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O N  A  N E W  F O R M  O F T H E  D IF F E R E N T IA L  E Q U A T IO N S
O F T H E  P R O B L E M  O F TH R E E  B O D IE S .

B Y  E. E G E R V A R Y
M EM BER O F T H E  A C A D E M Y  

(RECEVIED  30 D E C E M B E R  1945.)
A

The most celebrated of all classical dynamical problems are undoub
tedly the problem of three bodies and the motion of a rigid body (top)

|  '  C l  V  • ^  - I  4  #  |

under no forces* A  great number of memoirs have been published on 
these subjects, but, as far as I am aware, none of the writers pointed out, 
that between these famous problems there is a remarkable analogy which 
can be advantageously used to the reduction of the problem of three 
bodies*

The object of the present memoir is to establish this analogy and 
to use it to derive a new form of the equations of the problem of three 
bodies as well as some new particular solutions of it*.

According to a distinction due to J* J* Sylvester1 there are two 
ways to arrive at the reduced form of the differential equations of a mecha
nical problem: by elimination or by ablimination* „Elimination is the 
act of extruding a variable from a system of equations in which it has 
appeared“  while „the process whereby the space coordinates referring 
to absolute position are, so to say, avoided in a class of dynamical questions, 
is not one of elimination properly so called, the process to be applied in 
the cases before us is one not of extrusion, but of exclusion a b i n i t i o ,  
or as it may be rendered in a single word, of ablimination“ * In other words: 
„T h e space element is not introduced and then expelled from but preven
ted from ever making its appearence at all in the resolving system of 
differential equations*“

The motion of a rigid body under no forces is determined by a sys
tem of differential equations of 12-th order* It is well known that if the 
principal axes of inertia of the rigid body are introduced as moving axes, 
this system splits into three systems of the second order and two systems

1 J« J* Sylvester, Collected Math. Papers, Vol. II. On the motion of a rigid 
body acted on by no external forces, pp. 577— 601. On the motion of a rigid body 
moving freely about a fixed point, pp. 602— 607.
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of the third order* The systems of the second order determine the motion 
of the centre of gravity, one of the systems of third order constitutes the 
kinematical equations while the other is identical to the Eulerian equations 
of the top*

As the space coordinates referring to the absolute position of the 
top do not appear at all in the Eulerian equations, the use of the 
moving axes furnished the reduced form of the equations of motion by 
ablimination*

The question2 arises now as to whether there are other dynamical 
systems whose equations of motion by the use of convenient moving axes 
split similarly into simpler systems of equations*

The present memoir has taken its rise from the plain observation 
that the kinetic and potential energy of the three bodies, as well as that of 
a rigid body, are obviously independent of the absolute position in space 
they depend only on the components of velocities of the principal axes 
of inertia of the system3 and on the coordinates and velocities of the 
bodies relativ to these principal axes* Hence it may be expected that, 
as regards both problems, equations ot motion admit of beeing construc
ted, from which an element of absolute space is shut out*

Just this form of the equations of motion of the rigid body under
#

no forces is supplied by the Eulerian equations*
I shall prove now that the system of the 18-th order of the problem 

of three bodies in the case, if the principal axes of inertia of the three 
bodies are introduced as moving axes, splits into three systems of the 
second order, one system of the third order and one system of the 9-th 
order* The systems of the second and third order have the same significa
tion as in the case of the rigid body, while the system of the 9-th order 
may be regarded as a new form of the equations of the problem of three 
bodies, in which the coordinates referring to absolute position do not 
appear at all. The effectuation of the idea developed here will be sketched 
on the next pages*

Consider a system of n material particles mk (k  =  1, 2, * * * nj  
whose coordinates referred to the principal axes of inertia of the system 
are xk, y k> zk* Let ojlf o)2f oj3 denote the components of the angular velo

