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O HABJIOJEHUU ABTOPEI'PECHM BHICHIMX MOPAINKOB C HEINPEPHBHEM

BPEMEHEM B JIHWCKPETHBEIX TOUYKAX

ApaTo Hukonan

YHuBepcuTeT uMeHu ETBeumia JlopaHpma, BymamnewmT

Xopoumo H3BECTHO, YTO MNPOLEeCcC aBTOpPEerpecCHH IepBOro Mnopsaika
C HENpPEepHBHHM BpeMeHeM HabJinfgaeMBl B JUCKPEeTHHX TOUYKaxX SABJISEeTCSH
TakKXe IpoleccoM aBToperpeccuu (cm [2]1). EcTecTBeHEH BOMNPOC:
CHnpaBezJ/IMBO JIH 3TO VIS MNPOLIeCCOB aBTOPErPeCCHH BHCHIUX MNOPAIKOB?
OTBeT B oOb6meM ciydyae OInpullaTes/ieH, B OUCKPEeTHHX TOYKax MH [OJy-
YaeM CMemaHHHHE MNpollecC aBTOperpecCHU-CKOJb3Amero cperaHero. S
NMOKa3uBaKw 3TO IUIS MNpollecca aBTOperpeccuy p-ro nopsanka, a ojifd
npolecca aBTOperpeccuu 2-ro NopAlnKa CUYWTaKw TOYHHE KO3OOHUIeHTH.
B kuurax (11, [2] He mawTcsA sABHHEe QOPMYJIH IJIS NMEpernuckKu B
CTOXaCTHUYECKHE DPa3HOCTHHE ypaBHEHHUS IUCKPETHOI'O BpPEMEeHH.

IIycte £(t) mpollecc aBTOperpeccud p-ro nopsnka, T.e., &(t)

yOooBJsieTBapsaeT nuddepeHIHanbHaMy YpaBHEHHIO:
(1) ae®P 1) ¢y a1g(p_1)(t)+...+ap£(t)]dt = dmit],

roe w BHHEPOBCKHM Mpoluecc (mnpouecc 6payHOBCKOT'O IOBHUXEHUA), C

KoappuurveHToM nuddysuu 02, a MHOTOUJIEH

I =7

(Z=ps)
1 k

HUMeeT KOPHH C OTpUllaTeJIbHOH peaJIbHOH YeCThi.

Hac uHTepecyeT kKakuM 6ymeT npoiecc xX(n)=£(nd), rme §>0

3aJaHHOEe 4YHCIIO.



O603HauYuB uepe3 £(t) p-MepHuM mnpouecc: £*(t)= E(t),...

LA gp_l(t)), rage * o6o3HavaeT TPaHCIOHUPOBAaHHUE.

Mu nonyvaem: dg(t)=Af(t)dt + dw(t), rme W p-MepHuM BHHEPOBCKHH

npouecc ¢ Kos3dPUIHUEHTOM:

Bw = 7
w o3
pPxXp
a
f BB e |
0: 0.1 0 <
A = . .
1
L—ap.... -a1lpxp
UsBecTHOo ([2]), YTO oBo3HauuB uepe3 N(n)=£(nd):
(3) n(n) = gn(n-1) + e(n) ,

roe Q = eAé, £(n) rayccoBCKu#l OGeJHi wWyM.

JokaxeMm clieOywumyn JIeMMY :
Jlemma: IlycTs y(n) p-MepHHE MpPOIecC aBTOPErpeCcCHU MNepBOro

nopsamkKa:

yin) = 8 y(n=1) + g(n) ,

TOroa CIlIleKTpaJlbHasa IIJIOTHOCTB YXY-I'O KOMPOHEHTAa Y(I’l):

ihs 2
(4) ITr( ) |
Ble 031"

XapakKTepUuCTUYeCKUHM MHOT'O4YJIEeH MaTpHUUH S,

X



MHOrousieH (p-1) creneHu.

JokaszaTenbcTBa: CrnekTpajibHasg IJIOTHOCTL y paBHAeTca (cm. [13,

108. cTp.):

=R s ™ ) iX T

£ (X)) = %ﬁ(l—e S) BB*(I-e "S)* ¢
roe BB* = Ee(n)e*(n), By = Ey(n)y*(n), By = SB,S* + BB*. .
Yy CTaiuoHapeH, moaToMmy |IS|I<1, oTkyma:
fa e—iAS)_1 = 3 e—iAk Sk
k=0
P n
HCnoJip3ysA ®TO U YTO X ans = 0
0
P - . p . @ o
(I . 1)\n)(I_e lAS) - 3 5ne1An 5 ik Sk !
n=0 n=0 k=0
p - o P @ ol
- 3 anelxn 5 ik Sk £0 3 an Sn)( 5 iAg Sk) ”
n=0 k=0 n=0 2=0
=Y s i)
= ( £ & R(2)) ’
k=0
roe R(Q2) = R(SL)pxp AABJIZETCH MaTpPHIEH pasMepHOCTH DPXp.
U3 sTOro cnemnyer
-1 y p-1 :
1 P AL —i)g
£(A) = o= ! = {2z eMriaimic z e rian)e
Y g 5 o-iln 2=0 2=0
n=0 =
c sneMmeHTOM (r,r)
_iA 2
(£, (X)) )py = H:r(:A )l :
Y [Bla ")



Tr MHOrousieH (p-1)-oO# cTemeHH, a 3TO OOKAa3HBAET JIEeMMY .***

o

B uyacTHoM cnydae (1)-(3) XapaKTePUCTUIECKHH MHOIOWIEeH

UkCS).

(z-e HUcnonb3yss 3TO U JIeMMY cpa3y M[OoJIydaeh:

1

Q:
k

=k

TeopeMa: Habmnwoas IIpOlLlecC aBTOperpecCHH p-I'o nopsanka C CIeKTpallb—
1

HOM IIJIOTHOCTBIO D > B TouYkax nd,
I (ix-p )’
lk=1 =
(n=0,1,...), M MIoJiydaeM CMElAaHHH} NPOIleCC aBTOpPEerpeccuu p-Iro

IIOopAOKa CKOJIb3sAmero cpegHero (p-l)-I‘O rnmopsagka cC CHeKTpafIbHOPI
..'}\ 2
IT(e *7)|
P i) e
l i Laltaaly )’
k=1

INJIOTHOCTER , Tne T MHOI'OUJIEH (p-l)-Oﬁ CTEIIeHH .

PaccMOTPUM OTIEJIbHO ciiydayd p=2.P HMeeT OBa KOPHS: U1 U HU2.

U3 ckas3aHHOHW TeopeMH cienyeT, 4YTO £(nd) yIooBJIeTBOpSeT ypaBHEHUN
Elnd) = (e“25+e H2$, g((n—1)<s)+e“2‘3+”2‘S £((n=-2)8)=t(ns) ,

roe t(nd) mpoluecc CcKonb3sgmero cpelHero l-oro mnopsmka. S Xouy

MIOIOCYUTATh aBTOKOBAapHaHIIMKM DTOTrO mnpouecca. A JIerKOCTH npen-

nonoxuM =1 u o6osHaumm 3 = —-(e"'+eP2), 3, = eH1tH2 4
t(n) = €{n) + d4&(n-1) + d2£(n-2) ;
Torma

E t*(n)=(1+a2+32)EE?(n)+(24,+23,3,) EE(n) &(n-1) +
+ 28, Eg(n) £(n-2)
E t(n)t(n+1) = (&,+8.32) EE (n) + (1+82+3:+82)EE(n)E(n-1) +

(a4+3432)EE(n)E(n-2) + azEg(n) &(n-3) .



HUcnonb3yeMm, uto (CL11, 118. cTp.):

At
EE(s+t ¥(s) = e B B = (B.=
£(s+t) E*(s) . g = (By3)
roe Bg YyIOOBJIETBOPAET YPaBHEHHK
AB, + B_.A = -B
2 €

OTKyIa HCHnonb3ysa Q2 + a.Q + a.I =0, (Q = eA), IIOJIY YUM

BE #2(n) = (1+8>-a2) B, . + 24 (0P

B 5

5

E t(n) t(n+1) = 4,B,, + (1+52)(QBE)11 ‘

B cinyyae U1 ¥ U2

-H2 1] e 0 ] -u2 1] 1 [1 -1 ][us 0 )[-ue
A = =
=gy 1 0 M2} {~u=z2 1 Ba—Pa M2 =-uz2)J (0 [V Gl TR
OTKyIla BHEHXOIUT
: U1ep2—u2eU1 eu1_eU2
0 = = ’
Ha=Ha2 u1u2(eU2_eU1> u1e111_u2e112
“u
2 1 0
B, = 2
-2 +
g (WqFH2)H1H2 0 Uqlz
B ciiyyae |4 = Uz = U pe3yisbTarT:
1-u 1
Q= e :
2
u u+1
_ g® 1 0
S - -4us3 :
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[[poBens NOACYETH INoJiydaeM B ciydae Uq # U2

& o2
~ =2(pqtu2)uau2(Ha-H2

(
(1_e2\U1+U2)) g

E t2(n) ) (Ea=1a)

; 2 2
+ (petua)(e Ht=e"#3)7,

G2
~ =2(MqtH2)HaH2(H1=H2)

U2+eU1+U2

E t(n)t(n+1) [-uqe’ T4uge

H2 U1)]

(pqie"*-uze '

a B cnydae Hq = Hz = H
: a? H M

a = N 2 - 4
E t3(n) b L% ® 2e2"(1+n) et

[=el(14u) + e3P (1=u)] )

3aMeuaHue 1. BaXHOCTBH BHUHCJIEHHS KO2QPUIIHMEeHTOB CMeEeumaHHOI'O
npollecca aBTOPErpecCHMU CKOJNb3Aero cpenHero O6bsACHAEeTCHA TeM,
YTO MH He MOXeM HabioagaThk NPOH3BOLOHHE Mnpolecca, ecyyd O 3TO

6EUIO BO3MOXHO, MH MOTJIH OH HCIIOJIB30BaTh Gopmyny (3).

3amMeuaHHe 2. MOxHO 6mUIO 6H MONPO6OBATH CUUTATH CIIEKTPAalbHYI0

IUDIOTHOCTh OUCKPETHOI'O Ipollecca 3Hasa (QOpMy CHEeKTpaslbHOM IMJIOTHOCTH
npoliecca C HeNpepHBHHEM BpeMeHeM. Ho 3TOT nyTh BUIOHMMO 3HAYUTEJNb-—
HO ciioxHee (KpoMe 1-oro mnopsmkKa) NOCKOJBbKY, ecnu f()) cnekTpanb-
Hasd nﬁOTHOCTb npouecca C HeNpepHBHHM BpeMeHeM, TO CIleKTpaJljibHas
IJIOTHOCTh Ipoliecca HabJoIaeMoro B IOUCKPETHHX LEeJIHX TOoUYKax HOaeTcs

dopmynon

(o]

E(A) = & £(A-(2k+1)I) g

k==



i 1Y e

k
3ameuvyaHue 3. I[lokasaB, uTo I v.(n) cxonp3samee cpegHee, rne
P =1
vj(n) =l 25 aji uj(n—i) CKOJNb3fllee cpelgHee p-ro NopAnka, OJA
J=0
KOTOpHX: E uj(n) uz(n-m) =0 (j*2, m>0), MOXHO HOOKaA3aThb JIEMMY,

HE HCIIOJIb3yS CIIeKTPAaJIbHYyK IUIOTHOCTL. JIS HEe3aCHUCHUMHBIX CKQIb3SMUX
CpelHUX 3TO MNokKaszaHo B [3]. [OXOXHMM MeTOINOM HOOKa3HBaeTCs Cly-

yay k=2. I[lpaBuJieH JIM pe3yJbTaT OJjdg k>3, MHe HeHU3BEeCTHO.
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Folytonos ideju magasabbrendi autoregresszidk megfigyelése

diszkrét pontokban.

ARATO MIKLOS

Osszefoglald

Folytonos ideju p—adrehdﬁ autoregresszi6érol megmutatom, hogy
ARMA(p,p-1) lesz diszkrét helyeken nézve. Altalanos esetben ki-
szamolom spektrélslirliségének nevezdjét. Ehhez megmutatom, hogy
néz ki egy elsdBrendl t6bbdimenzids autoregresszid egy komponen-
sének spektralsurisége (4). A p=2 esetben kiszamolom a folyamat
mozgdatlag részének autokovarianciait, és ezzel az ARMA(2,1) fo-
lyamat egylitthatdoit (v.6. [21, 257 oldalon szerepld kézelitések-

kel).

Continuous time autoregression processes with discrete time

observations

ARATO Nicolay
Summary

In this paper we prove that the p order autoregressive
process £(t) with continuous time parameter, AR(p), becomes a
discrete time ARMA(p,p-1) one. Formula (4) gives the general
form of spectral density of the r-th component of a discrete
time first order p-dimensional autoregressive process Z(t)' In

the special case p=2 all the calculations are carried out, i.e.,
the coefficients of ARMA (2,1) are calculated (see approxima-

tions in (22, p. 257).
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AN EXPERIENCE WITH DYNAMIC DATA INDEPENDENCE

N. BUKOVSKI

Institute "Interprograma"
Sofia, Bulgaria

I. INTRODUCTION

Information handling in Data Dictionaries (DD) is main-
tained by program components, performing the data access, the
data storing and organization. One way to implement such
program components is by using Data Base Management Systems
(DBMS) : self-made or packages. In this paper we will discuss
how a DBMS, as a part of the DD, can be used to satisfy the
DD requirements for handling its information. For simplicity
purposes by DBMS we will imply the proaram components, real-
izing exactly this DD function (although it would be more
precise to denote it as DD DBMS). The DD has a fixed logical
data structure, but nevertheless some changes could be made
during the processes of DD installation and operation, e.g.,
adding user's information types, or physical data restructur-
ing. This reguires from the DBMS, upon which the DD is built,
to support dynamic data independence. So the rest of the DD
software is isolated, thus avoiding its recoding or recompila-
tion. The way the dynamic data independence concept was in-
corporated into the DBMS of a Data Dictionary is presented
in this paper. The DD concerned is an integrating tool in the
PLUS complex - a program development environment [1], [2]
and provides information for the numerous PLUS components.
It, together with the DD extensibility feature, supporting
user-defined information types, requires that all programs,
accessing the DD, should be independent of its data structure
and organization. We shall discuss how a self-made (autonomous)
DBMS was designed to support dynamic data independence to-
gether with the advantages and drawbacks of the approach

chosen.



IT. INITIAL REQUIREMENTS

A DD consists of two software components: a DBMS, accessing
the DD database, and functional software, implementing the DD
functions - selective report generation, cross-referencing,
etc., The information contained in the DD database comprises
entities of different classes and the relationships among
them. Each entity or relationship type consists of attributes:

description, keywords, etc.

Considering the DD information and functions needed and
its including in the PLUS camplex, the following initial re-

quirements for the DD were established:

(1) Data independence. The DBMS should allow changes in
the data structure without recoding or recompilation
of the application programs accessing them (by appli-
cation program we imply here and later in the paper
any program of the DD functional software or of the
PLUS environment which accesses the DD information).

These changes include:

- logical structure modifications, for example, the

adding of entity attributes or classes;

physical data restructuring intended to improve DBMS

A

performance in compliance with the specific condi-
tions of the DD usage. For example, another segmen-
tation of the logical record can be chosen, depend-
ing on the specific usage frequency of its data
elements, or the parameters of the hash address
method can be adjusted to the prevalent data volume

or changeability.

-

We will point out that these changes are required in
the process of the DD operation which affects especi-
ally strongly the PLUS components accessing the DBMS
of the DD.
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(2) Interface simplicity, The simplicity of the interface,

i.e. of the data manipulation statements, used to
interface with the DBMS, requires that application
program should not be concerned with the variety and
complexity of the DD information. This has two aspects.
The first one reaquires that application programs, ac-
cessing the DD database, should know only the data
they are processing, not the DD information as a whole.
The second objective requires a unified access method
to be provided, irrespective of the logical type of

the data needed: records or relatjonships. They should
be processed in a uniform way, reaquiring a key

- simple or composed, and a list of the necessary
attributes. This reguirement is influenced by the
simplicity of the relational data model, dealing only
with relations ("flat” files) and avoiding data

structuring concepts, e,g., linked records.

ITI, PRELIMINARY DESIGN DECISION ON DATA INDEPENDENCE

-

We will make two preliminary decisions, allowing fulfill-

ment of the first objective: data independence.

(1) Data independence recuires the DBMS to perform trans-

formation (mapping) of the data according to their
schemes: external, logical and internal [(3]. A choice
has to be made about the moment data mapping is per-
formed: at run time (dynamic), or before calling the
DBMS (static). In [3] dynamic data independence is
recommended when supporting unplanned (ad hoc) queries,
The DD supports exactly such queries, providing re~
porting and interrogation facilities. The criteria,
through which the DD data are selected, are so nume-
rous, that preliminary planning of all queries and
their structures is impossible, especially with the
DD extensibility feature. The solution to derive the
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queries data structure from the logical schema of the
DD information burdens the programs processing these
gueries with the complexity of the whole logical scheme.
So the only solution is to allow the definition of the
data needed, i.e. the program view of the data it

processes, to be done at run time.

(2) Another aspect of data independence concerns the PLUS
components, which interface with the DBMS. Any change
in the data structure or organization must not affect
their programs. They have to be totally insulated,
even their recompilation is not acceptable (though
this could be permitted for the DD programs). So this
requires that modification of the logical and physical
schemas should be allowed at any time without revision
of the programs.

These two considerations reguire that the DBMS should
support dynamic data independence, both at logical

and physical level.

IV, INTERFACE DEFINITION

The first step of the DBMS design will be defining of its
data manipulation statements. The DBMS will be treated as a
"black box", which provides the interface to the DD informa-
tion. The second step will be designing of this black box,
i.e. the DBMS,

The dynamic data independence we specified requires that
programs, interfacing with the DBMS, should define in the
data manipulation statements the structure of the data they
process, On the other hand this definition has to be repre-
sented in a table-oriented way (as relations), thus satisfying
the objective for interface simplicity. So the first step in
the process of the interface definition will be specifying

these relations.
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There are two types of relations, corresponding to the

DD information:

- entity relation. Each entity relation represents an
entity class: every tuple of the relation corresponds
to an entity, every domain = to an attribute. So a sepa-
rate relation is maintained by the DBMS for each entity

class. The entity relation is represented as

R(ID,AJ,AZ,...)
where R ~ the type of the relation, i.e. the
entity class;
7D - the relation key, identifying its
tuples (usually it is the entity name);
AJ,Ag,... - the list of the entity attributes,

composing this relation:

- relationship relation. A separate binary relation is
maintained for each couple of entity classes, relation-
ship between which is allowed. Each relation tuple
corresponds to a relationship between two entities,
every relation domain = to an attribute, describing this
relationship (the so called intersection data). This

type of relation is represented as

R(ID‘7 + ID2, A2, "
where F - the relation type;

IDJ+IDZ - the composed key of this relation,
identifying its tuples. IDJ, ID2 are
the keys of the two entity classes;

AJ’Az"" = the list of the relationship

attributes (intersection data).

Now we shall define two data manipulation statements,
using some notions of the relational [data languages [4], [5].
We will point out that before using these operations, the
DBMS user is provided with all relations, maintained by the
DBMS and describing its information. For simplicity, only one

type of data access will be described -~ data retrieval.
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The two datamanipulation operators are as follows:

- FOR. This statement retrieves seauentiallv the tuples of
a given entity relation. Each time the statement is per-
formed, a tuple (i.e. an entity) is derived and only
the attributes, specified in the statement, are moved.
The statement has the following format:

FOR R(AJ,A %

2,

< PREDICATE. This statement seqguentially processes only
these entities or relationships of relations, which
satisfay the condition specified in the statement. Each

time the statement is performed, a tuple (i.e. an entity

or a relationship) satisfying the condition is retrieved.

When given an entity relation, the condition contains
the name of the entity, which is to be retrieved. When
given a relationship relation, the condition contains
one or two names (keys) and all tuples, containing them
in their composed key, are retrieved. If one entity name
is specified, then all relationships of this entity are
traced; - if two entity names, then the relationship be-
tween these entities is processed. The statement has the

following format:

PREDICATE R(AJ,A2, ...):IDJ = X[,I02 = ¥
where IDJ, IDZ ~ specify the condition;
Xy ¥ - names, used in the condition.

n n

For example, if having a relationship between the

B9

entity classes "C.,"” and "C_," with relationship attributes

1 2

"AJ,AZ,.. A_..", the relationship between two entities with

STl

"NAME ," and "NAMEZ" can be traced using the following

1

statement:

PREDICATE R12(Al,As,A4):IDIZNAMEJ,ID:NAMEZ

and as a result the relationship attributes "Al,Ag,A4" will

be retrieved.
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Finally, two features of the two statement will be men-
tioned:

- by means of the attribute list the programs are able
to specify only the attributes they need, not all of
the relation attributes;

- the list of the attributes can comprise only attributes,
belonging to the corresponding relation. This restric-
tion means that the list can be only a subset of the
relation,

V, DD DBMS DESIGN

The main feature of the DBMS discussed is the dynamic data
independence, so the DBMS design will be presented having in

mind primarily this aspect.

Dynamic data independence means that a run time the DBMS
performs a mapping between the three schemas: external, logical
and integral. This requires that the three schemas should be
interpreted at run time, when calling the DBMS. In this way
they can be modified at any time without amending the programs
using them. On the other hand interpretation of the schemas

requires their storing in object format, as coded tables.

We already discussed the way the programs provide their
view of data (i.e. the external schema) in the statements FOR
and PREDICATE. This allows an easy transformation of these
operators into coded tables to be done at compilation or at
run time. Now we will discuss the wav the logical and physical
schemas are formed as coded tables in order to allow their

interpretation,
The logical schema, describing the logical structure of
the DD information, is built upon three tvpes of tables:

(1) Entity Structure Table (EST). A separate table is
maintained for each entity class. This table describes



T

its contents of attributes, their logical sequence, and

the key used to identify the entities.

(2) Relationship Table (RT). A table is provided for every
couple of entity classes a relationship between which
is allowed, This table contains the keys of the classes
(usually the entity names) and the contents and the
logical sequence of the relationship attributes (inter-

section data).

These tables correspond to the relations, describing the
program view of data (external schema) in the statements
FOR and PREDICATE and allow specifying of the pro-
grammer's information needs in the data manipulation

statements,

(3) Attributes Table (AT). This table describes each entity
or relationship attribute: format-variable or fixed,

length, type-numerical or coded, etc.

The internal schema is presented by means of the
Physical Organization Table (POT). It describes the
physical data structure and organization: storage al-
location, block and record length, addressing para-

meters, etec,

The DBMS architecture and the algorithm of logical and
physical mapping are shown in Fig. 1. The sequence of the
algorithm actions, represented as circle numbers, is the

following:

(1) The Application program calls the DBMS, providing the
following information in the data manipulation state-

ments:

-~ the type of the statement: FOR or PREDICATE;

- the type of the relation, We will note that from
program point of view this type specifies an
entity class or a relationship between two

classes;



(2)

(3)

(4)

(5)

(6)

(7)

T T

- the contents and the seaguence of the attributes
needed;
- the condition for the PREDICATE operator;

- the work area, in which the data are to be moved.

The Logical Mapping Processor reads the table, cor-
responding to the specified relation. From this table
it derives the required attributes within the logical

sequence of the attributes, composing the table.

The Logical Mapping Processor obtains from the attri-
butes table the format and the length (if varied) of

each attribute, specified bv the application program.

The Logical Mapping Processor calls the Physical
Mapping Processor, providing it with the information

thus obtained,

The Physical Mapping Processor derives from the POT
information about the physical location of the block,
containing the required data, say volume, file relative

block address, etc.

The Physical Mapping Processor calls the I/O Processor,
providing it with the physical address of the necessary
block,

The I/0 Processor reads the block from the metadatabase

into the buffer pool.

