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UNIFORMITIES UNIQUELY DETERMINED BY THEIR
UNIFORMLY CONTINUOUS SELF-MAPS

E. MAKAI, JR.

Abstract

We prove for a class of uniform (proximity, resp. topological) spaces that any space of this
class is uniquely determined (among all uniform, proximity, resp. topological spaces) by its uniformly
(proximally) continuous (resp. continuous) self-maps. This class contains e.g. all Peano continua and
the long line ([2], exercises 6J, 15R, 16H) (with the unique uniformity), resp. all countable precompact
uniform spaces with discrete topology and zero-dimensional metric completion. Our results largely
parallel analogous results for topological spaces (cf. [17]). In fact most of our auxiliary results treat
the topological case — usually considering instead of C(X, X) the more general case C(X, Y). As
applications we determine the coarsest concrete functors between some subcategories of uniform
spaces.
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Uniform and proximity spaces are not assumed to be separated. The category
of uniform, resp. proximity spaces is denoted by Unif resp. Prox.

D efinition. A uniform (or proximity) space A'is called special if for any uniform
(or proximity) space Y on the same underlying set horn (Y, E) = hom (X, X)=>Y=X.

Remark. [17] defines similarly special topologies. Restricting our attention to
non-empty spaces by [11], p. 197, this property is equivalent to the following: the
existence of a semigroup-isomorphism /: horn (A, A)—horn (Y, Y), for any space
Y, implies the existence of an isomorphism j: X-*Y, with i(f)(y)=j[f(j~1(y))'].

First we recall some concepts. A topological space is Fréchet—Urysohn if
XEXZ)A, xEA=>3xnfA, (nEN), x,,—x, and it is sequential if sequentially closed
sets are closed. A topological space is S1(S2, S3i)ifits T,"inflection = Tx(T2, th).
A Peano continuum is a connected, locally connected compact metric space. Equiv-
alently (if it is not empty), it is a T2 continuous image of [0, 1] ([10], §45, II. 2, p.
185, [1], §2.10, Prop. 17). Peano continua are arcwise connected ([10], 845, II. 1, p.
184 and I. 2, p. 182). Pseudocompact is meant to imply S3i. Pseudocompact spaces
with the fine uniformity are just the precompact fine spaces ([7], p. 135). For a uni-
form space X the generated topology is denoted by i X and the precompact reflection
by pX. Proximity spaces will be identified with precompact uniform spaces. The
covering character (cov char) of a uniform space X is min {a | X has a discrete sub-
space of cardinality g=>/?<a}+ (=min {a|X has a basis of coverings of cardi-
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2 E. MAKAI JR.

nalities <a}+K,,) ([7], p. 134). A topology is saturated if arbitrary intersections of
open sets are open, y denotes completion. A concrete functor is a functor between
concrete categories commuting with the respective underlying set functors. A map
betwen uniform (etc.) spaces is always meant as a morphism of the category in ques-
tion.
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The following proposition follows the lines of [17].

Proposition 1 Let X, Y betopological spaces. Let Y have a family of subspaces
{7J, andfor each a afamily offilters {J*} on Yxsuch that BczY is closediff [Va, B,
Br\Y<zZ&B-*y£Yd implies Bf\Yf$y]. Let further VWxfX VaV ZczYx with (3RB,y,

Ze& 'R-ytY', Z$y) 3y*£YXC)(Z\Z), 3n€N, 3XIt....X,, Z\{*}=U X» V/(Is

zki=n) 3fEC(X, V), f(Xi)czZ,f(x) =y*. Let X', Y' be other topologies on the
underlying sets of X resp. Y, with C(X, Y)czC (X", Y'). Then either X' is a discrete
space or Y' is coarser than Y.

Proof. Let BczY be closed in Y'. We show it is closed in Y, too, i.e. Va, B
Bf)YAAR-'-y"AY7 implies BCIYAy. Denote Z=BC\Y(, and suppose this impli-
cation is false for Z. Suppose X' is not discrete. Then 3x{X, X\{x}xfx. Thus
for one of the Xrs (17i*n), assured by hypothesis, we have Xffx. Since
3feC(X,Y)aC(X"',Y"), f(Xi)czz, f(x)=y\ therefore Br'z>Zr'z>f(XTIf(x)=
=y*. Thus y*£BY\B, contradicting our assumption BY—B.

Corollary 1 Let X be a T3i space in which every point is a GO-set. Let Y be
a space with unique limits of such sequences which are contained in Peano continua
czY, and let Y have the weak topology w. r. t. its subspaces which are Peano continua
(e.g. Y is T2 first countable and locally arcwise connected). Then the hypothesis and
statement of Proposition 1 hold. The same is valid if X is a zero-dimensional space in
which every point is a Gs-set, and Y is sequential.

Proof. In the first case let {7"}={subspaces of 7 homeomorphic to N*(—
= one point compactification of a countable discrete space)}, Va {cofinite
filter on Yfi, which evidently satisfy the property in Proposition 1. Choose for x£X
an hEC(X, [0, 1)) with /i_1(0)={x}. Let n=2,

X1=h-Y(U (2~2]A 2~2+2), X2= h-Ul) (2~2] 2_2j+1)).
i=1 3=1

Let Zc7, satisfy the condition on Z from Proposition 1. Then Z={yk},
in Yx 3 limyk=y*, ZY«={yk}[{y*}. Since {yk} is not closed in 7, for some Peano
continuum g([0, I])c;7 (where g: [0, §—7) Z= {yt}Dg([0, 1]) is not closed in
g([0, 1]). Denote this infinite subsequence once more by {yk}. Choose ukfg~'i(yK).
We may suppose 3 lim uk=u (otherwise choose a subsequence). Thus by condition
g(u)=y*. Let fr. [0, IT—0, ] map (2~2k+1, 2~2+2] to uk; thus i//(0)=u. So

U (2_23+1, 2~23+2])cz {yk},gf(0)=y*. Then f=gifh: 7 -7 satisfies f{Xf)czZ,
=i
f(x)J:y*. In case of X 2 we proceed analogously.
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In the second case let {ya}= {convergent sequences with any of their limits},
{"p}—{filter generated by the tails of the respective convergent sequence}. Choose for
xEX an hEC(X,N*) with /j-i(oo)={*} Let «=1, Al=A\{a} If Ya=
= {y*JU {y'}, where yk-*y, and Z satisfies the hypothesis of Proposition 1, then Z
contains an infinite subsequence {yi(i)} of {yk}. Let now (p: N*-»Y, (p(k)=ytw,
<p(°°)=y- Then f=(ph satisfies /(fjjcZ, f(x)=y.

The remark in the brackets follows from considering an y£.4\T (AcY),
then choosing y,,€A, yB—y, and choosing arcs joining y toy,,, in elements of a neigh-
bourhood base of y.

Proposition 2. Let X, Y be uniform spaces. Let Y have a family of subspaces
{Lj such that ZxZ203o0c (ZxDYJbizzilYJ. Let ®={{AR,BR}} be a subbasis
ofuniform coverings of the discrete proximity on X (AR, BRAX). Let V {AR, BR}£di

VaVZXZ2cY a with ZxbZ23n,mEN, 3AXx, ..., A,,, Bx ...,Bm X\A B:\i]At,

X\BR=(JBj, V/ (LS/Sn), VI (IS/S/n) 3f€U(X, Y) f(Aiczzl, f(BficZ2.

Let X', Y' be other uniformities on the underlying sets of X resp. Y, with U(X, Y)c
cU(X', Y'). Then either pX' is a discrete proximity or pY' is coarser than pY.

Proof. We have to show pY' is coarser than pY, i.e. ZxbYZ2=s-ZxbY, Z2.

By the hypothesis on {ya} 3a (ZxnY Q)SY(Z2r\YX. Hence for proving the above

implication Zx,Z2 can be replaced by Zx=Zxi]Yd, Z2=Z2C\YX Suppose pX'

is not a discrete proximity. Since <%={{AR, BR}} is a subbasis of the discrete proxim-

ity, some {AR,BR} is not a uniform cover of pX', i.e. (X\AR)bx, (X\BR). For this
n m

AR,BR we have by hypothesis At, X\B B=\JBj. Therefore 3/,]j

with AjbX'Bj. By hypothesis 3f€U(X, Y)cU (X\ Y'), f(Af)cZi, f(Bj)cZ't.
Thus by Atbx, Bj we have Z[bY,Z2 which was to be shown.

Corollary 2. Let X, Y be uniform spaces. Let VAcX, O0AAAX 3g: X-~
—{UK} (c[0, 1] — where k<EN), g(™)flg(A'\y4)=0. (This class of spaces contains
each countable X with zX discrete and is closed under taking subspaces, finer uniformi-
ties andsums.) Letfor the completion ypY ofpY hold: Zx, Z2c Y, ZxbzZ2=>3y((ypY,
3YyXIEZx, 3y2J<2(IEN), yX-*y, y2i-~y- Then the hypothesis and statement of
Proposition 2 hold.

Proof. Let Zx,Z2cY, ZxbZ2 Then 3ylfi€ZIf y2¥EZ2, y 2 —y.
Thus choose {Yx}—{{y..}cY\3yEypY, v,-~y}, and also " —{two-element par-
titions of X}. Let Ac X (fbjiAji X). Thus {A, Z\"4} = {AB, BR}E°U By hypothesis
3g: X--{I/k} with the desired properties. Let m=n—21 We can suppose g (X\AR)c
c{l/(21-)},g(X\Bfiyc{l/21). Let h(l/(21-1))=ylt,, h(l/2)=y2> Then f=hg
satisfies f (X \AR)cZx, f(X\BR)cZ2

The remark in the brackets follows from the fact that, for zX discrete, X is
finer than the proximity on X corresponding to the one-point compactification.

Remark 1 The condition of Corollary 2 implies zX is discrete. It would be
interesting to determine the class of spaces X satisfying the above condition. A prop-

I*
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osition similar to Proposition 2 can be formulated, for uniform spaces, using non-
vanishing (=near) systems ([7], p. 86, [6]), or micromerous collections ([15], [9]).

Before the next proposition which goes to the other direction we prove six lem-
mas, on the lines of [17] (e.g. proof of Theorem 4.1) and [14] (Lemma 2).

Lemma 1 Let X, X', resp. Y, Y' be uniformities on the same respective underlying
sets, U(X, Y)cU(X\ Y") (or only U(X, Y)cC(xX", xY")). If zX is discrete or
tY is indiscrete, then xX" is discrete or XY ' is indiscrete. The same holdsfor p instead
ofx (supposing U(X, Y)aU(pX',pY")).

Proof. Supposing \X\, |T|>1, take any xdX, y*y~dY. Then 3fdU(X, Y),
f(x)=yx, f(X\{x})= {yZ. Since fdC(xX", xY'), eitherylty2are not separated by
xY"' or x is isolated. Forp take, instead of xdX, QM"A~X.

Remark 2. For the uniform case one can show similarly U(X, Y)=Yxo
[B infinite cardinal a, each cover of X of cardinality <a is uniform and cov char Y
Sa]V[F is indiscrete]. (Usefunctions /: X-+Y, with f(X)czY discrete.) In par-
ticular U(X, X) =Xxo[ 3 infinite cardinal a, X has for base all partitions of cardi-
nality <a]V[X is indiscrete].

Lemma 2. Let X, X', resp. Y, Y' be uniformities on the same respective underlying
sets, U(X, Y)dU(X', Y') (or only U(X, Y)aC(xX', xY")). Then each pair of
points separated by Y’ is separated by Y, too, unless xX' is a discrete topology. If,
moreover U{X, Y)= U(X', Y') (or only U(X', Y)czC(xX, xY)) then the only
exceptional case is xX" is a discrete topology and either xX is a discrete topology or xY
is indiscrete. The same holds for p instead of x (supposing U(X, Y)c U(pX', pY")
etc.).

Proof. Let Y not separate }i*y2dY, separated by Y'. Supposing [T|> 1,
takeany xdX. Then 3fdU(X, T),/(x)=yL/(A\{x})= {yZ Since fdC(xX"', xY'),
xX" is a discrete topology. For the remainder use Lemma 1

Remark 3. Statements corresponding to Lemmas land 2hold also fortopolog-
ical spaces (for Lemma 1 comp. [17], quoted just above: for topologies X, X" resp.
Y, Y' on the same respective underlying sets C(X, Y)czC(X', Y'), X is discrete
or Y isindiscrete =>X"is discrete or Y ' is indiscrete; in Lemma 2 separation meaning
7),-separation).

A sharpening of Lemma 2 for the topological case is

Lemma 3. Let X, X', resp. Y, Y' be topologies on the same respective underlying
sets, C (X, Y)c:C(X', Y'). Thenylf y2dY, {j'i}1 $y.=>h}¥$)>, unless (1) X" isfiner
than the topology with open base {closed sets of X}. If C(X, Y)—C(X', Y'), the
only exceptional cases are (La) X' is discrete and either X isdiscrete or Y indiscrete,
(I.b) the Ta-reflection of X is discrete and X' is the topological sum of a system ofits
connected subspaces, these connected subspaces of X' being the minimal non-empty
open subspaces of X, and (I.c) X is saturated and {open sets of X} = {closed sets of X'}.

Proof. Let {yi}r $y2>{iy3\V- Let QAG"X be open in X. Then 3/
dC(X,Y),f(G)={yL,f(X\G) ={yi}. Since fdC (X\ Y'), Gisclosedin X'. Suppose
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now C(X, Y)=C(X\ yO-Denote FOc Y (Fjc Y') the subspace {y x,y2Z. If{y.}r3",
then C (X, F) o F*,hence C (X', Y")z>YW'and then (l.a) holds. If {y2}Y$yi, {yZ}r $yi,
then {open sets of X}= {dopen sets of X'}, so in X {open sets}= {dosed sets}. Hence
VXx€X among the open sets of X containing x there is a minimal one, and these form
for VX€F an open partition. Thus the r O-reflection of X is discrete, and (I.b) holds.
If {y*Y'5yi, then (l.c) holds.

For separation in sense of Txone proves similarly

Lemma 4. Let X, X', resp. Y,Y"' be topologies on the same respective underlying
sets, C(X, Y)cC(X"', Y"). Then each two-point discrete subspace ofY" is a two-point
discrete subspace of Y, too, unless (1) X' isfiner than the topology with open subbase
{open sets of T}U {closed sets of X). If C(X, Y)=C(X", Y'), the only exceptional
cases are (l.a) and (I.b) of Lemma 3.

Lemma 5. Let X, X', resp. Y, Y' be topologies on the same respective underlying
sets, C(X, 7)cC (r, Y'). Let {{A;,BI\X"A{ be a set of pairs of subsets of X.
Suppose for any choice of axEAx, bxERx, ax% bx the transitive hull of the relation
{{h<*>)J(bx))\fE.C{X, Y), (resp. for each X of the relation {{f(ax),f(bx))\f£
€C(X, F)}) is F2 Then either 3A£/1 (resp. VX£A) VafAx \'bEBx aXb=>

={a}x'$b, or Y' is indiscrete.

Proof. Suppose VA6/1 3axEAx, 3bxEBx, ax"“bx, {ax}x 3bx. Then V/6

€C(A", Y') {f(aX)}Y3f(bx). Since the transitive hull of the relation {(/(a"),
AbNM<iC(X', Y'), XeAIN{{f{ax),f(bx)\feC(X, F), XdA) is F2 Y' is indiscrete.
The other case is similar.

Lemma 6. Let X, X', resp. Y, Y' be uniformities on the same respective underlying
sets, U(X, Y)cC(rX', tF"). Let {{Ax,Bx}\X€A\ be a set ofpairs ofsubsets of X.
Supposefor any choice of axEAx, bxEBXx, ax?tbx the minimal equivalence relation con-
taining {{f(ax),f(bx)\ fZU (X, F), XEA} {resp. for each Athe minimal equivalence
relation containing {(f{ax), f(bx)) fEU(X, F)}) is the indiscrete one. Then either

3A6/1 (resp. dX”"A) [af£Ax, b£Bx, aXxb=>{a}xXJfc], or Y' is indiscrete.

Proof. Suppose VXdA, 3ajfA x, 3bxEBx, ax?tbx, {ax}2fibx. Then VI/€

€C (X', tY') {f(ax)YY df{bx). Since the minimal equivalence relation containing
{{f{ax),f{bx))\fAC{xX\xY"), XeA}zD{(f(ax),f(bx))\fiU(X, Y),XiA) is F2 Y’
is indiscrete. The other case is similar.

Remark 4. In Lemmas 1—4 (and Remark 3) we only used functions assuming
two values. The conditions could have been weakened accordingly (cf. [13]). Higher
(resp. any) separation properties of F (resp. X) are not reflected similarly by C(X, F),
cf. [4], where for each 7\-space F a FR-space X is constructed such that C(X, F)=
= {constant functions: F—F} (resp. for any connected X choose F=two-point
discrete space).

Proposition 3. Let X, Y be uniform spaces. Let AcY XY consist of pairs
separated by Y. Let {(/"Hji). / _1(>")|('l, yDEA, /€ U(X, F)} be a proximity
subbasefor far pairs ofsets in pX. Let X', Y' be other uniformities on the underlying
setsofX and Y with U(X, F)cz U(pX', pY'). Let Y' separate all pairs ofpoints in A
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or U(pX,pY)z>U(X"Y") (oronly (1) C(xX,xY)z>U(X",Y")) or (2) X'=Y" and
V(yx,yd€A the minimal equivalence relation containing {{f(yi)>f(yi))\f€.U(X, F)}
is the indiscrete one. Then either pX is a discrete proximity and Y' is indiscrete (or
in case (1) only xX is discrete and either Y' is indiscrete or xX" is discrete or in case (2)
only Y' is indiscrete) or X' isfiner than pX.

Proof. U(pX,pY)*MU (X', Y') and U(X, Y)aU(pX"', pY') imply by Lemma
2 that each pair (yx, yQ€A is separated by Y', too, unlesspX is a discrete proximity
and either pX"' is a discrete proximity (in which case X' is finer than pX) or Y' is
indiscrete. If only (1) C(xX, xY)=) U(X', Y') and U(X, Y)dU(pX"', pY'), the
same holds unless xX is discrete and either xX" is discrete or Y' is indiscrete. In case
(2) by Lemma 6 Y' is indiscrete or each pair (yx,y9Q£A is separated by X'—Y".
Let B], B2he non-empty far sets in X from the mentioned proximity subbase for X.
Then 3feU(X,Y)aU(pX',pY") with f(BD)={yL, f(BA={y2, (yx,yXA.
Hence Bx, B2are far in X', too. Thus X" is finer than pX.

Corollary 3. Let X, Y be uniform spaces, Pd [0, 1]. Let X', Y’ be other uni-
formities on the underlying sets of X and Y, U(X, Y)a U(pX\ pY'), Y' separating
some pair ofpoints in [0, 1] or U(pX, pY)z> U(X', Y') (or only (I) C(xX, tF)3
2z U(X", Y')). Then the hypothesis and statement of Propositions hold. I f the T0-
reflection of xY is arcwise connected, U(X, Y)czU(pX', pY'), then either Y' is in-
discrete or X" isfiner thanpX. The same holdsfor SdX=0 and U(X, Y)czU(pX',pY").

Proof. Inthe last two cases if F is indiscrete, use Lemma 1. If F is not indiscrete,
supposing Y' also not indiscrete, 3yxAyfiY separated both by F and Y'
(In fact, suppose each yx,y2 separated by F is not separated by Y'. Then for
each yx, y2not separated by F we have a y3, separated by F from yx,y2. Thus by
hypothesis, in Y'yx,yz, resp. y2, ysare not separated, hence yx, y2are not separated
either.) Letnow A={(yx, y2}. Ifthe TO-reflection of tF is arcwise connected, there
is an arc in tF joining yxand y 2and thus the subbase hypothesis is evidently satisfied.
If 6dX"0, any two far sets can be separated by a uniformly continuous function to
{yx, L2o thus the subbase hypothesis is satisfied once more. Now we can finish the
proof like at Proposition 3 (taking Bx, B2, etc.).

The following proposition is related to [17], Theorem 1.1, [11], Ch. 1, Theo-
rem 2.3.

Proposition 4. Let X, Y be topological spaces. Let AczBcY, and afA=>
=>{a}rnB={aj. Let {f~r(y)\y(iAf(iC(X, F), /(1)cfi} bea closedsubbase ofX.
Let X', Y' be other topologies on the underlyingsets ofX and F, C(X, F)cC (X\ F').
Let VaeA {"W'r)B={a}, or C(X, Y)—C(X', YY), or () X'=Y', VafA,
MbdB, b”a the transitive hull of the relation {(f(a),f(b))\fdC(X, F)} be F2
Then X is discrete and Y' indiscrete or X is saturated, {open sets of X} ={closed sets
of X'}, or X" isfiner than X (or in case (1) Y' is indiscrete or X" isfiner than X).

Proof. Analogously to Proposition 3, we apply Lemmas 3 and 5. (Note that
X' saturated, {open sets of X'} = {closed sets of X} imply X is saturated, too, and
{open sets of X}= {closed sets of X'}.) We obtain that — apart from the cases listed
in the statement of the proposition (except the last ones, i.e. X' finer than X) and
apart from the case (2): X is the topological sum of its non-empty connected subspaces
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Xx, X' being the topological sum of A'-s, where A' is Xx with indiscrete topology —
we have VafA {a}Y C\B= {a}. By hypothesis then in fact X" is finer than X.

Now we show in case (2) X' is finer than X. We have C(X, Y)=C(X', Y").
This implies V« C(Xx, Y)=C(Xx, Y'). If |5]=1, by hypothesis A'is indiscrete,
hence X' is finer than X. If |5|>1, then {ffl(y)\yt.A, fXEC(Xx,Y), fx(Xx)cB)
is a closed subbase of Xx (since for /EC(A, Y),f(X)cB we have f~ Yy)C\Xx=

=/f1(y)=(/k)'1>), where fxx.=f\xm/i(A\Ag)= dy
Denote {Yp} the maximal subsets of Y', not (TO) separate by Y and YR

the corresponding subspaces of Y. Then C(A{, Y')= %‘l YfX', so C(Xx, A)= }SJ Y x*

This implies C(Xx, YR)=Yp*, hence by the topological version of Lemma 1 (cf.
Remark 3) V/IVa YR is indiscrete or A* is discrete (and non-empty connected), i.e.
|Aal=1. If Va |A|=1 then X=X"—discrete space, thus X" is finer than X. Other-
wise

(*) VR YR is indiscrete.

It Val, isindiscrete, X=X"', thus we are done. Suppose 3a, Xxis not indis-
crete. Since {fx 1(y)\y"A, fxEC(Xx, A), fx(Xx)cB) is a subbase of Xx, 3fx€
<EC(A, A), 50/«(Ad)i{y}, for some y~, {yY"B={y}. But fxEC(Xx Y"),
hence fx{Xx)cY" s indiscrete. By (*) fx(Xx)cY is indiscrete, too, which contra-

dicts Tx(X,,)E {y}, {yYCIfx(Xx)={y}.

Corollary 4. Let X, Y be topological spaces, X SH, Tzd[0, 1]. Let X', Y'
be other topologies on the underlying sets of X and Y, C(X, f)cC(A", A"). Let some
yE[O, 1] be closed in the subspace of Y' corresponding to [0, 1], orC(X, Y)—C(X', Y"),
or (1) X'=Y', X T3i, Vyi, yXA being contained in some image of[0,1] in Y.
Then the hypothesis and statement of Proposition 4 hold. I f X is zero-dimensional,
C(X, Y)cC (A\ YY), then Y'is indiscrete or X' isfiner than X.

Proof. In case (1) Vxi*x~"A VexcZX[0, 1] 3g: A—0, 1], g(x)=cl,
g(x2=c2 Since Vyi,A2ZA we have yx,y2:(p[0, 1], cp: [0, J]—A, thus for some
Q\, cX[0, J yi=(p(ci)=<pg(xi), ipg: A—A Thus {(/(a)),/(x)|IEC(A, A)}=A2

For zero-dimensional A, supposing A' not indiscrete, 3ylyiy2 separated by
A'. Let B={yu y2), and suppose e.g. {yi}l'iy2.

if {yiY$y2, apply Proposition 4 with A={yi). If {Ai}3a2, by Lemma 3
X" is finer than the topology with open base {closed sets of A}. However, A is zero-
dimensional, hence the clopen sets constitute a base for A. Thus X" is finer than the
topology with open base {clopen sets of A}, i.e. A

82

Theorem 1. Let X be a uniform space (resp. a) precompact fine uniform space),
and let X' be another uniformity on the same underlying set. Let zA satisfy the hypo-
theses of Proposition | (xX playing the role of both X and Y). Let C(xA, zA)c
cC (tA', tA") orlet X befine. Let A, X' satisfy with some Ac: AXA the hypotheses
of Proposition 3 (with A=A, Y'=X'"). Then either pX is a discrete proximity and X"
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is indiscrete (or in case (1) only tX is discrete and xX" is either indiscrete or discrete or
in case (2) only X" is indiscrete) or xX" is discrete or xX=xX"' and X" isfiner than pX
(resp. in case a) even X'=X). If C(xX, xX)z>U(X', X'), the case xX" is discrete
can be replaced by pX' is a discrete proximity and X is indiscrete.

Proof. X' is finer than pX by Proposition 3, unless pX is a discrete proximity
and X ' is indiscrete (or correspondingly in cases (1) and (2)). If Avkfine, C(xX, xX) =
= U(X, X)a U{pX', pX")czC(xX\ xX'). Hence anyway by Proposition 1 xX' is
coarser than xX, or else rA" is discrete. If C(xX, xX)zdU(X', X’) and tA" is discrete,
then by Lemma 1xX is discrete (thus xX' is coarser than xX) or indiscrete; if here tA
isindiscrete, then Xx=U(pX\ pX"') and by Lemma 1pX" is indiscrete or is a discrete
proximity. Lastly, if X' is finer than pX and xX' is coarser than xX, then xX=xX',
and if X is precompact fine, then X = X'.

Taking into account that non-degenerate Peano continua contain arcs, [ddX=
=0=>xX Iis zero-dimensional], and [X is S3i, \/IxEX {a}is G6=>X is TO, hence
Tsf\, we have

Corollary 5. Let X be apseudocompact space withfine uniformity, which is not
afinite discrete space or an indiscrete space. Let each pointofXbe a Gd-set, and A)) let
xX have the weak topology w.r.t. its subspaces which are Peano continua (e.g. be T2,
first countable and locally arcwise connected, cf. Corollary 1) or B) let 0dX=0 and
xX be sequential. Let X' be another uniformity on the underlyingset ofX, U(X', X")a
c U(X, X)czU(pX',pX"). Then X'=X, thus X is a special uniform space. In case
A) if X is also arcwise connected and in case B) even U(X, X)aU(pX"', pX'), xX'
non-discrete, non-indiscrete imply X'=X.

Analogously one has

Theorem 2. Let X be a uniform space, and let X' be another uniformity on the
same underlying set (resp. a) let X be precompact and either X have thefinest uniformity
compatible with its proximity — i.e. by [8] X has no subspace X, which is a countable
discrete proximity space, and also is a retract of a proximal neighbourhood ofitself—
or X' be a precompact uniform space, too). Let X satisfy the hypotheses o f Proposition
2 (X playing the role ofboth X and Y), and X, X' satisfy with some Ac”"XxX the
hypotheses o f Proposition 3 (with X=Y, X'=Y", the case (1) in Proposition 3 omit-
ted). Then either pX is a discrete proximity and X' is indiscrete (or in case (2) only
X" is indiscrete) or pX' is a discrete proximity or pX'=pX (resp. in case a) X'=X).
If U(pX, pX)Zi U(X', X*) holds, the casep X' is a discrete proximity can be replaced
by p X" is a discrete proximity and X is indiscrete.

Proof. pX' is finer than pX by Proposition 3, unlesspX is a discrete proximity
and X' is indiscrete (and correspondingly in case (2)). By Proposition 2 (applied for
X playing the role of X, Y, and p X" playing the role of X', Y') either pX" is a discrete
proximity or pX"' is coarser than pX. If U(pX, pX)A>U(X', X') andpX" is a discrete
proxir(?ity, then by Lemma 1pX is a discrete or indiscrete proximity. The case a)
is evident.

Take into account the characterization in [8] mentioned in Theorem 2 and the
fact that X precompact, vyX sequential and X zdX1, X1countable discrete proximity
lead to the contradiction BIxJcAfj, xAxdyX. Considering also Remark 1, we
have
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Corollary 6. Let X be a precompact uniform space, which is not a discrete
proximity space. Let X satisfy the hypothesesfor both X and Y in Corollary 2, ddX—o.
Let X' be another uniformity on the underlying set of X. Let either ryX be sequential,
or X have thefinest uniformity compatible with its proximity, or X" be precompact. Let
U(X, X)(ZU(pX\ pX'), pX' non-discrete, non-indiscrete proximity. Then X'=X,
thus X is a special uniform space.

Remark 5. We do not know if in the last sentence of Corollary 5, resp. in Cor-
ollary 6 tX"' discrete topology, resp. pX"' discrete proximity implies 3a, X' has for
base all partitions of cardinality <a.

Theorem 3. Let X, Y be uniform spaces, and let X', Y' be other uniformities on
the underlying sets of X and Y. Let xX, XY satisfy the conditions of Proposition 1
(playing the roles of X and Y) and let Y be compact. Let either X be afine uniformity
and U(X, f)cC (xX', xY') or pX be afine proximity and U(pX,pY)czC(xX", xY")
or C(xX, xY)aC(xX", xY'"). Let either Y"' separate all pairs of points separated by Y
drlet U(pX, pY)z) U(X', Y') (oronly a) C(xX,xY)Z)U(X', Y")). Then either pX
is a discrete proximity (in case a) only xX is discrete) and Y' is indiscrete or xX' is
discrete or Y'—Y.

Proof. The conditions imply C(xX, xY)(zC(xX", xY'). Thus by Proposition 1
xY' is coarser than xY, or else xX' is discrete. U{pX,pY)Zi U(X', Y') (resp.
C(xX, tT)z>U (X\ y')) implies by Lemma 2 that each pair of points separated by Y
is separated by Y', too, unless p X is a discrete proximity (resp. xX is discrete). IfpX
is a discrete proximity or only xX is discrete, by the topological version of Lemma 1
(cf. Remark 3) C(xX, xY)</AC(xX', xY")=>xX"' is discrete or Y' is indiscrete. If
each pair of points separated by Y is separated by Y', too, by the compactness of Y
Y'=Y.

Turning to the topological case one has

Theorem 4. Let Xbe atopological space. Let X satisfy the hypotheses o f Proposi-
tion 1 (X playing the role ofboth X and Y). Let X' be another topology on the same un-
derlying set, X, X" satisfying with some A<zB<zX the hypotheses of Proposition 4
(with X=Y, X'=Y'). Then either X" is discrete or X is discrete with X" indiscrete or
X is saturated with {open sets o f X'} = {closed sets 0f X} or X=X" (orin case (1) X'
is discrete or indiscrete or X'=X). If C{X, X)—C(X', X") holds, the case X'
is discrete can be replaced by X" is discrete and X is indiscrete.

Proof. Apply Propositions 1 and 4, and for the last sentence the topological
analogue of Lemma 1
From here, using Corollaries 1 and 4 we have

Corollary 7. Let X be a non-discrete, non-indiscrete topological space. Let
each point of X be a Gs-set, and A) let X be T3i, and have the weak topology w.r.t.
its subspaces which are Peano continua or B) let X be zero-dimensional and sequential.
Then X is special. In case A) if also X is arcwise connected and in case B) even
C(X, X)aC(X\ X") (X' another non-discrete, non-indiscrete topology on the under-
lying set of X) implies X=X".

Remark 6. Theorem 4 is closely related to [17], Theorem 4.5. In Corollary 7 A)
is related to [17], Theorems 4.6, 3.3 and 4.7, while B) is a generalization of [17], Theo-
rem 4.9.
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Remark 7. For separated uniform (proximity) spaces, resp. 7\ topological
spaces the assumptions of our Propositions 3, 4, Theorems and Corollaries simplify,
instead of two-sided inclusions we only need to suppose the inclusions of the type
hom (FX, FT)c:hom (F'X', F'Y'). Opposite inclusions do not suffice in general,
e.g. C(X, X) (or U(X, 1))d C(I', X") for any rigid topology X' (i.e. C(X', X") =
= {identity} U (constant maps}, cf. [5]).

83

Using the above results we can determine the coarsest concrete functors between
any two of the categories {uniform spaces}, {proximity spaces}, {»S" spaces} (sepa-
rated or not). We consider S3t spaces as embedded in Unif by fine proximities.
A subcategory is meant to be a full one.

Proposition 5. Let Yic {separated uniform spaces}, 31TOb&, [0 I]c:T.
Then for every concretefunctor F: {separated uniform spaces} we have: VAT
30bY FX isfiner than pX.

Proof. Using Corollary 3 we see FY is finer than pY (it cannot be indiscrete).
Foreach X~ObY pX isgenerated by U(X, [0, Y])czU(X, 7). We have U(X,Y)a
c. U(FX, FY). Denote Z the subspace of FY corresponding to [0, 1]; thus Z is finer
than p[0, =[O0, 1. We have U(X, [0, I])ct/(FZ, Z)cU(FX, [0, 1]). Thus the
statement follows.

Remark 8. Proposition 5 implies a similar “extremal property” of the precom-
pact reflection —among concrete reflections in {separated uniform spaces} — which
is given in [16], Theorem 3.5.

Proposition 6. Let Tc: Unif, 3ITObY, Y isnotindiscrete. Then for every
concretefunctor F: Unif we have: VATObY FX s indiscrete, or VATObY
FX isfiner than the reflection R X—[uniformity on X with base thefinite uniform parti-
tions on X] of X to {X'\X"' has a basis consisting o ffinite partitions}.

Proof. Choose a non-indiscrete 1T Ob Y with non-indiscrete FY and yxY yf Y
separated both by Y and FY, like in the proof of Proposition 3. This choice is pos-
sible since otherwise for each non-indiscrete IT ObY — or for at least one space Y
with pFY ~discrete proximity — and each indiscrete ATOb” U(Y, X)czU(FY,
FX), which implies by Lemma 1 FX is indiscrete. Now for any ATOb Y RX is gener-
ated by U(X, {yx,y"))czU(X, Y). However, RFX is generated by U(FX, [yx,y3),
or by the hypothesis onyIf y2by U(FX, Z)aU(FX, FY) where Z is the subspace of
FY consisting of yi,JV By U(X, Y)cU(FX, FY) we have U(X, {Ti,"}H*"
dU(FX, Z), too. Here U(X, {)\, yZ) generates RX, U(FX,Z) generates RFX,
thus RX is coarser than RFX, which is coarser than FX.

Proposition 7. Let m Unif, 3fTOb T, Y is not separated. Then for every
concrete functor F: ~-"{separated uniform spaces) we have: VATOb T1 FX isfiner
than the discrete proximity.
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Proof. Let y "y " Y benotseparated by Y. Let X*ObW. Forany Q "A*X
define /€t/(X, Y)cz[/(FX, FY),f(A)={yL},f(X\A)={y2}. Since FY is separated,
this means {A, ACvl} is a uniform cover of FX, which implies the statement.

Remark 9. An (in fact most general) example is FT—{coarsest common re-
finement of GX and the discrete proximity on X], where G is any concrete functor to
Unif (comp. [7], p. 79) (note that FX is separated). Also in Propositions 5, 6, 7 if
the codomain of the functor is (separated) proximity resp. S3i spaces, rather than
(separated) uniform spaces, the coarsest non-indiscrete concrete functor is the same,
resp. to [the same].

Proposition 8. Let 'tic {indiscrete spaces} (resp. Set), and F:#—Unif
be a concrete functor. Then VATOb FX=indiscrete space over X, or VACObD f
FX=discrete space over X, or VAXOb  FX hasfor base all partitions of X of car-
dinality <a, a an infinite cardinal depending only on F.

Proof. Suppose some FY is not indiscrete, say, separates y19y2- Then VAC
COb™ and W "AAX fEU(X,Y)<zU(FX, FY), where f(A)={yl}, f(X\A) =
= {yZ}, thus FX is separated. U(X, X)czU(FX, FX) implies thus by Remark 2
that FX=Xa—uniformity on X with base all covers of cardinality <a, for some infi-
nite cardinal a=d(X). If for each A" tx(X)>\X\, Xx is discrete for each X.

Now for any X, Y we have Yx=U(X, Y)czU(FX, FY)=U(Xa(x), T*m).
Note that the inverse images of partitions of Y of cardinalities <a(Y) with any
functions fEY x are just the partitions of X of cardinalities <min (a(Y), |Ar+).
Thus we have min (oc(Y), \X\ +)"<x(X), and also conversely min (a(Af), |Y |+)"
7ot(Y). This means one of the following possibilities hold: [\X\+"0.(X) and
[Y|+Sot(Y)], |T|+Sa(Af)Sa(y), |Y|+sa(Y)=j»a(A") or a(T)=a(y). We may
suppose y satisfies oc(Y)?|Y|, while X is arbitrary. This leaves the only possibilities
a(T)=a(y) and |A+"a(Af)*a(y)S|y|- In the first case we are done. In the
second case Xx(X) is discrete, and equals Xxiy), thus we showed the assertion.

Acknowledgement. The author expresses his gratitude to A. Csaszar for his
valuable suggestions, and to R. Z. Domiaty and L. Marki for pointing out several
references.
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ON FINITE FIXED CENSORING

L. REJTO

1 Introduction

In the usual censoring problem Xlt ..., X,,, ... are i.i.d. random variables with
unknown distribution function F on the probability space (£2,s/, P). There is given
an other so called censoring sequence Lx, ..., Ln, ... which is either a sequence of
numbers or a sequence of random variables. If the censoring sequence is random than
it is assumed to be independent of {A} Set Z;=min (A), F}, 8t=[Xi*L{\ for
i=1, n where [A] denotes the indicator function of the set A. One way to estimate
Ffrom the sample {(Zf, £j)}'=1 is by means of the F* product limit (PL) estimator
(Kaplan—Meier [4]). It is known that the PL estimator is the maximum likelihood
estimator of the distribution F. In this paper it will be considered such a case when the
censoring is fixedand having finite values on the interval (—°; T]. A paper of P. Meier
[5] deals with the fixed censorship model. He pointed out the fact that this model is
more applicable than the random censorship one. At the same time if a theorem is
valid for the fixed censorship case, it can be proved for the random censorship case
and the assumption of the independency of {T,} is not necessary.

In the first part of the paper a Glivenko—Cantelli type theorem is given for the
finite valued fixed censoring case, and then as a consequence of it, a similar theorem is
given for the pairwise independent not identically distributed rar?]dom censoring case.

To estimate F on the interval (—<»; T] it is necessary that I2_ | [A>m/]—°° for all

t€(—°°; T] but further condition on the order of the above sum is superfluous for
a Glivenko—Cantelli type theorem, as it is shown by Theorem 1.1. Corollary 11
states the same result for random pairwise independent censoring sequence. In the
second part an exponential bound is given for the probability P(sup |[F* —F|>e),

and a convergence rate of sup \F* —F\ isgiven under the condition that 7om- %),
i=I
Similar statements hold for the independent random censoring case, as it is
shown in Corollaries 21 and 2.2. The condition — — —---«0 is supposed in the
_[Yi>T]
random censoring case by Foldes [1] dealing with the rate of convergence of

1980 Mathematics Subject Classification. Primary 62G05; Secondary 60F15.
Key words and phrases. Censoring, Kaplan—Meier estimator, Glivenko—Cantelli type the-
orem, rate of convergence.
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sup |F,*—F\. The really interesting results in this fixed censoring model are that this
n
condition on the order of 2 [Lt>T] is not necessary, and — as a consequence —

i=l
the independency of the censoring random variables can be dropped in random cen-
soring models.

1. Glivenko—Cantelli type theorem

Let X1, X2, ..., Xn, ... independent i.i.d. r.v.-s with right continuous distribution
function F(x)=?{XkSiX), and survival function F(x)=I —F(x), L1, L> ..., Ln
is the censoring sequence. Z;=min (XhL), 8~[XtrL;], where [A] denotes the
indicator function of the set A.

For the definition of the Kaplan—Meier estimator let Z ()" Z (= ---=2(,,)
be the ordered sample where the ordering means that if for /</ Z(i)=Z(J) then
Hi)S<5(y), 6D denotes the Sbelonging to Z(i).

D efinition ([4]). The product limit (PL) estimate of F, from the sample
{(Z;, B)¥=1 is the following

F:(t)= 1-Fr(t) i Ny (Fib+dgyu’ ir sz »
if i>z(n)
To state the theorem we need

LY =L{t,n) = 2 iLi=4 L+O=L+itn= [ [F>]]
(LD
Nit) = Nit, n) = |Z—£Z ,M | N+it) = N+it, n) = i2:l[z, > ],

Theorem 11 Suppose that on the interval (—oo; T] the following conditions hold:
O I-F(T-)>0;

(ii) the censoring sequence {Lj'jfL*has 0N K <+°° different values on (—°°; T];

(iii) n"IP L(T, «)=+ <»

Then
sugAT\FrFix)-F ix)\* 0

In the random censoring model we suppose that {£3}"“ 1 is a realization of a se-
quence {F};” 1ofrandom variables. It is also assumed that {Fjnri and {F},“ 1 are in-
dependent sequences. In this case the statistician can observe the sequence of
pairs

iZi = min Ix,- F); &= [Xt* FJ) i=1,...,n,

and F* is the same as above.

It is not necessary to suppose that {F;}fix is an independent sequence, we need
only condition (iii) of Theorem 1.1, with probability 1. We shall show that the Erd6s—
Rényi form of Borel—Cantelli theorem reduces (iii) to a more plausible form, i.e.
condition (i) and (iv) of Corollary 1.1. The condition (iii) of Theorem 1.1 holds in
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many other cases, i.e. if we have a law of large numbers for the random variables
{[r(sr]}r=1.

Corollary 11. Suppose that in the random censoring model thefollowing con-
ditions hold:

(i) ther.v.-s {T.}nLi arepairwise independent and the random pairs {{Zt; &}" i
are independent;

(i) at the point 1—F(F~)=»0;

(iii) the r.v.-s {T,}rLi have 0 +<» different values on the interval (-«>; T]\

(iv) |p(J," n = |5 i(n=+".

Then Wlth probablllty l
IF.,*(*)-F(x)| -*0.
oo c "T

Proof of the Corollary 1.1. Consider the sample {(Zf; €§}"=1 and the PL esti-
mator Ff(x) under the condition that given the sequence of censoring variables. If

{r«(®)}ui = {L,}r=i, i2:I IL,s T] = '2|& (S T] —

then using Theorem 11 we have )

Pim _sup  |F*(x)-F(x)| = OI{rj(<u}-D = I
The Erd6s—Rényi form of the Borel—Cantelli theoiem (see, e.g. Rényi [6]) can be
applied for the events [TASF]. It follows by Conditions (i) and (iv) that with prob-
ability 1 2 [Tl(co)EF]- +00. Hence Condition (iii) of Theorem 11 fulfils with
probablllty 1 for the sequences {"(co)}," x. Thus

P(lim _sup IF (iI9-F (X =0) =
=/ Pip_ sup |F,,*(x)—F(x)| = O{Tjcw)C j)iPn = 1 O

» -y

The proving method of Theorem 1.1 is similar to that of the papeis [2], [3].
We shall use similar notations for the proof.
Let j&E(— T] arbitrary. A partition belonging to x means a partition

= -“< Zi<-oo<a:X

of the interval (— jd, which contains all of the different values in (— x]
of the censoring sequence as a point of the partition.
Set

B =P{x*Zj\x>tj-j, Pj=P(X>Zj\x*tj) 0=1..J)

(12) 1-F (9= P(X > x) = 13 Pjpj,
=

1 -F(x-) = P(Z"x) =pj ft PjPj-
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Using the notation

L ff, terrf! *>=
i-i*=z (i)' zd)-lj
o=1../),

it is easy to see, from the definition of the PL estimator that

a'3> >

(1.4) Fn(x) = _Ilfjpj, F*(x ) = Pj_HI Pjpj.
J: J:
In the above notations, and further on 0/0 is interpreted as 1. Finally, set

Nj = =1 1[z> J, Nj=mtj)=2 [z S{],
(L5) =1
Dj = 2.1Z-i<ze<ij, §- 1 5;=2.[2= $=1 0=1,../).

For the proof we need two lemmas. The fiist one is really simple but essential.

Lemma 11 Forfixed t andn, the random variables N(t) andN +(t) are binomially
distributed with parameters (L(t), F(t~)) and (L+(t), F(t)).

Proof. The statements follow from the equalities
N(t) 2KM =2 KH

N+(t)= 2[Zi>U= 2 [*i>]. O

itLt>t

Lemma 1.2. Lei mvconsider a partition belonging to xE(— L], Then
0O = Pi= V ~

with probability 1,
00 ?27khd PI-T & f

if L{T) »o0> where 1=./'=/ arbitrary.
Proof, (i) If theie is no uncensored sample element at the point £y, then using
(1.3) pj=i. In this case 5j =0, thus ;;j:-N'-z\. If we have uncensored sample

i'l
element at then the statement follows easily using the ordering of the sample
elements, i.e. that the censored sample elements are followed by the uncensored ones.
Again, it is easy to see the second equality if Dj=0. Suppose that /)#>0, and the
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sample elements Z(i+1), Z k+Dj) are in the interval £j). In this case Nj=
=n—k. In the considered partition these sample elements are uncensored. Hence if
Z(D€(iy-i, tj) then ~<)= 1- Thus, from (1.3) we get

n—k—1 n—k—2 n—k—Dj _ n—k-—Dj Nj —Dj
n—k n—k—1 n—k-Dj+1 n—k Nj

(i) By Lemma 11 Nj is binomially distributed with parameters F(Ey)).
Furthermoie
f)j-Dj= Z
i-.LtSij
thus Nj—Dj is binomially distributed with parameters F(£j)), and the first
statement follows from the strong law of large numbers. To prove the second one,
for the fixed n and the partition one can see that

Nj—Dj —Nj and L(Q =2+{._).
Thus using Lemma 11 and the strong law of large numbers we get the statement. O

Proof of Theorem 1.1. We prove that for an arbitraiy O<e<I,
sup |F*—F|<2e holds with probability 1 Consider a fixed e, without loss of

Sy IS
generality we can suppose that e”\/K, where K is the number of different elements of

the sequence on the interval (—°°; T]. Furthermore, there exists an & ¢ 12,
P(fi)=1 and if (0o£Q then there exists n"at) suchthat

T £ max (Zifcu),..., Z,(cu)}

for nSWI(co). This is a consequence of the fact that 0<F(T~). Consider a partition
belonging to T. Let us choose the £0= — points satisfying the
following conditions:

(@) all of the different elements of the censoring sequence {L.}“ i are among the

£/-s;
(b) F«f)-F«.-i)S8/2;
(c) 7(e)s4le.
Using Lemma 1.2 it can be supposed that

A .9 o 9 .
(1.6) \Pj-Pj\ < jj and \pj-pj\<ij (j=1, ..1I¢)),

i.e. let us consider the set 12,7i3, P(R0)=1, where for all a)£R0 there exists n2(co),
such that if n*n2@) then (1.6) holds for all 1 Thus, consider a sample
{(Z;(co); O@))}7=1, cu€R0 and n>n2(cu). Then the sample element ZM~T. Hence

x.7) sup  [F*(X)-F(X)] = max sup \F*(x)-F(x)\.
—<JST 1SjSJ (j_1Sxstj
Using condition (b) about the partition, for arbitrary £e) we have
(i.e) Ph(tn-F (tr)~ " f:(x)-F(x) =
Thus we have to examine the differences —F(EO\ and |/r*(if) —F({D)|

2
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(/=1, ...,/). For this we need the following inequality: If |«t|s] and |a*|sl

k —1, K then
K K K

(1.9) [l ui- 17vii= 2

In view of (1.2), (1.4), (1.9) and (1.6) we have that

(1.10)
N o N - Di j-Pj o
"«D --F«r)l 2, \Pj- pj\+ 2, Pj-Pj\" y

By (1.8) |F*(x)—(X)| for arbitrary x€féi_i, &. Hence the statement follows
using (1.7). O

2. The rate of convergence

In this part, for the sake of completeness we give two theorems, the first states an
exponential bound, the second gives the convergence rate. The proof of Theorems
2.1, 2.2 are similar to that of Lemma 2 and Theorem 1 of papéi [2],

Theorem 2.1. Suppose that conditions (i) and (ii) of Theorem 1.1 are fulfilled,
furthermore L(T,n)S 1 Then for arbitrary

P( su AJllF;(JC)'F(X)|Aa)g 32(/\O+1) eijl 128 L(-I;B:::-I-(T);)e }.

Theorem 2.2. Suppose that conditions (i) and (ii) of Theorem 1.1 are fulfilled,
furthermore

Then

256(AT+1)2
3F(F~)
We sketch the proof only stating the basic lemmas without proof. The proof of

Lemma 2.1 goes on the same way as the proof of Lemma 3.3 of paper [3], while the
proof of Lemma 2.2 is similar to that of Lemma 1 of paper [2],

Lemma 2.1. Suppose that L(T)"1, F(T~)>-0. Then for arbitrary partition
belonging to an arbitrary x(f— T] thefollowing hold:

with probability 1, where c= 1+

for all O”iSI and IMys/(x).
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Lemma 2.2. Suppose that conditions (i) and (ii) of Theorem 1.1 are fulfilled,
furthermore Z,(7\n)S1. Thenfor arbitrary xE(— T) and 0<e<2 thefollowing
hold:

P(\F:(x)-F (x)\>¢)
POF:(x-)-F(x-)\> )} a 4<*+ "> W iy} m

Now the proof of Theorem 2.1 follows from Lemmas 1.1, 1.2, 2.1, 2.2 using
inequality 1.9. The proof of Theorem 2.2 follows from Theorem 2.1 via the Borel—
Cantelli lemma.

Further on we state two corollaries, for independent stochastic censoring, where
the censoring sequence is not necessarily identically distributed. The second one is a
special case of Theorem 1 of [1], if we suppose the continuity of F. For these corol-
laries the continuity of F is not necessary.

Corollary 2.1. Suppose that in the random censoring model the following con-
ditions hold:

() ONF(r-);

(ii) ther.v.-s {T3rI1lhave + <>different values on the interval T];
in ry= 2 = +
i)z pesr)= 2, ®

Then
P(-OgHQAT \;(x)-F(x)\>¢e)"

32(A:+1) | 3eX(T~) .
e expl 356(A:+1)2 i2:i &i(T )]$+ EXp §_|2=| C

Corollary 2.2. Suppose that in the random censoring model the conditions (i)—
—(iii) of Corollary 2.2 are fulfilled. Then with probability 1

SUp . \Fi(x)-F(x\= O log n
Ay

oo 2 &(H
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CUBE-LATTICES WITH GOOD DISTRIBUTION BEHAVIOUR

JOZSEF BECK

Abstract

In this note we prove the following theorem: For arbitrary natural numbers r, n and real
e=»0 there exists a threshold k,,(r, n, €) such that given any n measurable subsets of the /--dimensional
unit cube, one can find an aligned /--dimensional cube-lattice of size kX...Xk with k~kO(r, n, s)
so that its “discrepancy” is less than e relative to each of the given sets. In spite of appearance, this
result is far from being a triviality. The proof needs some “advanced” ideas, namely a version of
the “second-moment method”.

1. Introduction

Let Ur denote the /--dimensional unit cube o 0MXTIMLL. We say
that Q is an /--dimensional cube-lattice of order k if it can be written in the form
{(h+jib, t2+j2b, .... t,+jrb): jt=10,1....... k-1; Isin™ r},

where t=(tlf tr) is an arbitrary /--dimensional vector and b is a real number.
Denote by A the /--dimensional normed Lebesgue measure, ie. A(E/N=1
IAT1 denotes the cardinality of the set X.

Theorem 11. There is a universal threshold function kO(r, n, e) such that, given
any n measurable subsets Ax, A,, of Ur, one canfind an r-dimensional cube-lattice
QdUr of order k<kO(r, n, &) with the property

16 pm ,

K(4d e forall i, 1SiS n

161

Let [0, Mr denote the set of the integer coordinate points (ax, a2, ..., ar) where
a~0, 1, ..., N and 1~/~r. Using Lebesgue’s measure theory one can easily deduce
Theorem 1.1 from the following purely combinatorial result.

Theorem 1.2. There is a threshold kfir, n, e) such that, given any natural number
N and any n subsets Bu ..., B,, of[0, A]r, one can find an r-dimensional cube-lattice
Qc[0, N]r of order k<kfir, n, €) with the property
IBnAi B\
161 (N +iy

For the sake of completeness, here we give a deduction of Theorem 11 from
Theorem 1.2,

forall i, 1S iS n

1980 Mathematics Subject Classification. Primary 10K30; Secondary 28A75.
Key words and phrases. Cube-lattice, uniform distribution, large sieve.
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Ifall Aj’-s are the union of finitely many r-dimensional balls, then we are ready as
follows. Choosing any sufficiently dense aligned cube-lattice R we can guarantee that
each Ai has discrepancy less than e/2 relative to R, i.e.,

14D * S

(N+|y -K(Ai) 5
where iV+1 denotes the older of the lattice R (of course, N can be arbitrarily large).
Then applying Theorem 1.2 to R, we obtain the existence of a cube-lattice QczR
such that the order of Q is less than kx(r, n, ¢2) and for each'i, 1Si”~n,

lentil I*il ; . =
where B;=A"R.
gl (A+Dhr !
Now in this particular case the proof of Theorem 1.1 is complete, since
\Qf)At\ len™i [*n7-| o I*nnilim
el I8l (N+iy (A+Dr rw

E.

In the general case there are some minor technical difficulties. Let G, (17i”n)
be a union of finitely many r-dimensional balls such that /r(_("J_ (<7;Av4j))<%
1-1

where A denotes the symmetric difference.
Assume that one can find an aligned cube-lattice R such that each G, has discrep-

ancy less than e/5 relative to R and |/?rMO0/|.R|<e/5 where AO0= (J (GJAT).

Then we are ready by the argument above. Indeed, applying Theorem 12 to this
lattice R and to the sets BO—Rf)A0Q, BARCIGi, 1*i~n, we obtain the existence of
a sublattice Q(zR such that the order of Q is less than kx(r, n+ 1, e/5) and for each
i, 17iSn,

IRnb\ \Bt\ IRn*q  I*n~,0 £ 2
Q 1™ 5 and IRl 1 +5-=5¢
Now Theorem 1.1 follows, since
\QHAI K (A Ifinél IRn G| N IRng+i I'DGIl
IRl IRl 1B [d]] ™
I“nc?il
~K(Gd +W(G)-2r(A)\ <
I8 1l (I(EI""TN ¥ +Y+G(G:AT) =
Ifinél ,e ,e,,,,, ., € ,8 ,€e ,8

ST 5 MK [ o) 2ttrttttt - b
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Therefore, it suffices to find the desired cube-lattice T. The first requirement of R
(i.e. each Gt has discrepancy <e/5 relative to R) is automatically satisfied if R is
sufficiently dense (we recall that Gt is a finite union of balls). Consequently, it is
enough to find an aligned cube-lattice R such that the order of R is greater than a

threshold NO—NO(G1, G2, ..., G,) and |A(TA0/IMI<£/5 where AO= (\_Jl (GtAAY).
Let N>NO and let RN denote the set of points

(iIPTT* "™’ Tr) where ai=0"1>2"-*ivV*1 1- i-r-

Denote by RN+v the translated image of RN by the vector v, and for any real number
p let p «Ur denote the set of vectors p\, vEUr. Observe that

| AMINOMI= (Y <4-

(IN)Ur

Since Ai-~C/')="r, there must exist a VOE-"-E/r such that

[(M+VvO)n"rol<y”r,

IWvi+ Vo)rvol *
lev+\ N 5°¢

This completes the deduction of Theorem 11 from Theorem 12
The proof of Theorem 1.2 will be based on a multidimensional “large sieve”
type estimate (see inequality (9)).

2. Proof of Theorem 1.2

Given an arbitrary prime number p and an integer coordinate vector
a= (lx, ..., ar) with O”*a~p —1, 1*iSr, let Qpadenote the cube-lattice

{(ai+jiP, a2+j2p, ...,a,+jrp): 0 B/a,+jtp S N, I sis r}.

Let/pa denote the characteristic function of the cube-lattice <a, i.e.,/Pia(b)= 1 if
b€Rpa and 0 if b€[0, NY\Q ptl. Finally, introduce the function 4pa defined on
[0, N]r as follows:

N+i
O».. = ( y 1-

The following lemma express the quasi-orthogonality property of i>pa’s in quanti-
tative form.
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Lemma 2.1. Ifp and q are distinct primes such that p my<N, then

(€ b€[gwwb)<“(b)|=o\tg‘y\flv +ir,
If aX’ia2, then

o) b€ﬁ“\]r<w b)<W b)=-(Ar+iy.
Finally,

©) befpie <P = O er(h s o

Here and in whatfollows the implicit constants depend only on the dimension r.

Proof. We start with the verification of (1). We have

2<W b)<*W b) =

(4)
(tf+D)* r ,uw N (iv+iy , ~  (N+iy ,
? 1IGEIIG..)J [/p'a )/,a2() Gp.a] /p'a‘() IGo. a.l
(iv+l1)er .
IGp.a.nOi.a.l-iiV +iy.

IBRp.aJ 16i.aj
Observe that

IC, ~(H +1))'(1+0(X)),

and using the fact that p, q are prime to each other,

+i

fiv |
lop.a, fi Qq,aj — ~ 0 +0 (#)).

(AH-1)2

l16p.aj l6i.aj

Hence
iop.aj fi Qq,aj —

(AM-D3r(1+0(p?/7V)) .
(NS \T{\ + O (pIN))(1+O(gq/Ny)  (NFIT(I+0(pg/N)).
Returning to (4) we obtain the validity of (1).

In order to check (2) observe that Op,al”0p,a2=0 if aj;4a2 Therefore, by
(4) we are done.
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Finally, to verify (3) observe that \Qpm\=0 , thus by (4) we obtain
befo.r () = (ﬁipJfgﬂl' - (M +1)f = o(M(Af+iy).

Lemma 2.1 is complete. O

We will require an appropriately modified form of the classical Bessel inequality
applicable to quasi-orthogonal systems.

Lemma 2.2 (A. Selberg). Let £, pt, ..., ghbe elements of an inner product space
over the real numbers. Then

26 M1 2 \Myl) e

For completeness we include here the simple and elegant proof (cf. [1] p. 8). We
have |E£—=2j CZYII2—0 for real numbers ch that is to say

I60- . 2 GE-<PF2IGER 9D o

Using
lc.c.| Ay(lc,[2+]c,]2,
we obtain
(5) I%CQMLMM%ZimB%NQKWF

From (5) we have

22 ciZ>vi) s IIiP+4 k/I2>;=I\(03i’<Pj)L
h
If we now take c,=(£, ipi)(2 I(<F>Vj)])-1 the result follows. O
J=

We remark that A. Rényi was the first to realize that inequality like Selberg’s
lemma above could be used in proving the “large sieve” in number theory, see [1].
In our application, we will be concerned with inner products of type

@0 = By & O

where g ¥ are real functions over [0, N]r, and of course ||o [|2=(<p, ).
Let gi denote the characteristic function of the subset Z?,c[0, N]r.

Clearly,
(N+ 1
10P..1

opandil  bd 1
16p,«l (|V+|y‘]

IBp..n-»,I—|a,i=

(go™p..)
(6)
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By Lemma 2.2
M SfZSIMa (sg ..... (> #P'a)|2(|v| s%zm b:(eg ..... 6r) K"pa, ~.b)|) 1S
(7) osojr p I OShtmg—1

S lg|l2= || S (A7+D)r,

where p, q are prime numbers belonging to the interval \M, 2M] and M will be
specified later. By Lemma 2.1, for each Opa

2 2 I*r«> " b)| S
MAg”r2M b=(bl,..., r
Abng-1
A li>p,.2+ 2 I("p,a,<i>p,b)|+ 2 2 [(*p...,*,.fc)l =
b:bra b=(i,... br)
O0Si.Sp-1 q*p 0Si.Sq-1I
(8)
= 0(pr(N+ ly) + prO((N+ D)+ MM rO (N+ iy =

( M r+3\
= o((iv+iy)(Af'+-1r-J.

By (6), (7) and (8)

<*+i)»q Igf*n B1l- 7;|#T r}y:

2
M ApA2M a= (al( ,ar) (iv +1)73
onr

= o(7v+hfmre ¥ TF vy,

Divided both sides by (7V+1)2 we have

IBp.aH"I 1M
! oﬂa%H\_ Bpy (V)

Choosing M =N 13 and summing by /, 1™ /s w we obtain

&) £ nsfane af2| ar)\ 0% 7 CETRR O

Since the number of primes in the interval [M, 2M] is greater than cOM/log M with
some constant ¢0>0, (9) immediately yields the existence of a cube-lattice 6pQa0
with N 2/3Sp0<2N13 such that

y J 16po.«.n?| *| 12_n (nlogN)

(10) A\ lopaadl  (7V+ird | N13 m
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From (10) it follows that

AN
0p,, a«n”| — \B)\ cigr, ny (09A012 0 il 1SS«
\Qpar<\ (N+\y N la
Thus we have proved the following
Lemma 2.3. Given any natural number N and any n subsets Bt, B,, o f the cube-
lattice [0, N]r, there exists an r-dimensional cube-lattice N]r of order SN 23
with the property
lotnfid BN on N~ forall i, 1SiSn O
10il (N+iy

Let Nxdenote the order of Qt. Applying Lemma 2.3 to Qj we conclude that there
exists a cube-lattice Q2a Qi of order N2SN1/3, with the property

102n b\ 10in Bt\
0al Oi
By repeated application of Lemma 2.3 we obtain the existence of a sequence <M=

=[0, MrDR1DO!D...DOp... of cube-lattices with the properties Njs N ff
where Nj denotes the order of Qj, and

c(r,n)nrr2 foralli, 1S.iS n

\ij).B’\ l*’! c2(r,n) 2 Nr17 foralli 1Sis n.
\Qj\ (N+iy (=0
Elementary calculation shows that 2 5if only Nj> c3(6) where c3(0) is a

i—o
sufficiently large constant depending only on <5>0. This completes the proof of
Theorem 12. O
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ON THE ORDER OF CONVERGENCE OF A FINITE
ELEMENT METHOD FOR MIXED BOUNDARY VALUE
PROBLEMS

L. VEIDINGER

Weisel obtained in [1] error bounds for a finite element approximation of the
mixed boundary value problem for second order elliptic equations in the case when
the boundary is a polygon. In the present paper we shall generalize Weisel’s results to
regions with curved boundaries.

1. Let R be a bounded open plane region whose boundary C consists of a finite
number of piecewise analytic simple closed curves. For the sake of simplicity we shall
assume that the boundary C consists of two analytic arcs C 1and C2which meet at
the corners Axand A2 and form the interior angles nxland na2 (0< a;< 2) there,
respectively (see Fig. 1). The general case can be treated in the same way.

A

We consider the mixed boundary value problem
Lu = VpWw)—gu =f in R,
u=0 on C2

on C1

1980 Mathematics Subject Classification. Primary 65N30; Secondary 65N15.
Key words and phrases. Finite element method, mixed boundary value problems.
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Let the coefficients p=p(x, y), g=q(x,y) and the right-hand side f=f(x,y)
be infinitely differentiable in R. We assume that p(x, yjSc”s-O (cxis a constant),
q(x,y)=0 for all (x, y)(zR- It is well-known that under the above assumptions
the mixed boundary value problem (1) has a unique solution u(x,y).

Let Q be a bounded open region in the plane of R. We denote by WAm)(Q)
the Hilbert space of all functions which, together with their generalized partial de-
rivatives up to the mth order, belong to L2(Q). The norm is given by

m

M MIm.n = 2 vy,a,
where
Mij,a — 2 101
\\=j
((*D

Here i=(h,h), |/|=/i+i, Dv=]xidyi,-

It is well-known that the solution u(x, y) of the boundary value problem (1)
minimizes the functional

2 FO)- 11 PLUI) + (IM)1] + «m*+2*m}*x

over the subspace of W2I)(R) formed by the functions v(x, y) such that tij@=0.
In the sequel we shall use the following

Lemma. Let DA be a sufficiently small neighbourhood of the corner A{. If 2a;
is not an odd integer, thenfor all (x,y)EDA.HR we have

k k
(3) u(x,y) = 2 akridsinza + w(x,y),

kodd

where rt and  are the polar coordinates of the point (X, y), the coefficients ak are
constant and wix "y*"WfriDACiR).

For a proof, see [1], p. 36.

2. The line AkA2subdivides the region R into two disjoint subregions R 1and R2

(see Fig. 1). Let h be a sufficiently small positive real number. We approximate the
region R2 by the Oganesjan polygon R\ (see [2], p. 1042). We triangulate R\, i.e.
we subdivide Rkinto a finite number of triangles such that any two triangles are either
disjoint or have a common vertex or a common side. Denote by M1 the set of all
triangles of the triangulation of Rf,. Similarly, we cover R 1by a finite number of arbi-
trary triangles such that any two triangles are either disjoint or have a common vertex
or a common side. We retain only those triangles T for which

JJ dxdy > 0,

rn**

i.e. for which T and R1have some common area. Denote by Mk the set of triangles
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covering jRLand by R\ the union of all triangles T”M f In the sequel we assume that
@ h < cffi, h*Sli, 9£ 90> Q,

where h* is the largest side, E is the smallest side and 9 is the smallest angle of all
triangles c2and 90do not depend on h. Moreover, we assume that if
TAM1 and T2M% then Txand T2are either disjoint or have a common vertex or
a common side on the line AXA2 (see Fig.2).

a,

a2
Fig. 2

Denote by Cj and C\ the boundary of the polygon R\ and RA, respectively,

excluding the interval AXA2. Let H(Rh be the set of all functions which are con-
tinuous on the closed region RA= /?UCUIRAUCji and linear over each triangle

TdMIUM I. Denote by Hci(Rh) the set of functions from H(Rh) which vanish on
Chand in R2—RI- The solution u(x,y) of the problem (1) is approximated by the
function uh(x, y) which minimizes the functional (2) over the space Hc”(Rh).

3. Theorem. Let u(x, y) be the solution of the boundary value problem (1) and let
uh(x,y) be the function which minimizes the functional (2) over the space Hc*(Rh).
Assume that 24 (/= 1, 2) is not an odd integer. Then for sufficiently small h we have

(5) I«-«Ji,r < c3h*
and

(6) (ij%? lu(x,y)-uh(x, y)\ < c4*|log h\12
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where
1

_ r_ l
2 max(a,,ad

if max (og, ad > =,

R =
1 if max(albald <y ,

c3 and c4 are positive constants which depend only on the coefficients p(x, y), q(x, y),
the right-hand side f(x, y) and the region R.

Proof. Let the functional D(v) be defined by

sw = //H(E)+(y)1+ A

for all vEW2w (R). Then, using a standard technique (see, for example, [3], p. 6),
we can easily prove that

(7 D(u-uh~D (u-z)

for all zEHcz(Rh. Mihlin proved that if vEW2m (R) and ulc« 0, then

Wili,c,, a cd J [ (I'$ + {tf} ]dxJy

where c5is a positive constant, which depends only on the region R (see [4], p. 144).
Thus from (7) it follows that

(8) S cb||lu- z]|1jR

for all zEHci(Rh)\ here c6is a positive constant which depends only on the region R

and the coefficients of the operator L.
By (3) we have for all (x, y)"DA.C\R

k k
u(x,y)= 2 akrixsin203i+ w(x, y),
k odd
where w{x,y)dW£Ei:{DA.f}R). From the Calderon extension theorem (see, for

example, [5], p. 171) it follows that there exists a function wext(x, y)6B*2)(I>". f)-R/,)
suchthat wext(x,y)=w(x,y) for all (x,y)EDA.C\R and

IMextIUDYRft —CA WMz DAI(R

where clis a positive constant which depends only on the region R. Let the function

wext(x, y) be defined by
k k

«ext(*, y) = k-%Zjakr?*‘ Sin2® "2 + wext(x, y)

k odd

for all (x,y)EDAtr\Rh. It is well-known that under our assumptions u(x, y)€
EW22)(R-(D AIUDAY). Letwext(x, y) be for all (x, y)ZRh—{DAIUDAf the Calderon
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extension of u(x,y) onto the region Rh—(DAI(JDAJ. Thus we have defined
u,t(:cy) on the closed region Rh. It is easy to show that y)

is continuous in Rh. Let Chuext(x, y) be the function from Hcz(Rh which assumes the

same values as ucxt(x,y) at the vertices of the triangles TfM}, UM excluding the
vertices on Cjj. Evidently,

© e« Caxetil 1117 +

The first term on the right of (9) can be estimated, using a theorem of Wigley (see [8],
p. 551) in the same way as in the case of the Dirichlet problem (see [6]). Thus we ob-
tain that

(10) I|M-0/,wectllifRs = O(AO-

The second term on the right of (9) can be estimated in the same way as in [1] (see [1],
p. 62). Thus we obtain that

(11) l[tw-e*«.Ji.Ri = W ).

Substituting (10) and (11) into (9) and then into (8) we get the inequality (5). The
inequality (6) immediately follows from (5) and a theorem of V.P. II’in (see [7], p.
101). This completes the proof of our Theorem.

REFERENCES

[1] W\&isen, J., Lbsung singulédrer Variationsprobleme durch die Verfahren von Ritz und Galerkin
mit finiten Elementen. Anwendungen in der konformen Abbildung, Mitt. Math.
Sem. Giessen, Heft 138, Giessen, 1979. MR 81c: 65062.

[2] cg=esi=y L. A, Convergence of difference schemes in case of improved approximation of the
boundary, 2. Vyiisl. Mat. i Mat. Fiz. 6 (1966), 1029— 1042 (in Russian). MR 34 #
7044; erratum, 35, 1577.

[3] Friearias, K. O. and kenser, H. B., A finite difference scheme for generalized Neumann prob-
lems, Numerical solution o f partial differential equations (Proc. Sympos. Univ. Mary-
land, 1965), ed. by J. H. Bramble, Academic Press, New York, 1966, 1—19. MR
34 #3803.

[4] Mirmin, S. G., The problem of the minimum of a quadratic functional, Gosudarstv. lzdat. Tehn.
Teor. Lit.,, Moscow—Leningrad, 1952 (in Russian). MR 16—4L

[5] Aorany S., Lectures on elliptic boundary value problems, Van Nostrand Mathematical Studies,
No. 2, D. Van Nostrand Co., Inc., Princeton, N. J.—Toronto, Ont.—London, 1965.
MR 31 #2504.

[6] \eicinger; L., On the order of convergence of the Rayleigh-Ritz method with piecewise linear
trial functions, Acta Math. Acad. Sei. HUngar. 23 (1972), 507—517. MR 47 #4468.

[7]1 1w=in, V. P., Some inequalities in function spaces and their application to the investigation of the
convergence of variational processes, Trudy Math. Inst. Steklov. 53 (1959), 64— 127
(in Russian). MR 22 #9738.

[8] wwaren; N. M., Asymptotic expansions ata corner of solutions of mixed boundary value prob-
lems, J. Math. Mech. 13 (1964), 549—576. MR 29 #2516

(Received June 7, 1982)

MTA MATEMATIKAI KUTATO INTEZETE
REALTANODA U. 13—IS

H—1053 BUDAPEST

HUNGARY

3






Stadia Scientiarum Mathematicarum Hungarica 19 (1984), 35— 47.

ON SUMS OF INTEGERS HAVING SMALL PRIME FACTORS, |

A. BALOG and A. SARKOZY

1. Throughout this paper, we use the following notation: clt c2, ..., NO, NIt ...
denote positive absolute constants. We write e*=exp(x) and e2i*=e(cc). The
distance from a to the nearest integer is denoted by |a| so that [|a]|=min (a—]a],
[a] + 1—a). We put

We denote the least prime factor of n by p(n), while the greatest prime factor of n
is denoted by P{ri). v(n) denotes the number of all the prime factors of n, while r (n)
denotes the divisor function:

—_ * -_— _
V(n) - pa|n,%a+1f/i a> («) B c%n 1

2. In this series, we study the representations of a positive integer N in the form
ni+n2+...+nk= N

where P(M1n2eee«*) is possibly small in terms of N; this problem has been raised by
P. Erd6s. In particular, here we study the special case k~ 3. In fact, this paper is
devoted to the proof of the following

Theorem. | f N>NO then N can be written in the form

«l+ «2+«3 = N

P(n1n2n3 S exp {3 (log TViog log jV)1/2}.

(Note that a recent result of A. Fujii yields thi§ assertion with the much weaker
estimate Piri*n”""N=* in place of the last inequality; see [1].)
In Part Il the analogous binary problem will be studied.

where

3. In order to prove our theorem, we use the Hardy—L.ittlewood method; also,
we adapt some ideas from [4].
Let y denote any real number satisfying exp {3(log N log log A23
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36 A. BALOG AND A. SARKOZY

and put
z=1J yl2
9= /\7 = 2_v|/2
and
v_ K 1 -
Letsi denote the set of the integers k such that 3 v —-'Vand z<pi{k),
We write
A= 2 1
d,= 2 1 (for 1=n=TV,
mkﬁn
D= zdlI
n=1
5x(@) = 2 d,e(nd) (for 0" x =TV,
5(a) = 5y@) = | d,.e(na),
n=
5-5(0)= 2dn,
u(d) = 2 e(nct)
and
N4 uU—l
5@U@= 2 gre(na)
n=1
so that

9>= n—&-<j"n

We start out from the integral

/= f (S(a)fe(-Ndda =

NI A 3e((ni+ w2+ n3-iV)a))N =

. dnxdnzdns.
nl-l-l'lgk@—‘J\/

6 (lS«,,n?Z,,r:[Lb]V

P(k)"y.
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Obviously, i/,,>0 implies that
P(n) Sy.

Thus it is sufficient to show that

(0 J= 2 dnid2nt>0,

ni+nt+nz=N

since choosing y=exp {3(log N log log jV)1/2}, this implies the existence of integers
«x «2>«3 Of the desired properties. In order to prove (1), we need some lemmas.

(We note that one of the most important ideas in the proof is the use of the
weights dnwhich help to keep under control both the “major arcs” with 1 and
the “minor arcs”. Also, the estimate of the integral on the interval —/RB<a<
=+ |/R is different from the usual one; in fact, the estimate of this integral is based
on some ideas from [4].)

4. In this section, we assert some preliminary lemmas.

Lemma 1 If M is a positive integer, a a real number then we have
I£ c(«a)—M\ < 4M2[a).
n=0

Proof. With respect to the well-known inequality

2 \l-e(B)\s2n\B\
we have

M—1 Af—1 Af—1
\2 e(nix)—M\ A 21 e(mo)—N\ » 2 27rlija] =
n=0

= ji(M—I)Afla] 5 4M2jal.

Lemma 2. For arbitrary real numbers a, x we have

See eg. [2], p. 9
Lemma 3. If @, V are real numbers and a, gq,f are integers such that q>0,

(a,q)=1 and a———f—i S.\ then we have
g q

x=T+1 a6>,+9108i-
See e.g. [2], p. 23
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Lemma 4. If a,M, V are real numbers and a, g are integers such that M ~\,

g>0, (a,q)=1 and a—q\ c% then we have

a mn (K2b ) s Hrf 1) (6V+tjlog w)-

Proof. With respect to Lemma 3, we have

N1z IM&+L i, 1 2
2, MR BB G (B NN, o
o M ek qrog) = ™M+ 1) (sv+qloga) <

< N+ 1) (6V+qlogo).

Lemma 5. For x&2 we /tare
_gk (TA)Y < CiXOogx)3.
See e.g. [3], p. 26.

5. In this section, we estimate D, S, S(a), g,, and A.

Lemma 6. We have
SAN.

Proof.

\Y
N 1: N —_ _:N_
r%ykérf n;yk“%/y y yy
Lemma 7. For Arb5s2 we have
D < CiiV(log N)3.

Proof. With respect to Lemma 5, we have

D= Z d=27Z (2 12s nZI (T())2< CliV(logiV)s.
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Lemma 8. If I"wSiV and a,q are integers such that 27q”z and (a, =1
then we have

\Su(a/qg)\s”-.

Proof. We have

(3) S,.(alq)= ng‘u d,.e(na/q) :631( n'%u dn)e(b/q).

nx=b(mod q)
Here the inner sum can be rewritten in the following form:

2 2 2i-

n™u mk=n

na=b(mod q) EIASV/

@ =y C R mk -

mka = b{mod q) kis/ mka=b(mod q)
Is/ y
Tk Ul m= khu  mAu/k

uly-<kr
kis/ mka=b(mod q) kis/ mka=b(mod q)

p(k)>z"q and (a,q)—\ imply that (ka,q)~ 1 hence

mka=hb(mod q)
and

= |
AUk
mka =b(mod q)
so that we obtain from (4)-thata )

L O {kk'ﬁ/yzQJr wfﬂm%& =

na=b(mod q)

©) 2 2 i- 1+ 2 2 i
kAujy * m? u/y<k~u mAu/k
kis/ mka=b(mod q) kis/ mka=b (mod q)

kis/ kis/ kisf
By q* 2
2 e(b/g) =0
6=1
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Thus (3) and (5) yield that

N = |i - - -
IS’(a/)l L':Li n2"u dn ‘{k"%/q HJ+u/y<Zk"u £ s)*}e(blq)+
na=bh(modq) kdsa kd&f

N _ A
* (kgu/q <-7i- u/ygfc"u ‘:I|<(‘)J bz—le ( b /q)
kds/ kdtf

s 2 2 d,,-[ 2

-+ 2
6=1 h"m k"y/g Q uly<kfu Ktf/l  b=1 »
/ja=5(mod 4) kds kdsJ

Lemma 9. // a is a real number and a, q are integers such that 2=5"32z

(a, q)=\ and a— fizzzz we have
q R

AN
Proof. We write B=x —al/q so that
_ a2
R\ = q 9o

Then by using Lemma 8 and (2), we obtain by partial summation that
N
|S(a)| = Img‘ﬂSn(a/q)-Sn_l(a/q))e(nB)\ =
= \glsn(a/q)(e(nﬁ)-e((n +1)R)) + SN(a/g)e((N+DR)\ =
A gl \Sn(a/q)\\I-e(R)\ +\SN(a/g)\ »

N .= QMTES )+ N = *So(1+ 2nN\RY) < — (1+ 71V . H
Ty y y I e

Ng (N 7AM _ Ng 8N _ 8N2 AN

y \zQ +qQ)~ y aQ yQ  yd2

Lemma 10. If a is a real number and a,q are integers such that z<qg”Q

(a, g)—1 and a———g sAr then for N>N* we have
q q2

|S(a)|<5"1ogiV.
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Proof. For kE£s/ we have

NN
Kk~ Ny - Y

Thus by using Lemmas 2 and 4, we obtain for large N that

|S(a)| = lkéldne{na)\ = lm%"N e(mktx)\ =
mhy

= L&sf ( nPr,g'Nke(mka))\ =IJ£g/ ‘ngy e(mk<x))\ S

a.l Ll,e(mka\s ,1 min {"2P5f) "J ,,mm(* 2 |l
(N ./ -~ _ BN N .
S - hl (8y+~logi) = +6y-\ " ‘logg+qlog q <
\gy Y (Gy+hlogi) = "t +6y\ - loga+alog g
6N

N
= +f>}};‘31€22+y—\ogN+Q\ogN-

N+ 672+ Y logAr+f 10giVvV = (2+0(1))T log™M+o0 () =

= (4+o(l))logN<5 log N.

Lemma 11. If
(®) H<a< il
then for N>N2 we have Q
(7 IS(a)| < 5y p log N.

Proof. By Dirichlet’s theorem, there exist integers a,q such that 1"q"Q,
(@, g)=1and
a

g wlgh

(6) implies that <7>1. If 2~ g~z then (7) is a consequence of Lemma 9 while if
z<qg”Q then (7) holds by Lemma 10.

Lemma 12. Ifn is a positive integer satisfying U”nS3N/5 then we have

gnS A
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Proof. For U~An”~3N/5 we have

an j U+l 2U+I kZl =
j=n— j=n— mk=
my
= 2 i = 2 2 2 2 i
n—U”*mk~n kid n—U n kidn-U n
kil ~ sk
(U u

(u
Kid VK ) ki2d {k 2N/y,ls k%dl{k

1 Uy . Uy A
I'= 2N

2 ktit k 2 k2id N/y 2N k%d
since for kf£s/ and n”3N/5,

n  3N/5
k < 3N/sy  Y°

Lemma 13. For t>0 and j—1,2,..., let
Ajit) = 2
3(/5<*[St
I<p(t)SPW SJ
] v(fo)3 j
If N>NZ and 2=j then for
(8) 22< ta D
we have
9 t
) ATY (1 logy)d !
Proof. We prove the assertion by induction (on /). Assume first that j
that
27 mthy2
If
2Z< tr Yy

then for large N (then also y is large) we have

A2(0 = 2 1S 2 1
3i/5<fcni 3f/5<pnf
z<p(k%"a2(k)"y z<phy
(10) v(fc)
It I t

= atidpst!  20ogt 2 logy 217 logy)2
while for
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and large N we have

LV
<Py =Y

Na2(o —

1 o - A Iy
(b 2'Y’1)’m/r? 1 A5 Dogaght AT
80 log2y 21 (7logy)2
(since \'3i/5> y3y/5=\'3(2z)2 5 and \t'y).

(10) and (11) yield (9) (with 7=2) in both cases.
Assume that (9) holds for all t satisfying (8). We have to show that

j+ 1
27<15 "
vV~ X
implies
t
(12 0 + 1)I(7 logy)iti-
If

2z < /S 2|_2

then this is a consequence of (9) and the trivial inequality Aj(t)SAj+1(t). (Note
that the right-hand side of (9) is decreasing function of j.) Thus it is sufficient to
study the case

yJ+1
(13) 2j-2 oA
Then we have
A = 3t|§z4<3t) 1"
" R
2 2 1=7"7- 2 Aj(t/P).
J'mr >/2<|iS|i 3i/5-cplSt J+ 1 yl2-zpSy

2<p(i)sP(0sy
v(D)s j

If t satisfies (13) and y/2<p”y then
J_s yd2j~2n yyor~*
p y y

t yJ+IR1-1
P yl2 21-z

=y >2z
and
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so that (8) holds and thus (9) can be used in order to estimate Aj(t/p). We obtain
from (14) that for large TV,

mdi+1(0 — . 2 -dj(t/p) >
1 jili<psji
1 y tIP £ y J >
N7+ 7'1(7logy)d  (j+ D1(7logy)' y/t"y P ~
TV DIFiogy Y ywtpsy
t iy /

A0+ D)Y(7logy)' y 3 logy ™ (j+ D!(71logy)'+L
which proves (12) and this completes the proof of Lemma 13.
Lemma 14. For TV>TV3 we have

v f 6 logTv \
A"y e pt- Tiogp"og ogAN'

Proof. Define the positive integer j by
yi-1 TV_ yJd

2J-3 <y - 23-2
so that
(y) < IM8< TV
log TV
J™ logy/2 "
Then for large TV Lemma 13 yields that
= 3N/5y2<k"NIy IS 3N/5y~r 2k"le = AJ(N/y) >
22<P(Q" P()* y z<p(k)AF)>,( )"y

1
""" e log (7/ lo >
7" (7|09 yf y {Yy logy)d ~ Xp £ log (7/1ogy)}

Tv [/ log TVt (nIogW, )

el logyi2 °s 17 logyr2 °g”™Ji “

"y exp{-(1+o(1) ) * loglog TV}

v [ eslog™v , 1
7 expry -i”™ 7 loglogArl-

6. In this section, we complete the proof of Theorem 1
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For |fl|sl we have
|1—a3 = [1—u||l+a + a2 Si 3|1—3].
Thus by using Lemmas 1, 6, 7, 11 and Parseval’s formula, we obtain that

J~jp f {S(a)U(a)fe(-Na)da
110 i ii=i/e
f (S(=x))3e(-Na)d<x-jjs f (S(a)u(a))3e(—Na) da\ =
-I/0 u -iQ

IV ())3(1-(-~) )e(-JVa)da+  /0(5(a))3( | Na)da
10

i . I-1/10 / -
s 0@ dar £ [s@Br+ U yga

-1/0

+/tt d[J2a\ 1"
(15) I 5[5(«)|B— dix+ f 2|S(a)3da S
-1/0 U -1/1Q
_iQ i i-i/O
* 1281/ | |S(c<)p-* +2(uomax_iio|S(«)[) /  |S(>)><b:

* 127 [ |S(@)N«+2.5-ogW / [S(ci)|>* =

= (12f £+10" lo«™)°-;

—-12(4 ~ +771>°S  WogW .
Furthermore, by LemmaI 12 and since g,,~0 for all n, for large N we have
J (S(oi)U(oi))3e (—Noi) da —
0

vt y
= /( Z1 gne(™)j e(-Not) dot =

16 Z nignzgns Z n\gnzgn$ —
( ) nl+nt+n3=N gnign:g nl+nt+n3=N gng g$
I7in1,n2,n3"N + U—1 I*nxnt,n3*N

' oo min . €,)3s
nI+ntZ+n3:N gni g2 gn »,+»¥|-»,—§v \()\/\ED)’{%I\I/I )
N/5-calnt, n3r N NI5~cnltnt, h3N

S A3 Z 1
RN
In order to estimate the last sum, put

mt=H|-[y] (fori=1223)
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Then for large N we have

Z 1= Z 1
nl-hn2+n3=N nEn2rnd=
(17) N/5-<nl,n2, n3*N O<11j,mz, m3
N2
- r n - M - i

We obtain from (16) and (17) that

i |
(18) JéS(a)U(a))Se(-Noc)doc > _-’ON A3

By Lemma 14, (15) and (18) yield for large N that

| I
\Js —/ (5(@U(a)3e(- Abe)da

37 (S(@U(on)se(—Nix) da

~2d0gn)4
1 1 N,A,_ CaN=<iogN
N\3 50 Y]
(37)
5 (long41
2000 N2 iME{]
6 log N R
20TsWi* p( ° 109y 1°S —c3exP l4loglog N—y logy
1 A2 (18 log AV )

2000 ~"ieXpi 5 3(logN loglog N)12 °g °g

exp M log log N— 3 (log N log log AVY3j =
2000 Nafxp - j (log N log log N)11j —
iexp (y +0(1)]dog N loglog A01/2)J =

= 276 (1 +° (D)Ar2exp (-“y (g AHog log A0YZ > 0

which proves (1) and this completes the proof of our theorem.
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PACKING AND COVERING WITH INCONGRUENT CIRCLES

G. FEJES TOTH

We shall denote a domain and its area with the same symbol and the power

(

i i . .
mean iZ_qixli °f exponent e of the quantities xu ...,xnwith M fx It

We shall prove the following theorems.
Theorem 1. Let a0=0.91249... be the positive root of the equation
X X

X
1 ny-* @ > i nv
43 cot3—J —-'16:16 cot G)Il +3'\[(J}CO'[ 7)

| f the circles C1, ..., C,, are packed into a convex polygon P with at most six sides then
for any aSa,, thedensity d=(Cl+...+Cn)/P of the packing satisfies the inequality

m d=s 7 vy C»)
0) W2 '

Theorem 2. Let B(= 1.22540... be the positive root of the equation

3

| f the circles Cx, ..., Cncover a convex polygon P with at most six sides thenfor any
R"B3o the density D=(C1+ ... +C,,)/P of the covering satisfies the inequality

@ da 2n C»)

It is easy to check that the equations (1) and (3) have only one positive root.
The inequalities (2) and (4) have been proved earlier for cr&0.11... and R*2.1 1...
[3]. The packing consisting of the face-incircles of the Archimedean tiling (3, 12, 12)
and the covering consisting of the face-circumcircles of (4, 8, 8) show that for
a>0.9487... and 1.1049... (2) and (4) do not hold any more. Recently, L. Fejes
Toth [5] proved that the densities d and D occurring in Theorems 1 and 2 satisfy

1980 Mathematics Subject Classification. Primary 52A45; Secondary 52A10.
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the inequalities

(5) n c.
and

iTI\ TWis(Ci, ...,cn-
(6) V. An) MI(CI, .-C,) .

We note that in some cases the inequalities (2) and (4), in other cases the inequalities
(5) and (6) are stronger. As an example we consider a set of circles of areas 1and 10
with ten times as many big circles as small ones. Now (2) and (4) imply that
ifsO.91214... and Dsl.19426..., while the inequalities (5) and (6) yield only

0.91220... and D ~\. 15938__On the other hand, if the ratio of the number of
bigd c(ir;:les to the number of small circles is 1:10, (5) and (6) are stronger than (2)
and (4).

Now we turn to the proof of Theorems land 2. Since Mt(xi, ..., xn) is an increas-
ing function of e, it suffices to prove (2) for a=a0 and (4) for 3=R0. Let D. be
the Dirichlet cell of C. with respect to P, i.e. the set of those points of P whose power
with respect to C( is less than their power with respect to any other circle Cj,
y'=I, ..., m,7V/. It is known that the sets D. are convex polygons which tile P [4].
Denoting with p. the number of vertices of D. we have, as a simple consequence of
Euler’s formula,

(7 Pi+-+P, =6n.

Furthermore, we have CjCZ); if the circles are packed into P and CfidD; if the
circles cover P. We write

= —cot— and = — sec— .
$(p) 5 5 \p(p) b 5

We note that <p(p) is equal to the density of a circle with respect to the regular p-gon
circumscribed about it. Analogously, 1/(p) is the density of a circle with respect to the
regular «-gon inscribed into it. Thus we have B2>A), /=1, ...,«, in the case
ofthe packing and ("), =1, ...,«, in the case of the covering. Combining

these relations with Holder’s inequality and with the relation 2! A — we obtain

() 2~ 2 DiT[<p(p)Y0= P {Z,

and

O vy owr—ewi I3,

respectively. Here we used Holder’s inequality in the form as stated in Theorem 13
on p. 28 of [6].
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We are going to give upper bounds for the sums

2A<p(P<)]Ja a= T~V and ZWiPi)?, b=~Ar-
We consider the functions
f(p) = W ©O)1*+ (p—O){I(N]“—\ (6)]}

g(p) = [*m b+ (p-6){[iP(7)]b-["(6)]B}

The relations (1) and (3), the definitions off(p) and g(p) and some numerical com-
putations show that

1(3) -[<p)f = g@)—ip@)It =m-[cp(6)r = g(6)-["(6)]b=
= I(7) = 9(7)-[*(7)]16= 0,

m -tom —0.04.> 0 g4 —<A@b = 0.03..>0,

/(5) -[<P(B)]“ 0.02...>0,0(5) -[«A(5)]&= 0.02...0,

1(8) —<p®)° 0.02..>09(8) —{iA@)]= 0.02...>m0,

1(9) —<pO)a 0.06...>0,9(9) —I<AQ)]6= 0.06...> 0,

/(10)-[<p(10)]* = 0.13..>0, gm -W im ”= 0.12..> 0,

[(IN-[<p(I)]* = 0.20...>0, g(D-[.A(ll)]E= 0.19...>0,
/(12) = 1.07..> 1, 9(12) = 1.05..> 1

Since [<p(p)Ja< 1 and [ip(p)]Jb< 1 for any 3 and since the functions/(/>) and
g(p) are increasing, the relations above imply that [9(/>)]“=/(/>) and T[ijj(p)]b"
—g(p) f°r any pS3. Using inequality (7) and the fact that the functions f(p)
and g(p) are linear and increasing we conclude that

and

ZM pW S 1/(pH” nl(6) = n[<p(6)]° = n
and

i [if(Pdfs i g(P)S ug(6) = n[/(6)]E= n[-|L rj\

Combining these inequalities with (8) and (9) we obtain
» rnP 10

and
i » rerip ii.

which can easily be seen to be equivalent with (2) and (4).

4*
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Theorem 1and Theorem 2 can be generalized as follows:

Theorem 1* Let q¢(p) be the density ofa convex domain C with respect to the
p-gon o f minimal area circumscribed about C. Suppose that aOis a positive number and
f{p) is a linear function such that [Jid/)J*o/(1 *o+#(?) for p=3,4,... and
[®c(6)]°0/(1~a)=1/(6). If Ci, ...,Cn are affine images of C forming a packing into
a convex polygon P with at most six sides thenfor any aSa0 the density

d=(Ci+..+C,)IP
satisfies the inequality

M fCi,...,Cn)

(10) 45 O yaci .. c)

Theorem 2*. Let 4c(p) be the density of a convex domain C with respect to
the p-gon of maximal area inscribed into C. Suppose that ROis a positive number and
g(p) is a linear function such that [illc(p)Y°*1~f>=S(p) for P=3,4,... and
[il'c(6)140/1-/ion=g(6). 13 Ci, ..., C,, are affine images of C covering a convex polygon
P with at most six sides without crossing each other, then for any 8=R0 the density
D —(C1+ ...+C,,)/P satisfies the inequality

Mi(Ci,...,CJ
(11 D& 8 ey

The sets A and B cross each other if neither A—B nor B—A is connected. It is
conjectured that Theorem 2* remains true without the condition that the sets do
not cross.

The proof of these theorems is analogous to the proof of Theorems 1 and 2.
The part of the polygons Dt is played by certain polygons defined by known con-
structions [1, 2, 3].

It may be conjectured that there are absolute constants 0<d< 1 and 1 °°
such that (10) and (11) hold for any convex set C and any uSa and R~R, respec-
tively. In particular, it is likely that (10) holds for any convex set and any aéal/2.

Let C be a centro-symmetric convex domain. We consider a packing consisting
of similar replicas of C with a given number-density. How should these copies of C
be chosen and arranged so as to maximize the perimeter-density of them? The last
conjecture would imply that we have to choose congruent copies of C and arrange
them so as to form a densest lattice packing.
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LOWER ESTIMATES OF THE BOCHER’S PAIRS
WITH RESPECT TO EQUATION
y"+P(x)y=0

. BIHARI

In the works [1—2] lower estimates were given for the zeros of the solution y of
the differential equation

(1 y'Hp()y =0, P> 0, a=fp, pecnl), /=(1 ~)

and for the zeros of the derivative y' by means of the functional J Yp(z)dz. It was

0
the function

a(x)y(x)
y'(x)
by the study of which this investigation started and was carried out [1],

In this paper we look for a natural generalization of these studies and results.
Instead ofy and y' and of ot(x) in (2) let us consider the Bocher’s pair

(2 a(x) = arctg

©)) = q>iy-<PiyE, = <AP—<AayF
Vi, 'lECi(l), D= *0, (i=12)
4 a(x) = arctg , a(X)€Q ()
which in a particular case% reduce to and to the above a(x). As is well-

known (see [4]), the functions i>and V have no common zeros and no double zero
and their zeros — if any — separate each other provided

) <PV} 50, {A A} 0 for x£l,
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where
(6) 5, o) = EL(E2-(p2<Pl + — (AP2+ (<Pl + (pi)
and {i/i, #} is formed in a similar way.

Let us denote the zeros of » and IPby xt(/=0, 1,2, ...) and x- (/=1 2,3, ...),
respectively, where

(7 0™ x0< < X< xa«ex2..,

and cho%)sle thegc‘branch of (4) where a(x0=0. — In order to get an expression for
ip—Y'c

a'(x)= PP P we start from the identity

A-A[(piy-e2y) =0
or

(8

After differentiation of (8) and by (1) we have

where A and B involve expressions of <A, i/';, (p[, ipi, 0, W, 0', ¥" a, a', but do not
contain y and y'. Since y2+y'2>0, (8) and (9) imply

Oiki-'Bcp! 07i2-"¥cp2 _

A B 0,

whence — as the result of a lengthy but elementary computation — we get for
A=0'0-'F,0

(10) DA =-a02-b02+c0'P
where a and b are the above functions {i”, \pZ} and {dt (p2), respectively, and
(11)

¢ = [ 4] = EWN2-il/"2(pl+ il'1(p2- (p 2il/1+ ~ f((p 1il/2+(p2il70) + 2<7((plil/1+ <Ril/3.
Taking into account that

0

relation (10) and the above formula of a'(x) imply

(12) Da' = —asin2a—b cos2a@+ —sin 2a.
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Let the following conditions be assumed:
Q) D=0, a>0, b>0, cm=(, g/
(C2 3 =c2-Aab < 0, (“€h)

the study and analysis of which — to conserve the easy survey — we postpone to
later time. — By these assumptions a'>0, a is increasing (x£l) and by the choice
aC*0)=0 we have

a(x,) = in, i=012 ..
13 i=1,2,..

Notice that without (C2 a(x) is not necessarily increasing, however, by (12), it takes

on all the values in, y ) 7L increasingly, thus only once and

Xi < X«= jei+l in < a(jc) < (i+Drc, i=01,2...
(14) . involves (. 11 (.1)

< X< Xit+1 11-4) 27 AvoE i i=12...
By integration of (12) we have
(15) aW = ;(r)+f(x),
where
(16) ix) =— f [a(2) sin2a(2)+ b (2) cos2a (2)] dz,

0

(17) Fix) =y / c(2) sin 2a(z)dz.

As is easy to see, the function F(x) assumes its local maxima at x\. It will be shown
that these maxima decrease (do not increase), i.e. the first of them — F(x[) — is the
largest one, involving

(18) F(x) F(xi) xSoOo.
To prove this assertion it is sufficient to show that (/1=1,2,...) where
(19) A=FXH-F(x0=j / 1 sin 2a(z)dz.

X1

This value can be written in the form

20) A Jy*l sin2a(x)a(x)

f(x) +sm2a(x)dX
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where
(21) f(x) =--—--(asin2a+ b cos2a).

Since u=a(x) isincreasing, its inverse x=v(u) exists and is also increasing and the
substitution a(x)=u in (20) can be carried out, giving

H)*

22) ) sin 2u

g(w)+ sin2u du, g(u) = f(v(uj).

By decomposing At in two parts we have
H)*
A= f + /[

Pl

In the first integral put u=z —n/2 and thereafter z—u again, obtaining

@i+t 2sin2u+g(m—g*"m—y j
(23) Al = ] sin 2u- mau.
[sin2u+g(n)] |sin 2m- g|m Y]]

Here sin2M”0, sin2M+g(w)>0 and sin2n—g|m—yj<0 “namely sin2n—

—g (“~Y~)~ ~8ix)'a(A)’ I%erefore d.-*O provided the condition

(C3) f(x) is increasing (x > 0)
(which involves

g(«)-g(«-y) >0 (m>0))

is satisfied, but not only in this case, as we shall see later. Continuing our reasoning we
have

F(x) F(xi) =Fxi)+J(xd = a(xi) =y,

involving
(24) J(X) = a(X)-F(x) > a(x>-v.
whence
j(xt) > a(x,-)-y =in-y , i=0,12, ..
(25)
/() >a(x,-)-y = =

which is the lower estimate we looked for.
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Example 1 If gx=—UR= 1, ¢2=~i=0, then
(26) a=b=a, =-~> f(x)=*~, D=-1 ©O= -4 o2
furthermore if

(@7) — decreases and 0< -45< 2,

then f(x) is increasing and ~<0. On the other hand, if adc2{1) then it can be
proved that instead of (27) the unique condition
(28) 2a'2-aa" >0

is sufficient (see A. Elbert [1]). Summarizing: the function

X

(29) J(x) = é a(z) dz

satisfies (25) under the conditions (27) or (28).
Remark. Since <x':o+-2£a- sin 2a, we have

a_Za at X
provided cr'>0, involving
* 1 a(zi+l) \L*x 1, <r(z+) (zx=xk or xH
2 N
ZX 0-dx 2Iog ofz) ﬁf trdx 5 log o) Ok =11+1 4

Example 2. This example will show that a similar result can be obtained also in
the case ¢>0 provided the rest of conditions (CX) and (C2 remains valid. — Applying
the well-known relation (see [5] p. 44)

(XVZV(X))' = XVZv—i(x)
to the Bessel function of the first or second kind Zv(x) and v=n+ 1/2 (n€ Z), we have
(Xnto 2)zbH12) (%)) = (X'x12Z,,HU2)(x))' = xn+(U2.Zn_(Li)(X),
whence with the notation y=x12Z,,+H¥2(x),

fixn Ly +x"/ = x"HU2Z,,_(12)(x)
> Nx-7-1-1 = xUZb_(U2)(x).

The function y satisfies (1) with

1+ = 1-—n(n+1)x-2 = a2
1 4 4 )1
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Consider the Bdcher’s pair
P=y = xVaZBH1L2)(x),
V = nx~1ly+y" = x¥aZn_ (V2)(x).
Here ox=1, 92=0, i \li2——<s involving in turn D =—a,
a—b=a c¢—2nax~1 2i=442n2x-2—1) <0 (x> )
a'= 1-nx_1sin 2a.
Obviously, a(x) increases for x>n. If x,,>n, then

a(x) = J(x)+F(x),
where

J(x) =x—x0, F((x)=-— J z_1sin2a(z) dz.

Here xOmeans the firstzero ofy greater than n. The function F(x) assumes its maxima
at Xi (/=0, 1,2,...), and we shall see that the first of them is the greatest one, i.e.
f(x)sF (i, )=0, xSx0. To this end itis sufficient to show that d;=F (xi+1)—F(x;)"
«0,2z=0,12 ... Viz

Ai—n J x 1sinza(x)dx = ¥ 1Sin2a09a(x)dx

y xa'(x)
sin 2a(x)a'(x) dx

sin2a(X) —
By the substitution w=a(x), x=g(u) and the notation h(u)=(l/n)g(u),

A‘ - (Jy K sin2udu

sin 2u—h(u)
Here sin2u—h(u)=--"-22<0. Decompose At as follows
(+212  (i+h)n
4 - | + =/,+/,. -«
n K)_
Putting in Ixu=z-—n/2 and again z=w we have
(Hn —sin 2u du ()it sin 2« du
A J — = f

(i+)* -sin2M-hju-yj (#}, sin2n+/i*M-yj
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and
Sin2«”2sin2u+h  —yj ~A(W)J
du,
(i+i)* |sin2u+ h («-y)] [sin2u-h(u)]
which shows that 0, since sin2«<0 in ~/+ —Jn, (/+1)7ij and the factors

of the denominator are in turn positive and negative, respectively, and h(u) is increas-
ing. Thus

J(x) = a(X)—F(x) S a(x)—F(x0 =a(a)—F(x0+J(x9] = a(a)—a(xQ = a(jc).
Putting here x=x,, and x=x'n we get

Xxn—%0S nn, n- 1,2, ..

x"-Xo0S ("-yjn> n=1,23...
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ZEROS OF THE BOCHER-FUNCTION AND ITS DERIVATIVE WITH
RESPECT TO DIFFERENTIAL EQUATION

Y HJy=. 1

I. BIHARI

In part | [1] lower estimates were given for the zeros in question. In this second
part upper and lower bounds will be obtained for them.
Let us consider the differential equation

(1) =0, (=¢£)

*€/ = [*0. ©)p> R, P 0, p£C3(7)
and the “Bd&cher-function”

) 4= (Piy-(p3y', <PiECA(7), (i= 1,2)

and its pair

(3) ' iy="1, k= Vil P 1 =<
where y is a non-trivial solution of (1), and suppose

(4 {<Pi. 2} 550  x€7.

Here the symbol {« r} is defined by

4" {«, I} = u'v—=v'u+u2+vap.

Then

®) ViR rmivy o0, xel

Then we have the following results 1°—4° stated in a more general situation in an
earlier work [2].

1° # and <P do not vanish simultaneously, i.e., £has no multiple zeros and its
zeros do not accumulate at a finite point.

2° In addition we assume {t/q, i/gJ*O. Then the zeros of ¢>and <P separate
each other (they are interlacing). Of course, between two consecutive zeros of <€ <€

1980 Mathematics Subject Classification. Primary 34C15; Secondary 34C25, 34C35, 34D10,
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has a zero, but — just be the separation — no more than one. The same property
excludes that <€ is oscillatory and <>is not.

3° < (and <P) are not oscillatory provided
(6) < DA, <0, XxE

then only one of €Pand <P can vanish, moreover, at most once.
4° y and <Pare oscillatory or non-oscillatory at the same time provided

3>= (~i-(p22+4pir2 w=0, (piro and — is bounded as X =

<Pi

Remark 1 It can happen thaty oscillates and <P does not. Namely, if yx,y2
are linearly independent solutions of (1), then

yiy2- TaTi=c=const. » 0, x£L1
Let us choose
H=Zu V.=yt and y =y2
then
P="y-tphy' = ¢
which does not oscillate even if y is oscillatory. N. B. now {gx §2=0! Conversely,
if y is not oscillatory, then e.g.

