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HOW TO COLOR SHIFT HYPERGRAPHS

N. ALON, I. KRIZ and J. NEOETRIL

Abstract

Let g(k) denote the minimum integer m so that for every set S of m integers there is
a "-coloring of the set of all integers so that every translate of S meets every color class.
It is a well known consequence of the Local Lemma that g(k) is finite for all k. Here we
present a new proof for this fact, that yields a very efficient parallel algorithm for finding,
for a given set 5, a coloring as above. We also discuss the problem of finding colorings so
that every translate of S has about the same number of points in each color. In addition,
we prove that for large k

(I + o(I))fc log k ~ g(k) ~ (3+ o(l))k log k.

Introduction

Straus (cf. [8]) raised the following problem: Is there a function
g(k)(< o00) such that for every set S of at least g(k) integers there is a
coloring of the integers by k colors so that every translate of S meets all the
colors? This problem was solved by Erdds and Lovasz [8], who proved that

oy g(k) <O(k\ogk).

The proof of [8] is probabilistic and uses the Lovasz Local Lemma, a result
that has been used for tackling many other combinatorial problems in nu-
merous subsequent papers. As remarked in [12] there is no known proof for
the finiteness of f(k) that does not use the Local Lemma.

Our first result in the present short paper is such a proof, namely a
solution of Straus’ problem that does not apply the Local Lemma. Although
our basic solution works only for sets S of cardinality at least 4k2 it has
the advantage that it is more constructive than the original solution of [8],
and yields very efficient deterministic and parallel algorithms for finding a
coloring of the integers with the required properties. As is the case with
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2 N. ALON, I. KRIZ and J. NESETRIL

many applications of the Local Lemma, the proof in [8] supplies neither a
randomized nor a deterministic polynomial time algorithm for finding, given
a set 5 of a sufficiently large cardinality, a fc-coloring so that each translate of
S meets every color. The recent technique of J. Beck [5] and its modification
in [1] that supply efficient sequential and parallel deterministic algorithms
for various applications of the Local Lemma do not seem to apply directly
to the problem of Straus mentioned above, even when the cardinality of S
is much larger than Q(k\ogk). Note that here the length of the input is the
number of bits in the representation of 5 whereas it is not even clear if the
output can be represented with a finite number of bits, as the output is a
k-coloring of the infinite set of integers.

Our technique here yields a very efficient parallel algorithm that pro-
duces, for a given set S of at least 4k2 integers a k-coloring of the integers
so that every translate of S meets every color class. In fact, the required
coloring can be found in constant time in the standard model for parallel
computation known as a CRCW PRAM with a polynomial number of par-
allel processors. (See, e.g., [11] for the exact definition of a CRCW PRAM,;
we assume that each processor is capable of adding, comparing, multiplying
or dividing numbers of size as that of the members of 5 in constant time.)
Since the required k-coloring is a coloring of an infinite set we agree that
the k-coloring is produced successfully if it can be described by a polynomial
number of bits that enable us, given any integer x, to compute the color of
x efficiently; in our case this will be done by a constant number of modular
additions and multiplications. The basic approach can be combined with
the technique in [5] and yield efficient sequential coloring algorithms even if
S has only cklogk elements for some (large) constant c. Still, we believe
that the most interesting consequence of the argument is the new method
for solving Straus’ original problem.

Another result we prove here is the fact that the estimate in (1) is sharp.

In order to formulate our results and proofs in a more concise form we
introduce two definitions. For a set of integers 5, let H—H (5) denote the
infinite hypergraph whose set of vertices is the set Z of all integers and whose
set of edges is the set of all translates of 5, i.e., the set {x+ S :x € Z}. We
call H the shift hypergraph of 5. A k-coloring c:Z >*{1,2,... ,k} is called
good (for H), if every edge of H meets every color class, i.e., if for every i,
1="*=" and for every integer x there is an s € S so that c(x + s) —i.

In this notation, our two main results are the following.

Theorem 1.1. Let S be a set of at least 4k2 integers. Then there exists
a good k-coloring c for the shift hypergraph H(S). Such a coloring can be
found in constant time, using a polynomial number of parallel processors on
a CRCW PRAM. In addition, there exists a positive constant ¢ such that for
every set S of at least ck log k integers one can find a good k-coloring for the
shift hypergraph H (5) in (sequential) polynomial time.

Tehorem 1.2. There exists an absolute positive Constanta such that for



HOW TO COLOR SHIFT HYPERGRAPHS 3

every k > 1 there is a set S —Sk of at least ak log k integers so that there is
no good k-coloring for the shift hypergraph H{S).

The proof of Theorem 1.1 is based on the ideas of [3] and is presented
in the next section, together with some related extensions. In Section 3 we
describe two proofs of Theorem 1.2; a probabilistic one and a constructive
one. The final Section 4 contains some concluding remarks.

Finding a good coloring

Proof of Theorem 1.1. Let 5 be a given set of m =4k2 distinct in-
tegers. Our objective is to find a good ~-coloring c for the shift hypergraph
H (S). To do so, we first choose a prime p so that the members of S are pair-
wise distinct modulo p. Let P —{0,1,... ,p—1} be the set of all remainders
modulo p and let us split P into k pairwise disjoint intervals of consecutive
remainders Ix,72, ¢+ 1k, where [p/k\ * |/,j <\p/k] for all 1<i<k.

For two integers a and b in P, let c= caib be the following fc-coloring of
the set of integers. For every integer y, c(y) is the unique i so that (ay +
+ 6) (mod p)£/,. Define

Y = Yab—{(as -fb) (mod p) :s £ 5}.

We claim that if a, bare chosen in such a way that the set Y intersects every
(cyclic) interval of length [p/kJ in P then every translate of S intersects each
color class of c. To see this, observe that if z+ S is a translate of S then the
set

{(ay + 6) (mod p) :y£x + S}

is a cyclic translate of Y and hence it intersects every interval of length [p/k\
in P and in particular it intersects every implying the desired result. It
thus suffices to choose a, bso that Yatb has the above property. We next show
that this can be done.

Fact. If aand bare chosen randomly and independently in P, according
to a uniform distribution, then with positive probability the set Y = Yab
intersects every cyclic interval of length at least [p/k\ in P.

Proof. The argument essentially appears in [3], but since it is very
short we repeat it here. Let J\,... ,J2k be a fixed covering of P by 2k
intervals of length \p/2k] each. Observe that if Y intersects each J, then it
certainly satisfies the required property, since every cyclic interval of length
\ p/k\ must fully contain at least one interval J,. Fix an i, 1<i<2k and
put m= |5| =4k2. For each element s£S let Xj be the indicator random
variable whose value is 1if (as4-6) (mod p) £ J, (and is O otherwise). Define
X 1= Ylses X's and observe that X 1= 0 if and only if Y does not intersect Jx
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We estimate the probability of this event by computing the expectation and
variance of X 1 By linearity of expectation

E(Xi)=" E(xi)=m\p/2k]/p.
Ses

The crucial (and simple) fact for computing the variance is the fact that the
random variables X, (s £ S) are pairwise independent. This follows from
the fact that if s and t are two distinct members of S then when the pair
(a, b) ranges over P x P so does the pair

((as + b) (mod p),(at-\-b) (mod p)),

implying that X'sand X\ are independent. Hence,

Var(X') =Y, Var(Xt) =m ~ - 1(1- 1iW .).
SES

Therefore, by Chebyschev’s Inequality,
Prob(X'=0) <Prob(\X' - E(X")\ >E(X")) $ < 2k/m.

Since there are 2k possible values of i the probability that X 1= 0 for some i
is strictly smaller than 4k2/m = 1, completing the proof of the fact. O

Returning to the proof of Theorem 1.1 observe that the last fact implies
that randomly chosen a and b supply a good ~-coloring with positive prob-
ability. In particular, there is at least one such pair a, b and hence a good
coloring exists.

For the algorithm, it is essential to choose a small prime p so that all
members of S are distinct modulo p, that is, a prime which is smaller than
some (fixed) polynomial in the length of the input. Fortunately, the existence
of such a prime is simple. A prime p is not good if and only if it divides the

product
“ (l).
59GSSE

If each number in S is at most 2" (and at least 0, as we may assume since the
problem is invariant under any additive shift of 5), and S has m members,
the last product is certainly at most 2nm . Since it is well known that the
product of all primes smaller than x is e(1+°(1))x this shows that there is a
prime p <nm2that does not divide the product.

Therefore, for the algorithm, we simply check, in parallel, for every prime
p up to nm2if it is good, i.e., if all the members of S are distinct modulo
p. Once we find such a prime we check, in parallel, all pairs a, b and find
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a pair for which the set Yab intersects every interval of length [p/k\ (we
can afford checking all the intervals in parallel). One can check that all this
can, indeed, be performed in constant time in parallel using polynomially
many processors. (Recall that each processor can add, compare, multiply
and divide numbers in the required range in constant time.) This completes
the proof of the first part of the theorem.

For the second part of the proof of Theorem 1.1, namely the existence
of the constant ¢, we only need to combine one simple ingredient of the
proof above with the technique of [5]. Given a set S of m > ck log A positive
integers, each at most 2”, we can find efficiently a prime p so that p< nm2
and all the members of S are distinct modulo p. Consider the hypergraph
H whose set of vertices is the set Zp of integers modulo p and whose set of
edges is the set of all shifts of S modulo p, i.e., the set

{{(x+s) (mod p) :s£ S} :x£Zp).

H is clearly an m-uniform, m-regular hypergraph, and the technique in
[5] can be applied to obtain in sequential polynomial time, a vertex *-coloring
of H so that each edge meets every color class, provided m ”~ cklogk for a
sufficiently large c. Since this is very similar to the examples given in [5], we
omit the detailed algorithm. The coloring can now be extended to a good
integer A;-coloring for H (5) simply by letting the color of any integer y be
the color of y(mod p). This completes the proof of Theorem 1.1. O

Remarks

1 Combining the basic idea in the last proof with one of the results in
[3] we can show that for a sufficiently large set S one can find a coloring with
small discrepancy, in the following sense.

P roposition 2.1. For every set S of m integers, there is a k-coloring
of the integers so that the number of points of each color in every translate
of S deviates from m/k by at most

0(m V,2(log m)3/2).

Such a coloring can be found in constant time with polynomially many pro-
cessors on a CRCW PRAM.

To prove this result we start, as before, by choosing a polynomially small
prime p so that all the members of 5 are distinct modulo p. Next we use
Theorem 2.3 in [3] which asserts that for every set T of cardinality m in Zv
there is an integer a so that the set aT(mod p) is uniformly distributed in
the sense that for every (cyclic) interval of length 6p in Zv the number of
members of aT (mod p) in the interval deviates from its expectation 6m by



6 N. ALON, I. KRIZ and J. NESETRIL

at most 0(m 2/2(logm)3/2). Let Ji, be a partition of Zv into k almost
equal intervals and define, for every integer y, the color of y as the unique
i such that ay(mod p) £ where a is chosen so that for T = 5(mod p),
aT(mod p) is uniformly distributed as described above. The same reasoning
as in the last proof shows that this coloring satisfies the desired requirements.
It is also obvious that it can be found in constant time with polynomially
many processors in parallel, as before.

We note that one can obtain an even more uniform fc-coloring for the
shift hypergraph H(S) by applying the local lemma, but we do not know to
find such a coloring in constant time in parallel.

2. The basic argument in the proof of Theorem 1.1 can be modified and
extended to the real case as we sketch next without discussing the algorithmic
issue. Here, too, the Local Lemma yields a sharper result but our argument
IS more constructive.

P roposition 2.2. For every set S of at least 4k2 reals, there is a k-
coloring c of the set of all real numbers R so that every (real) translate of S
intersects each color-class.

To prove this proposition first choose a real number t, so that all members
of 5 are distinct modulo t. Let I\,... ,Ik be a set of k pairwise disjoint
intervals of equal lengths that partition [0, t), defined by 7, = [(i—)t/k, it/k).
Next, let a be chosen randomly and uniformly in the interval (0,M), where
M is a large number, to be determined later, and let b be chosen randomly
and uniformly in (0,f). Define a coloring ¢ of the real numbers as follows:
For a real number y, the color c(y) is the unique i so that (ay+b) (mod t) £
£ One can imitate the proof of Theorem 1.1 and show that if 5 is a set
of at least Ak2 reals, and M is sufficiently large, then the probability that c
maps S into a set that intersects every cyclic interval of length at least t/k
in [0,f) is Q(l). Such a coloring ¢ will have the desired properties and the
assertion of the proposition follows. We omit the details.

3. One can use a simple algebraic idea to extend the first part of Theorem
1.1 even further, to the case of an arbitrary torsion-free Abelian group (such
as, e.g., any Euclidean space Rd). Here, too, the Local Lemma yields a
sharper result but our argument is more constructive.

P roposition 2.3. Let G be a torsion-free Abelian group. Then for every
subset S of G containing at least Ak2 elements there is a k-coloring of G so
that every translate of S in G intersects each color class.

Proof. The set 5 spans a finitely generated and hence a free Abelian
subgroup F of G. Select a homomorphism <= F »Z such that $=>restricted
to 5 is injective (this is always possible). Ifx ®Z |-t {1, s> s the required
coloring of Z with respect to (fX(S), then x4>is the required coloring of F with
respect to 5. To color G, color each F-coset separately by a translate of the
coloring of F. O
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Studying analogues of Straus’ problem mentioned in the introduction
for various actions of groups on sets seems to be an interesting program.
It is worth mentioning that there is a whole area known as Geometric, or
Euclidean Ramsey Theory (see, e.g., [9] for a few examples), which studies
questions precisely opposite to Straus’ problem.

Q(k log k) colors are necessary (and sufficient)

In this section we present two proofs of Theorem 1.2. Let g(k) denote
the smallest m so that for every set 5 of at least m integers there is a good
fc-coloring for the shift hypergraph H(S). The proof in [8] gives that for
large k:

g(k) » (3+ o(l))A:loge A

The next proposition shows that this is sharp, up to a constant factor.
PROPCSITION 3.1. If g is a prime, and q>12221~2 then

' 29 9+1

9 1+1/ 2

This implies that for large k:

9{k) A (~ + °(1))~ I°g2k.

The proof of the above proposition is by a construction that uses the prop-
erties of the quadratic residues and non-residues in the field Zg. Recall that
there are precisely (g-1-1)/2 quadratic residues modulo g. We need the follow-
ing simple consequence of the well known theorem of Weil. For a derivation
of this lemma from Weil’s theorem, see [10] or [6].

Lemma 3.2. Let q>12221~2 be a prime and let Z = {z\,... ,zs} be a set
of s members of Zg. Then there exists an element y EZq so that zt—y is
a gquadratic non-residue for all 1™ i <s.

P roof of Proposition 3.1. Put m=(q+ 1)/2 and let 5 be the set of
all m quadratic residues modulo g, considered here as usual integers. Suppose
k > and let c:Z ttFK = {1,... ,k} be a fc-coloring of the integers. To
complete the proof we show that there exists a translate of S that misses at
least one color class. To this end, consider the colors of the integers in the
set Q= {0,1,...29—2} and let j 6 K be a color assigned to at most \Q\/k <
< /+ 1 members of this set. Let y\,... ,ys (s <Il) be all the members of Q
satisfying c(y,) =j. Let A be the elements of Zq defined by z-= % (mod Q).
By Lemma 3.2 there exists a y £ Zq so that z; —y is a quadratic non-residue
for all 17~ i<s. Consider, now, y as a usual integer. We claim that the
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translate y + S oi S does not intersect color class number j. To see this,
suppose it is false. Since y+ S C Q this means that there is an i, 1<i <5,
and there is an x € S so that y + x = y{. Reducing this equation modulo g
we conclude that x = (2, —i/)(mod q). But this is impossible since z\ —y is
a quadratic non-residue whereas x (like all the members of 5) is a quadratic
residue. Thus the claim holds, and the assertion of the proposition follows.
O

Proposition 3.1 implies Theorem 1.2. We next present another, proba-
bilistic proof of this theorem, that gives a slightly better lower bound for

g(k)-
P roposition 3.3. For large k

g{k) ~ (1 + o(l))A: logg k.

The main part of the proof is the following somewhat technical lemma.

Lemma 3.4. For every fixed (small) e >0 there exists a (small) 6> 0
such that for every sufficiently large n the following holds; There exists a
subset S of N —{1,2,... ,n} of cardinality at least (1 —")<$n so that for
every set T of at most

(1~ f0)]o&en
1+ fo)6
positive integers, each at most (1 + fifin, there is an integer 0" y < fon so
that y+ S does not intersect T.

P roof. Let 6> 0 satisfy
2 1-<5>e_(1+iM)5.

(Since
e-(I+M)5=1_(1 + _L)i + 0((52

any sufficiently small $> 0 satisfies (2)). Let n be sufficiently large (as a
function of eand 6), and let 5 be a random subset of N —{1,... ,n} obtained
by choosing each i € N, randomly and independently, to be a member of S
with probability 6. Denote the cardinality of S by m. By the standard
estimates for binomial distributions (see, e.g., [4]), for a sufficiently large n,
with high probability

Fix a set T of at most
U-ToMoge«
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positive integers, each at most (1 -f ~j)n, and fix an integer y < f*n. The
probability that y+S does not intersect T is the probability that t —y is not
in S for all t€T, which is, by (2), at least

.1.
n'"i6"

For the above fixed set T consider now all the possible shifts of S by
an integer y satisfying 0~ y ™ j~n. For each such y we have the estimate
above for the probability of the event Ey that y+ S does not intersect T.
Moreover, if Y is a set of possible shifts and for every two distinct y and y'
in Y, T —y does not intersect T —y' the events Ey (ydY), are mutually
independent. It is easy to see that there is such a set Y of cardinality at
least jqi/\T\2= £2(n/(log n)2), where here the constant in the Q(-) notation
depends on e and ft but not on n. It follows that the probability that there is
no shift y in the possible range so that y + S does not intersect T is at most

(I-A)ITI>e" ( +T5)

_Jd__)i2(n/(rg")2) _ e-0(nifr/(iogn)2)

n1-To
The total number of choices for a subset T as above is only

E U+ iT('j) ) <e0((@m™?2

t<(1—1’“I')I08e "

Therefore, the probability that there is a set T so that there is no shift
y+ S of S that misses it is at most

eO((I°’gn)2)e-n(nA/(logn)2*

which tends to 0 as n tends to infinity. This completes the proof of Lemma
3.4. O

Proof of Proposition 3.3. Let e be a fixed small positive constant.
Our objective is to show that for all sufficiently large k, g(k) » (1 —e)k log,, k.
Let 6, n, and S satisfy the assertion of Lemma 3.4. We assume, whenever
it is needed, that e is sufficiently small and that n is sufficiently large. Put
m = |5]|, then

Let k be an integer and let c:Zh K ={1,2,... ,£} be a good fc-coloring for
the hypergraph H(S). Clearly k"m (< n). We claim that

(I+f6)2Sn <0 < (@1+0Om

(Il ~To6)lo&en " lo6en = loge”

(3)
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and hence that
to> (1 —$)k logek.

Since e > 0 is arbitrarily small (and for each such e any sufficiently large n
can be chosen) this, together with the obvious monotonicity of the function
g(k), imply the validity of Proposition 3.3. It thus remains to prove the
claim. Let Q be the set of all positive integers which do not exceed (1-f
+ YO)n- Fix a color i £ K and let T be the set of all members of Q colored i.
If

m|< U-roMoge”

= (W
then, since S satisfies the assertion of Lemma 3.4, there is a translate y + S
of S contained in Q which misses T, contradicting the assumption that c is
a good /~-coloring for H(S). Therefore, each of the k colors appears more
than

(i-forOge?
(1+fo)6
times in Q and hence
i1~ T5) IQge N
1+ Ib)*5
This implies (3) and completes the proof. O

Concluding remarks

1 A sum-free set of integers is a set that contains no (not necessarily
distinct) a,b and c so that a+b=c. An old result of Erd6s [7] asserts that
every set of n nonzero integers contains a sum-free subset of cardinality at
least n/3. A very simple proof for this result (and some extensions of it) is
given in [2], where the problem of obtaining a polynomial time deterministic
algorithm for finding, for a given set 5 of n non-zero integers, a sum-free
subset of at least n/3 of them, is raised. Our technique here supplies a
very simple algorithm (which is also parallelizable), as follows. Given 5,
find a polynomially small prime p=3r + 2 so that all the n members of S
are distinct modulo p, and are all non-zero modulo p. Next check for every
nonzero a€ Zp the number of members s of 5 so that as (mod p) lies in the
interval r+1,... ,2r + I. An easy expectation argument shows that there is
an a for which the number of these members is at least 71> n/3, and it
is easy to see that they form a sum-free subset of 5.

2. As shown in Section 3, for large k

(1 + o())A: logek <g(k) < (3 + £5(1))&logek.
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It would be interesting to find the correct constant in the expression for g(k).

Acknowledgement. We would like to thank Uri Zwick for helpful
comments that improved the statement of Theorem 1.1 and the presenta-
tion of its proof.
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A NOTE ON THE PATH-DISCREPANCY OF TREES

I. BARANY and Gy. KAROLYI

We will denote by [n] the set of all positive integers {1,... ,n} and by
Tn the set of all trees having vertex set [n]. For a two-colouring / :[n]
{—, +1} and X C [n] we define

D{f,X) = y .

Xex

Let T\,... ,Tk GTn. The path-discrepancy of the trees T\,... ,Tk with
respect to / is

Dp(f; Tu =, Tk) = max D{f, P)

where the maximum is taken over all paths P that are a subgraph of some

Tt. Finally, the path-discrepancy of the trees ,THis
Dp(Tu...,TK = i ;Tu ... .
p(Tu..., TK f:[n]in{lﬂH!} DP(f;Tu , TK)

Example. Let the tree T be just a path of length n —1 on the vertex
set [n]. The ordering of the vertices along T is a permutation n of the set
[n]. The subpaths of T correspond to intervals of n. Assume now that
all trees Tj,... ,Tk are paths on vertex set [n], and #- is the permutation
corresponding to T,. Then the path-discrepancy of Ti,... ,7* is exactly the
discrepancy of the hypergraph consisting of the intervals of the permutations
TN,... ,7Tic (For the definition see [1], [2].) Theorem 2.1 of G. Bohus [2] then
states that Dp(Ti,... ,Tk) <k logn. The path-discrepancy of a single tree
is clearly one and it is not difficult to see that Dp(T\,T2) * 2, the details can
be found in [2].

On the ”Irregularities of distribution” workshop in Bielefeld Vera T. S6s
asked how the function

DP(n,k) = max{Dp(T1)... ,TKk\TteTnfori=1,... ,A}
behaves. Since the chromatic number of a tree is 2 we have Dp(n, 1) —1
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Theorem.
log T
ro_g iBé_l_’l{Dp(n'z) <logn, and

Dp(n, k) <C &log2n for every k > 3.

Proof. First we prove the lower bound. Let d >2 be an arbitrary
integer. Define two trees Ti, T2£ “m”d) where m(d) = H-d + d2+ ...+ dd~I
in the following way. T\ is a path with i connected to i +1 for every 1<i <
<m(d). To define T2 connect vertex il + d+ d2+ ...+ dd~2 to vertices
d{i—1) + 2,d{i—) +3,... ,di+ 1 Thus T2is a complete d-ary tree with d
levels. We note that this construction is related to an example of Hoffman
(see [1], Example 1.8).

Crlaim. Dp(Ti,T2)>d.