2 Klein— Sommerfeld, Theorie des Kreisels, Bd. II*
3 The principal axes of inertia are undetermined, if  two of the principal mo

ments of inertia of the system of three particles are equal. But this may happen (apart 
from the trivial case of eqality of the masses and of the mutual distances) only for dis- 
cret values of the time t, hence our method can be applied without restriction of the 
generality. Moreover it may be proved subsequently that our equations of motion retain 
their validity even in the case of equality of the moments of inertia.
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city of the system of axes, resolved along the axes themselves and let

•  •

X ,  Y, Z  be the components of the velocity of the centre of gravity of the 
system referred to a system of axes fixed in space* The kinetic energy 
of the system is then • ■ ' <

c1) 2 t -  (x> + y* + zy 2 mk + j: j 2  m (y\ + kyf +
k k

#

2 2 \  (Oi ( y k z k — z ky k)  } +  mk (x\ +  y\ +  z\)
1 ’ k

referred
5 degrees of freedom, xkf y k, z k may be expressed in terms of the genera
lised coordinates qlt q2, ♦ ♦ ♦ qs and the kinetic energy of the system will 
take the form

(2) 2 T =  (X *  +  Y* +  z v  2 m k +  2 * > i  J 1 (q )  +  2 2  2 o h  q „ F la (q )  4-
k (J

(7 O

under
internal forces, the potential of these forces is a function of the generalised
coordinates

(3) V = V  ( q v, q,, . . . qJ

find
of motion when the coordinates qa and the quasi-velocities oj±, o)2t oj3 
are introduced as dependent variables then the method used by Lagrange 
to the derivation of the Eulerian equations seems to be the simplest way* 
The application of this method leads to the following equations of mixed 
type: , ,

(4)

(5)

d 8 T d T d T
------------— = Ml -------------------------------------iOk
dt do>j du>k

0

don

d dT d T d V

dt dqa

1
&

1

dqa

(j, kf /, -  1 , 2, 3;

(o  =  1, 2, . . .  s)

A  rigid system of material particles has 0 degrees of freedom relativ 
to its own principal axes of inertia, consequently equations of the type (5)
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do not appear at all in this case, while the equations of type (4) are iden
tical to the Eulerian equations.

A  system of three particles has 3 degrees of freedom relativ to 
its principal axes of inertia and if we wish to ensure the analogy of the 
equations of motion to the Eulerian equations then evidently the three 
generalised coordinates must be chosen in such a way that the two prin
cipal moments of inertia of the system should occurre amongst them. 
Instead of them however it will be more convenient to introduce the 
radii of gyration ql9 q2 (affected with proper signs) which are connected 
with the principal moments of inertia by the equations

(6) M rrij ;  Mq\ rrijxj ;  Mq\ m} yj
Applying as a third generalised coordinate an angular coordinate x, 

the relativ coordinates xjf y jf Zj of the three bodies are uniquely deter
mined in terms of the generalised coordinates qlf q2, * by means of the 
following equations

mk +  mi
TTi qx cos ( x +  Sj)

(?)

(SV S2>S3 are constants 
satisfying the equations

yj
mh +  ml

mi
q2 sin (y. +  SJ lS (8k — Si) ~

M r r j

mk.Wi

Zj =  0

This choice of coordinates leads to the following expression of the 
kinetic energy of the system

_LI(8) 2 T  =  M  ) X *  +  Y* +  Z 2 +  95 u,i +  91 w| +  (q\ +  q\) ( u\ +  *2)

+  4 9l Ql (*>3 * +  +  ?2 1

while the potential energy in the case of forces proportional to the v— 1 -th 
power of the distances is given by

^  ( Ql> $2' x)

(9)
— mk 777,

M

rr.k

M

m,
qi sin2 (x  +  Sj) +  qj cos2 (■/. -f- Sj)

V

Lastly, if we denote the direction-cosines of the set of axes fixed 
in space and of the set of the principal axes by a., /i., y. ( j  =  1, 2, 3), 
the equations of motion of the three bodies take the form
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(10) X=--  0 Y  =  0
d - 2
dt

( H )