€= (py—y' = sinx
is oscillatory provided

y'+sinx

y
Remark 2. The meaning of (4) can be expressed by saying that (pjcp2 does
not satisfy in any point the Riccati equation

) u+u2+p =20
belonging to (1). Namely, (4) can be written as

770, XEI

) AN (M) *F+p]M0, L0,
In the same way, if 90 then <(Pi cannot satisfy the equation
(7 —w'+l+«2p = 0,

which is satisfied by y/y'(y' 0.
Now let us form <

(9) = (ili+ilr2p)y-(il'2-"1"iy71
and eliminate y and y' from (2), (3), (9). Then we obtain
<Pl <2 ®

(10) ‘A( ) - 0,
Ti+1iP IA&-iAI
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in expanded form
(11) {Pi. (PiIW'-W, "I'W + tyi, «A}&>= o,
where
[P §t] = Wi+'1"2P)<P2-(1"2-'1"i)<A + (A <P2-<Pj<A + A<Fi Pi + 2P + <PIP-

The equation (11) is a non-singular second order homogeneous linear differential
equation for <R Thus from an alternative point of view we see again that Pand <P
cannot vanish simultaneously provided <Pis a non-trivial solution of (11). The func-
tion <Pcan be trivial only when y =0. Indeed, in this case either <Pi/(R2=y"'/y(<P. 2 Q
or §2=0. The first case is excluded by the fact that y'/y is a solution of (7) while
(pilg-» is not. In the second case (p"O and $=%$7=0 involves >= 0.

Let yi, y2be two linearly independent solutions of (1), i.e.,

a —V'iy2-y".yi —c = const. * o, *£/,
then 4= (B>i— 0= 1»2) are linearly independent solutions of (11), since
(11a) Si2-027 = {<F, F3d ~ 0, xEI.

Therefore the zeros of @Land <2 separate each other (see [2)]).
Conversely, if 44t <2 are linearly independent solutions of (11), then from the
system of linear equations

= Viyi-<P2yi
= {iTi-</2Ti
$2 = <Piy2-<P2y2
$2 = MTi-Nsd'i
the four unknown yt, y\ (/= 1, 2) can be determined uniquely, since the deteiminant
€ (2
Vi ERCAY
=0*"0, a= 1,(p2},
ol R {(pL(p2
A 2

namely

1 1
Tl = - —(.fa0l-vzQd, y2=-—(I2$2-<P2Qid>

yi= —-l('l'i&i-ViQi), yi= - i('/'i&2-<Pi#|’)

Now (11a) and €L(PR2—<R<PL?0 involve A*0, i.e., if <, J2are linearly independent
solutions of (11), then they can always be derived — according to the given formulae
— from two linearly independent solutions of (1).

Using the notations

a= {F<R), b=-[<pill], c= (g, 'S
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the equation (11) is of the form

(12) aY"+bY'+cY=0 or Y"+€Y'+EY:O,
which, multiplied by exp 2 1 —I, gives
A ()

efr {ef~°Y") +EeZ~aY: 0.
Substituting here

(13) «= e'*l’_adx, Y(x) = 7(0,

we have 0
(14) d_Z: +p(aF=0, tf((") = (2% = -Cj ez*/*__

Now the following theorem of E. Makai ([4]) can be applied to (14).
Theorem Of E. Makai. Let us assume that in /=[£0, ®°)

0) m >0, p€C2(7),
(i) r(e) = 5p2-4pp &0, ('= OTll)
(iii) are consecutive zeros of Y(f) (which is anon-trivial solution of (14))
and at least at one point of (Els £2 the sign > holds in (ii), i/ie«
(15) I Ve(© <

/11« (ii) ™ is replaced by i/ien the sign < in (15) turns into >.
As an application we have

Theorem 1. In the present case

(16) f18 dx= =)

provided Conditions (iy—(iii) are satisfied. Here x 1< x2 are consecutive zeros o f Y (x) —
= P(x) correspondingto and £2. — Condition2(ii) is satisfied with * //, e.g. q(£)< 0,

2 Condition (i) is fulfilled when £ 13 and y/Z have equal signs.
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i.e., g— as afunction of i\ — is concave. Expressed by x, condition (ii) takes theform

(i) r(Q = 5ff*-4C(C'+ij-C)sO  (N.B.p€C3(/).<?£€<:,()),
to the analysis of which we shall return.

The equation (14) is of the form

?+my=0, y=na
whence by differentiation (omitting the bars)
Y+<jYy+Qf=Y-~"Y+o0Y =0,

or by the notation Z—Y
(17) Z-M-Z +eZ =0,

e

which, multiplied by g~2 gives
Q-1(Q-1zy+Q~1z = 0.

Putting (

(18) = f e(£)dE, 2(rj) = Z(s),
Xq|

the equation (17) turns into

(19) t++(e)-i2 =0, m = e(0-

Let s(rj)= (e(if))_1 satisfy, as a function of rj, the conditions (i)—(ii). Then — if
i/i < i;2 are consecutive zeros of 2{rj) and at least in one point of (i/i, i/2 condition (ii)
holds with sign > — we have

(20) f @) 1=t vg-110eibdz - f J/@©d{-=n (>7r)
», < ]

where are adjacent zeros of Y(f). Finally, we have as above
pi) [TVTTE T > < 0 ()
where x'~x'n are adjacent zeros of <P'(x). — The conditions corresponding to (i)—

—(ii) are now

(). 8(f) =0,

e (dS)2 d2s .
e B0 ksl O

5%
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Condition (i), requires nothing new, but (ii), states
@(i)" R(ri)y=-1(? +4QsO, (SO), =

which is in some sense the counterpart of (ii), because t<o involves r(e)” o,
A(e)SO which, in turn, imply

(22) NMidiAdx?n/l i/l m €
f {<F>9%} X r {~""2}
(The statement concerning goes back to J. H. E. Cohn [8].) Now several

problems arise:

1) Can it happen that we have r(g)SO, R(B)=0 for some g*.0? In this case
the inequalities (22) will be reversed.

2) Can r(g) and R(qg) have the same sign? In this case the sign < (or >) holds
in both inequalities of (22).

These problems can be answered by analysing the conditions (ii) and (ii)".
We postpone answering Problems 1) and 2) to a later time.
First the case Q=0, i.e., "+ (b/a)g'*0, will be discussed. This can be written as

elexp(lir)) -°-
By integration we obtain
X ! X 1 \ \
(23) Q-e0 @f exp J —iydzjdr, q40=a{x0. 0= e'(x0.

c 2/ - .
Here Q——e x« b, therefore g~0O implies

(24) pL f m azJ\d,.

f a
a a(x0 laa) a2 H=Xad 1 h a@@
With regard to the involved form of a,b,c a general analysis of (24) seems hopeless.
We have to find suitable examples satisfying (ii) and (ii)'. Otherwise, (ii) (or (ii))
can be integrated in the special case p>0 (or 0<O). Namely, in this case (ii) can
be written as

5—4 Mo,
Q e
whence

5logs—4logs = log-- S logk, k :-6&= const > 0,
q ei

00"54~ K = k1/4,
(25) g™ (A+B"~i (A, B are constant).
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E.g.,if g=£~* then 0, r(g) =0 andin(16)the sign=holdsand Y(£)=I; sin 1<
is a solution ol (14) which is oscillatory in the neighbourhood of the origin and, in
fact, we have for consecutive zeros of Y(£)

f \Q<I)dZ=7--y- = n.

In the same way we get from (ii)" g"(A+B")~43 provided g>0. But
(26) (/tj+ffjr)-4/3S qS (A2+B2£)~4 ££ to (M, are constant)

cannot hold, i.e., both (ii) and (ii)' cannot be valid at the same time with the sign £ o.
— In the opposite case — when o <O — the answer is positive, because the converse
of inequality (26) is possible.

Now it remains to find convincing examples.

Example 1 The function
27) uv(x) = x12Zv(x) (v =m0)

— where Zv(X) is a Bessel function of the first or second kind — satisfies (1) with
p=I1+(1/4 —2x~2 Choose as <p(x) the function

(28) <P(x) = |V +Y]jx_1/2«v(X)-x“L2((X).
It is well-known that
(29) <P(X) = xifiuv+1(x),

hence the zeros xt of <p(x) are those of uv+i(x) and Zv+i(x). In the present case

involving in turn
ilg="-(v+1i) w3\ K =-vx-12

a={E, =%, -b =[pHY=1 c= {ilgVd = x-v(v+2)x_1,

= - 1—v(v+2)x-2, —

= logx, g= —ae~Zo*x = x~2—Vv(v+2)x~4

(30) r(e) = —12x_6+48v(v+2)x-8—16v2(v+2)2x-10 < Ol for x large

(31 R(q) = 4x-6—72v(v+ 2)x-8—116v2(v+2)2x - 10> 0 J enough.

(Here we have a positive answer to the above Problem 1).) It is an easy exercise to
determine the X0, X0 beyond which the last inequalities are satisfied. We obtain

= |/(2+yAB)v(v+2), Z'= /(9 +)/M0)v(v+2).
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Using the inequalities

l—«< VI—u<1— (O<u<])
we have
B B r— B
A= J (1—w(v+2)x~-2dx < J y —dx = J M—v(v+2)x~2dx
A A ' a A

< /[ [l~y vv+2)x_ 2 dx = /2
but by (30)—31)

J V-jdx~n, f Vv-~dx”™n,
Xt ' x[ '

consequently
(32) A= *|+l—*]—"Av(v + 2){—%————;&1} (A = xt, B = xi+l)
and
(33) Az Mihiy (v e 2)i-i-= 1] < N (A=xi, B =xiH).
\X'i >1+1/
We have to interprete the result (32)—(33). Both of A ~xi+1—xt and Ai=x'i+1—xi

tend to 7i as /-*<», where xt is the common zero of 4>(x) and ww+1(x) and xi is the
zero of $'(x). Furthermore,

1
V- T

N
Ai™n 1
V<2

in consequence of another theorem of E. Makai [6] saying that

rdecreasing! fincreases | (V) i L
'‘Slincreasing} ~ P (decreases/ ° - With Increasing 1.

(<t)
In our case v>0, v+1>1/2, thus A~ n and (32) states that subtracting the positive
Lo v(v+2) . . . .
quantity {Kf- i+l from Ai the result still remains greater than n, while

the first mentioned theorem of Makai gives

&) 4_[Mw2HI(.__L.)<,,

since
r(p) = 24 [(v+1)2— x~i—kx~6=0 (fc> Q).
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This shows that both estimates are accurate enough. The inequalities (32) and (34)
together yield

yv(v+2)xfd < < [v(v+2)+]|]xra

As to Al, the situation is the following. Ify is a non-trivial solution of (1), then z=y’
satisfies
"—272'+pz=0
5 p

and substituting £= J pdx this becomes
*0

U+p_ 1My =0, v(2) =z(x), p(O = PX),

In our case p~x(") is decreasing, involving the increase of Ali)=(i+i~£i where fm
is the zero of u(f). We have now

Jre =f g-[v(v+2+ i](i-J-) =,
xt
A= 1-[Uvt2)+j J(x;a;+) L
Since X'i~+°° as A increases with i and it cannot be asserted that A{ is increas-

ing, too, and — in this way — the accuracy of (33) cannot be decided. If A\<7r then
(33) gives nothing new.

Example 2. Considerthe case p=xxin(l)with 2>0, then the solution of (1) is

W(*) = fx Zvevxweyy, V=yjy [<y]

where Zv(x) has the above meaning. Concerning Z\v(x) the formulae
VZV(X) —XxZ'V(X) = XZVv+1(X),
VZV(X) + XZ'(X) = XZV_X(X)

are valid (see [5], p. 45). The first of them reads, transcribed in terms of uv(x), as
<P(¥) = wv(x)-xu',(x) =

Namely, if y=2w*/2A x=|y-j » lhen

W=\ =) «f(E) )
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and the left-hand side of the formula vZv(y)—yZ'(y)=yZX+i is of the form
vzvGO- jz; (y) = vx”J2uv(x) - 2VXI» X

X[ - |r 3dWW + x-12%;(X)]xi-CUA) = 2vx-T\(x)-2 vx Pu'v(x)

while the right member of the same formula reads as

fZ'*M =A-wiTj)' T
By putting here y=2vx1/2wve obtain

(37) yZv+Hl(ly) = 2v (N ) N x MUy *(WHLA) .
Finally (36)—(37) involve (35).
Here <Pi=l, ¢2=x and in turn iljl—xx+1, ij2=0,
a —xA+2 b = (X+2)xk+,
g=x k~i, K&=-(A+4)(32+ 8)a-2A 0.

If the zeros of <P(X) are xv> and those of Zv(x) are j \ti, respectively, then they are
related to each other by

(38) j S = 2vxI{?
(viz. if the zeros of uv(x) are yv=i, then we have

(v )AvD) . - . .
4 i+DN = Jv+ii and 2wyi(X=jMi

or
2(v+i)yi'#2 r 1)) =jv+i,i»
whence (38) follows by eliminating yw+1>) and by our result

AN 1 ..
Jax - K2V slnuneg, Mg,

7 JB13,

JH,i+I~JvH,i ~ n-

Example 3. Choose p=/I_1x_2 (A>0, x>0) and assume the solution in the
form y=jf. Then we have

a(a-)-M 1=0,

which gives one/two power functions provided X=4/2 >4 and two oscillatory solu-
tions provided 0-=A<4, namely

yx= xU¥2sinu, y2= x1R2cosu, u - cologX,
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Take y~yi, then

y' = x~Ifi (y shw+ oocos\M = x~12A sin (m<5), A2= "+ 02 tgd= 2w

If the zeros ofy and y' are xt and x[, respectively, then

g LHL - X+ _
oo|og il 7, olog X
Xi+i _enm
X, ’ Xi

Since /7=A-1x~2 we have
r(p) = 5p'2—4pp" =-4?.-X%~* < (,
12(p) =-7p 2+ 4pp" =-4A " 24-8< 0.
Consequently, by Makai’s theorem,
zi=*i or Xi

¥ o= k- 121065 > T
fooPE 975; vzi+l = xi+l or xi+L)1

zi
which is true since in fact D >A-1/2.
Now let us see how our method works in the following case.

<P(x) = y+ky' = *-1/2[(y +*)sin u+kcocos wj, w= cologx, i = const>0
and its zeros xt, then

v + xFf

Ctg Uj = — ui = colog xt

kco

and the figure shows clearly that ui+1—ut=colog *;_‘
1

tig. |
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Now in turn
HA=1 <=I=—k, WVi=-kX~1x~2 ir2=—,
a= |+/2-1x-2, c= A-1x-2—2cAIX~3+ f2A~2x“4 b = 2k2X~Ix~3

mj = c[l-fc2A-1x -2+ 0 (x-4] = 2-Ix“2[I-2fcx-1+ 0 (x - 3],
|/z = fO(™-s)] = N-12x-i_ a- W2A-2+ 0 (x-9>
[ =j = 2 12logx+y 2-1/2X-1+ 0 (x-3),
— = 22A-1M-3[1-FfC2A-1X - 2+ 0 (X -4] = 2c2A-1X - 3—2fck; .- 2x - 5+ 0(;¢-7),

SAA AN HYAA A+ 0O CX-8,

= I = o [ 1-2kx-1+0 (x“3] exp [- AT -2* O (x-4] =

= 2-1x-2[l —2fcx-1+ 0 (x-2)] = 2“Ix~2—2/d-1x _3+0(x-4),
0 =-2/1-1x-3+6U-1x-4+ 0 (x -9,

<'= 6A-1x-4-24/c2-1x -6+ 0 (x-6),
which gives

r(g) = 5R8'2—4g [0 ,+ ~ e'] =—42~%~6+0(x~7) < 0,

R(R) =—7q2+4q(R"+"e') =-4A-2x-6+0(x-7) < 0.

(At the same time this is a positive answer to question 2) above.)
All these involves

'y i *A-viog-"-~"nj-)>~n
Z la zZ, 2 1zt  zi+1)

where Zj=Xj or Xj (j =i i+1),
wliich is a generalization of Makai’s estimate [4].
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Appendix. Generalization of some theorems of Wintner, Liapunov, Makai, etc.3

1. Wintner’s theorem applied to (14) reads as follows: Equation (14) (and (11))
is oscillatory provided f g(Z)dz=+°°, i.e,

j —eft adz = °°
a
or

f f M 1j--- 1
J PP} PL ¥ &i<Pli

2. Liapunov’s theorem states: If some solution of (14) has at least two zeros
in [A, B], then

f Q+(0dz . g+= max(q,0).
s B—A

Ifin the variable x, the interval [a, B] corresponds to [A,B], then B—A=J" e~5Fdx.
a

Therefore, if some solution of (11) has at least two zeros in [a, ] then

o + f— o- f-
J e “dxJ e * “dx > 4,

a " a

H I h i f

3. If Q =eJ a £2>0, then <P(x)= Y(x)—Y(Z) is oscillatory and by the theorem
of Sonin and Polya the amplitudes of <P(x) are decreasing. At the same time — since
do*1

d]

= —Ygej — the amplitudes of = iy a are increasing. Furthermore
€
by certain theorems of Makai [6] and Bihari [7], the integrals

| \<P@\Z= f \<P()\e d dx

are decreasing with i and

Iy dio> 1 () dZ> ] 1]fd)] dzZ
t, S {i+8

8 Some theorems concerning oscillation, zeros and monotonicity of the solutions can be exten-
ded to the equation (11).
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or

foPpdx D f 'P(X)dx> 3 P(x)dx, P(x) - ‘ﬂ;C)‘epr_J j
‘ K x0 a

* X

Here *i(xi) means the zero of O(£)(<t>'(x)) consecutive to the zero <(xt) of
<P(™)(i>(x)). By putting here [i>(c)j= (i'(v)I=1 these formulae remain valid, since
they reduce to the lengths of the intervals

K..[1+J, K|, Ta KI,{i+J, Ki+i €i+i]
situated on the line -«><”"<oo.
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A MEAN ERGODIC THEOREM WITH A LOOK AT MARTINGALES

DENES PETZ

Since von Neumann proved his statistical ergodic theorem a vast collection of
ergodic theorems has appeared. The theorems presented here are general ergodic
theorems for operators on Banach spaces. The special feature of our main result
(Theorem 1) is that it draws near martingale convergence and ergodic theorems to
each other. The similarity of martingale and ergodic theorems is striking and has been
known for a long time. Theorem 1 is something like a unified martingale and ergodic
theorem, at least on the level of mean convergence, the pointwise convergence is not
touched here, however, it does not cover the most general martingales. The whole
paper is motivated by a theorem of N. Dunford ([2]) and by the idea of F. Riesz:
to divide the space into two subspaces and to prove the convergence on each of them.

Let A be a Banach space, {P,,}czd8(X) a sequence of bounded operators and
<PczX* a subspace. We shall assume the following conditions:

(i) for xEX_|IXl|=sup {I<p(*)l: <& and [I<p|"1},
(i) sup [|i>J =£<+«>,
(iii) the family {P,} is equicontinuous with respect to the a{X, <P topology,
(iv) for every wEN and x£X we have Pn(I—Pmx-»0 and (/—PmPnx-»0
as «—=
(v) {P.x} is relatively sequentially compact with respect to o(X, < for every
Xex.

Let Jf'—n Ker (I-P,), AT(Q= U Rng (/-/>,) and X2=X(2f. Now we
are in a posmon to state the followmg

Theorem 1. With the notations above and under the conditions (i)—(V) there is a
a(X, <P)-continuous bounded projection E of X onto Xxsuch that Ker E=X2, andfor
every XxEX we have P,x—~ Ex. Moreover, there is a o0(X, <>)-dense subspace
X0c | such that Pmx-*Ex in norm for x£Xa.

Proof. First we check that 2fin A 2={0}. If XxEX(2) then by condition
(iv). Since {/*,} is equicontinuous P, x-"-+ 0 is valid forx€A2, as well. On the other
hand, Pnx=x for and therefore AlflA2={0}.

1980 Mathematics Subject Classification. Primary 47A35.
Key words and phrases. Mean ergodic theorems, martingale convergence.
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Define Ex as a a(X, (P)-cluster point of the sequence {Pnx). Assume that
Pnkx-"*yi and Pmk—*y2 as Then Pnk-P mkx=(P,,kx -x)- (P mx-x)£X 2
and yx—y2(:X2. Condition (iv) gives that P,,yx=y1 and Pny2=y2 for every m£N.
So yx—y22£Xx and Ex is well defined. We also have obtained that Rng E=Xx,
E\Xx=lidentity and A2cKer E. According to (i) and (ii) we have |JE|-=AT and the
a(X, (P)-continuity of E.

Suppose that Ex~ 0 and x$X2. Then thereisa 0 suchthat (p\X2=0 and
(p(x)X0. Since Ex=<P—Ilim Pnx one obtains (p(Ex)—lim <p(Px). However,
(p{P.,.x—x)=0 and (p(Ex)=cp(X) is a contradiction. Hence KerkE —X2 is proved.

Since Ex is the only cluster point of the sequence {P,Xx} we have Pnx —~ Ex.
X0=Xx©X(2) is §(X, <E)-dense in X which is a direct sum X1®X2. For xx*Xx
Pnx1-*x1 is evident and for x2£X(2) P,,x2-*0 by condition (iv). Since j[P,]
we have P,x-+Ex for every xO£XO.

If L>~X* then condition (i) is fulfilled and (ii) implies (iii). In this case X0=X
and P,,x"-Ex innorm for every x£X. We note that if <P=X* and X reflexive then
condition (ii) implies conditions (iii) and (v).

Now we are going to use Theorem 1to deduce ergodic and martingale mean
convergence theorems. The following result is a slight generalization of Lorch’s
theorem ([5]).

Theorem 2. Let X be a Banach space and T£S8(X) apower bounded operator

n—1
(i.e. there is K>0 such that ||[Tm\<K for every nENJ. Set P,=n~12 T* and
i—0
assume that {T'x: /EN} is relatively weakly sequentially compact for every x"X
— i.e., any subsequence of {T'x} has a subsequence which converges weakly to an
element o f X. Then there is aprojection E onto the subspace {xEX: Tx=x} suchthat

P,,A-E pointwise.

Proof. We apply Theorem 1taking d>=X*. Since the convex hull ofa relatively
weakly sequentially compact set is itself of this kind, condition (v) is satisfied (see [3]
V. 6. 1and V. 6. 4). In order to show condition (iv) we need a lemma.

Lemma 1. WPN(I—PmM\W\*"2Km/n if n>m and K is a boundfor {||7"|]: «fN}.
This follows from the identity

m-2 m-2/ji 1 m—i—1 t
P,(1—Pm) — 2 T'- 2 — T4ooemm T+
i—0 =0 V W w /
that can be checked easily.
By the notice after Theorem 1 the proof is complete.

The following assertion is a continuous version of Theorem 2. For the sake of
simpler formulation we state it for a reflexive space.

Theorem 3. Let X be a reflexive Banach space and (7)),€r+ a strongly contin-
uous one-parameter semigroup of operators. Assume that ||7{] for every tER+

1/
and set A(a)=—/ Ttdt for oc>0. Then A(tx) converges pointwise to a projection
a

0
onto the subspace {xEX: Ttx=x for every tER+} as a-p+ «
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Proof. It is sufficient to prove that A(a,,) converges pointwise for every se-
quence a,—+ °°. Sothe proofis completely similar to that of Theorem 2 but instead
of Lemma 1 we need its continuous form.

Lemma 2. If /?>a>0 then
WA(R) (I-A(2))\s2K*<xB-" .

Proof. First assume that a=nd and B=k& with some integers n and k. Then

A(R)(x-A(a)x) = Pgxt-PjIPSxt + PjlAicix— f T,A(ai)xdt
m—1

Ttxdt and PA=m~1£ Tis. On the one hand
0 »0

2nK\Wxt\ & 2aK*M

WPtxt-PiPZxsW K _ R

by Lemma 1, on the other hand
1" («) 0

as 4—~0. Sowe have obtained the estimation for rational a/B. If it is irrational one can
use an approximation argument.

Concerning several one-parameter semigroups we have the following Dunford—
Schwartz—Zygmund type theorem (cf. [2] VIII. 7. 10).

Theorem 4. Let X be a reflexive Banach space and (77),€R+ a strongly contin-
uous one-parameter semigroup o f operators (i“k). Assume that WT}W\*K for ik

. 1 .
and i£ER+. Let At(a)—a/f Ttdt (a>0,isk). Then

Ak@...Al(@dx - £*..£ix (XEX)

as og—+ «, ..., a*—+°° independently where Et is aprojection onto {XEX: Tt'x=x,
i€ER+}

Proof. We assume that k = 2. The general case can be settled similarly. Theo-
rem 3 gives that

X = (X—ALS)X) + EIX+X(s)
EXX —(£jX -142(s)E%ix) + x (s)
where x(j)-*0 and x(s)-*-0 as +«>. Hence
Ai (DA L) x —E2EIX = A2 AL (D) (x—AJ(s)X) + A2(@2 (E1x - A 2(s)EIxX) +
+A2(adA 1@y x(s)+ T2a@dx (s).
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If Dj denotes they'-th term on the right-hand side then

HAII e IHAJ a2 W

m\ s " 2ik(s)n, iidi == jstii* (s)b.

4
Consequently, 21 DIl is small if s,tx1,txt are big enough.
=t

We note that Ek...Ei is not a projection in general but it will be a projection if
the semigroups are commuting. Now we turn to martingales.

Let X be a Banach space and (En)(z31(X) a sequence of projections with the
properties sup||EJ< +°° and EnEm=EnE,,=EmAn. (Here m[\n stands for
min (m, «).) We say that (X, En,f,,) is an abstract martingale if (/,,)cl and E,,fm=

fnt\m '

Theorem 4. Let (X, E,,,f,,) be an abstract martingale and assume that X is reflex-
ive and hm |[/J< +°°. Then there is an fEX suchthat /,,— and E,,f=f,,.

Proof. We intend to apply Theorem 1with <=X* and P,,=1—FE,,. We have
Pn(1—Pm =Em—EnAn—0 if n>m. There is a convergent subsequence of (/,,), say

fk,,~r*f So Enfkn~ - Emf and f m—Enf. But Enf= f-P nf~f-E f for some pro-
jection E given by Theorem 1. Hence Ef=0 and Pnf =fm

This assertion covers the vector valued martingale mean convergence in Lp(n, T)
whenever 1<p<o0o and Y is a reflexive Banach space. In this case Lp(ji, Y)~X is
reflexive, too, and E Js are conditional expectations. (See [2] p. 126 or [1].)
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ON SUMS OF INTEGERS HAVING SMALL PRIME FACTORS, Il

A. BALOG and A. SARKOZY

1. Throughout this paper, we use the following notations: cx, c2, ..., NO, Nx, ...
denote positive absolute constants. We write ex—exp (x) and ei®=e(<x). The dis-
tance from a to the nearest integer is denoted by ||al| so that |ja| = min (a—a], [a] +
+ 1—a). We denote the least prime factor of n by p(n), while the greatest prime
factor of n is denoted by P{n).

2. In Part I (see [1]), we proved the following theorem:
Theorem 1 |f N=~NO then N can be written in theform nx+n2+ns—N where
P(nxn2n3 S exp (3(log A™og log N)112.

In this paper, we study the analogous binary problem. In fact, we prove the fol-
lowing theorem:

Theorem 2. There exist absolute constants MO, cx (>0) such that if M>M,,
and

@) exp {5(logM loglog M)12} Sy < M13

then

)] nl+n2=n, P(nxnd Sy

can be solved for all but cx” exp”10 loglogMj » integers naM.

We conjecture that if s>0, N>Nx(e) then
nl+n2=N, P(nxnd S. NI

can be solved; in fact, this is, perhaps, true also with exp (c(log N log log iV)1/s)
in place of Nc Unfortunately, we can prove only the following much weaker theo-
rem:

Theorem 3. If N>N2 then N can be written in the form

nx+n2= N

where
P(nxn2 s 2N25

The proof of Theorem 3 will be based on studying the distribution of bm2in
short intervals. Using deep results on trigonometrical sums the exponent 2/5 in Theo-
rem 3 can be slightly improved.

1980 Mathematics Subject Classification. Primary 10J10; Secondary 10J15.
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3. In order to prove Theorem 2, we use the Hardy—L.ittlewood method. The
proofis based on the estimates given in Part |, and we use also an idea suggested
by [6],

Lety be any real number satisfying (1), and let 3t denote the set of the integers n
such that (2) cannot be solved.

Let N be a positive integer such that

(3) M23 N AM .
Then (1) implies that
4 exp {5(log A'log log N) 12} N 22

(so that y and N satisfy the condition given in Part | and thus the lemmas proved
there can be used also here). Put

J
2= %y
= — = 2-"_
Q Z 12
and
C/=]2"] + 1.

Let  denote the set of the integers k such that 3N anglz<p(k), P (k)"y.
We write

A= k%sJ &

dn= 2 1 (for 1—n —N),
mk=n

D= 2 dn

S(a)= n2:ldne(na),
S=5(0)= 2=|d n,

U@ = 2 e("a).

N+U-I

S(ct)U(a) = 2  gne(ncc),

S2(ci) = 2 r,g(noi),

HN+V-1)

(1 \2
[-t/(a)S(a)d = 2 t,e(nix)
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so that
hy = n_l_}<j/\n dJ>
m 2 . dnidrR
nl+ni=tt
and

dil fd'Z nlgernsni &i2*
Obviously, if d,,>0 then we have /’(«)=>' so that

(5) implies that m= 2  dmdn, =0.
nl+r2=W

We start out from the integral

4, In order to estimate the integral J, we need some lemmas from Part | of this
paper.
Lemma 1. If T is apositive integer, a a real number then we have

|5 le(na)-7°|< 4 r2fal.
n=0

This is identical with Lemma 1 in [1].
Lemma 2. We have
SAN.
This is Lemma 6 in [1],
Lemma 3. For ATs2 we have
D < caiV(log W)3
This is Lemma 7 in [1].
Lemma 4. |If
1 ca<i-1
then for N>N3 we have Q

@) S~™logW.
This is Lemma 11 in [1].
Lemma 5. If n is a positive integer satisfying U”ns3N/5 then we have

Sn A AL
This is Lemma 12 in [1].
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Lemma 6. FOr N>N* we have

T yey

This is Lemma 14 in [1].

1R7 ajog?T

5. In this section, we derive a lower estimate for the integral J.

By Parseval’s identity and (5) (an
=1 (S(0)).
0

* 2N 2
=J \erne noc) ~

(6)

* 2(N+17-1)

d writing r2\Hi=r2M2=...= 0), we have

_ 1« L )T da=
\ u I\

(iV +t/-1)

2 1 tre(mx)\2da

2(N+U-1)

= 6 | 2 (rn-t,)e(ncc)\2dot = :::1 (r,,-1,,)2"~

«=1
A 2 Ow,)2=
gNAn"N

r =0

With respect to Lemma 5 (and since

2 >l= 2 ot
;N<rt"N —5N<n"N

r =0 «ea

for all 7), for 4iV/5</i*iV’we have

M N &2 —
nl+n2=tt

Mtﬁgéﬁg Sn\Sti2 —1r2
T (S

N/5</i,"3iV /5

ttl +n2=n
N /5<t1”"3N/5

N A2

@VI)2 5  4AC

Thus we obtain from (6) that

_ (A2y2Y
A 2 i 2
NN ety | 4577
el
()
1 TV
2500 n2 2L 1

;N-crr"N
n€af
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6. In this section, we give an upper estimate for J.
By using Lemmas 1,2, 3 and 4, we obtain that

— F\W\x | <M. —
J= AS(<*)\ _(u2 cee

+ 1o U—u(@) U(a)
= f \s(«)\4 1+ da+
a0 (<) U £
i-i/Q .
v Is@p4at ¢ S‘%) da
+ 1/0

si | 52S@)2@4C/a)2( 1+ i~ i) ila+
-m K u -’

* 5 L PO e

+l/e 1
(8) =S [/ S2S(a)|216t/’2— (I + I)2da+
-i/Q u

1-10f A \2
/[ [5-j~log”™J |5(a)la(l + )ad as

+ile
y (/) S («)N«+100 7v8(Igg } |5(a)|2da”

A tnn( N\3N/y)2 , N2(loglV)2 ,
- 1001 QWD+ —— y---m-m- JI INQI>r =

ooft 02+ N2198A% 5 - N2 (10g Ampiviog N 1

N N3(log N f

1. In this section, we complete the proof of Theorem 2. (7) and (8) yield that

1 Ay, \V(log.Vls
2500“N . 2 ><m'-=<>—  y— e

AN
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Thus with respect to Lemma 6,

, 1 N5(logNY
I Ai
; Yy
/ (24 logN , N 6(log N f
) A eXPi X - 1~ 1081°8IV] r

(24 IogN fL , J N I log IV
PIT L F5I091080 <cdT enp( bﬂglogN

S c4—v exp (}0 log v log log Af))

and this holds for all N satisfying (3).
Define the positive integer k by

Mi
ie.,
k=L5439Ms +1
so that
k < 2log M.
Then by (1) and (9) we have
Isr?éé?ﬂ l _:LS??gl\(ll(!ll I\:ALZSSZM l_
n 2 i+ 2( 2 iyn
—Af23+ ( 2 i)

jzitier -2l

Af2/3+j’=\ic4( T« EXF(]Q\ 7 rngCg\/)

Af2/3+c5— exp {10 "°% log log Af;

which completes the proof of Theorem 2.
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8. In this section, we prove Theorem 3 (by using an idea from [2]). In order to
prove this theorem, it is sufficient to show that there exist integers a, b, ¢, d such that
N=a+bcd and O"a,b,c,d”*2 N2i, ie. there exist integers b,c,d such that

(10 N—2N2iS bed< N and 0S b, ¢, dS 2NZ2i.

Put b= [y~ 15> m—[(N/b)1,2+ 1] and let k be the smallest integer satisfying
b(m2—k2<N. Obviously, bm2>N, hence k”Il. By the definition of k we have
N~b(m2—k—I)2), so that
(1) (fc-1)2S m2-y S ((N/by/2+1)2-y - 2(N/b)12+1 = (I + 0(l))232N25.

Thus for large N,
(N>)b(m2-k d=b(m2-(k-1)2-2bk+b S N-2b(k-1)-b S

12 N—b(2(2(N/b)12+ 1)12+ 1) = N—(I +0(1))23/iN 25 > N —2N 2&

This inequality shows that b|="-+o(l)j N/, c=m—k (=(/2 +o(l))iV2

and d=m+k (=(j/2+o(l))Ar26) satisfy (10) which completes the proof of
Theorem 3.

9. The method used in Section 8 can be generalized in the following way:
Let X, Y be real numbers for which 100T*Y AN, and

(13) N < bm2S N+Y, XAbs2X

can be solved (in integers b, m). Let k be the smallest integer with b(m2—k2<N.
Similarly to (11) and (12),

(14) (fc-1)2n m2- N g X
and
(15) (N>)b(m2-k 3 = N—2b(k—I)—b S N—3\XY,

and we get from (13) and (14) that

(16)
Thus (15) implies Theorem 3 with

(17)

in place of 21V2S
Taking as usually
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the number of solutions of (13) can be written in the form

(18)

X-<bS2X

Thus in order to improve Theorem 3, we have to show the solvability of (13)
for X, Y such that the maximum in (17) is possibly small; and the study of the solva-
bility of (13) leads to the estimate of S, i.e., of the last two sums in S. These sums can
be estimated by using the method of exponent pairs (see [4], [5]), and the best bounds
for these sums can be obtained by using the recent result of G. Kolesnik [3] concern-
ing exponential sums of two variables. But this rather complicated method leads to
very slight improvement only, namely we can replace TV25in Theorem 3 by TO32'";
thus we do not work out the details.
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ON PRIMES IN SHORT INTERVALS Il

J. PINTZ

1. Refining a method developed by M. Jutila and H. Iwaniec [4], D. R. Heath-
Brown and Iwaniec [3] proved in 1979 the inequality

(1.1) I'\(X)—ii(X-y)»--rl-é\g—xl y = xe

for 0>11/20=0.55. This method was the combination of the linear sieve and weighted
density theorems for the zeta-zeros. In part | [8] we have shown that their main
lemma could be improved slightly and this will enable us to prove the following

Theorem. If 07 17/31 —ex (=0.548387...—¢X) then
12 n(x) —n(x— 2, Y
(19 (x) —n (x—y) log*
where cx and c2 are explicitly calculable positive absolute constants. In particular, for
Xx>c8 we have

" X17/31
(L.3) T —MCTY i
Corollary.
17/31-cx<
Pn+l Pn~Pn .

We note here that Heath-Brown developed a method which makes possible a
slight improvement of 0=11/20, too; further, lwaniec [6] proved independently
essentially the same result, namely for 0>17/31, x> x(0)

(1.4 «<*>-¢(*—7) > 457
and consequently

(1.5) Pn+1-P n«pl7/31+

and he mentioned that the constant 17/31 could be reduced slightly by elaborating
his method. His method depends also finally on the Deshouillers—waniec theorem
for power-mean values of the zeta-function [1] (cf. (2.1) in [8]).

1980 Mathematics Subject Classification. Primary 10NO08; Secondary 10M55.
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Now following the arguments of Heath-Brown and lwaniec [3] we shall sketch
the needed modifications compared to [3] which will lead to the proof of the Theorem.
The only change compared to [3] is that we improve slightly their Lemma 6. (This
improvement was not needed in [3], since there the limit of the method, 0> 11/20
was required for the main Lemma.) However, to make the paper understandable in
itself, we shall sketch the arguments of Heath-Brown and Iwaniec, but for the details
the reader is referred to [3]. We remark further that improving the present analytic
arguments (using Vaughan’s method and the method described in [8]) a better value,
e.g. 0—1/2+1/21=23/42=0,547619... can be obtained, too (if we modify slightly
the main Lemma in part | [8] additionally). This will be proved in a forthcoming joint
paper with H. Iwaniec.

2. Let

(2.1) P(z)=[Jp, V(@ = 77 (I—M
p<z p<z p’

where p runs over primes. Let

si={nx—y<nSx} sid= {n£si, d\n},

(2.2) S(si, z) = {n£si, (n, P(2)) = 1},
W~(s/, z, D) = S(si, z)- 2 S{siop, q)
where g and p run over primes and Using the Buchstab identity (zxs=z2
(2.3) S{si, zd =S(si,zj- 2 S(j*p.p)
zthp<z2

we can write
Tc(X)—n (x—y) = S(si, /x) =

=S(/,2- 2 S(s/Pp)- 2  S(sipp) =

Ydb
2.4 =1V-(s/,z,D)+ 2 S(s/pa,q)~ 2_S(™,,.p)-
(2.4) (s/,z,D) O <p<z (s/pa,q) z"p"Be( P)
2 (Dip)+ _ 2 S(s/gp,q) =t

(DI p)1,359-xp
T e2iMT 2% 2 3 N"24~b2* 5.
As to our parameters we shall require (in accordance with [3] and [8])
0<g< 103, 0=055— y = xethn, x"x{6,rf),

2.5
(25) D=x°92B-2">x09 z=THH6x~\ De=*2r-125

where
(2.6) T= x1+3y 1= x1" - 2= j4540—>
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and ¥ will be chosen sufficiently small (/;-*-0 as x ¢ will denote a positive
absolute constant that need not be the same at each appearance.
The starting point is the following sieve result of Iwaniec [5].

Lemma 1 With the standardfunctions F{s) andf(s) (cf, e.g. Halberstam and
Richert [2])

27 S(sd, z) YK(@)(F(s)+ «/}+* +
(2.8) W- (sd, z, D) N yV (2){f(s)—crj}—R~

where j=log D/log z and /?% have the special form given by lwaniec [5] (cf. also [3]
or [8]). The main result of part | [8] was that under given circumstances the remainder
terms R+ are negligible compared to the main terms. This we formulate as:

Lemma 2. |f we have additionally

(2.9) O "r"S~Q , 1*13=0.016
2.10) P+ 55 004
(2.11) B+90 ~ 0.03

(2.12) \2B+2630 S 0.61
then .

(2.13) 77+ <y exp (—loglhx).

According to this we shall choose B as

,» 04—485  480-26
B = 25 = 25

and then easy calculation shows that all the inequalities (2.9)—2.12) hold if

(2.14)

(2.15) 0SfalL +tl, ie
3. Similarly to Heath-Brown and lwaniec [3] we get from Lemmas 1—2 with
=log D\log z=(480- 3)/(55- 800)+ O(rj)
2 log (sx—1)—en
(31) z 4 logD ) »
i.e
(3.2 21 —(c!(0)—er) logx
where
. 1280-
(33) ci(0) = 20 miog 128058

480-3 55-800 '
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2 \ can be treated analogously by Vaughan’s method as in Heath-Brown and
Iwaniec [3]. The only change is that here the main Lemma, our Lemma 2, is not so
general as in [3]. But the proof of Lemma 2 (cf. [8]) gives that for the critical quantity
A of 2* in §4 of [3] the inequality, analogous to (2.13),

(3.9) Si <k y exp (oglsx)

is again valid, because St can be written in a multilinear form having the same essen-
tial properties as R+, which were used in Part | [8] to prove (2.13). So we get in our
case

A (n)

24 @+cnly 2 o log (D/n)

(3.5)

< (Ci(9) +cri) Io)é*
with
36) o= 900+10

480-3 °8 (960—31)(60—1) '

The term 2z being the same as in [3] we obtain from [3], §5, that

(3.7) 2 3 (ca(9)+0(ri)) lo"
where
(38) : (60—1)(80—3)
’ c3() o0g3(1-0)(H-160)
4. Now we shall consider weighted density estimates for the evaluation of some
parts of 22 and 2s- Let, as in [3],
(4.1) M (s)= 2 am'n~s, N(s) = 2 M s>
M<m~2M N<n”2N

where M ,N”2 and \am\ \bn|sl. The sums below run over zeros Q=R+iy of
C() and x lies in the range Xil9"x "X 12

Lemma 3. Let x*XASM NAXx-35and x*X"*sM /N A X x-136. Then
(4.2) 2 \M(gIN(g\ s v (I- J(1+)

Bsa,|y|st
uniformly for OScSI.

Lemma 4. Let xafBX -D2asM NsX, A/ANIZ E£jr 80 and MN~B2As
AAT-43'20 Then (4.2) holds uniformly in a.

Lemma 5. Let and x"X-"M /N"Xx-21 Then
(4.2) holds uniformly in er.

Lemmas 3 and 5 are the same as Lemmas 5and 7 in Heath-Brown and Iwaniec
[3]. Lemma 4 slightly improves Lemma 6 of [3] which is needed here to reach the
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exponent 17/31 in the main problem. To prove Lemma 4 we shall use the density
theorem of Jutila [7], according to which for es 33/43,

(4.3) N(a,T)= 2 l«,r2(1” 1+
RSa,\y\St

(This follows from (1.8) of Jutila, choosing k —5 and a”33/43.)
Analogously to Heath-Brown and lwaniec [3] we obtain from the mean-value
theorem of Dirichlet polynomials for oa 33/43

= (AGDI+) 2 \M(g)N(q\)2«

<K 22il(l—® 2 M (e)]2 2 N (g)\2 «
fisa,\y\St Bma,\y\Sx

X 2a a- 2<- 0)(MN)1~2a(MN+ M t+ Nx + 12 log2X <=

<%~ iz /(N3 “TNIZEE SRR 23 201z + (NKHBER<L

taking into account the propositions of Lemma 4. On the other hand for
1—log T)~4/5"<7"33/43 we have from the Halasz—Montgomery inequality and
(4.3) the analogous estimate

H « X 2a 2- (38H- a)(MN)1- 2a(M N + M r Zi+<i3/30)a- ,) +

L jy T2+ (43/20)(1-ff)_~.TI + (86/20)(I-0))

(44)

4.5)
where the first term is < 1in view of M N ~x and all the other terms decrease monot-
onically in o), since by our propositions

X 2 % 86/23

(4.6)

(M N)2Ti3/2° ~ T286/23+43/20

because t> T 4/9. Thus it is sufficient to check that the 2nd, 3rdand 4th term is less than
1 for 0’=33/43, i.e.

4.7 A-23/43-0/10720/43 yy-23/43T + [y20/437-23/43T+ (AQ-23/4372) A j

which is the same as in (4.4).

5. Similarly to Heath-Brown and Iwaniec [3] we can now show asymptotic
formulas for the following parts of 2 2 (/> < r are primes, g=r,pqrdstf)

©.1) A" &z‘%gg Hi n’?l)

and

(5.2) 2|3= prgor H Ifaj(
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which yield

(5.3) ZP =y[z 4 °Q°g 3%)

(5.4) Z12 =y[z-2+ o (iog-»X))
mp, r P

provided that (according to Lemmas 3 and 4, respectively)

(5.5) TAX-1" QR s XT~35 T X '1S R/Q ts XT~*I5
and
(5.6)
y-86/2320/23 » Ay, MTves20s XT~i3d3, NM~2Dg XT~idf3

respectively, where X=x1~n
The conditions

(5.7) 8RD 4 Q2x, 16QR £  x '*QRz, 2Q0=R
and
(5.8) 64P2R3D =x3 x"P-R, 2P =z, x " PR2

respectively, ensure that (D/p)l/3*q<p<z, r*q and so in these cases we obtain

(5.9) N Aadon TS bO(ylog 4x)
29 0 TR
q K<rs2R ar
an
(510 odrest 17 T pdep i/t 0(v10g-4).
PRrpS2P R«=rs2R P? 10g -
R<rS 2R Pf

Finally, the condition
(5.11) PAXXT-133

in the second case will ensure that disjoint sets of values of p, q and r are counted
in the two cases. Summing over all admissible values we have (cf. [3])

docdf3

(5.12) Z2 ocB(l-oc-B)
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where
to 5
{ @ R); — (1-0)-1'S «+RS I-y(1-0),
y-(1—0)—1=Sf—xS I - j (1-0), B-2a S 0.08-5,
(5.13) l+2aS1,2-y(l-0)aa+/i,aS]|)) =

= {(«/?); S«+fS I~ (1-0),

Jf’ (1—0>—1S R-a A 1—y (1—0), /"—2a s 0,08—5, R+2a, £ 1}
and similarly to this

Jtn = {(& /0; 2 -y (1-0)S a s -y-(I-0)-I,
(5.14)

5 (1_0)_I1- a+jS’2a+3"s 2,08-5}.

Using Lemmas 3 and 5, an analogous procedure leads to asymptotic formulas for

(5.15) 92?59

under two mutually exclusive sets of conditions on P, Q. This leads to

(5.16) 24 S - ( rr dtxdB )
0" U L » « 1-«-» ">
where
—j@@, B\ 1—(1-0)S asSy,
(5.17)
«+/) sl-j(1-0),«-j8s 1—1(1-0)}
and
Ax = {(«/*); <*+8 —1—y (1~Opa~B —1—f j (1-9).
(5.18)
a51-j (1-0), oc+38s 0.92-5}.
6. Denoting the corresponding integrals on in (5.12) and (5.16) by ¢7(0),
we get finally
(6.1 n(x)-n{x-y) (c(0)-ct])

log*
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where
(6.2) c(0) = d(0) + c2L(0) + c2(0)- c3(0)- c4(0)+ c5L(0) + c&(0).
Since ¢(0) is a continuous function of 0, our theorem will follow from

(17) 1
C131J A 3000

This is really the case, since

. 17 50.195839

17)
Gi (- 1>0-14899

221> 0.01699

(6.4) c3 E)l< 0.052105

£)1< 0.38602

o > 0.06347

@(- >0.01317
and so
(6.5) .(ff). 0.000334 = 30t
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ON A PROBLEM CONCERNING V MODULI OF SMOOTHNESS

V. TOTIK

The aim of this note is to prove the following

Theorem. Let (a, b) be afinite or infinite interval, rS 1 an integer, a>0 and
1S/x  fdLp(a, b). If

) \\d'mf\\Li"(a,b-in S C
for a sequence t,—0+0 satisfying

@ +5—=0(01) (- -)

then o

(3 \Mf\m.,6-rH)= Oih*) (h —0+0).
Here

=0 (-iy+I(e)/(*+m.

The analogous result in ~2n was proved by DeVore [5] for r—2 and he raised
the question if the same is true in //-norm. Freud [3] verified this in the case p=2
and Ditzian [2] for every /)5 1. Freud showed also that (2) is necessary for the impli-
cation (1)=>(3) when a<r and the problem of the sufficiency of (2) for every r” 1
was posed by Ditzian [2], Boman [1] solved this problem in a very general setting.
Since Boman’s approach is rather abstract and heavily uses the translation invariance
of Lp(—"°°, °°), it seems to be worthwhile to give a direct proof which applies also to
finite interval.

Proof. Let

@ —2—" C, Csl.
“rHl
First let us suppose that beside (1) / has an absolutely continuous (r—)-th
derivative and a.e. an /--th derivative belonging to Lp(a, b). We give an estimate on
IMX/IItPCa.i-r*) in which the bound is independent of the posed smoothness
assumption.

1980 Mathematics Subject Classification. Primary 26A15; Secondary 41A27.
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By the formula (see [4, p. 107)])
Ahf(x) = 2 mm2 Apf(x+vlh+..+vrh)
vr=0 v,=0

it follows for every i~l the estimate

(5) A~ LP(a,b—irh)’\ i‘IM*/III.J>(a,6—rA) .
Let

(6) MX) = -"r 2i(-"y +1[#)f-- ff(x+ i(ul+...+un)dul..dur
where f —J denotes /--fold integration and let
U>(/0)= O%}JM\\AH\\L’\a,l} hrh.

Since the norm of an integral is not greater than the integral of the corresponding
norms we get by the formulae

(f~f»)(x) = AP /.. [ Adi+,,4J{x)dul.dur,

ttn(x) = 2 (-oi+1 (\)j ar Aidfix)
and

Aﬁ(x):/ujur Oc 1+ o dx.dr

the estimates for <5<h/(r+l)r

I1./- fd\LP(a,b-h) — ||/—yallr.i(a,6-rA-rM) =
1 N
- f| " - f\\A«l+..+Urfhna,b-r3-r*I)dul...dur A m(/, r, <5),

0

() . .
I (0 —ra) — 2r6-r 2 wAutwisia.b-Iri) —

and

\Ahft\WLP(.a,b-rh-r*d) —f mfim una.b-~du?”
(8)

N h'Wmiw.b-r**) ~ 2rrr+1 (jjIW W Lp(a,b—r3)
where we used also (5).
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Now (7) and (8) yield for <5</i/r(r+1)
\\AH\\I.p(ab—(.r+\/)hA ||d*(/—n)|\|_ P (a.6-r/i-)i)+ IM J/AILP(aii,_rA_rti) S

S 2r||/—il]Lp@ 6-4)+ 2rrr+1 [dj/| LRab-rs)

a2'a)(/,r6)+2V +1(y) |dS/||ipca.0—re) -
Putting here <%= in such that

A =2 1H,F)i(r+ D)r
(such a /,, is guaranteed by (4) for every /idix), we obtain the estimate
IMX|LP@, I>-(rH)A) *yr2»*«>,, )+ O r</ r»f

and together with this also
®(»*) S (/; r21+ff+)a ) +(2rClt)r+lia
Iterating this Atimes it follows
(G BN 2k (1 (rRi+HHTHA) +
+ (2rCA)'+lha(l + 2r (ftf+-fr+y/«)-«-+ 22 (r21+(r+1)/«)-ite+

O l2-D)r(r21+(,,+ 1)) _(k )iy S

S 2rk( (r2L+(r+l)ay "+ 2(2rCA)r+1hx
because
2/(r21+<r+>) s -L.

Now we apply our assumption f (ELp(a,b) to derive

t
co(/;, @==sup [fA(. +ul+ . +undul.du) ... .o

by which

2°® (I Wapkry) * 0% (2> < \wy) 1/” 1ra = (1)

as k —oo, and hence (see (9))

7*
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a)(/; h)*2(2rCA)'+1hx
for every h~tx.
Since our starting condition (1) is symmetrical one can prove in exactly the same
way the estimate

IMS/DI-c+m - hoS 2(2rCA)'+lh*  (ft S Q

and so we obtain
[|d*/||t)@ni) —Mha  (h =t)

with M=4(2rCA)r+1, i.e. the Theorem is proved under the assumption f ("L p(a, b).
In the general case all what we have to do is to apply a smoothing process to f.
Let e>0 be fixed and for <5<e/r let us consider the function

N

1
ft (x) = -y f...ff(x+ul+ ..+ u)dul..dur.

Clearly,
X =1 (-Ditr(mjr/eV'/(*+ih+ul +..+urdu,.du, =(Ain: (X
and so
«l 6
~Tr f eoef +UL+ o+ U)dul.du\ o p e -
° 0

1
- w [eee/M<nfhno,b-r,ndul..dur™ tx.

However, has already an absolutely continuous (r—)-th derivative with (//) ()
£Lp(a, b—e), hence, according to what we have proved above

INFMW -e-rA) “Mh* (A~ t).
Letting here (5—0 and observing that

U-/tiL*b-.) =o(l) as <5-0
we get
IMI/W*— .« S Mh*

for ftSij, and since here e>0 is arbitrary, the Theorem follows.

Remark. Our proof works also for other norms (e.g. for the supremum norm)
instead of the Lp-one.
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COMPACT PACKING OF CIRCLES

L. FEJES TOTH

Let the circle ¢ be touched by the circles cL, G, SO that no two circles overlap
and c, touches ci+l (/=1, n; cn+l=cl). We say that cis touched by a closed chain
of circles. If in a packing of circles each circle is touched by a closed chain of circles
then we call the packing compact.

We shall denote a domain and its area with the same symbol. We define the
homogeneity of a set of circles {c,} by infc,/sup c,.

We shall prove the following

Theorem 1. The lower density ofa compact packing of circles ofpositive homo-
geneity is at least 7r//12.

Proof. By the assumption that the circles have positive homogeneity, the circles
can nowhere accumulate. It follows that the part of the plane not covered by the
circles consists of triangular gaps bounded by three circles mutually touching one
another. To each gap we construct the triangle spanned by the centres of the respective
circles. It is easy to show that these triangles fill the plane without overlapping and
without interstices.

Let A be a triangle considered above. Let c1, c2, c3be the respective circles. We
shall show that

"nA+c.DA +CsDA n

) A A
Let O be the centre of the incircle of A (Fig. 1). Let 7i, Tt, T3be the points of
tangency of c2and c¢3, c3 and cIf and ¢, and c2. We write 2cl= <$T20T3, 2a2=

=< N0, 2a3= <$TI0T2. Without loss of generality, we may suppose that the
inradius of A has unit length. Then we have

3
A= 2 tana, c,fld= tan2a,, i=1,2,3.

Thus, with the notation

1980 Mathematics Subject Classification. Primary 52A45.
Key words and phrases. Packing of circles.
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we can write the inequality (1) in the form

@) y@)+y(@a+y@3" o
We claim that for 0<a< 7t/2 the function y(a) is convex. We have

-sin2a+(7r—2a) tan a— K
1fn
y

y"(a)cosda = {—sin2a—2tana + (re—2a) cos- 2a}cos2a +
+ sin2al—sin2a+(7c—2a)tan a— L=l —
| Yn\

= (n—2a)(1+ 2sin2a)—a sin 2a,

where a=2+n/fT2. Writing a=(7t—x)/2, we obtain

Yy M2X sindT = x  +2cos2y j —asinx = x(2+ cosx) —a sinx
S x(2+cos x)—3sinx = 3(2+cos x)/(x)
where
f(M - x sinx
2+cosx’
Since /(0)=0 and
= B(2+Cosk)2 >0 0.

we have /(x)"0, OSx” #, which implies the convexity of y(a).
Using Jensen’s inequality, we obtain the desired inequality

J@i)+J(“29+y@s) S 3y(nk) = 0.
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Let r be the supremum of the radii of the circles. Let 2 denotea summation which

R
extends to all circles of the packing contained in a circle C{R) of radius R centred at
a fixed point of the plane. The lower density d of the packing is defined by

We write (1) in the form

c"A+c A+ cCc™A
V12

and sum up the corresponding inequalities for all triangles contained in C(R—r).
Obviously, the sum at the left-hand side isat most 2 ci>and the sum at the right-hand

R
side is at least equal to the area of the circle C (R—3r). Therefore
Z ci*j=n(R-3r)\

which, in accordance with the theorem, implies that n/~12.

Besides the hexagonal packing of equal circles, the density 7i//I2 can be attained
by a great variety of packing with incongruent circles (Fig. 2).

Fig. 2
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In Poincare’s circle-model of the hyperbolic plane, consider the incircles of the
faces of a regular trihedral tiling. In the Euclidean plane these circles constitute a
compact packing of density 0. This example shows that dropping the condition made
on the homogeneity we can construct a compact packing of circles with any density
between 0 and 1

Defining the compactness of a packing of convex discs and the homogeneity of
a set of convex discs similarly as for circles, we have the following

Theorem 2. The lower density of a compact packing of homothetic centro-sym-
metric convex discs o fpositive homogeneity is at least 3/4. Equality is claimed onlyfor
affinely regular hexagons.

Proof. Let cI5 c2, c3 be homothetic centro-symmetric convex discs mutually
touching one another. Let A be the triangle determined by the centres Ox, 02,03
of Cj, c2and c3. By the considerations used in the proof of Theorem 1, it suffices to
show that

cl C\A +c2C[A-\-c3C\A 3
bl A - 4 [
Since the quotients c"CIA/A are invariant under affine transformations, we may
suppose that A is an equilateral triangle of unit side-length. Let the boundaries of c1

and c2, c2and c3, c3and ct intersect the boundary of A at T3, Txand T2. With the
notations 01T3=x, Offix—y, 03T2=z we have

a fo sk 8

c* 1-x cS'“(l—y' ql
Multiplying these equalities, we see that
(4) 9(x,y, 2) = xyz-(I-x)(I-.y)(I-z) = 0.
Obviously

clnd+c2n~+c¢c3n” Ax (1-2) +y (I-x) + 2(I-y) = £(X, . 2).

Because of (4), we have
f(x,y,2) = 1-2xyz.

We want to find the minimum of/ in the cube Q defined by the inequalities
O”Xx,y, zal under the condition (4). At any boundary point of Q satisfying (4)

/is equal to 1 Since, on the other hand, g \~,y, y]=0 and /(y> vy, y) =

= —<1,there is a minimum in the interior of Q. We write the condition fx+ Agx=

= —2yz+A{yz+ (I —y)(1—=2z)}=0 and the two similar conditions for the minimum
in the form

yz+p(l-y)(l-z) =0,
zx+p(l—z)(1—) = 0,

xy+p(l-x)(I—y) =0



COMPACT PACKING OF CIRCLES 107

Multiplying these equalities, we obtain, by (4), that )i= —1 Thus we have yz=
=(1—y)(l—2), xyz=x(I —¥)(I =)= —x)(I —y)(I —z), whence *=1/2. Simi-
larly, we obtain that y= 1/2 and z= 1/2. This concludes the proof of (3).

Equality holds in (3) only if 7\, T2and T3are the midpoints of the sides of A,
and the intersections Cxfld, c2DA and c3fM are identical with the triangles
OXT2T3, 02T3Txand 03TxT2. This implies that cx, c2and c3are congruent affinely
regular hexagons.

If in Theorem 2 we drop the condition of the central symmetry of the discs then
the minimal density is conjectured to be 1/2. It is attained by a packing of triangles
such that, roughly speaking, at almost each vertex three triangles meet.

E. Makai jr. asked the following question: Is it true that the density of a compact
packing of homothetic convex discs with positive homogeneity cannot be less than
the density of the thinnest six-neighbour lattice-packing of translates of one of the
discs? An affirmative answer would imply besides Theorem 1and 2 also the correct-
ness of the above conjecture.

(Received September 2, 1982)
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DIE DUNNSTE 2-FACHE DOPPELGITTERFORMIGE
KREISUBERDECKUNG DER EUKLIDISCHEN EBENE

AGOTA H. TEMESVARI

H sei ein Punktsystem in der euklidischen Ebene. Mit bezeichnen wir die
Anordnung von geschlossenen Einheitskreisen, deren Mittelpunkte mit dem Punkt-
system H Ubereinstimmen. 3u wird eine k- fache Uberdeckung genannt, wenn jeder
Punkt der Ebene zu mindestens k der Kreisen gehdrt. Die Dichte von fifH bezeichnen
wir mit AE?H [3].

Im folgenden bezeichnen wir den Punkt X und den Ortsvektor OX mit demselben
Buchstabe.

Mit r bezeichnen wir immer ein Punktgitter, d. h., die Punktmenge, deren Punkte
durch die ganzzahligen linearen Kombinationen von den fixen, linear unabhéngigen
Ortsvektoren A und B bestimmt sind. A und B sind die Basisvektoren von T ge-
nannt.

31X sei die Punktmenge, die aus der Punktmenge 2T durch die Verschiebung X
stammt.

Mit | bezeichnen wir immer ein Doppelgitter, d. h., eine Punktmenge, fur die es
ein Punktgitter r und einen Ortsvektor X gibt, so da® Z=ri)rx ist. ES seien
D2= ipfA(Ufa), D'2—ipfzf(JS?r)> = ir}fA(Jéfj), wo die Infima Uber sémtliche Punkt-
mengen H, samtliche Gitter f und sdmtliche Doppelgitter | zu erstrecken sind,

fur die ,fEr, bzw. eine zweifache Uberdeckung ist.
Blundon [1] hat die Gleichheit D2=2DXbewiesen, wo Dx die Dichte der

dinnsten einfachen Kreistiberdeckung ist IIszs_EI' Danzer [2] konstruierte eine

2-fache nicht gitterformige Kreistberdeckung, deren Dichte Kleiner als D? ist.
Im folgenden beschéftigen wir uns mit den 2-fachen doppelgitterformigen Uber-
deckungen von Einheitskreisen.
Im weiteren nehmen wir an, dal3 r eine normale Darstellung hat, d. h., die Un-
gleichungen

) \A\ SS\B\'S \B-A\ und <(205)Sy

flr die Basisvektoren A und B von f gelten. Weil Z=r{jrx ein Doppelgitter ist,
liegt wenigstens ein Gitterpunkt D von rx im Parallelogramm OA(A+R)B. Wir
kénnen annehmen, dal D ein Punkt des geschlossenen Dreiecks OAB ist. Wir

1980 Mathematics Subject Classification. Primary 52A45; Secondary 51MO05.
Key words and phrases. A-fold covering, 2-foid double-lattice covering, density, thinnest
covering.



110 A. H. TEMESVARI

betrachten den Vektor D. Es ist klar, daf wir das Doppelgitter auch folgenderweise
darstellen kénnen:

2) Z=TOTD, D=kA+mB,
wo O"NE:+mA I, k, m~O ist. Im folgenden nehmen wir an, daB8 (1) und (2) fir die
Angabe von Z gelten (Abb. 1).

Wir nennen Z ein Doppelgitter vom Typ Zs, wenn Z eine solche Angabe
riirx hat, bei der T das legulére Dreiecksgitter ist und die L&nge der Basisvektoren
vonf \2>ist. Eine Anordnung von Kreisen ist vom Typ.2”, wenn das System der
Kreismittelpunkte ein Doppelgitter vom Typ Zs bildet.

sei eine 2-fache doppelgitterformige Uberdeckung von Einheitskreisen, wo
die Bedingungen (1) und (2) fur Z gelten. So kénnen wir die Uberdeckung  Z£1
in zwei Anordnungen Zf&r und ZETd zerlegen. T sei der Inhalt des Grundparallelo-
gramms von T. So ist die Dichte von gleich In/T. Aufdiese Dichte bezieht sich
der folgende

Satz. Die Dichte einer 2-fachen doppelgitterférmigen Uberdeckung von Einheits-
kreisen ist ~2Dj = 13 Gleichheit tritt nur bei den Uberdeckungen vom Typ

auf.

Vor dem Beweis des Satzes sehen wir einige Hilfssatze ein. Wir fuhren die
Bezeichnungen \A\=a, \B\=b, \B—A\=c und <$(AOB)=a (Abb. 1) ein.

Hjifssatz 1. Wir betrachten eine 2-fache doppelgitterformige Uberdeckung
SFs = Z&r UZEVu. Wenn die Anordnung Zr eine Uberdeckung bildet, dann ist die Dichte
von Zf&x &2Dj und Gleichheit tritt nur bei den Uberdeckungen vom Typ auf

Der Beweis ist klar, weil die Dichte von ZET =Dy ist und Gleichheit nur bei dem
reguldren Dreiecksgitter Ts auftritt [3], [4],

Hilfssatz 2. Fir die 2-fache doppelgitterformige Uberdeckung von Einheits-

kreisen JA-, wo A( —34\71—2 ist, gelten notwendigerweise die folgenden:
1 4
2 as33

3. a-=| for 2.



DIE DUNNSTE 2-FACHE KREISUBERDECKUNG m

Beweis. 1 Wenn b s 4 ist, dann hat der Basisvektor OB von F eine Strecke der
Lange 2, die von den Kreisen der Anordnung Fer nicht (iberdeckt ist. Weil die Uber-
deckung FEx 2-fach und doppelgitterférmig ist, mufl man die von Fr nicht Gberdeckten
Ebenenteile mit der Verschiebung der von Fr mindestens 2-fach iberdeckten Ebenen-
teile Uberdecken. Weil die Lénge der gemeinsamen Sehne von zwei Kreisen in Fr
Kleiner als 2 ist, so ist die Uberdeckung J39 im Fall b s4 nicht 2-fach.

2. Bei den Einheitskreistberdeckungen vom Typ Fis ist T:ﬂ?’—, deshalb

y e . 3/3 . . .
missen wir die Uberdeckungen, fur die T- ist, nicht untersuchen. In diesen

Féllen ist ndmlich die Dichte groRer als Wegen b<4 ist T=ab sin a*.4a.
Wenn a- 3/83 ist, gilt 7"4a- 3/81.
3 Im Fall b>2 giltauch ¢>2 wegen (1). k und m seien ganze Zahlen. Wenn

aS| ist, dann berlhren sich die Schnitte der um die Gitterpunkte kA und (k+ \)A
geschlagenen Einheitskreise im Fall a= 1 oder haben sie keinen gemeinsamen Punkt
(Abb. 2). Aus b>2 und c>2 folgt, daB die Kreise mit den Mittelpunkten mB + kA
(mAQ) und kA keinen gemeinsamen Punkt haben.

Wir betrachten den von den Geraden OA und B (A+B) begrenzten Streifen. Der
von Fr nicht Uberdeckte Teil in diesem Streifen ist ein einfach zusammenhangendes
Bereich, dessen Breite >0 ist. So kénnen wir dieses Bereich durch Verschiebung der
von Fr mindestens 2-fach (berdeckten Ebenenteile nicht iberdecken, d. h., die
Uberdeckung kann nicht 2-fach sein. So gilt a<l.

Hirfssatz 3. FEl sei eine 2-fache doppelgitterférmige Uberdeckung von Einheits-
kreisen. Wenn ct=nl2 ist, dann ist A(ETf)"2D1 und Gleichheit tritt nur bei den
Uberdeckungen vom Typ SEls  auf.

Beweis. Es sei 3/3 Sa< 1 Wenn bs.2 ist, dann ist T s2« -, d. h,, die

Dichte der Uberdeckung ist groRer als 2Dt. So missen wir nur die Falle b>2
untersuchen. Weil 1 ist, schneiden sich die um die Punkte O und 2A geschlage-
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nen Einheitskreislinien. Mit M und N bezeichnen wir die Schnittpunkte und m sei
gleich b—2 (Abb. 3).

Weil die Uberdeckung 2-fach ist und r D durch Verschiebung von r entsteht,
gilt M N~m notwendigerweise. Wir betrachten ndmlich die Kreise mit den Mittel-
punkten kA (k ist eine ganze Zahl) in der Anordnung Sfr . i f sei der von diesen Krei-
sen mindestens 2-fach Uberdeckte Ebenenteil. Wir nehmen die zu MN parallelen
Strecken, die die Grenzpunkte von i f verbinden. Unter diesen Strecken sind (M N)kA
die kilrzesten. Wir betrachten den von den Geraden OA und B(A+B) begrenzten
Streifen. °Usei das Bereich in diesem Streifen, das von den Kreisen der Anordnung
Fer nicht Oberdeckt ist. Auch in ®Unehmen wir die zu MN parallelen Strecken, die
die Grenzpunkte von &J verbinden. Die Lange der kirzesten unter diesen Strecken
istm. Soim Fall m>MN kdnnen wir mit ifDdas ganze Bereich aJ nicht iiberdecken.
So gilt MN”*m.

Die Basisvektoren des Gitters F seien OA und OB, wo OEJ OA und \B\=_
=MN+2 gelten. Es ist offenbar, daf der Inhalt des Grundparallelogramms von F
groRer als T ist, wenn MN>m ist. Es sei D—B/2. Wir betrachten das Doppelgitter
Z=rl)rD und die entsprechende Einheitskreisanordnung Es ist leicht einzu-
sehen, daB  eine 2-fache Uberdeckung ist. Es ist offenbar, da wir im Fall DAB/2
keine 2-fache Uberdeckung bekommen und die Dichte von Kkleiner als die Dichte
von Jiff (MN>m) ist. Mit einer einfachen Rechnung ergibt sich, daR

T@) = a(2+2 o S a<l1

im Fall Sxist. Mit Hilfe der ersten Ableitung kénnen wir uns davon (iberzeugen, dal
der Inhalt T(4) im Fall a:/~3Y maximal ist- Im Fall B ist b=3, deshalb ist
3U3 der maximale Inhalt, d. h., die minimale Dichte ist eben 2D1. Es ist offenbar, dal
diese minimale Dichte nur bei einem einzigen Gitter auftritt. Weil 't3

bei diesem Gitter ist, ist das Dreieck O"A +y] (2A) regulér (Abb. 4). Das bedeutet,
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dal das Doppelgitter mit vorigen extremalen Inhalt eigentlich vom Typ Is ist.
Das kann man leicht sehen, wenn wir das Doppelgitter auf eine andere Weise an-
geben. Es sei ndmlich Ts mit den Basisvektoren 2A und A +(B/2) gegeben und D sei
der Vektor OA. Das Doppelgitter TsU(T9)fl ist eben unser extremales Doppel-
gitter.

2. Essei as 1 Wegen des Hilfssatzes 2ist bs 2. Aufder Figur 5kann man das
Grundparallelogramm OA(A+R)B und die um diese Gitteipunkte geschlagenen
Einheitskreisen von Sr sehen (if2 =.2VUjf7d). Wenn c¢S2 ist, dann ist Ufr eine
einfache Uberdeckung; mit diesem Fall beschaftigen wir uns wegen des Hilfssatzes 1
nicht. Esseialso o 2. In diesem Fall gibt es ein Bereich °Uin OA{A+B)B, das von
<& nicht Gberdeckt ist. Der Schnitt der um O und A bzw. O und B geschlagenen Ein-
heitskreise sei Ul bzw. Offensichtlich gilt Hieraus folgt, dal} das
Bereich 4J durch ein verschobenes Exemplar von oder Uberdeckt ist. Wir

beginnen mit dem ersten Fall. Weil die Uberdeckung 2-fach ist, gilt u~ | =

Jetzt geben wir eine 2-fache doppelgitterformige Uberdeckung Jzii, deren Dichte nicht
groRer als die Dichte von ist. Es seien OA und OB die Basisvektoren von r.
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wobei OAA.OBund JA|=j/ 1—  +1. Essei D=B/2. Wirbetrachten das Doppel-

gitter S—FUFD. Esist leicht einzusehen, daR die Anordnung  eine 2-fache Uber-
deckung ist. Man kann auch leicht sehen, daR wir im Fall D~B/2 keine 2-fache Uber-
deckung bekommen. Der Inhalt des Grundparallelogramms von f ist

T(a) = ]/-4a4+8f13, 1S dGs 2

woraus sich ergibt, daft wir den maximalen Inhalt bei a—3/2 bekommen. In diesem

Fall ist b=\'3 und der maximale Inhalt ist Sﬁl—- Das entsprechende Doppelgitter

ist vom Typ Is, so ist die Uberdeckung vom Typ Fis.
Betrachten wir jetzt den Fall, wo B durch ein verschobenes Exemplar von ii\

Uberdeckt ist. In diesem Fall gilt —1—4/ 1~ (~j mHieraus ergibt sich, im Hinblick

auf a”b, aS.8/b.
Die Basisvektoren des Gitters F seien OA und OB, wo OA+OB und [B|—

= |/ 1—"-) +1 gelten. Essei D=y. Bei dem Doppelgitter T= TUFDist der Inhalt

des Grundparallelogramms von F groRer als bei dem urspriinglichen Gitter T. Es
ist leicht einzusehen, daR J5x eine 2-fache Uberdeckung ist und die Uberdeckung im
Fall D~B/2 nicht 2-fach ist. Der Inhalt des Grundparallelogramms von F ist

T(@) = a[jA -~ +1),
Man kann sehr leicht einsehen, dall T(a) streng monoton wachst. So ist der maxi-

male Inhaltm\Wegen (y) 3F3 ist die Dichte von groRer als 2DI.

Beweis des Satzes. Wir betrachten eine 2-fache Uberdeckung mit der Dichte
] 41t . . . . . .
A (JSfj) S m—=. Mit Riicksicht auf Hilfssatz 3geniigt eszu zeigen, daB sich zu F2 eine

2-fache Uberdeckung J2x mit 4=n/2 und mit der Dichte A(£s)=A (*) angeben
laRt.

L Wir beginnen mit dem Fall ad. Es sei h die zu OA gehdrige HOhe des
Grundparallelogramms OA(A+B)B von T. Es gilt /i=-2, sonst gilt 7d2 und

il
——9;;\5:. iV sei das Bereich, dessen Punkte von den Kreisen mit den Mittel-

punkten kA (k ist eine ganze Zahl) mindestens zweifach tberdeckt sind. M und N
seien die Schnittpunkte der um die Gitterpunkte A und (—A) geschlagenen Einheits-
kreislinien (Abb. 6). Es ist offenbar, daf® iV keinen Streifen der Breite groer als MN
Uiberdecken kann.
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Wir betrachten_das Gitter F, dessen Basisvektoren OA und OB sind, wo |B|=
=2+ M/Nund < (BOA)=n/2 gelten. Es gilt A(£fi)* A(3?z), wo Gleichheit nur im
Fall 1 =1 auftritt und FEi offenbar eine 2-fache Uberdeckung ist.

2. Der Fall a~l. Im Hinblick auf (1) und Hilfssatz 2 ergibt sich 2.
Wegen des Hilfssatzes 1 kénnen wir annehmen, da ¢=>2 ist. Es seien
die Schnitte der um O und A; A und A+B; A+B und B bzw. B und O geschlagenen
Einheitskreise. Etsei dieim OA(A+B)B liegende Ecke von #J"(/=1, 2, 3, 4) (Abb. 7).
Wir bezeichnen denjenigen Teil von OA(A+B)B, der von den Kreisen der Anord-
nung Fr nicht Uberdeckt ist, mit &) “Uist von den Kreisen der Anordnung Fern
2-fach Uberdeckt. Da die iVl disjunkt sind, ist dJdurch ein verschobenes Exemplar
von /=1,2,3,4) uberdeckt. Ohne Beschrankung der Allgemeinheit kénnen wir
annehmen, daB /=1 ist.

Das Bereich und das Parallelogramm E1E2E3Ei sind zentralsymmetrisch
und konvex, so, wenn wir W durch Verschiebung von  tiberdecken konnten, kénnen
wir ®Uauch durch Verschiebung von um B/2 Uberdecken.
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Wir betrachten das Gitter E, dessen Gittervektoren OA und OB sind, fir die
OA J_OB und |B|= |5j_gelten. D sei 5/2. Wir betrachten das Doppelgitter E=rU E D.
Es ist offenbar, da® T>T gilt. Wir sehen noch ein, dal8 die Anordnung % eine
2-fache Uberdeckung ist. Es seien Lx, L2und P die Mittelpunkte der Strecken OA,
OB und AB. Bei f wenden wir die Bezeichnungen der Figur 7, aber mit dem Zeichnen

an.

Die orthogonale Projektion auf AO fiihrt den Punkt Y in Y* Uber. Esist leicht zu
sehen, da c¢>2 ist, daB die Reihenfolge der Bildpunkte von L2, E2, P genau L\, B4
P* ist. Da L2PW\OA und L2P=L2P=a/2 und L\E$<LIEI ist, folgt

3) EtEt > E*Et.

Offensichtlich gilt LxP\\OB, LxP=LxP=b/2 und LXEX—LXEX Hieraus folgt wegen
der Dreiecksungleichung

@) EXE3= 2£jP > 2(L1P -L 1E]) = 2(L1P -E 1E]) = 2EXP = EXES.

Aus (3) und (4) folgt, daB &J durch (*#i)b;2 lberdeckt werden kann.
Damit haben wir den Beweis des Satzes beendet.
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SPECTRAL PROPERTIES OF VECTOR OPERATORS

T. MATOLCSI

I. Introduction

Usual quantum mechanical observables are self-adjoint operators, or better said,
families of self-adjoint operators. For instance, position, a so-called vectorial observ-
able, is considered as a family of three self-adjoint operators that are interpreted as
the components of position relative to a basis of the physical space. If we want to get
rid of bases and to look for a coordinate-free description, we face the problem, what
mathematical objects represent quantum mechanical observables. The notion of vec-
tor operator is introduced to answer this question. Here we investigate only mathe-
matical properties of vector operators and we do not enter into physical applications.

2. Preliminaries

In the sequel H and Z denote a complex Hilbert space and a finite dimensional
complex vector space, respectively.

Inner products are denoted by the symbol (, ) and are taken to be linear in the
second variable.

H® Z isthe algebraic tensor product of H and Z. It is well-known (see [1], Ch.
I. 4)that if we equip Z with an inner product then H® Z turns into a Hilbert space
with the inner product defined by

(h®z, g®y) :=(h,g)(z,y> (h,gEH, z,y£Z).

The corresponding topology on H® Z is independent of the particular inner product
chosen on Z. That is why we consider H® Z as a topological vector space without
specifying an inner product on Z.

Ifzlt ..., Zvis a basis of Z then every element of H® Z can be written in the form
N

2, hkezk

Z* stands for the dual of Z and the bilinear map of duality is denoted by ()).
We are given a continuous bilinear map

(D): Z*X(H®Z) mH,
defined by
((p|lh®2)):= (p\z)h (pEZ*, h®ZEH® 2),

1980 Mathematics Subject Classification. Primary 47A10; Secondary 41B15.
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and a continuous sesquilinear map

«.»: tfIX {H®Z) -*Z
defined by
«g, h®z» := g, h)z (g€H, h®ZE£EH®2Z).

We have the following relation:

@, ((pIf))> = (pl«g, a)))  (pez*, g£H, aiH®Z).

If plt is a basis of Z* then the elements a and b of H® Z are equal if and
only if ((pk\a))=((pk\b)) (k=1,

3. Basic facts about vector operators

D efinition 1. A linear map defined in H and having values in if® Z is called a
Z valued vector operator in H.
If A is a vector operator and p£Z* then we define the linear map

((p|JA)): H 3 DomA - H, h>*((p\Ah)).

Remarks, (i) A complex valued vector operator is a usual operator.

(if) Since H<g)Z has a topology, we can speak about continuous and closed
vector operators.

(iii) Let zu ..., zNbe a basis of Z and let p,, ...,pN be the corresponding dual
basis of Z*. Then we can consider ((pk\A)) (k=\, as the components of the
vector operator A relative to the given basis of Z. We have the equality

Ah = 2[((PK\AN)]®zk  (h"DomA).

Consequently, if we are given a family Ax, ..., ANof operators with common domain
D in H, then we can construct the vector operator

> 2(Akh)® 2k (hED)

whose components are precisely the given operators.
As a consequence, two Z valued vector operators are equal if and only if their
components relative to any basis of Z coincide.

Examptes, (i) If UEZ then ®w: H-+H®Z, hy-+h®u is a continuous vector
operator and ({p\®u))= (p\u) idH.

(if) Let Fbe afinite dimensional real vector space. Then L2(V)ig>Z is identified,
through the prescription f<g>z= (v>-*-f(v)z), with the vector space of Z valued square
integrable function classes. The identity multiplication operator M defined on

Domilf:- {/ELZF): /id vEL2(F)<g>Fc}

by
[ >widp ;= (v-~f(v)v)
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is a Fc valued vector operator in L2(V) where Fc stands for the complexification
of F. If rlt ..., rNis a basis in F then {(rk\M)) is contained in the operator of multipli-
cation by the &-th coordinate.

If /: V-+C is differentiable, then DJ(v), its derivative at v£V, is a linear map
F—C which can be extended uniquely to a complex linear map Fc->-C; in other
words, we can consider D/as a map F—{Vc)*=(F*)c=:Fc. Then the differenti-
ation operator D defined on

DomD:= {/EL2(F): /is differentiable, D /€L 2(F)®Fc}

is a Fc valued vector operator in Z2(F). If vit ..., vNis a basis in F=(F*)* then
((vk\D)) is contained in the k-th partial differentiation operator.

Definition 2. A bounded operator L is said to commute with the vector opera-
tor A if ALN(L<g>idz)A.

Proposition 1 L commutes with A if and only if L commutes with {(p\A))
for all p(*Z* which holds if and only if L commutes with {(pk\A)) (k—1, ...,N)
for an arbitrary basis pr,...,pN of Z*.

4. The spectrum of a vector operator

In the sequel A denotes a fixed densely defined vector operator.

Definition 3. A linear subspace D of Dorn A is called invariant under A if
A(D)czD®Z.

Proposition 2. D isinvariant under A if and only if D is invariant under ((piA))
for all pCZ* which holds if and only if D is invariant under ((pkM)) (k=1 ..., N)
for an arbitrary basis px, ...,pN of Z*.

Definition 4. An element X of Z is called an eigenvalue of A if there is a non-
zero /iGDom A such that Ah=h<g>X. The linear subspace {fi*Dom A: Ah=hiS>X}
is the eigenspace of A corresponding to X The set of eigenvalues of A is denoted by
Eig A.

Definition 5. A linear subspace T of H® Z is called bulky if there is no proper
closed linear subspace D of H such that TcD®Z.

Proposition 3. A linear subspace T of H® Z is bulky ifand only if H is spanned

by U {(Ma): 7).

Definition 6. An element X of Z is a regular value of A if
(i) A—<pX is injective,
(i) Ran (A—@p*) is bulky,
(iii) (A—<SiX)~1 is continuous.
The set
Sp A:= {X£Z: Xis not a regular value of A} is the spectrum of A.
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Proposition 4. (i) EigAcrSpA, and for all p£Z*
(ii) O'Eig A)c=Eig {{p\Aj),
(iii) (pISp A)cSp ((p\A)).

Proof, (i) and (ii) are evident. To prove (iii) suppose that IESp A, S(/,):=
:=A —0 A is injective, and distinguish the following two cases.
Firstly, assume that A ((/?|Ran 5(A)) does not span H. Then Ran ((p\S(A) =

= ((/?|Ran 5(A))) cannot be dense in H, thus (/?ly.)€Sp ((p'Aj) for all p£Z*.

Secondly, suppose that the inverse of S(/.) is not continuous. Then there is an
unbounded sequence h,, (nEN) in H such that S(X)h,, is bounded. Consequently, the
sequence ((p|5(1/i,,)) is bounded, thus {(p\S(/.))) cannot have a continuous inverse
(it may have no inverse at all), and (p|A)ESp((p\A)) (pEZ*).

Proposition 5. The spectrum of a vector operator is closed.

Proof. To demonstrate this assertion let us equip Z with an inner product.
Then for all udZ the norm of the vector operator <u equals the norm of the vector
u: ||[/iow|| =||n|||I/i] for all hEH. As a consequence, one can show as in usual oper-
ator theory that if B is a vector operator having a continuous inverse then B —<gpu
has a continuous inverse for u in a convenient neighbourhood of the zero of Z. Fur-
thermore, suppose that Ran B is bulky, i.e. for any g£H there are p£Z* and
AiDomi suchthat (g, ((/>|#/i)))00; then (g, ((p\B- ®u))li)=(g, ((p\Bh)))—
—(g, h){p\u)7i0 if u is small enough, hence Ran (B—®u) is bulky. Substitute

—0 A for B with a regular value Aof A to have the desired result.

Proposition 6. Let A be continuous. Equip Z with an inner product. Then the
set (z£Z: ||z >||Al|} is disjoint from Sp A.

Proof. If ||z|[>M!] then ||(zi-®z)A|M\NAh\N-||z|| [I/illls(|z]l-I141IDII/i|  for
all /z"Dom A, henced -0 z has a continuous inverse. We have to show now that
Ran (A—02z) is bulky. Let z denote that element of Z* for which (z\y)=(z,v)
(yEZ). Then ((zU))=(0z)*d, so [|(zM))IMlIz|lliZ]]<||z|l2 and thus |lz||2=
—(z|z) isnotin the spectrum of ((z\A)) as it is well-known from usual operator theory.
Consequently, Ran [((z|Z))—(zjz) idH = ((z|Ran (A—0z))) is dense in H; apply
Proposition 3 to end the proof.

Proposition 7. Let Y be afinite dimensional vector space containing Z as a linear
subspace. Then 7/0 Z ¢//0 Y and a Z valued vector operator is also a Y valued vector
operator. The spectrum ofA is independent o f whether A is considered as Z valued or Y
valued.

Proof. We have to show that ifyEY and y<$Z theny is a regular value of A.
Choose an inner product on Y and write y=u +v such that uisin Z and vYO is
orthogonal to Z. Then for all hEDorn A, [|(A—<g=)h\2=\(A—0w)/z||2-f|r|27i[2
S|M 24|12 hence A—O0 y has a continuous inverse. Furthermore, using the notation
introduced in Proposition 6, we have ((V\(A—0 y)h))= —\W\h (/|6Dom A) which
yields that Ran(A—0j) is bulky.

Remarks, (i) If Z=C, Definition 6 gives back the usual definition of the spec-
trum. If Z is one-dimensional, the spectrum of a Z valued vector operator has the
usual properties.
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(i) To construct examples that the spectrum ofa vector operator does not exhibit
in general all the properties of the usual spectrum, we take two dimensional spaces.
Let hi, h2and zI5z2be an orthonormal basis of H and a basis of Z, respectively, and
let us consider vector operators of the form //—//<g>Z, h>-+{Aih)®Zi+(A2h)®z2.

— The vector operator given by Afii*hi, A2h2:=0, A2hl:=A2h2:=hi+h2
has a void spectrum.

— The spectrum of the vector operator given by Alhl:=A1h2:=h1+h2, Alh2:=
:=A2ni:=0 contains zero, but not as an eigenvalue.

(iii) Observe that the norm of vector operators depends on the inner product
on Z. It is interesting that even the set (z€Z: ||zl >|MIl} depends on it. To see this
let H and Z be as in (ii) and let Aland A2be the projections onto the subspaces span-
ned by ~ and h2, respectively. Then the corresponding vector operator has one and
the same norm whatever be the inner product on Z such that HzJ = ||z2| =

(iv) IfAlt ..., Anare operators defined on a common dense linear subspace in H,
the spectrum of the CN valued vector operator whose components relative to the
standard basis are the given operators is some sort ofjoint spectrum for Alt ..., AN.

5. Spectral theorem for vector operators

If T is a Hausdorff topological space, B(T) denotes the algebra of Borel subsets
of T. If P is a projection valued measure defined on B(T) and having values in the set
of projections of //then for all h,gEH, E>-"Phig(E): =(h, P(E)g) is a complex
measure on B(T).

An element t of Tis called a sharp value of P if / X{i})?iO. The set of sharp values
of P is denoted by Sharp P.

The support of P is the set

Supp P:= {/€T\ P(G)?+0 for all open G with /(EG).

Definition 7. A Z valued vector operator A in H is called
() partially normal if
dp\A)) is closable and its closure is normal for all p£zZ*,

Dorn A = (J Dorn ((p\Aj);
pEZ*

(i) totally normal ifit is partially normal and ((p\A)) and ((q\A)) strongly com-
mute for all p,q£Z*.

Proposition 8. (i) A partially normal vector operator is densely defined and
closed.
(ii) A continuous partially normal vector operator is totally normal.

Proof, (i) is quite easy. To show (ii) observe the continuity of A implies that
((p\A))=((p]A)). Take the bounded normal operators ({p+ q\Aj)={p\Aj)A-{{q\A))
and ((p+iq\Aj) to obtain that ((p|[/i)) commutes with ((q\A))* which implies the
commutativity of ((p*4)) and ((q\A)) (p,qEZ*).
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Proposition 9. Let A be a totally normal vector operator. Then there exists a
unique projection valued measure R on B(Z) such that

((h, Ag» = f idzdRhg {h£H, gEDom A),
z

Proof. Letpk, pNbe a basis in Z* and let Rk be the spectral resolution of the
normal operator ((pk\A)) (k=1, N). Then Rk, ..., RNare commuting projection
N

valued measures, hence their product o Rk exists and is the unique projection
k=1

valued measure on B(CN) determined by (0 RJ(x £k\= U Bk{Ef). Let b
denote the inverse of the linear bijection Z-»CN z=*{(pk\z): k—1, N), and put
[?:="0 [itjofc-1. Then for all k=\,...,N, hEH and g"DomZ

(PK\((h, Ag))) = (h, ((PkIA))9) = CJ idc d(RKyhig =

= / pr*di0 R\ = f pkdRKg = [pk\ fid zdRhig)
. z

C ti= ‘h,g z

where prfc C\*C isthe A-thcanonical projection; we also used the relation pkob—
= prt and the well-known integral transformation formula. The uniqueness of R
follows from the uniqueness of the Rjs and from the equalities

B = [Ol(Rop"ob-l Rk= Rop"l
k=

Remark. We can define the integral of measurable functions T-*Z with respect
to projection valued measures on B(T) as Z valued vector operators. It can be shown
that all such vector operators are totally normal. In other words, only the totally
normal vector operators have spectral resolutions, i.e. are integrals of idz with respect
to projection valued measures.

P roposition 10. A bounded operator L commutes with a totally norma! vector
operator A if and only if L commutes with the spectral resolution of A.

The proof of the following assertion requires a number of notions and particular
results from the theory of integration with respect to projection valued measures. Who
is familiar with them, can argue similarly as in the case of usual normal operators
(see [2]), needing only one new step, a consideration on bulky subspaces. We omit
these details.

Proposition 11. Let A be a totally normal vector operator having R as its
spectral resolution. Then

Eig A = Sharp R, Spa = Supp R.

Definition 8. Let Vbe a finite dimensional real vector space. A Vc valued vector
operator A in H is called
(i) partially self-adjoint if
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(jr\Aj) is closable and its closure is self-adjoint for all rd V*,

Dorn A = r&’* Dom((r|K));

(ii) totally self-adjoint if it is partially self-adjoint and
((ry4)) and ((.s|T)) strongly commute for all r, sd V*.

Remarks, (i) Apartially self-adjoint vector operator is densely defined and closed.

(i) A partially self-adjoint vector operator need not be partially normal. For
instance, the first operator given in Remaik (ii) at the end of Section 3, if Z=VC,
z1z2d V, is partially self-adjoint without being partially normal.

(iii) Taking a basis rlt ..., rNin V* (it is a basis in Vc, too, with respect to the
complex structure) and repeating the argument of the proof of Proposition 9, this
time considering ((rk\Aj) instead of ((pk\A)), we find that a totally self-adjoint vector
operator is the integral of idFc with respect to a projection valued measure whose
support is in V. As a consequence, by the Remark to Proposition 9, a totally self-
adjoint vector operator is totally normal, and its spectrum is contained in V.

Examples, (i) For udz, the vector operator <pwis totally normal, its spectral
resolution is the projection valued measure concentrated at u.

(i) The identity multiplication operator in L2(V) is totally self-adjoint. Its
spectral resolution is the projection valued measure that assigns to EdB(V) the
operator of multiplication by the characteristic function of £ (which is the projection
onto L2(E)czL2(V)).

(iii) The differentiation operator in L2(V) is closable, its closure multiplied by
the imaginary unit is totally self-adjoint. Its spectral resolution is the projection valued
measure that assigns to SdB(V*) the projection F~1K(S)F where K(S) is the
projection onto L?(S)cL2(V*) and F: L2(V)—L2(V*) is the Fourier transfor-
mation defined by

(FR(r):= f ex\m/m)dv  (FdL2(V) f)L'(V), rd V*)
'

with the translation invariant measure on B( V*) chosen in such a way that F be uni-
tary.
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BEMERKUNG ZU EINER ARBEIT VON J. PINTZ

W. DETTE und J. MEIER

1. Bekanntlich bewies Littlewood im Jahre 1914, dafR die Funktion

(1.1) 7r(x)-lix= rx g [o~g-lt—

unendlich viele Zeichenwechsel hat. Sein Beweis erlaubte es jedoch nicht, ein X0
so zu bestimmen, daB 7i(ay —ix mindestens einen Zeichenwechsel im Intervall
[2, X (] hat. Weiterhin war es nicht méglich, fur die Anzahl V(y) der Zeichenwechsel
von u(x)—Ha im Intervall [2,y] eine Abschatzung nach unten anzugeben.

Skewes [10] zeigte 1955, dal}

(1.2) rc(x) > lix fiir mindestens ein  x < exp47,705
(exp, x = exp X, exp,+1x = exp,, exp X).

Dieses Ergebnis verbesserte Lehman [6] im Jahre 1966, indem er als obere Schranke
fiir den ersten Zeichenwechsel Ao=I,65 «10116 berechnete.
Uber die Anzahl V(y) der Zeichenwechsel bewies Knapowski [4] im Jahre 1962

V(j) £ e-Hlogdy fir y £ exp535

(1.3) (log,y = logy, logn+ly = log, logy).

Unter Verwendung der Beweismethode von Pintz [8] zeigen wir in diesem Aufsatz
den folgenden

Satz. Flr jgfexp43,57 gilt

1 ~ogj'
(14) Vi) > exp33,550 log2y
2. Wir folgen bei den anschlieRenden Uberlegungen der Beweismethode von

Pintz [8] und geben die wesentlichen Anderungen an. Dabei werden wir die Bezeich-
nungsweise von Pintz [8] zugrundelegen.

1980 Mathematics Subject Classification. Primary 10A20; Secondary 10H15, 10H25.
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Zum Beweis unseres Satzes im Fall | zeigen wir Lemma 1 fur Z"exp215.
Daraus ergibt sich

(2.1) V(y) = 10-3 ﬁgggz;\ fir y =£exp216

und damit der behauptete Satz im Fall I.

Die Uberlegungen (6.12) bis (6.19) zur Reduktion des Problems kdnnen flr
Z"exp215 (das bedeutet A =exp32,6) beibehalten werden. Die Setzungen (7.2)
bis (7.5) andern wir folgendermalen ab (anderenfalls laRt sich die Abschatzung
(13.6) nicht beweisen):

Sei @=Ru+iyo eine Nullstelle mit maximalem Realteil unter denen, die (7.1)
bei Pintz [8] erfullen. Weiterhin sei nun sukzessive d',;+1 eine Nullstelle mit maximalem
Realteil RBn+1, die

yn N yner = ynt 2
(2.2) 1
BnH » Bn+-/i

erfullt, falls eine solche Nullstelle existiert. Nach héchstens [y/2] Schritten erhalten
wir eine Nullstelle

def
gn= Bs+iys= Bi = BRi+iy: mit

(2.3) FLET+T

0«wyl™ eA fir Z " exp215.

Dabei sind die Bereiche

(2.4) li| ~ 25
und

(2.5 [f-y Ar2A,

nullstellenfrei.
Als Abschétzung fur |£/| nach oben erhalten wir im Fall A (vergleiche (12.9)
bei Pintz [8]):
ekR\-HRi
(2.6) \U\ A -eioM  fiir Z S exp215.

Dabei haben wir (11.1) bei Pintz [8] korrigiert durch

27 f jr.dx =j{f[~(z) +C(2))dz+h]xz— }r - 1 fir <r>|

1 2 S 2
mit |/ij*lo.
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Bei der Berechnung der Konstanten in (12.5) bei Pintz [8] sind wir von der
WeierstralRschen Produktdarstellung ausgegangen

(2.8 (s-1)C(s) — — [/fi-- mit b= 0,549 ...

*(Ha 5

und erhalten fur (12.5)

I
140 log\t

2.9

( )__ hg o
wobei in (12.4)

(2.10) 2 <feR+ng, 2 )| T

Zu setzen ist.
Unter Verwendung von

1 xn-* T dx
(2.11) u*)= nz‘l\i?"+ = k- Sj); X
erhalten wir fiir (12.6)
(2.12) IC@)| S 55|71 fur Il S 10.

Unter Verwendung dieser Ergebnisse erhalt man (2.6) analog zu Pintz [8],
Um |C/| nach unten abzuschétzen, verbessern wir (13.9) zu

(2.13) I SbS 320logL
und erhalten fiir (13.14)
KRl +uBi
(2.14) £/ S ----- — flr ZSexp2l5.

Dies steht im Widerspruch zu (2.6), womit Lemma 1 im Fall A bewiesen ist. Der
Fall B laRt sich analog zu Pintz [8] flir Zsexp215 unter Verwendung ahnlicher

r .
Abschétzungen flr ((s) und —(.?) im kritischen Streifen wie im Fall A beweisen.

3. Zum Beweis des voranstehenden Satzes im Fall 11 kdnnen wir (18.5) ersetzen
durch

n (x)—n(X) 16

1)  at(x)-a;(x)+ log X

fur exp 1045 r " eVs.

log*



128 W. DETTE UND J. MEIER

Daher gentgt es, anstelle von (19.2) und (19.3)

(3.2) maxd;M >|+—

(3.3) min

xZJ

zu beweisen mit /c:[exp 104, eV*].
Unter Verwendung von

(3.4) 2 — S 10 &XI2 fir x=exp104 fs f

=T Q

(vergleiche Skewes [10]) erhalten wir fur (19.7) und (19.8)

(3.5) a@\?g(aZG(VPI" lL:}U
(3.6) min  G(v) —‘;l 1001

mit [eai, edc [exp 104, exdd.
Verwendet man die speziellen Ergebnisse

(3.7 2 1S 0372
y=*0 /

3.8 0,053,

(3.8) 207,258

1 .
y ~om (<7_1Bt <5>1, dieersten 200

Nullstellen gesondert betrachtet (fir die Werte der Nullstellen siehe Haselgrove und
Miller [2]), so gilt fur (20.7) bzw. (20.9)

die man erhalt, wenn man beim Beweis von 2

(3.9 [i(0>)- h(co\ S 1,12 A
bzw.
(3.10) [/2(m)-/3(co)| S 10-

fiir 104+ 1=asS A -1 10-%>A>e1

- A 0
Fir 104+I1Scu 2 log A

von (21.12) und (21.13)

und 10 £0>A >2eB=: 27) erhédlt man anstelle

(3.11) Jm j > 022logA - 0,157
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und
(3.12) A(tt)<0'517-0,226l0gA.

Dabei haben wir verwendet, daR

(3.13) N{T)>-j\°gT fir rsct
Setzen wir in (22.4)
(3.14) q= B='100log2zl,

so erhalten wir fir (22.11)
(315) JAn|W|O)—Jm)(I A r| % 0|087|

Zusammengefat ergibt sich dann fir (22.13) und (22.14)

(3.16) /3(dil») <-0,226log A+ 0,604
(3.17) 73(iu>) > 0,226 log A -0,244.
Damit kdnnen wir flr (23.1)
(3.18) A = max {eM25(2*(i+/ioo)+0.60«)>2e 28} = eR"
setzen.
Unter Berlcksichtigung von
(3.19) N(A) » — \°gA
setzen wir in (22.5)
620 C(A) = x50

Daraus ergibt sich die Behauptung unseres Satzes auch im Fall II.

129

4. Der Beweisgang im Fall 1l macht deutlich, dal es darauf ankommt, /3(co)
moglichst gro nach oben bzw. nach unten abzuschétzen (vergleiche (3.16) und
(3.17)). AuBerdem zeigt (22 5) bei Pintz [8], dafl A und damit die Anzahl der Nullstel-
len mdglichst Klein sein sollte, um mdglichst gute Konstanten in der Aussage des
Satzes zu erhalten. Diese Uberlegungen legen es nahe, ein Ergebnis von Skewes [10]
zu verwenden, das einen geniigend groRen Ausschlag fiir /3(co) garantiert, wobei
M=1500. Fir den Fall, daB die Riemannsche Vermutung wahr ist, wird dies in Dette,

Meier und Pintz [1] durchgefiihrt.

5. Wir weisen darauf hin, daB die oben aufgefiihrten Uberlegungen in unserer
Dissertation (Uber die Zeichenwechsel der Funktion 7r(x)—ix, Bielefeld, 1982)

ausfihrlich dargestellt sind.

9
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HOROCYCLES OF A DYNAMICAL SYSTEM ON THE PLANE

ZS. LANG

Introduction

The transformation of the plane (xI5yJAFiXo, Jo) given by
1 1

iz %0+ — 0 )iz To-*o- -
So So
is connected with the Restricted Three Body Problem (see Henon [2]). F isan area
preserving diffeomorphism, except along the x-axis where it is singular. Devaney
showed recently that this mapping is topologically conjugate to the baker transfor-
mation. However, this result is purely topological and implies nothing about the
ergodicity of F.
In this paper we construct contracting and expanding horocycles. They are im-
portant in studying the ergodic properties of dynamical systems (see [4]).
In § 1we sketch the topological conjugacy to the baker transformation. Further
we introduce the main notions and symbols.
In 82 and §3 we construct the horocycles by describing their tangents.
In 84 we give the rate of expansion of the horocycles.
Our paper is based upon several ideas introduced by Devaney [1].

8 1. Conjugacy to the baker transformation. Basic notions

F is defined on R2—{y=0}. Its inverse is given by (x_1,y D=F 1(x0,y0
where
x_1= xO——l— , y~i = x0+y0.
w0 ' So
Hence F~1is not defined on the line y0O= —x0.
Denote the point FJ(x0,y 0 by (xj,y,)for Z. Let pER2 If Fk(p) is defined
for all k£ Z, then we may assign a sequence s(p) to p, where
s(p) —(..., S_2,5_X, s0; slt s2, ...)

-

I'H'_i:y-j(p) =)

J 1-1 if y-j(p) <o

1980 Mathematics Subject Classification. Primary 70F07; Secondary 28D05, 58F15.
Key words and phrases. Restricted three body problem, baker transformation, horocycle,
rate of expansion of the horocycles.
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Some F-orbits terminate when ys(p)=0, y'sO or when yk(p)=—xk(p), 0.
To these orbits we assign a sequence of the form

[0, S-j+1, ..., s_i, sO; Si, s2>...)
or
(s+*) S_i, Saj A1) *e>5_j[, 0],

respectively. Under this identification F goes over to the shift transformation.
The set of sequences s of +1 and —1 may be mapped onto the open square
0s|z/|, [tk in the plane via the rule

u v= 2 2|Sj-i

when the shift transformation goes over to the baker transformation.

The mapping p~*(u, v) is a topological conjugacy between the plane and the
open square Os|«|, [t-=1 We refer to [1] for complete details.

Now we explain several notions, terminology and symbols used in
this paper. Define the sectors in the tangent bundle of R2

S+~={«,n\ SCUSO}
s++={«i)["o0, £ 0}
{(E, 1]{S0,»fS0}

DIl —0, ij SO).

5 —

So S ++ consists of all tangent vectors to R2which lie in the first quadrant.
One checks easily that

dF(S+~) c S+~, dF~1(S++)Cc 5++
dF(S~+) ¢ S-+, dF~x(S~~)c S~~.

SU-S+~US~+ is called the unstable sector and SS=S++US’-- s called
the stable sector. We define an unstable curve to be a smooth curve whose tangents lie
in the interior of Su. Stable curves have tangents lying in the interior of Ss. It is clear
that F maps unstable curves to unstable curves and F _1 maps stable curves to stable
curves.

Let «, nj) be a tangent vector. We denote dFm{£, n) by ti,) for n£Z. We
introduce the norm

I, =«l+M
in the tangent bundle. i
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8§ 2. Tangent vectors of the horocycles

Let us study the stable vectors all of whose dF-iterates are also stable vectors.
We remark, that dF—"iterates of stable vectors are stable.
Let (\,f)ET(xy),/>0,y*O. This vector lies in the first quadrant of T(xy).

