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IMPLICIT FUNCTION THEOREM IN UNIFORM SPACES

D. SLEZÁK

In this paper we prove an implicit function theorem for uniform spaces. 
As a special case an implicit function theorem is also obtained for metriz- 
able topological groups. Moreover, an implicit function theorem is proved 
for Banach space case under the same assumptions as Szilágyi’s generalized 
implicit mapping theorem in [2] with stronger consequences.

D efinition 1. Let H , X  and Y  be nonempty sets, f : H x X —>Y  a 
function and y  £ im (/). The function g : H  —» X  is called the implicit function 
given by the function / ,  belonging to the value y and passing through the 
point (to, xo) € H  x X  ifg(to) = xo and for every t £ H  the equality f ( t ,  g(t)) =  
= y holds. □

The reader can easily control that the following proposition directly fol
lows from the definitions.

PROPOSITION 1. Let H, X , Y  and f  be the same as above, F  := (p r // ,/ ) ,  
where p r# : H  x X  —> H is the projection to H .

(i) There exists a function g: H  —> X  such that f{t,g(t)) — y holds for 
every t£  H if and only if H x {y} ^  F(H  x X ).

(ii) Let T  := {/(<,.) | í € H} and Fr be a right inverse of the function F. 
The equality Fr (t,y) = (t,[f(t,  .)]r (y)) uniquely determines the right inverse 
[/(^) -)]r of the function f ( t , .) for every fixed element t of H .

Conversely, if for every point t of the set H  a right inverse [f ( t , .)]r is 
given, then the function Fr(t,y) — (t,[f(t, ,)]r (y)) is a right inverse of the 
function F.

(iii) The function g: H  —> X  is an implicit function of f  belonging to
y £ T  if and only if there exists a right inverse Fr of F  which satisfies the 
equality Fr(.,y) =  (i du ,g ). The function g passes through the point (ío^o ) G 
€ H x X  if and only if [f(to,-)]r (y) = xo. □

Notation. Let (T, r) be a topological space. V 3 )t will note tha t the 
set V  £ r  is a neighbourhood of the point t £ T.

Definition 2. Let T  be a nonempty set, X  a topological space, Y  a 
uniform space, By  a base of the uniformity of Y.  Let / :  T x X  —> Y  be a 
function and (íoj^o) € T  x X  be a point.
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2 B. SLEZAK

(i) The family of functions T  := { / ( í , .) 11 G T}  is equicontinuous at xo 
with respect to T  iff

V W e B y  3 V 3 )x0 Ví g T: f ( t , . ) ( V ) C W ( f ( t , x 0)),

so th a t every partial function f ( t , .) is continuous at xq and f ( t , . ) (V)  C 
C W ( f ( t , x o)), where V  does not depend on t.

(ii) The family F  is equiopen at Xo with respect to T  iff

V V 3 )x 3W e B y  Ví g T: f ( t , . ) ( V ) D W ( f ( t , x 0)),

so th a t every partial function f ( t , .) is open at xq and f(t ,  .){V) D W( f ( t ,  xo)), 
where W  does not depend on t. □

Further it is supposed that T  is a topological space, X  and Y  are uniform 
spaces, B x  denotes a base of the uniformity of X  and the elements of By 
are symmetric.

PROPOSITION 2. I f  the function /( ., xo) is continuous at to and the fam
ily of functions T  := { / ( i , .) | tGT} is equicontinuous at xo then f  is contin
uous at (to,xo)-

P r o o f . We show that

V W e B y  3 HB) t 0 3V G Bx  ■ f ( H x V { x 0) ) C W { f ( t 0, x  0)).

Let Wi,  W 2 G B y , W2 o Wy Q W.  The neighbourhood H of to can be chosen 
so tha t f  x 0){H) g W 2( f  {to,x0)), that is

(1) V t e H :  { f { to , xo) , f ( t , xo) )eW2.

The set V  G Bx  can be chosen so that Vi G H : f(t ,  .)(F(xo)) C Wi( f ( t ,  xo)), 
hence

(2) v(t ,x)  e H  x V{xo): ( f { t , xo ) , f { t , x ) ) eW\ .

From (1) and (2) it follows that

V(f, x) G H  x V ( x 0) : (/ ( i 0, ®o), /(* , ®)) e W 2oW1g W l g W ,

hence f ( H  x V ( x 0) ) Q W ( f  (t0, x0)). □
THEOREM 1 (Implicit Function Theorem in uniform spaces). If  the func

tion f ( . , x 0) is continuous at to and T  is equiopen at xo then
(i) the function F  := (prr>/) is open at (to,xo);

(ii) for every neighbourhood V(xo) of the point xq there exists a 
neighbourhood W(f(to,xo))  of f  (to, xo) in Y  such that for every point of 
this neighbourhood there is an implicit function belonging to this point, hav
ing the fixed set H as a domain and having its range in V(xo), that is
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V V e B x  3 w e  B y  3HB)to Vy G W ( f { t 0; x0))
3 g : H - ^ V ( x 0) V t e H :  f ( t ,g{ t ) )=y.

If T  is equicontinuous at xq then a neighbourhood H ' x V'(xq) 3 (to,xo) can 
be chosen so that for every point of this set there exists a </>: H  —> V{xo) 
implicit function passing through this point.

(iii) Suppose that there exists an implicit function g which passes through 
the point (h ,s ) G H  x P(;co) and continuous at h, furthermore T  is equicon
tinuous at the point s. Then f  is continuous at the point (h ,s ).

(iv) Let us suppose that every element of T  is injective. Then the implic
it functions are unique and the implicit function passing through the point 
(io^o) is continuous at to-

P roof, (i) Let V  G B x  and U x V{xo) be a neighbourhood of (to,xo)■ 
We show that F(U  x F(xo)) is a neighbourhood of F(to, xq). It is clear that 
the following equalities hold:

F(U x P(xo)) =  {(t, f { t , x)) \ { t , x ) e U  x V( x0)} =
W  =  U m x / ( U ( ^ ( z o ) ) .

teu

As T  is equiopen at xo the set W\  can be chosen so that

(2) V iG t/: W1( f ( t , x 0) ) Qf ( t , . ) (V(x0))

holds. Let W2, W  E By , W2 ° W  ^ W \ .  As f { . , x  0) is continuous at to the 
neighbourhood H  of to can be chosen so that H  Q U  and f ( . ,xo)(H)  ^  
Q W2Íf(to,x0)), that is

(3) V t e H :  { f { t , xo ) J ( t o , xo ) ) eW2

holds. It follows that for every t £  H  the set W  (/(to, %o)) is a subset of the set 
f i t ,  .)(P(x0)). Indeed, by (3), ( f ( t , x 0) , f { to,x0)) € W2 and ( /( t0, x0), y) G W  
imply that (/(t, xq) ,y) G W2 o W  Q W\. Hence (using (2))

Vi G H : W( f{ to , x0)) i  Wxifi t ,  x0)) Q f ( t ,  .)(V"(*0)).

By (1) we get that

H  x xo)) C F( H  x V(x0)) Q F{U x V( x0)).

(ii) Let W  be as above, y G W (/(to, £0)) be arbitrary. As H x  
x W ( f ( t o , x0)) Q F( H  x P(a:o)), we have that Vi G H  3g{t) = x  G V r̂co): 
F{t, g{t)) =  y, which means that (f, /( t ,  g(t))) = (t, y). Hence f{t,  g{t)) =  y.

If T  is equicontinuous at (to,^o) then using Proposition 2 we get that /  
and F  are continuous at (to, zo). So there exists a neighbourhood H'  x V'{xo) 
of the point (io,a:o) that the inclusion F(H'  x P'(xo)) C H  x W(f(to,xo))
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holds. Let (t' , x') G H'  x U'(:ro)- Then y' f ( t ' , x') G IF (/(fo, £o)) and there 
exists an implicit function g: H  x U(.x'o) belonging to y'. Let

f i : H - > V ( x  o),
if 17̂  í' 
if í = f'.

It is clear that fi is an implicit function belonging to the point y' and passing 
through the point (t ' , x ').

(iii) Let g: H  -» V(xq) be a function such that g(h) =  s, g is continuous at 
h a n d  Vi Gif :  f (t ,g(t)) = f (h , s ) .  Let W  G By be arbitrary and let U G Bx  
be such that WteH: f ( t , . ) (U(s ) ) ^W( f ( t , s ) ) .  Let the neighbourhood K  of 
the point h be chosen so that the inclusions g(K)  ^  U(s) and K  ^  H  hold. 
It will be shown that /( ., s)(K) Q W (}{h , s)). Indeed, if t G K  then for every 
(s , x ) G U the set W  contains the element ( f ( t , s ) , f ( t , x ) ) .  On the other 
hand, if t G K  then (s, g(t)) G {/, hence t € K  (f(t ,s) ,  f  (t, g{t)) G W . As 
the equality f(t ,  g(t)) = f(h,  s) implies that (/(h , s), f ( t ,  s)) is the element of 
W,  it follows that for every t of the set K  the point f { t , s )  is in W ( / (h, s)). 
It means that /( .,s )  is continuous at h. Using Proposition 2 we get that /  
is continuous at {h,s).

(iv) By Proposition 1 (ii) the function F  is invertible. By Proposition 1
(iii) every implicit function is unique. As F  is open at (to,xo) it follows that 
F ~ l is continuous at F(to, xq). Consequently, the function i?-1(., /(<0) ^0)) =  
=  (idy, g) is continuous at to, where g is the implicit function passing through 
the point (to, xq). □

T heorem 2 (Implicit Function Theorem for metrizable topological 
groups). Let T  be a topological space, G and Y  be topological groups where 
the topology of G is defined by a translation invariant metric. Let us suppose 
that the topology of G is complete and the topology of Y  is of Haus dorff-type. 
Let X  B (x 0; ro) QG be a closed ball, f : T  X X  —> T  a function. Suppose
that f ( . , x 0) is continuous at to and the mapping A: G —* Y  is continuous, 
additive and open. Suppose further that there is a number k G]0,1[ so that for 
every B (x\ r ) Q X  the inclusion (A — f(t ,  .))(B(x; r)) Q A(B(x\  k r )) — f ( t ,  x) 
holds. Then

(a) For every neighbourhood W  of xq there is a neighbourhood H  x V 
of the point (to,xo) that for every point (t,x) of H x V  there is an implicit 
function g: H  —>W such that f  o (id^, g) =  f ( t ,  x) and g(t) =  x.

(b) The following three statements are equivalent:
(i) Among the implicit functions passing through the point (t , x) there 

exists one which is continuous at t.
(ii) The function f ( . , x)  is continuous at t.

(iii) /  is continuous at (t,x).
(c) I f  the mapping A is injective then the implicit functions are unique.
PROOF, (a) By Theorem 3 of [1] the family of functions T  =  { f ( t , .) 11 G 

G T} is equiopen at every point x  G X.  By Lemma 2 in [1] IF is equicontinuous
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at every point x €  X  as the set W  given in the proof of the Lemma depends 
only on the number r and on the mapping A. Using Theorem 1 (ii) we get 
our statement.

(b) By Theorem 1 (iv) we have that if there is an implicit function passing 
through the point (t,x),  which is continuous at t, then f ( . , x)  is continuous 
at t. Hence (i) implies (ii). By Proposition 2 it follows that (ii) implies (iii).

By (v) of Theorem 3 in [1] for every t' 6 T there is a right inverse [/(£', ,)]r 
of f ( t ' , .) such that the following statement holds:

Vr > 0: B(x; 2r)QX=>  .)]r ( /( i ', x) + A (B (0; (1 -  k)r)) Q B ( x ; 2r).

By Proposition 1 the function Fr(t, y) := (f, [f(t, .)]r (y)) is a right inverse 
of the function F  =  (id^, / )  on a neighbourhood of the point (to, f(to,  xo)). It 
will be shown that Fr is continuous at (t , f (t ,  x)). Indeed, as /  is continuous 
at (t , x) the following statements hold:

Vr > 0 3r' > 0 3U 3)t: r' <r  and

U x ( f ( t , x)  + A{0; — V ) )  Q F(U x (B(x;r)).

If (t ' , y ) e u  x ( f ( t , x)  + A ^0; ^ ))  then

Fr(t', y) = (t, [/(*', -)]r(y)) e U X B( x ; r)

since f(t ' ,  x) € f ( t ,  x) +  A ^B  ^0; -- —r^  ̂ and sisince

y e f(t ' ,  x) + a ( b (0; ^ - ^ r ) )  => y e f(t ,  x) + a ( b (o;
1 - k

=>[f(t' ,-)}r{y)€B(x;r).
Hence

Fr ( u  x ( /( i ,  x) + A (o; ) g U x B(x-, r),

that is Fr is continuous at ( t , f ( t ,x)) .  By Proposition 1 (iii) the implicit 
function g determined by the equality Fr(., f(t,  x)) = (idt/, g) passes through 
the point (t,x) and it is obviously continuous at the point t. Hence (iii) 
implies (i).

(c) If A is injective then by Theorem 3 (vi) in [1] the set H  x V  can 
be chosen so that the functions f ( t , . )  are homeomorphisms. By (iv) of 
Theorem 1 the implicit functions are unique. □

Let T  be a topological space, X  and Y  be Banach spaces, U Q X  an 
open set, (io^o) € T  x X  and f : T x U —iL  b e a  function. Suppose that /  
satisfies the following properties:
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(*)
(1) D2 f : T  x U  C(X,Y)  exists and is continuous at (to ,xo)',
(2) f ( - , x 0) is continuous at to',
(3) D-if (to, xq) '■ X  —>Y is surjective.

THEOREM (Szilágyi [2]). If f  satisfies the properties (*) then for every 
neighbourhood V of Xo there is a neighbourhood H  of to and a function 
g: H  —> V such that f  o (id^, g) = f(to,xo).

It is easy to see th a t the theorem above is equivalent to the following 
statement.

There exists a neighbourhood H of to and an implicit function g : H - ^ Y  
passing through the point (to,xo) which is continuous at to-

T heorem 3. I f  f  satisfies the properties (*) then for every neighbour
hood W  of xo there exists a neighbourhood H  x V  of (to,xo) such that

(i) V(t, x) 6 H  x V  3g : H  -> W : f  o (idH,g) =  f ( t ,  x) and g(t) = x.
(ii) f  is continuous at (to,Xo) and there is an implicit function passing 

through the point (to,xo) and continuous at to-
(iii) For every (t, x) € H  x V the following three statements are equivalent:

1. 3g : H -+ W : f  o (id//, g)=f(t ,  x), g(t)—x and g is continuous at t;
2. f(- ,x) is continuous att;
3. /  is continuous at (t,x).

(iv) If  £>2/(to, xo) is injective then the implicit functions g : H -+W  are 
unique.

(v) If T  is an open subset of a Banach space and there exists an implicit 
function g passing through the point (to,Xo) which is differentiable at 
to then f  is differentiable at (<o,^o)-

PROOF. By Theorem 2 the statements (i), (ii), (iii) and (iv) follow from 
the fact that if A := F>2f(to,  xo) then the neighbourhood H  x V  of (to,xo) 
can be chosen so that

Y t e H  VB(x- , r)QV: (A- f ( t , . ) ) (B(x- , r) )QA(B(x ' , kr) )  -  f ( t , x )

holds, where k e]0,1[. Indeed, as A  is open there exists a number g such 
that B (0; q) Q Y  and B (0; g) Q A (B(0; 1)).

As A is a strict derivative of the function f(to,-) at the point xo it follows 
that

Ve > 0 3ro>0: x, y E B(xo, ro) =>

||(A -  /  (to, .))(*) - ( A -  f  (to, 0)(y)ll < |l l*  -  2/11-
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The continuity of the function D2f  at (to, rco) implies that the neighbourhood 
H x V can be chosen so that if (t, x) G H  x V then \\D2f ( t ,  x) — A|| < |  holds 
and

V(i,x) € H  x V:  ||(yl -  f ( t ,  .))(:z) - ( A  — f ( t ,  .))(y)|| < e||rc -  y||.

The number e does not depend on g, hence it is possible to suppose k:= -  <
Q

< 1. It means that

{A -  f(t ,  -))(B(x-, r)) Q B(A(x) \er) -  f ( t ,  x) C A(B(x~, kr)) -  f ( t ,  x) 

if B(x;r) QB(x0, r 0).
(iv) It is known that if D2f  is continuous at (to,xo) and D\f(to,xo)  

exists then Df(to,xo)  exists, too. So it is enough to show that D \ f  (to,xo) 
exists. Indeed,

D\f(to,  xo) =  - D2f ( to , x0) o Dg(to) 
as the following easy computation shows:

||/(., x0)(t) -  /( . ,  zoX^o) -  (~D2f ( to, xo) o Dg(t0))(t -  f0)|| ^ 

\ \ f ( t , g ( t o ) ) - f ( t , g ( t ) ) - D 2f(t ,g(to))(g(to)-g(t))\ \  +
\\D2f ( t ,  xo)(xq -  g(t)) -  D2f(t,0, x0) o Dg(t0)(t -  f0)|| i  

£i\\9(to) ~ g(t)\\ + \\D2f ( t , x 0)(x0 -  g(t)) -  D 2f ( t o , x0)(x0 -  g(t))\\+ 
\\D2f ( to,xo)(x0 -  g(t)) -  D2f ( t 0, zo) ° Dg(t0)(t -  f0)|| ^

£l||ö(to) “ fl(t)|| + £2||i?(X)) —<?(£) 11 +
\\D2f(to,xo)\\\\g(t0) -  g(t) -  Dg(t0)(t -  t0)\\ ^

(£i + £2)\\g(to) - g(t)\\ + \\D2f  (t0, x 0)\\e3\\t - 10\\ ^
(£1 + £2)(£4 +  ||-Dy(<o)||)||i — <oil + \\D2f(to,  11̂3 ||í — t0\\ £||t — toll)

if ||t — toll is “small enough”, since

IIg{t) ~ ff(io)|| -  ||^y (f0)||||< -  <o)|| ^  ||</(t) -  g{to) ~ Dg(to)(t -  f0)|| ^

£4||i-<o||,
which implies

IIg{t) ~  3(<o)|| ^  (£4 + ||£>g(<o)||)p -  toll-
□
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QUASI-UNIFORM COMPLETENESS 
AND NEIGHBOURHOOD FILTERS

J. DEÁK

A b str a c t

Smyth [14] calls a quasi-uniform space complete if each round “Cauchy” filter is the 
neighbourhood filter of a unique point. We characterize the spaces that are complete, or 
can be completed, in this sense, and also show what the definition yields with a different 
meaning of Cauchy.

§ 0. Preliminaries

In the most usual terminology, a filter f in a quasi-uniform space (X , U) 
is Cauchy if for any U Eld there is an x  € X  with Ux 6 f. Let us call f 
weakly hereditarily Cauchy (wh Cauchy, “Cauchy” in [14]) if for any S  E f, 
f I S  is U I 5-Cauchy. Equivalently: for any U Eld and S  E f, there is an 
x  € S  with UxE  f. (The adverb “weakly” is used here because f was called 
hereditarily Cauchy in [8] if f | S  is Id | S-Cauchy for each S  E sec f.) U is 
Smyth complete* 1 ( “complete” in [14]) if each round wh Cauchy filter is the 
neighbourhood filter of a unique point, where round means that for any S  E f 
there are U Eld and T E f with U[T] C S,  and the neighbourhood filters are 
to be understood in the topology ldtp of U. The curious part about this 
definition is that not the convergence or clustering of some filters (or filter 
pairs) is required. Since to be a neighbourhood filter is a strong assumption, 
few spaces are Smyth complete; in fact, we shall see that the class of spaces 
admitting a Smyth complete extension is small, too. Nevertheless, using 
neighbourhood filters when defining completeness is not a bad idea: it will 
turn out that a well-known notion of completeness can be characterized this 
way.

1991 Mathematics Subject Classification. Primary 54E15; Secondary 54D35.
Key words and phrases. Quasi-uniformity, Smyth complete, L-complete, weakly hered

itarily Cauchy filter, Cauchy/round filter (pair), linked filter pair, stable/L-Cauchy filter, 
(firm) extension.
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Neighbourhood filters are clearly round and wh Cauchy, so any Smyth 
complete space is To- In order to encompass non-To spaces, too, let us 
change the definition: a quasi-uniformity is Smyth complete if each round 
wh Cauchy filter is a neighbourhood filter. This condition is satisfied iff the 
To reflexion is Smyth complete according to the original definition. (There 
are, of course, two other ways to deal with this detail: accept that, unlike 
for other notions of completeness, Smyth complete spaces have to be To, or 
work only in the class of To quasi-uniformities.)

Let us recall some definitions from [5, 6]. The filter pair ( p 1, f1) in (X,U)  
is Cauchy if for any U &U there are Si G f  with S - \  x Si C U; round if f  is Ul- 
round (i =  ±1); linked if S - i  fl S\ ^  0 whenever Si G f . The neighbourhood 
filter pair n°(x) =  (n_1 (x), n1 (x )) of x  G X,  convergence and cluster points are 
to be understood in the bitopology (U~tp,Utp) of U, where U~tp =  (7f-1 )tp; 
e.g. (f-1 , f1) converges to x  if f  D n*(a:) (i =  ±1). Using the terminology of [7], 
U is L-complete (known also as bicomplete [10], pair complete [12], doubly 
complete [2], complete [13]) if any linked Cauchy filter pair is convergent. 
(Equivalently: any linked Cauchy filter pair has a cluster point; any linked 
round Cauchy filter pair is convergent; the uniformity Us = sup{7/_1, U] is 
complete in the usual sense.)

§ 1. Characterizing L-completeness with neighbourhood filters

L-completeness can be characterized in a way similar to the definition of 
Smyth completeness. For this purpose, we call a filter L-Cauchy if it is the 
second member of a linked Cauchy filter pair. (Recall for comparison that 
a hlter is D- Cauchy if it is the second member of an arbitrary Cauchy filter 
pair.) U (f) will denote the Z7-envelope of f, i.e. the finest round filter coarser 
than f; U{f) =  {U[S]: S  G f, U G U}.

P r o p o s i t i o n . The following conditions are equivalent for a quasi-uni
formity:

(i) it is L-complete;
(ii) each round linked Cauchy filter pair is a neighbourhood filter pair;

(iii) each round L-Cauchy filter is a neighbourhood filter.
PR O O F, (i) => (ii). Let f° =  (f-1 , f1) be a round linked Cauchy filter pair. 

Such filter pairs are minimal Cauchy ([6] 7.14). If f° converges to x then it 
is finer than the Cauchy filter pair n°(:r), thus f° =  n°(;c) by the minimality.

(ii) => (iii). Let f1 be a round L-Cauchy filter, and take f-1 such that f° =  
(f 1, f1) is a linked Cauchy filter pair. We may assume that f_1 is 7/_1-round, 
since f° remains linked and Cauchy if f_1 is replaced by 7/-1 (f-1 ). Thus f° is 
round, hence a neighbourhood filter pair, and so f1 is a neighbourhood filter.

(iii) => (ii). Let f° =  (f-1 ,^ )  be a round linked Cauchy filter pair, and 
pick a point x with f1 = n 1(x). Now n°(a:) =  (n-1 ^ ) , ) 1) is also Cauchy, and
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then so is f)° =  (f-1 D n_1 (x), f1). Again by [6] 7.14, f° and n0(x) are minimal 
Cauchy, so they coincide with the coarser Cauchy filter pair f)°, therefore 
f° =- n°(a;).

(ii)=>(i). Evident, since the round linked Cauchy filter pairs are now 
convergent. □

In spite of the simplicity of the proof, (iii) is somewhat surprising, since a 
similar one-sided modification of the original definition, namely that each L- 
Cauchy filter is convergent (or has a cluster point), leads to a non-equivalent 
notion (called complete in [2], C-complete in [1], Cs-complete in [7]).

§ 2. A characterization of Smyth completeness

We are going to characterize Smyth completeness in the following way: 
a space is Smyth complete iff it is L-complete and satisfies an additional 
condition. One more property of filters and a lemma will be needed: a filter 
f in a quasi-uniform space (X ,ld ) is stable [3] if f) [/[S'] E f for any U Eld.

se  f
Lemma. A filter is L-Cauchy iff it is stable and wh Cauchy.
PROOF. According to [6] Lemma 7.17, if (f—1, f1) is linked and Cauchy 

then f* is TT-stable (i = ±1); hence L-Cauchy filters are stable. They are 
evidently wh Cauchy, too.

Conversely, let f be a stable wh Cauchy filter, and define 

0 = { { o;€A:: Ux E f}: U EU).

(g, f) is a Cauchy filter pair (it is enough to know for this that f is stable and 
Cauchy, see [8] Remark 5.2). It is clear from the definition of a wh Cauchy 
filter that (0, f) is now linked. Hence f is L-Cauchy. □

Two simple observations will also be needed: f is stable iff 77(f) is stable 
([6] 7.18); f is wh Cauchy iff 77(f) is wh Cauchy (straightforward).

P roposition. A quasi-uniformity is Smyth complete iff it is L-complete 
and each wh Cauchy filter is stable.

(Compare the additional condition with the following useful notion: a 
quasi-uniformity is stable if each D-Cauchy filter is stable, see [9, 4, 11, 8].)

PROOF. Assume that (X, 77) is Smyth complete. If f is a round L-Cauchy 
filter then it is round and wh Cauchy, hence a neighbourhood filter. So (iii) 
from the Proposition in § 1 holds, i.e. 77 is L-complete. Take a wh Cauchy 
filter f. Then 77( f) is round and wh Cauchy, so it is a neighbourhood filter. 
Consequently, 77(f) is stable, and so is f itself.

Conversely, assume that each wh Cauchy filter is stable. By the Lemma, 
each wh Cauchy filter is now L-Cauchy, so L-completeness implies Smyth 
completeness by the Proposition in § 1. □
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§ 3. Which spaces have Smyth complete extensions?

The answer to this question is independent of what we exactly mean by 
an extension: it can be simply a superspace, or the other extreme, namely a 
firm extension [5], which means that the original space is ?Ystp-dense in the 
extension.

T heorem2. The following conditions are equivalent for a quasi-uniform
ity:

(i) it has a Smyth complete superspace;
(ii) it has a Smyth complete firm extension;

(iii) each wh Cauchy filter is stable.

P r o o f , (ii) =>• (i). Evident.
(i) =$■ (iii). Let (Y, V) be a Smyth complete superspace of (X,U).  Each 

of the following assumptions implies the next one: [ is a wh Cauchy filter in 
(X,U); f' =  fily f is wh Cauchy; V(f') is wh Cauchy; V(f') is a neighbourhood 
filter; V(f') is stable; f  is stable; f is stable.

(iii) => (ii). Any space {X,U)  has an L-complete firm extension (Y, V) 
(e.g. [10] 3.33). By the Proposition in § 2 and the observations made before 
it, the proof will be complete if we show that each round wh Cauchy filter is 
stable in (Y, V). So take a round wh Cauchy filter f) in (Y, V). We are going 
to check that a) f =  I) | X  is wh Cauchy; b) 1} =  V(fily f). Then f is stable by 
(iii), fily f is V-stable, and so is f).

a) Let S  E f. As I) is round, there is a Vtp-open G El) such that G f l X  C S. 
Given L € V , pick a E G with VaEl),  then a W  EV  such that

(1) W a C G ,  W c Y .

As X  is Vstp-dense, there is an

(2) x E W a d W - ' a n X .

Now x E S  and a E W x C V x ,  therefore V 2x E l), (V 2 | X) x  E f, implying that 
f is wh Cauchy, since the entourages V 2 | X  (V E V) form a base for U.

b) l) C fily f, so, f) being round, we have also l) C V(fily f). To prove the 
reverse inclusion, let S  E V(fily f). Then there are G E t) and V  E V such 
that V[GC\X] C S ; it can be assumed that G is Vtp-open. We claim that 
G C V[G n  X]\ thus clearly S  El).

Indeed, let a g G , and choose again W  E V  and x E X  satisfying (1) and 
(2). Now x E G fl X  and a E W x  d V x  EiV{G C\ X], □

2 (iii) => (i) is an immediate consequence of [15] Proposition 21, which states that a 
certain construction, completing each quasi-uniformity but leading out of the category of 
quasi-uniformities, remains within this category iff each round wh Cauchy filter is stable. 
Our proof will be different.
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Remarks, a) Using the Theorem, one can easily give quasi-uniformities 
that have no Smyth completion: e.g. the Euclidean neighbourhood filter 
of 0 is a wh Cauchy non-stable filter in the usual quasi-uniformity of the 
Sorgenfrey line.

b) In the realm of To quasi-uniformities, the L-complete firm extension 
is unique up to isomorphism (e.g. [10] 3.34), so the same can be said about 
Smyth complete firm extensions (assuming that they exist).
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WELL-DEFINED SOLUTION PROBLEM FOR CERTAIN 
GENERALIZED BOUNDARY VALUE PROBLEM

E. MIELOSZYK

A b stract

In works [5, 6, 7] the author considers certain generalized boundary value problem. 
This paper is partly the generalization of the results presented in [7]. We shall deal with 
the generalized boundary value problem

S X  — f , S q X  — X q , d r  — X ^

when it is a well defined solution problem.

Let the operational calculus CO(L°, L 1, S, Tq, sq, Q) be given (the defini
tion and properties of the operational calculus can be found in [1], [7]), and 
let L1 C L°.

Definition 1 (see [2]). L n is the set defined by the following recurrent 
sequence

Ln := {x E Ln_1: Sx  € Ln~1}, n = 2 ,3 , . . . .

Assume that the operation A: L2 —>• K erS  is linear where Ker S  := 
( c G f 1: Sc = 0}. With the given assumption we shall consider the abstract 
differential equation

(1) 5 2x = /

with the conditions

(2) SqX — Xq

(3) Ax — x a ,

where x  6 L2, /  € L°, Xo>9, xa  G Ker S. For this purpose we shall define in 
Theorem 2 the operational calculus induced by the given operational calculus 
CO(L°,L 1, S ,T q,s q,Q) and the operation A.
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16 E. MIELOSZYK

T heorem 1. The abstract differential equation

Snx = /

with the conditions

SqSlX — Xi q for * =  0, 1, . . . ,71 — 1,

where x  G Ln, f  6 L °, E K er5 for i = 0 ,1 , . . .  , n — 1, /ias exactly one 
solution

n—1
* =  ^  TqxitQ + Tq f.

1=0

The proof of the theorem can be found in [2].

T heorem 2. I f ATqc — c for cEKer S ,  then the operations S, Tq, sq 
defined by the formulas

(4) S x : = S 2x, x & L 2,

(5) Tqf :=Tq f  — TqATq f , f  G L°,

(6) IqX := SqX+  TqAx— TqASqX, X G L2

satisfy the definition of the operational calculus. The operation S  is the 
derivative, the operation Tq is the integral and the operation sq is the limit 
condition.

PROOF. S, Tq, Sq  are linear operations. We shall prove that 

STqf =  / ,  /G L °  and 

TqS x  = X — SqX,  X E  L 2.

Now, directly from the definition of S and Tq and from the properties of the 
operations S and T  we get

STqf -  S2T 2f  -  S2TqAT2f  =  /  -  SAT2f  = /

for /  G L°.
We must also show that the following formula holds:

T q S x  — X — SqX,  X  G L2.

For this purpose we shall compute TqS x :
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=  X — SqX — TqSqSx — TqA x + TqAsqx  +  TqATqsqSx.

Using the fact that ATqc — c for c E Ker S  we obtain

TqSx = X — SqX — TqAx + TqAsqx.

From the last relation it follows that

TqSX —  X SqX j 2< G L •

The above mentioned facts imply that the operations S, Tq and sq satisfy 
the definition of the operational calculus. □

Corollary 1. The operation Tq is an injection. The operation 'sq is a 
projection of L 2 onto K er52.

The following formula holds

sqiTqJ  = [T2 -  T2] /  -  [Tq2A T l -  Tqi AT2 ]/.

T heorem 3. If ATqc =  c for c 6 Ker S  then the abstract differential equa
tion (1) with the conditions (2), (3) has exactly one solution defined by the 
formula

(7) X =  x0,q + T q X A -  TqAx0,q + Tq f  -  TqATq f .

P roof. Theorem 3 follows directly from Theorems 1 and 2 because the 
conditions (2) and (3) are equivalent to the limit condition

S q X  —  X qtq T  T q X  A  T q  A x Q  q ,

which corresponds to the derivative S  = S 2. □

N ote. In [8] a formula analogous to formula (7) is given in the case 
when A is a limit condition. These formulas have been got using various 
methods.

Corollary 2. If ATqc =  c for c 6 Ker S  then the space L2 is isomorphic 
to the direct sum Ker S 2 (BL°, i.e.

L 2»  Ker S 2 © L°.

From Theorems 1 and 2 immediately follows 

THEOREM 4. The abstract differential equation

S 2nx — f
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with the conditions

SqS X — X2 i,q

A S 2lX — X2i,A

for i = 0 ,1 , . . .  , n — 1, where x  G L2n, f  G L° and X2í)Q,X2í,a £ Kérő" for i = 
= 0 ,1 , . . .  , n — 1 has exactly one solution given in the form

n—1
® =  ]C (T<?2 -  TqAT2y (x 2i,q + Tqx2l,A ~ TqA x2l,q) + {T2 -  TqA T 2)nf

i—0

as far as ATqc =  c for c G Ker S.

C orollary 3. I f ATqc = c for c EK er S  then the space L2n is isomor
phic to the direct sum

L° © Ker S 2 0  Ker S2 © .. .  0  Ker S 2,'------------------ V-------------------"
n-times

i.e.
L2n «  L° © Ker S 2 © Ker S 2 © . . .  © Ker S 2.

Let L° be a Mikusinski space with a partial order and a modulus | ■ |. 
(The definition of the Mikusinski space can be found in [2].) Moreover, let 
the convergence be defined like in the work [1], [6].

T heorem 5. I f the operations Tq and A  are non-negative operations 
then the operation Tq is regular. The operation Tq is continuous, i.e.

9n -» g implies f qgn -> Tqg.

PROOF. Tq is regular operation because it is the difference of non-negative 
operations. The second part of the theorem follows from the fact that the 
integral Tq, as a regular operation, is continuous. □

N o t e . The definition of the non-negative and regular operations can be 
found in [1],

D efinition 2 (see [1]). We say that the problem of solving the abstract 
differential equation

( 8)

with the condition

S x  = f , x e  L \  / g l °
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is a well defined solution problem if the equation (8) with the condition (9) 
has unique solution and if the conditions

S x n — f n, SqXn — Xn Q, f n ► / ,  Xn<0  ̂Xq

imply
xn —>x where Sx  =  /  and sqx = xq-

Using the definition 2 of the well defined solution problem and Theo
rem 5, we may formulate the following statement.

THEOREM 6. I f T q and A are non-negative operations and ATqc = c for 
c S K e rS  then the problem of solving the abstract differential equation (1) 
with the conditions (2), (3) is a well defined solution problem.

Example A. In [7] it has been proved that the partial differential equa
tion

( 10)

with the conditions

(11) {u (x i , x2, x 3, . . .  x“ )} = {y»(a;i,... ,x„-i)} ,

where ueC 3(Bn 1 x (x^, x%), R), f e C l (Rn 1 x (x\,  x*), R), ipEC3(Rn \ R ) ,  

ip e  Ker ( j r  bijjjr), bi € R  for i =  1 ,2 ,... ,n, bn -=fi 0, xan e (x\,x„) has only
vi=l

one solution.
Note that the operation A connected with the condition (12) is defined 

by formula

Au :=
2 bn

(x 2n )2 ~ { x \ ) 2 -2xf inx l  +  2 x Qnx \

so, for c € Ker AT_o c = c holds, where

7 *̂ 2} • * * 7 *£71) } *  —
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(cf. [3]). (The operation Txo is the integral for the derivative S  ~  bi-§£,
2=1

see [3].)
Introduce the order

{/(®i,*2,--- ,*n)} =  / ^ 0  iff f ( x  

for (xi, X2, ■ ■ ■ , xn) E Än_1 x (xn, x%), and the modulus

in the space C°(Rn~l x ( x ^ x ^ ) , R ) .  With such introduced order and modu
lus the space x (x^ ,x^),il) is a Mikusinski space. Therefore, from
Theorem 6, it follows that the problem of solving partial differential equation 
(10) with the conditions (11), (12) is well defined if = x \  and bn >0. 

E xample  B. The difference equation

(13) {xfc+2 +  (-pjfc+i ~Pk)xk+1 + Pkx k} = {fk} 

with conditions

(14) xko = a,

(15) Xk2= ß

where {xk}, {/*}, {pfc} are real sequences, pk 7̂  0 for k = 0 ,1, . . . ,  ko <k\  < 
<k%, a , ß  E R  has exactly one solution.

By [4] we can rewrite the equation (13) in the form

= {/*},

where
^Pk{x k} ■= {̂ -fc+l Pk%k}-

In this case the operation A  is defined by the formula
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n * - 1
i=0

from which it can be seen that for je*;} G Ker A Pk

ATPktk 0{cfc} =  { ̂ * } í

where the integral Tpk ^  corresponding to the derivative A Pk is defined by 
the formula

(17)
* - i

Tpk,ko{fk} I
1=0

(see [4]). 
way

In the formula (17) the operation T^0 is defined in the following

0
^*o{/*} < fko + /fco+1 + . . . +  fk- 1 

fko—1 fko—2 ■ • • fk

for k = k$ 
for ko<k  
for ko> k

(cf. [4]). From Theorem 3 it follows that the equation (13) with the con
ditions (14), (15) has exactly one solution given in the form (7) in which 
instead of Tq and A we have to take the corresponding operations defined by 
the formula (16) and (17). Moreover, we need to take

and

£0,<7 — ^  *

XA

* - l

l i t t
!=0

*0—1 
n  Pi
i=0

>

* - i
■ß n  Pi

i= 0

k i-l 1 \
£  ~ )

i= ko P i /

/  *1-1

( £'  t=*0

for x0<q,

for xa -

It is known that the space of real sequences with the order 

{xfc} =  x ^  0 iff for fc =  0,1,2,....

and the modulus
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is a Mikusinski space.
From Theorem 6 it follows that the problem (13), (14), (15) is well defined 

when ko = 0 and Pk> 0 for k = 0 ,1,2, . . . .
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MULTIPLE SIMULATED FACTORIZATIONS

S. SZABÓ

Abstract

By an earlier result of [1] if a finite abelian group is the direct product of subsets 
constructed from subgroups changing at most one element, then one of the factors must 
be a subgroup. The paper answers the question how far this result can be extended if the 
product is not direct but gives the elements of the group with the same multiplicity.

1. Introduction. Let G be a finite abelian group written multiplicatively 
with identity element e. Let Ay, . . .  ,A n be subsets of G. If each element g 
of G is expressible in precisely k ways in the form

9  ~  ö 1 ' ‘ i Oi GA-1,... , fljj 6 v4n,

then we say that the product A\ • • • An is a k-factorization of G. When 
the product A\ ■ ■ ■ An is direct it is a 1-factorization of G and will be called 
simply a factorization of G. If e G A\ fl ■ • • fl A n, then the subsets and the 
factorization are called normed. In the most commonly used factorizations 
the factors are subgroups. If G is a direct product of cyclic subgroups of 
order q\, . . .  ,qs, then we say that G is of type (q\, . . .  ,qs). We would like to 
point out that the type of a group is not uniquely determined. For example 
both (2,3) and (6) are types of the cyclic group of order six. However, this 
ambiguity will not cause any trouble.

In [1] the case where the factors are close to being subgroups was con
sidered. The subset At of G is said to be simulated if there is a subgroup 
Hi of G such that |Ai| =  \Hi\ ^  3 and \A{ fl Hi\ +  1 ^ \Ai\. It was proved 
that if A\ * • • An is a normed factorization of G, then one of the factors is a 
subgroup of G, that is, there is an *> 1 = * ^  n  such that A i=  H{. This paper 
deals with normed ^-factorizations of G by simulated subsets. We know that 
in the k = 1 case one of the factors is a subgroup. The next e-xample shows 
that this is not necessarily the case when k ^ .2 .

Let G be of type (2,2,2) with basis x, y, z. The subsets

Ai = {e , y , z , xyz} ,  A2 = {e, x, z, xyz},  A3 = {e, x, z, zy} 
are simulated. The corresponding subgroups are

Hi = {e , y , z , yz} ,  H2 = {e, x, z, xz},  H3 = {e,x, z ,xz}.
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The product A 1A2A3 is an 8-factorization of G and none of the factors is a 
subgroup of G.

We are interested in the following problems. Characterize (1) all the 
finite abelian groups (2) all the k. n values for which in any ^-factorization 
A\ ■ ■ ■ A n of G by simulated factors one of the factors is a subgroup.

This paper contains the solution of these problems. The finite cyclic 
groups and the group of type (2, 2) and only these groups are solutions of 
the first problem. The following k,n  values and only these are the solution 
of the second problem: n ^  2, k^.  1; n = 3, k odd; n ^ 4, k = 1.

2. Character test. The group ring Z(G)  provides an adequate tool to 
deal w ith ^-factorizations. We identify the subset A of G with the element

A = Y , a
aeA

of Z(G).  The product A\ ■ ■ ■ A n is a ^-factorization of G if and only if

kG =  A\ ■ • • A n.

Rédei [2] developed a method using characters of G to study factoriza
tions of G. Characters of Z(G)  which are linear extensions of characters of 
G can be used to study multiple factorizations.

Let Xi be the ith character of G and let gj be the jth  element of G. Let 
A , B & Z { G )

|G| |G|

A  = ^ Z ai9j, B  = J 2 bj9j-
3 = 1  3- 1

If Xi{A ) =  Xi(B ) f°r each i, 1 ^  i ^  |G|, then

|G|
J 2 ( a3 - b3 ) X i ( 9 j )  =  0.

3= 1

By the standard orthogonality relations the matrix XiÍ9j) ’s orthogonal and 
so its determinant is nonzero. Hence it follows that a-j — bj = 0 for each j ,  
1 = Í  = 1̂ 1- Therefore A = B.  Thus kG =  A\ -  ■ ■ An if and only if x{kG) — 
= x i A \ ' ' '  An) for each character x  °f G. For the principal character this 
reduces to k\G\ =  |vli| • • • \An\. For nonprincipal characters we have 0 =  
=  x {A i ) ' '  ’ XÍAn)- Therefore the product A\ ■ ■ ■ An is a fc-factorization of G 
if and only if k\G\ =  \Ai | • \An\, and for each nonprincipal character x  °f G
there is an i, l ^ i ^ n  such that x{Ai) =  0*

Let Ai be a simulated subset of G and let Hi be the corresponding 
subgroup of G. There are elements ai € Ai and hi G Hi such that a, ^ Ht 
and hi £ Ai. Further there is an element dz G G for which ai =  hidi. The
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subgroup Hi and the element di do not determine A{ uniquely since there 
are different choices for hi. For our purposes each of these choices plays the 
same role, so we will not specify Ai more closely than giving Hi and d{. 

Note that

x(Hi) ~ x{Ai) =  x(hi) -  x (M ») =  x(hi)( 1 -  x(di))-

From this it follows that if x(Hi)  =  0 and x{di) =  1) then x(Ai)  =  0. We 
show that if x(^t) =  0» then x{Hi) — 0 and x{di) ~  1» To show this suppose 
that X{Al) = 0 and x{Hi)  7̂  0- Since Hi is a subgroup of G x(h) =  1 for each 
h£Hi ,  this leads to the contradiction

3 Ú \Hi\ =  X(Hl) =  X{Hi) -  X(Ai) =  X(hi)( 1 -  x te ))  ^ 2.

Thus x{Hi) = 0 and x K )  =  1-
We formulate the character test we will use to study /c-fac tor izations. 

If the product A\ ■ • ■ A n is a /c-factorization of G, then k\G\ =  |j4 i | • • • \An\ 
and for each nonprincipal character x of G there is an i, l ^ i ^ n  for which 
X{Hi)  =  0 and x{di) — 1- Conversely, if there are subgroups H i , . . .  , Hn 
and elements d\ , . . .  ,dn of G such that A:|G| =  \Hi\ - ■ • \Hn\ and for each 
nonprincipal character x of G there is an i, l ^ i ^ n  for which x(-Hr) =  0 and 
x{di) =  1, then there is a ^-factorization Ai ■ • ■ A n of G.

3. Characterization in terms of groups. Let A\ ■ ■ ■ An be a ^-factorization 
of the finite abelian group G by simulated factors. Since Hi is a subgroup 
of G, \Hi\ = \Ai\ is a divisor of |G|. Thus if G is of type (2,2), then \Ai\ = 4  
and so Ai = G. If G is cyclic, then there is a character x °f G whose kernel 
is {e}. There is an i, 1 ^  i ^  n such that x{Hi)  =  0 and x{di) =  1- From 
x{di) — 1 it follows d( =  e. Therefore Ai — Hi.

For the remaining finite abelian groups we exhibit a /(.'-factorization by 
nonsubgroup simulated factors. We start with three special cases.

Suppose G is of type (2,2,pa), where p is a prime and a  ^  1. Let x, y, z 
be a basis of G and define A \,Ä 2, A3 by

Hi =  (y,z), d i = x ,
H2 = (x,z), d2 = y,
H3 = (x,z), d3 = Xy.

Clearly Ai is not a subgroup of G since di £ Hi. Let x  be a nonprincipal 
character of G. We show that there is an i, 1 ^  i ^  3 such that x{H%) =  0 
and x(di) =  1. Note that one of x (x )> x(y)> x(x v) is always 1. If x ( x ) =  1> 
then x (# i)  7̂  0 only if x{y) =  1 and XÍZ) =  1- Bat this is impossible since x  
is not the principal character. The x(y) =  1 and x(xu) — 1 cases are similar.
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Suppose that G is of type (2,2' 
simulated subsets A \ , . . .  , Aq+ i by

Hi = (xy), 
H2 =  (xy), 
H3 = (y), 
Ha =  (y),

), a  ^  2 with basis x, y. Define the 

d \ = y ,
di = x, 
d3 = xy,  
di = xy2,

Ha+i = (y), da+i =  xy2°
Clearly Ai ^  H, since di ^ Ht . Let x be a nonprincipal character of G. If 
X(y) = 1, then x ( H i) ^  0 only if x(xy) — 1- But now x(x ) =  1 and x  is the 
principal character. The x(x ) =  1 case is similar. Thus we may suppose that 
X(x) í  1 and x(y) Í  1- One of x(xy) , x (^y2), ■ ■ ■ , x (x y 2̂ 1) is 1. In any case 
there is an j, 1 ^  i Ú a  +  1 such that x(Hi) = 0 and x(di) =  1.

Suppose that G is of type (pa,pß), where p is an odd prime a  ^  1 and
basis of G and define A \ , .

Ö3 II IT
1<31AII'TS

Hi  =  (y), di = xpa~1

H3 =  (y), d3 =  xpal

3II 1ÖAHII3̂

Hp+i = (y), dp+1 = xpa_1

nß-i

2 pß-

(p-l)p0

Let x  be a nonprincipal character of G. If x(ypß 1) =  1, then x(Hi )  ^  0 only 
if x (x ) =  1. Hence x (xpa *) =  1- Now x(Hi )  7̂  0 only if x(y) =  1. But this is 
impossible since x is not the principal character. The case when x(ypß 1) = 
= 1 is similar. Thus we may assume that x(xP° ) 7̂  1 and x(ypß ) 7̂  1- 
In this case one of x(xpa ' y ip° *) must be 1. Therefore x ( H l+2) = 0  and 
x(di+2) = x(xp°~1yip0_1) =  l.

Finally, let G be of type (qi,--- , qs)• By the fundamental theorem of 
finite abelian groups we may assume that qi, ■ ■ ■ ,qs are prime powers. If G 
is noncyclic and is not of type (2, 2), then G = K  <g> L, where K  is one of the 
types

(2, 2,pa), a Z l ,  (2, 2*), ß ^ 2, (pa pß), p ^  3, a 3 1 ,/3 ^ 1 .
By the previous constructions K  has a /e-factorization A\ ■ ■ ■ An by nonsub
group simulated factors. Define the simulated subset An+i by Hn+ \ =  L  and 
dn+i € . K \  {e}. Clearly A\ ■ ■ ■ AnAn+\ is a ^-factorization of G.
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4. Characterization in terms of n and k. Let A\ ■ • ■ An be a A;-factorization 
of the finite abelian group G by simulated factors. For each nonprincipal 
character x  of G there is an i, 1 i ^  n such that x{Hi) = 0 and x(di) = 1- 
From this it follows that an equation Xi  • • ■ X n =  0 holds in Z(G),  where 
Xi  =  Hi  or Xi = e — d{.

If n  =  1, then e — d\ =  0 and so d\ =  e. Thus A\ - H\  no m atter what is 
the value of k.

Suppose n =  2. From (e — d\)(e — £<2) =  0 it follows that e + d\d? =d\ + d2 
and so e =  di or e = d2. Thus A 1 = H 1 or A2 =  H2 independently of the value 
of k.

Let n =  3. Consider the equation 

(1) ( e - d i ) ( e - d 2) ( e - d 3) =  0.

This equation may still hold after cancelling some factors. If such a cancel
lation is possible, say e — d\ = 0  or (e — d\)(e — d2) =  0, then as before d{=e 
and Ai =  Hi for some i. Thus we may assume that no factor can be cancelled 
from (1) without destroying the equation. From (1) after multiplying out we 
have

e +  dyd2 + d\d^ + d2d3 = d\ +  d2 +  d3 did2d3.
Some term on the right side is equal to e. Clearly e =  did2d3 since e — di 7̂  0. 
Now

did2 +  d\d$ -f d2d2 = d\ + d2 + c/3.
Some term on the left-hand side is equal to d\. Once again e — d, 7̂  0 and so 
d2d3 =  d \ . Continuing in this way we have d\ — d\ = e and d3 =  d 1 d2. 

Consider H\{e — d2)(e — d3) =  0. After multiplying out,

H\(e + d2d3) =  H\(d2 + d3), or H i (e + di) =  H i (d2 +  d^).

G is a disjoint union of cosets modulo H\. Hence H\ =  H \d2 or H\ =  H\d%. 
Thus d2 G Hi or d3 G H i. Similarly, from (e — di)H 2(e — d3) = 0  we have 
di E H 2 or d3 € H2, and from (e — di)(e — d2)H 3 =  0 we have di G H3 or 
d2 G H3.

Suppose that two different H 's contain the same d, say d3 G H i and d3 G 
G H 2. N ow (d3) C Hi f l  H2 and so H iH 2H3 is a fc-fact,orization of G with 
even k.

Suppose that no two H ’s contain the same d, say d3 G H i, di G H2, d2 G 
G H3. Now (did2) C Hi fl H2H3 shows that in the ^-factorization H iH 2H3 
of G , A: is even.

We exhibit an example to show that each even k occurs. Let G be of type 
(2,2, 2, 2, 2i), t ^ 1 with basis x, y , u, u, to. Define the nonsubgroup simulated 
subsets Ai ,A2,A3 by

H \ = ( y , u ) ,  d\ =  x,
H2 = (x , v ), d2 = y ,
H3 =  (x, in), d3 =  xy.
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Let x  be a nonprincipal character of G.
If x(x)  =  1, then x ( # i )  7̂  0 only if x(y) =  1 and x(«) =  1- Now x {H2) ±  

0 only if x i v) =  1- Since x  is not the principal character x[w) 7̂  1 and so 
x(Hs)  = 0  and x(d3) = x(zy) =  1.

If x{y) — 1) then x{H2) #  0 only if x(x ) =  1, and this reduces the problem 
to the previous case.

If x {x d) — 1) then x ( H 3) 7̂  0 only if x(^) =  1, which reduces the problem 
again to the first case.

In the resulting fc-factorization A\A2A^ of G the multiplicity is k = 21, 
t ^  1. We point out that these ^-factorizations can be extended to each n ^  3. 
Indeed, let G = K  <g> L, where K  is of type (2,2, 2, 2, 21) and define A4 by 
H4 — L  and c/4 6 K  \  {e}. Clearly, A4 is not a subgroup of G and -4i -42-43-44 
is a /c-factorization of G.

Let n = 4 and let G be of type (4,4, 2, t), t^. 3 with basis x , y, z, u. Define 
-4], -42, -43, A4 by

Hi  = (y), d i = x 2,
H i  = (u), d2 = y2,
H 3 = (z,u), d3 = x2y2,
H 4 =  (x), dA — u .

Let x  be a nonprincipal character of G.
_Jf x (z 2) = 1, then x {H\ )  7̂  0 only if x{y) = !• Now x(y2) =  1 and 

x { H 2) 7^0 only if x(n) =  1. Then x {^ i )  7̂  0 only if x ( x ) — 1- Since x  is 
not the principal character, x ( z ) 7̂  1 and this gives x(Hs)  =  0. We see that 
x(d3) =  x{x 2y2) =  I also holds.

If x(y2) =  1, then x {H2) 7̂  0 only if x iu) =  b  Further x(-fLi) 7̂  0 only if 
x(.x) =  1, which reduces the problem to the previous case.

If x ( * V )  = 1, then x ( H 3) 7̂  0 only if x i z ) =  1 and x(u) =  1- Now 
x {H4) 7̂  0 only if x(^) =  1, and this reduces the problem to the first case.

In this fc-factorization -4i -42-43-44 the multiplicity k = t and t ^  3. As we 
have already seen, this factorization can be extended to each n ^  4 and this 
completes the characterization.
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ON SCHUR COMPLEMENTS IN A CONJUGATE EP MATRIX

AR. MEENAKSHI and R. INDIRA

A b s t r a c t

Necessary and sufficient conditions are determined for a Schur complement in a Con
jugate EP matrix to be Conjugate EP. As an application a decomposition of a partitioned 
matrix into a sum of Conjugate EP matrices is obtained and the question of when sum of 
Conjugate EP matrices is as well a conjugate EP is studied.

1. Introduction

For an m x n complex matrix A, let A, Ar , A* denote conjugate, trans
pose and conjugate transpose of A, respectively. Any matrix X  satisfying 
A X  A — A is called a generalized inverse of A  and is denoted by A ~ . A + is 
the Moore-Penrose inverse of A [6]. A square complex matrix A  is said to 
be conjugate EP (Con-EP) if N(A) = N ( A ] ) or A A + = A +A, where N(A)  is 
the null space of A. A  is said to be Con-EPr if A is Con-EP and rk(A) =  r, 
where rk(A) is the rank of A [4]. In particular, if A is real, then Con-EP 
coincides with that of EP [7].

Throughout this paper we are concerned with n x n matrices M  parti
tioned in the form

( 1. 1)
B
D \  ’

where A and D are square matrices. With respect to this partitioning a 
Schur complement of A in M  is a matrix of the form M /A  =  D — CA~B.  
For properties of Schur complements one may refer to [1], [2], [3]. M /A  is 
independent of the choice of A~ if and only if

(1.2) N(A)  ^  N(C)  and N(A*) C N(B*)  or, equivalently,

(1.3) C = CA A and B  — AA B  for every A of A.
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Key words and phrases. Schur complements, conjugate EP matrices, generalized in

verses.
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If a partitioned matrix M  of the form (1.1) is Con-EP, then, in general, 
M / A  is not Con-EP. Here we determine necessary and sufficient conditions 
for M / A  to be Con-EP analogous to that of the results found in Meenakshi
[3]. We shall deal with the cases when rk(M) ^  rk(A) and rk(M) =  rk(A). 
As an application, a decomposition of a partitioned matrix into a sum of 
conjugate EP matrices is obtained. Further it is shown that in a Con-EPr 
matrix, every principal subm atrix of rank r  is Con-EPr .

Results

T heorem 1. Let M  be a matrix of the form  (1.1) with N(A) g N ( C )  
and N ( M / A ) g N ( B ) .  Then the following are equivalent:

(i) M  is a Con-EP matrix;
(ii) A and M /A are Con-EP, N(A*)gN(B*)  and N((M /A)*)gN(C*);

(iii) Both of the matrices

A B  
0 M / A

are Con-EP.

PROOF, (i) => (ii) Since N(A) g N(C ) and N (M /A )  g N(B)  by using
(1.3) we can write M as M  = PQL  where

A  0 
C M / A and

P  = I
CA-

I  B(M/A)~  
0 I

0
M /A

Clearly P  and Q are nonsingular. M  =  PQ L  => M  = L Q lp 1 is one 
choice of M ~ . M  is Con-EP => N{MT) =  N (M )  =* M T = M r M ~ M

[Ar
B t

a t
b t

CT 1 
d t

L~L =

a t CT A~ 0 'A 0
b t d t 0 (M /A)~ 0 M /A

a t CT ' 'A~A 0
b t d t 0 ( M /A ) - M /A

=> A T =  ATA A; by (1.2) and (1.3) we get N (A)  C N (A T) and rk(A7 ) = 
rk(A) => N(A) = N {A t ) => A  is Con-EP. B r  = B t A~A => N{AT ) =  N{A) g 
c  N { B T). Hence N(A*) g  N(B*).  Now, CT = CT (M /A)~M /A  and D T = 
= D t (M/A)~M/A.  After substituting D =  M / A  + (B A ~ C ) and using CT = 
C t {M/A)~M/A  in D t  = (M /A)T + {BA~C)T we get {M/A)T{ M /A ) - M /A



ON SCHUR COMPLEMENTS 33

which implies N(M/A)  C N ( M fA ) 1 and using vk(M/A) = rk( M /A ) 1 , we get 
N{M /A)  = N {M /A) t . Thus M /A  is Con-EP. Prom

Ct  = Ct {M /A)~M /A

we get, N(M /A )  g N (CT). Using M /A  is Con-EP, this reduces to 
N ((M /A ) t ) g N{Ct ) => N((M/A)*) g N(C*). Thus M  is Con-EP => A 
and M /A  are Con-EP, N{A*) g N(B*)  and N{{M/A)*) g N(C*).  Thus 
(ii) holds.

(ii) => (i) Since N(A) g N(C), N(A*) g N(B*), N(M/A)  => N{B)  and 
N((M/A)*)  C N(C*) hold according to the assumption, by applying (v) of 
Theorem 1 of [1], M + is given by the formula,

( 2 . 1) M + = A + + A+B{M/A)+CA+ 
- ( M /A )+CA+

- A +B(M/A)+ 
(.M/A)+

By (1.2) M /A  is invariant for every choice of A~.  Hence M /A  =  D — C A +B. 
Further using C =  M /A (M /A )+C  and B  = A A +B , M M + is reduced to the 
form

M M + = A A +
0

0
M /A ( M /A ) +

By using B  = B (M /A )+M /A  and C = C A +A, M +M  is reduced to the form

M +M  = A+A
0

0
{M/A)+M /A  ■

A and M /A  are Con-EP =► A A + = A+A and

(.M /A )(M /A )+ = (M/A)+(M/A)  => M M + = M+M  =► M  is Con-EP.

Thus (i) holds, 
(ii) => (iii)

Mi A  0 
C M /A

is lower block triangular with N(A) g N(C); N((M/A)*)  Q N(C*).  Hence 
by Corollary 7 of [5],

M+ =

Mi M+ =

Now A and M /A  are Con-EP => Mi =

,4+ 0
— {M/A)+CA+ (M/A)+
AA+ 0

0 M/A{M/A)+

A 0
C M /A is Con-EP.
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M2 =

In a similar way by applying Corollary 7 of [5] to the upper block trian
gular matrix

' A  B
0 M /A

with N(A*)  g N(B*)- N { M /A )  g N(B),  we have

' A+ - A +B ( M / A ) +
0 (M/A)+

and

M 2M+ = AA+ 0
0 M / A ( M / A ) +

A
0

B
M /A is Con-EP. ThusBy using A and M /A  are Con-EP we get M2 =

(iii) holds.
(iii) =► (ii) Since N (A)  g  N{C) by (1.3), C = CA~A.  Hence My =  PL

where

P  = I
CA~ L = A

0
0

M /A Mi = A 0 
C M /A

Suppose Mi is Con-EP then as in the proof of (i) => (ii) using My =  
=  M l  My M x we can prove that A and M / A  are Con-EP, N(M/A)* g 
g  N(C*).  Similarly, N(M/A)QN(B)=> B = B(M/A)~M/A=>

M2 = A
0

B
M / A

I B(M/A)~ 
0 I

A
0

0
M /A = QL.

M2 is Con-EP 
A  0
C M /A

A  and M / A  are Con-EP and N{A*) g N(B*). Thus 
\ A B  1and q M / A are Con-EP => A and M /A  are Con-

P, N(A*)  g N(B*) and N{M/A)*) g N{C*). Thus (ii) holds. The proof is 
complete.

T heorem 2. Let M  be a matrix of the form (1.1) with N(A*) g N (B *)  
and N ((M /A)*)gN(C*) .  Then the following are equivalent:

(i) M  is Con-EP matrix;
(ii) A and M /A  are Con-EP, further N(A)  g N(C) and N ( M / A ) g 

g  N(B);
(iii) Both the matrices

0 1 J \A B
M / A  0 M /A

A
C are Con-EP.

P roof. Theorem 2 follows immediately from Theorem 1 and from the 
fact that M is Con-EP M* is Con-EP.

In the special case when B = C* we get the following.
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Corollary 1. Let M  = A
C

C * 
D with N{A)  g N(C) and N (M /A )  Q

QN(C*), then the following are equivalent:
(i) M  is a Con-EP matrix;

(ii) A and M /A  are Con-EP matrices;
(iii) The matrix

A 0
C M /A is Con-EP.

Remark 1. The conditions taken on M  in the above theorems are es
sential. This is illustrated in the following example. Let

M  —

i i
i i

i i
i i

i i
i i

i i
i 0

M  is symmetric and of rank 2, hence M  is Con-EP2-

A = B = C = i i
i i is Con-EP,

M /A  = D — C A +B  = is Con-EP.

Clearly N(A)QN{C); N{A*)gN{B*).  But N (M /A )£ N (B )  and N{(M/A)*)
A 0 
C M /A  

and 2 as well as Coro

N(C*). and are not Con-EP. Thus Theorems 1A B  
0 M /A  

lary 1 fail.
R emark 2. We conclude from Theorems 1 and 2 that for a Con-EP 

matrix M  of the form (1.1) the following are equivalent:

(2.2) N {A )g N {C ) ,  N{M/A)  Q N(B),

(2.3) N ( A * ) g N ( B *), N(M/A)* QN(C*).

However, this fails if we omit the condition that M is Con-EP. For example, 
let

i i : i 0
i i : i 0

i i
.0 0

i i 
0 0.

(2.4) M  =
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be not Con-EP. Here A  = i
i  ̂ is Con-EP. Since rk(H) =  1,

A+ = A * -  ' A  
tr {A*A) 4

B  = —C* = i
i

0
0

N(A) Q N(C)  and N(A*) Q N(B*).  Hence M / A  is independent of the choice 
of A~.

M / A  = D — CA+B = q *

is not Con-EP. N{M/A)* g  N(C*) but N (M /A )  g N(B).  Thus (2.3) holds 
while (2.2) fails.

R emark 3. It has been proved in [1] that for any matrix M  its Moore- 
Penrose inverse M + is given by the formula (2.1) if and only if both (2.2) 
and (2.3) hold (cf. (v) of Theorem 1 in [1]). From Remark 2, it is clear that 
for a Con-EP matrix M , (2.1) gives M + if and only if either (2.2) or (2.3) 
holds.

C orollary 2. Let M  be a matrix of the form (1.1) for which M + given 
by the formula (2.1) is Con-EP if and only if both A and M /A  are Con-EP.

PROOF. This follows from Theorem 1 by taking into account Remark 3.
T heorem 3. Let M  be of the form (1.1) with rk(M) = rk(H) = r .  Then 

M  is a Con-EPr matrix if and only if A is Con-EPr and CA+ =  (A+B)1 .
P roof. Since rk(M) =  rk(A) =  r, by Corollary after Theorem 1 in [2], 

then N(A) Q N(C); N(A*) Q N(B*)  and M / A  = D -  CA+B =  0. By (1.3) 
these relations are equivalent to C = CA+A; B  — AA+B and D — CA+B. 
Let us consider the matrices

I  o' I  A+B' A O'P  = CA+ I , Q 0 I ) L — 0 0

P  and Q are nonsingular, and, by the assumption CA+ = {A+B)T , it holds 
P  = Q 1 . Therefore M can be factorized as M  — P L P 1. Since A  is Con- 
EPr, consequently L  is as well as Con-EPr - Now by Result 2.2 of [4] M  is 
Con-EPr .

Conversely, let us assume that M is Con-EPr . Since M  = P L Q , one 

choice of M~  is Q - 1 [j P ~ l . M  is Con-EPr => N ( M T) = N(M ) ,  by

(1.3) M T =  M t M ~ M .  That is

r a t CT ] CT 1 'y4+^l A+B'
B t d t b t e>t 0 0
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(or) equivalently, A 1 =  A 1 A +A and C 1 =  A7 A+B. Since rk(A7 ) =  rk(A) = 
r, from A 1 =  A 1 A +A we get N { A ' ) = N{A).  Thus A is Con-EPr , which im
plies A A + = A+A =  {A+A)*) =  {A+A)1 . Taking into account CT= A ! A+B , 
we have CA+ = {A+B)TAA+ = B T{A+)TAA+ = B T{ A + f  {A+A)T = 
= B T{A+AA+)T = B 1 {A+Y = {A+B)r . The Theorem is proved.

In the special case when A  is nonsingular, A is automatically EPr and 
Theorem 3 reduces to the following:

Corollary 3. Let M  be of the form. (1.1) with A nonsingular and 
rk(M) =  rk(A). Then M  is a Con-EP matrix <3-CA+— {A+B)1.

Corollary 4. Let M  be an n x n matrix of rank r. Then M  is Con- 
EPr every principal submatrix of rank r is Con-EPr.

P roof. Suppose M  is a Con-EPr matrix. Let A be any principal sub
matrix of M  such that rk(M) =  rk(A) = r. Then there exists a permutation 
matrix P  such that

M  = P M P t A B  
C D

with rk(M) =  rk(A) =  r. By Result 2.2 of [4], M  is Con-EPr . Now we 
conclude from Theorem 3 that A  is Con-EPr as well. Since A was arbitrary, 
it follows that every principal submatrix of rank r  is Con-EPr . The converse 
is obvious.

R emark 4. Theorem 3 fails if we relax the condition on rank of M.  For 
example let us consider the matrix (2.4) in Remark 2, rk(AL) —2 ^  rk(^4).

M  is not Con-EP. However, A = i
i is Con-EP.

A + - C A + = {A+B)t .

Thus the theorem fails.
A pplication. We give conditions under which a partitioned matrix is 

decomposed into complementary summands of Con-EP matrices. M\  and 
M2 are called complementary summands of M  if M  =  M 1+M 2 and rk(M ) =  
=  rk(Mi) +rk(M2).

T heorem 4. Let M  be of the form (1.1) with rk(M) =  rk(A) +  rk(M /A) 
where M fA  — D — CA+B. If  A and M /A  are Con-EP matrices such that 
CA+ = {A+B)7 and B{M/A)+ = {{M/A)+C)J then M  can be decomposed 
into complementary summands of Con-EP matrices.

PROOF. Let us consider the matrices

Mi A AA+B 
CA+A CA+B
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and
m 2 = 0 (I - A A + ) B

C ( I - A + A )  M / A

Taking into account that N(A) Q N{CA+ A ), N(A*) ^  N  ((AA+B)*) and 
M i/ A  = CA+B -  (CA+A)A-{AA+B ) =  CA+B  -  CA+B = 0, we obtain by 
Corollary after Theorem 1 in [1] that rk(Mi) =  rk(A). Since A is Con-EP 
and (CA+A)A+ = C A + =  (A +B)T — (A+AA+ B ) 1 we have from Theorem 3 
that Mi is Con-EP. Since rk(M) = rk(A) + rk(M/A) ,  Theorem 1 of paper [1] 
gives N { M / A ) Q N ( I  -  AA+)B- N({M/A)*) g  N({C{I -  A+A))*) and ( / -  
— A A +)B (M / A)C(I  — A +A) =  0. Thus by the Corollary after Theorem 1 in 
[1], we have rk(M2) =  rk(M/A).  Thus rk(M) =  rk(Mi) + rk(M2). Further 
using A A + =  A+A =  (A +A )r , we obtain

(7 -  A A +)B(M /A )+ =  (J -  AA+){{M/A)+C)t  

= [[M/A)+C{I -  AA+) y

= ( (M /  A)+C {I -  AA+y*  

= {{M/A)+C { I - A A +))t .

Thus by Theorem 3, M2 is also Con-EP. Clearly M  = M\ + M 2 and rk(M) =  
=  rk(M i) +  rk(M2). Hence M\  and M2 are complementary summands of 
Con-EP matrices.

R e m a r k  5. We note that any matrix that is represented as the sum of
k

complementary summands of Con-EP matrices is Con-EP. For if M  =  ^  M,
2=1

k
such that each Mi is Con-EP and rk(M) =  ^  rk(Mi), then

i=i

N (M )  = n N{Mi) = n N ( M ? )  = N {M T).
1=1 i=l

Thus M is Con-EP.
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SIMULTANEOUS POINTWISE APPROXIMATION 
OF LAGRANGE INTERPOLATION

G. MASTROIANNI* 1 and P. VÉRTESI2

1. Introduction. Preliminary results

1.1. Let

(1.1) X(w) = {xkn{w),k = l , . . .  ,n , n E N}

- K x nn(w )< xn- i tn(w) < . . .  < x i n(w) < 1,
be the zeros of the generalized Jacobi polynomials pn(w) EVn orthonormal 
with respect to the generalized Jacobi weight function

wa,P(x) — w(x) =
{

V?(x)(l — x)Q(l +  x)P
0

if |x |^ l ,  
if \x\ > 1,

where a, ß  > — 1, ip > 0, <p € C° (continuous in [—1,1]), J0l ui(<p,t)t~1dt < oo. 
Here, as usual, u ( f , t) is the modulus of continuity of / .

If Ln( f , X , x) E Vn denote the Lagrange in terpolator polynomials based 
on arbitrary interpolatory matrix X  = {xfcn , k = 1 ,... , n, n =  1 ,2 ,. . .  }, then

(1-2) Ln( f ,X{w) ,x )  = '^2f{Xkn(w))lkn{X{w)1x)
k= 1

where are the fundamental functions of Lagrange interpolation, so with 
obvious short notations

(1.3) Zfcn( X M ,* ) =  , i P?fX)----- k = l , 2 , . . . , n .
Pn\x k ){x -Xk)
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For a. = ß  =  —1/2, <p(x) =  1, denoting X(w)  by T  (Chebyshev nodes), O. Kis
[1] proved the pointwise estimate

(1.4)

{
/z----- 2 71 I }

t v ( / , ----) logn +  ^ w ^ ) - j ,  /  € C(uj).

Considering the function class C(u) { / : ^  w(i)}, where m(f) is a
modulus of continuity, Ju. R. Vainerman [2] obtained an asymptotic expres
sion for sup { |L„(/,T , x) — /(ic)|}, while in P. Vértesi [3] we got

/ec(w)

(1.5)
n \A^ xt

k=l n

where and correspond to (1.2) and (1.3) if w(x) =  (1 — x )a x
x ( l  +  a;)^. Also, as it is proved in [3], the order of estimation in (1.5), in a 
sense, is the best possible for C(uj).

1.2. When /(«) e C , q ^  0, one may ask the simultaneous estimation of
I L̂ n ( / ,  X,  x) — /W (x)|, O ^ i ^ q ,  where the interpolatory matrix X  C [— 1,1] 
is to be chosen. Taking the matrix T  plus some additional nodes “close” to 
±1, J. Szabados [4] obtained results which were best possible in order. For 
other X(w),  see P. O. Runck, P. Vértesi [5]. For a general matrix X  see 
K. Balázs and T. Kilgore [6]. However, all three papers deal with uniform 
estimates. Our aim is to get good simultaneous pointwise estimations.

2. New results

2.1. Let us define Y  = {yinYi=\ and Z  =  {zin}f=1, ( r ,s^  0, given) by

^2 ^  1 =  Z in  ^  Z2n  <  • • . <  Zsn  <  X n n j X \ n  <  y i n  ^  J/2n K. . . .  K. y r n  = 1

z i+ l,n  — z in  ~  X n n  — Zsn  ~  y t+ l ,n  2/tn ~  y in  ~  x i n ~  Tl ,

1 ^  i <  s, 1 ^  f < r, respectively. If
r s

An(x) =  c P J (s -3 /i) ,  B n{x) = c J J (x -Z i)
i=1 i=l

then for the Lagrange interpolatory polynomials Lnrs( f ,X(w) ,x )  of degree 
^ n  +  r  +  s — 1 based on the roots of An(x) B n (x)pn(w, x), by the notations

Dn( f tx) = D & P { f , x )  = f ( x ) - L nrs( f ,X (w la0 ) , x ) ,
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( 2 . 2)

_  <7 «  1 x q A ß  1
7 ~ 2  +  2 + 4' í “ 2 +  2 + 4

y / l—x 2 2
= ---------- l—ö, \ x - x jn\= min |x-® fcn|, j  = j(x) = j (x ,n ) ,n n isfcsn

J  = m m ( j , n -  j  + 1) (clearly j '~ n 2A„(x)),
we have

THEOREM 2.1. L e ír and s be nonnegative integers, a ,ß> — l. I f f ^ G C  
(q ^  0), tee /lore

| A i ( / , * ) |  ^ c A « ( x ) ( l  - * j „ ) T _ 7 ( l + X j „ ) Ä_<5X

( l - Xkny - r H ( l  + Xkn)S-°H
(23) x $ > ( / « ,  A„(**))

k = l n \ x - x kn\
1*1 <1.

2.2. Prom Theorem 2.1 we get an estimation of type (1.4). If

(2.4) I S i S n
k=t

then
Corollary 2.2. Lei us suppose that r — 'y = s — S := t . Then by the 

above notations and conditions

(2.5) I £>„(/, *)l ^  cA’ (x){a,(/W, An(i)) log(n2A„(x)) + S(j(\x\), n, r)} 

uniformly for |x| ^  1, whenever

(2.6) r g l .

2.3. To obtain simultaneous estimations for |Dr̂ | ,  we will apply 
Dzjadyk’s theorem.

D efinition. Let ip(u) be a nonnegative increasing and continuous func
tion defined for c in -2 £  u ^  C2n_1. y>(u) is semiregular if with a proper
integer m  > 0

(i) ip(Xu) ^ Cß(A +  l)myj(u), l^A ^C 4 n , Xuúc2n~l .

If, moreover

(ii) utp(U)úcr>Uip(u), c\n~2 ^  u ^  [/ ^  C2n_1

then </?(u) is regular (ci, C2,. . .  , C5 are fixed and positive).
Of course a modulus of continuity w{u) is regular. On the other hand, 

the function ip(u) =  u\ log n 2u\ is only semiregular.
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THEOREM 2.2. If f  E C then with any fixed, p>  0,
(2.7)
\Dn H f , x ) \ ^ cAn * (® )M /(9\  An(«))log(n2A n(a:)) +  S(J,n ,T)}, 0 g i ^  q,

whenever |x| ^  1 — pn~2. Here c = c(p). Moreover, whenever

(2.8) Ll(u) :=w(f(-q\2u) log(2n2u) + S{n2u ,n ,r ) ,  l ^ n 2u ^ 3 n /4 ,

is regular (with the same constants ,c$, for arbitrary n , r ^  1 fixed)
then (2.7) holds true for |x| ^  1.

Actually the argument which led to Theorem 2.2 gives the following more 
general

T heorem 2.3. Let f ^  E C and let Dn be estimated as follows

(2.9) \Dn(f ,  x ) \ i c A qn(x )$ (A n(x))

where <J>(it) may depend on a ,ß , r , s ,  and n, too. Then if 4>(u) is semiregular 
(with the same constants ci,C 2,... , C5 for arbitrary n; a ,ß , r ,  and s are 
fixed) then

(2.10) 1 4 ° ( / , * ) l  ^  c A r  ( i ) $ (A n (i)) ,  0 i i i q ,

whenever |x| ^ 1—pn 2 (p > 0, fixed). Moreover, (2.10) holds true for  |x| ^  1, 
whenever 4>(u) is regular.

2.4. To get further estimations we consider some special cases.
(1) First we estimate as follows:

S ( j , n , r ) ^ c j 2rw ( ^ )  S ( j  +  l )
k=j

I k - 2̂ 1-

So we get from (2.5) by J  ~ n 2 A n(x)

[ c A n ( i )w ( /^ ,A „ ( i ) )  log(n2An(:r)),
(2.11) \Dn( f , x ) \ Z {

[ cAh{x)w( f (q\  A n(x)) log n,

whence by Theorem 2.3
(2) If r  =  1/2, for arb itrary  / ,  with 6 C,

(2.12) |£>W(/,a:)| ^  cA«“ l (x )w (/(<?), A n(x)) logn,

<  T ^  1 ,

i f  T =
1
2 ’

1̂ = 1
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moreover if 1/2 < r  ^ 1 and u j ( u ) log(n2u) is regular (by ui(u) ~  uß, 0 < /i < 1) 
then, uniformly in x:
(2.13)

\D^)( f , x ) \ ^ c A qn l(x)uj(f('‘l\ A n(x))log(n2A n(x)), O ^ i ^ q ,  |x| ^  1.

Actually, this estimation shows that for a given q ^  0 there are infinitely 
many “good” r, s,a,  ß for which one gets (2.13). Omitting regularity, (2.13) 
holds only for |x| ^  1 — pn~2.

(3) Let s(t, n) := {x; 0 ^  xtn ^  |x| ^  1, |x —Xj(n)| ^  cjn~2} (i.e., we exclude 
“small” intervals around x^’s). Obviously, for any e > 0 there is c =  c(e) such 
that |s| 2 — 2xm — e. By [2, (13)], whenever oj(u2) ^  cuj(u),

(2.14) sup { max |/(x ) -  L „(/, T, x)|} ^ logn.
/ e C ( u )  x£s( i,n) V n /

On the other hand, from (2.11) if q = 0, a — ß  — —1/2

sup { max |/ ( x ) - L „ n ( / ,T ,x ) |}  log(n2A„(x)),
/e C (w )  *es( t ,n )  v n /

which generally is better than (2.14). (Other values of a ,ß  can give similar 
estimations: the conditions are 1/2 < r  =  r — a/2  — 1/4 = s — ß /2  — 1/4 ^ 1 
(9 -0 ).)

(4) If r  < 1/2, we get

S( j , n , r )  ^ c j 2ruj(J^)

WÜ ) ’ T>°’
< w ( - )  lü g - ,  T — 0,vn/ j

r  < 0.

Statements similar to the above ones can be obtained (if r  ^  0), but they 
generally are “less pointwise” than the above ones. We omit the details.

2.5. A possible generalization is when the additional nodes are “very 
close” to each other, including the cases when they are equal. Then, to 
get estimations with the previous order sometimes we have to suppose more 
on /(x ). As an example, let r  =  2, y2n — Vin =  £n/n2, en ^  0, lim en —

n —>oo
= 0. Then \gn[y i,V2]\ ^  cmax(|g(yi)|, \g(y2)\)n2 (cf. (3.4)) does not hold any
more. Instead, to maintain the previous estimations, we have to suppose that 
/ ' €(7, and use \gn[yi, I/2]| =  l0n(OI> U\ ^£^2/2- We omit the further details.
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3. Proofs

P roof of Theorem 2.1. Let Gn(f,x)  £ Vn be the Gopengauz polynomial 
(cf. [8]) so we have

|/C)(x) -  C $0M l S y/l
(3-1)

i c A y ( x M f ( * \ A n(x)), 0 i i ^ q ,  N ^ l .

Then by definition for dn( f ) : = /  — Gn(f)

f(x)  -  Lnrs(f ,  X  (w), x) = dn(f, x) + A n (x)pn(x)Ls ( y y , Z i x ) +

(3.2) + Bn(x)pn{x)Lr ( j y y , Y , x ' )  +

+ An{x)Bn{x)Ln ( - ^ - , X ( w ) , x ' ) .

3.1. To estimate B npnL r (or AnpnLs) we use the Newton’s representation 
whence by gn = dn{Bnpn)~l

r i—1
(3.3) L r (gn , Y , x )  =  ^ 2 { g n [yu y 2 , - - -  , Vi] I J ( *  _  i/t)}

i=i t =  l

where with
9n[yi] = 9n (iji )

(3.4) gn[yuV2, - - - ,v i \  =
9n [ y i , y 2, - - -  , y i - \ ] ~ 9 n [ y 2 , y 3 , - - -  ,Vi] 

V i - V i
t > l .

By Xk =  cos 9k, 60 =  0, 0n+\ =  7r, a: = cos 6 and using (2.2) we have, by obvious 
short notations

(3.5) 0fc+l,7i-0fc,n~-, forn

(3.6) I P n { x )
n \6  — 9 j  I

{1 -X j )2+*(1 + X j)2 +*

uniformly for |x| ^  1,

(3.7) \Pn(x k) \  ~
n

/ . a I 3 . y ß I 3
( l - X k ) S + t ( l  + x k)2+l
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uniformly in k and n. Hence if K  = min(/c, n — fc +  l) and J  =  min(j, n —j  +1), 
1 we can easily obtain

(3.8)

I j  ~  k I min{j + k, 2n +  1 -  j  -  k} 
| x - x fc| ~ ---------------------—---------------------, k ^ j ,

nc

\ X  — X j  I ~
\ e - e j \ j  ^  j

_  C
n  nz

a2
l = j  = n,

kl - a r , ~  O ^ a i j g l

uniformly in x , k , j  and n  (cf. P. Vértesi [7] for other references).
i- i

First let 0 g x g 1. By gn[yu .. .  ,yt] ^  c max \gn{yt)\ Y[ \yt -  y t+i\ l ,
t=l

(2.1), (3.6) and (3.1) we get

\Bn(x)pn(x)Lr{gn, Y , x ) \ ^ c [ - )
1=1 “ —

2i—2
J

t=i
s e É (j)“+4 ~ - S..o+5j^2q n 27

We compare 5i with 52 which is the “fc = 1 ” (or “k =  2” if j  =  1) term of the 
right side of (2.3). By (3.1) and (3.8), using (2.2)

52
2r—27

UJ
1

n 27 - 2r+ 2
u ( z * )  -2T - Q - 2.5

n2? J

whence Si 5í CS2. Similar argument shows that Si ^ CS2 when — 1 Si x  ^  0. 
So \BnpnLr\ can be estimated again by the first (second) term of the right 
side of (2.3) (with a proper c>0) .  Similarly, \AnpnLs\ can be estimated by 
the “k = n ” (k = n — 1) term.

3.2. To estimate A nB nLn ( ~ ^ — \ first let 0 ^  x ^ 1, say. If x = xj, 
Dn(f, xj) =  0, so from now on we suppose x ^  xj. We write

An(x)Bn( x ) L J - £ - ) \ z\ An±Jn / I 
n

= \ Y l A n ^ B n { x ) d n{xh) A ~ 1(xk) B ~ 1{xk)lk{X(w),x)  
k=0

s l E l + l E l - a + s , .
k=j

<
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By \An (x)\ ^ c ( l - X j ) T and \Bn(x)\ 5Í c (because x  ^  0) further using (3.1),
(1 _  x .

(3.6), (3.7) and A n(xk) ---------- -----, we get

S s ^ c (1 - X j ) T-
ni E

k^J

^ ( A n(xk))
n\x — xk\

{ l - x k)2 + 2 + 4-r{l + x k) Í +i +ta+áo ' o

which is by 1 /2 ^1  +  Xj < 2, the right-hand side of (2.3) if we use notations
(2.2) . 64 can be estimated by the “k =  j  +  1” term of (2.3) considering
(3.8) and (3.6) whence \pn(x)\\x — Xj\~l ~  n 2 j ~ l {I — Xj)~*~* ( x ^ x j ,  xTi.
^  0). Similar estimation holds when — 1 ^  x  ^  0. Taking into account point 
3.1, we get Theorem 2.1. □

3.3. P roof of Corollary 2.2. First let 0 ^  x  ^  1. We write the sum in
(2.3) as

J l ' + = :S i + s 2
k^j  §j<k^n

(E ' means that k /  j) .  For 51 by A n(xk) ^  cA n(xj), \ /u  ^ 1 + x k ^  2 and
(3.8)

Si
x  (An (xj))

n —2r E
k= 1

„1 - 2  t

( f c + j ) ( l i - fcl +  i)
(

Tl \
- )  log {j + 1)

if we desintegrate the sum according to

E= E  + E '
fc=1 igfc<§ j

and consider that (by r  ^  1) 1 — 2r ^  —1. Using (1 — Xj)T~1{\k + x j ) s~s = 
=  (j / n ) 2r and n2A n(x) ~ y , we obtain the “log” part of (2.5).

At the estimation of S% we use that \x — x k\ (k /n )2 (by k ^  3/2j
and x  ^  0 (cf. (3.8)). The remaining part is the same as above, whence

(1 — X j ^ Y -1 S2 < cj2r w(k /n2)k~1~2T which by (2.4) is the aS  part” of
k=j

(2.5). Finally, if — 1 ^  x  ^  0, by — x = y , and K  = n — k + 1 we write 

\Dn ( f , x ) \ ^ c A qn{x)(l -  x 2(x)Y  Y  uj{An(xk) ) ^ l - x 2S) ( n | x - x fc|)-1
k^j(x)

~A£(y)( l  - x ] {y)Y  Y  w(An(®*))( \ / l  -®jt) ( n | y - x fc|)_1
K^j{y)
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(cf. (2.3) and (3.8)), whence we get (2.5). □
P r o o f  of Theorem 2.2. We need a lemma proved essentially by V. K. 

Dzjadyk. For 0 < a ^  1, |x| we put, (cf. G. G. Lorentz [9, p. 70])

An(x,a)
\/a x

n ■ + n. n  =  1 ,2 ,. . .  , A 0(s ,a )  =  l.

Lemma 3.1. Let 0 < a ^  1, 0 <b<a,  t =  0 ,1 , . . . ,  and let be a semireg
ular function. If an algebraic polynomial Pn E V n , N  ^cn ,  satisfies

(3.9) \Pn{ x ) \ ^ c A ln{x,a.)p{An{x,a)), |x |^ a

then with a \= a  — bn~2 and a proper constant M  = M(a, 6, m),

(3T0) |^ ( * ) |  ^  M A '- 'fi,a i)v ? (A n(a;,c*i)), |x |^ a i .

If, moreover, (p is regular then

(3.11) \ P f { x ) \ ^ M A l~l {x,a)ip(An(x,a)), |s |g a .

The proof of (3.10) is a word-by-word repetition of that in [9, Lemma 4 1, 
p. 70], noting that it actually uses only the semiregularity of p  (cf. [9, Lem
ma 1, p. 67], too). From (3.9), using (ii), we get (3.11) as in [9, Theorem 3, 
p. 71].

Now we prove Theorem 2.2. By (3.1) and (3.2) , if Qn := A npnLs + 
+ BnPnLr T AnB nL n then,

(3.12) \Qn( x ) \ ^ c A ^ x ) Ü ( A n(x)), |*| g 1

(cf. (2.4) and (2.5)). By Lemma 3.1, if we prove that fl(u) is semiregular we 
can get (2.7) (using Lemma 3.1 q times) for jrc| ^  1 — pn~2. By log(A2n2u) =

log A -I- log(2n2u) < c(A +  1) log(2n2w) and S(Xn2u, n, r) < A2T(n2u)2r ^
k=[n2u]

. . .  < (A + l)7 S(n2u, n, r)), T  = [|2r|] +  1, we get (i) for Q(u) with m = 
- max(2, T).

The estimation (2.7) for |x| ^  1 comes from (3.11) and the regularity of
Í2(u). □
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AN ASYMPTOTICALLY EXACT ADDITIVE COMPLETION

I. Z. RÚZSA* 1

1. Introduction

We call two sets A, B  of positive integers additive complements, if their 
sum

A B  — {íz -f~ b ft £ A, b G B }

contains all sufficiently large integers. A pair of additive complements obvi
ously satisfies

(1.1) A { x ) B { x ) ^ x - K

with some constant K,  where A(x) denotes the number of elements of A 
up to x. Disproving a conjecture of Hanani, Danzer [1] constructed sets 
satisfying

(1.2) A (x )B (x )~ x .

For sets satisfying (1.2), Sárközy and Szemerédi [4] strengthened (1.1) to

A(x)B(x) — x —> oo.

The aim of this note is to show that (1.2) can happen for very simple sets. 

T h e o r e m . Let a ^ 3  be a positive integer and put

A = {ak :kZO}.

There is a set B  of positive integers which is an additive complement of A 
and satisfies (1.2).
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2. Modular and global completion

D efinition 2.1. Let a,rn be positive integers, a ^2, (a,m) = 1, and let 
r  be the order of a modulo m  (the smallest number for which ar =  l (mod m)). 
We say that m  is a fissile modulus for a if there is a set {d\ , . . .  , d{\ of integers 
such that the sums

(2.1) al + dj, 0 ^ i < r ,  l ^ j ' S l

represent every residue modulo m  exactly once. We call r the rank of this 
modulus.

This is a finite analogue of an exact additive complement. If such a set 
exists, we must have m  = kl.

We shall connect this ‘modular’ additive completion with the ordinary 
one.

Lemma 2.2. Suppose that there exists an infinite sequence m i , m 2 , . . .  
of fissile moduli for a of ranks r \ , r2, ■ ■ ■ satisfying r* -» 00 and rj+\ / r j  —> 1. 
Then there is a set B  of positive integers which is an additive complement 
of A and satisfies (2.2).

PROOF. We are going to construct B  in the form
00

B =  U B k,
k= 1

where the B k are finite sets such that

(2.2) A + B k D{ak,ak+1].

Such a B  is clearly an additive complement of A.
Fix an integer k, and let m be the fissile modulus with the largest rank 

r  satisfying
ar- 1<ak/ k 2.

(Observe that m =  1, r  =  1 is always a possibility.) We preserve the notations 
of the definition. We define

B k = {b:ak — ak/ k 2 < b ^  ak+1, b = dj (mod m) for some 1 5= j  ^  / }.

First we show (2.2). Consider an integer ak < n ^ ak+1. By definition we 
can find 0 ^ i < r ,  1 f ^ j ^ l  such that

n = al + dj (mod m ).

The number b = n — a1 satisfies b = dj and also

b f ^ n ^ a k+1, b ' tn  — ar~x > ak — ak/k2,
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hence indeed b£ Bk-
Next we estimate \Bk\- Observe that r is the largest rank of a fissile 

modulus below \og(ak/ k 2)/  \og a. Since the quotient of consecutive terms of 
the sequence tends to 1, we have

\og(ak/ k 2)
r ~ ----------------------~  k.

log a

We also know by definition that m  | ar — 1, hence

m < a T < ak+l/ k 2.

The set Bk is the union of l = m / r  residue classes modulo m, consequently

+ o ( u ) = + o ( « v * 2 )  ~

Now we estimate B(x). Let ak < x ^ a k+1. The set L?fT[l,.x] contains 
B i , . . .  , B k -1, a part (possibly the whole) of Bk and possibly a part of Bk+1- 
From the previous estimate we deduce

ak
l-ßil + • • • + l-Sjt-il ~  -£-•

Bk is the union of l residue classes modulo m, hence

\Bk n  [l,x]| = I Bk n [ak -  ak/ k 2,x] |
/ x - ( q * - a V ^ ) + 2 -.
V rn )

x - a k x  — ak . (I .
= --------- (- o(x/k) - — ------ ho(x/k).r k

Finally, since Bk+i consists exclusively of numbers ^  ak+1 — ak+l/ (k  +  l )2, 
there are at most ak+1/(k  + l)2 =  o(x/k) elements in Bk+i D [1, x]. Summing 
up we find

B (x ) = T + o(x/k) =  loga—̂ ----).k log x \ log x /
This and the lower estimate given by (1.1) yield (1.2). □

3. Finding fissile moduli

In this section we construct fissile moduli for any a > 2. Since a fissile 
modulus m  of rank r  satisfies r |m |a r — 1 and the divisibility r|2 r — 1 is well- 
known to be impossible for r > 1, there is no nontrivial fissile modulus for 2.
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Lemma 3.1. Let p be a prime, a a positive integer, and let s be the 
exponent of p ina  — 1. Assume s ^  1, and i fp  = 2, then assume s ^ 2 .  The 
exponent of p in aP — 1 is s +  1.

P roof . Write
a = l + tps, p\t .

By the binomial theorem we have

a? =  1 +  tps+1 +  P- ^ t 2p2s+1 + Tp3s

with some integer T. Hence

ap- 1
pS+i =  t + P ( (],- Y ~ ' i ‘ +  Tp2- 2)

is an integer but not a multiple of p. □

Lemma 3.2. Assume a ^  2, p|a — 1 and define s by ps+l\\ap — For 
every integer u^. 1 we have

ps+u\\apU — 1.

PROOF. This follows from the previous lemma by an easy induction. □
R emark. This s is the exponent of p in a — 1 if p is odd, and it is 1+ the 

highest of the exponents of 2 in a — 1 and a +  1 for p =  2.

Lemma 3.3. Assume aTi 2, p\a — 1 and define s by ps+l\\ap — 1. The 
order of a modulo ps+u is pu for every u ^ l ,  and also for u = 0 if p is odd.

PROOF. Immediate consequence of the previous lemmas. □

Lemma 3.4. Let p, a be as in the previous lemmas. There is an odd 
prime q^fip such that

q\ap — 1, q\ap — 1.

P roof. We have

(3.1) T  =  p(modap — 1)

because each term is =  1. Since p2\ap — 1, we conclude that the exponent of 
p in T  is 1. We know T  > ap >p,  so T must have a prime divisor q^fip. (3.1) 
shows that q\ap — 1. If p = 2, then q is odd by a =fip, and if p ^  2, then T is 
odd and hence so is q. □

From now on we fix an a > 2, a prime p\a — 1 and another prime q
satisfying the previous lemma. We define s as in Lemma 3.2, and let t be

2the exponent of q in ap — 1.
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Lemma 3.5. Let u^. 2, be integers. The order of a modulo ps+uqt+v 
is r =  puqv.

PROOF. The order of a modulo ps+u is pu by Lemma 3.3. The order
modulo q is p2 by the definition of q. By applying the same lemma after

2substituting q, t and ap in the place of p, s and a we obtain that the 
order modulo qt+v is p2qv. The order modulo ps+uqt+v Js the least common 
multiple of these orders. □

Lemma 3.6. If p is odd, then ps is a fissile modulus of rank 1. I fp  = 2, 
then 2S+1 is a fissile modulus of rank 2.

P roof. The statement for odd p is an immediate consequence of the 
definitions.

Consider p =  2. The order of a modulo 2S+1 is 2 by the definition of s. 
Let w be the exponent of 2 in a — 1; we have 1 ^  w ^  s — 1. Let D be the set 
of numbers in the form

j  + 2w+lk , 0 ^ j ^ 2 w - l ,  0 ^ k ^ 2 s~w - l .

This set has 2s elements. It is sufficient to show that the residues of 2l + d, 
i =  0 or 1, d G D modulo 2s are all distinct. Assume that

(3.2) ai + j  + 2W+Xk = a1' + j '  +  2ty+1/c'(mod 2S+1).

Since a1 =  l(m od2u') for every value of i , we conclude that j  =  y'(mod2“'), 
hence j  =j ' .  Deleting j  and j '  from (3.2) we conclude

a1 -  a1' = 2W+1 (k1 -  k){mod 2S+1).

The right side is a multiple of 2w+i, while the possible values of the left 
side are 0 and ± (a — 1), consequently i = i'. Finally we have 2w+l{k' — k) = 
=  0(mod2s+1), that is, k =  fc'(mod 2s -“') which yields k — k' as wanted. □

Lemma 3.7. Assume m\m ', and let r and r' be the orders of a modulo 
m  and m ', resp. I f  r ' / r  — m ' /m  and m is a fissile modulus, then so is m ' .

P roof. Let d \ , . . .  ,di be the numbers in the definition of a fissile mod
ulus, l = m/r.  We claim that the same numbers work for m ' . We show 
that

ai +  dj , 0 ^  i ^  r — 1, 1 ^  j  ^  l

are all incongruent modulo m ' . Assume the contrary, that is,

of +  dj =aÍ -1- dj' (mod m').

Indeed, considering this congruence modulo m  we infer j  = j \  and then we 
get a1 = a1 (mod m') which yields i =  i'.
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These are lr' =  (m /r ) r ' = m'  incongruent numbers, thus they form a 
complete residue system. □

Lemma 3.8. ps+u is a fissile modulus of rank pu for a for all u ^ 1.

PROOF. This is a consequence of previous three lemmas. □
LEMMA 3.9. The number m  = ps+2qt is a fissile modulus of rank p2.
PROOF. We know that ps+2 is a fissile modulus of rank p2\ let d \ , . . .  ,di 

be a complementing set for it, l — ps. We claim that the following collection 
of psqt numbers works for m:

d j + p s+2k, l ^ j ^ p s, O g f c V - l -

We show that the numbers

al + d j+ p s+2k, O ^ i ^ p 2- ! ,  1 ^ j ^ p s, O ^ k ^ q *  — l

are all incongruent modulo m. Suppose the contrary. This means that

a1 + dj + p s+2k =  a1 +  dy + ps+2 k' (mod ps+2 ql).

Taking the congruence modulo ps+2 we see that i = i' and j  = j ' .  Deleting 
these terms we obtain k = fc'(mod g4), hence also k = k'.

We proved that these sums form a complete residue system, and Lemma 
3.5 implies that the order of a modulo ps+2qt is p2. □

Lemma 3.10. Let u ^ .2 ,  be integers. The number ps+uqt+v is a
fissile modulus of rank r = p uqv.

P roof . Follows from Lemmas 3.5, 3.7 and 3.9. □
P roof of the T heorem . By Lemma 3.10, there is a fissile modulus 

of rank puqv for every u ^  2, r^ O . The quotient of consecutive terms of this 
sequence tends to 1 by the irrationality of (logp ) / logg. Now an application 
of Lemma 2.2 completes the proof. □

4. Concluding remarks

An estimate for
X

B(x) — log a------
log a;

could be given by applying a Baker-type estimate.
I cannot decide whether a complement satisfying (1.2) exists for the 

powers of 2. However, with the same method, using the primes 3 and 19, 
one can construct a set B  satisfying

B(x)  ~ 2 log2, X log x
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such that every large integer n has at least two representations of the form 
2k + b, b e B .

An additive complement with the weaker property

(4.1) A(x)B(x)  = O(x)

was constructed for the powers of 2 in Rúzsa [2], and for any linear recurrence 
set in Rúzsa [3].
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HUN SEMIGROUP STRUCTURE OF POINT PROCESSES, 
DENSITY OF INDECOMPOSABLE DISTRIBUTIONS 

ON A SEMIGROUP

Z.-S. LIANG, Y.-J. HE and Z.-Q. LI

1. Introduction

Professor Kendall [5] promulgated Delphic semigroup theory, which was 
proved to be an effective tool in the study of the structures of renewal se
quences and standard p-functions ([5]). In [6] we applied the theory to the 
study of the structure of the convolution semigroup IP of the point process
es on a complete separable metric space. In [3], extending the concept of 
the Delphic semigroups, we defined the ZH-semigroups and MD-semigroups, 
whose theory was proved to be a more powerful tool in the analysis of the 
structure of P, especially we were able to give a new proof of the central limit 
theorem of point processes (that is, the limit of an infinitesimal triangular 
array must be infinitely divisible) by a semigroup approach.

D e f i n i t io n  A. An abelian Hausdorff topological semigroup S  with iden
tity e is called Delphic if the following hold:

(i) For each s G S, the set Ts of all factors of s is compact.
(ii) There is a continuous homomorphism D from S  to the additive 

semigroup (K+ ,+)  of nonnegative real numbers such that D(s) = 0  only if 
s = e.

(iii) Each limit s of an infinitesimal triangular array (that is, s = lim
n—>oo

. . .  snn, where lim maxű(s„jt) =0) is infinitely divisible.
n—>oo k

As it was pointed out by Rúzsa and Székely [9], assumption (ii) does 
not seem to be intrinsic, assumption (iii) is usually not easy to check. In [9] 
they freed themselves from these assumptions and put forward the elegant 
theory of Hun and Hungarian semigroups. They assumed the much weaker 
condition “normable” instead of assumption (ii), and showed that (iii) follows
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the nonliability and other conditions that are more easy to check. They 
applied their theory to the study of the structures of probability distributions 
on groups and to the study of other problems (for example, concerning other 
underlying structures for convolutions, see [9], Chapter 6). In the last section 
of [9] entitled “Further directions” the possibility of the application of their 
theories to the arithmetic properties of point processes was mentioned. In 
[10], Zempléni first proved a general theorem, then using it he proved that 
the semigroup A of finite point processes on a locally compact completely 
regular space X  is a stable and normable Hun semigroup. The following 
very powerful theorem was given by him in [11], as a stronger version of the 
general theorem.

T h e o r e m  A ([11] Theorem 4). Let S  be a stable Hun semigroup. Then 
the convolution semigroup D(S) of compact-regular probability measures on 
S  is a stable Hun semigroup as well.

In this paper, we shall also realize more or less this application. We 
shall prove that the convolution semigroup P of point processes (may not 
be finite) on a complete separable metric space is a metrizable, stable and 
normable Hun semigroup and all its elements are “bald”. By this we shall 
prove some results of [7] anew, but by a more simple way than that in [3, 7] 
(for example we shall prove that the infinitesimal array of point processes is 
equivalent to the infinitesimal array in the sense of Hun semigroup theory, 
and hence we shall be able to prove simply the central limit theorem of point 
processes by a semigroup approach), and shall obtain other new results (The 
Baire types of some special subsets). Finally, we shall discuss the density 
of indecomposable distributions on a semigroup and use the results to point 
processes.

In this paper, we mean by a semigroup an abelian semigroup with identity 
e, and by a topological semigroup a Hausdorff topological semigroup. Let S  
be a semigroup. As usual, for any x ,y  G «S', if there is some z G S  such that 
x = yz,  then we say that y is a factor of x  and it is denoted by y \x .  Let Tx 
denote the set of the factors of x. It is easy to verify that Te is a subgroup. 
Sometimes we denote Te by U(S) or U. If x  does not belong to U, and 
equation x = yz always implies y GU or z e  U, then x is called irreducible 
or indecomposable. If a: € S' and x2 = x, then x  is called an idempotent. If 
x G S  and for each natural number n, there are yn G S  and un GU such that 
x = uny then x is called infinitely divisible or i.d. (Here the definition of 
i.d. follows [8] as well as [4], it is slightly different from that in [9], but if 
U — {e}, then they are equivalent. Since the relation {(x, y): x G y U }  is a 
congruence, the quotient set S* := S/U  is a semigroup and the natural map 
/ :  S  —> S* is defined by f ( s )  = síi. We usually prefer to study S* rather 
than study S , but s G S  is i.d. if and only if for each n there is s* G S* such 
that ( O "  =  /(*).)

D e f i n i t i o n  B ([9], Definition 2.2.2). A topological semigroup S  is 
called a Hun semigroup if the following hold:
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(i) S  is associate-free, that is, s 1t and 11 s imply s =  t.
(ii) Ts is compact for each s £ S.

We can easily find that all Delphic semigroups are Hun semigroups, and 
that U (S ) =  {e} for a Hun semigroup S.

D efinition C ([9], Definitions 2.3.1, 2.3.2 and 2.5.2). Let ( s j ) j ^ j  be 
any collection of elements of a Hun semigroup S. We say that

t = U  si
jeJ

is the unordered product of this system if for every neighbourhood V  of t 
there is a finite set B  C J  such that

n 6 v
j e c

for every finite set C such that B  C C C J. We say this unordered product 
bounded if for some a; 6 5  we have

sj ^ Tx
j£B

for each finite subset B  of J . Let
oo n

oo oo
We say that a product f]  Sj is composition convergent if { J Sj is convergent

j =i j=k
for each k.

Let I  be a directed set. An array (t i j : j  = 1, . . .  ,n(i); i € I) is called 
an I -array and is denoted simply by (i2j) !e/ or (tij). If I  = {1, 2, . . .  } and 
n(i) — i for each i. then / is called a triangular array. We say that (tij)
converges to t if lim tij — t.

1 j
Definition D ([9], Definition 2.10.1). An I -array (t^) is called com

pact if for any choice 1 ^  a(i) ^  b(i) ^  n(i) the net

b(i)

(r i ) := ^ P J  tij, i G / j  
j=a(i)

is compact, that is, each subnet of ( ri )  has a convergent subnet.
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D efinition E ([9], p. 47). A Hun semigroup S  is called stable if for 
each s E S  and each open set V  DTs, there is a neighbourhood W  of s such 
that x E V  whenever y E W  and x \ y.

Lemma A (see [9], Theorem 2.15.1). Let S  be a Hun semigroup. Then 
the following hold:

(i) S  is stable if and only if each convergent I-array is compact.
(ii) If  S  is also first countable, then S  is stable if and only if S  has the 

following property:
Let (sn), (tn) be sequences in S  and tn \ sn for each n. I f  (sn) is conver

gent, then (tn) has a convergent subsequence.
D efinition F (see [9], Definitions 2.10.5 and 2.10.6). A Hun semi

group S  is called normable if for any s G5  that is not idempotent there is 
an s-norm Ns : Ts -A [0, oo) with the following properties:

(i) N s is a partial homomorphism, that is, N s(xy) = N s(x) + N s(y) if xy 
belongs to Ts.

(ii) N s is continuous at the maximal idempotent factor H(s) of s (that 
is, if t is an idempotent and t \ s , then 11

(iii) N s(s) >0.
Let S  be a Hun semigroup without idempotent other than e. Then it is 

easy to see that S  is normable if for each there is a map N s : —> [0, oo) 
such tha t Sn(xy) =  N s(x) +  N s(y) for xy E Ts, N s is continuous at e and 
N s{s)>  0.

D efinition G (see [9], Definition 2.8.2). An I -array (ijj)ie/ is called 
Hun-infinitesimal if for each neighbourhood V  of e there is an io £ I  such 
tha t tij E V  for each i  ^  *o and n(i).

THEOREM B (see [9], Theorem 2.10.7). Let S  be a normable Hun semi
group. Then the limit of a compact Hun-infinitesimal I-array is i.d.

D efinition H ([9], Definitions 2.8.6 and 2.8.7). Let S' be a Hun semi
group and s E S. Then s is called infinitesimally divisible if for each neigh
bourhood V  of e there is a decomposition s — s i . . .  sn such that s i , . . .  , sn E 
E V.

Let (X, gx)  be a complete separable metric space, B be the ring of all 
the bounded Borel subsets of X.  An integer-valued measure p on B is called 
a locally finite counting measure or simply a counting measure, if p{B)  < oo 
for all B  EB.  Let N denote all these measures on B.

Let N be endowed with the coarsest topology with respect to which the

is continuous for each nonnegative bounded continuous function /  with 
bounded support. Then by [7] Propositions 1.5.2 and 1.5.3, N is a Polish

mapping

X
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space, that is, there is some complete separable metric in N generating 
the topology. Thus the mapping

N xN -> N : (p, v) i-> n + v

is continuous, and so (N, +) is a topological semigroup.
Let Af denote the <r-algebra generated by the class

{{/i G N: fi(B) = k}: B e B, fc =  0,1, 2 ,. . .  }.

Then Af coincides with the a-algebra generated by the open subsets of (N, pN) 
by [7], 1.15.5.

A probability measure defined on (N, AÍ) is called a point process. Let 
P denote all these point processes and let P be endowed with the coarsest 
topology with respect to which the mapping

P —»E: Pt-> /  h{n)P(dn)
N

is continuous for each nonnegative bounded continuous function h defined 
on N. Then P is a Polish space by [7], 3.1.2.

The convolution P  * Q of P  and Q belonging to P is defined by

(P * Q )(Y ) := (P x Q ){ (p ,v ) :  p + n e Y }

for each Y  G Af. So P  * Q G P. Sometimes we write PQ  for P *Q. Evidently 
the convolution operation defined above is commutative and associative, and 
by [7] Proposition 3.1.10 it is continuous. Let 0 be the counting measure with 
6(X) = 0, and let őg be the point process with ^o({0}) = 1. Then P  * 6g — P  
for each PG P. Summing up we have the following lemma:

Lemma B. The (P, *) is a metrizable topological semigroup with identity 
e:=5g.

We have the following Lemma by [3], Theorem 2.2.

Lemma C. There are continuous hornomorphisms

Dk : P —> (M_|_, +)

for k =  1 , 2 , ,  where (K_|_, T) is the additive semigroup of nonnegative real 
numbers, such that P  — Sg if and only if Dk(P) — 0 for all k.

Remark A. In [3] Theorem 2.2 we defined

Dk{P) = ~  log I exp j f k{x)p{dx)\P  {dp)
n  x
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for all k , where fk{x) := m ax{0,1 — g(x, B^)} with B & := {x: g(x, x q ) ^  k} for 
some fixed xo £ X.

We now turn to the central limit problem of P. In [3] we proved anew 
the central limit theorem of point processes (Theorem B in the sequel) by 
the ZH-semigroup theory. We shall see that the proof may be simplified by 
the Hun semigroup theory.

A triangular array of P (Py 6 P: j  — 1 ,. . .  , z; z = 1 ,2 ,...)  is called in
finitesimal if for all B  E B, lim max Pj,{/z: p{B) > 0} =  0.i—> oo j

T heorem C ([7], Proposition 3.4.1). I f  P  6  P is the limit of an in
finitesimal triangular array {Pij), then P  is i.d.

§ 1. The Hun semigroup structure of point processes 
on a complete separable metric space

T heorem 1.1. The semigroup P is a Hun semigroup with identity e =  6g, 
and P has no idempotent other than e.

P r o o f . P is a topological semigroup with identity e = 6g by Lemma B. 
By [6] or by [3] Lemma 2.1, Ts is compact for each s£ P . Let D\, D2, . . .  be 
defined as in Lemma C. If P, Q € P, P \ Q and Q \ P, then P = RQ  and Q = 
=  S P  for some R, S  & P. So P  — R SP  and Dk(P) — Dk(R ) +  Dk{S) +  D/.(P) 
for each k. Thus Dk(R) = 0 for each k and R  =  e by Lemma C. So P  = Q 
and P is associate-free. If P  £ P and P 2 =  P , then Pfc(P) =  DifiP) + Dk(P), 
and Dk{P) — 0 for each k. So P  =  e. □

Lemma 1.1. Each P s P  always has a decomposition P = QR, where 
Q has no indecomposable factor, R is a bounded unordered product of at 
most countable indecomposable elements as well as a finite or composition 
convergent product of indecomposable elements.