P roof. Suppose, by way of contradiction, that there is a two-colour-
ing / :[m(d)] i->{-1,+1} with Dp(f-Ti, T2 ~d—1 Assume that ii =
1,i2, me ij have been defined so that /(fj) = .. .= f (ij) and

™ irti € {d(ir—21) + 2,d(ir—) + 3,... ,dir-f-1}
for every 17 r <j. Ifj <d, then we can find
jHIE€{"*j~ 1+ 2,d(ij—1) + 3,... ,dij + 1}

satisfying f(ij+1) = since otherwise d(ij —1)+2, d{ij—1)+3,... ,dij+ 1
is @ monochromatic path in T\ showing Dp(f;T\,T2) ~td. Therefore there
exists a sequence of vertices i\,... ,id satisfying (*) for every r=1,2,... ,
d —1 and f(ii) = ... = f(id)- This is a monochromatic path on d vertices
in T2, a contradiction. O

For large enough n we have n > W iogiogn) Provsng the lower bound.

For the upper bound we will define, for every tree T € Tn, a permutation
TIp of [n] such that every path of T is the disjoint union of at most O (log n)
intervals of np- Then the upper bounds will follow from Bohus’ theorem
mentioned above.

The definition of wp goes as follows. Let 7Tx(l) = 1. Suppose that s <
< n and we have already defined ttt(1)>ttt(2), ... Now there is a
maximal integer r <s with the property that there is a vertex adjacent to
7rx(r) which is not among the vertices 7rj(l),... ,”(s). Let these vertices be
vi(s),... ,v,a(s). Thus any such vertex is adjacent to 7rp(r) and is distinct
from jpt(1),... ,7rp(s). Delete the edges 7Tp(r)vj(s) (L1 ~j <is) of T and
denote by Tj(s) the component containing Uj(s). This component is clearly a
tree. Fixj 6 {1,... ,ts} for which the number of vertices of Tj{s) is maximal
and define 7rp(s+1) = Uj(s). We will need this construction, in an induction
argument, for a subtree To of T where To has m < n vertices identified with
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a subset M C [n]. In this case xy0 will be a permutation of M which is
constructed the same way as above using the natural ordering of M .

To finish the proof of the theorem it is enough to show that each path
in T is the disjoint union of at most O(logn) intervals of nj. A path in
T will be called monotone if all of its vertices have different distances in T
from vertex 1. Since every path in T is the disjoint union of at most two
monotone paths, it will be enough to prove the following

Lemma. Let P be a monotone path in T. Then P is the disjoint union
of at most [log(n4-1)J intervals of nj.

Proof. Itisenough to prove the lemma for paths P starting at vertex 1
We use induction on n. The initial step is trivial. Suppose n > 1 and we
have proved the statement for 1,... ,n—1. Let v be the vertex of P adjacent
to 1. Delete the edge \v from T. Let To be the component containing V.
Then TO is a tree whose vertices form an interval of xj. Let PO be the path
in TO obtained from P by deleting edge Iv. So by the induction hypothesis
PO is the disjoint union of at most [log(m-|- 1)J intervals of #x0 where m is
the number of vertices of To- These intervals are intervals of %j as well. If
v = 7F (2), then the interval of xj containing v can be extended to an interval
containing 1, so P is the disjoint union of at most [log(m+1)J < [log(7i+ I)J
intervals of xj. On the other hand, if v/ xr(2), then by the definition of
Xj we have to” (n —I)/2. Considering vertex 1 as an interval (of length 1)
we see that P is the disjoint union of at most [log(m+ 1)J + 1< |_log(n+I)j
intervals of xj. O
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A NOTE ON PARADOXICAL METRIC SPACES

W. A DEUBER, M. SIMONOVITS and V. T. SOS

1. Introduction

Given a metric space, (M ,d), we shall call a mapping  : A4 —=M
wobbling if d(x,<p(x)) is bounded for x£ M.

Such mapping were investigated by Laczkovich in his fundamental study
on squaring the disk [6]. He considered sets which may be mapped into the
regular grid by wobbling mappings.

The simple idea behind this concept is related also to physics and crys-
tallography. Consider, for example, an amount of iron filings distributed in
the plane to which an electrical field of finite energy is applied. The filings
will move into an arranged position along the lines of the field. As long as
the electrical field has small energy it is expected that no element is moved
too far. Similarly, a faulty crystal can be imagined to be obtained from a
regular crystal by moving certain elements by some small distance. Such
mappings occur in many applications and may be treated in several ways
[10].

In this note we outline some aspects of wobbling mappings in arbitrary
metric spaces. The Banach-Tarski’s theorem states that the unit ball in IR3
may be decomposed into two parts which are piecewise congruent to the
unit ball. We shall consider analogues of the Banach-Tarski’s phenomenon
in arbitrary metric spaces. We will characterize those metric spaces which
may be decomposed into two parts, where both parts are equivalent to the
whole metric space by a wobbling bijection.

2. Wobbling equivalences

Definition 1. Let (A4, d) be a metric space and X,Y QM . An injective
mapping tp : X —Y is called A:-wobbling if

sup d(ip(x), x) <k.
Xex
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18 W. A. DEUBER, M. SIMONOVITS and V. T. SOS

We call X and Y wobbling equivalent if for some k there is a k-wobbling
bijection ip : X =Y .
Copying the proof of the Cantor-Bernstein theorem one gets

Lemma 2.1. Let Xi and Xi be subsets of a metric space (M ,d) and

be a wobbling mapping of X\ onto a subset Yi Q Xi and g2 be a wob-
bling mapping of X 2 onto a subset Y\ QX\. Then X\ and X2 are wobbling
equivalent.

D efinition 2. For two sets X,Y CA4 the bipartite k-distance graph
G k(X,Y) is the bipartite graph with colour classes X and Y, where x £ X is
joined toy €Y iff d(x, y) < k.

Clearly, X has a wobbling injection into Y if there exists a constant k
such that Gk(X,Y) contains a matching covering X . A metric space (A4,d)
is discrete if every bounded subset of A4 is finite. For discrete metric spaces
the fc-distance graphs Gk(X,Y) are locally finite.

We denote by Nk(Z) the ~-neighbourhood of a set Z in M.

Applying the Rado-Hall theorem [10] for matchings in countable locally
finite bipartite graphs to the ~-distance graphs above gives the following

Craim 2.2. Let (A4, d) be a discrete countable metric space. Two subsets
X, Y of A4 are wobbling-equivalent iff there exists a constant k > 0 such that

(i) For every finite subset X' of X |AT(X™)) n Yj > |A"|.

(i) For every finite subset Y' ofY \Nk(Y") DX\ >|Y".

Sets which are equivalent to /Zd are called uniformly spread [7]. In the
geometric setup one can make the transition from “counting” as in Claim
2.4 to “measuring volumes”: Let X QIR To each x 6 X associate the unit
cube with lower left corner in x:

Cd(x) =x+ [0,D)d.
Heuristically one would say that ifa set X is uniformly spread, then for every

finite set X 1Q X the cardinality |X'| may be approximated by the volume
Ad( U cd(x)) where A" is the d-dimensional volume.
Xex

For a subset X QIRf, C Q IRd || XfICj —A~(C)| is called the discrepancy
of X relative to C and denoted by A(X,C).

To prove his famous result on “squaring the disk” Laczkovich proved the
following [6].

T heorem 2.3 (Laczkovich). A subset X of IRd is equivalent to TIA if
there exists a constant L such that for every measurable set C C IRd the

following holds
A(X,Y)<LXd(N1(dC)),

where dC denotes the boundary of C.
For d —2 there is a variant of this theorem [6].
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T heorem 2.4 (Laczkovich). A subset X of IR is equivalent to 7LT*if
there exists a constant L such that for every Jordan domain C of diameter
at least 1 the following holds

A(X,C)<:L\i(dC).
As a corollary of the above theorem, one can easily show

Corollary 2.6 (see also P. Pleasants [9]). Every Penrose tiling is equiv-
alent to tTL2 for some r £ IR

Proof. By De Bruijn’s theorem [2] every Penrose tiling P is obtained
as follows: There exists a 2-dimensional plane E C IRs and a constant | such
that the orthogonal projection Il from IR5 to E satisfies

H(N,(E)n7Z5) =P,

It is easy to verify that Ni(E) f12 5satisfies the discrepancy condition of the
theorem of Laczkovich. Then the projection — which is injective in this case
— is a wobbling mapping as / is fixed. O
In a metric space much less is known in general about wobbling equiv-
alence. Of course, there are general theorems guaranteeing the existence of
injections such as the extensions of Hall’ s theorem by Michael Holz, Klaus
Peter Podewski, Karsten Steffens [4]. It could well be that an application of
these theorems gives new insight in the context of wobbling equivalences.

P robtem 1. Characterize the sets which are wobbling equivalent to TL2.
The same problem could be of interest for X C (Q2.

3. Paradoxical sets

Definition 3. Two sets A, B in IR3 are called piecewise congruent if
there exist decompositions A = AiU .. .UAn, B = B\(j .. .L)Bn such that each
A, is congruent to B{.

In their classical paper Banach and Tarski [1], see also Wagon [12] proved
that the unit ball B in IR3 is paradoxical in the following sense: B can be
decomposed into two disjoint sets B\, B2 so that B\, B2and B are pairwise
piecewise congruent. Whenever one has an equivalence relation on the pow-
erset of some set, one can define paradoxical sets. Here we define paradoxical
sets only for the wobbling equivalence.

DEFINITION 4. Let (A4,d) be a metric space. (M ,d) is paradoxical if
there exists a decomposition A4 = M\(jM2 such that M\,M2 and A4 are
pairwise wobbling equivalent.

Example 1. IR2is paradoxical. Take a checkerboard tiling of the plane.
A translation moves the black tiles into the white ones. Moreover any single
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square is equivalent to a domino. This shows that IR2 and the set of black
tiles are equivalent.

Example 2. Let A4 = {logn\n £ IN}. Then Mi = {log(2n+ 1) | n £ IN)
and M2 = {log2n|n £ IN} show that A4 is paradoxical.

In order to characterize paradoxical sets (for wobbling equivalence) we
introduce the following

Definition 5 Let (AA,d) be a discrete metric space. A4 has exponen-
tial growth rate if

(*) there exists a k (the doubling radius) such that for every finite set M’
the k-neighbourhood iVfc(M') contains at least 2|M | elements.

REMARK. Obviously, the condition (*) above is equivalent to that for
some fixed q > 1 there exists a k such that for every finite set M' the k-
neighbourhood Nk(M*) has at least gM' elements.

Theorem 3.1. Let (A4,d) be a discrete countable metric space. Then
the following are equivalent.

(i) M is paradoxical.

(i) M has exponential growth rate.

One should be aware that this theorem is not just a rewriting of defini-
tions. To check exponential growth rate one has local tests: For every finite
set one establishes the doubling radius. A4 is paradoxical if all these local
doubling radii remain bounded. On the other hand paradoxity is a global
property.

For the proof we need a variant of Hall’s theorem.

DEFINITION 6. Let G = (A, B) be a bipartite graph. A set E of edges is
an (Zj,~-matching if every vertex of A is contained in exactly I\ edges of E
and every vertex of B is contained in exactly 12 edges of E.

We need the following

Generalized Hall-Rado theorem. Let G=(A,B) be a countable
locally finite bipartite graph. G contains an (/1,12)-matching iff the following
two conditions are satisfied.

(i) For every finite subset A" of A there are at least IWA'\ neighbours in

(i) For every finite subset B' of B there are at least h\B'\ neighbours in
A.

Proof of the T heorem. Let AA be paradoxical. Then there exists
a Af IRsuch that for every finite subset M' of A4 the "~-neighbourhood
Nk(M") contains two disjoint sets of cardinality \M'\.

Indeed, let A4 = M1UM2 be paradoxical decomposition with wobbling
distance k. Then both M\f\ Nk{M') and M2 HNk(M') have at least \M'\
elements. Hence A4 has exponential growth rate.
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To see the converse statement, observe that M is paradoxical iff for some

k the fc-distance graph Gk(M,M) contains a (2,1) matching. To ensure a
(2,1)-matching, we use the condition of the generalized Hall-Rado theorem

for Gk(A4, A4 with {I\|If) =(2,1). The exponential growth rate implies the
Hall condition for Gk{M, Ad) with (2,2), and therefore with (2,1) as well.

O

4. Paradoxical graphs

Any graph G can be regarded as a metric space, where the distance
d(x,y) is the length of the shortest path between x and y in G.

Problem 1. When is an infinite graph G paradoxical?

For trees this question can be answered easily. Let us call a path PkQG
a hanging chain if all its inner vertices have degree 2 in G.

THEOREM 4.1. A locallyfinite infinite tree T without endvertices is para-
doxical iff the lengths of hanging chains in T is bounded.

Here it should be remarked that when a tree T is decomposed into 2
subsets wobbling equivalent with each other and with the whole tree, these
subsets are not trees.

Corollary 4.2. An infinite tree is paradoxical if its minimum degree
is at least 3.

First Proof. Assume that T contains no hanging chain of K inner
vertices (i.e. K + 1 edges). For any S C V(T) we define dS as the set
of vertices joined to S but not in S. We may apply our characterization,
Theorem 3.4 to T: the only thing to be proved is that if S Q V(T), then
|95| > c/c|S|. Indeed, let Fn be the forest induced by the set SudS. We
shall count the vertices of degree 1 in Fn since all they belong to dS. Let
ra, be the set of vertices of degree i, 3= «3+ n4+ .... Then (for any tree
or forest) rq » >3+ 2. Further, n—n2 > n/K. Indeed, fix a vertex w of
degree 1 and map each x of degree 2 to the y for which x is on a hanging
chain yy* and vy is farther from w then y*. We get each y at most K times.
Thus n\ = n —i2—+ti>3 > n —n/K —n\ implying |55| > n/2/i . Hence T has
exponential growth rate. O

One feels that in case of trees a directly constructed partition should also
exist. One can easily provide the partition V(T) =VIUM2L e.g. if T is a tree
of minimum degree 3.

Problem 2. When is an infinite graph paradoxical? Is it true that if an
infinite graph G is paradoxical, then there is an infinite spanning tree T QG
which is paradoxical?



22 W. A. DEUBER, M. SIMONOVITS and V. T. SOS

5. Recursive sets

Often one would like to ensure some extra properties of the (wobbling)
mapping or of the parts in a paradoxical partition under the condition that
the original sets have additional properties. From the point of view of math-
ematical logic, those things are interesting for us which can be generated by
a Turing Machine. This motivates the problems below.

Problem 3. Let X Q Z2 be recursive and wobbling equivalent to 7L1.
Is there a recursive wobbling bijection X —» 7Zr which is recursive?

Problem 4. Are there recursive paradoxical sets M in (Q2 for which
there is no recursive paradoxical decomposition M = M1UM2?

Remark. We do not think that there is a trivial positive answer. There
are analogous situations with negative answers.

(a) There exists a recursive countable locally finite tree (i.e. the charac-
teristic function of the edge set is recursive) which has no recursive infinite
path [11].

(b) There exists a recursive fc-regular bipartite graph G(A, B) which has
a 1-factor but has no recursive 1-factor. [8].
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ON THE BOOK SIZE OF GRAPHS
WITH LARGE MINIMUM DEGREE

P. ERDOS, R. FAUDREE and E. GYORI

The basic problem investigated in this paper was raised by the first two
authors [4] in their paper on size Ramsey numbers. Among others, they dealt
with the questions of which graphs must be contained in a graph whose
complement does not contain a given tree as a subgraph. An even more
special problem was raised in this paper, which is of special interest by its
consequences and by the phenomenon described by it. To formulate this
problem, we need the graph theoretical concept of ”book” introduced by
Shehan.

Definition. The graph consisting of k triangles sharing a common edge
is called a book of k pages. More precisely, the book B of k pages can be
defined by the vertex set V = {a, b, x\, x-i, mm Xk} and the edge set E =
= {ab, ax\, bxi, axz2,bx2,... ,axk, bxk}.

Let G be a graph of n vertices with minimum degree d. Question: How
thick a book must be contained in G? In other words, what is the maximum
k such that a book of k pages is contained in any graph G of n vertices with
minimum degree d. Naturally, if d<n/2 then it is possible that G does not
contain any triangle (think of the complete bipartite graph with n/2 vertices
in each part) so the question is not interesting if d ~ n/2.

The case d > [n/2) + 1 is interesting from several points of view. E.g.,
the results of Dirac [2] and Bondy [1] imply that every graph of n vertices
and with minimum degree not less than [n/2j +1 is pancyclic (i.e., the graph
contains a cycle of length k for any 3<k<n).

As to the books — as we will see — it is easy to prove that every graph
of n vertices and with minimum degree not less than [n/2J + 1 contains a
book of n/6 pages:

Theorem 1. Every graph G of n vertices and with minimum degree not
less than [n/2j -f 1 contains a book R[n/6j+i of [n/6] + 1 pages as a subgraph.

Theorem 1 is basically a direct consequence of the nice result of Edwards
[3] that any graph with [n2/4j +1 edges has a book with at least n/6 pages.
However, we prove Theorem 1 for sake of self-containedness and since the
proof of the more general statements starts in the very same way. (This is a
weaker statement than Edwards’ result, and the proof is simpler, as well.)
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P roof. The degree condition implies that G contains a triangle; further-
more, every edge of it is contained in a triangle. For an arbitrary triangle
Xyz, let us estimate the number of vertices of G not joined to any of the
vertices x,y,z by means of principle of inclusion and exclusion. We obtain
that

0~ IV(G) - (N(x) UN(y) UiV(2))| =
= IT(G)| - \N(X)\- \N(Y)\- [iV(D)] + \N(x)nN(y)\+
HIV(X) nN{Z)\ + \N(Y) n V(@) - \N(x) n N(y) n tF(z2)]
<n- 3([n/2j + 1)+ [N(x) n N\ + [N(x) n M)+ V() n V@),

which implies that one of the double intersections, say N (x) C\N(y) is of size
at least [n/2j T 1—/3 > n/6 what we wanted to prove since then x, y and
N (x) DN (y) define a book of |[N{x) DN(y) \ pages. O

The surprisingly difficult question now is how sharp is Theorem 1. Is
there a constant e > 0 such that a book of (1/6 + e)n pages can be found in
every graph G of n vertices and with minimum degree not less than [n/2] +
+ 1?7 We show that there exists such a constant; however, we do not calculate
the value e that can be deduced from the proof. Partly, since the arguments
are very technical and it is very doubtful that the proof results in the best
possible constant, and partly, since this phenomenon of a “jumping constant”
is far more interesting, than the value of e. The phenomenon is described in
a stability theorem, more exactly, we prove its generalizations as well in a
series of stability theorems. These theorems imply the interesting “jumps”
of the function b(c) defined in the interval [0,1] as the maximum b such that
every graph G of (sufficiently large) n vertices and with minimum degree
cn + o(n) contains a book of bn pages.

We have seen in the proof above that G contains a book of n/6 pages.
However, the same proof implies that if G does not contain a book of (1/6 +
+ e)n pages then every edge of it is the common *“spine” edge of a book
of n/6 + o(n) pages. Let us weaken the conditions of Theorem 1 a bit and
suppose only that the degree of every vertex in G is at least n/2 + o(n).
This condition does not imply the existence of any triangle, although the
original conditions imply that every edge is contained in a triangle. In order
to be able to say something interesting, let us assume again that every edge
is contained in a triangle and that any book in G has at most n/6 + o(n)
pages. Then these conditions essentially determine the structure of G in a
unique way:

T heorem 2. Let G be a graph of n vertices such that the degree of every
vertex is at least n/2 + o(n) and every edge is contained in a triangle. If every
book in G has at most n/6 + o(n) pages, then deleting from and adding to
G at most o(n2) edges, we can obtain the following graph G' of 15 (in some
cases 12) classes of vertices:
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For the 15 classes V{j (1 i,j *4, i+]j <8), we have |Vjj| = n/12-fo(n)
(t=1,2,3; 1,2,3), |F4j|= cOn/12+o(n) (j = 1,2,3), |V4]|= (1- c,,)n/12 +
+o(n) (i=1,2,3), where 0 @”" 1, and the vertices x € Vi}j1 and y £ Vig2
are joined to each other if and only if i\ i%i-i, ji 7"2» and U +J2»*2 + Ji <8.

This theorem can be generalized, and it is interesting that the structure
of the graph is determined in an even more unique way in the general case.
The description in the general case does not contain any free parameter as
ag is in the special case above.

THEOREM 3. Let k,I >3 be arbitrary integers such that > jrf
(i.e., k>12—21+\). Let G be a graph of n vertices such that the degree of
any vertex in G is at least H~n-fo(n). If any book in G has at most

Ny ii + o(n) pages, then deleting from and adding to G at most o(rc2)
edges, we can obtain the following graph G' with kl classes of vertices:

For the kI classes Vy§ @i kI <j<l), |V]=jj+o0o() (=
=1,... ,k;j=1,...,/), and the vertices x 6 Vi]j1 and y £ VXJ2 are joined to
each other if and only if i\ Ei2 and j\ 7|%

Now look at the consequences of these theorems concerning the behaviour
of the function 6(c). It is obvious that the function b is monotone increasing
and it is easy to see that it is continuous from the left-hand side, since
deleting edges changes the sizes of the books sitting on the remaining edges
as “spine” edges, and if an edge e is the spine of an exceptionally thick book
then instead of this edge, delete other edges incident to the endvertices of
e (e.g., the other edges of this book). What is more surprising and follows
from Theorem 2 is

T heorem 4. There is an £> 0 such that b(c) > 1/6 + e for any ¢ > 1/2.

P roof. Suppose that all the degrees in G are greater than n/2 and all
the books have at most n/6 + o(n) pages. The minimum degree in G' is at
most n/2 so G is not a subgraph of G'. Furthermore, since the order of
magnitude of the number of vertices in G' with degree at most n/2 is n, the
number of independent edges in G —G' is of order of magnitude n, as well.
It is easy to verify that if we add an edge e of G to G' then it is the spine
of a book of n/4 + o(n) pages in G' Ue and then G does not contain at least
n/12 + o(n) page edges of this book by the page number condition on G.
But three books with independent spine edges have no common edges, (i.e.,
if we have books with independent spine edges then any edge is contained in
at most two books), so we have to delete an edge set of order of magnitude
n2 from G' (and add some edges) to obtain the graph G with no books of
size greater than n/6 + o(n), a contradiction to Theorem 2. O

Remark. The proof above is not precise enough, the use of orders of
magnitude in case of a given graph is meaningless. However, these inaccura-
cies can be eliminated by means of the usual £-technique. Actually, the proof
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above would not be too complicated, but considering that this e-technique
would make the next proofs vast, we will follow this method and sacrifice
the full preciseness for the sake of clearness.

Replacing Theorem 2 by Theorem 3, a similar argument shows

T heorem 5. There is a constant e(k,l) > 0 such that b(c) > *p~p +
-\-e(k,I) for any ¢ > if k and | satisfy the conditions of Theorem 3.

Applying Theorem 5 and the construction of G', it can be seen easily
that the function 6(c) is not continuous, it has some “jumpings” at the
points if k and Zsatisfy the conditions of Theorem 3.