The Physical Mapping Processor, using the information
about the attributes format and length and the records

blocking, performs the following:

— locates the position of the required attributes within
the block;
- moves them into the work area of the application

program in accordance with the sequence specified by it.
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VI, RESULTS

The so designed DBMS allows dynamic performance of the fol--
lowing changes, concerning the data structure and organization,
without revision of the application programs which relied on
the previous structure:

(1) Changes of the logical structure. They include changes
in the following:

- entity contents and structure. For example, adding
of attributes or changing their order are allowed.
This affects only the corresponding entity structure
table;

< relationship between entities (e.g., the relation-
ship between two classes can be deleted); This re-
sults in the modification of the corresponding rela-
tionship table;

= attribute format, e.g., changing of the attribute

length-or type (fixed or variable), etc.

The logical dynamic independence permits the insulation
of the programs, accessing the DBMS, from changing infeormation
requirements (these changes can be tranSparent at the program-
ming level), This flexibility greatly simplifies the program

maintenance,

(2) Physical organization modification. This includes
changes in addressing parameters, record and block
length, storage allocation, etc. These changes allow
tuning in accordance with the DBMS usage in order to

improve its performance.

Dynamic data independence thus achieved provides to addi-

tional advantages:

-

- flexibility. The application programs access the DBMS

in a way, independent of the data structure and organi-
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zation, so their algorithm is not tied to the particular
data representation. This reduces the efforts needed

when changing the programs;

- simplicity. The interface to the DBMS represents the
data in a table-oriented way, using some ideas of the
relational data model. This simplifies application

program development and maintenance.

Generally, dynamic data independence maintenance has two
drawbacks: first,,maintenance of tables with data description,
and second, run time overhead due to the interpretation of
these tables. In our case, the choice of dynamic data indepen-
dence is justified. The first disadvantage can be compensated
since the DD functional software needs such tables in order
to process the DD information in a unified way, regardless of
its type. The second drawback = the overhand, is not so signi-
ficant because the volume of the DD information is not too

great.

VII, CONCLUSION

This paper discusses the way a DBMS of a Data Dictionary
was designed to support dynamic data independence. The experi-
ence is gathered during the design and implementation of the
PLUS program development environment (thouch integrated with
the PLUS complex, the DD can be used independently). The
dynamic data independence, embedded inthe DBMS of the Daté
Dictionary, greatly reduces the efforts for integrating the
DD with the PLUS components. The experience and the results
achieved can be used in all Data Dictionaries having an
extensibility feature on integrated with a program development
environment. Generally, the approach is applicable not only to
DBMS of Data Dictionaries, but also to any DBMS with dynamic

data independence as a key requirement,
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JIAHHBIX .






MTA SZTAKI Kozlem&nyek 32/1985 27-49
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ABSTRACT

One operation met usually in the relational expressions ig the
selection of a relation R on a conditional expression Ezfgl E;.
In this paper, basing upon the estimations of probability of
the tuples reR satisfying E,, we shall show one simple O(nlogn)
algorithm, where n is the length of E, rearranging the sub-
expressions of E and so, the average probabilistic complexity of

the algorithm for finding

oE(R)={r€R/r satisfies E}

is minimal.

§0. INTRODUCTION

On operation met usually in ‘expressions of relational algebra
is the selection of a relation R on a conditional expression?f.
In general, it requires time O (N), where N is the number of the

tuples:h1@“ to perform that selection. However, when it is

- 27 -
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discussed in the common situation with respect to other
operations, for instance, projection, join, cartesian product
... the following principle is in priority: "Perfoam the
selections and the projections as early as possible.”

The transformation

O'&(%) == O’gl (062(...08[51@) s -))

when 8_is of the form

m
&=/\£il
i=1

is performed for the above principle. When an initial parse
tree of a relational expression is reduced to a better form by
the general optimization principles for relational expressions
Ll,3,4], it is possible that in the obtained parse tree there
is a conjunctive selection

of a relation R,on

Due to the commutativity and the associativity of the

operation A, the relational expression

o] IR (R)
n=1%1
can be reduced to
o n (R)
Er
i=1 0 s
where r={rl,...,rn} is a permutation of {1l,...,n}. That is why
we want to find the best permutation r={rl,...,tn} such that

the time complexity (cost) to find oE(R) is minimal. In this
paper, basing upon the estimations of probability of the
tuples r€R satisfying the logical expressions Ei and the
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definition of the average probabilistic complexity of an
algorithm,the best ordering T={rl,...,rn} of the sub-
expressions Ei’ i=l,n will be obtained such that the average
probabilistic cost (complexity) of the algorithm finding

OE(R)= {r R/r satisfies E} is minimal.

When E is an arbitrary a logical expression (as defined in §1)

it can be reduced to the conjunctive - disjunctive normal form

n ni i
E=.\/ AN E.
i=1 j=1 J

¢

where E; is of the form either A©B or Aeéc or cOA, where A, B
are attributes, ¢ is a constant and © is a comparision
operator @€ {3, >, <, €, =, #}.

As the algorithm for a conjunctive selection can be used for a
disjunctive selection with some modifications, so for a given
arbitrary logical expression E, it is possible to find the
best ordering ofthe subexpressions of E such that the average
probabilistic cost of the algorithm finding OE(R) is minimal.

It is interesting that when the cost to find the best ordering

is added to the cost of the algorithm finding

oE(R)= o o
C
T

I>5

the total cost remains desirable i.e. is less than the cost of
the algorithm finding

o. (R)= © (R)
E E

) S 9

>

with large N . The algorithm shown here for finding the best
ordering t of the subexpressions of E can be implemented in
the computers as a subroutine without any access to the secon-
dary memory devices containing the file R. Its time complexity
is of O(nlogn) where n is the length of E.
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§1. BASIC DEFINITIONS

Definition 1l: A relation R with a set of attributes

U=a(R)={Al,...,Ak} and the corresponding ranges Dl""'Dk is

defined as follows

Qu
M
H

| ¥i lgigk r(A;)€D,}

o
ey
La}
<
c =
o

or

Q
0]
H

R {r= <t

l,t2,...,tk>|V1 l¢ick t;€D.}

Eack réR is called a tuple of R.

Definition 2: A logical expression E in R with the set of
D

attributes U=a (R) and the ranges D can be defined

l,oo.,k

recursively as follows:

1) An expression of the form A6B, A6c, c6A, A,BeU,
k
ceE U Di' e, >, &, <5 =, %}, is a simple logical
i=1
expression.

2) If E E, are logical expressions, then

l'

ElV’Ez, El/\Ez,’ﬂ El are also logical expressions.

Definition 3: A logical expression E in R which is of the form

E=E1A\... AN En is called conjunctive logical expression.

Definition 4: Given a logical expression E in a relation R

with the set of attributes v and the ranges Di’ i=1l,k, and a
tuple r of R.

We say that r satisfies E if when subfituting the names of the

attributes A in E by the value r. A€ Di of the tuple r €R,

i=1l
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the obtained logical expression has the value "true".

Definition 5: Given a relation R and a logical expression E.

The selection of the relation R on the condition E, denoted by

OE(R) is defined as follows:

op(R) = {r€R|r satisfies E}

If E is a conjunctive logical expression, the selection OE(R)

is called a conjunctive selection.

Definition 6: Let Q be a probability space of finite cardi-

nality, i.e. in Q is defined a probability measure

o: 2% — [0,1] satisfying the probability axioms. Put

0 = {wl,wz,...,wg}
and

= p({wi}), i=i,qg
Then, the avérage probabilistic value of the real valued
function f defined on Q corresponding to the probability

measure p is defined as

§2. AN APPROACH TO THE PROBABILITY ESTIMATIONS

Let a relation R be given with the set of attributes v and
the ranges Di’ i=l,k. As defined in definition 2, a logical
expression can be constructed by the simple logical ex-

pressions and the logical operators {A,v,—}.

The following statistical parameters obtained and collected
during the manipulation of R can be estimated:
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1) The distribution of values of the attributes in wv.
2) The exact upper bound and lower bound for the attributes in
U during the manipulation.
3) The number of distinct values of an attribute. One of the
simple assumptions is that the values of every attribute
X €v are uniformly distributed in the segment [Xm,XMl
where X =min R (%], Xy=max R[X]. (H1).
With the assumption (Hl1), it is easy to give the probability
estimations Pr (E) for the tuple r€R satisfying E.

For instance, for X, YE€Uu ; a,beR[X], we have

1

Pr (X=a) = m H (2:21.)

Pr (Xza) = 9 (2:2)

1) B il
Pr(X>a) = Pr (Xza) m (2..3)
[ b-a
X =X ! xmsa<b<xM
M m
Pr (a<X<b) = { (2.4)
X -a
M 1
- ¢+ X ga<b =X
i Xy~X, card R[X] - M
Pr(X=Y) = O 1f Xm<XM<Ym<YM (2.25)
or Ym<YM<Xm<XM
Pr (X=Y) = : (2.6)
card R[X]- card R[Y] :
" if Xm<XM = Ym<YM .
or Ym<YM - xm<xM



1
Pr (X=Y) = (2.7)
X =Y X -Y
max (Xﬂ:im card R[x], §M:?E card R[Y])
M m M m
3o Xm<Ym<xM<YM
or Ym<Xm<YM<XM’
l .
Pr (X=Y) = (2.8)

max (card R[X], card R[Y])
if Xm = Ym<XM = YM

(a special case of (2.7)).

Remark 1. To compute Pr (E) for a non simple logical expression,

we use the following rules:

a) Pr(ElAEz) — Pr(El)'Pr(Ez) where E,vE, are independent.

b) Pr(EiVEz) Pr(El)+ Pr(E2)-Pr(ElAE2);

c) Pr(‘vEl) =1 - Pr(E,).

1

Remark 2. In [2], for the computation of Pr (X=Y), the authors
gave only formula (2.8), with the assumption (H1l). Of course,
when taking attention to the relative positions of the
segments [X ,X,] and [Y ,Y,], this simple formula is not
complete.

Remark 3. For other distribution types, the idea of this paper
is also useful. One must only considered an appropriate method

for computing the probability estimations.
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§3. THE MAIN PROBLEM

Given a relation R with the set of attributes U=a(R) and the
ranges Di’ i=l,k. E is a logical expression in R. The
selection T=0E(R) can be obtained by the following algorithm:

T:=0
for each réR do (L)
A€ test (r,B) then add r to T

The function test (r,E) performs two operations:
i) Replaces the names of attributes A€U by the values r.A of
the tuple re€R .
ii) Computes the obtained logical expression and assigns the
result to the function test.
Given a tuple r€R. Denote cost (r,E) the cost paid to perform
the function test (r,E). In this section, we always consider
that E is a conjunctive logical expression
n
E= /\ E. .
: i
i=1
The function test (r,E) can be computed by two different ways:

Way 1: Compute all functions test (r,Ei) and then set

n
/\ test (r,Ei).

test (r,E) =
i=1
We have the algorithm:
test (r,E): = true ; (2)
for 1 : =1 to n do test (r,E)=test(r,E) A

A test (r,E.).
5 B

The one-pass compilers compute often the conjunctive logical

expressions in this way, for instance the compiler on the



=35 =
hypothetical computer P-code for language PASCAL-S.

/
Way 2: It is obvious that if there is some io during the

computation of test (r,Ei) such that test(r,Eio)=false then
it is possible to conclude immediately that test(r,E)= false
and to halt the calculation of test (r,E). This is expressed

in the algorithm as follows.

Test (r,E): = false
for 1 & = 1 to n do

(3.)
if =4 test (r,Ei) then goto L;

test (¥,E) : = true ;

Intuitively, it is easy to see that the method in the
algorithm (3) is very natural. (Of course it is better than
the algorithm (2).) However, it is very interesting if we
know the probabilities of the tuples ?€R satisfying the
expressions Ei in R and so we can expect that there exist a
best ordering of the subexpressions Ei such that the average

probabilistic cost of the algorithm (3) is minimal.
To make clear this idea we do as follows:

At first, basing on the probability estimations si=Pr(Ei),i=TTH
of Ei in R and the costs ci=cost(r,Ei) i=l,n paid to compute
the functions test (r,Ei), we can compute the average
probabilistic cost of the algorithm (3). Then, analyzing the
mathematical expression cost (r,E) represented by Cir Sy
i=1l,n, we try to find the best ordering r={rl,...,rn}—

a permutation of {1,...,n}, such that the value of the expres-

sion cost (r,E) is minimum.

Note that to compute test (r,E) for a given E and reR, the
replacements in step i) are necessary and the time cost is the

same for every re€R.



e =
It is obvious that:
cost (r’Ei)= c;>0 (constant) V¥ré€R (4)
Assume that for each Ei’ by the rules as in §2 we can define
i=Pr(Ei), i=1,n and the logical subexpressions are independent

of each other.

The relation R is partitioned into T and Ti’ i=l,n as follows:

T = oE(R)= {rérR/test (r,E) = true}

By * {rér/¥j, j=1,1i-1 test(r,Ej) = true,}

test(r,Ei)= false j

it is evident that

™T; = ¢,3 = I,n

Define 5 {1
p* (T) = _g Sy p*(T,) = g sj(l—si), i=2,n
i=1 j=1
o*(Tl) = l--sl
We have
n n i-1 n
p*(T) + = p*(Ti)= ¥ I s.(l-s.)+ 1 s. =1
i=1 i=1 j=1 A 7
l ]
Indeed, set h, = I s., h =1
i i - j )
j=1
i-1
* = - = - =
o) (Ti) jgl sj(l Si) hi—l .y $=2;n

Il
=
|
0
Il
=)
I
=y

*
P* (Ty) 1 o i



(hy_y

M3
[ e Rt}

e* (T, ) +p*(T)=

-h,)+h =h_ =1
1 i o 2

il O

i
Moreover in T i.e. for the tuples réR for which test (r,E)=true,
it is necessary to compute all test (r,Ei), i=1l,n for the final

n
result of test (r,E), therefore it requires gy <c, .

\ i=1l -
In Ti’ because test ﬁr,Ei)= false, the computation of test(r,E)
11l 7 g 2

halts and it takes L cj. By the definition 6, the average

J._
probabilistic cost of the algorithm (3) is

n
cost3(r,E) = p*(T)cost (reT,E)+ 2 p*(Ti)cost(reTi,E) =
i=1
n n n i-1 i
= (2 ¢,) T 8, + 32 I ‘8:01-830 38 o) (5)
i=1 Y i=1 *  i=1 4=2 J Tog=1

Return to the algorithm’ (2) computing the function test(r,E),
the worst-case cost and the average probabilistic cost are the

same. We have:

e (6)

costz(r,E)= i

™3

i=1

The following result is obvious.

Proposition 1.

cost3(r,E) < cost2(r,E)

where cost3(r,E) and costz(r,E) are expressed by the formulae
(5), (6) respectively.

Proof. It is not difficult to see that:

n i-1 n
s; + I I s.(l—si)l = B Ee =
1 i=1 j=1 J i=

c.)[
1 =4

M3
nh=as

cost3(r,E) < |
i
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= costz(r,E)

The above proof shows thatthe algorithm (3) has always the
cost less than the cost of algorithm (2).

Now, (5) can be transformed in the following way:

n n n i-1 i
cost,(x,B) = (2 ¢,) U 8, + L (1-8.) 0 s.(2 c.)
- ful * get * 4wl T dey d4ey 2
Set g
9 = jz Cj: 90=0
alwal) = n
ERdty (EyB) = gl ¥ e} Ry g~RgIgy =
n n
= g h + z o S = z h.g =
nn 4y > i Hads £ j=3 171
n n-1 n n
P L R e T e =L
n n i-1
= % h. .4g9.~g;. -) = B & H 38,
j=1 & 1 W SR U j=1 1+ g1 3

From here the following problem can be formulated:

Given the numbers cy O, i=1,n
13 Si > O
Find the best permutation t= {rl,...,rn} of {1,...yn} such - that
n i-1
A(t) = E e, B E. —> min .

If it is possible to find the best permutation T such that

A(t) — min, then by the commutativity and the associativity of
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the logical operator /\, we have

OE(R) =0 E_(R)= o

1 i

>5
>5

1

<

This transformation should allow us to calculate the function
test (r,E) by the algorithm (3) not with the ordering {1,...,n}
of Ei‘but with the ordering {tl,...,rn}. And so, the algorithm

(3) becomes:

Test (r,E) : = félse ;
for i : =1+t n do , (84}
if =i test (r'ETi) then go to L ;
test (r,E) : = true
N B

For this algorithm, the function test (r,E) can be computed
with the average cost

The following proposition will show the way to find the best T.

Proposition 2.

Let sy > 0,i=1,n, T, T' be two permutations of {1,...,n}

whose io-th and (io+l)—th elements are changed with each other,

e,
14 14
T;.. = T, T =
io G . 2 18 i +1
o lo
i E5: i u_c uT
iO i +1
tr - c g tT B (.
5l +1 T
o) Ty i ¥ +1



Then

Proof.

when i<i

]

when i=i
(o)

when i=io+l

when i>io+1

n i-1
A(Tt) = 2 cT I 8.
i=1 i j=1 3
n i-1
2{t"’)= ® e., B 8_,
i=1 Yi 4=1
Mg T Gy
i : |
i-1 i-1
Il s.,= 0.l s
4 2 Tk
1=k =i -3
Cgr T cr
i i +1
o
i -1 i -1
o)
B Hop= W OB
J=1 J J=1 j
Crr = Cq
i R i
o)
i i -1
o o
II sT, = IT s_E sT '
=t ) = 4 i
o)
Cr T Cq,
3 G
= i-1
II S g N S8y R - e . I
_ T T : by
=1 j i, 1o+l 3—10+2



A(t')-A(T) = c

—> A(T")

Proposition 3.

Given the numbers
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i-1
s o I8 - s . i s =
T T T L T
3 1O+l i, 3-10+2 j
J
i -1 i -1
o
I s + C I s -
=1 73 - Ti+1
i -1 J =1
o o
I s - C I s - s
o T s e T T,
j=1 Jj 1o+1 j=1 j i,
(cT e 5. o T - s
3 1. 41 i, i <l i, b 1 o P |
(c (1-s )- ¢C (1-s ))
T T T
Jj i +1 i, i, O 1 I
l—sT l-sr
i i +1
“ c L o ( & ) <0
1:i Tl +1 cr CT
J o i i +1
o
< AlT) .
= 'n



Set

i=1l,n-1 then A(ro) is the

e L Py {0 e anpm ) sqtisfies ti > ti+l'

minimud.

Pmof.

Let Ts{rl"“’Tn} be a permutation of {l,...,n}=ro. We have to

prowe that A(ro) g ().

n
First we remark that from {tT }_C) the sequence {ti},i=TTE

i i=1
{(corresponding to 10) can be obtained by

(1) the bubble sorting algorithm permuting sequentially the
adjacent elements t R satisfying t < £
%3 T 41 i Ti +1
and o (o) o} o
(ii) the permutations (if necessary) of the elements with equal

values in the obtained sequence.

By proposition 2, if (i) should be carried out then we should
obtain rl satisfying A(rl) <A )

Basing upon the proof of the proposition 2, we have: The
permutations of the elements with equal values in the sequence
{trl}. do not change the value of A, i.e. A(To)=A(T1).

i 1=1l.,n
From here follows A(ro)=A(rl) < A(T). When the step (i) does
not take places, it is not difficult to see that A(TO)=A(T).

The following algorithm will give the best result for any

conjunctive logical expression.
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Algorithm Al.

Input: E = EI_A eriaaidX En
k
R= {¥ & U —€>.U Di /| ¥i r(Ai)e.Di}
i=1
Output: T = {Tl,...,Tn} is the permutation of {1,...,n} such
that
v i-1
A(t) = % c I s —> min
; ;
i=1 i j=1 J

Method

1)

For each i, estimate the probability Pr(E;) by the
formulae in §2 or by the formulae given by the system
programmers basing upon the statistical parameters during

the manipulation of R.

2) If there exists i0 such that Pr(Ei ) = 0, then inform
e o
OE(R) = ¢ .
3) If there exist iO such that Pr(Ei ) = 1 then delete Ei
from E. 2 -9
More generally, denote I = {io/S(EiO)= 1}. Consider
E = E

VS e S .

Renumber the expressions Ei in

E = Ei
1e{l, s, n}~1



4)

5)

6)

7)

8)

9)
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Define Civ i=1l,n (In practice, in order to define Cyr we
compute the function test (r,Ei) for any tuple and give
c; = cost (r,Ei).

For instance: if

Ei = AGB then ¢, = 2a + b
Ei = AOc , ci = a+ b
Ei = COA , c;, = a + b
where
a 1is the cost to bustitute A by r.A; K
b is the cost paid to compare two elements in U Di'
J l=l

ot
Il

1 l-si, i= 1,n.

te = ui/ci, i=l,n .

Sort {ti} such that ti S ti+l i=]1l,n-1
Step 7 can be performed by one of the sorting algorithms,

in general, of complexity O(nlogn).

Print the best ordering obtained r={rl,...,1&-
n i-1

Print the wvalue A(T)= I cC I
i=1 i =1

Costing the algorithm Al.

\

Steps 1,2,3 are performed with the cost Kl n
step 4 has the complexity K2 n
step 5,6 K3 n
step 7 K4 nlogn
step 8,9 Kg n



_45_
The complexity of the algorithm Al is of

Kn + H n log n = 0(nlogn)
K = K1 + K2 + K3 + K5
H = K4 .

Remark 4.

The proof of the proposition 3 is based on the bubble sorting
algorithm of complexity 0(n?) but the step 7 of the algorithm
Al uses any sorting algorithm of complexity O(nlogn). However,
there is no matters about the correctness of the algorithm Al.

The algorithm Al can be implemented without any access to the

secondary memory devices containing the file R.

Theorem 1.

n
Let R be a relation, card R =N, E = A Byw By = {3,051
is the best ordering of E,'s i.e. i=1
i-1
A(t ) = I s. — min
o i
J=l

Then, the cost of the algorithm (1) finding OE(R) with the
function test (r,E) computed by:

1) Aldorithm (2) is Cl = N.

[ Jl > =)
Q

2) Algorithm (3) with the best ordering T of Ei’s is

n
C"=N-°+* 2 cy I s. + F(n)
=1 j=1 I

where F(n)=Kn + Hnlogn is the cost paid to perform the
algorithm Al.
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3) Algorithm (3) with an arbitrary ordering t= {Tl,..;,rn} is

we have the inequalities:

C% > C3
i 2 :
G > € with large N
C3 P C2 with large N .
§4 Extensions
Extension 1. If E is of the form E=E1 /o s VEn then using the

symbols as above and the De Morgan'’s law

—(E; V ... VE) =E; A... AE

n
we have: the cost payed to compute test (r,E) is
n i-1
cost (r,E) = & ¢, NI s! wherég s'=l-s., j=1l,n
I=F ey W J J
Proposition 4.
Given s; = Pr(Ei) QO € s; < 1
e > 0O i=1l,n
3
t, = 8. /¢:
i SR
If Ty & {1,...,n} satisfies ti > ti+l' i=1l,n-1 then
n i-1
cost (B;B) = T €. T 53 —> min.
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Extension 2.
Algorithm A2.

Input: An arbitrary logical expression E (as defined by
def.2).
Output The best ordering of the simple logical sub-

expressions of E.

Method.
1) Reduce E to the conjunctive disjunctive normal form
n,
n i
r(E) = Vv A E, -«
i=1 =1
2) Apply algorithm Al to
g
B, = E.
j=1

i i =
to give the best ordering " of Ej, J=1sn8q -

n y
3) Apply the modified algorithm to V Ei with Gy = A(Tl) and

si=Pr(Ei) defined by the estima%f%q formulae analogous. to

one’s in §2.

n.
n 4 T
4) Print the best ordering E = V A E i
i=1 4=1 T3
n i-1
5) Print the value C = 3 ¢ I s .



CONCLUSION

Independently, our approach is quite near to the Hanani'’s one

[5].

However, our approach seems to be more straightforward,

easy for extensions and the complexity analysis of the

algorithm proposed is much elaborate.
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n
Legyen E= A E;, egy feltételes kifejezés és R egy

reldcidé. A cikkben egy O(n log n) algoritmust mutatnak be
a szerzdok, amely a OE(R):={rER/r kielégiti az E-t} mennyisé-
get J/atlagban/ minimdlis lépésszamban hatdrozza megqg [azaz,
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n
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o i=1 >

B craTbe mokasuBaeTcs O/n logn/ ajropuTM KOTOpPHYN /B cpenHeM/
MHHHMH3HDPYET YHCJIO WaroB IOJsa HaxoxOeHus o/R/: = {r € R/
+crioniHgeTr E}.
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ABSTRACT

In this paper the concepts of so-called balanced relation
scheme and the operator of translation of relation scheme are
presented.