P r o o f . A s P has no idempotent other than e by Theorem 1.1, P  has 
no idempotent factor other than e. Thus P  is “bald” ([9] Definition 2.7.1). 
By [9] Theorem 2.7.5 P  has a decomposition P  =  QR, where Q has no inde
composable factor and R  is a bounded unordered product of indecomposable 
elements. P is metrizable by Lemma B, so it is first countable. By [9] Corol
lary 2.5.9 we know R  can be represented by a bounded unordered product of 
at most countable indecomposable elements. By [9] Statement 2.5.3, R  must 
be a finite or composition convergent product of indecomposable elements.

□
T heorem 1.2. The semigroup P is a stable and normable Hun semi

group.
PROOF. By Theorem 1.1 P is a Hun semigroup. By Lemma B P is first 

countable. By Theorem 4.1 of [3], P has the property listed in Lemma A (ii),
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therefore P is stable. Let D \ , D2, .. ■, be the homomorphisms as in Lemma C. 
For each P  G P \  {e} there must be k such that Dk{P) > 0, then we can take 
Np  = Dk and so P is normable. □

Remark 1.1. (i) In [10], Zempléni proved that the semigroup M  of 
finite counting measures on a locally compact completely regular topological 
space X  is a locally compact completely regular stable Hun semigroup, and 
using the general theorem proved in [10] he proved that the semigroup A of 
finite point processes on X  is a stable and normable Hun semigroup.

(ii) Here we can easily show that (N, +) is a stable Hun semigroup by 
[7], 3.2.6. So we can deduce that P is a stable Hun semigroup directly from 
the general theorem ([10] Theorem 1) or from Theorem A.

(iii) N is not locally compact when X  is not bounded. In fact, if /i G N 
and V  is a neighbourhood of //, then there are nonnegative bounded con
tinuous functions /1 ,. . .  , f n with bounded supports F \ , . . .  , Fn respectively, 
and c i, . . .  , Cn > 0 such that

p e W  := P l 1 1/ G N: /  fidv — í fidp  < c, 1
l<i<n  ̂ - - '

CV.

Let F  := [J Fj, x G X  \  F. For n = 1,2,... and A G B  let a n(A) :=

:= n{A (1F) +  nöx(A), where 5X{A) = 1 when i G j4, 5x(A) = 0 when x £ A. 
Then the sequence (a n) is in W  and (an) has no convergent subsequence. 
So N is not locally compact.

i.d.
T heorem 1.3. The limit P  of a Hun-infinitesimal I-array (Pij) in P is

PROOF. By Theorem 1.2 P is a stable and normable Hun semigroup. By
Lemma A (i), {Pij) is compact. So P  is i.d. by Theorem B.

COROLLARY 1.1. If  P  GP is infinitesimally divisible, then P  is i.d.

□

P roof. By [9] Remark 2.8.8, P  is the limit of a Hun-infinitesimal I- 
array, so P  is i.d. by Theorem 1.3. □

COROLLARY 1.2. If  P  & P has no indecomposable factor, then P  is i.d.

P roof. By Theorem 1.1, P  is “bald” ([9] Definition 2.7.1). By [9] The
orem 2.8.9, P  is infinitesimally divisible. By Corollary 1.1, P  is i.d. □

By Lemma 1.1 and Corollary 1.2, we have the following decomposition 
theorem of point processes.

T heorem 1.4. Each P G P  has a decomposition P = QR, where Q has 
no indecomposable factor and is i.d., and R is a bounded unordered product of
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at most countable indecomposible elements as well as a finite or composition 
convergent product of indecomposable elements.

Lemma 1.2. Let (Pn) be a sequence in P. Then the following statements 
are equivalent.

(i) lim pn =  e.n—>oo
(ii) For any B i , . . .  , B k of pairwise disjoint sets in B,

lim Pn{p: (p(Bx), . . .  ,p (B k)) # ( 0 , . . .  ,0)} = 0.

(iii) For each B  E B,  lim Pn{p- h(B) 7̂  0} =  0.
71—KX)

P roof. It is easy to see that Be = B, where Be is defined in [7] p. 148. 
By [7] 3.1.9, Statement (i) and Statement (ii) are equivalent. It is obvious 
that

{p: (p(B i ) , . . .  , p ( B k) ) ^ (  0 , . . .  , 0 ) }  =  { / / :  p( Bx U  . . .  U  B k) ^  0 } ,

so (ii) and (iii) are equivalent. □
Lemma 1.3. Let (Pij. j  =  1 ,... ,i; i =  1 ,2 , . . . )  be a triangular array 

in P, Q i := Pn , Qi := P21, Q3 := P22, Qa '■= P31, Qs ■= P32, ■ ■ ■ ■ Then the 
following statements are equivalent.

(i) (Pij) is infinitesimal.
(ii) lim Qn{ p : p(B)  7̂  0} = 0 for each B  G B.

T l—tO O

(iii) (Pij) is Hun-infinitesimal.
P roof. By the definition we know that (i) and (ii) are equivalent. By 

Lemma 1.2 we know that (ii) and (iii) are equivalent. □
New PROOF of Theorem C. By Lemma 1.3, (Pij) is Hun-infinitesimal, 

therefore P  is i.d. by Theorem 1.3. □
T heorem 1 . 5 . Let P  e  P .  Then P  is i.d. if and only if P  is infinitesi

mally divisible.
P roof. If P  is infinitesimally divisible, P  must be i.d. by Corollary 1.1. 

Conversely, if P  is i.d., then for each n we have P„ £ P such that P ” =  P . Let 
D \ , D2, • • * be the continuous homomorphisms defined in [3] Theorem 2.2. 
Then lim Dk(Pn) =  0 for each k. By the proof of [3] Lemma 2.5, we have

71—> 0 0

lim Pn{p: p(B)  7̂  0} =  0 for each B  6 B. So lim P„ =  e by Lemma 1.2, it
72—> 0 0  72—> 0 0

shows that P  is infinitesimally divisible.

T heorem 1 . 6 . Let S k :={Pk : P e P } .  Let I  denote all the i.d. elements 
of P, Iq all the elements of P without indecomposable factor, P  all the inde
composable elements of P .  Then Sk and I  are closed sets, Iq and P  are sets 
of type Gg.
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PROOF. Since P is a metrizable stable Hun semigroup by Lemma B and 
Theorem 1.2, we deduce the present theorem by [9] Statement 2.19.1 and 
Theorems 2.19.2 and 2.19.4. □

We have the following theorem, which will be proved in the next section.

T heorem 1.7. Both P and f \ P  are dense subsets of P. P  is a second- 
category set and P \ P  is a first-category set.

§ 2. The density of indecomposable distributions 
on a semigroup

Definition 2.1. Let S' be a semigroup. A subset A of S' is called inde
composable if A is not a singleton included in U(S) and for any A i, A 2 C S  
satisfying A =  A1A2 :=  { x y : x G A\ ,y  G A 2}, either A\ or A 2 is a singleton 
included in U (S).

Definition 2.2. A semigroup S  is called semi-cancellative if for any 
x, y G S', equation xy  =  x  implies y = e.

Example 2.1. A Delphic semigroup as well as a ZH-semigroup ([3]) is 
a semi-cancellative semigroup. A semigroup with an idempotent other than 
e is not semi-cancellative.

T heorem 2.1. Suppose S  is a semi-cancellative semigroup. I f  B  is a 
finite subset of S, B  (jLU and B \ U  — { s i , . . .  , sn}, s := sf . . .  s^, then A := 
=  BU{e,«} is an indecomposable set.

PROOF. Let A =  A1A2, where Ai, A 2 C S. Without loss of generality we 
can suppose e G A\ n  A2, so Ai, A2 C A.

Let s Aj U A2. Let s =  aia2 for some a\ G A\ and some 02 G A2. Then 
ai G Í7 or ai =  Si for some i, and 02 G U or 02 =  Sj for some j .  From equation 
a iü 2 =  sf . . .  we have Sj G U , but this contradicts the original hypothesis. 
Hence s G A\ U A2.

Let s G A i- Then for any 0 2  G A 2 , sa,2 G A . If sa2 G U, then s E U 
and si G U , but this contradicts the original hypothesis. Hence sa,2 G { s }  U 
U { s i , . . .  , s n }. If sa2 =  Si for some i ,  then s \  . . .  s \a 2 =  Si and Sj G U, but 
this contradicts the original hypothesis. Hence sa2 =  s, a2 = e. So A2 =  {e}.

If s G A2, then we can verify that Ai =  {e }  in the same way. Thus A is 
an indecomposable set. □

Henceforth, 5  is a topological semigroup, T  is the cr-algebra generated 
by the open subsets of S , M \ is the set of all probability measures on (S , T ) ,  
M 2 the set of all compact-regular probability measures on (S , T )  (fi G M 2 
if and only if p G M \  and for each B  G T ,  p{B) = sup{p(K ) : K  C B  and 
K  is compact}), 5S is the degenerate probability measure on {S,!F) with
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T heorem 2.2. Let S  be a topological semigroup and M  =  M 2, or S  be 
a separable metric semigroup and M  — M \. Then (M, *) is a topological 
semigroup with identity 6e, U(M) = {SU: u £ U (S )} .  If p E M  and suppp is 
an indecomposable finite set, then p is also indecomposable in M .

P roof . l i p  = X*n, then supp/z =  (supp A) (supp ̂ ) =  (supp A) (supp î ). 
Either supp A or supp v is a singleton included in U(S). If 6e = a *  ß, then 
(supp a) (supp ß) =  {e}, both supp a  and supp ß  are singletons included in 
U(S). By [1] Corollary 2.3.4, (M2,*) is a topological semigroup. As for 
(Mx, *), we can refer to [8], the proof of Theorem 3.1.1. □

T heorem 2.3. Let S  be locally compact, M  = M 2, or let S be separable 
and metric, M  — M \ . Let M f  := [p G M : p has a finite support}, Mi := {p G 
GM : p is indecomposable}. Then the following hold:

(i) M \ M i  is dense in M.
(ii) I f  S  = U and U is an infinite group, then Mi is dense in M.

(iii) If  S ^ U  and S  is semi-cancellative, then MjflMy is dense in M .
(iv) If  Mi is dense in M  and is a set of type Gs, then M \ M i  is a first- 

category set. If in addition M  is a second-category set, then Mi is also a 
second-category set.

PROOF, (i) If S =  {e}, then M; =  0, M \ M i  =  M . If S ^  {e}, then there 
is sG 5 '\{ e} . Let p G M  and pn := p* (Ss/n +  ( n — l)6e/n) for each n. Then 
pn E M  \  Mi and p n —>• p.

(ii) See [8], Theorem 3.4.2 or its proof.
(iii) Let p G M f , supp p = F. Let B  := F  U {x} for some x £U ,  let s be 

defined as in Theorem 2.1,

pn := 5e/An +  <5x/4n + (5s/4n +  (4n — 3)p/4n

for each n. Then supp p n =  B  U {s, e} is an indecomposable set by Theo
rem 2.1, pn GM iH M f  by Theorem 2.2, and it is obvious that pn -> p. Hence 
M jflM j is dense in Mf.

If M  =  Mi, then My is dense in M by [8], Theorem 2.6.3. If M  =  M2, 
then for any pE M  and for any neighbourhood of p with the form

V  := P | | i/G M :

where c > 0, f \ , . . .  , f n are continuous functions on S  with compact supports, 
it is not difficult to show that My flE  is nonvoid. Hence My is dense in M.

(iv) Let Mi — P) Gk, where each Gk is open. Then M  \  Mi =
Iáfc<oo

= U (M\Gfe). Since M  \  Gfc is closed and M  \  (M \  Gfc) = Gjt is dense in
l^fc<oc

M , M \ G k  is nowhere dense. Hence M \M , is a first category set.
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COROLLARY 2.1. Let S  be a complete separable metric semigroup as 
well as a semi-cancellative stable Hun semigroup and S  ^  U(S). M{ := 
:= {p E M i : p is indecomposable in M \}. Then Mi is dense in M \ . M\ \  Mi 
is a first-category set and Mi is a second-category set.

PROOF. Since S' is a complete separable metric space, Mi = M 2 by [8] 
Theorem 2.3.2, and Mi is a complete separable metric space by [8], Theorems
2.6.2 and 2.6.4. Hence Mi is a second-category set. By Theorem 2.3 Mi is 
dense in M j. By Theorem A, Mi is a stable Hun semigroup, so Mi is of type 
Gs by [9], Theorem 2.19.2. Hence Mi is a second-category set and Mi \  Mi 
is a first-category set by Theorem 2.3. □

P r o o f  of Theorem 1.7. It is obvious that (N, + )  is cancellative. Hence 
Theorem 1.7 holds by Corollary 2.1 and Theorem 2.3, or by Theorem 1.6 
and 2.3, Remark 1.1 (ii). □
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ON SPERNER’S LEMMA

K. T. ATAXASSOV

In memory of my grandmother Anna Bukova-Atanassova

Let p{A\, A.2,. . .  , A n) be a convex n-gon (n ^  3) with vertices marked by 
A i , A 2, . . .  , An, which is covered with triangles in Sperner’s way [1] (see also 
e.g. [2]): if two triangles have a common point, then the set of their common 
points is either a common vertex or a common side of the two triangles. Let 
every vertex of these triangles be marked by the symbols Ay, A 2, ■.. , An in 
the following way: the vertices which are on the side AjAj+i (1 ^  i ^  n; An+\ 
coincides with Ai) can be marked with .4, or Ai+i\ the ones which are inside 
of p{A\, A 2, . . .  , An) — with any one of the symbols Ai, A2,. . .  , A n.

Let b(p(A\, A2, ■ ■ ■ , An)) be the number of the triangles in p (A \ ,A 2, 
. . .  , An) marked with three different symbols (we shall denote these trian
gles by T3s). By [Ai/Aj]p{A\ , A^ ,.. .  ,A n) we shall denote the replacement 
of the symbol Aj of all vertices of p(A\. A2, . . .  , An) by the symbol A{.

Lemma 1. For every two natural numbers i , j :

(1) b([Ai/A j ]p(Ai,A2, . . .  tAn))Zb{p(Au A2t.. .  ,A n)).

P roof. Obviously, the inequality (1) is valid for every t, j ,  for which 
1 = * =  j  -  for every i > n; for every j  >n.

Let l ^ i ,  j  ^  n and i ^  j .  The triangles of p(A\, A2, . . .  , A n) can be 
divided into three groups:

triangles which have not a vertex marked with Aj-
triangles which have only one vertex marked with Aj]
triangles which have two or three vertices marked with Aj.
The number of T3s from the first and third groups will not change after 

replacing Aj by Ai while the number of T 3s from the second group will de
crease with the number of these triangles which initially contain the symbols 
Ai and Aj simultaneously (because after the substitution they will contain 
two vertices marked by A*). Therefore the inequality (1) is valid.

Lemma 2. If A and B are two neighbourly vertices which take part in a 
marking of p (A \ ,A 2, . ■. ,A n), then they take part jointly in at least one T 3.

P roof. Let us assume (without loss of generality) that the symbols A\ 
and A 2 which marked two neighbourly vertices in p(A \,A 2, . . .  ,A n) do not
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mark two points of any T 3. We construct the triangle t{A\,A'2,C )  (see 
Fig. 1) which contains p(A \, A 2, . . .  ,A„) and for which the arc A 1A 2 of 
p(Ai, A 2, . . .  ,A n) lies on the line on which the arc A \A '2 of t (A [ ,A 2, C ) lies. 
Let A 3 and A'n be the points of intersection of the lines on which the segments 
A'2C  and A 2A3, and A\C  and A \A n lie, respectively. We construct a triangle 
net in Sperner’s way for the triangles t '(A \,A \,A 'n) and t"(A2, A 2, A'3) for 
which every triangle has as a vertex the points A\ and A2, respectively. 
The part of t(A\, A'2,C) which is outside of both last triangles and outside 
of p(A \, A 2, ■ ■ ■ , An), and which we shall mark by Q, also is covered by 
triangles by Sperner’s way. We mark all vertices of the last figure, except 
those lying on the boundary of p (A j,... , An), by symbol C. Finally, we 
mark by new symbols the points of t(A[.A2, C) constructing the triangle

t*(Al ,A 2, C) = [>1!M ;][A2/4][C M 3] ■ • - [ClAn\t(A\,A'2,C).
Obviously, after the change, in the triangles t'(A\, A\, A'n) and i"(A2, A'2, A'3) 
there are not T3s, yet, by Lemma 1, in p (A i ,A 2, . . .  ,A n) there cannot be 
generated a new T3, because, by condition, in p(A\, A2, ■ ■ ■ ,^4n) initially 
there has not been a T3 with symbols Ai and A 2; in figure Q also there are 
no T3s because all points are marked only by symbol C. Therefore there are 
no T3s in t*(A\, A2, C), which is a contradiction with the ordinary Sperner’s 
lemma. Hence, the assumption that A\ and A 2 do not mark two points in 
any T3 is false. From this it follows that Lemma 2 is valid.

Lemma 3 (Generalization of Sperner’s lemma). For every natural num
ber n  ^  3 in every convex n-gon p (A \,A 2, . . . .  A n) there exist at least n — 2 
T3s.
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P r o o f . When n — 3 we obtain Sper
ner’s lemma. Let us assume that the asser
tion is valid for some n ' t  3 and let p' (A \ , Az,

, A„. -4n+i) be a convex (n-f-l)-gon. With 
the exception of the case that p'(A\, A2, . . . ,  
>ln+i) is a parallelogram there exist three 
sides of p'(Ai, A 2, . . .  ,A n+i) (let them be 
AnAn+i, An+iA\ and A \A 2; see Fig. 2) for 
which there exists a point A  common to the 
rays AnAn+\ and A2A 1. This follows from 
the convexity of p'(Ai, A 2, . ■ . , j4n+i). Now 
we shall consider the convex n-gon p"(A, A2, 
. . .  , An) with the triangulation of Fig. 2 or 

Fig. 3 (we retain the edges in the triangulation of p'{A\, A2, . . .  , An+i) and 
there are possibly still new edges from A to interior points of A \A nJr\-, see 
e.g., Fig. 3, where the points B\, B 2, . . .  ,B S are vertices of the triangulation 
of p'{Ai, A2, . . .  M n+i) and

Fig. 2

F'9- 4
p { A i , A 2 , ■ ■ • , A n) =  [A \ IA ) { A \ /A n+\\p"(A, A 2 , . . .  , i n).

By induction, b(p(Ai, A 2, ■ ■ ■ , >ln)) ^  n -  2.
There exists the following particular case when the construction of the 

point A  is not possible: p'(A \ ,  A 2 , A 3 , A 4 ) is a parallelogram (n =  3). Then 
we construct the points A  and B  (see Fig. 4) and the triangle p"(A,  B, ^3) 
and then

p(Au A2,A3) =  [Al /A][Al /A4)[A2/B]p"(A,B,A3).

By Sperner’s lemma it follows that b[p[Ai,A2, ^3)) ^ 1.
By Lemma 2 the symbols Ai and An+1 mark two of the vertices of at 

least one T3. Since the same triangle is no T3 in p(A\, A2, . . .  , j4„), and 
p{A\, A 2, . . .  , A n) does not contain a T3 outside p'[A\,A2, ■. ■ , An+i), thus 
the number of T3s in p'(A \ , A2, . . .  , j4n+i) will be'greater than the number
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ofT 3s in p{A \,A 2, . . .  ,A n) with at leastone, i.e., the inequality (1) is strict. 
Then

b(p'(Ai, A2, . ■. , A n+i)) > b(p(Ai, A2, . . .  ,A n) ) ^ n - 2 ,  
by which Lemma 3 is proved.

Observe that any simple n-gon is topologically equivalent to a convex 
n-gon. Further both the proof of Sperner’s lemma [1] and the proofs of 
Lemmas 1-3 of the present paper only use the combinatorial structure of 
the triangulations. Thus these proofs apply to any triangulation of any 
domain that is topologically equivalent to a triangulation of a convex ri
gón by topological arcs, in Sperner’s way. Thus, in particular, we have the 
following

THEOREM. Every simple n-qon, which is marked in Sperner’s way, has 
at least n -  2 T3s.

Finally, we shall formulate the following
HYPOTHESIS. For every n-vertex polytope P  in a k-dimensional space 

(n ^  k  +  1; k ^  1) which is covered by k-dimensional simplices in the n- 
dimensional analogue of Sperner’s way, and every marking of the vertices 
of this triangulation by the vertices of P , for which the vertices of the tri
angulation lying on an i-face of P  (O ^r^fc — 1) are marked by the vertices 
of this i-face, there exist at least n — k k-dimensional simplices which are 
marked with k + 1 different symbols.

The author formulated the above described generalization of Sperner’s 
lemma in the summer of 1970, but its first proof was published in the preprint
[3] in 1989.

A c k n o w l e d g e m e n t s . The author wishes to express his sincere grati
tude to Prof. P. Erdős, Prof. E. Makai Jr. and to Prof. B. Lindström.
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SOME DISTRIBUTION RESULTS ON TWO-SAMPLE RANK ORDER 
STATISTICS FOR UNEQUAL SAMPLE SIZES

J. SARAN and S. RANI

A b s t r a c t

This paper deals with the derivation of the null joint and marginal probability distri
butions of some rank order statistics by using the extended Dwass technique evolved by 
Aneja [1] and Ocka [8 ]. The rank order statistics considered include the number of positive 
reflections, the index of the ith positive reflection and the interval between the ith and the 
Ith positive reflections.

1. Introduction

Suppose X i , X 2,--- , X rn and Vj, >2, ■ • • , Yn (rn ^ n) are two indepen
dent random samples from populations with unknown continuous distribu
tion functions F (x ) and G(x), respectively. Let Fm(x) and Gn(x ) be the 
corresponding empirical distribution functions. Let {Z*,}, (A = 1 ,2 ,. . .  ,m  + 
+ n) denote the combined set of these m -f n  values arranged in an increasing 
order of magnitude and let Zq = —oo. Since the variables A ’s and Y ’s are 
independent and their distribution functions are continuous, the probability 
that any two values are equal is zero. Therefore, ties between two values are 
ruled out and we have Z\ < Z2 < . . .  < Zm+n. If we replace X ’s by (+ l) ’s 
and Y ’s by (—l) ’s in this ordered set, we obtain a sequence of rank order in
dicators whose suitable functions called rank order statistics can be studied 
in terms of

Hm,n{u) = mFm(u) — nGn(u), —00 < u<  00.

With every sequence of rank order indicators one can associate a random 
walk of a particle performing m  upward and n downward steps. For m  = n, 
Dwass [2] developed an alternate method based on the simple random walk 
with independent steps for obtaining the distributions of two-sample rank 
order statistics. Aneja [1] and Ocka [8] have extended the Dwass technique 
when m / n  and derived the distributions of quite a few rank order statistics
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interval between the ith and the Ith positive reflections, probability generating function
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for this case. Later, using this extended Dwass technique for Mahen-
dra P ra tap  [7], Kaul and Sen [5], [6] and Kaul [4] derived the distributions 
of various rank order statistics. In this paper we derive the null joint and 
marginal distributions of some rank order statistics for the case of unequal 
sample sizes viz, the number of positive reflections, the index of the ?th pos
itive reflection and the length of the interval between the ith and the Ith 
positive reflections by using the extended Dwass technique, thus generaliz
ing the earlier results. These distributions for the case of equal sample sizes 
(m = n) have already been obtained by the authors [9].

2. The technique

The extended Dwass technique is based on the simple random walk 

I Sj] Sj =  W i ,  So = Wo =  0j
i= l  '

generated by a sequence {Wfi} of independent random variables with common 
probability distribution

P (W i= + l)= p , P(Wl = - l )  = q = l - p ,  l^ i< o o .

The result due to Aneja [1] and Ocka [8] is explained here briefly.
We can suppose m ' t n  and we put d = m  — n. Then cf^0. In the sequel, 

we consider d to be an arbitrary but fixed constant, while n will change. 
This is the main step for the generalization of Dwass technique.

The recurrent event Vd denoting a visit to the height d — m — n occurs 
at an index j  for which Sj — H mtn(Zj) —m  — n — d.

The assumption p < 1 /2  for the case d ^  0 implies that the event Vd is 
transient so that with probability one Sj =  d ^  0 for only finitely many values 
of j .  In a given realization of the random walk {Sj}, let T,j be the largest 
value of j  for which Sj =  d. Further, let U be a function defined on the 
random walk {Sj}, then U is said to satisfy assumption Ad when its value 
is completely determined by W\, W2, . . .  , W’pd. The main theorem due to 
Aneja [1] and Ocka [8] is as follows.

T heorem  1. Suppose f7mjn is a rank order statistic for every n and U 
is the related function satisfying assumption Ad- Define

E (U) = h{p), O ^p  < 1/2.

Then the following power series in powers of pq is valid for 0 ^ p <  1/2;

% ) /( i  -  2 p ) p d =  f ;  m m,n) ( 2 n + d )  t o r .
n=0 V n /
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If (j) is a function defined over the possible values of U then </>(I/m,n) is 
also a rank order statistic. In particular if 0 is the set indicator function of 
B  then E{4>(Um)n)) =  P({/m,n in B). While applying the theorem we shall 
let the symbols U, Urn)U represent (j>{U), f(U rntn) for the various versions of f> 
that may be convenient to the problem at hand. This implies that the co
efficient of (pq)n in the power series expansion of P (U = K )/( l—2p)pd equals 
(2”t̂ d)P(^m,n = ^)- Similarly, if E (tu ) denotes the probability generating 
function of the distribution of U in which case

E(tu ) = '^2 p ktk where pk = P(U = k), 
k

then the coefficient of tk(pq)n in the expansion of E(tu )/(1 — 2p)pd equals
(2"„+“)P  (Um,n = k).

3. Definitions of rank order statistics

The following is the list of rank order statistics whose distributions will 
be derived. In what follows, we shall use the dual notation U, C/m,n for these 
rank order statistics as suggested in Theorem 1.

I. Return to the origin: A ‘return’ to the origin occurs at an index j  for 
which Sj  =  0.

II. Positive and negative sojourns: A ‘sojourn’ is defined as the segment 
between two consecutive returns to the origin. The segment between the 
origin and the first return point is also regarded as a sojourn. Let 0 < 
< ii < i2 < . . .  be the indices for which Hmt1l(Zi) = 0. If Hm n̂(Zi) > 0 for 
i j - i  < i < ij, we say that the yth sojourn is positive and if H m n̂(Zi) < 0 for 
i j - \  < i<  ij, we say that the y'th sojourn is negative.

III. Positive and negative reflections of height a: A reflection at height a
occurs at an index j  when Sj  =  a and S j - 1 =  Sj+i — a — 1 or S j - 1 =  =  a+
+1, the reflection being positive or negative according as S j - 1 =  Sj+1 =  a + 1 
or S j - 1 =  Sj+i  =  o —  l. Let i?min(a) denote the total number of reflections 
of height a of which n(a) are positive and R,m n{a) are negative with

R m ,n (a ) =  +  S.m n (a).

IV. The index of the i^ 1 positive reflection of height a: Let R f^ n(a) denote
the index of the ith positive reflection at height a. Then Rfff n(a) =  the index 
j  where Sj — a and S j-1 =  S j+1 =  a + 1 for the zth time, 1 ^  i ^  n(o).

V. The length of the interval between the i^1 and the l^1 positive reflec
tions of height a: Let M m ^ (a )  denote the length of the interval between
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the i th and the /th positive reflections of height a (1 i < l ^  R^n n(a)), then 

M+%l\ a )  = R+\n(a )-R + ]n(a).

The above mentioned statistics with respect to the origin (i.e. for a =  0) 
are denoted by the same symbols without parentheses for a, e.g., n (0) =
= R ^ n , -Rm,n(0) =  Rm,ni M #»*°(0) =  M + g0 , etc.

4. Some basic results

Some of the results we list below concerning simple random walk appear 
in Feller [3] and the rest are easily derived from elementary considerations. 
The following list covers what is needed in the sequel.

(i) The probability generating function (PGF) for the first return time 
to the origin is

f ( t )  =  l - ( l - A p q t 2) 1/2

from which the probability of ever returning to the origin is / ( l )  =  2p.
(ii) The PGF of the length of the first passage through k is (f(t)/2qt)k .
(iii) If the PGF of the length of a positive sojourn is denoted by F +(t) 

and th a t of a negative sojourn by F~ (t) then

F +(t)= F~(t) = f ( t ) / 2.

(iv) The PGF of the path  segment between the origin and the first pos
itive reflection is given by

OO OO OO

i=0 j =0 i=1
= F +( t ) / ( l - F ~ ( t ) - F +(t)F-(t)).

(v) The PGF of the path  segment between any two consecutive positive 
reflections is

OO OO

£ [ f +(í ) ^ c f - ( í ))1] V ( í )
j =0 i=l
= F +( t ) ( l - F - ( t ) ) / ( l - F - ( t ) - F ~ ( t ) F +(t)).

(vi) The probability of the path segment between any two consecutive 
positive reflections is

OO OO

{ p Y l pl) J p = p q / ( q ~ p2)-
j =o i=l
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(vii) The following power series expansions in powers of pq valid for 
positive integers i , j  and k which follow immediately from Dwass [2, (14) 
and (16)] are frequently used in the sequel:

OO

(a) a 1 =  {(1/2)[1 -  (1 -  4pqi2)1' 2]}1 = £  A r^ ( i ,  2){pqt2) \
r=i

where A a(b, c) =

(b)

b 4- ac V a,
b + ac

« M i - * p ) = e ( 2; : ; )
S=j  N J /

( m ) s ;

(c) pk = '*TA l- k{k,2)(pq)t .
t—k

For ease in expression, while dealing with bivariate PGF’s we will abbreviate 
/(s ) /2  and f ( t ) / 2 by a  and /3, respectively, where /( .)  = 1 — [1 — A.pq(.)2]1!2.

5. Joint distribution of R+i n, R ^ n and

T h e o r e m  2. The bivariate probability generating function of the joint 
distribution of R +i, the index of the i^1 positive reflection on the origin and 
M +b>0; the length of the interval between the i^ 1 and the l^1 positive reflec
tions on the origin (1 ^  i < l ^  r) when R + equals r ^  0 is given by

h[P)/ { l—2P)pd =E (sfi+' í AÍ+<' ,); R + — r) /  [ \—2p)pd
OO OO

= J 2  P(Ä+i = 2 j ,M +W  = 2u ,R + = r)s2jt2u 
G) j=iu=l-i

= c /( l—a )í_1( l—a —a 2)_í/3i_í( l—/3)i_* x
x ( l —ß —ß 2)~(l~i^pr~l+d( l —p2/q)~(r~l+1\p q )~ d.

P roof. Let A ,B ,C  and D be the first, ith, /th and the r th positive 
reflection points, respectively, in the random walk {Sj} stipulated in the 
theorem. Let T  be the last return point to the origin. Then the path 
comprises seven segments viz. OA , A B , B C , C D , D T , T F  and a segment 
beyond F, where F  is the last passage through d at (2n + d,d). Of these, 
the first segment OA has the PGF o:(l — a — a 2)-1 , by (iv) of Section 4.
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The PG F ’s of the segments A B  and BC  are (a ( l  — a ) /( l  — a — a 2))*_1 and 
(/3(1 — ß ) / (l — ß — ß2))l~l , respectively, by (v) of Section 4. The probability 
associated with the segment CD  is (pq/(q — p2))r~l since it entails (r — l) 
positive reflections. The segment DT  occurs with probability q/{q — p2) and 
the segment T F  can be conceived to be one of the first passage through d 
when viewed from F  towards T  with probability (p/q)d. The segment beyond 
F  entails no return to the level d with probability (1 — 2p). The result (1) is 
then obtained by using the convolution theorem.

Deductions

(i) Putting t =  1 and s =  1 in (1), we get, respectively,

E (s r+\ R + = r ) /(  1 -  2p)pd = a l( 1 -  a )<_1 (1 -  a  -  a 2) - y - i+dx

x (i - p 2/q)~{r~l+1)(pq)~d

and

E (tM+(i'l),R + = r ) / (  1 -  2 p)pd = ß l- \ l  -  ß)l~ \ l  - ß -  ß2y V - i )  x
x  p r - l +d +i +  _ p 2 / 9 ) - ( r - i + i + l ) ^ g ) - ( d + l )

(ii) Putting s =  i =  1 in (1), we get

(4) P(i?+ = r ) / ( l  -  2p)pd =pr+d+\  1 - p 2/q )-(r+1\p q )- (d+V

(equivalent to Aneja [1], eh. 111(17)).
(iii) Summation of (1) over r  from l to oo gives

E(s*+’iM+W)) / ( l  -  2p)pd = a \ l -  a ß - 1 {I - a -  a2) - ' ^  x 
x { l - ß ) l- i ( l - ß - ß 2)-V-Vpd- 1(pq)-(d- V / { l - 2 p ) .

(iv) Summing (2) over r  from i to oo and (3) over r from l to oo, we get, 
respectively,

(6) E(sÄ+,) /( l  -  2p)pd =al(l -  a)1- 1 (1 -  a  -  a 2)~lpd~l x
x (pg)“ (d_1V (1 -2 p )

and

E(iM+(i,i)) /( l  -  2 p)pd =ßl~l{l -  ß y - ß  1 - ß -  ß 2) - ( '- i) X
X pd+l{ l - p 2/q ) - l {pq)-d/{l -  2p).

( 7 )
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Probability distributions

The following probability distributions corresponding to the PG F’s (1) 
to (7) can be derived with the help of Theorem 1 and the power series 
expansions ((viii), Section 4).

( 2n^  Cl)  = 2*  Mm,n0 =  2U, Ä+ ,n = r) =

( 8)

t—1 co /—i oo oo a 6

=EEEEEEE(-‘)fc+m+c+a+ 6 Í — l \  / —f

fc= 0  a= 0  m= 0  6 = 0  c= 0  / = 0  9 = 0

" r ) ( _(ir )) r ; ,+1,)C ) C
x A^2(u-il>2,2)A^3( r - l  + 3c +  d,2)

k )  \  a 

A/a (■?' _  V*1 5 2) *

where

ip i= j —i —k —a —f ,  tp2 = u —l + i —m  —b —g , xjj3 —n — j  — u — r + l — 2c.

(r) . i\ i— 1 oo co a

nn j p«n = 2J, *+,„ = r) = E E E E^1)^ *
^yj '  jfc=0 a=0 c=0 /= 0

XC ;)C )( ^  c‘ +  1}) (“) A/a Ü -  , 2M* (r -  i +  3c +  d, 2)
where j  — i — k — a — / ,  ^  =  n — r  +  i — j  — 2c.

4 - ,A  1—» °q 6 9n ) P(M+W> = 2u, Ä+>B = r) = E E E E(-l)m+6+Cx
m= 0 6 = 0  9 = 0  c= 0

(10> f t  -  A  f - { r - l  +  i +  \ ) \  ft>\ , ,
X U ) (  f, ] (  0 ) U ' 4*’ (“ ' lfe’ 2) ><
x .Â 3[r — l + 3c +  d + i + 1,2),

where ip2 = u —l + i —m  —b — g, t/j3 = n — r — u — i — 2c +  /.

(11)
C 7̂  ) P ('Rm,n =  7' ) := E ( _1 )C(  ^  1^ v 4 n -r -2 c (^  + 3c-|-ci+ 1,2)

(equivalent to Aneja [1], Ch. 111(27)).
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( 2n n+ d)  P(i& ,„ =  2j, M+W) =  2u) =

\/c+raH-a-j-6
z—1 oo l—i oo a b

(12) =EEEEEE<~i)
jfc= 0  a = 0  m = 0  b= 0  / = 0  <?=0

/6
b A//W " V n —j —u

where ip i— j  —i — a — k — f ,  ip2 — u — l + i — m  — b — g.
i—l oo a / ’ 1

- > i r + T t  ) x
( 1 3 )  '  "  '  k = 0 a = 0 f

Í2 n + d
V n

\  k

A /n  { j - i p i ,2 ) A ^ 2 (n-V>2 , 2 )

)
i - l  oo  a

p(R+]n = 2 j ) = Y , Y , Y , ( - v a+k
k= 0 a= 0  / = 0

a J \  m

2n+d—2 j—2u—l

i \ / a, , . , .  ,
x |  I I .  MynU -V ’1,2)

2n +  d — 2j — 1 
n - j

l—i oo b oo

P(M+W) = 2u) = E E E E(-Dm+6+C
m =06=0 p= 0  c= 0

l - i
m

- ip 2,2)
2n + d — 2u — c — i 

n — u + c + d

where ip2 = u — l + i — m  — b — g.

6. Joint distribution of n(a), i?+ln(a) and Mm,n'> (a) when 0 ^ a < d

THEOREM 3. The bivariate probability generating function of the joint 
distribution of R +l(a), the index of the i ib positive reflection of height a 
and M +(l,l\ a ) , the length of the interval between the and the ß b positive 
reflections of height a (1 ^ i  < l ^ r )  when R +(a) equals r ^  0 is given by, for 
0 ^  a < d

h{p)/{ 1 -  2p)pd = E(sR+i{a)tM+ii'l)W-,R+(a) = r)/{l  -  2p)pd =
OO OO

=  E  E  V(R+i{a)= a + 2 j ,M +(i'l'>{a) = 2u,R+{a) = r)sa+2jt2u = 
j = i u = i —i

=aa+i{ 1 -  a )í_1(1 -  a  -  -  ß)l~ \ l  - ß -  ß2) - ^  x
X p r - I - Q+ d ( i  _ p 2 / g y ( r - l + l ) ( p q j - d s - a

(15)
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P roof. Consider a random walk path {Sj} as envisaged in (15). In 
this random walk, let A and F  denote, respectively, the first and the last 
return points to the height a and, let B,C , D and E  denote, respectively, the 
first, ith, Zth and the r th positive reflection points of height a. Then the path 
comprises eight segments, viz. OA , A B , BC, C D , DE, EF, F  to G(2n+d, d) 
and a segment beyond G. The first segment OA is a first passage through 
a with its length having PGF (a /q s )a, by (ii) of Section 4. The segment 
AB  can be treated as the segment between the origin and the first positive 
reflection with PGF a ( l — a — a 2)-1 , by (iv) of Section 4. The segments 
B C  and CD  involve (i — 1) and (l — i) positive reflections at height a with 
PGF’s (a (l — a ) / ( l  — a  —a 2))1-1 and (/3(1 — ß ) / ( l  — ß — ß2))l~i , respectively, 
by (v) of Section 4. The segment D E  involves r — l positive reflections with 
probability (pq/{q — p2))r~l, by (vi) of Section 4 and the segment E F  occurs 
with probability q/{q — p2)- The segment from F  to G can be treated as a 
first passage through d — a viewed from G as the origin with probability of 
occurrence (p/q)d~a while the segment beyond G entails no return to the 
level d with probability (1 — 2p). The result (15) is then obtained by using 
the convolution theorem.

Deductions

(i) Putting t =  1 and s =  1 in (15), we get, respectively,

E (sR+' ^ , R +(a) =  r ) / ( l  -  2p)pd =  a a+'( 1 -  a ) - 1 (1 -  a  -  a 2)~'x
X  p r + d - i - a ( i  - p 2 / 9 ) - ( r - i + I ) ( p g ) - d s - a

and

R + (a) =  r ) / ( l  -  2p ) p d =  ß l ~ \ \  -  ß ) l ~ '  x

X ( l - ß - ß 2 ) - ^ p T- l+ i+ d+ \ l - p 2 / q ) - ^ l - l + l \ p q ) - ^ d + l \

(ii) Putting s =  t =  1 in (15), we get

(18) n R +(a) = r ) / ( l - 2 p ) p d = pr+d+l( l - p 2/ q ) - ^ \ p q r ( d+V

(equivalent to Aneja [1], ch. 111(121)).
(iii) Summation of (15) over r from l to oo gives

E ( s R +i (a ) i M + (i. ')( a ) ) / ( i  _  2 p ) p d =  a a + i (1  _  Q ) i - 1  x

X (1 -  a  -  a 2 ) - ‘/?i - * ( l  -  /3)'_ i(l - ß -  V ° “ 1 X
x ( p q ) - ^ s - a/ ( l - 2 p ) .

(19)
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(iv) Summing (16) over r  from i to oo and summing (17) over r  from l 
to oo, we get, respectively,

( 20)
E(sß+’(a)) / ( l  -  2p)pd =aa+i(l -  a )1- 1 (1 -  a  -  a 2) - * / - ““ 1 x

x(pg)-(d- 1)S- “/ ( l - 2 p )
and

E(tM+(i’,)(“)) /( l  -  2 p)pd =ßl~'(l -  /?)'-’(1 - ß -  ß2) ~ ^  x
X pt+d{ l - p 2/q)~l (pq)~d/{l ~  2 p).

Probability distributions

The probability distributions corresponding to the PGF’s (15) to (21) 
are given below.

( 2n + rfj p (R+'n(a) = a + 2j, (a) =  2u, R ^ n{a) = r) =

i— 1 oo l—i oo oo h 6 / ' I

=EEE EEEE(-1>‘+m+w',+'’' '“
l

A/-i 0  ~ ipi + a, 2) x

( 2 2 )  k = 0  h . = 0  m= 0  b = 0  c = 0  f = 0  9 = 0  '  ^

»(■;) ( ,; ' ) ( _V ' ,) ( ' (’ ; " ‘,) C ) C :
x A^2(u -  ip2, 2)A/j3 (r — l + 3c + d -  a, 2) 

where
tpi =  j  — i — k — h — / ,  ip2 = u —l + i —m  — b — g, ipz = n — j  — u — r + 1 — 2c. 

/2n  +  cF
V n

) OO h r  . t

\P(R+]n(a) = a + 2 j , R ^ n(a) = r) =

i—1 oo oo h /■

<23) =EEEE!-1)wlw('
fc= 0  6 = 0  c= 0  / = 0

(r -  i +  1)^

Y * - 1
k

x A/,, 0  -  Vh +  2 )A ^ (r +  d -  i -  a + 3c, 2)

|P (M + M (a) =  2 u , / £ > )  =  r) =

where ip \= j  — i — k — h — / ,  ip2 = n — r  — j  +  i — 2c.

r r )

<24) =  E E E E ( - i r +1+c( , “ i )  ( ' (,f ' )  ( ~ <rT + m  / 6
m= 0  6 = 0  3 = 0  c= 0  ' ' ' ' '

x A^2 (u — ip2,2)vl^3 (r — Z + i +  d +  3c +  1,2)
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where ip2 = u — l +  i  —  m — b  — g, ^3 =  n — r — u + 1 — i — 2c.
(25)

(2n *  d) P ( f l i ,„ (o )  =  r)  =  g ( - l ) ‘ ( " '<rc+  ^  A .-r-fc<r +  3c + i+ 1,2) 

(equivalent to Aneja [1], ch. 111(129)).

( 2"n+ d)p (iC ;„ (« ) =  a + 2j,M+W)(a) - 2„) =

i— 1 oo l—i oo h 6 / • i \ / ' >

=E E E E E E(-1)‘+m+',+‘' '''“
(26) * = 0  6 = 0  m= 0  6=0  / = 0  9= 0

— A / —(/ — i ) \  / h \  / / N

V ^ /l

m J \  b J \ f  J \b  
/2n  +  d — 2u — 2j — a — 1
V n - u - j

where = j  — i — k — h — f ,  ^  — u — l + i — m  — b — g.
i— 1 oo 6

Aj, 1 (j -  V»1 +  0 ,2)A^2 (u -  V̂ 2,2) x

(2n; d) POCW=«+Jfl=E E E<-i>‘+f  ;')
V ^ *=06=01=0 V '

, , /2 n  + d -  2j -  a — 1\
A rln 0  -  Vh + a>2) ( n _  • ) »

(27)

y I

where ip \= j — i — k — h — f .
l—i oo 6 oo

(28)
(2nn+ d) P(M+W)(a) = 2„) = £  E E E<-‘>
' 7 m= 0  6 = 0  9 = 0  c= 0

- C - 0 (

m+6+c ^

—(l — i ) \ f b \ i —i \  . . , /2 n  +  d — 2u — c — i
c j A * , ( « - * ,2 ) (  n + d _ u + c “)■

where xl)2 = u — l + i — m  — b — g.
Joint distributions of Rfnn(a), i?+(„(a) and for the remaining

two cases when 0 < a  — d and when 0 ^  d < a derived likewise are quoted 
below.

7. Joint distribution of Ä+jn (a), R ^ n(a) and M m ^ ( a )  when 0 < a  =  d

T heorem 4.
E(aÄW(°)tA#+<i,,,(ft); Ä+(o) =  r ) / ( l  -  2p)pd = a a+i{l -  a)*“ 1 x 
x (1 -  a  -  a 2)~iß l~i(l -  ^ ' - ‘(1 - ß -  /32)-« -0 p r-«+2x 

x (1 — p2/g)~(r_i+1)pg_(a+1)s_a.

(29)
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(30)

and

Deductions

(i) Putting t = 1 and s = 1 in (29), we get, respectively,

E(sfí+H  R +{a) = r ) / ( l  -  2p)pd =  a a+i{l -  a )<_1(l -  a  -  a 2p x  
x pr+2- i( l - p 2/q ) - ( r- i+1'>(pq)-(a+1'>s-a

E(tM+(i’' H  R +(a) = r )/(1 -  2p)pd =  / ^ ( l  -  ß)l~{ x 
x (1 -  ß -  j92)-( /- i)pr- I+ffl+<+3(1 - p2/<?)-(r-i+i+1)(pg)_{o+2).

(ii) Putting s =  t =  1 in (29), we get

(32) P(i?+(a) = r* ) / ( l  -  2 p ) / = / +a+3(l - p 2/ g ) _{r+1)(P9)“ (a+2)-

(iii) Summation of (29) over r  from l to oo gives

E (s fi+l(a), i M+(*,0 (a ) ) / ( i  _  2pjpd =  a a+i(1 _  a )* - l ( i  _  a  _  a 2) “ 1 x
(33) ßl_i{1 _  ß ) l . i{1 _ ß _  /02)-O-i)p(p9)- a s-a /(1 _  2p)

(iv) Summing (30) over r from i to oo and (31) over r from l to oo, we 
get, respectively,

(34) 

and

(35)

E(sR+i^ ) / { l - 2 p ) p d =
= aa+l{l -  a y - 1 (1 -  a -  a2) - lp(pq)-a s~a /  {1 -  2p)

E(iM+W>(a))/(1 _  2p)pd = ß l - \ l  _  1 _  ß -  ^2 )-0 -0  ;

x p a+i+2(l - p 2/9 ) - l(pg)-(a+1)/ ( l  -2 p ) .

Probability distributions

(36)

( 2n -|- d
{ n P « n (o) =  « + 2j, M+;*>‘)(o) -  2«, =  r) =

i—1 oo /—i oo oo h b

= £ £ £ £ £ £ £ ( - ' )
fc= 0  /i= 0  m= 0  ft= 0  c= 0  / = 0  9 = 0

fc+m+c+/i+6 ,

k j \ h j \ m j \  b J \  c )  \ f )  \ g , 
x (j -V ’l +  a,2)Av,2(u-V '2,2)A ^3(r -  Z +  2 + 3c,2),
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where
ip i= j — i — k — h — f ,  xp2 = u — l + i — m — b — g, il}̂  — n — j  — u — r + l — 2c—\.

(2 n + d>
V n )

, f i  — 1\ ( hN

P ( C ( fl) =  a + 2Í> Rm,n(a) =  r) =
i—1 oo oo h

<37> = E E E E i - 1)‘ ,M<
fc=0 h=0 c=0 /= 0

' —(r — i +  1) 
c ■̂ip\ Ü — ipi+o,, 2)A.,p2 (r  +  2 — i +  3c, 2),

where tpi = j  — i — k — h — f ,  ip2 = n — j  — r — 2c + i — 1. 

/2 "' + (M+W) (a) = 2«, Ä+ ,n(a) =  r) =

í l  — i \  ( —{l — i)

\  n
l —i  oo 6 oo

(38> = E E E E ( - 1)m+6+'’—n K n „—n ^—n \m =0 6=0 9 = 0  c=0 

'—(r — l + i + 1) 
c

m 9j

I (u i/j2i 2)-At/)3 [t — l +  a +  * +  3c +  3,2), 

where ip2 = u — I + i — m  — b -  g, ip3 = n - r  — u + l — i - 2 c - l .

C"„+<i) p < ^ - ( “ ) = r ) = E  ( - 1)c ( ' (rc+ 1 ) ) x

x yln_r_2c—i(r  +  a + 3c + 3,2).

/2n  + gT'

(39)

V n
P(-RSn(a) =  a + 2J, M+W) (a) =  2«) =

»—1 oo l —i  o o  h  b

=EEEEEEM>
fc= 0  h=0 m = 0  6 = 0  / = 0  3 = 0

ri — 1\ / —A / /  — i

k+m+h+b,

-(/-»A AN /7
(40)

b J \ I ,

x -4* Ü - ’h + a ,  2)At , (U- f e 2 ) ( 2 n - 2 j - 2“ ; 1) ,V n —j —u —1 J
where i p \ ^ = j - i - k - h  — / ,  ip2 = u - l  + i - m  — b — g.

/2 n  +  dV ( ^ n(a) =  « + 2j> g f ; Q - i r x
\  n fc=0 A=o /= o(41)
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where i p i ~  j  — i — k — h — f . 

Í2 n + d

V n
)p(M +W >(a)=2u) =

l—i oo 6 oo
(42) EEEE(-ir+6+c(' ;

m = 0 6 = 0  g = 0  c = 0

( l~i )
b

x |  J ^ ( « - ^ , 2 ) V n + d _ u +  c + i

\  m

2n + d — 2u — i — c

x

where ip2 = u  — l + i — m  — b — g.

8. Joint distribution of n(a), fí+'„(a) and Mm,n^ when 0 ^ d < a  

T heorem 5.

E (sR+i(a)íM+(i’í){a); Ä+(a) = r ) / ( l  -  2p)pd =  a a+l(l -  a ) <_1 x 
(43) x (1 -  a  -  a 2 )- */3i - *(l -  / ^ ( l - / 3 - /?2)-(«-*)(i - p 2 / g ) - (r- |+1)

X p r - i - d + a + 2 ^ - ( a + l ) s - a

Deductions

(i) Putting t = 1 and s =  1 in (43), we get, respectively,

E(sfi+H  fí+(a) =  r ) / ( l  -  2p)pd = a a+l{ 1 -  a )i_1(l -  a  -  a 2)_<x
p r - d - I + a + 2 ( 1 _ p 2 / g ) - ( r - i + l ) ( p 9 ) - ( a + l ) s - a

and

E ( t" +W)W, R +(a) = r )/(1 -  2 p ) /  =  (1 -  /?)*-* x
x ( l _ ^ _ yg2 )- ( /- iy - /-d + i+ 2a+3( i _ p2/q) - (r-i+i+1)(p9) - (a+2)

(ii) Putting s =  í =  1 in (43), we get

(46) P(i?+(a) =  r ) / ( l  — 2p)pd = pr_c!+2a+3(l — p2 /  q)~(r+l\pq)~(a+2\

(iii) Summation of (43) over r from l to oo gives

(47) V{sR+i(ah MMi'l)W ) / ( l  -  2p)pd = a a+i{ 1 -  a )i_1(l -  a  -  a 2)“* x
x ^"*(1 -  /?)'-<(! - ß -  ß2) - ^ p a- d+1{pq)-as - a/ ( l  -  2p).
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(iv) Summing (44) over r  from i to oo and (45) over r from l to oo, we 
get, respectively,

(48)

and

(49)

E(sfi+’(“) ) /( l  — 2p)pd =

=  aa+i{ 1 -  a)*-1 (1 -  a  -  a2) - ipa~d+l{pq)-as - a/ ( l  -  2p)

E ( iM+(*.0 (a) ) / ( 1 _  2 p)pd =  ß l - i ( 1  _  x

x  p2a+i- d + 2{1 - p 2 / 9 ) - i (p9 ) - ( « + l ) / ( 1  _  2 p).

(50)

Probability distributions

( 2n^  P (R m,n(a ) = a  +  (a ) =  Ä m ,n(°) =  r ) =

z—1 oo l—i oo oo h b

=E £  E E E E £(-i)‘+">+«‘+*x
fc= 0  /i= 0  m= 0  6 = 0  c= 0  / = 0  9 = 0

x A ^  (j -  tpi +  a, 2)AxjJ2(u — ip2i 2)>1i/i3 (r — / + a +  3c — d +  2,2)

where ipi= j  — i — k — h — / ,  ip2 —u — l + i — m  — b — g, t/»3 =  n — j  — u — r  +  
+ l + d — a — 2c — 1.

( 2n^  ^  p (Äm,n(a ) =  a + 2j, R^n n(a) = r) =

i—1 oo oo h

(so =EEEE(-1>‘+',+0ii 1\  k J \ a  J \ f  J

^  ̂ c + ^  (j -  ipi + a, 2)x4 ,̂2 (r -  d -  i +  a + 3c +  2,2)

where ipi= j  — * — k — h — / ,  i/>2 =  n — r  — j  +  d +  * — a — 2c— 1.
\

P(M+W)(a) =  2u ,Ä+iB( a ) = r )  =

fc= 0  6 = 0  c= 0  / = 0  

X

Í2 n + d
V n J

(52) = E E E E < - W , - I) ( - (,. - in ( 6
m= 0 6 = 0  9 = 0  c= 0  

-(r-Z+i-f 1) 
c

( r—Z+i+1)^

\ m  J \  b J \9  2 

A^2(u -  i/)2, 2 ) (r -  l -  d +  i +  2a + 3c + 3, 2)
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where il)2 = u — l + i — m  — b — g, ips — n — r  — u + l + d — i — a — 2c — 1.

(2n  + dN

(53)
P ( i £ in( a )= r )  =

=E(T)
V n

r  — d +  3 +  2a + 3i /  2n +  d — r — i + 1
2n + d — r — i + l  \ n  + d — r — 2i — a — 1 

(equivalent to Aneja [1], ch. 111(83)).

(54)

( 2nn+ ^  P ( O )  =  a + 2j, M+W) (a) =  2u) =

i —1 oo l —i  oo  h  b

=EEEEEE(-++m+‘+‘*
k —0 h = 0 m = 0  6 = 0  / = 0  9 = 0

Í — l \  ( —i \  f l  — i \  f  — — f h \  ( f
k J \  h J \  m J \  b

x A ^ ( j  - t p i  +  a ,2 )A ,̂2 ( u - ' 0 2 , 2 )

/ /
2n + d — 2 j  — 2u — a — 1 

n + d —j —u —a —1

where i/q = j  — i — k — h — f ,  ip2 = u — l + i — m  — b — g.

i - l  oo hÍ2 n + d
V n V(R+\n(a) =  a +  2j) =  E  E  E ^ 1)

/c+/i X

(5 5 ) '  ' '  k= oh =of= o
ri — 1\ / —i \  f h \  , /2n  + d — 2j — a — 1

x |  . II I I . IA/n (j -  ipi +  a, 2)
k J \ a J \ f

where ip i—j  — i — k — h — f .

( 2"  +  <I) p (M+W)(o) = 2u) =

n + d — j  — a — 1 /

(56)

V n J

= E  E  E  £ ( - i r +b+c ( l ~  ̂  ~  f b
m=0 6 = 0  9 = 0  c= 0

—i \ . , / 2n +  d — c — 2zt — i
X  I I (u — Xp2, 2)

\  m J \  b J \g /

2 n H
n +  d — a — i — u — 2c— 1 / ’

where ‘ip2 = u — l + i — m  — b — g.
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TRANSLATIONAL AND HOMOTHETIC CLOUDS 
FOR A CONVEX BODY

K. BÖRÖCZKY and V. SOLTAN

Abstract

For a convex body A C E d, distinct types of clouds formed by translates or by homo- 
thetic copies of A axe investigated, and the relations between the minimum cardinalities 
of these clouds axe studied.

1. Introduction

The following cloud problem suggested by H. Hornich (see [4]) is well- 
known in discrete geometry. Let S, S i , . .. , S n  be a family of pairwise non
overlapping congruent spheres in the Euclidean space E 3. One says that
5 1 ..  .. ,S n  form a cloud for S  if every ray emanating from the center of S 
intersects at least one of S i , . . .  ,Spf. The cloud problem is to determine the 
minimum number N  of spheres S i , . . .  , Sjg forming a cloud for S.

L. Fejes Tóth [4] obtained the first result in this direction proving the 
inequality N  ^  19. A. Heppes [7] improved this estimate showing that N  ^ 
^ 24. The known best lower bound TV ^ 30 belongs to G. Csóka [2]. Earlier, 
L. Danzer [3] constructed a cloud consisting of 42 spheres, and the upper 
bound TV ^  42 still remains the best known.

The cloud problem can be obviously generalized for the case of centrally 
symmetric convex bodies in E d.

There exists another variant of the cloud problem. As above, let S,S i,  
. . .  , S m denote a family of pairwise non-overlapping congruent spheres in 
E 3. Following L. Fejes Tóth, we say that the spheres S i , . . .  , S m  form a 
dark cloud for S  if every ray with the apex in S  intersects at least one of
5 1 .. .. , S m - The dark cloud problem is to find the minimum number M  of 
spheres forming a dark cloud for S. There is known only one result, due to
J. Schopp (unpublished), about this number: M  f) 326. Note that this result 
is based on the following assertion proved by K. Böröczky [1]: for any plane 
H  in E 3, there exists a dark cloud consisting of unit balls which are placed 
in a strip of finite width bounded by two planes parallel to H , w.r.t. rays 
starting but not lying in H. A. Heppes and L. Danzer observed that the last 
assertion can be generalized as follows: for any e > 0 and for any hyperplane
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0081-6906/96/$ 5.00 ©1996 Akadémiai Kiadó, Budapest



94 K. BOROCZKY and V. SOLTAN

H  in E d, there exists a dark cloud consisting of balls of radii e >  0, such 
tha t they are placed in a strip of finite width bounded by two hyperplanes 
parallel to H , and the distance between any two of these balls is at least 1, 
w .r.t. rays like above. A review of the above mentioned results can be found 
in A. Florian’s paper [5].

In this paper, we consider some variations of the dark cloud problem for 
the case of arbitrary convex bodies.

Definitions and main results
Let A ,A i , . . .  , A n be a family of convex bodies in E d, d^.1. We say that 

A i , . . .  ,A n form a dark cloud for A  if every ray with the apex in A  intersects 
at least one of A \ , . . .  ,A n. Similarly, A \ , . . .  , A n form a deep cloud for A 
if every ray with the apex in A intersects the interior of at least one of 
A i , . . .  , A n.

Below we will distinguish two cases: 1) all A i , . . .  , An are translates of A , 
2) all A i , . . .  , An are positive homothetic copies of A.

Denote by r(A) (respectively, by s(A)) the minimum number n of trans
lates A i , . . .  , An of A forming a dark cloud for A  such that A ,A i , . . .  , A n are 
pairwise non-overlapping (respectively, pairwise disjoint). Similarly, denote 
by p(A)  (respectively, by q{A)) the minimum number n of positive homothet
ic copies A \ , . . .  , An of A  forming a dark cloud for A  such that A, A i , . . .  , An 
are pairwise non-overlapping (respectively, pairwise disjoint). If there is no 
finite family of translates (or homothetic copies) forming one of the above 
defined clouds, we let the respective number to be infinite.

Note that A. B. Harazishvili [6] studied a similar problem on the mini
mum number of translates of A  (non-overlapping with A but, possibly, pair
wise overlapping) forming a dark cloud for A.

Write r'(A), s'(A), p'(A), and q'(A) for the respective numbers in the 
above definitions if deep clouds are considered instead of dark clouds. Triv
ially,

m  P{A) ^q{A) ^q'{A), p{A)úp '{A)úq '{A ),
r(A) ^  s(A) ^  s'(A), r(A) ^  r (A) ^  s'(A).

T h e o r e m  1. For a convex body A c E d,

d+  1 ^ p (A )  —p'{A) = q{A) = q (A) ^  2d,
2d ^  r(A) Ú r'(A) = s(A) =  s'(A).

Any of the equalities p(A) — 2d, r(A) = 2d holds if  and only if A is a paral- 
lelotope.

Note that the question on the feasibility of the equality r'(A) =  s(A) has 
been posed by G. Csóka in private conversation.

The next theorem implies the finiteness of the number s'(A).
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THEOREM 2. For any given real number 7  > 0, there exists a constant 
k = k(7 , d) such that for any convex body A  C E d there is a deep cloud for A 
consisting of at most k pairwise disjoint and disjoint to A homothetic copies 
of A, with coefficient of homothety 7 .

P roblem. Determine the least natural numbers n =  n(d), k =  k(d) and 
the greatest natural number m = m(d) such that r(A) ^  n and m ^  s'(H) ^  k 
for any convex body A c E d.

The proof of Theorem 2 is based on the following assertion.
THEOREM 3. Let R ,r  be real positive numbers, and let Bn be a ball of 

radius R. There exists a finite deep cloud consisting of pairwise disjoint and 
disjoint to Bn balls of radii r, such that the distance between the centers of 
any two of them is at least one.

Proof of Theorem 1
1. First we prove the inequality d + 1 ^p (A ) .  Let A ,A \ , . . .  ,Ad be

a family of pairwise non-overlapping convex bodies in E d. Denote by Qt 
a closed half-space containing A and disjoint to intHj, « =  ! , . . .  ,d. It is 
easily seen that Q =  Q\ f l . . .  D Qd is an unbounded polyhedral convex body 
containing A. Therefore there exists a ray l C int Q with the apex in A. 
Hence l intersects none of ,Ad- The last means that A \ , . . .  ,Ad is
not a dark cloud for A\ i.e., d+  1 ^p(A ).

2. Next we prove the inequality q'{A) ^  2d. Without loss of generality
we may consider the origin O of E d to be interior for A. For any regular 
boundary point x  of A, denote by ex the unit vector in E d such that x + 
+ ex is the outer unit normal to A at x. Since A is compact, the set Q = 
— {ex : x  6 bd A} positively generates E d. Choose in Q a positive basis L  =  
=  { e i,. . .  , en} of minimum cardinality. It is well-known that d+  1 ^  n  5í 2d, 
with n = 2d if and only if L is of the form {z\, —z \ , . .. ,Zd, — Zd) with linearly 
independent ,Zd (see, for instance, [9]).

Denote by x \ , . . .  ,x n regular points in bd A corresponding to e i , . . .  , en; 
i.e., Xi + ei is the outer unit normal to A  at Xi for alH = 1 ,... , n. Let S  be 
a sphere with center O and radius r containing A in its interior. Denote by 
Pi the closed half-space in E d containing S  and supporting S  at the point 
—rei, i = 1 ,... ,n . Since the vectors —r e i , . . .  , — ren positively generate 
E d, the polyhedral body P  =  Pi f l . . .  fl Pn is bounded; i.e., P  is a convex 
polytope. Trivially, P  has n facets, say F \ , . .. , Fn, such that —rei £ rint Fi, 
i  = 1 ,...  , n, where rint Fi means the relative interior of Fi. Denote by C\ 
the cone with apex O generated by Ff.

C{ =  { A x : A  ^  0 ,  x  6  Fi},  * =  l , . . . , n .

Every Ci is an acute convex closed cone, and C\ U ... U Cn = E d. It is easily 
seen that aff Fz is the unique common supporting hyperplane for the bodies
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P  and A[ = A -  (rei +  X{) passing through the point — re; E P  fl A\. Since 
Ci is acute and closed and since —re-ej is a regular boundary point for A[, 
there exists a real number p i  > 1 such that for any p  ^ p,t and z E Ft, the ray 
[0, z) — {Xz : A ^ 0} intersects the interior of the positive homothetic copy

A'i{p) = p{A,i + rei) ~ rei-

Moreover, since A is compact, the number pi can be chosen so large that the 
ray lyx =  V + [0, z) intersects the interior of A[{p) for any y € A and z E Ft .

Now we construct a deep cloud for A  consisting of pairwise disjoint pos
itive homothetic copies A " , . . .  , A" of A. Put A" = A[(pi). If the sets 
A" , . . .  , A", 1 ^  i < n  are determined, choose a number p" ^  pi+\ such that 
for a suitable number v > 0 the set A"+1 =  p" A'i+l(pi+1) — vei is disjoint to 
A" U . . .  U A" U S  and the ray lyz = y + [0, z) intersects the interior of A"+1 for 
any y E A  and z E Fi. Since every ray with the apex in A  can be represented 
in the form lyz = y +  [0, z) mentioned above, the family A" , . . .  , A" is a deep 
cloud for A. Hence q'(A) ^  n ^  2d.

3. We are going to prove the equality p(A) = p'{A) =  q(A) = q'(A). Due 
to (1), it remains to show that q'{A) ^p(A). Note that p(A) is finite, because 
of p(A) ^  </(A) ^  2d. Put k =p{A) and let A i , . . .  , A^ be a family of pairwise 
non-overlapping positive homothetic copies of A  forming a dark cloud for A. 
Choose any point a E int A  and denote by B  a homothetic copy of A  with 
center of homothety a and a sufficiently small coefficient A > 0 such that 
B  C int A and every set

Xi — fl {conv (6U At) \  A i : bE B}, i = 1 ,... ,k

has non-empty interior. Fix any points c,; € int Xj, i = 1 ,... , k.
Since B  C A, the sets A \ , .. .  , A^ form a dark cloud for B. We are going 

to construct a deep cloud for B  consisting of k pairwise disjoint positive 
homothetic copies of A. For this purpose, consider the sets

Di =  U{(1 — v)x  +  v A i : v ^ 1, x E B},  z =  l , . . .  ,k,

called by V. Klee penumbras (see [10]). Di is the union of all rays of the 
form

m xy = { ( 1  -  v)x  +  vy : v  ^  1 } ,

where x E B, y E Ai.  It is easily verified that every Di is an unbounded 
convex set. Since B  D Ai = 0, the set Di is closed and the characteristic cone 
of Di is acute. Hence, due to the choice of Cj, there is a number p i > l  such 
that for any real p ^  pi and points x E B, y E Ai, the ray m xy intersects the 
interior of the homothetic copy Ai(p) = (1 — p)ci + pAi-

Now we are ready to construct a deep cloud for B  consisting of k pairwise 
disjoint homothetic copies of A. Put A\ — A \(p \) .  If the sets A \ , . . .  , A', 1 ^  
ú i < k  are determined, choose a number p! ^  Pi+i such that A'i+X — Ai+\{p')
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is disjoint to A\ U .. . UA' and every ray of the form m xy intersects the interior 
of A'+1 for all x  G B  and y 6 A*. It remains to verify that A j,. . .  , A'k form a 
deep cloud for B. Let lx be a ray with apex x  in B. Since the sets A \ , . . .  , Ak 
form a dark cloud for B , the ray lx intersects some set At. Therefore lx can 
be represented as

lx =  [x, y) =  {(1 - u ) x  +  u y : u ^ 0 }
for some point y £ Ai. By the above said, [x ,y ) intersects the interior of A'. 
Hence A \ , . . .  ,A'k form a deep cloud for B.

If $  is the homothety of E d with center a and coefficient A, then the sets 
$ _1(A j) ,... , $ - 1(A'fc) are pairwise disjoint homothetic copies of A forming 
a deep cloud for A. Thus q'{A) ^ k = p(A).

4. Assume A to be a parallelotope in E d, and let A \ , . . .  , Am be a 
dark cloud for A consisting of pairwise non-overlapping positive homothetic 
copies of A. Denote by a the center of A, and let &i,. . .  , b̂ d be the centers 
of all facets of A. Consider the rays h , . . .  d having a common apex a 
and passing through b \ , . . .  , respectively. It is easily seen that any body 
Aj intersects at most one of the rays h , . .. , hd- Therefore m  ^  2d. By the 
above demonstrated inequality p(A) ^p'(A) ^  2d, therefore p(A) =  2d.

Now assume that A is not parallelotope. Then the minimal set Q = 
=  {ex : x  G bd A} (x are regular for A) of unit vectors positively generating 
E d is different from any set of the form { z \ , —z \ , . . .  ,Zd, —Zd} with linearly 
independent z \ , . . .  , Zd- In this situation, there is a positive basis L  C Q of 
cardinality n less than 2d (see [9]). By the above demonstrated, p(A) ^ n <  
< 2d. Hence the relation p(A) — 2d is fulfilled for parallelotopes only.

5. The inequality 2d Ú r(A) and the respective characterization of the 
parallelotope by means of the equality 2d = r(A) follow from [6].

6. Now we are going to prove the relation r'(A) =  s(A) =  s'(A). Due to 
(1), it is sufficient to prove the inequalities s'(A) ^ r'(A ) and s'(A) ^  s(A).

First we show that •s'(A) ^  r'(A). If r'(A) — oo, the inequality s'(A) ^ 
^  r'(A) is trivial. Assume that r'(A) is finite. Put n =  r '(A ), and let 
A j , . . .  , A„ be pairwise non-overlapping translates of A forming a deep cloud 
for A. Fix a point i é A, and choose a ray lx with apex x. The ray lx in
tersects the interior of some of the bodies A \ , . . .  , A„, say A ^ , . . .  , A lk. For 
any point yG /xflA ^, denote by Sj(y)  the maximum radius of a ball with 
center y contained in Aij . Put

<5(y) =  m ax{ij(y): 1 ^  j  g k}
and

6{lx) = max{á(y): y G /* D [ A ix U ...  U Aik] }.
The function 6(lx) is positive and continuous on the family TZX of all rays in 
E d with apex x. Since 1Z is compact (in the standard metric), the minimum

g{x) = min{<5(/x) : lx € Tlx}
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exists and is positive. It is easily seen that g{x) is a positive-valued con
tinuous function on the compact A. Hence the minimum g of g(x) on A  is 
positive. In other words, for any point x  G A  and any ray lz with apex z, 
there exist a body Aj and a point v £ lz D int Ai such that the ball of radius 
g and center v is contained in At.

Denote by A ß g /2) the inner parallel body of Ag i.e., A ß g /2) is the set 
of all points in At whose distance from the boundary of At is at least g/2. 
By the above said, the sets A\{g/2),...  ,A n(g /2) form a deep cloud for A. 
Choose some homothetic copies A ',A [ , . . .  , A'n of A  corresponding to the 
same coefficient g G [ 0,1 [ of homothety such tha t A1 C int A  and A l(g/2) C 
C  A£ C  int Ai for all i — 1 , . . .  , n. The bodies A', A \ , . . .  ,A'n are pairwise 
disjoint and A\ , . . .  , A'n form a deep cloud for A'. If Q is the homothety of 
E d mapping A onto A ’, then the sets ÍI_1(Ax),. . .  , f1~1(A'n) are pairwise 
disjoint translates of A  forming a deep cloud for A. Hence s'(A) ^ n =  r'(A).

7. Now we prove the inequality s' (A) 5í s(A). As above, this inequality 
is trivial in case s(A) = oo. Hence we can assume that s(A) is finite. Put 
n  =  s(A) and let Ax,. . .  , A n be pairwise disjoint translates of A, disjoint to 
A  and forming a dark cloud for A. Every A{ is of the form A{ =  Oj +  A  for 
some vector aj G E d, i = 1 , . . .  , n. Since A , A i , . . .  ,A n are pairwise disjoint, 
there is a real number ß  G ] 0,1 [ such that the sets A, and A[ =  ßat +  A, 
i =  1 ,. . .  , n are pairwise disjoint. We want to show that A j, . . .  , A'n form a 
deep cloud for A.

Let v be any point in A. Since A \ , .. .  , A n form a dark cloud for A, any 
ray lv with apex v intersects at least one of Ax,. . .  , A n.

In other words, the union of the cones

Ci(v) = { ( 1  —  X)v  +  \ z  : z G Ai,  A ^  0 } ,  i =  1 , . . .  n

is E d. We claim that the union of the cones

C'iiv) = {(1 — X)v +  Xz : z G A', A ^  0 } ,  2 =  1 ,... , n

also is E d. For this purpose, it is sufficient to prove the inclusion Cßv) C 
C C[(v) for all 2 =  1 ,. . .  ,n .  Indeed, for any point z G Aj, there exists a 
point

w G ]ßa.i + v , ( ß  — l)ű{ + z [ C ßat +  A =  A' 
such that [v,z) — [v,w). Hence Cßv) C C'ßv), and the union of cones C[{v), 
2= 1, . . .  , n is Ed. The last means that the bodies A \ , ...  ,A'n form a dark 
cloud for A.

It remains to show that A \ , ...  , A'n form a deep cloud for A. In other 
words, we will prove that every ray lv with apex v G A intersects the interior 
of a body Â , i =  1, . . .  , n.

Denote by Aq, . . .  , Aik all the bodies in the family {Ax,... , A n} inter
sected by lv. For any j  — 1 , . . .  ,k, let Fj be the Minkowski sum of A and 
the ray [0,a tj).
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We claim that if lv intersects the interior of some Fj, then lv intersects 
the interior of A\ . Indeed, assume that the ray /„ =  \v,z), zE Ay  intersects 
the interior of a set Fj. Then one can choose a point x E \v , z  [flint Fj. Let

e E ] v ,z  - űjj[C  A, f  e ] a i j + v , z [ c  Ay

be the points such that [e, /]  is parallel to [0, a^] and contains x. Since 
x E int Fj, one has /  E int Atj. In this case, the point

w := lvn ]ßa,y + v, (ß -  1)0^ + z[

belongs to int A \ . .
Hence it remains to verify that lv intersects the interior of at least one 

of the Fj, j  = 1 ,. . .  ,k. Assume, in order to obtain a contradiction, that 
lv intersects the interior of none of Fj. Then the line l containing lv also 
intersects the interior of none of the Fj. By the separation property, there 
exists a hyperplane Hj through l and supporting Fj. In this case v E Hj. 
Let Pj denote the closed half-space bounded by Hj and containing Fj, and 
let Qj be the open half-space that is the complement of Pj. Since every 
half-space Pj contains the open cone C =  U { ] v, z) : z E int A } with vertex 
v E Hj, the opposite open cone C  — 2v — C  with vertex v belongs to Qi fl 

By the assumption, lv intersects the bodies A{,, . . .  , Aik only. 
Hence it is possible to choose in C  a point w sufficiently close to v such 
that the ray lw parallel to and similarly oriented as lv and having apex w 
intersects none of {A \ , . . .  , An} \  {Ai 1 , Aik }. At the same time lw C Q\ fl 
n . . . f l  Qj. Hence lw intersects none of A { , , Aik, i.e., lw intersects none 
of A \ , . . .  ,A n. We may even suppose that this last statement holds for any 
point (1 — X)v + Xw, where 0 < A ^ 1, rather than w. Now we can choose a 
point u E l w sufficiently far from v such that the ray [u, u) intersects none 
of A \ , . . .  ,A n. The last is impossible, since A i , . . .  ,A n form a dark cloud 
for A. The obtained contradiction shows that A \ , . . .  , A'n form a deep cloud 
for A. □

Proof of Theorem 3
Without loss of generality, we can assume that r <  ̂ and the origin O 

of E d is the center of B r . Consider an orthogonal basis e i , . . .  , in E d, 
and denote by C the regular orthogonal lattice consisting of all points x  = 
{Vu--- iVd) in E d with integer coordinates 771, . . .  , % (relative to e \ , . . .  , )•
Choose in E d a vector v = (£1, . . .  ,£<*) with positive rationally independent 
coordinates £1, . . .  ,£<*, and let l be the ray generated by v: l — {An : A = 0}. 
It is well-known that for any given e > 0, and any given translate of l, there 
are infinitely many points in C whose distance from the given translate of 
/ is less than e, and whose first coordinates are arbitrarily large. Now fix 
natural numbers m < n, and put

Cmn =  {x  =  {r] 1,... > Vd) E ^ n}.
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Denote by H  the (d — l)-dimensional subspace orthogonal to ei.
L em m a . There exists a real number p >  0 (depending on l , r and n — m)  

such that every ray with the apex in H forming with l an angle of at most p 
intersects some open ball of radius r and center in Cmn.

PROOF. Denote by Q the unit cube of H, i.e.,
d

{.T =  y ^  : 0 g & g  1, i = 2 , . . . , d , y
i=2

For any point z E Q, denote by lz the ray with apex z, parallel to l. 
Let őmn(z) be the distance between lz and a point in Cmn nearest to l z . 
Obviously, Smn(z) is a continuous function on Q, and 5mn(z) tends to zero 
if m  is constant and n tends to infinity. Since Q is compact, we can choose 
number n so big that ömn(z) < r / 2 for every point z EQ. In other words, 
lz intersects some open ball of radius r/2  with the center in Cmn. Trivial 
continuity arguments show the existence of a positive number p depending 
on r, m, n  such that for any point z EQ, every ray l'z with apex z  forming 
with l an angle at most p  intersects some open ball of radius r  with the 
center in Cmn.

Now we observe that the above considerations can be extended from Q 
to the whole plane H. Indeed, if z G if, then z — v E Q for some vector v E H  
with integer coordinates. If l'z is a ray with the apex 2 forming with l an 
angle at most p, then, by the above, the ray l'z — v intersects some open ball 
B  of radius r and center in Cmn. It remains to mention that B  + v is an 
open ball of radius r with the center in Cmn and l'z fl (B + v) ^  0.

Finally, we will show that in fact p depends on r and n — m  only. In
deed, let Cki  be a lattice with A; >  0, l — k = n  —  m, and let l'z be a ray with 
apex z E H  forming with l an angle at most p. Denote by l' the line con
taining l'z , and let w be the point of intersection of l' and the hyperplane 
G =  (k — m)ei +  H. The distance between G and Cm is m. Then, by the 
above, the ray l'w with apex w forming with l an angle at most p intersects 
some open ball of radius r  with center in Cm - This easily implies that l'z 
intersects the same ball in Cm- □

We continue the proof of Theorem 3. Choose a lattice Cmn such that 
m >  R  + 1 and every ray with the apex in B r and parallel to l intersects some 
open ball of radius r/2  with center in Cmn. As it is proved in the Lemma, 
there exists a real number p > 0 (depending on R, r , and n — m ) with the 
following property: every ray l'w with apex w in B r , forming with l an angle 
at most p intersects some open ball of radius r  with center in Crnn. Since 
B r  is compact, there is a natural number p (depending on R , r, m, n, and 
p) such that every ray l'w with apex w in B r , forming with l an angle at 
most p  intersects some open ball of radius r with center in

£mn{p) = {x = (i7i, - - - ,Vd) e£m„ : |?7i| ÚP, * = 2, . . .  ,d},

MAGYAR
TUDOMÁNYOS AKAOÖrtlA 

KÖtm/TÁRÁ
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which is a bounded part of the lattice Cmn.
Now cover the whole space E d by a finite number of infinite cones over 

(id — l)-balls as bases, say L \ , . . .  , Lt, with common apex O , each of them 
having the half aperture at most p. Let be the interior ray of symmetry 
for Li. Without loss of generality, put l\ = l and m\ =  m, n\ =  n, p\ = p . For 
any i = 2, . . .  ,t, choose consecutively a set

£rn,n,{pi), 7 l j - m j = n - m ,  TUi > R + 1

(in a suitable basis e \ , . . .  , eld) satisfying the following properties:
(i) every ray with apex in Bn, forming with li an angle at most p inter

sects some open ball of radius r with center in CmiTli(pi) (this is possible due 
to the Lemma);

(ii) the distance between the sets

conv Lmini (Pi), conv (Emini (pi) U . . .  U (pi—i ))

is at least 1.
These two conditions mean that we have constructed a finite deep cloud 

for Bn  consisting of balls of radii r such that the distance between the centers 
of any two of them is at least one. These balls are pairwise disjoint by r  < ^, 
and are disjoint to Bn  by > R  +  1. □

Proof of Theorem 2
Since the value k = k(7 , d) is constant under affine transformations of E d, 

we can apply a suitable affine transformation such that the ratio of the radii 
of two concentric spheres one of them containing A and the other contained 
in A is at most d. The last is possible due to the following well-known 
result, proved in [8]: for any convex body A c E d, there are concentric and 
homothetic ellipsoids S  and T  such that S  C A  C T  and T  is d times greater 
than S.

By the above said, we may consider A to be in the ball t̂ B  and to 
contain the ball 3̂ B , where B  is the unit ball about the origin in E d. By 
Theorem 3, there is a deep cloud for ^^~B  consisting of a finite number, say
k , of pairwise disjoint balls of radii ^  such that the distance between the 
centers of any two of them is at least one, and all these balls are disjoint 
to -^ -B .  From Theorem 3 it follows that the number k of hiding balls 
depends on 7 and d only. Denote by ,27 the centers of these balls,
and consider the family J\f = {27 +  7.A,. . .  , Xk +  7A) of homothetic copies of 
A. Since 27 + 7A contains the ball 27 -I- j^B ,  A/” is a deep cloud for At
the same time A C and x\ + 7 A , . . .  , 27, +  7A belong, respectively, to
the pairwise disjoint balls 27 +  . . .  , 27 + ^B . Hence AÍ is a deep cloud
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for A, consisting of pairwise disjoint homothetic copies of A. Lastly we show 
A is disjoint to the bodies 37 +  7A. In fact, the balls xi +  3̂ B were chosen 
to be disjoint to -3̂ -B, hence ||£j|| >  therefore ACI (Xi +  7 A) C {j^B)  H 

n  (xi + ±B) = 0. □

REFERENCES

[1] B ö r ö c z k y , K., Uber Dunkelwolken, Proc. Colloq. Convexity (Copenhagen, 1965),
Kpbenhawns Univ. Mat. Inst., Copenhagen, 1967, 13-17. MR 35 #6035

[2] C só k a , G., The number of congruent spheres that hide a given sphere of three-
dimensional space is not less than 30, Studia Sei. Math. Hungar. 12 (1977), 
323-334 (in Russian). MR 82m:52008

[3] D anzer , L., Drei Beispiele zu Lagerungsproblemen, Arch. Math. 11 (1960), 159-165.
Zbl 101, 148

[4] F ejes  T óth , L., Verdeckung einer Kugel durch Kugeln, Publ. Math. Debrecen 6
(1959), 234-240. MR 22 #4017

[5] F lorian , A., Kugelwolken, Twelfth Styrian Mathematical Symposium (Graz, 1980),
Ber. No. 143, Forschungszentrum Graz, Graz, 1980, 1-18. MR 82m:52009

[6 ] H arazishvili, A. B., Characteristic properties of the parallelotope, Sakharth. SSR
Mecn. Akad. Moambe 72 (1973), 17-19 (in Russian). MR 49 #3690

[7] H e p p e s , A., On the number of spheres which can hide a given sphere, Canad. J. Math.
19 (1967), 413-418. MR 35 #875

[8] J o h n , F.,  Extremum problems with inequalities as subsidiary conditions, Studies and
essays, presented to R. Courant on his 60th birthday, January 8 , 1948, Inter
science Publishers Inc., New York, N. Y., 1948, 187-204. MR 10-719

[9] R eay , J. R., Generalizations of a theorem of Carathéodory, Mem. Amer. Math. Soc.
No. 54 (1965), 50 pp. MR 32 #6319

[1 0 ] R ockafellar, R. T., Convex analysis, Princeton Mathematical Series, No. 28, Prince
ton Univ. Press, Princeton, N. J., 1970. MR 43 #445

(Received October 19, 1992)

E Ö T V Ö S  LORÁND T U D O M Á N Y E G Y E T E M
T E R M É S Z E T T U D O M Á N Y I K AR
G E O M E T R I A  TANSZÉK
R Á K Ó C Z I  ÚT 5
H—1 0 8 8  B U D A P ES T
H UN G ARY

M A T H E M A TIC A L IN S T IT U T E  O F  T H E  
A C A D E M Y  OF SCIENCES 
S T R .  A CADEM IEI 5 
MD—2 0 2 8  CHISINAU 
R E P U B L IC A  MOLDOVA



Studia Scientiarum Mathematicarum Hungarian 32 (1996), 103-106

A REMARK ON AFFINE COMPLETE RINGS

H. WOR ACER

The notion of affine complete universal algebras has been studied by a 
number of authors. One of the problems investigated is the following: When 
is a direct product of affine complete universal algebras affine complete?

Grätzer [3] for example shows the affine completeness of Boolean alge
bras, Iskander [4] determines the affine complete subdirect products of finite 
prime-fields. Nöbauer [7] shows that the finite direct product of rings with 
unity is affine complete if and only if all factors are affine complete. All 
affine complete abelian groups have also been determined (see [5], [6], [7]). 
Dorninger and Nöbauer [2] and Dorninger and Eigenthaler [1] have obtained 
a number of results on affine complete lattices. Further examples of affine 
complete algebras can be found e.g. in the papers of Werner [8], [9].

In this note we will characterize the affine completeness of an infinite 
direct product of commutative rings with unity.

By /  we denote an arbitrary index set. Further let 77; for each i E  I  be a 
commutative ring with unity, and denote by 77 the direct product 77 =  n  Kr.

ie/
The theorem we are going to prove is stated as follows:

T h e o r e m  1. Let k E N. The direct product 77 of commutative rings with 
unity (77i)ig/ is k-affine complete if and only if the following two conditions 
are satisfied:
(1) All rings 77; are k-affine complete,
(2) There exists a number M\ E N, such that every unary polynomial function

on the ring 77; for all but finitely many indices iE  I, can be realized by a
polynomial of degree at most M \ .
The first of the two following lemmata generalizes Condition (2) to func

tions of more than one variable. We will use this generalization in the proof 
of the above theorem.

L e m m a  1. Assume Condition (2) holds for the family (77;);e/ of com
mutative rings with unity. Then a stronger condition is also true as follows:

For each kE  N and family (pi)i^i where pi denotes a k-place polynomial 
of TU, we can find some M^E  N and another family of polynomials {qi)iei,
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such that for each i E I  the degree of qi is at most M^ and the function 
induced by qi coincides with that induced by pi.

We note that this number Mk also depends on the family (pt)iei we start 
with.

PROOF. To prove this statement we use induction on k. For k =  1 our 
assertion is an immediate consequence of (2). So let k E N, k > 1 and suppose 
our assertion is true for k — 1. We start with a family of fc-place polynomials
(Pi)iei■ Let

Pi (^ij * • ■ , xjf) l)*

In this representation n depends on i. From Condition (2) we get a cofinite 
set I' Q I  and a number M\ such that we find polynomials hl n̂ for each iE I' 
and n E N of degree at most M\ that represent as functions the monomials 
xn, that is hitU(x) = x n for each xE lZ l. So we may write (as functions)

Pi{,X I)-- - ) Xfc) =Q'itn (x i , . . . ) 3-fc—l)h in "b • • • T (-̂ 1) ■ ■ • l)
+  . . .  +  bifi(x i , . . .  , x fc_i)

for each iE  I' ■ As a consequence of the inductive hypothesis we find polyno
mials Cij(x i , . . .  ,Xfc_i) for each l E {0,... , Mi} and i E I  which induce the 
same functions as . . .  , aq_i) and have bounded degree, i.e. there are
numbers m j€N  such that

deg(ci,;(a:i,. . .  for i E  I', 1 = 0 , . . . ,  Mi

holds. So we get

(*) Pi{xi,... 1 Xfc) =  Cit n (x\, .. . ,Xk — \)Xji +  • ■ • +  C^oO l̂, . . . ,Xk-l)

as functions for i E I ' . The degree of the polynomial qi on the right-hand 
side of equation (*) is at most m ax(m i,. . .  , mjif,) +  Mi. For i ^ V we take 
qi=Pi. Obviously the family {qi)iei satisfies the desired properties. □

Lemma 2. For each i E  I  let fi be a compatible k-place function of TZ{. 
Then the product function f  defined on 7Z by

.(«*)<€/) =  (/<(«*?»•■• Wki) ) ia
is again compatible.

P roof. It is sufficient to show that /  is compatible with every principle 
congruence. This follows from the fact that in a direct product of rings with 
unity each principle ideal is a product ideal. □

Now we are in the position to prove Theorem 1.
P roof. To prove the ‘only if’ part of the theorem, suppose V, is fc-affine 

complete. Let /  be any compatible fc-place function on 7Zi0 for some io E I
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and consider the function /  on TZ defined as f((a])iej , .. .  , (a^)je/) =  
with

/ ( a l0>--- ,a?0) fo r i  =  io, 
0 for i ^ io -

Due to Lemma 2 /  is compatible with every ideal of TZ. We find then a 
A:-place polynomial/» of TZ, which realizes/. Taking the io-th projections of 
each coefficient of p  we obtain a polynomial pi0 of 7Zt0 which clearly realizes 
/ .  That shows that 7Zi0 is fc-affine complete.

Now suppose, on the contrary, that Condition (2) fails to be true. We 
can then find a sequence i[ G I  (I G N) of distinct indices, and polynomial 
functions f i t of 7Zit which cannot be written as polynomials with degree at
most l. We consider the function/ of TZ which is defined as/((ß i)ie/) =  (6i)ie/ 
where

f / i , K )  
l  o

if i — i[ and l G N, 
else.

This function again is compatible on TZ, and therefore must be represented 
by some polynomial p of TZ. If the degree of p equals n, every function f i t 
is realized as a polynomial of TZlt of degree at most n, again by taking the 
i/-the projection of each coefficient. This is a contradiction to our choice of 
f i t for l > ri-

lt remains to show the sufficiency of our Conditions (1) and (2). Let 
/  be a compatible A;-place function on TZ, then /  decomposes into a direct 
product of functions /; which are compatible in TZ{. This means

/((«< )ie/» • ■ ■ »(o< )»€/) =  (■bi)iei. with 

h  =  fi ( a - , a f ) .
Prom Assumption (1) we find a polynomial pi for each i G I representing 
the function fi. By Lemma 1 we obtain other polynomials qi, which induce 
the same functions as pi, but have bounded degree. We can therefore define 
a polynomial q as ‘product polynomial’, i.e. we just take the families of 
corresponding coefficients of the polynomials qi as coefficients of q. The 
function /  is clearly realized by q. □
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ON THE RADICAL THEORY OF GRADED RINGS 
WHICH ARE INVERSIVE HEMIRINGS

C. ROOS and R. WIEGANDT1

A b s t r a c t

Talat Shaheen and Yusuf [5] studied the radical theory of inversive hemirings, Krempa 
and Terlikowska-Oslowska [2] investigated that of semigroup graded rings, two seemingly 
totally different structures. Using Piochi’s [3] description of congruences of inversive hemi
rings we exhibit that inversive hemirings are in fact semigroup graded rings whose additive 
semigroup is a strong semilattice of groups. Also we show that the powerful method of 
Puczylowski [4] applies to a category of inversive hemirings, or equivalently, to a category 
of semigroup graded rings, and in this way we settle three major issues of their radical 
theory: the ADS-property of radicals, Sands’ characterization of semisimple classes and 
the termination of the Kurosh lower radical construction at the first limit ordinal. Thus 
beside recovering results of [5], we contribute to the radical theory of inversive hemirings 
as well as to that of semigroup graded rings.

1. Preliminaries

A hemiring is a nonempty set A with two operations +  and • where 
(A, +) is a commutative semigroup with identity 0, (A, •) is a semigroup, 
• distributes over +  from both sides and 0 • a — a ■ 0 =  0 holds for all a £ 
€ A. A hemiring is called an additively inversive hemiring (briefly: inversive 
hemiring) if (A, +) is an inverse semigroup, that is, for every element a 6 A 
there exists exactly one element (—a) such that a + (—a) + a = a and (—a) + 
+  a +  (—a) =  (—a). In view of [3] Lemma 1.1 it holds a(-b) = ~{ab) = (—a)b 
for all a,b£ A. As usual, we shall omit parentheses and write simply a — b 
for a +  (—b).

A subset I  of an inversive hemiring A is said to be an ideal of A, denoted 
by I  < A, if I  is an inversive subhemiring such that A • I  U I  ■ A Q I  and I  
contains all additive idempotents of A. The set E  of all additive idempotents 
of A is an ideal in A (cf. [5]), and is called the trivial ideal of A. Clearly, the 
additive semigroup E + of E  is a semilattice.
__________ %
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P r o p o s i t i o n  1.1. For any elements a,b of an inversive hemiring A with 
a — a — e and b — b = f  it holds a f  = e f  =  eb.

P r o o f , e f  = (a -  a ) f  = a f  + ( - a)f = a f  -  a f  =  a(f - f )  = af.
Let A  be any inversive hemiring with trivial ideal E, and let k be a 

congruence on A. The restriction tr k of k to E  is called the trace of k and 
the subset ker k of all elements of A which are congruent to some additive 
idempotent modulo k , is called the kernel of k . It is readily seen that ker n 
is an ideal of A. If I  is an ideal of A and £ a congruence on the trivial ideal 
E  of A  such that
(1.1) Va e A and Ve € E , a +  e G /  and (a — a)£e imply a £ I, 
then (£, I) is said to be a congruence pair on A.

P r o p o s i t i o n  1.2 ([3] Theorem 1.5). For every congruence k on an in
versive hemiring A, (tr k ,  ker k )  is a congruence pair, and conversely, for 
every congruence pair (£, I) on A there exists exactly one congruence k on 
A such that tr/i =  £ and ker k — I. In particular, if ee denotes the identity 
relation on E, then (e e , I )  is a congruence pair for every ideal I  of A.

Let us notice that condition (1.1) effects rather the congruence £ on E  
and not the ideal I  of A: (1.1) means that the congruence £ on E  extends 
to a congruence on A / ( e e , / ) ,  in particular, on A = A / ( ee,E).

A mapping ip: A — > B  between two inversive hemirings is said to be a 
hemiring homomorphism if it preserves addition and multiplication. By the 
homomorphism theorem and Proposition 1.2, if ip is a surjective hemiring 
homomorphism, then

B  =  A / k = A /( tr  k , ker k)

so we may say that tr k is the trace of ip and ker n is the kernel of <p, and we 
may write tr <p=tr k and ker <p=ker k. A hemiring homomorphism <p: A  — > 
—> B  is called a P-homomorphism (for principal homomorphism), if tr  <p=eß 
is the identity relation on the trivial ideal E  of A. For the sake of brevity 
we shall sometimes write A /1  for A/{ee ,I)  and A / f  for A/(£,E).

From the previous considerations it follows tha t every hemiring homo
morphism cp factors as

A /ker tp -------------- > (A/ker </?)/(tr ip, E) = A /(tr (p, ker ip)

where p is a P-homomorphism, u maps E  to <pE (effecting A as demanded in
(1.1)) and ip is an embedding (and as such a P-homomorphism), moreover,
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p  factors also as 

A ------------------- >B

o ip

AI tup  ------------> (A / tr p ) / ( tr p ,E )= A /( tr p ,k e rp )

where d maps E  onto ipE and r  is a P-homomorphism with kernel 
ker p /( tr  ip, E).

2. Inversive hemirings and graded rings

An additive semigroup A is called a strong semilattice of groups over an 
additive meet-semilattice A, if A =  (J A \  where each A \  is a group such

AeA
that

(2.1) for each A, p E A with A ^ p there exists a homomorphism ip*: A\-+  
-* Aß such that p* is the identical mapping and p i  ip*, =  p* for every 
X'tp '^.v ,

(2.2) for each A, p E A and a E A\, bE A ß one has

a + b = p$+fl{a) + Px+ß{b) E Ax+fi.

As is well-known, every commutative inverse semigroup is a strong semi
lattice of groups (cf.[1], IV.2.1). Hence the additive semigroup (A , +) of an 
inversive hemiring A is a strong semilattice of groups A =  (J A \.  We recall

AeA
Piochi’s [3] Theorem 2.4.

PROPOSITION 2.1. Let A =  [j A \  be an inversive hemiring.
AeA

(i) For every A, p E A there exists a v E A such that A \A ^  Cj A v; we put 
A * p = v.

(ii) For every A, /u, v E A, (A + p) * u =  A * u +  p * u.
(iii) For every A, p, v E A, if A ^  p, then A * u ^ p * v and v * A ^  v * p; 

A * A ^  A * p ^  p*  p and X * X ^ p * X ^ p * p .
Let R  be a ring and A a multiplicative semigroup. Assume that the 

additive group R + is a direct sum R + = 0  A ^ of its subgroups A^ such
AeA

that A \-  Aß Q A X/x for all X,p E A. The subset A — (J A x is called a A-
AeA

graded ring. Let us mention that some authors call R a A-graded ring;
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for our purpose the previous definition will be more convenient. Anyway, 
the difference between the two definitions is only of a technical nature. A 
homomorphism (p: A —> B  between two A-graded rings A  and B  is said to 
be a A -homomorphism if <p(A\) Q B \ , A € A. A A -ideal I  of a A-graded ring 
A  is defined as a A-graded ring I  satisfying I  Q A  and A ■ I UI  • AQ I .

After these preparations we establish a natural connection between in- 
versive hemirings and graded rings.

THEOREM 2.2. If A is an inversive hemiring with trivial ideal E, then 
A is an E x -graded ring A  =  (J Ae and A + is a strong semilattice of (com-

e & E
mutative) groups over the additive semilattice E +. Conversely, let E  be an 
inversive hemiring consisting of additive idempotents. If A is an E x -graded 
ring such that A + — (J Af~ is a strong semilattice of (commutative) groups

eeE
over the additive semilattice E +, then A is an inversive hemiring with trivial 
ideal

B a — {0e £ A|0e + 0e =  0e, e £ E}  

consisting of additive idempotents, and Ea — E.
P roof . The point is in both directions of the proof that in view of 

Proposition 2.1 there is a one-to-one correspondence between the elements 
of the trivial ideal E a of the inversive hemiring and of the grading semilattice 
E  of the graded ring.

Let A  be any inversive hemiring. Now A + is a strong semilattice of 
groups where the semilattice is isomorphic to E +. Moreover, by Proposition 
2.1 and the observation thereafter one has Ae ■ A j  Q A ej  showing that A is 
an E x -graded ring.

Conversely, let A  be any E x-graded ring such that A + = |J  A e is a
e£E

strong semilattice of groups. Then A + is an inverse semigroup. Since E  is 
an inversive hemiring, the semilattice E + contains a greatest element o. By 
the distributivity of A  we see that Ea is an ideal of A. The element 0o is 
clearly an additive neutral element of A; since 0o is the zero element of E,\ 
which is an ideal of A , 0o must be a multiplicative zero element of A. Hence 
A  is an inversive hemiring.

Notice that the element 0 of the inversive hemiring A — (J A e is the
e 6  E

greatest element with respect to the relation ^  defined on E, as e + f  is the 
greatest lower bound of e and / .

PROPOSITION 2.3. A P-homomorphism between inversive hemirings is 
an E x -homomorphism between the corresponding E x -graded rings, and vice 
versa. An ideal of an inversive hemiring is an E x -graded ideal of the corre
sponding graded ring and vice versa.

PROOF. This follows easily from the previous considerations.
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Let p: A -+ B  be any hemiring homomorphism. Then p  maps the triv
ial ideal E  of A into the trivial ideal F  of B. In the language of graded 
rings this means that p  maps the E x-graded ring A into the F x-graded 
ring B  such that p (A e) B ^ e^,e G E. Thus each inversive hemiring E  con
sisting of additive idempotents determines a category C(E) consisting of all 
inversive hemirings with trivial ideal E  and all P-homomorphisms. Fur
ther, C(E) can be viewed as the category of all JFx-graded rings A, with 
A + a strong semilattice of groups over the additive semilattice E + , and of 
all E x -homomorphisms. Furthermore, we can define the category C(E) of 
all inversive hemirings with trivial ideals in the class E of inversive hemi
rings consisting of additive idempotents, its objects are all hemirings with 
trivial ideal E  G E, and its morphisms are all hemiring morphisms between 
the objects. Expressed equivalently, C(E) is the category of all E x-graded 
rings A such that A + is a strong semilattice of groups over the additive 
semilattice E +, E  runs through the elements of E, and the morphisms are 
hemiring homomorphisms, that is, homomorphisms preserving addition and 
multiplication.

3. A category catering a decent radical theory

We start with fixing the variety E of all inversive hemirings subject to 
the following identities:

(3.1) e + e = e,
(3-2) e f  = fe ,
(3-3) e f  g = e2 f  g

for all e, / ,  g G E  G E.
Let us observe that in the context of (3.1) and (3.2) the identity (3.3) 

means that every element e G E  G E induces a hemiring homomorphism

(3.4) p e :E -+ e E , pe(g) = eg, gE E .

Clearly, every distributive lattice E  satisfies (3.1),(3.2) and (3.3). An
other example is an inversive hemiring E  such that E 2 — {0}.

Let us define A ^  = (J Ay for any inversive hemiring A — (J Ae. For
/£ e E  e&E

any element a G A ^  and b G A there exist f , g E E  such that a G A ej  and 
bE Ag. Hence

abEAefAg C A efgC A ^ .
Since by (3.2) the multiplication in E  is commutative, we have also
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Hence A ^  ■ A U A ■ A ^  ^  A ^  holds, although A ^  need not be an ideal of 
A  because e E ^ E  may happen.

In the sequel we shall work in the category C(E) of inversive hemirings 
with all hemiring homomorphisms as introduced in Section 2. In order to 
apply the results of Puczylowski [4], we must ensure that axioms A1 to A6 
of tha t paper are satisfied in our category C(E). The validity of the first two 
axioms is obvious.

A l. The set 1(A) of all ideals of an inversive hemiring A is a complete 
lattice.

A2. If K  < A and K  Q I  <A, then K  <1.
A3. The lattice l(A/1) is isomorphic to the lattice of all ideals K  oi A 

with I g K < A  (cf.[9] Theorem 13).
Before stating axiom A4, we define a relation ~  between inversive hemi

rings from C(E) as follows.
B  ~  C <=> there exists an A G C(E) such that B  =  A/(£, E) and C =  

A/(rj,E)  where (£,E) and (r],E) are congruence pairs on A.
One readily sees that ~  is an equivalence. Moreover, in view of Propo

sition 1.2 there is a one-to-one correspondence between the ideals of A  and 
those of A/(£,E). Hence it holds

A4. If jB ~C , then the lattices 1(B) and 1(C) are isomorphic.
A5. The isomorphism theorems are valid for every I  < A and K  < A:

K / ( K n I )  = (K  + I ) / I

and if K g  I, then
( A /K ) / ( I /K )  = A / I

(cf. [9] Theorems 13 and 14).
R emark 1. Our considerations remain true also for the following weaker 

version of the equivalence relation ß ~ C o  there exist an A 6 C(E) with 
trivial ideal E  and elements e, /  G E  such that B  = A /(^ ,E )  and C =  A j (rj, E) 
where £ and rj stand for the traces of the congruences determined by the 
hemiring homomorphisms <pe and </>/ as in (3.4), respectively.

R emark 2. Puczylowski [4] assumed the existence of an up to isomor
phism unique zero algebra O which is the smallest element in each lattice 
1(A). This is not the case in C(E): the trivial ideals are, in general, not 
isomorphic, though the trivial ideals of ~-equivalent inversive hemirings are 
obviously ~-equivalent, and this suffices.

Puczylowski’s axiom A6 is a version of Terlikowska-Oslowska’s condition 
in [6], and it is decisive in obtaining the desired results in radical theory. 
Prior to proving the validity of axiom A6, we need some preparations.

P roposition 3.1. Let A — IJ^e be an inversive hemiring and K  < I  < A.
eEE
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(i) For every a £ A with a £ A c the mapping

ip: K - ^ { a K  + K [e)) / K ^

defined by ip(k) = ak + K^e\  k £  K , is a surjective hemiring homomorphism.
(ii) ip factors as

K  ---------------------------------------------------»  (aK + K ^ / K ^

K /(ti ip ,E )  ----------------------> K /(trp ,kerp )

where v is a P-homomorphism and i[> is an isomorphism.
(iii) {{aK + K ^ ) / K ^ ) 2^ e E .
(iv) aK  + K ^  <
(v) ker tp<I.

P r o o f . Clearly, p  is surjective and preserves addition and additive in
verses.

Let k \ ,k 2 £ K  be arbitrary elements with k\ £ K f = K  fl A j  and k2 G 
£ K g = K  n Ag. Since

ak\k2 € AeK f K g Q (Aej  fl I ) K g =  Iej K g ^  hfg  H K  = K ef g Q K^e\

it follows
ip(kxk2) =  akik2 +  K {e) = K^e\

and since

akxak2 G AeK f AeK g Q (Aefe n l ) K g = Ief eK g g Iefeg D K  = K efg Q K {e\

we get

p{kl )p{k2) = {ak\ + K {e))[ak2 + K (e)) =  akiak2 + K {e) =  K & .

Thus ip is a homomorphism, and the proof yields also (iii).
Assertion (ii) is obvious in view of the observations made after Proposi

tion 1.2.
A straightforward computation verifies statement (iv).
For proving (v), let us consider elements k e K f  = A f i ) K  and i € I  with 

i G Ig — A g fl I. Now by A: £ ker ip we have ak £ AeK fC \K g  K ef , and so

ip{ki) = aki + K M  Q Keflg + AT(e) Q {Iefg fl K)  + K ^  = K efg + K^e\
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and
p(ik) = aik + K^e) Q AeIgK f  + K {e) g (A eg n I )K f  =

= legKf Q Iegf D K  = K egf Q .
Hence (ker p)I  U / ( ker p) Q ker p  is valid. Furthermore, by ker tp < K  < / ,  
the trivial ideal of ker ip is that of I  (and A). Thus also ker p < I  has been 
established.

The next statement is, in fact, axiom A6 of Puczylowski [4] translated 
into the terms of inversive hemirings.

P r o p o s i t i o n  3.2. Let j4 g C(E) be an inversive hemiring, K<I<iA. Let 
us suppose that whenever J  and M  are ideals of I  such that

(i) M g K g J ,
(ii) K /M  = JJK ,

(iii) Y  <X <K := K / M  implies Y  <\K, then M  — K  = J .
Under these hypotheses K  o A.

P r o o f . Suppose that the assertion is not true, that is, K  is not an ideal 
of A. Then there exists an element a € A  such that aK £ A or Ka g A. 
Obviously it suffices to deal only with the first case.

Let us consider the mapping

p: K  ->(aK + K ^ ) / K {e] := J ^ / K ^ ,

as given in Proposition 3.1. By Proposition 3.1 we have

K /  (tr tp, ker tp) = / iL(e).

Since K /tr  p = and

K /( t r  p, ker p) = K ^ / ( k e r  p)^e\

we conclude
K ^ / ( k e r p ) ^ ^

We have also (ker p ) ^  <I^e\  and by Proposition 3.1 (iv) and (v)

(ker p ) ^  < 1 ^  and

In view of Proposition 3.1 (iii) we have ( J ^  /  K ^ ) 2 = eE , and hence condi
tion (iii) of this Proposition is fulfilled. Thus the hypothesis yields

(ker p ) ^  = K ^  = j ( e\
and consequently

(aK  +  K (e)) /A (e) =  J (e)/ K {e) “  eE,

which implies aK + K ^  =  K^e\  Since the inversive hemiring K ^  possesses 
a 0-element, it follows a K  g  K ^  g K ,  a contradiction. Thus Proposition 3.2 
has been proved.
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4. Radical theory for inversive hemirings

As exhibited in [2], a category C(E), E G  E, with E x- homomorphisms 
only, does not have enough morphisms for proving the ADS-property of rad
icals. This explains why the ADS-property was proved only for homomor- 
phically closed radical classes in [5]. And this is the reason why we consider 
the category C(E) with all homomorphisms.

In what follows we apply Puczylowski’s [4] method and in this way we 
settle clue issues of the radical theory of inversive hemirings and, of course, 
of graded rings which are inversive hemirings.

All classes of inversive hemirings considered in the sequel, are assumed 
to be subclasses of objects of the category C(E) of Section 3 and to be closed 
under the equivalence relation ~ .

A class R of inversive hemirings is called a (Kurosh-Amitsur) radical 
class, if

(4.1) R is closed under P-homomorphisms,
(4.2) every inversive hemiring AeC(E) contains a largest R-ideal R(A),
(4.3) R(A/R(A)) is the trivial ideal for all A g C(E).

We shall use the standard notions and notations of radical theory (cf. for 
instance [8]).

P roposition 4.1. Every radical class R is homomorphically closed and 
also closed under trace extensions: if A /£ G R, then also A G R for every 
congruence £ on the trivial ideal of A satisfying (1.1).

PROOF. The assertion is a straightforward consequence of the assump
tion that all classes considered are closed under the equivalence relation ~ . 

Every radical class R determines its semisimple class

S(R) = {A G C(E)|R(A) is the trivial ideal}.

In fact, the semisimple class <SR is closed under the equivalence relation ~ , 
or otherwise expressed, we have

P roposition 4.2. Every semisimple class is closed under trace exten
sions and under trace homomorphisms: if A G SR  and £ is any congruence 
on the trivial ideal of A satisfying (1.1), then A /£ GSR.

P roof. The proof is a straightforward application of Proposition 4.1.

Having verified the validity of axioms A1 to A6 in C(E), we can apply 
the results of [4] and obtain the following Theorem. For short, we shall write 
~-radical and ~-semisimple class for a radical and a semisimple class being 
closed under the equivalence relation ~.

THEOREM 4.3. (i) Every ~-radical R in C{E) is an ADS-radical: R (/)<
< A for all I  <A g C(E). Hence every ~-semisimple class is hereditary: I  <
< A G SR implies I  G SR.
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(ii) A subclass S of C(E) is a ~-semisimple class if and only if S is regular 
( i f E ^ I < A e S ,  then there exists a K o l  with E  I  /  K  ES),  coinductive (for 
any descending chain {/«} of ideals of A e  C(E) such that A / Ia E S for each 
a, also A /  fi Ia E S holds), and closed under ideal extensions (I E S, A /1  E S 
imply A E S), trace extensions and trace homomorphisms.

(iii) Starting from any subclass M of C(E) which is closed under homo
morphisms and trace extensions, the Kurosh lower radical construction stops 
at the first limit ordinal (for the lower radical construction we refer to [4]).

R emark 3. As we may see from the proofs of Propositions 3.1 and 3.2, 
trace extensions do not occur there at all, and also in proving Theorem 4.3
(i) we do not need them. Hence it suffices to consider only homomorphic 
images with respect to hemiring homomorphisms ipe in (3.4). Thus every ho- 
momorphically closed radical class RgC(E)  has the ADS-property without 
demanding that R be a ~-radical.

Finally we show how the results of Talat Shaheen and Yusuf [5] fit in
to the scheme of our theory. In [5] a radical class R has been defined by 
(4.1), (4.2) and (4.3), and it has been demanded that R be homomorphically 
closed. Moreover, in [5] the ADS-property of R has been proved under the 
assumptions

(4.4) e /  =  e /e  =  / e  for all e , f E E E  E,

(4.5) R (4 (e>) = R ( 4 ) n 4 W for all e E E E E  and A e C(E).

Obviously, (4.4) implies (3.2) and (3.3). Hence in view of Remark 3 our 
results infer the ADS-property for homomorphically closed radical classes of
[5]. Furthermore, we have also

P roposition 4.4. Any ~-radical class R satisfies (4.5).
PROOF. A straightforward set theoretic computation yields

R(A)OA(e) =  U  ( R ( 4 ) n d / ) =  (R(4))W.
f e e E

Since R is homomorphically closed, it follows

(R (A ))^ =  R(A)/(£, £J) € R

with an appropriate congruence £ on E. Hence (R(A))(e) < 4 ^  implies 

R(A) n AM =  (R(A))(£) Q R(A<e)).

