)
	DY CVn	55309.4431	.0012	AG	-0.0037	$\mathbf{S}$	GCVS 2009	-Ir	59	16)
		55309.5657	.0008	AG	-0.0041		GCVS 2009	-Ir	59	16)
	EE CVn	55315.3876	.0029	AG	-0.0058	$\mathbf{s}$	GCVS 2009	-Ir	61	16)
	EH CVn	55315.4511	.0023	AG	-0.0494		GCVS 2009	-Ir	59	16)
		55315.5953	.0040	AG	-0.0370	$\mathbf{s}$	GCVS 2009	-Ir	59	16)
	EI CVn	55315.4722	.0012	AG	-0.0170	$\mathbf{s}$	GCVS 2009	-Ir	60	16)
		55315.6041	.0002	AG	-0.0154		GCVS 2009	-Ir	60	16)
	BZ Cas	54840.4030	.0003	RAT RCR	+0.2740		GCVS 2009	-U-I	66	4)
	IR Cas	55192.2594	.0001	RAT RCR	+0.0084		GCVS 2009	-U-I	121	20)
	MR Cas	55063.5061	.0024	AG	+0.0220		GCVS 2009	-Ir	30	16)
	OR Cas	55374.4332	.0007	AG	-0.0232		GCVS 2009	-Ir	38	16)
	PV Cas	54840.2923	.0003	RAT RCR	-0.0345		GCVS 2009	-U-I	69	4)
	QQ Cas	54155.3169	.0004	RAT RCR	+0.4489		BAVR 35,1	-U-I	165	20)
	V366 Cas	55374.4334	.0018	AG	-0.0356	$\mathbf{S}$	IBVS 4798	-Ir	38	16)
	V387 Cas	55374.4561	.0035	AG	+0.1023		GCVS 2009	-Ir	38	16)
	V440 Cas	55154.3420	.0005	$\mathbf{FR}$				-Ir	67	16)
		55154.5027	.0008	$\mathbf{FR}$				-Ir	67	16)
	V952 Cas	54843.2532	.0007	RAT RCR	-0.0072		BAVM148	-U-I	82	4)
	VW Cep	55394.4511	.0035	PGL	-0.0532	$\mathbf{s}$	GCVS 2009	V	363	15)
	XX Cep	55376.4583	.0010	JU	-0.0122		GCVS 2009	0	50	5)
	CW Cep	55353.5002	.0069	PGL	+0.0167		GCVS 2009	V	251	18)
	-	55398.4932	.0050	JU	-0.0212	$\mathbf{S}$	GCVS 09	0	88	5)
	EF Cep	54841.4654	.0005	RAT RCR	+0.1843	$\mathbf{S}$	GCVS 09	-U-I	70	4)
	GI Cep	55082.4741	.0001	RAT RCR	-0.1044		GCVS 2009	-U-I	289	20)
	-	55097.5205	.0007	RAT RCR	-0.1044	$\mathbf{s}$	GCVS 2009	-U-I	182	20)
	GW Cep	54843.3694	.0002	RAT RCR	-0.0130		BAVR 33,160	-U-I	78	4)
	RW Com	54933.4181	.0001	RAT RCR	-0.0170		GCVS 2009	-U-I	101	4)
		55310.4456	.0017	AG	-0.0135	$\mathbf{S}$	GCVS 2009	-Ir	40	16)
		55310.5646	.0008	AG	-0.0132		GCVS 2009	-Ir	40	16)
	RZ Com	54866.5259	.0001	RAT RCR	+0.0422		GCVS 2009	-U-I	136	4)
		54932.3656	.0001	RAT RCR	+0.0425	$\mathbf{s}$	GCVS 2009	-U-I	78	4)
	SS Com	54935.3529	.0004	RAT RCR	-0.0461	$\mathbf{s}$	BAVR 33,152	-U-I	57	4)
	CN Com	55293.3996	.0001	MS FR	+0.0600		GCVS 2009	0	558	9)
	DG Com	55306.3851	.0004	MS FR	-0.0512	$\mathbf{s}$	GCVS 2009	0	324	9)́
	EK Com	55310.4659	.0016	AG				-Ir	40	16)́
-										,

Table 1: (cont.)

Variable	HJD 24	±	Obs	O - C		Bibliography	Fil	n	Rem
EK Com	55310.5989	.0022	AG				-Ir	40	16)
EQ Com	55305.3627	.0004	MS FR	+0.0153		GCVS 2009	0	497	9)
LO Com	55310.4708	.0025	AG				-Ir	38	16)
LP Com	55310.5025	.0018	AG				-Ir	40	16)
LQ Com	55310.4057	.0048	AG				-Ir	40	16)
Ū	55310.5815	.0011	AG				-Ir	40	16)
U CrB	55281.5594	.0055	AG	+0.1164		GCVS 2009	R	55	16)
	55281.5598	.0065	AG	+0.1168		GCVS 2009	V	53	16)
RT CrB	55281.5761	.0094	AG	-0.0321		GCVS 2009	v	57	16)
101 012	55294.3963	.0078	FR	-0.0048	s	GCVS 2009	-Ir	35	10)
BW CrB	54922 5623	0002	BAT BCB	-0.0015	D	GCVS 2009	-U-I	132	4)
Itter OID	55281 4117	0064	AG	+0.0010		GCVS 2009	V	59	16)
	55294 4872	0004	FB	+0.0001 +0.0008		GCVS 2009	-Ir	53	10)
TW CrB	55203 / 322	0004	FR	+0.0000	e	GCVS 2009	-11 _Ir	45	10)
AR CrB	55203 3883	0006	FR	-0.0043	0	GCVS 2009	-11 Ir	70	16)
AIL OLD	55202 5857	.0000	FD	-0.0045	6	GCVS 2009	-11 In	70	10) 16)
AS C ₂ D	54069 4961	.0003		-0.0050	a	GCVS 2009	-11 TT T	64	4)
AS OID	54906.4201	.0003	DAT DOD	+0.0000	8	GCVS 2009	-0-1	04 116	$\frac{4}{20}$
AV C ₂ D	0007.0977 E4024 499E	.0002	DAT DCD	+0.0005	s	GCVS 2009	-U-I II I	110	20)
AV CrB	54954.4885	.0002	RAI RCR	-0.0143		GCVS 2009	-U-1	123	4)
	54974.3975	.0002	RATROR	-0.0163	$\mathbf{s}$	GCVS 2009	-U-1	57	4) 10)
	55340.5298	.0020	AG	-0.0173	$\mathbf{s}$	GCVS 2009	-lr	25	16)
VV Cyg	55372.4826	.0004	AG	+0.0110		GCVS 2009	-lr	33	16)
WZ Cyg	55072.4786	.0001	RATRCR	+0.0628		GCVS 2009	-U-I	194	20)
DP Cyg	55309.5734	.0024	AG	+0.1784	$\mathbf{s}$	GCVS 2009	-lr	46	16)
EN Cyg	55376.3863	.0008	AG	+0.4489		GCVS 2009	-lr	36	16)
	55398.5363	.0012	SCI	+0.4508		GCVS 2009	0	33	5)
GG Cyg	55359.5168	.0003	AG	+0.1372		GCVS 2009	-Ir	28	16)
LO Cyg	55357.4415	.0016	$\operatorname{AG}$	+0.0003		GCVS 2009	-Ir	17	16)
MY Cyg	55359.4654	.0179	$\operatorname{AG}$	-0.0026		GCVS 2009	V	30	16)
	55359.4669	.0117	$\operatorname{AG}$	-0.0011		GCVS 2009	В	30	16)
NZ Cyg	55377.4130	.0012	$\operatorname{AG}$	+0.0794	$\mathbf{S}$	GCVS 2009	-Ir	24	16)
QW Cyg	55377.4435	.0046	AG	-0.0754	$\mathbf{S}$	GCVS 2009	-Ir	24	16)
	55379.4930	.0021	SCI	-0.0826		GCVS 2009	0	55	5)
V346 Cyg	55375.4342	.0010	AG	+0.1493		GCVS 2009	-Ir	30	16)
V370 Cyg	55101.4070	.0005	RAT RCR	-0.0243		GCVS 2009	-U-I	56	4)
	55376.3694	.0010	AG	-0.0250		GCVS 2009	-Ir	62	16)
V401 Cyg	54968.5132	.0003	RAT RCR	+0.0590	$\mathbf{S}$	GCVS 2009	-U-I	94	4)
	55376.4289	.0123	AG	+0.0693	$\mathbf{S}$	GCVS 2009	-Ir	32	16)
V442 Cyg	55391.4693	.0027	SCI	-0.0425		GCVS 2009	0	98	5)
V443 Cyg	55371.4949	.0017	SCI	+0.0327		GCVS 2009	0	95	5)
V454 Cyg	55075.4922	.0001	RAT RCR	-0.0089		GCVS 2009	-U-I	262	20)
V478 Cvg	55092.5586	.0020	RAT RCR	+0.0232	$\mathbf{s}$	GCVS 2009	-U-I	208	20)
V483 Cvg	55073.5275	.0030	BAT RCR	+0.0338		GCVS 2009	-U-I	152	20)
V499 Cvg	55359.4007	.0017	AG	+0.0383		GCVS 2009	-Ir	27	16)
V500 Cvg	55083.5077	.0007	BAT BCB	+0.1083	s	GCVS 09	-U-I	231	20)
1000 098	55370.4700	.0017	SCI	+0.1022	D	GCVS 2009	0	63	5)
V502 Cvg	55294 5662	0007	MS FR	+0.1242		GCVS 2009	0	29	9)
V509 Cyg	55396 5066	0028	SCI	+0.1212 +0.2039		GCVS 2009	0	73	5)
V704 Cyg	55372 4499	0018	AG	$\pm 0.2000$	e	GCVS 2009	_Ir	33	16)
V704 Cyg	55306 5260	.0010	MS FR	-0.0512	5	GCVS 2009	-11	300	0)
v 100 Oyg	55372 5018	.0002		-0.0540	0	CCVS 2009	U Ir	22	16)
W796 Cam	55572.5018	.0010	AG MC ED	-0.0340	ъ	GCVS 2009	-11	- 00 E 0E	10)
V720 Cyg	00290.0090 EE070.6197	.0001	MS FR MS FR	+0.0408		GUVS 2009	0	200	9)
V755 Cyg	55279.0107	.0002	MO FA DAT DOD	+0.0033		CCVS 2000		300 206	9) 20)
V706 Cree	55074 4047	.0001	DAT DOD	+0.0042		CCVS 2009	-U-I II I	200 200	20) 20)
v 196 Cyg	00074.4847	.0001	LAL KUK	-0.0101		GUVS 2009	-U-1 T	228	20) 10)
v 824 Cyg	00011.4170	.0041	AG	+0.0149		GUVS 2009	-1r	25	10)
V 859 Cyg	55376.4325	.0023	SUL	+0.0158		GUVS 2009	0 T	113	5)
V 909 Cyg	55429.3919	.0020	WTR	-0.0221		BAVR $47,2$	-1r	81	12)
V941 Cyg	55085.4615	.0029	SCI	-0.0785		GCVS 2009	0	65	5)
	55386.5169	.0023	SCI	-0.0736		GCVS 2009	0	105	5)
V957 Cyg	55305.5538	.0005	MS FR	+0.1387		GCVS 2009	0	572	9)

Table 1: (cont.)

Variable	HJD 24	+	Obs	O-C		Bibliography	Fil	n	Rem
V959 Cvg	55126.2884	.0002	RAT RCR	-0.0514		GCVS 2009	-U-I	169	20)
	55376.5040	.0015	AG	-0.0514		GCVS 2009	-Ir	32	16)
V961 Cvg	55375.4909	.0005	AG	-0.0800		GCVS 2009	-Ir	30	16)
	55376.5093	.0023	AG	-0.0805	s	GCVS 2009	-Ir	32	16)
V963 Cvg	55065.4652	.0002	RAT RCR	-0.0011		GCVS 2009	-U-I	151	20)
	55376.4762	.0012	AG	-0.0011		GCVS 2009	-Ir	32	16)
V970 Cvg	55385.5250	.0029	SCI	-0.0006		GCVS 2009	0	32	5)
V995 Cvg	55062.5472	.0001	RAT RCR	+0.4891		GCVS 2009	-U-I	268	20)
V1004 Cvg	55375.5435	.0004	AG	-0.1746		GCVS 2009	-Ir	30	16)
V1013 Cvg	55358.4732	.0031	$\mathbf{FR}$	+0.1512	$\mathbf{s}$	GCVS 2009	-Ir	19	16)
V1018 Cvg	55125.2817	.0004	RAT RCR	-0.0885		GCVS 2009	-U-I	120	4)
V1036 Cvg	55304.5632	.0002	MS FR	+0.0005		BAVM 141	0	605	9)
V1141 Cvg	55044.5112	.0003	RAT RCR	+0.0358		GCVS 2009	-U-I	140	4)
20	55124.3133	.0003	RAT RCR	+0.0228		GCVS 2009	-U-I	131	4)
	55377.4176	.0050	AG	+0.0963		GCVS 2009	-Ir	23	16)
V1171 Cvg	55358.4905	.0002	$\mathbf{FR}$	-0.0559		GCVS 2009	-Ir	32	16)
V1193 Cvg	55264.6100	.0005	MS FR	+0.2640		GCVS 09	0	513	9)
20	55393.5768	.0025	SCI	+0.1598	$\mathbf{s}$	GCVS 2009	0	28	5)
V1196 Cyg	55265.6146	.0008	MS FR	+0.0769		GCVS 2009	0	513	9)
V1305 Cvg	55382.3907	.0033	SCI	+0.0049		GCVS 2009	0	60	5)
V1356 Cvg	55375.4983	.0010	AG	+0.1744		GCVS 2009	V	30	16)
V1425 Cyg	55374.4909	.0026	SCI	+0.0079		GCVS 2009	0	166	5)
V2080 Cyg	55375.5245	.0019	SCI				0	105	5)
V2240 Cyg	55075.4963	.0003	RAT RCR				-U-I	244	20)
V2287 Cyg	55063.5258	.0001	RAT RCR				-U-I	269	20)
W Del	55377.4703	.0058	AG	+0.0281		GCVS 2009	-Ir	26	16)
EX Del	55352.5175	.0013	AG	-0.0658	$\mathbf{s}$	GCVS 2009	-Ir	27	16)
RZ Dra	55353.4603	.0098	AG	+0.0526	$\mathbf{s}$	GCVS 2009	-Ir	120	16)
TW Dra	55296.3431	.0030	JU	+0.0244		GCVS 2009	0	55	5)
	55338.4462	.0010	JU	+0.0248		GCVS 2009	0	66	5)
TZ Dra	55391.4509	.0010	JU	-0.0309		GCVS 2009	0	62	5)
XY Dra	55375.4714	.0030	AG	+0.1631		GCVS 2009	-Ir	46	16)
AX Dra	54881.5272	.0004	RAT RCR	-0.0042		BAVR 32,36	-U-I	80	4)
BE Dra	54937.5211	.0002	RAT RCR	-0.1235	$\mathbf{s}$	GCVS 2009	-U-I	188	4)
GV Dra	55340.4121	.0024	SCI	-0.0027		IBVS 4990	0	149	5)
LZ Dra	54942.4969	.0002	RAT RCR				-U-I	167	4)
NN Dra	54847.5901	.0002	RAT RCR	+0.0629		GCVS 2009	-U-I	199	4)
AF Gem	54861.2801	.0001	RAT RCR	-0.0694		GCVS 2009	-U-I	68	4)
AV Gem	55201.3127	.0018	AG	-0.0297		GCVS 2009	-Ir	15	16)
$AZ \ Gem$	55244.3529	.0003	AG	+0.0862		GCVS 2009	-Ir	13	16)
$BO \ Gem$	55263.4520	.0004	$\mathbf{FR}$	+0.7178		GCVS 2009	-Ir	50	16)
DV Gem	55263.469 :	.001	$\mathbf{FR}$	-0.380		GCVS 2009	-Ir	64	16)
EG Gem	55263.4003	.0173	AG	+0.2824	$\mathbf{S}$	GCVS 2009	-Ir	23	16)
EN Gem	55263.3056	.0063	AG	-0.0372	$\mathbf{S}$	GCVS 2009	-Ir	26	16)
FG Gem	55244.3702	.0004	AG	-0.0257		GCVS 2009	-Ir	15	16)
FT Gem	55263.4233	.0042	AG	-0.0273		GCVS 2009	-Ir	24	16)
$\operatorname{HR}\operatorname{Gem}$	54866.2978	.0003	RAT RCR	+0.0124		GCVS 2009	-U-I	57	4)
KM Gem	55263.4324	.0047	AG	-0.0587		GCVS 2009	-Ir	22	16)
KQ Gem	55263.3926	.0020	AG	-0.0839		GCVS 2009	-Ir	18	16)
KV Gem	55201.2838	.0010	$\operatorname{AG}$	-0.0205	$\mathbf{S}$	BAVR $52,95$	-Ir	15	16)
	55244.3074	.0019	AG	-0.0198	$\mathbf{S}$	BAVR $52,95$	-Ir	15	16)
KY Gem	55201.7210	.0050	AG	-0.4233		GCVS $2009$	-Ir	77	16)
SZ Her	55059.3907	.0001	RAT RCR	-0.0216		GCVS $2009$	-U-I	94	20)
	55068.3901	.0001	RAT RCR	-0.0213		GCVS $2009$	-U-I	94	20)
	55086.3881	.0001	RAT RCR	-0.0215		GCVS $2009$	-U-I	133	20)
TT Her	54943.4897	.0005	RAT RCR	+0.0330	$\mathbf{S}$	GCVS $2009$	-U-I	147	4)
TX Her	55304.5043	.0004	$\mathrm{QU}$	-0.0049		GCVS $2009$	V	64	6)
BC Her	55374.5003	.0009	AG	-0.4184		GCVS $2009$	-Ir	35	16)
CC Her	55340.4861	.0006	AG	+0.1997		GCVS $2009$	-Ir	53	16)
DK Her	55352.3872	.0007	AG	-0.1371		GCVS 2009	-Ir	39	16)
FN Her	55340.4008	.0035	AG	+0.0914		GCVS 2009	-Ir	53	16)

Table 1: (cont.)

Variable	HJD 24	±	Obs	O - C		Bibliography	Fil	n	Rem
FW Her	53612.3589	.0018	SCI	+0.0596		GCVS 2009	0	28	5)
	55352.5326	.0022	SCI	+0.0701		GCVS 2009	0	37	5)
IK Her	55372.5098	.0096	AG	+0.2595	$\mathbf{S}$	GCVS 2009	-lr	32	16)
L'I Her	54941.4588	.0009	RAT RCR	-0.0267		BAVM 69	-U-I	138	4)
V338 Her	55385.4167	.0006	JU	+0.0925		GCVS 2009	0	52	5)
V357 Her	55359.4356	.0024	AG	+0.0239	$\mathbf{S}$	GCVS 2009	-lr	29	16)
TIONO TT	55374.5253	.0026	AG	+0.0233	$\mathbf{S}$	GCVS 2009	-lr	35	16)
V359 Her	55075.3645	.0003	RAT RCR	+0.1894		GCVS 2009	-U-I	150	20)
LOOI II	55340.4762	.0080	AG	+0.1851		GCVS 2009	-lr	25	16)
V381 Her	55341.4971	.0028	AG	+0.1873		GCVS 2009	-lr	33	16)
V387 Her	55341.4754	.0014	AG	+0.0685	$\mathbf{S}$	GCVS 2009	-lr	32	16)
V450 Her	55314.4030	.0028	AG	+0.1110	$\mathbf{S}$	GCVS 2009	-lr	30	16)
V719 Her	55084.3007	.0002	RAT RCR	+0.0025	$\mathbf{S}$	GCVS 2009	-U-I	192	20)
	55092.3198	.0002	RATRCR	+0.1287		GCVS 09	-U-I	156	20)
	55341.4961	.0022	AG	+0.0894		GCVS 09	-lr	30	16)
	55358.5328	.0013	AG	+0.1647	$\mathbf{s}$	GCVS 09	-lr	29	16)
V728 Her	55083.3697	.0003	RATRCR	+0.0651		IBVS 3234	-U-I	146	20)
LOOD II	55376.5161	.0031	AG	+0.0711		IBVS 3234	-lr	44	16)
V829 Her	55314.5377	.0041	AG	+0.0333		IBVS 5496	-1r	30	16)
No to H	55375.4291	.0015	JU	+0.0392		IBVS 5496	0	48	5)
V842 Her	54932.4983	.0001	RAT RCR	-0.0488	$\mathbf{S}$	BAVR 49,180	-U-I	136	4)
	55340.4271	.0007	JU	-0.0561		BAVR 49,180	0	52	5)
	55388.4070	.0024	WTR	-0.0564	$\mathbf{S}$	BAVR 49,180	-1r	53	12)
	55393.4366	.0011	JU	-0.0553	$\mathbf{s}$	BAVR 49,180	0	43	5)
V857 Her	55341.4004	.0037	AG				-1r	31	16)
LOGI II	55352.4867	.0010	JU				0	85	5)
V861 Her	55308.3846	.0005	AG				-lr	8	16)
	55341.4700	.0020	AG				-lr	29	16)
V878 Her	55045.3760	.0004	RATRCR				-U-1	63	4)
V1090 II	55396.4184	.0006	JU				0	40	5) 1C)
V1032 Her	55314.4878	.0087	AG				-lr	30	16) 16)
V1099 II	55340.5243	.0025	AG				-Ir	25	16) 1C)
v 1033 Her	55314.4077	.0021	AG				-Ir	30	16) 16)
V1094 II	55314.5593	.0020	AG				-Ir	30	16) 1C)
V1034 Her V1025 Her	55352.4994	.0005	AG DAT DOD				-Ir	39	16)
V1035 Her V1028 Her	04940.0000 EE214 4140	.0002	KAI KUK				-U-1 Im	132	(4)
v 1058 Her	55514.4140	.0005	AG				-11 T.,	30	10)
	00014.0499 55040 4075	0000	AG				-1r Im	30	10) 16)
	00040.4270 EE070 476E	.0008	AG				-11 I.,	20 20	10) 16)
V1020 Har	000/2.4/00 EE0E0 4044	.0013	AG				-1r Im	32	10) 16)
V1059 Her V1049 Her	00002.4044 EE241 4100	.0011	AG				-11 I.,	39 97	10) 16)
V1042 Her V1044 Her	55541.4190	.0020	AG DAT DOD				-11 11 1	21	$\frac{10}{20}$
V1044 Her V1045 Her	55070.5609 EE101.2606	.0003	DAT DOD				-U-I II I	91 194	20)
V1045 Her V1047 Her	55214 4040	.0004	AC				-U-1 In	124	$\frac{4}{16}$
v1047 пег	00014.4049 EE014 EG0E	.0022	AG				-11 I.,	30	10) 16)
V1059 IL	55514.5025	.0027	AG				-11 T.,	30	10)
V1052 Her V1052 Her	55341.4259	.0018	AG				-1r T.,	29	10)
V1053 Her	55314.3904	.0004	AG				-Ir	30	16) 1C)
VIOFF IL.	55314.5351	.0013	AG DAT DOD				-Ir	30	16)
v 1055 Her	54955.5552	.0002	RAI RUR				-U-I II I	130	(4)
	55082.4090	.0002	KAI KUK				-U-1 T.:	100	$\frac{20}{10}$
	55341.5174	.0045	AG				-1r	30	16)
	000/4.4/00	.0010	JU				0 T.,	98 44	$\frac{5}{1c}$
VIOCO IL-	00070.0280	.0026	AG				-1r	44 20	10) 16)
v 1002 Her V1007 H	00008.4/18	.0014	AG				-1r T	3U 20	10)
v 1067 Her	22228.3912	.0010	AG				-1r	30 20	10) 16)
	00000000000000000000000000000000000000	.0009	AG				-1r T	3U 4 4	10)
V1079 II	55375.4583	.0009	AG DATE DOD				-1r	44	16)
v 10/3 Her	00097.3499 55017.4400	.0001	KAT KCR			COVC 2000	-U-1 Ta	101	20) 16)
v 1088 Her	00014.4428	.0072	AG	+0.0170		GUVS 2009	-1r	ঠ1 20	10)
	55572.4579	.0061	AG	+0.0172	$\mathbf{s}$	GUVS 2009	-1r	32	16)

Table 1: (cont.)

Variable	HID 94	+	Obc	0 C		Bibliography	Fil	n	Rom
Variable	FF914 F1C9			$\frac{0-0}{125}$		COVE 2000	I'II T.,	20	1.0
V1091 Her	55314.5103	.0038	AG	+0.0135	s	GCVS 2009	-1r	30	10)
V1095 Her	55049.4847	.0003	RAT RCR	-0.0189		GCVS 2009	-U-I	140	4)
	55050.5216	.0004	RAT RCR	-0.0204	$\mathbf{s}$	GCVS 2009	-U-I	138	4)
	55341.4955	.0009	$\operatorname{AG}$	-0.0209		GCVS 2009	-Ir	32	16)
	55358.5240	.0016	AG	-0.0230		GCVS 2009	-Ir	30	16)
V1096 Her	55049.4850	.0007	RAT RCR	+0.0175		GCVS 2009	-U-I	140	4)
	55050.4525	.0006	RAT RCR	+0.0194		GCVS 2009	-U-I	139	4)
	55341 4797	0018	AG	+0.0208	s	GCVS 2009	-Ir	32	16)
	55358 5004	0016	AG	+0.0217	D	GCVS 2009	-Ir	30	16)
	55376 4848	0021		+0.0217	a	CCVS 2009	In	44	16)
V1100 II	55570.4040	.0021	AG	$\pm 0.0207$	5	GCVS 2009	-11 T.,	44	10)
VII02 Her	55557.4478	.0028	AG DATE DOD	+0.0048	s	GCVS 2009	-1r	33	16)
WY Hya	54842.4442	.0002	RAT RCR	+0.0271		GCVS 2009	-U-I	77	4)
AV Hya	55294.3942	.0030	WTR	-0.0922	$\mathbf{S}$	GCVS 2009	-lr	84	12)
	55295.4178	.0147	AG	-0.0937		GCVS 2009	-Ir	61	16)
SW Lac	55352.4551	.0021	PGL	+0.0567		GCVS 2009	V	389	15)
EK Lac	55155.3016	.0012	JU	-0.0036		GCVS 2009	0	97	5)
IU Lac	55309.4688	.0036	AG	+0.0131		GCVS 2009	-Ir	46	16)
LY Lac	55358.4766	.0058	AG	+0.2308		GCVS 2009	-Ir	49	16)
LZ Lac	55358.5161	.0034	AG	+0.3248	$\mathbf{s}$	GCVS 09	-Ir	49	16)
MZ Lac	55358.4188	.0050	AG	+0.2806	s	GCVS 2009	-Ir	49	16)
OS Lac	55358 4804	0045	AG	+0.3179	S	GCVS 2009	-Ir	49	16)
PP Lac	55358 4873	0017	AC	-0.0546	5	GCVS 2009	Ir	40	16)
V245 Loc	55358 5430	0018		1 0276	a	CCVS 2009	-11 In	40	16)
V 345 Lac	55556.5450	.0010	AG	-1.0270	5	IDVS 5004	-11 T.,	49	10)
V441 Lac	55509.5174	.0040	AG	-0.0788		IDV5 0024	-11	40	10)
Y Leo	55293.3871	.0001	WIR	-0.0162		GCVS 2009	-1r	76	12)
UV Leo	55258.4357	.0035	PGL	+0.0035	$\mathbf{s}$	IBVS 5338	V	231	18)
	55259.3360	.0014	PGL	+0.0036		1BVS 5338	V	225	18)
	55304.3427	.0003	DIE	+0.0038		IBVS $5338$	0	31	11)
	55310.3443	.0008	DIE	+0.0046		IBVS 5338	0	22	11)
UZ Leo	55305.4238	.0008	JU	-0.0979	$\mathbf{s}$	GCVS 2009	0	80	5)
XX Leo	55289.4971	.0016	AG	-0.0124		GCVS 2009	-Ir	51	16)
XY Leo	55289.3881	.0009	AG	+0.0514	$\mathbf{s}$	GCVS 2009	-Ir	51	16)
AL Leo	55289.4659	.0019	AG	+0.0126	$\mathbf{s}$	IBVS 3401	-Ir	51	16)
AM Leo	54842.5359	.0001	BAT RCR	+0.0096	s	GCVS 2009	-U-I	110	4)
11111 1200	55280 3959	0005	ALH	+0.0000	S	GCVS 2009	V	406	8)
	55280 3064	.0000	AC	$\pm 0.0101$	0	GCVS 2009	v Ir	105	16)
	55280.5304	.0030	AG	+0.0100	5	GCVS 2009	-11 I.v	105	16)
	55260.5767	.0027		+0.0100		GCVS 2009	-11	105	10)
AP Leo	54924.3738	.0001	RAIRCR	-0.0345		GCVS 2009	-0-1	89	4)
GU Leo	55289.4694	.0009	AG	+0.0759		GCVS 2009	-lr	51	16)
GV Leo	55289.3487	.0008	AG	+0.0485	$\mathbf{S}$	GCVS 2009	-lr	51	16)
	55289.4810	.0010	$\operatorname{AG}$	+0.0474		GCVS 2009	-Ir	51	16)
HI Leo	54923.3602	.0001	RAT RCR	+0.0011		GCVS 2009	-U-I	80	4)
T LMi	55275.3070	.0025	AG	-0.1048		GCVS 2009	-Ir	69	16)
RT LMi	55275.3480	.0041	AG	-0.0074	$\mathbf{s}$	GCVS 2009	-Ir	65	16)
RZ Lyn	55309.3715	.0043	JU	-0.1195		GCVS 2009	0	53	5)
SW Lyn	55280.3770	.0063	AG	+0.0642	$\mathbf{s}$	GCVS 2009	V	45	16)
TY Lyn	55280 3812	0039	AG	+0.0583		GCVS 2009	V	50	16)
11 251	55306 3755	0057	III	+0.0627		GCVS 2009		38	5)
IIII Lyn	55311 3646	0021	PGL	-0.0021		GCVS 2009	0	589	15)
UV Lyn	54021 2050	.0021		-0.0005	a	GCVS 2009		47	4)
DV Lyn	54951.5959 EE980 4776	.0002	AC	$\pm 0.0700$	5	GC V 5 2009	-0-1 V	41	1 <i>G</i> )
BG Lyn	55280.4770	.0024	AG	0.0000		COMO 2000	V	44	10)
DZ Lyn	55280.5114	.0031	AG	-0.0098		GCVS 2009	V	48	16)
DT Lyr	55263.6462	.0002	MS FR	+0.1265		GCVS 2009	0	234	9)
EW Lyr	54980.5222	.0001	RAT RCR	+0.2386		GCVS 2009	-U-I	148	4)
	55062.3691	.0001	RAT RCR	+0.2391		GCVS 2009	-U-I	100	20)
	55101.3436	.0001	RAT RCR	+0.2391		GCVS 2009	-U-I	71	4)
FL Lyr	55068.4855	.0001	RAT RCR	-0.0022	$\mathbf{s}$	GCVS 09	-U-I	214	20)
V380 Mon	55263.372	.001	MS FR	-0.092		GCVS 2009	0	256	9)
V449 Oph	54976.4979	.0001	RAT RCR	+0.0879		GCVS 2009	-U-I	135	<b>4</b> )
V506 Oph	54953.5501	.0002	RAT RCR	+0.0299		GCVS 2009	-U-I	124	4)
•	54970.5167	.0003	RAT RCR	+0.0297		GCVS 2009	-U-I	133	4)

Table 1: (cont.)

Variable	HJD 24	±	Obs	O - C		Bibliography	Fil	n	Rem
CQ Ori	55263.3486	.0023	AG	-0.0028		GCVS $2009$	-Ir	19	16)
FH Ori	55192.3715	.0002	RAT RCR	-0.3612		GCVS 2009	-U-I	137	20)
FK Ori	54857.2647	.0002	RAT RCR	-0.0039		GCVS 2009	-U-I	62	4)
V392 Ori	55244.2859	.0016	AG	+0.0018		GCVS 2009	-Ir	21	16)
V647 Ori	54847.3334	.0002	RAT RCR	-0.2505		GCVS 2009	-U-I	99	4)
VW Peg	55386.4945	.0001	$\mathrm{FR}$	+0.0013		BAVM 129	-Ir	49	16)
V404 Peg	55386.4555	.0004	$\mathrm{FR}$	-0.0767	$\mathbf{S}$	GCVS 2009	-Ir	53	16)
KW Per	55192.3904	.0001	WN	+0.0120		GCVS 2009	V	175	13)
JZ Sge	55012.4607	.0002	RAT RCR	+0.0715		GCVS 2009	-U-I	113	4)
/365 Sge	55352.5146	.0009	AG	-0.0494		GCVS 2009	-lr	27	16)
AU Ser	54959.4289	.0002	RAT RCR	+0.0926		GCVS 2009	-U-I	56	4)
	55309.4045	.0005	FR	+0.0917	$\mathbf{S}$	GCVS 2009	-lr	42	10)
	55309.5937:	.0024	FR	+0.0876		GCVS 2009	-lr	42	10)
V384 Ser	55049.3857	.0005	FR	-0.0027	$\mathbf{S}$	GCVS 2009	-lr	47	16)
	55293.3921	.0081	FR	-0.0022	$\mathbf{S}$	GCVS 2009	-lr	86	16)
	55293.5257	.0002	FR	-0.0030		GCVS 2009	-lr	86	16)
	55304.4085	.0002	FR	-0.0037	$\mathbf{S}$	GCVS 2009	-lr	97	16)
	55304.5437	.0003	FR	-0.0029		GCVS 2009	-lr	97	16)
	55309.5149	.0002	FR	-0.0032	$\mathbf{s}$	GCVS 2009	-lr	77	16)
	55376.4290	.0005	FR	-0.0026	$\mathbf{S}$	GCVS 2009	-lr	45	16)
	55397.5233	.0004	FR	-0.0035		GCVS 2009	-lr	57	16)
Y Sex	54838.5180	.0002	RAT RCR	-0.0024	$\mathbf{S}$	BAVR 32,36	-U-I	117	4)
SV Tau	55295.3594	.0014	FR	-0.0196		GCVS 2009	-lr	35	10)
JT Tau	55295.3993	.0006	FR	-0.0535		GCVS 2009	-lr	41	10)
2Q Tau	55175.4577	.0017	AG	-0.0245	$\mathbf{S}$	GCVS 2009	-lr	29	16)
	55175.4584	.0006	AG	-0.0238	$\mathbf{s}$	GCVS 2009	В	24	16)
	55175.4594	.0004	AG	-0.0228	$\mathbf{s}$	GCVS 2009	V	25	16)
	55175.4594	.0006	AG	-0.0228	$\mathbf{s}$	GCVS 2009	R	27	16)
	55175.6270	.0001	AG	-0.0259		GCVS 2009	R	27	16)
ייד <b>תר</b>	55175.6286	.0010	AG	-0.0243		GCVS 2009	-Ir D	29	10)
JR Tau	55175.3803	.0007	AG	-0.0387		BAVR 35,1	B	25 96	10)
	55175.3800	.0010	AG	-0.0384		DAVE 25.1	V D	20	10) 16)
	55175.5609	.0014	AG	-0.0381	~	DAVE 25.1	n D	20	10) 16)
V791 Tou	55205 2020	.0047	AG FD	-0.0250	s	CCVS 2000	n In	20 52	10)
V 101 1au	00290.0960 EE17E 0160	.0015	FR AC	-0.0455	s	GCV5 2009	-11 D	00 02	10) 16)
v 1125 Tau	00170.0102 55175 9191	.0005	AG				n D	20 02	10) 16)
	55175.5161	.0002	AG				D V	20 01	10) 16)
	55175.5120	.0055	AG				V D	21	10) 16)
	55175.5154 55175.5160	.0015	AG				D	∠ə 93	10) 16)
V1199 Tou	54947 2224	.0024	AG DAT DCD				n III	23 50	4)
V1120 Tau	54866 2421	.0001	AC	0.0411		CCVS 2000	-0-1 Ir	56	4) 16)
V1239 1au DV T.,;	54800.2421	.0004	AG DAT DCD	-0.0411		GCVS 2009	-11 TT T	50	4)
	55280 3574	.0001	DCI	-0.0298		GUVS 2009 BAVR 44 156	-0-1 V	201	4) 18)
TV IIMa	55304 4310	.0014		-0.0089 -0.0701		CCVS 2000	v	76	5)
i i Uma	55911 9494	.0010		-0.0701	a	GCVS 2009	0 In	140	
	55911.5454	.0010	AG	-0.0712	5	GCVS 2009	-11 In	140	10) 16)
WW TIMe	55211.0221	0100.	AG	-0.0097		GCVS 2009	-11	140 65	10)
VV UMa	55914 4967	.0008	JU	-0.0487	a	GCVS 2009	0	65 57	5) 5)
A I UMa	55270 3410	0100.	JU	+0.0412	5	GCVS 2009	0	56	5) 5)
AA UMa	55219.3419	.0008		+0.0384	a	GCVS 2009	0 In	25	
bin Uma	55511.5769	.0022	AG	+0.0095	8	GCVS 2009	-11 Tm	30 95	10) 1c)
DC IIM.	00011.0149 55911 4549	.0017	AG	+0.0099			-1r T	<b>う</b> つ 9ピ	10)
DW UMa	00011.4040 55960 9960	.0015	AG	-0.0494		GUV5 2009	-11	30 60	10) 10)
KM TIMA	00200.0000 54001 9550	.0004					о ттт	100	ون (۱
ixini Uma	04921.0009 54021 5602	.0001	DAT DOD				-U-I II I	100 145	4) 4)
	04931.00U3	.0001	RAI KUR				-0-1	145 60	4) E)
JE UMA	00200.0014 55911 5759	0025		100740	~	CCVS 2000	0 T.,	00 95	0) 16)
MG UMa	00011.0700 54000 9604	.0020	AG DAT DOD	$\pm 0.0148$ $\pm 0.0297$	S		-11 TT T	39 07	10)
MUS UMA	04922.0004 54094 5159	.0002	RAI KUK	+0.0327 0.1697	s		-U-1 TT T	97 170	4) 4)
VV UIVII	04924.0100 55207 4204	.0002	NALKUK	-0.1021			-0-1	10	4) E)
	00097.4324	.0010	JU	-0.1074		GUVB 2009	U	40	O)

Table 1: (cont.)

Variable	HJD 24	±	Obs	O - C		Bibliography	Fil	n	Rem
RU UMi	54857.5335	.0001	RAT RCR	-0.0131		GCVS 2009	-U-I	196	4)
	55307.3947	.0003	JU	-0.0136		GCVS 2009	0	64	5)
VY UMi	54921.5234	.0001	RAT RCR				-U-I	165	4)
AW Vir	54942.3692	.0001	RAT RCR	+0.0217		GCVS 2009	-U-I	59	4)
CG Vir	54923.5075	.0001	RAT RCR	+0.1498	$\mathbf{S}$	GCVS 2009	-U-I	127	4)
AW Vul	55393.5121	.0003	$\operatorname{FR}$	-0.0151		GCVS 2009	-Ir	59	16)
BB Vul	55340.5546	.0007	SIR				0	105	7)
	55379.5190	.0007	SIR				-Ir	90	7)
	55380.4580	.0007	SIR				-Ir	68	7)
IW Vul	55352.5175	.0006	$\mathbf{FR}$	-0.0525	$\mathbf{S}$	GCVS 2009	-Ir	28	16)
GSC 00238-00793	53446.3610	.0008	AG	-0.0003	$\mathbf{s}$	PZP 10.4	-Ir	45	4)
	53446.5200	.0017	AG	-0.0021		PZP 10.4	-Ir	45	4)
	55295.4350	.0122	AG	+0.0003		PZP 10.4	-Ir	79	16)
GSC 00434-03766	54655.3865	.0006	AG				-Ir	65	16)
GSC 02016-00444	54933.3687	.0015	AG				-Ir	41	16)
	54933.5258	.0019	AG				-Ir	41	16)
	54968.5109	.0020	AG				-Ir	37	16)
	55315.4968	.0186	AG				-Ir	50	16)
GSC 02038-00293	55293.4393	.0019	FR	+0.0041		BAVM 177	-Ir	49	16)
	55304.3375	.0031	FR	+0.0033		BAVM 177	-Ir	57	16)
	55309 5682	0038	FB	+0.0322	s	BAVM 177	-Ir	45	16)
	55311,5690	0040	FB	+0.0514	s	BAVM 177	-Ir	49	16)
	553764469	0028	FB	+0.0305	s	BAVM 177	-Ir	27	16)
	55397 4739	0021	FB	+0.0006	5	BAVM 177	-Ir	35	16)
GSC 02135-02603	55074 3446	0003	FR	10.0020		Dirvin in	-Ir	90	16)
050 02155-02005	55074 5255	.0005	FR				-11 -Ir	90	16)
	55380 3878	0000	FR				-11 _Ir	131	16)
	55380 5666	.0000	FR				-11 _Ir	131	16)
	55385 4550	.0002	FR				-11 Ir	25	10) 16)
	55387 4450	.0007	FR				-11 Ir	35 46	10) 16)
CSC 02161 01210	55202 4581	.0003	FR				-11 Ir	40 36	10) 16)
CSC 02101-01310	55202 4287	.0008	F N F D				-11 In	- 30 - 40	10) 16)
CSC 02177-00020	54175 2560	.0003	FR AC				-11 In	49	4)
GSC 02464-00139	54175.5509 E417E 402E	.0004	AG				-11 Tm	40	4)
	54175.4955	.0001	AG				-1r T	45	4)
000 00595 00590	54535.4245	.0008	AG				-Ir	27	(4)
GSC 02537-00520	55315.4017	.0027	AG	0.0040		DZD 10.4	-Ir	59	10)
GSC 02569-00553	55281.6266	.0050	AG	-0.0240		PZP 10.4	-1r	60 5 <i>0</i>	16)
CCC 02610 00000	55316.5059	.0072	AG	-0.0221		PZP 10.4	-lr	56	16)
GSC 02610-00088	54947.4063	.0028	AG	0.0001		D7D 10 4	-lr	36	16)
GSC 02673-02495	52901.4353	.0243	AG	-0.0091	$\mathbf{s}$	PZP 10.4	-lr	33	4)
	53637.4018	.0038	AG	-0.0044		PZP 10.4	-lr	18	4)
	55375.4771	.0123	AG	+0.0464	$\mathbf{S}$	PZP 10.4	-lr	30	16)
GSC 03187-01564	53259.4349	.0033	AG				0	26	4)
GSC 03210-01456	55041.4122	.0005	AG				-Ir	41	16)
	55051.4680	.0022	AG				-Ir	52	16)
	55062.4498	.0007	AG				-Ir	88	16)
	55095.3968	.0004	$\operatorname{AG}$				-Ir	44	16)
	55095.5825	.0008	AG				-Ir	44	16)
	55357.4920	.0009	AG				-Ir	17	16)
GSC 03575-06239	55372.5183	.0036	AG	+0.0317	$\mathbf{s}$	PZP 10.4	-Ir	33	16)
GSC 03618-00162	52505.3983	.0013	AG	+0.0049		PZP 10.4	-Ir	22	4)
	52505.5185	.0007	AG	+0.0047	$\mathbf{S}$	PZP 10.4	-Ir	22	4)
	52506.4727	.0171	AG	-0.0039	$\mathbf{S}$	PZP 10.4	-Ir	19	4)
GSC 03618-00448	52505.4122	.0010	AG	+0.0063	$\mathbf{S}$	PZP 10.4	-Ir	22	4)
	53222.4903	.0026	AG	-0.0063	$\mathbf{S}$	PZP 10.4	-Ir	22	4)
GSC 03619-00047	54712.4962	.0021	AG	-0.0013	$\mathbf{S}$	PZP 10.4	-Ir	38	16)
	54738.4341	.0061	AG	-0.0055		PZP 10.4	-Ir	67	16)
GSC 03619-00715	53233.4371	.0080	AG				-Ir	18	4)́
	53259.3909	.0023	AG				-Ir	19	4)́
GSC 03688-01184	53651.3558	.0109	AG	-0.0004		PZP 10.4	-Ir	44	4)́
	53651.5369	.0073	AG	+0.0010	$\mathbf{s}$	PZP 10.4	-Ir	44	4)

Table 1: (cont.)

Variable	HJD 24	±	Obs	O - C		Bibliography	Fil	n	Rem
GSC 04009-00670	55049.4826	.0265	AG	+0.0046		PZP 10.4	-Ir	37	16)
	55067.3938	.0060	AG	-0.0014		PZP 10.4	-Ir	33	16)
	55074.3908	.0160	AG	-0.0034	$\mathbf{s}$	PZP 10.4	-Ir	40	16)
GSC 04339-01166	54834.5872	.0014	AG				-Ir	169	16)
	55102.4011	.0021	AG				-Ir	119	16)
GSC 04502-01040	55083.3455	.0019	AG	+0.0362	s	IBVS 5700 No.60	-Ir	79	16)
0.0000000000000	55083 4846	0015	AG	+0.0401	~	IBVS 5700 No 60	-Ir	79	16)
U-A2 1125-18642389	50671 5185	0047	AG	10.0101		1D 1 5 0100 110.00	-Ir	32	4)
0 112 1120 10012005	51035 4617	0060	AG				_Ir	33	4)
	51300 4017	0044	AG				_Ir	28	4)
	51413 5036	.0011					-11 Ir	20	
U A9 1900 11760594	52002 2220	.0039	AG				-11 In	21	4)
U-A2 1200-11700524	55276 5450	.0022	AG				-11 In	29 91	4) 16)
II AD 1000 10600006	55570.5450	.0008	AG	0.0127	~	IDVS 5700 No 72	-11 T.,	01 95	10) 16)
U-AZ 1200-12080280	55000.4084	.0014	AG	-0.0137	s	IDVS 5700 No.75	-11 T.,	30 10	10)
	55076.3403	.0013	AG	-0.0141	s	IBVS 5700 NO.73	-1r	18	10)
	55084.4735	.0006	FR	-0.0154		IBVS 5700 No.73	-1r	60	16)
TI A 0 1055 15104000	55103.3221	.0006	AG	-0.0152	$\mathbf{s}$	IBVS 5700 No.73	-1r	22	16)
U-A2 1275-15124020	55074.5424	.0004	AG	-0.0017		IBVS 5700 No.72	-Ir	36	16)
	55372.4619	.0032	AG	-0.0005		IBVS 5700 No.72	-lr	33	16)
U-A2 1275-15134722	55074.3953	.0024	AG	+0.0049		IBVS 5700 No.71	-Ir	36	16)
U-A2 1425-02081650	52135.4627	.0012	AG	+0.0041	$\mathbf{S}$	IBVS 5700 No.65	0	25	4)
	53382.3901	.0005	AG	+0.0020	$\mathbf{S}$	IBVS 5700 No.65	-Ir	47	4)
	53388.3683	.0017	AG	-0.0007		IBVS 5700 No.65	-Ir	44	4)
	53388.5297	.0018	AG	-0.0009	$\mathbf{S}$	IBVS 5700 No.65	-Ir	44	4)
	53409.3823	.0013	$\mathcal{AG}$	-0.0005		IBVS 5700 No.65	-Ir	32	4)
	53716.3454	.0005	$\mathbf{AG}$	-0.0013	$\mathbf{S}$	IBVS 5700 $No.65$	-Ir	114	4)
	53716.5052	.0003	$\mathbf{AG}$	-0.0032		IBVS 5700 No. $65$	-Ir	114	4)
	53716.6642	.0003	$\operatorname{AG}$	-0.0058	$\mathbf{S}$	IBVS 5700 No. $65$	-Ir	114	4)
	55141.3818	.0010	AG	-0.0272	$\mathbf{s}$	IBVS 5700 No. $65$	-Ir	63	16)
	55141.5407	.0014	AG	-0.0300		IBVS 5700 No.65	-Ir	63	16)
U-A2 1500-01208912	55081.3660	.0015	AG	+0.0106	$\mathbf{s}$	IBVS 5900 No.6	-Ir	46	16)
	55081.5111	.0020	AG	+0.0046		IBVS 5900 No.6	-Ir	46	16)
	55154.3535	.0035	AG	+0.0071		IBVS 5900 No.6	-Ir	45	16)
	55154.5073	.0023	AG	+0.0098	$\mathbf{s}$	IBVS 5900 No.6	-Ir	45	16)
U-B1 0903-0102370	54840.3678	.0008	AG				-Ir	63	16)
	54840.5116	.0006	AG				-Ir	63	16)
	54866.3356	.0012	AG				-Ir	59	16)
	54866.4803	.0012	AG				-Ir	59	16)
U-B1 1031-0151441	54856.5126	.0006	AG				-Ir	59	16)
•	55244.2802	.0003	AG				-Ir	14	16)
	55263.4448	.0035	AG				-Ir	23	16)
U-B1 1041-0581206	53966.5033	.0039	AG	-0.0020		PZP 10.4	-Ir	21	4)
011 0001200	54001 3848	.0013	AG	+0.0008		PZP 10.4	-Ir	$\frac{-1}{25}$	4)
	54003 3218	.0005	AG	+0.0000	s	PZP 10.1	_Ir	38	4)
	54327 4722	0019	AG	+0.0001	D.	PZP 10.4	_Ir	40	4)
	54663 5944	0007	AG	-0.0011		PZP 10.4	_Ir	43	16)
U-B1 1002 0472807	53566 /031	0038	AC	0.0011		1 21 10.1	_Ir	- <u>10</u>	1)
0-111032-0412001	53000.4031	0030					-11 _ Tr	20 10	4) 1)
	54093 2598	0057					-11 _ Tr	19	4) 1)
U B1 1135 0109876	54508 2049	20000					-11 In	10	4) 4)
0-D1 1100-0102070	54857 9507	0000					-11 T.	00 55	4) 16)
	54057.2091	.0007	AG				-1f T.,	00 55	10) 16)
	04001.4229 51057 5017	.0004	AG				-1f Le	00 EE	10) 16)
II D1 1170 0155111	04007.0847 54149.2649	.0021	AG				-11 L	90 90	10)
U-BI 11/9-0155111	04148.3048	.0033	AG	10.0010		D7D 10 4	-1r	<u>პ</u> U	4)
U-BI 1183-0597128	52929.4712	.0090	AG	+0.0010		PZP 10.4	-1r	23	4)
	53217.5065	.0024	AG	+0.0040	$\mathbf{S}$	PZP 10.4	0	18	4)
	53251.4815	.0004	AG	+0.0060		PZP 10.4	0	29	4)
	53254.4306	.0037	AG	+0.0009		PZP 10.4	0	20	4)
	53257.3853	.0023	AG	+0.0014		PZP 10.4	0	24	4)
	53282.4961	.0024	AG	+0.0017	$\mathbf{S}$	PZP 10.4	-lr	22	4)
	53601.5458	.0018	AG	+0.0003	$\mathbf{S}$	PZP 10.4	-Ir	30	4)

Table 1: (cont.)

	TTTD of		01			50.0			5
Variable	HJD 24	<u>±</u>	Obs	O-C		Bibliography	Fil	n	Rem
U-B1 1183-0597128	53607.4546	.0011	AG	+0.0008	$\mathbf{S}$	PZP 10.4	-lr	26	4)
	53613.3642	.0012	AG	+0.0020	$\mathbf{s}$	PZP 10.4	-lr	31	4)
	53966.3856	.0026	AG	-0.0007		PZP 10.4	-lr	23	4)
U-B1 1206-0055028	54034.5913	.0144	AG	+0.0078		PZP 10.4	-lr	30	4)
	54055.4660	.0143	AG	+0.0080		PZP 10.4	-lr	49	4)
U-B1 1257-0092393	53386.3968	.0021	AG	+0.0012		PZP 10.4	-lr	38	4)
	53387.4385	.0018	AG	+0.0007		PZP 10.4	-lr	61	4)
	53388.4796	.0006	AG	-0.0004		PZP 10.4	V	38	4)
	53410.3650	.0038	AG	-0.0015		PZP 10.4	V	27	4)
	54085.4535	.0001	AG	-0.0058	$\mathbf{s}$	PZP 10.4	-lr	36	4)
	54085.7200	.0009	AG	+0.0001		PZP 10.4	-lr	36	4)
II D1 1016 0000060	54115.4229	.0012	AG	+0.0000		PZP 10.4	-lr	45	4)
U-B1 1316-0383362	54697.4063	.0009	AG				-lr	62	16) 1 <i>6</i> )
	54697.5716	.0015	AG				-lr	62	16) 1 <i>6</i> )
	54707.3635	.0011	AG				-lr	22	16)
II D1 1000 00000 (0	5073.4607	.0008	AG				-lr	49	16)
U-B1 1332-0399848	54697.4374	.0005	AG				-lr	59 50	16) 1 <i>6</i> )
U.D.1.1969.0450000	54697.5617	.0007	AG				-lr	59	16) 1 <i>6</i> )
U-B1 1362-0458803	55071.3623	.0019	AG				-lr	42	16)
	55081.4520	.0029	AG				-lr	54	16)
U-B1 1383-0445772	55042.4188	.0024	AG				-lr	35	16) 1 <i>6</i> )
U. D1 1900 0460064	55042.5528	.0005	AG	0.0010		DZD 10.4	-lr	35	16)
U-B1 1398-0469064	54024.2965	.0053	AG	-0.0010	$\mathbf{s}$	PZP 10.4	-lr	34	4)
	54024.4616	.0061	AG	+0.0015		PZP 10.4	-lr	34	4)
U. D1 1400 0455465	54663.4997	.0073	AG	+0.0000		PZP 10.4	-lr	23	16) 16)
U-BI 1400-0455467	55098.5329	.0020	AG				-lr	22	16)
U-B1 1416-0454010	53932.4514	.0016	AG				-lr	24	4)
	54035.4035	.0042	AG				-Ir	35	4)
	54035.5588	.0026	AG				-lr	35	4)
	54080.3789	.0025	AG				-1r	40	4) 1C)
	54712.5048 54712.5048	.0013	AG				-1r T.,	38	10) 16)
	04712.0224 E4720 2010	.0015	AG				-11 T.,	30 67	10) 16)
	04700.0012 E4720 E26E	.0010	AG				-11 T.,	67	10) 16)
	04700.0000 EE109 E169	.0015	AG				-11 T.,	07	10) 16)
	55141 4999	.0025	AG FD				-11 In	44	10) 16)
U B1 1440 0411000	55068 4477	.0000		0.0513	0	IBVS 5700 No 54	-11 Ir	90 45	10) 16)
U-D1 1440-0411990	54708 2702	.0032	AG	-0.0515	ъ	IDV5 5700 110.54	-11 T.,	40	10) 16)
0-D1 1441-0441071	55030 4762	.0017	AG				-11 Ir	วว 21	10) 16)
	55141 4018	.0008	AG				-11 Ir	50	10) 16)
	55141.4010 55141.5731	.0019	AG				-11 Ir	50	10) 16)
U B1 1447 0060874	52651 5124	.0010	AG	0.0006		D7D 10 4	-11 Ir	45	4)
0-D1 141-000014	53654 6208	0012	AC	-0.0000		PZP 10.4	-11 Ir	50	4)
	54056 4053	.0013	AG	-0.0032 -0.0021	e	PZP 10.4	-11 _Tr	21	4)
	54115 3204	.0011	AG	$\pm 0.0021$	5	PZP 10.4	-11 _Tr	21 /0	4)
	54815 3947	0017	AG	+0.0025 +0.0051		PZP 10.4	-11 -Ir	-19 59	$\frac{1}{16}$
	54829 4141	.0011	AG	-0.0019	e	PZP 10.1	_Ir	48	16)
	55141 4220	0027	AG	-0.0015	5	PZP 10.4	-11 -Ir	- <u>40</u> 63	10)
U-B1 1492-0009970	54830 3796	0012	AG	0.0021		1 21 10.1	-Ir	130	16)
0 D1 1102 0000010	54830 5307	0015	AG				-Ir	129	16)
	55029,4963	.0009	AG				-Ir	44	16)
U-B1 1500-0005759	55058 3653	0018	AG	$\pm 0.1020$		A I 133 1470	-Ir	54	16)
5 DI 1000 0000100	55096.6090	.0032	AG	+0.1176	$\mathbf{s}$	AJ 133.1470	-Ir	48	16)
U-B1 1503-0282065	55045 4938	.0004	AG	10.1110	5	110 100.1110	-Ir	61	16)
U-B1 1505-0372164	54684 4375	.0004	AG				_Tr	60	16)
5 DI 1000 0012101	54718 3715	.0000	AG				-Ir	63	16)
	54718 5284	.0003	AG				-Ir	62	16)
	55058.5097	.0010	AG				-Ir	50	16)
U-B1 1508-0029126	55029.4660	.0004	AG	+0.0001		IBVS 5900 No 5	-Ir	43	16)
5 1000 0020120	55096.4069	.0011	AG	+0.0011	$\mathbf{s}$	IBVS 5900 No.5	-Ir	48	16)
	55096.5655	.0009	AG	+0.0007		IBVS 5900 No.5	-Ir	48	16)

Variable HJD 24.....  $\pm$ ObsO-CBibliography Fil Rem n U-B1 1508-0029126 55108.3303.0013  $\operatorname{AG}$ -0.0006IBVS 5900 No.5 -Ir 4616)55108.4895.0014 $\mathbf{AG}$ -0.0004 $\mathbf{S}$ IBVS 5900 No.5  $\,$ -Ir 4616).0022+0.0017IBVS 5900 No.5  $\,$ 55374.5020 $\operatorname{AG}$ -Ir 3816)U-B1 1514-0040346 53671.4614.0189 $\mathbf{AG}$ -Ir 254) .0020 $\mathbf{AG}$ -Ir 404) 54388.373054388.6077.0021 $\mathbf{AG}$ -Ir404) 55081.4766.0026 $\mathbf{AG}$ -Ir4616)55081.4766.0026 $\mathbf{AG}$ -Ir 4616)-Ir 55154.3110.0030 $\mathbf{AG}$ 4516)55154.3110.0030 $\mathbf{AG}$ -Ir 4516).0025AG 55154.5402-Ir 4516)55154.5402.0025AG -Ir 4516)

Table 1: (cont.)

# Table 2: Times of maxima of pulsating stars

Variable	HJD 24	±	Obs	O - C	Bibliography	Fil	n	Rem
GP And	55101.288	.000	DIE	+0.004	GCVS 2009	0	36	19)
	55102.312	.001	DIE	+0.005	GCVS 2009	0	93	19)
	55102.391	.001	DIE	+0.005	GCVS 2009	0	93	19)
	55185.3214	.0004	WN	+0.0043	GCVS 2009	V	202	13)
	55185.4002	.0007	WN	+0.0044	GCVS 2009	V	202	13)
	55194.3704	.0014	WN	+0.0048	GCVS 2009	V	65	13)
	55244.2546	.0060	WN	+0.0041	GCVS 2009	V	58	13)
WY Ant	54973.3600	.0020	HND	+0.0030	GCVS 2009	0	44	7)
	54992.3150	.0030	HND	+0.0048	GCVS 2009	0	46	7)
CY Aqr	55063.4284	.0003	RDL	-0.0023	GCVS 2009	0	111	14)
	55063.4918	.0001	RDL	+0.0000	GCVS 2009	0	111	14)
V378 Aur	55307.3543	.0030	MZ			-Ir	140	5) 1)
	55308.3619	.0050	MZ			-Ir	73	5)
	55311.3761	.0030	MZ			-Ir	234	5) 1)
SV Boo	55378.4597	.0010	MZ	+0.0049	GCVS 2009	-Ir	92	5)
TV Boo	55294.486	.001	AG	+0.081	GCVS 2009	-Ir	152	16)
UU Boo	55316.422	.001	AG	+0.228	GCVS 2009	-Ir	56	16)
	55353.4305	.0035	PGL	+0.2261	GCVS 2009	V	147	15)
UY Boo	55311.5195	.0028	PGL	+0.0049	BAVR 48,121	0	304	15)
	55311.5200	.0035	PGL	+0.0054	BAVR 48,121	0	306	15)
VY Boo	55309.4440	.0020	MZ			-Ir	134	5)
WW Boo	55315.560	.001	AG	+0.144	GCVS 2009	-Ir	50	16)
	55353.4187	.0009	MZ	+0.1403	GCVS 2009	-Ir	100	5)
AE Boo	55311.3750	.0040	$\mathbf{FR}$	+0.0921	GCVS 2009	-Ir	97	10)
AY Boo	55294.336	.001	AG	+0.099	GCVS 2009	-Ir	63	16)
CM Boo	55310.369	.001	AG	-0.114	GCVS 2009	-Ir	36	16)
CQ Boo	55311.4878	.0035	PGL	-0.0550	BAVR 48,189	V	291	18)
	55339.3934	.0020	MZ	-0.0559	BAVR 48,189	-Ir	107	5)
	55339.4188	.0020	MZ	-0.0305	BAVR 48,189	-Ir	107	5)
CS Boo	55352.4728	.0028	PGL	-0.0010	IBVS $2855$	V	225	18)
UY Cam	55263.531	.001	AG	+0.072	BAVR 49,41	-Ir	62	16)
SX Cnc	55263.322	.002	SB	+0.184	GCVS 2009	V	145	17)
	55265.360	.003	SB	+0.181	GCVS 2009	V	109	17)
EF Cnc	55275.351	.001	AG			-Ir	18	16)
EZ Cnc	55275.486	.001	AG			-Ir	27	16)
RU CVn	55315.410	.001	AG	+0.003	BAVR 52.89	-Ir	61	16)
$RZ \ CVn$	55315.403	.001	AG	+0.146	BAVR 48,189	-Ir	61	16)
SS CVn	55294.424	.001	AG	+0.156	GCVS 2009	-Ir	154	16)
RZ Cep	53620.3343	.0005	$\mathbf{SG}$	+0.0852	GCVS 2009	$-\mathrm{IrV}$	68	6) 2)
	53620.3641	.0003	$\operatorname{SG}$	+0.1150	GCVS 2009	$-\mathrm{IrV}$	68	6) 2)
	55382.4473	.0030	MZ	-0.0862	GCVS 2009	-Ir	109	$5) \ 3)$
S Com	55310.510	.001	AG	+0.012	SAC Vol.73	-Ir	40	16)

Table 2: (cont.)

Variable	HJD 24	±	Obs	O - C	Bibliography	Fil	n	Rem
U Com	55310.513	.001	AG	+0.007	BAVR 49,41	-Ir	40	16)
AG Com	55310.403	.002	$\operatorname{AG}$	-0.007	GCVS 2009	-Ir	40	16)
SU CrB	55340.433	.001	$\operatorname{AG}$	+0.016	GCVS 2009	-Ir	25	16)
TV CrB	55281.424	.001	$\operatorname{AG}$	+0.002	BAVR 49,105	-Ir	58	16)
VX CrB	55067.3666	.0003	RAT RCR			-U-I	106	20)
XX Cyg	55125.2500	.0015	WN	+0.0021	GCVS 2009	$\mathbf{V}$	102	13)
	55130.2419	.0008	WN	+0.0040	GCVS 2009	V	71	13)
CD Del	55377.534	.005	AG	-0.014	GCVS 2009	-Ir	25	16)
CH Del	55377.468	.005	AG	+0.067	GCVS 2009	-Ir	28	16)
AV Dra	55357.439	.003	AG	+0.052	GCVS 2009	-Ir	34	16)
BK Dra	55350.4329	.0021	PGL	+0.0700	BAVR 46,1	V	122	18)
DD Dra	55353.421	.001	AG	-0.009	BAVR 49,6	-Ir	120	16)
RR Gem	55223.3195	.0021	PGL	-0.0117	BAVR 47,67	$\mathbf{V}$	316	18)
$GU \ Gem$	54858.428	.004	$\operatorname{FR}$	-0.116	GCVS 2009	-Ir	44	16)
AR Her	55294.4135	.0021	PGL	+0.0301	BAVR 52,3	$\mathbf{V}$	235	18)
	55311.3766	.0028	PGL	+0.0738	BAVR 52,3	V	311	18)
	55387.4901	.0035	PGL	+0.0498	BAVR 52,3	V	303	15)
	55388.4214	.0021	PGL	+0.0411	BAVR 52,3	V	228	15)
	55394.5183	.0035	PGL	+0.0283	BAVR 52,3	V	371	15)
GS Her	55372.513	.002	AG	-0.054	GCVS 2009	-Ir	32	16)
GZ Her	55340.461	.001	AG	-0.100	GCVS 2009	-Ir	26	16)
HN Her	55372.525	.001	AG	-0.158	GCVS 2009	-Ir	32	16)
HP Her	55372.409	.001	AG	-0.027	GCVS 2009	-Ir	32	16)
LN Her	55374.414	.003	AG			-Ir	35	16)
V633 Her	55337.4305	.0010	MZ	-0.0544	GCVS 2009	-Ir	92	5)
CZ Lac	55130.3324	.0010	WN	-0.1491	BAVR 53,12	V	114	13)
	55155.3811	.0019	WN	-0.1671	BAVR 53,12	V	170	13)
	55185.2065	.0040	WN	-0.1624	BAVR 53,12	V	75	13)
	55194.2819	.0023	WN	-0.1629	BAVR 53,12	V	197	13)
RR Leo	55294.3323	.0014	PGL	+0.0049	A&A 476.307 2007	V	108	18)
SZ Leo	55280.555	.002	AG	-0.171	BAVR 49,105	-Ir	105	16)
WW Leo	55295.376	.001	AG	+0.038	GCVS 2009	-Ir	68	16)
AQ Leo	55280.553	.001	AG	+0.099	GCVS 2009	-Ir	100	16)
BS Leo	55265.4598	.0030	MZ	-0.0037	GCVS 2009	-Ir	83	5)
CM Leo	55293.3718	.0030	MZ	-0.0022	GCVS 2009	-Ir	135	5)
	55310.3679	.0020	MZ	-0.0075	GCVS 2009	-Ir	108	5)
DM Leo	55288.4021	.0040	MZ			-Ir	151	5)
	55297.3883	.0040	MZ			-Ir	92	5)
	55306.3746	.0040	MZ			-Ir	70	5)
SZ Lyn	55303.4269	.0023	WN	+0.0303	GCVS 2009	V	92	13)
TW Lyn	55280.352	.001	AG	+0.058	GCVS 2009	-Ir	51	16)
AN Lyn	55311.4327	.0021	PGL			0	290	15)
BE Lyn	55304.3341	.0015	WN			V	70	13)
	55306.3510	.0014	PGL			0	707	15)
	55310.3759	.0009	WN			V	110	13)
CN Lyr	55353.4226	.0069	PGL	-0.0067	A&A 476.307 2007	V	432	15)
DD Lyr	55375.4231	.0010	MZ	-0.1603	GCVS 2009	-Ir	98	5)
EX Lyr	55384.4592	.0040	MZ	-0.0794	GCVS 2009	-Ir	94	5)
DY Peg	55185.2524	.0006	WN	-0.0101	GCVS 2009	V	55	13)
	55189.1908	.0027	WN	-0.0097	GCVS 2009	V	41	13)
	55192.1799	.0008	WN	-0.0106	GCVS 2009	V	172	13)
	55192.2538	.0013	WN	-0.0096	GCVS 2009	$\mathbf{V}$	172	13)
	55378.5066	.0021	PGL	-0.0105	GCVS 2009	$\mathbf{V}$	106	15)
AR Per	55225.3287	.0021	PGL	+0.0584	GCVS 2009	$\mathbf{V}$	229	18)
	55265.3305	.0008	WN	+0.0585	GCVS 2009	$\mathbf{V}$	58	13)
V378 Per	55265.3369	.0010	MZ	+0.0922	GCVS 2009	-Ir	90	5)
BH Ser	55340.4154	.0010	MZ	+0.1028	GCVS 2009	-Ir	100	5)
TU UMa	55258.3266	.0035	PGL	-0.0346	GCVS 2009	$\mathbf{V}$	299	18)
	55293.4597	.0005	$\mathrm{QU}$	-0.0340	GCVS 2009	$\mathbf{V}$	112	6)
	55341.4179	.0017	SCI	-0.0344	GCVS 2009	0	86	5)

Table 2: (cont.)

Variable	HJD 24	±	Obs	O - C	Bibliography	Fil	n	Rem
UU UMa	55311.528	.001	AG	+0.013	GCVS 2009	-Ir	140	16)
UZ UMa	55263.423	.003	AG	+0.003	GCVS 2009	-Ir	60	16)
AE UMa	55259.4108	.0014	PGL	+0.0061	BAVR 48,189	V	306	18)
AE UMa	55293.3826	.0010	ALH	+0.0012	BAVR 48,189	V	94	8)
	55293.4752	.0007	ALH	+0.0078	BAVR 48,189	V	94	8)
	55302.3318	.0009	WN	+0.0046	BAVR 48,189	V	49	13)
	55303.3591	.0014	WN	-0.0003	BAVR 48,189	V	53	13)
	55304.3959	.0007	WN	+0.0043	BAVR 48,189	V	180	13)
	55304.4775	.0010	WN	-0.0001	BAVR 48,189	V	180	13)
	55305.3388	.0007	WN	+0.0010	BAVR 48,189	V	163	13)
	55305.4238	.0014	WN	+0.0000	BAVR 48,189	V	163	13)
	55309.3848	.0008	WN	+0.0042	BAVR 48,189	V	60	13)
	55310.4124	.0019	WN	-0.0004	BAVR 48,189	V	63	13)
	55311.3662	.0007	ALH	+0.0073	BAVR 48,189	V	75	8)
	55311.4488	.0005	ALH	+0.0038	BAVR 48,189	V	75	8)
AX UMa	55311.367	.001	AG	-0.191	GCVS 2009	-Ir	35	16)
MO UMa	55311.443	.001	AG	-0.085	GCVS 2009	-Ir	35	16)
GSC 02671-02149	54697.433	.001	AG			-Ir	38	16)
	54697.551	.001	AG			-Ir	38	16)
GSC 02977-00238	55265.3638	.0009	WN			V	235	13)
	55265.4401	.0010	WN			V	235	13)
	55265.5150	.0022	WN			V	235	13)
	55293.3068	.0010	WN			V	143	13)
	55293.3822	.0011	WN			V	143	13)
	55303.3300	.0008	WN			V	47	13)
	55309.3292	.0010	WN			V	54	13)
GSC 03197-00817	54312.502	.003	AG			-Ir	26	4)
	55032.441	.005	AG			-Ir	44	16)
GSC 03755-00845	55265.2903	.0008	WN			V	53	13)
	55266.2808	.0011	WN			V	166	13)
	55266.3577	.0005	WN			V	166	13)
	55279.2934	.0004	WN			V	111	13)
U-A2 1200-07442272	55281.488	.002	AG			-Ir	55	16)
U-A2 1425-00752967	55074.494	.002	AG	-0.037	IBVS 5700 $No.59$	-Ir	37	16)
U-B1 1646-0035146	54834.466	.005	AG			-Ir	169	16)

#### **Observers:**

AG:	Agerer, F., Tiefenbach
ALH:	Alich, K., Schaffhausen (CH)
DIE:	Dietrich, M., Radebeul
FR:	Frank, P., Velden
GB:	Gröbel, R., Eckental
HND.	Hund, F., Hakos Farm (Namibia)
JU:	Jungbluth, Dr. H., Karlsruhe
MS:	Moschner, W., Lennestadt
MZ:	Maintz, Dr. G., Bonn
PGL:	Pagel, Dr. L., Klockenhagen
QU:	Quester, W., Esslingen
RAT:	Rätz, M., Herges-Hallenberg
RCR:	Rätz, K., Herges-Hallenberg
RDL:	Rudolph, E., Jena
SB:	Steinbach, Dr. H., Neu-Anspach
SCI:	Schmidt, U., Karlsruhe
SG:	Sterzinger, P., Wien (A)
SIR:	Schirmer, J., Willisau (CH)
WN:	Wischnewski, M., Wennigsen
WTR:	Walter, F., München

## Remarks:

- : uncertain
- s secondary minimum
- 1) assembled from the observations of two nights
- 2) double maximum
- 3) double maxima: time of the second maximum CCD-Cameras
- 4) ccd-camera ST-6: chip  $375 \times 242$  uncoated
- 5) ccd-camera ST-7
- 6) ccd-camera ST-7E
- 7) ccd-camera ST-8XME
- 8) ccd-camera ST-8XMEI: chip KAF1603ME
- 9) ccd-camera ST-9XE: chip  $512 \times 512$
- 10) ccd-camera OES-LcCCD12
- 11) ccd-camera Pictor 1616XT
- 12) ccd-camera Pictor 416XT
- 13) ccd-camera Meade DSI Pro 2
- 14) ccd-camera Meade 1616XTE
- 15) ccd-camera Artemis 4021
- 16) ccd-camera Sigma 1603
- 17) ccd-camera Sigma 402ME
- 18) ccd-camera AlCCD6c
- 19) ccd-camera Canon EOS 450D
- 20) ccd-camera Moravian G2-1600 Filter
- o without filter
- B B-filter
- V V-filter
- R R-filter
- -Ir -Ir-filter
- -U-I -U-Ir-filter
- m multiple filter

### **References:**

A&A	Astronomy & Astrophysics
AJ vvv,ppp	Astronomical Journal volume, pages
BAVM nnn	BAV Mitteilungen No. nnn
BAVR vv,ppp	BAV Rundbrief volume, pages
GCVS 2009	General Catalogue of Variable Stars, version: iii.dat 20.11.2009
IBVS nnnn	Information Bulletin on Variable Stars No. nnnn
PZP vol.n	Peremennye Zvezdy Prilozhenie Vol, No.
SAC vv	Rocznik Astronomiczny No. vv, Krakow (SAC)
	Star catalogues
GSC	The HST Guide star Catalogue 1.2
U-A2	USNO A2.0 catalogue
U-B1	USNO B1.0 catalogue

## ERRATUM FOR IBVS 5959 (BAVM 214)

UY Boo 55311.5195 PGL has to be deleted

# ERRATUM FOR IBVS 5959 (BAVM 214)

Number 5960

Konkoly Observatory Budapest 5 January 2011 HU ISSN 0374 – 0676

### TIMINGS OF MINIMA OF ECLIPSING BINARIES

#### DIETHELM, ROGER

Bahnhofstrasse 3, CH-4118 Rodersdorf, Switzerland

The following Table lists timings of minima of eclipsing binaries secured by CCD photometry, obtained in the second half of 2010. The given O-C values generally refer to the linear elements of the 2009 electronic version of the GCVS (Samus et al., 2009), except for the cases stated in the remarks, where the determination of current elements made use of the up-to-date ASAS data (http://www.astrouw.edu.pl/asas/) and the Lafler-Kinman algorithm of the PERANSO software (http://www.peranso.com/). All times given are heliocentric UTC.

#### Table 1: Minima of eclipsing binaries

Variable	Type	HJD 24	±	O - C	n	Obs	Remarks
WZ And	$\mathbf{p}$	55518.7191	0.0003	+0.0016	32	RD	V
AA And	р	55497.7094	0.0004	-0.0062	41	RD	V; d=0.045d
AP And	$\mathbf{s}$	55513.6845	0.0002	+0.0005	31	RD	V
BD And	р	55497.6850	0.0005	-0.0167	41	RD	V
BX And	р	55478.9054	0.0007	-0.0063	14	RD	V
CN And	$\mathbf{S}$	55518.6751	0.0006	-0.0056	28	RD	V
CP And	р	55543.7247	0.0009	-0.0151	25	RD	V
DK And	$\mathbf{S}$	55498.6807	0.0010	+0.0088	24	RD	V
EP And	р	55477.8946	0.0001	-0.0126	30	RD	V
GK And	р	55501.7107	0.0007	+0.0569	25	RD	V
GZ And	$\mathbf{S}$	55533.6651	0.0003	-0.0016	20	RD	V
HS And	р	55527.7247	0.0002	+0.0031	30	RD	V; d=0.024d
LO And	р	55502.6997	0.0004	-0.0046	28	RD	V; d=0.020d
LY And	$\mathbf{S}$	55533.6506	0.0003	+0.0137	36	RD	V
MO And	р	55543.6483	0.0005	+0.0037	23	RD	V
QW And	р	55469.9016	0.0007	+0.0144	12	RD	V
QX And	р	55542.6796	0.0005	+0.0238	32	RD	V
V412 And	р	55523.7051	0.0003	-0.0059	33	RD	V; el: 2451507.720 + 1.908741 * E
V422 And	р	55506.6502	0.0007	-0.0018	30	RD	V
V449 And	р	55532.5959	0.0015	-0.1689	7	RD	V
	$\mathbf{S}$	55532.7638	0.0013	-0.1703	12	RD	V
V463 And	р	55503.7086	0.0005	-0.0694	31	RD	V; el: IBVS 5699; d=0.023d
$GSC \ 1731-551$	р	55511.7327	0.0004	+0.0032	14	RD	V; el: $2454273.900 + 0.422756 * E$
GSC 1734-408	$\mathbf{S}$	55511.6846	0.0003	+0.0005	18	RD	V; el: $2454408.538 + 0.268177 * E$
GSC 1739-1463	р	55526.6616	0.0002	-0.0032	20	RD	V; el: $2454678.875 + 0.359233 * E$ ; d=0.026d
GSC 2805-766	$\mathbf{S}$	55527.5822	0.0007	+0.0841	9	RD	V; el: PZ 28,2
GSC 2822-1558	р	55469.8406	0.0003	-0.0185	23	RD	V; el: OEJV 104
GSC 3243-336	р	55506.7059	0.0009	+0.0607	24	RD	V; el: PZ 28, 2
GSC 3303-1583	$\mathbf{S}$	55478.8982	0.0001	+0.0377	40	RD	V; el: OEJV 104
GSC 3638-2422	$\mathbf{S}$	55506.6741	0.0005	-0.0053	28	RD	V; el: IBVS 5920
$GSC \ 3641-587$	р	55501.6967	0.0005	-0.0068	28	RD	V; el: IBVS 5920
GSC 3644-1562	р	55500.6834	0.0012	+0.0171	20	RD	V; el: $2451483.589 + 0.412558 * E$

Table 1: Minima of eclipsing binaries (continued) Variable HJD 24... O-CObs Remarks Type  $\pm$ n 55508.6457 CZ Aqr р 0.0002 -0.015127RD V V EK Aqr  $\mathbf{S}$ 55503.6954 0.0006 +0.012841 RD V EL Aqr р 55506.66620.0005 +0.146731RD GK Aqr 55480.60830.0024+0.019111 RD V  $\mathbf{S}$ RD V GM Aqr 55478.68860.0003-0.037319р GS Agr 55480.72080.0009 +0.023124RD V р GSC 562-111 55478.68880.00010.004736RD V; el: 2452787.908 + 1.551774 * E р GSC 5210-437V; el: 2454661.739 + 1.073755 * E 55476.70220.0005-0.0017RD р 19V; el: 2452876.679 + 1.080941 * EGSC 5802-335 55480.69450.0005 +0.028725RD р RX Ari 55532.6411 0.0002 +0.065128RD V р SS Ari 0.0003 -0.007617RD V 55538.6538 р AW Ari 55538.72580.0005-0.014218 RD V: el: IBVS 5219 р GSC 636-555 55542.73040.0005 +0.002521RDV; el: 2454805.578 + 0.484967 * E р  $\operatorname{GSC}\,645\text{-}85$ 55544.65600.0004 +0.007522RDV; el: 2454387.697 + 0.355220 * E р V; el: IBVS 5920 GSC 1209-1201 55469.8556 0.0002+0.028527RD р V; el: 2455063.860 + 0.337915 * E GSC 1210-442  $\mathbf{S}$ 55469.87160.0007 -0.000725RD GSC 1213-1483 55477.8521 0.0005+0.032820RD V; el: 2453654.676 + 0.346282 * E  $\mathbf{S}$ -0.0048V: el: IBVS 5920; d=0.033d GSC 1217-696 55538.7115 0.000427RD р V; el: IBVS 5920; d=0.025d GSC 1221-1118 55545.7239 0.0004 -0.0036RD 18р  $GSC \ 1240-657$ V; el: IBVS 5945 55545.69140.0005+0.000334RD  $\mathbf{S}$ GSC 1761-1934 22V; el: 2452872.855 + 0.299374 * E 55477.85920.0002 +0.0014RD  $\mathbf{S}$ 23RD 55478.9091 0.0008 +0.0034V р GSC 1774-845 Ari 55532.66220.0004-0.012621RD V; el: 2454823.626 + 0.468019 * E р AH Aur 55538.8843 0.0005 +0.124435RD  $\mathbf{s}$ V EP Aur 55538.8781 0.0003 +0.024331RD V; el: IBVS 4099 р HP Aur 55526.8674 0.0001+0.060122RD V  $\mathbf{S}$ 0.0003 -0.015935RD V; el: IBVS 3666 HU Aur  $\mathbf{S}$ 55508.8874RD MT Aur 55528.87040.0008 +0.013524V р V; el: IBVS 4245; d=0.026d V404 Aur р 55528.8645 0.0003 +0.030923RD V410 Aur 55508.9206 0.0005+0.003822RD V; el: IBVS 5668, d=0.030d  $\mathbf{S}$ 0.0009 V; formerly ES Tau V555 Aur 55518.9287 +0.015821RD р GSC 2393-680 55508.9000 0.0004 +0.008325RD V; el: IBVS 5699  $\mathbf{S}$ GSC 2898-2213 0.0004 RD V; el: OEJV 91; d=0.06d 55506.8566+0.002829р GSC 3751-178 0.000320RDV; el.: IBVS 5920 55528.9341+0.0043 $\mathbf{S}$ GM BooC; el: IBVS 5125 0.0008 25EBl 55398.4414 +0.0576р GN BooC; el: IBVS 5125 55398.48130.0004+0.008119EBlр GQ Boo 55398.51290.0010-0.008417EBlC; el: IBVS 5125 р GR Boo 55398.47690.0003 -0.002218EBl C; el: IBVS 5125  $\mathbf{S}$ WW Cam 55544.71370.0003 -0.025127RDV р V; el: PASP 97, 648 AO Cam 55476.81300.0009 -0.04958 RDр AQ Cam V; d=0.031d 55511.9223 0.0003 +0.026823RD р CP Cam V; el: Hipparcos р 55559.68580.0003 -0.019438RD LR Cam 55539.89080.0005-0.063423RD V; el: IBVS 5132 р MT Cam 55503.88910.0004+0.002425RDV; el: IBVS 5871 р MX Cam -0.1345V; el: IBVS 5557 55497.8500 0.0003 37RD р 55511.83500.0005-0.1351RD V 17р NO Cam V; el: IBVS 5894 +0.006330 RD55480.89730.0002 р NR Cam V; el: IBVS 5894 0.0008+0.0056RD55559.81848 р 55559.94590.0004+0.005221RD V  $\mathbf{S}$ GSC 3715-1039 s?55497.94370.0008 +0.091024RDV; el: IBVS 5920; pulsator? GSC 3722-650 55545.6214 0.0020 +0.008744RD V; el: 2451420.645 + 2.90593 * E  $\mathbf{S}$ V; el: OEJV 83  $GSC \ 4346-929$ 55526.87110.0003 -0.008121RD р  $\operatorname{GSC}\,4362\text{--}272$ 0.0003+0.009925RD V; el. OEJV 83; d=0.033d 55539.8729р 0.0002 RD V; el: OEJV 83 GSC 4533-110 $\mathbf{S}$ 55540.0054+0.08638

0.0006

0.0085

21

RD

V; el: IBVS 5894

NSV 3715

р

55559.9372

Variable	Type	HJD 24	±	O-C	n	Obs	Remarks
EF CVn	p	55398.4168	0.0003	-0.0075	16	EBl	C; el: IBVS 5269
EG CVn	s	55398.4390	0.0006	+0.0471	24	EBl	C; el: IBVS 5269
GSC 5383-1971	р	55543.8813	0.0003	+0.0047	29	RD	V; el: $2454463.794 + 0.374249 * E$
GSC 5391-1821	p	55544.9308	0.0019	-0.0044	16	RD	V; el: $2454842.741 + 1.823881 * E$ ; non-circ.
	s	55545.8950	0.0007	+0.0478	28	RD	V
GSC 5948-2942	$\mathbf{s}$	55533.8637	0.0001	-0.0111	26	RD	V; el: $2454213.496 + 0.320597 * E$
GSC 5950-993	$\mathbf{S}$	55542.9148	0.0007	-0.0218	20	RD	V; el. 2454157.669 + 1.161650 * E
CW CMi	р	55559.9216	0.0002	+0.0024	19	RD	V; el: IBVS 5871
GSC 4833-1925	р		0.0006	-0.0105	26	RD	V; el: $2454461.780 + 0.660754 * E$ ; d=0.057d
TX Cas	$\mathbf{p}$	55503.7706	0.0007	-0.1582	78	RD	V
AL Cas	$\mathbf{p}$	55532.6322	0.0004	+0.0046	25	RD	V
BH Cas	$\mathbf{S}$	55526.6654	0.0006	+0.0285	20	RD	V; el: IBVS 4482
BW Cas	р	55478.7628	0.0003	+0.0138	33	RD	V; el: $2450710.303 + 1.26283 * E$
CR Cas	р	55502.6830	0.0004	+0.1380	43	RD	V
CW Cas	р	55518.6578	0.0001	-0.0588	15	RD	V; el: JAAVSO 21, 34
EG Cas	$\mathbf{p}$	55508.6614	0.0006	-0.2073	26	RD	V
ES Cas	$\mathbf{p}$	55513.6482	0.0005	-0.4653	18	RD	V
GG Cas	р	55480.8348	0.0011	-0.0622	63	RD	V
GK Cas	s	55532.6868	0.0011	-0.3333	45	RD	V
GR Cas	р	55484.9126	0.0002	-0.0425	39	RD	V
HQ Cas	$\mathbf{p}$	55528.7252	0.0005	-0.5530	28	RD	V
IR Cas	р	55502.6530	0.0008	+0.0094	37	RD	V
LQ Cas MM Car	р	55523.6121	0.0006	-0.2754	12	RD DD	V
MM Cas MN Cas	p	55527.0779	0.0005	+0.0955	39 10	RD DD	V
MN Cas MP Cas	s	55512 7492	0.0006	+0.0050	19	RD DD	V
MR Cas	p r	55513.7423 55511.6627	0.0004	-0.0460	19 20		V V of IBVS 5600 d=0.017d
MT Cas	p p	55517 7157	0.0004	$\pm 0.0410$ $\pm 0.0148$	29 20	RD RD	V, el. 10V5 5090, d=0.017d
MV Cas	p n	55506 6922	0.0003	-0.0930	$\frac{25}{26}$	RD	V: d=0.027d
NN Cas	р р	55511 7094	0.0002 0.0028	+0.0000	20	RD	V
NV Cas	р р	55526.6890	0.0003	-0.1134	18	RD	V
NZ Cas	P D	55523.7647	0.0006	-0.1860	11	RD	V
OR Cas	р	55527.6549	0.0001	-0.0240	36	RD	V
OX Cas	p	55518.6605	0.0005	+0.0274	41	RD	V; non-circ.
V336 Cas	p	55513.7242	0.0001	-0.0152	27	RD	V
V345 Cas	р	55502.6590	0.0006	-0.0151	26	RD	V
V350 Cas	$\mathbf{p}$	55498.6630	0.0006	-0.0518	15	RD	V
V357 Cas	р	55511.5831	0.0008	+0.2471	10	RD	V
V359 Cas	р	55502.7235	0.0009	+0.0098	21	RD	V; el: IBVS 5016
V362 Cas	р	55517.7285	0.0004	-0.0020	30	RD	V; el: OEJV 72
V366 Cas	$\mathbf{S}$	55528.6798	0.0001	+0.0729	45	RD	V; el: $4798$ ; d=0.026d
V380 Cas	р	55517.6612	0.0005	-0.0652	44	RD	V
V381 Cas	s	55511.6786	0.0006	-0.0291	35	RD	V
V399 Cas	p?	55497.658	0.003	-0.065	42	RD	V
V419 Cas	р	55469.8640	0.0012	+0.0389	28	RD DD	V
V448 Cas V471 Car	р	55518.7584	0.0010	+0.2384	17	RD DD	V V
V471 Cas	p	00042.7217	0.0003	-0.0302	21 42	RD DD	V V. al. DDCAC Dull 117 0
V520 Cas	s	555175877	0.0009	-0.1909	40		V, el: DDSAG Dull. 117, 9 V: el: MNRAS 317, 111
v 525 Cas	P	55517 7045	0.0003	$\pm 0.0372$ $\pm 0.0371$	23	RD	V
V541 Cas	S	55478 8709	0.0001	+0.0011 +0.0219	37	RD	V el: IBVS 2652
V608 Cas	n	55542.7275	0.0002	+0.0059	26	RD	V; el: IBVS 5151: d=0.016d
V651 Cas	г S	55513.7449	0.0006	+0.0032	$\frac{-0}{19}$	RD	V: el: IBVS 3554
V959 Cas	ā	55517.6659	0.0005	+0.0141	43	RD	V; el: $2451335.8533 + 1.065155 * E$
V961 Cas	S	55517.6429	0.0002	+0.0011	34	RD	V; el: $2452668.3556 + 0.759911 * E$
V1009 Cas	р	55523.7562	0.0007	+0.1852	14	RD	V; d=0.03d
V1018 Cas	p	55543.6722	0.0011	-0.0152	30	RD	V; el: IBVS 5894, non-circ.
GSC 4017-1018	s	55517.6338	0.0017	-0.0133	32	RD	V; el: OEJV 91
NSV 18	р	55518.6451	0.0003	+0.0029	34	RD	V; el: 2451478.49 + 1.940515 * E
NSV 49	$\mathbf{S}$	55506.6682	0.0013	+0.0016	17	RD	V; el: IBVS 5871

 Table 1: Minima of eclipsing binaries (continued)

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Variable	Type	HID 24	+	O - C	n	Obs	Bemarks
$ \begin{array}{c} \label{eq:horizon} \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	WZ Cop	n	55503 6700	0.0002	0.0010	40	RD	V: ol: A&AS 121 17: d=0.022d
$ \begin{array}{c} \text{CO} \ (2 \text{ cp}) & \text{s} & \text{3556,1738} & 0.0000 & +0.0030 & 27 & \text{RD} & \text{V} \\ \text{DP} \ (2 \text{ cp}) & \text{p} & 5548,0613 & 0.0003 & -0.0566 & 24 & \text{RD} & \text{V} \\ \text{F} \ (2 \text{ cp}) & \text{p} & 5548,0613 & 0.0003 & +0.0392 & 27 & \text{RD} & \text{V} & \text{d} : 2431860,546 + 0.606077 * \text{E}; d=0.05d \\ \text{p} & 5551,3623 & 0.0003 & +0.0392 & 27 & \text{RD} & \text{V}; d: 2431860,546 + 0.606077 * \text{E}; d=0.05d \\ \text{F} \ (2 \text{ p}) & 5548,06613 & 0.0006 & +0.0192 & 27 & \text{RD} & \text{V}; d: 18V3 2233 \\ \text{CW} \ (2 \text{ p}) & 5548,06463 & 0.0006 & +0.0023 & 15 & \text{RD} & \text{V}; d: 18V3 2233 \\ \text{FP} \ (2 \text{ p}) & 5548,06438 & 0.0006 & +0.0023 & 36 & \text{RD} & \text{V}; d: 18V3 5220 \\ \text{II. Cep} & \text{p} & 5549,0738 & 0.0006 & -0.0023 & 35 & \text{RD} & \text{V} \\ \text{VI Cep} & \text{s} & 5547,7284 & 0.003 & +0.022 & 34 & \text{RD} & \text{V} \\ \text{V388 Cep} & \text{p} & 5538,37851 & 0.0005 & +0.1150 & 27 & \text{RD} & \text{V}; d: 18VS 5660, \text{non-circ.} \\ \text{V741 Cep} & \text{s} & 55547,7294 & 0.003 & +0.0220 & 27 & \text{RD} & \text{V}; d: 18VS 5360, \text{non-circ.} \\ \text{V741 Cep} & \text{s} & 55541,67280 & 0.0015 & +0.01150 & 27 & \text{RD} & \text{V}; d: 18VS 5360, \text{non-circ.} \\ \text{V741 Cep} & \text{s} & 55544,6788 & 0.0015 & +0.0516 & \text{RD} & \text{V}; d: 18VS 5360, \text{non-circ.} \\ \text{CSC 4477.706 } & \text{p} & 55502,688 & 0.0004 & +0.0015 & 41 & \text{RD} & \text{V}; d: 0EV 83 \\ \text{CSC 4482-1288 } & \text{p} & 55502,7168 & 0.0001 & +0.0178 & 29 & \text{RD} & \text{V}; d: 0EIV 83 \\ \text{CSC 4482-1288 } & \text{p} & 55502,7168 & 0.0000 & +0.0015 & 41 & \text{RD} & \text{V}; d: 0EIV 83 \\ \text{CSC 4429.138 } & \text{s} & 55584,6890 & 0.0001 & +0.0178 & 29 & \text{RD} & \text{V}; d: 0EIV 83 \\ \text{CSC 4429.138 } & \text{s} & 55582,7168 & 0.0006 & -0.0519 & 27 & \text{RD} & \text{V}; d: 0EIV 83 \\ \text{CSC 4429.138 } & \text{s} & 55584,6960 & 0.0007 & 25 & \text{RD} & \text{V}; d: 0EIV 83 \\ \text{CSC 4429.138 } & \text{s} & 55583,6961 & 0.0007 & 25 & \text{RD} & \text{V}; d: 0EIV 83 \\ \text{CSC 4429.138 } & \text{s} & 55583,6961 & 0.0007 & 25 & \text{RD} & \text{V}; d: 0EIV 83 \\ \text{CSC 4429.138 } & \text{s} & 55583,6961 & 0.0007 & -0.0042 & \text{RD} & \text{V}; d: 24543376,786 + 0.237131 * \text{E} \\ \text{CSC 4439.143 } & \text{s} & 55533,6961 & 0.0007 & -0.0042 $	CO Cep	р с	55513 7043	0.0002	-0.0919	49 25	RD	V; ei. A&AS 151, 17, u=0.022u
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	DK Cop	5	55476 7228	0.0003	$\pm 0.0100$	00 07		V, non-ene.
$ \begin{array}{c} Di \ Cep & p \\ F \ Cep & p \\ F \ Cep & p \\ 55613.852 \\ F \ Cep & p \\ 55613.852 \\ F \ Cep & p \\ 5560.6066 \\ F \ Cep & p \\ 5560.6066 \\ F \ Cep & p \\ 5560.6066 \\ F \ Cep & p \\ 5560.606 \\ F \ Cep & p \\ 5560.6077 \\ F \ Cep & p \\ 5560.6077 \\ F \ Cep & p \\ 5560.6077 \\ F \ Cep & p \\ 5560.7720 \\ F \ Cep & p \\ 5560.77687 \\ F \ Cep & p \\ 5567.77687 \\ F \ Cep & p \\ 5567.77687 \\ F \ Cep & p \\ 5567.77687 \\ F \ Cep & p \\ 5567.77687 \\ F \ Cep & p \\ 55587.736 \\ F \ Cep & p \\ 55587.736 \\ F \ Cep & p \\ 55587.736 \\ F \ Cep & p \\ 55587.736 \\ F \ Cep & p \\ 55587.724 \\ Cep & p \\ 55587.724 \\ Cep & p \\ 55587.724 \\ Cep & p \\ 55587.724 \\ Cep & p \\ 55587.724 \\ Cep & p \\ 55587.724 \\ Cep & p \\ 55587.724 \\ Cep & p \\ 55587.724 \\ Cep & p \\ 55587.724 \\ Cep & p \\ 55587.724 \\ Cep & p \\ 55587.724 \\ Cep & p \\ 55587.724 \\ Cep & p \\ 55587.724 \\ Cep & p \\ 55587.724 \\ Cep & p \\ 55587.724 \\ Cep & p \\ 55587.724 \\ Cep & p \\ 55587.724 \\ Cep & p \\ 55587.724 \\ Cep & p \\ 55587.724 \\ Cep & p \\ 55587.724 \\ Cep & p \\ 55587.724 \\ Cep & p \\ 55587.724 \\ Cep & p \\ 55587.724 \\ Cep & p \\ 55587.724 \\ Cep & p \\ 55587.724 \\ Cep & p \\ 55587.724 \\ Cep & p \\ 55587.724 \\ Cep & p \\ 55587.724 \\ Cep & p \\ 55587.724 \\ Cep & p \\ 55587.724 \\ Cep & p \\ 55587.724 \\ Cep & p \\ 55587.724 \\ Cep & p \\ 55587.724 \\ Cep & p \\ 55587.724 \\ Cep & p \\ 55587.736 \\ Cep & p \\ 55587.736 \\ Cep & p \\ 55587.736 \\ Cep & p \\ 55587.738 \\ Cep & p \\ 55587.738 \\ Cep & p \\ 55587.738 \\ Cep & p \\ 55587.738 \\ Cep & p \\ 55587.738 \\ Cep & p \\ 55587.738 \\ Cep & p \\ 55587.738 \\ Cep & p \\ 55587.738 \\ Cep & p \\ 55587.738 \\ Cep & p \\ 5578.738 \\ Cep & p \\ 5578.738 \\ Cep & p \\ 5578.738 \\ Cep & p \\ 5578.738 \\ Cep & p \\ 5578.738 \\ Cep & p \\ 5578.738 \\ Cep & p \\ 5578.738 \\ Cep & p \\ 5578.738 \\ Cep & p \\ 5578.738 \\ Cep & p \\ 5578.738 \\ Cep & p \\ 5578.738 \\ Cep & p \\ 5578.738 \\ Cep & p \\ 5578.738 \\ Cep & p \\ 5578.738 \\ Cep & p \\ 5578.738 \\ Cep & p \\ 5578.738 \\ Cep & p \\ 5578.738 \\ Cep & p \\ 5578.738 \\ Cep & p \\ 5578.738 \\ Cep & p \\ 5578.738 \\ Cep & p \\ 5578.738 \\ Cep & p \\ 5578.738 \\ Cep & p \\ 5578.738 \\ Cep & p \\ 55$	DR Cep	p n	55408 6613	0.0008	+0.0550	21	RD	v V
$ \begin{array}{c} 16 \ Cep & s \\ c \\ S \\ C \\ C \\ C \\ C \\ C \\ P \\ P \\ S \\ S \\ C \\ C \\ C \\ C \\ P \\ P \\ S \\ S \\ C \\ C \\ C \\ P \\ P \\ S \\ S \\ C \\ C \\ S \\ C \\ S \\ C \\ S \\ C \\ S \\ C \\ S \\ C \\ S \\ C \\ S \\ S$	DI Cep	p	55500 0186	0.0003	-0.0300	24 97		V V ob 2421860 546 + 0.606077 * E d=0.05d
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ығ Сер	s	0000.9100 EFE12.0592	0.0009	+0.0302	21		V; el: $2451800.540 \pm 0.000077^{-1}$ E; d=0.05d
$ \begin{array}{c} ER \ Cep & p \\ State (SP) \\ State (SP) \\ State (SP) \\ State (SP) \\ State (SP) \\ State (SP) \\ State (SP) \\ State (SP) \\ State (SP) \\ State (SP) \\ State (SP) \\ State (SP) \\ State (SP) \\ State (SP) \\ State (SP) \\ State (SP) \\ State (SP) \\ State (SP) \\ State (SP) \\ State (SP) \\ State (SP) \\ State (SP) \\ State (SP) \\ State (SP) \\ State (SP) \\ State (SP) \\ State (SP) \\ State (SP) \\ State (SP) \\ State (SP) \\ State (SP) \\ State (SP) \\ State (SP) \\ State (SP) \\ State (SP) \\ State (SP) \\ State (SP) \\ State (SP) \\ State (SP) \\ State (SP) \\ State (SP) \\ State (SP) \\ State (SP) \\ State (SP) \\ State (SP) \\ State (SP) \\ State (SP) \\ State (SP) \\ State (SP) \\ State (SP) \\ State (SP) \\ State (SP) \\ State (SP) \\ State (SP) \\ State (SP) \\ State (SP) \\ State (SP) \\ State (SP) \\ State (SP) \\ State (SP) \\ State (SP) \\ State (SP) \\ State (SP) \\ State (SP) \\ State (SP) \\ State (SP) \\ State (SP) \\ State (SP) \\ State (SP) \\ State (SP) \\ State (SP) \\ State (SP) \\ State (SP) \\ State (SP) \\ State (SP) \\ State (SP) \\ State (SP) \\ State (SP) \\ State (SP) \\ State (SP) \\ State (SP) \\ State (SP) \\ State (SP) \\ State (SP) \\ State (SP) \\ State (SP) \\ State (SP) \\ State (SP) \\ State (SP) \\ State (SP) \\ State (SP) \\ State (SP) \\ State (SP) \\ State (SP) \\ State (SP) \\ State (SP) \\ State (SP) \\ State (SP) \\ State (SP) \\ State (SP) \\ State (SP) \\ State (SP) \\ State (SP) \\ State (SP) \\ State (SP) \\ State (SP) \\ State (SP) \\ State (SP) \\ State (SP) \\ State (SP) \\ State (SP) \\ State (SP) \\ State (SP) \\ State (SP) \\ State (SP) \\ State (SP) \\ State (SP) \\ State (SP) \\ State (SP) \\ State (SP) \\ State (SP) \\ State (SP) \\ State (SP) \\ State (SP) \\ State (SP) \\ State (SP) \\ State (SP) \\ State (SP) \\ State (SP) \\ State (SP) \\ State (SP) \\ State (SP) \\ State (SP) \\ State (SP) \\ State (SP) \\ State (SP) \\ State (SP) \\ State (SP) \\ State (SP) \\ State (SP) \\ State (SP) \\ State (SP) \\ State (SP) \\ State (SP) \\ State (SP) \\ State (SP) \\ State (SP) \\ State (SP) \\ State (SP) \\ State (SP) \\ State (SP) \\ State (SP) \\ State (SP) \\ State (SP) \\ State (SP) \\ State (S$	EV Con	p	00010.9020 EE460.6066	0.0005	+0.0392	27 10		V; d=0.05d
$ \begin{array}{c} {\rm CWC} {\rm cdp} & {\rm p} & 55403.6131 & 0.0006 & -0.0023 & 13 & {\rm hU} & {\rm V} \ {\rm eff} \ {\rm 11555.4230} \\ {\rm LL } {\rm Cop} & {\rm p} & 55405.7138 & 0.0005 & +0.0023 & {\rm rel} {\rm DV} & {\rm V} \\ {\rm MT} \ {\rm Cep} & {\rm s} & 55477.6877 & 0.003 & -0.0023 & {\rm rel} {\rm DV} & {\rm V} \ {\rm eff} \ {\rm 11555.4230} \\ {\rm NN } {\rm Cep} & {\rm s} & 55477.25 & 0.003 & -0.0023 & {\rm rel} {\rm DV} & {\rm V} \ {\rm eff} \ {\rm 11555.5567} \\ {\rm NN } {\rm Cep} & {\rm s} & 55477.25 & 0.003 & -0.0023 & {\rm 12} {\rm ND} & {\rm V} \\ {\rm V388} \ {\rm Cop} & {\rm s} & 55477.25 & 0.0005 & -0.0126 & {\rm 27} {\rm RD} & {\rm V} \ {\rm eff} \ {\rm 11555.4230} \\ {\rm V388} \ {\rm Cop} & {\rm s} & 55347.753 & 0.0005 & +0.0126 & {\rm 27} {\rm RD} & {\rm V} \ {\rm eff} \ {\rm 11555.42566} \ {\rm non-circ} \\ {\rm V743} \ {\rm Cep} & {\rm s} & 55347.67280 & 0.0015 & +0.0516 & {\rm 27} {\rm RD} & {\rm V} \ {\rm eff} \ {\rm 11555.5567} \ {\rm non-circ} \\ {\rm V744} \ {\rm Cep} & {\rm s} & 55506.6767 & 0.0002 & -0.0682 & {\rm 20} {\rm RD} & {\rm V} \ {\rm eff} \ {\rm 11555.5577} \ {\rm non-circ} \\ {\rm CSC} \ 4482-981 & {\rm p} & 55500.7126 & 0.0011 & +0.0174 & {\rm 21} {\rm RD} & {\rm V} \ {\rm eff} \ {\rm CDJV} \ {\rm 83} \\ {\rm CSC} \ 4482-1238 & {\rm p} & 55506.7168 & 0.0001 & +0.00174 & {\rm 23} {\rm RD} & {\rm V} \ {\rm eff} \ {\rm CDJV} \ {\rm 83} \\ {\rm CSC} \ 4490-777 & {\rm s} & 55506.6300 & 0.0003 & +0.00162 & {\rm 23} {\rm RD} & {\rm V} \ {\rm eff} \ {\rm CDJV} \ {\rm 83} \\ {\rm CSC} \ 4490-7178 & {\rm s} & 55506.6300 & 0.0003 & +0.00162 & {\rm 23} {\rm RD} & {\rm V} \ {\rm eff} \ {\rm CDJV} \ {\rm 83} \\ {\rm CSC} \ 4490-7178 & {\rm s} & 55508.6900 & 0.0003 & +0.0006 & {\rm 20} {\rm RD} & {\rm V} \ {\rm eff} \ {\rm CDJV} \ {\rm 83} \\ {\rm CSC} \ 4490-7178 & {\rm s} \ 55508.6900 & 0.0003 & +0.00005 & {\rm 90} {\rm RD} & {\rm V} \ {\rm eff} \ {\rm CDJV} \ {\rm 83} \\ {\rm CSC} \ 4490-7178 & {\rm s} \ 55508.6900 & 0.0003 & +0.00006 & {\rm 90} {\rm RD} & {\rm V} \ {\rm eff} \ {\rm CDV} \ {\rm 83} \\ {\rm SSC} \ {\rm Cet} & {\rm p} \ 55545.767 & 0.005 & +0.0012 & {\rm 30} {\rm RD} & {\rm V} \ {\rm eff} \ {\rm CDV} \ {\rm 83} \\ {\rm SSC} \ {\rm Cet} & {\rm p} \ 55545.7690 & 0.0003 & -0.00006 & {\rm 39} {\rm RD} & {\rm V} \ {\rm eff} \ {\rm CDV} \ {\rm 83} \\ {\rm CSC} \ 44348.806 +$	EK Cep	р	55409.0900	0.0010	+0.0119	19	RD DD	V; non-circ.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	GW Cep	р	55409.8737	0.0006	-0.0025	10	RD DD	V; el: IBVS 4293
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	KP Cep	р	55409.7138	0.0008	+0.0423	20	RD DD	V V
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	LL Cep	р	55498.6838	0.0005	+0.0005	25	RD DD	
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	MT Cep	$\mathbf{S}$	55477.6877	0.0002	-0.0001	36	RD	V; el: IBVS 5920
$ \begin{array}{rcrcrc} NR \ Cep & s & 53017.7204 & 0.0003 & -0.0023 & 33 & RD & V \\ V338 \ Cep & p & 5383.7636 & 0.0007 & +0.0323 & 21 & RD & V \\ V438 \ Cep & s & 53543.7551 & 0.0007 & +0.0320 & 25 & RD & V; el: BDSAG Bull. 96, 10; d=-0.044d \\ V480 \ Cep & s & 53543.7851 & 0.0005 & +0.0150 & 27 & RD & V; el: BVS 5560 \ non-circ. \\ V744 \ Cep & s & 5544.6738 & 0.0019 & +0.0242 & 24 & RD & V; el: BVS 5570; non-circ. \\ GSC 4286-49 & s & 55500.7266 & 0.0011 & -0.0041 & 15 & RD & V; el: BVS 5570; non-circ. \\ GSC 4482-1238 & p & 55500.7266 & 0.0011 & -0.0414 & 15 & RD & V; el: OELV 83 \\ GSC 4482-1238 & p & 55500.7266 & 0.0005 & -0.019 & 25 & RD & V; el: OELV 83 \\ GSC 4482-1238 & s & 55518.7155 & 0.0003 & +0.0495 & 34 & RD & V; el: OELV 83 \\ GSC 4420-138 & s & 55518.7155 & 0.0003 & +0.0017 & 25 & RD & V; el: OELV 83 \\ GSC 4420-1830 & p & 5548.0726 & 0.0002 & -0.0225 & 36 & RD & V; el: OELV 83 \\ GSC 4620-1830 & p & 5548.0726 & 0.0002 & -0.0026 & 36 & RD & V; el: OELV 83 \\ GSC 4620-1830 & p & 5548.0726 & 0.0002 & -0.0026 & 39 & RD & V; el: 2454348.806 + 2.20730 * E; d=-0.04d \\ VX \ Cet & p & 55543.6576 & 0.0004 & +0.0022 & 36 & RD & V; el: 2454348.806 + 2.20730 * E; d=-0.04d \\ VX \ Cet & p & 55543.6576 & 0.0004 & -0.0026 & 16 & RD & V; el: 2454729.866 + 0.267131 * E \\ SC 54-6373 & s & 55528.7238 & 0.0003 & -0.0035 & 33 & RD & V; el: 2454729.866 + 0.267131 * E \\ SC 54-6373 & s & 55538.6644 & 0.0007 & +0.0017 & 31 & RD & V; el: 245470.7847 + 0.38645 * E \\ GSC 4498-52 & s & 55532.8651 & 0.0003 & -0.0036 & 33 & RD & V; el: 245470.7847 + 0.38645 * E \\ GSC 4498-54 & p & 55538.4664 & 0.0007 & +0.0017 & 31 & RD & V; el: 245470.7847 + 0.38645 * E \\ GSC 4498-54 & p & 55538.6641 & 0.0007 & +0.0074 & 31 & RD & V; el: 2453716.543 + 0.387647 * E \\ GSC 4498-54 & p & 55538.4624 & 0.0003 & -0.0081 & 31 & RD & V; el: 245470.7847 + 0.38645 * E \\ GSC 4498-54 & p & 55538.4624 & 0.0003 & -0.0081 & 31 & RD & V; el: 245470.7847 + 0.38645 * E \\ GSC 4498-54 & p & 55548.720 & 0.0006 & -0.0071 & 28 & RD & V; el: 245470.784 + 0.37479 * E \\ GSC 498-54 & s & 5$	NN Cep	$\mathbf{S}$	55497.725	0.003	+0.002	34	RD	V
V338 Cepp $5.3638, 6.360$ $0.0007$ $+0.0333$ $21$ RDVV388 Ceps $55343, 725$ $0.0007$ $+0.022$ $25$ RDV; el: BBXG Ball. 96, 10; d=0.044dV748 Ceps $5544, 6728$ $0.0015$ $+0.0156$ $27$ RDV; el: BVS 5586; non-circ.V744 Ceps $5544, 6778$ $0.0015$ $+0.01616$ $27$ RDV; el: BVS 5502GSC 4477-706p $55506, 6767$ $0.0026$ $-0.0582$ $20$ RDV; el: BVS 5570; non-circ.GSC 4472-128p $55506, 6767$ $0.0026$ $-0.0512$ $21$ RDV; el: OEJV 83GSC 4482-981p $55506, 6767$ $0.0001$ $-0.0178$ $29$ RDV; el: OEJV 83GSC 4490-777s $55508, 6382$ $0.0001$ $+0.0165$ $21$ RDV; el: OEJV 83GSC 4402-1830p $5548, 9135$ $0.0003$ $+0.0067$ $25$ RDV; el: OEJV 83GSC 4420-1830p $5548, 9135$ $0.0003$ $+0.0067$ $25$ RDV; el: OEJV 83SS Cetp $55545, 7670$ $0.0005$ $+0.0072$ $26$ RDV; el: OEJV 83GSC 4420-1830p $5548, 9135$ $0.0003$ $+0.0066$ $39$ RDV; el: OEJV 83GSC 4420-1830p $5548, 7280$ $0.0004$ $+0.0026$ $16$ RDV;Cets $55538, 5690$ $0.0003$ $-0.0063$ $38$ RDV; el: 2454376, 762 + 0.444620 * EGSC 4	NR Cep	$\mathbf{S}$	55517.7204	0.0003	-0.0523	35	RD	V
N388 Ceps55543.7255 $0.0007$ $+0.0220$ $25$ RDV; el: BJSAG Buil, 96, 10; d=0.044dV489 Ceps55543.7280 $0.0015$ $+0.0516$ $27$ RDV; el: BVS 5505non-circ.V744 Ceps55548.6788 $0.0019$ $+0.0242$ 24RDV; el: BVS 5507non-circ.GSC 4428-49s55500.7226 $0.0011$ $-0.0682$ 20RDV; el: BVS 5570; non-circ.GSC 4482-1238p55500.7226 $0.0011$ $-0.0144$ 15RDV; el: OEJV 83GSC 4482-1238p55500.7226 $0.0001$ $+0.0178$ 29RDV; el: OEJV 83GSC 4490-177s55508.6382 $0.0001$ $+0.0178$ 29RDV; el: OEJV 83GSC 4402-183s55508.6382 $0.0005$ $+0.021$ 30RDV; el: OEJV 83GSC 44502-138s55508.6382 $0.0008$ $+0.007$ 25RDV; el: OEJV 83GSC 44014887s55548.0540 $0.0008$ $+0.007$ 25RDV; el: OEJV 83SS Cetp55548.7540 $0.0002$ $-0.026$ 30RDV; el: OEJV 83SS Cetp55548.7580 $0.0002$ $-0.0025$ 36RDV; el: 2454376.762 + 0.44420VY Cetp55548.6540 $0.0002$ $-0.0036$ 97RDV; el: 2454376.762 + 0.44420VY Cetp55548.6540 $0.0003$ $-0.0036$ 71RDV; el: 2454376.762 + 0.444620VS	V338 Cep	$\mathbf{p}$	55383.7636	0.0007	+0.0333	21	RD	
V489 Ceps55383.6810.0005+0.116027RDV; el: HXYS 5406V744 Cepp55476.72800.0015+0.024224RDV; el: HXYS 5586; non-circ.V744 Ceps55506.67670.0026-0.082220RDV; el: HXYS 5506; non-circ.GSC 4482-981p55500.72660.00026-0.082220RDV; el: OEJV 83GSC 4482-981p55500.72660.0001+0.017829RDV; el: OEJV 91GSC 4482-138p55508.63820.0003+0.016523RDV; el: OEJV 83GSC 4490-777s55508.63820.0003+0.016623RDV; el: OEJV 83GSC 4620-1830p55548.6900.0003+0.016623RDV; el: OEJV 83GSC 4620-1830p55548.69670.0002-0.022336RDV; el: OEJV 83GSC 4620-1830p55548.69670.0003-0.001629RDV; el: 2454348.806 + 2.720730 * E; d=0.04dCY Cetp5554.7360.0004+0.002616RDVel: 2454348.806 + 2.720730 * E; d=0.04dCS 28-697p55528.59990.0003-0.003533RDV; el: 2454376.74786-0.267131 * EGSC 448448s55477.83970.0005+0.002616RDV; el: 2454376.574-0.44420 * EGSC 4488-485p55538.69600.0006+0.011323RDV; el: 245407.848 + 0.387647 * E <td>V358 Cep</td> <td>$\mathbf{S}$</td> <td>55543.7255</td> <td>0.0007</td> <td>+0.0220</td> <td>25</td> <td>RD</td> <td>V; el: BBSAG Bull. 96, 10; d=0.044d</td>	V358 Cep	$\mathbf{S}$	55543.7255	0.0007	+0.0220	25	RD	V; el: BBSAG Bull. 96, 10; d=0.044d
$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	V489 Cep	$\mathbf{S}$	55383.7851	0.0005	+0.1150	27	RD	V; el: IBVS 4406
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	V743 Cep	$\mathbf{p}$	55476.7280	0.0015	+0.0516	27	RD	V; el: IBVS 5586; non-circ.
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	V744 Cep	s	55484.6798	0.0019	+0.0242	24	RD	V; el: IBVS 5920
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	GSC 4286-49	s	55500.6767	0.0026	-0.0582	20	RD	V; el: IBVS 5570; non-circ.
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	GSC 4477-706	р	55502.6818	0.0004	+0.0015	41	RD	V; el: OEJV 83
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	GSC 4482-981	р	55500.7226	0.0011	-0.0044	15	RD	V; el: OEJV 83
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	GSC 4482-1238	р	55502.7168	0.0001	+0.0178	29	RD	V; el: OEJV 91
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	GSC 4490-777	$\mathbf{S}$	55508.6382	0.0005	-0.0519	25	RD	V; el: OEJV 83; d=0.04d
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	GSC 4502-138	$\mathbf{S}$	55518.7155	0.0003	+0.0495	34	RD	V; el: $2453433.636 + 0.39292 * E$ ; d=0.02d
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	GSC 4614-887	$\mathbf{S}$	55508.6900	0.0013	+0.0166	23	RD	V; el: OEJV 83
$\begin{array}{llllllllllllllllllllllllllllllllllll$	GSC 4620-1830	р	55480.9135	0.0008	+0.0007	25	RD	V; el: OEJV 83
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	SS Cet	р	55545.767	0.005	+0.021	30	RD	V
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	TT Cet	$\mathbf{S}$	55533.6967	0.0002	-0.0625	36	RD	V; d=0.03d
$\begin{array}{llllllllllllllllllllllllllllllllllll$	VX Cet	$\mathbf{p}$	55477.9083	0.0003	-0.0006	39	RD	V; el: $2454348.806 + 2.720730 * E$ ; d=0.04d
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	DY Cet	$\mathbf{p}$	55543.6546	0.0006	-0.0100	20	RD	V; el: IBVS 5806
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	GSC 28-697	$\mathbf{p}$	55528.5909	0.0005	+0.0032	9	RD	V; el: $2454729.866 + 0.267131 * E$
$ \begin{array}{llllllllllllllllllllllllllllllllllll$		$\mathbf{s}$	55528.7238	0.0004	+0.0026	16	RD	V
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	GSC 43-686	$\mathbf{s}$	55477.8599	0.0003	-0.0035	33	RD	V; el: $2454376.762 + 0.444620 * E$
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	GSC 44-1314	$\mathbf{s}$	55478.9047	0.0015	-0.0296	16	RD	V; el: $2454707.828 + 0.358644 * E$
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	GSC 54-373	$\mathbf{s}$	55538.6634	0.0007	+0.0047	31	RD	V; el: $2453015.629 + 0.880485 * E$ ; d=0.08d
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	GSC 4687-79	р	55533.6280	0.0008	-0.0113	23	RD	V; el: $2453716.543 + 0.349173 * E$ ; d=0.03d
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	GSC 4688-485	р	55538.6664	0.0007	+0.0120	28	RD	V; el: $2454697.848 + 0.387647 * E$
$\begin{array}{llllllllllllllllllllllllllllllllllll$	GSC 4689-252	$\mathbf{S}$	55532.6851	0.0005	+0.0066	44	RD	V; el: $2453561.918 + 0.573479 * E$
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	GSC 4691-773	$\mathbf{S}$	55533.6542	0.0003	+0.0089	44	RD	V; el: $2454707.847 + 0.584636 * E$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	GSC 4708-841	$\mathbf{s}$	55484.9202	0.0002	-0.0081	31	RD	V; el: 2454430.781 + 0.361939 * E
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	GSC 5268-1013	р	55523.6312	0.0003	-0.0081	22	RD	V: el: $2453670.575 + 0.402665 * E; d=0.026d$
$\begin{array}{llllllllllllllllllllllllllllllllllll$	GSC 5270-645	s	55527.7092	0.0005	0.0024	36	RD	V; el: OEJV 116
RU Erip $55500.8497$ $0.0008$ $-0.0271$ $18$ RDVUX Erip $55544.7025$ $0.0004$ $+0.0136$ $33$ RDV; el: $2454828.669 + 0.445286 * E$ YY Eris $55476.9003$ $0.0009$ 0 $24$ RDV; el: $2454197.495 + 0.321499 * E$ ZZ Erip $55502.8724$ $0.0005$ $-0.0094$ $18$ RDVAA Eris $55476.8857$ $0.0009$ $-0.0239$ $22$ RDV; el: Krakau catalogueAM Erip $55508.8599$ $0.0006$ $-0.0979$ $14$ RDVBC Eris $55506.8897$ $0.0004$ $+0.0018$ $21$ RDV; el: $2453012.727 + 0.527251 * E$ BL Erip $55476.9055$ $0.0022$ $+0.0686$ $27$ RDV; el: $1BVS 4104$ BV Erip $55545.6781$ $0.0007 - 0.0079$ $23$ RDV; el: $2454508.551 + 0.507653 * E$ BZ Erip $55511.8554$ $0.0004 + 0.0031$ $22$ RDV; el: $2454740.773 + 0.792793 * E; d=0.036d$ GSC 4700-802p $55544.6641$ $0.0004 - 0.0010$ $29$ RDV; el: $2453707.673 + 0.748907 * R; d=0.04d$ GSC 4725-661s $55503.9240$ $0.0004 - 0.0017$ $24$ RDV; el: $2453719.742 + 0.353829 * E$ GSC 4734-713p $55503.9240$ $0.0004 - 0.0017$ $24$ RDV; el: $2455093.796 + 0.360110 * E$ GSC 5304-939s $55497.8809$ $0.0007 - 0.0046$ $36$ RDV; el: $2455057.899 $	V679 Cyg	р	55477.730	0.003	-0.200	19	RD	V
UX Erip $55544.7025$ $0.0004$ $+0.0136$ $33$ RDV; el: $2454828.669 + 0.445286 * E$ YY Eris $55476.9003$ $0.0009$ 0 $24$ RDV; el: $2454197.495 + 0.321499 * E$ ZZ Erip $55502.8724$ $0.0005$ $-0.0094$ 18RDVAA Eris $55476.8857$ $0.0009$ $-0.0239$ $22$ RDV; el: Krakau catalogueAM Erip $55508.8599$ $0.0006$ $-0.0979$ 14RDVBC Eris $55506.8897$ $0.0004$ $+0.0018$ $21$ RDV; el: $2453012.727 + 0.527251 * E$ BL Erip $555476.9055$ $0.0022$ $+0.0686$ $27$ RDV; el: $1BVS 4104$ BV Erip $55545.6781$ $0.0007$ $-0.0079$ $23$ RDV; el: $2454508.551 + 0.507653 * E$ BZ Erip $55511.8554$ $0.0004$ $+0.0031$ $22$ RDVGSC 4700-802p $55544.6641$ $0.0004$ $-0.0010$ $29$ RDV; el: $2454740.773 + 0.792793 * E; d=0.036d$ GSC 4732-1231p $55500.9166$ $0.0006$ $-0.0006$ 16RDV; el: $2453719.742 + 0.353829 * E$ GSC 5294-1116p $55484.8774$ $0.0002$ $+0.0020$ 35RDV; el: $2455093.796 + 0.360110 * E$ GSC 5303-939s $55497.8809$ $0.0007$ $-0.0046$ 36RDV; el: $2455057.899 + 0.568091 * E$ GSC 5305-396p $55559.6320$ $0.0004$ $-0.0238$	RU Eri	p	55500.8497	0.0008	-0.0271	18	RD	V
YY Eris $55476.9003$ $0.0099$ $0$ $24$ RDV; el: $2454197.495 + 0.321499 * E$ ZZ Erip $55502.8724$ $0.0005$ $-0.0094$ 18RDVAA Eris $55476.8857$ $0.0009$ $-0.0239$ $22$ RDV; el: Krakau catalogueAM Erip $55508.8599$ $0.0006$ $-0.0979$ 14RDVBC Eris $55506.8897$ $0.0004$ $+0.0018$ $21$ RDV; el: $2453012.727 + 0.527251 * E$ BL Erip $55476.9055$ $0.0022$ $+0.0686$ $27$ RDV; el: $1BVS 4104$ BV Erip $55545.6781$ $0.0007$ $-0.0079$ $23$ RDV; el: $2454508.551 + 0.507653 * E$ BZ Erip $55511.8554$ $0.0004$ $+0.0011$ $22$ RDVGSC 4700-802p $55544.6641$ $0.0004$ $-0.0010$ $29$ RDV; el: $2454740.773 + 0.792793 * E; d=0.036d$ GSC 4725-661s $55503.8993$ $0.0009$ $-0.0271$ $39$ RDV; el: $2453707.673 + 0.748907 * R; d=0.04d$ GSC 4732-1231p $55500.9166$ $0.0006$ $-0.0006$ 16RDV; el: $2454725.883 + 0.465621 * E$ GSC 5294-1116p $55484.8774$ $0.0002$ $+0.0020$ 35RDV; el: $2455093.796 + 0.360110 * E$ GSC 5303-939s $55497.8809$ $0.0007$ $-0.0046$ 36RDV; el: $2455057.899 + 0.568091 * E$ GSC 5305-396p $55559.6320$ $0.0004$ $-$	UX Eri	p	55544.7025	0.0004	+0.0136	33	RD	V; el: 2454828.669 + 0.445286 * E
ZZ Erip $55502.8724$ $0.0005$ $-0.0094$ $18$ RDVAA Eris $55476.8857$ $0.0009$ $-0.0239$ $22$ RDV; el: Krakau catalogueAM Erip $55508.8599$ $0.0006$ $-0.0979$ $14$ RDVBC Eris $55506.8897$ $0.0004$ $+0.0018$ $21$ RDV; el: $2453012.727 + 0.527251 * E$ BL Erip $55476.9055$ $0.0022$ $+0.0686$ $27$ RDV; el: $1BVS 4104$ BV Erip $55545.6781$ $0.0007$ $-0.0079$ $23$ RDV; el: $2454508.551 + 0.507653 * E$ BZ Erip $55511.8554$ $0.0004$ $+0.0031$ $22$ RDVGSC 4700-802p $55544.6641$ $0.0004$ $-0.0010$ $29$ RDV; el: $2454740.773 + 0.792793 * E; d=0.036d$ GSC 4725-661s $55503.8993$ $0.0009$ $-0.0271$ $39$ RDV; el: $2453719.742 + 0.353829 * E$ GSC 4732-1231p $55500.9166$ $0.0006$ $-0.0016$ 16RDV; el: $2454725.883 + 0.465621 * E$ GSC 5294-1116p $55484.8774$ $0.0002$ $+0.0020$ 35RDV; el: $2455057.899 + 0.568091 * E$ GSC 5303-939s $55497.8809$ $0.0007$ $-0.0046$ 36RDV; el: $1BVS 5871$	YY Eri	s	55476.9003	0.0009	0	24	RD	V; el: $2454197.495 + 0.321499 * E$
AA Eris $55476.8857$ $0.0009$ $-0.0239$ $22$ RDV; el: Krakau catalogueAM Erip $55508.8599$ $0.0006$ $-0.0979$ 14RDVBC Eris $55506.8897$ $0.0004$ $+0.0018$ $21$ RDV; el: $2453012.727 + 0.527251 * E$ BL Erip $55476.9055$ $0.0022$ $+0.0686$ $27$ RDV; el: $1BVS 4104$ BV Erip $55545.6781$ $0.0007$ $-0.0079$ $23$ RDV; el: $2454508.551 + 0.507653 * E$ BZ Erip $55511.8554$ $0.0004$ $+0.0031$ $22$ RDVGSC 4700-802p $55544.6641$ $0.0004$ $-0.0010$ $29$ RDV; el: $2454740.773 + 0.792793 * E; d=0.036d$ GSC 4725-661s $55503.8993$ $0.0009$ $-0.0271$ $39$ RDV; el: $2453770.673 + 0.748907 * R; d=0.04d$ GSC 4732-1231p $55500.9166$ $0.0006$ $-0.0006$ 16RDV; el: $2453719.742 + 0.353829 * E$ GSC 5294-1116p $55484.8774$ $0.0002$ $+0.0020$ 35RDV; el: $2455057.899 + 0.360110 * E$ GSC 5303-939s $55497.8809$ $0.0007$ $-0.0046$ 36RDV; el: $2455057.899 + 0.568091 * E$ GSC 5305-396p $55559.6320$ $0.0004$ $-0.0238$ $23$ RDV; el: IBVS 5871	ZZ Eri	р	55502.8724	0.0005	-0.0094	18	RD	V
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	AA Eri	s	55476.8857	0.0009	-0.0239	22	RD	V; el: Krakau catalogue
BC Eris $55506.8897$ $0.0004$ $+0.0018$ $21$ RDV; el: $2453012.727 + 0.527251 * E$ BL Erip $55476.9055$ $0.0022$ $+0.0686$ $27$ RDV; el: IBVS 4104BV Erip $55545.6781$ $0.0007$ $-0.0079$ $23$ RDV; el: $2454508.551 + 0.507653 * E$ BZ Erip $55511.8554$ $0.0004$ $+0.0031$ $22$ RDVGSC 4700-802p $55544.6641$ $0.0004$ $-0.0100$ $29$ RDV; el: $2454740.773 + 0.792793 * E$ ; d=0.036dGSC 4725-661s $55503.8993$ $0.0009$ $-0.0271$ $39$ RDV; el: $2453770.673 + 0.748907 * R$ ; d=0.04dGSC 4732-1231p $55500.9166$ $0.0006$ $-0.0006$ $16$ RDV; el: $2453719.742 + 0.353829 * E$ GSC 5294-1116p $55484.8774$ $0.0002$ $+0.0020$ $35$ RDV; el: $2455093.796 + 0.360110 * E$ GSC 5303-939s $55497.8809$ $0.0007$ $-0.0046$ $36$ RDV; el: $2455057.899 + 0.568091 * E$ GSC 5305-396p $55559.6320$ $0.0004$ $-0.0238$ $23$ RDV; el: IBVS 5871	AM Eri	р	55508.8599	0.0006	-0.0979	14	RD	V
BL Erip $55476.9055$ $0.0022$ $+0.0686$ $27$ RDV; el: IBVS 4104BV Erip $55545.6781$ $0.0007$ $-0.0079$ $23$ RDV; el: $2454508.551 + 0.507653 * E$ BZ Erip $55511.8554$ $0.0004$ $+0.0031$ $22$ RDVGSC 4700-802p $55544.6641$ $0.0004$ $-0.0010$ $29$ RDV; el: $2454740.773 + 0.792793 * E; d=0.036d$ GSC 4725-661s $55503.8993$ $0.0009$ $-0.0271$ $39$ RDV; el: $2453707.673 + 0.748907 * R; d=0.04d$ GSC 4732-1231p $55500.9166$ $0.0006$ $-0.0017$ $24$ RDV; el: $2453719.742 + 0.353829 * E$ GSC 4734-713p $55503.9240$ $0.0004$ $-0.0117$ $24$ RDV; el: $2454725.883 + 0.465621 * E$ GSC 5294-1116p $55484.8774$ $0.0002$ $+0.0020$ $35$ RDV; el: $2455093.796 + 0.360110 * E$ GSC 5303-939s $55497.8809$ $0.0007$ $-0.0046$ $36$ RDV; el: $2455057.899 + 0.568091 * E$ GSC 5305-396p $55559.6320$ $0.0004$ $-0.0238$ $23$ RDV: el: IBVS 5871	BC Eri	s	55506.8897	0.0004	+0.0018	21	RD	V: el: 2453012.727 + 0.527251 * E
BV Erip $55545.6781$ $0.0007$ $-0.0079$ $23$ RDV; el: $2454508.551 + 0.507653 * E$ BZ Erip $55511.8554$ $0.0004$ $+0.0031$ $22$ RDVGSC 4700-802p $55544.6641$ $0.0004$ $-0.0010$ $29$ RDV; el: $2454740.773 + 0.792793 * E; d=0.036d$ GSC 4725-661s $55503.8993$ $0.0009$ $-0.0271$ $39$ RDV; el: $2453707.673 + 0.748907 * R; d=0.04d$ GSC 4732-1231p $55500.9166$ $0.0006$ $-0.0016$ $16$ RDV; el: $2453719.742 + 0.353829 * E$ GSC 4734-713p $55503.9240$ $0.0004$ $-0.0117$ $24$ RDV; el: $2454725.883 + 0.465621 * E$ GSC 5294-1116p $55484.8774$ $0.0002$ $+0.0020$ $35$ RDV; el: $2455093.796 + 0.360110 * E$ GSC 5303-939s $55497.8809$ $0.0007$ $-0.0046$ $36$ RDV; el: $2455057.899 + 0.568091 * E$ GSC 5305-396p $55559.6320$ $0.0004$ $-0.0238$ $23$ RDV: el: IBVS 5871	BL Eri	р	55476.9055	0.0022	+0.0686	27	RD	V: el: IBVS 4104
BZ Erip $55511.8554$ $0.0004$ $+0.0031$ $22$ RDVGSC 4700-802p $55544.6641$ $0.0004$ $-0.0010$ $29$ RDV; el: $2454740.773 + 0.792793 * E; d=0.036d$ GSC 4725-661s $55503.8993$ $0.0009$ $-0.0271$ $39$ RDV; el: $2453707.673 + 0.748907 * R; d=0.04d$ GSC 4732-1231p $55500.9166$ $0.0006$ $-0.0006$ 16RDV; el: $2453719.742 + 0.353829 * E$ GSC 4734-713p $55503.9240$ $0.0004$ $-0.0117$ $24$ RDV; el: $2454725.883 + 0.465621 * E$ GSC 5294-1116p $55484.8774$ $0.0002$ $+0.0020$ $35$ RDV; el: $2455093.796 + 0.360110 * E$ GSC 5303-939s $55497.8809$ $0.0007$ $-0.0046$ $36$ RDV; el: $2455057.899 + 0.568091 * E$ GSC 5305-396p $55559.6320$ $0.0004$ $-0.0238$ $23$ RDV: el: IBVS 5871	BV Eri	p	55545.6781	0.0007	-0.0079	23	RD	V: el: $2454508.551 + 0.507653 * E$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	BZ Eri	р	55511.8554	0.0004	+0.0031	22	RD	V
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	GSC 4700-802	p	55544.6641	0.0004	-0.0010	$29^{-}$	RD	V; el: 2454740.773 + 0.792793 * E; d=0.036d
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	GSC 4725-661	S	55503.8993	0.0009	-0.0271	39	RD	V: el: $2453707.673 + 0.748907 * R: d=0.04d$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	GSC 4732-1231	p	55500.9166	0.0006	-0.0006	16	RD	V: el: $2453719.742 + 0.353829 * E$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	GSC 4734-713	r D	55503.9240	0.0004	-0.0117	$24^{-5}$	RD	V: el: $2454725.883 + 0.465621 * E$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	GSC 5294-1116	r D	55484.8774	0.0002	+0.0020	35	RD	V: el: $2455093.796 + 0.360110 * E$
GSC 5305-396 p $55559.6320 0.0004 -0.0238 23$ RD V: el: IBVS 5871	GSC 5303-939	r S	55497.8809	0.0007	-0.0046	36	RD	V: el: $2455057.899 + 0.568091 * E$
	GSC 5305-396	p	55559.6320	0.0004	-0.0238	23	RD	V; el: IBVS 5871