Basing on this special type of relation schemes and this
operator, representation of all keys of any relation scheme is

given.

§0, INTRODUCTION

The relational data model was first introduced in Codd [113]

and new become a most promising one. The study of .dependency
structure in relational databases [2] and the so-called genera-
lized functional dependencies [3,8]1give us a powerful tool to
deal with these dependencies. The concept of translation of re-
lation scheme [L4] seems be useful in the sense that its reduces
a relation scheme to a simpler one.
The problem of key representation was investigated in [5] by
Bekessy A. and Demetrovics J. in connection with some estima-
tions of the upper bound of the cardinality of the set of all
keys of a relation scheme.

In this paper we present the main results about the trans-

lation of relation scheme and consider the so-called balanced
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relation scheme. In connection with these results, the problem
of key representation is solved.
The notation used here is the same as in [63].

§1, TRANSLATION OF RELATION SCHEME

Definition 1.1. Let S=<Q,F> be a relation scheme, where

Q= {4,,4,,...,4)
is the set of attributes,
B {Li+Ri|Li,Ri & 0z =18k vnsk]

is the set of functional dependences, and Z¢{l, be an arbitrary

subset of (. We define a new relation scheme 3=<{,F> by:

NE (=B}

ok
]

i

= {1 \2 » Ri\Z[(Li+Ri)GF, P4 (W (RN ]

Then S is said to be obtained from S by a Z-translation, and

the notation
S = §-2

is used.
From the above definition, it is clear that, after the
transformation, F can contain the functional dependencies of

the following forms:
(1) 2 = @;
(i1) X » # where X ¢ Q; X#P;
(iii) # > X zhere X ¢ 0, X#0.
However, by the algorithm to find the closure x+ of the

subset ¥€Q, w.r.t. F [7] we observe that the omission of func-
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tional dependencies of the form (i) and (ii) in F do not change

Kg.the set of all keys of =

Definition 1.2. Let S=<Q,F> be a relation scheme, and ﬂ% be the

set of all keys of S. We define a partition of Q as follow:

R o Tl

where
&= X,
X6 %y
a2} = o) XN\G = E\G;
X6 Ky
g¢0% = am,

Sometimes, for the sake of simplicity, the notation

2 = ¢|e? 1" = #)a

is also used.

Definition 1.3. Let Q be the universe of attributes, Xcq,

Mme 29, nE 2Q. We define

X@m= {xy|ye m}
MmO = {vz|yem, 26 X }

Here XY means XVY,
The next proposition will be needed in the sequel.

Proposition 1l.l1. Let S=<Q,F> be a relation scheme, X,Y < Q,

then

('t = xanHt = an? (1)
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where ¥' is the closure of X w.r.t. F.
" Proof. It is sufficient to prove that
(r'n’ = an’

By the definition of the closure X+ of X, it is obvious that

Y
Hence
X'y s xy.

By the algorithm to find the closure, we have
(T s.XR"., (2)

On the other hand, from

X*+ X+
we have
xx*% xty

or equivalently:

I're xn)” (c.f. C71)
Hence
(e® e taxn™* = an® (3)

Combining (2) with (3) we obtain (1). The proof is complete.
We are now in a position to prove the following theorem,
characterizing the fundamental property of translation of rela-

tion scheme.

" Theorem 1l.1. Let S=<Q,F> be a relation scheme, and Z€Q.
If §=5-2=<Z,F>, then for every XCZ we have




T

+ (%)

. :
Z(X)g = (ZX)S (4)

Formula (4) expresses the relation between closures in the

source relation scheme S and the target one 5.

Proof. First, observe that, by the definitioen of the closure of

a set of attributes, from X¥cZ we have
(X)§ cZ and therefore

+ —
(X)S nNzZ=p

Now we prove the theorem 1 by inductien on %, the step num-
ber for constructing the sequences {(X)Lh)} and {(ZX)(h)}
h=0,1,2,... by the algorithm cemputing the closure X ef X

Basis: A=0. It is clear that

(0)

Xéo): X and (ZX) = ZX.

Therefore: Z(X)(O) = (ZX)(O) = .ZX.

" 'Induction: Let A2>0 and assume that

(h) _ ()

z2(x)g " = (ZX)g (5)

We shéllprove that

Ch+1) (h+1)

Z(X) (ZX) (8)

For that, it is sufficient to prove that, when processing

(h) )(h)

from step & to step (h+1), the sets (X)g and (ZX 3 are

added by the same elements i.e.

(x)§h+1)\(x)éh) = (ZX)(h+1)\(ZX)(h) (7)

(*) Semetimes, we omit the subscript S (or §) if the context is obvious.
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Let P,Q denote the left and right side of (7) respectively. We
find that x€P if and only if 9(Li\Z = Ri\Z)GF such that

: i€ (h)
Li\Z & '(x) 3 xGRi\Z and xE(X)S .

So, we have

()
L. ¢ 2(X)3

(h)

and by (5): L, g.(ZX)S 5

Since xGRi\Z then z#Z and xeRi. On the other hand, since xﬁ(X)%h)

then xGZ(X)Lh). Again, by (5) we have:
S

(R)

xﬂ(ZX)S :

From L. C (ZX)(h), x6R., x6(ZX)
1 - S 7

find the closure, we have x64Q.

éh), then, by the algorithm to
In the inverse direction, if y€¢Q, that is B(Li o Ri)GF such
(h) (n)
that L, € (2X) 4", y6R, and y#(ZX)g
(h)

Ch)
have Li c (ZX)S g *

. Consequently, by (5) we
and y#7(Xx)
Hence

yﬁ(X)éh) and - y#7Z.

Therefore y6R \Z and L \Z € (X)éh).
Basing again on the algorithm to find the closure, we find that
yEP.
The equality (7) is proved.
It is obvious that

zn(x)éh)zﬂ and Zﬁ(X)éh+1)=¢.
From (7) we have:
(h+1) (h) _ (h+1) (h)
Z(X)§ \z(x)§ = (ZX)S \(ZX)S
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Basing on (5), we obtain

(h+1)

(h+1)
= (Zx)
S

Z(X)g

showing that:
+ +
Z(X)g = (ZX)S.

} Let us denote by Iq;and jfg the set of all keys of S and
~ the set of all keys of 3 respectively, where $§=<Q,F>, 3=5-12,
zZcQ.
We have the following lemma.

|

|

"Lemma l.l. If X is a superkey of S, then X\Z is a superkey of 3
and conversely if Y is a super key of 5, then YZ is a superkey
of 5. '

Proof.

l. Since X is a superkey of S,

Put V=x\Z, it is obvious that ¥ € VZ and V < Z.

+ + +_
Hence XS c (VZ)S = Q. (because XS—Q)

By the just proved theorem we have
+ +
Z(V)g = (ZV)S

' Consequently:

AN

+ —
Z(V)g = 0 = 2

' showing that (V)g Z. (since Z Z=@ and (V) [ Z) or in other

words, V is a superkey of 3;

e+

2. Conversely, if Y is a superkey of §, i.e.,

+__ -
(Y)g z 3 C=ONZ).



Then, by theorem 1.1, we have:
= Z 7% =8

+ _ +
(ZY)S = Z(Y)g

showing that ZY is a superkey of S.

" Remark 1.1l. Both Theorem 1.1l. and lemma 1l.1l. can also be proved

by using the fundamental lemma l.l. in [41 which gives us an

another characterization of translation of relation scheme.

Corollary 1.1. If 5=5-Z then:

(1) e, = Ry ~ 2ga'?;

(i1) ¥,

Z C>:!c3 «+ 72 C G.

" Probf, (1) =+ If '3(5 = '163 and suppose there exist an attribute
AiGZ\Q(O), s G- Ai is a prime attribute (AiGH).

Then 3K6 '.I-Cs such that A.6K.

SinSe '.R‘s = My, so K¢ 3C§ i.e. 4, 1is also a prime attribute
of S. We thus arrive to a contradiction.

(0):¢, (0)

Consequently Z\Q or ZcC Q .

« First, observe that Zf X is a superkey of S then after
removing non prime attributes from X, the remaining part of X is
also a superkey of S. In other words, if X is a superkey of S
then with all z < 2'°,

Suppose that Z ¢ Q(O), we shall prove that 'Ks =

X* = X\Z 1is also a superkey of S.

Indeed, if K€ S('S then in particu%ar,K is a superkey of S.
By lemma 1,1, XK\Z 1is a superkey of S.

Moreother, it is clear that ZAK=4.

Consequently K\Z = K, i.e. K is a superkey of B.

Now, suppose that K°¢ K and K’ is a key of 8, Again, by
lemma 1.1, ZK’ is a superkey of S.

(o)

Removing from ZX° the subset Z € Q , we find that K’ is a

superkey of S too. Since K is a key of S, we conclude that

K*=K, showing K€ ¥z.

Hence H, c Uy
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Conversely, given K€ 505.
Obviously KNz = 4.
By Lemma 1.1, ZK is a superkey of 3.

(o)' we find that K is a super

Remowing from ZK the set Z ¢ @

key of S.

Now suppose that X' ¢ X and K' is a key of S.
It is easy to see that K°NZ = g4, so K°\Z=K’.
Once again, by Lemma 1.1, K°> is a superkey of 3.
Since K is a key of §, so K’=K shawing that K¢ Hence

Wy c ¥y So (1) is proved.
(i1) + If W

every key of S.
Hence 7 C G.

Sc

5“2 @ 'I‘Cg. then obviously Z is contained in

< Suppose that Z < G. We shall show that every element
KGZFCS can be represented in the form K:Zk’, where K€ T(g, and, in
the inverse direction, for every element X¢ we can show that
zKe K.

Indeed, if KGUCS then from Z € G, we have Z C X, i.e.,
k=zX, z0 k=p.

By the lemma 1.1, X=K\Z is a superkey of 3.

5

Now suppose there exist X’ = X and X° is a key of S. Then,
by Lemma 1.1, ZR® is a superkey of S and obviously 7K? c_Zk = K,

Since XK is a key of S, one must have
2k = =gk,

Hence %° = %, i.e. KG?Cg ;

Conversely, if K€3€§ then by Lemma 1.1, X=ZX is a superkey
of S.

Suppose that there exists XK’ K and K’ is a key of S. Since
Z is contained every key of §, so Z CK’.

Put i* = K°\7Z, we obtain K’ =2K°. By Lemma 1.1, X is a super
key of g,

From ZK®> = K2 K = ZX and zn X = zm’Z = g,we deduce that
2’(:2. We arrive to a contradiction. Hence K°’=K, i.e. Ke!(s.

(ii) is proved and the proof of corollary l.l. is complete.



Definition 1.4. An attribute AJGQ is said to be a deterministic
one if, for every (Li -+ Ri)eF’ AjeRi implies AjGLi' In other

words,Aj is a deterministic attribute iff when it belongs to the
right side of some functional dependency, it must also belongs
to the left side of this FD.

Let be given the relation scheme

S = <Q,F>
where

Q= {Ai,Az,..;,An}

~
1l

{Li + R, A O R

As in [6]1 we denote

Following the definition 1.4, it is obvious that if Q\(LUR)#Z

then all elements of this subset are deterministic attributes.
The following theorem establishes the relation between the

set of deterministic attributes and G - the intersection of all

keys of S.

" Theorem 1l.2. The three following sets are equal:

where D is the set of all deterministic attributes of S;
= N K - the intersection aof all keys of S;

KG’%;
k
T = o\ igg(Ri\Li)
Proof.

Le « D EG, h
Suppose that x€D and there is a key K such that x#K. Since
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(K)g = Q, so xG(K);. By the algorithm to find the closure of a
subset of attributes w.r.t. F, there exist A and some
(Li - Ri)QF such that

(h)

g s xGLi, x6R

L, ¢ (K)
This contradicts the fact that * is a deterministic attri-
bute.

Hence, xz6D implise x6K, VK& In otherword, xz6G.

S [

2. G¢D

Suppose x€6 and there exists (Li &> Ri)GF such that xGRi but
xﬂLi. '

Consider the set M = Q\{x} )

Since xfL,, it is clear that L, € M. From M % L;s L; + Ry,
R *» {2} we have M *»> {z}

Combining with M % M, we obtain

M*> M U {z} = Q,

shawing that M is a superkey of S. Lét K be a key contained in M.
From x#M, we have x¢K.
This contradicts the fact that x6G.
Consequently, if x€G then from (Li =¥ Ri)eF and xGRi we must

have xeLﬂ, i.e. x is a deterministic attribute.

3o BT
If 6D, so by thekdefinition Lelp ngi\Li for every
L=, 2 nss ks 1e€s 2 ) (BRNLs)s
gL e

k
Hence z¢6Q\ U (R.\L.) = T.
g=d .. °

1. T€D
If 6T = O\ U (R,\L.), then W1, 8, cuuk xf(RN\L.).
1=1
It means that if xeRi then xGLi, i.e. x is a deterministic
attribute, zxébD.

The proof of theorem 1.2. is complete.



- 62 «

Remark 1.2. In the case Lir1Ri:ﬂ, Vi=1,2,...5k we have:

K
¢ = a\;Y (RN\L) = a\R.

This result has been proved in [6] by an another way.

Until now, in the published litterature, we have not the
explicit expression for the set Q(O) (equivalently, for H~—the
union of all keys of S).

However in [6] it is shown that

R = RA\E e ‘97,

Moreover, we have

" Lemma 1.2.

. (o)
R" = U (RN\L,) c .

L.cG
7/—

" Proof. If x€R" then B(Li - Ri)GF such that xGRi and xﬂLi.
Let K be an arbitrary key of S (XK€ S)‘

We shall show that xgX.

Since Li c G, so Li € K. Suppose that x€K.

Then from xﬂLi and LiEK, we have

L; c K\{z} = k°
Obviously:

L.+ R. *> {x} (x6R.)
Z Z Z

Consequently

K %> {x}.
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Combining with X° - K°, we have
K? ¥ei. K’{x} = K

This contradicts the fact that XK is a key.

Hence, VKG.'FCS : xfK, i.e. xGQ(O).

Ul B (R NE.) 59(0).
L= * " Lea * °

The proof is obvious.

This corollary shows that we can eliminate from a relation
scheme all FD of the form g - Ri’ while preserving its set of
all keys.

The following lemma gives us a constructive way for ex-

tending a given subset of Q(O).

(o) (0)

'Lemma 1.3. For every X € G, Y C Q , we have (XY);\X cQ .

Proof. If xG(XY);\X, so xG(XY)g and x#X.

(0). Obviously xz#£Y.

Suppose that xz£Q
Since :JcG'(XY)Z., so XY *» {xz}.
From «#X, xf€y, then «x¢XY.

Since xﬁQ(O), there exists a key KG?CS such that xz6K.

Let K* = E\{z}(X’CcKk)

It is clear that XYK’ *» k°{z} = K showing XYK’ is a super-
key of S.

Let us eliminate from XYK’ the subset Y C Q(O), giving XK°
is a superkey of S. On the other hand from X ¢ G € K, xfX we

have:

¥ = Blxl S %,

showing that XK° = K’ is a superkey of S. It contradicts the
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fact that X is a key. Hence we must have xGQ(O).

' Corrollary 1.3.

tarriNe € 29,

" Proof. From direct use of lemma 1.3 with
(o)

X=G, Y=R*=R\E € ®

" Example 1.1. We consider one example in which

7 & Rert), e e g8l
showing that our lemma is non trivial.

Let S = <Q,F> be a relation scheme where

Q=12 %3456 7 8 9
= {987 = 27, 27 =~ 134, 1238 ~ 489, 1458 + 236,
368 > 159}
We have:

6
L= O B, = 12345878; R = \J R, = 1834587289
i 7 n 7
1.=1 2=

6
o€ L) (R AE.)) = 9\1234569 = 78,
g=g LR

R* =R\L = 9; G

(gr*)7? = (789); 1234789

(GR> ) o NG 12349 D 9

Wt + \a +

Z

<Q,F> be a relation scheme and Zl’ P

Lemma 1.4, Let S

If Z4 N Z, 4, then

(S—Zl)_z2 = S—ZIZ2.

C Q‘
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Proof. Put 5, = §-2, = <Q,,F.3,
and 8y = 87=0y = <Qy,Fy>.
Then

Q, = ON\Z,5 F, = {L\Z,7R\Z, 5222, wni iy ¥ ke

Since Zlf\22:¢, SO Z,C Q‘\ZZ = Q4

Consequently §,= 91\22 = (Q\ZZ)\Zg = Q\ZJZ2) and
F, = {(L,\2,)\2, » (R\Z)\z, lg=1 08, caal}
= {p,\2,2, ~ R\2,2, O i N o 28
Corollary 1.4. If Z a(®)  in
Vi el P = s then

(S—G)-22 = S—GZZ .
" Proof. By direct application of lemma 1.4 in which 2 E.Q(O),
Z; =G, ZyNZ, = 0
(0)

' Corollary 1.5. If Z, € @ and §:(S—G)—22, then ¥ = 5

" Proof., Let S5°=5-G.

Following the corollary 1.1: 'R’S:G@ J{S. On the other hand:

§:(S—G)-Z2 = S’-ZZ, so again by corollary 1.2, we have 7(§=7CS,.

Hence K, = G @JCS
We are now in a position to present an algorithm realizing
the translation of a relation scheme.

Let be given a relation scheme S=<Q,F> where

= {Al,Ag,...,An}

!
]

{Li - RilLi,Ri € 0, #=2158,:vss%}

Using corollary 1.2, we try to find two subset ZJEG and

Zégﬂ(o) as great as possible, and then, we define a new relation
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scheme as follow:

BiE .8 = Byly
Then ':KS = Zl@ xg.
From the definition of the translation of relation scheme, g
in general is more simple w.r.t. S in the following points:
- The number of FD in § is in general less then the number
of FD in S
- The length side (left, right) of eath FD in S is possible
shorter than the corresponding one in S.

We choose:

k
= = )
Z, =G = Q\i:l(Ri\Li).
B e (0)
Zy = (GR?IN\G € Q

(Recall that R® = R\L).

Then 8§ = 5-2Z.7

"2
Taking account of the expressions of ZZ and ZZ' we have
' +
- 3
Z1Z2 = (GR )S'

Moreover, one can remove from S the FD of the form: ¢ > 4,
X >4, #§~Xx, (X # @) while preserving Z‘{g

" Example 1.2. Let be given S =<Q,F>
where Q = 123456789;
F = {137 » 27, 87 - 134, 1238 ~ 489, 1458 + 236,
368 » 159, 7 » 23}
We have L = 12345678; R = 123456789;
+

R* = R\L = 8; G=78; 5 = (GR*)g = (788) 5 1234789,

Define the new relation scheme:

-+

g = §-(GR*) g = <Q, F>

where
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S -o\z =656, 2= (GF’);
e {Li\Z > R.\Z | 251, 8, s vyl =

={g -~ (will be eliminated);
g~ g (will be eliminated);
/) (will be eliminated);
5 > 6
6 > 6
g~ g (will be eliminated)} =
= {5 »86; 6 - 5}

It is easy to see that S has only two keys which are &

and 6, l.e. TCg = {5,6}. Consequently,

K,=6® Kz =76@D{5,6} = {578, 678}.

§2, THE BALANCED RELATION SCHEME

" Definition 2.1. The relation scheme S=<Q,F> is called balanced

if the following conditions hold:

X

k

(i) L. = MR = 83
; 7

B

(1) I OR, = ¥, ¥#i=1,2,...,%;

CALY) Wi,7=1:8::nsiis L79 EImplies Li#Lj.

where Q {AZ,AZ,...,An}
F=A{c, ~ RiILi,Ri €0y 250, 8,958

From the definition 2.1, we can prove the following pro-

perties of a balanced relation scheme.

" Proposition 2.1.

Let S5=<Q,F> be a balanced relation scheme (b.r.s). Then:



1. G=0;

2. If |@|<1 then K, = {g};
3. #AXK, < l TCSI_32

4. ¥Z2 € Q, S-Z is a DeXW'S:

1. By the definition of a b.r.s, we have:
k k

G = o\ U (R L) = aQ\
2=1 =1

Ri = a\Q =7

2. If o=@, it is obyvious that TCS:{ﬁ}.
If 9={4}. From (i) (def.2.1) we have R = L = Q = {A}.
From (ii), F contains only two FD: {4} - g and g - {4},
showing that ¢/ is the unique key of Q.

3. Suppose |?CS|32. Then ﬂﬁ?{s, since otherwise g will be
the unique key of S.
In the inverse direction, suppose that @¢ TCS. Then 7{5
has at least two elements since otherwise, if UCS = {X}
then from G=K and G=¢ it follows that KkK=4.

4., This property is obvious.

" Theorem 2.1. Let S=<O,F> be an arbitrary given relation scheme,
where Q = {Al""’An}’ F o= {Li > R, 2=1,2,...,k}. Then there
exists a b.r.s. 5=<%,F> such that j(S:G() % ~, where G is the
intersection of all keys in S.

Proof. Without loss of, generality, we can always suppose that,

for the relation scheme S,
Lif\Ri = B, V¥i=l, 8 uezKs

(Otherwise, we replace S by SZ:<Q,F1>, where

Fy = 15, » Ri\Lil(Li > R.)6F, 1=1,2,...,k}. It is easy to show

that F"'IF’ZL 7] and therefore UCS: CFCS b

We construct the b.r.s. as follows:

1. Compute:



=g "% i=1 °
k
¢ = Q\i\:Jl(Ri\Li) = Q\R;
z = (gr*)”

Now consider the relation scheme:
8% = =%, 1°> = §-3,

where Q° = Q\7Z,

p*. = {5} » R | #5080kl

3 3 - > -
with L% = L.\z, R, = R.\Z.
It is obvious that: L%f\R% = ﬁ;'i:Z,B,...,k;

- k
V= U L} =INZ and W= U R

= R\Z
=1 % o
We shall prove that: V€ Q> € W €V to deduce that
V.= @ = . i
Indeed, if x€V so x6L and x£Z.
It is obvious that x€qQ.
Consequently xz€2\Z = Q°. Hence V € Q°,
Now let x6Q° = Q\Z, then xz#Z. '

Since w#Z = (GR’), D GR®, so x6G and xfR’.

k K
Re call that ¢ = @\ U (R.\L.), we find that z=¢ U (R.\IL.).
ol A geg. F %

Hence there exists jé{1,2,...,k} such that xeRj, showing
that x6R.

From x6R and x£Z, we deduce x6R\Z=W. Therefore Q*> C V.
Finally if x6éW=R\Z so x€R and xzf¢Z. Arguing as above, we

have

xfG and x@R? = BNTrs
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Since z8R, and x#R\L, we deduce z€L.
From xz6L apd z¢Z, we have x€L\Z showing that W € V.
k k

dt Ll

Thus we have shown: Z

7

3. If there are several FD of F' with the same left side,
we can replace them by a FD which has the left side as
the common one, and its right side is the union of their
right sides.
It is easy to see that the above transformation does not
change the closure of F’ and thus, the set g3 too.
Denote by S, the relation scheme obtained from S’ after
performing the above substitutions. It is clear that S is
the desired balanced relation scheme, and by corollary
L5

K, =c0 X
Definition 2.2. Let S=<Q,F> be a b.r.s., where
F={r, ~ Rilizl,z,...,k>.

Denote

Y

S

= {r |i=1,2,...,k>,

the set of all left sidesof F.
Construct the directed groph 5?5 as follows:

(1) st is the set of nodes of SLS

(2) (Li’Lj) is an arc of
such that LiD Lk :DLJ..

5’8 1f£ Li:Lj and there is no Lk

Let xs is the set of all terminals nodes of , €.1. nodes for which
N/

the outdegree is equal to zero. The members of & are called

S
minimal left sides of S.

~Y
Lemma 2.1. Let L€ J:S.
Then
+ -—
L6 TCS <> (L) = Q
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~/
Proof. The if part is trivial. Suppose that L.€ -ZS and L; = .
So Li is a superkey of S. Since L/ is minimal, then for all
X<:Li we have X+ = XC:Li, showing that Li is a key of S.