(

d . 2

«  «

Z  -  o

+  2 q1 q2 io2 x =  0

dt
(  9Ï w2̂ 9ï w3wi

di
4- çij «3 +  2 Çj q2 x (Ç\ ~  Q2)  Wj u>2 0

d
dt

-f- q->) x -)- 2 q1 q2 10
1 d V

(12) 9i — 9i +  m  +  x2)  — 2 q2 w3 x

Ûi — ?2 (u\ +  W.3 +  X2)  — 2 Çj w3 *

M d x

1 ÔV

M d qi

1 d V
M  d q2

(13) <tj =- ctk mi — ui ojk ;  fjj — ßk coi — in  o)k ;  y j  =  yk(oi —  y x o>*

(jt k, I — 1 ,2 ,3 )

The system of 18-th order of the problem of three bodies splits in 
this way into three equations of second order, into the system of third 
order of the kinematical equations and into a system of the 9-th order* 
This new form of the equations of the problem of three bodies, gained 
by ablimination, exhibits the following remarkable properties:

It was established in a really elementary way, by application of 
the Lagrangean method of generalised coordinates (contrary to the most 
part of the methods of reduction, which use contact-transformations)*

The equations of motion are entirely symmetrical4 with regard to 
the masses, the mutual distances as well as to the coordinates and velo
cities of the triangle formed by the bodies*

The equations of motion are obtained immediately in the form of 
a system of the 9-th order, contrary to the usual methods5 which reduce 
the original system of 18-th order by means of the integrals of momentum

4 A  great part of the reduced equations gained by contact transformation is 
unsymmetrical with regard to the masses as well as to the geometrical data. Lately 
however several writers have given symmetrical reductions. See F. D . Murnaghan, 
A  symmetric reduction of the planar three-body problem, Amer. Journ. of Math* 
Vol. 58, pp. 829— 32. E. R. van Kampen and A . Wintner, On a symmetrical reduction
of the problem of three bodies, Amer. Journ. of Math. Vol. 59. pp. 153— 166.

6 The straightforward derivation of a system of the g-th order is endeavoured 
by E. Kàhler Transformation der Differentialgleichungen des Dreikorperproblems, 
Math. Zeitschr. Bd. 24. S. 743— 58. But his results are so much complicated that he 
omits to write explicitely the differential equations.



6 E. E G E R V Á R Y

to the 12 -th order and afterwards by means of the integrals of the angular
momentum to the 9-th order.

The system (11, 12) of equations of the 9-th order of the problem 
of three bodies possesses two obvious integrals: the integral of energy:

( 1 4 ) ---- - | (¡2 +  Ql <"2 +  ((¡1 +  qi) (^3 +  X2)  +  4 Ql (¡2 a)3 % +  9Í +  92} +
2 I

+  V ( q v  qv x)  = C t

and the integral of angular momentum:

(15) q\ io\ -f- (¡\ ^2 +  í (qí +  q2)  oj3 -f- 2 qx q2 x j — C

Consequently, by making use of these integrals, the equations of 
motion can be reduced to the 7-th order and, eliminating the time, to the 
6-th order.

If the coordinates qu q2, x (or, what is the same thing, the mutual 
distances) are known, as functions of the time, then the system ( 1 1 ) of 
the third order may be regarded as the system of equations of motion 
of a variable top, which can be reduced by means of the integrals (14, 15) 
to the first order and solved by quadrature in consequence of the prin
ciple of the last multiplier.'

The equations of the problem of three bodies established here put 
in evidence the proposition due to Lagrange that the complete solution 
of the problem requires only that we know at each instant the sides of the 
triangle formed by the bodies, the coordinates of each may then be deter
mined by quadratures.