On the other hand, from R(A(e)) < A(e) we conclude

R(A(e))=i ! / ( £ , £ )
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with a suitable ideal I  of A. Since R is closed under trace extensions, it 
follows I  € R, whence I g R(A). Thus we get

R(A(e)) =  I  n A[e) g R( A) n A {e).

and (4.5) has been established.
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A MINIMAL CONDITION FOR STOCHASTIC APPROXIMATION

D.-Q. TUYEN

A bstract

A sharp condition is found for noises in Robbins-Monro procedures, which assures 
the convergence of the procedures if the noises obey the Strong Law of Large Numbers, 
without further assumptions on dependences between the noises.

1. Introduction

For Robbins-Monro procedure (R.M.P.) (see [1], [2])

(1) -^n+1 — Xn ~ an ( f{ X n) +  £n)j
where X n, an ^  0 and en are real numbers, n =  1 ,2 ,. . . ,  (X\  is arbitrary) a 
question is raised what is the best condition for noises en under which the 
procedure still converges. For the identity function f(x )  = x  and an such 
that liman =  0, an — oo, X n —> 0 if and only if

n n
(2) (1 — Ofc)aj£j-A 0,

i — 1 k = i+ 1

n
since X n+i equals just the term in (2) plus X \  J](l — a*,). We will show

l
that under quite natural and well-known conditions on the (non-continuous) 
function f (x )  and an, condition (2) is also sufficient for the convergence of 
X n in (1).

In probabilistic language this means that if en satisfy the Strong Law 
of Large Numbers (S.L.L.N.) (in the sense below) then X n converges a.s.. 
So the problem of the convergence of R.M.P.s with dependent noises is re
duced to the one of S.L.L.N. for dependent random variables (r.v.s). Many 
known S.L.L.N.s for mixing sequences (in any sense) or martingale-like ones 
therefore can apply to R.M.P.s.

Also there are given two examples to show the results below are not easy 
to improve.

1991 Mathematics Subject Classification. Primary 60F15; Secondary 62L20.
Key words and phrases. Stochastic approximation, Robbins-Monro procedure, strong 

law of large numbers.
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2. Main results

The following lemma is needed.
L e m m a . Suppose a real function f : R —*R  and real numbers an,en sat

isfy:
(i) |/(x )| ÚK{1 + |rrI) for some constant K ,

(ii) an ~t 0 and lim an = 0,
n

(iii) limanen =  0,
n

and for X n in (1) suppose limXn does not exist. Then, for any [a,b\ C 
C (lim inf , lim sup X n), e > 0  and N , there exist n '^.m> N  and n' > 
> N  such that

Xi  € [a, b] for X n+i> b  and X m- \  < a ^  X m < a +  e,

XiE[a,b] for m ' ^ i ú r í ,  < a and X m/_i > 6 ^  X mi > b — e.
P r o o f . For [a, 6] and any N  there are p >  q> N  such that X q < a, and 

X p > b. Then there exists q < rn ^ p such tha t Am_i < a and X i~ ta  for 
mSLiS^p. Define n between m  and p such that X n+x > b and Xi  ^  6 for 
m f ^ i ^ n .  n will exist if we show X m < a +  e <b. Since X m- \  < a by (i) we 
have

X m =.Xm— 1 T  O-m—l X (IT  |-^m— 11) Qm—l^m—1 =
^ m ax{a(l +  e'),a( 1 — e/)} +  2e'

if N  is so large that \am- \ K \  <e' and |am_ iem_i| < e' for e' < 1, using (ii) 
and (iii). Obviously, we can choose e' so small that the last term < a +  e < b 
for any given e. Similarly, we can prove the second conclusion of the lemma.

For any function /  define f + := {x; /(x ) > 0} and /_  := {x; f(x )  < 0}. A 
finite point a is called a weak root of /  if the set lim /(a) { lim /(xn); forn
all sequences (x„) such tha t xn —> o} contains either zero or two non-zero 
values with different signs.

T h e o r e m  1. Suppose a real function f  and real numbers an, en satisfy:
(i) | / ( x ) |^ i f ( l  +  |x|) for some constant K ,

(ii) there a rec< d  such that su p /(—oo, c] ^  0 and inf f[d, oo) ^  0,
(iii) an ^ 0, lim an — 0 and Y^an — 00>

n
(iv) ai£i converges. 

l
Then:

(I) 0 G [lim inf f ( X n), lim sup/(X„)],
(II) if \im Xn exists then it is a weak root of f , otherwise 

(lim inf X n, lim sup X n) C /+  D /_  C [c, d\.
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Consequently, if e„ are r.v.s on some probability space (íí,^7, P) for which
(iv) holds with probability 1 then (I) and (II) hold with probability 1, too.

Note that
/+  H / -  C {weak roots of / } .

PROOF. By induction, for n ^ m > 0

(3)
n n

(• "̂n+l Xm) T ^  ] O'if = ^  y ai£i-
m m

(a) Suppose lim X n does not exist. For any [a, 6] C (lim inf X n, lim sup X n) 
and 0 <e < (b — a)/2 and for large enough N ,  by (iv) the last term of (3) is 
less than £ in absolute values for n ^  m > N .  Applying the lemma to such 
[a, 6], e and N  there are n ^ m >  N  such that A n+i — X m >b — a — e>  e and

n
Xi € [a, b] for m  ^  i ^  n. Consequently, by (3) for such m, n a,/(A 'j) < 0.

m
So there exists at least one i > N  such that Xi G [a, b] and /(A j) < 0. Simi
larly, using the second conclusion of the lemma there is an i > N  such that 
Xi 6 [a, b] and f{X i) > 0. So /_  D [a, 6] ^  0 and / + D [a, 6] ^  0, that is (II) is 
verified, since [a, 6] can be arbitrarily chosen. Also (i) holds, too, since N  
can be taken arbitrarily large.

(b) Suppose lim A„ exists. If lim A„ =  oo, then there is a AI such that
n

X n > d for n > N. Then X n+i — X ^  —> oo (n —> oo) and Y l ai f  {Xi) ^  0 by
N

(ii), which contradict (3) and (iv), so limXn < oo. By similar way we can 
see limXn > —oo. If a =  lim X n is finite then for any n ^  m > N , N  large 
enough, the middle term of (3) is less than any e in absolute values since 
this holds for the other terms of (3). Hence by choosing m and n  such that
n

a,i ^  1 which is possible by (iii) we see that there are at least one m ^ i ^ n
771

such that f (X i)  ^ e  and at least one m ^ j ^ n  such that f (X j)  ^  — e. Since 
e can be arbitrarily small these facts exclude the case when lim inf f { X n) 
and lim sup /(A ^) are not zero and have the same signs (or equal one of 
±oo both). So (I) holds. Since lim in f/(A „) and lim sup f { X n) belong to 
lim f(a), by (I) a is a weak root of / .

T heorem 2. Suppose a real function f  and real numbers an, en satisfy:
(i) |/(x ) | ií K ( l  + |m|) for some constant K ,

(ii) there exist c< d  such that inf f[d, oo) > 0 and sup/ ( —oo,c] < 0,
(iii) an ^  0, lim an = 0 and ^  an = oo,
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n n
(iv) condition (2 ) holds, i.e. l im ^ n a j£ j  =  0 , where

n l i

n
El ( ! - “*)) for i < n  

k=i-}~ 1
1, for i = n.

Then:
(I) 0€[lim inf/(A 'n),lim su p /(X n)],

(II) [lim inf Xn, lim sup X n] C {weak roots of f }  C[c,d\.
So, if  en ore r.v.s for which (iv) holds with probability 1 then (I) and (II) are 
true with probability 1, too.

We note that condition (iv) is implied by (iv) of Theorem 1 by Kro- 
necker’s Lemma, and both of them imply (iii) of the lemma since

an^n
n n 71—1 71—1

OiEi -  (1 -  an) ^  |"J at£i. 
1 i 1 i

P roof. For the procedure in (1) without loss of generality we can sup-
71

pose 0 < an < 1 for all n, so 0 < ]"] < 1 for all 1 i < n. Writing (1) in the
2

form
X n+ \—X n(l an) an{f (Xn) X n +  £n)i

by induction we have
72 71 72

X n + I-  n  X m = - Y / l l ai ( f ( ^ ) - X r+£l)
m—1 i=m i

for any n ^  m  ^  1. So, using the equality
71 72 71

w  n+EiP - “ 1
m— 1 i—m i

(n ^  m  Si 1) we have
72 72 72 72 72

n  (*n+l -  X m) +  ]T Y l  ai(Xn+1 - X J  + Y ^ i l  Oi f (Xi )  =
m i  m i

72 72
= ~ É l l a^

772 i

Let A mn, Bmn, Crnn and Drnn denote in turns the four sums in the last equal
ity. Like the role of (3) in the previous proof we shall use (5) to derive the

(5)
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n
conclusions. Note that since Dmn =  D\n — by (iv) Dmn —> 0 as

m—1
m , n —> oo.

(a) Suppose liin inf X n < limsnp X n. For any [a, ft] C
C (liminf An,limsup An), 0 < e < (ft —a ) /2 and for any large enough N  
\Dmn\ < e for n ^  m  > N . Applying the lemma to such [a, ft], e and N

n n
there exist n ^ m >  N  such that Brnn ^ 0 and Arnn ^  n  (ft — a — e) > n  e.

m—1 m—1

Consequently, by (5), Cmn < ( l  — f] Also by (4) we have
' m— 1 '

( 6 )

n n n

m—1

consequently inf /(A j) < e. Since e and A” can be arbitrary and A, €

€ [a, ft] we obtain that in f/[a , ft] ^  0 and lim in f/(A n) ^ 0. For a point a € 
€ (liminf An, limsup X n) take a sequence [ai, fti] D [02, bi] Z> • • • D a such that 
n[oi,ftj] =  a then inf /[a^, fti] f  0 or t p < 0, hence 0 or p belongs to lim /(a), 
respectively. Similarly using the other conclusion of the lemma we have 
sup /[a , ft] 0 and lim sup /(A n) ^  0 and hence 0 or any q > 0 belongs to 
lim /(a ). So we obtain (I) and (II) noting that the set {weak roots of /}  is 
closed for any functions /  satisfying (i).

(b) Suppose limA„ exists. To show it is finite, suppose in the con
trary, lim X n =  00. Then there are infinitely many n, such tha t X n% — 
max{Ai, X 2, . . .  , X ni} and a N  such that X n > d and \Dmn\ < inf f[d, oo)/2 
for any n ^  m  ^  N . For any ríj >  JV we have Ajv,nj- 1 = 0 and 0.

71 /  Tl \

Since by (iii) ]/[ ^  exp ( — ^  a i) —> 0 as
JV—1 '  N + l '

n 00 we can find rii> N  such

Tli —1
that n  < 1/2; hence by (6) Cjv)n(_i > in f/[d , oo)/2 which contradicts (5). 

N -1
Similarly we can see lim X n > —00. Since lim X n is finite, for any e > 0 there 
is an N  such that for any n ' t m >  N  \Dmn\ < e and by (4) |Amn +  B mn\ Ú

1 — f l  )e =  e, hence by (5) we obtain \Cmn \ < 2e. So, for any
m—1

n ,
= n  £ + (771—1 '

n
n > m >  N  such that < 1/2 by (6) inf /(A j) < 4e. Similarly we have

m—1 mgign

C m n i  1 -  I!  sup /(A i), consequently sup /(A j) > —4e. As e can
'  m —1 '  m ^ i á n  m ^ t ^ n

be arbitrary we obtain (I) and (II) similarly to the last part of the previous 
proof.

Condition (iv) of Theorem 2 can be presented in a known form of prob
ability theory.
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D efinition. The r.v.s en having common expectations Een = Ec\ are 
said to obey the S.L.L.N. with the double sequence of real numbers (bm) 
i ^  n  if

n
(i) bin ► 1 and m ax(6jn) -* 0 as n -> oo,

l *
n

(ii) Y2 bin^i —t i?£i a.s. as n -> oo.
l

Then (iv) of Theorem 2 can be replaced by
(iv') the r.v.s en having zero expectations obey the S.L.L.N. with the

n
double sequence bin = Y \ ai-

i

This replacement is possible because by (iii) of Theorem 2 and (4)
n

^2 bin —> 1 and by supposing an < 1 
l

n n
max(&;„) ^ max 1 1 +  max a8 ^ ] [ +  max a* - » 0

* l<i<g(n) "L."L g(n)<i<n g{n)<i<n
I g{n)~ 1

where g(n) is the first k such that
k

i
> ( ? “■)/2 for which g(n) —> oo and

n n 9{n)~ 1 n

' ^ 2 ai = '^ 2 a i ~  ^ 2  a* = ( X ! ai) / 2 —> oo as n —> oo, 
ff(n) 1 1 1

using (iii) of Theorem 2 again.
For any continuous function / ,  / + f l / _  contains only separate points (no 

interval) or is empty, and a weak root of /  is the root of / .
C orollary 1.1. I f  in addition to the conditions of Theorem 1 the func

tion f  is supposed to be continuous then X n always converges to one root
of /■

T heorem 3. If f  is a continuous function satisfying (i) and (ii) of The
orem 2, an — \ /n  and the r.v.s en, having zero expectations, satisfy the usual
S.L.L.N. then X n in (1) converges a.s. to one root or to one interval of roots
of f -

3. Two examples

Two conclusions: lim X n is a weak root of /  in Theorem 1 and the 
statement (II) of Theorem 2 cannot be replaced by the better ones: lim.X’n E 
G /+  n  /_  and [lirri inf X n, lirri sup X n] C /+ H 7 -, respectively, as is shown by 
the following examples.
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Let /  be such that: f ( x)  = x for x  < 0, f ( x )  — 0 for 0 ^ x ^  1, and f ( x)  = 
= x — l f o r a ; > l .  Let an, en be such that: an 4 0, an < 1/2, an+\/an > 1/2, 
X) an = oo, Y l an < oo, and en =  1 if > 1 and en =  —1, otherwise. Let 
Xi =  1. Then

= ( X n + an i f O £ X „ g l ,
71+1 U „ ( l - a „ )  i f * „ > l .

Since X n+\ steps forward (grows) if 0 ^ X n ^  1 and backward if X n > 1, by 
induction we can see that 0 ^  X n ^  2 and \Xn+i — X n\ < 1. Hence using the 
above equations we have \Xn+\ — X n\ ^  2an J, 0. Also by induction we have 
\Xn — 1| ^  2an since if this holds for n then \Xn+i — 1| £ an < 2an+i, using 
the equations and that —2an Si X n — 1 ^ 0  for 0 ^  X n ^  1 and 0 ^  X n — 1 ^  2o„

n
for X n > 1. So X n —> 1. To show alel converges, hence that all conditions

l
n

of Theorem 1 hold, by (3) we need to show Y l ai f (Xi )  converges. We have
l

for any m  ^  n

n

771

n
£  at ( A , -  1) ^ X > 2.

n
Since < oo, converges. So all conditions of Theorem 1 are

l
satisfied, limXn =  1, but 1 does not belong to /+  D /_ which is empty in this 
case.

Now for the same function /  let an =  1/ro, en be such that 1 > |en | 4-0, 
Y2 °n|£n| =  oo, and the sign of en equals the sign of f ( X n) for f { X n) ^  0 and 
equals the sign of en- i  otherwise. Let X\  = 3 /2 . So

{ Xn Qn (Xn 1) Q,n \cn I if X n > 1,
X n + a„|An| +  an |e„| if X n < 0,

X n ±  an|en| otherwise.
We can see that: (a) using these equations and using induction for n  ^  

^ 2  we have — 1 < X n < 2 and |Xn+i — X n\ < 1 for all n, (b) using also the 
equations and (a) we obtain |Xn+i — X n\ ^  2on |0 ,  (c) any step X n out of 
[0,1] will make following steps X n+i, X n+2i ■ • • be in the direction toward 
[0, l] and keep that direction until to another step taking out of [0, 1] at the

n
other end, (d) since for any m  there is an n  such that ai\ei\ ^  2, the steps

m
in [0, 1] without changing the direction always lead to the one which is out 
of [0,1], consequently there are infinitely many X n which are out of [0,1] at 
both ends, so by (b) [liminf X n, limsupXn] =  [0,1], (e) the term in (iv) of
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Theorem 2 equals y e i J  / n -> so it tends to zero since |en| |0 ,  that is (iv) of

Theorem 2 is satisfied. So all conditions of Theorem 2 hold for this example 
but [0,1] =  [lim inf X n, lim sup X n] ^  /+  fl /_ , because the last one is empty.
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ORDER OF BEST APPROXIMATION BY POLYNOMIALS
IN Hq(p  ^ 1, <7 > 1) SPACES

F. XING

A bstract

In this paper we improve a Hardy Littlewood type theorem of [1] and extend the 
estimation for order of best approximation by polynomials in Hj)(p ^  \ ,q  ^  2 ) spaces 
obtained in [1], to Hq(p ^  1 , q > 1) spaces.

If a function f ( z ) is analytic in the unit disc \z\ < 1 and with the param
eters p and q satisfies the condition

\\f{z)\\pd= J J  (1 “  \z\2)q~2\f  {z)\pdx dy <+oo, z = x  + iy ,

I*I<1
then we say that the function f(z )  belongs to H(j spaces.

As the integral

J J  (1 -  \z\2)q~2dxdy  

M<1
exists only for q > 1, we must assume q > 1 in the definition of Hq spaces. 
However, the parameter p can be an arbitrary positive real number. But 
p 1 and 0 < p < 1 make Hq spaces having different properties. When 
p ^  1, according to the norm ||/ (z) || mentioned above, Hq spaces are Banach 
spaces. When 0 <p < 1, the ||/(z)|| defined above does not satisfy the triangle 
inequality. So Hq (0 < p < 1, q > 1) are not normed spaces, but Fréchet spaces.

Hardy-Littlewood type theorems are very important for estimating the 
order of best approximation by polynomials in Hq spaces. In [2] there is a 
Hardy-Littlewood type theorem for functions of Lip a  (0 < a  ^  1) classes of 
Hq spaces when q — 2 ,pG  [l,+oo). But there are no proofs in [2], In [1] we 
obtained a Hardy-Littlewood type theorem for functions in Lip a  (0 <  a  ^  1) 
classes and an estimation for order of best approximation by polynomials in 
Hq (p ^ 1, q ^  2) spaces. In this paper we investigate the Hardy-Littlewood 
type theorem for general Hq (0 < p < +oo, 1 < q < +oo) spaces and ex
tend the estimation for order of best approximation by polynomials in Hq 
(p ^  1, q ^ 2) spaces obtained in [1], to Hq (p ^  1, q > 1) spaces.
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Besides the notation ||/(z ) || we have mentioned, the following notations 
are needed in this paper:

\f{z)\pdxdy, z = x + iy ,

where D is a certain subset of the unit disc \z\ < 1;

c u ( r , / ) =  sup {\\f(zelh) -  f(z)\\}-
—T=^=r

P(n)( / ) d e f  {\\f{z) ~  Qn{z)\\},
Qn(z)e n„

where Iln is the set of all algebraic polynomials of degree at most n. 
The main results in this paper are Theorem 1 and Theorem 2.

T h e o r e m  1 (Hardy-Littlewood type theorem). Suppose that f(z )  6 H p 
(0 <  p < Too, 1 < q < Too), p, =  min{p, 1}, Vt{t) is a non-negative function, 
and

/

W{t)
i

dt < +oo.

Suppose for any 0 < t < h we have

n p(h) 2fip (t)
h ~ t

and for any (0,1)

( b l < e )

^(f -  e)
1 - Q

Then for any t £ [0,1] we have

u (T ,f ) -S c Ptq
T

0

1/ß

where cp>q is a constant depending only on p and q 1

To prove Theorem 1, we divide it into three parts. At first we prove

1 In this paper we denote constants depending only on p  and q by cp,9. The same cPl9 
at different places may take different values. For example, we can write cp,g +  1 =  cPjf/ etc. 
In this paper we will denote by cp constants depending only on p. The same cp at different 
places may take different values, too.
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Lemma 1. Let rG (0,1), 0 < h < r ,  0 < p < 1. Then for any function 
f ( z )  analytic in the unit disc \z\ < 1 we have

I  \f(re l9) - f [ ( r - h ) e i0}\pd 9 í c p J  \} '[{r-h  + t)el9}\pde^dt.
0 h / 2  0

P roof. Let {/ifc}£L0 t>e a series such that ho =  0, hk —¥ h monotone 
increasingly. By using the triangle inequality in Fréchet spaces we obtain

OO

I/(re10) -  f[(r  -  h)ei9]\p g £  |/[(r  - h  + hk)eie) -  f[(r -  h + hk+l)e'9]\p ^
k = 0

~  r r
i E  / i / ' [(r — h + t)el9]\dt\ ^

ú ^ 2 i hk + i - h k)p sup \ f ' [ { r -h  + t)et9]\p.
k=0 tikK.tK.hk -̂i

Using the Hardy-Littlewood maximal theorem in Hp spaces (see [3], § 1.6) 
gives

27T 2 7T
Í  sup | / ' [ ( r - / í  + í)e,0]|pd0^Cp Í  \ f'[(r -  h + hk+i)et0]\pd6.

J /ifc<£</ifc+i J0 0
It follows that

2?r

( 1 )

J\f(re'9) - f [ ( r -h )e ' 9}\pd d i
o

OO ^

g C p ^ f c + i - Ä * ) '  /  \f'[(r — h + hk+i)ei9]\pd0.
i--n J

If, in particular, hk =  (1 — 2 k)h, k = 0,1, 2 , . . . ,  then

{hk+i — hk)p — (hk+i -  hk)(hk+i -  hk)p~l =  2(/tfc+2 -  hk+i)(h -  hk+ i)p_1. 
2tt

Both (h — t)p~l and f  \f'[(r — h + t)el9]\pdd are monotone increasing with 
0

respect to t £  [0,/i]. Therefore from (1) we obtain
2tt

f \ f ( r e i0) - f [ ( r - h y 9}\pdOi 
o
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2-n

^ t ' i h w - h w X h - h w r 1 í  \ f [ ( r - h  +  hk+l)ei0]\pd d í  
k=o i
oo hk+l 2n

^ c p £  [  ( h - t r - ^ J \ f [ ( r - h  + t ) e ^ d e y t  =

h  2 n

=  cp J (h — t)p~l ^ j \f'[(r -  h +  t )el0]\pd O y t .

h / 2  0

The proof of Lemma 1 is complete.

Lemma 2. If a function F(z)  is analytic on the closed unit disc \z\ ^ 1,
then

2 n  2 nJ \F{ei{0+h)) - F ( e l0)\pd 6 ^ c p\h\p J \F'(e}0)\p d9.

P r o o f . See [4],

P r o o f  o f  T h e o r e m  1 (case 0 < p < l ,  2 ^ g < + o o ) .  According to the 
definition of u>(r,/ ) ,  we start from estimating \}(zelh) — f(z ) \  and 
\\f{zelh) - f { z ) \ \ .

|| f ( z e lh) — f{z)\\ is an even function of h. So what we need to consider 
is only the case h > 0.

Setting ro =  min{l/2, (1/2)|2q — 3|-1//2}, we consider the case r  6 [0, 
at first. At this moment we have h £ [0, ^ro], and for ro < |z| < 1, z =  re10,

\ f  (zeih) — f i z )\ =
% I f i re10) -  f[(r -  h)ei0} | + |/[(r -  h)e'0} -  f[(r -  h ) e ^ ] \ +  

+  l/[(r — h)ei(ö+/i)] — / ( r e “(0+/l))|

*= Ai +  A2 +  A3.

By using Lemma 1 of [1] and the triangle inequality in Fréchet spaces we 
obtain

3

\\f(zeih) - f ( z ) \ \ p ^2 \\f(ze ih) - f ( z W ^ 2 Y ,  !|Afc||p .
(r0< |z |<l)  k = i  (r0<|z|<l)

We need estimates of ||A*;||P (k = 1, 2, 3,), respectively. 
(ro<|z|<l)
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2 77

(i) HAill* =  [  r ( l - r 2r 2( í I f ( r e i0) - f [ ( r - h ) e i9]\pdd)dr.
( r o < |* |< l )  J  {  'ro 0

Using Lemma 1 of this paper and Fubini theorem gives

l 2t7

IIA if ú c p f
(r0<|z|<l) J r o

'(1 — r2)q~2

h 1r r

II ■<P 1 c-f
. 1 /  r ( l  — r2

h/2 L Jro
hr 1—h-\-tn

= cP {h -t)p- 1 J  {p + h-
h/2 T f f -h + t

h/2 o
2?r

7-2
277

^  J\ f ' [{r - h + t ) e l0]\pd6 )dr dt =

277
dt<

l —h + t

Zc,  J 1 2 p ( i - p 2r 2 ( | | / ' ( pei0) | ^ J d t g

h / 2  TQ—h + t  0

h

^  [ (h - t y - 1 n/'(z)|| dt.
J  ( \ z \< l - h + t )

h / 2

2tt

(ii) ||A2||p =  [  r ( l - r 2)9-2( [ \ f [ ( r -h)e l0} - f [ ( r - h)e^0+h^d9) dr .  
frn<lzl<l') J J '(r0< | z |< l ) ro 0

For any fixed r and h , 0 < r — h < 1, let

F {z)d= f [ ( r - h ) z \ .

Then F(z) is analytic on \z\ ^  1. By using Lemma 2 we obtain

1 277
| |A 2 ||p ^  J r ( l - r 2y - 2( ^ f  Cp(r -  h)php\f'[(r -  h)eie]\pd6̂ J dr ^

(r0< |z |< l)
r o 0

1 277J r ( l  — r2)q~2 ^ J \ f ' [ ( r - h ) e i0}\pd6Sjd r  =
r  o
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1—h 2ix
=  cphp I  (r +  /i)[l — (r + h)2]q~2 \f'(rel0)\pd9^jdr ^

r 0 - h

l-hl—h 2ir
£ c php j  2r(l — r 2)9“2 ^ J \ f ' ( r e ie)\pdd^jdr ^

r o - h

í c php\\f'(z)\\p.
(I*l<l-A)

(iii) Obviously we have

iiA3r  = iiA iir •
( r0< |z |< l )  ( r0< | z | < l )

Thus we obtain

3

v  iiA*r gcpf í ( h - t r - 1 \ \ / ' ( zw d t + h* M ' ( zw ) $
fc=l ( ro < |z |< l )  V J  ( | z | < l - / i + í )  { \ z \ < \ - h ) /

h / 2  

h

éCp{ / ( , _ « r . ö í i z l ) d i + y 5 ! W )  =
( h - i ) p hP J

h / 2

= ^ j ^ í d t + a r { h )

h / 2

< c j  I ^ L Z A dt + ^P{h) ) =
' h - t  
0

h

= c
n p { t )p{ f - — dt + n p(h) 

0
Y

From the hypotheses of the theorem we know that

n p(h) = 2 !
h J t

o o
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Therefore we have

t  S C
k = l (r o < \ z \ < l )  £ 1

3 ^

||/(ze i'1) - / ( i ) r S 2 ^  IIAilP
k = l  (r0<|z |<l) J  1

and

w ( r , / ) =  sup {\\f{zelh) ~  f{ z ) \ \}^
—T<h<T

<
o Z Ú { Crl ^ d t ) ' P} =

— Cr n i ; 1/p

This completes the proof for r  6 [0, ^ro].
If t  G (^ro, 1], by using properties of u (r , / )  we obtain

w ) ^ p( i j ) ^ [ - + i W - , / ULrn J \  2 /
UJ‘

- r  o
ro/2

< +  i k  ^
Lr 0 J J t

dt<

r w ( t )
= J  t dt.

The proof of Theorem 1 (case 0 < p  < 1, 2 ^ q <  +oo) is complete.
P roof of T heorem  1 (case 1 < +oo, 2 ^ q <  +oo). For p  ^  1, H%

spaces are Banach spaces, so the proof is even simpler; we omit the details.
In order to finish the proof of Theorem 1, we need some more preparation. 
D efinition  (see [5]). Let a function f ( z )  be analytic in the unit disc

OO

\z\ < 1, f ( z )  — cnzn, and ß  an arbitrary real number. Then the operators
n—0

Dß and I ß are defined as
OO

Dßf(z )  = Y /(n + l)ßcnzn,
n= 0
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i ßf ( z ) = Y , ( n + 1 )~ßc*zn -
n= 0

It is not difficult to prove that the operators Dß and I ß have the following 
properties:

(i) DßI ßf(z )  = I ßD ßf(z )  = f(z)-

(ii) D ßDaf(z )  = D aD ßf{z) = Da+ßf{z)-,

(in) I ßI af(z )  = I aI ßf(z )  = I a+ßf(z)-

(iv) Setting D ? f(ze l9) = D af  (()\i=ze«>, we have

D *f{ze ie) = D af ( z e i9).
In fact, according to the definitions of D%f(ze'lß) and Daf(ze l°), we have

OO OO

DaJ ( z e ld) = +  1 )acn(zei9)n =  ^ ( n  + 1 )acnzné n9,
71 = 0 71 — 0

OO OO

Daf{ze l9) = D a J 2  cnein0zn = + l )acnein9zn.
7 1 = 0  7 1 = 0

These are equal. So the property (iv) holds.
LEM M A  3 (see [6], [7], [8]). Letp> 0, q > l ,  ß  a real number, q + ßp>  1. 

Then D ß is a bounded linear operator from H q onto Hq+ßp- The inverse
operator I ß is bounded, too. This means that there exist suitable constants 
Cp q >  0 such that the inequalities

cpJ D ßf(z)\\HP+ßp Í  \\f{z)\\Ĥ c Vtq\\Dßf{z)\\Ĥ v

hold for any f(z )  6 H q, where the subscripts indicate the spaces where the 
|| • || are taken. (If a || • || does not involve the whole unit disc but a certain 
subset of the unit disc, we will mark it by an appropriate subscript.)

We can formulate the result of Lemma 3 as

\\Dßf(z)\\Hr ~ | I / ( z)IIh?-
q + 0 p  y

Lemma 4. Let p > 0 , q > l ,  ß a real number, q + ß p > l ,  pE (0,1). Then 
we have

\\Dßf(z ) \ \  ~\\{Dßf(z))'\\.
H pq + ß p { \ z \< P) H * + 0 p ( \ z \ < p )

PROOF. Prom [5] we know that there are appropriate constants cv > 0 
such tha t the inequalities
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2tt 2rr 2it

Cp J \ f '{re i0)\vdO ^  J \Dl f ( r e i0)^dd Í  cp j \f (rel0)\Pd9 
b o  o

hold for any positive number p. Thus, in both spaces Hq and H^+/3p we have 
appropriate constants cp > 0 such that

CpWf'izW áWD'fizW icrWf'izW.
(Izl<p) (|z|<p) (l*l<p)

Furthermore, by using Lemma 3 we obtain

\\Dßf'{z)\\ ~  ||/ '(z )|| ~  \\D1f(z)\\ ~  ||£)^D1/( '2)II ~  
^ +0p(l2l<p) ^«(I2I<p) ^ ( I zI<p) /i +̂3p(lzl<p)

\D1D 0f(z)\\ ~  \\(D0 f(z))'\\.
H * + 0p( \ z \< p ) f fpq+0p(\*\<P)

The proof of Lemma 4 is complete.
L e m m a  5. L e tp >  0, q > l ,  ß  a real number, q + ßp>  1. Then we have

(t , D 0 f ( z ) ) ~ u Hr(T, f(z)) ,  
q+ßp 1

where the H^+ßp and Hq in the subscripts indicate the spaces where the 
moduli of continuity are taken.

PROOF. From the properties of D 0 we obtain 

D0f{zeih) -  D0f(z )  = D0f( z e lh) -  D 0f(z )  = D0(f(ze ih) -  f (z )) .

So from Lemma 3 we have

\\D0f{ze 'h) - D 0f{z)\\Hv =
q+ßp

=  \\Dß{f{zeih) -  f(z))\\HP ~  || f ( z e ih) -  f(z)\\H?.
q+ßp q

Taking supremum for /i€  [—t, r] gives

{t , D 0 f { z ) ) ~ w Hp{T, f(z)) .  
q+ßp i

The proof of Lemma 5 is complete.
P r o o f  o f  T h e o r e m  1 (case 0 < p < +oo, 1 < q < 2). Let q € (1,2) 

be fixed. We choose an arbitrary natural number k such that kq =  Q ^  2. 
Denoting ß =  (Q — q)/p, by Lemma 3 we know that D0 is a bounded linear 
operator from Hq onto H q .
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By assumption

ll/'WII I
Hpq{\z\<p)

^(1 ~P) 
l - p

So by using Lemma 3 we obtain

\\Dßf \ z ) U * ß ^ - .
H^(\z\<p) 1 P

Furthermore, from Lemma 4, we have

ii(p g/w ) 'i ig c b .gn S-1- 7 - -
HpQ(\z\<p) 1 P

Using the already proved parts of Theorem 1 gives
T

" H J  ( t , D ßf )  S Cp,, ( J  jr ,

where p =  min{p, 1}.
Finally, from Lemma 5, we obtain

« « • w i s e ™ ( j ^ r d t )
o

i//i

The proof of Theorem 1 is complete.
C orollary. Suppose that f (z)  g Hq (0 < p < +oo; 1 < q < +oo), p = 

=  min{p, 1}, and there exists a constant M  such that for any p G (0,1) we 
have

| | / , ( z ) | |^ M ( l - p ) a- 1, 0 <  a  ^  1.
(M<p)

Then for any r G [0,1] we have

u ( T , f ) ^ c M a~1/ßM Ta.

This is a consequence of Theorem 1 if we put íí(í) =  M ta.
LEMMA 6. If a function f (z)  is analytic in the unit disc \z\ < 1 and 

f { z )  G Hq (1 5Í p < Too, 1 <  q < +oo), then we have also f (z)  G Hq (1 ^  p < 
< +oo, 1 < q < Too).

P roof. We have
r r

/ ( * ) - / ( 0 )  =  y  J ^ / ( íe l0)dí = /  el6f { t e ie)dt, 
o o
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r i

l / W - / ( 0 ) |g  I \ f ' ( t e i6)\dt = I  \ f ( t r e 'd)\rdt,

l l / ( * ) - / ( o ) l l i / / ' a - N V <7-2 Í / I f ' t w j 6\ f  (treia)\rdt) dxdy
i / p

<

U <1

(1 — \z\2)q~2rp\f'{trei0)\pdxdy  ) dt ^< / ( / /
0 121 < 1

“ / ( / /  { ^ - \ z ^ ) q̂ 2\f'{trel0)\pdxdy^j dt =
o |*|<1

1 1 2n
= j !  r[l — r2)q~2̂ j \f '( tre l0)\pdd ]dr

o o
l l

0
2tt

1 / P
dt<

i- i- ^ j p
j  r(l  — r2)q~2^ J  \f'{rel0)\pd6^dr dt =

o o
l

= J  \\f'(z)\\dt =
o

=  ll/'(*)ll<
< +oo.

By using the triangle inequality in Banach spaces we obtain 

ll/(* )ll^ ll//(*)ll +  11/(0)11 <+oo.

T heorem 2. Let f^m\ z )  £ H p (1 ú p  < +oo, 1 < q < +oo), where m  is a 
non-negative integer. Then for any natural number n we have

P(n)( / ) ^ 4 - j l f M ) ,nm \ n  )

where A is a constant independent of n and f .

P ro o f . Let
oo

f ( z)  = '%2ckzk, \z\ < 1. 
k=0
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For any natural number n, set

n' = 2
'71 +  1' 
. 2 .

2 =  2
rn — 1"

< n

Pn(f, m, z) =  c0 +  ^ ( 1  -  A™+l)ckzk,
k= 1

where A*; +  1 — jk, jk (A: — 1 ,2 ,... , n') are the coefficients of Jackson kernel 
of order [2±I]:

1
J[n±I ] (i) =  2 + Ú  cos kt"

k= 1
We want to prove that for any natural number n we have

ll/M  -  C ,(/,m ,* ) || £ 12m̂ u . ( t  / W ) .

We use mathematical induction with respect to m  ^  0.
(i) In case m =  0 we have

(2) Pn(/,0 ,*) =  co +  £ ( l  -  ^k)ckzk = PJ[n±i](f,z) ,
k=1

where

is the Jackson polynomial of degree 2[2±I] — 2 generated by f (z) .
From the proof of Theorem 2 of [1] we know that

(3) II f ( z)  -  Pn(f, 0, z)\\ ^  6 u  f  , f ]  = 6a;( n ’-0 = 12uJ{ ^ f ) -

(In fact, Theorem 2 of [1] is the case m =  0 of Theorem 2 of this paper. Here 
we use a new proof similar to the proof of Jackson theorem so as to prove 
the case m  > 0.)

(ii) Suppose that the proposition for m =  r  is true (r is a non-negative 
integer). Let us investigate the case m  = r + 1. Now the condition is

/ (r+1)(z) =  (f ' ( z ))(r) G//P (1 ^ p <  +oo, 1 <q<  +00).

We know that
p h(f,r , z) = Pn{ f ' , r , z).
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So according to the induction hypothesis we have

II [ f ( z ) - P n{f, r,*)]'|| =

= \ \f '(z) - P n ( f ' , r , z ) \ \  ^  ( / ' )(r)) =fM { n , r , p , q ) .

From Lemma 6 we know that f (z)  — Pn {f, r, z) € Hjj (1 ^  p < +oo, 1 < q < +  
Too). And by using the corollary of Theorem 1 (the case a =  1) we obtain

w ( - , / ( « ) - i n ( / , r , z ) )  <; — M ( n , r , p , q ) .
\ n  n

Therefore from (3) and (2) we have

\ \ f ( z ) -P n( f , r , z ) - P J[n±1][ f( t ) -P n{f,r,t),z]\\ ^  1 2 t j ( ^ , f { z ) - P n( f , r , z ) ^  ^

< 12cp>(5

n
M {n,r ,p , q) =

12r + 2 <V,Q
n r+ 1

U)( ^ ,r+,))-
From 1 — jk = A*; and (2) we have

Pn(f,r,z)  +  PJ[n±i][ f ( t ) - P n{f,r, t ) ,z] =
n! n' n!

- *  +  £ ( ! - A£+1)c*zfe +  co +  y 'jkC kZ k -  (co +  ~  =
/c=l fc=l fc=l

n!
^ c0 + ^ ( i - a 3;+2)Cfczfc =

*:=i
=  -Pn(/,r +  l,z ) .

So we obtain

11/(*) -  P „(/,r  +  1,z)|| g 12^ .̂ ( l ; / (r+1)) .

This means that the proposition is true for the case m = r+  1. The proof of 
Theorem 2 is complete.
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EXTENDING A FAMILY OF CAUCHY STRUCTURES 
IN A LIMIT SPACE. I

J. DEÁK

A bstract

Given compatible Cauchy structures on some subspaces of a limit space or pseudo- 
topological space, we look for necessary and sufficient conditions for the existence of a 
simultaneous extension of these structures. Some related problems will also be considered.

The following simultaneous extension problem was considered in [8]- 
[11], [5], [6] for several kinds of topological structures: Let I  be a set, a a 
structure (e.g. a closure) on X ,  {A^: i £  1} a system of subsets of X , and 
assume that a richer structure (e.g. a proximity) Ej is given on each Xf, under 
what condition is there a common extension of the structures Ej compatible 
with cr? (The analogous problem with no prescribed structure on X  was 
dealt with in [12]—[15].) In particular, Császár [6] considered simultaneous 
extensions of Cauchy structures* 1 in a closure space (in the sense of Cech [3]). 
He only obtained results for extensions satisfying an additional condition 
(Riesz or Lodato axiom); the reason is that it is not even clear which closures 
can be induced by a Cauchy structure (cf. [7]; following [6] and [7], a Cauchy 
structure will be called from now on a Cauchy screen), while it is quite easy 
to describe those closures that can be induced by a Riesz or Lodato Cauchy 
screen (shortly: CR screen, respectively CL screen).

We aim at solving the problem of extending Cauchy screens, although 
in a convergence or pseudotopological space instead of a closure space. (A 
convergence induced by a Cauchy screen is always a limitation. A pseudo
topology is usually defined as, or identified with, a convergence or limitation 
satisfying an additional axiom; such an identification would, however, result 
in losing some interesting information on extensions.) Being able to solve 
the problem in convergence (bot not in closure) spaces seems to back up 
the assumption that convergences provide a more natural framework than
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Key words and phrases. Cauchy structure, (Cauchy) screen, closure, pseudotopology, 
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1 All the notions mentioned in this introduction will be defined in § 1.
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closures for investigating Cauchy screens (cf. [2], [19], [21], [22], [24], [25] 
versus [6], [7]).

We shall begin with solving the much simpler problem of extending a 
family of screens in a convergence or pseudotopological space. It will also be 
observed that extending a family of Riesz, Lodato, CR or CL screens in a 
convergence or pseudotopological space is equivalent to the same problem in 
a closure space, which was solved in [5], [6]. The proofs of the main results 
will make use of a theorem from [14], which gives a necessary and sufficient 
condition for the existence of a Cauchy extension of screens in the case when 
no structure is prescribed on X .
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6 jC) M  5.2 
©E 7.1 
6 f 1.5
6 ° ( A ) ,  6 X ( A )  2.1 
6 ° ( A ,  6 i ) ,  S ^ A ,  &i) 2.2 
6 P 1.5
6°(7t), G 1^ )  3.1 
6°(7t, 6 i) , ©1(7T, ©i) 3.2 
6 r  1.5 
St 7.1
6 ° (A ,6 i) , 6!(X, 6^) 2.2 
~  7.1

§ 0. Notations and terminology

0.1. Notations. F ilX  and UltX denote the collection of the proper 
filters, respectively of the ultrafilters, on X .  F il+ A = Fii A U {exp X } ,  
Ult + X  =  Ult A U {exp A}. A filter s is fixed at x  if x E P)s; s is fixed if 
it is fixed at some point; s is free if it is not fixed. F iif X  and U ltf X  denote 
the collection of the free elements of FilA , respectively of Ult X. x  denotes 
the filter {A C X : x € A } : or the same in a subset of X  (it will always be 
clear from the context which subset is meant). For s 6 Fil+X, s | X q denotes 
the trace of s on Xo C X \  the same notation |Afo will be used for restrictions 
of structures to subsets. For so 6 Fil+ X q (where Xo C X), sj = filso where, 
for a filter base b, fil6 =  filA"b is the filter in X  generated by b. (A filter base 
is allowed to contain the empty set.)

For a, b C exp X , a A b iff A fl B ^  0 (A 6 a, B  E b); a Ap b iffP )an f)b 7 ^  
^ 0 ;a A b ifT a A b  does not hold. For a C exp X , sec a = sec^a consists of the 
subsets of X  meeting each element of a. For structures S ,S ' on X ,  S  <  E' 
means that E' is finer than E; suprema and infima are to be understood with 
respect to this partial order.

0.2. Families of structures. With the notations from the first paragraph 
of the introduction, the structures Ej (i G I) form a family of structures in 
the space (A, a) if

(1) ct(Eí) = ctí (* e /) ,

where cr( ) denotes the induced structure and Oi = a\Xi {compatibility), and

(2) S j|A ij =  T,j\Xij ( i , i e / ) ,

where Xij — X i HX j  (accordance). We speak about & family of structures in 
the set X  if (2) holds. Given a family of structures in a set (or in a space),
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it will be understood implicitly that the set is denoted by X ,  the subsets by 
Xi ( i£  I), the structures are Ej (and the structure on X  is cr); the letters E 
and a will always be replaced by those typically used for the structures in 
question (e.g. 6 , and A for a family of screens in a convergence space). The 
notation E(j) (i € 7) will be preferred when structures on the same set are 
given.

For a family of structures in a set, E is an extension if

(3) EI AT, =  Ej ( i e l ) .

E is an extension of a family of structures given in a space if, in addition,

(4) cr(E)=cr.

When wishing to emphasize that (4) is assumed (i.e. that E is not just an 
extension in the set), we shall speak about an extension in the space (or a 
compatible extension). (2) (and (1)) figure in the definition of a family of 
structures, because they are clearly necessary for the existence of an exten
sion (at least when the structures satisfy some natural conditions, cf. the 
introduction in [8]).

0.3. Conventions. We shall assume (except in definitions) that 1 ^ 0 .  
The special case 7 =  0 of the extension problem in a space means looking for 
structures E compatible with cr; this case will always be dealt with separately 
in a lemma, and then we shall assume I  ^  0 in the statements on extensions.

Without these conventions, some statements would have to be worded 
more carefully: e.g. 2.1 (1) is false for A =  0, and Corollary 2.2 for 7 = 0.

§ 1. Definitions

In addition to the definitions, we shall formulate some simple statements 
on the connexions between the notions. Nothing in this section is new; 
see [2] for more historical data. As the continuity of non-injective maps 
is irrelevant from the point of view of extensions (cf. [12] 1.1), we shall 
only define restrictions to subsets (instead of continuity of maps) and the 
relation finer/coarser between the structures on the same set. This means 
defining concrete categories over the category of sets with the injective maps 
as morphisms (cf. [12] 1.2). We shall, however, avoid categorical terminology 
in the present paper [adding some categorical comments in brackets; such 
remarks can always be skipped].

1.1. A convergence ([18], see also [23], [1]) on the set A” is a function 
A: X  — ►expFil+A' such that 

C l. i e A ( i )  (x£X)-,
C2. if s G A(x) and s C t € Fil +X  then t E A(x);
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C3. if s G A(x) then s fix  6 A(x).
s is said to converge to x  if s € A(x); we shall also write s —> x  or, more

precisely, s A x . A < A' iff A(x) D A'(x) ( i £ l ) .  For 7 ^ 0 ,  (sup A(;\)(x) =
iei

— Pi A(j)(x), and the infimum is similar, with union. The restriction to a 
iei

^ I *o Asubset is defined by so - —> x  iff sj — > x (equivalently: iff there is an s 6 A(x) 
with so =  s|Xo). Suprema commute with restriction [the convergences form 
a topological category Convj, and so do infima [Conv is a simple extension 
category in the sense of [12]]. Put A(x) =  A(x) \  {exp X}.

C3 is sometimes omitted from the definition of a convergence, cf. [17], 
[24], [27], [28]; we shall not need this more general notion.

A convergence is symmetric if s —1 x, y £ f | s  imply s -» y. This proper
ty was introduced in [18] as weakly uniformizable, but the word symmetric 
is now widely used, see e.g. [23]. (In [12], we called an arbitrary structure 
symmetric provided that the map interchanging the points is an isomor
phism in any two-point subspace; for convergences, this means that x —> y 
implies y —»X, a condition strictly weaker than the one introduced above.) 
A convergence A is reciprocal if A(x) ft X(y) ^  0 implies X(x) =  A(y). (Intro
duced in [24] as Si, but note that reciprocal convergences are analogous to 
the S2, not the Si, closures from [7]; “reciprocal” is the word used in the 
works of Lowen-Colebunders.) A reciprocal convergence is symmetric. A 
restriction of a symmetric or reciprocal convergence has the same property; 
both  properties are also preserved by suprema. [The symmetric, respective
ly reciprocal, convergences form a concretely reflective subcategory of Conv. 
These subcategories are also strongly reflective in the sense of [12], hence 
they are extension categories.] The infimum of symmetric convergences is 
also symmetric. [The symmetric convergences form a strongly coreflective 
(see [12]) subcategory of Conv, hence this extension category is simple. But 
it is not concretely coreflective in the usual sense: quotients do not preserve 
symmetry if non-injective maps are allowed.]

1.2. A convergence is a limitation provided that it satisfies the following 
stronger version of C3:

C3C if s, t —> x  then s n  t —»x.
Following [20], [16], the German term “Limitierung” is used by several 

authors. A limitation is called a convergence in some papers where the more 
general notion is not needed, see e.g. [19], [2]. A limit space is a set endowed 
with a limitation.

For limitations, symmetry can also be described in the following equiva
lent ways: (i) if s -» x  and y —> x  then s —> y (cf. Axiom So in [24]); (ii) if x -> y 
then A(x) = A(y) (e.g. [21] 1.2.9). Suprema and restrictions of limitations are 
again limitations. [The limitations form a concretely reflective subcategory 
Lim of Conv. It is also strongly reflective, and the extra condition in [12] 2.4
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is satisfied, thus Lim is a simple extension category. Concerning the subcat
egories made up by the symmetric, respectively reciprocal, limitations, the 
same can be said as in Conv.]

1.3. A pseudotopology on A is a function it: X  —> exp U ltX  such that
Ps. i€7r(a;) ( xEX) .
u converges to x  if u £ 7r(re); we shall also write u - > i o r u  —̂  x. n < n '  

iff 7r(x) D 7r'(x) (x £ A). Suprema, infima and restrictions can be obtained in 
the same way as for convergences. Suprema as well as infima commute with 
restrictions. [The pseudotopologies form a simple extension category PsTop, 
cf. [13] § 7.]

A pseudotopology is symmetric if x  —> y implies y —> x (differently from 
the symmetry of convergences, this is a special case of the general definition 
from [12]); it is reciprocal if n(x)r\n(y) implies tt(x) =n(y).  A reciprocal 
pseudotopology is symmetric. The statements on symmetric or reciprocal 
convergences hold for pseudotopologies, too [including the categorical results;
[12] Proposition 3.2 also applies].

A convergence A induces a pseudotopology 7r(A) defined by

7r(A)(:r) =  X(x) Cl Ult A (x £ A ).

A is also said to be compatible with 7t(A). If A < A' then tt(A) < tt(A'). Supre
ma and infima commute with taking the induced pseudotopology. For each 
pseudotopology 7 r ,  there are a coarsest and a finest compatible convergence 
A°(7t), respectively A1̂ ) :

A°M 7T
s------ >x iff u — >x whenever sC u £ U ltA ;

A1 {n)(x) = 7r(x) U { u fli: u £ 7r(a:)} U {exp A}.

Not requiring the convergences to satisfy C3 would have the advantage that 
the simpler formula A1(7r)(a;) =  n(x) U {exp A} holds [and our A1^ )  is its re
flexion in Conv]. A°(7t) is always a limitation. There is also a finest limitation 
compatible with 7r, namely Ajim(7r) =  (A1 (7r))üm, where, for a convergence A, 
Aijm denotes the finest one of the limitations coarser than A [the Lim-reflexion 
of A], i.e. Aijm(a;) consists of the finite intersections of elements of X(x),  and 
\ 1im(7r)(I ) °f the finite intersections of elements of n(x) (including exp A  =
= n 0 )-

A convergence of the form A°(7t) is called pseudotopological. A is pseu- 
dotopological iff it satisfies the following axiom stronger than C3':

C3". if s £ Fil A and (s C u £ Ult A => u —> x) then s —> x.
Most authors call a pseudotopological convergence a pseudotopology; our 

definition of a pseudotopology has been taken from [1]. [The pseudotopo
logical convergences form a concretely reflective subcategory of Conv, and of 
Lim; this subcategory is isomorphic to PsTop.]
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1.4. A closure is usually defined as a map exp A -» exp X ,  but the follow
ing version (a “neighbourhood structure”) is more suitable for our purpose: 
a closure on A is a map n: A -> F ilA  such that 

Cl. xGP|n(a:) (x € X)
(cf. [3] 14 B. 11). The elements of n(x) are the neighbourhoods of x. n < n ' 
iff n(x) C n'(x) (x 6 X); (n | Ao)(a:) =  n(a:) | X q. [The closures form a simple 
extension category Clos, see [13] § 4.] A closure n is symmetric if a:eP)n(y) 
implies y 6 f) n(x); it is reciprocal (S2 in [7], [13]) ifn(x) An(y) implies n(x) = 
=  «(!/)■

A pseudotopology tt induces a closure n(7r) defined by 

n(7r)(a:) = f) n(x) ( x EX) .

For each closure n, there is a coarsest compatible pseudotopology 7r°(n):

•7T°(n)

u------ >x iff n(a;) C u E Ult X.

There is in general no finest compatible pseudotopology. A convergence also 
induces a closure in two steps: n(A) =  n(7r(A)), i.e.

n(A)(x) =  P| X(x) ( x&X) .

For each closure n, there is a coarsest compatible convergence (which is a 
limitation), namely A°(n) =  A°(7r°(n));

A°(n)
s------ >x iff n(a;) C s G Fil +A;

there is no finest one. A convergence or pseudotopology of the form A°(n), 
respectively 7T°(n), is pretopological. A pretopological convergence is often 
called a pretopology, and it is identified with the corresponding closure; we 
shall, however, distinguish between the two notions [although the pretopolog
ical convergences form a concretely reflective subcategory of Conv isomorphic 
with Clos; the same holds for the pretopological pseudotopologies in PsTop]. 
A convergence is pretopological iff it satisfies the following condition stronger 
than C3,/:

C3'". f lM * )eA (a ) {xEX) .
1.5. A screen (or filter merotopy) on A  is a system 0 /  © C F il+A such 

that
51. i £ 6  (x GA);
52. if s 6 6  and s C s' £ F il+A then s' G 6.
6  <  ©' iff 6  D ©'; supremum means intersection, infimum means union. 

© I Ao =  {s I Ao: s € ©}. Both suprema and infima commute with restric
tions. [The screens form a simple extension category Scr, see [14] § 13.]
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® C 6  is a base for S if for any s G 6  there is an s' E 03 with s' C s. If <8 is a 
base for 6  then {s | X q: s € ÍB} is a base for s | X q.

The screen 6  is Cauchy (a “Cauchy structure”) if
SC. s, s ' E ©, s A s ' imply s fl s 'E ©.
(The expression Cauchy structure was first used in [24], but with a more 

general meaning.) The restriction of a Cauchy screen is Cauchy, and so is 
the supremum of Cauchy screens. [The Cauchy screens form a concretely 
reflective subcategory CScr of Scr.] Let us call a sequence t i t n of filter 
bases a chain if tm A tm+i (1 ^  m < n); it is an 6-chain if, in addition, tm G 6  
(1 ^  m  £  n). Given a screen ©, the intersections of the ©-chains form a  base 
for the finest Cauchy screen ©c coarser than © [the Cauchy reflexion of ©].

A screen 6  induces a convergence A(6), a pseudotopology 7r(6) =  7r(A(©)) 
and a closure n(©) =  n(A(6)) = n(7r(©)):

If © is Cauchy then A(6) is a limitation. In each case, taking the induced 
structure commutes with restrictions.

A screen © is Riesz if n(©)(a:) G © (x G X ) ,  Lodato if n(6) is a topology 
and there is a base for 6  consisting of n(©)-open filters, pointwise Cauchy 
(C in [2]) if s, tG ©, s Ap t imply s f l  tG ©, fully Cauchy (separated in [2]) if 
for each 0 ^ s G © there is a coarsest one among the elements of 6  coarser 
than s (“coarsest” can be replaced by “minimal” if we already know that 6  
is Cauchy), CR = Riesz Cauchy, CL = Lodato Cauchy, FL = Lodato fully 
Cauchy. All these classes of screens are closed for restrictions and suprema. 
[They form concretely reflective subcategories of Scr. These subcategories 
are also strongly reflective, hence they are extension categories.] 6p  and ©p 
will denote the finest one of the pointwise Cauchy, respectively fully Cauchy, 
screens coarser than 6  [the pointwise/fully Cauchy reflexion of ©]. ©P can 
be obtained similarly to ©c, substituting Ap for A in the definition of a 
chain (such chains will be called strong). 6  U (n(©)(x): x G X }  is a base for 
6 r , the finest one of the Riesz screens coarser than 6  [the Riesz reflexion 
of ©]. The following implications hold:

A(S)
+x iff sEFil+AT,  s f l i E © ;

tt(6)
iff u G U l t +AT, u fl i  G 6 ;u

n(6)(a: ) = P |{s G 6 : x G f ) s } (xGX) .

fully Cauchy

Lodato
^  Riesz

Cauchy
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§ 2. Screens in a convergence space

2.1. Lemma (partly in [23] 4.2.3.4)2. A convergence A can be induced 
by screens iff it is symmetric. If so then there exist a finest and a coarsest 
compatible screen, namely

(1) 6 1(A)= U A(x), 6 ° (A) — 6 1 (A) U Filf X.
i GA'

P roof . 1° Let 6  be a screen, A =  A(6). Assume that s -> x , y G f ] s- 
Then s' =  s D x G 6  and s' D y = s', thus s' -> y, implying s -> y, i.e. A is 
symmetric.

2° Let A be symmetric, and define S 1 =  6 1(A) and 6° = 6°(A) by (1); 
both are clearly screens. Put k =  Ai©1). If s x then s i l i  x , thus
s n x  G S 1 and s x. Conversely, assume that s ——A x. Then s' =  s fl x  G 6 1,
thus s' is A-convergent and x  G f] s'; now s' — x  by the symmetry, so s x. 
Hence S 1 is compatible with A, and so is 6°, since adding some free filters 
does not change the induced convergence.

3° Let 6  be compatible with A. If s G S 1 then s converges to some x, 
thus s n i  G 6 , s G 6 , i.e. 6 1 C 6 .  To prove 6  C ©°, let s G 6. If s is free then 
evidently s G 6°; if x  G P) s then s = s fl x  G ©, thus s —» x, s G 6 1 C ©°. □

Two screens induce the same convergence iff they contain the same fixed 
filters. The analogous statement for pseudotopologies or closures is false: let 
©* consist of those elements of 6  that are the intersections of at most two 
ultrafilters; then 7t(6*) =  7t(6) and n(6*) =  n(6), but, in general, 6* does 
not contain all the fixed elements of ©.

2.2. According to [14] 13.1, a family of screens in a set always has 
extensions; the finest and the coarsest ones can be described as follows:

(1) ©^X, &i) =  { s i : i G I, Si G ©i} U { x : x  G X } U {exp A};

(2) ©°(A, ©i) =  {s G F il+X : s | X* G 6* (*G/)}.

In (1), the filters x and exp A had to be added, because it is now not assumed 
that X =  U Aj.

i e i

PROPOSITION. A family of screens in a symmetric convergence space has 
compatible extensions iff

(3) SjGFilXi, s{ —>x imply sj G ©i-

2 For better readability, proofs of some well-known simple statements will be included. 
We give references whenever possible, but have not tried to trace the original sources.
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If so then there are a finest and a coarsest extension, namely
(4) 6 1 (A, 6 j) =  6 1 (A) U S 1!!,6 < ) =  6 1 (A) U { s |: * G / , s; G 6,};

(5) 6 ° ( A ,  6 j )  =  e ° ( A )  n 6°(A , ©<) =  © X(A) U {s G F ilf X : s | A{ E ©,  (* G / ) } .

PROOF. 1° If 6  is a compatible extension and s, is as in (3) then sj fl 
fl x  G 6 , s] G 6 , sj =  I X{ G 6  | Aj = 6;, thus (3) holds.

2° Assume conversely that (3) is satisfied. 6 ' = 6 L(A) U 6 1 (A, &i) is a 
screen (being the infimum of two screens). ©' < 6 X(A) implies k =  A(©') <  A. 
To prove A < k , assume s x. Then s' =  s fl x  G 6 '. If s' G ©^A) then 
s x is clear. Otherwise, s' = s{ with some iE  I  and s , G ©*; now x  G Xi
and Si—SiDx  — x , implying s' — x, s x. Thus 6 ' is compatible.

From 6 ' < © ^A , &i) we have 6 ' | A* <  ©j. To prove 6 ' | Xi > ©i, it is 
enough to check that ©1(A) | Xi C ©i, since © ^A , 6^) is an extension. Take 
s G ©1(A). Then s is convergent, and so is (s | A j)1 D s; hence s | Aj G 6j 
follows from (3). Thus 6 ' is an extension.

3° If © is a compatible extension then © < ©'(A) and © < 6 1(A, ©*), so 
6  < ©'. Therefore 6 ' is the finest compatible extension. The second equality 
in (4) is clear from (1) and 2.1 (1).

Put 6 "  =  ©°(A) fl ©°(A, 6 j) (the supremum of the two screens). Analo
gously to the case of ©', we have ©" < ©. Now 6°(A) < ©" < © implies that 
6" is compatible; 6 "  is an extension, as ©°(A, ©*) < © "< © . Hence 6 "  is 
the coarsest compatible extension. According to (2) and 2.1 (1), s G 6 "  iff 
s I Aj G Si (i G I) and s is either convergent or free; but all the convergent 
filters s satisfy s | Aj G ©j if there are compatible extensions (see in 2°), thus 
the second equality in (5) holds. □

COROLLARY. If each member of a family of screens in a convergence 
space has extensions then so has the whole family. □

(3) does not always hold:
Example. On A =  NU {0}, let \ (x)  =  iU  {exp A} for and s —>

—> 0 iff O  C {0}. The discrete screen ©o on Ao =  N is compatible, A is 
symmetric, but (3) does not hold for the proper free filters in Ao, thus ©o 
has no compatible extension. □

2.3. A necessary and sufficient condition for the existence of an extension 
in a closure space was given in [5] 2.6; reformulating it with neighbourhood 
filters, we have:

P roposition. A family of screens in a symmetric closure space has ex
tensions iff for each x  G A and iE I, the trace filter n(x) | A i is the intersec
tion of some elements o /6 j. □

This condition and 2.2 (3) remain valid if each 6 , is replaced by a coarser 
screen; hence there is an extension compatible with A iff ©j < ©l (A) | A,,
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while nothing similar holds in a closure space, since there is in general no 
finest screen compatible with a closure ([4] 3.15).

2.4. 2.2 (3) remains also valid if A is replaced by a finer extension of the 
induced convergences. The analogous statement for closures is false: Take a 
screen ©o on X q C X  in a symmetric closure space (X , n) such that there is 
no extension (e.g. Example 2.2, with A replaced by n(A), or [5] 2.2). By the 
proposition below, there are extensions n' and n" of n(©o) =  n | X q such that 
n" <  n <  n', and ©o has extensions compatible with n", and also with n'.

PROPOSITION. Let a family of screens be given in a set, ir =  n(©i) 
(i £ I) .  Denote by n1 and n° the finest, respectively coarsest, extension of 
the closures Uj.

a) The screens ©j have an extension compatible with n1.
b) I f  I  is finite then there is also an extension compatible with n°.

P r o o f , n1 and n° are symmetric ([13] 4.4 or a simple direct proof using 
the formulas given below).

a) According to [13] 4.5 (1),

n1(®) =  ri{ní(a:)1 - x e X i f i e l }  ( i e [ J  Xf),
iei

and n1 (x ) — x  otherwise. In the first case,

n1^ )  I Xj  = D{f(i): x e X i f i e i } ,

where t(j) is the filter in X j  generated by tij(x) | X tj . By the compatibility, 
Ui(x) is the intersection of the elements of ©j fixed at x, so the accordance 
implies that t(j) is the intersection of some elements of &j. Hence the condi
tions of Proposition 2.3 are satisfied (the second case is trivial).

b) n°(:r) is the coarsest filter s on X  for which s | X[  =  nj(x) whenever 
x E Xi- If I  is finite then

n°(a:) =  n1(a :)nn{j/: y£ \ J{ Xi :  x E X l, iEl }} .

Thus Proposition 2.3 can be applied again, since &j  contains the fixed ul- 
trafilters in Xj .  □

§ 3. Screens in a pseudotopological space

3.1. The results are similar to those valid in a convergence space (rather 
than in a closure space).
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Lemma, a) A symmetric convergence induces a symmetric pseudotopol
ogy-

b) A pseudotopology can be induced by screens iff it is symmetric. I f  so 
then there exist a finest and a coarsest compatible screen:

(1) {£ fl u: Ult X  3 u —1x  £ X }  is a base for S 1^ ) ;

(2) 6°(7t) =  {s £ Fil +X : (x € P| 5, u € Ult X, u Ds) =Mi —> x}.

P roof, a) Evident.
b) The necessity follows from a) and Lemma 2.1. Assume that n is 

symmetric and put -ir(k) = 7r(&k(n)) (k =  0,1). It is clear (even without the 
symmetry) that 7r(l) < n < 7r(0). Let s =  u H i  with u x. If y € Qs, 
o 6 Ult X ,  CD s then either y = x, and then o x (o =  u or o =  y), or 
u =  y, thus x  y, and d y again (t) =  x or o = y). Hence s € 6°(7t), 
implying e 1̂ )  C 6°(7t), 7r(0) < 7r(l), i.e. both screens are compatible. It is 
straightforward that if 6  is compatible then 6°(7t) < 6  < e 1^ ) .  □

Remark, n is symmetric iff n(7r) is so. On the other hand, the symmetry 
of 7T does not imply that each compatible convergence is symmetric, see the 
details in 9.2. In particular, it can happen that a pseudotopology (or closure) 
can be induced by a screen, but not the corresponding pseudotopological (or 
pretopological) convergence, cf. Lemma 9.2.

3.2. P roposition. A family of screens in a symmetric pseudotopological 
space has extensions iff

(1) UjGUltX;, u j x  imply u j€ 6 j.

If so then there are a finest and a coarsest extension:

(2) 6 1(7r,6i) =  ©1(7r)U61(X,©i) - 6 1(7r)U{st1 :» € /, 3*6 6;};

(3) 6 0(7r,6i) =  6 0(7 r)n 6 °(X ,6 i).

PROOF. Analogous to the proof of Proposition 2.2. We only mention 
one detail, where the reasoning is somewhat different (the second paragraph 
of 2°): To show 6 1 (7r) | A* C 6*, take s 6 B 1̂ ) .  Then s D u D x  with u x.
By (1), u I Xi £ 6 ;. Now if x  ^ X* then s | X* D u | X* 6 6;; if x  6 X; then
u I X; x, thus s I X; D (u I X*) f l i €  6*. □

Corollary. If each member of a family of screens in a pseudotopolog
ical space has extensions then so has the whole family. □

In spite of Remark 3.1, it is important to differentiate between closures 
and pretopological pseudotopologies:
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E xample. Let X , X q and A be as in Example 2.2. With 7r =  7r(A) and 
n =  n(A), we have 7r =  7r°(n). Take OoGUltfXo, and let ©o = U lt+ J^o \  {°o}- 
Then 7r(6o) =  7To, n(©o) =  no, and ©o has an extension in (X,n), but not in
(X, i r). □

Similarly to 2.3 and 2.4, (1) remains valid if each 6 t is replaced by a 
coarser screen, or it by a finer extension of the induced pseudotopologies.

§ 4. Cauchy screens in a convergence space

4.1. It is not clear which closures can be induced by Cauchy screens; 
moreover, the existence of a compatible Cauchy screen does not imply that 
there is either a finest or a coarsest one, cf. [7]. The situation is much simpler 
in a convergence space. It was already mentioned in § 1 that a convergence 
induced by a Cauchy screen is a limitation.

LEMMA (partly [2] p. 35). A limitation can be induced by Cauchy screens 
iff it is reciprocal; if so then ©'(A) is Cauchy, and

(1) ©fc)(A) =  6 1(A)U{sGFilfX : s A t( tG  6 X(A))}

is the coarsest compatible Cauchy screen.'1’

(Filf can be replaced by Fii in (1), since if x  6 fls then s A i 6 6 1(A).)

PROOF. 1° Assume that A =  A(6), 6  is Cauchy, s 6 A(x) fl A(y), 
s' —> x. Then s' fl x, s fl x, s D y  is an ©-chain, thus s' fl y G ©, s' —¥y. Hence 
X(x) = X(y).

2° Let A be reciprocal, s, t G 6 1(A), s A t. Take x, y such that s —> x, t —>• y. 
From 5 A t we have X(x) fl A(y) /  0, thus A(x) =  A(y), and so t —>x. A being 
a limitation, s f lM x ,  therefore s n t G 6 1(A).

3° ©°(A) D 6°Cj(A) D &1(X) (see 2.1 (1)), thus ©' =  ©°Ĉ (A) is compatible. 
It is also Cauchy, since if s, s' G ©', s As' then either s, s' G ©X(A) or s A t A s' 
for each t G ©HA); in the second case, s f ls 'A t  (t G ©'(A)), thus s fis' G ©'.

Let 6  be a compatible Cauchy screen; we show that 6  C ©'. Take s G 
G 6  \  ©'. There is a tG 6 1 (A) with s At. As ©L(A) C ©, we have t G ©, thus 
sfltG  6 . Now there is an x  with t —>x, so t f l i  G 6 , tP li A sflt (since t^ e x p X  
follows from s A t), hence s n i ;G © ,s -4 a ; ,s G 6 1(A )c© ', a contradiction. □

3 We have put the letter C into parentheses to avoid confusion with (6°(A))c-
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4.2. The following result will be needed:
PROPOSITION ([14] 14.1 and 14.3). A family of Cauchy screens in a set 

has Cauchy extensions iff for eachA nGN and different indices i, j o , j i , •••,

^  * / s i , s - e & i ,  sjm e & j m  ( O ^ m ^ n )  and S i , s j o , . . .  , S j „ , s '

is a chain then Si H s( G &i-

If  so then ©q(X, &i) is the finest Cauchy extension. □

©c(X, 6j) stands here for (©^X, &i))c- The same convention applies in 
similar situations; cf. the footnote to 4.1.

4.3. If a family of screens in a convergence space has Cauchy extensions 
then the screens are Cauchy, the convergence is a reciprocal limitation, 2.2 (3) 
and 4.2 (1) hold. Adding one more assumption, we obtain a set of necessary 
and sufficient conditions:

THEOREM. A family of Cauchy screens in a reciprocal limit space has 
Cauchy extensions iff 2.2 (3) and 4.2 (1) hold, and

(1) Si E&i, Si C U. G Fil Xi, t] — imply s } - t x .

If so then ©^(A,©*) is the finest Cauchy extension, and

(2) ©c(A, ©i) = ©c(X, ©i) U 6 1 (A).

If  |/ | 2 then 4.2 (1) is superfluous.
PROOF. 1° Assume that © is a compatible Cauchy extension, and let s,, 

h and x be as in (1). Then s] G ©, t] f l x  G © and s] A t] H x, thus s\ f l x  G 6 , 
si —I x, i.e. (1) holds.

2° Assume that all the conditions hold, and put ©' =  ©^(A, ©,), which 
is a Cauchy screen. By Proposition 2.2, ©^A, ©,) is a compatible extension, 
thus A(©') < A and ©' | Xj < 6j. We are going to show that equality holds in 
both cases; but let us first prove (2):

3° S^A,©,) < © ^X , ©j) and ©^A,©;) < ©^A), thus ©' <  ©^(X,©;) 
and ©' < ©q(A) =  ©'(A) (Lemma 4.1), showing that ©' < 6 "  where ©" de
notes the right-hand side of (2). To prove the converse, take s G &'■ There

n
is an ©^A, ©i)-chain S(j),. . .  ,S(„) with sD  f | s(m)i choose this chain with

m=  1
the smallest possible n. Consider ©^A, ©j) in the form given by the right- 
hand side of 2.2 (4). If S(m) G 6*(A) for each m  then s G ©^A) (as 6*(A) is 
Cauchy), thus s G 6". If each S(m) is of the form tjm  ̂ with suitable im E I

[14] 14.1 in itself gives this with n e N U { 0 } .  (The indexing is different there.)4
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and t(m) G 6 ,m then S(m) G <31(X, 6j), s G ©c(A, ©j) C 6". So there remains 
only one possibility:

Assume there is an m  such that 5(mj G 6 1(A), =  sj, i G / ,  s, G 6*
(or =Sj-, which makes no difference). Define t\ =  Sj(n)(s(m) | A*). Now
ti 7̂  exp Aj, since S(mj A s(m+1p From S(m) G S 1(A) we have S(m) -> x, thus 

—> a;, and (1) yields that s] =  S(m+1) —> x. Hence, A being a limitation, 
S(m) PI —> x, and so S(m) and S(m+1) can be replaced in the chain by
S(m) FlS(m+i) G 6 1(A), contradicting the minimality of n. Thus (2) has been 
proved.

4° Note also that ©(-.(A, © )̂ can be replaced in (2) by its free elements: 
Let s G 6 q(A, 6j), x G P)s, and take a chain t ^ ) , . . .  ,t(n) such that t(m) G

G ©im, S D f | t(m)- Then x  G f |  l(m) for some m ■ Now t(m) x , f(m) — » x ,
771=1

implying t) ,.G 6 1(A). The reasoning in the second paragraph of 3° gives 
that ^m) n  t(m+i) 6 6 l (A)> and similarly t(1m_ 1) n  tjm) G ©^A). By repeating 
the reasoning, we finally get s G ©^A).

5° &' \X{(1 &i is clear from (2), since ©^A) C 6 1 (A, ©,) gives

&' C ©c(A, 6j) U ©1(A, ©j),

and both screens on the right-hand side are extensions.
6° ©' is compatible, since, according to (2) and 4°, it contains the same 

fixed filters as the compatible screen 6 X(A).
7° If 6  is a Cauchy extension compatible with A then 6  < ©1(A, ©*), so 

© < ©', i.e. ©' is indeed the finest Cauchy extension.
8° If 171 ^2  then we cannot take different indices i , jo , j i  in 4.2 (1). □
COROLLARY. A family of screens has Cauchy extensions in a conver

gence space iff any finite subfamily has one. A family of two screens has 
Cauchy extensions in a convergence space iff the screens taken separately 
have Cauchy extensions. □

Differently from Lemma 4.1, there is no coarsest compatible Cauchy 
extension:

EXAMPLE. Let Ao and A  \  Ao be infinite, u, o, ro G U ltf A, Aq G u, d, 
Ao fz ro. Take the discrete convergence A on A , and the screen ©o on Ao 
obtained by adding u | Ao and o | Ao to the discrete screen. Then there are 
Cauchy extensions containing either of the filters uflro and oflro, but not 
both. □

4.4. 2.2 (3) and 4.3 (1) are both needed in Theorem 4.3, even when 
|/ | =  1; 4.2 (1) cannot be dropped either if |J| ^  3:

E xam ples, a) Let Ao be infinite, A \ A o  =  {z}, u ,oGUl t f A, u ^ r ,  
A(a;) =  x  U {exp A} ( r / z ) ,  and s —> z i f f sDufl i : .  Consider the following
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Cauchy screens compatible with A | Xo: 60 is the discrete one, and 6 oU{(un 
no) I Xo} is a base for ©'0. Now ©o satisfies 4.3 (1), but not 2.2 (3), and ©q 
conversely.

3
b) Let Ai, A 2, A3 be disjoint infinite sets, X  =  (J Ai, X{ — X  \  Aj, Ai €

i= 1
£ U(j) £ Ul t f X.  Take the discrete convergence A on X , and define the screens 
©j by the following bases:

{x: x £  X{} U { P  u(j) I Xi} (* =  1,2), 
j = 1

{ i: x £ X3} U {u(!) I X3, U(2) | X3}.

All the conditions of Theorem 4.3 are satisfied, excepting 4.2 (1). □
4.5. COROLLARY. A family of Cauchy screens in a reciprocal limit space 

has Cauchy extensions iff

(1) ©Jc )(A)|Xi < © i < 6 1(A)|Xi (*€/)

and 4.2 (1) holds.
P roof. The necessity being obvious, let us assume (1) and 4.2 (1). By 

Theorem 4.3, 2.2 (3) holds for the family ©^A) | X,, and 4.3 (1) for the family 
©Jc)(A) \Xi.  Now 2.2 (3) (respectively 4.3 (1)) remains valid if the screens 
are replaced by coarser (respectively finer) ones, thus all the assumptions of 
Theorem 4.3 are fulfilled for the screens ©*. □

Example 4.4 b) shows that 4.2 (1) is needed in this corollary.
Let us say that a: is a cluster point of s € F il+X in (X, A) if there is a 

proper filter (equivalently: an ultrafilter) s' D s with s' —> x. £ is a cluster 
point of 5 iff there is a t £ \ (x)  with tAs.  Thus 4.1 (1) can be expressed 
as follows: 6 ^  (A) consists of the convergent filters and of those having no 
cluster point. Extending the notion of convergence and cluster points to 
filter bases, we can also say: A family of Cauchy screens in a reciprocal limit 
space has Cauchy extensions iff there is a Cauchy extension in the set, and 
for each *, 6 , consists of all the filters in X, that are A-convergent/, and of 
some having no A-cluster point.

Remark. If s —> x  in a reciprocal limit space and y is a cluster point of s 
then 5 —> y. Hence © ( c ) (A) consists of the filters that converge to their cluster 
points; cf. the notion of a strongly compressed filter in a closure space, [7] 
§ 2.

4.6. Assume that A' < A < A" and {©, :*€ /}  is a family of screens in all 
three spaces. It can occur that there are Cauchy extensions in (X, A') and 
(X, A") but not in (X, A), although A is a reciprocal limitation:
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E xample. With the notations of Example 4.4 a), let A" be the discrete
convergence, and X'(x) =  A(:r) for x ^ z ,  s — > z  i f f sDuf loni : .  Now 6'0 has 
extensions in (X,X') and (X, A"), but not in (X , A). □

4.7. A' < A does not imply 6 ^ (A ')  < 6°C^(A) [ 6 ^  is not a functor]:

E xample. Let A' and A be as in Example 4.6, and take tu G Ul t fX, 
u ^ ro ^ D . Then o fl tu G ©^q) (A) \  6 |)C)(A,), thus © ^(A ') yí ©̂ C) (A). □

The following positive result will be needed in the next section:

Lemma. If X' and X are reciprocal limitations, X' < X and n(X') =  7t(A) 
then ©5’c)(A')<©°c)(A).

P roof. The cluster points are determined by the induced pseudotopol
ogy. □

§ 5. Cauchy screens in a pseudotopological space

5.1. Lemma. Let X be a convergence, n a pseudotopology.
a) If  X is reciprocal then so are Ai;m and 7t(A).
b) I f  ix{X) is reciprocal and ir(X)(x) = ir(X)(y) implies X(x) = X(y) then X 

is reciprocal, too.
c) I f  rt is reciprocal then so are A°(7t) and A11im(7r).

PROOF. Assume that A is reciprocal, 0 ^ s ^ 4  x, y. With s C u G Ult X ,
u -^4  x , y , implying u A x , y ,  hence X{x) =  A(y), Aiim(a;) =  Aiim(y), and so 
A]im is reciprocal, b) and the other part of a) are evident, c) follows from 
b). □

5.2. Lemma. A pseudotopology can be induced by Cauchy screens iff it 
is reciprocal; if so then ©q (7t) is the finest compatible Cauchy screen, and
( 1 )

= 6(c) (^°(7r)) =  ( s £ Fil+X : (u, o D s, u -A x, ü G Ult X )  => u —> x} 

is the coarsest one.
P roof . The necessity is clear from Lemmas 4.1 and 5.1 a). Assume that 

7T is reciprocal. Then A°(7r) is a reciprocal limitation (Lemma 5.1 c)), so ©' =  
=  ©(c) (A°(tt)) is a Cauchy screen compatible with n (Lemma 4.1). Let 6  
be another compatible Cauchy screen, A =  A(©). Then 7t(A0(7t)) — tt = n(X) 
and A°(7r) < A, thus ©' <  ©(C)(A) (Lemma 4.7), therefore ©' < 6  (Lemma
4.1). Moreover, 6  < S 1^ ) ,  and the latter is the finest compatible screen 
(Lemma 3.1 b)), thus © <  ©c(vr), and 6 q(7t) is a compatible Cauchy screen,
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hence the finest one. The second equality in (1) follows from 4.1 (1), cf. the 
observation after Corollary 4.5. □

5.3. If a family of screens in a pseudotopological space has Cauchy ex
tensions then the screens are Cauchy, n is reciprocal, 4.2 (1) and 3.2 (1) 
hold. One might expect that these conditions together with an analogue of
4.3 (1) are sufficient; but this is not the case: 3.2 (1) has to be replaced by a 
stronger assumption. The reason is that we need 6* < 6 q(7t) | X tl while 3.2
(1) only guarantees &i < © -̂zr) | X{ (and ©^(77) can be different from ©1(7r), 
while © .̂(A) — S 1 (A), see Lemma 4.1).

T h e o r e m . A family of Cauchy screens in a reciprocal pseudotopological 
space has Cauchy extensions iff 4.2 (1) and the following conditions hold:

(1) Ui,DieUltXi, imply UjflüjG©!;

(2) Uj, Oj G Ult Xj, u} —>x, UjflOiGöj imply oj —>x.

If  so then 6^(7r, ©i) is the finest Cauchy extension. I f \ I \ ^ 2  then 4.2 (1) is 
superfluous.

PROOF. 1° Let 6  be a compatible Cauchy extension, iq, 0* G Ult X i , u* —> 
—> x; then u] fl x  G 6 . If 0̂  —̂ 37 then also 0} fl x  G 6 , thus, 6  being Cauchy, 
u? fi Dj1 G ©, uí n tq G &t. Conversely, if iq fi Dj G &i then ut- fl o- =  (tq fl tq)1 G ©, 
o J n iG  6 , t>} —1 x. Hence the conditions arc necessary.

2° Assume that all the conditions are satisfied. (1) with Uj =  0i yields 3.2
(1), so © '=  ©1(7T, 6j) is a compatible extension (the finest one) by Propo
sition 3.2. We claim that ©(. is also a compatible extension (consequently, 
it is the finest compatible Cauchy extension). The reverse inequalities being
evident, it is enough to show that ir < tt(S'c ) and 6 , < 6'c | Xi.

n
3° For s G ©q, take an ©'-chainS(!),. . .  ,S(n)w ithsD  Q S(m). According

m=l
to 3.2 (2), each S(m) has one of the following forms:

(3) s(m) u(m)  ̂x ‘

(4) ®(m) u(m)) u(m)  ̂x m \

(5) s(m) =  l(m)’ f(m) ^  ®lm ■

Each S(m) of the form (4) can be replaced by i m nu(m), so we may assume 
that (3) holds for m G H  C {1 ,... , n}, and (5) for rn H. Moreover, it can 
be assumed that if H  =  0 then each S(m) is free: if not then x  G with
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suitable x  and m, and S(m) can be replaced in the chain by S(m), x, S(my, here 
x  is of the type (3), thus H  has been made non-empty.

Let |7i| ^  2, and denote its elements, in increasing order, by m i , . . .  , m p. 
If m 2 =  m i +  1 then xmi n  U(mi) A xm2 n U(m2) implies 7r(xmi) = 7r(xm2) (as n 
is reciprocal). If m2 > mi +  1 then pick ü(fc) € Ult X  (mi ^ k < m2) such that

(6) ®(mi) u(mi) '’(mi)

(7) Xifc<Eu(fc), 0(fc) I X ik D t(fc)

(8) X ik+1 € o (fc), o{fc) \ X ik+l Dt(fc+i) (fc^m 2 - l ) ,

(ö) ®(ni2 —1) u(to2) *->r '’(m2-l) % m . 2 t

this is possible, because s^)  ^ s(fc+i)- Now by (7) and (8),

(”(mi) L' ’’(mi + l)) I -^mi+1 ^ ®mi + l

and D(mi) -> xmi (see (3) and (6)), so 0(mi+i) —> xmi follows from (2). By 
induction,

(10) (m i^ fc < m 2),

too, thus 7r(xmi) =  7r(xm2), since 0(m2_i) -¥ x m2 (see (3) and (9)), and 7r is 
reciprocal. Hence an induction gives that, assuming H ^  0, there is a point 
xq such that

(11) Tr(xm) = n(x0) (m € H ) .

4° The following holds for each m: if x  £ then ir(x) =  7r(xo)- In
deed, if m €  H then either x = xm or U(m) =  x , n(x) =  n(xm) = n(xo) in both 
cases. If m $5 77 then (as earlier) we can insert x  into the chain, and apply
(11) to this longer chain.

5° Assume H ^  0. Starting from an arbitrary m € 77 instead of m i (or 
also backwards from m i), we can pick ö(fc) € U ltX  for each k ^ H  such that 
conditions similar to (6), (7), (8) are satisfied; then an analogue of (10) can 
be obtained, which gives (taking (11) into account) that

(12) Xik £ 0(fc) € Ult X ,  D(fc) I X lk D »-xo {k^H ) .

6° To prove 7r < 7r(S'^), let s = u fl x  £ 6'c , u £ Ult X , and take a chain 
S(i),. . .  ,S(n) as in 3°. H  ^  0, since s is fixed. Take m  and m! such that 
u D S(m), x D S(m/) (if each S(m) contained a set not in u then the union of 
these sets were in s \u ) . According to 4° (applied to m'), 7r(x) =  7t(xq), so it
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is enough to show that u —>xo- This is clear if m E H  (see (3) and (11)). If 
mtf: H  then take ü(m) according to (12). Now D(m) -> xo, (t>(m) Du) | Xim E 
6©im> x im G0(m).u, SO u —> xq by (2).

7° Let us prove now that &i < &'c \ X t. Take s E 6'c such th a t X l E secs, 
and pick again a chain as in 3°. If H = 0 then s E 6 q(X, 6 j), which is an 
extension by Proposition 4.2, thus s | Xi  E &i-

Assume H  ^ 0 . With K  — {m: X, E sec S(m)},

(13) s\X{ D fl S(m)|Aj.
me A

For m E  K,  choose ro(m) E Ult X  such that Xi  E ro(m) D s(m). If m<£H  then 
ro(m) —» xo (the last sentence of 6°, with ro(m) instead of u); if m  E H  then 

—>xo again, since ro(m) —>xm by (3), and so (11) can be applied. Now

i i =  n  *®(m) I X i ^
m G  K

follows from (1), using induction, a  As(m) | Xi  for each m E K  (as | Xi 
is finer than both filters), thus the Cauchy property of 6 i implies that 
a I X i E 6 l.

8° The last statement holds for the same reason as in Theorem 4.3. □

Statements analogous to Corollaries 4.3 and 4.5 are valid in pseudotopo- 
logical spaces, too. (In 4.5, replace 6 J(A) by 6c(7r), not by S 1^ ) . )  The 
proofs are the same.

5.4 All the conditions are needed in Theorem 5.3: replace A by 7r(A) in 
Examples 4.4 a) and b). Moreover, 5.3 (1) cannot be replaced by the weaker 
assumption 3.2 (1):

Example. With the notations of Example 4.4 a), let n(x)  =  x (x ^  
^  z),  n(z)  = {u, v , z } ,  and consider the screen U lt+Ao. The conditions of 
Theorem 5.3 are satisfied, except that only 3.2 (1) holds instead of 5.3 (l).ü

There is in general no coarsest Cauchy extension in a pseudotopological 
space: substitute the discrete pseudotopology for the discrete convergence 
in Example 4.3. An analogue of Example 4.6 can also be obtained, replacing 
each convergence by the induced pseudotopology.

§ 6. Riesz screens

6.1. It is clear from the definition that 6  is Riesz iff A(6 ) is pretopolog- 
ical. The same is false for 7r(6 ): on an infinite set X ,  let 6  consist of the 
filters that can be written as the intersection of a finite collection of ultra
filters; then 7t(6 ) is pretopological, although 6  is not Riesz. Nevertheless,
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if 6  is Riesz then n(6)  is pretopological; hence a pseudotopology n can be 
induced by Riesz screens iff ir is pretopological and n(7r) can be induced by 
a Riesz screen.

Let us be given a family of Riesz screens in a pseudotopological space 
(X, 7r). If there is a Riesz extension in this space then 7r is pretopological and 
6  is an extension in (X, n(7r)). Conversely, if 6  is a Riesz extension of a family 
of screens in a closure space (X, n) then it is also an extension in (X, 7r°(n)). 
This means that the problem of Riesz extensions in pseudotopological spaces 
is equivalent to the same problem in closure spaces. We can say the same 
about Riesz extensions in convergence spaces, and also about special classes 
of Riesz screens (Lodato, CR, CL). Such extensions in closure spaces were 
investigated in [5], [6], [7]; we cannot add anything essentially new.

Note also that if there are Riesz extensions in a convergence space then 
each compatible extension is Riesz (cf. the first sentence of this section).

6.2. Let us call a closure n pointwise reciprocal if

(1) n(x) Ap n(y) implies n(x) — n(y); 

equivalently:

(2) y e f l  n(x) implies n(a;) =  n(y)

(weakly separated in [5], Si in [7]).

L e m m a . A closure n is pointwise reciprocal iff A°(n) is symmetric.

P r o o f . Let n be pointwise reciprocal, s  —> x  (in A°(n)), y £ f ) s .  Then 
sZ)n(x),  so n(x)=n(y)  by (2), sD n(y), s ->y.

Conversely, if A°(n) is symmetric and y € P|n(:r) then n(x) —> x  implies 
n(a;) —»• y, so n(x) D n(y). Moreover, if A°(n) is symmetric then so is n, thus 
x  e  n  n(y)) and n(y) 7) n(:c), too. □

According to [5] 2.7, a family of Riesz screens in a closure space has Riesz 
extensions iff the closure is pointwise reciprocal, and

(3) n (x ) |X i€ 6 j  (x £ X, i £ l ) .

This result can also be obtained from Proposition 2.2, the above lemma and
6.1, Proposition 2.2 also gives the finest and the coarsest Riesz extensions 
(cf. [5] 2.7 and 2.8).

6.3. The following version of [6] 2.8 and 2.14 can be deduced from The
orem 4.3:

TH EO REM . A family of CR screens in a closure space has CR extensions 
iff there is a Cauchy extension in the set, the closure is reciprocal, and each 
proper trace filter is a minimal element of the corresponding screen. I f  |/ |  ^  2
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then the existence of a Cauchy extension in the set does not have to be 
assumed. □

See [6] 2.8 and 2.15 for two descriptions of the finest CR extension; both 
can be obtained from 4.3 (2), too.

[6] 3.1 gives a necessary and sufficient condition for the existence of a CL 
extension in a closure space; it seems to be impossible to deduce tha t result 
from Theorem 4.3. Lodato extensions in a closure space are dealt with in [5] 
2.9-2.17. For Riesz, Lodato, CR and CL extensions in a set, see [15].
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STRONG TOPOLOGY AND STRONG PERTURBATIONS 
OF NORMAL ELEMENTS IN GW*-ALGEBRAS

J. KRISTÓF

The simplest perturbation theorem for bounded normal operators in a 
Hilbert space fit can be formulated as follows. Let L be a bounded normal 
operator on fit and consider a sequence (Ln)neN of bounded normal operators
approximating L in the strong operator topology (i.e. lim Ln(  =  LQ for all

n —> oo
(  € T-i). If is a locally bounded complex Borel function defined on the Borel 
subset B C C  and Sp(L) Q B  and Sp(Ln) Q B  ( n € N) then the problem is to 
clarify whether lim ip(Ln) = ip(L) in the strong operator topology or not?

n —» oo
It is known that the answer is positive if (p is continuous, however, it may 

be negative if <p has a large enough number of discontinuities. A thorough 
examination of the problem revealed that we obtain an affirmative answer 
if the set of discontinuities of is negligible with respect to the spectral 
resolution of the operator L. This is the classical form of the perturbation 
theorem due to F. Rellich [see 5]. Related topics are discussed, e.g., in 
[1, Ch. X, § 7] and [6, § 134-136].

In this paper we will expose a generalization of this perturbation theorem 
for a special type of C*-algebras. It will be proved that for GW*-algebras in
troduced and studied by the author in a series of papers we can formulate and 
verify an analogous theorem. It is worth mentioning that our proof will not 
make use of the classical theorem, thus it will provide an independent proof 
of the classical result. Moreover, our generalization requires and contains 
the introduction of the “strong topology” in GW*-algebras which cannot be 
done for arbitrary C*-algebras due to the representation dependent nature 
of “pointwise convergence” in an operator algebra.

1. Preliminaries

The notion of GW*-algebras was introduced in [3], however, for the sake 
of completeness and to fix the terminology, here we repeat the basic notions 
and notations. We also need a brief summary of the spectral theorem for 
normal elements in GW*-algebras detailed in [4].
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Key words and phrases. Strong perturbation, normal operators, strong operator topol

ogy, C’*-algebras.
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If A is a unital *-algebra (whose unit will always be denoted by 1) and S  
is a non-void and pointwise bounded set of positive linear forms on A then 
|| ||5 denotes the function

A —»K+; a ||a||s := sup \/p(a*a).
p&S

It is obvious that || ||s is a seminorm on A, and it is a norm if S  separates 
the points of A. If p is a positive linear form on A  then write || ||p instead of
II l l w

If A is a *-algebra and /  is a linear form on A then for all a 6 A we 
denote by a.f  and f .a  the linear forms on A defined by (a.f)(b) := f{ab) and 
(f.a)(b) := f{ba), respectively, for be A. Then for o, 6 g A, a.f.b stands for 
(a.f).b.

The pair (A, P) is called a GW*-algebra if A is a unital ^-algebra and P  
is a separating set of positive linear forms on A satisfying:

(I) The set P(l)  := {p £ P  |p (l) ^  1} is pointwise bounded.
(II) Ap e  P, a*.p.a e  co(P) and a.p £ sp(P) for all A £ K+, a £ A and 

p £ P , where co(P) and sp(P) denotes the functional || ||p(1)-closed convex 
and linear hull of P, respectively.

(III) If (a„)n€N is a || Hp^-bounded sequence in A and for all p £ P  the 
sequence (p(an))n is convergent then there is an element a £ A  such that
lim p(an) =p{a) for every p e P  (see [3]).n—>oo

If (A, P) is a GW*-algebra then the <x(A, sp(P)) and cr(A, sp(P)) topolo
gies will be called the P-weak and P-ultraweak topologies on A, respectively.

If (A, P) is a GW*-algebra then
The *-algebra A is a C*-algebra whose C*-norm equals || ||p(t) (see [2]). 
The P-weak and P-ultraweak topologies coincide in every C'*-norm bound

ed subset of A (see [2]).
The set P(A) of projections (i.e. self-adjoint idempotents) of A, equipped 

with the partial ordering e ^ / i f f e  = e /  and the orthocomplementation e1- ~
1 — e (e £ P(A)) is a cr-complete orthomodular lattice admitting a separating 
set of cr-additive states (see [3]).

If (A, P) is a GW*-algebra then a cr-additive projection-valued measure 
in A  defined on a measurable space (T, B) is a map m :B-+  P(A) which is a 
cT-orthohomomorphism between the a-complete orthomodular lattices B and 
P(A). More precisely, for m  we have the following properties:

(a) m(T)  =  1,
(b) ml  U En) = V m{En) for every sequence (Pn)„eN of pairwise dis-n£N n€N

joint subsets in B.
Given a cr-additive projection-valued measure m  in A defined on a mea

surable space (T,B), there is a unique unit preserving ^-homomorphism fn
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from the G*-algebra of bounded complex B -B (C )  measurable functions on T 
into A such that m (xe) =  rn(E) for E £ ß  and p o m : B —1 K+ is a cr-additive 
measure for all p G P  (see [4]). This ^-homomorphism is called the integral 
defined by m. For every bounded B — B(C) measurable function </? : T  —» C 
we write f  ipdm instead of m{(p).

As for the spectral properties of normal elements in a GW*-algebra we 
have the following basic result.

To every normal element a £ A  there is a unique cr-additive projection 
valued measure m a in A  defined on the Borel cr-algebra of the spectrum 
Sp(a) of a such that

(see [4]). Then m a is referred to as the spectral resolution of a. The spectral 
resolution of a normal element in A lives on the spectrum of the given element 
(see [4]).

Given a normal element a in the GW*-algebra (A ,P ), for every locally 
bounded complex Borel function <p, defined on a Borel subset of C containing 
Sp(a), we may give ip(a) as the integral of ip | gp(a) with respect to the spectral 
resolution of a. This is meaningful since g> | gp(a) is a bounded Borel function 
on Sp(a).

There are two important examples for GkF*-algebras.
Example 1. Let A be a von Neumann algebra over the Hilbert space 

H and for all £ € H define p^ : A —> C; a —> (o£ | C). If Pa ■— {p^ I C €= 'H} 
then (A, Pa ) is a GVF*-algebra. Here the a(A, sp(Pa )) and er(A, sp(Pa )) 
topologies coincide with the weak and ultraweak operator topologies in A, 
respectively [2].

Example 2. Let (T, B) a measurable space and let A denote the *- 
algebra of complex bounded £>-measurable functions defined on T.  Let P  
be the set of integrals on A  arising from positive cr-additive finite measures 
defined on B. Then (A ,P) is a GW*-algebra for which the a(A, sp(P)) and 
cr(A,sp(P)) topologies are equal. A sequence (an)ngN in -A tends to a € A 
with respect to the <r(A,sp(P)) topology if and only if (an)n£N is uniformly 
bounded and an —» a (n —> oo) pointwise on T.

If A is a von Neumann algebra then one can define the strong operator 
topology in A besides the weak, ultraweak and C*-norm topologies. It is an 
easy task to generalize this notion for the case of GW*-algebras as follows.

Sp(a)

2. Strong topology in GkF*-algebras
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DEFINITION. If {A, P ) is a GW*-algebra,, then the P-strong topology of A 
is the locally convex topology defined by the family (|| ||p)pgp(i) of seminorms 
on A.

R em ark  1. Let {A, Pa ) be the GW*-algebra associated with the von 
Neumann algebra A on the Hilbert space PL. If (aL)Lej is a net in A, then 
the statement “lim ab =  0 in the strong operator topology” is equivalent to
“lim a t£ =  0 in the Hilbert space PL for all £ G PC', i.e. “lim(a*at£ I £) =

L i

=  lim ||at£||2 =  0 for all £ E PL". By the definition of Pa , the latter statement
i

is equivalent to “limp(a*at ) =  lim ||at ||2 =  0 for all p G Pa”, he. lim at =  0 in
the P/i-strong topology. This means that the P^-strong topology introduced 
in this section coincides with the strong operator topology in the case of 
GLF*-algebras associated with von Neumann algebras.

R em ark  2. If (A , P ) is a GW*-algebra then the P-weak topology on 
A  (i.e. cr(A, sp(P))) equals the locally convex topology on A defined by the 
family (| p\)PeP of seminorms on A. If p G P , then

|p(°)l2 = p ( i)p (a*a) = p ( i)N IJ
showing that the P-strong topology on A is finer than the P-weak topology. 
Further, we have for p G P

\\a\\2p : = p(a*a)i\\p\\\\a\\2

showing that the P*-norm topology of A is finer than the P-strong topology.
R em ark  3. In a GVF*-algebra (A , P ), the P-strong and P-ultraweak 

(i.e. cr{A, sp(P))) topologies are incomparable, in general. However, the 
restriction of the P-strong topology to a G*-norm bounded subset is finer 
than the restriction to the same subset of the P-ultraweak topology.

It is well known that in a P*-algebra A  we have

(!) IMIp =p(b*aab) ^  \\a*a\\p{b*b) = ||a||2||6||^,

for every continuous positive linear form p on A  and for all a, b G A.
P roposition 1. Let (A ,P) be a GW*-algebra, a,b G A and {aL)L̂ j, 

(bL)L£j nets in A. Then:
(i) 7/lim 6t =  0 in the P-strong topology and sup||ot || < oo then lim at6t =

1 te/ L
= 0 in the P-strong topology.

(ii) J /lim a t = a and lim bL = b in the P-strong topology and sup ||at || < oo,
1 1 iei

then lim at6t =  ab in the P-strong topology.
L

P r o o f , (i) is an immediate consequence of the inequality

I k M I p ^ l k l l l l M p  (p g p , i € i ) .
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(ii) First assume that bu = b for all l £ I. If l £ I  and p £ P  then 

IK& -  ab\\p =p(b*(aL -  a)*(at -  a)b) =  (b*pb)((at -  a)*(at -  a)). 

Clearly, we have l im ^  — a)*(aL — a) = 0 in the P-weak topology and this
L

sequence is CP-norm bounded. Consequently, lim(at — a)*(at — a) =  0 in the
L

P-ultraweak topology of A. Since b*pb £ cü(P) Q sp(P) this implies that 
lim \\aLb — ab\\i — 0, i.e. Iimat6 = a6 in the P-strong topology. Now suppose
that aL = a for all l £ I. Then (i) implies that lima&j, =  ab in the P-strongi
topology.

In the general case, for every t £ I  we have

(2) aLbL -  ab=(aL-a) (bL -  b) +  (at -  a)b + a(bL -  b).

Since limht =  hin the P-strong topology and sup ||at — a|| < oo, by (i) we infer

that the first summand in the right side of (2) tends to 0 in the P-strong 
topology. Since lim aL = a in the P-strong topology, by our former result wei
deduce that the second summand in the right side of (2) also tends to 0 with 
respect to the same topology. At last, as we have shown before, the third 
term also tends to 0 in the P-strong topology. □

Our next statement has a vital importance in the proof of the strong 
perturbation theorem for normal elements in GW*-algebras.

P roposition 2. Let (A , p ) be a GW*-algebra, a £ A  a normal element 
and (at)tg/ a net of normal elements in A converging to a in the P-strong 
topology. 7 /sup ||a t || < oo then lima* = a* with respect to the P-strong topol-

i ‘
ogy-

PROOF. Let l £ I  be a fixed index. Since a and aL are both normal el
ements in A, we have ||a||p =  ||a*||p and \\aL\|p =  ||a*||p for all p £  P.  Every 
seminorm || ||p (p £ P ) is continuous with respect to the P-strong topolo
gy evidently, thus lim||a*||p =  ||a*||p (p £ P ). For every p £  P  we have the
equalities

I K  -  “*llP= p ( K  - a ) K  -a)*) =p(ata*) +p(aa*) -  2Re (p(ata*)) =
= p(ata*) - p(aa*) +  2Re (p((a -  ac)a*))
= IKIlp -  IKIlp + 2Re ((pa*)(a -  a j) .

Since the net (a — a()te/ is CP-norm bounded in A and tends to 0 in the 
P-strong topology, we conclude that it converges to 0 in the P-ultraweak 
topology. But p.a* £ sp(P) for every p £  P , thus the third term in the right 
side of the equalities above converges to 0 for all p £ P .  □
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If (A, Pa ) is the GfT*-algebra associated with a von Neumann algebra A 
then every sequence in A  converging in the P^-weak or P^-strong topology 
is necessarily G*-norm bounded. This is not the case for an arbitrary GW*- 
algebra as the following example shows.

Example. Let T  be a set and A be the G*-algebra of all the complex 
bounded functions defined on T. For every i £ T  we write £t for the positive 
linear form on A defined by the formula £t(a) '■= a(t) (a 6 A). If

P  :=  {As( I A 6 K+, í £ T}

then it is not a difficult task to check that (A , P)  is a GIF*-algebra such 
that the P-weak topology on A coincides with the topology of pointwise 
convergence on T. If A € IR+ and 16 T  then for all a € A  we have

I M U e t  =  v / A | a ( f ) |  =  | \ / X e t | ( a ) ,

i.e. the P-strong and P-weak topologies on A  coincide. Assume that T  is 
infinite and let u : N —> T  be an arbitrary injection. Define the sequence 
(an)nGN in A as follows

f 0 if t € T  \  u(N),
an{ t ) < n if t = u(k) and k l tn .

l  o if t =  u(k) and k < n

Then (an)n£N converges to 0 pointwise on T, i.e. lim an =  0 in both the P-
n—KX)

weak and P-strong topologies, but sup|an(i)| = n  (ro£N), i.e. this sequence
ter

is not G*-bounded in A.
The above example shows that it is not a superflous condition on a 

sequence in a GIF*-algebra to be C*-norm bounded even if it is convergent 
in the strong topology.

3. Strong perturbation of normal elements in GIF*-algebras

This section contains the main perturbation theorem for normal elements 
in GIF*-algebras. We denote the sup-norm of a bounded complex function 
ip defined on a set T  by the symbol |||</?|||t -

T heorem. Let (A, P) be a GW*-algebra and (an)n6N a sequence of nor
mal elements in A. Suppose that a £ A  is a normal element with lim an = a

n - > o o
in the P-strong topology and sup ||an|| < oo. Let B  be a Borel subset of C and

n e  N

ip : B  —> C a locally bounded Borel function such that (J Sp(a„) U Sp(a) Q B
n£N

and there is a closed subset E  of C such that E  Q B  and E  contains all the
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points of discontinuity of (p and satisfies rria(Ei)Sp(a)) =  0, where m a is the 
spectral resolution of a. Then lim tp(an) = ip(a) in the P-strong topology.n—yoo

P roof. Since sup ||an || < oo, the set T (J Sp(a„) U Sp(a) is compact
n£N n£N

in C and, by the hypothesis, it is contained in B.  Let C(T) and B(T) denote 
the C*-algebra of complex continuous functions and complex bounded Borel 
functions defined on T, respectively. Then we set

A  {ip £ 1(T) I lim ip(an) — ip(a) in the P-strong topology}.n—>oo

First we will show that A  is a (7*-subalgebra of B(T) such that C(T) Q A.
Since the P-strong topology of A is a linear topology, A  is a linear sub

space of !(T ). If if £ A  then (ip(an))neN is a (7*-norm bounded sequence of 
normal elements in A  converging to ip(a) in the P-strong topology, so, by
Proposition 2, we obtain that lim ip{an)* = ip(a)* in the same topology, i.e.n—»oo
lim ip(an) = ip(a) in the P-strong topology showing that ip£A.n—>oo

If ip, i f  £ A  then lim ip{an) = ip(a) and lim ip'(an) = ip'{a) in the P-n-> oo n—xx>
strong topology of A  and the sequence (ip(an))nen is CP-norm bounded, 
so, by Proposition 1, we infer that lim (ipip'){an) = lim ip(an)ip'(an) =n—>oo 7i—>oo
= ip(a)ip'(a) = (ipip'){a), i.e. ipip' £ A , thus A  is a *-subalgebra of B(T).

In order to prove that A  is sup-norm closed in B(T) take a sequence 
(V’n) in A  converging uniformly to a function ip £ B(T). Then we obtain 
the following inequalities for all n, m  £ N and p £ P (l):

\\ip(an)-ip{a)\\p = \\{ip{an)-ipm{an)) ~ {ip{a)-ipm{a)) + {ipm(an) -  V’m(a))||p 

= II (V’ — 'i/’m)(an) lip + II ('*/' — ‘lPm){,a) ||p +  \\lpm[an) ~~ lpm(a) ||p =

= III7/7 ^ml I |sp(an) ~F III7/7 VVnl I |sp(a) +  \\'tPm{an) ~  V’m(a )||p =

= 211 \lp ~ 1pm\\ It  T II 1pm{an) 1pm{a) ||p-
Given a number e > 0 and p £ P ( 1), there is a number m £ N such that 
lll^m -  ip\\\r ^  e/4. Since ipm £ A , we have lim ipm{an) = ipm{a) in the P-n—>oo
strong topology, thus there is a number n £ N with the property that for every 
n £N, n^. N  we have \\ipm{an) — ipm(a)\\p ^  e/2. Then, taking into account 
the former inequalities, we arrive at \\ip(an) — ip(a)\\p ^  2(e/4) +  (e/2) = e  
for all n £ N, n ^  N.  This means that lim ip(an) = ip(a) in the P-strong

71—KX)

topology, i.e. ip £ A,  showing that A  is a (7*-subalgebra of B(T).
Since lim an =  a in the P-strong topology, we have id^ £ A  as well71—KX)

as idr 6 A- Clearly, every constant function on T  belongs to A,  so we 
have (id r, idr, It } ü  A. Then the theorem of Stone-Weierstrass implies
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th a t C(T) Q A- In other words, for every continuous function ip : T  —> C the 
sequence (ipn{a))n converges to ip (a) in the P-strong topology.

Now take a locally bounded Borel function ip: B  —>C and assume that 
£  is a closed subset of B  containing the points of discontinuity of <p and 
satisfying ma(P nS p(a)) =  0, where m a is the spectral resolution of a.

Then E  fl T  is a closed subset of C containing the points of discontinuity 
of ip I t  satisfying m a((EC\T) nSp(a)) = 0. By the theorem of Urysohn there 
is a sequence (ty?n)n£N in C(T) with the property that for all m E N and z ET ,  
if dist(z, E  flT) ^  1/m then ipm(z) = 1 else if z E E  (IT  then ipm(z) =  0. We 
may assume that 0 ipm ú  1 for all m £N . We claim that lim p n(a) = 1 in

71 —> 0 0

A  w ith respect to the P-strong topology.
Indeed, we have lim p m = Xt \ e pointwise on T  and sup |||<pm|| |r  ^n-i o° ' meN

^ 1, thus the sequence (\<pm ~~ XT\ß|2)meN tends to 0 on T  pointwise and is 
uniformly bounded. Then we have lim \ipm — Xr\£;|2(a) =  0 with respect to

m -A oo  '

the cr(A, sp(P)) topology. Therefore

\Wm{a) -X T\i?(a)llp=p(l¥5m -X T \E |2(a)) —» 0 (m-^oo),

i.e. lim <pm(a) =  XT\E(a) in the P-strong topology. On the other hand:m—>oo '

XT\e (o)  = XsP(a)n(T\E){a) = m a{Sp{a) \ E )  =
=  m a(Sp(a)) -  m a{E D Sp(a)) =  1

i.e. lim tpm(a) = 1 in A  with respect to the P-strong topology.m—>oo
By the definition of the sequence (<pm)meN) (<£> I T)<Pm £ C(T) for m  E N, 

so we obtain that lim (p(an)ipm(a) = p(a)(pm (a) in the P-strong topology
71—> OO

for all If m, n E N then

ip(a) -  (p{an) = (ip(a) 1 -  ip(a)ipm(a)) + (<p(a)<pm(a) -  p{an)pm(an))+
+ {<p{an)ipm(an) -  <p{an)(pm(a)) + (<p(an)<pm(a) -  <p(an)l).

From this and (1) we conclude that for every p E P ( 1) and m , n E  N

||^ (a) -¥>(a„)||p g ||^ (a ) ||||l  -  pm{a)\\p + \\p{a)tpm {a) -  p{an)tpm{an)\\p+
+ Wv M W W p  m  ) -  Pm{a)\\p +  \ \ ( p ( a n ) \ \ \ \ p m { a )  -  l | | p .

Let M  be a positive number such that max(|||<^|||T, sup |||y>„|||x) = M. Then,
tiGN

for e > 0 and p E P( 1) there is a number m  E N such that ||1 — ipm(a)\\p  ̂
= 2A/+1 ■ On the other hand, to m we can choose a number N\ E N such that 
for every n £ N , n ^ N\  the inequality ||(p{an)ipm (an) — (p(a)tpm(a)||p ^  e/3 
holds, since lim p(an)ipm(an) = (p(a)(pm{a) in the P-strong topology. But

71—XX)
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<pm GC(T) C.4, i.e. lim f m{an) =  </?m(a) in the P-strong topology, so theren—> oo
is a number N2 £ N such that

< _ e /3 _  
p = M + l

for n G N, n ^ IV2.

From this it follows that for n G N, n ^ max(iVi, ÍV2) we have

e/3ll¥,( a ) -^ (a „ ) | |p ^ M
2M + 1 3

e e/3 e/3+ -  +  M  . + M -  '
M  +  l 2M +  1

< £.