The vector dF (I,/) lies in the same quadrant if Yo+ llSimiIar conditions can

be found by higher order dF-iterates.
Proposition 1. The condition-sets form a nested sequence of intervals.

Proof. Let/, be the tangent of the vector dF " (1,/) for ns0. Hence

Suppose that we can transform this condition to 5>/(+1>&. Then we have
[ i
yf +1+$ o+ | +3

Definitié)n. Let the n-th condition-interval be (a,,(x,y). b,,(x,y)), for example,
ao(x,y)=yXY> bO(x,y)=y2 Consequently,

a,.(X, y) = — " . o bu(xy) = — j

y2+ |+ a,-i(*iyi) yi+ yX)

We remark that, if y,,=0, then a,,=bn. Define am—bm—a,,=bn for m>n
in this case. Thus the functions an: R2—R and b,,;; R2-*R are continuous on the
whole R2 Let us denote lim a,,=asfc=lim b,

Lemma 2. a=b.

Proof. We can assume that v,,?£0, n—0, 1,2, .... Suppose 0 Let
si=(a,y) and s2=(/?, S) lie in the first quadrant of tix,y) and suppose that

a L b
a

and that
(cL-B,y-S) = (E, M =u

lies in the second quadrant (see Fig. 1).
One immediately checks that the dF-iterates of ~ and s2 are stable vectors, the
dF-iterates of u are unstable vectors.
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The following equation is straightforward:

1+ L 1| o | |
— +_ ++ yn+
yﬁ <nH _ anH .7/i (a,, yn )
I i . I i+ MHi y-.

There are analogous equations for (8, O and (£, if). Hence
0 —antl —an, ®— Bn+L—Rn, in+l =
0 —7n+l— 7n, 0 N {K+1 1N <5,
Consequently, the following convergences hold:
lima,=& limy,= % IlimRn=1R, limén=S, lim =f.

Furthermore, a=R=0, because a,+l=y,,—yn+l and /?+1=5,—d,+1. Hence
%= &—R=0. But which gives a contradiction.
Denote /=lima,,.

Theorem A./: R2*R is continuous.

Proof. Let (x,y)€R2 s>0. Choose n such that b,(x,y)—an(x, y)<e, and
<5>0 such that if W—x\+\y—y\*d, then \an(x,y)—an(x,y)|-=E and
\bn(x, y)-bn(x,y)\<e. We have

a«(x, y)-e < a,(X,y) sif(x,y)ts bn(x,y) < fc(xy)+e
au(X, J) ==/(*,y) = b,(x, ).
Hence \f(x,y)-f(x,y)\<3e.

and

Remark, (i) There is an equation for /:

fix,y) - —

y2+ 1+ (xi,y1)

(ii) yfl fix, Y)< y2
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In the following we describe the analogous properties for the unstable vectors.
The proofs are similar to the preceding ones and hence are omitted.

We study the unstable vectors, whose dF _1-iterates are also unstable.

Let (l,g)€r(tj,), x ~ —y, £<0. This vector lies in the fourth quadrant of
T(Xy). The vector dF-1(l,g) lies in the same quadrant if

-(x+y)2-1 <gc-1I.
The higher order dF _1-iterates give us similar conditions for g.
Proposition 3. The condition sets form a nested sequence of intervals.

Let the «-th condition interval be (c,,(x,y), d,,(x,y)). Then

y-i + )D yh +dn-iix-iiw
The functions ¢, and d,, can be continuously extended to the whole plane. Further-
more, limc,—c*d=\im d,, holds.

Lemma 4. c=d.
Let g=lim cn.

Theorem B. g is continuous and

g*>t) = - i + - j——- .

Remark. —1—yij-cgOc,y)< —1

8 3. Description of the horocycles

Consider the differential equations

@) v) =/(/, v(t))  v(z) = {
and
2 a(t) = g(t, u(0) u(v = £

These equations have solutions for all (t, £)€R2 because/ and g are continuous.

Proposition 5. (i) If v is a solution of (1), then v=0 or v(t)*0 for all t.
(i) Ifuis asolution of (2), then u{t)= —t or u (t —t for all t.

Proof, (i) Suppose v(t)=0. Then Fo(id, u) is not a stable curve, (ii) is han-
dled similarly.

Consider the baker transformation on the square Q=(—:. 1)x (- 1. 1». On Q
we can define the (u, u) coordinate system.
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Corollary 6. The line v=vn on Q defines on the plane a global solution o f (1).
Similarly, the line u—u0 defines on the plane a global solution of (2).

Proof. On each point of the line v—v0 there lies the image of a local solution
of (1). These images wholly belong to the line v=v0. The other case is similar.
In addition, it means also that (1) and (2) cannot have two local solutions.

Corollary 7. The solutions of (1) and (2) are unique.

D efinition. The global solutions of (1) are called contracting horocycles and the
global solutions of (2) are called expanding horocycles.

8 4. Hyperbolicity

For the remainder we give the rate of expansion of the horocycles. For this aim
it is necessary to approximate F wheny is large. But first of all we answer the question
of why the horocycles are called contracting and expanding:

Proposition 8. Let sf£71(xy) be a tangent vector of a contracting horocycle.
Respectively, UET(xy) is a tangent vector of an expanding horocycle. Then

Fe) = XY

1+/(*>y)
and
dF-1) = (X*Y)2 )
Let h=—\—g. Then y
1+h(xy)
ldF_1W 2+h(x,y)

The types of F-iterates of a point are represented in Fig. 2.
It is clear from the conjugacy to the baker transformation that all of F-iterates
cannot remain in the upper (resp. in the lower) half plane (see [1]).

Let {zj—(xj, yj)\i—0, ..., W+1JcR2 be a set of points for which

(i) z: lies in the upper half plane for j=1, ... N.

(i) F(Zj)=z3+1 for j=o0,..., N.

(iii) zOand zN+1 lie in the lower half plane.
If there exists such Zj for which 0<y,<3 then the contraction is less than 9/10,
for f(Zj)<y2. Suppose y» 3 for y=1 .., N. Let k=min {j\I"j*N, Xj>0},
denote (x, y)=(xk, yK).

Lemma 9. Consider the solutionsp and q of the following initial value problems:
(i) P'()=-tp (1), p(x)=y.

("; q'()= -tq (t)- 2(t2+t+l) a{x)=y.

Then for N *jrk p(xj)>yj=>q(xj).
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Fig. 2

Proof. We prove only p(Xj)>yj. The other case is similar. Let / consist of
straight lines connecting Zj to zJ+1 for j=k, k+1, ..., N—L Compute the first
tangent m of /:

Hence there exists such <5>0 that for x<t~=S the curve p lies above /. Suppose
that p intersects /. Denote the first point of intersection by (xj+2, v)=P, where
OsA<lI/lyj. We have v=yJ—2.(xJyj +\). Hence p'(xj+A)= —(xj +A)(yJ—A(xjyj +
+ 1))> —xjyj—I, which contradicts the assumption that P is the first point of inter-
section.

Proposition 10. (y+2)e-“I2>p(t)>-q(t)>(y+2)e-, li—2t—2 for />0.

The contraction of a tangent vector of a contracting horocycle on the upper half
plane is

/(si.3') f(XNyN f(XNyYN
1 1+/(*i, yi) 1+ f(xN,y N N+fXNyN ’

because /(z ()< 1+/(zI+1). Now xw<l/210g for 2<yw<(y+2)e 2, further
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Jai*ivl-—l*' Thus
Ja
For N we have

N N

n = 2113? Zkyjixj-xj-1)> / (j+2)e-'22-2r-213/>
1- i=

> 1,03(y+2)- plog”™-J-+1 +1
Hence

3 1,03(y + 2)+ |

Similar estimates can be found for the expansion of expanding horocycles.

Let {Wj=(xj, yj)\j=0, M +1}cRa be a set of points for which

(i) Xj+yj=0 for /=1, M.

@iy F~1wj)=wj_1,7=1, ..M+ 1

(iii) xo+tyo<o and xM+i+yM+i<o.
Again we can suppose Let k=max Xj*0}, denote (x,y)=
=(xk, yK. Then we have —1/3<—/y"x"0O.

Lemma 11. Consider the solutions of thefollowing initial value problems:

(i) r'(t)y=-tr(t)-t2+ t-1, r(x)=y.

(i) s'(t)=-ts(t), s(x)=y.
Then for 1=/=/c r(xj)>7/> s(xj).

The proof of Lemma 11 is similar to that of Lemma 9.
To characterize the expansion define g_k as follows:

1+h(wk _1+hWV
2+h(wj) 2+ h(WwN)

1+h (W)
0-1 A~ M+1+h(W)
for Ji-i)-
Proposition 12.

ye-(thi2) < s(f) < r(f) c () 3)e-(t22) i )j /lor t< O

Then we have

Hence
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For M we have )
201 = 2 (xj+l+yj+)(xj+1-xj)>
25 jH(J yi+)(xj 1)

X, 120

J ye-"+tdt >J ye-"*2—tdt>-y—0,83.

0 0

Thus we have

(4)
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LATTICE-THEORETICAL CHARACTERIZATIONS
OF INNER PRODUCT SPACES

PEKKA SORJONEN

1. Introduction

1.1. Motivation. The importance of lattice-theoretical characterizations of Hil-
bert spaces is well-known, this interest coming not only from pure mathematics but
also from quantum theory. For this reason there are plenty of results characterizing
Hilbert spaces; see e.g. [4}—I6], [11]—[12] and the references therein.

On the other hand, also from the physical point of view there has been some in-
terest to use indefinite inner product spaces instead of Hilbert spaces; see the intro-
ductions of [2]—[3] and their references.

This being said, it is a bit surprising that there are so few lattice-theoretical char-
acterizations of “classical” indefinite inner product spaces; see [10]. The purpose of
this paper is to try to fill this gap at least in case the scalars are the reals, complexes
or real quaternions.

1.2. Contents. Because the terminology used in the theory of indefinite inner prod-
uct spaces differs from that used in the lattice-theoretical approach we briefly intro-
duce the necessary notions in Section 2.

In Section 3 we characterize various types of indefinite inner product spaces
among normed spaces with the aid of a linear orthogonality relation. As corollaries
we achieve also characterizations of (pre-)Hilbert spaces, e.g. the classical result of
S. Kakutani and G. W. Mackey.

In Section 4 the basic space is supposed to be a decomposable (indefinite) inner
product space. The results characterize Krein, Pontrjagin and Hilbert spaces under
this assumption.

2. Preliminaries

2.1. Basic assumptions and notation. Throughout this paper the division ring K
is the reals R, the complexes C or the (real) quaternions H, and *stands for the usual
involution of K, i.e. it is the identity of R, the complex conjugation of C or the canon-
ical conjugation of H, resp. The norm on K is the mapping |¢|: K—R, a—{a*a)12

The symbol E denotes always an infinite-dimensional (left) vector space over K
Furthermore, L is the lattice of all subspaces of E, and E* is the (algebraic) dual of E.

1980 Mathematics Subject Classification. Primary 46C05, 46D05; Secondary 06A25.
Key words and phrases. Lattice of orthoclosed subspaces, linear orthogonality space, (indef-
inite) inner product space, splitting subspace.
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2.2. Linear orthogonality spaces. A pair (E, JL), or simply E, is called a linear

orthogonality space if £ is a binary relation on E such that
(i) xxy iff yxx,

@) {x)x'={yAE\x \_y}AL for all x£E,

(iii) xxy for all yAE implies x=0.

For the rest of this subsection, let E be a linear orthogonality space. Basic properties
of these spaces have been represented in [7] and [9], Here we give only the necessary
definitions.

For a subspace F of E we define Fx := {yAE|y Lx forall xAF} and call it the
orthogonal of F. If FC]Fx = {0}, then F is said to be non-degenerate or semisimple.
The set of all these is denoted by L,,. A subspace F is definite in case xAF and
x+x imply x=0.

A subspace F of E is said to be orthoclosed if F= FAL The lattice of all ortho-
closed subsgaces is denoted by Ln \ the lattice operations are FAG:=FOG and
FVG:=(F+G)-»L

A splitting or orthocomplemented subspace F has the property F=F+FX;
the set of all these is Ls. The space E is said to be Flilbertian if Lu_=Ls.

Afunctional JAE * with kernel ker {f)AL\\ is called orlhoconlinuous, and they
all form the orthodual Ejj of E.

The closure operator 11 has the Mackey property if FALN and XxAE imply
F+ (x)ALjr, here <s ¢) means the subspace spanned by {m s}

2.3. Innerproduct spaces. Let vbe an antiautomorphism of Kand (¢ |¢): Ex E
-»K a v-sesquilinear form. The pair (F, (+ |*)> or simply E, is called a quadratic
space if (¢ I+) is non-degenerate and such that (x]y)=0 if and only if (y\x)=0.
For the theory of quadratic spaces, see [4] and [7], By defining x+y iff (X|y)=0 we
see that a quadratic space is a linear orthogonality space. Thus we have all the notions
of the previous subsection at hand.

The form (¢ | ) of a quadratic space is always e-hermitean for some sEK, i.e.,
(y\x) —e mv{x\y) foi all x,yAE\ see [4], Theorem 11 It e=l and v=%* we call
the form an inner product and the space an inner product space or a G-space; cf [3],
where (in case K= C) these spaces are called non-degenerate G-spaces. For their im-
portance and general theory, see [2] and [3].

Let E be a normed space. Denote by E* the norm-dual of E and by L cthe lattice
of all closed subspaces of E with the lattice operations FAG.—FCIG and F\fG:=
:=F+G. Ifin addition is is a G-space, the norm is said to be a partial majorant of
the inner product in case every functional of the form (m\y) is continuous. A partial
majorant is admissible if every fAE| is of the form (¢ ly) for some yAE. The norm
is a majorant of the inner product if (¢ |*) is jointly continuous.

A G-space is called a (B, G)-space if there is a Banach majorant of the inner
product.

2.4. Decomposable inner product spaces. Let E be an inner product space. It is
said to be decomposable if it can be represented in the form

(2.1) E=E+®E_,

where E +(E_) is a positive definite (negative definite) subspace; here the symbol ©
denotes a direct and orthogonal sum. Thefundamental decomposition (2.1) induces a
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positive definite J-inner product (e |*)7:
(2.2) (X[x)..:= (x*+]x4)-(x_|x_),

where x=x+-fx_ with xt£E+£. Thus the space E with this J-inner product is a
pre-Hilbert space and the corresponding J-norm is obviously a majorant of the inner
product (s!e).

If a decomposable inner product space E is complete with iespect to the J-inner
product (2.2), it is called a J-space or a Krein space. If in addition k:=min {dimE +,
dim £',,} is finite, the space is a Pontrjagin space (with the rank of indefiniteness k).
A pre-Pontrjagin space is a decomposable space with min {dim E +, dim E _} finite.

3. Inner product spaces among normed spaces

3.1 Characterization of G-spaces. In addition to the basic assumptions made in
2.1 we suppose in this section that E is normed. Our aim is to characterize various
inner product spaces among normed spaces. We start with necessary conditions.

Proposition 3.1. Let the normed space E be also a G-space with inner product
(¢ I*), and define x £y iff (x]y) =0. If the norm is an admissible partial majorant then
(E, 1)is a linear orthogonality space such that

(L1 Lc,

(ii) there exists a 2-dimensional definite subspace.

Proor. Clearly (E, 1) is a linear orthogonality space. By the Fréchet—Riesz
representation theorem, see [8], Theorem 3.1, every functional/ in Efi is of the form
(* i) and conversely. By the assumption the functionals (¢ |y), y(zE, are precisely the
elements of E*. Thus E f—E*.

Let F be an arbitrary closed subspace of E. We claim that it is orthoclosed.
Otherwise there is an element x in F—but not in F. Using the Hahn—Banach—
Bohnenblust—Sobczyk—Soukhomlinoff theorem one finds a functional ffE*
with Fcrker(/), x$ker(/). But as E*—E\j, we have x£F—ezker(/)—=ker(/),
which is a contiadiction. Thus LcaLu_. To prove the opposite inclusion it is enough
to show that FXEZC for all subspaces F. This can be done in the same way as
above by using [8], Corollary 3.4.

To prove (ii) note first that our spaces are assumed to be infinite-dimensional. So
there exists an element x0 with (x0jx0 tiO; otherwise

(x-(xly)yIx-(x]y)y) =0

forall x, y£E, i.e., (x]y)=0 forall x, yEE. Suppose for definiteness that (xoxg>0.
If there exists x€(xQx with (x1x)>0, then FO0:=(x0, Xj) is suitable. Suppose
that (xIx)s0 for all x€(x0-L As above we can find Xi€(xQx with (xilx*O
and x2&(xNxfl (x0x with (x2x2?i0; note that (xOx =(xD)xn(xo>x+ (x1. In
this case ~”(xnXj) meets our requirements. O

The following result shows that the conditions of Proposition 3.1 are also suf-
ficient for E to be a G-space.
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Theorem 3.2. Let the normed space E be also a linear orthogonality space with
the relation | . If the conditions (i}—(ii) of Proposition 3.1 hold true, there exists an
inner product (*|*) on E such that

a) E is a G-space;

b) xxy iff (x]y)=0;

c) the norm is an admissible partial majorant of the inner product.

Proof. The condition (i) guarantees that the closure operator F—F11 has
the Mackey property. But a linear orthogonality space with the Mackey property is
always a quadratic space; see [7], Theorem 4.8. Thus there exists an automorphism
v of K and a non-degenerate v-sesquilinear form (= |*) with property b).

By the assumption (ii) one can suppose that (x0IxQ=1 for an element xCEE,
which implies that v is an involution and the form (e |¢) is 1-hermitean; see [4],
Theorem 1.1. Let us consider the three division rings separately.

1) K=R. In this case v is obviously the identity and Is is a G-space.

2) K=C. Setting T(y):=(-ly) for all yEE we obtain an injective, v-linear
mapping T: is—is*. By using the property (i) it is not hard to see that the range of
T is exactly E*.

We claim that T maps closed hypexplanes of E onto closed hyperplanes of E*.
Indeed, if H is a closed hyperplane of E, then it is of the form (x)x with x"O.
Thus the image T(H) of H under T consists of all ffE * which annihilate the subspace
(i9. As H={x)x isahyperplane this implies that T(H) is also a hyperplane. Further-
more, by using the definition of the norm of E* the closedness of T(H) is easily estab-
lished.

A result of S. Kakutani and G. W. Mackey, see [6], Corollary to Lemma 2,
guarantees now that the involution v is either the identity of C or complex conju-
gation.

Suppose that vis the identity. Let {x,y} be a base of the 2-dimensional definite
subspace; then

0 ji- (x+ay\x+ay) = (yly)a2+2(x\y)a + (x\x)

forall a£C, whichcontradicts the fundamental theorem ofalgebra. Thus vis complex
conjugation and E is a G-space.

3) K=H. As the assumption (ii) implies that there exist xEE and
with (x|x), (yly)*O, we can follow the reasoning represented in [11], pp. 62—64,
which shows that v must be the canonical conjugation of H. Thus £ is a G-space.
To prove the property c) note that (i) implies the equality E% —E*. This to-
gether with [8], Theorem 3.1, establishes ¢). O

3.2. Characterization o f Pontrjagin spaces. It would be desirable to achieve an
analogue to Theorem 3.2 for decomposable spaces and especially for Krein spaces,
but we have not succeeded in this task. Nevertheless we can characterize (pre-)
Pontrjagin spaces among normed spaces.

Theorem 3.3. Let the normed space E be also a linear orthogonality space. |f
(i) Llu—Lc,
(i1) there exists XOEE such that x0i xO,
(iif) max {dim F\Fc Fx}=:
then there exists an inner product (¢ | ) with the properties
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a) E is a pre-Pontrjagin space with k as the rank of indefiniteness,
b) x.Ly iff (*b)=0,
c) the norm is an admissible partial majorant.

Proof. Asin the proof of Theorem 3.2 we find that there exist an involution v
of K and a non-degenerate v-sesquilinear 1-hermitean form (e | ) with property b).
Furthermore, one can assume that (xgxQ=1.

Let us show first that the involution vis canonical. For this we consider the three
cases separately.

1) In case K is R everything is clear.

2) In case K is C the involution v must be either the identity or complex conju-
gation, see the proof of Theorem 3.2. Suppose the former. The subspace (x0 is
orthocomplemented and a simple calculation shows that there exists Xit"x,,)-1
with (xjxj) 0. Define zx:=ax0+xx; then (zj)a(zj)-L for a suitable a£C. By Lem-
ma 15 in [4] the subspace (zj) is contained in a finite-dimensional, orthocomple-
mented subspace Ex. One can find an element x~E j with (x2x27i0 andan element
x3¢ (x2)-1 F)FjLwith (x3x3?i0. Applying the previous reasoning to x2and x3we can
construct an element z"Ej with (z2z2=0. Thus there exists a subspace E2=
=(zx,z2 with EXEj. As dim this process can be continued infinitely
contradicting the assumption (iii). Consequently, v must be complex conjugation.

3) Let K be H. By [11], p. 62, the involution v is of the form v(a) =ga*g~1
with g2=+ 1 Suppose that q2= —1. As in [11], pp. 63—64, we can find an element
zx with (z)c(zD-L Continuing in the same way as in part 2) one can construct
subspaces F of arbitrary large dimensions with the property FcF 1, thus contradict-
ing the assumption (iii). This means that q2—1, which implies q—t 1 Conse-
quently, v is the canonical conjugation.

Property c) is obvious and a) follows from [1], Lemma 2, which holds true also
in case K=H. O

Corollary 3.4. Ifin addition to the assumptions of Theorem 3.3 the space is
complete, then E is a Pontrjagin space.

Proof. Combine Theorem 2.2 of [3] and Lemma 3 of [10] with the previous
theorem. O

3.3. Characterization of Hilbert spaces. With the result of Subsection 3.1 it is
easy to characterize (pre-)Hilbert spaces:

Theorem 3.5. Let the normed space E be also a linear orthogonality space with
theproperties

@ML~rL,,

(i) x Ix implies x=0.
Then there exists an inner product (¢ | *) on E such that

a) E is a pre-Hilbert space,

b) xxy iff (x|y)=0,

c) the norm is an admissible partial majorant.

10
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Proof. By Theorem 3.2 the existence of an inner product (¢ | ) with the proper-
ties b) and c) is clear. Furthermore, one can assume that (xgxQ=1 for an element
X OEE.

The assumption (ii) and the relation b) guarantee that (- 1-) is definite. Thus it is
enough to prove that (e | ¢) is positive. Clearly, it is positive on the subspace (x0).
If theie exists an element x”x,,)-1 with (x|x)<O0, then

0~ (x+fIxQx+ax0 = (x|x) +a2

for all aER; choose a:= {—x|x)}12 to get a contradiction. Consequently, (x,)-%
js positive and as (x,,) is orthocomplemented also E is positive. O

Corollary 3.6. Let the assumptions of Theorem 3.5 befulfilled and, in addition,
let E be complete. Then E is a Hilbert space with the natural norm equivalent to the
norm of E.

Proof. By Theorem 3.5 E is a pre-Hilbert space. To prove the rest, one can
proceed as in the proofs of Lemmata 7.7 and 7.8 in [11], O

3.4. Characterizations by orthocomplementation. The classical lattice characteri-
zations of Hilbert space use orthocomplemented lattices. Here we show that Theorem
3.2 allows us to prove several results of this kind. First, a variant of Theorem 3.2,

Theorem 3.7. Suppose that there exists a mapping' on the lattice Lc of the
normed space E with the properties

(i) FezG implies F'z>G',

(i) F"=F,

(iii) there exists a two-dimensional subspace E(fL ¢ such that (x)n(x)'= {0}
for all x£EEO.

Then there exists an inner product (* | *) on E such that

a) E is a G-space,

b) F'=F1 for all FELC

c) the norm is an admissible partial majorant of the inner product.

Proof. Define a relation _L by setting x Ly iff (x)c (3. Then it is easy to see
that (E, jj isa linear orthogonality space and (x)J= (x)' for all XxEE. This implies
that LirtzLc. On the other hand, by the assumption (ii)

F=F'= fl <= Fi-UL»
for all FELC Thus Ls1—Lc. Furthermore, the assumption (iii) implies clearly the

condition (ii) of Theorem 3.2. Now the result follows immediately from The-
orem 32. O

Corollary 3.8. Ifin addition to the assumptions of Theorem 3.7 the space E is
complete, then E is a (B,G)-space.

In case Kiis R or C this result is a special case of [10], Satz 2.

Corollary 3.9. Suppose that the lattice Lc of the normed space E admits an
orthocomplementation . Then E is a pre-Hilbert space with the properties b) and c)
of Theorem 3.7.
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Recall that an orthocomplementation ':LG*LC is defined by the properties (i)—
(if) of Theorem 3.7 and

Gii) * FA)F = {0} for all FELC

Corottary 3.10. Ifin addition to the assumptions of Corollary 3.9 the space E
is complete, then E is a Hilbert space.

This is the classical result of S. Kakutani and G. W. Mackey; see [6] or [11],
Theorem 7.1

There is also another way to guarantee that the induced inner product space is
complete. Recall that a lattice L is called orthomodular if it has an orthocomplemen-
tation ' which satisfies the orthomodular identity

(iv) G=F\/(GAF") for FcG.

First, a useful lemma, which extends a result of W. J. Wilbur; see [12], Theorem
4.1 and the comments after it.

Lemma 3.11. Let (F, £) be a linear orthogonality space over an arbitrary division
ring. 1f the lattice L jj_is orthomodular and if the closure operator G-+G11 has the
Mackey property, then F is Hilbertian.

Proof. It is enough to show the inclusion LilLczLs. For this, let GdL”" and
F be arbitrary. The assumptions imply that

G+(x) = (G+H)=*

with H:=(G + (x))f]G-L. Using this it is easily established that dim /fsl. Conse-
quently, G+H is orthoclosed and thus x*G +Hc*"G+G". O

In case K is R or C the following result is included in Theorem 6.6 of [12]:

Corottlary 3.12. |fthe lattice Lcofthe normed space E is orthomodular, then E
js a Hilbert space.

Proof. Let' denote the orthocomplementation of Lcin question. By Corollary
3.9 Fis a pre-Hilbert space with Lal=Lc. Thus is orthomodular which, by Lem-
ma 3.11, implies that E must be Hilbertian. But a pre-Hilbert space which is Hil-
bertian is necessarily complete; see [11], Lemma 7.42. O

4. Results for decomposable spaces

4.1. Characterizations of Hilbert space. In addition to the basic assumptions
made in 2.1 we suppose in this section that E is a decomposable inner product space
with the inner product (¢ | *) and with the fundamental decomposition (2.1). Further-
more, the corresponding /-inner product (¢[*)/ is given by (2.2). All the topological
notions are to be understood with respect to the /-norm.

The following result should be compared with Corollary 6 of [5], where the form
(* 1) is supposed to be positive definite and KcR. Note that in this section the term
“(pre-)Hilbert space” includes also negative definite inner product spaces.

0y
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Theorem 4.1. For the decomposable inner product space E the following state-
ments are equivalent:

(i) E is a Hilbert space,

(ii) LsmLc,

Eii? LS=L+

iv) the lattice is orthomodular.

Proof. 1) (i)=s-(ii) is dear because of the projection theorem.

2) (iiy=>(iii): As LsalL 1L always, it is enough to prove For this in
turn we need only the inclusion EfcE*, because it implies that Fx£Lc for all
FEL. So let /6U 1 be arbitrary. Then it is of the form (s |y)\ see [8], Theorem 3.1.
A simple calculation using (2.2) and the Cauchy—Schwarz inequality shows that
[/(x)|"M\\x\\ for all XxEE; here M:=\\y+—y \\ with y—y++y_  decomposed
according to (2.2). Thus /E£™*.

3) (iii)=>(iv): As Lsis an orthomodular poset, see [9], Theorem 7, the assumption
forces Zu to be an orthomodular lattice.

4) (iv)=>(iii) is clear because of Lemma 3.11.

5) (iii)=>(i): As a decomposable space, E has decomposition (2.1). Suppose that
both E +and E_ are non-zero, and choose cxg£'+\{C}. The definition x:=e++ae-
with a.—{—(e_|e_)_1(e+|e+)}12 gives a non-zero element with the property (x)c
cz (jt) x. On the other hand, (x)(LLs, which implies that (v)H(x)%= {C}; a contra-
diction.

Thus or E+ must be zero; i.e., E is either a positive definite or a negative
definite Hilbertian space. Lemma 7.42 in [11] yields now the desired result. O

In case of a definite inner product we have one more necessary and sufficient
condition:

Corollary 4.2. Let E be a pre-Hilbert space. Then the statements (i)—(iv)
are equivalent to

(v) Lji =Lc.

Proof. The implication (i)=>(v) is well-known. For the converse note the follow-
ing facts: E* is a Banach space with the sup-norm; by (v), it consists of the functionals
of the form (¢ \x) with x£E, the norms of E and E* are equivalent. Thus E must be
complete. O

4.2. Characterizations of Krein and Pontrjagin spaces. If in Corollary 4.2 we
consider a decomposable space instead of a pre-Hilbert space, we get a characteriza-
tion of Krein spaces.

Theorem 4.3. The decomposable space E is a Krein space iff L1 =Lc.

Proof. 1) Let Fte a Krein space. The inclusion L”czL,. has been shown to be
true in part 2) of the proof of Theorem 4.1. Asthe 7-norm topology is admissible, the
norm-closure and orthoclosure are equal, see [2], Theorem 111.6.1, which implies the
inverse inclusion.

2) Suppose LI1I=Lc. It is quite easy to prove that Ljl is the same as the lattice
consisting of all subspaces which are orthoclosed with respect to the /-inner product
(2.2). Thus the space E with the inner product (¢!¢)/ satisfies the assumptions of
Corollary 4.2. O
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Pontrjagin spaces have the property that closed, non-degenerate subspaces are
splitting. We prove now that this characterizes Pontrjagin spaces.

Theorem 4.4. The decomposable space E is a Pontrjagin space iff Ls=L_i1DL,,.

Proof. 1) Suppose that E is a Pontrjagin space. The inclusion Lsd L ALC\L,,
is always true. The converse inclusion follows from Theorem 4.3 and [2], Theorem
1X.2.2.

2) Assume Ls=LjLC\L,, and let (2.1) be a decomposition of E. Denote by
the set formed with respect to E+ corresponding L . The definiteness of the inner

product on E+ implies that Lf =L+, and the assumption implies that ZjlLcZ,s.

Consequently, Ljl =Lf. Thus E+and £_ are Hilbert spaces by Theorem 4.1, and E
is a Krein space.

To complete the proof it is enough to show that dim E+ or dimis_ is finite.
According to the assumption eveiy closed definite subspace of E is splitting, which
means that they all are uniformly definite, see [2], Theorem V.5.2. This is possible
only if the rank of indefiniteness of E is finite, see [2], Theorem V.6.3. (The results of
[2] referred to are proved there only for K—C, but they are obviously provable also
for K=R and K=H.) Thus £ is a Pontrjagin space. O
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ASYMPTOTIC RESULT CONCERNING EQUATION
Fp-Le (0" =0
EXTENSION OF A THEOREM BY ARMELLINI-TONELLI-SANSONE

I. BIHARI

1. As it is well-known [1—2] at least one solution of the equation
()] x"+a(t)x =0, am e (1), I1=[x0,°°), x06R
tends to zero as t-~°° provided a(t) is non-decreasing and lim — and every
solution behaves so if log a(t) tends to infinity “regularly” as t—-°° [3], The last
theorem has extensions in two directions. According to the first one a(t) can be

increased by an additive term of bounded variation [4], the second one extends its
validity to the nonlinear equation

(2) x"+a(t)f(x) =0
under suitable conditions [5].

2. In the present work the theorem will be extended to the ordinary second order
half-linear differential equation

(3) x"|x|n_1--a(0x:n= 0, t€l, n>0, X"= |x"sgnx

which recently was thoroughly investigated by A. Elbert [6], who has shown (inter
alia) that every solution of (3) exists on / provided a(i)€C(/), and in a forthcoming
paper also proved that the Sturmian comparison theorem concerning the magnitudes
extends to (3).

First of all let us recall two notions.

a) Density of a sequence S of intervals (a*, 8k} k= 1,2,... having no point in
common. If

0N og< Bx < a2< R2<..., & as k -+°°
then

defines the density in question (on R+) and we put S=Se provided <5Ss.

1980 Mathematics Subject Classification. Primary 34C15; Secondary 34C25, 34C35, 34D10,

34E05, 34E10.
Key words and phrases. Differential equations, perturbation, small parameter, asymptotic

methods, nonlinear oscillations, periodic solution, dynamical systems.
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b) The non-decreasing positive function /(i)6C(7) tends to infinity “inter-
mittently” (or “quasi jumping”) as t—"° provided to every a>0 there is an Se
such that the increase off(t) on the complement of Sewith respect to R +is finite, i.e.

(4) &=ki(ll(«*)—/(A"—i)] < v

In the opposite case we say f(t)-~°° “regularly” as tm—<= In this case there is an
€0>-0 that on the complement of every Seothe sum (4) is infinite.
Now we can formulate our result.

Theorem. |f loga(i)-*-00 regularly as t—-°°, then every solution of (3) tends to
zero as t->-°

Proof. For the sake of simplicity we suppose a£Ci(l). Consider the function
Ne) = W+ —RCT_ Ii-1

where x=x(t) is a non-trivial solution of (3). The function A (t) is non-increasing,
viz. taking (3) into account we have

(5) A'(t)= -M\xr +.

Consequently, the limit A:!lm A(t) exists and A”O.

Contrary to our assertion suppose that there exists a solution x(t) of (3) not
tending to zero as f-*<«> Then concerning to this solution A >0 what will lead to a
contradiction. By (5) we have

t r t
A(t) = A(0)- f =T W\n+ldt = A(0)-f — (A(x)-\x\H#)dr =
0" a 0o a

(6)

Let e0>0 be a number such that for every sequence Se of intervals

(7) & = Z Poga(«+)- loga(Bj\ ilog Q(«(-;') oo
=1 =1 a I

as k—°°.
Later it will be proved that to every £0>0 a number i/>Q can be chosen so that
the density of the sequence S of all intervals where

(8) A (t)-\x\n+17r]
is less than £0, i.e. S=Seo. On the intervals (8t, ai+l) we have

9 A(t)-\x\n+1>r,,
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therefore

A(«J*A(O)-Zfi (A(t)-\x r')?{ig}u A(0)-rj 2"log a(«i+i)

a(Bi)

which implies by (7) that A (ak) becomes negative for k large enough. This involves the
contradiction T<0 and T>0 at the same time.

3. It remains the proof of the statement concerning n. Letting A(t)= (B(t))n+
we have
S(HI, lim5(0 =5=AW+v >0
and (8) can be written as follows
(8" (5(0)"+1-W "+ ).
Since (5(r))"+1- (5(r)"|x|S (5(/))"+1—x|',#1 holds, therefore (8" involves
(5(0)"+1~ (5(0)"M ~ *
or
W 11 “ 5"(0 “ Bn 4

where e=5'l=/T/("+1)>0. Therefore it is sufficient to show the existence of such a
number n* concerning which the density of all sequences S of intervals (a*, RK)
where

(10) 5(0-|*| =/*
is less than €0. Viz. if &</;+1 "~k +\, where k is an integer, then
(10') (5(0)" +1= )"+l (5(0)fctl= [je|*+1

provided 5(/)S1. This can be assumed always, since if 5(/)<I, then for cx(i)
— with a suitable c=const>0 — c5(/) —b Inequality (10) multiplied by the
(bounded) expression

_ (5(0)k-1-(5(0)621714-... 4-5 (0ljdfe2+ fick< K = const
gives
(5(0)"+1-|x |" L AKX = fj

and 1 satisfies our requirements.
Inequality (10" can be proved by taking into consideration that the function

/(n) = (5(0)"+1—M"+1
has the derivative (n) = GO)

f'(n) = (5(0)Btllog5 (0 - M"+llog |X|

which is non-negative for 5(/)"I.
By the definition of 5(f) and 5

B+rj* > 5(0 > B-ri*
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for t large enough — say t”~tl. Then for t~ty satisfying (10) we have

or
(12) fi(i--~)ss|* (0l

where 2n* can be taken less than B.

By omitting terms in finite number from a sequence S of intervals we obtain a new
sequence Sx of the same density. Thus it is enough to prove: given f0>0 there exists
a number 0<<r-<1 that the density of the sequence S' of intervals where

(12) 0B S |*(r)]
is less than £0. Indeed: conversely: (12) involves (11) with

j*

7=1=T o w=58\-0)

and this implies in turn

00101 =3 =+
With the notation aB=n relation (12) reads as
(13) =01 " B

Now we have to apply Sturm’s comparison theorem to estimate the density of S'
consisting of the intervals (a-, B-), i= 1, 2, ... where — besides (13) — we have

(14) (D= Y@AN=8B i=11...
Now consider together with (3) the auxiliary comparison equation
15 11 7 i+e(«DK" = 0
which can be written also in the form
(i/r+iy+fl(«.o(br+iy = 0
and its solution y(i)=yf(i) with the initial conditions
yfa'i) = k(«i)], = Ix'«)!-

Denote the first solution of equation y(t) =n greater than a by R" and the first place
on the left of a where y(t) =0 by y-. Then applying Sturm’s theorem to equations
(3), (15) and x(t),y(t) we have

Ri—ci i and (X pi_is a[-y
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Evaluate R'1—ai and From the second form of equation (15)

ly,|Bt1l+ a(al)|.g|B+l = K = const
where

o = {20411« b(corti = IN«d )40 («OrH = cca a w .

whence
y = » = [a(@O(ai)-«(aDb(Oi" +U("+D).

Thus — being the arc (acf, B") of the curve of y(t) symmetrical to its middle point
t=tm>ym=y(RJ—
_ 2 > dy
B:-< aMm)P » I JN@O-y'mY(r+)m
Carrying out the substitution k=yn+l we have

W+l
2 y7 dk

- (n+ 1)(a(ai)) L(BH) A(BH)(4(al)-A)IBH) ~

(n+ I)(a (zail))ll(B+1V
JWW - -

W+

where

" HAG)- MBAYI@-(A (a,)- ymIBEA),
but

A(K)-nnHl = A (af) —ab+15" L = /4+ vi- «BHM = /4(1-<TBH) + Vi,
where VjSO decreases and lim v,=0. Furthermore

_ AM -rt,*1= o,
since y'(tm=0 and

Kt) =[y(0r++~ = const = A{ad) = A@) = A(tJ = yBrl.

a(a)”
Let v>0 be sufficiently small. Then there exists kOEZ suchthat v,*v for /£&,,,
and
/=0 nU (A (L-(1B+) + MIBEH) = -7 - M (1-17 BH)+ VIBE+))
and
R.., o~ 2[A(Q—<@+1)-1 vibi(b+1)
PS 7 na(a) VBB
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Similarly,

1 f dy
~ (@@D)U("+lY (A(t)—yn+iy/) m

Consequently, for i*k0
Ri-ai 2[A (I-anH) + V] (n+)

Ri-Bi-i dy
» £5 (A (q) —yn)BnH)

= G(a, V),

whence for k> ko+\

i:Eo+| 0?;-al)SC(M) i:l%)+| iR'i-RU
hence

¢ i=%,+l (A'-«D

Here O<u<I and by increase of a, g increases, too, involving the increase of the
denominator of G{o, v), thus: once chosen knso large (v so small) that G(I, v)<e(Q2,
then G(a, V) will be less than e0provided a is near enough to 1, i.e. with this a

Gin 6k -Se0
what was to be proved.

XI
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THE CHARACTERIZATION OF COMPLEX-VALUED
ADDITIVE FUNCTIONS

K. KOVACS

We examined the characterization of real-valued additive functions in [1]. We
can generalize some results for complex-valued functions. Let/ denote a complex-
valued additive function and let rlt r2, ..., rkbe fixed positive integers and let us define

H,, = {/(n+ rj): i£{l.....k}\f(n + )\ is maximal}.

Let g(n) be an arbitrary but fixed element of H,,. It is possible, that Hnhas more ele-
ments and so there are a lot of functions with the given property. Let us examine one
of these functions, the function g, which is uniquely defined already.

We shall prove the following theorems:

orem 1 If |g] is monotonically decreasing, then |g|=c with a constant

o

Theorem 2. | f r!|+rgo g(n)=c, then g=c with a constant c£C.

Proof of Theorem 1 First we prove, that |/(/>*<)|>0 is only for finitely many
Pi possible (where pt denotes always prime numbers, here and later on). Namely, if
I/(i?)M (/=1i,..., 0o0) on the powers of infinitely many primes, then for any e'>0
there exists an angular domain with the midpoint origo and with the angle e' (g0S
darczS<p0+e¢'), which contains infinitely many /(/>“9 (/= 1, ..., °°). If e'<7t/2

n
and «w»oo, then \f( 1Jp19\ is monotonically increasing, which is a contradiction.
1

T
If there exists an x,, with g(x,)=0 then clearly g=0. If there exists an x0
with |g(xQ|=C7iO, so we have |/(xX|=c, where x1=x0—ri for some/, 1"i*k.
Since f{py) —0 if we have ¥(xIpxj\=c for Pj>max (PO, X]j). Thus there
exists a sequence with \g(b,,)\*c. Taking into account that |g| is monotoni-
cally decreasing, this is only possible, if |g(n)]=c for «Sn0. Since xOwas arbitrary,
this implies g=c. O

Remark 1 |g| cannot be strictly monotonically decreasing, in wiew of the above
proof.

1980 Mathematics Subject Classification. Primary 10A20.
Key words andphrases. Characterization of additive functions, c log n, complex valued additive
functions.
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Remark 2. For real-valued functions the assertion of the theorem gives
g = cER. Thisisnottrue for complex-valued functions, as it is shown by the following
counter-example.

Let
1(29)=1
[(3*)=-y +~7-/
f(p*)=Q in other cases.
So if &>1 and for any ngN there exists an j£{lI, such that 2|n+r; or

3\n+rt, which can easily be satisfied, then
Hn= {/(2°) or f(¥) or /(2«3*) =y +-"i}.
This yields a function g with |g|=1, but g” 1

Proot Of Theorem 2. (1) If c=0, IIliirg;lg(n)zo implies  lim f(p*t)=0. Ifthere
|

exists an aEN such that f(a)” 0, then for any sufiiciently large /;;

H(aP?) = vecay+ecpon S H(&)]-[[(pp)] S
which is a contradiction.
(2/i) In the case ¢”O we first prove that for any e>0 there exists an /, such
that if then |/(fi)|<e for all sequences {/}*, where (ly, th=1 if jrk.

In the opposite case for any e>0 there exists an angular domain rp”~arc z cpv+z,
which contains infinitely many t¢tiy (/j6N,y'=l, ..., °°). if £<#/2 and n—°°, then

ll('-/li /«,)] o> which is a contradiction.
J

(2/i1) We prove g=c. Let xXOEN be arbitrary. We shall construct such a
sequence ys, that gr_nog(ys)=g(x(). The construction: Let us wiite any s>k in

the form s=nk+i, where 17i*"k and let us define

ys:= 1+rk\Xi [fyJdt
where

rT%210(”0 2

XOT 1= 1, ... k,

Xio:

further let ys=1 for s=)\, ...,k.
We prove, that (yv,y@: [, if v</i. If there exists an m with v*mk<p, this
is clear. Thus it is sufficient to prove, that

(\ + rk\Xut,\ + rk\Xvt) = \
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for any w<t> u,vE{l, k) and for any fixed «€N, where /= JJyj- This is
7=1

true since
1+ rikAXut, [+ rkXvt) = 1+ rik\Xut, rk\(Xv- X Yt) =
= (\+rkXut,Xv-X = y\+rkXut,Xu{"-\} =
= \\+rikXut, Xu{™ +~ —)J = (I +rkiXut, (ru—r,)j =
So to any e>0 there exists an sOsuch that if then |/(y9)|<e. Let
nk k
an:=x0+rk\ [Jy} 1J (x0+rm2
ji=l" "m=1
Then
k \
nk JJ (x0+ rm}2
[(«,, + 1Y) = f(xn+ r)\\+ rk\ n*yj- cat It = f(xi+r,)+ f(ynk+)
for any nEN and /£{1, since by the definition of ys, we have clearly
(*0+ D ynk+i)—=*e . . .
Since if n—<5 we obtain /(an+ rt)— (x0+/)), if n—  Hence

glan”g(x0, and so g(xQ=c. O

Problem 1. What can we assert if we assume the conditions of Theorems 1 and
2, resp., only on a set having upper density one?

Problem 2. Do Theorems 1and 2 remain true if we assume the conditions for a
suitable chosen, but “arbitrarily rare” set? (More precisely: Can we find to any h(n)
aset si—(a,}r with a»€N, a,,>/i(n), such that assuming the conditions of Theorems
1and 2 only on si instead of N, the consequences |[g(n)|=c and g{ri)=c remain
true for all n€EN?)

The answer for Problems 1and 2 is positive iff is real-valued [2].
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CORRIGENDUM TO MY PAPER
»ON THE ESTIMATION OF REGRESSION COEFFICIENT IN CASE
OF AN AUTOREGRESSIVE NOISE PROCESS”1

I. HORVATH GAUDI

In formulas for Ac, Bc, A and B the summation goes from 1=1. So the right
formulas have the following form:

Ac = 2]i (coscot —acosG)(i —1)—=R cos co(t—2))2
»=|

Bc = —ay(/—l)—  —2))(cos ah—a cos a)(i—1)—/Jcos co(/ —2))

A —— c0s2(—e0) + (y cos(—e0)+ S)2+ Ac
rn

B= o y(-l)cos(-a)) + [yN(—) + <5j'(0)][ycos(-a)) + G+ 8<
u
So the correct table are as follows:

TABLE / (T= 10)

N 5 10 15 20 30 40 50 60
d 10.08 8.34 5.99 357 183 2.29 132 133
°Afc 2.77 1.96 1.60 1.38 113 0.98 0.88 0.80
c™ 113 1.04 0.98 0.92 0.83 0.77 0.71 0.67

TABLE Il (N=40)

T 40 30 20 18 16 14 12 10 8 5

d 4.06 299 934 1119 1231 9383 376  2.29 132 073
GM,t 178 214 418 711 2009 475 193 098 052 018

Gm 0.88 0.92 1.02 1.05 1.08 108 099 077 049 018

TABLE H1(N=2T)

T 60 40 36 32 28 24 20 16 12 10 8 6
d 134 164 243 209 366 331 934 1247 7.26 357 122 215
Gn.c 093 126 139 158 188 247 418 3252 250 138 0.82 0.49
cm 0.68 079 0.82 0.86 0.90 096 102 108 105 092 0.71 0.47

1 Studia Sei. Math. Hungar. 12 (1977), 471—475.

1980 Mathematics Subject Classification. Primary 62J05.
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. HORVATH GAUDI: CORRIGENDUM

TABLE IV (N=T)

5 40 30 20 18 16 14 12 10 8 6 5 4 3
213 4.06 4.09 12.79 13.16 12.79 11.74 10.17 8.34 6.62 5.43 5.12 500 5.01
149 178 2.42 592 10.6345.98 8.06 353 196 1.16 0.69 0.52 0.3860.290
0.83 0.88 0.94 104 1.06 108 1.10 1.10 1.04 0.90 0.65 0.51 0.3850.286

Acknowledgement. My thanks are due to A. Kramli, who pointed out these

errors in the text.
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TAUBERIAN THEOREMS
FOR POWER SERIES OF TWO VARIABLES

L. ALPAR

8 1. Introduction

1.1 The origin of the problems. The following result due to Hardy and Little-
wood ([4], Theorem 96, p. 155) plays an important part in the proof of certain Tau-
berian theorems for power series of one variable.

Theorem HLj. |If the series
1.1 [(*)= 2’av*v
v=20

with av*0 is convergent for 0~x< 1, /(X)~A(1—x)-1 (/l=const.) as X-*-1—0

n
and S,,=2J av, then SJn—A as n-*°°.

v=0

With the help of this result the same authors have shown that if the partial sums
S,, satisfy certain conditions then the A summability and the (C, 1) summability of
the series ffavare equivalent ([4], Theorems 92, 93, 94, p. 154).

Theorem HL2. If the series (1.1) is convergentfor 0Sx«=l,

iy () = A
exists and is finite, and one of the conditions
(1.2) () S,=0(\); (i) A,i=0; (iii) avisrealand SnS-H (or S,,"H)

is fulfilled, where H>0 is a constant, then

pim C* = Jig 5y 13 SV —A

Our aim is to generalize these theorems to power series of two variables and also
to prove some related results. It will be evident from our reasonings that some of our
propositions extend to the case of more than two variables.

Remark 1 The following statements are well-known. We may suppose that the
avs are real in both theorems, otherwise we examine the real and the imaginary parts
separately. Furthermore, the restriction av*0 can be replaced by avS —/ (i/>0),
because the requirements of Theorem HLj are satisfied for the power series with

1980 Mathematics Subject Classification. Primary 26B99.
Key words and phrases. Tauberian theorems, power series of two variables.
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coefficients hv= 6w+ f7 and cv=H and a subtraction yields the assertion. In Theo-
rem HL2it suffices to consider the case S,=sO, since there are constants H such that
for the power series of H=xf(x).

1.2. Notation, @) The partial sums Snand their arithmetic means C* of a simple
series are defined in a quite natural way. The situation is completely different in the
case of double series. » double series is a network of terms amn (m, n=0, 1, 2, ...)
arranged like an infinite matrix whose “sum” is defined as the unique accumulation
point at finite distance, if there exists, of the set of certain “partial sums” determined
by some particular rule. Since this rule can be chosen variously, the limits obtained
are not always the same. One such process is to form the rectangular partial sums

(i-3) sm=2 2 =2 W

E=0v=0 liv=0

The double sequence of the partial sums {St} is said to be converge to the finite
value A in Pringsheinis sense [9] as m and n tend to infinity independently of each
other, if for any e>0 we can determine an m0=mO0(e) and an n0=n0(e) suchthat

for mS mO, n” nO.

In what follows convergence of a double series always means convergence in Prings-
heim’s sense, and we shall use the notations

2 mn > lim Smn*
m,n =0 i»,»-“

b) The series 2 am, is called (C, 1, )summable, or the sequence C 1)
limitable, if the sequence of terms

1 m,n cl, 1

n 4) ril= : y v — n
K m (m+Dn+T) ,.r=0 (m+D(n+T)

converges as m, n—°°,

c) One also defines the (C, £, q) summability of a double series for £>0, z>0
(see, e.g. [5], pp. 209—223). We call

(1.5)

H P - m . -
‘—S%nl - 2yu "fngrll—:l'/ - 2¥ “m—pn 2% m-p,n—v> uc?ng - Cmr'\' I_Lrjlmn
v=0 R—0 p,v=0

the (m, n)th double sum of order (£, /). If &00=1 and amm=0 form+ n>0, ie.
Sm= 1 for all m, n, then we write for Sfr*

(1.6) AQ! = AfA* = np~mtn¥r(Z +Dr(ti+1), m, n

The quotient SA/A~=C * is the (m, «)th Cesaro means of order (£ tj) of the
series 2 ammm If the limit

(1-7) lim CE,"=C*"
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exists then the series 2 am is (C, £, n) summable or the sequence {S*,}is (C, £, n)
limitable. One verifies that

mn o m,n
(1.8 "Vrrll'rqt - }/Lj 1rtn_ L;IJ],n_'—vS"/zv - J)(j a('q—fi,n—vve-
p,v=0 Hv=0

d) The notation Iimrs /(X,y) means that x—a, y—B independently.
X=X,y ~
We say that the series 2 amm is  summable at the point (1, 1) if the power series

(1.9 /X, y)= 2 amxmy"
converges in the square e

(1.10) g={(xj):0Sx<1,08)i<I1}
and there exists a finite limit

(1.11) oidim o Jx,y) = A

as the point (x, y)£Q approaches the point (1,1) along an arbitrary continuous curve
in Q.

e) We also consider some sets whose importance will soon turn out. Denote by L
an open Jordan measurable set in the first quadrant of the plan (xSO, y*O) with
closure L, boundary dL and measure |L|>0. This L may be connected or not, the
sets f)LC\Ox and dLHOy may be empty or even of positive linear Jordan measure.

We derive from L other sets using two parameters x and Xtending to infinity independ-
ently and two positive numbers £ and /. If (x,y)€L then

@) Ox AY)BLY, Ln=L;
(112) () (x<y)6D-\ D’1=L;
(i) [CoOh (XymLti, Lfi"=

Clearly,
(1.13) \LxXA = xk\L\;  \LI-\\ = x<X'\L<-"
f) Further we call
(114) SX\(T) = 2 amn
the (x, 2)th L partial sum of the series 2 amn, or generally
m,n=0
(i.i5) stt(L) = (m’r%”_msérl’"“l

the (x, Ath L sum of order (£, rf), where S~ 1'1-1 is defined by (1.5). Also, using (1.6)
and (1.13), we write

\L™M *«W |

0.16) PA+VEA+ ) r(t+i)r(ri+\)

= Att(L),

which is considered as a generalization of the double binomial coefficient Ah*.
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Next we define

(1.17) ciqy = StMib)

as the (x, A)th L Ceséro means of order (£, tj). If the limit
(1.18) lim C&(L)= C'-'iL)

exists then the series 2 am,is (C, ¢, ) L summable to the value C4,”(£)> We shall see
that under certain conditions Ci',I(L) = Ci'n given by (1.7), that is, this limit does not
depend on L.

1.3. Results of Knopp and Taran. Theorem HLx was generalized by Tdréan [12]
and Theorem HL2by Knopp [8] to power series of two variables. Inspired by Turan’s
method we are going to prove more general statements under weaker conditions,
containing these former results, too.

In Turén’s paper £=rj=1, x=X and LxX is denoted by L; ((1.12)). He proved

Theorem T. Let the series
I(*»y) = 2 amxmy"
m,n=0

with arms 0 be convergent in the square Q (see (1.10)) and assume that

lim/(x,y) @—=)(I —y) =1
as the point (x, y)£Q approaches the point (1,1) along an arbitrary continuous curve
in Q. Then

(1.19) lim X-* 2 dm= \L\

The theorem of Knopp concerns bounded rectangular partial sums (cf. (1.3))
([8], Satz 7, p. 586).

Theorem K. For bounded sequences the A and the (C, 1, 1) summabilities
are equivalent.

In other words, if the power series (1.9) converges in Q, if it is A summable at
the point (1,1) (cf. (1.11)) and the sequence is bounded, then lim Cf,,=A

(see (1.4)). e

In proving these theorems, Knopp and Tuarén extended the classical idea of
Karamata [6], [7] to power series of two variables. We do the same, but make use of
other devices as well. In addition, Taran introduced partial sums of coefficients de-
fined by means of the set L x, which is an essential generalization of the usual rectan-
gular partial sums and which led to new results [1], [2],
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§ 2. Statement and proof of results

2.1. We begin with our main result which is a common generalization of Theo-
rems HLXand T. The proofs of our other theorems are based on this one.

Theorem 1. Let the series

(2.1) I>y)= 2

anTxmy n
,n=0

with amn~0 be convergent in the square Q and assume that
(2.2) lim/(*,7)(1-*)«(l-y)* = i4

as the point (x, y)€Q approaches the point (1,1) along an arbitrary continuous curve
in Q, where A, £ * are positive constants. Then

. . A
(2.3) *!,IAT“X 2 amn i) r(ijHi)
or, by (1.13), (1.14), (1.16),

. A _ A
(2.4) x,IIm \Lifl"1 2 am= F(t+i)rto +i)
and

. S*x(L) _

25) Jm ey TA

Proof. The fact that x—1—0, y—1—0 will be denoted by
(2.6) X~e~1rx

where rand s are any finite positive parametersfixedfrom case to case, while x and X
tend to infinity.
Thus we have, in virtue of (2.1), (2.2) and (2.6),

2 ammv"~'I/(I =){(1 —y)"~ AxiX,r(s”

m 0

whence

2.7 %Iim x~tX~1m2rF0annxnyn: Ar{sn

Let/)S0,g"O be integers and replace x and y in (2.7) by xp+l and y,+1, respec-
tively. Then we obtain

lim x~(X 2 amxmymxmpyr Arts*
o CTHIYIXITEYIE iy (g + iy

Artsl
r«)r(«j) 6 (;

(2.8
e - U ve - pu- Yvui - 1v>1dudv,
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where we applied the relation
1 1 ) e @+pum MU
(H-D){ r«)Q
Consequently, if g(x, y) is any polynomial and (x,y)dQ, then we infer from (2.8)

(2.9)

We are going to show that :Fr-" is a positive linear functional on Q in the normed
linear space of real polynomials with maximum norm. For, by (2.9), it assigns a real
number to any real polynomials; it is obviously positive additive and homogeneous,
and, by (2.7), it is bounded:

The sign of equality holds in (2.10) if g= 1, hence
(2.17) \32rs\ = Ar”s”.

These polynomials form a subspace of the normed linear space of continuous
functions in Q with maximum norm and so, by the Hahn—Banach theorem,
is extendable to this entire space without changing the norm. In our case this exten-
sion is unique by Weierstrass’ approximation theorem. Accordingly, (2.9) remains
valid if g(x,y) is any continuous function in Q.

Furthermore, the representation theorem of F. Riesz [10], [11] states that 3Fr-s
can be extended to the class of functions which are limits (everywhere) of sequences of
continuous increasing bounded functions. This larger class contains the function

(2.12)

hence we can put w(x, y) in place of g(x,y) in (2.9):

g = lim x 4An £ arkyxm) =

(2.13)

norin

In virtue of (2.6) and (2.12), we have to consider the values xm~e~m/n*e~1, y"~
~e-"lsASc_1 only, hence m”rx, «Ssl and (2.13) takes on the form

(2.14) lim x iX "2 2 aun= Br+&.
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That is, if L is the rectangle with one vertex in the origin and two sides of lengths r
and s on the axes Ox and Oy, respectively, then r(s"= on the other hand,
mSrx, rv’sX means that (m,ri)€.LxX Briefly, (2.14) proves (2.3) in this special
case. Now if 0”a-~b, 0Sc<rf and L is the rectangle with vertices (a, c), (b, c),
(b, d), (a, d), then we conclude easily from (2.14)

(2.15)  lim x-tX-' 2 2 anw= B(bi—ai)(d',—c) —B\L(,n\

X’/ -*00 fix<in”frx

This means that Theorem 1is proved if L is a rectangle with sides parallel to the axes
and, consequently, when L is the union of a finite number of pairwise non-overlapping
rectangles of this type. Hence if H is such a set, we may write, using (1.13) and (2.15),

(2.16) lim 2 amn= lim x-*X->SxX{H) =

(m,n)EHXA

Finally, if /. is a general Jordan measurable set, then for every €0>0 there
exist an e—e(eQ, e-+0 as e0—0, and two sets H and K which are unions of a finite
number of pairwise non-overlapping rectangles of the mentioned kind such that

HczLczK; \L\-£,, S \H\ & \K| |L|+¢€0;
Ht"c Li'nc K ILab]-e = [/IA™ = \K™M\ s \L("+e.
Thus we have, by (2.16),

BOALi'm—e) A lim x~X-'SX,{H) S ~iX~nSx AC
(\Li )~ im, x XAH) S hm x=iX-nSx AC)
= Hm Ahmox-(X-"SXAKK) A B(L<-+e)

and £—0 completes the proof of (2.3). The formulae (2.4) and (2.5) are simple modi-
fications of (2.3), but we shall see that each of them has its own meaning.

Remark 2. TUran’s original result, see (1.19), is analogous to (2.3). However, if
x =X then (2.6) is of the form x~e~1rX y~e~IIsX and it is inevitable to admit that
0<r, s<°°. This means that the passage to the limit (x,y)—1,1) is carried out
along a continuous curve Crs which has a slope of tangent r/s at the point (1,1),
it touches there the curve y=xr/s. It follows that at (1,1) Crshas a tangent non par-
allel to the axes. On the other hand, if x*X then y~xndsX where again 0-er,
5<00, but x/X may tend to any limit c where and it is even possible that
x/X does not have a limit as x—°° and independently. Consequently, at
(1,1) Crscan have a tangent parallel to one of the axes or it can happen that it
has no tangent at all at this point.

Remark 3. The relations (2.3) and (2.4) are not completely equivalent. (2.3)
has a general meaning in itself already. Provided that does not change, (2.3)
remains unaltered if we deform L anyhow, we may either decompose L in further
components or unify as well as remove some of them arbitrarily. In (2.4) we can drop
even the invariance of |2?,”>0.
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If £=t]=I then AJ;I{L)=\LxX (cf. (1.16), (1.20)) and (2.5) takes on the form

. ski(L) _ .
(2.17) X’Ilm AB(L) © lejgl% Lx ( %ELXAO mn= A.
This shows that these L partial sums are uniformly distributed in the plane.
2.2. Bromwich and Hardy ([3], p. 173) proved that if C~»=0(1) (cf. (1.4)

and the sequence {C"J} converges then the series 2 am,is A summable, that is, (1.11)
holds. Therefore we do not investigate this problem. On the other hand, Knopp
([8], Satz 7, pp. 586—589) showed that (1.11), the A summability of the series £am,
at the point (1,1), implies the (C, 1,1) summability of this series, if the sequence
{"n} (cf. (1.3)) is bounded. We are going to generalize this result of Knopp but for
L partial sums and (C, 1,1) Z Cesaro limits (cf. (1.14)—(1.18)) with Sm satisfying
restrictions similar to that of (1.2).

Theorem 2. Let the series
(2-18) f(x,y)= 2 amxTyn
m,n=0

be absolutely convergent in O and assume the existence of afinite limit

(2.19) w ) f0 ) = A

as the point (x,y)EQ approaches the point (1, 1) along an arbitrary continuous curve
in Q. Furthermore suppose that one of the conditions below is fulfilled:

(2.20) (i) Sm=0(1); (i) SmE£—/ (or SmnSH)
where H sO is a constant. Then

SIf(L)

mAeen ot Aix(L)

Proof. In our reasonings we need the assumption that the series (2.18) is abso-

lutely convergent in Q, but this is not insured by (2.19) solely. Even the convergence

of 2iam does not involve either the absolute or the ordinary convergence of (2.18) in

the whole square Q (see [3], examples, p. 166). However, if am=0( 1) then (2.18) is
absolutely convergent in Q. Next we have, by (1.3),

(2.22) am, —Sm Smr1,, 5men 1+ Sm 1

and so, if (see (2.20) (i)) then [am,|"4C, that is, the condition of Knopp
implies the absolute convergence of (2.18) in Q, but the converse is not true.

(2.21) Jim Cn(L) -

Since (1—x)(l—y) 2 Oxm>"=1 for (x,y)€Q and this series converges
absolutely, we deduce from (2.22) by comparing the coefficients:
fOy) = @=00 =) 2 xmyn (2 anmxay) =
(2.23) ’ '
= () -y) pR=pSmXmY*
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where 2 Smxnyn, as a product of two absolutely convergent series, is itself abso-
lutely convergent in Q. Now, if one of the conditions (2.20) is satisfied then there
exists a constant A>0 such that Tm=Sm,+K"0 and A+K=A0>0. Thus we
have, by (2.19) and (2.23),

(2.24) lim(1—) (I —y) mZﬁonrm" yn=A,
Therefore all conditions of Theorem 1 hold for the series (2.24) with £=nA=\.
Hence (2.21) is a direct consequence of Theorem 1 with Tm,in place of Stmmand a
subtraction gives the assertion originally stated.

In particular, if rxy=m + 1, sX=n+1 and LxXis the rectangle with one vertex in
the origin and two sides of lengths m+1 and n+\ on the axes Ox and Oy, respec-
tively, then (2.21) is of the form

1 m
y r —CIl p n -»).
Tm+hin+1) ,fLo "v (m, )

This is the result of Knopp for 5m,=0(l).

,n

Remark 4. In spite of the resemblance of (2.17) and (2.21), these formulae have
different meanings. For in Theorem 1 f{x, y) is characterized by (2.2) and in Theo-
rem 2 by (2.19).

2.3. After these considerations it seems to be obvious that A and (C, £, n)
summabilities are connected by a relation like (2.21) if £>1 and ij>-1 We give a
direct proof of this claim.

Theorem 3. | f the requirements of Theorem 2 arefulfilled and > 1, i/=»-1, then
(2.25) C{-"(L) = A
Proof. Using (1.6) we have

(I-xR1-y)" 2 Ai-I"-Ixmyn= 1
m,n=0

for (x,y)EQ and this identity holds as (x, _yr—1,1). Moreover, this series is
absolutely convergent in Q and the coefficients A » I'1~1=1 grow to infinity with
m, n (see (1.6)). Thus the function represented by this series satisfies the conditions
of Theorem 1 We conclude as previously, by (1.8),

f(x,y) = (I-xm -y)"( 2_0Ai-1-'-1xriyr)( 2_0 amxmyn =

S(EURTP——

m,n=0

Again the last series is absolutely convergent in O and, by (1.8),

St = YT A Rnpy
H, v*=0
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where £—2=-—1, 2>— 1 and so Hence if 1SNJs C (cf. (2.20)
(i)) then
mn
1J mn 11— A HYV:O"m-n,m—v >

while if Smm —H (cf. (2.22) (ii)) then Sm»1'l-1—HAfAL 1 That is, in both
cases there exists a constant Ai>0 such that Sf*t1,1~1+ KA”h,I~1=Tm,”0 and
A+K=A0>0. Thus we find (see (1.15))

Hm 2 (Si-" +KAi-A-7"ANHL) =

(m,n)6L

. SSit(i) ,
“ A "f%l_(|;+"-"0-"4+"
and (2.25) is proved.

Remark 5 If 0<"<1, 0<r;<l or 0<”<1, r/El then d~1,1>0 but
the latter tends to O for some values of m and n and -4jj, T%V-v may be positive or
negative, therefore our former argumentation fails in these cases. Hence in Theo-
rem 1we can replace the condition anrm=0 either by amm=0(1) or by amn=5—1 for
<&l and t/S1 If 0<<J-=1 or 0<”<1 we need some additional hypotheses to
insure the validity of Theorem 1

Remark 6. Theorems 1, 2 and 3 can be stated for power series of one variable,
too™ Here L is a Jordan-measurable set of the Ox axis (x*O) and to the point
xEL we assign the point IXxELx. Then, if the conditions of Theorem HL]j are
satisfied we have not only the relation S,,/n~SJA\-*A, but also

lim/-1 2 av=A\\, lim [Z4—2 2 av=A.
X~°° ver® A°° ver*

In consequence of the quite natural definition of Snthese last relations have not been
recognized. If the conditions of Theorem HL2 are fulfilled, similar result can be
obtained by substituting av by Sv.

2.4. Theorem 2 enables us to generalize the Cauchy formula. Let the sequence
{S"} converge to a finite limit A, then
im 1 o2\ =a
n+1 v=o0

Theorem 4. If the bounded sequence {S,,} converges to a finite limit:

(2.26) lim STm= A

then

2.27 lim 2 S A.
( ) v 0*.n)ELXA m

This last result may be formulated for simple series as well.
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Proof. By means of (2.22) we determine the sequence {«,,} from As
we have seen in the proof of Theorem 2, the condition |5m,|*C implies |anms4C
and the series (2.18) is absolutely convergent in Q. Thus using the theorem of Brom-
wich and Hardy ([3], p. 164), the Abel’s continuity theorem for two variables, (2.19)
follows from (2.26) and so we get (2.23) and (2.27), respectively.

Considering rectangular partial sums only, this result was obtained by Holz-
berger [5] already. The relation (2.27) is an L Cauchy formula.

2.5, For double sequences we can also prove an L Jensen theorem which is a
generalization of Theorem 4. Jensen’s theorem on simple series states the following:
If the sequence {{S\W} converges to a finite limit A, and there exist a sequence {av}

and a constant /?>0 such that VZ:OIa\A: o and

Roads B 2H

for all n, then

2 vy
lim 419~ = A.

T R

Theorem 5. | f the bounded sequence {S',,,} converges to afinite limit A, and there
exist a sequence {am} and a constant 8 =»0 such that

228 i — oo

2.28) *-Il*m"(m,«fCEfo kJ '

2.29 ) ) )
( d ) xd \(m,n%EIxA anm * 8 (m‘n%’éExA Wm b
an

lim B-f lkeml = 0O
(m,n%HxA
m<m

Hm B~} (mhéﬁEmlmﬂ = 0

where m' and ri are any natural numbers, then

(2.30)

(2.31) Hiti 2 * mSm _ = A
mieoa™™

Proof. Given s=»0, we can find an mO= mOe) and an nO= nn(e) such that

\Sm- A \*—R, for m>mO0, n> n0.

It follows that
Wxk~A\ A Ci+ Cz+Ca+Ci
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where
Ci= -j-Z « m(Sm-A)

(m, n)eLxi, inS m0, nS nO0.

C2, C3, C4are analogous expressions with (m, n)ELxi, but mrimn, n>n0 for C2;
m>mO0, n*n0 for C3; and m>m0, n>n0 for C4. Since £,,=0(1), CI5C2 C3

are less than e/4 for x, X large enough, by (2.28), (2.29), (2.30),and C4 R 0
4

~el4. This proves that WxXX—A\*e, hence (2.31) is verified.
Holzberger [5] obtained also Jensen’s theorem for rectangular partial sums.
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CONVERGENCE IN «-SECOND VARIATION AND RSUINTEGRALS

A. G. DAS

1. Preliminaries and definitions

A. M. Russell in [7] obtained the definition of functions of bounded «-second
variaton (BVUfunction) alongwith certain properties of BVUfunctions. Russell also
obtained the definition of an integral (the R S Uintegral) together with some important
properties of the integral. The same concept of variaton has been introduced by Webb
[8] and Huggins [2], [3] under the title bounded slope variation. Similar concept has
also been introduced by Roberts and Varberg [6]. We retain the title of Russell as
we pass to the RSUintegral as introduced by him. In [1] A. G. Das and B. K. Lahiri
obtained some new results and also certain modifications of some results of [7],
A convergence theorem of RS U integrals appears in [1] depending on the convergence
of integrands. In the present paper the author presents a convergence theorem anal-
ogous to Arzeld’s dominated convergence theorem. Convergence theorems of RSU
integrals depending on the convergence of integrators are also presented. For this
purpose it is desirable to investigate the convergence in «-second variation.

The following definitions are known [7],

Let a', a, b, b' be fixed real numbers such that ¢'< G<J< i3 The real valued
functions that occur are defined at least in [a, b\, w(x) always being strictly increasing.

Definition 1L For x,yE[a\b], x"y
" oMo fy)
g«( ? w «(*)-« 0"
is called the «-incrementary ratio of g.

D efinition 2. If x£[a,b) and lim gu(x,x+h) exists, we denote it by g;(X).

A corresponding definition holds for g~ (x), where x£(a, b\. When gu(x)=g”"(x),
we say g is «-differentiable at x and denote the common value by gu(x).

Condition A. Suppose that g~ (b) and g* (a) exist. The functions g, u are de-
fined in [a', a] and |b, b"] such that « is strictly increasing on [a', b'] and

d 0.(*, >0 = gi+(«) forall x,yE[a',a]
an
g.(>y) =gu(a) forall x,yt[a’, a].

1970 Mathematics Subject Classification. Primary 26A42; Secondary 26A45.
Key words and phrases. Function of bounded w-second variation (BVU function), «-convex
function, property Au, RSUintegral.
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D efinition 3. The total w-second variation of g on [a b] is defined by

k-1
K(g; a, b) = syp I2=l 19,,0i+1»
where the supremum is taken over all n: a=.vu<xl1< subdivision of
[a, 6]. If Vu(g; a, />)<=«, we say that g is of bounded u-second variation on [a, b],
and we write g€BVu[a, b}.
D efinition 4. Let e>0 be arbitrarily small. Then J /(x) j@((x)) is the
u(x

number I, if it exists uniquely, and there is a number 5(e)>0 such that for all

A: a'Sx_1<x0=06<x1 -xk=b-"xk+1"b"' subdivision of [a b] and for
i 1?72, ..1c |, a, h
k
i- |2=|/(Q[g11(*|+|1 < E
whenever

lldi = oMmax (x;—X:-t) < 6(e).
If the integral exists, we write (f, g)£RSu[a, b].
D efinition 5. A function g is w-convex on [a, b] if for a”o0i*£sBSh

u(Q-u(a) u(B)-u(z) )
u(B) —u(ot) ¢ * upy-uryy T

We shall often, for the sake of simplicity, use the notation d(g; xt*It xf, x;+1)
for the expression [g,(xi+1, xf)—a,,(X;, x*)]. For further definitions and nota-
tions which are not noted here see [7].

We note some results from [1] for ready references. Lemma 3, however, is not
included in [1] whose proof is easy and omitted.

Theorem 1. Iff is continuous and g is u-convex on [a b] and g, u satisfy condi-
tion A, then (f, g)tRSu[a b\

Theorem 2. Let g be u-convex on [a,b] and g, u satisfy condition A. If
if,g)*"RSu[a,b] and du(c) exist where a<c<b, then (/,g)cRSu[a c] and
if g)ERSuU[c, b]. Conversely, if (fg)eRSu[a c], (f gfRSfc, b] and du(c) exists,
then (fg)£R Su[a,b]. In either case

d2g(x) d2g(x) .° . d2gjx)
du(x) F1(x) du(x) +f fix) du{x)

Theorem 3. Let g be u-convex on [a, b] and g, u satisfy condition A. Let
{/,,(xX)} be a sequence of functions which converges uniformly to f(x) on [a,b]
Iffor all n, (/,,, g)eRSu[a b], then (/, g)£RSu[a, b] and

dy(x) d2 (X)
du(x) du(x)

a
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Lemma 1. If g is u-convex on [a, b], then both g* (x), g~(x) exist everywhere
in (a, b). Further ¢',,(x) exists on [a, b] except at most an enumerable set.

Lemma 2. Let a”“c*d”b and du(c), gu(d) exist, then

f dy(x)

J dU(X) gU(d)-g'U(C).

Lemma 3. If du(c) exists, where a<c<b, then

K(g> a, b) = Mu(g; a, c)+Vu(g; c, b).

2. Convergence in »-second variation

Let {F,,(x)} be a sequence of real functions defined in [a, b] which is assumed,
throughout the section, to be convergent and to converge to F(x), say.
It is easily verified that VUF; a, b)S Iimognf V,.(F,,; &, b). We investigate the

case of equality.
Property Au. A sequence (F,(X)} is said to satisfy Property Aaon [a, b] if
a subdivision jr0(@0,al 5 a@ of [a b] and a positive integer m exist such that
d(F,,; x0, Xi, x| S K(Fm; x0, xx, X2
yvh:en el and for each set of 3 distinct points am] r=0, 1,2 and
i=l, ..., /t-1.

Consider the sequence (Fn(x)} defined by Fn(x)—anx2p, »(x)=x2 |a,,|s|am,

2 is an integer. Clearly, d(F,,; X0, xlt x") —an(x\—Xo0)rxoX?(1x |/> where the
summation is extended to all positive integers including zero which satisfy the rela-
tion Bo+Ri+B.—p—Z The Property Auis then immediate.

Let E denote the collection of all subdivisions n of [a, b] and let
t-i
K(<P,n) = I2_I \d(<p; X|-1,xi,x/+1)].
We immediately obtain the following lemma.
Lemma 2.1. nl”ﬂ Vu(Fn; n)= VUF; n) for every n”E.
Lemma 2.2. If K is a finite number and Vu(Fn; a,b)*K for all n, then
VUF; a,b)"K.

Proof. The proof follows easily using Lemma 2.1 or else directly from Defi-
nition 3.

Lemma 2.3. If the sequence {F,(X)} possesses property Au on [a,b\ and if
VUF,,; a, b)>K for all n, K being a finite number, then a exists such that

FUF,,; n)>K for all n.

i*



180 A. G. DAS

Proof. A subdivision n{(a0,ocj,a, ) of [a ff] and a positive integer m exist
such that
\d(Fn; Xi-!, xt,xi+)\ S H(Fm; x *, xt, X,+))|
when n>m and for each set of 3 distinct points xri[a;_I5ai+l], r=i—I,i, i+
and i—1 , p—L
If %€EEm which contains all the points of subdivision of n0, then, using Property
Au, it is easily seen that

Q) K(Fn; n) S M{Fm\nj for n>m
Since Vu(Ft; a, h)=A, an element n~E exists such that
2 K(F{, y > foreach i,1 S m

Let n be a subdivision in E consisting of all the points of subdivisions of % and
2. By Lemma 14 of [7] and the inequalities (1) and (2), we obtain

VUW{Fn\ n) > K forall n.
This proves the lemma.

Lemma 2.4. If {F,,(X)} and all its subsequences possess Property Auon [a, b] and if
VUF; a, b)<K, where K is a positive finite number, then Vu(F,,;; a, b)*K for all n
except possibly afinite number.

Proof. Suppose, that the lemma is false. Then there exists a sequence of
positive integers {«} with such that VUF,,.; a, b)>K. Using Lemma 2.3
and Lemma 2.1, we have VUF; a,b)*K. The contradiction proves the lemma.

Theorem 2.1. If {F,(X)} and all its subsequences possess Property Au on [a, ft]
and VUF,,; a,b) isfinite for each n, then

r!l_nao VI(Fn; a, ff) = WUF; a, ft).
Proof. Let L=1Im Vu(Fn\ a, ft) and /=Hm a, ft). First suppose that

there is a finite K>0 such that VUF,,; a, b)<K for all n. Then There
exists a sequence {«} of positive integers such that lim Vu(Fni; a,b)=L. If e>0

is arbitrary, an integer 2 exists such that

L— M(F.t;af)<L+e when iS z,
Hence, by Lemma 2.2,
€)) K(F; a,b)"L+s.

Again, by Lemma 2.3, an element n£E exists such that Vu(F,t; n)>L—s
for i=i0. Letting /—0, we obtain, by Lemma 2.1,

WF n)" L—e andso WF; a, f) S L—e.

Combining this with (3), we get L—"V (F; a,b)L+E and so
VUF; a,b)—L. Since VUF; a, ft)*/, it follows that Ilim VUF,,; a,b)=

= VUF; a, ft).
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Next, if there exists no such finite F>0 such that VUF,,; a, b)<K for all n,
then there is a sequence {n} of positive integers such that Vu(F,t; a, b)*K. Ob-
viously then L=-foo. If possible, let F,(F; a,b)sK for some finite K>0. Then,
by Lemma 2.4, VUF,,; a,b)*K for all n, a contradiction. Hence F,(F; a, b)—+°°.
Since VUF; a, b)"/, we have

lim AF,; a, b) - FUF: a,b) = +«.

This proves the theorem.

Note 2.1. If g is «-convex in [a c] and «-concave in [c, b] where a<c-=b and
if g'(x) exists everywhere in [a 6], then

Wi(g; a, b) = Igu(a) —gu()l + |g'(c) —g'(b)1.
Remark 2.1. For the validity of Theorem 2.1, the convergence of the sequence

(F,,(X)} or even the uniform convergence is not sufficient. This is shown by the follow-
ing example. Let

Fn(x) = UX) = X\ 0=SX=5 M2

Then (F,,(x)} converges uniformly to F(x)=0 in [0,71/2. We observe that F' u(x)
exists in [0,rcl] and F' u(x):ﬂn T
the «-convex property of F,(x) in a sub-interval in which F,',(x) is increasing we
have F,(F,; 0,%2= F(F,’'u; 0,n12—2 for each n. But FUF; 0, n12—0 and so,
tl!*i_rp0 F..(F.,; 0,w9" F,(F; 0,n12.

, 0A"x~7i12 Also in view of Lemma 3 and

3. Convergence in RSUintegral

We consider a A(x_I5x0, ..., xfet]) subdivision of [a, b] and make the following
definitions:

Mt = xi-iij(pa(t-ﬂ' 1(x), mt= *,-i3|xn=t5xi+1flx)’ 1SisS
= P fiX), mO0 = )O}BE’\)QHX);
T = sup fix), mk= _inf fix);

xk-1
k k

S = 2 Midig-, xi. 1x,,xi+), s= 2 midig; X[_i, xt, x(+1).
=0 =0

As in Theorem 3.1 of [7], it is easily verified that the upper approximating sum
S does not increase and the lower approximating sum s does not decrease with the
insertion of an extra point of subdivision to (a, b). Furthermore, no lower sum can
exceed any upper sum. We consider g to be «-convex in [a, b] and g, u satisfy Con-
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dition A and define

frww = s andd 10 S50

We then have

(9217,

d-g(x) d*g(x)
FmooGu) - 5 54V dupo

the equality sign holds if and only if (/, g)<IRSu[a, ft], and in that case
d-g(x) f d2g(x) r d-g(xi
I AX) qun) du(x)

Following Luxemburg [4] it is not difiicult to obtain Arzeld’s dominated conver-
gence theorem for RSUintegral:

Theorem 3.1. Let g(x) be u-convex in [a, ff] and g, u satisfy Condition A. Let
{/,(X)} be a sequence offunctions which converges to f(x) in [a ff]. If for all n,
(/,,,9)ERSu[a ff] and (f g)ERSu[a, ff] and if there exists a constant M >0 satisfying
\ffx)\*M for all xffa, ffj andfor all n, then

d2g(x)
lim f /,(* )o'u{?&fé //W dL'Rx)

To establish the proof of the theorem we note Theorem 2.1 of [7], Theorem 3

d 20(x)

of § 1 and the obvious inequality I cp(x) -A0 for <p(x)”~ 0, h(x) «-convex

on [a, ff] with h,u satisfying Condition A and (oo, h)ERSu[a, b].

We prove the following lemma which will be useful to prove the remaining
theorems.

Lemma 3.1. Letf be bounded and g, u satisfy Condition A. If (/, g)ERSul[a, fi],
then

11(*) dz;(( )) S M()Fu(g; a, ft),
where M (f)_a%i;\)b |/(i9).

Proof. Let s>0 be arbitrary. Consider a A(x_1? ..., x*+l) subdivision of
[a, ff]. Now for xi-1"7"iSxi+1, 1

LM i)d(g) Xi_j, x;, xi+l)] = |/(a)|[gu(xi, a)-g+ (a)[+

+ \Igl Mi)d(g; Xi-i, Xi, x,+i)|+ [/(f)] |g-(ft)- gqu(ft, jet—2)-
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Since we are ultimately concerned with arbitrarily small norm of A we may take
M and xk-.1such that each of the first and the last terms of the right hand member
can be made separately less then e/2. Hence, by Definitions 3 and 4, it follows that

d2g(x)

o) FMOVUE; a b)+e

As e>0 is arbitrary, the lemma follows.

Theorem 3.2. Letfb e bounded and {gn(x)} be a sequence offunctions which con-
verges to g(x) in [a, b] with {Vu(g,,; a, b)} converging to Vu(g; a, b). Iffor all n,gn, u
satisfy Condition A, (/, gn£RSu[a, b] and (f, g)eRSu[a b\, then

. d2g,,(x) d2g(x)
B RO e du(x)

Proof. Let e>0 be arbitrary. Then correspondingly there exists a positive
integer n0 such that

£
(%) IK(gnl a, b)-Vu(g; a, h)| < when n'S no,
where
M (f) = .
(f) = 3up, /()]

That g(x) satisfy Condition A is immediate.
Now by Theorem 2.2 of [7]

d2gn(x) dg(x) | d2[g.,(x)-g(x)]
du{x) du(x) I du(x)
—Af(/) Vug,—9; a,b), by Lemma 3.1
-=e by (@.
This proves the theorem.

The convergence of (g,,(X)} in «-second variation to the function g(x) is assured
by Theorem 2.1, and then Theorem 3.2 takes the form:

Theorem 3.3. Letf be bounded and {g.,(x)} be a sequence offunctions which
converges to g(x) in [a, b] and let Vu(g,,; a b) be finite for each n. Let each g,,, u
satisfy Condition A and let {g.,(x)} and all its subsequences possess Property Au.
Iffor all n, (f,gn£RSu[a, b] and (/, gfiRSfa, b\, then

d2gnM d2g(x)
du(x) du(x)

Finally, we obtain a convergence formula similar to that of Stieltjes integral in
Natanson [5], Theorem 3, p. 233.
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Theorem 3.4. Letf be continuous and let {g,,0)} be a sequence which converges
uniformly to g{x) at everypoint of [a, b] and let g,,, u satisfy Condition A. | f there exists
a constant K>0 such that F,,(g,,; a, b)<K for all n, then

ey 62,Q) d2gp)
ﬁ'—%a&e/(x) du(x) du{x)

To prove the theorem we require the following lemma:
Lemma 3.2. Under the hypothesis on {g,,p)} in Theorem 3.4
nIi_nowo g,%p) = g+p) for all x€[a, b)
and
limgrup) = g" (xX) for all x£€(a, b].

ri-+00

Proof. By Lemma 2.2, Vu(g; a,b)"K and so each g, and g£BCu[a,b\
Also g, u satisfy Condition A. The w-incrementary ratios of each g,,and g are bounded.
The existence of either sided derivative is ensured by Lemma 3.3 of [8] or else by
Theorem 2 of [3] and Lemma 1of § 1 We prove the lemma for the right-hand deriva-
tive. The other case is analogous.

Let £>0 be arbitrary and aSxSh. There exists #=51(e)>0 such that

gp +A)-gp)
U(x+h)—ux) - o ) o

whenever
Since {g,.p)} converges uniformly to g(x), there exists a positive integer n0
such that for any 0

on(X+h)-g,0) gp+A)-gp)
u(x+h)—u(x) u(x+h)—wXx)

whenever «S/i0. It, then, follows that

g,(x+ M) —g,Q) _
() Lx+h)-u) w82

whenever 07h”§1 and nfenO.
Also for each n we can choose €>0, depending on e and n, such that

gn(x + /i)-g,,(x)
) noctA) () sruw T

whenever 0< A< &
For each n£n0 choose 62 and then choose a fixed /?<d=min (&5 &). Then

from (5) and (6), we obtain
gn.uO)-ga 0)1 < e whenever ns no.

This proves the lemma.
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Proof Of the theorem. By Theorem 11 of [7] and Theorem 1 of 81,
(/, @Q£77S,[« b] and (/, gnERSu[a b] for each n. By Theorem 1 of [2], there exists
a subset El of [a b\, where [a, b\—E1is countable, such that g and each g,, possess
«-derivative at each point of Ex. Let e>0 be arbitrary. There exist finite subintervals
[*i, x(+1], i=0, 1,..., m—1, x0=a, xm=h, xt€EIt — of [a b\ such that
oscillation off(x) in each subinterval is less than e/3K.

The equality now follows from [5] simply applying Theorem 2.1 of [7], Theorem
2, Lemma 2, Lemma 3.1, Lemma 3.2 and Lemma 3 of §1 in appropriate steppings.
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MINIMAL GRAPHS OF DIAMETER TWO

Stefan znam

1. Introduction

Denote H2(n, k) the set of all undirected graphs of order n, diameter 2 and maxi-
mal degree k. Let e(G) mean the number of edges of the graph G. In [2] the size of

“B.(K) = MK €(G)
was investigated. The exact values for k=n—1, 4 were determined there.
In [3] the values of F.,(n, k) for n® ~k~n —5 were studied and the following
problem was stated (see page 235): “To determine the exact value of F2(n, k) for

fc<y, or at least the asymptotic value of F2(n, [cn]) with O

For 3 ! J. Pach and L. Suréanyi [4, 5] showed that we have

lim iz@—’r;—[grll)—ﬂ’. Here we give the exact value, namely we prove

Theorem. L€t a positive be given. If

@ Jnr k™ (j-hn
then F2(n, k)—3n—12.

2. Auxiliary results

For the remainder of the paper suppose G is a graph from H2(n, k), n, k fulfil
(1) and
) e(G) < 3m—12.

Obviously, according to (1), G cannot contain any vertex of degree 1 or 2. One

item of notation: 0(x) denotes the neighbourhood of x in G. We begin with establish-
ing a number of properties of G.

Property 1 (PI). For every vertex x6G the sum of the degrees of vertices in
0(x) is at least «—L

1980 Mathematics Subject Classification. Primary 05C35.
Key words and phrases. Diameter, maximal degree.
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Proof. This is obvious since the diameter of G is 2.

Property 2 (P2). A vertex of degree 3 is adjacent only to vertices of degree at
least [2hn—1].

Proof. This is an immediate consequence of PI.

Next denote R the set of all vertices of degree at least ['n—1] in G; let \R\=r.
Property 3 (P3). r<-~-+1.

Proof. If this were not the case, the total sum of degrees in G would be at least
[hn~\}[~-flj, which contradicts (2).
Further, from PI the following can be deduced:

Property 4 (P4). A vertex of degree 4 (5) is adjacent to at least 3 (2) vertices of
R. A vertex of degree 6 is also adjacent to a vertex in R.

Now, let P be the set of all vertices of degree 3, Q the set of all vertices of degree
4, 5 or 6 and S the set of all vertices of degree 7, 8, ..., [In—2] in G. Let |P|=p,
121= 4, \S\=s.

42
Property 5 (P5). p>n--=£-.
Proof. By P2 and P4, the sum of degrees in G is at least 6p+7q+7s. If q+s”

N6r—24, then we have 6p+7q+7s"6(p+q+r+s)—24=6n—24, which contra-
dicts (2). On the other hand, if gq+s<6r—24, then by P3, p=n—q+r+s)>-

—7r+24> n—4£. The proof is finished.

Denote T the set of all vertices adjacent to at least one vertex of degree 3 in G
(by P2, TczR) and Z the set of all triples (from T) representing the neighbourhoods
of vertices of degree 3. Let |7j=f.
Property 6 (P6). t"7.
126
Proof. By P5 there exist at least 3n--—-- edges from P to T, and (1) im-

plies our assertion.
We shall investigate the properties of Z, now.

Property 7 (P7). Any two triples of Z have a common element.
Proof. G is of diameter 2.

D efinition. We say that the vertices xx, Xj cover Z, if every triple of Z
contains at least one xf, and we say they 2-cover Z if every triple contains at least
two Xj’S

Property 8 (P8). No couple of vertices covers Z and no 4-tuple 2-covers Z.

Proof. This follows from (1) and P5.
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Property 9 (P9). A couple of vertices cannot be contained in two (or more)
triples of Z.

Proof. We shall prove it indirectly. Suppose a, bE T occur in two triples of Z:
abc, abd. Then by P8, a triple containing neither a nor b exist in Z, and by P7 it
must be of the form

cde, e”a, b.

Thus by P7, Z may contain only the following further types of triples (the points
represent elements of T distinct from a and b, but not necessarily distinct from c, d, €):

(3) ac. ad. ae.
(4)  be. db. be.
5) cd
(6) abe

Now we shall need two lemmas:

Lemma 1. In (3) or (4) a triple of theform ae. or be. exist, where the points are
different from c and d.

Proor. If this were not the case, then the letters a, b, ¢, d would 2-cover Z (see
P8).

Lemma 2. Not all triples of (3) contain c; not all triples of (3) contain d. The
same is true for (4).

Proof. We prove only the first assertion: if all triples of (3) contain c, then the
couple b, c covers Z (see P8).
We shall continue in the proof of property 9. We have to distinguish some cases:

Case 1. Ifin Z a cdf (f*e) exists, then according to Lemma 1, the following 3
possibilities can occur only:

Case 1A Z contains both triples aef, bef. Then by P7, in Z no seventh letter
can occur, which contradicts P6.

Case IB. Z contains no be. (the point different from c, d), but aeffZ. In this
case by Lemma 2 and P7 there exists a triple bee or befand also a triple bde or bdf
in (4). However, then in Z no seventh letter can occur, again.

Case 1C. Z contains no ae., but beffZ. Here we can proceed as in case IB.

Case 2. (5) is empty. Then by Lemma 1in (3) or (4) there exists a triple zx con-
taining b but not c, d. Since (5) is empty, there exists also a triple z2 containing c
but not d, e (in opposite case the symbols a, b, d, e would 2-cover Z) and (for similar
reasons) a triple z3 containing d but not c, e.

Case 2A. 21,22,z ¥%(3). Let zl=aex, z2—acy, z3—adw. Obviously, if be. (bd.
or be.) exists, then

(7) X=W((X=y or y = w).
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On the other hand, at least two distinct triples of types be., bd., be. exist (if this
were not the case, then 2 letters would cover Z), hence at least two of the equalities
(7) hold and so we have x=y=w. Thus every triple of (4) contains x and we have
only 6 letters in Z, again.

Case 2B. z1,za€(3), z3£(4). Let zl=aex, z2= acy, zs=bhdw. By P7, x—y=w
and (4) may contain only triples bee, hex, bex. However, by Lemma 2, at least one
of them must occur in (4); thus in (3) no seventh letter occurs.

The remaining cases can be considered similarly as 2A or 2B. The proof of P9
is finished.

Property 10 (P10). T consists of 7 vertices. Z consists of 7 triples and no triple
not belonging to Z has a common element with every triple of Z.

Proof. Let Z contain the triples abc, ade (see P7, P9). By P8, triples not contain-
ing a exist in Z. Obviously, any such triple must contain b or cand also d or e. Thus Z
may contain only the following such triples: bdf, beg, edg, cef. However, all mentioned
triples can be 2-covered by b, c, d, e and hence the last possible triple afg occurs
in Z, too. Thus the first assertion follows. Deleting a triple z of those 7 we get a
system of triples 2-covered by 4 letters not contained in z; therefore by P8, Z con-
sists of all mentioned triples. It is easy to check, that no triple beside of those of Z
has a common element with every of them. The proof is finished.

Remark. INcidentally we proved: If Uis a system of non-disjoint triples formed
from at least 7 symbols and U is not covered (2-covered) by any 2 (4) symbols, then
in U any two triples have exactly one common element and any couple is contained
in some triple (which can be checked above), i.e. U is a Steiner triple system.

Property 11 (PH). In G there exist at least 3(n—7) edges with exactly one
endpoint in T.

Proot. A vertex of degree 3 can be reached from a vertex of higher degree by a
way of length =2 only through T. By P8, no two vertices cover Z, hence a vertex
not belonging to T, must be adjacent to (at least) 3 vertices of T and the assertion
follows.

3. Proof of the Theorem

We shall proceed indirectly: suppose a GdH2(n,k) with (1) and (2) exists.
Denote GTthe subgraph of G induced by the set T. According to (2) and P,

e(GT) =8.

Thus the sum of degrees in GT is at most 16. However, in Gr no vertex of degree 1
exists (see P8) and since T has 7 elements (see P10), there exist at least 5 vertices of
degree 2 in GT.

Take vertex vxof degree 2 in GT; let v2and vs be its neighbours. From vx a path
of length ~2 exists to every vertex of degree 3, hence the triple z=vIv%3 has
a common vertex with every triple of Z. Therefore by P10, z£EZ and hence z forms
the neighbourhood of a vertex v0 of degree 3 in G. From this vOwe have to reach all
vertices of T by a way of length 22 (in G) and thus the sum of degrees of vertices
v2and v3in GTis at least 6.



MINIMAL GRAPHS 191

Hence for arbitrary vertex vxof degree 2 in GT one of the following possibilities
holds: a) vxis adjacent to 2 vertices of degree 3, b) vxis adjacent to a vertex of degree
at least 4 in Gr. Obviously, if Gr has at most 8 edges, no of those possibilities can be
fulfilled for 5 (or more) vertices of degree 2.

This contradiction proves, that F2(n, k)*3n —12.

On the other hand, for any n, k fulfilling (1) we construct a graph GOEH2(n, k),
with 3/i—12 edges.
Ga consists of:
1 seven vertices a,b,c,d,e,f,g and nine edges ac,ag,bc,be,cd,df,ef,eqg,fg;
2. a group of vertices of degree 3 adjacent to vertices a, b and d (denote this group
abd) and (using the same notation) the further 6 groups of vertices of degree 3:
bee, cdf, deg, efa, fgb, gac.
It can be checked, that GOis of diameter 2. Next determine the cardinalities of
those groups.

The groups abd contains [—— | vertices.

Denote A= | —3 . The cardinalities of further groups are as follows:

\bce\=A+xx, \cdi=A+x2, \deg\=A+x3, \efa\=A+xx, \fgh\=A+x& \gac\=
=A+xe, where

1 ifn—fc=I(mod4), then xx= ...= xt = 0;

2. if n—k = 2(mod 4), then xx=x2= 1 x3=...= x6= 0;

3. if n—k = 3(mod 4), then = X2—x4= 1, x3=xs=xt =0;
4. if n—k = 0(mod4), then xx=...= x5=I, x6= 0.

It can be shown that (GO = 3n—12 and that GOEH2(n, k) for n, k fulfilling (1).
The proof of the theorem is finished.

Remark. GOEH2(n,k) for all n's 17 and fulfilling (1).
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ON THE SOLUTIONS OF A HALF-LINEAR DIFFERENTIAL EQUATION

M. PIROS

Consider the differential equation
(1) v\ 1+qyrc=0, y=y(x), '="-, v™=\yWesigny, n> 0,

where gq=q(x) is a positive continuous function in the interval (a, b) (—

S«>). Lety(x) be a solution of the differential equation (1). Denote by xO, xIt ....
xk and x0, x[, ..., xkthe roots of the equations y(x)=0 and y’(x)=0, respec-

tively, such that a”x0,x0 and (x0")x 0~"x1*...~b, provided they exist at all.

D efinition. Let the function g(x) belong to the class of functions Cv[a, b] if it is
continuous and {q(x)]v (v is a real number) is concave in the interval (a, b).

Such a function is e.g. q(x)=x1y for a=0 and Z>="°
In what follows we shall give estimates on the location of roots and maxima of
the solution y(x) of the differential equation (1), and this will be done by means of

the functional J <«(9)Y("+1)di, provided that the function g(x) belongs to the class

[
CVv[a, b] in the interval of integration. These estimates generalize to an arbitrary
n(>0) the results obtained for «=1 in [1] and [6].

It will be assumed throughout the sequel that q(x) is twice continuously dif-
ferentiable in the interval (a, b). From the point of view of our investigations this is
not an essential restriction since any function g£Cv[a, b] can be arbitrarily closely
approximated by a function gt(x) which is not only twice continuously differentiable
but even monotonically increasing or decreasing, respectively, in the interval (a, b)
according as q(x) is so, and for which we have qtECv[a h] (see e.g. [1]).

Let us investigate the class Cv[a, b]. First we shall show that for any qdCv[a, b]
and any finite subinterval (a, c] of (a, b) we have:

@ f 2(®UC+)dx <00 if v~ 0 or v< A TER
©)) f q(x)(t—a)"dr <« if vSO or v< S
4 J gx)dx <° if vsO or v<—]

where a<xSc.

1980 Mathematics Subject Classification. Primary 34C10.
Key words and phrases. Half-linear differential equations, estimate on the distance between
consecutive zeros.

Akadémiai Kiadd, Budapest
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Since [<AX)]v (a<x<b) is a positive concave function, it holds
[(PWwU=c("-c)+9(c)MW if vSO
i

iV (@< x” o).

(5) aq(x) if v<oO

It is easy to check that (2), (3), (4) hold for any g of the form
q(x) —(c!(x-a)+ AW (ct>0, c2S 0) (@< x " o),

whence, in view of (5), they hold for every function gq£CVa, b] as well.
Put

(6) u(x) —j dz (@™ x<bh)
and denote the inverse of u(x) by xq(u). In what follows, this u will be considered as
a new independent variable. Set
Y{u) = y{x{uj).
Then the differential equation (1) has the form

) POt -Les fu)y' Feyne= 0 (0 < uu),

where
d
du
and
®) sdu)= q'(xq) L loga(xa@) O < uS u()).

«+1 A(A(W))l+(!/("+!» n+ | du

If it will not cause misunderstanding, we shall write x(u) and s(u) instead of xq(u)
and sq(u), respectively, in the sequel.
The condition q£Cv[a, b] implies that

SO if v=10
(9) (v-1)a2+aq"" o it <o @<v<h)

Differentiating the function s(u) with respect to u we obtain

(10) s(«) = (0 < u < u(b)).

n+1 9(X(W))21HW(',+ 13
Substituting qqg" into (10) according to (9) we arrive at

ir ?SZ(W) if v O

(11) -s(w) 1 © u(b))
2w if v< 0
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where
1+V(rt+1)
We shall deal with the cases
0- s 1 if vs O 0 ®)
< u<u
(12 e <0 if ve_
n+1
and we shall show that
a«-1 if vs O © )
< u -=w(b)).
(13) = (k) a1 if ve< —
n+ 1
The relation (13) is trivially fulfilled for s=0, therefore »"eO will be assumed in
the sequel.
By (11), (12) we have
(14) as(m SO (0 < u < u(b)),

whence as(u) (O<w<n(Z>)) is monotonically decreasing and therefore the following
u* is uniquely defined:

ro if |s(u)|>0

l1sup {«: 0 < u< u(b), s(u) =0} otherwise.
By the definition of u*,

p O if 0S U< M*
(15) as

{<0 if u*< u< ub).
(15) implies that a and s(n) are of different signs in the interval (u*, u(b)), hence (13)
is trivially satisfied in this case.

Consider now the case 0 and put

Ctf) = as-"0O-i (0< E£<«*).
By (11) we have

(16) SO (0< €< u
and by (15)
C("M)S-N (0<«n<l/™),
hence
17 CE)S-{t+ f (0< { < «).

Since  can be taken arbitrarily small, (17) yiedls in view of (16) that
(18) C(0SO (< {<u.

2%
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Set
. (U+C©)-1 if sCO”™O c 0n £ .
(19) A()=1Q otherwise | ((C) <u<-, < UM

Integrating (11) on the intervals («, f) and (c, W) (0<t<w+), respectively, we obtain

M£40CS(E)E i 0< W= £
(20) as(u) 1L M ayasiy 1 if £/ u< o
By (19), (20) we have
;cxw if vSO

(0<{< «*, 0< Ux< |)

(21) S(U) — v((u) if Vc _njl
and

it vm© 0< {< « £< m< «*)
(22) su) _ @@ if V< _n+11

In the special case £=0 (21) and (22) yield (13), which was to be proved.
Put ui=u(xi), u'i=u{xl) (i=0, 1,2, ...), and consider the solution Y(u) of
the differential equation (7). We have Y(uf)=0 (i=1,2, ...). Next we show that

(23) YWi)=0 (i= 0,1,2,...).
We have
(24) Y(ul)= >ggn_'roy'(x)q(x)-w o (1=012 ..).

Since q(x) is a positive continuous function in (a, b), (24) implies (23) if x->a
(i=0, 1,2, ..). Thus we have to deal only with the case x0=a. In what follows
we shall restrict ourselves to the functions q£Cv[a, b}. Therefore it can be supposed
that g is monotonic in a right neighbourhood Ka of the point a. It suffices
to consider the case when lim q(x)=0. Then q'(x)>0 (xEKa. From the dif-

ferential equation (1) we obtain

((1)B)' =-(n +hgyr*y' (a < x<b),
whence

(25) Y (lm1= —f (+)g{2)ymy' (M d (@< x < b).

We may assume that |y(X)|, [y'(x)|< 1 (xEK3. Since q(x) is monotonically increas-
ing for xEKa, we have

(26) / N(x-a)g(x) (xEKQ),
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hence by (25) and (26)
i o /()= +#Ge) = 0,
which yields (23) in view of (24).
Introduce now the following function t(u):

t(u) = Wa}' U* U 0=2">2>e) (0< w< ub)).

Differentiating here and taking into consideration (7) we get
(27) i(u) - 1+s(M)t(«) + [t(M)["+L  «*S u< u[resp. u[ < u” w+l
0=01,2,.).

The function q(x) is defined on the open interval (a, b), whereas we should like to
have the solution y(x) of the differential equation (1) defined on the left closed inter-
val [a b). The possibility of this is investigated in the following.

Theorem 1 The differential equation (1) admits a unique solution y(x) defined
in a right neighbourhood of the point a and satisfying the initial conditions y (a) = A,
y'(a)=B (A2+B2>0), ifand only if there is a ££(a, b) such that

(28) f qo)\no)ndx < min © B
where ) AV ERIE

max (\A + B\, A)

0< 9 < min

fr(x) = A+B(x-a),

B =NA\ if B=0

1 1JJ3| otherwise.
Proof. Sufficiency: Put k

So= W- <pfC°[af], (p’if £0, O =£\R [N}
Define the distance q of two elements <i, $2€S0 by
(29) e((Pi,(Pt)= max

It can be seen that the space [50, ] is complete.
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Define an operator F on S0 as follows:

(30) F((P)(X) = A+ JAB r*-n j q(?)(pr*(r) dT]U*dv x£€(a, £)

a

By (28) it can be seen that F(cp) exists for all <p£S0.
In any case, the operator F produces a twice continuously differentiable func-

tion, and we have F{<p)(@@—A, F(<p)(@=B. It is easy to see that
<Pi(x) * <PAx)

for <x, 92€S0 implies
F(<Pi)(x) = F(<pJ(x).