Indeed, the coordinates qlf q2, * and the components ojv  oj2, oj3 of 
the angular velocity being known as functions of the time, it is not neces
sary to integrate the kinematical equations directly but using a contri
vance well known from the theory of the top we can calculate the Eulerian 
angles cp, q  of the principal axes of inertia by quadratures in the follo
wing form

( 16)

cos !)■ =  í Ú  2 gl 92 ^ ;  tg v, =  q U >2fc2 q% (*j±
1  2 2 2 2

1 [7̂  I 2̂ <*i\ +  q~\ o>2
< p -< p 0 =  |rC2 I ~v  2 V  2 dtq2 (**1 t~ q\ w2
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It has been proved6 that the general three-body problem admits 

of no algebraical integral other than the ten classic ones and independent 
of the law of attraction. However in the case of special laws of attraction 
the problem may possess new integrals*7 The existence of a new integral 
is suggested in the case of special laws of attraction by the structure of the 
expression (8) of the kinetic energy. Indeed the kinetic energy T  does not 
contain the coordinate * explicitely although it contains the corresponding 
velocity ** Therefore, if the potential V  is also independent of *, it is 
evident that x is an ignorable (cyclic) coordinate and the integral corres
ponding to this ignorable coordinate is

(17) (q\ Qz) * Qi Q2 Ms ~~ const.
%

It can be easily proved that the potential V  is independent of *  
if (and, disregarding the uninteresting case of elastic forces, only if) the 
masses are equal and the forces vary as the cube of the distances*8

In this case there exists a class of particular solutions of the three- 
body problem, corresponding to this integral, namely those steady motions 
in which qlf q2f w2> w 3 have constant values* There are c o 5 of these
particular solutions, in which the bodies describe space-curves lying on 
a hyperboloid of revolution*

Particular cases of our equations may be found in the works of 
several authors* In order to determine all the solutions in which the ratios 
of the mutual distances of the bodies remain constant, O* Pylarinos9 
associated a rigid triangle to the variable triangle of the bodies and he 
in this way succeeded to establish a system of equations from which all

%

the particular solutions in question may be uniformly derived* W e shall 
prove, that our equations of motion contain the equations of Pylarinos, 
as a particular case*

6 Gravé, Nouvelles Annales de Math. Ser. 3. Vol. X V , pp. 537— 47.
7 It is known that in the case of forces inversely proportional to the cube of the 

distances Jacobi's equation may be integrated and (using the notation of this paper) 
leads to the integral

3i +  9.1 =  ( ' \(t ~  to )2 +  Co
Using this, all particular solutions may be obtained by quadrature in which 

the bodies form an isoscele triangle.
8 The existence of the new particular solution discoverd by D . Sokolov (Dokladi 

Akademii Nauk C C C R . 1945. Tom . X L V I ,  pp. 99— 102) is also a consequence of the 
integral (17).

9 O. Pylarinos, Uber die Lagrangeschen Fälle im verallgemeinerten Dreikörper
problem, Math. Zeitschr. 1941. Bd. 47. S. 357— 72. See also T h . Banachiewitz, Cas 
particulier du problem des n corps, Comptes Rendus, 1906. Tom e 142, pp. 510— 12*
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Investigating the motion of three bodies along a straight line Euler 
and Jacobi10 introduced such coordinates which ensure the symmetry 
of the reduced equations. These equations can be immediately obtained 
from our general equations by putting in them q2 =  0, Wj =  oj2 =  oj3 =  0.

The expression (8) of the kinetic energy just as much as the equa
tions ( 1 1 , 12) derived from it are unsymmetrical with respect to the coor
dinates qv q2 as well as to the velocities ojv  oj2, w3 (though they are symmet
rically related to the bodies). This circumstance is explained by the fact 
that the system of three bodies forms a degenerating figure in space, 
which exhibits a strict analogy to a rigid plane figur.

This is verified by the integral

(18) o)\ -j- o>2 — f  (q\, q2y y-> 9 i> 92t *)

which may be obtained by linear combination of the integrals (14, 15) 
and which is a strict analogon of the integral

(19) t»i -|- o)o — const•

well known from the theory of motion of a plane lamina.

However the method developed in the present memoir can be applied 
without any principial difficulty to the problem of four bodies and the 
equations of motion obtained in this case are entirely symmetrical.

I.