Theorem 2 and the case Z= 3 of Theorem 3 can be proved in the same
way not considering that the proof of some claims are much more involved
in case of Theorem 2, i.e., if k=4. So, we will prove Theorem 2 and the
case | —3 of Theorem 3 simultaneously. Then, we will prove Theorem 3 by
induction on Z

P roof of Theorem 2 and the case Z= 3 of Theorem 3. Let k>4
and let G be a graph of n vertices such that the degree of every vertex is

at least 2*j~"re+ o(n). Suppose that every edge is contained in a triangle
(it automatically follows from the degree condition if k > 4) and that every

book in G has at most ppn + o(n) pages. From now on, we refer to this
second assumption as the page number condition.
Let xyz be a triangle in G and let us introduce the following notation:

Vx =N (x)-N(y)-N(z),
W=N(y)-N(x)-N(z),
Vz=N(z)-N(x)-N(y),
Vxy =N (x) N N(y),
vxz = N{x) N N(z) - N{x) nN(y) N N{2),
Vyz = N(y) HN(z) -N{x)n N(y) N N(z).
Like in the proof of Theorem 1, let us estimate the number of vertices
not joined to any of the vertices x,y,z, by applying the principle of inclusion

and exclusion, the degree condition, and the page number condition. We
obtain that

07 F(G) - (N(X)uN(y)LiN(z2))\ =
=|V(G)| - \N(x)\ - \N(y)\- \N(2)\ +\N(x) nMY)|+
+AN(X)nN(2)\ + \N{y)nN{z)\- |ZV(x) N N(y) D2ZV(*)| »
A 2(Jfc-1)
- 3———n+3- 5 p n+°(n)="°(np

which implies that the estimates used are sharp apart from an error term
o(n), so, d(x),d(y),d(z) -2*~~n+ o(n), \AN(x)D N(y)DN(z)\ =o(n), \Vxy\,



ON THE BOOK SIZE OF GRAPHS WITH LARGE MINIMUM DEGREE 29

\vM vyx\= ~rpn + o(n). This implies that [V, [Vy|, MY = ~rn + o(n) and
the six sets defined above cover the vertex set of G with exception of o(n)
vertices. Since xy was an arbitrary edge of G, it implies that d(v)

+ o(n) for every vertex v of G and every edge of G is the spine of a book of
ANn + o(n) pages. From now on, the degree condition and the page number
condition can be used in this stronger form.

Now, we are going to determine the number of edges joining these six
vertex classes and, as far as possible, the structure of the graph. Let d(X, Y)
and d{X) denote the number of edges from X to Y and joining two elements
of X, respectively.

Let v GVxy. Then applying the estimate above for the triangle xyv,
we obtain that \N(x) I) N(y) (LN(v)\ = o(n), and d(v, Vxy) —o(n), and so,
d(Vxy) = o(n2). (Similarly, if v GVxz, then d(v,Vxz) = o(n) and d{Vxz) =
= 0(n2), and if v GVyz, then d(v, Vyz) —o(ra) and d(Vyz) = o(n2). )

Again, let v GVxy. The page number condition for the edge xv implies
that d(v, Vx) +d(v, Vxy)+d(v, Vxz) = *~n + o(n), and the same condition for

the edge yv implies that d(v,Vy) +d(v,Vxy) +d(v,Vyz) = + o(n). But
applying d(v, Vxy) = o(n) and d(v) = + o(n), it follows
d(v,Vx) +d{v,Vxz) = -n +o(n),

k—2
d(u, W) + d(v, Vyz) = -y r L+ °(n)’

and

d(v,V2) = i n + o(n).

From now on, we refer to this statement as the sum condition (for the
appropriate edge). Thus, Wy and Vz are joined to each other almost com-
pletely,

d(vxy,Vz)=" ~ - n 2+ o(n2).
Similarly,
d(Vxz,Vy)="= "-n 2+ °(n2),

and

d{Vyz,Vx) = + °(n2)-
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Furthermore, if v GVxz then
k —2
d(v,Vx) + d(v,Vxy) =-"-n + o(n),
k —2 .
d(v, Vz) + d(v, Wz)= ~*~n+ °in),
2
Nw,Fy)= —n + o(n),

and if v GPy2, then

d(v,Vy) +d(v,Vxy)=-~-n + o(n),
d(v,Vz) + d(v,Vxz) = ki + o(n),
d(v,K) = "2n + o(n).

Consider the vertices v GVx. The page number condition for the edge
Xv says that d(v, Vx) + d(u, Vxy) + d(v, Vxz) = 4”~n + o(n). On the other
hand, d(Vyz,Vx) =" " -n 2+ 0o(n2) implies that d(v,Vyz) = o(n) for
a typical vertex v GVx (i.e., for all vertices v G Vx except o[n) ones). By
the degree condition for a typical vertex v GVx, d(v,Vy) +d(v,Vz) ~ Jkn +
+ o(n) and so d(Vx,Vy) + d(Vx,Vz) = glyn2+ o(n2). Similarly, d(Vy,Vx) +
+d(Vy,Vz) =~ n 2+ o(n2) and d{Vz,W) +d(Vz,Vx) = ~ n 2+ o(n2). So,
d(Vx, Vy) = gfs-n2+ o(n2), F2)="n 2+ 0(n2), and d(Fy,V2) =" n 2+
+ 0(n2). It can be shown, as well, that if w is a typical vertex in Vy, then
d(w,Vxz) = 4~n + o(n), and if re is a typical vertex in V2, then d(w,Vxy) =
= AjA-n + o(n). These results can be shown for every triangle or if just an
edge is needed then for every edge, and we refer to them, as the structure
condition.

Before continuing the proof of the Theorem, we prove
Lemma 1. The graph G does not contain K4 as a subgraph.

Proof of Lemma 1. Suppose that the vertices X, y, z, vinduce a K4 in
G and that the vertices x,y, z have the properties what we have seen above.
We have v GVxy, so, as we have seen, d(v, Vxy) —o(n), d(v, Vx) + d(v, Vxz) =
= 7jA-n + o(n), d(v, W) + d(v, Wyz) = + o(n). On the other hand, the
page number condition for the edge vz and d(v,Vz) —"n + o(n) imply that
d(v,Vxz)+d(v, Vyz) = *n+o0(n). However, we saw that d(v, Vx)+d(v, Vy) =
= ~n + o(n), a contradiction to the equalities \VX\—"n + o(n) and \Wy\=
= jj*n+ o(n) if k > 4.
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Unfortunately, the proof in the case k =4 is much more complicated, it
is much more difficult to get the desired contradiction. Then, all the six sets
defined above have n/6 + o(n) elements, and as we have seen in this proof,
d(v, Vxz), d(v, Wz) = o(n) and d(v,Vx),d(v,Vy)=n/e +o(n). On the other
hand, the same estimates can be shown for the triangles vxy, vxz,vyz, which
imply that d(Vx),d(Vy), d(Vz) = o(n2) and d{Vx,Vxy), d(Vx,Vxz),d(Vy,Vxy),
d{Vy,Vyz),.d(Vz,Vxz),d(Vz, Vyz), d(Vxz,Vxy),d(Vyz,Vxy),d(Vxz, Vyz) = n2/72+
o(n2).

Now, we show Lemma 1 by means of three claims.

Craim 1. With exception o/o(n3) triangles, every triangle in G contains
a vertex in Vxy and a vertex in Vz, or a vertex in Vxz and a vertex in Vy, or
a vertex in Vyz and a vertex in Vx.

Proof. We have
d(Vxy,V2) + d(VX2 Vy) + d(Vyz, Vx) = n2/\2 + o(n2).

The page number condition says that every edge is the spine of a book
of n/6-f-o(n) pages, so the number of triangles containing at least one of
these edges is n3/72 + o(n3), since the number of triangles counted twice is
0(n3) because d(Vx),d(Vy), d(Vz),d(Vxy),d(Vxz),d(Vyz) = 0o(n2). But this is
the total number of triangles, as well, since the number ofedges in G is n2/4-f
+ 0o(n2) by the degree condition, and each edge is contained in n/6 + o(n)
triangles, so counting every triangle three times, we count n3/24 + o(n3)
triangles. O

Claim 2. Letw£ Vxy be an arbitrary vertex. Then N (te) DVxz and Vyz —
—N(w), N(w) n W* and Vxz —N(w) are joined to each other completely with
exception of 0(n2) edges. Considering the symmetry of the vertices x, vy, z, v,
another 11 similar statements hold, as well.

P roof. Defining the appropriate sets for the triangle wxy, the state-
ments follow from the fact that Vwx and Vy, Vwy and Vx are joined to each
other completely with exception of o(n2) edges. O

Claim 3. With exception of o(n) vertices, either d(w,Vx),d(w,Vxz) =
=n/12 +o(n) or d(w,Vy),d(w,Vyz) =n/12+ o(n) for every vertex w £ Vxy.
Similarly with exception of o{n) vertices, n/12 + o(n) edges emanate from
every vertex of G to at least two of the six defined sets.

Proof. We have d(w, Vxz) = n/e -d(w, Vx)+o0(n) and d(w, Vyz) = n/6 —
—d(w, W) -fo(n) by the sum condition: it is sufficient to prove one of the
equalities. Let us count the triangles containing a typical vertex w in two
different ways.

The degree condition and the page number condition imply that each of
the n/2-]-o(n) edges incident to w is contained in n/e +o(n) triangles; so,
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the number of triangles containing w is n2/24 + o(n2) since every triangle
was counted twice in this way.

On the other hand, d(Vz) = o(n2) implies that the number of triangles
containing any of the n/6 + o(n) edges leading from w to Vz is r2/36 +
-t-0(n2), and the number of triangles containing two of the remaining edges
incident to w is d(w, Vx)(n/6 —d(w, Vy)) + d(w, W)(n/6 - d(w, Tx)) + o(n2)
for a typical vertex w by Claim 1. And this is equal to n2/72 + o(n2), only
if either d{w, Vx) = n/12 + o(n) or d(w, W) =n/12 + o(n). O

Claims 2 and 3 imply that, for a typical vertex w £ Vxy, N (m) DVx and
N (in) n W define a partition of Vx and Wy, respectively, such that one of these
two partitions is halving (apart from a possible error of o(n)) and, the other
one is arbitrary, including that it may have an empty class, as well. One
partition class in Vx is completely joined to one partition class in Vy and,
the other partition class in Vx is completely joined to the other partition
class in Vy, with exception of o(n2) edges. However, d(Vx,Vy) = n2/72 +
+ 0(n2) implies that these two bundles contain all the edges from Vx to Vy

with exception of o(n2) edges. It implies that every vertex w £ Vxy (with
exception of o(n) vertices) defines almost the same partition in Vx and Vy.
Thus, each (typical) vertex w isjoined to exactly one of the partition classes
in Vx and so, the graph of the edges from Vx to Vxy — whose structure is
defined by a partition in the same way — partitions Vx in the very same
way.

Now, we show that the edges joining Vx to Vy and the edges joining Vx
to Vz define the very same partition of Vx if none of the partitions defined
by the edges joining Vx,Vy and Vz has empty partition class or that of o(n)
elements. (Similar statements hold for Vx,Vxy,Vxz, for Vy,Vxy,Vyz and for
Vz,VXzZ,vyz.)

If, say, a class P of the partition of the set Vx defined by the edges joining
Vx and Vy contains more than o(n) elements of both classes of the partition
of the set Vx defined by the edges joining Vx and Vz then, (almost) every
vertex of Vz can be reached from P by an edge and P is completely joined to
cn vertices in Vy. There is no essentially empty partition class, so the number
of edges leading from these vertices in Vy to Vz is of order of magnitude n2
and we get con3 triangles forbidden by Claim 1, a contradiction.

Now, suppose that there is no essentially empty partition class in G and
so — as we have seen above — the partitions divide the six defined sets in
two in the very same way. By Claim 1, there are only o(n3) triangles in
VXD WyyjVz\ thus, the partition classes in these sets can be colored with red
and blue so that one class is red, the other one is blue in each partition,
and exactly the classes of different colors in different sets are joined to each
other almost completely. Again by Claim 1, a partition class in Vxy is joined
almost completely to classes in Vx and Vy that are of the same color and
similar statements hold for Vxz and Vyz. Thus, the coloring of the partition



ON THE BOOK SIZE OF GRAPHS WITH LARGE MINIMUM DEGREE 33

classes can be extended to the classes in Vxy, Vxz, Vyz so that the classes of
different colors are joined to each other in Vxy UVxz UVyz and Vx U Vy U Vz,
as well. And again by Claim 1, it yields a good coloring of the classes in
Vxy, Vxz, Vyz, as well, exactly the classes of different colors in different sets
are joined to each other almost completely. However, the edges from the
red vertices in Vxy to the blue vertices in Vx are not contained in triangles
such that the other two edges are from the almost complete bundles joining
classes of different colors. The o(n2) edges not in these bundles result in very
few triangles contradicting the page number condition.

Finally, suppose that the edges from Vx to Vy define a partition of Vx
such that one of the classes has o(n) elements. By Claim 3, the edges from
Vx to Vy define a partition Vy, Vy of Vy such that |Fy|, |F"| = n/12 + o(n),
Vy is joined to Vx almost completely, and the number of edges from Vy to
Vx is 0(n2). Claim 3 implies that the edges from Vy to Wz define a partition
Wz, V’z of Vyz such that \Wz\,\Vyz\=nlI\2 +o0(n), and it essentially defines
the partition Vy,Vy in Vy. Furthermore Vy is joined to Vyz and Vy is joined
to Vyz almost completely,and the number of edges joining Vy to Vyz and
W to WzZis o(n). Similarly, the edges fromVy to Vxy define a partition
Vxy,Vxy 0iVxy such that |[V?y|,\V'y\= n/12 + o(n), and it essentially defines
the partition Vy,Vy in Vy. Furthermore Vy is joined to Vxy and Vy is joined
to V*y almost completely,and the number of edges joining Vy to V"y and
W to Vxy is o(n). Bothendvertices of a typical CjV~-edge is joined to
Vx almost completely. Thus, the page number condition implies that the
number of edges from Vyz to Vxz is o(n2); so since ii(Wz,Vxz) = n2/72 +
+ 0(n2), WZis joined to Vxz almost completely. Similarly, the number of
edges joining V’2 to Vxz is o(n2) and WZ is joined to Vxz almost completely.
The number of V'V '--edges and VyzV" medges is o(n2), since such an edge
is typically contained in n/12 + o(n) triangles whose third vertex is in Vy,
and Claim 1 says that the number of triangles of this type is o(n3). On
the other hand, the number of VyzFxy-edges is 0(n2), since such an edge is
typically contained in n/6 + o(n) triangles whose third vertex is in Vxz, and
Claim 1 says that the number of triangles of this type is o(n3). However,

these statements contradict the equality d(Vyz, Vxy) —n2/72 + o(n2), and the
proof of Lemma 1 is complete. O

Let us return to the proof of the Theorems.

From now on, let d(Vx) = a, d(Vy) = b and d(Vz) =c. Turan’s theorem
implies that + 0(n2), since G does not contain Ji'4 as a subgraph.
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Then by the page number condition,

d(Vx, Vxy) + d(Vx,Vxz) + 2a = n2+ o(n2),

d(vx,Vxy) + d(Vxy,Vxz) = (A% 2)2n2+ o(n2),
and
diVi, CR) + d(Fxy,FX) = (fcd- 2) n2+ o(n2).
It follows that

d(Fx, Fxy), d(Vx, Txz) = ~a+ o{n2),
and
d(Ky, CX2) = — — —r1c2+ a+ o(n2).
Similarly,
d(Vy, Vxy),d(Vy, Vyz) = * = |n 2- b+ o(n2),
d(Fxy, Vyz) = — — —n2+ b+ 0(n2),
d(Vz,Vxz),d(V2,Wz) =~ n 2- c+ o(n2),
and

d(Vxz,Vyz) = — — —n2+c+o(n2).

Notice that a statement similar to Claim 1 can be shown about the
triangles in G. Let w GV{G) be an arbitrary vertex. By Lemma 1, N (w)
does not contain any triangle. On the other hand, the degree condition and
the page number condition imply that

d(N(w))=——" ——n2+ 0(n2),

d(N(w), V(G) - N(w))= +0(n2),
and so,
d{V(G) - N{w)) =2 T Ln2+ o(n2).
Note that the number of N(w)(V(G) —N (w))-edges in a triangle is 0 or
2, so by the page number condition, the number of triangles containing
N(w)(V(G) —iV(u;))-edges is re3+ o(n3). However, by the degree
condition and the page number condition, this is the total number of triangles
in G (apart from an error of 0(n3)). Thus, the number of triangles in V (G) —

—iV/(ti;) is o(n3). From now on, we refer to these results as to the triangle
condition.
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CLAIM 4. We may assume that o(n) is the number of vertices v £ Vxy
such that d(v,Vx) = ~n + o(n). Similarly, we may assume that o(n) is the

number of vertices VvE Vxy such that d(v,Vy) = ~n + o(n), and analogous
statements hold for vertices v £ Vxz and v £ Vyz.

Proof. Suppose that n is the order of magnitude of the number of
vertices v £ Vxy such that d(v, Vx) = + 0o(n), and so d(v, Vxz) = +
+ o(n) by the sum condition. Since G does not contain K4, the existence of
one v of this kind implies that a=d(Vx) = o(n2). For almost all neighbours
w £ Vx ofsuch a typical v, the number of triangles containing vw is d(v, Vyz)4~
-\-d(w, Vz) +o(n) by the triangle condition for x and z. Hence (apart from the
o(n) possible exceptions), the edge numbers d(w,Vz) for different vertices w
differ from each other by o(n), so, d{w, Vz) = jfc+ o(n) for almost all vertices
w £ VX because d(Vx,Vz) = n2+ o(n2). Thus, d{v, Wyz) = + o(n) for
typical such vertices v, and d(v, Vy) = ~ + o(n) because of the sum condition.

Let us fix such a typical vertex v for a while. Since Vy—N (v) and Vx are
joined to each other almost completely by the structure condition applied
on the edge vx, the number of edges from VAfliVAv) to Vx is 0(n2) because
d{Vvx,Vy) ="~ n 2+0(n2). On the other hand, the sum condition implies that

and Vz are joined to each other almost completely and the number
of edges from Vy—N (v) to Vz is o(n2).

The structure condition on vy implies that Vxz —N(v) and Vyz fl N(v)
are joined to each other almost completely. Since G does not contain K4
and so, the number of edges from Vxz DN(v) to Vx is 0(n2). Then, the sum
condition implies that VxzC\N(v) and Vxy are joined to each other almost
completely. It follows that the number of edges from LI2DIV(t)) to Vz is
o(n2), because if it is not the case, then such a typical edge is contained in

+ o(n) triangles with the third vertex in Vy and Vxy, a contradiction to
the page number condition. On the other hand, the structure condition on
the triangle vxy implies that d(Vxz - N(v),Vz)=" n 2+ 0(n2), and also by
applying the results just proved above, it follows that d(Vxz,Vz) = 9F"2+
+ o(n2). Thirdly, the degree condition, the page number condition and the
structure found so far imply that the degrees of almost all vertices in the
graph of the edges joining Vx and Vz are * + o(n)- This statement, the
triangle condition and the fact that the total number of triangles of type
VxVyVz is o(n3) imply that the number of triangles “sitting” on these gfrrc2+

+ 0(n2) edges is £{d(Vx,Vxy) +d(Vz,Vyz)) +o(n3 ="{"-n2- c+ |~ n 2+
+ 0(n3), which is equal to 2* 3" n3 + 0(n3) by the page number condition.
Thus, ¢c= 0o(n2), and now, the structure condition on the triangle xyz implies
that d(Vxz,Vz) = |* n 2+ 0o(n2), a contradiction to the inequality obtained

above, unless k =4. (The case k =4 is difficult again!)
From now on, we may assume that k = 4. In this case using the notation
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VI =Vyn N(v), VI =Vy—N(v), VI, =VWyznN(v), VIZ=Vyz-N (v), we have
seen that

\WWV'\AVIVAVIVAVjZ\=n/12 + o(n),
d(vx),d(Vz) = o(n2), d{W) =b<n2/144 + o(n2),
d(VjVz)=n2/72+ 0o(n2, d(Vj Vx)=o0(n2),
(VJ, V) =n2/72+ o(n2), d(Vj, Vz) =o0(n2),
d(w, Vz) = n/12 + o(n) for almost all w £ VX,
d(w, Vx) = n/12 + o(n) for almost all w £ Vz,

and
d(Vxz,W2) = n2/72 + o(n2).

The last equality and d(Vxz, Vyz) = n2/72 + o(n2) imply that d(Vxz, VJ2) =
= 0(n2). Applying the sum condition in N(y) on the vertices of Vyz, it fol-
lows that d(V2 Ty )= n2/72 + o(n2) and d(V2, = 0(n2). Since d(w, VX) —
=n/12 + o(n) for almost all w £ Vz, applying the triangle condition and the
page number condition for the VjzVz-edges, we obtain that d(u, Vxy) =n/ 12+
+ 0(n) for almost all u £ VJZ. Let us fix a typical vertex u £ VJZfor a moment.
Then, a typical edge from u to Vxy is contained in n/6 + o(n) triangles with
third vertices in Vz; so, d(VxynN(u),Vx) =o0(n2) because of the page num-
ber condition, and d(Vxy —N(u),VX) —n2/72 + o(n2) because d(Vx,Vxy) =
= n2/72 + o(n2). The same argument shows that almost all vertices u £ VJZ
have essentially the same neighbours in Vxy, and so for the sets Vxy = Vxy fl
DN (n) and Vjy—Vxy —N (u), we have

171,171 =n/12+ o(n),
d(Vjy,Vx) = n2/ 72+ o(n2), d(Vzy,Vx)=0(n2),
d(Vhy,VJ2) = r2/144 + o(n2), d(Vjy,Vjz) = o(n2).

Applying the sum condition to the vertices in Vxy, it follows that d(Vxy, Vxz) =
n2/72 + o(n2), and d(Vxy, Vxz) = o(n2).

Note that d(Vyz,VJ) —o(n2), since if not, then a typical VyzVJ-edge
is contained in n/3 + o(n) triangles (with third vertices in Vx or Vxz), a
contradiction to the page number condition. Similarly, d(Vxy, VJ) = o(n2).

Note that d(VJz,VJ) = o(n2), since if not, then a typical VJzVy-edge is
contained in n/6 + o(n) triangles (with third vertices in Vz), a contradiction
to the triangle condition if we have many edges of this kind. Similarly,
d(V*y,VJ) = o(n2).

Furthermore, d(Vyz, VJ) = o(n2) because of the A'4-freeness. This contra-
dicts d(Vyz,VWy) = n2172—b+0(n2), unless b= n2/144 + o(n2), and d(VJz,VJ) —
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n2/144 + o(n2). But then, it follows that d(Vyz,Vxy) —n2/72 + o(n2) be-
cause d(Vyz,Vxy) = n2/12 -fb+ o(n2). Also, d(Vxy, Vy) =n2/\AA+ o(n2), and
d(Vfy,Vy) = o(n2), because d(Vxy,Vy) = n2/72 —b+ o(n2) and the degree
condition.

Using d{V'y,Vxz) = n2/72 + o(n2), d(F"y,Vxz) = o(n2), d(Vxz,V>z) =
= n2/72 + o(n2), d(Vxz,Vyz)= o(n2) and the sum condition in iV(x) and
N (z) for the vertices in Vxz, we obtain that d(t, Vz), d(t, VX) =n/12 + o(n)
for almost all vertices t GVxz. The number of VAVAVj-triangles is o(n3) (tri-
angle condition), so, it is possible only if we can define some sets V Xz, Vxz =
=VWxz- V'z,V', V" =VX- V', V', V" =VZ- V] such that

\WWLAV"ZINWV'IV AWV X AVXAVT\ = n/12 + o(n),
d{V”" VZ),d{Vxz,Vz'),d{V"2, Vx),d{V"z, Vz),d(y'x,V?),d(V?, V') =
= n2/144 + o(n2),

and
d{Vv~" Vf),d(Vfz,Vz),d(VIz,V"),d{V"z,V"),d(K, V:),d(K\ Vz) = o(n2).
But then taking
Vn = V'y, V2=V’ V3= V> VIA= V", Vo = Vy, U2= VA,
N23=V" Va=V" \NZl=V" V2=V' Vaz=V'z VA=v",

we obtain the structure described in Theorem 2 with co= 0.
We obtained either a contradiction or the desired structure in all cases,

so the proof of the Claim is complete. O

Claim 5. The number of vertices v GVx with d(v,Vz) = + o(n) or
d(v, Vy) = + o(n) is o(n). Similar statements hold for the vertices v GVy
and v GVz.