This is true for every p G P ( l)  and e > 0, so lim ip(an) =  ip(a) in the P-strong
71—> 0 0

topology. □
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AN ALTERNATIVE CONDITION OF FIXED POINT 
OF NON-CONTINUOUS MAPPINGS IN METRIC SPACES

M. ANGRISANI and M. CLAVELLI

Introduction

A theorem concerning the fixed points of non-continuous self-mappings 
in metric spaces is given in this paper, with conditions different from the 
usual fixed point theorems, by using the notion (see [1] or [2]) of r.g.i. func
tion (property weaker than l.s.c.). Some corollaries and two examples of 
applications are given.

We recall the following definition.
D e f in it io n . Let G be a real function defined on a metric space (X,d), 

and put Lc = {x 6 X\G(x)  ^  c}. G is r.g.i. (regular-global-inf) in x G X  if 
and only if G(x) > inf(G) implies d(x, Lc) > 0 for some real number c such

X

that c > inf(G). G is r.g.i. in (X, d) if and only if it is r.g.i. in every x G X.
X

§ 1. The main theorem

Lemma 1.1. Let (X,d) be a metric space. G : X  -» K is r.g.i. in (X,d) 
if and only if for each minimizing G sequence {xn}n, {xn}n —» x* implies 
that x* is an absolute minimum point of G.

P r o o f . Let G be r.g.i. So, {xn}n —> x* implies that the neighbourhoods 
of x* intersect all the level sets Lc =  {x|G(x) Ú c} where c > inf(G) (i.e.

X

d(x*,Lc) — 0 when c >  inf(G)) and therefore, as G is r.g.i. in x*, x* is an
X

absolute minimum point of G.
On the other hand, we suppose that, for each minimizing G sequence 

{xn}n, {Tn}n-*£* implies that x* is an absolute minimum point of G; i.e. 
we suppose the minimizing sequences may not tend to points which are not 
absolute minimum points of G.

Let, ad absurdo, G not be r.g.i. in (X, d): this would imply that there 
is, at least, a point x* which is not an absolute minimum point of G, whose
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neighbourhoods intersect all the level sets Lc with c > inf(G). On the other
X

hand, we may construct a sequence minimizing G which tends to x*, and 
therefore, x* is an absolute minimum point of G, which is absurd.

M a i n  THEOREM 1.2. Let (X,d) be a metric space, and T  : X  —> X  be 
given, and F  : X 4 —1M be u.s.c. jointly on the first two variables in all points 
of the kind (x,x ,x,Tx)  with x  ^ T x ,  let F (x , x , x ,T x )  > 0 for x ^ T x ,  let 
Fix ,  T x ,  y, Ty) ^ 0 f o r x ^ y ,  and defining G(x) =  d{x,Tx),  let inf(G) =  0.

X

Then G is r.g.i.

PRO O F. Let, ad absurdo, G not be r.g.i. Then there is, by Lemma
1.1, a sequence {#„}„ minimizing G and tending to a point x* which is not 
an absolute minimum point of G (so x* /  T x *). We have, by hypothesis, 
because x n ^x*:

(1) F(xn, T x n , x*, Tx*) ^ 0 by definition.

As, by hypothesis, d(xn, T x n) —> 0 (inf(G) =  0) and x n —» x *, we also have
X

T x n —» x*. Going to limit in (1) for n —> +oo we have F(x*,x*,x*,Tx*)  ^  0, 
which is impossible.

C orollary 1.3. Let (X ,d )  be a metric space, T : X  —> X  be given, and 
F* : X 4 —> R be u.s.c. jointly on the first two variables in all points of the 
kind (x, x, x,Tx) with x fi^Tx ,  let F*(x, x, x, Tx) < d(x ,Tx) for x^fiTx, and 
d ( T x ,T y )  ^  F*(x,Tx,y ,Ty) f o r x ^ y .  Assuming that G(x) = d(x,Tx),  let 
inf(G) = 0 . Then G is r.g.i.

X

P r o o f . Let F(x,y,  z ,w )  = d(y,w) — F*(x,y, z ,w).  So, F  and G verify 
the hypothesis of the main theorem.

PROPOSITION 1.4. Let {X,d) be a complete metric space, and T : X  —> 
-» X ,  and G(x) =  d(x,Tx) be an i.g.r. function on X  such that infG  =  0,

X

and { x n}n be a Cauchy sequence and a minimizing sequence of G. Thus T  
has a fixed point.

P r o o f . Let x* be the limit point of {x„}„, by Lemma 1.1, x* is an ab
solute minimum point of G, consequently, by inf G =  0 we have d(x*,Tx*) =

X

=  G(x*) =  0, therefore x* is a fixed point of T.

R e m a r k  1.5. Let S : X —>X and V : X —>X, let S V x  — x => Vx  — x  (this 
is a condition which sometimes appears in the literature: see, as example,
[3]). Thus, we can prove th a t there are common fixed points of S  and V, 
proving that there are fixed points of T =  S V , for example verifying the 
hypothesis of some of the above theorems for T.
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§ 2. First example

We are presenting a strengthening of the main theorem of [3], when T  = S  
(our hypothesis min(b, c) < 1 is better than the hypothesis be < 1).

T h e o r e m  2.1. Let {X, d) be a complete metric space, and T  : X  —> X  be 
such that if x — T 2x, then x = Tx .  We suppose that there are b , c ^ 0  with 
min(6, c) < 1 such that

(*) d ( T x , T y ) i bd{x,Tx)d{x,Ty) + cd(y, Tx)d(y , Ty)  
d{x,Ty) + d(y,Tx)

(when the denominator does not vanish). Thus, T  has a fixed point which is 
unique.

P roo f . We must apply. Corollary 1.3. Let

F*{x, y, z, w) = (bd(x, y)d(x , w) + cd{z, y)d(z, w))/(d(x, w) +  d(z, y)).

We define F* = 0, when x — w and z = y (i.e. when it is not defined). 
We intend to verify the hypothesis of Corollary 1.3: F* is continuous (and 
therefore in particular u.s.c.) in the points (x ,x ,x ,Tx)  with XyéTx,  by the 
continuity of the distance, and because the denominator does not vanish in 
the points (x, x, x, y) with x ^ y .

For each x ^ T x ,

F*(x, x, x, Tx) —
=  (bd(x,x)d(x,Tx) +cd(x,x)d(x ,Tx)) /(d(x ,Tx) + d (x ,x )) =  0 <
< d(x, Tx).

d(Tx,Ty)  ^  F* (x ,Tx ,y ,Ty)  is valid by hypothesis, and inf(G) =  0 because
X

{Tnx}n is a Cauchy sequence. It can be seen that {Tnx}n is a Cauchy 
sequence in the following way: If for each n, T nx f  T n+2x, we have, using 
(*), as the denominator does not vanish,

d(Tn+lx , T n+2x ) ^
^  bd(Tnx, T n+1x)d{Tnx, T n+2x) +  cd{Tn+lx, T n+lx)d{Tn+1x, T n+2x ) 

d{Tnx, T n+2x) + d(Tn+lx, T n+lx)
= bd(Tnx , T n+1x),

but also we have

d(Tn+1x, T n+2x) =  d{Tn+2x, T n+1x)
^ bd{Tn+lx, T n+2x)d(Tn+1x, T n+lx) +  cd(Tnx , T n+2x)d(Tnx , T n+1x) 

d(Tn+1x, T n+lx) + d(Tnx, T n+2x)
= cd(Tnx , T n+lx).
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Then
d(Tn+xx, T n+2x) ^  min(6, c)d{Tnx , T n+1x)

and we conclude by standard arguments that {T nx } n is a Cauchy sequence.
If for some n we have T nx  = T”+2x, we also have, by hypothesis, T nx = 

_  T n+lx  and hence the sequence is still a Cauchy sequence, since it is defini
tively constant.

So, by Corollary 1.3, G is r.g.i.
Since X  is complete and {Tnx}n is a Cauchy sequence, {Tnx}n is a 

minimizing sequence of G which is r.g.i., and inf(G) =  0, by Proposition 1.4
X

there is a fixed point of T.
To prove unicity we observe that if x, y are fixed points of T  and x ^ y  

(i.e. d(x,y)  >0), we have by (*) d(x,y) ^0 , which is absurd.

§ 3. Second example

We are giving a new proof of the existence of fixed points of Kannan- 
contractive self-mappings which can be generalized to other conditions of 
contractivity.

T h e o r e m  3.1. Let (X, d) be a complete metric space, and let T : X  —>• X  
be so that d(Tx,Ty)  ^  a(d(x ,Tx)  +  d(y,Ty)) with 0 < a <1/2 . Thus T  has 
a (unique) fixed point.

P r o o f . We will use Corollary 1.3 and Proposition 1.4. Let

F*(x, y, z, w ) = a(d{x, y) +  d(z , w)).

F* is clearly continuous, and

F*{x, x, x, T x )  =  a(d(x, x) + d (x ,T x )) < d(x,Tx).

By hypothesis

d(Tx,Ty) ú a (d ( x ,T x )  +d(y,Ty)) = F*(x ,Tx ,y ,Ty) .

Now we prove that {Tnx } n is a Cauchy sequence. Effectively, by 

d{Tx , T 2x ) < a{d{x,Tx) +  d(Tx, T zx)),

we have
d{Tn+lx, T n+2x) < (a/( 1 -  a))d{Tnx, T n+1x)

where (a /( l — a)) < 1 and we conclude by the triangular inequality and some 
calculations that {T nx}n is a Cauchy sequence. The fact that {Tnx}n is a 
Cauchy sequence implies also that the infimum of G(x) =d(x,Tx)  vanishes.
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So we can use Corollary 1.3 and conclude that G is r.g.i. Using Proposition
1.4 we conclude that T  has a fixed point. The unicity is obvious.

REFERENCES

[1] A ngrisani, M., Una condizione di minimo e sue applicazioni a problemi di punto fisso,
Publ. 1st. Statist. Mat. Fac. Economia Maritima 1st. Univ. Navale Napoli, no. 
8 (1982).

[2] A ngrisani, M. and C lavelli, M ., Synthetic approach to problems of fixed points in
metric spaces, Ann. Mat. Pura Appl. (to appear).

[3] F isher , B. and K han , M. S., Fixed points, common fixed points and constant map
pings, Studia Sei. Math. Hungar. 11(1976), 467-470. MR82a:54084

[4] K annan, R., Some results on fixed points, Bull. Calcutta Math. Soc. 60 (1968), 71-76.
MR 41 #2486

[5] K annan, R., Some results on fixed points. II, Amer. Math. Montly 76 (1969), 405-
408. MR 41#2487

[6 ] R eich , S., Kannan’s fixed point theorem, Boll. Un. Mat. Ital. (4) 4 (1971), 1-11. MR
46#4293

(Received May 17, 1993)

D IPA RTIM EN TO  DI MATEM ATICA
P E R  LE DECISIONI EC O N O M IC H E ,  F INA N ZIA RIE E ASSICURATIVE 
FACOLT A DI ECONOMIA E C O M M E R C IO  DELLA 
U NIVERSITÄ Dl ROMA „ L A  S A P IEN ZA ”
VIA DEL CA STRO  LA URENZIANO, 9
1 - 0 0 1 6 1  ROMA
ITALY





Studia Scientiarum Mathematicarum Hungarica 32 (1996), 181-205

THE LAPLACE TRANSFORM OF THE SQUARE 
IN THE CIRCLE AND DIVISOR PROBLEMS

A. IVIC

§ 1. Introduction and statement of results

The circle problem and the divisor problem consist of the estimation of 
the functions

P( x ) =  r(n)  — ttx +  1,
n< x

( i i )  i
A{z) =  2_,  d(n) -  x(log x +  27 -  1) -

ná x

respectively. Here, as usual, Y l  denotes that the last term in the sum is
w ix

to be halved if x  is an integer, 7 is Euler’s constant, r(n) =  Y  1 and
a2-\-b2=n

d{n ) — Y  1 denote the number of ways n 1) may be written as a sum of
ab=n

two integer squares and as a product of two natural numbers, respectively. 
These two problems have a long and rich history (see, for example, Chapter 3 
and Chapter 13 of [8]). Pointwise estimates of P(x)  and A(a;) depend on 
intricate techniques for the estimation of certain exponential sums, and H. 
Iwaniec and C. J. Mozzochi [10] proved

(1.2) P(x)<£x7/22+e, A { x ) C x 7/22+e

for any given e > 0. Better results than (1.2) may be obtained in the mean 
square sense, which is often the case in analytic number theory. Thus

(1.3)
.. OO

( ^ E r2(n )n ~3/2) x 3 /2 + £ P o
n = 1
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and

(1.4) j  A 2(x)dx = ( ^ ^ T d 2(n)n-3/2')x3/2 + F(x),
o V * "=i 7

where

(1.5) Q ( X ) ^ X \ o g 2 X  
and
(1.6) F{X)<^X logA X

is known. The bound in (1.5) is due to I. Kátai [12]. It was reproved by 
E. Preissmann [16], who also proved (1.6). Namely F(X)  <C X  log5 X  was 
proved long ago by K. -C. Tong [17]. More recently T. Meurman [14] reproved 
Tong’s bound by a new, simpler method. The saving of the log-power given 
by (1.6) comes from the observation, made by E. Preissmann [16], that at a 
certain place in the proof a variant of Hilbert’s inequality may be successfully 
used.

In many instances problems involving the functions P(x) and A(:r) can 
be successfully dealt with by means of the classical explicit formulas involving 
the Bessel functions. These are

OO

P(x) =  x 1/2 r(n )n_1//2 J\ (27Ty/xn) (x > 0)
n = l

9 7r
—x1/2 d(n)n~l^2(Ki(Any/xn) + — Yi(4ny/xn)) (x > 0 ),
71 '  2

n = l

where both series are boundedly convergent, and and Y\ are the fa
miliar Bessel functions. The above formulas are due to G. H. Hardy [3] 
and G. F. Voronoi [17], respectively. They are special cases of formulas for 
general number-theoretic error terms, which involve coefficients of Dirichlet 
series satisfying certain types of functional equations. The general theory 
was worked out by K. Chandrasekharan and R. Narasimhan [1], [2], and 
later by other researchers. The expressions (1.7) and (1.8) are certainly the 
ones that are best known. Especially striking is (1.7), since the J-Bessel 
function is less difficult to handle than the F-function.

To work with the infinite series in (1.7) and (1.8) is not easy in practice, 
so tha t one often uses the so-called truncated formulas

„1/4 ___ „
(1.9) P(x) = - ^ $ > ( n )  n~3/4 0 0 8 (2 7 1 ^  +  ^ ) +  0 (x £ +  x l/2+£N ^ I 2)

n^N

(1.7)

and
( 1. 8 )

A(x) =  -
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and
.1/4

(1.10) A(:r) = d(n)n 3/4 cos(4ny/xn — ^ )  + 0(x£ + x x̂ 2+EN  l^2).

Both formulas are valid for x  ^  1, 1 N  ^  x A, where A > 0 is any fixed 
constant and e > 0 is a constant which may be arbitrarily small. The formula
(1.10) is well-known (see Chapter 3 of [8] for a proof), while (1.9) can be 
established along similar lines by using the functional equation

= tf2' -1 ~ q 7 p i ( 1  -  s)>

OO

L(s) = ^ ^ r (n)n~s (R e s> l) .
n— 1

Nevertheless (1.9) and (1.10) alone are not sufficient for the proof of (1.5) 
and (1.6), which require additional arguments and techniques.

The aim of this paper is to consider the Laplace transforms
OO OO

(1.11) a(s) = J P 2(x)e~sxdx, b(s) = j  &2(x)e~sxdx
0 0

and seek their asymptotic behaviour as s 0+. The evaluation of Laplace 
transforms is fairly common in analytic number theory. For example, 
H. Kober [13] found a precise asymptotic formula for the Laplace trans
form of |C(l/2 +  ire)12 as s —»0+. It might appear that it is perhaps more 
natural to ask for the Laplace transform of P{x)  than of P 2(x). This is not 
so, since in view of (1.7) and the well-known formula (it follows from (2.8))

OO

/ ■
^ ^ 2JV(2\/ax)dx — e â sav^2sv 1 (R es>0, R e i^ > —1)

the Laplace transform of P(x) may be evaluated exactly. We obtain

OO

P(x)e~sxdx = ns~2 ^  r(n)e~n2n^s (Res > 0),
/ 71=1

and the right-hand side decays exponentially as s —»O4.. Putting s = l / T  in
(1.11) one may suppose that T  —> 00, and then the problem of the evaluation 
of a( l/T)  and b(\/T)  becomes similar to the problem of the evaluation of the
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integrals in (1.3) and (1.4). In fact, we can use (1.3)—(1.6) and integration 
by parts to obtain, in the circle problem,

( 1. 12)

J ( f  P 2(t)dt)e~x,Tdx = 
0 0

OG QQ

= í  /  { (3^2 H r2(n )n_3/2) 2:3/2 + Q{x]^e~x/Tdx = 
0 n=l

= ( ^ f r2 (n)n~3/2r  ( | )  )  T 3/2 + 0 (T  log2 T) =
'  7 1 = 1  '

= \  ( f )  3/2 E  (n)«"3/2 +  0 (T  log2 T),
n=l

and likewise
00 00

(1.13) f  ^ 2{x)e~x l r dx = ^ ( ^ /2Y , d2i<n)Ti~i/‘2 + 0 {T\ogi T).
J  n  —  1

It will tu rn  out, however, that the asymptotic formulas (1.12) and (1.13) can 
be considerably sharpened if the integrals in question are evaluated directly. 
In the case of the circle problem the simplicity of the series expansion (1.7) 
comes into play by means of the identity

(1.14)

OO

j" e~sttJ \(a\/t)Ji(b\/i)dt = 
0

=  e
abs

valid for Re s > 0 and a, b real. The asymptotic expansion of the Bessel 
function I v{x), for fixed u and \x\ ^ 1, is

(1.15) I„{x) =
%/2TTX

4 ^ 2 — 1 ( 4 i / 2  —  1 ) ( 4 ^ 2 —  9 )

8x +
1 2 8 x 2

+ 0 (s*)}-
and in fact an asymptotic formula exists with any assigned degree of accu
racy. For this, and other properties of the Bessel functions, the reader is 
referred to G. N. Watson’s monograph [19]. As (1.15) contains neither sines 
nor cosines, the problem of the evaluation of a ( l /T )  (and similarly of b(l /T))  
is eventually reduced to the evaluation of certain ordinary arithmetic sums, 
and not of exponential sums. The quality of the final results depends on the 
values of two constants a  and ß  which satisfy 1/2 ^ a < 1, 1/2 ^ ß  <1  and
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(!-16) X ! r (n )r (n + h)=  8X- ^ ( - 1 )dd + 0 (xa+£),
n ' i x  d \h

Í1-17) Y 1  d(n )d(n + h) = * $ Z (logXY cb $ 1  + Q (^/?4€) ;
t=0 .7=0 d\h

uniformly for 1 ^  h ^  x 1/2, where e is an arbitrarily small, positive constant. 
In (1.17) the c ^ ’s are certain absolute constants, and in particular C22 =  C21 = 
=  0, C20 =  6tt- 2. Our results are

T heorem 1. For any given e > 0
OO OO

(1.18) í P 2(x)e~xtTdx=   ̂( “ ) 3/2 r2(n )n ~3/2 — T  + ° { T a+e).
0 n=1

THEOREM 2. There exist constants A \ , A 2,A^ such that, for any £ > 0,
OO

j  A2(x)e~x/ J dx =
(1.19) 0

= l ( ^ y /^ d 2(ri)n-3' 2+T{Al \og2T+ A2\ogT+A3)+ 0(T(}+e).

The estimations of the error terms in (1.16) and (1.17) represent classical 
problems of analytic number theory, with a long and rich history. The first 
significant results were obtained by T. Estermann in the 1930’s. D. R. Heath- 
Brown [4] and D. Ismoilov [5], [6], working independently, obtained ß — 
= 5/6 in (1.17) uniformly for 1 ^  h ^  x 5/6. Recently, Y. Motohashi [15] 
employed powerful methods from the spectral theory of automorphic forms 
and obtained very precise results on d.(n)d(n + h), which improve all

nSi
previous results. In particular, he showed that /3 = 2/3 holds uniformly for 
1 ^  h ^  a:20/27 and that (already for h =  1) ß  < 1/2 cannot hold. Thus the 
assumption that ß ^ . \ / 2  (and likewise a  ^  1/2) is a reasonable one to make. 
The method of D. Ismoilov [5], [6] is fully explained in his monograph [7], 
where it is indicated that its application to the circle problem yields a  = 
=  5/6 uniformly for 1 ^  h ^  x5/6_£l. Therefore (1.18) and (1.19) certainly 
hold with a  =  5/6 and /? =  2/3, respectively. It remains to be seen whether 
the methods of spectral theory can be employed to decrease the value of a 
to a  =  2/3, which is reasonable to expect to be possible.
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The values of the constants Aj  in (1.19) may be written down in closed 
form, although the expressions in question would not be simple, because they 
depend on the constants Cy in (1.17).

There is an aspect of Theorem 1 and Theorem 2 which deserves to be 
mentioned. Namely, in view of the best known bounds (1.5) and (1.6) for 
Q(A) and F(X),  respectively, it is immaterial whether P(x) and A(x) are 
defined as in (1.1), or as

(1.20) P(x) = ^ 2  r(n) — 7nr, A(x) = d(n) — x(log x + 2y — 1),
n<x n<x

which is also customary. In the case of the Laplace transforms a ( l /T )  and 
6(1/T) this distinction is vital, since the constants in (1.1) contribute linear 
terms T  and T / 16 in (1.18) and (1.19), respectively.

It may be also asked what are the correct orders of magnitude of the 
functions Q(X), F(X),  and likewise of the error terms in (1.18) and (1.19), 
which we may denote by Qi(T)  and F\ (T), respectively. Since one may 
reasonably conjecture that a  =  ß = 1/2 holds uniformly for 1 ^ h ^  x 1/2, it is 
plausible to conjecture, for any given <5, e > 0,

Q1(T) = 0 ( T l' 2+£), Q1(T) = Q(T1f2~s),
Fi (T ) =  0 ( T l/2+e), Fi (T) =  n ( T 1/2~s).

The omega-results in (1.21) are not analogous to the omega-results

(1.22) Q(T) = n ( T 3/A~s), F(T) = n ( T 3/i~s),

which hold unconditionally. For F(T) this is Theorem 13.6 of [8], and even 
a sharper results is proved by M. Ouellet and the author [9]. For Q(T)  the 
proof is analogous to the one that works for F(T).  It is unclear whether 
in (1.3) and (1.4) there will be another main term of the form Tiü(logT) 
present, where R(y) is a polynomial with non-zero leading coefficient. As I 
already noted, the shape (or even the existence) of such a new main term 
depends on the definitions (1.1) or (1.20) for P ( x ) and A(x). But the proof 
of (1.22) shows that, regardless of the definition of A(x), if

X  _ _

/ -j oo
A 2(x)dx = ( g-2 ^ 2  d2(n)n“3/2) X 3' 2 +  X R (log X)  + F2(X)  

o ^  n=1

holds with
F2( X ) = o(X) (X  —>• oo),

then certainly
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F2{ x )  =  n ( x 3/4~s )
is true with any given 6 > 0. A similar discussion can be made for the circle 
problem. Probably it is true that

F2{X)  =  0 { X 3/4+E)

holds for any given e > 0. This is a very strong conjecture, since it easily 
implies the classical conjecture A(.t) =  0 (x 1/4+£), and this is known to be 
quite deep. An argument similar to (1.12) shows that F2(X) = O ( X 0+£) with 
3/4 ^  9 < 1 implies (1.19) with F\(T) = O{T0+E). However, the converse 
implication cannot hold, since we know that F\{T) =  O(T0+£) holds with 
9 =  2/3, but (1.22) shows that F(T) — 0 (T 2/3+£) is impossible for 0 < e < 
< 1/ 12.

Generalizations of (1.18) and (1.19) to number-theoretic error terms of 
the type investigated by K. Chandrasekharan and R. Narasimhan [1], [2], 
are, of course, possible. This was not done here for several reasons: to keep 
the exposition as clear as possible, because in the general case no simple 
analogous of (1.14) seems to exist, and because the size of the error term is 
determined by the intrinsic properties of the arithmetic function involved in 
the problem. The last fact is clearly reflected in different forms of the main 
terms in (1.16) and (1.17), which account for different forms of the second 
main term in (1.18) and (1.19), respectively. In particular, the analogue of 
(1.16) and (1.17) holds for the “normalized” function a(n) =  a ( n ) n ^ ^ l~K\  
where a(n) is the n-th Fourier coefficient of a cusp form of weight k = 2k for 
the full modular group. This was kindly indicated to me by Prof. M. Jutila, 
who pointed out that it was proved in [11] that one can obtain

(1.23) ö(n)ä(n + h) = Q(x7+£)
x

with 7 =  2/3, uniformly for 1 h a;2/3. Thus an appropriate analogue of
(1.18) holds for A(x) =  ]T/a(n), without the linear term and with error term

0(aP+£).
The plan of the paper is as follows. In the next section the lemmas 

necessary for the proof of (1.18), including a proof of (1.14), are given. The 
proof of (1.18) will be given in § 3, while the modification necessary for the 
proof of (1.19) will be given in § 4. Special care is given to keep the exposition 
as self-contained as possible, but to avoid excessive length.

§ 2. Lemmas needed for the circle problem
The purpose of the following two lemmas is to truncate the series for 

P{x) given by (1.7). In this way questions involving convergence are avoided 
when we evaluate the integral in (1.18).
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L e m m a  1. Let 1 Ú X Ú M  fLxA, where A (> 1) is any fixed constant. If 
||x|| denotes the distance of x  to the nearest integer and e > 0 is any given 
constant, then we have uniformly

x 1//2 ^  r(n)n  1̂ 2J\(2n\/xn) — 
n^M

(2.1) ( 0 ( x £) always,
_  )  5 / 4 . . - 1 / 2  l /2 + £  —1 / 2 , , - 1  1 / 4 , , - 1 / 4 .-  S 0 (x  ' M  ' +x ' M  1 ||x|| +x M  ' )

[ if x is not an integer.

P r o o f . Results similar to Lemma 1 are given in Chapter 13 of [8] for 
P{x) and by T. Meurman [14] for A(x). The basic idea is to feed back the 
Voronoi-type formula (1.7), in integrated form, to itself. The first bound in
(2.1) follows easily from (1.7), (1.9) and the asymptotic formula

Í (!) =  0 V2{co. ( . - ? - = ) - -  ( . - ? - = ) }

valid for v fixed and x  > 1. To obtain the second bound write

OO
r(n )n ^ 1,/2 Ji(2-7ry/xn=  f  t~ 1̂ 2J\ (2 n \ / x i ) d ( ^ ^  r(n)^j + 0{{xM)~1̂ )  = 

n=M m —o n=t
OO oo

= 7T Í  t - 1̂ J l {2nV^t)dt+ Í  r l/2J l (2nV^i)dP{t) + 0 ( { x M ) - 1' 4) =
M  M - 0

oo

=  O ( i x M ) - 1̂ )  -  M ~ 1̂ 2 J i {2-k\ÍxM)P(M) -  J  P( t){ t -1/2J1(2-nV^i))'dt =
M

oo

-  0{(x M ) ~ 1' a) -  Trm1/2 j  P{t)t~l J0(2nV^i)dt.
M

Here we used the well-known bound P{x) =  0 ( x 1/3), (2.2),

(2.3) Jl{x) = - - J v{x) + J v-y{x),
X

and the familiar first derivative test (Lemma 2.1 of [5]) for exponential inte
grals. Prom (1.7) and (2.2) we obtain
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(2‘4)

/ 3/4 oo
P(t)dt = ----- r - y '  r(n)n~5/4 cos(27T\/xn — —) -\-0{x1̂ )  ( x ^ l ) ,

it* ^  4
0 n=1

which is the weakened form of the full Voronoi’-type expansion analogous 
to (1.7), but for our purposes (2.4) is sufficient. Integration by parts, and
(2.2)-(2.4) give then 
(2.5)

oo oo

x 1/2/ P(t)t~l Jo(2n\/xt)dt = 0 ( x 1̂ 4 M ~ 1̂ 2)—nx j P \  (t)t~3̂ 2 J_i(27r\/xf)di =
M  M

OO __

/. oo
t~3/4 J_i(27rV/xt)y~Vj r(n )n _5/i4 cos ^27r\/fn — =

M 71=1
3 /4  OO ° ?

= 0 ( x3,/4M _1/,2)H----y V (n )n ~ 5/4 / t -1cos ^2-7r\/in— — jcos(27r\/xt+ —̂ rit,
^ ■ — 1  A /f

where the inversion of summation and integration is justified by the absolute 
convergence of the series. Now if x is not an integer we use

cos ^2n\/tn  — —̂  cos (^2n\/xi +  =

= - 1 cos(27r\/i(i/n + \/x)) + sin(27r\/<(\/n — \ /^ ) ) | 

and the first derivative test to obtain from (2.5), since r(n) <^n£,

/
LXJ

P(t)t~1Jo{2n\/xi)dt <  x3'/4M _1/i2 f 1 + y ] r(n )n_5/,4|\ /n —y i p ' j 'C
M 71=1

<^x3/4M _1/2^l +  ^  r(n )n_5//4|\ /n  — \/x |_1^
x/2<n^2x

« x 3/ 4M _ 1/ 2 ( n - x e/2_3/4 ^  | n - x | - 1 ) «
x/2<n^2x

«  x3/4m _ i/2 ( i + xe-3/4iix iri ) ,

which gives (2.1).
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Lemma 2. For x  > 0 and T  ^  2 define F(x, T) by

P{x) = x 1/2 ^  r(n) n _1/2Ji(27r>/icn) +  F(a:,T).
n^T10

Then /o r 1 ^  x  ^  T  log2 T  and ant/ </iuen £ > 0  we have uniformly

j  T e 
{ T ~ l

always,
?/ ||z|| > T -3 ,F ( x ,T ) <

while for  T ~ 10 ^ x < 1 we hare uniformly

F { x , T)  «  T~5/2 +  T~5(l -  a;)“ 1.

P r o o f . Suppose first 1 ^  a: ^  T log2 T, and write (1.7) as

P ( x ) = x 1/2 r(n)n_1//2Ji(27T\/xn) +  x 1/ 2 r(n)n~ 1̂ 2 Ji(2ny/xn).
n g T 10 n > T 10

The sum in which n > T 10 =  M  is estimated by Lemma 1. For ||x|| > T -3 we 
have

a;1/2+£M " 1/2||a : |r1 <  T |+ 2£T _5T 3 <  T “ 1 

for 0 < e < Since trivially

x l/4 M - l / 4  ^ 5 7 4 ^ - 1 / 2 ^ - ^

the first part of the lemma follows.
If T -10 <c x < 1, then for n > T 10 — M  we have 2-Ky/xn ^  27r, so that we 

may estimate the sum with n >  M  as in the proof of Lemma 1 by using the 
asymptotic formula (2.2). The only difference is that now (2.5) will give

1 /2
00

/  P(t)t~l Jo(2nVxt)dt. <^x 3/4M ~ 1/2 ^1 + ^  r(n )n -5/4(\Ai — \ /x )~1 'j *C
Af n=1

< M “ 1/2( 1 - x) - 1,

since x  <  1. Thus

F(x,  T) <  M ~1/4 +  M “ x/2( 1 -  a;)-1 <  T “5/2 +  T~5(l -  a:)-1 .

Lemma 3. For R es >  0, a and b real we have

( 2 .6)
OO

I  e~sttj\(aV t) Ji (bVt)dt =  e - 2 ^ "  (4s3)-1 {2ab /o  ( ~ )  — (a2 +  b2)Ii(^ “ )  }•

0
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P roof. For R es > 0, u > — 1 and a, b real we have
OO

(2.7) j  e~stJu(aVt)Ju(bVf,)dt=^e  •
o

If we set v — 1, differentiate both sides of (2.7) with respect to s and use the 
fact that

I\{z) = h{z) ~ z ~ 'h { z ) ,
we obtain (2.6). We could invoke (2.7) from known results on Laplace trans
forms, but we sketch a proof for the completeness of the exposition. First 
we insert the series expansions

. L U ) = ( i r É
( 2.8 )

k=0 
oo

( - P ) fc
k\Y(n + k + l) '

fc=o

( | - 2)2
k\Y{u +  /c + 1)

in both sides of (2.7). By integrating termwise and equating the coefficients 
of s~k in the resulting power series it follows that (2.7) holds if

E
m+n=k

a2rnb2rnY{k + v +l )  
m\n\Y(y + m +  l ) r ( i / - | - n - | - l ) = E

m +2n=fc

(a2 + 62)m(oh)2" 
m\n\Y{v +  n +  1)

for k =  0 ,1 ,2 ,. . . ,  where rn and n are also nonnegative integers. If b =  0 the 
above identity is trivial. If b ^  0, we put x  =  (a/6)2 and develop the binomial 
on the right-hand side. We obtain

(2.9)

E
m + n = f c ; m ,n ^ 0

min
xmY(k+is+l)

!F(i/+m+l)r(i/+n+l) E
f /+ r + 2 n = f c ; i ? , r ,n ^ 0

xr+n

q lr !n ! r ( z 2 + n + l )

Since (2.9) is a polynomial identity, because of symmetry it will hold if the 
coefficients of xm for 0 ^  m 5í k/2  on both sides of (2.9) are equal, which 
reduces to

( 2 . 10)

in view of

y ( y - 1) ■■■{y- i  +  i) 
l\

r ( y + l )
l \ Y ( y - l  +  l)

y [1 = 0 ,1 ,2 ,. . .) .
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As both sides of (2.10) represent the coefficient of zk m in the series expan
sion, for \z\ < 1, of

(1 +  z)u+k = (1 + z)m{ 1 +  z Y +k- m,

the proof is finished.
This section is concluded with a lemma which provides an arithmetic 

ingredient necessary for the proof of Theorem 1. This is

Lemma 4. Let

= ^  E i - T d -
d \ h

There exists a constant D such that

(2.11) ^ £ f f l = ^ l o 6 x + D + 0 ( ^ ) .
h^x

P roof. If all the variables under the summation signs denote natural 
numbers, then

(2 . 12)

h < x

s ( h ) _ 0  V -  ( - 1 )‘ ’Y i ) ‘ * = 8 £ ~  E  -<(~ i r + 1 ) ‘
k ' i x / mk m < x

k2m 2 k

1
8 4m \  ^

- 1) *

k + 8 E 1
- l ) 2

ŷ
 k

m i ^ x / 2  1 f c S x / ( 2 r a i )  f c i x / ( 2 m 2 - l )

Since

y - ( ~ l ) n
J nn^y

log 2 + y
n > y

(~ l)n
n

y \  — — log y + if + Onn^y

one obtains (2.11) from (2.12) after some rearrangement. The value of the 
constant D may be easily written down explicitly, but for our purposes it is 
unimportant.
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§ 3. The circle problem

Theorem 1 follows from two asymptotic formulas. They are
00

^  rfm jrfnK m n)"1̂  / e~x^r xJ\(2n\/xm)Ji(2ny/xn)dx =
(3.1) m’n=Tl° 0

= ^ ( - ) 3 2 Y  r 2(n)n_3/2 Y  r 2(n)n"3/2 - T  + 0 { T Q+£)
n—\ n=  1

and

OO

I  r 2(x)c 'X/Tdx  =

(3.2)

=  Y ,  r(m)r(n)(mn) l^2 e t xJ x (2n \/xm )J i(2n \/xn)dx+ 0(T1/4).
m , n ^ T 10 q

To obtain (3.1) we start from (2.6) with s =  1/T, a = 27rv/m, b — 2n^/n, 
which gives

OO

Y .  r(m)r(n)(mn)~1̂ 2 J  e~%xJ\ (2n\/xm) J\ (2n\/xn)dx =
m ,ngT10

(3.3)

=  7r2T 3 Y i"(m)r(n)(mn)~l/2e~*2(m+n t̂ x
m,nST10

x^2\/mnIo{2'R2\/mnT)  — (m +  n)/i(27r2v/m n T )| =

_ V ^r 5/2 V - r(m)r(n)
2 4 -  in (mn)3/4

771,71 ̂ T * 10

f / /— /—\9 3(m +  n) +  2v/rrmi rt,mi/2.
x { - ( V S - v ^ ) 2 + ' } + 0 ( r 1/2) =

= Í  © 3/2 £  r2(n)n‘ 3 /2 + B u + o u n
71— 1

where we used the asymptotic formula (1.15) and we set

V m  .=  V ^ T 5/2 Y '  r(m )r(n) ^ ^ . ^ 2

^  2 Z .  (mn)3/ 4 e
(3 .4 ) m /n g r 10

f , /- .o  3(m  +  n ) +  2v/mn'i
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Since ^ ^  a < 1, the proof of (3.1) is then reduced to the proof of 

(3.5) ^ ( T )  =  - T  +  0 (T a+£).

To evaluate the double sum in (3.4) we may suppose, because of symmetry, 
that n > m  and set h = n — m(^. 1). The contribution of the terms for which 
h > m  is trivially < 1 .  By using r(n) <C n£ we obtain that the contribution 
of the terms for which m 1/2 < h < m  is

<  T 5/2 ^ 2
m^T10 ml/ 2<h<m

m^T10 m1t2<húm

< T 1/2 J 2  ™£_1/2 b 2<
m ^ T 10 h > m 1/ 2

< t i/2 m£_1« T 5 +10£.
m^T10

Thus we have, changing e to e/10,

r(m)r(m + h) _ 
m3/2

7r2Th2 ,rh? 1 \8m I
 ̂m + t ) «

£  S s i
/T /i2 
V m + (: ? ) * >

Y ( T )  =  0 ( T ' / 2+ ‘ ) + ^ t V 2 Y  Y  x

3(2m +  h) +  <lyjm(vn  + h) i
x { - (' / s *T 5 - ' A5) + i s .  v

To effect further simplification set

m (m  +  h)T

/ ( t , -  ( ^ 5  -  ^  +  ^

and as in Lemma 4

d|/i

Then we have, using (1-16)
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(3-6)

T l o + 0

J 2 ( t ) = V kT 5/2 Y ,  [  e -”*T('/ m ^ 2f ( t , h ) d ( Y / r(n)r(n+h)) +
o "S*

+ 0 (T x/2+£) =
rp \0

J 2  g{h) f  f{t,h)dt + 0 { T l/2+£)+
/ 2

r 10+o

+ o ( r bi2 Y J [  ta+£\d{f(t,h)<
^ T5J - o

-7l2T(Vt+h-Vt)
'}!)•

For h2 < i < T 10 we have

at
so that the contribution of the second O-terin in (3.6) is

j> 1 0

< T Q+£,

since £ ^  a  < 1 and e may be arbitrarily small. This gives

(3.7) ^ ( T )  =  v ^ T 5/2 J 2  9(h) [  f( t ,h )d t + 0 ( T a+£).
hiT* / 2

Next note that

(t, +  h)-3/4 =  i -3/4 +  0 (h t~ 7/4),

3(2f + h) +  2^ /i(£ + h) / / /. It + h \
yjt(t + h) ~ \ \ t  + h + \  t ) + 2 = 8 + 0
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This means that if in (3.7) we replace f ( t ,  h) by

K2t - +
V At 2tt2T J '

we shall obtain an error term in which the integral is by a factor of ht~l of 
a lower order of magnitude than the main term, which is easily seen to be 

T 1+e. Change of variable t= Th2x~1 in the error term produces an integral 
which is then by a factor of xT ~ lh~l smaller, hence we obtain from (3.7)

l̂O

(3.8) ^ { T ) = y / n T 5/2^ g ( h )  í ^ ^ ^ - ^ y ~ 3/2e~1T2T(s/WÍ~Vi)2d t+ 0 (T a+e).
h=T5 l  1

Now we make the change of variable

7r2T(\/f + h — y/t,)2 = x ,

so that
7r2Th2 x

t — ---;------b

d t  ■

h
Ax ' 4tt2T ~~ 2 ’ 
tt2T  h2

+Ax2 2tr2Tk )
Therefore (3.8) gives

V

dx.

(3.9) ^ ( T ) = i I V2r V ^ 9(A)/ ^ l ( _ i _ _ 5 ! ) r ^ - * & :+ 0 (T “+*),
h < T s U

since the contribution of (Att2T ) 1 in dt is negligible, and where

U =  7r2T((T10 +  h)1/2 -  T 5)2,

V =  tt2T/i2((1 + h“ 1))1/2 -  l)2.

h3
We note that

2 7,2
U

n2h
42̂ 9 yi9 ’

so that in (3.9) we may replace U by n2h2/(AT9) with the total error which 
is 1. Furthermore

r 3 / 2 = ( ^ ) - 3 /2{ l +  o ( ^ ( , + ft) ) } j

r a ( M Ä ) ) .
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and the contribution of both error terms above to (3.9) is also <C 1. It follows 
that (3.9) reduces to

OO

(3.10) ^ ( T )  =  2tr- 5/2T  ^  ^  f (̂ x-1'2-x1Py-x4x + 0(Ta+e).
^  J h2

4T$
The sum in (3.10) is evaluated by partial summation, setting

OO

H(t):= J — x 1̂ y ~ xdx
^2f2 
4 T 9

and writing Lemma 4 as

G{t) := ^  =  7T2 log t + D + K{t),
h^t

m = o c r r
Then we have

r 5+o T5 r 5+o

Y ,  = [  H ( t )dG( t )=[  n2H ( t ) j +  Í H(t)dK(t) = I \  + / 2,
'iF* 1—0 1 1-0^  1-0 

say. Integration by parts gives

1
h  =  H (T 5)K{T5 +  0) -  JÍ ( l ) t f ( l  -  0) -  /  #(*)<*# (í) =

T 5

: 0 ( T - ') - * ( 0 , IT,1 -0 ) 4 0  ( /  Í S Í  (( ! ,)■ - ,/2+ ( A , ) 1̂/2) ± e - ‘^ ä t )  =

=  0 (T -1), 

since in view of

(3.11) r(.T +  l) =  xr(x)

it follows that
OO

(3.12) tf(0) = /  |r (D  - r (§ ) - 0.
0
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Similarly change of variable 7r2f2/(4T9) =  x and the use of (3.12) give

rp 5

Il =TT2 J i / ( i ) y  =ir2H(t) logt -7T2 J H'(t) logfdf =
l 1 i

OO

= n 2 j  ( \ o i l  +  \ \ o g x + \ \ o z T ) ^ - x - 1l 2 - x i l2) e - * d x  +

K2
4 T 9

_ OO

7T2 f - x  1//2 — x 1/2 Icj e  ^logxdx + 0 (T  1).

Finally, differentiation of (3.11) gives

r ,(x + i)=xr'(x) + r(x),
hence

£ .  Í  C b - i /2X ' — X ‘/2)e-I ioBx<ix=y(-r'(-)-r'(-))

( - r Q ) - k
7T

~2

Therefore (3.10) gives

5^(T ) = 27T“ 5/2 ( -  Í tt5/2) t  +  0 (T Q+£) =  - T  +  0 (T o+£),

proving (3.5) and hence also (3.1).
It remains to prove (3.2). If F(x,T)  is as in Lemma 2, then

oo T  log2 TJ P 2(x)e~x^Tdx = j P'2(x)e~x/Tdx + 0( 1) =

o i
T  log2 T

= I  (x 1/2 r(n)n  1//2Ji(27r-\/xn)j e x^Tdx+
{  n-£T10

T  log2 T

+  2 Í  F(x, T )x1//2 ^  r(n)n Ji(2n^/xn)e  X/Tdx+
i  n<T10
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T lo g 2 T

+ I  F 2{x ,T)e-x/Tdx + 0{  1) =

= / 1 +  2/2 +  / 3 +  0 (l) ,

say. From Lemma 2 we obtain

T  log2 r

(3.13) h =  I F 2(x,T)e~x^Tdx <^T~l + T ~ 2 J e~x/Td x <£ T ~ \
T  log2 t

so that by the Cauchy-Schwarz inequality for integrals, (3.1) and (3.13) it 
follows that

T  log2 T

J2 =  I  F ( x ,T )x 1̂ 2 ^  r(n)n~1̂ 2Ji(2n\/xn)dx  < T ^ 4.
*' _ ̂ rriinn < T 10

Hence

(3.14)

f -x'Tdx =

T  log2 r

=  Y2, r(rn)r(n)(mn)  1//2 Í  e x^  xJ\ (2iry/xm)J\ (2n\/xn)dx  +  0 ( T lP) = 
m , n ^ T 10 i

oo

=  r { m ) r { n ) { m n y l/2J e - x/Tx J l {2 iry/xm)Ji (2n\/xn)dx + 0 ( T 1,/4),
;,n^T10

and (3.2) will follow from (3.14) and 
(3.15)

l
Y 1  r(m)r(n)(mn) 1/2 /  e x!rxJ\{2-K\/xm)J\(2n\/xn)dx = 0(1).

m ,n ^ T 10 q

Write the integral in (3.15) as

l 1 — T~

f  e TP xJi(2n\/xTn)J\ (2n\/xn)dx = f  + f  + Í  = 
o o t ~10 i - t ~ 10
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= / (1) + / ( 2) + / (  3),

say. For x  real we have

l«M*)l =

7T
1 f
— / cos(a;sm 9 — 6)d6 
TT J g l ,

so tha t the contribution of to the sum in (3.15) is trivially <C 1, and
likewise the contribution of is also 1. The contribution of I ^  is, by
the second part of Lemma 2,

1—T~ 1-T~

<
J ’- I O

< 1  +  T

J  (P(x)~  F (x ,T ) )2d x ^ 2  j  P 2{x)dx + 2 j ' F 2{x,T)dx<£ 
- 1 0

1 - T ~

IJ’-lO

dx
(1 - x ) ‘

< 1.

This proves (3.2) and completes the proof of Theorem 1.

§ 4. The divisor problem

In this section we shall give the modifications in the preceding proof 
needed for the proof of Theorem 2. Since for u fixed and x —» oo

it follows that the contribution of the terms with Ki(4n^/xn) in (1.8) is <C 
<C e~x , and therefore can be altogether discarded. However, one of the main 
differences between the proof of Theorem 1 and Theorem 2 is that no direct 
analogue of (1.14) for Y\ seems available. The reason for this is that the 
series expansion

1 J2, f —I \ k t l z \2k+l I .
=  ~ Z )  H !Tfe +  l ) ! ' '  { 2Iog (2*) -V )(^ +  i ) - ^ ( ^  + 2)},V’( ^

k=0

r  '(* )
r  (z)

is more complicated than the series expansion for Ji(z), furnished by (2.8). 
On the other hand, the asymptotic formula (x ^  1)

(4 1 )
4^2—1

8x
cos x

- T - í ) K - 5/2>
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is completely analogous to (2.2). Coupled with (1.8) it gives, for x  ^  1,

(4.2)
A(x) = ^ - j= Y ^d {n )n  3/4 cos (^iny/xn — —̂  —

n=l
r \ - 1 / 4  OO

-  32* 2 ̂ 3  J 2  d(n)n~5/4 sin 0  + 0 ( x '3/4),

r  3 /4  00
(4.3) J  A (t)dt = 2 d(n)n~5/14 sin ^47r-v/xn -  + (^(x1/4).

0 n=1

Equally important is that, since d(n) <S£n£, the analogues of Lemma 1 and 
Lemma 2 will hold for the divisor problem, in the sense that the series in
(4.2) may be truncated at M  = T 10 with error terms similar to those in 
Lemma 1 and Lemma 2. We obtain

OO OO 1
(4.4) J A 2{x)e~x/Tdx = j  e~x/Tq2{x,T)dx + J A 2(x)e-x/Tdx + 0 ( T 1' 4),

where we set

x1/4 ^  
q{x,T):= — -= d(n)n

^V2 n<r io
-3 /4

3X-1/4
32tt2n/2 d(n)

ngr10

In the integral over [0,1] in (4.4) we replace A(x) by

^-7= J 2  d ( n ) n _ 3 / 4  COS ^ 4 7 ly /x n — ^

^ ngT10

plus an error term, which will make a small contribution after integration. 
In this way we obtain from (4.4)

OO

(4.5) J A 2{x)e-x' Tdx = Si + S2 + 0 ( T 1' 2),
o

where
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(4.6) S i : = - ^  ^ 2  d(m)d(n){mn) 3/4 x27r2 m,n^T10 
oo

X /  e~X/TX1/2 COS I 4 7 T \/37777.---- 7 I COS I 47Tx/XU -
/ ' 4 /

(4.7) S2 :=
327r3 E  d(m)d(n) m -3/4n -5 /4x

ra,n^T10
0 0

j '  e~x!T cos ^47T\/xm — —̂  sin ^47T\/icn — —

■C d(m)d(n)
m,n^T10

T lo g 2 T

m-3/4n -5/4x

y  e x/r  cos ^47T\/a:m — — ̂  sin ^47T\/xn — —̂ dx +  1.

We treat the integrals for which m = n and m ^ n  separately, using for each 
the first derivative test. We obtain

S2 « T 1/2 logT (l+  ^ 2  ^ ) d ( n ) m - 3/4r1- 5/4|v/^ - ^ r 1) « T 1/2logT.
m^n^T10

COS xn
4 J

To evaluate the integral in (4.6) write

cos AirJxm  — 7 
(4.8) \

= -{cos(47rv/i( \A n  — y/n)) +  sin(47T\/x(Vm + %/n))}.

The sine integrals become, after change of variable x  =  f2T,

2213/2 /  e í2£2 sin(47rtV/T(\/m  + y/n))dt <SC + y/n) 2
0

if we integrate twice by parts. Hence these integrals contribute a total of 
0 ( T xl2) to S\. To evaluate the ensuing cosine integrals note that

OO
f{A ):=  j  e -Bx2+Axdx=  ( J )  '  e*B

— OO
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is a regular function of A for a given B  such that Re B > 0. The derivatives 
of f (A )  may be found by differentiating under the integral sign, hence

oo
f"(A)  =  J x 2e~Bx2+A*dx = ^ - B - W  ( l  +  4 )  •

— OO

Changing A to Ai we obtain
oo

(4.9) x2e~Bx cos(Ax)dx =  ^1 — (R e£?>0).
o

We replace x  by x2 in (4.6), use (4.8) and apply (4.9) with B  =  1/T, A = 
=  4n(y/m — y/n) to obtain

(4.10) Si =  ( ^ y /2 f ;  d2(n)n~3' 2 + £ #(T) + 0 ( T 1' 2),
71=1

where
(4.11)

( T ) : = V 3/2T 5/2 V  ^ (m)d(n) e_4 (_L -  8vr2 ( V ^ -  ̂ ) 2) 
8 VT '

The sum ^2'(T) is completely analogous to the sum £)(T) in (3-4), and it 
is evaluated in a similar way, so there is no need to repeat the details. The 
only essential difference is that instead of r(n) the function d(n) appears. 
Thus instead of (1.16) we shall use (1.17), where the main term is more 
complicated and accounts for the appearance of A\ log2T + A 2 logT + A :i in
(1.19). Note that there will be no term of the form .<4oTlog3T  in (1.19) 
since, similarly as in the preceding proof, in view of (3.12) it will turn out 
that A q =  0. Thus we shall obtain

^ ' ( T )  =  T(A i  log2 T + A2 logT + A3) + 0 {T ß+e),

and (1.19) follows from (4.10).
In concluding it may be mentioned that the procedure used for A(x) 

could have been also used for P(x). The analogue of (4.2) would be

„1/4

(4.12)

P{x) =  — - —  ^  r(n)n 3/4 cos (^2n\/xn + ^  +

+

71=1

3a:-1/4 °°
1Ö7T2

r(n)n 5̂ 4 sin (^2ny/xn + — ̂  +  0 ( x  3̂ 4).
71=1
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However, the direct use of (2.6) in the proof of Theorem 1 seemed appropriate 
for several reasons. One is that the last formula in (3.3) may be easily 
sharpened to

(4.13)

1 / T \ 3/2 
4 V 7T

3/2) E r 2(n)n 3/2 + ^ ( T )  +  C T 1/2 + 0 (T  1/2),
n=  1

c =
647T7/2

Y ^ r 2(n)n -5 /2

n—1

while by using (4.12) (i.e. the method used for A(x))  it seems quite difficult 
to obtain (4.13). To see why (4.13) holds, note th a t by using (1.15) it is seen 
that the terms in (3.3) for which m = n contribute

2tr2T3 J 2  r2(n )e -27r2nT{I0(2n2nT) -  h{2Tr2nT)} = 
n ^ r10

= i  ( ^ )  3/2 X  r2(n)n~3/2 +  C T l/2 +  0 (T -1/2).
n=  1

The terms in (3.3) for which m / n  contribute ^ ( T )  plus an error which is

<<T5/2 y - r(m)r(n) m + n 2
^  (m n)3/4 m nT 2m^n^T10

< t i /2 y -  y -  r(m )r(m  + h) 1 c_T/ly m | r _ i/2
m 3/2 m

1
m<T10 lg/igm 

ne-3/2< T X/2 V  ms-3/2 y -  I f  m ax—  e- ™ 2M  + T “ 1/2« T - 1/2. 
4 ^  T h 2 \  h>\ m  )m<T10 h<m

This discussion clearly shows that the most delicate part in the proof of 
Theorem 1 is the evaluation of the sum X)(T).
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METRIC THEOREMS ON MINIMAL BASES 
AND MAXIMAL NONBASES

M. B. NATHANSON and A. SÁRKÖZY

1. We denote the set of the sequences of non-negative integers by E. A 
sequence A  6 E is said to be an asymptotic basis of order k if for n > no, 
n can be represented in the form

«1 + 0,2 +  • • • +  Qfc =  n where a\ G A, a-2. £ A, ■ ■ ■ ,ctkE. A.

If A  is an asymptotic basis of order k, but no proper subset of A  is an 
asymptotic basis of order k, then A  is said to be a minimal asymptotic basis 
of order k. If A  is not an asymptotic basis of order k, but .4 U {6} is an 
asymptotic basis of order k for all b £ A, then A  is said to be a maximal 
(asymptotic) nonbasis of order k. We denote the set of the sequences which 
are not asymptotic bases of order k by and we write A =  A^2). The set 
of the minimal asymptotic bases and maximal asymptotic non-bases of order 
k is denoted by and respectively, and we write (p = (f>(2\  =

If A  G E, T C E and n — 0 ,1 ,2 , . . . ,  then we write

A  = ^ n { 0 , 1 , . . .  ,n}

and
r n = {ßn : ß e r } .

If A  6 £ , B £ £  and

A  fl [n, + 0 0 ) =  B PI [n, + 0 0 ) 

for some n, then we write A  ~  B.
The lower asymptotic density of a sequence A  & £  is denoted by d(A).
If A  € £, then we write

fl-4» = E jHT-
aEA

(In this way, we map E into the interval [0,1].) If T C E, then we put

e{T) = {e(A): A e r } .
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We need the concepts of Hausdorff measure and Hausdorff dimension. 
The length of the interval I  is denoted by |/ |.
Let M  C [0,1]. Let us assume that the set S  satisfies the following con

ditions:
(i) M c 5 c [ 0 , 1].

(ii) S  is of the form
+oo

S = U '*
Jt=l

where I \ , l 2, ■ ■ ■ are intervals such that

\h\úe-
Then S  is said to be a p-covering of the set M.

Let
+ 00

f e(M, a) = ini ( 0 < a g l )
* Jt=i

where the infimum is taken for all ^»-coverings S  of M . It can be shown easily 
tha t fg (M ,a ) is a decreasing function of g, thus the limit

p] im o/e(M, a) =  L(M, a)

exists. L(M , a) is said to be the a-dimensional Hausdorff measure of the 
set M .

It can be shown that L ( M , a) < Too and a\  >  a  imply that L(M, an) =  0 
while L(M, a) > 0 and a \  <  a  imply that L(M, 0+) =  +00. In view of these 
facts, we define the Hausdorff dimension of M  (denoted by dimM) in the 
following way:

dimM in f{ a : L(M, a) =  0} if L(M, 1) =  0
1 if L(M, 1) > 0.

Finally, for 0 ^  x ^  1 we define the function £(x) by

€(x ) —  ̂ log 2
(x logo: +  (1 — x) log(l — x)) for 0 < a :< l

0 for x =  0 and x = l.

(This function is continuous on [0,1], increasing on [0,1/2], £(1/2) =  1 and 
£(1 — x) =£(x) for O^a: ^  1.)

2. Sárközy [7] proved that

( 2 . 1) dim^(A) = log 3
log 4



METRIC THEOREMS 209

and
lim dim g ( A ^ )  =

k —>4-oo 2

In this paper, our goal is to estimate dim g((f>), dini£>((/>lfc)), dim£>(i/>) and 
dim g(ip^). In fact, we will prove the following theorems:

T heorem 1.

( 2 .2 ) dim g((p) = log 3 
log 4'

T heorem 2. For k =  3 ,4 , . . . ,  we have

T heorem 3. 

T heorem 4.

dim g{xp) = log 3 
log 4

For k =  3 ,4 , . . . ,  we have

(2.3) dimpO/>(fc) ) ^ Q .

Note that we provide only upper bounds for the Hausdorff dimensions 
of the sets g((p^), g(xp^) assigned to the set (f>W of minimal asymptotic 
bases of order k ^  3 and the set of maximal asymptotic nonbases of order 
k ^  3. In general, it is extremely difficult to construct examples of these kinds 
of extremal sets in additive number theory. Most of the known examples are 
constructed by one of the following two methods: They consist of numbers 
whose expansions to the base g ^  2 satisfy certain arithmetical restrictions, 
or they come from an application of the Erdős Rényi probability method. 
Both constructions provide only a small set of examples, and it is difficult 
even to conjecture whether the Hausdorff dimensions of the sets g(cp^) and 
g(xp^) are positive or not for k ^  3.

3. To prove Theorem 1, first we will show that

(3.1) dim g(cp) ^
log 4

Let cp(a) denote the set of those sequences A  for which a £ A  holds, and 
there exist infinitely many positive integers n with the property that

a! +  a" = n, a '^ a " ,  a' G A, an E A

holds if and only if a' — a, a" = n — a.
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Clearly,

hence

(3-2)

+oo +oo

n u ̂ a)’
n = 0 a = n

dimp(^>)5í max dimp(<^>(a)).
a = 0 , l , . . .

In order to estimate dim p(</>(a)), we need the following 

Lemma 1. Let 9 ^  ET, for j  = 0 ,1 ,2 ,... and let

+oo +oo

(3.3) ö c n ( U 0(j))-
i = 0  j —i

For fixed j , let <p(9^) denote the cardinality of 9 ^  (i.e., cp ( 9 i s  the num
ber of those sequences B C { 0 ,1 ,... , j )  for which there exists a sequence A  
such that A j  = B and A  E 9 ^  hold). Let 0 ^  /r < 1 and let us assume that for 
all e > 0, j  > jo{e) implies

(3.4) <p(9W)< 2 ^ +eW U > 3 o(£))-

Then
dimp(ö) ^  p.

This is Lemma 3 in [7].
Let <fft) (a) denote the set of the sequences A  such that a E A , j  — a E A ,  

and the only representation of j  in the form a' +  a" = j ,  a' a", a' E A, a" E A  
is the representation with a' =  a, a" = j  — a. Clearly,

+oo +oo
H a ) = n  ( u  ^ (j)(o))

i = 0  j = i

so tha t (3.3) in Lemma 1 holds with <p(a) and in place of 9 and 9 ^ \
respectively. Now we will estimate (where ip(9^) is the function
defined in Lemma 1).

Assume that j  ^  2a, B  C {0 ,1 ,... , j}  and there exists a sequence A  with 
A  E <f>ü\á) and A j  = B. Then by the definition of a) ,

(3.5) a E B  and j  — a E B ,

(3.6)
if 0 < i < i A a then i E B and j  — i E B  cannot hold simultaneously.
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By (3.6), to construct such a sequence B , we have at most three possibilities
r rto select numbers from a pair i , j  — i with 0 ^  i Ú
2 \ , i ^  a. (In fact, for

i ^  j /2  these three possibilities are: i £ B, j  — i £ B; i G B, j  — i £ B] and
rn

i B, j  — i G B.) Furthermore, i with 05 íí5 í -  , i ^ a  can be chosen in

[2] ~ 2 wa^s' (While by (3.5), both a and j  — a must belong to B.) Thus 
the sequence B can be chosen in

^ 3J/2 =  2Io8 4j

ways, so that for j  ^  2a, (3.4) in Lemma 1 holds with (/>(J)(a) and 7-^-7 in
log 4

place of 0^1 and p, respectively. Thus Lemma 1 can be applied, and we 
obtain that

(3.7) dim p(^(a)) ^  (for a =  0 ,1 ,...) .

(3.2) and (3.7) imply (3.1).

4. Now we will show that

(4.1) dim ^ )  = s f i -

This will complete the proof of Theorem 1 since (2.2) follows from (3.1) and
(4.1) .

We need two lemmas.

Lemma 2. Let 0 < a < b and e > 0. There exist a positive number 5 = 
= 6(a,b,e) and a positive integer mo (a, b,e) such that

and

m^.rno{a,b,e), 

Iu — bm\ < 6m

|u — am| < 6m
imply that

2(i>£(a/6)-e)m < < 2(bi(a/6)+e)m

This is Lemma 2 in [7], and it can be proved easily by using Stirling’s 
formula.



212 M. B. NATHANSON and A. SÁRKÖZY

Lemma 3. Suppose Ik (A: =  1 ,2 ,...)  is a linear set consisting of Nk closed 
intervals each of length ők- Let each interval of Ik contain

(4.2) rik+1^2

closed intervals of Ik+i so distributed that their minimum distance apart is

(4.3) Qk+i>Sk+i- 

Let
+oo 

k=1
Then

(4.4) lim miNk+iQk+i^tr1 >0
fc->+oo

implies that

(4.5) dim P ^ s .

This is Lemma 4 in [7] and it follows from a result of Eggleston [1]; see 
also [3].

To prove (4.1), first we will define a subset T of S.
Let us define the sequence B — {6o, b\, • • • } by the recursion

bo =  90, bl+i = b\ for * =  0 ,1 ,2 , . . . ,

and let us write

= {bi,bi + bi-i, bi + 2bi-\ ,. . .  ,bi+i — bi} for * =  1 ,2 ,...

(note that bi-\\bi\bi+i , so that bi-\\bi+\ —bi) and
+oo

C =  U  C(i).
i— 1

Let T denote the set of those sequences A  € E for which the following condi
tions hold:

(4.6) If 0 5= n ^  b\, then n  G A.

(4.7) If * =  1 ,2 , . . . ,  bi < n Ú bi + 2&i_i, then n 6 A.

Moreover, write A  = {ai, <22, ■ ■. } (where ai < «2 < • • •) and denote the *th 
term  of the sequence cq, oq, <22, «l, 02, a3, au • • • , cq, °2, ■ ■ ■ , ak, cq ,. . .  by a*. 
Then clearly,

O^a* < 6i_i (for * =  1 ,2 ,. . .) .
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(4.8)
If * =  1 ,2 ,... , bi+i — bi — 26i_i ^  n ^  and n ^  6j+i — a*, then n ^ A .

(4.9) If i = 1 ,2 ,. . . ,  then 6j+i — a *  G  A.

(4.10) If i =  1 ,2 , . . . ,  a £  A, a ^ ~ a  7̂  a*, then i>;+i — A.

(4.11)
If i =  1 ,2 ,. . . ,  Cj G  C, bi +  26j_i <Cj ^  6i+i — bi — 26*_i, then Cj — 1 €  >4.

(4.12) If * =  1 ,2 , . . . ,  CjGC, - 4 ^ / c<;4, f c ^ - l ,

6j + 26j_i < Cj 4- k ^  — bi — 26^_ 1, then Cj + k £ A.

(4.13) I f i  = 1 ,2 , . . . ,  Cj G  C, + 2öf_i ^  Cj < i)i+i — — 26,_i, then

A(cj+1) - A ( Cj) =  Cj+13~ Cj.

We will prove that the set F has the following three properties:
PI. If A  G  r ,  then A  is an asymptotic basis of order 2.
P2. If A  G T, then A  is a minimal asymptotic basis of order 2.
P3.

(4.14) d i m e í n a g í

This will complete the proof of Theorem 1 since it follows from P I and 
P2 that T C </>, so that by P3,

dim g((p) ^  dim p(r) > ^ ^
log 4

which proves (4.1).
PROOF of PI. We will show that if A  G  T and n > 61, then n  can be 

represented in the form

(4.15) a + a' — n, aG-4, a G A.

To prove this, define i by

(4.16) b i< n ^ b i+i.

We have to distinguish two cases.
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Case 1.

(4.17) bi< n< bl+i.

It follows from (4.6), (4.7) and (4.11) that for

(4.18) < j <bi+i -  bi -  2&i_i 

we have

(4.19) ^ n [ j , j  + 26i_1) ^ 0 .

Writing j  = n — bi — 2bi-i, (4.18) holds by (4.17), so that by (4.19) there 
exists an a E A  with

j  = n — b{ — 26i_i ^ a < j  +  26j_i =  n — bi, 

or, in equivalent form,
bi < n  — a^b i + 2bi-i.

Thus writing a' ~ n  — a, we have a1 G A  by (4.7), so that a and a! provide a 
representation of n in form (4.15).

Case 2. n = bi+\. Then in view of (4.9), (4.15) holds with a = a*, a' = 
=  bi+i — a*.

PROOF of P2. By the definition of the sequence a*, a?,,. . . ,  for all a 6 A  
there exist infinitely many subscripts i with a* =  a. By (4.9) and (4.10), for 
all these i's the unique representation of bi+\ in form (4.15) (with bi+\ in 
place of n and with a ^  a1) is the one with a* =  a and bi+\ — a* — bi+\ — a in 
place of a and a', respectively, which proves the minimality of the basis A.

PROOF of P3. The proof of (4.14) will be based on Lemma 3. Let us 
write

+oo
T> = y j  {bi + 36j_i +  1, bi + 46i_i +  1 ,. . .  , 6j+1 — — 26j_i +  1}t=l

(note that 6j_i|6;|6i+i), and let us denote the j th element of V  by dj so 
that V  = {d\, d2, ■ ■ ■ }, d\ < d^ < ■ ■.. Then all the dj 's are of the form q , +  1 
(where qG C ), and c*, +  1 G V  except for k's satisfying bi+\ — h  — 2&*_i <  c*, ^ 

bi+i +  2bi for some i.
In order to use Lemma 3, first we have to define the sets Ik- For k = 

=  1, 2 , . . . ,  let

Ik — U  ) + 2<4+l
.Aer

Jk = LJ g{Adk) +  2 ^ + 1  )•
-4er

and
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Clearly,

(4.20)
+oo

6 ( T ) = f ] j k .
k=l

Furthermore, if A  G T, then by (4.12), dk ^  A  and dk +1 ^ A  (for k — 1 ,2 ,. . .)  
and hence

e(Adk) + <£ h + v

Thus

(4.21)

By (4.20) and (4.21),

+oo +oo

r v * = r u -
k= 1 k = \

+oo

e ( r ) = H  A-
*:=!

We have to show that the sets Ik satisfy (4.2), (4.3) and (4.4) ^with 

in place of sj .

log 3 
log 4 — £

To prove that (4.3) holds, we have to estimate ßjt+i ^obviously, djt+i =

2d k +
If A  e r ,  A' e r  and e(Adk+l) >ß{A'dk+i), then by (4.12),

hence

(4.22)

ß { A dk+1) ~  { e { A !dk+1) +  6 k + i )  = { e ( A dk+1 ) ~  e { A ' dk+1))  -  S k + i ;>

= 2(dk+i-2)+i _<5fc+1 = 36k+i,

Qk+1 ^ 3(5fc+i

which proves (4.3).
To show that also (4.2) holds, let us introduce the following notation: 

for some positive integer k and for a sequence Q (E Tdk, let f(Q, k) denote the 
number of those sequences 7i for which 7idk =  Q and 7L € T(ik t , hold. In other 
words, f(Q, k) denotes the number of those sequences Ti C { 0 ,1 ,... , dk+\] 
for which there exists a sequence

(4.23) 

with

(4.24)

. 4 e r

A<ik =G
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and

(4.25) A dk+l= n .

By the definition of the sequences C and V, for dk > &2 there exists a uniquely 
determined positive integer j  such that one of the following inequalities holds:

,4 , dfc —bj bj—i 26j_2 T 1 <C bj < dfc+i — bj +  3bj—i +  1 =
—dk +  4i>j_ 1 +  2bj-2,

(4.27) bj + 3bj-i +  1 =dk < dk+1 — dk +  bj—1 — —f  1

^note that +  l £  or

(4.28) ~~—f 1 = dk <  dk+i =dk + bj- 1 ^  6j+i — bj — 26j_i + 1.

Assume first that (4.27) holds. If (4.23) and (4.24) hold, then (4.23) and 
(4.25) imply by (4.12) that the sequence

(4.29) H  PI {dk + 1, dk + 2 ,. . .  , dk+1}

must not contain the elements dk + 1, dk +  2, dk +  3, dk+1 — 5, dfc+i — 4, 
dk+\ — 3, dk+1 — 1, dk+i, by (4.11) it must contain the element dk+\ — 2, and 
by (4.13) the number of its elements is

H (dk+l) - H ( d k) = dk+1 — dk

(and these are the only restrictions on the sequence (4.29)). Thus to obtain
1

the sequence (4.29), we have to select -(dk+i
3

dk+i — dk — 9 integers

(4.30)

dk) -

dk + 4, dk + 5 ,... , dk+i — 6

1  ̂ — 1 j  of the

(note that 3 | dk+1 — dfc =  b j -1). Thus 
(4.31)

' « ■ H i t 1; - « - ! .

bn-1 -  9'J-l 
\ b3- 1 1

(in case (4.27)).

The case (4.26) can be studied similarly. In this case, the sequence

(4.29) is uniquely determined except for the — 1 integers chosen from
o

the bj- 1 — 9 integers

{bj + 2bj—i +  5, bj + 2bj-\ + 6 ,. . .  , bj +  3bj-i — 5}.
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Thus in this case

(4.32) f(Q, k) =  ^  ^ _9̂  (in case (4-26)).

Assume now that (4.28) holds. Then the sequence (4.29) must satisfy 
one more condition. Namely, by (4.10), bj+1 cannot be represented in the 
form h + h' = bj+1, where bj < h ú  h', hE H , b! € H . Thus if

(4.33) n € {dfc + 4, d/t +  5 ,. . .  , c/fc+i — 6} 

and

(4.34) 6j+1- n € 6

hold, then n must not belong to the sequence (4.29). Let us put m  =  bj+i — n. 
Then the conditions (4.33) and (4.34) can be rewritten in the form

(4.35) m & {bj+i — dk+i + 6, bj+\ — dk+i +  7 ,. . .  , bj+\ — dk — 4},

(4.36) m £Q .

The construction of the sequence C implies that — dk+i + 1 and bj+1 —
ty+l'— dfc +  1 are consecutive elements of bj T 2 bj- fl C. Let us write

cr = bj+i — dk+i +  1 and c,.+i = bj+i — dk +  1. Then (4.11), (4.12), (4.13),
(4.23) and (4.24) imply that (4.35) and (4.36) hold for

G{bj+1 — dk — 4) — G(6j+i — dk+i + 5) — G(cv+i — 5) — G(cr +  4) —
r<( \ \ i cr+ l — cr . ^fc+l dk= G(Cr+i) -  G(Cr) -  1 =  ---- -------- 1 =  ------ ---------1

integers m. In other words, when we construct the sequence (4.29), -(dfc+i —
o

— dk) — 1 of the dk+i — dk — 9 integers in (4.33) must be excluded. Thus we 
choose 4(<4+i — dk) — 1 of

/ I  \ 2
{dk+1 - d k ~  9) — ^-(djfc+i -  dk) — 1J =  ~{dk+i -  dk) -  8

integers:

f(G,k) {%{dk+i ~ dk) -  8 \ 
\\{dk+i ~ dk) ~ 1/

(4.37) (in case (4.28)).
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(4.31), (4.32) and (4.37) show that in fact, f{G,k) is independent of Q 
thus we may put nk+i =  f(G, k) and, in view of dk+j — dk ^  9 (for all k ), 
(4.38)

n k+\ — ^  ) — l )  0̂1 ^   ̂ dk+\ ^ - y — h i,

(4.39)

n*+i =  f f ^  for ^ ^ -  + l g d fc<difc+ig 6 j+i - 6 j - 2 6 j _ i  +  l 
VßV /̂c+l j 1/ ^

and

(4.40) nfc+i ^  2 for all &.

Finally, to prove that also (4.4) holds ^with s 

give a lower estimate for N k+i (for large k). Since

we have to

k k
(4.41) N k+l = N, f l  =  N, J ]  m+U

i— 1 1 i=1
it suffices to estimate n, for large i.

Let us fix some e > 0. Applying Lemma 2, we obtain from (4.38) and
(4.39) that

(4.42)
ni+! > 2 ^ (1/3) £)(di+1 for j>jo{e), 

bj +  3bj—i +  1 ^  di < ' “h i

and

(4.43)
ni+1 >  2(§£(1/2)_e)(di+1 _d>) =  2 ^ -£)(di+1_d*) 

for j  ^  j i  (e), ?2 +  1 ^  di < dl+i ^  fy+i bj 2b.

respectively.
By the definition of the sequence T>, bj +  3bj

for j  = 1 ,2 ,. . . ;  let us write bj +  36j_i +  1 =  dUj 
show that if

_i +  lGf> and ^~1 z
and - y l  +  1 =  .

+ iev
We will

(4-44) j 'Zjo(e), dUj < d t ^ d Uj+1,

then

(4.45) nu .+1n Uj.+2 .. .  nt >
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Assume first that dt ^  +  1 = dVj. Then by (4.42),

nUj+1n Uj.+2. . . n t > n 2 « ( 1/3) -£)K+1^ )  =
Í — U j

=  2« ( l /3  ) - . ) ( * - * . , )  ^for r f< S f e l  +  1)

, , „ 1 / 1  1 2 , 2 \ 
i(1/3) =  _ i ^ ( l 10El  + l l o g l )  =

2 log 3 log 3 log 3 _  log 3
3 log 2 2 log 2 log 2 log 4 ’

(4.46) implies (4.45) in this case.
Assume now that ^ 4  +  1 =  dVj < dt 5Í dUj M- 1 =  6j+i — bj — 2bj-i +  1. 

Then by (4.43) and (4.46),

n U j+ \ '^ 'U j+ 2  . . . Tit  =  (P 'U j+ l ' ^ ‘U j+ 2  ■ ■ ■ Tlyj ) (*b>j +1 + 2  • • • T i t )

t- 1
> 2 ( C ( l / 3 ) - e ) ( d V j - d U j )  J J  2 ( | - e ) ( d i + 1 - d i )  =

(4.48) i=Vj
_ _  —  d Uj  )  2( 3 — £ ) ( d t  ~ d v j  )  -

_2£(l/3)(rfifj — d v j  ) + 3  { d t — d Vj  ) ! 2 ~ s ( d t — d Uj  )

(4.46)

Since

(4.47)

In view of (4.47), the exponent of the first factor can be estimated in the 
following way:

^ ( 3 )  ^ vi dUj ) -{- ^(dt dv.) —

(4.49)

- g < * - v + ( g i - § ) « * ‘

We have

(4.50) bj-fi bj 36j_i “I- 1 dt = l

(4.51)
log 3 2 

O C r - ^ r - r  log 4 3

dt dUj ) —

— bj — 3bj-i +  1 — dt).

bj—l dt ^  6j_i,
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and
(4.52) öi _1 =  (6i )1/ 2 =  o(d„,- d Uj) = o(dt - d Uj).
It follows from (4.48), (4.49), (4.50), (4.51) and (4.52) that

(4.53)
+inuj+2 . . .  n t > 2 ^ {dt~d'iJ)~£{dt'~dui )2~li{dt~dui ) =
= 2CT%l-2c)(dt-dUj) (for ^  < d t ^ du.+i_1)

so th a t (4.45) holds also in this case.
Finally, by dUj+1 -  dU]+l- i  = o(dUj+l -  dU]), it follows from (4.40) and 

(4.53) that
nUj+\nUj+2 ■ ■ ■ n Uj+l — {P‘Uj+X'^Uj+2 ■ ■ • ^Uj+i — ^
. ^  o ( r £4 - 2 e ) ( d u .  . , - i - d u )> nU]+\nUj+2 n Uj+1- i  > 2 v'°s4 A û +1 uj’ =
= 2(^fi_2£)(duj+i ~duj+1-i) >

> ~duj )
which completes the proof of (4.45) (assuming that (4.44) holds).

Starting out from (4.41) and using (4.45), N k+\ can be estimated easily. 
Define the non-negative integer q by

uq < k +  1 ^  uq+1
(where Uj is defined by dUj = bj + 36j_i +  1). Then we get from (4.41) and 
(4.45) that for k^ko(e),

(4.54)

k
Nk+1 =  N i  P J  rii+ 1 =

i= 1
“ j o - 1  9 — 1 u j + i  f c + 1n n*+! n ( n n n*>

1=1 j —jo i = U j  +  l  i=uq + 1

9 - 1
> J J  2(^ “3£)(d“i+i“dui )2(^ “3£)(dfc+1_du«) =

Let us put s = 

k ^  k0(e),

J=JO

= 2( —3fir)(rf*+i-duj0) > 2(T§f4~4e)dk+1.

——---- 5e. Then it follows from (4.22) and (4.54) that for
log 4

Nk+iß k + iS tr 1 >  2 (^ - 4£)d*+l 3ők+1Ssk~l =

= 3 • 2^s ~̂e d̂k+1  ̂ i____ —
2d»;+i+i 2(dfc+1)(s-1)

— 3 .2edfc+i— (1—s)(dk+i~dk)-s
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By the construction of the sequence V , dfc+i — d^ =  o(dk+i). Thus for k ^ 

Nk+iek+iör1 > 3 -2 edfc+1_(e/2)dfc+1 =  3 • 2(e/2)d*+l .
Hence

lim infAffc+i£>fc+1(5i_1 = +oo
f c -> + o o

which proves (4.4).
Summarizing: we have proved that all the conditions in Lemma 3 hold 

with P  =  p(r), s =  — 5e. Thus applying Lemma 3, we get that

d im p (r)^
log 4

This inequality holds for all e > 0 which implies (4.14) and thus also (4.1), 
and this completes the proof of Theorem 1.

5. P r o o f  o f  T h e o r e m  2. We need the following lemma:

Lemma 4. Let 1/2 and let r(o:) denote the set of the sequences
A  for which d[A) ^  a  holds. Then

dim p(r(a)) =£(ai).

This is a trivial consequence of a result of Volkmann [8].
Furthermore, we need the following result of the authors [6]:

L e m m a  5. If A  is a minimal asymptotic basis of order k, then we have
d ( A ) ^ l

Combining Lemmas 4 and 5, we obtain Theorem 2.
6. P r o o f  o f  T h e o r e m  3. The upper bound

log 3 
log 4

follows from (2.1) (since ip C A). Thus it suffices to show that

( 6 . 1) qW  ^
log 3 
log 4

This will be proved in a similar way as (4.1) in the proof of Theorem 1, i.e., 
the proof will be based on Lemma 3. By the similarity of the two proofs, we 
will give only a sketch of the proof.

Again, we define the sequence B — {bo, b \ , . . .  } by the recursion 6

6o = 90, bi+\= b l  for i = 0 ,1 ,2 , . . . ,
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and we write

= { b i , b i  +  b i - i , b i  +  2 b i - i , . . .  , b i + i - b i - i }  for i = 1 ,2 ,... 

(note that bi-i\bi\bi+i so that 6j_i|6j+i —bi) and

+oo
C = ( J c (i).

2=1

Let r* denote the set of those sequences A  £ £  for which the following 
conditions hold:
(6.2) If O gng& i,( then n £ A.
(6.3) If t =  1 ,2 ,.. . ,b i< n ^ b i  + 26j_i, then n £ A.
(6.4) If * =  1 ,2 ,.. . , C j e  C, bt + 2bi-i < Cj  ^  bi+i -  b i -  then 

Cj  — 1 G A.

(6.5) If i = 1 ,2 , . . .  , C j  £ C, —4 ^ k ^ 4 ,  k ^ —l, 

bi +  26i_i <  C j + k bi+i — bi — 26,_i, then Cj + k A.

(6.6) If * = 1 ,2 ,... , bi+1 +  25t_i Cj < bi+1 — bi — 2bi-i, then 

A(Cj+1) - A ( c j )  = Cj+1~ Cj.

(6.7) If » =  1 ,2 ,... , bi + 2bi-\ < a ^  a £ A,  then bi+\ —a ^ A .

(6.8) If * =  1 ,2 ,... , bi+\ — bi~ 2bi-i < n ^  1, then n £ A  if and only if 

bi+1 - n £ A .

Now we will sketch the proof of that that F* has the following three 
properties:

P I. If A  £ r*, then A  is not an asymptotic basis of order 2.
P2. If A £  r*, then A  is a maximal asymptotic nonbasis of order 2.
P3.

dim e(r* ) ä ! g .

This will complete the proof of Theorem 3, since it follows from P I and 
P2 that r* C ip, so that by P3,

dim g(ip) > dim p ( r * )  >  ^  -_ log 4
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which proves (6.1).
P roof of PI. It follows from (6.7) and (6.8) that for A  E T* and i =  

=  1, 2, . . . ,  &j+i cannot be represented in the form

a + a =  bi+1, a £ A ,  a e A .

PROOF of P2. First we will show that if n £ B, then n can be represented 
in the form

(6.9) a + a' — n , a E A , a' G A.

If n ^ 6i, then by (6.2), (6.9) holds with a =  0, a' = n. Assume now that 
n > b \ and define i by

(6.10) bt < n < b i+1.

It follows from (6.2), (6.3) and (6.4) that for

(6.11) —26i_i < j  <&i+i — bi -  26j_i

we have

(6.12) ^ n [ 3 , j  + 2fci_i)^0.

Writing j  =  n — bi — 2&*_i, (6.11) holds by (6.10), so that by (6.12) there 
exists an a G A  with

j  = n — bi — 2&;_i ^  a < j  +  26j_j = n -  bt, 

or, in equivalent form,
bi< n — a ^ b i  + 26,_i.

Thus writing a' = n  — a, we have a' E A  by (6.3), so that these a and o' 
provide a representation of n in form (6.9).

To complete the proof of property P2, we have to show that if u is a 
non-negative integer with u £ A ,  then A* — A ll  {u} is an asymptotic basis of 
order 2, in other words, any large non-negative integer n can be represented 
in the form

(6.13) a +  o' = n, a 6.4*, a' 6 A*.

If n ^ B, n = bo or n = bi, then as we showed above, n has a representation of 
form (6.9). By .Ac.4*, this is also a representation of form (6.13). Finally, 
if n 6 B and n is large enough in terms of w, then u £ A  implies by (6.8) that 
n — u (zA . Thus writing a = u, a' = n — u, (6.13) holds which completes the 
proof of P2.

PROOF of P3. By using Lemma 3, this can be proved in the same way 
as P3 in the proof of Theorem 1; we leave the details to the reader.



224 M. B. NATHANSON and A. SÁRKÖZY

7. P roof of T heorem  4. For A  e £  and g = 1,2 , . . . ,  define the 
sequence by A ^  = |J  {a, a + g,a+ 2g,. . .  } (in other words, is the

set of the integers n for which n  =  a(mod </), n ^  a for some a £ .4). We need 
the following lemma:

L e m m a  6. Let A  be a maximal asijmptotic nonbasis of order k such that 
1 f c -  2

d(*4) =  — (-5 for some 6 > 0. Then there exists a positive integer g S 
k

such that A  —A
kő

PR O O F OF L e m m a  6 . Since d(kA) ^  1 <  kd(A), it follows from Kneser’s 
theorem [5] (see also [4]) th a t there is an integer g^.1  such that kA  ~  k A ^  
and

d(kA) A k d (A ) ---------= 1 +  k ő ---------- .
9 9

Since kAbl is a union of congruence classes mod g and k A ^  ~  k A  A  N 
(N denotes the set of positive integers), it follows that

1 + kő — - — -  < dtkA) = d{kA) g 1 -  -  
g 9

and so

Let u  £ N \  A. Then A  maximal implies that B =  A  U {u} is an asymptotic 
basis of order k, and so kB  ~  N. Since kA ^  /  N, it follows that u £ A 9\  and 
so A ^  \ A  = $; that is, A  =  A^9\  which completes the proof of the lemma.

Note that it is difficult to  construct maximal asymptotic nonbases that 
are not unions of congruence classes. The first examples were found by Erdős 
and Nathanson [2]. The argument in Lemma 6, which depends on Kneser’s 
theorem, was also used by Nathanson and Sárközy [6] to prove that if A  is

a minimal asymptotic basis of order k, then d(A) ^  —.rC
In order to prove (2.3), for some e > 0 write i p ^  in the form

(7.1) ipW  =V>ifc)U t4fc)

where ip\k  ̂ is the set of the sequences A  with A  € ip ^  and d[A) ^  — +  e,k
while i p ^  is the set of the sequences A  with A  £ i p ^  and

d(A) > — + £.K(7.2)
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(7.1) implies that

(7.3) dim =  max(dim g(ip[k^), dim gitp^))-

By Lemma 4, we have

(7.4) dim ß(^[k)) ^ t ( J j ; + e y

On the other hand, by Lemma 6, if A  satisfies (7.2), then it is of the form

k
A  =  U  {a», at +  g, a{ +  2g, . . .  }

t=i

so that the A; +  1-tuple (5, 01, 02, . . .  , 0*,) uniquely determines A. But the
set of all finite n-tuples of integers is countable, and hence the set ip ^  is 
countable. This implies that

(7.5) dim g(\p^) — 0- 

It follows from (7.3), (7.4) and (7.5) that

dim ß(^(*}) g f  ( j^ + e ) .

This holds for all e > 0 which implies (2.3).
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CHAIN CO ND ITIO NS ON D IR E C T SUMMANDS

N. V. SANH

A bstract

For an infinite cardinal K and a unitary right CS-module M over a ring R  with identity, 
we show that if every ascending chain of direct summands of M /Soc (M) has cardinality 
less than N then M is a direct sum of a semisimple module and a module in which every 
independent family of submodules has cardinality less than N.

1. Introduction

Chain conditions on a module appear in many contexts. Let N be an 
infinite cardinal number. A partially ordered set S  has the ascending N- 
chain condition (briefly, N-acc) if and only if for every ordinal k such that 
there is a chain {Na, a  < «} of subsets of S  with Np < Na for all ß < a  £ k, 
we have |k| < N. Thus the usual acc (ascending chain condition) is Ko-acc. 
Modules satisfying ascending N-chain condition have been studied by many 
authors (see [10] and authors cited therein). In this note we follow this 
investigation and show that for a CS-module M, if M/Soc(M) has N-acc 
on direct summands then M  is a direct sum of a semisimple module and a 
module in which every independent family of submodules has cardinality less 
than H. For H = Hq we get a result of N. V. Dung recently obtained in [9].

2. Prelim inaries

Throughout this paper R  is an associative ring with identity and Mod-f? 
is the category of unitary right f?-modules. M  will denote a right .R-module 
and N an infinite cardinal. For any set S, |<S| will denote the cardinality 
of 5. A complement submodule of a module M  is a submodule N  of M  for 
which there is a submodule L  of M  such that N  is maximal with respect to 
Lfl N  = 0. A module is called a CS-module if every complement submodule is 
a direct summand. A family of submodules {NL-, i £ l }  is called independent 
if the sum ^  NL is direct and all NL are non-zero. From the definition, we
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Key words and phrases. N-chain conditions, essential submodules, direct summands.
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see th a t M  satisfies K-acc on sets of independent submodules if and only if 
any independent family of submodules has cardinality less than K, and M  
satisfies K-acc on direct summands if M  does not contain a direct sum 0  At

ie A
of submodules A; with |A| ^  K, in which 0  Ai is a direct summand of M

ie A'
for every subset A' of A.

Lemma 1 ([6, Folgerung 9.1.5]). If S  is the socle of a direct sum 0  N a, 

then S' =  0  soc(Na). Hence

( 0  N q) /S  “  0  (Na/Soc(Na)). □
qSk a£/t

Lemma 2. Let M  be a module and S =  Soc(M), then:
(1) I f  A and B are submodules of M with A f lS  =  0, then

((A + S ) / S ) n ( ( B  + S) /S)  = 0;

(2) I f  A is a direct summand of M , then (A + S ) / S  is a direct summand 
of M / S ;

(3) I f  0  A; is a direct sum of submodules of M , then 0  ((A; +  S) / S) is
iei iei

also a direct sum of submodules in M/S.
P r o o f . This proof is given by N. V. Dung in [9] and we present it here 

for completeness.
Let / :  M  ^  M / S  be the canonical map.
(1) Suppose that A and B  are submodules of M  with AC\B =  0. Set V  = 

=  f ( A )  n f { B ) .  Then there exists a submodule V  of A  such that f ( V )  =  V. 
Clearly V  ^  B + S — B  © T  for some submodule T  of S. Since V  D B  =  0, 
it follows that V is isomorphic to a submodule of T. Hence V Q S  which 
implies that V = 0. Therefore we have f (A)  C\f(B)  =  0.

(2) Let A be a direct summand of M.  Then M  =  A ® B  for some submod
ule B  of M.  Clearly M / S  = f ( A)  + f (B) .  By (1) we have f (A)  D f ( B )  = 0. 
Thus f ( A )  is a direct summand of M/S.

(3) This is an immediate consequence of (1). □

3. Results

Before stating the main theorem, we need some lemmas, the first one is 
straightforward.

Lemma 3. If M  satisfies K-acc on direct summands, then every direct 
summand of M  also has K-acc on direct summands. □

For an ordinal n, we consider the following property:
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A right Ä-module M is said to satisfy property (P) if for any ordinal k  

and for any independent family {Na, a  G «;} of submodules of M, there exists 
an ascending chain {Ma,a  G «} of direct summands of M  such that ®  Na

a^ß
is essential in Mß for every ß  G k.

Lemma 4. Let M  be a right R-module. Then M  is a CS-module if and 
only if M  has property (P).

P r o o f . One direction is clear.
Suppose now that M  is CS. Let {Na,a  G k }  be an independent family 

of submodules of M, where k is an ordinal. We may assume that all N a 
are direct summands of M.  We define the system {Ma , ű Gk} by transfinite 
induction. For the least element ao of k, let M ao = Nao. If 7 G k is not a 
limit ordinal, then 7 =  ß  +  1 for some ß  G k , s o  we take M 7  to be a maximal 
essential extension of Mß © in M. If A G k is a limit ordinal, then M \ 
is defined to be a maximal essential extension of ( U M7) © N \ in M . From

7<A
this we obtain an ascending chain of direct summands of M:

{Ma,a  G k}

such that ®  7V7 is essential in Mß for every ß  G k. This shows that M
7=/3

has (P). □
Lemma 5. Let M  be a CS-module. Then M  satisfies N-acc on direct 

summands if and only if any independent family of submodules of M  has 
cardinality less than H.

P r o o f . Let K be an ordinal and {Na,ot G k) be an independent family 
of submodules of M . For each a  G k let X a be a maximal essential extension 
of Na in M . Then the set { Xa, a  G k} is an independent family of direct 
summands of M,  since M  is CS. By Lemma 4, there exists an ascending 
chain {Mq, o;G «} of direct summands of M such that ®  X a is essential in

a^ß
Mß  for every ß G k . Since M has N-acc on direct summands, we must have

|k| < N.

The converse is from Lemma 4. □
The main result of this note is the following theorem:
THEOREM 6. Let M  be a CS-module and N be an infinite cardinal num

ber. If M/Soc(M) has H-acc on direct summands then M  is a direct sum 
K  © L where L is semisimple and K  is a module in which any independent 
family of submodules has cardinality less than P.

P r o o f . Let M  be a CS-module such that M/Soc(M) has N-acc on direct 
summands. Put S  = Soc(M). Then M = M\  ©M 2 where S  is essential
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in M \. Clearly, M2 is isomorphic to a direct summand of M/ S .  Thus, 
by Lemma 3, M2 has K-acc on direct summands. Since M2 is CS, then 
any independent family of submodules of M2 has cardinality less than d by 
Lemma 5. Therefore, without loss of generality, we may assume that M  has 
essential socle. If M  =  Soc(M) so the statement is trivially true. Hence we 
suppose that M ^S oc(M ), i.e. M is not semisimple.

Let T  = {Na,a  G k} be an independent family of all direct summands 
of M  such that for every a  G k (where k is an ordinal) Soc(AC) yt J\fa and 
Soc(AIq) is generated by fewer than N elements. If we denote by K  the 
maximal essential extension of Y  Na in M, then M  =  K  © L.

a£K
First, we show that every independent family of submodules of K  has 

cardinality less than d. Since M is CS, then by Lemma 4 there exists an 
ascending chain {Ma, a  G k} of direct summands of M such that 0  Na is

a^ß
essential in Mß for every ß  G k . By Lemma 2, {M Q, q £ k} is an ascpnding 
chain of direct summands of M/ S ,  where M a — (Ma + S)/S.  By hypothesis, 
we have |/c| < H.

By Lemma 1, Soc(K)  =  Soc( Y  Na) = Y  Soc(Na) and therefore Soc(K)
aEn aGt

is generated by fewer than  K elements. Since Soc(K) is semisimple and 
essential in K,  then every submodule of K  has non-zero socle, therefore 
every independent family of submodules of K  has cardinality less than N.

Now, it remains to show that L is semisimple. Note that Soc(L) is 
essential in L. Assume on the contrary that L  is not semisimple. Then there 
exists a finitely generated submodule E  of L which is not semisimple. Let 
H  be a maximal essential extension of E  in L,  we have Soc(H) = Soc(E) ^  

H . If Soc(FJ) is generated by fewer than N elements then H  is in T.  This 
contradicts the choice of T . Hence Soc(E') is not generated by fewer than 
B elements. (If a module is not generated by fewer than N elements we will 
roughly say below that it is M-generated.)

We will show that Soc(jE) must contain an M-generated submodule which 
is a complement in H . Since K.K = N, there exists an independent family 
{Tß,ß  G A} of cardinality K and for each ß  G A, Tß C Soc(E) and Tß is N- 
generated. Since all Tß are independent, we may assume that A is an ordinal 
and since H  is a CS-module, there exists an ascending chain {C7,7 G A} of 
direct summands of H  such that 0  Tß is essential in C1 for every 7 G A (see

0̂ -y
Lemma 4).

Hence, C7 = (Cy + Soc(H))/Soc(H)  is a direct summand of H/Soc(H)  
for every 7 G A (Lemma 2) and therefore {C7, 7 G A} is an ascending chain 
of direct summands of H/Soc(H).  Since H/Soc(H),  being isomorphic to a 
direct summand of L/Soc(L), also has K-acc on direct summands (Lemma 3)
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and IAI =  N there exists a 6 E A such that

( 1) C0+i=Cg.
Since Soc(H) = (Soc(H)C\Cg+i)®U  for some U C Soc(H) we have Cg+\ + 

Soc(H) = Cg+i® U . Since Soc(H) = Soc(Cg+\)® U  and Cg®Tg+\ is essential 
in Cg+1 by our construction, we have

(2) Cg + Soc(H) — Cg © Tg+ 1 © U.
From this and (1) we have

(3) (Cg © Tg+i © U)/Soc(H) = (Cg+i © U)/Soc{H).
Since Cg ®Tg+i Q Cg+1 it follows Cg © Tg+i = Cg+\. This shows that Tg+i 
is a direct summand of H  and hence of E. But this is impossible because 
E  is finitely generated and Tg+1 is N-generated by our assumption. This 
contradiction shows that every finitely generated submodule of L  must be 
semisimple. Therefore L is semisimple and the proof is complete. □

R e m a r k . The following example of B. L. Osofsky shows that the con
verse is not true. Let A =  End(Vf) for V  an No-dimensional vector space 
over the field F, and S = Soc(A). Then Aa is injective and every indepen
dent family of submodules of A a has cardinality less than Ni. Therefore 
every independent family of submodules of S  has cardinality less than Ni, 
and we have S  is essential in A. Since A is a von Neumann regular ring, so is 
A/Soc(A). Observe that the direct summands of a von Neumann regular ring 
are the cyclic right ideals, an intersection of cyclic right ideals is again cyclic, 
and a countably generated right ideal is a direct sum of cyclics. Now let I  
be any countably but not finitely generated right ideal of A/Soc(A). Then 
I  is not equal to the cyclic module of A/Soc(A). Express I  as a countable 
direct sum of non-zero modules

OO

I  = ©  xq(A/Soc(A)),
a=0

where the xa are projections onto infinite dimensional subspaces of V . By 
independence modulo linear transformations of finite rank and the fact that

a— 1
xaA n E xßA

ß=o
is cyclic and hence a direct summand, we may select the xa so that the sum 
Ŷ , xaA is direct in Aa - Now replace each xQ with a projection eQ onto a

subspace of its image with codimension 1 and whose kernel contains ker(a;Q). 
Then rank(a;Q — ea) =  1. We thus have

zq(A /soc(A)) = ^ 2  eQ(A/Soc(A))
q6oj QgOI
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and W  =  ^2 eaV  is of infinite codimension in the vector space V. If e € A
Q

projects V  onto W, then e(A/Soc(A)) is a direct summand of A/Soc(A) with 

(1 — e)(A/Soc(A)) ^  0 and e(A/Soc(A)) D xa (A/Soc(A)).
a

Now let X denote the poset of chains

X  =  {xa (A/Soc(A)) I a  £ Q, Q an ordinal, x aV  has codimension oo,
I a;Q(A/Soc(A)) C a;/g(A/Soc(A)) for a < ß  € 0}

ordered by “is an initial segment of’. Observe that the empty chain is in X 
and a union of a chain in X  is again in X, so Zorn’s Lemma shows that X has 
maximal elements. The previous discussion shows that no maximal element 
in X  can be countable. Thus X contains a chain of order type u \ . This shows 
th a t A/Soc(A) does not satisfy Hj-acc on direct summands but A does.

Theorem 6 is a generalization of the following result obtained by N. V. 
Dung in [9].

C orollary 7 ([9]). Let M  be a CS-module. I f  M/Soc(M) has acc (or 
dec) on direct summands then M  is a direct sum of a semisimple module and 
a module with finite Goldie dimension.

P roof. Applying Theorem 6 with K = Ho and the fact that a module 
has acc on direct summands if and only if it has dec on direct summands.□

COROLLARY 8. Let M  be a CS-module such that M/SocM  is a module 
in which any independent family of submodules has cardinality less than N. 
Then M  is a direct sum of a semisimple module and a module in which any 
independent family of submodules has cardinality less than N.

PROOF. This follows from Theorem 6, since M/Soc(M) has N-acc on 
direct summands. □

C orollary 9. Let M  be a CS-module such that M/Soc(M) has finite 
Goldie dimension. Then M  is a direct sum of a semisimple module and a 
module with finite Goldie dimension. □

C orollary 10 ([10, Theorem 4]). Let M  be a CS-module. I f M  has 
K-occ on essential submodules, then M  = S  0  N , where S  is semisimple and 
N  has H-acc on all submodules.

PROOF. Since M  has K-acc on essential submodules, M/Soc(M) has N- 
acc on all submodules by [10, Theorem 3], and therefore by Theorem 6, M  = 
=  S  © N  where S  is semisimple and N  is a module in which any independent 
family of submodules has fewer than K elements. Since N /SocN  has K-acc 
on all submodules, so N  has K-acc on all submodules by [10, Theorem 1], □
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Corollary 11 ([3, Proposition 5]). Let M  be a CS-module. If M  has 
acc on essential submodules, then M  = S  ® IV where S  is semisimple and N  
is noetherian.

PROOF. Applying Corollary 10 with N = No- □
Acknowledgement. I would like to thank Professor Dinh Van Huynh, 
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CURVATURE IN THE GEOMETRY OF CANONICAL CORRELATION

F. HIAI, D. PETZ and G. TOTH

The state space of a finite quantum system, i.e., the set of all positive 
definite matrices of trace 1, is a convex set and becomes naturally a dif
ferentiable manifold. The canonical correlation (or Mori scalar product of 
selfadjoint matrices) defines a Riemannian structure on it ([8], [11]) whose 
study is the objective of this paper. In particular, the scalar curvature and 
the sectional curvatures will be in the center of interest.

Parametric families of measures occur in mathematical statistics. The 
monograph [1] treats geometric methods of statistics in detail. Our investi
gations may be regarded as first steps towards a noncommutative (or quan
tum) generalization. From the side of physics, [2] stresses the importance 
of the geometry of the canonical correlation and more generally, that of the 
geometric viewpoint.

Roughly speaking, we replace the Fisher information metric (of proba
bility distributions) by the Mori product of linear response theory ([6]). The 
induced geometry will be rather different: Instead of constant positive cur
vature we observe both negative and positive sectional curvatures. Actually, 
we compute several sectional curvatures and find a simple formula for the 
scalar curvature at the tracial state. We make the conjecture that the scalar 
curvature takes its maximum here.

1. Introduction. In the Hilbert space formalism of quantum mechanics 
a pure state of a system is described by a state vector |<f>) belonging to a 
complex Hilbert space 'H. The mean (or expectation) value of an observable 
A = A *e B(T-i) is the scalar product

(1.1) (A) = ($\A \$).

The statistical operator (or density matrix) of a mixed state is a positive 
compact operator with trace 1. We denote by 6  the set of all such operators 
acting on the basic Hilbert space T-L. Sometimes 6  is called state space. In 
a mixed state D £ 6  the mean value of the observable A is

(1.2) (A) =Tr D A  

which extends (1.1).
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In the present paper, we assume that the underlying complex Hilbert 
space T-L is finite dimensional and we write n for its dimension. So operators 
on H  may be represented by matrices and a statistical operator corresponds 
to a positive semidefinite matrix of trace 1. Physically, a finite dimensional 
Hilbert space appears, for example, when one deals with a spin. Our aim 
is to endow the state space with a differentiable structure. Actually, we are 
going to study a Riemannian geometry on the space S  of all invertible density 
matrices. Motivated by quantum statistical mechanics, we write elements of 
S  in the form

(1.3)
e~ßH 

Tr e~PH ’

where ß  > 0 is a real constant and II  is a selfadjoint operator. If the difference 
H ' — H  is a multiple of the identity then H  and H' give the same density 
m atrix in (1.3). Therefore, to get a suitable parametrization we have to 
identify selfadjoint operators differing in a constant multiple of the identity 
I. For example, we may consider only traceless selfadjoint matrices, their 
space is denoted by /Cq. The real linear space /Cq has dimension n2 — 1 and 
will be identified with the Euclidean space R" -1 by means of the following 
linearly independent matrices.

(Tk{ 1 =Ekj + Eitk ( l^ fc c Z g n ) ,

, , <^2l =  ~  l E k,i +  'l E i,k (1 g f c < / g n ) ,
\ ) m

&3 =  ^  ' E i ti (1 ^ TTl ^ Tl — 1),
i—1

where (Eij) is a system of matrix units. (Observe that for n =  2 exactly the 
Pauli matrices show up here.) The homeomorphism

(1.5) h: D I— > -^ lo g .D +  -^Tr logD

maps onto /Cq = R"2-1 and endows S  with a differentiable structure. The 
mapping h is called the logarithmic coordinate system at the inverse tem
perature ß. S  becomes a differentiable manifold with an atlas containing a 
single chart. Differentiation of a function / :  S  -* R along the curve

D t =
e -ß(H +tA) 

T ^ e -ß  {H+tA) ( A , He ) C00)

is the same as differentiation of /  o h^1 in the direction A. Hence we could 
identify the tangent space T/>(6’) with /Cq but below we prefer another rep
resentation.
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It is an idea from mathematical statistics that an informational distance 
between probability measures gives rise to a Riemannian metric. As it was 
proposed in [8] we shall use Umegaki’s relative entropy in the role of infor
mational distance between density matrices. Recall that the relative entropy

(1-6) S ( Di tD2) = T r D l Q o g D i - l o g D 2)

of the densities Di  and measures the information between the corre
sponding states (see [12] and [9]). We note that the relative entropy is not a 
metric in the common sense, for example, it is not a symmetric function of 
its two variables. If

i e -ß (H + tA ) e - 0 ( H + s B )

D t  ~  Tr e -0 (H + tA )  a n d  D * =  T j .e - ß (H+sB) 

are some curves in S  then

(1.7)

d2
dtds

S ( D l , D 2s) =
t= s= 0

=  —ß
r / \

Ae B ) d x + ß 2
0

Tr (e~@H A) Tr (e~@HB)  
Tr (e~PH) T r (e -0 H) '

Using the notation

i r , p—ßH .
l A B )  = ß  1  Ae~’ " B ) dx

0

we have

( 1.8)

d2
dtds S(D} ,D2a) = ß 2( ( A , B)

t= s= 0 v

Tr e~PH A Tr e~@HB \  
Tr e-PH Tte~PH )

= ß 2( ( A , B ) - ( A , I ) ( I , B ) ) ,

which is often called the canonical correlation of A and B. The scalar prod
uct (.,.) is an important ingredient of linear response theory and bears the 
names Mori scalar product, Bogoliubov inner product or Duhamel two-point 
function ([2], [5], [6], [11]).

Our aim is to study the Riemannian geometry induced by the canonical 
correlation (1.7). For the sake of simplicity, the inverse temperature ß  is cho
sen to be 1. Let us anticipate a few remarks on the geometry of the canonical 
correlation. The analogous geometry in the probabilistic case (which is the 
starting point of these ideas) is rather simple, one obtains a manifold with a 
constant positive curvature ([1]). The case of 2 x 2 density matrices is very
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different, this manifold has nonpositive sectional curvatures and the scalar 
curvature is not bounded ([11]). For a higher spin the geometry is rather 
complicated and some of its features will be discussed here.

W hat we need from differential geometry is standard, and we follow the 
books [3] and [7]. Concerning the Mori product, we refer to the monograph 
[6]. Finally, we note that from the mathematical point of view, [2] is devot
ed to the same geometry as discussed here. (The slight difference is in the 
fact that in the present paper the state space is considered while [2] treats 
the geometry of all positive definite matrices without the normalization con
straint.)

2. Riemannian metric. Let B  be a complex Hilbert space (of dimen
sion n) and let JC be the real linear space of all selfadjoint operators acting 
on T-L. We parametrize the set S  of all invertible density operators by the 
factor space IC/RI. For H  E IC/RI the corresponding density matrix is

(2.1) R(H) = ^ W.

The factor space IC/RI has several representations and we will always use a 
convenient one.

The space 1C is a real linear subspace of the space £ of all operators on 
the Hilbert space H. £ is sometimes called Liouville space and operators on 
it are termed superoperators. The Mori scalar product

l
(2.2) {A,B)H = J TrR{H)exHA*e~xHB d x

o
makes a complex Hilbert space £#  from £. The real subspace ICh is a real 
inner product space. The Liouville (super)operator is defined as

(2.3) Lh (A) = H A - A H .

Since

(2.4) exLH{ A) =e xHAe~xH (x E R) 

we may write
l

( A ,B ) h = Tt ( b R(H) J exhH(A*)dxy
o

where the integral is called, by some authors, the Kubo transform of A.  
Decompose ICh as

(2.5) oin
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where = {A G KH : Tr R(H)A = 0} and A  i-> A -  (Tr R( H)A) I  is the 
orthogonal projection Ph onto JC°H. We write A = Ph {A) and this is the 
fluctuation of the observable A around its mean value (A) = T r R(H)A.

We identify the tangent space T//(<S) of the manifold S  at the density 
matrix R(H)  by the space JC°H of fluctuations. The Riemannian metric is 
given by the Mori product:

(2.6) g(Ä,B)(H) = <Ä,B)H ( £ , B e T H(S)).

Observe that this Riemannian metric is unitarily covariant. Let U be a 
unitary. If Ä,B  6 T//(<S) then UÄU*, UBU* £ T uhu* (<S) and

(2.7) g(UÄU*, UBU*)(UHU*) = g{Ä,B){H)

is obvious from (2.2). Hence, computing, for example curvature, at H,  one 
may assume that the matrix H  is diagonal.

3. The Levi-Civita connection. The basic geometric quantities are 
derived from the Levi-Civita (or Riemannian) connection V induced by the 
metric. The Kostant formula (cf. (2.52) in [7]) says that

2g(Y, V ZX) =  Xg(Y,  Z) + Zg(X, Y)  -  Y g ( X : Z ) -  
1 ‘ ; - g ( [ X , Y } , Z ) - g ( [ Z , Y } , X ) - g ( [ X , Z } , Y ) .

When the Lie brackets [X, H], [Y,Z], [Z,X] vanish, as it happens when X , 
Y,  Z  are coordinate fields, (3.1) becomes simpler. Since we want to have the 
convenience of vanishing Lie brackets, we restrict our discussion to linear 
combinations of coordinate fields (with constant coefficients). A tangent 
vector A 6 T//(<S) can uniquely extend to a vector field X  which is the linear 
combination of coordinate fields with constant coefficients. From now on, 
every vector field, usually denoted by X , Y, Z,  is supposed to be a linear 
combination of coordinate fields.

If X(H)  =Ä, Y(H)  =B,  and Z ( H ) =C, then we understand Ä (B,C) as 
X(Y,  Z)(H).  The starting point of our computations is the quantity A(B,C). 
It is easy to see that if Tv e~H — 1 then

(3.2)

Ä 0,C )
d3

dsdtdu
qY g—H+sÄ+tB+uC  _

s—t=u= 0

d
du u= 0

J Tr e{x- x)(H- uö)Äe~x(H- uö)B  dx, 
o

which is a symmetric function of A, B  and C. Standard perturbation theory
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([4]) gives

e (x -l)(H -u C ) =  e - ( l - x ) H  + u
1 — X

I  e - ( l -x - v ) H ( je -vH  dv  +  Q^u 2^  

0
x

e -x(H -uC ) =  e ~*H + u  I  e -^ ~ v )H ^ e -v H  d v  +  0 (^ 2 ^

0

and we obtain the formula
1 X

Älß,C )=  J f  T r e - {1- x)HÄe~{x- v)HB dvdx+

(3.3) x= 0  v=0
1 x

+ [  f  Tr e- {x- v)HCe~vHÄ e - {l- x)HB dv dx.
x=0v=0

Observe that the two terms on the right-hand side are similar, exchanging 
Ä  with B  one gets from each term the other one. Moreover, both terms are 
invariant under cyclic permutations of A ,B  andC. Hence the full symmetry 
of their sum is clear. Due to the symmetry, we have

(3.4) (X, \7yZ) (H)  = ±Ä(p,C).