T H E  E Q U A T I O N S  O F M O T I O N  O F  A  S Y S T E M  O F  M A T E R I A L  P A R 
T I C L E S  R E F E R R E D  T O  IT S  O W N  P R IN C IP A L  A X E S  O F  IN E R T IA

Suppose that the position of a point is specified by its coordinates 
x, y , z  at any instant t with reference to the instantaneous position of a 
right-handed system of axes oxyz  which are themselves in motion. Let 
oj 1 , oj2, o) 3 denote the components of the angular velocity of the system 
oxyz, resolved along the instantaneous position of the axes. Then the 
components of the velocity of the point are

vx — x  — y  o)3 -j- z  o)2

(20) l 'y ~  y  — z  0 )1 +  x  o).3
v2 =  z  —  x  oj2 + y  o)x

10 L . Jacobi, Gesammelte Werke, Bd. III.
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If the origin of the axes coincides with the centre of gravity of the 
system of particles mk (x k y k z k)  (k  =  1 , 2, . .  . n) and if the coordi
nates of the centre of gravity with reference to a system of axes fixed 
in space are X t Y, Zt the kinetic energy of the system of particles is (using 
the abbreviation M  =  2  mk)

2
(2 1 ) 2 T =  M  (X *  +  Y 2 +  Z2)  +  ¿ m k (v kx +  vky +  vkz)

If  furthermore the moving axes coincide with the principal axes 
of inertia of the system of particles, then the coordinates xk, y k, z k 
verify the equations

(22)

v  v  Vmk xk =  ^  mky k =  mk z k =  ^  mk y k z k =  ^  mk z k xk

mk xk y k =  0

formulae
of velocity, we obtain the kinetic energy of the system of particles in the 
form

(1) 2 T =  M ^ X 2 +  2 { o > \ 2 m k (y l  +  z\) } +

,  ̂ X ’ f X y ✓ • • \ . X T / -2 , *2 . >2 i+  2 ^ \ 0) Y2 *mk ( y kz k -  z ky k)  } +  ¿ ¿ m k (xk + y k +  z k)

If the system of particles possesses with reference to its own prin
cipal axes of inertia s degrees of freedom, xk> y k, zk can be expressed 
in terms of the generalised coordinates qlf q2> . . .  qs and the expression 
( 1) of the kinetic energy becomes

2 T =  M 2 x 2 + 2 o j J j j ( q )  + 2  2 2 ^ j qiiFJJ q )  +

y x  • • p  /  i ~\~ ^  Qo G(j0 (  q)

internal forces 
as a function <

nates

(3) V  (q\y q2> • • • qs)

in  w d er to establish the equations of motion suppose that the 
i-velocities o j v  o j 2, are expressed in terms of the Eulerian angles 

y  by means of the well-known relations
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• • (ol =  ft sin xp — cp sin ft cos xp
? *  •*. ' ' . . .

(23) io2 =  ft cos xp +  (f sin ft sin xp
4 .

•  S  *  ^  •

(03 == \p -f- Cp COS f t  . . ,

Then the kinetic energy involves only true coordinates and their deriva
tives and the equations of motion can be immediately written. Lagrange’ s 
equation referring to the coordinate \p is

(24)

but

6 T

d xfj

6 T

6 xp

d 6 T 6 T  _ e v

dt d ,p d if)

S T d w 3 6 T

d w 3 dip d <u3

8 T

d m1

d lox

6 xp

6 T
+  od (o2

d w2
d xp

S T  S T
(0 o Wi

dio1 d o>2
and v •

d V

6 xp
0,

consequently the equation (24) is identical to the equation •

d 6 T  d T  S T
-----------=  --------  w2 —  ------ (01
dt d to3 dto1 d u)2

The two other equations follow by symmetry.
The coordinates qa being independent of the Eulerian angles and 

their derivatives, Lagrange's equations referring to these coordinates 
retain their original form

d 6 T  6 T  8 V
(5) ------------- — --------- =  ------

dt 9 qa 8 q0 6 qG

Lastly the motion of the centre of gravity is determined by the 
well-known equations ,

.  -  _  .  • • • • • •

(10) X = Y  = Z=-0



ON T H E  P R O B L E M  O F T H R E E  BOD IES I I

Thus we have the result that the system of equations of the system 
of particles referred to its own principal axes of inertia contains 3 Eulerian 
equations of the first order and s Lagrangean equations of the second 
order*