Variable	Type	HJD 24	±	O-C	n	Obs	Remarks
GSC 5314-2102	р	55508.9031	0.0006	+0.0073	26	RD	V; el: 2455154.741 + 0.464770 * E
GSC 5314-2225	р	55511.9319	0.0006	+0.0003	15	RD	V; el: $2454610.533 + 0.468259 * E$
GSC 5321-819	$\mathbf{s}$	55500.8517	0.0005	-0.0034	24	RD	V; el: $2454838.739 + 0.353789 * E$ ; d=0.027d
GSC 5322-2251	$\mathbf{p}$	55513.8963	0.0004	+0.0109	22	RD	V; el: $2453478.481 + 0.489633 * E$
GSC 5325-728	$\mathbf{s}$	55506.9373	0.0006	+0.0067	18	RD	V; el: $2454519.622 + 0.431045 * E$ ; d=0.04d
GSC5863-584	р	55543.6879	0.0005	+0.0058	27	RD	V; el: $2453651.711 + 0.366590 * E$
TZ Gem	р	55538.8603	0.0010	-0.0007	24	RD	V; el: $2450047.6324 + 1.6777356 * E$
WW Gem	s	55538.8724	0.0005	+0.0211	34	RD	V
AI Gem	$\mathbf{s}$	55545.8804	0.0005	-0.0058	23	RD	V; el: $2451879.5741 + 0.7242098 * E$
BT Gem	р	55528.9195	0.0004	-0.0082	42	RD	V
CV Gem	р	55542.887	0.003	+0.162	15	RD	V
DP Gem	p	55527.9162	0.0006	+0.1021	21	RD	V; d=0.04d
EN Gem	p	55542.8649	0.0008	-0.0436	19	RD	V; d=0.06d
FO Gem	р	55545.8693	0.0005	+0.2465	26	RD	V
GX Gem	s	55542.8837	0.0005	-0.0374	31	RD	V; el: OEJV 83
IN Gem	р	55542.813	0.005	-0.109	7	RD	V
KQ Gem	p	55533.8903	0.0006	-0.0852	19	RD	V
KV Gem	p	55544.9242	0.0004	+0.0238	21	RD	V; el: IBVS 5894; d=0.025d
V372  Gem	p	55545.8715	0.0010	-0.0402	18	RD	V; el: IBVS 5277
V380 Gem	p	55532,9093	0.0002	-0.0045	22	RD	V
V383 Gem	р р	55544.8514	0.0002	-0.0023	18	RD	V: el: IBVS 5630
GSC 754-384	р р	55539.8542	0.0005	+0.0057	18	RD	V: el: $2454886.605 + 0.317571 * E$
0.00 101 001	Р S	55540 0124	0.0015	+0.0051	6	RD	V
GSC 1328-1420	n	55538 8704	0.0010	+0.0001 +0.0005	22	RD	V. el: 2453765.648 + 0.302856 * E
GSC 1338-1529	р р	55542 9199	0.0004	+0.0000	41	RD	V; el: $2453338753 \pm 0.888053 * E: d=0.03d$
GSC 1338-1984	P	55533 9534	0.0004	$\pm 0.0191$	25	RD	V: el: OE IV 91
000 1000 1001	n	55538 9432	0.0001	+0.0354	32	RD	V
GSC 1343-2440	P	555/3 9518	0.0000	+0.0001	20	RD	V. el: $2453716713 \pm 0.644184 * E$
GSC 1352-763	n	555/3 9395	0.0005	$\pm 0.0103$	30	RD	V; el: $2455416.115 + 0.044164 = E$ V; el: $2454480.649 \pm 1.506064 * E$
GSC 1369-98	P	55550 0205	0.0000	-0.0170	32	RD	V; el: $2454300.045 + 1.000004 + E$ V; el: $2453327.814 \pm 0.956970 * E$
GSC 1864 1065	b D	55523 0287	0.0003	-0.0170 -0.0064	02 25	RD	V. al: $2453527.614 \pm 0.361830 * E$
CSC 1888 1148	P	55533 0404	0.0004	-0.0004	25	RD	V. al. IBVS 5045
CSC 1804 2077	s n	55544 8876	0.0002	$\pm 0.0137$	20 10	RD	V. el. IBVS 5945
NSV 2014	p n	55532 0208	0.0000	+0.0212	37	RD RD	V. al. $2451565.855 \pm 2.44870 * F$
TZ Lac	p n	55484 7461	0.0004	$\pm 0.3615$	26	RD	V V V $V = \frac{2431303.003 + 2.44013}{12}$
BP Lac	p n	55484.6704	0.0012	+0.3013 -0.0402	$\frac{20}{27}$	RD	V V
HR Loc	P	55460 6614	0.0005	-0.0402	10	RD	V V
HW Loc	s n	55480 6282	0.0005	-0.1094	20	RD	v V
	p	55477 745	0.0010	-0.0444	32 0		V V
	5	55476 7222	0.005	+0.021	9		V V
	p	55470.7522	0.0015	$\pm 0.0300$	41 00		V V
	p	55409.7200 EE494 71EC	0.0002	+0.2292	22		V V. al. DDSAC Dull 197-10
V 544 Lac	p r	55477 7911	0.0005	+0.0213	20 10		V, el. DDSAG Dull. 127, 10 V
PD Lop	р	55512 9596	0.0010	+0.0800	19		V V
CCC 5220 664		00010.0000 EFE06 000E	0.0002	-0.0408	20 91		V $V_{\rm rel} = 24522065562 \pm 0.202106 * E. J. 0.014J$
GSC 5550-004	р	55520.9025	0.0005	-0.0552	21		V; el: $2455800.508 \pm 0.298100$ · E; d=0.014d
GSC 5345-815	s	55502.0240	0.0006	+0.0071	10	RD DD	V; el: $2454474.724 \pm 0.508853^{\circ}$ E; d=0.02d
GSC 5352-540	s	55523.9349	0.0004	+0.0038	19	RD DD	V; el: $2453000.814 \pm 0.515051 \text{ TE}$
GSC 5358-917	р	55518.9443	0.0001	+0.0006	25	RD DD	V; el: IBVS $5871$ ; d=0.024d
NSV 2698	р	55528.9207	0.0004	+0.0080	21	RD	V; el: IBVS 5894; d=0.13:d
SX Lyn	р	55559.8814	0.0003	+0.0100	27	RD	V .
KU Mon	s	55527.799:	0.008	-0.548	32	RD DD	V; non-circ.
XZ Mon	$\mathbf{p}$	55543.8516	0.0002	+0.0214	20	RD DD	
CC Mon	р	55538.8876	0.0003	+0.0362	33	RD DD	V; el: 2454832.752 + 1.619494 * E
CK Mon	р	55543.9125	0.0002	+0.2000	40	RD	V
CP Mon	р	55545.9528	0.0008	+0.0186	26	RD	V
EI Mon	р	55544.9255	0.0010	-0.0158	34	RD	V
GU Mon	$\mathbf{p}$	55542.9187	0.0003	-0.0749	42	RD	V
V396 Mon	р	55533.8470	0.0002	-0.0840	17	RD	V; d=0.029d
V451 Mon	р	55533.8614	0.0017	+0.0737	26	RD	V
V507 Mon	р	55544.9351	0.0006	-0.0395	21	RD	V

 Table 1: Minima of eclipsing binaries (continued)

Variable	Type	HJD 24	±	O-C	n	Obs	Remarks
V527 Mon	р	55543.9261	0.0003	-0.0273	36	RD	V
V560 Mon	p	55543.8592	0.0016	-0.1521	23	RD	V; close double
V714 Mon	р	55533.8936	0.0002	-0.0327	30	RD	V; el: IBVS 4468; d=0.016d
V843 Mon	р	55545.9230	0.0005	+0.0064	41	RD	V; el: IBVS 5168; d=0.027d
GSC 4781-1094	р	55532.9541	0.0008	+0.0269	28	RD	V; el: $2454412.826 + 5.803633 * E$
GSC 4796-1108	р	55532.9237	0.0005	-0.0058	20	RD	V; el: $2454517.621 + 0.391105 * E$
GSC 4833-115	р	55559.9058	0.0016	-0.0028	11	RD	V; el: $2454233.536 + 0.252258 * E$
GSC 5382-452	р	55539.8651	0.0003	-0.0020	19	RD	V; el: $2454950.513 + 0.375624 * E$
GSC 5383-58	$\mathbf{S}$	55544.8974	0.0005	+0.0231	33	RD	V; el: $2454595.475 + 0.424123 * E$ ; d=0.037d
GSC 5384-975	$\mathbf{S}$	55545.9037	0.0002	+0.0076	31	RD	V; el: $2454727.887 + 0.472428 * E$
NSV 3180	$\mathbf{S}$	55539.8981	0.0004	+0.0039	31	RD	V; el: $2454418.846 + 2.946250 * E$
UW Ori	$\mathbf{S}$	55539.8512	0.0006	+0.0437	18	RD	V; el: Chin. AA 14, 298; d=0.075d
DW Ori	$\mathbf{p}$	55523.9565	0.0006	+0.0106	27	RD	V; el: $2451177.303 + 0.9166265 * E$
EF Ori	$\mathbf{S}$	55523.8966	0.0013	-0.0026	44	RD	V; el: IBVS 5699
FF Ori	$\mathbf{p}$	55517.8463	0.0013	+0.0354	17	RD	V
GG Ori	$\mathbf{p}$	55526.8533	0.0005	+0.0860	21	RD	V; non-circ.
PQ Ori	р	55517.8582	0.0003	-0.0107	27	RD	V; el: $2454469.658 + 0.663005 * E$ ; d=0.039d
V519 Ori	р	55528.8576	0.0007	+0.0110	17	RD	V; el: $2451460.83 + 1.395546 * E$
V536 Ori	р	55539.9244	0.0005	+0.0125	27	RD	V; el: $2452722.529 + 6.317002 * E$
V641 Ori	р	55528.9581	0.0001	-0.0066	26	RD	V; el: IBVS 5920
V648 Ori	$\mathbf{s}$	55503.9434	0.0006	+0.0641	18	RD	V
V1353 Ori	$\mathbf{S}$	55518.9032	0.0005	-0.0039	38	RD	V; el: IBVS 5313
V1626 Ori	$\mathbf{p}$	55528.8671	0.0008	-0.0040	24	RD	V; el: IBVS 5339
V1633 Ori	$\mathbf{p}$	55523.8906	0.0003	-0.0019	27	RD	V; el: BAV Mitt. 125
V1799 Ori	$\mathbf{S}$	55506.9248	0.0003	+0.0048	14	RD	V; el: $2454437.734 + 0.290303 * E$
V1824 Ori	р	55538.8461	0.0005	+0.0164	19	RD	V; el: IBVS 5871
GSC 85-1357	s	55508.8129	0.0004	+0.0251	13	RD	V; el: $2454441.763 + 0.283972 * E$
	р	55508.9526	0.0005	+0.0232	13	RD	V
GSC 89-1424	р	55513.8806	0.0008	+0.0197	20	RD	V; el: $2453443.560 + 0.518223 * E$
GSC 93-668	$\mathbf{s}$	55513.8524	0.0002	-0.0051	15	RD	V; el: 2454143.580 + 0.314392 * E
GSC 103-738	$\mathbf{p}$	55526.9343	0.0004	-0.0031	24	RD	V; el: $2454349.879 + 0.338527 * E$
GSC 103-894	$\mathbf{S}$	55526.8793	0.0002	+0.0001	21	RD	V; el: $2454423.748 \pm 0.295706 * E$
GSC 111-1902	$\mathbf{p}$	55526.8816	0.0004	+0.0018	14	RD	V; el: $2455082.903 \pm 0.314654 * E$
GSC 128-980	p	55517.9358	0.0005	-0.0011	42	RD DD	V; el: $2454556.538 \pm 0.490760 ^{\circ}$ E; d=0.03d
GSC 709-1047	p	55518.8900 EEE25.0558	0.0003	-0.0033	18	RD DD	V; el: $2454412.777 \pm 0.200727$ E V: el: $2454122.650 \pm 0.277664 \pm E$
GSC 730-243	р	00002.9228	0.0005	+0.0180	34 96	RD DD	V; el: $2454133.059 \pm 0.377004$ · E
GSC 730-2307	p	00020.8840 EEE20 0000	0.0011	-0.0220	20 26	RD DD	V; el: $2453831.483 \pm 0.479712$ · E V: el: $2452770.645 \pm 0.762222$ * E
GSC 1310-1104	p r	00000.0909 55520.0102	0.0004	+0.0041	30 17		V; el: $2455779.045 \pm 0.705252$ · E V; el: $2452227.756 \pm 0.287841$ * E
GSC 1522-294 CSC 4754 17	p n	55512 8845	0.0004	$+0.0044$ $\pm 0.0019$	11	RD	V, el. 2453527.750 $\pm$ 0.207041 $\pm$ E V, el. 2454371.873 $\pm$ 0.548516 $*$ E
CSC 4754-17	p	55517 0070	0.0009	$\pm 0.0012$	20 16	RD	V, el. 2454571.075 $\pm$ 0.046510 E V, el. 2455122.848 $\pm$ 0.074628 * E
GSC 4700-09 CSC 4772 034	5	55527 0138	0.0003	$\pm 0.0007$ $\pm 0.0112$	21	RD	V, el. 2453122.040 $\pm$ 0.274020 E V: el. 2453744.662 $\pm$ 1.205480 * E
GSC 4780-344	S	55527 9255	0.0002	-0.0034	18	RD	V; el: $2454532562 + 0.322595 * E$
GSC 4783-266	n	55527 9392	0.0005	$\pm 0.0034$ $\pm 0.0143$	33	RD	V; el: $2454334921 + 0.611170 * E: d=0.037d$
GSC 4783-467	р р	55532 9297	0.0002	+0.0110 +0.0109	22	RD	V: el: $2454519566 \pm 0.346327 * E$
GSC 4783-2332	P S	55523 9326	0.0002	+0.0100 +0.0004	15	RD	V; el: $2454702.918 \pm 0.248078 * E$
GSC 5346-275	n	55527.9418	0.0004	+0.0087	16	RD	V; el: $2454461.732 + 0.344269 * E$
U Peg	р р	55501.7043	0.0003	-0.1395	24	RD	V
BO Peg	r D	55383.8329	0.0005	-0.0309	24	RD	V
BW Peg	p	55383.8496	0.0005	+0.0233	15	RD	V; el: $2454656.807 + 1.58392 * E$
BX Peg	p	55383.7904	0.0007	-0.0036	17	RD	V; el: IBVS 5668
CC Peg	р	55383.7557	0.0006	-0.0068	16	RD	V; el: $2449999.364 + 0.605601 * E$
CW Peg	р	55476.7546	0.0015	+0.0442	16	RD	V
EU Peg	р	55500.7279	0.0004	+0.0401	19	RD	V
GH Peg	s	55476.734	0.003	+0.008	24	RD	V
GP Peg	р	55506.6930	0.0003	-0.0468	26	RD	V
V396 Peg	p	55501.6666	0.0011	-0.0079	23	RD	V; el: IBVS 5186
GSC 566-150	s	55484.7209	0.0008	+0.0055	25	RD	V; el: $2455088.664 + 0.397044 * E$ ; d=0.02d
GSC 1141-480	р	55469.6662	0.0003	-0.0025	18	RD	V; el: IBVS 5920
$GSC \ 1145-1104$	р	55476.687	0.003	-0.010	15	RD	V; el: 2453704.537 + 1.06500 * E

Variable	Type	HJD 24	±	O-C	n	Obs	Remarks
GSC 1166-399	s	55500.6692	0.0004	+0.0040	18	RD	V; el: 2454386.694 + 0.316604 * E
GSC 1169-1244	р	55508.6967	0.0004	+0.0098	12	RD	V: el: 2454373.677 + 0.273233 * E
GSC 1173-844	р	55501.6907	0.0004	-0.0006	26	RD	V; el: 2453671.567 + 0.758458 * E
GSC 1174-344	р	55501.7209	0.0002	+0.0055	27	RD	V; el: IBVS 5920; d=0.03d
GSC 1178-1208	р	55513.7145	0.0003	+0.0013	20	RD	V; el: IBVS 5920
GSC 1670-251	р	55469.6874	0.0002	+0.0027	23	RD	V; el: 2453336.523 + 0.330569 * E
GSC 1685-588	p	55477.7274	0.0008	-0.0086	30	RD	V: el: $2453338.560 + 0.960564 * E$
	p	55478.6857	0.0007	-0.0109	37	RD	V: d=0.06d
GSC 1686-1001	р	55484.7082	0.0018	+0.0021	23	RD	V; el: IBVS 5920
GSC 1694-992	s	55480.6783	0.0001	+0.0023	15	RD	V; el: IBVS 5920; d=0.01d
GSC 1715-1370	s	55497.6997	0.0002	+0.0038	37	RD	V: el: IBVS 5920
GSC 1716-1457	s	55503.6827	0.0003	+0.0168	39	RD	V; el: IBVS 5920; D=0.031d
GSC 1718-1664	p	55497.7251	0.0006	+0.0025	23	RD	V; el: IBVS 5920
GSC 1719-1034	n D	55503.6908	0.0001	+0.0045	27	RD	V: el: 2454647.875 + 0.673337 * E
GSC 2188-568	s	55383.7525	0.0004	-0.0148	17	RD	V: el: $2454993.873 + 0.352049 * E$
GSC 2189-1101	s	55383.7800	0.0008	-0.0023	12	RD	V; el: 2452937.585 + 0.239788 * E
GSC 2203-1663	s	55476.7215	0.0004	-0.0001	24	RD	V; el: $2453866.911 + 0.422024 * E; d=0.043d$
GSC 2226-2148	s	55478.6907	0.0004	+0.0205	24	RD	V: el: IBVS 5920
	p	55480.7192	0.0007	+0.0225	21	RD	V
GSC 2244-1064	s	55497.6946	0.0003	+0.0013	42	RD	V: el: IBVS 5920: d=0.023d
GSC 2258-1489	p	55503.6511	0.0002	-0.0657	34	RD	V; el: IBVS 5920; d=0.017d
GSC 2755-2136	D	55500.6970	0.0010	+0.0258	15	RD	V: el: OEJV 83
GSC 2766-775	D	55508.6927	0.0004	+0.0644	18	RD	V: el: IBVS 5920
GSC 2766-1184	r D	55500.6750	0.0007	-0.0314	24	RD	V: el: IBVS 5920
0.00 - 100 - 101	r D	55508.6888	0.0006	-0.0359	29	RD	V: d=0.04d
WY Per	P D	55497.8928	0.0002	-0.1861	$35^{-5}$	RD	V: d=0.03d
XZ Per	D	55502.8443	0.0002	-0.0541	32	RD	V
BR Per	p	55502.8029	0.0027	-0.2072	10	RD	V: el: PZ 24, 80
BY Per	р	55533.6567	0.0004	+0.0239	39	RD	V
CH Per	р	55538.6312	0.0012	-0.0788	19	RD	V; d=0.04d
DK Per	р	55538.6720	0.0008	-0.0405	32	RD	V; el: IBVS 3875
DZ Per	р	55478.8929	0.0015	+0.0301	38	RD	V
EQ Per	р	55484.9357	0.0020	+0.5685	33	RD	V
FQ Per	р	55511.927	0.003	+0.727	25	RD	V; d=0.12d
HW Per	р	55498.9097	0.0001	+0.0041	34	RD	V; el: IBVS 4516; d=0.020d
II Per	р	55500.9141	0.0002	-0.0017	21	RD	V; el: IBVS 5741
IK Per	р	55500.8595	0.0003	-0.1845	27	RD	V
IM Per	р	55508.8225	0.0021	+0.0986	51	RD	V
IT Per	р	55543.6945	0.0003	-0.0118	37	RD	V
KL Per	р	55543.6278	0.0009	+0.1327	16	RD	V
KN Per	р	55559.770	0.002	+0.009	28	RD	V; el: Krakau Cat.
LS Per	р	55480.8696	0.0009	-0.5287	34	RD	V; d=0.056d
MS Per	р	55513.8925	0.0007	+0.0034	39	RD	V; el: $2451511.615 + 2.779357 * E$
NP Per	$\mathbf{s}$	55503.8555	0.0003	-0.0557	31	RD	V
PS Per	$\mathbf{p}$	55484.9164	0.0001	+0.0648	39	RD	V
QT Per	р	55480.9170	0.0004	-0.0456	34	RD	V; el: MVS 11, 65
QV Per	р	55559.6999	0.0007	-0.0514	24	RD	V
V365 Per	р	55500.8995	0.0020	-0.0098	27	RD	V
V432 Per	$\mathbf{p}$	55484.8719	0.0001	-0.0100	36	RD	V; el: BAV Mitt. 61
V434 Per	$\mathbf{S}$	55497.8428	0.0024	+0.1928	37	RD	V
V457 Per	р	55480.9093	0.0004	+0.0208	21	RD	V
V482 Per	р	55476.9168	0.0012	+0.2252	16	RD	V; el: BAV Mitt. 68, 21
V514 Per	р	55497.8417	0.0008	+0.1065	36	RD	V; el: IBVS 5357
V680 Per	$\mathbf{S}$	55543.6134	0.0003	-0.0028	11	RD	V; el: $2452996.6731 + 0.373973 * E$
V732 Per	$\mathbf{S}$	55513.8307	0.0003	-0.0136	14	RD	V; el: $2451455.805 + 4.506429 * E$
V737 Per	р	55500.9403	0.0004	+0.1078	16	RD	V; el: IBVS 5894
GSC 2853-18	$\mathbf{S}$	55484.9228	0.0003	-0.0090	30	RD	V; el: IBVS 5901
GSC 2859-900	$\mathbf{p}$	55484.8942	0.0006	-0.0559	26	RD	V; el: OEJV 91; d=0.04d
GSC 3708-1325	$\mathbf{S}$	55480.9263	0.0009	+0.0890	35	RD	V; el: IBVS 5920; non-circ.

 Table 1: Minima of eclipsing binaries (continued)

Variable	Type	HJD 24	±	O-C	n	Obs	Remarks
SX Psc	p	55528.7334	0.0002	-0.0012	25	RD	V: d=0.025d
UW Psc	F S	55527.6808	0.0019	+0.2747	48	RD	V
VZ Psc	$\mathbf{s}$	55498.7169	0.0008	+0.0114	22	RD	V; el: ApJS 58, 413
CP Psc	р	55528.6505	0.0002	-0.0590	20	RD	V; el: Hipparcos
DS Psc	s	55527.6821	0.0005	+0.0714	20	RD	V; el: IBVS 4424
DZ Psc	$\mathbf{S}$	55511.7019	0.0004	+0.0298	22	RD	V; el: IBVS 4910; d=0.031d
GSC8-448	$\mathbf{S}$	55506.7470	0.0006	+0.0123	11	RD	V; el: IBVS 5920
GSC14-479	$\mathbf{S}$	55523.6671	0.0004	+0.0205	34	RD	V; el: IBVS 5920; d=0.026d
GSC18-1214	р	55528.7377	0.0004	+0.0075	24	RD	V; el: $2453705.635 + 0.401386 * E$ ; d=0.025d
GSC575-429	p	55497.6837	0.0001	-0.0021	42	RD	V; el: IBVS 5920
GSC577-364	р	55500.7149	0.0003	+0.0019	20	RD	V; el: $2454644.918 + 0.948775 * E$
GSC611-249	p	55528.6680	0.0002	+0.0085	25	RD	V; el: $2453617.755 + 0.316742 * E$
GSC611-829	р	55527.5785	0.0008	-0.0038	5	RD	V; el: $2453603.775 + 0.287952 * E$
	s	55527.7241	0.0003	-0.0021	30	RD	V
GSC1179-501	р	55526.7396	0.0006	+0.0208	18	RD	V; el: $2453699.584 + 0.376962 * E$
GSC1183-1110	р	55526.7289	0.0007	+0.0365	23	RD	V; el: $2453620.697 + 0.649181$ ; d=0.06d
GSC1194-613	p	55526.7091	0.0007	+0.0005	17	RD	V; el: $2453344.599 + 0.375837 * E$
GSC1747-967	p	55528.6603	0.0001	-0.0019	35	RD	V; el: $2454291.871 + 0.494321 * E$
GSC1762-103	р	55477.8265	0.0003	-0.0180	25	RD	V; el: $2452872.842 + 0.289284 * E$
GSC5260-80	р	55511.6603	0.0004	+0.0041	32	RD	V; el: $2454352.754 + 0.386172 * E$
GSC5420-2341	$\mathbf{S}$	55559.9353	0.0021	+0.0067	22	RD	V; el: $2454534.557 + 0.685638 * E$
RZ Tau	$\mathbf{S}$	55503.8777	0.0002	+0.0620	38	RD	V
TY Tau	$\mathbf{S}$	55544.6673	0.0009	+0.2535	18	RD	V
AH Tau	$\mathbf{S}$	55498.8825	0.0002	+0.0158	39	RD	V; el: IBVS 5554; d=0.015d
AN Tau	р	55559.7167	0.0010	+0.0020	33	RD	V; el: Krakau Cat.
AP Tau	$\mathbf{S}$	55506.9316	0.0006	+0.0260	18	RD	V
BV Tau	р	55527.8925	0.0005	-0.0027	37	RD	V; el: IBVS 5920; d=0.078d
CR Tau	р	55527.9158	0.0003	-0.0026	31	RD	V; el: IBVS 4778; d=0.021d
CU Tau	р	55498.9060	0.0020	+0.0063	25	RD	V; el: AJ 130, 224
EQ Tau	р	55498.8846	0.0005	-0.0253	50	RD	V
GR Tau	$\mathbf{s}$	55545.7058	0.0010	-0.0311	34	RD	V
GW Tau	р	55506.8761	0.0008	-0.0830	21	RD	V
IV Tau	р	55545.6719	0.0003	-0.0201	31	RD	V
V781 Tau	s	55527.8628	0.0004	-0.0019	15	RD	V; el: 2454501.588 + 0.344909 * E
V1022 Tau	р	55476.8579	0.0013	-0.0690	24	RD	V; el: PASP 101, 177
V1112 Tau	$\mathbf{S}$	55502.8711	0.0014	-0.0021	20	RD	V; el: IBVS 5871
V1123 Tau	р	55497.8738	0.0003	-0.0010	37	RD	V; el: IBVS 5688
V1220 Tau	$\mathbf{S}$	55559.7543	0.0015	-0.0575	20	RD DD	V; el: IBVS 5455
V1222 Tau	р	55544.6299	0.0007	+0.0011	14	RD DD	V; el: $2454829.555 + 0.295363 ^{\circ}\text{ E}$
V1992 To.	s	00044.7770 EFE44.6005	0.0018	+0.0011	8 97	RD DD	V V. al. IDVG 5020
V1223 Tau V1240 Tau	р	00044.0920 EEE00.0252	0.0008	+0.0020	27	RD DD	V; el: IBVS 5920 V. el: IBVS 5904
v1249 1au	5	55511 0059	0.0003	-0.0070	26		V, el. IDV5 5694
A 054432 ± 1305 7	р	55517.9058	0.0004	-0.0077	20 18	RD RD	v V. ol. IBVS 5045
CSC 67 348	5	55544 6742	0.0005	-0.0011 $\pm 0.0055$	11	RD	V. al. IBVS 5020
GSC 72-521	o n	55/08 0062	0.0005	$\pm 0.0035$ $\pm 0.0076$	51	RD	V. el: IBVS 5925 V. el: IBVS 5945: d=0.01d
GSC 74-465	p n	55511 7952	0.0002	-0.0010	7	RD	V; el: $2454146555 \pm 0.300417 * E$
050 11-105	P S	55511 9460	0.0008	-0.0043	11	RD	V
GSC 76-527	s	55498 8733	0.0005	+0.0010	32	RD	V el IBVS 5945
GSC 650-1226	s	55497.8850	0.0002	+0.0128	34	RD	V: el: IBVS 5945
GSC 658-185	n	55559 7006	0.0002	+0.0020	29	RD	V: el: IBVS 5920
GSC 659-262	P S	55476.8800	0.0003	-0.0120	$\frac{-0}{28}$	RD	V: el: IBVS 5290: $d=0.026d$
GSC 661-580	s	55502.8721	0.0004	+0.0008	31	RD	V: el: IBVS 5945: $d=0.02d$
GSC 663-23	s	55545.6999	0.0004	-0.0051	37	RD	V: el: IBVS 5920: $d=0.034d$
GSC 664-423	D	55502.9092	0.0008	-0.0026	27	RD	V: el: IBVS 5945
GSC 681-692	р	55506.7835	0.0008	-0.0010	5	RD	V: el: IBVS 5945
	S	55506.9092	0.0004	+0.0010	17	RD	v
GSC 1256-188	р	55559.6403	0.0003	+0.0089	28	RD	V; el: IBVS 5920; d=0.025d
GSC 1274-564	s	55511.8924	0.0005	+0.0095	26	RD	V; el: $2453327.726 + 0.357151 * E$ ; d=0.02d
GSC 1293-1162	р	55506.9345	0.0004	+0.0278	18	RD	V; el: 2454506.559 + 0.488451 * E

Table 1. Willing of company binaries (continued)	Table 1:	Minima	of eclipsing	binaries	(continued $)$	
--------------------------------------------------	----------	--------	--------------	----------	----------------	--

Variable	Type	HJD 24	±	O - C	n	Obs	Remarks
GSC 1304-227	s	55517.8420	0.0008	+0.0027	21	RD	V; el: $2454522.569 + 0.365438 * E$
$GSC \ 1822-314$	р	55498.8765	0.0009	+0.0205	44	RD	V; el: OEJV 91
GSC 1831-687	р	55502.9003	0.0006	+0.0056	32	RD	V; el: 2453601.922 + 0.316249 * E
GSC 1841-879	р	55476.8614	0.0018	-0.1195	17	RD	V; el: IBVS 5920
GSC 1848-1264	$\mathbf{S}$	55517.9585	0.0004	+0.0062	30	RD	V; el: IBVS 5699
$GSC \ 1852-1665$	$\mathbf{S}$	55518.8590	0.0001	+0.0066	22	RD	V; el: 2453348.716 + 0.307363 * E
RW Tri	р	55533.7179	0.0005	-0.0045	9	RD	V
ST Tri	р	55543.6587	0.0003	-0.0014	24	RD	V; el: IBVS 5609; d=0.026d
VW Tri	$\mathbf{S}$	55532.6606	0.0005	-0.0594	19	RD	V; el: MVS 11, 1
VZ Tri	$\mathbf{S}$	55532.6630	0.0003	-0.0107	32	RD	V; el: OEJV 107
AK Tri	$\mathbf{S}$	55478.9344	0.0005	+0.1034	40	RD	V; el: IBVS 4427
BK Vul	р	55469.6674	0.0009	-0.0077	22	RD	V; el: ASAS
DZ Vul	р	55478.6470	0.0004	-0.0043	37	RD	V; el: 2454716.661 + 1.594122 * E

#### **Observers:**

RD :	R. Diethelm	Rodersdorf, Switzerland;
		R. Szafraniec Obs. operated at Astrokolkhoz Obs., Cloudcroft, N.M., USA
EBl :	E. Blättler	Wald, Switzerland

#### References:

Agerer, F., 1992, *IBVS*, No. 3797 (*BAV Mitt.*, **61**) Agerer, F., 1994, *BAV Mitt.*, 68, 21 Agerer, F., 1996, *IBVS*, No. 4406 Agerer, F., 1999, *IBVS*, No. 4778 Agerer, F. et al., 1999, *IBVS*, No. 4798 Agerer, F., Hübscher, J., 2001, IBVS, No. 5016 Agerer, F., Lichtenknecker, D., 1991, IBVS, No. 3554 Behrend, R. et al., 2002, *IBVS*, No. 5219 Berdnikov, L. N., 1993, Perem. Zvezdy, 23, 80 Bernhard, K. et al., 2001, IBVS, No. 5168 Blättler, E., 2002, BBSAG Bull., 127, 10 Blättler, E., Diethelm, R., 2001a, IBVS, No. 5125 Blättler, E., Diethelm, R., 2001b, IBVS, No. 5151 Blättler, E., Diethelm, R., 2002, *IBVS*, No. 5269 Blättler, E., Diethelm, R., 2006, *IBVS*, No. 5699 Borkovits, T. et al., 2002, *IBVS*, No. 5313 Bradstreet, D. H., 1985, ApJ Suppl., 58, 413 Brat L. et al., 2005, *IBVS*, No. 5700 Brat L. et al., 2009, *OEJV*, No. 107 Byboth, K. N. et al., 2004, IBVS, No. 5554 Diethelm, R., 1990, BBSAG Bull., 96, 10 Diethelm, R., 2009a, *IBVS*, No. 5871 Diethelm, R., 2009b, IBVS, No. 5894 Diethelm, R., 2010a, *IBVS*, No. 5920 Diethelm, R., 2010b, *IBVS*, No. 5945 Djurasevic, G. et al., 1998, A&A Suppl., 131, 17 Evans, E. III et al., 1985, PASP, 97, 648 Garcia-Lastra, A. et al., 2003, IBVS, No. 5455

Gessner, H., 1987, MVS, 11, 65 Gomez-Forrellad, J.M., Garcia-Melendo E., 2002, IBVS, No. 5277 Gomez-Forrellad, J.M., Garrigos Sanchez A., 1997, IBVS, No. 4427 Guarro-Flo, J. et al., 1995, *IBVS*, No. 4245 Kleidis, S. et al., 2008, Perem. Zvezdy, 28, 2 Krajci, T., 2007, IBVS, No. 5806 Khruslov, A. V., 2005, IBVS, No. 5699 Lacy, C., 2002, *IBVS*, No. 5357 Lewandowski, M. et al., 2009, OEJV, No. 104 Liu Q. et al., 1994, *IBVS*, No. 4104 Lister, T.A., McDermid, R.M., Hilditch, R.W., 2000, MNRAS, 317, 111 Lloyd, C. et al., 2002, *IBVS*, No. 5339 Meinunger, L., 1986, MVS, 11, 1 Metcalfe, T., 1997, IBVS, No. 4482 Moschner, W. et al., 1997, *IBVS*, No. 4468 Moschner, W. et al., 2001, *IBVS*, No. 5186 Nakamura, Y., Kontoh, N., 1991, IBVS, No. 3666 Nelson, R., 2006, *IBVS*, No. 5699 Otero, S. A. et al., 2004a, IBVS, No. 5557 Otero, S. A. et al., 2004b, *IBVS*, No. 5570 Otero, S. A. et al., 2005, *IBVS*, No. 5586 Otero, S. A., Wils, P., 2005, IBVS, No. 5630 Otero, S. A., 2007, *OEJV*, No. 72 Otero, S. A., 2008a, OEJV, No. 83 Otero, S. A., 2008b, *OEJV*, No. 91 Ozdarcan, O. et al., 2006, IBVS, No. 5688 Paschke, A., 2009, *OEJV*, No. 116 Pejcha, O. et al., 2001, *IBVS*, No. 5132 Pensado, J., Lahulla, J.F., 1989, PASP, 101, 177 Pribulla, T. et al., 2005, *IBVS*, No. 5668 Qian, S. B. et al., 2005, AJ, **130**, 224 Ragazzoni, R., Barbieri, C., 1996, *IBVS*, No. 4293 Samec, R. G. et al., 1997, *IBVS*, No. 4516 Samec, R.G. et al., 2005a, *IBVS*, No. 5609 Samec, R.G. et al., 2005b, *IBVS*, No. 5610 Samec, R.G. et al., 2009, IBVS, No. 5901 Samolyk, G., 1992, JAAVSO, 21, 34 Samus, N.N. et al., 2009, General catalogue of Variable Stars Verrot, J.P., Van Cauteren, P., 2000, IBVS, No. 4910 Vidal-Sainz, J.M. et al., 1997, *IBVS*, No. 4424 Zakirov, M.M., Azimov, A.A., 1993, IBVS, No. 3875 Zejda, M., Mikulasek, Z., Wolf, M., 2006, IBVS, No. 5741 Zhang, J. et al., 1985, *IBVS*, No. 2652 Zhang, R. et al., 1990, Chin. AA, 14, 298 Zhang, R. et al., 1994, *IBVS*, No. 4099

## ERRATA FOR IBVS 5960

The TOM of GSC 4833-1925 is missing: 55559.9426. The GSC 1338-1529 label is erroneous, instead it should read GSC 1338-1539. Dr. Roger Diethelm

Number 5961

Konkoly Observatory Budapest 5 January 2011 HU ISSN 0374 – 0676

## USNO-A2.0 1425-04279615 AND USNO-A2.0 1425-04280420: TWO NEW SHORT-PERIOD ECLIPSING RS CVn VARIABLES

SOLOVYOV, V.¹; SAMOKHVALOV, A.²; SATOVSKIY, B.²

¹ Kazan Federal University, Russia.

 2 Astrotel-Caucasus Observatory, Karachay-Cherkessiya, Russia.

During our observations of a field in Perseus, we found two new eclipsing variable stars with RS CVn variability. Their coordinates and magnitude ranges are presented in Table 1.



 Table 1. New EA+RS variables

**Figure 1.** Finding chart of USNO-A2.0 1425-04279615

**Figure 2.** Finding chart of USNO-A2.0 1425-04280420

The coordinates were drawn from the 2MASS catalogue (Skrutskie et al., 2006). The finding charts for the two variables are presented in Figs. 1 and 2. Our observations were carried out at the Astrotel–Caucasus observatory using an 0.3-m Ritchey–Chretien telescope, equipped with an unfiltered Apogee Alta U9000 CCD camera. A total of 2316 images with 5-minute exposures were obtained on JD 2455080–2455519. For basic reductions for dark current, flat fields, bias and for removing cosmic-ray hits, we use IRAF routines. For search and photometry of the new variable stars, we applied VaST software

by Sokolovsky and Lebedev (2005). The comparison star was USNO-A2.0 1425-04237176 = USNO-B1.0 1473-0129296 ( $\alpha = 03^{h}15^{m}37.41$ ,  $\delta = +57^{\circ}19'36''.5$  (J2000, 2MASS);  $R_1 = 14^{m}.33$ ,  $R_2 = 14^{m}.60$  (USNO-B1.0)). Unfiltered magnitudes were calibrated using the comparison star, assuming  $R_{comp} = 14^{m}.465$ . To search for period and derive epochs of extrema, we use Peranso software (www.peranso.com).

During our observing campaign, we detected the primary minima of USNO-A2.0 1425-04279615 and USNO-A2.0 1425-04280420 listed in Table 2.

Table 2. CCD minima of USNO-A2.0 1425-04279615 and USNO-A2.0 1425-04280420

USNO-A2.0 1425-04279615		USNO-A2.0 1425-04280420		
HJD(TT)	±	HJD(TT)	±	
2455116.2503	0.0002	2455116.5291	0.0002	
2455117.2513	0.0002	2455122.5191	0.0003	
2455122.2556	0.0005	2455123.4414	0.0009	
2455123.2571	0.0007	2455142.339	0.001	
2455142.2751	0.0003	2455145.5642	0.0006	
2455144.2778	0.0009	2455163.5409	0.0001	
2455145.2806	0.0005	2455168.606	0.001	
2455163.2930	0.0004	2455169.5295	0.0006	
2455202.3290	0.0002	2455230.3701	0.0007	
2455230.3549	0.0002	2455260.330	0.001	
		2455466.3555	0.0008	
		2455495.400	0.001	
		2455517.5178	0.0008	
		2455518.4398	0.0005	
		2455519.3633	0.0009	

The light curves plotted with the detected periods (Figs. 3 and 4) reveal variations of the light curve shape characteristic of chromospherically active stars. As an example of such variations, Fig. 5 exhibits three light curves of USNO-A2.0 1425-04280420, plotted with the orbital period for three time intervals. For the analysis of additional variations to the eclipses we use observations between orbital phases 0.07–0.42 and 0.58–0.93 for USNO-A2.0 1425-04280420.

For both stars, we remove the signals with P=3DPorb and find sine-wave periods presented in the corresponding columns of Table 3. The long series of observations and the high precision photometry of the stars reveal small but real differences between orbital and sine-wave periods. Light curves with the sine-wave periods are plotted in Fig. 6 and 7.

All times in Table 2 and further on are expressed in the Terrestrial Time in accordance with IAU recommendations (resolution B1 XXIII IAU GA). The light elements for eclipses of the two stars are given in corresponding columns of Table 3.

Tal	ble	3.	Light	e	lements
-----	-----	----	-------	---	---------

	Eclipsing variability		Sine wave variability	
Star	$Min_0 HJD(TT)$	P, d	$Max_0 HJD(TT)$	P, d
USNO-A2.0 1425-04279615	2455116.2503	0.500458	2455081.7051	0.499464
		$\pm 0.000006$		$\pm 0.000080$
USNO-A2.0 1425-04280420	2455116.5291	0.460909	2455080.5479	0.461208
		$\pm 0.000026$		$\pm 0.000124$

These stars are the shortest-period RS CVn stars when compared to chromospherically active binary stars in the third version of the catalog of chromospherically active binaries (Eker et al., 2008)



Figure 3. USNO-A2.0 1425-04279615 light curve



Figure 4. USNO-A2.0 1425-04280420 light curve

We conclude that USNO-A2.0 1425-04279615 and USNO-A2.0 1425-04280420 are new eclipsing RS CVn variables with periods among the shortest known and with dramatically changing light curves. Studying active stars in eclipsing binaries is very important since it makes possible to derive absolute dimensions of the components. The effect of the binarity on stellar activity is an interesting problem and such close binaries like these newly found objects can help to understand that. We hope that the present study will stimulate new observations of these interesting, very active stars.



Figure 5. USNO-A2.0 1425-04280420 light curve variability



Figure 6. USNO-A2.0 1425-04279615 sine wave

Figure 7. USNO-A2.0 1425-04280420 sine wave

Acknowledgements We would like to thank N. Samus (Institute of Astronomy, Russian Academy of Sciences) for helpful discussion.

References:

Skrutskie, M.F., Cutri, R.M., Stiening, R. et al., 2006, AJ, 131, 1163

Sokolovsky K., Lebedev A., 2005, in "12th Young Scientists' Conference on Astronomy and Space Physics, Kyiv, Ukraine, April 19–23, 2005", eds. Simon A., Golovin A., p. 79

Eker Z., Filiz-Ak N., Bilir S. et al., 2008, MNRAS, 389, 1722

Number 5962

Konkoly Observatory Budapest 6 January 2011 HU ISSN 0374 - 0676

### STUDY OF THE ECCENTRIC-ORBIT BINARY GSC 03152-01202

BLOOMER, R. H¹; DELLA-ROSE, D. J.²; TODT, A.¹; ZIMMERMAN, J. D.¹; HITEFIELD, S. D.¹

 1  King College, USA; rhbloome@king.edu ; atodt@student.king.edu ; jdzimmerman@student.king.edu ; sdhitefield @student.king.edu

² United States Air Force Academy, USA; Devin.Della-Rose@usafa.edu

Name of the object: GSC 03152-01202=UCAC3 84806478

Equatorial coordinates:	Equinox:
$R.A.= 20^{h}27^{m}1727$ $DEC.= +37^{\circ}56'26''9$	2000

Observatory and telescope: U.S. Air Force Academy Observatory, 41 cm and 61 cm Cassegrains

Detector:	CCD SBIG ST-2000XM and CCD SBIG STL-11000M

Filter(s): Green

Date(s) of the observation(s): UT 30 May, 31 May, 20 June, 27 August 2010

Comparison star(s):	$GSC \ 3151-1174 = UCAC3 \ 84806456,$
	$20^{\rm h}27^{\rm m}11\stackrel{\rm s}{.}2, +37^{\circ}56'51\stackrel{\prime\prime}{.}1$

UCAC3 84806530,  $20^{h}27^{m}31^{s}2$ ,  $+37^{\circ}55'14''.4$ Check star(s):

Transformed to a standard system:

No

Availability of the data: At the IBVS website (5962-t2.txt)

Type of variability: EA

#### **Remarks:**

(2007) listed GSC 3152-1202 as a candidate for eccentric orbits. Bulut et al. Otero et al. (2006) gave light elements stating possible confusion of the primary and secondary eclipses and the phase of the secondary eclipse to be 0.489. Kozyreva et al. (2009) provided new times of minimum light for the primary and the secondary eclipses and found the phase of the secondary to be 0.5475(5). They proposed a period of apsidal motion of 15 or 50 years. We were unable to find any other photometric timings of minimum light in the literature. Due to this possible rapid motion we measured two additional times of primary and two additional times of secondary minimum, and we studied a comparison and a check star that proved stable (Figure 1). We extracted magnitudes from the flat-fielded images with AIP4Win. Our new times of minima are given in Table 1 along with those of Kozyreva et al. We show our typical light curves for the two minima in Figure 2 indicating that Otero's identification of the primary and secondary to be correct: the depth of the primary in green light is  $0.^{m}075$  deeper than the secondary eclipse. Figure 3 shows the O-Cs of the primary and secondary eclipses using the current mean elements of the two minima. One year after Kozyreva's results, we found the phase of the secondary to be 0.5506(3) based on our new elements. This is significantly different from Kozyreva et al. Rapid rotation of the line of apsides seems likely and this star is worthy of additional observations. We have computed new light elements for the system using primary eclipse times from Kozyreva and this paper: Min I = HJD 2455004.4386(1) + 2.093745(1) × E. The light elements for the secondary are: Min II = HJD  $245505.5824(1) + 2.093799(2) \times E$ .

Type Minimum	HJD Time of Minimum	Uncertainty	Source
Ι	2455004.4386	0.0002	1
II	2455066.3026	0.0003	1
II	2455346.8715	0.0005	2
Ι	2455347.8127	0.0006	2
II	2455367.8097	0.0003	2
Ι	2455435.7502	0.0002	2

Table 1. New Times of Minimum Light for GSC 3152-1202

1 Kozyreva et al.

2 This paper

#### Acknowledgements:

Zimmerman and Todt acknowledge support of the Appalachian College Association's Ledford grants, and Bloomer acknowledges the support of King College.



Figure 1. The comparison, check and variable stars for this study. The average standard deviation of the differences between the comparison and check stars for the four nights of this work was 0^m.015 indicating their good stability for photometry.



Figure 2. Light curves for 20 Jun 10 (secondary) and 27 Aug 10 (primary). The magnitude and times scales are identical for both curves, and the data points were about five minutes apart. This shows that the elements of Otero, Kozyreva and this paper correctly identify the eclipses. All images were checked to be sure no pixels were above 50% percent saturation.



Figure 3. The O-Cs of the primary times (squares) and the secondary times (diamonds) including the times reported by Kozyreva et al. These are based on the mean elements from this study.

#### References:

Bulut, I. and Demircan, O., 2007, MNRAS, 378, 179
Kozyreva, V.S., Kusakin, A.V., Bagaev, L.A., 2009, IBVS, 5909
Otero, S.A., Wils, P., Hoogeveen, G, Dubovsky, P.A., 2006, IBVS, 5681

^{*}This version of the paper contains corrections, and differs from the one appeared on-line originally. Date of last modification: Jan 11 2011

Number 5963

Konkoly Observatory Budapest 7 January 2011 *HU ISSN 0374 – 0676* 

# PHOTOMETRIC ANALYSIS AND EVIDENCE FOR A THIRD, DWARF COMPONENT IN THE FY Boo SYSTEM

SAMEC, RONALD G.¹; OLIVER, BRUCE¹; FIGG, EVAN R.¹; FAULKNER, DANNY R.²; VAN HAMME, WALTER V.³

 1  Astronomy program, Department of Physics, Bob Jones University, Greenville, SC 29614

 2  University of South Carolina, Lancaster

³ Florida International University

FY Boo [GSC 01999-00518, 2MASSJ13465180+2257140, ROTSE1 J134651.80+225714.7,  $\alpha(2000) = 13^{h}46^{m}51^{s}81$ ,  $\delta(2000) = +22^{\circ}57'13''.0$ ] was recently discovered by ROTSE I (Diethelm, 2001), and identified as an EW type variable with a period of 0.241168 d. This makes it one of the shortest period W UMa binaries known and an object of our continuing study of very short period binaries (e.g., Samec, Faulkner and Williams, 2004).

We took B, V, R, I light curves of the binary with the Lowell 31 inch reflector in Flagstaff with a CRYOTYGER cooled (-100°C) NASACAM and a 2K×2K chip and standard  $BVR_cI_c$  filters. The dates of the observations were 11-15, March, 2009. We undertook the observing run under the auspices of the National Undergraduate Observatory (NURO) and were granted observing time by the Lowell TAC. We used the Lowell program LOIS to take our observations. Our modeled light curves included 107 B, 109 V, 95 R and 98 I individual CCD observations. These observations were taken by Oliver, Samec and Faulkner. The photometric precision was  $\pm 0.008$  in B,  $\pm 0.006$  in V, and  $\pm 0.005$  in R and I. They are given in Table I (IBVS^{e1} 5963-t1.txt), in delta magnitudes, variable minus comparison star.

Our comparison star (C) was GSC 1999 0750 [ $\alpha(2000) = 13^{h}46^{m}58^{s}583$ ,  $\delta(2000) = +22^{\circ}56'47''.5$ , TYCHO I B-V = 0.666]. The check star (K) was GSC 1999 0854 [ $\alpha(2000) = 13^{h}46^{m}46^{s}.152$ ,  $\delta(2000) = +22^{\circ}54'41''.61$  TYCHO B-V = 0.684]. We include a finding chart of these stars including the variable (V) in Figure 7 (IBVS^e).

We determined six times of minimum light from our present observations. The minima were calculated using parabola fits. With their standard errors in parentheses, they include: HJDMin I =  $2454901.9711(\pm 0.0022) d$ ,  $2454902.9350(\pm 0.0024) d$ ,

 $2454904.8587(\pm 0.0002) d$ ,  $2454905.8304(\pm 0.0002) d$  and

HJDMin II =  $2454904.9774(\pm 0.0007) d$ ,  $2454905.9491(\pm 0.0002) d$ . From our timings and 43 others which are referenced in Table 2 (IBVS^e 5963-t2.txt), we calculated the following precision linear ephemeris:

HJD Min I =  $2454904.8660 \pm 0.0003 + 0.24115955 \pm 0.00000005 \, d \times E$  (1)

¹Available electronically through the IBVS website

Interestingly, our fit revealed the presence of a low amplitude sinusoid. The sinusoidal ephemeris is:

We believe this sinusoid is due to the light time effect of a third, orbiting component. The ephemeris gives an orbital period of  $9.9\pm0.2$  years for the third component. From the amplitude, we calculate an orbital radius of  $0.61\pm0.05$  AU in light travel time, assuming the orbital inclination of the third component is identical to that of the main binary. The third body has a mass ratio of  $0.16\pm0.03$  as compared to the FY Boo system. If the total mass of the eclipsing binary pair is 1 solar mass (K1V star; Cox, 2000) then the additional component has an estimated mass of 0.16 solar masses. This mass is that of an ~M6 dwarf which is small, but comparable to the mass of the other two components (in the range of 0.2 to 0.8 solar masses).

The sinusoidal O - C diagram is given in Figure 1. We also include the linear residuals from Equation 1 in the table.



**Figure 1.** Sinusoidal O - C residuals from Equation 2 revealing a third star orbiting the system.

Figure 2. Chart of solution residuals of mass ratios extending from 0.3 to 3.5 minimizes near 2.5.

Our UBVRI phased light curves, Phase versus Delta Magnitudes, in the sense of V-C, are given as Figures 8 and 9 (IBVS^e). The BVRI curves are typical of a classic short period, solar-type contact system. The light curves show effects of night to night variability which forced us to use data for modeling from only two nights. Also, the maximum at phase 0.75 is about 0.1 mags higher than the one at phase 0.25. Thus, magnetic activity is strong in the system with either dark spots or hot spots predominating. Dips in the color curves at phase 0.0 and 0.5 indicate the system has achieved contact (as we view the cooler back parts of the contact Roche lobes). Broad eclipses at phase 0.0 indicate a brief total eclipse. This suggests that FY Boo is probably a W-Type W UMa binary (the hotter component is the less massive one).

Our B, V, R, I light curves were hand modeled with Binary Maker 3.0 (Bradstreet et al., 2002). Averaged values of parameters were then entered into the 2004 version of the Wilson Code (Wilson and Devinney, 1971 (WD); Wilson, 1990, 1994; Van Hamme and Wilson, 1998). From these we ran a full BVRI simultaneous solution. Intermediate modeling iterations were done with PHOEBE (Prša and Zwitter 2005) which runs the same Wilson code in the background and makes it possible to view the light curve fit as the iterations progress. A mass ratio search covering regions from 0.3 to 3.5 was performed which indicated the value minimizes near ~2.5. See Figure 2. Full synthetic light curve
solutions follow. The temperature of the main component (4750K, K3V spectral type) which we used to model our light curves, was taken from a period-color relation from Battan, 1973 using the W UMa period. Recent 2MASS B - V, V - R, J - H and H - K average to K1±4 and affirms our choice. We computed both a Hot Spot and a Dark spot model. The Dark spot model has a slightly better sum of square residuals. Thus the choice of models is not conclusive. Either model is acceptable within the errors. The dark spot light curve solution is seen overlaying the normalized flux curves shown in Figures 3 and 4. The complete solutions are given as Table 3. Two phases of the Roche-lobe model of the binary for the dark spot solution are shown as Figures 5 and 6. Phase zero shows the total eclipse.



**Figure 3.** B, V synthetic light curve solutions overlaying the normalized flux curves.



**Figure 4.** *R*, *I* synthetic light curve solutions overlaying the normalized flux curves.





Figure 5. Roche Lobe surfaces from our *BVRI* solution, phase 0.74.

Figure 6. Roche Lobe surfaces from our *BVRI* solution, phase 0.0 (the primary eclipse).

Our models show FY Boo is a W-type (the less massive component is the hotter) W UMa binary with a mass ratio of ~ 2.5. The system parameters from our model include a fill-out of 11%, a slight temperature difference of 200 K and an inclination of 82°. One large 68° radius magnetic region was modeled on the hotter companion with an average temperature of 0.96 times that of the photosphere. The T-Factors and spot radii indicate that this is a major *region* of spot activity rather than that of a single spot.

The solution gives a eclipse duration of  $\sim 7$  minutes. The shallow fill-out is quite normal for a W-type system. We believe that this results due to an early stage of contact. The fairly extreme mass ratio probably indicates that the components had nearly this value when they came in contact. We suspect that the mass ratio should progress to

Parameters	Dark Spot	Solution (Mode 3)	) Hot Spot Solution (Mode	3)
$l_B, l_V, l_B, l_I \text{ (nm)}$	440, 550, 64	40. 790	440, 550, 640, 790	
xbol _{1.2} , ybol _{1.2}	0.619, 0.649	0, 0.190, 0.190	0.619, 0.649, 0.190, 0.190	
X11 21, V11 21	0.626, 0.626	6, 0.226, 0.226	0.626, 0.626, 0.226, 0.226	
$X_{1R,2R}, Y_{1R,2R}$	0.711, 0.711	, 0.223, 0.223	0.711, 0.711, 0.223, 0.223	
$X_{1V,2V}, Y_{1V,2V}$	0.780, 0.780	0, 0.192, 0.192	0.780, 0.780, 0.192, 0.192	
X1B,2B, Y1B,2B	0.848, 0.848	8, 0.087, 0.087	0.848, 0.848, 0.087, 0.087	
$g_1, g_2$	0.32		0.32	
$A_1, A_2$	0.5		0.5	
Inclination (°)	$82.4 \pm 0.3$		$82.2 \pm 0.4$	
$T_1, T_2$ (K)	4750(fixed)	$4555 \pm 44^*$	$4750(\text{fixed}), 4700.2 \pm 75^*$	
$\Omega_1 = \Omega_2$	$5.947 \pm 0.013$	5	$5.917 \pm 0.023$	
q (m2/m1)	$2.55 {\pm} 0.01$		$2.517 {\pm} 0.022$	
Fill-outs: $F_1 = F_2$	$11.0 \pm 2\%$		$11.0 \pm 2\%$	
$L1/(L1 + L2)_I$	$0.339 {\pm} 0.013$	5	$0.311 {\pm} 0.021$	
$L1/(L1 + L2)_R$	$0.346 \pm 0.018$	3	$0.312 {\pm} 0.025$	
$L1/(L1 + L2)_V$	$0.360 \pm 0.024$	1	$0.316 {\pm} 0.032$	
$L1/(L1 + L2)_B$	$0.376 {\pm} 0.032$	2	$0.319 {\pm} 0.041$	
JDo (days)	2454904.865	$52 \pm 0.0001$	$2454904.8647{\pm}0.0001$	
Period (days)	$0.241141 \pm 0$	.000007	$0.241141 {\pm} 0.00001$	
$r_1, r_2$ (pole)	$0.286 {\pm} 0.001$	$1, 0.440 \pm 0.001$	$0.286 \pm 0.001, \ 0.437 \pm 0.002$	2
$r_1, r_2$ (side)	$0.299 {\pm} 0.001$	$1, 0.470 \pm 0.002$	$0.299 \pm 0.001, \ 0.467 \pm 0.002$	!
$r_1, r_2$ (back)	$0.336 {\pm} 0.003$	$3, 0.499 \pm 0.002$	$0.334 \pm 0.003, \ 0.496 \pm 0.003$	5
Sum of square res	1.352		1.461	
	S	SPOT Parameters		
La	atitude (°)	$78 \pm 26$	$78 \pm 38$	
Lo	$\hat{\text{ongitude}}$ (°)	$241 \pm 5$	$67 \pm 7$	
St	oot radius (°)	$68 \pm 39$	$86{\pm}42$	
T-	-Factor	$0.9562 {\pm} 0.0004$	$1.0368 {\pm} 0.0006$	

TABLE 3. SYNTHETIC CURVE PARAMETERS FOR FY Boo

*All Errors are formal, here the error in  $T_2$  is in relation to  $T_1$ . We expect errors to  $T_1$  to be on the order of  $\sim 250$  K.

more extreme values in the future due to magnetic breaking. Breaking is due to the torque supplied by out flowing winds along "stiff" magnetic field lines originating from this solar-type binary.

Should we be looking for eclipses of the third component? Our calculations show that the proposed dwarf orbiting at  $\sim 3.6$  AU will never show any eclipses from an earth based observer.

We wish to thank Lowell Observatory for their allocation of observing time, and the AAS and the Arizona Space Grant for travel support for this observing run.

**References:** 

Batten, A.H., 1973, Binary and Multiple Systems of Stars, (Pergamon P., Oxford), p. 151 Bradstreet, D. H., Steelman, D. P., 2002, AAS, 201, 7502 Cox, A. N., ed. 2000, Allen's Astrophysical Quantities (4th ed.; New York: Springer) Diethelm, R., 2001, IBVS, 5038 Prša, A., & Zwitter, T., 2005, ApJ, 628, 426 Samec, R.G., Faulkner, D.R., Williams, D.B., 2004, AJ, 128, 2997 Van Hamme, W. V., Wilson, R.E, 1998, *BAAS*, **30**, 1402 Wilson, R. E. & Devinney, E. J., 1971, ApJ, 166, 605 Wilson, R. E., 1990, ApJ, 356, 613 Wilson, R. E., 1994, PASP, 106, 921

Number 5964

Konkoly Observatory Budapest 20 January 2011 *HU ISSN 0374 - 0676* 

# PHOTOMETRIC VARIABILITY OF THE CHEMICALLY PECULIAR HOT SUBDWARF LS IV-14°116

JEFFERY, C. SIMON

Armagh Observatory, College Hill, Armagh BT61 9DG, N. Ireland, UK

LS IV-14°116 was first catalogued as a luminous star by Nassau & Stephenson (1963). Kilkenny & Pauls (1990) classified it as an O-type subdwarf (sdO), while Viton et al. (1991) described it as an He-rich sdO star. Ahmad & Jeffery (2005) found the star to be photometrically variable with periods in the 30 – 90 minute range, and amplitudes of  $\approx 0.003$  mag. The star currently constitutes the sole member of the class of He-sdBVs (Kilkenny et al., 2010). Its variability is not reconciled with any theory of pulsational instability; g-modes would be indicated by the period, but are inconsistent with theoretical models of g-mode excitation in hot subdwarfs (Jeffery & Saio, 2006).

Although showing significantly more helium ( $n_{\text{He}} = 0.21$ , Ahmad & Jeffery, 2003) than the majority of sdB stars, LS IV-14°116 is not as extremely helium-rich as a few. Analysis of the spectrum at high-resolution has revealed a super-abundance ( $\approx 4 \text{ dex}$ ) of zirconium, strontium, yttrium and germanium (Naslim et al., 2011), suggesting a heavily stratified atmosphere in which these particular elements have accumulated in the line-forming region. The question arises as to whether the photometric variability is in any way connected to the extreme chemical peculiarity of this star.

Night	Date	UT Start	$t_{\rm exp}$	$N_{\rm obs}$
N1	$2005 \ 06 \ 15$	23:00:43	10	1505
N2	$2005 \ 06 \ 16$	22:21:49	10	2093
N3	$2005 \ 06 \ 17$	22:19:18	15	336
N4	$2005\ 06\ 19$	22:42:46	15	1459

Table 1: Photometric observations of LS IV $-14^{\circ}116$ .

The very low-amplitude variations detected in the discovery data demanded confirmation. Additional observations were obtained with the South African Astronomical Observatory 1.0m telescope in 2005 June, using the University of Cape Town (UCT) high-speed CCD camera operated in 'frame-transfer' mode. Although the weather was not perfect, approximately 12.5 hours of data, and 5393 images were obtained (Table 1). The field size was the same as reported by Ahmad & Jeffery (2005), so that only one star was available as a useful comparison (GS2.2: S331330313746, R=14.1). A third star was too faint to provide a satisfactory check of the photometry. Regrettably, an unmarked improvement in seeing led to approximately 1300 frames obtained on the night of 2005 June 16 being saturated. These frames were easy to identify and discard during analysis of the light curve. The observer was duly chastened.



Figure 1. Differential photometry of LS IV-14°116 from June 2005.

The data were reduced using the ULTRACAM data reduction pipeline software (Dhillon & Marsh, 2001), extracted to differential magnitudes, and normalised (*i.e.* corrected such that  $\langle V - C \rangle = 0$ ). Because the comparison star is substantially redder then LS IV-14°116, differential extinction is significant (> 0.04 mag/airmass), so data for each night were detrended by subtracting a third order polynomial fit. The final differential light curve is shown in Fig. 1, where variations of up to  $\pm 0.01$ mag. are clearly visible.

Table 2:	Frequencies
----------	-------------

$f/\mathrm{mHz}$	a/mag	$(f_{2004})$	$(a_{2004})$
0.2908	0.0027		
0.2011	0.0018		
0.3368	0.0019	0.3484	0.0019
0.5203	0.0018	0.5119	0.0021

The Scargle power spectrum and window function for the entire dataset are shown in Fig. 2. The power spectrum resembles that obtained in 2004 (Ahmad & Jeffery, 2005) in so far as there is power at around 0.34 mHz and at 0.52 mHz in both cases. Any power at f < 0.05mHz has been removed by the detrending procedure. Best-fit frequencies and semi-amplitudes obtained using the period analysis software PERIOD04 (Lenz & Breger, 2005) are shown in Table 2. Errors are  $\pm 0.0116$  mHz in frequency (*i.e.* at least one cycle per day) and  $\pm 0.0005$  mag. in semi-amplitude. Allowing for such errors, we note that three frequencies might be construed as an harmonic series of 0.17, 0.34 and 0.51 mHz.



Figure 2. Scargle periodogram and window function (inset) for LS IV-14°116 from June 2005.

Ahmad & Jeffery (2005) suggested that the periodic variability in LS IV-14°116 could be due to pulsation. This view has been difficult to reconcile with the effective temperature and surface gravity of LS IV-14°116, and the known instability mechanisms for subdwarf B stars (Jeffery & Saio, 2007). The discovery of extreme chemical peculiarity (Naslim et al., 2011) suggests at least one alternative; namely that the stellar surface could be chemically inhomogeneous and that the surface flux might be modulated by rotation as in the strongly-magnetic Bp(He) stars. Arguing against such a proposition is the projected rotation velocity which is less than  $2 \,\mathrm{km}\,\mathrm{s}^{-1}$ .

Given the quantity and quality of the 2005 photometric data, there is substantially little new information to be extracted from the light curve. The persistence of power at 0.34 and 0.52 mHz from 2004 to 2005 suggests that the underlying mechanism is physically robust, and not due to some stochastic process. Substantially better data are needed to establish the power spectrum more securely.

#### References:

Ahmad, A. & Jeffery, C. S., 2003, A&A, 402, 335

- Ahmad, A. & Jeffery, C. S., 2005, A&A, 437, L51
- Dhillon, V. & Marsh, T., 2001, New Astronomy Reviews, 45, 91
- Jeffery, C. S. & Saio, H., 2006, MNRAS, 372, L48
- Jeffery, C. S. & Saio, H., 2007, MNRAS, 378, 379.
- Lenz, P. & M. Breger, M., 2005, Comm. in Asteroseismology, 146, 53

Kilkenny, D. & Pauls, L., 1990, MNRAS, 244, 133

- Kilkenny, D., Fontaine, G., Green, E. M. & Schuh, S., 2010, IBVS, 5927
- Naslim, N., Jeffery, C. S., Behara, N. T., & Hibbert, A. 2011, MNRAS in press. arXiv:1010.5146
- Nassau, J. J. & Stephenson, C. B., 1963, *Luminous Stars*, Hamburger Sternw., Warner & Swasey Obs., 4
- Viton, M., Deleuil, M., Tobin, W., Prévot, L. & Bouchet, P., 1991, A&A, 242, 175

Number 5965

Konkoly Observatory Budapest 25 January 2011 *HU ISSN 0374 - 0676* 

### MINIMA TIMES OF SOME ECLIPSING BINARY STARS

DEMİRCAN, Y.; GÜROL, B.; GÖKAY, G.; TERZİOĞLU, Z.; SARAL, G.; GÜRSOYTRAK, H.; OKAN, A.; DEMİRHAN, U.; ÇOKER, D.; DERMAN, E.

Ankara University Observatory, Faculty of Science, Astronomy and Space Sciences Department 06100, Tandoğan, Ankara, TÜRKİYE; e-mail: demircan@ankara.edu.tr

Observatory and telescope:			
16"Schmidt/Cassegrain telescope at Ankara University Observatory			
Detector:	Apogee ALTA U47+ back illuminated CCD camera,		
	Peltier cooling, E2V CCD47-10 chip, $1024 \times 1024$ pixels.		

Method of data reduction: Reduction of the CCD frames: IRAF¹ CCDRED and APPHOT packages.

#### Method of minimum determination:

The minima times were computed with several methods in Minima25b (Nelson, 2006) (parabolic fit, tracing paper, bisectors of chords, Kwee and van Woerden method (Kwee & van Woerden, 1956), Fourier fit and sliding integrations technique). Then weighted mean minimum-time value calculated for all filters used.

Times of minima:					
Star name	Time of min.	Error	Type	Filter	Rem.
	HJD 2400000+				
ASAS 211538+2454.2	55435.2699	0.0001	II	BVRI	YD
	55435.5304	0.0001	Ι	BVRI	YD
	55439.4411	0.0001	II	BVRI	UD
ASAS 205847+2731.9	55405.3647	0.0002	II	BVRI	$\operatorname{GG}$
	55405.4988	0.0001	Ι	BVRI	GG
	55406.4372	0.0001	II	BVRI	HG-ZT
	55406.5703	0.0002	Ι	BVRI	HG-ZT
ASAS 212915+1604.9	55407.5576	0.0001	II	BVRI	AO-YK-MSH
ASAS 231700+1944.9	55395.4988	0.0001	II	BVRI	$\operatorname{GG}$
	55422.2993	0.0001	II	BVRI	AO
	55422.4785	0.0001	Ι	BVRI	AO
CP Cam	55409.5085	0.0005	II	BVRI	YD
	55412.2942	0.0002	Ι	BVRI	GG
DY CVn	55297.2885	0.0001	Ι	BVRI	YD
DZ Lyn	55208.3112	0.0002	Ι	BVRI	GG
-	55218.5168	0.0001	Ι	BVRI	GS
	55222.2970	0.0002	Ι	BVRI	GG
	55222.4860	0.0002	II	BVRI	GG
EF Cep	55309.3863	0.0002	II	BVRI	GS
	55320.2955	0.0001	II	BVRI	AO

 1 IRAF is distributed by the National Optical Astronomical Observatories, operated by the Association of the Universities for Research in Astronomy, inc., under cooperative agreement with the National Science Foundation

Times of minima	a:				
Star name	Time of min.	Error	Type	Filter	Rem.
	HJD 2400000+				
EI CVn	55316.3851	0.0001	Ι	BVRI	GS
	55316.5147	0.0001	II	BVRI	GS
	55333.3349	0.0001	Ι	BVRI	$\mathbf{ZT}$
	55333.4639	0.0001	II	BVRI	$\operatorname{ZT}$
GH Boo	55323.4320	0.0002	Ι	BVRI	GG
	55324.4234	0.0002	II	BVRI	AO
GK Boo	55364.4367	0.0001	II	BVRI	HG
GSC 1127 1808	55417.5265	0.0010	Ι	BVRI	DC
GSC 2331 0731	55425.4799	0.0010	Ι	BVRI	UD
$GSC \ 2140 \ 1485$	55383.3148	0.0001	Ι	BVRI	GG
	55437.3791	0.0001	II	BVRI	YD
	55437.5302	0.0001	Ι	BVRI	YD
GSC 2534 1121	55319.3945	0.0002	II	BVRI	DC-EA
	55319.5642	0.0002	Ι	BVRI	DC-EA
GSC 2544 1007	55317.3859	0.0001	Ι	BVRI	GG
	55317.5440	0.0001	II	BVRI	GG
GSC 3526 2369	55384.4777	0.0002	Ι	BVRI	UD
HH Boo	55322.4428	0.0001	Ι	BVRI	HG
LO And	55160.3026	0.0001	II	BVRI	UD-EA
PS Vir	55318.2827	0.0001	Ι	BVRI	YD
	55318.4291	0.0001	II	BVRI	YD
TV UMi	55392.3785	0.0010	Ι	BVRI	HG
	55423.3350	0.0009	II	BVRI	YD
	55423.5470	0.0013	Ι	BVRI	YD
	55424.3765	0.0013	Ι	BVRI	DC-EA
TYC 1761-1246-1	55392.5071	0.0001	Ι	BVRI	HG
	55080.3625	0.0003	Ι	BVRI	GG
V1191 Cyg	55381.3930	0.0001	Ι	BVRI	YD
	55381.5499	0.0002	II	BVRI	YD
	55388.4436	0.0001	II	BVRI	$\operatorname{GS}$
V1918 Cyg	55380.3132	0.0001	II	BVRI	AO
	55380.5193	0.0001	Ι	BVRI	AO
	55390.4368	0.0001	Ι	BVRI	UD
XY LMi	55259.5120	0.0001	II	BVRI	HG

### Explanation of the remarks in the table:

Observers: AO: Abdullah OKAN, DÇ: Deniz ÇOKER, EA:Emre AYDIN, GG: Gökhan GÖKAY, GS: Gözde SARAL, HG: Hande GÜRSOYTRAK, MSH: Muhammed SHEMUNI, UD: Utku DEMİRHAN, YD: Yahya DEMİRCAN, YK: Yücel KILIÇ, ZT: Zahide TERZİOĞLU

#### **Remarks:**

The times of minima are weighted averages from all filters observed.

#### Acknowledgements:

We are grateful to Ankara University Observatory for use of the telescope time allocation and other facilities.

#### References:

Kwee, K. K., van Woerden, H., 1956, *Bull. Astron. Inst. Neth.*, **12**, 327 Nelson, B., 2006, Software, http://members.shaw.ca/bob.nelson/software1.htm

Number 5966

Konkoly Observatory Budapest 25 January 2011 HU ISSN 0374 – 0676

# CCD MINIMA FOR SELECTED ECLIPSING BINARIES IN 2010

#### NELSON, ROBERT H.

1393 Garvin Street, Prince George, BC, Canada, V2M 3Z1 e-mail: bob . nelson @ shaw . ca

Observatory and telescope:
Sylvester Robotic Observatory (SRO): 33 cm f/4.5 Newtonian on a Paramount ME
mount

Detector:	SRO: SBIG ST-7XME, 1"25 pixels, $15'.8 \times 10'.5$ FOV,
	cooled to $-10 < T < -30^{\circ}$ C

### Method of data reduction:

Aperture photometry using MIRA, by Mirametrics.

#### Method of minimum determination:

Digital tracing paper method, bisection of chords, curve fitting, and (occasionally) Kwee and van Woerden (1956)

Times of minima:					
Star name	Time of min.	Error	Type	Filter	Rem.
	HJD 2400000+				
QX And	55520.6267	0.0002	II	R	
GSC 1761-1934 Ari	55448.821	0.0002	Ι	R	
AP Aur	55522.8858	0.0003	Ι	R	
EP Aur	55561.6318	0.0005	II	с	
GSC 2374-0055 Aur	55522.7443	0.0003	Ι	R	
GSC 2407-0767 Aur	55546.629	0.001	Ι	R	
GSC 2933-1972 Aur	55485.8789	0.0002	Ι	с	
TY Boo	55274.9307	0.0003	Ι	с	
XY Boo	55274.0328	0.0002	II	R	
AC Boo	55300.8561	0.0002	II	VRI	
AC Boo	55312.8395	0.0002	II	VRI	
HH Boo	55259.9848	0.0002	Ι	с	
HR Boo	55264.8712	0.0003	Ι	с	
NR Cam	55259.664	0.0002	II	с	
GSC 4358-0151 Cam	55486.913	0.001	II	с	
GSC 4524-1856 Cam	55523.8033	0.0002	Ι	R	
GSC 4544-1144 Cam	55548.8678	0.0002	Ι	R	

Times of minima:	
Star name Time of min. Error Type Filt	er Rem.
HJD 2400000+	
BS Cas 55521.6727 0.0001 II R	ι υ
V0776 Cas 55202.5705 0.0005 II R	ו ט
V0952 Cas 55497.7659 0.0002 I R	1 L
V0959 Cas 55486.7753 0.0002 II c	
V1004 Cas 55485.779 0.001 I c	
GSC 4295-0927 Cas 55455.8407 0.0003 I R	
GSC 4318-0519 Cas 55522.6020 0.0003 I R	
V0497 Cep 55458.6986 0.0003 I R	
GSC 4267-0682 Cep 55321.9166 0.0003 I R	
GSC 4479-0888 Cep 55523.5982 0.0003 II R	
IL Cnc 55523.9260 0.0002 I R	1 U
IN Cnc 55264.7131 0.0002 I c	
IT Cnc 55242.694 0.001 II c	
RZ Com 55262.7483 0.0003 II c	
DL CVn 55308.7485 0.0005 I c	
DL CVn 55325.779 0.002 I c	
EN CVn 55259.8609 0.0003 I c	
GSC 2545-0970 CVn 55560.9579 0.0002 I R	1 U
V1815 Cvg 55363.8692 0.0003 I R	
V2477 Cvg 55312.9610 0.0001 II R	
GSC 3581-1856 Cvg 55366.8012 0.0002 I R	
EX Del 55345.8961 0.0003 I c	
BL Dra 55322.9207 0.0002 I R	
GSC 3900-0615 Dra 55326.8972 0.0001 I R	
GSC 3900-0615 Dra 55328.7644 0.0003 II VF	I}
GSC 3900-0615 Dra 55356.7740 0.0001 I VF	IS
GSC 4436-1300 Dra 55273.9014 0.0005 I R	
GSC 4449-1278 Dra 55325.9378 0.0004 II c	
GSC 4541-1805 Dra 55560.824 0.001 I c	
V0383 Gem 55553.9379 0.0005 I c	
GSC 1913-1513 Gem 55560.7710 0.0001 I c	
V0921 Her 55298.9376 0.0003 II R	
V1064 Her 55324.7579 0.0003 II R	
V1071 Her 55264.9678 0.0002 II R	
V1091 Her 55321.7980 0.0004 I c	
V1094 Her 55322.7765 0.0003 I c	
V1103 Her 55303.9829 0.0004 II c	
V1105 Her 55345 795 0.001 II c	
GSC 3101-0547 Her 55309 9582 0 0002 II c	
GSC 3510-1283 Her 55309 8558 0 0002 II c	
GSC 1965-0735 Leo 55520 9310 0.0002 II B	,
XY LMi 55522 958 0.001 I B	, ,
V0563 Lyr 55261 9795 0 0002 I	<i>.</i>
V0582 Lyr 55339 9114 0 0001 II c	
V2357 Oph 55323 8774 0.0004 I	
GSC 0107-0596 Ori 55522 8275 0 0002 I R	,
CSC 1322-0294  Ori 55520 8205 0.0002  II B	

Times of minima:					
Star name	Time of min.	Error	Type	Filter	Rem.
	HJD 2400000+				
V0404 Peg	55411.8144	0.0005	Ι	VRI	
V0404 Peg	55412.8636	0.0005	II	VRI	
V0404 Peg	55424.8096	0.0005	II	VRI	
IM Per	55560.6675	0.0005	Ι	с	
KW Per	55521.5913	0.0005	II	R	
GSC 2846-0404 $\operatorname{Per}$	55408.9483	0.0002	Ι	VRI	
GSC 2846-0404 $\operatorname{Per}$	55456.7935	0.0007	II	VRI	
GSC 2846-0404 $\operatorname{Per}$	55457.759	0.001	Ι	VRI	
GSC 2846-0404 $\operatorname{Per}$	55457.956	0.002	II	VRI	
EN Tau	55448.9532	0.0002	Ι	R	
EQ Tau	55520.7310	0.0002	Ι	R	
GW Tau	55519.7038	0.0003	II	R	
V1112 Tau	55553.7278	0.0002	Ι	с	
GSC 1822-0314 Tau	55519.7933	0.0003	Ι	R	
GSC 1830-1432 Tau	55521.7684	0.0003	Ι	R	
XY UMa	55520.8786	0.0003	II	R	
KM UMa	55267.7730	0.001	II	R	
OQ UMa	55262.8603	0.0001	Ι	с	
GSC 2167-0490 Vul	55308.9146	0.0005	Ι	с	

### Acknowledgements:

Thanks are due to Environment Canada for the website satellite views (see reference below) that were essential in predicting clear times for observing runs in this cloudy locale. Thanks are also due to Attilla Danko for his 'Clear Sky Clocks', (see below). This research has made use of the SIMBAD database, operated at CDS, Strasbourg, France.

#### References:

Danko, A., Clear Sky Clocks, http://cleardarksky.com/ Kwee, K.K. & van Woerden, H., 1956, *B.A.N.*, **12**, 327, (No. 464) Nelson, R.H., Bob Nelsons *O*-*C* Files, http://binaries.boulder.swri.edu/binaries/omc/ Satellite Images for North America, http://www.weatheroffice.gc.ca/satellite/index_e.html

Number 5967

Konkoly Observatory Budapest 25 January 2011 *HU ISSN 0374 – 0676* 

#### NEW MULTICOLOUR CCD PHOTOMETRIC ANALYSIS OF BI CMi

LIAKOS, A.; NIARCHOS, P.

Department of Astrophysics, Astronomy and Mechanics, University of Athens, GR 157 84, Zografos, Athens, Hellas, e-mail: alliakos@phys.uoa.gr, pniarcho@phys.uoa.gr

BI CMi (=HD 56167) was discovered as a  $\delta$  Sct type pulsator by Kurpinska-Winiarska et al. (1988), with a period of ~0.1194660 days, a  $V_{mag}$  of 9.279, and a B-V index of 0.359. Mantegazza & Poretti (1994) performed a frequency analysis on their photoelectric data and resulted in 10 pulsation modes. The most complete study of the star was made by Breger et al. (2002) who included the star into a multisite photometric and spectroscopic campaign. They found 29 pulsation frequencies in the data of two observing seasons, calculated its rotational velocity and proposed a spectral type of F2.

The observations of the star were made at the Gerostathopoulion Observatory of the University of Athens, from January to March 2010 for 9 nights in a time span of 45 days, with a 20-cm Newtonian reflector telescope (f/5) and the ST-8XMEI CCD equipped with the Bessel B, V, R, I photometric filters. The differential photometry method was applied to the data using the software *MuniWin* v.1.1.26 (Hroch, 1998). TYC 194-498-1 ( $V_{mag} = 10.293$  and B - V = 0.379 mag) and TYC 194-292-1 ( $V_{mag} = 10.604$  and B - V = 0.503) were used as comparison and check stars, respectively. In this study, although the amount of data is less than the ones in the studies of Mantegazza & Poretti (1994) and Breger et al. (2002), we present for the first time 4-band photometry of the star based completely on CCD observations. In Fig. 1 the data of all nights in *B*-filter are illustrated.

The frequency analysis was made with the software *PERIOD04* v.1.2 which is based on the classical Fourier analysis (Lenz & Breger, 2005). Since our data cover less time span than the ones of Mantegazza & Poretti (1994) and Breger et al. (2002) we tried to find a solution based on their results. Initially, we performed frequency-search of all the available observational points in the interval from 8 to 9 c/d in order to detect the frequency  $f_1 \sim 8.25$  c/d reported as the dominant one by the previous authors. The latter, after the removal of this frequency, we continued to search for another ones in the interval 5-80 c/d (typical range for  $\delta$  *Scuti* stars; Breger, 2000). In addition, we searched for frequencies in the range 0-1 c/d, which potentially could be caused from atmospheric reasons or observational drifts. These frequencies are indicated as f* in Table 1. After the first frequency computation, the residuals were subsequently prewhitened for the next one. The calculations stopped when the detected frequency had a signal-to-noise ratio ~4 and its amplitude reached our magnitude error limit (~4.5 mmag in *B* and *V* and ~5 mmag in *R* and *I* filters). The results of the frequency search for all filters are given in Table 1, where we list: the identification number of the frequency (*No*), the frequency (*F*) value,



Figure 1. The observed light curves of BI CMi in *B*-filter.

its corresponding amplitude (A) and phase ( $\Phi$ ) and the signal-to-noise ratio (S/N) after prewhitening for the previous frequency(ies). The sum of the squared residuals ( $\chi^2$ ) derived from a multi-parameter least-squares fit of sinusoidal functions, is also given for each case. The Fourier fits on the observational points for the longest (data) sets of observations are presented in Figs 2 and 3, respectively, and the frequency spectra for B-filter is plotted in Fig. 4.





Figure 3. The Fourier fit on the V data.

The multifilter photometry helps us to verify which of the detected frequencies are physically originated, since they should be present in all filter observations. By this method, frequencies having a S/N>4 but not detected in all filter data, can be easily distinguished and characterized as observational errors (the lower ones) or residuals from



Figure 4. The periodogram in B-filter after the removal of  $f_1$ , where the detected frequencies are indicated.

		B-filter				V-filter		
No	$\mathbf{F}$	Α	Φ	S/N	$\mathbf{F}$	Α	Φ	S/N
	[c/d]	[mmag]	[deg]		[c/d]	[mmag]	[deg]	
$f_1$	8.2476(3)	33.5(6)	335(1)	29.0	8.2464(4)	23.3(7)	336(2)	12.0
$f_2$	8.8675(3)	26.2(6)	130(1)	20.5	8.8654(4)	22.3(7)	147(2)	12.3
$f_3$	10.4391(7)	11.3(6)	230(3)	5.7	10.4358(11)	7.3(7)	238(2)	4.8
$f_4$	7.3966(7)	10.0(6)	54(3)	7.6	7.4452(14)	6.0(7)	345(5)	3.8
$f_5$	5.6487(9)	7.9(6)	220(4)	4.2				
$f^*$	0.7579(3)	27.5(6)	92(1)	5.8	0.2468(4)	22.3(7)	285(6)	4.0
$\chi^2$		0.017				0.018		
		R-filter	• ·			I-filter		
$f_1$	8.2463(6)	15.7(8)	324(3)	12.0	8.2481(6)	15.7(7)	317(3)	13.8
$f_2$	8.8663(6)	16.6(8)	136(3)	12.3	8.8669(7)	16.6(7)	147(3)	12.5
$f_3$	10.4343(18)	5.4(8)	254(8)	3.8	10.4380(12)	8.7(7)	227(6)	5.2
$f_4$	7.3728(11)	8.7(8)	34(5)	4.8	7.3989(15)	5.4(7)	11(7)	4.4
$f^*$	0.6358(4)	22.9(8)	249(2)	3.8	0.0581(6)	22.9(7)	84(3)	3.9
$\chi^2$		0.021				0.019		

Table 1. The pulsational frequencies of BI CMi for all filters

a previous detected frequency after prewhitening (values close to the already detected ones). In the present work five pulsation frequencies in *B*-filter were found for BI CMi. The first four of them were also detected in V, R and I filter data. The Amplitude of the frequencies, as it is expected from the spectral type of the star, is decreasing from B to Ifilter. The current frequencies  $f_1$ ,  $f_2$  and  $f_4$  were also detected by Mantegazza & Poretti (1994) and Breger et al. (2002). Our  $f_3$  value is the almost the same with the  $f_5$  (and  $f_6$  as a close component) found by Breger et al. (2002). The frequency  $f_5$  in the *B*-data was not detected by the other authors, while its signature was not traced also in the other filter data, a fact that creates uncertainty for its real existence.

Another solution could be achieved if one does not confine the initial search between 8-9 c/d, and search directly in the interval 5-80 c/d. The dominant frequency then is found to be ~9.09 c/d and the  $f_3$ =8.51 c/d of Breger et al. (2002) (= $f_4$  of Mantegazza & Poretti 1994) is also detected. A different value for the dominant frequency was also found by Kurpinska-Winiarska et al. (1988) as  $f_1$ =8.37 c/d.

Concluding, we preferred to present the current solution (Table 1) as the most possible one, since the amount of data of the other authors is larger, and their solution describes more or less very well our data in all filters.

References:

Breger, M., 2000, ASPC, **210**, 3 Breger, M., Garrido, R., Handler, G. et al., 2002, MNRAS, **329**, 531

Hroch, F., 1998, Proceedings of the 29th Conference on Variable Star Research, 30

Kurpinska-Winiarska, M., Winiarski, M., Zola, S., 1988, IBVS, 3275, 1

Lenz, P., Breger, M. 2005, CoAst, 146, 53

Mantegazza, L., Poretti, E., 1994, A&A, 281, 66

Number 5968

Konkoly Observatory Budapest 28 January 2011 *HU ISSN 0374 – 0676* 

# PERIODICITIES OF A NOVA-LIKE CATACLYSMIC VARIABLE STAR RX J1951.7+3716

ZUBAREVA, A. M.¹; ANTIPIN, S. V.^{2,1}

¹ Institute of Astronomy, Russian Academy of Sciences, 48, Pyatnitskaya Str., 119017 Moscow, Russia
 ² Sternberg Astronomical Institute, 13, University Ave., 119992 Moscow, Russia

email: zubareva@inasan.ru, antipin@sai.msu.ru

Motch et al. (1998) classified RX J1951.7+3716 ( $\alpha = 19^{h}51^{m}47.50$ ,  $\delta = +37^{\circ}16'47''.8$ ; J2000.0) as a cataclysmic variable based on the X-ray and optical characteristics of the object. Peters and Thorstensen (2005) obtained optical spectra of the star and analyzed radial velocity changes using both absorption and emission lines. The authors found an orbital period of the system,  $P_{orb} = 0.492(1)$ . There were no studies on brightness variations of RX J1951.7+3716 published to date.



Figure 1. The summary light curve.

To confirm or disclaim present classification we have investigated RX J1951.7+3716 photometrically. Our observations were carried out at the 60-cm telescopes of the Terskol Branch of the Institute of Astronomy and the Crimean Laboratory of Sternberg Astronomical Institute equipped with a PixelVision SpectraVideoTM and an Apogee AP-47p CCD cameras respectively. We monitored RX J1951.7+3716 for eighteen nights on June 10–August 23, 2010 (JD 2455358–2455432). The frames were taken with 180 s (Terskol) and 120 s (Crimea) exposure times in the Johnson R filter. 2347 images

were debiased, dark-subtracted, flat-fielded and then analyzed in MaxIm DL 4 package. USNO-A2.0 1200-13535122 ( $\alpha = 19^{h}51^{m}50^{s}37$ ,  $\delta = +37^{\circ}15'56''.0$ ; J2000.0; photographic R magnitudes: 13^m8 in the USNO-A2.0 and 13^m98, 13^m83 in the USNO-B1.0 catalog) was used for comparison. Stability of the comparison star was verified by brightness measurements with respect of several check stars. The uncertainty of our photometry is about 0^m03. The summary light curve is shown in Fig. 1.

The amplitude of light variations of RX J1951.7+3716 during different nights of our set changes from  $0^{m}_{..}4$  to  $0^{m}_{..}8$ . The shape of the light curves is composite. The most stable feature of brightness variations is a flickering on timescales of 15–25 minutes. Some of light curves contain steep brightness rises and declines (Fig. 2). This photometric behavior is typical of nova-like cataclysmic variables (Warner, 1995).



Figure 2. Individual light curves for several nights of observations.

We have analyzed our data (available through the IBVS website as 5968-t1.txt) for periodicity using the Lafler and Kinman method (Lafler and Kinman, 1965) implemented in Pelt's (Pelt, 1980) and V.P. Goranskij's packages. The spectral orbital period (Peters and Thorstensen, 2005) is not present in our observations explicitly. Looking for periodicity in a very narrow interval in the vicinity of this period, we find only a low peak at 0.4928 days. We hope that the corresponding phased light curve (Fig. 3) can be considered as photometric reflection of the orbital motion. Two features are present in the figure. First, the wide minimum close to the phase 0.0 is better seen in the averaged light curve. Second, the flickering at the phases 0.2–0.35 is less prominent than at other intervals. We suppose that the latter finding can be explained by an eclipse of the interaction region of the disk with the accretion stream. Notice that, statistically, cataclysmic variables with orbital periods longer than ten hours are quite rare (e.g. Warner, 1995).



Figure 3. The phased light curve for the orbital period.

In absence of an evident orbital period, the strongest peaks on the periodogram correspond to 0^d628 and its daily alias 0^d3879 (Fig. 4, Fig. 5). We emphasize that these periods are not coupled with the orbital one. Nature of these periodicities remains unknown. The flickering being the most prominent feature of the variable's light curve, a whitening of the mentioned phased curves for the orbital variability and, vice versa, a whitening of the orbital curve for 0.628 or 0.3879 day periodicities does not improve the phased curves.



Figure 4. The power spectrum constructed using the Crimean set of observations (2232 images, July 30–August 23, 2010).



Figure 5. The phased light curve for possible periodicities.

Acknowledgements: We thank N.N. Samus for useful discussion. We are grateful to the anonymous referee for constructive comments. The study was supported in part by the Russian Foundation for Basic Research.

References:

Lafler, J. and Kinman, T.D., 1965, ApJ Suppl, 11, 216
Motch, C., Guillout, P., Haberl, F. et al., 1998, A&A Suppl, 132, 341
Pelt, J., 1980, Frequency analysis of astronomical time series, Tallin, Valgus (in Russian)
Peters, C.S. and Thorstensen, J.R., 2005, PASP, 117, 1386
Warner, B., 1995, Cataclysmic Variable Stars, Cambridge, Cambridge Univ. Press

Number 5969

Konkoly Observatory Budapest 31 January 2011 *HU ISSN 0374 – 0676* 

# THE 80TH NAME-LIST OF VARIABLE STARS. PART I — RA $0^{h}$ TO $6^{h}$

KAZAROVETS, E. V.¹; SAMUS, N. N.^{1,2}; DURLEVICH, O. V.²; KIREEVA, N. N.¹; PASTUKHOVA, E. N.¹

¹ Institute of Astronomy, Russian Academy of Sciences, 48, Pyatnitskaya Str., Moscow 119017, Russia [helene@inasan.ru, samus@sai.msu.ru, kireeva@sai.msu.ru, pastukhova@sai.msu.ru]

² Sternberg Astronomical Institute, University of Moscow, 13, University Ave., Moscow 119992, Russia [gcvs@sai.msu.ru]

After the publication of the special 79th Name-List of Variable Stars (Kazarovets et al., 2008), we commenced preparation of the regular 80th Name-List. It turns out that the current flow of new discoveries is unprecedentedly high, so that it becomes reasonable to subdivide the Name-List into several parts by right ascension. The present Part I of the 80th Name-List of Variable Stars contains data necessary for identifications of new variables finally designated in 2010. Most stars in the Name-List are confined to right ascensions (J2000.0) between 0^h and 6^h. Exceptions are several Novae and unusual variables named upon requests of the IAU Central Bureau of Astronomical Telegrams, which are included no matter the right ascension. With the 2036 stars of the current Name-List, the total number of named variable stars, not counting designated non-existing stars or stars subsequently identified with earlier-named variables, is now 43 519.

As it had been done in the 79th Name-List, we separate the catalogue of newly designated variables (to be published elsewhere in the nearest future) from the Name-List proper. Table 1 of the current Name-List contains the new GCVS name, equatorial coordinates (rounded to an accuracy sufficient for identification), and variability type for each star. The order of stars in Table 1 corresponds to the order of stars in the GCVS. The remarks concerning the two unusual variables (type *), BF Ari and GO Cet, follow Table 1. The electronic version of the Name-List at http://www.sai.msu.su/gcvs/gcvs/n180 additionally presents variability ranges, light elements, spectral types, identifications with astronomical catalogues, detailed remarks, bibliographic references for the newly named variable stars.

As usual, we continued naming Novae and other variables of astrophysical importance upon requests from the IAU Bureau of Astronomical Telegrams. These stars are also included in Table 1. They are also listed in Table 2 that contains, besides GCVS names, preliminary "constellation+year" designations for Novae.

We use this opportunity to announce two corrections.

In the 75th Name-List of Variable Stars (Kazarovets et al., 2000), because of a blunder in right ascension, the star Tmz V124 was erroneously named FS Boo. Now we announce FS Boo a non-existing variable and give Tmz V124 the new GCVS name V581 Aur. The correct J2000.0 coordinates of V581 Aur are  $05^{h}12^{m}06^{s}9$ ,  $+45^{\circ}46'43''$ . The 78th Name-List of Variable Stars (Kazarovets et al., 2006) changed the name of the eclipsing variable V577 Cen into V423 Hya because of the star's improved coordinates corresponding to a different constellation. Our identification was based on the chart by Tsesevich & Kazanasmas (1971). Christiansen et al. (2008) recovered the variable beyond doubt, their identification shows that the chart in Tsesevich & Kazanasmas is wrong, and the star is actually in Centaurus. Thus, we return the name V577 Cen to the variable and announce V423 Hya to be an alias name of V577 Cen. The accurate J2000.0 position of V577 Cen is  $11^{h}56^{m}40^{c}5$ ,  $-35^{\circ}43'45''$ .

This study was supported in part by Russian Foundation for Basic Research and by the Programme "Origin and Evolution of Stars and Galaxies" of the Presidium of Russian Academy of Sciences.

#### References:

Christiansen, J.L., Derekas, A., Kiss, L.L. et al. 2008, *MNRAS*, **385**, 1749 Kazarovets, E.V., Samus, N.N., Durlevich, O.V. 2000, *IBVS*, No. 4870 Kazarovets, E.V., Samus, N.N., Durlevich, O.V. et al. 2006, *IBVS*, No. 5721 Kazarovets, E.V., Samus, N.N., Durlevich, O.V. et al. 2008, *IBVS*, No. 5863 Teosovich, V.P., Kazanasmas, M.S. 1971, *Atlas of Finding Charts of Varia* 

Tsesevich, V.P., Kazanasmas, M.S. 1971, Atlas of Finding Charts of Variable Stars, Moscow: Nauka

Table 1.

Name	R.A. Decl. Type	Name R.A. Decl. Type
	2000.0	2000.0
	hmso'"	hmso'"
V0467 And	00 00 06.5 $+35$ 22 01 EW	V0521 And 01 01 26.5 +38 03 13 DSCTC
V0468 And	00 09 46.5 $+40$ 11 35 EA	V0522 And 01 03 28.9 +43 01 28 EA
V0469 And	00 11 22.0 $+42$ 05 39 EW	V0523 And 01 05 38.0 +36 49 06 EA
V0470 And	$00 \ 12 \ 50.2 \ +37 \ 41 \ 37 \ \mathrm{LPB}$	V0524 And 01 05 47.2 +44 35 04 SXPHE
V0471 And	$00 \ 13 \ 57.6 \ +35 \ 02 \ 43 \ \mathrm{RS}$	V0525 And 01 16 48.1 +34 18 10 EA/RS
V0472 And	$00 \ 15 \ 50.1 \ +41 \ 28 \ 03 \ \mathrm{EW}$	V0526 And 01 21 23.3 +35 50 12 EB
V0473 And	$00 \ 16 \ 05.4 \ +41 \ 51 \ 24 \ \mathrm{EW}$	V0527 And 01 22 35.7 +34 19 36 EW
V0474 And	$00 \ 16 \ 50.1 \ +43 \ 44 \ 56 \ \mathrm{EW}$	V0528 And 01 22 59.8 +36 28 17 SXPHE
V0475 And	$00 \ 17 \ 36.9 \ +30 \ 51 \ 20 \ \mathrm{RS}$	V0529 And 01 27 26.7 +41 06 04 GDOR+DSCT
V0476 And	$00 \ 18 \ 25.0 \ +23 \ 24 \ 34 \ \mathrm{RS}$	V0530 And 01 27 41.1 +33 51 55 EB
V0477 And	00 18 31.3 $+30$ 25 58 EW	V0531 And 01 30 15.9 +33 39 19 EW
V0478 And	$00 \ 18 \ 55.9 \ +22 \ 39 \ 40 \ \text{DSCT}$	V0532 And 01 30 25.3 +39 18 30 EW
V0479 And	$00 \ 18 \ 56.9 \ +34 \ 54 \ 44 \ \mathrm{NL}$	V0533 And 01 31 30.5 +38 09 52 EB
V0480 And	00 19 12.7 $+33$ 01 12 EW	V0534 And 01 31 30.5 +34 55 52 EW
V0481 And	$00 \ 20 \ 01.1 \ +27 \ 59 \ 54 \ \mathrm{RS}$	V0535 And 01 31 47.2 +38 48 03 RS
V0482 And	$00 \ 20 \ 34.6 \ +40 \ 25 \ 06 \ \mathrm{E/RS}$	V0536 And 01 34 28.6 +39 50 26 EW:
V0483 And	00 20 35.3 $+40$ 04 17 EW	V0537 And 01 35 19.3 +37 46 38 EA
V0484 And	00 21 05.4 $+32$ 29 17 EW	V0538 And 01 36 14.7 +38 04 34 EW
V0485 And	00 21 19.2 $+35$ 24 15 EW	V0539 And 01 36 26.2 +40 43 44 RS
V0486 And	$00 \ 21 \ 23.0 \ +33 \ 42 \ 37 \ \mathrm{RS}$	V0540 And 01 37 27.1 +39 00 08 RS
V0487 And	$00 \ 21 \ 27.0 \ +30 \ 13 \ 23 \ EB$	V0541 And 01 37 36.1 +38 03 57 EA
V0488 And	$00\ 22\ 06.0\ +40\ 31\ 24\ {\rm EB}$	V0542 And 01 40 28.8 +42 12 01 RS
V0489 And	$00\ 24\ 39.1\ +24\ 55\ 23\ { m EB}$	V0543 And 01 42 25.3 +37 55 25 EA
V0490 And	$00 \ 26 \ 48.8 \ +41 \ 50 \ 04 \ EW$	V0544 And 01 44 28.0 +37 58 54 SXPHE
V0491 And	$00 \ 30 \ 19.9 \ +41 \ 10 \ 40 \ BY$	V0545 And 01 47 30.0 +48 06 48 LB
V0492 And	00 32 51.8 +26 18 15 RRAB	V0546 And 01 51 12.6 +43 49 08 EW
V0493 And	00 34 08.5 $+25$ 23 50 RS	V0547 And 01 52 03.0 +37 48 09 EA/RS
V0494 And	00 36 33.2 +43 05 54 RS	V0548 And 01 54 55.8 +42 12 57 RRAB
V0495 And	00 37 11.9 $+44$ 12 59 RS	V0549 And 01 55 18.3 +40 55 33 EW
V0496 And	00 39 33.0 $+27$ 30 29 EA	V0550 And 01 56 08.2 +43 17 30 RRAB
V0497 And	$00 \ 39 \ 55.9 \ +34 \ 14 \ 53 \ EW$	V0551 And 01 56 21.3 +40 35 17 SR
V0498 And	$00 \ 40 \ 20.9 \ +43 \ 43 \ 25 \ RS$	V0552 And 01 57 39.9 +43 55 04 EW
V0499 And	$00 \ 40 \ 46.1 \ +43 \ 23 \ 59 \ RRC$	V0553 And 01 57 51.1 +44 02 15 EW
V0500 And	00 42 26.5 $+42$ 15 37 UG:	V0554 And 01 57 57.2 +44 27 51 EW
V0501 And	00 43 06.4 $+41$ 30 13 UG:	V0555 And 01 58 18.2 +43 59 27 EB
V0502 And	00 43 38.3 +30 12 45 EW	V0556 And 01 58 47.8 +44 33 05 EW
V0503 And	00 43 59.5 +22 09 09 RRAB	V0557 And 01 59 10.8 +38 12 33 EW
V0504 And	$00 \ 45 \ 00.4 \ +38 \ 43 \ 56 \ EW$	V0558 And 01 59 17.9 +44 07 58 EW
V0505 And	$00 \ 45 \ 38.6 \ +37 \ 28 \ 29 \ EW$	V0559 And 02 00 24.7 +44 22 56 EW
V0506 And	00 46 37.7 +31 51 17 EW	V0560 And 02 01 30.0 +44 29 15 EA
V0507 And	$00 \ 47 \ 05.4 \ +30 \ 18 \ 24 \ RS$	V0561 And 02 02 03.6 +43 54 35 EW
V0508 And	00 47 44.2 +36 02 23 EW	V0562 And 02 02 11.3 +44 19 50 DSCT
V0509 And	$00 \ 48 \ 36 \ 9 \ +32 \ 08 \ 59 \ EW$	V0563 And $02$ $02$ $40.1$ +36 $42$ $41$ EW
V0510 And	$00 \ 49 \ 231 \ +32 \ 00 \ 37 \ EA$	V0564 And $02$ $03$ $084$ $+44$ $10$ $23$ EW
V0511 And	00 52 143 + 45 41 26 BS	$V0565$ And $02$ 03 $27.8 \pm 44.14$ 51 EW
V0512 And	00 52 173 + 35 16 04 EA	V0566 And $02 07 200 + 35 38 55 EW$
V0513 And	00 54 17.8 + 39 45 10 EA	V0567 And 02 07 59.5 +40 17 56 EA
V0514 And	00 54 532 + 35 28 03 EW	V0568 And $02$ 13 05 4 +40 49 31 EW
V0515 And	00 55 199 + 46 12 57  NL	V0569 And 02 14 40.6 $\pm$ 49 53 19 RRAR
V0516 And	00 56 034 + 35 33 58  BRC	V0570 And 02 15 45.9 $\pm 40.14$ 21 LB
V0517 And	00 56 117 + 35 49 10 EW	V0571 And 02 19 13.8 $\pm$ 37 54 05 EW
V0518 And	$00 57 289 \pm 40 01 44 EW$	V0572 And 02 22 16.5 $\pm 41.23$ 00 HCSU
V0510 And	$00 58 39.2 \pm 36 38 50 CWA$	V0572 And 02 24 52 5 $\pm 42$ 26 54 RS.
V0520 And	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	V0574 And 02 27 224 $\pm 20$ 11 20 LR
v 0520 And	00 39 04.3 T43 32 22 SR	1 10014 Allu 02 21 22.4 +09 11 29 LD

Table 1. (continued)

Name	R.A. Decl. Type	Name R.A. Decl. Type
	2000.0	2000.0
	hmso'"	hmso'"
V0575 And	02 28 44.3 +37 28 59 EW	V0602 Aur 05 10 43.9 +46 14 39 BY
V0576 And	$02 \ 32 \ 53.2 \ +46 \ 30 \ 34 \ {\rm SRB}$	V0603 Aur 05 10 57.2 +52 14 57 EW
V0577 And	$02 \ 38 \ 57.3 \ +44 \ 44 \ 23 \ \mathrm{RS}$	V0604 Aur 05 19 08.5 $+34$ 05 38 IB
V1722 Aql	$19 \ 14 \ 09.7 \ +15 \ 16 \ 34 \ \mathrm{N}$	V0605 Aur 05 22 46.8 +35 35 36 LB
BE Ari	01 47 10.2 $+23$ 45 32 RS:	V0606 Aur 05 23 36.6 +29 34 28 EA
BF Ari	$01 \ 51 \ 41.6 \ +12 \ 44 \ 30 \ *$	V0607 Aur 05 24 24.6 $+54$ 39 22 EA/RS
BG Ari	01 51 51.9 $+14$ 00 47 NL	V0608 Aur 05 27 37.9 +39 55 33 EA
BH Ari	01 55 48.0 $+24$ 26 06 RS	V0609 Aur 05 27 48.6 +39 54 11 EB
BI Ari	01 57 27.9 +18 27 40 RPHS	V0610 Aur 05 30 01.9 +33 24 06 EA
BK Ari	01 59 35.6 $+23$ 48 53 RS	V0611 Aur 05 30 20.9 +41 49 14 RS
BL Ari	02 03 19.4 +22 05 21 RRAB	V0612 Aur 05 32 40.0 +49 34 19 EA
BM Ari	02 06 38.3 +14 15 28 EW	V0613 Aur 05 35 05.6 +39 46 32 IB:
BN Ari	$02 \ 09 \ 07.8 + 26 \ 29 \ 07 \ EW$	V0614 Aur 05 38 07.2 +42 20 29 BY
BO Ari	02 12 08.8 +27 08 18 EW	V0615 Aur 05 38 44.4 +53 56 31 SRB
BP Ari	02 20 32.4 +20 07 29 RS	V0616 Aur 05 39 29.4 +35 41 09 INB
BQ Ari	02 48 40.7 +13 44 48 EW	V0617 Aur 05 39 56.6 +30 05 11 EB
BR Ari	02 53 51.6 + 15 21 07  RS	V0618 Aur 05 43 $38.2 + 31 58 54 EA$
BS Ari	$02 \ 55 \ 25.8 \ \pm 20 \ 04 \ 52 \ 11$	V0019 Aur 05 43 50.0 $\pm$ 52 57 31 SRB:
BT Ari	$02 55 57.8 \pm 20 05 45 BY:$	V0620 Aur $05$ 45 40.2 +41 06 24 EA
BU Ari	$02 \ 50 \ 08.0 \ \pm 20 \ 03 \ 24 \ INT$	V0021 Aur 05 40 04.5 +34 45 28 DCEP V0622 Aur 05 47 52.6 +20 01 41 EW
DV AII DW Ari	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	V0022 Aur 05 47 55.0 + 59 01 41 EW V0622 Aur 05 48 154 + 20 02 10 EP
DW AH	$02 \ 57 \ 40.7 \ \pm 29 \ 59 \ 41 \ D1$ $02 \ 58 \ 11 \ 2 \ \pm 20 \ 20 \ 02 \ INT$	$V0025 \text{ Aur} = 05 48 15.4 \pm 39 02 10 \text{ ED}$ $V0624 \text{ Aur} = 05 48 181 \pm 28 57 00 \text{ EA}$
DA Aff $DV A_{ri}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	V0024 Aur 05 48 18.1 + 38 57 09 EA V0625 Aur 05 48 24 5 + 20 05 28 EW
	$02 58 10.1 \pm 19 47 19 111 1$ $02 58 288 \pm 20 47 54 IT.$	V0025 Aur 05 48 24.5 +39 05 38 EW
CC Ari	$02 \ 02 \ 03 \ 02 \ 03 \ 02 \ 03 \ 03 \ $	$V0020$ Aur 05 48 57.0 $\pm 39$ 10 28 EW
CD Ari	$03 \ 02 \ 39.9 + 30 \ 32 \ 18 \ BT$ $03 \ 03 \ 15 \ 5 + 27 \ 16 \ 42 \ BRC$	$V0627$ Aur 05 49 00.7 $\pm 39$ 14 54 EW
CE Ari	$03 \ 03 \ 49 \ 9 \ \pm 25 \ 02 \ 34 \ BS$	$V0620$ Aur 05 49 17 2 $\pm 39$ 20 12 EB
CE Ari	$03 \ 04 \ 05 \ 1 + 30 \ 03 \ 10 \ \text{RS}$	V0620 Aur 05 50 11 4 +39 10 26 EB
CG Ari	$03 \ 15 \ 31 \ 9 \ +26 \ 04 \ 50 \ BS$	V0631 Aur 05 50 14.3 +39 19 36 EW
CH Ari	03 22 31.6 + 28 53 20  RS	V0632 Aur 05 50 17.9 +39 07 12 EB
CI Ari	03 23 05.5 +18 34 45 RRAB	V0633 Aur 05 50 27.0 +39 13 15 EA
CK Ari	03 27 14.3 +27 23 09 RS	V0634 Aur 05 50 45.2 +39 21 22 EW
CL Ari	03 29 06.6 +27 24 49 EB	V0635 Aur 05 51 02.1 +39 15 16 BY:
V0582 Aur	05 25 52.0 +34 52 30 FU:	V0636 Aur 05 52 54.7 +35 16 10 EW
V0583 Aur	04 39 25.5 +33 32 45 IB	V0637 Aur 05 52 58.8 +36 23 37 DCEPS
V0584 Aur	04 39 31.0 +34 07 45 RS	V0638 Aur 05 53 13.5 +38 24 07 RS:
V0585 Aur	04 47 29.2 +31 51 43 EB	V0639 Aur 05 54 43.4 +52 43 38 EW
V0586 Aur	04 51 04.9 +43 46 47 DSCTC	SY Cae 04 51 00.9 -34 02 15 BY:
V0587 Aur	04 51 17.7 +43 37 14 DSCTC	NV Cam 03 18 04.7 +61 34 06 SR:
V0588 Aur	04 52 22.0 + 40 06 35 RS	NW Cam 03 25 04.5 +58 40 49 EA:
V0589 Aur	04 52 24.2 +43 19 55 EA	NX Cam 03 26 10.6 +59 34 42 EW:
V0590 Aur	$04 \ 53 \ 08.7 \ +33 \ 12 \ 02 \ IB$	NY Cam 03 27 52.2 +56 14 18 LB
V0591 Aur	04 54 00.2 + 39 33 44 EB	NZ Cam 03 30 19.2 +65 54 03 EW:
V0592 Aur	04 54 50.6 $+32$ 04 12 RS	OO Cam 03 32 18.4 +61 16 41 EA
V0593 Aur	04 56 39.2 $+43$ 48 46 RS:	OP Cam 03 33 01.0 +58 31 55 EW
V0594 Aur	04 57 51.4 $+39$ 30 02 EA	OQ Cam 03 33 34.3 +64 16 46 EW
V0595 Aur	04 58 09.0 $+43$ 33 01 RS	OR Cam 03 34 23.7 +58 24 50 DCEPS
V0596 Aur	05 02 02.3 $+42$ 37 55 EW	OS Cam 03 34 47.3 +62 14 53 EW
V0597 Aur	05 02 06.2 $+31$ 11 02 RS	OT Cam 03 40 22.3 +64 06 11 EA/RS:
V0598 Aur	05 03 29.6 $+31$ 09 42 RS:	OU Cam 03 42 35.5 +66 22 21 CEP
V0599 Aur	05 08 46.8 $+32$ 02 09 EW	OV Cam 03 46 55.4 +76 58 39 LB
V0600 Aur	$05 \ 10 \ 22.3 \ +31 \ 26 \ 40 \ IB$	OW Cam 03 47 10.6 +53 23 15 M:
V0601 Aur	05 10 43.4 $+30$ 20 43 RS	OX Cam 03 48 25.7 +59 26 32 DCEP

Table 1. (continued)

Name	R.A. Decl. Type	Name R.A. Decl. Type
	2000.0	2000.0
	h m s o'"	h m s o'"
OY Cam	$03 \ 48 \ 32.5 \ +63 \ 30 \ 40 \ EA$	V0366 Cam 04 37 39.6 +71 58 46 EW
OZ Cam	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	V0367 Cam 04 40 55.2 +53 38 07 DSCT
PP Cam	03 49 03.5 +74 27 34 EA	V0368 Cam 04 43 24.3 +72 20 01 EW
PQ Cam	03 50 41.8 +67 34 46 EA	V0369  Cam 04 43 30.2 +63 59 12 EW
PR Cam	03 51 53.5 +54 09 53 EW	V0370 Cam 04 43 36.9 +69 32 21 SR
PS Cam	03 54 03.4 + 59 54 12 EB	V0371 Cam 04 44 24.1 +78 54 12 SRD
PT Cam	$03 54 52.5 \pm 67 38 07 EA$	V0372  Cam 04 45 29.3 +63 57 17 EB
PU Cam DV Cam	$03 54 50.1 \pm 67 24 12 \text{ SRB}$	V0373 Cam 04 46 44.0 +59 27 51 EW
PW Cam	$03 \ 50 \ 22.4 \ +57 \ 15 \ 20 \ \text{DCErS}.$	$V0374$ Call 04 40 18.9 $\pm 04$ 01 10 EA
PY Cam	$03 50 24.0 \pm 03 10 14 50$ $03 57 481 \pm 57 31 27 EA$	$V_{0376} C_{02} C_{02} C_{03} C_{04} C_{04} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05} C_{05$
PV Cam	$03 57 40.1 \pm 57 51 27 EA$ $03 58 377 \pm 55 14 27 SBB$	$V0370$ Call 04 57 21.0 $\pm 79$ 20 59 SAT HE V0377 Cam 04 58 51 3 $\pm 57$ 00 53 RBAB
PZ Cam	03 59 477 + 63 49 50 EW	V0378 Cam 05 00 09 2 $\pm$ 73 41 08 EA
00 Cam	$04 \ 02 \ 36 \ 5 + 64 \ 26 \ 53 \ CWA$	V0379 Cam 05 04 42 9 +61 33 53 EA
OR Cam	$04 \ 02 \ 53.8 + 54 \ 10 \ 33 \ \text{DCEP}$	V0380 Cam $05 07 18.8 + 71 45 22 RS:$
OS Cam	$04 \ 03 \ 46.5 \ +57 \ 14 \ 52 \ \text{DCEP}$	V0381 Cam 05 08 $42.1 + 70 40 44 EB$
OT Cam	$04 \ 04 \ 00.1 + 62 \ 31 \ 55 \ EA$	V0382 Cam 05 10 18.5 +63 19 51 EA
QU Cam	04 07 55.1 +77 31 22 EA	V0383 Cam 05 10 39.4 +75 10 34 EW
QV Cam	04 08 11.3 +55 50 12 EB	V0384 Cam 05 18 53.8 +65 42 33 EA
QW Cam	$04 \ 08 \ 13.9 \ +54 \ 12 \ 34 \ \mathrm{EW}$	V0385 Cam 05 19 47.1 +77 36 14 EB
QX Cam	$04 \ 10 \ 05.4 \ +61 \ 46 \ 38 \ CWB$	V0386 Cam 05 21 33.9 +71 45 46 EW
QY Cam	04 11 48.1 $+56$ 46 27 EA	V0387 Cam 05 21 46.3 +65 44 55 EB
QZ Cam	04 13 35.9 $+60$ 23 11 EA	V0388 Cam 05 22 02.3 +77 27 44 SRD
V0335 Cam	04 14 41.8 $+67$ 50 13 EA	V0389 Cam 05 22 54.8 $+70$ 00 15 EW
V0336 Cam	04 16 09.0 $+56$ 26 52 LB	V0390 Cam 05 29 23.4 +78 57 41 DSCT
V0337 Cam	$04 \ 16 \ 20.0 \ +68 \ 58 \ 21 \ EB$	V0391 Cam 05 32 33.9 $+62$ 47 52 UGSU
V0338 Cam	$04 \ 19 \ 20.8 \ +55 \ 58 \ 55 \ \mathrm{LB}$	V0392 Cam 05 33 44.9 +71 37 29 EW
V0339 Cam	$04 \ 19 \ 45.1 \ +55 \ 57 \ 36 \ \text{DSCTC}$	V0393 Cam 05 34 48.3 +70 14 29 EW
V0340 Cam	04 19 52.5 $+56$ 00 52 EW	V0394 Cam 05 34 50.3 +72 26 45 EW
V0341 Cam	$04 \ 22 \ 43.6 \ +62 \ 33 \ 37 \ SR:$	V0395 Cam 05 35 36.0 + 71 03 35 EA
V0342 Cam	04 23 32.8 +74 52 50 UGSU	V0396 Cam 05 36 $41.4 + 72$ 19 47 EW
V0343 Cam	04 23 59.2 +58 35 34 EA	V0397 Cam 05 36 49.7 +73 41 40 EA
V0344 Cam	04 24 15.2 +71 39 14 RRC:	V0398  Cam 05 37 14.5 +67 42 22 EA
V0345 Cam	$04 \ 25 \ 55.3 \ +69 \ 15 \ 46 \ EW$	V0399  Cam 05 38 23.5 +61 17 25 EA
V0346 Cam	$04 \ 25 \ 59.7 \ \pm 08 \ 52 \ 59 \ EW$	V0400 Cam 05 39 41.8 +71 05 31 EA
V0347 Cam	$04 \ 20 \ 23.1 \ \pm 79 \ 13 \ 32 \ \text{EA}$ $04 \ 26 \ 41 \ 6 \ \pm 68 \ 44 \ 28 \ \text{FB}$	$V0401$ Cam 05 39 55.5 $\pm 09$ 45 21 EW
V0348 Cam	$04 20 41.0 \pm 00 44 20 ED$ $04 27 260 \pm 68 33 24 EB$	$V0402$ Call 05 39 57.8 $\pm 04$ 51 10 RRAD
V0349 Cam	$04 \ 27 \ 20.0 \ \pm 00 \ 35 \ 24 \ ED$ $04 \ 27 \ 32 \ 0 \ \pm 50 \ 40 \ 04 \ BBAB$	V0403 Cam 05 39 $38.3 \pm 0720$ 17 EW
V0351 Cam	$04 \ 27 \ 32.9 \ + 59 \ 49 \ 04 \ 17 \ 42 \ EW$	V0404 Cam 05 40 $15.7 \pm 60$ 14 50 EA V0405 Cam 05 42 50 7 $\pm 64$ 25 15 EW
V0352 Cam	04 28 188 + 68 47 18 EW	V0406 Cam 05 43 35 0 $\pm$ 62 46 41 EW
V0353 Cam	$04 \ 28 \ 31.3 \ +68 \ 20 \ 53 \ EA$	V0407 Cam $05 43 53.5 + 72 54 51$ SR
V0354 Cam	$04 \ 28 \ 41.0 \ +68 \ 33 \ 27 \ BBAB$	V0408 Cam $05 44 49.1 + 71 08 10 EB:$
V0355 Cam	$04 \ 28 \ 46.2 \ +55 \ 17 \ 01 \ RRC$	V0409 Cam 05 46 $43.9 + 75 20 57 EA$
V0356 Cam	04 29 09.9 +68 34 01 EW	V0410 Cam 05 47 51.5 +62 11 33 EW
V0357 Cam	04 29 25.4 +68 43 02 CEP:	V0411 Cam 05 49 19.8 +67 44 03 RS
V0358 Cam	$04 \ 30 \ 06.0 \ +56 \ 03 \ 17 \ LB$	V0412 Cam 05 50 55.1 +62 51 46 EA
V0359 Cam	04 30 18.7 +53 56 25 DCEP	V0413 Cam 05 52 46.5 +72 51 16 RRAB
V0360 Cam	$04 \ 30 \ 23.2 \ +55 \ 04 \ 09 \ SRS$	V0414 Cam 05 53 25.0 +79 45 01 RRC
V0361 Cam	$04 \ 32 \ 51.2 \ +78 \ 42 \ 54 \ EA$	V0415 Cam 05 57 38.2 +80 38 18 EW
V0362 Cam	$04 \ 33 \ 36.2 \ +64 \ 05 \ 38 \ \mathrm{EW}$	V0416 Cam 05 59 03.8 +71 02 36 EW
V0363 Cam	04 34 42.0 $+55$ 42 32 SR	V0417 Cam 05 59 28.0 +62 39 10 EW
V0364 Cam	$04 \ 34 \ 48.5 \ +68 \ 35 \ 48 \ \mathrm{EA}$	V0679 Car 11 13 53.8 -61 13 48 NA
V0365 Cam	04 36 33.6 +57 24 05 SRA:	V1023 Cas 00 00 06.7 +56 39 12 RRAB

Table 1. (continued)