Then (Z)§‘1(K\Z) = ¢ for all 7Z c K.

Proof. Let us denote by Y = (Z)EIW(K\Z).

It is clear that ¥ € (z)? > Y ¢ K and YNZ=¢g. Therefore we can
wirte K = 2|Y|X (a partition of K) and have (c.f. proposition
i 5

+ ot + + +
(o), = £UBINY” = W@ BT o tErn” = ns

Since K is a key, so ZX=K showing that Y=4.

The following corollary is immediate:

' Corollary 2.1. If K€ 763 and Z € K, then:

1) <z);m< = 7
3 K\(Z;)= K\Z.

Lemma 2.3. Let L. be an arbitrary element of ,85, and
- %

S—S_(Li)S'

Then the elements of Li@ .'K,g are superkeys of 3.

, 3 + -~ ~ F et S
Proof. Let Z=(L.),. Then ¥k¢ UCS. (LK) = (L) Ky = 42K 5 =
= Z(z)é = g = by virtue of proposition 1.1 and theorem 1.1,
showing that Lik is a superkey of S.

Theorem 2.2. (key representation)
Let S=<Q,F> be a b.r.s.

Then each key of § can be represented in the form:
X = LR
T

~/
where L. is a minimal left side of 5, i.e. 6 Aﬁs, and K is a
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key of the b.r.s. ng_(Li);'

" Proof. Let K be a key of §, i.e. K€ d%g.
If k=@ then, of course, K contains all elements of g
If XK#9, so KC.(K); = Q. That means, there exist LJ.G -‘CS, such
that Lj Cc kK and Rj\K#ﬂ.
(This follows from the algorithm to find the closure of a set
of attributes w.r.t. F).

Starting from the node i] of the graph gs, we move along
the arcs until a node Lie J:S is reached. Obviously Li E:Lj.
Thus we have proved that:

o
¥k K ar.¢ .'CS such that L€ K.

SJ
+

Put 2 = (Li)S .

If z=Q, so, by lemma 2.1, Li is a key of S and we have K:Liﬂ.

In this case § = $-2 = $-Q = <@, {# » #}>, and clearly @ is a

key of g,

If 2 € Q, we can write

We shall prove that K is a key of S.

By lemma 2.2, we have:
A(K\L,) = 20K = g, (K=K\L_)
Consequently §.S Z = Q.

= K\Li = K\(Li)+ (corollary 2.1). Therefore, by

lemma 1.1, K is a superkey of S.

Moreover K

Now, suppose that there is k*c X and Xk° is a key of S
Again, by lemma 1.1, 2k’ = (Li)g X* is a superkey of $. Thus,
+ +

= o) e % - ot
g = (ZK )S = ((Li)SK )S = (LiK )

+
S

showing Lig, is a superkey of S. On the otherhand it is clear



that Lik’ EX,
This contradicts the fact that X is a key of S. Hence Xk’ = &,
1.6, K 15 & key of S. The theorem 2.2 is completely proved.

Remark 2.l1. In general, the inverse of theorem 2.2 is not true.

5 S
Tt is quite possible that there exist L ¢ ‘ZS while L. does not
contained in any key of S.

" Example 2.2.

Q = 12345; F = {24 >~ 35, 15 -~ 4, 53 ~ 124, 25 - 134}

We have
~J
Gts = xs = {24, 16, 938, 25}

The graph sksconsistsof all disjoint nodes, (Fig.l.)

24 15 53 256

Pigad.
Direct computation, shows that:
- * +
(24)S B (53)S B (25)5 = Q

Therefore 24, 53 and 25 are keys of S.
On the other hand:

(15) = 154 # 9
It is clear that 76 is not contained in any key of S because,

152 contains the key 25 and
153 contains the keyv 35.



Corollary 2.2.
i~ ~ +
Let I.6 ‘ts" § = 5-@)g .

1f K€LiC) i ¢ % and except L., K does not contain any other mi-
o
nimal left side LjG &., then kK is a key of S.

Proof. Following lemma 2.3, K is a superkey of S. Suppose that

K> € K and K’ is a key of 5.

We shall prove that K’ = K.

Indeed, since K contains only Li’ so K’ at most contains only Li'
If k* does not contain L., then (K*)7 = K’ # @. Thus K’ must

contain I.. We have K> = L,K». Since k61 .® W, k=1 K,

Xe ﬂ:gf By the proof of theorem 2.2 (keyrepresentation). We

have X°¢ .
From [.X* = kK> ¢c K =L.R and L.NnK> = L.NEK
= = 7 7 Z 7
K’ ¢ K.
Since X’ and XK are keys of 5, so ®* = X. Thus X° = K.

74 we deduce

SUMMARY

We are now ready to present a general scheme to transform
an arbitrary relation scheme into a balanced relation scheme
and to find all its keys.

Let be given a relation scheme

S = <Q,F>
where
g = {AZ,AZ, o .,An}

F={5, > RilLi,Ri B0y 22,8, 0400

L,AR, = By =158, 4235005



, ko k
Step 1. Compute L = U L.; R = y &

i3
B & o
| k
R* = R\L; G = §\ U (B.\L.) = Q\R.
» 17 7
A=)
_ j +
% = (GE") .

Step 2. Define 8 =<0’ ,P*>=85~F

where
Q’ = AN
F* = {L,\2 > R \Z [ 20,8y o v u sl

Eliminate from F’ functional dependencies of the form:
g0, 9 >X%X, X0 (X Z%0)

Perform the grouping operation for FD of F’ which have the
same left side.

~

Thus, we obtain, the b.r.s. § =<Q,F>

Step 3.« EFind all keys of 5.

Construct: Jcrg - the set of all left sides of 5; the graph
~/

353;—-the set of all minimal left sides of 7,

Let

Gtg = {LZ,LZ,...,]Z}

z)S’ 2= 8 wimg b

TE zi = Q then L€ th.

Compute Z; = (5.7

Denote by I = {jlzj £ Oy G017.80 vt 1}

For Ej#Q, consider the b.r.s.

L= B B i
J} o 5  ¥JeI

Repeat the step 3 for the relation schemes 3’ Suppose that at
some moment we found all keys of fg jer
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K(j)}
8 .
g

DY

To complete the set 5C§, we perform as follows:

Consider sequentially the sets LjKiJB for each j€I,
t:1,2,.;,sj
Cq) . :
- If LjKt contais in a key ready found of 7C~, SO
we omit it;
() & o
= & LjKtJ contains no element of x.g but (except) Lj

(3] s
then LjKt & 3CS.

- otherwise, use algorithm 3 in [ 31 to check whether LjK

is a key.
' Step 4. Compute K e [eXO) ff(.g

'Examplé 2.2 Let be given S§=<Q,F>

where
R = 1254567
¥i= {167 + 3,
od = 5,
39 » 4,
Sisr 2y
1.o7¢ =+ by
137 » 5}
SteE 1
6
L= V- L= 1835674
S %
2.=1
6
R= U R. = 23456;
5 %
1=1
R¥ = R\L = 2

G = Q\R = 1234567\34526 = 17



- 7:7?

2 = (GR*)g = (172)g = 172
Step 2.
R
Q* = O\z = 3456
F° = {6 » 3,
34 > B,
25+ &,
* @, (wzll be
5 > 8,
3 +35,}

Thus S = <{,F> is a b.r.s. where
¥ = { § =

34 -

36

B

3 >

-

“

v

(SRS N NS AR 9N
“

w
—

Step 3. Find all keys of s
xg = {6'_, 34, 356, &, 3}

The graph 5@5 as in Fig.2.

We have:

+ ; .
(8)% = 8546 = &, f.e. 36'5’05

eliminated)

Q = 3456

Pri 2
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~

(5)§ = 5658, = By due, 8 K3
(6)§ = §354° = 0, 1.es 66 .
Thus ¥z = 13,56}
' Step 4.

K, = e¢® %3 = 17 @ {3,5,8) = 1168,175,176}

The given relation scheme has three keys: 173, 176 and 176.

We close our paper with some open problems.

§3, SOME OPEN PROBLEMS

1. Description of the greatest as possible subset of Q(O).

2. Find the necessary and sufficient condition for which a
minimal left side is strictlv contained in one kev.

3. Find the sufficient condition for which all minimal left
sides of the FD of a balanced relation scheme are keys.

4. Transform the above general scheme (§2, Summary)

into an efficient computer alqgorithm.
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A kulcs-reprezentdcid problémaja és a kiegyensulyozott reldcid

séma

J. DEMETROVICS, HO THUAN, NGUYEN XUAN HUY, LE VAN BAO

Osszefoglald

A szerzok bevezetik az u.n. kiegyensulyozott relacid séma
ill. a relacid séma eltolas-operatorénak fogalmat. E fogal-
mak segitségével megadjdk egy relacid séma Osszes kulcséanak

reprezentacidjat.

[Ipo6ryieMa npencTaBJIEHUA KJINYEH H YpOBHOBEUNEHHAdA peNidllMOHHadg

cxema
. IDemeTrpoBuuy, Xo TyaH, HryeH XyaH Xyu, Jle BaH Bao
PeswMme
B cTaThe BBOLOATCHA INOHATHA YPOBHOBEUIEHHOHW pPEeJIAIITHMOHHOHW CXEeMh H

oriepaTopa TPaHCJALHN PEeJsIAILIMOHHOMN cxXeMH. C IIOMOmbI 3THUX MOHATHH

JaeTcs npencTaBJ/IeHHEe BCeX KJnuel JIboH pesIgIIHOHHON CXEMH.




MTA SZTAKI Ko6zlemények 32/1985 81-85

O CJIOXHOCTU PEAJIU3AIIUU OIHON TPEVI'OJILHOW MATPHUIIH
*
BEHTWJIBHEIMU CXEMAMHU PA3HON I'JIVBUHEH

T'an AHHa

BBegeM clienywoumue O603HAQUEeHHUdA:

fai - HauMeHbhlee leJioe 4YHCJIO, He MeHbule 4YHucia a
Cal - HauboJibuee HneJsioe 4YUCJIO, He 6oJbue YHucila a
ti' - BJIeMeHT MaTpHIE CTOAmMH B i-TOM CTpPOKE M j—TOM CTOJNIG-—
J e
Tn - MaTpula C N CTPOKaMH H N CTOJIBLaMu, IOJIS KOTOPOH
B 0, ecnu iz=j
+J 1, eciin 1<
Li(S) - YHCJIO BEHTUJIEH B cxeme S
Ly = ()
n
L(r)(Tn)==min L(S) mno BceM cxemMaM S IJy6uHH < r , DpPeaJUu3yi-—
UM Tn. g
(1) n
OueBHAOHO, 4YTO L (Tn)"ff npu n —-o
(2} %k

B [2] pmokasaHo, 4To L '(Tn)~ n-logn mOpu n-—-eo .
B HacTosAmey paboTe NoJIydeHH BEepXHHEe OLEeHKH OJ8 CXeM I'IIyObHHH
> 3i:
r
L) (r )y<con-K_(n) (1)
n r

I'Ie C HeKoTopasa KOHCcTaHTa, a Kr(n) MOCJIenOBAaTENIBHOCTE QYHKIIHH

OnpenesieHVe BEHTHUJIBHHIX CXeM cM. B [11 .

ats
wa

3neck U Huxe log o3HauvaeT JnorapudM o OCHOBAHHKW 2, a aCHMII-
TOTHYECKHE COOTHOHWEHHS PacCMOTPHM IIpH N —~ «,

o B



- T

onpenesieHHas CJIeOyomuM oOB6pa30M: Kl(n)==/H, K,(n) = logn,

2
% i pas

Cae s BB 06 )ess) 23],
r—2

—_— 3 3 r
K. (n) =min{i|K__,

3aMeTuM, UTO K3(n)==rloglognT, K4(n)==lo§h , a yxe K6(n) AB—
JIeTCA OYEeHb MeIJIEHHO Bo3pacrTawmed oyHkpuer. OTMeTHM, CBA3b

OYHKIHHA Kr(n) c dyHKIHMe#d o6paTHOM K (QYHKIHH AKKepMaHHa /onpemne-—
JeHHe cM. B [3]1 cTp. 72/. Hna V¥r=2s, s=>1 cHpaBeOJHUBO Cje-—

Adywmee COOTHOIIeHHEe:

K _(n) =min{i|A(2,i,s+2)2=n} ,

roe A ecTep QYHKUHMA AKKepMaHHa.

Ina mokasaTenbcTBa yTBepxOeHus (1) mnas o6oH MaTpHULE Tn nocT-

pouM cxeMy S TJIyOHHH Y peaJii3yriyn Tn’ CJIOXHOCTH

L(S)'Sc-n'Kr(n). CTpoxaM MaTpPHUIH Tn CTaAaBUM B COOTBETCTBUE BXO-—

OBl, CcTOo6llaM BHIXOIH CXeMHl S . IlepeHyMepyeM BXOIH H BHXOIOH OT 1

oo n . Cxema S oynmeT cocTtoaTh U3 K nomcxem. O60O3HAUYUM HX uepes
(1) (2) (K)

S , S S -

P e e g

IIoCcTpoeHHe CXeMH S(l):

Pa3o6beM CTPOKH M CTOJIGHHE MaTPHIH Tn COOTBETCTBEHHO Ha k1
n
TpYIIl, B KaXIOH H3 KOTOPHX He 6oJblle 4YeM rE—T CTPOK /cCTOnNB-

nos/. 5

[lepeHyMepyeM T'PYIIH CTPOK M I'PYINE CTOJNBLOB oT 1 1o kl' Bo3b-
THIYyBHHE TYr-2, PeaJu3yomylw MaTpHLY

“e—n
) =1L (kl). / 3aMeTHM, YTO B CHJIy HamMx

MeM MHHHMAJIbHYK CxXeMy S

P . Torma L(S
k ki

O60O3HaAuYeHUuH Tk UMeeT Ty Xe CTPYKTYpY Kak Tn’ TOJIBKO YHCJIO

il
ee CTPOK U CTOJIBLOB pPaBHO kl ./ TlepeHyMepyeM BXOIB M BHXOIE

cxeMs S or 1 mo k,. IllomcTaBuM S
k1 1 kl
30M: BXOOH CXEMH S COOTBETCTBYWHHE CTPOKaM MaTpPHIH Tn i-Ton

B CXeMy S crenywomum obtpa-

IPYNIE COEOWHHM i-THM BXOJIOM CXEMH Sk , @ BHXOIH CXEeMH S COoOT-
s

BEeTCTBYyWIHE CTON6LAM 1i-TOoH TIpyIns COeOUHHMM 1i-TEM BHXOIOM CXe-
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MH S CxeMy /4yacTh CXeMH S/ KOTOPYI TakK IIOJIYyYMM OBO03HaYHM

S(l) (1) (r—2%

kl'
yepes ) =2n + L

. BugHo, uto L(S kl).

i+
TTOCTPOEHHE CXEeMH S(j l):

g(3+1) 6yOeT COCTOATHL H3 kl'kz...kj 4acTen, Kaxpas H3 KOTOPHX

peanu3syeT IMOIMATPHIY H3 3JIEMEHTOB CTOSAmHMX Ha NepecedyeHHaX
CTPOK M CTOJIBIIOB OIHON IPYNNE /HOMEP TPYIINH CTPOK H I'PYIIIH

CTONGLOB TO %e camoe/. TyT MMEWnTCHA B BHOY I'DYINH CTPOK H CTON6-
£31
IJOB MOJIYYEHHHE TIPH NOCTPOEHHH CXeMH S J . Kaxnmas nomMaTpula

nMeeT Ty Xe CTPYKTYPY KaK HCXOIOHas MaTpHla Tn, H pas3Mep

(3+1)

n
7 . Npu nocrpoenun S CTPOKH M CTOJIGLH Kax-—

=x=
I N

IOM INOoIMaTpHIE pa3obbeM Ha kj+l TPYNN, W IOJS KaxXOoH IOoOMaTpH—
1
IE TTOCTYNHM aHaJIOPHYHO MOCTPOEHHK CXEMH S( ). ByOeT BHEIIOJHATH—

CcA:

(I+1) coade Ly

L(s 2 Jj J+1

) = 2n-+kl-k

[lycTe K mnmepBOe YHUCIIO, OJIA KOTOPOI'O BHIIOJIHEHO:

et 52
Kpkyeookp g
Torzma NpH NOCTPOEHHH CXEMH (K 6yneM HMMeThb IeJio C NogMaTpH-—
IIaMM YMCJIO CTPOK M CTOJIGLOB KOTOPHX < 2 . OYEeBHIHO, YTO
(K) el
L(s )skl'kz...kK_1 . Tak nonyyeHHasg cxemMa S= {J S
J=1

peanusyerT Tn ; H CJIOXHOCTBH ee

K-1
L(S)<K*2n+ I k
j=1

(r-2)

(kyd+kyouiky ) (2)

kj—Tme BhHIbUpaem ciyenymoimiuM obtpa3oM:

k. = E__JL___]
i Kr_z(n)
‘ j-1 pas _
K (Corn s CK (nb) Vteiat)
r-2 r-2 :
k. = BRA J=2,¢00,k-1
] [Mg,(n))"’)l

j pas



O4YeBHIOHO, 4YTO kl...kK_l<:n BHITOJIHAETCA ONa ¥ r 2 3.

Mycts r = 3. Torma L(r-z)(kj)SS% k§ , U IO onpenesieHun kj—Tux
: 2
— -] . . =

ansa ¥ j=l,...K-1: kl"'kj—l kj_.n .

NycTs r > 3. Tak: Kak L(Z)

L(r—2)

(n)~n-logn, MOXeM HCIOIb30BaTh, 4YTO

k.)< ek K (k.). Ho omnpeneneHuw K.-THX
g v M o il Rl s

2

Kr—Z(kj)
- . . < .
S DR b L Kr_z(...(Kr_z(n))...)sn .
“ e
Vv
j pas

Tak Kak OYyHKIHU Kr(n) MOHOTOHHO BO3pacTawT. HCMNOIb3ys 3TH He-
paBeHcTBa u3 (2) monyyum L(S) <c-n-K . OueBHOHL, 4YTO K Kr(n).
VrBepxneuue (1) mokasaHoO.
B 3akjowyeHUM 3aMeTHUM, YTO M3 IOKa3aTeJNbCTBa YTBEPXIOSHWUS BHUIHO:
3
L )(Tn),f,—g— n-loglogn ,
L(4)(Tn)§3 n'logﬂl.
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(2] Tarjan T.G.: Complexity of lattice-configurations,
Studia Sci. Math. Hungar. v.10; 1975; pp. 203-211;

(3] Giorgio Ausiello: Algoritmusok és rekurziv fliggvények
bonyolultsagelméletg, Miszaki Konyvkiadd, Budapest, 1984.
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Egy hdromszdgmatrix bonyolultsdga kiildnb6zd mélységli kapuhald-

zatokkal vald realizdlasa esetén

GAL Anna

Osszefoglald

L(r)(Tn) jeldli a T, matrix bonyolultsdgat r-nél nem nagyobb

mélységli kapuhaldzatokkal vald realizalasa esetén. A cikk

r > 3-ra a kovetkezd eredményt bizonyitja:

(r)

L (Tn) i c~n°Kr(n),

ahol ¢ konstans, Kl(n) = ¢n, Kz(n) = logn,

K. (n) = min {i IKr_z(..-(Kr_zJ(n))---) % 2}.

NS

N

i-szer

On the complexity of realization of a triangle-matrice by gate

circuits of different depths

A. GAL

Summary

L(r)(Tn) characterise the comnlexity of matrice Tn’ when

the depht of realisation < r. It is shown that for r-> .3

L(r)(Tn).s cnn‘Kr(n), where ¢ 1is a constant,
K1(n) = 1, Kz(n) = logn,
Kr(n) = min {i | Kr_z( (Kr_z(n))...) < 2

B -
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NOTES ON TRACE LANGUAGES,
PROJECTION AND SYNTHESIZED COMPUTATION SYSTEMS

DANG VAN HUNG

Computer and Automation Institute,
Hungarian Academy of Sciences

ABSTRACT

Connection between trace languages and projective products is
pointed out, the parallel product is defined. The way how it
can be used in analyzing synthesized computation systems is

presented. Relation of the trace languages to safe Petri-nets

is considered, too.

1. INTRODUCTION

Trace languages and projective products are used to represent
behaviour of parallel computation systems. Their relation to
Petri-nets have been studied by A.Mazukiewicz [8] and E.Knuth
[ﬂ . The application of trace languages in representing pro-
jective products is presented in [2].

It is worth pointing out the connection between that concepts,
how the projective products can be used to represent trace
languages. In this paper we shall be concerned with those
problems and their applications in studying behaviour of
systems synthesized from component systems, which has attracted

a great deal of attention to our knowledge.

The next section is devoted to considering the connection
between trace languages and projective products. In the third

section we attempt to apply this connection to study the
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behaviour of synthesized computation systems. The way of veri-

fication of such systems is discussed in the last one.

2. REPRESENTING TRACE LANGUAGES VIA PROJECTIVE PRODUCTS

The main objects concerned to in this section are trace
languages and projective products. For their details we refer

to [1,2,8] . Here we recall only the basic definitions.

Let Z be a finite alphabet. A binary symmetric and irreflexive
relation I over I is said to be an "independency" one. Now
" n

define "~" as the least equivalence relation on I* satisfying

the condition:
a,b ¢ I = w'abW" ~ w’baw"

for all strings %', w"e€ 3* and all symbols a,béX. Traces (with
respect to I) are defined as equivalence classes of the
relation ~. The trace containing the word w (with respect to I)
is denoted by [W]I, and the set of words belonging to trace T
is denoted by { T}.

Suppose that wi,wz,...,%ne I*, The projective product of

[}
W), W,, ..., W (denoted by g;(wi) is the set { wen*|V¥i=1,2,...,m;,
wlw =" i_l}, where w}v denotes the projection of w into the

set of symbols constituting v.

The constructing of the independency relation, with respect to
which the given projective products is a trace, has been
presented in [2]. Now we consider the reverse problem. In doing
so, we need the following concepts, which has been presented
detailly in [6].

Every independency relation is called sir-relation. Let I be
sir-relation, families of subsets ken (I) and ken (I) of I are

defined as follows:
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ken(I)= {A|¥a,b€ A, (a,b)EIVid{¥c¢A,Ia€A, (a,c)¢I},

ken(I)= {A|¥a,bEA, (a,b)¢I&¥c¢A,3ac€A, (a,c)EI} ,
where id denotes identify relation.

ken(I), ken(I) are coverings of Z. Reversely, from any covering

Q of I, we construct a sir-relation sir(d) as the following:
sir (@)= {(a,b) |a#b&¥AEDN, a¢A or b¢A}.

Corollary 1:

For every coveringugfof )
a/ ¥BEQ, 3 A€ ken(sir (1)) such that BEA,
b/ sir ()= sir(ken(sir (d))).

Now, let T be a trace language over I under I, T=[IJI (L 1s a
word—language),él be any covering of I such that sir (9 =I,
3;{Al, Doy weny An}. Denote Py hi’ i=1,2,...,n the projections

=

from ¥ to Ai, 1=1,2; 60608

h.(a) = if aEAi then a else e,

where e is the empty word. For every i=1,n, hi can be extended

to a homomorphism from IZ* to A; by the usual way.