The system of the 2 s + 3 -t h  order possesses two obvious integrals
•  ! ■  •  ®• . • • 7 • * »

w * ®

(25) T  - f  V  — C l - (integral of energy)

(26)
/ 8 T \ *  +  / ' t f T y  +  / d T \ 2 =  ^  (integral of the)  
\du)1 )  \d (o2)  \d(o3J -angular momentum)

If, after having integrated the system, the components of the angular 
velocity are known as functions of the time, the direction-cosines 
fa, yjf ( j  — 1, 2, 3) of the principal axes of inertia can be obtained by 
integration of the kinematical equations

(13) ¿y =  « a coi — « / (Ok;  ßj =  ßk(oi — ßi(ou; ÿj =  )'k(oi — yi(Ok

But in order to determine the position in space it seems to be more 
advantageous to calculate the Eulerian angles cp, ip by a method which 
is well known from the theory of the top* If the invariable vector of length 
YC~2 representing the angular momentum of the system coincides with 
the axis of Z  fixed in space, its components along the moving axes verify 
the equations .

d T  -  V C t n  ( j  =  1 ,2 ,3 ;
d (Oj

and applying the well-known relations between the direction-cosines and 
the Eulerian angles we get immediately

1 ô T y2 d T  d T
(27) cos & =  y z = —  —  ;  tgip  = ---------=  -  —  :  —

|/C2 d w 3 y 1 ocu2 o oj1

Lastly the third Eulerian angle can be obtained by use of the equati-
ons (23) in the form

d T  d T
(0 1 —  -j- OJ2

( B

2 / d T  
+  - d (Oo
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II.

O N  T H E  C O O R D IN A T E S  W H IC H  D E T E R M IN E  T H E  P O S IT IO N  
O F  T H R E E  P A R T IC L E S  R E L A T I V  T O  T H E IR  O W N  P R IN C IP A L  A X E S

O F  IN E R T IA

If the principal axes of inertia of a system of three material par
ticles rrij (Xj, y jt o) (j  =  1, 2, 3) coincide with the axes oxyz, their 
coordinates verify the equations

(29) V
rr , y j

V
ttj y, j v =  o

Introduce now the radii of gyration qv  q2 defined by the equations

(30) M
"V TT 2

m j ;  M  q i n-j x j  ;  M q i y j;
sgn q1q2 =  sgn 1 x, y,

and consider the system of points +  i Vi ~  Qi • e < j which is
obtained from the original one by the affin transformation

(31) i t
L

q i >!j Yl

?2

Then in consequence of the equations (29) and of the equation 
t2 — ^rrij fjj the complex coordinates verify the equations

(32)
mi ci + m 2 c2 +  m% Is =  0

mi ci +  m2 cl +  m% £3 - -  0

Eliminating for instance we get

rn.

m m
3 2̂

L,' 3

m

m 1m2m3
( m2 C2 +  rn3 'C j2 0

consequently

2̂ ^3

7712 ?2 +  ^3  ̂3
+  Z

ft?
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<33) . ,, M  m.,
1 + i ' 1 3

Î 2 __ C>2 1 (S* ~  S3)  _  \ m2

£3 (>3 I M  m
1 + i

m1 m3

the values of and c3/£2 can be obtained from here by cyclic permu-
tation.

From the equation (33) we get

M 3 ) : ( i +  Î L î A
V rn 1 m2) \ m1 mj

and in consequence of

<34) 2 i  rrij (¿ j  +  qf) =  2  m, o] =  2 M

(35) p
mk -h m,

The arguments <5/ are determined, apart from an additive cons
tant, by the equations (33). Hence if Slf S2, <J3 denote constants such that 
they verify the equations