Proof. Because of symmetry reasons, it is sufficient to prove that the
number of vertices v GVx with d(v,Vz)= ~n + o(n) is o(n). Suppose that
the number of such vertices v is of order of magnitude n. Applying the sum
condition in N(x) for v and that d(v,Vz)= "n + o(n), we have d(v, Vy) —
= o(n) for every such a v. The triangle condition implies that an edge vw for
a typical vertex v is contained in d(w,Vyz) + d(v,Vxy) + o(n) triangles, which
is equal to *n|o (n) by the page number condition. It implies that the
fluctuation of d(w, Vyz) is o(n) for the typical vertices w GV2, and since their
average is —3ck/2n + o(n), d(w, Vyz) = 3ck/2n +o(n) for almost
all vertices w GVz and d(v,Vxy) = *jrn -f 3ck/2n + o(n) for the considered
vertices »G Vx. Let «G Vxyr\N(v) be a typical vertex. The page number
condition on uv and the triangle condition imply that d(u, Wz) —*n-1-o (ii),
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and so, the sum condition in N(y) for u implies that d(u,Vy) =Jkn + °(n)»
a contradiction to Claim 4. O

Claim 6. For a vertex v GVxy, d(v,Vx) = o(n) holds if and only if
d(v,Vy)=o0(n). The similar statements are true for the vertices in Vxz and
Vyz u

P roof. Because of symmetry reasons, it is sufficient to prove only one
direction. Suppose that d{v, Vx) =o{n). The structure condition on yv im-
plies that VynN(v) and Vx —N(v) are joined to each other almost completely.
Applying Claim 5, it follows d(v, V) = o(n). O

Claims 4 and 6 say that for almost every vertex v GVxy (with excep-
tion of at most o(n) ones), either d(v, Vxz), d(v, Wz) = + o(n), and
d(v, Vx),d(v, W) —o(n) — let V* denote the set of these vertices v GVxy —
or d(v,Vxz),d(v,Vyz) » ~ n +o(n), d(v,Vx),d(v,Vy) " o(n), and d(v,Vx),
d(v,Vy) = jEn + o(n) — let Vxy denote the set of these vertices v G Vxy.
Similar statements and definitions apply for the vertices in Vxz and Vyz.

Craim 7. With exception of o(n) vertices, either d{v,Vvx)=" + o(n) or
d(v, W)=~ +o(n) for every vertex v GVx . Similar statements hold for the
vertices in Vxz and Vyz.

Proof. We prove the statement by contradiction. The structure con-
dition on vx and vy, resp., says that Vx HN (v) is joined to Vy—N (v) and
VynJV(t) isjoined to Vx —N(v) almost completely. Furthermore VXZHN (v)
is joined to Vyz- N(v) and VyzC\N(v) is joined to Vxz—N(v) almost com-
pletely, respectively. The first half of the statement implies that if either
d(v, vx) > + o(n) and d(v,Vy) <™ +o(n), or d(v,Vx) <” + o(n) and
d(v, Vy) > gr-fo(n), then d(Vx,Vy)> gpjn2+ o(n2), a contradiction.

The structure condition on vx and vy, resp., also says that the number
of edges joining VxniV(p) to VynN(v) and VxzC\N(v) to VyzGN (v) is o(n2).

We distinguish two cases according to the value of d{v,Vx) and d(v,Vy).

Case 1. p=d(v, Vx) > ffic+ o(n), q=d(v, Vy) > ffe + o(n).

First, suppose that d(Vxz,Vxfl N(v)) —o(n2). A typical edge wu con-
necting Vxz to Vx —N (v) is contained in at least p + o(n) triangles such
that the third vertex is in Vy; so, the page number condition implies that
d(w,Vyz) S —p A-0(n). Now, the sum condition in N(z) for w implies
that d(w,Vz) >p+ o(ra) > » + o(n). On the other hand, d(w,Vx) <j*n-g-\-
{-o(n) < 5+ o(n) because of the starting assumption, a contradiction that
d(Vx, Vz) is too large, just as in case of v.

Secondly, suppose that the order of magnitude of d(Vxz,VXr\N(v)) is n2.
Let us take a typical edge wu connecting Vxz to VxnN(v). As we have seen
above, then d(u,Vy) = j*n —p + o(n), and so d(u,Vx)=p + o(n), because
of the sum condition. Applying the structure condition for the triangle
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wxz, we get that there is no edge connecting Vxfl N(w) to VznN(w), i.e,
d(w,Vz)=po(n). Thus, for any vertex s £ Vx, especially for any vertex
s £ Vx —N(v), d(s, Vz) > jj*n —p + o(n), and for any vertex s £ Vx D N(v),
p+ o(n) edges lead from s to Vz because of the sum condition and since there
is no edge from s to Vyfl N(v). But then d(Vx,Vz)™ (*n —q)(j*n —p) +
+pg+o(n2) > glyn2+ o(n2), a contradiction.

Case 2. p =d(v,VX) < ™~ + 0o(n), q=d(v,Vy)<”™+o0(n).

Let us take the neighbours of the vertices w £ Vxz in Vx and Vz. The
structure condition on wx and wz, says that N(w)C\Vx is joined to Vz —
—N (w) and N(w) fl Vz is joined to Vx —N(w) almost completely. For a
typical vertex w £ Vxz, the triangle condition says that the number of edges
from IMit>) fl Fx to N(w) fl Vz is o(n2). However, it follows that — with
exception of o(n) vertices — the sets N (w) HVx for the vertices w GVxz are
either equal or disjoint to each other with an error of o(n) elements, (i.e., we
can define pairwise disjoint sets Vxz QVxz,Vx QVX,VZQVz (i=1,... ,j)
such that Vxz is joined to Vx and Vxz is joined to almost completely,
d(VzziVx ~ V*),d(V*z,Vz - VJ) = 0(n2), the sets V4z cover Vxz except o(n)
elements, and j = 0(1) because of the sizes of the pairwise disjoint sets Vx).
We distinguish two cases.

Case 2.1. j > 1

Let us take a typical edge wu from Vxz to Vx and apply the structure
condition on it. We obtain that N(w) DVyz is joined to Vxz —Vxz almost
completely, and so, N(w) 1 Vyz QN(t) for a typical vertex ts Vxz —Vxz. On
the other hand, taking a typical edge ts and using that j > 1, we obtain
that N(t) fl w2 QN(w), i.e., two typical vertices in Vxz are joined to the
same elements of Wz. Furthermore j > 1 implies that almost all elements
of Vxz are joined to the same elements of Vyz, i.e., to the elements of V*
by definition. By definition, Vxz - N(v) Q Vxz and VyzDN(v) is joined to
Vxz —N(v) almost completely for a typical vertex W so, Vyz f) N (v) CV*.
It follows that Vyz AN (v) 2 Vyz, because Vyz GN(v) = V*z (definition) with
an error o(n) and Vxz DN(v) = V*z holds, as well. But then d(Vxz,Vyz) >

A n2—pg+o(n2) > n2+ o(n2), a contradiction to d(Vxz, Vyz) =
[k-i){k-2)n2+¢c + 0™M2j < (fc-J)~-2)+1n24.0(n2).

Similar argument can be applied if Case 2.1 holds for Vyz.

Case 2.2. j —land we may assume that Vxz = Vxz and the analogouos
equality holds for Vyz, as well.

Then, there are sets Vx Q Vx, W QVy such that W is joined to Vxz and Wy
is joined to Vyz almost completely. Furthermore the number of additional
edges from Vx to Vxz and from Vy to Vyz is o(n2). Note that d(VxnN (v),VXZD
C\N(v)) = 0(n2), because of the triangle condition (v is typical!). On the other
hand, d(Vxfl N(v),Vxz- N(v)) = o(n2) because, if not, then a typical edge
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from VxdN(v) to Vx  N(v) is contained in at least jj*n—p-\-o(n) triangles
with their third vertex in Vz and in at least p +o(n) triangles with
their third vertices in Vyz, a contradiction to the page number condition.
Thus, VXQVX- N(v) and similarly VWwQVy —N(v).

For a typical vertex v E Vxy, Vxz QVxz C\N(v) and Vxz- N(v) QVxz (with
a possible error o(n)). Let us take a typical edge wu from Vxz —N(v) to VXx.
It is contained in p +o(n) triangles with their third vertices in FyfliV(i;) and
in —a-\- o(n) triangles with their third vertices in Wz fl N(v); so, only
o(n) edges lead from a typical vertex u E Vx to Vy —N (v). Hence, d(V”" Vy —
—N (u)) = 0o(n2) and a similar argument shows that d(Vy,Vx—N (t;)) = o(n2).
Suppose that d(Vx—N(v) —Vx,Vy- N(v) - Vy)” o(n2). Then a typical edge
wu from Vx —N(v) —Vx to W —N(v) —Vy is contained in o(n) triangles
with their third vertices either in Vxz or in Vyz and in at most »# —q+ o(n)
triangles with their third vertices in Vz, because d(w, Vy) >qg+ o(n) and the
sum condition. However, a typical edge is contained in o(n) triangles with
their third vertices in some other sets because of the triangle condition, so,
we obtained a contradiction to the page number condition. Thus, d(Vx —
—N (v),Vy—N(v)) = o0(n2) and d(VrfliVv(i;), PIiV(v)) = o(n2) because of
the triangle condition. Hence, d{Vx,Vy)=p(-"n —q) + q(-"n - p) + 0(n2) <
< +0(n2), a contradiction. The proof of Claim 7 is complete. O

Now, we return to the proof of the Theorems again.

So, there is a vertex v E Vxy such that either d(v,Vx)= " + o(n) or
d(v, Vy)— +o(n), and, as we have seen, Xf = VxfIN (v) is joined to YZ=
Vy—N(v) and Y* = Vyn TV(v) isjoined to X2 = VX—N(v) almosj; completely.
But d(Vx,Vy) = gfyn2+ o(n2) implies that the number of additional edges
from Vx to Wis o(n2). It follows that, for any other vertex wk Vxy, either
N (w) r\Vx=Xf and N (w) dVy=Yxzor N(w)C\Vx= Xf and N (w) DVy—YZ
hold with a possible error of o(n) vertices. Let Z\ and Z2 denote the vertices
w E Vxy of first and second type, respectively. Similarly, we can define the
sets X 1,X2,YX,YX,Zf,Z Y 1,Y2, Xy, X", Zy,Z" as well.

Case 1. The order of one of the 12 subsets defined in the sets Vx, Vy, Vz is
not ~ + o(n), say, \Z\\ =p< £ +o(n) and \Z\\ = jAn-p +o(n) >~ + o(n).

Then, by Claim 7, [ X*|, [X2]= + o(n), and the sum condition implies
that |Zf|, |Zf|, IY™, [YX|=  + o(n) and that d(u,Vy) = - p+o(n) for
almost all vertices uEX% and d{u,Vy) —p-\-o(n) for almost all vertices uE
E X\. Butthen, |YZ] = p+o{n), |Vj21= —p+o(n), and Xx=X\,X% = X2
(last two with a possible error o(rc)).

Now, d(Vxz,Vx) = *-n2- a+o(n2) = *(lYxIl +\Y2)) + o(n2), and so,
[Yi|+ |Y2| = Ap-+ o(n) and \V2A=~p + o(n). Similar argument shows
that IV¥l="4-0(71) and that |[Vyzl=" + o(n) = *p + o(n), which implies
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6- c=0(n2), as well. All these imply that \WV*A, \Wx\\V*2AA < + o(n).

Now, we show that |Fj| = o(n). (IZ2l = o(n) can be shown similarly.)
Suppose not and take a typical FjZf-edge uw. The sum condition implies
d(u,Vyz) = N*-n —po(n) and the triangle condition implies d(w,Vyz) *
ANp+o(n). So if, say, Z*, \Z* G Z\\" o(n), then |Xi| * p+ o(n), and a
typical vertex t GZf —Z\ is not joined to the vertices in Vz—Z2m Thus,
d(f, vxz), Vg » —p+o(n) * o(n), because of the page number condition.
But then, as we have seen in Case 2.1 of the proof of Claim 7, there is no
edge from Vxz to V', contradicting that *j*n —p + o(n) edges connect a
typical vertex of Fj to Wz.

Now, we show that d(Y2,Vyz) = o(n2). (d(Z\,V'2 = o(n2) can be shown
similarly.) Suppose not. Then d(u, Vz) = —p + o(n) and d(w, Vz)= +
-fo(n) for a typical edge uw from F2 to V'\ so, this edge is contained in

-p +o(n) triangles with their third vertices in Vz, a contradiction to the
triangle condition.

These facts imply that d(u,Vyz) = [V*z\+ o(n) for a typical vertex u GF2.

On the other hand, d(u, Wyz) = *n+j»+o0(u) because of the sum condition,
which is a contradiction unless k —4 and |Vy2| = p + o(n).

Now, let us take typical vertices u € Z\ and v GN(u) fIF/. The triangle
condition implies that the third vertex of almost all triangles containing uv
is in VX, Wy or Vz. The number of the triangles of these types is n/12 -
-fo(n), |[V?y| and o(n), respectively. But, then |Vy|, |VEy| = re/12 + o(n).
Similarly, \VXA, \V*2 = n/12 + o(n) and by the way, a=r? /144 = o(n2). Thus
d(Xy), d(X]) = o(n2) because of the triangle condition; so, it follows that
is joined to X\ almost completely. Also d(Vxy,Vxz) = 3n2/144 + o(n2), and
the structure proved so far imply that d(Vxz,Vxy) =o(n?2).

Note that d(Z\, FZ) = o(n2), since if not true, then a typical edge of this
type is contained in o(n) triangles with their third vertices in Vz, Vy or Vyz.
The structure proved so far says that o(n) triangles have their third vertex
in the other sets, a contradiction to the page number condition. However,
it follows that one of the sets Zf and Zf meets Z\ in o(n) elements, say,
\Zf fl Zj 1= o(n), and then IF*flF2| = o(n) holds, as well. Because of p =
= 12c/n+ o(n), d(Vz), d(Vy) =pn/12-\-o(n2). But, the triangle condition says
that the number of edges in one of the defined sets is 0(n2), so, it follows that
Zf is joined to Z\ and F1 is joined to FZ almost completely. Finally, the
degree condition for the vertices in Zf implies that |ATi| = n/12 —p +0(n),
and so IX2l = n/12 + o(n). The structure of G is described; it is exactly the
structure defined in Theorem 2 with co=p.

Case 2. Each of the 12 subsets defined in the sets W, W, Vz has ~ + o(n)
elements.

Like in Case 1, we can determine the orders of the sets V*y V*z and
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Vyz. Now, we get stronger symmetry than b—c = o(n2), we obtain that
IVAT\V ; 2\ \Vy2\="  + o(n).

Case 2.1. k>4

Suppose that |Yi|, |Y2| 770(n). Then, as we have seen in Case 2.1 of the
proof of Claim 7, there is no edge from Vxz to Vyz, contradicting that
+ o(n) edges connect a typical vertex of Vxz to Vyz. Thus, without loss of
generality, we may assume that [V21= °(7) 1an<® similarly |X2|,\Z2\= o(n).
The number of edges from Xi to Y\ is not o(n), a typical edge of this type
is contained in o(n) triangles with their third vertices in Vz because of the
triangle condition, so |ZfnZ™\ =o(n). Similarly, |XffIXj |, IY*MIY” = o(n),
(i.e., the sets Vx,Vy, Vz are cut into two parts by the two partitions essentially
in the same way).

A typical edge uv from Z\ to X is contained in A+ 0o(n) tri-
angles by the triangle condition and the structure proved so far. Thus,
WA\, Wxa\i Wyz\ = + °(n) = 31+ °(n) by the Page number condition. Ap-
plying the degree condition for the vertices in Vx,Vy,Vz and that, say, X\
does not contain edges by the triangle condition, we obtain that X\ is joined
to X {, Yjx is joined to and Z\ is joined to Zf almost completely.

Take a typical edge uv from Wz to V'. The number of triangles con-
taining uv with their third vertices in V&, Vy or Vxy and in Vxy is + o(n)
and “pn + o(n), respectively. Because of the sum condition, it is a con-
tradiction, unless N(u)nVxy and N(v)r\Vxy are as disjoint as possible, i.e.,
their union covers Vxy with a possible error of o(n) vertices. Repeating it
for the other neighbours of u in Wz, we obtain that Vxy —N (u) is joined to
WznN(u) almost completely and that d(Vxy —N(u),Vyz - N(u)) = o(n2).
Now, repeating it for the vertices in Vyz —N (u) and for their neighbours
in Vxy, we obtain that there is a similar subset of Wiz with ~ -f o(n) el-
ements such that the number of edges connecting this set to Vxy —N (u)
or Wz —N(u) is o(n2). Continuing, we can define pairwise disjoint subsets
VEy, ,Vk~3,Vxz,... ,Vk~3 and W, ..., Vy~3 of » +0{n) elements of the
sets Vxyl Vxz and Wz, respectively, such that two subsets with different sub-
scripts are joined to each other almost completely if their superscripts are
different, and, as well are joined to each other with o(n2) edges if their su-
perscripts are equal. It is easy to see that we obtained the graph described
in Theorem 3.

Case 2.2. k=4

First, we show that a = n2/144 + o(rc2). Suppose not, i.e., that a<
<n2/144 + o(n2). (Inequality in other direction cannot hold by Turan’s the-
orem, since Vxis triangle free by Lemma 1.) Then |YXy|, \V*2\, \Wz\= 12a/n+
+ 0(n) <n/12 +o(n). For a typical vertex v £ Vxy, d(v,Vxz) =n/12 + o(n)
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because of the sum condition, and so, d(v,Vxz) >o(n) and d(Vxy,Vxz) >
>0(n2). The number of triangles containing a typical edge uv from Vxy to
Vxz with their third vertices in Vz, Vy and Vyz is n/12 + o(n), ra/12 -f o(n)
and \Wz\ = 12a/n + o(n), respectively, and so \Vxy\,\Vxz\,\Vyz\ = o(n) and
a=o0(n2) by the page number condition.

Now, let us take a typical edge uv from Vxy to Vxz, which leads, say,
from Z\ to Y\. The triangle condition implies that the number of triangles
containing uv with their third vertices in Vx is o(n), so, \X\C\X”™\ = o(n).
Thus, Vx is divided into two parts in the same way by the two partition, and
the analogous statements hold for Vy and Vz, as well. On the other hand, we
already have n/6 + o(n) triangles containing a typical YxYy-edge with their
third vertices in Vxz or Wz, so the number of triangles containing a typical
xVy-edge with their third vertices in Vz is o(n). Without loss of generality,
we may assume that X\ = Xf, X| = X%, Y* = YN Y—YXZ\ = Z*, and

= 2% with a possible error of o(n) vertices. Also two sets of different
capitals are joined to each other almost completely if their subscripts are
different and are joined to each other with o(n2) edges if their subscripts
are equal. Furthermore, the triangle condition implies that two sets from
among X\, X2,Y\, Y2, 2\, Z2 are joined to each other with o(n2) edges if
their subscripts are equal. But then, the number of triangles containing a
typical XjX”-edge or A*Xjf-edge is o(n), a contradiction.

Hence, a = n2/144 + o(n2) and V|, V"2, |y*2 = n/12 + o(n). Fora
typical vertex u £ Vxy, d(u,Vxz) =o(n); so, d(Vxy,Vxz) = o(n2) and similarly,
d(Viy,V*z),d(Vi2,V*2) = o(n2).

For a typical Xfl*-edge and a typical Y~Xf-edge, the number of trian-
gles containing one of these edges with their third vertices in Vxz or Vyz is
only |XjIT X2l + |Yi| + [Y21+ o(n) —n/6T o(n), and the number of triangles
containing one of these edges with their third vertices in VX, Vy or Vxy is
o(n). Thus, the number of triangles containing one of these edges with their
third vertices in Vz is n/6 + o(n).

But then, the six subsets of n/12 + o(n) elements in VxUVyL)Vz can be
divided into two families of three subsets such that any two subsets in the
same family is joined to each other almost completely. Thus e.g., the number
of triangles containing a typical Y~Xf-edge with their third vertices in Vz is
n/12 + o(n), and with their third vertices in Vxz or Wz is |X,j + |Y,| + o(n)
for some i and j. So, the orders of the sets X\ and X2 are equal to the orders
of the sets Yi and Y2 in some pairing with a possible error o(n). But then, it
is easily seen that the structure of G is the structure described in Theorem 2
with co= 12|Xi|/n allowing cO= 0 and c0=1, as well.

The proof of Theorem 2 and the case | —3 of Theorem 3 is complete.

O

Proof of case !>3 of Theorem 3. The case 1= 3 was proved in
Lemma 1 above. We prove the general case by induction on Z Let G be a
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graph satisfying the conditions of Theorem 3.

The condition p i p1> py (i.e, k>2- 2Z+ 1) implies that the degree of
every vertex is greater than p fnisoevery vertex and every edge is contained
in a clique of Zvertices.

Take an arbitrary clique XiX2...x/. Let G\ denote the subgraph of
G induced by N(xi) and let &,... ,di denote the degrees of the vertices
X2,. .. ,Xi in Gi, respectively. Every book in G has at most p p n + o(n)
and so, dt<M pn +o(n) (i=2,...,/). Now, let us estimate the total
number D of the triangles containing any edge xtXj 2<i<j "™ 2.

The number of triangles containing xxx3 with their third vertices not in
N (xi) is at least <Z(x) - &+ d(xj) - d3- (n—d(xi)), so, the total number
D\ of triangles of this type is at least

1 _L 11 _ 1\
(Z-2)., dXi)~(“2.S di~( 2
i=2 i=2 ' '

On the other hand, if v £ N (xi) is the neighbour of r(v) of the vertices
X2,... ,Xi, then it is contained in (Ti*) counted triangles. By adding up
(r~) for all vertices v £ N (x\)xwe get the number D - D\ of the triangles
containing x;Xj with their third vertices in N (xi). However, the sum of
the r(t>)’s is which is at most n+ o(n). Deleting the
edge x\v from G for a vertex v £ iV(xj), the two estimates above (together)

decrease by (;~J)+ (r*) — - 2) > 0. And if to increase dx, we add an edge
XV (i> 1) to G for a vertex v £ iV(xi) —iV(xt), then the two estimates
above (together) decrease by (Z—2) —(r —1), which is positive if r(v) »
N Z—2. On the other hand, if (Z(x)= pp p-"n+ °{n) (*= Ireee?20 a<"

H=pppln+o(n) (i=2,...,2, then we have the weakest lower bound
for D if the r(p)’s are as equal as possible, i.e., r(x) = Z 2for ~ Hki" +
+ o(n) and r(v) —I—3 for ~ |~ -~1ii + o(n) vertices vE£ N(x\). Then, we
obtain that

D > (1 —2)(I —1)

kl
(fc-1)(/-1) (fe-Z+1)(Z-1) JzZ —2
H i
a " Z "
L Z—2)@zZz—1) 1-3 Z- 1\ (fc-2)(z-2)
= n+ o(n).
- nl 2 J+o(7)= " (n)
However, we assumed that every edge is contained in » dl ng.0(n)

triangles, so, this estimate and all the estimates used are sharp apart from a
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possible error o(n). Thus, ci(x,) =" ~ + o(n) *=1,2,... ,2,and
since every vertex is contained in a clique of Zvertices, the degree of every
vertex in G is A n-f-o(n). Also, it was'“sharp” when we assumed that
the r(it)’s are as equal as possible. (Actually, we use only that the number
of vertices v with r(v) = /—1is o(n).) Then, we have d2 = ik~2W~2)n + o(n),
since it is of order of magnitude n of course, and if not, then we could find
constant times n nonneighbours of x2 such that joining x2 to these vertices,
the estimate decreases by constant times n, but the estimate holds for the
resulting degrees, as well, i.e., some edge X{Xj is contained in too many
triangles.