Hence F reverses the order relations. In particular, we have
F0)(x) = \i/(x),

thus

(31) 0S \@s [FO)

for all (pdSO, and in view of the above remark we obtain that

(32) \FW) OO\ A AR(<p)ON A [* (%)
Denote by Sxthe following subset of SO:

(33) = {op: cptSo, [H<A) S i}

Then we have

(34) F: S, - S,

by (32) (moreover, F: Sg”-S~.
If the differential equation (1) admits a solution y(x) satisfying the required ini-
tial conditions then y€ S and twice integrating the equation (1) we obtain that

(35) y = F.

Hence the solution y(x) — if it exists — is a fixed point of the operator Fin SOand
even in Sx for F:
Next we show for all <Px q2€5'1:

(36) QnFd), Ricpg) ~ eVl <PdiniT 0 <n 7
le((pi,<Ps)\2 if «>1

hence F is a contraction on the space [51; q1.
By (28) we have for all (p£S*

(<Pi, (PzzZSJ

(37) /22 \A'S \p B |ix
and

(38) y | 9(0 I<A(OMt ~ |F(<p)|" (2BIn
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We shall make use of the following simple inequality:

(mbRhwvia if 0<m s,

(39) K- fl — nkmetvi—| if m> 1
where 0<kSvlt or —0<K"vl v2* —&<0. By (37) and (39) we have
for all (pi, (pz£S1
t | WL \pi—<P\ if 0<n=»1,
£ A ~\n\il/A\~1\pl-<p2 if n> 1
whence by (29)

rQW">-1e<B1,<pI|t/i]*  if o< «si,

(40) i < -{nQ (L, (pNilAn if n>l.

Now we estimate \F((p{)—F(<p™. By (38) and (39) we have

IFM -F/ Il g
JX (2BMI~n Jv a{x)\<pf(x) - tpf (¥)ldxdv if 0<nh”1
: : (<P, (p7SJ
foiy / qi'tw'i't) fog{xX)\(PE(X)-(p?(T)\dxdv if «>1
a "~ a ' a

hence by (40)
F(FE)-f(ft)1 as

a(<Pi, g2n J 201N 1(2BD1 "3 q)nj/(x)\ndxdv if 0<h~ 1
a

a
(<Pi. <P-i£Si)

e(<Pi,<P.) f [ 2(F)UKHI"*]  dv if n>1
and by (28)
HHg&.B.Qc-a) if 0<nS 1
(41)  \F((PH-F(a>2\ & (<Pi, ViEsi).
if n>1
n

Dividing here by |ii| and taking into consideration that Bl(x—a)™Milf(x)\ (x£[a, £]),
we obtain (36). Since [Si, o] is a complete metric space and the operator F: Sj —St
is a contraction by (36), we can apply the Picard—Banach fixed point theorem which
says that F has one and only one fixed pointin . This proves the sufficiency of the
condition in Theorem 1

Necessity: Suppose that the differential equation (1) has a solution y(x) satis-
fying the given initial conditions. It can be shown that j(x) isconcave in a right neigh-
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bourhood of the point x=a, sothereisa a<£<b, such that
(42) min [-i-,-1j || W (as x SE< h).

It can be assumed that
(43) [/1s/2n

is also satisfied on the interval (&4xSf. Integrating the differential equation (1) we
obtain

(44) y"* —Br*-n J q(x)yr*(x) dx,

a

whence by (42) and (43) we get (28). This completes the proof of Theorem 1
Next we prove a series of lemmas.

Lemma 1. Ifin every neighbourhood of a we have
(45) J gx)dx=°° (a< x < b)

then jCy(>a) existsfor any choice of x1 (ao”-eh).

Proof. Consider the solution of the differential equation (1) satisfying the initial
condition y(xj)=0, y'(x)= —L Assume that x,,(>a) does not exist. Then y'(x)<0
(a<x<x,), hence we have here y(x)>O0.

Let d<x*<X!l. We have

y{x) > y(x*) > 0 (a < x < x3,
so by (45) one can find a £ (a<<i;ax*) such that
(46) f q(x)yr*(x)dx = I/n.
i
Integrating the differential equation (1) on the interval [x, xj we obtaind

(47) (X)) = —1+nJ qy)ymxdx (a< x< h).

Substitution of (46) into (47) yields
/1© =0,
contrary to the indirect assumption. Thus Lemma 1 is proven.
Lemma 2. Consider the differential equations
(48) y'i\yi\n- 1+qiyr =0 0 = 1, 2),

where g”qfx) (/=1 2) are twice continuously differentiablefunctions on the interval
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(a,b) (-oo<a<isco). Suppose the existence of solutions y,(x) (i'=1,2) on the
interval [a, b].

X

Considering u (u=1J <i(®U("+)dx (/=1 2)) as an independent variable, the dif-
ferential equations (48)atake the following form:

(49) Yifrr'+sJr+Yr =0 (i=12), (Os«<U%
where
YAu) = yi{xqi(uj).

Denote by ultJ, uU] (z=1,2), 0=0, 1) the roots of the equations y,(u)=0 and
Yj(uy=0 (0~i«!/(i)), respectively, provided that they exist.

Suppose
(50) sqi(u) S sfu) (0SS u = u(b)).
Then: a) uli0=u20 implies
(51) mlj0 S h2o0,

b) «ii0=«,0 implies

(52) MFI — «2,i-

Proof. Put in Case a) vi=ult0O(=u20), i2=niin («(,0) «20, in Case b) v1—uh0
(=«2,0). v2=min («!,!, n2i). Then
(53) Y, (u) (ux< «<v2, (i = 12).
Define

W(u) = yi(*, ()'ufa, («))- S (xqi(u))y2xaiu)) (0su< u(b)).

It can be shown that in both cases a) and b)

(54) WM) = 0.
The function W can be written in the form
(55) W(u) = (Yfu)Y2(u)-Yfu)Y2(u))gfu)'l® (0 Su < «(&)),

where g1(u) =ql(xqi(u)).
Put

(56) t,(u) = Oi<«< V), (/=12

By (53) /,(«) (i=I,2) is continuous in (vt,v2. Differentiating W we obtain by
(49) and (56)

(57) W= [TIA0,1-J,t)+ riTa(Jt2r-1- |t Ir DJgi/BH) K < u< vd.
Define now l«llg* Jﬁz

i .
59) 0 0 1 if x t2

(n-Ntr  if ti —t2
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Clearly, the function Mt is homogeneous and continuous in I— °°)X(—
Set
(59) M(u) = Mi(h(w), ©2(u)) (I1>1<«<td.

Afis a continuous function of u in the interval (W5t;2.
By (57), (58), (59) we obtain the following first order differential equation for W:

W =Y 1%(sqi-sJ+ M W < M< V2.
Solving this differential equation and taking (54) into consideration we get

7 M(i)it

(60) W — J (p(v)e» dv  (x< VD,
where &
Bp) =
Since <p(w) is of constant sign in @&svd, (60) yields
(61) W(u) *sign (p(u) £ 0 (UX< u < V2.

Consider now Case a). By (55) we have
fE(n)M1(n)-W<I+1» + yi (u)y2(»)
M Y. («)

lil(«)] >0 (!>!<«<»*),

so by (61)

whence (51) follows by the definition of v2.
Consider Case b). Also by (55)

IV(u)g~u)- WC+: +Y, (W) % («)
fi(«)
ly2Ww) > 0 (rx< « < 1),

Y2(u) = (vt<u< W,

so by (61)

which implies (52).
For g=1 the differential equation (7) reduces to

(62) y|fT,-1+yB= 0,

which admits as solutions satisfying the initial conditions y(0)=0, y(0)=1 and
y(0)=1, y(0)=0 the functions

(63) Y(u) = S,,(u) and Y(u) = Sn(uzxy),

respectively. These solutions are periodical generalized trigonometric functions of
period

(64) fr=fe=2- "1

sin
n+1
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and the distance of neighbouring roots and maxima for them is A/2 (see A. Elbert
[2]).

In the case q(x)=CxW (C>0), (vsO or v< —I/(n+|)), (a=0, b=°°)
let Zj(x) and z2(x) be the solutions of the differential equation (1) satisfying the initial
conditions z1(a)=0, z[(a)= 1 "vsO, v< — A J and z2@@)=1, z2(a)=0 (vSO,
v< —1), respectively. These solutions exist by Theorem 1 In this case the dif-
ferential equation (7) is
(65) Tly|"-1+au-ly'/+Fr*=0 (O %)

where a has been defined already. Put Z 1(u)=z1(x(u)), Z2(m) = z2(x (n)). Now we
have Zj(0)=0, Z2(0)= 1, Z2(0)—0. Denote by j'w(ri) and j v(ri) the first positive roots
of the equations Zfu)—0 and Z2(u)—0, respectively. For «=1, Zx(u) and Z2(n)
are just the Bessel functions of the first kind JB(u) and T_m(w), respectively, where

V=i+2v (a=1~-2""' °ne can see that j60)=Jn-i’JoO)=j-in where and
stand for the first positive roots of the Bessel functions JII_1and J-B, respectively.

Lemma 3. For qECv[a, b] ~vSO or v< ~ j1 we have
X0 SA2 if q°SO0
(67) fogMilpre={ (a b).
J ‘m if &0

Proof. By (8) we have

SO if i'go

(68) sW{«0 if tfs.0 @

b).

Applying Lemma 2 to the differential equation (7) and taking into consideration (68),
we obtain (67).

Lemma 4. For g£Cv[a b] we have

a)
—jv(n) if v—0
69 f i(r)Y(n+D)i/r
(69) VO e el
n+l
b) )
\—A(n) if vsO
(70) toqixfingx T Vel
0 otherwise ‘—I,v< * 1
n+1)

Proof, a) Applying Lemma 2 to the solutions Y(u), Zfu) of the differential
equations (7) and (65), respectively, (13) yields (67).
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b) The cases vSO and v< —1 follow from Lemma 2 in the same way as in
a). Consider the case —1Sv< — p Then there is a function g£Cv[a, b] such

that J q(z)dz=°° for any a<x<b (eg g—(x—a)IA). In view of (2) an x*

a<x*3’\b) can be chosen such that
(71) J q(2)1mH)dz < e,

(where e>0 is an arbitrarily fixed positive number. Let a<x1<x. By Lemma 1
there exists an *0 hence (78) implies

J g(NYMH) dz «e,

X0
which proves Lemma 4.

Lemma 5. For g*C,,[a,b] we have

ANftoif vS 0

(72) f q(z)lrtl)dz St oif v
n+1

(In the case n=1 this lemma was proved by J. H. E. Cohn [4]).

Proof. Firstly we exhibit that it suffices to restrict oneself to the case when q is
a monotonic function. One can assume q to be monotonic on the intervals (a, x*]
and [x*,b), where x1"x*<b. Since g£Cv[a A], (14) implies that q is in case

vsO first monotonically increasing and then decreasing, in case V<_"ﬁ3£'1r first
monotonically decreasing and then increasing.

Put
(x) if a<x<x*
ﬂ(x*) if x ).
We have
5 s(u) if v~r0 0 "
< u<u
(73) *<) A s(u) if v<— J ( (®)
n+ 1
where s(u)=sq(u).
Consider the differential equation
(74) yly|n 1+sjyr*+Frr= 0 (0 < u < u(b)).

Suppose that Y(u) is a solution of (74) satisfying the inital conditions y(«i)= Y(uy)
(=0), 7(11])—Y(uJ. Denote by ifand u- (i=0, 1, ...) the roots of the equations
y(u)—0 and 7 (u)=0, respectively (iii=«i). Comparing the solutions Y and F



HALF-LINEAR DIFFERENTIAL EQUATION 205

of the differential equations (7) and (74), respectively, from (73) we infer by Lemma 2
that
S Ur-u'0 if vs:o

(75) ui-u'o ., 1
ul-uo if \Y N '|' '|' ‘

By (75) it suffices to prove (72) for the monotonic function q.
In the case “rsconst (a<x-=£) (72) is trivially true, therefore we can assume

that g”iconst. Furthermore we can suppose

if vs 0 <
(76) e —nfl (@<x D).
Consider the differential equation
(77) FIFr*+ffA"P+F~"0 (-CL«D<

where C(u)) and aU are defined in (18) and (19), respectively. By (21) and (22) we

have
S QU if VAo

(78) s(w) 1 0 <M< M
if v*-7rrr
 if Vvio R o)
iq™ u-—=u
(79) s(u) S if V< — ,
n+ 1

Let F(m be a solution of the differential equation (77) satisfying 7 (n)=F («J),
F(nl) = F(nl). Denote by tqand ul (/=0, 1, ...) the roots of the equations F(w)=0

and F(w)=0, respectively. We shall show that WD exists, i.e.
(80) U~-C(tq).

In the case vsO we apply Lemma 2 to the solutions F(w) and Y(u) of the dif-
ferential equations (7) and (77), respectively, and by (78) we obtain {{0*u'0, which
implies (80).

Consider the case v< —/(n+1). Let F(n) be a solution of (77) satisfying
F(-C(iq)/2)=1, F(—C(iq)/2)=0. Denote by the first root of the equation
y(w)=0 (—C(uM)I2<u«x>}. Taking into consideration that <U(—Cu")I2+u)*
olUi(u) (—C(«])/2<u<°®), by Lemma 2 we obtain

M-C (k)/2 < ih-u'o,

which implies (80) for the solutions F and Fseparate one another’s zeros and maxima
or minima, respectively (see A. Elbert [2]).
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In view of Lemma 2, from (78) and (79) we obtain that

—Mi~Ny if VSO
MM MmO if Ve —
n+1
and A
S MI-M! if vSO
M M e
/ V< —
W i if N+l
hence
—M—N if Vs O
(81) Mi Mg . . f V< _
mi- nj 1 nel ¢
By (81) it suffices to prove that
a if vso
(82) VU sa i ve e
n+1

This is what will be done in what follows. We shall suppose that
(83) al=uu~1 (0< m<*)

(this can be achieved by a simple transformation).
Putting 1=Y/Y, we have, similarly to (27),

(84) \ = I+al-1?+|ijml (F+0).

Consider the inverse functions G(t) to i(u) in the interval (U6, i) and introduce the
following notations:

Vi(0 = i<i—m(—0 .
(85) _ 0Si<-).

v2(t) = u(/)-«Te

From (84) and (85) we get

dvi(0 1
(86) dt l—ctt(ux—Pi) 14 F ' )
0S i<
(87) dv2(0 1
di 1+a/(u2+ M) 1+/"+1°

Define a function F(f) as follows:
(88) F@i) = U(i)+u200—=2/ jgrr+T (0s i<™)
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As is easy to see, F(0)=0. We are going to show that

SO if VS0
(89) MFO so it vs-
n+1

This in turn implies (82) for / T ~ = m -
By (84), (85), (86) we have
dF(t)

(90) dt

. 2«f + (141" +1)(p1(f) + p2(0)
[(1+/"+D2(ul+ p1(0)(p2(0 -» i)+ (1+<b+L)(Mi (0+V 2(0)-«2iF (1 + 7,+1) '

On the right-hand side of (90), the denominator is always positive, therefore it suf-
fices to look at the sign of the numerator.

If vSO then a>0, hence by (90) we have (jTF>O (0s/<°°), which establishes

(89) in this case.
Let now vS —2/(n+1) and assume that (89) is not valid. Then there exists a
subinterval [/*, t=*) (Ost*<7**<°°) 0f[0,°°) suchthat

>0 if tr<t<

b =0 if 1=t~

As is easy to see,

92) dz b 0ct<™)
f e 14tm '

By (91) and (92) we have

(93) Pl(o+ p2(o > o*<t<n.

Our condition vS—2/(n+1) implies —~a<0, hence by (92) and (93):

2at+ mzm > 2Aloc+1) > 0 (1x <t < t*%),

o) d%’}[ 0 (t*<i</**), and therefore

F(t) = j"’o\lz-dt<0 (< t< ),

contrary to the indirect assumption. Thus Lemma 5 is proven.
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Lemma 6. For QECy[a b] we have

A if vS max N
»e
(94) f g(x)IKn+l>tk< 1( )

> 4 if VAR R

(In the case n=I this assertion is known as Makai’s Lemma).

Proot. We shall proceed in a similar way as in Lemma 5. Just as was done there,
it can be shown that it suffices to deal with the case of monotonic functions q(x).
Consider the differential equation

(95) Y [if-14<VP *+F™* = 0 (- C(«O) U <oo),
By (21) and (22) we have
Tn if vs O
u0
(96) (W i ve- O <u<ug
“0 n+ 1
=0p if vSO
(97) s (m) it (0= "< ()
< —
ssaq> if v n+1

Let Y be a solution of the differential equation (96) satisfying Y(u'Q=Y(u'g, Y(UE)=
—Y(u'9=0. Denote by and U( (i=0, 1, ...) the roots of the equations Y=0
and Y=0 (-C(u06)s«<°®°°), respectively. One can show that t0O(s —C(U'0Q)
exists.

Applying Lemma 2, from (96) and (97) we obtain

S ux—w, if vao
(%8) 19- U0 w0 if ve—m 1
n+1
hence it suffices to exhibit

N ACIf v S max
(99) Ui- GOm 1
Si if v<
n+ 1
We can assume that
O'- au-l (O< u<-®).

Then, putting I=Y/Y, from (95) we obtain (84). Consider the inverse function u(t)
to I(u) in intervals [i70, u0), (U0, wj. Set

(100) VI(0 = u0-u(t) 0=t<a
v2(t) = u(—t)—u0.
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By (84) and (100) we have

(10 d\:jxt(t) I+at(u'0 v 1(t)) [ +tmH
(O's / <o0)
dv2(t) -1
(103 dt 1-al(<6 + t2)))-14 /41 °
Define
(103) (0 =»1()+ra(/)-2 /T1+ATn|'Tr (0S /<->)

One can show that limF(t)=0. We are going to prove

S0 if v—max .
(104) F(0) f Er)

0 if V<_n+l’

which in turn implies (99).
By (104), (101), (102) we have
(105)
_ - 2«/+(1 + ") (/) +u2(0)
dt @+ Iy (ut- *(0)K + (0)+(L +/n+)(r1()) + r2() - a2/ (1 + t"+l)

(0s/ <°).

The denominator on the right-hand side of (105) is always positive, hence it suffices
to consider the sign of the numerator.

If v<—/(«+1) then a<0, hence from (105) we get %TF=O (0s/<°°),
thus
dFW
m - f dZ 01
and we are done.
Consider the case v*max”O, ~ |]j. Suppose that (104) does not hold, then

there is a t* (0s/*<«) such that
r>0 if 0S/< /™

<106> F<> U if =
By (103) and (106) we have
(107) ox()+ ~2(f) > 2/ (OS /< ).

As is easy to see,
<108> <Ok Te o

3
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whence by (107):

21
(109) vigo + V2(t) I+ /"4 (0S t <?)e
Since 0<aS 1n in view of v> max from (109) we get
(110) -2ai+ (I+int)(t;2(0+ti20)>2i(-1-aJ >0 (0Si</*),

whence dl;it) >0 (0Si</*) and therefore

i-(0)=-/air* * 0
contrary to the indirect assumption. This completes the proof of Lemma 6.

Theorem 2. Ifthefunction g£Cv[a b] is monotonically increasing in the interval
(a, b) then we have:

a)
JCOO+(» + 1/2)6 = nit if vs max ;x
3 9(0UmH)dr (*£1)
nit S S »(«)+(«+ 1/2)6 il vs ,
»+1
b)
(n+1/2)AS —Jv(»)+»6 if vS max (%
J #(9UC+) ch (*£f)
JCOO+(«-1)6 < S(n+ 12A i/ vS e 1
c)
(n—V2) A= —+(»)+(»—1)6 i/ vS max (*f,f)
A(»)+(«-1)6 S T 9(0U(b+l)ilt. s (n—12)71 if ve —1
(n—A < S(n- 12)A if v§—
d)
nit s 0'v(«)+(»-1/2)6 /I vs max|o, " |]
W) —12)6s | <(©UC+H)di< S nit if ve —1
(=it < ni VS Al
Proot, a) Consider the case vsmax [0, ” |]. The right-hand side of the rela-

tion follows from Lemma 6. In order to prove the left hand side, decompose
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the interval [x,, x,] into [x0, x,]=[x0, xQU[XxO, x4 and apply
Lemmas 3, 5, 4. The case vg ------- - can be treated in a similar way.

b) Decompose the interval [x,, x] into [x0, x"]=[x0, XE]U[xE, X'] and apply
Lemmas 3, 5in case vSmax g»'Si and Lemmas 4, 5in case v< —

H+ 1~

The cases ¢) and d) can be settled similarly to the previous ones.

Theorem 3. For g£Cv[a,b] we have:

a)
2 S % nft if vS max|o,
f q(c)lntl) dz )
nft ii 0 F2v(n) + (n-\)ft if N1
b)
j'v(n)+nft s£(»+ 1/2)a if VS max(- .+ i)
jv(n)+nft f (1) U(b+1) dz* if v<--1
0 .
nft Sj'v(n)+nft if v<
H+l ’
) i
nft % —2;v(«)+(« -1)A if vS max {9 g
Jv(n)+(n-NA & f <IQU('+1) dx< 5 nft if v< —1
2
(n-1)ft < % nft if b+l

Proof. As was in Theorem 2, the proofis done by applying Lemmas 3, 4, 5, 6.
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Pestome

B cTaTbe paccmaTpuBaeTcs onepauusi, sBnstowascs 0606LieHreM hakTopru3aLmMm KOHeYHOro
MHOXECTBa MOJ [JelCTBMEM BBEJEHHOTO Ha HEM OTHOLUEHWS 3KBMBANEHTHOCTU. lMoKas3aHo, 4TO
BBEZieHVe 3TOI onepaLuu pe3ko YNpoLlaeT pelleHVe psaa 3ajad Teopuu MnepeducneHus runeprpa-
hoB, Teopun yHKuUMIn MéEbuyca.

KMcnonb3yetca onpefeneHve runeprpaga m3 [1]. Takum ob6pa3om, 3anpeLueHbl
KpaTHble 1 NycTble pebpa, HO MOTYT MUMETLCA BIOXKEHHbIEe pebpa n pebpa, coaepxa-
Lye OAHY BEpLUVHY.

Onepaunsa akTopusaumMm Ha runeprpadax sBAseTcs 0606LWEHNEM MOHATUSA
(haKTOpM3aLMM KOHEYHOTO MHOXECTBA MOJ AeCTBMEM OTHOLLEHNS SKBUBASIEHTHOCTY.
IMpu Takoli onepaLum COXpPaHSeTCs BHYTPEHHSA CTPYKTYpa runeprpaga, Ho MeHsieTes
YMC/IO €ro BEPLUMH, HEKOTOpPbIE N3 HX 0OPa3yHOT eCTECTBEHHbIE K/aCChl KBUBAIEHT-
HOCTK, farolime MO MPeACTaBUTENO B (haKTOPM30BaHHbLIA runeprpad.

BnepBble, HaCKONbKO W3BECTHO aBTOPY, Onepauus (hakTopusaLvn B HESBHOA
thopme Bblna NpUMeHeHa Npy NOMbITKE NEPeYNC/INTL BCEBO3MOXHbIE TOMOMOTMMN Ha
KOHEeYHOM MHOXeCTBe B pabote [2, p. 1092, (1)].

OnpegeneHne 1 MUHUMaIbHON OKPECTHOCTHIO BepLMHLI XEX runeprpada
G(X, W) 6yagem HasblBaTb NepeceveHne Bcex pebep, cofepalimx X.

OnpepgeneHune 2. [1ge BepwwuHbl runeprpaa G(X,Vx) 6yaeM HasbiBaTb
3KBMBA/IEHTHLIMMW, €C/IM UX MUHMUMa/IbHbIE OKPECTHOCTW COBMAaJatoT.

MycTb AaH Npom3BOAbHbIA runeprpad G(X, VX).

OnpegeneHune 3. Hasosem aktopruneprpadom (Fact G(X, VX)  runep-
rpaca G(X, VX) runeprpad, nonyyaemblil 3aMeHON KaXKAOro Knacca 3KBMBaNETHOCTU
B CMbICNe OnpejeneHns 2 efUHCTBEHHOW BepLUMHON. MHOXEeCTBO BepLUMH B
Fact G(X, \k) ABnseTcA MHAYLMPOBaHHbLIM pebpoM Torga U TONbKO Torga, Korja
NONHbIA NPO06Pa3 3TOro MHOXECTBa Npy onepauun F act sBnsetca pebpom G (X, \K).

MycTb gaH Knacc Armneprpados. Torga onepauns Fact takTopusaymm nHay-
umpyet onepauymto H-+Factd Ha MHOXecTBe Knaccos. lyctb HA(n, r)-umcno
runeprpaos U3 A ¢ N (NOMeYeHHbIMK) BepLUMHAMU U pebpamu;

A= 2% r),

r

1980 Mathematics Subject Classification. Primary 05C65, 05C70.
Key words and phrases. Hypergraphs, factorization
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OcHoBHada nemma. Mpegnono>kum yTo G(X, VX)EH Torga v Tonbko Torga
korga S'aet G(A,VAC.Sact H. Torga vmeeT MecTO napa 06paTUMbIX COOTHO-
weHuii (inverse relations):

@ H(n,r) = k"_OS(n,k)(SlactH)(k, M ns 0

3] (S'actH) (n, r)= éos(.n>k)H(k, r); nSQ,

C nocnepoBaTeNbHOCTAMU CTI/IpI'IVIHFa BTOpPOro u nepsoro pogos COOTBETCTBEHHO-

JokasatenbcTBo. PaccmoTpum KoHeyHoe MHoXectBo X. Pacnpegenum
BepLWUHbI X B 610KKN, 1 OyAeM TPakTOBaTb MOCNEAHME B fyXe «0BOLEHHbIX» Bep-
LIMH, HA MHOXECTBE KOTOPbIX WMHAYLMPOBaHa JIMHEHas NeKcmKorpaguyeckas no-
meTKa. (1) cnefyeT MpUMEHEHMEM NpaBUN NPOuM3BEAeHUs U CyMMbl; (2) cnegyeT
obpauieHnem n3 (1) ¢ y4eTOM «KBa3MOPTOrOHa/IbHOCTU», MO0

[S(n,k)}Es(()) n {s(n, /0)}50

CyTb B3aUMHO 06paTHble (PYHKUMM anrebpbl MHLMAEHTHOCTM MHOXECTBA HEOTpU-
LaTeNbHbIX LeNbIX YnACeN C 00bIYHbIM NOPALKOM «60/bLle M60 paBHO» [3; p. 344],
[4; ch. IV, § 64, pp. 182—183 (1)-(2)].

3amevaHue 1 (1) n (2) BOCTaBNAT KAHOHUYECKYHD KOMOBUHATOPHYIO MHTEp-
npeTauuio napbl 06paTMbIX COOTHOLLEHWA, HaMbO0/ee YacTo BCTPEYAtOLLeACs B UC-
YynCneHMn KombuHauuii (nepeuncnedun) [5; ra. 2, ctp. %—95, Ne 21].

3ameuaHue 2. CooTHOLLEHWe (2) B HESABHOW OnepawLoHHOW opme npuBeseHo
B [6; p. 4, nemma 3.1; corollary 3.2] — gocTaTO4MHO cpaBHWUTL C [1; nemMma Ha cTp.
76]; cm Takxke [7; §4, p. 119, (4.1)—4.2)].

Cnepctene 1L Myctb MC (minimal covers) ecTb Knacc MWUHUMAaNbHbIX
nokpbiTuid [8]. Ka>kaoe pe6Gpo KOTOpPbIX COAEP>KUT NO MeHblUel Mepe OAHY Bep-
WWHY cTenenn (kpaTHocTwu) 1. Torga

(3) (S'actMC)(k, r) = (k) (2'-r-1)* _r.

[LelicTBnTENbHO:

1. Bblgenvm r BepLUMH M3 YMcia K M 06pas3yemM C UX NMOMOLLbI T O4HOBEPLLMH-
HbIX pebep.

2. TIOKpOoeM KaXkAyto M3 OCTaBLUMXCS K —T BEPLUMH MOMNapHO pas/inyHbIMU Hey-
NnopagoYeHHbIMY Habopamm (Bcero nx nmeetcs 2— —1) pebep M3 He MeHee YeMm
OBYX pebep. 3TO faeT BTOPOW MHOXUTENb.

M3 (1) n (3) umeem:

4) MC(n,r)= ZS(n,k){k}(Z'-r-I)k-r, ns 0.
K=0 \
CooTHoLweHne (4) aHHOHcupoBaHb B [9; cTp. 1067, (6)] nogpobHOCTU CM. B

[8; cTp. 89—90, Teopema 5]

Cnepcteue 2. MycTtb S3-knacc 6ennOBCKUX pas3bueHnid, TpakTyemblX Kak
runeprpadsl [1; cTp. 71]. Yucno Takux pasbueHumii Ha MHo>KecTBe X; \X\=n, ecTb
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n—e uncno Benna B{nf< 2 S(n, k); nSO. PaccmMoTpuM Knacc 3T TpUBUAb-
K=0

MbIX pasdueHuii, Bce peGpa KOTOPbIX UMET MOWHOCTL 1
QOuesngHo, yTo 2Ti(n)=1; né0. C pgpyroii cTopoHbl, S'i—S'ac'63, un (2)
JaeT Ham ToxkaecTso [1; cTp. 75, (10)]:

5) *2__nos(n, KBK =1L nsSo

Cnepcteue 3. MNycTb 3P-knacc HeynopsifoYeHHbIX Nap He3aBUCUMbIX pas3bue-
HWi KOHeYHbIX MHOXKecTB (1). 3ameTum, yTo 3P CTb akTopKnacc knacca 33®
MPOW3BO/bHBIX HEYNOPAA0UEHHbIX Nap pasdueHuni, NpuyeM Ka>kiasa napa TpakTyeTcs
Kak runeprpad ¢ OTOXXAECTBAEHMEM KpaTHbIX pebep. ViMeeT MmecTo

[elicTBMTENbHO, B HalleM pacropspkeHWn B(K) TUMOB pasbUeHWid, U Mbl
BblGMpaemM 2 pa3bueHus, npuyeM MOBTOPEHUE TUMOB BO3MOXHO.

N3 (2) n (6) nveem:
) P(n) = neao,

0TKyfAa, mucnonb3ya (5), BbIBOLMM OCHOBHOWN pe3ynbTaT u3 (1):

6) P(M) = y_+ 2 %) neo

KOTOpPbIA paHee OblN MOYYeH MyTeM FPOMO3AKOro aHanmMsa ABYLONLHOIO COOT-
BeTcTBMA [10; p. 103, n. 3] mexay 610kaMn Napbl PasdUeHWiA.

CnepctBue 4. PaccmoTpum peweTky B(X) pasbueHuii KOHEYHOTO MHO>KECTBA
X, TpakTyeMbIx Kak runeprpadsl [1]. MycTb uncno 6n0koB pasbueHns a ecThb K
(1 S&SJATr]). Torma ceTmeHT [a /] B cmbicne PoTa [3] usomopder cermeHTy [0, 1
B pewleTKe pa3breHnii MHO>KecTBa M3 K 31eMeHTOB. JIerko BUAETb, YTO WM30MOp-
(hn3m ycTaHaBnnBaeTCs (hak Top—Oonepauueid, aposb BEPLUMH 06pasa urpatT 6/10KM a.

Monoxum a0(0,1)=0=p0\ p,,(0,1)=pn=p(0,1) B B(X)\ \X\=n"\, nu,
NPUMEHSS 00bIYHYIO PEKYPPEHTHOCTL C «/1EBbIM CBOGO4HBLIM KOHLIOM» A5 (PYHKLUUM

p Mébuyca: ~
2 i<+ 1) = G@b),

x:0sxm

nMeem:.

9 Zos(n, K)pk=<{,r; rge n=\X\» 0,
K=
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OTKy/a 06pallieHNeM MoydaeMm:
(10) un=1I J(nfe)skd=i(H,D)=(-D)"-1(n-D!; «si.

MocnegHee paBeHCTBO MOXKHO HaiTu, Hampumep, B [4; ch. IV, § 52, p. 147, 1].

3ameyaHue 3. 3Tum nytem Mapcens—Ilonb LUoTUeHGEPXE NblTancs Bbl-
yncnntb U Ha B(X) B cBoei gmucceptaumm [11; p. 25], HO psif HeakKypaTHOCTel
NPUBEN ero K owmnbKe. 3aTeM, yXKe COBEPLUEHHO TOUHO, 3TOT pe3ynbTaTr YCTaHOBUN
P. ®pyxT n k. K. PoTa B AByX COBMeCTHbIX paboTax 63 n 65 rogos [12; p. 113,
(12)]; [13; p. 9, (20)] nocne yero c 6onee OBLIMX MO3NLUMIA 3TOT pe3ynbTaT Penpoay-
uupoBaH Pota [3; pp. 359—360]. B HacToslLiee BpeMs CYLLECTBYET HEMano pasnu-
YHbIX [10KAa3aTeNIbCTB 3TOr0 3aMeyaTe/IbHOro MNPefokeHUs, UMEIOLLEro MHOro-
YMCNIEHHbIE MPUMEHEHUS B MaTeMaTuKe U (U3UKe.

3ameyvaHue 4. MNpu NoAcTaHOBKE ABHOrO BblpaxeHus g un3 (10) B (9) nmony-
4aeM XOpOLIO W3BECTHOE TOXAECTBO, KOTOPOE MPMBOAMTCS B OOLLUMPHOM u4wc/e
NCTOYHWKOB, Kak-TO: [14; p. 263, (36)]; [4, p. 189, §67, (18)]; [5, rn. V, cTp. 188—189,
Ne 5a)]; [15]; [16; n. 4, p. 296, 5-e ToxpgecTBO]; [17; I, p. 254]; [18; p. 68, No 44];
[19; cTp. 181, (5—135)] u np. ¢ owMOKaMn 1 6e3 Haanexaileid KOMOUHATOPHO
MHTeprnpeTaumun. 3NeMeHTapHOe [0Ka3aTeNbCTBO 3TOr0 TOXAecTBa OyAeT [AaHo
B JononHeHun 1

3ameyaHue 5 MoXxHO mHTepnpeTuposaTb napy (9—10) aHanornyHo (1)—
(2), BBOASA «MfeasibHbIe» Knacchl runeprpagoB OTMeTUM, 4TO <GV «nepeyncnseT»
Knacc, COCTOSLMIA M3 efMHCTBEHHOrO OLHOTOYEYHOro runeprpaga.

BBefeM YacTUYHbI NOPSAAOK Ha MHOXeCTBe G(X) runeprpadoB ¢ MHOXECTBOM
BepwunH X, 0600LaloWnii YaCTUUHbIA NOPALAOK Ha pelleTke B(X) pa3bueHuii
KOHeYyHoro X.

OnpepeneHne 4 (. B. LUupokoB). bygem roeoputb, 4to GHX, Y%)é
SG 2(X, W), ecnm Kaxxaoe pebpo ACVX MOKPLITO MO MeHbLUE Mepe OAHUM Peb-
poMm B&VX, T. e. ASIB.

3agaumn (d. B. LLnpokos).

1 Bblumucnntb ¢yHKumio MeéEbuyca Ha cucteme MC(X) MUHUMaNbHbIX MOK-
pbITUA MHOXecTBa X\ |[V| 1

2. Bblucnutb dyHKUMIO MéE6Guyca CUCTEMbI MUHMUMAbHbLIX MOKPLITUIA 13
POBHO T pebep MHOXecTBa X. OTMETUM, UTO B OT/IMUME OT Cyyast pasbueHnin ata
CUCTEMA He SBMAETCA aHTULENbH.

PelleHne nepBoii 3aZaun aBTOPY HacTosLle paboTbl He M3BECTHO. PelleHue
BTOpPOM 3ajaun AaHo B. A. CurHaeBckuM B 72 rofly B Nepuof COTPYAHMYECTBa C
®. B. LUupokoBbIM B 06/1aCTN TEOPUU MOKPLITUIA 1 npusogmTcs B [lononHeHuu Il
¢ nob6esHoro paspeweHms ®. B. LLnpokosa n B. A. CurHaesckoro.
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JononHeHve 1

ﬂ,a,IJ,I/IM 9/1eMeHTapHOoe [A0Ka3aTeNbCTBO TOXAECTBa
() 25(n,k)(-\Y-\k-)\ =6,y, «si,
k=1

C NOMOLLbID KOTOpOro cumtaetca U Ha B(X). Mcnonb3ys o6Lien3BecTHoe npea-
CTaBfEHME OOLLEro uneHa {s(7, &)}MK?\%

(12) Sfe) = -Gl )L 0, 0 =1

nepenvwem (11) B Buge

(13) 2 -w-1e 20 0 (-iy-tio= i nw oL

B takom Buge(11) durypupyet B [15], [18] n [19] (YTOUHEHNA CTpaHWL, 1 hopMy
CM. BbILLE).

PaccmoTpum ABa cny4as:

a) n=1 3TOT cnyyail paccMaTpyBaeTCA HEmoCpPesCTBEHHO,

B) /r>1 Wcnonb3ys TOT (haKT, uTo

ilE1

nepenuwem nesyto 4acTb (13) B Buge

M

5 (_]_y 1 (_Nme-Uu-

= (al-aQ+(aa-0i) + .,. +(an-a,,-) = an (T.k. @0= 0),
we
a, = (—h'-1i"1; réeo;né2.

Takum o6pasom, npu n>1 neeas 4yactb (13) C TOUHOCTbIO A0 3HaKa paBHa pas-

HOCTM nopsigka n OT noiuHoMa 3C-1 cTemeHn m—J1, T.e. paBHa Hymo. Cnyuvaid
B) npoBepeH, 1 ToXAecTBO (11) MOSHOCTLIO A0KAa3aHo.

JononHeHne 2

MycTb Yy Hac UMelTCS fBa r-pébepHbIX MUHUMAMbHBIX NOKPbITUA a=[Al, ...,
..., At] n B=[BIt ..., Br] 04HOro 1 TOro e KOHe4YHOro MHOXecTBa U nycTb cc?i
B CMbIC/Ie onpefeneHns 4. 310 3Ha4MT, YTO A4ns Noboro At HaigeTcs B} Takoe, 4To
Ai™Bj.
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Moj KpaTHOCTbIO TOYKM (CTEMEHbIO BEPLUMHbLI) ByaeM MOHUMAaTbL YMCNo pebep
(hMKCMPOBAHHOTO MOKPLITAS, COAEPXKALLMX 3TY BEPLLMHY.

Teopema (B. A. CUrHaeBCKUiA).

jU@C B) — (_1)cMuma KpaTHOCTeil BeplwnH B — cymMMma KpaTHOCTel BepLInH a

[JokazaTenbCcTBO1 pa3bmBaeTcs Ha psafg NPeAIOXKEHWIA.

I. Kaxgoe BJjER COAEPXWT LENMKOM MO MeHbLUER Mepe ogHO A”™a. [eicT-
BUTENbHO, B MPOTMBHOM C/TyYaeil HainieTca B a CeMelicTBO Ah, ..., Ais, MOKpbIBatoLLee
Bj, 1 cooTBeTCTBYtOLLEe CeMeCTBO Bh,...,Bis, rae AikQBik, NOAHOCTbIO MOK-
poeT Bj, 4TO MPOTMBOPEYUT MUHUMALHOCTU .

Il (OcHoBHOe npepno>keHue). Kaxkgoe Bj cOAepXUT B TOYHOCTU OAHO At.

[oKazaTenbCTBO MpoBeaeM MHAYKUMen Mo r. MpoBepka cnyyaeB r=1 u r=2
MPOBOAWUTCA HenocpeAcTBeHHO. [lepel, WHOYKTUBHBIM MEPEXOLOM [OKaXeM 2
BCMOMOraTe/ibHbIX YTBEPXAEHUS.

a) MycTb Bj cogepxnT Arn Ak, TOrAa CyLLecTBYeT As, HOKPbITCE KaK MUHUMYM
AByMSA pebpamy u3 R. [leAcTBMTENbHO, B CUNy 1 MMEKTCA fBE BO3MOXHOCTU:

1° Jln6o cyuiectByeT pebpo B,, t"j, cogepxauiee A{vnmn Ak.

2° Jln6o Bcem pebpam Bt, t~j, cooTBeTcTBYOT Ap (p” i, K), HO 34€ecb pabo-
TaeT npegnoxeHne 1 v npuHUMn Aupuxie, MOCKONbKY MMeeTcs r—I1 3HauyeHwui
napameTpa t U r—2 3HayeHuidi napameTpa p.

B) MNyctb AiQBjDBk. Torga HaligyTcs Takme Asu At, yto:

Asgy Bj, Asd(apA)* 0
A, "Bk ANBRAB" ~ 0

OTMeTUM, 4To Asu A, pa3nnyHbl, 160 (B j\B K M (BRB/)=&. PaccyXaaem Tak e,
KakK ¥ npu [oKasaTenbCTse npefoxeHns 1 Ecim HET UCKOMOro As, TO Halifetcs
Habop Ah,...,Aig nokpbiBatowmnini BAB Kk, npuuem Aik%Bj (k=1, q). Ho
TOrga CooTBeTCBYHOWMIA Habop Bh, ..., Big nokpoeT B=>\Bk, a Habop BH, ...,
..., Bt , BK MOKpOeT Bj, 4TO NPOTUBOPEYUT MUHUMALHOCTU B, W60 BIp OT/INYHBI
oT Bj npu Bcex p=1,

c) AokasaTtenbcTBo npeanoxeHusa Il. MycTb OHO BLINOHEHO A5 BCEX
3HayeHUli BNAOTb A0 F—I W He BbIMOAHEHO Ans r. Torga Haingytcs Au Bj u Bk,
Asn A,, yKasaHHble B NpefblayLLem nyHKTe.

Ypanum u3 a pebpo Ab a u3 B BepwuHbl {A}. Tokaxem, YTO OCTaBLUMECS
MOKpbITUA &' 1 R', MHAYLMPOBAHHbIE UCXOAHBIMU & U B, CYyTb MUHUMa/IbHBIE.

[eicTBUTENBHO a'-MUHUMa/IbHO, MO0 OAHOKpATHble TOUKM pebep nexar BHe
yOaNeHHOro A,, /N'-MUHUMAsBHO, TaK Kak BEpPLUMHBI A, MO MeHbLUE Mepe ABYKPaTHbI
(MokpbIThl Bj 1 BK B R.

Mocne ypaneHns {A,} o6beauHum B B' pebpa {N44,} n {BK A t} B oaHO pebpo
{(57U BKY\A,}. Tonyuum TakK >ke MWHMManbHOe NOKpbiTMe R". Pebpo
{(Bj UBK\A,}cR" cogepXuT LennKom ABa pasnuyHbix pebpa {84 ,} v {10/1,}

1 HacTosliee [10Ka3aTenbCTBO 6GbINO faHO aBTOPOM Mocfe Toro, Kak B. A. CUrHaes3kuii
co06LMN aBTOPY (hHOPMYNUPOBKY TEOPEMBI.



OMEPALUMA ®PAKTOPU3ALINN 219

B cuny NyHkTa B). Kpome Toro, R"”a', o1 B" MMeOT OAHO M TO XKe Yncno pebep.
3T0 NpUBOAMT K MPOTUBOPEUUIO C NPEANONOKEHNEM WHAYKUMW. MTak, Mbl AoKa-
3anu npegno>kenue Il.

B panbHelilem cOOTBETCTBYIOLWME ApYT Apyry pebpa MUHUMASIbHBIX MOKPbLITUIA
aun B Oygem MeTUTb OLHUM WHAEKCOM.

I11. Myctb Ai 1 Bi cooTBeTcTBYtOWME pebpa B a u B; A*B,.

Torga MHOXECTBO OAHOKPATHbLIX TOYeK B, cogepxutca B At. MyCTb, HanpoTus,
y-OHOKpaTHas Touka B,, nexxawlas B BtA i. Toraa Hangetcsa pebpo AjCcc copep-
»Kallee 3Ty TOYKY, W COOTBETCTBYHOLLee eMy B]'2A]3y, oTnMyHoe oT Bt B cuny
I, 4TO NpPUBOAMUT K NPOTMBOPEYUMIO MPESMoNioXeHNe 06 OAHOKpaTHOCTM y B .

IV. MNyctb Ai7Bt. Torga MHOXeCTBO OAHOKpaTHbIX TOYeK pebpa Bt cogep-
XKUTCA B MHOXECTBE OJHOKPATHbIX ToYek pebpa At. MycTb, HANPOTUB, X-04HOKpAT-
Has Touka [, koTopas ABMseTca KpaTHOW (T. €. KPaTHOCTb KOTOPOW He MeHblue 2)
B A;. Torga HaingeTcsa oTinM4yHoe oT Atpebpo ABRX, K oTanyHoe oT [ pebpo -3
fIARX, 4TO NPUBOAUT K MPOTUBOPEUMIO.

V. Tenepb, nocne npegsapuTesibHON NOATOTOBKWU, MOXHO MepeiiTu K BbIBOAY
thopmMy bl CUrHaeBCKoro.

PaccmoTpum TouKy r. Ecnv oHa ofHOKpaTtHa B 3, To B cuny IV oHa 3aBefjoMO
OAHOKpaTHa B a. Ecnu e i nokpbiTa B a pebpamun Ah, ..., Aig S i2, TO OHa NOK-
pbiTa B R COOTBETCTBYKOLMMU pebpamu: Au, ..., Bia rge Bik*A ik, k=1,...,s.
Ho n3 uucna r—s pebep Bp (p~ik, 1w/c”s), nokpbiBawowmx gpyrue A, OA if,
17kSs), MOryT TaK e HaliTUCb NOKpPbIBAKOLMe BEPLUUHY T. TycTb MMeeTCs n—p
KpaTHbIX BEPLMH (p”~r, P-4YMCNO O4HOKPATHbLIX BepLUnH) B B.

Torpa cermeHT [og B] pacnafgaeTca B NPsAMOe NPOU3BEeAeHWe n—p CEermMeHToB
(HEKOTOPbIE 13 HUX MOTYT BLIPOXAATHCS B TOUKM), KXKAbIA N3 KOTOPbLIX N30MOpPGEH
eUHUYHOMY Kyby pasMepHOCTU, PaBHOW M30bITKY KPaTHOCTW R Haj @B COOTBETCT-
BYHOLLEl/i KpaTHOW BepLUMHe.

OrTctofa, B cuny opmynbl AN p Ha MHOXECTBE BCeX MOAMHOXECTB KOHEUHOr0
MHOXecTBa [3; p. 345] 1 B culy TeopemMbl O npoussefeHumn [3; p. 345, proposition
5], cnegyeT dopmyna CurHaesckoro ans /r(a, ), 4yTo n TpeboBanoch.

B 3aKk/l0ueHrie aBTOP BbIPaXKAET CBOK WCKPEHHIOK NPU3HATE/IbHOCTb KOJle-
ram: ®. B. LLInpokoBy 3a coo6LeHMe onpeaeneHns 4 1 cBsi3aHHbIX C 3TUM onpaene-
Hvem 3atay 1u 2, n B. A. CurHaeBckomy 3a C006LLeHMe pe3y/bTaTa TeopeMbl U3
JononHexnnsa 2.

JINTEPATYPA

[1] KoraHoBg, /1. M., O uicne nap He3aBUCUMbIX pa3bMeHni A KOHEYHOTro MHOXecTBa, KoMbuHa-
TOpHbIN 1 acUMNTOTUWYecknin aHanms3, KpacHospck. Foc. YHuB., KpacHosipck, 1975,
71—80. MR 58#27533

[2] ComTeT, L., Recouvrements, bases de filtre et topologies d’un ensemble fini, C. R. Acad. Sei.
Paris Sér. A—B 262 (1966), A1091—A1094. MR 34 # 1209.

[3] Rota, G.-C, On the foundations of combinatorial theory. I: Theory of Md&bius functions,
Z. Wahrscheinlichkeitstheorie Verw. Gebiete 2 (1964), 340—368. MR 30 # 4688.

[4] Jordan, Ch., Calculus o ffinite differences, Third edition, Chelsea Publishing Co., New York,
1965. MR 32 # 1463

[5] PuopgaH, O. X., KombuHaTopHble TodkaecTBa, Hayka, Mocksa, 1982, 255 c.

[6] Devitt, J. S. and Jackson, D. M., The enumeration of covers of a finite set, J. London Math.
Soc. (2) 25 (1982), 1—6. MR 83k: 05008.



220 1. M. KOrAHOB: OnEPAlina <DAKTOPH3AU.hu

[7]1 Fouras, L. R. and Robinson, R. W., Determining the asymptotic number of phylogenetic
trees, €omblnat0r|al Mathematlcs, W (Proc. Seventh Australian Conf., Univ. New-
castle, Newcastle, 1979),,\}|_§cture Notes in Mathematics, Vol. 829, Springer-Verlag,
. Berlin, 1980, 110—126. 82j: 05050.
[8] 1TUHpoKOB, 3> B. ir CnrHaeBCKHR, B. A., MHHHMajibhHpie noKpwTH« KOHeiHoro MHOacecTBa |,
] Ul Diskret. Analiz, no. 21 (1972), 72—94, 97. A b48 # 8278a.
9] UlnpoKORB, €& B. h.CHrHae ii, B. A., MHHHMaubHbie puTHsi KOHeiHoro MHoacecTBa,
Bokl. Rkal. Nauﬁ ?&ﬁzm (1972), 1066—1069. M’ﬁ 47 # 3216. .
[10] D ow1ing, T. A, A A-analog of the partition lattice, A SUrVey of combinatorial theory (proc.
Internat. Sympos., Colorado State Univ., Ft. Collins, Colo., 1971), ed.’vﬁé{ J. N.

Srivastava et al., North-Holland Publ. Co., Amsterdam, 1973, 101—115. 51 #
2954,
[11] Schatzenberger, M.:P.. Contribution aux applications statistiques de la théorie de I’infor-
mation, F%Ibl. Inst.Statist. Univ. yPaIJIJJT 3, no. 1—2, (1954), 3—117. R 271000
[12] Frucht, R, andRots, G.-C, La function de Mohi ﬁpara particiones de un conjunto, SCIENtIa
alparaiso); no. 122 (1963), 111—115 MR 33 # 55 (in Spanish).

[13] Frucht, .aa]nd Rota, G.-C., Polynomios de Bell y particiones de conjuntos finitos, Scientia

aralso), no. 126 (1965),.,5—=10 (jn Spapish).

[14] Jordan, éh., E)n Stirling’s numbers, )The TJO?](SI(U iﬁa . J. 37 éﬁ?:%?m 254-—279.

[15] L cc. G. M., Problem E 2159 Corrected Statement, Amer. Math. onthly 76 (1969), 300. .

[16] Vrba, A.,PAn ir‘M/ersion formula, matrix furmthons, combinatorial identities and graphs, CﬁSOpIS
est. Mat. 98 (1973), 292—297. 48 # 1946. . .

[17] Bong, Ng%en ng, Some combinatorial prome ties of summation operators, J. Combinatorial

eory Ser. A 11 (1971), 213—226. 41_? 93; %ome combinatorial properties of

summation operators, I, J. Combinatoria heory er A 14 (1973), 253—255. W&
46 # 7044.

[18] K aucky, J., Kombinatoricke identity, Veda, Bratislava, 1975. .

[19] EropbiMCB, r. IL, MuTerpajibnoe npeacraBaeHHe n Bbi'iHClienne KOMOHiiaTopnux cymM,
Hayxa CnoHpcicoe OTAenenire, Hobochohpck, 1977.

(1locmynuAO 16-020 ummh 1981 Z.)

rPy3HHCKHH BAIJI 26, KB. 39
SU—123 056 MOCKBA, fl-56
SOVIET UNION



Studia Scientiarum Mathematicarum Hungarica 19 (1984), 221—229

ON THE PROPERTIES OF A'-COERCIVE LINEAR PARTIAL
DIFFERENTIAL OPERATORS

JOUKO TERVO

1. Introduction

In this article we shall generalize the notion of 2f-coercive linear partial dif-
ferential operators (see [3], [6] and [7]). We work in certain subspaces of tempered
distributions having a Banach space structure. For the properties of these spaces
we refer to [4], pp. 33—62.

In the third part of this work we consider the global regularity of the solutions
u for the distributional equation

(1.1) L(D)u = f

where L(D) is a A'-coercive (see 3.1) partial differential operator with constant coef-
ficients. By applying Sobolev’s lemma to the results in Section 3.3 we obtain the

following particular result: Every solution of (1.1) with /C-Jfp,«, lies in
C“(R™). We point out that in this result it is essential that the distributional solu-
tion u is originally an element of the space which is in some sense a global

subspace of distribution space.
In the fourth part we consider a A:"-coercive operator with variable coefficients
in a bounded set G¢cR". The main interest lies in the semi-Fredholm properties of

Lp.k.G-

2. Preliminaries

2.1. Let G be an open subset in R". For the definition of spaces D(G), S(R"),
D'(G), S"(R") and E'(G) we refer to [4]. Furthermore, let A be a totality of all tem-
perate weight functions such as in [4], Denote by Fthe Fourier transform S'(Rn)—
-~S'(Rn.

Define a norm Q°(G)-»-R by the requirement

(2-1) M Pk= (A, f\(F@mk(0\pd~1”,
o

where I"p<°°, kEK and 2,=(2n)~n Let JF-k{G) be the completion of Cj°(G)
with respect to the norm (2.1). Then the mapping L : yf~k(G)-»S'(R") defined by

(2.2) L(E)\I) — lim —lim f <p.illx) dx, iKCO (R)

1980 Mathematics Subject Classification. Primary 35D05; Secondary 35A20.
Key words and phrases. k~-coercive linear partial differential operators, global existence and
regularity of distributional solutions.
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is a linear injection, where {mp,} is a representative of E. Let J*Ptk(G) be a sub-
space of s'(R™) such that ffpk((j)=L (jtPtk(G)) equipped with the topology induced
by the norm ||T||p>i<;||L—l(’70||p>t=ﬂm\\(p,,\\p,k, where {g=} is a representative

of 1 ~\T).
The following characterization of the space » p,k'—" pk{R") is obvious.

Theorem 2.1. A distribution TdS'(R™) lies in AdPk iff FT is a function and
(2.3) Np,k{T) = ((27t)- f \(FTm km pdt)llp
Moreover ARR(r) = ||r||P;t.

2.2. LetL(x, D) be a partial differential operator of the form

(2.4) L(x, D) — I\?I aa{x)D°
_r_
with aadC°°{G). Furthermore, let
(2.5) L'(x,D)= 2 (-Dy(aa(x)(-))
Ms
be the formal transpose operator of L(x, D). For arbitrary kfK and we

introduce a linear operator LPik>0: 3fp,k(G)—J"Ptk(G) by the requirement
rD(LPKG) = C6(G)
I Lp,kGP —L{x, D)tp, (pdD(LPtk'Q.

Then LPKG is closeable; let Lp>i0 be its smallest closed extension. We write
Epfkirn "
We define an operator L'*k: 3Ppk-+38p,k such that

DALpjc) — {uddi?pkl for which there exists fd#TPtk,
(2.7) u(Lp,k<P)=A<P) for all CO°(RB}
Lffku = /.
The L'*kis a closed operator and moreover L~tkczL'*k.

For the operators with constant coefficients we have the following theorem
(see [2] and [6]).

Theorem 2.2. Let L(D) be an operator with constant coefficients. Then

(2.8) L'*k = Lp>k

Proof. Let i/VECNR") such that O~tjj, supp \l/czB(o, 1) and (Fi//)(0)=
= f\jj(x)dx= 1 Furthermore, let ipjdC,, (RN be such that 4j(x)=jn'P(jx), jdN.

-
Then for arbitrary udD(L'p%) the convolution u*\j/j lies in Z>(L~jl)nC “ (R").
In addition in yfpk and L~k(u=*if)=L(/))(u*if) ={Lpku)*\jj—
-~L'p%u in yfPk. This means L'*kczL~ik, as required. O
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3. On the global regularity of the solutions of the distributional equation L (D )u=f

3.1 We consider the algebraic characterization of the following inequality
(that is, the fc~-coercivity of L(D))
(3.2) \L(D)WPk & C1M PU~-CA(p\\Pk, <pECT (R"),

where k,k~£K and IS/i«», In the case when p—2,k =1 and k=k2 we refer
to [6] and [7]. Assume first that G is the whole space R". Then we have

Theorem 3.1. Let L{D) be an operator with constant coefficients. Then there
exist constants Cx>0 and C2"0 such that (3.1) holds for every <p€EC{I(R") iff
there exists a constant C=>0;

(3.2 (J1(6|+ DECTc“(6 for every £€R"

Proof. Suppose that (3.1) is true. Let \p€EC T (R") be such as in the proof of
Theorem 2.2, and let iyGQj°(R") be such that

(3.3) *1'j(x)=j-n+n,p<Hxlj).
The function (j)j: R"—C defined by
(3.9) AW =(M(*)-e'«"™*>)/fe«D

is an element in Qj°(R™) for every 8ER". We have for every jEN
Hj\\Pk= (A. f \j"IP(*VO(jfa- O)k{rMmI"dr,)1l' =
Rn

(3.5 = (a [/ m)(T)k(T/j+oik(mpdTyip”"

Rn

S {k fm){x)M k(xij)Ydxfps c m PikN,
R

where MkKEK such that k(£ +rj)sMk(IQk(ri) and AGN such that Mk(f)"
S C (\*\2\*)NB=--CkN(0. Moreover by Leibniz’s rule

WD)<t>{\WPk”* 2 A\V *\m m j)e i(i'xVkm\Pk
(3.6) o
rs2 ~\L w ($)\J—L-C\\D*np,kN.
In addition we have the estimate

Nt fpue = (A f m)(r,)(kk-)(r,/j+0/m\pdtiylp$
Rn

3.7) S A, f |(Ffa)(1mue (- rinworyiok-(c) S
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Taking into account the assumption (3.1) we get by the inequalities (3.5)—(3.7)

CiV/icwi.ukA'(0 s

as) ! !
s 2 -rCli)-"|,ikrii;r|lL«(0] + CCtIN|p,tir

for every yEN. Letting j-+°°, the inequality (3.8) implies the assertion.
Conversely, it is easy to see that (3.2) implies (3.1). O

If k~EK suchthat k~(£)->00 for |E|— the inequality (3.2) can be given in
the following equivalent form: There exist constants E>0 and R”O such that
(3.9 IL(O|sEfc“(0 for [{| £ R.

3.2. In this subsection we give a necessary algebraic condition for the validity
of the inequality (3.1), when G is an open set in R". When GcR" is bounded this
condition is sufficient to imply (3.2).

Theorem 3.2. Suppose that (3.1) is validfor all (f_Cj°(G). Then there exists
a constant C>0 such that
(3.10) £,'(£) £ Cic~<£) for all £<ERn

(The definition of L~(£) see in [4].)

Proor. FOr all <p6Q°(G), \L(D)(p\PiktSW(p\PIkL- and W\Pk=M\\(p\\PtkL.
(the last inequality follows from the fact that there exists y>0; L~(c)Sy for all
<i;£R”). Thus by the inequality (3.1) we have

(3.11) forall ?€C,“ (G).

Let 1/f€Cj°(G); U?+0 and let <pECNG) such that (p(x)=\l/(x)ed’xK Then
as in the proof of Theorem 3.1 we see by (3.11) that there exist C>0, C'>0 and
N, N f N such that

c\kk~mm M s ck(OL~mn,, ,kN-

This completes the proof. O

Denote by Tp the Fourier—Laplace transform of <p£Q°(G). We shall first
show the following lemma

Lemma 3.3. Assume that G is an open bounded subset o/r ». Then there exists a
constant C>0 such that

(3.12) WLW(D)cp\P'k si CAL(D)(p\\Pik for all  (pEC?(G).
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Proof. Let <££Cj°(R") besuchthat <#(x)= 1, x£G. Then for all (p"C~{G)
and t765:={cr="+/i;€C'l||0'|*I}

K f \(2xp)(x+a)k(x)\pdx "
R

(3.13) s XnMk(-W f \F(er<I>(p)(T+"k(z+0\pdr =
= Mk{—£E)p1*'X)<bp\pk S Mk(-m e ~ H 1 uJcp\\p,k.
Furthermore for every reER"
Fe(™<) (1) = (SM)(T + iif).
Due to the Paley—Wiener Theorem for every #EN there exists C>0 such that
|(S2)(e+ »/)| s C(L + [ef2+ [i/]2 - ~1"1,

v(\:/he(ge A(R; supp (jxzB(0, A) (see [4], p. 21). Since |jj|sl, we obtain with some
>

(3.149) \F(e*)(x)\ AC (1+]r]|2-«.
Hence it is easy to see that 8¢ M for all |i/|sl, with some constant
M >0. According to (3.13) we have
(3.15) K f (") (t+d/dD)|iElt A sup MK(-i)pM I\p\pik
-

Define functions H, R and 9: Cn—C such that

H(o) = (&cp)(x+ a), R(a) = L(x+ a)
and
1. MS1
“M -fo, H ,i.
Then we obtain for every |a|Sr
(3.16) [tf(0)(Z)°R)(0)|/ vo'\o(a) da =(r!/(r—a)!)/ |//(a)R(<T)0(@@)i/a,
where f6N"; r=(r, ..., r) (see for example [8], p. 186). In other words

(3.17) |(F<p)(MLW(T)[FaSfl/(f-a)! /[ [SALE)<)(T + a)ld<r,
where Msi

Ej= J \alo{a')da > 0.
Hence by Fubini’s Theorem with some constant C>0
F/IL«(D)<HI"™*SCAnN /( f \<2(L(D)cp)(x + a)k(x)\pda)dx

(3.17) R' W*1
=Cn f (f lecL()@E)x+ a)k X)|'dx) da.

lojai R"

Applying the inequality (3.15) we obtain (3.12). O
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Lemma 3.3 gives the following theorem.

Theorem 3.4. Assume that (3.10) is true. Then there exist constants C5>0

and C2S0 such that (3.1) is validfor all (pdCg(G), where G is an open bounded
subset of R".

Proof. The inequality (3.10) implies that
(3.18) WAP K~MVC)W\(p\\PK~ for all <piCf(G).
Since for every (p£Cf(G),

Lemma 3.3 proves our assertion. O
3.3. Let us define

(3.19) A= - U

kzZK k€K
We prove a global regularity result for the distributional solutions u of the equation
(3.20) L{D)u=fe [EJT,.».

Theorem 3.5. Suppose that the inequality (3.1) is valid for all (p"C"iR")
with kKEK such that k~(£)“m> for |E|]-»<» Then every solution of the equation
(3.20) lies in -APikk~.

Proof. The validity of (3.20) implies the relation
(3.22) L{f){Fum = (Ff)(f) ae. £6Rn

Since by Theorem 3.1 \L(C)\+\=Ck~{£) and since k~ f o r we
have with some g*0 and c¢/=0
(3.23) d{kk~m\{Fum\* m\{Fumm)\ =m\(Fm)\

a.e. ££R" suchthat |£|*p. Hence one can see that u lies in "TPtkk~ (because u lies
in some JfpK. O

On semi-Fredholm properties of the operator L~ik<a

4.1. In the sequel we assume that G is an open bounded subset in R”. Further-
more we assume that k~£K; k~(f)-.. for |E|-.cc. Then the imbedding

A #TPK~{G)MTpk(G) is compact (see [4], pp. 38—39; note that 3Ipk(G)ci
cE Q)Y

We assume that there exist two constants Cx>0 and C2s0 such that for all
<p€CO (G)

(4.2) " \\L(x,D)@\Pik* C 1M PK~-C2M pk
(where L(x, D) is a differential operator (2.4)).
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Let J*p,k(G)+ be the dual space of JPik(G) and let L+kG: Xpk(G)+-—~
-*MPik(G)+ be the dual operator of LpkG. We shall prove for arbitrary 1.=p-=°o
the following result.

Theorem 4.1. Assume that the differential operator (2.4) satisfies the condition
(4.1) for all "Cq(G), where G is an open bounded subset of R". Then L~ kG is
a semi-Fredholm operator such that

4.2) dim N(L~tkG) <00
Furthermore

(4.3) N(L; kGQ =R(L+KQ
and

(4.4) R(L;.ko) = N(L;,kiGy .

Proof. By the assumption (4.1) we have for all uED(LpkQ

(4.5) CiMp.kk- —I-ip,Ik,GMIlpk+ C*[IMp'.

Hence it is easy to see that dim N(LPtkG)<°°.

We now have to prove that R(L~*c)c,?fpk(G) is closed. We do it by show-
ing that Z~tiC(.R)c: JfpA(G) is closed whenever B is closed bounded subset of
D{pkG)"p,kiB) ([T* PP- 99—100). Let [f, }czLPtKG{B) be a sequence such
that ||/,,-/||p,*-0 for some fEJFpk(G), and let u,,£B besuchthat L~k Gun—,,.

Because {/,.} is convergent and B is bounded there are constants 0 and Ma>0;
[IMIp,* —M ly
. i p,* —
Thus by the inequality (4.5)
(4.6) R|,.«r forall «eN.
This implies that there exists a subsequence {m/}c {w} and Uu€JfRKG);
\\unj— As B is closed then uf£B. Because |«nj—u|Pif—0 and

Ik;.fc«<-/Hp,*-0 it holds that WEZ(Z"KGDB and L'PKGu=fIL~Pk<GB).
Since L~ikG is a semi-Fredholm operator we have that

4.7) R(L;,kG = NL~pX & and N(L-p* cy = R(L-PX Q.

Since Lp(Rn) is reflexive, by Millman’s Theorem ([8], pp. 126—128) the space
is reflexive for Therefore AMp,k(G) regarded as a closed subspace of
jFPik is also reflexive. This implies that L~tkiG=(L"kQ+ where (L+ka)+ is
the dual operator of Lpk,G ([5], p. 168).

Hence the relations (4.3) and (4.4) follow from (4.7). O

4.2. Let U be an open ball in R*and let Hp k(U) be a subspace of D'(U) such
that for all uEHpk(U) there exists fi3XPtk\

(4.8) u<p) = fu(s), forall <p£EC?(U).

4%
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We equip the space Hp k(U) with the topology induced by the norm

1* = Veqr*(ﬁ%\m ”/«'A“p”(-

Assume that p£R; 1</)<>». Then for every FEJifPA/ii(U)+ (where p'ER;
I/p+1/p'=1 and k (£) = k( —£)) there exists f(LHp<(U) such that

F(<P) =f(<p) for all <pe CO°(U)

and on the contrary.

The operator L'*kyU: Hpk{U)-*Hpk(U) is defined such as the operator
L'*k: yep,k-*J?p,k- Assume that there exist constants Dk>0 and D2=0;

(4-9) \\L'(x,D)<p\\p, Alkk~~ DIN@\p,illk- D 2\@hp, Alk,

for all <p£Q°(<7) where k~ (E) w0 for |{| -, Let G~ be an open subset of G
such that

(4.10) N(L';,'llkk-'Qr\E'({x})= {0} forall x£G-,

where £'({*}) is a subspace of E'(R") such that for each uf£E'({x}), supp nc{x}.
If dim N(L'p&/u~g<00> G~—G—M, where M is a finite subset of G. One
must note that (4.10) is always valid for all x£G, if N(L'p7Llkk-c)c:L}0C
In addition (4.10) is true for all xEG for every non-trivial operator with constant
coefficients. We prove the following

Corollary 4.2. Assume that the inequality (4.9) is valid. Th?n for every
XEG~ there exists an open ball Ux—B(x, g)c1G~ such that

(4.11) R(L"*k W) = Hp,k(UX).

Proof. By Theorem 4.1 R(L'p7Wkk~) is closed and dim N(L'pA/kk. y)”oo
for all open UczG. Assume that Uxc:=B(x, e)czG~. If N(L'p#l/kk- yk
there exists e'<f€ such that dim A/Lp.3UP~>txi.,)<dim N(L'pyl/kk~yk §<°°
(because N(LpAkKk yVxc)c:E'(UXQ). Hence’ N(L'pf Wk~ ¢9={0}, with'‘some
f>>0. Weset Uxe=Ux.

Let/be in Hpk(Ux) and let F be in wp\i/k(Ux)+ suchthat F{(p)=f{<p) for
all (pECZ(Ux). Since N(L'pAvkk-X)={0},

R(.Lp\lIkk~,Ux) = Jfp'Vkk-(Ux)+-
Let W be intfpA/u-(i/X+ such that
(4.12) L Alkk-yUW = F.

Then there exists wE£Hpkk~(Ux); W<p)=w(cp) for all <pECAUX). In addition
according to the relation (4.12) w(L'pkVx<p—f((p) for all <p£C6(Ux) and then
f =zFptk,ujewER (Fpk Ux(p). O
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A SIMPLE STRATEGY FOR THE RAMSEY-GAME
PETER KOMJATH

0. Introduction

Recently the following game has been investigated widely: two players | and 1l
alternatively choose (previously unchosen) finite subsets of a given set S at a trans-
finite sequence of moves. | chooses at limit steps. | wins if he can produce a large sub-
set every finite subset of which is chosen by him. The motivation from partition cal-
culus is clear. In [1] the following problem is asked: if 1S]| is measurable and a normal
measure on S is given can | produce a set of measure one? It was not even clear
whether any large cardinal axiom can guarantee an infinite winning set for I. Re-
cently, the problem was answered affirmatively by Zsigmond Nagy. His proof
used the notion of sequoia, and indeed it was later discovered that it yields much
stronger results namely that x—a)<w implies that | can produce a set of order
type a (a limit) (see [2]). It seems to be worthwhile to give a direct strategy for the
game.

1. The strategy

Theorem (Zs. Nagy). Assume x>co is measurable and U is a normal ullrafilter
on it. Then | wins R(x, <ta, U), i.e. | has a winning strategy in thefollowing game:
I and Il alternatively choose (previously unchosen) finite subsets of x, | chooses at
limit steps and having completed x steps, | wins if and only if there is a set X£U,
with all [X]<a chosen by I.

Proof. We describe the strategy of I. To start, he chooses 0. In the a’th step |
picks {v., ..., Y.} Where the following conditions hold: >Y,, a=0y>+.e
...-bam., and for every s€[y,,_i]<0 it is true that if Il has chosen sU {?, !, ..., y0}
before the a’th step then s Qy,,. If these conditions are not fulfilled, | does not choose
anything at all. It is clear that the strategy is correct, i.e. the subsets picked by I are

always untouched by 1. We are going to prove if ..., YO} is picked by I and if
is regular, then there is a closed unbounded C\A such that
for y€Cm_,.....,0, {y,y.._!, ...,yO} is chosen by I.

For n=0 this reduces to: there is a closed unbounded CQx such that for
ybC it is true that if s is touched by Il earlier than the y’th move, then sQy. This
can easily be proved by Skolem-functions.

If «>1 and {}».), ..., Gt is a move for | and vy, x is a regular uncountable
cardinal, there is a closed unbounded Cyn 1...yo‘y,,-i for which the following is

1980 Mathematics Subject Classification. Primary 04A20; Secondary 04A10, 03E55.
Key words and phrases. Ramsey-game, partition relation, ordinals.
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true: if yECMt...Toa sQyn*1 and jU{yn !, &} is chosen by Il between the
&t ... + tih-I-th and oF«+... + ad®»-1+ coMh moves then sQy. 1his can be proved
by the standard Skolem-closure. If s is as given, sU {y,,-i, ..., Y0} cannot be chosen
earlier as | has chosen ...,yO0tand so sU{yn-ijETn-i should hold.

Next we shall prove that for every n<co there is a set XnE U with [Xn]" picked
by I.1For n= 1this is clear, as every closed unbounded set is in U. Assume that our
statement is true for n, Xnwitnesses this fact and every element of X,, is uncountable,
regular. By normality, there is a closed, unbounded C such that for a YnEU the
following holds: if x6[F,]" then Cx=C(~]minx. Let us define Xn+1=CC\Ynr\Xn.
]Ic_f {Kd yOEXn+i with vy,,eC7n l....yo {y.,, ..., YO} is chosen by | and the proofis
inished.

2. Remark

From the proof of the theorem the following problem type arises: if x is a car-
dinal and for every y,,<...<y0 a closed unbounded Cijn....\cEy,, is given whether
a “large” homogeneous X*y. exists, i.e. for every y,+1<...<y0 sequence from X,
v, +1gC...r0 must hold. These questions will be treated elsewhere.
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Clearly this gives the result.
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SOME RESULTS IN PARTIAL EXCHANGEABILITY

A. I. DALE

1. Introduction

The notion of independence is of long-standing and has been painstakingly
researched in statistics. However, the usefulness of this concept is somewhat atten-
uated in Bayesian statistics, where the possibility of “learning through experience”
is of prime importance. Should independence be discarded, the next simplest thing
is to continue to regard the order of the events as irrelevant. In this case the events
are said to be exchangeablel(i.e. symmetric, at least as far as all probabilistic proper-
ties are concerned, as regards to order).

In 1938 de Finetti broached the idea of partial exchangeability (‘Equivalence
partielle™), a concept between which and exchangeability a meaningful distinction
may be drawn (for further details see de Finetti [9], p. 227). Until recently, however,
little had been written on the subject, its recrudescence perhaps being stimulated by
de Finetti’s [8] (in which work details of pertinent writings may be found). The scant
attention this subject received in the decades following its first airing is perhaps not
altogether surprising, for de Finetti himself write ([7], p. 11)

Toutes les conclusions et les formules valables pour le cas de I’équivalence s’étendent
aisément au cas actuel des événements que Ton pourrait qualifier de partiellement
équivalents, et définir par la mérne condition de symetrie, en spécifiant toutefois que les
événements se divisent en un certain nombre de types 1,2, ..., g, et que ce sont seulement
les événements de mérne type qui s’avérent comme “interchangeables” par rapport 4 tout
probléme de probabilité.

Since, however, there certainly exist cases in which partial exchangeability
rather than exchangeability of events seems the appropriate thing to consider (see
Section 2 below), it seems worthwhile to examine some analogues, in the setting of
partial exchangeability, of results known to hold for exchangeable events, and it is
to this end that this paper is written. More specifically, after a short section on partial
exchangeability and de Finetti’s Theorem, we present, in the third section, a finite
version of this latter result. In the fourth section partially exchangeable random varia-
bles are considered, while in the fifth a Poisson limit theorem is presented.

A recent paper by Link [21] has also been devoted to this topic, some exceedingly
deep and general results being obtained by approaching partial exchangeability via

1 On the origin of the term (and various alternatives to it) see de Finetti [8] p. 211, and Fréchet
[10], p. 72.

1980 Mathematics Subject Classification. Primary 62A15; Secondary 60A05, COF99.
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the theory of abstract convex sets (cf. Hewitt and Savage [17]). Our aim here is rather
to emphasize the probabilistic approach to the subject, since it is felt that such an
approach, while not leading to results of the same depth as Link’s, might nevertheless
be of interest to probabilists.

2. Partial exchangeability

Consider firstly a sequence of tosses of a single coin (i.e. a simple sample in the
sense of Good [12], p. 12, or a single sample in the sense of Girschik et al. [11], p. 19).
If this coin is of irregular appearance, we might be somewhat hesitant to say much
more about the probability of the sequence E1, E2, ... of events that this probability
depends only on the number of events and not on the actual «-tuple observed (for
example, the probability of getting six heads in fifteen tosses of a coin is independent
of the places in the sequence at which the six heads are observed) —i.e. an assumption
of exchangeability2 If, now, we assume the same game to be played with g different
coins, we may well suppose that each coin will generate (by appropriate tossing)
a sequence of exchangeable events, but neither wish nor indeed be able to say anything
more about the overall sequence of events — that is, this latter sequence is partially
exchangeable. (For further details on partial exchangeability see the paper by Bruno
[1], reprinted as Chapter 10 in de Finetti [8], and de Finetti [9], Chapters 10 & 11.)

De Finetti [7] has shown that, given n such events of which ni are of type i,

where i€{l, 2, ...,g} and _9 ni=n, there exists a (unique) "-dimensional distri-

i
bution function <€such that the probability that, for each i, rt “favour-
able” results will be obtained from n;, is given by

(1)

where G is the g-dimensional product space [0, 1]X...X][0,1].

3. A finite version of de Finetti’s Theorem

Recalling that all exchangeable processes which end after a finite number of
steps are mixtures of the hypergeometric processes, while all those which can be con-
tinued indefinitely are mixtures of Bernoulli processes (see de Finetti [9], p. 217),
and bearing in mind the intimate connection between exchangeable and partially
exchangeable events, we shall not be surprised to find similar mixtures arising when
we turn our attention to the latter class of events.

Let (B3, sé, P) be a probability space on which a g-fold partially exchangeable
sequence {A”:i£{1,2, ...,g},YEN} of events is defined. The condition of partial
exchangeability can be formulated in terms of the probabilities (the so-called de

2 Some remarks on the question of priority are given in Appendix 1.
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Finetti constants)

............ tg P eee5 » eee> g, ri* gLt

by requiring that each such probability should depend only on the g-tuple ( q , o).
(Here, for each y£{1,2, ..., g}, the rI5..., rtj are all different. Moreover, the r’s
attached to any A are not necessarily the same as those attached to any other: we
have chosen this notation merely for convenience.)

Defining the partial differences

= PG -(°0 0+ 1 [T [P
with A7iAMoA.... ig defined similarly,
we find that

A A 9GS
(2)

A, r,...Ag>r. AgtT. Lo A <t ]
‘ aT *sT ¢

the bar denoting complementation with respect to Q. Setting 0/....0=1, we find
that
nl ng 0 (}1\

3) 2 - 2 nu'Ui'-Afa., =1

i,=o0 i,—07=1w /
We might note, in passing, that (2) and (3) imply that the JjjI (1 +nj) points in the
m

sequence &@ O, ..., ooni g} can be associated with a sequence of g-fold partially
exchangeable events. To see this, let Q be a probability space of 2">X...X2"» points
labelled

(4) ®1,1) eoe* ®I,Ni» soe» @#,1» soon ngs
each e being either 0 or 1 The attaching of the weight

Ail...d/coOnj-ij...l ng-ig

to (4), where ij is the number of elements of {#j,i, ..., £j,nj} which are zero, gives the
required result.
Notice next that

we see that, in the light of (2) and (3), this defines a probability distribution. Moreo-
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ver, from (5),

where (Sj)mj=Sj(Sj— my+ [). This is the required result, the finite result
corresponding to (1) above with rij=rj. (Note that coi'y,;;i* )=coni....,g.) The simi-
lar finite theorem for exchangeable events may be found in de Finetti [6]: more recent
useful references include Diaconis [2], Heath and Sudderth [16] — a result for ex-
changeable random variables rather than events — and Kendall [20].

A limiting form of the above result is easily obtainable. Equation (2) above
states that the multiple sequence {oijt...,f} is completely monotonic (in the sense of
Hildebrandt and Schoenberg [18]). It follows, by Theorem 1 of this latter paper, that
there exists a function F such that

[ I
(8) OV....... = (1; mf Pi'..-Pggdl...dgF{PlI, ...,p0),
u

where F is monotonic (the term being interpreted as in Hildebrandt and Schoenberg
[18]). This F is unique (in the sense that any two such F’s can differ only in a denu-
merable number of hyperplanes), and is strictly unique if continuous (cf. Good [12],
p. 23, and Hildebrandt and Schoenberg [18] §3). Putting all the mi’s equal to zero,
we see that F is in fact a distribution function.

From (8) it follows that

Axam, =@, Qmi+L... g
= [eee/ PIl'd-PIl) n P~rdIl — dgFiPIl, — Pg)
n n J—2

and, more generally,

9 , oo ] 7 dgF (P, ...,Pg).
©) bod 1y gF( Pg)

On combining this latter result with (6) we obtain (1), as required.

4. Partially exchangeable random variables

D efinition. A sequence {Xn} of random variables on a probability space (B, sd, P)
is g-fold partially exchangeable if {X,,} is divisible into a g-fold infinite sequence
{*i/=i€{l, 2, ...}, YEN} such that, for all niIs...,neEN and all xy6R
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CeL 2 ghie{L2 ..«})

pIn,n, Odaw) » x)] - pln, n, {x" x5/

where g, is any “finite” permutation of N onto N.

The proof of de Finetti’s Theorem to be presented here is analogous to that of
Heath and Sudderth [16] for exchangeable random variables. This proof does not
rely as heavily on the consideration of moment sequences as does that in the preced-
ing section. We shall restrict our attention to two-valued random variables: the
extension to sequences of random variables taking on more than two values is, at
least conceptually, not difficult.

Let {Xn} be a g-fold partially exchangeable sequence of random variables (in
the sense of the preceding definition) taking on values in {0, 1}, and let

(10)  coh...il= P[Xn = 1, ..., XU = LXLh+1 =0, ... XUni = 0,..., X ,x =

(1) o>Kt:;Ce) :Fi_ixXh h ,_j;ixe\];
where, for each y'£{l,2, ...,.g},

Lemma 1.

m nm ¢ ) :
2 - U Aj)ij(mj-rjX
rn=° r=°J=
Proof. Consider g urns of m1, ..., mg balls, respectively, of which r1, ...,rg
arered (score 1). Let tij be the size of a sample of balls drawn from the /-th urn. Then

P[h red in 1st sample, ..., ig red in g-th sample |rX, ..., r9 =

Thus
P[the first ij in the j-th sample are red, for each j\rx, ..., rg] =

Now, for eachj, rj may be any one of the values {0, 1, ..., m,}, and hence
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This proves the first result stated in the Lemma; the second can be obtained from this
by a simple manipulation of the binomial coefficients.
Recalling (10) and (11) above, we have, from this lemma,

(12 col

onilfi ...... gl 1

Then (12)
can be written

’

? =/.m/ 7
= "

|7 B tmj 0j)ij(mi{\-0 j)nj_ij{m1 jdI...dgFn,... m(OIf ﬁg)_
0 o J=lvJ

Application of Helly’s Theorem (Feller [5], 8 VIII. 6) yields the existence of a subse-
quence of {Fmi....m} which converges in distribution to a function F, say. By the
uniform convergence of the integrand in the above expression as nij > /E{1> 2>ee>
...,q), we find finally that

(13) co?::?l = ... T7i-3)0>(i-0 ] i-",d1...dgF(el, ..., og\
o 0 j=lv)
To get an idea of the difference between the expressions in (12) and (13), notice
that
-/ -/ 0 V100 @-Sj)rt d v.dgF(ei, ....e
0 o0 J=0\J' ) o g
\% 1

A2 -2 c0?X:Cs).2 2nj/mj =S
<4 r i-1

= 2 2 ijirij,
j=i

where the transition from the third-to the second-last line is effected by Theorem (4)
of Diaconis and Freedman [3], The inequality (14) provides a measure of the accuracy
of the approximation of the true (finite) state of affairs (as given in (12)) by the
infinite form of de Finetti’s Theorem (13).
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5. A Poisson limit theorem

By postulating the existence of the limits of various functions of certain de
Finetti constants it is possible to prove that a certain limit law is a product of Poisson
distributions. To prove this result, however, we require the following generalization
of a lemma of Feller [5] 8 VII. 1, the proof of which may be found in Appendix 2.

Lemma 2. Let {w(*): i=12, ...,k) be a sequence of real-valued continuous
functions with |m{-) I—L for each i. Consider afamily of k-dimensional distribution
functions F,, g with mean 0=(0,(L ™K' and with Var X—ofOfi i=1 2, ..., k.

Finally, let

k
If for each i, 0 as n-°°, then E,e(W, ..., uk)-+JlJ ufOfi
Theorem 1 For each VEN, let (flv, sdv, P\) be a probability space on which

an infinite sequence {A[f: i=1,2, g; YEN} ofg-foldpartially exchangeable events
with de Finetti constants co”....,,q, is defined. Let V) be the number of the events

that occur, i£{1,2,..]g} |Iffor each permutation e(l,0,..., 0) of (1,0, ...,0)
and q(2, 0, ..., 0) of (2,0, ..., 0)

\@e(i,0....0 l'atl.o.....q

(15) and
VGaUO.... 20.....
as vV-*<» then 0 R 0
(16) lim PMATNE= s],.. * gy)=59= =i
=i
where P!=p(li0....0> i,0....0). €f¢€.

Proof. From equation (13) above it follows that
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Now let t]j=v6j and let Gvdenote the transformed distribution. Then

(17)  EV[/h ? V]= [ees] 1K ;«i//v+ (1-iT7v)]vdi...d, G v(i/l=
J-1 0 0 J=1

=i -j 1I[1—Q —£j)djlvy di-..dgGy(ril,
0 0 J-1

Now, for 0SUiSv, /€{1,2, ....g}, we have (using a result from Whittaker and
Watson [23], p. 242)

0S 13 —(1—mM= y le-u-(I UMMS

i—+ i=

9 :
A ufe-ulvs
J=i
a 4de~2glv.
It follows, then, that if the integrand in (17) is replaced by 3Jj[exp [ —£j)rij],
=1

where O S~S|1, the error in the integral will be at most 4e~Z/v.
Notice next that if {] has the distribution Gy, then, for (1, 2, ..., g}

Ewfi = vVEvXf> = v<> fl,...0
Varv(t!)) = af*>.i3...i0-((U">.(L1...09

and hence, by (15), Varv0/;)->-0 as It thus follows from the preceding Lemma
that
Jim /eem //] exp o flg=Jd]exp[-(1-£))ai]
veee 0 0 t=1 J“1
That is

lim Ev[77°)W= 77exp[-(1-£>,].
j=i j=i

It then follows from the continuity theorem for probability generating functions
(Feller [4], § XI. 6) that

PIZI = SI, . X™ = S~ ne-*fisj,
=1

as asserted.
Appendix 1

The attribution of priority is usually a difficult matter. In their important paper
[17] of 1955 Hewitt and Savage state (p. 470)

Jules Haag seems to have been the first author to discuss symmetric sequences of random
variables (see [13]). This paper deals only with 2-valued random variables. It hints at, but
does not rigorously state or prove, the representation theorem for this case.
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(the reference “see [13]” appears as [15] in my list of references). However, as Good
[12], p. 13, has pointed out, Haag “was perhaps anticipated by W. E. Johnson”.
Since, however, Haag’s paper and Johnson’s Logic, Part Ill, were both published in
1924, there seems little reason, on the basis of date of publication, to regard one or
other as the first to investigate these matters.

As regards the pertinent work on exchangeability by Johnson and by Haag, let
us note firstly that Johnson’s contribution was limited to some few pages in the
Appendix on Eduction in Part Ill of his Logic. There Johnson introduced his Per-
mutation-Postulate, one which isreadily seen to be that of the definition of the exchange-
ability of events. This postulate, appearing as it does in an appendix to what is
probably a relatively little used work nowadays, has perhaps for that reason not
received its due recognition: moreover it appears in a book on logic, and as such
might well not be readily available to the probabilist.

Haag, on the other hand, introduced the idea of probabilities which are com-
pletely symmetric with respect to the events E1, E2,  E,,, but are not independent
(see his papers [13], [14] and [15]). Denoting by zg the probability that, of m events
chosen from this class, the first p are favourable and the next g=m—p are unfa-
vourable, Haag [15] derived various general formulae expressing relationships be-
tween z@, xp(=z°p) and yp(=z0); and he also proved that, in the case of an infinite
number of events,

i
4 = 5 nx)x" (i-x)qdx,

where “f(x)dx est la probabilité pour que lafréquence des événements favorables
s@it comprise entre x et x+</x” [15], p. 664. While it may be true, as Hewitt and
Savage have suggested, that Haag’s result lacked rigour both in statement and in
proof, yet no small credit should, | believe, be attributed to him for his pioneering
effort.

It was, of course, only in de Finetti’s work [6] of 1937 that the importance of
exchangeability in subjective probability become realized, and it was in this latter
setting that the representation theorem received its first complete statement and proof.

Appendix 2

Proof Of Lemma 2.
Notice firstly that, from our assumption that the utare uniformly bounded by 1,

Kook K
HUIQE)-Nei() = 2 k(*i]-0(01)1

Thus

()
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say where all integrals, unless otherwise specified, are over R*. Now, since each u
is bounded and continuous,

(i) there exists a sequence {M}i, of constants such that |ni(x,)-wi(Q)|<M i
on the whole of the range of n;, and

(i) for each i£{1, 2, ..., k), given e;>0, there exists Si=6(£~)>0 suchthat
k -0,1 < <5-=>kiW -Wifd,)! < Et.

Let, then, {&}* be a given sequence of positive constants, and let a corresponding
sequence (ajf be chosen so that (ii) above holds. Then, for y£{1,2, ...,.&},

Sj = f \j(xj)-uj(0j)\ dx.., dkFng(x1, ..., xK =
) = f \Ij(Xj)-uj(Oj)\dL..dkF, 'e(xL, ...,xK +
+ f Wj(Xj)-Uj(Rj\ d1...dkF,'9(xL, ..., xk) =
B
cay, where = Si(A)+Sj(B),
A= {(x ..., xB:\xj-9jl< 8j, —° < Xi< °° for i |}
5 = {5..., x*¥): IX;-07 ~ 6j, -0=< X< » for i
Now, on /I, |i(jcy)—My(Oy)|<fy (by (ii)), and hence
®3) S,(A) S£. f dL.dgFje(xL, ..., xt) s Ej,

A

since Fni9 is a distribution function.

Let B be decomposed into the union of the two mutually exclusive events
Bx= {(*i> «>xK: Xj—9j\ = 6j, kj—0,] < Si for at least one i * j}.
4
@ Bi = {ki, ..., xK: %j—9j\S 6j, |X|—0{ S St for all i~ j}

and let Jj(B)=Jj(B)+J§j(BJ. Now on Bk, Wj{x)-uj@D\"M j (by (i) above).
Thus

Si{Bi) = f \Uj(Xj)-Uj(@j)\ d1...dkF,, e(x1, ..., xK ~

B

o A MJP[\Xj-9j\ » &, IA-—04 < § for at least one i~ j] »

i

— Ojl —Sj\ =
MjoHOYyS)

by Cebysev’s inequality.
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Turning our attention to the event B.,, we see that

SjW = f \Uj(Xj)-Uj(0j) \dL...dkFn*(x1, .... xK) S
B
(6) A Mj?[\Xi-0il ~ St for all i~
N M jizw m isf]

by an inequality of Tong [22], § 7.2.
Combining the above results (2—(6) we see that

Jj M H+ Mj [(0)10) + . (Owl
Hence, from (1),

Szz i {e,+ AL[AN(0,)IN + i A

S Ji—ie’+yi:thaUOj)/0) + glzziw i) (ii a’ (0.)<5).

From the definition of E~tq, ..., uk) it follows that
eee «*)- [/ »,0)| S/jI7 «<(*)-/] ui(0d\ d1...dIFrj(x1, ..., xK) s&

* 2i eji+ Z Mjal(0j)/s) + ( , Mjl) (T a’(0)/<5?).

Since the variances 0 as n-+°° and since the e, are arbitrary, the stated
result is now immediate.
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A SECOND NOTE ON HAJNAL—MATE GRAPHS

PETER KOMJATH

In this paper graphs on col, the set of countable ordinals, are considered. If
8 is a graph of this kind, let us define T(a) as the set of ordinals smaller than a and
adjacent to it. 8 is called a Hajnal—Mété graph if T (a) is either finite or cofinal in a
with ordertype & In [1] a Hajnal—M&été graph with chromatic number Rj was con-
structed under ()*, a principle deduced from the exiom of constructibility. In [2] we
showed that a trianglefree Hajnal—Maté graph with chromatic number Rj also
exists, we used only (). Here we show that this result can be extended to graphs not
containing circuits which have only one increasing and one decreasing part.

Theorem (0*). There is a Hajnal—Maté graph 8 with chromatic number
and without circuits of the following type {X0, vy X,,_I5 X0} where x0< xy-=...
W <FrSXrHI>. > X0e

Proof. Choose a decomposition a4= |J Xz with r<min Xz, Xt stationary.
T-

-000,
Assume that SxQP(tx), |5als ™ 0 witnesses the (“-property.

Ify, say that £ is y-covered if there is an increasing path (x0, x1, ..., X,.}
with x0"y, xn—£,. Clearly, £ is y-covered, if £sy. We define E(a)ga inductively,
so assume that T(R) is defined for /J<a. Choose a sequence {y,,: n<cu} cofinal in a.
We call AQct. covered if there is a y<a such that every element of A is y-covered.
Otherwise, A is uncovered. Enumerate the set of the uncovered subsets A”SX as
{40,71, ...}, and choose Xg*!, ... with x0>t if <xEXz, x,,€A,, and Xxn+l is not
X,-covered (x0is not T-covered), x,,Sy,,. Put T(ot)={x0,xlIt ...} (it may be finite
or even empty).

First we prove that no cycle mentioned in the theorem exists in the graph. If
{a0, ax, ..., a,,_1,a0 is a circuit and ar is its maximal point, and, for definiteness,
ar_l<ar+l<ar then ar+lis -covered and both are in T(ar), a contradiction.

Next we prove that our graph is not ca-chromatic. Assume /: a”—eu is a good
colouring. ({«p. cCall small, if there is a y,< 0ol such that every
element of Hnis y,,-covered, otherwise n is large. Put K={n:nsmall}, t=sup {y,.
n£K}.

If nis large, for every ycojj there is a £€ Hn which is not y-covered, and by
closure, it is easy to show that H,,r\ot is an uncovered subset of a for a closed un-
bounded set of a’s.

1980 Mathematics Subject Classification. Primary 04A20; Secondary 05C38, 05C15.
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By property 0* HnCJ<€Sx for a closed unbounded set of a’s and, as X, is station-
ary we can choose an a with x€Xz, HnC\a”"Sa and uncovered if n is large. We do
not claim that there are large numbers./(a) is undefined as a is not t-covered by con-
struction, so/(a) is surely not small./(a) can not be large as a is connected to a point
in H,, for every large n.
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ON THE TANGENCY OF MULTIFUNCTIONS
A. MEIMARIDOU-KOKKOU

Abstract

We present a definition of tangency of multifunctions and relate it with various notions
of differentiability of multifunctions. We define a characteristic number on each multifunction
with the property that it remains the same for two tangent multifunctions. The sign of this number is
proved to give a sufficient condition for the asymptotic stability of multivalued differential equations
End_ ordinarly differential equations which cannot be locally linearized. At last we obtain some pertur-

ation results.

0. The purpose of this work is to define the notion of a-tangent multifunctions
at the origin, where the multifunctions vanish. We relate a-tangency with various
definitions of differentiability of multifunctions ([2], [4], [5]). Furthermore, to each
multifunction F we associate a characteristic number Xa(F), which does not change
on a-tangent multifunctions. This characteristic number is a multivalued and Hilbert
space version of the characteristic exponents of nonlinear single-valued functions in
a Banach space, which were introduced in [3]. Also we show that the negativeness of
yx(F) implies the asymptotic stability of the multivalued differential equation
x'EF(x). Such a result is applied to ordinary differential equations which cannot be
locally linearized. Finally we obtain some perturbation results.

1. Let H be a real Hilbert space with norm || and inner product (e,*). We
denote by c{H) the collection of all compact convex non-empty subsets of H. One
can endow c(H) with the following metric, usually called Hausdorff distance,

S(A,B) = inf{A> 0: Ac: B+AS, B e "+A5},

where S is the unit ball around 0 in H.

Given two upper semi-continuous multifunctions F, G: H—c(H), such that
F(0)= G(0)=0, and a number a>0, we say that F and G are a-tangent (at the
origin) if

M ke - Q

Clearly a-tangency is a relation of equivalence, because of the properties of the Haus-
dorff distance (e.g. [2)).

1980 Mathematics Subject Classification. Primary 26E25; Secondary 58C20, 34A60.
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Now, given xd.FI, Adc(H), the following function is well defined ([1])
<(x, A) = sup(x, y).

ye A
a(x, A) is called the support function of the convex set A.
If F: H-*c{H) is upper semi-continuous, F{0)=0, and a>0, we define
the following (extended real) number

(x, F(x))

|X|a+1
Obviously xJF) is finite, if F is quasi-bounded of order a at the origin, i.e.
limsup jj sup |y|-=~.

0

IXT" yEF(x)
It is a fundamental property of the number / x that it only depends on the equiv-
alence class of a-tangent multifunctions. This is seen by the following proposition.

. . a
XAF) = lipsup

Proposition 1. Let F, G: H->c(H) upper semi-continuous, F(0)=G(0)=0,
and a>0. If Fand G are a-tangent, then yx{F)=jx(G).

Proof. For any e>0 there exists a neighborhood of the origin where
F{x) c B(x)+e

G (x)c F(x)+e\x\xS.
Therefore we get
o(x, Fix)) = o(x, G(X))+6]x|“+L
<r(x, G(X)) N ofx, ir(x)) + £|x|at+l.
Thus it is implied
k*(F)-Xa(G)\" £
and the proof is completed, as s is arbitrary.

W Proposition 2. Let F, G: H-<-c(H) upper semi-continuous, F(0)= G(0)=0,
aSl, Jrx)=x|x|“~L AsO and kdR. Then we have

X«(AF) - L/JF)
XAF+G) * XAF)+XAG)
XAF+kJ) = XAF) +k.
Proof. It is a direct consequence of the following relations:
a(x, I.F(x)) = l.o(x, F(x)),
cr(x, F(x) + G(x)) = cr(x, F(x))+o(x, G(X)),
cr(X, F(x) +kJ(x)) —o(x, F(x)) + AjxJa+L

We say that the multifunction G: H”»c(H) is a-order homogeneous (oc>0),
if G(AX)=A"G(x), AsO, xdH.
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Proposition 3. If G is x-order homogeneous, then xa(G)—squ o(x, G(x)).
I*[-i

Proof. It follows from the definition of limsup and the homogeneity of G(x)
and o(x, G(x)).

2. In order to fix the ideas we consider in this section that H is finite dimensional,

e.g. R". In the sequel we assume asl.
A multifunction F: R"—e(R") is called x-order Lipschitzian at the origin, if
there exist constants jL"O and <5>0 such that for all ydF(x), |x|s<5, we have

W Lix\W\

An upper semi-continuous a-order homogeneous multifunction <f: R"—¢(R")
is called x-order upper differential of the a-order Lipschitzian multifunction F, if
there exists <5>0 such that for all |x|<<5

F{x) ¢ <P{x).

Note that, if F is a-order Lipschitzian, an a-order upper differential always
exists; it is #(x)= {yER": |y|sL|x|“}k

We define the x-order differential at the origin of the a-order Lipschitzian multi-
function F by

2)gF(jc) = I {<FX(X): <P is an a-order differential of F}.

The above definition of a-order differentiability of multifunctions generalizes
the definition of Lasota and Strauss [4] concerning the existence of multivalued
(first order, i.e. a=1) differentials of non-differentiable Lipschitzian at 0 single-
valued functions (cf. the first order generalization of De Blasi in [2]).

The following result shows that D*F is well-behaved.

Proposition 4. |f D*F is the x-order differential of F at O, then

(i) the range of D F is c(R"),
(ii) the multifunction D%F: R"->-c(R™) is upper semi-continuous, x-order homo-
geneous and
(iii) there exists a sequence ofx-order upper differentials such that <th+1(x)a

<<M(x), XER", n=1,2,..., and DOF(x)= () <P, /¥.
Proof, (i) The only fact which requires a proof is that DgF(x)*0 for x"O

(the case x=0 s trivial). For sufficiently large integer n we have for all ynZF(x/ri)
that

Thus there exists a limit point z of yj\xIn\* as Let nk-<*> such that
yn\x/nk\*-»z. Let €Pany a-order upper differential of F. Then for nk sufficiently large

yrk , F(x/nk d>(x/nk)
\x/nkV A \x/nk* k/ntf
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Letting nk—°°, we obtain <£(;c/|x|). Thus |id*zd<P(x) for every oc-order upper
differential 45 i.e. \X\*z£Z)JF(x).

The proof of (ii) and (iii) is similar to the one in [4] and so it is omitted.

The next result relates a-order differentiability with a-tangency.

Proposition 5 Let F: R"—c(Rn a-order Lipschitzian at the origin. If there
exists an a-order homogeneous upper semi-continuous multifunction G: R"—¢(R")
such that F and G are a-tangent at the origin, then G—D"F, i.e. Fand DIF are a-tan-
gent at the origin.

Proof. First we remark that G, as defined above, is the multivalued differential
of F at 0 in the sense of De Blasi [2] (if ot=I) and of [5] (if a>1). Thus the con-
clusion of the proposition follows from a direct extension of the proof of Theorem
4.8 of [2] for any a

Let us remark that the existence of G in Proposition 5is an indispensable assump-
tion. Indeed the (single-valued) function /: R—R defined by f(x)—xasin (1/x),
x"O, f(0)—0, is a-order Lipschitzian at 0, DEF(x)=x*S, but/ and Dof are not
a-tangent at 0.

3. Now we are going to give some applications of the above ideas to the stabil-
ity of multivalued differential equations.

Proposition 6. Let F: Rn-*-c(R") upper semi-continuous, F(0)=0, and aSlI.
If Za(F) *=0, then the zero solution of the multivalued differential equation

(@) x'EF(x)
is asymptotically stable.

Proof. Let s>0 be such that k=/tt(F)+e<o0 and <5>0 be such that
o(x, F(x))sk|x:|t1 whenever |x|<<5. We consider any solution x(t) of (1) (in
its right maximal interval of existence [0, T)) such that |x(0)|<<5. If there exists
O "M T suchthat |x(i)|<<5, fE[O, tf), |x(tD|=<5, then we would have in [0, tf)

~ (02 = 2000, F(0) s 2 (x(0, F(e(0)) s 2fefx(0]-+1,

i.e. by integrating the above differential inequality in [0, tf) we get
S —x(fx)| A x@O)e*i< & if a= 1
ey A MOl
8 = (™ T c@a—1) x(0)t_1tqvE-)

a contradiction. Therefore for all tE[0, T) we have |x(/)]><5. A standard argument
shows that T=°°. So, since for all iSO

Ix(0I S [x(O)lek, if a= 1

if a> 1

\*
POl R KO ST °

it follows that the zero solution of (1) is asymptotically stable.

if a> 1
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Combining the above proposition with Propositions 1and 3 we get the follow-
ing result.

Corollary 7. Let F: R"—€(R') upper semi-continuous, F(0)=0, 1
Suppose that there exists an a-order homogeneous upper semi-continuous multi-
function G: R'"-*¢(R'") such that F and G are a-tangent at the origin. Iffor any X,
[*|=1, we have o(x, G(x))<0, then the zero solution of (1) is asymptotically stable.

Now we give an example of a scalar single-valued differential equation with
right-hand side not linearized at 0. For any a” 1 we consider the function fa: R-»R

defined by / 1(x)=x*"0sin-*-—j, x"0O, fx(0)=0, for some fixed 06(0, 1). Clearly

fx is not differentiable at 0 and for any a> 1 the differential off aat 0 vanishes. An
gasy computation shows that if a is an odd integer, then &(/.,)<0, which implies
that the zero solution of the differential equation

= x*

is asymptotically stable.
Finally we obtain some perturbation results applying the previous propositions.

Proposition 8. Let F: R"*c(R") upper semi-continuous, F(0)=0, asl.
If ya(F)-=0 and £>0 sufficiently small, then the zero solution ofthe perturbed multi-
valued differential equation

2 XI€F(X)+e|x|*5"
is asymptotically stable.
Proof. Let G(x)= F(x)+fi|x|'5. Then we have

t(x, F(x)) + €(x, e|x|ab)

XAF)+e.
Nrl

XA&) = limy syp

Since "a(F)<0, we can take e>0 suchthat y2(G)—(F) +£<0. Then the con-
clusion follows from Proposition 6.

Combining Propositions 3 and 8 we get the following result.

Corollary 9. Let F: R"—¢(R") ix-order homogeneous upper semi-continuous,
asl. Iffor any x, |X|=I, we have c«x, F(x))<0 and £>0 sufficiently small,
then the zero solution of (2) is asymptotically stable.
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ASYMPTOTIC SOLUTION OF A LOCALLY-TURAN PROBLEM

P. FRANKL

1. Introduction

Let S,,={«!, an) bean «-elementset, Ck(S,,)={SQ S,,: |S|=A:} the family
of its /c-element subsets, in other words, the complete /c-graph with vertex set S,,.
5, denotes an arbitrary /-element subset of S,,. The paper considers ~-graphs
GkQ CKk(S,,) satisfying the following condition:

g S, 3SC]g S,.,: \fSkg Sq: SKEGk.