Theo§em l: ¥tET, there exist uniquely WirWore oo Wy wiEAg,
i=l;Z;:s+3;n such that

n
t= @w .
i=1 1

Proof: Take wét and put wiEhi(w), i=1,2,...,n. Liet w ~w. By

+ definition of relation ~, there exist w(l), w(z),...,w(m) such
that w'is w w ™o o7 and 21,2, .. 001
B s R o TN |

: Lo .
w(J+l)= wl(J)ba wz(J), (a,b)el .
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We show by induction on j that:

T TR R By Ge'3%y
Because w(l)= w, the case of j=1 is trivial. If (a,b)€I=sir (4)
then ¥i=l,2,. e pDy a¢Ai or b¢Ai. Hence hi(ab)=hi(ba) and
hi(w(J))= hi(w(3+l))'

(j)) = h(w). So hi(w’)= hi(w),

¥i =1,2,...,n, ¥ w'~w . This implies that Wir Woye.., W oare

The inductive hypothese gives hi(w

defined and by the definition of projective product,

w'e ® W
i=1

n
We have shown that ¥t, wwet, t & ¥ hy (w) .
i=1
Now, by induction on the length |w| of w, we show that
n
i@l h, (WSt ¥teT , t = [w] .

n
When |w|=1, it is obvious since t and C)]qi(w) contains
i=1

exactly one element.

n
Suppoge that (:)hi(w)9 t, ¥w,|w|< k, k>1. Let w" = wa and
w’' € ()IH}W" %=l Then

i=1

h. (w) if aé¢A,
b (W8] =4 T if
hi: (w)ya 3if a€ed. .
i i

Because a has an occurence in w’, w' can be written in the form

14

Wi = Yl a Yo #

where Yo does not contain an occurence of letters in Ai

containing a by sir (d)=I. Hence:
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h, (y.v,), aéa,

h, (w')=h, (y,ay,)= L 8- la
4 LTS Y tvoal o men
5 ek 4 i

Of course, hi(yly2)= hi(w),hi(yla)= hl(w)a . Therefore
h, (y,v,)= h; (w), ¥i=1,2,...,n and since that, ylyzeﬂi]l by

inductive hypotheses. For every b having an occurence in Yor

(a,b)e€I=sir (d). This implies that Y 3Y, ~ Y,Y,3 ~ wa.

To complete the proof of theorem 1, we show that the represen-
n

tation t=qc%_wi is unique. But this fact is obvious by
b f—

definition of projective product.

Combining theorem 1 and theorem 5 (in [2]) gives that a set of
words in I* is a trace if and only if it is a projective

product of some words.

For the given independency relation I, we prefer to use this
representation in the case of A=ken(I) and for the given trace
language we prefer to consider the case when I is the smallest

relation, with respect to which T is trace language.

From the representation of traces, we can define the parallel
concatenation of trace languages, which is useful for re-
searching the concurrency of combination of parallel compu-

tation systems.

Let 2
I

1’22""’2m be alphabets (not necessarily disjoint),
l,12,...,Im be sir-relations on 21,22,...,Zm respectively.

Suppose that

ken(Ii)= {An.
i-1

Let tl’tZ""’tm be traces on Zl""'zm with respect to

Il'IZ""'Im respectively. By theorem 1, there exist
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Wy rWoreee Wy such that:

n

N
. * 5
wj, A=1,2 6 6w pI0, wjeAj, j=l,2,...,nm .

n. +1

% S

(&
Il

y 5

It follows from theorem 1 that if

n n
m m
® w.#p, t=

3=1 J j=1

is a trace over = I, UZ U...UZm (with respect to sir(

1Yz, ! ken(I,)).

ncs

12

Definition 1: The trace t defined as above is called parallel

concatenation of tl’t2""’tm and is denoted by

tlxt2>(...xtn

m
The following preposition shows the relation of sir( U ken(Ii))

to Il’IZ""’Im (we restrict our attention to the ca%glm=2).

Preposition l: The parallel concatenation t of two traces t

i}
and t2 is a trace on ElUE2 with respect to
o 2
R = ((IlUIZ)\(Zlﬂzz) U(IfﬂIz)U((Zi\EZ)X(Ez\Zl)U
U((Zz\zl)x(zl\zz)).

Proof:

It is because of sir(ken(Il)Uken(I2)= R. Now, with

21,22,...,Em, Il’IZ""'I as above, let Tl'TZ""’Tm be trace

1,22,..., 2,...,Im and Ll’L2""’Lm

be languages on El""'zm respectively.

m

languages on % Em under Il'I

1’T2""’Tm and
l,L2,...,Lm(denoted by Tlezx...me
and L1C>L2C>"‘C>Lm respectively) are defined as follows:

Definition 2: The parallel concatenation of T

the projective product of L
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T xT,x...xT = {t|t=t xt,x...xt , t,€T,, i=I1,m},

12 A %2
LlCDLZCD...GDLm= U{wlCDWZC)...Cjwm|wf£Li, j=T 1},

It follows from theorem 1. that &2 T=[L]I is trace language
on £ under I and ken(I)= {Al,Az,...,An} then

n
(TS ® h,(@. (%)
i=1

The trace language equating (*) plays an important role in
studying systems decomposable into sequential components. So we

refer to "decomposable condition" as:
n
{T} = () h, (L)
. a
i=1

This condition shall be concerned to in the next sections.

3. SYNTHESIZED COMPUTATION SYSTEMS AND THEIR BEHAVIOUR

In this section, computation systems take the general form

presented in [3].

Definition 3: A computation system consists of:

(i) a set D (states),

(ii) an element x of D (the initial state),

(iii) a finite set I of operations,

(iv) a function "-" from I to the set of partial functions
from D to D. The function — is extended to £* in the
usual way. We sometimes write S=(D,Z, x) instead of
S= (DB, %y T«

The set CS of all computation sequences (from x) and the

reachability set R, of reachable states of computation system S

S
are defined as
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Cy ={a I*|a(®) is defined},
R, =t yED |Ja€D*, a(x%)=y}.

By a synthesized computation system, we think of computation
one comming from these being concurrently active with some
synchronization conditions. We shall confine our attention to
the case when synchronization conditions come from the fact
that some actions must take place at the same time. By
constructing homomorphisms, we shall reduce that case to the
one when the "contemporary" actions are common ones of some
component systems. The following definition is consistent in
that case:

Definition 4: Let Si=(Di’zi’xi’-l)' i=1,2,...,n be compu-
tation systems. The synthesized computation system of
51'52""'Sn (denoted by SIXS2X...xSn) is the following:
S = (DIEI r_)

where

D = DlXDZX...XDn v

z = 81U22X...xzn ¥

X. = (xl,x2,...,xn), and

:Z2 — (D — D)

is defined as follows:

vaczo, a(yl,yz,...,yn) = (zl,zz,...,zn) TEf:
‘ z, = a‘(y,), act
i 4 S i
z &=
i 7 ¥

in the other cases.
Now let hi’ i=l,2,...,n be projection from ¥ into Ei,
i=1,2,...,n. When a(x)=y we write X Jiﬁ-y for convenience.

The connection between the behaviour of S and the behaviour of

81'82""’Sn is showed by the following theorem:
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Theorem 2:

Proof:

weCy (ICg ®...®Cq <= ¥i=1,2,...,n,
i 2 n

hi(w)ECSi<==>Vi=l,2,...,n,

ﬂyiEDi such that hi(w)
i WECS

by the definition of "-" in S.

Remark: We sometimes deal with the set of computation
of a computation system, which lead the system té the
the given set of states.
Denoting

Cg (>Q)= {acz*| ~2 v, ye€Q D}

sequences

state in

we have also: (by modifying consistently the proof of theorem

4):
Cg (>Q1 xQyx...xQ )= Csl(>Ql)®...®CSn(>Qn),

where

Qi§ Di’ 1=1020; sioie M

Now we consider computation systems realized by Petri-nets [3].

We shall combine Petri-nets with one to another in the way

presented in [5].
A Petri-net P = (H,Z,A,xX) consists of:

(1) a finite set II of places,
(ii) a finite set ¥ of transitions,
(iii) an incidence function A:IIxzfUZxII — {O,1},

(iv) an initial marking x:I— N .
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A function y:II — N is called a marking. When H={pl,p2,...,pk},
we sometimes regard a marking y as an n-dimensional vector
<Y (Py) iy (Py)seee y(py)>.

Let DP be a set of markings of P. Fo6r each a €% a partial
function a: D, — D, is defined as follows:

Let y€D,. Then a(y) is defined if and only if y (p;) 34 (py ,a)
for all_piEH. Suppose that a(y) is defined, then

aly) (p;)=vy(p;) - Alp;,a) + Ala,py), pel.
The computation system SP=(2,DP,x) is said to be realized by P.

The Petri-net P is said to be safe if Rs {051 P {01 F%e o X021}

When P is a safe Petri-net, each markinggy of RS can be
written as a subset M of IT, E

(namely, y(pi)=l iff prM).

Definition 4: Let P be a safe Petri-net. A relation I on I is

said to be an independency relation generated by P iff:

¥a,bel, (a,b)éI =3 marking .MERS
P

such that both a and b are enabled at M and A(p,a). A(p,b)= O,

¥p€ell (a is called to be enabled at M if ¥pell,
(A(p,a)=l) = y(p)>1l).

Definition 5: Trace language T is said to be realized by safe

Petri-net P if T is a trace language on I under the

independency relation generated by P and {T}=CS "
P

= X i = | -
Let 31 (Hi,Zi,Ai, i), i=1,2 be Petri-nets, Sl and 52 be the

computation systems realized by El and P2 respectively.
Assuming Hl={p2,...pk}, H2={pk+l,...,pm}, HlﬂH2=®. We consider

the Petri-net Ple2 received from P, and P, in the following

§ B8 By
way [see 5]:



B = E XP = (HIZIAIX)I

where

A; (py ,a)if an1 '

1
M= A Ull.; 3=0.U8., Al(p; &)=
1772 1772 L o otherwise

for i=1,2, ..,k and

Asdpaya) it a€B4p
2
0 otherwise
for i=k+1,k+2; My
& = (X_l ,X.2 ) o

Let S be the computation system realized by P.

Theorem 3:

Proof: Each marking of P can bé written as
k -k

By definition of A, ¥i=1,2,...,k,

y(p;)>A(p, ,a)¥aEr = y,(pP;) 244 (pyra)¥akz,,

Vi=kal k+t2, ooy

y(pi)iA(pi,a)Va€E==»y2(pi)iA2(pi,a)Va622.

That is, a is enabled in marking y of P if and only if a is

enabled in yj when aezj, j=1,2. Furthermore

Wi & 1Pk
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v, (p;)=A, (p,,a)+A, (a,p,)if a€z,.,
y(pi)— A(pl,a)+ A(a’pl)= 1 7 il AL ili ak i

L S A R

yz(pi)—Az(pi,a)+A2(a,pi)if a€r,,
Y(pl)" A(pira)+ A(a,Pi)=

2 1f a¢22.

Since that y £L>y"==>yj £L>y3 when aEZj(j=l,2) and yj=y§

when aEEj,(j=l,2). That means, S=Sl><S2

Corollary 2: Tf Pl and P2 are safe nets then P is a safe one.

. : =
Proof: Since RS__RSl X RSz s

Theorem 4: If Tl and T2 are trace languages realized by safe

Petri-nets then so is TlXTz.

Proof: Let safe Petri-nets Pl’PZ be realisations of Tl’T2
respectively. By theorem 3 and corollary 2, Ple2 is safe

Petri-net and CS = {Tl}X{Tz}; Of course, {Tl}X{T2}= {Tlez}.

Ve=t,xt T, xT,, Vwet => D{}IE:t,

where I is the independency relation generated by PlXPz. This

is followed from the fact that Ifisir(ken(Il)Uken(Iz)), where

Il and 12 are the independency relations generated by Pl and

P2 respectively.

For every w'et, w'e[w] there exist

sir(ken(Il)UEEH(Iz))’

1 2

1 2
W iy W pite @ g W w.=w, w. =w’', w.=w.,abw., w =w. baw.
AR R 4 & 7 Wy SR A0 wlba g

. 5 b i
(b,a)€sir (ken(I;)Uken(I,)), w=we[w] . If w,e[w] , since

nl
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such that both a
175y
and b are enabled at m. On the other hand, from definition

wi,wi+rE{Tl}x{T2}, there exists mERSP

of Pl><P2 and preposition 1 it follows that if
(a,b)esir(ken(Il)Uken(Iz)) then ¥p€l,A(p,a)-A(p,b)= O. This
implies that, in our case, (a,b)eéI which means wi+l€[w]I . The
inductive principle gives w’é[ﬁ]l and this completes the proof

of theorem 4.

This theorem states the closure property of the family of trace
languages realized by safe Petri-nets under parallel

concatenation.

Corollary 3: A trace language T=[L]I satisfying the decom-
posable condition (in the 2 section) is realized bv safe Petri-net.

if for every i=l,2, «ss Dy hi(L) is realized by safe Petri-net.

(The analogous and stronger result has been stated by E.Knuth
in [2].)

Now we conclude this section by a small remark. Namely,
synthesized computation systems defined in this paper, to our
knowledge, are general enough to research the synchronization
of asynchronised processes. In the definition of it, if
21’22""’zn—l are disjoint pairwise and Zn=ElU22U...UZn_l= z
then the systems S can be considered as the synchronization of

asynchronised systems S S2""’Sn—l by Sn' When Sn is realized

'
by Petri-net, S turns té a multiprocessor system defined and
studied detailly by P.H.Starke [7]. When S_ is a unshared
producer-consumer system [3], S turns to a system synchronized
by P-V operations. The same method used in studying those

systems can be used to study our system also.
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4., ANALYSING SYNTHESIZED SYSTEMS VIA THEIR COMPONENTS

Many properties of synthesized'systems can be received through
the properties of their components. Unfortunately, those
properties hawe been base& on the regularity and it is not very
useful to analyze synthesized systems by analyzing their com-

ponents as the regularity is preserved by synthesizing.

As for us, we think that the most useful thing of this way is
in verifying systems and proving the correctness of translating

from one to another.

This section is devoted to the application of the above concept
in the verification of synthesized systems. We shall take the

method presented in [4].

Let

S = SIXSZX...XSn 5

By [4], our task is construct an assertion system for S.

Assume that ASl’ASZ""’

Sl’SZ""’Sn respectively, Asi=(vi'Ei'Mi)’ 1i=1,2, c..;. We

ASn are assertion systems for

construct AS for S as follows:

AS = (V,E,M),
where
vV = lev2x...xvn,
B = {((vl,vz,...,vn),t,(vi,vé,...,vé))|
0 tEEi, (Vi’t,vi)eEi' 3 t¢Ei, Vi=V£},
M = MlxMZX"'X Mn: VlXV2><...><Vn —€>2D,
M(vl,vz,...,vn)= Ml(vl)xMz(vz)X...an(vn)9

é:DlxDZX...an .
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Preposition 2: If AS, are correct assertion systems for Sy
complete for Vi',i= 1,2,...,n than AS is a correct assection

LoV Loxis anie XV
n

system for S and complete for V'=Vl 5

Proof: Denote
Xt = {y]Pxex, x & v} for any X<D.
We have
7 ’ ’
V((vl,vz,...,vn),t,(vl,v ,...,vn))E:E
M(VysVyreneesV ))= My (VXM (Vo) .o oxM (Vv )F @
by Mi(vi) F @ Wi=1,2;v.30.
If t¢z. then v/=v., and M. (v,)= M, (v!). Since that
- s R 3 ¥ s |
M((v,,v v.)) 59 = (Q,0! Q')
i e LR i B e

where Qi = Qi if tezi and Qi = Mi(vi) in the otherwise. It

means that AS is correct for S.

To show that AS is.complete for V'=VixVéX...xVé , we should note

that ¥ v'eV’', ¥%,96D tel, 4f x = y, X€M(v') then X5 e Yy in
Si when tezi and Xi=Y5 when t¢zi. Furthermore ¥i=1,2,...,n,
xiEMi(Vi)' Since ¥i=1,2,...,0, ASi is complete for Vi, there
exist vievi, (Vi’t’vi)EEi for tezi. Hence, putting

- e P : = : -
v=8,,8,,...,8  , 8;=v] if t¢r, and 6,=v, if te€I., we
have (v’,t,V)EE.
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5. CONCLUSION

We have shown certain connections between trace languages and
projective products. Mathematically, they are different from
each to other, but both are intr- iuced to for the purpose of
studying the behaviour of concurrent computation systems,

especially in representing their concurrency.
The approachpresented in this paper can be used in studying

concrete systems (such as distributed systems, multiprocessor

systems) and the concurrency measure of synthesized systems.
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Megyjegyzések a nyomnyelvekrdl, projekcids és szintetizalt

szamitasi rendszerekrdl

DANG VAN HUNG

Osszefoglald

A szerzd definidlja a parhuzamos szorzat fogalmat és ramutat
bizonyos Osszefiiggésekre a nyom-nyelvek és a projektiv-szorza-
tok kdzobtt. Megmutatja, hogyan lehet ezeket felhasznalni a
szintetizalt szamitasi rendszerek elemzéséhez. A biztonsagos
Petri-hdaldk és noym-nyelvek egymashoz vald viszonyat is meg-

vizsgalja.

3aMeuyaHHda O dA3HKax-cienmax, INIPOEeKIHUOHHHX M CHHTEeTH3UPOBAHHEIX

BHUYHCJIHTEJIbHRIX CHCTEeMaX

JJaHr Bar XyHT
PeswMe

BédnHTCH IIOHATHE IIapaJlJIeJIBHOT'O IIPpOOYKTAa H IIOKAa3HBaeTCsa CBA3b

MeXnOy sA3HKaMH-CJIelaMHM U [IPOEeKTUBHEMH NpOoOyKTaMH. [loKka3wBaeTCcs
Kak MOT'YT HCIIOJIb30OBATbCHA 3TH IIOHATHA IJIA 4aHalJIn3a CHHTEeTH3HUPO-—
BaHHEIX BHYHCJIMTEJIbBHEHX CHCTeM. PaccMaTpuUBaeTCsa TaKXe CBA3b

MexIny 6e30racHBEMH ceTaMU [leTpH U sA3HKaAMH-CJIeaMH.
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A DATA STRUCTURE FOR QUADTREE CODES
AND APPLICATION

PHAM NGOC KHOI

Institute of Technical Cybernetics
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Czechoslovakia

ABSTRACT

This paper describes a data structure for Quadtree code
representation and the operators defined on it. Algorithms
are presented for finding adjancent blocks, calculating
geometric properties of region: area, perimeter and centroid.
The efficiency of quadtree representation is evaluated in re-

lation to Run length code and Chain code representation.

1. INTRODUCTION

For image data compression, a lot of representation algo-
rithms is based on the various codings for a region: Run
length codes, Chain codes, Quadtrees... [1,11]. Especially the
tree representation which offers a number of advantages has
attracted much attention in recent years [2-1L1. A collection
of algorithms has been studied for converting between
guadtrees and other representations and measuring geometric
features of regions represented by quadtrees [L-7, 13-1L47,

In this paper, we shall be concerned with a data structure for
quadtrees as a tool for calculatino region features of image.
The epphasis is on alcorithmic procedures, which are effi-
cient especially from implementation point of view. The last
section deals with the comparison of efficiency of image

coding based on Quadtrees, Run lenagth codes and Chain codes.
In the following by a binary image, we always mean a

n

2

respectively to the color of pixel: black or white. The set of

w array, each element of which has value O or 1,

=1 5105 =
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1's pixels in a connected component of array is called a

region.

2. DATA STRUCTURE FOR OUADTREES

Quadtree codes are an recent region representation method.
It is based on successive subdivision of the array into
gquadrants until we obtain blocks possible simple pixel that
are entierly contained in the region or-'entierly disjoint from
it. Note that if the image is an 24 by 5 array of pixels,

then after the k-th subdivision, each gquadrant has Zn_k by

2n_k size. For example the region in Fig. 1a corresponds to
raffinement process as shown in Fig. 1lb. This process can be
represented by a tree of degree 4 or a guadtree in which the
entier array is a root node, the four sons of a node are its
quadrants and the leaf nodes correspond to 1's or O's pixel
blocks and have their color BLACK or WHITE. The no-leaf nodes
correspond to those blocks for which the further subdivisién
is still continued and have their color GRAY. The gquadtree
representation for Fig, 1b is shown in Fig. Jlc. Note that
here the blocks must have standard size and positions. Since
the array was assumed to be size of i by 2n, the tree height
is at most n, This region representation method was proposed

by Klinger [2].
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The aguadtree can be defined as a tree whose nodes are
either leaves or have four sons. A node can be gray, white or
black and is, in general, stored as a record with six fields,
five of which are pointers to the NW, NE, SW and SE quadrants
and the sixth is a colors identifier. In the following, we
propose a data structure advantageous to calculate some region

features of image.

Assume that a square block has its four cuadrants indexed

as follows:

correspondently to guadrants NW, SE, SW, SE. Each guadrant
in image is associated to a node in auadtree, which has four
sons enumered from left to right in the order 0,1,2,3. We

present each node - of quadtree a integer pair (,k), where:

= L 1is level of node, i.e. distance from the root to the

node, 0 < L < n

- K 1is defined by

L-1 .
¥ = ¥ m.2* 0 <n. < 3
e 7z - 7 -
=0
where (nL_],... n],no) is the path from the root to tthe
node P.

We denote

K = n, sl

L= 1o
B o= (&, K
Level(P) = L
Code (P) = K .

We can use the following recurrent formula to determine

the pair (L,K) for all nodes of a quadtree:
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- The root has presentation (0,0)
- If a node P 1is represented by (L,K) then its four

sons have the representations

i * 1y 2K + &) 0 £ iv< 3
This data structure was introduced by L.P. Jones and S. Iyengan
(12] and is called virtual quadtree.
On this data structure we define the following operators:
1- "2's borrow" substraction: Sub?

Sub2 B = (L', K%Y

where
LY = 5

~

r = 3 ! . I
K" = sign Myp_qg sse NN

n! are recursively computed as follows
L
2

(n .+4 = b.)mod 4
7 7

O df s b
T e %

b;s1 ) 2 otherwise b A= Gy lyn e BNE
. . 5 by _1 =0
sign &=
b i bL—Z = 2

Por example: Bubif3,.371) = (8,137)

Sub9(5,111) = {5,~5539
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2~ Clockwise rotation: Rot+

We first define operator Rot on the finite set 10,702,331

Rot?(0) = 1
Rot (1) = 3
Rot?(2) = 0
Rot(3) = 2

Now , Rot” is naturally extended on the infinite set
{0,1,2,3}"
Rot? (za) = Rot® (x )Rot? (a)

*
where =z € {0,1,2,3} , a € {0,1,2,3}
Once again, Rot+ is extended on the set of quadtree nodes

Rot? (L,K) = (L,Rot*(k))

Rot” (P) gives the representation of the same neode P

after 90°-clockwise rotation of the image.

3- Counterclockwise rotation: Rot

Operator Rot  is defined in a similar manner to Rot,

but it manipulates on the set {0,1,2,3} as follows

Rot (0) 2

Rot™ 1) = 0

Ro# (2) = §
Hot 13) = 1 .
= +. -1
In the other word, Rot = (Rot ) s

Rot (P) gives the representation of the same node P after

90°-counterclockwise rotation of image.
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4~ Rounding: Rnd

Hnd(P) = (L',K")

where L4 = L = 1

K!' = n

App(P,7) determines i-th son of P in Quadtree.

3; CALCULATING SOME PROPERTIES OF REGION

3.1. ADJANCENCY

In connection with the adjancency of blocks, we have the
theorem [133]:
Theorem: Given a variable side in the set {Northern, Western,
Estern, Southern}, which is encoded respectively by {0,1,2,3}.
Let P be a quadrant of image. The quadrant ¢ is determined
by

@ = Rot~ 2%9€ (g,pa(rot™ S92 (p)))

Thus if sign(Code(Sub2(Rot+Side(P)))) > 0 then @ is the
quadrant which is adjancent to P in the side direction and
which has same size as P.
Bas%ng on the theorem, we can jave the procedure finding all
quadtree leaves adjancent to a given leaf P in a given

direction side
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procedure JOINBLOCK (P,side,JOIN)
/¥ input P: leaf of cuadtree
gide: direction
output JOIN : set of all leaves adjancent to P in
direction side */
node P,Q
integer side
set of node JOIN
aguadtree QTREE
begin JOIN := @ ;
Q := Rot-Side(SubZ(Rot+Side
SEARCH (Q,QTREE,side,JOIN)
end / joinblock /

(BY)i)s

procedure SEARCH (Q,QTREE,side ,JOIN)
node Q
integer side
set of node JOIN
quadtree QTREE
begin if Code(Q) < O then EXIT /* not adjancent block ¥/
else if Q not in QTREE then
begin SEARCH (Rnd(Q) ,QTREE,side,JOIN1);
JOIN := JOIN+JOIN1
end
else if Color(Q) # GRAY then JOIN := Q

else
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begin

+side

SEARCH (App (Q, Rot (2)) ,QTREE,side ,JOIN1) ;

JOIN := JOIN + JOINIT;

side

SEARCH (App (Q,Rot "’ (3)) ,QTREE,side,JOIN1) ;

JOIN := JOIN + JOINI]
end

end /¥ search ¥/

This algorithm can be efficiently used in some problems
such as tracing the boundary of region, calculatihg the

perimeter of regioen: ..