The degree of every vertex in G\ is (k~2&f~2*n+o(n). On the other hand,

the estimate for D\ implies that every edge in is contained in at least
57+ °{n) triangles such that the third vertex is not in N(x\). Thus,
every book in G\ has at most (k~2W~2n — n-fo(n) —%~3"~3*n + o(n)

pages. But then, we can apply the induction hypothesis for G\, i.e., G\ is
essentially the appropriate (k- 1) x —I)-partite graph. It holds for the
neighbourhood of any vertex, since X\ was chosen arbitrarily.

From here, it is routine (but not too short) to prove that G has the
desired structure. O

Remark. The condition >pf (i.e, k>1l2- 2/+ 1) in Theo-
rem 3 cannot be eliminated, since then the proof above does not work, the
conditions do not imply that the graph contains a clique of Zvertices, and
counterexamples can be constructed on the base of it. Consider the case
k—l2-21+1. Then the degree condition says that the degree of every
vertex is at least + °(n)i allowing that G is the Z—1)-partite Tdran

graph in which case every edge is contained in jz*n+o(n) < *ppn-)-o(n)
triangles. For other small k's, the counterexamples are not so nice, but can
be constructed similarly.
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DISCREPANCY OF TREES

P. ERDOS, Z FUREDI, M. LOEBL and V. T. SOS

Abstract

We consider the question how large monochromatic part of a tree is present in any
coloring of edges of a complete graph by two colors. It is proved that there exists a constant
¢ > 0 such that for any given tree Tn on n vertices with maximum degree A the following
holds. An arbitrary coloring of the edges of Kn with 2 colors contains a copy of Tn such
that at least (n —I)/2 + ¢(n —1 —A) edges of Tn get the same color.

1. Introduction, results

Discrepancy theory has originated from number theory. In the last two
decades this subject has developed into an elaborate theory related also to ge-
ometry, probability theory, ergodic theory, computer science, combinatorics.
The combinatorial setting of these problems proved to be a succesful ap-
proach. See the book of Beck and Chen [2], the chapter from the Handbook
of Combinatorics [3], or [8].

One of the basic problems in combinatorial discrepancy theory is the
following: Let S ={zi,£2, e++, Xt) be a finite set and = {A\,... ,Am} be
a family of subsets of 5. The goal is

(*) to find a partition Si )S? =S, 5i P52 = 0 which splits each of the

set in the family  as equally as possible.

A partition of 5 can be given by a function tp:S —{1,2). The discrep-
ancy of 7/ is defined by

T>(7i) := mvln K]gr)f lip 1\%) D»dll—?- .

This measures, in supremum norm, how well the set 5 can be partitioned in
the sense of (*).

For a given (S,7i) we want to determine or estimate V(7i). A large
number of classical theorems in number theory, in geometry, in combinatorics
can be formulated in this language. Here we consider the special case when
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Key words and phrases. Discrepancy, Ramsey theory, extremal graphs, edge coloring,
trees.
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the underlying set 5 is the edge set, E(Kn), of a complete graph and the
family R is given by isomorphic copies of a given graph.

Let L be an arbitrary fixed graph. Our goal is to two-color the edges of
Kn so that in each subgraph L* isomorphic to L the edge-set E(L*) is two-
colored as equally as possible. Let the two-coloring be given by :E(Kn)—
-*{1,2}. The discrepancy of L is defined by

Vn{L,(f):= max [~ _L()NE(i*)]
L'~L

Vn(L) := min Tn(L, .

While Ramsey theory asks how large n should be so that any two-coloring of
edges of Kn contains a monochromatic copy of a given graph L, discrepancy
measures how large part of a graph L is present in any two-coloring. The
case L = Kt was investigated by Erdds and Spencer [5].

In this paper we consider the case when L is a tree Tn on n vertices. Put
V(Tn) = Vn{Tn).

Let Sn and Pn denote the star and the path on n vertices, respectively.
It is obvious, that

o forn=4k+ 1,
(1) V{Sn) = < 1/2 for n= 2k,
{1 forn=Ak+ 3.

It is also easy to see that
V(Pn)=\n +0{1).

This follows from a theorem of Gerencsér and Gyarfas [6] stating
(2) A(P*) = L(3*+1)/2],

where R(L) denotes the Ramsey number of the graph L.

In general, R(L\,L2) denotes the minimum integer n such that the fol-
lowing holds: for each coloring of the edge-set of E (K n) with the colors {1,2}
one can find either a copy of L\ of color 1or a copy of L2 consisting of edges
of color 2; finally R(L) := R(L, L).

Which are the basic relevant properties of Tn determining whether V(Tn)
is small or large?

Let A(L) denote the maximal degree in L. A set C QV(L) is called a
vertex cover if each edge e € E(L) has at least one endpoint in C. Let r(Ln)
denote the minimum size of a vertex cover.

Here we prove that the order of magnitude of V(Tn) depends on A(Tn)
and r(Tn).



DISCREPANCY OF TREES 49

T heorem 1.1. Suppose that A(Tn)~ 0.8n. Then V{Tn) > (n—1—A)/6.

For even n considering a two-coloring of E{Kn) such that every color
induces an n/2-regular graph, one sees that V(Tn) * n —1—A.

Theorem 1.2. Suppose n > m0O and A(Tn) < 0.8n. Then V(Tn) >
>nl0~3.

Here the value of m0 comes from Corollary 2.8.
The next theorem describes a class of trees having discrepancies as large
as possible, n/2 —o(n) (if max(A(T,,), r(T,,)) = o(n)).

Theorem 1.3. If A(Tn),r(Tn)sk<n/8, then V{Tn) > (n/2) - 4k.

Color red a complete subgraph of size n —{k/2) and blue the rest of the
edges of Kn. Then the largest monochromatic part of a tree with r(T) —k
does not have more than n —(k/2) edges. Hence T>(Tn) * n/2 —k/2.

2. Conjectures, problems, lemmata

The proofs of the theorems above are closely related to extremal and
Ramsey problems on trees. Here a new type of extremal problems arose,
where the lower bound on the number of edges (in Tarén type problems) is
replaced by a lower bound on the number of vertices with high degrees.

Conjecture 2.1 (n/2-n/2-n/2 conjecture). Let G be a graph with n
vertices and let at least n/2 of them have degree at least n/2. Then G contains
any tree on at most n/2 vertices.

M. Ajtai, J. Komlés and E. Szemerédi [1] proved the following approxi-
mate version.

T heorem 2.2 (Ajtai, Komlés and Szemerédi [1]). For every n > 0 there
is a threshold Hg= no (i7) such that the following statement holds for all n >

no: if G is a graph on n vertices, and at least (14-77))) vertices have
degrees at least (14-77)7), then G contains, as subgraphs, all trees with at
most j edges.

J. Komlés and V. T. So6s extended Conjecture 2.1 for trees of any size.

Conjecture 2.3. IfG is agraph on n vertices and more than n/2 ver-
tices have degrees greater than or equal to k, then G contains, as subgraphs,
all trees with k edges.

J. Komlés announced proving an approximate version of Conjecture 2.3,
too.
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T heorem 2.4 (Komlés [7]). For every 1j> 0 there is a threshold no =
= 770(77) such that the following statement holds for all n ~ no-- if G is a graph
on n vertices and at least (1 + 77)" vertices have degrees at least (I + rj)k then
G contains all trees with at most k edges.

A weaker form of Theorem 2.4 which we will need follows analogously to
the proof of Theorem 2.2 [1].

T heorem 2.5. For every 7> 0 there is a threshold no = 7/(77) such that
the following statement holds for all e” 0 and n'tno: if G is a graph on n
vertices and at least (1+ 77)* vertices have degrees at least (1 —£+ 77)" then
G contains all trees with at most (1 —3£)" edges.

Sketch of proof of T heorem 2.5. The proof goes in the same way
as the proof of Theorem 2.2 in [1], with only one change: a combinatorial
Lemma 6 of [1] is replaced by a lemma below proving a weaker property
(from weaker assumptions) than the original Lemma 6.

Lemma 2.6. Let H be a graph on N vertices, and let U be the set of
vertices of degree greater than (1 —77Y~ 7/|T|>y + | then there are two
vertices X, y(zU and a (partial) matching M in H such that

X and y are adjacent,

M covers at least (1 —377)y —1 neighbors of both x and vy.

Proof of Lemma 2.6. First observe that at least two vertices of U
are joined by an edge of H. We will use the Gallai-Edmonds decomposition
(GED). Let A be the set of vertices of H omitted by at least one maximum
matching of H, let B the set of vertices of H —A which have neighbors in
A and let C be the set of remaining vertices of H. GED Theorem asserts
that the connectivity components of H —A are hypomatchable (a graph G
is called hypomatchable if G —v has a perfect matching for each vertex v
of G), the connectivity components of H —C have a perfect matching and
any maximum matching of H covers completely B from A.

If a component of H —B has two adjacent vertices of U then Lemma 2.6
follows. Hence U forms an independent set in each component of H —B.

Let g denote the size of a maximum independent set. However, a(C) <
for any hypomatchable C with more than one vertex and a(C) <~ for any

C with a perfect matching. Since \U\ > , there is a hypomatchable
component C of H —B consisting of exactly one vertex which moreover
belongs to U. Hence |P| > (1 —77)y and by GED Theorem H has a matching
which covers at least 71—7777 vertices.

Hence the Lemma 2.6 is proved and Theorem 2.5 then follows analogously
as Theorem 2.2 in [1], O

Using Theorem 2.5, it is not difficult to prove a Ramsey type result,
which will provide a basic tool in further considerations.
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Theorem 2.7. For every e > 0 there is a threshold mo = mo(e) such that
the following statement holds for all n ~ mo-" if G is a graph on n vertices
and T is a tree on at most (1 —£)f vertices, then G or complement of G
contains T .

Proof. Let mo = (I —|e) 'no(|), where nO(-) comes from Theo-
rem 2.5. Let 7= 1 and e'=|. If G satisfies the assumptions of Theorem 2.5
for s' and » then Theorem 2.7 follows, otherwise complement of G has at
least (1 —t)j vertices of degree at least n —(1 —e'+ m)~ = j(I + &' —m).
Denote by 5 the set of these vertices. Let G' be a graph obtained from G by
deleting 2pn vertices from V(G) —S. M (G')| = n'—(1 —77)711. Now, at least
5| > (L —1)~> (1 + m)y vertices of G' have degree at least (1 + e'—54)| >
> (1 —s"+m)y . Since n' >710(77) we may apply Theorem 2.5 to G' and get
that G' and hence also G has all trees on (1 —e)” vertices. a

We will use only the following weaker version.

COROLLARY 2.8. For n > m0 the following holds. Every tree on at most
(2 —10_3)n vertices is contained in either Gn or in Gn.

Theorem 2.7 states that R(Tk) <2k + o(k) as k 00. Here we formulate
the

CONJECTURE 2.9. Let Ta and T), be trees on a and b vertices, respec-
tively, and let G be a graph on ab—2 vertices. Then either G contains Ta
or G contains Tf,. Especially, R(Tk) * 2k —2.

We think that even more is true.

Conjecture 2.10. There is a ¢c> 0 such that R(Tk) < (2- c)k + cA.

We conclude this section by an easy observation.

Lemma 2.11. Let Ma be a star-forest on a > 2 vertices and consider an
arbitrary two-coloring of the complete graph, E(Kn) = E(G\) UE(Gf)" If
G\ does not contain a monochromatic copy of Ma then there is a subset A Q

QV (Kn) such that every vertex in A has more than n—a Gz2-neighbors in A.
Consequently, R(Ma,Th) <a+ b—2.

Proof. If M consists of only one star, then the statement is trivial with
A =V(Kn). otherwise, one can use induction on the number of stars in M.
If the degree of each vertex of the subgraph of G2 induced on A is at
least n —a+ 1, then G2 has every tree on n —a-\-2 vertices. O

3. The case of large maximum degree

In this section we prove Theorem 1.1. Consider an arbitrary two coloring,
<7 of the edge-set of the complete graph using the colors {1,2}. Let T be
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an n vertex tree with A(T) > 0.8n. Suppose, on the contrary, that Vv(T) =
=:x < (n—1—A)/6. Then x < (c- 1)/30. Let 5i be a monochromatic
star of Kn of maximum number of vertices. Denote its vertex set by A\,
let A2 := V(Kn)—A\, and |Ai| —1= (n—I)/2 + m. Here m ~ x. We may
suppose that the edges of S are colored by the color 1.

Let M be the forest having (n—1- A) edges obtained from T by deleting
the edges adjacent to a vertex of maximum degree. M has a subforest
consisting of vertex disjoint stars and containing at least half of its edges.
Let M\, M2 be star-forests contained in M of sizes \E{M\)\= x —m + 1 and
\E(M2\ —3x —m + 1. As the vertex of maximum degree of T is adjacent
to at least 0.6(n—1) vertices of degree 1, T contains a vertex-disjoint copy
of a star T, and the star-forest M, such that their total number of edges is
(n—I1)/2 + x+ 1 (This is, indeed, a special case of Lemma 4.1.)

There is no monochromatic copy of M\ in A2z in color 1, otherwise to-
gether with Si it would form a too large monochromatic part of a copy of T.
Hence Lemma 2.11 implies that there exists an A2 QA2 such that every de-
gree in color 2 in A2 is at least |A2\- 2(x —m + 1) + 1. As the maximum
degree in color 2 is at most |Ai| —1 we obtain that every vertex of A2 is
joined to at most 2x + \ vertices from A\ using edges of color 2.

We also obtain that there is a star S2 of at least |A2\—2(x —m) + 1 edges
of color 2 contained in A2. Thus, repeating the previous argument, A\ does
not contain a copy of M2 of color 2. Hence Lemma 2.11 implies that there
exists an AXQA\ such that every vertex in A\ has degree in color 1 at least
IAi] —2(3x —m + 1) + 1. We obtain that every vertex of Alx is joined to at
most (6x —2m) vertices of A2 using edges of color 1

Altogether, considering the complete bipartite graph with parts A'x and
A2 we get that

2x+ 1+ (6x —2m) > min(1A\ |, |A2l) » (n—)/2 + 1+ m —(6x —2m -f 1) + 1.

This yields x > (n —1)/28, a contradiction. O

4, How to cut a tree

In this section we collect some technical lemmata about tree decomposi-
tions we are going to use in the next section for the proof of our main result,
Theorem 1.2. As we are providing an asymptotic only, for simplicity, from
now on in this and the next sections, we suppose that n is even.

Lemma 4.1. Let T be a tree on n vertices and let A(T) < 0.8n. Then
there is a subtree T' on n/2 vertices and a subgraph M of T such that the
following properties hold.

(1) M is star-forest of at least (n —1)/16 edges;

(2) M is vertex-disjoint to T".
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Proof. Ifthere is a cut edge, e, of T such that the deletion of e results
two trees on n/2-n/2 vertices, then we are done. Otherwise, T has a (unique)
vertex, v with the following property: considering the edges vv\, W2, ... ,vvt
adjacent to v and the subtrees Tj,... ,2), obtained after deleting all of these
edges @& Tj, u, €Tt), s, = |P(T,)|, we get that 42~ ~ <n/2, (and,
of course, §{=n —1). We have that t» 3. Let j be defined by

1+ Si+...+Sj-1<n/2<1+Si+..+85j

Here j <t (because Sj <n/2). Then T' can be any subtree of i;+ Ti+.. .+Tj
on n/2 vertices. Define M' as the forest Tj+1+ .. .+ Tt. We claim that M’
has at least (n —I)/8 edges. Indeed, if Sj= 1, then T' is a star and M' has
at least n —1—A edges. Otherwise, for Sj #2 we have that

\E{M)I" A (s ,-1)>7(5,72).

*>] i>j

Here si > (n —I)/4, because otherwise Sj > (n —I)/4 follows, and this
again implies (n—)/4 < §j ~ Sj+i. Finally, every forest contains a star-forest
consisting of at least half of its edges, so there is an M CM" of size at least
(n-1)/16. O

Considering the decomposition, v+ Ti -f eee+ Tj_i, v+ Tj, v+ 2j+1 +
+ eo-+ Tt in the proof of Lemma 4.1 we obtain the following statement.

Lemma 4.2. The edge set of an arbitrary tree T can be partitioned into
at most 3 trees each of sizes at most |P(T)|/2.

Let W be the set of all neighbors of leaves of T. For each w 6 W choose
a neighboring vertex of degree 1, we get the set W , \WA = \W'\. Applying
Lemma 4.2 for the tree T —W one gets the following

Corottary 4.3. T—W has asubtree T' on j vertices, which contains
at least M|W/| vertices ofW.
Let P be the set of pendant edges. Deleting deg(x) —2 edges from each

vertex x of degree at least 3 one gets a subforest which is a path-forest, i.e.,
we obtain the following

Lemma 4.4. Tn has a subforest T' of at least n —P| edges consisting of
vertex-disjoint paths, edges and isolated vertices.

5. Proof of Theorem 1.2

Let n >m0, and let T be a tree on n vertices satisfying A(T) < 0.8n. Let
ip be a two-coloring of the edges of Kn, and suppose, on the contrary, that
™V{T) <n/258 =: /.
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Craim 5.1. The vertices of Kn may be partitioned by V{Kn) —A1UA2,
|AX| = |A2|= f so that both graphs

Gi —{e C A{:e has color /}, z=1,2

contain all trees on f —8/ vertices. Moreover, there are sets Bt Q At such
that the minimum degree of the restriction of Gi to Bt is at least n —8L

Proof. Let T[ be a subtree on | - I vertices provided by Lemma 4.1.
Let V2 be a subtree of T[ of n/2 —3/ edges. Also let Mi and M2 be star-forest
contained in T vertex-disjoint to T[ and T2, respectively, of sizes \E(M\) \=
=21, \E(M2\ —4/.

We use Corollary 2.8 to find a monochromatic copy of T[, say color 1
Let A\ be formed by the vertices of this copy of T[. There is no copy of
of color 1 vertex disjoint to A\, otherwise we obtain Vv(T) ~ . By Lemma
2.11 we have that V(Kn) —A\ contains a copy of T2 of color 2. Then define
the sets A\, A2 such that V(Tf) QAt, |Aj=n/2, AAUA2—V(Kn). The

set At does not contain a copy of M3_, of color 3—i. Hence Lemma 2.11
yields that At contains a set B{ satisfying the requirements and B, contains
all trees of color i of sizes at most n/2 —SI. O

To finish the proof of Theorem 1.2 we distinguish three cases.

1 \W\ ~ 54/, where W is the set of all neighbors of leaves of T. By
Corollary 4.3 there is a subtree T' on ” vertices and a matching M such
that each edge of M intersects T' in one vertex and |M| > 18/. In each At,
i = 1,2 take a copy of T[ with at least f —8/ edges of color i. Between
(MnT[)n4, *= 1,2 there must be a monochromatic matching of at least
9/ edges. This together with the corresponding copy of T' has at least j +/
edges of the same color. This finishes Case 1

2. |P| < nld —(3/2)/, where P is the set of pendant edges. By Lemma
4.4, T contains a path-forest, T', of at least n —|P| edges. We apply (2) that
Kn contains a monochromatic path, H, of at least (2/3)(n—1) edges. We
can cover at least 2/3 of the edges of T' by H and conclude that T has a
monochromatic part of at least n/2 + / edges. This finishes Case 2.

3. If neither Case 1 nor Case 2 take place then let T' be a subtree of
{n/2) —\W\ —81 edges on (n/2) —8/ vertices obtained from T by deleting
edges in the following 3 steps. Let P' be a set of (n/4) —(3/2)/ pendant
edges, delete these from T. Second, delete \WA —1 edges such that the rest
of the tree consists of \W\ components each component having exactly one
vertex from W. Finally, trim leaves off these components to get the desired
size such that we never cut off a vertex of W .

W ithout loss of generality we may assume that A\ has a set N of *
vertices such that each of them is incident with at least j edges of color 1
going to A2. Fix a copy of T' in B\ such that the vertices of W all come
from B\ DN . The edges of P' can be added to T' from the color 1 edges
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between A\ and A2- We found a subgraph of T with at least » —63.5/ edges
of color 1. This finishes Case 3, thus Theorem 1.2 is proved.

6. Proof of Theorem 1.3

Let T be a tree on n vertices and consider an arbitrary two-coloring of the
edges of K n using colors red and blue. We claim that Kn contains a subforest
of T of at least n —4k edges of the same color, consisting of vertex-disjoint
stars.

Let T* be a maximum star-forest of T. T* has at least n —r edges. Let
V be a maximum monochromatic subgraph of T*. If T' has at least n —4k
edges we are done. In the rest of the proof we assume that T' has less than
n —3k vertices.

Let us assume that the color of T' is red. Let x be a vertex of T' of
degree 1. There are less than k red edges going from x to vertices out of T’
in T, otherwise T' may be improved by replacing the edge incident with x by
the red star of k edges rooted in X, whose leaves do not belong to T'. This
new system of red stars contains a subgraph of T* which is bigger than T".
Similar argument shows that red stars of Kn —V(T1 have at most (k —1)
edges. Let W=V (Kn)—V(T") and let W —W\ UW2 be a partition of W
such that |Wj| = 3k. We will construct a big blue subgraph of T*. Its stars
will be rooted in W\ and leaves will be in V(Kn)—W\. Let T" denote the
current part of this blue subgraph which we have already constructed. We
enlarge T" as follows. If there are at least 2k vertices of M —W2 U {j; j is
a vertex of T' of degree 1} uncovered by T" then observe that at least one
vertex of W\ —T" is incident by blue edges with at least k vertices of M .
Thus we enlarge T" by adding this star to it. If less than 2k vertices of M
are uncovered by T" then we stop. In the end T" has at least n —3k vertices
out of W\, hence it has at least n-4k edges. Hence Theorem 1.3 is proved.7

7. Further problems and generalizations

Above the special case was considered when E (Kn) was two-colored, and
we investigated how large monochromatic portion of a given tree Tn must
be contained in it. Here we give a list of some possible generalizations.

(1) Instead of Kn we can consider other sequence of underlying graphs,
e.g., the complete bipartite Kn<n, t-partite graphs Kn<n... n;

(2) Instead of copies of a Tn some other family of graphs, even with
different sizes can be investigated;

(3) Two coloring can be replaced by r-coloring;

(4) Instead of the measuring the disrepancy in supremum norm it is
interesting to consider the average, e.g., the I2 norm;
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(5) Instead of considering the maximum distance from the evenly colored
subgraphs (when the goal was to approach a (1/2,1/2) coloring) to consider
for a given a € (0,1) the discrepancy from an (a, 1- a) coloring. Some
applications lead these kind of questions, eventually a depends on n, a =
= «(»);

Finally we mention two further problems.

1. A general method in discrepancy theory is to obtain an estimation
from the discrepancy of the random coloring. One of the first problems is
to decide when the random coloring yields the optimal or nearly optimal
solutions. It is easy to see that when \E(L)\ —u(n)n\ogn with u(n) —o00,
for n —200, then already the random coloring ip gives Vn(L,tp) = o(\E(L)\).