We are interested in the sectional curvatures of S. Let A ,B  G T//(<S) and 
let X , Y  be vector fields such that X ( H ) =Ä  and Y(H)  —B.  The sectional 
curvature for the plane spanned by A and B  is

(3.5) K(Ä,B)
( Vy V x X , Y ) - ( V x V y X, Y)

( X , X ) ( Y , Y ) - ( X , Y ) i

by definition ([3], [7]). Since

(V yV x X,  Y )  = Y ( X x X,  Y)  -  ( VX X,  VyT) 
(VA-VyX, Y )  = X (VyX, Y)  -  (VyX, V X Y)

and
Y (VxX, Y) = \ Y X ( X ,  Y)  = \ X Y ( X ,  Y)  = X ( X YX,  Y)

due to [X, T] = 0 and (3.4), we have

K(Ä,B) ( V y X , V x Y ) - ( V x X , V y Y)
{ X , X ) ( Y , Y ) - { X , Y ) 2(3.6)
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The scalar curvature is the sum of the sectional curvatures for all pairs 
of basis vectors and it is independent of the basis. For an orthogonal ba
sis A i , . . .  ,An2_i  of the tangent space T//(<S) =  K,°H, the scalar curvature is 
defined as

(3.7) Seal (H) = 2 E
(see 3.19 in [7]).

4. Curvature. To compute sectional curvatures, we shall use the co
ordinate fields given by the fluctuations of the basis matrices (1.4). So we 
have the advantage that Lie brackets vanish. At the origin, that is, at H  =  0, 
the coordinate fields are pairwise orthogonal and (3.4) takes a rather simple 
form. Therefore, we first compute the sectional and scalar curvature for the 
tracial state.

IfÄH = HÄ then from (3.3)

l
(4.1) Ä(ß,C)= I  xTr R{H) (exHBe~xHÄC +CÄe~xHBexli^ dx

o

at the point H.  When in addition BH  = HB  holds, one gets

(4.2) Ä 0 , C )  = ±(ÄB+BÄ,C),

where ordinary matrix multiplications stand on the right-hand side. By a 
bit more computation we may arrive at (4.2) if the commutation BA =AB  is 
assumed instead of B H  =  HB.

Let the vector fields X\ ,  X%,.. ■, A’n2_ 1 be obtained by linear combina
tion from the basis fields such that X\(H) ,  X 2(H ) , . . . ,  X ni_i(H)  form an 
orthonormal basis in T//(<S). Choose X  and Y  from X\ ,  X 2, . . . ,  X n2_i and 
write A andB for X( H)  and Y(H),  respectively. If (4.2) holds, we have

(Xx Y , X l) ( H ) = l- X ( Y , X i)(H) =

=  1-{{ÄB +BÄ), Xi) = ( VYX, Xi)(H)

for every i. Consequently,

V XY(H)  = V y X ( H )  = 1-P h ((ÄB +BÄ)) =

= 1-{ÄB +BÄ) - 1-{ÄB +BÄ, 1)1,
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and similarly

V XX(H)  = i ( i 2 -  I), V y Y ( H )  = \(B 2 -  I).

We obtain

( V y X , V x Y ) { H )

(Vx X , V y Y ) ( H )

{AB+BA,AB+BA)h
16

(£2,b 2)h - i

4

and we arrive at the following

T h e o r e m  4.1. Let Ä , B  e T h ( S )  be orthonormal. If ÄH  =  HÄ and 
B H  =  H B, then

K { Ä M H ) = ^ m m ß = m . .
16

I f Ä H  =  HÄ andÄB —BÄ , then

K(Ä,B)(H)  =  1 +  W M * - T r i m m M 1)'

Since (AB —BA)2 ^ 0, the sectional curvatures do not exceed 1/4 at the 
tracial state H = 0. (It is shown below that K(A,B)(H)  ^ 1 /4  holds also in 
the second case of the previous theorem.) Positive sectional curvature will 
appear if n ^  3 because then AB —BA =  0 may happen. It seems that the 
2 x 2  case is exceptional from the point of view of curvature. Recall that 
for n  =  2 the sectional curvatures are strictly negative except for the tracial 
state where they vanish ([11]).

Next we compute the scalar curvature at the tracial state. Let ^fi(O), 
^ 2 (0 ) , . . .  ,X„2_1(0) be the same orthonormal basis in To(<S) as above and 
write Ai  for Xj(0). Then we infer

Seal (0) =
(n2 — l)(n 2 — 2) 

4 i=l j =1

from Theorem 4.1, where r  =  Tr / n  is the tracial state. To compute the 
sum we use the Liouville operators L, =  L^. and the trace functional Tr of 
superoperators. We have

( L HÄj),Äj) = 2 t(Ä-Äj -ÄÄjÄiÄj),(4.3)
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where the Liouville operators La are defined according to (2.3). We have

n2 — 1
^ L ^ M ^ T r L * .
j=1

For any selfadjoint operator B  with spectral decomposition ßkPk, the
k

operator L2B has eigenvalues (fi^ — in)2 (cf. (3.1.19) in [6]) and we have

(4.4) Tr L2B =  ~ W)2 =  2nTr B 2 -  2(TV (B ))2.
k,l

Since A{ is a fluctuation, Tr At = 0 and from the normalization we have
~2 oTV Ai = n. So (4.4) yields Tr L2 = 2n2 in this particular case. Therefore

n —1 n —1

£  £  2 - Ä Ä M j )  = E  ^  L? =  (n" -  !)2n2
t= l  J= 1 j=l

and we conclude the following
T h e o r e m  4.2. The scalar curvature of Sn is given by the formula

Seal (0) - --------(n2 — 4)
8

at the tracial state corresponding to H = 0.
Hence the scalar curvature at the tracial state is positive for n  ^  3.
Now we fix a diagonal density e~H =  Diag(eAl, eAa, . . . ,  eXn) and for B  = 

=  B* define a (super)operator Dß on the real Liouville space K-h by its 
bilinear form as follows:

(4.5) (A ,Dn C)
d3

dsdtdu
rjY e ~H+sA+tB+uC

s=t=u= 0

The operator Dg is strongly related to the covariant derivation Vy when 
Y(H)  — B  as it is clear from (3.2) and (3.4). Having fixed the coordinate 
fields, we regard Vy as a linear operator on the tangent space IC°H C K h and 
this operator is the compression of b to the space of fluctuations:

(4.6) (X, V Y Z ) = B j f  -  (TV R ( H ) B ^ ) I )  =  |(Ä, B f ! )

where X(H)  —Ä , Y ( H ) =B,  and Z ( H) =C.  By computing the double inte
grals of (3.3) we obtain

n
( D ß C ) i j  =  /  f b j kCkj  +  Ci f cbk j ) d l fcj , 

fc=l

(4 .7)
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where

(4.8)
} 1 ( eXi — eXk — exi ^ Aj — Aj
lkj = A i-A k \  Aj — Aj Afc-A j )  '

This expression is formally well-defined when all the values of Aj, A j,  and 
Afc are different but it has a limit when some of them coincide. (For ex
ample, dikj =  1/2 when Aj =  Xj = Afc.) Observe that dikj is built from loga
rithmic means. The logarithmic mean of a, ß > 0 is defined as Lm(a, ß ) =  
=  {a — ß)/ ( loga  — log/?). Using the notation ml7 for Lm(cAt, )  we may 
write

(4.9) dikj —
mij -  m kj 1

Aj Afc TYlij

We introduce the notation Cjjfc for the following symmetric function of the 
variables Aj, Xj, and Afc.

(4.10)

eAi eAfc eXj

°lkj = (Aj—Afc)(Aj—Aj) + (Afc-Ai)(Afc-Aj) + (Aj -Aj)(AJ -A fc)
771 j j  777. fc j

Aj Afc

Among c, d and m we have the relation

(4.11) dlkj = ^
mij

which shows that dikj =  djki holds. (Below d’s will be identified as Christoffel 
symbols, see (5.3).)

Definition (4.7) of Dg extends to the complex Liouville space Ch when 
it is wished. Formula (3.5) for the sectional curvature may be rewritten in 
terms of the operators D. Assume that A and B  are orthonormal in KPh . 
Then

(4.12) K(Ä,B)(H) = ^ + 1-(T>^Ä,BöÄ ) -  ±(DÄÄ , D^B).

(Note tha t dependence of D on H  is suppressed from the notation.)
Our next aim is to express (4.12) explicitly in terms of the entries of the 

matrices A and B.  It is easy to verify that

(4.13) (A , B) H = 'Y 2 aijbjim ij for e H =  Diag(eAl, eA2, ... , eAn).
dj

By means of (4.7) and (4.12) we arrive at
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(4.15) (Da A,T)b B ) =  ^ 2  aikakjbjibu—1

)

i,j,k,l

which hold for arbitrary selfadjoint A and B . 
LEMMA 4.3. I f H  and A are diagonal then

(Db A , D b A ) í (Da A , D b B).

Furthermore, equality holds if and only if A B  — BA provided that the spec
trum of H is free of multiplicities.

P r o o f . Let e ~ H =  Diag(eAl, eA2, . . . ,  eAn) and A = Diag(ai, a,2 , . . . ,  an). 
Without loss of generality, we may assume that Xt > X j when i>  j .  Special
ization of formulas (4.14) and (4.15) to this situation gives

where X{j is written for X t — X j .  Hence we may prove that for any x  ^ 0 

— x 2 e x  +  x { e 2x  -  1 )  -  {ex -  l ) 2  ^ 0.

The power series expansion of the above left-hand side is

(Da A , B b B ) - ( D b A , D b A) =

+ * y ( c 2x« - l ) - ( e * « - l ) 2 ) ,

It is easy to check that 

k2k~1 2k — k{k — 1) +  2 > 0 for k 't  4.
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This completes the proof of the inequality in the lemma.
If the spectrum of H  is free of multiplicities, that is, A; ^  Aj for i ^  j ,  

then the condition for equality is

2 \ h j \ 2 {a j  ~  a j ) 2 =  0
i>j

which is the same as A B  = B A . □
The previous lemma may be interesting on its own right. (In the 2 x 2  

case, the inequality in the lemma is verified for arbitary selfadjoint A  and 
B.) An upper bound for some sectional curvatures follows directly from the 
lemma.

T h e o r e m  4.4. Assume that Ä ,B  &Th(S),  Ä H  = HÄ and Ä ,B  are lin
early independent. Then

K ( Ä , B ) ( H ) i \

holds for the sectional curvature. Furthermore, if  the spectrum of H  is free 
of multiplicities and AB ^B A , then the inequality is strict.

One can get all sectional curvatures from (4.12) by means of formu
las (4.14) and (4.15). They are mostly rather complicated expressions of 
A i,. . .  , An . Here are some examples.

(4.16)
K(Ä a13) — -  +  ai cB i)2

1 1
7 +  t I 4 4

az Cnj djCjji
4 m 2tj 4m.íj

A (oj duj T  üj d j j i ) ,
1
4 1

when A  =  Diag (ai, a2, . . .  , an) is assumed to be normalized, 1 i < j  n, 
and k € {1,2}. (Note that A and cr  ̂ are orthogonal but the latter is not nor
malized: (a’f?, crj/) =  2mij.) We know from Theorem 4.4 that the curvatures 
(4.16) do not exceed 1/4.

Because of the relations D y o f  = 0 =  D y a 1,3 and V y a1,3 =  V y a 1,3, it°Y 2 ai  1 <  1 ai  2 ’
is clear from (3.6) that K ( a f , ö lj) must be negative. In fact, we have

(4.17) * ( * ? > ? )  =
ri2„eA’ +  ri2,,eAJjij

4 m 2

If i, j ,  i ' , f  are all different then a’k3 commutes with a but the corresponding 
sectional curvature is

K (ä ij k ’(4.18)
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for k ,k ' € {1,2}. The case where the upper indices are not all different is 
more interesting and it shows something new compared with spin 1/2. Let 
1 < j  < k ^ n .  Then for A = a1/  and B  =  a]uk we have

(D ö ,4, D ]}A) = 2df]kmlic, (D^yl, D b B) = AdjijdjkjeX].

Therefore, we obtain

(4.19) K {ö?oÍk) = 1 + f 3kTrilk -  .
4 omijtrijh Amijirijk

Performing the limit Â =  A*, —> —oo we find that the term with negative sign 
converges to e~xi while the term with positive sign goes to +  oo. This shows 
that approaching to the boundary of Sn with n > 2 one can detect some 
sectional curvatures which can be arbitrarily large.

5. Discussion. First we consider the 8-dimensional space <5>3 in more 
detail. The basis fields {of* : 1 is fc < f ^  3, l ^ y ^ 2 }  are pairwise orthogonal 
and they are orthogonal to 03, erf at a diagonal density Diag (eAl, eX2, eXs). 
So the only nonvanishing offdiagonal entry of the matrix of the metric is

( d f , d f ) = e Al - e A2- ( e Al - e A2)(eAl +  eAz -  2eA3).

C l 2 3  =  (CTi ,  V ^ - 1 3  f J j  )  =  ( ct1 , Y  0 .1 3(72  )  =

= { o \ \V a? a ? )  = - ( a \ \ V al3a f )

(5.1)
We have

(5.2)

and symmetrically. (When for G {1,2} the scalar product
(of , V ) is not determined by (5.2), then it vanishes.) The related

i1
connection coefficients are obtained from ±c by division by m. For example,

(5.3)

etc. In the case

a23F 11 cr12 a13 a l >°1
a23P ° 2

1 a 12 a 13u 2 ’ 1

* 1 3 2

= — (I213
a23

,<r.1=0

(5.4) R(H) = Diag (ex ,ex ,e>i ),
(5.1) vanishes and all Christoffel symbols are conveniently obtained. We do 
not list them.

In principle, the scalar curvature of Sn can be expressed at a diagonal 
point R{H) =  Diag (eAl, eAs, . . . ,  eA" ) and it must be a complicated expression 
of Ai’s. The range of the scalar curvature function is not determined by the 
results of Section 4. However, we make the following
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C o n j e c t u r e . The scalar curvature of Sn is maximal at the tracial trace 
(corresponding to H = 0).

The conjecture is fully verified for n — 2 in [11]. For n =  3, the following 
are known to us in the case (5.4).

(1) Seal (H) is bounded from above.
(2) Seal (H ) —> —oo as (eA, eA,eM) -> (0,0,1).
(3) Seal (if) -> -o o  as ( e \  e \  e^) -> (1/2,1/2,0).
Moreover, there are some numerical results supporting the conjecture for 

n — 3 and 4. For example:

R{H) = Diag (0.335, 0.333, 0.332) Seal (H ) =4.9999
(0.339, 0.336, 0.325) 4.99769
(0.36, 0.34, 0.3) 4.95935
(0.35, 0.4, 0.25) 4.72556
(0.35, 0.5, 0.15) 3.13543
(0.5, 0.4, 0.1) 1.16438
(0.7, 0.2, 0.1) -0.668265
(0.99, 0.001, 0.009) -568.425
(0.999, 0.0001, 0.0009) -5212.51
(0.99999, 0.000001, 0.000009) -459501

This suggests that the scalar curvature attains the maximum at the tra
cial state. (A stronger conjecture about the scalar curvature is formulated 
in [10].)
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ON THE ORDER OF CONVERGENCE OF 
INTERPOLATORY PROCESSES

H. H. GONSKA, J. PRASAD and A. K. VARMA

A b s t r a c t

Using a certain (0,1, 2, 3)-Hermite-Fejér-type interpolation process, it is shown that 
there exist interpolation polynomials satisfying the DeVore-Gopengauz-type estimate (i.e., 
the pointwise Jackson-type estimate involving interpolation at the endpoints of [—1,1] and 
in terms of the second order modulus of smoothness) for algebraic polynomial approxima
tion.

1. Introduction

We denote by
(1.1) -1  = x n < x n_i < .. .  < x2 < X\ =  1
the n distinct zeros of
(1.2) n n(x) = { \ - x 2)P'n_ x(x).
Here Pn(x) is the Legendre polynomial of degree n with Pn(l) =  1. In the 
earlier paper [16] the second two authors considered the Hermite Fejér inter
polation operators based on the zeros of (1.2). These operators, denoted by 
R n and mapping C[—1,1] into the space of algebraic polynomials of degree 
not exceeding 2n — 1, are given by

(1.3)

Here
(1.4)

Rn(f, x) = Y ^  f ( x k)hk(x),
k = l

hk{x) = l2k(x),

h(x)  =
n„(:r)

(1.5) hi{x) =

{x -  xk)n'n{xk) 
n(n — 1)

/ e C t - 1 , 1 ] ,  * € [ - l , l ] .

k = 2, 3 ,. . .  , n — 1; 

k =  1 ,...  , n,

1 + (1 - x )  lf{x), hn( x ) - h i ( - x ) .

Concerning R n(f ,x ) ,  the following was proved in [16]:
1991 Mathematics Subject Classification. Primary 41A05, 41A10; Secondary 41A25, 

33C25.
Key words and phrases. Gopengauz-type estimate, Hermite -Fejér interpolation of 

higher order, second order modulus of continuity, degree of approximation, interpolato- 
ry side conditions.
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T heorem A. There exists an absolute constant c\ > 0 such that, for all 
f  € C[—1,1] and — 1 ^  x  ^  1, one has

Here, w\ (6) is the (first order) modulus of continuity of f .
However, better inequalities are available for polynomial approximation 

w ith interpolation at the endpoints of [—1,1]. In 1976 DeVore [6, Theorem 
7.2] proved the following

T heorem B. For each / e C [ - 1,1] there exists an algebraic polynomial 
/an ( f )  of degree ^  n for which

Here, C2 is a constant independent of f ,  n and x, and W2(S) denotes the 
second order modulus of smoothness of f .

Following up DeVore’s contribution, a number of further papers were 
published, in which (1.7) was proved for other operators, and also for such 
satisfying certain side conditions as, for example: 

shape preservation ([5], [13], [18]), 
discrete definition ([3], [17]), 
ease of computation ([3], [4]).
One further approach to be mentioned is the one bridging the gap be

tween pointwise estimates as discussed in this note and similar inequalities 
in terms of the so-called Ditzian-Totik modulus. In [7], Ditzian and his col
laborators succeeded in developing a new technique to prove “interpolatory 
results” which relate the two types of estimates mentioned to each other, 
while also guaranteeing the preservation of monotonicity and convexity.

However, so far it has been an open question if there exist (true) in
terpolation operators of the DeVore-Gopengauz type. It is the aim of this 
note to answer this question in the affirmative by constructing interpolation 
polynomials Sn( f , •) satisfying (1.7) for arbitrary /  G C[— 1,1]. To be more 
specific, below we will consider a (0,1,2, 3)-Hermite-Fejér-type interpolation 
process Sn(f,x)  yielding polynomials in n4n_i, and satisfying the conditions

Here p,n = //„ (/; ■) can by any sequence of algebraic polynomials satisfying
(1.7) (and not necessarily that from the proof of Theorem B).

This approach of “smoothing” the given function /  by polynomials with 
“good” derivatives is a standard technique in interpolation theory which,

( 1. 6 )

(1.7)
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however, always requires complicated estimates for the fundamental func
tions of the interpolation process and for related quantities. It is probably 
due to Fejér [9] who used the derivatives of the polynomials of best approx
imation in the context of (0, l)-Hermite~Fejér interpolation. Note that only 
recently some progress was made in regard to cheap computation of polyno
mials Hn{f) satisfying (1.7); see, e.g., [3] and [4], It is also in this sense that 
the construction in (1.8) is quite constructive.

It is our firm conviction that the approach taken below confirms and 
stresses the power of interpolatory processes; for an excellent partial survey 
of the work done in that field the reader should refer to [15].

For the (0,1, 2, 3)-Hermite-Fejér type interpolation process Sn described 
above we shall prove the following

Theorem 1. There exists an absolute positive constant C3 such that, for  
all /  € C [ —1,1] a n d — l ^ x ^ l ,

(1.9) \Sn( f , x ) ~  f{x)\<,c3w2

2. Explicit representation of the fundamental polynomials

The explicit representation of Sn(f ,x )  is given by

( 2 . 1)

Here,

( 2 .2)

(2.3)

(2.4)

(2.5)

S n (f ,x )  = '* T f (x k)Ak(x) + SjT p !n{xk)Bk(x)+
k = 1 k = l

n  n

+ Y h  ^n(x k)Ck{x) + /i"'|{xk)Dk{x).
k=l k= 1

Dk{x) = ~ { x ~ x k) lk(x), fc =  l , . . . , n ,

Ck{x) =  ~ { x - x k) lk{x), k = 2 ,3 ,. . .  , n — 1,

, ( l - x 2 ) 2 ( l  +  a: )2 [ ^ _ i ( x ) ] 4
Cx(x) = ------  2n4(n_ 1)4------------- M n - l ) D x ( x ) ,

„  , X (1 — x2)2(l — x)2[P' x{x)]A
Cn(x) = ----------2n4(n — l)4---------- + 3n^  _  l >Dn x̂ >'

Bk{x) = ( x -  xk)lk{x) +  4n} n ~ - -Dk(x), k = 2 ,3 ,... , n -  1,( 2 . 6 )

1 -* 2
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(2.7)

( 2 . 8 )

n , X ( * - ! ) ( ! +  ®)4'[pn-l(^)]4 0„ ,„  / XB i(x) = --------- 7 ^7 3 — 7 ^-------------- 2n(n -  l)Gi(x)-
ro4(n — l)4 

l l n 2(n — l)2 — 4 n(n — 1) 
_ 12

Z?i(x),

P , , (l +  a rX l-* )4^ ! ^ ) ] 4 , M
Bn\x ) — _4 / __ i \á 2n(n l )Gn (a;) +

+

n 4(n — l)4 
l l n 2(n — l)2 — 4n(n — l) 

12 Dn{x),

(2.9)

( 2 . 10)

and

( 2 . 11)

, / N ,4/  ̂ , 2 n n (^ )/f c ( ^ ) [ l~ a;f c - 3:f c ( ^ - ^ ) ]  
f c ( ) - fe()  3n(n — 1)(1 — x%)2P%-i(xk) ’

A; =  2 , 3 , . . .  , n — 1,

Ai(z) =  *?(*) -  4i i ( l )Bi(a;)  -  [< (1 )  + 12ft (l))2]Ci(x) 
- « ( l )  +  2 4 ( / i ( l ) ) 3 +  36/i(l)ZÍ, ( l ) ] A ( ^ ) ,

A n(x) = A i ( - x ) .

3. Preliminaries

Here we shall state a few known results that will be needed later. For 
the polynomials h{x) we have the following (see [1], [8]):

(3.1) J 2 l 2k(:r ) g l ,  - l i x i l ,  j  = 1 ,2 , . . . , n.
fc=i

From the inequality due to S. N. Bernstein [2] we have

(3.2)
( 1  - z 2)1/2|^ - i ( * ) l  ^  "  1, (1 -  *2)3/4l^ - i (* ) l  ^  V ^ .

It is also known that for C4 > 0,

(3.3) ( l - s 2 ) 1/2|i* _ 1(*fc) | > ^ > k = 2, 3 ,. . .  , n — 1,
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(3-4)

and

(3.5)

(1-sjfc) >

fc2
4(n — l)2 ’ k = 2 ,3 ,. . .  ,

rn '
.2.

(n + 1 ~ fc)2 f c - m + 1  n - 1  
4(n — l)2 ’ ^  +

(k — 3/2)n kn
< e k <n — 1 n — 1

k = 2 ,3 , . . .  , n — 1, x k = cos 6k.

A well-known property of the modulus of smoothness of second order (see 
[14, p. 48]), namely

(3.6) W2(\ő) ^ (1 + A)2m2(<5), \ , 6 > 0 ,

implies

(3.7) m2(Aá)^3(l +  A2)m2(5), A, 6 > 0.

4. Estimates

Here we provide certain estimates which will be used later in the proof 
of the main result.

Lemma 4.1. Let — 1 ^ x ^  1 and let Xj be that zero of P'n_\ which is 
closest to x. Then for a suitable numerical constant c$>0 one has

(4.1)
\ / l  — x 1

< c 5,
\ J  1 — X 2

< c 5,
\ / l  — X 2

Lemma 4.2 (see [10, Lemma 10]). Let Ak(x) be defined as in (2.9). Then 
there exists an absolute constant cq > 0 such that, for — 1 ^  x  ^  1,

n— 1
(4.2) Y 2 \A k(x ) \^ c 6.

k—2
Using Hermann’s notation for the moment, the validity of Lemma 4.2 

can be verified by putting m = p = q = 4 in [10], so that a(p) =  ß{q) =  —1, 
and thus a = b = —2. Hence Lemma 10 from [10] applies indeed.

R emark 4.3. Note that (4.2) also follows from an unpublished general 
result of G. Kook [12, Satz 6.8] dating from 1984. Kook derived the estimate 
in the more general framework of Hermite-Fejér interpolation of order 3 
subject to certain additional boundary conditions at ±1. In his thesis Kook 
used the reduction method of Knoop [11].

Next we formulate an auxiliary result which will be needed below several 
times.
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LEMMA 4.4. Let £ =  cos 9 e  [—1,1] be fixed and let xj be a zero of P'n_\ 
which is closest to x. Then for 2 ^ k ^ n —l we have

(4.3)
1 ^ 4(n — 1) ^ 8n

\ 9 - 9 k\ = 2i — 3 = T ’ k ^ j ,  k ^ j ± l .

Here x k — cos 9k, and k = j  ±  i for an appropriate i^. 2.

The following estimate concerning another quantity involving the funda
mental functions A k, 2 ^  k ^  n  — 2, will also be needed below. This is the 
subject of

Lemma 4.5. Let A k(x) be given as in (2.9). Then there is an absolute 
constant C7 > 0 so that for all — 1 5Í x  ^  1 one has

(4.4)
n— 1

k=2

P roof. In order to prove (4.4) first observe that from (2.9) it is evident 
that

( 4 -5 ) ^ 2 ^ - x2) k n (n ~  !)(1 ~ x 2)PZ-i(xk)

y -1 H2(x)l^(x)\ x - x k\______ =
^  n ( n  -  1)(1 -  rr2) ( l  -  x | ) p 2 _ 1 (a;fc)

= ' J \  + J 2 +  J 3 -

We first note that

n— 1
A =  E  7 ^ ' i w + £ - i k M +

(4.6)

But

k=2 (1 — X2)

+

( 1  — X 2 )

(1 .-1 ») j + i( '

1 — x2 =  sin2 9j =  (sin 9j — sinö + sinö)2 E 2(sin0j — sin#)2 +  2 sin2 9.
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So, on using (3.1)-(3.4), we obtain

Sill
<

n 2(n
(4.7)

<

i (®j ) sin2 sin2

2 n{n— 1)2(1 —a:2)1/2
2 7 fl+fy

5r,2 7^+e, 

+  2 <

+ 2 <

)
<

C5n2(n — l)2 sin2 y 
4

+ 2 ^ c8.
cs n sin (*£ )

Hence, on using (3.1) again we get

(4.8)

Similarly we obtain

(4.9) 

and

(4.10)

Y 3 ^ 4(x) = C8‘

g j2l fj+ 1(a;) = C9»1 — a;2

J 1d _ 1(x )^ c i0.1 — x2 J"
In the earlier work [16] it was shown that if xj is one of the zeros of 

Ph-i(x)  closest to x, then

(4.11) Cll|/fc( x ) |g — , k = j  + i, k = j - i , k ^ j ,  j ±  1.

So we have, due to (3.3), (3.2), (4.11) and (4.3) 
( l - x p l l ( x )  [ ( l - x 2) +  (x2 - x 2)^

1 — X 2
l l ( x )ú

< m  += O 1

(4.12) < ^  +

< ^  +
= i2

1 - x 2

2|^ < I W S

(1 -  a:2 ) ^ ; . !  ( x ) ] 2 n ( l  -  x 2 ) 1/ 2/  L n — 1  V / J  AC7_ _ _ _ _ _ _ _ _  <

(n — l)2 sin y*-) sin

n sm
—£13____ <
m ( l ^ )  =

Ci4
, k j L-j ,  k + j ±  1.

i
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Consequently, from (4.11) and (4.12) it follows that

(4.13)
71— 1

E
k=2

0 - - x l ) lk(x )
71— 1

1 — x 2
_* I

^ cfiCi4 73 = Cl5‘
i = 2

k&,j± 1

Hence from (4.6), (4.8), (4.9), (4.10) and (4.13) we obtain 

(4.14) J r^ c ie .

Next, from the definition of J2 we have

71— 1

* - £
fc=2

u l ( x )l2k(x )
n (n — 1)(1 — x 2)P%_1(xk)

(4.15)
y-1 n2(x)/2(x) (! ~  x2) [ K - i ( x )}2l](x )

n i n - ^ V i l - x ^ P ^ X k )  n i n - ^ P ^ i x j )
k^j,j±  1

| (! — x(x)]2l]+i(x) (1 ~  a;2)[-Pn-i(:r)]2^ |- i(a;)
l ) P Z . - \ ( x j + l )  « ( w - l J P ^ i i X j - r )

On using (3.1)—(3.3) we observe that

( l - x 2) ^ ^ ) ] 2/2^ )  ^  (1 - x ^ P ' ^ x t f j l - x ) ) ^  ^
n ( n - l ) P u - i ( x j) = c4(n — 1)

(1 — a:2)[P^_1(a:)]2 ^
S ---------;-----—------ { sin ft — sin ö +  sinö} <

C4[n — 1)

(n — 1) C4(n — 1)
^ c i 8.

Similarly, we obtain

(4.17)
(1 — a;2)[P>7;_ 1(m)]2Ẑ+1(m) <

n ( n - l ) P ^  i(®j+i) =Cl9’

and

( l - x 2)[P^_1(x)]2l2_1(x) <

n { n - l ) P L i ( xi - i )  =C2°'
(4.18)
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Further, we have

V n l(x)il(x)
n{n -  1)(1 -  x ^ P ^ i x k )

k & , j ±  1
(4.19)

^  ( l - x 2)3^ , ^ ) ] 4 ^ ^  (2n)2( l  — x | ) n 2 .
n3{ n -  l ) 3| x - X f c |2P 4_ i ( x fc) -  c fn3( n - l ) 3 | x - x fc|2 -

k ^ t j , j ± l  k + j j ±  1
n — 1 , o n—1 ,

<  C21 V -  1 ~  x k  <  c22 Y '  _______ 1________ <
-  n2 Z-, |x — Xfc|2 = n2 sin2((0 -  9k)/2) = 23’

**W±i

where in the last step (4.3) was used again. Consequently, from (4.16)-(4.19) 
it follows that

(4.20) J2^C24 

For J3 we have

_ !r-l U2n{x)l2k{x)\x -  x k\
3 j“  n(n  — 1)(1 — x2)(l — x^)P^_1(x/c)

=  ( l - x 2)3[P;_i(x)]4
n3( n - 1 ) 3( 1 - x 2)P 4_1(xjfc) |x - x fc|

(4.21) ^ - / ±1
( l - x 2)2lP ^ ( x ) |3l/,(x)| ( l - x 2)2|P '_1(x)[3|/J+1(x)|

n2(n—1)2(1—x2)|Pn_i(xj)|3 n2(n -l)2 |P r̂ i(x j )|3( l -x ^ +1)
(i - x 2)2|p/l_1(x)|3|/J_i(x)| 

n2(n — 1)2(1 — x‘j_ l )\Pn- i( x j ) \3

First, due to (3.1)-(3.4) we note that

(1 - X 2)2|P)(_1(a;)|3|/i (.r )| ^
n2( n -  1)2(1 - x 2)|P„_i(xj)|3 =

< C25(l ~ X2)3l2[P'n- j^ ) ] 2!1 -  X2)1/2|p^_i (3;)|n 3/2 ^  
n2(n — 1)2(1 — x2)1/4

< c26(2 n )(n - l)n3/2 < _______ C27_______ <
-  n2(n — 1)2(1 — x2)1/4 ~ (n — 1)1/2(1 — x2)1/4 — 28

(4.22)
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Similarly, we obtain

(4.23) 

and

(4.24)

( 1 - x2)21P;_1(3;)]3|/j +1(x)| ^
n2(n -  1)2{1 -  x2j+1)\Pn- i ( x j+i)\3 - C29’

(1 — m2)2li^ _ 1(a:)|3l/J--i(a:)| <
n2(n — 1)2(1 -  x j ^ l P n - i i x j - ^ l  =C3°

Also from (3.2) and (3.3) we get

n l(x ) l2k{x)\x -  xk\71— 1

S n (n - 1)(1 - a;2)(1 - xD-Pn - l( ;cfc)

71—1

v ( 1 - X 2 ) 3 [ P ' _ l ^ ) ] 4

k— 2 n3(n — l ) 3 | a i  — a i j t | ( l  —® f c ) [ p n - l ( a
kft,J ± 1

71—1

v ( 2 n ) 2 n 2 ^ 71— 1
C 31

k=2 c2n 3(n — l ) 3 | r r  — n 2
k = 2

— < 14 =

1
X - X k\

The latter sum, namely

can be written as
71— 1£

71 — 1

£
k=2

fcÁÁjil

1
F  -  xk\

COS 0  — COS I
<

71— 1

£
fc=2 Sln /cyyj±i

1 71— 1

2 \e-ek\ s £
k=2

kft,j±l
i2

where in the last summation the *’s were chosen as in Lemma 4.4. This 
shows that

(4.25)
71— 1£
k=2kft,j± 1

n 2(aO^(z)|x-Zfc|
n ( n -  l ) ( l - a ; 2) ( l - 3 ;2)P 2_i(2:*:) = C32-

Finally, from (4.21) through (4.25) we obtain 

(4.26) J3^ c 33.

Consequently, from (4.5), (4.14), (4.20) and (4.26) inequality (4.4) follows.
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5. Proof of Theorem 1

On using (1.7), (2.1) and the uniqueness of Hermite interpolation, we 
have

n
S n ( f , x )  ~  V n { x )  =  ^ 2 { f ( X k )  ~  H n { X k ) ) A k ( x )  =  

fc=l
71— 1

=  2 ^ ( f ( X k )  -  V n ( X k ) ) A k ( x ) .  
k=2

Now from (1.7) and (3.7) it follows that

\Sn(f ,x )

(5.1)

71— 1

H n(x)\^c2 Y ^ w2 ( ) |-A* 0*01 ^
k=2 

n—1

n

^ E ( ^ )
k= 2 x 7

* * * ■ »  ( ™ )  { E î m i  + E ) H | i a w i }
V '  K k= 2 k= 2 V ’ 7

The estimates from Lemmas 4.2 and 4.5 then imply 

(5.2) \Sn( f , x) — Hn(x)\^ C34W2 ■

On combining (5.2) with (1.7) we obtain (1.9). This completes the proof of 
Theorem 1.

6. Appendix

In the early paper [16] the second two authors also considered the Her
mite interpolation process Qn given by

71 71

(6.1) Qn( f ,  x) = f ( x k)hk(x) + ß'n(x k)<Xk{x).
fc=l fc=l

Here the hk are given as in (1.4) and (1.5),

(6.2) &k(x) (x xk)lk{x): k 1 ,2 ,. . .  , 7i,

and [j.n is given as in (1.7). Regarding Qn{ f , x ) as defined by (6.1), the 
following was claimed in [16]:
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T heorem C. There exists an absolute constant C35 > 0 such that, for all 
f  E C \— 1,1] and all — 1 ^ x  ^ 1, there holds

(6.3) \ Q n ( f , x ) - f { x ) \ ^ c 35W2

There is, however, an error in the proof of Theorem C due to an error in 
the proof of inequality (3.22) given in [16]. We note that Theorem C should 
be replaced by the following

T h e o r e m  D. There exists an absolute positive constant c36 such that, 
for all f  E C\— 1,1] and all —1 x Ú 1, the following inequality holds.

(6.4) \Qn(f ,x) - f { x ) \  ^ c 36^  ^ w 2
k=1 1

Note that this inequality is weaker than (6.3) (for example, consider the 
case f  E Lip 1).

A c k n o w l e d g e m e n t . The authors gratefully acknowledge the sugges
tions of Dipl.-Math. Angelica Boos and the technical assistance of Eva 
Müller-Faust (both from European Business School) during final prepara
tion of the paper. Thanks go also to the referee for his helpful remarks 
which streamlined this note quite a bit.
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RANDOM  WALK W ITH ALTERNATING EXCURSIONS

E. CSÁKI, 1 A. FÖLDES2 and P. RÉVÉSZ

A b stra ct

We investigate the properties of a modification of simple symmetric random walk 
which has positive and negative excursions alternately. It turns out that many properties 
of this new random walk remains the same as those of the simple symmetric random walk, 
but there are essential differences, too.

1. In troduction

Let X i ,X z , . . .  be i.i.d.random variables with P (X j= l)= P (X j= —1) =
n

— 1/2 and put So = 0, Sn = ]T) Xj, n — 1 ,2 ,----  {5„}^<L1 is the so called
3—1

simple symmetric random walk, or briefly SSRW.
Let go =  0, Qk = min{t: i >  Q k-i, S i =  0}, k = 1 ,2 ,... .  The section be

tween two consecutive p’s is called excursion. Introduce
S* = Sn if O g n ^ p i

and
if ß k ^ n ^ e k + u  k =  1 , 2 , . . . .

Observe that in { 5 " ^ } x the first excursion keeps its original sign and 
the sign of the others alternate. Thus it is a modified random walk in the 
sense that instead of having excursions with random signs, we have the same 
sequence of excursions but with alternating signs. We will call this walk 
Random Walk with Alternating Excursions, or briefly RWAE. Thus in an 
RWAE part of the random nature of the SSRW is eliminated. Our concern 
in this paper is to investigate how much resemblance is shown by {5*} to 
{Sn}. Is there any essential difference between them? We will see that 
though most of the properties of RWAE remains the same as those of the 
SSRW, they have important differences, too.
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2. Number of paths and their probabilities

is 2

Lemma 2.1. The number of different paths in the first 2n steps in RWAE  
2n''
n

P roof. For SSRW it is well-known that

( 2 . 1 )  P ( S i ^ 0 , . . .  , S 2 „ ^ 0 ) : S I  
22n ‘

Thus in { |S 'i|}^1 the number of paths in the first 2n steps is (2™)- However, 
from each path of the nonnegative walk {|5’j |} ^ 1 arises 2 paths in {S*}jTx. 

We will say that in a path of length n there are k excursions if p^-i <

R emark . We use asterisks to denote RWAE for distinction from SSRW. 
The only exception is g since they are the same for both {S';} and {S*}.

Lemma 2.2. I f  a path of length n of the RWAE has k excursions, then 
the probability of that path is 2k~n~1.

PROOF. Every path (S i,..., S„) has probability 2~n. If a path (S{,..., S*) 
has k excursions, then attaching random signs to each of the excursions, ex
cept to the first one, we get 2fc_1 paths of (S i , . . .  , Sn). All of these paths 
correspond to one single path in the RWAE. Hence our lemma follows.

Lemma 2.3.
(2.2) P(S* —k) — P(Sn =  k) n =  0 ,1 ,2 , . . . ;  k =  0, ±1, ± 2 ,. . .  . 

PROOF. Introduce
Ln = max{fc: 0 ^ k ^  n, S& =  0}

and

L* =  max{fc: 0 ^ k ^  n, Sj* =  0} 
the last return time to zero. Clearly L* —Ln. Observe that

n —\k\

(2.3) P (S*n = k )=  J 2  P{S*=k\L*n = s)P(L*n = s).

Moreover, for k 0
s=0

1,
(2.4) P(S*n = k\L*n = s) = -P ( |S n | = \k\ I Ln = s) = P(S„ = k \L n = s).

(2.3)-(2.4) imply our statement.
R emark . On the other hand, it is easy to see, that the two-dimensional 

joint distributions do not necessarily match. As an example

P(Si =  l ,S 3 =  l) =  |  and P(S{ =  1, S3 =  1) = ^.(2.5)
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3. Distribution of the maximum

In this section we compare the distributions of

h">n =  max St and = max ST.
0 g i g ß 2 n  o  g i g e m

The following well-known result will be applied (see e.g. Révész [7], p. 23).
Lemma A. L e t O ^ i ^ k .  Then for any m ^ i  

(3-1)
fa _ 2

p(0, i, k ) = P(m in{j: f t  m, Sj = 0} < min { j : j t m ,  Sj = k } \ S m = i) = —— . 

Introduce

(3-2) ir2n =  # { /: 0 < 1% 2n, X e,_1 + l =  1}

the number of positive excursions among the first 2n ones of {S t}. Then ii'in 
is clearly binomial (1/2, 2n) and hence

(3.3, p < -< < o = E (2; ) i H y = ( i - á
j =0 w  7

1 \ 2” 
:/

On the other hand, among the first 2n excursions of {S*} exactly n are 
positive, so we obtain

(3-4) P(v*2n< k) = ( l - ± ) n.

Thus the exact distribution of 1/2n and v^n are different. It is easy to see, 
however, that they have the same limit distribution, namely

T heorem 3.1.

(3-5) lim P(
n —> oo '

^ < x )  
< n /

=  e~1/x, x >  0

and

(3.6) lim PÍ
71—400 '

' ! & < , )  
v n J =  e~1/a\ x >  0

4. Local time

The local times of {.%} and {5*} are defined as follows: 

(4.1) £(&, n) = # { i : 0 < i ^  n, Si = A:}

and
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(4.2) £*(*;, n) = #{i: 0 < i ^ n , S *  = k}.

From the definition it is obvious that

P ( n O ,n ) = j )  = P (£ (0 ,n )= j) .

On the other hand, £*(&, n ) and £(fc,n) for k ^  0 have different distributions. 
From (2.5) we have

P(£(l> 3) =  2) =  ^ and P(f* (1,3) =  2) =  ^

We recall from Csörgő and Révész [3] that 
Lemma B. For any k ^  0

P (i(* ,ft)  =  0) =  l - p i ,

P(i(t,!».) =  ™ ) = ( ^ i ) 2( l - ^ I) ’” \  "* =  1 .2 ,...

E ( f ( * . e i ) )  =  l ,  V a t { ( f c , e i ) = 4 | * | - 2 .
For the RWAE we determine the distribution of £*(&, £2), since in the 

first two excursions exactly one is positive.
LEMMA 4.1. For any k ^  0

(4.3) P (r(fc ,e 2) =  0) =  i - | ^ ,

(4.4) P ( n * , » )  =  ">) =  j ^ ( l - j p j i ) ’” m = l , 2 , - .

(4.5) E ( { ' (* .« ) ) = 2 ,  Var£*(*,<»)=8|*|-6.

PROOF. The idea of the proof is the same as that of Lemma B. From 
the two excursions considered exactly one is positive. Lemma A gives imme
diately (4.3). To get (4.4) observe that after hitting k first there are exactly 
771—1 returns to k before hitting 0. Thus
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(4.5) follows easily from (4.3) and (4.4).
As a simple consequence of Lemma 4.1, the strong law of large numbers 

implies that

(4.7) lim
l—>oo

C(k,e2i)
21 =  1 a.s..

Moreover, applying (4.7) for the subsequence {^*(0,n)}^=1 one can easily 
deduce

T h e o r e m  4.1. For any fixed k

(4.8) limn—>oo
C(k,n)
£*(0 ,n)

= 1.

Obviously for SSRW

(4.9) lim
71—>00

£{k,n)
£(0,n)

=  1.

Since £(0,n) =  £*(0, n), (4.8) and (4.9) imply that

(4.10) lim
71—> OO

C (k,n)
Z(k,n)

=  1 .

Theorem 4.1 and (4.10) also imply that £*(k,n)/y/n  and £(k,n)/^/n  have 
the same limit distribution, namely we have for any fixed k and x > 0

(4.11) lim p (
71—> 00 \

C{k,n)
\Jn < x'j =  24>(:e) 1.

5. The arcsine law

One of the most appealing result about the SSRW is the celebrated 
arcsine law. It is quite natural to investigate whether this law remains valid 
for the RWAE. First we give a recursion for the time spent by RWAE on the 
positive side. Define

(5 ^  /an = #{ i :  l ^ i ^ n , S i > 0 } ,
Fn = # { i: 1 = * = n , î* >  0}.

(5.2)
Qk,n — P(Mn — k I X \ — 1),
ql,n =  P(Sn =  k\X*1 = l ) .



272 E. CSÁKI, A. FÖLDES and  P. RÉVÉSZ

Then we have
k

(5-3) < l2 k , 2 n  = Y 2 F ( g i = 2 l ) q 2 n - 2 k , 2 n - 2 l  for 0 < k < TI
1= 1

and

(5-4) 9 o , 2 n  =  f o  9271,271 —  P(f?l =  2 n ) .

It is known that

p (e1= 20  =  ^2TT ( / - i ) ’ Z =  1’2’- - "

To see (5.3) it is enough to observe that the RWAE starting with a 
positive step spends 2k (out of 2n) steps on the positive side if the length 
of the first excursion is 21 (0 < l 5= k) and from the remaining 2n — 21 steps 
(the first of which is now negative) 2n — 2k steps are spent on the negative 
side. But this probability is q%n_2k 2n - 2 V  

By symmetry we have

(5-5) P(^2ti — 2fc) =  2 (92fc,27i +  927i_2fe,27i)-

From this recursion we get

P 0 i $  =  8 )  =  P ( / 4  =  8 )  =  ^

P ( ax|  =  2) =  P ( / * S  =  6) =  ^

P(A‘s =  4) =  | .

For comparison, t;he corresponding probabilities for SSRW are:

35
P (^8 =0) =  P(ps =  8) =  27

P(p8 = 2) =  P(p8 =  6) =  ^

P ( p 8 = 4 )  =  ^ .

Thus for fixed n the two distributions are different. To get the limit dis
tributions from (5.3)-(5.5) seems to be difficult. Later we shall see, however, 
from Donsker's theorem that the limit distribution of p* is also the arcsine 
distribution. In what follows we deal with p* at excursion endpoints and 
show that in this context we can get arcsine law, too, in the limit.
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T heorem 5.1. For 0 ^ a < b ̂  1 we have

b
(5.6) lim P (̂ a < < b

k->oo Qk
= a ___ i

J n ( x ( l - .(x(l — a;))1/2
dx.

P r o o f . Introduce

Z i  —  Q i Q%— 1 j i —  1) 2 , . . .

the length of the ith  excursion. {Z^}“ 1 is an i.i.d. sequence. Since exactly 
k out of 2k excursions are positive, we get that

0 2  k

Q2k
and

k
E  Zi
i= 1 
~2k
E  Zi
»=1

have the same distribution. Hence we get for 0 < x  < 1

n* ( E  Zi \  /  k 2fc v

(5.T) P ( a < I ) = P ( ^ ' < T P ( ,1 ' I ) ^ ' < 15 1T
E  Zi i 1 i k+ 1
t= l

Observing the independence of

k
E  Zi

Tk =  — and T,1

2k
E

(1) _  i=fc+l 
fc ~  jfc2

and using their well-known limit distribution

(5.8) lim P {Tk < u )=  lim P(Tfc(1) < u) =  2(1 -  <f>(- ]= ) ) ,
fc—>oo k-too \  V y i i / /

we get

(5.9) lim P ( i ^ < x ) = ^ =
fc->oo V p2fc 2 ' V V X / /

On applying the formula 6.2851 in Gradshtein and Ryzhik [5] we arrive at
(5.6).

Similar arcsine law holds also for SSRW, i.e.
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T heorem 5.2. For 0 < a < 6 < 1 we have

(5.10) lim P ( a < < b] =  f  — ——---- . dx.
c-Kx) V Qk ' J 7T (x(l — a; ) ) 1/ 2

P r o o f . Though it would be possible to prove this theorem directly, we 
want to demonstrate that this kind of arcsine law (and perhaps many other 
results) is equivalent for SSRW and RWAE. Therefore we think that the 
following proof is interesting on its own right and has also other consequences.

Assume that we have 2 n  excursions with lengths Z  i , . . .  , Z2n ■ Denote 
by Y\ ^  Y2 ^  Y2 n these lengths in nonincreasing order. Define

J  1, if the excursion in SSRW with length Yi is positive
1 \  0, if the excursion in SSRW with length Yi is negative,

and

* f 1, if the excursion in RWAE with length Y{ is positive
\  0, if the excursion in RWAE with length Yi is negative.

Then 2 n

i— 1
and 2 n

i* k  =  E 4 ^ -
i —  1

Now let k E 2n and consider

A = (ei,£2, .. .  ,£k)

and

A* = (et,e*2, . . .  ,e*k).

Then since £ i ,.. .  , £k are independent, any possible value of A has probability 
l /2 fc. The variables e j , . . .  ,e*k, however, are not independent. The possible 
values of A* have the probabilities

(") (*”y)
k

i-E
Í—1

We use the following lemma.
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Lemma 5.1. Let A and A*, resp. two random quantities with possible 
values ai , . . .  , ar and distributions p \ , . . .  , pr and q\ , . . .  , qr, resp. Then one 
can define a joint distribution of (A, A*) such that

This result is well-known but can be proved very easily by taking P(H = 
aj, A* =  ai) = min(p;, qf] and arbitrary otherwise with attention to the given 
marginal distributions.

By this lemma, we can redefine (e i , . . .  ,£fc) and ( e |, . . .  ,e*k) without 
changing their distributions such that

where in the last step we used Stirling’s formula. Hence

(5.11)

(5.12)

By repeating this procedure for every n and choosing k = kn = [logn], it
follows that

k,

i=l
On the other hand, it follows from Csáki et al. [2] that

2 n

i=l
This combined with (5.13) yields

2n

i = l  P
2 n

i - 1

(5.15) 1 as n —> oo.
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6. A new representation and invariance principles for RWAE

It is obvious from the definition of {S*} that its excursions are either 
identical with or the reflections of the excursions of {S'*}. Hence either S* =  
Si or S* =  ~ Sl. In the latter case S* and 5} may be “far” from each other 
and we cannot claim that they have the same limit properties. Therefore we 
can ask what is the limit process associated with RWAE? In this section we 
give another representation of RWAE in terms of SSRW and show that they 
are “close” to each other so that they have the same limit process and as a 
consequence, Donsker’s theorem holds for RWAE.

Let and {S'„}^<L1 be as in Section 1. Define S'** as follows.
n n

(6.1) S'o* =  0, S * * = £ * r  =  E < ^ >
i —  1 2 = 1

where
(6.2) Í , . / 1' if i =  l o r S " ^ 0 ,  ^ 2 . 3 . . . .
'  1 U i - , 4  i f S " , = 0 ,  2 =  2 ,3 ,. . .  .

It can be easily seen that {S1* } ^  and {S**})^ have the same distribu
tion, hence the latter is also an RWAE. Thus from now on when talking about 
RWAE, we can use either of the two definitions according to our convenience. 
We show that {Sn} and {S'**} are close to each other.

Lemma 6.1. For any e > 0 we have as n —> oo

(3.6) | S r - S „ |  =  0 ( n i+e) cl. s ..

P R O O F . F ro m  th e  d e f in i t io n

(6.4) s*n* - s n = - x l) = Í 2  x r n s * h = o> -  £  x j í s * ! , = o>.
1=1 1=1 Z=1

Since X**/{S**1 =0} are alternately +1 and —1, we have

(6.5) ' j r x r i { s ; i 1= o}
j=i

< i .

On the other hand,

( 6.6)

n  £**(0,n)

^ A l/{ S * : 1 =  0 } =  Z j ,
i= 1 j —1

where Zj  are i.i.d. with P (Zj  =  1) =  P (Zj = —1) =  1/2. Since {£**(0, 
has the same distribution as {£(0,71)})^, (6.3) follows from (6.5), (6.6) and 
the laws of the iterated logarithm for Zj  and £(0, n).

Lemma 6.1 has many consequences. It follows e.g. that Donsker’s theo
rem holds for {S**}, i.e. we have
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T h e o r e m  6.1. Let

(6.7) S*n*(t) = + X $ ]+l(nt -  M )) .

Then

(6.8) S**(t)=>W(t) as n -> oo,

where W (t ) is a standard Wiener process.
This theorem implies, e.g., that the arcsine law holds also for the RWAE. 
It follows moreover from Lemma 6.1 that we have strong approximations, 

too, for RWAE, i.e.
T h e o r e m  6 .2 .  On an appropriate probability space one can define an 

RWAE and a standard Wiener process {W (t),t^.O} such that as
n —»oo

(6.9) S*n* - W ( n )  = o{n^+e) a.s. 

for any e > 0.
This theorem has many consequences. It follows e.g. that Strassen’s LIL 

and Chung’s LIL hold for RWAE. Moreover, we have also a.s. central limit 
theorem (see Theorem 1 in Lacey and Philipp [6])

( 6 . 10)
1

logn

n

E k
a.s.,

where 0(x) is the point mass at x  € C[0,1], In particular, we have

( 6 . 11) lim ------
n - too log n

n

E I { S " <  0}  

k
1
2

a.s..

7. Dobrushin’s Theorem for RWAE

A theorem of Dobrushin [4] reads as follows.
THEOREM A. Let { S ^ } ^ !  be a SSRW and let f (x)  be a real valued

OO

function on integers with finite support such that f (x)  =  0. Then
£ =  — OO

( 7 . 1)
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where U and V are two independent standard normally distributed random 
variables and

o o  o o

(7.2) d2 = A Y  x f 2(x) + 8 Y  x H x ) f ( y ) ~  Y
X ——oo —o o < x < y < o o  X — —0 0

This theorem has been extended in the literature under more general 
conditions. In particular, the condition of f ( x )  being of finite support can 
be replaced by the weaker condition

OO

(7.3) Y  !* /(* )!<  00
X  —  —  o o

(see Csáki et al. [1]).
An analogue result is true also for RWAE.
T heorem 7.1. Let {5*}^T1 be an RWAE and let f ( x ) be a real valued

OO

function on integers satisfying (7.3) and /(a?) —0. Then
x =  — o o

/(S'*)
(7.4) hm P ( <z ] =  P (Uy/\V\ < z)t

n —y o o  y a  n 1/ 4 /

where U and V are two independent standard normally distributed random 
variables and

(7.5) d*2 = d2 - ( f ( 0 )  + 2 Y f ( x )) •
X — \

PROOF. This theorem can be proved along the lines of proof in Csáki et 
al. [1]. The idea there was to split the sum into i-i.d. terms, one
term  representing the summation for an excursion. First considering fixed 
number of excursions, i.e.

6 2 n  n  Q2j

£ / ( s - ) = F  E
1=1 j =  1 i = Q 2 j - 2  +  'i

n  oo n= Y  E f ( x W ( x ,Q2j ) - c ( x ,Q2j - 2 ) ) = Y z i
j= 1 I= —oo i= 1

we observe that this sum can be written as a sum of i.i.d. random variables, 
hence by the central limit theorem we may conclude that

Q'2n

e  m )
2—1_____
d * ( 2 n ) 1/ 2

lim P
n —̂ oo
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where 2d*2 = Var Z*. Here we used that by (4.5) EZ* = 0. The asymptotic 
independence of

6 2  n

E f ( s* )
i = 1______
d*(2n)1/2 and Q2n

n 2
and the-statement of Theorem 7.1 can be proved exactly as in Csáki et al. [1],

The constant d* can be calculated in the following manner.
e i

Let Z  = E  /(<?»)• Then we know that d2 =  EZ 2. On the other hand,
Z=1

z  =

We get

OO 00

E f ( x )Z(x , ei) = /(o) + E 02), if X i  = 1
x = 0  x = l

E f ( x )^(x :Pl) = f ( °)  + E f ( x ) C ( x ,Q2), if X \  — 1.

-1
: =  EZ2 =  - Í E ( / ( 0 ) + 5 3 / ( íc)í*(x>e2)) + e ( / ( 0 ) + X /(*)£*(*, 02)) )  =

' x = l  x = —oo

1 0 0  —1

= 2 E (^ i)2 — e ( / ( 0) + ^X / (:r)£*(:r, p2)) ( /(0 )  +  X  f(x )C (x ,Q 2)) =
x = l  x = - o o

OO — 1

= d*2 — (/(0 ) + 2 / (x) j  (/(0) + 2 X  /(*))■
X=1

OO
Taking into account that Y1 ./(a:) = 0, we arrive at (7.5).

X  —  — OO

Following Csáki et al. [1] we can also see that the next strong approxi
mation result holds:

THEOREM 7.2. Let f ( x)  be a real vqlued function on integers such that
OO
X m1+íi/(;e)i <°°

x= —oo
0 0

for some <5>0 and Y2 f ( x ) = 0- Then on a suitable probability space one 
x = —oo

can define an RWAE and independent standard Wiener processes
{W^^(i), W^2\ t ) ,  t ^  0} such that 

n
(7.6) X  -  d*W(2)(L(1)(n)) =  0 ( n l^ ~ s) a.s.,

i=i
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and

(7.7) £*(0, n) — L^l\ n )  = 0 { n l^2~e) a.s.

for all e small enough, where L ^ ( n )  is the local time at zero of W^l\ t ) .
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EXTENDING A FAMILY OF CAUCHY STRUCTURES 
IN A LIMIT SPACE. II

J. DEÁK

A bstract

The problem mentioned in the title was in fact dealt with in Part I* *. Now we consider 
the following related problems: (i) extending less/more general structures (fully/pointwise 
Cauchy screens) in a limit or pseudotopological space; (ii) extending convergences, limita
tions and pseudotopologies.

§ 7. Fully Cauchy screens
7.1 For the elements of the screen 6 , consider the following equivalence 

relation: s ~  t iff there is an 6-chain joining s and t. Denote by €(s) the 
equivalence class containing s, Sts =  p| <S(s), and let 6 e be the screen for 
which {St s : s G 6} is a base. If 6  is Cauchy then s ~ t i f f s lT tE © .  We have 
6 f < ©e < ©c> ©E < ©r and ©e =  (©c)e -

The proof of the following result is similar to that of [15] Proposition
17.1, but simpler:

PROPOSITION. If a countable family of fully Cauchy screens in a set has 
Cauchy extensions then it has fully Cauchy extensions, too;

(1) 6 { .(A ,6 i) =  6 ^ ( A ,6 i)

is the finest one.

PROOF. Put 6 1 = 6 1(A, ©,). It is enough to show that ©^ is a fully 
Cauchy extension.

1° 6 1 being an extension, we have 6 g  | X; < 6,. To prove the converse, 
let 0 ^ s G ©g, i G /;  it has to be proved that s | X t G 6*. Pick t G S 1 such that
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54A05, 54E17.

Key words and phrases. Pointwise/fully Cauchy screen, Lodato screen, closure, pseu
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wise) reciprocal.

Research supported by Hungarian National Foundation for Scientific Research Grant 
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*See Studia Sei. Math. Hungar. 32 (1996), No. 1-2, pp. 141 163 for §§ 0 to 6 and the 
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5 D St t; then either t =  sj with some j  6 /, 0 ^ Sj G &j or t = x, x G X  \  |J  X j .
jel

In the second case, St t =  x, too, thus s | Xi =  exp Xj G ©j.
Assume t = sj, Xj G sec St t. Then

(2) (St t) I Xj =  f|{p I X j: p ~  t, Xj G sec p}.

Pick one of these filters p | Xj =  p4. As 6j is fully Cauchy, there is a coarsest 
qj 6 ©j coarser than pj. Now qj ~  t follows from q j A p ~  t, thus qj is among 
the filters p in (2), and so (St t) | Xj C qj. If pj =  p' | Xj is another filter from 
the right-hand side of (2) then qj ~ t ~p ' ,  qj Dp' G ©q, which is an extension 
if there are Cauchy extensions, qj flpj G ©j, implying p' D qj. The intersection 
of all these filters pj is also finer than qj, thus

(3) (St t) I Xi =  qj.

Therefore s I Xj 6 © j .  Moreover, t ~  ((St t) | X j)1.
2°. We are going to show that if s, t G © 1 are not equivalent then 

S ts A St t (forget the notations used in 1°); then the filters Sts (0 ^ s G 6 1) 
are the coarsest filters required in the definition of a fully Cauchy screen. The 
other cases being trivial, let us assume that s =  s j, t =  tj, i , j  G /, 0 ^ S j  G © j ,  

0 ^ t j G 6 j .  Put p = Sts, q =  Stt, pfc = p I Xfc, qfc =  q | X*, (fcG/). According 
to 1°, Pfc,q/fc6©fc. We claim that

(4) p =  f|{pj : k e l ,  0£  pfc},

and similarly for q. It is enough to show that p is finer than the intersection, 
since the converse is evident.

Assume s ~  s'. Then s' =  with some h G / ,  0 ^ fh £ &h (the elements 
of S 1 not of this type cannot occur in a chain starting from s - s j ) .  s ' D p  
implies fh Dp hi thus s' is finer than the right-hand side of (4). This proves
(4) , since p is the intersection of all these filters s'.

If 0 ^ pjfc, 0 ^ qfc then s ~  pj, t~  qj (see at the end of 1°). Now p*, A qjt 
would imply s ~  t. Hence

(5) PfcAqfc (k G I).

P u t I  =  {*i, *2, . . .  } (possibly only a finite sequence), and pick An G pjn, 
B n © such that An =  0 if 0 G pjn, Bn = 0 if 0 G qjn, and An fl Bn =  0 (see
(5) ). It can also be assumed (cf. (4)) that

(6) An fl Xjm C Am-, Bn n Xjm C B m (Tn < n).

Now A =  (JA„Gp,  H =  U Bn  © 4- A fi B = 0 follows from (6), thus p A q,
n  n

indeed. □
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C o r o l l a r y . A countable family of screens in a set has a fully Cauchy 
extension iff each finite subfamily has one. Two fully Cauchy screens in a 
set always have a fully Cauchy extension.

P R O O F . P r o p o s i t i o n  4.2. □

R e m a r k s , a) Let I  be finite. With 3, p and p*, as in 2°, 3 ~p], whenever 
0 ^ pk- Thus there is an ©Cchain containing s and all these filters p£. The 
intersection of this chain is finer than p, thus, by (4), it is in fact equal to p. 
Therefore &p(X, 6j) =  ©q(X, 6;).

b) Let I  be countably infinite. Similarly to a), the intersections of the 
i n f i n i t e  6 1-chains form a base for ©p(X, ©j).

c) Let I  be uncountable. The examples below show that the statement 
of the proposition is now false (even the existence of a CL extension does 
not imply that there is a fully Cauchy extension), and also that (1) does 
not necessarily hold even when there do exist fully Cauchy extensions. The 
corollary does not hold either for uncountable families.

d) In Example 4.3 (considered without the convergence), there is no 
coarsest one among the fully Cauchy extensions.

E x a m p l e s , a) (A modification of [15] Example 17.3.) Let W=(mixN) 
UPU Q with P  and Q infinite, and the members of the union disjoint,

C ({i} x N) U P  if iGwi,
Xi = < (wi x { -i} )U Q  if — i G N,

[ PU Q  if i =  0.

Take u, 0 6 Ultf X such that P  6 u, Q G 0. Let a base for 6 j consist of 
x (x G Xi) and the following filters: for i ^  0 where fi | P  =  u | P  and
íi I (Xi \  P) consists of the cofinite sets (tGwi), U\Q = *>\Q and b I (Aj \  Q) 
consists of the cocountable sets (—i G N); for i =  0, take u | X q and 0 | Afi. This 
is a family of FL screens (fully Cauchy, because Sj A s' for different elements 
from the base; Lodato, because n(6;) is discrete). ©^ is a CL extension, 
u, o G 6 1 and St u A St 0, thus a fully Cauchy extension would contain u n 0, 
contradicting (uflo)Xo ^ ©o-

b) (Cf. [15] Example 17.4.) Drop (Xo, So) from the above example. Then 
x (x G X )  and the filter s =  St u D St 0 form a base for 6p, which is now an 
extension, but s ^ ©ĵ . □

7.2 Let us consider now fully Cauchy screens in a closure space. Fully 
Cauchy screens are Riesz, so, according to 6.1, we do not have to deal with 
the same problem in convergence or pseudotopological spaces.

L e m m a  (cf. [2] p. 38). A closure n can be induced by fully Cauchy screens 
iff it is reciprocal; if so then ©^A^n)) is the finest compatible fully Cauchy 
screen.
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P R O O F .  The necessity follows from the fact that even CR screens induce 
reciprocal closures ([6] 2.1). Conversely, if n is reciprocal then 6 1 =  ©1(A°(n)) 
is fully Cauchy, since the filters n(a;) (a: £ X ) form a base for 6 1 (cf. 2.1 (1)), 
and n(:r) A n(y) whenever the two filters are different. If 6  is a compatible 
fully Cauchy screen then, © being Riesz, A(S) =  A°(n), thus © < 6 1. □

Differently from the case of CR screens (see [7] 2.4), there is no coarsest 
compatible fully Cauchy screen:

E x a m p l e . Let X  be infinite, u ,ö € U ltf A, u ^ o , z e X , n(x) =  x ( x ^  
z), n(z) = iC u .  For ro £ Ultf J\T \  {u}, 6 1 (A°(n)) U {ö PI ro} is a base for a 
compatible fully Cauchy screen. If 6  is a fully Cauchy screen coarser than 
all these screens (with each ro) then s = P (U ltf X  \  {«}) £ 6 . Now s consists 
of the cofinite sets, thus uD s, n(z) A s, and so n(z) fls£© , i.e. © cannot be 
compatible. □

7.3 LEMMA. A countable family of fully Cauchy screens in a reciprocal 
closure space has fully Cauchy extensions iff there is a Cauchy extension in 
the set, a Riesz extension in the space, and for any x E X  and any infinite 
S 1^ ,  &i)-chain S(1) , s {2),

(1) n(x) A f) S(n) implies S(„)Dn(i) (n£N).
n £  N

I f so then

(2) 6^(A°(n), &i) = & i(X , ©i) U ©1(A°(n)) 

is the finest one.
P r o o f . The necessity is obvious. Assume that all the conditions are 

satisfied, and denote by ©' the right-hand side of (2), which is the infimum of 
an extension in the set (Proposition 7.1) and a compatible screen. Therefore, 
to prove that &' is a compatible extension, it is enough to show that n(©') > n 
and ©' I X i > ©j.

Let s £ &e (X, 6j) be fixed at x. Then s is finer than the intersection of 
an infinite ©X(A, ©i)-chain (Remark 7.1 b)), thus O n ( i )  follows from (1), 
hence s £ 6 1(A°(n)). This means that ©' contains the same fixed filters as 
the compatible screen 6 1(A°(n)), thus ©' is compatible, too.

If s £  6 g ( X ,  6 i )  then s | X i  £  6j ,  since this screen is an extension in the 
set. If 5 £  ©1(A°(n)) then s D n(x) for some x E  X ,  thus s \ Xi E  &i by the 
result cited after Lemma 6.2. So we have proved that ©' is a compatible 
extension.

Take the filters n(x) (x £ X)  and those minimal elements of 6 ^( X,  6j) 
for which the premissa of (1) does not hold for any x E X .  By (1), these 
filters form a base for ©'. If s', s" are different elements of 03 then s' A s"
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follows from Proposition 7.1, Lemma 7.2 and (1) (since, by Remark 7.1 b), 
if s' is not a neighbourhood filter then it is the intersection of an infinite 
chain). Thus 6 ' is fully Cauchy.

By Proposition 2.2,

(3) ® 1 ( ^ ° ( n ) ,  & i )  =  e \ X ,  & i )  U ©1(A°(n)).

Applying the operation E to the right-hand side of (3) yields the right-hand 
side of (2), since sA n ( i) , s G ß 'f l ,  6j) imply sD n(x). Thus the equality 
in (2) holds. Any fully Cauchy extension is coarser than 6" =  6 1(A°(n), 6j), 
hence it is coarser than 6p < 6p. □

T h e o r e m . I f a finite family of fully Cauchy screens has CR extensions 
in a closure space then the finest compatible CR extension is fully Cauchy.

(Thus Theorem 6.3 gives a necessary and sufficient condition for the 
existence of a fully Cauchy extension of a finite family.)

P r o o f , n is reciprocal (as there is a compatible CR screen), thus the 
above lemma can be applied if we show that (1) holds. It is enough to check 
(1) for infinite chains in which S(„) = and t(n) is a minimal element of &ln
( n € N ) .  If =  fn , m < n then S(m),S(TO+1) , .. .,S(n) is an 6 1 (X, 6,)-chain, 
thus S(m) fls(n) £ &q(X, &i), which is now an extension, and so t(mj =  t(n) 
(as both are minimal). Hence there are only a finite number of different 
members of the infinite chain, i.e. its intersection is the same as that of a 
finite chain. Thus if 6  is a CR extension then s =  P |s(m) G ©, n(rr) A s, so

771

5 D n(x).
The finest CR extension is given in [6] 2.8 in the following form:

6 ^ ( X , 6 i ) U 6 1 ( A ° ( n ) ) .

By Remark 7.1 a), this is the same as the right-hand side of (2). □

REMARK. If we are given a finite family of fully Cauchy screens in a set 
(or space) and X  =  (J Xi then each Cauchy extension is fully Cauchy.

iei
Indeed, let 6  be a Cauchy extension, 0 ^ s € ©. Define

(4) Iq = {i £ 1 : 3s(,-) £ 6 , S(j) C s, Xi £ secs(j)}.

For each i £ Iq, pick an S(q as in (4), and let t, be the minimal element of
&i coarser than S(q | Xi. Now t=  f) tj is a minimal element of © coarser

i G /  o
than s. (If s' £ & is strictly coarser than t then, as I  is finite, s' | Xi £ 6 j 
is strictly coarser than 11 Xi for some i. By (4), i £ /o, thus s' | Xi C tj, a 
contradiction.)
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7.4 The statement of Theorem 7.3 is false for countably infinite families: 
E xample. Let X  =  [0, oo], I  =  N, Aj =]i -  1, i[, Xi = Ai U A l+i (i e l ). 

Pick U(j) £ UltfX with Ai £ u^  (i £ I). Let n(x) =  x (x /  oo), n(oo) = 
fil{[x,ooj: x 7̂  oo}. Consider on X{ the screen ©j for which the filters 
x (x £ X i) and (u(j) | X{ form a base. The conditions of Theo
rem 6.3 are satisfied, so there are CR extensions. But 7.3 (1) fails for x = oo,
®(n) ^(n) ^ ^(ji+1)- C

§ 8. FL screens
8.1 If 6  is FL then it is CL, thus n(6) is a reciprocal topology. Conversely, 

if n is a  reciprocal topology then 6 1(A°(n)) is a compatible FL screen, namely 
the finest one (Lemma 7.2, using that the neighbourhood filters are open in 
a topological space). There is no coarsest compatible FL screen: in Example 
7.2, n is a topology, and the screens considered are Lodato.

THEOREM. If a finite family of FL screens has CL extensions in a closure 
space then the finest compatible CL extension is FL.

(A necessary and sufficient condition for the existence of a CL extension, 
and also a description of the finest one, can be found in [6] 3.1. The index 
set is arbitrary in that result, and it seems to be unlikely that assuming 
finiteness would simplify the conditions.)

P r o o f . 1° Assume first that I  =  {0}. Let © denote the finest Lodato 
extension. According to [5] 2.17, the filters n(sg) (so G ©o) and the neigh
bourhood filters form a base for 6, where, for s £ Fii X , n(s) is the filter 
generated by the open elements of s. As ©o is fully Cauchy, it is enough to 
take the minimal elements of ©o;

(1) {n(sj): so is minimal in ©o, So /  n(x) | X q (x £ A)} U 6 1 (A°(n))

is also a base for 6  (the filters so =  n(:r) | Xo are not needed, since in this 
case n(sg) D n(x)). The theorem will be proved for |/ | = 1 if we show that 
s A t  for different s and t from the base (1), since then 6  is fully Cauchy, 
hence an FL extension.

Let &' denote the finest CL extension. By [6] 3.6, ©' = ©c; but we shall 
only need the evident fact that ©' < 6 . Let s and t be elements of (1) such 
that s A t. If s = n(sg), t =  n(tg) then s, t £ ©', s fltG  ©', thus, ©' being an 
extension, so D to G ©o, so =  to (since both are minimal), s =  t. If s =  n(:r), 
t =  n(y) then s = t again, as n is reciprocal. Finally, the case s =  n(sg), t =  n(x) 
is impossible, since then s D n(a;) (as s is in the compatible CR screen ©'), 
so Sq D n(a;), so D n(a;) | Xo, implying so =  n(x) \ X q (as the latter is in ©o, cf.
6.1 (3), and the former is minimal); but the filters so with this property were 
excluded in (1).
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2° Assume now that \I\ > 1. Denote by ©' the finest compatible CL 
extension, and let F  =  [ J  X j ,  ©" = &' \ Y . Then ©" is fully Cauchy by

iel
Remark 7.3. 6 ' is the finest CL extension of ©", thus 6 ' is fully Cauchy 
by 1°. □

Remark. Theorem 7.3 could also be proved analogously, in two steps; 
this proof does not use Lemma 7.3 or Proposition 7.1.

Corollary. If a finite family of FL screens has CL extensions in a set 
then there are FL extensions; ©}.(X, 6j) is the finest one.

P roof. If 6  is the finest CL extension in the set then it is also the finest 
CL extension in (X, n(6)), thus the theorem can be applied. According to 
[15] Proposition 20.2, 6  =  © c ( X ,  © j ) .  □

[15] Proposition 20.2 gives a necessary and sufficient condition for the 
existence of a CL extension in a set (only for finite families).

8.2 In Example 7.4, the finest CR extension is CL, but there are no FL 
extensions. Thus Theorem 8.1 does not hold for countably infinite families. 
It is even possible that a countable family of screens in a closure space has 
fully Cauchy extensions as well as CL extensions, but no FL extensions: 

Example. Let (X , n) be the Tikhonov corkscrew*, I  = N .  Denote by X j  

(i £  N )  the copy of u> or oj\ (alternately) in which the neighbouring Tikhonov 
planks are joined. Let z be the point that makes the space non-completely 
regular. Take in X j  the filter that consists of the cofinite sets if X ,  is 
countable and of the cocountable sets otherwise. Let ©j be the screen for 
which { t j }  U  {x: x £  X j }  is a base. This is a family of fully Cauchy screens. 
© 1 ( A ° ( n ) , © j )  is a fully Cauchy extension, and

© Á A » ) ^  fl n(t}): n £ n }

is a base for a CL extension. If © is an FL extension then n (t|) An(t}+1)
implies s =  p| n(t}) £ ©; now s A n(z) and n(z) £ 6 , thus s D n(z) £ 6 , and

iel
this filter is strictly coarser than n(z), a contradiction. Hence there is no FL 
extension. □

We do not know whether there exists a similar example in a set instead 
of a space.

§ 9. Pointwise Cauchy screens
9.1 According to [15] Proposition 18.1, a family of pointwise Cauchy 

screens in a set has pointwise Cauchy extensions iff the following holds for

* We build up the corkscrew from the version of the Tikhonov plank in which the points 
of on are isolated in oij +  1 (called the “Dieudonné plank” in [26] Example 89). Differently 
from [26] Example 90, the corkscrew is spiralling in one direction only.
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any n e  N and i, j 0, j i , . . j n GI:

if s (m) £ ®im (0 5Í m  n) and S(o)jS(i), • ■ - ,S(n) is a strong chain then

(1) n . ^ l ^ e s , .
m =0

Although not as clear from (1) as for Cauchy extensions from Proposition 
4.2, two pointwise Cauchy screens in a set always have pointwise Cauchy 
extensions ([15] Proposition 18.4).

A screen 6  is pointwise Cauchy iff A(6) is a limitation (evident), thus 
a family of screens in a convergence space has pointwise Cauchy extensions 
iff the convergence is a limitation and the conditions of Proposition 2.2 are 
satisfied, and then each extension is pointwise Cauchy. The same problem 
in pseudotopological spaces will be more interesting.

9.2 Let us call a pseudotopology tt pointwise reciprocal if x  — > y implies 
7 r ( x )  = 7r(y); equivalently: z-+ x , z - ^ y  imply tt( x )  =  n(y) (cf. 6.2 (1), (2)). 
Reciprocal =>• pointwise reciprocal => symmetric.

L e m m a . The following conditions are equivalent for a pseudotopology n:
(i) 7T is pointwise reciprocal,

(ii) A°(7t) is symmetric,
(iii) Aj^Tr) is symmetric,
(iv) 7T can be induced by a symmetric limitation.

P r o o f , (i) =» (ii) and (i) => (iii): Let A =  A°(7t) or A =  A11im(7r), s-> x,
y G f | s - Then y ^ - x ,  S O  y x , 7r(x) = 7T(y), \ (x)  = A(y), s-^>y.

(ii) => (iv) and (iii) =» (iv): Evident.
(iv) => (i): Let A be a symmetric limitation, 7r(A) =  7r, x — >y, u — >y.

X  A  7TThen s =  x  fl u — > y , x  G f) s, thus s — > x, u — > x. Hence n(y) C ir(x). The 
symmetry of A also implies that tt is symmetric, thus y — > x, and then the 
above reasoning gives tv(x ) C tt(y), too. □

9.3 L e m m a . A pseudotopology ir can be induced by pointwise Cauchy 
screens iff it is pointwise reciprocal; if so then 6 1(A,1im(7r)) is the finest and 
©°(7r) the coarsest compatible pointwise Cauchy screen.

P r o o f . If 6  is pointwise Cauchy then A(6) is a symmetric limitation 
(cf. 9.1), thus 7r(6) is pointwise reciprocal by Lemma 9.2. Conversely, as
sume that tt is pointwise reciprocal. Then, again by Lemma 9.2, A°(7r) is a 
symmetric limitation, thus <5 =  6°(A°(7r)) is a compatible pointwise Cauchy 
screen (cf. 9.1). 6°(7t) < ©, thus A(©°(7r)) =  A°(7t), implying 6  < ©°(.7r), 
6  =  ©°(7r). Hence ©°(7r) is the coarsest compatible pointwise Cauchy screen. 
©' =  S 1(A11jm(7r)) is also a compatible pointwise Cauchy screen (by the same 
reasoning as 6). Assume that 6" is another compatible pointwise Cauchy
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screen. Then A(6") is a limitation, so A" =  A(6") < A]jm(7r), ©" < ©^A"). 
Now &" < ©' follows from the fact that X" < A implies ©^A") < ©pA) (clear 
from 2.1 (1)). □

T h e o r e m . A family of pointwise Cauchy screens in a pointwise recip
rocal pseudotopological space has pointwise Cauchy extensions iff the fol
lowing condition holds for any n G N ,  x \ , . . . ,  xn G X  and different indices 
i\, ■ • -iin ^  I ■

if X i , . . . , x n <frXix, Sjm G & im , xm e f |  Sim, 7r(xm) =7r(xi) (2 g  m g  n)
(1) n

and 0^Si,  eA,1im(7r)(xi)|Xil then Q  s-m | X ix G ©2l.
m=1

If so then © pp , 6;) is the finest pointwise Cauchy extension.

P r o o f . Necessity. Let 6  be a pointwise Cauchy extension. Then sjm G 
6  is clear for m ^ 2, but it holds for m =  1, too, since G A]im(7r)(xi), 

=  p]U where U is a finite collection of ultrafilters with u —> Xi (u G it); 
now u C iiG ©  for each u, thus s] f l i i  G 6 . 7r(xm_i) =7r(xm) implies that 
Xm—l  ̂X771! Xm_i (~l Xm G ©.

(2) s - j  n i i ,  i i n i 2 , B - 2 , . . . , i „ _ i n i n , s}n

is a strong ©-chain (take only s] n i i  if n = 1), so its intersection is in 6, 
implying that the conclusion of (1) holds.

Sufficiency. 1° (1) remains valid if x m G is allowed: Consider first 
the case when x m G X il for each m. Then the traces of the filters in (2) form 
a strong 6 i l -chain ( i m - i  C i m  G©i15 because 7 r ( : r m _ i )  =  n(xm) holds in the 
subspace, too, and ©,, is compatible); thus, 6 j t being pointwise Cauchy, the 
conclusion of (1) holds

If there are xp £ X i1, xq G X il then from tt(xv) =  7r(xi) =  7r(xq) we have 
síi G A11im(7r)(xp) I X %1, and similarly with xq, thus x\ can be replaced by xp 
or xq, and also by C\xq G A11im(7r)(xi) | . Consider now the collections

21 =  { s n i 9}U{s-m: m 't  2 ,xm $ X il},
93 =  {0,̂  PI xq} U {sjm : m ^ 2 , x m e x u },

with xp, respectively x q, playing the role of x\. We have P|2l | X ^  G from 
(1), while p) 93 1 X n G ©j, was proved above. Both intersections are fixed at 
xq, thus their intersection is in 6 ^ , too.

2° (1) (with the generalization from 1°) remains valid for not necessarily 
different indices: To avoid using the same symbol for different filters, let 
us write q(m) instead of sim. If m ,p >  1, im = ip then q(m), x m fl xp, q(p) is
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a strong 6 jm-chain, thus the filters q(m) and can be replaced by their 
intersection. Hence it is enough to consider the case when, say, i\ =  j2, and 
the indices Í2, . . . , i n are different. Now x2 £ and 7r(x2) =  7r(xi), thus 
9(1) £ î1im(7r)(a;2) I , and the same holds for qm (1 x 2. (1) can be applied 
to the filters q^j (1x2, 9(3), • • 9(n), since the indices are now different. The 
intersection of the traces of these filters as well as q̂ 2) are fixed at x2, thus 
their intersection is in 6 ^ .

3° 3.2 (1) follows from (1) with n =  1, so we can take the finest extension 
0 1 =  ©1(7r,6j). We are going to prove that 6p is a compatible extension 
(hence clearly the finest compatible pointwise Cauchy extension). Consider 
0 1 in the form given by the right-hand side of 3.2 (2). Let s^p  .. ,,S(jv) be a 

N
strong 6 1-chain, s =  (”) S(mp S 1 being a compatible extension, it is enough

m —1

to show that 6p is still fine enough, i.e. that
(3) x€p )5 , U ltX 9 u D s  imply u-*x;

(4) s\ X iE & t (i e i ).
Both statements are evident if N  = 1, so assume N  > 1, and take points 

ym such that ym £  f l s ( m )  b f ) s ( m + i ) ;  put V N = y N - i ■ Now ym- i  C ym D s(mp 
thus ym- i ( l y m e & \  ym-i-» y m , and so 7r(ym) = n(yi) ( 1 < m ^ N ) .

4° Proof of (3). Pick m and p such that u D S(mp x 6 Pi s(p) • Then x —>yp,
7r(ym) = 7r(yp) =  7r(x), thus u-»x.

5° Proof of (4). Define

J  = {m: S(m) € S 1^ )} , H  =  {1 ,..., N} \  J.

For m  £ H, S(m) can be written as t|mj with some t(m) £ &jm, j m © I- For
m  £ J , &(rn) (̂m) FI z, u(m)  ̂^ ' tly Vrn ^ 0  ®(m), either z ym OI jjm
and ir -> ym; in both cases s(m) =  o(m) n ym, t>(m) -» ym.

P u t K  = {m: Xi £ secs(m)}. It is enough to consider the case K  /  0. 
If m  £ K  n  H  then take ü £  Ult X  such that X{ £ t> D s(mp Now o —> ym, 
thus s' = o (lym £ 6 1(7r) can be inserted into the chain without changing its 
intersection: ... , S(mps',S(mp . . . .  Hence K  fl J  7̂  0 can be assumed. (1), 
with the generalization from 1° and 2°, can now be applied to i\ = i,

9(1) =  f l { s (m) I • m £ K  PI J } ,

9(2), 9(3), • • ■ the filters t(m) (m £ K(1H ), x2,X3,. . .  the corresponding points 
ym. Thus s \X i£ & i, indeed. □

C o r o l l a r y . If any finite subfamily of a family of screens in a pseu- 
dotopological space has pointwise Cauchy extensions then so has the whole 
family. □
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9.4 Condition 9.3 (1) gets much simpler if |/ | =  1:
C o r o l l a r y . A single pointwise Cauchy screen ©o in a pointwise recip

rocal pseudotopological space has pointwise Cauchy extensions iff the follow
ing condition holds for each x  G X  \  X 0 and n G N:

n
(!) if u (m) e U l t X o ,  u|m) —> x then f | u ( m ) € © o -

m= 1

PROOF. There is no index different from *o> thus n — 1 in 9.3 (1). □

In Theorem 5.3, the weaker condition 5.3 (1) was enough, since then (1) 
above follows from the Cauchy property.

There is no coarsest pointwise Cauchy extension:
E x a m p l e . With X , Xo and A from Example 2.2, let 7t = 7t(A), A  and 

B  disjoint infinite sets, A  U B  =  X q. Let po, qo £ Fil Xo be generated by the 
cofinite subsets of A, respectively of B. Consider the screen ©o with the 
following base:

{x: l e l o J U  {po C s0, qo H s0 : s0 € A'(0) | X0}, 

where A'=  A11im(7r). Then

{sq: so <E ©o} U {pó Pis: s GA^O)}

is a base for a compatible pointwise Cauchy extension Now 0 fl pj G ©', 
and there is a similar extension containing Oflqg. A pointwise Cauchy screen 
6  coarser than both has to contain Po H q^, thus poHqo G 6  | Xo, i.e. © cannot 
be an extension. □

9.5 In contrast to Corollary 4.3, it is possible that two screens have 
compatible pointwise Cauchy extensions separately, but not simultaneously:

E x a m p l e . Let A, Xo, 7r, A , B , po and A' be as in Example 9.4, X \  = 
A U {0}. Generate ©o and ©i by the following bases:

{£: x G A0} U {po} U A'(0) | A0, { x : x  G Xi} U {Ó (~l pj | X i }.

9.4 (1) holds for both screens, but 9.3 (1) fails for n — 2, i\ — 0, ii =  1, 
x\ =  X2 = 0, any S(0) 6 Ultf Xo containing B  and = Ó fl pg | X \ . □

9.6 Let us consider now pointwise Cauchy screens in a closure space. 
A closure can be induced by pointwise Cauchy screens iff it is pointwise 
reciprocal ([15] 18.1), so, in a closure space, pointwise Cauchy screens behave 
better than Cauchy screens. 6°(A°(n)) is the coarsest compatible pointwise 
Cauchy screen, while there is no finest one, e.g. in [4] 3.15 (replacing the 
free ultrafilters by their finite intersections). But we cannot give a complete 
solution of the problem of pointwise Cauchy extensions in closure spaces.
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A single pointwise Cauchy screen 60 in a pointwise reciprocal closure 
space has pointwise Cauchy extensions iff for each x  G X  (or: x G X \  Xo) 
there is 3o(x) C ©o such that n(ir) | X q = p| 3o(x) and 3o(^) is closed for finite 
intersections. To prove the sufficiency, modify first the collections 3o{x) such 
tha t $o(x) =  3o(y) whenever n(x) = n(y), and also £o(:r) = {s0 G ©o : x G f |  so} 
if x £ Xo- The following filters will make up a base for a pointwise Cauchy 
extension:

so n  (n(íc) I (AC \  ATo))1 (x G A, s0 G 3o(x))

and Sq (soG©o)- This construction does not yield a specific extension: it 
depends on the choice of the collections $0(2;). There is in fact neither a 
finest nor a coarsest extension: in Example 9.4, take n = n(7r) (©' and &" 
are compatible with n, and we saw in 9.4 that no pointwise Cauchy screen 
coarser than both can be an extension even in the set).

A similar condition for |/ | > 1 would have to contain an assumption con
necting the collections 5' i ( x )  and 3j(x) (i /  j) : taking n =  n(7r) in Example 
9.5, we obtain two screens in a closure space tha t have pointwise Cauchy ex
tensions separately, but not simultaneously. (A compatible extension would 
contain ÓflpQ and also Óflu with some uG Ultf X  containing B ; the trace of 
the intersection of these filters is not in ©o-)

§ 10. Convergences in a pseudotopological space
10.1 There are several separation axioms for convergences, but we con

fine our attention to properties arising from screens, namely symmetry and 
(pointwise) reciprocity. It was mentioned in the introduction that a lim
itation is symmetric iff x  —> y implies A(x) =  A(y); a convergence having 
this property will be called pointwise reciprocal (compare with the similar 
definitions for pseudotopologies and closures). Equivalently: z —> x, z y 
imply \(x )  = A(y). A pointwise reciprocal convergence is symmetric, but not 
conversely, see the example below.

Let us call a function ß : X  —> exp F ii+ X  a base for the convergence A if 

\{x) = {s G Fii + X : 3t G ß{x), t C s} ( i G l ) .

E.g. ß(x) = {n(x)} defines a base for A°(n).
E x a m p l e . Let X  =  {x, y ,  z},  ß(x ) =  { i n i } ,  ß(y) =  {yC\z} ,  ß{z)  =  

ß{x)  Li ß(y).  This ß  is a base for a symmetric convergence, which is not 
pointwise reciprocal. □

10.2 Let us first consider convergences without separation properties. 
The proof of the following statement is straightforward: a family of conver
gences in a set always has extensions;

A: (X, Ai)(a;) =  {s} : i G / ,  x  G A}, s* G Aj(x)} U {i,exp A}, (x £ X )
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is the finest extension and exp X do not have to be added if a: € 

while the coarsest extension A0 =  A°(X, Aj) is defined by

A° x  iff s I X{ —A x for each i E I  with x E X i

[[12] Proposition 2.1 can be applied.]
PROPOSITION. Any family of convergences in a pseudotopological space 

has extensions;

(1) A1(7r,Al ) =  inf{A1(2 i ,A l ) , A 1(7r)} 

is the finest, and

( 2 )  A ° ( 7 t , A j )  =  s u p { A ° ( X ,  A j ) ,  A ° ( 7 t ) }

the coarsest extension. □

10.3 Let us be given now a family of symmetric convergences in a set. 
Then the finest extension Ax(X, Aj) is also symmetric (straightforward). [Or 
[12] Proposition 1.12 b).] A°(X, A,) is not necessarily symmetric. (Example: 
Let X  = {x ,y ,z }, X\  =  {a;}, X<i = {y, z}, Ai and A2 discrete, s =  {X} E 
A0(a;), y E fls, but s £ A°(y).) Nevertheless, there exists a coarsest symmetric 
extension, too, namely A°Ŝ (X, Aj), where, for a convergence A, A(s) denotes
the coarsest one of the symmetric convergences finer than A [the symmetric 
coreflexion of A in Conv over mSet], i.e.

s y for each y E f ) ( i  fls).

[[12] Proposition 2.3 can be applied.]
A pseudotopology can be induced by symmetric convergences iff it is sym

metric (Lemma 3.1); A1 (7 1) =  A ( 6 x(7r)) is the finest and A ^(7r)  =  A (6°(7 t)) is

the coarsest compatible symmetric convergence. (A°(7r) is not always sym
metric, see Lemma 9.2.)

PROPOSITION. A family of symmetric convergences in a symmetric pseu
dotopological space always has symmetric extensions; A1 (7 1 , A,) is the finest, 
and A^(7T, Ai) the coarsest symmetric extension.

PROOF. A1 (71, Aj) is symmetric, because it is the infimum of two sym
metric convergences, see 10.2 (1). □

The first part of the proposition can also be deduced from Proposi
tion 3.2: Replacing each A; by 6° (A,), we obtain a family of screens in 
(X, 7r), since the operation 6° commutes with restrictions (but 6 1 does 
not). Now 3.2 (1) holds, because 6°(Aj) contains all the ultrafilters. Hence
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A(G°(7t, &°(Xí))) is a compatible symmetric extension (the coarsest one in 
fact). If A is a symmetric extension then 6 ° (A) is an extension of the screens 
©°(Aj) in (X, 7r), thus 6°(A) < 6 1(n, ©°(Aj)), implying that A(61(7r, ©°(Aj))) 
is the finest compatible extension.

10.4 Suprema of pointwise reciprocal convergences have the same prop
erty, so for each convergence there is a finest one among the pointwise recip
rocal convergences coarser than A; it will be denoted by Ap [this is a strong 
reflexion]. It will be sufficient for our purposes to describe Ap for symmet
ric convergences A (although the following construction works in the more 
general case when 7t(A) is symmetric).

L e m m a . Given a symmetric convergence X,

(1) ß(x) =  | s n i i n . . . D i n  : n E N, xm A  xm+i (1 Ú  m  <  n), X \  =  x, s -4 xn|  

is a base for Ap.

PROOF. Let xi, . . .  , x n and s be as in (1). Ap < A, so xm — x m+\, and
therefore Ap(aq) =  Xp{x2) =  . . .  =  Ap(xn). From s —A xn we have s xn,
s C\xn -^4 xn, hence sHi;n — xn- \  and s i l i n n i:n_i -^4 xn_i; by induction,
s PI x n Pi. . .  n x\ X\ , i.e. Ap is coarser than the convergence A' for which ß 
is a base (A' is a convergence, since the elements of ß(x) are fixed at x). Thus 
it is enough to check that X' is pointwise reciprocal. (It is clearly coarser 
than  A.)

\'Assume y — > x. Then there are s and x \ , . . .  ,x n such that t) D s fl x\ fl 
. . .  C\xn , i.e. either y 6 or y = x^ with some k. If y £ p)s then y — > xn, so
x n y, and xn+i =  y, x n+2 = %n can be added to the sequence of points, 
i.e. we can assume without loss of generality that y = Xk-

If s' — > y  then s' D i)\ n  . . .  Fl y q n  t where yp — > y p+ \ { l £ p < q ) ,  y \ = y
A A/and t — > yq. Now s' D x\ f l . .. fl Xk fl y\ fl.. . .  fl yq fl t and Xk= yi, so s' — > x,

X'(y) C A'(x). The converse follows in the same way, since, by the symmetry 
of A, x m —t xm+\ implies x m+i - ^ x m. □

P r o p o s i t i o n . A family of pointwise reciprocal convergences in a set has 
pointwise reciprocal extensions iff the following condition holds for any n > 1, 
different points x i , . . .  , x n and different indices i f f  i , . . .  f f n :
( 2 )

if  x \  G Xi, xm xm+\ (1 ^ m < n) and Sjn — xn then s}jn \ Xi —A aq; 

if  so then Ap(A, Aj) is the finest pointwise reciprocal extension.
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PROOF. Necessity. If A is a pointwise reciprocal extension then xm 
xm+1) thus A(xi) =  \ (x2) =  . . .  = X(xn), 5jn xn, Sjn — xi, and
1 I V

Sufficiency. 1° By the accordance, (2) holds for n =  1, too (even when 
i = j i). We are going to show by induction on n that (2) remains valid for 
not necessarily different indices.

For 1 u < v ^  n and h £ l ,  we have:

(3) if xu, x v E X h then \h (xu) = \ h(xv).

Indeed, xv- i ------ >xv implies xv------ >xv- \ ,  thus the induction hypothesis
can be applied to the points xu, . . .  , x v- i ,  the filter xv (in X v- \ ) ,  and h
in lieu of i; thus xv x u, and so Ah(xu) = A/i(x„) (as A/j is pointwise 
reciprocal).

Assume first that j p = j q, p < q. If q < n then (3) with u = p, v = q + 1,
Aip

h = j p = j q yields xp------ >xq+1, thus the induction hypothesis can be applied
to X\, . . .  , xp, Xq+\, . . .  , xn and Sjn. For q = n, take u = p, v =  n, h =  j p = j n\

*jp
then \h{xp) = A/i(a:n), thus Sjn------>xp, and the induction hypothesis applies
now to x \ , . . .  , x p and sjn.

Assume i = j n- With u =  1, v — n, h = i we obtain Aj(a;i) =  Ai(xn), thus 
the conclusion of (2) holds. Finally, if i = j q, q <n  then A,(:ri) =  Aj(a;g+i) 
follows from (3) with u =  1, v = q + 1, h =  i\ the induction hypothesis gives
5jn I Xi Xq+\.

(2) remains also valid for not necessarily different points: if xp = x q, p < q  
then drop the points xp+i , . . .  , x q. (More precisely, this has to be done by 
induction, too.)

2° A1 =  A^A, Aj) is an extension (10.2), and Ap < A1, so it is enough 
1 apto prove that Ap | X t > Xi. Assume t — > x  6 Xp, we have to check that

t| X i - \ x .
A1 is symmetric (10.3), so, by the lemma, there are x \ , . . .  , x n and s

such that t D i i  n . . . n i „ n s ,  x\ = x , xm — xm+\, s —A xn. x\ & X i implies 
that each x m is in ( J  Xj,  thus, by 10.2, there are j \ ,. .  . , jn and sjn with

jer
xm ~^Xxm+i, s =  sjn, Sjn — x n. Denote by m \ , .. .,m s (in increasing order) 
those m for which xm €  Xp, then m\  = 1 and



296 J.  DEÁK

(2) applied to different segments of the sequence x \ , ..., xn gives xmp+l —L>

Xmp, hence xmp xmp+1, and also s | Xj xma. Now 11 X t a; follows 
from the lemma, since (Aj)p =  Aj. □

The condition in the proposition is vacuous if |/ | =  2. There is no coarsest 
pointwise reciprocal extension: take the discrete convergence in a two-point 
subset of a three-point set.

10.5 A pointwise reciprocal convergence induces a pseudotopology with 
the same property. Conversely, if 7r is pointwise reciprocal then so are A°(7t) 
and A1(7r) (evident), but not all the convergences compatible with ir.

P r o p o s i t i o n . A family of pointwise reciprocal convergences in a point- 
wise reciprocal pseudotopological space has pointwise reciprocal extensions iff 
the following condition holds for each i , j  € l :

(1) i f x e X i \ X j , y e X j \ X l , 7r(x) =7t(i/),.67 then s) \ Xi x;

if so then Ap(7r, Xi) is the finest one, and there exists a coarsest one as well.

PR O O F. 1° The necessity is obvious. Before proving the sufficiency, let 
us note that if (1) holds then the same is valid more generally for each x  G X{,
y  G Xj \  If y & Xi  then, by accordance, s] | Xi y, thus sj | Xi x , since

ir(x) = 7T (y) implies x  A- y,  thus x y , A fix)  =  A l (y). The case x  G X j  can 
be dealt with similarly, reversing the order of the two steps in the reasoning.

2° A1 = A1(7r,Aj) is a symmetric extension (Proposition 10.3). It has 
to be proved that Ap is a compatible extension, i.e. that 7r(Ap) > 7r and 
Ap I X i > Aj. The existence of a coarsest pointwise reciprocal extension is 
then a consequence of the following observation: the infimum of pointwise 
reciprocal convergences inducing the same pseudotopology (or just the same 
closure) is pointwise reciprocal, too.

n(*p) Aj,
3° To prove 7r(Ap) > 7r, assume u------ >x. Then u — >x, and, by Lemma

10.4, there are x \ , . . . , x n and s as in 10.4 (1) (with A = AX) such that uD
s O i l  O . .. 0 i n; hence u D  s or u is of the form x m. In both cases, u xm

A1with some m. From xm — > x m+\ we have xm 
Tr(xn), and u X \  = x.

xm+i, thus 7r(xi) =  ix(x2) =

4° To prove Ap | X i > assume t - A  x  G Xp, we have to show that
11 X i x. Pick x i , . . . ,  x n and s as in 10.4 (1) (again with A — A1) such that
t D s n  X\ n ... n i„ .  Just like in 3°, 7r(xi) =77(^2) =  7r(xn). Let
denote the same as at the end of the proof of Proposition 10.4; then 10.4 (4)
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holds. Now Xr,
Ai.

bmp+1 follows from bmp+1 • Moreover,

( 2) s \ X i
Ai ■ Xm s í

since, according to Proposition 10.2, s is either an ultrafilter, or it is of the
form Sj with Sj Xj, j  G 7; in the first case, s ——A xn, so s , and (2)
evidently holds; in the second case, (1), or rather its form proved in 1°, can 
be applied with x  =  x m s , y  =  X j .  The last sentence of the proof of Proposition
10.4 completes this proof, too. □

(1) is clearly satisfied for |7| =  1, but not for |/ | = 2:
Example. Let X  be infinite y i,y2 G X ,  y\ ^ y2, X t = X \  {j/i}, n (yt) =  

{yi,y2} U UltfA (i = 1,2), tt( x ) = {x} otherwise, X\ = A11im(7r | A i), A2 = 
A°(7t I A2). We have defined a family of reciprocal limitations in a reciprocal 
pseudotopological space, but there is no pointwise reciprocal extension, since 
(1) fails for i = 1, j  =  2, x =  y2, y = yi, s2 =  n(A2)(yi). □

10.6 We are going to consider now reciprocal extensions in a pseudotopo
logical space. (The same problem in a set seems to be much more difficult.) 
The case 7 =  0 was dealt with in Lemma 5.1.

Lemma. I f  A  is a pointwise reciprocal convergence and 7t ( A )  is reciprocal 
then so is A .

A ^(A)
P roof. Assume 0 ^ s —* x, y, and let s C u G Ult X . Then u-------»x, y,

tf(A) \
thus 7r(x) =  7T(y), x ------ >y, x — > y, and so A(x) =  A(y). □

Consequently, if a family of convergences in a reciprocal pseudotopolog
ical space has pointwise reciprocal extensions (see Proposition 10.5) then 
each pointwise reciprocal extension is reciprocal; in particular, Ap(-7r, Aj) is 
the finest reciprocal extension. Condition 10.5 (1) is not superfluous in this 
case either, see Example 10.5.

§ 11. Limitations in a pseudotopological space
11.1 We are going to consider extensions of limitations in sets and in 

pseudotopological spaces. An extension of limitations will mean an exten
sion that is a limitation, too. A family of limitations in a set always has 
extensions; A ^ p f ,  A j )  is the finest and A 0 (A, Â ) the coarsest one. (Straight
forward.) [Or [12] Propositions 2.4 and 1.12 a) can be applied.]

P roposition. Any family of limitations in a pseudotopological space has 
extensions; A ^ ^ A i )  is the finest and A ° ( 7 r ,  A  j )  the coarsest one.

P roof. A ° ( 7 t , A j )  is a limitation, since, by 10.2 (2), it is the supremum 
of two limitations. □
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11.2 L e m m a . I f  A is a pointwise reciprocal convergence then so is Ai;m.
PROOF, x - ^ y  m e a n s  t h e  sam e w i th  r e s p e c t  to  A a n d  Aijm. □

Consequently, Apnm =  (Ap)nm is the finest one among the symmetric 
(=  pointwise reciprocal) limitations coarser than the convergence A. Given 
a symmetric convergence A, a base for Apjjm is defined by

r n A
ß{x) = \ f) S(m): ™eN,s(m)— >xm (1 ^ m ^ n ) ,

m= 1
x i= x ,  xm A im + 1  (1 ^ rn  < n ) | .

The proof is easier than that of Lemma 10.4. (It is again enough to know 
that 7r(A) is symmetric.)

PROPOSITION. A family of symmetric limitations in a set has symmetric 
extensions iff the condition in Proposition 10.4 holds; if so then Aplim(X ,  Aj) 
is the finest symmetric extension.

PROOF. P r o p o s i t io n  10.4 a n d  th e  le m m a  a b o v e ,  u s ing  th a t  th e  o p e r a t io n  
l im  c o m m u te s  w i th  re s t r ic t io n s .  □

There is no coarsest symmetric extension, see after the proof of Propo
sition 10.4.

11.3 By Lemma 9.2, a pseudotopology tt can be induced by symmetric 
limitations iff it is pointwise reciprocal; if so then A11im(7r) and A°(7t) are 
symmetric.

P r o p o s i t i o n . A family of symmetric limitations in a pointwise recip
rocal pseudotopological space has symmetric extensions iff 10.5 (1) holds; if 
so then Aplim(7r, Aj) is the finest one, while the coarsest one is the same as 
in Proposition 10.5.

P roof. The necessity is clear from Proposition 10.5. The converse as 
well as the additional statements follow from the observation that if A is a 
compatible extension (now not required to be a limitation) then so is Anm < A 
(which is symmetric if A was pointwise reciprocal, see Lemma 11.2).

10.5 (1) is not superfluous in this proposition, see Example 10.5.
11.4 Concerning reciprocal extensions of limitations, the same can be 

said as in 10.6.

§ 12. Pseudotopologies in a closure space
12.1 According to [13] 7.4, a family of pseudotopologies in a set always 

has extensions;

n l {X, TTi)(x) =  {u! : i e I ,x e X i ,U iE  nfix)}  U {i}
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is the finest one, while the coarsest extension 7r° =  7t°(X, 7Tj) is defined by 

u x iff u I Xi x  for each iE  I  with x E Xi E u.
In particular, 7r°(x) =  Ult X  if x  ^ (J Xi.

iel
P roposition. Any family of pseudotopologies in a closure space has 

extensions;
(1) 7r°(n, 7Ti )  = SUp{7T°(n), 7T°(X, 7T,)} 
is the coarsest one.

P roof. 1° Denoting the right-hand side of (1) by 7r,

(2) u — x iff u D n(x) and u | Xi x  for each i with x E Xi E u.
We have to show that n(7r) < n and n \ X i < ttí.

2° The proof of 7r | Xi < 7Tj is straightforward. To prove n(7r) < n, it has 
to be checked that n(7r)(x) C n (i), i.e. that rt(7r)(x) Cu for each ultrafilter 
u D n(x). This is evident if u x. Otherwise, there is an i E I  with x E X iE  
u. Now u I Xi D n(x) | Xi, thus u | Xi D p| ttí(x ). For each iq x, we have 
uj x. Therefore u D H tt(x ) = n(7r) (x). □

R emark. (2) could also be formulated in the following equivalent way: 
u x  iff either u D n(x) and there is no i with x E Xi E u, or there is an i 
with u I Xi x.

12.2 If each iq is symmetric then so are n°(X,7q) and 7r1(X, 7rj). [[12] 
Corollary 3.2.] The problem of symmetric extensions in a closure space is of 
no interest, since n is symmetric iff n(7r) is so.

12.3 The analogue of Proposition 10.4 holds for pointwise reciprocal ex
tensions of pseudotopologies in a set (replace the filters by ultrafilters). Proof 
of the sufficiency: the convergences A°(7Tj) form a family satisfying 10.4 (2), 
and they are pointwise reciprocal (Lemma 9.2, remembering that A0 (7rj) is a 
limitation), thus 7r(Ap(2T, A°(7q))) is an extension, and it is pointwise recip
rocal, see 10.5. The finest pointwise reciprocal pseudotopology 7rp coarser 
than the symmetric pseudotopology n can be described as follows: u x 
iff there are n E N  and x \ , . . . ,  xn such that x =  x\, xm — > (1 ^  m  < n),
u — x n. With this notation, 7Tp(X, 7Tj) is the finest pointwise reciprocal 
extension. The extension given in the proof above is in fact also equal to 
the finest pointwise reciprocal extension: Let 7r be a pointwise reciprocal ex
tension. Then A0 (n) is a pointwise reciprocal extension of the convergences 
A°(7Tj), thus A°(7t) < Ap(X, A°(7T;)); take now the induced pseudotopologies 
on both sides.

If 7T is pointwise reciprocal then so is n(7r); conversely, if n is pointwise 
reciprocal then so is 7r°(n).
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P r o p o s i t i o n . A family of pointwise reciprocal pseudotopologies in a 
pointwise reciprocal closure space has pointwise reciprocal extensions iff the 
following condition holds for each i , j  G I:

(1)if  x e X i \ X j ,  y e X j \ X i ,  n(x) = n (y), u Xj G  u- then u- | Xj  —b  y;

if so then there exists a coarsest pointwise reciprocal extension.
P r o o f . 1° The necessity is obvious. If (1) holds then it remains valid for 

each x  G Xj, y G Xj:  Assume first y G X j .  Then n(x) = n(y) implies nj(x) =
n?(y), y G P| ni{x )i y e  7 T j ( x ) ,  Ki(x) = 7Ci(y); hence u* -^Ay, and u] \ X j  -^» y  
by the accordance. In the case x G Xj,  use the same reasoning, but begin 
with applying the accordance. Put
(2) w
u x  iff u D n(x), and u | X{ —A y whenever i G I ,  y G Xj G u, n(x) =  n(y).

tv is a pointwise reciprocal pseudotopology: if z  — x then z G f) n(x), thus 
n(z) = n(x), hence ir(z) =  rr(x), since 7r(x) is determined by n(x). If we show 
that 7r is an extension in (X, n) then it is clearly the coarsest pointwise 
reciprocal extension.

2° 7r is an extension. 7r > n°(n, Wi) (cf. 12.1 (2)), which is an extension, 
so we have only to prove that n \ X\ < 7Tj. Assume u8 x, u =  u |. Then 
u D n(x) (as 7r< is compatible). If j  G /, y G X j  G u, n(x) = n(y) then, by (1),
u I X j  —J-> y; thus u x.

3° 7T is compatible, u x  implies uD n(x), thus n(7r)(x) Dn(x). To 
prove the converse, let n(x) C u G Ult X.  If u ^  tt(x) then there are i G I, 
y G Xi  G u such that n(x) =  n(y). Now u D n(y), and we can proceed as in 2° 
of the proof of Proposition 12.1. □

12.4 It is not clear which closures can be induced by a reciprocal pseu
dotopology; by Lemma 5.2, these closures are the same as the ones that can 
be induced by Cauchy structures.

§ 13. Convergences and limitations in a closure space 
13.1 A family of convergences in a closure space always has extensions; 

this can be proved similarly to Proposition 12.1, but it can also be obtained 
in two steps: the induced pseudotopologies have an extension by Proposition
12.1, and then the convergences can be extended in this pseudotopological 
space (Proposition 10.2).

A°(n, Ai) = sup{A°(n), A°(A, A*)} =  A°(7r°(n, 7r(A2)), A,)

is the coarsest extension. If each Aj is a limitation then so is A°(n, Aj), since 
it is the supremum of two limitations (cf. 11.1).

tudományos akadö*^  
Könyvtára
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13.2 A symmetric convergence induces a symmetric closure; conversely, 
a symmetric closure can be induced by symmetric convergences; A(̂ (n )  is
the coarsest one (12.2 and 10.3). A family of symmetric convergences in a 
symmetric closure space always has symmetric extensions; A^(n, Â ) is the 
coarsest one (12.2 and Proposition 10.3).

13.3 A pointwise reciprocal convergence induces a closure with the same 
property; conversely, if n is a pointwise reciprocal closure then the limitation 
A°(n) is pointwise reciprocal =  symmetric (12.3 and 10.5).

P r o p o s it io n . A family of pointwise reciprocal convergences in a point- 
wise reciprocal closure space has pointwise reciprocal extensions iff 10.5 (1) 
holds with tx replaced by n; if so then there exists a coarsest pointwise recip
rocal extension.

PROOF. Sufficiency. The conditions of Proposition 12.3 are satisfied for 
the pseudotopologies 7t(Aj), so they have a compatible pointwise reciprocal 
extension n. Now n(x) = n(y) implies n(a:) =  n(t/), thus 10.5 (1) holds, and 
so Proposition 10.5 yields a pointwise reciprocal extension compatible with 
7T, hence with n. The infimum of all these extensions is also a pointwise 
reciprocal extension, see in 2° of the proof of Proposition 10.5. □

If each A* is a limitation then so is the coarsest pointwise reciprocal 
extension. (See the proof of Proposition 11.3.)