3.2. AREA AND PERIMETER OF REGION

v

in order to calculate the perimeter of region, we visit,
say, in postorder all black leaves of the quadtree. For each
of them, we find all white leaves adijacent to it and the
boundary segments. The sum of boundary segments yields the
perimeter of region. The area of region is simply sum of area

of all black leaves.

procedure GEOM(QTREE,n ,PERI,AREA)
/* image is of size 24n x 2tn ¥/
node P,0Q
quadtree QTREE
integer PERI,AREA
begin P = (0,0)

/* find a black or white block in upper-left

corner ¥/

while Color(P) = GRAY do P := App(P,0);
PERI := O; AREA := O
repeat /¥ cycle calculating perimeter and arca */
while P not in QTREE do P := Rnd(P)

while Color(P) = GRAY do P := App(P,0)
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1f Color(P) = BLACK do

beogin
AREA := AREA+(n-Level(P))+2;
for 1 2= 0C to 3 do
begin
JOINBLOCK (P,i,JOIN) ;
if JOIN = @ then PERI := PERI+ (n-Level(P))

else for all Q@ in JOIN do
.if Color(Q) = WHITE then
PERI := PERI+min(n-Level(P),
n-Level (Q))
end -t
end

P := (Level(P),Code(P)+1);
until Code(P) = 44 (n-Level(P))

end /* geom */

It is easy to see that the average execution time of the
algerithm is proportional to the number of leaf nodes in
quadtree,

3.3. CENTROID

The centroid of a binary image is a point (z,y) such
that 2% 1is the average value of the z-coordinates of all
the black points of the image and y is the average of the
y~-coordinates of the black points. In other words, if
there are m black points in the image (xl,yl),...(xm,ym),
the centroid is

(Z,y) = (Zz,/m, Ly ;/m)

procedure CENTROID (QTREE,n,XCENT,YCENT)

/* calculate the centroid of quadtree for image of size
24n x 24n, XCENT, YCENT are the centroid value */



node P

integer n
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aquadtree QTREE
begin
P := (0,0);
XCORD := O; YCORD := O3
MOMENT (P ,n,XCORD,YCORD,X,Y,MASS) ;
if MASS = O then begin
XCENT := O;
YCENT := O
end
else begin
XCENT := X/MASS;
YCENT := Y/MASS
and /* centroid ¥*/

procedure MOMENT (P,n,XCORD,YCORD,X,Y,MASS)

/¥ calculate the moments of order O and 1 for block P

XCORD, YCORD are are coordinates of upper-left corner of P

X 1is the moment of order 1 m10
Y 1is the moment of order 1 mo1
MASS 1is the moment of order O Moo */

node P

integer n,XCORD,YCORD,X,Y,MASS

begin
X &= O3 Y := 0; MASS := 0O;
if Color P = GRAY then for i 3= 0 to 3 do
begin

MOMENT (App (P,1i) ,n,XCORD+24 (n-Level(P)-1)*i mod 2,
YCORD+24 (n-Level(P)-=1)*i div 2,X1,Y1,M1);

X := X+X1; Y := Y+Y1; MASS := MASS+M]

end

else 1if Color(P) = BLACK then

begin
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X := (2¥XCORD+2+(n-Level(P))~1)*24 (2% (n-Level(P))-1);

Y := (2*YCORD+2+4 (n=-Level(P))—-1)*24 (2% (n-Level(P))-1);
MASS := 24 (2% (n-Level(P)))
end

end /¥* moment ¥/

It is to see, once again, that in the procedure each black
leaf in the tree is visited once and only one. The other

moments can be calculated in an analogous way.

4, EFFICIENCY OF QUADTREE REPRESENTATION

This section is devoted to the discussion of the efficiency
of cuadtree representation in relation to the other codings.
Basing on cuadtree codes we ogive the evaluations of storage
space for run length codes, “‘chain codes. Assume that an image
of size 2™x2" is represented by quadtree  with @ nodes.
Each node £ of has 3 attributes: Level(P), Code(P) and

Color(P), which need respectively log bits, 2n bits and

n
8
2 bits to store them in memory space., Thus, the amount of

storage needed for @ is

Q(2+2n+loggnj

If 2n bits for Ceode(P) have the representation

Code(P) = YTy o0 Ug¥gs gy Yy = 0,1

then the coordinates (x,y) of upper-left corner of P is

determined as follows [8,103]

Bl w é . 2n-LeveZ(P)+ie1

n=Level (P)+7-=1
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and the size of P is

4 (P) = 2n~LeveZ(P)

4.1. EFFICIENCY OF QUADTREE REPRESENTATION IN RELATION
TO RUN LENGTH CODE

Let B < @ be the set of black levels of quadtree. We
have the integer set BY defined as follows:

BY = {y(P) | Pe B} u {y(P) + s(P) + 1 |P € B}.

With the equivalence relation "=" in the usual sense on
BY, we have the set BY = BY/_. Denote by & the cardinal-
ity of BY. Each 'gj € BY determines the image row where

may be arise a new run cenfiguration (Fig. 2.)

In order to determine the number of runs, for each
ngEEY, the associated set Hj<:B and the relation
Yj c Hj X Hf are defined as follows

By = {Pp € B]ngEy(P),y(P)+s(P)]}
Pij Py o= alB,J) & x(P1)+s(P1)+ 1 |
Pty €&,
or x(P,) = x(P J)#a(P )+ 1 ¢
m m

Next, if let y* be the reflexivi, transizive closure of Yj
on Hj’ then we have the set Hj = Hj/y , each element
of which contains the blocks successivelly adjacent in
horizontal direction.

The total number of runs in run length representation

will be

= = n
Ype1 ~ :

Ir Mo

vn o *
(yj+]—gj)card A where

J=1
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Thus, the amount of run length code storage needed for image

is %

2(n+1) b}

= = *
4 (yj+1 " yj)card Hj bits

z

Now we can conclude that given a region represented by
quadtree with ¢ nodes, run length code will be used effi-~

ciently when

bo_ 5 « Q(2+2n+log n)
jiz(yj+1 - yj)card Hj < :

2(n+1)

4.2. EFFICIENCY OF QUADTREE CODE REPRESENTATION IN RELATION
TO CHAIN CODE

For each B in the set of black leaves B , by the
procedure JOINBLOCK we can determine the set

Ng = {Pp € B| P is adjancent to P}

The boundary part, which belongs to B is calculated by

4(n-Level(BJ) < L min n<Level(B),n-Lepel(P))
PENB

Therefore the number of directional vectors in chain

representation is

4 I n<=Level(B) - I T min(n<Level(B), n<Level(P))

BEB BeB PEN 5

We obtain the formula.calculating the amount of chain code

storage needed

3(4 I n~Level(B)) =- L 0% min(n-Level(B), n—Level(P)))
BEB BEB PeN,
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At this point, we can arrive to the conclusion that
given a region represented by quadtree, chain code will be

used efficiently when

4 I  on-Level(B) = ¥ I min(n=Level(B), n<Level(P)) <
BEB BEB‘PENB
\Q(2+2nilog2n)
< :
3

5. CONCLUSION

For describing quadtree representation of region, a data
structure has been presented with the operators defined on
it. This operators can be easily implemented in usual
programming languages. Based on the data structure, the
algorithms have been described for finding adjancent blocks,
calculating geometric features of region: area; perimeter
and centroid. These algorithms are useful still in the case
where a region may have holes, Basing on the data structure,
we can study the algorithms of converting quadtree into chain
codes and run length codes [13,14]. The last section deals
with the analysis of representation efficiency of run length
codes and chain codes in relation to a given quadtree. The
explicite formulas have been presented for evaluating storages
space memory needed for representations. By simple procedures,

the calculation of these formulas can be done efficiently.
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A "négyzetes fa" /quadtree/ kédok adatstrukturdja alkalmazasokkal

PHAM NGOC KHOI

Osszefoqladld

A szerzT a "négyzetes fa"-kdédok reprezentdcidja szamara bevezet
egy adatstrukturat és operatorokat definidl rajta. Algoritmu-
sokat ad meg a kiegészitd blokkok megkeresésére, valamint a
tartomanyok geometriai jellemzdi /pl. terililet, keriilet, suly-
pont/ meghatarozasara.

Osszehasonlitva a "futds-hosszusig" és "lanc" kéd reprezentéa-

cidkkal, értékeli a "négyzetes fa" reprezentdcid hatékonysagat.

CTpyKTypa OaHHHX IJif "KBagpaTHYECKOIro nepeBa"-KOHOB C NpHMEHe-

HHEM
[Ixam Hron Kxou
PeswMme

B cTaThe OINHCHBAETCs CTPYKTypa IaHHHX IJIA NpencTaBJIEHHA KOIOOB
Tuna "kBaOpaTHYECKHX IepeBbeB" Hu onpemesleHH ONnepaTopH Ha 3TOWH
CTpYKType. JlanTCsA aJCOPHUTMH IJIST HaXOXOEHHUA HNONOJIHHTEJIbHHX 6J10-—
KOB M IUIS BHYUCJIEHHS IeOMeTpHYEeCKHX CBONCTB /njiomansb, NMEepHUMETp,

neHTpoun/ o6racTei.

lpencTaBleHue TuNa "KBaZpaTHYECKHX OepeBbeB" CpaBHHBAeTCA C

npelcTaBleHMeM Tuna "pnuHa npo6era" u "uenn".
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AN EFFICIENT SYNTHESIS OF IMAGE MATCHING ALGORITHMS

HOANG KIEM, PHAM NGOC KHOI

Institute of Informatics and Cybernetics

Hanoi-Vietnam

ABSTRACT

In order to improve the efficienty of image matching, a lot
of matching schemes have been proposed, based on various ap-
proaches [1-51, Here we discuss the efficiency of the synthesis
of image matching algorithms using hierarchical schemes and
those that use the combination of coase-fine matching algorithms.
The method of extracting the features for regions in an image
and perfomance of scene matching methods are considered.

This paper consists of the following parts:

- On the synthesis of image matching algorithms

- k=-centroid feature extraction for image matching

- Combination of image transformation and normalization

- Synthesis scheme for image matching programs
1. ON THE SYNTHESIS OF IMAGE MATCHING ALGORITHMS

It is well known that the problem of scene matching is gi-
ven a template of a scene, determine the location of this tem-
plate in another scene. The method used to solve this problem,
in its simplest form, is called template matching with the ba-
sic correlator, the statistical correlator. Later, some modifi-
cations using invariant moments for scene matching have been
developed to solve the general problem involving geometrical
and sensor variation [L-517,

= 123 =
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Since a template of size MxM can be shifted into (N-M+1)2
possible positions in an image of size NxN, the number of coore-
lations can be extremely large. The tendency in the current re-
search is toward the use of hierarchical techniques for de-
creasing the number of search position. In particular, coarse-
fine techniques are logarithmically efficient and reduce the
number of search positions to K.Zog(N-M+1)2f'where K is a
constant. [1,2,313.

However, at level of search, the number of computations
needed to obtain the features for scene matching for example,
invariant moment can be still large. Later, a synthesis using

hierarchical technique and detections is proposed.
1.1 Hierarchical schemes for image matching

- At first, a structured set of pictures at different reso-
lution is defined. The level K scene is reduced to a level (K-1)

scene with the agglomerative rule, for example:

e e b) =6 ; . ; . s
FK_l(t,J) = Z{ FK(21,23) + FK(21,2J+1) + FK(21+1,23) +

+ FK(2i+1,2j+1)}

where, FK(i,j) - the gray scal of pixel (Z,j) at level K. Note
that, at the level K, number of possible test locations is
E(N-M+1)/(2K+1)32 and at level k-1, only the locations selected
‘in level X needed to be tested.

- A matching rule to guide the search from level K-1 to le-
vel K must also be defined. In the scene matching with invariant
moments, this rule is the moment correlation which is costly in
computation, due to the calculations needed to obtain the inva-
riant features. But it can be used to great advantage at the
low resolution level at which other methods are not possible.
Here, we use an approach as follows: instead of matching each
template of scene at every location, the templates are partiti-
oned into "informative" and "irrelevant" templates by some simp-

le tests. Elimination of mismatching locations and termination
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of computation can take place at each level of test based on
this partition.

In practice, we have used a detection that combined two
cimple tests before matching the secene with the invariant mo-
ments:

1°
vel distributions (T-test).

2°. Test based on the correlation coefficient of the joint

. Test based on measure of the similarity of two gray le-

distributions (p-test). The 1, and p measures are computed for
each location. If both T1,p are smaller than selected threshold,

this location is rejected.
- Thus, let Nz be a set of test locations (u,v) at search

.

level X, with a matching rule RY such that
k

r = Uu,0) |Rp(u,0) > 07, 1 < u,v < M}

N

where Gz is the threshold selected to be used at search level

X, RZ is some matching ruleat test location (u,v), M is the

%
k
into the preliminaty rule detection by simple test and the main

number of picture elements in the template. We can divide R

rule (for example, the moment correlation rule).

Let Nk':= f\Ni, for a search region of size NxN, an
%
(2N—2M+1)2-matrix G;_; was generated by

R R

All other entries of G, , are set'to zero. Testsare to be
performed at the test locations for G,_,(u,v)=1. The search
continues untill one of two conditions is encountered ‘
1°. At search level L=n, Gn(u,v)=1 for one value of (u,v),
location (u,v) is declared the matched location.

2°, At the level L=0, there exist severeal locations (u,v)
such that the Go(u,v):l. Select the locatien with the higest

correlation with the invariant moments.
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1.2 Theorem
The condition for savint the computation time using this

synthesis is following:
' < ¢ (1-p)

where ¢’ - the computation complexity of the detection at each
location defined by the number of cdculation needed.

¢ - the computation complexity of the main-matching rule at
each location defined by the number of caculation needed.

p - the probability of matching by the detection.

Proof:
Noting that, at level k, number of possible test locations
is dN—M+1)/(2k+1)]2 then the number of calculation needed for

scene matching using this synthesis is
. k 2 k 2
J(‘S = C(N=-M+1)/(2°+#1)1% & + C(N-M+1)/(2"+1)1°.0.p

For saving the computation time using this synthesis, the

following condition need to be satisfied:

2

s E(N—M+1)/(2k+1)3 o

It follows that

C(n-M+1)/(2K+1)12. 0 v 40 (m-M+1)/(2%41) 1% . p
< (N-M+1)/(2%41)1%

Dividing both sides of the above inequality to E(N-M+1)/(2k+1)]2

we have
¢’ + d.p < &

or &' < &(I-p)
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which proves the theorem.

Theorical analysis and simulation with t1-test and p-test in
scene matching by invariant moments indicated that a saving of
computation time as well as a high degree of precision in lo-

cating a region is possible.
1.3 The t-test

The x2—test measures the difference between two frequency
distributions. Let h (k) be the frequency distribution of gray-
scale intensities in a model window. Let h (k) be the frequency
distribution of a test window. The 51gn1f1cance of the ¥ -test

depends on the number of samples:

(B Rt (RYYE
m T

z
k ht(k)

where, we can consider %#_ to be a hypothetical ideal distri-
bution. Let 1= e_xz/c, wgere ¢ is some positive constant.t is a
measure of the similarity of two distributions (in the x? sense)
If the distributions are identical, then T will be unity, if
they are very different, T will be close to zero.

T is not sensitive to the location of pixels. It simply mea-
sures the degree of simplarity between two marginal distribu-

tion.
1.4 The p-test

Let m, be the mean of hm and m2 be the mean of ht' Let o,

be the standard deviation of hm and 02 be the standard devia-

tion of ht‘ We define the coefficient p as follows:

e WCT,1)

PPy

where, u(%,5) = 1 £(z (K)-m )% (x, (k)-m,)7
K

xm(k) and xt(k) are
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are gray velues of the k=~th pixel in the model image and the
test image, respectively.

p is in the interval (-1, 1] In general, if there is a li-
near functional dependence between the test and model window p
will be 1. If the window are independent distributions p will
be 0. Thus, the intermediate values will measure the degree of
dependence between the two windows.

p is a good test for the proper location of pixels. With
the systematic change in iighting, T would be small but p would
be large because the test and model distributions would still

be well-correlated.
1.5 Performance of scene matching methods

To evaluate the performance of any of matching techniques
one may consider the probability distribution that could be at
the k-th level in the hierarchical search or the first level
for template matching. The distribution pk(R) is the probability
that the true match location takes on a specific similarity
value R. Rk(u*,v*) is the similarity value at the true math lo-
cation for a particular match under consideration. Let Pk be
the probability of detection of thek-th search level (i.e. the
probability that the similarlty measure at the true match lo-
cation exceed the threshold R ) and the pk(R) will be assumed
to have a Gaussian distribution with a variance of (c ) . Then
py can be expressed ad

i 5 @ 7B
pp = { pp BAR == | sapls—) dR
Rk vem y
/i
where
k

k
s . £ %
y = [Rp = R (u¥,v )J/oR

k

Similarly, the probability of false fix at the k-th search
level can be computed by
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7.9 e ®
(R)dR = 1-— [ exp(—g) drR = 1 - &(y)
Vom -

~J
]

Pp
R

<
N X 8

where y = (R?-Rz)/o;, pf(R) is the probability density dis-

tribution of the similarity measures of all test locations ex-

Kl Lk L
f) s By is

the similarity measure averaged over all test locations (Fig.l)

cept the true match location with a variance of (o

The error introduced by the Gaussian assumption for a non-
Gaussian distribution may be large in the case of small values

of pk(R). We can use the Edgeworth expansion for this case.
p(R)

1 (R)

p
4 Pk(R)

A 3 'y
T Y Y

X %
Ry 1;‘, e o

Figure 1., Probability density function at match
location . Pk(R) and back=ground pf(R)

cg obtained on that level to achieve a given probability of
a match.

To select the threshold Rg, the invariant moments of the
image were correlated with the moments of the image reduced by
a factor of 2 and rotated by 2° and 45°. The averaged correla-
tion of the three cases was then used as a bound to estimate a
threshold sequence. Noting that the correlation were made on
the logarithms of amplitude of the moments rather than the
amplitude itself.
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2. FEATURE EXTRACTION FOR IMAGE MATCHING

At the fine-matching step, the moment approach is often
used for this purpose. However, scene match, with invariant mo-
ments is costly in computation. In many cases, the following
approaches give us the poweful features for image matching with

smaller computation time.
2.1 The kG-centroid (kL-centroid) features

We define a kG-centroid (kL-centroid) of the image as a
centroid of this image at gray level k (of k-th region of this
image). Suppose that (xi,yz), k=1,2,...K are kG-centroid (kL-
centroid) and (xé,yc) is centroid of the image I.

Let (rk,ek) be polar coordinates of (xz,yi) in the polar

coordinate system with (xé,yc) as the origin and the rayon

passed (xé,yc), (xi,yc) as the initial rayon k° is a chosen

value, say, k = 1.
E Ks o ~k .k
By converting (r ,6") into (r ,0 ), where
k g
?k = rk/ T »rt
1=1
then (%k,ek), k=1,2,...K, are .invariant features in relation to

translation, rotation and size change.

We can also derive invariant features from kG-centroid (kL-
centroid) in the following manner.
Let p(k,k") be the distance between (xﬁ,yi) and (xi',yi')

where k,k’'=1,2,...K, then {p(k,k’)k } are dependent

Py Al . RS
only on the shape of the object, but not affected by its loca-
tion, orientation or relative size.

For the normalized images, we can extract simplier features

as follows.
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2.2 Projections and Cross-Sections

Given a two-dimensional continous function f(x,y) we define

the projection of f(z,y) in the x and y direction are
I flz,y)da and I flz,y)dy
R R
In principle, projections in a sufficient number of direc-

tions contain enough information to reconstruct the picture [513.

For a digital image, the x(Z) and y(j) projections are de-

fined as:
2lzy = 3 fCt,7)
Jd
y(g) = L £(z,4) for 1 <72, 20N
d

More detailed information about the arrangement of gray levels
in the region R can be obtained by using projections of f(z,y)
in various directions.

In many cases, the projections on X-Y axes a certain amount
of information of object for recognition and the number of di-
mension may be significantly reduced from N2 to 2N, (N is the
dimension of the image). Furthermore, the numerical properties
of projections, such as their (one-dimensional) moments, Fourier .
coefficients, Walsh coefficients, etc... can be used as the '
powerful features for recognition of the image in which, most
of the .strokes of patterns are either horizontal or vertical
and they generate many step segments in the projections. Some

experiments have been made successfully by these features [131.
3. COMBINATION OF IMAGE TRANSFROMATION AND NORMALIZATION

As we know that, the power spectrum of an image is to be in-
dependent of translation. The Mellin transform has been show to
be scale independent. The Polcar-Cartesian transform convers ro-

tation into translation. Hence a combination of these performed
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successively will allow shape to be matched to shape independent
.of translaﬁion, rotation and scale [10,151. _
Here we use a simple normalization scheme, the normalized
image which also is invariant to object translation, rotation
and size change. _
- Normalization in relation to translation
The image is normalized to an image-centered coordinate

system with its centroid is translated into a fixed point
N(z,y) = I(xo+x-xc,yo+y—yc)

where, (xb,yo) be a fixed point, (xc,yc) be the centroid of
image.
- Normalization in relation to rotation
The image is normalized to coordinate system with its prin-

cipal axes as coordinate axes

N(zx,y) = I(x,co80 - y.8inb,x.82nb + y.cosb)
where
o s o 3E
il il =71 11 . = P q
6 = 5 tan m s Ipq = ﬁ(x xc) (y yc) f‘(:c_,y)

- Normalization in relation to size change

The image is scaled to a standard size
N(z,y) = I(kz.x,ky.y)

where (k&,ky) be the ratio of the size of the image I to stan-
dard size.

In this way, the normalized image dependent only on the
shape of the object, but not affected by its location, orien-

tation, or relative size.
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4, SYNTHETIC SCHEME FOR IMAGE MATCHING PROGRAMS

In connection with scheme of synthesis of image matching
algorithms (Fig. 3) we propose an use manner of programs as
follows.

Given an image of size NxN and a template of size MxM, if
necessary, we make a geometrical correction for input image by
using GECOR (See appendix). The next phase is coarse matching
the template to windows of image. The propesed step matching
is M/2. In this phase, we combine several tests (t-test, p-test)
by using HISTO, PROFIL, THRSLD (See appendix). So we obtain the
possible match locations.

In the next phase, with each of the possible match locations,
we make a fine matching around those locations. For improving
the efficiency of fine matching, both the template and the win-
dow may be modified either by transforms Polcar, Mellin, Fourier
using TPOCAR, MELIN, TFQ® (See appendix) or by normalizations:
centered translation, rotation, scaling using TCEN, TROTA,
SCALE® (See appendix). With these transformations (normaliza-
tions), the transformed (normalized) template and window will
be invariant to rotation, translation, scale... After that, we
can use the simple features such as projections for matching.
Then the fine matching may be made by computing the feature
correlation: invariant moments, kL-centroid (kG-centroid),
profils...using MOMENT, TOPO, PROFIL, THRSLD (See appendix).

We will present program descriptions in the appendix.

5. CONCLUSIONS

Experimental results indicated that scene matching with the
basic seguential method provided good performance in the mat-
ching of scene that contain relatively weel-defined objects of
varying background. This method is particularly useful in mat-
ching images taken by the same type of sensors under different
operating conditions. Depending on the scene content, scene
matching with invariant moments was successful in some cases.

In particulary, this method can be used to great advantage at
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the low resolution level at which other methods, such as scene
ﬁatching with edge features are not possible. Two improvements
may be accomplished are the following:

- Weight each of the moments with an appropriate weighting
factor before correlation.

- Generate higher-order moments. Select a set moments for
correlation computation with the selection based on the infor-
mation contents of the images.

At the same time, we also have used some other approaches
as follows:

- The comination of transformations Fourier, Polcar, Mellin

- The image normalization in relation to certain transforma-

tions as translation, rotation, scale ...

- The kG-centroid (kL-centroid) features.