Name	R.A. Decl. Type	Name R.A.	Decl. Type
	2000.0		2000.0
	h m s o'"	h m	s o'"
V1024 Cas	$00 \ 00 \ 39.4 + 56 \ 45 \ 29 \ EW$	V1078 Cas 01 17 5	51.4 + 58 15 24  DSCTC
V1025 Cas	$00 \ 01 \ 38.5 \ +52 \ 54 \ 14 \ \text{EA}$	V1079 Cas 01 17 5	57.5 +58 27 50 EB
V1026 Cas	$00 \ 07 \ 01.8 + 64 \ 44 \ 05 \ DSCTC$	V1080 Cas 01 18 0	05.4 + 57 57 52 EA
V1027 Cas	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	V1081 Cas 01 18 1	11.0 + 58 32 01 EW
V1028 Cas	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	V1082 Cas 01 18 4	41.3 + 58 07 57 LB
V1029 Cas	00 18 42.8 +54 02 21 CWA	V1083 Cas 01 18 4	18.2 +58 31 39 DCEPS
V1030 Cas	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	V1084 Cas 01 18 4	19.2 + 58 23 53 EA
V1031 Cas	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	V1085 Cas 01 19 (	12.0 + 58 10 10 LB
V1032 Cas	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	V1080 Cas 01 19 (	12.4 + 58 19 20  LFB.
V1033 Cas	$00 22 37.0 \pm 01 41 08 \text{ NL}$ $00 25 110 \pm 51 35 31 \text{ BBAB}$	V1087 Cas 01 19 C V1088 Cas 01 10 1	$17.2 \pm 57.45 = 50$ DSCT
V1034 Cas	$00\ 27\ 59\ 0\ +49\ 09\ 45\ BBC$	V1089 Cas 01 19 1	22 + 51 + 55 + 55 + 55 + 55 + 55 + 55 +
V1035 Cas	$00\ 27\ 55.0\ +45\ 05\ 45\ 1010$	V1009 Cas 01 19 2	22.6 + 71 02 55  HB $29.5 \pm 58 13 41 \text{ EW}$
V1037 Cas	00 29 030 + 59 34 19  XP	V1091 Cas 01 19 3	39.9 + 67.09.05 LB
V1038 Cas	00 29 53.0 + 47 50 34 EB	V1092 Cas 01 19 5	52.2 + 58.44 58 BB:
V1039 Cas	$00 \ 30 \ 26.4 \ +68 \ 42 \ 59 \ SRB$	V1093 Cas 01 20 1	14.9 + 58 14 36 EW
V1040 Cas	$00 \ 31 \ 48.1 + 57 \ 01 \ 34 \ DSCT:$	V1094 Cas 01 20 2	23.1 + 59 17 16 EW
V1041 Cas	00 32 54.2 +47 08 49 RRAB	V1095 Cas 01 20 2	23.9 +57 57 27 RRAB
V1042 Cas	00 34 32.3 +51 29 00 SRA:	V1096 Cas 01 20 3	37.9 +58 34 39 EB
V1043 Cas	00 37 12.0 +53 01 32 EA	V1097 Cas 01 20 3	38.1 + 57 49 11 LB
V1044 Cas	00 39 56.3 $+67$ 42 55 EA:	V1098 Cas 01 20 4	43.5 +58 28 22 EA
V1045 Cas	00 40 43.6 $+76$ 58 49 RRAB	V1099 Cas 01 20 4	48.8 +58 31 13 DCEP:
V1046 Cas	$00 \ 40 \ 44.2 \ +58 \ 50 \ 54 \ \mathrm{EA}$	V1100 Cas 01 21 2	$21.1 + 64 \ 06 \ 03 \ \text{DCEP}$
V1047 Cas	$00 \ 42 \ 01.5 \ +54 \ 15 \ 05 \ \mathrm{RRC}$	V1101 Cas 01 21 4	$45.8 + 58 \ 01 \ 22 \ EW$
V1048 Cas	$00 \ 44 \ 30.6 \ +56 \ 45 \ 51 \ \mathrm{SR}$	V1102 Cas 01 21 5	$55.6 + 58 \ 06 \ 11 \ CWB:$
V1049 Cas	$00 \ 45 \ 25.0 \ +58 \ 05 \ 52 \ EA$	V1103 Cas 01 21 5	59.2 +58 33 14 EA
V1050 Cas	00 45 34.3 +56 16 27 LB	V1104 Cas 01 22 0	04.5 +58 38 11 EA
V1051 Cas	00 46 11.8 +57 13 06 LB	V1105 Cas 01 22 2	23.0 +58 24 08 DSCTC
V1052 Cas	$00 \ 46 \ 23.7 \ +63 \ 19 \ 37 \ \text{DSCTC}$	V1106 Cas 01 22 3	31.9 +73 45 09 EA
V1053 Cas	00 47 12.7 +61 02 04 EW	V1107 Cas 01 23 1	14.6 + 61 34 53 EW
V1054 Cas	00 48 20.8 +59 16 47 LB	V1108 Cas 01 23 4	16.4 +58 40 54 SRB
V1055 Cas	00 48 21.0 +71 16 11 BY	V1109 Cas 01 26 2	22.2 +73 13 11 RRAB
V1056 Cas	00 51 00.2 +58 48 36 EB	V1110 Cas 01 30 (	J5.4 + 73 45 32 EA
V1057 Cas	$00 \ 51 \ 53.0 \ + \ 65 \ 10 \ 50 \ RRC$	V1111 Cas $01 32 ($	$10.5 \pm 60.45 \ 27 \ \text{DSCIC}$
V1050 Cas	$00 \ 51 \ 58.2 \ \pm 55 \ 51 \ 41 \ DSC10$	$V_{1112}$ Cas 01 32 1	$10.7 \pm 00.54 = 59$ EA
V1059 Cas	$00 54 50.0 \pm 74 51 41$ KRAD. $00 55 14.2 \pm 61 23 40$ EA	V1113 Cas $01 32 1$ V1114 Cas $01 32 1$	$13.1 \pm 60.34$ 56 FW
V1061 Cas	$00 56 137 \pm 65 07 16 EA$	V1114 Cas 01 32 1 V1115 Cas 01 32 3	$20.8 \pm 55.13.57$ EW
V1062 Cas	$01 \ 02 \ 09 \ 2 \ \pm 59 \ 55 \ 43 \ \text{EB}$	V1116 Cas 01 32 3	$37.0 \pm 61.58 12$ BCEP
V1063 Cas	$01 \ 02 \ 03.2 \ +03 \ 06 \ 10 \ ED$ $01 \ 04 \ 47.3 \ +76 \ 06 \ 14 \ EW$	V1110 Cas 01 32 5	51.2 + 60 45 33  DSCTC
V1064 Cas	$01 \ 07 \ 59.9 \ +63 \ 37 \ 43 \ EW$	V1118 Cas $01 32 5$	54.8 + 60 42 45  DSCTC
V1065 Cas	01 09 28.9 $+68$ 39 15 EA/RS	V1119 Cas 01 32 5	59.6 +60 49 38 DSCTC
V1066 Cas	01 10 55.2 +58 05 56 EA	V1120 Cas 01 33 0	07.1 + 60 47 51 EA
V1067 Cas	01 13 01.2 +74 43 54 EB	V1121 Cas 01 33 1	11.9 + 60 51 31 EW
V1068 Cas	01 14 14.2 $+52$ 54 39 EA	V1122 Cas 01 33 1	15.1 +60 41 00 BE
V1069 Cas	01 15 08.5 $+54$ 39 34 EW	V1123 Cas 01 33 1	16.3 +60 38 01 EA
V1070 Cas	01 15 59.0 $+52$ 46 40 EA	V1124 Cas 01 33 1	16.9 + 60 50 18  DSCTC
V1071 Cas	01 16 16.4 $+74$ 13 41 RV:	V1125 Cas 01 33 2	29.8 + 60 47 11 EW
V1072 Cas	01 16 16.6 $+63$ 31 53 BE	V1126 Cas 01 33 3	31.9 + 60 36 24 GDOR:
V1073 Cas	01 17 02.5 $+5756$ 32 DCEPS	V1127 Cas 01 33 3	32.3 +60 39 30 GDOR
V1074 Cas	01 17 08.7 +58 28 28 DSCT:	V1128 Cas 01 33 3	33.2 + 61 33 30  SRC
V1075 Cas	01 17 12.9 $+58$ 50 00 LB:	V1129 Cas 01 33 3	35.6 + 60 40 39  SRS
V1076 Cas	01 17 34.0 $+58$ 09 23 EW	V1130 Cas 01 33 3	36.8 + 60 37 56 EA
V1077 Cas	01 17 49.8 $+58$ 24 31 EW	V1131 Cas 01 33 4	$41.5 + 74 \ 45 \ 45 \ EA$

Name	R.A. Decl. Type	Name R.A. Decl. Type
	2000.0	2000.0
	hmso'"	hmso'"
V1132 Cas	01 33 45.5 $+60$ 37 23 GDOR	V0752 Cep 00 14 56.1 +72 18 31 EW
V1133 Cas	01 33 54.0 $+60$ 40 26 EA	V0753 Cep 00 15 42.4 $+78$ 00 29 EA
V1134 Cas	01 33 58.4 $+60$ 31 02 EB	V0754 Cep $00$ 15 42.6 +75 11 55 EW
V1135 Cas	01 34 15.4 $+60$ 42 19 EW	V0755 Cep 00 18 24.2 $+73$ 07 24 EW
V1136 Cas	01 34 26.8 $+60$ 35 11 EW	V0756 Cep $00 20 02.6 + 80 50 44 EA$
V1137 Cas	01 34 53.9 $+67$ 38 15 EA	V0757 Cep 00 20 24.9 +78 14 28 EW
V1138 Cas	01 35 16.7 $+56$ 44 39 EA	V0758 Cep 00 23 41.9 +83 21 58 EA
V1139 Cas	01 35 44.5 $+55$ 41 13 EW	V0759 Cep 00 29 20.7 $+84$ 45 45 RRC:
V1140 Cas	01 36 21.5 $+68$ 52 28 EA	V0760 Cep 00 33 48.9 $+85$ 29 22 EW
V1141 Cas	01 38 18.0 $+61$ 08 35 EA	V0761 Cep 00 34 05.3 $+84$ 51 59 RRC
V1142 Cas	01 43 32.2 $+64$ 02 15 ELL:	V0762 Cep 00 36 $40.0 + 85$ 03 18 BY
V1143 Cas	01 43 35.6 $+64$ 02 07 BCEP	V0763 Cep 00 39 06.0 +85 18 39 BY
V1144 Cas	01 44 08.1 $+60$ 39 20 EA	V0764 Cep 00 44 10.2 $+84$ 54 13 EW
V1145 Cas	01 44 19.7 $+60$ 39 29 GDOR	V0765 Cep 00 44 14.2 +85 16 34 BY
V1146 Cas	01 44 22.7 $+60$ 40 43 BE	V0766 Cep 00 44 30.7 +85 01 29 BY
V1147 Cas	01 44 28.1 $+60$ 40 03 BE	V0767 Cep 00 44 36.6 +85 14 23 EA
V1148 Cas	01 44 29.9 $+60$ 40 27 GDOR	V0768 Cep 00 44 40.6 +85 15 21 BY
V1149 Cas	01 44 33.2 $+60$ 40 56 BE	V0769 Cep 00 44 52.2 +85 15 54 BY
V1150 Cas	01 44 42.6 $+60$ 40 17 GDOR	V0770 Cep 00 45 18.7 +85 18 37 BY
V1151 Cas	01 45 44.0 $+61$ 06 46 RRAB	V0771 Cep 00 46 53.9 +85 14 37 BY
V1152 Cas	01 46 26.6 $+61$ 17 06 ELL	V0772 Cep 00 47 04.3 +85 15 01 BY
V1153 Cas	01 46 29.0 $+61$ 16 13 LPB	V0773 Cep 00 47 11.8 +85 13 31 BY
V1154 Cas	01 46 31.5 $+65$ 01 35 DCEP	V0774 Cep 00 48 $25.9 + 85 12 23$ BY
V1155 Cas	01 46 39.0 $+61$ 14 06 BCEP	V0775 Cep 00 48 46.5 $+85$ 17 27 EB
V1156 Cas	01 46 39.8 $+61$ 09 52 BCEP	V0776 Cep 00 48 55.0 +85 17 13 BY
V1157 Cas	01 46 40.8 $+61$ 18 45 ELL	V0777 Cep 00 49 22.3 $+84$ 52 58 EW
V1158 Cas	01 49 14.5 $+76$ 55 12 SRA	V0778 Cep 00 49 25.3 +85 01 18 BY
V1159 Cas	01 51 08.2 $+74$ 48 32 EA	V0779 Cep 00 49 36.5 +85 06 26 BY
V1160 $Cas$	01 56 39.2 $+72$ 19 47 EA	V0780 Cep 00 50 02.8 +85 21 23 BY
V1161 Cas	01 58 12.8 $+73$ 32 39 LB	V0781 Cep 00 50 44.7 +85 11 39 BY
V1162 Cas	02 08 31.9 $+68$ 06 15 EA	V0782 Cep 00 51 15.0 $+85$ 24 51 EW
V1163 Cas	$02 \ 14 \ 26.6 \ +59 \ 45 \ 12 \ \text{GCAS}$	V0783 Cep 00 51 15.9 +85 09 48 BY
V1164 Cas	02 17 57.8 $+70$ 58 12 EA	V0784 Cep 00 52 08.8 +85 19 06 EB
V1165 Cas	02 27 22.4 +64 35 29 LB	V0785 Cep 00 52 37.7 +85 10 35 EA
V1166 Cas	$02 \ 32 \ 09.6 \ +61 \ 38 \ 24 \ EA$	V0786 Cep 00 52 46.0 +85 12 15 BY
V1167 Cas	02 35 24.5 +64 45 04 SR	V0787 Cep 00 54 20.2 +85 24 01 BY
V1168 Cas	02 40 12.9 $+64$ 23 19 RV:	V0788 Cep 00 55 43.6 +85 24 01 BY
V1169 Cas	02 40 14.4 $+61$ 09 17 RS:	V0789 Cep 00 59 32.2 +84 51 40 EW
V1170 Cas	02 47 31.2 +58 20 06 EW	V0790 Cep 01 01 50.7 +85 24 00 EW
V1171 Cas	02 50 57.7 + 75 34 00 LB	V0791 Cep 01 07 39.7 +85 24 00 EW
V1172 Cas	02 55 $23.2 + 63$ 16 53 EA	V0792 Cep 01 08 01.0 +84 47 25 DSCT:
V1173 Cas	02 58 26.1 +72 00 19 SR	V0793 Cep 01 08 31.8 +85 12 54 EW
V1174 Cas	03 16 22.5 +76 17 19 EA	V0794 Cep 01 13 59.0 +84 45 26 DSCTC:
V1175 Cas	03 21 26.5 $+73$ 26 08 EA	V0795 Cep 01 24 31.0 +85 01 07 RRC
V1176 Cas	03 24 49.2 +77 20 12 EA	V0796 Cep 01 41 36.4 +80 04 19 EW
V1177 Cas	03 24 50.7 +70 33 22 EA	V0797 Cep 01 42 47.6 +80 07 52 EW
V1178 Cas	$03 \ 33 \ 16.9 \ +69 \ 35 \ 34 \ EA$	V0798 Cep 01 54 34.8 +79 28 09 EA
V1179 Cas	$03 \ 35 \ 57.4 \ +69 \ 25 \ 59 \ EA$	V0799 Cep 01 55 38.0 +81 07 09 LB
V1213 Cen	13 31 15.8 $-63$ 57 39 NA	V0800 Cep 02 17 59.9 +81 10 05 EA
V0747 Cep	00 01 46.9 $+67$ 30 25 EA	V0801 Cep 02 21 26.6 +78 10 21 EA
V0748 Cep	00 06 31.1 +79 11 42 EA	V0802 Cep 02 34 25.0 +79 37 39 EW
V0749 Cep	00 07 48.6 +70 40 22 EA	V0803 Cep 02 56 18.2 +82 18 24 EW
V0750 Cep	00 14 50.9 $+71$ 49 45 EA	V0804 Cep 02 58 41.3 +84 49 04 EW
V0751 Cep	$00 \ 14 \ 52.5 \ +75 \ 39 \ 18 \ \mathrm{EB}$	V0805 Cep 03 31 11.5 +79 00 16 EA

Table 1. (continued)

Name	R.A. Decl. Type	Name R.A. Decl. Type				
	2000.0	2000.0				
	h m s o'"	hmso'"				
V0806 Cep	04 19 37.6 $+80$ 35 46 EA	LS Eri 04 06 44.1 -00 22 29 RRAB				
V0807 Cep	04 56 53.3 + 85 28 23 CWA	LT Eri $04 \ 07 \ 14.8 \ -06 \ 44 \ 25 \ E+UGSU:$				
V0808 Cep	05 20 45.9 +85 11 56 EB	LU Eri $04\ 27\ 06.6\ -00\ 07\ 55\ EW:$				
GK Cet	00 03 47.5 -11 28 35 RRAB	LV Eri 04 29 40.4 -00 38 10 RRAB				
GL Cet	00 11 59.8 -24 33 58 SRB	LW Eri $04\ 31\ 27.7\ -00\ 43\ 52\ EB$				
GM Cet	00 12 44.9 -11 01 18 SRB	LX Eri 04 33 11.4 -01 50 11 RRAB				
GN Cet	00 24 31.5 -09 54 04 LB	LY Eri 04 36 $46.7 -02$ 12 14 RRAB				
GO Cet	$00 \ 30 \ 30.1 \ -14 \ 50 \ 33 \ ^{\circ}$	LZ Eri 04 40 00.7 -00 19 39 RRAB				
GP Cet	$00 \ 30 \ 55.1 \ -05 \ 52 \ 27 \ EA$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
GQ Cet	$00 \ 45 \ 20.0 \ -04 \ 19 \ 25 \ RRAB$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
GN Cet	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
GT Cet	$00 \ 50 \ 50.9 \pm 00 \ 09 \ 13 \ \text{NL}$ $01 \ 05 \ 15 \ 9 \pm 01 \ 59 \ 14 \ \text{RS}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
GU Cet	$01 \ 03 \ 10.3 \ +01 \ 03 \ 14 \ RS$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
GV Cet	01 18 25.3 $-17$ 24 56 RRAB	$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
GW Cet	01 28 48.3 -11 27 13 BRAB	$\mu$ Eri 04 45 30.1 -03 15 17 EA+LPB:				
GX Cet	$01 \ 30 \ 16.7 \ -02 \ 42 \ 40 \ \text{RRAB}$	AX For $02 \ 19 \ 28.0 \ -30 \ 45 \ 46 \ UGSU$				
GY Cet	01 31 32.4 -09 01 22 ZZ	AY For $02 \ 42 \ 34.8 \ -28 \ 02 \ 44 \ EA + NL$				
GZ Cet	01 37 01.1 -09 12 34 UGSU	AZ For 03 05 27.6 -30 58 39 RR(B)				
HH Cet	01 40 18.0 +01 39 54 RRAB	AI Hor 03 07 47.8 -62 34 07 RRAB				
HI Cet	01 44 16.9 -02 18 45 EA	AK Hor 03 15 08.7 -51 44 10 E/RS				
HK Cet	$01 \ 47 \ 21.8 \ -21 \ 56 \ 51 \ \text{ZZA}$	DM Hyi 04 23 41.1 -70 34 47 CWB:				
HL Cet	01 57 52.3 - 05 32 03 RRC	AX Lep 05 03 49.6 -11 31 01 IB				
HM Cet	$02 \ 07 \ 31.4 \ +05 \ 41 \ 06 \ \mathrm{RRC}$	AY Lep 05 22 59.4 -20 32 53 SRB				
HN Cet	$02 \ 19 \ 52.3 \ +09 \ 16 \ 48 \ RRAB$	AZ Lep 05 32 12.4 -13 05 29 RRAB				
HO Cet	$02 \ 33 \ 21.4 \ -10 \ 47 \ 05 \ \mathrm{UGSU}$	BB Lep $05 \ 42 \ 30.2 \ -16 \ 22 \ 54 \ RRAB$				
HP Cet	02 33 $22.6 + 00$ 51 00 NL	BC Lep $05 \ 45 \ 30.6 \ -17 \ 46 \ 33 \ EA$				
HQ Cet	$02 \ 35 \ 55.9 \ +02 \ 46 \ 29 \ RRAB$	BD Lep $05 \ 45 \ 56.7 \ -14 \ 41 \ 30 \ RRAB$				
HR Cet	$02 \ 42 \ 36.2 \ +07 \ 17 \ 26 \ RS$	BE Lep 05 48 38.0 -19 29 30 RRAB				
HS Cet	$02 \ 46 \ 44.5 \ +01 \ 07 \ 55 \ EA$	BF Lep $05 51 36.9 - 14 32 13 RRAB$				
HT Cet	$03 \ 03 \ 28.2 \ +06 \ 13 \ 36 \ \text{GDOR}$	BG Lep 05 52 08.7 -22 08 10 SRB				
HU Cet	$03 \ 05 \ 56.8 \ -00 \ 36 \ 16 \ \text{DSCT}$ :	AZ Men 03 57 01.2 -76 09 30 RRC				
HV Cet	03 05 58.6 +05 47 14 NL	EV Oct 00 02 31.1 -78 53 12 EA				
HW Cet	03 12 34.3 +09 44 57 RS	V2672 Oph 17 38 19.7 -26 44 14 NA				
AY Col	05 19 08.4 -37 40 31 EA/RS	V2673 Oph 17 39 41.0 -21 39 48 NA				
AZ Col	05 28 50.6 -30 10 13 EW	V2674 Opn 17 26 32.1 -28 49 39 NA				
BD Col	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$V_{1825}Or1 = 04 44 45.4 \pm 08 15 47 D1$ $V_{1826}Ori = 04 45 22.6 \pm 12.00 18 PV$				
BC Col	05 57 07.9 - 27 58 51 EW 05 57 34 8 35 17 11 EV	V 1820 OII 04 45 35.0 $\pm 12$ 09 18 D I V 1827 Ori 04 45 36 5 $\pm 12$ 07 51 IB				
BE Dor	$05 \ 07 \ 54.8 \ -50 \ 17 \ 11 \ BT.$	V1827 OII 04 45 50.5 $\pm$ 12 07 51 IB V1828 Ori 04 48 50 4 $-$ 01 40 08 SXPHE				
KT Eri	$04 \ 47 \ 54 \ 2 \ -10 \ 10 \ 43 \ \text{NA}$	V1828 Ori $04 49 281 - 01 27 14 \text{ BRAB}$				
KU Eri	$02 \ 46 \ 34 \ 0 \ -06 \ 42 \ 07 \ GDOB$	V1829 Ori 04 49 35.0 $-01$ 42 20 BBC				
KV Eri	02 50 15.9 - 46 49 08 EW	V1831 Ori 04 50 04.7 $\pm 01$ 50 43 IB				
KW Eri	02 54 13.5 - 47 06 50 EW	V1832 Ori 04 50 $36.9 -00 56 56$ RBAB				
KX Eri	02 58 10.4 - 06 11 50 EB	V1833 Ori 04 51 10.2 $\pm 07$ 42 56 EW				
KY Eri	03 10 51.7 -07 55 00 UGSU	V1834 Ori 04 54 56.4 $+08$ 36 00 EA				
KZ Eri	03 31 54.3 -01 38 21 EA	V1835 Ori 04 55 15.2 +13 05 30 RPHS				
LL Eri	$03 \ 32 \ 43.5 \ -08 \ 55 \ 39 \ \text{ELL}$	V1836 Ori 04 55 16.4 +12 54 10 SXPHE				
LM Eri	03 43 07.0 -19 26 24 RRAB	V1837 Ori 04 56 07.0 +12 54 15 UV				
LN Eri	$03 \ 48 \ 36.3 \ -05 \ 20 \ 30 \ \mathrm{BY}$	V1838 Ori 04 56 37.5 -00 18 19 RRAB				
LO Eri	03 50 30.8 $-13$ 55 30 RS	V1839 Ori 04 59 19.4 -01 55 33 RRAB				
LP Eri	03 50 39.6 - 03 53 55 BY	V1840 Ori 04 59 46.2 +14 30 55 IB				
LQ Eri	$03 \ 56 \ 37.4 \ -13 \ 27 \ 20 \ \mathrm{BY}$	V1841 Ori 05 00 49.3 +15 27 01 RS				
LR Eri	04 00 10.8 -19 49 37 RRAB	V1842 Ori 05 01 04.2 +06 42 20 BY:				

Table 1. (continued)

Name	R.A. Decl. Type	Name R.A. Decl. Type
	2000.0	2000.0
	$h m s \circ $ , "	$h m s \circ $ '"
V1843 Ori	05 03 05.9 $+05$ 48 40 RS:	V1897 Ori 05 33 46.7 -05 23 26 INSB
V1844 Ori	$05 \ 03 \ 36.8 \ -00 \ 59 \ 57 \ RRAB$	V1898 Ori 05 33 47.7 -05 25 49 INB
V1845 Ori	05 05 27.0 $-01$ 54 40 RRC:	V1899 Ori 05 33 48.2 -00 55 28 INB
V1846 Ori	$05 \ 07 \ 26.4 \ -00 \ 12 \ 07 \ RRAB$	V1900 Ori 05 33 48.2 -05 13 26 INT
V1847 Ori	05 08 30.1 $+11$ 31 45 EW	V1901 Ori 05 33 50.3 -06 21 49 INB
V1848 Ori	05 08 36.4 $+05$ 12 22 EW	V1902 Ori 05 33 50.7 -05 00 39 INB
V1849 Ori	05 09 00.7 $-03$ 15 07 IB	V1903 Ori 05 33 51.3 -05 23 16 INSB
V1850 Ori	$05 \ 11 \ 38.9 \ -03 \ 48 \ 47 \ IB$	V1904 Ori 05 33 51.3 -04 48 22 INT
V1851 Ori	05 12 44.9 $+10$ 15 10 EW	V1905 Ori 05 33 51.8 -05 33 04 INSB
V1852 Ori	05 13 05.8 $+08$ 51 31 IB	V1906 Ori 05 33 52.2 -06 59 04 INB
V1853 Ori	05 13 06.1 $+15$ 58 12 EW	V1907 Ori 05 33 52.2 -07 55 28 INSA
V1854 Ori	05 13 19.0 $+01$ 34 47 RS	V1908 Ori 05 33 52.2 -08 28 10 INSA
V1855 Ori	$05 \ 17 \ 54.4 \ -07 \ 08 \ 19 \ IB$	V1909 Ori 05 33 54.4 -05 45 13 INSB
V1856 Ori	05 18 02.2 $+07$ 12 40 RS:	V1910 Ori 05 33 55.0 -00 56 44 INB
V1857 Ori	05 18 38.3 $+09$ 59 16 IB	V1911 Ori 05 33 55.5 -05 25 58 INSB
V1858 Ori	$05 \ 22 \ 34.2 \ -00 \ 22 \ 24 \ RRAB$	V1912 Ori 05 33 57.3 -04 59 16 INSB
V1859 Ori	05 22 54.8 $+08$ 58 05 RS	V1913 Ori 05 33 59.2 -05 46 23 INSB
V1860 Ori	05 23 36.3 $-00$ 11 44 RRC	V1914 Ori 05 33 59.6 -07 54 10 INSA
V1861 Ori	05 23 44.3 $-07$ 53 38 IB	V1915 Ori 05 34 00.8 -00 57 57 INB
V1862 Ori	$05\ 24\ 22.1\ -06\ 39\ 16\ { m IB}$	V1916 Ori 05 34 02.1 -05 17 26 INSB
V1863 Ori	$05 \ 25 \ 05.1 \ -00 \ 37 \ 58 \ RRAB$	V1917 Ori 05 34 03.8 -06 16 04 IN
V1864 Ori	05 26 16.0 $+03$ 05 02 RS:	V1918 Ori 05 34 04.1 -08 43 24 INSA
V1865 Ori	05 26 20.2 $+15$ 37 00 EW	V1919 Ori 05 34 04.5 -06 31 38 INB
V1866 Ori	05 27 04.1 -00 57 33 RRAB	V1920 Ori 05 34 05.0 -06 23 47 INS
V1867 Ori	05 27 18.8 $-00$ 20 57 RRC:	V1921 Ori 05 34 05.7 -00 57 04 INB
V1868 Ori	$05 \ 27 \ 27.0 \ -01 \ 27 \ 23 \ RRC$	V1922 Ori 05 34 06.0 -05 22 44 INB
V1869 Ori	05 27 59.0 $-00$ 53 15 RS:	V1923 Ori 05 34 06.0 -06 06 12 INSB
V1870 Ori	05 28 46.8 $+00$ 48 41 RS:	V1924 Ori 05 34 06.7 -06 24 12 INB
V1871 Ori	05 28 52.6 $+06$ 34 04 EA:	V1925 Ori 05 34 07.0 -06 32 08 INSB
V1872 Ori	05 28 58.5 $+10$ 45 38 INB	V1926 Ori 05 34 07.1 -05 15 59 INSB
V1873 Ori	$05 \ 29 \ 17.5 \ -01 \ 20 \ 41 \ RRAB$	V1927 Ori 05 34 07.4 -00 33 11 INB
V1874 Ori	05 29 19.0 $+12$ 09 29 INB	V1928 Ori 05 34 09.2 -08 02 13 INB
V1875 Ori	05 29 22.2 $+06$ 06 54 LB	V1929 Ori 05 34 09.8 -00 42 07 INB
V1876 Ori	05 30 05.2 $+00$ 41 20 RS:	V1930 Ori 05 34 10.1 -00 46 10 INB
V1877 Ori	05 30 29.7 -00 50 18 RRAB	V1931 Ori 05 34 10.5 -04 50 35 INSB
V1878 Ori	05 30 42.6 $-04$ 35 02 INB	V1932 Ori 05 34 11.8 -08 09 42 INB
V1879 Ori	05 30 56.2 $+10$ 15 00 IB	V1933 Ori 05 34 12.7 -06 29 00 INSB
V1880 Ori	05 31 04.7 $+00$ 17 24 BY	V1934 Ori 05 34 13.1 -05 33 48 INSB
V1881 Ori	05 31 18.1 $-00$ 19 49 RR	V1935 Ori 05 34 13.5 -05 35 39 INSB
V1882 Ori	05 32 02.3 $-07$ 31 56 IB:	V1936 Ori 05 34 14.9 -02 52 54 INA:
V1883 Ori	05 32 21.9 $+01$ 31 41 IB	V1937 Ori 05 34 16.6 -03 57 22 INSB
V1884 Ori	$05 \ 32 \ 22.6 \ +01 \ 31 \ 42 \ IB$	V1938 Ori 05 34 16.9 -06 32 50 INS
V1885 Ori	$05 \ 32 \ 30.8 \ -04 \ 21 \ 36 \ INB$	V1939 Ori 05 34 17.1 -04 48 04 INB
V1886 Ori	$05 \ 33 \ 04.9 \ -07 \ 58 \ 49 \ IB$	V1940 Ori 05 34 17.8 -04 18 10 INB
V1887 Ori	$05 \ 33 \ 08.9 \ +02 \ 24 \ 44 \ IB$	V1941 Ori 05 34 18.1 -05 28 34 INSB
V1888 Ori	$05 \ 33 \ 38.5 \ -06 \ 00 \ 00 \ INB$	V1942 Ori 05 34 18.3 -05 31 16 INB
V1889 Ori	05 33 38.9 $-07$ 30 08 IB:	V1943 Ori 05 34 18.7 -03 41 32 INB
V1890 Ori	$05 \ 33 \ 40.4 \ -03 \ 03 \ 24 \ INB$	V1944 Ori 05 34 18.7 -05 37 08 INSB
V1891 Ori	$05 \ 33 \ 41.1 \ -03 \ 13 \ 28 \ IS$	V1945 Ori 05 34 20.4 -02 57 47 INB
V1892 Ori	05 33 41.6 $-06$ 06 07 INSB	V1946 Ori 05 34 20.5 -01 00 00 INB
V1893 Ori	$05 \ 33 \ 41.9 \ -06 \ 15 \ 49 \ INSB$	V1947 Ori 05 34 20.5 -05 18 45 INSB
V1894 Ori	05 33 43.7 $-06$ 24 29 IN	V1948 Ori 05 34 20.8 -06 48 48 INSB
V1895 Ori	$05 \ 33 \ 45.4 \ -04 \ 35 \ 28 \ \text{INSB}$	V1949 Ori 05 34 20.9 -05 06 50 INSB
V1896 Ori	05 33 45.9 $-05$ 32 58 INB	V1950 Ori 05 34 20.9 -03 18 27 INSB

Table 1. (continued)

Name	R.A. Decl. Type	Name R.A. Decl. Type	е
	2000.0	2000.0	
	hmso'"	hmso',"	
V1951 Ori	05 34 21.9 -05 15 31 INSB	V2005 Ori 05 34 40.8 -05 26 39 INS	В
V1952 Ori	05 34 23.6 -00 43 09 INB	V2006 Ori 05 34 40.9 -05 26 00 INB	
V1953 Ori	05 34 23.9 -00 56 53 UVN+BY	V2007 Ori 05 34 41.4 -04 39 14 INS	В
V1954 Ori	$05 \ 34 \ 24.4 \ -04 \ 52 \ 52 \ INB$	V2008 Ori 05 34 41.9 -04 53 38 INB	
V1955 Ori	05 34 25.5 -06 53 47 INA:	V2009 Ori 05 34 42.0 -05 45 22 INSI	В
V1956 Ori	05 34 26.2 $-05$ 26 30 INT	V2010 Ori 05 34 42.0 -05 04 32 INB	
V1957 Ori	$05 \ 34 \ 26.5 \ -05 \ 37 \ 41 \ INB$	V2011 Ori 05 34 42.2 -05 33 04 INB	:
V1958 Ori	$05 \ 34 \ 27.0 \ -05 \ 18 \ 03 \ INSB$	V2012 Ori 05 34 42.7 -05 28 38 INSI	В
V1959 Ori	05 34 27.0 $-00$ 54 23 E:	V2013 Ori 05 34 42.9 -07 03 50 INB	
V1960 Ori	05 34 27.1 -08 11 10 IS	V2014 Ori 05 34 43.2 -04 23 32 INA	
V1961 Ori	05 34 27.3 -05 24 22 INB	V2015 Ori 05 34 44.4 -03 59 41 INS	В
V1962 Ori	05 34 27.7 -05 37 19 INB	V2016 Ori 05 34 44.7 -04 46 57 INB	
V1963 Ori	05 34 27.7 -05 31 55 INSB	V2017 Ori 05 34 44.8 -04 56 41 INB	
V1964 Ori	$05 \ 34 \ 28.8 \ -07 \ 15 \ 16 \ INB$	V2018 Ori 05 34 44.9 -01 04 25 INB	:
V1965 Ori	$05 \ 34 \ 29.1 \ -02 \ 52 \ 56 \ INSA$	V2019 Ori 05 34 45.0 -05 06 50 INT	
V1966 Ori	05 34 29.3 -06 08 58 INB	V2020 Ori 05 34 45.1 -05 06 20 INS	В
V1967 Ori	05 34 29.5 -05 13 55 INSB	V2021 Ori 05 34 45.2 -05 39 57 INS	В
V1968 Ori	05 34 29.5 -03 39 30 INSB	V2022 Ori 05 34 45.7 -00 52 24 INB	
V1969 Ori	05 34 29.6 -05 03 07 INT	V2023 Ori 05 34 46.4 -05 24 32 INB	
V1970 Ori	05 34 29.8 -04 51 48 INSB	V2024 Ori 05 34 46.4 -04 26 16 INB	
V1971 Ori	$05 \ 34 \ 30.1 \ -04 \ 49 \ 51 \ INT$	V2025 Ori 05 34 46.7 -08 11 29 IB:	
V1972 Ori	05 34 30.6 -04 35 53 INT	V2026 Ori 05 34 46.8 -05 26 05 INS	В
V1973 Ori	05 34 30.9 -04 25 07 INB:+E:	V2027 Ori 05 34 46.8 -05 21 29 INS	В
V1974 Ori	$05 \ 34 \ 31.1 \ -02 \ 58 \ 02 \ INB$	V2028 Ori 05 34 47.6 -04 50 01 INB	
V1975 Ori	05 34 31.7 -05 28 27 INSB	V2029 Ori 05 34 47.7 -06 19 40 INB	
V1976 Ori	05 34 31.8 -05 35 20 INT	V2030 Ori 05 34 47.7 -05 26 32 INSI	В
V1977 Ori	05 34 31.9 -00 35 24 INB	V2031 Ori 05 34 47.8 -07 16 10 IN	
V1978 Ori	05 34 32.0 -05 27 43 INB	V2032 Ori 05 34 47.8 -00 44 01 INB	:
V1979 Ori	05 34 32.7 -05 21 07 INSB	V2033 Ori 05 34 47.9 -05 30 47 INB	
V1980 Ori	05 34 33.0 -05 44 40 INSB	V2034 Ori 05 34 47.9 -05 35 44 INT	
V1981 Ori	05 34 34.0 -05 34 51 INT	V2035 Ori 05 34 47.9 -06 21 42 INB	
V1982 Ori	05 34 34.0 -05 48 25 INSB	V2036 Ori 05 34 48.0 -04 53 20 INS	В
V1983 Ori	05 34 34.0 -06 32 10 INSB	V2037 Ori 05 34 48.2 -05 30 10 INS	В
V1984 Ori	05 34 34.2 -02 58 17 INB	V2038 Ori 05 34 48.5 -05 42 28 INSI	В
V1985 Ori	05 34 34.9 -04 42 43 INB	V2039 Ori 05 34 48.5 -03 35 48 INB	
V1986 Ori	05 34 35.1 -08 10 34 INSB	V2040 Ori 05 34 48.5 -04 49 57 INB	
V1987 Ori	$05 \ 34 \ 35.2 \ -04 \ 52 \ 18 \ INB$	V2041 Ori 05 34 48.9 -03 07 05 INS	В
V1988 Ori	$05 \ 34 \ 35.2 \ -05 \ 34 \ 32 \ \text{INSB}$	V2042 Ori 05 34 49.0 -05 28 17 INS	В
V1989 Ori	05 34 35.7 -00 51 57 INB	V2043 Ori 05 34 49.1 -07 26 07 INS	В
V1990 Ori	05 34 35.8 -05 40 09 INSB	V2044 Ori 05 34 49.1 -05 26 27 INT	
V1991 Ori	05 34 36.0 -04 52 18 INSB	V2045 Ori 05 34 49.6 -05 29 03 INT	
V1992 Ori	05 34 37.1 -05 31 09 INT	V2046 Ori 05 34 49.6 -05 05 00 INS	В
V1993 Ori	$05 \ 34 \ 37.2 \ -07 \ 57 \ 40 \ ISB$	V2047 Ori 05 34 49.6 -04 51 57 INS	В
V1994 Ori	05 34 37.6 -05 43 11 INSB	V2048 Ori 05 34 49.6 -03 25 21 INS	В
V1995 Ori	05 34 37.8 -00 52 40 INB	V2049 Ori 05 34 49.6 -04 36 42 INS	В
V1996 Ori	05 34 38.2 -05 05 17 INB	V2050 Ori 05 34 49.7 -08 02 36 INS	В
V1997 Ori	05 34 38.2 -05 24 24 INSB	V2051 Ori 05 34 49.7 -04 51 34 INS	В
V1998 Ori	05 34 38.8 -04 39 37 INB	V2052 Ori 05 34 49.7 -08 38 07 ISB	
V1999 Ori	05 34 39.5 -00 54 32 EA:	V2053 Ori 05 34 49.7 -05 54 27 INS	В
V2000 Ori	05 34 39.8 -05 00 34 INB	V2054 Ori 05 34 49.8 -06 15 29 INS	В
V2001 Ori	05 34 39.9 -06 25 14 INSB	V2055 Ori 05 34 50.0 -06 28 12 INB	
V2002 Ori	$05 \ 34 \ 40.3 \ -05 \ 45 \ 09 \ \text{INSB}$	V2056 Ori 05 34 50.0 -05 18 45 INA	
V2003 Ori	05 34 40.5 -04 57 40 INT	V2057 Ori 05 34 50.4 -05 20 20 INT	
V2004 Ori	$05 \ 34 \ 40.6 \ -05 \ 06 \ 59 \ INSB$	V2058 Ori 05 34 50.6 -04 48 37 INSI	В

Table 1. (continued)

Name	R.A. Decl. Type	Name R.A. Decl. Typ	be -
	2000.0	2000.0	
	$h m s \circ $ , "	$h m s \circ ' $ "	
V2167 Ori	05 35 06.5 $-05$ 25 01 INB	V2221 Ori 05 35 12.0 -05 20 33 INE	}
V2168 Ori	$05 \ 35 \ 06.6 \ -05 \ 32 \ 52 \ INB$	V2222 Ori 05 35 12.0 -05 18 41 INE	3
V2169 Ori	$05 \ 35 \ 06.7 \ -05 \ 11 \ 45 \ INB$	V2223 Ori 05 35 12.1 -05 28 08 INS	В
V2170 Ori	$05 \ 35 \ 06.9 \ -05 \ 26 \ 01 \ INB$	V2224 Ori 05 35 12.1 -05 24 34 INS	В
V2171 Ori	$05 \ 35 \ 07.2 \ -06 \ 18 \ 16 \ \text{INSB}$	V2225 Ori 05 35 12.7 -05 19 35 INE	3
V2172 Ori	$05 \ 35 \ 07.3 \ -05 \ 38 \ 41 \ \text{INSB}$	V2226 Ori 05 35 12.7 -04 54 03 INS	В
V2173 Ori	$05 \ 35 \ 07.5 \ -05 \ 19 \ 50 \ INB$	V2227 Ori 05 35 12.8 -00 36 49 INS	В
V2174 Ori	$05 \ 35 \ 07.5 \ -05 \ 11 \ 15 \ INSB$	V2228 Ori 05 35 12.8 -05 20 44 INT	
V2175 Ori	$05 \ 35 \ 07.6 \ -05 \ 24 \ 01 \ INSB$	V2229 Ori 05 35 12.9 -05 45 38 INS	В
V2176 Ori	05 35 07.7 -05 21 01 INB	V2230 Ori 05 35 13.0 -05 19 04 INS	В
V2177 Ori	05 35 07.8 -05 48 56 INSB	V2231 Ori 05 35 13.0 -05 34 04 INS	В
V2178 Ori	$05 \ 35 \ 07.9 \ -05 \ 21 \ 17 \ INB$	V2232 Ori 05 35 13.1 -05 21 13 INT	
V2179 Ori	$05 \ 35 \ 08.1 \ -05 \ 48 \ 54 \ INSB$	V2233 Ori 05 35 13.2 -05 17 31 INS	В
V2180 Ori	05 35 08.3 -05 50 00 INSB	V2234 Ori 05 35 13.2 -05 36 18 INS	В
V2181 Ori	05 35 08.3 -05 24 35 INSB	$V2235 \text{ Ori}  05 \ 35 \ 13.2 \ -05 \ 24 \ 55 \ IN1$	
V2182 Ori	05 35 08.3 -05 27 57 INSB	V2236 Ori 05 35 13.2 -05 20 53 INS	В
V2183 Ori	$05 \ 35 \ 08.4 \ -05 \ 21 \ 20 \ INSB$	V2237 Ori 05 35 13.2 -05 27 54 INS	В
V2184 Ori	$05 \ 35 \ 08.5 \ -05 \ 25 \ 18 \ \text{INB}$ :	V2238 Ori 05 35 13.3 -05 20 19 INS	В
V2185 Ori	05 35 08.5 -05 24 41 INSB	V2239 Ori 05 35 13.3 -04 51 45 INA	
V2186 Ori	05 35 08.6 -05 26 19 INSB	V2240 Ori 05 35 13.4 -05 28 18 INS	В
V2187 Ori	05 35 08.7 -05 31 27 INB	V2241 Ori 05 35 13.4 -05 21 07 INE	3
V2188 Ori	05 35 08.9 -05 19 33 INSB	V2242 Ori 05 35 13.5 -05 35 03 INS	В
V2189 Ori	05 35 09.3 -04 06 17 INSB	V2243  Ori 05 35 13.5 $-05$ 17 31 INS	В
V2190 Ori	05 35 09.3 +09 52 44 INB	V2244 Ori 05 35 13.6 -05 17 46 INE	5
V2191 Ori	05 35 09.7 -05 26 23 INT	V2245 Ori 05 35 13.6 -05 35 08 INE	3
V2192 Ori	05 35 09.8 -05 18 58 INSB	V2246  Ori 05 35 13.7 -04 42 59 IN I	
V2193 Ori	05 35 09.9 - 07 11 32 INSB	V2247 Ori 05 35 13.8 $-05$ 34 55 INE	5 5
V2194 Ori	05 35 09.9 -05 14 50 INSB	V2248  Orl = 05 35 13.8 - 05 22 00  INE	5 5
V2195 Ori V2106 Ori	05 35 10.1 -06 05 36 INSB	V2249 Ori 05 35 13.9 $-04$ 35 03 INE	) D
V2190 Off V2107 Ori	$05 \ 55 \ 10.1 \ -05 \ 17 \ 07 \ INSD$	$V_{2250} O_{11} O_{25} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55} O_{55$	Ъ >
V2197 Off V2108 Ori	05 35 10.1 -05 19 05 INSB 05 35 10.2 05 10 32 INSB	V2251 OI1 05 55 14.0 -05 18 49 INE V2252 Ori 05 35 14.1 05 10 52 INS	D D
V2198 OII V2100 Ori	05 25 10 2 05 20 21 INSP	$V_{2252} O_{11} O_{5} O_{55} 14.1 - O_{5} 19 O_{2} 11 O_{5}$	р Э
V2199 OII V2200 Ori	$05 \ 35 \ 10.2 \ -05 \ 20 \ 21 \ INSB$ $05 \ 35 \ 10.2 \ -05 \ 18 \ 34 \ INSB$	V2255 OI1 05 55 14.1 -04 55 11 INE V2254 Ori 05 35 14.1 -05 22 23 INA	,
V2200 OII V2201 Ori	$05 \ 35 \ 10.2 \ -05 \ 10 \ 34 \ 113D$ $05 \ 35 \ 10 \ 3 \ -05 \ 21 \ 13 \ INB$	V2254  OII 05 35 14.1 $-05$ 22 25 INA V2255 Ori 05 35 14.2 $-05$ 20 24 INS	R I
V2201 OII V2202 Ori	05 35 10.5 -05 21 15 IND	V2255 Ori 05 35 14.2 -05 26 24 INS V2256 Ori 05 35 14.2 -05 28 43 INS	B
V2202 Off V2203 Ori	05 35 10.5 05 24 10 INSE 05 35 10.7 -04 42 08 INB	V2250 Off 05 35 14.2 05 20 45 INS V2257 Ori 05 35 14.2 $-05$ 20 04 INB	R R
V2203 Ori V2204 Ori	05 35 10.7 -06 34 16 INSB	V2258  Ori 05 35 14.2 05 20 04 INE	, ,
V2204 Off V2205 Ori	05 35 10.1 00 54 10 INSE 05 35 10.8 -06 06 46 INB	V2250  Ori 05 35 14.5 05 15 50 111 V2259 Ori 05 35 14.4 $-05$ 18 25 INS	, R
V2206 Ori	$05 \ 35 \ 10.9 \ -04 \ 39 \ 58 \ \text{INSB}$	V2260  Ori 05 05 11.1 05 16 25 11.5 V2260 Ori 05 35 14 4 $-05$ 33 19 INS	B
V2207 Ori	$05 \ 35 \ 10.9 \ -05 \ 24 \ 49 \ INT$	$V_{2261} Ori = 05 35 14.6 -06 15 13 INS$	B
V2208 Ori	05 35 110 - 04 56 40 INSB	V2262 Ori 05 35 147 $-07$ 55 52 IA:	2
V2209 Ori	$05 \ 35 \ 11.0 \ -05 \ 15 \ 22 \ INSB$	V2263  Ori 05 35 14.7 -06 15 07 INS	В
V2210 Ori	$05 \ 35 \ 11.1 \ -07 \ 35 \ 30 \ INB:$	$V_{2264}$ Ori 05 35 14.7 $-05$ 51 04 INB	3
V2211 Ori	$05 \ 35 \ 11.1 \ -07 \ 19 \ 06 \ INB:$	V2265 Ori 05 35 14.8 -05 34 17 INT	٦.
V2212 Ori	05 35 11.1 -05 36 51 EA	V2266 Ori 05 35 14.8 -05 20 29 INS	В
V2213 Ori	05 35 11.2 -05 22 38 INSB	V2267 Ori 05 35 14.9 -05 07 48 INB	3
V2214 Ori	05 35 11.2 -05 17 21 INSB	V2268 Ori 05 35 15.3 -07 40 16 ISB	:
V2215 Ori	05 35 11.3 -05 21 03 INB	V2269 Ori 05 35 15.4 -05 27 47 INS	В
V2216 Ori	05 35 11.5 -05 17 57 INSB	V2270 Ori 05 35 15.4 -05 21 14 INT	r
V2217 Ori	05 35 11.5 -05 25 53 INSB	V2271 Ori 05 35 15.5 -05 17 38 INS	В
V2218 Ori	05 35 11.7 -05 26 09 INB	V2272 Ori 05 35 15.5 -05 53 16 INS	В
V2219 Ori	05 35 11.8 -04 49 30 INSB	V2273 Ori 05 35 15.6 -04 59 28 INS	В
V2220 Ori	05 35 11.9 $-05$ 21 03 INSB	V2274 Ori 05 35 15.7 $-05$ 25 33 INS	В

Table 1. (continued)

Name	R.A	. Decl.		Type	Name	]	R.A		Decl.		Type
		2000.0						2000	0.0		
	h m	$s \circ $	"			h	$\mathbf{m}$	$\mathbf{s}$	。,	"	
V2275 Ori	$05 \ 35$	$15.8 - 05 \ 30$	06	INB	V2329 Ori	05	35	18.4	-04 53	23	INB
V2276 Ori	$05 \ 35$	$15.8 - 06 \ 09$	47	INB	V2330 Ori	05	35	18.5	$-05\ 42$	31	INSB
V2277 Ori	$05 \ 35$	15.9 - 05 28	53	INSB	V2331 Ori	05	35	18.5	$-05\ 13$	38	INT
V2278 Ori	$05 \ 35$	15.9 - 05 41	12	INSB	V2332 Ori	05	35	18.6	$-05\ 26$	25	INB
V2279 Ori	05 35	16.0 - 05 23	50	INT	V2333 Ori	05	35	18.6	$-05\ 13$	27	INB
V2280 Ori	05 35	16.1 - 05 20	36	INSB	V2334 Ori	05	35	18.6	-04 53	46	INSB
V2281 Ori	05 35	16.1 - 04 29	30	INSB	V2335 Ori	05	35	18.7	-05 41	10	INSB
V2282 Ori	05 35	16.2 - 05 00	03	INB	V2336 Ori	05	35	18.7	$-05\ 22$	57	INB
V2283 Ori	05 35	16.2 - 05 19	03	INB	V2337 Ori	05	35	18.7	-04 03	26	INB
V2284 Ori	05 35	16.2 - 05 21	32 EC	INT	V2338 Ori	05	35 95	18.8	-05 17	29	INA
V 2285 Ori	05 35	16.2 - 05 24	00	IND	V2339 Ori	05	30 25	18.9	-05 19	03	IND
V2280 Ori V2287 Ori	05 35	10.3 - 03 32 16.3 05 20	22	IND INB	V2340 Ori V2341 Ori	05	35 35	18.9	-04 44	20 26	IND INT
V2287 Off V2288 Ori	05 35	10.3 - 05 29 16.4 - 05 25	10	INB	V2341 OII V2342 Ori	05	35	18.0	$-00\ 27$ $-05\ 20$	20 52	INT
V2280 Ori	05 35	16.4 - 05 25 16.6 - 05 25	18	INSB	V2342 Off V2343 Ori	05	35	10.9	$-05\ 20$ $-05\ 21$	08	INB
V2200 Ori	05 35	16.6 - 05 20 16.6 - 05 19	36	INT	V2344 Ori	05	35	19.0	$-05\ 28$	22	INSB
V2291 Ori	$05 \ 35$ 05 35	16.6 - 05 17	23	INSB	V2345 Ori	05	35	19.0	+09520	$\frac{22}{42}$	INB
V2292 Ori	$05 \ 35$	16.7 - 05 20	20	INSB	V2346 Ori	05	35	19.2	-05 31	03	INSB
V2293 Ori	05 35	16.8 - 05 19	01	INSB	V2347 Ori	05	35	19.3	$-05\ 16$	45	INT
V2294 Ori	05 35	16.8 - 05 30	56	INSB	V2348 Ori	05	35	19.3	-04 55	45	INSB
V2295 Ori	05 35	16.9 - 07 19	02	INB	V2349 Ori	05	35	19.3	$-06\ 24$	15	INB
V2296 Ori	$05 \ 35$	16.9 - 05 27	09	INB	V2350 Ori	05	35	19.4	$-05\ 25$	42	INSB
V2297 Ori	$05 \ 35$	16.9 - 05 25	47	INSB	V2351 Ori	05	35	19.6	$-05\ 27$	05	INB
V2298 Ori	$05 \ 35$	17.0 - 05 28	58	INSB	V2352 Ori	05	35	19.6	$-05\ 27$	36	INSB
V2299 Ori	$05 \ 35$	17.1 - 05 23	34	INB	V2353 Ori	05	35	19.6	$-05\ 20$	02	INB
V2300 Ori	$05 \ 35$	17.1 - 05 58	31	INB	V2354 Ori	05	35	19.6	$-05\ 23$	57	INB
V2301 Ori	$05 \ 35$	$17.2 - 04 \ 41$	14	INB	V2355 Ori	05	35	19.7	$-05\ 13$	26	INB
V2302 Ori	$05 \ 35$	17.2 - 05 20	28	INB	V2356 Ori	05	35	19.7	$-05\ 24$	27	INT
V2303 Ori	$05 \ 35$	$17.2 - 04 \ 39$	48	INSB	V2357 Ori	05	35	19.7	-04 48	18	INB
V2304 Ori	$05 \ 35$	17.4 - 05 20	15	INB	V2358 Ori	05	35	19.8	$-05\ 15$	35	INB
V2305 Ori	05 35	17.4 - 04 59	57	INB	V2359 Ori	05	35	19.8	$-05\ 15$	09	INSB
V2306 Ori	05 35	17.5 - 05 18	23	INSB	V2360 Ori	05	35	19.9	-05 31	04	INB:
V2307 Ori	05 35	17.5 - 05 19	29	INB	V2361 Ori	05	35	20.0	$-05\ 12$	50	INSB
V2308 Ori	05 35	17.5 - 01 02	26	BY:	V2362 Ori	05	35	20.0	$-05\ 29$	12	INSB
V2309 Ori	05 35	17.6 - 05 18	33	INSB	V2363 Ori	05	35	20.1	$-05\ 20$	44	INSB
V2310 Ori	05 35	17.7 -04 51	43	IND	V2364 Ori	05	35 25	20.1	-05 13	10	INT
V 2311 Ori	05 35	17.7 - 05 52 17.7 - 04 20	02	IND INCD	V2305 Ori	05	00 25	20.2	-04 41	34 40	IND
$V_{2312} OII$ $V_{2313} Ori$	05 35	17.7 - 04 29 17.7 07 20	20 15	IND	V2367 Ori	05	35	20.3	-05 40	40	IND
V2314 Ori	05 35	17.7 = 07 20 17.9 = 05 20	54	INB	V2368 Ori	05	35	20.4	$-05\ 17$	50	INB
V2314 Off V2315 Ori	05 35	17.9 - 04 53	36	INB	V2369 Ori	05	35	20.0	-05 03	01	INB
V2316 Ori	05 35	17.9 - 05.30	41	INT	V2370 Ori	05	35	20.0	-05 22	56	INB
V2317 Ori	05 35	17.9 - 05 18	35	INSB	V2371 Ori	05	35	20.8	-06522	06	INB
V2318 Ori	$05 \ 35$	17.9 - 05 42	34	INT	V2372 Ori	05	35	20.8	$-05\ 21$	22	INB
V2319 Ori	05 35	18.0 - 04 20	41	INB:	V2373 Ori	05	35	21.0	$-05\ 20$	$^{}_{43}$	INB
V2320 Ori	05 35	18.0 - 05 26	51	INSB	V2374 Ori	05	35	21.2	$-05\ 22$	00	INB
V2321 Ori	$05 \ 35$	18.0 - 05 24	03	INB	V2375 Ori	05	35	21.2	$-05\ 23$	00	INSB
V2322 Ori	$05 \ 35$	$18.1 - 04 \ 31$	19	INSB	V2376 Ori	05	35	21.6	$-05\ 21$	06	INT
V2323 Ori	$05 \ 35$	18.1 - 05 28	25	INT	V2377 Ori	05	35	21.6	-05 09	39	INSB
V2324 Ori	$05 \ 35$	$18.1 - 03 \ 21$	38	INSB	V2378 Ori	05	35	21.6	-05 34	58	INT
V2325 Ori	$05 \ 35$	$18.2 - 05 \ 23$	36	INB	V2379 Ori	05	35	21.6	$-05\ 27$	15	INB
V2326 Ori	$05 \ 35$	$18.2 \ -05 \ 17$	45	INB	V2380 Ori	05	35	21.7	$-05\ 21$	47	INSB
V2327 Ori	$05 \ 35$	$18.2 \ -05 \ 13$	07	INSB	V2381 Ori	05	35	21.7	$-05\ 19$	46	INB
V2328 Ori	$05 \ 35$	18.4 - 04 50	31	INSB	V2382 Ori	05	35	21.8	$-06\ 18$	51	INSB

Table 1. (continued)

Name	R.A. Decl. Type	Name R.A. Decl. Ty	vpe
	2000.0	2000.0	
	$h m s \circ $ , "	$h m s \circ $ , "	
V2383 Ori	$05 \ 35 \ 21.8 \ -05 \ 23 \ 39 \ INB$	V2437 Ori 05 35 25.4 -05 24 11 IN	SB
V2384 Ori	$05 \ 35 \ 21.8 \ -05 \ 46 \ 09 \ EA$	V2438 Ori 05 35 25.5 -04 51 21 IN	Т
V2385 Ori	$05 \ 35 \ 22.1 \ -05 \ 52 \ 37 \ INSB$	V2439 Ori 05 35 25.6 -04 55 27 IN	В
V2386 Ori	$05 \ 35 \ 22.3 \ -05 \ 31 \ 17 \ \text{INSB}$	V2440 Ori 05 35 25.6 -06 13 04 IN	В
V2387 Ori	$05 \ 35 \ 22.3 \ -04 \ 41 \ 33 \ INSB$	V2441 Ori 05 35 25.7 -05 23 09 IN	Т
V2388 Ori	$05 \ 35 \ 22.4 \ -05 \ 22 \ 01 \ \text{INSB}$	V2442 Ori 05 35 25.7 -05 07 46 IN	SB
V2389 Ori	$05 \ 35 \ 22.5 \ -05 \ 25 \ 45 \ \text{INSB}$	V2443 Ori 05 35 26.0 -03 08 33 IN	SB
V2390 Ori	$05 \ 35 \ 22.5 \ -04 \ 52 \ 37 \ INB$	V2444 Ori 05 35 26.2 -05 22 57 IN	В
V2391 Ori	$05 \ 35 \ 22.6 \ -05 \ 44 \ 29 \ INB$	V2445 Ori 05 35 26.2 -05 20 06 IN	В
V2392 Ori	$05 \ 35 \ 22.7 \ -05 \ 16 \ 14 \ \text{INSB}$	V2446 Ori 05 35 26.2 -05 45 08 IN	В
V2393 Ori	$05 \ 35 \ 22.7 \ -05 \ 18 \ 38 \ \text{INSB}$	V2447 Ori 05 35 26.4 -05 44 34 IN	В
V2394 Ori	$05 \ 35 \ 22.8 \ -04 \ 48 \ 30 \ INB$	V2448 Ori 05 35 26.4 -05 23 02 IN	В
V2395 Ori	$05 \ 35 \ 22.8 \ -05 \ 23 \ 13 \ INSB$	V2449 Ori 05 35 26.4 -05 25 32 IN	S
V2396 Ori	$05 \ 35 \ 22.8 \ -06 \ 12 \ 05 \ INSB$	V2450 Ori 05 35 26.5 -04 59 52 IN	SB
V2397 Ori	$05 \ 35 \ 22.8 \ -04 \ 46 \ 41 \ INB$	V2451 Ori 05 35 26.5 -05 54 45 IN	A:
V2398 Ori	05 35 22.9 $+09$ 55 07 IB	V2452 Ori 05 35 26.5 -05 19 19 IN	В
V2399 Ori	$05 \ 35 \ 22.9 \ -04 \ 37 \ 41 \ INSB$	V2453 Ori 05 35 26.6 -06 19 09 IN	В
V2400 Ori	$05 \ 35 \ 22.9 \ -05 \ 32 \ 29 \ INB$	V2454 Ori 05 35 26.7 -05 16 45 IN	В
V2401 Ori	05 35 22.9 $-05$ 13 40 INB	V2455 Ori 05 35 26.8 -05 09 24 IN	В
V2402 Ori	$05 \ 35 \ 23.0 \ -05 \ 25 \ 36 \ INB$	V2456 Ori 05 35 27.0 -05 24 01 IN	В
V2403 Ori	$05 \ 35 \ 23.0 \ -05 \ 29 \ 41 \ INSB$	V2457 Ori 05 35 27.0 -05 09 54 IN	В
V2404 Ori	$05 \ 35 \ 23.1 \ -04 \ 17 \ 17 \ INB$	V2458 Ori 05 35 27.0 -05 48 46 IN	В
V2405 Ori	$05 \ 35 \ 23.2 \ -05 \ 22 \ 28 \ INB$	V2459 Ori 05 35 27.1 -05 15 45 IN	В
V2406 Ori	$05 \ 35 \ 23.3 \ -04 \ 49 \ 05 \ INB$	V2460 Ori 05 35 27.1 -05 48 52 IN	В
V2407 Ori	05 35 23.3 $-05$ 21 25 INT	V2461 Ori 05 35 27.1 -06 45 48 IN	В
V2408 Ori	05 35 23.3 $-04$ 40 10 INB	V2462 Ori 05 35 27.2 -04 55 19 IN	В
V2409 Ori	$05 \ 35 \ 23.5 \ -05 \ 15 \ 23 \ INSB$	V2463 Ori 05 35 27.3 -05 23 37 IN	В
V2410 Ori	05 35 23.5 $-05$ 18 57 INB	V2464 Ori 05 35 27.4 -06 19 31 IN	SB
V2411 Ori	$05 \ 35 \ 23.7 \ -05 \ 26 \ 27 \ INSB$	V2465 Ori 05 35 27.4 -05 02 42 IN	В
V2412 Ori	$05 \ 35 \ 23.7 \ -04 \ 48 \ 17 \ INB$	V2466 Ori 05 35 27.6 -04 49 08 IN	В
V2413 Ori	05 35 23.8 $-05$ 18 40 INT	V2467 Ori 05 35 27.6 -05 09 37 IN	В
V2414 Ori	$05 \ 35 \ 24.0 \ -05 \ 19 \ 08 \ INSB$	V2468 Ori 05 35 27.7 -05 42 55 IN	Т
V2415 Ori	05 35 24.0 $-05$ 23 14 INSB	V2469 Ori 05 35 27.8 -05 21 19 IN	В
V2416 Ori	05 35 24.1 $-05$ 09 07 INSB	V2470 Ori 05 35 28.1 -05 01 35 IN	В
V2417 Ori	$05 \ 35 \ 24.1 \ -05 \ 21 \ 33 \ INSB$	V2471 Ori 05 35 28.1 -05 23 06 IN	Т
V2418 Ori	$05 \ 35 \ 24.1 \ -04 \ 49 \ 30 \ INB$	V2472 Ori 05 35 28.2 -05 21 35 IN	В
V2419 Ori	$05 \ 35 \ 24.2 \ -04 \ 31 \ 03 \ INB$	V2473 Ori 05 35 28.2 -05 15 51 IN	В
V2420 Ori	$05 \ 35 \ 24.2 \ -05 \ 29 \ 57 \ INB$	V2474 Ori 05 35 28.2 -04 43 52 IN	В
V2421 Ori	$05 \ 35 \ 24.3 \ -05 \ 25 \ 19 \ INT$	V2475 Ori 05 35 28.2 -04 58 38 IN	SB
V2422 Ori	$05 \ 35 \ 24.3 \ -05 \ 22 \ 32 \ INSB$	V2476 Ori 05 35 28.4 -05 56 28 IN	SB
V2423 Ori	$05 \ 35 \ 24.4 \ -05 \ 24 \ 40 \ INT$	V2477 Ori 05 35 28.6 -05 33 04 IN	В
V2424 Ori	05 35 24.5 $-05$ 17 00 INT	V2478 Ori 05 35 28.8 -04 45 30 IN	В
V2425 Ori	05 35 24.5 $-05$ 25 02 INT	V2479 Ori 05 35 29.4 -05 49 51 IN	В
V2426 Ori	$05 \ 35 \ 24.6 \ -05 \ 55 \ 34 \ INSB$	V2480 Ori 05 35 29.4 -05 17 55 IN	В
V2427 Ori	$05 \ 35 \ 24.6 \ -05 \ 11 \ 30 \ INT$	V2481 Ori 05 35 29.5 -05 18 46 IN	В
V2428 Ori	$05 \ 35 \ 24.6 \ -05 \ 21 \ 04 \ INSB$	V2482 Ori 05 35 29.7 -05 30 25 IN	В
V2429 Ori	05 35 24.7 $-05$ 16 41 INSB	V2483 Ori 05 35 29.8 -05 32 54 IN	В
V2430 Ori	$05 \ 35 \ 24.9 \ -05 \ 25 \ 10 \ \mathrm{INB}$	V2484 Ori 05 35 29.9 -05 23 56 IN	SB
V2431 Ori	05 35 25.1 $-05$ 57 39 INB	V2485 Ori 05 35 30.0 -05 12 27 IN	Т
V2432 Ori	05 35 25.2 $-05$ 55 55 INB	V2486 Ori 05 35 30.1 -05 14 19 IN	В
V2433 Ori	05 35 25.2 $-00$ 43 24 IB:	V2487 Ori 05 35 30.3 -05 13 53 IN	В
V2434 Ori	05 35 25.2 $-05$ 15 36 INT	V2488 Ori 05 35 30.5 $-05$ 28 11 IN	SB
V2435 Ori	05 35 25.3 $-08$ 31 03 IB:	V2489 Ori 05 35 30.5 $-05$ 19 34 IN	В
V2436 Ori	05 35 25.3 $-05$ 25 30 INSB	V2490 Ori 05 35 30.5 -05 49 04 IN	В

Table 1. (continued)

Name	R.A	A. Decl. Typ	Name R.A. Decl. Type
		2000.0	2000.0
	h m	s o ''"	$h m s \circ $ , "
V2491 Ori	$05 \ 35$	$5 \ 30.6 \ -05 \ 51 \ 55 \ INB$	V2545 Ori 05 35 35.4 -05 08 47 INSB
V2492 Ori	$05 \ 35$	5 30.6 - 05 21 39 INS	B V2546 Ori 05 35 35.5 -05 58 19 INSB
V2493 Ori	$05 \ 35$	5 30.6 - 04 59 36 INS	B V2547 Ori 05 35 35.6 -05 39 08 INSB
V2494 Ori	$05 \ 35$	$5\ 30.7\ -05\ 21\ 47\ { m INB}$	V2548 Ori 05 35 36.0 -05 38 43 INB
V2495 Ori	$05 \ 35$	5 31.0 - 05 18 45 INT	V2549 Ori 05 35 36.2 -05 04 56 INSB
V2496 Ori	$05 \ 35$	5 31.1 - 05 13 44 INB	V2550 Ori 05 35 36.2 -05 20 20 INSB
V2497 Ori	$05 \ 35$	5 31.2 - 04 57 27 INB	V2551 Ori 05 35 36.4 -05 31 38 INB
V2498 Ori	$05 \ 35$	5 31.2 - 05 23 40 INS	B V2552 Ori 05 35 36.4 -04 16 20 INT
V2499 Ori	$05 \ 35$	5 31.3 - 05 18 56 INT	V2553 Ori 05 35 36.7 -05 23 28 INB
V2500 Ori	$05 \ 35$	5 31.4 - 05 20 17 INS	B V2554 Ori 05 35 36.7 -05 10 00 INSB
V2501  Ori	$05 \ 35$	5 31.5 - 05 21 37 INB	V2555 Ori 05 35 37.3 -05 02 36 INB
V2502 Ori	$05 \ 35$	5 31.5 - 05 05 47 INB	V2556 Ori 05 35 37.6 -01 02 51 BY
V2503 Ori	$05 \ 35$	5 31.6 - 05 16 58 INB	V2557 Ori 05 35 37.9 -04 26 09 INB
V2504 Ori	$05 \ 35$	5 31.6 -05 00 14 INB	V2558 Ori 05 35 38.5 -04 38 32 INSB
V2505 Ori	$05 \ 35$	5 31.8 - 05 21 21 INB	V2559 Ori 05 35 38.5 -00 51 11 E
V2506 Ori	$05 \ 35$	5 31.9 - 06 36 25 INS	B V2560 Ori 05 35 38.7 -05 16 59 INSB
V2507 Ori	$05 \ 35$	5 31.9 - 05 35 11 INS	8 V2561 Ori 05 35 39.1 -04 17 44 INB
V2508 Ori	$05 \ 35$	5 31.9 - 05 31 48 INS	B V2562 Ori 05 35 39.4 -07 20 38 INT
V2509 Ori	$05 \ 35$	5 32.0 - 05 16 20 INB	V2563 Ori 05 35 40.0 $-05$ 22 27 INB
V2510 Ori	$05 \ 35$	5 32.0 -04 38 34 INB	V2564 Ori 05 35 40.2 -03 14 32 INB
V2511 Ori	$05 \ 35$	5 32.2 - 05 44 27 INS	B V2565 Ori 05 35 40.3 -07 05 34 INB
V2512 Ori	$05 \ 35$	5 32.2 -00 56 37 BY:	V2566 Ori 05 35 40.4 -04 55 44 INB
V2513 Ori	$05 \ 35$	5 32.3 - 05 29 40 INS	B V2567 Ori 05 35 40.6 -04 35 19 INT
V2514 Ori	$05 \ 35$	5 32.3 - 04 46 48 INB	V2568 Ori 05 35 40.7 -04 33 27 INB
V2515 Ori	$05 \ 35$	5 32.3 - 05 11 44 INB	V2569 Ori 05 35 40.8 -05 12 48 INB
V2516 Ori	$05 \ 35$	5 32.4 - 05 15 07 INB	V2570 Ori 05 35 40.8 -05 21 42 INB
V2517 Ori	$05 \ 35$	5 32.5 - 04 48 08 INS	B V2571 Ori 05 35 40.9 -05 22 02 INT
V2518 Ori	$05 \ 35$	5 32.6 - 05 05 38 INS	B V2572 Ori 05 35 40.9 -04 34 38 INB
V2519 Ori	$05 \ 35$	5 32.7 - 05 45 28 INS	B V2573 Ori 05 35 42.0 -05 10 12 INSB
V2520 Ori	$05 \ 35$	5 32.7 - 05 21 18 INS	B V2574 Ori 05 35 42.3 -05 15 08 INT
V2521 Ori	$05 \ 35$	5 32.7 - 04 50 12 INS	B V2575 Ori 05 35 42.4 -04 42 57 INSB
V2522 Ori	$05 \ 35$	5 33.0 - 05 12 05 INB	V2576 Ori 05 35 42.6 -00 42 01 BY
V2523 Ori	$05 \ 35$	$5 \ 33.2 \ -05 \ 14 \ 11 \ INB$	V2577 Ori 05 35 42.6 -05 26 34 INSB
V2524 Ori	$05 \ 35$	5 33.2 - 05 19 58 INS	B V2578 Ori 05 35 42.8 -05 19 45 INSB
V2525 Ori	$05 \ 35$	$5 \ 33.3 \ -04 \ 51 \ 11 \ INB$	V2579 Ori 05 35 42.8 -05 11 55 INB
V2526 Ori	$05 \ 35$	5 33.4 - 01 52 36 RS:	V2580 Ori 05 35 42.8 -06 21 45 INB+E:
V2527 Ori	$05 \ 35$	5 33.6 - 05 15 23 INB	V2581 Ori 05 35 43.0 -05 23 02 INT
V2528 Ori	$05 \ 35$	5 33.7 - 04 46 24 INT	V2582 Ori 05 35 43.1 -05 03 08 INSB
V2529 Ori	$05 \ 35$	5 33.8 - 05 04 28 INS	B V2583 Ori 05 35 43.5 -05 08 50 INSB
V2530 Ori	$05 \ 35$	5 34.1 -01 03 56 BY:	V2584 Ori 05 35 43.6 -00 46 46 BY
V2531 Ori	$05 \ 35$	$5 \ 34.1 \ -07 \ 14 \ 58 \ INB$	V2585 Ori 05 35 43.7 -08 55 57 E:
V2532 Ori	$05 \ 35$	5 34.3 - 05 33 22 INB	V2586 Ori 05 35 44.8 -05 24 34 INSB
V2533 Ori	$05 \ 35$	5 34.4 - 05 18 39 INB	V2587 Ori 05 35 45.3 -00 53 32 BY
V2534 Ori	$05 \ 35$	5 34.5 - 04 40 21 INT	V2588 Ori 05 35 45.3 -07 04 22 INB
V2535 Ori	$05 \ 35$	5 34.5 - 05 00 52 INS	B V2589 Ori 05 35 45.9 -04 20 36 INB
V2536 Ori	$05 \ 35$	5 34.7 - 06 02 47 INB	V2590 Ori 05 35 46.2 -05 18 08 INB+E:
V2537 Ori	$05 \ 35$	5 34.7 -04 48 58 INB	V2591 Ori 05 35 46.2 -05 15 40 INT
V2538 Ori	$05 \ 35$	5 34.7 -08 34 50 BY:	V2592 Ori 05 35 46.5 -02 22 27 EA
V2539 Ori	$05 \ 35$	5 34.7 -05 34 38 INB	V2593 Ori 05 35 46.8 -08 48 31 IB:
V2540 Ori	$05 \ 35$	5 34.8 - 04 23 25 IN	V2594 Ori 05 35 46.9 -05 26 27 INB
V2541 Ori	$05 \ 35$	5 34.9 -06 08 36 INB	V2595 Ori 05 35 47.0 -08 41 14 ISB
V2542 Ori	$05 \ 35$	5 35.1 -05 33 49 INT	V2596 Ori 05 35 47.1 -03 32 03 INB
V2543 Ori	$05 \ 35$	5 35.2 -05 21 24 INB	V2597 Ori 05 35 47.1 -07 19 43 INB
V2544 Ori	05 35	$5\ 35.2\ -04\ 47\ 40\ \mathrm{INS}$	3 V2598 Ori 05 35 47.6 -05 37 39 INT

Table 1. (continued)

2000.0         h         m         s         o         '         '         2000.0         h         m         s         o         '         '           V2599         Ori         05         35         47.7         -05         58         06         INB         V2653         Ori         05         36         14.8         -06         13         17         INT           V2600         Ori         05         35         48.0         -06         01         35         INB         V2654         Ori         05         36         15.3         -03         08         44         INSI           V2601         Ori         05         35         48.0         -03         57         45         INB         V2655         Ori         05         36         15.4         -07         36         59         INB           V2602         Ori         05         35         48.5         -05         56         23         INSB         V2656         Ori         05         36         15.8         -05         21         27         INB	3
h         m         s         o         "           V2599         Ori         05         35         47.7         -05         58         06         INB         V2653         Ori         05         36         14.8         -06         13         17         INT           V2600         Ori         05         35         48.0         -06         01         35         INB         V2654         Ori         05         36         15.3         -03         08         44         INSI           V2601         Ori         05         35         48.0         -03         57         45         INB         V2655         Ori         05         36         15.4         -07         36         59         INB           V2602         Ori         05         35         48.5         -05         56         23         INSB         V2656         Ori         05         36         15.8         -05         21         27         INB	3
V2599 Ori       05       35       47.7       -05       58       06       INB       V2653 Ori       05       36       14.8       -06       13       17       INT         V2600 Ori       05       35       48.0       -06       01       35       INB       V2654 Ori       05       36       15.3       -03       08       44       INSI         V2601 Ori       05       35       48.0       -03       57       45       INB       V2655 Ori       05       36       15.4       -07       36       59       INB         V2602 Ori       05       35       48.5       -05       56       23       INSB       V2656 Ori       05       36       15.8       -05       21       27       INB	3
V2600 Ori       05       35       48.0       -06       01       35       INB       V2654 Ori       05       36       15.3       -03       08       44       INSI         V2601 Ori       05       35       48.0       -03       57       45       INB       V2655 Ori       05       36       15.4       -07       36       59       INB         V2602 Ori       05       35       48.5       -05       56       23       INSB       V2656 Ori       05       36       15.8       -05       21       27       INB	3
V2601 Ori 05 35 48.0 -03 57 45 INB V2655 Ori 05 36 15.4 -07 36 59 INB V2602 Ori 05 35 48.5 -05 56 23 INSB V2656 Ori 05 36 15.8 -05 21 27 INB	-
$V_{2602} \text{ Ori}$ 05 35 48.5 -05 56 23 INSB    $V_{2656} \text{ Ori}$ 05 36 15.8 -05 21 27 INB	
VOCO2 CHI OF 25 40.0 04 52 50 INCD VOC57 CHI OF 26 17 2 OC 17 25 INCL	
$V_{2003}$ Ori 05 35 49.0 -04 53 50 INSB V2057 Ori 05 30 17.2 -06 17 25 INSB V2057 Ori 05 36 17.2 -06 17 25 INSB	5
$V_{2004}$ OF 05 55 49.5 -05 52 52 IND V2058 OF 05 50 18.2 -05 49 55 INSI	с С
$V_{2000} Ori = 05 35 49.9 -05 18 31 INB = V_{2000} Ori = 05 30 18.3 -00 14 00 INSIV0606 Ori = 05 25 50 0 05 17 18 IND = V0660 Ori = 05 26 10 4 06 25 51 IND$	5
$V_{2000}$ Ori 05 55 50.0 -05 17 18 IND V2000 Ori 05 50 19.4 -00 25 51 IND V2000 Ori 05 56 10.5 06 24 28 IND	
$V_{2001} O_{11} O_{2001} O_{11} O_{2001} O_{11} O_{2001} O_{11} O_{2001} O_{11} O_{2001} O_{11} O_{2001} O_{11} O_{2001} O_{11} O_{2001} O_{11} O_{2001} O_{11} O_{2001} O_{11} O_{2001} O_{11} O_{2001} O_{11} O_{2001} O_{11} O_{2001} O_{11} O_{2001} O_{2001} O_{11} O_{2001} O_{2001} O_{2001} O_{2001} O_{2001} O_{2001} O_{2001} O_{2001} O_{2001} O_{2001} O_{2001} O_{2001} O_{2001} O_{2001} O_{2001} O_{2001} O_{2001} O_{2001} O_{2001} O_{2001} O_{2001} O_{2001} O_{2001} O_{2001} O_{2001} O_{2001} O_{2001} O_{2001} O_{2001} O_{2001} O_{2001} O_{2001} O_{2001} O_{2001} O_{2001} O_{2001} O_{2001} O_{2001} O_{2001} O_{2001} O_{2001} O_{2001} O_{2001} O_{2001} O_{2001} O_{2001} O_{2001} O_{2001} O_{2001} O_{2001} O_{2001} O_{2001} O_{2001} O_{2001} O_{2001} O_{2001} O_{2001} O_{2001} O_{2001} O_{2001} O_{2001} O_{2001} O_{2001} O_{2001} O_{2001} O_{2001} O_{2001} O_{2001} O_{2001} O_{2001} O_{2001} O_{2001} O_{2001} O_{2001} O_{2001} O_{2001} O_{2001} O_{2001} O_{2001} O_{2001} O_{2001} O_{2001} O_{2001} O_{2001} O_{2001} O_{2001} O_{2001} O_{2001} O_{2001} O_{2001} O_{2001} O_{2001} O_{2001} O_{2001} O_{2001} O_{2001} O_{2001} O_{2001} O_{2001} O_{2001} O_{2001} O_{2001} O_{2001} O_{2001} O_{2001} O_{2001} O_{2001} O_{2001} O_{2001} O_{2001} O_{2001} O_{2001} O_{2001} O_{2001} O_{2001} O_{2001} O_{2001} O_{2001} O_{2001} O_{2001} O_{2001} O_{2001} O_{2001} O_{2001} O_{2001} O_{2001} O_{2001} O_{2001} O_{2001} O_{2001} O_{2001} O_{2001} O_{2001} O_{2001} O_{2001} O_{2001} O_{2001} O_{2001} O_{2001} O_{2001} O_{2001} O_{2001} O_{2001} O_{2001} O_{2001} O_{2001} O_{2001} O_{2001} O_{2001} O_{2001} O_{2001} O_{2001} O_{2001} O_{2001} O_{2001} O_{2001} O_{2001} O_{2001} O_{2001} O_{2001} O_{2001} O_{2001} O_{2001} O_{2001} O_{2001} O_{2001} O_{2001} O_{2001} O_{2001} O_{2001} O_{2001} O_{2001} O_{2001} O_{2001} O_{2001} O_{2001} O_{2001} O_{2001} O_{2001} O_{2001} O_{2001} O_{2001} O_{2001} O_{2001} O_{2001} O_{2001} O_{2001} O_{2001} O_{2001} O_{2001} O_{2001} O_{2001} O_{2001} O_{2001} O_{2001} O_{2001} O_{2001} O_{200$	
V2602 OII 05 35 50.1 -05 21 54 INSE V2602 OII 05 36 19.0 -07 55 45 INSE V2602 OII 05 36 19.7 -05 48 24 INT	
V2609 OI1 05 35 50.9 -04 45 25 INB V2664 Ori 05 36 19.7 -05 46 24 INT	
V2010 Off 05 35 51.2 04 00 20 IND V2004 Off 05 30 15.8 04 44 55 IND V2011 Off 05 36 19.8 -06 46 01 INB	
V2612 Ori 05 35 51 7 -04 08 31 INB V2666 Ori 05 36 20 0 -03 03 39 INSI	3
V2613 Ori 05 35 52.1 -04 49 15 INSB V2667 Ori 05 36 20.5 -06 23 22 INSI	3
V2614 Ori 05 35 52.3 -04 43 05 INT V2668 Ori 05 36 21.2 -06 26 57 INSI	3
V2615 Ori 05 35 52.3 -05 12 57 INB V2669 Ori 05 36 21.4 -06 45 37 INT	-
V2616 Ori 05 35 52.8 -05 22 31 INSB V2670 Ori 05 36 21.6 -06 22 52 INB	
V2617 Ori 05 35 52.9 -05 25 44 INB V2671 Ori 05 36 22.1 -06 26 45 INB	
V2618 Ori 05 35 53.5 -05 20 27 INSB V2672 Ori 05 36 22.5 -06 23 45 INSI	3
V2619 Ori 05 35 54.2 -05 17 10 INSB V2673 Ori 05 36 23.6 -05 22 46 INB	
V2620 Ori 05 35 54.8 -04 58 20 INSB V2674 Ori 05 36 23.8 -06 23 11 INT	
V2621 Ori 05 35 55.0 -04 40 28 INB V2675 Ori 05 36 24.0 -06 25 27 INB	
V2622 Ori 05 35 55.7 -05 49 29 INT V2676 Ori 05 36 24.5 -06 22 23 INB	
V2623 Ori 05 35 56.1 -08 32 30 IA: V2677 Ori 05 36 24.5 -06 52 34 INSI	3
V2624 Ori 05 35 56.6 -05 35 11 INB V2678 Ori 05 36 26.1 -03 13 54 INSI	3
V2625 Ori 05 35 57.0 -06 29 38 INT V2679 Ori 05 36 26.1 -06 08 04 INT	
V2626 Ori 05 35 57.0 -04 51 09 INSB V2680 Ori 05 36 26.3 -05 18 30 INB	
V2627 Ori 05 35 57.1 -06 47 05 INB V2681 Ori 05 36 27.7 -06 23 12 INT	
V2628 Ori 05 35 58.3 -06 14 05 INB V2682 Ori 05 36 28.9 -05 39 16 INSI	3
V2629 Ori 05 35 58.3 -06 22 12 INB V2683 Ori 05 36 29.1 -06 38 41 INSI	3
V2630 Ori 05 35 58.9 -05 32 54 INSB V2684 Ori 05 36 29.3 -02 58 03 INB	
V2631 Ori 05 35 59.0 -03 25 09 INB V2685 Ori 05 36 29.3 -03 03 03 EW:	
V2632 Ori 05 35 59.2 -06 49 52 INB V2686 Ori 05 36 29.9 -06 38 22 INB	
V2633 Ori 05 35 59.7 -05 55 03 INSB V2687 Ori 05 36 30.2 -06 42 46 INSI	3
V2634  Ori  05  36  01.1  -06  25  08  INB  V2688  Ori  05  36  30.3  -04  32  17  INB	
V2635 Ori 05 36 01.7 -06 42 36 INSB V2689 Ori 05 36 31.0 +11 19 40 RS	
V2636 Ori 05 36 03.9 -05 30 19 INSB V2690 Ori 05 36 31.4 -05 52 16 INSP	3
V2637  Orr 05 36 05.0 -06 46 41 INT V2691 Orr 05 36 31.5 -04 15 46 INSP	3
V2638  Ori 05 36 05.0 -06 42 44 INSB V2692 Ori 05 36 32.5 -06 01 16 INB	
V2639 Ori 05 36 05.1 -05 11 14 INSB V2693 Ori 05 36 33.2 -06 08 55 INSP	5
V2640 Ori 05 36 05.3 -07 39 13 INB V2694 Ori 05 36 33.3 -04 55 19 IN51	5
V2641  Ori 05 36 05.3 -03 07 17 INB V2695 Ori 05 36 33.7 -05 57 54 INT	
V2042  Ori 05 30 07.0 -05 13 34 INSB V2090 Ori 05 30 35.8 -00 42 50 INB	
V2043 OI1 05 30 07.0 -00 01 30 INSD V2097 OI1 05 30 50.2 -05 55 29 INSIV2644 Or; 05 36 07.4 03 27 56 INB V2608 Or; 05 36 37 5 06 27 17 INSI	) 2
$V_{2044}$ OI 05 50 07.4 -05 27 50 IND V2098 OI 05 50 57.5 -00 27 17 INSI V2645 Or; 05 26 08 2 06 24 28 IND V2600 Or; 05 26 28 5 04 28 21 INGI	) )
$V_{2045} O_{11} = 05 30 00.5 = 00 24 30 1ND = V_{2039} O_{11} = 05 30 30.5 = 04 20 21 1NS1 V_{2039} O_{11} = 05 36 38 0 = 04 55 20 INS1 V_{2039} O_{11} = 05 36 38 0 = 04 55 20 INS1$	ר ג
$V_{2040} O_{11} = 0.5 30 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 $	ر
V2648  Ori 05 36 12.0 $-06$ 09 45 INB V2702 Ori 05 36 40.6 $-06$ 10 32 INSI	3
V2649  Ori 05 36 12.0 00 05 45 1115 $V2702  Ori$ 05 36 40.0 -00 10 35 1105	, ,
$V_{2045} Ori = 05 36 12.2 - 06 11 42 15D = V_{2105} Ori = 05 36 42.1 - 06 07 06 INSI$	2
$V_{2050} Ori = 05 36 12.6 - 06 23 40 INB = V_{2705} Ori = 05 36 45.5 - 03 14 12 INB = V_{2705} Ori = 05 36 45.5 - 03 14 12 INB = V_{2705} Ori = 05 36 45.5 - 03 14 12 INB = V_{2705} Ori = 0.5 36 45.5 - 0.3 14 12 INB = V_{2705} Ori = 0.5 36 45.5 - 0.3 14 12 INB = V_{2705} Ori = 0.5 36 45.5 - 0.3 14 12 INB = V_{2705} Ori = 0.5 36 45.5 - 0.3 14 12 INB = V_{2705} Ori = 0.5 36 45.5 - 0.3 14 12 INB = V_{2705} Ori = 0.5 36 45.5 - 0.3 14 12 INB = V_{2705} Ori = 0.5 36 45.5 - 0.3 14 12 INB = V_{2705} Ori = 0.5 36 45.5 - 0.3 14 12 INB = V_{2705} Ori = 0.5 36 45.5 - 0.3 14 12 INB = V_{2705} Ori = 0.5 36 45.5 - 0.3 14 12 INB = V_{2705} Ori = 0.5 36 45.5 - 0.3 14 12 INB = V_{2705} Ori = 0.5 36 45.5 - 0.3 14 12 INB = V_{2705} Ori = 0.5 36 45.5 - 0.3 14 12 INB = V_{2705} Ori = 0.5 36 45.5 - 0.3 14 12 INB = V_{2705} Ori = 0.5 36 45.5 - 0.3 14 12 INB = V_{2705} Ori = 0.5 36 45.5 - 0.3 14 12 INB = V_{2705} Ori = 0.5 36 45.5 - 0.3 14 12 INB = V_{2705} Ori = 0.5 36 45.5 - 0.3 14 12 INB = V_{2705} Ori = 0.5 36 45.5 - 0.3 14 12 INB = V_{2705} Ori = 0.5 36 45.5 - 0.3 14 12 INB = V_{2705} Ori = 0.5 36 45.5 - 0.3 14 12 INB = V_{2705} Ori = 0.5 36 45.5 - 0.3 14 12 INB = V_{2705} Ori = 0.5 36 45.5 - 0.3 14 12 INB = V_{2705} Ori = 0.5 36 45.5 - 0.3 14 12 INB = V_{2705} Ori = 0.5 36 45.5 - 0.3 14 12 INB = V_{2705} Ori = 0.5 36 45.5 - 0.3 14 12 INB = V_{2705} Ori = 0.5 36 45.5 - 0.3 14 12 INB = V_{2705} Ori = 0.5 36 45.5 - 0.3 14 12 INB = V_{2705} Ori = 0.5 36 45.5 - 0.3 14 12 INB = V_{2705} Ori = 0.5 0 INB = V_{2705} Ori = 0.5 0 INB = V_{2705} Ori = 0.5 0 INB = V_{2705} Ori = 0.5 0 INB = V_{2705} Ori = 0.5 0 INB = V_{2705} Ori = 0.5 0 INB = V_{2705} Ori = 0.5 0 INB = V_{2705} Ori = 0.5 0 INB = V_{2705} Ori = 0.5 0 INB = V_{2705} Ori = 0.5 0 INB = V_{2705} Ori = 0.5 0 INB = V_{2705} Ori = 0.5 0 INB = V_{2705} Ori = 0.5 0 INB = V_{2705} Ori = 0.5 0 INB = V_{2705} Ori = 0.5 0 INB = V_{2705} Ori = 0.5 0 INB = V_{2705} Ori = 0.5 0 INB = V_{2705} Ori = 0.5 0 INB = V_{2705} Ori = 0.5 0 INB = V_{2705} Ori = 0.5 0 INB = V_{2705} Ori = 0.5 0 INB = $	,
V2652 Ori 05 36 13.2 -06 49 42 INSB V2706 Ori 05 36 47.2 -05 22 50 INSI	3

Table 1. (continued)

Name	R.A. Decl.	Type	Name R.A. Decl. Type
	2000.0		2000.0
	hmso,	,	$h m s \circ $ , "
V2707 Ori	$05 \ 36 \ 47.6 \ -03 \ 04 \ 2$	29 INB:	V2761 Ori 05 43 52.8 -02 50 44 RS
V2708 Ori	05 36 48.6 $-05$ 47 4	48 INB	V2762 Ori 05 45 39.1 +11 19 36 EA
V2709 Ori	05 36 49.3 $-05$ 33 2	21 INSB	V2763 Ori 05 46 11.8 +09 03 55 LB
V2710 Ori	$05 \ 36 \ 50.1 \ -06 \ 41 \ 2$	29 INT	V2764 Ori 05 46 18.9 -00 05 38 INT
V2711 Ori	$05 \ 36 \ 50.3 \ -06 \ 41 \ 5$	55 INB	V2765 Ori 05 52 38.6 -05 51 34 RRC
V2712 Ori	$05 \ 36 \ 52.3 \ -08 \ 24 \ 52.3$	52 EW	V2766 Ori 05 54 27.7 +05 01 59 EW
V2713 Ori	$05 \ 36 \ 52.7 \ -06 \ 43 \ ($	08 INB	V2767 Ori 05 54 50.5 +07 04 43 EA
V2714 Ori	$05 \ 36 \ 52.9 \ -06 \ 37$	13 INB	V2768 Ori 05 54 56.6 +04 53 54 EW
V2715 Ori	$05 \ 36 \ 54.1 \ -02 \ 53 \ 1$	l6 INB:	V2769 Ori 05 54 59.1 +05 04 19 EW
V2716 Ori	$05 \ 36 \ 55.0 \ -04 \ 58 \ 2$	20 INB	V2770 Ori 05 56 45.8 +04 51 26 LB
V2717 Ori	$05 \ 36 \ 56.2 \ -06 \ 27 \ 3$	03 INB	V2771 Ori 05 56 47.8 -03 36 54 SRB
V2718 Ori	$05 \ 36 \ 57.2 \ -05 \ 06 \ 0$	J5 INSB	V2772  Ori 05 56 52.5 +12 27 44 EA
V2719 Ori	$05 \ 36 \ 58.7 \ -04 \ 04 \ 0$	DI INA:	V2773  Ori 05 57 30.9 -01 55 05 RRAB
V2720 Ori V2721 Ori	05 30 59.0 -00 29 0	JO INB	$V_{2774} Ori = 05 58 10.7 - 02 55 18 SRB$
V2721 OII V2722 Ori	$05 \ 38 \ 12.8 \ -02 \ 12 \ 2$	16 IND	V0420 Feg 00 00 18.2 $\pm$ 19 52 55 KKAD
V2722 Off V2723 Ori	$05 \ 38 \ 17.0 \ -02 \ 14 \ 4$	E INB	$V0421 \text{ Feg} = 00 \ 07 \ 02.0 \ \pm 22 \ 50 \ 40 \ \text{EA}$
V2723 Off V2724 Ori	$05 \ 38 \ 23 \ 202 \ 12 \ 22 \ 22 \ 22 \ 22 \ 22 \ 2$	10 INB	V0422 1 eg 00 14 29.0 $\pm 13$ 51 09 10. V0751 Por 01 30 53 1 $\pm 53$ 25 38 EA
V2724 Off V2725 Ori	$05 \ 38 \ 23.2 \ -02 \ 12 \ 3$	R5 INB	V0751 Per 01 36 15.7 $\pm 54.14.07$ DSCTC
V2726 Ori	$05 \ 38 \ 23.5 \ -02 \ 20 \ 3$	18 INB	V0752 Per 01 51 15 7 $\pm 57$ 50 11 EA
V2727 Ori	$05 \ 38 \ 23.8 \ -02 \ 20 \ 4$	10 INB	V0754 Per 02 03 28 3 $\pm$ 58 54 13 EA
V2728 Ori	$05 \ 38 \ 25 \ 4 \ -02 \ 42 \ 4$	10 IND	V0755 Per 02 10 13 4 $\pm 57$ 11 25 DSCTC:
V2729 Ori	$05 \ 38 \ 25.6 \ -02 \ 48 \ 3$	T INT	V0756 Per 02 17 07.0 $\pm$ 56 09 17 EA
V2730 Ori	$05 \ 38 \ 26.6 \ -02 \ 12$	8 INB	V0757 Per 02 18 23.0 $\pm 57$ 00 37 BCEP
V2731 Ori	05 38 29.2 $-02$ 16	6 INT	V0758 Per 02 22 06.9 +56 07 54 EA
V2732 Ori	05 38 29.6 $-02$ 25	I4 INB	V0759 Per 02 22 56.4 +51 34 13 LB
V2733 Ori	05 38 30.0 $-02$ 15 4	41 INB	V0760 Per 02 24 52.2 +58 00 24 LB
V2734 Ori	$05 \ 38 \ 37.9 \ -02 \ 20 \ 4$	40 INB	V0761 Per 02 24 53.9 +58 09 15 EA/RS:
V2735 Ori	$05 \ 38 \ 38.1 \ +09 \ 01 \ 3$	11 EA	V0762 Per 02 40 06.0 +42 38 57 BY
V2736 Ori	05 $38$ $46.6$ $-02$ $19$ $4$	40 INB	V0763 Per 02 40 09.6 +42 48 37 BY
V2737 Ori	$05$ 38 49.3 $-02$ 23 $\pm$	58 INB	V0764 Per 02 40 15.1 +42 47 14 BY
V2738 Ori	$05 \ 39 \ 06.0 \ -02 \ 07 \ 3$	B1 INB	V0765 Per 02 40 19.3 +42 36 13 BY
V2739 Ori	$05 \ 39 \ 07.6 \ -02 \ 12$	15 INB	V0766 Per 02 40 24.3 +42 46 57 BY
V2740 Ori	$05 \ 39 \ 08.9 \ -02 \ 39 \ 5$	58 INT	V0767 Per 02 40 26.6 $+42$ 45 40 BY
V2741 Ori	$05 \ 39 \ 09.1 \ -02 \ 00 \ 2$	27 INB	V0768 Per 02 40 26.7 +42 40 16 BY
V2742 Ori	$05 \ 39 \ 13.2 \ -00 \ 20 \ 4$	44 DSCT:	V0769 Per 02 40 30.4 +42 41 52 BY
V2743 Ori	$05 \ 39 \ 14.9 \ +00 \ 31$	$13  \mathrm{E/RS}$	V0770 Per 02 40 30.6 $+42$ 51 02 BY
V2744 Ori	$05 \ 39 \ 15.1 \ -02 \ 18 \ 4$	44 INB	V0771 Per 02 40 30.8 +42 36 25 BY
V2745 Ori	$05 \ 39 \ 21.1 \ +09 \ 18$	lo RS	V0772 Per 02 40 33.3 +42 32 54 BY
V2746 Ori	$05 \ 39 \ 26.6 \ -02 \ 04 \ 2$	21 INB	V0773 Per 02 40 38.2 +42 43 07 BY
V2747 Ori	05 39 27.1 -03 47 (	)4 INB:	V0774 Per 02 40 42.8 +42 38 59 BY
V2748 Ori	$05 \ 39 \ 32.9 \ -02 \ 11 \ 3$	B1 INT	V0775 Per 02 40 48.5 +42 39 26 BY
V2749 Ori	$05 \ 39 \ 45.2 \ -02 \ 04 \ 5$	64 INB	V0776 Per 02 40 48.9 +42 30 34 BY
V2750 Ori	$05 \ 39 \ 46.6 \ -02 \ 26 \ 30 \ 50 \ 50 \ 50 \ 50 \ 50 \ 50 \ 50$	31 INB	V0777 Per 02 40 49.1 +42 48 21 BY
V2751 Ori	$05 \ 39 \ 56.5 \ +09 \ 56 \ 30 \ 56.5 \ +07 \ 56 \ 30 \ 56 \ 50 \ 50 \ 50 \ 50 \ 50 \ 50 \ 5$	32 RS	V0778 Per 02 40 49.7 +42 46 55 BY
V2752 Ori	$05 \ 39 \ 58.8 \ \pm 07 \ 08 \ 3$	SI RS	V0779 Per 02 40 53.9 +42 33 17 BY
V2753 Ori	$05 \ 40 \ 07.2 \ -02 \ 04 \ 0$	J4 INB	V0780 Per 02 40 57.9 $+42$ 34 39 BY
V2754 Ori	$05 \ 40 \ 14.0 \ -02 \ 31 \ 2$	27 INB	V0781 Per 02 41 05.0 +55 00 19 SRB
v 2756 Ori	05 40 14.0 -07 08 3	OU NO:	V0782 Por 02 41 00.1 +42 50 43 BY V0782 Por 02 41 116 +42 46 20 DV
v 2750 Ori	05 40 54.2 - 01 21 3	D4 IND D0 FA	V0784 Dop 02 41 165 42 40 22 BY
V2759 Ori	00 40 34.7 + 11 40 3	16 IND	V0785 $P_{0r}$ 02 41 10.0 +42 49 35 BY V0785 $P_{0r}$ 02 41 18 4 +49 59 91 DV
v 2750  Or	05 41 20.9 - 05 24 4 05 42 50 0 + 00 21 0	10 IND	V0705 FeI 02 41 10.4 $\pm$ 42 30 21 DY V0786 Por 02 41 20.0 $\pm$ 42 30 24 BV
V2760  Ori	$05 42 53.9 \pm 09 21 0$ 05 43 27 0 $-09 50 3$	R8 INR	V0787 Per 02 41 20.0 $\pm 42$ 59 24 D1
12100 011	00 10 <b>1</b> 110 00 00 0		

Table 1. (continued)