13.4 A closure can be induced by a reciprocal convergence (or reciprocal 
limitation) iff it can be induced by a Cauchy screen. (Apply Lemma 4.1: 
If © is a compatible Cauchy screen then A(6) is a compatible reciprocal 
limitation; if A is a compatible reciprocal convergence then there are Cauchy 
screens compatible with Ajim) hence with the closure, cf. Lemma 5.1 a).)

§ 14. Extensions in two steps
In § 13, we obtained some results for extensions of convergences in a 

closure space in two steps: first extending the induced pseudotopologies, 
and then the convergences in the pseudotopological space. This method can 
clearly be applied if there are extensions in both steps without any additional 
assumption (as in 13.1, see also [10] 5.7, 6.3, [13] 8.6), but sometimes also 
in more interesting cases (e.g. Proposition 13.3, see also [10] 5.12, and the 
Riesz and Lodato extensions in a set in [14], [15]), although not always (see 
e.g. [10] 5.26).

Some results on extensions of screens in a pseudotopological space can 
also be obtained through an extension of the induced convergences. E.g. the 
second half of the proof of Theorem 9.3 (from 3° on) can be replaced by the 
following:

With Ai = A(©j), the conditions of Proposition 10.5 are satisfied: apply 
9.3 (1) to n = 2, x\ — x , x 2 = y , i \=  i , Í2 = j  and the filters i ,  sj fly. Thus, by 
Proposition 11.3, the symmetric limitation A =  Aplim(7r, Aj) is an extension.
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According to 9.1, it is enough to show that the screens 6 j have an extension 
compatible with A, since all these extensions are pointwise Cauchy. This 
means that only 2.2 (3) has to be checked; but it is equivalent to the gener
alized form of 9.3 (1) obtained in 1° and 2° (use 10.2 (1) and Lemma 10.4; 
in the latter xm —> x m+i with A1^ ,  A j) is equivalent to n(xm) = 7r(a;m_|_i)).

Theorem 5.3 cannot be obtained in two steps:
E x a m p l e . Let A  =  NU{0}, Ao =  N, 7r(x) =  { i}  if x ^  0 ,7r(0) =  Ultf X  U 

{Ó}, ©0 =  Ult+ A0U Filf A0. The conditions of Theorem 5.3 are satisfied, but 
there is no Cauchy extension compatible with the finest reciprocal extension 
of A(©o) =  the discrete limitation, which is Aplim(7r, A(©o)) by 11.4, and is 
now equal to A11im(7r): 4.3 (1) does not hold for to £ Ultf Ao and the filter so 
consisting of the cofinite sets.

Taking the coarsest reciprocal extension of A(©o) (see 11.4 and Propo
sition 11.3) is no good either: Let ©(, consist of the finite intersections of 
free ultrafilters (and of the obligatory elements). The conditions of Theorem
5.3 are again satisfied. A°(7r) is the coarsest reciprocal extension of A(©0). 
Now ©Ó has no extension compatible with A°(7r), since 2.2 (3) fails for so 
consisting of the cofinite sets. □

(Received July 31, 1993)
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MEAN CONVERGENCE OF EXTENDED HERMITE 
INTERPOLATION OF HIGHER ORDER1

B. DELLA VECCHIA, G. MASTROIANNI and P. VÉRTESI

Abstract

The authors establish necessary and sufficient conditions for the weighted Lp-con
vergence at given rates of Hermite interpolation of higher order based on extended Jacobi 
matrices plus the endpoints ±1. Theorems on simultaneous approximation are also proved.

1. Introduction

Let tt; be a Jacobi weight, i.e.

w(x) =  va,l3(x) := (1 — x)ö (l + x)^, a , ß > - 1 , |x| ^  1 ,

and put w*(x) = (1 — x2)w(x). Let us denote by pn’f\ x ) \=pn(w\x) the nth 
orthonormal Jacobi polynomial corresponding to the weight w , by Xi>m+1 = 
X{, i =  1, . . m  + 1, the zeros of pm+i(w, x), by pm(w*;x) the mth orthonor
mal Jacobi polynomial corresponding to the weight w* and by x*, i = 1 , . . m, 
the zeros of pm(w*). It was proved in [7] that the zeros of the polynomi
al q2m+\ := Pm+\ are simple and in (—1,1) they have an arcsin
distribution. This property allows us to introduce the so called extended 
interpolation matrix based on the zeros of q2m+i plus the endpoints ±1 
and to consider the corresponding extended Hermite interpolation polyno
mial of higher order. Indeed, for a given function /  £ Cq~1([— 1,1]), q ^  1, 
we denote by Hmq^)S(w\w*] f )  the unique polynomial of degree at most 
(2m +  1 )q +  r +  s — 1 defined by

Hm q , r , s ( X k) =  / W(zfc)> i = 0 ,.. *C5 1 H—1 II i—1 .., m  +  1

H ^ s(w-w*-J-,xl) = f ^ ( x l ) , 2 =  0,. ■■,9-1, k = l , . . .., m,

3 = 0 ,..■ ; S ~  1,
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where r, s are nonnegative integers.
If r = s =  0, then we put Hmq$ fi(w\ w * \f) = Hmq(w, w*\/ ) ,  with 

Hmq(w;w*]f) the interpolating polynomial defined by

H mq,r,s{w',w*if'TXk) = f (l\ x k), Í =  0, . . g — 1, k = l , . . . ,m  + l,

H m\,rAW' W*’f ' Xk ) = f ^ \ xk), * =  0 , - . . , 9 - l ,  k = l , . . . ,m .
In particular, if r  =  s = 0 and q = 1, we get extended Lagrange interpolatory 
polynomials, while q =  2 gives extended Hermite interpolatory polynomials.

If r  =  s =  0 and <7 > 2, then Hmq(w\ w*; / )  is the extended Hermite inter
polating polynomial of higher order.

In [2, 5, 8, 13] the weighted Lp-convergence of Hmq)r̂s(w\ w*] / )  for q = 
1, 2 was studied and sufficient conditions for the simultaneous approximation 
were established.

In the present paper we establish both necessary and sufficient conditions 
for the weighted //'-convergence at given rates of polynomial Hrn(hr s (w; w*\ /) , 
V<7 ^  1. Necessary and sufficient conditions for the simultaneous approxima
tion are also given. The two main new tools are: the asymptotic formula for 
Q2m+1 > whence we get a fairly precise asymptotic for its roots (cf. Lemma 
3.4, (3.10) and (3.9)). By these, we can prove our fundamental Lemma 3.4 
(cf. [25, Lemma 4.3]). 2

2. Main results

We say that the function u is a generalized Jacobi weight (u G GJ) if
cr+l

(2.1) u(x) = ip(x) \tj — x\l j , |r r |^ l ,
i=o

where ip is a positive continuous function in [—1,1] and its modulus of con-
l

tinuity lo{ip) satisfies f  cv(ip; t)t~ l < oo, — 1 =  to <  ti < • • • < G+i =  1> further 
o

7j > —1, j  =  0 ,..., <7 +  1. If 7j > 0 , j  = 1 , . . a, then we say that u is a 
generalized positive Jacobi weight (u£  GPJ). Now, putting || • || the supre-
mum norm on [—1,1], we denote by En(f)  =  min \\f -  P|| the best uniform

P '̂Pn
approximation error, where Vn is the set of algebraic polynomials of degree 
at most n. Then we denote by || • ||p, 1 ^  p < oo, the usual Lp-norm and, if 
0 < p < 1, keep this notation for convenience.

Throughout this paper we let N  = (2m +  1 )q + r + s — 1 and M  = 
=  max{§ — l , r  — l ,s  — 1}. Then we state the main results (cf. [25, Theo
rem 3.1]).
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T heorem 2.1. Let w(x)  =  (1 — ar)“ (l +  x)ß , a , ß  > — 1, w*{x)  =  
= (1 — x 2)w(x),  u €  GJ and 0 <p < oo. Let f  G Cp([—1,1]), p ^ M . If

(2.2) u v -b '-k  E Lp,

with l integer, such that 0 ^  l ^  q — 1, and r  positive real, then

(2.3) II[/ -  Hmq^ s(w- w*; /) ] (i)it||p i  const E N- P(fW )
m P - l - r

for some constant independent of f  and m, whenever

(2.4)
l2+9>2+1I[U2 "<’2 1 ,?(a:)tp®(a;)]p

If, additionally, u GGPJ, l ^ p < o o  and p = q —l, then

in [—1,1].

(2.5) II [/ -  H m q , r , s { w \  w * ; / ) ] (i)u||p <] const ll/(p)ll
m p - l - r  '

V /€ C p( [ - 1,1]),

implies (2.4).
If we want a better rate of convergence (r =  0), then we have to replace

(2.4) by a stronger condition on the weight u. Indeed (cf. [25, Theorem 3.2]),
T heorem 2.2. Under the assumptions of Theorem 2.1, we have

(2.6) ||[/ -  Hmq>r,a(w- w * - J ) f u ||p S  ^ ^ - P( / (/,)), 

for some constant independent of f  and m, if

(2.7) uvr- * - q'a-b-*w~q ELp.

If, additionally, u g G P J  and p — q — 1, then

(2.8) ||[/ -  Hmq̂ s{w, w*-f)]W u \\p Í  const V/ G Cp( [ - 1,1]),

implies (2.7).
From Theorems 2.1 and 2.2, for u G GPJ, p = q — 1 and 1 ^ p < oo, we get 

the following corollaries.
COROLLARY 2.3. Under the assumptions of Theorem 2.1, for  0

% q~  2,

(2.9) lim ||[/ -  Hmq<rtS(w; w*;f)]^u\\p =  0, V/ G C9-1([—1,1]),
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( 2 . 10)
UP{x)vp!L̂ +1+rP ' P ^ +1+sP(x)

[v2+q’2+<>(x)wCl(x)]P
á K , in [—1,1],

PROOF. First we prove that (2.10) implies (2.9). Indeed, if in Theorem 
2.1 we put r  = q— 1 —/, then assumption (2.4) is equal to (2.10) and therefore, 
from (2.3), for p — l — r  =  0, we get (2.9).

On the other hand, if (2.9) holds, then we get (2.5) with p — l — r  =  0, 
and by Theorem 2.1 we get (2.4), that is (2.10). □

Working similarly, from Theorem 2.2, for l = q — 1, we get 
C o r o lla r y  2.4. Under the assumptions of Theorem 2.2 

(2.11) lim ||[/ — Hrnq̂r ŝ{u}] w*\ /)]^""1̂ r ||p — 0, V / e C ^ d - l , ! ] ) ,

iff
(2.12) u v ^ ^ - b + h w - ^ e L T

R e m a r k s . First note that, if q= 1 or q — 2, Theorems 2.1 and 2.2 gen
eralize previous results given in [8, 13] and [5], respectively, in the sense that 
they give necessary and sufficient (not only sufficient) conditions for the 
weighted ^^-convergence at given rates, even for higher order derivatives.

From Theorem 2.1 and 2.2, for the particular case p = q — 1, u € GPJ 
and 1 ^p < o o  it follows that (2.3) is equivalent to (2.4) and (2.6) to (2.7), 
respectively.

In Theorem 2.1 we need the additional assumption 1 < oo to prove
th a t (2.5) implies (2.4). This follows from the proof of Theorem 2.1, where 
we used Hölder inequality (cf. also [25]).

We also remark that the number t > 0 in Theorem 2.1 is not necessarily 
integer, hence we have infinite possibilities. (However, if r  =  0, we have to 
suppose (2.7) which is stronger than (2.4).) Moreover, comparing (2.10) in 
Corollary 2.3 and (2.12) in Corollary 2.4 shows the different behaviour of
the *th derivative of Hmq r s(w, w*- /) , 0 ^  i ^  q — 2, and Hmqr\(w , w*; / )  (cf. 
[25]).

Finally we remark tha t we can get results analogous to Statements 2.1- 
2.4, if we consider the extended Hermite interpolation of higher order on the 
zeros of the product polynomial [7, 9] Q2m(x) =p™+1,/3(a;)pm^+1(a;) plus the 
endpoints ±1. We omit the proofs because they are very similar to the above 
case. Here also the main tools are the asymptotic formula for Q2m(x ) (cf. 
Lemma 3.4)

Q2m (*e)
2q + |,2 /3 + |

Pm (x) 0 ( 1)

m 2 (sin | ) 2a+3(cos | ) 2̂ +3^

with x  =  cos 9 and relations analogous to (3.9), (3.11) and (3.12) for its roots.
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3. Proofs

If a and b are two quantities depending on some parameters, we write a ~  
b, iff a/b ^  const and b/a ^  const, uniformly for the parameters in question. 
Throughout this paper C and const stand for positive constants, which can 
assume different values in different formulas.

Let
w(x) = v1'5 (x)

be a Jacobi weight and let XiiTn(w) := XiiTn =  Xi, i =  1 ,2 ,..., m, be the zeros 
of the m th Jacobi polynomial pm(w) =Pm corresponding to the weight w. 
We denote by AitTn(w) =  X m ( w ,  Xi<m(w)), i =  1 ,2 ,. . . ,  m, the Cotes numbers, 
where m—1

\ m{w-x) = p-(w; x)
L i= 0

is the m th Christoffel function.
We collect some useful estimates in the following lemma (see [12, 24, 25] 

for references).
Lemma 3.1. Set Xi}Tn(w) = cos di}m, for 0 ^ i ^ m + 1, where xq, m { w )  = 1, 

=  - l  and 0 5= 9i>rn ^ 7r. Then

(3.1) @i,m @ i + i , m n^n n  ,

uniformly for m E  N]

(3.2) Ai,m(w) ~  m _1 (1 -  Xi^m{w))1+l,2{ 1 +  ®i,*»»(u,))<i+1/2i 
uniformly for 1 ^  i ^  m, m E  JV;

(3.3) Ipm(w\ x)| ^  const(\/l — x + m _1)_7_ 2 ( \ / l  + x + m _1)_<5_ 21 

uniformly for — 1 £ x  ^  1 and m E  N . Furthermore,

(3.4) |pm—1 Xi,m{w)) I ~  U)(XiiTn)  ̂ ( 1  —  X̂  m{w))  ̂

uniformly for — 1 5Í x ^  1 and m E  N  and

^m,k {w)pm —1 ( w ; x k ) p m (  w ; x )
(3.5) im A x ) = — r~ \--------------------------------------- 17 m { w )  X - X k

with lm^  the kth fundamental Lagrange polynomial and 7m(w) the leading 
coefficient of prn{w\ x)•

Let w*(x) =  (1 -  x2)w(x). Denoting the zeros o fpm(u;*;a:) by x *m, i — 
1 ,.. .,m , it results [3, 5, 7, 8, 9]

(3.6) (1 ) P m { w  ; X i , m + l )  =  A m P m { w - ,  X i tTn+i ) ,  i =  1, . . ., m  +  1,
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with
A _  7 m ( w )  , 1 m { w * ) l m { w )  ^ A

7^ +1W  >
and

( ^ • 7 )  P m + l  ^ i ,m )  B m P m —li'UJ  ̂ — 1 9 - - - 9 7TZ?

with
-om = ------ -—-  H----------- „, ------ - > U.

7m+i(u;) 7 2(lü*)
Moreover, if u is a GJ weight (see (2.1)), then there exists a constant c>  0 
such that for every polynomial Q of degree at most m  [15]

(3.8) \ m < c \Q\pu l

where 1^ =  XAm(c) denotes the characteristic function of

A m(c) =  [ - l  +  cm , 1 cm 2] \ U f c
1=1

cm ~l ,ti + cm x]

To prove Theorems 2.1-2.2 the following lemmas will be useful.
L emma  3.2 (see, e.g. [1, 4, 5, 10-12]). For every f  E C P([—1,1]), with 

p^O , there exists a sequence of polynomials {Gm} of degree m ^ 4 p  + 5, such 
that

| / W(x) - G $ ( z ) |  ^  const \ / l  — x 2' 
m

p - i
Em -P( f ip)),

with \x\ ^  1, i = 0 , . . . ,p  and for some constant independent of f  and m.
Lemma  3.3 (see, e.g. [1, 4, 5, 8, 10, 12]). Let l < p < o o ,  0 < c ^  1, 

p E GJ and E GJ. Let A be a polynomial of degree l(m  — 1), with l positive
integer, such that \A(x)pm(p; x)\ ^  4>(x) for x E (—1,1) and m  = 1 ,2 ,__
Given nonnegative integers r and s, and a function u E L 1, if v^r,s^p E L 1, 
<fm E Lp and (f>uv̂ r,s^p E (L log+L)P then

V .  Km(p)v^r,S\ x i tTn(p))
i— 1

rm(x ) F - - p )  u (x) A(^ (f f dX
J % %i,m\P)-1

<

^  const || l cmF\\p \  m =  l ,2 , . . . ,

for every function F  ^  0 such that F  E (L log+L)p with some constant inde
pendent of m  and F .

Letting £m{o) — [— 1 +  am ~2, 1 — am-2], a ^  0, we have our fundamental 
lemma (cf. [25, Lemma 4.3]).
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Lemma 3.4. Let w be a Jacobi weight, w*(x) = ( l —x 2)w(x) and q2m+1 — 
pm+i(w)pm{w*). For arbitrary # i,d2 ^ 0, fixed, u £ GJ and 0 i ^  q, if 
u<frl S Lv, we have

1107?2m+l )Wl du II (QÍ2 m + l ) X e n (dt)u\ m % v  5 9 2 m + l 1 m “ llp

-5-9.-

where the equivalence ~  depends on d \ , d/2 and p, but is independent of m. 
PROOF. We give here only a sketch.
Step 1. First we prove that, if <A:>2m+i=ifc=COSTfc,2m+ii ft= l, • ■ 2m+l ,  

are the roots of <72m+i(:r) =Pm+i(w,x)pm(w*] x) = p ^ 1(x)prnl,ß+] {x), then

2k +  2a + 1
( 4 . y j  t f c , 2 m + l  =  ~A , o _ .  I n o  , " h  s f c , 2 n i + l >

<
where

lífc,2m+l, = fcm, 

Indeed, by [18, 8.21.18)],

1

4 m  +  2a +  2ß + 6

1 ^ ft ^ (1 — e)(2m + 1).

<72m+l(z) =
1

V n +  1 vOt (sin %)a+2 (cos §)^+ 2

X I  cos 

1

m + 1 +
a+ ß+ l 9

2
1 \  7T

(“+ )
0 ( 1)

2 / 21 m sin#+

m̂7r (sin I ) q+2 (cos £)^+ 2
(3.10)

X < cos m +  1 +
a  +  / ? + l  (  1 \  7T 7T

- Ö~ \ a+  f )  2 ~ 2 +
0 ( 1)

m sin
2 Uinö /

2m +  1
7rm (m +l) 0 r v /2 m T T  (sin §)2<*+2(cos I ) 2#-*-2

x < cos ( 2 m  + 1 +
2a + 2/? + 4

(2a +  2 ) | )  + - ^ - |  = 2 / m sin # J
0 ( 1)\ /2 m  +  1 /  2a + f ,2/?+lv “— ' - H___ _______ ~ ^ _________'l

2 y jv \/m sfrn  + 1 V 2m4 1 (sin | ) 2a+3(cos | ) 2#+3'

with a; =  cos# and ^  ^  ^  7r — From the third inequality in (3.10), by
the argument of [22], since the roots of q2m+i are different (see [7]), we get
(3.9), for K  ^ K0, with K  = min(ft, 2m -F 2 — ft).
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Note that if k > (1 — e)(2m + 1), we use symmetry: =
= (—l ) mPma(—%)■ Formula (3.9) shows that if m \ =  2m +  2a +  ß  +  3, then

(3.11) 

From (3.9)

7T
f̂c+1 ~  )m\

if K ^ K 0.

± _pp 'a ^~ 2 '^‘9 +  2
uk,2m+1 <

K m
k = 1 , . . 2m + 1,

if cos 9k 22q+ , ,20+2 i _ 2 a + |,2 /3 + f
, k =  1, . . . ,  m  +  1, are the zeros of p2m+i ’

Step 2. Now we prove tha t for the roots of <72m+i (denoted by s^pm =  
cos (Jk,2rm k — 1,.. .,2m,) we have

(3.12) Cfc,2m =  +2 k+l + 9k,2m, k = l , . . . ,2 m ,

where \pk,2m\ Ú further sfc)2m are different.
Indeed, they are different (see [7]). Further if we evaluate

92m+l (*) =  Pm+1 (^; («>*! ®) +  Pm+l («>; x)p'm (w*; x)

at rr+ - cos I ~*~rffc+1 +  ) and =  cos2 K m
ífc+ífc+l Cl

K m
, then

< l2m + A x +)<l2m+l(x - )  < °

whence we got (3.12). Here K  ^  K q and ci > 0 must be big, fixed.
Finally, from (3.9) and (3.12), following [25], we have the assertion. Fur

ther details are left to the reader. □

From the proof of Lemma 3.4, following [25, Corollary 4.3.1], we can 
deduce

COROLLARY 3.5. Under the assumptions of Lemma 3-4, for df iO and
s í i ,

life92m+l ]<l)lí,<*llp~lltóm+l]'92m+l l í . “ H
I m l sv

; — l s — l
2 ’ 2 [q,2m + l

l(s)1c 
J r ,U\

Later we use the next
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S t a t e m e n t  3 .6 . The statements of Lemma 3.f and Corollary 3.5 hold 
true replacing [—1,1] by an arbitrary interval A from  [—1,1] and ~  do not 
depend on A.

The proof of this statement comes from the argument applied to get 
Lemma 3.4 and Corollary 3.5.

P r o o f  o f  T h e o r e m  2.1. Assume that r ,s  <q. The case r , s7 iq  is 
similar (see e.g. [25]). First we prove that (2.4) implies (2.3). Let rjy = 
f  — Gn , where Gn  is the polynomial of degree N  =  (2m +  1 )q +  r  +  s — 1 
defined by Lemma 3.2 corresponding to the function / .  For 0 < p < oo and 
Z =  0, 1 , — 1, we have

[f ~  Hmqj'S{w ,w * \f)]^u < const < (0r y u +
p l V Hmq,r,s(W' W*'rN)U

By [15, Theorem 5, p. 242], there is a number 0 < c* ^ 1, such that

(3.13)
[ /  -  H mq,r, s (w ; W*i / ) ] (i)U

' E N. p( fM)
< const np l tt

<

l lmq,r,s ( w ] w * 4, r j y ) v  2 ’ 2 u l m

where, as above, 1£[ denotes the characteristic function of the set Am(c*). 
On the other hand Hmq r̂ ŝ{w\ w*; f )  can be written as

/
Hmq,r,s{WiW*i f i X) = vr’S(x )Pm+l(wiX)H mq[ W* \ +

vr’SPm+ I M '

+ vr’s{x)pl{w*-x)H(m+1)q(w ; vr>sJm(w* y X I +

/+  W ,S(X)4m+l(X)Lr(Zi  W . q -  
\  v ^2m+l

+ vr’°(x H m +i(x )L s (Y ; - r ,

+

/where Hmq[ w*-,- q ,
VV «r’X +  iW

interpolating the function

°4m + ilX 1 1

; x  I is the Hermite polynomial of degree m q  — 1

/ and its derivatives up to the ( q  — l)-st
v r , s P m + i H

one at the zeros ofpm(tn*), H(m+ i j i o ;  rs q .—-r \x  ] is the Hermite poly-
\  V ’ P m \w  ) )

fnomial of degree (m +  l)q  — 1 interpolating the function
Vr 'sp qm ( w * )

and its
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(  íderivatives up to the (q — l)-st at the zeros of pm+i(w), Lr \ Z\ q----
V v ’S(Í2m+\

is the “Lagrange” polynomial of degree r — 1 interpolating the function
/ and its derivatives up to the (r — l)-st one at the node —1 and

L s ( Y ; r ■ ^  — J is the “Lagrange” polynomial of degree s — 1 interpolat- 
V yr’ Q2m+lJ

fing the function ——5-----  and its derivatives up to the (s — l)-st one at the

v ° ’S<l2m+l

node 1. Hence

(3.14) ^const

H,

vrfi4m+l

\Hmq,r,s{wi w j rjq)v 2> 2u -̂m\\p =

Hmq( w*; , r ,sn QP m + l ( w )
rN ' nr- k ’s-krfl2'S 2Pm+ l H “ 1 +

rN VT 2 ’Ä 2p^n ^W * ) u l =■ const [Ii +  I 2].
(m+i

To estimate I\, first we assume 1 < p<  00. Then, we recall that [24]
q— 1 m

= f {l)(x k,m)hi,kix )>
i=0 k=l

where the polynomials hi k(x) of degree exactly mq — 1 are uniquely defined 
by

hi l ( Xtm) = öiJök,l\
therefore

H m q W  ;
rN

’ vr'SPm+l H

9—1 m
s E E

i=0 fc=l

yN(x) 1(0
_vr’s(x)pgm+1(w) J |fri,fcO*OI :=

:— S q +  S i + • ■ • +  S q_ i .
Hence, from (3.14),

9-1
J l S E  S iPm+l(” )

r-Ls-^ic*  xmUV 2

i= 0

Denoting by j  the index corresponding to the closest knot to x, we have, for 
i  =  0 , .. . , q -  1,

S ,<
rN (x) (0

lv r’s{x)pQm+1(w ,x)\ X~Xj,m

E
k = l , k ^ j

rN(x)
lvr’s{x)pqm+1(w,x) x—xlk,m

\hij{x)\+  

\hi,k{x) \ := Aj +  Si.
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By Leibniz formula, from Lemma 3.2, [20, Lemma 3.3, p. 142] and [18, 
formula (4.21.7), p. 63], it follows, for k =  1, . . . ,  m, and N  — (2m + 1 )q +  r + 
s -  1,

(3.15)

r r N(x) (0
lvr’s(x)pqm+1(w ,x)\ x=x*.k,m

< const \ I 1 - 4 2
m

p-i
E N - P ( f [ p ) )

vr,S(x *k)\pqm+l(w'’Xl)\ '

On the other hand, recalling that ([14, Theorem 33, p. 171]) lm>j(x) ~  1, 
following [21, p. 374], we get

(3.16) \hij(x) \ ^  const
( l - z 2)!

777,

therefore, by (3.15) and (3.16), it follows, for O ^ l ^ q  — 1,

( V T = ^ ) lE N_p( f ^ )
vr’S(x )\Pm+l(w'’X)\AJ = COnSt m p

Hence

(3.17)

J s  i. E n - p ( . Í I'P^ )  llv? 9 t -̂1C*h  ^  const----- --------- + 2 ^  W^iPm+l M u l m
j = 0

m p

:= const
i=0

m p

where u = vr 2’s 2 u.
Now we recall ([21]) the useful inequality, for k ^  j ,  q — i even, (similarly 

we work for q — i odd ([21]))
(3.18)

- <7—2—i

\hi,k(x)\ ^ const \ l lm(x)\ \x-x*k\
mix — x.

J 1 - * ? .

Hence, by (3.15), (3.18), (3.2), (3.4), (3.5) and (3.7) 

\Pm-\-l j 3;)^'i| = const \pqm+l(w\x)\EN- p( f {p)):
p-i

1 +
m\x — xk

1 - 4 2

£ *2
fc,m (®) I

m /  ur’SK m )IPm +l(U;;4 ,m )l
<
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^co n st|g |m+1(x)|£;v_p(/(p))x
(3.19)

x £
k^j

V ' - <
p-i

n
A£ K ) l P m - l ( w*;4,m)l

\P m + l(w '> ^ r J I ^ K r J b  “  x k,r.
\q - i

to|x — x*k\
q—2—i

, \ h - 4 2 .
1 +

m\x — xk

i - 4 2
:= const [S' +  S'/j,

with

V,/ ^  I 9 / ^ E n - p Í Í ^ )  ^  ; r fc,m)7 (-*-+  Xfc,m)S i ^  const |g|m+i (x) |---- — ------^
Mi 77l̂ (x m)2

E, g const | ̂ m+1 (x) |-----— ------2 ^ ------------------------------------m,P k=/=j TO X — Xk,m  I

and 7 = ^  +  ag — r + g +  l,(5 =  ^ +  ag — s +  9 — 1.
Now, from the assumptions 7, 5 > 0, therefore, from [1, formula (4.21), 

p. 122] and [6, Lemmas 5.7 and 5.8, p. 164] we get

E '^const|g^m+1(w;x)|(3.20) ají ^  Julien. |y2m+l'  

and

(3.21) S " ^  const \qq2m+1(w ; ■■

E N - P( f {p))
m p

^ “ 1’i - 1(x) +  -  
m

, EN- P{ f ^ )  r
i 2 m + l \ - > - / i  m p

Therefore, from (3.4), (3.13) and (3.19)—(3.21) it results

(x) log to +  1

Si < const EN-P(fM) r.
m p

log m +  II uv 2r -L -a q -q ,s -L - -ßq-q-\c* IIí m  II?

Now, by routine calculations (see e.g. [25]) from (2.4) it follows

Si 5Í const E N ~ P( f {p))
m,P~r

Working similarly for I2, by (3.6) and [20, Lemma 3.4, p. 142], the assertion 
follows, for p > 1. In the case 0 <p  < 1, the inequality (2.3) can be proved 
following a procedure used in [16].
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Now we prove that, if u €  GPJ and p = q - \ ,  (2.5) implies (2.4). Following 
[9, 12, 24, 25], we define for k = 0 ,.. .,2m +  2,

Sk,m,q{x )
1

(9 -1 )!
t k + l  —  t k

7T

9-1 x - t k V  ' X - t k
Sin ----------- —7T I COS ---------------7T,

tk + l  tk  J  t k +\ tk

X  €  [ f̂c+l> t k ] ,

with tk,k  = l , . . 2m +  1, the zeros of g2m+i =Pm+i{w)Pm{w*) and i0 =  + l, 
t2m+2 =  — 1. Routine calculations show, for k =  0 ,.. .,2m +  1,

=  <!»,„«*+1) =  0. O i t i q - 2 ,

const

_ .W

,(0
I =  m q - l - t  >

Then we introduce the function

0 ^ < ^ 9 - i ,  x e  [ífc+i , í fc].

2m+2
W * )  =  5 3  ( - l)* ”** * ,^ * ).

fc=o

Obviously, Tmi9 € Cq 1([—1,1]) and 

T $ q(tk) = 0,

(3-22) T(?i- 1)(ifc) =  ( - l ) fc9,

ll̂ mjgll = const m/+1_9,

Since

0^A ;^2m  + 2, 0 ^ t ^ g - 2 ,

0 ^ A: ^ 2m +  2,

0 ^ g 9 - l .

P m ( w * i  x k , m )  =  ( - l )* +1bin(w*;a:fclm)l. 
P m + l i^ ^ )  = ( - l ) /C+1|Pm+l(ui;a;fc)l» 

from (3.22), for /i(rr) = x we have

Z m ( x )  :== xHmqtrtS(wm, W  \ T m ^ q \ x )  H m q t r i S { w ] W  '■> f  l T m t q ]  x) =

(3.23)

r,st \ q , A }(Xk,m)(X X*k,m) , ( \= v ’ ( i  p ^+1 {w;x) > « > q----7---- —  /»,_!,*(s ) +

+  ur’S(a;)Pm(ui*;a:) 5 3  ~ r/.------ ✓  ^ 7 ,,

V-' T ^ q X\ x k ) ( x - x k)

k =  1 {xk)pqm{w*\xk) hq—l,k{x) —
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q L +i(s)”ri' ( * ) ( - l ) g [ y ^ ________________1________________
(9 -  ! ) ! t,r,4(* fc ,m )IPm +l(w ; J |

m I 1 _m+1 -

+  £  vr,s(®A:)|Pm(«'*;a:fc)Pm+i(^;®fc)l 
„9g2m+1( ^ ) ^ ( ^ ) ( - l ) ? , v

(9 -1 )!

Now, using routine calculations (see e.g. [9, 12, 23, 25]), from the assumptions
we get 

(3.24)

On the other hand,

W(x)  ~  const m 

from Leibniz formula

1 - 9

[??„+. ( * ) V  M l®  = É  ( ! )  M l“’ fe5m+l(^)]<,_‘) .

and since for x £ [0,1]

we get, for £ £ [0,1],

[ur’s(x)](t)g C '( l - x ) r- t ,

W  ( l - x ) r
( l - x ) 5  2” +1

Now, using that m \/ l  — x  ^  %/Z in [0,1 -  A m ~2], with A arbitrary posit 
real number, from Lemma 3.4 it follows
i n o w , using mat n 
real number, from

■[9L+i»M](0X.„(A)u\ , ^C0 (1 - x ) r [9|m+1](l|(x)Xfm(/i)ti(x;

- E j  0
«=1

p>[04]

- ;c)r k2m+l](/)(a;)Xem(A)^(^)

[0 , 1]

«*,[0,1] ’

where || • ||p, [01] denotes the Lp-norm on [0,1]. Using similar argumenl 
we get for A  sufficiently large£ [—1,0] we get

(3.25) i C  V*[9lra+1](,)X,.(A)
V
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Therefore, from (3.23) (3.25) and Lemma 3.4

ll̂ mMlp ̂  const "jl_9 lvr'S(l2m+l}{l)u

> const m 1~q+l
(3.26)

>

vT *<l2m+lXem(A)U

On the other hand, from (3.22) we get

Ern(g) ^ const, for g = T ^ ~ l) and g = T ^ ~ 1)f l . 

Therefore, from (2.5), (3.8), (3.22) and (3.23) it follows

ll̂ mMlp = ll-̂ m lmullp =
=  Const|| [ f l { H m q r  s ( w ,  W  ; T m ^q)  T m ^q) —

~ Hmq,r,s{wi W ; / lT mq) + f u \ m ||  ̂^
(3.27)

const

+

{Emqtr)S(w,W \Tm q) Tm q̂)̂  ^ulm +

{Hmq,T,s{wi W ',Tm q̂) Tm^q)^u\^

[■Hmq^s{w\W*; f \ T m q̂) +  f lT m,q](l)u\

+

< const (Hmq,rAWi W*'-‘Trn,q) - T m^ 1 ^ u l + m 1 —q+l+T

Now let Gm = [ H m q S ' s i w - w ^ ^ m ^ - T m ^ 1 !). Following [24], using Holder 
inequality two times, for 1 ^ p <  oo, we get

Hence, from (3.27) 

(3.28)

||Gml^ u ||p ^  const m «||Gi„l£ti||,,.

ll^m uIIp = const m 1 9+,+T.

Now, if we put em(A) =  [— 1 + Am 2, —\ + 2Am  2] or [1 — 2.4m 2,1 —,4m 2], 
from (3.26) and (3.28) we get

const ^  const m r 

> const m~T

vT * 4 m + l X e m(A)

vr- * ’a-*q lm+lx em(A)U

from which by standard calculations (see e.g. [25]), we get (2.4). □



318 B. DELLA VECCHIA, G. MASTROIANNI a n d  P .  VERTES!

PR O O F OF T h e o r e m  2.2. F irs t  we p rove t h a t  (2.7) im plies (2.6). Fol
lo w ing  th e  p ro o f  o f  T h e o re m  2.1, we have

(3.29) [Ei +  Ei']Sl£ := S ' +  S".

Now set T =  sgnS". Then, working as in [1, 4, 5, 10, 12], by Lemma 3.2,
(3.2) and (3.4), we can write

S " p < const E N - P ( f M )

mP J 2 K m ( w ^ - r+qa- a- 1+q^ - S+Qß- ß- 1+g(x tm) X

i — 1

[  ®(s)|Eí'(®)«(*)lp \ u { x ) í ĉ ( x ) ]~ +_ ^ ^ ' —
J  x  x i , m-1 ’

Thus, from the assumptions, by Lemma 3.3

E n - p U { p ) )

dx

S ' < const mP

Working as in [1, 4, 5, 9, 11], we obtain

En - pU [p))Si < const mP

and, from (3.25), (3.14) and (3.17) the assertion follows.
Finally we prove that, if u G GPJ and p =  q — 1, (2.8) implies (2.7  ̂

Indeed, following the proof of Theorem 2.1, from (3.27) we have, for q — 1 
l > l

(3.30)

\ \ E ^ u \ \ p -S c o n s t  ||[/l(iTmq,r,s(ld; W * - T m tq)  — T m)q)  —

~~ H m q ,r ,S{'w 'i w  i f \E m ,q )  T ||p

^  C o n st W  \ T y n, q )  ^ m ^ )^  ^ u l m

<

+

+

+

{ , H m q^r ŝ ( w \  W  ] T m ^q) T m ^ q ) ^ u l +

[ H m q , r , s { w i w  )/l^m,<j) +  f i T m ^ q ] ^ u l m

Hence, from (2.8) and (3.22)

II ( H m q,r ,s (w- w*; T m<q) -  T m}q)( l)u l cn  ||p ^  const m 1+l- q,
(3.31)

|| \ H m q , r , s i , w ' i w  i f \ E m , q )  +  f  u ^ - m  ||p S  Const m 1 -\~l — q

ll
V

'r
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Moreover, let A be a fixed interval inside (—1,1). Then working as in the 
proof of Theorem 2.1, from (3.22) we get (see also [25])

\Hmq,r,s{w 'i w 'i' '̂m,qi x )\ =

< const m 1 9 V 2 ’ 2 (y j ) + l̂ l vr -aq-q ,s -ßq-q^

where 2yj =  tj + tj+\ and tj, 1 ^  j  ^  2m +  1, denotes the closest knot to x. 
Then, by a theorem in [19, 4.8.72] it follows that

I H m q , r A w i w * i T m , q i X ) {-1 1}|^

< const m l qv 2 > 2 (0,(Vj) X , l°g m _ . r - a a -v 2 > 2 (yj ) + r - a q - q , s - ß q - q

m (Vj)

Therefore

(3.32) |i /m<7)r)S(u;;r(;*;Tm]9;2;)li_1l| ^constm i_9, x e A .

Hence, by (3.32) and (3.22)

{Hmq r s(w\l W 5 Tm q) Tm q̂)̂ <

(3.33)
^  Const ( H m q^T ŝ ( w \ W  ] T m ^q)^ ^ X A U "I" { T m , q ) ^  ^XA^

V

^  const m l~q.

Then from (3.30), (3.31) and (3.33) we have

lim sup m q~l~l \ \Z$x a u \\p ^  const,

<

and by (3.23)-(3.25)

lim supm_/||wr,s[^  , i](i)XÂ ||p ̂  const.
m —> 0 0

Now, recalling the argument of the proofs of Lemma 3.4 and Corollary 3.5

J ^ 3UPm ~l\\vr’SW2m+l]l4 m+luXA\\p i  const,

with a constant independent of A, for every fixed A € (—1,1). Now, if l > 0, 
by Statement 3.6, from [17, Theorem 4] (see also [25, Lemma 4.7]), (2.7) 
follows.

If l — 0, from the assumptions we deduce

\\fl-Hmq,r,s{w ]w  î ra,i/)~Ilra?,r,s(wiw i/l̂ m,g)̂ ||p = Const Í71 9,
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and working as above we have from (3.23) and (3.24)

lim sup ||vr,s92m+1lillp = const.

Hence

const ^  \\vr'sqq2m+xu\\p ^  \\vr's qq2m+lu l ĉ  ||p ~  

tha t is the assertion.

w ’u

□
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SIMULTANEOUS EXTENSIONS

J. DEÁK

A b s t r a c t

This survey of simultaneous extensions of topological structures (meant for the general 
public rather than for specialists) is an amplified versions of a talk with the same title, 
presented on February 23rd 1994, in the course of a scientific session held to celebrate the 
70th birthday of Professor Ákos Császár. Only a basic knowledge of topologies and metrics 
is presumed; anything else will be defined (and, in most cases, some motivation for the 
definitions will be given). Certain details, e.g. the probably new (but quite simple) results 
on simultaneous extensions of (semi)metrics, the tables summing up the basic results for 
a lot of structures, or the bibliography of simultaneous extensions, could be of interest to 
specialists, too.

§ 1. What is an extension?

Let (X, T) be a metrizable topological space, Xo C X , and denote by To 
the restriction T \  Xo of T  to Xo. Assume that we are given a metric do on 
Xo inducing To (the expression “do is compatible with To" will also be used 
in the same sense). Now can do be extended to X, i.e. is there a metric d 
on X compatible with T  such that do =  d | Xo? If yes then such a d is a 
compatible extension, or shortly an extension. Hausdorff [07] proved that if 
Xo is closed then there are extensions. (This is a deep result.) In the general 
case, it is enough to know whether there is an extension to the closure of 
Xo, since if yes then Hausdorff’s theorem yields an extension to X.

So there remains the case when Xo is dense. The neighbourhood filter 
of each point p e X \X o  has now a trace f(p) on Xo, which will be called the 
trace filter of p. It is quite easy to prove that do has an extension iff the trace 
filters are round and Cauchy, where a filter f in Xo is round if for each S  S f
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there are T  G f and e > 0 such that x  G T, do{x, y) < e imply y G S, and Cauchy 
if it contains arbitrarily small sets, i.e. if for each e > 0 there is an S  G f with 
d(x , y) < e (x, y G S). There is in fact only one extension d from a dense 
subset, and (X,d) is a subspace of the completion of (Xo,do)- (A point in 
the completion is usually given as an equivalence class of Cauchy sequences, 
see e.g. [06] 4.5.6, but there is a natural one-to-one correspondence between 
these equivalence classes and the round Cauchy filters =  minimal Cauchy 
filters.)

There exist several (topological) structures other than topologies and 
metrics (some of them will be defined later), so the following more general 
question can be raised: Assume that a is a structure on the set X ,  cro — 
=  a  I X q its restriction to X q C X ,  So a richer structure on X q compatible 
w ith cro ( =  inducing oo). N ow is there a compatible extension of So (in 
the same sense as above)? If the answer is positive then we can look for 
extensions satisfying additional conditions, e.g. separation properties, com
pleteness, upper bounds on cardinal functions, etc. (In fact, there are cases 
when no necessary and sufficient condition for the existence of an extension 
is known, but it can be proved that if there are extensions then there are 
“good” ones, too.)

The structure a above is not necessarily a topology. E.g. let d be a 
quasi-metric, i.e. let us drop the symmetry condition d(x, y) = d(y, x) from 
the definition of metric. Then d induces a topology in the usual way (the balls 
round a point form a neighbourhood base), but the conjugate d-1 of d defined 
by d~1(x,y) = d(y,x) also induces a topology, hence d induces a bitopology, 
i.e. an ordered pair of topologies. So extensions of quasi-metrics can be 
investigated in topological as well as bitopological spaces. Similarly to quasi
metrics, there are other non-symmetric structures whose extensions can be 
considered in topological and also in bitopological spaces; the results in the 
two cases are usually essentially different. [11] is a detailed survey of such 
problems, putting a special emphasis on extending uniformities in topological 
and quasi-uniformities in (bi)topological spaces. [11] also contains a fairly 
complete bibliography of extension problems, to which we can only add now 
[09] (dealing with quasi-metrics in bitopological spaces) and some recent 
papers on simultaneous extensions.

A metric in a topological space is continuous as a function on the square 
of the space iff it induces a topology coarser than the one of the space (coars
er means that the collection of the open sets is smaller). More generally, the 
richer structure in the space (X, a) is called continuous if it induces a struc
ture coarser than a (assuming that the relation finer/coarser is defined for 
structures of the type a). It is often easier to find a continuous extension than 
a compatible one. Results on continuous extensions, however, can sometimes 
serve as stepping-stones when looking for compatible extensions. See [11] for 
details. (Caution! For quasi-metrics in a topological space, continuity as 
defined above is not equivalent to continuity on X  x X.)
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The extension problem could also be considered for structures other than 
topological ones. Assume, e.g. that A is a group, Ao a subgroup of X , and 
we are given a second operation on Ao which makes it a ring (or a topology 
making it a topological group). Under what conditions can the operation 
(the topology) be extended to X  such that X  becomes a ring (a topological 
group)? In the case of topological groups, it could also be assumed that the 
topology instead of the group operation is prescribed on X.  Should these 
particular problems turn out to be uninteresting, it is still possible that some 
similar questions, with different structures, are worth investigating. These 
algebraic and algebraic-topological extension problems (or their simultaneous 
versions, see § 2) may possibly have a literature; the author would be grateful 
for any information on this subject.

§ 2. What is a simultaneous extension?

Császár investigated in [1] § 5 extensions of proximities in symmetric 
closure spaces. (Both structures will be defined later; for the time being, it 
is immaterial what they exactly are.) He proved that if So is a compatible 
proximity on the subspace Xo  of a symmetric closure space (A, c) then So 
has a compatible extension <5 such that S | A\Ao can also be prescribed. 
Generalizing the above result, we proved in [10] 4.3 (using different methods) 
that even more than two (possibly infinitely many) compatible proximities 
given on subspaces have a common extension, and the subspaces do not 
have to be disjoint, it is enough to assume that any two of the proximities 
coincide on the intersection of their fundamental sets. This leads to the 
following general simultaneous extension problem:

Let a be a structure on A, A, C A (i G /), and Ej a richer structure 
on A i for i £ I  (the structures E* are assumed to be of the same kind, e.g. 
each of them a proximity). An extension of the (family of) structures E{ is a 
structure E on A compatible with a such that E | A; = Ej (i £ /) .  For I  — 0 we 
obtain the usually simple question whether there exists a compatible richer 
structure; 11 1= 1 is the extension problem discussed in § 1. There are two 
conditions evidently necessary for the existence of an extension: (i) each E* 
has to be compatible with eq =  a | Aj; (ii) Ej | Aj fi Aj = Ej \ X{ n  Aj ( i ,  j  £ 
I). More precisely, these conditions are necessary if we consider structures 
for which (a) taking the induced structure commutes with restrictions; (b) 
E | A =  (E | i?) | A if A C 5  C A and E is a richer structure on A. When 
speaking about a family of structures (in the space (A, a) ), it will always 
be assumed that (i) and (ii) are satisfied; we shall use the expressions that 
the structures are compatible and accordant.

There is one more obvious necessary condition: each cq (taken individu
ally) has to have an extension. Those cases are more interesting when this 
assumption is not sufficient: one has to search then for a set of necessary 
and sufficient conditions. Similarly to § 1, we can also ask whether there are
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extensions with some additional properties. When looking for an extension 
w ith property P, it has to be assumed that (X , a) admits a compatible struc
ture  satisfying P, e.g. if we want to have a complete extension of metrics in a 
topological space then it has to be assumed that the topology is completely 
metrizable. Moreover, if P is a hereditary property (as most of the sepa
ration properties are) then there is yet another trivial necessary condition: 
each has to satisfy P.

§ 3. A family of metrics in a topological space

Let us return now to the case of metrics in a metrizable topological space, 
and assume first that | /  | =  2, i.e. we are given compatible accordant metrics 
di (i = 0,1) on subspaces Xj of a metrizable topological space X.  If Xo and 
X \  are closed and Xo flX i ^  0 then the following simple construction due to 
Bing [02] yields an extension d of do and d\ to Xo U X \ :

d(x ,y )=d(y ,x )  =  ini{d(x,p) + d(p, y) : p e  X0 nX i} 
( x e X o X X u y E X ^ X o ) .

If Xo and Xi are disjoint then pick points pt £ X ,, and put:

d{x, y ) = d(y, x ) =  d0{x,pQ) + d\(pi,y) +  1 {x E X0, y E Xi).

In both  cases, the distance of pairs of points not figuring in the formula is 
determined by d | Xj =  di. Both the triangle inequality and the compatibility 
of d are easy to check. Applying then Hausdorff’s theorem to d, we obtain 
an extension to X. The same constructions also work when Xo and X \  are 
open and XoUXi — X .  B ut it can happen that metrics do and d\ given on 
disjoint open subspaces have no common extension, although they can be 
extended separately:

Let X be the plane w ith the usual Euclidean topology, d the Euclidean 
metric on X. Denote by Xo the upper and Xi the lower open half-plane, 
and let do = d|Xo, d \ = 2 d  \ X \ .  Both metrics have compatible extensions, 
e.g. d, respectively 2d, but assuming the existence of a common extension 
leads, through the triangle inequality, to contradictory conditions on the line 
X \ ( X 0  U X j ) .

In the case 11 1= 3, it is even possible that a family of metrics given on 
open-closed subspaces has no extensions, e.g. let X  =  {0,1,2} with the dis
crete topology, I  = X , Xi — X \ { i } , do(l, 2) =  1 =  d\ (0, 2), c?2(0,1) = 3. Both 
examples suggest that we would perhaps get better positive results if the 
triangle inequality were dropped from the axioms of a metric. Therefore, 
following [03], we define:

A non-negative real function d on X x X  is a semimetric on X if it 
satisfies the axioms

d(x ,y) = 0 iff a: = y (x,y(EX);



SIMULTANEOUS EXTENSIONS 327

d(x,y) = d{y,x) ( x ,y E X ) .
Balls are defined in the same way as in metric spaces:

Be(x) = B^(x) -  {y € X  :d(x ,y ) <e} ( x 6 l ,£ > 0 )

(the e-ball round x).  The neighbourhood filter n(:r) of the point x is the filter 
for which the balls round x form a base. In general, the neighbourhood filters 
do not generate a topology, but only a neighbourhood structure, which means 
that a filter n(x) is assigned to each x E X  such that x E D n(:r). Nevertheless, 
the closure cA of a set A c  X  can be defined just as in topological spaces:

x € cA iff A d  S  9 (S E n ( x )).

This operation c satisfies the following conditions:

c0 =  0; cA d A  ( d e l ) ;

c(A U B) = cA U cB (A, B C X ).
A function c:exp X  —> exp X  satisfying the above axioms is a closure [03]; 
(X, c) is a closure space. There is a one-to-one correspondence between 
neighbourhood structures and closures, and this correspondence (at least in 
one direction) was described above. It will be more convenient to consider 
semimetrics and some other structures in closure spaces rather than neigh
bourhood spaces. It is well-known that a closure corresponds to a topology iff 
it is idempotent; such closures will be called topological. The closure c = c(d) 
induced by a semimetric d can be described as follows:

x E c A  iff Ve > 0 3y E A, d{x,y)<e.

We do not deal here with the difficult question of giving conditions for the 
semimetrizability of a closure.

Let us consider a family of semimetrics d{ (i E l )  in a semimetrizable 
closure space. If I  is finite then an extension d can be obtained in the 
following way: fix a compatible semimetric d* on X , and let d(x,y) = 
di{x,y) if x ,y  E X, for some i (by the accordance, it makes no difference 
which i E  I  we pick), and d(x,y) =d*(x,y)  otherwise. A straightforward 
reasoning, using the last axiom of a closure, yields that d is compatible. But 
there may not exist an extension if I  is infinite:

Let (X, c) be a convergent sequence, i.e. X =  NU {0} and cA =  A  U {0} 
if A  is infinite, cA =  A if A is finite. Take the (semi) metric di on Xj = 
{0, *} {i E I  =  N) defined by d{(0,i) = 1. If d were an extension then we 
would have d(0, x) — 1 (i£ N ), contradicting 0 E cN.

From topological point of view, not the actual values of a (semi)metric 
are of importance, but the uniform continuity they define. Thus there is es
sentially only one semimetric on a two-point set, i.e. di in the above example 
could be replaced by the equivalent (semi)metric d* for which d*(0,i) = l / i ,
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and in this case there do exist extensions, even metric ones. Therefore we can 
perhaps hope to get better positive results if (semi)metrics are replaced by 
their equivalence classes; this question will be dealt with in the next section.

Our definition of c(d) might need some justification, since some authors 
consider a topology induced by semimetrics and other structures: let T(d) 
be the topology for which a set G C X is open iff for each x E G , G contains a 
ball round x\ in other words, F  is closed iff c(d)F = F. Using this definition, 
the quite natural assumptions (i) and (a) from § 2 would not be satisfied, i.e. 
there would exist a non-compatible semimetric on a subspace of a topological 
space that has an extension:

Let X q = {(0,0)} U {(1/m, 1 /n ) : m, n £ N}, X  =  Xo U {(1/n, 0): n€EN},

d((0,0), (l/n ,0 )) = d(( l /m,  0), (1/m, 1/n)) =  1/n (m ,n€N ),

the same when the order of the two points is reversed, and d(x, y) — 1 for 
other points x ^ y .  Put T  = T{d). Then do — d \ Xo has an extension, but it 
is not compatible, since do(x,y) =  1 for x ^ y ,  thus T(do) is discrete. F \  Xo 
is, however, not discrete: if G 3 (0,0) is T(d)-open then it contains some 
point (l/m ,0 ), hence also some point (1/m, 1/n) € Xo, thus (0,0) is not an 
isolated point in Xq.

§ 4. Equivalence classes of metrics

The semimetrics d and d* on X  are called (uniformly) equivalent if the 
identity map of X  is uniformly continuous in both directions, i.e. if for 
each e > 0 there is an rj > 0 such that d(x , y) < e whenever d*(x, y) < r/, and 
also d*(x,y) <e  whenever d(x,y) <y  (clearly an equivalence relation). We 
shall write d ~  d*. A semimetric equivalent to a metric is not necessarily a 
metric. By an equivalence class of metrics we mean the system of metrics 
equivalent to some metric; an equivalence class of bounded metrics is to be 
understood in the same way. An equivalence class of (semi)metrics could also 
be described as a (semi)metrizable (semi)uniformity. (Semiuniformities will 
be defined later.) Equivalent semimetrics induce the same closure (equivalent 
metrics the same topology), and if £ is an equivalence class of semimetrics 
on X , Xo C X  then {d \ X q : d G £} is an equivalence class of semimetrics 
on Xo (straightforward).

Hence we can consider a family of equivalence classes of semimetrics 
in a closure space, and ask whether there is an extension. Equivalently: 
semimetrics instead of equivalence classes can be considered in a closure 
space, relaxing the accordance as follows:

(~) di I Xj n  Xj ~dj  I Xi n  Xj  ( i , j ie /)

(compatibility has to left in its original form), and an extension is only 
required to satisfy d \ Xj ~  di instead of d \ Xj =  dj.
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In the same way, a family of equivalence classes of metrics in a topological 
space can be replaced by a family of metrics, assuming again (~) instead of 
the accordance. But we have to be more careful now: it is not true that the 
trace of an equivalence class of metrics is an equivalence class ( taking the 
usual metric d on the reals, one can easily define a metric do on N equivalent 
to d I N such that d(n, n +  1) = n, and then there is no metric d* ~  d with 
d* I N =  do); it can only be proved that the trace of an equivalence class con
sists of all the bounded elements and of some of the unbounded elements of an 
equivalence class (see [06] 8.5.6). Consequently, the trace of an equivalence 
class of bounded metrics is also an equivalence class of bounded metrics, and 
the simultaneous extension problem can be formulated as follows:

Let us be given compatible bounded metrics dj on subspaces X,  of a 
metrizable topological space; does there exist then an extension, i.e. a com
patible (bounded) metric d on X  such that d | Xi  ~  dj (i E / ) ?  The positive 
results for | 1 1=2 are the same as in § 3, see [11] 1.13, where (metrizable) 
uniformities are used instead of equivalence classes of metrics. (Or, assum
ing Xo (111 7̂  0, define d on Xo U l i  as in § 3, taking d(x,y) = do(x,y) 
for x ,y  £ Xo n l i ;  this d is only a compatible semimetric, but, using the 
Metrization Lemma [08] 6.12, it can be replaced by an equivalent metric.) 
The counterexamples given in § 3 do not work now, but they can be easily 
modified:

Let X  be the Euclidean plane, Xo the upper and X\  the lower open half
plane, d a bounded metric equivalent to the Euclidean metric on X , and 
d* another bounded compatible metric such that the traces of d and d* on 
X \(X oU X i) are not equivalent. Then the bounded compatible metrics d | Xo 
and d* I Xi given on disjoint open subspaces can be extended separately, but 
not simultaneously.

Take X =  N x {0,1,2} with the discrete topology,

7 =  {0,1,2}, Xj = X\(N x {*}), do{x,y) — 1 i f x ^ y ,

di((n ,0),(n ,2)) =  d2((n,0), (n, 1)) =  1/n (n£  N),

the same if the order of the points is reversed, and dj(x, y) — 1 for other pairs 
x ^ y  (i = 1,2). (~) is evident: in fact, the original form of the accordance 
holds. Assuming that d is a compatible metric on X with d | Xj ~  d{ (iE 
/), a straightforward calculation (using the triangle inequality) leads to a 
contradiction.

§ 5. Equivalence classes of semimetrics in a closure space

Neither dropping the triangle inequality nor considering equivalence class
es has led to positive results for infinite families, so we try now doing 
both at the same time: Let a family of semimetrics dj on subspaces Xj
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of a semimetrizable closure space A be given, requiring only the weak
er form (~) of the accordance; is there an extension d, in the sense that 
d I Xi  ~  di (ÍGÍ)? As in § 3, the answer is yes again if I  is finite:

Let I  =  {1,... , n}, put X n+x =  X,  take a compatible semimetric dn+1 
on X , and define d(x,y) = di(x,y) where i is the smallest one of the indices 
for which x ,y  E Xi. d\ Xi  ~  di is clear (for e > 0 take y which is good in 
(~) for each pair i , j  E  I ) ,  while the compatibility of d  can be proved in the 
same way as in § 3. It is, however, not true that any countable family has 
an extension. A counterexample is now somewhat more complicated than 
in § 3:

Let F  denote the collection of all the functions from N into N, X  =  
({0} UN) x f  with the discrete closure c (meaning that cA = A  for each 
A  C X ) ,  I  — N, Xi — {0, i} x F. Put

di((0, /) ,  (*, / ) )  =  di((i, / ) ,  (0, /) )  =  1 //(» ) ( i e l j E  F),

and di(x, y) = 1 for other pairs x j - y .  We have defined a family of semimetrics 
(in fact, metrics), even in the original sense. Assume that d is an extension 
(in the sense used in the present section). For each n£N , take rjn > 0 such 
that d(x,y) < l / n  whenever x ,y  E  X n and dn (x,y) < yn. Pick f  E  F  with 
V / ( n ) < Vn (n 6 N). Now d((0,/) ,  (n ,/ ) )  <  l /n  (n E N), contradicting 
the assumption that c is discrete.

We are going to consider now a generalization of the notion of an equiva
lence class of semimetrics for which the above example does not work. Given 
a semimetric d on A, put

U(e) =  U(e){d) = { (x , y ) : x , y E  X , d{x, y) < e} (e > 0).

Each Un is an entourage (—a reflexive relation) on A, and {U(e) : e >  0} is 
a base for a filter U(d) on X  x X  consisting of entourages. U{d) =U(d*) iff 

d*. U(d) has a countable base, e.g. {Í7(i/n) : n € N}; moreover, p) U(d) =  
A, which denotes the diagonal of X  x X,  and U{d) is symmetric in the sense 
that if U Eld(d) then so is Í7-1 (equivalently: U(d) has a base consisting 
of symmetric entourages). If a filter U of entourages on X  satisfies the 
three conditions above then U =U(d) for a suitable semimetric d on X  : let 
{Un : n  E  N} be a countable base, take for each Un a symmetric Vn EU  with 
Vn C f//v, and define

d(x, y) =  m in { l/n : n E N, x V n y}.

This means that families of semimetrics can be identified with symmetric 
filters of entourages satisfying two additional conditions. Dropping both con
ditions, we define a semiuniformity on A as a symmetric filter of entourages 
on A . (None of the notions defined in this paper is new; the reader interested 
in the sources might consult [6] § 1.) The essential part of the generalization



SIMULTANEOUS EXTENSIONS 331

consists in giving up countability; the separation property =  A might as 
well (but will not) be kept; a semiuniformity with this property is called Tj.

A semiuniformity U induces a symmetric closure c =  c(U) (symmetric 
means that x E c{y} implies y E c{x}), for which

x E cA iff for each U EU there is a yE A  with xU y .

The restriction of a semiuniformity U on X  to X q C X  is defined as follows: 

U \ X 0 = UD{Xo  X  X0), U \ X 0 = { U \ X 0 :UEU}.

These definitions are consistent with the ones used earlier for semimetrics.
Any family of semiuniformities in a symmetric closure space has exten

sions. We shall discuss the details later, after considering some other struc
tures in a closure space, because these other structures behave even better 
than semiuniformities. Let us only see now why the example above cannot 
be modified for semiuniformities: assuming that U is an extension and tak
ing arbitrary Un EU (instead of [/(i/n) from the example), there may exist a 
U EU (perhaps depending o n r G l )  with Ux C r\n^ U nx if the existence of 
a countable base is not required; thus the discreteness of c does not lead to 
a contradiction. (We write here Ux for {y E X  : x Uy}.)

§ 6. Proximities in a closure space

In a semimetric space (X, d), the sets A and B  are near if for each e > 0 
there are x E A  and y E B  with d(x,y)  < e. The relation 8 = 6(d) of being 
near has the following properties (J denotes that S does not hold):

ÜX-,

if AŐ B  then B 8 A (A , B C X);
if AnB^<D  then A 8 B  (A , B c X );

A 8 B U C  iff A 8 B  or A 8 C  ( A , B , C c X ) .
(A 8 B U C  stands for A 8 ( B U C )) .  As a generalization of this notion of 
nearness of pairs of sets, let us call a relation 8 between subsets of I  a 
proximity on X  if it satisfies the above axioms. The sets A and B  are 
called near, respectively far, according as AS B  or AS B. Note the following 
consequences of the axioms: if X  Z) A' D A 8 B  (Z B' C X  then A' 8 B '  ; 0 8 A 
for AC X.

The restriction <$o =  <5 | Xo is given by A 8 q B  iff A, B  C X q and AS B. 
For proximities 8 and 8* on X,  8 is finer than S* (<5* is coarser than Í) if 
<5 C <$*. We could have defined the (proximal) continuity of maps, and then 
obtain restrictions and the relation finer/coarser in the usual categorical way;
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observe, however, that only the continuity of injective maps is of importance 
in extension problems, and the continuity of such maps can be described if 
we know the restrictions and the relation finer/coarser. (See [12] 1.2 for a 
more precise statement.)

In the more usual sense of the word (see e.g. [04] and [06], a proximity 
has to satisfy one more axiom:

(A) if A S B  then there is a C C X  with AS C and X \ C  S B.

6(d) satisfies (A) if d is a metric, but not necessarily if d is only a semimetric. 
A proximity 6 on X  induces a symmetric closure c =  c(6) on X :

x e c A  iff {x}SA ( x e X , A  CX).

This definition is consistent with the one given for semimetrics: c(S(d)) = 
c(d). Let us take now a family of proximities Si on subspaces A,; (i £ I) 
of a symmetric closure space (X, c); note tha t conditions (a) and (b) from 
§ 2 are satisfied (as they will be in all the cases to be considered later). 
Then there are extensions; in fact, there are a coarsest and a finest one. The 
finest extension, denoted by 51, can be easily described: A S 1 B  iff one of the 
following conditions holds:

(1) A n c £ ^ 0 ;

(2) c A n R ^ 0 ;

(3) A  fl Xi Si B  fl Xi for !

W hen necessary, the more precise notation 51(c, Si), or even Sl {c, {<5̂ : i E /}), 
can be used. (The same applies in any similar situation.) A formula for the 
coarsest extension <5° is more complicated; see [6] § 1A for details.

Assuming (A) would cause the same problems as the triangle inequality 
in the case of (equivalence classes of) metrics, see [11] 1.16. But we can 
obtain reasonable positive results with other axioms weaker than (A):

A proximity S is Riesz, respectively Lodato, if A S B  implies c A d c B  =  0, 
respectively cAScB,  where c = c(i). A proximity satisfying (A) is Lodato, 
while a Lodato proximity is evidently Riesz. A Lodato proximity induces 
a topological closure (which will be identified with the associated topology; 
symmetric topologies are also known as Ro or Si). If S is Riesz then c — c(S) 
is weakly topological, meaning that x £ cA implies c{x} C cA. A closure c is 
symmetric and weakly topological iff x £ cA implies c{x} fl cA = 0 (“weakly 
separated” in [6]). A filter f in a proximity space (X,S) is compressed if for 
any A , B c X ,  A D S '= £ $ ^ B C \S  ,(S  £ f) implies A SB .  A proximity S 
is Riesz iff the neighbourhood filters are compressed; it is Lodato iff c(S) is 
topological, and for any compressed filter f, the coarser filter generated by
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the open elements is also compressed. The Riesz and the Lodato properties 
are hereditary.

A family of Riesz proximities in a symmetric weakly topological clo
sure space has Riesz extensions iff the trace filters are compressed (i.e. for 
each x £ X  and i  £ I, n(:r) | Xi  is áj-compressed where n(x) denotes the 
c-neighbourhood filter of x; in case x £ cXi, we can either say that x  has no 
trace filter on Xi, or expX, has to be allowed as a filter, which is evidently 
compressed ). If so then S° is Riesz, and there exists a finest Riesz extension 
ift, too. A S r B  iff either

(4) cAflcB ^  0,

or (3) holds ([6] § IB). Consequently, a family of proximities in a closure 
space has Riesz extensions iff each of the proximities considered separately 
has one.

A family of Lodato proximities in a symmetric topological space has 
Lodato extensions iff the trace filters are compressed and

(5) A Si B  implies cA fl Xj Sj cB fl Xj  (i , j  £ I)

(observe that this is a strengthening of the accordance; it follows from the 
other conditions that (5) holds for i  = j ,  so we could write i  ^  j  in (5)). If 
so then there is a finest Lodato extension for which A SlL B  iff either (4) 
holds or

(6) cA D Xi Si cB fl Xi  for some i E  I

(compare with (3)). Equivalently: A S\ B  iff cA S1 cB . A formula for the 
coarsest Lodato extension <5^ is more complicated ([6] § 1C). Consequently, 
a family of proximities in a closure space has Lodato extensions iff each 
subfamily of cardinality ^  2 has one. All the proximities <f° D <5^ D <5̂ D Sr D

i 1 can be different. Each of these proximities can be written as the supremum 
(for the first two), respectively infimum (for the others), of the extensions 
of the same type taken for the subfamilies of cardinality 1. (Supremum and 
infimum are to be understood with respect to the relation Ó < (5* iff <5 D  S*. 
Infimum just means intersection, and a formula for the supremum could also 
be given.)

Some sufficient conditions: a family of Lodato proximities in a symmetric 
topological space has Lodato extensions assuming that (a) each Xi  is closed, 
or (b) each Xi  is open and the trace filters are compressed, or (c) 11 1= 1 and 
the trace filters are compressed. As a common generalization of the above 
results, we also have the following sufficient condition:

(d) c ( X A X ;) n ( x ,W  =  0 ( i , j e i )

and the trace filters are compressed ([6] 1.13).
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Sr  and can also be obtained in a different way based on a categorical 
consideration that works in several similar situations: Given a proximity £, 
there is a finest one among the Riesz, respectively Lodato, proximities coarser 
than  S; this will be denoted by <5r , respectively 5 l - N ow a straightforward 
argument yields that if there are Riesz or Lodato extensions then (51)r , 
respectively (ó1)^  is the finest one; thus Őr =  (<51 ) r  and <5̂ =  (á1)l- The first 
equality remains in fact true even if there is no Riesz extension, assuming 
th a t <5̂  is defined by the formulas (1) to (3) (if c is only symmetric but not 
weakly topological then it has to be replaced by the finest weakly topological 
closure coarser than c, see c r  in [13] 5.2, where c* is coarser than c if c* A  D cA 
for each A), cf. [14] 11.1. The analogous statement for (<f1 )l is false, see
[14] Example 12.2. Note also that, even if there are Lodato extensions, <5^
cannot be always the same as (í °)l , since it is finer (not coarser) than <5°; 
this is why we have avoided the notation <5° used in [6].

§ 7. Merotopies and contiguities in a closure space

Let us consider the covers c in a semimetric space (X , d) for which there 
is an £ > 0 such that B e(x) is a subset of some element of c ( i £ l ) .  (In a 
metric space, such covers are usually called uniform.) The collection fül of 
these covers satisfies the following conditions:

if c G 311 and c <  D then D G fül;

if c, ö G 971 then there is a b 6 fül with b < c, b < 5.
Here c < 0 means that c refines D, i.e. for each C £ c there is a D ED with
C  C D. Now a non-empty collection fül of covers of X  is called a merotopy 
on X  if it satisfies the two conditions above. A collection of finite covers
with the same properties is a contiguity (in the first axiom, we have to add
to the premise that D is finite). Restrictions can be defined by restricting 
each cover: c | Xo =  {C D X q : C € c}. 9JÍ* is finer than OT if fül* D fül.

A merotopy fül induces a contiguity T(fül): take the finite elements of fül. 
A contiguity T induces a proximity <$(r):

A ő B  iff {X \A ,  X \ B } e T .

Replacing T by fül, a merotopy fül also induces a proximity í(fül); clearly, 
<5(T(fD!)) = <5(fül). We define the induced closure by c(fül) = c(á(fül)), respec
tively c(r) =  c(j(r)); this means that

x e c A  iff {A \{x},A \A }^fül.

Equivalently, the c(fül)-neighbourhood filters can be given:

n (x ) =  { U { C  £ C }  : c €  fül}.



SIMULTANEOUS EXTENSIONS 335

A merotopy 971 is Riesz if c G 971 implies that int c is a cover; it is Lodato 
if int c G 971 whenever c G ÜTÍ. Here

int c =  {int C : C G c}, int C = X \ c ( X \ C ),

with c =  c(97t). If 97t is Riesz or Lodato then so is A filter 97t in a
merotopic space (A, 97t) is Cauchy if fH c^ 0  (cG97t). A merotopy is Riesz 
iff the neighbourhood filters are Cauchy; it is Lodato iff it induces a topology, 
and for each Cauchy filter f, the open elements of f generate a Cauchy filter. 
A merotopy is Lodato iff it induces a topology and has a base consisting of 
open covers, where 03 C ©I is a base for Oil if any element of 971 is refined 
by some element of 93. The above definitions and statements can also be 
repeated for contiguities. If 97t is Riesz or Lodato then so is T(97t). Lodato 
merotopies are Riesz.

The same can be said about simultaneous extensions of merotopies or 
contiguities in a closure space as in the case of proximities in § 6. The 
formulas are, of course, different, and “compressed” has to be replaced by 
“Cauchy”. Even the formulas can be made similar if we use another well- 
known approach to merotopies: a C exp exp A is far if {A\A : A G a} G 97t; 
otherwise, a is called near. Now near or far pairs of sets from the formulas 
in § 6 have just to be replaced by near or far systems (only finite ones for 
contiguities).

§ 8. Semiuniformities in a closure space

Let us return now to the semiuniformities, which were defined in § 5. A 
(sub)base for a semiuniformity is to be understood in the usual sense of a filter 
(sub)base. For semiuniformities on the same set, U* is finer than U if U* D U. 
Similarly to the contiguities, the semiuniformities can be inserted between 
the proximities and the merotopies. A merotopy 971 induces a semiuniformity 

while a semiuniformity U induces a proximity 6(U):

{ U  C x C - . c e  971} is a base for U( 971);
c e  c

A5(U) B  iff for each U EU there are x  G A, y G B  with x U  y.
Examining the case of structures induced by (semi)metrics, one can see that 
these definitions are quite natural; they are also consistent with the earlier 
definitions: <5(971) =  ó(Zd(Wl)) and c{U) =  c(6(U)).

A semiuniformity U is Riesz if A C Int U (U EU), and Lodato if Int U E 
U (U EU). Here Int denotes the c(U) x c(U) -interior, and the product of 
two closures can be obtained, just like for topologies, with the products of 
the neighbourhood filters, i.e.

(x, y) E Int(7 iff there are A E n(x) and B E n(y) with A x B  C U.
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Lodato semiuniformities are Riesz; both properties are hereditary. A filter f 
in a semiuniform space (X , U ) is Cauchy if for each U EU there is an S E f 
with S  x S  C U. A semiuniformity is Riesz iff the neighbourhood filters are 
Cauchy; it is Lodato iff it induces a topology and has a (sub)base consisting 
of open entourages. A Riesz semiuniformity induces a weakly topological 
closure.

The analogues of most of the results from §§ 6 and 7 hold for extensions 
of semiuniformities in a closure space. The notations U{\  etc. will be
used in the same way as the similar notations with 6. The entourages

(1) i/f =  [/i u ( i x i \ i , x i 1) ( i e i ,U ie i i i ) \

(2) (X\{:r}) x (X \ { x } )  U (X \B)  x {X \B )  (x E X, B  C X, x (£ cB)

form a subbase for U°. U l consists of the entourages satisfying the following 
two conditions:

UxEn(x) (x E X );

u \ x i e u l ( iE i) .

There are Riesz extensions iff the trace filters are Cauchy. For Lodato ex
tensions, (5) from § 6 is replaced by the assumption

(Int CfP) I Xj  EUj (i , j  E l ,  Ui EHi).

Moreover, U° is the coarsest Riesz extension;

U l = {U EU l : A C in t 17};

Ul = {U EU1 : ln tU EU l }\

{Int U : U E U°j is a base for U^.

In other words, the c x c-open elements of U l form a base for U£ (note that 
c is assumed to be a topology, hence c x c is a topology, too); the entourages 
Int U with U taken from the subbase (1) and (2) form a subbase for U

There is, however, a slight difference: although the analogues of (a), (b) 
or (c) from § 6 (with “compressed” replaced by “Cauchy”) are sufficient for 
the existence of a Lodato extension of a family of Lodato semiuniformities 
in a symmetric topological space, (d) is not sufficient. The deeper reason for 
this surprising phenomenon is not clear, therefore it seems to be worthwhile 
to reproduce the counterexample from [7] 2.9 (with a modification to make 
the semiuniformities easier to visualize):

Let N  =  { 1 /n : n E N}, Ss =] — e, 0[, Te =]0, e[,

X  = {{0}UN)  x (S iUTi),  X 0 = X \ ( { 0 } x T 1), X i = X \ ( N x S i ) ,
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H(e) =  U^(d)  with the Euclidean metric d of the plane. Denote by c the 
Euclidean topology of the plane restricted to X.  Writing P ® Q  for P  x Q u  
Q x P, let

U0(e) = (V(e) I X Q) U (({!/«} xT E)® (({0} U { l / k  : k > n } ) x  SE)),
n£  N

U\(e) = (E(e) | X i ) U ((({0} UN) x Te) ® ({0} x Se)).
Take the semiuniformity Ui on X{ for which {Ufie) : 0 < e 5Í1} is a base (i = 
0,1). We have defined a family of Lodato semiuniformities in the symmetric 
topological space (X , c) (the compatibility is easy to see; the accordance is 
evident; they are Lodato, since the basic entourages are open), (d) holds: 
even c(Xo\Xi) nc(X i\X o) =  0; moreover, X"o is open and X\  is closed. To 
check that the trace filters are Cauchy, it is enough to consider the case 
i — 0, x £ {0} x]0,1[. Assuming that there is a Lodato extension,

U\(e) C (Int (l7o(l))0) I X\

with some e >  0, a contradiction, since the pair ((0, —e/2), (0, e/2)) belongs 
to the left-hand side, but not to the right-hand side (see the condition k > n 
in the definition of Uq(1) )■'

§ 9. Screens in a closure space

Collections of filters arise quite naturally in topology: take e.g. the 
convergent filters in a topological space, the compressed filters in a proximity 
space, or the Cauchy filters in a merotopic (or other) space. Denoting one 
of these collections by 6, the following simple conditions are always satisfied 
(although it makes no real difference, we allow now exp X  as a filter on X):

x = {SC  X  : xG S} £ & ( i 6 l ) ;

if s 6 6 , s C s' G Fil+X then s' £ S.
Here Fil+X  =  FilXU{exp X }, and FilX consists of the proper filters on X.  
6  C Fil+X satisfying the above axioms is called a screen (or filter merotopy); 
in view of the possibility X  =  0, 6 ^ 0  has also to be assumed. © | X q =  
=  {s I Xo : 5 £ ©}; 6* is finer than 6  if 6* C 6 .

A screen © induces a contiguity T(©) for which a finite system a is near 
(see at the end of § 7) iff a A s for some s £ ©, where

oAb iff A n H ^ 0  ( A £ a , B £  b).

Consequently, a screen 6  induces a proximity 6(6) =  $ (r(6)), and also a 
symmetric closure c(6) =  c(r(©)) =  c(<5(6)).

x £ c(S) A  iff x £ p | s and A fl S  ̂  0 (S' G s) for some s € 6 .
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In other words, n(x) is the intersection of the elements of © fixed at x  (s is 
fixed at x  if x  G P|s). A merotopy 971 induces a screen ©(971) consisting of the 
Cauchy filters. Each contiguity can be induced by screens, and each screen 
by merotopies. In general, r(97T) ̂ T(©(971)); even c(97t) and c(6(971)) can be 
different.

A screen 6  is Riesz if it contains the c(© ̂ neighbourhood filters; it is 
Lodato if c(6) is a topology, and for any s G ©, the filter generated by the 
open elements of s also belongs to 6. Any Lodato screen is Riesz; both 
properties are hereditary. The contiguity and the proximity induced by a 
Riesz or Lodato screen have the same property. Similarly, a Riesz or Lodato 
merotopy induces a screen with the same property (the fact that the two 
structures may induce different closures causes no problem, since if 971 is a 
Riesz merotopy then c(971) =  c(©(971)), see [18] Lemma 2.1). A Riesz screen 
induces a weakly topological closure.

Let us consider now a family 6* of screens in a symmetric closure space 
(AT, c). The results (taken from [2]) are different from those valid for other 
structures: There is an extension iff

(1) i G / ,  A C Xi, x  G cA =$■ 3sj G © i\{exp Xi}, A g s í —>x,

where a filter base b in X  converges to x , denoted by b —> x, if it generates 
a filter finer than the c-neighbourhood filter n(x) of x. It is easy to give an 
example where (1) is not satisfied ([2] 2.2). Thus even a single screen may 
fail to have an extension, but if each 6j separately has an extension then so 
has the whole family. If there are extensions then there is a coarsest one, 
denoted by 6°, which consists of all s G Fil+X  satisfying

(2) s converges to the points it is fixed at;

(3) s| A,G©i (iGl).

There is in general no finest extension (even in the case /  =  0, which means 
tha t there may be no finest compatible screen in a closure space, see [1] 3.15).

A family of Riesz screens in a symmetric weakly topological closure space 
has Riesz extensions iff for each i G I, the trace filters on X, belong to 6, 
(observe that (1) follows from this condition). Hence it is again enough 
to know that each screen separately has a Riesz extension. If there are 
Riesz extensions then 6° is the coarsest one, and there is also a finest Riesz 
extension 6 ^ , consisting of the c-convergent filters, and of the filters s| 
(i G I ,  Si G © i ) ,  where s\ denotes the filter in X  generated by the filter base Sj. 
(If there is a finest extension S 1 then ©^ is the finest one among the Riesz 
screens coarser than S 1; but, as mentioned earlier, 6 1 does not have to 
exist.)

A family of Lodato screens in a symmetric topological space has Lodato 
extensions if it has Riesz extensions (see above) and a condition similar to
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(5) from § 6 holds; if so then there are a coarsest Lodato extension 6 ^  
and a finest Lodato extension © f. Explicit formulas for ©j)  ̂ and ©| can 
be given, see [2] § 2 for the details, ©l is the finest one among the Lodato 
screens coarser than 6 . A family of screens in a closure space has Lodato 
extensions iff each subfamily of cardinality 2 has one. Differently from the 
case of semiuniformities, (d) from § 6 (including an assumption on the trace 
filters) is again sufficient for the existence of a Lodato extension.

§ 10. Simultaneous extensions in proximity and other spaces

The closure induced by a contiguity, semiuniformity, merotopy or screen 
can be obtained through a proximity. Therefore we can consider simulta
neous extensions of these structures in a proximity space. There are also 
other variations: screens in a contiguity space; merotopies in a contiguity, 
semiuniform or screen space. These extension problems are more difficult 
than the ones in a closure space. For lack of space, we only mention here the 
basic results in a tabular form. Extensions in a closure space will be includ
ed in the table for easier comparison. Neither the necessary and sufficient 
conditions nor the formulas for particular extensions will be cited.

Notations in the table

First column: The structure to be extended (denoted by the letter typi
cally used for the structure).

Second column: The structure on X  (c stands for a s y m m e t r i c  
closure).

Column E: Is there a simultaneous extension? (Assuming, of course, that 
the obvious necessary conditions are satisfied, i.e. that, in the case of Riesz 
or Lodato extensions, all the structures, including the one given on X,  are 
Riesz or Lodato, respectively weakly topological or topological in the case of 
a closure.)

+: Yes, always.
n (G N): If each subfamily of cardinality ^  n has an extension then 

so has the whole family, but the same is false with n replaced by n — 1.
f: If each finite subfamily has an extension then so has the whole 

family, but the stronger statements above do not hold.
—: None of the above.
?: The answer is not known. It can be any n ^  2 or f.

Column C: Assuming that there are extensions, is there a coarsest one? 
(+: Yes. —: No.)

Column F: The same with finest extensions.
Last column: References.
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E C F
Riesz Lodato

E C F E C F
Si c + + + 1 + + 2 + + [6]
r* c + + + 1 + + 2 + + [7]

c + + + 1 + + 2 + + [7]
u t c + + + 1 + + 2 + + [7]
©i c 1 + — 1 + + 2 + + [2]
r , Ő + + + 1 + + 2 + + [8]

S + + — 1 + - ? + - [8]
u. S + + — 1 + — ? + - [9]
©, 5 2 + — 2 + - - + - [2], [19]

U + + + 1 + + 2 + + [9]
r f + — f + - f + - [9]

© i r f + — f + - - + - [19]
OJli 6 + + + + + + 2 + + [18]

Some remarks:
If a structure is Riesz then so is any coarser structure inducing the same 

closure. Hence if there are Riesz extensions then the coarsest extension is 
Riesz. This reasoning does not work, and the statement is in fact false, for 
extensions of merotopies in a screen space, because the extension and the 
screen can induce different closures. Instead, the following holds: if a family 
of merotopies in a screen space has Riesz extensions then the f i n e s t  
extension is Riesz.

W hen extending Lodato structures in a symmetric topological space, it 
was enough to know that each X z is open and the trace filters satisfy a simple 
condition, or each Xi  is closed. If a Lodato structure instead of a topology 
is given then it can occur that one of these conditions is sufficient, but not 
the other. E.g. a family of Lodato merotopies given on closed subsets in 
a Lodato proximity space has Lodato extensions ([8] 5.22); one can give, 
however, two merotopies on disjoint open subsets in a proximity space such 
th a t they have Lodato extensions separately, but not simultaneously ([8] 
Example 5.20). On the other hand, a family of Lodato merotopies given on 
open subsets in a Lodato screen space always has Lodato extensions (without 
any assumption on the trace filters), but the same is false for closed subsets 
([18] 3.6).

§ 11. Cauchy structures
The following condition holds for the system 6  of the Cauchy filters in 

a metric space, or for the compressed filters in a proximity space satisfying
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(A), and also for the Cauchy filters in a uniform space (which was not defined 
in this paper):

i f s , tG©,  s A t  t hens f l t G©
(see § 9 for A). A screen 0  satisfying the above axiom is called a Cauchy 
screen or (in the more usual terminology) a Cauchy structure. Virtually 
nothing is known about simultaneous extensions of Cauchy screens in a clo
sure space ( if no additional properties are assumed); it is not even clear 
which closures can be induced by Cauchy screens, cf. [05]. Nevertheless, 
one might possibly look for a set of necessary and sufficient conditions, with 
the existence of a Cauchy screen compatible with c included as one of the 
conditions (similarly e.g. to Hausdorff’s theorem, where it is assumed that 
the topology is metrizable).

[3] contains, however, results on Cauchy Riesz and Cauchy Lodato (short
ly: CR and CL) extensions, including necessary and sufficient conditions. A 
closure can be induced by a CR (respectively CL) screen iff it satisfies the 
following condition:

(1) n(x) A n(y) implies n(x) =  n(y)

(respectively it is a topology in addition). Closures satisfying (1) are known 
as Ri, S2 or reciprocal. For Cauchy screens in a closure space, the following 
line can be added to the table in § 10:

I -  -  -  I f -  + I f -  +  I [3]

Observe that this is the first case where there are no coarsest extensions. 
(Although there is a coarsest one among the CR or CL screens inducing a 
closure.)

One can obtain better results on extensions of Cauchy screens if they are 
considered in a convergence space rather than a closure space. More general
ly, extensions of screens can also be investigated in convergence spaces. Let 
us recall that a function A : X  —> exp Fil+X  is a convergence on X  provided 
that

i  G A(x) (x GAT);
if s G A(x) and s C t G Fil+X  then t G A(x);

if s G A ( x ) then s fix  G A(x).

The elements of X(x) are said to converge to x, and s x  or s —> x  is also
written for s G A(x). The convergence A is a limitation provided that the 
following stronger version of the last axiom holds:

if s, t —̂ x then s fl t —> x.

Ao =  A I X q is defined by Ao(x) =  {s | Ao : s G A(x)}. A is symmetric if s —> x 
and yePl® imply s y, and reciprocal if A(x) =  A(y) whenever there is
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a proper filter converging to both points. A limitation A is symmetric iff 
x  —> y  implies A(x) =  A (j/); a convergence with this property will be called 
pointwise reciprocal. Reciprocal =>• pointwise reciprocal =4> symmetric. See 
e.g. the survey [01] for more on convergences.

A convergence A induces a closure c(A) for which n(x) = f) A(x) (x £ 
X);  note that more filters are c(A)- convergent than A-convergent. The 
convergence A(6) induced by the screen 6  is defined as follows:

s —»x  iff s6Fi l+A, s f l i G©.

c(6) =  c(A(6)). A convergence can be induced by a screen (a Cauchy screen) 
iff it is symmetric (it is a reciprocal limitation).

Simultaneous extensions of (Cauchy) screens in a convergence space were 
investigated in [16]. W ith the notations of the table, the results are
1 +  +  for screens in general, and f — +  for Cauchy screens in a recip
rocal limit space. Moreover, a family of two screens has a Cauchy extension 
iff the screens separately have one, but the same is false for a family of three 
screens (the analogous statement is also valid for CR extensions in a closure 
space, see [3] 2.14). Riesz, Lodato, CR or CL extensions in a convergence 
space do not have to be considered: these problems are equivalent to the 
same problems in a closure space, because if two Riesz screens induce the 
same closure then they also induce the same convergence.

Another type of structure can be inserted between convergences and 
closures: a function tt : X  —>• exp Ult X  (where Ult X  denotes the collection of 
the ultrafilters on X )  is a pseudotopology on X  if x £ tt(x)(x £ X) .  Instead of 
u £  7r(a:), we also write u -^4 x o r u - > r .  Restrictions and the induced closure 
are defined just as for convergences. tt is symmetric if x  —» y implies y —> x, 
pointwise reciprocal if x  —> y implies tt(x ) =  tt(y), and reciprocal if tt(x ) — n(y) 
whenever n(x) fl ir(y) ^  0. A convergence A induces a pseudotopology tt =

TT \
7r( A) in an obvious way: u — > x iff u £ Ult X  and u — >■ x. A screen © induces 
a pseudotopology tt( & )  =  7r(A(6)), i.e. u —> x  iff uGUl t X  and u f l i G © .  
Most authors identify the pseudotopologies with certain convergences, which 
is all right as long as only the category of pseudotopologies is investigated 
(since it is replaced by an isomorphic category). But such an identification 
should be avoided when considering extensions of screens: an extension in a 
pseudotopological space is not necessarily compatible with the corresponding 
convergence.

The results on simultaneous extensions of (Cauchy) screens in a pseu
dotopological space are analogous to those valid in a convergence space (see 
[16]), but, oddly enough, some of the proofs are more complicated.

Extensions of convergences or limitations in a pseudotopological or clo
sure space, and also of pseudotopologies in a closure space, were considered 
in [17]. The problems have been solved more or less completely, except in the 
case of reciprocal extensions in a closure space. The reason is that a closure
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can be induced by a reciprocal convergence or limitation or pseudotopology 
iff it can be induced by a Cauchy screen.

§ 12. Simultaneous extensions in a set
Let us consider now the following modification of the problem of simul

taneous extensions: Given a set X  (without any structure), X %(Z X  (i € I), 
and structures on X{, is there an extension, i.e. a structure S o n I  such 
that £  I Xj  = £j (i £ 1)1 More precisely, we speak about an extension in the 
set X ,  as opposed to extensions in a space. Accordance is again a necessary 
condition, while compatibility is now meaningless; so a family of structures 
(in a set) is only assumed to be accordant.

A single structure always has extensions, at least for “good” structures 
(in particular, for all the structures mentioned in this paper): in categorical 
terminology, take the sum of the given structure and of the discrete structure 
on the remainder. Therefore it can be assumed without loss of generality 
that

(1) X = \ J X U
iei

since, in the general case, there is an extension to X  iff there is one to 
(J Xi. Assuming (1) makes no difference either when looking for finest or
iei
coarsest extensions:

Finest extensions do exist in each particular case, because the supremum 
commutes with restrictions (this holds in any topological category, while all 
the nontopological subcategories considered are closed for suprema). On the 
other hand, assuming that there is a coarsest extension whenever (1) holds 
(and there are extensions at all), the same will hold in the general case. (We 
have to know here that there is only one structure on a singleton. Then 
the unique structure on each singleton can be added to the family without 
spoiling the accordance. (1) holds now for the modified family, and the 
extensions of the two families are the same.)

The problem of extensions in a set can in fact be regarded as a special 
case (seemingly the easiest one) of the same problem in a space: assume that 
there is only one structure on X , say X  itself (i.e. let Set be the category 
of the less rich structures). There are cases when, somewhat surprisingly, 
extensions in a set are more difficult to handle. E.g. the Riesz or Lodato 
property is defined in terms of the induced closure, therefore, when looking 
for such extensions, it is a disadvantage not to have the closure prescribed 
on X.

Similarly to § 10, we shall sum up the main results in a tabular form. 
In addition to the structures introduced so far, the following ones will also 
be included: A screen 6  is pointwise Cauchy if s , t £ 6 ,  Q s fl P| t 7̂  0 im
ply s fl t 6 6 ; it is fully Cauchy if for any s € 6 , the intersection of all the 
filters t e  6  satisfying s A t also belongs to 6 . (Fully Cauchy =>■ Cauchy
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=> pointwise Cauchy; fully Cauchy => Riesz => pointwise Cauchy. See
[4] and [5] for other related properties of screens.) A closure c on X  is 
To if a; € c{y} and y € c{x} imply x = y; it is T i if c{x} =  {a;} (a: € X).
(Obvious generalizations of the usual separation axioms for topologies. A 
closure is Ti iff it is symmetric and To.) A proximity, semiuniformity, mero- 
topy, contiguity or screen is Ti if the induced closure is Ti (equivalently: 
To). For semiuniformities, this is equivalent to the definition in § 5.

The table will contain no Column F, since, as mentioned earlier, the 
existence of extensions always implies that there is a finest one. No result is 
indicated for weakly topological Ti closures, since these are the same as the 
T i closures. The table also contains some other empty spaces for the same 
reason, e.g. fully Cauchy Riesz screen = fully Cauchy screen.

Notations in the table (additions to those in § 10)

Column 2: Does a family of two structures always have an extension?
In Column E:

i f —: f for countable families, — in general.
Riesz closure =  weakly topological closure.
Lodato closure =  topology.
FC =  fully Cauchy.
PC =  pointwise Cauchy.

Riesz Lodato
E 2 C E 2 C E 2 C

closure + + + f + — -  + - [13]
symm. closure + + + f + — -  + - [13]
To closure + » + — f + — -  - — [13]
T i closure + + + -  + - [13]
proximity + + + f + — -  + - [14]
T i proximity + + + 3 + — -  + - [14]
contiguity + + + f + — -  + — [14], [15]
merotopy + + + - + — -  + — [14], [15]
semiuniformity + + + - + — -  - — [14], [15]
screen + + + - + — -  + — [14], [15]
Cauchy screen f + - f / - - — — - — [14], [15]
T i Cauchy screen f - - f / - - — — - - [14], [15]
FC screen f / - + - -  - — [17]
T i FC screen v - — - -  - — [17]
PC screen f + - [15]
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E 2 C
symm. pw. rec.

E 2 C E 2 C
convergence + + + + + + f + - [17]
limitation + + + f + — [17]
pseudotopology + + + + + + f + - [13], [17]

For topologies, “weakly topological and symmetric” corresponds to the 
property “pointwise reciprocal” .

Thus closures could be included in the last table, too, with the same 
results as for convergences or pseudotopologies.

In the case of contiguities, semiuniformities, merotopies or (PC) screens, 
the results are the same with or without T i. We did not consider T i ex
tensions in a space (§ 10), because there are such extensions iff there are 
extensions at all, and the structure given on 1  is Ti; if so then each ex
tension is T j. (Since Ti depends only on the induced closure. Concerning 
merotopies in a screen space, observe that, although c(9JT) and c(©(9Jt)) can 
be different, the two closures of a singleton coincide.) It is, however, possible 
that stronger statements hold when the structure on X  is Ti; only some 
insignificant results of this kind are known; e.g. if Lodato proximities are 
given on closed subspaces of a Ti topological space then = <$° (and Ti is 
essential here), see [6] 1.15.

Some of the results deserve special attention:
To closure, C. The reason is that there is no coarsest To closure on a set 

of cardinality > 1. Thus we can take the (unique and To) closures on the 
one-point subsets.

To topology, 2. [13] Example 6.5.
Ti Riesz proximity, E. The necessary and sufficient condition for the 

existence of Riesz extensions of proximities ([14] Theorem 11.5) contains 
three of the proximities, and a sequence of points £0, 2:1, • • • , £n such that 
{xk~i}6ik {£*;} with ik € /; if each proximity is Ti then xo = . . .  — x n, so the 
condition contains now only three proximities.

Lodato semiuniformity, 2. Take the example from § 8, but without the 
topology on X;  see [15] 19.6 for details.

(Ti) CR screen, E. [16] Example 17.3.
(Ti) CR screen, 2. [16] Example 17.2.
Ti (fully) Cauchy screen, 2. This is very easy: Let X  = N, Xi  =  A\{i} 

(i =  1,2), u a free ultrafilter on X , {x : x G X }  U {2 D (u | Xi)} a base for ©1, 
and define 62 analogously. Any Cauchy extension has to contain 1 D 2, so it 
cannot be Ti.

(Ti) FC screen, E. [17] Example 7.1 a).
(Ti) FC Lodato screen, 2. In [15] Example 20.1, given for CL screens, 

the two screens are actually FC.
Topology, E. It is possible that an infinite family has no extension, al

though each proper subfamily has one ([13] Example 6.9). It should be in-
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vestigated systematically whether all the negative results in Column E (also 
in § 10) can be strengthened analogously. For Lodato screens in a proximity 
or contiguity space, see [19] § 3.

R e m a r k . T h e  e x te n s io n  p ro b lem  in  s e ts  c a n  a lso  b e  in v e s tig a te d  in  a 
c a te g o r ic a l  se ttin g , in  to p o lo g ic a l ca teg o ries  s a tis fy in g  som e a d d it io n a l  con
d i t io n s ,  b u t  over mSet r a th e r  th a n  Set (w h e re  mSet is th e  ca teg o ry  o f  th e  
s e ts  w ith  th e  in je c tio n s  a s  m o rp h ism s); see [12] for d e ta ils . A  ca te g o ric a l 
a p p ro a c h  to  th e  e x te n s io n  p ro b le m  in  sp aces  seem s to  b e  m o re  d ifficu lt; on ly  
s o m e  tr iv ia litie s  a re  k n o w n  (e.g. [7] 2.2).
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AN ILLUMINATION PROBLEM FOR CONVEX POLYHEDRA

L. SZABÓ and I. TALATA

A b s t r a c t

Consider a convex polytope P  in the d-dimensional Euclidean space. We say that 
a vertex v of P  illuminates a point u £ Ed lying outside P  if the line segment uv does 
not intersect the interior of P. Furthermore, we say that the vertices V\,V2, ■ ■ ■ , V; of P  
illuminate the entire exterior of P  if every point of E d lying outside P  is illuminated by 
at least one of the vertices v\,V 2, ■ ■ ■ ,V[. In this paper we consider the three-dimensional 
situation and we prove that [§J (L§J — 1 resp.) vertices are always sufficient and sometimes 
necessary to illuminate the exterior of a convex polyhedron of rayf 4m+ 2 (n =  4m +  2 resp.) 
vertices. We give lower bounds in even dimensions as well.

Introduction

Let K  g E d be a convex body, i.e. a compact convex set with a non
empty interior. We say that a point q G E d exterior to the convex body 
K  illuminates a boundary point p of K  if the open ray emanating from q 
having direction vector p$ has a non-empty intersection with the interior of
K. Furthermore, we say that the points </i, </2, •.. ,q i& Ed exterior to the 
convex body K  illuminate K  if every boundary point of K  is illuminated by 
at least one of the points <?i, 92) • • • > ?/• It is a challenging open problem to 
determine the smallest number of points lying outside K  which illuminate 
K  for d ^ 3. For further information we refer the reader to the survey paper 
of Károly Bezdek [2].

In this note we deal with a related problem which was inspired by Károly 
Bezdek, too. Consider a convex polytope P  in the d-dimensional Euclidean 
space. We say that a vertex v of P  illuminates a point uE E d lying outside 
P  if the line segment üv does not intersect the interior of P. Furthermore, 
we say that the vertices V\,V2, - . .  ,vi of P  illuminate the entire exterior of 
P  if every point of E d lying outside P  is illuminated by at least one of the 
vertices V\,V2, - ■ ■ , vp Now, our problem can be formulated as follows. What
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is the smallest number of vertices of a convex polytope P  of n vertices in the 
d-dimensional Euclidean space which illuminate the entire exterior of P.

During the preparation of this paper Godfried Toussaint pointed out to 
us th a t the problem was considered independently in [3]. The authors of this 
technical report dealt only with the three-dimensional version of the problem 
and their bounds are not tight for all vertex numbers.

The planar case is trivial, [~|] vertices are always sufficient and necessary 
to illuminate the exterior of a convex polygon of n vertices. But in higher 
dimensions the situation is not as straightforward. We prove the following

T h e o r e m . (LfJ — 1 resp.) vertices are always sufficient and some
times necessary to illuminate the exterior of a convex polyhedron of 
4 m +  2 (n =  4m + 2 resp.) vertices.

We will give lower bounds in even dimensions as well.

Proof of Theorem

First, we note that the vertices vi,V2,--- , vi illuminate the exterior of 
a convex polyhedron if and only if the vertices vi,V2,--- ,v/ cover the faces 
of the polyhedron, i.e. each face of the polyhedron contains at least one of 
these vertices on its boundary.

Now, let us see the sufficiency proof. Triangulate the faces of the polyhe
dron. Then four colour the vertices of this triangulated polyhedron via the 
Four Colour Theorem [1] and take those two colours, say black and white, 
which together occur at most times ([§ J — 1 times if n = 4m +  2 resp.). 
As at each triangle of our triangulation we have three different colours the 
vertices coloured black and white cover all faces of the original polyhedron.

Observe that the above proof immediately leads to an 0 (n 2) algorithm 
since the Four Colour Algorithm [1] runs in 0 ( n 2) time. To find linear time 
covering algorithm with at most |_f J vertices seems to be an extremely diffi
cult task. However, if we are satisfied with a covering system of cardinality 
at most [nyj, such linear time algorithm exists since any planar graph can 
be five coloured in 0(n)  time (see [5], p. 87).

To finish the proof we have to construct convex polyhedra of n  vertices 
w ith the property that |_§J vertices (|_§J — 1 vertices if n = 4m + 2 resp.) are 
necessary to cover their faces. Obviously, using a simple duality argument 
(see [4], p. 46), it is enough to construct convex polyhedra of n faces with 
the property that [ | J  faces ( |_§J — 1 faces if n =  4m +  2 resp.) are necessary 
to cover their vertices. Furthermore, by a remarkable theorem of Steinitz 
(see [4], p. 235) we can restrict ourselves to 3-connected planar graphs of n 
regions.

For the sake of simplicity let n = 4m and let us consider the 3-connected 
planar graph of n regions in Figure 1. Suppose that the vertices are covered
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by a suitable subset of the regions of this graph. Beside the “inner” and 
the “outer” four-four regions, our graph consists of identical layers. Con
sider one of these layers, say the layer C (the heptagons 323i36/i6*6*i*2 and 
929394/i4*4*3*2 and the pentagons 343536^6/14 and form this layer).
Since the vertices /14 and h$ are covered, at least one region is marked in 
C. Clearly, the only interesting case is when exactly one region is marked 
in C. Obviously, if this region is 343536/16/14 then the “next” layer £ '  must 
contain at least three marked regions and if this region is then the
“previous” layer £  must contain at 1' .ist three marked regions. We have to 
deal with one more case when only the regions and k\k2k$j$j\ are
marked in £  and £ ' ,  respectively. But in this case all the four regions must 
be marked in the layer C. These observations show that the number of the 
marked regions in all the layers is not smaller than half times the number
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of all regions in these layers. It would be still left to prove that there is no 
confusion about the “inner” and the “outer” parts of the graph but this can 
be settled similarly and the details we leave to the reader. This completes 
the proof.

Obviously, by a slight modification of the above construction (in fact, it 
is enough to modify the “inner” four regions only) we can obtain the required 
lower bounds for the remaining cases.

Higher dimensional lower bounds

In the d-dimensional Euclidean space consider the moment curve Md 
defined parametrically by x(t) = (t, t2, . . .  , t d). Then a cyclic d-polytope 
C(n, d) is the convex hull of n  ^  d + 1 points x(ti) on Md, with t\ < Í2 < ■ ■ ■ < 
tn. It is well-known that C(n, d) is a simplicial d-polytope of n vertices (see
[4], p. 61).

Now, using “Gale’s evenness condition” which says that a d-tuple Vd of 
points of E g  Md determines a facet conv Vd of conv V — C(n, d) if and only if 
every two points of V \  Vd are separated on Md by an even number of points 
of Vd (see [4], p. 62), one can prove easily that any covering of the facets of 
C (n ,d)  requires at least [~t|]  — vertices, if d is even.

First we consider the case when n is even. Then the vertices x(td), 
x(td+2)i ■ • • , x(fn) cover the facets of C{n,d) and the number of these ver
tices is . On the other hand, if we have only — |"|] marked
vertices, then at least [|"| of the pairs {x{t\), x(t?)}, {^(^3), 37(̂ 4)}, . . . ,  
{x ( tn- i ) ,  x(tn)} of consecutive vertices are not covered. But of these 
pairs represent a facet of C[n,d) which is not covered.

Next we consider the case when n is odd. Now the vertices x(td~ 1), 
x(td-\-1), . . .  , x(tn) cover the facets of C(n,d). The number of these vertices 
is again |~|~| — [ " .  To prove that this is the smallest number of vertices 
with the required property'suppose that we have only \if\ — \^\  marked 
vertices. Without loss of generality we may assume that the vertex x(t\)  is 
marked (indeed, a cyclic shift of the vertices of C(n, d) on the moment curve 
Md does not affect the facet structure of C (n ,d )). Then among the pairs 
{x ( t2) ,x ( t3)}, {m(Í4), x(íö)}, . . . ,  {x(tn- i ) ,x ( tn)} of consecutive vertices at 
least are not covered. But of these pairs determine again a non- 
covered facet of C(n,d).

Therefore vertices are necessary and sufficient to illuminate
the exterior of C(n,d), if d is even.

A c k n o w l e d g e m e n t s . We are indebted to Károly Bezdek and Imre 
Bárány for the valuable consultations related to the problem.
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COMMUTATIVITY OF RINGS WITH CONSTRAINTS 
INVOLVING POTENT AND NILPOTENT ELEMENTS

M. HASANALI* and A. YAQUB

A well-known theorem of Jacobson [3; p. 217] asserts that a ring R  with 
the property that for each x  in R  there exists an integer n(x)> 1 such that 
X n (x) _ x  j s  n e c e s s a r i i y  commutative. Our objective is to generalize Jacobson’s 
Theorem by imposing some weaker conditions which are implied by the above 
1 lxn(x) = x” hypothesis and which force R  to be commutative. Let P  be the 
set of all elements x in R  such that xn^  =  x  for some n(x) > 1. Such elements 
are called potent. Our main result is the following

T h e o r e m  1. Suppose R is a ring with center C and N  is the set of 
nilpotent elements of R. Let

(1) P — { x \ x ER,  xn^  = x  for some n(x) > 1}

denote the set of potent elements of R. Suppose that:
(i) Every x in R \C  can be written (not necessarily uniquely) in the form 

x = a + b for some a in N  and some b in P.
(ii) [a, b] = ab — ba is potent for all a in N  and b in N.

(iii) [x y , yx] is potent for all x E R \ N , y E R \N .
Then R  is commutative (and conversely).

Observe that in Jacobson’s Theorem (quoted above), every element of R 
is potent. Thus, P  = R  and hence N = {0}. Therefore, Theorem 1 readily 
implies Jacobson’s Theorem.

In preparation for the proof of Theorem 1, we first establish the following 
lemmas.

L e m m a  1. Any semisimple ring R which satisfies hypotheses (i) and (iii) 
of Theorem 1 is commutative.

P r o o f . As is well known,

(2) i? =  a subdirect sum of rings Ri, each R l primitive (í GT).
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Observe that each R, inherits the hypotheses (i) and (iii) of Theorem 1. Now 
suppose, for the moment, that J?j is a division ring. Then, by hypothesis (i), 
for every x in R, . x £ Ci or x £ Pt. where Ci and P, denote the center and 
the set of potent elements of i?j, respectively. Thus, x — xn^  £ Ct for some 
n(x) > 1, and hence by Herstein’s Theorem [2], Rz is commutative. Next, 
suppose R4 is a primitive ring which is not a division ring. Observe that 
hypothesis (iii) is inherited by every subring and by every homomorphic im
age of Ri, and hence by Jacobson’s Density Theorem, for some rn ^  2 and 
some division ring D, Dm satisfies hypothesis (iii). Let x = E\\ +  E \2 G Dm, 
y = E n  G Dm. Then, by hypothesis (iii), [xy, yx] = E n  is potent, contra
diction. This contradiction shows that a primitive ring which satisfies hy
potheses (iii), (i) must be a division ring and thus is commutative (as shown 
above). In view of (2), we see that R  itself is commutative.

COROLLARY 1. Let R  be a ring which satisfies hypotheses (i) and (iii) 
of Theorem 1. Let C{R) and J  denote the commutator ideal and Jacobson 
radical of R, respectively. Then

(3) C{R) Q J.

L e m m a  2. Suppose R  is a ring which satisfies hypotheses (i) and (iii) of 
Theorem 1. Then,

(a) C{R) ^ J g N U C ;
(b) N  c  J.
PROOF of (a). In view of (3), it suffices to show that

(4) J Q N u C .

Suppose x  G J, x ^ C .  Then, by hypothesis (i),

(5) x = a + b, a EN, bm = b for some m > l.

Let aq = 0 (since a G N). Then, since m ^ 2, x  G J , aq = 0, we have

(6) (x — a)(m_1)<7+i G J.

Moreover, since bm =  b, by re-iterating we see that (see (5), (6))

b = bm = 6(m- 1)9+1 =  (x -  o)(m- 1)9+1 G J,

and hence bm~l is an idempotent element of J. Therefore, bm~l =  0, and 
thus b — bm = 0. Hence, by (5), x = a £ N , which proves (4) and completes 
the proof of (a).

P roof of (b). Let R  =  R/C(R), ä =  a +  C(R). Suppose a G N. Then 
ak =  0 for some positive integer k. Let x G R. Since R — R/C(R)  is commu
tative, therefore äx is nilpotent in R , say (ax)m = 0 . Hence, (ax)m G C{R) ^
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N  U C (by part (a)). Thus, (ax)m E N  or (ax)m EC.  Now, if (ax)m € C , 
then

((ax)m)k = (ax)m(ax)m ■ ■ ■ (ax)m =  aky for some y in R,

and hence (ax)mk = 0 (since ak = 0). Therefore, in any case, ax E N ,  which 
implies ax  is right-quasi-regular for all x  in R,  and hence a E J ■ This 
proves (b).

Lemma 3. Suppose R is a ring which satisfies hypotheses (i) and (iii) of 
Theorem 1. Then,

(a) N  is an ideal of R;
(b) For all xE  R, we have x E C  or xn — x E N  for some integer n > 1;
(c) If f : R-> R* is a homomorphism of R  onto R*, then the set N* of 

nilpotents of R* is contained in f(N )U C * , where C* is the center 
of R*.

PROOF of (a). By Lemma 2, we have

(7) N Q J g N u C .

Suppose a E N, b E N. Then a E J, b E J, and hence a — b E J  Q N  U C. 
Thus, a — b E N  or a — b E C. Now, if a — b E C, then ab = ba and hence 
a — bE N  (since a E N, bE N). Thus, in any case, a —bE N. Next, suppose 
a E  N, x E R .  Then a E J, x E R, and hence ax E J  Q N  U C. Thus, ax E N  
or ax E C. Now, if ax E C , then by induction, (ax)k =  akxk for all positive 
integers k, which implies ax E N  (since a E N). Hence, in any case, ax E N. 
Similarly, aE N, x E R  imply xa E N, and thus N  is an ideal of R.

PROOF of (b). Let x E  R, x £ C .  Then, by hypothesis (i), 

x =  a +  b, aE N, bn =b ,  n>  1.

Hence,

(8) x — a =  b =  bn =  (x — a )" , a E N , n > l .

By part (a), N  is an ideal, and since a E N ,  therefore by (8), we see that

xn — x E N  , n > 1.

P r o o f  of (c). Suppose d* E N*, d* & C*. Then, (d*)k =  0 for some 
positive integer k. Let d E R  be such that f(d)  =  d*. Since d* ^ C*, therefore 
d ^ C ,  and hence by part (b),

(9) d — dq E N  for some integer q > 1.

It is readily verified that

(10) d -  dk+ldk(q-V  =  (d -  dq) + dq~l { d - d q) + --- + (dq~l )k~l (d -  dq).
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Combining (9) and (10), we conclude that

d - d k+ldk^  E N , {qZ 2),

and hence f ( d  — dk+1dk(q~2 )̂ E f ( N) ,  which implies d* E /(IV), since 
(.d*)k = 0. Thus, d* E f ( N ) U C* for all d* E N*,  which proves (c).

Lemma 4. Suppose R  is a ring which satisfies hypothesis (iii) of Theo
rem 1. Then all idempotents of R are contained in the center C of R.

P r o o f . Let e2 = e E R, x E R, and let a =  ex — exe.  We claim that a = 0. 
Suppose not. Let f  — e + a.  Then,

(1 1 ) / 2 =  / ,  e f  =  f ,  f e  =  e.

Moreover, since, by hypothesis, a 0, therefore e ^  0, /  ^  0, and hence by 
hypothesis (iii) of Theorem 1, [fe, e f  ] is potent; that is,

(12) [fe, e f ] m =  [fe,  ef]  for some integer m  >  1.

It is readily verified that (11) and (12) imply a =  0 (since m >  1), contra
diction. This contradiction shows that a = 0, and hence ex =  exe. Similarly, 
xe  =  exe.