We write GK~LT,,_pgk (locally Turan) iff Gk has the above property.

Let T(n,p, q, k) denote the minimum number of edges of Gk satisfying
Gk~LT,,'P,,’k. Taran [1] determined T(n,p, 2, 2) and posed the problem of finding
T(n, p, g, q) (see [2]). As a special case, he conjectured [3]:

(1) r(2ii,5,3,3) = 2 (5).
This is still unsettled. Concerning the LT-property see [4], [5], and [6].

In the present paper we investigate the asymptotic behaviour of T(n, p, g, k).

It is easy to see (like for T(n,p, q, q) in [7]) that T{n,p, g, *)/[*] is a monotoni-
cally increasing function of n, thus the limit

Jim = t(p, g, K

exists. It is clear that the validity of (1) would result in /(5, 3, 3)=1/4. The main
result of the paper is the following

Theorem.

) limi(2r+ 1, r+ 1, 3) = 1/4.

1980 Mathematics Subject Classification. Primary 05A05.
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2. Proof of the theorem
Let us first observe that the graph H3=C3(A)UC3(B), where AiJB=S,,,
ADB=0, W= J([X] denotes the largest integer ~ x), satisfies H3 LTnz2r+1,r+1,3

for any rs 2. Therefore /(2r+1, r+1, 3)sl/4. We have to prove that the limit (2)
exists and is not smaller than 1/4. The proof of this is based on three lemmas.

Lemma 1. If G3is a 3-graph satisfying
G3~Lr,,j2r+A.+1s3,

where e>0, n—28r+ 16, then there exist a natural number m and a 3-graph G*
such that for 14r + 8,

6 * 2r+l,r+1,3 >

(t-)-

and the degree of every vertex Sm satisfies

Proof. Suppose the contrary. Then there is a vertex xCES,, with d(xQ "y
Let G0=G 3 and suppose that

(3) Gj~Z,TB i +i,r+i,3,

“) kw-M 1T t-)-
and

(5) Wy M

hold for some 3-graph G( on n—i vertices (04 i< I—I
integer Sr). We define Gi+1 by 12

Gi+l = {eeGp. xfie}
and prove that G(+1 satisfies the same conditions (3)—(5).

GHH~Z Tn jH2r+i,r+H,3
is obvious. On the other hand,

i« .«i- - (V)m -t M *r n (t -)
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holds by (4) and (5). The existence of x1+1€S(-i-1 and d(xi+]) ~ j iy 2 ') follows

by the indirect assumption. It follows that (3)—(5) hold for /=|¥j and for the
3-graph Gr,/21. Now we can obtain a lower estimate of the size of G3=GO0:

m

This inequality contradicts the assumption of the lemma. Consequently, there are an
m 114 r 8 and @ G*~LTr+1r+1.3 Satisfying the conditions of the lemma.

Lemma 2. |f GAMLT miar+i,r+i,s» ffiSl4r+ 8, and

for every vertex x, and 24/4ar, then

) G ~ L 2m2/+i./+i,3

Proof. If the lemma is not true then there is a maximal /<r not satisfying (6).
That is

1) BSm+i = Sm' VS|+lc = <Sj#l: Sz0-G*,

Let D be the above S21+1. Let further x,y be arbitrary elements of Sm—D. As
G+~LTmM+3,+23) we know that

3S(+2 C (2)U{x,y}): V53g Sl+i: S3=&.
(7) implies that (x,y}gSi+2, therefore there are at least / different z£D satisfying

{x,y, 2ZJgG*. As x and y were chosen arbitrarily, G* contains at least ly  *
edges e such that eflz)=0. Consequently,

(m—21—1
3ziD- (z)E2irrf 2 )m

However, this latter quantity is greater than y if mSI4/+8

(use min (1/(21+1)) = 2/5).
This contradiction proves the lemma.

Lemma 3. Let G* be the 3-graph of the preceding lemmas, and define G+(A)=
=G*nC304) where A is a set of vertices of G* such that \A\*2r+2. Then

(®) 1M1« (T M 'T)-
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Proof. We use induction on \A\. For |*|=4 (s) is trivial. Now we suppose
that (8) is true for \A\—1 and prove it for \A\. We distinguish two cases:

a) \A\=2l. Then \GMA—a)|s"]j +" 3 holds for any afA. Therefore

1 X o
\GU)\ = g3 2, \CT(A-ANY 5 3

b) |M|=2/+1. GKN"()~Z.T2i+iizi+i,(+is by Lemma 2, that is
SB a A, \B\ = 1+ 1: \/S3c B: SEG*(A).

If bEB then b is an element of at least edges of ¢+04). On the other hand,

1G*04 —2)IS2 by the induction hypothesis. Consequently,

The proof is complete.

Now let us go back to the proof of the theorem. Fix an e>0 and choose r0(e)
so that

whenever rSro(e). If the theorem is not true then
(10) i(2r+l,r+1,3) < 1/4-e

for infinitely many r, that is, we can find an r satisfying both (9) and (10). By the
definition of t(2r+1, r+1, 3) and the monotonicity of T(n, 2r+l, r+1, 3)/"),
there is a 3-graph Gs~7X«, 2r+ 1, r+ 1, 3) for 7iS28r+16 such that

(ID
By Lemma 1there is a 3-graph G* satisfying Lemmas 1, 2 and 3. Therefore

IG*(4) S 2 31
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holds for any 2r+2-element subset of the vertex set Smof G*. Hence

follows by (9). This inequality contradicts the statement of Lemma 1 The theorem
is proved.

3. Ashort survey

We list the known asymptotic results ([4], [5] and [6]):

t(p, 4.2 = U™ J"3

t(p,g,k) =i if p~ —)J*

[4], [8] and [9] contain asymptotic results of the opposite type: p=n—p',q=n —q’,
k=n—k', wherep’, q', k' are fixed and n tends to infinity.
I am indebted to G.O.H. Katona for improving the presentation of the paper.
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CLASSES OF CONGRUENCE LATTICES OF FILTRAL VARIETIES

E. FRIED and G. GRATZER1

Abstract

For a variety V of algebras, let Con (V) denote the class {Con (51)|916 VV}, where
Con (91) is the congruence lattice of the algebra 9L In this paper we describe Con (V) for filtral
varieties. It turns out that for a nontrivial filtral variety V, Con (V) is the class of all ideal lattices of
generalized Boolean lattices or the class of all ideal lattices of Boolean lattices.

We also describe the congruence lattice of an algebra in a filtrdl variety in terms of an equiva-
lence relation on filters of a power set.

1. Introduction

Let B and GB denote the class of Boolean lattices and generalized Boolean
lattices, respectively. For a lattice or join-semilattice L with 0, let 7(7.) denote the
ideal lattice of L. For a class K of lattices, let 7(K) denote the class of all 7(7.), 7.£K.

Filtrdl varieties were introduced (under a different name) by R. Magari [§],
To define filtral varieties we need the concept of a filtrdl congruence.

Let 91, i£X, be simple algebras and let 91 be a subdirect product of 91,
i£X. Let F be a filter (dual ideal) of P(X) (the power set of X). For /, gEA, define
the equalizer of/ and g:

E(fg) = {iliex, f(i) = g(0}
Then
f=g(op Iiff E(f.g)€eF

defines a congruence relation on 9L

A variety Visfiltral iff V is semisimple (that is, all subdirectly irreducible algebras
are simple) and whenever an algebra 916V s respresented as a subdirect product of
simple algebras 91, i£X, for every congruence 0 of 91, there is a filter F of P(l),
such that 9=0F.

Various characterizations of filtral varieties were given in [1], [2], [3] and [6].

A variety V is called congruence distributive iff Con (91) is distributive for all
9IEV. It was proved in [1] and in [3], that a filtral variety is congruence distributive.

Let Comp (90 denote the join-semilattice of compact congruences of 91 It is
well-known (see, e.g., [5]) that 7(Comp (9f)) is isomorphic to Con (91).

One of the most important properties of filtral varieties was found in [3]: every
O£Comp (90 ha sa complement in Con (91). This is used in proving

1 Research support for both authors was given by the National Scientific and Engineering
Research Council of Canada.

1980 Mathematics Subject Classification. Primary 08B10.
Key words and phrases. Filtral variety, congruence lattice.
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Theorem 1. Let V be afiltral variety. Then Con (V)"/(GB).

In this paper we describe which subclasses of 7(GB) can be represented as
Con (V) (up to isomorphism). It is somewhat surprising that there are only three
such subclasses.

Let us call a filtral variety V ftrivial, if V consists of one-element algebras.

A variety V is lota Compact (IC for short) iff for all 9IE£V, the largest congru-
ence, i, of 91 is compact.

Now we can state our main result:

Theorem 2. Let V be a nontrivialfiltral variety. If V is an IC variety, then (up
to isomorphism) Con(V)=/(B); otherwise, Con (V)=/(GB).

This shows that from the point of view of Con (V), there are only three types of
filtrdl varieties.

Finally, in a filtral variety, we look at the representation of the congruence lattice
by equivalences on filters.

Let V be a filtral variety, 9I£V. Let 91 be represented as a subdirect product of
the simple algebras 9l;, i£X. Then, by definition, every 0£Con (V) can be repre-
sented as OF for a suitable filter F of P(X).

Obviously, if 91 is not the full direct product, then for distinct filters F and G,
we may have OF=0G- Define the equivalence relation =3, on the lattice of filters,
F(P(X)), of P(X) by

F=<aG iff Of = 0G.

Clearly, Con (91) is isomoprhic to F(P(X) ) / T h e question is: which equiv-
alences = on F(P(X)) can be represented as = 3, for a suitable algebra 91 in a filtral
variety.

To state our characterization, it is more convenient to use ideals rather than
filters. For figEA, define the distinguisher off and g:

Difi ) =4 liex, f(>* o)}

Let F be a filter of P(X). Define IF= {X—Y \YdF). Then IFis an ideal of P(T)
and every ideal of P(X) is of the form IFfor a suitable filter F of P(X). Obviously,
P(f>g)EF iff PX{.fg)*h- Hence we can describe OF as OIf:f=g(9IFP iff
D{J, g)fIF. Moreover, the equivalence on F(P (X)) copies over to an equivalence on
I(P(X)): F=3G iff /f=3/G

Thus we may consider =3, an equivalence relation on I(P(X)). We denote by
03, the natural map: 7—0,, where I(il(P(X)), 0,6Con (91).

This equivalence on I(P(X)) is characterized in our last result:

Theorem 3. Let X be a set, let ~ be an equivalence relation of ideals of P(X),
and let X be a nontrivial filtral variety. There exists in V a subdirect product 91 of
simple algebras 91, i£X, with the property that ~ is the kernel of  iff thefollowing
conditions are satisfied:

(i) For any ideal I of P(X), the ~ class containing | contains a smallest ideal
denoted by (p(J).

(i) (p is idempotent and preserves arbitrary intersections.
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(iii) The generating elements of the principal ideals of theform (p(T)form a gener-
alized Boolean sublattice B of P(X). | f\ is IC, then B is a Boolean lattice.
(iv) For every ideal |1 of P(X), g>(I) is generated by <p(1)f]B.

While Theorems 1and 2 can be viewed as an abstract characterization of Con (V),
Theorem 3 is a concrete characterization.
For basic concepts and notation, the reader is referred to [4] and [5].

2. Proof of Theorem 1

Let V be a filtral variety and let 2I£V. By Theorem 4.13 in [3], every principal
congruence 6(a, b) of 2t has a complement in Con (21). This implies immediately
that every  Comp (21) has a complement.

Now let a, BEComp (21), ocsB, and let a' be the complement of a.

craim 1. @A)? is the relative complement ofa in [co, §] and a'A/?€Comp (20-

Proot. Since Con (21) is distributive, the first part of the claim is obvious.
Let {Ry\y£Y} be the set of all compact congruences Ry with By*a'AR. Then

a'Aj3=V(B,\y€Y).
Hence,
B=av(a'aR) =av V(By\y£Y).

By the compactness of B, there is a finite subset Yx of Y such that

] ] 0=«v W \ym .
Since, obviously,
aAVO? lyZYJ = m,

we conclude that V(By\y€ Yr) is also a relative complement of a in [co, /7], hence, by
distributivity,

a'A0 =V0?y|y€y,),
verifying the claim.

Craim 2. If a, /?£Comp (21), then aA/?£Comp (21).

Proot. Let at (resp. Ry) be the relative complement of a (resp. R) in [co, aVR].
Obviously, ajS/? and ftsi By the previous claim, ay and /i*Comp (21). Thus
y=alVj?1i€Comp (21) and ysaM R. Again, by Claim 1,y has a relative complement
ylin [co, aVR] and ylEComp(2i). Using De Morgan’s Law, it is clear that yl=aAj?.

By Claims 1 and 2, Comp (21) is a sublattice of Con (21) and Comp (21)
is a generalized Boolean lattice. Since /(Comp (21)) s*Con (21), Theorem 1 follows.

3. The first construction

craim 3. Let X be a nontrivialfiltral variety. For every Boolean lattice B, there
exists a £V such that Con (23) is isomorphic to 1(B).

Proof. Let 21 be a simple algebra in V, Let us regard B as a field of
sets of some set /, that is, B is a sublattice of the power set P(l), and the 0 and 1 of B
are 0 and /, respectively.
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Now we construct the set C as follows: C consists of all functions /: 1—A
satisfying

Q) 1/(/)] is finite.

(2) For afA, f-\d)dB.

Obviously, CQAL Now let f,g£EC and let + be a binary operation. We
verify thatf+g (as an element of 9F) is also in C. Indeed,

(f+g)(n ={/(0+g(01
is finite since/(/) and g(1) are finite. Now for aCA
(/+g)_1(a) = OI/(0 +g(0=a}=U(0 |/(0 = b, g(i) =c}\b+c =a) =
= U (/-1(h)ng-](c)!b+c = a, bEf(l), cEg(/))

Since, by (1), there are only finitely many pairs (b, c)EA2 with bff'(l), c£g(l),

b+c—a, we conclude that (f+g)~i(@)£B. The proof for an arbitrary operation is

similar. Thus C defines a subalgebra B of 'll1; in fact, B is a subdirect power of 9L
Now, for XEB we define a congruence relation 6X of B by

f=g(Bx) iff /O)=g(0 for all i$X.

6X is obviously a congruence relation. We claim that 0X is principal.
Let a,b£A, a+b. Define p,qEC by

(3) p{i)=a and q(i)=b for iEX
@) p{i)=a and q(i)=a for i$X.
By the definition of 0X, p=q(9x), thus O(p, q')*0x. To prove 9%"9(p, q), let

f=g(0x)- Then )
E{fgi I-X = E(p, q).

It was observed in [2], that in a filtrdl variety this implies that 9{fi g) =0(p, q),
concluding the proof of 9x=9{p, ).

Thus < X-*0x embeds B into Comp (93). To conclude the proof of Claim 3,

we have to showthat qis onto. It issufficient to prove that every principal congruence
is of the form 6X.

Let 9=9(p, q) and define X—D(p, q). Since p, gEC, | is.a finite union of
sets of the form

{ilp(i) =u and q(i) = u}=p~U«)n#-1(>
hence X£B. We verify 0=0X as above.

4, The second construction
We start with

Craim 4. Let X be a filtral variety. Then Con (V)?/(B) iff no 9tfV with
\A\>1 has a one-element subalgebra.

Proof. Letusassume that no 9IEV with \A|>1 has a one-element subalgebra.
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By the result of J. Kollar [7], V is an IC variety. By Theorem 1, Con (V)g/(GB).
The IC members of /(GB) are exactly the ones in 1(B). Hence, Con (V)£ 7(B).
Conversely, if Con (V)g/(B), then Visan IC variety, hence, again by Kollar’s
result [7], no 9IEV with \A\>1 has a one-element subalgebra.
Now we can do our second construction.

Craim 5. Let V be afiltral variety failing 1C. For every generalized Boolean
lattice B there exists a ©fV satisfying Con (93)s; 1(B).

Proof. By Claim 4, there is an 9I£V with a one-element subalgebra {0} and
\Al> 1 We can assume that B is represented in P(1) (thatis, B is a sublattice of P(l),
0 is the zero of B, and U (A'|XEB)=1).

We can further assume that U is simple. Indeed, if 91 is not simple, then there is
a subdirectly irreducible algebra l' with \A'\> 1 such that 91 has a homomorphism
onto 91 Since V is semisimple, 91' is simple and has a one-element subalgebra (the
image of {0}).

Now we define CQA1 by the rules: /EC iff

(1) /(01 is finite
(2") For afA, a?+0, f~ 1(a)"B.

Note that (1) is the same as (1) in §3, while (2) is (2) of §3 modified.
If /, g€C, then we show that /+g£ C as in §3. The only new case to consider
is a set of the form
/ _1(0)ng_1(c), 0O+c =4a, ¢ 0.

Now / _1(0)=/—~ I(f(A —{0}))=/—U (/-1(X)| x"O). Since this union is finite,
f~ 1<9=1—X for some XEB. Hence

o+ - G4ERETHO

Since g _1(c) and g~1(c)n.JE.B, this equation implies that / -1(0)Dg-1(c)65.
For X£B, we again define Ox£Con(93). To verify that 0X is principal, now
define

(3) p(i)=a and q(i)—b for iEX
(4) p(i)=0 and q(i)=0 for iEX.
The rest of the proof is identical.

5. Proof of Theorem 2

Let(% be a filtral variety. By Theorem 1, Con (V) Q/(GB). By Claim 3, /(B)Q
gCon (V).

Now let V be an IC variety. Then iis compact in Con (92) for 9I£V. Since for
a generalized Boolean lattice B, the unit of 1(B) iscompact iff B is Boolean, we con-
clude that Con (V)g/(/?), hence Con(V)=/(B). Conversely, if Con(V)=/(B),
then V is obviously IC.

Finally, assume that V does not have IC. Then, by Claim 5, Con (V)g/(GB),
hence Con (V)=/(GB). This completes the proof of Theorem 2.
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6. Proof of Theorem 3

To prove necessity of the condition, we define (p by
cp(l) = {D(fg)\D(fg)ei}.

Now, conditions (i) and (ii) are obvious. The principal ideals of the form (p(1) are,
clearly, the ones which are generated by a single D (f, g), hence, they form a (general-
ized) Boolean sublattice B of P(X). Condition (iv) follows immediately from the
definition of tp(1).

Next, we show that conditions (i)—iv) are sufficient. Indeed, in this case the
algebra constructed in Theorem 2, with B defined in condition (iii), will give, clearly,
the desired equivalence relation.
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SMALL VALUES OF INDEFINITE QUADRATIC
FORMS AND POLYNOMIALS IN MANY VARIABLES

R. J. COOK

1. Introduction

A well-known result, due to Birch, Davenport and Ridout ([1], [7] and [8]),
states that if Q(x) is an indefinite quadratic form in 21 variables then for any
e=-0 there is a non-zero integer vector x with

@) IRMI < &

More recently, Schmidt [10] has shown that if F(x) is a form of odd degree k then
for any F>0 there is an integer vector x with

0< X &X and [F(X)| < |F|A-£

where |x|=max |x,| and |F| is the largest absolute value of the coefficients of F(x),
provided only that n and X are large enough as functions of k and E. Using the diag-
onalization procedure of Birch and Davenport [1] we obtain a similar result for
quadratic forms in many variables. We say that an indefinite quadratic form Q(x)
in n variables is of type (r, n—r) if, when Q is expressed as a sum of squares of n real
linear forms with positive and negative signs, there are r positive signs and n—r
negative signs. We use Vinogradov’s «-notation where the implicit constants may
depend on Q or F as well as n and e.

Theorem 1. Let Q(x) be of type (r, n—) where

)] 1s min(rrn—)S 4 and n S 21,

then for any €>0 and X>XO(e, n) there is a non-zero integer vector x such that
1 25

3) \x\sX and |B(x)|«2f* +\

We see that the exponent of X in (3) is negative for ns21, and tends to the
limit —y+e as «— The condition on the type of Q can be dispensed with at the

cost of extra variables. If Q(x) is an indefinite quadratic form in n variables, of type
(r,n-r), then for any r'<r Q(x) represents a form of type (r\ n—r); the latter
being a form in r'+ n—r variables (see [1]). Replacing Q by —Q, if necessary, we
may suppose that min (r, n—r)=r, then rs[n/2]. Now Q represents a form of type

1980 Mathematics Subject Classification. Primary 10B45; Secondary 10F40.
Key words and phrases. Small values, indefinite quadratic forms, many variables, fractional
parts.
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(4, n—r) in n—r+4 variables, assuming that 4. Thus for «~33 we have
n—r+4721 and

4 2(n—r+4) S In—2[n/2]+8 = «+8+0
where
ro if n iseven

N A 11 if n o is odd.

We use XO(e, «), n0(s) as suitable boundary points, not necessarily the same at each
occurence.

Theorem 2. Let Q(x) be a non-singular indefinite quadratic form in «S 33
variables. Thenfor any e>0 and X>XO0(e, n) there is a non-zero integer vector x
such that

(6) \x\zsX and |B(x)|«Z 2 "+189'f
where 6 is defined by (5).

Let
F(x) =f(x)+212(x\+... +X2
where /has integer coefficients. Then for 0<|x|sZ we have
(7) IFOOI S [l212(*2+ ...+ x2|| » Z~2

where ||0]| denotes the distance from 0 to the nearest integer. A recent result of Schlic-
kewei [9] on additive Diophantine inequalities can be used to obtain a result for the
fractional parts of quadratic polynomials in many variables.

Theorem 3. Let F(x) be a quadratic polynomial in n variables having no con-
stant term. For any >0 there exist nO(e), XO(e, n) such that if «Sn0(e) and Xsi
8 1 O(e, «) then there exists a non-zero integer vector x such that

) WMSX  and  [FX)|| < X~*-+e.

This improves on our previous results for quadratic forms [4] and quadratic
polynomials [5], From (7) we see that apart from the arbitrary e the exponent is
best possible.

2. Preliminary lemmas
Davenport [6] showed that if B (x) is an indefinite quadratic form of type (r,n—r)

then there is a non-singular linear transformation y —Tx which takes Q into a quad-
ratic form Q'(y) with the following properties

(9) Ql(yi!_'1y" 01"-10)>O
for all integers ylf ...,yr, not all zero, and
(10) R'(0, ...,0,yr+1, ....y,,) < 0

for all integers yr+1,...,yn, not all zero. Since T is non-singular there exist numbers
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¢, C such that
W' 'S W\ & Cw\

so there is no loss of generality in proving Theorem 1, and also Theorem 3, under the
additional assumption that Q also satisfies (9) and (10).

Our first lemma, due to Birch and Davenport [2], shows that a diagonal indefi-
nite quadratic form in 5 variables takes small values.

Lemma 1 For any S>0 there exists <5 with the following property. For any
real A ..., /s, not all of the same sign and all of absolute value 1at least, there exist
integers xIt ...,x5 which satisfy

(11) |AxJ-t...+25xi| 1

and

(12) 0< IM <C (5)|A 1..A81+4.
i=1

We apply Lemma 1 to the diagonal quadratic form
2xXYjd+...+V** (Y>1)
and a straightforward calculation gives the following result.

Lemma 2. For any t>0 there exists C(t) with the following property. For any

real ..., 25, not all of the same sign and real numbers X1, ..., Xs, Y, all at least 1,
satisfying

(13) Y(Ysny -Cc C(NA'WE2(/7_U¥4 for 1=>»i=£5

where [7=1|2X../5, there exist integers xIt ..., X6, not all zero, satisfying

(14) OSx.S Xt for i=1..5

and

(15) |AlX?+...+A5*f|"y -L

To reduce quadratic forms and polynomials to almost diagonal shape we use
the following lemma which is essentially due to Birch and Davenport [1], with minor
modifications which can be left to the reader.

Lemma 3. Suppose that m<n, and let LX(x), ..., Lm(x) be m real linearforms
in n variables xIt ..., x,,, say

(16) Lix) = 2.9 (L —i—w).

Then, for any P S2, there exists a non-zero integer vector x such that

tl
17 X ST and \L\S CPm~n72_1 mA (1SiSm),
where C is an absolute constant. B

For the proof of Theorem 3 we need the following result on additive quadratic
forms, due to Schlickewei [9].
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Lemma 4. For any {]>0 there exists sO(j) such thatfor any igiO, NI and
real 9lt 0, the inequalities

(18) [*| SV and 17x1+..+05xg| <
have a non-zero solution.

Finally, in order to reduce a quadratic polynomial to a polynomial that is almost
an additive form mod 1 we need the following version of Dirichlet’s box principle
which is Theorem VI of Chapter 1 of Cassels [3],

Lemma 5. Let Lfx), Lm(x) be m real linear forms in n variables xIt ..., x,,.
Thenfor any P> 1 there exist integers xx, X,,, Not all zero, such that
(19) ¥ =P and |Z,j(*)] «P-Bm for 1S iSra

3. Proof of Theorem 1
Let

(20) Q(x) = fZ . 2_aijXiXj faj = aj)
=|;=|

and with Q(x) we associate the bilinear form

(21) B(x,y) = 2 2. «jXiy}

Replacing Q by —Q, if necessary, we may suppose that r~4 and then our assump-
tion that Q(x) satisfies (9) implies that an >0. We shall use a suitably chosen linear
transformation

(22) x = mlzl+ ...+ mbz8

to show that Q represents an almost diagonal quadratic form in 5 variables.

We take z1=(l, 0O, ..., 0) and, having chosen z\ .., we choose zJ by
applying Lemma 3 with m— —1 and Li(x)=B(zi,x) for i=I, ...,j—1 In this
way we obtain non-zero integer vectors z1,  z5such that
(23) \zj\» PJ-1 for j—1,..,5
and
(24) \B(z\ zJ\<s:Pi+j-n--  (i?%j)

where P> 2 is to be chosen later.
Under the linear transformation (22)

(25) Q) = (p(ult ... nB = 2 2 Bij wui

say, where Rij=B(zi,z-f). We consider the values taken by qfor

(26) |u,| 1SiS5
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so that \x\aX. Now /u=au>0 and since Q represents (p, pis of type (/*',s")
where r'SrS4. Thus Bn, ...,/?6 are not all of the same sign and

) n = \Bii---Bii\« p 20-
Taking
(27) Y=XW-'P-*
and choosing r>0 sufficiently small we see that for / = 1 , 5
(28) Y(Y5n X <k SS12/XL-i)alyyf.77-1|iia « * 1/277- 14

provided that P is a fixed power of X. Applying Lemma 2, we see that there are in-
tegers nd, ...,u5, not all zero, with

(29) BlHul+ ... +BSiul\*zY~1
The off-diagonal terms of <p(u) contribute

(30) pi+I-"=*XP 1 iXP1-J= X2 -\

Taking b SR

so that X2P~n—X 12P5 we have

(31) IB(X)] = |<p(u,,..., Us)| « X l2 ‘Pb+X 2P~n«k X 12 2<25+s>

so it now only remains to check that x"O.
If any ]S(|-eF_1 then x=zI| gives a non-zero solution of (31), so now we
may suppose that

(32) Y-1< R\« PX-1), 1 i=s5

Therefore the contribution of the main diagonal to det ¢»is greater than Y~s in
absolute value. The contribution coming from a product of terms all of which lie
off the main diagonal is

I+ £ 7-5/1-10

<gzPi£iI I _ pZo-sh O(Y"‘&.
The contribution of a product with just one term Rt on the main diagonal is

<BCj?(iP30-2/-4»-8 <<; p20—4« _ 0(y -5)

The final contributions come from products with three terms on the main diagonal
and are

« Bi,RjjRKkP2<+m- n- 2)” B i iBjjRkkP li- 1= o(RitRjjRkKY-*),
where i,j,..., m is a permutation of 1,2, ..., 5. Thus

(33) deup = B11...RK(I+o (1)) 0,

the rank of the substitution (22) is 5 and so x"O.
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4. Proof of Theorem 3

Let s=s0(rj) be the value arising in Lemma 4, and consider the linear transfor-
mation

(34) X = ulzl+ ... +uszs,

where z1, ...,zs will be chosen suitably. Then

(35) F(x) —Q{X)+L(x) = (p(u)+A(u)

where

(36) <Y = 2.2, BijUiUj, Bij = B (2, )

and :

(37) A(u) = 2 HjUj, Pj=L(z).
7=1

We choose z1 by applying Lemma 5with m=1 and L1(x)=L(x). We obtain
a non-zero integer vector zj such that

(38) Iz~ p and A(zD)! < P—

Having chosen z1,  z'*“1we choose zj by applying Lemma 5 with m=j, PJ in
place of P, Li(x)=B(zi,x) for i=12 1 and Lj(x)—L(x). We obtain a
non-zero integer vector zJ such that

(39) \zI\s Pj, 1<n|]EjX—1\\B(ZI’ zZ\< P~n and ||Z(z)| < P\
and continue the process as far as zs.

Let
<Po(u) = Bu u\+ ...+ B xsiB

and (pl(u) = (p(u) —(EO(u). Then
e o Tk0 ()1 + 140w )1 N ()11

CPl+2. 2 VWA + 2 INT g

»= =

We apply Lemma 5 to the diagonal form qO(u) and for £/>1 choose a nonzero
integer vector u such thata

(41) \WA U and |90l < C/-2+".
Then

(42) x| < st/P5'1

and

(43) IFO)|| < t/-2+,+52P -nt/-|-s/,-"1t/.
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We take P=X” and U= X" where

(44) P~ - 1) )éT and u = i—s—1P—.
Then _

(45) pq < SHUH0-Dp =

and

F(x) < X 2+2sN)+3/ ]2
< A-248 + A-2< X~24c

(46)

provided that we take ij=e/5, np~n0(s,s) and X>X<j(s, €), which completes the
proof when xXO.

If x=0 then z\ ..., zs are linearly independent over Q so for some j*s and
integersax,  aj

47 alzl+ ...+ =0
where z\ are linearly independent over Q. Hence
(48) 2) = Blz1+ ... +RJ-izJ~1

where /?m=tjotj. These equations (48) are n linear equations on the with coef-
ficients which are the coordinates of the vectors zr. By construction, some j —1
of them are linearly independent, and so have determinant dxO. Applying Cra-
mer’s rule to this independent subset ofj —1 equations we obtain

&=4d,/d for i=1,
where the A's are determinants of (j—1)X0‘—L) integer matrices. Thus we may take
aj=A and m= —Ai for /=1, 1 in (47). Since the elements of the &-th column
of A have absolute value at most Pk~k and A is non-singular
(49) 0 < |<Xj| = \Al (j-l)pKJ-W =s (s_i)/w (>-i)/2
and similarly
(50) [a,] = VAN S(s-1)P*t,+1)*
Then x=aJzi"0 satisfies

(51) lid & (s—D>(=F+ < X
provided that n>n0(s) and X>-X0(s). Further

J-i

HAMIL = IB(<Xjzj,ctjZ)+L(ctjZI\ S ||a? 2 *01 A< L{z D\

(52)

a (s—)s/ M*-DP+(+0)/*-»+(s_i)/»(*-i)/*-» < x~2

provided that n>«0(s) and X > X0(s,ri), and this completes the proofof Theorem 3.
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A REMARK TO A PAPER OF J. ACZEL AND J. K. CHUNG

A. JARAI

In their paper [1] J. Aczél and J. K. Chung have proved among other results
that, if the functions/, (/=1, 2, n) are locally Lebesgue integrable and the func-
tions pk and gk (k=1 2, n) are L-independent, moreover the functional equa-
tion

0) lZ:{fx+"y) :*glPk(x)qk(y), xE]A, B[, YE\C,D[

is satisfied, where for iVy, then the functionsf,p k and gk are in C*.
L-independence means, e.g. for the gks, that

iémi ckdk(y) = 0 for almost every y£]C, D[

implies that Ci=c2=... =c,,=0.

In this short note we observe that L-independence and local Lebesgue integra-
bility may be replaced by linear independence and by Lebesgue measurability, re-
spectively.

In order to prove this we observe (as in [1]) that

o) Pk(x) = 2 ai,j,kfi(x+*tyj) if x£\A, B[

for a suitably chosen sequence C<yl-=y2<...<y,<Z) because of the linear inde-
pendence of the gk. Similarly,

®3) <Ik(y)= izj Kj.k.i(Xj+k,y), YEIC,D[

where A<xk<x2<...<xn<B. Hence the pk and gk are Lebesgue measurable too.
Now, with the substitution t=x+X,y, we have that

) fi() = 2 Pk(t-kiy)ak(y)~-2. 1i(t+().J-).Dy)
= jiti

whenever C-=y<D and A +Xty</<£-fk,y. Hence, using Theorem 3.3 of [2],
we have thatf is continuous. So, by (2) and (3), the functionspkand gk are continuous

1980 Mathematics Subject Classification. Primary 39B40.
Key words and phrases. Functional equations.
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too. Similarly, as in [1], choosing C* between C and D and integrating, we obtain
that

2 1foceryydy - Breo I akay.

If we introduce into each integral on the left hand side individually new variables
k—x+Xty we have that

m 1 It
(5) b fwWodk= 2 PKOOQK(

i=l "i x+k

where
t

k(0= f <lk(y)dy.
Qk( C*<(y)y

The functions Qk are linearly independent for else there would exist constants
ck not all 0 such that

f:2,:| ckQk(f) = o
that is,

f (2 Cke<lk(y)dy =0 forall /€]C,DI,

c* <=1
which is impossible because the gk are linearly independent and continuous. Hence
the pk are linear combinations of the continuously differentiable functions

X+X-t
x>+ ) f(s)ds
X +ktC*

and so continously differentiable. The same holds for the gk. By (4) and by Theorem
5.2 of [2], thef are continuously differentiable too. Using now (4) and Theorem 7.2
of [2], we have that thef are twice continuously differentiable and, by (2) and (3),
so are the pk and gk too. By repeating this argument we get the result that |, pk
and gk are in C“.
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UBER DIE DICHTE MEHRFACHER GITTERFORMIGER
KREISANORDNUNGEN IN DER EBENE

U. BOLLE

1. Sei G ein Gitter in der Ebene, k€N und K(x) bzw. B(x) die offene bzw.
abgeschlossene Einheitskreisscheibe mit Mittelpunkt x.

G liefert eine k-Packung (der Einheitskreisscheibe) genau dann, wenn jeder
Punkt der Ebene in hochstens k Kreisscheiben der Form K(g), gEG liegt.

Von einer k-Uberdeckung spricht man, wenn jeder Punkt in mindestens k Kreis-
scheiben B(g), g£G liegt.

Die Dichte einer solchen Kreisanordnung wird durch d(G):=z(’\G) gegeben,
wobei A (G) die Determinante des Gitters G bezeichnet. Sei schlieBlich

iffc=:sup {d(G)|G liefert k-Packung},

£5*=inf {d(G)|G liefert k-Uberdeckung}.
Dann besteht das Problem darin, dk, Dkzu bestimmen oder wenigstens abzuschat-
zen. Die genauen Werte sind flr einige ,,kleine* k bekannt (s. z. B. [2]); ferner gilt
Uber das asymptotische Verhalten von dkund Dk: Es gibt Konstanten cf>0, so daf

k —Cjk2SS dk S k—e2k14
k+c3ftlds f),i fefeaf2ls. ([1])

Ich méchte in dieser Arbeit zeigen, dall der Exponent 1/4 in beiden Abschédtzungen
nicht mehr zu verbessern ist.

Satz. Es gibt ¢6,c6>0 (konstant) und unendliche Teilmengen N, N'AN,
so dal
dk S fc—e5fcl/4 fiir alle kEN

Dk~ k +ctkli fiir alle KkEN'.

Zum Beweis wird das Gitter G,, mit den Basisvektoren (a; 0) und (0; h), a:%;1

2
und h=— fir alle «€EN auf seine Lagerungsvielfachheit untersucht. Dabei ergibt

sich, daR die Packungsvielfachheit k,,.Sn2+0(/n ) ist, wahrend die Uberdeckungs-
vielfachheit k'An2-f0(~n) ist. Die Dichte d(G,) ist offenbar =-~-=n2 Ich

1980 Mathematics Subject Classification. Primary 10E30.
Key words and phrases. Multiple packing/covering, lattice packing.
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beschréanke den Beweis zunachst auf ~-Packungen, die Aussage fiir /r-Uberdeckungen
ergibt sich dann sehr leicht.

2. Sei G=Gn wie oben definiert und fur alle Punkte (Xx;.y) =
=card (K(x]_v)nG) die Anzahl der Gitterpunkte in der offenen Einheitskreis-
scheibe um (x;y), oder auch die Anzahl der offenen Einheitskreisscheiben K(g),
g£(J, in denen (*>>) liegt. Dann gilt:

(1 v )= AZ W-iEWIT+HE G+ D~ y),

wobei —(jh—y)2 (fur\jh—  Dund R(x; y)= Anzahl der Gitterpunkte
auf dem Rand von K(x;y) ist. Diese Gleichung ergibt sich folgendermalen: Die
Punkte von G liegen auf den Geraden Z":={(«;/ft)|u€R}, /€Z, und K(x;y)
schneidet Zj in einer Strecke der Lange 2sj(y), auf der bei (0;jh) ein Gitterpunkt
liegt. Die Anzahl der Gitterpunkte ,rechts“ bzw. ,links“ wvon (0;/ft) ist

[-[J (*/(>)+*)] bzw- [jfoO ")* *)], wobei eventuelle Randpunkte mitgezéhlt
werden, auBerdem mufl man natdrlich noch (0;jh)dG berlicksichtigen.

(1) 1aBt sich etwas umformen, wenn man die durch w(u):=u—(«1—Yy  defi-
nierte Funktion benutzt:

* 2 jOO
(% Y) a \Jh?y\sl«J +\jh-2y\sl
2
-R(x,y).

Es bleiben also noch die beiden Summen abzuschétzen, wobei die erste relativ leicht
zu behandeln ist, wahrend die zweite einigermaflen langwierig wird.
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3. Lemma 1. Fir a=—7r und hi gilt:
2n n

— 2 = 1i*+0(in).
a [7A-}s|

Beweis. Mit Hilfe einer bekannten Summenformel (s. z. B. [3], S. 113) bekommt
man

(14-y)IA
— 2 yi (jh—y)2= — 2 /f /1 (wh—v)2cos 2itrw dw =
a \Jh-y\sl a f=-~ -a-y)lh
L 2nry AWACOS @;M dw =
w ] . c°s—
o 2nry 2nrw
: 2I cos p h-

“qLi ’Zrtrjcos 2nry
It =74 oK |-7)=
= n2+0(Yn).

Fir die benutzten Eigenschaften der Bessel-Funktion Jx vergleiche [5] S. 366 und
S. 368.

4, In diesem Abschnitt seien stets m, rEN und ml:="*-=~mn, rx:=2 =

2
=—-rm. AuBerdem sei e(z):=e2niz. Ich beweise zundchst einige Hilfssatze, die

flr die Abschatzung der gesuchten Summe bendtigt werden.

Lemma 2.

t/ i

Beweis. Sei $:=—. Dann gilt
ri

1 2
f-J= e(rlz)dz Jr
fA

J. —
und nach dem 2. Mittelwertsatz der Integralrechnung

efaz) dz 1—e N_ also
W\ —7 1"2e—e2 T, fr

- f — - me(rlz)dz 8 #
\hd YTAi h Y2nr
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Lemma 3.

U e(—=Tnx\\ —w2+rIw)dw| < —/5 1 1/an3/2

Beweis. Fur F(w)= —mx”"1 —w2+rxw ergibtsich:

mXxw
F w)=rt+ S ri,
W*

und
F'(w) = mAl-w*)-32 mx.

g (T0) = g o RN

Aus |F,(n)|M-1 folgt nach dem 2. Mittelwertsatz

Nun ist

\T\ J — 1 2=
Vot 27,
Andererseits gilt:

iffA7 1 )
IFI ~ 15 e(F(w))dw|+| J e(F(w))dwj,
0 i1
und
i/

1/ e(F(w)rfw| s _

Fiar /Ll=gwgl hat man F'(w>)sri+— L _.7 i j . Damit wird wieder nach
\m1 Ymx
dem 2. Mittelwertsatz

y e(F(w)) dwl s

[T\
und daher
m s .
y-ny y-mn
Aus und ergibt sich also
TN ri/2m 1/4 w3/4

Lemma 4. SW F:—Ym”+r'i und mx"rx.
Dann gilt
miB 3.m5/4
| 7 e(FYM~ w2 ~W — r1/2,3/4(r2_j_m 2)3/4
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Beweis (analog zu Lemma 3). Sei

[ N 0
Gw) := B~ l-w2 fir BS WS g
Dann gilt:
IG'(W)| S \G'(rIB)\ = rr;B
und
mJB m m
| = A o _ N fl y
[71=\Y e(G(W)dw \J°-J"(e (G (W) dwm AtB  ~rB*
Ferner gilt
und flr
i, 1 m1l
B YK B
‘ I }
NI N R TN IR BT
Damit bekommt man:
(r/fh)+—r
I K N mJB .
\T\- | / e(G(w))i/w|+— | [ Me (G (w)))'™|
1 11 2
+n YK & YK’
also
m (07 £2
Genau wie oben ergibt sich
yyig2ng2 m 5/4 ,3/4 m 5/4
in2 g3 I rieaz ~ vz 3uv2e maa
Um nun I/3-2y|si&[<3(i/(>))ijc)\]l abzuschéatzen, benutze ich den ,,Pfeifferschen
Kunstgriff* (s. z. B. [4], S. 47, u. S. 448). /(w) bezeichne —(f' 1«{wh—y)2+Xx).
Lemma 5.

[y (1S 1260/

Beweis. Der Beweis ist in wesentlichen Ziigen dem des ,,Hilfssatzes 4* in [4],
S. 47 nachkonstruiert. Flr meine spezielle Funktion ergibt sich durch schérfere
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Abschétzungen im einzelnen ein schérferes Ergebnis. Der ,Hifssatz 4“ stammt
von van der Corput (s. auch [4], S. 448).

Da <A(z):—/; y. S’ﬁ(/gitmz) 1 jefjem abgeschlossenen Intervall, das keine
ganze Zahl enthalt, gleichméRig konvergiert, gilt fir 0

i_i/»- o 1 11',5i|t
[ W(+rw)dw = - zg;.. Loy (B(M(z+ W) —e(—m(z+w)))dw =

2 Pme(mz) mit po=0 und

m= —cCo

t .k
Pn=~2"r/ emwadw flir m=**

Daher ist fir m*O: I"mln f\/\ m VI)) und
117\
3) \U,g yisit |(f(J)+W)dW =§2 2 1kr|m|n —
wobei
Sr:= e(f(3))-

A \jh- y\sl
T+ bezeichne
+11t

t 2 f CP(f(j) +w)dw.

\jh-y\slo

Da flur zl*z2 stets \j/(zd —il/(z) "z 2—=z1 ist, gilt

I in
t 2 £ {I'fEG) +w)-"1I'f(g)))dw a t 2 f
\jh-y\slo \jh-y\Slg
also
2" t(JU))AT +- T2
\ih-yisl ~ 10T »

Ebenso ergibt sich

, 2 w m s-*"
\jh-y\sl

Ich setze nun t:=\n und zeige noch, daf

M iminit E\=otfn)

ist (ab hier weiche ich vom Beweis des ,Hilfssatzes 4“ ab). Dazu ist zunéchst Sr
abzuschétzen.
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Die Eulersche Summenformel liefert:
S,= 2 e(rf(j)) =
4) \jh-y\ s1
( (i+y)li> (i+y)lh
J e(rf(wj)dw+cl+2nir J i//(w)f'(w)e(rf(w))dw,
- (i-y)

Ih
- r s m

wobei |cj|s2.
Durch naheliegende Umformung ergibt sich flr das erste Integral:

d )=
Ti= [ e(rfwj)dw = —e(rIX) f e(rl]/\-ui)du =
-(1-y)lh

2 ?2(zxrlIX) f e(rlz)dz, also nach Lemma 2:
0 M =<

Mmi< 6 ~ .

Das zweite Integral liefert

(|f+Y)/*
-(1-y)ih

hr e Whey —(wWii—7)2dw =
-d -y)ih yi-(wh-y)*

T2:=r e(r/(w))dw =

= —e(+ri — i SR - - -
- e\(/_nX) rrzrlfn f sm{arm b }/f[g,\ ei/rl\\ u l)du,

wenn man die bekannte Fourier—Reihe fiir i> benutzt. Die Vertauschung von
2 undJ ist durch die gleichméaRige Konvergenz auf jedem kompakten Intervall das
keine ganze Zahl enthélt, gerechtfertigt.

Z2= A —cos(27tmly)  sin(271mlu) e(rl\\-u i)du

(5) = —-eiirjx) 2 —cos(2nmly) f sin(27tm¥ 1 —u2)e(rli)du =
n m=i rn J
= ——£n- « (% ri*) n21=i o cos(271mly) (X m—Ym).
Dabei ist

xm o= 6 e(rlu+miyi-u2)du

1 N
Ym= f e{rlu-miy\-ul)du.
0
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Fur Ym gilt nach Lemma 3:

(6) IYm rl2mli4 ,3/4 >

X,, ist noch zu behandeln.
Setzen wir wie oben B:=7r\+m\, auBerdem mil=5sinA, rl- 5cosA

und u=sin<p, so erhalten wir

K2 *H2+A
Xm= J cos((p)e(Bsin ((p+Xj)dcp = . cos(cp —X)e{B sin (p)dcp
A

) .
—0s AsUmsin AeVm
mit
124X j
Um:= f cos (pe(B sin (p) dep = -ZAnriI!Ze (B sin (p\ri+\
also
A) i 3r
und
W2HA oS X W
V\= f  sin<peBsingd<p= f - - e(22w) dw.
X sina  1/1—w2

ist nun mA2rx so liefert der 2. Mittelwertsatz:

i< rilg 2 i
N [ mj% L} B 7 [1 11
[sm(A)FJI< < w(r2+ ma)-
Fir wl>rl dagegen ergibt sich:
-------- m./B

~Mn= / -t=== e(Bw) dw,
rJB yl-W 2

und daher nach Lemma 4
. m9/i
(10) [SIn (AN 3 rx2J342 | m294 «

Aus (4), (5) und (6) folgt nun

dl) \Sn\ + mA  +2riA rl2m8langs
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Nach (7), (8), (9) und (10) gilt:

0 1 A 3r Q00 1 fsr
y Ik 1M Ty u
m=1 m m n ™ 1(r2+m2m m,, mn(r2+m 2

3ms4 _
+ 2 rizn3a(2+ woss (@ = 4n).

Damit ergibt sich fir die Teilsummen

3r 1 3 37 dw 3logr 9

n £i\m (r2+ m2 m"rrmJd w(+w2rd m m
6r 6 6 T dw 1876 logr

msur mn(r2+m?2 m* g w(l+w2'r? m m

3 ms 4 5 (ar)5/4 12 w6/4 )
rli2n3/i ,,ti, (r2+ m2)5/4 r12ess (rvRQ + aPeg + 62 J QO+ 7. 26/4)

15
r7/4n3/4 r rm n3li

Daher ist
il
S 18log r+56+6 h - + 30ri2nT4+ 30rTW /4+6- ).

~ 18logr+56+6j /™ +60rl2wl/4+6
und schlieBlich (s. (3))
[r£[~ 2 1|5 dm in(i,-~)<

<36M1-17M+1127 2-1+127M1-"-+

+n 2 75ir+.20,,.«2mi» (-7 iM).

Fur die letzte Summe ergibt sich

(1 /n?] 1 t— 1
2 min( 12=>r32 — "I TF+ 17~ 2~jéii =
r=1 \ ' ! rsfl n r»Yn r

* oo \

Y !\
<[+/«.-"m d»+ N N+ [ w-32i/wj < 2nli+ 2nL*t

so daR
[r£|< 1256
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SchlieBlich erhalt man

I<K/o'))L- \r J_r\+-2ri=n~ N 1260

|\jh-2y\s
Mit (2) ergibt sich nun: es gibt ein c7>0, das von n unabhéngig ist, mit

v(X; y) < n2+c7Yn fiar alle (x; y),
und daher auch

(12) k, maxv(x,y) < n2+c7yn.
Daher ist v
dkn A &(G,,) n2 cj_
K K 2 n2+c7yn «3/2*

Aus (12) folgt kn<can2 oder n”clkd?2 also

dkn | cn

fc Nl 1.3/4

(alle £¢(>0 und von n unabhangig). Wahlt man noch N:—{A:;,WGN\}, so ist der
Satz fir a>Packungen bewiesen,

Sei nun tv(x;>>):=card (B(x; y)DG) die Anzahl der abgeschlossenen Kreis-
scheiben B(g), ¢f.G, die (x;y) Uberdecken. Dann gilt offenbar: r>(x;>»)=
=N (X;M+I?(X,>) (R(x,y) die Anzahl der 8(g), auf deren Rand (x;y) liegt),
so dall mit (2) und Lemma 5:

w(x; y) = ri+ 0(]/n).

Sei fc':=min w(x;y), so gilt k',,”"n2—” n (c2 von n unabhéangig), und daher
X,y

A Qi+ iu-ns 1) £
K ~ K ~ rfi-cn ~ "3la “ fe3/4 '

Mit N':= {fc'|/iEN} ergibt das den zwiten Teil des Satzes.
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DIE DUNNSTE GITTERFORMIGE 5-FACHE
KREISUBERDECKUNG DER EBENE

AGOTA H. TEMESVARI

Eine Menge von abgeschlossenen Kreisen in der Ebene bildet eine /c-fache Uber-
deckung, wenn jeder Punkt der Ebene zu mindestens k Kreisen gehort. Eine Uber-
deckung von kongruenten Kreisen ist gitterférmig, wenn die Kreismittelpunkte ein

ebenes Punktgitter r bilden. .
Es sei Dkdas Infinum der Dichten aller gitterformigen A>fachen Uberdeckungen.

Uber die GroRen Dksind die folgenden Ergebnisse bekannt:

Th = Kershner [6]
127
D% — 2 Dk
D3 = nDk, g = 2,841... Blundon [1]
D*
= Danzer [3]

Bolle [2] zeigte, daB es eine Konstante ¢2>0 gibt, so dal

gilt.
In dieser Arbeit bestimmen wir DR2. Wir zeigen, daf die von Danzer konstruierte
gitterformige 5-fache Uberdeckung die diinnste ist. Das geht aus dem folgenden Satz

hervor.
Satz. Die Dichte einer gitterformigen 5-fachen Uberdeckung von Einheitskreisen

ist groer oder gleich e und Gleichheit tritt nur dann auf, wenn das Gitter durch
ly |

1980 Mathematics Subject Classification. Primary 52A45; Secondary 51MO5.
Key words and phrases. &-fold covering, 5-fold lattice covering, density.
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ff

zwei Vektoren der Langen und erzeugt wird, die einen Winkel der Grole

arc cos -4 = einschlielen-1

Der Beweis des Satzes beruht auf einigen Hilfssitzen. Vor der Formulierung
dieser Hilfssatze fliihren wir einige Bezeichnungen ein. Es seien OA und OB die
Basisvektoren des Gitters F. Mit X bzw. \X\ bezeichnen wir den Ortsvektor OX

bzw. die Lange von OX. Wir schlagen Kreise vom Radius r um die Gitterpunkte
von r. Diese Kreisanordnung wird mit F(F, r) bezeichnet.

Ein Gitter F ist von normaler Darstellung, wenn die folgenden Ungleichungen
fur seine Basisvektoren A und B gelten:

(1) \A\MB\AMB-A\ < (AOB)A].

Es seien \A\=a, \B\=h, \B—A\=c¢, ’Ba( und <Z(AOB)=a. Mit diesen Be-

Zeichnungen kann man (1) folgenderweise aufschreiben:

(2) 0<x”"Il, OAMcosa™¥Y’

Auf der Abb. 1 haben wir die Menge der Punkte im rechtwinkligen Koordina-
tensystem x, y=cosa dargestellt, die die Ungleichungen (2) befriedigen. Diese
Menge ist das rechtwinklige Dreieck OPQ mit Ausnahme von O, wo OP=1,

FR=-~- und OPxPQ sind.

Zu jedem Gitter von normaler Darstellung gehort also ein Punkt im Dreieck
OPQ. Und umgekehrt, zu jedem Punkt (x, cos a)” (0,0) des Dreiecks OPQ gehort
ein Gitter von normaler Darstellung, das abgesehen von einer Ahnlichkeit eindeutig
ist. Jetzt zerlegen wir das Dreieck OPQ in Teilmengen. Es seien

ae= )% 0083)( S X ST, 0Sc0sas

1 Nach der Fertigstellung dieser Arbeit habe ich erfahren, daB dieses Ergebnis auch von Su-
bak [8] erzielt worden ist. In seiner Dissertation hat er auch De bestimmt. Weiter enthalt die Disser-
tation von Haas [7] die Lésung des Problems fiir k=1. (Die Ergebnisse von Subak und Haas wur-

den nicht verdffentlicht.) Die hier folgende Ableitung der Gleichheit D,=—32£l ist von den
ifT

Beweisen von Subak und Haas weitgehend verschieden. In einer weiteren Arbeit ist es mir gelungen

unter Anwendung der hierigen Ideen eine allgemeine Methode fiir die Bestimmung von Dk zu

geben. Durch diese Methode wird das Problem der Bestimmung von Dk auf die Bestimmung der

Minima von endlich vielen stetigen Funktionen in einem Veranderlichen zurlickgefiihrt. Dadurch

ist es gelungen auch DHauBer Deund D- zu bestimmen.
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y =cosoC

7 1
OScosaSéx—& oder

v ir / fj

V T -x-/t’0-COS*=4)

(Eamsilly - * X, 5 ook o

jlj -* —y TT’ T ~ cosa - 18~ 2M -

(X, cos a) 1 i/ T i X
; 5 - x 5 6x 6 cosa—y oder
1 X ,
ij s xxji= cosa-2 [T~

{(*> cos a) rli/"g"'\—v AAif ZKZI’( S cosa —ﬁ/(}

[0Sl s*stt I M 1 )IT s oo

NitE Lsxsaa, 26413008,

' 1 ir2 1 7 11
(i 0msg) Tk g XSS gy
i/ T AT 7 O
T "5 8* 4x 6X
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————— 6X cosaS? oder

X
X A 1 ix—ls cosas X
=X 2 T )
0Ss cosa S 7XW oder

oacosa” --—-- —X
X 2.

— ,0s cosaSj oder

Es ist leicht einzusehen, dall die Teilmengen H1=HAi(H 1C\H3 (PNVW2Z), H2
(NTUV), H3(UW2Z), /74=H 4U <7/*1t15) (XYQPZUS), HO(XYZ), I16= tf6U [I6
(LMSTU), H, (MTS), Ha (OLM) keinen gemeinsamen inneren Punkt haben und
jeder Punkt der Dreiecks OPQ (auRer 0) zu irgendeiner von den Mengen H, (/=
=1, 8) gehdrt.

Mit K[XYZ] bzw. k[XYZ] bezeichnen wir den abgeschlossenen Kreis bzw. die
Kreislinie, die von den nicht kollinearen Punkten X, Y und Z bestimmt sind. Die
Formel

gibt den Umkreisradius r des Dreiecks mit den Seitenldngen x, y und z und mit dem
Inhalt Tan.

Es seien k1v—k[OB(3A)], k2=k[0(2A)(A+2B)], ka—k[0(2A)(2B)], kt:=
:=k[0(A+B)(3A-B)\, k5:=k[0(3A)(2A+B)\, ke:=k[0(2A+B)(3A-B)], k2:=
-=k[0(4A)(A+B)\ und ka:=k[0(5A)(2A+B)]. Mit A, (Ils/s8) bezeichnen
wir das Gitterdreieck, durch das der Kreis k, (1si™S) oben bestimmt wurde. Der
Radius des Kreises kt wird mit r; bezeichnet. Auf Grund von (3) kdnnen wir diese
Radien wie folgt aufschreiben:

9a2+ bh2—6ab cos a
(4) 4sin2a
(a2+ 4b22—16a2b2cos2a
() 16b2sin2a ?
a2+ h2—2ab cos a
(6) r3—

sinza
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2 ((a2+ b92—4a2b2cos2a)(9a2+ b2—6ab cosa)

(") 4 16a2hz2sin2a
o *@_(a2+ b2—2ab c0s a)(4a2+ b2+4ab COS a)
®) Ab2sin2a
o r3- (a2+Ab2—4ab COS cc)(4a2+ b2+4ab cosa)(9a2+ b2—6ab COS a)
©) 100a262sin2a
(10) z- (a2+ b2+ 2ab COS 0i)(9a2+ b2—6ab COS Q)
4b2sin2a
2 (4a2+ b2+4ab cos a)(9a2+ b2—6ab COS @)
(11) ab2sin2a

Bemerkung 1. FUr die Basisvektoren des im Satz erwahnten Gitters

(12) \A\ = A \B\ = \B-A\ =" 1.

Es ist leicht einzusehen, da’ beim Gitter (12) die Kreise kit k3, kx und k5 (Abb. 2)

Einheitskreise sind. Danzer [3] zeigte, daR das Gitter (12) eine 5-fache Uberdeckung

von Einheitskreisen erzeugt. Die Dichte dieser Uberdeckung ist
717

Bemerkung 2. FUr die zu (12) dhnlichen Gitter gelten

(13)

d. h., der Punkt Z (Abb. 1) entspricht den Gittern (13) im recht-

winkligen Dreieck OPQ. r sei ein Gitter, fir das (13) gilt. Dann sind die dem Gitter
r entsprechenden Kreisradien ru r3, r4, r5 gleich. Auf Grund der Bemerkung 1. ist

8
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die Anordnung L(r,rt) (/=1,3, 4,5) eine 5-fache Uberdeckung und L (7, rf)

hat die Dichte 329;

717
Zum Beweis des Satzes verwenden wir einige Hilfssatze.

Hitfssatz 1 Wir betrachten ein Gitter von normaler Darstellung, bei dem
(x, cos (/=1,  8) gilt. Dann liegen hochstens 4 Gitterpunkte im Inneren des
Kreises kt und das Dreieck ist nicht stumpfwinklig.

Beweis. Nun untersuchen wir den Fall (x, cosa)£EH1. In diesem Fall gilt
2A+B~kr wegen (1). A, 2A, gelten offenbar. 3A+B$kAk 1 ist und

3A+Bdki gilt nurim Fall a=y wegen (2).

Mit K bezeichnen wir den Mittelpunkt des Kreises k1 (Abb. 3). 2A—R£ kI\k 1
ist, wenn

(14) \(2A-B)-K\2/ \K\2

gilt. Aus (14) ergibt sich

(15) 4N\A\2+ \B\2-4A-B-4A-K+2B-K” 0.

Weil O, 3A und B”kx sind, gelten \K\2=\B-K\2= |3zI-K|2 d. h,, sind
(16) \B2= 2B-K und 3\A\2= 2A K

Aus (15) und (16) bekommen wir die Ungleichung
\B\2~\A\2 =£ 2A-B.

Wegen A+ M Icos a und X=hH ist

! cosaN— - 'F

(17)

mit (14) aquivalent. (17) gilt aber nach unserer Voraussetzung, deshalb gilt
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2A—B$ kx\ki. Daraus ergibt sich sA—B$klIt wo s eine ganze Zahl ist. Es ist
offenbar, dal3 kxkeinen weiteren Gitterpunkt enthalt.

<(BO(3A)™, <(0(3A)B™ gelten offenbar. <(OB(3A))<]j
\B ~§’A > ziA gilt. Daraus ergibt sich cos a<

die wegen (x™j) qilt

Ebenso kann man in den weiteren Fallen unsere Behauptung beweisen, deshalb
legen wir die nicht ausfuhrlich dar. Wir geben nur die 4 Gitterpunkte an, die im Inne-
ren von k, liegen kénnen:

(X, cos <X)EHL A, 2A ,A+B, 2A+Beki,
(x, cos «)E//, A, B,A B,2A Bf k%
(X,cos a)£//3 A, B, A+B, 2A-\-Bdk3,
(a, cos d)€H4 A 2A, 3A,2A-BekK,
(x,cosa)EHf\H5 A 2A, A—B, 2A—B£k4,
(x, cos Q)EH5 A, 2A, A+B, 2A—B£K5,
(x, cos a)E//f A 2A, 3A, 2A-BE£kS6,

(x, cos a)€l7,, A2A, 3A, 4Aeke,
(X, cos tX)EH7 A2A, 3A 2A~{~Bfk7,
(x, cos a)tllg A2A,  3A 4A£Ki .

Wir betrachten ein Gitter F von normaler Darstellung. Mit g bezeichnen wir
die folgende Transformation von F. Wir halten den Basisvektor A fest und bewegen
den Endpunkt des Basisvektors B auf der zu OA parallelen Gerade derart, daf3 |B\
zunimmt. Wir wenden die Transformation g hichstens bis der Lage \B\= \B—A\

()

Hitfssatz 2. Wir betrachten ein Gitter r von normaler Darstellung, flir das

(x,cosa)E/l,, i=1, 3,4,6,7 oder 8 gilt und wir wenden die Transformation g auf
das Gitter r an. Dann nimmt der Radius  (7=1, 3, 4, 6, 7, 8) streng ab.
Beweis. Im Fall (X, cos 7=1, 3,7, 8 ist das Gitterdreieck A{ nach dem

Hilfssatz 1nicht stumpfwinklig. Es ist leicht einzusehen, dafd A{ héchstens in bestimm-
ten Randpunkten von Ht rechtwinklig sein kann. Folglich nimmt der entsprechende
Kreisradius r, offensichtlich ab.

Gilt (x, cos a)EH4, dann ist das Dreieck d4=0(.4-f j5)(3,4—B) nicht stumpf-
winklig. 23 und 3 2seien zwei beliebige Lagen von B wahrend der Anwendung von g,
sodaR gilt (Abb. 4). Esgiltauch < (0(A+BJ (2A))>< (0(A+BJ(2A)).
Es ist offenbar, daf? \B4—A\>\B3—A\ und < ((A+B?)(2A)0) ((A+B4 (2A)0)
sind. Wir drehen das Dreieck 0(A+B~(3A —B2 um 2A mit dem Winkel

8*
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(A+B2(2A)(A+BY). Aus den obigen folgt, dal das so erhaltene Dreieck im Inneren
von k[0(A+B1(3A—B1] liegt. So ist der Radius von k[0 (A + B2 (3A—Bo)] Kleiner
als der Radius von k[0(A+BJ)(3A—BJ], d. h., r4 nimmt streng ab.
Ebenso kann man die Monotonie von re im Fall (x, cos <x)dHe beweisen.
Damit haben wir den Beweis des Hilfssatzes beendet.

Die Transformation g4 von f ist folgenderweise definiert. Wir halten den Basis-
vektor A fest und drehen den Basisvektor B um O, so daf3 azunimmt. Wir verwenden

diese Transformation nur im Fall acy.

Hilfssatz 3. Essei T ein Gitter von normaler Darstellung, fir das (X, cos
oder (X, cosd)dH5 gilt. Dann nimmt r2 bzw. r- wahrend der Anwendung von g4
streng ab.

Beweis. Es ist leicht einzusehen, dal? zf2 bzw. A5spitzwinklig ist, wenn der dem
Gitter entsprechende Punkt (x, cos a) ein innerer Punkt von H» bzw. Haist. Es seien
< (B1OA)=ul und < (B20A)=a2, wo Bxund B2zwei verschiedene Lagen von B
wahrend der Transformation g4sind. Es sei und (x;,cos a)E /L (7—L, 2)

(Abb. 5). In diesem Fall ist < (0(A +2B,)(2A))<y m Wahrend gj ist A fix und

|5i]= |BZ gilt. Deshalb sind A(A+2BX und A(A+2B2 gleiche Strecken. Weil
a2>al ist, gilt A-\-2B2dk[0(2A)(A+2Bfi\, d. h., nimmt r2streng ab.
Ebenso kann man beweisen, da rs im Fall (x, cos 0i)EH5 streng abnimmt-

Der Beweis des Satzes. Wir betrachten eine beliebige gitterformige 5-fache
Kreisliberdeckung L(T, r), wo F von normaler Darstellung ist. Wir nehmen solche
Kreise, die von nicht kollinearen Gitterpunkten bestimmt sind und hochstens 4
Gitterpunkte in ihren Inneren enthalten. Weil die Uberdeckung 5-fach ist, missen
wir auch die Mittelpunkte der vorigen Kreise mindestens 5-fach tberdecken. Das
bedeutet, daB die Radien dieser Kreise ~r sind. Auf Grund des Hilfssatzes 1 gilt
r™ri, wenn (x, cos d)fHi (i=I, ...,8) ist.
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Die Dichte von L(F, r) ist-jyjy>wo T(T) der Inhalt des Grundparallelogramms
von r ist. Fur die Basisvektoren von r gilt (2). Entsprechend den Werten x und
cos a kdénnen wir die Dichte von L(T, r) mit einem von den Quotienten II;F]
(/=1 8) von unten schatzen. Wir zeigen, dafR

r? 32
nn - iy
bei dem entsprechenden Index i gilt und die Gleichheit nur bei den in der Bemerkung 2

erklarten Kreistiberdeckungen auftritt. )
r

Mit Hilfe (4—11) und T(r)—ab sina kénnen wir die Quotienten :
i= 1 ..., 8 als Funktion von x und a aufschreiben. Die Definitionsbereiche der Funk-

tionen Ht (i=I, ..., 8) kann man auf der Abb. 1 sehen.

1 Wir betrachten eine 5-fache Uberdeckung L(T,r), wo (x, cosa)é//2 fir
das Gitter F gilt. In diesem Fall ist

n
T(r) - T(r)°

Wir wenden die im Hilfssatz 3. gegebene Transformation  an. Wahrend dieser
Transformation bleibt x konstant, cos a nimmt ab, der Inhalt des Grundparalle-
logramms nimmt zu und nach dem Hilfssatz 3. nimmt r2streng ab. Das bedeutet,

daR die Funktion , H2 wahrend  streng abnimmt. Deshalb nimmt unsere
Funktion ihr Minimum im Fall cos x=0 auf. Im Fall cosa=0 kdnnen wir unsere
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Funktion folgenderweise aufschreiben:

(18)

Die erste Ableitung von (18) ist
(x2+4)

16x2 (3x2-4) < 0.
So gilt
'3 4,52 32
r(F) _ t(f) j
16]) T 717
2. Jetzt untersuchen wir solche 5-fache Uberdeckungen L(T,r), bei denen
(x, cos a)€//5 gilt. In diesem Fall gilt
2
T{T) ~ T(T)

und wir konnen die Transformation gxanwenden (s. Hilfssatze 1und 3). Wahrend

der Anwendung von gj nimmt streng ab. Auch cos a nimmt ab und x ist kon-

nn
stant. Deshalb nimmt die Funktion an21 auf H. ihr Minimum bei cos oe=i'/T—

oder cos a=2x——auf.
X

Aus der Gleichheit » ((7) und (8)) erSibt sich
(19) coS -X2—1+ 2 ¢]/—bx4+ 5x2+ 1
6X
ImFall / 1 ~ | nimmt (19) streng ab und die Koordinaten von Z und P be-
friedigen (19). Man kann leicht sehen, daR nn nn im Fall cos @> cos a0
. . r\ r 1-1/ 1 1.
ist. Deshalb gilt r(r) >’r(r) > wenn cosa=T |/T oder cos«=2x-— ist

Diese Falle werden aber spater untersucht (3.6. und 3.7.).
3. Endlich betrachten wir die 5-fachen Uberdeckungen L(F, r), bei denen
(x,cos a)e/lj (i=1,3,4,6,7,8) gilt. Aus dem Hilfssatz 1 folgt, dal '

nn (i=1,34,6,7, 8) ist. Nun wenden wir die Transformation g auf F an.

80 kénnen wir vermindern (Hilfssatz 2). Wéahrend der Anwendung der Trans-
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formation g nimmt a ab und nimmt cos a zu. (Wir bemerken, daR die den Gittern

entsprechenden Punkte im Koordinatensystem x, y=cosa wahrend der Anwendung

von g auf einer Ellipse bewegen.) Mit Hilfe von g kénnen wir die Grenze der ent-

sprechenden Menge H, erreichen. Wenn wir wahrend der weiteren Anwendung von g
-2

die Punkte irgendeiner Menge Hj (j= 1, 3, 4, 6, 7, 8) bekommen, dann gilt
nn

"‘“’T(I) *m (“renzPun™t /i_] mit den folgenden Ausnahmen. Diese sind H1C\H3

. . 3 1 .
im Fall cosa=L und H7C\H6 Im Fall cosa=yA—— . Sonst kann man die

Gleichheit T o | |
r(r) “ reo"z’B*mit Hilfe von ~ M einsehen- Gilt

f([)~ T(T) Grenzpunkt Gu, so kénnen wir mit der Anwendung von g und der

r2
Funktion , Hj weiter vermindern. Es ist leicht einzusehen, dal3 wir mit Hilfe der

Anwendung von g einen von den folgenden Féllen erreichen. (Diese Félle sind auf
der Abb. 1 ununterbrochen dick bezeichnet.)

3.1 den Punkt Z(/? d' h’ das Gitter
3.2. die Funktion n HIt wenn cosa=— (VW) ist.
T(T)
. . ri .
3.3. die Funktion 7%0 HIt wenn x=ii (NWV) ist.
,2
3.4. die Funktion TI(‘(l) , 114, wenn cosa=y (SZ) ist.
3.5. die Funktion rEiO 1 /14\/15, wenn cosa=— (YQ) ist.
. . i2 .
3.6. die Funkt ~ :
ie Funktion T(O' H f\H 6, wenn cos a~y ist
(o]
3.7. die Funktion " wenn cos a=2a—- (XY) ist.
r(0"
. . 3 1 .
3.8. die Funktion nn H7, wenn cosa=y a—— (MS) ist.
3.9. die Funktion & 1 H6, wenn cosa=y (LS) ist.

nn

3.10. die Funktion nr]n , Ha, wenn cosa=y (OL) ist.
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In den Féallen 3.2. und 3.3. missen wir das Minimum der Funktion

ri 9x2+ |—6xcosa
nn 4x sin3a
mit der Bedingung cos a = Bzw. x- finden. Bei cos a=-- bzw. x=1/y

bekommen wir die Funktion

(20) 8(15x2+ 2)
XxV'l16-x23
bzw.
21 5,5—3/? cos < b3 COS 1i y1
2/2 sin3a

Mit Hilfe der ersten Ableitung kénnen wir zeigen, daf? (20) und (21) ihr Mini
mum an der Stelle x— A oS a=—4T-/]/ \A aufnehmen. An dieser Stelle ist aber

ORer als
nn o..... ~

In den Fallen 3.4—3.7. brauchen wir die Funktion

((x2+ 1)2—4x2co0s2a) (9x2+ 1—6X COs a)

(22) Tin 16x3sin3a

. . X . .
zu untersuchen. Bei 3.4. und 3.5. ist cos a=—, deshalb mussen wir

12X4+ 8X2+ 1
23 -5 o Y= - ‘3 ‘3
(23) 2X314 —x2: 27 X- B
untersuchen. Mit Hilfe der ersten Ableitung kénnen wir uns davon Uberzeugen, daf

(23) im Fall
/2
/

I 3

. C aun . .
"®*®VT streng abnimmt und bei Sx”™ zunimmt. Bei

32
x=1 nimmt die Funktion (23) einen groéReren Wert als 7—/7—auf, deshalb erreicht
unsere Funktion ihr Minimum an der Stelle x=j/-”, d. h., fur die Gitter (13).

Im Fall 34. (¢ - T ) bekommen wir aus (22) die Funktion

(2x4+ 3x2+ 2)(9 /2 x 2—3x+/2) ro_ .12+ /130

24
(24 14/7x3 2~ X~ 16
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Es ist leicht einzusehen, dal3 (24) zunimmt, d. h., (24) ihr Minimum an der Stelle

aufnimmt.

Im Fall 3.7. ~cosa=2x — missen wir die Funktion

3(—S5ia+6je—1) (7—3j®  /2+/T30

25
(29) 16/—4x+ 5x2—1: 16 o -

untersuchen. Mit Hilfe der ersten Ableitung kénnen wir beweisen, dal3 (25) streng
abnimmt. Threr Minimumwert ist aber grof3er als Y—Qﬁ—

Im Fall 3.8. fcos,gle:y1 L J kénnen wir die Funktion A2 auf Grund (10)

folgenderweise aufschreiben:

20jc2(8x2+ 1) < S
(/—36ad+ 28a2—)3y f f 2 ¢

Man kann leicht einsehen, dal3 (26) zunimmt. An der Stelle x—j/™-"" ist aber (26)

(26)

grofier als —32—.
717

2 r2,

Im Fall 3.9. bzw. 3.10. miissen wir die Funktion —" bzw, ' unter der

Bedingung cos «=))/( untersuchen. Auf Grund von (9) bzw. (11) bekommen wir
die Funktionen

2(6x2+ )2 2 1
27
@) 25§38/ 4 - x2 B~*~2
bzw.

2(6x2+ 1)2
@) x\'4-x23" el tt-

Mit Hilfe der ersten Ableitung kbnnen wir uns davon iberzeugen, dass der Minimum
wert von (27) bzw. (28) groRer als 7—33— ist.
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EXTREMALE GROEMERPACKUNGEN

GERD WEGNER

Wir verwenden die Bezeichnungen aus [1]. Wir wollen eine Groemerpackung
(8 aus n Kreisen extremal nennen, wenn Po(n)=p(#) gilt. Wie in [1] dargelegt, ist
fir eine extremale Groemerpackung F(conv &)=F(P(&))=FQri) und die Frage
nach der minimalen Flache, die die konvexe Hulle einer Packung aus n Einheits-
kreisen haben kann, far solche n geklart, fir welche extremale Groemerpackungen
existieren.

Bei Groemerpackungen aus mindestens zwei Kreisen ist p{(8) die Anzahl der
peripheren Kreise. Fir die Randsequenz Pi, p2, Pa,Ps, Pa, R& gilt lh+i+Pi+z—
—Pt+; +Pi+i (Indices modulo 6) und damit erhalt man folgende, rein zahlentheore-
tische Charakterisierung: Eine extremale Groemerpackung aus n Kreisen existiert
genau dann, wenn es zu n nattrliche Zahlen Pi,p2,Pa,Pi gibt mit

(0 n= (pltp2-1)(p3+P4-1)-(2D-(22
A>(«)= Pi+2pa+2p3+/>4-6.

Mit Hilfe der Einschrénkung der ptin [1] 4.4 — die sich fur grof3es n leicht ver-
scharfen 1alRt — ist fur eine gegebene natiirliche Zahl n leicht entscheidbar, ob es zu «
eine Extremalpackung gibt oder nicht. Die Zahlen n, zu denen keine Extremalpak-
kung existiert, seien Ausnahmezahlen genannt. Diese Bezeichnung rechtfertigt sich
durch die diinne Verteilung dieser Zahlen. So gibt es unterhalb 1000 nur 24 Ausnah-
mezahlen: 121, 163, 211, 235, 265, 292, 325, 355, 391, 424, 463, 499, 541, 580, 625,
667, 706, 715, 760, 802, 811, 859, 904, 913, 955, 964. Eine theoretische Charakterisie-
rung der Ausnahmezahlen anzugeben, scheint jedoch schwierig zu sein. Die bis n= 106
fortgefiihrten Rechnungen stiitzen die folgende

Vermutung 1 Ausnahmezahlen sind genau diejenigen Zahlen n, bei denen in
der Darstellung

n=1+6"+ab+c mt 0Si<6 Osc<id

(vgl. 4.3 in [1]) die Parameter a, b, ¢ eine der beiden folgenden Bedingungen erfillen:
a) b=2 und a—e= —6m mod 9m+1 mit mMGNO;
b) b—5 und a—€=4-9mmod9m+1 mit mMEN,,.

1980 Mathematics Subject Classification. Primary 52A45.
Key words and phrases. Packing, geometric extremum problems,
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Zu dieser Vermutung wollen wir nun Teilergebnisse angeben. Nattirlich sind die
Zahlen n= 1+6{2] keine Ausnahmezahlen; zu diesen gehdren die Groemerpak-

kungen mit regularer Sechsecksgestalt. Dabei erhdlt man die Packung mit 1+6°27)

Kreisen, indem man um diejenige mit 1+6 72) Kreisen eine neue Kreisschicht herum-
legt. Dieser ProzeR des ,,R&nderns” l1alt sich auch auf andere Groemerpackungen
anwenden: Randert man eine extremale Groemerpackung aus n—1+6  +ab+c
Kreisen (nun seien b, ¢ nicht beide 0), so erhalt man eine Groemerpackung aus

1-+ N2 Y+ (a+ D™M+(c+ 1) Kreisen und diese ist v/ieder extremal. Dasselbe gilt

fir den umgekehrten ProzeR des ,,Schalens” (Entfernung aller peripheren Kreise),
wenn nicht b=0f\c=\ bzw. b~OAc—O ist. Somit gilt:

Lemma. Entweder alle Zahlen einer Serie
o gatk| . kf fur b=o,
1+67 2 J+(B+k)h+ far b Ao, keNo
sind Ausnahmezahlen oder keine.
Es genigt also, die ,Pilotzahlen” n—1+6 +ab+c dieser Serien mit

b=0Ac=1 oder b/-0Ac=0 zu untersuchen. — Als Konsequenz des Lemmas hat
man beispielsweise, dall Zahlen n mit c=a—1 keine Ausnahmezahlen sind. Die
zugehorigen extremalen Groemerpackungen ergeben sich durch c-faches [bzw.
(c—)-faches] Randern der entsprechenden extremalen Groemerpackungen zu
n—2, 3,4, 56 [bzw. 8].

Satz 1 Die Pilotzahlen
n=1+6 ["j+2a mit a= 0mod9
und
n= 1+6 + mit a= 6 mod?9
sind Ausnahmezahlen.

Beweis. Setzen wir x-.=ih + P z-\, y:=p3+ P i-1, r.—px und s:=Pi, so geht
(1) Gber in

®) <« @-@)
pO(n) = 2x+2y-r- -2.

Im Falle n=1+6 +2a sind also natlrliche Zahlen X, y, r, s gesucht mit

€)) 1+6 9 + 2a = xy-

6a—3 = 2(x+y)—(r-fs)—=2
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und damit haben diese Zahlen wegen a=0 mod 9 die folgenden Kongruenzen zu
erfillen:
4) 1mod 9

2(x+>")—r+s) = —lmod 9.
Nun nimmt ™I modulo 9 nur vier Werte an, namlich

=0mod9 fir m=0,1mod?9

Imod9 fir m= 2mod 3
r2j=3mod9 flir m= 37mod9

.. J—6mod9 fir m= 4,6mod?9.

Damit 1aBt sich durch Fallunterscheidung leicht zeigen, da unter Beachtung von
2(x+y) —{r+s)= —1 mod 9 bei jeglicher Wahl von X, y, r, sstets xy— —2)" 1
mod 9 ausféllt, d. h. (4) und somit auch (3) sind nicht I6sbar. Entsprechend fuhrt der
Fall n=\+6 +5a mit a=6mod9 auf das unldésbare Kongruenzensystem

Xy—"j— = 4mod9
2(x-hj)—r+s)

AuBer der trivialen Serie «=1+6 “2] lassen sich weitere Serien von Zahlen

angeben, die keine Ausnahmezahlen sind, und zwar in Abhangigkeit davon, daB sich
a durch gewisse bindre quadratische Formen darstellen lait. Wir stellen diese Er-
gebnisse, die unmittelbar verifiziert werden kénnen, im folgenden Satz tabellarisch
zusammen.

2 mod 9.

Satz 2: Fir die Pilotzahlen n=\+6 +ab+50b mit den in den ersten beiden

Spalten der nachfolgenden Tabelle angegebenen Werten von a und b, wobei u, v nicht-
negative ganze Zahlen sind, gibt es extremale GroemerPackungen und zwar bilden
Xx=2a+Uu, y—2a—u und die in den letzten beiden Spalten angegebenen Werte von r
und s eine Lésung von (2).

a b r S
5+ u2+v2- 3v 0 a—r+ 3 a+u
1+u2+ v2 1 a—v+ | a+v—1
l+u2+ v2-v 2 a—v+ 1 a+u
1+ u2+ V2 3 ati> a—v
2+ u2tve-v 4 a+r—1 a—V
3+tu2+v2 5 a—v—1 a+v—1
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Die Randsequenz der Groemerpackung ergibt sich dann zu
nrx—+\,y—s+1, s x—s+1,7—+1.

Hier war nicht beabsichtigt, mdglichst viele solche Serien anzugeben, sondern
fUr jeden Wert von b wenigstens eine. Eine Abdeckung aller Mdglichkeiten durch
endlich viele solche Serien, bei denen a dargestellt wird durch binére quadratische
Formen, ist ohnedies nicht zu erreichen.

Fur Ausnahmezahlen n bleibt die Frage nach der minimalen Fléche der kon-
vexen Hiille einer Packung aus n Einheitskreisen zunachst vollig offen. Vermutlich
wird auch in diesen Fallen der Minimalwert von Groemerpackungen geliefert und
zwar hier von solchen mit pO(n) +1 peripheren Kreisen:

Vermutung 2. Ist  eine Packung aus n Einheitskreisen und n eine Ausnah’
mezahl, so gilt

F(conv (& = FO(«) +2—3

und das Gleichheitszeichen tritt fur jedes nein und zwar genau flr geeignete Groemer-
packungen.
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A NOTE ON THE ARGUESIAN LATTICE IDENTITY

ALAN DAY*and DOUGLAS PICKERING

Abstract

In a series of (sometimes joint) papers, Jonsson (et al.) introduced the Arguesian lattice iden-
tity, and proved it was equivalent to (the lattice theoretical formulation of) Desargues’ implication.
In this note we present two new equivalent formulations of the Arguesian law together with a simpli-
fied, complete proof of the aforementioned earlier results.

Let (L; +, ¢) be a lattice. A triangle in L is an element of L3 For two triangles
in L, a=(0,0l,ad and bHZ>0blb,) we define auxiliary polynomials
Pi=pi(a,b)=(alJ+bJ) (ak+bkK), p=pip](=pipk=pJpK, and c—-cfa, b)=(a,-fak m
*(bj+bR. Two triangles, a and b in L, are called centrally perspective if /2(a, b)S
Sa2+b2 and are called axially perspective if c2(a, b)Sco(a, b)-fcx(a, b). We
abbreviate these concepts as CP(a, b) and AP(a, b) respectively. Desargues’ impli-
cation is the Horn sentence CP(a, b)=>/fP(a, b).

Theorem. In the theory of lattices the following are equivalent.
(1) Desargues’ Implication

(2) p(a, b)™a0(dj + c2(co+ cy) + bO(bx+ c2(c0+ Cj))

(3) p(a b) ™ ao+Zto™ + Gahico+ Qj))

4 p(a,b)a0+bl+c2(cO+c)

(5) (a0+ej (b0(@a0+pQ +bH~cO+cl+bl(ad+ald.

Proof. We first note that all of the above statements imply modularity. For (1),
consider the triangles a=(xz,z,xz) and b=(xzvy,y). For the rest use
a=(xyz,x,x) and b=(y+z,yz,yz). Secondly, we have trivially that (2)=*(3)
and (3)=>(4).

(3)=>(2): Using the a—b symmetry of p(a, b), (3) implies
p S [a0+ bO(bx+ c2(co+ cO)] [bo+ «o(Ni + c2(co+ ct))]
= (foNi+ Qi+ ¢ + hoNi + Ao+ Cin+ floo™ by mod
floni+CaCco+ ¢ + hoibi + Caico+ Cl)), by mod
and the fact that a0Ob0Sc2(cO+c)).

This paper is the written version of a talk held at the Conference on Universal Algebra,
May 30—June 6, 1982, Visegrad, Hungary.

1 Research supported by N.S.E.R.C. Operating Grant A—8190.
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(5)™(3): Making heavy use of modularity we have
p =ao+ ho(fri+C2(@+ Q)) iff a0+p ~ ao+bofa+Czico+Ci))
iff bO(@a0+p0Q S a0+ bO(b1+ c2(ca+cl)
iff bO(,+p0Q ~ bO[aObO+ b1+ c2(co+q)] =
bO[hi + c2(co+ q)] =
bO[hi+ (ao+a1)(co+q)]
iff bl+ b0(@0+p0Q S hi+(«o+ai)(co+ci)
and by meetingwitha0+ax, iff (a0+al(b0(@0+pQ+bl) ~ Co+q+h”ao+ai)-

(1)=>(5): By modularity, for any triangles, a and b, the modified triangles a'=

= (a0, cx, aa+g”™q+hj)) and b'—(b0@0+p0, b+, b2) are centrally perspective.
By (1), AP(a',b"), namely:

(a0+a”(b0(a0+p0 + b) ~ (ao-l-a2)(bo(ac+/>0) + h2 +
+ (al+ a2+ bl(a0+ al)(bl+ b2 —
= cl+c0+ bl(a0+al).

(4)=>fl): Let a and b be centrally perspective triangles. By substituting into (4) we
obtain

(a0+ bQ(al+ b) ao+ &+ ca(co+q).
By joining with a0+b1and then meeting with c2 we obtain:
c2 = c2(ao+ ho+ hj)(ao+ a1+ h)

= c2(ao+ B4 c2(co+q)) by (4
c2(co+ d+ c200+ fri)) =

N co+0g+al+ &)+ &i(ao+fli) =

— (hi+ b2(fli+ n2+ hi(a0+ al)) + ((G0+ a2 (h0+ h2+ i7o(fo+ fi)) =

— (hi+ b2(ui+ a2+ao(di+ f,i)) + (ao+ a2)(f,o+ 2+ fi(ao+ f,0) —

—(hi + h(fli + a2+ do(a 2+ h) + (q + fl2 (bo+ b2+ bx(n2+ h2),
by CP{a, b)

= (hi+ h2(B!'+a2+ h2(a0+ fl))+ (ao+fl2)(ho+ h2+ u2(hl+ h2)) =
co+ h2(ao+ fld + A+ az2(h1i+ h) =

= c0+q.

This completes the proof.

Using the Desargues’ Implication, Jonsson ([3]) showed that Arguesian lattices
(i.e. lattices satisfying any of the above) formed a self dual variety of lattices. None
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of the above equations make that result transparent. Since distributive lattices
(x+y)(x+2z)(y+z)=xy+xz+yz) and modular lattices ((y+z)(x+yz)=
=yz+x(y+z)) are self-dual variaeties and are defined by a self-dual equation
p=pdd, one might ask if such an equation exists for Arguesian lattices.
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ON POLYADIC GROUPS WHICH ARE TERM-DERIVED
FROM GROUPS

K. GLAZEK and J. MICHALSKI

0. Introduction

W. Dornte introduced in [4] the notion of n-group (called also a polyadic group
[16]; for the definition see also [7] and [5]), which is a natural generalization of the
notion of group. We recall that (G; /) is an fn+ I)-group if /: G,+1—G is associa-
tive and for every &6{0, 1, n) (and fixed x,-£G; zV/c) the mapping

z—/(*o,*!, ... xk",z,xk+l, ..., X,)
is bijective. One can observe that if
(0) f(x0,x1,...,xN = x0oxl1o...0xn

in a group (G; o), then (G;/) is an (n-t-1)-group. This polyadic group is said to be
derived from the group (G; o). In [4] a criterion was proved in order that a polyadic
group were derived from a group. The following more general situation has also
been considered:

(D) f(x0, Xi, ..., xn = g0(x0Qotpl (x¥0...otpn(xnod,

where i maps G into itself and d£G.
Timm proved [18] that the operation/defined by (1), where

@ q@x) =x, (Pie)=¢e (i=o,1,..,r,

and e is the neutral element (identity) of the group (G; o), is an (n+ I)-group opera-
tion over (G; o) if and only if

(b) gt is an automorphism of the group (G; o),
(c) (Pi=(p[ (i=0, 1, ..» n—1),
(d) gn(x)=doxod~1,
(e) c(d)y™=d.
Let cp=cpi. Then an (n+ I)-group (G;/) (or the operation/), where/is of the
form (1) with (a)—e), is said to be (s d)-derived from the group (G; o) (see [6]).

This paper is a written version of a talk held at the Conference on Universal Algebra,
May 30—June 6, 1982, Visegrad, Hungary.
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Post and HosszU proved that every polyadic group is ((p, «//-derived from a group
([16], p. 245, [9], see also [19]).

In this paper we shall consider special (cp, «//-derived operations called here
R-derived (namely, if d=e and cp(x)=xB, where  is an integer; of course, 1-derived
means derived in the previous sense). It will be shown that such operations coincide
with term operations on the group (G; o) of the form

) [(x0,Xi, ...,*,,) = X0Poxllo...ox*m,

which are (n+ I)-group operations. Note, for example, that in the group (Z8; +)
the operation /(x,y, z)—x+3y+z is a 3-group operation.

By (G; o) we shall always mean a group (2-group). By F,,(G; o) we shall denote
the set of all term operations on (G; o) of the form (2) which are (n-fl)-group oper-
ations. Of course, F,,(G; o) is a subset of the set T(G; o) of all term operations on
(G; o). If IET(G; o) and (G;/) is a polyadic group, then (G;/) (or the operation
/) is called term-derived from the group (G; o).

It is convenient to use the following abbreviated notation:

g(XO,Al» Vij, Xi+i, —, X,+s+1, ..., Xm) g(XO,Xj, X, X, XoHsH+i, Xn)
. © .
whenever Xi+l=..=x;+s=x (and X is the empty symbol for s=0). Denote also:
— 0(g(* *my (g 00 » ®5.amy> XMt 1, eee, eeoy> <n(r-pym H >’ "nn)

for an arbitrary m-ary operation g.

1. /i-derived operation

By using the results of Post, Hosszd and Timm we shall prove the following

Proposition 1. Let (G; 0) be an arbitrary group and assume thatf is of theform
(2). Thenf is an (n+ I)-group operation if and only if the following identities hold:

(3) Xa® — X — x \
(4) xxi = XB\
(5) (xoy)B = xBoyR

for some integer /MO. Moreover, the mapping x>-*xi3 is an automorphism of (G; o),
andfor every xdG the element xB~xbelongs to the center of (G; 0).

Proof. Let /£F,,(G; 0). Then for every xfG there exists a skew element
x€G such that

(6) /(X, Xy ey nyvY) = y
and

(7) f(y, x,...., x, X, x) =y
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for every ydG (see [4]). So we have

(6" Xaooxai+- +*N-»0Xx*»-»oyan = yt
(7) Y 200Xai +--H,N-«OX®»-ioxXI>= .

By putting y=e, we conclude that xai+- +,»*ojca»-i is the inverse to x* and to
xV Therefore, from (6") and (7') we get (3) and also (a) for <@(x)=xa Put
(Pi(x)=xX, x1=B and d—e. Then/ is of the form (1) with (a), and by Timm’s
result the mappings (p( fulfil the conditions (b)—(e). Therefore we obtain the iden-
tities (4) and (5). It is easy to check that xi-1 belongs to the center of (G; o).

Now, let the identities (3)—(5) hold in the group (G; 0). Define (pi(x)—«".
By (5), 9t is an endomorphism of (G; 0). Taking into account (3) and (4) we have
((PDn(x)—x and dl is an automorphism of (G; 0). Therefore, the operation / is
of the form (1) with d—e, and the conditions (a)—(e) are satisfied. Hence (G;/)
is an («+ I)-group (cf. [18], [9] and [16], p. 245), which completes the proof.

According to the definitions above we get immediately

~ Corollary 1 [EF,(G; o) iff (G;/) is B-derivedfrom (G; o) for a suitable B,
i.e.
(1" /(x0, Xi,..., X,,) = xo0o0xfo...0xSI""ioX,,.

From [7] and from the formula
(8) X = X-U>HE'+.:+3""-")
we infer easily
Corollary 2. If (G'f) is an (n+\)-group B-derived from the group (G; 0),

then (G;/, ~) isareductof(G;o0)(i.e. every term operation of (G;/) isaterm operation
of (G; 0)j.

We observe that the conditions (3) and (4) describe all term operations which
are (n+ l)-group operations over an abelian group (G; 0). In particular, we have

Corollary 3 (See also [8]). The operation xoy is the only term which is a
(binary) group operation in an arbitrary abelian group (G; o).

From Corollary 3 we can infer (as J. T. Baldwin has remarked) also Lemma 5.1
of [2],

The next corollary is a generalization of a result of Prifer and Certaine for n—2
([27] and [3]); in this case we obtain a heap (or a flock) with operation xoy-loz
(see also [1], [12], [24], [15] and [20]). Firstly, observe that if (G;/) is an (/j+ 1)-
group (—)-derived from a group (G; 0), then nis even or x-1=x, because we have
Xi-0MNX.

Corollary 4. Let (G; 0) be a group and
9 [(Xy0y XX, vy X,,) = X00XF10...0X-_110X,,,
where n is even. Then (G ,f) is an (n+ I)-group iff (G; o) is abelian.

Indeed, if nis even and /?=—1, then the identities (3) and (4) hold. Moreover,
in this case identity (5) is equivalent to commutativity of the multiplication.
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In a similar manner (by putting /7=2) we get
Corollary 5 Let (G; o) be a group of exponent 2'—1, and

(10) f{X0, *1, ..., X) = X0*10-2° +m°Xn"-°Xn.

Then (G \f) is an (n+ I)-group iff (G; o) is abelian.
It is easy to verify

Corollary 6. Let n>1 F,(G; 0)= {x0oxlo...0a,} Iiff the group (G; o)
is Boolean, or without exponent and either n is odd or (G; o) is non-abelian.

In the case n—1 the part “if” is true, and for a free group we have F|(G; 0)=
= {xo00x1, which follows also from a result of H. Neumann [13]. We have also

Corollary 7. F,(G; 0)c{x0oxlo...0x,, x0oxflox2o..0x,} if (G; o)
is an abelian group without exponent.

2. Criteria of /i-derivabiiity

In this section we shall give some necessary and sufficient conditions for an
(n+ I)-group to be /-derived from a group. Observe that if an (n-fl)-group is B-
derived from a group with /?<—1, then the group (G; o) is of finite exponent
(which divides Bn—1 or —&n+ 1) and there exists y>-0 such that x~1=x8 So
(G;/) is also (—#?y)-derived from (G; o), where —fiy>0. Therefore, without loss
of generality, we may consider only the cases: >0 and R= —.

For the next theorem we need the following
Lemma 1. Let /?2>0, and assume that there exists e£G such that

(1D f{e,e,....e)= e
and

(n=1) (n-1) _
(12 0> e % ..., e ,X,e) =X

Then the identities . |
(13) f’bifﬁeH),x,(n_e) X, e % =X

. pe-i
hold for every i=o, 1, ...,«.

Proof. Of course, for i=0 we get

(14) f(e, x) = x

and for i=1 we have (12). Observe that (14) is equivalent to (11) in any («4-1)-
group ([4]). Assume (13) is satisfied for i—k. We shall prove that (13) holds for
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i=A:+ 1. By the assumption and by (14) we have

(n-1-1) (n-1) (n-1) (1+1X
ABKHA & o*> e w»eeen* ¢ X, ¢ )=
yik+1-X
I») (n—&—1) (n-1) (n-1) (1+1).,
= [(«./w k+»)( e s * e X, e )=
y I(«-1) - (n-1) (n-1) (n-1) oft
—/(OKk(O-1)+1)(. e >/(0K)( e >*> e »eoen™*, « >*>e),
0k- |
Si-1 -1 -1 k+1
(né ),X,(ne),...,X,(ne),x,(g)z*_
ik(i-D -i
.(n-1) (n-1-1) (n-1) (n-1 (1+1).
JOK(O—)+1)( » 9X, G X, £ ,e)X, £ ,X, £ )—

Ok(0 -1)-1
(n-1) (n-1 (n-1) (n-1 (n-1 (!
—IRKR-)+ N6 >x, e R x, e x e L8,
-1-1 -1 -1 1+ 1
(ne ),X, (ne),...,x,(ne),x,(é))=

a2+ sx, " xTEY % Y, x M8 Uy — —

(n-1) (n-1)  (n-1 (n-1y  (n-1 .
JHBK+B—\ A o X, ..., £ X, £ yIBK\ & oX, G , X, £),

0-2

(n—i-1) (n-1) (n-1 (1+1)) _
£ X, £, X, £ ,X, G >

ey

Rk- |
(n-1) (n-1y  (n-1-1) (n-1) (n-1) (1+1)
J0K+0-1)( e X, ... £ X, £ X, £ L, X, £ X, £ )=
0-1
(n-1) (n-1)  (n-N (n-1y (n-1) oft
IR ® >X» > A 2X, £ ,* (£ X, E L., X, £), £] —
0-1
(n-1) (n-1)
JO) (N X, ..., £ X, £l — X,
0

which completes the proof.

The following theorem is a generalization of D&rnte’s criterion ([4], p. 7, see
also [16], p. 231, and [10], p. 54).

Theorem 1. (G;f) isan (n+ I)-group which is B-dcrived, with /2>0, from some
group (G; o) ifand only if there exists an element c£G such that (11) and (12) hold.
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Moreover,
(15) X0y = i(x, v e
Proof. Let (G,f) be an (n-M)-group /f-derived from a group (G; o), and

B>0. Further, let e be the neutral element of (G; o). Then (11) and (15) are obvious,
and we have

I (e Ine-:D, X, v..,(«T:B, X, e) = /'(971)(/(«0._«, X een («e_l),x ,/’(’(»e_«,x, e)'>n:
fl-i
105-)(%eY D sy — s Ce? 08 %, xR oxRn) =
R-1 R-2

=...= xfn'o...ox" = xBn= x.

We get the last equality by (3) and (4). Therefore the identity (12) is also satisfied.

Conversely, let the («+ I)-group fulfil (11) and (12). Consider the binary opera-
tion defined by (15). By Lemma 1 of [9] the groupoid (G; o) is a group. Taking into
account (14) and the associativity of the (w+ I)-ary operation/, we get

XOox?o...ox,?_'i%)x,, =
(«—3) 0-1) 0-1) 0-1)
"Ay) VAO) & B*ALS 'Ax5 A ) A1) £ 5%A25 *%*.9 G ) -A25
(0] 0- (0]
el) X X el) X X e]) X n)

Bn-I

where y=1+/J+/P+... +Bn~\ Hence, by our Lemma 1, we have

B Bn~1
A:Ooxio.. ox Mioxrt =

rt  r AV 0-1) > -2 0-1)
—yxo=>./(/?)( B ; Xi, ..., e , £)>/(pa)( e >72> ® jN2j e
0 —1 2). 0-1 «—] O-U.
o e)xz(s)) 5 xn_i, _e )>>><R7i9*.,(e),xn7x, e ),xnx)
—[(X 0, eso! WX
Therefore (G;/) isan (n+ I)-group ~-derived from the group (G; o), which completes

the proof.
For the case n=2 Theorem 1 takes a simpler form.

Corollary 8. A 3-group (G ;/) is B-derived, with /?=-0, from a group (G; o)
iff there exists e£EG such that e—e and

(127) AR)(e’x’ <0 = *e

Indeed, it is enough to observe
X00Xiox2 ~ f{x.. AR)(-~ M) (%o, )
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Theorem 1gives a new description of acertain variety of groups.

Corollary 9. The class of all (n+ \)-groups (G;f ) R-derived, withfixed /?>0,
from a group (G; o) is polynomially equivalent to the variety of algebras (G ;/, ~, €)
(of the type (w+1, 1,0), where (G;f, “) is an (n+ \)-group equationally defined as
in [7] or [5], and e£G is afixed element satisfying (11) and (12)), and to the variety
of all groups satisfying (5) and xM= x.

For /?=—1 we obtain

Theorem 2. Let n be even, and let (G;f) be an (n+ I)-group. Then (G;/) is
(-\)-derived from some group if and only if the following identities hold in G:

(16) f(X,X, ....,X) = X,

@ f(xo, ..., X,, ¥, ¥, Xi+3, ..., xi) =f(x0, ..., xt, z, z, Xi+3, ..., X,,)

(for all i“n—2). In this case (G;f) is (—l)-derivedjrom the group (G; 0) where
(18) xoy =/(x,V )

for an arbitrary & G, and the inverse operation is given by

(19) x~x=f(c,°'x4 c).

Proof. Let an (n+ I)-group (G;/) satisfy the conditions (16) and (17). It is
easy to verify that (G; o) defined by (18) is a group with neutral element c, and the
formula (19) defines the inverse operation Indeed, we have

(xoy)oz =f(f(x, ('cXy), °cl), z) = xo(yoz).

Sti)ncge by (16) c is self-skew (i.e. c—c), so xoc=f(x,('c'\ c)=x. And finally we
obtain

.vox']l =/(*, (”61),/’&:, (nxl), c\% = /{jx , m:) x)\, («x'*), c>§= f’((f), c )X =C
Taking into account (16)—(19) we get

x00x f 1l0x20...0A:,,_1loxn =
(«) («-D () (n-1) ()

J(n+n/2)\x0 cC5Xi , C,X3, Xn—i, C,X,,)

_ (n-1) (n-D .
J(n/2)\XO* X1, X3, ..., Xn—i 9Xn) —
f(n2—DECO>X i, f( Xi ,X3,X3)9 ..., X/j—i, Xn) —

(»-U Vv
—J(nll I)\x0| X1>/( x2 >x2>x2)> eeo» X N-1> xn) —

(¢-3) (n-1)
~J(n/2 I)\x0>*1» X2i *3 >eee>xn-li X,)— —_

B /f((‘0> 15 e xn-2i §x Pas xn—2i X n—1)>xn-li xns =

[(*0, *1> eee> Xn-3>f(xnN—2,"n-2"-"n—2), *n-1> ~n) ~f(,x 0> eee» -*n)’

Therefore (G;/) is (—)-derived.
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Conversely, if an (n+ I)-group (G;f) is (—I)-derived from some group (G; o),
then the formulas (16) and (17) are obvious, and (G ;/) is also (—I)-derived from each
group (G; oc), where xocy=xocoy and c£G is an arbitrary element. Thus the
proof of Theorem 2 is complete.

Now we have (using the notion of polynomial in the sense of [11]) immediately
(see also [3] and [12] for n=2):

Coroltary 10. All (n+ I)-groups (—)-derived from some group (n is even)
form a variety which is polynomially equivalent to the variety of all abelian groups.

Finally we prove

Corollary 11 Let (G,f) be an (n+\)-group and n be odd. Then the following
conditions are equivalent:

(A) (G;/) isR-derivedfrom a Boolean group (G; o) (i.e.from agroup with exponent 2),
(B) (G ;f) is simultaneously I-derived and (—1)-derived from some group (G; o)’
(C) the following identities hold in G:

(20) f{x, ... x,y,y) =f(z, z, 1, 1),
(21 7 +i)(in’91) (y2) (7}&) (§/) , (n)-(l) ()2/)) -,
(D) the equalities

(22 fix, ...,x,y,;Nn=c

(23) IC€,%0= X

holdfor every x,ydG andfor some c£G.

Proof. Firstlywe prove that (A)-«-(B). Indeed, if ((?;/) is /I-derived from a Boo-
lean group (G; 0), then of course it is (—)-derived and I-derived from the group
(G; o), because x=xp=x~1 so (A)=>(B). Conversely, if (G;/) is /i-derived, for
R=1, —1, from some group (G; o), then

rooriorz0...0)r,,.i0)c,, —fix 0, e * ) = Apox1'10420...0A:B 10xn.

Hence by putting x~e for /VI1 we get x1=xf1 for an arbitrary xG. Therefore
iG; o) is Boolean.

The implication (A)=>(C) is obvious. Now if (C) holds, then fix, ..., X,V,Y)
does not depend on x andy, so it has some constant value ¢, and we get/(c, ..., ¢)=c
By putting x=y—¢ in (21) we obtain (23). Thus (C)=>(D).

Finally, from (23) we have (11) and (12) for e=c and R=I, hence iG;f)
is I-derived from some group (G; o). Now, by (22), we have

X' xoy2—fix, ....x,y,y) = C

Taking into account that c is the neutral element of (G; 0), we get y2=c for every
y€ G, and so y=y~Iin (G; o), which completes the proof of Corollary 11. Observe
that (A)<=*(B) also for even n.