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Name	R.A. Decl. Type	Name R.A. Decl. Type
hmso'hmso'V0788Per024121.4+423544BYV0843Per024224.9+410850LBV0790Per021126.3+423015BYV0844Per024224.9+414850LBV0791Per021127.7+425342BYV0846Per024233.1+424006BYV0794Per024133.4+424212BYV0847Per024233.1+423002BYV0795Per024135.1+4233BYV0850Per022233.1+4236BYV0797Per024135.1+4233BYV0850Per022233.4+4240BYV0797Per024136.2+4256BYV0855Per022436.14240BYV0856Per022436.14240BYV0856Per0241444525BYV0856Per024245.1444525BYV0856Per024245.14568FYV0856Per02414442 <td></td> <td>2000.0</td> <td>2000.0</td>		2000.0	2000.0
$ \begin{array}{llllllllllllllllllllllllllllllllllll$		$h m s \circ $ , "	$h m s \circ '$ "
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	V0788 Per	$02 \ 41 \ 21.4 \ +42 \ 35 \ 44 \ BY$	V0842 Per 02 42 24.9 +42 53 26 BY
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	V0789 Per	02 41 25.2 +39 47 28 EA	V0843 Per 02 42 24.9 +41 08 50 LB
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	V0790 Per	$02 \ 41 \ 26.3 \ +42 \ 30 \ 15 \ BY$	V0844 Per 02 42 26.3 +42 43 16 BY
$ \begin{array}{c} \begin{tabular}{lllllllllllllllllllllllllllllllllll$	V0791 Per	$02 \ 41 \ 26.7 \ +42 \ 51 \ 34 \ BY$	V0845 Per 02 42 28.9 +42 42 11 BY
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	V0792 Per	$02 \ 41 \ 27.7 \ +42 \ 35 \ 42 \ BY$	V0846 Per 02 42 31.5 +42 37 11 BY
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	V0793 Per	02 41 32.7 +43 02 16 BY	V0847 Per 02 42 32.3 +42 49 06 BY
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	V0794 Per	02 41 33.4 +42 42 12 BY	V0848 Per 02 42 33.1 +42 30 02 BY
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	V0795 Per	$02 \ 41 \ 34.9 \ +42 \ 48 \ 53 \ BY$	V0849 Per 02 42 33.6 $\pm$ 42 49 12 BY
$ \begin{array}{c} \mbox{V035} \mbox{V035} \mbox{V035} \mbox{V035} \mbox{V035} \mbox{V035} \mbox{V035} \mbox{V035} \mbox{V035} \mbox{V035} \mbox{V035} \mbox{V035} \mbox{V035} \mbox{V035} \mbox{V035} \mbox{V035} \mbox{V035} \mbox{V035} \mbox{V035} \mbox{V035} \mbox{V035} \mbox{V035} \mbox{V035} \mbox{V035} \mbox{V035} \mbox{V035} \mbox{V035} \mbox{V035} \mbox{V035} \mbox{V035} \mbox{V035} \mbox{V035} \mbox{V035} \mbox{V035} \mbox{V035} \mbox{V035} \mbox{V035} \mbox{V035} \mbox{V035} \mbox{V035} \mbox{V035} \mbox{V035} \mbox{V035} \mbox{V035} \mbox{V035} \mbox{V035} \mbox{V035} \mbox{V035} \mbox{V035} \mbox{V035} \mbox{V035} \mbox{V035} \mbox{V035} \mbox{V035} \mbox{V035} \mbox{V035} \mbox{V035} \mbox{V035} \mbox{V035} \mbox{V035} \mbox{V035} \mbox{V035} \mbox{V035} \mbox{V035} \mbox{V035} \mbox{V035} \mbox{V035} \mbox{V035} \mbox{V035} \mbox{V035} \mbox{V035} \mbox{V035} \mbox{V035} \mbox{V035} \mbox{V035} \mbox{V035} \mbox{V035} \mbox{V036} \mbox{V035} \mbox{V036} \mbox{V036} \mbox{V036} \mbox{V036} \mbox{V036} \mbox{V036} \mbox{V036} \mbox{V036} \mbox{V036} \mbox{V036} \mbox{V036} \mbox{V036} \mbox{V036} \mbox{V036} \mbox{V036} \mbox{V036} \mbox{V036} \mbox{V036} \mbox{V036} \mbox{V036} \mbox{V036} \mbox{V036} \mbox{V036} \mbox{V036} \mbox{V036} \mbox{V036} \mbox{V036} \mbox{V036} \mbox{V036} \mbox{V036} \mbox{V036} \mbox{V036} \mbox{V036} \mbox{V036} \mbox{V036} \mbox{V036} \mbox{V036} \mbox{V036} \mbox{V036} \mbox{V036} \mbox{V036} \mbox{V036} \mbox{V036} \mbox{V036} \mbox{V036} \mbox{V036} \mbox{V036} \mbox{V036} \mbox{V036} \mbox{V036} \mbox{V036} \mbox{V036} \mbox{V036} \mbox{V036} \mbox{V036} \mbox{V036} \mbox{V036} \mbox{V036} \mbox{V036} \mbox{V036} \mbox{V036} \mbox{V036} \mbox{V036} \mbox{V036} \mbox{V036} \mbox{V036} \mbox{V036} \mbox{V036} \mbox{V036} \mbox{V036} \mbox{V036} \mbox{V036} \mbox{V036} \mbox{V036} \mbox{V036} \mbox{V036} \mbox{V036} \mbox{V036} \mbox{V036} \mbox{V036} \mbox{V036} \mbox{V036} \mbox{V036} \mbox{V036} \mbox{V036} \mbox{V036} \mbox{V036} \mbox{V036} \mbox{V036} \mbox{V036} V036$	V0796 Per	$02 \ 41 \ 351 \ +42 \ 33 \ 31 \ BY$	V0850 Per 02 42 34 0 $\pm$ 42 43 26 BY
$ \begin{array}{c} \mbox{V038} \mbox{Per} & 02 41 36.2 + 42 54 56 BY \\ \mbox{V030} \mbox{Per} & 02 41 36.2 + 42 24 56 BY \\ \mbox{V030} \mbox{Per} & 02 41 36.2 + 42 40 04 BY \\ \mbox{V030} \mbox{V031} \mbox{Per} & 02 41 39.7 + 42 38 07 BY \\ \mbox{V030} \mbox{V031} \mbox{Per} & 02 41 39.7 + 42 38 07 BY \\ \mbox{V030} \mbox{V031} \mbox{Per} & 02 41 39.7 + 42 38 07 BY \\ \mbox{V030} \mbox{V031} \mbox{Per} & 02 41 43.9 + 42 45 08 BY \\ \mbox{V030} \mbox{V030} \mbox{Per} & 02 41 44.0 + 42 40 32 BY \\ \mbox{V030} \mbox{V030} \mbox{Per} & 02 41 44.0 + 42 42 32 BY \\ \mbox{V030} \mbox{V030} \mbox{Per} & 02 41 44.2 + 42 35 36 BY \\ \mbox{V030} \mbox{V030} \mbox{Per} & 02 41 44.2 + 42 32 32 BY \\ \mbox{V030} \mbox{V030} \mbox{Per} & 02 41 44.2 + 42 32 32 BY \\ \mbox{V030} \mbox{V030} \mbox{Per} & 02 41 44.2 + 42 40 00 BY \\ \mbox{V030} \mbox{V030} \mbox{Per} & 02 41 51.3 + 42 34 25 BY \\ \mbox{V031} \mbox{Per} & 02 41 51.3 + 42 34 25 BY \\ \mbox{V031} \mbox{Per} & 02 41 51.3 + 42 34 25 BY \\ \mbox{V031} \mbox{Per} & 02 41 53.2 + 42 35 26 BY \\ \mbox{V031} \mbox{Per} & 02 41 53.2 + 42 35 26 BY \\ \mbox{V031} \mbox{Per} & 02 41 53.2 + 42 35 26 BY \\ \mbox{V031} \mbox{Per} & 02 41 55.2 + 42 50 30 BY \\ \mbox{V031} \mbox{Per} & 02 41 55.2 + 42 50 32 BY \\ \mbox{V031} \mbox{Per} & 02 41 55.2 + 42 53 30 BY \\ \mbox{V031} \mbox{Per} & 02 41 55.2 + 42 53 30 BY \\ \mbox{V031} \mbox{Per} & 02 41 55.2 + 42 53 30 BY \\ \mbox{V031} \mbox{Per} & 02 41 55.2 + 42 53 30 BY \\ \mbox{V031} \mbox{Per} & 02 41 55.2 + 42 53 33 BY \\ \mbox{V032} \mbox{Per} & 02 41 55.2 + 42 53 33 BY \\ \mbox{V033} \mbox{Per} & 02 41 55.2 + 42 53 33 BY \\ \mbox{V033} \mbox{Per} & 02 41 55.2 + 42 53 33 BY \\ \mbox{V034} \mbox{Per} & 02 41 55.2 + 42 53 33 BY \\ \mbox{V035} \mbox{Per} & 02 42 05.3 + 43 01 BY \\ \mbox{V035} \mbox{Per} & 02 42 05.3 + 43 01 BY \\ \mbox{V036} \mbox{Per} & 02 42 05.3 + 42 53 28 BY \\ \mbox{V036} \mbox{Per} & 02 42 05.3 + 42 53 28 BY \\ \mbox{V036} \mbox{Per} & 02 42 05.3 + 42 53 08 BY \\ \mbox{V038} \mbox{Per} & 02 42 05.3 + 42 53 08 BY \\ \mbox{V038} \mbox{V038} \mbox{Per} & 02 $	V0797 Per	$02 \ 41 \ 35 \ 3 \ +42 \ 41 \ 02 \ BY$	V0851 Per 02 42 34 3 $\pm$ 42 31 00 BY
$ \begin{array}{c} \begin{tabular}{l l l l l l l l l l l l l l l l l l l $	V0798 Per	$02 \ 41 \ 36 \ 2 \ +42 \ 54 \ 56 \ BV$	V0852 Per 02 42 35.0 $\pm$ 42 39 29 BY
$ \begin{array}{c} \begin{tabular}{l lllllllllllllllllllllllllllllllllll$	V0799 Per	$02 \ 41 \ 36 \ 6 \ +42 \ 40 \ 04 \ BV$	V0853 Per 02 42 36 3 $\pm 42$ 54 31 BV
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	V0800 Por	02 41 30.0 + 42 40 04 B1 $02 41 381 \pm 42 44 04 BV$	$V_{0005} + C_{10} = 02 + 2 + 30.5 + 42 + 51 + 51 + 51 + 51 + 51 + 51 + 51 + 5$
$ \begin{array}{c} \mbox{V0802} \mbox{Per} & 02 41 43.9 + 42 40 50 8 \mbox{BY} \\ \mbox{V0803} \mbox{Per} & 02 41 44.0 + 42 40 32 \mbox{BY} \\ \mbox{V0804} \mbox{Per} & 02 41 44.0 + 42 40 32 \mbox{BY} \\ \mbox{V0805} \mbox{Per} & 02 41 44.2 + 42 45 \mbox{BY} \\ \mbox{V0805} \mbox{Per} & 02 41 44.2 + 42 35 \mbox{3} \mbox{BY} \\ \mbox{V0806} \mbox{Per} & 02 41 44.2 + 42 35 \mbox{3} \mbox{BY} \\ \mbox{V0806} \mbox{Per} & 02 41 44.2 + 42 35 \mbox{3} \mbox{BY} \\ \mbox{V0806} \mbox{Per} & 02 41 44.2 + 42 35 \mbox{3} \mbox{BY} \\ \mbox{V0806} \mbox{Per} & 02 41 44.2 + 42 32 \mbox{3} \mbox{BY} \\ \mbox{V0806} \mbox{Per} & 02 41 44.2 + 42 32 \mbox{3} \mbox{BY} \\ \mbox{V0806} \mbox{Per} & 02 41 44.2 + 42 33 \mbox{4} \mbox{BY} \\ \mbox{V0809} \mbox{Per} & 02 41 44.2 + 42 34 \mbox{3} \mbox{BY} \\ \mbox{V0809} \mbox{Per} & 02 41 50.3 + 42 \mbox{4} \mbox{3} \mbox{BY} \\ \mbox{V0810} \mbox{Per} & 02 41 51.3 + 42 \mbox{3} \mbox{2} \mbox{BY} \\ \mbox{V0811} \mbox{Per} & 02 41 53.2 + 42 \mbox{3} \mbox{2} \mbox{BY} \\ \mbox{V0811} \mbox{Per} & 02 41 53.2 + 42 \mbox{3} \mbox{2} \mbox{BY} \\ \mbox{V0814} \mbox{Per} & 02 41 53.3 + 42 \mbox{3} \mbox{3} \mbox{BY} \\ \mbox{V0816} \mbox{Per} & 02 41 55.4 + 42 \mbox{3} \mbox{3} \mbox{BY} \\ \mbox{V0816} \mbox{Per} & 02 41 55.4 + 42 \mbox{3} \mbox{3} \mbox{BY} \\ \mbox{V0816} \mbox{Per} & 02 41 55.4 + 42 \mbox{3} \mbox{3} \mbox{BY} \\ \mbox{V0817} \mbox{Per} & 02 41 55.4 + 42 \mbox{3} \mbox{3} \mbox{BY} \\ \mbox{V0817} \mbox{Per} & 02 41 55.4 + 42 \mbox{3} \mbox{3} \mbox{BY} \\ \mbox{V0817} \mbox{Per} & 02 41 55.4 + 42 \mbox{3} \mbox{3} \mbox{BY} \\ \mbox{V0817} \mbox{Per} & 02 41 55.4 + 42 \mbox{3} \mbox{3} \mbox{BY} \\ \mbox{V0817} \mbox{Per} & 02 41 55.4 + 42 \mbox{3} \mbox{3} \mbox{BY} \\ \mbox{V0820} \mbox{Per} & 02 42 \mbox{0} \mbox{4} \mbox{4} \mbox{4} \mbox{4} \mbox{4} \mbox{4} \mbox{4} \mbox{4} \mbox{4} \mbox{4} \mbox{4} \mbox{4} \mbox{4} \mbox{4} \mbox{4} \mbox{4} \mbox{4} \mbox{4} \mbox{4} \mbox{4} \mbox{4} \mbox{4} \mbox{4} \mbox{4} \mbox{4} \mbox{4} \mbox{4} \mbox{4} \mbox{4} \mbox{4} \mbox{4} \mbox{4} $	V0801 Por	02 41 30.1 + 42 44 04 B1 02 41 30.7 + 42 38 07 BV	$V_{000} = 161  02  42  59.4  +42  59  26  B1$ $V_{0855}  P_{0r}  02  42  40  6  +42  48  56  BV$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	V0802 Por	$02 41 59.7 \pm 42 50 07 D1$ 02 41 43 0 ± 42 45 08 PV	$V_{0000} = 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 -$
V0804 Per024144.042403251V0855 Per024241.374.2400251V0805 Per022444.2+423536BYV0856 Per024244.7+424002LBV0807 Per022444.6+423232BYV0860 Per024244.5+423011BYV0807 Per022444.5+424383BYV0860 Per024247.5+4243035BYV0808 Per024151.3+424385BYV0863 Per024247.7+4243035BYV0810 Per024151.7+423823BYV0866 Per024251.7+423349BYV0812 Per024151.3+42306BYV0866 Per024257.8+425804BYV0813 Per024153.3+425030BYV0866 Per024257.9+424147BYV0817 Per024155.9+425030BYV0870 Per024250.9+425801BYV0817 Per024157.9+425330BYV0870 Per024250.84560<	V0802 1 er	02 41 43.3 + 42 45 00 D1 02 41 44 0 + 42 40 22 PV	$V_{000} = 02 + 2 + 1.1 + 42 + 42 + 22 = 01$ $V_{000} = 02 + 2 + 1.1 + 42 + 42 + 42 = 01$
$ \begin{array}{c} \mbox{V0805 Per} & 02 41 44.2 + 42 35 36 BY \\ \mbox{V0805 Per} & 02 41 46.4 + 42 32 32 BY \\ \mbox{V0806 Per} & 02 41 46.4 + 42 32 32 BY \\ \mbox{V0806 Per} & 02 41 46.4 + 42 32 32 BY \\ \mbox{V0806 Per} & 02 41 46.4 + 42 32 32 BY \\ \mbox{V0806 Per} & 02 41 46.4 + 42 30 00 BY \\ \mbox{V0806 Per} & 02 41 50.3 + 42 44 38 BY \\ \mbox{V0806 Per} & 02 41 51.3 + 42 34 25 BY \\ \mbox{V0810 Per} & 02 41 51.3 + 42 34 25 BY \\ \mbox{V0811 Per} & 02 41 51.3 + 42 34 25 BY \\ \mbox{V0811 Per} & 02 41 53.2 + 42 35 26 BY \\ \mbox{V0815 Per} & 02 41 53.2 + 42 35 26 BY \\ \mbox{V0815 Per} & 02 41 53.2 + 42 35 26 BY \\ \mbox{V0815 Per} & 02 41 53.2 + 42 35 26 BY \\ \mbox{V0815 Per} & 02 41 53.3 + 42 29 0 BY \\ \mbox{V0815 Per} & 02 41 55.2 + 42 50 32 BY \\ \mbox{V0816 Per} & 02 41 55.2 + 42 53 30 BY \\ \mbox{V0817 Per} & 02 41 55.2 + 42 53 33 BY \\ \mbox{V0817 Per} & 02 41 55.2 + 42 53 33 BY \\ \mbox{V0817 Per} & 02 41 55.2 + 42 53 33 BY \\ \mbox{V0818 Per} & 02 41 55.2 + 42 53 33 BY \\ \mbox{V0819 Per} & 02 41 55.2 + 42 53 33 BY \\ \mbox{V0821 Per} & 02 41 55.2 + 42 53 32 BY \\ \mbox{V0821 Per} & 02 41 55.2 + 42 53 32 BY \\ \mbox{V0821 Per} & 02 41 55.2 + 42 53 32 BY \\ \mbox{V0821 Per} & 02 41 55.2 + 42 53 22 BY \\ \mbox{V0821 Per} & 02 41 55.2 + 42 53 22 BY \\ \mbox{V0821 Per} & 02 42 0.3 + 42 58 31 BY \\ \mbox{V0822 Per} & 02 42 0.2 5 + 42 51 52 BY \\ \mbox{V0824 Per} & 02 42 0.2 5 + 42 51 52 BY \\ \mbox{V0825 Per} & 02 42 0.2 5 + 42 37 47 BY \\ \mbox{V0826 Per} & 02 42 0.3 + 42 34 50 BY \\ \mbox{V0826 Per} & 02 42 0.6 + 42 34 09 BY \\ \mbox{V0826 Per} & 02 42 10.3 + 42 34 50 BY \\ \mbox{V0826 Per} & 02 42 10.3 + 42 34 50 BY \\ \mbox{V0826 Per} & 02 42 10.3 + 42 34 50 BY \\ \mbox{V0826 Per} & 02 42 11.7 + 42 31 18 BY \\ \mbox{V0826 Per} & 03 06 20.5 + 48 31 12 EA \\ \mbox{V0836 Per} & 02 42 11.7 + 42 31 48 BY \\ \mbox{V0836 Per} & 02 42 11.7 + 42 31 48 BY \\ \mbox{V0836 Per} & 02 42 11.7 + 42 31 48 BY \\ \mbox{V0836 Per} & 02 42 11.7 + 42 31 48 BY \\ \mbox{V0836 Per} & 02 42 11.7 + 42 33 48 BY \\ \mbox{V0836 Per} & 02 42 11.7 + 42 34 81 BY \\ V0836 Per$	V0803 1 er	02 41 44.0 + 42 40 52 D1 02 41 44 2 + 42 46 08 PV	$V_{00} = 02 + 2 + 1.0 + 42 + 0 + 02 + 10 + 42 + 0 + 02 + 10 + 10 + 10 + 10 + 10 + 10$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	V0804 Per	$02 \ 41 \ 44.2 \ +42 \ 40 \ 08 \ D1$ $02 \ 41 \ 44.2 \ +42 \ 40 \ 08 \ D1$	V0850 Per 02 42 45.7 $\pm$ 42 45 42 B1
10800 Per $02 41 40.4 + 42 32 32 32 81$ $10800$ Per $02 42 40.4 + 42 33 17 81$ $10800$ Per $02 41 48.5 + 42 49 34 81 8Y$ $10850$ Per $02 42 47.5 + 42 45 47 8Y$ $10800$ Per $02 41 50.3 + 42 44 38 81 Y$ $10860$ Per $02 42 47.5 + 42 45 47 81 81 Y$ $10800$ Per $02 41 51.3 + 42 34 25 81 Y$ $10860$ Per $02 42 47.5 + 42 45 80 81 81 Y$ $10810$ Per $02 41 51.7 + 42 38 23 81 Y$ $10866$ Per $02 42 50.8 + 42 58 08 81 Y$ $10810$ Per $02 41 51.7 + 42 38 23 81 Y$ $10866$ Per $02 42 55.2 + 42 50 41 81 Y$ $10810$ Per $02 41 53.2 + 42 35 26 81 Y$ $10866$ Per $02 42 55.2 + 42 50 41 81 Y$ $10817$ Per $02 41 53.2 + 42 35 20 81 Y$ $10866$ Per $02 42 57.8 + 42 58 04 81 Y$ $10817$ Per $02 41 55.2 + 42 50 32 81 Y$ $10866$ Per $02 42 57.9 + 42 41 47 81 Y$ $10817$ Per $02 41 55.2 + 42 53 30 81 Y$ $10877$ Per $02 42 57.9 + 42 58 01 81 Y$ $10817$ Per $02 41 55.2 + 42 53 32 81 Y$ $10877$ Per $02 47 08.2 + 41 22 32 81 Y$ $10820$ Per $02 41 57.9 + 42 53 22 81 Y$ $10877$ Per $02 47 08.2 + 41 22 32 81 Y$ $10820$ Per $02 42 02.5 + 42 51 52 81 Y$ $10877$ Per $02 57 10.0 + 53 18 02 84 RS$ $10820$ Per $02 42 07.5 + 42 37 47 81 Y$ $10877$ Per $02 59 03.8 + 40 36 20 81 Y$ $10820$ Per $02 42 07.5 + 42 37 17 81 Y$ $10887$ Per $02 59 03.8 + 57 03 34 82 N$ $10820$ Per $02 42 10.3 + 42 34 50 81 Y$ $10888$ Per $03 06 21.7 + 54 47 02 81 N$ $10820$ Per $02 42 11.7 + 42 31 18 81 Y$ <td< td=""><td>V0805 Per</td><td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td><td>V0859 Per 02 42 44.9 +55 04 02 LB</td></td<>	V0805 Per	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	V0859 Per 02 42 44.9 +55 04 02 LB
V0800 Per0224148.54424934BY $V0800$ Per0221150.3+424438BY $V0862$ Per024247.7+424743BY $V0801$ Per024151.3+424438BY $V0863$ Per024247.7+424743BY $V0810$ Per024151.3+424382BY $V0866$ Per024250.8+425088BY $V0812$ Per024153.2+423526BY $V0866$ Per024255.2+425004BY $V0814$ Per024153.3+423210BY $V0866$ Per024257.8+425322BY $V0816$ Per024155.2+425032BY $V0867$ Per024257.9+424147BY $V0816$ Per024155.2+425032BY $V0870$ Per024257.9+424147BY $V0817$ Per024155.2+425032BY $V0870$ Per024250.3HY $V0816$ Per024155.9+425333BY $V0870$ Per024708.2+412323EW $V0820$ Per024155.9+4253 </td <td>V0806 Per</td> <td>02 41 40.4 +42 32 32 BY</td> <td>V0860 Per 02 42 46.4 $\pm$ 42 39 11 BY</td>	V0806 Per	02 41 40.4 +42 32 32 BY	V0860 Per 02 42 46.4 $\pm$ 42 39 11 BY
V0808 Per022449.04424000BYV0802 Per022424.743BYV0809 Per024151.3+424438BYV0863 Per024243.8H30035BYV0811 Per024151.3+423425BYV0864 Per024255.8+425808BYV0812 Per024153.2+423526BYV0866 Per024255.2+425022BYV0814 Per024153.3+423210BYV0868 Per024257.8+425804BYV0815 Per024155.3+425030BYV0868 Per024257.8+425801BYV0816 Per024155.8+425032BYV0870 Per024257.9+424169V0817 Per024155.8+425332BYV0873 Per024768.2+412322EWV0820 Per024155.9+425322BYV0877 Per025060.7+345508UGV0821 Per024202.8+425333BYV0873 Per025060.7+423508UGV0822 Per	V0807 Per	02 41 48.5 +42 49 34 BY	V0801 Per 02 42 47.5 $+42$ 45 47 BY
V0809 Per0224150.3+42442425BYV0810 Per022151.3+423425BYV0864 Per024250.8+425808BYV0811 Per024151.7+423823BYV0865 Per024251.7+423349BYV0812 Per024153.3+423506BYV0866 Per024255.2+425041BYV0815 Per024154.3+425936BYV0869 Per024257.9+4218PrV0816 Per024155.4+425530BYV0869 Per024257.9+4218PrV0817 Per024155.9+425333BYV0870 Per024415.9+564556EAV0817 Per024155.9+425332BYV0870 Per024415.9+5680IGV0817 Per024155.9+425332BYV0873 Per024708.2+423333BYV0820 Per024201.8+425152BYV0874 Per025002.7+412323EWV0822 Per024202.5+425322BY	V0808 Per	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	V0862 Per U2 42 47.7 $+42$ 47 43 BY
V0810 Per0224151.7+423823BYV0811 Per024151.7+423823BYV0812 Per024152.6+423602BYV0813 Per024153.2+423520BYV0814 Per024153.2+423520BYV0815 Per024153.3+422526BYV0816 Per024153.3+422520BYV0816 Per024153.3+425080BYV0816 Per024153.3+425080BYV0816 Per024155.2+425081BYV0817 Per024155.2+425331BYV0820 Per024155.9+425322BYV0821 Per024201.8+425331BYV0822 Per024201.8+425322BYV0823 Per024202.3+4215BYV0825 Per024207.5+427347BYV0826 Per024210.3+423747BYV0825 Per024210.3+423747BYV0826 Per024210.3+4236BYV0826 Per <td< td=""><td>V0809 Per</td><td>02 41 50.3 +42 44 38 BY</td><td>V0863 Per 02 42 49.8 +43 00 35 BY</td></td<>	V0809 Per	02 41 50.3 +42 44 38 BY	V0863 Per 02 42 49.8 +43 00 35 BY
V0811 Per0224151.7+423823BYV0865 Per0224251.7+423349BYV0812 Per0224152.6+423602BYV0866 Per024255.2+425041BYV0813 Per024153.3+423526BYV0867 Per024255.2+425041BYV0815 Per024153.3+423506BYV0869 Per024257.9+42417BYV0816 Per024155.7+425032BYV0869 Per024259.9+425801BYV0817 Per024155.9+425332BYV0870 Per024250.9+425801BYV0820 Per024155.9+425332BYV0873 Per024708.2+412232EWV0821 Per024202.5+425152BYV0875 Per025017.6+6648RS:V0822 Per024207.5+424777BYV0876 Per025548.2+393210EWV0824 Per024207.5+424778YV0876 Per025988.44060EW	V0810 Per	02 41 51.3 +42 34 25 BY	V0864 Per 02 42 50.8 +42 58 08 BY
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	V0811 Per	02 41 51.7 +42 38 23 BY	V0865 Per 02 42 51.7 +42 33 49 BY
V0813 Per024153.2 $242$ 3522BYV0814 Per024153.3 $+42$ 3210BYV0815 Per024154.3 $+42$ 5936BYV0816 Per024154.3 $+42$ 5936BYV0817 Per024155.2 $+42$ 5032BYV0817 Per024155.2 $+42$ 5032BYV0817 Per024155.9 $+42$ 5831BYV0819 Per024155.9 $+42$ 5831BYV0820 Per024157.9 $+42$ 5322BYV0821 Per024157.9 $+42$ 5322BYV0822 Per024201.8 $+42$ 159YV0821 Per024201.8 $+42$ 159YV0822 Per024202.5 $+42$ 3747BYV0823 Per024207.5 $+42$ 3747BYV0826 Per024210.3 $+42$ 3747BYV0826 Per024210.3 $+42$ 3768YV0826 Per024210.3 $+42$ 36BYV0826 Per024210.3 $+42$ 36BYV0826 Per024210.44236BY <td< td=""><td>V0812 Per</td><td>$02 \ 41 \ 52.6 \ +42 \ 36 \ 02 \ BY$</td><td>V0866 Per 02 42 55.2 +42 50 41 BY</td></td<>	V0812 Per	$02 \ 41 \ 52.6 \ +42 \ 36 \ 02 \ BY$	V0866 Per 02 42 55.2 +42 50 41 BY
V0814Per024153.3 $+42$ 3210BYV0868Per024225.7.8 $+42$ 5804BYV0815Per024154.3 $+42$ 30BYV0869Per024257.9 $+42$ 4147BYV0817Per024155.2 $+42$ 5032BYV0870Per024415.9 $+56$ 6.6V0819Per024155.9 $+42$ 5332BYV0871Per024602.3 $+34$ 5508UGV0820Per024157.9 $+42$ 5322BYV0873Per024708.2 $+41$ 2232EWV0820Per024201.8 $+42$ 4159BYV0873Per02500.7 $+37$ 2903RS:V0821Per024202.3 $+42$ 3113BYV0876Per025558.2 $+33$ 31802EAV0824Per024207.5 $+42$ 3745BYV0876Per025588.4406020EW:V0826Per024210.3 $+42$ 5966BYV0880Per025953.1 $+35$ 0344EAV0829Per02 <t< td=""><td>V0813 Per</td><td>$02 \ 41 \ 53.2 \ +42 \ 35 \ 26 \ BY$</td><td>V0867 Per 02 42 56.9 +42 35 22 BY</td></t<>	V0813 Per	$02 \ 41 \ 53.2 \ +42 \ 35 \ 26 \ BY$	V0867 Per 02 42 56.9 +42 35 22 BY
V0815 Per024154.3 $+42$ 5936BYV0869 Per024257.9 $+42$ 4147BYV0816 Per024155.2 $+42$ 5032BYV0870 Per024259.9 $+42$ 5801BYV0817 Per024155.2 $+42$ 5032BYV0871 Per024415.9 $+56$ 4056EAV0819 Per024155.9 $+42$ 5333BYV0871 Per024415.9 $+56$ 4056EAV0820 Per024157.9 $+42$ 5332BYV0873 Per024708.2 $+41$ 2323EWV0821 Per024201.8 $+42$ 4159BYV0876 Per025548.2 $+39$ 3210EWV0823 Per024207.5 $+42$ 4777BYV0877 Per025757.7 $+41$ 5135RS:V0824 Per024207.8 $+42$ 3745BYV0879 Per025908.8 $+40$ 6020EW:V0825 Per024210.3 $+42$ 3745BYV0880 Per025908.8 $+40$ 6020EW:V0829 Per024211.7 $+42$ 31BYV0884 Per030602.7 $+4$	V0814 Per	$02 \ 41 \ 53.3 \ +42 \ 32 \ 10 \ BY$	V0868 Per 02 42 57.8 +42 58 04 BY
V0816Per024154.7+423530BYV0870Per024259.9+425801BYV0817Per024155.2+425032BYV0871Per024415.9+564056EAV0819Per024155.9+425331BYV0872Per024602.3+345508UGV0820Per024157.9+425322BYV0873Per024708.2+412232EWV0821Per024202.3+430113BYV0875Per025548.2+393210EWV0823Per024202.5+425152BYV0876Per025752.7+415135RS:V0824Per024207.5+424777BYV0879Per025846.0+533712LBV0825Per024210.3+4235BYV0879Per025953.1+380148EWV0829Per024210.6+423409BYV0883Per030408.8+571754DCEPSV0830Per0242 <td< td=""><td>V0815 Per</td><td>$02 \ 41 \ 54.3 \ +42 \ 59 \ 36 \ BY$</td><td>V0869 Per 02 42 57.9 $+42$ 41 47 BY</td></td<>	V0815 Per	$02 \ 41 \ 54.3 \ +42 \ 59 \ 36 \ BY$	V0869 Per 02 42 57.9 $+42$ 41 47 BY
V0817 Per024155.2+425032BYV0871 Per024415.9+564056EAV0818 Per024155.8+423333BYV0872 Per024602.3+345508UGV0819 Per024155.9+425831BYV0873 Per024708.2+412232EWV0820 Per024201.8+42159BYV0874 Per025020.7+372903RS:V0821 Per024202.3+430113BYV0875 Per025217.6+361648RS:V0822 Per024202.5+423747BYV0877 Per025752.7+415135RS:V0825 Per024207.5+424727BYV0879 Per025846.0+533712LBV0826 Per024210.3+423450BYV0880 Per025953.1+380148EWV0829 Per024210.6+423409BYV0883 Per030353.4+571344EAV0832 Per024211.7+4231BYV0883 Per030621.7+5431EWV0832 Pe	V0816 Per	$02 \ 41 \ 54.7 \ +42 \ 35 \ 30 \ BY$	V0870 Per 02 42 59.9 +42 58 01 BY
V0818 Per024155.8+423333BYV0872 Per024602.3+345508UGV0819 Per024155.9+425831BYV0873 Per024708.2+412232EWV0820 Per024157.9+425322BYV0873 Per024708.2+412232EWV0821 Per024201.8+424159BYV0876 Per025217.6+361648RS:V0822 Per024202.5+425152BYV0876 Per025710.0+531802EAV0824 Per024207.5+424727BYV0879 Per025846.0+533712LBV0826 Per024210.3+423450BYV0880 Per025953.1+380148EWV0829 Per024210.3+4236BYV0880 Per030353.4+570334EAV0832 Per024211.7+423118BYV0883 Per030408.8+571754DCEPSV0833 Per024216.1+423410BYV0886 Per030751.8+544454EA <td>V0817 Per</td> <td>$02 \ 41 \ 55.2 \ +42 \ 50 \ 32 \ BY$</td> <td>V0871 Per 02 44 15.9 $+56$ 40 56 EA</td>	V0817 Per	$02 \ 41 \ 55.2 \ +42 \ 50 \ 32 \ BY$	V0871 Per 02 44 15.9 $+56$ 40 56 EA
V0819 Per024155.9 $+42$ 5831BYV0873 Per024708.2 $+41$ 2232EWV0820 Per024157.9 $+42$ 5322BYV0874 Per025020.7 $+37$ 2903RS:V0821 Per024201.8 $+42$ 4159BYV0875 Per025217.6 $+36$ 1648RS:V0822 Per024202.3 $+43$ 0113BYV0875 Per025548.2 $+39$ 3210EWV0823 Per024202.5 $+42$ 5152BYV0876 Per025752.7 $+41$ 5135RS:V0825 Per024207.5 $+42$ 4777BYV0879 Per025846.0 $+53$ 3712LBV0826 Per024210.3 $+42$ 3745BYV0881 Per025998.8 $+40$ 3620EW:V0829 Per024210.3 $+42$ 36BYV0882 Per030353.4 $+57$ 0334EAV0829 Per024211.7 $+42$ 3118BYV0885 Per030621.7 $+54$ 4702EWV0831 Per024216.1 $+42$ 3416BYV0886 Per030937.6 $+$	V0818 Per	$02 \ 41 \ 55.8 \ +42 \ 33 \ 33 \ BY$	V0872 Per 02 46 02.3 $+34$ 55 08 UG
V0820 Per024157.9 $+42$ 5322BYV0874 Per025020.7 $+37$ 2903RS:V0821 Per024201.8 $+42$ 4159BYV0875 Per025217.6 $+36$ 1648RS:V0822 Per024202.5 $+42$ 5152BYV0876 Per0255 $48.2$ $+39$ 3210EWV0824 Per024202.5 $+42$ 3747BYV0877 Per0257 $52.7$ $+41$ 5135RS:V0825 Per024207.5 $+42$ 4727BYV0879 Per0259 $08.8$ $+40$ 3620EW:V0826 Per024210.3 $+42$ 3745BYV0880 Per0259 $08.8$ $+40$ 3620EW:V0827 Per024210.3 $+42$ 36BYV0880 Per0259 $53.1$ $+38$ 0148EWV0829 Per024210.6 $+42$ 3409BYV0883 Per0304 $08.8$ $+57$ 1754DCEPSV0830 Per024211.7 $+42$ 3118BYV0886 Per0306 $21.7$ $+54$ 4702EWV0832 Per024216.1 $+42$ 3418BYV0886 Per0309<	V0819 Per	$02 \ 41 \ 55.9 \ +42 \ 58 \ 31 \ BY$	V0873 Per 02 47 08.2 $+41$ 22 32 EW
V0821 Per024201.8 $+42$ 4159BYV0875 Per025217.6 $+36$ 1648RS:V0822 Per024202.3 $+43$ 0113BYV0876 Per0255 $48.2$ $+39$ 3210EWV0823 Per024202.5 $+42$ 5152BYV0876 Per0257 $10.0$ $+53$ 1802EAV0824 Per024207.5 $+42$ 4727BYV0877 Per0257 $52.7$ $+41$ $51$ 35RS:V0826 Per024207.5 $+42$ 3745BYV0879 Per0259 $08.8$ $+40$ 3620EW:V0827 Per024210.3 $+42$ 3745BYV0880 Per0259 $53.1$ $+38$ 0148EWV0828 Per024210.3 $+42$ 36BYV0881 Per03 $03$ $53.4$ $+57$ $03$ $34$ EAV0829 Per024211.0 $+42$ 4316BYV0883 Per $03$ $04$ $08.8$ $+57$ $17$ $54$ DCEPSV0831 Per024211.7 $+42$ 3118BYV0886 Per $03$ $06$ $21.7$ $+54$ $47$ $02$ EWV0832 Per024216.1 $+42$ 40BYV0887 Per $03$ </td <td>V0820 Per</td> <td>$02 \ 41 \ 57.9 \ +42 \ 53 \ 22 \ BY$</td> <td>V0874 Per 02 50 20.7 $+37$ 29 03 RS:</td>	V0820 Per	$02 \ 41 \ 57.9 \ +42 \ 53 \ 22 \ BY$	V0874 Per 02 50 20.7 $+37$ 29 03 RS:
V0822 Per $02$ $42$ $02.3$ $+43$ $01$ $13$ BY $V0876$ Per $02$ $55$ $48.2$ $+39$ $32$ $10$ EW $V0823$ Per $02$ $42$ $02.5$ $+42$ $51$ $52$ BY $V0877$ Per $02$ $57$ $10.0$ $+53$ $18$ $02$ EA $V0824$ Per $02$ $42$ $07.5$ $+42$ $37$ $47$ BY $V0878$ Per $02$ $57$ $52.7$ $+41$ $51$ $35$ RS: $V0825$ Per $02$ $42$ $07.5$ $+42$ $37$ $45$ BY $V0879$ Per $02$ $58$ $46.0$ $+53$ $37$ $12$ LB $V0826$ Per $02$ $42$ $10.3$ $+42$ $37$ $45$ BY $V08879$ Per $02$ $59$ $08.8$ $+40$ $36$ $20$ EW: $V0827$ Per $02$ $42$ $10.3$ $+42$ $36$ BY $V0880$ Per $02$ $59$ $53.1$ $+38$ $01$ $48$ EW $V0829$ Per $02$ $42$ $10.6$ $+42$ $34$ $09$ BY $V0883$ Per $03$ $04$ $08.8$ $+57$ $17$ $54$ DCEPS $V0830$ Per $02$ $42$ $11.7$ $+42$ $31$ $18$ BY $V0885$ Per $03$ $06$ $21.7$ $+54$ $47$ $02$ EW $V0833$ Per $02$ $42$ $16.1$ $+42$ $34$ $11$ BY $V0886$ Per $03$ $10$ $54.7$ <td< td=""><td>V0821 Per</td><td>$02 \ 42 \ 01.8 \ +42 \ 41 \ 59 \ BY$</td><td>V0875 Per 02 52 17.6 $+36$ 16 48 RS:</td></td<>	V0821 Per	$02 \ 42 \ 01.8 \ +42 \ 41 \ 59 \ BY$	V0875 Per 02 52 17.6 $+36$ 16 48 RS:
V0823 Per $02$ $42$ $02.5$ $+42$ $51$ $52$ BY $V0877$ Per $02$ $57$ $10.0$ $+53$ $18$ $02$ EA $V0824$ Per $02$ $42$ $04.9$ $+42$ $37$ $47$ BY $V0877$ Per $02$ $57$ $52.7$ $+41$ $51$ $35$ RS: $V0825$ Per $02$ $42$ $07.5$ $+42$ $47$ $27$ BY $V0879$ Per $02$ $58$ $46.0$ $+53$ $37$ $12$ LB $V0826$ Per $02$ $42$ $10.3$ $+42$ $37$ $45$ BY $V0879$ Per $02$ $59$ $08.8$ $+40$ $36$ $20$ EW: $V0827$ Per $02$ $42$ $10.3$ $+42$ $36$ BY $V0880$ Per $02$ $59$ $53.1$ $+38$ $01$ $48$ EW $V0829$ Per $02$ $42$ $10.6$ $+42$ $34$ $09$ BY $V0883$ Per $03$ $04$ $08.8$ $+57$ $17$ $54$ DCEPS $V0830$ Per $02$ $42$ $11.7$ $+42$ $31$ BY $V0883$ Per $03$ $06$ $21.7$ $+54$ $47$ $02$ EW $V0833$ Per $02$ $42$ $17.7$ $+42$ $34$ BY $V0888$ Per $03$ $09$ $37.6$ $+50$ $53$ $31$ EA $V0834$ Per $02$ $42$ $17.7$ $+42$ $38$ $12$ BY $V0889$ Per $03$ $14$ $54.5$ $+55$ $249$ <t< td=""><td>V0822 Per</td><td>02 $42$ $02.3$ $+43$ $01$ $13$ BY</td><td>V0876 Per 02 55 48.2 $+39$ 32 10 EW</td></t<>	V0822 Per	02 $42$ $02.3$ $+43$ $01$ $13$ BY	V0876 Per 02 55 48.2 $+39$ 32 10 EW
V0824 Per $02$ $42$ $04.9$ $+42$ $37$ $47$ BY $V0878$ Per $02$ $57$ $52.7$ $+41$ $51$ $35$ RS: $V0825$ Per $02$ $42$ $07.5$ $+42$ $47$ $27$ BY $V0879$ Per $02$ $58$ $46.0$ $+53$ $37$ $12$ LB $V0826$ Per $02$ $42$ $10.3$ $+42$ $37$ $45$ BY $V0879$ Per $02$ $59$ $08.8$ $+40$ $36$ $20$ EW: $V0827$ Per $02$ $42$ $10.3$ $+42$ $34$ $50$ BY $V0880$ Per $02$ $59$ $53.1$ $+38$ $01$ $48$ EW $V0829$ Per $02$ $42$ $10.6$ $+42$ $34$ $09$ BY $V0881$ Per $03$ $04$ $08.8$ $+57$ $17$ $54$ DCEPS $V0830$ Per $02$ $42$ $11.7$ $+42$ $31$ $BY$ $V0883$ Per $03$ $04$ $08.8$ $+57$ $17$ $54$ DCEPS $V0831$ Per $02$ $42$ $11.7$ $+42$ $31$ $BY$ $V0885$ Per $03$ $06$ $21.7$ $+54$ $47$ $02$ EW $V0833$ Per $02$ $42$ $16.1$ $+42$ $34$ $01$ BY $V0886$ Per $03$ $09$ $37.6$ $+50$ $53$ $31$ EA $V0835$ Per $02$ $42$ $17.7$ $+42$ $38$ $12$ BY $V0890$ Per $03$ $15$ $54.7$ $+55$ <	V0823 Per	02 $42$ $02.5$ $+42$ $51$ $52$ BY	V0877 Per 02 57 10.0 $+53$ 18 02 EA
V0825 Per $02$ $42$ $07.5$ $+42$ $47$ $27$ BY $V0879$ Per $02$ $58$ $46.0$ $+53$ $37$ $12$ LB $V0826$ Per $02$ $42$ $07.8$ $+42$ $37$ $45$ BY $V0880$ Per $02$ $59$ $08.8$ $+40$ $36$ $20$ EW: $V0827$ Per $02$ $42$ $10.3$ $+42$ $34$ $50$ BY $V0880$ Per $02$ $59$ $53.1$ $+38$ $01$ $48$ EW $V0829$ Per $02$ $42$ $10.6$ $+42$ $34$ $09$ BY $V0883$ Per $03$ $03$ $53.4$ $+57$ $03$ $34$ EA $V0829$ Per $02$ $42$ $11.0$ $+42$ $31$ $6$ BY $V0883$ Per $03$ $04$ $08.8$ $+57$ $17$ $54$ $DCEPS$ $V0830$ Per $02$ $42$ $11.7$ $+42$ $31$ $18$ BY $V0883$ Per $03$ $06$ $21.7$ $+54$ $47$ $02$ EW $V0833$ Per $02$ $42$ $16.1$ $+42$ $34$ $01$ BY $V0886$ Per $03$ $09$ $18.8$ $+43$ $44$ $54$ EA $V0835$ Per $02$ $42$ $16.2$ $+42$ $31$ $11$ $87$ $V0889$ Per $03$ $11$ $58.9$ $+46$ $07$ $43$ GDOR $V0836$ Per $02$ $42$ $17.2$ $+42$ $48$ $19$ $87$ $V0890$ Per $03$ $15$	V0824 Per	02 42 04.9 +42 37 47 BY	V0878 Per 02 57 52.7 $+41$ 51 35 RS:
V0826 Per $02$ $42$ $07.8$ $+42$ $37$ $45$ BY $V0880$ Per $02$ $59$ $08.8$ $+40$ $36$ $20$ EW: $V0827$ Per $02$ $42$ $10.3$ $+42$ $34$ $50$ BY $V0881$ Per $02$ $59$ $53.1$ $+38$ $01$ $48$ EW $V0829$ Per $02$ $42$ $10.6$ $+42$ $34$ $09$ BY $V0882$ Per $03$ $03$ $53.4$ $+57$ $03$ $34$ EA $V0829$ Per $02$ $42$ $11.0$ $+42$ $43$ $16$ BY $V0883$ Per $03$ $04$ $08.8$ $+57$ $17$ $54$ DCEPS $V0830$ Per $02$ $42$ $11.7$ $+42$ $31$ $16$ BY $V0883$ Per $03$ $06$ $20.5$ $+48$ $33$ $12$ $EA$ $V0832$ Per $02$ $42$ $11.7$ $+42$ $31$ $18$ $8Y$ $V0885$ Per $03$ $06$ $21.7$ $+54$ $47$ $02$ $EW$ $V0833$ Per $02$ $42$ $16.1$ $+42$ $34$ $01$ $BY$ $V0886$ Per $03$ $09$ $18.8$ $+43$ $44$ $54$ $EA$ $V0835$ Per $02$ $42$ $16.2$ $+42$ $31$ $11$ $BY$ $V0889$ Per $03$ $11$ $58.9$ $+46$ $07$ $43$ $GDOR$ $V0836$ Per $02$ $42$ $17.2$ $+42$ $48$ $19$ $BY$ $V0890$ Per $03$ <t< td=""><td>V0825 Per</td><td>02 $42$ $07.5$ $+42$ $47$ $27$ BY</td><td>V0879 Per 02 58 $46.0 + 53 37 12$ LB</td></t<>	V0825 Per	02 $42$ $07.5$ $+42$ $47$ $27$ BY	V0879 Per 02 58 $46.0 + 53 37 12$ LB
V0827 Per $02$ $42$ $10.3$ $+42$ $34$ $50$ BY $V0881$ Per $02$ $59$ $53.1$ $+38$ $01$ $48$ EW $V0828$ Per $02$ $42$ $10.3$ $+42$ $59$ $36$ BY $V0882$ Per $03$ $03$ $53.4$ $+57$ $03$ $34$ EA $V0829$ Per $02$ $42$ $11.6$ $+42$ $34$ $09$ BY $V0882$ Per $03$ $04$ $08.8$ $+57$ $17$ $54$ DCEPS $V0830$ Per $02$ $42$ $11.7$ $+42$ $31$ $18$ BY $V0883$ Per $03$ $06$ $21.7$ $+54$ $47$ $02$ EW $V0832$ Per $02$ $42$ $11.7$ $+42$ $48$ BY $V0885$ Per $03$ $06$ $21.7$ $+54$ $47$ $02$ EW $V0833$ Per $02$ $42$ $16.1$ $+42$ $44$ BY $V0886$ Per $03$ $07$ $51.8$ $+55$ $04$ $8EB$ $V0834$ Per $02$ $42$ $16.1$ $+42$ $34$ $01$ BY $V0886$ Per $03$ $09$ $37.6$ $+50$ $53$ $31$ EA $V0835$ Per $02$ $42$ $16.2$ $+42$ $43$ $11$ BY $V0889$ Per $03$ $11$ $58.9$ $+46$ $07$ $43$ GDOR $V0837$ Per $02$ $42$ $17.3$ $+42$ $38$ $12$ BY $V0890$ Per $03$ $15$ $54.7$ $+55$ $52$	V0826 Per	02 $42$ $07.8$ $+42$ $37$ $45$ BY	V0880 Per 02 59 08.8 $+40$ 36 20 EW:
V0828 Per $02$ $42$ $10.3$ $+42$ $59$ $36$ BY $V0882$ Per $03$ $03$ $53.4$ $+57$ $03$ $34$ $EA$ $V0829$ Per $02$ $42$ $10.6$ $+42$ $34$ $09$ BY $V0883$ Per $03$ $04$ $08.8$ $+57$ $17$ $54$ $DCEPS$ $V0830$ Per $02$ $42$ $11.7$ $+42$ $31$ $18$ BY $V0883$ Per $03$ $06$ $20.5$ $+48$ $33$ $12$ $EA$ $V0831$ Per $02$ $42$ $11.7$ $+42$ $31$ $18$ BY $V0885$ Per $03$ $06$ $21.7$ $+54$ $47$ $02$ $EW$ $V0833$ Per $02$ $42$ $12.5$ $+42$ $49$ $29$ BY $V0886$ Per $03$ $07$ $51.8$ $+55$ $04$ $38$ $EB$ $V0834$ Per $02$ $42$ $16.1$ $+42$ $34$ $01$ BY $V0886$ Per $03$ $09$ $37.6$ $+50$ $53$ $31$ $EA$ $V0835$ Per $02$ $42$ $16.2$ $+42$ $43$ $11$ BY $V0889$ Per $03$ $11$ $58.9$ $+46$ $07$ $43$ GDOR $V0837$ Per $02$ $42$ $17.3$ $+42$ $38$ $12$ BY $V0890$ Per $03$ $14$ $54.5$ $52$ $49$ DCEP $V0839$ Per $02$ $42$ $21.7$ $+42$ $48$ $19$ $19$ $V0892$ Per $03$ $16$	V0827 Per	02 42 10.3 +42 34 50 BY	V0881 Per 02 59 53.1 $+38$ 01 48 EW
V0829 Per $02$ $42$ $10.6$ $+42$ $34$ $09$ BY $V0883$ Per $03$ $04$ $08.8$ $+57$ $17$ $54$ DCEPS $V0830$ Per $02$ $42$ $11.0$ $+42$ $43$ $16$ BY $V0883$ Per $03$ $06$ $20.5$ $+48$ $33$ $12$ EA $V0831$ Per $02$ $42$ $11.7$ $+42$ $43$ $48$ BY $V0885$ Per $03$ $06$ $21.7$ $+54$ $47$ $02$ EW $V0833$ Per $02$ $42$ $11.7$ $+42$ $48$ BY $V0886$ Per $03$ $07$ $51.8$ $+55$ $04$ $38$ EB $V0834$ Per $02$ $42$ $16.1$ $+42$ $40$ BY $V0886$ Per $03$ $09$ $37.6$ $+50$ $53$ $31$ EA $V0835$ Per $02$ $42$ $16.2$ $+42$ $43$ $11$ BY $V0888$ Per $03$ $09$ $37.6$ $+50$ $53$ $31$ EA $V0836$ Per $02$ $42$ $17.0$ $+42$ $38$ $12$ BY $V0890$ Per $03$ $11$ $58.9$ $+46$ $07$ $43$ GDOR $V0837$ Per $02$ $42$ $17.3$ $+42$ $13$ BY $V0890$ Per $03$ $15$ $55.8$ $+56$ $12$ $45$ DCEP $V0839$ Per $02$ $42$ $21.7$ $+42$ $38$ $21$ $BY$ $V0892$ Per $03$ $16$ $10.4$ $+41$ $19$ <td>V0828 Per</td> <td>02 42 10.3 +42 59 36 BY</td> <td>V0882 Per 03 03 53.4 $+57$ 03 34 EA</td>	V0828 Per	02 42 10.3 +42 59 36 BY	V0882 Per 03 03 53.4 $+57$ 03 34 EA
V0830 Per024211.0+424316BYV0884 Per030620.5+483312EAV0831 Per024211.7+423118BYV0885 Per030621.7+544702EWV0832 Per024211.7+424348BYV0885 Per030751.8+550438EBV0833 Per024216.1+423401BYV0887 Per030937.6+505331EAV0835 Per024216.2+424311BYV0888 Per030937.6+505331EAV0836 Per024217.0+423812BYV0889 Per031158.9+460743GDORV0837 Per024217.2+424819BYV0890 Per031254.7+502935EAV0838 Per024217.3+425130BYV0891 Per031505.8+561245DCEPV0839 Per024221.9+423213BYV0893 Per031610.4+411932LBV0840 Per024221.9+423821BYV0894 Per031848.0+554012 <td>V0829 Per</td> <td>02 42 10.6 +42 34 09 BY</td> <td>V0883 Per 03 04 08.8 +57 17 54 DCEPS</td>	V0829 Per	02 42 10.6 +42 34 09 BY	V0883 Per 03 04 08.8 +57 17 54 DCEPS
V0831 Per $02$ $42$ $11.7$ $+42$ $31$ $18$ BY $V0885$ Per $03$ $06$ $21.7$ $+54$ $47$ $02$ $EW$ $V0832$ Per $02$ $42$ $11.7$ $+42$ $43$ $48$ BY $V0885$ Per $03$ $07$ $51.8$ $+55$ $04$ $38$ $EB$ $V0833$ Per $02$ $42$ $12.5$ $+42$ $49$ $29$ BY $V0886$ Per $03$ $09$ $18.8$ $+43$ $44$ $54$ $EA$ $V0834$ Per $02$ $42$ $16.1$ $+42$ $43$ $11$ BY $V0887$ Per $03$ $09$ $37.6$ $+50$ $53$ $31$ $EA$ $V0835$ Per $02$ $42$ $16.2$ $+42$ $43$ $11$ BY $V0889$ Per $03$ $11$ $58.9$ $+46$ $07$ $43$ GDOR $V0836$ Per $02$ $42$ $17.2$ $+42$ $48$ $19$ BY $V0890$ Per $03$ $12$ $54.7$ $+50$ $29$ $35$ $EA$ $V0837$ Per $02$ $42$ $17.3$ $+42$ $51$ $30$ BY $V0890$ Per $03$ $14$ $54.5$ $+55$ $52$ $49$ DCEP $V0839$ Per $02$ $42$ $20.3$ $+42$ $36$ $21$ $BY$ $V0893$ Per $03$ $16$ $10.4$ $+41$ $19$ $32$ $LB$ $V0840$ Per $02$ $42$ $23.3$ $+42$ $38$ $21$ $BY$ $V0894$ Per $03$	V0830 Per	02 42 11.0 +42 43 16 BY	V0884 Per 03 06 20.5 +48 33 12 EA
V0832 Per $02$ $42$ $11.7$ $+42$ $43$ $48$ $BY$ $V0886$ Per $03$ $07$ $51.8$ $+55$ $04$ $38$ $EB$ $V0833$ Per $02$ $42$ $12.5$ $+42$ $49$ $29$ $BY$ $V0886$ Per $03$ $09$ $18.8$ $+43$ $44$ $54$ $EA$ $V0834$ Per $02$ $42$ $16.1$ $+42$ $34$ $01$ $BY$ $V0887$ Per $03$ $09$ $37.6$ $+50$ $53$ $31$ $EA$ $V0835$ Per $02$ $42$ $16.2$ $+42$ $43$ $11$ $BY$ $V0889$ Per $03$ $11$ $58.9$ $+46$ $07$ $43$ $GDOR$ $V0836$ Per $02$ $42$ $17.2$ $+42$ $48$ $19$ $BY$ $V0890$ Per $03$ $12$ $54.7$ $+50$ $29$ $35$ $EA$ $V0837$ Per $02$ $42$ $17.3$ $+42$ $51$ $30$ $BY$ $V0890$ Per $03$ $14$ $54.5$ $+55$ $52$ $49$ $DCEP$ $V0839$ Per $02$ $42$ $20.3$ $+42$ $49$ $66$ $BY$ $V0892$ Per $03$ $16$ $10.4$ $+41$ $19$ $32$ $LB$ $V0840$ Per $02$ $42$ $21.3$ $+42$ $38$ $21$ $BY$ $V0894$ Per $03$ $18$ $48.0$ $+55$ $40$ $12$ $RV$ : $V0841$ Per $02$ $42$ $23.3$ $+42$ $38$ $21$ $BY$ $V0895$ Per <td>V0831 Per</td> <td>02 42 11.7 +42 31 18 BY</td> <td>V0885 Per 03 06 21.7 +54 47 02 EW</td>	V0831 Per	02 42 11.7 +42 31 18 BY	V0885 Per 03 06 21.7 +54 47 02 EW
V0833 Per       02       42       12.5       +42       49       29       BY       V0887 Per       03       09       18.8       +43       44       54       EA         V0834 Per       02       42       16.1       +42       34       01       BY       V0887 Per       03       09       18.8       +43       44       54       EA         V0835 Per       02       42       16.2       +42       43       11       BY       V0888 Per       03       09       37.6       +50       53       31       EA         V0836 Per       02       42       17.0       +42       38       12       BY       V0890 Per       03       12       54.7       +50       29       35       EA         V0837 Per       02       42       17.3       +42       51       30       BY       V0890 Per       03       14       54.5       +55       52       49       DCEP         V0838 Per       02       42       20.3       +42       49       06       BY       V0892 Per       03       16       10.4       +41       19       32       LB         V0840 Per       02       42	V0832 Per	02 42 11.7 +42 43 48 BY	V0886 Per 03 07 51.8 +55 04 38 EB
V0834 Per       02       42       16.1       +42       34       01       BY         V0835 Per       02       42       16.2       +42       43       11       BY         V0835 Per       02       42       16.2       +42       43       11       BY         V0836 Per       02       42       17.0       +42       38       12       BY         V0837 Per       02       42       17.2       +42       48       19       BY         V0838 Per       02       42       17.3       +42       51       30       BY       V0890 Per       03       14       54.5       +55       52       49       DCEP         V0839 Per       02       42       17.3       +42       51       30       BY       V0892 Per       03       15       05.8       +56       12       45       DCEP         V0839 Per       02       42       20.3       +42       49       06       BY       V0893 Per       03       16       10.4       +41       19       32       LB         V0840 Per       02       42       21.9       +42       38       21       BY       V0894 Per </td <td>V0833 Per</td> <td>02 42 12.5 +42 49 29 BY</td> <td>V0887 Per 03 09 18.8 +43 44 54 EA</td>	V0833 Per	02 42 12.5 +42 49 29 BY	V0887 Per 03 09 18.8 +43 44 54 EA
V0835 Per       02       42       16.2       +42       43       11       BY         V0836 Per       02       42       17.0       +42       38       12       BY         V0837 Per       02       42       17.2       +42       48       19       BY         V0838 Per       02       42       17.3       +42       51       30       BY         V0839 Per       02       42       17.3       +42       51       30       BY         V0839 Per       02       42       20.3       +42       49       06       BY         V0840 Per       02       42       21.9       +42       32       13       BY         V0841 Per       02       42       23.3       +42       38       21       BY         V0841 Per       02       42       23.3       +42       38       21       BY	V0834 Per	02 42 16.1 +42 34 01 BY	V0888 Per 03 09 37.6 +50 53 31 EA
V0836 Per       02       42       17.0       +42       38       12       BY         V0837 Per       02       42       17.2       +42       48       19       BY         V0837 Per       02       42       17.2       +42       48       19       BY         V0838 Per       02       42       17.3       +42       51       30       BY         V0839 Per       02       42       20.3       +42       49       06       BY         V0840 Per       02       42       21.9       +42       32       13       BY         V0841 Per       02       42       23.3       +42       38       21       BY         V0841 Per       02       42       23.3       +42       38       21       BY	V0835 Per	02 42 16.2 +42 43 11 BY	V0889 Per 03 11 58.9 +46 07 43 GDOR
V0837 Per       02       42       17.2       +42       48       19       BY         V0837 Per       02       42       17.3       +42       51       30       BY         V0839 Per       02       42       17.3       +42       51       30       BY         V0839 Per       02       42       20.3       +42       49       06       BY         V0840 Per       02       42       21.9       +42       32       13       BY         V0841 Per       02       42       23.3       +42       38       21       BY         V0895 Per       03       16       10.4       +41       19       32       LB         V0841 Per       02       42       23.3       +42       38       21       BY       V0895 Per       03       20       14       3       +55       06       57       DCEP	V0836 Per	02 42 17.0 +42 38 12 BY	V0890 Per 03 12 54.7 +50 29 35 EA
V0838 Per       02       42       17.3       +42       51       30       BY         V0839 Per       02       42       20.3       +42       49       06       BY         V0840 Per       02       42       21.9       +42       32       13       BY         V0841 Per       02       42       23.3       +42       38       21       BY         V0892 Per       03       16       10.4       +41       19       32       LB         V0841 Per       02       42       23.3       +42       38       21       BY       V0895 Per       03       16       10.4       +41       19       32       LB         V0841 Per       02       42       23.3       +42       38       21       BY       V0895 Per       03       20       14       3       +55       06       57       DCEP	V0837 Per	02 42 17.2 +42 48 19 BY	V0891 Per 03 14 54.5 +55 52 49 DCEP
V0839 Per       02       42       20.3       +42       49       06       BY         V0840 Per       02       42       21.9       +42       32       13       BY         V0841 Per       02       42       23.3       +42       38       21       BY         V0841 Per       02       42       23.3       +42       38       21       BY	V0838 Per	$02 \ 42 \ 17.3 \ +42 \ 51 \ 30 \ BY$	V0892 Per 03 15 05.8 $\pm 56$ 12 45 DCEP
V0840 Per       02       42       21.9       +42       32       13       BY       V0894 Per       03       18       48.0       +55       40       12       RV:         V0841 Per       02       42       23.3       +42       38       21       BY       V0895 Per       03       20       14.3       +55       06       57       DCEP	V0839 Per	$02 \ 42 \ 20.3 \ +42 \ 49 \ 06 \ BV$	V0893 Per 03 16 10.4 + 41 19 32 LB
V0841 Per 02 42 23 3 $\pm 42$ 38 21 BY V0895 Per 03 20 14 3 $\pm 55$ 06 57 DCEP	V0840 Per	$02 \ 42 \ 21.9 \ +42 \ 32 \ 13 \ \text{BV}$	V0894 Per 03 18 48.0 $\pm 55.40.12$ RV
	V0841 Per	$02 \ 42 \ 23.3 \ +42 \ 38 \ 21 \ BY$	V0895 Per 03 20 $14.3 + 55$ 06 57 DCEP

Table 1. (continued)

Name	R.A. Decl. Type	Name R.A. Decl. Type
	2000.0	2000.0
	hmso'"	$h m s \circ $ , "
V0896 Per	$03 \ 23 \ 55.2 \ +43 \ 43 \ 14 \ SR$	V0950 Per 04 07 54.3 +35 27 49 RS
V0897 Per	03 30 40.8 +31 36 58 RS	V0951 Per 04 10 36.3 +34 02 58 EW
V0898 Per	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	V0952 Per 04 15 51.4 +31 00 36 IB
V0899 Per	$03 \ 38 \ 45.0 \ +40 \ 14 \ 13 \ EA$	V0953 Per 04 16 34.7 +49 07 29 SR
V0900 Per V0001 Per	$03 40 57.8 \pm 31 18 00 RS$	V0954 Per 04 19 11.0 $\pm 47$ 10 40 RS V0055 Per 04 24 27 2 $\pm 48$ 00 01 LP
V0901 Per V0002 Per	$05 41 57.1 \pm 59 07 50 EA$ 02 44 186 $\pm 29 19 52 IND$	V0955 Per 04 24 57.5 +48 00 01 LB V0056 Per 04 26 27.4 +28 45 02 IP
V0902 Fer V0003 Por	$03 \ 44 \ 10.0 \ \pm 32 \ 12 \ 53 \ \text{INB}$ $03 \ 44 \ 20.0 \ \pm 32 \ 06 \ 46 \ \text{INB}$	V0950 FeI 04 20 57.4 $\pm$ 58 45 02 ID V0057 Por 04 30 33 5 $\pm$ 48 04 43 DCFP
V0904 Per	$03 44 20.0 \pm 32 00 40 \text{ INB}$ $03 44 217 \pm 32 06 25 \text{ INB}$	V0058 Per 04 31 28 $4 \pm 32$ 52 13 EA
V0905 Per	03 44 223 + 32 12 01  INB	V0959 Per 04 35 04 8 $\pm 37$ 28 21 EA
V0906 Per	$03 \ 44 \ 24.6 \ +32 \ 03 \ 57 \ \text{INB}$	V0960 Per 04 37 15.3 $+33$ 48 49 EA
V0907 Per	$03 \ 44 \ 25.3 \ +32 \ 10 \ 13 \ INB$	V0961 Per 04 37 $16.9 + 31 08 20$ IB
V0908 Per	03 44 25.6 +32 11 31 INB	V0962 Per 04 43 56.9 +37 23 03 BY
V0909 Per	03 44 26.0 +32 04 30 INT	V0963 Per 04 45 35.6 +52 22 35 EB
V0910 Per	03 44 29.7 +32 10 40 INT	V0964 Per 04 49 31.1 +51 31 11 EW
V0911 Per	$03 \ 44 \ 30.5 \ +32 \ 06 \ 30 \ INB$	DF Phe 00 01 56.9 $-52$ 50 07 LB
V0912 Per	03 44 32.2 + 39 59 35 EA/RS	DG Phe 01 09 01.5 -51 00 49 UV+BY
V0913 Per	03 44 32.6 $+32$ 08 42 INB	AR Pic 05 49 45.4 -49 21 56 UGSU
V0914 Per	03 44 32.7 $+32$ 08 37 INB	EW Psc $00 \ 01 \ 11.5 \ +09 \ 04 \ 41 \ EW$
V0915 Per	$03 \ 44 \ 33.3 \ +32 \ 09 \ 40 \ INB$	EX Psc 00 13 22.7 +05 40 09 EW
V0916 Per	$03 \ 44 \ 34.9 \ +32 \ 09 \ 54 \ INB$	EY Psc 00 15 $38.8 + 1854$ 05 EA
V0917 Per	03 44 34.9 +32 06 34 INB	EZ Psc 00 16 14.6 +19 51 38 BY
V0918 Per	03 44 36.9 +32 06 45 INB	FF Psc 00 17 48.5 +09 53 22 RRAB
V0919 Per	03 44 37.4 +32 12 24 INB	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
V0920 Per	03 44 37.9 +32 08 04 INB	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
V0921 Per	03 44 39.2 +32 09 18 INB	FI Psc $00\ 23\ 22.8\ +13\ 45\ 41\ RRAB$
V0922 Per	$03 \ 44 \ 39.2 \ +32 \ 09 \ 45 \ \text{INB}$	FK PSC 00 25 34.7 $\pm 20$ 14 29 RS
V0925 Per V0024 Por	03 44 40.1 + 32 11 34 IND 03 44 42.6 + 32 0.6 10 INB	FL PSC $00.25$ 11.1 +12 17 12 UGSU FM Psc $00.31$ 40.8 + 04 50 46 CDOR
V0924 Fei V0025 Por	$03 \ 44 \ 42.0 \ \pm 32 \ 00 \ 19 \ \text{INB}$ $03 \ 44 \ 44.6 \ \pm 32 \ 08 \ 13 \ \text{INB}$	FN Psc 00 51 49.8 $\pm 04$ 50 40 GDOR FN Psc 00 40 58.8 $\pm 00$ 58.03 RS
V0926 Per	03 44 447 + 32 04 02  INB	FO Psc 00 41 34 5 $\pm 21$ 18 03 RS
V0927 Per	03 44 50.6 + 32 19 06 IN	FP Psc $00 \ 43 \ 48.9 \ +18 \ 46 \ 53 \ BS$
V0928 Per	$03 \ 46 \ 30.4 \ +33 \ 02 \ 35 \ BS$	FO Psc 00 45 40.9 $\pm 18$ 57 03 BBAB
V0929 Per	03 56 52.6 + 51 48 51 LB	FR Psc 00 47 57.1 $+11$ 42 24 RRAB
V0930 Per	03 56 52.6 +51 51 56 EA	FS Psc 00 49 57.8 +32 56 08 BY
V0931 Per	03 57 00.8 +51 44 09 DCEPS:	FT Psc 00 50 33.2 +24 49 00 BY
V0932 Per	03 57 51.7 $+52$ 05 50 LB:	FU Psc 00 51 01.8 +20 08 23 EA/RS
V0933 Per	03 58 48.1 + 51 42 59 DCEPS	FV Psc 00 54 14.2 +30 15 50 RRAB
V0934 Per	$03\ 58\ 57.5\ +51\ 35\ 40\ {\rm EB}$	FW Psc 00 55 08.3 +29 57 17 RS
V0935 Per	03 59 11.7 $+52$ 04 33 LB:	FX Psc 00 55 15.0 $+30$ 15 16 RS
V0936 Per	03 59 20.7 + 51 14 25 EB	FY Psc $00\ 55\ 33.0\ +31\ 32\ 58\ EW$
V0937 Per	03 59 31.6 + 51 54 47 EA	FZ Psc 00 56 01.3 $+30$ 38 26 RS
V0938 Per	$03 \ 59 \ 38.2 \ +52 \ 47 \ 27 \ DCEP$	GG Psc  00  56  43.7  +32  53  36  EB
V0939 Per	03 59 39.1 +51 33 38 LB:	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
V0940 Per	03 59 57.1 +51 57 01 LB:	GI Psc 00 57 34.2 +07 46 53 RRAB
V0941 Per	$04 \ 00 \ 05.8 + 39 \ 41 \ 37 \ RS$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
V0942 Per	$04 \ 00 \ 06.2 \ \pm 51 \ 39 \ 02 \ RR:$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
V0943 Per V0044 Der	$04 \ 00 \ 41.4 \ \pm 51 \ 50 \ 59 \ LB:$	GWLPSC UI UI 54.5 $\pm$ 15 54 22 KKAB CN D ₂₂ 01 05 06 4 $\pm$ 00 25 08 DC
V0944 Fer V0045 Dor	$04 \ 00 \ 40.9 \ \pm 01 \ 11 \ 40 \ EW$ $04 \ 01 \ 05 \ 1 \ \pm 51 \ 91 \ 41 \ EW$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
V0945 Fef V0046 Der	0+ 01 00.1 + 01 21 41 EW 04 01 05 9 $\pm 34 30 03 PC$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
V0940 Fer V0047 Dor	04 01 00.2 $\pm$ 04 09 00 R5 04 03 41 0 $\pm$ 39 97 06 FW	$G_{115C}$ 01 07 05.5 +19 09 08 RS $G_{10} P_{8C}$ 01 08 42 0 $\pm 24$ 56 10 PP A P
V0948 Per	04 04 154 + 49 43 57 RS	$GR Psc \qquad 01 \ 00 \ 42.9 \ \pm 24 \ 30 \ 10 \ RRAD$
V0949 Per	04 07 53.3 +33 56 05 RS	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Name	R.A. Decl. Type	Name R.A. Decl. Type
------------------------	---------------------------------------------------------------------------------	------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
	2000.0	2000.0
	$h m s \circ $ , "	h m s $\circ$ , "
GT Psc	01 10 45.8 +33 10 55 EB	V1278 Tau 03 47 07.9 +24 23 38 BY
GU Psc	$01 \ 12 \ 35 \ 0 \ \pm 17 \ 03 \ 56 \ BS$	V1279 Tau 03 47 18 1 $\pm$ 24 13 51 BY
GV Psc	01 12 00.0 + 11 00 00 100 01 13 067 + 21 52 50 IIGSII	V1280 Tau 03 47 37 7 $\pm$ 24 23 BV
GW Psc	01 17 32 4 $\pm$ 07 53 30 EW	V1200 Tau 00 17 51.1 $+212125$ BT V1281 Tau 03 47 594 $+243537$ BY
GX Psc	01 10 15 0 $\pm$ 31 35 27 EW	V1201 1au 05 41 55.4 $+24$ 55 51 D1 V1282 Tau 03 49 061 $\pm 23$ 46 53 RS
GV Psc	01 10 15.8 $\pm 30$ 13 30 FW	V1202 Tau 05 45 00.1 $+25$ 40 55 105 V1283 Tau 03 40 42 3 $\pm 24$ 27 47 RS
C7 Psc	01 19 10.8 $\pm$ 50 15 59 EW	$V_{1205}$ rat $0.5 + 9 + 2.5 + 24 + 27 + 7 + 105$ $V_{1204}$ Top $0.3 + 51 + 26 + 17 + 7 + 52 + 52$
	01 21 39.5 $\pm 25$ 17 46 105 01 21 20 8 $\pm 25$ 26 42 DC	$V_{1204}$ 1au 05 51 20.2 $\pm 17$ 15 55 EW
	01 21 39.8 $\pm 23$ 30 42 RS 01 22 15 4 $\pm 20$ 21 20 PS	V1265 Tau 05 51 20.5 $\pm 09$ 55 57 TD. V1286 Tau 02 52 08 2 $\pm 24$ 12 40 PS.
	01 22 15.4 $\pm 20$ 21 50 RS	$V_{1200}$ 1au 05 52 00.5 $\pm 24$ 15 49 KS.
III Dae	$01 24 38.0 \pm 23 37 02 \text{ KS}$ $01 27 28.0 \pm 20.06 10 \text{ EP/PS}$	V1287 Tau 05 55 07.4 +25 52 07 EA V1288 Tau 02 52 21.4 +26 21 41 DV
HL PSC	01 27 28.9 +29 06 19 EB/RS	V1288 Iau 03 53 $31.4 \pm 203141$ BY
HM PSC	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	V1289 1au 03 54 25.2 +24 21 30 RS
HN Psc	01 29 47.9 + 33 03 36 EW	V1290 1au 03 54 30.2 +01 24 19 SRB
HO Psc	01 30 16.5 $\pm$ 13 33 25 EW	V1291 Tau 03 57 54.7 +09 08 23 RRAB
HP Psc	01 32 55.6 +20 46 49 RRAB	V1292 Tau 04 00 13.5 +28 58 47 RRAB
HQ Psc	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	V1293 Tau 04 00 31.1 +19 35 21 IB
HR Psc	01 36 27.8 +25 08 36 RS	V1294 Tau 04 00 37.2 +06 22 46 NL
HS Psc	01 37 23.2 $+26$ 57 12 RS	V1295 Tau 04 02 59.3 +27 18 55 EA
HT Psc	01 37 41.6 +07 03 20 RRAB	V1296 Tau 04 03 06.6 +04 44 15 NL
HU Psc	01 42 35.8 +10 14 40 DSCTC	V1297 Tau 04 05 12.3 +26 32 44 IB
HV Psc	01 44 53.6 $+28$ 24 58 RS	V1298 Tau 04 05 19.6 +20 09 26 IB
WY Ret	$03 \ 32 \ 19.2 \ -63 \ 32 \ 34 \ \text{EA}$	V1299 Tau 04 05 40.6 +22 48 12 IB
$V5580 \ Sgr$	18 22 01.5 -28 02 40 N	V1300 Tau 04 06 38.8 +20 18 11 IB
$V5581 \ Sgr$	17 44 08.4 $-26$ 05 49 N:	V1301 Tau 04 07 13.8 +22 09 31 DSCT
$V5582 \ Sgr$	$17 \ 45 \ 05.4 \ -20 \ 03 \ 22 \ N$	V1302 Tau 04 07 54.0 $+17$ 50 26 RS
$V5583 \ Sgr$	18 07 07.7 -33 46 35 NA	V1303 Tau 04 08 43.3 +27 08 48 SRB
$V5584 \ Sgr$	18 31 32.8 -16 19 08 NA	V1304 Tau 04 09 17.0 +17 16 08 IB
$V5585 \ Sgr$	$18 \ 07 \ 26.9 \ -29 \ 00 \ 44 \ NA$	V1305 Tau 04 09 17.2 +17 15 47 EB
$V5586 \ Sgr$	$17 \ 53 \ 03.0 \ -28 \ 12 \ 19 \ N$	V1306 Tau 04 09 51.1 +24 46 21 IB
V1310 Sco	$17 \ 06 \ 07.5 \ -37 \ 14 \ 27 \ NA$	V1307 Tau 04 12 50.6 +19 36 58 IB
V1311 Sco	$16\ 55\ 13.2\ -38\ 03\ 47\ \mathrm{NA}$	V1308 Tau 04 12 59.9 +16 11 48 IB
CO Scl	$00 \ 12 \ 17.1 \ -35 \ 11 \ 14 \ \text{LB}$	V1309 Tau 04 14 27.3 +12 26 07 BY
CP Scl	$00\ 24\ 49.4\ -27\ 44\ 19\ { m EW}$	V1310 Tau 04 14 32.3 +23 34 30 BY
CQ Scl	00 28 21.3 $-29$ 04 05 EW	V1311 Tau 04 17 03.5 +18 52 32 EW
CR Scl	00 44 30.2 $-36$ 06 29 EW	V1312 Tau 04 17 38.9 +28 33 00 IT
CS Scl	$00\ 59\ 23.5\ -26\ 32\ 52\ { m RRAB}$	V1313 Tau 04 18 10.8 +23 17 05 RS
CT Scl	01 16 00.6 $-25$ 42 33 EW	V1314 Tau 04 19 46.6 $+23$ 17 48 RS
CU Scl	01 42 26.4 $-30$ 27 37 RRC	V1315 Tau 04 19 53.7 +30 09 54 RS
V0496 Sct	$18 \ 43 \ 45.6 \ -07 \ 36 \ 42 \ NA$	V1316 Tau 04 21 27.3 +01 29 13 M
V1263 Tau	03 24 05.6 +07 29 27 E:/RS	V1317 Tau 04 23 47.6 +29 40 38 BY
V1264 Tau	03 24 25.2 +02 31 01 IT:	V1318 Tau 04 25 21.1 +25 42 56 IB
V1265 Tau	03 29 12.2 +12 50 18 UGSU	V1319 Tau 04 30 49.2 +21 14 11 IB
V1266 Tau	03 30 26.0 +31 02 18 RS	V1320 Tau 04 31 14.4 +27 10 18 IB
V1267 Tau	$03 \ 33 \ 11.6 \ +10 \ 35 \ 56 \ \text{IT}$ :	V1321 Tau 04 32 53.2 +17 35 34 IB
V1268 Tau	03 40 38.8 + 28 46 24 EA	V1322 Tau 04 33 34.7 +19 16 49 IB
V1269 Tau	$03 \ 41 \ 45.6 \ +27 \ 18 \ 57 \ \text{IT}:$	V1323 Tau 04 33 42.0 +18 24 27 IB
V1270 Tau	$03 \ 42 \ 20.9 \ +29 \ 14 \ 41 \ RS$	V1324 Tau 04 35 56.8 $\pm 23$ 52 05 IB
V1271 Tau	$03 \ 43 \ 48.3 \ +25 \ 00 \ 16 \ RS$	V1325 Tau 04 38 13.0 $\pm$ 20 02 00 HB
V1272 Tau	$03 \ 44 \ 03.6 \ +24 \ 30 \ 15 \ \text{RV}$	V1326 Tau 04 38 277 $\pm$ 15 43 38 IB
V1272 Tau	$03 \ 44 \ 53 \ 2 \ +03 \ 50 \ 31 \ \text{IR}$	V1327 Tau 04 40 000 $\pm 11$ 43 17 RRC
V1974 Tau	$03 \ 45 \ 57 \ 0 \ \pm 97 \ 33 \ 35 \ RS$	V1328 T ₂₁₁ $0/1$ $1/1$ $0/1$ $1/1$ $0/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$ $1/1$
V1274 Tau V1975 Tau	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	V1320 Tau 04 41 24.0 $\pm 21$ 15 12 1D V1320 Tau 04 41 55.9 $\pm 26.58$ 40 ID
V1276 Tou	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	V1320 T ₂₁₁ $04$ 42 186 $\pm 01$ 17 40 DC
V1270 Tau V1977 To	$03 40 52.0 \pm 24 20 34 DI$ 03 46 54 0 $\pm 94 99 00 DV$	V1221 Top 04 42 26.0 $\pm 15.46.04$ ID
vizii iau	00 40 04.9 +24 20 00 DI	v 1551 Tau 04 45 20.0 +15 40 04 IB

Table 1. (continued)

Name	R.A. Decl. Type	Name R.A. Decl. Type
	2000.0	2000.0
	hmso'"	$h m s \circ ' $ "
V1332 Tau	$04 \ 43 \ 41.3 \ +22 \ 53 \ 38 \ EW:$	AZ Tri 01 34 21.9 +32 52 30 EA/RS:
V1333 Tau	04 44 26.9 +19 52 17 IB	BB Tri 01 34 30.9 +33 15 42 EW
V1334 Tau	04 $44$ $54.5$ $+27$ $17$ $45$ IB	BC Tri 01 35 51.2 +30 19 29 EW:
V1335 Tau	04 46 53.3 +22 55 13 IB	BD Tri 01 36 12.3 +30 49 02 RS
V1336 Tau	04 47 21.0 +28 08 53 RS	BE Tri 01 43 29.6 +29 52 40 EW
V1337 Tau	04 48 00.4 +27 56 20 RS	BF Tri 01 44 05.4 +30 51 23 EW
V1338 Tau	04 48 17.6 +27 55 18 SRB	BG Tri 01 44 47.6 +32 33 00 NL
V1339 Tau	04 48 58.0 +19 14 56 RS	BH Tri 01 46 33.5 +33 17 12 BY
V1340 Tau	04 49 52.3 +17 56 39 SXPHE	BI Tri 01 53 08.1 +31 16 01 EW
V1341 Tau	04 50 00.2 +22 29 57 IB	BK Tri 01 53 37.5 +33 25 08 SR
V1342 Tau	04 50 15.6 +18 23 46 ELL:	BL Tri 01 53 39.2 +29 57 57 EA/RS
V1343 Tau	04 51 54.2 +17 58 28 IB	BM Tri 01 53 58.7 +34 15 03 EW
V1344 Tau	04 51 56.5 +28 49 26 IB	BN Tri 01 54 58.0 +29 47 37 DSCT
V1345 Tau	04 51 56.9 +28 49 43 IB	BO Tri 01 56 31.9 +31 08 05 EA
V1346 Tau	04 52 30.8 +17 30 26 IB	BP Tri 02 03 12.7 +34 30 01 EW
V1347 Tau	04 52 50.2 + 16 22 09 RS	BQ Tri 02 06 47.3 +33 49 42 EW
V1348 Tau	04 52 57.1 +19 19 50 IB	BR Tri 02 07 21.2 +32 02 02 EW:
V1349 Tau	04 55 09.6 +18 26 31 IB	BS Tri 02 09 29.8 +28 32 29 E+XM:
V1350 Tau	04 55 47.7 +17 42 02 RS	BT Tri 02 10 15.5 +30 26 46 EW
V1351 Tau	04 56 13.6 +15 54 22 IB	BU Tri 02 13 01.5 $+37$ 03 26 EW
V1352 Tau	04 56 31.3 +24 26 48 EA	BV Tri 02 13 32.0 +37 02 37 EA
V1353 Tau	04 56 56.5 +16 00 25 IB	BW Tri 02 16 06.2 +34 37 49 RRC
V1354 Tau	04 57 30.7 +20 14 29 IB	BX Tri 02 20 50.8 +33 20 48 EW:
V1355 Tau	$05 \ 02 \ 06.8 + 24 \ 27 \ 40 \ EW$	BY Tri 02 21 33.3 +34 04 45 RS
V1356 Tau	05 04 44.2 +22 17 08 EA	BZ Tri 02 22 26.7 +29 29 11 EA
V1357 Tau	05 05 59.7 +28 07 17 IB	CC Tri 02 23 54.1 +32 49 45 EW
V1358 Tau	05 12 39.4 +19 28 35 BY	CD Tri 02 24 30.2 +35 08 10 EB
V1359 Tau	05 13 19.2 +18 08 25 SR	CE Tri 02 25 29.1 +30 41 51 RS
V1360 Tau	05 20 37.1 +24 47 14 RS	CF Tri $02\ 25\ 32.1\ +32\ 38\ 28\ SR$
V1361 Tau	$05\ 21\ 46.8\ +24\ 00\ 44\ IB$	CG Tri 02 27 $08.4 + 34$ 23 21 RS
V1362 Tau	05 22 10.3 +24 32 09 RS	CH Tri 02 27 34.8 +28 58 30 RS
V1363 Tau	05 22 47.2 +24 37 31 RS	CI Tri 02 28 42.4 +34 29 49 LB
V1364 Tau	05 23 54.6 +25 30 48 IB	CK Tri 02 29 36.4 +34 23 43 RS
V1365 Tau	$05$ 27 $05.9 \pm 21$ 35 26 IB	CL Tri 02 29 41.0 $+31$ 59 40 EA
V1366 Tau	05 29 42.5 + 23 34 11  BS	CM Tri 02 31 $45.3 + 34$ 20 53 EW
V1367 Tau	$05 \ 30 \ 19.1 \ +23 \ 51 \ 27 \ EW$	CN Tri 02 32 15.2 $\pm 30$ 16 52 EW
V1368 Tau	$05 \ 31 \ 04.4 \ +23 \ 12 \ 35 \ IB$	CO Tri 02 32 28.2 $+32$ 11 36 CWA:
V1369 Tau	$05 \ 32 \ 24.0 \ +21 \ 41 \ 11 \ EA$	CP Tri 02 34 28.7 +34 42 55 EA
V1370 Tau	$05 \ 32 \ 48.8 \ \pm 19 \ 02 \ 04 \ \text{EW}$	CO Tri = 02 35 03.8 + 31 39 22 BS
V1371 Tau	$05 \ 34 \ 39.1 \ +28 \ 03 \ 04 \ BE$	CR Tri 02 37 05.7 $+33$ 08 45 EW
V1372 Tau	$05 \ 38 \ 58.1 \ +24 \ 42 \ 57 \ BY$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
V1373 Tau	05 45 40.8 +15 43 49 SRB	CT Tri $02$ 38 39.1 +35 56 49 UGSU
V1374 Tau	$05 \ 48 \ 03.9 \ +28 \ 30 \ 47 \ EB/BS$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
AW Tri	$01 \ 31 \ 41.3 \ +29 \ 41 \ 52 \ EW$	EL Tuc 00 01 04.3 $-66$ 57 43 EW
AX Tri	01 31 49.2 +35 13 24 SXPHE	EM Tuc 00 02 $08.2 - 66$ 50 39 EW
AY Tri	01 32 30.8 $+33$ 41 31 EW	EN Tuc 00 34 53.4 $-68$ 35 48 EB

Remarks for unusual variable stars (type *). **BF Ari.** Periodically variable brown dwarf. **GO Cet.** Periodically variable brown dwarf.

Table 2

GCVS	Nova name	GCVS	Nova name
V1722 Aql	Nova Aql 2009	$V5581 \ Sgr$	Nova Sgr 2009 No. 1
V0582 Aur		$V5582 \ Sgr$	Nova Sgr 2009 No. 2
V0679 Car	Nova Car 2008	$V5583 \ Sgr$	Nova Sgr 2009 No. 3
V1213 Cen	Nova Cen 2009	$V5584 \ Sgr$	Nova Sgr 2009 No. $4$
KT Eri	Nova Eri 2009	$V5585 \ Sgr$	Nova Sgr 2010 No. 1
V2672  Oph	Nova Oph 2009	$V5586 \ Sgr$	Nova Sgr 2010 No. 2
V2673  Oph	Nova Oph 2010 No. 1	V1310 Sco	Nova Sco $2010$ No. $1$
V2674  Oph	Nova Oph 2010 No. $2$	V1311 Sco	Nova Sco $2010$ No. $2$
$V5580 \ Sgr$	Nova Sgr $2008$ No. $2$	V0496 Sct	Nova Sct 2009

Number 5970

Konkoly Observatory Budapest 31 January 2011 HU ISSN 0374 – 0676

### THE ABSOLUTE DIMENSIONS OF CU Sge

NELSON, ROBERT H.^{1,2}; TERRELL, D.³; GROSS, JOHN⁴

¹ 1393 Garvin Street, Prince George, BC, Canada, V2M 3Z1 email: b-o-b.nelson@shaw.ca [remove dashes]

 2  Guest investigator, Dominion Astrophysical Observatory, Herzberg Institute of Astrophysics, National Research Council of Canada

³ Dept. of Space Studies, Southwest Research Institute, 1050 Walnut St., Suite 300, Boulder, CO, USA, 80302
 ⁴ Sonoita Research Observatory, Sonoita, AZ

CU Sge (= 2MASS J19242969+1629592), RA =  $19^{h}24^{m}29^{s}69$ , Dec =  $+16^{\circ}29'59''_{\cdot}3$  (2000.0) was discovered to be variable by Hoffmeister (1935) who supplied a finder chart and magnitude range but no period. Kurochkin (1949) seems to have determined a period but no other details are available. Numerous authors have determined times of minima (Nelson, 2010a) but no light curve is available and no analysis has been published.

During September of 2005 RHN took 11 spectra (10 Å/mm reciprocal dispersion, resolving power 10,000) at the Dominion Astrophysical Observatory (DAO) in Victoria, British Columbia, Canada; he then used the Rucinski broadening functions (Rucinski, 2004) to obtain radial velocity (RV) curves (see Nelson et al., 2006 for details). The spectral range was 5000-5263 Angstroms and the reciprocal dispersion, 10 Angstroms/mm. A log of DAO observations and RV results are presented in Table 1.

DAO	Mid Time	Exposure	Phase at	V1	V2
Image $\#$	(HJD-2400000)	(sec)	Mid-exp	$(\rm km/s)$	$(\rm km/s)$
9718	53634.7178	1736	0.143	-123.82	76.79
9722	53634.7616	3600	0.198	-131.61	117.00
9756	53635.6816	1492	0.360	-132.40	69.72
9759	53635.7161	3600	0.404	-122.11	30.88
9818	53636.6919	3600	0.636	-79.46	-295.36
9855	53637.6939	3600	0.902	-79.73	-224.73
9889	53638.7776	3600	0.271	-133.70	124.47
9891	53638.8463	3600	0.358	-131.06	72.66
9918	53639.8418	3600	0.615	-91.93	-278.26
9942	53640.7241	1812	0.730	-72.47	-332.59
9948	53640.8389	3600	0.875	-78.54	-275.80

Table 1. Radial velocity observations of CU Sge.

Photometric data were obtained at the Sonoita Research Observatory (SRO) in September and October of 2006 with the 0.35m robotic telescope and SBIG STL-1001E CCD camera. The differential observations with respect to TYC 1600-439 to were made with

 $BVI_C$  filters and no variability in the comparison star greater than 0.01m was detected with respect to the check star TYC 1600-451. Table 2 gives the details of the variable, comparison and check stars.

 $VR_CI_C$  data were also obtained at the Sylvester Robotic Observatory (SyRO) in Prince George, BC, Canada. (See Nelson, 2010b for more details.)

Star	Tycho ID	R.A. (2000)	Dec. $(2000)$	V	B-V
Variable	1600 - 1581	19:24:29.691	+16:29:59.293	11.2-11.9	0.51
Comparison	1600-0439	19:24:43.560	+16:30:01.169	11.10	0.35
Check	1600-0451	19:25:08.603	+16:44:28.145	10.03	0.34

 Table 2. Details of the variable, comparison and check stars.

The simultaneous light and radial velocity curve analysis was done by PHOEBE (Prsa and Zwitter, 2005), based on the Wilson-Devinney (WD) program (Wilson and Devinney, 1971; Wilson, 1979; Wilson, 1990) with weights for the individual curves determined by their scatter. The mean surface temperature of the primary star was fixed at a value of T1 = 6650 K based on the F5 spectral type (SIMBAD, no reference given), using the tables from Cox (2000).

Since the primary is in the transition region between stars that have convective envelopes and those that have radiative envelopes, we investigated solutions for both cases. The fits were noticeably better, especially in the shoulders of the eclipses for the convective case, and theoretical values for the bolometric albedo and gravity darkening appropriate for convective envelopes were assumed for both stars in our final solution. Similar results were found by Nelson et al. (1995) for V728 Her.

The initial solution attempts were made assuming a detached configuration (WD mode 2) but the corrections for the secondary star's surface potential consistently pushed it past the Roche lobe, so a semi-detached configuration (WD mode 5) was used. The parameters adjusted were the orbital semi-major axis (a), gamma velocity ( $V_{\gamma}$ ), inclination (i), secondary mean surface temperature (T2), primary modified surface potential ( $\Omega$ 1), mass ratio (q) and primary wavelength-dependent luminosities (L1). We also used heliocentric Julian day as the independent variable and solved for the linear ephemeris parameters:

### JD Hel Min I = 2452500.1332(7) + 0.7916754(4)E

Our initial attempts to fit the light curves were unsatisfactory due to a poor fit in the secondary eclipse. The theoretical curve, using the Van Hamme (1993) limb darkening coefficients and either the square root or logarithmic law, was insufficiently deep, so we decided to try adjusting the limb darkening coefficients. Since WD cannot adjust both coefficients of a non-linear limb darkening law, we used the linear law for these tests. The fit was noticeably improved, as shown in Figure 1. The final values for the limb darkening coefficients were substantially smaller than the theoretical values. For instance, the adjusted value for the *B* light curve was  $0.14\pm0.06$  whereas the theoretical value from the Van Hamme (1993) tables is 0.79. An interesting difference was found in the adjusted values for the *V* curve obtained at SRO and the one obtained at Prince George. The SRO value is  $0.16\pm0.05$  and the Prince George value was  $0.26\pm0.05$ . The other passband in common between the two observatories,  $I_C$ , did not show a significant difference, both being  $0.11\pm0.04$ . The V-band luminosity ratios in Table 3 also show differences. The two photometric datasets were obtained about a year apart, so it is unclear whether these differences are instrumental or a result of some time-dependent phenomenon of the

Quantity	Value	Error	Quantity	Value	Error
T1 (K)	6650	fixed	$a (R_{\odot})$	4.14	0.09
T2 (K)	5483	18	$V_{\gamma} \ (km \ sec^{-1})$	-103	2
$\Omega 1$	3.089	0.005	r1 (pole)	0.3369	0.0006
q = M2/M1	0.127	0.001	r1 (point)	0.3485	0.0007
i (deg)	88.4	0.4	r1 (side)	0.3446	0.0007
L1/(L1+L2) (B)	0.858	0.001	r1 (back)	0.3469	0.0007
L1/(L1+L2) (V)	0.828*	0.001	r2 (pole)	0.2042	0.0006
continued	0.833	0.002			
$L1/(L1+L2)$ ( $R_C$ )	0.817	0.002	r2 (side)	0.2123	0.0006
$L1/(L1+L2)$ ( $I_C$ )	$0.798^{*}$	0.001	r2 (back)	0.2438	0.0006
continued	0.799	0.002	_		
HJD0	52500.1332	0.0007	P (days)	0.7916754	0.0000004

**Table 3.** Parameters from the final simultaneous light-velocity curve solution.The luminosity ratios marked with an asterisk, the values are from the 2005SRO data while the others are for the 2006 SyRO data.

system. The primary eclipse showed no fitting problems, so we used the theoretical limb darkening coefficients for the primary star.

A plot of the light curves and computed fits are shown in Figure 2 and the radial velocities and fits are shown in Figure 3. A three dimensional representation from Binary Maker 3 (Bradstreet, 1993) is shown in Figure 4. The absolute dimensions are listed in Table 4. The primary has a mass consistent with an F5 main sequence star, and a radius that indicates moderate evolution. The secondary is clearly an evolved object and the semidetached configuration is a clue that large-scale mass transfer has taken place.





Figure 1. The secondary eclipse in  $I_C$  showing the poor fit with a logarithmic limb darkening law and theoretical limb darkening coefficients (dashed curve) for the secondary star, and the improved fit using a linear cosine law with an adjusted limb darkening coefficient (solid curve).

Figure 2. The observed light curves and fit using the linear limb darkening law with adjusted coefficients for the secondary star.

#### Acknowledgements:

It is a pleasure to thank the staff members at the DAO (especially Dmitry Monin and Les Saddlemyer) for their usual splendid help and assistance





Figure 3. The radial velocity curves and the computed fit.

**Figure 4.** Binary Maker 3 representation of the system – at phases 0.75 and 0.97.

Parameter	Star 1	Star 2
Mass $(M_{\odot})$	$1.36 {\pm} 0.09$	$0.17 {\pm} 0.01$
Radius $(R_{\odot})$	$1.42 {\pm} 0.03$	$0.92{\pm}0.02$
M bol	$3.4{\pm}0.1$	$5.2 \pm 0.1$
Log g (cgs)	$4.26 {\pm} 0.03$	$3.75 {\pm} 0.03$

Table 4. Absolute dimensions for CU Sge.

#### **References:**

- Bradstreet, D.H., 1993, "Binary Maker 2.0 An Interactive Graphical Tool for Preliminary Light Curve Analysis", in Milone, E.F. (ed.) Light Curve Modelling of Eclipsing Binary Stars, pp 151-166 (Springer, New York)
- Cox, A.N., ed, 2000, Allen's Astrophysical Quantities, 4th ed., (Athlone Press, London).
- Hoffmeister, C., 1935, AN, 255, 401
- Kurochkin, N.E., 1949, Perem Zvezdy, 6, 303
- Nelson, R.H. et al., 1995, AJ, **110**, 2400
- Nelson, R.H. et al., 2006, IBVS, 5715
- Nelson, R.H., 2010a, Eclipsing Binary O-C Files,
- http://binaries.boulder.swri.edu/binaries/omc/
- Nelson, R.H., 2010b, *IBVS*, 5951
- Prsa, A. and Zwitter, T., 2005, *ApJ*, **628**, 426.
- Rucinski, S. M. 2004, IAU Symp., 215, 17
- van Hamme, 1993, AJ, 106, 2096
- Wilson, R.E., and Devinney, E.J., 1971, ApJ, 166, 605
- Wilson, R.E., 1979, ApJ, 234, 1054
- Wilson, R.E., 1990, ApJ, 356, 613

^{*}This version of the paper contains corrections, and differs from the one appeared on-line originally. Date of last modification: Tue Feb 8 14:19:48 CET 2011

Number 5971

Konkoly Observatory Budapest 1 February 2011 *HU ISSN 0374 – 0676* 

### DIFFERENTIAL PHOTOMETRY OF 2MASS J09440940-5617117[†]

SILVA, K. M. G.¹; RODRIGUES, C. V.¹; JABLONSKI, F. J.¹; D'AMICO, F.¹; CIESLINSKI, D.¹; BAPTISTA, R.²; DE ALMEIDA, L. A.¹

¹ Instituto Nacional de Pesquisas Espaciais, Divisão de Astrofísica, Brazil

 2 Universidade Federal de Santa Catarina, Departamento de Física, Brazil

Cataclysmic variables (CVs) are binary stars consisting of a white dwarf accreting matter from a low mass companion via Roche-lobe overflow. 2MASS J09440940-5617117 was identified as a cataclysmic variable by Pretorius & Knigge (2008) using the Super-COSMOS H $\alpha$  survey (Parker et al., 2005). They performed time-resolved spectroscopy from which a probable orbital period of 0.1877(2) d was estimated. The spectrum shows emission lines of the Balmer series and Helium with strong HeII $\lambda$  4686. They have also presented photometry, which does not cover the entire orbital period. Both photometry and spectroscopy indicate an eclipsing system. By the observational characteristics of this system, Pretorius & Knigge (2008) tentatively suggest a SW Sex classification.

We obtained optical photometry of 2MASS J09440940-5617117 in 2008 at Observatório do Pico dos Dias (OPD) operated by the Laboratório Nacional de Astrofísica in Brazil. The data were obtained with the 0.6-m Boller & Chivens telescope at OPD in three nights. The CCD arrays used are  $1024 \times 1024$  pixels back-illuminated SITe devices. Table 1 presents a log of the observations. Figure 1 shows the observed field-of-view around 2MASS J09440940-5617117.



Figure 1. Finding chart for 2MASS J09440940-5617117 in the  $R_c$  band.

 $^{^{\}dagger}\textsc{Based}$ on observations made at the Observatório do Pico dos Dias, Brazil, operated by the Laboratório Nacional de Astrofísica.

Table	1	Log	of	observations
-------	---	-----	----	--------------

Date	Telescope	Filter	Exposure time (s)	Number of images
2008 Feb 18	OPD/0.6m	$\mathbf{R}_C$	120	19
$2008 \ {\rm Feb} \ 19$	OPD/0.6m	$\mathrm{R}_{C}$	120	74
$2008~{\rm Mar}~03$	OPD/0.6m	$\mathbf{R}_C$	120	140

We have used IRAF to correct for bias and flat-field and to perform differential photometry. To illustrate the photometric quality, we present in Figure 2 the light curve obtained on March 03, 2008 for 2MASS J09440940-5617117 and for a comparison star. In this light curve we see differences in the egress of eclipses. The reference star used is USNOB 8593-02515-1, for which the  $R_C$  magnitude was estimated in 11.55  $\pm$  0.15, based on the USNO magnitudes of 593 stars in the same field-of-view.



Figure 2. Optical light curve in the  $R_c$  band of 2MASS J09440940-5617117 on March 03, 2008. The light curve of a comparison star is also presented.

The data set contains four eclipses, allowing us to determine an ephemeris for the eclipses in the system. We have included the data from Pretorius & Knigge (2008) to improve the orbital period estimate. Three different methods were used to estimate the period: Phase Dispersion Minimization, String-Length and Discrete Fourier Transform. The best ephemeris for the times of mid-eclipse is:

$$T_{\text{mid-eclipse}} (\text{HJD}) = 2\,454\,516.703\,9\,(3) + 0.187\,934\,0\,(5) \text{ E} \,. \tag{1}$$

The uncertainty in the period was obtained from the spread of the values given by the three different methods. It is a conservative value since this error is twice as large as the one estimated using the expression of Gilliland & Fisher (1985) considering the noise. Our period estimate is consistent with the previous suggestion of Pretorius & Knigge (2008). Figure 3 shows the photometric data plotted in phase with our ephemeris.

The eclipse width  $(\Delta \phi)$  of 2MASS J09440940-5617117 is  $0.112 \pm 0.003$  orbital cycles. It was calculated considering the phases of minimum and maximum derivative of the mean light curve, indicated by the dotted lines in Figure 4.



Figure 3. Phase diagram of 2MASS J09440940-5617117 in the  $R_c$  band on March 03, 2008 (red), on February 19, 2008 (blue) and on February 18, 2008 (green).



Figure 4. Mean eclipse profile and its derivative. The dotted lines indicate the center of the eclipse and the phases of minimum and maximum of the derivative.

Parameter		Comments
$P_{orb}$	0.1879340(5) d	this work
$\Delta \phi$	$0.112 \pm 0.003$	this work
q	0.66-0.83	this work
i	84-90°	this work
$M_2$	$0.4  M_{\odot}$	donor sequence - Knigge (2006)

 Table 2 Parameters of 2MASS J09440940-5617117

In a CV with a geometrically thin disk, the eclipse width and the mass ratio  $(q=M_2/M_1)$  can be used to estimate the inclination (i) of the system, as shown by Horne (1985). From the orbital period, we have obtained an estimate of the mass of the secondary star (see Table 2) using the table presented by Knigge (2006). Considering a wide range of white dwarf masses, 0.35-0.77  $M_{\odot}$ , we have constructed a diagram of orbital inclination versus mass ratio, which is shown in Figure 5. For the estimated eclipse width, the lower limit to the mass ratio of the system is 0.66, while the upper limit can be found considering the limit of stable mass transfer (q < 5/6) and corresponds to 0.83. Considering these limits, the orbital inclination range is 84-90°. We remark that these results rely on the assumption that the disk is geometrically thin and that its center of light coincides with the white dwarf. This assumption fails if the accretion disk of 2MASS J09440940-5617117 is geometrically thick and suffers self-occultation – as it seems to occur in some SW Sex stars (Knigge et al., 2000).



Figure 5. Orbital inclination versus mass ratio for an eclipse width of  $0.112 \pm 0.003$  orbital cycles.

Acknowledgements. We acknowledge the referee, C. Knigge, for his comments. C.V. Rodrigues and K. M. G. Silva acknowledge CNPq and FAPESP grants, Procs. 308005/2009-0 and 2008/09619-5, respectively.

**References:** 

Gilliland, R. L., Fisher, R., 1985, PASP, 97, 285
Horne, K., 1985, MNRAS, 213, 129
Knigge, C., 2006, MNRAS, 373, 484
Knigge, C. et al., 2000, ApJ, 539, L49
Parker, Q. A. et al., 2005, MNRAS, 362, 689
Pretorius, M. L., Knigge, C., 2008, MNRAS, 385, 1471

^{*}This version of the paper contains corrections, and differs from the one appeared on-line originally. Date of last modification: Tue Feb 8 14:16:41 CET 2011

Number 5972

Konkoly Observatory Budapest 4 February 2011 HU ISSN 0374 – 0676

# NEW TIMES OF MINIMA OF SOME ECLIPSING VARIABLES

LACY, C. H. S.

Department of Physics, University of Arkansas, Fayetteville, Arkansas 72701, USA; e-mail: clacy@uark.edu

Observatory and telescope:				
URSA Observatory at th	ne University of Arkansas; 10" Schmidt-Cassegrain reflector.			
NFO WebScope near	Silver City, NM, USA (www.nfo.edu); 24" classical			
Cassegrain.				
Detectory	LIDCA, 1020×1520 minute CDIC CTOEN CCD sealed to			

Detector:	URSA: $1020 \times 1530$ pixels SBIG ST8EN CCD cooled to
	(typ.) $-20$ °C; 1".15 square pixels; $20'(N-S) \times 30'(E-W)$
	field of view.
	NFO: 2102×2092 pixels Kodak KAF 4300E CCD cooled
	to (typ.) $-20$ °C; 0.78 square pixels; 27' square field of
	view.

## Method of data reduction:

Virtual measuring engine (Measure 2.0) written by C.H.S. Lacy.

# Method of minimum determination:

Kwee & van Woerden (1956)

Times of r	ninima:				
Star name	Time of min.	Error	Type	Filter	Rem.
	HJD 2400000+				
AP And	55121.6229	0.0001	2	V	NFO
	55139.8769	0.0005	1	V	NFO
	55144.6391	0.0001	1	V	NFO
	55152.5755	0.0001	1	V	NFO
	55159.7179	0.0002	2	V	NFO
	55358.9230	0.0002	1	V	NFO
	55412.8911	0.0001	1	V	URSA
	55432.7316	0.0002	2	V	URSA
	55451.7796	0.0001	2	V	URSA
	55466.8587	0.0002	1	V	NFO
	55467.6531	0.0002	2	V	URSA
	55478.7642	0.0003	2	V	NFO
	55486.7003	0.0001	2	V	NFO
	55494.6360	0.0002	2	V	NFO
	55497.8112	0.0002	2	V	NFO
	55509.7156	0.0002	1	V	NFO
	55528.7633	0.0002	1	V	NFO
	55555.7470	0.0002	1	V	NFO
	55563.6837	0.0001	1	V	NFO
	55575.5884	0.0002	2	V	NFO
	55575.5885	0.0002	2	V	URSA

Times of 1	ninima:				
Star name	Time of min.	Error	Type	Filter	Rem.
	HJD $2400000+$				
CG Aur	55116.9308	0.0004	1	V	NFO
	55126.9113	0.0004	2	V	NFO
	55137.7425	0.0008	2	V	NFO
	55183.7123	0.0004	1	V	NFO
	55193.6903	0.0011	2	V	NFO
	55554.6634	0.0005	2	V	NFO
HP Aur	55181.8290	0.0002	1	V	URSA
	55251.5488	0.0007	1	V	URSA
	55258.6627	0.0002	1	V	URSA
	55462.8389	0.0003	2	V	URSA
V361 Cas	55435.9071	0.0010	1	V	URSA
	55445.7402	0.0003	1	V	URSA
	55478.9212	0.0003	1	V	NFO
	55498.5865	0.0004	1	V	URSA
	55499.8127	0.0004	1	V	NFO
	55509.6477	0.0005	1	V	URSA
	55514.5622	0.0009	1	V	URSA
	55515.7912	0.0010	1	V	NFO
	55520.7069	0.0007	1	V	URSA
	55536.6835	0.0006	2	V	NFO
	55568.6355	0.0010	2	V	URSA
	55568.6366	0.0012	2	V	NFO
V381 Cas	55435.7317	0.0002	1	V	URSA
	55468.9034	0.0002	1	V	NFO
	55468.9044	0.0002	1	V	URSA
	55470.6509	0.0002	1	V	URSA
	55539.6137	0.0002	2	V	URSA
	55566.6796	0.0002	1	V	NFO
	55574.5311	0.0005	2	V	URSA
V651 Cas	55458.9197	0.0003	2	V	URSA
	55460.9133	0.0002	2	V	URSA
	55467.8926	0.0003	2	V	URSA
	55485.8329	0.0002	2	V	URSA
	55498.7920	0.0002	2	V	URSA
	55499.7889	0.0001	2	V	URSA
	55500.7856	0.0002	2	V	URSA
	55504.7729	0.0002	2	V	URSA
	55506.7666	0.0001	2	V	URSA
	55528.6964	0.0002	2	V	URSA
	55533.6805	0.0003	2	V	URSA
	55537.6673	0.0002	2	V	URSA
	55563.5838	0.0002	2	V	URSA
	55564.5808	0.0002	2	V	URSA
WW Cep	55176.5598	0.0006	2	V	URSA
Ť	55431.9055	0.0002	1	V	URSA
	55468.7131	0.0002	1	V	URSA
	55469.8846	0.0003	2	V	URSA
	55528.5230	0.0003	1	V	URSA
V456 Cvg	55283.9844	0.0002	1	V	NFO
	55300.9172	0.0002	1	V	URSA
	55329.8805	0.0002	$\overline{2}$	V	NFO
	55337.9033	0.0007	$\overline{2}$	V	NFO
	55345.9214	0.0002	2	V	NFO
	55354.8351	0.0002	2	V	URSA
	55366.8658	0.0002	1	V	NFO
1		-			

Times of minima:					
Star name	Time of min.	Error	Type	Filter	Rem.
	HJD 2400000+				
	55366.8660	0.0003	1	V	URSA
	55378.8965	0.0003	2	V	URSA
	55379.7882	0.0003	2	V	URSA
	55392.7107	0.0002	1	V	URSA
	55395.8291	0.0002	2	V	URSA
	55396.7202	0.0003	2	V	URSA
	55399.8398	0.0002	1	V	URSA
	55400.7314	0.0001	1	V	URSA
	55411.8723	0.0003	2	V	URSA
	55421.6745	0.0002	2	V	URSA
	55425.6845	0.0002	1	V	URSA
	55434.5962	0.0003	1	V	URSA
V974 Cyg	55296.9396	0.0003	1	V	NFO
	55320.8793	0.0005	2	V	URSA
	55365.7471	0.0007	2	V	URSA
V1136 Cyg	55301.8923	0.0005	1	V	URSA
	55301.8943	0.0004	1	V	NFO
	55360.7606	0.0004	1	V	NFO
	55362.7981	0.0014	2	V	NFO
	55457.7170	0.0007	1	V	NFO
	55466.6732	0.0013	2	V	NFO
BF Dra	55370.7426	0.0002	1	V	URSA
	55370.7433	0.0003	1	V	NFO
	55471.6415	0.0002	1	V	URSA
	55471.6422	0.0002	1	V	NFO
V501 Her	55278.8917	0.0009	1	V	NFO
	55321.8833	0.0005	1	V	URSA
	55351.7943	0.0007	2	V	NFO
	55364.8705	0.0005	1	V	NFO
WZ Leo	55192.9954	0.0004	1	V	NFO
	55209.8941	0.0004	1	V	URSA
AL Leo	55251.7365	0.0002	1	V	NFO
	55259.7643	0.0002	1	V	URSA
	55259.7653	0.0006	1	V	NFO
	55260.5666	0.0004	2	V	URSA
	55267.7921	0.0003	1	V	NFO
	55280.6366	0.0003	1	V	NFO
	55284.6497	0.0002	2	V	NFO
	55296.6915	0.0002	1	V	URSA
	55300.7051	0.0002	2	V	URSA
	55300.7055	0.0002	2	V	NFO
	55349.6723	0.0004	1	V	NFO
	55490.9584	0.0004	1	V	URSA
	55519.8576	0.0004	1	V	URSA
	55531.9001	0.0004	2	V TZ	NFO
	55539.9273	0.0001	2	V TZ	NFO
	55543.9408	0.0002	1	V	UKSA
	55543.9411	0.0001	1	V	NFO
	55564.0097	0.0002	2	V TZ	NFO
	55564.0099	0.0003	2	V TZ	URSA
	00004.8123	0.0001	1	V TZ	UKSA
	00008.8200 EFEC0 0000	0.0002	2	V TZ	UKSA
	00008.8202	0.0002	2	V	NFO
	0000.0070	0.0002	1	V TZ	
	00088.8903	0.0001	1	V	UKSA

Times of r	ninima:	F	-	<b>D</b> (1)	D
Star name	Time of min.	Error	Type	Filter	Rem.
	HJD 2400000+				
V501 Mon	55135.8866	0.0019	1	V	NFO
	55170.9960	0.0013	1	V	NFO
	55493.9715	0.0009	1	V	NFO
	55500.9939	0.0011	1	V	NFO
V506  Oph	55293.9475	0.0002	2	V	NFO
	55369.7682	0.0002	1	V	URSA
	55378.7803	0.0003	2	V	URSA
	55412.7157	0.0002	2	V	URSA
	55462.5558	0.0002	2	V	URSA
	55472.6288	0.0002	1	V	NFO
FO Ori	55170.8995	0.0007	1	V	NFO
	55505.9168	0.0005	2	V	URSA
V530 Ori	55152.9342	0.0007	1	V	NFO
	55482.9157	0.0001	1	V	NFO
	55531.8024	0.0001	1	V	URSA
	55531.8024	0.0002	1	V	NFO
	55537.9129	0.0002	1	V	NFO
	55580.6883	0.0002	1	V	NFO
NP Per	55484.9086	0.0007	2	V	NFO
1.1 1.01	55484 9116	0.0014	$\frac{-}{2}$	, V	URSA
	55533 9424	0.0006	2	, V	NFO
IM Por	55241 6872	0.0000	2	V	NFO
	55473 8793	0.0000	2	V V	UBSA
	55400 7857	0.0003	2 1	V V	NFO
	55400 7865	0.0003	1	V V	
	55500 0104	0.0003	1	V V	URSA
	55507 6854	0.0004	2	V V	UDGA
	55507.0854	0.0004	2	V	URSA
	55507.0802	0.0005	2	V	NEO
	55525.7190	0.0007	2	V	NFO
	55533.6170	0.0004	1	V	NFO
	55544.8885	0.0004	1	V	NFO
	55568.5474	0.0007	2	V	URSA
	55569.6845	0.0003	1	V	URSA
	55587.7179	0.0009	1	V	URSA
V482 Per	55158.8543	0.0011	1	V	NFO
	55169.8635	0.0006	2	V	NFO
	55185.7682	0.0004	1	V	NFO
	55201.6755	0.0005	2	V	NFO
	55245.7097	0.0004	2	V	NFO
	55432.8751	0.0005	1	V	URSA
	55443.8859	0.0004	2	V	URSA
	55459.7893	0.0009	1	V	URSA
	55465.9052	0.0005	2	V	NFO
	55476.9162	0.0004	1	V	NFO
	55481.8093	0.0004	1	V	NFO
	55497.7146	0.0006	2	V	URSA
	55498.9346	0.0004	1	V	NFO
	55498.9364	0.0007	1	V	URSA
	55503.8308	0.0003	1	$\dot{V}$	NFO
	55508 7236	0.0000	1	, V	NFO
	55509 9476	0.0002	- 9	, V	URSA
	55514 8491	0.0010	2	v V	URSA
	55510 7255	0.0003	2	v V	UBCV
	55526 8652	0.0000	∠ ົ	v V	NEO
	55557 6600	0.0000	∠ 1	V V	NEO
	99994.0008	0.0000	T	V	INFU

Times of n	ninima:				
Star name	Time of min.	Error	Type	Filter	Rem.
	HJD 2400000+				
	55563.7761	0.0006	2	V	NFO
	55563.7765	0.0004	2	V	URSA
	55573.5628	0.0004	2	V	URSA
	55590.6906	0.0003	2	V	URSA
V514 Per	55144.9267	0.0005	1	V	NFO
	55145.8344	0.0006	2	V	NFO
	55154.9320	0.0005	2	V	NFO
	55155.8410	0.0006	1	V	NFO
	55156.7505	0.0008	2	V	NFO
	55167.6673	0.0010	2	V	NFO
V335 Ser	55299.7795	0.0003	1	V	URSA
	55337.7290	0.0002	1	V	NFO
	55368.7776	0.0004	1	V	URSA
	55401.6790	0.0003	2	V	URSA
	55451.5751	0.0006	1	V	URSA
TY Tau	55175.6721	0.0003	1	V	URSA
	55209.6089	0.0004	2	V	URSA
	55245.7000	0.0005	1	V	URSA
	55485.9534	0.0003	1	V	URSA
	55499.9587	0.0002	1	V	URSA
	55533.8951	0.0004	2	V	URSA
	55544.6664	0.0003	2	V	URSA
	55557.5960	0.0008	2	V	URSA
CF Tau	55153.7515	0.0003	1	V	NFO
V1094 Tau	55157.7494	0.0003	1	V	NFO
	55175.7281	0.0003	1	V	NFO
	55181.5904	0.0003	2	V	URSA
	55202.6903	0.0006	1	V	NFO
	55208.5573	0.0002	2	V	URSA
	55247.6367	0.0003	1	V	NFO
	55274.6011	0.0003	1	V	URSA
HY Vir	55280.8670	0.0003	2	V	NFO
	55295.8986	0.0006	1	V	NFO
	55306.8257	0.0003	1	V	URSA
	55317.7536	0.0004	1	V	NFO
	55332.7877	0.0005	2	V	NFO
	55369.6662	0.0003	1	V	URSA
	55590.9881	0.0003	1	V	URSA
BP Vul	55350.8269	0.0004	2	V	NFO
BT Vul	55122.6912	0.0002	2	V	NFO
	55134.6733	0.0002	1	V	NFO
	55138.6677	0.0004	2	V	NFO
	55154.6456	0.0005	$\overline{2}$	V	NFO
	55418.8327	0.0002	1	$\dot{V}$	URSA
	55434.8089	0.0002	1	V	URSA
	55462.7666	0.0008	2	V	URSA
	55473.6084	0.0002	1	V	URSA
	55485.5918	0.0005	2	$\dot{V}$	URSA
	55497.5738	0.0002	1	V	URSA

### Remarks:

A sample of the observations has been published by Lacy, Hood & Straughn (2001). Mean deviations between independently timed eclipses by the two telescopes (URSA & NFO) are not significantly larger than expected based on the error estimates, implying that the estimated timing errors are realistic.

### Acknowledgements:

Construction and operation of the URSA telescope were partially funded by the National Science Foundation and the University of Arkansas, Fayetteville. Construction and operation of the NFO telescope were partially funded by the National Science Foundation, the Arkansas Center for Space and Planetary Sciences, the NASA Arkansas Space Grant Consortium, the University of Arkansas, Fayetteville, the University of Arkansas at Little Rock, and the Harvard-Smithsonian Center for Astrophysics. We are grateful to Bill Neely for initial processing of the images and maintenance of the NFO equipment and software.

References:

Kwee, K. K. & van Woerden, H., 1956, *BAN*, **12**, 327 Lacy, C. H. S., Hood, B. & Straughn, A., 2001, *IBVS*, No. 5067

### ERRATUM FOR IBVS 5972

In IBVS 5972 the time of minimum for WW Cep - 55469.8846 +- 0.0003 type 2 eclipse from the URSA telescope - should have been from the star V651 Cas instead of WW Cep. Lacy, C. H. S.

Number 5973

Konkoly Observatory Budapest 7 February 2011 *HU ISSN 0374 – 0676* 

# NEW RADIAL VELOCITIES OF SOME SEMI-REGULAR VARIABLE STARS

#### ASLAN, Z.

İstanbul Kültür University, Department of Physics, 34156 Bakirköy, İstanbul, Turkey e-mail: z.aslan@iku.edu.tr

New radial velocities of 11 Semi-Regular variable stars measured in conjunction with the radial velocity program of the Vilnius University Observatory (Sperauskas et al. 2002) are reported here. The radial velocities were measured with the CORrelation RAdial VELocities (CORAVEL) spectrometer of the Vilnius University Observatory (Upgren, Sperauskas, and Boyle, 2002) attached to the 1.5 m Russian Turkish Telescope (RTT150) at the TÜBİTAK National Observatory (TUG), Turkey. Observations are described in Sperauskas et al. (2002). These stars were observed on two or more nights to check for possible variability. The results are tabulated in Table 1.

Variable	HJD 24	Vr (km/s)	$\pm$
V0347 And	51887.297	-47.4	0.8
	51888.218	-47.1	0.9
	51892.312	-45.8	0.9
	51893.271	-44.9	0.8
AH Ari	51887.368	-3.5	0.7
	51888.200	-3.1	0.8
	51890.419	-5.0	0.7
	51892.349	-2.9	0.7
	51893.310	-2.5	0.8
	51894.380	-4.0	0.7
AU Ari	51887.356	44.9	0.7
	51888.208	45.0	0.8
	51892.337	45.9	0.8
	51893.301	45.8	0.8
	51894.370	44.6	0.7
V0453 Aur	51887.569	0.4	0.9
	51888.411	1.0	0.8
	51889.374	0.7	0.7
	51890.483	1.4	0.8
	51894.521	-0.2	0.8

 Table 1. Observed Radial Velocities

Variable	HJD 24	Vr (km/s)	±
RY Cam	51887.336	-19.6	0.9
	51888.395	-19.8	0.8
	51890.476	-20.3	0.9
	51890.477	-20.5	0.9
	51892.432	-19.8	0.8
	51892.434	-20.2	0.7
	51893.367	-17.6	0.8
	51893.369	-16.7	0.9
	51969.249	-26.3	0.7
	51893.367	-17.6	0.8
	51893.369	-16.7	0.9
	51969.249	-26.3	0.7
	51974.266	-26.1	0.7
	51976.296	-26.5	0.7
	52142.432	-25.2	0.8
	52199.623	-18.0	0.7
	52205.634	-17.3	0.7
	52350.275	-23.1	0.6
	52356.278	-23.6	0.7
V0401 Cep	51887.312	-2.6	0.8
	51887.319	-1.4	0.8
	51888.228	-1.1	0.8
	51892.325	-1.9	0.8
	51893.288	-1.8	0.8
BX Lyn	51887.583	-40.3	0.8
-	51888.515	-39.5	0.8
	51889.400	-40.3	0.7
	51894.528	-40.3	0.7
X Mon	51887.483	167.6	1.5
	51888.493	166.6	1.2
V0719 Mon	51894.459	13.0	0.8
	51894.467	13.2	0.7
V1151 Tau	51887.457	32.9	0.8
	51888.371	33.1	0.8
	51888.455	33.3	0.8
	51890.469	32.0	0.7
	51893.423	33.5	0.8
AG Tri	51887.378	6.3	0.9
	51888.480	6.8	0.9
	51890.427	5.6	0.8
	51892.372	8.3	1.0
	51893.325	6.6	0.8
	51894.385	6.0	0.9

 Table 1. Observed Radial Velocities (continued)

**RY Cam** is a SRb type (M3IIIvar) variable with a photometric period of about 135 days. It is seen from Table 1 that its radial velocity is variable, but it is not possible to determine if the variation is periodic as the number of observations is too few. A search in *SIMBAD* gave us five more observations (between -14 to -23 km/s with much less weight) more than 60 years earlier (Joy, 1942). It suffices here to note that the radial velocity variation is not compatible with the photometric period of 135 days.

*Hipparcos* discovered an astrometric companion to RY Cam at an angular distance of 0''.16 with a position angle of 87 degrees. Prieur et al. (2002) give these as 0''.062 $\pm$ 0''.008 and 325 degrees, respectively. However, a preliminary calculation indicated that the radial velocity variation is not likely to be due to an orbital motion but is compatible with radial pulsation with a variation of about 8% in the radius (Aslan & Yeşilyaprak, 2002). More observations are needed to determine the real cause. The star is on an observing program at TUG.

Acknowledgements: I am grateful to Dr. Julius Sperauskas for his kind help with the observations with the CORAVEL spectrometer attached to the RTT150. I wish to thank TUG for observing time on RTT150.

References:

Aslan, Z. & Yeşilyaprak, C., 2002, Proceedings of the XIIIth National Astronomy Meeting, September 2-6, Antalya, pp. 219-223 (in Turkish)

Joy, A. H., 1942, ApJ, 96, 344

Prieur, J. L., Aristidi, E. et al., 2002, ApJ Suppl, 139, 249

Sperauskas, J., Aslan, Z., Bartasiute, S., Boyle. R. P., 2002, Baltic Astronomy, 11, 465

Upgren, A., Sperauskas, J., Boyle, R. P., 2002, Baltic Astronomy, 11, 91

Number 5974

Konkoly Observatory Budapest 11 February 2011 *HU ISSN 0374 – 0676* 

# TIMES OF MINIMA FOR ECLIPSING BINARIES 2010

#### DVORAK, S. W.

Rolling Hills Observatory, Clermont, FL USA; e-mail: sdvorak@rollinghillsobs.org

Observatory and tele	scope:
25cm catadioptric telesc	ope at Rolling Hills Observatory (RHO)
Detector:	SBIG ST-9XE, Peltier cooling, Kodak KAF-0261 chip,
	$18'.5 \times 18'.5$ FOV, $512 \times 512$ pixels.

### Method of data reduction:

Reduction of the CCD frames was done with sextractor and custom-written applications¹.

## Method of minimum determination:

The heliocentric times of minima and the error estimates were computed using the Kwee and van Woerden method as implemented in a custom-written C application. A floor of 0.0001d ( $\sim$ 8 seconds) was applied to the error estimates to allow for the error contribution due to barycentric variation, and as an allowance for the overly optimistic error estimates of the Kwee and van Woerden method.

Times of n	ninima:				
Star name	Time of min.	Error	Type	Filter	Rem.
	HJD 2400000+				
HL Aur	55257.6638	0.0001	Ι	V	
AC Boo	55327.6421	0.0001	Ι	V	
AK Cam	55263.6608	0.0001	Ι	V	
AZ Cam	55260.6516	0.0001	Ι	V	
FN Cam	55287.6797	0.0001	II	V	
V0821 Cas	55491.6850	0.0001	II	B	
BH CMi	55259.6951	0.0001	Ι	V	
ES Cnc	55235.781	0.002	Ι	V	
EV Cnc	55235.802	0.002	II	V	
RW Com	55279.8279	0.0001	II	V	
	55279.8280	0.0002	II	V	
YY CrB	55261.8271	0.0001	Ι	V	
BI CVn	55251.7874	0.0001	Ι	V	
DF CVn	55209.8490	0.0001	Ι	V	
KR Cyg	55461.6389	0.0001	Ι	V	
V0488 Cyg	55461.6660	0.0007	Ι	V	

¹sextractor is written by Emmanuel Bertin and is available from http://terapix.iap.fr/

Times of minima:					
Star name	Time of min.	Error	Type	Filter	Rem.
	HJD 2400000+				
BV Dra	55238.8856	0.0001	Ι	V	
BW Dra	55238.7694	0.0001	Ι	V	
	55238.917	0.001	II	V	
AX Dra	55261.6291	0.0001	Ι	V	
	55275.8333	0.0001	Ι	V	
BU Dra	55282.7920	0.0001	Ι	V	
FU Dra	55261.8473	0.0001	Ι	V	
	55296.6588	0.0001	II	V	
GM Dra	55285.8711	0.0001	Ι	V	
EL Gem	55261.7186	0.0001	Ι	V	
GW Gem	55472.9178	0.0001	Ι	V	
SX Gem	55261.6594	0.0001	Ι	V	
WW Gem	55269.6481	0.0001	Ι	V	
V0921 Her	55270.8510	0.0002	Ι	V	
CE Leo	55262.6640	0.0002	Ι	V	
VW LMi	55260.8762	0.0001	Ι	V	
UU Lyn	55222.8255	0.0001	Ι	V	
·	55499.9207	0.0001	II	V	
BP Per	55254.6057	0.0002	Ι	V	
DZ Psc	55455.8647	0.0001	Ι	V	
V0781 Tau	55199.6806	0.0001	Ι	V	
AA UMa	55236.7415	0.0001	II	V	
AW UMa	55248.6453	0.0002	Ι	V	
II UMa	55231.8365	0.0001	II	V	
KM UMa	55202.8418	0.0001	Ι	V	
TY UMa	55216.8560	0.0001	Ι	V	
UY UMa	55262.8617	0.0003	Ι	V	
VV UMa	55253.7030	0.0001	Ι	V	
RU UMi	55270.6490	0.0001	Ι	V	
Q1997/11	55279.5864	0.0001	Ι	V	= GSC 3752-0986
ROTSE1 J140551.53+374652.5	55342.6907	0.0001	?	V	= GSC 3034-0870
TSVSC1 TN-N130110312-13-67-2	55342.7114	0.0001	?	V	= GSC 3034-1022
VSX J213808.7+261704	55343.8388	0.0005	?	V	= GSC 2197-0872

Reference:

Kwee, K. K. & van Woerden, H., 1956,  $BAN,\,\mathbf{12},\,327$ 

Number 5975

Konkoly Observatory Budapest 14 February 2011 HU ISSN 0374 – 0676

### A 116 YEAR RECORD OF MASS TRANSFER IN R ARAE

REED, PHILLIP A.

¹ Kutztown University, Kutztown, Pennsylvania, USA; e-mail: preed@kutztown.edu

R Arae (HD 149730) is a bright interacting southern binary star consisting of a B9 primary and a yet unseen secondary, undergoing rapid mass transfer just past the reversal of mass ratio stage of its evolution. With an orbital period of 4.4 days, its components are close enough to experience a direct impact of mass transferring from the secondary to the primary, but distant enough that an accretion structure has formed around the primary. The intense variations seen both photometrically and spectroscopically indicate that the accretion structure is unstable and quite variable (Reed et al., 2010). Because of this, R Ara is of great interest to the study of the evolution of interacting binary stars, but it has unfortunately been neglected.

New observations are combined with those found in the available literature (Hertzsprung, 1942; Payne-Gaposchkin, 1945; Nield, 1991; Reed, 2008 and Reed et al., 2010) and in the database of the American Association of Variable Star Observers (AAVSO) to construct R Ara's first ephemeris curve, which plots observed-minus-calculated (O - C) times of primary eclipses and spans the 116 years since its discovery by Roberts (1894). The best-fit to the O - C curve is a quadratic function with parameters that yield period change and mass transfer rates consistent with those of an active Algol-type interacting binary.



Figure 1. This is the first ephemeris (O - C) curve for R Ara, which spans 116 years. The line is the quadratic function that is the best fit to the data points.

The new observations presented here were collected at the Tzec Maun Observatory, located near Moorook, South Australia. The telescope is a 15.2-cm, f/7.3 refractor equipped

HJD (Pr.Min.)	Date	Observer / Reference
2412954.373	05 May 1894	AAVSO*
2412985.356	$05 \ \text{June} \ 1894$	AAVSO*
2413016.320	06 July 1894	AAVSO*
2413370.327	25 June $1895$	AAVSO*
2413755.311	14 July 1896	AAVSO*
2414547.406	14 September 1898	AAVSO*
2415140.355	30 April 1900	AAVSO*
2416348.428	21 August 1903	AAVSO*
2416963.461	27 April 1905	AAVSO*
2417742.251	15 June 1907	AAVSO*
2425818.028	25 July 1929	Hertzsprung $(1942)$
2428402.28	21 August 1936	Hertzsprung $(1942)$
2429433.348	18 June 1939	Payne-Gaposchkin (1945)
2446585.1597	03 June 1986	Nield (1991)
2454501.932	05 February 2008	Reed $(2008)$
2454541.757	16 March 2008	Reed, $et al.$ (2010)
2455338.3037	21 May 2010	Reed (this paper)*
2455347.1559	30 May 2010	Reed (this paper)*

**Table 1** Observed times of primary minimum of R Ara.

with a research-grade CCD camera ( $3072 \times 2048$ ,  $9 - \mu$  pixels). Each image was exposed for 10 seconds through a Bessel-V filter. The observations of 21 May 2010 consist of 51 consecutive images taken over eight hours, and those of 30 May 2010 consist of 50 consecutive images taken over five hours. The comparison stars were HD 150185 (HIP 81611), HD 149715 (HIP 81581), and HD 149784 (HIP 81611). The comparisons were chosen due to their proximity to R Ara and the fact that they are known to not be variable themselves ( $\sigma_V < 0.01$  mag). The comparison stars' magnitudes are listed in the Hipparcos/Tycho archive.

All observed times of primary minimum are compiled in Table 1 and are plotted in Figure 1. The plot is somewhat sparsely populated, as evidence of R Ara's neglectedness, but it clearly indicates true period change. The observations marked with * in Table 1 refer to times of minimum light that were determined for this study, using the method of Kwee and VanWoerden (1956). The ephemeris found by Nield (1991) of  $HJD_{Pr.Min.} = 2446585.1597 + 4.425132E$  was used to compute the calculated eclipse times. The AAVSO data are plotted in Figure 2.

The best-fit O - C curve is given by:

$$O - C = (0.0538) + (6.371 \times 10^{-5})E + (1.141 \times 10^{-8})E^2$$

The average rate of period change over the past 116 years is calculated to be:

$$\dot{P} = \frac{2C_2}{P} = \frac{2(1.141 \times 10^{-8})}{4.425132} = 5.16 \times 10^{-9} \frac{days}{day}$$

Then, using Sahade's values for the masses of the stars of  $M_1 = 4M_{\odot}$  and  $M_2 = 1.4M_{\odot}$  (Sahade, 1952), and assuming conservative mass exchange, the rate of mass transfer averaged over the past 116 years is:

$$\dot{M} = \frac{\dot{P}M_1M_2}{3P(M_1 - M_2)} = \frac{(5.16 \times 10^{-9})(4)(1.4)}{3(4.425132)(4 - 1.4)} = 8.37 \times 10^{-10} \frac{M_{\odot}}{day}$$

or:

$$\dot{M} = 3.06 \times 10^{-7} \frac{M_{\odot}}{year}$$



Figure 2. The archival AAVSO light curves.

which is consistent with an actively interacting Algol-type system undergoing rapid mass transfer. Albright and Richards (1996) have stated that Algols transfer mass at rates ranging from ~  $10^{-11}M_{\odot}$  yr⁻¹ to ~  $10^{-7}M_{\odot}$  yr⁻¹. A system very similar to R Ara is U Sge, which was reported to exhibit a mass transfer rate of  $\dot{M} \leq 2 \times 10^{-7}M_{\odot}$  yr⁻¹ by Olson (1987) and  $\dot{M} = 6.15 \times 10^{-7}M_{\odot}$  yr⁻¹ by Manzoori (2008). The timescale for this stage of R Ara's evolution is very short, on the order of 10,000 years.



Figure 3. The 2010 light curve near primary minimum. The orbital phase values were determined using the newly calculated ephemeris.

The new times of primary minimum, which were determined to be at HJD 2455338.303704  $\pm 0.000591$  and HJD 2455347.155868  $\pm 0.000378$ , provide an instantaneous orbital period of  $4.426082 \pm 0.000485$  days. A new ephemeris of HJD_{Pr.Min.} = 2455338.303704 + 4.426082*E* will provide more accurate calculated eclipse times, and other phase values, for future observations. Figure 3 shows the May 2010 light curve of R Ara near primary minimum.

Acknowledgements: I would like to thank the Tzec Maun Foundation for the use of their observatory, and the AAVSO for the valuable archival data available in their database. I would also like to thank the referee for useful comments on this manuscript.

### References:

Albright, G. E. and Richards, M. T., 1996, ApJ, 459, L99
Hertzsprung, E., 1942, Bull. Astron. Inst. Neth., 9, 275
Kwee, K. K. and Van Woerden H., 1956, Bull. Astron. Inst. Neth., 12, 327
Manzoori, D., 2008, Ap&SS, 313, 339
Nield, K. M., 1991, Ap&SS, 180, 233
Olson, E. C., 1987, AJ, 94, 1043
Payne-Gaposchkin, C. H., 1945, Harvard Ann., 115, 46
Reed, P. A. et al., 2010, MNRAS, 401, 913
Reed, P. A., 2008, PhDT, Lehigh University
Roberts, A. W., 1894, AJ, 14, 113
Sahade, J., 1952, ApJ, 116, 27

Number 5976

Konkoly Observatory Budapest 17 February 2011 HU ISSN 0374 – 0676

# V974 Cyg - A TRIPLE SYSTEM WITH APSIDAL MOTION

VOLKOVA, NATALIA; VOLKOV, IGOR

Sternberg Astronomical Institute, Moscow University, Universitetsky Ave.,13, Moscow 119992, Russia E-mail: imv@sai.msu.ru

The detached eclipsing binary V974 Cyg (GSC 2660.3690, P = 3.20 days) was selected as a target for a detailed study of apsidal motion due to its displaced secondary minimum,  $\phi_{II} = 0.47$ . We observed the star during 9 nights in 2007-10 at the Russian Academy of Sciences observatory near Moscow (Zvenigorod, UBV photometer, EMI 9789 photomultiplier), the Crimean observatory of Moscow University, Ukraine (Nauchny, CCD Ap-47p), the Crimean Astrophysical Observatory, Ukraine (Simeiz, CCD VersArray 512UV) and at Stará Lesná Observatory of the Astronomical Institute of the Slovak Academy of Sciences (UBVR photometer, R 2949S photomultiplier). Everywhere we used the same type telescopes - 60 cm reflectors "Zeiss-600" and the standard Johnson UBV filters. The nearby star GSC 2660.3950 on the same frame as variable served as a comparison star both for CCD and photoelectric observations. GSC 2660.3723 ( $V = 10^{\text{m}}6$ ) and HD187072 served as a check stars for CCD and photoelectric observations respectively. Using the UBVmagnitudes of HD186377 from SIMBAD data base, we derived the absolute magnitudes of the stars under investigation in Stará Lesná observatory, see Table 1. All observations were corrected for atmospheric extinction and transformed to standard Johnson UBVsystem.

 Table 1. The photoelectric magnitudes of the stars

Star	V	U-B	B-V	remarks
HD186377	5.936(2)	0.191(8)	0.123(7)	HR 7502
HD187072	8.790(5)	0.109(22)	0.113(16)	check
$\operatorname{GSC}2660.3950$	10.249(7)	0.047(15)	0.384(8)	comparison
V974 Cyg	12.117(7)	0.194(11)	0.227(5)	variable, plato

The CCD-observations in V filter were the most suitable for the analysis of the light curve because of their largest number and highest precision. So we used them to derive the geometrical parameters of the system. As there are no effects of proximity in the light of the system between minima, we used a simple model of two spherical stars revolving in the elliptic orbit. The results are presented in Table 2 and in Fig. 1. *B* and *U* observations were used to determine the colours of the components only. We have found that the secondary component is a little bit bluer than the primary,  $\Delta(B - V) = 0^{\text{m}}$ 012. So the



Figure 1. Part of the light curve of V974 Cyg in V filter near both minima. Points denote the individual CCD-observations, the line stands for the theoretical fit, according to parameters from Table. 2.



Figure 2. The deviations of minima times from the linear formulae given in this paper (O-C). Circles - primary minima, crosses - secondary ones

 Table 2. Light curve solution of V974 Cyg

$r_1$	$0.118 \pm 0.002$	$L_{1V}$	$0.492\pm0.020$
$r_2$	$0.120 \pm 0.003$	$L_{2V}$	$0.508 \pm 0.020$
i	$88.03 \pm 0.02$	$u_{1,2}$	0.49 *
e	$0.061\pm0.003$	$\sigma$	0.0121
$\omega$	$220.8\pm0.4$		

* linear limb darkening coefficients, fixed from Wade and Rucinski (1985)

secondary component is almost 100K hotter than the primary one, Popper (1980). Our geometrical solution supports this conclusion as the radius of the secondary component was found to be a little bit larger, see Table 2. Therefore, the secondary component should be considered as a primary one. But to avoid confusion, we, in this article, leave all the same. The unreddened index  $(B - V)_0$  of the star is enclosed in the interval from 0.02 to 0.16. We can not obtain this value more accurately until we get the spectra of the components. For our estimations we take the middle of this interval. Using Popper's (1980) calibration for B - V we obtained the effective temperatures of the components. Then using empirical mass-luminosity relation and Kepler third law we estimated the absolute parameters of the components. The results are presented in Table 3.

**Table 3.** The absolute parameters of V974 Cyg

Parameter	Primary component	Secondary component
$M/M_{\odot}$	$1.91\pm0.11$	$1.95 \pm 0.14$
$R/R_{\odot}$	$1.70\pm0.05$	$1.72 \pm 0.05$
$\log L/L_{\odot}$	$1.12\pm0.09$	$1.16\pm0.12$
$T_{eff}$	$8500\pm300~{\rm K}$	$8600\pm300~{\rm K}$

Superimposing the synthetic light curve over the individual night observations by means of the least squares method we obtained nine new individual times of minima, see Table 4.

HJD - 2,400,000	Eclipse Type	Cycle	Residual, (days)
54340.3335(9)	II	1145	+0.0001
54372.3773(3)	II	1155	-0.0003
54646.4445(2)	Ι	1241	-0.0003
54686.4103(13)	II	1253	+0.0001
54710.5313(14)	Ι	1261	-0.0016
55359.3373(2)	II	1463	+0.0004
55468.2868(1)	II	1497	-0.0000
55476.3869(3)	Ι	1500	+0.0002
55484.3087(3)	II	1502	-0.0002

Table 4. Times of minima for V974 Cyg

Using our timings and all available data from literature - Wachmann (1961), Frank (1993), Caton and Smith (2005), Smith and Caton (2007), Lacy (2004, 2006, 2007, 2009), Hübscher et al. (2006), Diethelm (2008), Lampens et al. (2010), Brát et al. (2007, 2008) we have found that the O - C diagram of V974 Cyg indicates the presence of the third body together with the rotation of the line of apsides. Because the photographic times

of minima given by Wachmann are not so precise, we have averaged his data into one primary and one secondary minima. By the least squares method we found the elements of the third body orbit together with the velocity of the apsidal line rotation. We used formulae from Martynov (1973). Due to the apsidal line rotation the periods of primary and secondary minima differ:

HJD Min I =  $2,450,669.764(2) + 3.2044121(5) \cdot E$ , HJD Min II =  $2,450,671.272(2) + 3.2044153(5) \cdot E$ .

The parameters of the third body orbit are:

 $P_3 \text{ (period)} = 9000 \pm 100 \text{ days, i.e. } 24.6 \text{ years}$  $T_0 \text{ (time of periastron)} = \text{J.D. } 2442660 \pm 80$  $A \text{ (semiamplitude)} = 0.0077 \pm 0.0002 \text{ day}$  $e = 0.74 \pm 0.12$  $\omega = 327^\circ \pm 5^\circ$ 

Assuming a coplanar orbit  $(i_3 = 90^\circ)$  we can obtain an estimation about a lower limit of mass of the third component  $M_{3,\min} = 0.4M_{\odot}$ . The observed rate of the apsidal motion:  $\dot{\omega}_{obs} = 0^\circ.26(5)$  year⁻¹. Theoretical rate can be estimated from Levi-Civita (1937) equation for relativistic and Kopal (1978) for classical parts of the apsidal motion. Claret and Gimenez (1992) models for solar abundance and for the age  $\simeq 500$  million years, give the constants of internal structure as  $k_{21} = k_{22} = 0.0042$ . So we have:  $\dot{\omega}_{theor} = \dot{\omega}_{rel} + \dot{\omega}_{class} = 0.07(3) + 0.15(2) = 0^\circ.22(4)$  year⁻¹. The two values are consistent within their respective errors.

Acknowledgements. This study was partly supported by the SAIA (Slovakia) scholarship.

References:

Brát, L., Zejda, M., Svoboda, P., 2007, Open Eur. J. Var. Stars, 74, 1 Brát, L., Smelcer, L., Kučáková, H. et al., 2008, Open Eur. J. Var. Stars, 94, 1 Caton, D. B., Smith, A. B., 2005, *IBVS*, No. 5595 Claret, A. and Gimenez, A., 1992, A&AS, 96, 255 Diethelm, R., 2008, *IBVS*, No. 5837 Frank, P., 1993, BAV Mitt., No. 56 Hübscher, J., Paschke, A., Walter, F., 2006, IBVS, No. 5731 Kopal, Z., 1978, Dynamics of Close Binary Systems (Reidel, Dordrecht) Lacy, C. H. S., 2004, IBVS, No. 5577 Lacy, C. H. S., 2006, *IBVS*, No. 5670 Lacy, C. H. S., 2007, *IBVS*, No. 5764 Lacy, C. H. S., 2009, *IBVS*, No. 5910 Lampens, P., Kleidis, S., Van Cauteren, P. et al., 2010, IBVS, No. 5933 Levi-Civita, T., 1937, Amer. J. Math., 59, 225 Martynov, D. Ya., 1973, In: *Eclipsing Variable Stars*, ed. Tsesevich, V. P., (J. Wiley, New York) Popper, D. M., 1980, Ann. Rev. Astron. Astrophys., 18, 115 Smith, A. B., Caton, D. B., 2007, IBVS, No. 5745 Wachmann, A. A., 1961, Astron. Abh. Hamburg Sternw., 6, 1

Number 5977

Konkoly Observatory Budapest 18 March 2011 *HU ISSN 0374 - 0676* 

### MAXIMA OF HIGH-AMPLITUDE DELTA SCUTI STARS

WILS, PATRICK¹; HAMBSCH, FRANZ-JOSEF^{1,2}; ROBERTSON, C. W.³; LAMPENS, PATRICIA^{4,5}; VAN CAUTEREN, PAUL^{1,5}; HAUTECLER, HUBERT¹; PANAGIOTOPOULOS, KOSTAS^{6,7}; VAN WASSENHOVE, JEROEN¹; STAELS, BART^{1,8}; VANLEENHOVE, MAARTEN¹; HOSTE, SERGE¹; PICKARD, ROGER D.⁹; KLEIDIS, STELIOS^{6,10}; AYIOMAMITIS, ANTHONY^{6,11}; NIEUWENHOUT, FRANS¹²; STRIGACHEV, ANTON¹³; BERNHARD, KLAUS²

¹ Vereniging Voor Sterrenkunde, Belgium; e-mail: patrickwils@yahoo.com

- 2 Bundesdeutsche Arbeitsgemeinschaft für Veränderliche Sterne e.V. Germany
- ³ SETEC Observatory, Goddard, Kansas, USA
- ⁴ Koninklijke Sterrenwacht van België (ROB), Brussel, Belgium
- ⁵ Beersel Hills Observatory, Beersel, Belgium
- ⁶ Helliniki Astronomiki Enosi, Greece
- ⁷ Pouda Observatory, Diakopto, Greece
- ⁸ Center for Backyard Astrophysics Flanders
- ⁹ British Astronomical Association, UK
- ¹⁰ Zagori Observatory, Epirus, Greece
- ¹¹ Perseus Observatory, Athens, Greece
- 12 Werkgroep Veranderlijke Sterren, The Netherlands

 13 Institute of Astronomy and National Astronomical Observatory, Bulgarian Academy of Sciences, Sofia, Bulgaria

In this paper we report 337 further times of maximum for 60 High-Amplitude Delta Scuti Stars (HADS), following the reports of Wils et al. (2009, 2010). The majority of the data were obtained during 2010. Time series photometry was obtained for the first time for a number of recently discovered HADS, mainly by the ASAS-3 survey (Pojmański, 2002).

The observers and their instruments are given in Table 1. The times of maximum obtained are listed in Table 3. When the same maximum was observed in more than one filter, the table shows the average value of the times obtained in each filter individually. The method used to calculate the times of maximum is described in Wils et al. (2009).

The pulsation frequency of KZ Lac turned out to be 9.577 cycles per day instead of 8.577 as given by the GCVS (Samus et al., 2007). A new ephemeris is given in Table 2, together with elements for a number of other stars that have been observed in detail the past year, or for which the existing ephemeris deviates substantially from our recent observations. To get a better precision, use was made of data from the ASAS (Pojmański, 2002), NSVS (Woźniak et al., 2004) and SuperWASP surveys (Butters et al., 2010). Table 2 also contains the elements of the previously unknown HADS GSC 4464-0924 (J2000 position: 20 52 31.06 +70 54 40.3) that was observed in the course of this study. Its magnitude range is 12.2-12.6V.

The period of DW Psc was found to be highly variable over the last decade. A linear ephemeris obtained from all available timings given by Krugly (1999), Van Cauteren et al. (2002) and this paper, results in the following ephemeris:

$$HJD Max = 2452219.3647(5) + 0.059648094(13) \times E$$
(1)

Since 2009 however the data are better represented by a period of 0.059647300(34) days, shorter by  $69\pm3$  milliseconds. An O-C graph with respect to the above ephemeris is given in Fig. 1. A cyclical change in period is not excluded, but this has to be confirmed with more data.



Figure 1. O - C graph of DW Psc with respect to the elements given in Eq. 1.

### Acknowledgements:

This work has made use of the SIMBAD database, operated at CDS, Strasbourg, France. PVC is grateful for support from Astrotechniek and Baader Planetarium. PL thanks the directors of the Royal Observatory of Belgium (ROB) for purchasing and operating an optical telescope at the radio-astronomy site of Humain under the project name *HOACS* (Humain Optical Observatory for Astrophysics of Coeval Stars). The BHO and *HOACS* data were acquired with equipment purchased thanks to a research fund financed by the Belgian National Lottery (1999). Part of the equipment used at SETEC Observatory was purchased with a grant from the American Astronomical Society. The Skinakas Observatory is a collaborative project of the University of Crete, the Foundation for Research and Technology – Hellas, and the Max-Planck-Institut für Extraterrestrische Physik. Part of the data were obtained through AAVSONet telescopes. HMB acknowledges cooperation with Tom Krajci.

Code	Observer(s)	Telescope	Observatory	CCD
AA	AA	Refractor 16 cm	Perseus Observatory, Athens	SBIG ST-10XME
AS	AS	Modified Ritchey-Chrétien 129 cm	Skinakas Observatory, Crete	CH360
BHO1	PL+PVC	Refractor 18 cm	Beersel Hills Observatory	SBIG ST-10XME
BHO2	PL+PVC	Newton $40 \text{ cm}$	Beersel Hills Observatory	SBIG ST-10XME
BHO4	PL+PVC	Newton $25 \text{ cm}$	Beersel Hills Observatory	SBIG ST-10XME
$_{\rm FN}$	$_{\rm FN}$	Catadioptric 40 cm	Alkmaar, Nederland	SBIG ST-7ME
HHSX	HH	Catadioptric 20 cm	Roosbeek Lake Observatory	Starlight XPress MX-716
HHU	HH	Catadioptric 20 cm	Roosbeek Lake Observatory	SBIG ST-7XME
HMB4	FJH	Ritchey-Chrétien 35 cm	Mol, Belgium	SBIG ST-8
HMB8	FJH	Ritchey-Chrétien 20 cm	Mol, Belgium	SBIG ST-8XME
HMBC	FJH	Ritchey-Chrétien 28 cm	Mol, Belgium	SBIG ST-10XME
HMBH	FJH	Hypergraph 40 cm	Mol, Belgium	SBIG STL-11000XM
HMBN	FJH	Catadioptric $28 \text{ cm}$	Farm Hakos, Namibia	SBIG ST-8XME
HMBT	FJH	Refractor 14 cm	Mol, Belgium	SBIG STL11000XM
HMBW	FJH	Catadioptric $30 \text{ cm}$	Astrokolkhoz, New Mexico	SBIG ST-9XE
HMBX	FJH	Ritchey-Chrétien 50 cm	New Mexico, USA	SBIG STL11000XM
HO18	PL+PVC	Refractor 18 cm	R.O.BHumain	SBIG ST-10XME, STL6303
HO40	PL+PVC	Newton $40 \text{ cm}$	R.O.BHumain	SBIG ST-10XME
KP	KP	Modified Cassegrain 26 cm	Pouda Observatory	SBIG ST-10XME
MAV	MV	Newton $25 \text{ cm}$	Leest Observatory ?	SBIG ST-10XME
RP	RDP	Catadioptric $36 \text{ cm}$	Shobdon, UK	Starlight XPress SXV-H9
RP30	RDP	Catadioptric $30 \text{ cm}$	Shobdon, UK	Starlight XPress SXV-H9
SBL	BS	Cassegrain $28 + 23.5$ cm	Alan Guth Observatory	Starlight XPress MX-716
SH	SH	Catadioptric $25 \text{ cm}$	Merelbeke, Belgium	Meade DSI II pro
SK	SK	Catadioptric 30 cm	Zagori Observatory	SBIG ST-7XMEI
SO	CWR	Catadioptric $40 \text{ cm}$	SETEC Observatory	Apogee AP7B
SO30	CWR	Catadioptric $30 \text{ cm}$	SETEC Observatory	SBIG ST-8XME
SO40	CWR	Catadioptric 40 cm	SETEC Observatory	SBIG ST-8XME
VWS	JVW	Refractor 15.2 cm $$	Hooglede, Belgium	SBIG ST-7XME

Table 1: List of instruments used for the observations.

Table 2: Updated elements of known HADS. Uncertainties are given in units of the last decimal.

Star	Max (HJD)	Period (d)
V524 And	2451505.703(1)	0.094491797(11)
V2455 Cyg	2452885.399(1)	0.094206008(7)
KZ Lac	2454075.578(1)	0.10441604(11)
GSC 1594-2234	2452713.245(1)	0.13668374(5)
GSC 2043-1201	2452701.105(2)	0.07793425(5)
GSC 2696-1396	2455378.441(1)	0.10307595(4)
GSC 2861-0970	2453987.695(1)	0.11010541(3)
GSC 3074-0114	2454138.969(1)	0.051296398(6)
GSC 3489-0868	2451311.722(2)	0.08664929(4)
GSC 4417-0394	2454835.182(1)	0.13224446(8)
$GSC \ 4464-0924$	2451342.906(3)	0.08063046(5)
GSC 4556-1113	2453813.331(1)	0.086343043(11)
$GSC \ 4638-0455$	2451511.601(1)	0.09661133(2)
NSVS $11672463$	2451323.913(2)	0.10772127(4)

Star	Epoch	Unc.	Obs.	Filter	Star	Epoch	Unc.	Obs.	Filter
GP And	55473.6155	0.0007	SO30	V	LW Dra	55295.3705	0.0014	VWS	V
	55473.6942	0.0004	SO30	V		55340.5057	0.0005	VWS	V
	55473.7731	0.0007	SO30	V		55352.4392	0.0008	VWS	V
	55473.8518	0.0006	SO30	V		55373.7057	0.0016	SO30	V
	55473.9309	0.0010	SO30	V		55451.6896	0.0010	SO30	V
	55479.5955	0.0005	SO30	V		55479.3358	0.0010	VWS	V
	55479.6740	0.0003	SO30	V		55480.3989	0.0010	VWS	V
	55479.7526	0.0005	SO30	V	DY Her	55322.4551	0.0009	BHO4	V
	55479.8313	0.0016	SO30	V		55335.5343	0.0007	HHU	С
	55479.9102	0.0004	SO30	V		55395.4324	0.0005	MAV	V
	55493.3654	0.0008	KP	V		55395.5805	0.0005	MAV	V
	55493.4440	0.0009	KP	V	V1086 Her	55338.4849	0.0005	HO40	С
	55493.5230	0.0014	KP	V	V1116 Her	55303.5268	0.0006	HMBH	V
	55493.6017	0.0014	KP	V		55303.6220	0.0007	HMBH	V
	55525.3098	0.0006	RP	V		55340.4535	0.0005	HHU	С
	55525.3895	0.0009	RP	V		55440.3423	0.0021	$_{\rm SH}$	V
V460 And	55452.3457	0.0019	HMB8	V	KZ Lac	54075.5753	0.0008	HMBX	$\mathbf{C}$
	55452.4202	0.0011	HMB8	V		54075.6795	0.0010	HMBX	$\mathbf{C}$
	55452.4947	0.0008	HMB8	V		54076.6189	0.0009	HMBX	С
	55452.5701	0.0007	HMB8	V		54077.6627	0.0014	HMBX	С
V524 And	55430.4199	0.0003	HHU	С		54084.5556	0.0022	HMBX	С
	55433.4441	0.0009	MAV	V		55427.5661	0.0025	$\mathbf{SH}$	V
	55481.4454	0.0004	HHU	С		55443.4380	0.0015	$\mathbf{SH}$	V
V544 And	55452.4119	0.0007	HMBC	V	EH Lib	55334.4172	0.0004	HHU	С
	55452.5192	0.0006	HMBC	V		55334.5055	0.0003	HHU	С
	55452.6263	0.0005	HMBC	V		55367.6609	0.0004	SO40	V
	55531.4399	0.0005	KP	V		55367.7496	0.0007	SO40	V
CY Aqr	55434.3598	0.0006	AA	С	SZ Lyn	55304.5137	0.0004	VWS	V
	55434.4205	0.0006	AA	С	-	55310.4195	0.0004	VWS	V
	55434.4816	0.0007	AA	С		55310.5398	0.0004	VWS	V
	55481.3582	0.0003	HHU	С		55507.4890	0.0005	KP	V
YZ Boo	55262.5192	0.0007	SBL	V		55507.6095	0.0005	KP	V
	55262.6226	0.0007	SBL	V	V593 Lyr	55309.5118	0.0004	HO40	С
	55311.4414	0.0004	VWS	V		55309.6136	0.0003	HO40	С
	55321.4349	0.0002	HHU	С		55371.4152	0.0008	HHU	С
	55321.5391	0.0002	HHU	С		55371.5176	0.0006	HHU	С
	55367.6512	0.0011	SO30	V		55420.4485	0.0010	$\mathbf{SH}$	V
	55367.7549	0.0008	SO30	V	V337 Ori	55528.5845	0.0013	RP	V
V376 Cam	55263.3286	0.0006	HMBT	V	V1162 Ori	55244.3083	0.0013	BHO4	V
	55263.6093	0.0013	HMBT	V		55254.2226	0.0020	SK	V
	55486.4433	0.0004	VWS	V		55254.3020	0.0031	SK	V
	55487.4255	0.0004	VWS	V		55254.3793	0.0014	SK	V
	55520.5422	0.0004	KP	С		55257.2910	0.0026	BHO4	V
	55520.6826	0.0003	KP	С		55258.2358	0.0023	SK	V
V792 Cep	55462.4542	0.0028	HMBC	V		55293.3302	0.0039	HO18	V
XX Cyg	55341.4404	0.0003	HO18	С	DY Peg	55409.7914	0.0007	SO30	V
	55352.4979	0.0003	HMBH	V	0	55409.8670	0.0013	SO30	V
	55437.3291	0.0005	AA	С		55445.3798	0.0007	MAV	V
	55437.4641	0.0004	AA	С		55445.4527	0.0003	MAV	V
	55437.5989	0.0004	AA	С		55445.5260	0.0003	MAV	V
	55494.2412	0.0004	KP	V		55459.6009	0.0010	SO30	V
	55494.3760	0.0004	KP	V		55459.6738	0.0004	SO30	V
	55495.3212	0.0007	HHU	С		55459.7464	0.0002	SO30	V
V2455 Cvg	55365.4676	0.0005	SBL	V		55459.8196	0.0003	SO30	V
70	55365.5619	0.0011	$\operatorname{SBL}$	V		55459.8924	0.0006	SO30	V
	55373.4747	0.0013	$\operatorname{SBL}$	V		55464.6327	0.0002	SO30	V
	55417.5631	0.0004	SH	V		55464.7053	0.0003	SO30	V
LW Dra	55291.4726	0.0007	VWS	V		55464.7784	0.0002	SO30	V

Table 3: Observed times of maximum (Epoch = HJD - 2400000).