LEMMA 5. Suppose that R  is a ring with center C and N  is the set of 
nilpotent elements of R. Suppose that (a) N  is commutative; (b) for all 
a E N  and b E R, ab — ba commutes with b; (c) for all bE R, we have b E C  
or bn — bE N  for some n =  n(b) > 1. Then R  is commutative.

This lemma was proved in [1],
We are now in a position to prove Theorem 1, which is the main result 

of this paper.
P r o o f  of Theorem 1. By Lemma 3 (a), N  is an ideal of R , and hence

(13) ab — b a E N  for all a E N ,  b E N .

Moreover, by hypothesis (ii), ab — ba is potent, and thus ab—ba = 0 (since 
ab — ba is also nilpotent, by (13)). Thus,

(14) The set N  of nilpotents of R  is commutative.

As is well known,

(15) R =  a subdirect sum of subdirectly irreducible rings Ri [i E T).

We now distinguish two cases.

Case 1. Ri does not have an identity.
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First, observe that R{ satisfies both hypotheses (i), (iii) of Theorem 1 and 
all the conclusions of Lemma 3. Let Ri, Xi$. Ci (center of Ri), and let 
/ (x) —Xi, x  6 R , where / :  /? —> Ri is the natural homomorphism of R  onto 
Ri (see (15)). Then x $  C, and thus by Lemma 3 (b), xn — x G N  for some 
integer n > 1. Hence xm = x m+1 g(x) for some positive integer m and some 
g(A) GZ[A]. This implies, by re-iterating, that

x m — xm(xg(x))m = x me\ e= (xg(x))m is idempotent.

Combining this with Lemma 4, we conclude that

xm = x me, e = e2, e central.

Letting X{ =  f(x ) ,  ej =  /(e ), we see that this implies, in Ri,

(16) x™ = x™ei, e, = e2, ej central.

Since e, is a central idempotent in the sub directly irreducible ring Ri, and 
since Ri does not have an identity in the present case, therefore e, =  0, and 
hence by (16), x™ =  0; that is, x, is nilpotent in Ri. We have thus shown 
that

(17) Ri = NiL)Ci', Ni — {nilpotents of Ri}', Ci = Center of Ri.

Moreover, by Lemma 3 (c), Ni C f(N )U C i.  Also, by (14), f (N )  is commu
tative, and hence Ni is commutative. Combining this with (17), we conclude 
that Ri is commutative.

Case 2. Ri has an identity 1 j.
Recall that Rt satisfies hypotheses (i), (iii) of Theorem 1 and all the 

conclusions of Lemma 3. Recall also that Ni and Ci denote the set of nilpo
tents and the center of Ri, respectively. Let at £ Nt, lg € Rl\N l . Then, 
1 i + ai & Ni, bi# Ni, and hence by hypothesis (iii)

[{li+ai)bi,bi{U + ai)] is potent,

which implies

(18) [bi, bidi] +  [aibt, bi] +  [afii, b^i) is potent.

As we saw in the proof in Case 1, N{ is commutative, and Ni is an ideal 
of Ri, too (Lemma 3, (a)). Therefore, the commutator [aibi,bidi] in (18) is 
zero, and hence (18) now reduces to

[bi, bidi] +  [dfii, bi) is potent,

which is equivalent to

(19) [dfii -  bidi, bi) is potent, (a; € Ni, bi £ Ni).
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Since Ni is commutative, (19) is trivially satisfied if bi G Ni, and hence

(20) [ctibi — bidi, bi\ is potent for all di G N ,  bi G Ri-

Note that, since Ni is an ideal of /?,, therefore the potent commutator in (20) 
is also nilpotent, and hence it must be zero. Thus,

(21) aibi — bidi commutes with 6, for all di G Ni, bi G Ri-

Combining our results, we see that Ri satisfies all the hypotheses of Lem
m a 5 (see (21), Lemma 3 (b), and the above proof that Ni is commutative), 
and hence by Lemma 5, Ri is commutative. This completes the proof of 
Theorem 1.

As remarked in the introduction, Theorem 1 generalizes Jacobson’s 
ux n(x) =  x ” theorem. We conclude with the following

C orollary 2. Let R  be a ring such that for every x G R\C, x  =  a +  b 
for some a G N,b  G P . Suppose, further, that the nilpotents of R  commute 
and, moreover, [xy,yx] =  0 for all x ,y  in R. Then R  is commutative.
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REFIN EM EN T OF A CARLEM AN-TYPE INEQUALITY

H. ALZER

A b s t r a c t

We prove: If k ^ 0,p ^  1 and 0 < xm 5: 1 {m =  1,2, . . . ) ,  then

„I (fc+l)/mp
E mk n

m=  1 Ln=l
< „ Tp(p)+y+i/p E  ™k%r

m=1

where i p  is the logarithmic derivative of the gamma function and 7  is Euler’s constant. 
The above inequality sharpens a result of E. R. Love.

In 1923 T. Carleman [5] proved the following inequality. If x m (m = 
1 ,2 ,. . .)  are non-negative real numbers, then

( 1 ) e  n
7 71= 1

- 1/m

71=1 m=l

The constant e is best possible.

Inequality (1) has evoked the interest of several mathematicians and 
many papers have been published providing new proofs, sharpenings and 
extensions of Carleman’s theorem; see [1], [2], [4], [6], [8-11], [14-17].

In 1984 J. A. Cochran and C.-S. Lee [7] established the following com
panion of inequality (1). If k ^ 0 , p ^ l  and 0 xm ^  1 (m =  1, 2 , . . . ) ,  then

( 2) E
771=1

m n
.7 1 = 1

l / m p

X, pnp-l

m = l

The constant e^k+1^ p is best possible.

We note that the special case k = 0, p = l  yields Carleman’s inequality 
with the restricted assumption that 0 ^ x m ^ l .  In 1991 E. R. Love [13]
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established that in (2) the expression n
_n=l

1 l / m p
pn1p - 1 can be replaced by

the weighted geometric mean of the numbers x n (n = 1, . . .  , m) with weights 
np — (n — l)p (n =  1 ,. . .  , m ) . More precisely Love proved: If k t. 0, p > 0 and 
x m ^  0 (m = 1, 2, . . . ) ,  then

(3) E-
m— 1

n
.71=1

' V™p oo
np — (n—l)p <  e (fc+l)/p

m= 1
m kxr,

The constant e (fc+1)/P  js best possible.
If we assume that p'F. 1 and 0 xn ^  1, then we have

rv ' — (n — l)p ú p n v 1

and
pn? 1 <- np- { n - l ) p •^n — *̂7i 5

so tha t (3) provides a sharpening of inequality (2).
The subject of this paper is the following inequality, proved by Love [12] 

in 1986, which is closely related to (3).
P roposition. If  k i t  0, p i t  1 and 0 < xm ^  1 (m =  1 ,2 . . .) ,  then

t i  "I ( ^ + I ) / i r i p  o o

(4) E m
m—1 Lra=l

n X. pnp 1 ^ ( p)+7+ i /p mkxm,
m=1

where ip is the logarithmic derivative of the gamma function and 7 is Euler’s 
constant. I f  (xm) is decreasing, then in (4) ip{p) + 7  can be replaced by 0.

In view of the fact th a t inequality (3) refines (2), it is natural to ask 
whether (4) remains valid if on the left-hand side of (4) the exponent pnp~l 
will be replaced by np — (n — l )p. It is our aim to show that this is indeed 
true.

First we formulate a lemma, due to Love [12], which we need to establish 
our main result.

Lemma . Let a be a non-negative and integrable function on (0,1) with 
integral non-zero, and let a  be a decreasing rearrangement of a on (0, 1). 
Further, let

^n  0,

An / An

h-m — ^  ] ^ni Wn
n= 1

= J  a i t ) dt.
An — 1 / A77
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If {%m) (m  =  1 , 2 , . . . )  is a positive sequence, then

exp E UJmn j  ̂  ̂ %n I ^
(5)

m=l \n=l
1

n=l

exp Í Í  a(t)\og{l/t)dt j  j  a(t)d t\  ^  Â
\ i  ' Í  J m= l

If {%m) is decreasing, then in (5) a can be replaced by a.

We are now in a position to prove the following refinement of inequali
ty (4).

T heorem. If k,p and xm (m =  1 ,2 ,. . .)  are real numbers with k ^  0 , 
p ^  1 and 0 < x m fí 1 (m = 1, 2 , . . . ) ,  then

(6) E'm=1
n

_n=l

■ (fc+l)/mp
rap —(n—l)p <  pV'ÍPl+T+l/P

oo
T :  m kXm,
m=l

where = V /V  is the logarithmic derivative of the gamma function and 7 is 
Euler’s constant. If (xm) is decreasing, then ip(p) + 7  can be replaced by 0.

P roof. We follow the method of proof given in [12], We set

m
a ( t ) = tp~1, A n = n k, Am =  ^ n fc,

n—1
An / Am

Wmn= [  tp~ldt =  -  [(An/A m)p — (An_1/Am)P] . 
./ p

An — 1 /A m

Then we have

wmn — >
P

1 1 J a(t) log(l/t)dt = — J tp~l \og(t)dt =  l /p 2, 
0 0
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and, since a(t) =  (1 — í)p_1, we get 
1

5(f) log(l/t)dt =  — J xp~ [ log(l — x)dz
i

h

1
= E

i+p-l dx
i=1

oo
= v  1

é í  *(í + p)

V’(p) +  7 +  -
p

Applying the Lemma we obtain

X ™k exp p X Wmn log(a?„) g exp(V>(p) + 7 +  1/p) XIm kx m,
m =  1 n=l m=1

where the factor exp(i/>(p) +  7 +  1/p) can be replaced by exp(l/p), if (a;m) is 
decreasing.

To prove inequality (6) it remains to show that 

k + 1
mP [np — ( n — l ) p] log(x„) ^p w mn log(a;„)

Since 0 < xn ^  1, the last inequality is equivalent to

(7) (Any - ( A n^ y ^ m / m n k  + 1) K  -  (n -  l)p] (1 g n ^  m).

From

bi+1
n  +  1

n
A

n
2 =  1

^ ( n + l ) fc- n fc^0 ,

we conclude that (An/n ) is increasing . Hence, it suffices to prove that (7) 
holds for m = n.

Next we make use of the inequality

(8) An^ / A n ^ ( ( n - l ) / n ) k+1.

(A proof for (8) is given in [3]. ) From (8) we conclude

1 -  ( A n - i / A n ) p S  1 -  ((n — l) /n )p(fc+1)
^(fc + l ) [ l - ( ( n - l ) / n ) p],( 9)
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where the second inequality in (9) is an immediate consequence of the simple 
inequality

(k + l)x  + xk+l (O ^ x f il)

with x — ((n — 1 )/n)p. Multiplying (9) by (A„)p we obtain (7) with m  =  n. 
This completes the proof of the Theorem.

REMARK. It remains an open problem to determine the best possible 
constant in inequality (6). We only know that for k = 0 the best possible 
constant is given by el!p . This follows from Love’s result that the optimal 
constant in (3) is , even if 0 ^ xm í  1 for all m  ^ 1.

REFERENCES

[1] Á ke rbe rg , B., A variant on the proofs of some inequalities, Proc. Cambridge Philos.
Soc. 57 (1961), 184-186. MR 22 #8243

[2] A lzer , H., On Carleman’s inequality, Portugal. Math. 50 (1993), 331-334. MR 94j:
26030

[3] A lzer , H., On an inequality of H. Mine and L. Sathre, J. Math. Anal. Appl. 179
(1993), 396-402. MR 94k:26021

[4] B e n n e t t , G., Some elementary inequalities. Ill, Quart. J. Math. Oxford Ser. (2) 42
(1991), 149-174. MR 92h:26021

[5] C arleman , T., Sur les fonctions quasi-analytiques, Conferences faites au cinquieme
congrés des mathématiciens scandinaves (Helsingfors, 1992), Akad. Buchhand
lung, Helsingfors, 1923, 181-196. Jb. Fortschritte Math. 49, 705-706.

[61 C arleson , L., A proof of an inequality of Carleman, Proc. Amer. Math. Soc. 5 (1954), 
932-933. MR 16-452

[7] C ochran , J. A. and Le e , C.-S., Inequalities related to Hardy’s and Heinig’s, Math.
Proc. Cambridge Philos. Soc. 96 (1984), 1-7. MR 86g:26026

[8] B ruijn , N. G. de , Carleman’s inequality for finite series, Nederl. Akad. Wetensch.
Proc. Ser. A 6 6  =  Indag. Math. 25 (1963), 505-514. MR 27 #6073

[9] H ardy , G. H., Notes on some points in the integral calculus. LX, Messenger Math.
54 (1925), 150-156. Jb. Fortschritte Math. 51, 192

[10] H ardy , G. H., Littlew o o d , J. E. and P ólya, G., Inequalities, 2nd edition, Cambridge
University Press, Cambridge, 1952. MR 13-727

[11] K aluza, T h. and Szegő G., Uber Reihen mit lauter positiven Gliedern, J. London
Math. Soc. 2 (1927), 266-272. Jb. Fortschritte Math. 53,184

[12] Lov e , E. R., Inequalities related to those of Hardy and of Cochran and Lee, Math.
Proc. Cambridge Philos. Soc. 99 (1986), 395-408. MR 87f:26021

[13] Lo v e , E. R., Inequalities related to Carleman’s inequality, Inequalities (Birmingham,
1987), Lecture Notes in Pure and Appl. Math., 129, Marcel Dekker Inc., New 
York, 1991, 135-141. MR 92L26016

[14] Pólya, G., Proof of an inequality, Proc. London Math. Soc. 24 (1926), LVII. Jb.
Fortschritte Math. 52,211

[15] R ed heffer , R., Recurrent inequalities, Proc. London Math. Soc. (3) 17 (1967), 683-
699. MR 36 #1599

[16] R ed heffer , R., Easy proofs of hard inequalities, General inequalities, 3 (Oberwolfach,
1981), Internat. Schriftenreihe Numer. Math., 64, Birkhäuser, Basel-Boston, 
1983, 123-140. MR 86L26016



[17] C o e p u t , J. G. v a n  d e r , Generalisation of'Carleman’s inequality, Proc. Acad. Wetensch. 
Amsterdam 39 (1936), 906-911. Zbl 15,108

(Received August 15, 1994)

366 H. ALZER: R EFINEM ENT OF A C AR LEM AN -TY PE INEQUALITY

M O R S B A C H E R  STR. 10 
D—5 1 5 4 5  WALDBRÖL 
G E R M A N Y



S t u d i a  S c i e n t i a r u m  M a t h e m a t i c a r u m  H u n g a r i c a  3 2  ( 1 9 9 6 ) ,  3 6 7 - 3 7 5

ON EXISTENCE AND UNIQUENESS CONDITIONS FOR 
ORDINARY DIFFERENTIAL EQUATIONS IN FRÉCHET SPACES

G. HERZOG

Abstract

We will establish existence and uniqueness conditions for ordinary differential equa
tions in Frédiét spaces which are formulated as Lipschitz and one-sided Lipschitz conditions 
with the aid of a generalized distance and row-finite matrices.

1. Introduction

Let F  be a real or complex Fréchet space, 0 ^  D <jj F, f : [0, T] x D —> F 
a function and uo G F. We consider the initial value problem

(1) u'( t )=f(t ,u( t )) ,  u(0) =  it0,

and we say that (1) has at most one solution if for every r  € (0, T] there is at 
most one function in C'1([0, r] ,F ) solving (1). We will establish conditions 
on /  such that (1) has at most one solution using a generalized distance in 
the sense of Schröder [12]. We will further prove an existence and uniqueness 
theorem in the case D  =  F.

2. Poly norms and row-finite matrices

Let Rn be the Fréchet space of all real sequences endowed with the prod
uct topology. A continuous mapping || • | | : F  —» [0, oo)N is called a poly
norm on F  if {|| • ||fc :fcG N} is a separating family of seminorms inducing 
the Fréchet space topology of F. Inequalities between elements of MN are 
intended componentwise. For x ,y  G F  and A G R, resp. A G C we have 
||a:|| ^ 0 , ||a:|| = 0 '^ x  =  0, ||Aar|| = | A | ||x|| and ||x +  y|| ^  ||x|| + ||y||. Following 
the description in [10], we define m + : F  x F  —> RN by

™+[x,y] = Jim  r(llx +  hy\\ -  ||x||).h—>o+ n
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The existence of this limit as well as the following properties are consequences 
of the properties of convex functions on linear spaces, see [10], p. 36. For 
x ,y ,  z  E F  we have, for example,

m+[x,x\ = ||x||, m+[x, y] 5Í ||y||,
m + [x, y +  z] ^  m + [x, y\ +  m + [x,z],

\m+[x,y] -m + [x ,z ]\^  | |y - z | | .

If u: [ 0 , t ) —> F  is differentiable from the right-hand side, then | |u | |  is 
differentiable from the right-hand side, and ||u||'+ (i) =  m+[u(t), u'+(t)],t G 
[0,t ).

A matrix L — (/y)*j€N? hj £ C, is called row-finite if {j  G N : fij 0} is a 
finite set for every i G N. The row-finite matrices are exactly the continuous 
endomorphisms of the Fréchet space (CN, || • ||), ||(|a;fc 1)^!!! =  (kfcDfc^i- We 
call L monotone if all entries are real nonnegative numbers, and we call L 
quasimonotone (in the sense of Volkmann [14]) if lij G R, i , j  G N, and lij ^  0,

Now let 0 ^  D Q F  and / :  [0, T] x D —> F  be a function. We consider the 
following conditions on / :

(L) There is a monotone matrix L such that

\ \ f ( t , x ) - f ( t , y ) \ \ ^ L \ \ x - y \ \ ,  {fix), (f i y ) G [0,T] x D.

(L_|_) There is a quasimonotone matrix L such that

m +[x -  y ,f( t ,  x) -  / ( i ,  y)\ ^  L \\x -  y||, (t, x), {fi y) G [0, T] x D.

Remark that (L) implies (L+), since m +[x, y] ^  ||y||, x ,y& F .  In spite 
of the fact that (L) and (L+ ) look like classical uniqueness and existence 
conditions for the initial value problem (1), they in general imply neither 
uniqueness nor existence without further assumptions. For example, see [4],
[5], [9] and [11].

3. Existence and uniqueness theorems

Let L  be a row-finite matrix. The spectrum o{L) — {A G C : L — XI is not 
invertible} is either at most countable or has an at most countable comple
ment q{L) — C \a{L). For this and other properties of row-finite matrices, 
see [4], [5], [6], [13] and [15].

According to Lemmert [8], the following theorem holds.

T heorem 1. Let f  : [0, T] x F  -> F be a function.
a ) I f  f  *s satisfying (L+) and cr(L) is at most countable, then (1) has at 

most one solution.
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b) If f  is continuous and is satisfying (L) and o(L) is at most countable, 
then (1) is uniquely solvable on [0,T],

We will show that we can omit the condition that o(L) is at most count
able if we have a priori bounds of a certain kind for possible solutions of (1)

Let L be a monotone row-finite matrix, and let b G [0, oo)N. We consider 
the following growth condition:

(G(L,b)) There exist a  G [0, oo)N and ß  ^  0 such that 
Lnb Ú ßnnna, n G N.

R e m a r k s . 1) If o(L) is at most countable, then (G(L , b)) holds for every 
b G [0, oo)N, cf. [6], [15].

2) If G(L,b) holds, then G(XL, fib) holds for every A,/iG [0, oo).
T h e o r e m  2. Let 0 7̂  D ^  F and f : [0, T] x D -» F be a function satis

fying (L+) with L = A — B  such that A is monotone and B is a monotone 
diagonal matrix. For t g (0,T] let x \,X2 ^ C 1([D,t],F) be solutions of (1). If 
||xi(<) — X2 (t) || ^  6, t G [0, t), for some b G [0, oo)N, then x\ = X2 provided that 
G(A, b) or G(B~lA2, b) holds.

THEOREM 3. Let f :  [0,T] x F —>F be continuous, satisfying (L) and

\\f(t,x) -  f( t ,y) \ \^b,  (t,x), (t, y) G [0, T) x F,

for some 6 g [0, oo)n such that G(L,b) holds. Then (1) is uniquely solvable 
on [0, T],

Remark that, if f ( t ,x )  = g(t, x) + h(t), (t , x) G [0,T] x F, h G C([0, T], F) 
and \\g(t, a;)|| f^b, (t , x ) G [0, T] x F , then (1) is uniquely solvable if g satisfies 
(L) and G(L, b) holds.

To prove Theorem 2 we first need the following proposition.
PROPOSITION 1. Let L =  A — B be a row-finite matrix with A and B 

as in Theorem 2. Let v: [0, r] -A [0, oo)N be continuous and differentiable 
from the right-hand side on [0, r) satisfying v'+ ( t ) i L v { t ) , t E [ 0 , T ) , v ( 0 )  =  0. 
If  b(<) ^  6, t G [0, r] for some b G [0, oo)N, then v = 0 provided that G (A , b) or 
G (B ~lA 2, b) holds.

PROOF, a) Let G(A, b) be true. We assume v 0 and to := inf {t G [0, r ) : 
v(t) 7̂  0}. Since 0 ^  v  ^  b, it holds that

v'+(t) ^  Lv(t) ^  Av(t) ^  Ab, t£[to,r).

Since v(to) =  0, we have v(t) ^  (t — to)Ab, t G [toi t] which implies 

v'+ (t) ^ Av(t) ^  ( t - t 0)Á 2b, te[to,r).
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Therefore, v(t) ^  t — to)2A 2b, t G [to, t]. Successive application of this step 
leads to

1 nnfínlt — trdn
v ( t ) i - ( t - t 0)nA nb < n P l0) a, tG [t0,r], n e  N. 

n! n\
According to Stirling’s formula

^n ß n ( f _f  ) n  1
lim -------- -— ^— = 0 for all t G (to, rl with (t — tA ß  < - ,n-Kx> n! e

this contradicts the definition of to-
b) Let B  be invertible and G(B~lA 2,b) be true. We assume and 

set to as in part a). We get v{t) ^  (t — to)Ab: t  G [to, t] as well as in part a). 
Therefore,

v'+(t) + Bv(t)  ^  ( t - t 0)A2b, te[to ,r).

Since B  is a diagonal matrix, etB exists and is a monotone matrix for every 
t G M. Hence

í
= J ( s — to)eB(s~^ A 2bds ^ ( t — to)B ~1A 2b, iG[fo,r],

to

according to the inequality
t

J ( s - t 0)ne ^ d s ^ — 7 > 0 ,  f ^f o,  nGNo-

to

Therefore, v(t) ^ \ ( t  -  to)2A B ~ lA2b,t G [to,r], which implies 

t

v(t) to)2eB{s- t)A2B~xA2bds ^ ( t  -  to)2{B~l A2) \
to

t G [to, r ] . By induction we get

u(t) ^  ^T( t - t 0)n(H~1A2)nb^  n ^ ^  ^  a , í G [t0, T], nGN,
n !  n !

which leads to a contradiction as in part a). □
P r o o f  o f  T h e o r e m  2. According to the results in Section 2, we have

||a:i — X2||+(t) = m + [x i(t) — x2(t),x [ (t) - x'2(t)]
= m +[ x i ( t ) - x 2{ t) , f ( t ,x i{ t) )  - f ( t , x 2(t))] 
ú L \\x i(t)- x 2(t)\\,
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t  G [0, r). Application of Proposition 1 completes the proof. □
We now will prove Theorem 3. Since (L) implies (L_|_), the presupposi

tions of Theorem 3 imply, according to Theorem 2, that (1) has at most one 
solution. So we will prove that (1) has a solution on [0,T].

P r o o f  o f  T h e o r e m  3. We consider the Fréchet space (C([0,T],fr ),||| • |||) 
with

I I M I I (  max ||u(f)lit V te[o,r]
We further assume ßT  < e~]. The result for arbitrary T  follows by continu
ation of the solution.

Starting from vo(t)  = u q ,  t  £ [0, T], we consider the sequence of successive 
approximations

l
u n + i ( f )  =  u 0  +  j  f { s , v n{s))ds, n t O .

As usual, it holds that

| K + i ( f )  - n n (t)H ^  ^ _  1^ L n~ 1||n2(t) -  wx(t)||, t e [0, T] ,  n t l

and
t

||v2(<)-Ui(i)|| ^  J \\f(s,Vi{s)) -  f{s,v0(s))\\ds^Tb, ie [0 ,T ],
0

Therefore,

llK + 1 " vn |l!= (^ ? T )!Ln" 16, n = L
Since G(L, b) holds, we have

(fíT)n~1(n — l l " -1
I I K + 1  -  «nlll ^  T  { n _  l ) ,  n ^ 2 '

(ßT)nnn
Now, ßT  < e_1 implies the convergence of ------ j---- > according to Stir
ling’s formula. Therefore (nn)£L0 is convergent in C7([0, T],F) and u := 
lim vn is a solution of (1) on [0,T], since

n —>oo

u ( t ) - u 0-  J f { s , u ( s ) ) d s  ^  | | u ( i ) - v n + i ( t ) | | +   ̂ J f ( s , v n( s ) ) - f ( s , u ( s ) )ds  
o o

^  | | | u  — Un-nlll  + T L | | | «  — n n || | ,

t € [0, T], n ' t  0. □
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4. Examples

1) Let (7k)kL\ be a sequence of positive numbers. We consider the infinite 
system

( 2 )
(X W  = 
K ( o )  =

=  7/t arctanuk+i(t)
0

, k e  N, í g [o, t ].

W ith / :  [0,T] x —)■ MN,/(t,a :) = (7  ̂arctanxjt-i-i)^.^ (2) is an initial value
problem of the form (1) in (RN, || • ||), ||(a;fc)fcL1|| =  (l^jfcD^i, with uo — 0.

Of course, u(t) =  0, t € [0, T], is a solution of (2), but it is in general not 
the only one, although /  is satisfying (L) with

L =

Remark that cr(L) = C. Let

( ° 7 i 0 0
0 0 72 0
0 0 0 73

V )

« 1  (t)
_/  e-1/*, t G (0, T],

0, i =  0,

and define recursively

Vk+i(t) =  tan <(*)
Ik

with 7fc > 0 such that

Ik
7T 7T 

2 ’ 2 ) '

t G [0, T],

t G [0, T\.

For such a sequence (7fc)fcLi we have u = (vk)kL1 as a solution of (2). Now 
consider (2) for (7 x — (^)fcLi-We have

7T ,
II f i t ,  ®)|| ^  {t, x) G [0, T] x ffiN

and therefore
/  k+n \  00

« = ?  ( n i
7T /(/: +  n)!

. j=fc
n > 1.

^  ip\ I
Since lim -----—- =  0 for every k G N, there is a sequence a  G [0, oo)N such

n —>00 nn
that L nbl^ann, nGN, and, according to Theorem 3, the only solution of
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(2) is u =  0. 
problem

Remark that, according to Theorem 3, also the initial value

/ u'k(t) = & arctan Uk+i(t)
l  uk (0) =  Ujfco

k e  N, t G [0, T],

is uniquely solvable for every uq =  (u/co)'kLi G KN-
2) Let ('yk)'kLi be a sequence with 7*, ^  1, k G N, and consider the initial 

value problem (1) with

/ :  [0,T] x Rn -HRn, / ( M )  =  (-7fc7fc+iZfc+7fc arctan xk+1)^=1

and uq = 0.
Again it =  0 is a solution of (1), and we claim that it is the only one, no 

matter how fast (7k)kL\ is growing:
Let r  G (0, T] and v G (^([O, r], ffiN) be a solution of (1). Since

7T 7r
-7fc7fc+iWfc(i) -  2 Ik ^  v’k(t) <:-Jklík+iVkit) + ^ 7 fc, 

t G [0, t ], k G N, we have

IN0II ^ 7T 1 7T

2 \7fc+i /  jfc=i 

Now /  is satisfying (L_)_) with

^ 6 : = - (  l jg i j ,  ÍG[0,r].

Choosing

- 7 i7 2 7 i 0 0
0 -7 2 7 3 72 0
0 0 -7374 73

/ 0 71 0 0 • \
0 0 72 0

A  = 0 0 0 73

/

and B  = A — L, we find

B ~ lA2 =
/ ° 0 1 0 0 .

0 0 0 1 0 .
0 0 0 0 1 .

V : 7
and (B lA2)nb = b, 1. According to Theorem 2, we have u =  0.
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3) Let F  be the Fréchet space C(E, ]

IreII =  ( max lads)
\s e [-k ,k ] ' k=l

and K : E2 x [0,1]->R be a continuous function with

(a) max \K { s , x , v ) - K ( s , y , v ) \ ^ 'y k\ x - y \ ,
s€[-k,k]

( x , v ) , { y , v ) € R x  [ 0 , 1 ] ,
k EN, for a sequence (7fc)fcLi °f nonnegative numbers and

(b) bk := sup ' |A(s, x, u)\ < oo, kE  N.
(s,x,i/)e[-fc,fc]xRx[0,l]

We consider the initial value problem (1) with / :  [0, l ] x F - > F  defined by

t

( f( t ,x ) )(s )  = I  K (s ,x (s  +  v),v)dv, 
o

(s, í ) é ! x [0,1] and uo E F.
The function /  is continuous and is satisfying (L) with

/ ° 7 i 0 0
0 0 72 0
0 0 0 73

J
and ||/(í,x)||^& :=(& A :)fcli,(M )e[0,l] x F.

So ifG(L, b) holds, (1) is uniquely solvable on [0,1], according to Theorem 
3. Let, for example, K (s , x ,u )  = s sin(a: + v). Then bk = k , k E N and y*, =  k, 
k E N, can be chosen, and G(L,b) is true (cf. Example 1).

F in a l  r e m a r k . We want to draw the reader’s attention to some papers 
where related concepts are used to study differential equations in locally 
convex spaces: [1], [2], [3], [11].

A c k n o w l e d g e m e n t . The author wishes to express his sincere grati
tude to Dr. Roland Lemmert for many helpful remarks to improve this 
paper.
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S tu d io .  S c i e n t i a r u m  M a t h e m a t i c a r u m  H u n g a r ic a  3 2  ( 1 9 9 6 ) ,  3 7 7 - 3 8 2

TOTAL-SEPARABLE KREISSYSTEME UND MOSAIKE 
IN DER HYPERBOLISCHEN EBENE

I. VERMES

Dem Andenken von Herrn Professor J. Strommer gewidmet

Eine Menge der kongruenten Bereiche in der Ebene wird nach P. Erdős 
separabel genannt (Vgl. [4], [5]), wenn eine Gerade existiert, die keine innere 
Punkte von Bereichen hat, und die Bereiche auf ihren beiden Seiten liegen. 
Die Definition der total-separablen Menge von Bereichen haben G. Fejes 
Tóth und L. Fejes Tóth in [2] gegeben. Eine Menge von Bereichen ist total- 
separabel genannt, wenn jede zwei Bereiche durch eine Gerade so separiert 
werden können, daß alle Bereichen damit auch separiert werden. G. Fejes 
Tóth [3] und G. Kertész [6] haben sich mit total-separablen Kreissystemen 
bzw. Kugelsystemen in der euklidischen Geometrie beschäftigt.

In dieser Arbeit wollen wir total-separable Mosaike und Kreissysteme 
der hyperbolischen Ebene — elementar wie möglich — konstruieren, und 
diesbezüglich extremale Eigenschaften in Sätzen 1-4 beschreiben.

Zunächst beweisen wir den folgenden
HILFSSATZ. Falls die Geraden g\ und <72 e in e  gemeinsame Lotstrecke n 

haben, deren Größe d>  0 beliebig vorgegeben ist, so existieren solche Punkte 
A und B auf g\ bzw. <72 (auf einer festen Seite von n), daß die Gerade 
A B  mit g\ bzw. <72 die vorgegebenen Winkel a  ^  |  bzw. ß < |  einschließen 
(Abb. 1).

BEWEIS. E s ist genügend nur eine Seite von der Geraden n betrachten. 
Bezeichne A 1 bzw. B 1 die Fußpunkte von g\ bzw. <72 auf

Falls a  =  I  und ß  < |  bestehen, so wird A lB lBA  ein Lambertsches 
Viereck sein, das durch d und ß  auf Grund der trigonometrischen Formel 
(siehe z. B. in [10] S. 76-82)

„ d A A 1 cos ß — sinh — sinh —-— 
k k

eindeutig bestimmt ist.
Falls a < I  und ß < |  bestehen, so müssen die Geraden A B  und n 

ein gemeinsames Lot T T 1 haben, wo die Fußpunkte T  bzw. T l auf den

1991 Mathematics Subject Classification. Primary 52C20; Secondary 52C15.
Key words and phrases. Tilings, packings and coverings in 2 dimensions.

Unterstützt von der Ungarischen Akademie der Wissenschaften im Projekt OTKA Nr. 
1615 (1991).

0081-6906/96/$ 5.00 ©1996 Akadémiai Kiadó, Budapest
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Abb. 1

Strecken AB  bzw. A lB l liegen. Bezeichne x — T l B x und d — x — A lT l die 
zwei Teile der Strecke A 1 B l =d. Die Größe x  kann durch a ,ß ,d  eindeutig 
m it der Eigenschaft x < d  bestimmt werden, so wird auch die Existenz der 
benachbarten Lambertschen Vierecken T T 1 B l B  und T T 1 A 1 A bewiesen.

Sei die Strecke T T 1 mit m  bezeichnet. Auf den Lambertschen Vierecken 
T T l B l B  und T T 1 A 1 A  gelten die trigonometrischen Formeln:

cos ß  =  sinh — sinh — 
k k

bzw.

cos a  = sinh — sinh —— — 
k k

M an verwendet die Additionsidentitäten für die hyperbolischen Funktio
nen, und bekommt die folgende Gleichung mit ihrer Abschätzung:

. x cos ß  sinh r  , d
tanh — = ------------------------T <  tanh — < 1.

k cos a  +  cos ß cosh |  k

Daraus folgt, daß a ,ß ,d  die Größen x und T T 1 = m  eindeutig bestimmen, 
ferner gilt die Ungleichung x < d. Auf Grund dieses Hilfssatzes werden wir 
den folgenden Satz beweisen.

Satz 1. Wenn die Winkel a \  =  ^j-, « 2  =  f f - , . . .  , a p =  ~-  (mit p ^  3,
nt ^  2 i — 1,2,. . .  ,p) gegeben sind und die Ungleichung a\ + a.  ̂ +  • ■ • +  

v
ap < (p — 2)n, d.h. ^2 — < p — 2 gilt, so existiert solches p-Eck in der hy-

2=1 1
perbolischen Ebene, dessen Winkel in einer festen zyklischen Reihenfolge 
a  i, öl2, . . .  , a.v sind.

B e w e is . Ein Dreieck (p  =  3) wird durch seine Winkel eindeutig be
stimmt. Der Satz gilt für die Vierecke mit der Anwendung des Hilfssatzes:
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A,

Abb. 2

man betrachtet zwei beliebige Geraden, die ein gemeinsames Lot haben, und 
die gegebenen Winkel können auf beiden Seiten des gemeinsamen Lotes so 
eingelagert werden, daß jé zwei Ecken des Viereckes auf den zwei Geraden 
seien.

Die folgende Abschätzung zeigt, daß die Vielecke — im Falle p > 4 -  
bereits auch voll-rechteckige Vielecke sein können:

besteht wegen n* ^  2, wenn p>  4 gilt.
Auf Grund dieser Bemerkung ist es leicht zu sehen, wie elementar ein 

Fünfeck gegebener Winkel aus einem mit ihm in vier oder drei Winkeln 
übereinstimmten Viereck konstruiert werden kann. Bezeichne Ai die Ecke 
des geeigneten Viereckes, deren Abstand von seinen Seiten maximal ist. Be
trachte man das auf diese Seite gefällte Lot durch Ai, das das Viereck in 
zwei starre Teile zerlegt. Zu dieser Seite — als Grundlinie — gehört eine 
Abstandslinie durch den Punkt A{ (Abb. 2).

Entferne man diese zwei Teile voneinander entlang der Grundlinie so, 
daß die Tangenten der Abstandslinie in den verschobenen Punkten A\ bzw. 
A " zueinander parallel seien (Abb. 3). In dieser Lage haben die Halbgeraden 
A'i+lA'i und A"_XA" ein gemeinsames Lot, und die vierte bzw. fünfte Ecke 
können auf dieser Halbgeraden nach dem Hilfssatz eingelagert werden.

Zur vollen Allgemeinheit {p > 5) kann der Beweis auf zwei Wegen fortge
setzt werden.

I. Der Beweis führt durch eine vollständige Induktion im Bezug der 
Eckenzahlen der Vielecke. Der Induktionsschritt geht ähnlicher Weise wie 
vorher von vier auf fünf.

II. Falls p >  5 ist, so unterscheidet man zwei Fällen: 1 ) p  ist eine gerade 
Zahl, 2) p ist eine ungerade Zahl.

Im Falle 1) zieht man |  Halbgeraden aus einem Punkt O so, daß das 
durch ihren Enden bestimmte |-Eck ein asymptotisches Vieleck ist, das den

p

i = l
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Abb. 3

Punkt O im Inneren enthält. Fällen wir die Lote aus dem Punkt O auf 
die Seitengeraden, und tragen wir je eine (z.B. gleiche), willkürliche Strecke 
auswärts auf diesen Loten von den Fußpunkten auf. Verschieben wir die 
Seitengeraden entlang der Lote zu diesen Punkten, so haben die verschobe
nen benachbarten Seitengeraden je ein gemeinsames Lot. Jetzt können wir 
den Hilfssatz zu jeden Geradenpaaren verwenden und so die gewünschten 
Winkel an, «2, . . .  , ap an den Ecken des p-Eckes gewinnen.

Im Falle 2) zieht man zunächst + 1 Halbgeraden aus einem Punkt O, 
daß die Enden ein asymptotisches Vieleck bestimmen, das den Punkt 
O im Inneren enthält. Nehmen wir ein solches ^^-Eck, ferner liege das 

+  l)-te Ende bezüglich einer Seitengeraden in der entgegengesetzten 
Halbebene, wie der Punkt O. In dieser Halbebene, mit der Seitengeraden 
als Grundlinie, läuft eine Abstandslinie vom Abstand A(^-) (d.h. vom Pa
rallellot zum Parallelwinkel ^-), die die zur betrachteten Ende gehörige Halb
gerade in einem Punkt P\ schneidet. Die aus P\ gezogenen, zur Grundli
nie parallelen Halbgeraden und die gebliebenen und nach 1) verschobenen 
(2“  — 1) Seitengeraden haben — in der nacheinanderfolgenden Reihe — je 
ein gemeinsames Lot, und dem Hilfssatz gemäß können die weiteren Winkel 
«2, Q!3, . . .  , ap eingelagert werden. Damit haben wir unseren Satz 1 vollstän
dig bewiesen.

Bezeichne Bp ein oben konstruiertes Vieleck. Es ist leicht zu sehen, daß 
jede Ecke des Vieleckes i lp durch die nacheinanderen Spiegelungen an den 
in diesem Eckpunkt sich getroffenen Seiten lückenlos umgelegt werden kann. 
Die gespiegelten Exemplare bilden einen Gürtel um das ursprüngliche Vieleck 
IIp, daraus folgt der Satz 2 auf Grund des Alexandrow-Poincaréschen Satzes 
(vgl. [7] und [8]):

Satz 2. In der hyperbolischen Ebene können die Mosaike aus der kon
gruenten Exemplaren eines Vieleckes n p — durch die Seitenspiegelungen -  
aufgebaut werden.

Wenn wir ein solches Mosaik untersuchen, so können wir leicht fest
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stellen, daß jede Seite eines Elements des Mosaiks auf ihrer Geraden durch die 
Seite eines benachbarten Elements fortgesetzt werden kann. Diese zueinan
der sich verknüpfenden Seiten bilden je eine vollständige Gerade im Mosaik. 
So haben wir ein total-separables Mosaik nach einer diskreten Spiegelungs
gruppe konstruiert.

Es ist leicht zu sehen, daß je ein Inkreis zu jedem inneren Punkt eines 
Vieleckes ü p gehört, denn die Lote aus einem willkürlichen inneren Punkt 
zu den Seiten laufen im Inneren vom Vieleck IIp. Die minimale Entfernung 
kann als der zu diesem Punkt gehörige maximale Inkreisradius betrachtet 
werden. Folglich gilt der folgende

Satz 3. Die durch Seitenspiegelungen aus IIp auf gebauten Mosaike sind 
total-separabel. Die entsprechenden gespiegelten Inkreise um einen beliebigen 
inneren Punkt der Mosaikelemente bilden ein total-separables Kreissystem 
kongruenter Kreise in der hyperbolischen Ebene.

Ein solches Vieleck IIP, mit gegebenen, in einer bestimmten zyklischen 
Reihenfolge geordneten Winkeln kann sehr vielfältige, einander nicht kon
gruente Formen annehmen. Denn wir haben bei der vorigen Konstruktion 
gewisse Freiheitsparameter, deren Anzahl mit p > 3 (in linearer Ordnung) zu
nimmt. Nach einem Lemma von Makarow (vgl. [1] und [9]) gilt das folgende: 
Wenn ein Vieleck (p-Eck) mit den Winkeln a\,  «2, • • • , ap in der hyperbolis
chen Ebene gibt, so existiert immer ein solches p-Eck, dessen Seiten einen 
Kreis berühren. Es ist leicht zu sehen, daß der eindeutige Radius dieses 
Kreises — unter den Inkreisradien solches p-Eckes — maximal ist. Da der 
Flächeninhalt eines solchen Vieleckes

konstant ist, folglich gilt der

SATZ 4. Unter den separablen Mosaiken, die zur obigen Klasse der Spie
gelbilder eines Vielecks IIP mit den Winkeln a \ , a 2, . . .  ,a p gehören, hat das 
Mosaik die maximale Dichte, bei dem IIp um einen Kreis umgeschrieben ist.

Wir nennen diese zu den dichtesten Inkreispackungen gehörigen Mosaike 
Makarowsche Mosaike.

Man sieht sofort, daß noch vielfältige inkongruente Makarow-Mosaik- 
elemente zu denselben Winkelgrößen a.\,a2, . . .  ,a p — abhängig von ihren 
verschiedenen zyklischen Reihenfolgen — gehören.

B e m e r k u n g . Z u  jedem Makarowschen Mosaik, dessen Elemente p-Ecke 
mit den Winkeln ff- , . . .  , ~  sind, gehört je ein duales, Archimedisches 
Mosaik mit regulären 2ni-, 2n2-, . . .  , 2np-Ecken. Die Eckpunkte des dualen 
Mosaiks stimmen mit den Inkreismittelpunkten des ursprünglichen Mosaiks 
überein.
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ZWANGLÄUFIG BEWEGLICHE POLYEDERMODELLE. II

O. RÖSCHEL

A b stract

In this paper there is shown how to construct overconstrained mechanisms with sys
tems linked by spherical 2R-links. Given a tetrahedron with faces tangent to a common 
sphere we cut the vertices of this polyhedron with planes tangent to the sphere. In the 
faces of this new polyhedron we define plane equiform euclidean motions with common 
parametrization and common time-depending scaling factor f(t).  The motions in different 
faces are linked by spherical links. ‘Blowing up’ the tetrahedron with factor 1 / / ( f )  then 
gives an overconstrained kinematic chain consisting of 8 systems linked by spherical 2R- 
links. It has to be remarked that this procedure may be used to gain a very great variety 
of overconstrained mechanisms: the given algorithm just has to work on other polyhedra 
with faces tangent to a common sphere. Further parts of this paper will show that fact.

In [1] ist es gelungen, aus einem Würfel durch Eckenstutzen ein zwang
läufig bewegliches Polyedermodell mit sphärischen Doppelscharnieren zu kon
struieren. Die eckenstutzenden Ebenen mußten dabei Tangentialebenen der 
Inkugel des Würfels sein. Daß dahinter ein allgemeiner Sachverhalt verbor
gen ist, soll in dieser Arbeit gezeigt werden. Die so gefundenen Resultate wer
den dann zur Konstruktion von zwangläufig beweglichen (überbestimmten) 
Polyedermodellen verwendet, die aus (nicht notwendig regulären) Tetraed
ern hervorgehen. Als Spezialfall stellt sich dabei das bekannte Modell des 
HEUREKA-Polyeders ein.

1. Wir studieren vorerst ebene äquiforme Zwangläufe £ : = e /e* einer 
Gangebene e gegenüber einer fest gedachten Rastebene e* mit folgenden 
Eigenschaften: £ besitze einen globalen Fixpunkt A* G e* (bzw. A  G e) und 
führe einen gangfesten Punkt P ^  A auf einer A* nicht enthaltenden Bahn
geraden b*(P). Wenn wir wie üblich komplexe Zahlen zur Beschreibung 
dieser Zwangläufe verwenden, empfiehlt es sich, in e und e* kartesische Nor
malkoordinatensysteme {0* =  A*; x*, y*} und {0 = A]x,y}  so einzuführen, 
daß P  in £ den Einheitspunkt der tc-Achse bezeichnet, und die beiden Ko
ordinatensysteme für den Ausgangszeitpunkt bei £ zur Deckung gelangen. 
Eine Parametrisierung von £ ist dann etwa durch

(1) £: :=x + iy —> ! ? ) "5̂ (1 +it) ( te R )
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Key words and phrases. Kinematics, overconstrained mechanisms.
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gegeben. Dabei wurde vorausgesetzt, daß sich der Punkt P  für t =  0 auf 
seiner Bahngeraden b* (P ) gerade in jenem dem Zentrum A* — 0* nächsten 
Punkt befindet. Aus (1) ist ersichtlich, daß der so definierte Zwanglauf £ 
alle Punkte X  6 (e — A) auf Bahngeraden b*(X) führt. Wir wollen diesen 
Zwanglauf £ daher als linearen ebenen äquiformen Zwanglauf mit globalem 
Fixpunkt A*(A) ansprechen.

2. Nun geben wir im euklidischen Dreiraum eine feste Kugel n* (mit 
Mittelpunkt M*) sowie zwei nichtparallele Kugeltangentialebenen rj*, r2 mit 
Berührpunkten A*,A2 vor. Die Schnittgerade r* fl r2 bezeichnen wir mit 
s*2 und parametrisieren sie mit einem Parameter t £ R  (vgl. Abbildung 1 -  
die Kugel n* ist nicht eingetragen).

Wir denken uns die beiden Ebenen r*, r |  als Rastebenen bzw. Gangebe
nen t\ , t2 doppelt ausgeführt und definieren lineare ebene äquiforme Zwang
läufe :=tí/ t* (i = 1,2) mit globalen Fixpunkten A* durch Vorgabe der 
parametrisierten Bahngeradan s\2 für zwei gangfeste Punkte P2 &T2, P\ G Ti, 
die sich für alle t (E R  an derselben Stelle auf s^2 befinden sollen. Da es be
kanntlich eine Drehung um die Achse s^2 gibt, die (rj*,A*) mit (r2,A2) zur 
Deckung bringt, sind die beiden äquiformen Zwangläufe £1 und £2 euklidisch 
kongruent und über die ’’Schleppbahnen” der Punkte P\ und P2 sogar kon
gruent parametrisiert (vgl. Abbildung 1 — dort sind auch die Bahngeraden 
je eines weiteren Punktes eingetragen).

In Abbildung 1 erkennen wir sehr schön, daß sich £1 und £2 zu jedem 
Zeitpunkt t durch Spiegelung an der Symmetrieebene o\2 := zur
Deckung bringen lassen.

3. Hilfsüberlegungen. Für die weiteren Abschnitte benötigen wir fol-
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gende Überlegungen:
A. Wir betrachten 3 Tangentialebenen r*, t2 , r3* der Kugel n* mit Berühr

punkten A*(i = 1,2,3), wobei r |  weder zu r* noch r |  parallel sei (vgl. Ab
bildung 2). Gebén wir nun in t * einen linearen äquiformen Zwanglauf 
mit globalem Fixpunkt A\ vor, so läßt sich dieser nach Abschnitt 2 über 
die Schleppbahn s*3 : =  t {  fl r3 eines geeigneten gangfesten Punktes kongru
ent in die Ebene r3 übertragen — der entstehende Zwanglauf werde mit £3 
bezeichnet. Uber die Schleppbahn s32 := r3 n  t2 kann in r |  analog ein zu 
Ci kongruenter linearer äquiformen Zwanglauf ("2 definiert werden. Dabei ist 
auf drei Besonderheiten hinzuweisen:

1) Aus Abbildung 2 ist ersichtlich, daß diese Koppelung der Zwangläufe 
über die Schleppbahnen zwischen den kongruenten Zwangläufen Cj und ( 2  

nicht möglich ist: £i führe den gangfesten Punkt Q\ auf der Schnittgeraden 
s*2 =  s2i • Auch im Gangsystem des Zwanglaufes £2 gibt es einen Punkt Q2 , 
der auf dieser Schnittgeraden geführt wird. Allerdings wird diese Gerade von 
Qi und Q2  in verschiedener Richtung durchlaufen, was die oben erwähnte 
Koppelung unmöglich macht (vgl. die Pfeile in Abbildung 2).

2) Überraschend ist der so in r |  definierte Zwanglauf £2 nicht von der 
Wahl der zur Übertragung verwendeten Kugeltangentialebene r3 abhängig! 
Dies sieht man mit Abbildung 2 wie folgt ein: Wählen wir statt r 3 zur 
Übertragung eine andere (weder zu r* noch zu t2 parallele) Kugeltangen
tialebene f3 mit Berührpunkt Ä3. Der dann über die Schleppbahnen und
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Abb. 3

s 3̂ :=  Tj* fir3* und §32 := t3 n r 2 in r2* definierte Zwanglauf ̂ 2 ist zu ( 2  kongru
ent und besitzt denselben globalen Fixpunkt. Auch die Parametrisierungen 
sind dieselben. Da nach Abbildung 3 auch der Drehsinn von £2 mit jenem 
von 2 übereinstimmt, sind ( 2  und ( 2  sogar identisch.

3) Wir haben in Abschnitt 2 festgestellt, daß sich die Zwangläufe (j und 
£3 bzw. (3 und ( 2  jeweils durch Spiegelung an den Ebenen a ^3  [s*3,M*]
bzw. °32 [s32 , M *] ineinander überführen lassen. Der Übergang von (p zu
£2 kann daher i.a. als Drehung um die Schnittgerade dieser beiden Symme
trieebenen gewonnen werden.

B. Gegeben seien zwei verschiedene Tangentialebenen t* , t2 einer Kugel 
k* (Mitte M*) mit Berührpunkten A*(i = 1,2). Nun versuchen wir, einen 
in r* vorgelegten linearen äquiformen Zwanglauf (j mit globalem Fixpunkt 
A \ über zwei Zwischenglieder in Tangentialebenen t3, t|  der Kugel k* (Be
rührpunkte A3, A4) wie in Abbildung 3 in die Ebene r |  zu übertragen. 
Im folgenden sollen die Schnittgeraden s*3 :=  r* fl r3, s34 := r3 D t|  und
S42 :=  t% fl r2 eigentliche Geraden sein. Die Übertragung von £i in die Ebe
nen 73,74 und r2 soll sukzessiv über die Schleppbahnen sj3,S34 und s| 2 
erfolgen. Die so in 73,74 bzw. t2 induzierten linearen äquiformen Zwang
läufe C3)C4 bzw. £2 besitzen die globalen Fixpunkte A 3 ,A \  bzw. A2 und 
sind alle zu (1 kongruent. Wir haben unter A bemerkt, daß der in r |  in-
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duzierte Zwanglauf £4 unabhängig von der Wahl der Übertragungsebene t) 
ist (solange wir eine Kugeltangentialebene verwenden). Daher dürfen wir 
o.B.d.A. 73 parallel zur Schnittgerade s*2 := t* fl t|  wählen — sollten t* 
und t2 zueinander parallel liegen, verändern wir die Lage von r |  nicht. 
Analog verfahren wir für die Ebene r | ,  sodaß schließlich die Schnittgera
den s*3, S34 und s | 2 sowie Sj2 (falls eigentlich) zueinander parallel liegen. 
Diese Situation ist in Abbildung 3 dargestellt. Insgesamt gilt dann nach 
Abschnitt 2: Der Zwanglauf £2 entsteht aus £1 durch fortgesetzte Spiegelung 
an den Ebenen ct*3 := [s*3, M*], a^ 4  [034, M*] und a \ 2  '■= [542, M*]. Die
Spiegelungsebenen gehören einem Büschel an; daher ist die Zusammenset
zung dieser drei Spiegelungen insgesamt eine Spiegelung an einer weiteren 
Ebene ct* dieses Büschels. Falls r* und r2 nicht zueinander parallel sind, gilt 
ct* =  a (2 := [s*2, M*], anderfalls ist ct* Mittenebene der parallelen Ebenen r* 
und r2. Abschnitt 2 lehrt dann, daß im Fall nichtparalleler Ebenen t* und 
r2 der Zwanglauf £2 auch über die Schleppbahn auf der Schnittgeraden s 12 
direkt aus (1 gewonnen werden kann (vgl. Abbildung 3). Sind dagegen r* 
und r2 parallel, so geht ( 2  durch Schiebung aus (1 hervor — Schiebvektor
ist der Vektor A*A2.

C. Zuletzt betrachten wir 4 Tangentialebenen t*, r2 , T3 und der Kugel 
k* mit Berührpunkten A* (i =  1, 2, 3, 5). Dabei sei vorausgesetzt, daß die Tan
gentialebene 75 mit den Ebenen rj*, t2,73 eigentliche Schnittgeraden =  s ^ ,  
s25 =  s52> s35 =  s53 besitzt (vgl. Abbildung 4). Wie unter A definieren wir in 
einer dieser Ebenen (etwa in r*) einen linearen äquiformen Zwanglauf Cj mit 
globalem Fixpunkt durch Vorgabe der geeignet parametrisierten Gera
den s 15 — S51 als Bahn eines gangfesten Punktes P\5. Wieder wird dieser 
Zwanglauf über die ’’Schleppbahn” auf der Schnittgeraden .s*5 =  054 kongru
ent in die Ebene übertragen. Über in der Gangebene dieses Zwanglaufes 
£5 feste Punkte P52 und P53, deren Bahnen als Schleppbahnen nach s25 = Sg2 
bzw. S35 =  S53 fallen (die Punkte sind mit Hilfe des Peripheriewinkelsatzes 
leicht zu ermitteln), definieren wir in den Ebenen r2 und 73 Zwangläufe 
C2 und £3 mit globalen Fixpunkten A 2  und A3. So wie für A läßt sich 
wieder nachweisen, daß statt der Kugeltangentialebene rr( jede beliebige an
dere Kugeltangentialebene zur Übertragung verwendet werden könnte, ohne 
daß sich die resultierenden Zwangläufe £2 und (3 ändern. Dabei ist bloß 
darauf zu achten, daß die neue Ubertragungsebene zu r*, r |  und nicht 
parallel ist.

4. Diese Sachverhalte ermöglichen es, in den 4 Seitenflächen r*, t2 , t^ , t4  

eines (nicht notwendig regulären!) Tetraeders A* mit Hilfe von 4 geeigneten 
Tangentialebenen r | ,  Tg , r f , 7g der Inkugel k* von A* (auch eine der Ankugeln 
könnte verwendet werden) kongruente lineare ebene äquiforme Zwangläufe 

:= Tj/ t* (* =  1 ,...  , 8) mit globalen Fixpunkten in den Berührpunkten 
A* mit der Kugel k zu definieren (vgl. Abbildung 5).

Die Tangentialebenen T5 , 7g, Tj, Tg seien so gewählt, daß sie zum Stutzen
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je einer Ecke des Tetraeders verwendet werden können. Wir verfahren dann 
wie oben und erhalten eine sich schließende Konfiguration aus 8 kongruenten 
linearen äquiformen Zwangläufen, die dann durch Schleppbahnen gekoppelt 
sind, wenn sie in einer Tetraederebene und einer der benachbarten zum 
Stutzen verwendeten Tangentialebenen , Tg, Ty, r |  ablaufen. Von diesen 8 
kongruenten äquiformen Zwangläufen £, werden die Ecken jeweils gangfester 
Dreiecke auf den Schnittgeraden der entsprechenden Ebenen geführt, die 
zu jedem Zeitpunkt r  6 R  mit einem Eckpunkt in einer Ecke eines Nach
bardreieckes zu liegen kommen.

Abbildung 5 zeigt die Situation für jenen Zeitpunkt r  € R, für den alle 
Zwangläufe (i — 1, . . .  , 8) gleichzeitig eine Momentandrehung besitzen. 
Dies wäre in (1) für f =  0 der Fall gewesen. Links oben ist das Ausgangs
tetraeder samt Inkugel unter der Annahme abgebildet, daß die vordere Tet
raederfacette weggeschnitten ist. Rechts danaben ist ein durch Eckenstutzen 
entstehende Restkörper dargestellt. Links unten sind die Lote auf die Schnitt
kanten aus den Berührpunkten mit der Inkugel sowie die entstehenden Fuß
punktedreiecke eingetragen. Die Figur rechts unten zeigt schließlich ein 
Rohmodell des dadurch bestimmten übergeschlossenen Mechanismus. Aus 
den Hilfsüberlegungen von oben ist klar, daß auf den ursprünglichen Tetra
ederkanten keine Punktkoppelung zwischen den in den benachbarten Tetra
ederseitenflächen ablaufenden äquiformen Zwangläufen möglich ist.
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Abb. 5

Wird nun die gesamte Figur aus dem Mittelpunkt der Kugel k* in Ab
hängigkeit von t G R  so gestreckt oder gestaucht, daß der Zwanglauf, den 
T \  gegenüber dem Gesamtraum vollführt, zu einem euklidischen wird, so 
gilt dies für alle unsere Teilzwangläufe (vgl. die Idee in [I, 15]). Unsere 
Figur aus 8 Dreiecken bildet dann einen in der Bewegungsgruppe des E 3  

zumindest zwangläufigen Mechanismus aus 8 starren Dreiecken, die in den 
Ecken sphärisch miteinander gekoppelt sind. Da die Dreiecksebenen vor 
Ausüben dieser Streckungen irn E 3  fixiert waren, halten sie nun festen Winkel 
zueinander und lassen sich daher in den Ecken sogar durch sphärische Dop
pelscharniere (sphärische 2R-Gelenke mit Drehachsen in den Normalen der 
Dreiecksebenen) koppeln. Der entstehende Mechanismus besteht daher aus 
8 Dreiecken und 12 sphärischen 2R-Gelenken. Er besitzt den theoretischen 
Freiheitsgrad

(2) F = 7.6 — 12.4 =  —6

und ist daher eine übergeschlossene kinematische Kette. Die so entstehen
den Beispiele sind im Gegensatz zu den bislang bekannten (auch die in [1] 
beschriebenen besitzen ja als Grundstruktur noch die des Würfels) i.a. voll
kommen frei von regulären Teilsystemen. Die 8 Dreiecke werden i.a. weder 
kongruent noch ähnlich sein. Auch die Konfiguration ihrer Trägerebenen 
ist bis auf ihre Kugeltangentialebeneneigenschaft nur dadurch eingeschränkt, 
daß noch Schnittdreiecke mit den Nachbartangentialebenen entstehen sollen.
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Die so gefundene kinematische (üb er geschlossene) Kette ließe sich mit 
Abbildung 5 durch folgenden Algorithmus (A) aus einem Tetraeder A* (Ebe
nen .. .  r | ) herstellen:

A l) Bestimmung der Inkugel k* des Tetraeders A* (theoretisch wäre auch 
die Verwendung einer der Ankugeln möglich) und ihrer Berührpunkte

A2) Eckenstutzen des Tetraeders mittels 4 Tangentialebenen T5 . . .  t|  der 
Kugel k* und Bestimmung der Berührpunkte A\ ... Ag mit k*.

A3) Konstruktion der Lotfußpunkte auf den neu entstandenen Schnittkanten 
(7̂  Tetraederkanten) aus den Berührpunkten A \ ...  Ag und Ermittlung 
der 8 Fußpunktsdreiecke in den Ebenen r* . . .  Tg.

A4) Verbindung je zweier benachbarter Dreiecke durch sphärische 2R-Gelenke, 
wobei der Winkel der Scharnierachsen aus dem Winkel der Dreiecksebe
nen am eckengestutzten Tetraeder abgelesen werden kann.

Wir fassen zusammen in folgendem

S a tz  1. Wird ein allgemeines Tetraeder A* mit Hilfe von 4 Tangen
tialebenen der Inkugel (bzw. einer Ankugel) von A* eckengestutzt, so liefert 
oben beschriebene Konstruktionsvorschrift (A) einen zumindest zwangläufig 
beweglichen über geschlossenen Mechanismus aus 8 starren Dreiecken und 12 
sphärischen 2R-Gelenken.

BEMERKUNGEN. 1. Auch einige üb er geschlossene Modelle aus der Ar
beit [1] könnten so interpretiert werden, daß dieser allgemeine Algorith
mus beim Eckenstutzen des Würfels W* verwendet wird. Nach dem hier 
vorgestellten Sachverhalt ist klar, daß statt des Würfels W* auch eine Kon
figuration bestehend aus 6 Tangentialebenen einer gemeinsamen Kugel k* für 
das Ausgangsobjekt verwendet werden könnte. Zum Eckenstutzen lassen sich 
dann 8 weitere Tangentialebenen dieser Kugel k* heranziehen. Obiger Algo
rithmus führt in diesem Fall auf übergeschlossene Mechanismen aus 6 starren 
Vierecken (nicht notwendig kongruent und auch nicht notwendig in paarweise 
orthogonalen Ebenen!), 8 starren Dreiecken (ebenfalls nicht notwendig kon
gruent) und 24 sphärischen 2R-Gelenken. Da die Formenvielfalt hier kaum 
zu überblicken ist, sollen neben in [1] vorgestellten Beispiele vorerst keine 
neuen gestellt werden.

2. Ganz allgemein läßt sich der Algorithmus (A) immer dann einsetzen, 
wenn das Grundobjekt aus Facetten besteht, die eine gemeinsame In- oder 
Ankugel berühren, und hinsichtlich der Kanten- und Eckenfiguren die grobe 
Struktur eines regulären Polyeders besitzen.

3. Zusammenhang mit dem HEUREKA-Polyeder: Jedes reguläre Okta
eder kann als geeignet eckengestutztes reguläres Tetraeder A* angesehen 
werden. Die Seitenflächen von A* sind z.B. so aus den Oktaederseitenflächen
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auszuwählen, daß sich je zwei nicht in einer Kante des entstehenden Okta
eders schneiden. Wird der Algorithmus (A) für diese Konfiguration nach
vollzogen, so entsteht der Mechanismus des HEUREKA-Polyeders.

5. Aus der Fülle der nach Satz 1 konstruierbaren Modelle sei abschließend 
ein bemerkenswertes Beispiel vorgestellt, das überraschend auch als beweg
liches Würfelmodell zu deuten wäre: Das Ausgangstetraeder A* bestehe 
aus Ursprung und den Einheitspunkten auf den Achsen eines kartesischen 
Normalkoordinatensystems. Zum Eckenstutzen verwenden wir jene Tangen
tialebenen der Inkugel k * von A*, die zu den Tetraederebenen parallel sind. 
Dieses eckengestutzte Tetraeder, das auch durch geeignetes Stutzen zweier 
gegenüberliegender Ecken eines Würfels entsteht, zeigt Abbildung 5. Der 
Restkörper werde mit P* bezeichnet. Wir verfahren nach Algorithmus (A) 
und erhalten überraschend in allen Ebenen t* (t =  l , . . .  ,8) gleichseitige 
Fußpunktsdreiecke. Dies ist wie folgt einzusehen:

a. Das in der geneigten Seitenebene r |  mit der Gleichung x* + y* + 
z* = 1 des Tetraeders A* liegende Dreieck ist gleichseitig mit der M itte im 
Berührpunkt A4 mit der Inkugel «*. Durch unser Eckenstutzen ist auch 
deis am Restkörper P* in r |  entstehende Dreieck gleichseitig mit M itte A\. 
Schritt (A3) des Algorithmus liefert daher in dieser Tetraederseitenebene 
sicher ein gleichseitiges Dreieck. In der zu r |  parallelen Tangentialebene r8* 
erzeugt Schritt (A3) auf dem Restkörper P* ein dazu kongruentes gleich
seitiges Dreieck, da P* wie erwähnt auch durch Eckenstutzen eines Würfels 
mit parallelen Tangentialebenen seiner Inkugel entsteht. Für die restlichen 
Facetten gehen wir analytisch vor:

b. Die anderen Facetten auf dem Restkörper P* und ihre Berührpunkte 
Aj, A2, A3, A5, Ag,Ay sind kongruent. Wir untersuchen o.B.d.A. das in 
der Ebene t * . . .  z* =  0 entstehende Dreieck: Die Kugel k * besitzt den Mit
telpunkt M * ( 3~6V̂ , 3~6v̂ ), und die zu parallele Tangentialebene Tg 
die Gleichung x* +  y* +  z* = 2 — \/3. Die Tangentialebenen Tg und Tg werden 
durch y* = 3~^3 bzw. x* = 3 erfaßt. Die auf den Spuren von Tg , Tg und Tg
in der Ebene t* bezüglich des Kugelberührpunktes A \{3~ ^ , 3  3 ^ , 0) inter
essanten Lotfußpunkte besitzen der Reihe nach die Koordinaten 
(3 ß^3) 3~3V̂ , 0), (3~3/̂ ’ 0) und (2 2 ~ f , 0)- Unschwer läßt sich
nachprüfen, daß diese Punkte in Tj ein gleichseitiges Dreieck bestimmen. 
Wegen der Symmetrie unserer Aufstellung ist damit die Behauptung be
wiesen.

Abbildung 6 zeigt eine Ansicht des so enstehenden Mechanismus, bei 
dem die Facetten als Prismen ausgebildet sind.

B em erkung . Aus Überlegung B in Abschnitt 3 folgt, daß bei diesem 
speziellen Mechanismus parallelen Facetten reine Schiebungen längs Geraden 
als Relativzwangläufe bestimmen: Vor der beschriebenen Streckung aus dem 
Kugelmittelpunkt M* laufen in diesen parallelen Ebenen ja schiebungsgleiche
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Abb. 6

lineare äquiforme Zwangläufe ab. Der Schiebvektor dieser Schiebung ist 
normal zu den Ebenen. Vom Zeitparameter t abhängige Streckungen aus 
M* ändern bloß die Länge des Schiebvektors, nicht aber seine Richtung - 
der Relativzwanglauf ist damit als Schiebung längs Geraden erkannt.

6. Selbstverständlich lassen sich auch die Seiten der durch unser Ecken
stutzen entstehenden neuen Dreiecke als starre Stäbe zwischen den Tetra
ederebenen t*, t2, r-j, r |  materialisieren, ohne daß dadurch die Beweglichkeit 
des Mechanismus gestört wird. Diese Stäbe müssen dann sphärisch an 
den Tetraederebenen angelenkt werden. Es ist bloß darauf zu achten, daß 
einerseits ausreichend Stäbe zur Verfügung gestellt werden und diese sich 
während des Bewegungsvorganges nicht stören. Es entstehen so aus dem 
Ausgangstetraeder zumindest zwangläufig bewegliche übergeschlossene Stab
werke. Dies wäre als Analogie zu den beweglichen Würfelstabwerken [1] 
anzusehen. Der dort gegebene hohe Grad an Symmetrie muß hier im allge
meinen nicht mehr auftreten. Beispiele für solche Stabwerke sollen in einer 
eigenen Arbeit dieser Serie angegeben werden.
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HELLY-TYPE THEOREMS ON TRANSVERSALITY 
FOR SET-SYSTEM

S. REVENKO and V. SOLTAN

A b s t r a c t

There are studied some Helly-type theorems on set-system as generalizations of Helly- 
type results on the existence of a common supporting line for a family of disjoint convex 
bodies in the plane.

1. Introduction

R. Dawson (see [1]) has proved several Helly-type theorems on the ex
istence of a common supporting line for a finite family of disjoint convex 
bodies in the plane. In what follows, we mean by a plane convex body any 
compact convex set in the plane, with interior points. Recall that a line l 
supports a plane convex body B  provided l contains at least one boundary 
point of B  and the whole B  lies in a closed halfplane determined by l.

Following [1], we say that a family T  of convex bodies in the plane has 
the (support) property S  if there is a line l supporting every member of T . 
Similarly, T  has the property S(k) if any subfamily of k members in T  has 
the property S. Now the results from [1] can be summarized as follows. Let 
T  be a finite family of n (pairwise) disjoint convex bodies in the plane. Then: 
1) 5(5) => 5, 2) 5(4) => 5  if n ^ 7, 3) 5 (3) =► 5  if n ^  237.

The methods of proofs in [1] are based on the considerations of some set- 
systems and on further investigations whether these systems can be realized 
geometrically. We develop here this method and complete some results from 
[1] on set-systems. In particular, we show that the number 237 in assertion 
3) above can be lowered to 143.

2. Definitions and main results

Let A be a set (finite or infinite) consisting of distinct elements A, B , C, 
. . .  , called by us letters. A set-system £  on A consists of words, each being 
a subset of A. For simplicity of notation, each word of C will be written as 
an alphabetically ordered sequence of letters, e.g. ABD, D E F H , etc.
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Key words and phrases. Helly-type theorems, supporting property.
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Our geometric interpretation of a set-system is based on a family T  of 
disjoint convex bodies in the plane, corresponding to distinct letters of the 
set-system. In this way a subfamily of T  forms a word if and only if there is 
a line supporting all bodies of the subfamily such that no other body of 7F 
is supported by the line.

As it is shown in [1], any family of disjoint convex bodies in the plane 
has the following properties:

(1) any two bodies have exactly four common supporting lines;
(2) any three bodies have at most three common supporting lines;
(3) any five bodies have at most two common supporting lines.
Basing on these and following [1], we introduce two definitions.
D e f i n i t i o n  1. A set-system C on the set A  is called special provided it 

has the following properties:
(PI) no pair of letters in A  are contained in more than four words;
(P2) no triple of letters in A  are contained in more than three words;
(P3) no quintuple of letters in A  are contained in more than two words.

D e f i n i t i o n  2. A set-system C on the set A  has the (transversal) prop
erty T  if all the letters of A  belong to a word. A  has the property T(k), 
where A: is a given positive integer, if any k (pairwise) distinct letters in A  
belong to a word.

In our interpretation, the property T  (respectively, T(k)) of set-systems 
corresponds to the property S  (respectively, S(k)) of families of disjoint 
convex bodies in the plane. Now we are able to formulate the main results 
of the paper.

T h e o r e m  1. T(6) =>T for any special set-system.
THEOREM 2. T(5)=>T for any special set-system on at least 7 letters.
T heorem 3. T(4) =>T for any special set-system on at least 11 letters.
T heorem 4. T(3) for any special set-system on at least 143 letters.
As a consequence of Theorem 4 we obtain

COROLLARY. S(3) =>• S  for any collection of at least 143 disjoint convex 
bodies in the plane.

The following problem still remains open.
P r o b l e m . What is the minimum positive integer n such that A(3) =» S 

for any collection of at least n disjoint convex bodies in the plane?
Paper [1] contains an example of 10 disjoint convex bodies in the plane 

with the property <5(3) but not the property S. Figure 1 shows a similar 
arrangement of 16 convex bodies in the plane (with the respective set-system 
shown in Table 4). Hence the number n in the Problem is between 17 and 143.
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A B C D E F G H I J K L M N 0 P Q R T U
+ + + + + + + + + + + + + + + + + — + +
+ + + + + + + +
+ - - - - + + + + + + +
+ + + + + - - - - + - -
+ + + + + + - -
- + + + + + + + + + + + + + + + + + - -
- - - - - - - - - + + - - + + - - + + —

+ + - - + + + + -
- - - - - - — - - + - + - + - + - + - +
- - - - - — - - - - + - + - + - + + - +

Table 1

Examples below show that assertions of Theorems 2 and 3 are tight. 
The problem on the minimum number n of letters in a special set-system A, 
which guarantees the implication T(3) =>T, remains open. Table 1 shows a 
special set-system of 10 words on 20 letters with the property T(3) but not 
the property T. Hence this number is at least 21. Here and subsequently 
each row of a table with “+ ” and ” means a word of the set-system. Thus 
the second row in Table 1 means the word A B C D E R T U .

A B C D E F
+ + + + + -
+ + + + - +
+ + + - + +
+ + - + + +
+ - + + + +
- + + + + +

Table 2

EXAMPLE 1. Table 2 shows a special set-system of 6 words on 6 letters 
A ,B ,C , D ,E ,F , with the property T(5) but not the property T.

Example 2. Table 3 shows a special set-system of 5 words on 10 letters 
with the property T(4) but not the property T.

The following Table 4 gives the set-system of 6 words on 16 letters cor
responding to the family of disjoint plane convex bodies from Figure 1.
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3. Proofs of Theorems

P roof of T heorem 1. Assume, for contradiction, the existence of a 
special set-system £  on a set A , with the property T(6) but not the prop
erty T. Clearly, A  has more than 6 letters and every word of £  is distinct 
from A.

Choose a pair A B  of letters in A. Due to T (6), there is at least one
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A B G D E F G H I J
+ + + + + + + + - -
+ + + + + + - - + +
+ + + + - - + + + +
+ + — - + + + + + +
- — + + + + + + + +

Table 3

A B G D E F G H I J K L M N 0 P
+ + + + + + + + + + + + + + + -

+ + + + + +
+ - - - — + + + +
+ + + + - - — - +
+ + + + + +
- + + + + + + + + + + + + + + -1-

Table 4

word containing AB, and, by (PI), the are at most 4 such words. Denote by 
W i , . . .  , Wi, 1 5í i ^  4 all the words in £ containing both letters A, B. Since 
all Wj  are distinct from A. one can find in A  some letters Cj Wj,
Again by T(6), there is a word W  G £  containing all of A, B, C \ , ...  , Cj. Since 
W  is distinct from any of W \ , . . .  , Wi, we obtain a contradiction. Hence the 
property T  holds.

PROOF OF T heorem 2. Due to Theorem 1, it is sufficient to show that 
T (5) =i>T(6) provided |.A| ^  7. In fact, we will prove below that T(5) =^-T(7) 
holds.

Let V  =  {A, B, C, D , E, F, G} be any subset of 7 letters in A. Our pur
pose is to show that all these letters belong to a word.

Claim 1. For any 4 letters in V  there are 2 more letters from V  such that 
all the 6 letters belong to a word.

Indeed, choose in V  any 4 letters, say A, B, C, D, and consider the sets

{A, B , G, D, E), {A, B , C, D, F}, {A, B, C, D , G}, {A, B, C, E , F}.

Due to (P2) for A B C , at least 2 of these sets belong to the same word. The 
union of these 2 sets is a set of at least 6 letters from V, containing AB C D .

We continue the proof of Theorem 2. Assume, in order to obtain a 
contradiction, that V  is not in a word. By Claim 1, for the letters A, B , C, D 
there are 2 more letters, say E, F, such that A, B,C , D, E, F  belong to a
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word, W\. By the assumption, G £ W \.  Similarly, for the letters A ,B ,C ,G  
there are 2 more letters, say D , E, such that all A, B , C, D, E , G belong to 
a word W2 and F £ W2- Now for the letters A, B, F, G one can find 2 more 
letters, say C,D, such that all A, B,C, D, F, G belong to a word W3 and 
E  £ W3. In the same way, for A, E. F, G two more letters, say B ,C ,  exist 
such that A, B,C , E, F, G belong to a word W4 and D ^ W4. Finally, for 
D, E, F, G there are, say A, B , such that A, B , D, E, F, G belong to a word 
W 5, with C(£W5.

Summing up, we have obtained 5 distinct words W\ , . . .  , W5 each con
taining AB. By (PI), at least 2 of these words coincide. If, for example, 
W i = W2, then F  6 W 2, a contradiction. A similar contradiction appears in 
any of the cases Wt =  Wj , i ^ j .

P roof of T heorem 3. Let £  be a special set-system with the property 
T(4) on the set A  having at least 11 letters. It suffices to show that T(4) =>• 
T( l l ) .

Let Q — {A, B , C, D, E, F,G, H, I, J, K }  be any set of 11 letters in A. 
So, given Q, every 4 letters of which belong to a word, we wish to show that 
all of them do. We prove this in some steps.

Claim 2. Any 2 letters in Q belong to a word with at least 7 letters 
from Q.

Assume, for contradiction, that the letters A, B  do not belong to a word 
with at least 7 letters from Q. According to (P2), there are at most 3 
words W i,W 2,Wz each containing A, B, C , and by T(4), these words cover 
the quadruples { A B C X  : X  G Q}. Since there are 8 such quadruples, the 
number of Wi s is exactly three (otherwise one of Wj’s would contain at 
least 7 letters from Q). Moreover, 2 of these words, say W\ and W2, contain 
exactly 6 letters from Q, and W3 has either 5 or 6 such letters. Without loss 
of generality, we may suppose that Wi, W 2, and W3 are as shown on Table 5 
(here blank spaces in the row corresponding to a word mean that we do not 
know whether a respective letter belongs or does not belong to a word).

Now consider the quadruples

(1) { A B X Y  : X  G {D, E, F}, Y  G {G, H, /, J, K}}.

By the above and according to (PI) for A B ,  some of these quadruples may 
be in W3, and the others belong to a new word W\. It is easily seen that at 
most 2 of quadruples (1) can be in W3, and if 2 of them are in IL3 then they 
are of the form A B X  J , A B X K  for the same X.  All the other quadruples
(1) belong to W4, and hence A B D E F G H IJ K  lies in W4, a contradiction.

Claim 3. Any 2 letters in Q belong to a word with at least 8 letters 
from Q.

Assume, for contradiction, that the letters A, B  do not belong to a word 
with at least 8 letters from Q. By Claim 2, there is a word W  containing
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A B C D E F G H I J K
+ + + + + + W\
+ + + — - - + + + - - w 2
+ + + + + w 3
+ + + +
+ + + +
+ + + +
+ + + +
+ + + +
+ + + +
+ + + +
+ + + +
+ + + +
+ + + +
+ + + +
+ + + +
+ + + +
+ + + +
+ + -1- +

Table 5

exactly 7 letters in Q, A B C D E F G , say. Consider the quadruples

(2) { A B X Y  : X  E {C, D, E, F, G}, Y  E {H, /, J, X}}.

According to (PI) for A B , all these 20 quadruples (see Table 6) are covered 
by at most 3 words. Hence at least one of these words contains at least 7 
quadruples of the form (2). It is easily seen that the union of any such 7 
quadruples contains at least 8 letters from Q (including AB), a contradiction.

Claim 4- Any 2 letters in Q belong to a word with at least 9 letters 
from Q.

Assume that a pair A B  does not belong to a word with at least 9 letters 
from Q. Due to Claim 3, there exists a word W  containing A B C D E F G H ,  
say. First, we will show that for any fixed letter Y  from Q\W  =  {I, J, K }  the 
quadruples { A B X Y  : X  E W \{ A ,  B}}  are covered by only 2 words permitted 
for A, B, Y  by (P2).

Indeed, fix any letter, say I, from {/, J ,K } ,  and suppose that the quadru
ples { A B X I : X  E VF\{Á, B}}  are covered by 3 distinct words W\, W2, and 
W3. It means that for any W,,i = 1,2, 3 there is a letter X, E (W, Pi VF)\{A} 
such that Xi Wj for i ^  j , i , j  = 1,2,3. Together with W  they consti
tute exactly 4 words containing AB  (according to (PI)). The quadruples
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{ A B X J  : X  E ÍT\{A, B } } are covered by some words, each contains A B  and 
distinct from W; so they are covered by some of W\, W2, and W3. Moreover, 
due to the choice of X \ , X 2, and X 3 , these quadruples are covered by ex
actly 3 of these words. Thus we conclude that each of Wi, W2, W3 contains 
the pair IJ .  Considering the quadruples { A B X K  : X  E W}  and repeating 
the same argument, we conclude that each of W\, W2 , W3  contains the triple 
I J K .  As a result, we obtain the quintuple A B I J K  contained in 3 distinct 
words, contradicting (P3).

So, the quadruples { A B X I : X  E W\{A, J3}} are covered by 2 distinct 
words, say W\ and W2 (if W\ =  W2 then A B  would lie in A B C D E F G H I). 
Similarly, each family of quadruples { A B X J  : X  E W\{A, B}}  and { A B X K  : 
X  E IT'\{/1, B}} is covered by exactly 2 words. Since all these quadruples 
cover A B ,  there are at most 3 distinct words W \ , W2, W3 (besides W )  cov
ering all of them. We will distinguish here two different cases.

A B C D E F G H I J K
+ + + + + + + — — — — W
+ + + + 1
+ + + + 2
+ + + + 3
+ + + + 4
+ + + + 5
+ + + + 6
+ + + + 7
+ + + + 8
+ + + + 9
+ + + + 10
+ + + + 11
+ + + + 12
+ + + + 13
+ + + + 14
+ + + + 15
+ + + + 16
+ + + + 17
+ + + + 18
+ + + + 19
+ + + + 20

Table 6
(i) Two of the words Wi, W2, IT3, say W\, W-i, cover the quadruples 

(3) { A B X Y  : X E { C ,  D, E , F, G , H}, Y  E {I, J, K}}
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(see Table 7). Then, as above, U K  is in both W \, IT2. Since each of W \ , W2 
contains at most 8 letters, we have, up to symmetry on C , D , E, F , G, H, 
that W\ and W2 contain in Q exactly A B C D E IJ K  and A B F G H IJ K ,  
respectively (see Table 7, case (a)).

Now consider the quadruples {A C X Y  : X  £ {F,G, H } ,Y  £ {I , J , K }}. 
According to (PI) for AC, these quadruples are covered by at most 2 words 
different from W, W \ , W 2 .  Since the number of these quadruples is 9, one of 
the words contains at least 5 of the letters F, G, H, I , J , K .

Similarly, for any of the pairs AD, AE, BC, BD, BE, CD, CE, DE, there 
is a word containing this pair and at least 5 of the letters F, G, H, I, J, K. 
The total number of such (not necessarily different) words is 9. Hence at least 
5 of them contain either FGH  or U K .  Let FG H  belong to these at least 5 
words (the case of U K  is similar). Since F G H  C W  fl W2, there is only one 
new word containing FG H  (according to (P2)). Hence all these at least 5 
words coincide, i.e. a new word W' contains FGH, at least 4 of the letters 
A, B, C, D, E, and at least 2 letters from {I, J, K }.  By assumption on AB, at 
least one of A, B  is not in W . Let B  ^ W . Then considering the above words 
containing BC, BD, B E  (these do not contain F G H , since already contained 
by W\, W2, W ) ,  we obtain a new word W" which contains BC D E, FG  say, 
and U K .  But then CD EFG  is in 3 distinct words W, W , W " , contradicting 
(P3).

(ii) Quadruples (3) are covered by exactly 3 distinct words W\, W2, W3. 
We claim that in this case, each of Wi, W2, W 3 contains at most 4 letters 
from {C, D, E, F, G, H}, and at most 2 letters from {I, J, K}.

Indeed, first assume that W\, say, contains the letters C ,D ,E ,F ,G .  
Since W\ has at most 8 letters (by assumption on AB), W\ contains ex
actly one of I ,J ,K .  Let I  £ W\ (the cases J  £ W\, K  £ W2 are similar). 
Then W\ — A B C D E F G I. Now consider the quadruples
(4) { A B X Y  : X  £ {C, D, E ,F ,G ) ,Y  £ {J, K}}.
Clearly, all of them are covered by W 2  or W 3 .  Hence one of W 2 ,  W 3 ,  say W 2 ,  

covers at least 5 quadruples from (4). This implies that W2 contains 3 letters 
from {C, D, E, F,G}, and hence some 5 letters from {A, B, C, D, E, F, G} 
belong to 3 distinct words, contradicting (P3). Thus none of W\, W2, W3 
contains 5 letters from {C, D, E, F, G, H }.

Now let us assume that W \ , say, contains U K .  Since W\ has at most 
8 letters, it does not contain more than 3 letters from { C ,  D ,  E ,  F , G ,  H } .  

Let, for example, F , G , H  be outside W \ .  If both W 2  and W 3  contained 
F G H ,  then A B F G H  would be in 3 distinct words W ,  W 2 ,  W3, contradicting 
(P3). Hence at least one of the letters F , G , H  is not in one of the words 
W 2 ,  W 3 .  Let H  ^ W 2 -  Then H  W \  U W 2 ,  and therefore H U K  C W 3 .  

If there were a letter X  £  { C , D , E , F , G } \ { W \  UW3), then, by the same 
reason, X I J K  C W 2  and A B I J K  would be in each of W \ ,  W 2 ,  W 3 .  Hence 
{ C , D ,  E ,  F ,  G ,  H )  C lL , U W 3 .  In this case W \  and W 3  cover all quadruples
(3), contradicting the assumption. Thus, none of W \ ,  W 2 ,  W 3  contains U K .
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The just shown two facts imply, like above at H, that any X  £ 
£ {B , C, D. E, F, G} and any Y  £ {/, ,7, K } are in at least two of the words 
W i ,  W ' 2 ,  W 3 .  According to these observations, we conclude that, up to sym
m etry on C, D , E, F, G , H , the words Wj, W2, W3 are of the form shown on 
Table 7, case (b).

A B C D E F G H I J K
+ + + + + + + + - - - W
+ + + +
+ + + +
+ + + +
+ + + +
+ + + +
+ + + +
+ + + +
+ + + +
-I- + + +
+ + + +
+ + + +
+ + -1- +
+ + + +
+ + + +
+ + + +
+ + + +
+ + + +
+ + + +
+ + + + + + + + - — - w (a)
+ + + + + — - - + + + W\
+ + - — — + + + + + + w 2
+ + + + + + + + - - - w (b)
+ + + + + + - + - + - W\
+ + + + — — + + + - + w 2
+ + - - + + + + - + + W 3

Table 7

Now, considering the quadruples A C E K ,A C F K  and applying (PI) for 
AC,  we obtain that A C E F K  lies in a new word. Similarly, each of A D E F K , 
B C E F K  lies in a word different from W ,W \,W 2,W 3- Now, according 
to (PI)  for EF, we have tha t A B C D E F K  lies in a word. In this case 
A B C D E F  is in 3 distinct words, contradicting (P3).
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Claim, 5. All the letters from Q belong to a word.
Assume, for contradiction, the absence of a word in £ covering the letters 

of Q. By Claim 4, there is a word, say W\, containing A B C D E F G H I , 
say. At least one of J ,K ,  say K , is not in W\. The pair A K  belongs to 
a new word W2 containing at least 9 letters in Q, and whence containing 
at least 7 letters in {A, B,C, D, E, F,G, H, 1} ■ Let ABCDEFG  C W 2. If 
Y  G Q is a letter missing in W2, then for the pair Y K  there is a new word 
W3 containing at least 9 letters in Q. Clearly, W3 contains 5 letters from 
{A, B ,C , D, E, F,G}, and these 5 letters lie in 3 distinct words W i, W2, W3, 
contradicting (P3).

P r o o f  o f  T h e o r e m  4. Let £  be a special set-system with the property 
T(3) on a set A  with |*4| ^  143.

Assume, in order to obtain a contradiction, that A  is not a word. First 
we will show that every triple would have to be contained in at least 2 words 
of £. For, otherwise, let some triple A B C  be contained in exactly one word 
W x+ A .

First consider the case when W\ contains at least 62 letters. Choose a 
letter D £ W\. The triples {AD X : X  G Wi\{A}} are covered, due to (PI), 
by at most 4 words each containing AD. Thus one of these words, say W2, 
contains A and at least 16 other letters of Wx, i.e. \W\ fl W2I ^  17- By the 
hypothesis, W2 does not contain ABC. W ithout loss of generality, we may 
assume that B  0 W2. Then at most 4 words each containing B D  cover all 
the triples {B D X  : X  G W\ fl W2}. Hence one of these words, IF3, contains 
at least 5 letters common to W\ and W2, contradicting (P3).

Now consider the case when W\ contains at most 31 letters. Then, due 
to (PI), at most 3 other words Ti, T2, Ts each containing AB  cover all the 
triples {A B X  : X  ^ Wx}. Similarly, at most 3 new words Ux, U2, U3 cover the 
triples {A C X  : X  ^ W \ }, and at most 3 new words Vf, V2, V3 cover the triples 
{ B C X  : X  Wi}. The at most 27 intersections TiDUj C\Vk cover the set 
,4\VFi, which has at least 112 letters. Thus the largest of the intersections 
contains at least 5 letters, again contradicting (P3).

Finally, consider the case 32 ^ \ W\ \ 5Í 61. Due to (PI), at most 3 other 
words each containing AB  cover all the triples {AB X : X  ^ Wx}. Thus 
one of these words, say W2, contains A B  and at least 28 other letters of 
A \ W i . At most 3 other words each containing AC  cover all the triples 
{A C X  : X  G and we obtain another word, say W3, which contains
AC  and at least 10 other letters in W-j\W\.

We are going to prove that W \\{A , B  ,C }  C W2 CW3. Indeed, assume 
for a moment the existence of a letter D G Wy\{A, B ,C}  which is not in 
W% U W3. Then at most 3 new words each containing AD  cover all the 
triples {A D X  : X  G {W2 fl W3)\Wi}. Thus one of these words contains A 
and at least 4 other letters common to (W2 D W3)\Wi, i.e. at least 5 letters 
are contained in 3 words, contradicting (P3). Thus Wi\{A, B, C } C W 2UW3.
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Since the set Wi\{^4, B ,C }  contains at least 29 letters, one of the words 
W2, W 3 contains A B  or AC, and at least 15 other letters of W]. We will 
assume that it is W 2, which contains AB, and hence C is not in W 2 (the 
other case is similar). Choose a letter Z  £ W \, and consider the triples 
{ C Z X  : X  € W\ fl W2}. Due to (PI), they are covered by at most 4 words 
different from W\ and W 2. Since the number of the triples is at least 17, 
one of these words contains at least 5 letters common to both W\ and W2, 
a contradiction with (P3).

We thus conclude th a t every triple of letters in A  is in at least 2 words 
of C. Then pairwise intersections of at most 4 words, say S\, S2, S 3, S4, 
each containing AB, cover all of A. There are a t most 6 such intersections; 
so, the largest of them, say 5i D S2, contains a t least 26 letters. Let C  be 
a letter not in S\ n  S2', then at most 4 words different from S\, S 2, cover 
{ A C X  : X  6 Si Pl S2\ { / I } }. One of these words contains at least 8 letters of 
Si O S2, contradicting (P3).
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A NOTE ON MATRIC-EXTENSIBILITY AND THE ADS CONDITION

W. G. LEAVITT

1. Introduction

In the following we will assume, unless otherwise stated, that all rings 
will be from the class of all not necessarily associative rings. For a class M  of 
rings we will, as usual, write UM — {R | every 0 ^  R / I  ^ M } and S M  = {R \ 
if 0 ^ / o f ?  then I  ^ M }. We will also write L M  for the lower radical gener

ated by M, using the construction LM  = \JaM a where M\ is the homomor
phic closure of M  and (inductively) for a  any ordinal, Ma =  {R  | every 0 ^  
R / I  has some non-zero ideal in Mß for some ß  < a}. Remark that for I  <R 
we will define / 2 as the set of all sums of words in R  each containing at least 
two members of 7, and I 3 all sums of words each containing at least three 
members of I. Also remark that for any ring R  we will write R° for the ring 
with trivial (zero) multiplication on the additive group of R.

In [6] a class was called “matric-extensible” (me-class) if for all n we have 
R e  M  if and only if R n E M  where Rn is the ring of all n by n matrices over 
R. In [2] and [6] me-radicals were considered, particularly radicals P  which 
satisfy what in [7] was called the “matrix equation”, namely

(1) P(Rn) = (P(R))n.
In the following section we give a number of results on radicals satisfying the 
matrix equation, showing in particular that a hereditary me-radical satisfies 
the matrix equation in all rings. We also complete the proof of [2; Theorem 
1.5 and Corollary 1.7], namely we show that if M  is a homomorphically 
closed hereditary me-class, then LM  is a hereditary me-radical (therefore 
satisfying the matrix equation in all rings).

In the third section we note that many results, such as those of [2] and [7], 
are valid in classes more general than the associative (or alternative) rings, 
namely those in which radicals P  satisfy the so-called “ADS” condition: 
that P(I) < R  whenever I  < R. We also include some remarks relative to 
such classes (ADS classes) and give a construction for the largest ADS class 
contained in any given class.
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In the final section we consider the relationship between a class M  and 
the associated classes UM and S M . For a regular class M  (that is one in 
which M  Q SUM ) several conditions are given under which M  an me-class 
implies UM an me-radical satisfying the matrix equation in all rings. In a 
similar way we also give conditions such that M  an me-class implies S M  an 
me-class.

2. The lower radical and the matrix equation

In [6; Theorem 1] we gave a condition on an me-radical sufficient for it 
to satisfy the matrix equation and, by a similar proof, this can be extended 
to

PROPOSITION 1. If  P  is a radical either containing all the nilpotent rings 
or none, then P is an me-radical if and only if SP  is an me-class, and in 
either case P satisfies the matrix equation in all rings R.

In any case it is easy to show (as we remarked in [6]) that

P R O PO S IT IO N  2. A radical P  satisfies the matrix equation in all rings R 
if  and only if both P  and S P  are me-classes.

Remark that Snider in [7] showed that in the class of all associative rings 
P ( R n) =  In for some I  <R, from which follows the equivalence of: (1) P  is 
an me-radical, (2) SP  is an me-class, and (3) P  satisfies the matrix equation 
in all rings (associative).

Also note that in a ring R  with unit we also have P{Rn) =  In for some 
I  < R  and therefore an me-radical will satisfy the matrix equation in all rings 
with unit. We also can show that

PROPOSITION 3 [see 2; L e m m a  1.6]. Let P  be a hereditary radical either 
containing all the nilpotent rings or none. I f  P  satisfies the matrix equation 
in rings with unit then it satisfies the matrix equation in all rings.

P R O O F .  Let R  be an arbitrary ring and let H  = P(Rn). By [6; Lemma] 
there exist ideals J, I  of R  such that Jn ^=H Q I n with In/J n nilpotent. But 
then H /  Jn and In/H  are nilpotent so H /  Jri 0 would be a contradiction if 
P  contains no nilpotent rings, whereas I n/ H  0 would be a contradiction 
if P  contains all the nilpotent rings. Thus H  = In for some I  < R. Now 
imbed R  in a ring S  with unit in the usual way. It is well-known that then 
I  <S so In <Sn, and of course also P(R)<S. Thus the argument of [2; Lemma 
1.6] applies.

Remark that unfortunately the induction argument for [2; Lemma 1.4] 
is not valid, so [2; Theorem 1.5 and Corollary 1.7] have not been proved. 
However, see Theorem 7 below.

We can also extend Proposition 1 in the following way: First we have
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L e m m a  4 . If P is an me-radical which fails to satisfy the matrix equation 
in at least one ring R, then both P  and S P  contain zero rings.

P r o o f . If Q =  P(R) then Qn e P s o  Qn Q H  = P(Rn) with Qn 7̂  H . If 
H  — In for any I  <R. then 0 ^  In/Q n E P  implies 0 7̂  I /Q  E P  contradicting 
Q = P(R). Thus the inequalities are proper in [6; Lemma] Jn Q H Q I n with 
I 3 = •In- Since H 3 C Jn we have that 0 7̂  H / H 2 is a zero ring in P. Also 
0 7̂  In/H  and either 1% Q H  or 1% ^  H  but (72)2 Q H. In either case Rn/H  
contains an ideal which is a zero ring and since R n/H  E S P  =  SU SP,  this 
ideal has a non-zero image in SP.

C o r o l l a r y  5. If  an me-radical P contains Z° then P  satisfies the ma
trix equation in all rings.

PROOF. It is well-known that Z° E P  implies P  contains all zero rings 
and so all nilpotent rings. Thus the result follows from Proposition 1 or 
Lemma 4.

THEOREM 6 . If P  is a hereditary me-radical then it satisfies the matrix 
equation in all rings.

P r o o f . Suppose not, then if Q = P(R) we have Qn E P  so that Qn Q 
H = P{Rn) with Qn 7̂  H . Now H  7̂  In for any I  < R since 0 7̂  In/Qn would 
imply the contradiction 0 ^  I /Q  £ P. If Qn Q In Q H, then by heredity 
In/Qn  E P s o  / / Q e P ,  a contradiction unless I  — Q, that is Q is already 
maximal relative to Qn Q H. Since by [6; Lemma] we have Jn Q H Q 
In with 1% Q Jn then from Jn Q Qn ^  H  we hare H 3 Q Q n. Thus, divid
ing out Q, we can assume without loss of generality that R  is P-semisimple, 
and H <Rn with H  E P  and H 3 = 0.

Now let S = {x E R  I x  is an element of some A e H  if H 2 = 0, otherwise 
of some A E H 2}. (Recall that we are defining H 2 to be all sums of products 
each of which contains at least two matrices from H.) We will write R xR  to 
mean all sums of words in R  in which x is an interior element, and assume 
first that R xR  /  0 for some xE  S. Thus, say t =  (yx)z 7̂  0, and for any such 
t, since x E s  there is some A E H  or H 2 with x in, say, the i, j  position. Let
[i] denote the matrix with t in the upper left corner, 0 everywhere else. It 
is easy to see that by multiplying A first at the left then at the right, we 
can obtain [i] E H  or H 2, and so further multiplication, associating properly, 
yields [u] E H  or H 2 for any word u with x  as an interior element. But then 
by adding we have all [RxR] E H or I I 2. But since either I I2 =  0, or in any 
case H 3 = 0 it follows that [RrrP?,] <a H  and so [i?xi?] E P. But the zero ring 
R x R  <1R  and since R x R  =  [RxR] we have a contradiction.

Now suppose that R xR  = 0 for all x E S, but that R x  7̂  0 for some x E S, 
so there is some t — yx  7̂  0. Again x  is an element of some A E H  or H 2, and 
we can apply left multiplication to get a matrix V\ = [fi, t ^ , . . .  , t n\E H  or H 2 
with tj = t 7̂  0, where [<1, . . .  , tn] means a matrix with this as its first row, 
zero everywhere else. Write f t  to mean some sum of words with t in the final
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position (agreeing that f t '  shall mean the same sum of words except that t! 
replaces t), and suppose there should be some /  such that f t \  =  . . .  =  f t i - i  = 
0, bu t that / i j /  0. Then carrying out the multiplications matrixwise, and 
adding we have V2 =  [0, . . .  , 0, f U , ...  , f t n) E H  or H 2. Continuing the pro
cess we end with a matrix V  =  [0,... , 0, u*,. . .  , vn] G H  or H 2 with Vk /  0 
and such that whenever we have any fvk  =  0 then f v r = 0 for all r ^  k. 
W riting RV  to mean all matrices of form [0,... ,0, f v k , . . .  , f v n], then again 
R V  <H so RV  G P. Now recalling that R zR  =  0 for all z € 5, so that v^R — 0, 
we have Rvk < R. Hence the same contradiction that Rv)~ =  R V  G P. Now 
it could happen that Rvk =  0 so all Rvr =  0 for all r  ^  k. If V  has additive 
order 00 or some m, then at least one vt has the same order. Then the 
additive group {nv(} =  {nV }  so again the same contradiction {nvi]<R  with 
{'n v i } G P.

Clearly the case all R x R  =  0 and some xR  /  0 can be handled similarly, 
on the right, so finally suppose R x  = xR  =  0 for all x  G S. Then choosing any 
A  G H  or H 2 we have {nA}  <1H  so is in P. In a similar way if A has additive 
order 00 or m then it has at least one element x  with the same order. Thus 
the same contradiction {nx} <R and {nx} = {nA} G P. We conclude, in fact, 
th a t Q =  P(R) implies Qn = P (R n) so that P  satisfies the matrix equation 
in all rings.

T h e o r e m  7. If M  is a homomorphically closed hereditary me-class then 
L M  is an me-radical which satisfies the m,atrix equation in all rings.

P r o o f . By [6; Theorem 2] if R E M  implies R n E M, then the same 
is true  for L M , so it suffices to prove that R n E L M  implies R E LM. As 
we remarked earlier, we will use the construction L M  =  UaM a where M\ =  
M  and M a = {R every 0 /  R / I  has an ideal 0 /  J / 1 E Mß for some ß < a}. 
We assume that Mß is an me-class for all ß < a  and it is well-known that all 
M a are hereditary [see 8; Lemma 13.2 p. 59]. Suppose there could be some 
R n G M a but with R  ^ M a. Then R  would have some image R/Q  with no 
non-zero ideal in any Mß w ith ß  < a,  whereas R n/Qn  would have an ideal 
H / Qn E Mp for some ß  < a.

The proof is then similar to that of Theorem 6, namely that H  /  In for 
and I  <R  since if In/Qn £ Mß then by the induction hypothesis we would 
have the contradiction I /Q  E Mß. Also the hereditary property of Mß rules 
out any Qn QIn ^ H  unless Qn is already maximal relative to Qn Q H. Thus 
again H 3 C Q n so dividing out Q we have a ring R  with no non-zero ideals 
in any Mß, but H < R n with H  E Mß and H 3 = 0. The proof is then exactly 
as for Theorem 6, using the hereditary property of Mß to find ideals in Mß 
isomorphic to ideals of R, a contradiction. Thus L M  is an me-radical which 
by Theorem 6 satisfies the m atrix equation in all rings.

Note that this now provides a proof of [2; Theorem 1.5 and Corollary 
1.7]. Also remark that [6; Theorem 3] provides one further M  to L M  result, 
namely: If M  is a homomorphically closed me-class which contains no nilpo-
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tent rings then LM  is an me-radical which satisfies the matrix equation in 
all rings. This radical will of course contain only idempotent rings.

3. The ADS condition

In [1] it was shown that, in any associative or alternative ring, any radical 
P  has the so-called “ADS property”, namely that for any ring R

(2) P (I)< R  for any I< R,

from which it follows that if P  is hereditary then P{I) = I  C\ P(R). We will 
say that a radical P  satisfies the “ADS condition” in a class M  if it has the 
ADS property for all rings R  6 M, and call M  an “ADS class” if the ADS 
condition is satisfied in M  for all radicals P  defined in M.

Thus any class of associative or alternative rings is an ADS class, but 
the following example shows that there exist non-alternative ADS classes:

E xample 8. Let R  be generated over Z2 by the (non-associative) sym
bols x, y where x 2 = x ,x y  = yx = x, and y2 =  0. Let A be the universal class 
consisting of R  together with Z2 and Z%- Since xy 2 = 0 ^  (xy)y =  x, the class 
is non-alternative. But I  =  (x) is the only proper ideal of i?, so that P (I)  = I  
or 0 for all radicals P. Thus (2) is satisfied (trivially).

This example may seem somewhat contrived but it is contained in many 
larger ADS classes. Indeed we may show that

THEOREM 9. If P  is a radical defined in some universal class A then 
every subclass M  Q A contains a largest subclass in which P  satisfies the 
ADS condition.

P roof. For a class M  2 A define the class function

(3) F M  = { R e M  I P (I)< R  for all /< /? } .

Clearly P  satisfies the ADS condition in a class M  if and only if F M  =  M, 
and it is easy to see that F  has the properties M  2 F M  for all M  Q A  and 
M  2  iV implies F M  2 F N ,  that is F  is what in [5; p.168] we called a “dn- 
admissible” function. The result then follows from [5; Proposition 2] which 
states that if F  is dn-admissible in A  then any M  Q A contains a largest 
E-invariant class. In fact it is clear that F F M  = F M  so F M  is already the 
largest subclass of M  in which P  satisfies the ADS condition.

Corollary 10. Every subclass M Q A  contains a largest ADS class.

PROOF. If M(P) is the largest subclass of M  in which P  satisfies the 
ADS condition, then simply take fl M (P)  over all radicals P  defined in A , 
where fl M (P)  = 0 simply means that M contains no non-trivial ADS class.
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Note that F M  need not be a universal class and for some applications 
th a t would not matter. However, one could be constructed by combining 
F  with some function, say G, which throws away rings with an ideal or 
a homomorphic image not in M. For some of the applications the ADS 
property is only needed in rings with unit and again this could be constructed 
by starting with a sufficiently large class of rings with unit.

C orollary 11. The ring R of Example 1 is contained in a largest ADS 
class of not necessarily associative rings.

Remark that one such class would be R  adjoined to the class of all 
associative rings.

We now note that for the results of Snider cited above and for the results 
of [2] only the ADS property is needed. Thus they remain valid in any 
ADS class, as for example the class of all alternative rings. Indeed for the 
arguments of [2] the ADS property in rings with unit is all that would be 
required.

4. The classes UM and SM

It is well-known [3; Theorem 1] that UM is radical if and only if every 
R E  M  has some 0 ^  R / I  E SUM  (in particular UM is radical if M  is regular, 
tha t is M g  SUM). W hether UM is a radical or not it was shown in [6] (and 
as part of the proof of [2; Theorem 2.1]) that

Lemma 12. If  R e M  implies Rn E M  then R n E UM implies R. E UM.
And (also whether or not UM is radical) by [6; Theorem 4],
T heorem 13. I f  M  is a homomorphically closed me-class either con

taining all the nilpotent rings or none, then UM satisfies the matrix equation 
in all rings.

It is also clear that the proof of [2; Theorem 2.1] applies equally well to 
the class of all not necessarily associative rings, so we have

THEOREM 14. I f  M  is a regular me-class then UM satisfies the matrix 
equation in all rings with unit.

Thus, using Theorem 14 with Proposition 3, and combining [6; Theorem 
5] with [2; Corollary 2.3] we obtain

T heorem 15. Let M  be a regular me-class. If either (1) M  contains 
no nilpotent rings, or (2) UM is hereditary and M  contains all the nilpotent 
rings, or (3) UM is hereditary and contained in a class in which rings with 
unit satisfy the ADS condition, then UM is an me-class which satisfies the 
matrix equation in all rings.

It is also true in general that the class S M  is not semisimple (in fact S M  
is semisimple if and only if S M  = SU SM  [see 4; p. 312 for the equivalent
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conditions (2) and (3)]. In general we can say less about SM  then we did 
for its dual UM. However, again whether or not S M  is semisimple, we have:

LEMMA 16. If R e M  implies R n E M  then R n E S M  implies R E S M .

P r o o f . If Rn E S M  but R  ^ S M  then there is some 0 ^  I<R with I E  M  
so the contradiction In E M  with In <sRn.

Also we have:

T heorem 17. If M  is an me-class then S M  is an me-class if either: 
(1) M  contains no nilpotent rings and is homomorphically closed, (2) M  
contains no nilpotent rings and is co-regular (that is M  SM), or (3) M  
either contains all the nilpotent rings or none and is hereditary.

PROOF. By Lemma 16 we need only show that R E  SM  implies R n E 
SM ,  so suppose not. Then there exists some 0 ^  H  o R n with H E M. If 
H  = In for any I  < R  there would be the contradiction IE  M. Thus the con
tainments are proper in Jn Q H  QIn with / „ / Jn nilpotent [from 6; Lemma]. 
For (1) we would have the contradiction that the nilpotent 0 ^  H /  Jn E M .  
For (2) we will have the same contradiction since M  Q U SM  says that nilpo- 
tent 0 ^ H / J n has an ideal in M. For (3) since M  is hereditary we would 
have Jn E M  which would be a contradiction unless J  — 0. But then H  would 
be nilpotent which would contradict if M  has no nilpotents, and In would 
be nilpotent which would contradict if M  contains all nilpotents.

Since H = In for some I< R  whenever R  is a ring with unit, we also have:

C o r o l l a r y  18. If M  is any me-class then S M  has the me-property in 
any ring with unit.
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HOW TO GENERATE THE INVOLUTION 
LATTICE OF QUASIORDERS?

Dedicated to E. Tamás Schmidt on his 60th birthday 

I. CHAJDA and G. CZÉDLI

Abstract

Given a set A, let Quord(A) denote the set of all quasiorders (i.e., reflexive and 
transitive relations) on A. Equipped with meet (intersection), join (transitive hull of 
union) and involution (p i-> {(x ,y ) : (y, x) Gp}), Quord(A) is an involution lattice. When A 
is infinite, Quord(A) is considered a complete involution lattice. Let k,q =  No, the smallest 
infinite cardinal, and define nn+\ = 2 Kn. It is shown that if |.4| ^  /tn for some integer n, 
then Quord(A) has a three-element generating set.

Given a set A , let Quord(A) denote the set of all quasiorders (i.e., re
flexive and transitive relations) on A. Similarly, the set of equivalences on A 
will be denoted by Equ(A). Both Quord(A) and Equ(A) are algebraic lat
tices if we define meet and join as intersection and transitive hull of union, 
respectively. According to the following table, which was partly produced 
by a cofnputer program, Equ(A) and especially Quord(A) have quite many 
elements:

\W ~ 1 2 3 4 5 6 7
|Equ(A) 1 2 5 15 52 203 877

|Quord(A] 1 4 29 355 6942 ? ?

It was proved by Strietz [8] (cf. also Zádori [10]) that the lattice Equ(A), 
4 < IAI < oo, has a four-element generating set, but cannot be generated by 
three elements.

By an involution lattice we mean a lattice L  equipped with an additional 
unary operation * such that * is an involutory automorphism of the lattice 
reduct. I.e., L =  (L; V, A, *) is an involution lattice if (L; V, A) is a lattice and 
(x V y )* =  x* V y*, (x A y)* =  x* A y* and x** = x  hold for all x ,y  E L. If the 
lattice reduct of L is a complete lattice, then L is called a complete involution 
lattice. The most typical example is Quord(A) where a* for a E Quord(A) is 
defined to be {(x ,y ) E A 2: (y ,x ) 6 a}. From now on, Quord(A) will always
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be considered a complete involution lattice. Involution lattices and Quord(A) 
have recently been studied in [1], [2], [4], [5] and [6]. The relation between 
involution lattices and Quord(A) is similar to but not quite the same as 
th a t between lattices and Equ(A). E.g., while each lattice can be embedded 
in some Equ(j4) by Whitman [9], there are involution lattices that can be 
embedded in no Quord(^4), cf. [4].

Now for any ordinal number v we define a cardinal number kv via in
duction. Set kq = Ko, the cardinality of N0 =  {0,1,2, 3 ,. . .  }. If /i„ is defined, 
then let = 2Kv. If v is a limit ordinal, then let be the sum of all k^, 
jjl < v. For example, is the sum of all cardinals Kn, n E No- The goal of 
the present paper is to prove the following

THEOREM 1. Let A be a set with 3 ^  |^4| < Then Quord(A), as a 
complete involution lattice, has a 3-element generating set. In fact, Quord(H) 
can be generated by three partial orders.

Before proving this theorem, some remarks are worth formulating.
If A  is finite then Theorem 1 holds for Quord(A) as an involution lattice 

in the usual sense (when the operations are the binary join and meet, and 
the unary involution).