Therefore we easily get
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Corollary 12. All (n+1)-groups which are simultaneously 1-derived and (—1)-
derivedfrom some group (G; o) form a variety which is polynomially equivalent to the
variety of all Boolean groups.
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ON BASES FOR NORMAL IDENTITIES

E. GRACZYtfSKA

Abstract

Given a set E of identities of type t: T-+N+ where N+ denotes the set of positive integers.
Ke denotes the equational class of algebras of type z defined by E. Letp,q be polynomial symbols
of type = An identity p=q is called normal if either it is of the form x=x (where x is a variable)
or none of the symbols p, q are variables. Denote by Ar(r) the set of all normal identities of type r.
C(E) denotes the set of all consequences of E, N(E)=C(E)C\N(z).

In this note we deal with the problem of indicating an axiomatic for N(E), for a given set E
of identities.

We give syntactic proof of the fact that C(E) is finitely based (i.e. has finite axiomatic) if and
only if N(E) is finitely based; as well as the variety Kr has the finite basis property if and only if
KNfE) has (if we assume that T is finite).

8 1. Our nomenclature and notation are basically those of [1], [9].

The notion of a term which is “trivial” in a variety K was introduced in [§],
An identity is called to be “trivializing” if it is of the form x=y (where x,y are
different variables) or xk=p(x1, ...,xn) where p is a polynomial symbol which is
not a variable. The first type of identity we shall call “almost contradictory”, the next
one “an absorbtion law”. Following the nomenclature introduced in [2], in this paper
we shall use the name “normal” instead of “non-trivializing” (cf. [3], [4], [5]).

82. Given a set E of identities of type x. Let r(x, ..., x)=x be an absorption
law which belongs to C(E). In the sequel we shall write r(x) instead of r(x, ..., x).
Consider the set Er of identities including all normal identities from E together with
all identities of the form r(xk=p(x1, x 1), where the identity xk=p(xk, ..., x,
or /?2(*!,..., jg,)=j% belongs to E—N(x):

Er=EnA(X)U {m(**=/>(*, xk=p(x1, ...,x,,) or p(xk ..., x,,)=xk
is an identity of E —N(x)}.

For t£T with n=x(t) consider the following axioms:

ih) r(/(xi,.., %)) =f(xlt X,.);
Q FiXi, . X,) =f(r (xK), .... r(%).
Let Ne={(fD,(f2: ter).
Remark. A consequence of the axiom (/]) is:
xM) r(r(x)) = r(x).

This paper is the written version of a talk held at the Conference on Universal Algebra,
May 30—June 6, 1982, Visegrad, Hungary.

1980 Mathematics Subject Classification. Primary 03CO05.
Key words and phrases. Bases, identities, varieties of algebras.
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Firstly we give a syntactic proof of a theorem on bases for N(E), which general-
izes Theorem 2 of [5]:

Theorem 1. Given a consistent set E of identities of type x. Let x=r(x, X)
be an absorbtion law from C(E) —N(x). Consider p =qg£N(x). Then E\-p=q if
and only if ErCJP\-p=q.

Proof. Sufficiency is obvious. To prove necessity we shall show firstly that any
normal identity which is derived from E by the superposition rule, is a consequence
of E'UJT. Let pt=q£E for i'=l, ...,n and p=f,(pi, .../>.), q=f,(qi, e, <)
Denote by r(pf) the polynomial symbol r(x, ..., a) (/;-, (and similarly for qf
If pt=qgi is not normal, then it is of the form:

xk = gqfxi, ..., A or pfXi, ..,al=a* for some 1=8k S m.

Assume xk=qfxi, ..., xjEE —N(x). Then rix~~qfx” ...xn) belongs to Er.
By an easy induction on the rank of gt we deduce:

jrh qgt(xx, ... xj = o F(X]),
Jr\-qi(r(xd, ..., r(xj) = r(qi(x1, ..., al)
Er\JIT\-r{xK = r(ql(x1, ..., al).
Thus ErOJr\-r(p)=r(qd, for /=1, ....«. So
E'CI/'V-frlp”, ..., r(>)) =1f(r{g", ..., 1(,)).

sVA-figi, o) =f(r(aqi),  r(a.,))
and finally: ErCJr\-p=q. Analogously one can show that any normal identity
which is obtained from E by the substitution rule can be derived from ErUJC.

Let Sb(li) denote the smallest set including E and closed under the substitution
rule. Assume that p and g are not variables. Assume p”~q (i.e. p and q are differ-
ent terms). If E\-p=q then Sb(E)\-p=qg which implies (see [7], [9]) that there
exists a derivation px, ...,pssuch that Pi=p, ps=q and for each i<-s, there exists
an identity oii=RfSb(E) such that <t (or B,) is a subterm of p{and pi+1 results
from Pi by replacing the subterm a; by ¢ (resp. a,). Let i be the smallest number such
that Pi is a variable. Thus pi_1=pfS'o{E)—N{x) and pi=pi+fSbh (E)—N(x)
(or is equal to x=x). But then pi-1=r(pi), r(pi)=pi+1dN(x) (or we can omit
pi+l in the sequence). By the first part of the proof we conclude that

and thus:

FUA2Mhrfe-i) = r(Pi), r(pt) = r(pi+)

and A/, UNMT-/-(pi_D=pi_ 1, r(pi+)=pi+l, thus E'UaVhPi-*rip,), r(p)=
—Pi+i- If Pi+i is not a variable, we consider pt-i, r(/?;), pi+l instead of the subse-
quence Pi-i,Pi,Pi+i- Otherwise we omit pt in the derivation. By induction on i,
we can exchange each occurence of a variable in the proof of p=q.

We can now assume that px, psis a derivation of p=q, such that ptis
different from a variable, for each i=s. If tx.i=Ri£Sh(E)—N(x) then assume that:
<Xi=xk and Bt=f (M, ...,y,,) for some tET. By assumption, pt is not a variable,
thus: Jf\-Pi(al, ..., xm=Pi(xi, ..., r(xK, ..., xm) by (/2, (t3 and an easy induction
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on the rank of pt. Similarly for pi+l. Instead of Pi,pi+1 consider Pi,Pi(xX, ...,

e (xR, oxm), AHFLGE, - r(xA, LLxm),pi+l and instead of consider
a,(xi,  r(xk, .., (%),  *meSh(E)nA(T).

Applying this procedure for each such that ai=j?iiSb(£)—A(x) we ob-
tain a proof of from ETUJF.

Remark. IfE is not consistent (i.e. C(E) contains an almost contradictory iden-
tity x=y), consider the set E'—{r{x)=r(y))\JJA. Then for a normal identity
p=q oftypet, we obtain: E'\-p = q. If 7#0 then the empty set is a base for N(E).

Theorem 2. Assume that E is a set of identities of type x and e is an identity
from the set C(E)-N(x). Then C(£)=C(A(£)U ).

Proof. The inclusion 3 is obvious. To show the converse, let us assume that e
is an identity of the form xk=p(xKk, ..., x,,), where p(xk, ..., x,,) is a term of type r.
If p is a variable (different from xK) then the inclusion Q obviously holds. Let us
assume that p is not a variable and Xj=q(xk, ..., x,,) is an identity from the set
C(E) —N(x). If k=] then p=q belongs to N(E) and then iV(£)U {xk=p}\-xk=q.
If k~=j then let p*(xk, ...,x,,) denotes the polynomial symbol p(xk, ..., xk_k, Xj,
xk+1, ..., X,,), obtained from p by replacing xk by Xj. Then xk=p\-Xj=p*. Now,
if g is not a variable, then p*=q belongs to N(E) and thus xk=p, x}=p*, p*=q,
Xj=q is a proof of Xj=q from the set N(E)U {e}. Otherwise, i.e. when q is a
variable y and y~Xj, then p(z, ..., 2)=z, p(xk, ..., X,,)=p(z, ..., z) belong to
E(K) for any variable z, different from xk, ..., xk, ....x,,. Thus xk=p(xk, ...,X,,),
p(xlt  x,)=p(z, 2), p(z, z2)=z, xk=z, Xj=y isa proofof Xj=q from the
set A(E)U{c}.

We say that C{E) is finitely based if there exists a finite set E0 of identities such
that C(E)=C(EOQ (see [7], [9]).
Applying Theorem 2, we conclude:

Corollary. If card (T) isfinite then C(E) isfinitely based if and only if N(E)
is finitely based.

§ 3. Given an algebra 91 of type x: T-*N+, £(91) denotes the set of all iden-
tities satisfied in 91, N (91)=E (9) fl A(%).

Recall, that a variety K is said to have the finite basis property if for any finite
algebra 91£K the set £(91) is finitely based (see [6]).

Our next theorem shows that the operator N lifts varieties with the finite basis
property into varieties with the same property, if we deal with algebras of finite type.

Theorem 3. Given a set E of identities of type z: T—N+, with T finite. Then
the variety KEhas thefinite basis property if and only if KNE) has thefinite basisprop-
erty.

Proof. Sufficiency follows from the inclusion KEQKN{E). If 7=0 then the
theorem is obvious. Assume that 7V0 and 91—(A, F) is a finite algebra from
KN(E), where £={/,: t£T}. Applying the theorem of [4] we can assume that r is a
mapping from A into A such that rr{a)=r(a) for aEA and 3)=(r(A), F) is a
subalgebra of 91 and 93£AE. Moreover, the following equations holds: if tET,
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t(t)—n and ax, ..., anEA then
1) fin) =f{r(ad, r(anj),
2 r(/t(au ..., an) =f(al .., &,

By induction on the rank ofp we can show that for any polynomial symbol p
of type t which is not a variable, the following identities are satisfied in 9!:

(10 p(xi,Xn=p{r{xj, r(x.)),
(20 r(p(xi,  a) = p(xy, ..., xn).

We shall show, that one of the conditions below is satisfied in 91:

(i) r is the identity mapping in A (so £(9Q=£(95));
or

(i) £(91)= A(93).

To prove this let us assume that there exists an element a£A such that ciAr(a).
Firstly we show that £(91)~ jV(t). Assume the opposite, i.e. let x=p(x,..., X)£
££m(91)—N(x). If p is a variable (different from x) then 91 is trivial and (i) holds.
If p is not a variable, then a=p(a,...,a) but the identities x=p(x, ..., X)=
=p(r(x), ..., r(x))=r(p(x, x)) hold in 91; thus a=p(a, ..., a)—r(p(a, ..., a))=
=r(a), a contradiction. On the other hand, for any normal identity p=g"N($>)
which is not of the form x=x we obtain: p(xt, X,,)=p(r(xy, ..., r(.v,,))=
= <y(r(al), ..., r(x,,)) =q(x1, ...,x,,) in 91 and thus p=q£E(91); i.e. £(90=19(95).

Finally, in the case (i) we conclude that 91dKE so £(9l) is finitely based by

assumption. In the case (ii) we have: £(91)=1V(53), but 9% is finite and 956AE so
£(95) is finitely based. By our Theorem 1, £(91) is finitely based.

I would like to thank the Referee for his valuable comments.
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APPLICATIONS OF UNIVERSAL ALGEBRA
TO COMPUTER SCIENCE

IRENE GUESSARIAN

Abstract

We show how concepts from universal algebra, notably those of free and “Herbrand” algebra,
and the notions of (quasi-) varieties of algebras can be applied to formalize and prove properties
of programs.

1. Introduction

In this paper we show some applications of universal algebra to theoretical
computer science, and more precisely to one branch of it called algebraic seman-
tics [GU]. Universal algebra provides computer scientists nice concepts to organ-
ize their thought patterns. Some of the problems in computer science can be expres-
sed within the framework of universal algebra which helps in providing partial an-
swers for them. This in turn usually implies new questions or a different formulation
of problems, leading to new problems in universal algebra, etc... and results in a two
way communication channel between the two disciplines. Through this paper we
shall try to make explicit this duality between computer science and universal algebra
concepts.

Algebraic semantics’ main goal has been to provide a clean and sound semantics
of programming languages by splitting as much as possible the syntactic and seman-
tic parts of a program. Using universal algebra or category theory tools, one can
then describe abstractly, i.e. independent of any interpretation, the syntactic proper-
ties of a program; after what one is well equipped for, given any concrete inter-
pretation, translating the abstract or syntactic properties, via that interpretation,
into concrete or semantic properties of the real program. Moreover, this can be
done stepwise, introducing at each step the exactly needed amount of semantic
knowledge. Algebraic semantics thus makes easier and more natural the concepts of
modularization and abstraction, essential in software development.

In algebraic semantics, interpretations are nothing but certain algebraic systems
in the sense of Mal’cev [MA], or equivalently T-structures or models in the sense of
Gratzer [GR], The main tool in characterizing the syntax of a program is to have it
compute symbolically in a free interpretation, i.e. in an absolutely free algebra of
terms: the result of all possible symbolic computations is then represented by an
infinite tree (i.e. an infinite term) which characterizes the behaviour of the program

This paper is the written version of a talk held at the Conference on Universal Algebra,
May 30—June 6, 1982, Visegrad, Hungary.

1980 Mathematics Subject Classification. Primary 68B10. 03C05; Secondary 06F25.
Key words and phrases. Program scheme, free algebra, ordered algebras, varieties of algebras,
interpretations, classes of interpretations, algebras free with respect to a class.
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with respect to all interpretations; Properties of programs are thus described by
properties of the associated infinite tree. One of the main problems one has to deal
with in proving any program property, is to prove equivalences of programs: this
approach shows that two programs are equivalent w.r.t. all possible interpretations
iff their associated infinite trees are equal.

However, equivalence w.r.t. all possible interpretations is by far too exacting
to be of any real use. In practice one has to take into account some of the constraints
or properties verified by the interpretations one is interested in; this extra information
should even be modularized according to needs. We thus have to look for alternate
syntactic objects and structures for finding and describing the set of all possible
symbolic computations under some given constraints. The constraints will be
described by a class <€ of interpretations, and we will look for a generic — or free,
or Herbrand — interpretation H for any given class  together with effective ways
of describing:

1) the free interpretation H

2) the equivalence w.r.t. H ; this equivalence will in turn characterize the equiv-
alence w.r.t. the class €. This H corresponds roughly to what is usually called a free
~-algebra, or an algebra free relative to the class (i of algebraic systems. The descrip-
tion of this free interpretation H, its elements and its equivalence can then be fruit-
fully applied to prove various kinds of program properties, tranformations, simplifi-
cations, etc...

In algebraic semantics, one can study [GU] a few types of classes € of interpre-
tations of interest: (in)equational classes (defined by a set of (in)equations), alge-
braic classes (where, intuitively, any (in)equation between programs can be proved
by computation induction), first-order definable classes. According to the various
types of classes, we have different methods for describing the interpretation free with
respect to that class and its properties which we shall sketch. Finally, in order to
illustrate the differences and similarities between those various types of classes, we
will single out one of the numerous applications of the characterization of the free
interpretation and compare the results obtained in each case; this will be an applica-
tion to logics of programs: how to deduce from the free interpretation a complete
proof system for deriving all valid (in)equations w.r.t. some class

The main concepts of universal algebra used in our approach are:

— free (and related) algebraic systems in various classes,

— classes of algebraic systems,

— equational, quasi-equational (or inequational, or relational) and other kinds
of classes of algebraic systems.

This paper is primarily a survey written with an intuition minded bias: we give
numerous examples and informal explanations, but refer the reader to the literature
and mainly [GU] where most of the results here given are proved. For those kinds of
applications of universal algebra in computer science which are not surveyed here
(e.g. algebraic logic in computer science both the category theoretic and the cylindric
algebraic versions, ultraproducts and related constructions in program verification
etc.) the reader is referred to the survey series Parts I—V [AN2]. The present paper
is organized as follows: Section 2 contains the preliminaries and notations on alge-
braic semantics; Section 3 introduces the “class of interpretations” approach, and
illustrates problems and questions inherent to it; in Section 4 we study equational
classes in a more detailed way.
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2. Program schemes and semantics: basic results

We will briefly outline in this section the basic results of algebraic semantics. The
fundamental idea of algebraic semantics is:

1) using universal algebra tools, characterize a program by a mathematical
object which is an element ofa universal algebra [GU, GUI, N], An alternate approach
uses category theory instead of universal algebra [ADJ, BGl, BG2, E, MI];

2) use that mathematical object to obtain sound proofs of properties of the
program.

2.1. Basic results

In order to fix the notation, we will sketch the universal algebra approach in
this section. For more details see [D, GU],

Let F={f,g,h, ..} (resp. 4>={G, H, K, ...}) be a ranked alphabet of base
function symbols (resp. of function variables); the rank of a symbol s is denoted by
r(s) and /,,(resp. &,) denotes the set of base function symbols (resp. function varia-
bles) of rank n. 2, representing the “undefined”, is a special rank 0 symbol in F;
Fis a signature, or similarity type in terms of universal algebra. Let V={u,v, w, x, y,
z, ...} be a set of variable symbols (intended to represent parameters or positions)
of rank 0.

An ordered F-algebra [ADJ], or F-magma [N], or algebraic structure [AN, C,
GR], Mis an ordered set (DM g M together with foreach /in F,,, atotal and monot-
one mapping f M: DM-»DM, and such that QMis the least element of DM. Ordered
F-algebras are actually a special kind of algebraic systems of similarity type, or sig-
nature, FU{a}.

The class of all ordered F-algebras forms a quasi-variety (i.e. a class axiomati-
zable by quasi-atomic formulae, i.e. by universally quantified Horn formulae) in
the sense of Mal’cev [MA], cf. also [SA], See also [GR] p. 339, and [AN] (Section 4),
[GU, GUZ2], for quasi equational logic. Since quasi-varieties are epireflective in the
category of all algebras with the same signature, all the nice properties of similarity
classes of algebraic systems are inherited by ordered F-algebras, too.

An F-magma M is said to be A-complete (resp. co-complete) iff all directed sub-
sets (resp. countable chains) of DM have a l.u.b. in DM and the f Ms are continuous,
i.e. preserve lL.u.b.s of directed sets (resp. countable chains). In the sequel we will
consider mainly /lI-complete magmas (the theory is exactly similar for co-complete
ones) and we will call them complete to shorten notations. Whenever we consider a
different notion of completeness, this will be mentioned explicitly.

Define the category of (d-)complete F-algebras, or F-magmas by: objects are
(d-)eomplete F-magmas; morphisms are the continuous homomorphisms, that is,
in addition to being an FU{s} homomorphism they have to preserve lubs of
directed sets, too. We shall define M°°(F, V) as being the algebraic system freely
generated by V in the category of *-complete F-algebras. A more precise definition
comes later. The category of cu-complete F-algebras can be defined similarly.

It might be of interest to note that it was proved in [PA], cf. also [LP] that the
category of co-complete F-algebras is reducible to a variety of partial algebras in the
sense of [AN], This shows the strong relationship of algebraic semantics with well
investigated concepts of universal algebra.

10*
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A (complete) F UF-magma / is said to be free over generators V iff for any
(complete) F UF-magma M there exists a unique morphism (p: I-*M making the
following diagram commutative:

\Y

where, for any FUF-magma J, ij(v)=vj.

I is also called the free (resp. free complete) F-magma generated by F.

The free and free complete F-magmas exist and can be constructed as follows:
the free F-magma generated by F is the set of finite, well formed (with respect to
ranks) trees (i.e. terms) on the alphabet FU F. It is ordered by the least ordering <
such that: (a) Q is the least element, (b) the magma operations are monotone. The
free F-magma generated by F is denoted by M(F, F). The free complete F-magma
generated by F is the ideal completion of M(F, V) [B] and is denoted by M°°{F, V):
it can be viewed as the set of all finite and infinite trees (terms) on FUF; the
ordering < extends the ordering on M(F, V) and can be intuitively described by:
T<T" for any trees (terms) T, T' iff T' can be deduced from T by replacing fl’s
by trees (terms) different from (2. In the [ADJ] terminology, M(F, V) is denoted by
FFf(F) and M~(F, F) by CFf(F). See [GU] for more details.

A recursive program scheme, in short RPS, on F is a pair (S, t), where S is a
system of n equations:

@ S GO, ...,w)=ti i=1..,n

where for /=1,...,«, GE<I>ni, tEM(F O<P fa, ...,vn}) and t is a tree in
M (FU <P, F).

It is associated with a schematic tree rewriting system (or context free tree gram-
mar [BO, EN, GU, R]), defined by: Gt —t+Q, for i=1,...,n, and

which is also denoted by S. Let L(S, /)= {t'\t'EM (F, V),t=> t'} be the tree language

generated by S with axiom t.

It is well-known [GU] that L(S, t) is a directed subset of M*“(F, F); let
T(S, t)=lub L(S, t).

A recursive program scheme is iterative iff <0, i.e. iffall function variables
have rank 0. lterative schemes have been considered in [E, COU, G, GI, NE, PP,
T, etc...] and they have been named iterations, regular schemes, rational schemes,
etc...

An interpretation / of Fis a complete F-algebra; a valuated interpretation is an
interpretation of FUF; equivalently it is a pair (/, v) consisting of an interpretation
/ together with a valuation v: V~D,.

Since any interpretation / is complete, the function computed by an RPS
(5, t) with respect to / can be defined as the lub. of the finite computations of
(S, t). More formally, suppose t is in M (F U<P, {vx, for any x19 ...,xn
in Dj let vx..xnbe the valuation F—Dr defined by: for i=1, ..., n, vXL.Xh’)=xi,
where V—{ ,"..,v,.}; since M°°(F, F) is the free complete F-algebra on generators
V,vXI" X has a unique extension A/°°(F, F)—Zb; define the function Tj
computed by an infinite tree T in M°°(F, V) w.r.t. | by: for all x1, ..., x,, in Dr,
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Tt(xi, ...,X,,)=v* ..*,Cr); define now the function computed by scheme (S,t)
W.r.t. /by (S, t),= (S, Nl
The adequacy of this definition is expressed by the following

Theorem L1 Let (S, t) and (S', t") be two RPSs:

@) T(S, )IMIT(S',01 for all I iff
T(S,t)"T(S',t");

(i) for all 1, T(S, t),=Ilub {0/0< T(S, N}

(i) expresses the fact that the function computed by (S, t) w.r.t. / is defined as
a lub of finite computations, by successive approximations; and (i) says that the
infinite tree T(S, t) characterizes the behaviour of (S, t) w.r.t. all interpretations,
which was goal # 1stated at the beginning of this section. Introducing some termi-
nology let us lay down the next

Definition L An interpretation H is said to be a Herbrand interpretation iff:
forany T, T in M“(F, V):

77 =827 forall /iff TH” HTH.

Then Theorem 1 expresses the fact that A/“ (F, V), together with the identity
valuation v(v)=v, for all v in V, is a Herbrand interpretation.

Notice that, since a program scheme (S, t) is characterized by the associated
infinite tree T(S, t), we may w.l.g. study infinite trees instead of program schemes,
although not every infinite tree is associated with a program scheme. However, the
facts that:

(1) there are much more infinite trees than trees associated with program schemes

(2) it might then be too exacting to require that ail directed sets, even those

which are not associated with any program scheme, have lubs (in order to
ensure completeness)

led some authors to introduce different notions of interpretations. To this end, they
define algebras which, though they are imcomplete in the above sense, contain
enough lubs to express the functions computed by the programs one is interested in.
Let us briefly outline some of these approaches.

We need first recall some terminology from denotational semantics. Note first
that if A is any i7algebra (not necessarily ordered or complete), we can define as
above a derived operation tA(x1, ..., x.)=vX.X(0 for any t in M(F, V) (but not
necessarily any t in M°°(F, V)). Now, let A be an F-algebra and S be a recursive
program scheme defined by a system of equations (1), let 2=(DJ-*Df)X...
..X(D"M-+DA) be the set of «-tuples of mappings DA-+DA, for /=1, ...,«. Any
g=(gi, *==£,) in 2 defines an FU”-algebra A(g) by: fMi)=fA for /in Fand
(riAg=oi for Gjin d= Hence, we can associate to each recursive program scheme S
a mapping SA: 2 2 defined by SA(cf)=(hm , ...,

Now, an F-algebra A is said to be iterative iff, for any ideal (or proper) iteration
S, SAhas a unique fixpoint in 2 [E, GI, NE, T].

An ordered F-algebra A is said to be

— regular iff, for any iteration S, SA has a least fixpoint which is defined by
lub .., BJ|«EA} [G, GPP, PP, T].
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— l-rational iff, for any recursive program scheme S, SA has a least fixpoint
which is defined by lub [SA(QA, ..., QA\nEN} [G].

By allowing for higher type schemes, Gallier also defines n-rational algebras
which we will not consider here in order to keep the notations simple.

A subset of Da of the form {5°(0", QA\WNEN} for some iteration (resp.
RPS) S, is called a regular (resp. an algebraic) subset of A. Regular subsets are also
called iterations.

The following is then clear [BG2, G]:

Theorem 2. Any complete F-algebra (and any interpretation) is regular and
rational. M°°(F, V) is iterative.

2.2. Applications

By characterizing the semantic behaviour of a program scheme by a syntactic
object, its associated infinite tree, Theorem 1 provides us with the corner-stone of
algebraic semantics. Let us illustrate this by two very simple, though interesting,
applications.

Example 1. One can simplify a program scheme by deleting all useless branches.
Consider for instance Morris’ program: G(u,v)= if u=0 then 0 else G(u—1,
G(u, v)). The underlined occurrence of G(u,v) is clearly a useless loop; this can be
recognized very easily by looking at the corresponding program scheme: S: G(u,v)=
=g(u, G(p(u), G(u,v))). Its associated infinite tree is:

9
T(S.G) = \
n/9

r

T(S, G) can also be generated more straightforwardly by S': G'(u)—g(u, G(p(u))).
Hence, T(S, G)=T(S', G'), and by Theorem 1, T(S, G)[=T(S', G)/ for all /, and
(S', G") is equivalent to (S, G) which we denote by (S', G')=(S, G). Now, there is
an easy algorithm realizing the transformation from (S, G) into (S', G"): it suffices
to delete the useless variable v from (S, G), and this can be done in a standard way in
language theory [GU]. O

Let J denote the class of all interpretations; then, even though ~ is clearly not
first-order, Theorem 1 can be viewed as a Birkhoff-like completeness theorem for
deriving all valid (in)equations in Note first that, in the formalism of logics,
Tj" jTj forall/is denoted by /(= TAT'. We then can introduce a set Ax of axioms
and deduction rules for inequational logic such that T-cT' iff Ax1- T'. Hence
Theorem 1can be restated as JAT AT "' iff AX\-TAT"'. The set Ax of axioms is
defined by the axiom scheme:

(2) bBRs/ for any t in M°°(F, V).
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Consider then the following set of deduction rules:
(3) \-t~t for any t in M(F, V) (reflexivity);
(@) tst' and for any t,t',t" in M(F, V) (transitivity);

(5) tirti for i=l, rf-/(fi, ..., t) for any b in M(F,\V),
i=l,...,r, and/in Fr (monotonicity);

(6) ViEN3JEN tiStj Hub (t)™.u.b. (/}), for any tt,t] in M(F,V) (algebraicity
and continuity).

For tand t’ finite trees in M(F, V), let \-t~t' iff t~t' isdeducible from axiom
Ax using deduction rules (3)—(5); then clearly: t~t' iff |-tst'.

For T and T' (possibly infinite) trees in M°°(F, V), it can be shown that it is
necessary and sufficient to add the induction rule (6); let TS T' iff T is
deducible from axiom Ax using deduction rules (3)—(6).

Theorem 1 can thus be translated into two completeness theorems for finite
and infinite trees:

for t,t' in M(F, V), S\=t"t" iff AxH/S/'

for T, T' in M°°(F, V), JA=TAT' iff Ax|-TAT.

This makes clear how algebraic semantics can be applied to yield results in more
model theoretic or logic minded approaches as in [BL, BT, G]. This connection be-
tween algebraic semantics and logics will be further investigated in the subsequent
sections.

Remark finally that, since J\=T=T" iff J\=TA.T' and J\=T'*T, the
above also provides us with a complete proof system for equational logic; however,
this proof system does not immediately translate into a proof system using the de-
duction rules of equational logic [B, BT] and we will see a sample of the difficulties
involved in Section 4.

3. Classes of interpretations

We showed in the previous section that the characterization of a program scheme
(S, t) by an infinite tree, which is the function computed by (5, t) ina Herbrand inter-
pretation, can be rewarding. However, this approach is usually far too general: in
practice, one never considers all interpretations J , but rather subclasses of J,
where, e.g. some operation is associative and commutative, or some base function
symbol is always interpreted as an "if... then ... else ...”. Hence, if one wants to
come any closer to real programs, one has to take into account some constraints on
interpretations. For instance, equivalence with respect to all interpretations is far
too exacting as is illustrated by the following

Example 2. Let S and S' be program schemes defined by
S: G(v)=g(v.g(v, G(v)))
S G'(v)=g(v, 12.

Then (S, G(v)) has no useless branch and is strictly larger than G'(t)) since the
former generates an infinite tree whereas the latter only generates g(v, Q). However,
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if we restrict our attention to interpretations where g, has the following form:
gj(x,y)— ifp(x) then x elsey, with p(x) some predicate on Dr, then (S, G(v)) can
be simplified into (S*, G'(v)). More formally, let '€ be the subclass of J defined by
E={l/gi{x> gi(x,y))=gi(x, .y) foranyx,yinD,}; then, forany/in €\ T(S, § (i¥)i=
=r(s"',\G»),. O

Formally, let us define:

Definition 2. A class of interpretations is a subclass of J . For '€ a class of
interpretations and T, T' in V), define

T egT' iffforany / in ®:TIM1T{
T =%T" iffforany / in @:Tl1=T(
For ¢ and €’ two classes of interpretations, define
<e< <r iff s<gg s*
# « iff =* g =*
V~V' iff —@= 7
«V iff % - 3». O

Note that, clearly, and < zaW, counterexamples for
reverse inclusions will be shown later (see Theorem 8 below and [GM]). Note also
that

We will now try to generalize the approach of Section 2 to classes of interpreta-
tions : namely, given a class # of interpretations, we first have to characterize the be-
haviour ofa program scheme w.r.t. all interpretations in # by the function it computes
in some Herbrand interpretation. We will show now that this is much less straight-
forward than in the previous completely free case: we have to accept a trade-off
between a better modelling of reality versus an increased complexity of proofs and
results. We need one more definition:

D efinition 3. Let ~ be a class of interpretations and / an interpretation; | is
said to be €-Herbrand iff {/}. A valuated interpretation (/, v) is said to be 'tf-free
(over generators V) iff for any V in 'f?and valuation V: V-*Dt, there exists a u-
nique morphism (p: /->-/' suchthat cp(y(v))=v'(v) foranyvin V (i.e. the restric-
tion of (p to v(V) coincides with V).

Remark L1 a) We are implicitly considering classes of non-valuated interpre-
tations (or functional interpretations). Valuated interpretations can be treated simi-
larly [GU].

b) Note that our definitions of g free and ~-Herbrand are slightly different
from the classical notions of universal or free object in universal algebra or category
theory [AN, C, GR, MA]: we do not require that the 'g-free or ~-Herbrand inter-
pretation belong to the class €. As a result, it may indeed be the case that none of
them belongs to  for instance, V) is 'g-free for any <6 We will see later
various examples of ~-Herbrand interpretations / which are not in (8§ 4.2). Note,
however, that, whenever a 'g-free interpretation belongs to €, then (i) it is also -
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Herbrand, (ii) it is the unique 'g-free interpretation belonging to € (up to isomor-
phism).

c) We can also ensure uniqueness of the free interpretation by postulating the
following stronger definition [AN].

Definition 3.1. Let Q be the preordering defined on valuated interpretations
by: (/, v Q (1", v') iff there exists a unique morphism ¢ D,—Dr such that: for any
vin V <p(v(v))=v'(v). Then (70, V0 is said to be strongly E-free iff (i) it is ~-free,
(ii) for any k-free interpretation (7, v), (7, v)Q (10, VO i.e. (70, ) is the largest ‘g-free
interpretation w.r.t. the preordering Q.

d) Note finally that the notion of Herbrand interpretation can be extended for
arbitrary atomic formulae.

Definition 3.2. An interpretation 7 is said to be strongly tH-Herbrand iff for any
atomic formulae 4> 7f= £ 0O

This concept, even though it was never given a name, has been investigated in
universal algebra (see e.g. [AN]).

Constructing 'tf-free and W-Herbrand interpretations.
For completeness sake, let us state the following

Proposition 1. For any class  of interpretations, there exists a g-free and a
'g-Herbrand interpretation.

However, the proof of this result is highly non-constructive: it consists in taking
some suitable subclass of the infinite product of all interpretations in . Hence this
result is of no help and we have to find alternate characterizations of the &-fvee and
A-Herbrand interpretation. Let us give first some terminology about preorderings.

D efinition 4. A preordering on an ordered F-magma M is a reflexive and tran-
sitive relation n containing and which is compatible with the F-algebra structure
of M, namely: for any / in Fr, dh dt in DM, for /=1 ...,r, dtndl imply
f M{d1, ..., dpnfM(di,..., d"). n is said to be continuous iff for any directed set E in
Dm, and any d' in DM, end' for any e in E, imply lub {e/e in E}nd'. When

V) with the syntactic ordering <7i is said to be

— substitution-closed if or any t, t' in M(F, {vx, ..., v,,}) and any 7\, ..., Tn
in M°°(F, V), tnt' implies t(TJv!, ..., TIvAnt'iTJdvx, ..., Tdv,,). Equivalently,
one may require that for any endomorphism h: M°°(F, V), tnt' implies h(t)nh(t').

— algebraic iff'for any T, T' in M°°(F, V), TnT' implies: for any F, tin
M(F, V), there exists some t'-AT', t'in M(F, V), such that tnt'.

For a preordering n on M°°(F, V) let €r={1/nQ ={ff} We can now state

Proposition 2 [GU], and n—"n define a Galois isomorphism between
classes of interpretations and continuous, substitution-closed preorderings on
M*“ (F, V).

One might then expect to use the above Galois bijection in order to get somehow
more tractable characterizations of the ~-free and Herbrand interpretations. This
goal can be only partially fulfilled, as will be shown by the sequel.
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For any ordered F-magma M, and preordering n on M, let:

— M-*° denote the ideal completion of M [B, CR, GU]

— M/n denote the F-magma obtained by factoring M through the equivalence
ff= #*D7—2% associated with it, and ordering the factor algebra by n/n. The
equivalence class of an element t of M modulo n will be denoted by [/],..

Let 7 be a continuous and substitution closed preordering on V).
We now try to find »,,-free and/or  -Herbrand interpretations. The most natural
choice would be 7=M*“ (F, V)/n.

However, 7 is usually neither ~,-free nor » -Herbrand. The most immediate
reason for that is that 7, being usually not complete, is not large enough and does
not contain enough lubs. However, there are more subtle causes for which 7 cannot
be ~-free or Herbrand: even when 7is complete, lubs might be there just by chance
and might not be the right lubs. Hence:

1) the operations on 7 may be non continuous

2) even when the operations on 7are continuous, 7 may not be ~-free because

the unique mapping cp: 1—I" into an 7' in &nmay be not continuous, hence
ip will not be a morphism.

This will be made clearer by the following example:

Example 2. We will show here continuous, substitution-closed and algebraic
preorderings %such that V)/n is neither ~,,-Herbrand nor #,,-free.

Let F={Q,a,b,c, h} r(Q)=r(a)=r(b)=r(c)=0 r(h)=I. Define n as being
the preordering generated by: anb, aith(d), bnh(b), crh(c), h(c)nc h"{a)nb,
for all 3 and bnc. Then I=M°°(F)/n is complete: lub {h"(@J¥n£N}=bl and
lub {hn(b)I/nEN}=cl, and If(c)nc for any n in N.

However hj is not continuous since h,(b,)—\h(b)}th,(IHb {hn(a),}*

"Iunb {hnJri(a)i)—[b]Jll=bi;. Hence 7 is not even an interpretation.

Now, even when the operations are continuous, 7 may still be not ~-free. Let
n' be the (continuous, algebraic, substitution-closed) preordering generated by n
together with the relation h(b)n'b. Then F—M°°(F)/n' is clearly a complete
F-magma, with continuous operations. But br happens to be the lub of the h™(a)rs
by mere chance, and this results in F being not ~--free. For instance, the unique
op: F-*-F'=(M(F)/n)°° is clearly not continuous.

This example shows that neither M°°(F, V)/n nor {M°°(F, F)/7t)*“ can be
Njj-free or Herbrand in general, even for a very smooth choice of n. We neverthe-
less can state

Proposition 3. Let n be a preordering on A7~(F, V); then (M(F, V)/n)°°
is Fll-free. O

Example 3. Note that, except when n is algebraic (cf. Theorem 3) (M (F, V)/n)°°
is usually not ~-Herbrand. Let F={Q,h1,hZ3 with r(h)=r(h3=1I. Let
F~lub {/3'(®)}, for /=1,2, and % be defined by: T1tiT2. Then, clearly M(F)/n—

=M(F) and (M(F)/n)°>=M°°(F) is not ~ -Herbrand.
The previous example amply illustrate that the standard completion by ideals

method cannot give us a *-Herbrand interpretation. However, for any continuous
and substitution-closed preorder n, one can construct a ~-free and  -Herbrand
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interpretation by a more refined completion method: one has to perform a “contin-
uous” completion preserving lubs of algebraic subsets of V)/n; by trans-
finite induction, one than gets the required  -Herbrand interpretation [CR, GU,
MI] thus yielding

Proposition 4. For any continuous and substitution-closed preordering, one can
construct a yKfree and  -Herbrand interpretation.

This construction by transfinite induction is, however, only very slightly more
effective than the bare existential result of Proposition 1 In particular, this construc-
tion can lead neither to a nice characterization of the function computed by an RPS
w.r.t.aclass nor to the faintest hope of getting a complete proof system for deduc-
ing valid inequations t~vt', nor even to some characterization of Hence, in
order to get more manageable results, we will have to consider somehow more speci-
fic classes of interpretations.

Note that most of the problems in constructing a ~-Herbrand and/or ~-free
interpretation stemmed from completeness and continuity. Hence considering classes
of X-interpretalions, where X is intended to be replaced by iterative, regular or 1-ration-
al, one would expect to cancel some of these problems, since completeness and con-
tinuity are replaced by weaker conditions that only those lubs one effectively wants
to compute should exist and be preserved by operations. This is indeed partly the
case. See [G, GU2, GPP] for more details.

4. Equational and relational classes of interpretations

4.1. Relational classes

D efinition 5. A class of interpretations is said to be relational iff it is of the
form = {I/IRQ s {i)} for some binary relation RQM(F, V)XM(F, V). If R
is an equivalence relation, €Kis said to be equational.

Relational classes are called algebraic varietal in [M2], varieties in [BL], and
semi-varieties in [G], who considers classes of rational algebras, defined by some
relation R possibly involving infinite trees. Relational classes are those classes defin-
able by a set of inequations between finite terms; they are the most tractable classes
of interpretations: for a relational class if, we will get an easy characterization of s*
restricted to finite trees, show that is algebraic, hence obtain a complete deduction
system within inequational logic to prove all valid inequations in  (cf. Sections
2.2 and 3.2).

Let us state first a Birkhoff theorem characterizing relational classes in terms of
closure operations [M2].

Theorem 3. (€ is relational iff it is closed under products, continuous subalgebras
and factor algebras, and ideal completions.

A slightly simpler version of this theorem is proved in [G] for semi-varieties of
rational algebras and in [BL] for varieties of ordered algebras. In this connection cf.
also [SA].
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For a relational class define as the least substitution-closed preordering
containing R on M(F, V). Then, clearly, 8R=®&<R. Finally, let us abbreviate &R
by =Rand =R by =R.

We can now state the main theorem of this section [GU].

Theorem 4. Let R be a binary relation on M(F, V) and HR= (M(F, V)I-=*),
then:

(i) Hr is %R-free and R-Herbrand;
(i and
(1ii) %R is an algebraic class. O

The importance of this theorem can be illustrated by its consequences. We simply

state two of them.

Corollary 1. A class Tiis algebraic iff it is equivalent to some relational class
<, ie. iff @~ €R (cf. Definition 2). O

Recall that, as noted in Section 2.2,

tSRt' is equivalent to ~RA=tSt';

t<Rt' amounts to saying that t=t' can be deduced from (RU<) using the
deduction rules (3)—(5) of inequational logic, completed by induction rule (6) and
rule (7) expressing substitution closure: tst' \ (p(t) =(pt") foranyt, t' in M(F, V)
and endomorphism o= M°°(F,

Hence the statement in (i) of the above theorem can be restated as
the following completeness theorem:

Corollary 2 (completeness theorem). Let AxR be the axiom system defined
by: \-t=t’for any t, t' in M (F, V) such that (t, t') isin R, and \=~Q=T for any
T in M°°(F, V).

Then, for any t, t' in M°°(F, V), "R¥=t=t" iff AXR}-tS.t" using the deduction
rules 3)—7). O

One can obtain similar results when considering varieties (or relational classes)
of regular [T], rational [G] or recursive [BG1] algebras, see [GUZ2], In the case of
varieties of iterative algebras though, the existence and construction of a free or Her-
brand interpretation for a variety of iterative algebras is more problematic [CO,
GPP, PP].

Theorem 4 has many other applications which we merely list here for lack of
space:

— proofs of program properties (with or without induction) and program

equivalences [G, GU, BK].

— program simplifications and transformations w.r.t. classes of interpretations

and correctness proofs of such transformations [CO, EG, GU, K].

4.2. Application to “if ... then ... else ...

We will however detail some more the study of classes of interpretations where
a given base function symbol is interpreted as a test — i.e. an “if... then ... else ... ”
This will give some clues about how relational and equational classes can help in
studying non relational ones.
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We will start by recalling a result from [BT], Let 5= [Q, tt,ff, g} where r(tt)=
=r(ff)=Qand r(g)=3. tt andff are intended to be interpreted as the constants
“true” and “false” in any (not necessarily ordered) 5-algebra I; we will thus say
that g, is a test iff it satisfies:

y if =
(8) forany x,y,z, in ihgj*ry,z)=m if x=
Q, otherwise.

Let x = {/// is a 5-algebra satisfying (8)}. It is well-known that x , being not
closed under products, is neither equational nor relational. However, the following
completeness theorem has been shown in [BI]:

Theorem 5. For any t, t' in M{B, V), X\=t=t" iff A\-*"t=t', where — A
is thefollowing set of equational axioms, in which g(x, y, z) has been abbreviated into
ol [t x, y] = X [x %, y1 = [ tt, y]

[f, x, yI =y Dy, x] = [xy.ff]

[fl x.y] = Q [x, Q. Q1 =Q

D Dy, 2w = [y, Wl [x 0y [z Wil =[xy, W
I Iy zomd [y, v WIT = [y, [x 2, 8 [x u, w

[[v.y, 21 u vl = [x [y, u, 1], [z, u »]];

—A | =/" means: t=t" is deducible from A using the deduction rules of equational

logic [B, BT], or, equivalently, t=t' is in the least compatible and substitution
closed congruence containing A, which we also denote by =A. O

Intuitively, and somehow incorrectly, this means that H=M(B, V)/=A is
both “X and <s/-Herbrand”, where X = {/// is a 5-algebra satisfying A}. Note

that His not in x since x is not equational; hence x ~ x and x ~x , and this

is an example of a Jf-Herbrand algebra which does not belong to x .

Note that Theorem 5 was obtained assuming two restrictive hypotheses, namely
that one deals with unordered algebras, and that the unique operation allowed in
the signature is the testg. We can now extend this result to complete F-algebras whose
signature F contains base function symbols F' other than g, provided those new
symbols in F' represent strict operations: this is a not too stringent restriction since,
in practice (see for instance abstract data types), the only base function symbol which
is assumed to be non strict, and needs to be such, is the test g.

Letnow F=BUF', for some set F' of base function symbols, and let C be the
following set of axioms:

for any/ in F, «Si, and *=1,

fix,., ..., Q xi+l, xnN=0Q
C /(™ i, o *i-i. [W v, W], x,+1, Xx,)=
= [u,f{x,, ..., X v, Xi+, o xn), f(x X(Ci, IV, Xi+i, x.)1.
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Let A'=AUC and define:

jtf*= {1/l is an F-algebra satisfying A'}= {///(=A"}

s/' = s/'fl3{l/1 is a complete F-algebra satisfying A'}

&' =sd0C\3:={I/i is a discrete interpretation of F satisfying A}.

And define similarly

cAs—CCfI{/// is an F-algebra where, for any/in F,\ nsl, fj is strict}

=jTiij/" (recall an operation f, is strict iff it yields the result Q, whenever

one of its arguments is Q,) Jfo=Jfsn</ and X'd=cAtd02>

Then, extending in an obvious way the relations =« and r; of Definition 2 to
classes of algebras which are not necessarily complete, one obtains the following
[GM]:

T heorem 6.

(I) j*l « < « J/, 0% X S « jt&« cai,
(i)
(hi) JQE <, *1A A O

This theorem has several consequences. It first yields a nice characterization of
the equivalences =<g, for ¢ in {,A\ J<\.ifl, sd'0, stfd}: by (i) those equivalences
coincide with =*, which is by Birkhoff’s theorem, the congruence =A. generated

by A'. Note that, here, also coincides with =A., whereas in general, =«K=
= ¢ Kn ~ r1~ = (note that in the present subsection we are dealing with finite
trees only).

Hence we can state

Corollary 1 For # in {sd0,sdd, X s, XJ, Xd}, = is the compatible substi-
tution-closed congruence generated by A .

Corollary 2. Xd is not 2-equational [GUJ.

This stems from: X d« $44 but (:JQ:-sib: by the first equivalence, the only
possible congruence is =A, which is excluded by the second inequivalence. O

Similar results hold slightly modifying B in order to obtain an equality test;
let B'—{Q.,g’} r(g")=4, and let X '—{l/l is a F'-algebra satisfying (9)}, where
for any x,y,u v in Dd

Q if «x
©) gi (6 y, uv) = U if x
v if Q x 7y 7™Qj.

1
o
=

y=Q

N

Then there_exists an axiom system A [BTj such that for any t, t' in M(B', V):
X"\=t=t" iff A\A—t=t'. Letting A'=AUC, where C=CU{(a), (b)}, with, for
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/in F', n™\, and i= |, n:
(@)
g(«, v, f(xIt ..., X(_1, u, xi+1, ..., xn),y) = g{u, v, f(Xi, ..., xt-i, v, xI+1, X, ¥)

g(u, v, g(f(xu ..., Xi-1, u, xt+1, ..., x,,), ¥y, 2, 2"), w) =

()

= g(u, v, g(f(xly ..., Xi-t, vV, xi+l, ..., xn),y, z, 2), w).

The proofs and results of the previous case easily go through (see [GM] for more
details).

Other classes of interpretations, e.g. algebraic, first-order, ..., meaningful from
the computer science standpoint, can also be fruitfully investigated, see [GU, GU2].
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SOME REMARKS ON THE TWO DISCRIMINATORS

A. F. PIXLEY

1. Introduction

A variety V is a discriminator variety if there is a ternary term /(x,y, z) of V
such that for subdirectly irreducible (SI) SEV and x,y, z£S,

t(x,y,2) =z if x =y,
(1.

x if x Py.

Vis a dual discriminator variety if there is a ternary term d(x, y, z) of V such that for
Sl V and x,y, z£S,

(12) d(xy, z)

x if x =y,

z if x &y,

In the decade since their introduction in [9] discriminator varieties, and more recently
dual discriminator varieties, introduced in [5], have played key roles in several areas
of universal algebra, e.g.: in understanding the structure, spectra, and decidability
of certain varieties. (For examples see [3], [8], [11].)

Discriminator varieties and dual discriminator varieties have several elementary
properties which we briefly recall. First, both types of varieties, are, by (1.1) and (1.2),
both semi-simple (non-trivial Sl algebras are simple) and sub semi-simple (non-trivial
subalgebras of simple algebras are simple). Next, a discriminator variety is necessarily
arithmetical (i.e.: both CD-congruence distributive and CP-congruence permutable),
since a discriminator term t must clearly satisfy the Mal’cev equations

(13) t(x, X, z) = t(z, X, X) = t(z,x,z) =z

characterizing arithmetricity ([9]). On the other hand a dual discriminator term d
obviously satisfies the ternary majority equations

(1.9) d(x, X, z) = d(z, X, X) = d(X, z, X) = X

which imply that the variety is CD (and in the strongest way in which a variety can
be CD — see [7]). Since the lattice median term

m(x,y, z) = XVY)AXV2)A(yVz)

This paper is the written version of a talk held at the Conference on Universal Algebra,
May 30—June 6, 1982, Visegrad, Hungary.
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induces the dual discriminator on the two element lattice, the variety of distributive
lattices is a dual discriminator variety but, lacking CP, is not a discriminator variety.
However if t is a discriminator term and iffix, y, z) is any ternary function satisfying
Mal’cev’s identities for CP,

fix, x, 2) =/(z, X, x) = z,

(e.g. if/ is t), thenf(x, t(x,y, z), z) is the dual discriminator. Hence every discrimi-
nator variety is a dual discriminator variety but not conversely, and the difference is
precisely congruence permutability:

Lemma 1-1. A dual discriminator variety is a discriminator variety iff it is CP.

In spite of the wide gulf — congruence permutability — separating these two
kinds of varieties, the definitions (1.1) and (1.2) suggest that they are, none-the-less
closely related and, more precisely, that properties of discriminator varieties might
generally be obtainable from more general properties of dual discriminator varieties
by imposing congruence permutability. This has, in fact, already turned out to be
the case in [12] where “Stone” duality for discriminator varieties becomes a special
case of the more general “Priestly” duality for dual discriminator varieties. The pur-
pose of the present note is to continue this theme by giving two characterizations of
dual discriminator varieties and obtaining, as easy corollaries, corresponding char-
acterizations of discriminator varieties by imposing CP. In Section 2 we shall do
this for general varieties and in Section 3 examine the special case of locally finite
varieties which are semi-simple.

2. General varieties

An algebra A has the PCC property (principal congruences are complemented)
if each principal congruence 6(x, y)ECon (A) has a complement 0'CCon (A). A has
the PCI (principal congruence intersection) property if whenever a principal con-
gruence 9(a, b)ECon (A) has a complement O'6Con (A), then for all x£A.

[a]9(a,b)n[x]0" ~ O,

i.e.: the congruence class of 9(a, b) containing a intersects every 9' congruence class.
A variety has the PCC or PCI property if each algebra in the variety has the corre-
sponding property.

The PCC property is discussed by Fried and Kiss in [4] where it is shown that V
is a discriminator variety iff V is arithmetical and has the PCC property. We shall
obtain this result as Corollary D below. The PCI property is clearly implied by
congruence permutability. That it is strictly weaker follows from the fact that every
dual discriminator variety has the PCI property. To see this recall (from [5], page 91,
proof of Theorem 3.8) that if V is a dual discriminator variety then for a, b£AS$ V,

the relation
y(a, b) = {(« Vv): d(a, b, u) = d(a, b, U)}

is a congruence relation (called co-principal) and is the complement of the principal
congruence 9{a,b); in particular

a = d(a, a, x)9(a, b) d{a, b, x)y(a, b)x
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for all xEA. Hence V is PCI. Using this observation we can formulate our charac-
terization of dual discriminator varieties as follows:

Theorem DD. For a variety V the following are equivalent:
1) V is a dual discriminator variety.
2) V has the properties:

i) CD, ii) FCC, iii) PCI.

Proof. I)-*-2) is clear from the remarks above. To prove 2)—1) let
F=Fy(x,y, z,v0,vx, ...) be the free algebra of V with the denumerable set {x,y, z,
V0, vx, ...} of free generators. By ii) the principal congruence 0(x, y) has a complement
O and by iii) there is a term, say t(x,y, z, va, ..., vm_J) in F such that

xXO(x, Y)t(x, y, z, v0, ..., vim )0'z.

On the subalgebra F' of F generated by {x,z, v0,..}, 6(x,y)=a> and hence
xhz'f(x, X, V0, ..., vm_ i) in F'. Since {x, z, v0, ...} are free generators of F' it follows
tha
(2.1) X = t(x,x,z,v0,...,vmJ)
Is an equation of V.

To complete the proof it will suffice to show that for any SI Sin Vand a, b, cES
with a”b,
(2.2) t(a,b,c,c,...,c) =c,

for (2.1) and (2.2) together will show that the term tfx, vy, z)=t(x,v, z, z, ...,z)
is the dual discriminator on S. To accomplish this first notice that ii) (PCC) implies
that the meet of all proper congruences of any A£V is aand hence that V is semi-
simple. Thus we need only consider simple S. Second, observe that we need only
establish (2.2) for at most countably generated S, for the class K of at most countably
generated simple members of V generates V and, by Jonssons Lemma ([7]), all
simple members of V are in HSPUA). Thus if we establish that the sentence (1.2)
asserting that tx(x, y, z) is the dual discriminator is true for all members of K it fol-
lows that it will be true for all members of SP,,(K)=HSPUK).

Hence let S be at most countably generated, by say  gn «>and simple with
a,b,c£S, a?tb. Define a homomorphism ¢ F-+S by

(p(x)-a, (p(y) —b, op(c) = c, cpfa) =c
for i—0, —1 and <9(p*=gi-m for i=m, m+1, .... Since (p is surjective,
ker @ is maximal in Con (F). We claim that d'~ker < If this were not so then
d'Vker (p=i. But 6(x,y)\I6'—i and O0(x,y)A6'=a> so that congruence distri-
butivity (i) would imply ker @—i, a contradiction. Hence O'‘kercp. Thus it
follows that (p(t(x,y, z, vO, ...,vm*)-(p{z), i.e. t(a,b, c c, ..., c)=tx(a,b, c)=c,
completing the proof.

Corollary D (Fried, Kiss [4]). For a variety V the following are equivalent:
1) V is a discriminator variety
2) V has the properties:

i) V is arithmetical, ii) PCC.

The corollary is immediate from the remarks preceeding the Theorem.
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3. Locally finite semi-simple varieties

Recall that a variety is locally finite if its finitely generated members are finite.
For locally finite semisimple varieties we can obtain sharp characterizations of dual
discriminator and discriminator varieties. To do this we need to first review (from
[5], [10]) the concepts of rectangular and /A-rectangular subalgebras. Let AXA 2
be algebras and S a subalgebra of AIXA2. S is rectangular if (x, y), (x, v), (u, V)£ S=>
=>(u,y)es-, briefly, if three vertices of a rectangle in A1XA2are in S the fourth
vertex is also in S. A variety V is CP iffforall A1, A2€V each subalgebra of A{XA2
is rectangular ([10]). S is /»-rectangular if S has the properties:

(3.1) (X, ji), (x, ¥2, W, v)ES and yx X y2=>(x, V)ES,
(3.2) xI5y), (x2,y), (u,v)ES and XI X x2=>(u,y)£S.

Geometrically this means that if S contains two distinct points of a vertical (or
horizontal) line in A1X A2 then the horizontal (or vertical) projection of any other
element of S onto this line is also in S. In the present setting the significance of these
concepts is given by the following result from [10].

Theorem 3.1 Let A be a finite algebra.

a) The dual discriminator is a term function of A iffeach f: An—A under which
each p-rectangular subalgebra of AX A is closed, is a term function of A.

b) The discriminator is a term function of A iff each f: A"-*A under which
each subalgebra of AX A which is both rectangular and p-rectangular is closed, is a
term function of A.

With this background we can state our result. (Fv(3) is the 3 generated free
algebra in V)

Theorem DD'. Let V be a variety having the following properties:
a) V has a majority term, i.e.: a term m(x,y, z) satisfying (1.4),
b) liv(3)|<w,
c) V is semi-simple,
d) For each pair offinite simple algebras S1, S f V, each subdirect product in
SiXS2 is p-rectangular.
Then the following are equivalent:
i) V is a dual discriminator variety.
ii) V is sub semi-simple (i.e.: non trivial subalgebras of simple algebras in V
are simple)
iii) For /is3 every n-generated non-trivial subalgebra of cny simple algebra of
V is simple.

The implication i)->-ii) is clear and the equivalence of ii) and iii) is always true
(any non-trivial algebra is simple if its subalgebras of no more than 3 generators are
simple). Hence to complete the proof we need only demonstrate iii)—i). We defer
this until Section 4 and in the present section show how to obtain the following
corollary from the Theorem.

Corollary D'. Let V be a variety having the following properties:
a) V is arithmetical,
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b) /v (3)l-=g>
c) V is semi-simple.
Then the following are equivalent:
i) V is a discriminator variety.
ii) V is sub semi-simple
iii) For n” 3 every n-generated non-trivial subalgebra of any simple algebra of
V is simple.

Proof. Since V is CP and hence has the PCI property it will be enough, by
Lemma 1.1, to establish the following Lemma.

Lemma 3.2. The PCI property in a congruence modular variety implies con-
dition d) of Theorem DD".

Proof of Lemma 3.2. Let S be a subdirect product in SxXS2, St simple and
suppose  (x,yi), (X,y2, (u, v)ES, vy, y2. Then 0=6((x,yt), (X,yj)"nlt the
kernel of the first projection. Hence, from the simplicity ofthe S{, and n2are com-
plementary proper maximal congruences. But by modularity, 0—0M (tilAt2=
—rcjA(0\/n2. Again by maximality OVn2=i or n2and if 0Vn2=n2 then 0”*n2
so 0—a) contradicting yi7iy2. Hence 6Wn2=i so 0=nl, i.e.. txis principal.
But then by the PCI property,

[=>JD]nin [(«, &riz X 0O,

which means that (x, v)ES so (3.1) is satisfied. Symmetrically we obtain (3.2) so S
is /»-rectangular.

Hence Corollary D' is a simple consequence of Theorem DD'.

4. Completion of the proof of Theorem DD’

We assume that V has properties a)—d) and iii) as stated in the Theorem. By
b) and c) the free algebra Fv(3) may be identified with a subdirect product S in
StX... XS, where the St are finite simple members of V, S is freely generated by
y=(yi z=(zu and for each i-1, ..., n, S, is gener-
ated by {xj, yt, zt}. For all i«=/ let St be the projection of S into SiX Sj Then,
in particular, the pairs (Xi5xj), (>],J;), (zi5zj) are in Su. We first show that for all
IS/-=/Sn there is a term function di} of three variables such that du (xk, yk, zk)=
—d(xk,yk,zK for k=i orj, and where d is the dual discriminator function. We
show this by considering the following possible cases:
1) If xt=yt and Xj—yj the projection on the first coordinate is the sought d(J.
2) If Xjryi and Xjtyj take dt) to be projection on the third coordinate.
3) If Xj—~yt and Xj~*yj then by d) and (3.1) there is a term function df of
three variables such that

du ((X;, xi), (Va i), (zon Z0)) = (X5, Zi),

dij(x,, ¥, z)) = x, and d,j(xj.yj, Z) = Z,
which means dtJ(xk, yk, zZ=d(xk,yk, zK for k—i orj, as required.

i.e.:
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4) If Xity'i and Xj—yj then we obtain the di} as in 3) using (3.2).

Now for define the functions d;: {x,y, z}3-*{x,y, z}czS by
di(x, y,z) =x if Xi —yt,
=z if X"yt

and let n; be the kernels of the projections of S onto St. Then in the free algebra S,
the system of n congruences

4.2) p(x,y,z) = dix,y,2(7q), i= 1 ..,n,

has the di}{x,y,z) as pairwise solutions. Hence by the existence of a majority term
(@), it follows from a result of A. Huhn ([6], see also [1]) that the system (4.1) has a
single simultaneous solution, i.e.: there is a term t(x, y,z) such that the induced
term function satisfies

t(xk, yk, zk) = d{xk,yk,zk), k =1, ..., n.

Finally let A be any SI (hence simple) member of V and choose a, b, cfA. Let
ti= ker h were h is the homomorphism of S into A defined by h(x)=a, h(y)—b,
h(z) =c. The subalgebra B of A generated by a, b, c is, by iii), simple or trivial so n
is either maximal or i in Con (S"). If n is maximal then since a) implies that V is CD,
‘Eis some nkfor k=1,...,n, so that B~Sk and hence t(a, b, c)=d(a, b,c). IfB
is trivial there is nothing to prove. Hence the term t(x, y, z) induces the dual discri-
minator on each Sl in V and this completes the proof.

5. Special results

For varieties generated by very small algebras some special remarks can
be made. First, S. Burris [2] has observed that if [*M|==4 and V(A) is semi-simple
and arithmetical, then V(A) is automatically sub semi-simple so that V(A) isa
discriminator variety. (This is easily verified by considering cases.) Burris also
shows that 4 is the least integer for which this statement is true.

No corresponding special result holds for dual discriminator varieties. It, is, of
course, obvious that if \A|=2 and A has a majority term function, then with no
further requirements, V(A) is a dual discriminator variety. On the other hand for
\A\ =3 we can construct an algebra A such that conditions a), b), ¢) and ii) of
Theorem DD’ hold for V(A) but condition d) fails so V(A) is not a dual discrimi-
nator variety. This observation and the following illustrative example were kindly
supplied by the referee. Let A have the set {0, 1, 2} as universe and take for opera-
tions min, max,/, g where

1(0)=1, /(1)=/(2)=2,
g(2) = 1, *0) = 8(0) = 0.

Then A is simpleand A XA —{0, 2} is a subalgebra of A XA which is not /»-rectan-
gular. Hence d) (and thus i)) fails for V(A) while all other conditions of Theorem
DD' hold.
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COMPLETE RULES OF INFERENCE FOR UNIVERSAL SENTENCES
DAVID KELLY

Introduction

(i) Background

In 1935, G. Birkhoff [1] gave complete rules of inference for identities (equational
logic). Three decades later, A. Selméan [7] gave complete rules for two other frag-
ments of first-order logic without relation symbols; one of this fragments was strict
universal Horn sentences. Each of the above three fragments is a set of universal
sentences. Subsequently, the present author also obtained complete rules for universal
Horn sentences (as mentioned in McNulty [5]). In each case that we mention, the
dilferent rules of inference are easily shown to be equivalent. Selméan applied a proof-
theoretic technique of L. Henkin [3] to restrict the completeness theorem of first-
order logic to each fragment. Instead of using such a technique, we follow BirkhofF
by constructing suitable models.

In this paper, we give complete rules of inference for certain classes of universal
sentences, including the classes of universal Horn sentences and positive universal
sentences. For their completeness results, Birkhoff and Selman gave distinct proofs;
even Selman’s two proofs are only related by analogy. We were motivated by this
disparity to find a unified approach. In fact, all our completeness results follow in
a uniform way from the case of all universal sentences.

G. McNulty [5] has also given a completeness proof for universal Horn senten-
ces. H. Andréka and I. Németi [0] proved the same result. Besides Birkhoff’ result,
Andréka and Németi only knew of Selman’s result. Moreover, for their result on
universal Horn sentences, they give a Birkhoff-style proof and allow partial opera-
tions.

(if) Notation
Since universal sentences can be assumed to be in prenex form, we suppress all

universal quantifiers. Each universal sentence can be written as a finite conjunction
of expressions of the form

(*) ox\oi\.../\om —TiVt2V...Vt,

where m+n>0 and ox, «2, ..., om, tx, t8, ..., +, are atomic formulas. An atomic
formula looks like p=q for polynomials (terms) p and g, or like R(/>i,, p,,)
where R is an n-ary relation symbol and plt ...,p,, are polynomials.

This research was supported by the NSERC of Canada.

k%o Ma&hem tICE SubSJect Classification. Primary 03820.
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We shall only consider universal sentences of the form (*) because rules of
inference are easily extended to conjunctions. Moreover, we do not consider the
slight extension that allows arbitrary sentences as hypotheses (existentially quanti-
fied variables are replaced with Skolem functions). Henceforth, the term “sentence”
means a universal sentence of the form (*). (Although the Gentzen form in Chapter
15 of Kleene [4] looks similar, it does not require the formulas on each side of (*)
to be atomic.)

In fact, we shall represent each sentence as

5-77

where 5 and T arefinite sets of atomic formulas. We permit both 5 and T to be
empty. The sentence 0—0, denoted by F, represents falsity, a sentence without a
model. Our notation emphasizes that we are dealing with ordered pairs of finite sets
of atomic formulas when we consider sentences syntactically. One reads 5—T as
“the conjunction of 5 implies the disjunction of T'\ Since an empty conjunction is
“true” and an empty disjunction is “false”, 5-0 says that the conjunction of 5
does not hold, and 0—7’ says that the disjunction of T holds.

There is a fixed similarity type £ that lists all the operation symbols and the
relation symbols, together with their arities. Since all operation and relation symbols
are understood to be of this type, ¢ is only rarely mentioned explicitly. We shall always
denote the set of variables by X and the set of constants (nullary operation symbols
in f) by C. We do allow X to be empty, but unless ¢ consists entirely of nullary rela-
tion symbols, XUC is nonempty.

Let us introduce some notational conventions. X is a set of sentences of type
£, and X contains each variable that occurs in X. In the rules that we shall give,
f denotes any operation symbol and R denotes any relation symbol (both of honzero
arity n). In addition, p, gand r (with or without subscripts) are polynomials; a, z and o
are atomic formulas; and R, S and T are finite sets of atomic formulas. Writing the
sentence @ as cp(x, ..., xm) means that the distinct variables xIt  x,, may appear
in ¢p; moreover, (p(pY, ...,/?,,,) denotes the sentence obtained from <p by replacing
each occurrence the variable xt by the polynomial p( (1

(iii) Some rules of inference

We shall always assume that OSaS© and I1*8*co. We write for the

set of sentences 5—7" with both S and T finite, 5 % a, and |Tj=/2 In particular,

is the set of all sentences. For any such a and &, we now define nine rules of

inference for 45, All sentences that appear, including those of X, are assumed to be

in B, and both (U7) and (U8) are omitted if a=0. We also assume that \T\<R
in (U2), (U3), and (U4).

(UO) T|—@p whenever g is in X

(Ul) THO—{p=p} for every polynomial p.

(U2) From ITh5-rU {p=gq}, infer XH5—TU {q=p).

fU3) From X\-5-7"U{pi?) and Ih5-7 'U{q=r}, infer 51-5-7TJ {p=r}.
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From 2ZS —»T[j{pi=q} for 1S iS «,

infer 2+ 2 -2"U{f(Pi,...,p,)=f(?i,9)}
(U4) <From 2f-2 T[}{Pi=gq) for 1S iSn

and I1hS-rU {R (ft....a)}

infer Z\-S-*TO {R(qu ..., q,)}

(U5) From 2|-<p(x1,...,xm), infer Zi-tpfa,
(U6) From 2+ 2—7' infer Zh2'-7v forany 2'22 and T 2 T.
(U7) 21—{a}—{e} for every atomic formula e

(U8) If 21—2—Rj for Isi“ksa with Kfinite, each R is nonempty, and for any
choice of QifR,, Z—{i?, s >£}—7) then infer 2 + 2 —7".

(iv) The main result

Let ST be a set of formulas of first-order logic (for some fixed similarity type).
A rule of inference for ST has all its hypotheses and its conclusion in ST. A set of
rules of inference for ST is (semantically) complete if the formulas that can be proved
from any subset 2 of ST using these rules are exactly the first-order consequences of 2
that are in ST. (The semantic notion of first-order consequence is intended.) It should
be obvious that any sentence proved via our rules is also a first-order consequence.
Our main result is the

Theorem. If ot=co, or =1, or R=a>, then the rules (UO) to (U8) form a
complete set of rules of inference of dJ*3. Moreover, for any other values of @and 3
(i.e., both a and B arefinite and R =2), these rules are not completefor any type with
at least 3a+2/1+2 constants.

In particular, the (a, B)=(0, a) case of the theorem means that the rules (UO)
to (U8) are complete rules of inference for positive universal sentences (with each
positive universal sentence replaced by the set of its conjuncts, each of which is a
disjunction). We have mentioned an explicit number of constants in the theorem to
emphasize how easy it is to get incompleteness when a and R are finite and /?S2.

Let denote the subset of consisting of the sentences 2—T with T
nonempty. If Z Q ~iB, then our rules will never introduce a sentence of the form
2—0. Therefore, the theorem implies that the (a, /i)-rules are complete rules of in-
ference for whenever a=<y or B=I1, or B=co. Examples in Section 1 will
demonstrate the incompleteness of our rules for the remaining values of (a, R).
These examples also show that these rules, when applied to are incomplete for
the same values of (a, B). For these values of (a, B), we conjecture that no finite set
of rules of inference for or » *R is complete.

(M Consequences and modifications

If X is infinite, then we can assume that m= 1 in (U5). Thus, if X is infinite,
and there are no relation symbols, then we obtain Birkhoff’s rules for (as given,
for example, in Gratzer [2]) from our theorem. (Of course, the formulation of our
rules was motivated by those of Birkhoif.) When there are no relation symbols,
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A. Selman [7] found complete sets of rules of inference for %*l and Observe
that the completeness theorem of A. Robinson [6] is not a completeness theorem for
"a,a>  our sense because his rules allow conjunctions and disjunctions in formulas
on both sides of the implication sign (even when the initial formulas are in "~ ti)G).

The examples of Section 1 also serve as illustrations of our rules. In particular,
the strength of (U8) will be demonstrated. In rule (U8), we shall call each of the sets
{6i5ee) 61} a selection (for the sets of atomic formulas Rt, 1"i*k).

There are some minor modifications to our rules that yield equivalent sets of
rules. If X is empty, then (U5) can be omitted. If X is nonempty, then (Ul) can be
replaced by

un' Z\- 0 (x=x} for some xEX.
If a~l, then we can replace (U2) by

(U2)y’ Z\-{p =a- {9=p}

If as2, then we can replace (U3) by

(U3) Lb- {P=qg, 4=1r}- {p =1}

If a=a> then we can replace (U4) by
I- {Pi = qi, —,Pn = qr} - {f(Pi, mPn) = f(7i, me,2,)}
lit- {Pi = qi, «=e>pn= g»”~(Pi, -, pN} -* {R (51, 2,0}
If a is finite, then we can require k=a in (U8) because we could repeat S-*RX
often enough; since the new selections contain the old ones, (U6) can be applied.

Sections 2 and 3 reduce to the a=co case. If a is infinite, then Section 4 allows
us to assume that R is also infinite. Completeness is proved in Section 5.

An obvious consequence of the theorem is that our notion of proof depends only
superficially on the type £ and the set X of variables when a=co, =1, or B=a>.
More precisely, if there is an (a, /?)-proof of the sentence (p from the set 1 of senten-
ces for some choice of the type and set of variables, then there is also an (a, R)-
proof of oo from 1 when C(respectively, X) consists only of those symbols (respec-

tively, variables) that appear in z or cp. (In fact, we show in Section 1 that this de-
pendence is superficial for all a and R.)

U4y

1. Examples of incompleteness

For ZQW"B, the (a, B)-closure of Z, denoted by clI*CZ), is the set of all
sentences that can be proved from Z using the (a, /5)-rulcs. A set of (a, //-sentences
is (a, B)-closed if it is the (a, /f)-closure of some set, and so in particular, of itself.
Writing Z\-g> means that there is an (a, /1)-proof of the sentence ¢ from Z. The
length of a proof is the total number of applications of all rules except (UO0).

Let us indicate why an (a, /J)-proof of Z[-(p can be assumed to use only the
symbols and variables that occur in Z or p Let £ and X denote this minimum type
and set of variables. First, delete any sentences in the proofin which a relation symbol
not in £ appears on the left side, and remove all atomic formulas involving an extra-
neous relation symbol from all the sets on the right sides of the remaining sentences.



UNIVERSAL SENTENCES 351

What remains is still an (a, /?>-proof of pfrom Z. We can now assume that XUC
is nonempty; choose some xfXUC. Replace each constant not in C by x, and
“interpret” each extraneous operation symbol of nonzero arity as the first projection.
The resulting sequence is now a proof of Z \-g> of type £, but extraneous variables
may still occur. Since the only operation symbols are constants and X is empty in
all the examples of this section, we first make these assumptions. In this case, every
variable is replaced by each constant in C. (For example, a sentence with two extra-
neous variables is replaced by 36 sentences if there are 6 constants.) For the general
case, we remove one extraneous variable y at a time. We substitute finitely many
polynomials (of type £ and not involving the variable y) for y at its introduction
(which will be an application of one of (Ul), (U5), (U6), or (U7)), and in all subse-
quent steps, for later use in the modified proof. (One analyzes subsequent applica-
tions of (U5) in the original proof.)

Each set Z of sentences that we shall define in this section is finite and has only
constant operation symbols. Consequently, clai/,(T) is finite for all a and 3. Thus, for
any definite values of a and B, any claim that we make about | could, in principle,
be verified by a direct calculation of claiR(E).

The first lemma expresses an old idea: if constants are systematically replaced
in the original hypotheses and in each step of a proof, then the resulting sequence is
also a proof. We omit the simple inductive proof of this lemma. The second lemma
eliminates (U2) from (a, B)-proofs.

Lemma 1.1. Let cl,...,cm be distinct constants that do not appear in the set
Z (xI5 ..., xm of sentences, and let dx, ...,dm be polynomials in which no variables
appear (closed terms). Let a and B be arbitrary. If Z(cx, ..., cml-<p(ci, m»O ,
then z{d1, ..., dm\-g>(d], ..., dm). Moreover, the (a, R)-proof of cp(dl, ..., dm
from z(dx, ..., dn has the same length as the (a, B)-proof of (p(ci, ..., c,,) from
Z(ci, ..., cm.

Lemma 1.2. Let Z be a set of sentences that is closed under (U2). For any
(a, B)-proofofa sentence (pfrom Z, there is an <a, R)-proofof (pfrom Z that does not
use (U2), and is no longer than the original proof.

Proof. Let ¢' be obtained by zero or more applications of (U2) to the sentence
(. If (pis obtained by a single application of any rule except (U2) to a (U2)-closed
set Z, one shows that (p' can also be obtained by a single application of the same rule
to Z.

Let a=0 and B be finite with 822. We define a subset Z of ~ 0 and a sentence

(p"o.B such that (p ca ve Z by the (0, /?+])-rules, but not by the
(0, j9)-rules. Let Q— ith Q—0 if B—2. Z consists of the

following three sentences:

1 0 —{a = b, e2= d}(iQ,
2. o —{a=c¢elt c= euqQ,
3. 0 —{ex= b, c = d}\JQ,

and (p is Q-+T, where T={a=b, c=d}\JQ. Since (a, /?)-proofs depend only
superficially on the type and variables, we can assume that the type consists of the
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symbols appearing in Z, and that the set X of variables is empty. An example with
only constant symbols is obtained by introducing 28—4 new constants, and replacing
each relation symbol by an equation involving two constants. The modified example
is the incompleteness example of the theorem for a=0. However, since the modifi-
cations entail only minor changes in the argument, we continue with the original
example.

It is easy to find (0, B + I)-proofs of @from Z. (For the theorem, we only need
the obvious fact that g is a first order consequence of Z.) We require a preliminary
analysis to verify the other condition. We define Cx={a, b, e,} and C2= {c, d, e2);
thus, the set C of constants is the union of Cx and C2. We shall only consider struc-
tures whose underlying set is obtained from C by identifying elements. Any such struc-
ture satisfies Z iff Cx or C2 is collapsed to a single point, or some R, is true. Let
s,t,u,v be in Cwith st and u”v, and consider the sentence

0 (s=1/ u=viuQ,

with Q as defined above. It follows that:

(i) If the right side of this sentence is replaced by a proper subset, the new sen-
tence is not a first-order consequence of Z

(if) This sentence is a first-order consequence of Z iff each of {v, /} and [u, v}
is contained in Cx or C2.

Let 1. be the (U2)-closure of sentence i of Z for 1=i=3. We define
T/=T1UT2Uz23, a (U2)-closed set. There are six more such 4-element sets:
Zt,Z5, ..., T9, each corresponding to a pair of 2-element subsets of C\ and C2.
Obviously, any permutation of C induces a permutation ofthe nine objects Zx, Z2, ...,
..., 29. Suppose that the permutation Aof C permutes the three objects Zx, Z2, Z3.
If, for some sentence iR, Z'\-iB, then Lemma 1.1 implies that there is a proof of
A(i/0 from Z' of the same length. Two such permutations are /.x=(beX(cd) and
).2=(ab)(de.

Suppose there is a (0, /?)-proof of (pfrom 1. In order to reach a contradiction,
let us consider a shortest (0, /?)-proof of @from S'. Since pis notin I*, the minimum
length is nonzero, and (UQ) is not applied in the last step. We now consider which
rule could have been applied in the last step. By the form of g, (Ul) is not possible.
By Lemma 1.2, we can assume that (U2) does not occur in the proof. (U4) is excluded
because there are no symbols of positive arity. Since X is empty, (U5) does not
apply. By (i), rule (U6) was not used.

For (U3), assume that, for some C, both 0--{a=/?, c=d}\JQ and 0>
-*{p=h, c=d}UQ have shorter proofs from I'. We would have a shorter proof of
(pifp were a or b. By (ii), we conclude that p is ex. Applying )xto 0O»{n=¢el,
c=d}{JQ, we conclude by Lemmas 11 and 1.2 that (p has a shorter proof, a con-
tradiction. (For the other possible application of (U3), the permutation 22is used.)
We have verified that Z and @ have the properties we claimed.

Let us further investigate the above example for §=2. The theorem says that
there is an (& 2)-proof of g from Z. As an illustration, we give a (1, 2)-proof of @
from Z. (When we apply one of our rules, we give the line numbers of the hypotheses,
with zero indicating that a hypothesis is in Z.)
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Rule Lines
1 {a=<?iWa=ei} (U7) -
2. {a=el}<{a=ei,c =d} (U6) 1
3. f&=el}>{el=1i, c=d) (U6) 0
4. o="}—{a=b, ctd) (U3) 2,3
5. ic=t#-(c=c%} un —
6. {c=e3-"{a=b,c=L (U6) 5
7. {c=eZ—a=hb, e2=d} (Ue) 0
8. {cxej)-+{a=b, cxd} (U3) 6,7
9. 0—{a=b,c=d} (U8) 0, 4,8

Before we describe our examples for nonzero a, let us make an observation.
Ifwe replace the empty set by {Pj, P2, P3}on the left side of each sentence in the above
Z and p then we do not obtain an incompleteness example for a=3. Since both

{a=¢et,ex=Db e2=d)-*{a=bh, c =d}
and
{ex=h, c=¢€2 e2=d) m{fa=b, c =d)

have <3, 2)-proofs, the new version of (p now follows from an application of (U8)

to the three new sentences of Z
Suppose a and B are finite with a~l and B72. Let 3?2'?’
Q= {R3, R4, R}, with =0 if =2, and let r={R1LRZ}UZ" The set
consists of the following a+2 sentences (Is/sa + I):
S —{ai ! = ah RJUO, »odd,
S -* {a,-! = af, RZ}Us, i even
{a0 = flati} “mT.

We define @to be S-+T. (Asinthe a=0 case, additional constants can be introduc-
ed to eliminate the relation symbols.) Clearly, o is a first-order consequence of Z.
(Applying (U8) to every sentence of Z but the last yields an (a+1, /f)-proof of @
from Z. There is also an obvious (a, B+ I)-proof.)

For S as above, suppose that the (a, /?)-sentence S”~-R is a first-order conse-
quence of Z, Sr\R=&, and R does not contain u=u for any ut£C. Using struc-
tures in which each relation symbol in S is true, it is easy to show that:

(i) QQR and R contains Rj or R2

(i) If R={u=v, RjJUR with u,vdC and j£{1,2}, then {u,v}={ai_1, a”,

and i and j have the same parity.

(iii) R is not a proper subset of T.

Suppose there is an (a, B)-proof of @ from Z. We consider the last step in a
shortest (a, R)-proof of qfrom Z. It is easily seen that none of (UO), (U6), or (U7)
was applied. Since X=0 and there is no equation in T, rule (U8) was used in the
last step. Suppose that (U8) was applied to S-*Rm, 1S/n*Sot. If Rm=T for
some m, then we have a shorter proof of gp, a contradiction. Using (iii), we conclude
that no Rmis a subset of T. We shall write u~v to denote either u=v or v=u.
By (i) and (ii), there is a selection of the form

P= {ai_l~ail|i€/}U{P; [./€}U{H = u\u£H}

12
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where 79 {1,2, a+1} {1 2, a}y, 7/gC, and
[/|+1]/]+ 3] £k S a

By the assumptions of (U8), P-*T has a shorter proof from Z. If |7|=a, then
P~*T would be g a contradiction. Therefore, |/|<a. Choose z£{I,2, a+ 1}
and {1,2, a}—f. We define a 2-element model of Z in which P—T fails. In
this structure, P- is false and every other relation symbol in S is true. Also, every
relation symbol in T is false. We identify the elements of C as follows:

a0= =-—U:-i “nd U —fl;+l —em—Uh+-

Consequently, P—T is not a first-order consequence of Z. With this contradiction,
the proof of the second statement of the theorem is complete.

2. From 3 —\ to R=a>
If a=(o, =1, or R—e0, then we shall show that
et (i) = Velpridioe-

We now give the first of many steps required to prove this “upward compatibility”
result.

Proposition 2.1. If then

Infact, if Z is (a, 1)-closed, then cla0)(.T) is the set of all (a, ®)-sentences S-+T for
which  S-+T' is in Z for some T'QT.

Proof. It obviously suffices to prove the second statement. Let Z be (a, 1)-
closed, and define Z1to be the set of all (a, «/-sentences S-»T for which S'—7”
isin Z forsome T'Q T. Since | lis contained in cla ra(2), it only remains to show that
I 1is (a, (0)-closed. We shall apply each (a, «)-rule to sentences in Li. If we apply
(UO), (UIl) or (U7), then the conclusion is in Z', a subset of I 1. If (U3) is applied to
S-*TU {p=q} and S—TU {q=r}, and S—T is not in Z1, then both
and S—{#=/s} must be in Z; hence, S—{p=r} is in Z so that the conclusion of
(U3) is in Z1. We omit the similar proofs for (U2) and (U4). Suppose that 1"k”a.
and (U8) is applied to S—P;, 1Mi~k. If S—0 isin Z, then the conclusion is in
Z\ by (U6). We can now assume that, for each i, there is QfRt such that S—{o}
is in Z. Since {oj, ..., K]—T is in Zx by the assumptions of (U8), thereis T'QT
such that {gx, ..., Q}*T" isin 1. By applying (U8) to Z, we conclude that S—T'
is in Z. Hence, S—T s in Zx. Since the conclusion is obvious if (U5) or (U6) is
applied, the proof of the proposition is complete.
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3. Upward compatibility from (a, to) to <o, co>

To each variable xdX, we associate a new constant x. We extend the type from
A to 4* by extending the set of constants from C to C#= CU {id*£EX}. We shall
apply the superscript # to polynomials, atomic formulas, sets of atomic formulas,
sentences, and sets of sentences (all of type £) to denote the corresponding object of
type £*. If Z is (a, /i)-closed, then so is Z*. (The converse of this statement does not
hold.) For sentences of type £*, we shall always assume that the set of variables is
empty.

Clearly, Z* icp* means that there is a proof of gpfrom Z in which (U5) is not
used. By converting to the type £*, we can apply results that require the set of variables
to be empty. Observe that Lemma 3.3 below would be invalid if X= {*} were allowed.
(Let T=0 and R= {x=a, x =b}. The sentence 0—{a=b} would be in the right
side, but not in the left.)

By Proposition 2.1, the results of this section for infinite § are also valid when
B=\. Because of rule (U8), the cases when a is zero and nonzero have significant
differences. Specifically, Lemma 3.1 only applies to nonzero a, and Lemma 3.2 is
vacuously true for a=0. Moreover, in Lemma 3.3, we require a separate argument
for the a=0 case.

Although the formulation of the following result suggests rule (U8), the dif-
ferences should be noted.

Lemma 3.1. Let X=0, let Zg m let S and T befinite sets of atomic for-
mulas, and let For 17iMlc, let R, be a nonemptyfinite set of atomicfor-
mulas such that S-*Rt is in claUl). If the sentence {9, e, QK)*~T is in
clao(TU{O—{iHabS}) for any choice of QfiRi, then claitl)(lI) contains S~*T,

Proof. We can assume that Z is (a, <u)-closed. Let T1=1U{0-"{o-}|tr€5}’
If P is a selection for RI, ..., Rk, we call the sentence Q-+T' the witness of P —T
if it has the shortest proof from Zxfor QQP and T'~T. (The witness need not
be unique, but its proof length is.) If each witness is in Z, then S—T is in Z by
(U6) and (U8). If O<{cr} is a witness where o£S, then S-*Tisin Z by (U7) ard
(U6). Thus, we are done if each proof has zero length. We prove by induction, pri-
marily on the maximum length of the proof of a witness, that S—T is in Z. The
induction is secondarily on the number of times the maximum length occurs (i.e.,
on the number of such selections). Since Z is closed under (Ul) and (U7), neither
of these rules is used in any proof. We can also exclude (U5) because X=0. For
1Sisk, choose "€2?- so that the proof of the witness Q—T* of (§j, ..., gk}-+T
has maximum length. In the last step of this proof, (U2), (U3), (U4), or (U8) was
used. (The induction assumptions were formulated to exclude (U6) from the final
step.) For (U3), suppose that Q—Tx[J{p=q} and g —TjU {g=r} both have
shorter proofs from Zx. By induction, Z contains both S-*TU {p=q} and
S-rU {qgzr). (In the previous argument, two different sets played the role of the
original set T.) Applying (U3), we conclude that Z contains 5-»rU{p =r}; since
p=r€T’ the last sentence is S—T, completing the proof if (U3) was last applied.

We omit the similar proofs for (U2) and (U4). We can now assume that (U8)
was last applied. Let I"m~a, and suppose that Q-*Pj and {ftj, ..., am}—T"
have shorter proofs from Zxwhenever 1*j~m and nfiPj. For eachj, the induc-
tion hypotheses apply if T is replaced by TUPj. Therefore, Z contains S-*TOP]j

o
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for each j. The induction hypotheses now apply with the original set T, and Rr, ...,

Rk replaced by TU Pi, TUPm. (If a selection for these last sets contains
XZT, then its witness can be taken to be {t}—{x}, which has a proof from of
zero length. Any other selection P is ofthe form (ir,, ..., nn} with TtjdPj; the witness
of P-*-T does not have a longer proof than P->-T' does.) We conclude that S~-T
is in Z, completing the proof of the lemma.

Lemma 3.2. Let X=0, let ZQ” m and let S be afinite set ofatomicformulas
with |S'|Sa. If 0-r is in cla@(lU{0—{crHo€-S}), then S-+T is in c\Xta(Z).

Proof. We can assume that Z is (a, co)-closed. By induction on the length of the
proof of 0-*-P from T1= TU{0-*{<7}|<7£S}, we show that S-~T is in Z. This is
obvious if 07-T isin Z. Thus, the conclusion follows if (LFQ or (Ul) is last applied
to prove 0 T. (U5) is excluded since X is empty, and (U7) is excluded by the form of
the sentence 0-*-P. We omit the straightforward cases (U2), (U3), (U4), and (U6)
Suppose that 0-*-P; (I*zsfc”a), and for any choice of Ch"Ri, {6i,
have shorter proofs from I).Byinduction, S-*Ri (lsi*k) areinZ. ByLemma3.1,
we conclude that S-+T is in Z, completing the proof of the lemma.

Lemma 3.3. Let X=0. For ZQ "X and a nonempty finite set R of atomic
formulas,
cl..(TU{0- R}) = nR cla,,(TU{0 - &7}
ee

Proof. Since the sentence 0->-P is in the right side, the left side is contained
in the right. We can assume that Z is {a, (u)-closed. Let Z'=cla0$ZU {0~*R}) and
let R—{el5...,, &5} For let Ti=Z,U{0-*{ei}}, and let S be a finite set
of atomic formulas with |5|*a. We first assume that aSI. Let

- 5D

and define Z'(S) and Zt(S) similarly. Suppose that Zt\-S-*T whenever

By (U8), it follows that 0—T is in ZfS) for all i. By Lemma 3.2, {gl)-*T is in
Z(S) for all i. Therefore, we can apply (U8) to 0->-P to conclude that is in
Z'(S). By Lemma 3.2, S-+T s in Z', completing the proof for nonzero a.

Now let a=0, and retain the meaning of Z',n,Qh and Zt. Assume that
Zi\—0-~Ti for 1SzSn, and let T=r1U...UT,,. We prove by induction on the
sum of lengths of the n proofs 2)|-0-»Tt that Z' contains 0—T. If Z contains
0 -r; for any i, the conclusion is obvious. For any i, it follows that Z' contains

whenever (UO) or (U1) is last applied in the proof of 0-*7) from Z. Since X
is empty, (U5) does not apply. We can assume that (U2), (U3), (U4), or (U6) was last
applied in the proof Ztf-0—T1. Since the first three cases are similar, we consider
only (U3). Let R=r2U..Ur,. If 9-*T'U{p=q} and 0-rU {? =r} both
have shorter proofs from Zx, then Z' contains both 0-*T'U{p=q}UQ and
0—T'U £=r}Ug. Applying (U3), we conclude that 0-*-P isin Z'. Since the final
case, that (U6) was last applied, is not difficult, the lemma has been demonstrated.

Proposition 3.4. If a isfinite and ZQ % t(0, then

cl.,co(T) = n d a+1>Q)(T).
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In fact, if Z is (a, of-closed, then clttHj(U(r) is the set of all (a+1, of-sentences
S-*T for which cla@yT#U{0—{o"Jlo+S}) contains 0--T*.

Proof. Let Z be (a, cu>-closed. For a set S of atomic formulas, Z* (S) denotes

d.,,(r*U{0 - {a*}[a€S}).

Let Tj be the set of all (a+1, co)-sentences S-~T for which Q-+T* is in Z*(S).
If S-+T isin Zland |S|sa, then (S-+T)* isin Z* by Lemma 3.2; hence, S-+T
is in Z. Thus, it suffices to prove the second statement. By (U8), Z~Z X It follows
by Lemma 3.2 (with a replaced by a+ 1) that (Z\)# Qc\a+lta(Z*). Since Z"ZtQ
= cla+i,w(T), it only remains to show that Zxis (a+ 1, co)-closed. Since Z* (5) is
(0, (w)-closed for any S, Zx is obviously closed under (Ul) to (U4), and applications
of (U6) in which the right side is increased. Let S-+T be in Zt and let xly x2, ..., xm
be all the variables that appear in S or T. Since 0-»-7°(7, ..., xm) isin T#(5(x4, ...,
., xm), it follows by Lemma 11 (each xtis replaced by (pi)*) that 0-»(J'(/?1, ...,
-Pm))* is in T#(5(pI5...,pm). (We used that Z is (U5)-closed.) Consequently,
, is closed under (U5). Z1is (U6)-closed because the only remaining application is
an increase of the left side. Z1obviously contains each sentence {a}—{a} of (U7).
Finally, for (U8), suppose that Z1contains S—Rt (1Si*k~u +1), and {qj, ...,
mm Qk}-*T for any choice of efRi- Fix % Lemma 3.2, T#(S' U{el})
contains 0—(/?m* and ({e2, whenever 27i~k and
follows by (U8) that 0—T* is also in T*(5U{Rx}). Because the choice of e|"R|
was arbitrary, it follows by Lemma 3.3 that 0—T* s in claaM2,#(S)U {0-*(7?1)#}).
Since 0-»(7?])# is in | #(5) by the definition of Zly we conclude that &-+T* is in
r#(S). Thus, S-*T isin Zly completing the proof of the proposition.

Corollary 35. If Z£ “UXia, then

cleQ(T) = f(ncla,a(T).

Infact, if Z is (a, co)-closed, then cImiQXr) is the set of all sentences S-+T for which
clee)(T# U {0-~{fft }|o+S}) contains 0—T*.

Proof. We can assume that a is finite. For any integer «Sa, repeated applica-
tions of the proposition yield upward compatibility from (a, co) to («, @), and a
description of cl,j(O(1). Since cIm<(.2) is the union of cl,,i0)(£) for all «Sa, the
result follows.

4. Upward compatibility from (eo, R) to (to, to)

Although there is an analogy between the results of this section and the previous
one, the proofs in this section do contain some new ideas.

Lemma 4.1. Let X=0, let ZQ 3, let S and T befinite sets of atomic for-
mulas, and let I be a nonemptyfinite set. For i£l, let Rt be a nonemptyfinite set of
atomic formulas. If S-+R, is in clili)(2'U {{t}—0[t€7L) for each ifl, and the
sentence {gi|/€/}-«-7" isin claB(Z) for any choice of QfRiy then d wP{Z) contains
S-+T.
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Proof. We can assume that X is (<u/?)-closed. Let 2,=rU{{T}—O|r€7"}
For idl, we call the sentence S'—R the witness of S—i?- if it has the shortest
prooffrom I 1for StQ S and RtQRt. Ifeach witnessisin X, or {£4—0 is a witness
for some tdT, then S'—T is in X by (U6) and (U8). Similarly as in Lemma 3.1,
we prove that X contains S-+T by induction on the maximum proof lengths of
witnesses, and on how often the maximum occurs. Choose 0£1 such that the proof
of the witness of S—  has maximum length, and let 1'—I—{6}. The rules (Ul),
(U5), (U6), and (U7) were not used in the last step of the proof of Sg-*R'g. We omit
the cases when (U2) or (U4) was last applied. Suppose that (U3) was applied to
Sg—Qd){p=q} and S0*QU {g~r} in the last step. Let 71=/,U {««?} for two
new elements uand v. We define a newsystem S— idf, by retaining the original
meaning of Rt for idl', and defining Ru=Q\J{p =q} and RW=QU {q=r}.
Clearly, the witnesses of the new system have shorter proofs. Let 7,= {eiliEfi} be
a selection for Rt, id.li- If Quor 8vis>n Q, then P contains a selection for the origi-
nal sets Rh idl; thus, P-*T isin X by (U6). We can now assume that quis p =q
and qvis g=r. Since X contains

{p = a.q£r}-+{p =1},

P—{f?=/} isin X. Let P'—{gfidl'}- Since P'U{p =r} is a selection for P;,
idl, T contains P'U {p=r}-<-T. Since P—{&} isin X whenever idl', it follows
by (U8) that P—T s in X. Therefore, by induction, S—P isin X

We now assume that (U8) was last applied. Let / be a nonempty finite set dis-
joint from /, and suppose that S9-P; and Q—R4g have shorter proofs whenever
jdJ and Q isaselection for Pj, jdJ. Fixsuch a selection Q, let {(h\idl'} be a selec-
tion for Rh idl', and define g'=gUP'. We consider the system Q'—{}, idl'
together with Q'-»Rg. Since the witnesses for all sentences but the last have proofs
of zero length, it follows easily that the induction hypotheses apply. Thus, we con-
clude that g'—T is in X. Let /2=/'U7. We define a new system S-*Rh idh,
by retaining the meaning of Rt for idl', and defining Rs to be P} for jdJ. Since
any selection for Rt, idh, is ofthe form Q' considered above, it follows by induction
that S—T is in X, completing the proof of the lemma.

Lemma 4.2. Let X=0, let XQ@&MRB, and let T be afinite set ofatomic formulas
with \T\"R. If S—0 is in cIm§IU{{T}-0[tCJ}), then S—T s in cI*"S).

Proof. We can assume that X is (co, jS)-closed. By induction on the length of
the proof of S—0 from TX*TU IIt}0|rEr}, we show that S—T is in X. The
conclusion is obvious if (UO) is last applied to prove S—0. (U5) is excluded since X
is empty. (Ul), (U2), (U3), and (U7) are excluded by the form of the sentence S—o.
We omit the easy case (U6). Suppose that S—Rt (1”=i*k<co), and for any choice
of QidRi, {&, ..., £>J-0 have shorter proofs from X1. By induction, {gif ..., Bt}—0
are in X. By Lemma 4.1, S'—T is in X, completing the proof.

Lemma 4.3. Let X=0. For XQ°Us} and a nonempty finite set R of atomic
formulas, ] "
CUICEW{A - () = échL.AruIM - 01

Lemma 4.3 follows immediately from the proof of Proposition 4.4. It is included
to preserve the analogy with the previous section.
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Proposition 4.4. If  is finite and XQ"latB, then

clop(T) = [~ claQ+I(T).

Infact, if X is (co, B)-closed, then cl(®" j (21) is the set ofall (co, B + ~-sentences S—T
for which clo)ifi( 1#U {{T#}-»0|T6r}) contains S*—&

Proof. Let X be (co, /i)-closed. For a set T of atomic formulas, X* [T] denotes
cioh(z*u{{T*}-o0 |Ter}).

Let Xk be the set of all (co, B+ I)-sentences S—T for which S* —0 is in X*[T\. If
S—T isin Sj and \T\"R, then (S—T)* is in X* by Lemma 4.2; hence, S—T
is in X. Thus, it suffices to prove the second statement. By (Us), 2 g 2\. It follows
by Lemma 4.2 (with B replaced by B +1) that (Sj)#Qclnppt(1#). Since XQXxQ
= cIMH(2), it only remains to show that X1is (co, j8+ I)-closed. Since the proof is
analogous to that of Proposition 3.4, we shall only consider applications of (U3)
and (Us). Suppose that both S—TU {p=q} and S—TU {g=r} are in Xx with
\T\sR. ByLemma 4.2, (S—p ="}P# and (S—=r})# are in X* [T]. Applying
(U3), (S—P=/sh* is in S#[r], and therefore, S#—0 is in 2#[rU{p==r}].
Thus, Tj is (U3)-closed.

For (Us), assume that Xt contains 5— (lIs/S&<cu), and (pis ..., Q}—T
whenever o*Ri. For each /, fix ofRi- If |K|=/1+1 let R'—Ri—{<?} other-
wise, R'i=Ri. Clearly, 1" \R[\*3. By Lemma 4.2, (S— is in £#{<?;}] for
each  Therefore, by (Us), S#—0 is in 2'#[7’U{el, ..., €}}- To show that S#—0
is in X*[T\, we shall require k applications of (Us) supplemented with symmetry
arguments. Since one case reveals the argument, we assume that k=3. By Lemma
42, X*[T\J{a2, e3}] contains (S—{o,})*, (S—R2*, and (S—Ra=*. Applying
(Us), S#—0 isin S#[rU {o2>03/]- By symmetry, S*—0 isalso in 2#[TU {(& o3}].
By Lemma 4.2, 2#[TU{e3}] contains (S—{ej)*, (S—{eB)#, and (S—i?3#;
thus, S*—0 is in S#[rU{R3[] by (Us). By symmetry, S#—0 is in 2#[7\J {g}
for each i. By Lemma 4.2, contains (S—{e,})# for each i; hence, by (Us),
I*[r] contains 5#—0. Thus, S-*T isin , completing the proof.

Corollary 45. If XQ 3, then
cIMiiT) = ®o,R” cL.m(X)-

Infact, if X is (co, Rfclosed, then clma(X) is the set of all sentences S-+T for which
cUI(T#U{{t*}-0|T€r}) contains S*-o.

Proof. See the proof of Corollary 3.5.

5. Completeness

We shall omit both a and 8 when a—B—co. Recall that F, called falsity, denotes
the sentence o—o.

Lemma 5.1. Assume that X=0 and that ct=co, 8—I, or B=co. If c\Xi}(X)
contains S-+T but does not contain F, then F$cl(2U{{a}—0}) for some 0£S or
F$cl(2U{0—{t}}) for some x£T.
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Proof. By Proposition 2.1, Corollary 3.5, and Corollary 4.5, we can assume that
a=R=co. Also, we can assume that 2 is closed. In order to reach a contradiction, we
suppose that the hypotheses hold but that none of the conclusions do. By Lemma 4.2,
2 contains 0—{<} for each o£S. If S is nonempty, we conclude that 2 contains
0->-T by (U8). By a similar argument using Lemma 3.2, we conclude that 2 contains
0->-0, a contradiction.

Lemma 5.2. Assume that X=0 and that a=a, 8=\, or R=co If |S|™a
and \T\"B but S-+T s not in c*R(2), then FS$cl(EU{O—t}[<7ES U {{t} -
-0 |t€T}).

Proof. As above, we can assume that a.=R=a>. If 0—O were in the last set,
then by Lemma 3.2, 5—0 is in cl (TU{{t}—0|t6T}. Hence, by Lemma 4.2,
5—T s in cl (I), contrary to assumption.

Since the completeness results of the theorem now follow by standard methods,
we shall not give all the details. Firstly, the syntactic and semantic notions of con-
sistency are shown to be equivalent. The nontrivial direction is given by

Proposition 5.3. Let a=co, 8= 1 or B—co. If there is no (a, B)-proof of F
from 2, then there is a model of 2.

Proof. As above, we can assume that «=R8=o0j. We can also assume that 2
is closed, and by converting to the type f*, that the set of variables is empty. By
hypothesis, 2 does not contain F. For each atomic formula o, {&}{a} is in 2.
Hence, by Lemma 5.1, either {a}—0 or 0—{o} can be added to 2 so that the clo-
sure of this new set does not contain F. By iteration, we obtain a closed set 2' of
sentences that contains 2, does not contain F, and contains {o}+—90 or 0—{a} for
each atomic formula a. Let 91 be the structure whose underlying set A is the set of
all polynomials without variables modulo 2' and an atomic formula a is true in
91 iff 0—fa} isin 2'. (Two polynomials p and q are identified in A iff 0—{p=q}
isin 2'.) Let 5—T bein 2. Suppose that no ergS is false in 91 and that no t£T
is true in 9L This means that 2' contains 0—{o} and {t}—0 whenever S and
tZT. Since 2’ also contains S —T, an application of (U8) shows that 0—T isin
2', and a second application shows that 0-0 is in 2'. This contradiction implies
that 91 is a model of 2, completing the proof.

Proposition 54. Let oc—0o, B—I, or R=co. If there is no {a, R)-proof of
S-+T from 2, then S-+T is not afirst-order consequence of 2.

Proof. As above, we can assume that a=R=co, that 2 is closed, and that the
set of variables is empty. By Lemmas 5.2 and 5.3, there is a structure that satisfies
ru{0-M|ff65}u{{T}-*0|T€r}.

Since 5—T fails in this structure, the proof of the proposition is complete.

The last proposition finishes the proof of the theorem. For (u,R)—(a>,l)
(universal Horn sentences), we used Propositions 2.1, 3.2, and 4.2 from previous
sections. Observe that the generality of the last two results is not required in this case.
(Versions for a=RB=a> would suffice.)
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PROBLEMS
RAISED AT THE PROBLEM SESSION OF THE VISEGRAD CONFERENCE

A conference on universal algebra was held on May 30—June 6,1982 in the resort
house of the E6tvos University (Budapest) in Visegrad, Hungary. Some of the contri-
butions by the 38 participants are published in this issue. The problems raised at the
problem session (on June 3, 1982) were the following.

HAJNAL ANDREKA and ISTVAN NEMETI

1. IsZFt=(3«€m) pn=p"+1 true? That is: Is (3/i£co) p n= p n+1 true without
the axiom of choice? Here P is defined to be such that P—IP (otherwise PAPP
would be the case).

2. Are all epimorphisms surjective in the variety CAXof cylindric algebras of
infinite dimension a?

Remark. |. Sain proved that they are surjective if a=l, and H. Andréka,
S. Comer, |. Németi proved that they are not surjective if I-<a<co. Related results:
Andréka, Comer, and Németi showed that for representable CAx-s, a finite, the pic-
ture is the same as in CAX

3. Does there exist a finitely generated pseudosimple algebra which is not simple?
Hint. Such an algebra, if there is any, must have infinite similarity type.

ALAN DAY

1. Is there some sort of minimal list of minimal non-Arguesian lattices (of
finite length)?

2. Is a self dual finitely based variety of lattices determined by self dual equa-

tions?
KAZIMIERZ GLAZEK

1 Let 91and S be «-groups and gl (91) and gl (©) their global algebras, respec-

tively. Is the implication
gl(9l) si gl(©) = A = ©

valid?

2. Let + be a commutative group (or quasigroup, or inverse semigroup) oper-

ation. Consider the ternary operations /i(X,y, z)=x+y+z, f2(x,y,z2)=x+y—z
fs(x,y,z)=x-y+z, ...,/8XYy,2)=-x-y-z (or more generally: g(x,y,z)=
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ax+RBy+yz, where a, §,y are group automorphisms). Give a finite basis for the
identities in * when *£KQ {fx, ...,/8}

3. Let H and G be two groups such that H<iG and G/H is isomorphic to the
multiplicative group of the rationals. Does there exist a field F of characteristic 0
such that G is isomorphic to the group of all weak automorphisms of F and Hsu
s=Aut F?

4ﬂvestigate algebras 31 with the following properties -
(i) 31 has no proper subalgebra, and
(i) every function f:A n-+A which is preserved by any weak automorphism

t of 3L (i.e,, /=t ot_]) is a term of 3L (Proposed name: “super-demi primal
algebras™.)