Star	Epoch	Unc.	Obs.	Filter	Star	Epoch	Unc.	Obs.	Filter
DY Peg	55464.8514	0.0003	SO30	V	DW Psc	55396.5775	0.0003	HO40	С
0	55464.9245	0.0005	SO30	V		55445.4875	0.0004	HHU	С
	55466.4561	0.0005	RP	Ċ		55505.4920	0.0002	KP	Ċ
	55466.6018	0.0002	SO30	v		55505.5517	0.0004	KP	Č
	55466 6747	0.0002	SO30	V	CW Ser	55365 3304	0.0007	HMBN	v
	55466 7476	0.0006	SO30	v	GW UMa	55264 4392	0.0009	HMB4	v
	55466 8201	0.0004	SO30	v	G () 01/10	55264 6425	0.0008	HMB4	v
	55466 8937	0.0004	SO30	v		55521 6828	0.0013	KP	v
	55468 6439	0.0003	SO30	v	GSC 0321-0314	55352 4908	0.0002	HHU	Ċ
	55468 7165	0.0003	SO30	v	000 0021 0011	55362 2711	0.0002	HMBN	V
	55468 7893	0.0000	SO30	v		55362 3496	0.0001	HMBN	v
	55468 8627	0.0002	SO30	v		55362 4276	0.0000	HMBN	v
	55468 9354	0.0002	SO30	v	GSC 0429-2098	55338 4200	0.0001	HO18	Ċ
	55470 6126	0.0001	SO30	V	000 0120 2000	55350 7098	0.0013	HMRW	V
	55470.6856	0.0002	SO30	V		55350 8555	0.0010	HMRW	V
	55470.0000	0.0002	SO30	V		55353 7820	0.0013	HMRW	V
	55470.8312	0.0004	SO30	V		55358 7564	0.0011	HMRW	V
DW Doo	59509 4919	0.0003	1000	v		55258 0021	0.0019		V
DWFSC	52000.4012	0.0008	AS SO	v C	CSC 0612 0771	55442 4100	0.0011		V
	52031.0000	0.0007	50	C	650 0012-0771	55443.4199	0.0000	HMBC	V
	52031.0991	0.0000	50	C		55443.4050	0.0005	HMBC	V
	52021 2160	0.0007	50	C		55442.0403	0.0005	UMPC	V
	52931.8109	0.0005	50 50	C		55444.4941	0.0005	IIMDC	V
	52951.8700	0.0007	SU IIMDV	C		55444.4241	0.0005	IIMBC	V V
	54077.1599	0.0009	IIMDA IIMDV	C		00444.4074 EE444 EE04	0.0004	IMDC	V V
	54077.8197	0.0005	IIMDA IIMDV	C		55444.5504	0.0007		V V
	54110.5071	0.0000	IMDA	C		55445.4920	0.0007		V
	54110.0204	0.0010	HMBA DUO9	C		55445.5540	0.0000	HMB8	V
	54300.5549	0.0008	BHU2	C	000 000 0040	55445.0175	0.0006	HMB8	V
	54592.4075	0.0008	SN	C	GSC 0028-0348	55401.4997	0.0007	HMB4 UMDU	V C
	54392.5270	0.0007	SN	C	GSC 0933-0651	55358.4924	0.0005	пмвн	U V
	54400.6984	0.0006	SO30	C	GSC 1061-1651	55393.4307	0.0011	HMB8	V
	54400.7575	0.0007	5030	C	GSC 1070-0158	55505.4517	0.0007	HMBN	V
	54400.8179	0.0007	5030	C		55305.5180	0.0009	HMBN	V
	54400.8775	0.0008	5030	C		00000000000000000000000000000000000000	0.0009	HMBN	V C
	54400.9305	0.0009	5030 DUO1	C	000 1150 0001	55478.3540	0.0008	HHU	C
	54750.4959	0.0008	CDI	C	GSC 1156-0921	00409.4442	0.0004		C
	54830.2252	0.0008	SBL	C		00440.0800	0.0004	HHU CH	U V
	54830.2848	0.0008	MAV	C		55445.4515	0.0006	SH	V
	04030.2840 E4020.2440	0.0007	SDL MAY	C	CCC 1000 1101	00440.010U	0.0006	SII IIMDo	V
	54850.3448	0.0007	MAY	C	GSU 1220-1131	00443.4758 EE440 EE74	0.0008	HMB8 HMB8	V
	04030.4041 E 4090 0779	0.0008		C		00445.00/4	0.0008	TIMDO	V
	04838.2773 EE101 4495	0.0000	HU40	C		00443.0390 EE444.4504	0.0007	HMB8 HMB8	V
	55101.4425	0.0008	HU40	C		55444.4524	0.0010	HMB8	V
	00140.0912 FE140.7500	0.0007	SU30 SO30	C		00444.0334 EE444.0140	0.0008	TIMDO	V
	55140.7502	0.0009	SO30	C	000 1504 0004	55444.0140	0.0006	HMB8	V
	55140.8094	0.0008	5030	C	GSC 1594-2254	55340.4431	0.0000	HU18	V
	55140.8700	0.0007	5030	C		55540.5790	0.0002		V C
	55140.9301	0.0010	5030	U V		55374.4790	0.0005	HHU	U V
	00198.3099 55109 9699	0.0014	пмри	V V	CSC 1601 1649	00402.304/	0.0010	IMAV	V V
	99190.9000 55900 9100	0.0029	нмри нмри	v C	GSU 1021-1043	00000.0201 55265 6200	0.0049	TIMDIN	v V
	55200.2190 55200.2792	0.0013	пмвн нмри	C	CSC 1750 1997	00000.0029 55445 9501	0.0033		V V
	00200.2780 55004 0750	0.0011	ПМВЦ ПМВЦ	C	GSU 1700-1237	00440.0091 55445 4470	0.0000	IMBC IMBC	V V
	55204.2792	0.0021		C		00440.4470 55775 5975	0.0000		V V
	00204.0009 55004 2049	0.0021	ПМВЦ ПМВЦ	C		00440.0040 55445 4011	0.0007	IMBC IMBC	V V
	00204.0948 55911 9590	0.0009		C	CSC 2042 1201	00440.0211 55262 9409	0.0000	HMDU HMDN	v V
	552211.2039 55220 2 <i>27</i> 7	0.0011	11040 SV	C	GOU 2040-1201	00000.0402 55969 4179	0.0010	TIMDIN	v V
	55921 9959	0.0008	SK	C	CSC 2080 0086	55350 5909	0.0000	TIMDIN	Č
	00201.2002	0.0000	2UC	U	GBC 2080-0980	00000.0293	0.0004	IIIIU	U

Table 3: Observed times of maximum (continued).

Star	Epoch	Unc.	Obs.	Filter	Star	Epoch	Unc.	Obs.	Filter
GSC 2108-1564	55337.5449	0.0009	HO18	С	GSC 3832-0152	55301.5178	0.0005	HHSX	С
GSC 2566-1398	55304.5360	0.0010	HMBH	V		55308.3683	0.0005	HO18	V
	55308.3457	0.0020	HMBT	V	GSC 3863-0740	55264.3671	0.0024	HMBC	V
	55308.4366	0.0010	HMBT	V		55267.9247	0.0016	HMBW	V
	55308.5273	0.0007	HMBT	V	GSC 3934-1904	55339.5393	0.0003	HMBH	V
	55351.4324	0.0004	HHU	С		55364.4524	0.0008	SBL	V
	55351.5228	0.0003	HHU	С		55364.5617	0.0008	$\operatorname{SBL}$	V
GSC 2696-1396	55378.4410	0.0011	HHU	С		55417.4471	0.0010	HHU	С
	55452.3469	0.0012	$\mathbf{SH}$	V	GSC 4417-0394	55258.3647	0.0013	BHO4	V
GSC 2861-0970	55465.6402	0.0006	RP	С		55263.5219	0.0008	RP30	V
	55508.4706	0.0004	$_{\rm FN}$	V		55264.4476	0.0016	HMBT	V
	55508.5808	0.0003	$_{\rm FN}$	V		55264.5804	0.0026	HMBT	V
	55516.3976	0.0016	HMB4	V		55310.4680	0.0012	HHSX	С
GSC 2977-0238	55262.3263	0.0001	HMB4	VR		55552.4762	0.0008	KP	C
	55263.3896	0.0001	HMB4	VR		55552,6082	0.0008	KP	Ċ
	55263.4654	0.0001	HMB4	VR	GSC 4464-0924	55304.5238	0.0007	HO18	č
	55263,5413	0.0001	HMB4	VR	0.50 1101 0021	55375 4772	0.0006	HHU	Č
	55263 6181	0.0001	HMB4	VR		55452 3173	0.0000	HHU	C
	55300 3205	0.0001	HO40	V		55452.0110	0.0004	HHU	C
	55309.0250	0.0003	HO40	V	CSC 4500 0083	55365 4573	0.0007	нни	C
	55536 4462	0.0003	KD KD	V	000 4000-0000	55470 2772	0.0015	нни	C
	55536 5222	0.0002	KD KD	V		55470 3600	0.0010	нни	C
	55550.5222 EEE26 E091	0.0002		V V	CCC 4559 1409	55479.5009	0.0009	DIIO4	C
CCC 2074 0114	55550.5981	0.0005		V C	GSC 4552-1498	00207.0940 EE060 4727	0.0015	DD04 DD20	U V
GSC 3074-0114	00010.0709 EE010 40E0	0.0000	ПО18 ПО18	C		00202.4707 EE060 E000	0.0003	RF 30 RF 30	V
	55510.4252 55210.4764	0.0004	ПО18 ПО18	C		00202.0200 EE201 4207	0.0003	RF 30 RF 30	V
	55310.4764	0.0005	HU18	C		55301.4297	0.0004	RP30 DDao	V
	55310.5275	0.0004	HUI8	U		55301.4852	0.0003	RP30	V
	55386.4465	0.0004	HMB8	V		55480.3589	0.0003	HHU	C
	55386.4972	0.0006	HMB8	V		55480.4146	0.0003	HHU	C
	55386.5486	0.0010	HMB8	V		55537.4533	0.0005	KP	C
	55417.3779	0.0008	SH	V		55537.5094	0.0002	KP	C
	55433.3829	0.0007	SH	V		55537.5650	0.0002	KP	C
GSC 3483-0746	55266.5628	0.0008	HMBH	V	GSC 4556-1113	55262.3407	0.0009	BHO4	V
	55266.6748	0.0018	HMBH	V		55461.3606	0.0004	VWS	V
	55311.3810	0.0015	HO18	V		55478.3694	0.0007	VWS	V
	55311.4946	0.0008	HO18	V		55478.4564	0.0005	VWS	V
GSC 3489-0868	55334.4160	0.0015	BHO4	С		55478.5426	0.0006	VWS	V
	55334.5016	0.0010	BHO4	С		55521.3686	0.0004	VWS	V
GSC 3490-0814	55260.5677	0.0013	HO40	V		55521.4550	0.0003	VWS	V
	55308.5073	0.0016	HO18	С		55543.3012	0.0003	$\mathbf{VWS}$	V
	55309.4001	0.0020	HO18	С		55543.3876	0.0003	VWS	V
	55396.4434	0.0008	MAV	V	GSC 4638-0455	55337.4089	0.0003	HMBH	С
	55396.5126	0.0009	MAV	V		55337.5059	0.0008	HMBH	С
GSC 3832-0152	55258.4054	0.0011	SBL	V	GSC 4923-0693	55297.3319	0.0008	HMBH	V
	55258.4960	0.0011	SBL	V		55297.3980	0.0009	HMBH	V
	55258.5861	0.0013	SBL	V		55303.3880	0.0006	HMBH	V
	55260.4138	0.0004	HO40	V		55303.4546	0.0006	HMBH	V
	55260.5051	0.0003	HO40	V	GSC 5018-1085	55337.4338	0.0003	HO18	С
	55260.5054	0.0005	$\operatorname{SBL}$	V	NSVS 11672463	55445.4360	0.0005	$\mathbf{SH}$	V
	55298.4128	0.0008	HHSX	С	NSVS 14243430	55365.4340	0.0008	HMBN	V
	55298.5030	0.0009	HHSX	С		55365.5199	0.0003	HMBN	V
		0 0000	TITON	a	1	FFOCE COCL	0.0009	TIMON	<b>x</b> 7

Table 3: Observed times of maximum (continued).
References:

- Butters, O.W., West, R.G., Anderson, D.R. et al., 2010, A&A, 520, L10
- Krugly, Y.N., 1999, IBVS, 4730
- Pojmański, G., 2002, Acta Astron., 52, 397
- Samus, N.N., Durlevich, O.V. et al., 2007-2011, *General Catalog of Variable Stars*, online edition
- Van Cauteren, P., Wils, P., Lampens, P., Strigachev, A., 2002, IBVS, 5248
- Wils, P., Kleidis, S., Hambsch, F.-J., Vidal-Sáinz, J., Vanleenhove, M., Lampens, P., Van Cauteren, P., Robertson, C.W., Staels, B., Pickard, R.D., Rozakis, I., Dufoer, S., Groenendaels, R., Gómez-Forrellad, J.M., García-Melendo, E., Hautecler, H., Van der Looy, J., 2009, *IBVS*, 5878
- Wils, P., Hambsch, F.-J., Lampens, P., Van Cauteren, P., Staels, B., Pickard, R.D., Kleidis, S., Van Wassenhove, J., Otero, S.A., Bellocchio, E., Thienpont, E., Vanleenhove, M., 2010, *IBVS*, 5928
- Woźniak, P.R., Vestrand, W.T., Akerlof, C.W. et al., 2004, AJ, 127, 2436

Number 5978

Konkoly Observatory Budapest 18 March 2011 HU ISSN 0374 – 0676

# PHOTOELECTRIC MINIMA OF SOME ECCENTRIC ECLIPSING BINARY SYSTEMS

#### BOZKURT, ZEYNEP

Ege University, Science Faculty, Department of Astronomy and Space Sciences, 35100, İzmir-Turkey; e-mail: zeynep.bozkurt@ege.edu.tr

# Observatory and telescope:

30-cm, 35-cm and 40-cm Meade and 48-cm Cassegrain telescopes at Ege University Observatory Research and Application Center.

Detector:	SSP-5 photoelectric photometer attached to 30 and 35-cm
	telescopes, high-speed three-channel Vilnius photometer
	attached to 48-cm telescope and Apogee 2048x2048 CCD
	camera attached to 40-cm telescope.

### Method of data reduction:

Reduced differential magnitudes, in the sense of variable minus comparison, were obtained using the procedures outlined in Hardie (1962).

# Method of minimum determination:

The minima times were calculated using the method of Kwee & van Woerden (1956).

Times of n	ninima:				
Star name	Time of min.	Error	Type	Filter	Rem.
	HJD 2400000+				
V889 Aql	53993.2951	0.0005	II	BV	SSP5
HP Aur	54172.3407	0.0005	II	BV	SSP5
V775 Cas	54048.3879	0.0003	Ι	BV	SSP5
	55471.3924	0.0005	Ι	BV	Vilnius
	55480.3192	0.0008	II	BV	Vilnius
DP Cet	53612.5175	0.0006	Ι	UBV	Vilnius
	53631.4600	0.0003	Ι	UBV	Vilnius
	53765.2544	0.0007	II	UBV	Vilnius
	55502.3173	0.0002	Ι	BV	Vilnius
TV Cet	54093.3940	0.0004	Ι	BV	SSP5
	55504.4072	0.0001	Ι	BV	Vilnius
KL CMa	53651.5780	0.0006	II	U	Vilnius
	53688.5861	0.0004	II	UBV	Vilnius
	53781.2641	0.0005	Ι	UBV	Vilnius
	55579.4189	0.0005	II	BV	Vilnius
LT CMa	54111.3730	0.0006	II	BV	Vilnius
	55604.3653	0.0003	Ι	BV	CCD
V335 Ser	53885.3276	0.0003	Ι	BV	Vilnius
	53911.3391	0.0006	II	BV	Vilnius
	53942.3875	0.0005	II	BV	Vilnius
	54287.3750	0.0004	II	BV	Vilnius
	54292.4138	0.0001	Ι	BV	Vilnius
	54670.3155	0.0006	II	UBV	Vilnius
	54675.3517	0.0003	Ι	UBV	Vilnius
	55384.4370	0.0004	II	BV	Vilnius
	55396.3780	0.0003	Ι	BV	Vilnius
DR Vul	54285.4500	0.0003	Ι	BV	SSP5
	54365.4033	0.0001	II	BV	SSP5
HD 171055	53947.4181	0.0005	Ι	BV	Vilnius
HD 350731	53957.4278	0.0006	Ι	BV	SSP5
	53966.3408	0.0002	II	BV	Vilnius

### **Remarks:**

Detectors which were used to observe the related minima times.

#### Acknowledgements:

The author acknowledges allotment of observing time at Ege University Observatory Research and Application Center.

References:

Hardie, R.H., 1962, in Astronomical Techniques, ed. W.A. Hiltner (Chicago: Univ. Chicago Press), 178

Kwee, K. K., van Woerden, H. 1956, Bull. Astr. Inst. Netherlands, 12, 327

Number 5979

Konkoly Observatory Budapest 18 March 2011 *HU ISSN 0374 - 0676* 

# NEW AND UNPUBLISHED TIMES OF MINIMA OF ECLIPSING BINARY SYSTEMS

BORKOVITS, TAMÁS^{1,6}; BÍRÓ, IMRE BARNA¹; HEGEDÜS, TIBOR¹; KISS, ZOLTÁN TAMÁS¹; SZAKÁTS, RÓBERT¹; REGÁLY, ZSOLT²; PATKÓS, LÁSZLÓ²; KLAGYIVIK, PÉTER²; SIMITY, SZABOLCS^{3,7}; GREZSA, TAMÁS^{4,7}; GERGELY, GÁBOR^{5,7}; LUKÁCS, KATALIN^{5,7}

 1 Baja Astronomical Observatory of Bács-Kiskun County, Baja, Szegedi út, Kt. 766, H–6500 Hungary; e-mail: borko@electra.bajaobs.hu

² Konkoly Observatory of the Hungarian Academy of Sciences, Budapest, Pf. 67, H–1525 Hungary

³ Department and Environmental Physics and Laser Spectroscopy, University of Pécs, Pécs, Hungary

 4  Department of Experimental Physics and Astronomical Observatory, University of Szeged, Szeged, Dóm tér 9, H-6720, Hungary

⁵ Department of Astronomy, Eötvös Loránd University, Budapest, Pf. 32, H–1518 Hungary

 6 Guest observer at Piszkéstető Observatory of Konkoly Observatory

⁷ On summer training at Baja Astronomical Observatory

#### Observatory and telescope:

50-cm f/8.4 Ritchey–Chrétien telescope (Ba50) of the Baja Astronomical Observatory (Hungary)

50-cm f/6 modified Cassegrain telescope (Baja Astronomical Robotic Telescope – BART1) of the Baja Astronomical Observatory (Hungary)

50-cm f/15 Cassegrain telescope (Pi50) of the Konkoly Observatory at Piszkéstető Mountain Station (Hungary)

1-m f/13.3 RCC telescope (Pi100) of the Konkoly Observatory at Piszkéstető Mountain Station (Hungary)

Detector:	$512 \times 512$ Apogee AP-7 CCD camera (Ba50)
	$4096 \times 4096$ Apogee Alta U16 CCD camera (BART1)
	cooled UBVRI Photometer (Pi50)
	uncooled UBV Photometer (Pi50u)
	$1340 \times 1300$ Princeton Instr. CCD camera (Pi100)

#### Method of data reduction:

Reduction of CCD frames was made with customly developed IRAF¹ packages.

#### Method of minimum determination:

The minima times were computed with parabolic fitting, and in some cases with linearized Pogson-method or Kwee-van Woerden method (Kwee & van Woerden, 1956).

¹IRAF is distributed by the National Optical Astronomical Observatories, operated by the Association of the Universities for Research in Astronomy, inc., under cooperative agreement with the National Science Foundation

Times of minin	ma:				
Star name	Time of min.	Error	Type	Filter	Rem.
Star Hamio	HJD 2400000+	11101	- <i>J</i> P 0	1 11001	100111
BT And	53592 4863	6	II	V	Bor+Kla/Pi100
iti miu	54738 3033	6	II	V R	Bor/Pi50
	55/32 /158	2	T	$R^{V,IC}$	Bor/Ba50
AB And	5/353 5058	1	п	V	Bor/BART1
nib mid	55400 4531	2	T	R R	Bor/Ba50
OO Ad	55101 3767	1	II I	11	Bor/BART1
SS Ari	55470 3805	2	T	B	Bor/Ba50
IM Aur	54375 4016	1	I		Bor/BART1
ilvi Aui	54751 459	1	II I	V V	Bor/Ba50
	54701.402	1	11 T	V V	Bor/Ba50
TTT Arm	54794.4002	2 E	I T	V D	D01/Da50
10 Aur	04081.4270 54750 5096	Э 4	1	R V	Heg/Ba50
	54752.5836	4		V	$K_{1S}/Ba50$
	54781.575		11	V	Kis/Ba50
	54802.4045	5	I T	V	Bir/Ba50
	54809.6489	7	l	V	Bor/Ba50
	54810.5544	7	11	V	Bor/Ba50
	54822.328	1	l	V	Bor/Ba50
	54840.4413	6	1	V	Bor/Ba50
	55463.5918	3	l	R	Bor/Ba50
	55590.3876	1	Ι	_	Heg/BART1
	55599.4428	1	Ι	_	Bír/BART1
	55600.3484	2	II	-	Szak/BART1
SV Cam	44833.4584	2	Ι	V, B	Pat/Pi50u
	48904.3157	2	Ι	B	Pat/Pi50u
	49702.5888	6	Ι	V, B	Pat/Pi50u
	50096.3916	2	Ι	V, B	Pat/Pi50u
AS Cam	54868.4524	3	Ι	V, R	Bor/Ba50
RZ Cas	54697.4451	1	Ι	V, R	Bor+Reg/Pi50
PV Cas	55491.4665	7	Ι	R	Bor/Ba50
VW Cep	54693.3926	5	Ι	B, V	Bor+Reg/Pi50
	54955.5607	5	Ι	V, R	Bor/Pi50
	54956.5317	1	II	V, R	Bor/Pi50
	54956.5324	2	II	B	Bor/Pi50
	55029.4481	9	II	B, V, R	Bor+Sim/Ba50
	55030.4260	6	Ι	B, V, R	Sim+Bor/Ba50
	55030.5613	3	II	B, R	Sim+Bor/Ba50
	55033.4864	5	Ι	B, V, R	Bir/Ba50
	55034.4580	10	II	B, V, R	Szak/Ba50
	55035.4344	6	Ι	B, V, R	Bir/Ba50
	55035.5718	5	II	B, V, R	Bir/Ba50
	55036.4070	12	II	B, V, R	Szak/Ba50
	55036.5480	8	Ι	B, V, R	Szak/Ba50
	55037.3833	7	Ι	B, V, R	Szak/Ba50
	55037.5192	8	II	B, V, R	Szak/Ba50
	55039.4676	12	II	B, V, R	Bor/Ba50
EK Cep	54597.4199	3	Ι	B, V, R	Bor/Ba50
*	54628.4142	4	Ι	B, V, R	Bor/Ba50
GSC 4274-1702	54754.383	1	Ι	R	Bor/Ba50
	54761.4543	10	Ι	V, R	Bor/Ba50
	54767.334	1	Ι	$\dot{V}$	Bor/Ba50
	54774.395	1	Ι	V, R	Bír+Kis/Ba50
	54798.5428	7	Ī	R	Bir/Ba50
GU Her	54640.501	1	I	$\stackrel{\circ}{R}$	Bor/Ba50
	54931.4978	6	T	$\overline{R}$	Bor/Ba50
	55411.443	1	Ī	R	Bor/Ba50
HS Her	55362.4683	7	II	$\overline{R}$	Bor/Ba50
	55430.402	1	I	$R^{-v}$	Bor/Ba50

Times of min	nima:				
Star name	Time of min.	Error	Type	Filter	Rem.
	HJD 2400000+				
V994 Her $A^a$	54290.517	1	Ι	V	Kis/BART1
	54314.5204	8	II	V	Heg/BART1
	54315.522	1	Ι	V	Bor/BART1
	54360.3524	4	II	V	Kis/BART1
	54361.3570	2	Ι	V	Bor/BART1
	54383.2729	3	II	V	Bor/BART1
	54610.3494	8	II	R, V, B	Bír+Gre/Ba50
	54713.4349	14	Ι	R, V, B	Heg/Ba50
V994 Her $\mathbf{B}^a$	54283.4131	1	Ι	V	Kis/BART1
	54290.515	3	Ι	V	Kis/BART1
	54298.3787	2	II	V	Bír/BART1
	54300.4457	4	Ι	V	Bor/BART1
	54307.5424	5	Ι	V	Ger+Luk/BART1
	54332.457	1	II	V	Kis/BART1
	54334.523	:	Ι	V	Kis/BART1
	54347.3084	3	Ι	V	Bor/BART1
	54364.3439	3	Ι	V	Bír/BART1
	54374.2829	7	Ι	V	Kis/BART1
	54618.5160	13	Ι	R, V, B	Bír+Gre/Ba50
	54650.5498	30	II	R, V, B	Gre/Ba50
	54653.3886	13	II	R, V, B	Gre/Ba50
	54699.4777	14	Ι	R, V, B	Gre/Ba50
SW Lac	53589.4576	4	II	V	Bor+Kla/Pi100
	55442.4180	1	Ι	R	Bor/Ba50
UV Leo	54927.4883	5	Ι	V	Bor/Ba50
V404 Lyr	55358.4775	3	Ι	_	Bor/Ba50
FT Ori	54809.4344	1	II	V	Bor/Ba50
$\beta \operatorname{Per}^{b}$	54696.5458	4	Ι	V + N	Bor+Reg/Pi50
,	54828.4502	7	Ι	(V, R) + N	Reg/Pi50
	54831.3157	2	Ι	(V, R) + N	Reg+Bor/Pi50
V1123 Tau	54366.6209	1	II	V	Bor/BART1
DW UMa	54910.3522	1	Ι	V, R	Bor/Ba50
	54910.4889	1	Ι	V, R	Bor/Ba50
	54910.6254	1	Ι	V, R	Bor/Ba50
LP UMa	54910.3169	13	Ι	V, R	Bor/Ba50
	54910.4685	11	II	V, R	Bor/Ba50
	54910.6286	15	Ι	V, R	Bor/Ba50

### Explanation of the remarks in the table:

[Observer(s)]/Instrument

^{*a*}: V994 Her A,B: This is an (at least) quadruple system, composed of two eclipsing pairs in a hierarchical configuration. In labeling the two eclipsing subsystems (both of them revolve on slightly eccentric orbits) we follow the notation of Lee et al., 2008.

Note also, that the minimum at HJD 2453206.365 published as an unidentified type in one of our previous compilation (Bíró et al., 2007) is found to be a secondary minimum of V994 Her B.

^{*b*}: $\beta$  Per: Due to the brightness of the system we had to use an additional neutral filter (denoted by N)

### Acknowledgements:

T.B. and Zs.R. thank Dr. Miklós Rácz for supporting us with the neutral filter in order to make it possible to observe Algol with the Pi50 telescope.

References:

Bíró et al., 2007, *IBVS*, No. 5753 Kwee, K. K. & van Woerden, H., 1956, *Bull. Astron. Inst. Neth.*, **12**, 327 Lee, C.-U. et al., 2008, *MNRAS*, **389**, 1630

Number 5980

Konkoly Observatory Budapest 18 March 2011 *HU ISSN 0374 - 0676* 

### MINIMA TIMES OF SELECTED ECLIPSING BINARIES

PARIMUCHA, Š.¹; DUBOVSKÝ, P.²; VAŇKO, M.³; PRIBULLA, T.³; KUDZEJ, I.²; BARSA, R.⁴

 1 Institute of Physics, Faculty of Natural Sciences, University of P.J. Šafárik, Košice, The Slovak Republic; e-mail: stefan.parimucha@upjs.sk

 2 Kolonica Observatory, The Slovak Republic; e-mail: var@kozmos.sk

 3 Astronomical Institute of the Slovak Academy of Sciences, Tatranská Lomnica, Stará Lesná, The Slovak Republic; e-mail: (vanko, pribulla)@ta3.sk

⁴ Technical University Košice, The Slovak Republic; e-mail: rob.barsa@gmail.com

### Observatory and telescope:

Kolonica Observatory: K1 - 2.8/180 mm photo lens, K2 - 265/1360 mm Newton, K3 - 280/1500 mm Newton, K4 - 5.6/400 mm photo lens Astronomical Institute of the SAS: G2 - 600/7500 mm Cassegrain

#### Detector:

K1, K2, K4 - Meade DSI Pro, K3, K4 - Starlight Express SXVF-H9, G2 - back-illuminated SITe TK1024

## Method of data reduction:

All observations were reduced and photometry were performed using C-Munipack package (http://c-munipack.sourceforge.net/)

#### Method of minimum determination:

The minima times were computed by Kwee & van Woerden (1956) method.

Times of 1	minima:				
Star name	Time of min.	Error	Type	Filter	Rem.
	HJD 2400000+				
RT And	55353.4866	0.0003	II	R	K4
	55376.4406	0.0002	Ι	R	K4
AB And	55221.2325	0.0002	Ι	R	K1
	55398.4621	0.0001	Ι	R	K4
	55461.3544	0.0002	Ι	R	K4
BX And	55212.2881	0.0001	Ι		K1
	55216.2585	0.0002	II	R	K1
	55429.4867	0.0002	Ι	R	K4
	55475.5505	0.0007	II	R	K4
CN And	55429.3556	0.0006	II	R	K4
	55431.4353	0.0004	Ι	R	K4
EP And	55065.5078	0.0001	II	V	K2
	55090.5616	0.0001	II	V	K2
	55219.2667	0.0003	Ι	R	K1
	55478.2984	0.0004	Ι	R	K4

Times of a	minima:				
Star name	Time of min.	Error	Type	Filter	Rem.
	HJD 2400000+				
GZ And	55213.2455	0.0001	Ι	V	K2
LO And	55065.3801	0.0001	II	V	K2
V376 And	55460.3745	0.0005	Ι	R	K4
	55488.3321	0.0004	Ι	R	K4
SS Ari	55075.4302	0.0002	Ι	V	K2
	55096.5400	0.0002	Ι	V	K2
	55097.5563	0.0002	II	V	K2
	55477.5543	0.0002	II	R	K4
AR Aur	55263.3464	0.0002	Ι	R	K1
	55484.5520	0.0001	II	R	K4
TY Boo	55221.6497	0.0001	Ι	V	K2
	55249.5593	0.0002	Ι	V	K2
	55264.4652	0.0001	Ι	V	K2
	55278.5794	0.0002	II	V	K2
TZ Boo	55219.6526	0.0001	Ι	V	K2
AC Boo	55220.6741	0.0002	Ι	R	K1
	55295.5692	0.0002	II	R	K4
	55606.6062	0.0002	Ι	R	K4
FI Boo	55211.6029	0.0009	Ι	R	K1
	55272.4494	0.0002	Ι	R	K1
	55381.4537	0.0003	II	R	K4
SV Cam	55265.6075	0.0002	Ι	R	K1
	55281.3241	0.0004	II	R	K1
	55478.5205	0.0001	Ι	R	K4
	55497.4977	0.0001	Ι	R	K4
AO Cam	55059.4886	0.0001	Ι	V	K2
	55068.5613	0.0002	II	V	K2
	55100.5613	0.0003	II	V	K2
	55212.4000	0.0002	II	R	K1
	55213.3888	0.0001	II	V	K2
CD Cam	55211.5301	0.0001	II	V	K2
	55263.4925	0.0002	II	V	K2
	55265.4027	0.0002	Ι	V	K2
	55501.5353	0.0004	Ι	R	K4
DN Cam	55416.5280	0.0002	Ι	R	K4
	55462.3723	0.0002	II	R	K4
	55462.6213	0.0002	Ι	R	K4
FN Cam	55264.3190	0.0003	Ι	R	K1
	55294.4514	0.0002	II	R	K4
	55474.5673	0.0003	II	R	K4
NR Cam	55591.4227	0.0002	II	$\operatorname{RI}$	G2
	55593.4677	0.0001	II	RI	G2
TX Cnc	55221.3812	0.0002	II	R	K1
	55263.3049	0.0002	Ι	V	K2
WY Cnc	55219.4511	0.0002	Ι	R	K1
	55500.6065	0.0002	Ι	R	K4

Times of mini	ima:				
Star name	Time of min.	Error	Type	Filter	Rem.
	HJD 2400000+				
EH Cnc	55232.3334	0.0002	II	V	K2
	55264.3139	0.0002	Ι	V	K2
	55278.3175	0.0002	II	V	K2
	55620.2688	0.0004	II	V	K4
GSC 1387-475	55219.4481	0.0003	Ι	V	K2
	55221.4079	0.0001	II	V	K2
	55221.5214	0.0002	Ι	V	K2
BI CVn	55249.4816	0.0003	Ι	R	K1
	55311.3397	0.0001	Ι		K3
	55606.4136	0.0005	Ι	R	K4
BS Cas	55052.3522	0.0001	Ι	R	K3
	55052.5731	0.0002	II	R	K3
	55054.5543	0.0001	Ι	R	K3
	55059.3999	0.0002	Ι	R	K3
	55061.3812	0.0002	II	R	K3
	55062.4820	0.0002	Ι	R	K3
CW Cas	55051.5298	0.0001	Ι	V	K2
	55094.4165	0.0002	II	V	K2
	55100.3155	0.0001	Ι	V	K2
	55164.4062	0.0002	Ι	V	K2
	55180.3497	0.0001	Ι	V	K2
	55482.4667	0.0003	II	R	K4
	55497.2935	0.0003	Ι	R	K4
V523 Cas	55054.4066	0.0001	Ι	V	K2
	55076.6077	0.0001	Ι	V	K2
	55221.2646	0.0001	Ι	V	K2
	55481.4825	0.0005	II	R	K4
	55500.2942	0.0002	Ι	R	K4
V362 Cas	55069.4397	0.0001	Ι	V	K2
	55082.5020	0.0002	II	R	K3
V651 Cas	55093.5889	0.0001	Ι	V	K2
	55480.3498	0.0001	Ι	R	K4
V776 Cas	55223.2688	0.0003	II	R	K1
	55397.4509	0.0008	Ι	R	K4
	55421.4527	0.0006	II	R	K4
	55475.4078	0.0006	Ι	R	K4
VW Cep	55358.4112	0.0002	II	R	K4
	55461.2444	0.0002	Ι	R	K4
	55484.3452	0.0001	Ι	R	K4
WZ Cep	55051.3781	0.0001	II	V	K2
	55480.5036	0.0003	II	R	K4
GW Cep	55095.5652	0.0001	Ι	V	K2
	55430.3390	0.0003	Ι	R	K4
	55430.4987	0.0004	II	R	K4

٦

Times of n	ninima:				
Star name	Time of min.	Error	Type	Filter	Rem.
	HJD 2400000+				
RW Com	55219.5412	0.0003	II	V	K2
	55586.7219	0.0003	II	$\operatorname{RI}$	G2
RZ Com	55213.6651	0.0001	II	V	K2
SS Com	55212.5645	0.0001	II	V	K2
	55265.6129	0.0002	Ι	V	K2
CC Com	55180.6676	0.0001	Ι	V	K2
	55211.6738	0.0002	II		K3
	55213.5501	0.0001	Ι	V	K2
	55249.6319	0.0002	II	R	K1
YY CrB	55213.6289	0.0002	Ι	R	K1
	55219.6525	0.0001	Ι	R	K1
	55264.4622	0.0003	Ι	R	K1
	55311.3436	0.0002	II	R	K4
	55311.5309	0.0002	Ι	R	K4
	55354.4579	0.0002	Ι	R	K4
	55420.3565	0.0003	Ι	R	K4
CG Cvg	55380.4305	0.0002	Ι	R	K4
,0	55420.5079	0.0003	II	R	K4
V401 Cvg	55090.3037	0.0001	II	V	K2
V1191 Cvg	55063.4577	0.0006	I	V	K2
	55093.3878	0.0001	Ī	V	K2
V1918 Cvg	55065.4738	0.0002	II	V	K3
11010 038	55481.3356	0.0003	I	R.	K4
LS Del	55401.4395	0.0008	Ţ	R.	K4
20 2 01	55463.2943	0.0008	Ī	R	K4
	55476 3937	0.0006	Ī	R	K4
CM Dra	55051 4502	0.0001	Ī	V	K2
	55093 3070	0.0001	Ī	v	K2
	55100 2822	0.0001	Ī	Ř	K3
	55264 5398	0.0001	I	V	K2
CM Dra	55311 4703	0.0001	I	v	K2 K3
FII Dra	55264 6074	0.0001	I	V	K2
10 D10	55304 3275	0.0001	Î	•	K3
	55360 4566	0.0001	II	В	K4
AK Her	55359 4608	0.0004	I	R	K4 K4
V728 Her	55076 3007	0.0000	I	V	K9
V120 Her	55097 2728	0.0001	II	V	K2 K2
V820 Hor	55064 3678	0.0000	II	V	K2 K2
V857 Her	55307 3835	0.0001	T	v R	KΔ KΛ
1001 1101	55392 4310	0.0004	II	R	K4
SW Lac	55300 /611	0.0000	T	R	KA KA
SW Lac	55453 3228	0.0002	T	R	K4
	55498 3820	0.0002	II	R	K4
PP Lac	55000 3118	0.0002	II	V	K9
II Lat	55005 3969	0.0002	T	v V	K2
	55482 2461	0.0001	II	v R	K4
1	00102.2101	0.0004	11	τt	17.4

Times of m	inima:				
Star name	Time of min.	Error	Type	Filter	Rem.
	HJD 2400000+				
CE Leo	55211.5360	0.0002	II	V	K2
	55278.4426	0.0001	Ι	V	K2
RT LMi	55180.4928	0.0002	II	V	K2
	55212.5474	0.0003	Ι	R	K1
VW LMi	55180.6518	0.0001	Ι		K1
	55220.5257	0.0002	II	R	K1
	55263.5024	0.0002	II	R	K1
	55272.3358	0.0002	Ι	R	K1
	55274.4844	0.0005	II	R	K4
	55278.3068	0.0003	II	R	K4
	55294.3026	0.0003	Ι	R	K4
	55607.3413	0.0003	II	R	K4
WZ LMi	55594.5740	0.0005	II	RI	G2
UV Lyn	55284.3362	0.0004	Ι	R	K4
V714 Mon	55483.5951	0.0009	Ι	R	K4
V508 Oph	55052.3627	0.0001	II	V	K2
	55307.5067	0.0003	II	R	K4
	55355.4325	0.0002	II	R	K4
V2610 Oph	55304.5690	0.0006	II	R	K4
-	55357.4613	0.0006	II	R	K4
V2612 Oph	55309.4940	0.0008	II	R	K4
	55356.4053	0.0004	II	R	K4
U Peg	55474.3455	0.0002	Ι	R	K4
AT Peg	55454.3390	0.0003	Ι	R	K4
	55477.2592	0.0003	Ι	R	K4
BB Peg	55060.3678	0.0002	II	V	K2
-	55096.3369	0.0001	Ι	V	K2
	55476.2742	0.0003	Ι	R	K4
	55499.2302	0.0003	II	R	K4
BX Peg	55057.3837	0.0001	II	V	K2
_	55482.3561	0.0002	Ι	R	K4
DI Peg	55498.2485	0.0006	II	R	K4
V351 Peg	55452.4462	0.0004	II	R	K4
	55475.2883	0.0003	Ι	R	K4
V357 Peg	55213.2378	0.0001	Ι	R	K1
V357 Per	55419.4560	0.0002	II	R	K4
V432 Per	55076.4580	0.0001	II	V	K2
	55477.3971	0.0002	II	R	K4
	55052.5010	0.0001	Ι	V	K2
	55095.4324	0.0002	Ι	V	K2
	55212.3414	0.0001	Ι	V	K2
DV Psc	55060.5125	0.0003	II	V	K2
	55064.5248	0.0002	II	V	K2
	55090.4418	0.0002	II	V	K2
	55097.3813	0.0002	Ι	V	K2
	55501.2574	0.0002	Ι	R	K4

Times of r	ninima:				
Star name	Time of min.	Error	Type	Filter	Rem.
	HJD 2400000+				
GSC 8-901	55060.5095	0.0003	Ι	V	K2
	55097.4163	0.0006	II	V	K2
AU Ser	55059.3420	0.0001	Ι	V	K2
OU Ser	55294.5792	0.0003	II	R	K4
	55607.6748	0.0005	II	R	K4
Y Sex	55265.4744	0.0004	Ι	R	K1
CW Sge	55074.3314	0.0004	Ι	V	K2
	55075.3245	0.0002	II	V	K2
AH Tau	55063.5793	0.0002	Ι	V	K2
	55216.2765	0.0002	Ι	V	K2
	55482.5810	0.0004	II	R	K4
	55501.3768	0.0004	Ι	R	K4
EQ Tau	55094.5543	0.0001	II	V	K2
	55101.5552	0.0001	Ι	V	K2
	55186.3807	0.0001	II	V	K2
	55219.3202	0.0001	Ι	V	K2
	55453.4850	0.0003	Ι	R	K4
	55499.3979	0.0006	II	R	K4
V781 Tau	55213.4773	0.0004	Ι	R	K1
	55220.3756	0.0002	Ι	R	K1
	55463.5387	0.0005	Ι	R	K4
	55500.4428	0.0004	Ι	R	K4
XY UMa	55213.3687	0.0003	II	R	K1
	55232.2838	0.0002	Ι	R	K1
	55278.5124	0.0008	II	R	K4
	55476.5731	0.0001	Ι	R	K4
	55481.5991	0.0008	II	R	K4
AA UMa	55272.3197	0.0002	Ι	V	K2
	55603.2842	0.0002	Ι	R	K4
HH UMa	55272.4526	0.0005	Ι	V	K2
HV UMa	55232.4597	0.0003	Ι	R	K1
	55257.3387	0.0003	Ι	R	K1
TV UMi	55221.5881	0.0002	II	R	K1
	55257.5295	0.0003	Ι	R	K1
	55264.5999	0.0003	Ι	R	K1
	55284.5398	0.0004	Ι	R	K4
	55312.3834	0.0007	Ι	R	K4
	55400.4736	0.0009	Ι	R	K4
PY Vir	55304.3913	0.0003	II	R	K4
AG Vir	55607.4953	0.0007	Ι	R	K4
AH Vir	55280.5057	0.0002	Ι	R	K4

Explanation of the remarks in the table:
Remarks give an observatory.

## Remarks:

Times of minima are weighted averages from all filters used. The minimum types are calculated according O - C gateway of Czech Astronomical Society (http://var.astro.cz/ocgate). The elements for for GSC 8-901 are taken from Parimucha et al. (2008) and for GSC 1387-475 from Rucinski & Pribulla (2008)

### Acknowledgements:

M.V. and T.P. acknowledge support from the EU in the FP6 MC ToK project MTKD-CT-2006-042514. This work has also been supported by VEGA projects 2/0038/10, 2/0094/11 and APVV grant LPP-0024-09

### References:

Kwee, K. K., van Woerden, H., 1956, Bull. Astron. Inst. Neth., 12, 327

Parimucha, Š., Pribulla, T., Vaňko, M., Dubovský, P., Hambálek, Ľ., 2008, Ap&SS, **313**, 419

Rucinski, S., Pribulla, T., 2008, MNRAS, 388, 1831

Number 5981

Konkoly Observatory Budapest 23 March 2011 *HU ISSN 0374 - 0676* 

#### A SEARCH FOR PERIOD CHANGES IN LONG PERIOD VARIABLES

LEBZELTER, T.; ANDRONACHE, S.

Universität Wien, Institut f. Astonomie, Türkenschanzstrasse 17, 1180 Vienna, Austria, e-mail: thomas.lebzelter@univie.ac.at

Asymptotic Giant Branch (AGB) stars are objects of low or intermediate mass in their final stage of stellar evolution. This is a short but decisive phase, where the star is producing a variety of heavy elements and loses mass at a high rate. Most AGB-stars are showing long period variability on time scales of a few ten to a few hundred days and visual amplitudes up to several magnitudes. This class of pulsating stars is called the Long Period Variables (LPVs).

The evolution and internal structure of AGB stars is dominated by a hydrogen and a helium burning shell which alternate in providing the major part of the stellar luminosity. This cycle, named thermal pulse, has a typical timescale of 10⁵ yr. During a cycle, luminosity, temperature, radius, and surface composition can change as a reaction to the processes in the stellar interior (e.g. Vassiliadis & Wood, 1993). The most easily accessible way to study such a cycle is the change in period (due to a radius change) as long time series exist for a large number of galactic LPVs. Indeed, candidates for period changes have been detected by various authors (Wood & Zarro, 1981; Lloyd, 1991; Percy & Au, 1999; Templeton et al., 2005).

Such studies are typically based on long, more or less continuous time series of visual observations provided by observatory publications or by amateur astronomers. These long light curves are then analysed for possible period changes e.g. by using an O-C-diagram, wavelet analysis (e.g. Hawkins et al., 2001) or other methods (e.g. Merchan Benitez & Jurado Vargas, 2000). Systematic period changes can be noticed on timescales of a few ten years.

In this paper we want to explore a somewhat different approach. Many LPVs have been detected and characterized in the first decades of the 20th century. The beginning of the 21st century sees a number of automatic surveys during which sets of typically several light cycles of photometric data of the same variables are obtained and automatically analyzed. This means that we have two sets of monitoring data separated by 60 to 100 years. By comparing the old periods with the newer ones should allow to detect candidates for a period change. We note that small irregular changes of the period length of a few percent are well known to occur in long period variables (cf. Wood & Zarro, 1981 and references therein). A relation to the thermal pulse cycle is less likely in these cases. Some stars show a switching of the pulsation mode from time to time of which the origin is not understood

Name	GCVS period	rev ACVS period	ΔP [%]	АТ	Remark
BF Mon	- 282 A	151 d	-17	$\frac{\Delta 1}{25000 d}$	TUIHAIK
DC IIvo	200 d	101 d 205 d	-47	20000 d	
DG Пуа	202 d	505 C	+10	24000 d	
V433 Cen	367 d	179 d	-51	24000 d	
ES Cen	174 d	$352 \mathrm{d}$	+103	28000 d	
AX Mus	99 d	115 d	+16	27000 d	*
AX Lib	115 d	221 d	+92	$24000 {\rm d}$	
CO Sco	$176 {\rm d}$	149 d	-15	36000  d?	
V2121 Oph	$158 \mathrm{~d}$	296 d	+87	$10000 {\rm d}$	*
ZZ Oph	$205~{\rm d}$	303 d	+47	$27000 {\rm d}$	
BD Ser	134 d	209 d	+56	$29000 {\rm d}$	
WY Ser	399 d	$195 \mathrm{d}$	-51	$26000 {\rm d}$	*
$V3190 \ Sgr$	194 d	226 d	+16	$38000 {\rm d}$	*
V2030 Sgr	283 d	$159 \mathrm{~d}$	-44	$27000 {\rm d}$	
V3343 Sgr	134 d	122 d	-9	$16000 {\rm d}$	*
UX Aql	$375 \mathrm{d}$	188 d	-50	$29000 {\rm d}$	
CX Sgr	211 d	$179 \mathrm{~d}$	-15	$35000 {\rm d}$	
AM Sgr	$95 \mathrm{d}$	126 d	+33	$36000 {\rm d}$	
BM Sgr	403 d	201 d	-50	$37000 {\rm d}$	*
V540 Aql	309 d	$165 \mathrm{d}$	-47	$24000 {\rm d}$	
EK Aql	$152 \mathrm{~d}$	$259 \mathrm{~d}$	+70	$37000 {\rm d}$	
TX Cap	129 d	199 d	+54	$25000 {\rm d}$	
UV Tuc	310 d	$160 \mathrm{d}$	-48	$28000 {\rm d}$	
RX PsA	366 d	151 d	-59	$24000 {\rm d}$	

Table 1. Candidates for period-changing Miras.

yet (Kiss et al., 1999). These aspects have to be considered when interpreting observed period changes.

For our study we selected the ASAS catalogue of variable stars (ACVS, Pojmanski, 2000) which is based on a monitoring of the whole Southern sky up to  $\delta = +28^{\circ}$  over a time span of about 3000 days between 1997 and 2005. Light curves of most variables brighter than V=15 mag as well as automatically determined periods and variability classes are available. We cross-correlated this catalogue with the General Catalogue of Variable Stars (GCVS, Samus et al., 2009) using stellar coordinates with a search radius of 0.1 arcminutes. Within this sample we identified 109 stars classified as miras in the ACVS where the ASAS period deviates by more than 9% from the GCVS value (stars with no GCVS period were not considered). For these stars we re-determined the period from the ASAS data and rejected 59 stars where either the corrected period was close to the GCVS value or the ASAS data were of low quality.

This left us with 50 stars to which we added 11 stars selected in the same way from the list of stars that were classified as 'MISC' in the ACVS, but as Miras in the GCVS. For this sample, we looked up the reference used for the period value given in the GCVS. 18 of these literature sources were not accessible for us and we also did not find any further usable reference. In 16 cases, we found that the published light curve data could be equally or even better fitted using the period derived from the ASAS data. Sometimes the authors noted already that the derived period is uncertain and could for instance be doubled or halved as well, which would bring it into agreement with the ACVS value. This left us with 27 stars for which the difference between the independently determined periods from the GCVS and the ACVS makes them candidates for a period change.

Among these 27 targets we detected 4 stars that have been known before to be Miras with a variable period: RU Tau (Percy & Au, 1999; Templeton et al., 2005), BH Cru (Templeton et al., 2005; Walker, 2009), ES Del (Watanabe, 2001; Templeton et al., 2005), and RT Vel (Lysaght, 1989). This is a nice confirmation that our method is capable of detecting Miras with period changes. The remaining 24 candidates are listed in Tab. 1. The variable star name, the period from GCVS as well as the revised ACVS period (rounded to full days) and the difference in percent of the GCVS period are given. We also list the approximate time span elapsed between the observations leading to the GCVS period (typically the time of the first reported maximum) and the start of the ASAS monitoring. The candidates can be divided into two groups, one showing period changes of 10 to 20%, and one where the period is roughly halved or doubled. The latter group may indicate a change of the dominant pulsation mode in the past decades. Period changes in both directions are observed. The most promising candidates, based on the literature data, are marked with an asterisk in the table and are discussed in the following.

**AX Mus**: Swope (1931) analysed two long time series of observations of this star, separated by 4700^d and noted, that the best fit for the first dataset is 99^d, while the second dataset gives 97^d. The ACVS value of 115^d may suggest a continuous period variation. Interestingly, the time of the first maximum in the ASAS light curve can be predicted to within 1 day accuracy using the 97^d. period and a corresponding maximum (JD 2425330). Thus, 97^d. seems to represent the average period of the light change of AX Mus pretty well.

**V2121 Oph**: This Mira has been studied by Clement et al. (1980) in the course of a search for variables in the globular cluster NGC 6284. It is likely a non-member. Clement et al. listed the individual photometric measurements they had used, so we could test the ACVS period of  $296^{d}$ , which, however, gave a considerably worse fit than the value mentioned in that paper. The ratio between GCVS period and ACVS period is close to 2, therefore, we may witness a switch from first overtone to fundamental mode here.

**WY Ser**: The GCVS value is based on a study by Hoppe (1938). While the individual measurements are not given, Hoppe explicitly excluded the possibility of a halving of the period. On the other hand, there is no doubt from the ASAS data that WY Ser is currently pulsating with a period around  $195^{d}$ .

V3190 Sgr: Payne (1928b) noted that earlier papers gave either 222^d.3 or 227^d.3 for this star, which interestingly would be very close to the ACVS value, but she found that 194^d clearly provided the best fit to the data analyzed by her.

V3343 Sgr: Plaut (1971) derived a period of this star of 134.2^d based on 18 measurements from four light cycles between JD 2435600 and JD 2436800. The ACVS period is 121^d9 which gives a very good fit of the ASAS data, but can be excluded for the Plaut data. On the other hand, the 134^d2 period is not representing the light change described by the ASAS data. The typical short time scatter in period length derived from the ASAS data is about 3%, i.e. clearly less than the difference observed. As a further check we divided the time difference between one maximum derived from the Plaut data and the first maximum of the ASAS data by the two period values. The Plaut value gives a ratio of 123.96, i.e. the maximum is deviating only 4% from the expected time, while the ACVS period is almost half a period off. We suggest that the rather small deviation found when using the Plaut period indicates that the star has changed its period to the current (ACVS) value quite recently. **BM Sgr**: For this object another period determination besides the GCVS and ACVS value exists. Shawl & Bord (1990) give a period of 199d, i.e. very close to the ACVS value, with a reference maximum at JD 2446501. The older period of 403^d from Payne (1928a) was based on 167 observations covering 35 epochs of the light change of BM Sgr. She noted that the "period is more than usually variable".

With the list of stars presented in Tab. 1 we would like to draw further attention to these objects as they seem to be good candidates for Miras with a previously unknown and probably evolutionary caused period change. This study is also a test case for a future comparison of data from forthcoming surveys with archive material.

Acknowledgements: This project has been supported by the Austrian Science Fund FWF under project P20046-N16 and P21988-N16.

References:

Clement, C.M., Sawyer-Hogg, H., Wells, T.R., 1980, AJ, 85, 1604 Hawkins, G., Mattei, J.A., Foster, G., 2001, PASP, 113, 501 Hoppe, J., 1938, KVBB, 19 Kiss, L.L., Szatmáry, K., Cadmus, R.R., Mattei, J.A., 1999, A&A, 346, 542 Lloyd, C., 1991, JBAA, 101, 46 Lysaght, M.G., 1989, JAAVSO, 18, 28 Merchan Benitez, P., Jurado Vargas, M., 2000, A&A, 353, 264 Payne, C.H., 1928a, *HB*, 860 Pavne, C.H., 1928b, HB, 861 Percy, J.R., Au, W.W.Y., 1999, PASP, 111, 98 Plaut, L., 1971, A&ASuppl., 4, 75 Pojmanski, G., 2000, Acta Astronomica, 50, 177 Samus, N.N., et al., 2009, General Catalogue of Variable Stars, 2009yCat....102025S Shawl, S.J., Bord, D.J., 1990, AJ, 99, 917 Swope, H.H., 1931, *HB*, 883 Templeton, M.R., Mattei, J.A., Willson, L.A., 2005, AJ, 130, 776 Vassiliadis, E., Wood, P.R., 1993, ApJ, 413, 641 Walker, W.S.G., 2009, JAAVSO, 37, 187 Watanabe, T., 2001, *IBVS*, 5208 Wood, P.R., Zarro, D.M., 1981, ApJ, 247, 247

Number 5982

Konkoly Observatory Budapest 25 March 2011 *HU ISSN 0374 – 0676* 

# THE ECLIPSING CATACLYSMIC VARIABLES PHL 1445 AND GALEX J003535.7+462353

WILS, PATRICK¹; KRAJCI, TOM²; HAMBSCH, FRANZ-JOSEF^{1,3}; MUYLLAERT, EDDY¹

¹ Vereniging Voor Sterrenkunde, Belgium; e-mail: patrickwils@yahoo.com

² Astrokolkhoz, New Mexico, USA

³ Bundesdeutsche Arbeitsgemeinschaft für Veränderliche Sterne e.V. Germany

Eclipsing cataclysmic variables (CVs) are important because through detailed modeling of the eclipses it is possible to deduce the physical properties of the system. This paper reports the discovery of two new eclipsing CVs: PHL 1445 and GALEX J003535.7+462353.

PHL 1445 (= PB 9151) is listed in the Palomar-Haro-Luyten catalogue as a faint blue object (Haro & Luyten, 1962). A spectrum (6dFGS g0242429-114646) taken by the 6dF Galaxy Survey (Jones et al., 2004 and 2009) showed it to be a cataclysmic variable (Wils, 2009). Because of the split emission lines and a number of anomalously faint points in the light curve of the Catalina Real-time Transient Survey (CRTS; Drake et al., 2009), it was suspected to be an eclipsing variable as well. Follow-up observations at the Astrokolkhoz Observatory with a C14 Schmidt-Cassegrain and an unfiltered CCD camera, showed this indeed to be the case. As shown in Fig. 1, the light curve shows deep eclipses lasting about 6 minutes, with an amplitude of more than two magnitudes. In addition the period is very short, 76.3 minutes, near the minimum orbital period for CVs (Gänsicke et al., 2009). Such a short orbital period is usually observed in WZ Sagittae type dwarf novae like GW Lib (orbital period 76.8 minutes) and SDSS J150722.30+523039.8 has a shorter orbital period among the eclipsing CVs (Savoury et al., 2011).

Table 1 lists the observed times of eclipses. From these, the following eclipse ephemeris was derived:

$$HJDMin = 2455202.5579(1) + 0.05298466(8) \times E \tag{1}$$

Since not many deeply eclipsing CVs are known at this orbital period, high speed photometry of the eclipses, such as done by Southworth and Copperwheat (2011) and Savoury et al. (2011) would certainly be of value for this object.

GALEX J003535.7+462353 was discovered as a variable source by the GALEX satellite (Martin et al., 2005) on 30 August 2008. Although the object is too faint itself, both the Northern Sky Variability Survey (NSVS; Woźniak et al., 2004) and SuperWASP (Butters et al., 2010) observed the combined magnitude of GALEX J003535.7+462353 and GSC 3249-1603, which lies some 18" to the West. Both surveys show a number of brightenings in the combined light curve, lasting several days, with an amplitude of up to 0.2 magnitudes from the normal combined magnitude of 12.9, indicating the possible



Figure 1. Light curve of PHL 1445 showing four eclipses.

Table 1: Observed times of eclipse for PHL 1445 and GALEX J003535.7+462353. The times are given as HJD - 2450000 (UTC based). The uncertainty on the times is about 0.0001 days for PHL 1445 and 0.0005 days for GALEX J003535.7+462353 for the minima obtained from our data, and 0.001 days for the minima obtained from SuperWASP data.

$\operatorname{PHL}1445$	GALEX J003	535.7 + 462353
	SuperWASP	This paper
5202.5579	4330.553	5477.5621
5202.6108	4331.589	5478.4228
5202.6640	4332.622	5478.5954
5202.7169	4333.655	5479.4560
5241.6075	4334.688	5479.6284
5242.6144	4335.551	5480.6625
	4360.703	5481.3519
	4407.388	5481.5239
	4408.424	5482.3856
		5483.4192
		5486.6920
		5495.3052
		5495.6516
		5576.6190
		5577.6526
		5579.7207

14

variability of GALEX J003535.7+462353 rising to about magnitude 14.5, from its normal magnitude of around 16.5. These may be an indication of a dwarf nova outburst with a fairly small amplitude. In addition, during these bright phases SuperWASP showed short periodic dimmings back to the normal combined magnitude with a period of around 0.1723 days. The likely cause of these periodic fadings are eclipses of the variable.

GALEX J003535.7+462353 was therefore followed extensively by the authors. The eclipses with a duration of about 30 minutes, could be easily confirmed. At quiescence the eclipse depth is about 2 magnitudes in V, but varying slightly. In a timespan of three months one definite outburst was observed, lasting about a week (see Fig. 2), and possibly a few shorter outbursts. At the end of the observing season, the object was entering another outburst. The rise to outburst seems to be more gradual, like in some other dwarf novae with a short outburst cycle and relatively small amplitude (often classified as Z Cam type variables). During the long outburst, the eclipses could also be observed with a similar amplitude as during quiescence. Fig. 3 shows eclipses observed during quiescence, during a rise to outburst and one during outburst.

From the list of observed times of eclipse in Table 1, together with the times of minimum that could be derived from the SuperWASP data, the following eclipse ephemeris was deduced:

HJD Min = 
$$2455477.5615(4) + 0.17227503(11) \times E$$
 (2)



Figure 2. Light curve of GALEX J003535.7+462353 composed of daily means of observations outside of eclipse. Open circles represent V magnitudes, filled circles unfiltered magnitudes.

Acknowledgements: This study made use of the Simbad and VizieR databases (Ochsenbein et al., 2000), and of data provided by the NASA GALEX mission. Part of the data were obtained through AAVSONet, run by the American Association of Variable Star Observers, through the Tzec Maun Foundation and by using the Bradford Robotic Telescope.



Figure 3. Eclipses of GALEX J003535.7+462353 observed in quiescence (left), rising to outburst (middle) and in outburst (right).

References:

Butters, O.W., West, R.G., Anderson, D.R. et al., 2010, A&A, 520, L10

- Drake, A.J., Djorgovski, S.G., Mahabal, A., Beshore, E., Larson, S., Graham, M.J., Williams, R., Christensen, E., Catelan, M., Boattini, A., Gibbs, A., Hill, R., Kowalski, R., 2009, ApJ, 696, 870
- Gänsicke, B.T., Dillon, M., Southworth, J. et al., 2009, MNRAS, 397, 2170

Haro, G., Luyten, W.J., 1962, Bol. Inst. Tonantzintla, 3, 37

Jones, D.H., Saunders, W., Colless, M. et al., 2004, MNRAS, 355, 747

Jones, D.H., Read, M.A., Saunders, W. et al., 2009, MNRAS, 399, 683

- Martin, D.C., Fanson, J., Schiminovich, D., Morrissey, P., Friedman, P.G., Barlow, T.A., Conrow, T., Grange, R., Jelinsky, P.N., Milliard, B., Siegmund, O.H.W., Bianchi, L., Byun, Y.-I., Donas, J., Forster, K., Heckman, T.M., Lee, Y.-W., Madore, B.F., Malina, R.F., Neff, S.G., Rich, R.M., Small, T., Surber, F., Szalay, A.S., Welsh, B., Wyder, T.K., 2005, ApJ Lett., 619, 7
- Ochsenbein, F., Bauer, P., Marcout, J., 2000, A&A Suppl., 143, 23
- Savoury, C.D.J., Littlefair, S.P., Dhillon, V.S. et al., 2011, arXiv:1103.2713v1 [astroph.SR]

Southworth, J., Copperwheat, C.M., 2011, arXiv:1101.2534v1 [astro-ph.SR]

Wils, P., 2009, *IBVS*, 5916

Woźniak, P.R., Vestrand, W.T., Akerlof, C.W. et al., 2004, AJ, 127, 2436

Number 5983

Konkoly Observatory Budapest 31 March 2011 *HU ISSN 0374 - 0676* 

### ON THE OPTICAL VARIATIONS OF AH HERCULIS

SPOGLI, C.^{1,2}; FIORUCCI, M.^{1,3}; ROCCHI, G.²; CIPRINI, S.^{4,1,5}; BRUNOZZI, P.²; FAGOTTI, P.²; MANCINELLI, V.²; VERGARI, D.²; CAPEZZALI, D.²

 1  Physics Department, University of Perugia, via A. Pascoli, 06123 Perugia, Italy

 2 Porziano Astronomical Observatory, via Santa Chiara 2, 06081 Assisi (PG), Italy

³ INAF - Padova and Asiago Astronomical Observatory, via Osservatorio, 36012 Asiago (VI), Italy

⁴ ASI Science Data Center (ASDC), c/o ESRIN, via G. Galilei, 00044 Frascati (Roma), Italy

⁵ Tuorla Observatory, University of Turku, Väisäläntie 20, 21500, Piikkiö, Finland

In the context of a long-term variability study of a sample of dwarf novae, we have been monitoring AH Her since 1994 (Spogli et al., 2001, 2002) and we have obtained photometric data during many outbursts and standstills with the aim to constrain theoretical models. AH Her is one of the intrinsically brightest dwarf novae in quiescence, with the optical emission dominated by the accretion disk and the secondary (probably a K2 V star, Bruch, 1987). The system has an inclination angle  $i \simeq 41^{\circ}$ . Moreover, the FUV flux of AH Her is completely dominated by the accretion disk, with only a marginal fraction of the total light generated by the White Dwarf:  $\simeq 3\%$  in quiescence (Urban & Sion, 2006) and  $\leq 0.5\%$  during the outburst (Hamilton et al., 2007). For all these reasons, AH Her is a perfect candidate to study the accretion disk emission, thanks to the marginal contribution of the primary star and of the boundary layer region. The principal aim of this work is to test the steady state model making use of multicolour observations of AH Her on different parts of the outburst light curve. Since the secondary star is the same for the different observations, a set of disk spectra should exist which reproduces the different shapes of the simultaneous optical observations and the brightness differences.

All the observations have been obtained with a 0.30-m f/6.5 Schmidt-Cassegrain reflector, equipped with an AP-32ME CCD camera (Kodak 3200-ME, 2184×1470 pixels) and Schuler  $UBVR_CI_C$  Johnson-Cousins filters. The exposure time was 120–600 s depending on the brightness of the object and the filter used. The CCD frames were first corrected for de-biasing and flat-fielding, then processed for aperture photometry. All the  $BVR_CI_C$ data were obtained in differential photometry using the photometric comparison sequence reported by Spogli et al. (2001). The U magnitudes have been measured only during good photometric nights with respect to a selected sample of standard stars (Landolt, 1992). Color transformation equations were characterized by slopes always within the margins 0.9-1.1.

AH Her has been monitored more intensively in the years 2007-2009, for a total of 121 different nights and 393 photometric points (see Table 1 in the electronic version). During the 2007 campaign many fast outbursts are evident in the light curve (Fig. 1), while during the 2008 campaign AH Her showed longer outbursts and standstill phases (Fig. 2).



Figure 1.  $R_c$  data of AH Her from April 24th to October 16th 2007 from Table 1 (filled circles). Small crosses represent visual estimates available from AFOEV (http://cdsweb.u-strasbg.fr/afoev/).



Figure 2.  $R_c$  data of AH Her from May 6th to October 11th 2008 from Table 1 (filled circles). Small crosses represent visual estimates available from AFOEV (http://cdsweb.u-strasbg.fr/afoev/).

To study the behaviour of the optical continuum of AH Her we corrected our observations by the interstellar extinction  $E_{(B-V)} = 0.03$ , then we converted the  $UBVR_CI_C$  magnitudes in fluxes  $f(\lambda)$  using the conversion factors reported by Bessell (1979). With this raw fluxes the spectral flux distribution is sensibly different from that expected by a standard accretion disk with the canonical power-law spectrum  $f(\lambda) \propto \lambda^{7/3}$  (Lin & Papaloizou, 1996). For many times this behaviour has been considered an evidence that a steady and optically thick model disk cannot account for the continuum distribution of dwarf novae during the outburst (see, for example, Spogli et al., 1998). However, for AH Her the model is consistent with the observations if we take into consideration the secondary emission.

Fig. 3 shows the spectral flux distribution of AH Her at different stages of the outbursts cycle. The spectral slope is flatter in quiescence and steeper during the maximum, and in general is different from the spectral slope expected by a steady-state accretion disk. The same behaviour has been observed by many authors, for example by Hamilton et al. (2007) in the IUE spectra. Now we have considered the optically thick and geometrically thin disk model described by la Dous (1989) with angle of inclination  $i = 45^{\circ}$ , and Fig. 3 shows that our observations are consistent with the superposition of this disk emission with a K5 V secondary star (Kurucz 1992, T = 4250K,  $\log g = 4.5$ ,  $\log Z = 0.0$ ). The disk emission during the maximum is  $\simeq 13$  times brighter than at quiescence.



Figure 3. Examples of  $UBVR_CI_C$  fluxes of AH Her from quiescence to the outburst (points). The solid lines represent the superposition of a K2 V secondary (dashed line) with an accretion disk with different levels of brightness (dotted lines). The dwarf nova and hot spot emissions have been omitted References: because they give a marginal contribution in the UV only.

- Bessell, F.M., 1979, PASP, 91, 589
- Bruch, A., 1984, A&AS, 56, 441
- Hamilton, R.T., Urban, J.A., Sion, E. et al., 2007, ApJ, 667, 1139
- Kurucz, R., 1992, IAU Symp., 149, 225, in: The Stellar Populations of Galaxies, eds. B. Barbuy and A. Renzini, Kluwer, Dordrecht
- la Dous, C., 1989, A&A, **211**, 131
- Landolt, A. U., 1992, AJ, 104, 340
- Lin, D. N. C. & Papaloizou, J. C. B., 1996, ARA&A, 34, 703
- Spogli, C., Fiorucci, M., Tosti, G., 1998, A&AS, 130, 485
- Spogli, C., Fiorucci, M., Tosti, G., Raimondo, G., 2001, *IBVS*, 5147
- Spogli, C., Fiorucci, M., Tosti, G., Ciprini, S., Nucciarelli G., Macchia, E., Monacelli, G., 2002, *IBVS*, 5276
- Szkody, P., 1976, ApJ, 207, 824
- Urban, J.A. & Sion, E.M., 2006, ApJ, 642, 1029

Number 5984

Konkoly Observatory Budapest 6 April 2011 *HU ISSN 0374 – 0676* 

# BAV-RESULTS OF OBSERVATIONS - PHOTOELECTRIC MINIMA OF SELECTED ECLIPSING BINARIES AND MAXIMA OF PULSATING STARS (BAV MITTEILUNGEN NO. 215)

#### HÜBSCHER, JOACHIM

Bundesdeutsche Arbeitsgemeinschaft für Veränderliche Sterne e.V. (BAV), Munsterdamm 90, 12169 Berlin, Germany, www.bav-astro.de, publikat@bav-astro.de

In this 69th compilation of BAV results, photoelectric observations obtained in the year 2010 and 2011 are presented on 503 variable stars giving 767 minima on eclipsing binaries and maxima on pulsating stars. All moments of minima and maxima are heliocentric. The errors are tabulated in column ' $\pm$ '. The values in column 'O - C' are determined without incorporation of nonlinear terms. The references are given in the section 'Remarks'. All information about photometers and filters are specified in the column 'Rem'. The observations were made at private observatories. The photoelectric measurements and all the light curves with evaluations can be obtained from the office of the BAV for inspection.

	Iubio	1. 1.111			0011	poing officered			
Variable	HJD 24	±	Obs	O - C		Bibliography	Fil	n	Rem
RT And	55386.5021	.0028	AG	+0.0433		GCVS 2009	-Ir	28	11)
WX And	55461.5404	.0030	AG	+0.0614		GCVS 2009	-Ir	63	11)
AB And	52981.3033	.0001	BO	+0.0012		GCVS 2009	0	172	14)
AD And	55473.3341	.0003	JU	-0.0572	$\mathbf{S}$	GCVS 2009	0	60	2)
	55491.5800	.0026	AG	-0.0561		GCVS 2009	-Ir	69	11)
AN And	55461.4038	.0024	$\mathbf{SCI}$	+0.0696		GCVS 2009	0	159	2)
AP And	55491.4625	.0006	AG	+0.0006	$\mathbf{S}$	GCVS 2009	-Ir	69	11)
BD And	55481.4814	.0017	AG	-0.0186		GCVS 2009	-Ir	49	11)
	55483.3337	.0005	JU	-0.0179		GCVS 2009	0	61	2)
BL And	55380.4924	.0017	AG	-0.0016		GCVS 2009	-Ir	35	11)
	55398.5525	.0013	AG	-0.0009		GCVS 2009	-Ir	33	11)
	55481.6220	.0045	AG	-0.0046		GCVS 2009	-Ir	50	11)
DK And	55386.4041	.0019	AG	+0.0010		BAVR 55,106	-Ir	28	11)
	55481.3147	.0016	AG	+0.0022		BAVR 55,106	-Ir	49	11)
	55481.5612	.0031	AG	+0.0041	$\mathbf{S}$	BAVR 55,106	-Ir	49	11)
EX And	55386.5240	.0004	AG	-0.0005		GCVS 2009	-Ir	28	11)
GK And	55473.5831	.0029	SCI	+0.0597		GCVS 2009	0	58	2)
	55491.6681	.0016	AG	+0.0609		GCVS 2009	-Ir	69	11)
LO And	55491.2860	.0006	AG	-0.0050		GCVS 2009	-Ir	69	11)
	55491.4774	.0007	AG	-0.0038	$\mathbf{S}$	GCVS 2009	-Ir	69	11)
	55491.6672	.0011	AG	-0.0043		GCVS 2009	-Ir	69	11)
QW And	55478.5025	.0041	AG	+0.0076	$\mathbf{S}$	GCVS 2009	-Ir	90	11)
QX And	53657.4043	.0002	$\mathbf{PRK}$	+0.0422		GCVS 2009	0	400	6)
V404 And	55484.3355	.0003	JU	+0.0109		GCVS 2009	0	70	2)
V412 And	55491.2562	.0031	AG	+0.0584		GCVS 2009	-Ir	69	11)

Table 1: Times of minima of eclipsing binaries

Table 1: (cont.)

Variable	HJD 24	±	Obs	O-C		Bibliography	Fil	n	Rem
V422 And	55398.4857	.0071	AG	-0.0065	$\mathbf{s}$	GCVS 2009	-Ir	33	11)
V425 And	55481.4887	.0009	AG	-0.0342		GCVS 2009	-lr	49	11)
	55491.4340	.0005	AG	-0.0341		GCVS 2009	-lr	69 79	11)
490 And	55154.4234	.0164	AG			C CT IC 2000	-lr	73	11)
CK Aqr	55445.4036	.0001	FLG	+0.0115		GCVS 2009	V	92	9)
	55461.4144	.0001	FLG	+0.0118	$\mathbf{s}$	GCVS 2009	V	195	9)
)O Aql	55385.4342	.0004	AG	+0.0473		GCVS 2009	-lr	36	11)
	55487.2998	.0035	PGL	+0.0484		GCVS 2009	V	460	12)
7346  Aql	55389.4498	.0016	AG	-0.0101		GCVS 2009	-Ir	29	11)
V415  Aql	55418.4148	.0066	$\operatorname{AG}$	+0.0006		BAVM 69	-Ir	44	11)
/417 Aql	55385.4141	.0008	$\operatorname{AG}$	-0.0553	$\mathbf{S}$	BAVR 33,152	-Ir	36	11)
	55418.3713	.0024	AG	-0.0561	$\mathbf{S}$	BAVR 33,152	-Ir	43	11)
	55418.5566	.0007	AG	-0.0560		BAVR 33,152	-Ir	43	11)
V609 Aql	55389.4543	.0061	AG	-0.0492		GCVS 2009	-Ir	30	11)
V640 Aql	55418.4422	.0040	AG	+0.0344		GCVS 2009	-Ir	44	11)
/699 Aql	50279.4473	.0008	$\mathbf{FR}$	+0.0211	$\mathbf{s}$	GCVS 2009	0	30	2)
-	50283.3884	.0025	$\mathbf{FR}$	+0.0161		GCVS 2009	0	41	2)
	50286.4574	.0008	FR	+0.0160	s	GCVS 2009	0	36	2)
V770 Aal	55385.4717	.0039	AG	+0.3678	s	GCVS 2007	-Ir	36	11)
	55389.4534	.0012	AG	+0.3673	2	GCVS 2009	-Ir	29	11)
/879 Aal	53095 6264	.00012	MS FR	+0.0233		GCVS 2009	0	221	) 5)
V1075 Ad	55396 4544	0035	AG	-0.0250	s	GCVS 2009	_Ir	25	11)
/1006 A al	55396 /080	0047	AG	10 2035	5	GCVS 2009	_Ir	20 25	11)
V1168 Agl	55295 4642	.0047	AG	+0.2933	5	CCVS 2009	-11 In	20 26	11)
V100 Aql	55565.4042	.0115	AG	-0.0008	8	CCVS 2009	-11 Tm	30	11)
V 1245 Aqi	00418.4100	.0022	AG	+0.0318		GCV5 2009	-11	44	11)
v 1430 Aql	55444.4111	.0035	PGL	-0.0108	$\mathbf{s}$	AJ 119,2391	v	212	13)
V 1692 Aql	55418.4209	.0089	AG	-0.0533	$\mathbf{s}$	1BVS 5260=BAVM 150	-Ir	44	11)
V1712 Aql	55418.4995	.0018	AG	-0.0056	$\mathbf{S}$	GCVS 2009	-Ir	45	11)
JN Aur	53764.4548	.0021	FR	+0.0658		GCVS 2009	0	34	11)
EP Aur	55590.2940	.0015	AG	+0.0116		GCVS 2009	-Ir	49	11)
	55590.5897	.0041	$\operatorname{AG}$	+0.0118	$\mathbf{S}$	GCVS 2009	-Ir	49	11)
FW Aur	55590.2863	.0027	$\operatorname{AG}$	-0.0400		GCVS 2009	-Ir	49	11)
31 Aur	55590.4835	.0074	AG	+0.0285		GCVS 2009	-Ir	49	11)
	55601.3631	.0014	SCI	+0.0374		GCVS 2009	0	39	2)
MO Aur	55590.4580	.0320	AG	+0.0910	$\mathbf{S}$	BAVM 68	-Ir	49	11)
$\sqrt{523}$ Aur	55591.4652	.0011	AG				-Ir	68	11)
	55591.6291	.0014	AG				-Ir	68	11)
V555 Aur	55481.6260	.0012	SCI	+0.0146		GCVS 2009	0	57	2)
EL Boo	54261.4409	.0035	JU				0	64	2)
	54639 4151	0016	JU				0	54	2)
SV Cam	55563 3280	0014	PGL	$\pm 0.0522$		GCVS 2009	V	33/	$\frac{2}{12}$
XZ Cam	55500 2785	0020	AC	$\pm 0.0522$		GCVS 2009	v Ir	101	12)
AN Com	55500 2801	0020	AC	-0.1100		CCVS 2009	-11 In	195	11)
AZ Com	55578 5940	.0079 0079	AC	±0.2063		CCVS 2009	-11 In	$120 \\ 107$	11) 11)
	55570 4790	.0073		$\pm 0.0203$		GU V B 2009	-1f T.:	107	11) 11)
nw Cam	00078.4732	.0057	AG			COMIC DODD	-1r	107	11)
NO Cam	55590.3107	.0020	AG	+0.0369		GUVS 2009	-Ir	125	11)
	55590.5256	.0016	AG	+0.0365	$\mathbf{S}$	GCVS 2009	-Ir	125	11)
	55592.2489	.0010	AG	+0.0368	$\mathbf{S}$	GCVS 2009	-lr	15	11)
	55599.3562	.0008	AG	+0.0367		GCVS 2009	-Ir	76	11)
	55599.5705	.0014	AG	+0.0356	$\mathbf{S}$	GCVS 2009	-Ir	76	11)
NQ Cam	55591.4405	.0037	AG	-0.0812	$\mathbf{S}$	GCVS 2009	-Ir	63	11)
	55591.6191	.0012	AG	-0.0836		GCVS 2009	-Ir	63	11)
NS Cam	55591.3528	.0063	AG	-0.0544	$\mathbf{s}$	GCVS 2009	-Ir	63	11)
NU Cam	55578.5179	.0092	AG	+0.0573	$\mathbf{s}$	GCVS 2009	-Ir	107	11)
RT CMi	53768.4756	.0090	AG	-0.0720	$\mathbf{s}$	GCVS 2009	-Ir	30	11
ГΖ СМі	55599.2774	.0007	AG	+2.2374	-	GCVS 2009	-Ir	39	11)
AC CMi	55599.3817	.0011	AG	+0.1737	s	GCVS 2009	-Ir	39	11
AG CMi	55599 3828	0002	AG	_0 138/	2	GCVS 2009	V	37	11
CZ CM	55500 2279	.000⊿ ∩∩19	AC	$\pm 0.1364$	3	IBVS 5366-RAVM 156	v	30 20	11)
	00099.0012	.0012	AG IU	$\pm 0.0003$	ъ	DAVD 20 26	v	00 02	11)
TY Car						D = A = A = A = A = A = A = A = A = A =			
TX Cas	55480.3550	.0100		-0.0140		COVC 2000	т	20	2) 11)

Table 1: (cont.)

Variable	HJD 24	±	Obs	O-C		Bibliography	Fil	n	Rem
AB Cas	55463.4821	.0035	PGL	+0.1875		GCVS 2009	V	150	13)
AE Cas	55473.4374	.0023	AG	+0.0659		GCVS 2009	-lr	44	11)
AL Cas	55473.3184	.0019	AG	+0.0067	$\mathbf{s}$	GCVS 2009	-lr	44	11)
	55473.5682	.0025	AG	+0.0062		GCVS 2009	-lr	44	11)
AX Cas	55479.3600	.0005	AG	-0.0994		GCVS 2009	-lr	58	11)
	55491.3678	.0014	AG	-0.0991		GCVS 2009	-Ir	61	11)
	55491.6605	.0029	AG	-0.1066	$\mathbf{S}$	GCVS 2009	-Ir	61	11)
	55514.4853	.0062	AG	-0.0960	$\mathbf{S}$	GCVS 2009	-Ir	40	11)
BH Cas	55409.5640	.0038	AG				-Ir	28	11)
	55462.5355	.0064	$\operatorname{AG}$				-Ir	46	11)
BN Cas	55514.4478	.0139	AG	+0.5144		GCVS 2009	-Ir	40	11)
BS Cas	55499.4272	.0028	AG	-0.0178		IBVS 4778=BAVM 123	-Ir	48	11)
	55499.6483	.0019	AG	-0.0170	$\mathbf{S}$	IBVS 4778=BAVM 123	-Ir	48	11)
BU Cas	55499.4610	.0020	$\mathcal{AG}$	-0.0234		GCVS 2009	-Ir	48	11)
BW Cas	55491.3916	.0043	AG	+0.2466		GCVS 2009	-Ir	61	11)
BZ Cas	55514.4964	.0035	AG	+0.2886		GCVS 2009	-Ir	40	11)
CC Cas	55462.3426	.0028	JU	+0.0819	$\mathbf{S}$	GCVS 2009	0	72	2)
CV Cas	55473.5225	.0011	AG	+0.6499		GCVS 2009	-Ir	44	11)
CW Cas	55479.4382	.0017	AG	-0.0220	$\mathbf{s}$	GCVS 2009	-Ir	58	11)
	55479.5977	.0009	AG	-0.0219		GCVS 2009	-Ir	58	11)
DP Cas	55460.5517	.0062	AG	+0.0144		GCVS 2009	-Ir	47	11)
DZ Cas	55460.5499	.0026	AG	-0.1786		GCVS 2009	-Ir	48	11)
EG Cas	55514.4724	.0050	AG	+0.1006		GCVS 2009	-Ir	39	11)
EI Cas	55462.6294	.0023	AG	+0.1019		GCVS 2009	-Ir	46	11)
EP Cas	55409.4342	.0025	AG	-0.0384	$\mathbf{s}$	GCVS 2009	-Ir	28	11)
EY Cas	55409.3990	.0010	AG	+0.0389	$\mathbf{s}$	GCVS 2009	-Ir	28	11)
	55460.4891	.0021	AG	+0.0395	$\mathbf{s}$	GCVS 2009	-Ir	47	11)
	55462.4179	.0026	AG	+0.0404	$\mathbf{s}$	GCVS 2009	-Ir	46	11)
	55473.5026	.0034	AG	+0.0397	$\mathbf{s}$	GCVS 2009	-Ir	56	11)
	55514.4718	.0011	AG	+0.0409	$\mathbf{s}$	GCVS 2009	-Ir	39	11)
GT Cas	55514.5425	.0030	AG	+0.1944		GCVS 2009	-Ir	39	11)
IR Cas	55380.4697	.0033	AG	+0.0091	s	GCVS 2009	-Ir	35	11)
	55398.5073	.0010	AG	+0.0086		GCVS 2009	-Ir	33	11)
IS Cas	55462.5998	.0118	AG	+0.0599	$\mathbf{s}$	GCVS 2009	-Ir	46	11)
IT Cas	55386.4752	.0010	AG	+0.2621	s	GCVS 2009	-Ir	28	11)
KR Cas	55498.3724	.0027	JU	-0.1501		GCVS 2009	0	44	2)
LR Cas	55491.4504	.0252	AG	-0.0131		GCVS 2009	-Ir	61	11)
LU Cas	55483.3179	.0013	SCI	+0.1926		GCVS 2009	0	27	2)
MM Cas	55499.2961	.0019	AG	+0.0363	s	BAVR 32.36	-Ir	48	11)
MN Cas	55499.6024	.0020	AG	+0.0098		GCVS 2009	V	48	11)
MS Cas	55462,4079	.0034	AG	+0.0411		GCVS 2009	-Ir	46	11)
	55473.5496	.0028	AG	+0.0418	s	GCVS 2009	-Ir	56	11)
	55514,5943	.0031	AG	+0.0407	s	GCVS 2009	-Ir	39	11)
MT Cas	55473.3027	.0009	AG	+0.0155	s	GCVS 2009	-Jr	56	11)
	55473 4600	.0056	AG	+0.0158	~	GCVS 2009	-Ir	56	11)
	55473.6167	.0008	AG	+0.0156	s	GCVS 2009	-Ir	56	11)
MU Cas	55473 4548	.0082	AG	+0.2877	5	GCVS 2009	V	56	11)
MV Cas	55473 3262	.0027	AG	-0.0914		GCVS 2009	-Ir	56	11)
MV Cas	55483 5854	0018	SCI	$\pm 0.0211$		GCVS 2009	0	31	2)
NN Cas	55514 6591	0066	AC	+0.0242		GCVS 2009	_Ir	30	<i>∠)</i> 11)
NU Cas	55517 6580	0018	AC	_0.1400	e	GCVS 2009	-11 _Tr	30 30	11)
NZ Cas	55470 4905	0010		-0.1400	ъ	CCVS 2009	-11 In	59 58	11)
OR Cas	00479.4290 55701 5905	.0082		-0.1003		CCVS 2009	-11 T*	00 61	11)
Un Cas	55514 5757	.0027		0.0227	~	CCVS 2009	-11 T	40	11)
OV Car	00014.0707 55401.0701	.0018	AG	-0.0232	$\mathbf{s}$	CCVS 2009	-11 Le	40 21	11)
DA Cas	00491.2701	.0030	AG	+0.0258		GUVS 2009	-1r	01 160	11)
rv Cas	00428.40U/	.0035	PGL III	-0.0339	_	GUVS 2009	V	109	13)
00.0	004/8.3/32	.0014	JU	+0.0352	s	GUVS 2009	0	08	2)
QQ Cas	55460.5593	.0028	AG	+0.1142	$\mathbf{s}$	BAVR 35,1	V T	46	11)
V336 Cas	55409.4987	.0030	AG	-0.0139	$\mathbf{s}$	GUVS 2009	-1r	28	11)
v 337 Cas	55514.3980	.0014	AG	-0.0654		GCVS 2009	-lr	39	11)
TTO / C			1				1.00		

Table 1: (cont.)

Variable	UID 94		Oba	0 0		Diblicementar	<b>F</b> :1	12	Dom
Variable	11JD 24	T 0001	00s	0 = 0		GCUG 2000	<u>г</u> п	10	11)
V355 Cas	55460.5219	.0021	AG	-0.1331		GCVS 2009	-1r	48	11)
V359 Cas	55409.4955	.0050	AG	+0.0090	$\mathbf{s}$	1BVS 5016=BAVM 132	-Ir	28	11)
V361 Cas	55460.4885	.0016	AG	-0.2016		GCVS 2009	-lr	48	11)
	55514.5647	.0032	AG	-0.2008		GCVS 2009	-lr	39	11)
V374 Cas	55514.4049	.0032	$\operatorname{AG}$	+0.0184		GCVS 2009	-Ir	39	11)
V375 Cas	55461.3312	.0017	JU	+0.2309		BAVR 32,36	0	60	2)
	55480.4945	.0087	AG	+0.2403		BAVR 32,36	-Ir	55	11)
	55492.2809	.0013	SCI	+0.2397		BAVR 32,36	о	115	2)
V381 Cas	55478.5088	.0074	AG	+0.0052	$\mathbf{s}$	BAVR 32,36	-Ir	91	11)
	55479.3807	.0015	JU	+0.0042		BAVR 32.36	0	63	2)
V389 Cas	55478 5947	0049	AG	+0.2608		GCVS 2009	-Ir	92	11)
V300 Cas	55480 5117	0251	AG	-0.0412		GCVS 2009	_Ir	55	11)
V450 Cas	55470 4780	00201		0.0412	G	IBVS 4737	-11 Ir	58	11)
V459 Cas	55479.4700	.0052	AG	-0.0822	ъ		-11 T.,	40	11)
V471 Cas	55499.4200	.0029	AG	+0.0004		GCVS 2009	-11 ⁻	40	11)
	55499.6211	.0016	AG	+0.0389	$\mathbf{s}$	GCVS 2009	-1r	48	11)
V473 Cas	55499.4280	.0004	AG	-0.0198		IBVS 4669=BAVM 115	-1r	48	11)
	55499.6363	.0009	AG	-0.0192	$\mathbf{S}$	IBVS $4669 = BAVM 115$	-Ir	48	11)
V520 Cas	55460.5642	.0027	$\operatorname{AG}$	-0.0460	$\mathbf{S}$	GCVS 2009	-Ir	48	11)
	55482.3617	.0016	JU	-0.0353		GCVS 2009	0	70	2)
V523 Cas	55478.3278	.0007	AG	-0.0284	$\mathbf{S}$	GCVS 2009	-Ir	92	11)
	55478.4453	.0023	AG	-0.0278		GCVS 2009	-Ir	92	11)
	55478.5615	.0021	AG	-0.0284	$\mathbf{S}$	GCVS 2009	-Ir	92	11)
V527 Cas	55473.3246	.0017	AG	-0.3038		GCVS 2009	-Ir	44	11)
V608 Cas	55473 3031	0016	AG	0.0000			-Ir	44	11)
v 000 Cas	55473 4052	0021	AC				Ir	11	11)
VGE1 Cas	55475.4352	.0021		+ 0.0010		IDVC SEEA DAVMEE	-11 V/	44	11)
V051 Cas	55400.4144	.0017	AG	+0.0019		1  DVS  5334 =  DAV M  53	v	40	11)
V654 Cas	55473.5356	.0031	AG				-1r	56	11)
V860 Cas	55478.4726	.0030	AG				-Ir	90	11)
V959 Cas	55473.4649	.0073	AG	-0.1578	$\mathbf{S}$	GCVS 2009	-lr	56	11)
V961 Cas	55473.5740	.0027	AG	-0.1847		GCVS 2009	-lr	56	11)
V1001 Cas	55491.2736	.0006	$\operatorname{AG}$	+0.0409	$\mathbf{S}$	GCVS 2009	-Ir	69	11)
	55491.4881	.0011	AG	+0.0410		GCVS 2009	-Ir	69	11)
V1011 Cas	55514.5653	.0026	AG	+0.0475	$\mathbf{S}$	GCVS 2009	-Ir	40	11)
VZ Cep	55482.4673	.0121	AG	-0.0071	$\mathbf{S}$	GCVS 2009	-Ir	103	11)
WW Cep	55482.5145	.0032	AG	+0.0013		IBVS 4131=BAVM 71	-Ir	90	11)
WX Cep	55386.5142	.0087	AG	+0.0062		GCVS 2009	-Ir	57	11)
XX Cep	55480.4860	.0284	AG	+0.0045	s	GCVS 2009	-Ir	55	11)
CM Cep	55409 5390	0009	AG	-0.0350	0	GCVS 2009	-Ir	28	11)
CW Cep	55480 3673	0000	AG	$\pm 0.0000$	e	GCVS 2009	_Ir	55	11)
DK Cop	55286 5250	0051		+ 0.0262	6	CCVS 2009	-11 I.v	57	11)
DK Cep	55560.5250	.0001	AG	+0.0303	5	GCVS 2009	-11 T.,	01	11)
ыг Сер БУ С	55499.4008	.0005	AG	-0.0085	s	GCVS 2009	-11 ⁻	95	11)
EY Cep	55499.4642	.0109	AG	+1.5332	$\mathbf{s}$	GCVS 2009	-lr	93	11)
GW Cep	55391.4419	.0003	AG	-0.0112		BAVR 33,160	-lr	34	11)
IM Cep	55480.3167	.0011	AG	-0.1601		GCVS 2009	-1r	55	11)
IP Cep	55482.5999	.0107	AG	-0.0340		IBVS $5016$ =BAVM 132	-Ir	103	11)
IW Cep	55480.4630	.0011	$\operatorname{AG}$	+0.0387		GCVS 2009	-Ir	48	11)
KP Cep	55388.4408	.0027	AG	+0.0438		GCVS 2009	-Ir	31	11)
	55479.3892	.0027	AG	+0.0422		GCVS 2009	-Ir	42	11)
V358 Cep	55391.4747	.0040	AG				-Ir	34	11)
XY Cet	55563.3180	.0035	PGL	+0.0074		GCVS 2009	V	114	13)
SS Com	55584,7203	.0018	SCI	-0.0278	s	BAVB 33,152	0	48	2)
VV Cyg	55462 5839	0024	AG	$\pm 0.0218$	5	GCVS 2009	_Ir	34	11)
VW Cys	54706 7558	0024	FR	$\pm 0.0120$		GCVS 2000	0	101	8) 17)
v vv Oyg	55499 9777	00020	FD	10.2200		CCVS 2009	0	60	(0) + (1) (2) + (17)
	00402.0///	6000	гл DOI	$\pm 0.2013$		GCV5 2009	0 17	09	0/1/)
вк Суд	004/9.4205	.0028	PGL	+0.0015		GUVS 2009	V	369	12)
DO G	55487.4156	.0035	PGL	+0.0012		GCVS 2009	V	360	12)
DO Cyg	55479.2926	.0002	AG	-0.0229		GCVS 2009	-Ir	42	11)
	55491.2620	.0023	SCI	-0.0236		GCVS 2009	0	41	2)
EN Cyg	55387.4623	.0009	AG	+0.4509		GCVS 2009	-Ir	31	11)
	55429.5445	.0010	AG	+0.4516		GCVS 2009	-Ir	34	11)
GM Cyg	55387.4717	.0028	AG	-0.2236		GCVS 2009	-Ir	34	11)

Table 1: (cont.)

Variable	HID 94	+	Obs	O = C	(001	Bibliography	Fil	n	Rem
GV Cyg	55479 4902	0021	AG	+0.1573	S	GCVS 2009	-Ir	42	11)
av eyg	55482 4625	0015	AG	+0.1575	s	GCVS 2009	-Ir	37	11)
KB Cvg	55397 4081	0020	AG	+0.1010	0	GCVS 2009	-Ir	40	11)
LO Cyg	55391.4164	.0027	AG	-0.0033		GCVS 2009	-Ir	26	11)
20 0/8	55397 3926	0032	AG	-0.0049	s	GCVS 2009	-Ir	31	11)
MY Cvg	55397 5298	.000 <u>2</u> 0028	AG	+0.0041	s	GCVS 2009	-Ir	38	11)
V345 Cvg	55397.4789	.0035	AG	+0.0468	0	IBVS $5016 = BAVM 132$	-Ir	40	11)
V370 Cvg	55429 4269	0062	AG	-0.0237	S	GCVS 2009	-Ir	34	11)
voro cyg	55430 5871	0012	AG	-0.0251	5	GCVS 2009	-Ir	41	11)
	55451 5006	0012	AG	-0.0205		GCVS 2009	-Ir	36	11)
V382 Cvg	55430 5686	0019	SCI	+0.1124		GCVS 2009	0	163	2)
V401 Cyg	55387 4002	0114	AG	+0.1124 $\pm0.0679$	c	GCVS 2009	_Ir	31	$\frac{2}{11}$
v for Oyg	55429 4546	0042	AG	+0.0673	2	GCVS 2009	-11 _Tr	33	11)
	55461 5002	0042	AC	$\pm 0.0073$	0	GCVS 2009	-11 Ir	30	11)
V442 Curr	55207 4241	.0020		+0.0122	5	CCVS 2009	-11 Ir	40	(11)
V442 Cyg	55209 4009	.0049	AG	-0.0420	5	CCVS 2009	-11 In	40 20	11)
V445 Cyg	55596.4906	.0012	AG	+0.2003		GCVS 2009	-11	52	11)
V403 Uyg	00428.3720 EE208 F025	.0027	SUL	+0.0080	~	GUV5 2009	0 T	00 20	<i>2)</i>
v 400 Cyg	55598.5035	.0006	AG	+0.0302	$\mathbf{s}$	GCVS 2009	-1r	32 24	11)
v 463 Cyg	55429.5777	.0023	AG	+0.0549		GUVS 2009	-1r	34 0 <b>7</b>	11)
VICO C	55481.4499	.0003	FR	+0.9563	$\mathbf{S}$	GUVS 2009	0 •	87	11)
V469 Cyg	55387.4704	.0016	AG	-0.1245		GCVS 2009	-1r	34	11)
V477 Cyg	55492.3459	.0003	JU	-0.0247		GCVS 2009	0	37	2)
V484 Cyg	55387.4976	.0154	AG	+0.1178	$\mathbf{S}$	GCVS 2009	-ſr	32	11)
V488 Cyg	55397.4890	.0022	AG	+0.0570	$\mathbf{S}$	GCVS 2009	-Ir	40	11)
V490 Cyg	55393.5007	.0020	$\mathcal{AG}$	+0.1972	$\mathbf{S}$	GCVS 2009	-Ir	33	11)
	55397.4590	.0017	$\mathcal{AG}$	+0.1646		GCVS 2009	-Ir	40	11)
V498 Cyg	55398.5062	.0075	$\mathcal{AG}$	+0.1478		GCVS 2009	-Ir	32	11)
V513 Cyg	55398.4536	.0062	$\mathbf{AG}$	+0.1868		GCVS 2009	-Ir	32	11)
V519 Cyg	55462.4512	.0043	$\mathbf{AG}$	-0.1941	$\mathbf{s}$	GCVS 2009	-Ir	34	11)
V525 Cyg	55429.4098	.0026	$\mathbf{AG}$	-0.0265		GCVS 2009	-Ir	31	11)
V526 Cyg	55429.4189	.0023	$\mathbf{AG}$	+0.0413		GCVS 2009	-Ir	31	11)
V537 Cyg	55460.6384	.0016	$\mathbf{AG}$	+0.5267		GCVS 2009	-Ir	100	11)
V616 Cyg	55397.4878	.0009	$\mathbf{AG}$	+0.3427	$\mathbf{s}$	GCVS 2009	-Ir	31	11)
	55460.5087	.0068	AG	-0.3158	$\mathbf{s}$	GCVS 2009	-Ir	44	11)
V628 Cyg	55397.4759	.0008	AG	-0.0011		IBVS 4381=BAVM 89	-Ir	32	11)
	55429.3711	.0040	AG	-0.0034		IBVS 4381=BAVM 89	-Ir	30	11)
V635 Cyg	55391.4888	.0014	AG	-0.0512		GCVS 2009	-Ir	26	11)
10	55429.5063	.0021	AG	-0.0517		GCVS 2009	-Ir	30	11)
	55462.5744	.0101	AG	-0.0592	$\mathbf{s}$	GCVS 2009	-Ir	34	11)
V675 Cvg	55397.4617	.0127	AG	+0.6342		GCVS 2009	-Ir	31	11)
V680 Cvg	55388.5108	.0063	AG	+0.0318		BAVR 32.36	-Ir	29	11)
V687 Cvg	55461.3954	.0040	AG	-0.0087	$\mathbf{s}$	GCVS 2009	V	$\frac{-9}{29}$	11)
V700 Cvg	55398.4750	.0029	AG	-0.0687	~	GCVS 2009	-Ir	$\frac{-2}{32}$	11)
V706 Cvg	55462.4894	.0017	AG	-0.0538	s	GCVS 2009	-Jr	34	11)
V711 Cvg	55391.4706	.0009	AG	-0.0445	s	GCVS 2009	-Ir	26	11)
	55460.5034	.0142	AG	-0.0459	~	GCVS 2009	-Ir	$\frac{-5}{43}$	11)
V809 Cvg	55461.3940	.0027	AG	+0.0380	s	GCVS 2009	-Ir	29	11)
V822 Cvg	55387.5346	.0019	AG	-0.1491	~	GCVS 2009	-Ir	$\frac{-5}{34}$	11)
V841 Cvg	55430 5199	0018	AG	+0.0045		GCVS 2009	_Ir	41	11)
V842 Cyg	55451 3370	0010	AC	+0.0040		GCVS 2009	_Tr	36	$\frac{11}{11}$
V850 Cur	55/30 5028	0049	ΔC	$\pm 0.0303$ $\pm 0.0184$	ę	GCVS 2009	-11 _Tr	30 49	11)
1009 Oyg	55451 2527	0044		$\pm 0.0164$ $\pm 0.0167$	5	CCVS 2009	-11 Tr	-14 26	11)
	55451 5501	.0030		$\pm 0.0107$	c	CCVS 2009	-11 T.,	30 36	11) 11)
V970 C	00401.0091	.0047	AG	+0.0140	S	GUVS 2009	-11 T	30 99	11) 11)
voru Cyg	55429.4884	.0055	AG	+0.0527	$\mathbf{s}$	GCVS 2009	-1r	<u>ა</u> კ	11)
	55451.4064	.0020	AG	+0.0257		GUVS 2009	-1r	36	11)
V874 Cyg		111/12	AG	+0.0248	$\mathbf{S}$	GUVS 2009	-ir	32	11)
V874 Cyg V877 Cyg	55393.4882	.0145	10	10.0010					
V874 Cyg V877 Cyg	55393.4882 55451.4383	.0251	AG	+0.0312	$\mathbf{S}$	GCVS 2009	-lr	36	11)
V874 Cyg V877 Cyg V880 Cyg	55393.4882 55451.4383 55478.3359	.0143 .0251 .0030	AG AG	+0.0312 -0.0026	s s	GCVS 2009 GCVS 2009	-Ir -Ir	$\frac{36}{34}$	$11) \\ 11) \\ 11)$
V874 Cyg V877 Cyg V880 Cyg V884 Cyg	55393.4882 55451.4383 55478.3359 55393.5185	.0143 .0251 .0030 .0057	AG AG AG	+0.0312 -0.0026 +0.0146	s s	GCVS 2009 GCVS 2009 GCVS 2009	-Ir -Ir -Ir	$36 \\ 34 \\ 32 \\ 32 \\ 32 \\ 32 \\ 32 \\ 32 \\ 33 \\ 34 \\ 32 \\ 34 \\ 32 \\ 34 \\ 32 \\ 34 \\ 32 \\ 34 \\ 32 \\ 34 \\ 32 \\ 34 \\ 32 \\ 34 \\ 32 \\ 34 \\ 32 \\ 34 \\ 32 \\ 34 \\ 32 \\ 34 \\ 32 \\ 34 \\ 32 \\ 34 \\ 32 \\ 34 \\ 32 \\ 34 \\ 32 \\ 34 \\ 32 \\ 34 \\ 32 \\ 34 \\ 32 \\ 34 \\ 32 \\ 34 \\ 32 \\ 34 \\ 32 \\ 34 \\ 32 \\ 34 \\ 32 \\ 34 \\ 32 \\ 34 \\ 32 \\ 34 \\ 32 \\ 34 \\ 32 \\ 34 \\ 32 \\ 34 \\ 34$	11) 11) 11)
V874 Cyg V877 Cyg V880 Cyg V884 Cyg V912 Cyg	55393.4882 55451.4383 55478.3359 55393.5185 55430.5282	.0143 .0251 .0030 .0057 .0040	AG AG AG AG	+0.0312 -0.0026 +0.0146 -0.1174	s s	GCVS 2009 GCVS 2009 GCVS 2009 GCVS 2009	-Ir -Ir -Ir -Ir	36 34 32 38	11) 11) 11) 11)

Table 1: (cont.)

Variable	HJD 24	±	Obs	O-C		Bibliography	Fil	n	Rem
V931 Cyg	55478.3105	.0017	AG	+0.0776	$\mathbf{S}$	GCVS 2009	-Ir	33	11)
	55478.4809	.0020	AG	+0.0773		GCVS 2009	-Ir	33	11)
V934 Cyg	55429.3483	.0011	SCI	-0.0922		GCVS 2009	0	37	2)
	55429.3664	.0071	AG	-0.0741		GCVS 2009	-lr	34	11)
	55451.4367	.0020	AG	-0.0759	$\mathbf{S}$	GCVS 2009	-lr	34	11)
V941 Cyg	55429.5263	.0024	AG	-0.0714		GCVS 2009	-lr	34	11)
V947 Cyg	55481.4472	.0005	FR	-0.0089	$\mathbf{S}$	GCVS 2009	0	49	11)
V957 Cyg	55429.3940	.0020	AG	+0.1380		GCVS 2009	-lr	33	11)
V961 Cyg	55429.4942	.0016	AG	-0.0786	$\mathbf{S}$	GCVS 2009	-lr	34	11)
LIGGO C	55430.5101	.0029	AG	-0.0888	$\mathbf{S}$	GCVS 2009	-lr	41	11)
V962 Cyg	55393.4970	.0064	AG	-0.2049		GCVS 2009	-Ir	32	11)
V963 Cyg	55408.5538	.0014	SCI	-0.0008		GCVS 2009	0	59	2)
MOGE CI	55429.4735	.0026	AG	-0.0012		GCVS 2009	-1r	34 50	11)
V965 Cyg	55408.4166	.0042	SCI	-0.1188		GCVS 2009	0	59	2)
	55429.5577	.0049	AG	-0.1166		GCVS 2009	-1r	34 49	11)
V1004 C	55481.4425	.0004	FR	-0.1182		GCVS 2009	0	43	11)
V1004 Cyg	55397.4849	.0025	AG	-0.1756		GCVS 2009	-1r	40	11)
V1009 Cyg	55393.4551	.0032	AG	-0.0075	_	GCVS 2009	-1r	32	11)
V1013 Cyg	55461.4398	.0132	AG	+0.1645	$\mathbf{s}$	GCVS 2009	-1r	29	11)
V1018 Cyg	55461.3830	.0012	AG	-0.0879	_	GCVS 2009	V T	29	11)
v 1083 Cyg	55397.4759	.0110	AG	-0.0053	s	GCVS 2009 CCVS 2009	-1r In	31 94	11)
V1107 C	55402.5134	.0210	AG	-0.0018	s	GUVS 2009	-1r T	34 20	11)
V1187 Cyg	55598.4129	.0018	AG	-0.0198	~	IBVS 4133=BAVM 73	-1r In	32 20	11)
V1191 Cyg	00090.4717 EE207 4660	.0010	AG	-0.0215	s	GCVS 2009 CCVS 2009	-11 Tm	ა∠ 91	11)
V1200 Cyg	00007.4002	.0025	AG	-0.0238		GCVS 2009	-11 Tm	01 20	11)
V1521 Cyg	55460 4649	.0021	AG	+0.0639	G	GCVS 2009 CCVS 2009	-11 Tm	32 44	11) 11)
v1401 Cyg	55470 2010	.0187	AG	+0.2085	s	GCVS 2009 CCVS 2009	-11 Tm	44	11) 11)
V1411 Cvg	55460 5520	.0077	AG	+0.2078	5	CCVS 2009	-11 In	42	11)
V1411 Cyg	55482 4656	.0003	AG	-0.1398 $\pm 0.0481$	ъ	GCVS 2009	-11 Ir	44 37	11)
V1414 Cyg	55388 5366	0073	AG	+0.0481 +0.1544	e	GCVS 2009	-11 Ir	37 31	11)
v1417 Cyg	55460 4876	.0029	AG	+0.1544	5	CCVS 2009	-11 In	31 44	11)
V1823 Cya	55073 6228	.0023	FR	$\pm 0.1348$	ъ	GC V 5 2009	-11 Ir	100	11)
v 1625 Cyg	55482 3634	.0014	FR				-11	52	11)
V1877 Cyg	55480 3234	.0004	FR				0	41	11)
V2021 Cyg	55068 6002	0004	FR				0	55	8)
V2181 Cyg	55393 5368	0020	AG	+0.0115		BAVB 50 45	-Ir	33	11)
v 2101 Oyg	55397 5507	0012	AG	+0.0110 +0.0111		BAVB 50 45	-Ir	40	11)
V2240 Cvg	55387 5150	0051	AG	10.0111		DIT 10 00,10	-Ir	34	11)
V2284 Cvg	55418 4286	0007	AG				-Ir	40	11)
v 2201 Oyg	55418 5811	.0001	AG				-Ir	40	11)
V2294 Cvg	55418 5491	0011	AG				-Ir	40	11)
V2363 Cvg	55418.4080	.0023	AG	+0.0518	s	GCVS 2009	-Ir	40	11)
V2364 Cvg	55418.4816	.0044	AG	-0.0108	s	GCVS 2009	-Ir	40	11)
BG Del	55389.4176	.0030	AG	+0.0842	s	GCVS 2009	-Ir	30	11)
	55396.4632	.0022	AG	+0.0846	-	GCVS 2009	-Ir	25	11)
BH Del	55396.4994	.0068	AG	+0.1286	s	GCVS 2009	-Ir	$\frac{-6}{25}$	11)
BN Del	55396.4332	.0023	AG	-0.4058	D	GCVS 2009	-Ir	$\frac{-6}{25}$	11)
BW Del	55396.5233	.0030	AG	+0.3727		GCVS 2009	-Ir	$25^{-5}$	11)
RX Dra	55381.4984	.0046	AG	+0.0558		GCVS 2009	-Ir	84	11)
RZ Dra	55380.4531	.0033	AG	+0.0526	s	GCVS 2009	-Ir	65	11)
SX Dra	55380.6141	.0010	AG	+0.0963		GCVS 2009	-Ir	106	11)
CV Dra	55380.5480	.0008	AG	+0.0053		BAVM 69	-Ir	65	11)
MU Dra	55418.4813	.0028	AG	-0.0422	$\mathbf{s}$	GCVS 2009	-Ir	40	11)
YY Gem	55552.3895	.0035	PGL	-0.0070	2	GCVS 2009	V	423	13)
AC Gem	55578.4678	.0013	SCI	-0.2786		GCVS 2009	0	54	$(2)^{-3}$
AI Gem	55578.4700	.0012	AG	-0.1275	$\mathbf{s}$	GCVS 2009	-Ir	46	$\frac{-}{11}$
AZ Gem	55578.4075	.0003	AG	+0.0880		GCVS 2009	-Ir	47	11)
DP Gem	55590.4610	.0027	AG	+0.0654	$\mathbf{s}$	GCVS 2009	-Ir	49	11)
EG Gem	55578.5726	.0003	AG	+0.2902		GCVS 2009	-Ir	45	11)
EN Gem	55578.4903	.0184	AG	-0.0432	$\mathbf{s}$	GCVS 2009	-Ir	47	11)
	-								/

Table 1: (cont.)

Variable	HJD 24	±	Obs	O - C		Bibliography	Fil	n	Rem
FG Gem	55578.5757	.0021	AG	-0.0249		GCVS 2009	-Ir	47	11)
FQ Gem	55578.2928	.0011	AG	+0.3208		GCVS 2009	-Ir	47	11)
FT Gem	55578.3857	.0049	AG	-0.0249		GCVS 2009	-Ir	47	11)
GQ Gem	54513.3827	.0030	SB	+0.0081	s	GCVS 2009	-Ir	117	10)
HR Gem	55598 5377	0036	AG	+0.0001	D	GCVS 2009	-Ir	54	11)
IV Gem	54845 3781	0018	AG	10.0121			-Ir	60	11)
KV Gem	55578 2676	0009	AG	-0.0247		BAVB 52 95	-Ir	46	11)
It v Gein	55578 4478	0003	AG	-0.0238	e	BAVR 52.95	_Ir	46	11)
	55578 6254	.0000	AG	-0.0250	6	BAVR 52.95	-11 _Tr	46	11)
V345 Com	53446 3120	.0050	SCI	0.0204		DAVIC 02,50	-11	140	(11)
AK Hor	55386 438	.0028	MOO	$\pm 0.016$		CCVS 2009	V	60	$\frac{2}{13}$
AK Hei	55405 4049	.003	PCI	$\pm 0.010$		CCVS 2009	v	337	13)
	55270 4642	.0033		+0.0139		CCVS 2009	v Tn	95 95	10)
CL Her	5579.4048	.0028	AG	+0.0035		CCVS 2009	-11 T.,	55	11)
GL Her	22209.2090	.0005	AG	+0.0773		GCVS 2009 CCVS 2009	-11 T.,	20	11)
IT II	54910 4997	.0017	AG	+0.0775		GCVS 2009	-11	52 CT	11)
11 Her	54219.4827	.0027	501	-0.0507		GCVS 2009	0	00	2) 1)
	54222.5376	.0010	AG	-0.0473	$\mathbf{s}$	GCVS 2009	-1r	19	1)
	54239.5012	.0029	SCI	-0.0366	$\mathbf{s}$	GCVS 2009	0	88	2)
	54597.3983	.0035	SCI	+0.0424	$\mathbf{s}$	GCVS 2009	0	58	2)
	54597.5701	.0046	SCI	-0.0119	$\mathbf{S}$	GCVS 2009	0	50	2)
	54598.5769	.0023	SCI	-0.0223		GCVS 2009	0	73	2)
	54600.4542	.0004	AG	+0.0467		GCVS 2009	-lr	52	11)
	54959.5326	.0003	AG	-0.0492		GCVS 2009	-Ir	86	11)
	54996.5268	.0018	AG	-0.0123	$\mathbf{S}$	GCVS 2009	-Ir	49	11)
	55379.5308	.0010	AG	-0.0296		GCVS 2009	-Ir	35	11)
	55396.5005	.0023	$\operatorname{AG}$	-0.0128		GCVS 2009	-Ir	32	11)
	55422.4648	.0001	MZ	-0.0429		GCVS 2009	-Ir	198	2)
	55498.3220	.0004	MZ	-0.0214	$\mathbf{S}$	GCVS 2009	-Ir	98	2)
V342 Her	55379.4936	.0036	AG	+0.0181		GCVS 2009	-Ir	35	11)
	55396.5291	.0043	AG	+0.0190		GCVS 2009	-Ir	32	11)
V643 Her	55379.5132	.0030	AG	-0.3335		GCVS 2009	-Ir	35	11)
V719 Her	55388.4044	.0010	AG	-0.0241		GCVS 2009	-Ir	32	11)
V722 Her	55388.4969	.0120	AG	+0.0826	$\mathbf{s}$	GCVS 2009	-Ir	32	11)
V728 Her	55388.5373	.0023	AG	+0.0745	$\mathbf{s}$	IBVS $3234=BAVM 51$	-Ir	34	11)
V731 Her	55388.4487	.0023	AG	-0.0693		GCVS 2009	-Ir	34	11)
V865 Her	55388.5064	.0146	AG				-Ir	34	11)
V899 Her	55600.6435	.0019	SCI				о	58	2)
V1055 Her	55388.5124	.0028	AG				-Ir	34	11)
V1095 Her	55388.4338	.0028	AG	-0.0207		GCVS 2009	-Ir	34	11)
V1096 Her	55388.4370	.0021	AG	+0.0229		GCVS 2009	-Ir	34	11)
	55388.5542	.0010	AG	+0.0194	$\mathbf{s}$	GCVS 2009	-Ir	34	11)
RT Lac	55391.4286	.0029	AG	-0.2337		GCVS 2009	V	25	11)
TW Lac	55430.4781	.0040	AG	+0.3497		GCVS 2009	-Ir	50	11)
VV Lac	55480.2600	.0013	AG	-0.7690		GCVS 2009	-Ir	48	11)
AG Lac	55380.4981	.0052	AG	-0.0112		GCVS 2009	-Ir	35	11)
110 100	55430 5171	0025	AG	-0.0122	s	GCVS 2009	-Ir	47	11)
AU Lac	54718 6028	0002	AG	-0.0261	D	GCVS 2009	-Ir	56	11)
no hao	55463 5586	0025	AG	-0.0262		GCVS 2009	-Ir	37	11)
AW Lac	55482 5030	0075	AG	$\pm 0.0202$		BAVB 35 1	_Ir	37	11)
BB Lac	55482 5164	0015	AC	-0.5836		CCVS 2000	-11 Ir	37	(11)
CF Lac	55388 4843	.0015	AC	-0.0001		GCVS 2009	-11 Ir	21	(11)
CC Lac	55463 4017	.0033		-0.0091 0.1502		CCVS 2009	-11 In	55	(11)
CN Lac	54718 4400	.0041	AG	-0.1392		CCVS 2009	-11 In	55	11)
On Lac	55201 406F	.0003		0.0420		CCVS 2009	-11 I.v.	00 96	11)
	55307 5540	.0011	AG	-0.0023	~	GUV5 2009	-11 T	20 20	11) 11)
	00097.0049	.0032	AG	-0.0390	$\mathbf{s}$	GUVS 2009	-11 T	32 49	11)
DCLas	00479.4000 55751 0071	.0044	AG	-0.0629		GUVS 2009	-1ľ L.	42 E0	11) 11)
DG Lac	55451.3671	.0024	AG	-0.2220		GUVS 2009	-1r	59 40	11)
EP Lac	55480.5914	.0041	AG	-0.3665		GUVS 2009	-1r	48	11)
ER Lac	55451.7300	.0050	AG	-0.5310		GUVS 2009	-lr	72	11)
DOT	55463.5082	.0056	AG	-0.5346		GCVS 2009	-lr	32	11)
ES Lac	55398.4581	.0055	AG	+0.6608	$\mathbf{S}$	GCVS 2009	-lr	33	11)

Table 1: (cont.)

Variable		1	Oha		(00)	Dibliomonhu	E:1		Dama
ES Lac	пјD 24 55480 4995	± 0055	AC	U = U $\pm 0.1979$		CCVS 2000	11 In	n 19	11)
EU Lac	55482 4013	.0033	AG	$\pm 0.1272$ $\pm 0.2024$		GCVS 2009	-11 Ir	40 37	11)
EU Lac	55480 3653	.0034	AG	+0.2024		CCVS 2009	-11 Ir	18	11)
EA Lac	55308 5288	.0014	AG	+0.2282	0	CCVS 2009	-11 Ir	40	11)
г п пас	55480 4765	.0130	AG	-0.0017	5	CCVS 2009	-11 In	10	11)
	55481 5022	.0492 0171	AG	-0.0359	5	CCVS 2009	-11 Ir	40 59	11)
FP Lac	55463 5803	0223	AG	-0.0404 $\pm 0.1310$	ъ	GCVS 2009	-11 Ir	$\frac{52}{37}$	11)
LI Lat	55491 5969	.0223	AG	+0.1319		CCVS 2009	-11 In	57	11)
OULOG	55470 5566	.0081	AG	+0.1465		CCVS 2009	-11 In	-02 -49	11)
	55460 4261	.0064	AG	-0.0413	0	CCVS 2009	-11 In	42	11)
In Lac	55420.4301	.0058	AG	$\pm 0.1049$	8	GC V 5 2009	-11 Ir	44	11)
L Lat	55462 2205	.0008	AG				-11 Ir	49 27	11)
	55482 2052	.0029	AG				-11 Ir	57 69	11)
IM Loo	55420 5705	.0004	AG	0 1946		CCVS 2000	-11 In	40	11)
INI Lac	55462 5460	.0010	AG	-0.1840		CCVS 2009	-11 In	49	11)
	55403.3400	.0031	AG	-0.1801		CCVS 2009	-11 In	37	11)
DI	00402.0700 FF999 F099	.0012	AG	-0.1840		GCVS 2009	-11 T.,	37 91	11)
P Lac	00088.00000	.0009	AG	+0.0810		GCVS 2009	-1r	51	11)
	55451.5510	.0012	AG	+0.0805		GCVS 2009	-1r	59	11)
TT T	55463.4811	.0029	AG	+0.0819		GCVS 2009	-1r	30	11)
U Lac	54718.3399	.0009	AG	+0.0094		GCVS 2009	-1r	65 97	11)
7.1	55463.5477	.0038	AG	+0.0119		GCVS 2009	-lr	37	11)
IZ Lac	55451.4918	.0078	AG	+0.0343	$\mathbf{S}$	GCVS 2009	-Ir	59	11)
	55463.4758	.0091	AG	+0.0351	$\mathbf{S}$	GCVS 2009	-lr	36	11)
LZ Lac	55480.4654	.0049	AG	+0.3308		GCVS 2009	-lr	48	11)
MZ Lac	55451.4848	.0024	AG	+0.1622		GCVS 2009	-lr	59	11)
NR Lac	55479.4077	.0088	AG	+0.0612	$\mathbf{S}$	GCVS 2009	-lr	42	11)
	55482.4366	.0059	AG	+0.0660	$\mathbf{S}$	GCVS 2009	-lr	37	11)
W Lac	55398.4108	.0014	AG	-0.1439		GCVS 2009	-lr	33	11)
PP Lac	55451.3569	.0021	AG	-0.0543	$\mathbf{S}$	GCVS 2009	-lr	59	11)
TO 10 T	55451.5576	.0016	AG	-0.0541		GCVS 2009	-lr	59	11)
/342 Lac	55463.3771	.0024	AG	-0.0876	$\mathbf{S}$	GCVS 2009	-lr	36	11)
/344 Lac	55479.4217	.0007	AG	-0.0917	$\mathbf{S}$	GCVS 2009	-lr	42	11)
	55479.6192	.0012	AG	-0.0904		GCVS 2009	-Ir	42	11)
/345 Lac	55388.5084	.0047	AG	-1.0297	$\mathbf{S}$	GCVS 2009	-Ir	31	11)
	55463.4265	.0055	AG	-1.0302	$\mathbf{S}$	GCVS 2009	-Ir	37	11)
√441 Lac	54718.4054	.0005	AG	+0.0323		IBVS $5024$ =BAVM 135	-Ir	56	11)
	54718.5595	.0005	AG	+0.0320	$\mathbf{S}$	IBVS $5024$ =BAVM 135	-Ir	56	11)
	55463.3571	.0008	AG	+0.0862	$\mathbf{S}$	IBVS $5024$ =BAVM 135	-Ir	37	11)
	55463.5131	.0035	AG	+0.0877		IBVS $5024$ =BAVM 135	-Ir	37	11)
V459 Lac	55463.3802	.0034	AG	+0.2174		GCVS 2009	-Ir	55	11)
SW Lyn	55591.4731	.0152	$\operatorname{AG}$	+0.0776	$\mathbf{S}$	GCVS 2009	V	68	11)
UU Lyn	55600.4045	.0023	AG	-0.0084		GCVS 2009	-Ir	160	11)
	55600.6394	.0062	AG	-0.0077	$\mathbf{S}$	GCVS 2009	-Ir	160	11)
WW Lyn	55591.5488	.0301	$\operatorname{AG}$				-Ir	68	11)
DY Lyn	55591.4958	.0030	$\mathbf{AG}$	-0.1507	$\mathbf{S}$	GCVS 2009	$\mathbf{V}$	68	11)
DZ Lyn	55591.4234	.0083	AG	-0.0176	$\mathbf{S}$	GCVS 2009	$\mathbf{V}$	68	11)
	55591.6207	.0075	AG	-0.0093		GCVS 2009	$\mathbf{V}$	68	11)
AA Lyr	55380.4858	.0003	$\mathbf{FR}$	+0.2430	$\mathbf{S}$	GCVS 2009	0	41	11)
	55387.4713	.0008	$\mathbf{FR}$	+0.2519		GCVS 2009	0	41	11)
	55409.4556	.0001	$\mathbf{FR}$	+0.2329	$\mathbf{S}$	GCVS 2009	0	44	11)
	55418.5116	.0007	$\mathbf{FR}$	+0.1656		GCVS 2009	0	55	11)
	55429.3732	.0018	$\mathbf{FR}$	+0.2939		GCVS 2009	0	64	11)
EX Lyr	52415.3879	.0044	AG	-0.0330		GCVS 2009	-Ir	16	1)
-	55396.4568	.0036	AG	-0.0960	$\mathbf{s}$	GCVS 2009	-Ir	32	11)
FG Lyr	55381.4409	.0032	AG	-0.0744		GCVS 2009	-Ir	29	11)
NY Lyr	55461.5511	.0002	AG	-0.0893		GCVS 2009	-Ir	29	11)
PV Lyr	55381.5073	.0075	AG	-0.0049		GCVS 2009	-Ir	29	11)
2	55387.4982	.0093	AG	-0.0071		GCVS 2009	-Ir	31	11)
PY Lyr	55381.4196	.0016	AG	+0.0620		GCVS 2009	-Ir	29	11)
V400 Lyr	55379.4911	.0006	AG	-0.0702	$\mathbf{s}$	GCVS 2009	-Ir	32	11)
V412 Lyr	55387.5213	.0020	AG	+0.2078		GCVS 2009	-Ir	31	11)

Table 1: (cont.)

Variable	HID 94	+	Obe	O - C	-	Bibliography	Fil	n	Rom
VA19 Lym	55420 4285	0005	FP	$\pm 0.2000$		CCVS 2000	<u>г</u> п	45	11)
v +12 LyI	55430 3606	.0000		±0.2009 ±0.2009		GCVS 2009	U In	-±0 ∦1	11)
V562 I	55270 5219	.0019		T0.2080		GUVB 2009	-11 T.,	41 91	11)
V570 Lyr	55370 1005	.0000 0010					-11 T.,	20 01	11) 11)
IV Mar	54164 9600	0012		0.0499	~	CCVS 2000	-11 T	ט2 15	11)
U V MON	04104.0082 55600 E19E	.0003	AG	-0.0422 0.0650	s		-11 T	10	1) 11)
AF Mar	50000.0100	.0010	AG	-0.0039	s	GCVS 2009	-11 Tm	40	11)
AE Mon	54164.4031	.0011	AG	+0.0308		GUVS 2009	-1r	14	11)
AO Mon	55600.4591	.0030	AG	-0.0169		BAVR 51,38	V	39	11)
AY Mon	55599.4016	.0016	AG	+0.0759		GCVS 2009	-lr	39	11)
BM Mon	54164.4389	.0001	AG	+0.0424		GCVS 2009	-lr	17	1)
CK Mon	55599.4528	.0009	AG	+0.2008		GCVS 2009	-lr	36	11)
DD Mon	54840.4115	.0018	AG	-0.1285	$\mathbf{s}$	GCVS 2009	-lr	63	11)
59.16	55600.4191	.0017	AG	-0.1208	$\mathbf{s}$	GCVS 2009	-Ir	40	11)
EZ Mon	54509.4147	.0008	MZ	+0.0227	$\mathbf{s}$	GCVS 2009	-lr	191	2) 16)
	54831.4146	.0008	MZ	+0.0254	$\mathbf{s}$	GCVS 2009	-lr	92	2)
	54852.4785	.0010	MZ	+0.0241	$\mathbf{S}$	GCVS 2009	-lr	115	2)
	54857.3714	.0005	MZ	+0.0268	$\mathbf{S}$	GCVS 2009	-lr	191	2) 16)
	55595.4086	.0020	MZ	+0.0283	$\mathbf{S}$	GCVS 2009	-Ir	73	2)
IU Mon	55599.3189	.0019	AG	-0.0318		GCVS 2009	-Ir	39	11)
IX Mon	55599.5000	.0066	AG	-0.0373	$\mathbf{S}$	GCVS 2009	-Ir	39	11)
IZ Mon	55599.2970	.0030	AG	-0.1399		GCVS 2009	-Ir	39	11)
V397 Mon	55600.4423	.0077	AG	+0.0231		GCVS 2009	-Ir	38	11)
V460 Mon	54164.3819	.0032	$\overline{AG}$	+0.2035		GCVS 2009	-Ir	16	1)
V464 Mon	55600.3158	.0006	$\overline{AG}$	-0.1213		GCVS 2009	-Ir	40	11)
V498 Mon	55600.3481	.0022	$\overline{AG}$	-0.0786		GCVS 2009	-Ir	40	11)
V515 Mon	55600.3355	.0018	AG	-0.0392		GCVS 2009	-Ir	40	11)
V527 Mon	54164.4184	.0025	AG	-0.0222		GCVS 2009	-Ir	15	1)
V528 Mon	54164.4049	.0019	AG	-0.2378	$\mathbf{s}$	GCVS 2009	-Ir	16	1)
V532 Mon	55600.3437	.0016	AG	-0.0230	$\mathbf{S}$	GCVS 2009	-Ir	40	11)
V680 Mon	51256.3472	.0007	$\mathbf{FR}$	+0.0898		GCVS 2009	0	16	7)
V843 Mon	55599.3227	.0027	AG	-0.0510		BAVM 147	-Ir	39	11)
V577  Oph	55385.4590	.0217	AG	+0.4604	$\mathbf{s}$	GCVS 2009	-Ir	37	11)
V2203 Oph	55451.4266	.0015	$\mathbf{FR}$				0	104	11)
V2612 Oph	55385.4942	.0086	AG	+0.0970		GCVS 2009	-Ir	37	11)
FF Ori	55472.5706	.0022	SCI	+0.0228		GCVS 2009	0	41	2)
U Peg	55473.4094	.0014	PGL	-0.0201	$\mathbf{s}$	BAVR 45,3	$\mathbf{V}$	229	12)
AW Peg	55479.3704	.0018	SCI	+0.0084		GCVS 2009	0	113	2)
BX Peg	55481.3719	.0015	AG	+0.0391	$\mathbf{s}$	GCVS 2009	-Ir	40	11)
0	55481.5166	.0025	AG	+0.0436		GCVS 2009	-Ir	40	11)
CE Peg	55428.5524	.0022	SCI	+0.1530	s	GCVS 2009	0	50	2)
CW Peg	55481.4950	.0003	AG	+0.0396	~	GCVS 2009	-Ir	40	11)
DV Peg	55481.3446	.0045	AG	-0.1168	s	GCVS 2009	-Ir	39	11)
HI Peg	55498.3309	.0019	SCI	0.2200	~	0.0.0.2000	0	26	2)
IP Peg	55419.4472	.0004	FLG				V	$45^{-5}$	9)
	55420 3963	0006	FLG				v	75	9)
	55478 3004	0008	SCI					24	2)
	55478 3782	0028	SCI				0	37	2) 2)
	55478 4568	0028	SCI				0	49	2)
	55480 5171	0020	SCI				0	10	2)
	55481 3072	00021	SCI				0	38	$\frac{2}{2}$
	55481 4668	.0007	SCI				0	55	$\frac{2}{2}$
	55484 2120	.0010	SCI				0	34	$\frac{2}{2}$
	55400 2415	0020	SCI				0	94 90	2) 2)
	55509 9499	000E					0	⊿∀ ໑໑	2) 2)
	00002.0482	.0000	JU				0 C	აა ელ	<i>2)</i>
	55502.3502	.0013	SUL				0	35 00	2)
VW D	55503.3062	.0007	SCI				О т	22	2)
KW Peg	55481.2842	.0018	AG				-1r	40	11)
V 357 Peg	55459.3642	.0022	SCI	0.0012		a atta assa	0	137	2)
V411 Peg	55481.2983	.0020	AG	-0.0012		GCVS 2009	-lr	41	11)
<b>117</b> 5	55481.4852	.0011	AG	-0.0028	$\mathbf{S}$	GCVS 2009	-lr	41	11)
XZ Per	55579.4331	.0247	AG	-0.0490	s	GCVS 2009	-fr	82	11)

Table 1: (cont.)