(36) tg (Sk -  SO =  ±  ' M  m'
mk m{

the general solution of the equations (32) is given by

( 3 7 )  C l = f , + i „ l = 1 * a ± n e i < S l + x >

Wj

: x denotes at 

Consequently
expressed

tes qu q2, x by means of the equations11

11 These relative coordinates have been stated without proof by R. Radau (Sur 
une transformation des coordonnées de trois corps, dans laqueîle figurent les moments 
d'inertie, Comptes Rendus, 1869. pp. 1465— 68.
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mk + mi 
XJ —  /  — ~ ------ q  1 c o s  ( x  +  Sj)m,

(38)

m,

Zj =  0

The kinetic energy relativ to the principal axes of inertia is (with
regard to z; =  0)

2 Trel =  J Z m j ( x f  + y ? )

But the equations (38) give

Ql (7l 2̂ i 2̂ •
X j  =  X j  -  yf -  X  ;  yj =  y1 — 2- +  x , —  x

? !  ?2 92 9 l

consequently with regards to (29, 30)

(39) 2 Trtl =  M  {  q\ +  gl +  ( £  +  <&) *2}

One of the components of the relativ angular momentum is

(40) rrij (x jy j — yj x,) =  2 M q 1 q2 x  ,

the others vanish*
W e have from the equations (31) (33)

Xj xk _t t I M m ,  _  1/ Ai mi y{
w 1/ W / >q i F Ttij mk f m.j mk q2

y j—yk 1 M m , xt
q2 j 77?; q i

thus the potential of central forces proportional to the v— 1 -th power of 
the mutual distances has the expression

V  ( <ll> x)
(4 -1) • . ._j  [/ M  M  9 o o

m i  \ [ ~ ; +  —  ) |  qi sin  (y, -f- S j)  +  q%, c o s2 ( y. -\- S j)
\ Wj mk

2
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III.

T H E  S Y S T E M  O F  D I F F E R E N T I A L  E Q U A T I O N S  O F  T H E  P R O B L E M  

O F  T H R E E  B O D IE S  A N D  S O M E  P A R T I C U L A R  C A S E S  O F I T

If the system of particles treated in L  consists of three masses, one 
of the coordinates, e ♦ g ♦ z- vanishes and. the coordinates xjf y  ■ can be 
expressed in terms of the generalised coordinates qlf q2 and x by means 
of the equations (38),

Substituting the values of the coordinates xjf y y and their deri- 
vativs (and using (39, 40)) in the general expression of the kinetic energy, 
we get the expression of the kinetic energy of three particles in terms of

•  •  •

the variables X  Y  Z  qx q2 qx q2 x o)1 w2 oj3 in the following form

2 T =  M  {  X 2 +  y 2 +  Z 2 +  ql o>\ +  q\ oil +  (ql  +  ql) ( m  +  * )  +

( 8) . .2 , • 2\
~r ** q 1 ?2 0J3 * q i q-2j

Substituting the expression (8) of T and the expression (9) of V  in the 
equations (4, 5, 25, 26) of L , we get immediately the differential equations 
( 10, 1 1 , 12) of the problem of three bodies as well as their integrals 
(14, 15),

After having integrated the system, the components ojlt oj2f o) 3 are 
known as functions of the time and the Eulerian angles determining the 
position in space will be obtained from the general equations (27, 28) 
in the form (16),

The triangle formed by the bodies remaines similar to itself if and 
only if x and the ratio of q± and q2 remains constant throughout the motion. 
Hence if we denote the initial values of these quantities by x0f q10, q20t 
the homothetic motions will be represented by particular integrals of the 
form

(43)  ̂ x0;  qx (t )  q10 • X (t)  ;  q2 (t )  q20 • A ( t )

Substituting these expressions in the differential equations (1 1 , 12) 
we get the following equations which must be verified by the variables
A, 0) i t  OJ2, OJ3.
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(44)

(45)

10 i t02 W3 “f" — — (0 i — 0

2 2 ’

9io — Ç20 I O ^ J_ A
l03 ----2--------2 101 0)2 > . (°3 —  ^

9io +  920 Â

d \ d V
“ 910 920 "TT w3̂  — ~z~ ~dt M  d y.