5. (with J. Dudek) Which algebras are «-groupoids for some natural number «?
(l.e., 31=04; F) is termally (polynomially) equivalent to (A;g) where g: An->-A)

6. (with J. Dudek) Investigate the parameter n(31)= min {n\3g- An-*A such
that (A;g) is polynomially equivalent to 3I=(A; F)}. (The same question with
“termally” instead of “polynomially”.)

7. Which algebras are Aut-derived from groupoids, i.e., termally (or polyno-
mially) equivalent to the algebra (A; {o}UAuUt (A; 0)), where o is a binary oper-
ation on A?

MATTHEW I. GOULD

1. Given a finite group G of even order, does there exist afinite algebra 31 such
that <8= Aut (31X31)? It is equivalent to ask for a finite free algebra on two genera-
tors such that <3=Aut $. If G retracts onto a two element subgroup, the answer is
affirmative. Thus, the smallest group for which the problem is open is Z4.

DAVID KELLY (with R. Padmanabhan)

1. Let X be a variety of groupoids such that every algebra in is cancellative.
Show that every algebra in X is (the reduct of) a quasigroup.

et the type be (2) (i.e,, groupoids), and let ZU{<}be a set of identities of
type (2). Let \- Qdenote the consequence in the language of quasigroups and 1-G
that in the language of cancellative groupoids. Find a counterexample to the state-
ment: “If Z1-qC, then Z1-eff”’-
PETER KOHLER

1. Let 31 be a finite (unary) algebra. Is there a natural way to find a finite set Q
and a permutation group G on Q such that

Con 3L = Con (Q; G)?

PETER P. PALFY

1. Characterize those monoids operating on a finite set which occur as the mono-
id of unary polynomials of essentially unary algebras only.
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ROBERT W. QUACKENBUSH

1. Give a nice categorical characterization of varieties of affine algebras (as
abelian categories are a nice characterization of varieties of modules).

2. Let Y be the variety generated by the orthomodular lattice L or by the Steiner
quasigroup Q.

It is not boolean representable; find an easily described subalgebra of Lm(QQ) which
is easily seen not to be boolean representable.

(Received November 1, 1982)
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NTERSECTIONS OF IMBEDDED SUBGROUPS IN ABELIAN
~-GROUPS

WILLIAM J. KEANE

Characterizing the intersections of subgroups of abelian /7-groups with various
purity properties has been a common problem. For example, Charles solved the prob-
lem for divisible subgroups in [2], Rangaswamy for neat subgroups in [7], and Me-
gibben for pure subgroups in [5]. Recently, Moore, in [6], has topologically generalized
the notion of purity. If |I: Z+—Z+ is a strictly increasing function, a subgroup K
of the p-group G is /-imbedded, written K<tG, if KC\pln)GczprK, for nf£Z+.
Equivalently, K is imbedded if its /7-adic topology coincides with the relative one
inherited from G. In this note, we solve the above problem for imbedded subgroups,
both with and without the assumption of a fixed function /. Throughout, “group”
means abelian /7-group, and the notation and terminology is that of [3].

D efinition. If G is a group and n a non-negative integer, then
Gn = (p"G)[p] = {xepnG\px = 0).

To determine which subgroups are intersections of /-imbedded subgroups for
a fixed function /, we need the following lemmas.

Lemma 1. Let A be a nonzero subgroup of G and K a subgroup of G such that
AC\K=0. Then K is the intersection of all A-high subgroups of G containing K.

Proof. Let H be an ,4-high subgroup containing K, and suppose x"H —K.
It will suffice to construct an ,4-high subgroup L containing K but not x, and we may
assumepx£K. Choose a nonzero yEA[p], and let L'=(K, x+y). Then L'HA—Q
so if L is ,4-high containing L', x$L.

Lemma 2. Let K be a pnpure subgroup of G (i.e., Kf)pnG=pnK for m"n)
which contains pKn+1)~1G. Then K<tG.

Proof. Clearly, KC\pkmGc.pmK, for wS/z, so assume m>n, and let
XEKr\p,(mG. Then x=pHm)-Hn+)+y, where y~pdn?)-iG" K p»G=pnK
Hence xep,(m-~,in+1)+n+1Kczpm (n+1+n+1K=pnK.

Theorem 1. A subgroup A of G is the intersection of I-imbedded subgroups if
and only if, for each non-negative integer n, GncA implies phn+1)~1GczA.

This work was supported by a Boston College research grant.

4280 Mzéthemda ics Subject Classification. primary 20k27.
€Y WOras andpnrases. imbedded subgroups, p-adic topology, closed subgroups, high subgroups.
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Proof. Since every /-imbedded subgroup must satisfy the condition (see [4]),
the necessity is clear. For sufficiency, if G,,<$A for all n£Z+ A is the intersection
of pure and hence /-imbedded subgroups, by the Theorem in [5], Now if GO=G[p]czA,
that is if A is essential in G, then and by Lemma 2, A is in fact /-im-
bedded in G. Suppose then that G,,<"A, (/,.,,jCp/l, and let g(zGn_1—A. Then by Lem-
ma 1A isthe intersection of all (g)-high subgroups ~containing A, each of which then
contains pl(n+1)~1G. By Lemma 2 it is enough to show that each K is p’*pure in G.
Now K is neat in G, so suppose KDpnG=pnK for ?n<n, and let x£K, x=pmtly,
yEG. Then x=pz, for z£K, so z—pnyEG[p\, and z-pny=g'+/, g€<g}>],
yfiK[p]. Then z—y'£Kr\pnG=pnK. Hence x=p(z—y")Epm+iK.

We now remove the restriction of a fixed function /.

Theorem 2. A subgroup A of G is the intersection of imbedded subgroups of G if
and only if, for each non-negative integer n, GnaA implies A is closed.

Proof. If K is /-imbedded and G,,czK, then K also contains pUn+1)~1G, so
G/K is bounded and hence K is closed. Thus if G,,cA, and A is the intersection of
imbedded subgroups, A is also closed. Conversely, we again need only consider the
case when GnczA and A is closed. _Now for each non-negative integer Kk,
A+pkG<IkG, where Ik{i)=i+k. But A—A=f) (A+pkG).

k

We note that by the proof of Theorem 2, if AczG is the intersection of imbedded
subgroups but not of pure subgroups, then the imbedded subgroups may be chosen
to be a countable family.

The first corollary to Theorem 2 is an immediate consequence, but we give a
slightly different proof using the next lemma, which is of interest in its own right.

Lemma 3. If A<, G, then A ispure in A.

Proof. Let xdA, x—pry, for yEA. Then y=pki)~"g+x', for some gzG,
x'EA, sowehave x=plng+pmx'=pm"+p"x', forsome x'fiA, since pl(ngEA<iG.
Thus xdpnA.

Corollary 1 If A isessential in G, then A is the intersection of imbedded sub-
groups if and only if A is closed.

Proof. An essential imbedded subgroup of G is essential and pure in its closure,
and hence closed. The proof is then similar to that of the theorem.

Recently (see [1]), some attention has been given to finite intersections of sub-
groups. We conclude by showing that in one important case, this question can be
easily resolved for imbedded subgroups.

Corollary 2. Ifa subgroup A of G is the intersection of afinite number of im-
bedded subgroups, but is not the intersection of pure subgroups, then A is imbedded.
m
Proof. If A=f]Kt, we can find a function / such that Kt G, for
i<

2=1, ..., m. Now since GncA, for some n, by Theorem 1, A pH®#X~1G, and
is thus imbedded for a sufficiently large imbedding function.
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SUR LES INTERSECTIONS DES SURFACES ALEATOIRES
AVEC DES HYPERPLANS

MARIO WSCHEBOR
Au Professeur Istvan Vincze pour son 70-éme anniversaire

0. Introduction

Cet article contient deux résultats liés & la formule de Rice J-dimensionelle: le
premier est de caractére local, le deuxiéme est une formule pour les moments d’ordre
supérieur de la mesure des intersections avec des hyperplans horizontales. Nous
allons utiliser les mémes notations que dans [10]. Si O est un ensemble ouvert dans
Rdet B un Borélien, le «<perimétre de B relativement & O » (fini ou infini) est défini par:

Qo(B) = sup{ f div(w)dt: u£(C?(0))d [«()| S 1 W

ol (Q°(0))d note les fonctions C°° & valeurs dans Rd et support compacte contenu
dans O, ||.|| la norme euclidienne; la mesure de Lebesgue dans Rdva étre representée
indifféremment par (dt) ou dpd(t). Pour les propriétés et méthodes d’estimation de
Qo(B) voir [7]. Si {Jf(0: tERd) est un processus aléatoire & d paramétres réels, on
va noter AUB UC Urespectivement les ensembles aléatoires

X < w, {:X@® >« {H X = <&

Nous supposons par la suite que, avec probabilité égale a 1, les trajectoires du
processus sont continiment différentiables et qu’il y a une densité jointe

Ptit...tk;tj,. . . . »mme> XDy eeny &)

de X(t¥, ...,.X(tK; grad (A'(t)), ...,grad (ATf0) pour t~tj, t[ tj si iVy.

Le rapport entre, d’une part, les formules globales concernant QT(4l et
Qr(BuU—T étant un ouvert borné dans Rd— et leurs interprétations en termes de C,,
et, d’autre part, la presque siire non-existence d’extrema locaux sur la barriére de
niveau égale a u, est connu. Plus précisément, pour que dAu=dBu=C,, (dB dé-
note la frontiére essentielle du Borélien B, i.e., BB~ Pl{f)(Ba N): /if{(7V)=0} od
d indique la frontiére ordinaire), il faut et il suffit que p.s. il n’y ait pas d’extrema lo-
caux du processus sur la barriere u. (Voir, pour d=1, [4] et références citées et [3],
[11]. Pour </>1, [2] et [10]). Le Théoréme 2 de [10] permet d’assurer cette conclusion
quand les hypothéses suivantes sont vérifiées:

1) La densité jointe pl;t(x, x) est une fonction bornée pour x dans un voisinage
de u et (/, x) dans un compacte de RdXRd

kgso Mathem aH'CS Subé'ect Classification. Primary 60G60; Secondary 60D0S.
ey Words and phrases. Random surface, Rice formulae perimeter.
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2) Le champ aléatoire grad (H(t)) satisfait, en probabilité, une condition de
Holder d’ordre plus grand que <a=(d—21)/(i/+ 1), c’est-a-dire, que pour tout e>0
et tout ensemble compacte K dans Rd il existe a et une constante positive y
telles que

P( sup lgrad {X{t")-X{t"))| > y6*) < 8

pour tout (5>0.

Dans le paragraphe 1nous montrons que cette condition 2) sur la régularité des
trajectoires est precise, dans le sens que Ton peut construire un processus
{2f(0: tERd}(d>1), qui Vérifie 1) etd ont grad(2f(t)) satisfait une condition de Holder
d’ordre ad pour toutes les trajectoires, et d’autre part P (min 2f(t)=0)=1, c’est-a-

dire qu’il ne vérifie pas la conclusion du théoréme.

Le paragraphe 2 contient des formules pour les moments d’ordre supérieur de
Qt(AU et Qt(BY. Pour d= 1, ces formules sont connues depuis longtemps, et ont
été démontrées sous certaines conditions dans les cas gaussien [1], et dans le cas
général [12]. Nous avons inclu une démonstration qui contient une bonne partié
des méthodes dont on a besoin aprés, pour le cas d> 1 L’enoncé sur la finitude
des moments d’ordre supérieur dans le cas d=1 contenu dans le Théoréme 2,
peut-étre amélioré si on ajoute Phypothése que le processus est gaussien [1], ou gaus-
sien et stationnaire [5], [6], [8]. Ce Théoréme peut étre utilisé & son tour pour vérifier
les hypothéses du Théoréme 4 qui concerne le cas d> 1

1. Exemple sur I’existence d’extrema locaux d’une surface aléatoire
sur unc barriére donnce

Théoréme L Il existe un processus & d paramétres {X(t): tERd} tel que :

1) pt.t(x, x) est une fonction bomée pour x dans un voisinage de u=0 et (t, x)
dans un compacte de RdXRd.

2) grad (L'(t)) vérifie une condition de Hélder d’ordre ad=(d—I)/(d+1) pour
toutes les trajectoires.

3) P(minX(i)=0)=1I.

D emonstration. N ous donnons une construction explicite simple. Considérons
le processus:

@ m ;@,_,ta) :iglf&uﬂd

oil £i,.» £i>e» sont 2d variables aléatoires indépendantes, uniformément
distribuées sur (0, 1), et/ est une fonction de R 1dans R1, périodique de période égale
a 1, qui sur lintervalle ]0, 1] est positive, infiniment dérivable, pair par rapport &
1/2 et coincide avec la fonction xLi&sur un intervalle de la forme [0, rj\, 0 <jj<1/2.

Il est évident que toutes les trajectoires du processus défini par (1) ont gradient
holderien d’ordre ad et que minAr(i)=0.
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Voyons donc, qu’il vérifie la condition 1).

On prouve d’abord, sans grande difficulté, que le processus est stationnaire. En
effet, si hJ=(h{,..., hf) et YJI=X(t+k*) (j=I, n), la distribution jointe de
Y1 ..., Y" est indépendante de t, ce que I’on voit en conditionnant sur Ci» ss» Cl
et en tenant compte du fait que/ est de période égale a 1et que la distribution con-
ditionnelle de Ci, Cj (Ci=fr(Cj+Cfij)» ou fr(x) note la partie fractionnaire du
nombre réel x), étant données Ci, s, Cd, est aussi celle de d variables indépendantes
avec distribution uniforme sur (0, 1).

Donc, la densité p,.,(x, x) est indépendante de t. Posons a=I+<xd.
Pour

0 < x < x+Ax< (1)) = th
Xi+xS+...+;eS_1
X(>0  (i= 1 ..d)
la probabilité conditionnelle :

PAIT(0)E(x,x+dx),~ Cxb X+dx,) (i=1 , d)
Ci = > sy Cd-i = *d-i))
2 = P(Nenllhx-2 *>x -2 tf+Ax),

Cif'(xdE(*h*t+A*d 0= 1, .., d-I),
Cd/'(CdK(*d, xd+Axd/Cl = xu .... Cd-i = x,,-1)

si Ax, ...,Axd sont suffisasmment petits.

Evidemment, la condition peut étre supprimée dans le probabilité condition-
nelle (2).

Quand on a la distribution de/(C), Cétant uniformément distribuée sur (0, 1),
on a pour t suffisemment petit et / _1(t)<1/2 :

P/(C)5=t) = 2P(Csi/" 1«) = 2/-1« = 2/l

2
Donc, la densité g(f) de/(C) est égale (pour t petit) a —”w«)-1, et en substituant
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dans (2), pour Ax, AxIx ..., Axd petits, nous avons la majoration

®  Ccons)AAd AY(X-2 ) [j7. Tarr] i

U-i a* a(x-2

de la probabilité (2). Ici, nous avons utilisé le fait que la densité jointe de Ci» s» G
est partout majorée par 1
Ecrivons maintenant, pour x petit et x,~0 (/=1,...,d) :

PO-,O(X, X) = pO](XX, xI5 ..., XCD =
(M i-i

J-1J Po-oix, xIf ..., Xj/Ci = Xi, ..., Cd-i = xi-Ddx1, ...,dxd_x.
X1+ . +x“ X
£0(i=1".-d-h)
Il faut remarquer que nous pouvons avoir /(xX +... +f(xd=x avec chacune des
variables xI5..., xd prés de 0 ou de 1, mais que I'un ou l’autre sont univoquement

déterminés par les signes de xI5..., xd.
En substituant le majoration (3) dans I’égalité (4) on obtient :

Poi0(xX) (cons) 1.0 (X—f X?)*-18 Axﬁi T g

RS R (g (- e
et en faisant :
X*“= X0, dxi — xl/a—la[lla) 1dai (i— 1, ..., d—1):
Po-.0ix, X) S
d-i 1 darl..dad 1 1

is (const) .0d_1)2-(2/0) x ((o-1)/0)(d +1)-(d-1)/o

f
o ... +a(l—'s \20

ffjao (i=1,.Vv.,d—1) VA xL, °i)

= (const),

puisque a=I+(d—i)/(d+1). Ceci montre que si x est suffisemment petit, pQO((x, X)
est bornée, donc, que le processus {X(t): tERd) défini par (1) satisfait aux besoins
de notre construction.

2. Moments d’ordre supérieur de QTiAY et QT(BY

Le but de cette section est de donner des formules pour les moments d’ordre
supérieur a 1 des variables aléatoires QT(AUY et QT(BY. Le premier moment a été
calculé sous diverses conditions (voir [9], [10] et références citées). Les formules qu’on
obtient pour QT(AY et QT(BY sont les mémes; donc, nous allons nous restreindre
a la considération de QT(AU.

Les outils pour les démonstrations sont les mémes que ceux déja utilisés dans
[9] et [10], c’est-a-dire, des estimations pour les périmétres. Nous avons séparé I’en-
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noncé pour d=1 de celui pour </>1, étant donné qu’il y a des différences signifi-
catives entre les deux cas.
Introduisons les notations:

Ik (x i>---1XK)—fTrT(f dti» sdtk X

X .. kUG e N OXT XK X1, we XK X5 L dxK
. .
w
=~ I -
N R *
M a ., ... »K; «i. mo tK(x 11 X Ki *1, eee> X)dxx,. dx.h

Knk

ou nous rappelions que T est un ouvert borné dans Rd.

Quand nous aurons besoin de considérer les coordonnées de t~R 1 nous
mettrons ti3 pour la y'-ieme coordonnée de tt.

Finalement

E = EK() = {(ij, tRK: tET, tt” tj pour ijtj}c TK
et, pour <5>0 :
Et = EKi(T) = {(/j, tK: t£T, la-tyl  Spour i Nj}.
Il est clair que Eb\E quand <MO.

Hypothése HIK .
Nous dirons que le processus {X(t): t"Rd) satisfait I'nypothése H1K si :

() la densité p9....XKtl...xx; xlIs ...,x() est une fonction continue
de (* !, xK au point (u,u) quand les autres variables restent fixes et de
(sI5  sK) quand les autres variables restent fixes ((jj,  SKEEK(T), (t,...,/)E
wT)).

(i) /[N ulK~1Pa-"~3un L1...xi, xr, x3 dxxdx2dx3 =

= E(lgrad(Jf(/))r-1X
X lgrad (X(t%) —X(E)WX(sD) = Xj,  X(sK) = xK)psl.... XI5 ..., xK)

tend vers zéro quand ||i2—3 —0, uniformément pour (sx,  sK) dans un compacte
de EKCT), Xj,  xKdans un voisinage de u et (rx, t3 dans un compacte de E3(T),
et (ti,t2,t3 dans un compacte.

(iii) Ah....,K(xI5..., xK est continue comme fonction de ses arguments au
point (tj, U, ...,«)((tlt ..., tKEE).

Hypothése //2K.
Considérons le processus & un parametre
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Nous allons employer la notation

QV = Qr{{t: Z(t) «n})
puisque on va calculer des périmetres associés a plusieurs processus stochastiques Z
et barriéres u.
Soit
gG4tl -, o-i» 0+1. mO = E([6f">)
ou (a, b) est un intervalle dans R1

Nous dirons que {Z(i): tERd} vérifie //2XK si pour chaque intervalle borné
(a, b) dans R1et chaque la fonction est une fonction bornée de
ses arguments.

Dans les théoremes ci-dessous ou ces hypotheses H 1K et H2 K vont étre utilisées,
elles peuvent étre substituées par d’autres conditions analogues sans changer I’essen-
tiel des résultats et des démonstrations, mais nous ne mettrons pas I’accent sur ce
pointici. A titre d’exemple on vérifie sans grande difficulté qu’ un processus Gaussien
a gradient continu satisfait H1K si les distribution jointes de X(tj), ..., X(tK) ;
grad (Z(/)), ...,grad (Z(f/)) ne dégénerent pas pour (q, ..., tREEK(T), (7, ...,
G *DEE (N _ . : .

Le th%oreme suivant donne une condition suffisante pour que IK(uy, ..., 0) soit
fini, dans le cas d= 1. Il peut s’appliquer a la vérification de H2K dans le cas 1

Théoreme 2. Soit d=1 et K entier positif. Supposons que {X(t): tE[a,b]}
est p.s. (K+\)-fois continiment différentiable et que la densité jointe q,(x(0), x(D), ...,
ooy X (K de X(t), Xw (t), ..., X (K)(t), est bornée par la constante L pour x(0) dans un
voisinage de la barriére u.

ol E=osup{pren>U: TShAK 1)

(1/1~ — SP I/WI)- S’il existe M>{K+1)2 tel que
*€[<z,6]

@ imM- E(XM
alors
E((Nu(a, b))~ C L (I+ m MC")

ou Nu(a, b)=# {t: X(t) =u, a<t<b) C, C sont des constantes qui dépendent de K,
de b—a et de M.

Remarques. Si le processus {T(r): rcR1} est gaussien et p.s. (A"+1)-fois
contindment différentiable, le Théoréme de Landau—Shepp—Fernique assure la

vérification de (a) pour tout M.
Si le processus est gaussien a d parametres et p.s. (/f+ I)-fois continment dif-

férentiable, la non-dégénerescence des distributions qui figure dans I’énoncé assure la
verification de I'hypothése appellée # 2K

D émonstration du Théoréme 2. Pour simplifier le calcul on va supposer (a, b) —
=(0, 1) et poser Nu(a, b)=N,,. Il s’agit de majorer

ENe )=
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Observons d’abord que

(5) {Nu S?}c l{/tdCu tel que PT<A(0] S M vh =1 .., 3

ou m(§=[ql,Kl(K+ DIV1 (M dénote le plus grand entier qui n’est pas plus grand
que X).

Si (5) est immédiate.

Si gLK>K+I, N,frq entraine I’existence d’un intervalle de longueur \/mq
contenant au moins (K + 1) points de C,,, donc, I'inclusion (5) découle du Théoréme
de la valeur moyenne.

Posons encore

B ={¥YS X<j+ 1} et

Al. = [3<€Cutel que |*«(l)| £2+L \fh=1 .., x\.

D’aprés I'inégalité de Hbélder, si a, )Sél, l/a+1//?=1, ona:
(6) P({N? S q}f]Bj) S P{AjiqC)Bj) si tP("7,6]Le[P (")]".

Pour majorer P(AJq) nous employons la méthode du Lemme 2 de [10].
Soit, pour >0 :

Coe={t: X{t) = u, PI>>0 <e VA= 1 ...K]
et
Ue= {t: |[ZW (0|<£ VA= 1, K}

L’hypothese entraine la p.s. non-existence d’extrema locaux sur la barriére u,
donc, que dAu=Cu, d’ou:

p.s. R (fi)nvs(AL) =#(aAuM(0, 1>nc/f) = #(C,,M(0, NFW,) = #(C.,.9.

Maintenant, si {/,,} est une suite de fonctions réelles, C*, noncroissantes, f m(x)=0
pour xSk, /,,(X)=1 pour xSu—I/m, on a bien (voir [7], [10]):

E(#(C,.9) = E(R(0,1)nu.(/(10) S

g E[liminf /7 |/~(Z(0)||JTTHO(Q| dt\ =
(o,Dnu.

—Hminfe[/ |/n§2f(0)||A'W (O] =

= liminf £ f /mxQ)Ix(1,| 13 &R(*(0), X(D), ..., X(K) dxw ...dxtK) dt &
m~ 0 *=j

S Lek+1.
Or

Alg = {* —1}
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c’est-a-dire que :
P(Aj,9 —E(#C,,,atl)/m) s 1 (M+1-)K+L
D’autre part, nous utilisons la majoration

PBj)SjL e(X“)="L

pour Jél.
En substituant dans (s), nous obtenons (<Si) :

a rlo1 \(K+i)/* »
P(N* 2, P(Aj'tnBj) =£L|\nﬁj |
d’ou:

Fopw * ) el (1t % pas ] T > ]
La démonstration sera achevée si I’on choisi a tel que

K+1 . M. K+\

t —

/fa R
ce qui est possible, compte tenue de M >(K+1)2
Théoreme 3 (Cas d=1). Sous les hypothéses HI Kon a:
(7 E(Vk t<A) = IK(u, u)
ou Vg=m(m—I)...(m—k+1) et IK(u, peut étrefini ou +°°.

Remarque. Dans le cas d=1 ona QT(B)—#050M T) pour n’importe quel
Borélien Bd R1 (B dénote la frontiere essentielle de B). En plus, si p.s. on n’a pas
d’extrema locaux sur la barriére u ce qui découle de H1K, alors QT(AY=NUT) =
= #{i: X(t)=u, tET}.

Théoreme 4 (Cas d> 1). Sous les hypothéses H1K et H2Kon a
(8) E{(QAAV)K = IK(u, ..., u).
D émonstration du Théoreme 3. Considérons I’ensemble
MK(W) = {gAaQT) -T.(gAuMT).

Il est clair que
=#(MKkW)MNE).

Pour démontrer la formule (7) il suffit de prouver que:

9) EE{MxkmN7Y) = .. tK(u, ..., 0)dtu ...,dtK

J

pour tout rectangle ouvert /=/1X...X/t avec adhérence contenue dans E, /*cIl
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(/=1, K). Ceci est une conséquence du fait que la mesure de Lebesgue de Ec
dans RdK est nulle.
Or, pour un tel rectangle /=/xX...X/K on a:

E#{MX()MN/}) = E(/7|(#{eb|,,|‘|/(})) = K f le W) a
10 1= 1=
o A lim inf...lim inf E{ JJ |[grad (/m(A'(,))]|dt”.-dtA
">_p AX.. XK1

avec {/,.} choisie comme dans la démonstration du Théoréme 2 (c.f. le lemme 1 (i)
et la démonstration du Théoreme 1 de [10]). Donc,

E#{Mk(M)/}) » Hminf".limjnf/.../dtr.dt~jg |4 Ne ))| [[grad JT(O)|[} =

= liminf...liminf ... (ALt f 13 OV —x KX L..cbd<=

"4-00 mK- ~
=/ ... ] KW ..., u)dtl..dtK
J

compte tenue de I’hypothese (iii) faite sur /I(L..., (XX ...,xK).

Pour avoir I'inégalité inverse et donc prouver 9), nous appelions au lemme 1
(if) énonceé dans [10]. 4.e dénote une approximation C“ de l'unité, *R: Rd-»R+
avec support contenu dans la boule de rayon e(e>0) et gf— pour chaque
fonction g€L}OC On obtient pour 0<e<a4 :

E#{MkW)M}w E(JJ f |grad (xAl(ti)\dt,) =

(m
= lim f...f  E{[JIf V,(U- sdfm (x («i» grad (X(Si))dsi\} dt~.. dtn
(0-iX..x(rR-i =1 H
Pour minorer I’espérance qui figure dans (11) on peut utiliser I’inégalité suivante,
dont la démonstration est immédiate :

K K K
(12) a2, bi~ 2, bi...bj-1Cjaj+1..aK

aj,bi,Ci (i=1, ..., K) étant des nombres non-négatifs tels que

a, S b(-Ci (i=1
Nous I'appliquons avec :

*1=1/"(fi-Si)Ne(Si))grad (BA,)™*,|

bt= f 'P.(F,-5))|n:(ag)| |grad (ag)]| ds;

R1

a= f Rc(h- Si)Jw(* S lgrad (X (Sj)- grad (2r(f)| dst.
R1
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On a:

i=1 R X i=

:(ﬂb,)Z / dSI...dsKn"Ah-Si) f n (\/m(*i)||*i|)
. Ri (=1 I

cirrsion AKX x K xdt L xKdx L dxKdxL..dxK

et, en faisant m-+°° et e>0 (dans cet ordre), le lemme de Fatou donne :
HmHiojiliL ~ /eem/ E(.nhb)dti-dtk™ f.. . fAH " H#U,...,u)dtl..dtK
M_AX. X0 2 J

Pour chacun des termes de la somme de (12) nous avons la majoration:

E(bl...bj-1CjCij+1...aK) ~

— fd SL.dsKM ~Ah-St) £ [/m(*D)I-/m (M)II*1I-

e e 1% Lo 1N AX]j—F\ [ICy+i]...IX j:}/7SlesX;ib...,0 . bS, 0,5, +1
5..5XK X, ..., Xj_1) Xy, ¥j9Xj+>6 ees?Xk) dx+...dx" dx”?, ..., dx?, dyj.

Nous faisons d’abord m-+°° et obtenons :

E(bl...bJ- 1CjaJ+1...aK) [’dsl..ds* JJT/E(ti-s)) f (M \x,\)\Xj-$j\
RK 1=1 RK+1 M/

K
(13)

Pi.... ski< o S N> Xj— Xj, Vi, Xi+i, . . xR dxi..,dxRdyj.

Le 2éme membre de (13) tend vers zéro quand £>0, ce que peut se prouver a
partir de I'inégalité

m
ai-am#2 a?  (als.., amS 0)

la condition (ii) et le fait que ~6(/;)_n, ~€/r (r=1, ..., A). L’uniformité dans (ii)
permet de conclure aussi que
(14) lim lim [... E(bl...bJ- 1Cjal+l...aK)dt1l...dtK =0
‘ £*m0 m~*00 (,\D_é(.x{m_@ J !l
d’ou
E#{~k(m)n2}e J...JAh.IK(, ..., 0)dtl...dtK

Ceci prouve (9) et, par conséquent, le théoreme 3.
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D emonstration du Théoréme 4 (i>1). Nous avons, de la mérne fagon que
dans [10] et le théoréme 3:

E([0r0 4u0)]K)  hmjnf"4im InfE {f...fjj\\grad (fm(X(ti)))\dtL...dtK} =
05) = \imM..AiminiE{f...f J3(/mZ(th)|llgrad(*(/))1)dtr.-d tr

o HIX[EL/L+E e/} m

Le passage 4 la limité dans le premier terme de (15) ne pose pas de nouveaux problé-
mes par rapport au cas d=1, sauf pour des modifications évidentes, et on obtient
comme limité

f--fAf S*(«> eeo» u)dti...dtK.

Il s’agit done de prouver que le deuxiéme terme de (15) est arbitrairement petit
si <5>0 est sufisemment petit. Ceci prouvera que

(16) HQAAJf)* IK(u,..., u)
aprés faire <5—0.

En fait, ceci finit la démonstration de (8), puisque I'inégalité inverse & (16)
peut étre déduite de fagon entiérement analogue & ce qu’on a fait pour le théoréme
3, en changeant seulement des petits détails. Dénotqns par Ro le deuxiéme terme de
(15). En vue de la définition de Ef, nous avons

17)
RssS MMlimjnf..limANnfEL  1...0  [3 (//»1(A(i)| [lgrad (X (t))\W)dtL..dtK}.

J mK-oo rKn{Hi - (sH-=8>i_1

Il suffit de prouver que le deuxiéme membre tend vers zéré avec S quand T est un
hypercube. Nous allons supposer, pour simplifier la notation que T={0, )1 Intro-
duisons les notations :

£, = f\F (X (t))\Brad (X (1))\dt
et
2in = K

(Cf |1hyp0thése HZ& (th,Ifth,2> J-1>T,th, J+1,
Une premiére observation e’est qu’on a :

—in*r =, ffndt]j \Ex))\ (o dij.
. T o 6 (x«)) 4 (00U

Or, Pintégrale intérieure est majorée par

R(oii)+l.
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En effet, si Qtfo= +°° il n’yarien & prouver. Dans le cas contraire rappelions
que QfQji) est le nombre des points t£(0, 1) tels que dFchange de signe dans tout

.. dX S . N .
voisinage de T (b?é’tant considérée comme fonction de lay'-iéme coordonnée, avec

les autres fixées). Mais, d’autre part, si Zi ne change pas de signe sur I’intervalle
(a, B), compte tenu du fait que /,,SO, on a:

I ):(ir(/i,  0) ~r(0» =>0) dtj —
a

= =™ )0, e dh =

= |/» Ne , - oj O-i» R O+ix» ooy d fmCAifli tj—49 0+l
Ceci permet de’affirmer que

(18) fim (o) '\é'if‘) dtj = RfcS + 1

et aussi, donc :

(19) J- /... 1 17~(b6cofn+1) = C
j=lQyr1 W

L’inégalité de Holder plus I’hypothése # 2k entrainent maintenant que £mELK(Q)
et que E(££) est bornée indépendamment de m. Donc, E((gr (*B)K)<°o.

Nous avons aussi :

f/ ~tt))! [N .(ap)]| lgrad (ag)!! |jgrad (BA)]|| dt, dtt S

If,—fjll <5
J o=hj,hj<1 (=1 d
* a*
S J’g-lii/\-.lrji.li:ca |/»\( (0))||A NQ )l dt, (th f “ dr)' dt2
o< /i.j,0On< 1 (j=1,—4d).

Notons chaque terme de cette somme par rlity. Nous avons les majorations sui-
vantes :

_ﬁi\j:rl' 1 11 A dx
njj a !"'é ndth /... 8a*» (1)‘ (/)IA Ne ) TVUT)N i o X

)|.< .
x w dtjd

[eee/ Hdtlh /.../ ndtAX Q k™ +1i)(Q k”"n+\).
0 0 w h,hH;HR«”g/
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Soit C une borne supérieur de E[(65INy+1)*(*-1)] pour tout j, qui existe a cause
de H2K. En appliguant une autre fois I'inégalité de Holder, nous obtenons :

(20) E(i,) s ¢ r i«i-1.
Considérons maintenant les termes avec jV /:

i1 T i i 1 V/ " +1 S H o+
ljj' —f —f Ildiuf-f n dtw f dt2f dtr J dtir J elle-
ti 0 0O o© Q 0 r,'— n

ax . dX
[/~ Ne ) [1/1®Ne )|y (i) gy OO

“ doeaf hIf dilhg sed 0IJIr dtw § dhjg d:2r’
tl'+
éitX ou +

par une majoration analogue a celle qui conduit a (18).
Le terme qui provienne du « 1» est évidemment borné par

2<Hrie
Quand a l’autre terme, puisque
j i»0

est fonction de t1}, ..., titJ- ly titJ+1,  tld, t2) et non de t2J, il est borné par

fooof M,d»f . f 11 dtwf dt2f dtirQ f,A1ij+)(Qfire+ 1).

0 0 0 (0] 0 0

Donc,

1) njyx W +f...f Jddtsh/ees / T, dtw BUE-“i,+)(O(0/i*), + 1)e

Dénotons par fjjy le deuxieme terme du second membre de (21) et remplacons
(20) et (21) dans (17). On a:

EcM m f |/m'iNe ))| \fU x O0)\ |jgrad (B 4)]| |lgrad (*(~L, dt, dt,) =5
i=3  [*M{11»-M<a)

NE (N -Z{Jéi,jj+26d4+}’g)jjj'})"

—2d«lE(i*-D)+ E(i*-*{ [ rijj+ 2 _fijj'}) *
(-9 + E( {j~1 Ji* 2, M
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*

==2d " E (~-1)+ [E (" -1)](K- 2)/(K- 1) {yl’_iE (~ - DILI(K- 1)+ j2'l' m jj)ylr*-1}-=
S 2d28E (M-D+ [E (M -D)(K- /(K- D{dC U(K- 15" -1+ 2 [E(i?f7-D)]U(K_1)}.
iry’
Puisque cette borne ne dépend pas de ml t mK, la démonstration sera achevée si
EO/f].D = o(l) (5 —0)
pour chaque couple Ceci résulte de

E ' Ddhi'e T [*{EKBAA+1-D]}112

L intégrand est majoré par C12 et tend vers zéro quand -0 pour tX), ..., t13_15
ti'j+i, t3 fixés. Le Théoréeme de Lebesgue donne alors la conclusion.
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ON THE GLOBAL ASYMPTOTIC STABILITY OF THE ZERO
SOLUTION OF THE EQUATION
x+g(t, x, X)x+/(x) =0

J. KARSAI

1. Introduction

In this paper we consider the differential equation
@) x=g(f x, x)x+/(x) = 0,

where functions /: R—R, g: R+XR2-R f are continuous, x/(x)>0 (x"O),
and

F(x) := 2f /-00 (x —>).
0

Equation (1) is the model of an oscillator of one degree of freedom; where
—f(x) is the elastic force, —g(t, X, X)x is viscous friction.
For the function g we assume the estimate

2 0 si at)g> (x,y) si g(t, X, y) Bb(t)ip(x, y)

for all x,yER and t>t0 (for some tQ, where a,b,(p,\j/ are continuous, and if
y~ 0, then <p(xy)>0.

The zero solution of (1) is said to be stable if for every e>0, to"0 there exist
a <GB 4)>0 suchthat |x(rQ|+ [ig"OI implies |x(/)| + |x(i)|<e for all t~t0.
The zero solution of (1) is globally asymptotically stable (g. a. s.) if it is stable and
every solution of (1) tends to zero as t goes to infinity.

In this paper we give sufficient conditions for the zero solution of equation (1)
to be g. a. s. As (2) shows, theorems will include appropriate lower and upper esti-
mation for g(t, X,y). If g becomes “too large” or “too small” as t-+°° then the
zero solution generally is not g. a. s.. For instance x(f) =1+ 1/t is a solution of the
equation

X+ A2+ -+ tj X+X = 0,
On the other hand, all solutions of the equation
x +-N-X+x =0
r

are oscillatory and do not tend to zero (see Section 2).

1980 Mathematics Subject Classification. Primary 34D20; Secondary 34C15.
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Numerous papers are concerned with finding weaker and weaker estimates for g.
Zvi Arnstein and E. F. Infante [1], L. H. Thruston and J. S. W. Wong [7] investigated
such cases of equation (1) in which g(t, x, y)xp(x, y). L. Hatvani [3], R. J. Ballieu
and K. Peiffer allows the general estimate (2).

Now we cite two of Peiffer’s and Ballieu’s results [2],

Theorem A. Suppose that a(t) =1,b(t) is nondecreasing on r/f lib
then the zero solution of (1) is g. a. s..

Theorem B. Suppose that £5(/)= 1, a{t) is nonincreasing on [/,,,«]. If f a=°°,
then the zero solution of (1) is g. a. s..

Consider the equation
(1Y) x+g(0x+/(x) = 0.

By Theorems A and B the zero solution of (T) is globally asymptotically stable if
either

0<a,S g@i)” b@®) (t*0), / j =
or
0< a(0S g(t)=Sho (/'S 0), (-)faz""

is satisfied with nondecreasing b and nonincreasing a.
There arises the following problems: Can the zero solution of (1) be g. a. s. also
00

if b(t) is unbounded and a(t) takes arbitarily small values? Do conditions J a=°°,

I I'b=00 implyg. a. s. of the zero solution of (1); in other words, is there a com-
mon generalization of Theorems A and B? In this paper we give such a generalization
in case cp(x,y)>0. In addition, we improve conditions of Theorem B provided that
<P(x,y)>0 if y”0.

2. Preliminary lemmas

The function
E(t) = x2(t) + F(x(1))

will be used as a Ljapunov function. The derivative of E(t) with respect to equation (1)
r Ccids
E(t) = -2g(t x(t), x())x2().

Consequently every solution of (1) is defined on [tO, °°), (I_ifgo E(t) =X exists
and is finite. So x(t), x{t) are bounded on [/0, 00), and by Ljapunov’s theorem [§] the
zero solution of (1) is stable.

The asymptotic behaviour of oscillatory and nonoscillatory solutions will be
investigated separately, which is made possible by the following lemma.
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Lemma 1 ([3]). Let x(t) be a solution of equation (1). If txand t2 are consecutive
zeros of x(t), then there exists a FC(/g, t3 such that x(i) =0.

By this lemma solutions are either oscillatory or monotone for sufficiently
large values of t. The following lemma is concerned with the asymptotic behaviour
of the monotone solutions.

Lemma 2 ([2]). Assume that function g admits estimate (2).

a) If b(t) is nondecreasing on [20,°°) and f I/b="°°, thenfor every monotone
solution of {1) lim (x(r), x(t))=0.

b) If <p(x,y)>0 (x,¥€R) andf I/a<°°5 then there exists a monotone solu-
tion x(t) of (1) such that fljpng(r)= 0, and fIirth(i)"O.

This lemma shows that the monotone solutions and their derivatives tend to zero
as t-+oo0 provided that g is "not too large in average”. However, the g. a. s. of the
zero solution is influenced also by the lower estimate of g. Indeed, if x(t) is a solu-
tion of (1), then x, x are bounded, hence

E(t) =-2g(t, x(t), x(t))x*(t) s —Kb()E(t).
So, if I b<oo, then IiME~"MO, consequently x(/)u*0 (f-*°°). Therefore, it is

reasonable to assume / d= 0o. However, as it was shown in [5] by an example,

this condition even with bounded a is not sufficient for the zero solution of
jctn(r)x+x=0to be a g. a. s (for a sufficient condition see Cor. 2 of this paper).

Lemma 3. Let x(t) be an oscillatory solution of (1) for which limE(t) =1>0.

Let 0<cl<e2<A. Then there exist &>%5i>0, such that if r2>", F(x(t))=el,
E(x(t2)=s2 and el<F(x(r))<£2 on (/I51), then &>/2—1>41.

Proof. Obviously,
A-e2< x2(0 = E(t)-F(x(1)) < E(t9 ((S i t2.
We can assume, that x(r)=>0 on [rl5/2. By integration we have
\ A—£2(/2—h) < X (t2 —x (/¥ < J/E(t0(t2—ti).

Now, the existence of &K &follows from the continuity of F(x) and boundedness of

x(t).

14
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3. Results

Theorem 1. Suppose that cp(x,y)>0 (x, y€R), and there exists a nonincreasing,
nonnegative and differentiable function a on [%, °°), having the following properties:

©)

a =00.

f
0
(i) a(t)b(t) is bounded on [/0,");
(ii) there exists a positive number a, O0<ea< 1, such thatfor every k, | (0</c<
< sup F(X)/xf(x), /I=? inf <pfx >m)
R\{0> x.yCR

Jm|(f a)-1 f [/a(t)(y a)-(I+/c)a(-r)]_£&} = p(k) < 1—er)

Then the zero solution of equation (1) is g. a. s..
For example, for the equation

X + 1sin2 x+xex=0

the conditions of the above theorem are satisfied by a(t)=1/(flog/), however
neither Theorem A nor Theorem B can be applied. In general, by choice of
<x(N)=min {a(t), Yb(t)) a common generalization of Theorems A and B can be
derived.

Corollary 1. Suppose that (p(x,y)>0 (x, yER). If a(t) is nonincreasing and

b(t) is nondecreasing on [/0, °°) andJ a—J I/b—°°, then the zero solution of equa-
tion (1) is g. a. s.

It may happen in practice, that function g does not meet conditions of Corol-
lary 1 For example, consider equation (F) with g(t)—sin2t/t. Such cases were
treated by L. Hatvani [3, 4]. By the help of Theorem 1 there may be investigated
also such equations which are beyond the scope of method in [4] as the following
example shows.

Let e>0 be given, and define g(t) in equation (F) as follows:

1 tE[2n—1+ (n—1)e, 2n + ne]

(3) 900 = g out«FHo . ot |+ €O .

0 L2«+«£H-n+§| 2n+ | + «e T3
On the left parts of R+ let g(t) be defined linearly such that g be continuous.
Moreover let /(x)=x. With a(t)=I/t Condition (i) of Theorem 1 is satisfied
trivially. Condition (ii) holds because of the following estimate (since /(x)=x, it

1 For adR we denote by [a]+ and [a]~ the positive and negative part of a, respectively, i.e.
[a]+=max (0, a), [a]" = max (0, —a).
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must be claimed only for &=1):
g

PR 116M Ciét ) ] dx
< lim (Iof ?dt)-l 2 f—dx <

rA T 2+6

(//, — U (2«+ne, 2n+1 + ne)), as

2n+ne<.t

rl
Lt * 2+ 6-

By repeating the above procedure (with 1/6(t) instead of 1//) the following corollary
can be proved.

Corollary 2. Suppose that (p(x,y)=>0 {x,yER) and there exists a nondecreas-
ing function b(t), majorizing g(t) in equation (1), such that

f b (L O 3 b1k

hold with H,:—(E[/0,/]: g(r)<1/6(v)}, 0</:< sup F(X)/x/(X). Then the zero
solution of (1') is g. a. s.. R <

The following theorem is concerned with the case, when (p(x,y)>0 is required
only for y~O.

Theorem 2. Suppose thatfunction g admits estimate (2) with b(t)=1 |f there

00

exists a positive nonincreasing differentiable function a(t) for which and
condition (ii) in Theorem 1 is satisfied, then the zero solution of equation (1) is g. a. s..

Similarly to Corollary 2 we can prove

Corollary 3. Suppose that b(t)= 1. Let afunction a(t) be positive, nonincreas-

ing, differentiable on [t0,00) and f @—eo# If the inequality

i™(Ja) 1 (¢ 1ek

F(x)
sup
) R0 Xj\X)
zero solution of equation (1) is g. a. s.

For example, while results in [3, 4] cannot be applied to equation

holds for every 0 , Where Ht\—(«C[i0, /]: iz(t) < o(t)}, then the

X+g(/)x3+x =10
where g(t) is defined by (3), conditions of Corollary 3 are satisfied with a(t)=1/t.
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4. Proofs

Proof of Theorem 1. By Lemma 2 it will be sufficient to show that flj(m E(t)=

=2=0 for every oscillatory solution of equation (1).
Suppose the contrary. Let x(t) be an oscillatory solution for which A=»0.

F. J. Scott [6] observed the simple fact, that on account of boundedness of x(t) for
any given positive e there is a v (0<v< sup F(x)/xf(x)), such that
R\<o>

F(x(t))-vx(t)f(x(t)) < s on [, oo).
Therefore we have
E{t) = x2(0+F(x(f)) = @ +v)x2(t)-vg(/, x(t), x(t))x(0x(0-
- MXxx)“ (0 + F(x(0) - vx(t)fix (0) «= (1 +V)x2(0-
-vg (i, x(0, X(0)x(0OX() Mxx)‘()+£.

For the derivative of function W(t):=E(t) J a the following estimate is found:
ki)
t

4 W (t)*-2g(t,x(t), x(i))x2(0 J a+
t0

+(1 +v)a(0x2(0- va(0(xx)1(t)-vg(t, x(t), x(t))a(t)x(t)x(t)+sct(t).

Let {t.} be the sequence of zeros of x(r) {tn/<=" if 0<E(tj)—2<e). By

integration of (4) on [tj,/] we get:
il
JF(n < WM+ Ef a—v J a(xx)*+
4 i
f x2(v) [g(r, x(v), x(®) (f &)— @A +v)a(r)j] dx-
‘0
- x(®/I(e,x(0,x(®)(f a) [v(f a)-1a(r)x(r)+x(T)] dx =
| 0 0

= wyp+e f a-v f a(xx)-+/(h, t,,)+J(h, /).

By choice of g and (2) we have

Kh, O < 0*+e) / [ia0) (/ “)-(!+ v)a(T)] dx
h to

where /=inf <p(x(/), x(t))>0 because of boundedness of (x(t), x(/)). Integrat-

ing by parts, we obtain
—vJ a(xx)'= vl u'xx < vKLV,
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where

K= sup |x(01, L= sup [x(f), V= f Ja‘
If we show, that
V(i,Ql+=o0(jra) (n-*«),
fn 1

then dividing (5) by J a, and limiting n-*°° we get the following inequality:
i

A< £+/i(v)(A+e) < £+(I-<r)(A+e).
If e is sufficiently small, we get a contradiction.
n
It remains to prove I)]F=0(f a) («-“) Let &} be the sequence of

zeros of x(t) (trn<in<crB+l). By Lemma 1 we have x(i)x(/)=0 on [an, ?] and
x(t)x(0 —O on [/, c,+i]. Hence

o N -

A0, 0 < Wl , 0
Since a(<), £(0 are bounded and x(<r*)=0. x2(/*)*A, J a=°°, there exist a sequ-
ence {1} and a number % (0<<S<A), such that

t

-x(0(v(/a)_1x(0a(0+x(0) <0 i€[r 4,

and

42 B QA = S

Hence
A, O < t“-]l dfo.r*).

Now we examine the behaviour of integrals J(ak,TK (k=1,2,..). We can
assume, that x(t)s0, x(/)<0 on [o* ). The opposite case may be handled in a
similar way.

By integration the following equation is obtained for x(t) on [ak, /*]:

» t T
6) x(0 = -exp {- f g(s, x(s), x(s))ds} f /(x(®)exp{f g(s, x(s), x(s)) ds}dr.

Let M, iV be defined so that M>b(t)<x(t) and N>ip(x(t), X(t)) on[q.,00). Then
for
* MTVI

. ; MN i
<(0- a«p{/ I exp{/ nN«) (- expq- 1)
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Now we can majorize J(uk, xK) :

0 Tk T
ICk, R —-jiti Fix Mo x@, x@yaw (f 'a)x
(7) L
(VKMN , r \-i f, i fMNnj,
CH~ () )T

By the choice of xk Lemma 3 ensures the existence of Bl>0 such that

1-exprl- flk— Ix 5 x (fC: 1,2..)
A [}

Hence, if k is large enough, then there exists a xk£(ak, rk), such that

VKMN(/% )\_j: 1—6pr— Jrk_l\/l N%
and
i—exﬂ_]i - [ VEMNeGyW
if It follows from thke definJition of Xk, t;at
T j T ak
(8) J] —<R(f a)-1 andso xk—ak < Roc((K) (J a)-1

with a suitable number R.
We majorize J(ak,xk) integrating only on [ffk,x'K]:

<
J(ak, Xk «<vKLN J b{x)a.{x)dx < vKLM N(x'k—=K).
ak

Substituting this estimate into (5), by the aid of (8) we obtain

J(h, t) < VKLMN 2 (Ti-**) A IXMMI J a(crt) (foe)-1
*.1 4=1

»,

where the right-hand side is o( J'mg) (n-~°°). The theorem has been proved.
f0

Proof of Theorem 2. The proof of Theorem 1 will be refined. First we show that
for arbitary given number £>0 there exists a set Bc[il5°°) and a number £1>0
such that

(9) Hn ( J 22(1+v)a)(J" a)-1 < £

and (jo(x(t), x(0)>8i on IA °°)\0. Indeed, because i»(/)=1, the sequence
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{ak+i~ak} is bounded (see [2], proof of Theorem 5). Hence there exists a set of form
B —kL_JI [>T with property (9) In fact, this choice is

possible so that |[e*—ir*|><5>0 and |/(x(¥))|>0 (/=1,2; k=1,2,...) for some
number <& Then by (6) there exists a number ~ >0, such that |x(ri)| >%a (i=1, 2;
k=1,2,...). From properties of <p(x,y) the existence of £ follows.

Now consider the term I(t1,t,) in estimate of W(t):

1Y, t,) < (A+e) T [a(®)<p (x (1), x(¥))(Ja) -
! i}

—l +v)a(r)] dz< A+e)(l+v) f <+

The proof can be continued in a similar way as in the proof of Theorem 1

Acknowledgement. The author is very grateful to Professor K. Peiffer for
many useful observations.
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AN EMBEDDING THEOREM FOR ORDERED TOPOLOGICAL SPACES
KALMAN MATOLCSY

1. According to an earlier theorem due to L. Nachbin it is well-known that the
uniformizable ordered (compact ordered) spaces are exactly the (closed) subspaces
of the naturally ordered Tychonoff cubes ([5], p. 104). Recently T. H. Choe and Y. S.
Park [1] showed that under certain conditions an ordered topological space can be
embedded into a suitable topological join-semilattice.

In this paper we generalize the classical theorem that any TOtopological space of
weight Sm is isomorphic to a subspace of Fm (where F={0, 1} with the topology
{0, {0}, {0, 1}}) by constructing so-called convex Alexandroff cubes. Such a cube is a
complete distributive atomic topological lattice (with a non-continuous complemen-
tation). Each convex To-ordered topological space is embedded into a convex Ale-
xandroff cube. In this way a compactification of such spaces can be obtained.

Z set X equipped with a topology and a partial order is called an ordered
topological space. If X is a lattice, and its order issues from the lattice operations V
and A by the definition x"yox\ly=yox/\y=x, moreover both V and A are
continuous mappings of X XX onto X, then X will be called a topological lattice.
A subset EcX is said to be decreasing (increasing) iff xdE, y<x (x"y) imply
yEE. The decreasing (increasing) open sets form a topology on X called the lower
(upper) topology of X. If this topology agrees with the initial one, i.e. in X each open
set is decreasing (increasing) then we say that X is decreasing (increasing). X is con-
vex ([5], p. 100) iff it has a subbase consisting of decreasing and increasing sets
(that is, the topology of X is the supremum of its lower and upper topology). X is
said to be TO-ordered iff, for any x, ydX, x”y, there exists either an increasing open
VcX suchthat x£V, y$ V, or a decreasing open W c¢cX suchthat yd W, x $W.
(This is a new separation axiom for ordered topological spaces introduced first
for preordered syntopogenous spaces in [3].) X is called upper (lower) 7j-ordered
iff x, ydX, x”y imply yd W, x$W (xdV,ydV) for some decreasing open W cX
(increasing open VcX). (Note that this definition is equivalent to that of McCar-
tan [4].)

Let {Xa: adAX0} be a family of ordered topological spaces, and consider the
order s' on the product of the sets Xa by postulating (x@*'(yg iff xa* aya for
every adA. Endowing the topological Cartesian product of the X,,’s with this order,

the product \  Xa of the ordered topological spaces can be obtained. It is easy to
at A

1980 Mathematics Subject Classification. Primary 54F05.
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check that if the spaces Xa are decreasing, increasing, convex, TO-, upper or lower
7j-ordered and topological lattices, then so is their product, too.

We shall say that X is embedded into the ordered topological space Z iff there
exists a mapping h of X into Z, which is a homeomorphism and at the same time an
order isomorphism onto a topological and ordered subspace Y of Z.

3. Let us consider the natural order ~ on the set {0, 1}, and denote by F (F")
this ordered space with the topology {0, {0}, {0, 3} (O, {1}, {0, 1}}). Then the
ordered topological space F is decreasing upper Zj-ordered, and dually, F ' is increas-
ing lower Tx-ordered, consequently the products F,nand F'malso have the correspond-
ing property for any cardinal number m. Fm(F/m) wil be called the decreasing (in-
creasing) Alexandroff cube of weight in. Since both Fmand F'nare convex To-ordered
for any cardinal numbers m, n, the ordered product space FmXF'n is also convex
To-ordered, thus it will be said to be the convex Alexandroff cube of type (nt, n).
(The topological weight of this cube is obviously m+n.) It is trivial that under the
operations A=min and v —max both F and F' are topological lattices with the
same natural order  therefore each of the decreasing, increasing and convex Ale-
xandroff cubes is a topological lattice. It is also well-known that these lattices are
complete, atomic and Boolean, but the complementation is not continuous with
respect to the topologies considered above.

4. Our embedding theorem is the following one:

Theorem. Let tit and n be arbitrary cardinal numbers. In order that the ordered
topological space X be isomorphic to a topological ordered subspace of the convex
Alexandroff cube oftype (nt, n), it isnecessary and sufficient that there exist two systems
G and  of subsets of X with the following properties:

(1) QtU«/ is an open subbase in X.
(2) For x,yEX, xSy iff yEDi<2) implies xED and xiH J implies yfj.
(3) Q\sm and |,/|Stt.

Proor. Necessity: Let A and B be disjoint sets of indices such that |Zf=m,
15|—n, F»—yF,, F' —X F6> where Fa=F, ¥b=¥' for any afA, biB.

Suppose that A X— Y(szX iv' is an isomorphism. Define, for afA, b fB, the
sets D ;=(X/)x{0,I}n and IF={0 1}"*X(X Qt), where Pfo= {0},

g ={1}, pa=Qb={0, 1} for a”aiA and £0x£€B. Let A*—{aiA: D*niV0},
B*={b£B: /6niV0}, finally put {Da=h~1(D*DY): afA*} and S
J={1b=h-"(.1fOY): bEB*}.

Since {D* Ib: afA, bE£B} is a subbase for the open sets of FmXF'% the
system is also a subbase in X. Itis clear that \@\s\A\=m and |./[s]|2?]=n,
thus (1) and (3) are satisfied. In order to verify (2) put x*y for some x, y£X. If
yED,,, aEA*, then h(x)a*h(y)a=0 implies h(x)a=0, that is h(x)C_D* and x£Da.
Similarly, xfjh, bEB* give 1=h(x)bSh(y)b, therefore h(y)b=1 h(y)ilf and
yif. Conversely, suppose x"By. Then h(x)*h(y), i.e. h(x)c*h(y)c for at least
one index dAOB. This means h{y)c—0, h(x)c—L1 If c£A, then h(y)ED*,
hence c£A*, at the same time h(x)i_D*, so that yEDc, x$Dc. If c£B, then
[z(X)E/*, therefore dB*, simultaneously A(y)$/*, thus xif, yif.
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Sufficiency: Suppose 3>={Da: a£A*} and J={Ib\ bEB*). |*4*|sm, |.B*|*n,
thus there are sets A, B such that A*cA, B*<zB, |“|=nt, |5|=n. We can assume
A C\B=0. Let us define a mapping h of X into FmXF™ as follows:

For given indices afA*, b£B* and a point xEX, suppose

) i B |O-0— xEDa

) Fak) =1 15yipa,
Oox$1b

V) ho0) =14 xein

moreover assume hc(x)=0 for any c£(A—A*)U(B—B*). In this way a mapping
hc of X into the c-th component of the product is obtained. Let the c-th component
of the value of h taken on x£X be determined by

(iii) h(x)e = hc(x).

Let h(X)= FcFmxF'n. It is easy to show that x*y is equivalent to
h(x)*h(y) by (2), consequently h is an order isomorphism. In order to verify that h
is a homeomorphism of X onto Y it is sufficient to see that hcis continuous for any
cfdUi, and thatif VczX is open, xEV, then there exists an open W in FmXF'n
such that xEh~I(W)<zV (see [2], (7.1.8) and (2.6.4)(b)). The first condition is an
immediate consequence of (1) and the definition of the mappings hc (cEAUB). If
Fis opening, xky, thenthere are AO<zA* BOc:B*, |j40<KO, |[#0]<tf0 suchthat
*ez n D}n(ﬂpm »ck PUt

. -
- (a)ﬁ(AW X(g(esa)'

a£A0

where Pa= {0} for afA0,Qh= (1) for b£B0, Pa=Qb={0, 1} for aeA-A,, and
b£B-B0. Then W is open in FmXF" such that /z-1(IF)=( f) 2aIT(H h)- i

5. Let us mention some simple consequences of the embedding theorem.

Corollary 1. Any decreasing upper Tl-ordered (increasing lower T1-ordered)
topological space can be embedded into a decreasing (increasing) Alexandroff cube.

Corollary 2. Any convex TO-ordered topological space can be embedded into
a convex Alexandroff cube.

Proof of 1and 2. Let be an arbitrary base for the lower (upper) topology
of X, m=\@\, n=\J\. In addition, if X is decreasing upper 7\-ordered (increasing
lower Ti-ordered) then one can choose ./ =0 (*=0), i.e. u=0 (m=0). In each
one of the three cases (decreasing, increasing and convex) 2 and J satisfy the
conditions of the theorem, thus X can be embedded into the convex Alexandroff
cube of type (m, n), and in particular, for n=0 (m=0) this cube agrees with the
decreasing (increasing) Alexandroff cube of weight m (and n respectively). |

Note that the TO-spaces are convex TO-ordered topological spaces with the
discrete order (xSy iff x—y). Since the convex Alexandroff cube of type (m, n)
is homeomorphic to the cube Fm+n, our Theorem contains Alexandroff’s theorem on
the embedding of r,,-spaces. |
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Corollary 3. Every decreasing upper Tx-ordered, increasing lower Tx-ordered,
or convex TO-ordered topological space is a dense subspace ofa compact partially order-
ed topological space having the same property.

Proof. Let Z denote the corresponding decreasing, increasing or convex
Alexandroff cube in which the ordered topological space X in question is embedded.
Without loss of generality X can be identified with its isomorphic image Y in Z.
Since Z is evidently compact, the closure of Y in Z is also compact and, as a subspace
of Z, has the convexity and separation properties of Z. |
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NORM FORM EQUATIONS WITH SEVERAL DOMINATING
VARIABLES AND EXPLICIT LOWER BOUNDS FOR
INHOMOGENEQOUS LINEAR FORMS
WITH ALGEBRAIC COEFFICIENTS

I. GAAL

1. Effective bounds for the solutions of norm form
equations with several dominating variables

The purpose of the present paper is to give a common generalization of some
results of Sprindzuk [33] and of Gydry and Papp [15] concerning norm form equa-
tions.

Let LczK be algebraic number fields with rings of integers ZLand ZK. Let n
denote a non-zero element of L, and let og=1, a2, ak be elements of K linearly
independent over L, such that K=L(otl, ..., at).

Suppose n—[K: L]*3. Let us consider the solutions (xI5 xK£Zk of the
norm form equation

) AK L (*1+a2%2+ =" +c***) = 1

This equation plays an essential role in the theory of diophantine equations and in
its applications (see e.g. Borevich and Shafarevich [3], Baker [2], Peth6 [21], Gy6ry
[10], Schmidt [27]). When k-, the problem of the resolution of (1) is essentially
solved (cf. [3]). Hence we shall restrict ourselves to the case k<n. When k—2,
equation (1) is called Thue’s equation. Then, by a well-known theorem of Thue
([35], case L= Q) and Siegel ([28], case of arbitrary L), (1) has only a finite number
of solutions. Moreover, Baker [1], [2] gave an effective upper bound for all solutions
of (1) which made possible to determine all the solutions. In the case k=2 a number
of generalizations and sharpenings of these theorems of Baker have been established
(see e.g. Coates [4], Sprindzuk [30], [32], [33], Feldman [5], Stark [34], Kotov [16],
Kotov and Sprindzuk [20], Gyéry [6], [9], [11], [12], [13]).

Sprindzuk [33] studied an inhomogen generalization of Thue’s equation. He
gave an effective upper bound for the solutions xIf x2, X of the equation

@) AIQQ(*i+a*2+2) = n,

where K= Q(a), [AT. Q]=«s3, a"zZK, ONz~Z, x1,x2£Z and kEZK is a non-

dominating variable for whichl |ASA"1-c, 3f=max fIxjl, [x2) with a given small
positive number £ Sprindzuk’s result containes Baker’s well-known theorem as a
special case.

Letnow k”~2 bean arbitrary integer. In the case L =Q Schmidt [25] obtained
a general criterion for (1) to have only finitely many solutions in Z. For a generaliz-

1 Using standard notation, |a| will denote the size of the algebraic number a, i.e. the maximum
absolute value of the conjugates of a.
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ation see Schlickewei [24], These results are ineffective generalizations of Time's
theorem mentioned above. In the case of an arbitrary algebraic number field L
Gydry and Papp [14], [15], Gydry [6], [9], [10], [11], [12], [13], and Kotov [17], [18],
[19] obtained, under certain general assumptions concerning cq, ..., <k, effective
bounds for the solutions of (1) and of certain generalizations of (1). In Gy6ry and
Papp [15] the bound has been derived subject to the condition that

(3) [L@): L] —ntS 3 (i=2, ../<) and n2..nk=n.

Apart from the form of the bound, the mentioned result of [15] also includes Baker’s
famous theorem [1], [2] as a special case.
A natural common generalization of the above two equations is the equation

4 NKJL(x1+ci2x 2+ ...+ cikxk+2) =i

in xx, ..., xk, X, where K, L, og, a2, ..., og, p, x1, ..., xk satisfy the same assumptions
as in equation (1), for a2, ..., ak (3) holds, 2£ZK is an algebraic number with

|2]-=Ay-5, To=2n?x |x;|, and £ is a given small positive number. Our aim is to give
an effectively computable upper bound for the sizes X —max |x,| of all solutions

(xI5 ..., xQEZk of equation (4). 1~'~k
To formulate our Theorem 1we shall need some further notations. Let [L: Q]=/
and N=In. Suppose2 (i=2,...,k) and H(p)Sm. Denote by RKand r

the regulator and the unit rank of K. Under the above conditions our main result is
as follows.

Theorem 1. There are effectively computable constants 7j and T>, depending
only on /, n, RKand r, such that if (xx, ..., xk)fEZk and ZKsatisfy equation (4) and

[2|<Aj-» with Xazzrg?:ébbﬂ and 0<f<l then
) maxjx,] < [8Hk(2m)I,n}Ti/" los"Tlk \

In the special case 2=0 our Theorem 1 gives Theorem 1 of [15] with another
estimate.

Corollary 11 IfK,L, o0g a2 ..., sk and p satisfy the above assumptions, then
we have (5) with £=1/2 for all solutions (xI5 ..., xK)€7\ of (1).

For certain improvements and (homogeneous) generalizations of Corollary 1.1
see Gy6ry [11], [12], [13] and Kotov [17], [18], [19],

In the special case when L=Q and k=2, from our Theorem 1lwe get a modi-
fied version of Theorem 1 of [33].

Corollary 1.2. Suppose that in (2) [K: Q]=«=3 and that H(oi)*H. There
are effectively computable constants T[ and T>, depending only on n, RKand r, such
that if Xj,x2Z and /PZK satisfy equation (2) and |A|<|x21? with some £,
0<£-=:1, then

maxflxil, [x2)) < [8i72(2|"]) ¥"](" /10,09(7'/0.

2 As usual, H(ct) denotes the height of an algebraic number a, that is the maximum absolute
value of the coefficients of its defining polynomial over Z.
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2. Effective lower bounds for inhomogeneous linear forms
with algebraic coefficients

Suppose al=1, a2,  ak are algebraic numbers, linearly independent over Q.
Let K=Q(<*2, ..., @) and [A Q]=«. Bya generalization of a well-known theorem
of Liouville there exists an effectively computable constant c=c(a2, a*)>0
such that
|x1+x 2a2-|-...+xjtal] > cA-<("-K0, x = fan x4

forall (xI 5 xRE£Z*\{0} where a= 1 or 2 according as K is real or not. By the
Thue—Siegel—R oth—Schmidt theorem

(6) \xk+x2az + ...+ xkdk\> ¢'X~*

for any x>(&—e)/<. In (6) the exponent is best possible, but the constant
c'=c'(x, a2 ..., ak >0 cannot be effectively computed. (For further references see
Schmidt [26], [27], Baker [2] and Gy6ry [8], Historical survey can be found in Schmidt
[26])

Norm form equations are in close connection with approximation of linear
forms with algebraic coefficients. The explicit bounds obtained for the solutions of
Thue’s equation and its generalizations made possible to give explicit lower bounds
for linear forms with algebraic coefficients, improving the above Liouville inequality
(cf. e.g. [1], [4], [5], [33], [20], [19], [8], [15)) o _

Sprindzuk’s result [33] for equation (2) makes possible to give effectively compu-
table constants d and d' such that (with the notation of equation (2))

7 Wl+ax2+X\ > ++40/*  (x = maxfljcxl, |x2))

for all (xx,x9£Z22 Af£Zk if and x1+cxx2+k”0. (Here (x—I or 2
according as K is real or not.) In fact Sprindzuk [33] obtained from his theorem
another consequence as well, representing A€ZK in an integer basis of K.

Let again L cK be algebraic number fields with the parameters given in our
Theorem 1 Denote by RL the regulator of L. Let <, ..., ak be algebraic numbers in
if with heights S H such that [L(a,): L]=n,"3 (i=1, ...,k) and ni,...,nk=n.

Suppose there are s real and 21 complex conjugate fields to K over Q. Let Q
denote the set of Archimedean valuations |.|, of K, where v is one of the natural
numbers 1,2,...,s+t. For BEK put WR\W=\R\""" where nv=[Kw QJ. Under the
above conditions Gy6ry and Papp [15] proved that there are effectively computable
constants q and «, and there exists a unit e in L such that

- - * ~ I ! =
8 v/e7r (Ex)-KExDal+t ...-Kex*)adl > gX~nHI'+2'+x, X ax lex,|
forall {o}ei(x0, xx, ..., XKEZk+L where r is any subset of Q and s' and t* denote the
number of real and complex valuations in F. For certain generalizations, when,
among other things, F includes both Archimedean and non-Archimedean valuations
see Gy6ry [8] and Kotov [19].

Our Theorem 1enables us to give a common generalization ofthe above approx-
imation results of Sprindzuk and of Gy&ry and Papp. To formulate our Theorem 2
we need the same assumptions on K, L, og, a2, ..., ak as above (in (8)). Given any

15
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A€ZK and (X0 XX, ..., XQEZk+L let
(9) AN KIL(x0+JCial+ ...+ x ka*+A) = /i

By Lemma 3 of Gyé&ry [7] there exists a unit £=e(x0, XX, ..., xk, X) in L such that
for p'=pen

(10) W\ = [*hqOOI17 exp (6nPI-iR L).
Under the above conditions we have the following theorem.

Theorem 2. Let TAQ. Denote by s' and t' the number of real and complex
valuations in T. Let (X0, xI5 xKdZk+ and A.£EZK. Suppose that with the above

e=£(x0,x1? xk, A) Xsatisfies |EA|<(maxjEX()1_£ where 1 is a given real
number. If Xo+XirT... +xkak+ X?(O then
(1) V7e7Ir [EXQ+(EXDal+ ... +(EX*K+(ED)]],, > qlX-n+s+2 +Ti

where X_o%k?(_ﬁ and

ei= [2+8™W IW +1+K)exp {(M*IRL)]~1{2 + k+kH )-N+s'+21,

(Here Ti and T2denote the effectively computable constants of Theorem 1.)

We remark that  and ©<xdo not depend on e. In the special case L= Q Theo-
rem 2 gives the following result.

Corollary 2.1. Let al5 ..., ak be algebraic numbers with height "H . Suppose

[Q(a,): Q]=n;s3 (i=I,...,k) and nl.nk=n. Let (XX ..., xKE£Zk and X( ZK.
Suppose that |A|<X@-£ where X0= max |x,| and 1 is a given real number.
If* ||xlal+ ... +xtad+A|| >0 then

(12) |[xlal+ ...+x*a*+A| > e2X<-»+

where o=1 or 2 according as K is real or not,
Ql = (2+8'H « X+1>6")-1{2+ k + kH )-n+X2k{I+ H))-n+a+"
and

(Here T[ and T( are the effectively computable constants of Corollary 1.2).

Let again L be an algebraic humber field as above. Let 9 be an algebraic number
with height and with degree nS3 over L. Let K=L{9), and lets, 21and Q
be as in Theorem 2. Let ocEL and denote by a the leading coefficient of the minimal

||lal| denotes the distance from a to the nearest integer.
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defining polynomial of a over Z. Further, let AEZK, and let
(13) NK\L(al)-aa+aX) = p.

By Lemma 3 of Gydry [7] there exists a unit e=e(a, A in L such that for p’=/<¢"
(10) holds. Under the above assumptions, from our Theorem 1we shall deduce the
following:

Theorem 3. Let LQQ. Denote by s' and t' the number of real and complex
valuations in T. Let afL, A£ZK and let a, e=e(a, A be as above. Suppose A satis-
fies |ecfAl<(£a)1_i with e=e(a, A), where 0<£<1 is a given real number. If
&—C+X:10 then

(14) 77 [|9—a+AL > o (H(Q)-G+»/D)i-+H*+*+T.)i
»er

and if a w an algebraic integer, then

(15) ff ||3—a+A|],, > g3(//(a))(i+(i/<))(-<»+*"+2<0+(wo
t
where o
g3= (2m8"///((2+) V" exp(6nI3RL))-1(4H)- n+*+2"
and

(Here Tx and T. denote the same effectively computable constants as in Theorem 1.)

In the case A=0 our Theorem 3 becomes Theorem 3 of Gy6ry and Papp [15],
with constants of other form.

3. Proofs

Proof of Theorem 1. To prove our theorem we shall combine the arguments of
the proofs of the main results of [33] and [15],
If X0=0, (5) obviously holds. So we may suppose that X,,>0. Further we

may assume that Afo=|xt| and

(16) X0> exp j-E-(7V2[c log(4//(fc + 2))) + cIrR/; + 410g(2m)j

sIN2 V . . . . .
where ¢ _( * Let us consider an isomorphism K—K' into C for which

xk—xk and |x*=[x*. Let us denote by x[, ..., xk, A,p’, a2, ..., ak, L' the con-
jugates of Xj, ..., xk, Ap, a2 ..., <k, L respectively under this isomorphism. For
X[, ..., Xk, A we have

17 N kAL (x 1+ (x2x g+ ... HCKXk+X") = p'.
Let ai=otdl, ..., a,'n denote the conjugates of a- over L'. Put
0*0 Rh -k = *i 4622+ +ecl kk+>42

15*
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(i~ 1, n;/=2, k), where X2jk is the conjugate of X' under the isomorphism
for which ad2-+a2Jt,0 t'k»¢kJk. By assumption K'=L'(a'2, ak) and
[K': L'T=n2...nk, so equation (17) can be written in the form

(19) S ...jtéiﬁ'jz—jk = /e

Suppose the product f(f Bj2 JK\ attains its minimum for ji, -Jk-1 and assume
Lb -
that =1
Rjk = RYji-lUIu  (A=1,-,»%).
Then (19) implies
(20) jjo1mnan =(2m)V«.

If denotes the leading coefficient of the minimal defining polynomial of ak
over Z, then ak(@k i—akj) is a non-zero algebraic integer forany i~j with 17i,jAnk
and

(21) ak\ak't-oi'kl = 2|a*af|  4H,
whence
(22) ' K i-«m|s (4//)-W -D.

Let Wo\= min WB)\. Then for any j (1"j*nKk)

\B'jAS\R"-R"j\-\B"\
and from this we have

(23) B~ 1 Bg-B'-\ =) KgXi-a'kjx'k+K-X'jl,
where *jk=1jr ji_tok (1~ jksnk. Inequality (22) implies

XO0(4H)-nkVk-» S X0wwksg-(n'kj\ = K gqx'k-«'kjx'k\ »

= wakogxk - Ok, jxk4-Xgqg— Xj\+ Wg—Xj\ A Lk —dKE xk+X g —X j\+2AN-{,
whence
(24) X A H rAk-A-1X I8 —KgX'k-a'kjx'k+X'g-X'jl

It follows from (23) and (24) together with (16) that
(25) VLS jXA(X% (AH)-"k(K-V-2) A 1 X AX A =-IX "'
From (20) and (25) we obtain

(26) IMs(2m)V " [12G-«/)L = 2K 12m)"«im 1-<a2xk-V .
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For any Rjt..jk (using also (16))
\Rji-JK\ — \Bj»...ji. —Baq\ + \Bt\ =
= I(@2h ~ a21')*2+ eee+ (ak-1,3k. 1- aA-1j'_J x'k 1H<* jk—agkg)xk+
+*j,..Jk-K\ + B84 s 4//(/c-1)"0+2%01 2+2"«-1(2m)V " -«/D)a-"K) s
B4H (k-1)X 0+2X0+ 2'«1(2m)V" 4 H (k-1)X 0+3Xa=i 4//(/c+2)Z0

that is
(27) [N...1Js4//(/lc+2)XO0.

By assumptions [A. Q]= A/ Let us suppose that there are s real and 21 complex
conjugate fields to K and that they are chosen in the usual manner: a(j) is real for

j=1,...,s and au+")=a0) for j=s+I, s+/ (for any element a of K). Let
fl1 for j =1, S
A 12 for j = s+, S+t.

From the explicit form of a theorem of Siegel [29] and Stark [34] (see also Gy6ry [7]
Lemma 2) follows that there are independent units fJx,  rr in K such that

(28) f[ max (log /%], 1) < cxRK
i—1
and the absolute values of the elements of the inverse matrix of (e} log |*(j)|)1gi JSr
do not exceed ca= SN2 Let Ri...i=B and \NKQ(R)\=M. Then there exist
rational integers bi,...,br. (cf. [7], Lemma 3) such that
(29) y = BriK.Ar
and
(30) llogl <-%-Rk, j=1 N

Since M=|iVi|q(/)|, we have
[log A/l S Ilog(2m)+KkN log H.
From this inequality together with (30), (27) and (16) we get

bxej log [I)\+ ...+brejlog [IMH = e-log WU/RU)\ =

ejlog|Af“ INI)|+-"-log Af—e™og\Ra)\ S

wn

clrRK+4llog(2m)+4kNlogH+2nlog(4H (k+2)X0) =

ctrRK+41 log (2in) +4kN log H +2n log (4H (k+2))+2n log X0 S
A7>nlogX0 (1 SjSr).
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This gives an upper bound for

(31) fRE Ibt\ S 3r«c2logZ0.
Consider now the identity
(32)

where g~h~g”q; 1Sg,h”nk. From (25) and (32) together with \tkti—d
s4H we have

o) a
o%,ft  ~k,q~"~ g &k ft)~nr (rMc, g &k, q) ~nT
Pg Pg

— vyg, I(a'k,h~ a'k,q)B'g+ (Xkg~ &Kk h)rq~~(Xk,g~ a'kgqg)ril —

— -JB7\ h~ ak,q)Sg+ (X'kg~ a'kh)Kg~ (ak,g~ akqg)K\ —

—- 127/j1j (y T'h«/2) 12H X ~ = 24H X ~.

From the above estimate we get

Ah o Jkg (@fcg O BB//II fak,g k. h) G/ —2AHX"2
whence
(akg ak,g)Bh (a-k.g-akh)sq 2AHXM-
(ak,h~aKgq)R'g (akh~~ak, q)8g \Ukh  "kaq\

By (22) we have N
I<i-<y|-1S(4/F)"A -i)

with iVy, 1=i,j=nk. So we get
(Mfc,g  ~k.,q)Bh __ I (x'k,g-«k,h)Bq
(d-kh~ ok, q)rg \(BKkhit—~ Jk,q) 15y
Jsing (16), from our estimates (21), (22), (25) and (26) we have

I (ak,g~ak,q)Bh
‘M, k-4,9)Rg -

k I@mlv “Xa~m xi— .
S g o 2T KD Lpdpapine DEg 2
yTSl—« p
= (AH)(\ - D+1(2m)VN2"kZ0O (-« /2>K+ 24//(411)'"* ~'\-15T 072

BXOX OG-+ XAX 6128 *0-3(—B+T ™"
y-i/2 + V-c/4 - u
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that is
(33) I(g*,g~a*.g)A
I(ak,h~a'ko)Rg
Let
mgilt, & for i= l, I,
a, = (((klo-((k.q)Vh for i=r+ 11
«.h-Ot'k,qy'g

where tj-.g, yg (resp. ri,h, yh denote the conjugates of tJny corresponding to (i'y
(resp. to pi). With this notation (33) can be written in the form

o ...oLbr o, —11
This implies

(34) 0< |hOlog a0+ hjlog+ ... + 6rloga,-loga,-A1 < e(-i/8)iogx0_ - sb”

where a0= —1, log denotes the principal value of the logarithm and 60is a rational
integer with

(35) 60| S |hl|+ ... + [fer]

and B=3rahc2log X0, 6=({/S")(3rinc?)~1L Then by (31) we have
(36) 83 1B1SB.

Let At=max ee) for i=0, Since

H@dS (2K AJP-) S(2"f(-1D,
we have
log A, < 2(n—D7V2max (log i)}

and this together with (28) implies

(37) Q' = log”olog”j, ...,logAr< " R Kk,

where c2=e[2(n —\)N'Jr. Put T—cti2'log B 1 with cd4= (25(r+3)7V)10(+3) and
A = [87/'t(2m),/re&irKf(,- 1>

Further, let ct=a2...ak where at denotes the leading coefficient of the minimal de-
fining polynomial of a- over Z (i—2, k). Then At<A for i=0, ..., r and since
asy is an algebraic integer, from (21) and (30) we have

arti) ~ (\ak(cclg-ctiigayA+\ak@kth-ct'kg)ay'd)Nr+ M- < A,

Obviously (5< A1/27" so we may apply a theorem of van der Poorten and Loxton
(see Theorem 3 in [22] and [23]). By this theorem we get from (34)

£< 6-17’log(6-17")log/I.
This yields and estimate for XO:
(38) logZz0< -~riogi6é-~log/L
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If x[ is an arbitrary conjugate of xIt by (27) we obtain
X = YNLA“K 392+ met =A%t ] =
N AH{k+2)X0+ (k-\)2H X 0+ X1~1 < SH (k+1)X0.
The above estimate together with (38) and (16) gives

(39) logX< 2logTO<”-riog(a-1r)log”.

By (37) T<ciclecsRK\og(c1c3RK=TO0. Put

Tx= 24r2nc2T0 and T' = 16r08CIrRKVZ«-2).
By (39) we obtain

(40) log X < log (-y-) log [(8H k(2m)/Yrt— =

=T log(t ) log P*Hk(2m/n)]

where T2—TON2(n—2). Then Txand T2 are effectively computable constants de-
pending only on I, n, RK and r. From (40) our assertion (5) follows.

Proof of Theorem 2. We shall follow the proof of Theorem2of [15].
Denote by a the product of the leading coefficients of the minimal defining poly-
nomials of ofj,  ak over Z. Then ani£ZL. By (10) we have

(41) H(fi") =a"(2H)"  f/'"™iV1|Q0/)| exp (6nI3IRL).
From equation (9) we get with s=8(x0, xx, xk, A
(42) NKIL(ex0+ex1ix1+ ... +exkak+eX) = //.
By Theorem 1 we have
(43) X = max jxjsf < [877E+1(2Fr(/r,))'l] (T2/C)lo8(r,/0.
From (41) and (43) we obtain

X < [8Hk+L(2HKM\NL\Q()\ exp (6nI3RL)Iny-T" Io* TA =

= [2l/" SHK+1+K\NL]Q(n")\/n (exp (6nIAR ) T logdl/c>

whence
JE((r i)io«(rit))-i[2i/8 . H k+1+kexp (6nlI3IRD)I'MI" 1< \NL\Q(ji"\"n
that is
(44) A igOol > QiX"
with

Q = [2 «8ni/f(n)(*+1+w) exp (6/i/s,i?L)]-1.
By (42) we have

(45) 17 |[ex0+®%*ici+"- + exfuec-eAll,, = \NLJQR\.
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For each v£i2
|lex0+ eXjOil+ ... +E£**a*+eA||,, N (2 +k +kHy«X"»

so from (45) and (44) we get

ffl « , +«,«.+«4d4. - [

S ei(2+Kk+KH)-N+s42'x - NH5+2'+'i = i X - N5+, +ti
and this is our assertion (11).

Proof of Corollary 2.1. Denote by —y the nearest integer to xlal+ ... + xkak+/..
If |[xlal+ ...+*iaikrA||"l then (12) obviously holds; if <1, then

(46) \y\ M+ Kk (1+ H )X 0+XO0.
Applying our Theorem 2 to y+ x1<d+ ... +xkak+A we get
\y+xlal+ ...+ xkdk+A\a >
> (28"« (2t+Dne6) -i (2+k + kH)~n+7X ~n+a+"Ki«®IB7»Y)]~1

where JT=max (Jy|, tal, ..., |xj).
By (46) we have
fs I+k(l+H)X0+X0E2k(l+H)XO0,

and from this we get
\y+x1+ ...+ xkak+X\a > "2r0,HfHs
from which (12) follows.

Proof of Theorem 3. In our proof we shall use the arguments of the proof of
Theorem 3 of [15].

Let ak denote the leading coefficient of the minimal defining polynomial of 3
over Z. Then a"/i€ZL. By (10) we have

@n #(/) S «i(2Rf)" S 7/n|Ai|QO0O]| exp (6nP'RL).
From (13) we get
(48) AKL(ea3—eaa+eaA) = n'.

Applying our Theorem 1 to (48) we have
XL= max(|eal, |eaa|) «= [s772(277 (")) /"] (ril/A)lo*(rilo _
This together with (47) implies
Xk < [BH2(2HN\NL\Q(ji")\ exp (6«/37?L))"/n] (T2/<)loil(TIf) =
= [2'/n8 *H 2+ [A&T OOI/" (exp (6«/3A L))/ (Ti/i,lo8(Tl<),
nence Xp./OiciTV«)[2.«4» 8 . 772+ (exp {6nI3R j)1"]-1< |ML|QOOI/"

from which we get
é Z 5
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with  ea—(2 *8/J7((2+)n)/'exp (6n/3i/?L)) 1. By equation (48) we have
(50) V\e(rl] HaS-aa+aAL = IA*gOOI-
Further, we have

loc3—aa + alll,, S (//(a)(4//+"))", < (H(c/)4HXiy
for each v£Q, so from (50) and (49) we obtain

\NHQ(n)\a-**-*" A
(51) Jry (4H-H(0i)Xiyms-2 ~

St B(4H)~Im5 +2'(H(0i))~I"#S+2 a~s~ 2 X fI'"45 +2X' +Ts,
Since

H@ =H N (leal + |£aal)' = 2IXI,
thus we have
Nj-iHwy/2
So from (51) we get
77 fIS-a+AL > e'A4H)-I"+ +2'(H(a))-In+*+X'a -5 - 2t’| I(tf(a)H

ver

-In+s'+Zt'+r..

— g3(//(8))(1HI) (- +5 +) +(B) .q - s- 72l

If a is algebraic integer, then a=1 and from this follows (15). If a is not algebraic
integer then by a”“H(oc) we get (14).
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WEAK HOMOMORPHISMS IN SOME CLASSES OF ALGEBRAS

M. KOLIBIAR

1. Introduction

By an algebra there is meant a couple (A; F) where A is a set and F is an (even-
tually well-ordered) set of operations on A. Given two algebras sd=(A; F) and
35={B\G), a mapping cp\ A-<-B is called a semi-weak homomorphism if for each
operation fdF (say n-ary) there is a term function (polynomial in the sense of [13])
g of 38 such that

(1) p/fa, a,) = g(<palf ..., (pa,) for all at,..,a”A.l

If, in addition, for each operation g£G (say n-ary) there is a term function/ of si
such that (1) holds, s is said to be a weak homomorphism. Substituting in these
definitions “polynomial function” (in the sense of [21] — “algebraic function” in
the sense of [13])) for “term function” we get the notions of semi-pseudo-weak
homomorphism and pseudo-weak homomorphism respectively. A bijective weak
homomorphism or a bijective pseudo-weak homomorphism is called a weak isomor-
phism or a pseudo-weak isomorphism respectively.

The notion of weak homomorphism was suggested by E. Marczewski and A.
Goetz (see [22] and [11]). The notion of pseudo-weak isomorphism in the class of
distributive lattices was studied by J. Jakubik [15] (under the name “W-isomor-
phism”). Various authors described weak homomorphisms or weak isomorphisms
in specific classes of algebras (see e.g. [4—{s], [11], [25]). In the present paper this
is done for semi-weak, pseudo-weak and semi-pseudo-weak homomorphisms in
some classes of semigroups, groups, lattices and median algebras.2 It turns out that
in some of these classes some of the mentioned weaker forms of homomorphism
coincide mutually or with the usual homomorphism. Theorem 4.2 shows that in
the class of bounded lattices pseudo-weak homomorphisms and weak homomor-
phisms do not coincide. The following example shows a semi-weak homomor-
phism which is no weak homomorphism. Consider the groupoids £T7=(z; o) and
£Z'=(Z; ) where Z is the set of all integers, x-y is the usual product and xoy—
—x2-y2 The mapping idz: is not even a pseudo-weak homomorphism.

Given algebras si and % jVx SA will denote their direct product. 2 will denote
the dual of the lattice f.

1 Under assumption of the Axiom of Choice the notion of the semi-weak homomorphism is
equivalent to Fajtlowicz’s notion of morphism [3],
2 Some results of the paragraph 4 of the present note were published without proof earlier [18].
The author is grateful to Gla ?r critical comments.
980 A%ema IC éeCt aSSI cation. Primary 20M15, 20F99, 06B99; Secondary 08A35.
€y WOras ana pnrase
median algebras

Generalizations of homomorphlsm concept, semigroups, lattices,
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2. Some general propositions

In this section sd and 48 will denote algebras (A; F) and (B; G) respectively.

2.1. The composition of semi-pseudo-weak homomorphisms (or pseudo-weak or
semi-weak homomorphisms) is a semi-pseudo-weak homomorphism (or pseudo-weak or
semi-weak homomorphism respectively).

The proof is straightforward. (For an analogous assertion concerning weak
homomorphisms see [11].)

2.2. Any surjective semi-pseudo-weak homomorphism cp: $4-+58 can be expressed
in the form tp=il/lov where v is a (usual) homomorphism and §/ a bijective semi-
pseudo-weak homomorphism. | f ip is a pseudo-weak or semi-weak homomorphism then
so is I/ (For an analogous proposition concerning weak homomorphisms see [9],
p. 655 and [10], p. 223))

Proof. It can be easily checked that 0 =Ker @ is a congruence relation in 8 .
If v: s4-+sdle is the canonical homomorphism then <p=iffov where j/: séle”-48
is a bijection. It can be readily shown that ij is a semi-pseudo-weak homomor-
phism.

2.3. Any bijective semi-pseudo-weak homomorphism  : s4-*48 can be expressed
in the form ij/=ioy where /: (A; F)->-(B; F)3 is a (usual) isomorphism and
i—dB: (5; F)-+(B; G) is a semi-pseudo-weak homomorphism. If j/ is a pseudo-weak
or semi-weak or weak homomorphism then so isy.

Proof. Define the set F of operations in B as follows. Given a fundamental
operation/ of stf (say n-ary) and blf ...,bnEB, set f(b1, .... brk=jif(li~1b1, ...,
.., \p~Db,). Then y: (A; F)—(B; F), where ya—j/a for each a£A, is an isomor-
phism. The rest is straightforward.

2.4. Any surjective semi-pseudo-weak homomorphism (p: sd -»38 can be expressed
in the form (p=top where /< (A;F)-*(B; F) is a (usual) homomorphism and
i=idB: (B; F)—(B; G)4 is a semi-pseudo-weak homomorphism.

Proof. Using 2.1, 2.2 and 2.3 we get gp—ioyoy where yov is a homomor-
phism. (See Figure 1; the usual homomorphisms are marked by circled arrows.)

8 We denote the set of operations in B by the same symbol F. This is justified because of the
isomorphism /.

4 See 2.3.
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2.5. Remark. According to 2.4 the investigation of weaker kinds of homomor-
phisms under consideration can be limited to (usual homomorphisms and to) cor-
responding kinds of homomorphisms of the form i=idB: (B; F)-+(B; G). In this
case “i is a semi-pseudo-weak homomorphism” means that for each operation
fEF a polynomial function g of the algebra (B;G) exists such that for any
bx, ..., b,fB (if/ is n-ary), f(b1l, ..., b,)=g(bl, ..., b,). Similarly other cases can
be formulated.

3. Semigroups

3.1. Lemma. Let £FS; ) and SF=(S\ o) be semigroups with units e and u
respectively, and let  satisfy the identity x2-y=y ex2 If there is a term function
f(x,y) in Zf such that xoy=f(x,y) for each x,y£S then either the operations e
and o coincide or they are opposites (xoy—y-x).

Remark. This lemma is a generalization of a theorem by A. Goetz [11,
Theorem 1] for groups. The present proof is a modification of that in [11].

Proof. According to supposition,
(2) xoy=xm i mxmwr..xnkmrk mt, nt non-negative integers.
It can be easily shown that xoy can be expressed in the form
(3) xoy=xmu(y m)nmyp, m,n,p non-negative integers.

(The terms with even exponents can be translated to the beginning or to the end. If,
say, mtis odd, translate xm<~1 at the beginning.) The following consideration shows
that n can be chosen to be o or 1.

First umt=uoe=e=eou—un+ hence u=uou—ummmin+p—e. Moreover
xm=xoe=x=eox=xn+p. If p=0 then x=x", hence xoy”~Xx"lsy ex. Sup-
pose 0.

If n™3 then Xoy=y ex oy mMtl-(y oX)"~2m p—y m W/ ®IM-(X *y) "> 1m/p~1=
= X WY oX oy 2mK W/ oXM-(XW)N~3eyp~1=xm+3-(Xxw)n~3mp+3. «~4  then gives
xoy=xm+*m(y *x)"-4 myp+*. Repeating this we get in (3) 0Sn<4.

n=3 gives Xoy=x»+3syp+t3=x-y. If n=2 then xm2—x=xp+2. If mis
even then x is commutative and xoy=xmi2eyp+2=x-y. Otherwise Xxoy=
=y exX oy oXmlmyp=xmtlm «x mp+l. Hence in (3) n can be taken 0 or 1

If n=0 then x=xmy=yp and xoy=x-y. The case «=1 gives xmtl=x=
=xp+l If m is odd then x is commutative and we get xoy=x-y. Otherwise
Xoy=y.xmtlmp=y xwyp and we get xoy=y-x if p is even and xoy=x-y
ifp is odd (y=yp+1 is commutative). This proves the lemma.

3.2. Theorem. Let o) and £P'=(S"; «) be semigroups with units and
let SF satisfy the identity x2e¢y =y *x2 Then any surjective semi-weak homomor-

phism (p\ is either an usual homomorphism or an anti-homomorphism (i.e.
(p{xoy) = (py-(px). In particular < is a weak homomorphism.

Proof. It suffices to use 2.4 and 3.1.

3.3. Remark. Theorem 3.2 would be false if the condition that sF has a unit
was omitted. E.g., if (S ¢) is an arbitrary semigroup (satisfying the identity x2-y—
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-y-x2 and (S; o) is a semigroup with xoy=x, the surjective semi-weak homo-
morphism ids: (5; 0)—(S; ) fails in general to satisfy the conclusion of the theo-
rem.

3.4. Theorem. Let 9=(S; o) and 9'=(S; °¢) be semigroups with units u
and e respectively, and let 9 ' be commutative. The mapping ids:9-*9 "' is a semi-
pseudo-weak homomorphism if and only if the inverse u~xof u in 9 ' exists and xoy—
=x esu~x-y. If this is the case then 9 is also commutative and the inverse e~x of e
in 9 exists and x my=xo0eJloy. In particular ids is a pseudo-weak isomorphism of
9 and 9°'.

Proof. Let ids be a semi-pseudo-weak homomorphism. Then xoy can be
expressed in the form xoy=a smmn a£S, m,n non-negative integers. Then
ammeun=xou=x—ammex", hence xoy—a mam"1m'")m-(a-ummnn=zam+1lm
mxnZeyri2m and x-y=a exm-un-a- ummy’=a<ma xmmurjme(a mummy")" mnH=
= am+n+: . xn2.ynl. u.nm+mn_ Combining  this with u=uou=a-umn we get
x w —{xoy) -u, in particular e=e ®=(eoe)-u. Hence eoe=u~x is the inverse
of uin 9' and xoy=x mu~x-y. Obviously if the last relation holds, ids is a semi-
pseudo-weak homomorphism. Moreover (u-u)oe=u-u- u~xme=u, hence
ueu~e~x is the inverse of ein 9. Further (xoy)o(u eu)=x-y su~xm m m~x=
=x-y, and consequently x my=xoe"xoy.

3.5. Corollary. Any semi-pseudo-weak homomorphism of commutative semi-
groups with units is a pseudo-weak homomorphism.

3.6. Corollary. Given two groups B={G\ o) and B'={G\ W) where
is commutative, the mapping idG: is a semi-pseudo-weak homomorphism (and
a pseudo-weak homomorphism) if and only if xoy=x su~xw for some Uu£G. In
this case 'd is commutative, too.

3.7. Remark. The operation xu~ in a group was investigated by H. Prifer
[24] and R. Baer [1] in connection with the notion “Schar” (heap). Some connections
between the group operation and the operation xu~» were established in [2], Asso-
ciative operations xoy=f(x, y) in a free group, wheref{x,y) is a polynomial, were
described in [23].

4. Lattices

4.1. Lemma. Let sd=(A; A, V), 8=(B\ A, V) be lattices, sdX&=(AxB;

—9, sdX*>—AXB; Cl, U)=9" and let xCly=g(x,y), xUy=h(x,y)
where g(x,y) ana h(x,y) are polynomial functions in 9. Then one of the following
cases occurs.

0) 9'=9,
(i) 9 "9,
(iii) both 9 and 9 ' are bounded.
1fg(pcy) isa termfunction then one of the cases (i) and (ii) occurs.

Proof. The order relations of 9 and 9 ' will be denoted by a and Q respec-

tively. The cases card A—I and card B=1give 9'=9 and 9'= 9, respectively.
We shall suppose card A> 1 and card s >1.
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1 First let g(x, y) be a term function. Then it is equal to one of the following
functions: x,y, xAy, xX\Jy. The first two cases give x=g(x,y)=g(y,x)=y—
a contradiction. In the third case xf)y=x/\y and if, if' are identical; in the last
case if' is the dual of if.

2. Suppose g(x,y) is not a term function. Then there is a term function
(%), ., X, xn+L, xm2) and  elements a\ ...,an of if such that g(x,y)=
—4(al ..., a" x,y). First we shall show that if' has a least element.

a) Consider first the case n—1 (set al—a). Then ady=f(a, a,y) is equal to
one of the functions a,y, aAy, aMy. In the case af]ly=a, ais the least element of i f'
as asserted. Any element tEAxB has the form (t1, 19, t"A, t2£B. The case
f(a,a,y)-aAy gives (alAyl aAJy*)=aCl\y=aAy—lalAyl, a2Ay2 hence card
B=1 Analogously the last case gives card A= 1 It remains the case f(a,a,y)=y.
Then a is the greatest element of if’, axis the greatest element of sd and a2the least
element of IS hence a is a neutral elements of if. Thereforef(a, x, y) can be expressed
as a join of some of the elementss

a, X, y, at\x, aAy, x/\y, a/\x/\y.

If f(a, x,y)=aV D(a, x,y) (D(a,x,y) is a join of some of the above elements —
eventually empty) then y—a\/D(a,a,y) hence ax is the least element of s4 and
A={al) — a contradiction. If f(a, x,y)=x\/Dx(a, x,y) then y=f(ct, a,y)=
=aM D"a, a,y) which is the previous case. The same situation occurs in the case
f(a, x,¥)=yV D2(a, x,¥) (f(a, x,y)=f(a, y, *)). It follows thatf(a, x, y) is a union
of some of the terms aAx, aAy, xAy, aAxAy. Then y=f(a, a,y)=aAD3(a,y)
hence a2 is the greatest element of AS which follows B—{aZ} — a contradiction.
Summarizing, in the case a) if' has a least element.
b) If n is arbitrary, set cdfl... C\an=b. Then a[”bl,

a2”™ bzf(a\, ..., aj, xIf yx 8r/(bi, ..., bis xIt yO,

f(a\, ..., aB x2,y2 */(h2 ..., b2,x2,y2,
hence
xC\ly = (f(a\, ..., ai, xIf yj, f(a\, ..., @ x2,y9) 2

5 (/(hi, ..., bj, xltyi),f(b2, ..., b2, x2,y2) =/(h, .., b X, y)
and
bi)y i f{b, ..., b, b, y)E[b,y, bAy, hvy}

In the case bCly”b, b is the least element of if' as asserted. The case 6fly3y
gives bC\y—y, b”bCia'—al hence a‘=aj which yields the case a). bCly"bAy
yields AVy2Sfc2Ay2, hence card B—I, a contradiction. Analogously bfly =
2Z)Vy vyields bxAyl*blAyy hence card A=1. It follows that if' has a least
element.

Using the relation x[Jy=h(x, y) the dual reasoning gives that if' has a greatest
element hence it is bounded. By an easy reasoning we get that if is bounded, too,
which completes the proof.

4.2. Theorem. Let if, if' be lattices and let o= if-*-if' be a bijection.

‘ See e.g. [14, p. 138].
8 The sublattice generated by the elements a, X, y is distributive (see [14, p. 140]).

16
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a) <pis a semi-weak homomorphism if and only if one of thefollowing two cases
occurs.

(i) (p is a (usual) isomorphism,

(if) @ is a dual isomorphism.

b) (pis a semi-pseudo-weak homomorphism if and only if one of thefollowing three
cases occurs: (i), (ii) and

(iii) both 3£ and S3" are bounded and there are lattices si and 3t and isomorphisms

iji: 3F—siy.3ft, x- 3ft' x & suchthat the following diagram commutes
\ﬁ ————————— 1 >£|
a h— - > aL
IdAB
Fig. 2

Moreover the condition (iii) is equivalent with the following one.

(iv) The operations D, U of 3£ and A, V of 3ft" are connected by the rule
(denote cpx—x' and u=cp~1(oj, v=cp~1(i') where o' and i’ are the least and the
greatest elements of Sft', respectively)

(4) x'Ay" = ((xny)U(ynu)U(uDx))', x'Vy'= ((xny)U(yOv)U(vOXx))".

Proof. The equivalence of (iii) and (iv) was proved in [17]. According to 2.3
it suffices to consider the case Sft=(L\ D, U), 3£'=(L\ A, V) and <p=idL. The
“if” part is obvious. Suppose (pis a semi-pseudo-weak homomorphism. Then there
are polynomial functions g(x,y) and h(x,y) in ££' such that xOy=g(x,y) and
xUy=h(x,y). If A denotes the order relation in 3ft', xS« and y~v imply
xf)yruClv and xOy”ulJv. Hence the assertions 2.6, 2.8 161 and Theo-
rem 1 [i18] are applicable and we get that there are lattices si, 3t and a
bijection ip: L—AXB such that \p is an isomorphism of to siX3ft and an iso-

morphism of 3£’ to s4 'XSft. According to 4.1 one of the conditions (i) and (ii) in the
case a) and one of the conditions (i), (ii), (iii) in the case b) is fulfilled.

@oro 1iary. Any bijective semi-pseudo-weak homomorphism of lattices is a
pseudo-weak isomorphism, and any bijective semi-weak homomorphism of lattices is
a weak isomorphism.

447orouary. For non-bounded lattices the notions “pseudo-weak homo-
morphism” and “weak homomorphism” coincide.

6orollary. The only surjective weak homomorphisms of lattices are the
usual homomorphisms and the dual homomorphisms. In the class of non-bounded lat-
tices the same holds for pseudo-weak homomorphisms.

@emark. The first assertion of Corollary 4.5 for specific classes of lattices
with some unary operations was proved e.g. in [25] and [s]. Theorem 4.2 b) for
pseudo-weak homomorphisms in the class of distributive lattices (with a different
formulation of the rule (4)) was proved by J. Jakubik [15]. The pseudo-weak iso-
morphisms of Boolean algebras were considered by A. Goetz [12].
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5. Modular median algebras

By a modular median algebra we mean an algebra with one ternary operation
(xyz) satisfying the identities

©) (xyy) =y, (xy2)tz) = (xz(tzy)).

These algebras are closely related to modular lattices. Namely, the operation (xyz)=
(xI\(y\/z))\/(yAz) (due to J. Hashimoto) derived from a modular lattice satisfies
(5) . Moreover in a modular lattice with the least element o and the greatest element

(6) (oxi) = x.

Conversely, any modular median algebra with elements, o, i satisfying (s) gives rise
to a bounded modular lattice with the operations x/\y=(xoy), x\ly=(xiy) (see [20]).
The identities (5) imply (see [20])

O (xyz) = (xzy).
Further we shall use the following (yet unpublished) result of J. Hedlikova.

The free modular median algebra with three generators x, y, z consists of the six
elements

(8) X, Y, 2, (xyz), (yzx), (2xy).

5.1. Iff(x,y, z) is a term function in a modular median algebra (M; ( )
such that (M ,f) is a modular median algebra then f(x,y, z)—(xyz).

Proof. Following the above result of J. Hedlikova, f(x, vy, z) is equal to a func-
tion given by one of the terms (s). In the case f(x,y,z)=x we get cardM=I
because of f(x, y, y)=y, hence the assertion is true. The same result will be obtained
in the cases f(x,y,z)=y and f(x, y, z)=z because of (7). The case f(x, y, z)=(yzx)
gives f(x,y, z)=(yxz)=1(z,y, x)=1(z, x,y)=(xyz). The same result appears if
f(x,y, z)—(zxy). From this the assertion follows.

Combining 5.1 with 2.4 we get

5.2. Theorem. The only surjective semi-weak homomorphisms of modular
median algebras are the usual homomorphisms.
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ON APPROXIMATION OF THE SOLUTIONS OF STRONGLY
NONLINEAR ELLIPTIC EQUATIONS
IN UNBOUNDED DOMAINS

L. SIMON

0. Introduction

In [1] the following elliptic equation has been considered:
(0.1) Au(X)+ g(x, ux)) =/(x), x£RB
where i is a possibly unbounded domain in R",

Au(x)= |d2 (-1)MD"Alt(x,u,...,DBuU,...),\B\*m
and the terms Aa(x, () are required to have polynomial growth in {, however, in
the term g(x, u) no such growth restriction is imposed but it is supposed that g (essen-
tially) satisfy the sign condition g(x, t/)«S0. The existence of solutions of boun-
dary value problems for (0.1) has also been proved there.
In the present paper it will be shown that the solutions of boundary value prob-
lems for (0.1) in unbounded R can be approximated by the solutions of boundary
value problems, considered in large bounded domains Qe where

Be=>RDE£c, Be= {X"R": |x < p}

Such approximation theorems has been proved in [2] and [3] for other boundary
value problems for nonlinear elliptic equations.