Variable	HJD 24	±	Obs	O-C	,	Bibliography	Fil	n	Rem
AG Per	55514.3958	.0011	JU	+0.1428	s	GCVS 2009	0	56	2)
	55578.3122	.0010	JU	+0.1549		GCVS 2009	0	107	2)
AY Per	55498.5248	.0028	SCI	-0.0977		GCVS 2009	0	159	2)
BO Per	54164.3698	.0008	AG	-0.0318		GCVS 2009	-Ir	89	1)
BY Per	55499.6510	.0003	AG	+0.0209	$\mathbf{s}$	GCVS 2009	-Ir	48	11)
V740 Per	55598.4524	.0013	AG	+0.0045		GCVS 2009	-Ir	54	11)
oeta Per	55499.412	.001	VLM	+0.106		GCVS 2009	0	81	15) 16)
RV Psc	55461.4571	.0014	AG	-0.0512		GCVS 2009	-Ir	63	11)
UZ Sge	55393.5686	.0008	AG	+0.0734		GCVS 2009	-Ir	37	11)
DK Sge	55393.5154	.0011	AG	+0.1594	$\mathbf{S}$	GCVS 2009	-Ir	30	11)
V365 Sge	55389.4280	.0011	AG	-0.0492		GCVS 2009	-Ir	31	11)
SV Tau	55479.5512	.0030	SCI	-0.0148		GCVS 2009	0	115	2)
WY Tau	55590.3414	.0012	AG	+0.0580	$\mathbf{S}$	GCVS 2009	-Ir	46	11)
CT Tau	55590.4706	.0022	AG	-0.0546	$\mathbf{s}$	GCVS 2009	-Ir	49	11)
	55598.4732	.0024	AG	-0.0540	$\mathbf{s}$	GCVS 2009	-Ir	54	11)
V781 Tau	55590.2927	.0025	AG	-0.0468	$\mathbf{s}$	GCVS 2009	V	49	11)
	55590.2929	.0030	AG	-0.0466	$\mathbf{s}$	GCVS 2009	В	46	11)
	55590.4639	.0040	AG	-0.0481		GCVS 2009	В	46	11)
	55590.4641	.0029	AG	-0.0479		GCVS 2009	V	49	11)
V1239 Tau	55590.3286	.0145	AG	-0.0720	$\mathbf{s}$	GCVS 2009	V	49	11)
	55590.3379	.0145	AG	-0.0627	s	GCVS 2009	В	46	11)
V1241 Tau	55491.6118	.0001	$\mathbf{FR}$	+0.0162		GCVS 2009	0	66	11)
V Tri	55461.5283	.0028	AG	-0.0037		GCVS 2009	-Ir	63	11)
RS Tri	55461.4990	.0140	AG	-0.0444	s	GCVS 2009	-Ir	63	11)
AL Tri	55461.5281	.0094	AG	010111	D	0.01.0 2000	-Ir	63	11)
ΓW UMa	55592.2823	.0017	SCI	-0.3255		GCVS 2009	0	32	2)
FX UMa	55563 4506	0035	PGL	+0.1945		GCVS 2009	V	372	$\frac{-1}{12}$
/V UMa	555994532	0006	SCI	-0.0502		GCVS 2009	,	86	2)
A A UMa	55600 4760	0046	AG	+0.0383		GCVS 2009	-Ir	160	11)
111 01010	55600 7127	0015	AG	+0.0000	s	GCVS 2009	-Ir	160	11)
BM UMa	54935 3325	0003	AG	+0.0106	D	GCVS 2009	-Ir	70	11)
5111 0 1114	$54935\ 6029$	0019	AG	+0.0100 +0.0098		GCVS 2009	-Ir	70	11)
W UMa	55600 6947	0002	AG	10.0000		4615 2000	-Ir	160	11)
AG Vir	55578 5769	0015	SCI	-0.0077		GCVS 2009	0	101	2)
AH Vir	55309 437	001	MOO	+0.016	S	GCVS 2009	V	32	13)
TT Vir	55599 5831	0000	SCI	10.010	5	0075 2005	0	36	(13)
XZ Vul	55430 4124	0017	AG	$\pm 0.3367$		GCVS 2009	-Ir	41	11)
AW Vul	55393 5127	0010	AG	-0.0145		GCVS 2009	-Ir	30	11)
ivv vui	55473 3508	0030	FB	-0.0110		GCVS 2009	0	62	11)
BB Vul	55443 3657	0007	SIR	0.0101		4615 2000	0	38	3)
BG Vul	55481 4461	.0001	AG	$\pm 0.0575$		GCVS 2009	-Ir	39	11)
BO Vul	55393 5177	0021	AG	-0.0498	S	GCVS 2009	-11 -Ir	30	11)
BO Vul	55478 4138	0004	FB	$\pm 0.0490$ $\pm 0.7036$	5	GCVS 2009	-11	40	11)
FF Vul	55393 4710	0025	AG	-0.0740		GCVS 2009	_Ir	30	11)
FM Vul	55478 3620	.0025	AC	$\pm 0.0740$	e	GCVS 2009	-11 Ir	34	11)
CO Vul	55430 3734	0045	AG	+0.0280	5	GCVS 2009 CCVS 2009	-11 Ir	11 1	11)
	55430.5754	.0025		-0.0534		GCVS 2009	-11 Ir	20	11)
CSC 01330 00287	55578 2157	.0040		-0.0538	C	BAVR 54 105	-11 Ir	- 39 - 46	11)
350 01350-00287	55579 4966	.0025	AG	+0.0014	ъ	DAVIC 54.105	-11 In	40	11)
CSC 01330 00203	55578 5662	.0015	AG	-0.0020		BAVR 57 222	-11 Ir	40	11)
CSC 01330-00293	52672 2604	.0045	AG FD	-0.0088		DAVIN 07.202	-11	40 94	11) 0)
350 02133-02003	55400 5252	.0000	гn FD				0	- 34 - 40	0) 0)
	00409.0200 EE410 20E2	.0003	гn FD				0	49	0) 0)
	55410 5749	.0004 000 <i>4</i>	г ң FD				0	52 59	0) 0)
	55418.5745	.0006	гĸ FD				0	02 44	8)
780 00161 01910	00429.4324 55472.2472	.0005	гК гр				0	44 10	8) 11)
JSU U2101-U1310	004/0.04/0 55/01 20//	.0006	гñ AC	0.0459		IDVG FEOD N. 00	0 Te	40 41	11)
JOC 02192-01283	00481.3944	.0044	AG	-0.0458		1BVS 3300 NO.22	-1r	41	11)
JOU 02301-02410	55598.3934	.0006	AG			D7D 10 4	-1r	59	11)
33U U20/3-U2495	00397.4183 55201 5020	.0180	AG	+0.0530	$\mathbf{s}$	PZP 10.4	-1r	38 96	11)
JOU US187-U1504	55591.5230 EE469.4565	.0031	AG				-1r	20	11)
	00402.4007	.0040	AG				-1r	54	11)

Table 1: (cont.)