The proof of Theorem 1 will (more or less) give the right feeling that 
there are many countable ordinals u > u  such that Quord(A) is 3-generated 
for \A\ < k„. But proving this stronger statement would require 41 much 
more complicated proof without proving the result for all sets A ; therefore 
the present paper is restricted to u = a>.

If {a,ß, 7} generates Quord(d) as a (complete) involution lattice, then 
{a, ß, 7 , a*, ß*, 7*} generates it as a complete lattice. Thus Theorem 1 offers 
a six-element generating set for the lattice reduct of Quord(A).

If IAI G {3,4}, then a straightforward computer program shows that 
Quord(-A) cannot be generated by two elements. This encourages us to 
conjecture that Theorem 1 is sharp in the sense that Quord(A) has no two- 
element generating set for |H| ^  3.

Besides the mentioned computer program, there is manual proof of the 
fact that no {a,ß} Q Quord(A) generates Quord(j4) for |A| =  3. We can 
list all possible {a,/?}, apart from symmetries and duality, and we can as
sociate a nontrivial unary operation f{a,ß) '■ A ^  A with {a, ß} such that a 
and ß  are compatible with f{a,ß}- Then all elements of [{a, /?}], the invo
lution sublattice generated by a  and ß, are compatible with f{aß}- Hence 
[{a,ß}] 7̂  Quord(yf), for all members of Quord(^4) (or Equ(A)) are simulta
neously compatible only with trivial (unary) operations (i.e., projections and 
constants). The long but easy details of this argument will not be presented 
here.

Unfortunately, the above idea, borrowed from Zádori [10], does not seem 
to work for |A| ^  4. By Demetrovics and Rónyai [7], for |Ä| ^  4 there are 
a,/3 £ Quord(yi) such that they are simultaneously compatible only with
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trivial A n —> A operations. At present, there is no good description of these 
{ a , ß } .  E.g., both a  and ß  can be a three-element chain (cf. [7]), but (as it 
is not too hard to check) the choice a  =  {(1, 2), (3, 2), (3,4), (5,4), (5, 6)} U A 
and ß  = {(1,3), (1,5), (1,6), (2,6), (4,6)} U A for A =  {1,2,3,4,5,6} is al
so possible. (Here and in the sequel A stands for the diagonal relation 
{(x,x): x £ A}; since this is the smallest element of Quord(A), it will also 
be denoted by 0.)

P roof of Theorem 1. For a relation /i Q A 2 , let piq0 denote the smallest 
quasiorder including /i, i.e., the transitive hull of fj,U A. As usual, P (X )  will 
stand for the set of all subsets of A, and let P +(X) — P(X) \  {0}. First we 
deal with the infinite case.

For each nonnegative integer n we will define an n-scheme

Sn = {An', e", e"+1, . . .  ;£>(">, ;a„/?W ,7n>

via induction on n. (The meaning of its components will be given soon.) 
This n-scheme will depend only on n. Further, associated with Sn and 
U £ P(Dn^), we will define a (unique) n-box

B n =  B n{U) =  (An\ e™, e”+1, .. .  -,an,ßn, l n ).

In danger of confusion, the more accurate notation

Bn(U) =(An(U); e"(i/), e”+1 (17),
D jfHu), d !?+1\U ) ,  . . .  ; a n(U),ßn(U), 7n(U))

will be used, even if most of the components do not depend on U. For 
m  < n, we will also define the sub-m-boxes of B n(U) or Sn; and for m =  n, 
Bn(U) will be considered the only sub-n-box of itself. After the necessary 
definitions and preliminaries we will show that A n is a set with power Kn, 
and {ctn, ßn, 7ri}, no matter which U £ P (D nl'>) is considered, is a generating 
set of Quord(An).

Now we define the 0-scheme So, cf. Figure 1. Let A$ =  {ao, bo, cq, do, ai, b\, 
Ci, d\, Ü2, ■ ■ ■ }■ We define three partial orders on Ao:

c*o =  {(°t, aj ) : 0 ^ i^ j}U {(6 j ,6 j) :  0 ú j  ^ *} U {(ci, c0)}U 
{(ci,Cj): l ^ i ^ j } U { ( d i , d j ) :  0 ^ jA i} U A ,

7o = {(6i,ai+i): 0 ^ i) U {(dt, Cj+i): 0 ^ i} U A ,

ß ^ =  ({(a0, b0), (bo, c0), (co,d0), (03, e^), (c6,6o)}U
\ QO

{(bi,ai): 1 ^i}U{(di,Ci): 1 gz}J .

These quasiorders are represented by horizontal, southwest —> northeast, 
and (solid) vertical directed edges, respectively. For k >  1, e ~  ((bok,cqk)i
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“ 0  a \ ° 2  a 3 a 4  a 5 a 6  a 9 a 12 a 15

(b9k+3, cgk+3), (&9jfc+6, c9fc+6)) will be called an edge triplet. (For A: =  1, this is 
represented by three dotted vertical lines on Figure 1.) Associated with this 
e we will use the notation

e ((beiCe), (6g,Cg), (£>e,Cg)).

The binary relations

8(e) = {(be,ce), (c'e,b'e), (c",6")} and 
r ( e )  = (ó(e))'

will have special role. (Sometimes we use the notation p* = {(y, x ) : (x , y) G 
p}  even when p is not a quasiorder.) Let {L>q Dq° \  Dq1̂ , Dq2\  • ■ • } be a 
fixed partition on the set of edge triplets of So such that all the classes are 
infinite. Let eg, eg, eg, eg, ■. . be a fixed enumeration of the elements in Dq 
We have defined So, and clearly |Ao| =  |DgU)| =  |Dg^| =  |Dg2̂ | =  . . .  =  «o- 

Now let U GP(Dq0̂ ), and define

ßo = ßo(U) = ( ß ^ U  U 6(e)
V e€U

U u
e€ D (00)\U

q o

Thus we obtain the 0-box

Bo = Bo(U) = (A o - ,e le l , . . .  ;U; D ^ ,  D ^ , . . .  ;a0,ß0,7o)•

Now let us assume that Sn, B n(U) for U G P ( D ^ )  and their sub-m-boxes 
for m  < n  are already defined. We may assume that An(U) H An(V) =  0 for
distinct U ,V G P (D {n ]). Let

An+\ =  u M U ) ,
t/e P (r» in))
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« n + l =  U  a n { U ) ,
ueP(D(nn))

7n+ i=  U Kn ( U) ,  and
l/eP(DÍn))

D^+ 1 =  U D {ri] (U),  fo r .^ n  +  1.
ueP(D[n))

a 0 a \ ° 2  ° 3  ° 4  ° 5  a 6 ° 9  a 12 a 15

(Of course, all these unions are unions of pairwise disjoint sets. For n =  0, 
the situation is outlined on Figure 2, where the three dotted lines stand 
for the edge triplet e®, and only one of Bo(U), C /^0, is indicated.) Define
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eln+1 =  e£j(0) for i ^  n + 1 and

e(n,0, U) =  I  (Öen(0),Cen ([/)), (Cgn^), í>én(0)), (c"n ([/) , frg'n (0) ) } 

for C/€P+(-DÍn)). Set

/5(n+1) =  (  U  Ä , ( ^ ) u  U  e ( n , 0 , f / ) ) q°.
PeP(DÍn)) f/eP+(DÍn))

This way we have defined

o  __ /  4 . _ n + l  n + 2  . r ) ( n + 1 )
* n + i  —  \ - ^ n + i )  e n + 1 , e n + 1 , . . . , P n + 1

/-)(rl+2) 
-'Ai+l » • • ■; a n + l i / ? ( n + 1 ) , 7 n + l )  ■

Clearly, \An+i\ = =  \ D ^ ^ \  =  . . .  =  «n+i. The sub-n-boxes of £„+1
are ju s t the Bn(U), U G P ( D ^ ) .  For m < n,  the sub-m-boxes of Sn+1 are 
the sub-m-boxes of its sub-n-boxes. Now let U G P(D^n(+1̂ ), and define

ßn+1 = ( ß ^ U  U í(e)U U **(e))q°
£€U e^Dn+l1)\U

Thus we obtain the (n-f- l)-box

B n+1 — Bn+i{U)

’■71+1 71+1 71 +  2
C7l+1 > C7l+1 ;U-,D.(71+1) j j ( n + 2 )

71+1 n+1 i ■ ■ ■ i ^ n + li ß n + \i  7 n + l  ̂ •

For m ^  n, the sub-m-boxes of P n+i({7) are the same as that of Sn+i.
In order to show that a n,ß n —ßn(U) and 7„ generate Quord(A„) (no

m atter which U E P ( D ^ )  is considered), we introduce certain binary terms 
fp,Q =  fp,q(x ' y>2) (n e No,p, q G A n). While the f pq will be involution lattice 
terms in the usual sense, for n > 0 the f p<q will contain the infinitary join 
and /o r meet operations as well. Instead of developing the exact definition 
of “term s” (like in [3, Chapter 2]) prior to their usage, we only note that all 
complete involution sublattices are closed with respect to the “term func
tions” they induce, and we will not make a distinction between two terms if 
they induce the same term function on each complete involution lattice. Set 
fp,q = xA yA zA x*  Ay* Az*, and notice that f PtP(an, ß n , 7n) = 0 in Quord(+ln). 
(This follows from a n A a* = ß n A ß* = 7n A 7* =  0.) When we define the f p 
in the sequel, we implicitly always assume on (n,p,q) that neither / ” nor 
f qp has previously been defined. Further, for p ^ q ,  f qp = (fpg)*- (Remem
ber, we do not make a distinction between f p q and (fPiq)**-) When defining 
our terms, we keep in mind that the final purpose is to show

(1) f p , q ( 0 ‘n , ß n , ' i n )  =  {{P,q)}q°-
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Then a n, ßn and 7„ will evidently generate Quord(A), for any element /i of 
Quord(A) is the join of all {(p, ^)}qo below p. However, (1) is not appropriate 
to be an induction hypothesis; something stronger is necessary. For p, <7 G An 
and n ^ m ,  let H  be the set of all sub-n-boxes of Bm =  B m(U). These sub- 
n-boxes are pairwise disjoint, of course. For h E H , let ph and (jh denote (the 
elements corresponding to) p and q in the /i-th copy of An (i.e., in the base 
set of the h-th sub-n-box). Define

= ( U {(Ph,qh)}Y  eQuord(Am).

Note that {(p, g)}qo =  (p,q)(n'n'> in Quord(A„) and (p, g)(n’m) =  AU
U U {(PhiQh)}- We will define terms f™q such that 

heH

(2) /p,9(am,/?m,7m) =  (p,9)(n,m) in Quord(Am)

holds for all 0 f f n f f m  an d p,qE An. Note that (2) implies (1), and therefore 
it implies Theorem 1 for |A| = \An\ = Kn.

The verification of (2) will be based on the geometric arrangement of 
elements in Am. These elements are in Km rows and kq =  No columns. The 
subset {ao, a \ , , . . .  {&o, , ^2>••■}, {^o, c \ , C2,...)■, and {do, d \ , d^, • • * }
of sub-O-boxes of Sm are called rows (a-row, b-row, c-row and d-row), while 
Oj, bj, Cj and dj of sub-O-boxes belong to the j-the column. For u E Arn we 
introduce the notation col(it) =  j  to express the fact that u is in the j-th  
column. For an edge-triplet e, let col(e) denote {col(6e), col(6'e), col(6")}. It 
is worth mentioning that for r  G {ßm, ß p E {7m, 7m) and Pi Q e

(3) {p,q) E T V p = $  |col(p) -co l(g )| <3.

This explains why the “column distance” of edges in an edge triplet is chosen 
to be three in the construction. Some other, more or less self-explaining, ter
minology induced by the “geometry” of A rn will also be used. For example, 
am is row preserving and ßm is column preserving. If r  G Quord(Am) and 
X  Q Am has the property that uE X  and (u, v) E t imply v E X ,  then X  is 
said to be closed with respect to t . E.g., columns are closed with respect to 
ß m and rows are closed with respect to If (it, v) G r  and u / d imply 
col(ii) col(u) resp. col(ii) < col(u), then r  is said to be column changing 
resp. column increasing. If, for some i ^  j , (it, v) E t  and u ^  v  imply 
col(it) = i  and col(i>) =  j ,  then we say that r  changes the column from i 
to j. Associated with a 0-box or 0-scheme we may speak of its halves; the 
a-row and b-row form the upper half while c-row and d-row constitute the 
lower half.

Now define

fao,bo=yA (xW z *) and fc0,d0 —V A {X*V z *)-
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In order to show (2) for / ° q bQ, suppose u ,v  E A m are distinct elements and 
(u, v ) E fa 0,b0(a rn, ß m ,7 m ) = ßm  A (am V 7^ ). From (it, v) E ß m we conclude 
col(u) =  col(u), whence u and v are in distinct rows. Since (it, v) E a m V 7^ , 
u and v belong to the same sub-O-box Bq, and even to the same half of Bo. 
Since the 7-arrows “go up” (cf. Figure 1), either u is in the a-row and v 
is in the 6-row or u is in the c-row and v is in the d-row of Bq. Therefore 
col(it) =  0, for otherwise the /3-arrow would go up between the rows of u 
and v. Thus (it, w) E {(a0, 60), (c0,d0)}- But (co,d0) ^ a m V7^ , for c0 is a 
maximal element with respect to am and it is isolated with respect to ym. So 
(u,v) E (a0,b0} E (a0,M (0’m)- The inclusion (a0, 60)(0'm) i  fa 0,b0(a m, ßm , 7m) 
is evident, hence we have shown that (2) holds for f®Q 6q. The treatment for 
fc0 d0 very similar.

Simple considerations like the above for bo will not be detailed usually. 
Moreover, when we define a term in the sequel without further reasoning, 
this definition should be understood also as a statement claiming (2) for the 
term  in question; the proof of this implicit assertion is left to the reader.

Now we assume that /°, b and / (° d satisfying (2) are already defined.
Let

,°

f°Ci jCi-f-i

x A (fai,biV z ^
*A( 0 , V
z A (/°  Vz), if *> 0 ’

®*A(/ld n  VZ)> Íf *= 0' co,do 
t0

i 1

: z A ( /b;,a; ^ f )> 
f0 ,, f 0

f 0
J bi ,CLi-1_1

f d t ,a+ 1 — z  ^  (fdi,Ci V fci,ci+ 1 ))
f 0
f 0 _<1

A ( / 5 W 1 V « ' ) ,

:^ A ( /S „ C 1+.VV*),
/■0 —  ti*  A  ( v  'i

2 a i + i , 6 i + i  V /v U a j + i , 6 i  v J b i , b i + i h

fci+i,di+i (fci+i,d, V / di,d{+\ )•

For example, the argument proving (2) for /°. 6 runs as follows. Sup
pose u ,v  E A m are distinct elements and (it, u) G (a m , ß m , 7 m) =  «m  A

((6j, a i+i)(°’m)v/3^). Since is row preserving, it and v are in the same row 
(and in the same sub-0-box) but in distinct columns. There are distinct ele
ments wo =  u, w i , . .. , w t =  v  in Am such that ( wj - i , Wj )  E (bi, U/3^
for all j .  Since ß ^  is column preserving and (bi, öi+i)(0,m) changes the 
column from i to i + 1, there is a k such that (wk-i,Wk) E (bi, ai+i)(0,rn) 
and ( w j - i , W j )  E ß ^  for all j  ^  k. Hence (u,Wk- i ) ,  (wk,v) E ß ^ ,  col(it) = 
col(io^_i) =  i and col(u) =  col(iUfc) =  i + 1. Suppose i is not a multiple of 3
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(the other case, when 3 does not divide * +  1, is similar). The intersection 
of the i-th column with an arbitrary sub-O-box (and the upper half of this 
sub-O-box) is closed with respect to /?£, and (ftj,aj+i)(0,m/  Hence u , wk_i, 
wk and v belong to the upper half of the same sub-O-box B q of Sm, and 
uifc-i =  bi, wk = aj+i in B 0. Therefore (2) for /° .j6 follows easily from 
Figure 1.

Now let p ^ q  belong to the same half (upper or lower) of So, and consider 
the smallest circle in the undirected variant of the graph on Figure 1 which 
contains p , q and consists of

(4) vertical and horizontal

edges only, and goes within the same half of So that contains p and q. Let 
{p =  t0, ri, r 2, . . .  ,r t= q ,  ri+1, . . .  , rk- i ,  rk = r0 =p}  be this circle (which is 
uniquely determined, the elements are listed anti-clockwise); the elements 
r o , r i , . . .  ,r k- \  are pairwise distinct. Define

= ( f °  v f °  V V f °  ) A ( V f °  V V /-0 )Jp,q \ J r 0 ,ri v J r l t r 2 v \ J r k ,rk_ , v ■/rfc_ 1)r t _ 2 v

Now we can set

/bo,co = yA  ( /6°0>i,3 Vy* V /C°3)C0) A ( /b°0i66 Vy* V and

/°3 ,c3 =V* A (/b°3,b0 V /b°o,Co V / C°0,C3).

Now suppose that p is in the upper half and q is in the lower half of So, 
and define

fp,q = ( /P°bo V f l C0 V / c°0>9) A ( /p%3 V / b°3iC3 V / “ ,,).

We have defined all the f °  terms, and these terms satisfy (2).

Now let us assume that appropriate ternary terms / p (? (p,q & An) are 
already defined (and they satisfy (2)); we start defining the / n+1 terms.

First assume that p,q & An+\ belong to the same sub-n-box B n(U) of 
5n-|-i such that col(p) ^  001(5) and neither col(p) nor col(5) is divisible by 3.
Here U e P { D {n ]). Let

rn+l
J P,Q tv .,A A

eeu
v » v / ” iS) a A  (/?,», v » - v  /?„,).

eeD Ín)\ í /

To show that this term satisfies (2), let m  ^  n + 1, and consider an m-box Bm. 
By definitions and the validity of (2) for /"-term s we obtain

(5) <p,5)(n+1’m) g O o m .Ä n .T m )  i  f ^ m ,  ßrrulm) =
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To show that the first inclusion in (5) is in fact an equality, suppose there is 
a pair (u,v) E fp £ l (am, ßm,7m) \  {p, g)(n+1,m). It follows from (5) that u =  
p(V)  and v =  q(V) in some sub-n-box B n(V) of B m. Here B n(V) belongs to a 
unique sub-(n +l)-box of B m, V E P{Dnl'>)1 andp(F ), q(V) are the elements 
of B n (V) that correspond to p,q E B n{U). From (u,v) £ (p,q)(n+1’m'> we 
conclude that U ^  V. Let e be an edge triplet in (U \V )U  (V \  U). Since 
col(6e) is divisible by 3, the elements u, v and be belong to distinct columns.

Suppose first that e E U \ V \  we claim that (u,v) = (p(V), q(V)) does 
not belong to / ”6e (am, ß m , j m) V ß m V An, 7m) = (p, V ß m V
{ce,q)(n,m\  Indeed, let us assume the opposite. Then there is a shortest 
sequence (of distinct elements) wq =p(V), W\,W2, ■ ■ ■ ,wt = q(V) such that 
( w i - i ,W { )  E (p,be)(n,m) U ß m U (ce,q)(n,m) for all i. Since ß m is column pre
serving, (p, bf. ) n,m) changes the column (only) from col(p) to col(6e) =  col(ce) 
and (ce,g)(n’m) changes the column from col(ce) to col(g), all the W{ belong 
to the col(p)-th, col(g)-th and col(ce)-th columns. By the construction, no 
elk has an element in these three columns, whence the intersection of these 
columns with B n(V) (or even with any sub-O-box) is closed with respect to 
ß m - Consequently, all the Wi belong to the same sub-n-box, i.e., to B n(V). 
Our present information on the columns col(m,) imply that, within B n(V),

p (V) = w0 (p,be)(n,m) wi = be(V) ßm w2 =  ce(V) (ce,g)(n,m) w3 = q{V)
is the only possibility. But this is a contradiction, for (be(V),ce(V)) is not 
in ßm (in fact, it is in ßm) by the construction. For e E V \  U, (u,v)  
f™be{ o L m , ß m , l m ) V  ß m ^  f c e,q(a m , ß m , l m )  follows similarly. Thus (2) holds
for f p , t '1-

Now let us assume that p, q E An+\, p ^ q ,  still belong to the same sub- 
n-box B n(U) of Sn+1 but the previous additional assumption does not hold 
(i.e., col(p) = col(g) or 3 | col(p) or 3|col(g)). Choose elements p ',p",g ',g" E 
A n+x such that p, p ' , p" are in the same row, q,q',q" are in the same (pos
sibly another) row, none of col(p'), col(p"), col(g'), col(g") is divisible by 3, 
|{col(p'), col(p"),col(g'), col(g")}| = 4  and (col(p'), col(p"), col(g'), col(g")} n 
(col(p), col(g)} = 0. Note that this choice can be made unique by fixing an ap
propriate Nq —» Nq map and requiring (col(p), col(g)) ha 
I-» (col(p'), col(p"), col(g'), col(g")), but the explicit knowledge of this map 
is unimportant for us. Now we can define

j-n+l — ( tn 
Jp,q yJp,p' V  f n+lV V,9' v / £ , ) * ( / £p,p 'PA q",ql

This way we have defined all / " + 1 when p and q belong to the same 
sub-n-box of Sn+\. Now let us consider the sub-n-boxes J5„(0) and B n(U) 
of S n+1, U E P +(Dn^)- The e" edge triplets in these sub-n-boxes will be 
denoted by
e»(0) =  <<00,c0), (60,c0), ( b l 4 ) )  and e^(U) = ({bu,cu), (b 'u ,^), (b'^cß))  ,
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respectively. Let

/n+l
j  by ,CU - y  a

To show that this term satisfies (2), suppose that Bn+\ is a sub-(n + l)-box 
of some m-box Bm and, for distinct u,v  G Am, {u , v) G f ^ u  (a ™> ß™' 7m) = 
ßm a  ((í>0 , ^ ) (n+1-m) v ß*m V A ((60 , 6 " )(n+1’m) V ß*m V
V(c'^, C[/)(n+1,m)). Since (u, v) G /3m, col(u) =  col(u) and (u,v) ^ ß<̂n. Hence in 
any sequence uio =  u, w \ , . . .  ,Wt = v in Am such that (w i-i ,w ß  G 
(6 0, ftj|)(n+1>m) U ßm U (c'jj, ct/)^n+1,m  ̂ for all i not all the (wí- i ,W{) belong 
to /? ĵ. Therefore {col(u>o)5 col(uq),. . .  , col(wii)} = {col(60), col(60)} (which is 
the same as {col(c0), col(c0)}). In particular, col(u) =  col(u) G 
(col(60), col(60)}. Since col(u) G {col(60), col(60)} comes similarly, we obtain 
col(u) =  col(u) =  col(6ß). We can assume on the sequence that 

wß, (wi, uij.fi)} Q ß ^  holds for no i. Now the only possibility con
cerning the elements Wi is the following:

uß*m wx =  6 0  ( ö 0 , 6 0 ) ( n + 1 ’ m )  W2 =  6 0  ß ^  w3 = c'u (c'u ,cu ){n+1’m) w4 = c v ß*m v.

Since col(e”) flcol(ejj) =  0 for k > n, the intersection of a sub-(n +  l)-box with 
the col(60)-th or the col(60)-th column is closed with respect to ß ^ .  Hence 
all the W{, including u and v, belong to the same sub-(n-|- l)-box. Working 
within this sub-(n +  l)-box, from

^ 0 ßm  ^ ßm  V ßm  i

u ^ v  and 60 -< cjj (with respect to the partial order ß m ) we conclude u =  60 
and v = cv . Thus (u,v) G <6®, C[/)(n+1>m), proving (2) for / b”+^ .

We define

f £ i = y "  a( / ^ vC í vC í )-
Suppose now that p G B n {$) and q G B n (U ) for U  G P + ( D ^ ) .  (The 

previous cases, (p, q) = (b§,cu) or (p, q)  =  (60, Cy), are excluded, of course.) 
We can define

f n + l  _  (  r n + 1 v, f n + 1  y  f n + l \  A (  t n + l  w f n + 1  w
Jp,<l -  \Jp,by V h y ,c u w Jcu,q) A {Jpjf V Jdv ,q) '

Finally, let pG Bn{U\) and ?G B n(U2) for distinct U\,U2 € P +(Dnl'>), 
and let 60, c0 G H„(0) be as before. We define

/n+l _  
J P,Q

(  f n+! V /" + M
9 / A (« + 1 

C0
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We have defined 1 satisfying (2) for all p, q 6 An+\. The induction is 
complete. So Theorem 1 is proved for all Quord(A„), i.e., for Quord(A) with 
I-AI =  Kn. Now if A is infinite and \A\ < ku, then Kn ^  |A| < k„+1 for some
n. We may suppose Kn < \A\ < Kn+\ (note that this case would not occur if 
we assumed the generalized continuum hypothesis). Then simply modifying
the construction of A n+\ so that we replace P ( D ^ )  by a subset P ( D ^ )  of
it such that \P (D ^) \  =  |A| and 0 6 P ( D ^ )  we easily obtain the result for 
Quord(A).

Now let us deal with the finite case. If A consists of three elements a, b 
and c, then Quord(A) is clearly generated by (a, b)qo, (b, c)qo and (c, a)qo. If 
\A\ = 2k^.4, then we can restrict ao, ßo and 70 to A  =  {ao, a 1, . . .  , a/t-i, bo, b\,
. . .  , bk-1}; the terms / ° q for p,q 6 A still satisfy (1). The odd case, A = 
{ao, a i , . . .  ,dk,bo,b\,. . .  , frfc-i} (k ^ 2), is essentially the same, but instead 
of (4) we have to say

(4’) vertical, horizontal and

The proof of Theorem 1 is complete.

A c k n o w l e d g e m e n t . The authors are indebted to László Szabó for a 
helpful discussion.
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TH E DEALER’S RA ND OM  BITS IN 
PE R FE C T  SECRET SH A RIN G  SCHEMES

L. CSIRMAZ

A b s t r a c t

A secret sharing scheme permits a secret to be shared among participants of an n- 
element group in such a way that only qualified subsets of participants can recover the 
secret. If any non-qualified subset has absolutely no information on the secret, then the 
scheme is called perfect. The share in a scheme is the information what a participant must 
remember. It was known that in any perfect secret sharing scheme realizing a certain 
collection of qualified sets over n participant, at least one participant must use at least 
0 (n /  log n) random bits for each bit in the secret. Here we present a collection of qualified 
sets so that the total number of random bits used by all the participants, i.e. the dealer’s 
random bits is at least 0 (n2 /logn ) for each bit in the secret.

1. In troduction

An important issue in secret sharing systems is the size of the shares 
distributed among the participants which has received considerable attention 
in the last few years, see e.g. [16], [5], [6], [9] etc. The reason is practical 
on one hand: the more information must be kept secret the less secure the 
system is since human being are not too good at remembering even medium 
size random data. On the other hand the problem is theoretically intriguing, 
too. All the known general constructions which work for arbitrary access 
structures assign exponentially large shares. For a long time even it was 
not known whether the size of the shares should tend to infinity. The first 
results in this direction were [7] and [9] where an almost linear lower bound 
was given. In [9] the question for access structures based on graphs was 
settled: here the lower and upper bounds agree. For other access structures 
still there is a gap, and as it was remarked in [7], any better lower bound 
would yield an affirmative answer to a long standing question in information 
theory: are there more (linear) inequalities among the joint entropies of 
random variables which are not consequences of the known ones [8]?
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In this paper we construct an access structure on which any perfect secret 
sharing scheme must use n/41ogn random bits for each secret bit on average 
for each participant, i.e. total n2/41ogn bits. The construction in [7] gave 
an access structure where some (in fact, at least logn) participant must use 
0 (n /  logn) random bits.

The paper is arranged as follows. First we give some definitions, and 
cite notions and facts from information theory which we shall use. Then 
we present the construction and prove that it is good. Finally we outline a 
conjecture about the entropy function.

2. Prerequisites

In this section we review the technical concepts both from information 
theory and from secret sharing which will be used in this paper. For a more 
complete treatment of information theory the reader is referred to [8]; its 
application to secret sharing is explained in [5].

2.1. Information theoretic notions. Given a probability distribution 
M * )}  xex  in a finite set X , define the entropy of X  as

H (X) = - J 2  P(x ) lo§2 P(®)-
%ex

The entropy H{X)  is a measure of the average information content of the 
elements in X.  By definition, the entropy is always non-negative.

Given two sets X  and Y  and a joint probability distribution 
{p(x, y)}xeX,yeY on the Cartesian product of X  and Y,  the conditional en
tropy H( X \ Y)  of X  assuming Y  is defined as

(1) H( X \ Y )  = ' £ p ( y ) H (X \Y  = y),
y£Y

where “X \Y  = y" is the probability distribution got from p by fixing the 
value y G Y .  The conditional entropy can also be given in the form

(2) H( X\ Y)  = H { X Y ) - H ( Y )
where Y  is the marginal distribution. From definition (1) it is easy to see 
that 7 7 (X |y )^ 0 .

The mutual information between X  and Y  is defined by

I ( X ; Y)  =  H( X)  -  H(X\ Y)  = H( Y )  -  H(Y\ X)
= H ( X ) + H { Y ) - H { X Y )

and is always non-negative: I ( X]Y)  ^  0. This inequality expresses the in
tuitive fact that the knowledge of Y,  on average, can only decrease the 
uncertainty one has on X.
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Similarly to the conditional entropy, the conditional mutual information 
between X  and Y  given Z  is defined as

I ( X ; Y\Z)  = H(X\ Z)  -  H( X\ YZ)  =
1 '  = H{XZ)  + H ( Y Z ) - H { X Y Z ) - H ( Z ),

and is also non-negative: I (X \Y \Z )  ^  0. In fact, the only known (lin
ear) inequalities for the entropy function are H( X)  ^ 0, H( X\ Y)  ^  0 and 
I{x] Y\Z)  ^ 0  and their algebraic consequences. One of the open questions 
in information theory is to find more, or to show that there are none. We 
shall say more about it in the last section.

2.2. Secret sharing schemes. In the following individuals will be denoted 
by small letters: a, 6, x , y , etc., sets (groups) of individuals by capital letters 
A, B, X,  Y,  etc., finally collection of groups by script letters A, B. We use 
P  to denote the set of participants who will share the secret.

An access structure on an n-element set P  of participants is a collection 
A  of subsets of P: exactly the qualified groups are collected into A. We shall 
denote a group simply by listing its members, so x  denotes both a member 
of P  and the group which consists solely of x.

A secret sharing scheme permits a secret to be shared among n par
ticipants in such a way that only qualified subsets of them can recover the 
secret. Secret sharing schemes satisfying the additional property that un
qualified subsets can gain absolutely no information about the secret are 
called perfect as opposed to schemes where unqualified groups may have 
some information on the secret.

A natural property of access structures is monotonicity, i.e. A G A  and 
AQ B Q P  implies that B  G A. This property expresses the fact that if any 
subset can recover the secret, then the whole group can also recover the 
secret. Also, a natural requirement is that the empty set should not be 
in A, i.e. there must be some secret at all. Thus we may concentrate on 
minimal qualified subsets, no members of which can be dismissed without 
changing the subset into an unqualified one. We say that the access structure 
is generated by its minimal elements,

Let P  be the set of participants, A  be an access structure, and S  be the 
set of possible secrets. A secret sharing scheme, given a secret s G S, assigns 
to each member x Gp a random share from some domain. The shares are 
thus random variables with some disjoint distribution determined by the 
value of the secret s. Thus a scheme can be regarded as a collection of 
random variables, one for the secret, and one for each x G P. The scheme 
determines the joint distribution of these n +  1 random variables. For x G P  
the x’s share, which is (the value of) a random variable, will also be denoted 
by x. For a subset A ^  P  of participants, A also denotes the joint (marginal) 
distribution of the shares assigned to the participants in A.

Following [5] we call the scheme perfect if the following hold:
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1. Any qualified subset can reconstruct the secret, that is, the shares got 
by the participants in A determine uniquely the secret. This means 
if(s|A ) = 0 for all A e A .

2. Any non qualified subset has absolutely no information on the secret, 
i.e. s and the shares got by members of A are statistically independent: 
knowing the shares in A, the conditional distribution of s is exactly the 
same as its a priori distribution. Translated to information theoretic 
notions this gives H(s\A) =  H(s)  for all A (f A.
By the above description the entropy of the secret, H(s)  can be consid

ered as the length of the secret. Any lower bound on the entropy of x  G P  
gives immediately a lower bound on the size of x’s share, and any lower 
bound on any subset X  Q P  of participants gives a lower bound on the total 
amount of random bits the dealer must have when distributing the shares 
among the participants.

2.3. Polymatroid structure. Let Q be any finite set, and B = 2® be the 
collection of the subsets of Q. Let /  : B —>■ R be a function assigning real 
numbers to subsets of Q and suppose /  satisfies the following conditions:

(i) / ( A ) ^ 0  for all AQQ,  /(0) = O,
(ii) /  is monotone, i.e. if A ^  B Q Q then f (A)  ^  /(B ),

(iii) /  is submodular, i.e. if A  and B  are different subsets of Q then

f ( A)  + f ( B ) Z f ( A n B )  + f {A\JB) .

The system (Q , / )  is called polymatroid. If, in addition, /  takes only 
integer values and f ( x)  5Í 1 for one-element subsets, then the system is a 
matroid.

S. Fujishige in [10] observed that having a finite collection of random 
variables, we will get a polymatroid by assigning the entropy to each subset. 
The proof of the following proposition can also be found in [14].

P r o p o s i t i o n  2 .1 .  By defining f ( A)  — H(A) /H(s)  for each A  Q P U [ s ]  
we get a polymatroid.

In our case the random variable s, the “secret” plays a special role. 
By our extra assumptions on the conditional entropies containing s we can 
calculate the value of f (As)  from f (A)  for any A QP ,  see [5], [14].

PR O PO SITION  2 .2 .  The secret sharing scheme is perfect if and only if 
for any A Q P  we have

if A e A  then f (As)  = f{A); 
i f A ^ A  then f  (As) = f (A)  + 1.

Now let us consider the function /  defined in Proposition 2.1 restricted 
to the subsets of P.  From this restriction we can calculate easily the whole 
function; and since the extension is also a polymatroid, the restriction will 
satisfy some additional inequalities.
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PROPOSITION 2.3. The function f  defined in Proposition 2.1 satisfies 
the following additional inequalities:
(i) if A Q B, A (£ A  and B  € A  then f ( B)  i> f ( A)  + 1;

(ii) i f A e A ,  B e  A  hut Ar\B<t A then  f (A)  + f ( B ) Z f ( A r \ B )  + f ( A u B )  + l.
The method can be outlined as follows. We define an access structure 

on the n-element set P,  an A C P ,  and show that for any polymatroid (P, / )  
satisfying (i) and (ii) above we have f {A)  ^ n 2/41ogn. By the discussion at 
the beginning of this section this implies that for any perfect secret sharing 
scheme H(A) /H(s)  ^ n 2/41ogn. This means that members of A have to 
remember n/41ogn bits for every secret bit on the average, and also that 
the dealer must use at least n2/41ogn random bits for each secret bit for 
distributing the shares to the members of A.

3. The construction

The first lemma expresses a trivial fact about qualified and unqualified 
subsets.

Lemma 3.1. Let A\ ,  . . . ,  Ak, and B\ ,  . . . ,  Bi be subsets of P. There 
exists an access structure A  on P for which all A* are qualified and all Bj 
are unqualified if and only if no Ai is a subset of Bj.

The next lemma is also the main lemma in [7]. Let k > 1 and t < 2k — 1; 
X  be a fc-element set, X q = X , X \, . . . ,  X 2k_i = 0 all the subsets of X  in 
such an order that if i < j  then X l (Z Xj .  (Reverse order, for example, by 
the size of the subsets.) Let b\, . . . ,  bt be individuals, not in X,  and B q =  0, 
Bi — {£>i}, in general Bj = {bi,. . . ,  bj} for j  ^  t.

Lemma 3.2. Let A  be an access structure on P, (P ,/ )  be a polymatroid 
satisfying (i) and (ii) of Proposition 2.3; Y  Q P, X j and Bj as above. Suppose 
that for each j  ú t ,  F U  Bj U Xj  G A  and Y  U Bj U Xj+i (f A. Then

f ( X U Y ) - f ( Y ) ^ t  + l.

P r o o f . Observe that Y  U Bj £ A  since it has a superset not in A , and 
Y  U Bj  U X  e A  since it has a subset in A.  Thus (i) of Proposition 2.3 gives 
immediately

(4) f ( Y U B j U X ) - f ( Y U B j ) Z l .

Similarly, for each 0 ^ j < t ,  (ii) of Proposition 2.3 gives 

f { Y U B j+iL>Xj+i) + f { Y U B j U X ) ^ f ( Y U B j ö X j +1) + f (Y U B j+1U X ) + l. 

The submodular inequality applied to Y  U BJ+\ and Y  U B} U X J+i yields 

f ( Y  U Bj+i) +  f ( Y  U Bj U X j+1) ^  f ( Y  U Bj) +  f ( Y  U Bj+1 U X j+1).
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(5) [ f (Y  U Bj  U X)  -  f ( Y  U Bj)] -  [ f (Y U B j+l U X ) -  f ( Y  U B j+1)] ^  1.

This holds for j  = 0, . . . ,  j  = t — 1. Since B q =  0, adding (5) for all of these 
values to (4) gives the claim of the lemma. □

T h e o r e m  3.3. Let k > 1, t < 2k -  1, s ^  1. There is an access structure 
A  on an n = t + sk + [log2 s"| element set P  so that for any polymatroid (P, / )  
satisfying the conditions of Proposition 2.3, / ( P ) ^ s ( f  + 1).

P r o o f . Let Bt — {hi, . . . ,  bt}', have exactly k elements for 1 ^  i ^  s, 
finally let Z be a [log2 s] element set, and Z\, Z2, . . . ,  Zs be subsets of Z  
such that if i < j  then Zi g  Zj. The set of participants P  will be just the 
union of the disjoint sets B t, X^> and Z, obviously \P\ = n . Let moreover
vrP) =  0, w w  = x w ,  w w  = x(!) u x w ,  . . . ,  w ^s+v  = x W  u . . .  u x ^ s\
and y  W = Zi U W W for 1 g  t g s + 1.

Applying Lemma 3.2 to the sets Y^l\  B \,  . . . ,  Bt, and j W  we get

/ ( j f W u y W ) - / ( y W ) ^ t  +  i,

i.e.
f (Zi  U W (l+1)) -  f {Zi  u w (i>) ^ t  + 1.

The submodularity applied to and Zi U gives

[.f ( W (i+1)) -  f ( W ^ ) }  -  [/(Zi u vp(i+1)) -  /(Z i U W «)] ^  0, 

from where we get
/ ( W ( m ) ) - / ( W w ) ^ t  +  1.

Since /(Vk^1)) =  /(0 ) =  0 and /(P )  ^  the claim of the theorem
follows. We still have to check that there is an access structure so that 
conditions of Lemma 3.2 hold. Let the subsets of X W be x f  as in the
lemma; picking any i and j  we must have Y ^  U Bj  U x f  E A, and Y ^  U
Bi U X[+\ tfi A. By our observation 3.1 such an access structure exists if for 
no two different pairs (i , j )  and (k, l)

y (i) u B j u x f  g y (fc) u ß ; u x f \ .

Suppose on the contrary that this is the case. Replacing y ’s with their 
definitions this means

Zi U W U x f  U Bj g z k U W {k) U x f \  U Bt.

Since Z, B,  and rAs+1) are pairwise disjoint, this inclusion means that 
Z i Q Z k , wW U x f  C U x f \ ,  and Bj  Q B t. Now, if * < k then by the

A dding up the last two inequalities, after rearranging we get
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choice of the Z ' s ,  Z i £  Z ^ ,  and if i > k then is a proper superset (and 
not a subset) of Therefore we must have i = k. Similarly, if
j  <1 + 1 then X ^  is not a subset of =  X ^ x, finally if j  ^  l + 1 then Bj  
is a proper superset of Bi. No cases left, the claim is proved. □

To get the result announced in the Introduction, choose k = log(n/2), 
t = n / 2, and s =  n/(21ogn), this gives f ( P)  ^ n 2/(41ogn), as claimed. The 
following table summarizes the best values for k , t  and s, and the coefficient 
A so that /  =  n 2/A„ log2 n. It is not hard to see that Xn converges to 4 as n 
tends to infinity.

n / An t s k
3 2 2.839184 1 1 2
4 2 4.000000 1 1 3
5 3 3.588971 2 1 3

10 8 3.762875 3 2 3
20 24 3.856304 11 2 4
30 52 3.527222 12 4 4
50 116 3.818617 28 4 5

100 400 3.762875 49 8 6
200 1386 3.775585 98 14 7
400 4900 3.777603 195 25 8
800 17556 3.780103 398 44 9

1600 63520 3.786435 793 80 10
3200 231710 3.795407 1597 145 11
6400 851200 3.805825 3199 266 12

4. Conclusion

There are several general methods for generating shares, see [2], [16]. 
These usually work well on “structured” access structures, but assign ex
ponentially large shares on the worst case. We have constructed an access 
structure on an n-element group so that in any perfect secret sharing scheme 
the dealer must use at least n2/41ogn random bits for each bit in the secret. 
This shows that any method must assign almost linear shares on the average 
in some cases.

Karchmer and Wigderson in [13] showed that there is a strong connection 
between the so-called (monotone) span programs and certain secret sharing 
schemes. Thus our result also gives immediately a lower bound on the size 
of monotone span programs. Beimel, Gál, and Paterson in [1] gave general 
lower bounds for the size of monotone span programs, which implies that 
for some access structure on n participants, if the scheme is of Karchmer- 
Wigderson type the dealer must use at least cn2 random bits for each secret 
bit.
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Given any, say random, access structure A  on a set P  of n participants, 
all perfect secret sharing schemes can be generated as follows.

(i) devise a polymatroid (P , / )  satisfying the conditions of Proposition 
2.2, and then

(ii) realize f  by assigning random variables to each participant so that 
for each A Q P ,  f ( A)  =  \ H{A)  for some constant A.

The total number of random bits used by the dealer will then be A77(P). 
The lower bound proved in the present paper comes from (i). We showed 

th a t for a particular access structure every feasible polymatroid must satisfy 
f ( P )  ^  0 (n 2/ logn). We cannot push it higher since for any access structure 
there exists a polymatroid with f ( P ) ^  n2. Thus we have to concentrate on 
(ii) and consider only representable polymatroids. Unfortunately very little 
is known along this line. For n ^  3 all polymatroids are representable. For 
n — 4 F. Matus in [15] gives a non representable polymatroid. In fact, he 
proves that if P = {a, 6, c, d} and (P, / )  is a polymatroid then

f ( a c ) +  /(6c) + f  (ad) +  f{bd) +  f{cd) -  /(c) -  f (d)  -  f{acd) -  f{bcd) -  f{ab)

^  - J / w ,

and for representable polymatroids equality holds only if f(abcd) =  0. There 
are polymatroids for which equality holds here, thus they are not repre
sentable. It is interesting to note that the left-hand side also appears in 
m atroid theory: it cannot be negative for matroids representable over fields 
[11]. For those more familiar with the entropy function the above inequality 
can be written as

I  {a- b) +  I{c; d\a) + 7(c; d\b) -  7(c; d) ^  J H{abcd),

and is the consequence of the usual entropy inequalities. We conjecture that 
for representable polymatroids (i.e. for random variables) the constant 1/4 
can be replaced by a much smaller value. Showing that it holds with any 
value less than 1/4 would also give a new linear inequality for the entropy 
thus settling an important open problem of information theory.

C o n j e c t u r e  4.1. If a, b, c, and d are random variables, then

7(o; 6) + 7(c; d\a) + 7(c; d\b) -  7(c; d) ^  -0.09876...H{abcd),

and equality attained, for example, if all variables take only 0-1 values, c = 
min(a,6),  d = max(a, 6), and

Prob(o =  0, b =  0) = Prob(a =  1,6 =  1), 
Prob(a =  0,6 =  1) =  Prob(a =  1,6 =  0).
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SEPARATION OF POINTS BY CONGRUENT DOMAINS

T. ODOR

Abstract

In this article we investigate how we can divide balls or spheres into congruent domains 
(by scissor) if we want to separate a given finite point set. We formulate conjectures about 
the characterization of divisions of balls into congruent domains (by scissor).

1. Introduction

As usual Dd = {x E R d : |x| ^  1} and 5 d_1 = {x G R d : |rr| = 1} denote 
the unit ball and the unit sphere, respectively, and O is the origin in the 
d-dimensional real vector space R d, where | . | is the norm.

We define the notion of the so called scissor division of domains of R d 
having piecewisely smooth boundary [1],

Let M  be the unit ball B d or the unit sphere S d~l .
Let Mi C M  be connected closed sets for i £ I  which we call later domains. 

We say that the system of domains {Mi : i E 1} is the scissor division, (or 
division by scissor) of M  if and only if their union is M, their interiors are 
pairwise disjoint and pairwise congruent, their (relative) boundary is a closed 
surface in R d. We call the union of the boundaries of the domains of the 
division the boundary of the division.

It is clear that the boundary of the division (by scissor) determine the 
division itself. This essentially means that we divide M  into domains by 
surfaces, which explains the term “scissor division”.

The main results are as follows:

THEOREM 1. Let V  =  { Pq, . . . ,  Pn- i  G int D 2} be a set of distinct points 
which differ from the origin O. Assume that if the points Pi and Pj have 
the same distances from the origin, then the angle <PiOPj is not equal to
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2 n m /n  for any positive integer m. Then we can divide D2 (by scissor) into 
n  congruent domains such that each of them contains exactly one point ofV.

T heorem 2. Let V  =  { P$, P„_ i £ i n t  Dd (or S d~1)} be a set of 
distinct points which differ from the origin, where d ^  3. Then we can divide 
D d (or S d~l) into n congruent domains (by scissor) such that each of them 
contains exactly one point of V .

These results are special cases of a more general statement [3], which is 
presented in terms of fundamental domains of discrete isometry groups.

It would be interesting to characterize the possible divisions of D d. The 
following two conjectures give the characterization in the two-dimensional 
case and give an interesting property in higher dimensions.

Let 7 o  be a simple topological arc in D 2  with endpoint O, the other 
endpoint lying in the boundary of D2 and the relative interior points of 70 
are in the interior of D 2. Denote the rotated copy of 7 0  around O through 
the angle 27rm/n by 7„ for m =  0, 1 , . . . ,  n  — 1. Assume that these simple 
arcs do not have common points except O. Then these curves determine a 
division of D2 in a natural way.

Let us call this type of divisions of D2 the first type division.
Let Q \,.. .  E S 1, where the angle <QiOQi+i is equal to ir/3. Let I  

be a subset of the integers from 1 to 6 and let I c be its complement.
Consider the circles with centre Qi+i and radius 1 for i E /. The points 

Sij divide the circular arcs QiO into k +  1 equal parts, where A; is a fixed 
positive integer and 1 % j  ^  k. We connect the points Sij with the points 
Qi+i with circular arcs of radius 1 in a way so that they are the rotated 
copies of OQi+i The points Sij divide the circular arcs QiQi+i into A: + 1 
equal part for i E I c. Connect the points Sij with O by circular arcs which 
are the rotated copies of the circular arc OQi through the origin.

The system of circular arcs divides D 2 into 6(A; +  1) congruent domains 
(by scissor). We call these type of divisions the second type divisions.

Consider again the circles with centre Qt+\ and radius 1 for iE  I. The 
points Tj are the midpoints of the circular arc QiO. The union of the seg
ments Q i-\Ti  and the circular arcs QiO divide D 2 into 12 congruent domains 
(by scissor).

We call this type of division the third type division.
Now we can formulate our conjectures:
CONJECTURE 1. There exist only first, second and third type divisions 

(by scissor) of D2 into congruent domains.

CONJECTURE 2. There is no division (by scissor) of Dd for d ^  2 into 
congruent domains whose boundary does not contain the origin.

C onjecture 3. There exist only first second and third type divisions 
(by scissor) of D2 into affine equivalent or Möbius equivalent domains.
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CONJECTURE 4. There is no division (by scissor) of Dd for d íí  2 into 
affine equivalent or Möbius equivalent domains whose boundary does not 
contain the origin.

Let A4 be a division of S d~x into congruent domains (by scissor). Con
necting O and the points of <9 A4 by segments, we get a division A4' of D d into 
congruent domains (by scissor) in a natural way, which we call the natural 
extension of A4.

CONJECTURE 5. Assume that d~t 3 and A/" is a division of D d into con
gruent domains (by scissor). Then there exist a division A4 of S d~l and a 
homotopy F : [0,1] x dA4' —>• Dd which leaves the origin O and the boundary 
S d~l of Dd fixed, homeomorphism for every t E [0,1], the mapping To is the 
identity, the image of Ft generates a division of D d into congruent domains 
(by scissor) for every fixed t E [0,1] and the image of F\ generates the division 
A4', which is the natural extension of A4.

The proofs of the theorems

P r o o f  o f  T h e o r e m  1. We use only first type divisions of D 2 in our 
proof . Fix an orientation on the plane. Let Si be the image of Pt under the 
rotation about O through the angle 2-iri/n. As PiOPj ^ 2 n m /n  for positive 
integers m, it is clear that the points S, and Sj  are different if i and j  are 
different. Let S  =  {So, ■ ■ •, -Sn-i}  be the set of these rotated points, ff we 
can find an arc 70 which determines a first type division VQ/o) — {Di '■ 0 ^  i ^ 
n — 1} of D2 and Si E int Do, then the division V  satisfies our assumptions, 
that is Pi E Di for 0 ^  i ^  n — 1.

Let Q E S 1 and assume that <QOPi/n  is not a rational number. We 
produce 70 as a suitable deformation of the segment OQ. Without restricting 
the generality we can assume that the line OQ  is the first coordinate axis 
in R 2.

Let C \,. . .  ,C S be circles with centre O passing through the points
P 0 , • • • > Pn—l-

We labelled our circles Ci in a strictly decreasing order of the radii 
p i , . . .  ,ps. Let po = 1 and ps+i =  0 and Co =  -S'1 and Cs+1 =  O. Let Qi 
denote the intersection of the circle Ci and the segment OQ.

Let p be the minimum of the difference of the consecutive radii of our 
circles, that is p, = min (pi — Pi+1). Let 0 be a fixed positive real number

which is smaller than p / 4.
Let Si =  {Sj l , . . .  , Sjt } =  V  Pi Ci be the points in the point set V  which 

lie on the circle Ch■ Let relabel the points of Si by the symbols S a , . . . ,  Su, 
in such a way that the angles <QOSiu for are strictly decreasing.
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To simplify notations, let vp(ip) and wp(ip) be simple curves in a polar 
coordinate system with centre in the origin on R 1, given by

vp(ip) = (p + 9) — Oip/2tt and wp(ip) = (p — 6) + 9ip/2n.

Let Vi{ip) =  vPi (ip) and Wi(ip) = wPi (ip) for 1 ^  i ^  s and denote the image 
of them  Vi(ip) and wl(ip), respectively.

Let Vi = ^(0) and Wt =  Wi(0) be the starting point of the curves i>i and 
u>i ■ It is clear that Vt and W t lie on the segment OQ and their distance from 
the point Qi is 6.

It is clear that the simple arc
5 — 1

r =  QVi U IJ (vl Uwl U WiVi+1) u  w so
i= 1

determines a division of the first type because its rotated copies have exactly 
one common point pairwise, namely O.

We deform this curve T into a simple arc 70 in a way, that the division 
T>( 70) =  {Di — 1} determined by it separate the points of V. It is
clear that this holds if D q contains the point set S.

Let S\u be the image of Slu under the rotation about O through the 
angle 2Tcl/n, where 0 l ^ i ^ s  and 0 l ^  n — 1 and let W-u be the
intersection points of the curve Wi and the halfline OS[u.

Consider the segments S livW liu. “Blowing up” (in increasing magnitude 
in the index l) these segments for 1 ^  l ^  n — 1, we deformate the curves 
Vi U Wi in a way that the deformated curves “leave out” the points Siu =  Sfu 
and the rotated copies (about O through the angle 2m7r/n  for m E  Z) of the 
“blowed up segments” does not intersect each other.

Now we present this method more thoroughly. Let

"0 min min min
1=2' = 5 1 fzu<v^ti 1

^  ok qI

be the minimum of the absolute value of the angles <S^uS livl where we note 
th a t the points S li0 are rotated copies of Qt, as defined earlier.

It is clear that uq is positive. Let

min{í/o, 0}
16n2

Let F-u and H\u € Wi be points for 0 ^  l ^  n — 1 and 1 ^  u ^  fj (but not 
for u — 0) in this order on the curve Wi, assuming that <FluOS\u =  (l +  1 )u —
<S[uO H ‘u.

Let T ‘u and U‘u E Wi be the intersection points of the halflines OFju and 
O H liu (with starting point O) and the curve Wj.
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Let £o denote the minimum of the distances of the points T-u, Uliu and 
the circle C,. Because of our choice of Vi, £o is positive. Let £ =  £o/16^ be a 
fixed number.

Let A liu and B\u G Wi be points on the halflines OF}u and OH\u, assuming 
that their distance from O is pi +  (/ + 1)£.

Denote w\u the arcs between the points F-u and H\u G Wi on the curve wl. 
Let the curve

tL  = f !„a L  u a L b L  u b I .h L
be the union of three segments and let

CTi =  Vi U

be the deformated copy of the curve Vi Um*.
It is clear that the rotated copies of the curves t\u about O through the 

angle 2m7r/n do not intersect each other for 1 ^ rn ^ n — 1. Furthermore, 
if k  — l  =  m  then the triangle O A ^ u B ^ u  contains the rotated copy of t \ u  and 
if u ^ v ,  then the triangles OA^uB^u and the rotated copy of OAlivB liv have 
exactly one common point for every 0 ^  k ,  l Si n — 1 and 1 ^ u ^  v ^  ti.

Let
S — 1

7o =  1J (<b U Wi Vi+1) U QVi U WsO
i= 1

and let 71 be its rotated copy about O through the angle 2-k/ n.
Using our previous remark it is easy to see that the domain Dq bounded 

by the closed arc 70 U QQl U71 contains S  because the points Siu ~  5t°u lie 
on the left side of the directed curve 70 (with starting point O) and lie on 
the left side of the directed curve 71 (with starting point Q1, where Qy is 
the image of Q).

This proves our statement. □
P r o o f  OF T h e o r e m  2. We will prove our theorem by induction si

multaneously in the two cases. Let d = 3. If u  G S 2 then let H{u>) be the 
two-plane passing through the origin with normal vector u. Let denote 
the orthogonal projection to the two-plane H(u). Let Vw be the image of 
the point set V  under the projection 7rw. It is easy to see that there exists 
an új G S 2 such that the distances of the points of Fu from the origin O are 
different. Apply the previous construction in the plane H(u)  for the disc 
H(ui) n D ,! and the point set V u .

The boundary of the division arises as the restriction of the inverse image 
under of the boundary of the division in the plane H(uj) to the sets D'5 
(or S 2).

We can apply this method also for larger values of d, too.
So the statement is proved. □
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THEOREM 3. Let three distinct points be given in the unit disc D 2 and 
suppose that they differ from the origin. Then we can divide D2 into three 
congruent domains (by scissor), such that each of them contains exactly one 
of the given points.

PROOF. We can label the three points by 0, 1 and 2 in such a way that 
if the distances of P, and Pj from the origin are equal then St = Sj and we 
can apply our method applied in the proof of the first theorem. □

C ounterexample 4. There are four distinct points in D 2 such that 
there does not exist a first type division of D 2 in which every domain contains 
exactly one of the given points.

P roof. Let Qi, ■ ■ ■, Q4 be the vertices of a square in 5 1 in this order. 
Let Pi = Qi/2, P2 = Q3/2, P3 = Q i / 3 and P4 = Q2/3.

We cannot number this set in such a way that the image of Pi, P2 and 
the P3, /  4 become equal after the rotation of the z-th point. So we cannot 
divide D 2 in the desired way.

r e f e r e n c e s

[1] D ubins, L., H irsch, M. and K arush, J., Scissor congruence, Israel J. Math. 1 (1963),
239-247. MR 29#2706

[2 ] F ejes T óth , L., Regular figures, A Pergamon Press Book, The Macmillan Co., New
York, 1964. MR 29#2705

[3] Ó d o r , T., Separation of points by fundamental domains (manuscript).

(Received February 8, 1989; in revised form June 12, 1995)

M T A  MATEM ATIKAI K U T A T Ó I N T É Z E T E  
P O S T A F I Ó K  127 
H—1 3 6 4  BUDAPEST 
H U N G A R Y

o d o r @ m a t h - i n s t . h u

mailto:odor@math-inst.hu


Studia Scientiariim Mathematicarum Hungarica 32 (1996), 445~453

WHEN IS AN AMART?nP

B. HEINKEL

A b s t r a c t

Let (X*,) be a sequence of real-valued random variables (r.v.), which are independent, 
centered and such that

3P>2: Z V
k>l

<  +oo.

For every integer n, Sn will denote the partial sum X / X n and T n will be the a-
field generated by X  i , . . .  ,X n- Fuk and Nagaev [3] have shown that if furthermore the 
Prohorov exponential series converges then (X^) fulfils the strong law of large numbers 
(SLLN). Here their result is completed by showing the equivalence of the following three 
properties:

(i) The SLLN holds for (.X k).
.... (\S n \P _  \  .(ii) I -----—,Xn is an amart.V nP )

(iii) The Prohorov exponential series converges. 1

1. The SLLN in the Kolmogorov setting

The following problem is very classical in probability theory:
A sequence (Ajt) of independent, centered, real-valued r.v. being given, 

under what assumptions -  involving the individual laws of the X^  does
the strong law of large numbers (SLLN) hold, in other words, when does
Sn
n

= —(X\ + . . .  + X n) converge almost surely (a.s.) to 0? 
n

It is easy to see that, when the SLLN holds, then:
5

(a) —  —> 0 in probability (the weak law of large numbers - WLLN
n

holds),

(b) —---- > 0 a.s..
k

It is therefore natural to look for sufficient conditions for the SLLN which 
express in a convenient way that the a.s. convergence in (b) is “fast enough” 
to imply the SLLN.

1991 Mathematics Subject Classification. Primary 60F15, 60G48; Secondary 60G50. 
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A famous hypothesis -  ensuring (b) -  under which the SLLN has been 
studied for a sequence (Xk) of independent, centered, real-valued r.v., is that 
there exists p ^  1 for which

( 1. 1)

fĉ i
< +oo.

The knowledge on the SLLN under that classical “Kolmogorov restriction 
(1.1)” is summarized in the following statement:

THEOREM 1.1. Let (X fc) be a sequence of real-valued r.v., which are 
centered, independent and fulfil (1.1) for a p^.  1.

(1) If p e [1,2], then the SLLN holds.
(2) If p>  2 and furthermore

( 1.2) Ve > 0, ^  exp
n^l

< +oo,

where

4 = A  e  E<**2>.
fc£/(n)

with 7(n) =  {2n +  1 ,. . .  ,2n+1}, then the SLLN holds.
R emark. The above statement contains results due to several authors: 

the case p = 2 is the classical Kolmogorov result [6], the case I f lp  <2  goes 
back to Petrov [11] and the remainder situation, p > 2, has been obtained by 
Fuk and Nagaev [3].

The natural observation that — is not “too far away” from the martin-
n

gale Eláfcán
Xk
k

brought several authors to look for a generalized martingale

Snbehaviour of —  when the SLLN holds. Such a behaviour occurs in many cas- 
n

es (see Peligrad [10], Krengel and Sucheston [7], Dam [1] and the numerous 
references given in Gut and Schmidt [4]).

Before to make more precise this generalized martingale behaviour in 
the Kolmogorov setting (1.1), we will recall some definitions and results 
concerning some useful types of asymptotic martingales.

Let P) be a probability space, and let {IF,f) be an increasing se
quence of sub-cr-fields of T .  The set of stopping times associated to {Tn) 
will be denoted by T*; the set T  will be the one of those which are N - valued 
and take only a finite number of values. The set T* is obviously partially 
ordered:

Vcr, r  G T * , o  ^  r  4=> Vcu €  D , o {oj) ^  r(w).
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D efinition 1.2. Let (£*) be a sequence of integrable r.v., which is 
adapted to (iFk)-

(1) One says that (Ofc, Fk) is an amart if lim E(£T) exists.
(2) One says that (fk i^k)  is a quasimartingale if

E|E(£n+1 I T n) -  £n| < +oo.
n^l

R e m a r k . Of course, a quasimartingale is an amart, but the converse is 
not true in general.

These generalized matringales have nice convergence properties; the ones 
that we will need later are summarized in the following statement (see Edgar 
and Sucheston [2], § 1.2, and Rao [13], § 4.5, for details):

P roposition 1.3. Let (£*,) be a sequence of integrable r.v., which is 
adapted to (Fk)-

(1) If there exists f  G J-, P), such that Wk, |£a| ^  £ a.s., then (£k,d~k)
is an amart if and only if (fk) is a.s. convergent.

(2) If {fki^k) is an L x-bounded amart, then (fk) converges a.s..
Now we come back to the SLLN.
In the whole sequel T n will denote the a-field generated by X [ , . . .  , X n. 

Dam [1] has studied the generalized martingale behaviour of ^ — under 

the restriction (1.1), when pG [1,2]. He proved the following

P roposition 1.4. Let (X k ) be a sequence of independent r.v., which

are centered and which fulfil (1.1) for a pG [1,2]. Then 
amart.

[Sn|P
nP ) -Fn is an

In fact, an elementary computation allows to improve Dam’s result:

P roposition 1.5. Let (Xk) be a sequence of independent r.v., which
|Sn|P '

i J  n  I I S  CLare centered and which fulfil (1.1) for a pG [1,2]. Then 

quasimartingale.
np

When p>  2 also, the SLLN in the Kolmogorov setting (1.1) is a nice
S ngeneralized martingale property of the sequence — . Precisely, the part (2)

• n
of the above Theorem 1.1 can be completed in the following way:

THEOREM 1.6. Let (Xk) be a sequence of independent r.v., which are 
centered and which fulfil (1.1) for a p>  2. Then the followinq are equivalent: 

(1) The SLLN holds.
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(2) Property (1.2) holds.

(3) \ nJ , T n^ is an amart.nP

In Section 2, we will prove this result; with the help of Theorem 1.1 the 
proof reduces to check the implication (1) =>■ (2) and the equivalence of (1) 
and (3). In Section 3, we will give an example showing that property (3)

in Theorem 1.6 is optimal in the sense that usually the amart IV
nP Fn

is not a quasimartingale. This example shows that the SLLN under (1.1) is 
not the same kind of asymptotic behaviour according as p £ [1, 2] or p > 2.

2. The proof of Theorem 1.6

We first show that (1) implies (3). 
According to (1.1), one has

( 2 . 1) E su p ^ < +°°-
fc>i K

As the SLLN holds, a well-known result of Hoffmann-Jqrgensen (Corollary 
3.4 in [5]), allows to deduce from (2.1) that

( 2 . 2 ) „  I V  /E sup------< +oo.
n  n P

By the first part of Proposition 1.3, property (2.2) implies immediately that
I V

IQ IP I I
np

,J-n is an amart. 
nP )
Now we check the implication (3) => (1).

f \ S n\v \
By positivity, the am art ( —-—, Fn ) is .^-bounded. Therefore

\  rtf’ )

converges a.s. and of course I Sn
n

does also. Furthermore, by Kolmogorov’s

\Sn\0-1 law, there exists a positive number a > 0 such that: J—— -> a a.s..n
If a — 0, (1) holds. Let us suppose that a > 0.

By (1.1), j converges a.s. to 0. So almost all uj E fl are such that

X k(co)
0 and

|s „ M |
n
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Fix an lv of this type. If the sequence of real numbers 

converge, the positivity of a would imply:

W n, ^ „ aVn0, 3 k d . n o :  —  ---- >

Sn{u) would not

which would contradict the convergence of X k(u) to 0! So the sequence

n is a.s. convergent. By the Kolmogorov 0-1 law, the a.s. limit is

a degenerate r.v., which can only be a or —a. Suppose that it is a (the 
argument would be the same for —a).

From the Z^-boundedness of the sequence \ S n \ P
np

S n

, it follows that I — 
n

is uniformly integrable. This implies: lim E —  =  a. The r.v. X k beingn—>oo \  n J
centered, a has necessarily to be equal to 0. This concludes the proof of the 
implication (3) (1).

Finally, let us check that (1) => (2).
By an elementary symmetrization argument, one sees that there is no 

loss of generality in assuming that the X k are symmetrically distributed. So 
we will assume it. The key argument of the proof will be a recent necessary 
condition for the SLLN, which applies to a large class of sequences of r.v. 
This condition is a simple corollary of the necessary part of the rather general 
Theorem 7.5 in Ledoux and Talagrand [8]. Before stating that corollary, we 
need to recall a notation.

NOTATION. A sequence ({/*,) of r.v. being given, one defines, for every 
integer n: =  \Uj\ whenever \Uj\ is the r-th  maximum of the sample

( r )  _(M lW (n) (breaking ties by priority of index), and setting: U j ^  
r>  2n.

0 if

The announced necessary condition for the SLLN is as follows:
LEMMA 2.1. Let (Uk) be a sequence of independent and symmetric r.v.. 

Assume that there exists q~A 2 and a sequence (kn) of integers such that the 
following hold:

(2.3) y  q kn < +oo,
n> 1

(2.4) 3£ > 0 :  £ P  £  l # > > £2“ <  T oo.
n>l . 1<r<kn
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I f  iUk) fulfils the SLLN, then:

(2.5) VJ >  0, ^ 2  exP < +oo

where
an — ^ UkI{\Uk\^e2n/kn))-

k£l(n)

R emark. In the contrary to Nagaev’s theorem [9], this Lemma 2.1 is not 
an universal necessary condition for the SLLN. But its range of application is 
rather large, and its assumptions are more handy than the ones of Nagaev’s 
result.

For applying this lemma in our context we will start by checking that 
under hypothesis (1.1) there exists a sequence (kn) such that (2.3) and (2.4) 
hold. Define, for every integer n

where [ ] denotes the integer part of a real number. From (1.1) it follows 
that, for every q^. 2, (2.3) is realized for that sequence (kn).

Now we will use a trick due to J. Zinn (see the beginning of the proof of 
Lemma 4.11 in [12]); for the reader’s convenience, we detail his argument:

A(n)  =  2-"* Y ,  V\Xk\p
k£l(n)

and put

( 2 .6 ) kn = l + [A(n) 3p],

V r € { l , . . . 1M , V A > 0 IP - ^ > A ( n ) 5  V i\ zn

Y (r) 
X l{n

k£l(n) (|X*|>2"A2 p )

Taking h = In ^1 + A(n) 2  ̂ in the above inequalities, one gets

? ( * / & >  2nA (n)£)^eA (n)S ,
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so that for n large enough

(2.7) aB= E  P(X;ji) >2"A(n)i)^A(n).

Consider now the rough estimate
( 2 .8)

p( E * i w > 2” W (  sup | ^ | > ^ ! ) + p (  5 2  X « ) > 2" - ' V
\l^r^kn )  i^Hn) \4^r^*:n /

_1_
As by definition of A(n), lim knA(n) 2p = 0 , it follows from (2.7) and (2.8) 
that

(2.9) p( E *!;i)>2"]S“»+p( sup i î>“T~) =
\ l ^ k n )  Ee/(n) d

^ an + 6pA(n) % (1 + 6p)A(n).
Prom (2.9), one sees finally that assumption (2.4) of Lemma 2.1 is fulfilled 
(with £ — 1). By Holder’s and Tchebycheff’s inequalities, one observes that 
for n large enough

2~2n E  ElX fc|2 /( l^ l>2"An) = A(ri)  ̂ E  P ( l* * l> 2 n/ M
f e G / ( n )  \ f c £ / ( n )

2 2/1 2\ 2 1
3' p — 2PA(ro)3 3p ,^ 2pA(n)p A(n) 

and so one deduces from (2.5) and (1.1)

V á>0,
S r a p ( - | )

<  +oo,

which is nothing else than property (1.2). This concludes the proof of the 
implication (1) =>■ (2).

3. About the optimality of Property 3 in Theorem 1.6

Now we will construct the example announced at the end of Section 1. 
Let (6n) be a sequence of independent standard normal r.v. Define:

*1  =  0;

Vn ^  2, X n — \ / n ( ln n ) 'i0n.
It is clear that the sequence (Xn) fulfils (1.1) for p = A and fulfils also (1.2).

So \ S n \ ,!Fn ) is an amart. But:
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P roposition 3.1. \Sn
n *

, J-n ) is not a quasimartingale.

PROOF. By definition I Sn
nP

,T n ) is a quasimartingale if and only if

the series having general term E|itn | converges, un being defined as

Uri =  EV n ^ l, f \S n+il4 IS 14
n\ ( n  T 1 )4 n4 '

By the independence of the r.v. X k ,un can be written as 
(3.1)

(4n3 +  6n2 +  4n +  l) c4 ( 6 2
1 'Un. =  —- (n + l)4n4 n (n + l)3(ln (n + l))2  " (ln(n +  l))(n  +  l )2 '

It is easy to see that, for all n '^ 2 ,S n has an N (0 ,/?2) distribution, where

(3.2) v a (4 ln(n +  1)) 4 
hin ßn------------------ r -  =  Ln—>+oo (n(n + 1)) 2

So, if one defines now the auxiliary r.v.

(41n(n+ 1))3
Xn —

(n(n + 1)) 2
i~Sn

one sees from (3.1) and (3.2) that the series having general term E|u„| con
verges if and only if

(3.3) E
i -E 3n 2 n 4

(n +  l )2 n (n +  1)2 nln(n T 1)

This property (3.3) can even be written simpler as

( 3 .4 ) yZ—rrv ^ ^  n 1 n ( r?

<  T oo .

n^2

It follows from (3.2) that

n ln(n T 1)
E |3 Z ^  — Z\\  <  T oo.

so from the elementary inequality
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one deduces that (3.4) cannot hold. Therefore 

martingale.

is not a quasi-
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ON ‘-SIMPLE INVOLUTION RINGS WITH MINIMAL ‘-BIIDEALS

U. A. ABURAWASH

Abstract

Let A be an involution ring. Then A is ‘ -simple with a minimal ‘ -biideal if and only 
if A is isomorphic either to a Rees matrix ring over a division ring or to a direct sum of 
such a Rees matrix ring and its opposite ring.

The involutive version of the celebrated Litoff-Ánh Theorem, which gives 
the local characterization of nontrivial simple rings having minimal right 
ideals (cf. [2]), is given in [1], The purpose of this paper is to give the 
involutive version of Theorem 79.1 in [3] (cf. [5] and [6]), which characterizes 
completely nontrivial simple rings with minimal right ideals.

All rings considered are associative. A subring B  of a ring A is called 
a biideal of A if B A B  Q B. A ring A is said to be simple if A 2 ^  0 and the 
only ideals of A are 0 and A. A is called semiprime if I 2 =  0 and I  < A  imply 
7 =  0. Simple rings are obviously semiprime rings. It is well-known that 
every minimal right ideal R of a semiprime ring A contains an idempotent 
element e such that R  = eA.

To prove the main theorem of this note, we need the following results.
P roposition 1 ([3], Theorem 31.6 and [7], Theorem 1). Let A he a 

semiprime ring with an idempotent ey^O. Then the following conditions are 
equivalent

(i) eA is a minimal right ideal in A;
(ii) Ae is a minimal left ideal in A;

(iii) eAe is a division ring and is a minimal biideal in A.
P roposition 2 ([7], Theorem 4). If R is a minimal right ideal and L a 

minimal left ideal of a ring A, then either RL = 0 or RL is a minimal biideal 
of A.

P roposition 3 ([7], Theorem 5). Any minimal biideal B of a semiprime 
ring A can be represented in the form B = RL with a minimal right ideal R 
and a minimal left ideal L of A.

Following the terminology of [3], let M (I ,K ,  A, P) denote the Rees ma
trix ring over a division ring K  and the sandwich matrix P  =  (p\i) (A 6 A,
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í G / ,  p\i E K)  is left row- and right row-independent. The elements of M  
are all matrices of order I  x A over K  and have only finitely many nonzero 
entries. Addition is defined in the usual way while multiplication is defined 
for all X  =  (x i \) ,Y  = {yi\) in M  by X  o Y  = X P Y .

P r o p o s it io n  4 ([3], Theorem 79.1). A is a simple ring having a minimal 
right ideal if and only if A  is isomorphic to a Rees matrix ring M (/, K, A, P ) 
over a division ring K.

A ring A  is called an involution ring if a unary operation *, called invo
lution, is defined on A such that

{a + b)* = a* +  &*, {ab)*=b*a*, (a*)*=a

for all a,bEA .  A *-ideal (*-biideal) I  of A, denoted by I<*A, will indicate 
an ideal (biideal) /  of A  which is closed under involution, that is

i M  = {a* E A \ a E l } Q I .

Let A be a ring and Aop its opposite ring. On the direct sum

ä  = A © A °p

we may define an involution *, called the exchange involution, by 

(a,b)* = (b, a.) for every (a ,b )E R .

An involution ring A  is said to be ^-simple if A 2 ^  0 and A  has no 
nontrivial *-ideals. By the above example, a *-simple ring need not be simple 
although the converse is trivially true. A  is called *-semiprime if I  <* A 
and I 2 = 0 imply 1 = 0. One can easily prove that an involution ring A  is 
*-semiprime if and only if it is semiprime.

Specializing Corollary 3 of [4] for simple rings, we get
PROPOSITION 5. For any nonempty subset M / 0  of a simple involution 

ring A, M d i l f W / O  and M ^ A M ^ O .
The following result due to Loi [4] asserts that if a semiprime involution 

ring A  possesses a minimal *-biideal, then A  has also a minimal biideal.
P r o p o s it io n  6 ([4], Proposition 4). Let A be a semiprime involution 

ring. I f  B  is a minimal *-biideal of A, then either B is a minimal biideal of 
A or B  = C@C^*\ where C is a minimal biideal of A.

*-simple rings can be characterized as in the following lemma.
L e m m a  1 . An involution ring A is *-simple if and only if either A is 

simple or A = I  © I op with I  < A and I  is a simple ring and the involution is 
the exchange involution.

P r o o f . If A  is *-simple then it is either simple or not. If A is not simple, 
then there is an ideal I  of A, I  ^  0 and I  ^  A. Now I D I (*) is a *-ideal of A
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which is ‘-simple and not equal to A, whence I  ( I I (*) =0. Moreover, I  © /(*) 
is a nonzero ‘-ideal of A, with the exchange involution (a, b*)* =  (b,a*) for 
all a,b G I, hence A =  I  © /(*) =  I  © / op since /(*) = I op. To show that I  
is a simple ring, let K  < I  and K  ^  / ,  hence K  © K op <*/ © / op =  A and 
consequently A © A op =  0. That is K  =  0 and /  is simple. The sufficiency is 
obvious. □

Concerning Lemma 1, it is interesting to point out that if A is a sim
ple zero-ring (A2 =  0), then A © Aop with the exchange involution is not 
‘-simple, because the diagonal

D =  {(a, a) I a G A}

is a nonzero ‘-ideal in A© Aop (being a zero-ring, A =  Aop).
Now, the involutive version of Proposition 4 is given by

THEOREM 1. An involution ring A is a *-simple ring having a min
imal *-biideal if and only if A is isomorphic to a Rees matrix ring M  = 
M (I, K, A, P) over a division ring K  when A is simple or A is isomorphic 
to M  © M op with exchange involution whenever A is not simple.

P roof. Let A be a ‘-simple ring having a minimal ‘-biideal. Hence 
A  is semiprime and by Proposition 6, A has a minimal biideal. Applying 
Proposition 3, we see that A contains also a minimal right ideal R. Using 
Lemma 1, we distinguish two cases:

(i) If A is simple, then by Proposition 4, A is isomorphic to a Rees matrix 
ring M(7, K , A, F) over a division ring K.

(ii) If A is not simple, then A =  J  © J op, J < A and J  is a simple ring. 
Since A =  Soc A , we have also J  =  Soc J  and J  has a minimal right ideal. 
Applying Proposition 4 once again, we get

J  = M (I, K, A, F).

Therefore, A = J  © J op =  M  © M op, and the involution is the exchange invo
lution.

To prove the sufficiency, let first A = M (/, A, A, F). By Proposition 4, 
A is a simple ring having a minimal right ideal R  and R = eA with idempotent 
e E R. Hence R* — Ae* is a minimal left ideal of A. Using Propositions 2 
and 5, we get

RR* = (eA){Ae*) = eAe* ^  0

is a minimal biideal of A , which is closed under involution, whence it is 
a minimal ‘-biideal of A. That is, A is ‘-simple with minimal ‘-biideal. 
Secondly, assume that A =  M © M op, with exchange involution, hence A is 
‘-simple, by Lemma 1. Since M  is a simple ring having a minimal right ideal 
R = eA with an idempotent e 6 R, it follows from Proposition 1 that eAe ^  0 
is a minimal biideal of M. Putting C =  eAe, we get Cop a minimal biideal

ON ‘ -SIMPLE INVOLUTION RINGS



of M op. Finally, B  =  C  © C op is a minimal ‘-biideal of A = M  ® M op. That 
is A is a ‘-simple ring with a minimal ‘-biideal. □
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DISTRIBUTIONS OF RANK ORDER STATISTICS 
RELATED TO A GENERALIZED RANDOM WALK

J. SARAN and S. RANI

Abstract

This paper deals with the null joint and marginal distributions of some two-sample 
rank order statistics when one sample size is an integer multiple of the other (i.e., m  =  /m) 
by using the extended Dwass technique evolved by Mohanty and Handa [3] based on a 
generalized random walk with steps +1 and —pi. The rank order statistics considered 
include the total length of all sojourns above height r, the number of crossings of height 
r, the number of reflections at height r, and the number of positive reflections at height r 
(where r > 0 ).

1. Introduction

This paper is a continuation of an earlier paper by the authors [4] and 
deals with the derivation of joint and marginal distributions of certain two- 
sample rank order statistics when one sample size is an integer multiple of the 
other. Let X \ , X 2, . . . ,  X ^n and Lj, Y2, ■ ■., Yn be two independent random 
samples of sizes pin and n (where pi is a positive integer) from the same pop
ulation having continuous distribution function. Let Fßn(x) and Gn(x) be 
the corresponding empirical distribution functions of the two samples. De
fine the rank order indicator of {Ai, X 2, . . . ,  X ^n, Yi, Y2, . . . ,  Yn} as a vector 

Z ^ +i)n) such that

+1) if the jfth minimun among { X \ , .. 
is X t for some í £ { 1 ,2 ,... ,  /rn}

• > X[in, Y i,.. ■ ,Yn}

-fi , if the j th  minimum among { A i,. 
is Yt for some i € { 1 ,2 ,..., n},

• •, , Y\ ,. ■■,Yn}

j  = 1 , 2 , . . . ,  (pi +  l)n. Obviously, (Z\, Z2, ■ ■ . ,  z/^+ijn) is a sequence of 
pin (+ l) ’s and n (—//)’s which we call a sequence of rank order indicators. 
Under the assumption, the ((^+1)n) possible sequences of rank order indi
cators are equally likely. Any random variable defined on the rank order
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indicator (Zi, Z2, ■ ■ ■ , is called a rank order statistic. Defining

^ n ^ F ^ u )  - G n(«)], —00 < u <  00,

we note that statistics defined through H ^ ^ u )  can be treated as rank order 
statistics.

Dwass [2] developed a new technique (other than the combinatorial one) 
based on the simple random walk with independent steps, in order to derive 
the distributions of some rank order statistics for the case of equal sample 
sizes (i.e., for =  1) which are defined on Hi^n{u). Mohanty and Handa
[3] extended the technique of Dwass [2] to the case when one sample size 
is a multiple of the other, so as to cover the case of general ji and derived 
the distributions of quite a few rank order statistics. For this purpose, they

considered the generalized random walk |  Sj : Sj =  ^  Wi, Sq — Wq = ü |  gen-

erated by a sequence {Wi} of independent random variables with common 
probability distribution

P(Wi = + 1) =P , P{Wi =  — /u) =  q =  1 — p, lS i< o o .

Further, Saran and Sen [6], Sen and Saran [8], Sen and Kaul [7] and Saran 
and Rani [4], [5] have derived the joint and marginal distributions of some 
rank order statistics related to the foregoing generalized random walk {Sj} 
w ith steps +1 and —/i. Saran and Rani [4] derived, for this random walk 
w ith steps +1 and — n, the joint and marginal distributions of

L(i,n{r) = the total length of all sojourns above height r,
Nfj,,n(r) = the total number of sojourns at height r,

7V;i n(r) = the number of sojourns at height r  from above, and 
iV* n(r) = the number of crossings of height r (r > 0).

In this paper we consider the above mentioned generalized random walk 
with steps +1 and —/i and derive, for r > 0, the joint and marginal distribu
tions of L/x,n{r),Rß,n{ r ) ,R l tn{r) and N* n(r), where

=  the total number of reflections at height r,
=  the number of subscripts i for which either HßiU{Zi) = r

Hß,n{Zi_i) = r +  /r, HßtTl{Zl+i) =  r  +  1 holds or H ^ n(Zl) = r 
Hß,n{Zi-i) = r -  1, H ^n(Zi+1) = r~ iu  holds

and

R ^ n(r ) =  the number of positive reflections at height r,
= the number of reflections on the upper side of height r,
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= the number of subscripts i for which Hß n̂(Zi) =  r,
Hß,n{Zi—i ) =  t + p  and Hßtn(Zi+\) =  r + 1, i =  1, 2 , . . . ,

by employing the extended Dwass technique evolved by Mohanty and Handa
[3]. These distributions for the special case r =  0 have been obtained by Sen 
and Kaul [7],

2. Some basic results

Some basic results needed in the sequel are quoted from [3] and [4]. The 
main theorem of [3] which plays vital role for finding the distributions of 
rank order statistics is the following:

T heorem  1. Suppose is a rank order statistic for every n and Vß is 
the corresponding function defined on the random walk which is completely 
determined by Wi, W2, . . . , Wt  and does not depend on Wt+i , Wt +2 , ■ ■ ■, 
whenever T  > 0 (where T  is the time for the last return to zero in the random 
walk). Define

( i )  M p ) = E ( v g ,  P < p / ( p  + 1 ).

Then we have the following power series (in powers of pßq) expansion

( 2 )
h(p)

l - ( /u  + l )p^q yv

0 0  /

= £ E (v-.»>(
71=0 ^

(p + l)n
n (P ^ )n,

where for y see (4) and (5) below.

R em ark . The usefulness of Theorem 1 in deriving the distributions of 
rank order statistics depends on the ease with which one can explicitly eval
uate h(p) and then determine the power series expansion

J»(p)/(i -  (p  + l )pß(iyß) =  auAp^(i)n-
71 =  0

Once such a power series expansion is available, then since the aß n̂ 's are 
uniquely determined, we immediately read off the relationship

^(/i +  l)n^

Further the results (3), (4), (5), (15), (12), (13) and (14), respectively, 
of [4] are quoted below:
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(i) For any a  and b ,

(3)
k=o

where

A k(a, b) = a ^ kh +k kb ĵ . 0 = { x -  l ) / x b and |0| < |(6 -  l )b~l /bb

the last inequality assuring the convergence of the series.
(ii) The probability generating function (PGF) for the first return to the 

origin in a generalized random walk with steps +1 and —/z is

(4) F ( t )  =  ( v  +  í y v 1̂ 1
where p^qtß+1 =  (x — l ) / x ß+1 and < y ß/(y  + l) /i+1.

(iii) The probability of never returning to the origin is

(5) 6 = l - F ( l )  = l - ( y  + l)p>iqy»,

where y is the value of x  when t — 1.
(iv) Let E N ß{r) = a, N*(r) = b, N*(r) = 2c) denote the PGF 

of the length Lß(r) of all sojourns above height r  when the number N ß{r) 
of total sojourns at height r is a, the number N*  (r) of positive sojourns at 
height r from above is b and the number N*(r) of crossings of height r is 
2c in the generalized random walk {5^,0 ^  j  < oo} with steps +1 and —y. 
Then for r > 0

E ( i ^ (r); Nß(r) = a , N+(r) = b, JV*(r) =  2c) =

=  £ > (Lß(r) = g, Nß(r) = a, N ß (r) = b, JV;(r) =  2c)i» =
9

(6) = ( p y y { A a iß a- b- 1' f - 1q(l -  (pyY )+

+ B a bß a- b- 1Y q ( l - ( p y r ) +
/i-i

+  A a b- lß a- b~lf - \ t  5 > z t ) s(l -  (pyr~s)}

where
o — 6 —l 

c — 1
a — 6 — 1

c

t (fii
a = p /igxA‘f/i+1, ß  = pIJ,qyß and 7 =  14— Y (x t /yY .a *—J
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(v) Some useful power series expansions are the following:

(7) pk/ s =  f ;  ( (/i+1^ n fc) (P M9)n,
n=(k/n)

where (z) is the smallest integer greater than or equal to z. Further
C j OO /  \  /  \  /  ' I ' 1 \c \  Í j  \  ( j  + i -  l 

kJJ \ kj(«J f ' E E D - 1)'
j =0 fc=0 i=0

( t /a y ( x t / yy +i+k^ - l\

whence when t =  1, x = y and a  =  ß  and we have

M.=1 = (1 /ß£( - i  r (f) ( « r r =
r= 0  '  '

= (l /ß y )c( y y - i y .
(9)

3. Joint distribution of Lß(r), R^{r), R^{r) and N*(r), r > 0

We shall use here the same symbols as used by the authors in [4], It 
is easy to observe the following relationships in a generalized random walk 
with steps +1 and —y:
(10) ^ ,n ( r )  =  Af;>B(r) +  Ä^in(r)
and

N t n{ r ) = l- N l n{r) + R l n{r)(11)

Let E(tL^ ; Rß(r) =  d,R+{r) = h,N*(r) — 2c) denote the probability 
generating function (PGF) of Lfi(r) when /^ ( r )  =  d, I?+(r) = h and N*(r) = 
2c. Noting that E (tL^ r')■, R ß(r) = d, R+{r) =  h, N*(r) = 2c) is to be inter
preted as

^ P ( L M( r ) = ff, R fi(r) = d, R*(r) = h, N;(r) = 2c)t<>,
9

its expression is given by
E (tL^ ; R ß(r) = d, R+(r) = h, 7V;(r) =  2c) =

=  ( p y ) - ( ^ “ 1)  {  ( c+dJ ; y c+hß ‘+d- h- V ~ \ ( i  -  ( p y n +

-  (p y Y ) +

) fJJ — 1
a c+h- l ße+d-h-l^c-1 qt Y ^ ip x tn i -  (pyy - ° )

<?= 1

(12)
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where a ,ß  and 7 are the same as given in (6).
The result (12) follows immediately on using relations (6), (10) and (11).

4. Deductions

(i) Summing (12) over d, we get

E{tL^ r'>-,R+(r) = h, N*{r) = 2c) =

= (pvY  ( ' Í  a ' + ' V T - y - V ( i  -  (pyT)+
(13)

c — 1
+ ac+hß cy cyc+1 q(l -  (pyY) +  a c+h~lßc- 1yc~1ycqtx  

p-l  
x Y , ( p x t n i - ( p y Y - s)}-

3=1 '

(ii) Summing (13) over h , we get 

E(tL^ r) ]N*(r) — 2c) =
(14)

=  (py)r i ( a x ) cß c- L1 c- lqyc( l - ( p y r ) ( l  +  ß'W) +  cxc- Lxcß c- i x

ß-i
x 7 ~1ycQt'52(px t )s(1 ~(py)>1 s)

3=1

(iii) Summing (12) over c, we get 

E (tL^ - ,R „ (r )= d ,  R+(r) = h) =

= (pvY

A*
/  c+h—1
V c-1

(15)
f /c + d —h —1\ f  c+d—h—1 

* { (  C - l  M  c

' « { V e 1)  E  (prf), u - ( p ! / ) '“ s)

(iv) Summing (13) over c, we get

j  k _|_ a c+ h - lß c + d - h - l^ c - l7

E(tL^ - R +J r )  = h) =
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(16)

= (py)r E  ( C£ - / )  { a/1+Ci0C ^  12/c9(1 _ (Pi/)/i)(1 + /?'>'y)+

/x - l

+  a c+h~lß c~li c~l ycqt ^ ( j % c i ) s ( l  -  (p y )ß ~ s )
S =  1

(v) Summing (15) over h, we get 

E(iz'^ r);ÄM(r) =  d) =

-  (py)r E  E  “  ( p y n +

(17)
+  (C+d ̂  ac+ h /jc+ d-fc-y^i _  (py)M) +  

/l —1 \  c+/i—1 f lC + d -H  c-1+  ( c _ 1 a7c_1gix

M-l
x J^ (p x i)s( l - ( p y ) M-s)

When i =  l, x =  y, a  =  /3 and 7C =  7Í, say, then the results (12) to (17) 
reduce, respectively, to the results (18) to (23) given below.

(vi) P(fi^(r) =  d, R+(r) = h, N*(r) = 2c) =

(18)

=  (py)r ( Ĉ  / )  { ( c+cd_ ^  -  (py)M)+

+ ( C+d“ /l_1)/32c+d- 17ig(l -  ( p y n +

+ ( c+d_ /J 1E 2c+d- 27lc- 1g E ( p y ) s(1 -(p y ) /i_s)}-

(vii) P(fi+(r) =  / i , ^ ( r )  = 2c) =

(19) =  {py)r ( c^ “ 1)  [ ß 2c+h- l i V \ y c{ 1 -  ( p y n a  + /?7iy)+

+ z ^ - ^ r V y  E ^ 1 -
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(viii) P ( N * ( r ) =  2c) =

( 20 ) = ( p y n M - l ) c- 1ßc- 1yc+1q
/ x - l

Y ^ ( p y r - s - » ( p y r +1
L s=0

(equivalent to (26) in [8]).
(ix) P(Rß(r) = d, R+{r)=h) =

(.pvY
c+h—1
c — 1

ß 2 c+d- ^ c - l q { 1 _ {p y ) ti) x

( 21 )

x {(c+c i 1) +
1

x ~  (py)ß~s)
s = l

(x) P(-Ri(r) = h) =

( 22 )

= (py)rXI Í C+. h 1 1 )<!P2c+h 1yc9(1 - (py) /1) ( 1 + ̂ 7iy)+c — 1

+ /32c+/l-27c -1yc ^ ( ÍJy)í(i _  (py)M-s) j .
s = l  '

(xi) P(Rß(r) = d) =

= w E E  ( t - 1 1)  { s r M i  -  ( ™ n +

I

+ ( c+d;; '‘_ l ) i3 " 1" 1 'rjv/tI - (TO) ')+

+ ( ^ 1) / i « « 7 r i,E (w > * (1 -  (to)"")}-

W hen fJ> = l, results (12) to (23) reduce, respectively, to the corresponding 
results of Aneja [1], Ch. II.
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5. Probability distributions

Identifying h(p) as E(tL^ ] R ß{r) — d, R£(r) =  h, N*(r) = 2c), we have 
from (12)

h(p)/6 = {py)

+

(24)

c+h—l \  ( fc+d—h—1
c — 1 c — 1

c+h nc+d—h—l . c —la c+nß' 7 <7(1 -  (pyY)+

C+d h l \ a c+hßc+d-h-l7cg(1_ (py)^  +

_|_ ^c_h<̂  ^ 1 ) a c+/i—l^c+d— 1
V C — 1

= / i + / 2 + / 3, say.

7C V 53(P ® i)* (1 -(P I/)/1 ') } /$
s=l '

Expanding the expression in I\ as a power series in powers of p^q with 
the help of (3), (7) and (8), we get

c -  ! \  ( A  Í3 + i ~  1
v  7 x 7  j = 0 k = 0 i = 0  v 7

x (p'i^ í ' i+1)c+,l(p'i^ / ) c+d- ' l- 1( í/a )7(a;í/y )7+í+A:('i- 1)x 

x (py)r<7(i-(pyH/<5 =
C j  0 0  /  1 \  /  • \  /  • I • 1

* / c - i \  ( A  j + i ~ 1
=  ( Co - ; I ) C + c : ' r 1) E E E < - o i ( c :

\ /  \ /  ,-_n n *—n '  ^

(25)

j = 0 fc= 0  i = 0

x  x ß ( k + c + h - j ) + i + j - k y ß ( c + d - h . - l - k ) - i - j + k + r ^pHqj2c+d- l- j  x

x ^ (c + ft-J+ ^ + c + fc + j+ i-y ^ .p . [p^q)y^)/8 =

k I c ~ 1 J + i ~ 1t r ) ( c+r-r)£ É B -o '
7 V 7 j = 0  fc= 0  2=0

x ^  A\(p{k + c + h - j )  + i + j  — k,p,+ l) 
X

x (p<igt/i+1)Aí/i(c+/l_-7+fc)+c+/l+í+-7_fcX 

X {pßq)2c+d 1 J y ;  y4|y1(^(c+ d-/t-l-A :)-r-j+ A :+ r,/x+ l)(p^q)1/1 x
i/i

/  f  (m +  l)m  -  _  |V  + l)m  -  r  -  1 ^  ^ )m _  ^ q)2c+ä-i x
_ ? J Cm=(r/ß)

m m
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x ^ 2  A„2{p(c + d — h — k) — i — j  + k + r, p + 1 ){p^q)1'2 x
"2

x E  ( (^ ’" - r W \
m={r/n)  V

Likewise 72 and 1% can be expanded. Upon substituting the values of I\, I2 
and I3, so obtained, in (24), and then comparing the coefficient of t9(p9q)nx 
x ((í1+1)n) on both sides of (24), we get the following joint distribution (with 
the help of Theorem 1):

^ ^ n) p (^ ,n (r)  =  i?, Rn,n{r)=d , R+n(r) = h, N *n{r) = 2c) =

( . L 1 \  C ]  OO OO

EEE E (-')
x j= 0  fc=0 i=0 m=(r/n)

''fJL,n\' ) /X,71

c+d—h—l \ ( c —l \  ( c+d—h—l \  ( cN
c - 1  ) (  J M  «

A\(J, p +  1) x

'(p +  l)m  — r — 1 
m — 1

x dtyi(r — J  + p{2c + d — j  — 1), p + 1) —
( {p +  l)m  — r 
\  m

(26)

x A V2(r — J  + p(2c + d — j) , p + 1)

+

ij/2

c+h—1\ (c+d—h—1 
c

+

c — 1 

j+ i - 1

c—1 i 00 1
: r ‘)EEEE<-o‘

j=0 /c=0 2—0 s=l

C -  1 \ / j

£ .....
| A Al ( J + s - ^ , / z + l )  i

' »»1 = ((r+ s ) / ß )

x A Vl( r -  J  + p(2c + d -  j  -  l),/r +  1) 

f{p  + l)m 2 - r  -  p -  1

/(/i +  l)m i— i—s—1
mi — 1

E
m2=((r+ß)/ß)

m 2 -  1

x A„3(r -  s -  J  + p(2c + d -  j ) ,p  + 1)

where

J  = j  +  i — k + p(k + c + h — j),
J  + c + h + [p +  1) A = J  + c + h + (p + 1) Ai + s — p =  g, 

A + 1/1 +  2c +  d — j  — 1 +  m  =  A + 1/2 +  2c +  d — j  +  m  =
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=  Ai +  h>\ +  m\ +  2c + d — j  — 2 =
= Xi + 1/3 + 7712 +  2c + d — j  — 2 =  77.

Likewise the following distributions can easily be derived from the cor
responding PGF’s derived in Section 4 by using results (3), (7), (8), (9) and 
Theorem 1.
^(// +  1)77

P (L ^n(r)=g, R+tn(r) = h, JV*n (r) =  2c) =

c j  oo oo

( t - ^ E E E  E  ( - D
j \ ( 3 + i ~ l

j = 0 k= 0 i= 0  m = ( r / ß )

C  —  1

A X (J ,  fJ’ +  1) x

K(// +  1)777 — r -  1
m - 1 AVl (r -  J  +  c +  //(2c + h — j  — l ) , f i +  1)+

+  ^  ) A U3{r -  J  + c+  1 + n(2c + h —j ) , ß  + 1)—

7(/Z +  1 )?77 — r 
\  777

c — 1
AU2 (r — J  + c + fi(2c + h — j), n + 1)+

(27)

+  ( . ) A v4 (r — J  4-C+1+ //(2c + h — j + 1), // -(-1)

( I L 1 \  C - l  j  OO 7 /-1  /

^ ) E E E E ( - t ( "
'  7=0 jfc=0 7=0 S=1 '  J

x 4̂̂ 1 (J  + 5 — //,// + l)x

^  /(/7 +  l)777l 7- 6 ^ (r +  c _ j  +  /i(2c + / i - j - i ) , // +  ].)-
“  w A 777! -  1 /m i={(r+i)/(i)

/  ( / í + 1 ) t 7 7 2 — r — / z — 1

m2=((r+ij,)/ny m 2 - I
Avb(r+c— J  -  s+n(2c+h—j ) , y + l)

where

j  +  i — & +  //(ft +  c +  ft — j )  =  J,
J +  c +  /i +  (// +  l)A =  J-t-c  +  /i +  (//-l-l)Ai +  s — // =  (/,

A  +  i / i + 2 c  +  / i  —  j  +  7 7 7  —  1  =  A  +  i / 2  +  2 c - | - / 7  —  j  + m  =
= \  + u$ + 2c + h — j  + m =
= \  + V4 + 2c + h — j  + m + l =
— 2c + h — j  — 2 + Ai +  u\ + 777i =
— \  + Û  + 2c + h — j  — 2 + 7772 =  77.
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(( /i + 1) n ) p ( ^ ( r ) =  ^  7V*(r) =  2c) =

C J OO OO

=EEE E (-*)
j=0 k= 0 i=0 m=(r/ii)

J  ^(/x+l)m—r —1 
m — 1

A  / j + i - i

x

(28)
H

.Jfc

c—1
j

A X(I, fi + l ) x

Auj («7, /i +  1) +  ( .) AL„3 (J  + 1 +  /a, fi +  1)

+ l )m — ^c— 1

c— 1 j  oo At—1

+EEEE<-i>
j = 0 fc=0 i=0 s= l

AV2 (J  +  fi, /j , +  1) +  ( . J A Vi (J  + 1 +  2/la, jj, +  1)

c _  A  /"A ( j  + i - i
j  J \ k

x A \ 1 (I +  s—/i, /̂  +  1)

E
m 2=((r+n)/ti)

E
Lmi=((r+s)/Ai>

/ ( a* +  l)rri2—r - / i - l  

V m 2 -  1

f ( f i  +  l ) m \ —r —s —1 
V mi -  1

-Aj/j — S +  /i, /A +  1)

A vj (J, ß + 1)-

wliere

/  = c + j  +  i — A: +  /i(A + c  — j ) ,

J = c + i—  j  — i +  k +  /i(c — 1 — k), 
/  +  (/-* +  1)A = I  + s — /í +  (aa +  1)Ai =  5 ,

Ai +  v\ +  2c — j  — 1 +  m =  A + i/2 +  2c — j  +  m =
= A + ^3 4- 2c — j  +  m =
=  A  +  i'4 +  2 c + l  — j  +  m  =
= Ai +  i'i +  2c — j  — 2 + mi =
= Ai +  î 5 +  2c — j  — 2 + m2 = n.

i ( n  + l)n 
V n '̂ jp (Lß,n( r ) = g . ÄM>n(r) = d, R+n(r) = h) =

=E c+/l —1 
c — 1

c J oo oo A ( i  + * _ 1
C— 1

x A \(J , /j, + 1)

./cE E E  E (-o'
j=0 fc=0 i=0 m=(r/At)

(c+ d—h —1\ /c  — 1\ / c~\~d—/a—lA / c
C i O / J
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((/i + 1 )m  — i—  1 
m  — 1 A Ux (r -  J  + fi(2c + d — j  — + 1)—

(29)
/(/i + 1 )m -  r 
\  m
c— 1 j  oo p—1

E E E E hi
j= 0 k=0 i=0 5=1

A „2 (r — J  + fi(2c + d -  j) ,  n + 1)

E
mi=((r+s)//i)

k j  \  l

f  (n + l)m \  — r — s — 1
m  i — 1

E
m2={(r+ß)/ß)

where

/(^  +  l)m 2 — r  —/r - 1
m 2 -  1

+

A A] (J + s  -  h , h  +  1 ) x  

AUx (r — J  + fi(2 c + d -  j  — 1), ß +  1) 

A„3(r — s — J  + fi(2c + d — j) , ß + 1)

J  = j  + i — k + /j,(k + c + h — j),
J  +  c-f- h +  (/i + 1)A = J  + c + /i +  (/x + l)Ai + s — /j, — </,

\  + v\ + 2c + d — j  — l + m  = X + V2 + 2c + d — j  + m =
= Ai + i/i +  m\ + 2c + d — j  — 2 =
= Ai + vj, +  m 2 +  2c + d — j  — 2 — n.

+n )n)  =  Rt n i r ) = h) =

=E(tn EEE E (-D*
c=l v 7  j = 0  fc= 0  i=Qm=(r/u.)

a a \ r /(a*+i)m - r - iN
— 1

j  A /  j  + «—1
./a

J

m  — 1

-A,,, (r — J  +  c + //(2c + h — j  — + 1)+

+  ( . J AU3 (r — J  +  c +  1 +  fi(2c +  h — j) , ß + 1)
/(/lí +  l)m  — r \
V m  J

(30)

C . ^  A„2(r — J  + c + n(2c + h — j) ,  n + 1) + x

x j4„4(r — J  +  c +  l +  /r(2c +  h — j A - 1), n +  1) +
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/  i \  C - l  j  o o  ß - l

+E O ^ E E E » -« 1
c = l  '  '  j = 0  f c = 0  z = 0  s = l

C —  1 j  +  i -  1

X AXl(J + s -  1)
/(/i +  l)m i — r — s — 1\

“  ,. A  m i - 1  y
x

Lm i= ( ( r+ s ) / i i )

x 71,/j(r +  c —J  +  /x(2c +  /i —j  — l),/x +  l) —

E /( / i  +  l)m 2 - r  -  1
m2 -  1

m 2 = ( ( r + ß ) / ß )

x AUi{r + c -  J  — s + n(2c + h — j), /x +  1)

where

j  + i - k  + n(k + c + h — j) = J,
J  + c + h  + ( f i+l )X = J  +  c +  /i + (/i + l)A j+ s  — /x =  g,

\  + v \ + 2c + h — j  + m  — l = \  + V2 + 2c + h — j  + m =
= A + i'3 +  2c +  /i — j  + m =
= \  + i/4 + 2c + h — j  + m + l =
=  2c +  h — j  — 2 +  Ai + v\ +  mi =
= A + ix5 +  2c +  /í — j  — 2 + m2 =  rx.

( (/Z +  1)n)p (L M,n(r-) =  9 , ÄMl„(r) =  d) =

d  o o

=EE
A = 0  c = l

O' + * - 1

c+h— 1 
c — 1

c J oo oo

E E E  E (-D
j=0 fc=0 i=0 m=(r/ß)

k  J

A X(J, n  + 1 )
c+d—h—1^ — 1^ ^  /"c+d—h —l \  ( c

/(/x + 1 )m — r — 1 
\  m  — 1

AVl( r -  J  +  /x(2c +  d -  j  — l),/x+  1)-

(31)
/( / i  + 1 )m -  r 
\  m

C— 1 j  OO ß — 1

+ EEEE<-‘>‘
j = 0  2=0 s = l

A„2(r -  J  +  /x(2c +  d -  j),/x +  1)

c -  1 \ f  j \  f j  + i -  1

+

J / J
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x  A \ i  ( J  +  S  —  ( 1 ,  [1 +  1 ) E
L m 1= ( ( r + s ) / / i )

x A v j (r -  J + n(2c + d -  j  - l  ),n + 1)—

rni=({r+n)/n)  ^

X i4„3(r - s -  J  + ß{2 c + d - j ) , n +  1) 

where

/(^  + l)m i -  r
m\ — 1

J  — j  + i — k + p(k + c + h -  j),
J  + c + h + ( ß  + l)X —J  + c + h + (/i + l)Ai + s — fi = g, 

\  + v i + 2c + d — j  — l + m  = \  + V2 + 2c + d — j + m  =
= Ai +  v\ + mi + 2c + d — j  — 2 =
= X\ + V3 +  m2 +  2c +  d — j  — 2 = n.

(/i + 1)n)  P (Rß,n(r) = d, < n(r) = h, W*B(r) =  2c) =Tl J

=  C t - 7 1)  i ' 1)  S i - ' R  ( c 7 1) ^ - i - x

x { S  +  rn — 1r  1) ^ ( 7 ’ - J + A ‘(c +  á),^  + l)-

r*\
|^A1( r - i  +  Ai(c +  ci+l) , / i  +  l)

m=(r/ß)

Í(íi + 1 )m -  r 
\  m

(32)
/  ( / i + l ) m i - r - s - l  
V  m i

71—1 r  oo

+E E
S = 1  L m i = : ( ( r + s ) / 7i>

/(/i +  l)m 2 -  r ~ n  -  1 
\  m2 — 1

m2=((r+n)/n)

f c + h - 1\ / c + d - / l - l \  /

V c  - 1 /  V c  /  j= 0  m=<r//i)

{ (li 4- l)m  — r — 1
x 1\  777 — 1

1 S Aa3 (»—j+s+>u(c+<i—1), Ai-hl)—

]}■A \ ( r - j  + n{c + d) , ß+  1) > +

E E
- 4 a , ( > ' - j  +  í i ( c  +  <( -  l ) , ( i  +  1 ) -
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- ( ( /i + 1j im r^ j A \ ( r - j  + n(c + d),n + l) , 

where

A + C + GÍ +  771 — Ax +  c +  d+  l +  ?7l — A2 + C + d — 1 +  771
=  A3 +  c +  d — 1 +  nii =  A +  c +  d — 1 -(- 77̂2 =

(33)

where

( (M + 1 ) " j  p (H;„ ( r ) = A, AT n(r) =  2c) =

/  c + h —1
\ c - l 7 x 7 j=o

/ I — 1 0 0

E E
L s=0 m=({r+s)/n)

x A \(c  — j  + r + s + fi(c + h — l),/x + 1) —

i{n + 1)771 x — r  — fj, — 1

\  7711-1

/(/i +  l)m  — r  — s — 1
771—1 x

M E
mi = ((r+/x)//i>

x (c +  r  — j  +  1 + fi(c + h) , n  +  1)

A + C +  h — 1+771 = Ax + 7711 +  c +  /l — 1=71.

( ("  + 1)" W , M  = 2c) =V 7i
c—1

-EH)‘
j= 0

c — 1 c—l —i
r ß - l  n—c

E E
- s=0 k=((r-s)/n )

/(/7 +  l)fc -  r +  s
V k

(34)
x “l- 2)c +  T i s, /z + 1)

)k 
k

x An_fc_c((/i +  2)c +  r  — 7 + 1,/i +  l)

fc=((r+1)/M> X

(equivalent to (25) in [8]).
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( (M +n ] )n)  P(Ä^,»(r) -  d, Ä+n(r) =  /i) =

C—1

(35)

-E  {TP PT-T1) p~iy {‘lY " 1*
x {  E O'“"1’™/ 1) - 4 A ( r - 3 + M c  +  <i),>‘ +  l)-

1 m = ( r / p )  L V 771 /

- ( ( ^  +  1̂ m r ^ A A j ( r - j  +  /i(c +  d + l ) , / i  +  l) +

/ ( / i  +  l )m i  — r  — s — 1N
mi — 1

/ i —1 r  OO

+ E E
s= l Lm i=((r+i)//i) 

x ^A3( r - i  +  s +  /i(c +  d -  l),/x +  1 ) -  

/ ( / i +  l )m 2 -  r  — n  — 1 
\  m2 -  1E

m2=((r+/i)/ii)

c+/i—1\ f c + d —h —1
x A x { r - j  +  n ( c  +  d ) , n  +  1) | + 5 Z ( Ĉ i 1) (

/(/^ +  l)m  — r  — 1E E (-‘>J >
i=0 m=(r//z)

,c-J

x ^A2( r - j  +  M(c-d  +  l), /i  +  1) -

x -A*(r — i  +  fj.(c + d),fi +  1)

7 7 1 — 1

f  (fi +  l )m — r

\ m

where

A +  c +  (i +  m =  Ai +  c +  c i + l  +  m =  A2 +  c +  d —l +  m =
=  A3 +  c +  d —l +  mi =  A +  c +  d —1 +  m 2 =  n.

( (',+n1)")p<*;. . (r )=*> =

c=l v y j = 0  \  J  /
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ß —1 oo /(/i + 1 )m — i—  s — 1 
l m  — 1

(36)

E E
' s —0  m = ( ( r + s ) / / i )

x A\(c  — j  + r + s + n(c +  h — l ) , / i  +  l)

f { ß  +  l )m i — r  —  [ i  —  1 
m  i — 1m E

m i = ( ( r + ß ) / ß )

where

(37)

x A x ^ r  +  c  — j  +  1 + /i(c +  h), n  +  1)

X + c + h — 1 + m  = \ i + m i  + c + h — l = n .

^(m + 1 )n

d oo

=EE
h=0 c = l

p (Rß,n(r) = d) =

c —1/ c + h - l \  / c + d - / i - l \
\  c — 1

/ ( / i  +  l )m  — r — 1
J'=0

x

ß

y  ,
'' V 771 — 1

m={r /ß )

x A x ( r - j  +  /i(c +  d),/i +  l) -

x 4 \ 1(j'- .7  +  / í ( c  +  cí+  1),/Li +  1)

(/i +  l)mi — r — s — 1

/(/i +  l)m  -  r 
\  m

+

1 r oo

+E E
s — 1 L m i = ( ( r + s ) / / i )

mi — 1

x A \ 3( r - j  +  s  +  n ( c  +  d -  l ) , / i+  1)- 

/ ( / i  +  l ) m 2 — r  — fj, — 1 
m2 -  1E

m 2=(( r+ß)/ß)

X

X -4A(r- j+/7(c  +  d),/i +  l) +

d  oo

+E E V c_!
h= 0c = l  x

( c+h—1 \  { c+d—h—1 
c

) c  OO

E E (-ív
■i—n / . aj= 0  m —( r / ß )

X c-J f  {ß +  1 )m — r  — 1
\  7 7 1 — 1

^A2( r - ;  +  / 4 ( c - d +  l), /i  +  l ) -
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(H + 1 )m — r
m A \ { r - j  + fj,(c + d),n + l)

where

A +  c +  d +  m =  Ai +c  + cí+l  +  m =  A2 + c  +  GÍ — l + m  =
= A3  + c + d —1 + mi = \  + c + d — 1+  m 2  =  n.
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