2. In our case (the case of spanning trees) the bounds on the discrepancy
are in terms of the maximum degree, A, and the covering number, r. It would
be interesting to see what other graph parameters or structural properties
of the sample graphs (and the underlying graphs) influence the discrepancy.
For example, if the tree Tn has two vertices of degree n/2 (it is called a
broom), then V(Tn)=n/4 + 0(l). (This was also proved by Bondy [4].)
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GEOMETRIC DISCREPANCY THEOREMS
IN HIGHER DIMENSIONS

GY. KAROLYI

1. Introduction and a brief survey

The classical problem

Let V = {pi,... Pt} C [0,1)A be a finite sequence of not necessarily
distinct points. To investigate the uniformity of this sequence one considers
the differences

D(V,A) =\Z(V,A)-Np(A)\
between the number of the points contained in A and the expected number
of the points contained in A, for certain measurable subsets A of the unit
cube, where Z(V,A) is the number of the points p, that are contained in A.
Usually the sets A are specified as the aligned boxes contained in the unit
cube [0,1)A. Accordingly, the discrepancy of the sequence V is defined as

D{V) = sxpD{V,A),

where the supremum is extended to the family of aligned boxes (i.e. direct
products of intervals) A Q[0,1)A. The less the discrepancy of the sequence
V is the more uniform its distribution is. In case K = 1 clearly there exist
very evenly distributed iV-element sequences V for every natural number N:
if V= {0, jj, o= ,"7"}, then D(V,A) <2 for every interval AQ[0,1).

In higher dimensions the situation is different. In his basic paper pub-
lished in 1954 Roth proved the following result.

T heorem 1.1 (Roth [22]). For an arbitrary integer N >2 and distribu-
tion V C[0,1)h of N points

£(?)>* (logA0™ o
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Key words and phrases. Geometric discrepancy, irregularities of distribution, uniform
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(We use the so-called Vinogradov symbol: / <C/ g means that there exists
a constant c depending on the index set | such that / < eg.)

Pointsets with relatively small discrepancy was constructed at first by
Halton, in every dimension. These kinds of sequences are very useful because
of their application in numerical integration (for the background see e.g. [18],
[14], [21]).

T heorem 1.2 (Halton [13]). For an arbitrary integer N t.2 there exists
a distribution V C [0, I)ft of N points satisfying

T'OPXtfOo0gIV)*'-1 .

One of the most important open problems of the subject is to eliminate
the gap between the two bounds. It is suspected that the upper bound is
exact. The following results seem to support this conjecture.

Theorem 1.3 (Schmidt [26]). For an arbitrary integer N't. 2 and dis-
tribution V of N points in the unit square [0, )2

D(V)>\ogN .

Haldsz [12] gave an alternate proof of Theorem 1.3 by modifying Roth’s
basic idea.

Theorem 1.1 was slightly improved recently by Beck in case K —3. For
higher dimensions there are not known any stronger lower estimate.

T heorem 1.4 (Beck [5]). For an arbitrary integer N > 3 and distribution
V C 0, I)3 of N points

D(V) > £(log IV)(loglog IV)*
where e is an arbitrarily small positive number.

Let us say a few words on the history of the subject. The first problems
in this topic arised in number theory concerning infinite sequences. One
can measure the uniformity of the distribution of an infinite sequence Q =
= {<li, 92, m <} C [0,1)* by the sequence of its discrepancies

Dn (Q) = L){qi,....q;v}) .

The sequence Q is uniformly distributed in the unit cube if D*(Q) = o(N).
Well-known examples are the so-called van der Corput-sequence [11], or the
(IVaj-sequence, if a is irrational. J.G. van der Corput [11] raised the ques-
tion in 1935, if a sequence Q may be so uniformly distributed in the interval
[0, 1) that the sequence of discrepancies D*[Q) is bounded. Note that the
best possible upper bound for the sequences mentioned above is _Dyw(Q)

«Clog IV. The negative answer was given by van Aardenne-Ehrenfest [1] in
1945, She also proved a stronger theorem in [2]. An essential improvement
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of this result was carried out by Roth (Theorem 1.1). He observed that the
problem can be translated to investigation of finite subsets of [0, 1)2. More
precisely he showed the equivalence of the following two statements:

(1) for an arbitrary infinite sequence Q C [0, I)Tand natural number N
there exists an integer 1 n <N with Dn(Q) f(N),

and

(2) for an arbitrary integer N >2 and a distribution V C [0,1)A of N
points D(V)  f(N) holds, where K = k+ 1
In fact, Schmidt stated and proved Theorem 1.3 in the form (1). Fur-
thermore, he proved ([25]), that for any infinite sequence Q C [0,1) the set
of real numbers 0 < a ™ 1 for which the sequence

DN(Q,a) =D({qu ... ,qjv},[0,a))
is bounded, is countable.

Geometric discrepancy

The uniformity and irregularity of sequences may be studied with re-
spect to various kinds of geometric objects instead of aligned boxes. As the
multidimensional analogue of intervals, it seems natural to consider aligned
cubes or balls. We have to note that balls raise some technical difficulties.
Indeed, the unit cube intersects an aligned box in an aligned box, but its
analogue for cubes or balls is clearly not true.

Haldsz in 1985 proved (see [7]) that Theorem 1.3 remains valid if the
family of aligned rectangles is replaced with the family of aligned squares.
This observation is true in a much stronger sense. Rlzsa in 1991 discovered
the following connection between two notions of discrepancy.

Theorem 1.5 (Rlzsa [23]). Denote by Al and T the families of the
aligned squares and rectangles contained in the unit square, respectively. For
an arbitrary finite sequence of points V C [0, I)2 one has

sup D(V,A) » sup D(V, A) .
AeAT AeT

(The reversed inequality is obvious.)
Theorem 1.1 has the following stronger form, too.

Theorem 1.6 (Beck [7, Theorem 19A]). LetV C[0,1)A be a distribution
of N points. There exists an aligned cube AC [0, I)ft satisfying
D(V,A)>K(\ogN)iif 1 .

The analogue of Theorem 1.5 in higher dimensions is still open.
The first investigations concerning balls was made by Schmidt [24]. The
following lower bound is essentially the best possible.
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T heorem 1.7 (Beck [3]). Let V C[0,1)A be a distribution of N points.
There exists a ball AQ [0, 1)A satisfying

D (V,A)"KteN 2-TK~£ ,

where £ is an arbitrarily small positive number.

This theorem shows that with respect to balls sequences always have big
discrepancy, and the order of magnitude is a power of N. The situation is
the same if we consider cubes in arbitrary position instead of balls. One
can find even bigger irregularities if the discrepancy of sequences is defined
relative to the family of all convex sets.

T heorem 1.8 (Schmidt [28]). Let V C [0,1)A be a distribution of N
points. There exists a convex set AQ [0,1)" satisfying

D(V,A)" >k Nx-t&

This lower bound is essentially the best possible (see Stute [31] and Beck
[6])-

It is worth mentioning that Theorem 1.7 is part of a more general phe-
nomenon.

T heorem 1.9 (Beck [3]). LetAQ[O0, I)ft bea convex body, and denote by
A the family of convex bodies obtained from A by a similarity transformation
of ratio less than 1. Thenfor an arbitrary distribution V C [0,1)A of N points

sup D(V,Bn[o,l)K)*A N 1~TK ,
BeA

and this lower bound is essentially the best possible.

The situation is basically different if rotation is not allowed. Then the
discrepancy heavily depends on the body A itself. Indeed, let A C IR be a
convex region, and denote by Ai a convex /-gon of greatest area inscribed
into A.

T heorem 1.10 (Beck [4]). Let AQ [0,1)2 be a convex region and de-
note by A the family of convex regions obtained from A by reduction and
translation (‘homothetic copies of A*). Then for an arbitrary distribution
V C[0,1)2 of N points

sup D(V,BC [0,1)2)» VM~"iOog N)-\ .
BeA

On the other hand, for an arbitrary positive number e and integer N there
exists a distribution V C [0, 1)2 of N points satisfying

sup D(V,Bn[0,1)2) < £i,6v(A)(logiV)45E ,
BeA
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where the number £n (A) is the smallest integer | >3 for which p(A\ Af) S
<I12/N holds.

In this paper we will study irregularities of point distributions relative to
convex polytopes having facets parallel to given hyperplanes. To see the con-
nections with related fields of combinatorics, number theory and geometry,
we refer to the surveys of Beck and T. S6s [9], [30].

2. New results

Let there be given a set of hyperplanes A —{Hi.... ,H[} in the K-
dimensional Euclidean space 1RK. Denote by POL(.4) = POL (/fi,... ,Hi)
the family of convex A'-polytopes having facets parallel to the given hyper-
planes. We will suppose that POL(.4) is not empty. Define POLo(-4) = {Afl
n [0,1]JA I A £ POL(A)}, and let e be an arbitrarily small positive number.
We will prove the following generalizations of some results of Beck and Chen
[8 Theorem 3] and Beck [4, Theorem 4D] in higher dimensions.

Theorem A. There exists an infinite sequence of points Q= {q1,q2,...}
in IRa such that for any convex polytope A £ POL(.4)
\D(Q, A\ =\Z(Q, A) - MA)I (log(d(A) + 2))3A- 1+£.

COROLLARY. For every integer N =2 there exists an N-element subset
V = {pi,... ,p/v} of the unit cube [0,1]A such that for any A £ POL(A),
A Q[O0,1]A

\D(V, A\ = 1Z{V, A) - Nn(A)| (log A)3A- 1+£.
The combinatorial investigations of Section 4 allows us to prove the fol-
lowing stronger version of this result.
Theorem B. For every integer N > 2 there exists an N-element subset
V of the unit cube [0,1]A such that for any A £ POLo(-4)
ID(V, A)I (logN)mr ak+i+'2K-i}

The proof of these theorems are more or less parallel to that of the
referred theorems of Beck and Chen. Sections 3 and 4 contain the new
technical machinery we need to prove Theorems A and B. The proofs are
presented in Section 5.

On the other hand, it follows from Theorem 1.1 that for every integer N
and a distribution V of N points in [0,1]JA there exists a convex polytope
A £ POL(.A) — namely a parallelepiped — such that

\D(V,A)\"a (logN)**1.
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Theorem C gives a stronger form of Roth’s theorem. Let P C IRA be a convex
polytope (K >2). Denote by POL(P) the set of convex polytopes contained
in the unit cube [0,1]A having facets parallel to those of P. For example, if
P is the unit cube itself, then POL(P) is the set of aligned boxes contained
in [0, 1]K; if P is a simplex, then POL(P) is the set of simplices homothetic
to P, contained in [0,1]A.

THEOREM C. For every positive integer N and a distribution V. of N
points in [0,1]A there exists a convex polytope A.£POL(P) such that

I£>(P,iD[>p(logIV)js 1.

Remark. For K - 2 Beck and Chen [8, Theorem 2] proved this theo-
rem with lower bound logiV. It is reasonable to suspect the lower bound
(logiV)A_1 in Theorem C (and the same upper bound in Theorem B). Our
proof in Section 6 will combine the analytic method developed by Roth [22]
for the case P = [0,1]A with the idea of Beck and Chen for the planar case.

Let 7Z= {xi, x2,... } C [0,1]A be an arbitrary infinite sequence of points,
and let A be a measurable subset of the unit cube [0,1]JA. Then

N

Dn {1Z A) = glxa(*,) - Np(A)
i~

is the discrepancy of the pointset consisting of the first N elements of 17
with respect to the set A. According to Theorem C, there exists a convex
polytope AE£ POL(P), for which

DN(TI,A) »p (logN) 2

We can prove a theorem that is similar to the result of Schmidt [25] what
we have already mentioned.

Theorem D. Let 7£= {xi,x2,... }C [0, 1]Ja be an arbitrary infinite se-
quence of points. Then the set of the real numbers a £ [0,1] for which there
exists a convex polytope A £ POLO(A) with p(A) =a such that the sequence
Dn (JZ A) is bounded, is countable.

We indicate the proof of this theorem in Section 6.3

3. Geometric considerations

In the first part of this section we formulate a geometric lemma on ap-
proximation of simplices by convex polytopes of a certain type. First of all
we have to discuss what kind of polytopes we will work with.
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Define the basic simplex of IRA as follows:

Aa‘:leIRAIX,>O(i: 1,...,K), " x<1
i=|

We will denote the vertices of Aa by ei,... ,eA'+i, where e/c+i is the origin
and e,j = ofj for 1<ij <K.
Letd, GIN dj =s, (so=0), sk= K and a, > 0. Define the polytope

E(d\,..., ddoi,. .., Qc) —
={xelRa Ixj >0 (1 <j<:K), xs, I+i H—-fxS<a, (i=1,..A)}

Consider the family of all the polytopes of the form
E(du ..., dk;2ni,...,2"*) + vni...

where k <K, d, GIN with £ i=1d, = K, nt G7L and the translation vectors
vni,.,n* (r) run through all the elements

of IRA, where the /,j’s are integers. We will call them the basic special
polytopes of IRA and denote this family of polytopes by BSP(IRA). This is a
subset of the family of basic good polytopes of IRA

BeP(IRa )= {E(di,... ,dk;ai,... ,ak)+ v},

where k < dt, d, GINwith Yli=i =K, a, >0 for 1<i<k and v GIRA.
Each simplex A of IRA determines (K + 1)! linear transformations
of determinant 1 and vectors VjA*G IRA such that

a =at;a)(aa') + v;a),

where A= //(A)Valt(Aa)-1/A. With the help of these linear transformations
we are able to define the polytopes we will consider.

Definition 3.1. The family of good polytopes belonging to A is
GP(A) = {aJA)E) I£ gBGP(IRa),1*"(A>1)!};
and the family of special polytopes belonging to A is

SP(A) = {a!A)(£) 1EGBSP(IRA),INi<(A'+1)1}.
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We also introduce the following notations:

<FA) = {t|A) 11<i<(If+1)1}

and
t(A) = {@4-A+ v-A lI<if (UT+)1}.

For technical reasons fix two sequences of constants (c™-) and (cj*) with

A <C** < <Cc**< ... <.

The crucial result of this section is the following lemma.

Lemma 3.2. There exist polynomials p of degree at most 2K —1 and
positive constants DK such that for any simplex A of IRA and positive integer
D > D there exist pairwise disjoint polytopes Si,... ,Sm£ SP(A) with m <
<Px(D) satisfying

1) UEi SiQ A and

2) i<(A)-Er=.M (S)<(cyDMA).

Note. Throughout this paper we use the following convention. We say
that two polytopes are disjoint, if their interiors are disjoint, i.e. we allow

common boundary points. We use the symbol (J* in this sense. Similarly,
we define the characteristic function of the set S by

f 1 if x€int5,
Xs(x) =\0 ifxGextS,

but we do not fix its value on the boundary points, we allow 0 or 1 values
depending on the situation.

We will prove Lemma 3.2 by induction on K. The case K —1is essential-
ly covered by Lemma 8.16 of Beck and Chen [7]. For the sake of completeness
we present the proof here with a slight modification.

Lemma 3.3. Let a,b be real numbers, a<b. For every positive integer
D there exist pairwise disjoint intervals I\,.m ,Id of the form /, = [kt2n',
(ki + 1)2™7 with ki, { £ 1L such that

1) 1jfilUC [a 6] and

2) ((m-«)-££,2"<(3/4)>-2a).

Proof. Firstlet T be the longest interval of the desired form contained
in [a, b], then the length of Ji, 2"1>\(b—a). For i > 1 we can define I,
inductively so as to satisfy the following properties:

1) /, is the longest interval of the desired form, contained in [a,6]\

\u;=U,
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2) U*_ilj is an interval and
3) 1iQKi-i if we write [a 6]\ U}=i Ij = K(-i UJi-i, where J,_i and
K{-1 are disjoint intervals, J, i is not longer than A\_i, and J;_i =
=0 if [a, ff]\ U’=i Ij is an interval.
It is easy to show with induction that /i(/t) > Indeed, it implies
that > \p{Kt), furthermore /, and A, have a common endpoint of the

form k2n>, k GZ, and hence we can find 7,41 with /r(/t+i) > |/i(A").
Thus for every i > 1 we have

H{li) >W{Kx-\) Z\ j

and the result follows immediately.

Before turning to the induction step, notice that it is enough to prove
the assertion for simplices A g BGP(IRa ), i.e. for simplices homothetic to
A", Indeed, for an arbitrary A we only have to apply a suitable linear
transformation £€ 4>(A). Let K > 2and suppose that Lemma 3.2 has already
been proved for 1,... ,A'—1 First we prove a similar assertion for good
polytopes belonging to A, except of simplices.

Lemma 3.4. There exists a polynomial p*f of degree at most 2K - 2 and
a positive constant D*ff such that for any P £ GP(A) which is not a simplex
and arbitrary positive integer D > Dff there exist pairwise disjoint polytopes
51.. .. ,Smse SP(A) with m <pff(D) satisfying

) J*iSiCP and

Proof. P isofthe form E(d\,... ,d Qi,... ,a*)+ w, where k >2 and
Sf=i di= K, therefore P is the direct product of simplices A, of dimension
d{ < K. More precisely, if we identify the d,-dimensional coordinate-plane
determined by the coordinates xs,_i+i, ¢¢*,xs, with IRY, then A; = OjA L+
+ w-, where w, = (u;Si_]+1,..., u;S). Let D > max{D*,... ,DK_XR. We
can apply the induction hypothesis to each A,, then we obtain polytopes
5.1.. .. ,Sim, € SPIA™*) with mi <pdi(D) satisfying

) U7=iSj= and

2) M(Ai) - E A < (™)Dm(A)).

Consider the polytopes of the form S\ji1 x eeex Skjk. They are special
polytopes belonging to Aa. To see this write 5,j = <£j(.E,j), where €
€ ™(A)) and A,j € BSP(IRd*). Then clearly e\~ x ***X exjk € BSP(IRA) and
the polytope Sij, x *eex Skjk is its image at the linear transformation 4>€
€ 4>(AA) composed from the 0tJI’s on the natural way. The number of these
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polytopes is
\mtAMpdDpKO= Y, 1P
t'=1 i=I kn2 t'=l
4H—\dicK
where
k k
degPk max Y desPd * max Y (2d«- 1)=2K - 2.
d\+ —\-dk=kK t—" di+—\-dk=K 1”*
The polytopes are disjoint and are contained in P. Finally
m i m Kk
nip) — X eeeX =
Ji=l jk=1
/| fc k m, \ k7 \ / m;
=/i n Ax\n u*5d <e n7rAi) mao-y>(st)i<
=i t=ij=i E1\IN a1

<E in**)) H,)DM 4,)=1|Q t;,)",] MP)i i'XftiP),
K/i
if D is large enough.

We note that the polytopes S\,... ,Sm in Lemma 3.4 are not simplices.

The induction step can be derived the following way. On the one hand we
will prove the analogue of the previous lemma for a certain type of simplices:
a simplex TGBGP(IRA) is called nice if T is obtained from a basic special
simplex of IRa cutting it with a hyperplane parallel to one of its facets. On
the other hand, we will see that A can be decomposed to the disjoint union
of nice simplices and good polytopes belonging to A which are not simplices.
The existence of this kind of decomposition will follow from the next lemma,
that we may regard as the “heart” of the induction step. A special case of
this lemma will also be helpful in putting our first aim into the matter.

Lemma 3.5. Let pGAK, p\—a (0<a < 1) and suppose that p is inci-
dent to an h-face of AK (\ £ h~ K). Then there exist polytopes G\,... ,Gk G
GGP(AK), k<(h- 1)() + K+ 1, such that

1) Aa'= u*g,,
i=i
2) G\ is the simplex Ah fl{xGIR* | x\ >a},
3) p is a vertex of the simplex Gk,
4) G2,... ,Gk-1 are not simplices.
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Proof. We proceed by induction on h. Notice that if ip£ 'I'(Aa), then
ip permutes the elements of GP(Aa), bringing simplices to simplices. There-
fore applying a suitable element of iF(Aa), if necessary, we may assume that

R= i‘[IPi <L
First we deal with the initial step h—1, then p2= ... =p«x —0.
For 1<i< + 1ldefine the polytope D, by
. K i-1
€IRA 1x; >0 (j#i), M xj>a, ~2 Xi = =a
(Note that Ma = K+1, then the sécond condition has no’ ?n'eaning and the
third one is superfluous, so they may be omitted.) .
A+l Af1
It is easy to see, that Aa = (J *Dt. Indeed, IRA = 1[J1*iZ,, where
=1 =
X 1-1 1

2 xi=a’S xi<al’
j=1 j=i J

and D% RtD Aa. On the other hand,
D,=4>(E(i- LA-i+1l;a,1-a)) +e,

where < is the linear transformation defined by

(x"\ x\ \
X.-1 Xi—

X - L R ¢ J— n Xk
X-+1 Xi+1
XK o )

It is clear that 0,(Aa)+e = Aa,so (p+e £ty(AA), P £ $(Aa). There-
fore Dt£ GP(Aa) and it is easy to check that the polytopes G, = D, (i =
=1,2,... ,k=K + 1) satisfy the desired conditions.

Suppose now that 1<h<K and we have proved the lemma for 1,... ,
h —1. We may suppose that p is not contained in any (h —I)-face of Aa.

Claim 3.6. If2<i”~K, then D*=D,n |[x £IRA| Y1x*= s e

disjoint union of K —i + 1 good polytopes belonging to Aa , neither of which
is a simplex.
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Proof. D*:(pi(E*)+e,, where
E*= E{i- 1. K- i+ 1;a,1- a)n{xGir | < 1—-R}

It is enough to prove the assertion for E* instead of D*.
Consider the linear map U : IRA — >IRA_,+1

Then

Ui(E{i —1,K —i+ 1;a,1—a)) =
A-i+l
= <xGR """ >0 (I<j< K-i + 1),
j=i
and
UI(E*) = (xc ra-t+1 1 X0 1 <] <K -1+ 1),
A-i+l
Y xi=1~0Q>xi =1-B\-
J=1
Therefore (1-a)~1wUi(E(i —1, K —+1; a, 1—a)) = AA-,+1 and we can apply
the first part of the proof of the Lemma (in dimension K —i + 1 instead of
K') for the point y5fei- We obtain that uBE*) — [J *G'f" with suitable
i=i
polytopes G\* GGP(Aa-,+1). More precisely, G\J*is of the form

G\)=(fH(E(, K-i +1-j;1-B,B-a)) + (I-a)ej+1,

where G$(AK +1).
If we define " Gi*(Aa) by

/o *1 0\ / 11 \
Xi
xi-1 xi-1 Wlth

X, n ( n
VK-i+l Xk

voxk VVvK-i+l °
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K4+
then E* = _|J_ 'Ei', where
i=i

e\3 = -1, j,K-i+1-j;a,l -B,B-a)) + (1- a)el+l

is a good polytope belonging to AK, and is not a simplex, since 1<i—1<
<K —1 This completes the proof of the Claim.

For our further purpose denote €ii(Ej3V) + e, by D-3\
Enlarge the simplex Ah Pij X6 IRA | 53 Xj </?]* by the ratio 8~1. The
1 O

j=i 3
image of the point p is contained in an (h —)-face of Ah —the intersection

of the original /i-face of Ah containing p and the hyperplane _]XE IRA |

é% Xj —1]f- Thus we can apply the induction hypothesis to get polytopes
i=i >

G[,... ,GGEGP(Aa), I<(h—2)(A) + K + 1, with the following properties:

1) a*'= u*g;,

1=
2) @[ is the simplex Ah n {XEIRA | x\ >aR-1},
3) /?-1p is a vertex of the simplex G\,
4) G2,... ,G\_1 are not simplices.
Now it is easy to check that with k =1+ (A) the polytopes G\ = D\, G2,
. ,Gk-1, Gk = BG\ satisfy the desired condition, if we set

K

{G2,... ,Gk-i} ={BG[ 12<«E1- Ju\I{D\j) I1iji K- i+ 1}

1=2

Next we formulate the analogue of Lemma 3.4 for nice simplices.