:* . /  2 - 2 j __ 1 d K
A —  k (  it>2 ~r w3/ —  —  ---- -----

M  d q x

V 5 /  2 I 2 ) — 1 o' KA —  A f Wi +  W3y  — -------—    
M  dq2

9

The first three of these equations agree with those which have 
been established by O* Pylarinos in order to discusse the homothetic 
motions.

If the motion of the three bodies takes place along a straight line, 
one of the radii of gyration, for instance q2 vanishes and each component 
of the angular velocity may be supposed to be equal to 0. Consequently 
the motion of three bodies along a straight line will be determined by 
the following system of two differential equations

1 d V

(46)
M  dq1

d ,  2 . , 1 d V
— •  (  9i y )  = --------------------------------------------------------------------------------------

dt M  d y.

These equations are-apart from some differences in the notation 
identical to those which have been used by Euler and Jacobi on the occa
sion of the study of the problem under consideration.
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IV.

P A R T I C U L A R  S O L U T I O N S  IN  T H E  C A S E  O F  E Q U A L  M A S S E S  A N D  

O F  F O R C E S  P R O P O R T IO N A L  T O  T H E  C U B E  O F  T H E  M U T U A L

D I S T A N C E S

If we suppose the units conveniently chosen, the potential of three 
equal masses in the case of forces proportional to the cube of the distances 
is given by

(47) V  — m~ rki — — f  3 q\ +  2 q\ q2 +  3 q2)
4

d V
T h u s----- =  0 and the equations (12) take the form

d x

d

dt

(48) qx — qx ( l02 -|- - f  x2)  — 2 q2 x --------<ji (3 q\ -j- q2)

ij’2 —  q2 ( ^ i  +  W3 -f- x 1)  —  2 q x ms x ------- qz ( 3q? +  q\)

Attempting to satisfy the equations of motions by constant values 
° f  9i> x,w 1,w 2> ^3 we get immediately from the third equation of (1 1 )
io1to2 =  0. In order to have a definit case, suppose to2 =  0. Then the first 
and second of the equations (1 1 ) reduce to

(49) ql i0l =  const. , w1 qx (q Y to3 +  2 q2 x) =  0

The assumption =  0 resp. qx — 0 leads to a motion in a plane 
resp. to a collinear solution, therefore suppose

(50) Çj 3 -j- 2 q2 * — 0

This equation together with the equations (48) suffice to express 
x,u)lr(o3 in terms of q1 and q2> while the equations (481, 491) are satisfied 
by any constant values of the variables.

W e get in this way
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(51)

0)

0)2

<h
2 2

îi

y. — y.
= 0 u ]/ 3 çï +  çi ( t — t .)

OJ 3 92

and the constant values g i > g 2 can be chosen arbitrarily*
For the Eulerian angles we obtain from (16) the values

(52)
cos & <h

Qi
* 2 : q 2 ;  ip =  0 ;  cp 5 qx +  3 q2 <P o 10 çi +  6 qi (t  -  i J

Finally the position of the bodies in space will be determined by 
□uationsthe equations

X j — <?2
s* 2 a 26 9l ~(- 2 Ç2
— \ \  C OS  ( f  C OS

5 q l + 3 q - 2

2 j n

Z + T ‘
szn rp sin

2jjr
3

(53) Y , =  qt
6 qi -j- 2 q2 
— — -------^  sin  cp cos
5 qï +  3 ql

2 j *  
3

+  COS rp sin X +

Zj
(q q%) (6  q\ +  2 q2)

5 ql -f- 3 gj
cos * +

2 j  7T

3

where cp and x are to be replaced by their values given in (51, 52)*

The coordinates of each of the bodies satisfy the equations

(54)
X 2 +  Y 2 Z 2

2
92 6 qt +  2 ql

1 0

consequently each body describes a curve on the hyperboloid of revolu
tion (54) which projects into a hypocycloid on the X  Y  plane*

As the values of qlf q2, x0, rp0, t0 are arbitrary, we have found a 
family of oo5 particular solutions and all these solutions correspond to
permanent rotations of the system of principal axes round a line fixed
in space.
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