		1	able 1	l: (cont.)					
Variable	HJD 24	±	Obs	O - C		Bibliography	Fil	n	Rem
GSC 03187-01564	55462.6090	.0025	AG				-Ir	33	11)
GSC 03210-01456	55391.5530	.0003	AG	-0.1493		PZP 10.13	V	25	11)
GSC 03575-03593	55429.4383	.0019	AG	+0.0045		IBVS 5700 No.74	-Ir	30	11)
	55462.4575	.0031	AG	+0.0026		IBVS 5700 No.74	-Ir	34	11)
GSC 03575-06239	55429.3666	.0036	AG	+0.0409	$\mathbf{s}$	PZP 10.4	-Ir	31	11)
GSC 03576-00170	52862.5033	.0008	AG	+0.0595	s	IBVS 5724	-Ir	51	2)
GSC 03618-00162	55451.3968	.0083	AG	+0.0271	~	PZP 10.4	-Ir	59	11)
	55451 5182	0092	AG	+0.0282	S	PZP 10.4	-Ir	59	11)
GSC 03618-00448	55451 3944	0114	AG	+0.0202	S	PZP 10.4	-Ir	59	11)
	55463 5554	0151	AC	$\pm 0.0056$	0	PZP 10.4	-11 Ir	36	11)
GSC 03619-00047	55430 3854	0065		+0.0030	5	D7D 10.4	-11 Ir	47	(11)
	55451 4997	.0005	AG	-0.0038	a	D7D 10.4	-11 In	50	11)
	55451.4007	.0070	AG	$\pm 0.0003$	s	FZF 10.4 DZD 10.4	-11 T.,	09 20	11)
000 0907F 01100	55405.5599	.0077	AG	-0.0024		FZF 10.4	-11 T	32 49	11)
GSC 03675-01186	55499.2637	.0004	AG	+0.0168	$\mathbf{s}$	IBVS 5700 No.67	-1r	48	11)
	55499.4124	.0010	AG	+0.0169		IBVS 5700 No.67	-lr	48	11)
~~~	55499.5616	.0025	AG	+0.0176	$\mathbf{s}$	IBVS 5700 No.67	-lr	48	11)
GSC 03679-01920	55499.2991	.0003	AG	+0.0045		IBVS 5700 No.76	-Ir	48	11)
GSC 03688-01184	55499.4488	.0026	AG	+0.0013		PZP 10.4	-Ir	48	11)
	55499.6316	.0030	AG	+0.0044	\mathbf{S}	PZP 10.4	-Ir	48	11)
GSC 04009-00670	55409.5001	.0073	\mathbf{AG}	-0.0029		PZP 10.4	-Ir	28	11)
	55514.4790	.0062	\mathbf{AG}	-0.0080	\mathbf{S}	PZP 10.4	-Ir	39	11)
GSC 04030-02020	55374.4429	.0031	AG				-Ir	38	11)
	55409.4380	.0012	AG				-Ir	15	11)
	55479.2941	.0013	AG				-Ir	58	11)
	55479.4324	.0018	AG				-Ir	58	11)
	55479.5689	.0005	AG				-Ir	58	11)
	55491.3259	.0037	AG				-Ir	61	11)
	55491.4624	.0016	AG				-Ir	61	11)
	55491.5976	.0018	AG				-Ir	61	11)
	55514 4290	0007	AG				-Ir	40	11)
	55514 5662	0009	AG				-Ir	40	11)
CSC 04285 00122	55480 4356	0054	AC	-0.0008		P7P 10 /	-11 Ir	55	11)
000 04200-00122	55480 6234	0146	AC	-0.0003	e	PZP 10.4	-11 Ir	55	11)
GSC 04339-01166	55500 3714	0000	AC	-0.1425	5	PZP 10.4	-11 Ir	08	11)
	55590.3714	.0090	AG	-0.1425		DZD 10.13	-11 T.,	90 76	11)
000 04407 00000	55599.5729	.0171	AG	-0.1900		PZP 10.15	-11 T.,	10	11)
GSC 04497-00285 GSC 04502-01040	00091.0010	.0013	AG	0.0500		IDVC F700 N. CO	-11 T.,	04 94	11)
	55591.5694	.0015	AG	-0.0590	_	IDVS 5700 No.00	-11 T.,	04 94	11)
	55391.5271	.0031	AG	-0.0505	s	IBVS 5700 NO.00	-1r	34 07	11)
NSVS 10123419	55275.3594	.0018	AG				-1r	25 5 0	11)
1 Y U 4034-0836	55479.5438	.0143	AG	0.000.1			-lr	58	11)
TYC 4502-0138	55391.3933	.0010	AG	-0.0634		IBVS 5700 No.8	-lr	34	11)
U-A2 1125-18642389	55481.3970	.0040	AG	+0.0260		IBVS 5700 No.64	-lr	40	11)
U-A2 1200-11760524	55387.5419	.0017	AG	0.0%			-lr	31	11)
U-A2 1200-12680286	55429.4975	.0023	AG	-0.0160	\mathbf{S}	IBVS 5700 No.73	-lr	34	11)
U-A2 1275-15124020	55462.5273	.0026	AG	-0.0035		IBVS 5700 No.72	-Ir	34	11)
U-A2 1275-15134722	55462.3902	.0023	AG	+0.0082		IBVS 5700 No.71	-Ir	34	11)
U-A2 1425-02081650	55499.4139	.0006	AG	-0.0388		IBVS 5700 No. 65	-Ir	48	11)
	55499.5748	.0014	\mathbf{AG}	-0.0395	\mathbf{S}	IBVS 5700 No.65 $$	-Ir	48	11)
U-A2 1500-01208912	55514.4820	.0022	AG	+0.0167	\mathbf{S}	IBVS 5900 No. 6	-Ir	40	11)
	55514.6310	.0022	AG	+0.0146		IBVS 5900 No.6	-Ir	40	11)
U-B1 0903-0102370	55600.3809	.0025	AG				-Ir	40	11)
	55600.5234	.0006	AG				-Ir	40	11)
U-B1 1031-0151441	55578.3557	.0009	AG				-Ir	45	11)
-	55578.5185	.0017	AG				-Jr	45	11)
U-B1 1041-0581206	55396 5280	.0028	AG	-0.0036		PZP 10.4	-Ir	25	11)
U-B1 1135-0102876	55598 4255	.0021	AG	0.0000		1 21 1011	-Ir	53	11)
0 D1 1100-0102010	55598 5863	0018	AG				_Ir	53	11)
II B1 1369 0450009	55470 4760	0451		10 6000		D7D 10 19	-11 T.,	00 49	11)
U-DI 1902-0490009	55200 5500	.0401		± 0.0220		1 DF 10.13 D7D 10 4	-11 T.,	44 9 E	11)
U-D1 1390-0409004	55470 4070	.0005	AG	-0.0372		ГДГ 10.4 D7D 10.19	-11 T.:	აე ∡ი	11)
U-D1 1400-043340 <i>(</i>	004/9.49/8	.0209	AG	+0.1738		FZF 10.13 DZD 10.19	-1r T	42	11)
	55482.4190	.0119	AG	+0.0241		PZP 10.13	-1r	30	11)
Table 1: (cont.)

				()					
Variable	HJD 24	±	Obs	O - C		Bibliography	Fil	n	Rem
U-B1 1416-0454010	55430.3865	.0040	AG				-Ir	47	11)
	55451.3855	.0032	AG				-Ir	59	11)
	55451.5485	.0042	AG				-Ir	59	11)
U-B1 1440-0411990	55451.3934	.0033	AG	-0.0636	\mathbf{s}	IBVS 5700 No.54 $$	-Ir	59	11)
	55451.5986	.0048	AG	-0.0623		IBVS 5700 No.54 $$	-Ir	59	11)
	55480.3501	.0035	AG	-0.0632	\mathbf{s}	IBVS 5700 No.54 $$	-Ir	48	11)
	55480.5513	.0049	AG	-0.0660		IBVS 5700 No.54 $$	-Ir	48	11)
U-B1 1441-0441871	55380.4906	.0023	AG	+0.0062		PZP 10.13	-Ir	35	11)
U-B1 1447-0060874	55499.5607	.0091	AG	-0.0038	\mathbf{s}	PZP 10.4	-Ir	48	11)
U-B1 1492-0009970	55409.5064	.0031	AG	+0.1258		PZP 10.13	-Ir	28	11)
	55462.5528	.0120	AG	-0.1411		PZP 10.13	-Ir	45	11)
U-B1 1500-0005759	55462.4932	.0324	AG	+0.1037		AJ 133.1470	-Ir	46	11)
	55473.4307	.0043	AG	+0.1189		AJ 133.1470	-Ir	56	11)
	55514.5786	.0095	AG	+0.1474		AJ 133.1470	-Ir	39	11)
U-B1 1505-0372164	55409.4328	.0008	AG	-0.0667		PZP 10.13	-Ir	28	11)
	55462.3989	.0036	AG	+0.1104		PZP 10.13	-Ir	46	11)
	55462.5526	.0035	AG	-0.0501		PZP 10.13	-Ir	46	11)
U-B1 1508-0029126	55491.3684	.0016	AG	+0.0017	\mathbf{s}	IBVS 5900 $No.5$	-Ir	61	11)
	55491.5299	.0030	AG	+0.0042		IBVS 5900 $No.5$	-Ir	61	11)
	55514.4241	.0027	AG	+0.0021		IBVS 5900 $No.5$	-Ir	40	11)
	55514.5826	.0024	AG	+0.0016	\mathbf{s}	IBVS 5900 $No.5$	-Ir	40	11)
U-B1 1514-0040346	55479.3280	.0062	AG	-0.1676		PZP 10.13	-Ir	56	11)
	55479.5545	.0046	AG	+0.0589		PZP 10.13	-Ir	56	11)
	55514.5973	.0122	\mathbf{AG}	+0.0849		PZP 10.13	-Ir	40	11)

Table 2: Times of maxima of pulsating stars

		abic 2.	1 mics	or maxime	t of pulsating stars			
Variable	HJD 24	±	Obs	O - C	Bibliography	Fil	n	Rem
XY And	55591.2691	.0009	ΜZ	+0.0261	GCVS 2009	-Ir	64	2)
CC And	55462.4633	.0035	PGL	+0.0261	GCVS 2009	\mathbf{V}	345	12)
FI And	55578.3486	.0010	MZ	+0.0795	GCVS 2009	-Ir	143	2)
GP And	55462.4420	.0035	PGL	+0.0042	GCVS 2009	V	238	13)
SW Aqr	55083.4434	.0009	FLG	+0.0161	GCVS 2009	V	186	9)
CY Aqr	55446.3830	.0003	FLG	-0.0027	GCVS 2009	V	143	9)
eta Aql	55447.41	.00	VLM	+0.18	GCVS 2009	0	70	15) 16)
CQ Boo	55351.5333	.0010	TMG	-0.0370	BAVR 48,189	0	286	6) 19)
UY Cam	55591.451	.001	AG	+0.067	BAVR 49,41	-Ir	63	11)
EW Cam	55591.492	.001	AG			-Ir	63	11)
RW Cnc	53381.4839	.0015	JU	+0.1872	GCVS 2009	0	30	2)
W CVn	55340.453	.005	MOO	-0.020	SAC Vol.70	V	37	13)
BR Cas	55546.2382	.0030	MZ	+0.2960	GCVS 2009	-Ir	138	2)
PS Cas	55499.422	.001	AG	-0.184	GCVS 2009	-Ir	48	11)
QY Cas	55548.2725	.0030	MZ	-0.1815	GCVS 2009	-Ir	73	2)
V363 Cas	55473.643	.001	AG	+0.054	BAVR 49,41	V	56	11)
RZ Cep	55445.3782	.0010	MZ	-0.1271	GCVS 2009	-Ir	114	2) 18)
	55445.4102	.0010	MZ	-0.0951	GCVS 2009	-Ir	114	2) 19)
	55491.3701	.0020	ALH	-0.1292	GCVS 2009	V	621	4) 18)
	55491.3987	.0020	ALH	-0.1006	GCVS 2009	V	621	4) 19)
EL Cep	55482.642	.001	AG	+0.118	GCVS 2009	-Ir	103	11)
EZ Cep	55499.433	.001	AG	+0.088	GCVS 2009	-Ir	92	11)
delta Cep	55200.875	.001	VLM	-0.209	GCVS 2009	0	24	15) 16)
XX Cyg	55396.4642	.0050	ALH	+0.0026	GCVS 2009	V	128	4)
	55430.4517	.0006	ALH	+0.0041	GCVS 2009	V	287	4)
	55430.5857	.0010	ALH	+0.0032	GCVS 2009	V	287	4)
	55463.3596	.0035	PGL	+0.0049	GCVS 2009	V	121	12)
	55478.328	.001	MOO	+0.004	GCVS 2009	V	109	13)
	55483.3200	.0035	PGL	+0.0052	GCVS 2009	V	226	12)
DM Cyg	55508.2816	.0035	PGL	-0.0067	A&A 476.307 2007	V	124	12)
V798 Cyg	55478.337	.001	AG	-0.061	GCVS 2009	-Ir	34	11)
V838 Cyg	55481.3421	.0010	MZ	+0.0204	GCVS 2009	-Ir	96	2)

Table 2: (cont.)

			18	tble 2: (cor	10.)			
Variable	HJD 24	±	Obs	O-C	Bibliography	Fil	n	Rem
V939 Cyg	55381.528	.001	AG	+0.070	BAVM 92	-Ir	87	11)
V944 Cyg	55481.368	.005	FR	+0.104	GCVS 2009	0	22	11)
V1962 Cyg	55479.3512	.0010	MZ			-1r	108	2)
	55480.3084	.0010		+0.1500	COVC 2000	-1r	94	<i>2)</i>
BK Del	55450.5727	.0020	SB	+0.1509	GCVS 2009	V	243	10)
ואם מי	55206 520	.0020		+0.1527	GCVS 2009	V In	152	10)
	55590.520	.001	AG	-0.010	GCV5 2009	-11 17	20	11)
AR Her	55442.5022	.0035	PGL	+0.0737	BAVE 52,5	V	220	12)
	00444.3771 55451 4007	.0035	PGL	+0.0687	BAVR 52,5	V	337 199	12) 19)
TZ Han	55451.4097	.0035	PGL	+0.0515	BAVE 32,3	V Tm	133	12)
K Her	55579.399 EE206 E21	.002	AG	-0.041	GCVS 2009	-1r T.,	30 20	11) 11)
M How	00090.001 FE206 E02	.001	AG	-0.042	GCVS 2009	-11 T.,	ა∠ აე	11) 11)
JM ner	55590.502	.001	AG	+0.105	GCVS 2009	-11 T.,	52	11)
/34/ Her	55389.390	.001	AG	-0.134	GCVS 2009	-1r	5U 109	11)
002 ner	55552.4020	.0020	MZ			-11 T.,	108	2) 2)
	55574.4500	.0050				-11 T.,	114	2) 2)
	00429.4020 EE200 E00	.0080		10.019	CCVC 2000	-11 T.,	117 25	<i>2)</i> 11)
л Lac 7 I.m	00000.000 55501 901	.001	AG	± 0.012	GUVS 2009 CCVS 2000	-11' V	00 60	11) 11)
ப பரா	00091.081 55501 500	.001	AG	± 0.020	GCVS 2009 CCVS 2000	V V	00 69	11) 11)
	55501.601	.001	AG	+0.025	GCVS 2009	V	68	11)
FW Lun	55501 627	.001		±0.020 ±0.069	CCVS 2009	V In	00 68	11)
	55501 444	.001	AG	+0.002	GC V 5 2009	-11 In	68	11)
WZ Lyn	55600 267	.001	AG			-11 In	160	11)
AIN LYII	55600.307	.002	AG			-11 In	160	11)
	55600.400	.002	AG			-11 In	160	11)
	55600.504	.001	AG			-11 In	160	11)
97 I ur	55480 3068	.0035	PCI	0.0110	BAVB 48 180	-11 V	253	11) 12)
'N Lyr	55307 4471	.0035	PCL	-0.0110	A&A 476 307 2007	V	200 140	12) 12)
JIN LIJI	55470 3134	0045	PCL	± 0.0001	A&A 476 307 2007	V	360	$\frac{12}{12}$
	55486 307 ·	.0035	PCL	+0.0010 ±0.001	A&A 476 307 2007	V	30 <i>3</i> 80	$\frac{12}{12}$
) Lyr	55307 4330	.004	PCL	-0.0344	CCVS 2000	V	261	$\frac{12}{13}$
J Lyi	55445 3330	0035	PGL	-0.0344 -0.0356	GCVS 2009 GCVS 2009	V	105	10) 12)
IR Lyr	55370 /15	.0035	AG	-0.0330 -0.024	GCVS 2009 GCVS 2009	-Ir	32	$\frac{12}{11}$
I'M Mon	55501 3287	0020	SB	0.024	00752005	-11	52 78	10)
	55592 3284	0020	MZ			_Ir	135	2) 18)
	55500 315	0020	SB			-11	68	$\frac{2}{10}$
ST Oph	55428 4243	.005	FLG	± 0.0029	BAVB 48 189	V	128	(01 10
AX Oph	55385 450	.001	AG	-0.018	GCVS 2009	-Ir	37	11)
V337 Ori	55598 430	.001	AG	+0.015	GCVS 2009	-Ir	54	11)
/V Peg	55481 3208	.0035	PGL	-0.0197	GCVS 2009	V	241	12)
SH Peg	55460 4933	0019	SCI	-0.0071	BAVR 47 67	0	100	$\frac{12}{2}$
511 1 05	55473 313	.002	SCI	-0.007	BAVB 47 67	0	127	$\frac{2}{2}$
	55482.2849	.002	SCI	-0.0090	BAVR 47 67	0	126	$\frac{2}{2}$
3P Peg	55481 317	001	AG	-0.026	BAVR 48 189	_Ir	30	$\frac{2}{11}$
Jilog	55481 431	.001	AG	-0.020	BAVR 48,189	-11 _Ir	30	11)
	55481 536	.001	AG	-0.022	BAVE 48 189	-11 -Ir	39	11)
D Peg	55479 3883	0020	SB	-0.2219	GCVS 2009	V	159	10)
V Peg	55/39 /733	0035	PGL	-0.0102	GCVS 2009	v	157	10)
JIIeg	55444 5053	.0035	PGL	-0.0102 -0.0102	GCVS 2009 GCVS 2009	V	320	$\frac{12}{12}$
	55446 4011	0028	PGL	-0.0102	GCVS 2009 GCVS 2009	v	145	12) 12)
	55451 5064	0028	PGL	-0.0101	GCVS 2009	v	96	12) 12)
	55453 3285	.0025	PGL	-0.0110	GCVS 2009	v	114	$\frac{12}{12}$
AR Per	55570 388	.0000	AG	± 0.0110	GCVS 2003	_Ir	89 89	$\frac{12}{11}$
ET Per	55462 4385	0002	MZ	-0.0304	BAVR /0 /1	-11 _Tr	110	2) 2)
V Por	55483 4000	0002	MZ	-0.0304 ± 0.0257	GCVS 2000	-11 _Tr	119 86	∠) 2)
YA T CI	55491 3780	0010	MZ	± 0.0201 ± 0.0298	GCVS 2009	-11 _Tr	108	∠) 2)
	55/0/ 2721	0015	MZ	10.0220	CCVS 2009	-11 . Tr	1/2	∠) 2)
SS Pec	55481 9820	0010	ΔI.H	+0.0200 +0.0200	BΔVR 47 67	-11 V	100	∠) 8)
SV Psc	55495 4070	0010	MZ	± 0.0050 ± 0.1268	GCVS 2000	v _Ir	190 199	2)
AI Tau	55572 3600	0025	MZ	-0.0937	GCVS 2003	_Ir	41	$\frac{2}{2}$
II IUU	30012.0000	.0040	TAT 17	0.0001	00102000	11	11	<u>~</u>)

Table 2: (cont.)

Variable	HJD 24	±	Obs	O - C	Bibliography	Fil	n	Rem
UV Tri	55461.516	.001	AG			-Ir	63	11)
	55461.620	.001	AG			-Ir	63	11)
UZ UMa	55591.637	.001	AG	+0.001	GCVS 2009	-Ir	63	11)
GSC 03197-00817	54312.502	.003	AG			-Ir	26	1)
GSC 03755-00845	55600.2739	.0003	SCI			0	57	2)
U-A2 1200-07442272	53151.419	.001	AG	+0.004	IBVS 5700 No.69	0	39	1)
U-A2 1425-00752967	55473.332	.001	AG	-0.024	IBVS 5700 No.59	-Ir	56	11)
	55514.454	.001	AG	-0.023	IBVS 5700 No.59	-Ir	38	11)
U-B1 1118-0137672	54830.450	.002	AG			-Ir	61	11)
U-B1 1383-0445772	55391.431	.001	AG	+0.009	PZP 10.13	-Ir	26	11)
	55462.368	.001	AG	+0.034	PZP 10.13	-Ir	34	11)
	55462.495	.001	AG	+0.033	PZP 10.13	-Ir	34	11)
U-B1 1424-0504416	55380.498	.010	AG	-0.069	PZP 10.13	-Ir	35	11)
	55430.430	.005	AG	-0.027	PZP 10.13	-Ir	47	11)
U-B1 1646-0035146	55590.374	.001	AG	+0.064	PZP 10.13	-Ir	98	11)

Observers:

- AG: Agerer, F., Tiefenbach
- ALH: Alich, K., Schaffhausen (CH)
- BO: Bode, H.-J., Hannover
- FLG Flechsig, Dr. G.-U., Teterow
- FR: Frank, P., Velden
- JU: Jungbluth, Dr. H., Karlsruhe
- MOO: Moos, C., Netphen
- MS: Moschner, W., Lennestadt
- MZ: Maintz, Dr. G., Bonn
- PGL: Pagel, Dr. L., Klockenhagen
- PRK: Proksch, W., Winhöring
- SB: Steinbach, Dr. H., Neu-Anspach
- SCI: Schmidt, U., Karlsruhe
- SIR: Schirmer, J., Willisau (CH)
- TMG: Team Martinus Gymnasium, Linz (A)
- VLM: Vollmann, W., Wien (A)

Remarks:

- : uncertain
- s secondary minimum
- 16) normal maximum
- 17) normal minimum
- 18) double maxima: time of the first maximum
- 19) double maxima: time of the second maximum
- 20) not much descend CCD-Cameras
- 1) ccd-camera ST-6: chip 375*242 uncoated
- 2) ccd-camera ST-7
- 3) ccd-camera ST-8XME
- 4) ccd-camera ST-8XMEI: chip KAF1603ME
- 5) ccd-camera ST-9: chip 512*512
- 6) ccd-camera ST-9E
- 7) ccd-camera OES-LcCCD11
- 8) ccd-camera OES-LcCCD12
- 9) ccd-camera Sigma 402: chip KAF0402ME
- 10) \quad ccd-camera Sigma 402ME
- 11) ccd-camera Sigma 1603
- 12) ccd-camera Artemis 4021
- 13) ccd-camera QHY8
- 14) ccd-camera IOS (TI245)
- 15) ccd-camera Canon powershot g3 Filter
- o without filter
- B B-filter
- V V-filter
- -Ir -Ir-filter

References:

A&A	Astronomy & Astrophysics
AJ vvv,ppp	Astronomical Journal volume, pages
BAVM nnn	BAV Mitteilungen No. nnn
BAVR vv,ppp	BAV Rundbrief volume, pages
GCVS 2009	General Catalogue of Variable Stars, version: iii.dat 20.11.2009
IBVS nnnn	Information Bulletin on Variable Stars No. nnnn
PZP vol.n	Peremennye Zvezdy Prilozhenie Vol, No.
SAC vv	Rocznik Astronomiczny No. vv, Krakow (SAC)
	Star catalogues
GSC	The HST Guide star Catalogue 1.2
NSVS	Northern Sky Variability Survey
TYC	Tycho Catalogue
U-A2	USNO A2.0 catalogue
U-B1	USNO B1.0 catalogue

ERRATUM FOR IBVS 5802 (BAVM 186)

 GSC 03776.00170 52862.5033 AG has to be deleted

ERRATUM FOR IBVS 5918 (BAVM 209)

DD Mon 54840.3953 AG has to be deleted

ERRATUM FOR IBVS 5941 (BAVM 212)

TW Her 55066.4339 MOO has to be deleted

ERRATUM FOR IBVS 5959 (BAVM 214)

UY Boo 55311.5195 PGL has to be deleted

Number 5985

Konkoly Observatory Budapest 15 April 2011 *HU ISSN 0374 – 0676*

PQ Ser UNVEILED - NOT A CATACLYSMIC VARIABLE

KAFKA, S.¹; HONEYCUTT, R. K.²

 1 Carnegie Institution of Washington, Department of Terrestrial Magnetism, 5241 Broad Branch Road, NW, Washington, DC 20015-1305; email:skafka@dtm.ciw.edu

² Indiana University, 319 SW, Bloomington IN 47405, USA

PQ Ser first appeared in the HIPPARCOS catalog as HIP 76538 (Perryman et al., 1997) and then it was listed as a nova-like cataclysmic variable (CV) by Kazarovets et al. (1999). It appears in many places under the classification of a nova-like (NL) cataclysmic variable (CV). Examples include the HIPPARCOS catalog, SIMBAD, and the AAVSO databases, and the Downes et al. CV catalog. Many of these sources also list the spectral class as F0, which is an apparent contradiction with NL: . Because PQ Ser is among the brightest stars listed as a CV, it is a tempting target for high resolution spectroscopy or high time resolution studies, for which the bright apparent magnitude of 8.1 is an obvious advantage.

Despite the fact that it is one of the brightest CVs known in the northern hemisphere, there is very little literature data on PQ Ser, including a lack of published spectra that might clarify its nature. NL CVs are semi-detached binary systems in which a white dwarf accrets material from a low-mass, low main sequence star (K/M dwarf) with mass transfer rates of $\sim 10^{-9}$ - $10^{-8} M_{\odot} yr^{-1}$. Typical orbital periods of those systems are less than 8 hours, therefore orbitally-induced variations are commonly present in their light curves. Due to their relatively high mass transfer rate, their spectra are dominated by accretion-induced lines, the most prominent of which are Balmer emission lines, HeI and HeII emission. Here we present time-resolved photometry and high-resolution spectra of the star, discussing its nature, arguing that it is an F0 star, and not a CV.

Spectra were obtained with the Echelle Spectrograph on du Pont 2.5-m telescope of the Las Campanas Observatories during 2010-Feb-16 (UT). The Echelle Spectrograph provides wavelength coverage from 3700-9000Å at a typical resolution of ~40,000. For our observations, we used the 1 arcsecond slit and no CCD binning. Spectrum of a ThAr lamp was obtained for wavelength calibration at the position of the telescope, before object observations. Through the night, the sky was clear and the moon 90 degrees away from the target, however scattered sunlight from the full moon is still present in the blue side of the spectra despite our careful sky subtraction. With this setup, we obtained three spectra of PQ Ser using exposure times of 900 sec, which were in turn median-coadded to produce the final spectrum presented and discussed in this communication. For data processing and reductions we used IRAF's¹ echelle package.

 $^{^{1}}$ IRAF is distributed by the National Optical Astronomy Observatories, which are operated by the Association of Universities for Research in Astronomy, Inc., under cooperative agreement with the National Science Foundation.

Figure 1. Top panel: ASAS light curve of PQ Ser. Typical error bars are 0.04 mag, which are omitted for clarity. Middle and bottom panels: Balmer lines from the median combined echelle spectra of PQ Ser are presented in blue continuous lines (HJD=2455608.860313). The F0V star HD 32537 is also plotted with green dashed lines for comparison. The striking similarities of the spectrum of HD 32537 with the spectrum of PQ Ser confirms its classification as an F0V star.

PQ Ser is also included in the All Sky Automated Survey (ASAS; Pojmanski, 2002) target list, and was observed with a V filter since 2003-February-15. Data reductions were conducted with the ASAS pipeline and the final output of the photometry is provided in the ASAS database, along with photometry errors. The data are flagged based on the photometric quality of the frame; we retained only data of grades A and B (best quality). The final light curve consists of 238 points spread over 6.4 years.

The full ASAS light curve (all seven years of photometric monitoring) is presented in the top panel of Figure 1. Overall, the long-term light curve is smooth, having an amplitude of 0.15 mag and no long-term trend nor any features (such as low states or small outbursts) which sometimes appear in nova-like CVs. We used the Peranso period analysis software to obtain Lomb-Scarle periodograms. A possible peak at 0.1019d has low significance and the data folded on this period showed no significant pattern. There is good overall evidence that PQ Ser is indeed variable, from the original HIPPARCOS detection of variability, to the Nichols et al. (2010) variability study of Chandra guide stars (0.02 mag change over 8 hrs). However, we see no indication of periodicities in the ASAS photometry.

The middle and bottom panels show the Balmer line regions of the averaged echelle spectrum of PQ Ser. In general, CaII H and K, all Balmer lines, NaD and the CaII IR triplet lines are in absorption, with complete lack of any emission component or any HeI or HeII emission lines, which are usual indications of an accretion disk. According to the Simbad database, this object is classified as F0. We used the ELODIE² database to retrieve a number of similar-resolution F0 stars, and compare them with the spectrum of PQ Ser. A good match is HD 32537 (F0V), which is also shown in Figure 1 (green dashed lines). The two stars exhibit strong Balmer absorption, with traces of low excitation metal lines of Fe I, Ca I and Mn I absorption, characteristic of the class.

We also checked the individual spectra for short-term secular variations in the line profiles that could indicate RV variations and the presence of a companion; we could not find any.

References:

Kazarovets, A. V., Samus, N. N., Durlevich, O. V., Frolov, M. S., Antipin, S. V., Kireeva, N. N., and Pastukhova, E. N. 1999, *IBVS*, 4659
Nichols, J. S., Henden, A. A. et al. 2010, *ApJS*, 188, 473

Perryman, M. A. C., et al. 1997, A&A, 323, L49

Pojmanski, G. 2002, Acta Astronomica, 52, 397

²http://atlas.obs-hp.fr/elodie/

Number 5986

Konkoly Observatory Budapest 21 April 2011 HU ISSN 0374 – 0676

THE GEOS RR Lyr SURVEY

Thirteenth List of Maxima of RR Lyr Stars Observed by the Automated Telescopes TAROT

(GEOS Circular RR 46)

LE BORGNE, J. F.^{1,2,3}; KLOTZ, A.^{2,3,4}; BOËR, M.⁴

¹ GEOS (Groupe Européen d'Observations Stellaires), 23 Parc de Levesville, 28300 Bailleau l'Evêque, France

² Université de Toulouse; UPS-OMP; IRAP; Toulouse, France

 3 CNRS; IRAP; 14, a venue Edouard Belin, F-31400 Toulouse, France

⁴ Observatoire de Haute-Provence, Saint Michel l'Observatoire, France

We present here the thirteenth list of light maxima of RR Lyrae stars from the GEOS RR Lyr Survey (Le Borgne et al., 2007), a GEOS program (http://geos.webs.upv.es/, Boninsegna et al., 2002) of observations of RR Lyr stars using the automatic telescopes TAROT (http://tarot.obs-hp.fr, Klotz et al., 2009). The present list contains 656 maxima observed between January and December 2010 (Table 1).

A description of the present list may be found in the former lists (for example Le Borgne et al., 2008). The data are also available in the GEOS RR Lyr web database (http://rr-lyr.ast.obs-mip.fr/dbrr/dbrr-V1.0_0.php). The O - C's are computed with the GCVS elements (Kholopov et al., 1985) when available. Otherwise, the reference of the elements, if exists, is given as a footnote of Table 1.

References:

Agerer, F., Moschner, W., 1996, *IBVS*, 4391

Baldwin, M.E., Samolyk, G., 2003, AAVSO RR Lyrae Monographs, 1

- Boninsegna, R., Vandenbroere, J., Le Borgne, J. F., The Geos Team, 2002, ASP Conf. Ser., 259, 166, IAU Colloq. 185
- Kholopov, P. N., et al., 1985, General Catalogue of Variable Stars, Moscow: Nauka Publishing House, 1988, 4th ed., edited by Kholopov, P. N.; and 2008 web edition (http://www.sai.msu.su/groups/cluster/gcvs/).

Klotz, A., Boër, M., Atteia, J. L., Gendre, B., 2009, AJ, 137, 4100

Le Borgne, J. F., Klotz, A., Boër, 2008, IBVS, 5823

Le Borgne, J. F., Paschke, A., Vandenbroere, J., Poretti, E., Klotz, A., Boër, M., Damerdji, Y., Martignoni, M., Acerbi, F., 2007, A&A, 476, 307

Meinunger L., 1984, *MVS*, **10**, 56

O - CVariable Ε Obs. Variable O-CΕ Obs. Maximum Maximum HJD 24... (days) HJD 24... star star (days) SW And $55481.591 {\pm} 0.004$ -0.81684448. С TY Aps $55294.870 {\pm} 0.003$ 0.042 31032. LS $55497.512 {\pm} 0.001$ -0.817SW And 84484. \mathbf{C} VX Aps $55327.891 {\pm} 0.002$ 0.18043519. LSSW And $55510.341{\pm}0.002$ -0.81484513. \mathbf{C} VX Aps $55346.797 {\pm} 0.004$ 0.18743558.LSSW And $55524.492{\pm}0.002$ -0.81684545. \mathbf{C} VX Aps $55447.618 {\pm} 0.002$ 0.21643766.LS \mathbf{C} SW And $55540.412 {\pm} 0.004$ -0.81884581. XZ Aps $55285.644 {\pm} 0.003$ 0.08745231.LSXX And 0.24022291. \mathbf{C} XZ Aps 45328.LS $55198.434 {\pm} 0.002$ 55342.614 ± 0.004 0.076 $\rm XZ \ Aps$ XX And $55414.542{\pm}0.003$ 0.24722590. \mathbf{C} $55403.685 {\pm} 0.005$ 0.05445432. LSXX And $55432.608 {\pm} 0.002$ 0.24422615. \mathbf{C} BS Aps 55312.567 ± 0.003 0.010 30714. LSXX And $55451.401 {\pm} 0.002$ 0.24622641. \mathbf{C} BS Aps $55414.526 {\pm} 0.006$ 0.022 30889. LSXX And $55461.521 {\pm} 0.004$ 0.24722655. \mathbf{C} BS Aps $55418.603 {\pm} 0.005$ 0.02130896. LSXX And $55471.637{\pm}0.002$ 0.24522669. \mathbf{C} BS Aps $55432.593 {\pm} 0.005$ 0.03030920. LSXX And $55497.655 {\pm} 0.004$ 0.24422705. \mathbf{C} EX Aps $55354.532{\pm}0.002$ 0.01558120.LS \mathbf{C} XX And $55505.608 {\pm} 0.002$ 0.24722716.EX Aps 55396.522 ± 0.004 0.01558209.LS $55511.389 {\pm} 0.003$ 22724. \mathbf{C} $55402.651{\pm}0.003$ XX And 0.246EX Aps 0.010 58222.LS \mathbf{C} XX And $55513.556 {\pm} 0.002$ 0.24522727. EX Aps $55404.542 {\pm} 0.002$ 0.014 58226.LSXX And 22742. \mathbf{C} EX Aps 0.017 58241. $55524.397 {\pm} 0.003$ 0.244 55411.622 ± 0.002 LSXX And 0.24422745. \mathbf{C} EX Aps $55446.528 {\pm} 0.002$ 0.010 58315. $55526.565{\pm}0.002$ LSXX And \mathbf{C} SW Aqr -0.002 $55527.288{\pm}0.002$ 0.24422746. $55388.879 {\pm} 0.003$ 65951.LS \mathbf{C} XX And 22767. SW Aqr 65996. \mathbf{C} $55542.468 {\pm} 0.002$ 0.247 $55409.548 {\pm} 0.002$ -0.001 \mathbf{C} \mathbf{C} AT And SW Aqr 55403.503 ± 0.005 -0.00321170. 55420.571 ± 0.003 -0.00266020. AT And $55416.459 {\pm} 0.003$ -0.00221191. \mathbf{C} SW Aqr 55423.787 ± 0.004 -0.00166027. LSAT And -0.000 \mathbf{C} SW Agr -0.00166074. \mathbf{C} $55429.416 {\pm} 0.004$ 21212. 55445.374 ± 0.002 AT And $55442.373 {\pm} 0.005$ 0.002 21233. \mathbf{C} SW Aqr $55453.642{\pm}0.002$ -0.00166092. LSAT And $55450.389 {\pm} 0.003$ -0.00221246. \mathbf{C} SX Aqr 55401.557 ± 0.003 -0.12429130. \mathbf{C} \mathbf{C} \mathbf{C} AT And 55458.414 ± 0.007 0.00321259.SX Aqr 55423.521 ± 0.002 -0.12429171. \mathbf{C} LSAT And $55469.513 {\pm} 0.003$ -0.00321277.SX Aqr 55426.736 ± 0.002 -0.12329177. \mathbf{C} AT And 55511.463 ± 0.004 -0.00321345.SX Aqr 55444.416 ± 0.002 -0.12229210.С AT And $55513.317 {\pm} 0.004$ 0.00021348. \mathbf{C} TZ Aqr 55424.440 ± 0.003 0.014 31295.С AT And -0.00521371. \mathbf{C} 0.016 31297. \mathbf{C} 55527.501 ± 0.003 TZ Aqr 55425.584 ± 0.003 AT And 0.00221379. \mathbf{C} TZ Aqr $55440.433 {\pm} 0.003$ 0.014 31323. С 55532.443 ± 0.005 TZ Aqr 21382. \mathbf{C} \mathbf{C} AT And -0.004 $55452.427{\pm}0.002$ 0.01331344. 55534.288 ± 0.003 \mathbf{C} AT And YZ Aqr $55542.308 {\pm} 0.002$ -0.00421395. $55395.754 {\pm} 0.003$ 0.06136293. LS \mathbf{C} CI And YZ Aqr LS 55199.402 ± 0.002 0.11740190. 55396.854 ± 0.003 0.05736295. \mathbf{C} CI And $55415.590{\pm}0.002$ 0.12140636.YZ Aqr $55426.659 {\pm} 0.003$ 0.05736349. LSCI And 0.12040640. \mathbf{C} YZ Agr 0.060 36389. LS 55417.528 ± 0.002 55448.739 ± 0.002 CI And $55431.586 {\pm} 0.002$ 0.12140669. \mathbf{C} YZ Aqr $55453.706 {\pm} 0.002$ 0.06036398. LSCI And $55449.516{\pm}0.002$ 0.11740706. \mathbf{C} AA Aqr 55388.822 ± 0.005 -0.13056891. LS \mathbf{C} CI And $55453.392{\pm}0.002$ 0.11540714. AA Aqr 55391.870 ± 0.003 -0.12656896.LS \mathbf{C} CI And 55455.341 ± 0.006 0.12540718. AA Aqr 55416.835 ± 0.004 -0.12656937. LS \mathbf{C} CI And $55462.603 {\pm} 0.003$ 0.11640733.AA Aqr 55427.792 ± 0.003 -0.12956955.LS \mathbf{C} CI And $55488.291 {\pm} 0.002$ 0.11440786. AA Aqr $55482.594{\pm}0.003$ -0.12757045.LS \mathbf{C} CI And 0.121 40863. BN Agr 55422.791 ± 0.002 0.61837368. 55525.621 ± 0.002 LS \mathbf{C} CI And $55526.588 {\pm} 0.002$ 0.11840865.BN Aqr 55424.669 ± 0.002 0.61737372. LSCI And 40867. \mathbf{C} BO Aqr 19889. 0.118 $55424.748{\pm}0.002$ 0.160LS 55527.557 ± 0.002 \mathbf{C} CI And BO Aqr 19892.LS0.12340879. 55426.836 ± 0.004 0.166 55533.378 ± 0.002 \mathbf{C} CI And 0.12440881. BO Aqr 19925.LS 55534.349 ± 0.002 55449.737 ± 0.004 0.164NX And $^{\rm 1}$ \mathbf{C} $55198.485 {\pm} 0.003$ 0.00225549.BR Aqr $55417.848 {\pm} 0.003$ -0.17036901. LSNX And $^{\rm 1}$ 25907. \mathbf{C} BR Agr -0.17036919. \mathbf{C} 55430.491 ± 0.005 0.007 $55426.521 {\pm} 0.002$ NX And ¹ $55505.663 {\pm} 0.003$ 0.006 26023. \mathbf{C} BR Aqr $55454.468 {\pm} 0.002$ -0.17236977. \mathbf{C} NX And ¹ $55511.491{\pm}0.003$ 0.00126032. \mathbf{C} BR Aqr $55495.425{\pm}0.002$ -0.17537062. \mathbf{C} NX And ¹ \mathbf{C} \mathbf{C} 55524.454 ± 0.003 0.004 26052.BR Aqr 55523.374 ± 0.003 -0.17537120. WY Ant \mathbf{C} LS 55211.712 ± 0.002 0.22725362.CP Aqr 55415.457 ± 0.001 -0.12237831. WY Ant 37833. С $55238.703 {\pm} 0.002$ 0.22525409.LSCP Aqr 55416.385 ± 0.003 -0.121WY Ant $55299.589 {\pm} 0.003$ 0.23225515.LSCP Aqr 55437.699 ± 0.002 -0.12437879. LSCP Aqr **BN** Ant LS-0.12237909. LS 55239.682 ± 0.002 55451.603 ± 0.003 0.040 30940. TY Aps $55248.712 {\pm} 0.003$ LSCP Aqr $55454.384{\pm}0.002$ -0.12137915. \mathbf{C}

Table 1: maxima of RR Lyrae stars

Variable	Maximum	O - C	Е	Obs.	Variable	Maximum	O - C	Е	Obs.
star	HJD 24	(days)			star	HJD 24	(days)		
CP Aqr	$55464.579 {\pm} 0.002$	-0.121	37937.	LS	RV Cap	$55445.693 {\pm} 0.004$	-0.025	48158.	LS
CP Aqr	$55473.382{\pm}0.002$	-0.123	37956.	\mathbf{C}	RV Cap	$55454.656{\pm}0.005$	-0.017	48178.	LS
DN Aqr	$55427.682{\pm}0.005$	0.045	42607.	LS	RV Cap	$55463.592{\pm}0.004$	-0.036	48198.	LS
DN Aqr	$55444.781{\pm}0.005$	0.033	42634.	LS	IU Car	$55478.769 {\pm} 0.005$	0.217	18698.	LS
DN Aqr	$55455.561{\pm}0.005$	0.039	42651.	LS	IU Car	$55501.621{\pm}0.003$	0.217	18729.	LS
DN Aqr	$55505.623{\pm}0.003$	0.035	42730.	LS	IU Car	$55506.778 {\pm} 0.004$	0.214	18736.	LS
OX Aqr	$55484.616 {\pm} 0.003$			LS	IU Car	$55509.734{\pm}0.006$	0.221	18740.	LS
OX Aqr	$55494.667 {\pm} 0.004$			LS	IU Car	$55526.711 {\pm} 0.005$	0.244	18763.	LS
AA Aql	$55409.734{\pm}0.002$	0.039	85858.	LS	IU Car	$55540.694{\pm}0.006$	0.221	18782.	LS
AA Aql	$55414.434{\pm}0.002$	0.036	85871.	\mathbf{C}	IU Car	$55557.624{\pm}0.005$	0.197	18805.	LS
AA Aql	$55437.590{\pm}0.002$	0.038	85935.	LS	V363 Cas	$55408.603 {\pm} 0.003$	0.642	35250.	\mathbf{C}
V341 Aql	$55437.562{\pm}0.005$	0.041	24638.	LS	V363 Cas	$55426.640 {\pm} 0.003$	0.643	35283.	\mathbf{C}
IN Ara	$55414.682{\pm}0.005$	0.117	44604.	LS	V363 Cas	$55430.479 {\pm} 0.005$	0.656	35290.	\mathbf{C}
MS Ara	$55338.760 {\pm} 0.005$	0.413	52101.	LS	V363 Cas	$55431.553 {\pm} 0.005$	0.637	35292.	\mathbf{C}
MS Ara	$55418.554{\pm}0.004$	0.414	52253.	LS	V363 Cas	$55453.420{\pm}0.004$	0.643	35332.	С
MS Ara	$55439.549 {\pm} 0.003$	0.410	52293.	LS	V363 Cas	$55454.522{\pm}0.005$	0.652	35334.	\mathbf{C}
X Ari	$55454.558{\pm}0.005$	0.379	27445.	\mathbf{C}	V363 Cas	$55455.608 {\pm} 0.003$	0.645	35336.	\mathbf{C}
X Ari	$55514.464{\pm}0.002$	0.380	27537.	\mathbf{C}	V363 Cas	$55488.411 {\pm} 0.004$	0.656	35396.	\mathbf{C}
X Ari	$55525.533{\pm}0.002$	0.380	27554.	\mathbf{C}	V363 Cas	$55489.504{\pm}0.005$	0.655	35398.	\mathbf{C}
X Ari	$55527.486{\pm}0.002$	0.379	27557.	\mathbf{C}	V363 Cas	$55490.594{\pm}0.005$	0.652	35400.	\mathbf{C}
X Ari	$55529.443 {\pm} 0.002$	0.383	27560.	С	V363 Cas	$55496.615 {\pm} 0.004$	0.661	35411.	С
X Ari	$55557.442{\pm}0.002$	0.383	27603.	\mathbf{C}	V363 Cas	$55495.508 {\pm} 0.006$	0.648	35409.	\mathbf{C}
TZ Aur	$55240.505 {\pm} 0.002$	0.014	90223.	\mathbf{C}	V363 Cas	$55523.404{\pm}0.005$	0.670	35460.	\mathbf{C}
TZ Aur	$55284.371 {\pm} 0.003$	0.012	90335.	\mathbf{C}	V363 Cas	$55525.585 {\pm} 0.005$	0.665	35464.	\mathbf{C}
TZ Aur	$55489.609 {\pm} 0.002$	0.013	90859.	\mathbf{C}	BI Cen	$55202.807 {\pm} 0.002$	0.057	40850.	LS
TZ Aur	$55505.670 {\pm} 0.002$	0.015	90900.	\mathbf{C}	BI Cen	$55359.612 {\pm} 0.002$	0.061	41196.	LS
TZ Aur	$55506.452 {\pm} 0.002$	0.014	90902.	С	V499 Cen	$55300.586 {\pm} 0.004$	0.032	27195.	LS
TZ Aur	$55507.626 {\pm} 0.002$	0.013	90905.	\mathbf{C}	RR Cet	$55453.518 {\pm} 0.002$	0.012	40273.	\mathbf{C}
TZ Aur	$55534.652 {\pm} 0.001$	0.014	90974.	\mathbf{C}	RR Cet	$55454.621 {\pm} 0.002$	0.009	40275.	\mathbf{C}
TZ Aur	$55542.487{\pm}0.004$	0.015	90994.	С	RR Cet	$55474.530{\pm}0.004$	0.009	40311.	С
TZ Aur	$55545.619 {\pm} 0.001$	0.013	91002.	\mathbf{C}	RR Cet	$55504.392{\pm}0.002$	0.007	40365.	\mathbf{C}
TZ Aur	$55547.577 {\pm} 0.002$	0.013	91007.	\mathbf{C}	RR Cet	$55505.497 {\pm} 0.002$	0.006	40367.	\mathbf{C}
TZ Aur	$55548.360{\pm}0.002$	0.013	91009.	\mathbf{C}	RR Cet	$55524.300 {\pm} 0.004$	0.006	40401.	\mathbf{C}
TW Boo	$55270.416 {\pm} 0.003$	-0.060	53317.	\mathbf{C}	RU Cet	$55443.843 {\pm} 0.003$	0.105	26638.	LS
V Cae	$55543.830{\pm}0.004$	-0.184	37179.	LS	RU Cet	$55486.642 {\pm} 0.005$	0.106	26711.	LS
AH Cam	$55454.440{\pm}0.002$	-0.451	45359.	\mathbf{C}	RU Cet	$55503.648 {\pm} 0.006$	0.110	26740.	LS
AH Cam	$55461.438 {\pm} 0.002$	-0.459	45378.	С	RU Cet	$55513.622 {\pm} 0.005$	0.117	26757.	LS
AH Cam	$55462.547 {\pm} 0.002$	-0.456	45381.	\mathbf{C}	RV Cet	$55499.750 {\pm} 0.005$	0.239	26285.	LS
AH Cam	$55488.350 {\pm} 0.003$	-0.464	45451.	\mathbf{C}	RX Cet	$55451.698 {\pm} 0.007$	0.296	26714.	LS
AH Cam	$55489.448 {\pm} 0.002$	-0.473	45454.	С	RX Cet	$55455.716{\pm}0.005$	0.298	26721.	LS
AH Cam	$55490.548 {\pm} 0.002$	-0.479	45457.	\mathbf{C}	RX Cet	$55478.660 {\pm} 0.005$	0.295	26761.	LS
AH Cam	$55507.526 {\pm} 0.003$	-0.463	45503.	\mathbf{C}	RZ Cet	$55445.817 {\pm} 0.004$	-0.168	42183.	LS
AH Cam	$55529.654{\pm}0.002$	-0.458	45563.	\mathbf{C}	RZ Cet	$55446.833 {\pm} 0.003$	-0.173	42185.	LS
AH Cam	$55534.418 {\pm} 0.002$	-0.488	45576.	С	RZ Cet	$55455.519 {\pm} 0.004$	-0.167	42202.	С
AH Cam	$55541.439 {\pm} 0.002$	-0.473	45595.	\mathbf{C}	RZ Cet	$55477.468 {\pm} 0.005$	-0.175	42245.	\mathbf{C}
TT Cnc	$55547.504{\pm}0.003$	0.096	27692.	\mathbf{C}	RZ Cet	$55485.641 {\pm} 0.004$	-0.171	42261.	LS
W CVn	$55230.651 {\pm} 0.002$	-0.138	61310.	\mathbf{C}	RZ Cet	$55486.660 {\pm} 0.004$	-0.174	42263.	LS
RU CVn	$55343.501{\pm}0.002$	0.225	36389.	С	RZ Cet	$55504.531{\pm}0.005$	-0.174	42298.	С
RZ CVn	$55269.442 {\pm} 0.002$	-0.155	26305.	С	RZ Cet	$55507.599 {\pm} 0.003$	-0.170	42304.	LS
UZ CVn	$55231.416 {\pm} 0.003$	0.255	41279.	С	RZ Cet	55524.444 ± 0.005	-0.175	42337.	С
AA CMi	$55242.651 {\pm} 0.002$	0.066	39188.	LS	RZ Cet	$55525.469 {\pm} 0.004$	-0.171	42339.	\mathbf{C}
AA CMi	$55504.631 {\pm} 0.002$	0.069	39738.	С	RZ Cet	55541.302 ± 0.005	-0.167	42370.	\mathbf{C}
AA CMi	$55506.538 {\pm} 0.002$	0.070	39742.	С	UU Cet	$55413.768 {\pm} 0.005$	-0.134	23438.	LS
AA CMi	55533.690 ± 0.002	0.072	39799.	\mathbf{C}	UU Cet	$55453.758 {\pm} 0.005$	-0.146	23504.	LS
AL CMi	55519.612 ± 0.002	0.470	34372.	\mathbf{C}	UU Cet	$55481.648 {\pm} 0.005$	-0.136	23550.	LS
RV Cap	$55423.753 {\pm} 0.003$	-0.026	48109.	LS	RT Col	$55535.647 {\pm} 0.003$	-0.280	51727.	LS
*									

Table 1 (cont.): maxima of RR Lyrae stars

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Variable	Maximum	O - C	E	Obs	Variable	Maximum	O - C	E	Obs
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	star	HID 24	(days)	Ц	0.00.	star	HID 24	(days)	Б	0.05.
$ \begin{array}{c} \mbox{w} Col $5244.583\pm 0.03 $0.107 $1839. LS $187 $W Dra $5404.54\pm 0.095 $0.222 $3185. C $W Col $5514.06\pm 0.05 $0.107 $51830. $LS $187 $W Dra $5404.54\pm 0.032 $0.101 $3040. C $W Col $5541.78\pm 0.005 $0.167 $5243. $LS $187 $W Dra $5225.46\pm 0.030 $0.061 $5040. C $W Col $5562.771\pm 0.005 $0.117 $2442. $LS $W Dra $5223.02\pm 0.003 $0.006 $50615. C $W Col $5552.78\pm 0.005 $0.003 $41970. $LS $W Dra $5223.166\pm 0.003 $0.0058 $50615. C $W Col $5552.64\pm 0.005 $0.003 $41970. $LS $W Dra $5223.166\pm 0.003 $0.0058 $50615. C $W Col $5552.64\pm 0.005 $0.001 $41481. $LS $W Dra $5223.02\pm 0.002 $0.011 $1008. C $W Col $5555.73\pm 0.002 $0.001 $4140. $LS $W Dra $5243.4314.0022 $0.014 $1008. C $W Col $5555.64\pm 0.002 $0.001 $41341. $LS $X Dra $544.431610.002 $0.113 $2832. C $W Col $5555.74\pm 0.002 $0.206 $41318. $LS $XZ Dra $5544.43100.002 $0.113 $2832. C C $W Col $5555.74\pm 0.002 $0.206 $41318. $LS $XZ Dra $5544.8100.006 $0.0031 $18233. C C C $W Col $5528.74\pm 0.002 $0.101 $24800. C $B CDra $5528.645\pm 0.006 $0.0031 $18232. C C C $W $5525.45\pm 0.002 $0.101 $24800. C $B CDra $5548.656\pm 0.006 $0.0031 $18322. C C C G $5525.45\pm 0.002 $0.002 $0.101 $24800. C $B CDra $5545.40160.006 $0.0031 $1832. C C C G $5525.45\pm 0.002 $0.002 $0.101 $2480. C $B CDra $5545.40160.006 $0.0071 $18322. C C C C D $5525.45\pm 0.002 $0.002 $0.101 $2480. C $B CDra $5545.40160.006 $0.0051 $18337. C S C C C D $5525.45\pm 0.002 $0.002 $0.002 $2020. $LS $UC C C D $5525.45\pm 0.005 $0.0091 $1833. C $W W CrA $5536.367\pm 0.001 $0.003 $1823. C C $W $5525.45\pm 0.002 $0.002 $2020 $LS $UC C $B CDra $5551.56\pm 0.006 $0.0051 $18337. C $W CrA $5363.56\pm 0.002 $0.002 $1837. C $B CDra $5551.45\pm 0.002 $0.005 $5883. C $B CDra $5551.45\pm 0.002 $0.005 $18337. C $W CrA $5363.56\pm 0.000 $0.0051 $1838. C $V CrA $5363.66\pm 0.000 $0.0051 $1838. C $V CrA $5363.66\pm 0.000 $0.0051 $1838. C $V CrA $5363.66\pm 0.000 $0.0051 $1838. C $V CrA $5363.66\pm 0.000 $0.0051 $1838. C $V CrA $5363.66\pm 0.002 0.0050	BT Col	55544 767+0 005	-0.282	51744	LS	VW Dor	55517585 ± 0.002	-0.139	30035	LS
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	RW Col	55243.583 ± 0.003	0.107	51839.		RW Dra	55404.545 ± 0.005	0.202	36185.	Č
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	RW Col	55519.667 ± 0.005	-0.069	52361.		RW Dra	55408.520 ± 0.002	0.191	36194.	č
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	RW Col	55544.768 ± 0.005	0.158	52408	LS	SW Dra	55225.405 ± 0.003	0.061	50908.	č
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	RW Col	55562.771 ± 0.005	0.167	52442	LS	SW Dra	55229.392 ± 0.003	0.060	50915.	Č
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	BX Col	$55216\ 707\pm0\ 003$	0.107	44448	LS	SW Dra	55231.669 ± 0.003	0.000	50919	Č
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	BX Col	55526.684 ± 0.005	0.003	44970.	LS	SW Dra	55282.372 ± 0.002	0.061	51008.	$\tilde{\mathbf{C}}$
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	BX Col	55533.798 ± 0.005	-0.011	44982	LS	XZ Dra	55404.528 ± 0.004	-0.134	28282	$\tilde{\mathbf{C}}$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	BX Col	55552789 ± 0.005	-0.030	45014	LS	XZ Dra	55414528 ± 0.002	-0.141	28303	č
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	RY Col	55525.641 ± 0.006	-0.209	44304	LS	XZ Dra	55424.537 ± 0.002	-0.138	28324	Č
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	RY Col	55546.714 ± 0.005	-0.206	44348.	LS	XZ Dra	55427.397 ± 0.002	-0.137	28330	$\tilde{\mathbf{C}}$
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	AV Col	55505.784 ± 0.002	0.200	110101		XZ Dra	55443.610 ± 0.002	-0.125	28364.	č
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	AV Col	55528.751 ± 0.002			LS	BC Dra	55224.426 ± 0.006	0.091	17991.	č
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	S Com	55199.641 ± 0.003	-0.103	24796	C	BC Dra	55398.565 ± 0.005	0.093	18233.	Č
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	S Com	55225.453 ± 0.003	-0.101	24840.	č	BC Dra	55455.406 ± 0.006	0.087	18312	Č
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	S Com	55235.426 ± 0.002	-0.100	24857	$\tilde{\mathbf{C}}$	BC Dra	55462.611 ± 0.010	0.097	18322	$\tilde{\mathbf{C}}$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	S Com	55548.665 ± 0.004	-0.100	25391	$\tilde{\mathbf{C}}$	BC Dra	55473.403 ± 0.004	0.095	18337.	$\tilde{\mathbf{C}}$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ST Com	55272523 ± 0.003	-0.032	20116	č	BC Dra	55488515 ± 0.005	0.096	18358	č
$ \begin{array}{c} \mbox{V13} \mbox{Crt} & 55365.800\pm0.003 & 0.052 & 23577. \ LS & BC \ Dra & 55511.550\pm0.005 & 0.099 & 18394. \ C \\ \mbox{W Crt} & 55301.644\pm0.003 & -0.023 & 38002. \ LS & BC \ Dra & 55514.4281.005 & 0.099 & 18394. \ C \\ \mbox{UY Cyg} & 55414.41\pm0.002 & 0.059 & 58820. \ C & BC \ Dra & 55514.458\pm0.005 & 0.099 & 18401. \ C \\ \mbox{UY Cyg} & 55429.581\pm0.002 & 0.059 & 58863. \ C & BC \ Dra & 55557.598\pm0.005 & 0.099 & 18454. \ C \\ \mbox{UY Cyg} & 55474.444\pm0.003 & 0.066 & 58827. \ C & BD \ Dra & 55521.441\pm0.002 & 0.668 & 22878. \ C \\ \mbox{UY Cyg} & 55496.304\pm0.003 & 0.059 & 58866. \ C & BD \ Dra & 55287.358\pm0.003 & 0.653 & 22939. \ C \\ \mbox{UY Cyg} & 55496.304\pm0.003 & 0.057 & 58864. \ C & BD \ Dra & 55414.595\pm0.002 & 0.656 & 23155. \ C \\ \mbox{ZZ Cyg}^2 & 55303.450\pm0.002 & 0.057 & 58864. \ C & BD \ Dra & 55424.590\pm0.005 & 0.636 & 23172. \ C \\ \mbox{ZZ Cyg}^2 & 55430.360\pm0.001 & -0.011 & 14644. \ C & BD \ Dra & 55403.47\pm0.004 & 0.630 & 23182. \ C \\ \mbox{ZZ Cyg}^2 & 55430.56\pm0.002 & -0.001 & 14700. \ C & BD \ Dra & 55403.487\pm0.004 & 0.628 & 23255. \ C \\ \mbox{ZZ Cyg}^2 & 55430.526\pm0.002 & -0.001 & 14700. \ C & BD \ Dra & 55403.487\pm0.004 & 0.662 & 23284. \ C \\ \mbox{ZZ Cyg}^2 & 55438.56\pm0.002 & -0.013 & 14701. \ C & BD \ Dra & 55519.438\pm0.002 & 0.660 & 23284. \ C \\ \mbox{ZZ Cyg}^2 & 55438.56\pm0.002 & -0.013 & 14702. \ C & BD \ Dra & 55519.438\pm0.003 & 0.647 & 23331. \ C \\ \mbox{ZZ Cyg}^2 & 55438.56\pm0.002 & -0.013 & 14702. \ C & BD \ Dra & 55519.438\pm0.003 & 0.647 & 23331. \ C \\ \mbox{Z Cyg}^2 & 55438.56\pm0.002 & -0.013 & 14762. \ C & BD \ Dra & 55518.45\pm0.002 & -0.661 & 23284. \ C \\ \mbox{ZZ Cyg}^2 & 55438.56\pm0.002 & -0.013 & 14762. \ C & BD \ Dra & 55518.45\pm0.003 & 0.647 & 23331. \ C \\ \mbox{DM Cyg} & 55436.62\pm0.002 & 0.067 & 30620. \ C & BD \ Dra & 55518.45\pm0.003 & 0.644 & 23372. \ C \\ \mbox{Y39 Cyg}^3 & 55438.56\pm0.002 & -0.013 & 14762. \ C & BD \ Dra & 55548.528\pm0.004 & -0.016 & 50475. \ C \\ \mbox{Y39 Cyg}^3 & 55436.56\pm0.002 & 0.066 & 30388. \ C & BD \ Dra & 55548.528\pm0.000 & -0.168 & 50487. \ C \\ Y39 Cyg$	WW CrA	55367567 ± 0.002	-0.020	43041	ĽS	BC Dra	55506500 ± 0.004	0.000	18383	č
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	V413 CrA	$55365\ 800\pm0\ 003$	0.020 0.052	23527	LS	BC Dra	55511550 ± 0.005	0.001	18390	č
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	W Crt	55301.644 ± 0.003	-0.023	38002	LS	BC Dra	55514423 ± 0.005	0.101	18394	C
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	UY Cyg	$55414\ 441\pm0\ 002$	0.020	58820	C	BC Dra	55519456 ± 0.006	0.005	18401	C
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	UY Cyg	55429581 ± 0.003	0.060	58847	C	BC Dra	55532404 ± 0.006	0.090	18419	C
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	UY Cyg	55438551 ± 0.002	0.000	58863	č	BC Dra	55557598 ± 0.005	0.001	18454	č
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	UY Cyg	$55474\ 444\pm0\ 003$	0.000	58927	C	BD Dra	55251441 ± 0002	0.668	22878	C
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	UY Cyg	$55496 304 \pm 0.003$	0.000	58966	C	BD Dra	55287.358 ± 0.003	0.653	22010.	C
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	UY Cyg	55497425 ± 0.002	0.059	58968	Č	BD Dra	55404548 ± 0.005	0.600	23138	C
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	UY Cyg	55506395 ± 0.002	0.000	58984	C	BD Dra	55414595 ± 0.002	0.655	20100. 23155	C
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$XZ Cyg^2$	55374533 ± 0.001	0.001	14582	C	BD Dra	55424590 ± 0.002	0.636	23172	C
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$XZ Cyg^2$	55403460 ± 0.001	-0.001	14644	C	BD Dra	55430474 ± 0.004	0.000	20112.	C
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$XZ Cyg^2$	55429590 ± 0.001	-0.001	14700	C	BD Dra	55463487 ± 0.002	0.656	23238	C
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	XZ Cyg	55430526 ± 0.001	0.001	14700. 14702	C	BD Dra	$55473 473 \pm 0.002$	0.000	23255	C
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$XZ Cyg^2$	55431452 ± 0.002	-0.002	14702	C	BD Dra	55490588 ± 0.002	0.660	23284	C
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$XZ Cyg^2$	55443585 ± 0.002	-0.003	14730	C	BD Dra	55506475 ± 0.004	0.000 0.643	23204.	C
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$XZ Cyg^2$	55458508 ± 0.002	-0.000	14762	C	BD Dra	55513554 ± 0.002	0.653	23323	C
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	DM Cyg	55438586 ± 0.002	0.011	30620	C	BD Dra	55519438 ± 0.002	0.000 0.647	20020.	C
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	DM Cyg	55451.604 ± 0.002	0.001	30651	C	BD Dra	55523526 ± 0.005	0.611	23340	C
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	DM Cyg	55471342 ± 0.003	0.003 0.074	30698	C	BD Dra	55532394 ± 0.003	0.011 0.644	23355	C
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	DM Cyg	55510.384 ± 0.002	0.069	30791	C	BD Dra	55542408 ± 0.002	0.011 0.644	23372	C
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	V939 Cy σ^3	55374543 ± 0.002	0.061	14414	Č	BD Dra	55557709 ± 0.002	0.629	23398	C
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$V939 \text{ Cyg}^3$	55429594 ± 0.004	0.001	14556	C	BK Dra	55402538 ± 0.002	-0.160	50465	C
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	V939 Cyg 3	55443542 ± 0.001	0.002	14500.	C	BK Dra	55408459 ± 0.001	-0.160	50405.	C
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	DX Del	55398561 ± 0.002	0.015	33920	C	BK Dra	55415560 ± 0.002	-0.163	50487	C
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	DX Del	55416520 ± 0.003	0.002	33058	C	BK Dra	55418.500 ± 0.002 55418.522 ± 0.002	-0.162	50407.	C
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	DX Del	55442513 ± 0.002	0.001	34013	C	BK Dra	55431549 ± 0.002	-0.162	50452. 50514	C
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	DX Del	$55453 388\pm0.002$	0.000	34013.	C	BK Dra	$55444 578 \pm 0.003$	-0.101 -0.158	50536	C
DAT Der 55494.75350 ± 0.004 -0.059 $54031.$ C RX Eri 55406.720 ± 0.003 -0.010 $57541.$ LSRT Dor 55525.655 ± 0.006 -0.050 $51277.$ LSRX Eri 55506.694 ± 0.003 -0.010 $57581.$ LSRT Dor 55527.578 ± 0.005 -0.058 $51277.$ LSRX Eri 55526.659 ± 0.004 -0.011 $57615.$ LSRT Dor 55527.578 ± 0.005 -0.058 $51281.$ LSRX Eri 55540.753 ± 0.004 -0.011 $57639.$ LSVW Dor 55198.624 ± 0.002 -0.129 $29476.$ LSSV Eri 55480.720 ± 0.007 0.843 $27918.$ LSVW Dor 55199.765 ± 0.003 -0.130 $29478.$ LSSV Eri 55485.726 ± 0.005 0.853 $27925.$ LSVW Dor 55490.767 ± 0.003 -0.136 $29995.$ LSBB Eri 55544.622 ± 0.005 0.262 $28049.$ LSVW Dor 55502.752 ± 0.003 -0.136 $30009.$ LSBK Eri 55535.553 ± 0.006 -0.022 $32152.$ LSVW Dor 55505.597 ± 0.002 -0.145 $30014.$ LSRX For 55497.691 ± 0.004 -0.048 $26228.$ LS	DX Del	55479380 ± 0.002 55479380 ± 0.004	0.000	34000.	C	BX Eri	55486728 ± 0.005	_0.100	57547	LS
RT Dor 55525.655 ± 0.006 -0.050 $51215.$ LSRX Eri 55500.05 ± 0.004 -0.011 $57615.$ LSRT Dor 55527.578 ± 0.005 -0.058 $51281.$ LSRX Eri 55526.659 ± 0.004 -0.011 $57615.$ LSVW Dor 55198.624 ± 0.002 -0.129 $29476.$ LSRX Eri 55540.753 ± 0.004 -0.011 $57639.$ LSVW Dor 55199.765 ± 0.003 -0.130 $29478.$ LSSV Eri 55485.726 ± 0.005 0.853 $27925.$ LSVW Dor 55490.767 ± 0.003 -0.139 $29988.$ LSSV Eri 55500.715 ± 0.006 0.852 $27946.$ LSVW Dor 55494.764 ± 0.003 -0.136 $29995.$ LSBB Eri 55544.622 ± 0.005 0.262 $28049.$ LSVW Dor 55502.752 ± 0.003 -0.136 $30009.$ LSBK Eri 55535.553 ± 0.006 -0.022 $32152.$ LSVW Dor 55505.597 ± 0.002 -0.145 $30014.$ LSRX For 55497.691 ± 0.004 -0.048 $26228.$ LS	BT Dor	55494744 ± 0.004	-0.059	51913	LS	BX Eri	55506694 ± 0.003	-0.000	57581	
RT Dor 55527.578 ± 0.005 -0.058 51211 LSRX Eri 55520.055 ± 0.004 -0.011 57639 LSVW Dor 55198.624 ± 0.002 -0.129 29476 LSRX Eri 55540.753 ± 0.004 -0.011 57639 LSVW Dor 55199.765 ± 0.003 -0.130 29476 LSSV Eri 55480.720 ± 0.007 0.843 27918 LSVW Dor 55199.765 ± 0.003 -0.130 29478 LSSV Eri 55485.726 ± 0.005 0.853 27925 LSVW Dor 55490.767 ± 0.003 -0.139 29988 LSSV Eri 55500.715 ± 0.006 0.852 27946 LSVW Dor 55494.764 ± 0.003 -0.136 29995 LSBB Eri 55544.622 ± 0.005 0.262 28049 LSVW Dor 55502.752 ± 0.003 -0.136 30009 LSBK Eri 55535.553 ± 0.006 -0.022 32152 LSVW Dor 55505.597 ± 0.002 -0.145 30014 LSRX For 55497.691 ± 0.004 -0.048 26228 LS	BT Dor	55525.655 ± 0.006	-0.050	51210. 51977		BX Eri	55526.659 ± 0.004	-0.010	57615	
NY Dor 55521.510 ± 0.003 -0.129 $29476.$ LS NX Eri 55540.735 ± 0.004 -0.011 $5703.$ LS VW Dor 55198.624 ± 0.002 -0.129 $29476.$ LSSV Eri 55480.720 ± 0.007 0.843 $27918.$ LSVW Dor 55199.765 ± 0.003 -0.130 $29478.$ LSSV Eri 55485.726 ± 0.005 0.853 $27925.$ LSVW Dor 55490.767 ± 0.003 -0.139 $29988.$ LSSV Eri 55500.715 ± 0.006 0.852 $27946.$ LSVW Dor 55494.764 ± 0.003 -0.136 $29995.$ LSBB Eri 55544.622 ± 0.005 0.262 $28049.$ LSVW Dor 55502.752 ± 0.003 -0.136 $30009.$ LSBK Eri 55535.553 ± 0.006 -0.022 $32152.$ LSVW Dor 55505.597 ± 0.002 -0.145 $30014.$ LSRX For 55497.691 ± 0.004 -0.048 $26228.$ LS	RT Dor	55527578 ± 0.005	-0.058	51277.		BX Eri	55520.059 ± 0.004 55540.753 ± 0.004	-0.011	57630	
VW Dor 55199.765 ± 0.003 -0.130 $29478.$ LS SV Eri 55480.726 ± 0.005 0.843 $27918.$ LSVW Dor 55199.765 ± 0.003 -0.130 $29478.$ LS SV Eri 55485.726 ± 0.005 0.853 $27925.$ LSVW Dor 55490.767 ± 0.003 -0.139 $29988.$ LS SV Eri 55500.715 ± 0.006 0.852 $27946.$ LSVW Dor 55494.764 ± 0.003 -0.136 $29995.$ LSBB Eri 55544.622 ± 0.005 0.262 $28049.$ LSVW Dor 55502.752 ± 0.003 -0.136 $30009.$ LSBK Eri 55535.553 ± 0.006 -0.022 $32152.$ LSVW Dor 55505.597 ± 0.002 -0.145 $30014.$ LSRX For 55497.691 ± 0.004 -0.048 $26228.$ LS	VW Dor	55198 624+0 002	_0 120	29476		SV Eri	55480.720 ± 0.004	0.011	27018	
VW Dor 55490.767 ± 0.003 -0.139 $29988.$ LS SV Eri 55400.715 ± 0.006 0.853 $27920.$ LS VW Dor 55494.764 ± 0.003 -0.136 $29995.$ LS BB Eri 55500.715 ± 0.006 0.852 $27946.$ LS VW Dor 55502.752 ± 0.003 -0.136 $29995.$ LS BB Eri 55535.553 ± 0.006 -0.222 $28049.$ LS VW Dor 55505.597 ± 0.002 -0.145 $30014.$ LS RX For 55497.691 ± 0.004 -0.048 $26228.$ LS	VW Dor	55190.024 ± 0.002 55199 765 ±0.002	-0.129	20478	LS	SV Eri	55485796 ± 0.007	0.040	27025	
VW Dor 55494.764 ± 0.003 -0.136 $29995.$ LS BB Eri 55500.715 ± 0.006 0.832 $27940.$ LS VW Dor 55502.752 ± 0.003 -0.136 $29995.$ LS BB Eri 55544.622 ± 0.005 0.262 $28049.$ LSVW Dor 55502.752 ± 0.003 -0.136 $30009.$ LS BK Eri 55535.553 ± 0.006 -0.022 $32152.$ LSVW Dor 55505.597 ± 0.002 -0.145 $30014.$ LS RX For 55497.691 ± 0.004 -0.048 $26228.$ LS	VW Dor	55400 767±0.003	-0.130	20410.	LS	SV Eri	55500 715±0.005	0.000	27946	
VW Dor 55502.752 ± 0.003 -0.136 $2999.$ LSBB Ent 53544.022 ± 0.003 0.202 $28049.$ LSVW Dor 55502.752 ± 0.003 -0.136 $30009.$ LSBK Eri 55535.553 ± 0.006 -0.022 $32152.$ LSVW Dor 55505.597 ± 0.002 -0.145 $30014.$ LSRX For 55497.691 ± 0.004 -0.048 $26228.$ LS	VW Dor	55494 764±0 009	-0.139	29900. 20005		BR Eri	55544 622±0.000	0.002	⊿1940. 28040	
VW Dor 55505.597 ± 0.002 -0.145 30014 LS DK En 55353.535 ± 0.000 -0.022 52132 LS VW Dor 55505.597 ± 0.002 -0.145 30014 LS RX For 55497.691 ± 0.004 -0.048 26228 LS	VW Dor	55502 752±0 002	-0.130	<i>∡୭୭୭</i> ୭୦. ᲕᲘᲘ∩Ი	LC	BK Fri	55535 553±0.000	0.202	20049. 20159	LS
$ = 0.143 50014. \text{ID} 1147 101 50431.031\pm0.004 -0.040 20220. \text{ID} 101$	VW Dor	55505 507±0.003	-0.130 -0.145	30009.		BX For	55/07 601 ±0.000	-0.022 -0.048	92192. 96998	
	,,, D01	00000001±0.002	0.140	55014.	10	101 101	00101.00120.004	0.040	20220.	10

Variable	Maximum	O - C	\mathbf{E}	Obs.	Variable	Maximum	O - C	E	Obs.
star	HJD 24	(days)			star	HJD 24	(days)		
RX For	55503.670 ± 0.002	-0.042	26238.	LS	RR Leo	55524.606 ± 0.002	0.108	27032.	С
SS For	$55430.761 {\pm} 0.002$	-0.141	33833.	LS	RR Leo	$55533.654 {\pm} 0.001$	0.108	27052.	С
SW For	55517.759 ± 0.006	0.442	26344.	LS	ST Leo	55216.481 ± 0.003	-0.019	57101.	Ċ
SX For	55446759 ± 0.005	0.047	26908	LS	ST Leo	$55261 411 \pm 0.002$	-0.019	57195	Č
SX For	55500.637 ± 0.003	0.011	26007	LS	ST Loo	55548670 ± 0.002	-0.020	57706	Ċ
SX For	55542621 ± 0.005	0.055	20331.		TVLoo	55946.079 ± 0.002	-0.020	97190. 97199	TC
DD Com	55545.021 ± 0.005	0.000	21008.	LD C	IV Leo	55294.049 ± 0.003	0.114	21120. 65644	C
DD Com	55226.461 ± 0.002	-0.420	54914. 25 coo	C	V LIVII	55255.572 ± 0.002	0.052	00044.	C
RR Gem	55504.598 ± 0.002	-0.440	35609.	C	V LMI	55517.007 ± 0.002	0.033	00103.	C
RR Gem	55533.597 ± 0.002	-0.445	35682.	C	V LMi	55523.650 ± 0.002	0.033	66174.	C
RR Gem	55541.544 ± 0.001	-0.444	35702.	C	V LMi	55534.531 ± 0.002	0.036	66194.	C
SZ Gem	55203.488 ± 0.002	-0.060	55892.	С	V LMi	55535.612 ± 0.003	0.029	66196.	С
SZ Gem	55495.648 ± 0.003	-0.063	56475.	С	V LMi	55542.687 ± 0.001	0.032	66209.	С
GI Gem	55220.468 ± 0.002	0.069	57410.	\mathbf{C}	U Lep	55506.687 ± 0.002	0.047	24342.	LS
GI Gem	$55233.465 {\pm} 0.001$	0.068	57440.	\mathbf{C}	U Lep	$55531.686 {\pm} 0.003$	0.043	24385.	LS
$GI \ Gem$	$55545.416{\pm}0.002$	0.068	58160.	\mathbf{C}	U Lep	$55556.696 {\pm} 0.005$	0.049	24428.	LS
RW Gru	$55411.665 {\pm} 0.002$	-0.129	38254.	LS	AO Lep	$55529.728 {\pm} 0.005$			LS
RW Gru	$55449.623 {\pm} 0.005$	-0.142	38323.	LS	AO Lep	$55533.645 {\pm} 0.005$			LS
TW Her	$55398.544 {\pm} 0.004$	-0.012	84718.	С	TV Lib	55376.602 ± 0.002	-0.004	131143.	LS
TW Her	55404.536 ± 0.004	-0.014	84733.	С	VY Lib	55377.604 ± 0.002	-0.037	26657.	LS
TW Her	55420.521 ± 0.003	-0.013	84773.	Ċ	AZ Lib	55292.847 ± 0.004	0.188	41924.	LS
VZ Her	55429368 ± 0.002	0.069	42333	Č	AZ Lib	55390551 ± 0005	0.185	42074	
VZ Her	55432451 ± 0.002	0.070	42340	Č	TT Lyn	55519.488 ± 0.003	-0.040	31582	C
AB Hor	55202545 ± 0.002	-1.307	20444	C	TWLyn	55488518 ± 0.003	0.040	21720	C
AR Hor	55403.473 ± 0.001	-1.007 1 305	29444.	C	TW Lyn	$55517 430 \pm 0.003$	0.001	21720. 21780	C
DI Her	552403.473 ± 0.004	-1.505	29080.	C	TW Lyn	55517.430 ± 0.002 55541 521 ±0.004	0.001	21700.	C
VE02 Her	55346.527 ± 0.005	0.040	20971. 21266	C	TW Lyn	55541.521 ± 0.004	0.059	21000.	C
V 595 Her	55577.502 ± 0.005	-0.121	51500. 47000			55540.550 ± 0.005	0.050	21040.	C
UU Hor	55490.701 ± 0.003	0.169	47800.		RZ Lyr	55399.525 ± 0.003	-0.016	27807.	C
UU Hor	55497.785 ± 0.002	0.172	47811.		RZ Lyr	55417.405 ± 0.002	-0.029	27842.	C
SZ Hya	55224.453 ± 0.002	-0.201	27074.	C	RZ Lyr	55462.405 ± 0.002	-0.018	27930.	C
SZ Hya	55248.624 ± 0.003	-0.206	27119.	LS	RZ Lyr	55463.427 ± 0.002	-0.019	27932.	C
SZ Hya	55291.591 ± 0.003	-0.218	27199.	LS	AW Lyr	55462.461 ± 0.002	-0.037	60571.	С
SZ Hya	55545.705 ± 0.001	-0.219	27672.	С	AW Lyr	55474.400 ± 0.002	-0.037	60595.	С
UU Hya	55233.775 ± 0.003	0.023	30074.	LS	CN Lyr	55418.428 ± 0.003	0.020	26574.	С
UV Hya	54813.557 ± 0.004	-0.013	28408.	\mathbf{C}	CN Lyr	55427.479 ± 0.003	0.021	26596.	\mathbf{C}
WZ Hya	55243.671 ± 0.002	-0.011	29042.	LS	CN Lyr	55432.414 ± 0.004	0.019	26608.	\mathbf{C}
WZ Hya	$55249.591{\pm}0.004$	-0.006	29053.	LS	CN Lyr	$55441.461 {\pm} 0.005$	0.016	26630.	\mathbf{C}
XX Hya	$55294.581{\pm}0.003$	0.044	30452.	LS	CN Lyr	$55462.444 {\pm} 0.003$	0.019	26681.	\mathbf{C}
BI Hya	$55239.720{\pm}0.002$	0.237	51928.	LS	CN Lyr	$55474.374{\pm}0.004$	0.018	26710.	\mathbf{C}
BI Hya	$55327.639 {\pm} 0.002$	0.237	52095.	LS	CR Lyr	$55418.456 {\pm} 0.003$	-0.032	52002.	\mathbf{C}
DG Hya	$55237.677 {\pm} 0.005$	-0.047	42378.	LS	IK Lyr	$55405.498 {\pm} 0.005$	-0.134	63134.	\mathbf{C}
DH Hya	$55249.698 {\pm} 0.003$	0.073	49230.	LS	IO Lyr	$55405.511 {\pm} 0.002$	-0.037	27354.	\mathbf{C}
ET Hva	55215.467 ± 0.002	0.149	28145.	С	IO Lyr	$55423.403 {\pm} 0.002$	-0.036	27385.	С
ET Hva	55245.630 ± 0.003	0.149	28189.	\mathbf{LS}	IO Lyr	55449.372 ± 0.002	-0.037	27430.	Ċ
ET Hva	55247.689 ± 0.004	0.151	28192	LS	MM Lvr	54688.397 ± 0.008	-0.034	52340	Ċ
ET Hya	$55248 373 \pm 0.003$	0.150	28193	C	MM Lyr	$54711 366\pm0.010$	0.001	52387	Č
ET Hya	55533553 ± 0.002	0.150	28600	C	MM Lyr	55395382 ± 0.016	-0.107	53802	C
ET Hya	55548634 ± 0.002	0.154	28631	C	Z Mic	55436575 ± 0.005	-0.107	00002. 03570	LS
ET Hya EV Hyo	55200566 ± 0.002	0.104	20031. 50479	LC LC	Z Mie	55430.575 ± 0.005	-0.110	20079.	
FA IIya FX II	55509.500 ± 0.002	-0.022	50476. FOCOF	LO		55445.005 ± 0.005	-0.131	20091.	LO
гл нуа СО И	00002.071 ± 0.002	-0.021	20005. 40457	цэ С		00403.080 ± 0.005	-0.128	23008.	LD
GO Hya	55210.391 ± 0.004	-0.070	40457.	C	EM Mus	55242.814 ± 0.002	-0.176	35/52.	
GO Hya	55513.593 ± 0.005	-0.084	46924.	C	EM Mus	55281.597 ± 0.002	-0.179	35835.	
GO Hya	55543.522 ± 0.005	-0.067	46971.	C	Y Oct	55292.882 ± 0.004	-0.282	41623.	LS
TW Hyi	55541.579 ± 0.004	0.003	23803.	LS	Y Oct	55313.579 ± 0.004	-0.277	41655.	LS
V Ind	55439.774 ± 0.003	0.367	31946.	LS	RV Oct	55231.826 ± 0.003	0.134	70234.	LS
RR Leo	55297.499 ± 0.002	0.103	26530.	\mathbf{C}	RV Oct	55402.604 ± 0.002	0.134	70533.	LS
RR Leo	$55519.627 {\pm} 0.002$	0.106	27021.	С	RY Oct	$55346.771 {\pm} 0.006$	0.081	48555.	LS

Table 1 (cont.): maxima of RR Lyrae stars

V	M	0 0	F	Ohr	X7	M	0 0	F	Oha
Variable	Maximum	O - C	E	Obs.	Variable	Maximum	O - C	E	Obs.
star	HJD 24	(days)	10010	T 0	star	HJD 24	(days)		~
RY Oct	55399.734 ± 0.003	0.078	48649.		BH Peg	55426.515 ± 0.003	-0.127	25057.	C
RY Oct	55411.558 ± 0.003	0.069	48670.	LS	BH Peg	55449.588 ± 0.003	-0.129	25093.	С
RY Oct	55435.776 ± 0.002	0.058	48713.	LS	BH Peg	55469.466 ± 0.006	-0.122	25124.	С
RY Oct	55436.903 ± 0.002	0.058	48715.	LS	BH Peg	$55471.386 {\pm} 0.003$	-0.125	25127.	\mathbf{C}
RY Oct	$55457.749 {\pm} 0.004$	0.055	48752.	LS	BH Peg	$55496.390 {\pm} 0.005$	-0.120	25166.	\mathbf{C}
RY Oct	$55479.721 {\pm} 0.005$	0.052	48791.	LS	BH Peg	$55498.315 {\pm} 0.005$	-0.118	25169.	\mathbf{C}
RY Oct	$55501.709 {\pm} 0.006$	0.065	48830.	LS	BH Peg	$55507.291{\pm}0.005$	-0.116	25183.	\mathbf{C}
RY Oct	$55531.571 {\pm} 0.005$	0.063	48883.	LS	BH Peg	$55523.331 {\pm} 0.006$	-0.101	25208.	\mathbf{C}
SS Oct	$55486.604 {\pm} 0.004$	-0.013	44170.	LS	BT Peg	$55401.367 {\pm} 0.003$	0.097	34025.	С
SS Oct	$55494.688 {\pm} 0.004$	-0.013	44183.	LS	BT Peg	$55427.529 {\pm} 0.004$	0.091	34072.	С
SS Oct	$55509.607 {\pm} 0.003$	-0.018	44207.	LS	BT Peg	$55519.396 {\pm} 0.003$	0.090	34237.	С
UV Oct	55312.592 ± 0.002	-0.198	38672.	LS	CG Peg	$55418.548 {\pm} 0.003$	-0.051	34928.	С
UV Oct	55426.541 ± 0.002	-0.200	38882.	\mathbf{LS}	CG Peg	55439.565 ± 0.002	-0.055	34973.	С
UV Oct	55427.629 ± 0.002	-0.198	38884.	LS	CG Peg	55441.437 ± 0.002	-0.052	34977.	Č
UV Oct	55428713 ± 0.003	-0.199	38886	LS	CG Peg	55453579 ± 0002	-0.055	35003	č
UV Oct	55446610 ± 0.002	-0.208	38919	LS	CG Peg	55469463 ± 0.002	-0.054	35037	C
UW Oct	$55/30.659\pm0.003$	-0.023	47455		CG Peg	55505.100 ± 0.002 55505.434 ± 0.002	-0.053	35114	C
UW Oct	55437.705 ± 0.002	0.025	47471	IS	CC Pog	55505.494 ± 0.002 55527.388 ± 0.002	0.053	35161	C
UW Oct	55457.795 ± 0.002	0.001	4/4/1.	LO	DZ Dam	55527.566 ± 0.002	-0.054	00101. 95449	C
UW Oct	55455.552 ± 0.005	-0.021	47511.	LS	DZ Peg	55417.571 ± 0.002	0.100	33443. 25470	C
UW Oct	55458.075 ± 0.004	-0.010	47518.		DZ Peg	55439.429 ± 0.003	0.100	35479.	C
UW Oct	55490.677 ± 0.003	-0.011	47590.		DZ Peg	55451.578 ± 0.002	0.162	35499.	C
UW Oct	55502.679 ± 0.005	-0.010	47617.		DZ Peg	55468.583 ± 0.002	0.161	35527.	C
UW Oct	55511.563 ± 0.004	-0.016	47637.	LS	DZ Peg	55473.447 ± 0.004	0.166	35535.	С
AR Oct	55536.659 ± 0.002	0.076	47498.	LS	DZ Peg	55496.517 ± 0.002	0.157	35573.	С
DY Oct	55533.686 ± 0.003			LS	DZ Peg	55498.346 ± 0.003	0.164	35576.	С
DY Oct	55542.619 ± 0.003			LS	DZ Peg	55504.419 ± 0.003	0.164	35586.	С
DZ Oct	$55548.599 {\pm} 0.005$			LS	DZ Peg	$55535.397 {\pm} 0.005$	0.167	35637.	\mathbf{C}
V445 Oph	$55391.552 {\pm} 0.005$	0.039	70142.	LS	AR Per	$55198.520 {\pm} 0.002$	0.059	65707.	\mathbf{C}
V445 Oph	$55404.649 {\pm} 0.005$	0.034	70175.	LS	AR Per	$55199.370 {\pm} 0.002$	0.058	65709.	\mathbf{C}
V455 Oph	$55381.418 {\pm} 0.003$	-0.295	29848.	\mathbf{C}	AR Per	$55233.412 {\pm} 0.002$	0.056	65789.	\mathbf{C}
CM Ori	$55541.698 {\pm} 0.005$	-0.007	46108.	LS	AR Per	$55432.573 {\pm} 0.003$	0.060	66257.	\mathbf{C}
CM Ori	$55543.658 {\pm} 0.005$	-0.015	46111.	LS	AR Per	$55449.594{\pm}0.002$	0.059	66297.	\mathbf{C}
V964 Ori	$55505.693 {\pm} 0.002$	-0.431	47569.	LS	AR Per	$55464.489 {\pm} 0.002$	0.060	66332.	С
WY Pav	$55438.649 {\pm} 0.005$	0.067	48541.	LS	AR Per	$55483.639 {\pm} 0.002$	0.060	66377.	С
BN Pav	$55416.621 {\pm} 0.002$	-0.134	47746.	LS	AR Per	$55489.596 {\pm} 0.002$	0.060	66391.	С
BP Pav	$55416.774 {\pm} 0.002$	0.021	50395.	LS	AR Per	$55490.447 {\pm} 0.002$	0.060	66393.	С
BP Pav	55423.627 ± 0.002	-0.112	50408.	LS	AR Per	55506.617 ± 0.002	0.059	66431.	Ċ
BP Pav	55490.575 ± 0.003	0.198	50532	LS	AR Per	55509.598 ± 0.002	0.061	66438.	Č
DN Pay	55353.896 ± 0.003	0.110	30250	LS	AR Per	55510.449 ± 0.002	0.061	66440.	Č
DN Pay	$55436\ 805\pm0\ 002$	0.105	30427	LS	AR Per	$55511 \ 301\pm0 \ 004$	0.062	66442	Č
DN Pay	55438683 ± 0.003	0.100	30431	LS	AB Per	55533427 ± 0.001	0.059	66494	C
DN Pay	55439.617 ± 0.003	0.105	30/131		AR Per	$55535, 127 \pm 0.001$ $55535, 556 \pm 0.002$	0.000	66499	C
DN Pay	$55444\ 773\pm0\ 002$	0.100	30443		AR Por	55540.662 ± 0.002	0.000	66511	C
DN I av	55462581 ± 0.002	0.103	20499		II Die	55492721 ± 0.002	0.000	91974	TC
DN Fav	55402.561 ± 0.002	0.117	30402. 20561	LO		55462.721 ± 0.003	0.072	01074. 91900	LO
DN Pav	55499.579 ± 0.002	0.108	30301. 2057C	LS	U Pic	55469.702 ± 0.005	0.007	31390. 21451	LS
DN Pav	55500.008 ± 0.002	0.110	30370.		U Pic	55510.020 ± 0.004	0.069	31451. 91450	
VV Peg	55427.598 ± 0.001	-0.020	32839.	C	U Pic	55519.711 ± 0.002	0.071	31458.	
VV Peg	55451.529 ± 0.001	-0.020	32888.	C	RY Psc	55446.704 ± 0.005	0.591	24098.	
VV Peg	55471.553 ± 0.002	-0.020	32929.	C	RY Psc	55455.708 ± 0.005	0.590	24115.	$_{\rm LS}$
VV Peg	55495.483 ± 0.004	-0.021	32978.	C	XX Pup	55210.629 ± 0.002	0.494	25981.	LS
VV Peg	55496.458 ± 0.003	-0.023	32980.	С	XX Pup	55560.774 ± 0.003	0.508	26658.	LS
AV Peg	55439.617 ± 0.002	0.130	29841.	С	BB Pup	55560.749 ± 0.003	0.131	34856.	LS
AV Peg	$55440.399 {\pm} 0.002$	0.131	29843.	С	HH Pup	$55240.611 {\pm} 0.003$	0.010	42842.	LS
AV Peg	$55441.569 {\pm} 0.002$	0.130	29846.	\mathbf{C}	HH Pup	$55522.729 {\pm} 0.003$	0.009	43564.	LS
AV Peg	$55450.548{\pm}0.002$	0.130	29869.	\mathbf{C}	HH Pup	$55531.718{\pm}0.003$	0.011	43587.	LS
AV Peg	$55495.444{\pm}0.002$	0.133	29984.	\mathbf{C}	HH Pup	$55547.737 {\pm} 0.003$	0.010	43628.	LS

Variable	Maximum	O - C	Е	Obs.	Variable	Maximum	O - C	Ε	Obs.
star	HJD 24	(days)			star	HJD 24	(days)		
HH Pup	$55556.724 {\pm} 0.005$	0.010	43651.	LS	YY Tuc	$55447.802 {\pm} 0.003$	0.052	21343.	LS
HH Pup	$55560.635 {\pm} 0.003$	0.013	43661.	LS	YY Tuc	$55449.702 {\pm} 0.003$	0.047	21346.	LS
$V440 \ Sgr$	$55425.672 {\pm} 0.003$	0.106	29145.	LS	YY Tuc	$55496.690 {\pm} 0.003$	0.043	21420.	LS
$V440 \ Sgr$	$55435.705 {\pm} 0.004$	0.112	29166.	LS	AE Tuc	$55203.639 {\pm} 0.002$	0.103	50512.	LS
$V675 \ Sgr$	$55353.835 {\pm} 0.005$	0.075	41985.	LS	AE Tuc	$55432.874 {\pm} 0.002$	0.195	51065.	LS
$V1130 \ Sgr$	$55410.547 {\pm} 0.002$	0.042	49379.	LS	AE Tuc	$55437.849 {\pm} 0.002$	0.198	51077.	LS
$V1130 \ Sgr$	$55436.679 {\pm} 0.002$	0.043	49425.	LS	AE Tuc	$55462.724{\pm}0.003$	-0.203	51138.	LS
$V1130 \ Sgr$	$55448.606 {\pm} 0.002$	0.041	49446.	LS	AE Tuc	$55484.689{\pm}0.002$	-0.199	51191.	LS
V1646 Sgr	$55342.782{\pm}0.003$	0.169	38605.	LS	AE Tuc	$55489.663 {\pm} 0.003$	-0.198	51203.	LS
V1646 Sgr	$55392.871 {\pm} 0.002$	0.169	38697.	LS	AE Tuc	$55525.730{\pm}0.002$	-0.180	51290.	LS
V1646 Sgr	$55438.601{\pm}0.002$	0.166	38781.	LS	AG Tuc	$55559.629{\pm}0.003$	0.057	26166.	LS
V1646 Sgr	$55439.695{\pm}0.002$	0.171	38783.	LS	TU UMa	$55240.483 {\pm} 0.003$	-0.033	22252.	\mathbf{C}
V1646 Sgr	$55444.593 {\pm} 0.004$	0.169	38792.	LS	TU UMa	$55545.511{\pm}0.003$	-0.044	22799.	\mathbf{C}
V494 Sco	$55416.555{\pm}0.002$	-0.262	33441.	LS	TU UMa	$55546.626 {\pm} 0.003$	-0.045	22801.	\mathbf{C}
V494 Sco	$55436.641 {\pm} 0.002$	-0.261	33488.	LS	AB UMa	$55319.485 {\pm} 0.007$	0.114	31842.	\mathbf{C}
RU Scl	$55494.703 {\pm} 0.002$	0.435	49401.	LS	AB UMa	$55557.532{\pm}0.007$	0.129	32239.	С
RU Scl	$55503.587 {\pm} 0.005$	0.439	49419.	LS	EX UMa	$55203.467 {\pm} 0.004$	0.026	11404.	С
UZ Scl	$55505.662 {\pm} 0.002$	0.034	36501.	LS	EX UMa	$55228.440 {\pm} 0.003$	0.029	11450.	С
VW Scl	$55424.822 {\pm} 0.003$	-0.009	54051.	LS	EX UMa	$55297.378 {\pm} 0.005$	0.027	11577.	С
VW Scl	$55483.573 {\pm} 0.002$	-0.014	54166.	LS	EX UMa	$55513.435 {\pm} 0.005$	0.037	11975.	С
VW Scl	$55485.616{\pm}0.002$	-0.014	54170.	LS	EX UMa	$55534.601 {\pm} 0.004$	0.033	12014.	С
VX Scl	$55428.831 {\pm} 0.005$	-1.649	21678.	LS	EX UMa	$55540.567 {\pm} 0.004$	0.027	12025.	С
VX Scl	$55444.755 {\pm} 0.005$	-1.659	21703.	LS	EX UMa	$55541.661 {\pm} 0.004$	0.036	12027.	С
AE Scl	$55447.715 {\pm} 0.005$	0.257	25868.	LS	EX UMa	$55545.447 {\pm} 0.003$	0.022	12034.	С
AE Scl	$55485.678 {\pm} 0.002$	0.264	25937.	LS	EX UMa	$55547.634{\pm}0.005$	0.038	12038.	\mathbf{C}
VY Ser	$55364.606 {\pm} 0.004$	0.037	33804.	LS	KT UMa	$55252.389{\pm}0.007$	0.046	9862.	С
HY Tel	$55410.603 {\pm} 0.003$	-0.175	66306.	LS	KT UMa	$55289.399 {\pm} 0.005$	0.046	9921.	С
HY Tel	$55435.572 {\pm} 0.002$	-0.161	66368.	LS	KT UMa	$55541.585 {\pm} 0.006$	0.057	10323.	С
HY Tel	$55449.672 {\pm} 0.003$	-0.149	66403.	LS	KT UMa	$55543.453 {\pm} 0.005$	0.043	10326.	С
RW TrA	$55366.889 {\pm} 0.004$	-0.176	37102.	LS	KT UMa	$55548.481 {\pm} 0.006$	0.053	10334.	С
RW TrA	$55367.638 {\pm} 0.005$	-0.175	37104.	LS	AF Vel	$55226.691{\pm}0.005$	-0.209	26156.	LS
RW TrA	$55403.546 {\pm} 0.004$	-0.175	37200.	LS	AF Vel	$55235.659{\pm}0.002$	-0.206	26173.	LS
RW TrA	$55410.651{\pm}0.002$	-0.177	37219.	LS	AF Vel	$55237.768 {\pm} 0.005$	-0.207	26177.	LS
RW TrA	$55449.548 {\pm} 0.003$	-0.181	37323.	LS	AF Vel	$55244.621{\pm}0.002$	-0.210	26190.	LS
W Tuc	$55213.624 {\pm} 0.003$	0.172	28549.	LS	AF Vel	$55311.598 {\pm} 0.005$	-0.213	26317.	LS
W Tuc	$55390.878 {\pm} 0.004$	0.171	28825.	LS	ST Vir	$55365.532{\pm}0.004$	-0.016	35609.	LS
W Tuc	$55430.704 {\pm} 0.003$	0.178	28887.	LS	UV Vir	$55267.452 {\pm} 0.003$	0.022	26018.	\mathbf{C}
W Tuc	$55435.845 {\pm} 0.004$	0.182	28895.	LS	AS Vir	$55280.696{\pm}0.002$	0.114	29138.	LS
W Tuc	$55457.673 {\pm} 0.004$	0.174	28929.	LS	AT Vir	$55282.451{\pm}0.002$	-0.299	29678.	\mathbf{C}
W Tuc	$55489.791{\pm}0.005$	0.180	28979.	LS	BB Vir	$55270.474{\pm}0.002$	0.277	33234.	\mathbf{C}
W Tuc	$55504.557 {\pm} 0.005$	0.175	29002.	LS	BB Vir	$55290.734{\pm}0.003$	0.280	33277.	LS
W Tuc	$55525.759{\pm}0.006$	0.183	29035.	LS	DO Vir	$55301.657{\pm}0.003$	0.216	53899.	LS
W Tuc	$55534.739{\pm}0.005$	0.172	29049.	LS	SV Vol	$55199.716{\pm}0.002$	0.099	35554.	LS
W Tuc	$55545.664{\pm}0.004$	0.179	29066.	LS	SV Vol	$55524.792{\pm}0.005$	0.044	36413.	LS
YY Tuc	$55416.690{\pm}0.003$	0.056	21294.	LS	BN Vul	$55408.462{\pm}0.002$	0.070	16626.	С
YY Tuc	55426.845 ± 0.002	0.050	21310.	LS	BN Vul	$55443.515 {\pm} 0.002$	0.069	16685.	С

Table 1 (cont.): maxima of RR Lyrae stars

1

 \mathbf{C}

 \mathbf{C}

16695.

16737.

0.068

0.075

 $55449.455{\pm}0.002$

 $55474.415{\pm}0.003$

* C = Calern, LS = La Silla 1 Meinunger, 1984 2 Baldwin and Samolyk, 2003 3 Agerer and Moschner, 1996

 $55428.756{\pm}0.004$

 $55437.641{\pm}0.003$

0.056

0.051

21313.

21327.

LS

LS

BN Vul

BN Vul

YY Tuc

YY Tuc

Number 5987

Konkoly Observatory Budapest 26 April 2011 *HU ISSN 0374 – 0676*

"MOST" SATELLITE PHOTOMETRY OF REGULUS

RUCINSKI, SLAVEK¹; GRUBERBAUER, MICHAEL²; GUENTHER, DAVID B.²; KUSCHNIG, RAINER³; MATTHEWS, JAYMIE M.⁴; MOFFAT, ANTHONY F. J.⁵; ROWE, JASON F.⁶; SAS-SELOV, DIMITAR⁷; WEISS, WERNER W.³

¹ Department of Astronomy and Astrophysics, University of Toronto; e-mail: rucinski@astro.utoronto.ca

 2 Department of Astronomy and Physics, Saint Mary's University, Halifax, N.S., Canada; e-mail: (mgruber-bauer,guenther)@ap.smu.ca

³ Universität Wien, Institut für Astronomie, Wien, Austria; e-mail: (rainer.kuschnig,werner.weiss)@univie.ac.at

 4 Department of Physics & Astronomy, University of British Columbia, Vancouver, B.C., Canada; e-mail: matthews@astro.ubc.ca

⁵ Départment de Physique, Université de Montréal, Montréal, QC, Canada; e-mail: moffat@astro.umontreal.ca

⁶ NASA Ames Research Center, Moffett Field, CA, USA; e-mail: jasonfrowe@gmail.com

⁷ Harvard-Smithsonian Center for Astrophysics, Cambridge, MA, USA; e-mail: dsasselov@cfa.harvard.edu

Regulus (α Leo) is a rapidly rotating, nearby B7V star which has been suspected of small-scale variability and binarity for a long time, this in addition to the known binary K2V + M4V companion 3' away. But only recently Gies et al. (2008) have discovered that it is indeed a moderately close binary with the orbital period $P = 40.11 \pm 0.02$ d. The discovery of radial velocity variations with the semi-amplitude of $K_1 = 7.7 \pm 0.3$ km s⁻¹ was made in spite of the very strong broadening of the lines with $V \sin i \simeq 320$ km s⁻¹. The visible component moves radially by a distance only about twice its dimensions, $a_1 \sin i = 6.1 \pm 0.3 R_{\odot}$. From the small value of the mass function and the assumed value for the mass of the primary $M_1 = 3.4 \pm 0.2 M_{\odot}$, the authors derived $M_2 \ge 0.30 \pm 0.01 M_{\odot}$. Using various theoretical arguments on the evolution of the Regulus binary system, Rappaport et al. (2009) argue that indeed $M_2 = 0.30 \pm 0.02 M_{\odot}$, hence $q = M_2/M_1 \simeq 0.09$. The observed large value of $V \sin i$ suggests that the axis of rotation and the orbital momentum may be positioned not far from the plane of the sky implying a possibility of eclipses.

Chance and depth of eclipses depend on the size of the mutual orbit which – in turn – depends on the mass ratio $q = M_2/M_1$. Thus, for the case of Regulus' orbit, $(a_1 + a_2) \sin i = 6.1 (1 + 1/q) R_{\odot}$. The secondary star cannot be large since it is spectrally undetectable; it can be an M-type dwarf, a low-mass white dwarf or a low-mass helium star. For i = 90 degrees and q = 0.09 - 0.1, the orbital dimensions would be $60 - 75 R_{\odot}$. For such a large orbit eclipses would take place only within a small range of inclinations around i = 90 deg of about ± 3 degrees away from the edge-on orbital position. These limits are for an infinitesimally small secondary component and would increase for a physically larger secondary. The maximum duration of a central transit would be about 0.65 days.

Figure 1. MOST observations of Regulus binned at 5 minute intervals. The vertical line and the arrows mark the expected time and its uncertainty of the transit of the invisible companion of Regulus.

We attempted to discover eclipse transits of Regulus by the invisible companion using the MOST satellite[†]. The optical system of the satellite consists of a 15 cm reflecting telescope with a custom broad-band filter covering the spectral range of 380 - 700 nm with the effective wavelength close to the Johnson V band. The pre-launch characteristics of the mission are described by Walker et al. (2003) and the initial post-launch performance by Matthews et al. (2004). Since the failure of the attitude control CCD in 2006, photometric observations are formed by adding short, typically one second exposures which are needed for stabilization of the satellite. For Regulus, we used the Fabry-lens mode with the star image spread within 30×30 pixels. The temporal sampling after the on-board addition was 30 sec. Because of the addition of the read-out noise, the final mean standard error per single observation is a complex function of the star brightness; it is expected to be at the level of 0.25 mmag (milli-magnitude) for the brightness of Regulus (Kuschnig 2010, unpublished). It should be stressed that the satellite was designed to be used for detection of *periodic signals* with time scales of minutes to hours and that long-term trends may happen and are sometimes hard to characterize. Some of them can be removed by using stars simultaneously observed with the target or by following satellite thermal and ambient magnetic field variations.

The MOST observations of Regulus were done over 15 days, February 10 to March 4, 2010. The predicted time of the spectral inferior conjunction (transit) using the Gies et al. spectroscopic elements for E = 267 elapsed epochs is: $T_0 + P/4 + E * P = \text{HJD } 2,455,246.36 \pm 1.7$ or MOST time = 3701.36, counted from J2000.0. Dr. Gies (private communication)

[†]The MOST satellite is a Canadian Space Agency mission, jointly operated by Dynacon Inc., the University of Toronto Institute of Aerospace Studies, and the University of British Columbia, with the assistance of the University of Vienna.

estimated that this time is uncertain by ± 1.7 days.

The observations of Regulus are shown in Figure 1 after binning in 5 minute intervals, with the mean level adjusted to V = +1.35 which is the normally observed magnitude of the star; note that – as common for brightest stars – the scatter in the literature values of V is large reaching ± 0.02 mag. We show the whole data well beyond the predicted moment of the eclipse to illustrate that the small depressions observed at the predicted conjunction time may be spurious or intrinsic to the star and cannot be interpreted as an eclipse. Similar fluctuations which reach 0.5 mmag of the mean signal and are present throughout the duration of the whole run could not be eliminated using any known instrumental effects. This is best visible around occurrences of two breaks of the sequence for 0.9 and 0.4 days which were caused by the telescope solar-door problem and an interruption to monitor a super-Earth transit. Note also that a depression of about 0.5 mmag at the MOST time $\simeq 3700$ appeared to last too long to be a grazing eclipse.

The residual variability seen in Regulus cannot be unambiguously interpreted as coming from the star, since the background measurements and telemetry show variability on similar time scales. Frequency analysis of the data and the telemetry did not reveal significant, periodic, coherent variations that would be clearly unique to Regulus at the amplitude level larger than 0.07 mmag (7×10^{-5} mean signal). Although the frequency range 0.3 to 3 cycles per day may require further investigation, at this point we have no convincing evidence for variations related to the rotation of Regulus at a frequency of about 1.7 cycles per day.

Summarizing: MOST observations did not lead to detection of any obvious eclipse deeper than about 0.5 mmag at the predicted moment of the spectroscopic inferior conjunction. For an orbit inclined by i > 87 degrees this excludes a red dwarf with $M_2 \simeq 0.3 M_{\odot}$ as a companion because such a star would produce an eclipse up to 8 mmag deep. However, a low-mass white dwarf or a helium star – which according to Rapport et al. are more likely candidates for a companion of Regulus – would be undetectable by MOST. With their expected radius $R \simeq 0.02 - 0.06 R_{\odot}$, the eclipse would be only 0.04 to 0.3 mmag deep.

The authors would like to express special thanks to Dr. Douglas Gies of CHARA, Georgia State University, for very important comments and suggestions during the paper refereeing process.

References:

- Gies, G. R., Dieterich, S., Richardson, N. D., Riedel, A. R., Team, B. L., McAlister, H. A., Bagnuolo Jr., W. G., Grundstrom, E. D., Stefl, S., Rivinius, T., Baade, D., 2008, ApJ, 682, L117
- Matthews, J.M., Kuschnig, R., Guenther, D.B., Walker, G.A.H., Moffat, A.F.J., Rucinski, S.M., Sasselov, D., Weiss, W.W. 2004, *Nature*, 430, 51
- Rappaport, S., Podsiadlowski, Ph., Horev, I. 2009, ApJ, 698, 666
- Walker, G., Matthews, J., Kuschnig, R., Johnson, R., Rucinski, S., Pazder, J., Burley, G., Walker, A., Skaret, K., Zee, R., Grocott, S., Carroll, K., Sinclair, P., Sturgeon, D., Harron, J. 2003, PASP, 115, 1023

Number 5988

Konkoly Observatory Budapest 26 April 2011 HU ISSN 0374 – 0676

CCD TIMES OF MINIMA OF SOME ECLIPSING VARIABLES

DOĞRU, S. S.; ERDEM, A.; ALİÇAVUŞ, F.; AKIN, T.; KANVERMEZ, Ç.

Astrophysics Research Centre and Observatory, Çanakkale Onsekiz Mart University, Terzioğlu Kampüsü, TR-17020, Çanakkale, Turkey; e-mail: dogru@comu.edu.tr (SSD); aerdem@comu.edu.tr (AE)

Observatory and telescope:						
30-cm Cassegrain-Schm	idt (T30), 40-cm Cassegrain-Schmidt (T40) and 122-cm					
Cassegrain-Nasmyth (T	122) telescopes of the Çanakkale University Observatory.					
Detector:	-STL1001E camera, Peltier cooling, KAF-1001E chip,					
	$28' \times 28'$ FOV, 1024×1024 pixels, (STL).					
	-Alta U47 camera Peltier cooling E2V CCD47-10 chip					

-Alta 047 camera, renter coomig, E2V CCD47-10 cmp,
$11'.5 \times 11'.5$ FOV, 1024×1024 pixels, (U47).
-Alta U42 camera, Peltier cooling, E2V CCD42-40 chip,
$7'8 \times 7'8$ FOV 2048 × 2048 pixels (U42)

Method of data reduction:

Reduction of the CCD frames was made with C-MUNIPACK¹ software.

Method of minimum determination:

Kwee – van Woerden method (Kwee & van Woerden, 1956).

Times of r	ninima:				
Star name	Time of min.	Error	Type	Filter	Rem.
	HJD 2400000+				
XZ And	55423.4600	0.0002	II	VR_c	T40-U47
XZ Aql	55425.3846	0.0001	Ι	VR_c	T40-U47
FK Aql	55406.4212	0.0001	Ι	VR_c	T30-STL
KO Aql	55351.4724	0.0003	Ι	BVR_c	T30-STL
	55417.3468	0.0002	Ι	VR_c	T40-U47
V342 Aql	55333.5445	0.0009	Ι	BVR_c	T30-STL
RY Aqr	55418.4068	0.0001	Ι	VR_c	T30-STL
AC Boo	55352.4902	0.0006	II	$R_c I_c$	T30-STL
Y Cam	55424.5094	0.0001	Ι	VR_c	T40-U47
	55573.2684	0.0002	Ι	BV	T30-STL
ZZ Cas	55159.4166	0.0003	Ι	V	T30-STL
RY Cnc	55290.3103	0.0002	II	V	T30-STL
	55522.5645	0.0001	Ι	VR_c	T122-U42
WW Cnc	55580.4715	0.0001	Ι	BV	T30-STL
RW CrB	55337.3467	0.0009	Ι	VR_c	T30-STL
WW Cyg	55324.5222	0.0008	Ι	$R_c I_c$	T30-STL
ZZ Cyg	55350.4707	0.0001	Ι	R	T30-STL
DK Cyg	55346.4988	0.0007	Ι	$R_c I_c$	T30-STL
V401 Cyg	55346.4145	0.0002	Ι	R	T30-STL
V548 Cyg	55432.3217	0.0002	Ι	VR_c	T40-U47
V753 Cyg	55321.5236	0.0004	Ι	VR_c	T30-STL
V959 Cyg	55400.4192	0.0002	Ι	VR_c	T30-STL

¹Motl, D., 2007, C-MUNIPACK, http://c-munipack.sourceforge.net/

Times of r	ninima:				
Star name	Time of min.	Error	Type	Filter	Rem.
	HJD 2400000+				
TT Del	55410.4457	0.0002	Ι	VR_c	T30-STL
FZ Del	55406.5121	0.0001	Ι	R_c	T30-STL
TW Dra	55310.3782	0.0001	Ι	VR_c	T30-STL
	55568.6043	0.0001	Ι	BV	T30-STL
TZ Dra	55327.3619	0.0010	Ι	VR_c	T30-STL
AF Gem	55595.5667	0.0008	II	$R_c I_c$	T30-STL
SZ Her	55342.4524	0.0002	Ι	VR_c	T30-STL
CT Her	55329.4581	0.0003	Ι	VR_c	T30-STL
V338 Her	55432.4244	0.0001	Ι	VR_c	T40-U47
DG Lac	55162.3125	0.0003	Ι	V	T30-STL
	55409.4433	0.0002	Ι	VR_c	T30-STL
	55568.3133	0.0005	Ι	BV	T30-STL
UU Leo	55568.4594	0.0001	Ι	V	T30-STL
UX Leo	55321.3862	0.0020	II	$R_c I_c$	T30-STL
UZ Leo	55340.3432	0.0015	II	VR_cI_c	T30-STL
SX Lyn	55329.3167	0.0004	Ι	VR_c	T30-STL
V913 Oph	55400.3617	0.0003	Ι	BVR_c	T30-STL
	55423.3714	0.0001	Ι	VR_c	T40-U47
BN Peg	55455.4545	0.0001	II	R_c	T40-U47
DI Peg	55429.5569	0.0000	Ι	V	T40-U47
Z Per	55454.4698	0.0001	Ι	V	T40-U47
RT Per	55432.5053	0.0000	Ι	VR_c	T40-U47
XZ Per	55500.5411	0.0001	Ι	VR_c	T40-U47
AO Ser	55316.4953	0.0018	II	BVR_c	T30-STL
	55327.4831	0.0002	Ι	VR_c	T30-STL
VV UMa	55342.3744	0.0002	Ι	VR_c	T30-STL
RU UMi	55316.3180	0.0004	Ι	BVR_c	T30-STL
	55522.6142	0.0001	Ι	BV	T40-U47
	55580.3566	0.0001	Ι	BV	T30-STL
UW Vir	55311.4153	0.0002	Ι	VR_c	T30-STL
VV Vir	55324.3324	0.0005	II	VR_cI_c	T30-STL
AH Vir	55346.3230	0.0006	II	VR_cI_c	T30-STL
BE Vul	55425.4798	0.0002	Ι	VR_c	T40-U47
BO Vul	55398.4621	0.0004	II	R_{c}	T30-STL

Remarks:

We present 56 minima times of 46 eclipsing binaries. In the Remarks column of Times of Minima table, telescopes and detectors used in the observations are given.

Acknowledgements:

This study was supported by the Turkish *TUBITAK* under the grant no. 108T714, and it was also partly supported by the Research Found of Çanakkale Onsekiz Mart University.

Reference:

Kwee, K. K., & van Woerden, H., 1956, Bull. Astron. Inst. Neth., 12, 327.

ERRATUM FOR IBVS 5924

ZX Per should be changed as XZ Per.

Number 5989

Konkoly Observatory Budapest 28 April 2011 *HU ISSN 0374 – 0676*

ROTATIONAL VARIABILITY IN PRE-MAIN-SEQUENCE STARS: TWA 6 IN 2008

LAWSON, W. A.¹; CRAUSE, L. A.²

¹ School of Physical, Environmental & Mathematical Sciences, University of New South Wales, Australian Defence Force Academy, P.O. Box 7916, Canberra, ACT 2610, Australia, e-mail: w.lawson@adfa.edu.au

² South African Astronomical Observatory, P.O. Box 9, Observatory 7935, South Africa, e-mail: lisa@saao.ac.za

TWA 6 (= 2MASS J10182870–3150029) is a K7 spectral-type member of the TW Hydrae association (TWA), one of the nearest pre-main sequence (PMS) stellar populations to Earth (Webb et al., 1999; Reid, 2003; Zuckerman & Song, 2004). Located at a distance of ≈ 50 pc (Mamajek, 2005), TWA 6 has a mass of ≈ 0.7 M_{\odot} and a luminosity of ≈ 0.25 L_{\odot} (Skelly et al., 2008). The association has an estimated age of ≈ 10 Myr, and this is consistent with the age inferred for TWA 6 (~ 12 Myr) following Hertzsprung-Russell diagram placement of the star and comparison with PMS evolutionary tracks (Skelly et al., 2009). TWA 6 is an example of a weak-lined T Tauri (WTT) star, with weak Balmer emission lines (the H α equivalent width is ≈ 5 Å), and no near-infrared excess that would indicate the presence of an inner circumstellar disk.

The most-remarkable feature of TWA 6 is its large photometric amplitude that is a consequence of the rotational modulation of cool starspots that cover a few tens of percent of the photosphere. Lawson & Crause (2005) found the star to have a V-band amplitude of 0.49 mag modulated on a rotation period of 0.54 d, in $BVI_{\rm C}$ CCD differential photometry of the star obtained with the 1-m telescope at the South African Astronomical Observatory (SAAO) in 2001. (In this paper, the light curve amplitude is given as the peak-to-peak amplitude.) A trial series of previously-unpublished V-band observations of TWA 6 obtained at SAAO in 2000 returned the same period, although the star had a slightly-lower $V_{\rm ampl}$ of 0.40 mag. In Table 1, we present these data for the first time. Compared to other WTT stars, the photometric amplitude of TWA 6 is large; most WTT stars have rotational amplitudes of ~ 0.1 mag, and few have rotational amplitudes > 0.2 mag (Lawson et al., 2001; Lawson & Crause, 2005). Lawson et al. (2001) summarise the observing procedure at SAAO, and the production of the differential light curves.

The combination of a short rotation period for the star's spectral type, with a $v \sin i = 72 \text{ km s}^{-1}$ placing TWA 6 firmly in the 'fast rotator' regime ($v \sin i > 50 \text{ km s}^{-1}$) for T Tauri stars, and a large photometric amplitude makes TWA 6 an ideal target for Doppler mapping studies, where spectral line profile variations allow for reconstruction of stellar surface features such as starspots, and other structures such as solar-type 'plages' and prominences. Skelly et al. (2008) observed TWA 6 using the UCLES echelle spectrograph at the 3.9-m Anglo-Australian Telescope in 2006, with the resulting Doppler map showing a large polar spot, and other starspot groups extending to the equator. The outcome was a starspot distribution similar to that seen in other young, fast-rotating

stars. However, the inferred luminosity variation resulting from the Doppler study was only 0.1 mag, a factor of 4-5 lower than that observed at SAAO in 2000 and 2001. While Doppler-reconstructed light curves are suspected of under-estimating the level of photometric variability, it is unlikely that the light amplitude is under-estimated by more than a factor of 2. Skelly et al. (2009) discussed this aspect for the Doppler studies of TWA 6 and TWA 17 and concluded that, in 2006, TWA 6 probably did have lower photometric variability than was observed during the 2000 and 2001 observing seasons.

With this background of variability information in mind, we observed TWA 6 again at SAAO in 2008, obtaining 15 epochs of data over 7 nights, or a time baseline of nearly 12 rotational periods. Our differential BVR_CI_C observations are presented in Table 2, where the phase of each observation is calculated assuming $JD_0 = 2454499.1050$, and where we adopt the Skelly et al. (2008) spectroscopic period of 0.5409 d. We have not merged the 2008 photometry with our earlier datasets in an attempt to further improve the rotation period, as the interval between the datasets is long, and there is very little information available on the timescale at which spot patterns evolve in WTT stars, i.e. the appearance or disappearance of major starspot groups could have the effect of introducing a significant phase shift in the light curve.

Table 1. 2000 SAAO V-band differential photometry of TWA 6.

JD-2450000	Phase	ΔV	JD-2450000	Phase	ΔV
1584.3945	0.0000	0.156	1619.2773	0.4903	-0.268
1585.0000	0.0438	0.160	1619.3906	0.6997	-0.141
1586.3945	0.6975	-0.106	1622.2656	0.0150	0.124
1587.3867	0.5319	-0.256	1622.3828	0.2316	0.009
1588.3047	0.2290	0.010	1623.3359	0.9937	0.126
1590.3086	0.9337	0.117	1623.4688	0.2393	0.126
1590.4922	0.2732	-0.050	1624.2852	0.7486	-0.108
1591.5664	0.2592	-0.030	1624.4453	0.0447	0.144
1596.2852	0.9830	0.137	1624.5625	0.2614	-0.017
1596.4414	0.2719	-0.028			

Table 2. 2008 SAAO $BVR_{\rm C}I_{\rm C}$ differential photometry of TWA 6.

JD-2450000	Phase	ΔB	ΔV	$\Delta R_{\rm C}$	$\Delta I_{\rm C}$
4522.2950	0.1250	0.084	0.068	0.056	0.026
4522.3172	0.0838	0.113	0.090	0.070	0.052
4522.4952	0.7546	-0.017	-0.022	-0.018	-0.011
4522.5040	0.7385	-0.037	-0.031	-0.027	-0.022
4523.3652	0.1468	0.074	0.061	0.054	0.042
4523.3701	0.1376	0.082	0.066	0.045	0.031
4524.3934	0.2455	-0.002	0.004	-0.006	-0.004
4525.3110	0.5491	-0.099	-0.085	-0.082	-0.049
4525.5570	0.0943	0.108	0.093	0.089	0.079
4526.3160	0.6910	-0.044	-0.042	-0.032	-0.026
4526.4752	0.3966	-0.094	-0.082	-0.083	-0.053
4527.4125	0.6637	-0.048	-0.046		
4527.6224	0.2757	-0.039	-0.026	-0.016	-0.025
4528.3740	0.8866	0.042	0.039	0.032	0.026
4528.6040	0.4616	-0.123	-0.086	-0.084	-0.067

Phase-folded $BVR_C I_C$ light and colour curves of TWA 6 in 2008 are shown in Fig. 1. The overall trend of the light curve amplitudes follows that seen in the BVI_C observations obtained in 2001 by Lawson & Crause (2005), where there is a general decrease in amplitude towards longer wavelengths, but in 2008 the light amplitude was distinctly lower than in 2000 and 2001, with $V_{\text{ampl}} = 0.19$ mag. We note that if the 2006 Dopplerinferred amplitude was under-estimated by a factor of ~ 2, then the 2006 and 2008 light amplitudes are similar.

Figure 1. Phase-folded BVR_CI_C differential photometry of TWA 6, obtained at SAAO during 2008.

Table 3 summarises light curve amplitudes for TWA 6 measured in 2000, 2001, and 2008, along with the mean V-band magnitude. Clearly a more-complete dataset of amplitudes would be interesting to obtain, to allow investigation of temporal changes in the light curve amplitude, as would the production of Doppler maps at different epochs to investigate the evolution of the starspot distribution. We keep in mind that photometry measures the contrast of spot coverage during a rotation cycle, i.e. the photometric amplitude is determined from the brightness difference between the most-spotted, and least-spotted, hemispheres of the star. If the large polar spot indicated in the Doppler maps of Skelly et al. (2008) is always present and is roughly constant in extent, then it might contribute little to the luminosity variations, given that the inclination angle of the star is $\approx 50^{\circ}$ and the polar cap is always exposed. This suggests that the presence of lower latitude spots may be principally responsible for driving the light curve amplitude.

Year	$V_{\rm mean}$	$B_{\rm ampl}$	$V_{\rm ampl}$	$R_{\rm C,ampl}$	$I_{\rm C,ampl}$
2000	11.68		0.40		
2001	11.74	0.54	0.49		0.27
2008	11.43	0.25	0.19	0.18	0.14

Table 3. Summary of SAAO CCD photometric light amplitudes for TWA 6.

Since we obtained multi-color observations in 2001 and 2008, we can estimate the starspot temperature and compare that to the spot temperature of 3300 K derived in the Doppler imaging study of Skelly et al. (2008). Assuming a $T_{\rm eff}$ for TWA 6 of 4000±200 K (Skelly et al., 2008), we obtain a spot temperature of ≈ 3400 K with a spot filling factor of $\approx 50 \%$ in 2001, and a spot temperature of ≈ 3700 K and a filling factor of $\approx 40 \%$ in 2008. The mean V-band magnitude of the star changes from 2000 – 2001 to 2008 both as a consequence of the reduced photometric amplitude, but also from an increase in the maximum V-band magnitude from 11.5 in 2000 – 2001 to 11.3 in 2008. TWA 6 may have a younger, higher mass analogue in the few Myr-old, early K-type star V410 Tau which also displays significant variations in its long-term light curve behaviour. After a recent Zeeman-Doppler imaging study to reconstruct the surface spot pattern, the photometric variations of V410 Tau have been interpreted as being due to long-term changes in the spot distribution (Skelly et al., 2010, and references therein).

In summary, TWA 6 is a T Tauri star worthy of on-going monitoring for photometric variability. Its brightness ($V_{\text{max}} \approx 11.5$), combined with its short period (0.54 d) and stable (on timescales of at least a few weeks), large amplitude (0.2 - 0.5 mag) visual light curve makes TWA 6 an accessible target for observation even for small telescopes equipped with a CCD camera or photoelectric photometer.

The observations reported in this paper were obtained using facilities at the South African Astronomical Observatory. We thank the SAAO for the allocation of telescope time for this and other observing proposals. We also thank the reviewer of this paper for their constructive remarks.

References:

Lawson, W.A., Crause, L.A., Mamajek, E.E., Feigelson, E.D., 2001, MNRAS, 321, 57
Lawson, W.A., Crause, L.A., 2005, MNRAS, 357, 1399
Mamajek, E.E., 2005, ApJ, 634, 1385
Reid, N., 2003, MNRAS, 342, 837
Skelly, M.B., et al., 2008, MNRAS, 385, 708
Skelly, M.B., et al., 2009, MNRAS, 399, 1829
Skelly, M.B., et al., 2010, MNRAS, 403, 159
Webb, R.A., et al., 1999, ApJ, 512, L63
Zuckerman, B., Song, I., 2004, ARA&A, 42, 685

Number 5990

Konkoly Observatory Budapest 17 May 2011 *HU ISSN 0374 - 0676*

CCD TIMES OF MINIMA OF ECLIPSING BINARIES AND MAXIMA OF PULSATING STARS

LIAKOS, A.; NIARCHOS, P.

Department of Astrophysics, Astronomy and Mechanics, National and Kapodistrian University of Athens, GR 157 84 Zografos, Athens, Hellas; e-mail: alliakos@phys.uoa.gr, pniarcho@phys.uoa.gr

Observatory and telescope:

T1: 40cm Cassegrain telescope (f/8.1),

T2: 25cm Newtonian reflector telescope (f/4.7),

T3: 20cm Newtonian reflector telescope (f/5) at the University of Athens Observatory.

Detector:	C1: ST-10XME CCD camera, Peltier cooling, KAF-
	3200ME chip, $16' \times 11'$ and $25' \times 17'$ (using a focal reducer)
	FoV with T1, 2184×1472 pixels,
	C2: ST-8XMEI CCD camera, Peltier cooling, KAF-
	1603ME chip, $40' \times 26'$ FoV with T2, and $46' \times 32'$ FoV
	with T3, 1530×1020 pixels. Both CCDs are equipped
	with the Bessell UBVRI filters.

Method of data reduction:

Differential photometry with the software Muniwin v.1.1.26 (Hroch, 1998).

Method of minimum determination:

Kwee & van Woerden (1956).

Times of a	maxima of pu			
Star name	Time of min.	Error	Filter	Rem.
	HJD			
TU UMa	2455632.5084	0.0008	UBVRI	C2+T2
	2455633.6232	0.0023	UBVRI	C2+T2
	2455664.2930	0.0006	UBVRI	C2+T2

Times of minima:					
Star name	Time of min.	Error	Type	Filter	Rem.
	HJD		• -		
DN Boo	2455666.3079	0.0005	II	BVRI	C1+T1
	2455685.3286	0.0006	Ι	BVRI	C1+T1
	2455685.5532	0.0014	II	BVRI	C1+T1
	2455688.4609	0.0007	Ι	BVRI	C1+T1
	2455691.3714	0.0003	II	BVRI	C1+T1
	2455693.3848	0.0005	Ι	BVRI	C1+T1
AV CMi	2455599.4273	0.0002	Ι	VI	C1+T1
RW Com	2455643.3269	0.0002	Ι	\mathbf{BR}	C1+T1
	2455656.2618	0.0002	II	\mathbf{BR}	C1+T1
	2455656.3811	0.0001	Ι	\mathbf{BR}	C1+T1
	2455656.4988	0.0001	II	\mathbf{BR}	C1+T1
	2455659.3471	0.0001	II	VI	C1+T1
	2455659.4665	0.0001	Ι	VI	C1+T1
	2455659.5845	0.0001	II	VI	C1+T1
	2455661.3650	0.0002	Ι	\mathbf{BR}	C1+T1
	2455661.4832	0.0001	II	\mathbf{BR}	C1+T1
	2455662.3145	0.0001	Ι	VI	C1+T1
	2455663.3821	0.0001	II	\mathbf{BR}	C1+T1
	2455663.5014	0.0001	Ι	VI	C1+T1
DF Hya	2455579.3760	0.0001	Ι	BVRI	C1+T1
	2455579.5419	0.0001	II	BVRI	C1+T1
XY Leo	2455664.2666	0.0003	II	BVRI	C1+T1
	2455664.4105	0.0002	Ι	BVRI	C1+T1
	2455686.2868	0.0004	Ι	BVRI	C1+T1
	2455688.2750	0.0002	Ι	BVRI	C1+T1
	2455688.4164	0.0003	II	BVRI	C1+T1
	2455689.2685	0.0003	II	BVRI	C1+T1
CL Lyn	2455576.3657	0.0008	II	Ι	C2+T2
	2455588.2580	0.0007	Ι	BVI	C2+T2
	2455598.5568	0.0012	II	VI	C2+T2
ER Ori	2455580.2486	0.0003	II	BVRI	C1+T1
	2455580.4600	0.0003	Ι	BVRI	C1+T1
	2455581.3063	0.0001	Ι	BVRI	C1+T1
AC Tau	2455567.3731	0.0002	Ι	BV	C1+T1
AW UMa	2455632.3045	0.0010	II	UBVRI	C2+T2
	2455632.5286	0.0011	Ι	UBVRI	C2+T2
	2455633.4050	0.0006	Ι	UBVRI	C2+T2
	2455661.4833	0.0012	Ι	BVRI	C2+T2
	2455664.3362	0.0005	II	UBVRI	C2+T2
KZ Vir	2455326.3775	0.0006	Ι	BV	C1+T1
PY Vir	2455690.3317	0.0002	II	BVRI	C1+T1
2MASS J22514830+1532034	2455415.5027	0.0003	Ι	В	C1+T1
	2455443.3424	0.0011	II	BVRI	C1+T1
	2455443.5315	0.0015	Ι	BVRI	C1+T1
	2455446.3653	0.0012	Ι	BV	C1+T1
	2455446.5509	0.0013	II	BV	C1+T1
	2455457.3707	0.0012	Ι	BVRI	C2+T2

Times of minima:					
Star name	Time of min. HJD	Error	Type	Filter	Rem.
2MASS J22514830+1532034	2455457.5416	0.0013	II	Ι	C2+T2
	2455466.4338	0.0010	II	BVRI	C2+T2
	2455467.3184	0.0017	Ι	BVRI	C2+T2
	2455502.2785	0.0023	II	VRI	C2+T2
	2455505.3022	0.0020	Ι	BVRI	C2+T2
GSC 0770-0523	2455588.3515	0.0003	Ι	Ι	C1+T1
	2455594.2338	0.0009	II	VI	C1+T1
	2455594.4523	0.0006	Ι	VI	C1+T1
	2455599.2493	0.0007	Ι	VI	C1+T1
	2455599.4583	0.0007	II	VI	C1+T1
	2455600.3303	0.0006	II	VI	C1+T1
	2455601.4278	0.0006	Ι	VI	C1+T1
GSC 1137-0293	2455436.5809	0.0008	Ι	\mathbf{BR}	C2+T3
	2455437.3442	0.0005	Ι	\mathbf{BR}	C2+T3
	2455437.5266	0.0009	II	BR	C2+T3
	2455440.3694	0.0005	Ι	BR	C2+T3
	2455442.4410	0.0006	II	\mathbf{BR}	C2+T3
	2455447.3567	0.0004	II	\mathbf{BR}	C2+T2
GSC 3281-1359	2455490.4174	0.0006	II	В	C1+T1
	2455493.2672	0.0009	Ι	BVI	C1+T1
	2455493.4887	0.0011	II	BVI	C1+T1
GSC 3610-0124	2455436.3573	0.0011	Ι	BVR	C1+T1
	2455436.5247	0.0012	II	BVR	C1+T1
	2455437.5703	0.0008	II	BVR	C1+T1
	2455438.4306	0.0008	Ι	BVR	C1+T1
	2455444.3290	0.0016	Ι	BVR	C1+T1
	2455448.3209	0.0009	II	BVR	C1+T1
	2455450.3960	0.0016	II	BV	C1+T1
	2455457.3278	0.0009	II	BVR	C1+T1
	2455457.4986	0.0009	Ι	BVRI	C1+T1
GSC 3802-1986	2455157.6268	0.0006	Ι	BVI	C2+T3
	2455158.3955	0.0012	II	BVI	C2+T3
	2455538.4643	0.0004	Ι	BVI	C2+T2
	2455568.2873	0.0004	II	BVI	C1+T1
GSC 4372-0831	2455466.5356	0.0003	Ι	В	C1+T1
	2455469.5312	0.0011	II	VI	C1+T1
	2455502.5237	0.0010	Ι	BVI	C1+T1
	2455505.5377	0.0017	II	VI	C1+T1
USNO-A2.0 0975-04721840	2455587.3472	0.0002	Ι	Ι	C1+T1
	2455594.4133	0.0004	Ι	VI	C1+T1
	2455599.4591	0.0003	Ι	VI	C1+T1
	2455600.4676	0.0004	Ι	VI	C1+T1
	2455601.2241	0.0004	II	VI	C1+T1
	2455601.4771	0.0003	Ι	VI	C1+T1
	2455602.2334	0.0004	II	VI	C1+T1
	2455603.2420	0.0004	II	VI	C1+T1

Times of minima:					
Star name	Time of min.	Error	Type	Filter	Rem.
	HJD				
USNO-A2.0 1350-16136263	2455438.3775	0.0019	Ι	BVRI	C1+T1
	2455441.3060	0.0009	II	В	C1+T1
	2455457.3195	0.0012	Ι	BVRI	C1+T1
	2455537.3322	0.0012	II	VRI	C1+T1
	2455538.3158	0.0005	Ι	R	C1+T1

Explanation of the remarks in the table:

T1, T2, T3, C1, C2 and C3 refer to the instrumentation (telescope and CCD camera) used for each case.

Remarks:

The following systems are recently discovered: GSC 0770-0523 (Liakos & Niarchos, 2010), 2MASS J22514830+1532034, GSC 3281-1359, GSC 3610-0124 and GSC 1137-0293 (Liakos & Niarchos, 2011a), GSC 4372-0831 (Liakos & Niarchos, 2011b), GSC 3802-1986 (ASAS J080731+0159.7; Pojmanski et al., 2005), USNO-A2.0 1350-16136263 (Liakos & Niarchos, 2011c), and USNO-A2.0 0975-04721840 (Liakos & Niarchos, 2011d).

Acknowledgements:

This work has been financially supported by the Special Account for Research Grants No 70/4/9709 of the National & Kapodistrian University of Athens, Hellas.

References:

Hroch, F., 1998, Proceedings of the 29th Conference on Variable Star Research, ed. J. Dusek and M. Zejda, (Observatory and Planetarium Brno, Brno), 30

- Kwee, K., van Woerden, H., 1956, BAN, 12, 327, (No. 464)
- Liakos, A., Niarchos, P., 2010, PZP, 10, 9
- Liakos, A., Niarchos, P., 2011a, *PZP*, **11**, 2

Liakos, A., Niarchos, P., 2011b, IBVS, 5998, 11

- Liakos, A., Niarchos, P., 2011c, *IBVS*, 5998, 12
- Liakos, A., Niarchos, P., 2011d, *IBVS*, 5998, 13

Pojmanski, G., Pilecki, B., Szczygiel, D., 2005, AcA, 55, 275

ERRATUM FOR IBVS 5674

The epoch for GSC 7194 0239 should be 2452943.87 instead of 2452043.87.

S. Otero

Number 5991

Konkoly Observatory Budapest 30 May 2011 *HU ISSN 0374 - 0676*

V407 Peg AND LU Vir:

TWO CONTACT BINARIES WITH DISPLACED SECONDARY MINIMA

ZASCHE, P.

Astronomical Institute, Faculty of Mathematics and Physics, Charles University Prague, CZ-180 00 Praha 8, V Holešovičkách 2, Czech Republic, e-mail: zasche@sirrah.troja.mff.cuni.cz

The role of eccentric eclipsing binaries in modern stellar astrophysics is undisputed. There are a few binaries, however, which are not eccentric, but show displaced secondary minima nevertheless. If one has no information about their light curve, one can consider the eccentricity only on the basis of the O - C diagram of all available minima of a particular system. Due to the increasing number of CCD observations of minima, some systems were discovered with short period but displaced secondary minima.

The process of circularization is rather rapid in those binaries, which are close. Eccentric orbits are common in well-detached binaries with longer periods, or in systems which are very young. When the system is semi-detached or even contact, the nonzero eccentricity is extremely improbable. Therefore any discovery of a short period binary with displaced secondary minima (i.e. $\phi_2 \neq 0.5$ with respect to the primary) has to be considered very carefully.

The system **V407 Peg** (= GSC 01720-00658, V = 9.28 mag, sp F1) is a typical W UMa-type eclipsing binary. It was discovered by Maciejewski et al. (2002), showing two minima of almost equal depths. However even in the discovery paper it was noted that the secondary minimum is located in phase 0.52. The secondary minima occurred about 0.015 days later than phase 0.5. This is rather unusual for a W UMa type binary.

A detailed analysis was done by Maciejewski et al. (2003) and Rucinski et al. (2008). These complete analyses show that the inclination is about 73 deg and the masses are 1.53 and 0.39 for the primary and secondary, respectively. The observed asymmetry of the LC was explained by a photospheric hot spot. This spot also distorts both minima and also the maxima of the LC (O'Connell effect).

We collected all available (published) times of minima of V407 Peg. For a prospective analysis we need as many minima times as possible. Therefore, we also used the data for this target obtained by the automatic photometric monitoring system ASAS (Pojmanski, 2002). The star was also observed by the Pi of the Sky (Burd et al., 2005). Thanks to these observations, many new minima times were derived. A collection of all available times of minima is given in Table 1. These minima follow a linear ephemeris with the orbital period of 0.636883915 day.

Thanks to these minima one is able to study a potential long-term variation of the LC. The changing position of the spot on the surface is able to modulate the shape of the minima, and therefore also the position of primaries versus secondaries in the

O-C diagram (plotted in Fig. 1). As one can see, the difference between primary and secondary minima is still visible and is not changing significantly. Some of the points have rather large errors, but still one can speculate about some year-to-year differences. For example the first data point from 2003 and the following ones from 2004 show a non-negligible difference. For a detailed evolution of the spot or other processes in the system a more detailed year-by year LC analysis would be desirable.

Figure 1. O - C diagram of V407 Peg dots stand for primary and open circles for the secondary minima.

The shape of the LC taken from ASAS data is plotted in Fig. 2. As one can see, both minima are distorted and asymmetric. The bottom parts of minima (probably total eclipses) are not flat either, but rather inclined. As a result it is complicated to derive a precise time of minimum from the observed data. Most of the often used methods for minima computation are based on symmetric minima (e.g. Kwee-van Woerden, bisector chord method or polynomial fitting). Thus, using the data points with different slope of ascending and descending branch makes the application of these methods rather questionable and affects the result.

Star	HJD-2400000	Error	Type	Filter	Source
V407 Peg	52534.2999	0.0014	II	V	IBVS 5343
V407 Peg	52534.6031	0.0008	Ι	V	IBVS 5343
V407 Peg	52552.7715	0.0013	II	V	IBVS 5343
LU Vir	48085.9734	0.0023	Ι	$_{\rm Hp}$	Hipparcos
LU Vir	48085.7456	0.0021	II	Hp	Hipparcos
LU Vir	48727.8604	0.0025	Ι	Hp	Hipparcos

Table 1: Collected times of minima. The full table is available electronically. Sources: Brát et al. (2008, 2011); Nagai, K. (2003, 2004, 2005, 2008, 2009, 2011); Yilmaz et al. (2009), Perryman et al. (1997).

The second system is **LU Vir** (= HD 116914 = HIP 65590, V = 7.78 mag, sp A0). It is also a W UMa or β Lyrae star, but lacking a detailed analysis. Unlike the case of V407 Peg neither the LC nor the radial velocity curve were studied and a period analysis is missing too. The orbital period of the system is 0.492240615 day.

Figure 2. V light curve of V407 Peg from ASAS.

We collected all available published times of minima, these are given in Table 1. Some of the published minima are not included because we used the original data and recalculated the minima (these apply for the Hipparcos and "Pi of the Sky" data). The O-C diagram of these minima is plotted in Fig. 3, where one can clearly see the difference between primary and secondary minima over a time span of almost two decades. The precision of individual observations is questionable, therefore a possible variation of displacement of secondary minima with time is still problematic to detect. New and more precise observations are needed to confirm some possible variation of the LC.

Figure 3. O - C diagram of LU Vir.

The light curve of LU Vir is asymmetric in the same way as that of V407 Peg. We can see the curve in Fig. 4, where the primary minimum with its total eclipse is clearly distorted and the flat part is inclined. Thus the derivation of minima times is affected by asymmetry and the use of standard routines for minimum computation is problematic.

To conclude, in both systems the displaced secondary minima are very probably caused by asymmetry of the light curve, which is not changing significantly over a time span of more than a decade. It could be produced by an accreting hot spot from a stream of material flowing from one component to another, which is a rather common phenomenon in such semidetached or contact binaries.

Figure 4. V light curve of LU Vir from ASAS.

The use of SIMBAD, operated at CDS, Strasbourg, France, and of NASA's Astrophysics Data System Bibliographic Services, are greatly acknowledged. We thank the "ASAS" and "Pi of the Sky" teams for making all the observations publicly available. This work was supported by the Czech Science Foundation grant no. P209/10/0715 and also by the Research Programme MSM0021620860 of the Czech Ministry of Education.

References:

Brát L. et al., 2008, OEJV, 94, 1 Brát L. et al., 2011, OEJV, 137, 1 Burd, A., et al., 2005, NewA, 10, 409 Kwee, K. K., van Woerden, H., 1956, BAN, 12, 327 Maciejewski, G., Karska, A., Niedzielski, A., 2002, IBVS, 5343, 1 Maciejewski, G., Ligeza, P., Karska, A., 2003, *IBVS*, 5400, 1 Nagai, K., 2003, VSOLJ VSB, No. 40 Nagai, K., 2004, VSOLJ VSB, No. 42 Nagai, K., 2005, VSOLJ VSB, No. 43 Nagai, K., 2008, VSOLJ VSB, No. 46 Nagai, K., 2009, VSOLJ VSB, No. 48 Nagai, K., 2011, VSOLJ VSB, No. 51 Perryman, M.A.C. & ESA, 1997, The HIPPARCOS and TYCHO catalogues, ESA Publications Division, ESA SP Series 1200 Pojmanski, G., 2002, AcA, 52, 397 Rucinski, S. et al., 2008, AJ, 136, 586 Yilmaz, M. et al., 2009, *IBVS*, 5887, 1

Number 5992

Konkoly Observatory Budapest 16 July 2011 HU ISSN 0374 - 0676

TIMINGS OF MINIMA OF ECLIPSING BINARIES

DIETHELM, ROGER

Bahnhofstrasse 3, CH-4118 Rodersdorf, Switzerland

The following Table lists timings of minima of eclipsing binaries secured by CCD photometry, obtained in the first half of 2011. The given O-C values generally refer to the linear elements of the newest electronic version of the GCVS (Samus et al., 2011), except for the cases stated in the remarks, where the determination of current elements made use of the up-to-date ASAS data (http://www.astrouw.edu.pl/asas/) and the Lafler-Kinman algorithm of the PERANSO software (http://www.peranso.com/). All times given are heliocentric UTC. All data was obtained at the R. Szafraniec Observatory operated at Astrokolkhoz Obs., Cloudcroft, N.M., USA. The tireless support by T. Krajci at the site is acknowledged gratefully.

Table 1:	Minima	of	eclipsing	binaries

		Table I. Mil	mina or	companies	omai	165
Variable	Typ	e HJD 24	±	O - C	n	Remarks
KP Aql	р	55711.7659	0.0009	-0.0225	39	V
SZ Ari	р	55579.6533	0.0004	-0.0155	33	V; d=0.025d
ZZ Aur	р	55585.7194	0.0001	-0.0042	32	V
AP Aur	\mathbf{S}	55617.6880	0.0004	+0.0744	38	V
CL Aur	р	55583.7313	0.0001	+0.0105	44	V
DO Aur	р	55564.6720	0.0005	-0.0006	41	V; d=0.03d
EM Aur	\mathbf{s}	55571.6523	0.0004	-0.0059	35	V
EU Aur	р	55585.6980	0.0004	+0.0539	47	V
FO Aur	\mathbf{s}	55589.683	0.003	+0.118	39	V
GI Aur	р	55591.6879	0.0004	-0.0006	44	V
GY Aur	р	55565.7130	0.0018	+0.0820	43	V
HL Aur	р	55600.6631	0.0002	-0.0009	27	V
HW Aur	p	55577.7238	0.0005	-0.0011	30	V
II Aur	p	55564.6940	0.0004	-0.0098	30	V
IZ Aur	р	55579.6970	0.0005	-0.0000	25	V
KO Aur	р	55585.7183	0.0002	-0.0013	41	V; d=0.043d
KU Aur	р	55603.7356	0.0005	+0.0124	27	V
MU Aur	р	55575.6480	0.0009	+0.0037	29	V; d=0.04d
V364 Aur	р	55577.7127	0.0003	-0.0001	32	V
V379 Aur	р	55603.6527	0.0013	-0.0087	21	V
V495 Aur	р	55638.7615	0.0009	-0.0174	21	V
V523 Aur	p	55621.6977	0.0004	+0.0011	32	V
V576 Aur	p	55583.7365	0.0005	-0.0465	29	V
V585 Aur	р	55574.6686	0.0003	+0.0282	22	V
V612 Aur	p	55577.7343	0.0009	+0.0388	24	V; el: OEJV 83
SU Boo	р	55649.9350	0.0005	-0.0174	24	V
	р	55660.8633	0.0003	-0.0179	33	V
SY Boo	р	55644.8313	0.0013	+0.0041	22	V
	р	55694.8394	0.0004	-0.0015	49	V; d=0.050d
TU Boo	р	55637.9264	0.0002	+0.0037	24	\mathbf{V}
	$\bar{\mathbf{p}}$	55690.7841	0.0002	+0.0034	19	V
TX Boo	р	55643.9115	0.0005	+0.0395	40	\mathbf{V}

Table 1: Minima of eclipsing binaries (continued)						
Variable	Typ	e HJD 24	±	O - C	n	Remarks
TY Boo	р	55647.8981	0.0003	-0.0018	17	V
	s	55698.8015	0.0003	-0.0007	35	V
TZ Boo	р	55647.8616	0.0011	-0.0040	24	V
	p	55697.7870	0.0007	-0.0017	18	V
UW Boo	r D	55652.8222	0.0005	+0.0045	19	V
VW Boo	P S	55638 8634	0.0006	+0.0003	25	V: el: $2453907.605 \pm 0.342315 * E$
TH Boo	n	55680 7967	0.0005	0	32	V
XV Boo	P n	55632 0330	0.0000	_0.0098	20	V. al. IBVS 5045
AT DOO	p n	55687 7757	0.0003	-0.0038	23 21	V, el. IDVS 5545
AC Boo	P	55654 8018	0.0002	-0.0121	94	v V
AD Doo	5	55054.8918	0.0003	-0.0005	24	v V
AD D00	s	00000.0792	0.0004	+0.0021	04 94	
	р	55095.7723	0.0003	+0.0030	34	V; d=0.010d
AQ Boo	\mathbf{s}	55631.8750	0.0004	-0.0038	30	V
	\mathbf{s}	55694.8381	0.0005	-0.0041	32	V
AR Boo	р	55632.8889	0.0009	-0.0074	21	V
	\mathbf{S}	55694.7929	0.0006	-0.0088	18	V
CK Boo	\mathbf{p}	55644.8962	0.0004	-0.0055	28	V
	р	55680.7700	0.0011	-0.0021	25	V
CV Boo	р	55653.9186	0.0001	-0.0001	17	V
	\mathbf{p}	55698.8108	0.0003	+0.0014	32	V
EF Boo	р	55694.8850	0.0004	+0.0026	23	V; el: $2451589.815 + 0.420515 * E$
EW Boo	р	55648.8958	0.0005	+0.0097	38	V
	\mathbf{p}	55697.8392	0.0005	+0.0102	31	V
FY Boo	\mathbf{s}	55631.8437	0.0002	+0.0055	14	V
	р	55631.9648	0.0008	+0.0060	10	V
	s	55687.7932	0.0004	+0.0060	18	V
GH Boo	р	55644.948	0.002	+0.001	33	V
	s	55690.7849	0.0010	+0.0022	30	V
GI Boo	р	55696.7997	0.0002	+0.0923	51	V: el: $2451567.835 + 1.033510 * E: d=0.036d$
GK Boo	s	55644.8898	0.0005	+0.0001	17	V
	p	55695.7717	0.0005	-0.0007	14	V
GM Boo	r S	55644.9063	0.0004	+0.0004	28	V
	s	55695 8251	0.0003	+0.0014	32	V
GN Boo	S	55643 8419	0.0004	+0.0011 +0.0137	28	V
	S	55685 7641	0.0001	+0.0107 +0.0136	15	V
GO Boo	n	55680 7375	0.0000	+0.0150 ±0.0054	18	V. al: $2451352.9 \pm 3.075929 * E$
CO Boo	P n	55643 0183	0.0005	+0.0034 -0.0027	33	V, CI. 2401302.5 5.010525 E
96 D00	P n	55607 7608	0.0007	-0.0021	40	V
CP Poo	p n	55642 9702	0.0008	-0.0044	40	v V
CS Dee	р	00040.0790 EEC74 7E19	0.0007	-0.0044	40 20	V V v v v v v v v v v v v v v v v v v v
GS D00	р	55074.7518 FEGEA 9047	0.0004	+0.0330	3U 11	V; el: 2451558.741 + 1.250805 + E
GU DOO	р	55054.8947	0.0009	-0.0004	11	
GW B00	s	55031.9288	0.0005	+0.0049	39	v; el: IBv5 5945
HH B00	р	55644.9336	0.0003	-0.0037	20	V
	\mathbf{s}	55680.7853	0.0002	-0.0020	26	V
HR Boo	р	55643.8751	0.0005	+0.0067	25	V; d=0.026d
000 000 101	\mathbf{p}	55687.7944	0.0009	+0.0070	14	
GSC 900-421	\mathbf{p}	55667.8586	0.0007	+0.0138	33	V; el: $2453833.742 + 1.886937 * E$
GSC 902-318	\mathbf{p}	55637.8400	0.0006	+0.0001	15	V; el: $2453396.874 + 0.326862 * E$
	\mathbf{S}	55680.8226	0.0006	+0.0004	32	V
GSC 912-792	\mathbf{S}	55639.8916	0.0004	+0.0006	16	V; el: IBVS 5894
	\mathbf{S}	55695.7576	0.0003	+0.0026	24	V
	\mathbf{p}	55695.8979	0.0004	-0.0003	18	V
$GSC \ 921-412$	\mathbf{s}	55647.8658	0.0004	+0.0297	16	V; el: IBVS 5894
	\mathbf{s}	55696.8106	0.0007	+0.0328	26	V
GSC 1467-1309)р	55648.9255	0.0003	+0.0019	18	V; el: IBVS 5945; d=0.036d
$GSC \ 1470-582$	\mathbf{s}	55634.9325	0.0003	+0.0097	20	V; el: IBVS 5945
	\mathbf{s}	55694.8046	0.0003	+0.0098	28	V
GSC 1477-516	р	55643.8575	0.0002	+0.0047	30	V; el: 2453462.717 + 0.444676 * E
	p	55696.7704	0.0004	+0.0012	46	V
	-					

2

Table 1:	Minima	of eclipsing	binaries ((continued)

Variable	Туре	e HJD 24	\pm	O - C	n	Remarks
$GSC \ 1478-669$	р	55648.8496	0.0002	+0.0028	23	V; el: $2454204.822 + 0.427986 * E$; d=0.031d
	р	55696.7858	0.0006	+0.0046	40	\mathbf{V}
GSC 1484-525	\mathbf{p}	55643.8494	0.0006	-0.0083	33	V; el: IBVS 5894
	\mathbf{S}	55696.8267	0.0003	-0.0089	33	V; d=0.024d
GSC 1999-404	\mathbf{p}	55637.8115	0.0022	+0.0005	13	V; el: $2454907.770 + 0.655333 * E$
	\mathbf{S}	55680.7384	0.0008	+0.0031	36	\mathbf{V}
GSC 2006-128	р	55639.9087	0.0008	+0.0259	16	V; el: $2454256.516 + 0.397405 * E$; d=0.04d
GSC 3039-709	р	55685.8080	0.0008	-0.0253	14	V; el: Per. Zv. Pril. 11, 1
GSC 3475-348	\mathbf{S}	55685.7915	0.0007	+0.0061	26	V; el: Per. Zv. Pril. 11, 1
UU Cam	р	55566.6466	0.0005	-0.0383	34	V; el: CoSka 33, 38
AL Cam	р	55614.9005	0.0004	-0.0312	47	V
	р	55666.7072	0.0001	-0.0295	31	V
AS Cam	\mathbf{s}	55583.6275	0.0007	-0.2155	33	V; $d=0.037d$; non-circ.
	р	55602.6779	0.0007	-0.0354	44	V; d=0.031d
AT Cam	s	55575.7568	0.0014	-0.0014	23	V; el: $2451455.783 + 1.395892 * E$; d=0.042d
AV Cam	р	55607.7198	0.0005	-0.0689	35	V
AZ Cam	s	55577.9233	0.0005	+0.0192	39	V; d=0.032d
HW Cam	р	55640.7042	0.0005	+0.0888	28	V; el: IBVS 4526
MP Cam	p	55583.6514	0.0006	-0.0974	43	, V
V343 Cam	p	55574.5988	0.0015	-0.0013	29	V; el: 2453321.995 + 5.26309 * E
V378 Cam	s	55565.7569	0.0006	+0.0442	36	V: el: OEJV 83
V397 Cam	р	55574.7410	0.0004	-0.0105	21	V: el: OEJV 83
V398 Cam	p	55589.6102	0.0009	-0.0516	13	V: el: OEJV 83
V400 Cam	p	55585.6511	0.0003	+0.0257	49	V: el: OEJV 83
GSC 4358-151	p	55602.7084	0.0003	-0.0037	40	V: el: OEJV 83
GSC 4365-444	р р	55623.6512	0.0004	-0.0364	16	V: el: $OEJV 83$
GSC 4370-206	P S	55591.6773	0.0007	-0.0551	40	V: el: IBVS 5894
GSC 4533-110	p	55608.7244	0.0003	+0.0879	27	V: el: OEJV 83
GSC 4544-120	р р	55575 8991	0.0002	-0.0522	46	V: el: OEJV 83
GSC 4544-1144	l n	55648 6795	0.0005	+0.0133	24	V: el: OE IV 83
GSC 4546-1600) s?	55634 6541	0.0006	-0.0824	31	V: el: OE IV 83
GSC 4550-183	, n	55621 8537	0.0003	-0.0021	24	V: el: $OEIV 91: d=0.046d$
GSC 4631-2151	P	55566 8657	0.0008	-0.0081	25	V: el: OEIV 83
050 1001 2101	n	55653 6717	0.0000	-0.0001	20	V, Ch. Olis V OS
GSC 4633-796	P D	5561/ 9588	0.0011	± 0.0012	46	V: el: OE IV 83
GSC 4634-1925	р бр	55663 8649	0.0003	-0.0032	27	V: $el: OE IV 83: d=0.024d$
NSV 3715	ур р	55648 6523	0.0000	± 0.0002	21	V: el: IBVS 5894
NSV 4638	P	55588 8722	0.0000	-0.0013	25	V: al: IBVS 5045: $d=0.06d$
1457 4050	0	55663 7400	0.0015	-0.013	$\frac{55}{27}$	V, Cl. 1D V.5 5545, u=0.000
BV Cnc	n	55653 7101	0.0010	± 0.0133	21	V
TX Cnc	P n	55566 0207	0.0002	± 0.0712	24	V
1A Olic	P	55656 7173	0.0001	± 0.0314	24	V
WW Cnc	b D	55640 7333	0.0003	+0.0333 -0.5447	20 26	v V
WX Cnc	p n	55640 7562	0.0002	-0.9447 ± 0.0126	20 26	V: d=0.024d
WX Cnc	p n	55660 6748	0.0004	+0.0120 -0.0340	10	v, u=0.024u
XZ Cno	p n	55648 7113	0.0005	-0.0349	22	V. al. IBVS 5502
XZ One	p n	55643 7250	0.0000	+0.0054	22	V_{1} d. IBVS 5501: d=0.073d
AP Che	p n	55564 0178	0.0000	-0.0055	26	$V_{1, ol}$ IDVS 5351, $d=0.0750$
AD Che	p	55571 9951	0.0002 0.0021	+0.0000	-00 -02	V, el. IDVS 5557
AD Cnc	5	55566 9745	0.0021	-0.0080	20 17	v V
AD Clic	5	55500.8745	0.0004	-0.0187	10	v V
	p	00007.0100	0.0010	-0.0196	10	V V
	s	00000.7438	0.0007	-0.0185	20	V
AL One	p	00032.0088	0.0000	-0.1080	52 11	V T
AH UIC	p	00007.0004	0.0012	+0.1282	11	V V 1 0 0901
	р	55660.7209	0.0004	+0.1341	29	v; a=0.038d
AU Unc	р	55648.6700	0.0008	-0.0718	11	
EH Cnc	\mathbf{p}	55656.6356	0.0016	-0.0052	16	V; el: $2453795.549 + 0.418035 * E$

Table 1: Minima of eclipsing binaries (continued)

		Table 1:	Minim	a or eclips	sing i	binaries (continued)
Variable	Тур	e HJD 24	±	O - C	n	Remarks
FF Cnc	р	55563.9312	0.0003	+0.0004	25	V; el: $2454465.752 + 1.323107 * E$; d=0.022d
	\mathbf{p}	55632.7306	0.0003	-0.0017	25	V
GQ Cnc	\mathbf{p}	55577.9104	0.0005	+0.0048	18	V; el: AcAst 54, 207
	р	55652.6406	0.0010	+0.0042	8	V
GW Cnc	\mathbf{S}	55571.8950	0.0002	-0.0027	21	V; el: $2454474.813 + 0.281412 * E$
	р	55656.7408	0.0002	-0.0026	19	V
IL Cnc	p	55571.8365	0.0003	+0.0612	17	V; el: IBVS 5428
	s	55571.9700	0.0003	+0.0608	15	V: d=0.021d
	p	55667.6576	0.0004	+0.0635	16	V
IO Cnc	r S	55577.9670	0.0007	-0.0005	18	V: el: 2455663.6733 + 0.347691 * E
10 0110	n	55663 6733	0.0006	0	21	V
IR Cnc	P c	55638 7129	0.0000	± 0.0048	38	V. el IBVS 5871
III Cnc	S	55580 8454	0.0011	-0.0162	25	V: d=0.032d
ie ene	S	55667 7032	0.0003	-0.0102	20	V; d=0.029d
CSC 224 44	5 0	55571 0450	0.0005	-0.0170	14	V, $u=0.025uV: ol: IBVS 5045$
CSC 704 1208	2 5	55563 0401	0.0007	0.0125	17	V_{1} of $2453835521 \pm 0.286258 * F_{2} d=0.014d$
CSC 794-1200	, р	55620 6054	0.0004	-0.0007	20	V, el. 2455655.521 \pm 0.260256 E, d=0.014d
GSC 795-590) s	55029.0954	0.0002	+0.0029	20 26	V, el: 2454510.766 \pm 0.519191 \pm E
GSC 800-1378	, p	55054.0724	0.0005	+0.0140	-00 -00	V; el: $2454500.599 \pm 0.578208 \pm E$
GSC 808-1100) p	55505.9259	0.0008	-0.0037	29	V; el: $2454499.784 \pm 0.500242 \pm E$; d=0.050d
GSC 809-569	, p	55565.8931	0.0007	+0.0087	28	V; el: $2454795.831 + 0.386573 + E$
GSC 815-1932	s	55566.9136	0.0005	+0.0080	39	V; el: $24545999.491 + 0.741598 * E$
GSC 817-322	р	55640.7027	0.0003	-0.0109	31	V; el: $2453791.596 + 0.269826 * E$
GSC 817-411	р	55634.7309	0.0001	+0.0007	26	V; el: $2454123.712 + 0.353620 * E$
GSC 819-48	р	55574.8883	0.0002	+0.0041	32	V; el: $2454469.779 + 0.325318 * E$
	р	55663.7003	0.0002	+0.0043	14	V
GSC 819-595	р	55640.7314	0.0007	+0.0208	34	V; el: IBVS 5945
GSC 1383-181	р	55630.7202	0.0002	+0.0027	18	V; el: $2453414.607 + 0.267130 * E$
GSC 1388-132	2 p	55629.6950	0.0002	+0.0014	42	V; el: $2453336.786 + 0.454221 * E$; d=0.013d
GSC 1395-877	7 p	55565.9427	0.0005	+0.0131	25	V; el: $2453330.842 + 0.295139 * E$
	р	55660.6849	0.0005	+0.0156	28	V
GSC 1397-103	30 p	55572.8704	0.0003	-0.0221	17	V; el: IBVS 5945
	р	55667.7409	0.0002	-0.0229	28	V; d=0.015d
GSC 1407-222	2 s	55647.6714	0.0011	-0.0244	18	V; el: ASAS
GSC 1927-862	2 s	55564.8432	0.0007	+0.0001	32	V; el: IBVS 5871
GSC 1928-943	3 s	55563.9085	0.0004	-0.0007	38	V; el: $2454794.845 + 0.407020 * E$
GSC 1936-40	р	55629.6923	0.0002	+0.0018	20	V; el: $2453792.557 + 0.467464 * E$; d=0.031d
GSC 1950-194	12 s	55572.8978	0.0002	+0.0195	21	V; el: $2454425.846 + 0.257847 * E$; d=0.014d
	\mathbf{S}	55656.7058	0.0006	+0.0271	36	V
NSV 4158	\mathbf{S}	55565.9397	0.0005	+0.0004	16	V; el: $2454152.578 + 0.378410 * E$
NSV 4188	\mathbf{S}	55565.9165	0.0002	-0.0030	22	V; el: $2454523.683 + 0.308035 * E$; d=0.025d
NSV 4269	р	55566.8721	0.0005	+0.0058	21	V; el: $2454443.826 + 1.324340 * E$
RV CVn	p	55629.8931	0.0003	+0.0237	27	V
VV CVn	p	55634.8968	0.0008	+0.0424	40	V; el: IBVS 5894; d=0.028d
VZ CVn	s	55684.7404	0.0003	-0.0009	32	, V
YZ CVn	p	55637.9522	0.0010	-0.0163	21	V
BI CVn	p	55622.9344	0.0002	+0.0519	26	V: el: IBVS 4554
	r S	55685.7485	0.0007	+0.0483	20	V V
BO CVn	n	55634 8679	0.0004	+0.0361	43	V: el: IBVS 3288: $d=0.033d$
20 0 1 1	r n	55690 7650	0.0011	+0.0475	40	V v v v v v v v v v v v v v v v v v v v
CI CVn	р р	55623 9168	0.0003	-0.0233	26	V· el· Hipparcos
DF CVn	P n	55614 8718	0.0004	-0.0200	32	$V \circ 10$ IRVS 5804
	P n	55684 8201	0.0004	-0.0029	17	V, CI. IDV5 5054
DH CVn	P n	55617 8831	0.0003	-0.0242	35	V. el. IBVS 5140
DI CVn	Ч	55600 8720	0.0003	-0.0242	10	V. al. IRVS 5994
	5	55670 7801	0.0002	-0.0000	19 97	\mathbf{v} , el. ID \mathbf{v} D 5224 V
DK CV2	р Т	55627 0496	0.0000	-0.0040	41 19	V. of IBVS 5649. d=0.010d
	р -	55614 9994	0.0007	-0.0009	12	V_1 el: 1D VO 5042; $U=0.0190$
DQUVN	S	00014.8824	0.0009	+0.0130	1ð 17	v; el: 16v5 5541
DD CU	\mathbf{S}	00079.7020	0.0004	+0.0151	11	V X7
DRUVN	\mathbf{s}	00017.9279	0.0005	+0.0526	21	V
Lable 1. Minima of echipsing binaries (continued	Table 1:	Minima	of	eclipsing	binaries	(continued
--	----------	--------	----	-----------	----------	------------
--	----------	--------	----	-----------	----------	------------

Variable	Type	e HJD 24	±	O-C	n	Remarks
DX CVn	р	55617.8901	0.0005	+0.0047	35	V
	р	55685.7908	0.0004	+0.0029	25	V
DY CVn	р	55622.9055	0.0002	-0.0039	17	V; el: IBVS 5403
	\mathbf{S}	55684.7634	0.0003	-0.0024	25	V
	р	55684.8839	0.0004	-0.0048	15	V
EE CVn	\mathbf{S}	55629.8987	0.0006	-0.0058	14	V; el: IBVS 5403
	\mathbf{S}	55688.8152	0.0003	-0.0076	21	V
EF CVn	р	55629.9294	0.0006	-0.0090	23	V; el: IBVS 5269
EI CVn	\mathbf{S}	55637.9112	0.0004	-0.0175	18	V; el: IBVS 5403
	\mathbf{S}	55694.7555	0.0007	-0.0207	19	V
	р	55694.8898	0.0007	-0.0168	13	V
EN CVn	\mathbf{s}	55586.010	0.002	+0.016	25	V; el: $2451338.725 + 6.33448 * E$; non-circ
RR CMa	р	55616.6791	0.0002	-0.0005	27	V; el: $2454867.814 + 1.196271 * E$; d=0.02
SX CMa	p	55608.7488	0.0004	+0.0037	36	V; el: $2454734.897 + 1.624253 * E$
GSC 5375-811	p	55580.6762	0.0006	-0.0044	41	V; el: $2454588.460 + 0.472486 * E$
GSC 5375-1015	s	55575.6987	0.0004	+0.0121	19	V; el: $2453497.598 + 0.282637 * E$; d=0.02
GSC 5404-2421	р	55589.6741	0.0006	+0.0112	40	V; el: $2454759.824 + 4.509994 * E$; non-cir
GSC 5406-2659	p	55614.6937	0.0005	+0.0032	35	V; el: $2454432.774 + 0.394235 * E$
GSC 5407-2794	p	55617.6456	0.0003	-0.0053	16	V; el: $2454426.804 + 0.369484 * E$
GSC 5934-2133	p	55580.7179	0.0002	+0.0049	21	V; el: $2454353.912 + 0.355904 * E$
TU CMi	s	55615.6122	0.0003	+0.0566	15	V: el: IBVS 5524
TX CMi	р	55638.7378	0.0004	+0.0057	21	V; el: BBSAG Bull. 106, 7
UZ CMi	p	55615.6930	0.0002	+0.0173	39	V: el: IBVS 5894
XZ CMi	p	55629.6788	0.0002	-0.0034	37	, V
AC CMi	p	55616.7287	0.0018	+0.0358	16	V: el: PASP 98, 690
AM CMi	p	55621.6867	0.0008	+0.1949	33	V
AV CMi	s	55575.6535	0.0006	+0.1579	33	V; el: IBVS 5945; non-circ.
	p	55617.6494	0.0005	+0.0154	27	V
BF CMi	p	55638.616	0.004	-0.145	26	V
BX CMi	p	55622.7218	0.0005	-0.0768	18	V: el: IBVS 4410
BZ CMi	s	55607.6334	0.0008	-0.0087	39	V; el: 2452706.548 + 2.545936 * E
CZ CMi	\mathbf{s}	55617.7226	0.0002	+0.0660	25	V: el: IBVS 5366; d=0.030d
DG CMi	р	55614.7162	0.0001	+0.0285	35	V: el: IBVS 5630
GSC 167-251	S	55617.7154	0.0003	-0.0029	24	V: el: IBVS 5945
GSC 174-700	р	55614.6316	0.0005	-0.0068	35	V; el: $2453101.522 + 0.825868 * E$
GSC 179-696	p	55638.7114	0.0009	-0.0262	37	V; el: 2453428.629 + 0.559238 * E
GSC 180-2135	p	55608.6577	0.0021	-0.0026	37	V; el: OEJV 83; d=0.047d
GSC 181-1576	p	55564.8648	0.0003	-0.0124	24	V: el: $2453478.471 + 0.362538 * E: d=0.024$
GSC 189-821	p	55623.7112	0.0004	+0.0084	27	V: el: $2454548.577 + 0.475509 * E$
GSC 191-41	S	55616.6941	0.0008	+0.0068	18	V: el: $2454439.766 + 0.301736 * E$
GSC 762-958	s	55614.7220	0.0004	+0.0046	30	V: el: IBVS 5945
GSC 763-1042	p	55621.6708	0.0003	-0.0146	33	V: el: 2453714.811 + 0.582074 * E
GSC 764-235	r D	55616.7188	0.0020	+0.0043	19	V: el: $2454828.716 + 0.306853 * E$
DO Cas	r D	55563.6200	0.0014	-0.0135	16	V: el: $2451421.738 + 0.684724 * E$
OX Cas	r S	55574.6867	0.0005	+0.0434	42	V: non-circ.
V775 Cas	s	55582.7335	0.0012	+0.8365	36	V: el: IBVS 5557; non-circ.
V952 Cas	p	55563.6733	0.0004	-0.0069	42	V: el: IBVS 5171: $d=0.047d$
V1137 Cas	P S	55580 6032	0.0006	-0.0464	37	V: el: OEIV 107: $d=0.06d$: non-circ
CO Cen	n	$55577\ 6273$	0.0000	-0.1944	28	V: non-circ
EK Cep	P S	55737 7602	0.0002 0.0027	+0.1941	25	V; non-circ
V743 Cep	n	55602 6154	0.0006	+0.0738	18	V: el: IBVS 5630: non-circ
TV Cet	ч ч	55572 6216	0.0000	-0.0548	20	V: non-circ
XY Cet	2 2	55564 7004	0.0010	+0.0040	29	v, non-enc. V
RW Com	o n	55600 8619	0.0000	-0.0004	20 19	v V
	ę	55600.0705	0.0002	-0.0097 -0.0101	15	v V
	5	55670 7565	0.0004	-0.0101	10 01	v V
	s	00019.1000	0.0000	-0.0128	<u>41</u>	V
	*	55670 0000	0 0000	0 0070	17	17
D7 Carr	p	55679.8802	0.0006	-0.0078	17	V
RZ Com	p s	55679.8802 55621.9038	0.0006	-0.0078 +0.0051	17 27 26	V V; el: $2454610.612 + 0.338506 * E$ V; el: $2452800580 + 0.419891 * E + 0.002$

Table 1: Minima of eclipsing binaries (continued)

		Table 1:	Minim	a or ecups	sing t	Dinaries (continued)
Variable	Typ	e HJD 24	±	O - C	n	Remarks
UX Com	р	55647.9219	0.0008	-0.1291	31	V; el: BAV Mitt. 69, 9
AQ Com	\mathbf{S}	55615.8518	0.0009	-0.0094	18	V; el: IBVS 5684
CC Com	р	55607.9171	0.0002	-0.0132	11	\mathbf{V}
	р	55660.6609	0.0002	-0.0134	13	\mathbf{V}
	\mathbf{S}	55660.7712	0.0011	-0.0134	10	\mathbf{V}
CM Com	р	55609.8467	0.0008	-0.0201	17	V; el: IBVS 5894
	р	55679.7172	0.0003	-0.0185	21	\mathbf{V}
CN Com	р	55622.8757	0.0007	+0.0590	15	\mathbf{V}
DD Com	\mathbf{S}	55614.9352	0.0009	-0.0592	31	\mathbf{V}
	\mathbf{S}	55679.8144	0.0004	-0.0514	15	\mathbf{V}
EK Com	р	55614.8897	0.0001	-0.0591	40	V; el: IBVS 4167; d=0.025d
EQ Com	р	55622.9157	0.0012	+0.2109	25	V
LL Com	р	55629.9122	0.0005	+0.0408	37	V; el: IBVS 4386
	\mathbf{S}	55630.9313	0.0005	+0.0426	48	V
LO Com	р	55609.8564	0.0005	+0.0080	11	V; el: IBVS 5052
LP Com	р	55616.8337	0.0009	-0.0237	11	V; el: IBVS 5052
LR Com	р	55654.8337	0.0005	-0.0211	17	V; el: IBVS 5894
MM Com	\mathbf{s}	55614.8630	0.0004	-0.0153	18	V; el: IBVS 5224
	р	55684.7678	0.0003	-0.0211	31	V; d=0.024d
GSC 871-248	\mathbf{S}	55607.9070	0.0009	+0.0254	15	V; el: IBVS 5945; d=0.024d
	р	55674.7571	0.0002	+0.0242	13	V
GSC 880-55	s	55609.8870	0.0007	+0.0006	21	V; el: IBVS 5894
	р	55677.7880	0.0004	0	25	V
GSC 881-218	s	55616.9038	0.0003	-0.0012	25	V; el: IBVS 5894
GSC 1445-866	р	55608.8232	0.0010	+0.0084	16	V; el: 2454493.861 + 0.373019 * E
	р	55674.841	0.003	+0.002	6	V
GSC 1446-1499	9 s	55616.8765	0.0006	+0.0072	12	V; el: IBVS 5894
GSC 1446-237	7р	55609.8990	0.0003	-0.0042	26	V; el: IBVS 5894
	s	55679.7585	0.0010	-0.0020	19	V
GSC 1994-465	\mathbf{S}	55623.9327	0.0003	+0.0066	21	V; el: $2454163.751 + 0.384915 * E$; d=0.028d
	\mathbf{S}	55684.7514	0.0003	+0.0088	33	V; d=0.023d
GSC 1994-935	р	55629.9163	0.0003	+0.0128	32	V; el: IBVS 5894
	p	55684.7935	0.0004	+0.0152	36	V
RT CrB	p	55685.8404	0.0007	-0.0234	49	V
RW CrB	p	55667.8619	0.0002	0	24	V
TU CrB	p	55695.8100	0.0004	-0.7370	47	V
TW CrB	s	55660.8908	0.0002	+0.0438	39	V
YY CrB	\mathbf{S}	55652.882	0.003	-0.119	6	V; el: IBVS 5152
AR CrB	р	55663.9172	0.0002	-0.0061	29	V; el: IBVS 5295
AS CrB	s	55660.8457	0.0007	+0.0086	26	V; el: IBVS 5295
AV CrB	\mathbf{S}	55666.9021	0.0005	-0.0213	15	V; el: IBVS 5295
W Crv	р	55604.8908	0.0003	+0.0172	36	V
A115645-1420.	8 s	55604.8750	0.0015	+0.0019	12	V; el: $2453476.605 + 0.296313 * E$
GSC 5532-133	3р	55615.9549	0.0006	+0.0080	17	V; el: $2454435.858 + 0.474503 * E$; d=0.039d
GSC 6085-670	р	55623.8949	0.0013	+0.0178	29	V; el: 2454561.784 + 3.060787 * E
GSC 6094-131	7 p	55623.9424	0.0003	+0.0087	20	V; el: $2454524.811 + 0.651525 * E$
GSC 6095-294	s	55607.8746	0.0004	-0.0011	15	V; el: $2453144.615 + 0.277990 * E$
V Crt	р	55600.9226	0.0004	-0.0009	22	V; el: $2453030.766 + 0.702037 * E$
AC Crt	p	55589.8669	0.0005	+0.0034	25	V; el: IBVS 5945
	p	55654.6808	0.0008	+0.0048	31	V
GSC 5500-260	s	55602.865	0.003	-0.006	19	V; el: 2453538.534 + 0.374959 * E
	р	55665.6704	0.0010	-0.0060	12	V
GSC 5507-705	s	55583.8879	0.0010	+0.0115	19	V; el: $2454798.854 + 0.263563 * E$
	\mathbf{s}	55666.643	0.003	+0.012	13	V
	р	55666.7830	0.0023	+0.0160	11	V
GSC 5509-447	p	55604.8591	0.0004	-0.0039	25	V; el: 2454207.702 + 0.528827 * E
	p	55666.447	0.0006	-0.0047	31	V
GSC 5509-107	3 p	55602.851	0.003	+0.007	11	V; el: 2453478.621 + 0.415374 * E
GSC 5509-134	7 p	55608.8413	0.0004	+0.0031	16	V; el: 2454497.795 + 0.682040 * E
GSC 5516-355	s	55602.9769	0.0006	+0.0010	10	V; el: 2454866.795 + 0.267459 * E

Table 1: Minima of eclipsing binaries (continued)

		Table 1:	Minima	or ecupsu	ng di	naries (continued)
Variable	Гуре	e HJD 24	±	O - C	n	Remarks
GSC 6077-1825	р	55589.9220	0.0007	-0.0083	34	V; el: $2454250.488 + 1.809284 * E$
GSC 6085-670	р	55666.7466	0.0013	+0.0185	31	V; el: $2454561.784 + 3.060787 * E$
EN Cyg	р	55730.7725	0.0007	+0.4654	38	V
V477 Cyg	\mathbf{S}	55727.7443	0.0009	-0.4988	26	V; non-circ.
	р	55738.7806	0.0005	-0.0240	31	V
V498 Cyg	\mathbf{S}	55741.8133	0.0035	+0.1986	38	V; non-circ. ?
V962 Cyg	р	55730.731	0.004	-0.198	36	V
V974 Cyg	\mathbf{S}	55711.8205	0.0002	-0.2504	36	V; non-circ.
V1004 Cyg	р	55730.7260	0.0007	-0.0772	40	V
V1136 Cyg	р	55727.8154	0.0002	+0.0855	45	V; non-circ.
	\mathbf{S}	55736.7660	0.0007	+0.3792	43	V
V1355 Cyg	р	55728.7909	0.0022	+0.0393	50	V
GSC 3152-1202	\mathbf{S}	55725.8454	0.0010	+0.1164	39	V; el: IBVS 5909; non-circ.
	р	55726.7857	0.0009	+0.0099	48	V
Z Dra	р	55644.7013	0.0001	-0.1935	34	V
RX Dra	\mathbf{S}	55712.8093	0.0004	+0.0578	49	V; non-circ.?
AR Dra	р	55615.9028	0.0001	+0.0203	33	V
	р	55684.8380	0.0002	+0.0201	30	V
AX Dra	р	55617.8672	0.0002	-0.0597	27	V
	р	55663.8898	0.0002	-0.0584	28	V
BF Dra	p	55695.8615	0.0003	-0.0536	43	V; el: IBVS 3867; non-circ.
BL Dra	p	55730.8256	0.0008	+0.0025	26	V; el: Cracow Cat.
BX Dra	p	55666.8861	0.0003	+0.0296	28	V; el: IBVS 4266
CM Dra	p	55695.7935	0.0003	+0.0042	11	, V
FU Dra	s	55647.8534	0.0005	-0.0125	15	V; el: Hipparcos
IV Dra	р	55647.8926	0.0003	+0.0030	17	V; el: IBVS 5894
GSC 3883-926	s	55685.8483	0.0007		28	V; el: Per. Zv. Pril. 11, 1
GSC 4190-894	р	55688.8704	0.0004	+0.0472	16	V; el: Per. Zv. Pril. 11, 1
GSC 4193-44	p	55720.7638	0.0009	+0.1288	29	V; el: Per. Zv. Pril. 11, 1
GSC 4194-2180	p	55697.7292	0.0008	-0.0384	26	V; el: Per. Zv. Pril. 11, 1
	s	55697.8663	0.0006	-0.0354	21	V
GSC 4207-158	p	55736.7823	0.0010	-0.0384	20	V; el: Per. Zv. Pril. 11, 1
GSC 4391-1203	s	55665.6792	0.0009	+0.0502	19	V: el: OEJV 83
GSC 4392-717	s	55605.8588	0.0005	+0.0044	20	V: el: OEJV 83
GSC 4401-1126	p	55638.8321	0.0005	-0.0120	29^{-5}	V: el: OEJV 91
0.00	r D	55685.8092	0.0002	-0.0160	50^{-0}	· , · · · · · · · · · · · · · · · · · ·
GSC 4412-1734	r D	55677.7229	0.0013	+0.0060	22	V: el: OEJV 91
GSC 4421-50	r S	55721.7832	0.0005	+0.0020	${32}$	V: el: $OEJV 104$
GSC 4424-1787	p	55736.8224	0.0004	+0.0247	44	V: el: OEJV 104: $d=0.034d$
GSC 4424-1958	р р	55727.8427	0.0006	+0.0356	16	V: el: Per. Zv. Pril. 11, 1
GSC 4424-2294	р р	55722.7791	0.0005	+0.0397	25	V: el: Per. Zv. 11, 1
GSC 4429-655	р р	55738 7616	0.0005	-0.0009	29	V: el: OE.IV 91
WW Eri	р р	55575 6789	0.0006	+0.0602	45	V: d=0.066d
GSC 5323-652	р р	55565 6824	0.0004	+0.0012	13	V: el: $2454132.659 \pm 0.313365 * E$
GSC 5323-1798	р р	55564 6659	0.0005	+0.0002 +0.0103	40	V: el: $2454475.603 + 1.119273 * E$
SX Gem	р р	55600 6379	0.0004	-0.0594	30	V
TZ Gem	P D	55602 6133	0.0001	-0.0016	17	V: el: IBVS 5960
AF Gem	P n	55603 6241	0.0002	-0.0010	26	V, CI. IDVS 5500
AV Gem	P D	55605.6807	0.0005	-0.0294	20	v V
AV Gem	p n	55609 7056	0.0000	-0.0234 -0.0539	$\frac{52}{37}$	v V
CW Com	Ч	55604 7141	0.0002	10.0003	<u>л</u> л	V el BAV Mitt 60
DD Com	р	55604 7099	0.0000	±0.0094 ±0.0091	44 15	V. al. $9452222729 \pm 900106 \times E$
FC Com	р	55600 6011	0.0010	-0.0031	40 90	v , et. 2455555.752 + 5.00190 $^{\circ}$ E
FG Geill	р	55605 7000	0.0001	-0.0200	29 9⊑	V V
r I Gem	s	55600 6744	0.0011	-0.0340	30 20	V 17
In Gem	p	55575 6240	0.0002	+0.0110	ას ვი	V V. al. IDVC 5000
LU Gem	р	00070.0048	0.0003	+0.0134	3U 1 F	v; ei: 1BVS 5020
v 388 Gem	р	00017.0407	0.0004	-0.0117	15	
GSU 1330-287	р	55604.6377	0.0003	-0.0023	17	v; el: $2454494.(12 + 0.348(05 * E))$
GSU 1335-1907	\mathbf{s}	55572.6863	0.0011	+0.0159	47	v; ei: $2451548.73 + 3.47041 + E$; non-circ.
	р	əəə91.7394	0.0002	-0.0183	40	V

Table 1: Minima of eclipsing binaries (continued)

		Table 1:	WIIIII	a or ecups	sing i	Sinaries (continueu)
Variable	Гуре	e HJD 24	±	O - C	n	Remarks
GSC 1336-717	р	55588.7329	0.0008	+0.0019	30	V; el: $2454520.581 + 0.350673 * E$
GSC 1337-1137	\mathbf{s}	55603.7294	0.0005	+0.0065	27	V; el: $2454482.701 + 0.475513 * E$
$GSC \ 1351-225$	р	55616.7281	0.0013	+0.0132	18	V; el: $2454560.513 + 0.742758 * E$
$GSC \ 1360-49$	р	55622.7345	0.0015	+0.0086	19	V; el: 2454905.576 + 0.448499 * E
GSC 1368-1411	\mathbf{S}	55616.6656	0.0013	+0.0020	28	V; el: IBVS 5871
GSC 1368-1825	р	55615.7197	0.0005	+0.0066	31	V; el: IBVS 5945
GSC 1370-156	р	55615.7177	0.0011	+0.0025	22	V; el: $2454561.549 + 0.366539 * E$
GSC 1883-1299	р	55600.7428	0.0011	+0.0068	21	V; el: OEJV 91
GSC 1886-1869	s	55583.6588	0.0004	+0.0743	14	V; el: 2453052.588 + 0.340852 * E
GSC 1909-2392	\mathbf{S}	55617.6364	0.0006	-0.0008	15	V; el: $2454136.581 + 0.868400 * E$
GSC 1914-933	p	55616.6883	0.0005	-0.0085	28	V: el: $2453673.835 + 0.658151 * E$: d=0.024d
TT Her	D	55712.8331	0.0004	+0.0407	55	V
BC Her	D	55738.7946	0.0001	-0.4313	46	V
CC Her	D	55690.7694	0.0006	+0.2138	27	V
CT Her	r D	55668.8692	0.0003	+0.0050	25	V
DD Her	р р	55738 7384	0.0009	+0.0002	44	V: el: 2454271 462 + 5 64337 * E
FN Her	P D	55711 7925	0.0003	+0.0002 +0.0892	52	V, CI. 2101211.102 + 0.01001 E
GL Her	P D	55738 7893	0.0003	+0.0052 +0.0770	18	v V
HS Hor	р р	55726 7750	0.0002	+0.0770	33	V: d=0.053d: non circ
	р р	55712 7800	0.0004	-0.0201	33 47	v, u=0.055d, non-circ.
IK Her MC Her	р	55712.7609	0.0000	+0.2010	41	V V. al. Crosser Cat
	р	55741.0051	0.0015	+0.0115	20 49	v; el: Cracow Cat.
V 338 Her	р	55728.8322	0.0002	+0.0986	42	V
V359 Her	р	55726.7651	0.0010	+0.2214	40	V
V366 Her	р	55722.7964	0.0002	-0.1336	44	V
V381 Her	р	55723.8401	0.0004	+0.1936	38	V
V387 Her	\mathbf{S}	55725.8053	0.0002	+0.0628	49	V
V477 Her	\mathbf{S}	55725.7858	0.0008	-0.1480	23	V
V681 Her	р	55671.8692	0.0005	+0.0010	19	V; el: $2453565.497 + 0.579310 * E$
V687 Her	\mathbf{S}	55667.8903	0.0018	-0.1656	27	V
V718 Her	р	55723.7782	0.0012	+0.2844	50	V
V719 Her	р	55721.7693	0.0005	-0.0310	36	V
V728 Her	\mathbf{s}	55737.7638	0.0004	+0.1073	35	V; el: IBVS 3234
V731 Her	р	55726.7976	0.0007	-0.0169	32	V; el: IBVS 5592
V733 Her	\mathbf{s}	55727.7728	0.0005	+0.0127	35	V
V789 Her	\mathbf{S}	55720.7787	0.0006	+0.0247	24	V; el: IBVS 5741
V811 Her	р	55737.8723	0.0003	+0.1529	24	V; el: $2442452.654 + 0.941936 * E$
V842 Her	р	55653.8642	0.0002	+0.0776	20	V; el: IBVS 3946
V856 Her	р	55671.8718	0.0006	-0.0542	32	V; el: IBVS 4342
V857 Her	s	55698.7861	0.0007	+0.0022	37	V; el: IBVS 4364
V861 Her	\mathbf{s}	55672.8322	0.0013	-0.0408	16	V; el: IBVS 4360
V878 Her	р	55725.7476	0.0003	-0.0413	43	V; el: IBVS 4284
V1005 Her	n	55668.9289	0.0002	+0.0661	13	V: el: IBVS 4611: d=0.017d
V1024 Her	r D	55665.8084	0.0019	+0.0380	12^{-3}	V
V1025 Her	Р р	55696.8180	0.0003	-0.0256	17	V: el: IBVS 5894
V1026 Her	р р	55723.8339	0.0003	+0.0005	48	V: el: $2454571.819 + 0.829384 * E$
V1031 Her	Р р	55698 8445	0.0004	+0.0000	40	V: el: IBVS 5894
V1033 Hor	ę	55712 7570	0.0004	-0.0106	-10 22	V. el. IBVS 5146
A 1000 11C1	n	55712.0028	0.0000	_0.0100	10	V. d=0.02d
V1024 Her	р	55679 0009	0.0013	-0.0128 ± 0.0060	19 15	v, u=0.02u V. al. IBVS 5991
V1034 Her V1035 Her	р	55711 9490	0.0008	±0.0000	-10 10	V. cl. IDVS 5060
V 1055 Her V1026 Her	P ~	55679 0002	0.0002	± 0.0248	⊿∄ ງງ	$\mathbf{v}_{1} \in \mathbf{I} = \mathbf{I} = \mathbf{V} \times \mathbf{S} = \mathbf{U} \times \mathbf{U} = \mathbf{U} \times \mathbf{S}$
V 1030 Her	р	55072.8823	0.0011	+0.0038	33	V; eI: IBVS 5140
V 1038 Her	р	00/12.7953	0.0004	+0.0095	30	V; el: IBVS 5146
V 1039 Her	\mathbf{S}	55672.8779	0.0011	-0.0017	18	V; el: BBSAG Bull. 128, 10
V1040 Her	\mathbf{S}	55672.8709	0.0007	+0.0059	28	V; el: $2453588.626 + 1.113673 * E$
V1041 Her	р	55726.7817	0.0007	+0.0340	45	V; el: IBVS 5894
V1042 Her	р	55672.9009	0.0003	-0.0258	24	V; el: IBVS 4998
V1044 Her	р	55721.7654	0.0003	-0.0044	24	V; el: IBVS 5192
V1045 Her	р	55721.8466	0.0013	+0.0010	42	V; el: $2454238.450 + 0.510284 * E$
V1046 Her	р	55727.7087	0.0014	-0.0673	51	V; el: $2454627.686 + 4.151283 * E$
V1047 Her	\mathbf{S}	55723.8219	0.0007	-0.0103	26	V; el: IBVS 5192

Table 1: Minima of eclipsing binaries (continued)

		Table 1:	Minim	a or ecups	sing	binaries (continued)
Variable	Type	e HJD 24	±	O - C	n	Remarks
V1049 Her	р	55737.7992	0.0006	-0.0036	45	V; el: IBVS 5894; $d=0.078d$
V1053 Her	\mathbf{S}	55722.7746	0.0004	+0.0085	29	V; el: BBSAG Bull. 128, 10
V1054 Her	р	55722.713	0.003	-0.003	17	V; el: $2455020.708 + 0.648207 * E$
V1057 Her	\mathbf{S}	55727.8982	0.0010	-0.1874	50	V; el: OEJV 107
V1061 Her	\mathbf{S}	55736.7355	0.0008	-0.0126	31	V; el: 2453481.786 + 2.596387 * E
V1095 Her	р	55727.7941	0.0002	-0.0267	40	V
	s	55736.7252	0.0003	-0.0263	26	V
V1096 Her	n	55736.8020	0.0004	+0.0260	25	V
V1097 Her	P S	55727 8163	0.0007	+0.0071	$\frac{-0}{27}$	V
V1104 Her	n	55741 7615	0.0004	-0.0045	19	V
11011101	P c	55741 8735	0.0001	-0.0064	18	V
V1110 Hor	n	55608 7671	0.0005	± 0.0004	51	V. al. IBVS 5045
V1113 Hor	P n	55721 7730	0.0000	-0.0554	45	V: non circ
V 1155 1161	P	55737 8240	0.0002	-0.0304	40	v, non-ene.
CCC 201 742	5	55669 0106	0.0012	-0.0420	41	V d. $9452910.940 \pm 0.299012 * E. d = 0.027d$
GSC 381-745	s	55008.9190	0.0005	-0.0115	20	V; el: 2453619.649 ± 0.566912 · E; d=0.027d
GSC 394-1770	р	55710.8035	0.0006	+0.0069	30	V; el: $2453128.700 + 0.410950$ · E
GSC 950-560	р	55667.8530	0.0004	-0.0059	32	V; el: IBVS 5894
GSC 954-418	р	55671.8874	0.0003	-0.0102	27	V; el: $2453171.737 + 0.323855 ^{+}\text{E}$
GSC 960-163	р	55697.8163	0.0005	+0.0050	32	V; el: IBVS 5945
GSC 960-1531	\mathbf{S}	55673.7483	0.0009	+0.0056	31	V; el: IBVS 5945; $d=0.034d$
$GSC \ 965-581$	\mathbf{S}	55711.8107	0.0003	+0.0032	35	V; el: IBVS 5894
GSC 967-1277	\mathbf{S}	55668.8519	0.0009	+0.0103	27	V; el: IBVS 5945
$GSC \ 968-876$	\mathbf{S}	55673.8064	0.0003	+0.0050	54	V; el: IBVS 5945; $d=0.023d$
GSC 971-933	\mathbf{p}	55671.8793	0.0005	+0.0043	32	V; el: $2454186.838 + 0.413429 * E$
GSC 973-1212	р	55698.7668	0.0004	-0.0027	29	V; el: IBVS 5894; $d=0.027d$
	\mathbf{S}	55698.9015	0.0015	-0.0018	16	V
GSC 985-533	\mathbf{S}	55725.8066	0.0005	+0.0079	29	V; el: IBVS 5894
GSC 987-1570	\mathbf{p}	55730.7231	0.0011	-0.0435	25	V; el: $2454357.529 + 3.238768 * E$
GSC 987-1582	р	55672.8901	0.0008	-0.0032	29	V; el: IBVS 5945
GSC 990-480	\mathbf{S}	55722.7892	0.0003	-0.0000	33	V; el: IBVS 5894
$GSC \ 1505-565$	\mathbf{S}	55668.8723	0.0007	+0.0186	24	V; el: IBVS 5945
GSC 1537-1557	7 s	55725.8108	0.0005	+0.0072	24	V; el: IBVS 5505
GSC 1538-2200)р	55728.7706	0.0006	-0.0138	26	V; el: 2454616.844 + 0.260774 * E
	s	55728.909	0.005	-0.006	16	V
GSC 1539-326	р	55720.8041	0.0003	+0.0101	37	V; el: IBVS 5894
GSC 1540-1433	3 p	55737.8485	0.0004	-0.0022	25	V; el: IBVS 5945; d=0.036d
GSC 1546-1276	3 D	55736.7766	0.0003	-0.0010	28	V: el: $2454617.697 + 0.333755 * E: d=0.023d$
GSC 1550-2362	2 5	55736.7673	0.0004	+0.0054	25	V: el: IBVS 5945
GSC 1577-974	s	55712.8138	0.0004	+0.3047	49	V: el: $2453500.775 + 7.146152 * E$: non-circ.
GSC 2043-227	p	55668.8903	0.0004	+0.0105	16	V: el: IBVS 5894: d=0.023d
GSC 2074-1021	r I n	55726.7833	0.0015	+0.0050	34	V: el: $2453881.705 \pm 0.394837 * E$
GSC 2094-2056	- P 3 5	55728 7666	0.0009	-0.0010	22	V: el: $2454175904 \pm 0.311601 * e$
GSC 3080-1410) 5	55712 7690	0.0002	-0.0010	42	V. el: A I 133 255
SV Hva	n	55648 7450	0.0020	-0.0079	33	V: el: $2454491772 + 3402885 * E: d=0.078d$
TV Hya	P n	55653 648	0.0020	-0.009	32	V: el: $2454539.682 \pm 4.660985 * E: d=0.09d$
IIW Hya	P n	55632 6818	0.000	± 0.003	26	V. ol: MVS 12 48
VW Hya	P n	55634 7941	0.0003	+0.0247	20	V, e1. WV 0 12, 40 V. el. 9454771 834 + 2.606452 * F
WV Hya	р ъ	55564 8072	0.0001	+0.0204	04 02	V, e. 2454771.054 + 2.090452 E
	p	55504.0975	0.0002	+0.0297	20 16	V V
АГ Пуа	р	55577.9650	0.0008	+0.3048	10	
AV Hya	р	00012.8189	0.0006	-0.0931	29	v; el: Ap55 76, 173
CQ Hya	р	55634.6584	0.0002	+0.1926	28	V
CU Hya	р	55640.7189	0.0002	-0.2202	30	V; d=0.036d
DF Hya	\mathbf{S}	55571.9381	0.0002	+0.0013	14	V; el: $2454126.697 + 0.330605 * E$
DI Hya	р	55643.7061	0.0005	-0.0277	19	V; d=0.019d
EU Hya	р	55640.6550	0.0008	-0.0322	19	V
EZ Hya	\mathbf{S}	55575.8698	0.0004	+0.0120	24	V; el: $2454596.525 + 0.449751 * E$; d=0.029d
	\mathbf{S}	55653.6781	0.0007	+0.0134	18	V
FG Hya	\mathbf{S}	55632.7353	0.0005	+0.0092	28	V; el: $2453779.667 + 0.327830 * E$; d=0.041d
GK Hya	р	55638.685	0.005	-0.174	38	V; d=0.131d
GN Hya	\mathbf{S}	55631.7125	0.0003	-0.1066	18	\mathbf{V}

 Table 1: Minima of eclipsing binaries (continued)

		Table 1:		a or ecups	sing i	binaries (continued)
Variable	Туре	e HJD 24	\pm	O - C	n	Remarks
V409 Hya	р	55575.8500	0.0008	+0.0345	18	V
V410 Hya	\mathbf{p}	55580.9173	0.0004	-0.0231	39	V; el: $2454824.772 + 3.150702 * E$; d=0.062d
	р	55637.6345	0.0002	-0.0186	32	V; additional pulsation?
V412 Hya	р	55575.8601	0.0002	-0.0136	21	V
GSC 196-894	р	55564.8967	0.0004	+0.0123	33	V; el: IBVS 5920
GSC 201-1119	р	55632.6842	0.0004	+0.0023	28	V; el: $2453872.524 + 0.416113 * E$