Lemma 3.7. There exists a polynomialp*£* of degree at most 2K —1 and
a positive constant D*ff* such that for any nice simplex T and positive integer
D> there exist pairwise disjoint polytopes S1,... ,SmESP(A)u;zE/i m <
<p*jf*(D) satisfying

1) U=1SiQr and

2) (i(r) - 1*($) < (ck)Drtr)-

Proof. We may assume that T= aAh for some a >0. There exists
an integer n satisfying j <2n<a. Then 2nAh is the largest basic special
simplex of IR« contained in T. Applying the previous lemma to A= a-1r
and p= 2-ei it follows that T is the disjoint union of 2nA, the nice simplex
T=m {XGIR* I Xi >2"} with /r(r') <2"A/x(r), and K - 1good polytopes
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belonging to I\ If we translate T' with -2nei, then we can repeat this
argument. Iterating the process D times we find that T is the disjoint union
of D special simplices belonging to T, a nice simplex of volume < 2~KDp(T)
and D(K —1) good polytopes P, belonging to T that are not simplices.
Let D > D7, and apply Lemma 3.4 to these good polytopes, respectively.
Summing up, we obtain pairwise disjoint special polytopes belonging to T:

Si,... ,Smwith <D+ (K- I)Dpx(D) =p*£*(D) satisfying
m {K-1)D
P[T)-YJINS,)<2-KDp{Y)* Y, Vk)Dh{P)I
t=I i=l

S ((2-K)D+ (4’)D)Mr) < (*)D/i(r)
if D is large enough.

Lemma 3.8. A is the disjoint union of a special simplex belonging to A,
at most K + 1 nice simplices and at most ((K —1) (A) + K + I)(/i'+ 1) good
polytopes belonging to A that are not simplices.

Proof. Let Ai be the largest basic special simplex of IRt contained
in A. Let g be a vertex of Ai that is not a vertex of A. There exists a
transformation ip€ 'f'(A) so that

0_1(Ax) C{xG IRa 1xi >pi},

where p=V_1(q) GAA with p\ >0. Applying Lemma 3.5 and the transfor-
mation ip we obtain that A is the disjoint union of a nice simplex, at most
(K —1)(A) + K + 1 good polytopes belonging to A that are not simplices,
and a simplex A' 2 A\ a facet of which contains a facet of Ai incident to
g. Repeating this argument to A' we end with a simplex A" containing Ai,
and at least two facets of Ai are contained in suitable facets of A". We can
iterate this step at most K + 1times, yielding a desired decomposition.

Now the induction step of Lemma 3.2 can be proved as follows. Let

K+2 t
A — (J*A,U* (J*P, ,
t=i

where the simplices Ai,... ,Aa>2 are nice ones, Ai £ SP(A) and Pt £
£ GP(A) for lii<:t< ((K- 1)® +K +1)(K + ). Let D >D*t* (> D)f)
and

Pk —1+ (A + 1)Pk*+ ((U - 1)(A)+ A + 1)(A + 1)pa? ,
a polynomial of degree at most 2K —1. Apply Lemmas 3.7 and 3.4 to the
simplices A2,... ,A*-+2 and to the polytopes Pi,... ,Pt, respectively. We
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obtain special polytopes belonging to A: S\ = Aj,... ,Sm with m < pK(D)
satisfying

@Em)<E  apE() )<
< D'E ma)+gma) <@)dre)

This completes the proof of Lemma 3.2 with DK = D*£Ex.

With the help of Lemma 3.2 we can approximate simplices by special
polytopes from inside. Our next aim is to find an analogous statement on
approximation of simplices by special polytopes from outside, too.

Let A be an arbitrary simplex. For every interval | C IR there exist
special intervals I\,12 satisfying I CI\ U*/2 and p(li U/2) < 2/r(7). Thus
there exists a simplex Aj 2 A obtained from A by an enlargement of ratio
< 2 that is the disjoint union of K -f 1 special polytopes Tx belonging to A.

t

As in Lemma 3.8, we can use Lemma 3.5 to prove that A = Ai\ |J*P,, where
=1

P,€GP(A) and t ((K—1) )+ K +2)(K+ 1). Applying Lemmas 3.2 and
3.4 for the polytopes P, - note that if A'6 GP(A), then SP(A') =SP(A)
we can summarize our results in the following form.

Lemma 3.9. There exist polynomials px of degree at most 2K —1 and
positive constants ¢jc < 1 and Dk such that for any simplex A of IRA and
positive integer D > Dk there exist polytopes S1,... ,Sm,T\,... ,Tn£ SP(A)
with m,n <px(D) satisfying

:D g}*snggK;*Tl\ _nu

2) <CkP(a >
3) /i(Ti) > 1,... ,/qTa+i) > 1,

4 ENV(T,)-Er=A-+2Mr,)-M (A)<c(MA) + I) and

5) St,Tj are contained in the neighbourhood of A of radius d(A) + 2.

In the remaining part of this section we wish to formulate a consequence
of Lemma 3.9 to polytopes contained in POL (A). First we decompose them
into simplices contained in POL (A). More precisely, it may happen that the
normal vectors of the hyperplanes Hi,... ,Hi are not in general position,
i.e. there exist K of them that are linearly dependent over IR Therefore
choose and fix a hyperplane H that is in general position with respect to A:
the normal vector of H is linearly independent of any K - 1 of the normal
vectors of the hyperplanes H\,... , Hi.
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LEMMA 3.10 (Kérolyi-Lovész [17]). For an arbitrary convex polytope

A £ POL(.4) there exist (not necessarily distinct) simplices Ai,... ,At £
£ POL(ifi,... ,Hi,H) contained in the neighbourhood of A otf radius

<Ca h d(A), witht<c(K,I), and £1 signs £], such thatXA—t EIXA -
=i

Remark. As Giinter M. Ziegler has showed it to me, Varchenko had
proved a similar result earlier. Though his result as stated in [32] is less
general than Lemma 3.10, it gives an explicit decomposition formula when
the bounding hyperplanes of the polytope are in general position. A careful
analysis of his proof yields also a stronger version of our result. See [16] for
a short proof and a detailed discussion.

Define the set of special polytopes

SPEC| 4,tf) = U\AePOL(//i,... H,H) SPIA) -

To prove Theorems A and B we will need the next result.

Lemma 3.11. For an arbitrary convex polytope A £ POL(A) there exist
polytopes Pi,... ,Pm,Qu ==m Qn € SPEC(A, H) and +1 signsh ,...
., Sn with the following properties:
) YZXHXPAXAMNU~AXQ,
2) E2=1MQO - 11itiPi) «<AM(log(rf(A) + 2))™ -\
3) Pi, Qj are contained in the neighbourhood of A of radius <CA,H d(A) -f
+L
4) (log(d(A) +2))2A~1
5) p(Pi),p{Qj) > 1 and
6) each point of IRAis covered by <C4,i 1 of the special polytopes Pt, Qj.

Proof. Let xa = £ |=1 EiXa,, where A, £ POL(if], H), et= %1
and t<c(K,l). Then d(A,) < C hd(A). Unfortunately, there is no
analogous estimate for the corresponding volumes, that is the reason why
we have to operate with diameters. Since log p(A) log d(A) we can apply
Lemma 3.9 with D ~><C log(d(A) + 2) to the simplices A-, respectively, to
obtain polytopes Sn,... ,SMn, T,i,... ,Tint £ SP(A,) QSPEC(A, H) and 1
signs 7,i,... ,Tun,,sti,... , satisfying

1) £™=j T.jXSij » XA, » EjLi SijXTij,

2) £j=i bijF{Tij) ~ £7=1 HjP{Sij) <1,

3) m,n, < A(log(d(A)+ 2))2A 1,

4) Hi =+1, and et = -1 if p(Tt)) <1,

5) Sij, Tij are contained in the neighbourhood of A of radius d(A) +

1 and
6) each point of IRAis covered by <Ca,i 1 of the special polytopes StJ, T1J.
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Therefore we have

Y Yn*** S YGE=AZY Y SI> Y Yin™!

«e=+1 J=1 ci=——2j=I e<=+l j=I £,=-1 j=I
and
yéiijTJ’J’) y oy I
Nedl=H =1 e=-1j=I /
I , n, \ -
~ y'YiijStj)—y J< c(r ,i).
\E=+I1j=I e=-1j=I

Thus the polytopes

{Pi,, ,Pm}= (J Stmt}u (3 {T--i,... ,Pt,.}
£=+1 £=-1
with the corresponding +1 signs 7,-=7,y or and the polytopes

{Qi,... ,.Qn}= (J {T,1,...,r,n}uU U
£=+1 £,=-1

with the corresponding +1 signs I, = <§j or —7,y clearly satisfies conditions
[)-4) and 6) of the lemma. If we omit the polytopes of volume < 1, then
conditions 3), 4) and 6) clearly remain satisfied and condition 5) holds also
obviously. Moreover, both sides of the first inequality change in advanta-
geous direction, so the first condition remains satisfied, too. Finally, we have
changed the left-hand side of the second inequality <Clc/ (log(d(A)+ 2))2A 1
times by at most 1, so condition 2) is also fulfilled.

4. Two-colourings of vector-systems

In this section we work out the combinatorial tools we will need in the
next section. The proof of Theorem A will depend on the following lemma.

Lemma 4.1 (Beck and Chen [7, Lemma 8.6]). Suppose that X ={xi, ...,xp}
is a finite set. Fori= 1,2,..., lety () - {y}*\Y~"\ ...} be apartition of X :
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Let us associate a real number a*. G[0,1] with each point Xk GX . Then for
every 77> 0 there exist integers ak G{0,1} such that

w77
K -a%

xkevyo

for all Yj~ satisfyingit 1andft 1

Given a set-system y on the finite underlying set X —{1,... ,p}, we can
define its discrepancy as

disc(Y)  ¢.xMiPy 13 RES £/«

If we consider {0, I}-colourings instead of {—1, I}-colourings we can normal-
ize the discrepancy as follows:

disc(V) = 2 ) Jil iy R3S E(/(x)-1)
In this approach it is easy to compare discrepancy with linear discrepancy,

lindisc(V):= Ta%é[o,i]/:ﬁ%,i}wgi’(

Then obviously 2lindisc(Y) ” disc(T)- On the other hand, linear discrepancy
can be estimated from above by hereditary discrepancy.

iaY

T heorem 4.2 (Lovasz-Spencer-Vesztergombi [19]).

lindisc(,T) herdisc(T) = maxdisc (Y|™),

where y\A —{Y @ A \'Y GY} is a set system on the underlying set A.

In order to prove Theorem B, in this section we extend a result of Beck
([4, Lemma 6.2]) to “weighted” set-systems, where the sets may contain
their elements with positive or negative integer multiplicities. Therefore
we introduce the notion of vector-system. Since an arbitrary subset of the
underlying set X may be identified with a 0-1 vector of length p, the following
definition seems to be natural. On a vector-system on the underlying set
X = {1,... ,p} we mean a finite set y of real vectors of length p. The ith
coordinate of the vector Y GJ we denote by Y(i). We may regard every
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set-system to a vector-system this way, and we can adopt the notion of
discrepancy. In this context the discrepancy of the vector-system y is

disc(®*) =  min max£ y(«)/()

BYzy o

If we regard the elements of the vector-system y to the row vectors of a
matrix, then this notion of discrepancy is more or less the same as the
discrepancy of matrices introduced by Lovész, Spencer and Vesztergombi
[19]. If the matrix A has p columns, then its discrepancy is
disc(A) = min UA”"-c¢)!ll«,
x6{0,1}p

where cis the vector (|, ... ,”). The difference is only a multiplicative factor
2 arising from the difference between {0,1}- and {—4, I}-colourings. We have
to note that the analogue of Theorem 4.2 for matrices was proved in [19] (the
difference is a multiplicative factor on the right-hand side of the inequality),
and therefore it is valid for vector-systems, too, if we define the linear and
hereditary discrepancy of the vector-system y by

lindise("™) = maxr oiy/-xTYd iy PEx o (a0

and
herdisc(T) = an%(xdlsc(y|A) :

respectively, where the restriction ofy to A= {d,... ,ik} QX is

VNA={MDD),....r (%)) |y ey}

Before stating our result, we have to introduce some more terminology.
Let Z be a set-system, and denote by Z(k) the set of those vectors Y that
can be written as the signed sum of at most k elements of 2, i.e. there exist
sets(=vectors) Z\,... ,ZtGZ (t<k) and signs £\,... ,Ete{—1,1} such that
Y = Si'=i eiZf The vector Yj GZ(k) is said to be contained in the vector
Y2e Z(k) (Yi Qy2D), if Y\ = E.e/£i"i and T2= YlieJE£'Z" where J,
|[J] k. Fory CZ{k) define the vector-system

yi={"G2(A:) \3Yey, HCY} .

T heorem 4.3. Let there be given a vector-system y and a set-system
Z on the underlying set X = {1,... ,p} such that y CZ(k). With notations
d=deg(2), g= || and y= max |jylloo we have

disc(™) < yl/ykd log(d + 2) log(g + 2) log(p + 2).
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If we restrict the vector-systemsy and Z to an arbitrary subset A of X ,
then the condition of Theorem 4.3 is hereditary, and the quantities d,q and
y do not increase. Therefore we can use Theorem 4.2 (completed with our
previous note) to see that

lindisc(T) < y/ykd log(d + 2) log(g + 2) log(p + 2) .
Thus we obtain

Corollary 4.4. Lety and Z as in Theorem 4-3. Then, for any real
number 0 < a < 1 there exists a function f :X — >{1 —a, —a} satisfying

< y/ykd log(d + 2) log(g + 2) log(p + 2)
t=i

for every Y GYm

The remaining part of this section is devoted to the proof of Theorem
4.3. We will need the following Chernoff[10]-type inequality to handle certain
sums of binomial coefficients. Although this inequality is known in more
general forms (e.g. Hoeffding [15, Theorem 2] or McDiarmid [20, Lemma
1.2]), let us present here a simple proof.

Lemma 4.5. Let X\,...XV be independent random variables with com-
mon distribution

P(X,=1)=P(X,=-1) =" .

Let 7 >0, and let £i,... ,Ep be arbitrary real numbers. Then
P <2exp
Proof. Let £T=1 = S, then obviously P(|S| ~7) = 2P(5 > 7). For

an arbitrary real parameter a > 0 we have
P(5>7) = P(ea5 >eai) <e_a7E(eaS) ,

where E denotes expectation. As the random variables X \,... ,X P are inde-
pendent, we can write

E(e“5)= E(Y | eae'x') =j] E{eaEx"') = + e~“£))-
t'=i
Using inequality |(ey+ e y) <e2y2, that may be checked immediately com-

paring Taylor-series, we obtain

P(5>7) "e Q7Y[e*a@=exP(5a2Ef=i£? -a7) »
t=i
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We can optimize the estimate choosing a = 7/ JYLj £?, and the lemma fol-
lows immediately.

To prove Theorem 4.3 let Z =Z* UZ** where
Z'={ZeZ 1\Z\< |00dlogd}

and
Z” ={ZeZ 1\2\ >100dlogd}.

Every element of Y={Ti,..., Y?} can be written in the form )=i £ijZij,
where t <k and £y € {—21,1}, ZtJ 6 Z. According to this decomposition,
write Y, = Y* + Y**, where

Yt = A ] EijZij and Y = 'y} Eijzj .
7>e7* z,,ez"

Clearly Y*,Y” eZ{k).
Our aim is to find a “partial” two-colouring g : X — »{—1,0,1} that have
relatively small discrepancy on the vectors Y*, more precisely

Y*(j)g{j) < \/ykd log(d + 2) log(g -f 2)
j=1
for every vector Y €;

that colours perfectly the vectors Y**, i.e. for any YtEY

£ iT(iMj)=o;
j=i

and that colours a positive percent (10%) of the coordinates really, which
means

I(IEX 1931) #0} >~

If we can prove the existence of such a function g, then we may restrict
the vector-systems Y and Z to the set {i £ X | g(i) = 0} of noncoloured
points. Now we are in the same position as in the beginning of the proof,
and hence we can colour at least 10% of the remaining coordinates the same
way. Repeating this procedure at most < logn times, we can colour each
point of the underlying set X with a colour -1 or 1, and the theorem follows.

As the first step, consider the set T of two-colourings / : X — >{—1,1},
then \T\ = 2P.
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P roposition 4.6. Let

T'={fex E Y*U)fv) < K-viillcdlog((i + 2) log(g + 2), VYi GT ’ 5
j=i
where k is a sufficiently large absolute constant, then \X'\ > 2P

P roof. Colour the points of X independently of each other by the
colours —1 and 1 with probability \ Let / : X —>{—1,1} denote a
random two-colouring of X . For a fixed vector Yi £y we can apply Lemma
4.5 to obtain estimate

E Y*U)fU) A"V vkdlog(d+ 2) logea+ 2) ]2
j=i

< 20x n2ykd log(d + 2) log(g + 2)\

Since Y* £ Z(k), by the definition of y we have [Y}*(j)| ~ y for every I<i<q,
1=j =P- By the definition of Y* we get

EUurmis E \zj\<io0oAdiog@+ 2) .
I=i z,,ez'
We can summarize these observations in
j=1
S2exp("2|a+xS) <2(5+2)-1=0.

Therefore we have
[jr'| >2P(1-29(9 + 2)-'c2/20°) >2P 1 ,

if k is large enough.

Now we turn to the coloration of vectors Y**. It is enough to desire

relation
E z()gU-o
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to hold for every set Z £ Z** here we have Z(j) £ {0,1}. Let 2** =
= {Zi,... ,Zm}. Associate with each two-coloration f £ T the vector

v(f) = (va(f),...,vM(f))E7ZM ,
where

Vi{F) =]~ Z I{))Hj) = Y I1{3)-
j=i jez,

Proposition 4.7. |{v(/) |f£T}\<2V|b

P roof. Count the number of values the ith coordinates of the vectors
v (/) may have. Clearly

M)Az and u,(/) =1Z,| (mod 2) ,
so this number satisfy
im oy o feTH\ZIN + i<2\Ziv

because 072**.
It is well-known that \n8 <8 —I for 8 > 0. Thus for arbitrary a > 1

inequalities Ina ~ f, a <eal/e hold, and so do they for 0<a < 1. Therefore
we can estimate as

IW/) I/ €m <fi2Zl=<"fi (*"T1 = exP(e '

where the value of the positive parameter t we will fix later. As
M

1= Z£7

we can obtain
M

M < o
100dlog(d + 2) E I” 1S 10010g(d-2)
Finally choose t = 10d, then

{v(/) 1/G.F}|<(10d)p/100log(d+V p/10e =

=explL + +1')} < ePlo<2A .
\ '\ 100l6gd 5eJ/
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Comparing Propositions 4.6 and 4.7 one can see the existence of a subset
T" £ T\ that satisfy \V"\ ~ 24p/5 1 and v(/i) = v(/2) for any /i,/2GT".
Fixing an element f\ of T ", the family

is consisting of partial two-colourings g :X — >{—1, 0,1} that satisfy our first
two conditions. Let Q' be the family of those colourings g : X — >{—1,0,1}
for which

Kiew Is(»)=o>lafg -
It is enough to show that \Q\ < 24/5-1. Since

we can apply Lemma 4.5 again, in the special case £\,... ,ev= 1, with 7 =
\Q\ < 2p/102pe-8p/ 5 < 2p/ 10+1-2ploge/ 25 < 24p/5 1
This completes the proof of Theorem 4.3.

5. Proofs of Theorems A and B
Proof of Theorem A. FOran arbitrary positive integer t let us define
the cube Ct=[M, M)K, where M = 2J, and the finite set of points

Q Q@ ak \
Mk-1-m=*1  MK~I)

where the vector vt G[0,1]A is to be fixed later. Let a=M K(h and for
an arbitrary function ft:Vt —>{—a, 1—a} define

£r<(<) = {x e Vt I ft(x) = 1- a}.

+M -Mk <at<MK, 0,ez),

Lemma 5.1. FOr any convex polytope B ¢ Ct,
D{Vt{ft), B) =\Z(Vi(ft),B) - p(B)\ <1 ¢ ft(x)\ +A(K).

xeBnVt
Proof.
D(Vt(ft),B)< EE 1.0 EE ]: a EE I ~a V(-B)
xeBnv,(f,) xeBnv, xeBnvt

erVt /.dj E I ~A3

refnft
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where D=Mh 'fl and P(= MA [Vtm
By a standard averaging argument,

1-KB) <VKp(dB) +c2(K),
xeBnVt

where c2(A") is the volume of a ball of radius y/K. Finally we have
p(dB) = {MK~I)K-I8{dB) < p(dCt) = s3{K)Mk (k~1),

and the assertion follows.

We will construct the set Q in terms of the sets Vt(ft) with suitable
functions ft:Vt — »{—a, 1—a}. For the sake of simplicity, from now on we
will assume that A contains the coordinate hyperplanes HI= {xG IRA | x, =
= 0} for 1<i<K. Note that it implies immediately that POL (.4) is not
empty.

Lemma 5.2. There exists afunction ft:Vt—>{—a, 1—a} such that for
every convex polytope B £ SPEC(.4, H) satisfying p(B) > 1, we have

J«(*) <®AHe {\ogd{B) + I)K+c.
xeBnVt

P roof. Define an equivalence relation on the set of special polytopes
SPEC(*4,/f) as follows. The polytopes P\,P2 £ SPEC(.4, #) are equivalent
if and only if there exists a simplex A £ POL(iTi,... ,Hi, H), a linear trans-
formation £ 3>(A), a polytope E = E(d\,... ,d*;271,... ,2"*) £ BSP(IRA)
and vectors wj,w2£ IRA of the form

w,, = (In2n i ,2ni,eee I,2n< 000 |V ) (M=1,2)

where If- £ 7, so that P,, = E+ w,,) for v £ {1,2}.

Denote by SET(.4, H) the set of the classes of this equivalence relation.
For CE SET(.4, H) we may define p(C) and d(C) as the common volume and
diameter of the elements of C, respectively. We may define a linear ordering
<< on the set

{CE£SET(.4,H) IpC) >1}

by Q\ <C:2 if d(C\) <d(C2), with the convention that the ordering is defined
arbitrarily in the case of equal diameters.

Observe that for B = E(d\,... ,d*;2n* ... ,2"*) £ BSP(IRA), the condi-
tions p(B) > 1and d(B) <y for some y > 1 imply

y-B+i <2n' <y, -(A'- Dlogy<nx<log3.
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Therefore, with Ho= {X GIRK | x x H----- Exr = 1}, we have

\{CeSET(Hu ... ,Hk,HO0) Ip{C) > 1, d{C)<y}\<K(logy)K,
and finally

\{CeSET(A,H) In(C)> 1 d(C) <y} <€a ,h (logy+ 1)A.

Choose the vector vt so that no point of Vt lie on the boundary of any
special polytope P GSPEC (.4, H) (every vector is allowed except of a set of
measure 0). Each family C GSET («4,if) defines a partition of Vt-

vt= ((ira\ BecB)nvt)u* U*(Bnvt).
Bee

Let ® be the partitions of Vt defined by the families in
{Cg SET(,,4,#) I1p(C) > 1}

ordered in <. If we apply Lemma 4.1 to the set X —Vt and its partitions

3N, ..*with a\ = at2 = eem=a and q= K~1s, then the result follows
immediately.