1. Preliminaries

Let BcR" be an unbounded domain, p>1 and m a nonnegative integer. Denote
by IV™(Q) the usual Sobolev space of real valued functions u whose distributional
derivatives of order Sm belong to Z/(R). The norm on W™(Q) is defined by

HLMG) —{ g o P

where a=(alt ..., a,), D“=DI*..D*n, Dj=dxj.
The expression IF™ () will denote the closure in | of Q°(R), the infini-

tely differentiable functions with compact support contained in B.
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Key words and phrases. Nonlinear elliptic equations, elliptic equations in unbounded do-
mains, strongly nonlinear equations, approximation of the solution of elliptic equations.
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Let N be the number of multiindices a, satisfying the condition |a]Sm. For
£=(£,, ..)JE'Rn write £=(?/,0 where t]=(£0, £y, ...) suchthat |y|s
m"m—21 Suppose that

I. Functions Ax: BXRN—R satisfy the Carathéodory conditions, i.e. they are
measurable in x for each fixed £=(£0, Ip, ...)ER'V and continuous in \ for
almost all x£Q.

Il. There exist a constant ~>0 and a function K*L g{Q) where F+ zzl
such that

for all |aSm, ae. in B and all "6RN
Ill. For all (t, 0, OhC)€RN with and a.e. in B

2 A 0-axe i COKC Qo o

Iv. There exist a constant c2and a function Ki*L1(Q) such that for ae. in
R and all "R"
2 AX(x,0S'""CsW >-K 2(x).

. V. There exist constants c3-0 and 0o>o0 such that for a.e. in & and all
=0 f0ER W i,z (il CIER w
|a]2\m IA*(x, 0 - A X(x, O K~A-14) ~ - ¢ 3V -ri"\p'(x)
where _
it w0
if WX\>o00

VI. Functions p, r: OxR-R satisfy the Carathéodory conditions (i.e.
p(x, t), r(x, t) are measurable in x for each tf,R and continuous in t for almost all
x£R) and

p(x, )i S o, \r(x,01d& h(x), h*Lg(E2)r\L1(Q)

for all /ER and a.e. in R.
VII. Let
=p+r and gs(x) = sup \g(x, i)
g=p gs(x) I»|g69( )l
Suppose that for any

VIII. Let V be a closed subspace of W™(R) with the property that forany V
there exist a constant 0 O and a sequence of functions wfi V(~}L°°(Q) suchthat
(wj)-+u Vand Wj(.x)\=clu(x)\ ae. in B.

In [1] it is proved that conditions I—IV, VI—VIII imply the existence of varia-
tional solutions of boundary value problems for (0.1), more exactly: for any /£ V*
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(i.e. for any continuous linear functional/on V) there exists uZV such that
(1.1) g(-,«) and wg(-, u)ZL1(Q),
1.2) 2 fAalxu, ...,.DBu, ...)D*vdx+ [ g(x,u)vdx = (f v)

for all vZV(~)L°°(Q) and for v=u. Itis also shown that sequences (w;) in condition
VIII can be found in the interesting cases V—W™0(Q) and V—W™(£2).

Now for 2—So let Bec B be any bounded domain and VQbe the function
space
K = {ulo.: UzZV)

with the norm of W™(Qg), satisfying the following assumptions:
a) Res Bflse.
b) There exists a bounded linear operator Le: Ve-*V such that

LeMk = M ae-
IILjsSc forall g” o0.

and

Remark 1 From assumption b) it follows that Ve is a closed subspace of

W1(QQ.

Remark 2. Condition VIII implies that for any ueZ Ve there exist a constant

and a sequence of functions HiG~nL “ (Bt) such that (wg—ue in VQ

(i.e. with respect to the norm of JF”(B¢) and |MJjC(x)|SccM(X)] a.e. in Qe.

Indeed, according to the definition of Ve there is a function uZV such that

lle=u\i0- By assumption VIII there exist a constant ¢>0 and WjZVC\L°°(Q)
suchthat (Wj)-*ti in Fand [hj-(x)["cw(a)| a.e. in B. Thus,

»j\a.evtnL-(Q"),
Wjlo) - « in '\,

Kld,(x)] » clue(x)] a.e. in Re.

and

Remark 3. Let F=IF~(R) or V=W"0(Q). IfdQ (i.e. the boundary of R)
is bounded then assumption b) is fulfilled for sufficiently smooth dQad Q (it is
sufficient to suppose that 8Qad Q belong to Cm see e.g. [5]).

If dQ is not bounded then by use of [9] it is easy to formulate assumptions on
()Qg which imply condition b).

Lemma 1 Let assumptions I, 11, IV, VI befulfilled. Then there exists a constant
¢4 such that for any Q=QJ uZVe the estimation

2 f Aakx, u,...,.Dpuy, ...)D“udx + fg(x,u)udxS
(1.3) k

— 2 "«H £,, —ca | h” Lg(rt)||<(H LEGO
holds where c2 denotes the constant in condition 1V.
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Proof. By assumptions I, Il, IV the first term in the left is finite and for any
\é it can be estimated as follows:
(1.4) 2 f AA*, u, ...,DBu, ...)D*udx ™ c2\\uye- f Kfx)dx s
Pl—moa ne

S QWu\pe- j K2{x)dx.
n
Moreover, condition VI implies that
[ g{x,u)udx” f r{x,u)udx”- f \heuldx - |fi]li,«(n€) « Mu-co,)-
Thus estimation (1.3) follows from inequality (1.4).

Set
\g{x,u) if x£Qe

ge(x, u) = I 0 if xEQ\Qaq.

Lemma 2. Suppose that conditions VI, VII are satisfied and the sequence (uf)
tends to u weakly in V such that estimation

(1.5) figej(x,Uj)Ujldx”cs
n

holds with a constant c5, jiLrgg q,= +°°. Then
g(-, UWUELHR)

and there exists a subsequence (W) of (ufi such that lim (u'fi—u a.c., and gQ(e, uf)
tends to g( e, u) with respect to the norm of LJ(B).

Proof. As (ufi tends to u weakly in V, there is a subsequence (u'fi such that
(uj)-*-u a.e. in 12 (see e.g. [4]). Therefore by asumption |

gej(-,u'j)  g(-,u) ae in Q
Thus Fatou’s lemma implies

f |g(x, u)u\dx & liminf f \gej(x, uj)u'j\dx ~ c6.
a Q

g(-,M)«€L1(fi).
Inequality

lge (x,w)|=8 sup \gQi(x, N)l+<5lgej(x, u)u\ s sup [g(x, N+<5[gCAx, u)u\,
li|~a_1 li|"<5-1
assumption VII. and (1.5) imply that for any measurable set EczQ

(16) f \gej(x, uj\dx rd f gg-~dx+S-Cz,
E E

Given e>0, let &=e/(2cH. Then in case meas (E) is sufficiently small we have
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Ef\gaj(.x, l.])\ and there is a set A<z£2 of finite measure with

n\k \g(x,u'j)\dx*e. Thus by Vitali’s theorem we have that gej(-, ufi tends to
g(-,u) in

2. The approximation theorem

Suppose that conditions 1—VIII and a), b) are fulfilled and let /£ V* be given
in the form
<l v= 2 f f*D*vax,
l«3mM3

where f2 L q(Q). Consider the following boundary value problem in Qe. We seek

for a function Ve satisfying the conditions
(2.3 g(-, u)ELI{Qa g(-,udueZLI(Qe
and

f AxX(x, ur, ...2)"«,, ..)D«vedx+
I%sm X(x, ur )"« )D«vedx

(2.2
+ f g(x, vedx = 2 f *D*vedx
ne M*"o,

for all veEVeC]L°°(I12¢) and for ve=ue.

Remark 4. 2 f fx(D*vadx defines a continuous linear functional on V,,
l«s« 0.

Theorem. Suppose that conditions I—VI11 and a), b) are satisfied. Thenfor any
g=60 the problem (2.1), (2 .2) has at least one solution ua.
Furthermore, let lim Qj= ej—Ro and uej be a solution of (2.1), (2.2) for

Q=Qj. Then (qj) contains a subsequence {qg)) such that (L" ue) tends to a solution

u* of (1.1), (1.2) weakly in V.
I f the solution u of (1.1), (1.2) is unique then (Lej uej) tends to u weakly in V.

Proof. From conditions I—IV, VI— VIII it follows that all conditions of the
existence theorem in [1] are fulfilled for the boundary value problem (2.1), (2 .2).
(See Remarks 1, 2 and 4). Thus the problem (2.1), (2.2) has at least one solution
ueEVe for arbitrary f£ L q(Q).

Now consider a sequence (uej) of solutions of (2.1), (2.2) for g=Q with Oj=Qu,
lim Qj=+°°. By (1.3), (2.2) we have the inequality

o
c2luepvv ~ 00- Inlllefie ) Tuonepey 2 HHLe[re )T wellenat ) s

— WAL Vet

Thus the sequence (ugj) is bounded in VtJ and by the assumption b) the sequence
(LtJu@) is bounded in V.
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The assumptions I—I1 imply that the formulas
(2.3) (T(u),v) = 2! f A*(x>u>mm;DRu, ...)D*vdXx,
(24) (TQ(U), v)= 2 f AAX, e DRII>mm)D*vdx

define bounded linear operators T: V-+V*, Tej; V-+V* such that |Tej\Sc'

(where c¢' does not depend onj). Therefore the sequence (Tej(Lejug)) is bounded in

V*. Since V is a reflexive Banach space there exist a subsequence (gj) of (aj) and
Vv, V* such that

(2.5) limLa> = u* weaklyin V
and
(2.6) )im ue) =y weakly in V*

As uar is a solution of (2.1), (2.2) with o= q; thus by (2.4)

2.7) (T'(L> u>), L>u>) + f g{x,ug)uepdx=

Hence by use of assumption VI we find

(2.8) llg(x,we)«e \dx sd f p(x, uQ)ucjdx+ f \r(x, uru”rdx si
B, °J BeJ
f g(X, Usf) no dx+2 £ Thu” ldx =
: B
((J

= 2 ffD*ue dx-(TA(IVjus), LAur+2 £ {hurdx 3

his* n / , . 0. . .
S o VLSl 2 e ik 24 A2 ne ),
Therefore from Lemma 2 it follows that
(2.9) *(-, a*)«i*a.*(R)
and there exists a subsequence (<?") of (e') such that

. s .
(2.10) jII_EQOL »U» =« ae. in Q,

(2.11) Jm 1 (e»«3)- g@>M)llti(n) = 0.

Since uw is a solution of (2.1), (2.2) with q=Qj thus for any fixed VvEV(~)L°°(Q)
we have
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because by the definition of v for any v£ VPiL"iQ) we have v\aq,,ﬂ/J«P\L°°(Q*5>).

Hence by (2.6) and (2.11) as we obtain that for all rEFfIL" (R)
(212 < v+ fg{x,u*)vdx = J? f f*D*vdx.
- ldamn’
We shall show that
(2.13) y =T («*).
First we prove that
(2.14) limsup <Te. (LO*ue*), Levue*- u*) =0

Equality (2.7) implies
(TeJ(LEj% )>Lejla] ~ u*) =

(2.15)
=,2 f AD*ue)dx- {Te*(Le>ue.), u*)- fg (X, ud)ujdx.
H- mn:J a»

By (2.10) and assumption VI

Jim p(-,uAj,-)gg’} =p(-,u*)u* ae,
and
p{x, ue*) tle. —o,

thus from Fatou’s lemma and (2.8) we obtain

(2.16) J'p(x, u¥)urdx  liminf Jp(x, ue,) ue»dx.
S’ J~OO s_i):‘)]
Furthermore,
limr(e, ue*) =r(e, UX)u* ae.

and by assumption VI
K*> ue*)ue*l s h\uex\.

Therefore for arbitrary measurable set E
folr(x, u-)u* Id x ~ { f \Ngdxyig-\\u~ [LR{)
E E

and from the Vitali convergence theorem we obtain

(2.17) jim J r(x, ueX)ugrdx = J r(x, u*)u* dx.
J~°°s * s
”

Equalities (2.16), (2.17) imply
fgx, yurdx =liminf f g(x, u») u*dx,
n J~*°° s f(]
whence
(2.18) limsup [- f g(x,ufj)wth<&] £- f g(x, u*)u*dx.
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Furthermore,

ff xD*uedx = 2 J f*D*LejuFdx- Zz f f*D'LOUadx,
'Sié MSmii I*|smn\N|(j
thus by (2.5) and the boundedness of \\LBue*\v we have

(2.19) lim z ffJPuf.dx - </, ),
\\Sma\ 1

»J

From (2.6), (2.15), (2.18), (2.19) it follows that

lim sup < 7 (f-y, u*)- £ g(x, u*)u*dx.

By assumption VIII there exist a constant ¢>0 and a sequence of functions
WkEVDL-(Q) such that

(2 .20) lim [Wk—u*j =, lim wk = v aein i2
and
(2.21) W*(X)| S cl«*(x)|] a.e. in Q.

From equality (2.12) we obtain

1
O. wk)+ f g(x, u¥)wkdx = (f wk).
n
Consequently,

(2.22)
lim sup (Te’ (LGue*), Lgpue»- u*) S (f-y, u*-wk) + f g(x, u*)(wk- u*)dx.

It is clear that

(2.23) KIiIn(f-y, u*-wk) = 0.

Furthermore, by Lebesgue’s dominated convergence theorem and (2.9), (2.20), (2.21)
we find
lim f g(x, u*)(wk—u*) dx —o.

Thus (2.22), (2.23) implies (2.14).
Now we shall show that

(2.24) jim (Te»(Le»«,*), Le*ue*- u*) = 0.
Assumption V implies that

(Tej(Le”uej)~ Tej(M) Le"uo”~ u*) — ~ CWue™~ u*Iw™-\a Bo)
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with a constant ¢>0. This inequality can be written in the form
{TO'(L e*ue]), LQJuey, u*) £ (Te»(u*)-T(u*), LeJue]-u*)+
+ (T(u% Le]uel- u*)-c||ue]-u*VWr-, (fitfo).
From the boundedness of ||Twe»|Kand Holder’s inequality we obtain
(2.26) Jim {Ts] («*) - T(u*), Lqli,g - u*) = 0.
Moreover, by (2.5) we have
(2-27) Jim (T(u*), Le]ug]- u*) = 0.

Finally as the imbedding of W™(Qeg) into W ”~1(£2d) is compact thus there exists a
subsequence (g'f) of (g'f) such that

Jim 1«”- =0.

Therefore (2.25)—(2.27), (2.14) imply (2.24).
Now we shall show that for any Vv

(2.28) (T(u*),u*-v)ti(y,u*-v).
This inequality implies (2.13). Consider the element

w= (1-/)nf+ie, i>0.
By assumption V

<Te;(Le. liex ) - Te*(w), Le*Ue- -w> £  C« wlj fym - I(Rgo),
which can be written in the form
<IN(LB*«g), LOsua*- u*) + (Te*(Lg. ue*), t(u*- v))-
- <T[u*+t(v—«*)], Le]ug]-«*+/(«*-») +

+(Tu* +t(v-u*)]-TO[u*+t(v- «*)], Lq ue*-«* + /(«*-»)> £

— Clug'—u*+ 13t —1>)| ffm- 1(Ueo) m

Hence by use of (2.5), (2.6), (2.24), Holder’s inequality and the compactness of
the imbedding of Wp(C2e0) into tV™-~1(i2en) we find

O, t(u*-v))-(T[u* +t(v- «)], t(«*- »>s - cl/(u*- tJg,.-Xfleo).
Thus
(y,u*-v)-(T[u*+t(v-u*)\, u*-v) £-c/-1

By assumptions 1—II
lira (7V +/(®—ii*)], u*-v) = <r(«*), u*-v)

and, taking into account 1, we obtain (2.28).
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Thus (2.12), (2.13) imply
(2.29) <T(u*), >+ f g(x, u*)vdx = (f v)

for all vAVOL"IQ).

Applying this equality to v=\vk, by (2.20), (2.21), (2.9) as k -~°° we find that
(2.29) is valid also for v=u*.

If the solution u of (1.1), (1.2) is unique but (Le.ue) does not tend to u weakly
in V then by the above argument we get easily a contradiction.

Remark 5 Since for bounded domains o the imbedding of w-(q) into
W™-~1(Q) is compact thus from the above theorem it follows that there is a subse-
quence (§j) of (Qj) such that for any bounded Q

et it D
Moreover, if the solution it of (1.1), (1.2) is unique, we have
Jim [Mj-M*ILm-i(i) = o.
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SELECTIVE ALGEBRAS AND COMPATIBLE VARIETIES

BELA CSAKANY

1. Introduction

In this paper, the notion of a selective algebra is introduced and applied to
characterize equational theories which have models over every variety. Another
characterization was already proposed by Isbell [9]; the use of selective algebras
rﬂake_s it possible to prove or refute this property for several concrete equational
theories.

We shall use the standard terminology of universal algebra [7]. A non-trivial
set or algebra always has at least two elements. The set consisting of the first k non-
negative integers will be denoted by k.

Let P and Mp(p£P) be arbitrary non-empty sets and k a natural number. We
define a k-ary operationf on S:= JJ Mp in the following way. We consider two

i
mappings fx\ P+k and /2 P—P‘? IOsuch that, for all p£P, Mfifp)» Mp and
M /2(p) is non-trivial if Mp is non-trivial. Let a0, ..., 6* j£S. Put

(1) /O 0, e °k-i){P) = ~flip)Cl2(p))»

for every pZP. In words, in order to get the /»-component of the result, first we
select the f 1(p)™ operand, and then the/2(p)-component of it. Operations/ obtained
in this way will be called selective operations. The mappingsfxand; 2 will be referred
to as the first and second selectors of/. We say that (A; F) is a selective algebra if
each /EF s a selective operation on S. If Mp=M for every p£EP (i.e. S—Mp),
we call (S', F) a regular selective algebra.

Special kinds of selective algebras have been in use for a long time. A selective
algebra (S; F>with P=k, / F-ary, and fi(p)=f2(p)=p for each p£P s a k-
dimensional diagonal algebra (Plonka [13]) which often appears in the study of free
spectra of varieties (see, e.g. [10]). Diagonal algebras of a given dimension form a
variety in which regularity in the above sense means freeness. Rectangular bands, left
and right zero semigroups are examples of diagonal algebras, hence also of selective
algebras. A further example is the k-dimensional die, introduced by Fajtlowicz [4];
such an object is a free F-dimensional diagonal algebra whose structure is enriched
by a further unary selective operation c with c2(/)=i— (mod k) for every isk.
Regular selective groupoids with two-element P and non-trivial cyclic selectors were

This research was done during the author’s stay at the CRMA, Université de Montréal. It
was supported by NSERC Canada grant A-4507; it benefited from discussions with Ivo. G. Rosen-
berg.
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characterized by Evans [3] by means of identities; a more general result for regular
selective groupoids was obtained by Saade [15]. Regular selective algebras with k-
element P and with all possible selective operations appear at Taylor [16] as members
of the &h power-variety of sets.

Regular selective algebras are a special case of the wreath algebras introduced
and applied to the study of completeness properties of finite algebras by Rosenberg
[14]. Take a selective operation f on M pand a mapping n of P into the symmetric
group over M. Define the operation wfin on Mp by wftn(oa ..., 0*_i)(p)=
—n(p)(/(<r0, ffjc-iXp))- The operations arising in this way are the wreath oper-
ations; and wreath algebras are the ones with wreath basic operations.

Now we make some observations we will need in the sequel.

Polynomials of selective algebras are selective operations.
Indeed, each projection on a product set S= JJ Mp is a selective operation

i
having the first selector constant and the second selnecptor the identical map. Further,
if/ and g°,..., gk-1are n-ary, resp. k-ary, selective operations on S, then, for any
ao, ..., ak-xdS and pdP

2)  [(gr00.... seogm 1o, ere-inyo) = SN (BWP){G{I(p) (f(p))).

as, in view of (1), both sides are equal to gfl(p)(a0, ..., 0*-i)(/2(/0). Note also
W)QMP\ thus we see that f(g°, ..., gn~)=h s a selective operation

on S with selectors hx: p>-+g{l(p)(f2(p)) and h2: p**g(l(p) (ffp)).

This consideration also shows that we can attribute a well-determined pair of
selectors to every polynomial symbol h of a selective algebra S, which are also selec-
tors of the polynomial induced by hin S.

For a product set S= f] Mp, the support of S is the set Q= {pdP. |MP>1}.

An n-ary selective opera?ilgnf on S depends essentially on its ith variable (idn)
ifand only ifthe image o f the support ofS underf x contains i. This follows directly from
the definition.

Lemma. Two selective operationsf and g of the same arity on S are equal iff
their first selectors as well as their second selectors coincide on the support of S.

The easy proof may be omitted. We note only that f(o0, ..., <,/)(p)=a for
all pdP suchthat Mfz(p)= {«}, and also that for pdP\Q we have Mii(p)=Mp
(because M p. Thus, without loss of generality we may assume that
[2t(-P\o )=idn\Q

2. Compatibility of varieties

An n-ary operation over an algebra A is a homomorphism h: A"—A. For the
algebra A=(A; 0) (i.e., a set) this is the common notion of the operation. Expressing
it in other way,/is an operation over A iff/ commutes with all operations of A, i.e.
belongs to the centralizer of A ([1], p. 127; cf. [12], [11]).

B~(A\H) isan algebra over A if every hdH is an operation over A. We
can thus speak of algebras of a given type over A, and of algebras over A which are
models of a given equational theory, i.e. belong to a given variety.
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Following Isbell [9], for two varieties ir and IV, we say that "V is compatible
with iV if there exists an algebra A£V over a nontrivial BOV. For operations
/, g the relation / commutes with g is symmetric, hence compatibility of varieties
is symmetric, too. We say that a variety "V is ubiquitous if V is compatible with
every variety. Isbell proved ([9], Theorem 1.1) that every variety compatible with
the variety of Boolean algebras is ubiquitous. The next proposition slightly extends
this result, and throws light on the relationship of ubiquity and selective algebras.

Proposition. For a variety 'V the following are equivalent:
() V iscompatible with a variety generated by a primal algebra.
(1) V contains a nontrivial regular selective algebra.
(1) "V contains a nontrivial selective algebra.
(IV) V is ubiquitous.

Proof. Our proposition is implied by the following four claims:

Ciaim 1. Let a variety iV be generated by aprimal algebra M. 7/B is a nontrivial
algebra over an algebra AE£iV, then B is a dense subalgebra of a regular selective
algebra on apower of M. (AQMP is dense if A\P'=MP for every finite P'QP).

Craim 2. | f some dense subalgebra of a regular selective algebra S belongs to the
variety "V, then S belongs to V.

Craim 3. | f a variety "V contains a nontrivial selective algebra thenfor an arbi-
trary nontrivial set M, the variety V contains a regular selective algebra on some power
of M.

Ciraim 4. For an arbitrary algebra K, every selective operation on a power Kp
commutes with every operation of Kp.

Indeed, (11)-»(111) and (1V)-»(1) are obvious; (I)—11) follows from Claims 1 and
2; and (1) —(H) 9 (1V) follows from Claims 3 and 4. Hence it remains to prove
the Claims.

1. Let B=(A; F) be an algebra over AfiV. As M is primal, A is isomorphic
to a subdirect power of M. (Concerning primal algebras, consult [7], pp. 177—180,
401—403.) Hence the maximal congruences of A are exactly those having \M\ dis-
tinct congruence classes. We can represent A as a subdirect product of all factoral-
gebras modulo maximal congruences, which is the same as a subdirect product of
copies of M indexed by the set P of all maximal congruences of A. Thus, A is, up to
isomorphism, a subalgebra of M% and the primality of M implies that A is dense.

Consider an n-ary operation /£ F, i.e. a homomorphism /: A"—A. Let nEP
and, for (a0, ..., an X, &0, ..., a®*"A", put (0, ..., a,,_I>~(a;, ..., a;_ X ifthen-
components of/(a0, ...,aBX¥ and/(4d0, ...,a'_i) coincide. Then ~ is a maximal
congruence of A". As the algebras in iV may be considered as lattices with additional

operations, the congruences of A" are factorable [5]. Thus, ~ =iAX...Xn'XiAX...,
where nfP and n'is the knih factor. This shows that the *-component of/(a,,, ...,
..., &,_1) is a bijective function of the 7i'-component of As/ is a homomor-

phism, this function is an automorphism of M, hence identical, because M is primal.
We obtained that/ is the restriction to A of a selective operation f on M p with
fi(n)=kK.i and f2{n)—n"' for every n£P. Hence Ais a dense subalgebra ofa regu-

17
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lar selective algebra on M p, as asserted. (Note that this consideration may also be
formulated using the Stone-Hu duality for primal algebra theory [8]).

2. Let S=(MP; F) be a regular selective algebra, and D a dense subalgebra
of S. We have to prove that the identities of D are satisfied in S, too. This means that
distinct (n-ary) polynomials h, h' of S can be distinguished by suitable €, ..., (5, >CD.
We can suppose that S is non-trivial, hence the support of S is P. Now, by the Lemma,
h~h' on S means that at least one of KAK and h274h2 is valid. First suppose that
hy?ih[ and let pdP besuchthat hi(p).ihi(p). Take distinct elements m1,m 2from
M. As D is dense, there exist 6, 6'dD with 6(p)=m1, 6'(p)=m2. Let Shi(p)=6,
BA(p=<5' and choose all the remaining &dD (/fin; zVfti(p), Kip)) arbitrarily.

Then
(3) h{do, ..., 5, X(p) = mi » m2= fi(<K0, ..., Sn-J(p).

Assume K —h[\ then there isa pdP with h2(p)*h2(p). As D is dense, there
exists <€D with 6(h2(p)) =mLim2=06(h2(p)). Let 6hIW—S and choose the other
5,’s arbitrarily. Under these assumptions again (3) holds. Thus, h is distinct from h'
on D, as stated.

3. Let S=(S; F) be a non-trivial selective algebra. For an arbitrary non-tri-
vial set M we present a regular selective algebra on some power of M which is the
same type as S and satisfies all the identities of S.

S has the form JJ M p with non-empty support QQP. Take an operation

I
f of S. Restrict/l?/Ztg %, thus obtaining//,//. Let/' be the selective operation on
M Q determined by selectors//,//. Now, S'=(M Q;/': fdF)) is the regular selec-
tive algebra in question. Indeed, if g and h are polynomial symbols of S, and S
satisfies g—h, then, by the Lemma, S'satisfies g'=h’', where g¢', h' are the corre-
sponding polynomial symbols of S

4. Let S=(KP; F) be a selective algebra and take an n-ary fdF. We have to
show that/ is a homomorphism of (Kp)" into Kp. Let g be an nz-ary operation of
Kp. Choose m elements from (Kpn arbitrarily: (po, ..., fn-i) (/=0,..., m—1).
Then

[« glS. e>O*]), eee, gtd-1- ess.Fn-i)))(p) = g(Rhp)> s P/fIMf-Ap)) =

= g(HMp)(f2¢>)),  BfAp)(MP))) =

= g(/<n0. Pn-i)(.P)) =

= g(f(pO®>—,Pn-1),-,f(po'» Pn-I)(p)
holds for each pdP, i.e./ commutes with g, as required, and the Proposition is
proved.

3. Applications
The fact that ubiquitous varieties can be characterized by the presence of alge-

bras with a quite transparent structure allows us to decide on several varieties
whether they are ubiquitous.

No congruence modular variety is ubiquitous.
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We prove this by showing that there is no non-trivial regular selective algebra
in a congruence modular variety. Let V be congruence modular. By the Mal’cev type
theorem of Day [2], there exist quaternary polynomial symbols d°, ...,dn (n£l)
such that for i=0, ..., n—1 the following identities hold in "K:

4) d*(x,y,y.x) =X,

d°(x, y, z, u) =X,
d‘(x,y,y, u) = di+l(x,y, y, u) for i odd
d“(x, X, u, u) = di+1(x, x, u, u) for i even
dU(x,y, z, u) = u

Assume that there exists a regular selective algebra S=(MP; F) in ir. Set
e'(x,y)=d'(x,y,y, x) (i=0, ..., n—=1). Then for arbitrary a0, 0jCS and for every
PiP

€'(0-0, c)(>) = ad{p).

Applying (1), it follows 0o0(p) = ati(rt(4(p)), and the right side equals a0(4 (p))
if d[(p)£ {0, 3} while it equals ax(4 (p)) if d[(p)E {1,2}. As we can choose <Dand
oy with a0(p)& al{ei (p)), the second case cannot occur, i.e., d[{p)" {0, 3} for each
i and p. This means that no d‘ depends essentially upon its second and third variables.
Hence, by (5), S satisfies x=u, thus S is trivial, a contradiction.

As a consequence, no varieties of quasigroups, groups, rings, or lattices are
ubiquitous. As for semigroups, an easy argument shows that a variety of semigroups
is ubiquitous if and only if it contains a non-trivial rectangular band.

Varieties sdm (with natural numbers m and n) having n-ary operations g°, ...,

and we-ary operations /i°, ..., fiB1 which satisfy for each meaningful i

h*(go(x0, ..., X,,_d, *», gm-1(*o, .... *,,-i)) = Xx,,

(6) o . _
g‘(h°(xo, ..., .., h™ixo, ..., xmX)) = x,

were first studied by Goetz and Ryll-Nardzewski [6], They have the notable property

that a free algebra in sims,with an /«-element free generating set has also an n-element

free generating set. Hence, for mj*n, these varieties do not contain non-trivial

finite algebras. Here we prove:

The varieties sdmnare ubiquitous.

By the Proposition, we have to produce a selective algebra S with operations
g' (i=0, ..., m—1), h* (i'=0,..., n—1) satisfying (6). Take a non-trivial set M. We
shall define S on the set M Nwhere N={1, 2, ...}. Write i divj for the quotient of
the Euclidean division of i byj, and / modj for the remainder of that. Define g*“and
Id by their selectors as follows:

gl(k) = kmodn, g2(k) = m(kdiv «)+/,
h{(k) = kmod m, h{(k) = n{k divm)+j,
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for every N. Then, for arbitrary c0, cr,, 1ET/'N it holds
h*(g°(00, gMm-Vo> ewe» <b>-i))(K) =
_ cr,, D(«(fediv m) + i) =
= ff(»(iidivm)+i)modt(wj((n(/cdivm) + i) div n) + k mod m) = ffj(fc).

The identities in the second line of (6) can be verified in the same way. Thus,
St«s/m,,, as required.

For a variety, to contain free algebras which have m-element and also «-element
free generating sets (m, «6N; m”n) is a strong Mal’cev property ([7], p. 400),
characterized by the identities (6). Hence we can conclude that the fulfilment of a
Mal’cev condition does not exclude ubiquity. Using selective algebras, it is easy to
establish that several other syntactical properties of varieties, e.g. equational com-
pleteness, definability by reguldi identities, and definability by linear identities are
independent from ubiquity as well.
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ON OPTIMAL QUADRATURE FORMULAE

A. K. VARMA

1. Introduction. In 1950 P. Turan [7] observed that for preassigned nodes
A1) —1< X,«xn-1 <...< x2< X< 1
we can construct a quadrature formula (qg.f)

Vé

ZcWKxJ+RTf

P=0 v=1

(1.2) f f(x)dx =
1

such that Rf=0 if/is any polynomial of degree S3n—L Turan now asks: can
we place the nodes xvsuch that Rf=0 if/is any polynomial of degree An—1?
The answer to this interesting question is given by the following

Theorem A (P. TUran). Among the quadratureformida (1.2) validfor all polyno-
mialsf(x) ofdegree =>3n—1 there is exactly one choice of (xx, X2, ..., xn) for which
theformula (1.2) is validfor all polynomials of degree S4n—L The (XX, X2, mmX,,)
system consists of the n real distinct zeros in the interior of [—1, 1] of that polyno-
mial Tni(x)=xn+ =m which minimizes the integral

(1.3) A00 = /I {nn(x)fdx.

Taran also proved that for any weight function, w(x) there is a unique quadra-
ture formula

1.4 [ f(x)w(x) dx = JI 1[A flir+ AjV (*)+.. +A - /(" - J(je)]
-1 i
valid for fEP 2e+i, k= 1,2, .... This formula is obtained by choosing the nodes
Xj,i":2, ., Xn to be the zeros of the unique polynomial which minimizes
J (n,,(x)ykw(x) dx among all nn(x) with leading coefficient 1, and integrating the
-i

Hermite interpolating polynomial of degree at most (2fc—I)n—I which agrees with
/ and its 2(*—1) derivatives at xIt x2, ..., X,,.

1980 Mathematics Subject Classification. Primary 41A55.
Key words and phrases. Chebyshev polynomial, quasi Hermite—Fejér interpolation, orthogonal
functions, quadrature formula.
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In 1971 Micchelli and Rivlin [2] made an important contribution concerning
optimal g.f. corresponding to the weight function w(x)=(1 —x2~12 In order to
state their main results let us recall the notion of the divided differences of a function.
Let £1 is shorthand for <, £t, (r times). If g has a continuous kth derivative

n [—1, J and x1:x2, ...,xs are distinct points of that interval then g(xT21 x%2 ...
LoX™*)where ntjrk+1, j=1,2,..., s, the divided difference of g with respect
to the xt with multiplicity 7=1,2, ...,s, is the Ieading coefficient of the unique
p€.Pi, |—2 mt~ 1 which satisfies pU)(x()=ga)(xi), i=1, : j=0, ..., TAf—L

Now the main results of Micchelli and Rivlin can be formulated as follows.
Theorem B (Micchelli and Rivlin). The g.f.

(1.5) H*) yrox X =IEMD+ 2 2]

and the g.f.
(i-6) ff (x)dx =27 [2"f(ij)+ 2 aj(- i) 7o nlj, =2 hi)]
-1 X2 n 1=0 7=1

are both valid if /EP2n-n provided

n
2
c-iy i
(1.7 al om0 )T L2
K 2/ _ _
18 - s BT iz by fizcos— , =01 7

Further, the double stoke on the summation sign in (1.6) indicates that the first and
the last terms are to be halved.

N ote. In the special case /c=2 (1.5) can be written as

(19)
f fm-~-~dx 2Sif'(td+4~ ia-a/'u-)]

This formula was also proved in [2] (formula 18).

P. Tdran gave a series of lectures held at the University of Montreal in 1975
where he raised 89 open problems on approximation theory. These problems first
appeared in Mat. Lapok (in Hungarian) and later in Journal of Approximation
Theory [8] (English translation). Remarking on his work [8] he mentioned that the
case W(X)=(l-x9~112 is particularly interesting (see formula (1.4)), since it is
used in methods of Runge—Kutta type. In this case Turan’s problem can be formu-
lated as follows:
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Problem XXVI (P. Tarén). Let w(x)=(I —x2 12 in (1.4). Give an explicit
formulafor Xf i'=0, 1, ..., 2k—2 and determine its asymptotic behavior as n-*°°,

Note. For k—2 the solution of the problem is given by (1.9).

The object of this paper is to give explicit solution of the above problem for
k=3. We will also state the corresponding results explicitly (/c=2) when the nodes
are given by the zeros of extended Chebyshev polynomials of the second kind. [See
Theorem B (1.6)]. More precisely we prove the following Theorems.

Theorem 1. Let

(1.10) xk —cos " k=\,2,...,n

be the zeros of Chebyshev polynomials of the first kind. Then the qfi

(111 ffm-t*)-1xdt= 1 |/$€',9ﬁ>

P—0v=1
where
i(0) ja) 7ixv(20n 1)
n’ \Y 64n5
(112 A>=-N[3 +(20n2-7) (1-x 2],
v=12,.,n

is valid for all polynomials f(t) of degree S6n—L

Theorem 2. Theq.fi
t ft n—1

1
-t* ) - =T Til ' .
fim -t*)-n2dt Lw w +ijly W + 2W'0u

\

where

== . M= Y

N1 L —
\(/2)7 (4n3) v=12 .., n—]

is valid for all polynomials f(t) of degree ~4n—L Here nv are defined by (1.8).

Let w(x)=(1 %2 _12 in (1.4). Turan [7] was interested to know whether
Xfi are nonnegative? For k=2 it was shown by Micchelli and Rivlin [2] that
A0 >0, A2>0y=lI, 2, ...,«. Actually in this case they computed explicitly
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(see Cl-9)). Later Micchelli [3] proved similar theorem in a more general case. We
refer Theorem 3 page 429 for details. In 1976 Samuel Karlin and Allan Pinkus [1]
wrote two interesting papers related to Turdn’s work. Here they have extended the
findings of Turdn and Popoviciu [4] to extended complete Chebyshev system. For
interested readers we may also refer an interesting book on Quadrature formulae [9],

2. Preliminaries. Let us denote by

(2.1) X* = cos 0% = cos---—-—"=—- , f£=12,.....n

the zeros of Chebyshev polynomial of the first kind
(2.2) Tn{x) = cosnO, x = cosO.

Following L. Fejér the fundamental functions of Lagrange interpolation based on
(2.1) is given by

_ T.(x) 12 v
(2.3) Ilé(x) = - x k)'Il/{’xk)_ =1 + o rt2i Tr(x)Tr(xK).
Clearly
(2.4) h(xd = 4t

where 8ik is the Kronecker delta. Similarly we also represent fundamental functions
of Hermite Interpolation in the form

(2.5) rk(x) = i «(*) = |ﬁ|- - in— Eil(Zn-r)T r{x)Tr{xk
(2.6) &) = (X -xK UK = S—i”njO-L 2. sinr Tr(x).
They satisfy the following conditions:
2.7 i"k(Xi) rk(xiy d, i 1,2,...,n,
(2.8) Bk(xy) = 0, gk(Xi) = 6ik, i- 12 .., n
The following orthogonal property of Chebyshev polynomials plays an important
role.
1

(2.9 f Ti()Tjm -ti)-ladt=10 i ?4j

=T '-1*0

—n i=j=0

3. Some identities. Here we will derive some identities with the help of Chebyshev-

Gauss ¢.f. and integration by parts. It is well known that

(3.1) _/1 I()(1-11)-VUs* = |ni HV
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is exact provided / is a polynomial of degree ”2n —1 Let /=(1 —x2rk(x),
f=xr'k(x) in (3.1) where rk(x) is defined by (2.5). We have

2. (WxHKOH = L ore)-xndx,
and B

0="-2 I’Xif'kix,) = f xr'k(x) (1-x2~22dx.
n I= _i
On integrating by parts we have
I i
fork(x)(l—=xt)L2dx = J xr'k(x)(1—2~1/2dx.

Therefore

(3.2 izl 0 ~xf) rk(xf) = E| xtrk(xt) = 0.
Similarly

(3.3 |2:1( I -xf)ez(Xi) = xk, k=\,2,..., n.

Next, we will prove that

(3.4) 2 {0 - >D2in) 69- 6xi(l - xa K et 3tk )} = e

and

(35) LAl A00rPv (Fe)-& o (1-XPK (O +3KOah - 0.

Proof of (3.4) and (3.5) are similar, so we only give details for (3.4). For this purpose
we first note that
(3.6) I(x) = (1- x22Q@ (x)-6x(1-x2 (X)+ 3eK(X)

is indeed a polynomial of degree S2n—1 Therefore on applying (3.1) with/(x)
as given by (3.6) and make use of (2.8), (3.3) and integration by parts we obtain

o %/(* i) = ;tf(l—t*r'*er(Oct

0T ot(v-ta 2erydt+3 f ot (0(1=1%)-1dt =
1 T 17
=3 I (I-fAfteZ (i)dt-6 I i(I —t21/2gK (t)dt +3 lf ei'(0(1-/2-Vadt =

- -3 f f ekm -t*)-1jidt=
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=3 f (i-2t2ek(0(i-i)_12dt+3 f Q ;m -t2-lI2dt =
-1 -1

= f {\-t"QI{t)dt =6 f =6 "Z x iQk(xd = 6xA .
o reity 1 o I QA= OA
From this (3.4) follows at once.
4, Proof of Theorem 1 From the work of P. Tdran [7] it follows that there
exists X[p) such that
4.0 f I(*)(L-x2-12dx= 2 2 Kpf ip)(xy
_1 p=0v=1I
is valid for all polynomials f(x) of degree =es«—L Let
TZ(x)Ik(X)
(4.2) ) = 24T (xK)Y

where Ik(x) is defined by (2.3). On applying (4.1) withf k{x) as given by (4.2) we obtain

(4.3) Ad>= f ()**(*) (i x2)-t/2 dx
Since
{TM)2=n2(z k= 1,2, ... «
and
n(X=1j + ) +j Ta(x),

therefore (4.3) becomes
A4h=-Ngn - [ 4+ 1AW+ 1AW T Ik(x) (1-x2~v2dx.

On using (2.9) and (2.3) we have

N XKZ2- 1 h | —X9~12dx =
(44) RPN vk S B | S B
Next, we will prove that

m _ 6 xk(1 x|) T , _ 12

(45) A K ——mnmm- AAn* K~
For this purpose we set
(.6) o - 6 POMSO - koo ‘0
and note that
4.7 gipx)=0, p=012,4

i=1,2,

Nky P03
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Further
(4-8) T2(x) =1 Tn(x)+ jT 3n(x).

Therefore from (2.5), (2.9) and (4.8) we obtain
4.9) f Tax)rk(x)(I-x*r12dx =0, k= 12 ...n.

Now, we use (4.6), (4.9), (4.3) and (4.4) and we obtain

I
Af 8 Ex%l _X%- radx _4(1-x'rtvv iXjy A g« />\<»3$>£

-6xk ,m _ -6xt(l-x?)jt
(1-xf) * 64n6

(4.10)

Now, on applying (4.1) with g*(x) as given by (4.6) and make use of (4.7) and (4.10)
we obtain

_ -6xk(\-xB)n

- 64n5

This proves (4.5). Next we will prove that

4.1 W =" r[3+(20/*-7)(I-xD], k=12,..,n
For this purpose, we will first prove

rc(I~*D

(4.12) b oogmiegy @-x2-N2dx = O

This follows at once from (2.5), (2.9) and

7i(*) = — Tn~
Now we set in (4.1)
_ T2(x)rk(x)
KCY = o7 1xi0 1

and note that hk(x)*.nin_1. Since (4.1) is exact for polynomials of degree s6n —1
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we have
70 xk) _ o Tn(x)rk(x) .. o\-i/2j
48 7 { 2{T'{xRf U X)
, 3T ;\xK) , 6{T"(xKy + ST'(xKT;"(xKk un ,
_k +rg”») * 2(T'(xK f
6
2(r,,"(x*))2
On using
)= G
i?
TT(*) = ((i_:ff"Da

and (4.4), (4.5) we obtain

, \SxIn  7r[15x2—4(n2—1)(1 —x32]
4>="0 -4 )+ w 64nb

6(\4f n I (1-*F)~(xi).

Now on using (3.2) we obtain (4.11).
Next, we turn to prove

(4.13) UD = E%(20n2- 1),

For this purpose we set f(x) =Ck(x) in (4.1). We obtain

(4.14) I e*(x)(I-x 2-12dx = Af>+] [Aa)et(x() +
+ II:,IA /8>Crfe)+i:I'IA r)e r)fe).

From (2.6) and (2.9) we have

(4.15) 1;- on(X)(I —=x2-12dx =0, k= 12,.,n

On using (4.4), (4.5), (4.4) and (4.11) we obtain

°o — A l)+6 A |’ [3+ (20n2' 7)(1 B

6
64?15 i7) "+ (9 +Bafd R)l0-* ?) 261 ().
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On using (3.3) and (3.4) we obtain

40)="~E [V -xbeilVx)-6xi(l-xf)er(xi)+ 3Qaxi)}~

AL (20«*-7) i(i-M)e*W =

—6nxk  iz(20n2—7)
~ 64n5 64«5  X—

Now, we will prove

(4.16) 4o>=- k= 1,2, ...«.
For this purpose, we set f(x)=rk(x) in (4.1). We obtain on using (2.5),

~= f k(x)(1-x2~v2dx =
(2.9)

= + i2=| Vri(x)+ |2=| M3rk tx,) + i2=| FiT™e (% )o

On using (3.2), (3.5), (4.4), (4.5) and (4.11) we have

b_ 1 L822I -x2) K (7)-
R opo(dtrk () 21 xBANK)
Therefore
49=  ~ 2«1 *2)/+2(% )+3/i(x0}-

(20<2-7) 1 (1-xfK(*)) = k= 1,2,...,«.

445

This completes the proof of Theorem 1 Proof of Theorem 2 is very similar to the

proof of Theorem 1 We omit the details.

After the paper was written, in April 1981 the author came to know the work of
Dr. R. D. Riess entitled “Gauss—Turan Quadratures of Chebyshev Type and Error
Formulae” published in Computing, Vol. 15, 173—179 (1975). He also obtained in
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this work same statement as Theorem 1 but the proof of Theorem 1 given there is
very different than that, obtained in this work.

A cknowledgements. The author is grateful to the referee, Professor Paul
Névai and Prof. C. A. Micchelli for many valuable suggestions.
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ASYMPTOTIC BEHAVIOUR OF AUTONOMOUS HALF-LINEAR
DIFFERENTIAL SYSTEMS ON THE PLANE

A. ELBERT

0. Introduction. We consider the system of the half-linear differential equations
of the form
y' = ay+bzln*
(0.1)
7' —cynr+dz

for the functions y=y(t), z—z(t) where the coefficients a, b, c, d are constants, the
number n is real, positive and the function ur* means |z]"esgnu for ufR. The
system (0.1) with non-constant coefficients was studied in [1] where only the qualita-
tive properties of the solutions were investigated.

The system (0.1) is closely related to the half-linear second order differential
equation with constant coefficients

0.2 (x,ny + p x ;*+ gxr = 0,
because the substitutions
y —X, z=Xx'n*

transform the equation (0.2) into the system
y' = 22U
7' = —qyr—pz.
Let us remark here that the differential equation

(o.io

(0.3) (V") + X*=0 for t>0

with constant y~0 can be transformed by the substitutions i=log t and X(s)=

=x(t) into the differential equation with constant coefficients

(0.4) (X' - nX'r+ nyXn* = 0,

which is also of the form of (0.2). The differential equation (0.3) has occured already
1980 Mathematics Subject Classification. Primary 3401; Secondary 34A34.

Key words and phrases. Asymptotic behaviour, second order half-linear differential equations,
half-linear systems on the plane.
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in [2] in connection with an oscillation criterion and it turned out that the value

nn
70~ (w+ 1)1

plays an essential role because the solutions of (0.3) are oscillatory when t-+°°if
y>y0 and nonoscillatory if y=yn.

The paper is devided into several parts. After the introduction in the first part
we define an equivalence relation among the systems of the form (0.1). We shall see
that besides the trivial classes there are two special classes and two one-parameter
families of classes. The asymptotic behaviour will be determined for the trivial and
the two special classes in the second part, while the one-parameter families of classes
together with the differential equation (0.3), (0.4) will be characterized in the third
part.

(0.5)

1. Classification. In what follows we classify the systems of the form (0.1). We
say that the system
y' —ay+ Bzln*
(1.2

with

z' = cy"*+Ez

y =y, 2=z, t=0t

is equivalent to the system (0.1) if and only if there exist constants A, a, B such that
A7O, /?>0 and the substitutions

y(t) = e¥y(r)
z(t) = A"emtz (1)

(12

transform the system (0.1) into (1.1). A simple calculation provides that

a—a
~T~

(1.3)

d—na

It is clear that the relations (1.2) or (1.3) define an equivalence relation for classi-
fication of the four parametric system (0.1).

On the other hand it is clear by the relations (1.3) that if b=0 (or c¢=0) then
also 5=0 (or c=0). Hence we may say that a system with 5=0 or c=0 of the
form (0.1) belongs to one of the trivial classes. We shall see that such trivial systems
can be solved explicitly.
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More interesting are the cases which are not trivial, i.e. for which be 7. By
(1.3) we have then 5c” 0, or more precisely

sgn be = sgn 5¢c
for the elements of the same class. A second similar relation is
sgn (d—«a) = sgn (d—na).

Now let us choose the values
d—a

B = bA,
then the system equivalent to (0.1) has the form
f =zl
0'4) c , d-m
z=w r Tf +~sa- 7

which is the same as (0.T). By our assumption /?>0 hence sgn A—sgn b.
According to the value of d—na there are two main cases.

Case 1. d—a=0. Let \A\=|c/5«|U/(n+1), then we have two subcases depend-
ing on the sign of the ratio c¢/5:

Case la.
[ = z1>*
' = —nyr
Case Ib.
y' = 71"
' = nyr

Case 2. d—a”0O. Let A=\d—naV/(bn) then we should distinguish two sub-
cases corresponding to the sign of the expression d-—na.

Case 2a.
| =zv-
(1.5)
z' = —nyy"*+ nz,
where
ch"*nn N
Y \—naru 0
Case 2b.
y' = z1m*
(16)

' = —yy"*—nz.
For the sake of the completeness we add to the above cases the neglected (trivial)

18
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classes representing them by the coefficient matrix

[ :bi.

of one element of the class as follows

001 00
00r olﬁ

00 loiJ

2. In this part we shall consider the trivial systems and the equivalence classes
(la) and (Ib).

Let us consider a trivial system with b=0. By (0.1) we have

y = Cea

cCritted +Ded if d=na,
Z= cC*

. 1 A
na —d +Ded if d* na,

where C and D are arbitrary constants.
In the case ¢=0 we can use the above formulas with the permutations

(y z\  in 14 (a b c d\
MVy) viln n)” Id ¢ ba)*

Concerning the study of the equivalence classes we remark first that it is suffi-
cient to characterize only the solutions of one system representing the equivalence
class because the solutions of another system of the same class are connected by the
relations (1.2).

Case la. Let z(t)) bea solution of the system (la). Then the function y(t)
satisfies the second order differential equation
(")t TLICTY =0
or
(2.1 x«\X'l«-1+xr*_ 0.

In [1] the generalized sine function S=S,,(t) was introduced as the solution of
(2.1) with the initial conditions 5(0)=0, S'(Q) =1 Hence the general solutions of
(2.1) are x=C mSn(t—t0), where C and t0 are parameters. The equivalent statement
for the system is formulated in the next theorem.
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Theorem 2.1. The system of Case la has the solutions
y = CeS,(f—0
z = CrreSHr(t—t0),
which are bounded oscillatory periodic functions with the period of 2ft where

ft —o- H+lI

sin
n+ 1

Case Ib. Now the function y(t) satisfies the differential equation

(2.2) XX, e 1-jer= 0.
Multiplying by x' and integrating over [0, t] we have
(2.3) X\n+1-\x\HH = |i¢(0)]"+1—ic(0)|"+L = C.

If C=0 then x’—xx thus x1=e*‘ and x2=e~t are solutions of (2.2).

Let E=E,,(t) be the solution of (2.2) with the initial conditions £'(0)=0,
E'(0)=1 and similarly F=Fn{t) with the initial conditions F(0)=1, F'(0)=0.
Let us observe that the function E corresponds to C= 1while F to C= —L1in (2.3).
Moreover for n=1, i.e. if the differential equation (2.2) is linear, we have Eft)=
sht and F1(/)=cht

Due to (2.3) the function E satisfies also the relation

e'= Yi+|ET+i,
hence E'>1 for />0. Consequently
f ds
(24) /B E T J nel =t

0 yl+£ml 0 /I +s"+l
In order to compare the function E(t) with é let the functionf(s) be defined by
1 for OisSl

A*) = < for ss1

Then by (2.4) we obtain

t—logE(t) = 1+ f d . [ f(s)ds for £> 1

0 /l+s"#1 O
Hence
) 00 l
(25) l0gs, = lim [/=og£(01 = 1- [ m —77° O
[l+m

18-
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The integral on the right hand side can be interpreted as the area of the domain
on the plane (s,y) given by the inequalities

1 y S/(s) for 0" s<°°,
/1 +sn+l

Taking y as independent variable we find for the integral in (2.5)

_q. g i YT=: )
(2.6) logs,, = |-/ mdy. g | T~ du.

Since 0<1 /| —y"+l<y for 0O<y<l we have O<log<5,<l, ie 1
On the other hand the integral in (2.6) can be expressed by the aid of the function
P(z)*=d\og,r(z)/dz as

W(z) = —y+ f}—;--:-xdt for Rez>0,

where vy is the Euler—Mascheroni constant and T(z) denotes the gamma function
(see [3]). Making use of this relation we obtain

(2.7) »ga. = +y (Exi)].
Finally, the relation (2.5) can be rewritten as

2.5 lim =< where 1< < e
(257 im %o =9 5

A similar relation is expected also for the function F,,(t). First we need a lemma.
Lemma. Let IXR), h(R), 13 be integrals defined by

dj

li(R) = R >0
H o+ inHl
dt
h(R) = | R>1
IV +i-i
dt

Then

ton [,()-1,()1= 1 ctg 177
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and
1
n+ 1
. u
SII’I7 m

Remark. The integral 13has played role already in [1] and its value is known as
A2, The evaluation of /3takes place here in natural way and that is the reason why
it is displayed again.

Proof. Let us consider the function H(z)= 1/~1 +z"+1 on the complex
plane C. Then H(z) is holomorphic on the angular domain

Osfl< —-- — where z = rew,
n+ I

and it has singularity only on the boundary of this domain at <u=exp (in/(n+ 1))
and, in general, at z=°°. For any e>0 and i?>1+e we define a closed curve
ceR by the following components:

G = {+0j; 04 x S ii}

3= {<xo; I+£ S Z4a R}
cd= {co(l +ee~1; 04 0 g it}

c6= {(co; 0 i {4& I-e}.
Then we have

29 0z <PH@)dz= 2, [H(z)dz= 2h,
where ’
J~f=dx = AR
0 /I+x"+
*/(«H) do
=10 5 -
° y i Rn+!

— f dz
He "yl
J4= 0(e"/("+1)
-

(7
Il_zn+|
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Letting e—+0 and F—° in (2.8) we obtain

R[N {R)-h(R)1+ g i—B= 0,
which implies the statements of our Lemma.

Now we want to obtain a relation for F,,(t) similar to (2.5"). Since / *fulfils the
differential equation
|17 "+1_|F|Btl= -1,

hence
F -
=1 for t>0.
[Fn+l-1
An integration yields
o =t for t>0
[ jfp+i-1

This relation implies that lim F(t)=°°. On the other hand
(2.9)

. R0y |

lim [t—og F(0] = lim f -/«)

e ey + IS
because the improper integral on the right-hand side exists. Let A—An be introduced
by

l f
@ 10) logAn=/ .,
1l
H n+1-
It is clear that d,,> 1 The relation (2.9) can be rewritten as
(2.11) lim CejA = with > 1

Now we want to establish a connection between d and € By (2.5), (2.10) and
taking into consideration the definition of the function/(£) we have

. 1 1
A, £ «-1+/ 1©-
[<T+1-i I+ £n?

hm [2(F) —A )],

log b

where the functions /i(F), /2(F) were introduced in the Lemma. Then by the Lemma
we get the wanted relation as
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We may observe here that this relation implies in the linear case (n=1) that
51=J1 In fact we have S1=2=A1

By (2.7) the value of S,, can be considered to be known, consequently by the
relation (2.12) the value of A, is also known.

Finally there are interesting functional relations between the functions E,,(t),
Fn(t) as follows

e; (0 = {FY,,(n)}In
(2.13)
Flo) = {FUn(«0}1B:

To prove these relations one must show that the functions on both sides of the
equality satisfy the same differential equation and fulfil the same initial conditions.

The relations (2.13) provides another connections between the values of 5,
and An, too. Indeed, by (2.3) and (2.5") we have

i F;0)
(2.14) IFLrpD -

On the other hand this and (2.13), (2.11) imply

. E'n{t . Fiin(nt
lim &MY lim Ens )
hence
(2.15) Alln = 6fp
and similarly
(2.16) 6lin = A

We remark that the last two relations are equivalent because substituting n
by 1/n we get each from the other. By relations (2.12), (2.15) (or (2.16)) it is suffi-
cient to know one of the values of An, <, Al/n, &/n, and then all the other values can
be obtained easily.

As in the linear case where the function sht is odd and the function cht is
even, the functions En(t), Fn(t) behave in similar way:

En(-t) =-En(t)
(2.17)
Fn(—t) = Fn(t).

To prove this statement it is sufficient to show that the functions on the both
side of the equality are solutions of the differential equation (2.2) and satisfy same
initial conditions at t—0. Then the uniqueness of the initial value problem (see [1])
proves (2.17).

Now we know all the solutions of the differential equation (2.2). We display
them in the next theorem.
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Theorem 2.2. The solutions of the differential equation (2.2) on —<x>"t«=0
are the following:

i) «V,

i) C2e ',

iii) C3EN(t+10,

iv) CA4F,(/+1,),
where Ct and tO are real parameters.

Proof. It is sufficient to show that to every initial condition
x(0) = x0, x'(0) = Xo with |xO"+1+ K|"+1> 0

there is only one possibility among the cases i)—iv) to that the solution belongs and
then the parameter C; (and t0, if necessary) can be uniquely determined.
By (23) C -|4|n+l-|x O,+1. If C=0 then only the cases i) and ii) are possible.
If joox6>0 then the solution is x(t)=x0el and if xnxX0<0 then x(t)=x0e~t.
Suppose Cy"O. If C=-0 then by the definition of the function en(t) the third

n+l-

possibility holds. Let C3=sgnxd \C. Since the function En(t) is strictly increasing
(which follows from the fact that the function E'(t) is continuous, \E'\n+l=
= 1+ |.E/'1+1*1 and £',(0)=1) there isavalue r0"C— °°) suchthat C3En(tQ=xO0.
We should still check the relation C3E,,(tQ=x'0. By the definition of Clt Cs and
En(t) we have

l4I»+i= c+|X0r+l = c+c-\E\n+l = C-(i+|E:r+l) = C-\E '\n+\

hence x0=+C3E'(t). But £'(t0>0 and sgn C3=sgn xQ therefore the sign +
is the correct one. _

If C<0 then let C4=sgnx0e¢ /—C and t0 be the solution of the equation
CiF'(tQ=x'0 and, as in case iii), the function CiF,,(t-\-tf) is the wanted solution.
Hereby the proof is complete.

Finally we pass over to investigate the asymptotic behaviour of the solutions
in the Case Ib. The results are annunciated by the next theorem.

Theorem 2.3. The solution of the Case Ib behave as follows:
i) there isa one-parameterfamily ofsolutions with y(i)=Ce_f, z(t)——C"*e~"*;
ii) there is another one-parameter family of solutions of the form y{t) =Ce\
z(t)= Cr*eH;
iii) all the other solutionsform a two-parameter family and satisfy the following
asymptotic relations:

lim y(t) =
lim =cIr

with the same C in both relations, where C is some constant depending on the solution.

Proof. The cases i) and ii) are trivial. To prove statement iii) we recall that
y(t) is a solution of the differential equation (2.2) and z{t)={y'(t)}r* According
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to Theorem 2.2 either x(t)=C3En(t+tQ or x(t)=CiFn(t+t0Q. Hence by (2.5
or (2.11) ‘!j_nowoy(t)/exp (t) is either C3S,, or CJAn. Consequently flim z(i)/exp (nt)

is either Cg*/S" or Q ’/d", i.e. C is either C3<§, or C4d,, as it was stated.

3. In this part we shall study the differential equation (0.4) and the obtained
results will be applied to characterize the asymptotic behaviour of the solutions of the
systems (2a) and (2b).

The solutions of (0.4). The main tool for investigation of the solutions
x(t) of (0.4) is the generalized Prifer transformation in which the generalized polar
coordinates o, g play an essential role (see in [1]):

x(t) = BOS(<p(9
x'(0 = e()S'(<p(t)).
It is known from [1] that the functions cp(t), g(t) satisfy the differential equations

(32) <P' = #(<P)
(3.3 a = aR((p),
where

0 = [S(<PI+1-5 (9).5" (<p)+yIS(<p)|“+1
* = SU(y)S »+S">»].

(34)

The functions 0, R are continuous and periodic with the period of ft. On the
other hand there is an interesting relation between them:

(3.5) 0'+(n+\)R =n,

which can be verified by direct calculation taking into account that S is a solution
of the system in Case la and |S|',+1+|S'|"+1= 1 Hence 0 is Lipschitzian and the
solutions of (3.2), (3.3) are uniquely determined by initial conditions.

The properties of the solutions of (0.4) are determined by the sign of 0, and we
show that there are only three possibilities:

Subcase A. The function 0 has two zeros on (0, ft), say (pl, $2.

Subcase B. The function 0 has only one zero 0, which is double.

Subcase C. The function 0 is positive.

Since S(0)=0 and S'(0)= 1 we have <€(0)= 1 and by the periodicity 0(kff)=
=1>0, k=0, £1, .... On the other hand let (7(a) be defined by

G(a)= [a"+1-arr+y,
then

#Q) A
3.6 for 0, £ft, £2ft, ...
(36) kop)r+l ®
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Since G has its minimum at a0=n/(n+1) and G(aQ=y—y0, the subcases
A, B, C correspond to the relations

y< T y= V. y>w=

Subcase A. Now G(aQ<0 and G(a) is decreasing on (—=a(] and increasing
on [a0,°°) hence by (3.6) there are values ol, 42 with

>0 for . o< <
(37) *(<P) <0 for P <<P<<P2
>0 for qP< <9~ ft,

and <M<H)=0, i—12
Let og (i—U2) be defined by

(3.8) a _s'9) j=12
‘ S(<Pi)
and qo by
Sjcpﬂ
3.9 . 0< 90< A
(3.9) 5<Po) y

The value gD is uniquely determined because the function S'(cp)/S((p) is strictly
decreasing from +°° to —<®as pvaries from 0to A Then itis clear that R <<Po<<P:
and

(3.10) aa< a0< oqg.
Moreover
(3.11) R<P) —<i for i—1,2

Namely by (3.8) and (3.4) we can rewrite (3.11) as

L—=S (CHIU—=y)Sn*((ph) + S 'n*((pD)]

and then making use of the relation |5'(<p)["+1+ |S/(")|n+1= 1 on the left hand side
we are led to the equation <P((p,)=0, which proves the equality (3.11).

By the definition of the <fs the functions <p(/)= < (i=1,2) are solutions of
(3.2). Now let us consider the other solutions. Since <Pis periodic with the period A
we have in general two different situations: either <p(/O€(<Pi, 49 or Tp(tni((p2—T7, <i).
Let the corresponding solutions be denoted by cp(t), cp(t), resp._The uniqueness
of the solutions of (3.2) implies that <Pi<<p(0<"2 an® ®&—A<<p(i)<<pl for all
t. The differential equation (3.2) can be written in integral form
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Hence by (3.7) the following limit relations hold
lim (p{9) = Jim ) =
(313) Jim () = 2
t_*I_iin 3p() = (Pi—i.
Let us determine the asymptotic behaviour of the solutions <p(t), g(t) as t
tends to  where g is the solution of (3.3) with (p=ip. By (3.13) we should investi-

gate (3.12) when cp(t)~cpl. Since #(<Pi)=0 we need the value of A'((p*: by (3.5)
and (3.11) we have

= (n+1) — N<Pi)] = W+ IHao-aJ.

According to the inequalities in (3.10) 4>'((pJ<0. Since

$($) = & (<Pi)-(<P~<Pi)+0(((p-(ptf) as ip- (ot
we obtain from (3.12)
(3.14) ip(t) —cpi+(C+o())e () as t-*

where C is some positive constant due to the inequality (p(t)xp1l. In (3.3) we sub-
stitute

R(<P) = R(<Pi)+ Oicp-cpi) as t-*oo,
hence a quadrature provides for g by (3.11), (3.14)
(3.15) g(t) = (Ci+o(l))e«>' as

Similar statement is true for y(t) and g(t), too.
The method used above works also when /~—=° and we have the following
results

(pit) — (Pi+(C+o(l))e
e(t) = (Cl+o(l))ea“ as
where <P'("2=(n+ I)[a0—«">0 and C, Clare constant. The corresponding state-
ment for g and g reads as
2(0 = e+ (E+0(1))e" ),

e(/) = (C,+o())e*2 a t—m

Subcase B. Now y=y0 and the function <Pis positive on [0, A] with the ex-
ception cp=(p0, where <Ag)=0. Since also <P()—0 we have to show that
2"(<Po)>0. For d0=n/(n+1) the definition of qO by (3.9) yields S,(g0=(/j-|-))c,
S'((PO=nx,

xml = n"+1-t-(n+ )"+1 "
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We compute first R\(p0Q. From (3.3) we obtain

hence by (2.1), (0.5)

R'(Vo) = - [t L]0 eIl
then from (3.5)

(3.16) &\cpQ =-(n +)R\(p0>0.
Thus the function €>can be written in the form

(3.17) PO = 1- P(E(P-(PY+O(((p-(POy as @- qb.

It is clear that the function (p()=c® is a solution of (3.2). Suppose
<p(tQ6(<Po-A, Vo)- Then by (3.12) we get
limo() = g0

Jim (p) = (p0—ft-

Let us study the case when /—=2°. Then we can apply (3.17) to obtain the next
relation

(3.18)

1 1

______________ +o0f— — ] as - \
| €- Vo) ®-

H<p)
hence by (3.12)

1 + O(\og((p0-(pj) = t-t0 as t
consequently
—--— = \$"((pOt+0{\ogt) as /-o00,
oy 9 ((pOt+0{\ogt)
or
(319) V = Vo--—- - -=---- +0 as tA°°-

On the other hand

R(cp) = R(cpo) + R (0 (<p-cp) + O((cp- (py) as - W,
hence by (3.16), (3.19) we have for d'/q by (3.3)

E=*(*)=M._iTIl +0 as [ —o°.
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Therefore by integration and letting we obtain the limit

im (log &()— |, 1°0f) = loge+,
i.e. there exists a finite value g+ with

t
(3-20) J™ e">/(.n+?()t)2Hn+l) = Q+

By similar considerations we have also the asymptotic relation

1™ en(n+H) MALHY) <P~

Subcase C. Now the function <P((p) is positive for all phence by (3.12) for every
solution (p{t) to (3.2) we have

t!]% » () —
Let
Y P f dip
(3.22) T 3 o ~ 3 <p€(p) m

Then by (3.12) and by <P((p+0)=<P((p) the relation
(3.23) (pit+x) = (p(t)+2ft

holds. The value of x in (3.22) can be evaluated without the knowledge of the functions
S((p), S\(p) in spite of their presence in the formula of €by (3.4), because the sub-
stitution o=S((p)/S'(<p) transforms the integral (3.22) as follows

da

(3.24) : ] f +ym 1

Let us determine the value eit+x)/git). By (3.2), (3.3) and (3.23) we have
o gCnp }f MV(/\) §+t)R(q>) 9=Ff R i
ei» ,
If we apply the relations (3.5), (3.22) we get

g('+% A n+ 1l «+1 _
(3.25) 09 90 - rm i) mp=

A consequence of (3.25) is that the function p(/)e-(n/"+1)' is periodic with the
period x, because

(+T)e-W(n+|))(»+I) _ g(t+T)  IndinHnt _

829 il Q@
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We summarize the results concerning the behaviour of the solutions of (0.4).

Theorem 3.1. The asymptotic behaviour of the solutions of the differential
equation (0.4) can be characterized as follows:

in Case A: if y<y0O, y*O. There are two zeros al5 a2 of the function
G(a) = |an+l—a"*+y

with aj>«/(«+ 1) and the functions x1(/) = Cle“1, xft) = C2eat are solutions
of (0.4). For every other solution the limits

lim x(t)e~ai*= x+, hmx'(t)e~X*= x'+
exist asfinite numbers and x'+=al &+, and similar statement is true for t-* —"°
with a—a2: there exist the limits
t_+I_i|7’n x(jt)e~Xt = X-, t_+_Ii7m x'(t)e~X = x
where X' _=a2-x_;

in Case B: if y=y0- Then al=n/(n+ 1) an*/ x(/)= Cef0 is a solution of (0.4).
For erery other solution there exist the limits

\W\mx{i)e-"t T [/ = x+

flimx' (t)e—* - 2/(1 +1)

X+

where x\ =a0ex+. Same limit relations are true if t-*—

in Case C: if y>y0- Then the solutions x(t) are oscillatory, more precisely the
functions
x(e_(MmHD)), X, (H)e-W(',+1»"

arc periodic oscillatory functions with the period r given by (3.24).

Proof. By (3.1) we should consider the behaviour of the functions ep(t), g(t)
as i-“me& Wesaw in Case A that the functions cp(t)=(t (i—I, 2), or more general,
(p()=(Pi+Idt (i=1,2, k=0, +£1,...) are solutions of (3.2). On the other hand
R((pi-\-kft)=ai and by (3.3) 06(0=(?0exP (ai0 O—L, 2). Hence

x(t) = BoeNSCtpi+kfi), i=1. k=0, %1, ..,

i.e. they are the special solutions which are of exponential form. Concerning the other
situations we have by (3.14)

t!j_rpo (p(t) = (x orin general f"rc% cp(t) = cpx+kft.
Since R(g>) is periodic with the period of A the relation (3.15) holds again, hence by
(3.1), (3.15)
lim x(t)e~xit = CxeS((px+kft) = x+

l_I*i_m x'(t)e~°lit = CxeS'iypx+kft) —x'+.
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But S(<p) and S'((p) are periodic with the period of 2ft and S((p+A)= —S((p),
S'((p+ft)=—S((p) (see [1]), hence by (3.8)

*+al= Cl-Sfa+kfi) m¥}&- = (- 1)*CX%S'(&) = CxeS'fa+kfi) = x'+,

S(<Pi)
as we stated. The proofs of the second part of Case A and the Case B is similar.
In Case C the function <p(t) tends monotonically to hence by (3.1) the solu-

tions x(t) are oscillatory.
By (3.23) and (3.26) the functions <p(t) and q(t) -exp t_"ﬁ_fl_/)) are periodic
with the period r given by (3.22) which completes the proof of Theorem 3.1

Case 2a. Now we shall consider the system (1.5).

Theorem 3.2. The solutions (y(t),z(t)) of system (1.5) have the asymptotic
behaviour as \t\-»0*

in Case A, when y<y0, y*O: there are two one-parameter family of solutions of

the form
y(t) = Ce*', z(i) = Cr*afend

for i=1, 2 where a,, az are the same as above, C is arbitrary constant, while all the
other solutions satisfy the relations

f[j_r&)y (De~N=y+, frliim z(fle~nXt = z+
with z+=<xfys- and
f}l_l%y(f)e-«)(l‘ =y-, iJ(Ilirﬁ) z(fle~ndt= z_
with z_=af ¢/£;
in Case B, when y=yQ: there is a one-parameter family of solutions

y(t) = Ce’l+t, z(t) = Cre(-"y) e"t/(n+D)t

with constant C”O, and all the other solutions satisfy the limit relations
e-n/(,n +I)t g—n2/(n+1)(
A™ Yy [2dn-1) = y*> Z(0 jTpr/M+l) =

where z+=a%yn*, z_=ct"Oy v,

in Case C, when y>yO0: the solutions (y(t),z(t)) are oscillatory, more precisely
the functions
y(He-"Im+1>,  z(Ne_ ' J(n+D)

are bounded periodic functions with period t given by (3.22).

Proof. The statements follow directly from Theorem 3.1 because the component
y(t) satisfies the differential equation (0.4) and on the other hand from the fact that
*

(0={l<or-
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Case 2b. This case can be reduced to Case 2a. Let (y(f), r(/)) be a solution of
(1.6). Let y(t),z(t) be introduced by

KO=(-Q m =z(~0-
y' () =y\-t) =20y =G+

2(0="(-0 = -ny{y(-0}B -«z(-0 = - «y{y()}"+«z(0,
i.e. the functionsy, z form a solution to (1.5). Hence the asymptotic behaviour of the

solutions of (1.6) as t—° is the same as the one of the solutions of (1.5) as r-*=,
and similar statement is true for y(t), z(t) as t-*°°.

The differential equation (0.3). Since this differential equation plays important
role it seems to be useful to formulate its asymptotic behaviour, too.

Hence by (L.6)

Theorem 3.3. Let x(t) be a solution of (0.3). Then the following possibilities
can occur:

Case A: y<y0, y*O. Either x(t)=Cit¢, i=1,2 or
tI_'Ua')l)x(i)i—ai = X+, t_I,j_mox(f)—t~*2: x0,
where CI5 C2, x0, x+ are constants, depending on the solution x(t)\
Case B: y=y0. Either x(/)=C/n(+D) or

x(t) lim x(t)

e~ _r/('>+i) (log N2/("+) +’ ,“+0 r«'"+1>Jlog i|2«n+1) x0,

where C, x+, xaare constants, depending on the solution x(t);
Case C: y>y0- The solutions are oscillatory in both cases: when t-+°° and

t—+0. Moreover thefunction x(s)=x(es)exp (— ~rA is periodic with the period
t given by (3.22). An+l >

Proof. The statements above follows from Theorem 3.1 by observing that if
x(s) is a solution to (0.4) then x(/)=jc(log t) is a solution of (0.3).
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DEFORMATIONS OF NILPOTENT KAC—MOODY ALGEBRAS

A. FIALOWSKI

The main goal of this article is the calculation of the one and two-dimensional
cohomology of maximal nilpotent subalgebras of affine Kac-Moody type Lie alge-
bras. This calculation allows us to classify the exterior derivations and deformations

of the indicated algebras.

The article consists of two sections: The first section contains basic definitions
and statements of the results, while the second one contains the proofs.1

The author would like to thank Professor D. Fuchs for stimulating discussions
and friendly help.2*

8 1. Definitions and the statements of the results

1. Let A=\Waj\ be an integer «X« matrix with nn=...=a,,,,=2 and avsO
for iVy. Suppose that A is symmetrisable, i.e. there exist positive numbers glf ..., q,,
such that the matrix \\gta\\ = gA is symmetric. From now on glt..., g,,denote the
minimal positive integers with the property above. Define the Kac—Moody Lie algebra
g'lwith the Cartan matrix A as a complex Lie 'algebra"with the generators et, ..., en,
fx, hi, ...,hn and the relations

EiiJj\ —Sijhj, [hiy hj] = O,
[h, ejl = a,jej, [h..fi\ =

[of.[9..”---.[e,.e¥M...]] =0, /;]1-=m]] = O O tj).

Define in g4 a (multi-) gradation by

f c
degh = (0, ..., 0), degg, = (0,...,0, 1,0, ..., 0), deg/t=(,,.,0,-1,0, ..., 0).
Here n is called the rank of o'l

Suppose that A is nondecomposable, i.e. it can not become of the form ‘A(\q
under any simultaneus permutation of rows and columns.

0

1 For another proof of a part of these results see in [7].
2 The work was done during my stay in Moscow.

1980 Mathematics Subject Classification. Primary 17B56; Secondary 17B65.
Key words and phrases. Deformation, cohomology, Kac—Moody algebras, spectral sequence.
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The Weyl group W=WA of gx is defined as the subgroup of GL(n, Z), gen-
erated by the matrices a » E —A,, where E is the unity and in Atthe fth row coinci-
des with the ith row of A, while the other rows are zeros. (The elements of W may
be considered as transformations of the “weight lattice” Z", which grades g'1)

Remind some facts about the Kac—Moody Lie algebras (see [1], [2], [3]).

Q) g4=n+(,4)+f)+n_(y4), where n+(A) and n”(A) are subalgebras of ¢4
generated by ex, ..., enand/ 1; respectively, while 1) is «-dimensional (commu-
tative) subalgebra, spanned by hx, ..., hn.

(i) The defining relation system for the generators elt..., en of n+(A) consists

fi ifwe [(, "/ O

~a,j+l

of

The similar relations are true for n_(/t).

It is natural to divide the Kac—Moody Lie algebras into three classes: algebras
with positive definite matrix gA, algebras with nonnegative definite matrices of rank
n—1 and the remaining algebras.

(iii) The class of algebras g'lwith positive definite matrices gA coincides with
the class of simple finite-dimensional complex Lie algebras.

In this paper we restrict ourselves to the so called affine algebras of the second
type. The nondecomposable matrices corresponding to these algebras are listed
in Tables 1 and 2

Table 2
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The vertices in Tables 1—2 correspond to the rows of A. The zth vertice is
joined with the y'th one by aijali edges; if \au\ these edges have an arrow,
pointing towards the ith vertice. Numerical marks are the coefficients of linear de-
pendence between the corresponding columns of the Cartan matrix A. Fix for these
numbers the notation col, ¢,

(iv) Let A be a positive definite Cartan matrix, corresponding to certain Dynkin
diagram and A be the Cartan matrix of the extended Dynkin diagram from Table 1
Then qa is the central extension of the current algebra g4®C[t, f-1].

By this the canonical generators ey, ..., en of g* correspond to the products
Ci®1l,...,e,i® 1, f®t, where el,...,e,,_1are canonical generators of gAand/
is the root vector of g4, corresponding to the negative root of maximal length. More-
over, for (ml, ..., mp~ (0, ..., Q

where (alf ..., an_,) is the weight of f.

We notice also, that n+(4)= (n+(A)® 1)®(© (g'4®/")) and similar is
true for n_(,4).

Algebras, corresponding to matrices from Table 2 are defined by means of
finite order exterior automorphisms of finite-dimensional simple algebras. Namely,
if €@ g—g is such an automorphism and / is its order, than we define gv as the sub-

algebra ® ©(1)®C of g®CIt, z-1], where g(A) is the root subspace of the auto-
morphism (p, corresponding to the eigenvalue e2*ix/l.

(v) The algebras from Table 2 are central extensions of the algebras gp. Namely,
the first 5 cases correspond to two-order automorphisms, while the last one to three-
order automorphism.

The homology of n+("™) with trivial coefficients is known [4], [5]. Let

Qal(xi, = -y 2QiaijXtXj+ 2leiXt.

(vi) If Q~nti, ..., m,) O, then
HIT1..mJ(n+(/1)) = 0

for arbitrary k. If ...,m,,)=0, then there is a unique k(mlt..., mn, for
which

for k = klnix, ..., m),
for the others.

For the practical computation of the number k(m1, ..., mn) it is convenient to
use the transformations st: Zn—Z", defined by

Siim) = <Ti(m)+(, ..., 0, §,, ..., 0).

(The transformations  also define an action of W in Z".) It is easy to show, that
Qa0Si=Qa and that an arbitrary sequence (ml,..., mn) with Bx(wi>--mm,,)=0

19
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may be obtained from (0, ...,0) by means of finite number of transformations st.
The minimal number of these transformations is k(m1,
In particular,
HO(n+(A)) = m°...0)(n+(A)) = C,

HI(n+(A)) = Hil0....0(tt+ (A)(B... ®H".... «-«(«+(;4)) = C".

2. Let A be a Cartan matrix from Tables 1, 2. The main result of this paper is
the computation of one- and two-dimensional cohomologies of n+(/l) with coeffi-
cients in the adjoint representation. Remind that the computation of one-dimensional
cohomology is equivalent to the classification of exterior derivations, and it is that
language, in which we formulate here the result. The calculation of two-dimensional
cohomology allows us to classify the deformations of the considered algebras.

Theorem 1. The next derivations form a basis in the space of exterior deriva-
tions of rt+(A):
hr- g - [hi,g], i=1 n-1

tr-til+l4p 1i=0,1,2,....

Here | and t have the same sense as in (iv) and (v) of subsection 1.
We describe now some concrete deformations of n+(A).

1°. Let n+(”)), BEHrt+(A)). The element a corresponds to

the right extension
0- n+t(/) - n+(A)- C- 0

(the elements of A(n+iA); n+(A)) may be interpreted not only as exterior deriva-
tions, but also as right extensions—see [5]), R to a functional (p: n+(A)-+C. For tEC
denote tj, the embedding n+04)-~n+(.L)sm+(;4)©C defined by t].(g)= (g, tep(g)).
It may be easily checked that f?,(n+(A)) is a subalgebra of rt+(A), that this subalgebra
is connected with rt+(A) by a natural linear isomorphism, and that for i=0 this
isomorphism is compatible with the bracket operation. Thus we have a deformation
of n+(,4). The corresponding infinitesimal deformation is evidently the product

0CREH2(nHA); rt+00).
(By all means, this construction may be applied to an arbitrary Lie algebra.)
2°. Let The algebra n+(/l) deforms inside qa. The %eformed algebra

is spanned by the spaces . with (m1, ..., m)(@©, .., 01 ..,0 and by
the vector et+ tf, where lis a parameter. (Informally speaking, etdeforms into et+tf,
while the other additive generators of n+(A) do not change.)

The number of such deformations is equal to the rank of gL

3°. Let I™i, ySn; consider the entry au= —1 and if aiJ=aJi, then /</.
The algebra n+(A) deforms again inside gL The deformed algebra is generated by
the spaces gm m}with

mlt.., m) *@©, ..,0,1,0,0), (,..010,.,0 10, ..,0)
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and the vectors et+tfj and [, ej\—thj. (Informally speaking, et and [e,, ej] deform
into ei+tfj and [eit ej\ —thj, while the other additive generators of it+(/!) are not
deformed.)

The number of this type deformations is equal to the number of nonzero pairs
(flij, gji) with iVy; this number we denote below by p.

Remark, that the equality ay= —I1 is necessary for the verification of the fact
that the deformed algebras are closed under the bracket and that with the only
exception of the case Ax, at least one of two nontrivial nondiagonal entries of the
Cartan matrix au, g~ is"equal to —L This specific property of Al comples us to
consider the case n+(A() separately.

Theorem 2. Suppose that A~A 1. Then

(i) All the homogeneous infinitesimal deformations of n+("4) may be extended to
its real deformations.

(ii) The space of infinitesimal deformations, H 2(n+(A); n+(A)) is spanned by
deformations, corresponding to the above types 1°, 2°, 3°. In other words, the mapping

\Ir. [H'(nHA); n.(A)®HIrxHA))J®Cn® 0" " H2(n+HA); n+(/)

defined by the infinitesimal deformations listed above is epimorphism.
(iii) The kernel of the mapping iR is contained in

n+HA))®H'(n+HA))

and its dimension is n. It is spanned by the elements xt_1 X,, defined as follows.
n
Let 1S/En. Choose the numbers Ri, ..., B,,-x so that 2| Bjakj=1 for k”™i (such

numbers can befound, because the rank ofthe Cartan matrix with one column removed
equals to n—I). Then
A= i=1..,n-1

K = (3 BiKD®*,

where s the class of the cocycle from Cx(n+ (")), assigning 1 to et and O to other
e.'s, while the hj—s were introduced in Theorem 1

Now turn to the case A—AL In this case the Cartan matrix is

and this excludes the possibility of applying the construction 3°. Mention also that
it is not true for this case that all infinitesimal deformations may be extended to real
deformations.

Theorem 3. (i) Infinitesimal deformations, corresponding to deformations of
type 1°, 2° span in H2(n+(A"); n+(/?))) a codimension 2 subspace. The complementary
subspace is spanned by elements from H 'fi_2>and Hf_2~i) respectively. These ele-
ments can not be extended to the deformation of n+(Aj. (Cocycles representing these
two classes are given in p. 2 82 (section 2))
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(ii) The kernel of the mapping
[IP(n+(4); n+A)®//UNn+(J,))]®C2- [/2(nHT~); n+(™))
may be describedjust as the kernel of\J in the part (Hi) of Theorem 2.

§2. Proofs

1. Let g=i@§OQ' be a nilpotent graded Lie algebra and B—®Bj be a graded
g-module. The space C"m)(g; B) is spanned by "monomials”, i.e. by the chains
giA...Agk®b, where gsigia bEBj, h+... +ik+j=m.

Denote by FpCkm(g; B) the subspace of CEm)(g; B), generated by monomials with
1+ ...+ 4 — Evidently, {Fp} is a decreasing filtration in Cim)(g; B). The spectral
sequence corresponding to this filtration we will call Feigin—Fuchs spectral sequence
and denote it by <i(g, B, m). Here £pt=Cfdt(g; -Om_p), where im p is considered
as trivial g-module and dpq is the differential

dptg: C#t(g; Bmp - C*.xCg; Bm p
hence
E\.g= H<3qg{g; Bn_p = H g q(s)®Bm. p.

For the algebra Lx of polynomial vector fields on the line with trivial 1-jets in
the point 0 this spectral sequence was considered in [6], In the cases interesting for us
the algebra g has multigradation g= © gl ik. In this case the

spectral sequence #(g, B, ni) decomposes into the sum of spectral sequences
<f(g, B, mt, mK, ml+ ... +mk—m. The initial term of the last spectral sequence
is given by the formula

F1 © N9)®BmMI- A, Pk
pt+...+pk=p

We apply the above spectral sequence to the computation of the one- and two-
dimensional homology of the algebra n+(A) with coefficients in the coadjoint repre-
sentation n+(A)". (This is equivalent to the computation of the conomology of n+ (A)
with coefficients in the adjoint representation.) For each of the matrices from Tables
1, 2 the terms and differentials of the spectral sequence S(n+ (A), n+(A)', m) may
be explicitly determined, and this leads to the calculation of the indicated homo-
logy. All computations are similar, and we shall give details only for the cases
An_! and BA2.

2. Letus begin with A1. There is a convenient explicit description of the quotient
algebra of gL by its (one-dimensional) centre. Namely, it contains an additive basis
e- (iEZ) such that

f=—1,0
[E, Ej] = oCijEtH, where 0.1

Ayl= (j—i)mod 3.
(In this notation el5e2, £ 13 e_2 correspond to el,es,fL f2 defined in §1.) (Bi-)
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gradation in this basis is given by
degfn= (m, m), dege3n 1= (m, w+ 1), dege3ml= (m, m-1).

The subspace n+(AJ of g*>is spanned by ef, where i>0.
According to (vi) in 81, for

An+ (7)) = HI((k=D)a (kD)) © 11T <<=+ 1)) <Df*>= cocC
(see Fig. 1) moreover, nontrivial elements of the spaces
FIC(k=1))72, (¢ + DY) 1 (* + )12, (fe(k—1))/2)

A

Fig. 1

are represented by cycles exAeAN-Aer. A, £2A...AE5A...Ae3k 1 (see [5]). Since
_ fl_if Ima-mJ £1 m2+mi> 0,
dim (n+( D)(mi(») - (0 in al, other cases

(see Fig. 2), in the spectral sequence

Fig. 2

%! ™) = n+ity, mx, m2

2 if t=1 ml=m2~ O,
dimEl= 1 if k—1s |m2—mjl S k+1 ml+m2< k]
0 in all other cases.

(See Fig. 3; the circles and points show the degrees of the homology with trivial
coefficients and the degrees of the nontrivial spaces El, respectively.)
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m2
rk(k-1). k(k*1)\
o 2 2

T e fk(k* 1).k(k-1h
R

Fig. 3

So, the term E 1 of the spectral sequence S(m1, m2 is constructed in the follow-
ing way. Let I=\m2—mj and m=min (m” m2. If />0, then the dimensions of
the spaces EIl are given by the table

fc= ... 1—21-11 1+1 1+2 ..
12-31
OlllO...form_2
0O 01 1 0 . for Egil<m<l—2él—
12- 1 12+ 1
0 0 0 1 0 .. for —2—3 mS—Z—,
12+ 1
0 0 0 O 0 .. for s <m’
and if /=0, then by the table
t=0 12 ..

1 20 ... for m<O
0 20 .. for m=0
0 00 .. for m>0.

Lemma. The non-trivial differentials dl are the following ones:
d}: EI - Efu if 1*0, ms

d: El mEl, if 1=0, m<Q0;

the differentials dl with r> 1 are all trivial.
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From this lemma it follows

Proposition.

#,(«*(£); n+™)0 = 0;

2 if ml=m2=0,
dim (n+(yii); n+Qij)) = 1 if ml=m2<0,
0 in the other cases;

if ft>-1 then
dirnAnt-m2)(n+(i'D; n+(i'D/) =

1 if \m1l—m2A = k —I, ml+m2<fe2—1
and if |mx—m2 =k, (ft—)2-=mi-\-m2S ft2—2,
0 in the other cases.

473

(See Fig. 4, on which there are shown the weights of one- and two-dimensional

homologies.)

Lemma may be proved by performing a straight but not particularly short
calculation. Since we are interested only in homology of dimension one and two,
we give the proof here only for the cases fts 2. We have to show that the differentials

&) d for m2-=ml< 0, Vo
(ii) di for K --mil =1 mn(mi, m2S -1,
(iii) d\ for [m2-mi|=2 min(mltm2 S -1,

(iv) d\ for |m2--Mill = 3 min (mi, ma SO
are non-trivial and

iv) di for mx=2 m2=0 and TG =0, ma= 2
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is trivial. Since the roles of  and m2are symmetric, we may consider only the case
DijSm,, The differential dk in the spectral sequence S{m1, m," is non-trivial if there
exists a chain

cECN"'1,m,)(n+(yiD), n+i/ij)") such that
c —RjA... AEX 206X
de = fiertA...Aes* skie;+ ...

where n*O and dots in the general case stand for terms of smaller filtration. We
find such chains for the cases (i)—iv), putting m= —m2.

(0 C — + dc — E2m,
(0) C= Ri®R3m, dc = £3m-I>
(iii) c = etAea®esm-e 1Aesb eam 1; dc = 2elg>3m 4,
(iv) €= 61ARAs76>8M Y e1As3AR76 »sm-1-y BiA siALsA(gism_1+

3
+ye1AesAfab>eni_4; dc = - 3£lhei®EAMT

The differential d\ is trivial, if there is a chain ¢ of the above form, for which dc=0.
For the case (v) such a chain is the following:

c = etAesAer®eio+s -e1AesAer®es + Y s1Aes Acs®F9 -
(V) J
- v £XAesAg,0 da- esAesAfhdo da—esAe2aeso 8s.
Now we describe cycles, representing bases in ffk(n+(Aj); n+(Aj)') for k—1, 2.
In  Ci0,0): £io ei, e20e2.
In C{mmM m< 0: e16)s, smti+e2®e, sm+s.
In  C|0,2): 8xAss0 e3—ExAeso €2
In  CEL2): sxAes®ei.
In  CEnim+l), m " 0: erAes(g)e amts+e1Aeso £ ams+EIAL2¢>E 3Im+2

Cycles in Cg-°\tEm+ln) are given similarly, by substituting sx*s2, es*-€5, ....

Since dim ff{mi>ne)=dim/ft_mi,_ms), the cohomology needed for us is com-
pletely computed. It is easy to see that the above result agrees with the corresponding
parts of Theorems 1, 3.

Cocycles, representing basis elements of the cohomology spaces are indicated
in the next table.
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weight cocycle
©, - 2) (EL, €3)) F* ea7-1> (EL B+) B for j >0,
the rest >p0.
(-2,0) (€2, £3]) “Meay—2, (£2, e3+i) “m—esj for j >0,
the rest >»0.
(m, m—i) (8, £j)NjsI+m for j .*1,
ffISO the rest 0.
(m—1, m) (e2> §) *¥jsI+am for j 1
mSo the rest >mo.
(fii, ) 91, (£j, B) " j£j_3 for j £ 5,
(-1-2) (ByBj) 17203 — (83, £3j- 2) Fm—2x3 . for j S 2
’ @4, 3y-1) =mSfisy-i, (£, £]+) £+ for 1,
the rest >*0.
(£2,:5  9e2, (€2, Ej) —/£;-3 for j=4,6,7, ...
(_2 ) 1) (£3, £34) 1 *£31-2, (£3,£3j+2) |—>“—£3j for j —L

(s, BI-D) ALY 2 (e5. eart9) 32345 for | —L
the rest >*0.

We can easily verify that the indicated cochains are really cocycles and they do
not vanish on the above cycles.

It remained to show that infinitesimal deformations, determined by two-dimen-
sional cocycles of weight QQ —2), (—2,0) and (m+1, m), (m,m + 1) with wjS —1
can be extended to real deformations, while infinitesimal deformations of weight
(—1, —2), (—2, —1) can not. The extensions in question are explicitly given in
p. 2 81 On the other hand, the cocycles of weight (—1, —2), (—2, —1) have nontri-
vial squares; for instance the first of them takes the value 135 at the cycle

f1AeaAe7B)EA+Y (eiAe3AeT + eiAesALeppe3——H he 3Ae6Re'2.

3. Let us now consider the case BA2. The corresponding Cartan matrix is

j 2]+ The quotient algebra of g&*2by its centre has explicite description. Na-

mely, it contains an additive basis £ (/£Z) with [st, £/]= a@ij*i+j, where <tJdepends
only oni,j mod 8 a~+a~”~0O if i+i' and j+j' are multiples of 8, and for
0Si, ./iS7 it is given in the following table:
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0 1-2 -1 0 1 2-1
1 1-1 3-2 0 1
2 0 0 1-1

3 -3 -1

Gradation is given by formulas
dege8n= (2m, 4m), degE£SmHl= (2m, dm+ 1), dege8m2= (2m+ I, 4m),
dege8m3= (2m+ 1, 4m+ 1), dege8m4 = (2m+ 1,4m+2),
dege8mt5= (2m+ 1, 4m+3)
deg e8m6 —(2m+ 1, 4m+4), dege8l+7 = (2m+2, 4m+3).

The subalgebra n+(BA2 is spanned by £ with i> 0.
By (vi) from 81 for A>0

Hou-iin +18 Aj) = [/ (-%)/2.3%— +1) © - Sk+2)/2,3)c>-2*) = C0C)
Hnin+iBA,))) = j"»*+*)/2a»-»)® " **-«/«.3*+») = C+ C

(see Fig. 5) and nontrivial elements of the homology in question are represented
with the cycles

Fig. 6

(e2Asi0A ws Ask_6)A(E3AETA... Ae" -5), (egASUA... ALG io)A(E1ALBA s=Aed* 3

(E2Ael0A ... Ae8* BA(E3ALTA...Ae" -i), (CGAS"A... Aesh-"ATEiAejA... AEAN-3,

The dimensions of the spaces n+(A”2)(mi,nD equal to 0 and 1; the points
(m1, m2 corresponding to spaces of dimension 1 are shown on Fig. 6.

In this way we can determine the dimensions of the spaces, forming the initial
terms of the spectral sequences S'mitmi)=S{xx+{BA”, n+iBAz)', m1, m2. We
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restrict ourselves to (wij, m2 such that the space k@z)OEI is nontrivial. These (wj, m2

are represented by small circles on Fig. 7. On this figure the cell (mx, m2 contains
as many k's as the dimension of EI (for instance, in the spectral sequence <X{—1, —3)
the dimensions of El are 1,2, 1,0,0, ...). We remark, that the left half-plane on
Fig. 7 is periodic with period 2 on the abscissa axis and with period 4 on the ordinate
axis. The action of the differentials in these spectral sequences may be calculated in
the same way as in p. 2. The result of the computations is shown on Fig. 8: the number
of the I’s and 2’s in the cell (m1, m2 equals to the dimension of and H gmi-mp),
respectively.

Now we describe the cycles, which represent the basis in Hk(BA2, BAR, k=1, 2.

In  Ci0,0): ejnei, E£2R®E2
In  Cixidn), m< 0: 2£1(ge, 8m+l+e2(2e, 82

In  C|02): eiAeb®es + —j2—61A65<g>&1—!—291/\ei®£3- 3e1Ae3<g>E2.

In  CML1): e2AE3(SE2.
In CP™> £2Ae3REl.
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In cEmdmel), m SO e LAeG®E Gm+6-ciAet(B)E Sm+B+eiAL4(B)E' fm+d -

—£IAL3GE_ 83+ EIAESSE 82,

In  c!?2mim Q) £2Ae3<pe 8MH3- £ 2AEi®e/ 8mil.

So, the cohomology needed for us is computed. It is easy to see, that the above
result agrees with Theorems 1, 2.

Cocycles, representing basis elements of the cohomology spaces are indicated
in the next table.

weight cocycle
(Ei>eg§) | >—€8;-i> (ei> £8y+) *me§ O —1))
(0.-2) (B> £§ +3) | *—2esj +2, (Ei, Bj+H) | Z 3esj+ 3 } iAo
(Efig+s)y —e§+t> (EEj+H) | *£G+s
the rest *+0
(£1; £ | *BI3> (Hi esj) ----- 288 2
(E>£83+2) | > £t (E>£8+3) —e8j+l  js 1
(E35ey+1) 1* £8+X
(£3> £ +2) =u—2£§ +2, (£3> fi§ +s) I_* Bj+i
(£3> €8y+€) |-> 268 +6, (£3> £By+?) I * —£s; + 7.
(£i »8)*-*—2%, the rest+— 0
(2%e9) " 2652 @)+ —E&y 0 N
(-2,0) (2, £8 +s)  F§+1> (22> £9+7) h*—£§+s 0 s 0)

the rest 0

(-l,-l)
mjsO

(2m, 4m-1) (E>Ey)1*jG+8n for j N 1
m S 0 the rest P<0
(2m-1,4m) (Bt,Sj).Nje.j+am  for /~ 2
msO the rest P»0
4, Now consider the case An_1with n==3. The case n—3 is somewhat dif-

ferent from the general case (the main difference, from our point of view, is in the
structure of the three-dimensional homology with trivial coefficients). Nevertheless,
the final formula is the same, and the differences in the proofs are not essential.
Therefore from now on we shall ignore the specific case n—3, nondirectly assuming
that «S4.
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The Cartan matrix of is:

By (vi) in §1
di . 1L, if P(mx .., ra,) =0,
Im Himi 0 in the other cases,

where  P(m4, ..., mj=ml+.. . +mB@-(mIm2+..+m,,-Im,+mmd)~(ml+...+mn.
In more details, if k=1,2, 3 then the space Hzmi....m»)(n+(/i,,_0) has dimension
1 for the following sequences (mlf

k=0: (@ ..,0); k=1 (10,...0);
k=2 (2,140, 0), (2,0,...0,1,0,

k—3: (220, ..0), 2 120, ..,0),
(3,2, 1,0,.., 0), (1,3, 1,0, ..., 0),
2 10, ..0 10, ..,0), (10, ..,0,10,..,0 10, .., 0),

and also for the cases, obtained from these by cyclic permutation and reflection;
for the remaining (m1, ..., m,) the named homology is O.

Next we give cycles which represent generators of the above homology (s
here and below stand for the matrix with 1in the section of ith row and y'th column
and O elsewhere).

g £1%

£127Eii+ 1> £12NEL13NE23>
FIOAEBALD,  £12AeldAe3s,
EDAEBBASA,  EIBALBAEA>
EDAEBALi+1, EDAL(i+IAB§+!,

where £,n+i=£,,ii by definition. Similarly, if as the result of cyclic permutation,
we find the first index to be larger than the second one, we have to multiply e by t.

Now we can determine the dimensions of the space which form the initial terms
of the spectral sequences

<Y, ..., m,) = tt+(An. D\ mu ..., m,).

2

We restrict ourselves to such mI9 mn, that k© El are nontrivial. The dimensions
=0

of EI for these sequences are presented in Table 3.
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dimdmdimadim (m m) dirdirdirdir
eiEI H e pree Ml e; B e e
nin 00 .
onoofm(g _ERI__ 0012
XL Inlnl O ¢
0 0n1o0 (MmO rfl 0015
1221 o
002 1(w~ 0022
1210
0 2nln2 001
0121
. 0121 0011
N 00 2 1 (n)
el 0 1ninl 002>
012 1 jszLrfl__ 00 131
012 i 001
002 2 jirffairL 0 0 131
JSZLTL—Q- 0 0 131
n_n_n_00323

Table 3

In this table the sequence '(my, ..., m,;) is presented as a graph: the thick broken
line is the graph of the step function with equally long steps and m1, sequence
of values. The left end of the line corresponds to the level ——m). Whenever
m =0 it iswritten at the end of the row. All calculations and dimensions are the same
for those (mi, ..., m,) which can be obtained by reflection and cyclic permutation
from those ones in the table.

It is easy to compute the differentials of the spectral sequences and it turns out,
that homologies with dimension 1, 2 occur only in the cases which are marked in the
table by stars. We calculate the differentials in these cases.

1. (mi,...,m)=(-m, ..., -m).

In this case El is trivial for m=0, and for m>0 it is spanned by the classes of the
chains

i = ((RF.i—<i+i.i+i)tm)\

and EI is always spanned by classes of the chains
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Evidently, @—a, for i ' =1, —1 and dB,,=—al— So,
dim Hieml > = for m>0 _
imH{~nl . In for m=0, Hg~m...-np= 0.

One-dimensional cohomologies for m>0 are spanned by the class of the chain
R1+...+8n, and for m=0 by classes of the chains Bx, ..., §,,.

2°. (Wj,...., m,)=(-m,...,—m,-m+1I,-m,..»—m), 1SiS »
i-1
In this case £0 is trivial for m—0, and for m>0 it is spanned by the class of the
chain
« = (et

Ex is trivial for m—0, and for m >0 it is spanned by the classes of the chains
Bj ~ eti+i®{(sj,j~sj+i,j+D)M)'i j = ee>n~ I»
El is always spanned by the classes of the chains
fi —ELi+iNgyy+i®(ey,y+i™m/, j = Ue>*2 j+2,..., n—1
\b= EM+iAen,i"®(,i*m+)\
Vi-i —ei-i,i+iALI j+i<8>(E(-i,i+itn) ,
ViH = el,i+iM L i+2®(EM+2inm)
(yf is absent). The differential d=dI acts by
—2a for j =i
dgj=* a for j= izl,
0 in the other cases;
3 for jrei, i+ 1,
. =Bi-—~ for j=n,
W= R-i-Ri for o= i-1,
Bi+2Bi+i for j =i+1.
So,
H[~-m _m+l "n)=0,
dim// - B for m>0
im/| m "md-m = q«—'l for m=0.
The two-dimensional homologies for m>0 are spanned by the class of thy cycle
M+ -"+7i2 +yyi-i +-j?2i+ity@2 + -"+VB» while for m=0 by the classes
of the cycles yx, .... 7i-i, ViH,  »7fie

3, (mu  m)=(0""0, 110 ..0), 1
I-|

20
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In this case EI=E}=0, £ 2 is spanned by the classes of the chains
Vi —fii.i+iAei.i+aCei.i+iX, — £|,i+2AL;+i,i+2<BEi+i,i+2) »
El is spanned by the class of
6 —ei,iHIAE; 5 +aAEf+;lii+2<8X(f,i+a) ;
the differential acts by dé=yl—y2. That means,

The two-dimensional homologies are spanned by the class of yx (or y2.
The case {mi, ..., nt,)=(l, O, 0, 1) is similar to the above one.

4°, (mi, ..., m)= (0"-mQ20 0, 17i n

i-1
In this case EI=EI—0, EI is spanned by the classes of
Viz oeii+iAfiita<8)(Eitidi+a) , fa = C|-i,i+iAfil,i+i® (ej-i,i),
£3 is spanned by the class of the chain
S = ei-iitiAEf(+iAe(iita(S|(Ei-iji+2)
the differential acts by do=yl—y2. That means,
H[°....-2%....0) = 0,
dim HiO....e>270.... >= 1.

The two-dimensional homologies are spanned by the class of yx (or y2.

As usually, we have isomorphism between the cohomology and homology. As
it is clear from the list of deformations given before Theorem 1 in §1, all classes
of two-dimensional cohomologies are represented by deformations of n+(.4,_i).

5. The general case of an affine algebra gx for A*A”, is quite similar to the
above case. We restrict ourselves to formulate the final result.
dim //imi,- 'm)(n+(/4); n+><)) =

n for (mi, .., m,)=(o,..,0),
1 for (mil, = (—mlcd!, m 0,
o in all other cases,

where &t ... co,, are the coefficients of linear dependence between the columns of
the Cartan matrix, while / equals to 1 for the current algebras (Table 1) and for the
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matrices from Table 2 is indicated in (v), §1

dim o =
n- 1 for (mi, . ®0 i,0,..0), 1SiSn
1 for (mi, mn) = (—mlco - mi(o, + 1, —mla3+1, ..., —mlco,,)
1SiSn, m>0
1 for (mi, e, m,)=(0"020..,0), 1SiS n
1 for (mi, m,) = (0 0,10, ..0 1,0,..0
i-1 .
74 1Si<jgnaj 0
. 0 in all other cases.
As in the previous case, Hi * and all the two-dimensional

cohomologies are represented as deformations.
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