These methodes have resulted in superior performance and
were accomplished at greatly reduced computation and memory

storage requirements.
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APPENDIX I: A SET OF PROGRAMS FOR IMAGE MATCHING

Programs are written in FORTRAN-4 subroutines and were ve-
rified on PDP-11 minicomputer system. In the following subrou-
tines

IMAG is an input image, a variable-array of size NxN

I,J are coordinates of the upper-left corner of the windows

1. PROGRAM FOR GEOMETRICAL CORRECTION OF IMAGE

The call CALL GECOR(IMAG,V,N,X,Y,XF,YF,K,MOD)

V : output image of size N N

XY the given points in IMAG

XF,YF : the given points in IMAG, which correspond to

X,¥ in V

K : length of X,Y,XF,YF

MOD : correction mode
MOD=0 correction by the way of 4-neighbor average
MOD=1 correction by the way of nearst neighbor

2. PROGRAMS FOR COARSE MATCHING

2.1 Computation of Histogram of a window

The call CALL HISTO(IMAG,I,J,K,H,LEVEL)
K : size of window
LEVEL : gray level of image
H : output histogram of size LEVEL, in which H(i) is
number of pixels of gray level i+l.

2.2 Computation of Profil of a window
The call CALL PROFIL(IMAG,I,J,K,HX,HY)

K : size of windos

HX,HY : vectors of size K- profils on the x-axe and y-axe
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2.3 Thresholding program

The call CALL THRSLD(A,K,THR)
A : input data set of size K to be thresholded
THR : output threshold

3. PROGRAMS FOR NORMALIZATION OF IMAGE

3.1 Determination of the image center
The call CALL IJCEN(IMAG,N,IC,JC)
IC,JC : output center of image

3.2 Centered transformation of image
The call CALL TCEN(IMAG,CIMAG,N,M,IC,JC)
IC,JC : input coordinates of center
CIMAG : output image of size MxM
3.3 Determination of the rotation angle of image
The call CALL TETAl(IMAG,N,T)
T : output rotation angle of image

3.4 Rotation of image
The call CALL TROTA(IMAG,RIMAG,N,T,IT,JT)
RIMAG : output rotated image

T,IT,JT : given rotation angle and center

3.5 Scale of image
The call CALL SCALE®(IMAG®, IMAG,SIMAG,N,IC,JC)
IMAG, IMAGQ : input images of size NxN centered at IC,JC
SIMAG : output scaling image

4. PROGRAMS FOR TRANSFORMATIONS OF IMAGE

4.1 Polcar Transform
The call CALL TPOCAR(IMAG,IA,N)

IA : output image of size NxN modified by Polcar transforr
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4,2 Mellin transform
The call MELIN( IMAG,FA,N,M)
FA : output image of size MxM modified by Mellin transform

4,3 Fourier transform
The call CALL TF®(IMAG,FA,N)
FA : output image of xize NxN amplitude spectrum image

5. PROGRAMS FOR FINE MATCHING

5.1 Computation of invariant moments of window
The call CALL MOMENT(IMAG,K,I,J,KSI)
K : size of window
KSI : output vecotr consisting of loga of 7 invariant

moments

5.2 Computation of kL-centroid of window
The call CALL TOPO(IMAG,I,J,CENTER,GRLV)
GRLV : gray level of image
CENTER 2, GRLV : output array
CENTER(1,1), CENTER(2,1) is the global center of image
CENTER(1,K), CENTER(2,K) are centers corresponding to the
region of gray level K, K=1,...GRLV-1,
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EXPERIENCES IN THE USE OF TWO DATABASE MANAGEMENT
SYSTEMS FOR MICROCOMPUTERS

E. MUNIZ, M. FONFRIA, JORGE DE LA CANTERA
Central Research Institute for Computers
CUBA

INTRODUCTION

In the past few years, and as a result of the fast develop-
ment 'in the microcomputer field and its introduction in almost
all software areas, the general concept of database management
systems (DBMS’s) has suffered a little change. Until midseven-
ties, database systems were conceived only for mainframes with
fast I/O peripherals and large amounts of secondary storage
(usually disk). This fact was dictated by the relative large
resource requirements of such systems, given primarily for their
ability to provide: a) high level of program and data indepen-
dence, b) flexibility in the representation of data, c) high
performance and efficiency in transaction-processing, d) sup-
ression of data redundancy, e) capability of searching through
data according to its attributes, and f) procedures for data
security and recovery, among others. In practice, only a few
DBMS implementations include all of these features, however,
some have come close.

While microcomputers are being introduced and gaining par-
tidaries because of their interactive and simpler operation, in-
creased the need for systems capable of integrate and compact
rationally the currently available information. In this way,
say "from bottom to the top" were approached the development of
new systems featuring characteristics of DBMS’s. In 1981, we
could evaluate more than 10 of these systems. .

However, even present-day DBMS’s for microcomputers can not;
accomplish all of the objectives of a formal DBMS, although they
are close according to the hardware currently available and of-

fer the user a powerful tool for data processing.

Al -
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In gerenal, these systems provide:

- an easy way of creating screens and database reports,

- facilities for data entry and its relationing with all
other data, ‘

- provisions for program and data independence,

- facilities for using data for many applications,

- tools for creating applications with minimum programming
effort, leaving every time on the user free for concent-
rate on his logical design.

Inmersed in this context, the authors have had the opportuni-
ty of developing an application intended to be used as a mana-
gement aid in the manufacturing of some equipmnet, and its imp-
lementation under two DBMS’s for micros: dBASE II from Ashton-
Tate and Sensible-Solution from 0’Hanlon Computer Systems.

In this paper, we describe the application, the general
features of both database systems, and offer the conclusions
of thes realization, with the hope that they can help in giving

some criterion about the use of these systems.

GENERAL FEATURES OF THE SYSTEM USED IN THE APPLICATION
dBASE II

dBASE II is a powerful tool for database management that
allow very easy handling of small to medium-scale databases
using English-like commands. The system has the following major
features:
- complete creation of databases
- facilities for adding, deleting, editing, displyaing and
printing database information
- data and program independence, i.e., changes to the prog-
ram do not imply changes to the data and viceversa
- report generation from one or more databases
- use of the facilities of the terminal for editing data

dBASE II is typically interactive, having facilities for
immediate correction of errors. A dBASE II program is a series

of commands stored on a disk file which the user can execute by
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means of the DO command. These command files do not need be
previously compiled; commands are interpreted and immediately
executed.

dBASE II allows the handling of relations (files) and me-
mory variables. dBASE II files consist of a file header contai-
ning field descriptions, attributes and data all in compacted
ASCIT mode. The handling of files is accomplished in a manner
transparent to the user. For example, for using a variable na-
med COUNTER zero-initialized it is sufficient to utilize the
command STORE O TO COUNTER without the need to declare or de-
fine COUNTER previously. The type of COUNTER (N: numeric, C:
character, L: logical) is determined by the type of the source
information, in this case numeric. Storing "ABC" to COUNTER
will change its type to character.

If the user wants to modifv the structure of a data file
without loosing information, he can easily utilize a suitable
combination of COPY, MODIFY STRUCTURE and APPEND commands with-
out the need to modify the command files that reference the
reestrructured file. An important feature of dBASE II is the
ease of learning by non-specilaized people, the syntax of
commands is very close to the human (English) language and also
the documentation is clear and well presented.

dBASE II included a program named ZIP that allows the use
of screens for data entry and also for displaying information.
ZIP generates sequences of dBASE II commands that when executed
perform the functions desired. Even though screen handling is
not completely automatic in the sense that it has to be done
by means of an external component, it has the advantage that
the generated program can be edited and modified according to
the user’s needs. .

In dBASE II direct acgess to relations’ attributes is ac-
complished through dense index files, one for each attribute
required by the user. When "opening" the relation the index
file is specified and searches are carried out by FIND commands .
over the index field associated to the index file. If it is ne-
cessary later to change the search for another index field, the

corresponging index file must be opened. The search command
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(FIND) is very little flexible and do not allow automatic pro-
cessing of records with duplicate keys. Reports can be obtained
by the REPORT command, which can generate a program ready for
execution. This command simplifies the process of report gene-
ration without the need for porgramming, though these facilities
are of low level,

dBASE II shows up some inconveniences when relationing one
file to another. This has to be done by means of the JOIN com-
mand, which outputs a file that in many cases is not completely -
necessary, leading to waste time and disk memory.

dBASE II allows processing of data files generated by other
processors i.e., BASIC, FORTRAN, PASCAL and can produce files
compatible with these processors. Also, recent versions include
means for calling programs segments written in machine code,
though this feature is very specific and aside from the general
framework of users.

One limitation present in dBASE II is that only two files
can be opened simultaneously, restricting the development of me-
dium to large-scale professional applications. This limitation
has been overcome in later releases of the systems.

dBASE II attains an efficient use of the hardware resources,
requiring little memory. Also, it is necessary to point out that

along with the simplicity of its language and the documentation

it is easy to install it.

SENSIBLE-SOLUTION

This system shows up general features similar to that of
dBASE II, however, his implementation differs in many aspects.
Sensible-Solution groups conceptually its functions into
"tasks" that can be requested via a functions menu. The most im-

portant are:
- execution of command files
- data dicitonary maintenance
- creation of screens
- command editing

- compile command files written in Sensible-Soluytion
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- creation of programs
- database queries
- report generation

- restructuring files.

Command files or language statements are not processed in-
teractively, rather, they have té be previously compiled.

In Sensible-Solution all of the data including auxiliary
variables must pertain to files controlled by the data dictio-
nary (files RECFLE. MS, RECFLE.KS, FLDFLE.MS and FLDFLe.KS).
Database information is structured around files comprised
physically of two files: one contains user data in compacted
ASCII mode called Master Data File, and the other contains a,
binary tree of pointers to records in the Master Data File; this
file is called index-key-file and do always exist from the dec-
laration of the file. This index file allows indexing a file up
to 9 index fields and facilitate direct searching of attributes
by the FIND statement, which can be indistinctively performed
over any of the index fields. The various formats of the FIND
statement are powerful tools for processing relations based
upon its attributes, and the handling of two related files is
performed easily by one of its variants (31 FND.REL.RC, Find
Related Record).

Data definition is rigid and not very transparent to the
user, and is always controlled by the data dictionary} FOr @eXx=
ample, for using an auxiliar variable the user must invoke the
task that updates the data dictionary and define the variable in
an auxiliar file together with its declaration, and initialize °
that file. Similarly, for modifying the structure of a file '
without loosing information, for example, modifying the length
of a field, it is necessary to make changes in the data dictio-’
nary, reorganize the file and possibly reindeking it. Also, the
changes are not "transparent" for the associated programs since
all programs referencing the restructured file must be recompi-
led.

One powerful tool offered by Sensible-Solution is the defi-
nition and handling of screens. Screen definition includes labels
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and windows to fields of a file that together with command fi-
les controls allow data entry, update and retrieve information
from the specified file.

Sensible-Solution language is very peculiar and seems to be
distant from the usual syntactical structures, that has two:
major disadvantages: one is the difficulty of learning by non-
specialized users and the other is the necessity of a special
task for editing command files, since the operating system’s
editor can not be used.

Sensible-Solution offers good tools for report generation.
Through the definition of the report formats sophisticated re-
ports can be obtained. This procedure adds great flexibility
even though stands for the need of programming the report.

Sensible-Solution does not achieve automatic compatibility
with other processors. One important feature of Sensible-Solu-
tion is its ability to open simultaneously up to 10 files, which
is a great advantage when developing complex applications.

Sensible-Solution requires a large amount of primary and
secondary storage, its components need to be distributed within
2 floppy disks each with at least 300K of free space, represen-
ting a constraint for its use on systems with 8 inch single
density drives. Also, the installation procedure is not simple
and requires a predetermined allocation of components within
the two floppy disks.

DESCRIPTION OF THE APPLICATION

It is evident that all manufacturing processes involve the
control of the different parts and elements that form the pro-
duck; for example, it is necessary to know the list of elements
that éomprise every part of the product, the composition of
the different models to be produced, and the stock of elements
to carry out the process. The namual control of these aspects
is a tedious and complex task, requiring generally one or more
persons completely dedicated to this activity. For this reason,
it was decided the implementation of a programming system on a

microcomputer intended to provide an automated control of the
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necessary operations supporting the manufacturing process, such
as inventory control, allowing additionally that people unfami-
liar with microcomputers could use the system, saving human and
monetary resources, and obtaining reports with a high degree of
reliability and in a small response time.

The most important functions offered by the system are:

- list elements or parts involved in the whole manufacturing
process,

- list the composition of every part that constitutes the
device,

- checking for the posibility of produce a specified number
of parts depending upon current stock of elements prin-
ting deficits,

- extraction of components necessary for manufacturing a
specified quantity of the device or some parts,

= listings that facilitate contracting elements for manu-
facturing a specified quantity of the device printing
suppliers and prices,

-~ automation of the extraction and reception of components.

The programming system was designed to ,be supported by a
database management system.

All the information handled by the system is included in
the relations named PART, STOCK, TYPE, TRANSAC, and MODEL1,
MODEL2, etc. Following is the description of the relations.

Relation PART

ORDER | ELEMENT | EQUIV1 | EQUIV2 | EQUIV3 | PART:CODE | QUANTITY

ATTRIBUTE DOMAIN
ORDER numeric values of the form xx.yy, where
xx identifies a particular type of ele-
ment and yy is a consecutive
ELEMENT the name of all elements used in the
production of the device (all models)



EQUIV1

EQUIV2

EQUIV3

PART :CODE

QUANTITY
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up to 3 equivalents to the main element,
these fields can be blanks

in case the equivalents do not exist.
The inclusion of these attributes adds
more flexiblity in the extraction of
elements, since the main element and

its equivalents are handled indistincti-
vely, when the stock of a component is
exhausted

code of all parts comprising the device.
Every part is formed by one or more ele-
ments.

numeric values indicating how many ele-

ments are used in a part.

This relation is interpreted as follows: ELEMENT (or EQUIV1,

EQUIV2, EQUIV3) of type
QUANTITY.

Relation STOCK

XX is used in PART:CODE in quantity

ORDER | ELEMENT | MANUFACTURER | CODE | PRICE | QUANTITY :ON:HAND

RECEPTIONS | EXTRACTIONS

DELIVERY

ATTRIBUTE
ORDER

ELEMENT

/- DOMAIN
the same values as the corresponding
in the relation PART.
The objective of this field in this re-
lation is to help in the control of the
completeness and ‘consistency of data
and to facilitate its updating
the same values as ELEMENT, EQUIV1l, etc.,
in the relation PART.
The ORDER of an element and its equiva-

lents is the same.



MANUFACTURER

CODE

PRICE

QUANTITY: ON:HAND

RECEPTIONS

EXTRACTIONS

SHIPPING
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name of the manufacturer of each ele-
ment . )
codes for identifying elements in the
warghouse

unit prices of the elements

stock of elements

the sum of all receptions of each ele-
ment .
the sum of all extractions of each ele-
ments

quantities extracted of each element to
be printed in promissory notes. These
values are retained until the user spe-
cifies another function involving ex-
traction of components; this allows to
obtain as many copies of promissory no-
tes as desired and also in case of a
system failures while printing, to re-

peat the procedure.

The relation STOCK is interpreted as the stock of all ele--

ments in the warehouse and the transactions in which each.

element is involved.

Relation TYPE

ATTRIBUTE
CONSEC

TITLE

DOMAIN
the values xx of the attribute ORDER
of the relation PART
description of the category of compo-
nent represented by CONSEC

For example, the tuple (02, cables) can be interpreted as

that the elements of type 2 are cables. This title is used in

the listings obtained from the system’s functions.
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Generally, database management systems for microcomputers
do not offer facilities for automatic recovery of information
in case of failures, for this reason it was designed a relation
named TRANSAC that keeps a history of transactions performed

(receptions and extractions), ensuring more data security.

Relation TRANSAC

FbECIFICATION QUANTITY | DATE | TYPE

ATTRIBUTE DOMAIN
SPECIFICATION element or part handled in a transaction
QUANTITY amount of elements or parts handled in
the transaction
DATE date when the transaction was performed
TYPE the type of the transaction:(e)xtrac-

tion or (r)eception

There are other relations named MODELl, MODEL2,... MODELn,

that keeps the composition of each of the different models.

Relation MODELJ

PART :CODE

The following diagram shows operations that are performed

among relations in the major part of the system’s functions.
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‘ORDER 1 ELEMENT | EQUIV1 PART:CODE | QUANTITY
sy gt i B LTt b
FIND \FIND FIND
S\
‘CON SEC | TITLE ORDER | ELEMENT QUANTITY : ON : HAND

Another operation that is performed when handling a model
of the device is the following:

(description modelj)

obtaining the subset of description that cbmprises the modelj

CONCLUSIONS

In general, Sensible-Solution performed the generality of
the functions of the application faster then dBASE II due parti-
cularly to the command files have been already compiled, all
related files can be opened simultaneously and the nower and
diversity of the search statementts.

About Sensible-Solution, many of the functions could be in-
tegrated given the possibilities of screens and command file
controls.

The programming and debugging resulted easier in dBASE 1II,
particularly taking into account that a simple modification in
the length of a field causes in Sensible-Solution modifications
to the data dictionary, restructuring the file, etc. By the other
hand, dBASE II’'s programming language is more mnemonic, conse-
quently, it is learned easier and faster.

For simple applications handling a few files, dBASE II is a
good choice. If the number of relations involved increases and
should perform frequent and/or complex operations on databases,
dBASE II can be ineffective, being advisalbe in this case the

implementation of the application using Sensible-Solution.




= QDL =

REFERENCES

1. J.MARTIN, "Computer Database Organization".

24 C.. DATE, "An introduction to Database Systems."

3 E. MUNIZ, and J. de la CANTERA "Design of a Control Sys-
tem under 4dBASE II". (to appear).

4. K.S.BARLEY, and J.R.DRISCOLL "A Survey of Database Mana-
gement Systems for Microcomputers", BYTE, Nov 1981.

B A.S.MICHAELS, B.MITTMAN, and C.R. CARLSON "A comparison

of the Relational and CODASYL approaches to Database Ma-
nagement", Computer Surveys, Vol. 8, No. 1, March 1976.

6% J.DEMETROVICS, L.HANNAK and L.RONYAI "On functionally
completeness of prime-element algebras", MTA-SZTAKI,
K6zleményvek 25/1982.

15 M.W.BLASSEN, and K.P.ESWARAN "Storage and access in
relational databases" IBM Systems Journal Vol. 16 num.
411977,

8. E.F.CODD, "A Relational Model of DATA for Large Shared
Data Banks", Communications of the ACM Vol. 13/num. 6/Ju-
ne 1970.

%s E. LOWENTHAL, "Database systems for local nets", Data-

mation, august/1982 Vol. 28 num.9.
1o % G.FLOAM, "Putting a Database on a mini", Datamation Vol.
22 num. 6. June 1976.



= 153 =

Tapasztalatok két adatbazis kezeld rendszer hasznélatéiéi

mikroszamitdgépeken

E. MUNIZ, M, FONFRIA, J, DE LA CANTERA

Osszefoglald

A szerzdk az Ashton-Tate-féle dBASE II és az O’Hanlo Computer
Systems-féle Sensible-Solution adatbéaziskezeld rendszerekkel

kapcsolatos tapasztalataikrdl szadmolnak be,

OMNHBITH MCIOJIB30OBAHHA OBYX CHCTEM O6pabOTKH IOAaHHHX Ha Mﬁxpo-sBM
E. MHHuH3, M. ®oudpus, A. Je Jla KaHTepa
PeswmMme

ABTOPH OINHCHBAKT ONHTH IIPOBEeOeHHHEe C cucTeMamMu dBASE II
/|Ashton-Tate/ u Sensible-Solution /O’Hanlo Computer Systems/.
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ON THE e-SEPARABLE AND DOMINANT SETS
OF VARIABLES FOR THE FUNCTIONS

5. SHTRAKOV

2700 Blagoevgrad
School of Education of Blagoevgrad
Bulgaria

In this paper we investigate some properties of the e-sepa-
rable and dominant sets which are introduced immediately. We

use some notations and terminology from [1,2,3].

Let f be a function, Rf - the set of all essential

variables for f and S, - the set of all separable sets of f.

f

Definition 1. A set M, M ER ls called e-separable Tor

!

f with respect to WV = {xij’xig""’xﬁ } = Rf’ if for every
s-values ¢. ,c sC of the variables in N, the sub-
S

Tl T

function of f which is obtained with these values, depends

i i < e = PRl 10
on all variables of M i.e. M_.thkl 311 ,.”,xzs C%S)

When M 1is a c-separable set for f with respect to

’xigfcig
Rf\M, it is-.called c¢~separable for f. The set of all c-sepa-

rable sets for f with respect to ¥ will be denoted by
* * *

S =
sy and Se {x|x € ST,Rp\K}'
Definition 2, A set M = {xi],xi """xim}s Rf’ is
called dominant set over the set N, N &R for 'f; 4f there
f s
exist m - values ci]’ciz"';’cim of the variables in M such
that
N(]H(x- :C-,x. = C. 5t o eile X :c./‘_—_g
g g TRy Ry TR T

and M is a minimal set with respect to this property.

When this eguation is true and M 1is a dominant set
over N, it is said that M dominates over ©#¥ with the

/

values €. 3@ simayiCo
2 %

2 m

1 7

- 18R =
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The set of all dominant sets over #N will be denoted by

LN,f and DNJf = {xaa?fl (3M) x €M A ME LN,f}.

The proofs of the next lemmas follow immediately from the

Definitions 1 and 2,

* *
Lemma 1. If M, € Sf’ ¢ € I, then U M. € Sf’
% 1L
Lemma 2. EE M IE .S then for every N , VN, < N the
. Tl & L
set M belongs to S .
- fall;
Lemma 3., If M € s’;. y then for every M., M, €M the
J I
*
set MJ belongs to Sf,N’
Lemma 4, Let M € R gid ¥ = 18 sds seuby @ &+ Bu IE
= J;?"dy - T
there exist the values e. ;€. 54e45C: such that
$1 I3 Jg
BNR (e S8, 58, 80 paeatty Sa, 020
F79, 497 o dg 3y T dg g

then there is a subset N of N such that N. € L., .
1 1 M;f

Theorem 5, If M e L ! N € L and MNN = then
N; " psf ¢

: & %
there exists M, such that MJ__A4 and M, € Lp,f’

Proof. We can suppose without loss of generality that

M = {xl,xz,...,xm} and N = {xi 2Ty seeas T, [
1 2 s
Let C1sCoarrnsCpy and cij,ciz,..;,ci be some values
8
which ¥ dominates over N and N dominates over P, If

fq1 5 flzg=cp 9= Cgyenyz = e )

then for every s-values a. ™ 5 e e 0y 0 of the variables in
11’ zg’ By
N we obtain
fq = Tyl = g5 By = B geonsTy = Bpd
' 1 1 2 2 ] €
Hence
Fo S FolilBes S @ 5 W = By gennaBs = 8, J
% =" %y oy g L ts ‘s

and by ¥ n N = ¢g it follows
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Py S P25 Bt vl = @ 5 RSBy 5 My = Ba vaiials = @l
1 7 o2 m m’ Z, T4 g g L 18

and P N R = ¢, By Lemma 4 it follows that there is M
1 Y 1

such that M, &M and M., € L 3
1 1 psf

The condition M N N = ¢ 1is essential which may be

seen from the following example. Let
ol O
f =) a5+ zox,z, + x1x4x5(mod 3)
I Ak g, = 0

where xl =
(s 8% & i x, £ 0

If M= {z,z,}, N = {z,2,} and P = {xg,z .} then M € [

N E Lp 7 but there isn't any set m, such that M, M and
3
M. & .
1 P, f

N, f

Lemma 6. For every =z, x, € Rfr the set {ma} belongs

tO L{xa},‘f‘.

Proof. For every value o of the variable x, it holds-

true {xa} n R (xa & ca) = g,

b
But {xa} hasn't any nonempty proper subset and by

Theorem 5 it follows {x } € L : .
a {xa},f

Theorem 7, JEIE x, € Rf and xB € D{xa}’f then
{xa,xB} € Sf'

Proof. We can suppose without loss of generality that
M = {xB, xs,x4,...,xm} € L{xa}:f'
It L, = rg

If we suppose that x, EM then by Lemma 6 it follows
It is a contradiction, Hence z, g M,

then the theorem is trivial. Now, let z 4 Zg

M L .