GSC 203-352	s	55629.6729	0.0003	+0.0032	24	V; el: $2454140.715 + 0.414462 * E$
	p	55630.7095	0.0003	+0.0036	49	V
	r	55631.7442	0.0004	+0.0022	22	V
GSC 213-980	n	55640.7305	0.0003	-0.0078	33	V: el: 2453904.461 + 0.415278 * E
GSC 217-849	P	55572 8693	0.0005	± 0.0018	18	V: el: IBVS 5945
050 211-045	n	55573 0066	0.0000	+0.0004	10	V, Cl. IDV5 0540
	p n	55653 7034	0.0005	+0.0000	20	v V
CSC 220 70	P	55566 0266	0.0000	+0.0039	29 91	V V ob 9454408 714 + 0.261185 * E
GSC 220-70	s	55500.9200	0.0003	+0.0079	21	V, el. 2454498.714 + 0.501185 * E
000 001 071	s	55007.0951	0.0001	+0.0058	39	
GSC 221-871	\mathbf{s}	55643.7492	0.0007	+0.0018	26	V; el: $2454167.619 + 0.446973 * E$
GSC 230-1627	р	55668.7000	0.0007	+0.0280	31	V; el: IBVS 5894; d=0.060d
GSC 235-461	р	55643.6924	0.0003	+0.0395	28	V; el: IBVS 5894
GSC 238-2372	\mathbf{p}	55579.8854	0.0005	+0.0082	27	V; el: $2454235.576 + 0.385297 * E$
	р	55652.7046	0.0003	+0.0062	30	V
GSC 4848-461	р	55630.6935	0.0015	+0.0058	45	V; el: $2454906.594 + 0.472646 * E$; d=0.024d
GSC 4853-30	р	55647.6942	0.0004	-0.0074	33	V; el: $2453819.689 + 2.084393 * E$; d=0.017d
$GSC \ 4860-1651$	\mathbf{S}	55563.9638	0.0013	+0.0182	18	V; el: $2453708.843 + 0.990709 * E$
GSC 4861-1380	р	55630.6640	0.0002	-0.0102	28	V; el: $2454780.816 + 0.383510 * E$
GSC 4867-982	s	55571.8447	0.0002	-0.0030	20	V; el: $2453755.681 + 0.348559 * E$; d=0.018d
GSC 4870-779	р	55631.7231	0.0007	+0.0102	20	V; el: $2454591.499 + 0.374987 * E$; d=0.033d
GSC 4875-1418	p	55565.8863	0.0003	-0.0084	17	V: el: IBVS 5894
GSC 4878-113	r D	55565.9013	0.0003	-0.0035	31	V: el: $2454587.579 + 1.270553 * E: d=0.027d$
GSC 4879-1416	р р	55639 6727	0.0006	+0.0060	17	V: el: $2454960529 \pm 0.559421 * E$
GSC 4881-888	P	55575 9390	0.0000	+0.0000 +0.0192	1/	V; el: $2453028\ 894\ \pm\ 0\ 265578\ *\ E$
000-000-000	n	55663 7161	0.0004	± 0.0192	10	V, Cl. 2405020.004 0.200010 E
CSC 4882 117	p n	55572 8850	0.0000	+0.0227	25	V = 0.2452114511 + 2.021716 * F
GSC 4002-117	P	55572.8859	0.0001	-0.0014	20	V, el. 2455114.511 + 2.051710
GSC 4002-400	p	55560.6594	0.0011	+0.0118	20	V, el. $10 V_0 5 5945$
GSC 4004-1551	р	00074.0900 FFCF4 7004	0.0005	+0.0008	04 91	V; el: 2454797.844 ± 0.574515 E; d=0.047d
000 4007 1140	р	55054.7224	0.0008	+0.0005	31 19	
GSC 4887-1149	\mathbf{s}	55643.6847	0.0003	-0.0093	13	V; el: IBVS 5945
GSC 4893-1294	р	55663.642	0.003	-0.004	14	V; el: $2453794.696 + 1.011884 * E$
GSC 4894-2310	\mathbf{p}	55571.8917	0.0002	-0.0072	19	V; el: $2454541.655 + 0.897425 * E$
	\mathbf{S}	55647.7240	0.0003	-0.0073	17	V
GSC 4897-1114	р	55580.8805	0.0005	+0.0044	36	V; el: $2454180.632 + 0.564387 * E$; d=0.045d
	р	55671.7462	0.0008	+0.0038	33	V
GSC 4897-1250	\mathbf{S}	55577.9189	0.0004	+0.0120	25	V; el: $2454229.549 + 0.354691 * E$
	р	55654.7105	0.0004	+0.0130	26	V
GSC 5426-1920	р	55621.6835	0.0003	-0.0092	35	V; el: $2453403.702 + 0.524844 * E$
GSC 5427-2330	\mathbf{S}	55563.9312	0.0003	+0.0041	13	V; el: $2454798.797 + 0.307590 * E$
GSC 5428-75	\mathbf{S}	55632.7463	0.0004	+0.0107	20	V; el: $2454520.734 + 0.385643 * E$; d=0.024d
GSC 5429-1473	\mathbf{S}	55632.6947	0.0005	-0.0049	27	V; el: $2454365.898 + 0.318572 * E$
GSC 5441-60	р	55634.6401	0.0007	-0.0319	23	V; el: $2454534.577 + 0.610147 * E$
GSC 5447-940	р	55630.6957	0.0003	+0.0129	46	V; el: IBVS 5894
GSC 5449-1194	р	55572.8764	0.0007	+0.0252	27	V; el: $2453420.668 + 0.755152 * E$
	р	55656.6969	0.0007	+0.0239	40	V
GSC 5454-1746	p	55566.9052	0.0007	+0.0038	33	V; el: $2454917.673 + 0.403749 * E$; d=0.035d
GSC 5457-59	p	55580.9034	0.0005	+0.0111	20	V: el: IBVS 5945: d=0.017d
GSC 5458-351	p	55577.9072	0.0003	-0.0042	12	V: el: IBVS 5945
GSC 5463-45	г D	55574.8694	0.0004	-0.0185	27	V: el: IBVS 5945: $d=0.028d$
GSC 5463-753	r D	55637.7005	0.0008	-0.0105	43	V; el: IBVS 5894; $d=0.05d$
GSC 5467-1483	Р р	55667 6744	0.0003	-0.0056	20	V: el: IBVS 5804
GSC 5472 602	Р с	55580 8800	0.0000	_0.0140	23 26	$V \cdot \rho = 2453650 870 \pm 0.305849 * F$
GSC 5472 066	o n	55580 0221	0.0004	±0.0149	20 26	V. al. IRVS 5045
000 0472-900	ъ	55640 6014	0.0002	± 0.0010	20 94	v, el. 1Dvo 0940 v
	р	00049.0914	0.0005	+0.0007	54	V

Table 1: M	inima of	eclipsing	binaries ((continued))
------------	----------	-----------	------------	-------------	---

		Table 1	: Minim	a of eclips	sing l	binaries (continued)
Variable	Гуре	e HJD 24	\pm	O - C	n	Remarks
GSC 5472-1583	\mathbf{S}	55574.9376	0.0004	+0.0062	23	V; el: $2453871.500 + 0.332604 * E$; d=0.022d
GSC 5487-197	\mathbf{p}	55644.7524	0.0003	+0.0004	33	V; el: $2454297.474 + 0.577735 * E$; d=0.034d
GSC 5487-801	\mathbf{p}	55585.8734	0.0002	-0.0147	38	V; el: $2454295.472 + 0.636928 * E$
	р	55654.6620	0.0008	-0.0144	23	\mathbf{V}
GSC 5488-3	\mathbf{S}	55588.8280	0.0006	-0.0081	23	V; el: $2453419.707 + 2.400807 * E$
	р	55647.6452	0.0002	-0.0107	16	V
GSC 5489-963	\mathbf{S}	55589.9009	0.0004	-0.0042	21	V; el: $2453526.549 + 0.418743 * E$; d=0.033d
	\mathbf{S}	55665.6919	0.0004	-0.0057	19	V
GSC 5489-511	\mathbf{S}	55575.8625	0.0004	+0.0049	24	V; el: $2453887.574 + 0.441671 * E$
	\mathbf{s}	55652.7142	0.0005	+0.0061	23	V; d=0.036d
GSC 5495-765	р	55579.9005	0.0004	+0.0082	18	V; el: 2453801.690 + 0.352189 * E
	\mathbf{S}	55582.8923	0.0007	+0.0064	15	V
	\mathbf{S}	55660.7288	0.0003	+0.0092	14	V
GSC 5497-221	\mathbf{S}	55582.8756	0.0009	+0.0054	20	V; el: $2454629.453 + 0.276473 * E$
	р	55665.6783	0.0004	+0.0045	15	V
GSC 6011-1986	р	55629.6948	0.0002	-0.0017	49	V; el: $2453715.789 + 1.127154 * E$
GSC 6013-1086	\mathbf{s}	55571.9079	0.0006	+0.0161	18	V; el: $2454147.629 + 0.314789 * E$
$GSC \ 6014-855$	р	55634.7354	0.0009	+0.0011	33	V; el: 2454232.557 + 0.501494 * E
GSC 6027-1009	р	55572.8800	0.0006	-0.0032	29	V; el: $2454865.709 + 0.361541 * E$
GSC 6029-311	р	55574.8794	0.0005	+0.0012	28	V; el: IBVS 5945; d=0.036d
GSC 6046-312	\mathbf{s}	55582.8903	0.0008	-0.0028	17	V; el: $2454502.851 + 0.299471 * E$
Y leo	р	55640.7222	0.0001	-0.0181	34	V
RW Leo	\mathbf{p}	55603.9048	0.0005	-0.1234	28	\mathbf{V}
UX Leo	р	55600.8816	0.0003	-0.0047	20	V; el: $2453869.580 + 1.007159 * E$
UZ Leo	\mathbf{s}	55591.8920	0.0003	-0.0004	41	V; el: $2454131.728 + 0.618059 * E$
VZ Leo	р	55574.8775	0.0002	-0.0632	27	V
WZ Leo	p	55585.8787	0.0002	0	35	V; el: Acta Astr. 54, 207
XX Leo	s	55637.633	0.003	-0.019	43	V; el: IBVS 5945
XY Leo	р	55637.7055	0.0018	+0.0256	18	V; el: IBVS 5945
XZ Leo	p	55649.7451	0.0003	+0.0534	34	V; d=0.023d
AL Leo	p	55588.8908	0.0009	+0.0091	31	V; el: IBVS 3401
	p	55654.7201	0.0006	+0.0123	26	V
AM Leo	р	55591.8739	0.0014	+0.0116	16	V
	p	55668.6920	0.0003	+0.0122	19	V; $d=0.022d$
AP Leo	p	55591.8622	0.0004	-0.0308	24	V
	\mathbf{s}	55671.6946	0.0006	-0.0297	29	V
BL Leo	р	55600.8850	0.0004	-0.0290	14	V
	s	55673.7660	0.0005	-0.0271	30	V; $d=0.016d$
BW Leo	р	55603.9666	0.0003	-0.1273	25	V
	p	55666.7163	0.0023	-0.1007	31	V
CE Leo	\mathbf{s}	55603.8722	0.0004	-0.0069	23	V
	\mathbf{s}	55666.6799	0.0004	-0.0090	18	V
DU Leo	р	55649.7018	0.0005	+0.0013	18	V; el: IBVS 3999
GV Leo	р	55589.8205	0.0008	-0.0103	16	V; el: $2454531.701 + 0.266733 * E$; d=0.027d
	\mathbf{s}	55589.9539	0.0003	-0.0103	21	V
	р	55671.7056	0.0006	-0.0122	17	V; $d=0.026d$
HI Leo	\mathbf{s}	55591.8746	0.0003	+0.0013	29	V; el: IBVS 5455
	р	55672.7336	0.0003	+0.0030	17	V
HS Leo	р	55600.9103	0.0003	+0.0591	15	V; el: Per. Zv. 25, 2
	\mathbf{s}	55672.6730	0.0003	+0.0601	12	V
GSC 234-960	р	55574.8903	0.0004	-0.0045	28	V; el: $2454917.615 + 0.391471 * E$; d=0.026d
	s	55668.6530	0.0005	+0.0009	12	V
GSC 262-948	р	55652.6780	0.0011	+0.0526	20	V; el: IBVS 5894
GSC 263-585	p	55617.9055	0.0001	-0.0136	35	V; el: IBVS 5894
$GSC \ 265-617$	\mathbf{s}	55591.8581	0.0003	-0.0024	24	V; el: IBVS 5945
	\mathbf{s}	55672.7316	0.0005	-0.0019	22	\mathbf{V}
GSC 267-162	р	55604.8553	0.0007	+0.0235	37	V; el: IBVS 5945
	р	55649.7228	0.0003	+0.0212	33	V; d=0.080d
GSC 270-9	р	55615.8447	0.0005	+0.0006	18	V; el: $2453461.709 + 0.581727 * E$

 Table 1: Minima of eclipsing binaries (continued)

		Table 1:	Minima	a of eclips	sing l	binaries (continued)
Variable	Туре	e HJD 24	±	O - C	n	Remarks
GSC 270-593	\mathbf{S}	55600.8940	0.0008	+0.0032	11	V; el: IBVS 5945
	р	55672.6899	0.0002	+0.0029	15	V
GSC 270-777	p	55605.9005	0.0002	-0.0302	28	V; el: IBVS 5945
	n	55672.7242	0.0008	-0.0329	24	V
GSC 824-1304	r n	55575 9475	0.0001	+0.0118	30	V el IBVS 5894
050 021 1001	P D	55647 6968	0.0001	± 0.0110	27	V
CSC 997 1011	P	55595 9960	0.0002	+ 0.0021	40	$V_{\rm tob} = 2454176557 \pm 2.240526 * \Gamma$
GSC 627-1011	s	55565.6600	0.0005	+0.0009	40	V, el. $2454170.557 + 2.249520$ E
GSC 828-1721	р	55052.0544	0.0010	+0.0171	14	V; el: IBVS 5945
GSC 829-1040	р	55579.8585	0.0004	+0.0036	22	V; el: $2454493.814 + 0.776298 + E; d=0.042d$
	р	55656.7150	0.0006	+0.0066	41	V
GSC 832-1401	\mathbf{p}	55585.8967	0.0002	-0.0052	15	V; el: $2453907.482 + 0.379733 * E$
	р	55668.6776	0.0004	-0.0061	15	V
GSC 835-652	р	55585.8646	0.0006	+0.0112	14	V; el: IBVS 5945
	\mathbf{S}	55668.6534	0.0013	+0.0115	18	\mathbf{V}
GSC 840-216	р	55644.7239	0.0003	+0.0041	23	V; el: IBVS 5945
GSC 847-367	\mathbf{s}	55602.8745	0.0011	+0.0149	16	V; el: IBVS 5945
GSC 851-768	р	55600.8657	0.0007	+0.0036	20	V; el: IBVS 5945
GSC 859-1106	p	55603.8346	0.0004	+0.0089	28	V: el: IBVS 5945
	n	55666.7245	0.0006	+0.0074	23	V
GSC 870-349	P D	55604 9050	0.0005	-0.0161	34	V: el: IBVS 5894
000 010-040	P n	55666 6050	0.0000	-0.0160	01 99	V, Cl. IDV5 5054
CSC 1410 420	P n	55652 7087	0.0002	-0.0100	22	$V_{\rm v}$ at IDVS 5045, d=0.024d
GSC 1410-459	p	55052.7087	0.0003	-0.0007	20	V, el. IDVS 5945, d=0.054d
GSC 1417-401	s	55579.8221	0.0004	+0.0046	10	v; el: IBv5 5945
	р	55579.9390	0.0003	+0.0039	11	V
	\mathbf{S}	55649.6904	0.0003	+0.0043	13	V
GSC 1419-666	\mathbf{p}	55589.8473	0.0003	+0.0080	25	V; el: IBVS 5945; $d=0.026d$
	\mathbf{S}	55654.6763	0.0005	+0.0090	14	V
GSC 1422-142	\mathbf{S}	55637.6660	0.0003	+0.0058	23	V; el: IBVS 5945
GSC 1429-137	р	55591.8629	0.0004	+0.0066	19	V; el: IBVS 5945
	р	55668.7204	0.0004	+0.0058	32	\mathbf{V}
GSC 1434-1034	4 p	55591.8629	0.0002	-0.0041	27	V; el: IBVS 5945; d=0.021d
	р	55671.6751	0.0005	-0.0040	21	V; d=0.021d
GSC 1441-914	s	55604.8653	0.0003	-0.0003	15	V: el: IBVS 5945
	р	55674.7584	0.0005	-0.0011	26	, V
GSC 1443-87	r	55604.8643	0.0006	-0.0242	24	V: el: IBVS 5945
GSC 1963-488	n	55574 8993	0.0001	-0.0007	30	V: el: $2453809558 \pm 0.427030 * E$
000 1000 100	P	55644 7200	0.0001	± 0.0006	30	V: d=0.034d
CSC 1060 570	5 7	55501 0200	0.0000	+0.0000	10	$V_{1,0} = 0.054$
GSC 1909-379	р	55591.9299	0.0005	+0.0243	14	v, el: 1Dv5 5945
000 1071 010	р	55005.7558	0.0005	+0.0203	14	
GSC 1971-916	р	55652.7207	0.0002	+0.0171	21	V; el: IBVS 5945
GSC 1981-237	\mathbf{s}	55602.8525	0.0009	+0.0100	12	V; el: IBVS 5945
GSC 4920-943	р	55600.9400	0.0005	+0.0083	20	V; el: $2453523.504 + 0.396986 * E$; d=0.02d
GSC 4921-819	р	55605.8849	0.0005	-0.0081	33	V; el: $2454937.689 + 0.576038 * E$
	р	55672.7067	0.0011	-0.0068	27	V
GSC 4936-907	\mathbf{S}	55602.878	0.003	+0.005	14	V; el: $2454540.808 + 0.277193 * E$
T LMi	р	55634.6744	0.0002	-0.1038	45	V
RT LMi	\mathbf{S}	55583.9049	0.0005	-0.0079	29	\mathbf{V}
XY LMi	\mathbf{S}	55583.9019	0.0003	-0.0194	38	V; el: IBVS 5411; d=0.043d
	\mathbf{s}	55654.6774	0.0004	-0.0200	23	V; d=0.044d
GSC 2515-839	р	55603.9216	0.0003	+0.0046	29	V: el: OEJV 83
GSC 5337-174/	1 s	55566 6559	0.0004	-0.0117	20	V: el· IBVS 5894
GSC 5354-334	- 0 n	55588 6620	0.0019	-0.0424	<u>4</u> 6	V. el. 2454815 668 \pm 8 312220 * F
CSC 5261 545	P	55580 6700	0.0012	10.0424	10	V. al. IBVS 5804
CSC = 001-040	р Р	55571 6470	0.0002	± 0.0002	10	v_{1} eff. 1D v_{12} 3094 V_{1} of 9454790 979 + 0.961590 * E
GBC 9910-1008	у р	000/1.04/2	0.0003	+0.0003	20	v; ei: $2404729.878 + 0.301582$ " E
NOV 1024	\mathbf{s}	000/4./190	0.0003	+0.0052	20 10	
NSV 1864	р	55565.6967	0.0007	+0.0141	18	V; el: 1BVS 5920; d=0.05d
SS Lib	р	55660.8829	0.0003	-0.0040	40	V; el: $2453828.838 + 1.438029 * E$
TY Lib	\mathbf{p}	55654.9085	0.0002	-0.0296	27	V; d=0.047d
VZ Lib	\mathbf{S}	55652.9091	0.0006	-0.0022	26	V; el: $2453883.669 + 0.358255 * E$
FU Lib	р	55656.8359	0.0004	-0.0036	17	V; el: $2453858.814 + 0.780393 * E$

 Table 1: Minima of eclipsing binaries (continued)

		Table 1:	Minima	a of eclips	sing t	binaries (continued)
Variable	Type	e HJD 24	±	O - C	n	Remarks
GK Lib	р	55653.8517	0.0002	-0.0130	32	V; el: $2454650.684 + 2.116415 * E$
GSC 4987-740	р	55660.8425	0.0007	+0.0018	30	V; el: $2453794.858 + 0.580399 * E$; d=0.044d
GSC 5028-828	р	55649.8628	0.0014	+0.0038	34	V; el: $2454934.790 + 0.917932 * E$; d=0.072d
GSC 5569-173	р	55663.8550	0.0005	+0.0093	32	V; el: $2454492.852 + 1.910267 * E$
GSC 5572-705	р	55649.8942	0.0003	-0.0187	35	V; el: $2454552.814 + 0.368525 * E$; d=0.027d
	\mathbf{S}	55695.7848	0.0003	-0.0094	33	V
GSC 5600-923	р	55654.8973	0.0004	+0.0022	21	V; el: $2454539.822 + 0.385705 * E$; d=0.016d
GSC 5605-700	\mathbf{S}	55673.8178	0.0007	+0.0016	45	V; el: $2453836.831 + 0.417734 * E$
$GSC \ 6155-352$	р	55649.8525	0.0011	-0.0112	35	V; el: $2453755.848 + 2.422015 * E$
GSC 6171-209	р	55710.7314	0.0006	-0.0042	33	V; el: $2453521.658 + 1.255205 * E$
NSV 7292	р	55654.8299	0.0006	-0.0159	11	V; el: ASAS; $d=0.019d$
RY Lyn	р	55648.7566	0.0001	-0.0347	14	V
RZ Lyn	р	55639.6787	0.0004	-0.1247	21	V
SW Lyn	\mathbf{S}	55623.6637	0.0015	+0.0650	28	V
UU Lyn	р	55577.9183	0.0002	-0.0085	21	V; d=0.027d
UV Lyn	\mathbf{S}	55637.6985	0.0003	+0.0758	43	V
AH Lyn	р	55648.6848	0.0004	-0.0101	18	V; el: AJ 87, 314
BG Lyn	р	55564.8391	0.0003	-0.0059	31	V; el: AJ 87, 314; d=0.048d
CD Lyn	р	55623.682	0.005	-0.022	5	V; el: IBVS 4911
CL Lyn	р	55643.785	0.005	-0.009	29	V; el: Hipparcos
DE Lyn	\mathbf{S}	55630.7346	0.0002	+0.0114	27	V; el: IBVS 5871; $d=0.021d$
DY Lyn	р	55640.7432	0.0004	+0.0003	35	V; el: IBVS 5894
DZ Lyn	р	55648.7006	0.0009	-0.0102	31	V; IBVS 5431
GSC 3421-1871	s	55563.9352	0.0007	+0.0128	31	V; el: OEJV 83
	р	55653.7064	0.0005	+0.0150	22	\mathbf{V}
EV Lyr	р	55730.8725	0.0015	+0.1310	16	V; el: JAAVSO 36, 68
V412 Lyr	р	55710.7507	0.0009	+0.2174	26	V
V571 Lyr	\mathbf{S}	55741.7660	0.0003	+0.0185	39	V; el: JAAVSO 39, 102
RU Mon	\mathbf{S}	55588.7289	0.0004	-0.5588	45	V; non-circ.
UV Mon	\mathbf{S}	55609.6636	0.0014	-0.0658	18	V
AY Mon	р	55603.6877	0.0005	+0.0735	31	V; d=0.062d
BB Mon	\mathbf{S}	55602.6461	0.0002	+0.0031	25	V; el: $2454757.841 + 1.465398 * E$
DD Mon	р	55602.6916	0.0001	-0.0030	31	V; el: $2454149.702 + 0.568019 * E$
FH Mon	р	55614.6711	0.0005	-0.1002	33	V; d=0.033d
FS Mon	р	55621.7271	0.0002	-0.0128	24	V
HM Mon	\mathbf{S}	55607.6665	0.0015	+0.0107	27	V; el: IBVS 5506
KR Mon	р	55623.6907	0.0005	+0.0099	34	V; el: IBVS 5894
NS Mon	\mathbf{S}	55603.6400	0.0008	+0.0122	17	V; el: IBVS 4143
V384 Mon	р	55614.6630	0.0020	-0.0302	35	V
V404 Mon	р	55609.6528	0.0007	+0.0190	28	V
V442 Mon	р	55604.6601	0.0003	+0.0358	38	V
V453 Mon	\mathbf{S}	55609.6517	0.0003	+0.0237	29	V
V454 Mon	р	55609.6711	0.0010	+0.0895	33	V
V455 Mon	\mathbf{S}	55605.6381	0.0004	+0.0596	16	V
V457 Mon	\mathbf{S}	55609.6837	0.0005	-0.0132	23	V
V458 Mon	р	55605.7416	0.0002	+0.1329	28	V
V494 Mon	\mathbf{S}	55600.6582	0.0002	+0.0044	33	V; el: $2454856.620 + 1.677641 * E$
V496 Mon	р	55604.7268	0.0002	-0.0338	21	V
V515 Mon	р	55604.7051	0.0003	-0.0395	31	V
V524 Mon	\mathbf{S}	55603.6973	0.0010	+0.1257	14	V
V530 Mon	р	55607.7412	0.0003	+0.0110	22	V; el: $2453482.499 + 0.525527 * E$; d=0.035d
V753 Mon	\mathbf{p}	55617.646	0.003	+0.001	12	V; el: 2454548.593 + 0.677044 * E
V864 Mon	\mathbf{s}	55621.7187	0.0004	-0.0372	27	V; el: IBVS 5425
A072609-0947.3	3р	55608.6908	0.0004	-0.0021	26	V; el: 2454821.724 + 0.303030 * E
GSC 133-1076	р	55600.7485	0.0005	+0.0127	16	V; el: 2453457.567 + 0.485759 * E
$\mathrm{GSC}\ 140\text{-}964$	\mathbf{S}	55588.6470	0.0003	+0.0066	19	V; el: 2454935.506 + 0.298303 * E
$\mathrm{GSC}\ 145\text{-}685$	\mathbf{p}	55600.6811	0.0005	+0.0221	38	V; el: IBVS 5920
$GSC \ 163-1374$	\mathbf{p}	55617.6990	0.0003	-0.0077	33	V; el: 2454586.484 + 0.335357 * E
$GSC \ 174-675$	\mathbf{S}	55605.7214	0.0003	+0.0019	23	V; el: 2453818.583 + 0.262409 * E
GSC 4785-147	\mathbf{S}	55579.6710	0.0004	+0.0231	29	V; el: $2454764.832 + 1.300584 * E$

Table 1: Minima of eclipsing binaries (continued)

		Table 1:	Minim	a or ecups	sing i	Dinaries (continued)
Variable	Гуре	$HJD \overline{24}$	±	$O-\overline{C}$	n	Remarks
GSC 4800-1651	\mathbf{p}	55602.7078	0.0006	+0.0007	45	V; el: $2454194.591 + 1.223385 * E$
GSC 4808-2578	р	55605.6621	0.0009	+0.0085	34	V; el: 2454159.648 + 0.540159 * E
GSC 4811-667	р	55608.7106	0.0005	+0.0308	35	V; el: 2454499.659 + 2.691798 * E
GSC 4815-1407	s	55621.7245	0.0007	+0.0189	30	V; el: 2454090.723 + 1.043259 * E
GSC 4822-2853	р	55585.7262	0.0009	-0.0816	37	V; el: 2452625.8 + 5.95575 * E; non-circ.
GSC 4826-411	p	55614.6822	0.0001	+0.0047	14	V: el: IBVS 5871
GSC 4827-2862	s	55607.6820	0.0004	-0.0001	17	V: el: 2454949.501 + 0.259484 * E
GSC 4831-2108	S	55616 6966	0.0002	+0.0033	19	V; el: $2454908.672 \pm 0.355879 * E$
CSC 4831 2282	n	55615 7150	0.0002	-0.0183	10	V: al: $2454468700 \pm 0.360412 * \text{F}: d=0.04d$
CSC 4830 2026	P n	55638 7540	0.0004	0.0100	22	V_{1} ol: 2454302 861 + 0.045202 * F
GSC 4839-2020	P	55056.7549	0.0004	-0.0009	ออ คะ	V, el. 24545352.001 \pm 0.545252 E
GSC 4834-3203	р	55015.7314	0.0002	+0.0056	20 95	V; el: 2454572.530 ± 0.529538 · E
GSC 4830-1009	р	55023.0798	0.0015	+0.0140	30 10	V; el: $2453770.509 + 1.310927$ · E; d=0.032d
GSC 4841-1397	р	55623.6676	0.0003	-0.0020	10	V; el: $2454783.845 \pm 0.313017 \pm E$
GSC 4846-809	р	55564.8728	0.0002	-0.0058	28	V; el: $2455164.768 \pm 0.377107 ^{\pm}$ E; d=0.030d
GSC 4850-1736	\mathbf{S}	55564.8595	0.0008	-0.0001	11	V; el: IBVS 5871
GSC 4854-2084	\mathbf{S}	55629.6934	0.0003	-0.0095	30	V; el: $2454436.799 + 0.318235 * E$
GSC 4858-2028	\mathbf{S}	55563.8870	0.0015	-0.0066	15	V; el: $2453834.625 + 0.303088 * E$
GSC 5364-356	р	55588.6363	0.0002	-0.0003	21	V; el: $2454509.608 + 0.354012 * E$
GSC 5397-1223	\mathbf{p}	55615.6678	0.0007	+0.0035	22	V; el: $2454482.680 + 0.469339 * E$
GSC 5398-2032	\mathbf{S}	55607.6655	0.0006	+0.0091	28	V; el: 2453877.481 + 0.382486 * E
SW Oph	р	55673.8374	0.0007	0108	44	V; el: $2453550.616 + 2.446120 * E$; d=0.048d
SX Oph	p	55672.9167	0.0007	-0.0048	33	V
AL Oph	p	55726.7695	0.0016	-0.0389	10	V: el: IBVS 4452
V496 Oph	p	55739.8123	0.0014	+0.0289	22	V; el: BAVSR 54, 8
V1016 Oph	n	55667.8256	0.0010	-0.0028	15	V: el: $2446907.546 + 0.407152 * E: d=0.028d$
V1022 Oph	P S	55677 8047	0.0004	-0.1187	19	V: el: IBVS 5690
V1120 Oph	n	55667 8624	0.0001	-0.0032	10	V, CI. IDVS 5050
V2553 Oph	P n	55726 7723	0.0012 0.0012	± 0.0032	21	V. ol. ASAS
V2562 Oph	P	55720.1123	0.0012	+0.0080	94	V, EI. ADAD V. al. 2454216 604 + 0.272202 * E
V2505 Oph	S	55759.6295	0.0003	+0.0109	04 45	V, el. $2454510.094 \pm 0.372502 \pm 12$
V2055 Oph V2627 Oph	S	55712.7791	0.0005	-0.0117	40	V, el. 2454250.759 ± 0.450900 E
v 2057 Opn	s	55725.069	0.005	-0.008	14	V; el: 2454085.009 + 0.580175 ° E; puisator?
	р	55725.8769	0.0005	-0.0130	20	
GSC 388-1265	р	55698.7369	0.0007	-0.0075	45	V; el: OEJV 83
GSC 398-1236	\mathbf{s}	55720.7989	0.0003	+0.0018	23	V; el: IBVS 5894
GSC 403-1109	\mathbf{s}	55721.8300	0.0005	-0.0011	31	V; el: IBVS 5894
GSC 410-1013	\mathbf{S}	55711.7412	0.0004	+0.1340	27	V; el: Per. Zv. Pril. 11, 1
GSC 413-506	р	55726.8469	0.0007	+0.0130	19	V; el: $2454575.834 + 1.609790 * E$
GSC 436-1066	р	55741.7920	0.0006	+0.0039	41	V; el: IBVS 5945
GSC 978-768	\mathbf{S}	55722.7984	0.0007	+0.0034	16	V; el: $2454293.657 + 0.282076 * E$
GSC 979-1273	\mathbf{p}	55721.8469	0.0004	+0.0088	34	V; el: IBVS 5894
$GSC \ 1020-735$	р	55738.7670	0.0003	-0.0060	28	V; el: $2453904.601 + 0.460269 * E$
GSC 5044-460	р	55688.7858	0.0002	-0.0032	46	V; el: $2453098.823 + 0.493139 * E$; d=0.035d
GSC 5049-7544	р	55722.7544	0.0002	-0.0056	22	V; el: $2454144.876 + 1.153424 * E$; d=0.012d
GSC 5054-1417	p	55723.7679	0.0008	+0.0197	46	V; el: 2452770.764 + 3.351855 * E
GSC 5059-1258	s	55711.6782	0.0015	+0.0084	16	V; el: 2454559.838 + 0.349835 * E
	p	55711.8469	0.0004	+0.0023	21	V: d=0.024d
GSC 5065-829	r S	55720 8055	0.0003	-0.0056	28	V el: $2454685.578 \pm 0.309348 * E$
GSC 5076-483	n	55723 8404	0.0006	+0.0076	50	V: el: $2454380.514 \pm 0.003983 * E$
GSC 5080 2021	Р р	55736 8568	0.0000		/2	V. a). 2453852 831 \pm 2.042412 * F
GSC 5611 172	Р р	55606 8228	0.0004	_0.0010	-10 ///	V. al. 2459502.001 \pm 2.040413 E
CSC 5690 019	р	55609 7940	0.0003	0.0048	44 90	v_{1} et 2452520.401 + 2.420552 * E V. al. 2452006 740 + 0.205522 * E
GSC 3029-912	p	55050.7849	0.0004	-0.0000	30 49	v; ei: 2400300.740 \pm 0.729023 $^{\circ}$ E V: al: 0.452070.745 \pm 0.504200 $^{\circ}$ E
GSU 5030-400	р	00/11./880	0.0003	+0.0073	42	V; e1: $24258(2.(45 + 0.524390 \text{ T}))$
GSU 5640-366	р	55720.7869	0.0004	+0.0097	42	V; e1: $2454191.787 + 0.653694 + E$
GSC 6218-197	\mathbf{S}	55666.8407	0.0009	-0.0118	28	V; el: $2453522.712 + 3.612705 * E$
NSV 7727	\mathbf{s}	55671.9037	0.0008	+0.0184	25	V; el: IBVS 5945
NSV 7838	\mathbf{p}	55712.7383	0.0004	-0.0077	55	V; el: IBVS 5945
NSV 8733	\mathbf{s}	55737.7535	0.0004	-0.0061	19	V; el: IBVS 5945
DZ Ori	\mathbf{p}	55585.775	0.003	+0.007	50	V; el: Cracow Cat.
EQ Ori	\mathbf{p}	55565.7188	0.0001	-0.0399	27	V
ER Ori	\mathbf{s}	55566.6996	0.0003	+0.0941	14	\mathbf{V}

Table 1: Minima of eclipsing binaries (continued)

		Table 1:	Minim	a of eclips	sing	binaries (continued)
Variable	Type	HJD 24	±	O - C	n	Remarks
ET Ori	р	55574.6544	0.0006	-0.0031	34	V
FH Ori	р	55566.6622	0.0003	-0.3723	37	V
FK Ori	р	55583.6766	0.0002	-0.0203	43	V
FR Ori	р	55591.7138	0.0003	+0.0290	35	V
FT Ori	р	55591.7274	0.0004	+0.0179	33	V; non-circ.
	\mathbf{S}	55609.6235	0.0004	+0.5867	33	V
FZ Ori	\mathbf{S}	55582.6184	0.0010	+0.0304	23	V; el: IBVS 5554
GG Ori	р	55566.6411	0.0005	+0.0850	29	V; non-circ.
	\mathbf{S}	55582.6985	0.0003	-0.4363	49	V
GU Ori	\mathbf{S}	55575.6091	0.0005	-0.0007	18	V; el: ASAS
OS Ori	р	55580.6731	0.0002	-0.0124	39	V
QT Ori	р	55574.5958	0.0009	-0.8989	20	V
V343 Ori	р	55591.6528	0.0004	+0.0054	44	V; el: IBVS 5920
V392 Ori	р	55591.7289	0.0002	+0.0317	29	V; el: PASJ 54, 139
V517 Ori	р	55575.6758	0.0005	-0.0124	37	V; el: IBVS 5871; d=0.050d
V530 Ori	s	55589.6376	0.0013	-0.2059	40	V
V1027 Ori	\mathbf{S}	55604.6746	0.0003	+0.5509	39	V; el: IBVS 5652; non-circ.
V1848 Ori	р	55564.6447	0.0004	-0.0020	12	V: el: IBVS 5799
	s	55564.7774	0.0008	-0.0025	9	V
V1853 Ori	s	55564.6861	0.0003	-0.0118	34	V: el: IBVS 5799: d=0.036d
V1865 Ori	p	55574.6720	0.0007	+0.0434	37	V: el: IBVS 5871
GSC 104-1999	р р	55579 7126	0.0004	-0.0103	30	V: el: IBVS 5871
GSC 108-1146	р р	55563 7157	0.0005	+0.0081	26	V: el: $2454527536 \pm 0.369007 * E: d=0.026d$
GSC 122-419	P S	55571 6458	0.0003	+0.0001	23	V: el: IBVS 5945
GSC 127 710	n	55582 7753	0.0005	± 0.0011	40	V; el: IBVS 5894
CSC 143 226	P	55571 5058	0.0010	+0.0214 ±0.2414	10	V. al: $2454523.628 \pm 4.216203 * E$: non circ
050 145-220	n	55577 6601	0.0023	-0.0186	28	V, CI. 2404025.020 4.210205 E, Holl-Circ.
CSC 702 1802	P	55566 6072	0.0004	± 0.0100	20	V: al: IBVS 5403
GSC 702-1052	s n	55563 6764	0.0004	+0.0024	20	V. el. IBVS 5700
GSC 700-845	р р	55566 7110	0.0007	-0.0143	30	V_{2} el 10 V 5 5755 V_{2} el 2454881 540 + 0.620757 * F
GSC 711-49 CSC 711 1701	Р	55572 6542	0.0000	-0.0130	20	V. el: $245463736 \pm 0.344436 * \text{F} \cdot d = 0.0294$
CSC 722 457	5 10	55582 7501	0.0004	+0.0005	20	$V, el. 2454405.750 \pm 0.544450$ E, $d=0.022d$
GSC 722-457	P n	55501 6745	0.0004	+0.0014	25	V, el. OEJ V 65 $V_{1,0}, 2452108521 + 1242060 * F$
GSC 140-0 CSC 1752 084	p	55565 6705	0.0002	+0.0038	30 26	V, el. 2455108.521 \pm 1.542909 \pm E
GSC 4753-964	p	55562 7022	0.0003	+0.0005	- 30 - 97	V, el. 1DV5 5071 $V_{1,0}, 2454746 222 \pm 0.221020 * F$
GSC 4754-44	р	55562 6056	0.0002	+0.0008	21	V; el. $2454740.036 \pm 0.321969 \pm 12$ V; el. $2454522.602 \pm 1.220460 \times F$
GSC 4754-559	s	55570 7055	0.0002	+0.0010	29 29	V; el. $2454522.002 \pm 1.350409 \pm E$ V; el. $2454542.554 \pm 0.221410 \pm E$
GSC 4704-030	5	55579.7055	0.0005	-0.0019	20 25	V, el. $24545453554 \pm 0.551410 \pm E$
GSU 0007-007	р	00009.0924 EEE71 7470	0.0004	+0.0012	20 49	V; el: 2454701.800 ± 0.724509 · E
NOV 2121 DE Der	р	00071.7472 EEE70.6944	0.0009	+0.0257	45 95	V; el: OEJV 91 V: el: MVC 11 - 28
DL Per	р	00079.0044 EEECA 74CA	0.0000	+0.0208	20	V; el: MV5 11, 58
DV Fel	Р	55504.7404	0.0011	+0.0877	17	v, u=0.055u
FW Per	р	55577.7215 FFFC9.6C91	0.0005	-0.0450	41	
HV Per MC D	р	55505.0051	0.0009	-0.3051	41	V; d=0.04d
M5 Per	s	55500.0987	0.0003	-0.3003	49	V 1 0 0001
NZ Per OX D-r	р	55572.7254	0.0003	+0.0391	30	V; d=0.023d
UA Per VA40 Der	р	55571.7025	0.0015	-0.1074	10	V
V449 Per	р	55504.7249	0.0004	+0.0493	18	
V482 Per	р	55579.6804	0.0004	+0.2294	42	V; el: BAV Mitt. 68, 21
V8/1 Per	\mathbf{s}	55565.5985	0.0025	+0.1015	13	V; el: IBVS 5920; non-circ.
v 884 Per	р	00077.194	0.0003	+0.0124	26	v; ei: $2451400.00 + 12.807 \text{ TE; non-circ.}$
AV Pup	\mathbf{S}	55630.7481	0.0002	+0.0035	25	v; ei: $2454623.479 + 0.435010 * E$
v 595 Pup	p	55632.6547	0.0004	+0.0197	36	V; el: IBVS 5586
GSC 5404-4206	р р	55608.6646	0.0013	-0.0067	27	V; el: 1BVS 5894
GSC 5421-76	р	55563.8556	0.0004	-0.0023	21	V; el: 2454929.534 + 0.270040 * E
GSC 5422-1430	JS	55608.7004	0.0009	+0.0113	39	v; el: 2454179.655 + 1.505043 * E; d=0.035d
GSC 5424-55	\mathbf{p}	55621.7097	0.0005	+0.0044	34	v; el: $2454410.848 + 0.808316 * E$; d=0.058d
GSC 5435-225	\mathbf{p}	55623.7016	0.0011	+0.0117	29	V; el: $2454482.751 + 2.347611 * E; d=0.08d$
GSC 5439-620	р	55630.7373	0.0004	-0.0022	29	V; el: $2454524.653 + 0.340125 * E$; d= $0.025d$

Table 1: Minima of eclipsing binaries (continued)

		Table 1:	Minima	or ecups	ing	binaries (continued)
Variable	Туре	e HJD 24	±	O - C	n	Remarks
GSC 5998-968	\mathbf{p}	55631.7221	0.0006	+0.0086	21	V; el: $2454869.680 + 0.358604 * E$
GSC 5998-1918	\mathbf{s}	55637.6891	0.0001	+0.0007	22	V; el: $2454800.839 + 1.528492 * E$
NSV 3765	р	55615.7155	0.0002	+0.0221	39	V; el: 2453762.679 + 1.698455 * E
DE Sge	р	55728.8204	0.0007	+0.0121	41	V; el: $2453554.702 + 2.872003 * E$
GSC 6264-2407	p	55741.8375	0.0009	+0.0059	30	V; el: $2454655.655 + 1.279360 * E$
GSC 6268-928	s	55741.7909	0.0006	-0.0033	35	V: el: $2455089.631 + 1.267567 * E: d=0.030d$
V784 Sco	р	55710.7651	0.0003	+0.0125	31	V: el: 2453425.862 + 1.526313 * E
GSC 5623-1173	r D	55665.8702	0.0002	-0.0004	22	V: el: $2454246.677 + 0.636981 * E: d=0.020d$
NSV 7481	P S	55665 8612	0.0002	+0.0146	28	V: el: IBVS 5894: $d=0.015d$
GSC 5691-334	n	55738 723	0.008	0	26	V: el: $2453508829 + 4616758 * E$
AO Ser	P D	55666 9103	0.0001	-0.0140	20	V, CI. 2400000.025 1.010100 E
AO Ser	P	55656 0207	0.0001	-0.0140 -0.0016	23	V: al: $2455070.540 \pm 1.687431 * E$
ASSor	s n	55665 8632	0.0000	-0.0010	26	$V, el. 2455070.540 \pm 1.007451$ E V: el. IBVS 5045
AU Sor	p n	55656 8658	0.0004	± 0.0030	20	V_{1} el 2454600 508 + 0.386407 * F
DI Son	P n	55608 6000	0.0003	± 0.0047	00 94	V, el. 2454059.508 \pm 0.560497 E
DI Sei	р	55096.0999	0.0009	+0.0099	34	V al DDCAC Daily 199, 10
CC Ser	s	55052.9200	0.0003	+0.0073	38	V; el: BBSAG Bull. 128, 10 $V_{\rm c} = 0.0174$
UX Ser	р	00123.8023	0.0003	-0.0782	28	
V384 Ser	р	55653.8944	0.0001	+0.0001	14	V; el: IBVS 5295
V385 Ser	\mathbf{p}	55665.8279	0.0006	+0.0524	18	V; el: IBVS 5455; $d=0.031d$
V413 Ser	р	55727.7423	0.0014	-0.0197	41	V; non-circ.
	\mathbf{S}	55728.8122	0.0014	-0.0797	47	V
A182117-1415.5	бр	55739.8550	0.0013	+0.0762	46	V; el: $2454649.654 + 2.978483 * E$
$GSC \ 355-983$	р	55653.8849	0.0003	+0.0168	15	V; el: IBVS 5945
GSC 357-162	р	55653.8684	0.0005	+0.0065	20	V; el: IBVS 5894; $d=0.024d$
$GSC \ 361-795$	р	55665.8350	0.0003	+0.0020	16	V; el: $2453877.740 + 0.940112 * E$
GSC 362-302	р	55656.9023	0.0010	-0.0041	34	V; el: $2452755.885 + 1.774325 * E$
GSC 366-196	р	55666.9156	0.0004	+0.0026	19	V; el: IBVS 5945
GSC 368-118	р	55671.8698	0.0004	-0.0057	26	V; el: IBVS 5945; $d=0.018d$
GSC 370-468	\mathbf{s}	55663.9037	0.0002	+0.0134	25	V; el: IBVS 5945
GSC 371-1326	\mathbf{s}	55667.9152	0.0007	-0.0043	32	V; el: $2454682.630 + 4.748383 * E$
GSC 378-1212	р	55665.9144	0.0004	-0.0019	15	V; el: IBVS 5894
GSC 930-267	p	55656.9162	0.0004	+0.0171	35	V; el: IBVS 5894
GSC 945-626	s	55665.8389	0.0003	-0.0125	17	V; el: 2453079.846 + 0.579497 * E
GSC 949-1089	р	55666.8244	0.0005	+0.0045	10	V; el: IBVS 5894
GSC 1499-834	s	55653.8311	0.0004	+0.0116	13	V: el: IBVS 5894
GSC 2034-1670	p	55653.8894	0.0001	+0.0004	28	V; el: IBVS 5894
GSC 2038-293	p	55671.9330	0.0012	+0.0046	12	V: el: IBVS 5719
GSC 5017-129	r n	55660 8609	0.0004	-0.0074	30	V: el: IBVS 5894
GSC 5037-866	р р	55666 8731	0.0003	-0.0016	28	V: el: IBVS 5894
GSC 5097-641	р р	55741 8001	0.0015	-0.0075	27	V: el: $2451980.846 \pm 0.353341 * E$
GSC 5108-617	р р	55739 7838	0.00010	-0.0010	43	V: el: $2454163885 \pm 0.635958 * E: d=0.042d$
GSC 5681 848	P D	55741 7003	0.0000	-0.0026	30	V. al: $2453804.801 \pm 1.225803 * E$
GSC 5683-122	P	55738 8242	0.0013	± 0.0020	24	V; el: $2453604.651 + 0.702374 * E$
GSC 5685 3278	n	55738 7539	0.0005		2-1 /1	V; cl: $2453530703 \pm 1.674761 * E$
V Sov	p n	55570.0212	0.0000	0.0010	97	$V, el. 2455555.755 \pm 1.014701$ E V: el. IBVS 5045
I DEX	P	55668 7197	0.0003	0.0002	21	V: d=0.05d
WV Sor	s	55647 7404	0.0000	-0.0000	22	V, d=0.05d $V_{1,0}$, $2452048, 864 \pm 0.428860, * F$
WA Sex	р	55047.7494	0.0000	+0.0126	32 20	V; el. 2452946.804 ± 0.428809 E
WZ Sex	р	55588.8903	0.0011	-0.0035	39	V; el: IBVS 5894; I.C. not symmetric
000 040 0101	р	55050.072	0.005	-0.009	41	
GSC 242-2191	р	55585.9402	0.0003	+0.0174	24	V; el: $2454575.579 \pm 0.381118 \pm E$
	р	55663.6887	0.0004	+0.0178	27	V; d=0.024d
GSC 243-397	р	55585.9418	0.0003	+0.0007	24	v; el: $2454932.579 + 0.316092 * E; d=0.021d$
GSC 246-90	\mathbf{p}	55589.9139	0.0003	+0.0014	19	V; el: 1BVS 5945
000 am	\mathbf{S}	55663.6625	0.0003	+0.011	16	V
GSC 250-668	\mathbf{S}	55588.8566	0.0010	+0.0051	22	V; el: 1BVS 5945
	р	55654.7089	0.0002	+0.0057	17	V
GSC 253-870	\mathbf{S}	55591.8422	0.0002	+0.0027	13	V; el: IBVS 5945
	р	55591.9765	0.0001	+0.0026	13	V; d=0.013d
	\mathbf{s}	55671.6958	0.0008	+0.0020	13	V

Table 1: Minima of eclipsing binaries (continued)

		Table 1:	Minima	a or ecups	sing	binaries (continued)
Variable	Туре	e HJD 24	±	O - C	n	Remarks
$GSC \ 256-41$	р	55589.8670	0.0005	-0.0041	16	V; el: IBVS 5945
	\mathbf{S}	55671.7361	0.0009	+0.0010	13	\mathbf{V}
GSC 4895-188	85 s	55579.9616	0.0004	+0.0154	24	V; el: $2454247.499 + 0.406792 * E$
	р	55671.6926	0.0007	+0.0148	25	V
GSC 4896-33	s	55637.7232	0.0004	+0.0149	34	V; el: $2454610.498 + 0.372380 * E$
GSC 4896-135	5 s	55647.6609	0.0031	+0.0229	19	V; el: $2454172.703 + 0.808405 * E$
GSC 4906-447	7 р	55643.6712	0.0001	-0.0010	17	V: el: 2454532.785 + 0.339617 * E
GSC 4907-992	2 D	55637.6746	0.0004	+0.0049	43	V: el: 2453439.654 + 0.482021 * E
GSC 4907-126	52 s	55582.8576	0.0009	+0.0080	22	V: el: $2454089.978 \pm 0.299623 * E: d=0.02d$
0.00 100, 120		55583 0064	0.0018	+0.0064	11	V
	P D	55653 7174	0.0002	+0.0070	29	\overline{V}
GSC 4909-143	Р 84 с	55588 9078	0.0002	-0.0013	27	V: el: 2454797 849 + 0 311625 * E: d=0 018d
GSC 4911-123	85 n	55582 8849	0.0002	+0.0016	13	V: el: IBVS 5894
GSC 4913-100	и 20 р	55600 9271	0.0010	+0.0000	10	V: el: $2453445.659 \pm 0.330867 * E$
050 1515 102	лор п	55672 7247	0.0002	-0.0001	24	V, Cl. 2100110.000 + 0.000001 - E
GSC 4916-292) p	55575 9058	0.0000	-0.0001	40	V. el: IBVS 5894
050 4510-252	- P n	55652 6771	0.0002	± 0.0005	20	V, CI. IDV5 5054
CSC 4016 405	р Р	55582 8072	0.0000	-0.0003	17	V. al. $2452740.606 \pm 0.368307 * F$
GSC 4910-492	5 D	55582 0446	0.0003	-0.0004 -0.0115	24	V , el. 2452745.050 \pm 0.500507 E
GSC 4910-110		55580 0002	0.0003	-0.0115	24	$V_{1,0}$ = 2454840 750 + 0.420045 * F
GSC 5477-100	5) 5	55570 8003	0.0005		30 7	V, el. 2454849.750 ± 0.429945 E V, el. $2454800.800 \pm 0.256076 *$ E
GSC 5478-502	2 p	55579.6092	0.0025	+0.0030	10	$V, el. 2454609.809 \pm 0.550970$ E
CCC E491 116	s 20 m	00019.9010 EEGAD 724G	0.0003	+0.0020	14	V; dH=0.021d V; al. $2454912.845 \pm 0.725724 * E. J. 0.05d$
GSC 5481-110	50 p	55045.7540	0.0004	-0.0071	24 10	V; e1: $2454813.845 + 0.735724$ · E; d=0.05d
GSC 5499-102	20 p	55585.9630	0.0011	+0.0323	12	V; el: 2452749.657 + 0.334625 · E
	\mathbf{S}	55665.789	0.008	+0.043	9	
SV Tau	р	55585.7233	0.0002	-0.0210	50	V; d=0.038d
WY Tau	\mathbf{S}	55589.6485	0.0002	+0.0579	31	V
AC Tau	\mathbf{p}	55583.7208	0.0002	+0.0738	41	V
AQ Tau	\mathbf{p}	55585.6921	0.0002	-0.0984	50	V; d=0.026d
CC Tau	р	55563.6263	0.0003	-0.0046	22	V; el: ASAS
CF Tau	р	55572.6417	0.0011	-0.0076	30	V; el: $2454420.691 + 2.755881 * E$; d=0.063d
GQ Tau	р	55582.5958	0.0005	+0.1957	21	V
V407 Tau	\mathbf{p}	55571.7366	0.0005	-0.0472	23	V; el: $2453725.585 + 2.051332 * E$
V1239 Tau	\mathbf{p}	55600.6371	0.0003	-0.0693	33	V; d=0.06d
V1249 Tau	\mathbf{S}	55589.7358	0.0004	-0.0078	24	V; el: IBVS 5894
V1356 Tau	\mathbf{p}	55565.6229	0.0008	-0.0451	43	V; el: $2452645.558 + 12.8075 * E$; non-circ.
V1369 Tau	\mathbf{p}	55572.7712	0.0008	+0.0566	12	V; el: OEJV 91
GSC 727-47	р	55588.6808	0.0012	-0.0113	46	V; el: $2453630.884 + 1.281288 * E$
GSC 1235-663	3р	55563.6789	0.0002	+0.0018	38	V; el: $2453675.804 + 1.302880 * E$; d=0.023d
GSC 1273-661	l s	55563.7222	0.0007	+0.0077	21	V; el: $2453433.516 + 0.851909 * E$
GSC 1291-113	39 p	55583.6789	0.0003	-0.0103	43	V; el: $2454133.618 + 0.717147 * E$
GSC 1841-879)р	55566.6630	0.0002	-0.1277	32	V; el: IBVS 5920
$NSV \ 1955$	р	55565.6860	0.0009	+0.0103	29	V; el: IBVS 5871
TY UMa	\mathbf{s}	55607.9271	0.0002	+0.1478	27	V; el: MNRAS 317, 111
	\mathbf{S}	55677.7715	0.0007	+0.1481	26	\mathbf{V}
UX UMa	р	55634.9452	0.0004	+0.0012	9	\mathbf{V}
UY UMa	\mathbf{S}	55631.9258	0.0011	+0.1184	22	V; d=0.03d
	р	55684.7568	0.0006	+0.1192	33	V
VV UMa	р	55580.8947	0.0002	-0.0494	36	V
XY UMa	p	55583.8697	0.0004	+0.0398	13	V
	p	55656.6768	0.0008	+0.0397	24	V
XZ UMa	r D	55572.8501	0.0001	-0.1060	27	V
ZZ UMa	р р	55644.645	0.003	-0.001	 14	V
AA UMa	р р	55579.8776	0.0005	+0.0374	16	V
	r n	55663.6731	0.0004	+0.0385	27	$\dot{\mathbf{V}}$
AC UMa	r n	55648 6926	0.0010	-0.1232	32	V: d=0.052d
BE UMa	P n	55617 8478	0.0010	± 0.0101	10	V: d=0.010d
BH UMa	P	55602 874	0.0002	-0.001	-10 -91	$V \cdot \rho = 2453866 4736 \pm 0.608753 * F$
DILUMA	Р	00002.014	0.000	-0.001	<u>4</u> 1	$v, \epsilon i. 240000.4100 \pm 0.090100$ E

 Table 1: Minima of eclipsing binaries (continued)

		Table 1:	winnin	a or ecups	sing	binaries (continueu)
Variable	Туре	e HJD 24	±	O - C	n	Remarks
BM UMa	\mathbf{p}	55583.8208	0.0012	+0.0102	8	V
	\mathbf{s}	55583.9551	0.0003	+0.0090	16	V
	р	55665.7296	0.0008	+0.0104	13	\mathbf{V}
BQ UMa	р	55634.8513	0.0012	-0.1293	42	V; d=0.074d
BS UMa	р	55615.8821	0.0005	+0.0023	30	V; el: IBVS 5894
ES UMa	s	55579.8774	0.0008	-0.1179	25	V: el: IBVS 3914
	p	55644.6626	0.0004	-0.1235	20	, V
IW UMa	р р	55577 8312	0.0008	+0.0137	15	V. el: IBVS 4402
KM UMa	P D	55583 0101	0.0005	-0.0175	24	V; el: IBVS 4810
IIIII Olila	P n	55652 8730	0.0005	-0.0175	10	V: d=0.03d
LO UMa	P n	55660 6882	0.0000	-0.0107	24	V. al. IDVS 5084. d=0.052d
LO UMa MS UMa	p	55000.0005 EEGOE 9597	0.0003	-0.0122	04 05	V, el: IDVS 5004, d=0.052d
MS UMa	р	55005.8587	0.0004	+0.0305	20	V; d=0.038d
	р	55674.8050	0.0009	+0.0383	14	V V
MT UMa	\mathbf{p}	55583.8397	0.0006	+0.1410	16	V; d=0.032d
	\mathbf{p}	55644.6879	0.0005	+0.1412	26	V
OQ UMa	\mathbf{p}	55632.9230	0.0004	-0.0027	27	V; $d=0.025d$
GSC 3011-115	0 s	55603.8610	0.0023	+0.0238	20	V; el: OEJV 104
GSC 4134-141	р	55653.7092	0.0003	-0.0030	31	V; el: OEJV 83
GSC 4375-620	\mathbf{p}	55649.6496	0.0008	+0.0634	34	V; el: OEJV 83
RT UMi	р	55730.8331	0.0007	+0.1385	31	\mathbf{V}
RU UMi	р	55622.8756	0.0004	-0.0133	33	V
	р	55694.7927	0.0004	-0.0112	50	V
RZ UMi	p	55647.8911	0.0004	-0.0079	15	V; el: BBSAG B. 111, 8
	p	55695.7944	0.0002	-0.0082	34	, V
GSC 4407-351	n	55687.7296	0.0003	+0.0307	18	V: el: Per. Zv. Pril., 10, 18
GSC 4412-196	7 n	55649 8830	0.0003	+0.0034	35	V: el: OEIV 91
GSC 4418-800	'P	55694 8175	0.0000	+0.0001 +0.0070	38	V: ol: Por Z_V Pril 11 1
CSC 4541 180	р 5 р	55647 7485	0.0004	+0.0010	33	V , cl. 1 cl. ΔV . 1 ll. 11, 1 V: cl. OF IV 83
GSC 4541-180	o p	55047.7465	0.0007	+0.0100	ວວ ຈະ	V, el. OEJV 05 V: el. OEJV 01, D 0.045 d
GSC 4577-707	- р	55757.7102	0.0002	-0.0242	30	V; el: $OEJV 91; D=0.045d$
GSC 4579-100	5 S	55668.9161	0.0015	+0.1554	15	V; el: OEJV 83
VV Vir	\mathbf{S}	55638.8599	0.0004	-0.0380	21	V
AG Vir	\mathbf{S}	55607.826	0.005	+0.001	28	V
AH Vir	\mathbf{p}	55603.8845	0.0005	+0.0301	24	V
	\mathbf{S}	55673.7709	0.0008	+0.0265	33	V
AW Vir	\mathbf{p}	55630.8955	0.0001	+0.0239	27	V
	\mathbf{S}	55688.7779	0.0010	+0.0278	14	V
AX Vir	\mathbf{p}	55632.8720	0.0005	+0.0189	35	V
AZ Vir	р	55631.9055	0.0002	-0.0216	33	V
BD Vir	р	55632.9572	0.0006	+0.0072	38	V; el: $2454669.587 + 2.548578 * E$
	р	55673.7315	0.0002	+0.0048	49	V
BF Vir	p	55631.9285	0.0002	-0.0058	24	V; el: $2453851.768 + 0.640578 * E$; d=0.033d
BH Vir	р	55629.8951	0.0005	-0.0081	38	V
	s	55694.8351	0.0003	-0.0094	21	V
CG Vir	p	55654.8953	0.0004	+0.0056	27	V: el: 2453578.588 + 0.935271 * E
CM Vir	r D	55687.7673	0.0006	-0.0489	45	V: el: $2452700.854 + 6.804014 * E$
CX Vir	р р	55634 8760	0.0005	+0.0033	42	V: el: $2454633636 + 0.746078 * E: d=0.032d$
011 11	P D	55687 8479	0.0003	+0.0037	45	V
DM Vir	P	55677 7111	0.0000	± 0.0007	10	V. al: $2453452.735 \pm 4.660400 * E$
DV Vin	5	55629 2002	0.0007	+0.0021	42 97	V, ei. 2405452.755 $+$ 4.009409 E
DI VII EO Vin	p	55056.6995	0.0005	-0.1379	⊿1 00	V V v al. 0452055 964 + 0.740602 * E
FQ VII	р	55059.9250	0.0004	+0.0059	22	V; el: 2455855.804 ± 0.749005 E
TTXX7 X7.	р	55653.9126	0.0002	+0.0062	27	
HW VIr	р	05016.9328	0.0015	+0.0035	5	v; el: AA 364, 199
IR Vir	\mathbf{S}	55615.9116	0.0005	+0.0107	29	V; el: IBVS 5894
	\mathbf{S}	55679.8149	0.0003	+0.0017	36	V
PS Vir	\mathbf{S}	55605.9142	0.0015	-0.0119	25	V
	\mathbf{S}	55677.7865	0.0003	-0.0118	12	V
PY Vir	\mathbf{p}	55623.8825	0.0005	-0.0313	25	V
QX Vir	\mathbf{S}	55640.8909	0.0004	+0.0077	13	V; el: IBVS 5894
	р	55680.7123	0.0002	+0.0080	19	V
	\mathbf{S}	55680.8333	0.0003	+0.0079	21	V

Table 1: Minima of eclipsing binaries (continued)

		Table 1:	Minima	t or ecups	ing D	inaries (continued)
Variable	Type	e HJD 24	\pm	O - C	n	Remarks
V337 Vir	р	55621.8536	0.0002	-0.0463	28	V; el: IBVS 5630
V340 Vir	\mathbf{S}	55623.8864	0.0007	+0.0070	22	V; el: $2453542.672 + 0.454859 * E$
V342 Vir	р	55639.8843	0.0010	-0.0026	21	V; el: $2454315.524 + 0.754193 * E$; d=0.05d
GSC 272-94	р	55605.8568	0.0007	+0.0034	18	V; el: IBVS 5945
GSC 272-630	s	55603.8498	0.0002	+0.0005	16	V; el: IBVS 5945
GSC 274-437	р	55607.9091	0.0007	+0.0158	25	V: el: IBVS 5945; d=0.038d
	p	55673.7985	0.0002	+0.0111	33	V: d=0.028d
GSC 279-35	r S	55648 8830	0.0002	+0.0017	34	V: el: IBVS 5945
GSC 279-822	n	55605 9041	0.0002	± 0.0011	31	V: el: IBVS 5945
050 215 022	P D	55674 807	0.0000	± 0.0091	10	V
CSC 286 621	P n	55607 8222	0.000	+0.002	19	V. al. IDVS 5904
GSC 200-031	р	55007.6225	0.0003	+0.0021	10	V, el. IDV5 5694
000 001 000	s	55007.9808	0.0000	+0.0054	14	V V -1 IDVC F04F
GSC 291-600	р	55021.9041	0.0005	-0.0050	14 95	V; el: IDVS 5945 $V_{\rm c}$ -L IDVS 5904
GSC 290-9	s	55015.8770	0.0005	+0.0028	20 45	V; el: IBVS 5894
GSC 303-36	р	55630.9111	0.0002	-0.0057	45	V; el: IBVS 5894
GSC 303-65	\mathbf{S}	55630.9314	0.0002	+0.0087	29	V; el: IBVS 5894
	р	55688.8286	0.0001	+0.0088	21	V
GSC 303-735	р	55623.8558	0.0006	+0.0016	20	V; el: IBVS 5894
	р	55688.7481	0.0002	+0.0012	13	V
	\mathbf{S}	55688.8914	0.0007	+0.0003	13	V
GSC 304-73	р	55617.8854	0.0003	-0.0016	34	V; el: IBVS 5945
	\mathbf{S}	55685.8273	0.0006	-0.0039	28	V
GSC 314-388	\mathbf{s}	55634.9009	0.0001	+0.0011	23	V; el: IBVS 5894
	\mathbf{S}	55687.7813	0.0002	+0.0013	31	V; d=0.024d
GSC 314-1184	р	55648.9172	0.0003	+0.0065	24	V: el: 2454677.535 + 0.489358 * E
GSC 316-99	s	55637.9373	0.0008	+0.0005	16	V: el: IBVS 5894
	s	55680.7889	0.0005	-0.0012	49	V
GSC 317-161	n	55656.8976	0.0002	+0.0042	36	V: el: 2453803.809 + 1.864270 * E
GSC 317-1142	P D	55638 8913	0.0017	-0.0196	17	V: el: IBVS 5945
000 011 1112	P D	55680 7773	0.0011	± 0.0190	27	V, CI. III VIS 0010
CSC 318 1160	Р	55640 8581	0.0004	+0.0005	41 16	V. al. IBVS 5804
050 510-1105	s n	55600 7026	0.0000	-0.0045	17	V, el. 1DV5 5654
CCC 222 760	Р	55090.1920	0.0008	-0.0050	17 95	V al. IDVS 5045
GSC 522-700	р	55057.6260	0.0005	+0.0109	20	V; el: IDVS 5945 V, d. 0.024
000 202 002	s	55087.8307	0.0004	+0.0129	18	V; d=0.02d
GSC 323-002	s	55049.8287	0.0004	+0.0050	22	v; el: 1BvS 5945
000 000 050	\mathbf{s}	55696.8606	0.0007	+0.0085	20	
GSC 329-256	\mathbf{S}	55644.816	0.002	-0.006	12	V; el: $2455364.825 + 0.27171 + E$
	р	55644.952	0.003	-0.006	11	V
	р	55648.8509	0.0007	+0.0117	26	V
	р	55654.8307	0.0012	+0.0142	10	V
$GSC \ 329-639$	\mathbf{S}	55649.8557	0.0005	-0.0469	31	V; el: IBVS 5894
GSC 330-1394	\mathbf{S}	55648.8814	0.0003	+0.0143	36	V; el: IBVS 5894; $d=0.033d$
GSC 332-302	р	55663.8954	0.0004	+0.0108	32	V; el: $2453563.577 + 1.442519 * E$
GSC 873-411	\mathbf{S}	55615.8904	0.0002	-0.0021	28	V; el: IBVS 5945
	р	55679.7393	0.0009	-0.0020	30	V
GSC 873-420	р	55649.6787	0.0003	+0.0067	33	V; el: $2454869.800 + 1.902127 * E$
GSC 878-260	р	55621.9410	0.0003	+0.0096	22	V; el: IBVS 5894
GSC 881-920	\mathbf{s}	55616.9380	0.0001	-0.0033	29	V; el: IBVS 5945
GSC 883-1116	р	55622.9116	0.0003	-0.0015	23	V; el: IBVS 5894; d=0.024d
GSC 886-340	p	55621.8509	0.0001	+0.0099	21	V; el: 2453064.764 + 0.425280 * E
GSC 887-564	p	55629.8346	0.0015	-0.0056	19	V: el: 2454505.835 + 0.401861 * E
	r	55630.8444	0.0004	-0.0004	44	V: d=0.038d
GSC 891-117	n	55640 8190	0.0002	+0.0104	17	V: el: $2454567.832 + 2.794210 * E$
GSC 802-802	۲ د	55630 8749	0.0002	-0.0026	40	V. el: IBVS 5804
GSC 807 470	o n	55640 8568	0.0002	± 0.0020	-10 -21	V. ol. IBVS 5804
GSC 808 3	P	55620 0201	0.0000	-0.0104	18	V. al. IRVS 5804
090-0	р ~	55600 0000	0.0002	0.0041	15	v, el. IDVS 3034 V
COC ADER 707	p	JJU00.020J	0.0002	-0.0052	10	V V. al. IDVC F904
GSU 4935-767	s	00010.881/	0.0004	+0.0020	11	V; el: 15V5 3894
GSC 4950-1196	о р	00021.8734	0.0003	+0.0034	23	v; ei: 2454151.758 + 0.279968 * E
GSU 4958-415	р	55648.8545	0.0004	-0.0014	24	v; el: 1BVS 5894

Fabl	le 1:	\mathbf{Mi}	nima	of	eclipsi	ng l	binari	ies ((conti	inued)
------	-------	---------------	------	----	---------	------	--------	-------	--------	-------	---

	Tuble 11 Minimu of company sinuries (continued)								
Variable	Type	e HJD 24	±	O - C	n	Remarks			
GSC 4958-697	\mathbf{s}	55622.8780	0.0008	+0.0173	16	V; el: $2453867.619 + 0.398511 * E$; d=0.024d			
GSC 4965-293	\mathbf{S}	55623.8814	0.0006	-0.0035	30	V; el: $2454597.624 + 0.604572 * E$; d=0.054d			
GSC 4968-751	\mathbf{S}	55632.9177	0.0003	-0.0036	17	V; el: 2454664.508 + 0.320826 * E			
GSC 4969-725	р	55630.9321	0.0004	+0.0078	33	V; el: $2454155.834 + 0.596237 * E$			
	р	55667.9024	0.0005	+0.0014	22	V			
GSC 4977-1397	' p	55639.8941	0.0006	+0.0138	14	V; el: $2454315.574 + 0.372834 * E$			
	\mathbf{S}	55687.7996	0.0007	+0.0101	19	V			
GSC 4980-656	р	55640.8842	0.0008	+0.0100	29	V; el: $2453528.719 + 0.564144 * E$			
GSC 5519-1371	р	55602.9047	0.0003	+0.0048	14	V; el: 2453490.704 + 0.281814 * E			
GSC 5529-1490	s	55609.8992	0.0004	+0.0006	20	V; el: $2454151.818 + 0.328878 * E$; d=0.022d			
GSC 5539-45	р	55644.9378	0.0008	+0.0212	32	V; el: $2453586.504 + 1.580962 * E$			
GSC 5542-599	\mathbf{S}	55621.9282	0.0004	-0.0050	12	V; el: 2453906.632 + 0.316272 * E			
GSC 5543-1042	s	55622.9310	0.0006	+0.0171	18	V; el: $2454851.840 + 0.326657 * E$			
GSC 5548-1080)р	55656.9081	0.0002	+0.0139	36	V; el: 2454641.586 + 2.312775 * E			
GSC 5553-1474	р	55632.8580	0.0003	+0.0015	15	V; el: $2454940.714 + 0.273358 * E$			
GSC 6136-609	\mathbf{S}	55634.8400	0.0003	+0.0029	24	V; el: $2454517.837 + 0.345553 * E$			
$GSC \ 1624-493$	р	55720.8353	0.0005	-0.0033	31	V; el: IBVS 5860; non-circ.			

Remark: Variable star designation A = ASAS

References:

Agerer, F., 1994, BAV Mitt., 68, 21 Agerer, F. et al., 1988, *IBVS*, No. 3234 Agerer, F. et al., 1994, BAV Mitt., 69 Agerer, F., Dahm, M., 1995, IBVS, No. 4266 Agerer, F., Frank, P., 1995, IBVS, No. 4143 Agerer, F., Hubscher, J., 2001, *IBVS*, No. 5016 Agerer, F., Lichtenknecker, D., 1989, IBVS, No. 3401 Antipin, S.V., 1996, *IBVS*, No. 4342 Antipin, S.V., 1996, IBVS, No. 4360 Baldwin, M.E. et al., 2000, IBVS, No. 4911 Bernasconi, L., Behrend, R., 2003, IBVS, No. 5411 Bernhard, K., Frank, P., 2006, IBVS, No. 5719 Berthold, T. et al., 2001, IBVS, No. 5171 Biro, I.B. et al., 2006, IBVS, No. 5684 Blättler, E., 2000, IBVS, No. 4871 Blättler, E., Diethelm, R., 2001, IBVS, No. 5052 Blättler, E., Diethelm, R., 2001, IBVS, No. 5125 Blättler, E., Diethelm, R., 2001, IBVS, No. 5146 Blättler, E., Diethelm, R., 2001, IBVS, No. 5192 Blättler, E., Diethelm, R., 2002, IBVS, No. 5269 Blättler, E., Diethelm, R., 2002, BBSAG Bull., 128, 10 Blättler, E., Diethelm, R., 2002, *IBVS*, No. 5295 Blättler, E., Diethelm, R., 2003, IBVS, No. 5403 Blättler, E., Diethelm, R., 2004, IBVS, No. 5505 Blättler, E., Diethelm, R., 2004, IBVS, No. 5541 Blättler, E., Diethelm, R., 2007, IBVS, No. 5799 Bloomer, R. et al., 2001, *IBVS*, No. 5149 Borovicka, J., Sarounova, L., 1996, IBVS, No. 4402 Brat L. et al., 2009, OEJV, No. 107 Byboth, K.N. et al., 2004, IBVS, No. 5554 Dedoch, A., 1996, BBSAG Bull., 111, 8 Diethelm, R., Wolf, M., Agerer, F., 1993, IBVS, No. 3867 Diethelm, R., 1998, *IBVS*, No. 4586 Diethelm, R., 2001, IBVS, No. 5060 Diethelm, R., 2009, IBVS, No. 5871 Diethelm, R., 2009, IBVS, No. 5894 Diethelm, R., 2010, $I\!BV\!S\!\!$ No. 5920 Diethelm, R., 2010, IBVS, No. 5945

- Diethelm, R., 2011, IBVS, No. 5960 Escola Sirisi, E., Garcia-Melendo, E., 1999, IBVS, No. 4810 Erdem, A. et al., 2001, IBVS, No. 5152 Faulkner, D.R., 1986, PASP, 98, 690 Frank, P. et al., 1996, IBVS, No. 4386 Fuhrmeister, T., 1990, MVS, 12, 48 Garcia-Lastra, A. et al., 2003, IBVS, No. 5455 Garcia-Melendo, E., Gomez-Forrellad, J.M., 1996, IBVS, No. 4410 Garcia-Melendo, E., Henden, A.A., 1998, IBVS, No. 4546 Gessner, H., 1987, MVS, 11, 38 Gomez-Forrellad, J.M., Garcia-Melendo, E., 1996, IBVS, No. 4364 Hajek, P. et al., 2002, IBVS, No. 5337 Häussler, K., 2005, BAVSR, 54, 8 Hoogeveen, G.J., 2005, IBVS, No. 5652 Horne, J.D., 2008, JAAVSO, 36, 68 Jia, G. et al., 1992, IBVS, No. 3727 Kaiser, D.H., Lubcke, G., Williams, D.B., 1996, IBVS, No. 4284 Kaiser, D.H. et al., 2002, IBVS, No. 5231 Kazarovets, E.V. et al., 2005, Per. Zv., 25, 2 Kinman, T.D. et al., 1982, AJ, 87, 314 Kiss, L.L. et al., 2000, A&A, 364, 199 Kleidis, S. et al., 2008, IBVS, No. 5860 Kozyreva, V.S. et al., 2009, IBVS, No. 5909 Krajci, T., 2005, IBVS, No. 5592 Krajci, T., 2006, IBVS, No. 5690 Kreiner, J.M., 2004, Acta Astr., 54, 207 Khruslov, A.V., 2010, Perem. Zvezdy Pril., 10, 18 Khruslov, A.V., 2010, Perem. Zvezdy Pril., 11, 1 Lacy, C., 2004, IBVS, No. 5499 Lewandowski, M. et al., 2009, OEJV, No. 104 Lister, T.A., McDermid, R.M., Hilditch, R.W., 2000, MNRAS, 317, 111 Lloyd, C. et al., 2003, IBVS, No. 5366 Locher K. et al., 2002, BBSAG Bull., 128, 10 Lu, W., Hrivnak, B.J., Rush, B.W., 2007, AJ, 133, 255 Lubcke, G.C. et al., 2000, IBVS, No. 4998 Maciejewski, G. et al., 2003, IBVS, No. 5431 Marchini, A. et al., 2011, JAAVSO, 39, 102 Mikulasek, Z., Hanzl, D., 1993, IBVS, No. 3914 Narusawa, S. et al., 2002, PASJ, 54, 139 Nelson, R.H., 2002, IBVS, No. 5224 Nelson, R.H., 2004, IBVS, No. 5493 Nelson, R.H., 2004, IBVS, No. 5535 Niarchos, P.G. et al., 1996, A&A Suppl., 117, 105 Oja, T., 1989, IBVS, No. 3288 Otero, S.A., Dubovsky, P.A., 2004, IBVS, No. 5557 Otero, S.A. et al., 2005, IBVS, No. 5586 Otero, S.A., Wils, P., 2005, IBVS, No. 5630 Otero, S.A., 2008, OEJV, No. 83
- Otero, S.A., 2008, OEJV, No. 91
- Paschke, A., 1994, BBSAG Bull., 106, 7
- Pribulla, T. et al., 2003, CoSka, 33, 38
- Pych, W., Rucinski, S.M., 2004, IBVS, No. 5524
- Rinner, C. et al., 2003, IBVS, No. 5428
- Samec, R.G. et al., 1995, IBVS, No. 4167
- Samec, R.G., Faulkner, D., 1998, IBVS, No. 4611
- Samec, R.G. et al., 1999, IBVS, No. 4811
- Samec, R.G. et al., 2004, IBVS, No. 5506
- Samus N.N., Durlevich O.V., Kazarovets E.V., Kireeva N.N., Pastukhova E.N., Zharova A.V., et al., 2011, General Catalog of Variable Stars (GCVS database, Version 2011Jan), http://www.sai.msu.su/gcvs/gcvs/index.htm
- Sarounova, L., Wolf M., 1997, $I\!BV\!S\!,$ No. 4452
- Srivastava, J.B., Kandpal, C.D., 1981, Ap&SS, 76, 173
- Terrell, D. et al., 2005, *IBVS*, No. 5642
- Vandenbroere, J., 1993, IBVS, No. 3946

Vandenbroere, J., 1998, *IBVS*, No. 4554 Vandenbroere, J. et al., 2001, *IBVS*, No. 5020 Vidal-Sainz, J, 1997, *IBVS*, No. 4526 Williams, D.B., 1994, *IBVS*, No. 3999 Williams, D.B., 2001, *IBVS*, No. 5084 Wils, P., Dvorak, S.W., 2003, *IBVS*, No. 5425 Wolf, M. et al., 1998, *IBVS*, No. 4601 Zejda, M., Mikulasek, Z., Wolf, M., 2006, *IBVS*, No. 5741 Zhang R. et al., 1989, *IBVS*, No. 3410

Zola, S. et al., 2005, IBVS, No. 5591

ERRATA FOR IBVS 5992

The author has reported the following errors:

- GSC 5509-447 : 55666.7310 instead of 55666.447
- GSC 6077-1825 : 55583.9220 instead of 55589.9220
- GSC 4839-2026 should read GSC 4834-2026
- GSC 5049-7544 should read GSC 5049-458

^{*}This version of the paper contains corrections, and differs from the one appeared on-line originally. Date of last modification: Thu Jul 21 09:24:20 CEST 2011

Number 5993

Konkoly Observatory Budapest 26 July 2011 *HU ISSN 0374 – 0676*

Hen2-446 – A B[E] STAR WITH A VARIABLE V/R RATIO

KONDRATYEVA, L.

Fessenkov Astrophysical Institute, Almaty, Kazakhstan. e-mail: kondr.lud@gmail.com

Hen2-446 = IRAS 19419+2319, with coordinates: $\alpha = 19^{h}44^{m}05^{s} \delta = +23^{\circ}26'.8$, was discovered by Henize (1967). Some low-excitation emission lines ([OI], FeII, HI) were discovered in the spectrum, and the object entered the Catalog of galactic planetary nebula (Perek & Kohoutek, 1967). Then the object was included in the list of emissionline objects with infrared excess (Allen & Swings, 1972, 1976). According to the modern classification this object is identified as a B[e] star (Lamers et al., 1998). Individual photometric measurements of Hen2-446 were provided by Allen & Swings (1972), Coyne et al. (1974) and Zacharias (2004). Our observations of Hen2-446 were begun in 1971 and were continued until 2010.

Observations were performed with the 0.7-m Cassegrain reflector AZT-8, located at the Observatory of Fessenkov Astrophysical Institute (AFIF) near Almaty. The earlier (1971 – 1995) estimations of the V magnitude were derived using the three-cascade image tube UM-92 plus a special film. The color system had a maximal sensitivity near 5460Å and a pass band about 800 Å, in accordance with Johnson's V band. Four nearby field stars were chosen as the secondary standards. (Their B and V-magnitudes were derived during photoelectric observations with the 1-meter telescope). A treatment procedure for the images, obtained with the image tube has been described in the paper Kondratyeva (2001). The intrinsic errors of differential photometry were equal to $0^m.03-0^m.07$ in dependence on the star's magnitudes.

Since 2000 our telescope has been equipped with a CCD ST-8 (1530 x 1020, 9μ) and B V Rc filters. All obtained frames were dark subtracted and flat fielded. The stars HD184740, HD184942 and HD185858 were adopted as standards. Expressions for transformation to the international system was made by measuring about 80 standard stars. The results of photometry are compiled in Table 1. Fig.1a displays variations of V mag versus HJD. Cyclic variations of V magnitude within $0^m.5 - 0^m.8$ were accompanied by the gradual decrease of brightness (a line of trend in Fig.1a). The Discrete Fourier Transform of our normalized V magnitudes (the trend was excluded) showed a peak at frequency about 0.002521 d⁻¹ (P=396.668d). The phase diagram for V according to the ephemeris: JDmin=2441577.480+396.668xE is presented in Fig.1c.

Spectral observations have been carried out with the original slit spectrograph, constructed in AFIF for faint emission objects (Denissyuk, 2003). The slit width equals to 3''and 10''. A sample of gratings and objective lenses provided a spectral range from 3700 to 8200 Å. Spectrograms, obtained with the spectral resolution R=36000 were measured for the study of line profiles, and those with the R=9000–13000 were used for emission flux and EW determination. All spectrograms were corrected for atmospheric extinction. There are emission lines of HI, HeI, [OI], [FeII] and possibly [NII], 6583Å in the spectrum of Hen2-446. The object is observed on a background of an extended HII region, and an appropriate long emission line of H α is present on the spectrograms. This line together with the sky spectrum was measured on both sides of the stellar continuum and was subtracted from the observable spectrum of the object.

The absolute fluxes and equivalent widths for the H α and H β are listed in Table 2. This is the case when the profiles of HI emission lines consist of two peaks with variable V/R ratio. The heliocentric radial velocities of all components are given in Table 3. (We estimate the errors in the V_r to be about ± 4 km s⁻¹).

It turned out, that the radial velocities of the peaks were practically unchanged (within the limits of errors) during about 40 years. Position of an absorption line seems also to be persistent. Its negative velocity can specify an expansion of the outer absorbing layers of the disk or may be attributed to a proper motion of the star. No correlations were revealed between variations of EW(H α) and V mag. Thus changes of EW depend mainly on the emission fluxes and may reflect variations of a size and gas density of the disk.

A period of V/R variations was not yet determined because our data points are distributed rather randomly. If the V/R ratios vary cyclically, they may arise from rotation of a circumstellar disk with a non-axisymmetric density distribution. In other case changes of V/R ratio may be caused by incidental density perturbations of the disk.

References:

Allen, D., Swings, J., 1972, ApL, 10, 83
Allen, D., Swings, J., 1976, A&A, 47, 293
Coyne, G.V., Lee, T.A., de Graeve, E., 1974, VatOP, 1, 181
Denissyuk, E.K., 2003, AATr, 22, 175
Henize, K., 1967, ApJS, 14, 125
Kondratyeva, L., 2003, AATr, 22, 181.
Lamers, H., Zickgraf, F. et al., 1998, A&A, 340, 117
Perek, L., Kohoutek, L., 1967, Catalogue of galactic planetary nebulae. Prague Zacharias, N., Monet, D., et al., 2004, AAS, 205, 4815

Figure 1. The results of photometry of Hen2-446. a – Vmag. versus HJD. b – DFT of the V magnitude measurements. c – the light curve.

^{*}This version of the paper contains corrections, and differs from the one appeared on-line originally. Date of last modification: Mon Aug 1 09:46:18 CEST 2011

Date	HJD	В	V	R
28.05.1972	41467.381		$14.59 {\pm} 0.101$	
07.11.1972	41629.173		$14.93 {\pm} 0.13$	
29.11.1972	41651.254		$14.46 {\pm} 0.10$	
13.12.1972	41665.038		$14.52 {\pm} 0.11$	
01.09.1974	42292.471		$14.82{\pm}0.09$	
18.07.1988	47361.313		$14.56 {\pm} 0.10$	
08.09.1988	47413.171		$14.99 {\pm} 0.11$	
11.10.1988	47446.288		$14.98 {\pm} 0.09$	
02.11.1988	47468.269		$15.01 {\pm} 0.09$	
16.09.1990	48151.235		$14.87 {\pm} 0.08$	
11.09.1991	48511.021		$14.60 {\pm} 0.09$	
12.09.1991	48512.146		$14.59 {\pm} 0.08$	
13.09.1991	48513.129		$14.56 {\pm} 0.08$	
14.09.1991	48514.123		$14.56 {\pm} 0.07$	
14.07.1994	49548.348		$14.98 {\pm} 0.08$	
02.09.1994	49598.256		$14.82{\pm}0.09$	
20.09.1995	49981.218		$14.89 {\pm} 0.09$	
25.08.2005	53608.217	$15.92{\pm}0.06$	$14.83 {\pm} 0.03$	
28.08.2005	53611.494	$16.00 {\pm} 0.06$	$14.79 {\pm} 0.02$	$13.46 {\pm} 0.04$
04.09.2005	53618.347		$14.87 {\pm} 0.05$	
05.09.2005	53619.196		$14.86 {\pm} 0.05$	
14.06.2006	54003.108		$14.90 {\pm} 0.05$	
12.08.2007	54325.254	$16.34 {\pm} 0.06$	$15.15 {\pm} 0.03$	$13.93 {\pm} 0.04$
23.07.2009	55036.350	$16.55 {\pm} 0.06$	$15.55 {\pm} 0.04$	$14.20 {\pm} 0.04$
23.08.2009	55067.215	$16.68 {\pm} 0.06$	$15.46 {\pm} 0.03$	
23.09.2009	55098.214	$16.56 {\pm} 0.06$	$15.44{\pm}0.03$	$14.08 {\pm} 0.04$

Table 1: Photometric results

Figure 2. EW(H α) vs HJD (the upper panel) and profiles of H α for some dates. X-axis shows a heliocentric radial velocity, an Y-axis gives a ratio $(I_{\lambda}-I_{cont})/I_{cont}$

Date	HJD	$EW(H\alpha)$	σ	$Fabs(H\alpha)$	$EW(H\beta)$	σ	$Fabs(H\beta)$
	2400000 +	Å	Å	$\rm erg \ cm^{-2} sec^{-1}$	Å	Å	$\mathrm{erg} \ \mathrm{cm}^{-2} \mathrm{sec}^{-1}$
24.07.1971	41157.300	392	28				
28.05.1972	41467.381	410	22				
07.11.1972	41629.173	373	33				
13.12.1972	41665.029	364	31				
26.09.1973	41952.158	509	45				
18.07.1988	47361.313	376	9				
08.09.1988	47413.163				30.8	2.2	
11.10.1988	47446.290	426	22				
02.11.1988	47468.271				31.3	2.5	
16.09.1990	48151.234				33	2.5	
11.09.1991	48511.038	367	25		29.6	2.3	
14.09.1991	48514.143	370	10		28.4	2.1	
14.07.1994	49548.350	342	18		28.1	1.8	
02.09.1994	49598.254	334	15				
20.09.1995	49981.217	438	21				
24.08.2005	53607.213	475	15				
25.08.2005	53608.217	470	19				
28.08.2005	53611.217	461	11	1.20E-12	27.0	1.9	8.49E-14
04.09.2005	53618.300	457	34	2.48E-12			
05.09.2005	53619.192	456	22	2.36E-12	36.7	2.2	9.27E-14
24.09.2006	54003.097	574	37				
26.09.2006	54005.333	585	29				
15.06.2007	54267.403	486	33				
05.08.2007	54318.250	466	22	1.52E-12			
06.08.2007	54319.229	505	27		30.6	1.1	5.28E-14
13.08.2007	54326.246	450	32	1.73E-12			
10.07.2008	54658.292	634	36	1.54E-12			
11.07.2008	54659.311	659	33	1.50E-12			
27.08.2008	54706.205	433	23				
22.07.2009	55035.181	347	29				
24.07.2009	55037.292	340	14				
23.08.2009	55067.236	364	17	1.27E-12			
19.07.2010	55397.299	357	14				

Table 2: Spectral results

Table 3: Characteristics of the ${\rm H}\alpha$ profiles

Date	HJD	$V_r(red)$	V_r (blue)	$V_r(absorp)$	FWHM	V/R
	2400000 +	$\rm km \ sec^{-1}$	$\rm km \ sec^{-1}$	$\rm km \ sec^{-1}$	Å	
24.07.1971	41157.300	42.0	-81.0	-17.0	6.9	0.92
28.05.1972	41666.417	59.1	-82.6	-25.1	6.4	0.92
25.09.1973	41951.154	45.8	-79.0	-19.4	6.4	1.25
20.09.1995	49981.217	46.4	-72.3	-17.4	6.4	1.02
04.09.1995	53618.300	50.0	-73.4	-18.6	6.1	0.69
24.09.2006	54003.097	56.5	-84.6	-18.3	6.1	0.79
15.06.2007	54267.381	54.9	-92.3	-25.9	6.1	0.66
05.08.2007	54318.250	55.0	-79.4	-16.9	6.5	0.74
11.07.2008	54659.311	48.5	-81.9	-22.4	5.9	0.71
27.08.2008	54706.250	53.1	-84.1	-21.3	6.2	0.70
24.07.2009	55037.292	51.7	-72.3	-21.1	5.9	0.87
23.08.2009	55067.236	58.5	-78.3	-21.2	6.1	0.80
23.09.2009	55098.117	48.0	-88.6	-20.6	6.3	0.74
the mean	values	$50.98 {\pm} 5.29$	$-81.77 {\pm} 5.62$	$-19.54{\pm}2.64$	$6.25 {\pm} 0.30$	

Number 5994

Konkoly Observatory Budapest 27 July 2011 HU ISSN 0374 – 0676

V456 CYG – A DETACHED ECLIPSING BINARY

NELSON, ROBERT H.*

1393 Garvin Street, Prince George, BC, Canada, V2M 3Z1 email: b-o-b.nelson@shaw.ca [remove dashes]

*Guest investigator, Dominion Astrophysical Observatory, Herzberg Institute of Astrophysics, National Research Council of Canada

V0456 Cyg [=TYC 3152-323-1 = AN 172.1935 = BD+38°4107, RA = $20^{h}28^{m}50^{\circ}845$, Dec = $39^{\circ}09'13''_{.}69$ (J2000)] was first reported to be variable by Morgenroth (1935) who classified it as an Algol-type and supplied a finder chart plus magnitude range, but no period. The first available reference to a period is due to Savedoff (1951) who listed a period of 0.89 days for this system (amongst many others). Whitney (1959) reported a much improved period of 0.8911906 days, not far off the modern value of 0.8911956 days. Wood and Forbes (1963) reported quadratic and even cubic parameters for the ephemerides for these and 332 other systems, but modern period studies with photoelectric and CCD times of minima indicate a constant period for this system (Nelson 2011). Zakirov and Eshankulova (2006) took UBVR photoelectric observations and apparently solved by Lavrov's Direct Method (no reference was given; paper is not available).

In September of the years 2006 and 2007 the author took eight medium resolution (10 Å/mm reciprocal dispersion) spectra at the Dominion Astrophysical Observatory (DAO) in Victoria, British Columbia, Canada; he then used the Rucinski broadening functions (Rucinski, 2004) to obtain radial velocity (RV) curves (see Nelson et al., 2006 and Nelson 2010 for details). The spectral range was approximately 5005-5260 Å. A log of DAO observations and RV results is presented in Table 1.

DAO	Mid Time	Exposure	Phase at	V1	V2
Image $\#$	(HJD-2400000)	(sec)	$\operatorname{mid-exp}$	$(\rm km/s)$	$(\rm km/s)$
13043	53988.8632	3600	0.758	148.8	-174.4
13045	53988.9063	3600	0.807	136.1	-164.5
13076	53989.8656	3600	0.883	95.6	-120.7
13151	53994.7636	3600	0.379	-101.2	116.6
13222	54000.8693	3600	0.230	-146.9	172.2
13224	54000.9114	3600	0.277	-146.6	172.5
11195	54366.7578	2718	0.789	147.9	-167.2
11254	54369.7784	3326	0.179	-129.3	153.9

Table 1: Observation log

On three nights in May of 2008, one night in August of 2008, and nine nights in July of 2010, the author took a total of 151 CCD images of the field in B, 152 in V and 148 in Rc (Cousins) at his private observatory in Prince George, British Columbia,

Canada. The telescope was a 33 cm f/4.5 Newtonian on a Paramount ME mount; the detector was a SBIG ST-7XME CCD cooled to -20° C. Reduction software was MIRA by Mirametrics, Inc., and either sky or box flats were used. A list of the Variable (GSC 3152-323), Comparison (GSC 3152-491) and Check (GSC 3152-365) stars appears in Table 5 (available only electronically).

The following elements were used for phasing throughout (see Nelson, 2011 for the O-C relation):

$JD_{Hel}MinI = 54637.8691(19) + 0.89119559(17)d \times E$

The author used the 2004 version of the Wilson-Devinney (WD) light curve and radial velocity analysis program with the Kurucz atmospheres (Wilson and Devinney, 1971, Wilson, 1990, Kallrath, et al., 1998) as implemented in the Windows software WDwint (Nelson, 2009) to analyze the data. To get started, a spectral type A2 (SIMBAD, no reference given) and a temperature T1 = 9000 ± 150 K were used; interpolated tables from Cox (2000) which gave log g = 4.195 were used; an interpolation program by Terrell (1994) gave the (van Hamme, 1993) limb darkening values; and finally, a square root (LD=3) law for the extinction coefficients was selected, appropriate for hotter stars (Bessell, 1979). (The stated error in T1 corresponds to one half spectral sub-class.) At first, radiative envelopes were chosen for both stars, appropriate for hotter stars, but shifting to convective envelopes for star 2 gave a much better fit ($\Sigma \omega_{res}^2 = 0.00559$ for rad-conv versus $\Sigma \omega_{res}^2$ = 0.00808 for rad-rad). The parameters are listed in electronic Table 6 (the last three columns are explained below).

Mode 2 (for detached stars) was chosen, based on the general appearance of the light curves. Convergence by the method of multiple subsets was reached in a small number of iterations. In particular, the mass ratio q = M2/M1 was held fixed because this value (0.8487 \pm 0.0036) was well determined from the RV curves; in contrast, it is not well constrained from the photometric data.

A plot of the B,V and R light curves, and WD fit is shown later. It is important at this stage to raise the issue that there was a problem in that the derived values for absolute parameters such as mass and stellar radius. They were simply too low to fit with the primary spectral type A2, and more closely fit those of a primary spectral type A8. As indicated above, the spectral type of A2 given in SIMBAD is without reference. However, the quoted infrared magnitudes J = 10.244 and H = 10.17 (from the 2MASS survey) yield J-H = 0.074 implying the spectral type of A2 (Covey, et al., 2007). As there is no indication of a classification spectrum in the references, the spectral type must be regarded as uncertain.

Next, the lower primary temperature T1 = 7640 K (equivalent to A8 V spectral type) was adopted and new extinction coefficients produced (also listed in Table 6). The usual runs in differential corrections mode were repeated and a new solution found. In view of the uncertainty as to primary spectral type it seemed advisable to present both solutions.

A plot of the B,V and V light curves, and WD fit are shown in Figures 1 and 2; careful comparisons reveal only very slight differences in the fits. The RVs are shown in Fig. 3. (the plots from the two models are almost identical) and a three dimensional representation from Binary Maker 3 (Bradstreet, 1993) is shown in Fig. 4 (electronic only).

Third light was tested for and found to be insignificant. Next, non-zero eccentricity was tested for; a value of 0.0016 + - 0.0006 resulted. This is a very low value and is worth ignoring.

Final WD output parameters for each model are listed in Table 2 for both models.

WD	Mod. 1	Mod. 1	Mod. 2	Mod. 2	WD	Mod. 1	Mod. 1	Mod. 2	Mod. 2
Quantity	Value	Error	Value	Error	Quantity	Value	Error	Value	Error
T1 (K)	9000	170	7640	90	$V_{\gamma} (km/s)$	-0.50	0.19	-0.50	0.19
T2 (K)	7696	170	6667	90	r1 (pole)	0.279	0.001	0.258	0.001
Ω_1	4.398	0.01	4.696	0.01	r1 (point)	0.298	0.001	0.271	0.001
Ω_2	4.644	0.01	4.305	0.01	r1 (side)	0.285	0.001	0.262	0.001
q = M2/M1	0.8487	0.0036	0.8487	0.0036	r1 (back)	0.293	0.001	0.268	0.001
i (deg)	84.29	0.09	82.78	0.06	r2 (pole)	0.236	0.001	0.260	0.001
L1/(L1+L2) (B)	0.739	0.001	0.666	0.001	r2 (point)	0.247	0.001	0.278	0.001
L1/(L1+L2) (V)	0.704	0.001	0.634	0.001	r2 (side)	0.240	0.001	0.265	0.001
L1/(L1+L2) (R)	0.681	0.001	0.608	0.001	r2 (back)	0.245	0.001	0.274	0.001
a (solar radii)	5.712	0.007	5.730	0.008	$\Sigma \omega_{res}^2$	0.00556		0.00653	

Table 2: Final WD output parameters

Table 3: Models 1 & 2

	Model 1					Model 2						
Fund.	Star 1	Star 1	Star 1	Star 2	Star 2	Star 2	Star 1	Star 1	Star 1	Star 2	Star 2	Star 2
Quantity	Tabular	WD	Error	Tabular	WD	Error	Tabular	WD	Error	Tabular	WD	Error
Sp. Type	A2 V			A8 V	_		A8 V			F4 V		
Temp. (K)	9000	9000	167	7640	7696	87	7640	7640	87	6765	6664	58
Mass (M_{\odot})	2.50	1.71	0.09	1.75	1.45	0.09	1.75	1.73	0.04	1.44	1.46	0.03
Rad. (R_{\odot})	2.09	1.63	0.008	1.58	1.37	0.008	1.58	1.51	0.008	1.34	1.53	0.008
M bol	1.10	1.80	0.18	2.29	2.85	0.07	2.29	2.68	0.08	3.40	3.25	0.08
Log g (cgs)	4.195	4.24	0.014	4.284	4.32	0.012	4.284	4.32	0.002	4.342	4.23	0.002
Lum. (L_{\odot})	25.7	15.7	1.6	7.60	5.97	0.42	7.60	6.98	0.50	3.36	4.13	0.29
Dist. (pc)		496	57					483	56			

The WD output fundamental parameters and errors are listed in Table 3 along with those from the properties of zero age main sequence stars (ZAMS; Cox, 2000). Most of the errors are output or derived estimates from the WD routines. The error in q was derived from the rms deviations of points from the best-fit double sine curves. In estimating the distance, galactic extinction was allowed for using the formula

 $A_V = 3E(B-V) = R \times [(B-V)_{data} - (B-V)_{tables}].$

This last method is relatively crude in that the colour index, B-V was taken from Tycho data; the stated error in each is 0.052 and 0.056 magnitudes, translating to \pm 0.076 in the difference (but this may be a worst-case scenario). The tabular values are uncertain to around 0.015 magnitudes (corresponding to one half a spectral sub-class), and lastly, the value R=3 is an approximation – it varies from place to place and many authors favour the value 3.1. This last uncertainty accounts for an error of only a few pc and is therefore well within the error estimate of 56 or 57 pc for the distance.

In conclusion, it seems clear that spectral type A8 on the ZAMS better fits the derived mass for the primary star. Other quantities including the luminosity L are well within bounds for a main-sequence star. On the other hand, star 2 seems to be somewhat evolved, as its radius and luminosity are too high for a ZAMS star. Reference to triply-interpolated evolutionary tracks from the Geneva group reveal no fit at all for solar metallicity Z = 0.02 (Schaller et al., 1992)) but a possible fit for Z = 0.04 (Schaerer et al., 1993). Taking into account the estimated errors for L and T, an age between 0.5 and 1.00 Gy is feasible. There is no easy explanation as to how the stars could be at such disparate ages, however.

Acknowledgements: It is a pleasure to thank the staff members at the DAO (especially Dmitry Monin and Les Saddlemyer) for their usual splendid help and assistance.

Figure 1. V456 Cyg: B,V and R Light Curves – Data and WD Fit (Model 1)

Figure 2. V456 Cyg: B,V and R Light Curves – Data and WD Fit (Model 2)

Figure 3. V465 Cyg: Radial Velocity Curves – Data and WD Fit

References:

- Bessell, M.S., 1979, PASP, 91, 589
- Bradstreet, D.H., 1993, in: Light Curve Modelling of Eclipsing Binary Stars, ed. Milone, E.F., (Springer, New York), 151
- Covey, K.R., et al., 2007, Astron. J., 134, 2398
- Cox, A.N., 2000, Allen's Astrophysical Quantities, 4th ed., (Athlone Press, London).
- Kallrath, J., Milone, E.F., Terrell, D., and Young, A.T., 1998, ApJ, 508, 308.
- Morgenroth, O., 1935, AN, 255, 425
- Nelson, R.H. et al., 2006, IBVS 5715
- Nelson, R.H., 2009, Software by Bob Nelson,
 - http://members.shaw.ca/bob.nelson/software1.htm
- Nelson, R.H., 2010, in: The Alt-Az Initiative, Telescope Mirror & Instrument Developments, eds.: R.M. Genet, J.M. Johnson and V. Wallen, (Collins Foundation Press, Santa Margarita, CA), 479
- Nelson, R.H., 2011, Bob Nelson's O-C Files, http://www.aavso.org/bob-nelsons-o-c-files
- Rucinski, S. M., 2004, IAU Symp., 215, 17
- Savedoff, M.P., 1951, Astron. J., 56, 1
- Schaller, G., Schaerer, D., Meynet, G., Maeder, A., 1992, A&ASS 96, 269
- Schaerer, D., Meynet, G., Maeder, A., Schaller, G., 1993, A&ASS, 98, 523
- Terrell, D., 1994, Van Hamme Limb Darkening Tables, vers. 1.1.
- van Hamme, W., 1993, AJ, 106, 2096
- Whitney, B.S., 1959, Astron. J., 64, 258
- Wilson, R.E., Devinney, E.J., 1971, ApJ, 166, 605
- Wilson, R.E., 1990, ApJ, 356, 613
- Wood, B.D., Forbes, J.E., 1963, Astron. J., 68, 257
- Zakirov, M.M., Eshankulova, M.U., 2006, Kinematika Fiz. Nebesn. Tel., 22, 363

Number 5995

Konkoly Observatory Budapest 3 August 2011 HU ISSN 0374 – 0676

UBVRI OBSERVATIONS OF THE FLICKERING OF THE SYMBIOTIC STAR MWC 560

ZAMANOV, R.¹; BOEVA, S.¹; LATEV, G.¹; STOYANOV, K.¹; BODE, M.F.²; ANTOV, A.¹; BACHEV, R.¹

 $^{-1}$ Institute of Astronomy, Bulgarian Academy of Sciences, 72
 Tsarighradsko Shousse Blvd., 1784 Sofia, Bulgaria

 2 Astrophysics Research Institute, Liverpool John Moores University, Twelve Quays House, Birkenhead, CH41 1LD, UK

MWC 560 (V694 Mon) was discovered as an object with bright hydrogen lines (Merrill & Burwell 1943). It is a symbiotic binary system, which consists of a red giant and a white dwarf. The long term light curves (Luthardt 1991, Doroshenko et al. 1993) show that during the last century the star brightness varied in the range $m_{\rm B} = 11.0 - 12.5$, with one outburst in 1990, when it achieved $m_{\rm B} \approx 9.5$. The orbital period is estimated to be $P_{\rm orb} = 1931 \pm 162$ day (Gromadzki et al. 2007).

The flickering of MWC 560 in optical bands was first detected by Bond et al. (1984) and later reported also by Michalitsianos et al. (1993) and Tomov et al.(1996). Recently, Stute & Sahai (2009) discovered emission and quasi-periodic flickering in X-rays on timescales of minutes and hours using XMM-Newton.

On the night of 2010 December 29, we observed MWC 560 simultaneously with four telescopes equipped with CCD cameras. The 2m RCC telescope of the National Astronomical Observatory Rozhen observed in the U and V band with a dual channel focal reducer FoReRo2, equipped with CCD cameras Photometrics(1024x1024) and VersArray(512x512 px) and field of view 7.5'x7.5'. The 50/70 cm Schmidt telescope observed in the U band (CCD FLI PL 16803, 4096x4096 px, used 1024x1024 px, 18' x 18'). The 60 cm Rozhen telescope observed in the B, V and I bands (FLI PL 9000 CCD with 3056 x 3056 pixels and 18'x18'); the 60 cm telescope of the Belogradchik Astronomical Observatory in the V, R and I bands (FLI PL 9000 CCD, 3056 x 3056 px, 18'x18'). All the CCD images have been bias subtracted, flat fielded, and standard aperture photometry has been performed. The data reduction and aperture photometry were done with IRAF and have been checked with alternative software packages. The comparison stars of Henden and Munari (2006) have been used.

The results of our observations are summarized in Table 1 and plotted in Fig.1. For each run we measure the minimum, maximum, and average brightness in the corresponding band, plus the standard deviation of the run. The amplitude of variability is highest in U band, $\Delta U \approx 0.29$ mag. It decreases to longer wavelengths and in I-band is ≈ 0.07 mag. Our observations are obtained during the recent outburst, which reached the peak brightness in the end of December 2010 (Goranskij et al. 2011).

Table 1: CCD observations of MWC 560. In the table are given as follows: the band, UT-start and UTend of the run, exposure time, number of CCD images obtained, average magnitude in the corresponding band, minimum – maximum magnitudes in each band, standard deviation of the mean, observational error.

band	UT	\exp	$N_{\rm pts}$	average	min-max	stdev	err
	start-end	[sec]		[mag]	[mag]- $[mag]$	[mag]	[mag]
U	22:24 - 01:28	60	120	9.457	9.309 - 9.596	0.069	≤ 0.012
В	21:53 - 01:31	20	485	10.147	10.040 - 10.245	0.047	≤ 0.007
V	22:46 - 01:31	5	917	9.675	9.572 - 9.778	0.046	≤ 0.005
R	22:10 - 01:30	5	399	9.517	9.432 - 9.582	0.033	≤ 0.009
Ι	21:53 - 01:31	3,5	404	8.399	8.364 - 8.435	0.014	$\leq \! 0.005$

Figure 1. Variability of MWC 560 in the UBVRI bands on 29/30 December 2010.

Figure 2. I, R, V, U band magnitudes versus B band magnitude

Figure 3. Dereddened fluxes of the flickering light source of MWC 560. The solid line represents a black body fit with $T_{bb} = 13550$ K, radius $R = 1.68 \text{ R}_{\odot}$, located at distance d = 2.5 kpc.

In Fig.2, I, R, V, U band magnitudes are plotted versus the B magnitude. Linear fits (of type y = a + bx) to the data points in Fig.2 give:

$$U = -4.64(\pm 0.17) + 1.39(\pm 0.02)B \tag{1}$$

$$V = 0.43(\pm 0.08) + 0.91(\pm 0.01)B \tag{2}$$

$$R = 2.83(\pm 0.09) + 0.65(\pm 0.01)B \tag{3}$$

$$I = 6.04(\pm 0.06) + 0.23(\pm 0.01)B \tag{4}$$

The errors of the coefficients are given in brackets. These relations are obtained on the basis of our observations from 2010 Dec 29. They are valid over the range $10.05 \le B \le 10.25$ mag.

The Spearman's (rho) rank correlation gives $\rho = 0.96$ for Eq.1, $\rho = 0.98$ for Eq.2, $\rho = 0.93$ for Eq.3, $\rho = 0.94$ for Eq.4. The significance in Eq.1-Eq.4 is $< 10^{-10}$ indicating that all these correlations are highly significant.

The distance to MWC 560 is estimated to be $d = 2.5 \pm 0.3$ kpc (Meier et al. 1996). Schmid et al. (2001) give $d = 2.5 \pm 0.7$ kpc and $E_{B-V} = 0.15 \pm 0.05$ mag. We assume d = 2.5 kpc, $E_{B-V} = 0.15$ mag, and an extinction law as given in Zombeck (1990). This gives the interstellar absorption to MWC 560: $A_U = 0.754$ mag, $A_B = 0.628$ mag, $A_V = 0.477$ mag, $A_R = 0.400$ mag, $A_I = 0.304$ mag.

As a quantitative way to investigate the flickering properties Bruch (1992) proposed that the light curve of CVs can be separated into two parts – constant light and variable (flickering) source. In these suppositions the flickering light source is considered 100% modulated and it is assumed to be the modulated part of the emission from the boundary layer or the bright spot (see also Warner & Cropper 1983; Nelson et al. 2011). In a statistically representative light curve the difference between the radiation flux at a given moment and the minimum flux is then equal to the flux of the flickering light source at that moment.

Following these assumptions, we calculate the flux of the flickering light source as $F_{\rm fl} = F_{\rm av} - F_{\rm min}$, where $F_{\rm av}$ is the average flux during the run and $F_{\rm min}$ is the minimum

flux during the run (corrected for the typical error of the observations). $F_{\rm fl}$ has been calculated for each band, using Eq.1-Eq.4 (in the interval 10.22 > B > 10.147) and Bessel (1979) calibration for the fluxes of a zero magnitude star. The calculated magnitudes and colours of the flickering light source are:

 $U = 12.08 \pm 0.07, B = 13.11 \pm 0.07, V = 12.75 \pm 0.06, R = 12.94 \pm 0.09, I = 12.92 \pm 0.20, (U - B)_0 = -1.16 \pm 0.08, (B - V)_0 = 0.21 \pm 0.09, (V - R)_0 = -0.26 \pm 0.10, (V - I)_0 = -0.35 \pm 0.20$. The colours are corrected for interstellar extinction.

In Fig.2 (right panel) we plot these magnitudes transformed to fluxes and dereddened. Adopting d = 2.5 kpc and using a black body fit, we calculate for the flickering light source: $T_{\rm fl} = 13550 \pm 500$ K, $R_{\rm fl} = 1.68 \pm 0.16$ R_{\odot} and $L_{\rm fl} \approx 88$ L_{\odot}.

Conclusion: We report simultaneous observations in 5 bands (UBVRI) of the flickering of the jet ejecting symbiotic star MWC 560.

The colours of the optical flickering source we have obtained are $(U-B)_0 = -1.16\pm0.08$ and $(B-V)_0 = 0.21\pm0.09$. The temperature of the flickering source derived is $T_{\rm fl} = 13550\pm500$ K, and the luminosity is $L_{\rm fl} \sim 88$ L_{\odot}.

References:

Bessell, M. S. 1979, *PASP*, 91, 589

- Bond, H. E., Pier, J., Pilachowski, C., Slovak, M., & Szkody, P. 1984, BAAS, 16, 516
- Bruch, A. 1992, A&A, 266, 237
- Doroshenko, V. T., Goranskij, V. P., & Efimov, Y. S. 1993, IBVS, 3824
- Goranskij, V. P., Doroshenko, V. T., Barsukova, E. A., Fabrika, S. N., Sholukhova, O. N., & Valeev, A. F. 2011, The Astronomer's Telegram, 3149, 1
- Gromadzki, M., Mikołajewska, J., Whitelock, P. A., Marang, F. 2007, A&A, 463, 703
- Henden, A., & Munari, U. 2006, A&A, 458, 339
- Luthardt, R. 1991, IBVS, 3563
- Meier, S. R., Rudy, R. J., Lynch, D. K., et al. 1996, AJ, 111, 476
- Merrill, P. W., & Burwell, C. G. 1943, ApJ, 98, 153
- Michalitsianos, A. G., Perez, M., Shore, S. N., Maran, S. P., Karovska, M., et al. 1993, ApJ, 409, L53
- Nelson, T., Mukai, K., Orio, M., Luna, J., & Sokoloski, J. 2011, ApJ, (accepted) arXiv:1105.2569
- Schmid, H. M., Kaufer, A., Camenzind, M., et al. 2001, A&A, 377, 206
- Stute, M., & Sahai, R. 2009, A&A, 498, 209
- Tomov, T., Kolev, D., Ivanov, M. et al. 1996, A&AS, 116, 1
- Warner, B., & Cropper, M. 1983, MNRAS, 203, 909
- Zombeck M., 1990, Handbook of Space Astronomy and Astrophysics, 2nd edition, Cambridge University Press

^{*}This version of the paper contains corrections, and differs from the one appeared on-line originally. Date of last modification: Fri Aug 5 10:56:31 CEST 2011

Number 5996

Konkoly Observatory Budapest 17 August 2011 *HU ISSN 0374 – 0676*

REFERENCE FRAME AND TIME STANDARD USED IN INTEGRAL/OMC DATASETS

ZEJDA, MILOSLAV¹; DOMINGO, ALBERT²

¹ Department of Theoretical Physics and Astrophysics, Masaryk University, Kotlářská 2, CZ 611 37 Brno, Czech Republic. e-mail: zejda@physics.muni.cz

 2 Centro de Astrobiología (INTA-CSIC) POB 78, 28691 Villanueva de la Cañada, Madrid, Spain. e-mail: albert@cab.inta-c
sic.es

The INTEGRAL satellite (Winkler et al. 2003) started its operations in October 2002 and is dedicated to search and study of all kinds of high-energy sources using gamma-ray and X-ray instruments. In addition, there is an Optical Monitoring Camera (Mas-Hesse et al. 2003, hereafter OMC) consisting of a passively cooled CCD (1056×2061 pixels, imaging area: 1024×1024 pixels) working in frame transfer mode. The CCD is located in the focal plane of a 50 mm (diameter) lens including a Johnson V-filter to cover the 500–600 nm wavelength range. The OMC obtains very good long-term series of photometric observations. The public OMC Archive at http://sdc.cab.inta-csic.es/omc/ (Gutiérrez et al. 2004) contains not only optical measurements of the original high-energy targets, but also many "common" variable stars observed with OMC. However, some OMC data used in the past were unfortunately interpreted in the incorrect time standard. For this reason we decided to write the following short description to help people working in the variable star community.

The data in the public archive are given as binary tables in fits format. The time information is given in two columns in terms of INTEGRAL Julian Date (IJD), which is defined as JD-2 451 544.5 or MJD-51 544.0. The time standard adopted by the INTE-GRAL Project, as recommended by IAU Division I, is Terrestrial Time (TT). So, IJD starts on 1 January 2000, but expressed in TT and not in UTC. Since TT differs from UTC by 32.184 sec + 32 leap seconds at the start of year 2000, the UTC origin of the IJD is actually 1999-12-31 T23:58:55.816 (=JD 2 451 544.49925713 UTC).

The first time column is "TFIRST", where no barycentric or heliocentric correction is applied. So, "TFIRST" is the INTEGRAL Julian Date measured in the satellite reference frame and expressed in TT. The second time column "BARYTIME" includes the time after applying the barycentric correction to transform from the accelerated coordinate system of the INTEGRAL satellite into the coordinate system of the solar system barycenter. Following the IAU recommendations for barycentric ephemerides (IAU 2006 NFA glossary, prepared by the IAU Division I Working Group), "BARYTIME" is the Barycentric INTEGRAL Julian Date expressed in the Barycentric Dynamical Time standard (TDB). The difference TDB–TT has a maximum amplitude of 3.4 ms (Eastman et al. 2010), which is orders of magnitude lower than the OMC timing accuracy. We notice that authors use heliocentric instead of barycentric correction in most papers devoted to variable stars. Heliocentric correction is only accurate to 8 seconds (see Eastman et al. 2010 for details). This difference is negligible for the majority of periodic variable stars with periods of days and longer, but it brings redundant and senseless noise to the data.

In addition to the above considerations, the OMC data user must take into account that times in both columns "TFIRST" and "BARYTIME" are the "starting" time of the integration. Thus, for the commonly used "middle" time of the integration, one must add "TELAPSE"/2 and be aware that TELAPSE is in seconds. An OMC integration consists of one or several individual exposures. Information in the TELAPSE column gives the length of the entire integration in seconds (which can include several exposures), while the EXPOSURE column gives the effective exposure in seconds. The number of exposures co-added to form a given OMC integration is controlled by the "Sampling Time" query parameter shown on the OMC Archive Web page. This parameter must be understood as a code to designate the type of light curve is obtained. There are three different sampling times used for data in the OMC Archive: 1, 630 and 9000 seconds. With 1 second sampling we get a light curve with one photometric point per exposure. With 630 second sampling individual exposures are co-added to obtain roughly one photometric point each 10 minutes, but images with exposures less than 20 seconds are rejected to increase the signal-to-noise ratio. For the 9000 seconds sampling all exposures in a given INTEGRAL pointing are co-added, and exposures shorter than 60 seconds are rejected to increase the signal-to-noise ratio. It should be borne in mind that longer exposures lead to saturation effects for bright sources. Consequently only the shortest possible exposure times should be used for such bright sources.

The OMC Archive is a rich source of photometric information on many variable stars. However, before using the information for a long term study of astronomical events, substantial attention should be devoted to the time scales and reference frames of data used in the analysis. As Bastian (2000), Eastman et al. (2010) and others showed, researchers should take into account the difference between JD based on UTC and TT (or TDB), which can introduce systematic errors of over 1 minute.

More information can be found at the ISDC¹ FAQ list: http://www.isdc.unige.ch/integral/support/faq.

Acknowledgements: "Based on data and information from the OMC Archive at CAB-LAEFF, pre-processed by ISDC".

Reference:

Bastian, U., 2000, IBVS 4822
Eastman, J., Siverd, R., & Gaudi, B. S., 2010, PASP, 122, 935
Gutiérrez, R., Solano, E., Domingo, A., García, J., 2004, ASP Conf. Ser., 314, 153
Mas-Hesse, J. M., Giménez, A., Culhane, J. L., et al., 2003, A&A, 411, L261
Winkler, C., Courvoisier, T. J.-L., Di Cocco, G., et al., 2003, A&A, 411, L1

 $^{^1\}mathrm{The}$ INTEGRAL Science Data Centre

Number 5997

Konkoly Observatory Budapest 6 September 2011 HU ISSN 0374 - 0676

MINIMA OF ECLIPSING BINARIES, VARIABILITY OF V840 HER AND NSV5740, NEW EPHEMERIDES FOR V997 CYG, V1037, V1098, V1100 HER

ARENA, C.^{1,2}; ACETI, P.³; BANFI, M.¹; BELLIA, I.⁴; BIANCIARDI, G.⁴; CORFINI, G.¹; MARCHINI, A.^{1,5}; MARINO, G.^{1,2}; MARTINENGO, M.¹; PAPINI, R.¹; PESENTI, L.³; ROMEO, G.²; RUOCCO, N.^{1,6}; VINCENZI, M.¹; ZAMBELLI, R.¹

¹ Sezione Stelle Variabili – Unione Astrofili Italiani (UAI), e-mail: stellevariabili@uai.it

 2 Gruppo Astrofili Catanesi - via Milo, 28 I-95125 Catania, ITALY

 3 Liceo Scientifico Iris Versari, Cesano Maderno (MI), ITALY

 4 Skylive/Telescopio remoto UAI - ITALY

 5 University of Siena Astronomical Observatory - Via Roma, 56 I-53100 Siena, ITALY

⁶ Astrocampania, Sez. Stabia – Penisola Sorrentina - ITALY

The accompanying list contains 97 times of minima for 49 eclipsing binary stars (including the cataclysmic DO Leo) calculated from CCD observations made by participants in the SSV-UAI Eclipsing Binaries Program. All the observatories are located in Italy; one is managed by the Physics Department of the University of Siena, while the others are privately operated.

The observations were reduced following standard procedures (see next section) and the light curves were analyzed using the Kwee–van Woerden algorithm (Kwee & van Woerden, 1956) to determine the times of minimum. All the times of minimum listed in this paper are heliocentric.

We note most of the observed stars are neglected objects.

Observatory and telescope:

University of Siena Astron. Observatory: 32-cm Maksutov–Cassegrain (MC32)
Skylive Remote Telescopes: 30-cm Schmidt–Cassegrain (S30)
Other private astronomical stations:
30-cm Schmidt–Cassegrain (SC30)
25-cm Newton (NW25)
25-cm Schmidt–Cassegrain (SC25)
20-cm Newton (NW20)
20-cm Schmidt–Cassegrain (SC20)
11-cm Newton (NW11)
. ,

Detector:	Meade DSI Pro II Monochromatic CCD camera (DSI)
	QSI 516wsg
	SBIG ST-7 CCD Camera (ST7)
	SBIG ST-8XME CCD Camera (ST8)
	SBIG ST-9 CCD Camera (ST9)
	SBIG ST-10XME CCD camera (ST10)
	Sony ICX429ALL based CCD camera (CCD-UAI)

Method of data reduction:

Frame calibration (dark subtraction and flat field correction) and photometric analysis (differential photometry on each image) were performed using MaxImDL or Mira Pro software packages.

Method of minimum determination:

The times of minima, expressed as heliocentric Julian days (see the attached Table), were computed adopting the KW method (Kwee & van Woerden, 1956) using AVE (Barberá, 1996). This algorithm also provides an error estimate, that is the formal internal error of the KW method, so which can be considered as a lower limit of the actual uncertainty on times of minimum. Together with that error, we provide an alternative estimate error according to the Arlot's (modified) method (Arlot *et al.*, 2009) by adopting the formula $\sigma_{ToM} = \frac{1}{\sqrt{2}} \frac{\sigma_m}{\Delta m} \Delta t$, where σ_m is the error in magnitude and Δm is the magnitude drop during a time range Δt delimiting the part of the light curve where the speed of decrease in magnitude is the highest. The $\frac{1}{\sqrt{2}}$ factor takes into account that 2 branches (descending and ascending) contribute to the time of minimum estimation.

The types of minimum quoted in the Table were deduced according the ephemerides provided by Kreiner's (2004) web site (http://www.as.up.krakow.pl/ephem), by B.R.N.O. - O-C Gateway web site (http://var.astro.cz/ocgate) or by our updated elements (see below). Only in the latter case we are sure that the primary minimum (conventionally at zero phase) is the deeper.

Times of minima:							
Star name	Time of min.	Error	Type	Filter	Rem.		
	HJD 2400000+		_				
V1490 Aql	55755.3731	$0.0015^a \ 0.0001^b$	Ι	R	Marino/NW25/ST7		
EM Boo	55662.4656	$0.0010 \ 0.0009$	II	V	Martinengo/SC20/QSI-516wsg		
GG Boo	55694.3652	$0.0009 \ 0.0004$	Ι	r	Ruocco/SC25/ST7		
GI Boo	55671.4805	$0.0021 \ 0.0011$	II	V	Banfi/SC25/ST7		
EG Cep	55751.3698	$0.0002 \ 0.0001$	Ι	c	Arena/NW20/DSI		
V338 Cep	55436.3741	$0.0005 \ 0.0002$	Ι	Ι	Marino/NW20/ST7		
V383 Cep	55434.3814	$0.0014 \ 0.0002$	II	Ι	Marino/NW20/ST7		
AM CrB	55693.4176	$0.0004 \ 0.0003$	Ι	r	Ruocco/SC25/ST7		
CX CVn	55655.4633	$0.0012 \ 0.0003$	Ι	V	Banfi/SC25/ST7		
DU CVn	55658.3619	$0.0011 \ 0.0007$	Ι	r	Ruocco/SC25/ST7		
DU CVn	55658.5164	$0.0005 \ 0.0004$	II	r	Ruocco/SC25/ST7		
DU CVn	55661.4319	$0.0007 \ 0.0008$	Ι	r	Ruocco/SC25/ST7		
WZ Cyg	55412.3457	$0.0005 \ 0.0001$	II	R	Romeo, Marino/SC20/ST7		
V997 Cyg	55459.3667	$0.0014 \ 0.0003$	II	R610	Corfini/NW20/CCD-UAI		
V997 Cyg	55460.5135	$0.0006 \ 0.0017$	Ι	R610	Corfini/NW20/CCD-UAI		
V997 Cyg	55462.3445	$0.0007 \ 0.0003$	Ι	R610	Corfini/NW20/CCD-UAI		
V997 Cyg	55463.4917	$0.0012 \ 0.0010$	II	R610	Corfini/NW20/CCD-UAI		
V997 Cyg	55469.4474	$0.0004 \ 0.0002$	II	c	Zambelli/SC25/ST8		
V997 Cyg	55469.4481	$0.0017 \ 0.0006$	II	R610	Corfini/NW20/CCD-UAI		
V997 Cyg	55472.4243:	$0.0020 \ 0.0015$	Ι	R610	Corfini/NW20/CCD-UAI		
V997 Cyg	55476.3207	$0.0022 \ 0.0006$	II	R610	Corfini/NW20/CCD-UAI		
V997 Cyg	55478.3836	$0.0011 \ 0.0002$	Ι	R610	Corfini/NW20/CCD-UAI		
V997 Cyg	55479.2994	$0.0004 \ 0.0002$	Ι	R610	Corfini/NW20/CCD-UAI		
V1905 Cyg	55739.4298	$0.0002 \ 0.0001$	Ι	V	Martinengo/SC20/QSI 516wsg		
V2197 Cyg	55754.3883	$0.0001 \ 0.0001$	Ι	V	Banfi, Aceti, Pesenti/SC25/ST7		
V2278 Cyg	55710.4459	$0.0009 \ 0.0004$	Ι	V	Marino/NW20/ST7		
V2478 Cyg	55740.4118	$0.0006 \ 0.0002$	II	V	Martinengo/SC20/QSI 516wsg		
V2480 Cyg	55754.5378	$0.0010 \ 0.0001$	Ι	V	Banfi/SC25/ST7		
EF Dra	55754.5431	$0.0009 \ 0.0003$	II	c	Arena/NW20/DSI		
GM Dra	55755.3665	$0.0009 \ 0.0001$	Ι	c	Arena/NW20/DSI		
GM Dra	55755.5379	$0.0009 \ 0.0001$	II	c	Arena/NW20/DSI		
HL Dra	55644.5838	$0.0019 \ 0.0003$	Ι	V	Banfi/SC25/ST7		
HL Dra	55645.5304	$0.0026 \ 0.0002$	Ι	V	Banfi/SC25/ST7		
HL Dra	55706.4376	$0.0064 \ 0.0010$	II	V	Martinengo/SC20/QSI 516wsg		
MY Dra	55655.4064	$0.0004 \ 0.0002$	Ι	V	Papini/SC25/ST9		
BC Her	55726.4459	$0.0007 \ 0.0003$	Ι	V	Banfi/SC25/ST7		
V923 Her	55661.5027	$0.0060 \ 0.0002$	Ι	V	Marino/NW20/ST7		
V1037 Her	55696.5741	$0.0003 \ 0.0002$	Ι	r	Ruocco/SC25/ST7		
V1037 Her	55700.5123	$0.0004 \ 0.0003$	Ι	r	Ruocco/SC25/ST7		
V1037 Her	55700.5120	$0.0004 \ 0.0001$	Ι	V	Marchini/MC32/ST7		
V1037 Her	55702.4821	$0.0014 \ 0.0004$	II	V	Banfi/SC25/ST7		
V1037 Her	55719.4146	$0.0012 \ 0.0002$	Ι	V	Banfi/SC25/ST7		
V1037 Her	55750.5258	$0.0020 \ 0.0025$	II	V	Banfi/SC25/ST7		
V1072 Her	55670.4421	$0.0012 \ 0.0007$	Ι	V	Banfi/SC25/ST7		
V1072 Her	55698.3723	$0.0011 \ 0.0011$	II	c	Zambelli/SC25/ST8		
V1072 Her	55710.4276	$0.0003 \ 0.0001$	Ι	V	Martinengo/SC20/QSI 516wsg		
V1072 Her	55738.3594	$0.0013 \ 0.0007$	II	c	Ruocco/SC25/ST7		
V1098 Her	55417.3951	$0.0007 \ 0.0003$	II	V	Corfini/NW20/CCD-UAI		
V1098 Her	55454.3815	$0.0007 \ 0.0002$	II	R610	Corfini/NW20/CCD-UAI		
V1098 Her	55641.6130	$0.0004 \ 0.0001$	Ι	V	Papini/SC25/ST9		
V1098 Her	55644.6084	$0.0004 \ 0.0002$	II	V	Papini/SC25/ST9		
V1098 Her	55645.4866	$0.0010 \ 0.0006$	Ι	V	Papini/SC25/ST9		

Times of minima:							
Star name	Time of min.	Error	Type	Filter	Rem.		
	HJD 2400000+						
V1098 Her	55654.4722	$0.0009 \ 0.0003$	II	V	Banfi/SC25/ST7		
V1098 Her	55654.6468	$0.0006 \ 0.0002$	Ι	V	Banfi/SC25/ST7		
V1098 Her	55669.4424	$0.0007 \ 0.0002$	Ι	V	Zambelli/SC25/ST8		
V1098 Her	55733.3808	$0.0004 \ 0.0002$	II	c	Ruocco/SC25/ST7		
V1100 Her	55641.5702	$0.0005 \ 0.0002$	II	V	Zambelli/SC25/ST8		
V1100 Her	55646.6008	$0.0008 \ 0.0002$	Ι	V	Banfi/SC25/ST7		
V1100 Her	55658.5684	$0.0016 \ 0.0004$	II	V	Banfi/SC25/ST7		
V1100 Her	55731.4261	$0.0003 \ 0.0003$	II	c	Ruocco/SC25/ST7		
V1100 Her	55734.3741	$0.0003 \ 0.0002$	Ι	c	Ruocco/SC25/ST7		
V409 Hya	55652.3572	$0.0003 \ 0.0001$	Ι	V	Corfini/NW20/CCD-UAI		
XZ Leo	55601.4597	$0.0003 \ 0.0001$	Ι	R	Bellia, Bianciardi/S30/ST10		
DO Leo	55305.5006	$0.0004 \ 0.0001$	Ι	C.Booster	Corfini/NW20/CCD-UAI		
DO Leo	55308.3147	$0.0006 \ 0.0006$	Ι	R610	Corfini/NW20/CCD-UAI		
HS Leo	55698.3388	$0.0002 \ 0.0003$	II	c	Corfini/NW20/CCD-UAI		
G1965-735	55657.3612	$0.0003 \ 0.0003$	Ι	V	Corfini/NW20/CCD-UAI		
G1965-735	55660.3982	$0.0005 \ 0.0002$	Ι	V	Banfi/SC25/ST7		
WZ LMi	55658.3913	$0.0008 \ 0.0005$	II	V	Corfini/NW20/CCD-UAI		
CF Lyn	55632.3946	$0.0012 \ 0.0005$	Ι	r	Ruocco/SC25/ST7		
CL Lyn	55664.3905	$0.0017 \ 0.0020$	Ι	r	Ruocco/SC25/ST7		
EH Lyn	55689.4082	$0.0014 \ 0.0008$	Ι	V	Corfini/NW20/CCD-UAI		
V400 Lyr	55021.4022	$0.0004 \ 0.0001$	Ι	c	Corfini/NW11/CCD-UAI		
V400 Lyr	55021.5286	$0.0009 \ 0.0005$	II	c	Corfini/NW11/CCD-UAI		
V400 Lyr	55394.5691	$0.0003 \ 0.0004$	II	BVRI	Marino/NW20/ST7		
V400 Lyr	55395.4557	$0.0005 \ 0.0020$	Ι	BVRI	Marino/NW20/ST7		
V400 Lyr	55395.5831	$0.0062 \ 0.0004$	II	BVRI	Marino/NW20/ST7		
V400 Lyr	55418.3905	$0.0004 \ 0.0004$	II	BVRI	Marino/NW20/ST7		
V400 Lyr	55418.5175	$0.0002 \ 0.0002$	Ι	BVRI	Marino/NW20/ST7		
V400 Lyr	55433.4697	$0.0008 \ 0.0003$	Ι	BVRI	Marino/NW20/ST7		
V563 Lyr	55737.3801	$0.0005 \ 0.0003$	Ι	V	Marino/NW25/ST7		
V2394 Oph	55690.2155:	$0.0007 \ 0.0010$	Ι	r	Marino/S30/ST10		
V2640 Oph	55710.5011	$0.0006 \ 0.0002$	Ι	V	Marino/NW20/ST7		
BO Peg	55135.4101	$0.0013 \ 0.0003$	Ι	c	Corfini/NW20/CCD-UAI		
BO Peg	55147.3105	$0.0022 \ 0.0009$	II	c	Corfini/NW20/CCD-UAI		
WY Sex	55644.5001	$0.0007 \ 0.0004$	II	V	Corfini/NW20/CCD-UAI		
WY Sex	55645.4181	$0.0006 \ 0.0002$	Ι	V	Corfini/NW20/CCD-UAI		
WY Sex	55651.4923	$0.0002 \ 0.0004$	II	V	Zambelli/SC25/ST8		
XX Sex	55662.4122	0.0008 0.0003	Ι	V	Corfini/NW20/CCD-UAI		
GO Tau	55305.3461	$0.0005 \ 0.0004$	Ι	V	Corfini/NW20/CCD-UAI		
HV UMa	55654.2986	$0.0043 \ 0.0010$	II	r	Ruocco/SC25/ST7		
HV UMa	55665.3127	$0.0013 \ 0.0012$	Ι	r	Ruocco/SC25/ST7		
OQ UMa	55643.4067	$0.0004 \ 0.0001$	Ι	V	Corfini/NW20/CCD-UAI		
IK Vir	55657.5013	0.0019 0.0003	Ι	V	Banfi/SC25/ST7		
IR Vir	55687.3854	0.0005 0.0001	II	V	Corfini/NW20/CCD-UAI		
V384 Vul	55706.5493	0.0011 0.0003	II	V	Banfi/SC25/ST7		
V384 Vul	55750.4349	0.0021 0.0004	Ī	V	Banfi/SC25/ST7		
V384 Vul	55759.4315	$0.0015 \ 0.0002$	Ι	V	Vincenzi/SC30/ST9		

Explanation of the remarks in the table: Rem.: Observer[s]/Telescope/Detector ^a Arlot's modified method ^b as given by KW method

- : uncertain
Remarks:

V997 Cyg – This variable star was catalogued as RR Lyr type in the catalogues of Sonneberg Obs. (Gessner, 1966), GCVS (Samus *et al.*, 2007-2011) and VSX (http://www.aavso.org/vsx), as well as in the Kemper's (1982) spectroscopic program. More recently, the star was recognized to be an eclipsing binary (Akerlof *et al.*, 2000; Devor *et al.*, 2008).

In order to improve the ephemeris of this star, we firstly analyzed our light curves (covering all phases) by using the period searching utilities provided by PERANSO software (Vanmunster, 2007), which lead to the period value $p = 0^d.458219$, consistent with the values given by Akerlof *et al.* (2000) and Devor *et al.* (2008). Subsequently, including also the ROTSE1 time of minima given by Diethelm (2001a), the linear best fit of the O–C vs. the epoch, leaving the initial epoch and period free to vary, led to the following updated ephemeris:

 $T_{min} (HJD) = 2455460.5124(\pm 0.0010) + 0^{d}.4582260(\pm 0.0000003) \times E$ Figure 1 shows the O–C diagram computed using our new ephemeris. No change of period is evident in the O–C diagram.

V840 Her – The first report we found about a possible short term variability of NSV7814 (=V840 Her) was given in oral communication at a meeting by DeMartino & Predom (1991); nevertheless, Baldwin & Dahm (1993) did not find any variability. Kazarovets & Samus (1995) included the star in the 72^{nd} name-list of variable stars. We observed the star during 24 nights for 52 hours. Only during one nights we found a possible, never confirmed, variation of 0.04 mag.; in the other nights we found the star to be constant within 0.02 mag, allowing us to exclude all possible variability's period $\leq 0^d.9752$ and many greater values.

V1037 Her – For this very neglected star, ROTSE1 (Akerlof *et al.*, 2000) and VSX catalogues report a period of $\sim 1^d.30$ and $\sim 0^d.65$ respectively. Those values are not consistent with our light curves, which lead to the correct value of $\sim 0^d.79$, which also agree with the only two minima found in literature (ROTSE1–Diethelm, 2001b). The linear best fit of the O–C including all available data leads to the following correct ephemeris:

 T_{min} (HJD) = 2455696.57493(±0.00097) + 0^d.7875767(±0.0000003) × E

The O–C diagram obtained with the new ephemeris is shown in Figure 2.

V1098 Her – ROTSE1 catalogue classified the stars as a δ Scuti. In their reclassification, Jin *et al.* (2003) recognized V1098 Her as an eclipsing binary.

Our minima allow us to significantly improve the ephemeris by performing a linear best fit of O-C including, together our data, the only time of minimum publicly available. Figure 3 shows the O-C diagram obtained with our following updated elements:

 T_{min} (HJD) = 2455417.21830(±0.00034) + 0^d.352268564(±0.00000098) × E **V1100 Her** – The star is included in the Kreiner's (2004) database. Relevant discrepancies between observed and predicted times of minima led us to examine the O–C diagram, which shows evident period's variation. The following new ephemeris is obtained by computing the linear best fit of all the available data:

 T_{min} (HJD) = 2452500.2778(±0.0036) + 0^d.34693098(±0.00000049) × E The O–C diagram obtained with the new ephemeris is shown in Figure 4. **NSV5740** – Hübscher, Paschke & Walter (2006), Paschke (2007) and Paschke (2009) report three minima. However, a recent revision of the original images has clarified those were minimum's times of GSC1991-1676 (Paschke, 2011). Actually, Faulkner (1986) had found the star to be constant within 0.02 mag. Our monitoring, performed during 14 hours in 5 nights, confirms the star is constant, within 0.01 mag.

Figure 1. O–C diagram for V997 Cyg. Empty symbols for secondary minima.

Figure 2. O–C diagram for V1037 Her. Empty symbols for secondary minima.

Figure 3. O–C diagram for V1098 Her. Empty symbols for secondary minima.

Figure 4. O–C diagram for V1100 Her. Empty symbols for secondary minima.

References:

- Akerlof, C., et al., 2000, AJ, 119, 1901
- Arlot, J.-E. et al., 2009, A&A, 493, 1171
- Baldwin, M. E., Dahm, M., 1993, *MitVS*, 12, 163
- Barberá, R., 1996, AVE, http://www.astrogea.org/soft/ave/introave.htm
- DeMartino, R., Predom, C. J., 1991, JAAVSO, 20, 250
- Devor, J., Charbonneau, D., O'Donovan, F. T., Mandushev, G., Torres, G., 2008, AJ, 135, 850
- Diethelm, R., 2001a, *IBVS*, **5027**, 1
- Diethelm, R., 2001b, *IBVS*, **5060**, 1
- Faulkner, D. R., 1986, *IBVS*, **2930**, 1
- Gessner, H., 1966, Veroeff. Sternwarte Sonneberg, 7, 61
- Hübscher, J., Paschke, A., Walter, F., 2006, IBVS, 5731, 1
- Jin, H., et al., 2003, A&A, 404, 621
- Kazarovets, E. V., Samus, N. N., 1995, IBVS, 4140, 1
- Kemper, E., 1982, AJ, 87, 1395
- Kreiner, J. M., 2004, AcA, 54, 207, http://www.as.up.krakow.pl/ephem
- Kwee, K. K., van Woerden, H., 1956, Bull. Astr. Inst. Neth., 12, 327, (No. 464)
- Paschke, A., 2007, OEJVS, 73, 1
- Paschke, A., 2009, OEJVS, 116, 1
- Paschke, A., 2011, Private communication
- Samus, N. N., et al., 2007-2011, The GCVS Catalog (I-III, version 2011-May)
- Vanmunster, T., 2007, PERANSO, http://www.peranso.com

COMMISSIONS 27 AND 42 OF THE IAU INFORMATION BULLETIN ON VARIABLE STARS

Number 5998

Konkoly Observatory Budapest 7 September 2011 HU ISSN 0374 – 0676

REPORTS ON NEW DISCOVERIES

Date: 17 September 2009
Observer(s) and affiliation(s):
Liakos, A Department of Astrophysics, Astronomy and Mechanics, National and
Kapodistrian University, Athens, Greece, alliakos@phys.uoa.gr
Niarchos, P Department of Astrophysics, Astronomy and Mechanics, National
and Kapodistrian University, Athens, Greece, pniarcho@phys.uoa.gr

RA(J2000)	Dec(J2000)	type	Mag.
20 12 12	$19 \ 20 \ 45$	DSCT	11.9 (V) (GSC)
Period		Epoch	
0.0310772 d		-	
Cross-identific	ation(s):		
GSC 1626-1303			

Date: 28 April 2010
Observer(s) and affiliation(s):
Liakos, A Department of Astrophysics, Astronomy and Mechanics, National and
Kapodistrian University, Athens, Greece, alliakos@phys.uoa.gr
Niarchos, P Department of Astrophysics, Astronomy and Mechanics, National
and Kapodistrian University, Athens, Greece, pniarcho@phys.uoa.gr

Remark: In the field of TU UMi.

RA(J2000)	Dec(J2000)	type	Mag.
$14 \ 49 \ 43$	$76\ 15\ 29$	DSCT	12.1 (V)
Period		Epoch	
$0.06055(1) \ d$		-	
Cross-identificat	tion(s):		
GSC 4559-2536			

Date: 23 August 2010
Observer(s) and affiliation(s):
Liakos, A Department of Astrophysics, Astronomy and Mechanics, National and
Kapodistrian University, Athens, Greece, alliakos@phys.uoa.gr
Niarchos, P Department of Astrophysics, Astronomy and Mechanics, National
and Kapodistrian University, Athens, Greece, pniarcho@phys.uoa.gr

Remark: Detected in the FoV of AW Vul.

Dec(J2000)	type	Mag.
$24 \ 53 \ 02.9$	\mathbf{EB}	V=12.940 mag
		(NOMAD-1 cata-
		logue)
	Epoch	
	2455396.495(2)	
n(s):		
453029		
	Dec(J2000) 24 53 02.9	Dec(J2000) type 24 53 02.9 EB Epoch 2455396.495(2) a(s): 453029

Date: 28 October 2010

Observer(s) and affiliation(s): Liakos, A. - Department of Astrophysics, Astronomy and Mechanics, National and Kapodistrian University, Athens, Greece, alliakos@phys.uoa.gr Niarchos, P. - Department of Astrophysics, Astronomy and Mechanics, National and Kapodistrian University, Athens, Greece, pniarcho@phys.uoa.gr

Remark: Detected in the FoV of V407 Lac.

RA(J2000)	Dec(J2000)	type	Mag.
$22 \ 23 \ 48$	+41 19 56	$\mathbf{E}\mathbf{A}$	B=12.7 mag
			(USNO-A2.0 Cata-
			logue)
Period		Epoch	
1.1597(1) d		2455399.4818(7)	
Cross-identificat	ion(s):		
GSC 03208-02644			

Remark: Detected in the FoV of UW Cyg.

RA(J2000)	Dec(J2000)		type	Mag.
20 23 24	$+43\ 24\ 22$		EA	B=12.8 mag
				(USNO-A2.0 Cata-
				logue)
Period		Epo	ch	
4.4377(1) d		2455	392.4033(3)	
Cross-identificat	tion(s):			
GSC 03164-01558				

Remark: Detected in the FoV of UW Cyg.

RA(J2000)	Dec(J2000)	type	Mag.
$20 \ 23 \ 46$	$+43 \ 30 \ 14$	DSCT	B=10.85 mag (Ty-
			cho Reference Cat-
			alogue)
Period		Epoch	
0.13844(4) d			
Cross-identification	n(s):		
GSC 03164-01517			

Date: 1 December 2010
Observer(s) and affiliation(s):
Marrero Corujo, A.L AAGC Observatory (MPC J56), Apdo. de correos 6015,
CP 35007, Las Palmas de Gran Canaria, Spain, anlumaco@hotmail.com

Discovered by Wachmann (1940). O'Connel effect.

RA(J2000) 20 10 58.8	$\frac{\mathbf{Dec(J2000)}}{+35\ 27\ 05.0}$		type EB	Mag. 14.13 - 13.29 mag
Period 0.796461 d		Epo 2455	och 5401.49048	
Cross-identifica NSV 12875	ation(s):	<u> </u>		

Date: 2 December 2010
Observer(s) and affiliation(s):
Liakos, A Department of Astrophysics, Astronomy and Mechanics, National and
Kapodistrian University, Athens, Greece, alliakos@phys.uoa.gr
Niarchos, P Department of Astrophysics, Astronomy and Mechanics, National
and Kapodistrian University, Athens, Greece, pniarcho@phys.uoa.gr

Remark: Detected in the FoV of AU Lac.

RA(J2000)	Dec(J2000)	type	Mag.
$22 \ 14 \ 15.12$	$+48 \ 30 \ 51.84$	EB	R=14.5 mag (The
			USNO-A2.0 Cata-
			logue)
Period		Epoch	
0.44149(3) d		2455441.3567(7)	
Cross-identifica	tion(s):		
USNO-A2.0 1350-	-16144088		

Remark: Detected in the FoV of YY CMi.

RA(J2000)	Dec(J2000)	type	Mag.	
$08 \ 05 \ 45.53$	+02 03 01.6	EB	R=14.9 mag (The	
			USNO-A2.0 Cata-	
			logue)	
Period		Epoch		
0.41958(7) d		2455231.336(4)		
Cross-identification(s):				
GSC 00198-02061				

Date: 19 January 2011 Observer(s) and affiliation(s): Liakos, A. - Department of Astrophysics, Astronomy and Mechanics, National and Kapodistrian University, Athens, Greece, alliakos@phys.uoa.gr Niarchos, P. - Department of Astrophysics, Astronomy and Mechanics, National and Kapodistrian University, Athens, Greece, pniarcho@phys.uoa.gr

Remark: Detected in the FoV of V1149 Tau, RZ Tau, NSV 1664 .

RA(J2000) 04 38 50	Dec(J2000) +18 40 19	type DSC7	$\Gamma \qquad \begin{array}{c} \mathbf{Mag.} \\ \mathbf{B}=12.0 \text{ mag} \text{ (Th} \\ \mathbf{USNO-A2.0 \text{ Cata}} \\ \text{logue)} \end{array}$
Period		Epoch	
$0.08744(1) \mathrm{d}$		-	
Cross-identificat	ion(s):		
GSC 01270-00926			

Remark: Detected in the FoV of SS Cam .

RA(J2000)	Dec(J2000)	type	Mag.
$07 \ 14 \ 55.9$	$+73 \ 15 \ 40.26$	\mathbf{EA}	R=12.4 mag (The
			USNO-A2.0 Cata-
			logue)
Period		Epoch	
1.19992(2) d		2455466.533(5)	
Cross-identificat	ion(s):		
GSC 04372-00831			

Remark: Detected in the FoV of AU Lac .

RA(J2000)	Dec(J2000)	type	Mag.
$22 \ 14 \ 03.6$	$+48 \ 35 \ 18.9$	EB	R=13.9 mag (The
			USNO-A2.0 Cata-
			logue)
Period		Epoch	
0.65321(3) d		2455538.316(3)	
Cross-identificat	ion(s):		
USNO-A2.0 1350-1	16136263		

Date: 15 February 2011 Observer(s) and affiliation(s): Liakos, A. - Department of Astrophysics, Astronomy and Mechanics, National and Kapodistrian University, Athens, Greece, alliakos@phys.uoa.gr Niarchos, P. - Department of Astrophysics, Astronomy and Mechanics, National and Kapodistrian University, Athens, Greece, pniarcho@phys.uoa.gr

Remark: Detected in the FoV of AV CMi and GSC 00770-00523 (newly discovered variable)

RA(J2000) 07 09 56.3	Dec(J2000) 12 06 08.9	type EB	Mag. R=14.6 mag (The USNO-A2.0 Cata- logue)
Period		Epoch	
0.50460(3) d		2455594.4123(6)	
Cross-identification	n(s):		
USNO-A2.0 0975-047	21840		

Date: 30 March 2011
Observer(s) and affiliation(s):
Vaccaro, T Francis Marion University, P.O. Box 100547, Florence, SC, USA,
tvaccaro@fmarion.edu
Stone, K Francis Marion University, P.O. Box 100547, Florence, SC, USA,
tvaccaro@fmarion.edu

Remark: HD 185587 has been used as a comparison/check for the eclipsing binary V1379 Aql (HD185510). HD1887 appears to have multiple frequencies. The muliple periodic nature of this star and its A0 classification indicate a low-amplitude delta Scuti variable. The constancy of the comparison (HD185567) was determined by comparing it to V1379 Aql, which was at phase ≈ 0.46 (Frasca et al., 1998). Data outside eclipse are expected to be constant for a given night due to its 20d orbit.

RA(J2000)	Dec(J2000)	type	Mag.
$19 \ 40 \ 02.866$	$-06\ 06\ 12.48$	DSCT	V=9.1 mag (Loyd
			Evans et al., 1983)
Period		Epoch	
0.0313 d		-	
Cross-identificat	ion(s):		
HD $185587 = GSC$	C 05157-03060		

Date: 6 April 2011

Observer(s) and affiliation(s):

Monninger, G. - Bundesdeutsche Arbeitsgemeinschaft für Veränderliche Sterne e.V. (BAV), Munsterdamm 90, DE-12169 Berlin, Germany, gerold.monninger@online.de

Remark: In the field of view of CW Ser, a delta scuti variable. USNO-B1.0 0961-0254829 is a high amplitude DSCT.

RA(J2000) 15 52 51.41	Dec(J2000) +06 06 07.0	type DSCT	Mag. 16.04 (R1mag - USNO B1.0)
Period		Epoch	
$0.054927 \ d$		2455625.6301	
Cross-identification	n(s):		
USNO-B1.0			0961-
0254829 = USNO-A2	2.0 0900-08288718	= SDSS J155251.3	38+060606.0 = GSC2.3
N3QU004103			

Dat	te: 6 July 2011
Obs	server(s) and affiliation(s):
Yan	g YG School of Physics and Electronic Information, Huaibei Normal Uni-
vers	sity, Huaibei 235000, Anhui Province, China, yygcn@163.com
Zho	u, AY National Astronomical Observatories, Chinese Academy of Sciences,
Beij	jing 100012, China, aiying@nao.ac.cn
Dai	, HF School of Physics and Electronic Information, Huaibei Normal Univer-
sity	, Huaibei 235000, Anhui Province, China
Yan	g, YJ School of Physics and Electronic Information, Huaibei Normal Uni-
vers	sity, Huaibei 235000, Anhui Province, China

Remark: In the field of view of EF Dra. GSC 4433-0827 is a multiperiodic δ Scuti star.

RA(J2000) 18 04 58.8	Dec(J2000) +69 42 53.4		type DSCT	Mag. 10.8 (TYC V)
Period 0.05875 d		Ep -	och	
$\begin{array}{c} \textbf{Cross-identificatio} \\ \text{GSC } 4433\text{-}0827 = T \end{array}$	n(s): YC 4433-827-1			

Date: 27 July 2011

Observer(s) and affiliation(s):

Martignoni, Massimiliano - Stazione Astronomica Betelgeuse, Magnago, Milano, Italy, massimiliano.martignoni@alice.it

Remark: in the field of view of V373 Sge. UCAC3 214-271232 is a small amplitude Beta Lyrae star.

RA(J2000)	Dec(J2000)	type	Mag.	
$20\ 16\ 50.8$	$16\ 53\ 19.7$	EB	12.0-12.3 (V)	
Period		Epoch		
1.97783d		2452724.64		
Cross-identification(s): UCAC3 214-271232				

References:

Frasca, A., Marilli, E., Catalano, S., 1998, A&A, 333, 205
Lloyd Evans, T., Koen, M.C.J., and Hultzer, A.A., 1983, SAAOC, 7, 82
Wachmann, A. A., 1940, BZ, 22, 10

COMMISSIONS 27 AND 42 OF THE IAU INFORMATION BULLETIN ON VARIABLE STARS

Number 5999

Konkoly Observatory Budapest 7 September 2011 HU ISSN 0374 – 0676

OBSERVATIONS OF VARIABLES

Date: 19 October 2009

Reported by:

Sipahi, E. - Ege University Observatory, Bornova, Izmir - Turkey, esin.sipahi@mail.ege.edu.tr

Name of the object:

KR Cyg

Remarks:

Complete strongren light curves of the eclipsing binary KR Cyg are presented. Light elements were published in Sipahi, 2005. The magnitude and colour differences inside-eclipse minus outside-eclipse are

 $\begin{array}{l} \Delta b = 0 \overset{\text{m}}{.} 911 \\ \Delta (b-y) = 0 \overset{\text{m}}{.} 044 \\ \Delta m_1 = 0 \overset{\text{m}}{.} 05 \\ \Delta c_1 = -0 \overset{\text{m}}{.} 232 \end{array}$

The system is not bright. Thus, scatter in the u light is much more than expected.

Date: 28 April 2010

Reported by:

Liakos, A. - Department of Astrophysics, Astronomy and Mechanics, National and Kapodistrian University, Athens, Greece, alliakos@phys.uoa.gr

Niarchos, P. - Department of Astrophysics, Astronomy and Mechanics, National and Kapodistrian University, Athens, Greece, pniarcho@phys.uoa.gr

Name of the object:

GSC 0199-2035

Remarks:

The variability was discovered by ASAS (ASAS J080731+0159.7). In the field of YY CMi and BI CMi. Ephemeris: Min. I = HJD 2455232.2837(6) + 1.01263(3)*E

Date: 28 October 2010

Reported by:

Liakos, A. - Department of Astrophysics, Astronomy and Mechanics, National and Kapodistrian University, Athens, Greece, alliakos@phys.uoa.gr

Niarchos, P. - Department of Astrophysics, Astronomy and Mechanics, National and Kapodistrian University, Athens, Greece, pniarcho@phys.uoa.gr

Name of the object:

GSC 03208-01986

Remarks:

GSC 03208-01986 = NSVS 6099331 is an Eclipsing Binary of W UMa Type, in the FoV of V407 Lac.

Date: 7 December 2010

Reported by:

Rosario, M. J. - Vainu Bappu Observatory, Indian Institute of Astrophysics, Kavalur 635701, India, mjr@iiap.res.in

Muneer, S. - Indian Institute of Astrophysics, Bangalore 560034, India, muneers@iiap.res.in

Raveendran, A. V. - Indian Institute of Astrophysics, Bangalore 560034, India, avr@iiap.res.in

Mekkaden, M. V. - Indian Institute of Astrophysics, Bangalore 560034, India, mvm@iiap.res.in

Name of the object:

UX Ari Remarks:

UX Ari was observed on a total of 33 nights during December 2008–February 2010 in standard Johnson BV bands with the 34–cm tel escope of Vainu Bappu Observatory, Kavalur. All the measurements were made with respect to 62 Ari. Each value given in the data file is a mean of 3–4 independent measurements and the typical uncertainty in each value is around 0.01 mag.

Name of the object:

V711 Tau

Remarks:

V711 Tau was observed on a total of 11 nights during January–February 2010 in standard Johnson BV bands with the 34–cm telescope of Vainu Bappu Observatory, Kavalur. All the measurements were made with respect to 10 Tau. Each value given in the data file is a mean of 3–4 independent measurements; the typical uncertainty in each value is around 0.01 mag.

Name of the object:

DM UMa

Remarks:

DM UMa was observed on a total of 17 nights during December 2008–March 2009 in standard Johnson BV bands with the 34–cm telescope of Vainu Bappu Observatory, Kavalur. All the measurements were made with respect to BD+60° 1301. Each value given in the data file is a mean of 3–4 independent measurements; the typical uncertainty in each value is around 0.01 mag.

Date: 17 January 2011

Reported by:

Liakos, A. - Department of Astrophysics, Astronomy and Mechanics, National and Kapodistrian University, Athens, Greece, alliakos@phys.uoa.gr

Niarchos, P. - Department of Astrophysics, Astronomy and Mechanics, National and Kapodistrian University, Athens, Greece, pniarcho@phys.uoa.gr

Name of the object:

GSC 03802-01986

Remarks:

GSC 03802-01986 = TYC 3802-1986-1 = RX J0811.9+5730 = NSVS 2432473 is an Algol type binary in the FoV of SX Lyn.

Date: 19 March 2011

Reported by:

Osborn, Wayne H. - Central Michigan University, osbor1wh@cmich.edu

Name of the object:

WW Aur Remarks:

A time of minimum has been determined from photolectric observations made with the Morgan 60-cm reflector at Lowell Observatory in 1983 and using a DDO "48" filter (see McClure, 1979): HJD 2445402.7218 \pm - 0.0015.

Date: 20 May 2011

Reported by:

Hoffman, D.I. - Infrared Processing and Analysis Center (IPAC), California Institute of Technology, Pasadena, CA 91125, USA, dhoffman@ipac.caltech.edu Monninger, G. - Bundesdeutsche Arbeitsgemeinschaft für Veränderliche Sterne e.V. (BAV), Munsterdamm 90, DE-12169 Berlin, Germany, gerold.monninger@online.de

Name of the object:

GSC 03851-00240

Remarks:

GSC 03851-00240 was identified as a variable object and classified into the variable star class 'Short Period Delta Scuti Candidates' (Hoffman et al., 2009). Our observation confirmed the classification for the first time. GSC 03851-00240 is a high amplitude delta scuti variable (HADS), with a modulation in its light curve. The period is 0.067946 d.

References:

Hoffman, D.I. et al., 2009, AJ, 138, 466
McClure, R.D., 1979, Dudley Obs. Report, 14, 83
Sipahi, E., 2005, *IBVS* No. 5635.

COMMISSIONS 27 AND 42 OF THE IAU INFORMATION BULLETIN ON VARIABLE STARS

Number 6000

Konkoly Observatory Budapest 7 September 2011 HU ISSN 0374 – 0676

JUST ONE NEW MEASUREMENT OF THE B[e] SUPERGIANT HEN-S22

STERKEN, C.

Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium

This paper reports one new photometric measurement of the most peculiar B[e] supergiant Henize-S 22 (HD 34664, hereafter S 22), and accentuates the problems of transformability of magnitudes and colour indices from one photometric system to another for stars with very peculiar spectra.

S 22 is a luminous star of the LMC that was for the first time studied by Henize (1956), who listed it as an $11^{\text{m}4}$ object. The star is located in Association 38 (NGC 1871), as defined by Lucke & Hodge (1970). The object exhibits the B[e] phenomenon, and thus belongs to one of the most peculiar classes of stars known (according to Zickgraf 2006, only 15 such stars are known in the Magellanic Clouds). Zickgraf (2000) gives a definition of B[e] stars by naming physical conditions in the circumstellar environment, rather than by identifying intrinsic stellar properties. He points out that in this widely inhomogeneous group of stars, it is the similarity of the circumstellar conditions that prevails over the dissimilarity of the stellar properties.

The spectrum of S 22 is dominated by a curtain of narrow emission lines – allowed and forbidden – of singly-ionised iron, with almost no other absorption lines than the Balmer series (Muratorio 1978). Allen & Glass (1976) found a large infrared excess, which they attributed to circumstellar dust clouds.

Bensammar et al. (1983) investigated the complex gaseous environment of the star, and speculated that the stellar energy distribution comes from radiation formed in an accretion disk, rather than from an optically thin free-free emission region. These authors also found spectroscopic similarities with LBVs, in particular with η Car.

Shore (1990) reported that the star underwent massive shell ejection, and that it displayed one of the most extreme optical Fe II and [Fe II] emission spectra of any of the massive LMC supergiants. This author concludes that S 22 likely is in the luminous blue variable (LBV) shell-ejection phase, having been stable during 1980–1983, and he alerts for possibly dramatic changes to come. Shore (1992) consequently shows evidence that the optical brightness of S 22 has increased by more than one magnitude since 1983.

Two questions on the light constancy of B[e] stars remained unanswered for long:

- 1. do these stars exhibit light variations on short time scales, and
- 2. what is their behaviour in the long run, i.e., on time scales of decades.

Van Genderen & Sterken (1999) showed that S 22 undergoes microvariations up to $0^{\text{m}}1$ in the Walraven V band, accompanied by colour variations of similar amplitudes. These authors recognise a low-amplitude S Doradus cycle (large-amplitude long-term variability in light and colour on time scales of years) on a time scale of about 7 years, and classify

S 22 as a weak-active LBV. These findings were recently confirmed by Szczygieł et al. (2010), who find evidence for a similar S Dor-like oscillation of the order of six years.

Table 1 gives a synoptic overview of all available photometric data on S 22, and their characteristics, and Fig. 1 shows the resulting light and colour curves. The data are described chronologically, hence the new data are discussed under items 11 and 12 below.

Table 1. The photometric data on S 22: photometric system, detector (with photocathode specification), full width at half maximum (FWHM), symbol (S) in Fig. 1, standardised or not (+ sign means that standard stars are listed, - sign means that standard stars are not specified), aperture size (in arcsec), type of photometry: all-sky or differential (comparison star given). The last column indicates whether photometric transformations were made within one photometric system (intra), or from one system to another (inter).

#	Photometric system	Detector (photocathode)	FWHM	\mathbf{S}	Std	Ap.	Type	Transf.
1	photographic $m_{\rm ph}$	Kodak photographic plate	-	\triangle	no	-	all-sky	_
2	Johnson V	PMT RCA-1P21 (S-4)	90	*	yes+	?	all-sky	intra
3	Walraven $VBLUW$	PMT RCA-1P21 (S-4)	72	Х	yes-	16.5	all-sky	inter
4	Johnson UBV	PMT EMI6256 (S-13)	90		yes+	15	all-sky	intra
5	Johnson UBV	PMT EMI 9502 and 9558	90	▲	yes-	18	all-sky	intra
6	Johnson UBV	PMT RCA-1P21	90	0	yes+	?	all-sky	intra
7	Johnson UBV	PMT EMI6256 (S-13)	90	*	yes-	15	all-sky	intra
	Bessell $UBVRI$	PMT RCA31034A	85	*	yes-	15	all-sky	intra
8	Walraven $VBLUW$	PMT Hamamatsu R928 (S-20)	72	×	yes-	16.5	HD33486	inter
9	IUE FES no filter	PMT (S-20)	250^{\dagger}		no	8	all-sky	_
10	ASAS-3 V	CCD THX7899M	80	_	no	45	all-sky	_
	ASAS-3 V	CCD THX7899M	80	+	no	45	all-sky	-
11	Strömgren <i>uvby</i>	PMT EMI 9789	24	•	no	17	HD34144	inter
12	Bessell V	CCD KAF6303E	85	٠	no	18	$\mathrm{HD}269209$	inter

References. 1: Cannon & Pickering (1918); 2: Smith (1957); 3: van Genderen (1970, 2011); 4: Ardeberg et al. (1972); 5: Dachs (1972); 6: Lucke (1972, 1974); 7: Zickgraf et al. (1986); 8: van Genderen & Sterken (1999); 9: Shore (1990); 10: - Szczygieł et al. (2010), + Szczygieł et al. (2010), adjusted; 11: this paper; 12: this paper.

Note †: FWHM of item 9 was derived from the width at half maximum of the photocathode spectral response curve, as shown in Fig. 3 of Morrison (1967). The S-20 photocathode picks up radiation from 250 to 800 nm.

1. Photographic magnitude: Henize (1956) lists $m_{\rm ph}$ taken from the Henry Draper Catalogue. Observing date is uncertain, but most probably around 1917. This photographic magnitude is not directly comparable with V.

2. Vintage m_v magnitude: measurement made in January 1954, with a Corning 3384 filter glass, the same type as described in Johnson & Morgan (1951), though it is not clear whether this measurement is on the Johnson–Morgan system that was developed in 1953. No photometer aperture size is given.

3. Early Walraven *VBLUW*: measurement obtained by van Genderen with the Walraven 90-cm light collector in South Africa (f/14 optics). V and B - V were derived from the Walraven log I indices with the transformation formula of Pel (1987).

4. Johnson UBV photometry: ESO 1-m telescope at La Silla, Chile, f/15 optical system.

5. Johnson UBV photometry: Bochum 61-cm telescope at La Silla, Chile. The V filter consisted of one Schott GG 495 glass only.

6. Johnson UBV photometry: Cerro Tololo 36", Chile. No aperture size is given.

7. UBV and UBVRI: ESO 50-cm telescope at La Silla, Chile. Partly Bessell UBVRI (these three magnitudes and color indices are encircled in Fig. 1).

8. Walraven VBLUW: Walraven differential photometry (intensity scale, relative to the comparison HD 33486) from Figs. 4–6 of van Genderen & Sterken (1999). The magnitudes and B - V indices were transformed to their Johnson V, B - V equivalents using a transformation formula from Pel (1987). Note that the PMT is different from the one used in item 3. Quasi-simultaneous observations with Zickgraf et al. (1986) yields $V = 11.837 \pm 0.006$, $B - V = 0.240 \pm 0.003$ for van Genderen & Sterken (1999), and $V = 11.765 \pm 0.010$, $B - V = 0.27 \pm 0.01$ for Zickgraf et al. (1986).

Figure 1. V, B - V light and colour curve of S 22. Symbols are explained in Table 1.

9. IUE quasi-V: this data point was obtained with the IUE Fine Error Sensor (FES). The FES was an image dissector with a photocathode response that extended from 250 to 800 nm, with a resulting effective wavelength of about 520 nm. FES measured unfiltered light, and had potential for providing an estimate of V with a precision of about $0^{m}.06$ – that is, for stars that have normal spectra. The large FWHM listed in Table 1 is entirely due to the response of the S-20 photocathode that embraces many more emission lines than any of the other V-like passbands in Table 1.

10. ASAS-3 V: S 22 is identified as 0513536726.9 in the All Sky Automated Survey catalog (Pojmánski 2002, http://www.astrouw.edu.pl/asas/?page=acvs). The V data were obtained with an XBSSL/V filter (from Omega Optical) consisting of a 2.0-mm GG 495, and a 3.0-mm S-8612 Schott glass, with an incident beam of f/2.8. 846 V magnitudes yielding an average V = 11.489 with a standard deviation of 0^m064 were discussed in Szczygieł et al. (2010). These data are plotted in Fig. 1 with greyish lines appearing above the + symbols that were obtained from the same dataset, after applying a correction of 0^m22, as explained below.

11. Strömgren *uvby*: this new measurement is the average of two measurements obtained on 24 and 25 November 2008 with the Strömgren Automatic Telescope (SAT) at ESO La Silla, Chile. A diaphragm of 17" was used, linear extinction coefficients were determined from the observations of comparison stars, and generic transformation equations to the standard *uvby* system, were applied. The measurements were made differentially with respect to HD 34144, and resulted in $y = 11.82 \pm 0.05, b - y = 0.36 \pm 0.05$. b - y was transformed to B - V using formula (1) of Sterken et al. (2008).¹ Attempts to observe S 22 on Christmas eve of 2008, and on 24 January and 20 February 2009 failed, because the star could not be visualised in the photometer diaphragm viewer.

¹Note that Sterken et al. (2008) underline that this equation "should not be considered as a photometric transformation in the true sense, but as a statistical relationship between the observables b-y and B-V" (*i.e.*, for this sample of 18 LBVs). These data support a linear relationship between both variables, and adding a nonlinear term does not significantly improve the goodness of fit. Fig. 4 of Sterken et al. (2008) shows such a nonlinear inter-system transformation relation derived for more normal stars.

12. CCD V measurement on two consecutive nights in February 2009: to establish without doubt that S 22 had not faded beyond the limiting centering magnitude of the SAT, several exposures were obtained with a piggyback-mounted 20-cm refractor, equipped with an SBIG STL6303E CCD camera. The f/9 optical system incorporated a focal extender rendering an f/20 beam. The V magnitude was obtained differentially with respect to nearby HD 269209 – the brightest star in association NGC 1871 – with spectral type K2, and V = 10.58, B - V = 0.97 (Dachs 1972). Since no extinction nor colour correction was applied, the colour difference would lead to errors² of ~0^m.015 in V, hence this datum is to be considered only as a control measurement to check on the visual disappearance of S 22, and not as an exact magnitude.

Figure 2. B - V, U - B diagram of B0–K5 standard stars used for observations listed in Table 1. The dashed lines represent the intrinsic colors of main-sequence stars and supergiants as determined by Johnson (1966). The arrow gives the slope of the reddening line.

The basic principles of photometric standardisation. Sterken (2003) summarised the basic requisites for bringing long-term photometric data to a common standard. The following discussion centralises on two basic assumptions in astronomical photometry: i) that the data were obtained in a well-defined photometric system – thus **the problem** of standardisation, and ii) that the data can be transposed from one such system into another – thus **the problem of transformability**. This discussion bears on elements of hardware, as well as on the selection and the spectral nature of the observed targets and the standards.

1. A photometric system is defined by the set of filters, by the detector, by the set of standard stars that were used to define the system, and by the data reduction procedure.

²The multiplicative colour term in V is of the order of -0.03 (Landolt 2011).

- 2. All transformations from instrumental system to their parent standard system (labeled *intra* in Table 1) that use matrix manipulations (involving magnitudes and color indices) require compatible (and partly overlapping) passbands (see Young 1994 for a discussion), and spectral energy distributions that have continuous derivatives in the interval covered by the passbands. Note that extinction corrections (atmospheric as well as interstellar) also participate in the transformations.
- 3. All transformations from one standard system into another (labeled *inter* in Table 1), involve even more stringent requirements (as hinted at in the footnote on item 11).

The above points illustrate that two thirds of the datasets in Table 1 are on a standard system, but that only 25% of them explicitly list the standard stars. Fig. 2 shows the B-V, U-B diagram for all published photometry of the B0–K5 stars of these 3 sets, and reveals that two datasets are most probably commensurable, but also uncovers that the set of standards does not really cover the location where S 22 is placed. The publication by Smith (1957) lists 8 bright standards that are closer to S 22 in the two-colour diagram (these stars have declination between -30° and -40° , and their standard values were defineded at Mount Wilson).

Figure 3. Box-whisker plots of S 22 (left) and HD 269209 for ASAS magnitude columns MAG_0-MAG_4 as a function of aperture surface. The most extreme outliers were clipped in order to keep the whiskers within the lower axis limits. The aperture automatically suggested by the ASAS software (MAG₁ for S 22, MAG₂ for HD 269209) is indicated. \diamond is the extrapolated ASAS V for a diaphragm of 18" diameter.

Adjustments. None of the data discussed in Table 1 were adjusted or corrected with any of the other datasets, simply because almost none of these datasets is on a same photometric standard system, or on one that can be rigorously transformed into another – although some of the data (for example, the sets discussed under items 7 and 8) can be brought to a common scale. This point is corroborated by the simultaneous photometry (in the same system) described in item 8, revealing a systematic difference $\Delta V = 0.08$.

The large discrepancy between the ASAS data and the SAT data, however, needs more explanation.

Fig. 3 shows box-whisker plots for the V magnitudes of S 22 and nearby HD 269209 (ASAS 051429-6728.4) for ASAS-3 magnitude columns MAG₀ to MAG₄, as a function of aperture surface. Box-whisker plots display data by showing the minimum of a sample, the lower quartile (which cuts off the lowest 25% of the data), the median, the upper quartile, and the highest data point, without any assumption of the underlying statistical distribution of the data. The Figure shows that, whereas the standard deviation of the average V magnitudes in the four apertures is 0^m.01 for HD 269209 (see also Fig. 4), it amounts to $\sigma = 0^m.24$ for S 22. Moreover, an unmistakable strong trend of brightening with aperture surface is present. The \diamond is the extrapolated ASAS V (linear fit M₃ to M₀) for a diaphragm of 18" diameter. The ASAS-3 data were thus first corrected for this aperture effect, and then adjusted differentially with respect to the V value of HD 269209 as measured by Dachs (1972). The + symbols in Fig. 1 show the result of this adjustment.

Figure 4. V light curve of S 22 for 2000–2010. Top to bottom: HD 269209 (\circ); ASAS grade A data from the ASAS-3 catalog (\triangle); adjusted V magnitudes from Szczygieł et al. 2010 (+, the difference between this dataset and the original is that the latter was cleaned by removing points that lie more than 3σ from a local linear model, Szczygieł 2011); \blacklozenge : this paper.

Conclusions. This procedure-oriented paper discusses data collected since the 1950s that lead to the following conclusions:

- 1. the star seems to have brightened by about 0^m₁ since the 1990s, with an indication that this brightening is accompanied by a slight reddening a typical signature of a possible long-term S Dor phenomenon;
- 2. the detected strong aperture-dependent trend in the ASAS-3 data can be entirely ascribed to the star's environment, as evidenced by the infrared excess, and the nebular emission lines;
- 3. systematic differences between datasets are evident, and can be ascribed to the different combinations of detectors, filters and diaphragms/apertures (8"-45"), and incident beam widths (off axis rays cause an increase in effective glass thickness);
- 4. the remaining magnitude residual ASAS/SAT can be ascribed to the lack of colour corrections, and to the causes mentioned in the previous point, as also explained for Wray 751 in Sterken et al. (2008), and for η Car in Sterken et al. (1999).

These conclusions sustain the statement made for η Car (Sterken 2000): "the unavoidable differences between photometric systems may result in very severe discrepancies, rendering the morphological shape of the light curve piecewise dependent on the instrumental setup." This is exactly what the case of S 22 proves.

EPILOG

This postscript addresses three questions.

- 1. What are the lessons learned from these data? Besides the arguments listed in the conclusions, there is one most important lesson to be drawn: when discussing the most exotic objects over time scales of half a century or longer, datasets should be calibrated in such a way that data from one epoch are directly comparable to data from another. That principle forcibly excludes two types of photometric data, viz.,
 - 1. filterless photometry, such as IUE-FES magnitudes described under item 9, and
 - 2. visual estimates, as mentioned under item 11: the CCD measurements, and the independent ASAS data reveal that the impression that S 22 suddenly dropped below the visual threshold, was unfounded. That the star could not be visually detected may have been the consequence of bad seeing, or of observer fatigue.

That visual observations – and those made without filter – are unacceptable, was one of the very wise decisions taken by the IBVS Editors (Editorial Note, 4 May 2004).

- 2. What is the value of the new measurements? Experimentalists know that one single observation or measurement never can confirm nor refute an independent set of data. The new magnitude measurements reported under items 11 and 12, though taken with different instruments, not only confirm each other, but also allow to bring another set of valuable data closer to a standard value.
- 3. What is the value of publishing such data? The value of publishing these data refers to two aspects: the intrinsic value of the data, and the value of publishing these result in an information bulletin like IBVS.
 - 1. Fig. 1 shows two datablocks covering nearly a decade (items 8 and 10), and these data, evidently, are valuable, because they describe light and colour variability, together with the time scale of the associated cyclicity. The other datasets cover only a few points, sometimes even only one single measurement. But each of these datapoints is an element of valuable information, the more so because most of them have been obtained by experienced observers.
 - 2. Where else can such single isolated datapoint be published? The dataset shown in Fig. 1 covers, approximately, the full life time (6000 bulletins) of this journal. The pressure these days to only count (and value) papers in impact-factor indexed journals makes it almost impossible to publish such results in any of the classical ISI-counted journals – although they are of a very labor-intensive character. That IBVS is in full Open Access, i.e., involving reading rights, but also writing rights (no page charges) for the entire world, is a factual bonus and an example of really open scientific communication. That is the true value of this journal, and means much more than the seemingly accurate counts provided by any other bibliometric indicator.

Acknowledgements.

The author thanks Steve N. Shore, Arnout M. van Genderen and Andrew T. Young for valuable discussions, and Dorota Szczygieł for providing the data of Fig. 8 of Szczygieł et al. (2010). Grzegorz Pojmánski is thanked for providing useful technical information on the ASAS-3 instrumentation. Petr Harmanec, the referee, is thanked for useful comments that helped to clarify some points made in this paper.

Thanks also to Michael Barber (Santa Barbara Instrument Group), David Marcus (Custom Scientific), and Kirk Winchester (Omega Optical) for information on their CCD cameras and filters. Jan Lub, Arlo Landolt, and Jens Viggo Clausen are thanked for information on the Walraven, Strömgren and Johnson filters, and Erik Heyn Olsen for data support during the observations.

DEDICATION. I dedicate this paper to Katalin Oláh and Johanna Jurcsik, Editors of IBVS since the year 2000.

References:

Allen, D. A. & Glass, I. S. 1976, ApJ, 210, 666 Ardeberg, A., Brunet, J. P., Maurice, E., Prevot, L. 1972, A&A Suppl., 6, 249 Bensammar, S., Friedjung, M., Muratorio, G. & Viotti, R. 1983, A&A, 126, 427 Cannon, A. J. & Pickering, E. C. 1918, Harvard College Obs. Annals, 92, 1 Dachs J. 1972, A&A, 18, 271 Henize, K. G. 1956, ApJS, 2, 315 Johnson, H. L. 1966, Annual Review of Astron. and Astrophys., 4, 193 Johnson, H. L. & Morgan, W. W. 1951, ApJ, 114, 522 Lucke, P. B. 1972, PhD Thesis (paper not available, data listed in SIMBAD) Lucke, P. B. 1974, ApJS, 28, 73 Lucke, P. B. & Hodge, P. W. 1970, AJ, 75, 171 Morrison, C. W. 1967, Applied Optics, 6, 573 Muratorio, G. 1978, A&A Suppl., 33, 125 Pel, J. W. 1987, Internal Report, Leiden Observatory Pojmánski, G. 2002, Acta Astron., 52, 397 Shore, S. N. 1990, IAU Circular No. 5005 Shore, S. N. 1992, ASP Conf. Ser., 22, 342 Smith, H. J. 1957, PASP, 69, 137 Sterken, C. 2000, IBVS, 5000, 1 Sterken, C. 2003, Baltic Astr., 12, 454 Sterken, C., Freyhammer, L., Arentoft, T. & van Genderen, A. M. 1999, A&A 346, L33 Sterken, C., van Genderen, A. M., Plummer, A. & Jones, A. F. 2008, A&A 484, 463 Szczygieł, D. M. 2011, private communication Szczygieł, D. M., Stanek, K. Z., Bonanos, A. Z. et al. 2010, AJ, 140, 14 van Genderen, A. M., 1970, A&A, 7, 49 van Genderen, A. M., 2011, private communication van Genderen, A. M. & Sterken, C. 1999, A&A, 349, 537 Young, A. T. 1994, in The Impact of Long-Term Monitoring on Variable Star Research, C. Sterken & M. De Groot, Eds., NATO ASI Series C, Dordrecht: Kluwer, 436, 421 Zickgraf, F.-J. 2000, ASP Conf. Ser., 214, 26 Zickgraf, F.-J. 2006, ASP Conf. Ser., 355, 135 Zickgraf, F.-J., Wolf, B., Leitherer, C. et al. 1986, A&A, 163, 119