E g 37
Let Cgs Cgs Cysen-sCo, cm+1,...;cn be n-I-values of the
variables in Rf % {xa}, |Rf] = n, such that « € Rf, and

z, 4 Rf,, where



fl = f(xs S B By S peiia®, Sy By SIE asenea®, T0 )
and

Iy & ¥i2g = 8oy By = Ggn 8y = Bysneealy, = 8.0
This choice of Cgs Cgo CysriaaCry CpiqsrenyCy is possible
because x, € Rf and M € L{xa}’f. On the supposition that

i = = 4 4

{xa, xB} 3 Sf we obtain f, fl(xB ce) for every cg-
T : L 1 =
n particular when cg cg it follows z, € Rf‘l(xB cB)
i.e. x, € sz. This a contradiction. The theorem is proved.

Corollary, If x, € D{xB},f or zg = D{xa},f then
{xa, xB}ESf.

Theorem 8. If M € LN f and there is a value 2s of

3
the variable «x such that M# R.(x = ¢ ) then
o} oo a

T € DN,f'

Proof. Let M = {xj,xz,...,xm}. If =z, €M then the
theorem is trivial. Now, let x Z M and ey be a value of
the variable =z such that M 0 Rf, # M, where £y 7 f(xa:ca)‘
We can suppose without loss of generality that
z, € Rf;. Let c,,c,,...,c, be m < values of the variables
in M such that

NN Rf(;lzc

19 Ty = Corrnns®y =_qm) =g

/
" §

i

7

cg,’l",’

Then for every m - values e
x it holds true

Qé of the variables

TsTosenns

= ¥ = = f = e il
N N Rf(x, = Cgs Tz = Cpyeris® = cm) # 0 and fj —.fJ(;J ql).

This equation implies

es® = cm) =g

NN Rf (xd = ca, Ly = Cpyee a

By Lemma 4 there is a subset M, of M!' such that M7 € LN £

where M' = {xu, Tos xg,...,xm}.

Now, if x, Z MJ then M € L This is a contradiction.

N, f
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Hence x E M The theorem is proved.

1-
Corollary, For every essential variable of the function
o :
¥ lagb & Sf if and only if D{xa},f = {z }.
Theorem 9. For every W, N&ER the set D, ' is a
£ v, f

c-separable set for f.

g .
Proof. If &N = ¢ then obviously DN’f € Sf' Now, let

N # ¢ and we can suppose without loss of:generality that

Rf = {xl, x2,...,xn} and DN,f = {xj, Tosrens xp}, b= 7

Moreover, we suppose that there are n»n-p - values

e of the variables in R D such that
n e

cp+1, cp+2,...,
DN ¥ < Rf]' where
3

Iy = f(xp+] = cp+1, xp+2 = cp+2,-..,x =ecl.

n n

Again, we can suppose without loss of generality that
<, Z RfJ and
M= {x STy s T g, T } € B e
2 3 m 2
Then for every m-I1 =— Values @i , B 535+ 385 of the
T, 1z U
variables in M \ {xp} it holds true

NN foﬁrig = ci2, xig = cis,...,mzm — cim) Z J.
Now, we suppose that there are the values cé & aé ,.,,,cé p
cé+1,...,cé such that ~¥ n Rf2 = ¢ where 3 X
oy = f(xiz = 0’2, xig = céS,. .,xim = cém, xb+1 = cé+1,
xp+2 = cé+2,...,xn = qé).

By Lemma 4 there is a subset M_, of ¥’ such that M] = LN 72
L]

1
s —
where M {xig’xig""’xim’xp+1""’xn}' By M € LN,f ,
we obtain M, Z DN F which is a contradiction. Consequently,
L]
+N =D = - . . LI . y ’ ""
for every m#+n-p~=1 =values azg, alg, P aim, ap+1, ap+g o,
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of the variables in (RfIDN,fJ U (Ml{xp}) it holds true

N N Rf(xi2:ai2’xi3:ai3""’xim:aim’ab+1 = ap+1, xb+2 = ap+2,...,xn = un)fﬁ.
But f] = fl(xp = up) for every ap and there exist m-values
cg, cg 5 cg ,...,cg of the variables in M such that
2 3 m
N MRfls =e, &, =8t 8 =8l joess el ) =9
% Ty T, g s Lo Yo
and
— n —_ n ) | 4 = —_ —
N N Rf @p = cp3 xi2 — cig)".’mim—cim’ xp+1 cp+1,...,xn cn) 7

This is a contradiction. The theorem is proved.

The author is indebted to K.N. Cimev for his kind

encouragement and advice,
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~A figgvények valtozdinak c-szepardbilis. és domindns halmazairdl.

S. SHTRAKOV

Osszefoglald

A szerzO bevezeti a c-szepardbilis és domindns halmazok fogal-
mat és néhany ezen fogalmakat jellemzd tételt bizonyit be.

06 c-cenapabeJlbHHX U [JOMHHAHTHHX MHOXECTBaxX IepeMeHHHX IJIA

OYHKIITUHK

C. ITpakos

Pe3soMe

ABTOp IaeT olpelnesieHHe c-cenapabesyIbHEX U IJIOMHHAHTHRIX MHOXECTB

H JOKa3pBaeT HEeCKOJIBKO TeoOpeM, KOTOPHE XapaKTepH3yoT 3TH MHO-

XecTBa.
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SOME SPECIAL SPERNER-SYSTEMS

VU DUC THI
Computer and Automation Institute

Hungarian Academy of Sciences

§0, INTRODUCTION

One of the possible models of a data base is the relational
model introduced by Codd [3]. The minimal keys play important
roles for the logic and structural investigation of this model.
In [51, it has been proved the equivalence of minimal keys with
Sperner-systems. ;

In this paper we investigate some special Sperner-systems and

some results of the functional dependencies.

§1, DEFINITIONS

In this section, we present necessary definitions.

" Definition 1.1. Let @ = {1,...,n} and P(Q) its power set. The

function F:P(Q) -+ P(Q) is called a closure operation or
closure iff for every A4,BEP(Q)

(1) 4 < F(4)
(2) 4 < B > F(4) < F(B)
(3) F(F(4)) = F(A)

Definition 1.2. Let F be a closure operation over  and 4 c Q.
A is a key of ‘P If FC4A) = Q.

Definition 1.3. Let F be a closure operation over Q. 4 (4 € Q)

is said to be a minimal key of F if 4 is key but F(B)#Q for
any proper subset B of A. We denote

= 40 S
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K, = {4:F(4)=q, (¥B ¢ A)(F(B)=F(A)>B=A)}
It is clear that KF is set of minimal keys.

“Definition 1.4. Let @ = {1,...,n} and X & P(Q)

K is said to be a Sperner-system over ) if arbitrary 4,B6K then
A & B.

It is easy to see that the set of minimal keys of an arbitrary

closure operation create a Sperner-system.
Let X be a Sperner-system. We define.the set of the antikeys
of K, denoted by k1, as follows:

Pefinition 1.5.

k1 = {4 c Q:(BeKk+BEA) and (A cC) ~ (IBEK) (BeC) )

It is clear that X7 is family of the subsets of Q not contai-
ning the elements of K and which are maximal for this property.
It is obvious that K—l is also a Sperner-system.

§2. SOME SPECIAL SPERNER-SYSTEMS

The minimal key is an important concept in the logic and
structural investigation of relational datamodel.

The antikeys play important roles for investigation of the
extremal problems of functional dependencies as well as for the
construction of a concrete matrix repesenting a set of minimal
keys or for finding minimal keys.

" Remark 2.1. In [1,6] it has been proved one important result

that if XK is an arbitrary Sperner-system then there is a clo-
sure operation F (F’ if  QfK) for whichX=K, (K:K;z)

L7]1 defined a saturated Sperner-System, as follows:

A Sperner-system K is saturated if {B} K is not Sperner-system

for: any B.
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In 2,71, it has been proved that if K is a saturated
Sperner-system then K:KFuniquelydetermines F. Now, we investi-
gate some special Sperner-systems which connected with a satu-

rated Sperner-systems.

"Definition 2.2. Let Q@ = {I,...,n} and K is a Sperner-system

over Q. K is united if KX K_J is Sperner-system. ;

1

It is clear that K is an united Sperner-system then X X * is

saturated.

EXAMPLE - 2.3. Let Q. = {1,5,8,4,5,6) and

Koz {00 2), (3,:4), (6.06,7YE It .18 clear that
B 2 08, 8,8, UL, 7Y, ©1,858:70: (2. 8:6.8),
(4. 6,70, CT15,8.7), (I, d:5. 80 (1,400 1),

(2,4,5,6), (2,4,5,7), (2,4,6,7)}". and X 1is united.

Now, we define a closed set, as follows:
Let F be a closure operation over 2 and 4 € Q. A is called
closed in F if F(4) = A.
Denote Z(F) {4 - r(AYy-= 4} )

T(F) = {AcQ : F(4) = A and 3B6Z(F)\{Q} : AcB}
That is: Z(F) is the family of closed sets and T(F) is the

family of maximal closed sets.

" Lemma 2.4. Let F be a closure operation over Q.

e =
Proof. Let A be a maximal closed set but there is B(BGKF) such
that B € 4, then F(4) = Q. This contradicts to 4¢ Q.
If AcD (where D € @) then it is clear that F(D) = Q@ (because
A€T(T)). Consequently 4 is an antikey.
Conversely, now assume that 4 is an antikey but 4 cF(4).
Hence F(F(4)) = F(4) = Q. Consequently 4 is a key. This
contradicts to VBeKF:B % A. Suppose that there is 4c 4’ and
A’6z2(F)\{Q}, then 4° is a key. This a contradicts to 4°cq.
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The lemma is proved.

" Theorem 2.5. Let @ = {1,...,n} and K is a Sperner-system X is
united if and only if for every 46K there exists B(Be(k 1)~1
such that 4 ¢ B. Where (kx 1)7? %

)
is set of the antikeys of X ~.

" Proof. Letr K is an united Sperner-system and suppose that A6K.
By remark 2.1 for K_Z there exists a closure operation F such
that KF:K-I. If F(A) = Q then there is (€K ! for whichC ¢ 4.
This contradicts to X is united. Hence F(4)c€ Q. Basing on lemma
2.4 it is known that a set of antikeys 1s family of the maximal
"closed sets. It is clear that F(4) is closed set. Consequently
there exists B6(X 1)™! such that 4 ¢ B.

On the other side if for every A€K there is BE(K
A ¢ B. Denote T = {pe(x 1)"1: a6x:4 e B)

It can be seen that for the arbitrary Sperner-system H if DEH
then whether {D}L)H_l g
for which €D . By A€ B and according to the definition of

K—l then TU{S} is a Sperner-system, where S is the arbitrary

1)-1 such that

is a Sperner-system or there is C€H

element of X I, Consequently, KV {5} is Sperner-system. That

is KlJK-I is Sperner-system. The theorem is proved.

It is clear that if X is an united Sperner-system then ek

and (K-l)—l are a non-saturated Sperner-systems.

" Remark 2.6. There exists an example which show that K is united
but K—Z isn’t united.

et o = {12, 8. 4,5F and. ¥ = {{1,8,8), €2:3,5)}

According to the algorithm (8] for finding the set of antikeys

we have:
Ll (e 5 € 8,4:8) 0 $993,4))  and
CE A R G 8, B Yy NI Ll Ty, LB by (T8, 40

(2,4,8)}

I~ si=il

y~E and Nt e e srerst

By {1,4,5)}6(K” then X is united but k™I

is not united.
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Definition 2.7. Let K be a Sperner-system over .. K is embedded

if for every A€K there is B€H sucht that A< B. Where H-I:K.

We have:

" EXAMPLE 2.8. Let 0= {1,2,3,4,5,6} and ¥ = {(1,2), €3,4), (5,8}
It is clear that N © = 01,858,500, 8.,8Y; CLaE 6),. "Clatsa)s.
CE 3, 09 (2,328, (8,25 s 02, 4,8))

Denote X = NUN L, it can be seen that K is saturated. We use

the algorithm whichfind a set of antikeys. Then

¥ 2 f093Y . Cledyg CLea CIoey. X0 By (aaby e

(2,8, LA B 03,87, (L 5T (4:8))

: {1,2} is Sperner-system then K-Z isn’t saturated.

By K
That is: There exists K is saturated and K-J isn’t saturated.

But we have:

Theorem 2.9. Let XK be a Sperner-system over Q.
K is saturated if and only if x~! is embedded.

Proof. Let K be a saturated Sperner-system and according to the
definition of X I, it is clear that X ! is embedded.

Conversely, if K—Z is a embedded Sperner-system, but X isn’t
saturated. Consequently, there exists 4€Q such that XK U{4} is
Sperner-system. It is clear that for every C€K then CCQ.

Hence we can construct a B such that A € B.and KV {B} is Sperner-
system and for every B? (B €B’)there is (€K such that ¢ C B°.

It can be seen that BEK * T is embed-
ded. The theorem is proved.

. This contradicts with X
Now, we define an inclusive Sperner-system, as follows:

Definition 2.10. Let K be a Sperner-system. We say that X is
2 such that BC 4.

inclusive if for every 46K there exists B6K

" Theorem 2.11.

K is an inclusive Sperner-system if and only if K-l is saturated.
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Proof. Now, assume that XK is an inclusive Sperner-system but
1 T there is Be(x™ 1)

X% isn’t saturated. By the definition of X 1
such that K—Z(J{B} is Sperner-system. By remark 2.1l. for K there

=i

exists a closure operation F for which K=K . If F(B) Q then by
lemma 2.4 there is AGK-Z such that F(B) € A (because set of anti-
keys is family of the maximal closed sets). This contradicts to
K—JLJ{B} is Sperner-system. Consequently, B is a key. We use the
algorithm [8]1 wich find a minimal key then it can be seen that
there exists B’ (B® ¢ B) such that B°€K and it is clear that

X 2 U{B*} is Sperner-system. This contadicts with the defini-
t¥on of X. That is: K_l %s saturated. On the other side by the

1 ana x~

is inclusive. The theorem is proved.

definition of X is saturated then it is clear that

" Proposition 2.12.

There exists Sperner-system K that (Denote H_I:K)

(1) or K is saturated, but K—l isn’t saturated.

(2) or K is saturated, but A isn’t saturated

(3) or X is embedded, but X ! isn’t embedded

(4) or K is embedded, but H isn’t embedded

(5) or K is inclusive, but k! isn’t inclusive
_ (6) or K is inclusive, but # isn’t inclusive

(7) or K is united, but X ! isn’t united

(8) or K 1s united, but H'isn’t united.

L x=1

)

isn’t embedded in this example. Hence we have (3). By remark 2.6

Proof. By an example 2.8 we have (l1). By the theorem 2.9 (X

we have (7). By theorem 2.11 in the example 2.8 H is inclusive
(where H—1=Kl Now, suppose that if XK is inclusive then set of
antikeys of XK is also inclusive. Consequently in the example 2.8

1 is satu-

H is inclusive the X is inclusive. By theorem 2.11 X
rated. But in this example K-Z isn’t saturated. Hence we have
(5). For (2) we can prove as follows: Let % be a Sperner-system.
Denote K1=K and k" is Sperner-system, a set of the anlikeys of
which is ¥”" 7 (where n>2). We know that the number of the

Sperner-systems over  is finite (maximum is 22'Q|). On the
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other side K and K-Z are determinated uniquely by each other.
Consequently, there is the number m (2imi22'g') such that :
RP-fr anag k7 L =2xt e suppose that X is saturated then # is
also saturated (where as =K). Then this means that Kp(2ipim)
is also saturated. Consequently K-Z is saturated. This contra-
dicts with the example 2.8. That is: there exists a.Sperner-sys-
tem K such that XK is saturated, but A is not saturated.

By similar arguments we have also (4), (6) and (8).
The proposition is proved.
Let K, and K, are Sperner-systems. We say that the union

1 2
K = KlkJKg is proper saturated if AKX, then AﬂKZ and K is sa-

il
turated.

It is clear that if X is united then KLJK_J is proper saturated.

" Proposition 2.13., Let @ = 1,...,n and K is arbitrary. Sperner-
system. Then K U(K_l)_l

is not proper saturated.

Proof. It is clear that K-l is Sperner-system. Now, we investi-

gate the first case: X g is saturated. Consequently, by theorem
2.11 we denote T, = {BGK-J: JA€K : BC€A}. By theorem 2.9 we

1
& -1 -1.-1
denote T_, = {BEK ":3cé€(X

9 ) “:C€B}. It can be seen that T1¢ﬂ
and TZ#ﬁ. If T, nzezﬁ then by the definition of K—l there is
CZG(K—Z)_J such that T, U{CZ} is Sperner-system.

This contradicts to K—l is saturated. Hence TJITTz#ﬂ. That is
kUx~1)™? is not proper saturated.

The second case: e isn’t saturated. We can find a set 4 (46K)
and a set c6(x 1)™? such that 4 C ¢ (similar to the theorem 2.11).
Consequently KU(K_J)-J isn’t proper saturated. The proposition

is proved.

We can find the example wich show that K\J(K_l)-z is saturated.

" Remark 2.14. Let K be an arbitrary Sperner-system.

Basing on the algorithm for finding the set of antikeys we

decide whether X is or isn’t united (inclusive, saturated).
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The functional, dual dependencies were shown in CL,613.

Definition 3.1. Let @ = {1,...,n} and P(Q) its power set.
Let R be a relation over @ and 4,B6P(Q). We say that B func-

tional depends on 4 in R if
(¥g,h6R) ((¥afA)(gla)=h(a)) ~ (¥bEB)(g(b)=h(b)))
Denote 4 g B and B dual depends on 4 in R if.
(¥g,h6R)(( abAd)(g(a)=h(a))+( bEB)(g(b)=h(b)))

4 B}, where Y4{F,D}, ye€{f,d}.

d
Denote 4 3 B and YR={(A,B):A 2

" Definition 3.2. Let Y € P(Q)xP(Q). We say that Y satisfies the
F-axiom if for all 4,B,C,D8P

(F1)  (4,4)6Y

(F2) (A,B)6Y,(B,C)8Y + (4,0)6Y

(F3)  (4,B)6Y, (D4, DCB ~ (C,D)6Y
(F4) (4,B)6Y,(C,D)6Y - (AVC,BUD) €Y

Y satisfies the D-axiom if for all 4,B,C,DEP(Q)

(p1) (4,4)6Y

(D2) (4,B)6Y,(B,C)EY ~ (4,C)€Y

(D3) (4,B)6Y, CCA, BCD ~ (C,D)6EY
(D4¢) (4,B)6Y, (C,D)6Y » (A C,B D)8Y
(D5) (A,P)6Y +~ A=4.

In C4,6] the following theorem was proved.

' Theorem 3.3. [4,61. Let Y _ P(2)zP(Q) and Yé{F,D}, Y’6{F,D}. Y
satisfies the Y’-axiom if and only if there exists a relation R
over Q such that YzYR.
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Definition 3.4. Let Y ¢ P(Q)zP(Q).
We say that Y satisfies the A-axiom if for every A46P(Q). There
exists E(4) such that (1) ACE(A4A) and ¥BCE(A)~+(A,B)6Y

(2) (¢,D)€Y, CCE(A)>DcE(A)

Y satisfies the B-axiom if for every B€P(Q) there is E(B) such
that (1) BEE(B) and VAEE(B)+(A,B)GY
(2) (¢,D)€Y and CZLE(B)->DELE(B)

" Theorem 3.5. Let F(D)CP{)xP)
F(D) satisfies the A-(B-)axiom if and only if there is a

relation R over Q such that F=FR (D:DR)’

" Proof. By the theorem 3.3. we only must prove that F(D) satis-
fies the A-(B-) axiom if and only if F(D) satisfies the F-(D-)
axiom.

Now suppose that F satisfies the A-axiom. Then

(F1) It is obvious that (4,4)6F

(F2) 1f (A,B)6F, (B,C)EF then by (1) and (2) we have
C€E(4) and (4,C)6F.

(F3) If (A,B)6F and ACA® ,B°CB then ACA°cE(A’) implies
B‘EBSE(A’) and by (1) we have (4°,B’)é6F.

(F¢) If (4,B)6F and (C,D)€F then by (1) there is E(4UC)
such that (4VUC)CE(AUC) and ¥XCE(AUC):(AUC,X)6F. AVCCE(AUC)
implies ACE(AUC). By (4,B)€F we have BCE(AUC). CEE(AVUC) and
(C,D)€F imply DCE(AVUC). So BUDCE(AUC) and by (1) we have
(AUC, BUD ) 6F.

Conversely, F satisfies the F-axiom and A6P(Q). We define

E(A)= {a6Q:(A4,a)6F}. It is obvious that E(4) satisfies (1). If
(C,D)6F and E(4)2C, but DEE(4) then (E(4),E(AWD)EF. Hence
(A,E(A)UD)EF. This contradicts to the definition of E(4).
Consequently E(4) satisfies (2). For the B-axiom we denote

F'= {(B,A):(A4,B)6D}. By the duality of F-axiom and D-axiom we
only must prove that F satisfies the A-axiom ++ D satisfies the
B-axiom.

For every B6P(Q) we construct E(B) similar to E(4).
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It is clear that E(B) satisfies (1) and (2) in the B-axiom.
Conversely, it can be seen that D satisfies the B-axiom then

satisfies the A-axiom. The theorem is proved.

' Definition 3.6. Let FcP(Q)xP(Q) and F satisfies F-axiom. We
say that (4,B)6F is a maximal element of F if for all 4°,B°
(A°cA,BcB*) and (A”,B”)6F then A°=A and B’-=B.

Denote S(F) is set of maximal element of F.

(A,B)6F

S : ¥(C,D)6F:(CcB+DeB) and (AcCD~CLA)}

We denote T(F) = AEB

‘ Theorem 3.7. S(E)Y=T(F).

" Proof. Suppose that (4,B)&S(F) but (4,B)ET(F). So 3I(C,D)EF
whether C¢B but DZB (1) or AcD but ccd (2).

for(l): D#B implies D#§ and DUBDB. CcB and (4,B)6F implies
(4,C)6F. (C,D)6F implies (A,D)6F. Hence (4,BUD)6F. This
contradicts to (4,B &S F).

for(2): (C,D)6F and AcD implies (C,A)6F. Hence (C,B)6éF
Consequently, there is C A:(C,B)6F. This contradicts to
(A,B)65(F).

Conversely, if (4,B)€T(F) but (4,B)¢S(F). That is whether
38° (BCB*): (4,B°)6F (1) or A°(A°CA):(A°,B)6F (2).

It can be seen that (1) and (2) contradict to (4,B)ET(F).

The theorem is proved.
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Néhany specidlis Sperner rendszer

VU BUC: THI
Osszefoglald

Az adatbazisok leginkdbb sokoldalu modellje a Codd [3] altal
bevezetett relacidés modell. Ezen modell vizsgdlatdban fontos
szerepet jatszanak a minimalis kulcsok, Az [5]-ben a szerzd
bebizonyitottak, hogy a minimadlis kulcsok ekvivalensek a
Sperner rendszerekkel. Ebben a cikkben a szerzd néhany specia-
lis Sperner rendszert és velilk kapcsolatos funkcionalis filiggo-
ségeket vizsgal,

CrenuasjyibHHE CIIepHep CHCTEMH

By IOyk Txu

Pe3swomMme

PensuMOHHaAsg MOJIEeJIb OaHHHX, BBeleHHas Konogom [3], ABJIAETCHA OI-—
HUM M3 CaMHX MHOI'OO6pAa3HHX CpeIcTB o06paboTkKU HOaHHHX. OHa BHIO-
BUI'aeT Ha IIepBHH¥ IIJIaH He MaumuHHYKw 30PeKTHBHOCTH, a HarJIAOHOEe

OIIMCaHHe OJAaHHHX C TOYKH 3pPeHHsA II0JIb3O0BaTeJld.

B [ﬁ] IOoKaszaHO, YTO MHHHMMAJIbHEE KJIOYH SKBHBaAJIEHTHH CrniepHep CHC-

TeMaM.

B HacTofAme paboTe H3y4YaKwnTCsa HEeKOTOpHEe crnenvajbHee CrnepHep

cucTeMun U QYHKIIMOHAJIbHHIE 3aBHCHMOCTH.
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