Observe that there exists a positive constant c4(A") such that p(B) > 1

implies d(B) > | + c4(A") for every convex body in IRA. Therefore, using
Lemma 5.1 we have

D(Vt(ft),B n Ct) <AH,c (logd(B) + 1)k+£

for every convex polytope B GSPEC(.4, H) with p(B) > 1
The proof of the following simple lemma can be found e.g. in Beck and

Chen [7] or [8].

Lemma 5.3. Suppose that A, P4,..., Pm,Qi,..., Qn are measurable sub-
sets of IRa and 71,..., 7Tm<4, ..., Sn are £1 signs such that
i n
2=1 i=1
and
n m
Nb Jp{QJ)-Y~ h~ {pX) S:DV
j=1 =1

Suppose further that V is a discrete subset of IRl such that
ma, x{\D(V,P,)\,\\D(V,Qj)\}<D2
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Then
\D('P,A)\"DI + D2 max{m, n}.

Let A GPOL(.4), AQ Ct. First apply Lemma 3.11 to obtain the ap-
proximating polytopes Pi,... ,Pm,Qi, mm Qn € SPEC(A, H), then apply
Lemma 5.3 replacing P, and Qj by Pi DCt and QjdCt, respectively. Then
we gain the estimate

D(Vt(ft),A)<AMie(\og(d(A) + 2))3K- 1+

Now we are in a position to construct the infinite set Q. First we write
0o
IRA=CIU* (J*(C2n\C 2n-l)
n=1
and observe that C(n) = C2n\C2n-1is the disjoint union of 2K aligned boxes
Pnl,... ,Bn2Ke Define

Q=?M/i)u* U*("2»(/2«)nc(n)).
n=1
Consider an arbitrary convex polytope A GPOL(.4). Then An —AdC(n)
is the disjoint union of the (occasionally empty) convex polytopes Ar\Bnt,

1~ i~ 2K. As the coordinate hyperplanes H\,... ,Bk € these polytopes
are elements of POL(.4). Thus we have

D(Q,A) =\Z(Q,A)-X(A)\<:
oo 2K
<D (Vi(fi),AnCi) +J2 T, D(V2" f 2-),AnBni)

n=li=1

Y, (min{log(d(A) + 2)),n})3A _1+e <C (log(d(A) + 2))3A-1+£,

as it was to be proved.

Proof of Theorem B. With a refinement of our argument we can
decrease the exponent 3K —1+ e in the finite version. We note that this
modified argument does not work for the infinite version. Indeed, in the case
when a small polytope is located far from the origin, we could give an upper
bound only in the function of its distance from the origin.

Let M = NIlIh and consider the finite set of points
al a: akK \
={(MK~1"MK~X"  MK=~X

contained in the cube C = [0,M)A, where choosing the vector v G[0,1)A
(or more precisely v G[0, {M})A, if M is not an integer) we have the same

+v |0<a <Mk a G2
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requirements than in the previous theorem. Let a =M A again, and
define

V= V() = {xeX 1f{x)=1-a}

for an arbitrary function / : X — >{—a, 1—a}. The following lemma is the
analogue of Lemma 5.1.

Lemma 5.4. Let Y = YIli=i£iZi, where £+ £ {—1,1} and zi QC is a
convex polytope (!<&,!. Then

D{V"'Y) = Yjet{Z{V\ZI])-p{Z1) < + kci(K).
i=i t=1 Xxeztnx

Proof.

D{V'Y)<: mfe,Z(P',Z,)-aY, £,Z(X,Zt) +
1 i=I

k

ta” IE t(2(X,2,)-Q-V (")
i=

J2F J(%) +"alZ(X.Z.)-Q-V ("),

t=1 xeZ.nX t=1

and a\Z(X, Zi) —a 1Ux(Z,)| < c\(K) can be proved in the same way as in
Lemma 5.1.

Instead of using Lemma 5.2 we can follow the next method. Introduce
the set-system

Z={BHX IBeSPEC{A,H), BQ[-c5M,csM]h\ p{B) > 1}
where c¢s = Cs(A, H) is a sufficiently large positive constant. Then
d= deg Z (logM + 1)K,
since our conditions imply that the lengths of the edges of every polytope B
are between ce(A, H)M-~h+1 and c?(A,H)M.
For a significant reduction of the size of the vector-system y we are to

introduce it is worth considering the next fact. Let

A0= {AePOL(A) 1AQC} .
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Lemma 5.5. There exists a family of convex polytopes A\ Q.40> Mil <C
<CA./ M 2 such that for every convex polytope A E-40 one can find polytopes
A\ A2 g A\ satisfying A\ QAC A2 and p,(A2\A\) <1.

P roof. For every given hyperplane G EA put parallels to G with equal
distances 1/(c&(K)Mk ~"). The number of the hyperplanes of a fixed direc-
tion obtained this way and cutting the cube C is at most (y/K+ l)cg(K)Mk .
Since having each hyperplane two sides, they determine at most

21

((VT + 1) B(AYMa) < Ai, M 2Kl

different convex polytopes that are contained in POL(A). Cutting these
polytopes with the cube C we obtain a desired family of convex polytopes
A\. Indeed, if A E Ao, then each facet of A lies between two neigbouring
hyperplanes parallel to it. Therefore there exist convex polytopes A\, A2E
E Mi, A\ QA C A2 such that

L(A2\A,)<MdA?2 '

Since A2 QC are convex polytopes, p(dA2) ~ p(dC), and thus

2K

P(A2\Ai) <p(o|C)CS(K)NIK~1 S

if cg(K) » 2K
Assume for technical reasons, that C £ A\ (we will use this fact at the

end of the proof). We can define the vector-system y the following way.
Let us associate to an arbitrary convex polytope A E A\ the signed sums
A' —YIT=17iPi and AI"—YHI\ *iQi according to Lemma 3.11, and let

n

i'nx =27, (P1Inx), a"ni="i,(gtni).

i—
Create the vector-system }’= {A'nT, T'fIX | A EAi}. Taking into consid-
eration assertion 3) of Lemma 3.11, .Tg -Z(fc), where F<CA,i (log M + 1)2K~1,
if the constant 5 used in the definition of Z is large enough. On the basis
of assertion 6) of Lemma 3.11 we have the estimate

y - max |ly[loo<k11.

Therefore we can apply Corollary 4.4 to show the existence of a function
[ X — »{—«, 1- a} satisfying

£y (0/(i) (logM + )2 A+1+£
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for every Y Gy, since in the present situation p= |X| = \Mjr2 and q= |(y| *
<2M 1< ftV M 2KI.

Comparing this result to Lemma 5.4 we get the estimate

D(V',A")< %E E /A +mci) —

iI=i  Xxgp.nx
£(A'n*)(0/(0 *mc\(K) <ahf
1=1

max{(logM +1)2A+1+e, (logM + 1)2*-1}

for every convex polytope A GA\, and we have the same upper bound for
D (V,A"), too. Thus we obtain

Z(V\ A) - p(A) <Y, W P>Qi) ~ E.w (p) A
t=1 1=1

NTSTAY) + (£ AMQ) - TA(P) «Ax*
=1 =1

(logM + [)max® K+1+E™2A'-1>

for every convex polytope AeAi- Estimating from below in the same way,

Z(V,A) - p(A) >Y 1iZ(V, Pi)- Y sMQi) |
ALD(VLAY - (5> //(<2.)-E N (?%)

shows that
D{V, A) = 1Z{V, A) - pi{A)\<AHe(logM + i)max{|p +i+e2A—1} _
Finally, because of Lemmas 5.5 and 5.3, it follows
D(V, A) <"AHe (logM + *+1+e,2tf-1} <A He
CAM.e (log7V)max{ |A+1+£2" - 1>

for every polytope A GAo, if N > 2. Since C GAI, the same estimation holds
for ||T,/| —N\ = D{V', C), too. Therefore we may assume that V' consists
of exactly N points. To finish the proof we only have to note that V can
be transformed into a pointset V satisfying Theorem B with the help of the
reduction of ratio N 1' I*, centered at the origin. If the implicit constant in
the theorem is greater than 4, then the assertion clearly holds for N = 2, too.
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6. Proofs of Theorems C and D

Proof of Theorem C. First choose and fix a polytope A*gPOL(P)
having a vertex v* incident to exactly K facets of A*. To see that such an A*
exists, consider an arbitrary polytope Ao GPOL(P) contained in the interior
of [0,1]A. Let vO be an arbitrary vertex of Ao, and let Pi,... ,P; be the
facets of Ao that contain vO- If /= K, then we are done. Otherwise pushing
the facets Fk+i,... ,P/ outwards a bit, we can obtain a desired polytope
A*. Indeed, v* = vO will be a vertex of A* contained in exactly K facets
Pj,... ,Fk of A*, where P/ is the facet of A* that contains the original facet
Pt of Ao-

Let Pi,... ,Fk denote the facets of A* that contain the vertex v*, the
remaining facets we denote by Fk+i,... ,P;. A* is the intersection of half-
spaces H{ supported by P, (*= 1,2,... ,/), defined by the inequalities, say,
a,Xx b, Let Av. be the convex hull of the vertices of A* not incident to

the facets Pi,... , P#-, then Av*C int J Ht. Therefore there exist positive
numbers B\,... ,Rx such that Av*C int Ht i where H[ is the halfspace
defined by the inequality a,x ~ 6, —  For every y G[0, 1]JA we can define

a convex polytope A(y) = P|(=1 Hx{y), where P,(y) hcis defining inequality
a,x ™ bi —Riy, if *G {1,2,... ,K} and Hx(y) = H, otherwise. We will prove
the existence of a point y G[0,1]A for which

\D(V,A(y))\*A. (logN )~ .

We will construct an auxiliary function P(y) = P(P, y) satisfying

7/[0,i]A P(x)P(x)dx>/L (logiV)"-1

and
/ P2(x)dx<k(logiV)A-1,

where D(y) = D(V,A(y)) is the discrepancy function. Then applying
Schwarz’s inequality we obtain

P 2(x)dx>,4. (log N) A"l

and Theorem C follows.

We will define the auxiliary function P(x) with the help of the Radema-
cher functions.
Any x G[0,1) can be written uniquely in the form
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where Rj(x) £ {0,1} and the sequence R0o,Ri, =+ does not end with 1,1,... .
Forr=0,1,... define the rth Rademacher function by

Ar(x) = (-D" "W .
For a iF-tuple r = (rj,... ,rx) of non-negative integers set
-ffr(x) = Rtl{x1) -mmRTk {xk )

for every x = (aq,... ,xK) £ [0, 1]K.
By an r-box of the unit cube we mean a set of the form I\ Xeeex Jly,
where Ixis an interval of the form

li=[mt2 ', (m+ 12 T)

with an integer m, £ [0,2r).

By an r-function we mean a real function /(x) defined on [0,1)A satis-
fying / = Rror /= —Rr on every r-box.

Let n be a positive integer satisfying 2N ~ 2n < 47V. For every /L-tuple
r with |r] = rq+ em-frx = n let /r be an arbitrary r-function and let F(x) =
= 5Z|r|=n /r(x)- We recall a result of Schmidt [29] stating

|-[01]* F20)dx<K’ (n+ A

For a proof we refer to Lemma 2.4 in the monograph of Beck and Chen [7].

Therefore to finish the proof of Theorem C it is enough to specify the
functions /r so that the function F satisfy the first condition, too. For this
aim choose an r-function /r for every |r] = n satisfying

/ Ir(x))L>(x)dx=0
Jb

for every r-box B, this can be done because of the definition of the r-func-
tions.

For a box B =[c*, di) x eeex [cx,dx) (0<c, <dt™ 1) let B be the par-
K

allelepiped B= tf]_ (H* QH**), where the halfspaces H* and H** are defined
=i

by inequalities a;x < bi —C{{ and a,x > 6, —d;/3,, respectively. Denote [0,1)*-
by E.

Lemma 6.1. If B is an T-box with B HV = 0, then

Rr(x)D(\)dx = (-1)A*'N n{E)2-2lll~2K.
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K
Proof. Let B — 1[mt2~r',(m, + 1)2-r’) and introduce

K r
m2 r,(m+"]12r"1.
t=i
Then

I Rr(x)D(x)dx =
Jb

11
=/ E E (-1)'1++D(V,AXI+£ | .. xk+eKz-r<-1))dx.
"B'e=0) eK=0

Using an elementary sieving argument we obtain
f Rr(x)D(x)dx= [ (~1)hD(V,B(x))dx,
Jb Jb'

where
K

B(x):lrli[x”xt+2 r* *pe

Note that B(x) C B for every x€ B hence B(x) n V = 0. Therefore we have

-

I,Rr(x)D(x)dxz(-I)h I -Nn(B(x))dx =
Jb Jb1

= {-1)K+Ifi(B")Nfi{B(x))fi(E) = (-1) K+1Nfi{E)2- 2" - 2K,
as it was to be proved.

Let [r] =n. E is the disjoint union of parallelepipeds B, where B is an

r-box. Since [P\ <2n_1, there exist at least 2n_1 r-boxes B for which B does
not contain a point of V. Therefore Lemma 6.1 yields

t(x)D(x)dx> V Rr(x)D(x)d
X BnP=(AIﬂb

Jog

>NB(E) 2-n—2A'—1
Finally
| F(x)D(x)dx= [ /r(x)D(x)dx>
JJOAK \T*nJI°W
nFK —1

> Nn(E) 2722 4% (1og N) K- 1
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shows the desired inequality.
Proof of Theorem D. We may assume, that A contain the coordinate
hyperplanes Ht= {x6 IRA \ X{ = 0}. Then we can simply write

POLoM) = {Ae POL(A) I Ag [0,1]A}.

We will represent the elements of POLo(«4) by the points of the 21-
dimensional unit cube. Suppose that the hyperplane Hi £ A has defining
equation a,x = b,, and let a,x = W and a,x = { [u{ < ut) denote the equations
of the supporting hyperplanes to the cube [0,1]A, parallel to Hi. Define the
halfspaces

Hi(s) = {x£ IRA la,x >u, + s(u, —u,")}
and

HI+i(s) = {x 6 IRA lax M ut+ s(vt- u,)}
for every real number s. Then an arbitrary element of POLo(A) is of the
form H\(si) ft... fl H2i(s2i) with a suitable vector s= (sj,... ,02) G[051]2,
and conversely, for every s 6 [0, 112 the polytope A(s) = Hiii Hi{si) s an
element of POLo(-4), that may be degenerated.

Call the sequence si,S2»... of real numbers monotonic of type  ifsi ®
<S2 The sequence of vectors si, &,... G[0, ]2 is called monotonic of
type (<1,... ,2/) (where <s € {<,=,>}), if the sequence slt,52,... is
monotonic of type -<, for every 1<i <o21.

Lemma 6.2. Suppose that the sequence of vectors si, &2,... G[0,1]2 is
monotonic. Then the intersection of any 2L+ 1 of the sets

N(s1)A A (s2),A (s2)AA(s3), ...
IS empty.

(AAB denotes the symmetric difference {A\ B) U (B\ A) of the sets A
and B.)

Proof. Let s,te [0,1]2i. If the point x € [0,1]A is contained in the

halfspaces H,(si) and for the same indices | ~ i <21, then x is con-
tained in either both of the sets A(s) and A(t) or in neither of them. Thus,
if x GA(s)AA(t), then there exists 1<i <2l such that x £ AHi(t{).

Therefore it is enough to prove that the point x is contained in at most one
of the sets Hi(su) AH i(s2i), if,(62t)Afit(s3,),... for any fixed i. It is clear
since the sequence sn, S2i,... is monotonic, and it implies Hi(su) Q Ht(s2i) Q
g... or Hi{su) 2 2mmn

The function / : [0, 112 — >[0,1], /(s) = /r(A(s)) is clearly a continuous
function. Therefore the missing part of the proof is contained in Schmidt
[27], Theorem 1 (see the note following the proof of Lemma 1). We omit the
very complicated proof.

Acknowledgements. | am indebted to the Zentrum fir interdiszi-
plindre Forschung in Bielefeld for the financial support to this research.
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TRIFFERENCE

J. KORNER and G. SIMONYI

Abstract

To distinguish n objects, we can label them by n binary sequences of length flog2n]
each. Shorter sequences would not do. How about tristinguishmg n objects? In this
problem we use ternary sequences for labeling and require that any three of these be
different in one and the same coordinate. This is the simplest unsolved case of a problem
known as perfect hashing. We give a non-existence bound for a similar problem on binary
sequences. We also dead with related problems of edge-colorings in graphs. It is shown
that the minimum number of tricolorings needed to give every triangle of Kn all the three
colors in at least one coloring is at most [log2n].

Introduction

To distinguish n objects, we can address them by n binary sequences of
length [logn] each. Shorter sequences would not do. (Notice that here and
in the sequel all log’s and exp’s are binary.) From this trivial observation
a surprisingly short way takes us to a hard unsolved combinatorial prob-
lem that emerges in several important models of computer science. More
importantly, we will try to show that this problem represents a stumbling
block whose “removal” might lead to a spectacular extension of the infor-
mation-theoretic approach to extremal set theory from the case of graphs to
hypergraphs.

Subsets or bipartitions of an n-set can be represented by binary se-
guences of length n. Likewise, "-partitions of an n-set can be represented
by sequences over a k-ary alphabet. It was shown in the papers [6] and [7]
that many problems in combinatorics regarding subsets or partitions of a set
can be reformulated within a common information-theoretic framework in
which the key notion is for sequences to be really different in a particular
way pertinent to the problem. Let us consider a graph G having as vertex
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in some coordinate they differ in two elements of the alphabet which are the
two endpoints of an edge of G leads us to the problem of Shannon capacity
of the graph, [14]. In this problem, we ask how long each of n sequences
over a fc-ary alphabet must be if they have to be “really different” in the
previous sense. This minimum length is easily shown to be asymptotically
of the order clogn where the constant c is a characteristic of the graph. In
fact, if we denote the above minimum length of the sequences by /(G,n),
then we can define the (logarithmic) Shannon capacity of the graph G as the
always existing limit
I°gn
nl-i*rtt)‘]o /(G, n)r'

In [2] Cohen, Kdrner and Simonyi extend this definition to families of
graphs. Rather than requiring the occurrence of an edge of a fixed graph
between sequences, they require the existence of an edge of any graph from a
fixed family G. They call the corresponding notion of capacity the Shannon
capacity of the family of graphs G. In [5] L. Gargano, J. Kérner and U.
Vaccaro introduce a further extension of this definition. Instead of simple
graphs they consider directed graphs. Then, in case of a single digraph,
the notion of really different requires, between any pairs of sequences the
existence of arcs of the graph with opposite orientations. The corresponding
analégon of Shannon capacity is called Sperner capacity.

Our paper [10] gives a simple example of the relevance of this kind of
notions to extremal set theory. Subsequently, Gargano, Koérner and Vaccaro
have shown ([6], [7]) that the concept of Sperner capacity of a family of
graphs offers a formally information-theoretic framework to treat and solve
many interesting and even some long-standing open problems in extremal
combinatorics in an asymptotic sense. These include various generalizations
of Sperner’s classical theorem on the maximum number of subsets of an n-set
without one containing the other and the solution of Rényi’s 1970 problem on
the maximum number of pairwise qualitatively 2-independent ~-partitions
of an n-set, [13]. Beyond the above papers the interested reader is advised
to consult [11] and [1] where the problem of computing the Shannon capacity
and the Sperner capacity of a single graph are addressed.

If it is true that the Sperner capacity framework encompasses a great
many combinatorial problems, we soon have to add that much more prob-
lems are left outside its scope. In fact, many problems in extremal com-
binatorics require more structure than what is offered by the framework of
pairwise comparison of sequences. Whatever complicated notion of being
really different we might come up with, it would not help; to formulate more
problems in our language, we have to invoke some comparison of three or
more sequences. Formally, this amounts to extend the investigation of capac-
ities from graphs to hypergraphs, [9]. Of all such problems one is standing
out. This is the problem of trifference discussed in the next section. We dare
say that it is the conceptually simplest and most natural of them all. In one
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way or the other, solving it would shed light on the rest.

In this paper we just want to present some results concerning trifferen-
tiating objects in some restricted manner. Some of these related problems
are defined on graphs. Instead of trifferentiating any triple of elements of an
n-set we might want to trifferentiate just a particular subset of these. Prob-
lems of the latter kind bring us closer to the interesting topic of anti-Ramsey
theorems in the sense of [15]. A typical problem in anti-Ramsey theorems
is to ask how many colors are needed to color the edges of Km so that any
three edges that form a triangle obtain different colors. (In fact, the answer
to this question is trivial, but problems of this kind soon get complicated,
cf. [15].) Reversing this question, Vera T. S6s asked how many tricolorings
of the edges of Km are needed if the edges of every triangle have to get three
different colors in at least one of them. Setting n= (™) Vera S4s’ question
can be reformulated in our language as follows. What is the minimum length
of ternary sequences we have to use for labeling in order to assign trifferent
labels to any triple of edges forming a triangle in Km1 Similar questions can
be asked about three edges forming other subgraphs.

Problems of tristinction are strongly connected to Rényi’s still unsolved
question of qualitatively 3-independent partitions of an n-set and some other
problems in combinatorics which keep coming back under different disguises.

Perfect hashing, trifference and quasi-triiference

Perfect hashing is a purely combinatorial model for the hashing problem
in computer science. Its history and importance can be best understood
from the paper of A. Yao [16]. We shall adopt the terminology of Fredman
and Komlés [4].

Definition. A family of 6-partitions of a set X is called a (6, fc)-system
of perfect hash functions if every A:-element subset of X meets k different
classes of at least one of the partitions in the family. We denote by Y (6, k, n)
the minimum number of partitions in any (6, A;)-system for a set of n ele-
ments. For given 6 and k set

F(6, K) —lim inf | KoM

71— »00 |Og

(Notice that F(6, k) is the reciprocal of the capacity of a particular uni-
form hypergraph in the sense of [9].) The exact value of F(b,k) is unknown
for 6>k > 2. The best available bounds are due to Fredman and Komlés [4]
and Korner and Marton [8], cf. also [9]. In said papers rather sophisticated
information-theoretic proof techniques are used to obtain lower bounds. In
exchange, in [4] the upper bound is derived using plain random selection.
In [8] and [3], independently, this upper bound was improved in the case
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In [8 and [3], independently, this upper bound was improved in the case
b—k = 3, thus showing that random selection gives rather poor results for
this problem. In this paper we concentrate on problems related to this par-
ticular case which we like to call the problem of trifference. We recall the
corresponding bounds available in the literature.

Korner and Marton [8] have proved

) log| s f(3'3)s ES?

Numerically, this means that
1.709 <F(3,3)" 4.717.

The upper bound is implicit also in [3].
Now we consider the following related problem.

Definition. We call the binary sequences x = x\,x%..., xt,y = 21, 22?

.yt and z =12\, z2,..., zt quasi-trifferent if there exists a coordinate 1<

AN i<t —1 for which the ordered pairs (xi,xt+1), (y,-y,-t1), (z,-,z!+1) are all
different.

Let Y2(2,3,n) be the minimum number t for which there exist n binary
sequences of length t such that every three of them are quasi-trifferent. Set
72(2.3) = liming Y 2230

71— »00 Iog n
(Note that any three pairwise different binary sequences are trifferent at
some two coordinates, i.e., if there is no restriction on the (relative) location
of these two coordinates.)
The result of this section is the following

T heorem 1
*2(2,3) >2.

P roof. Let D be a quasi-trifferent set of f-length binary sequences, i.e.,
any three sequences in D are quasi-trifferent. Let B = {0,1}1+25 and for
each y £ B let A(y) denote the set of all f-length binary sequences the even
numbered coordinates of which form vy.

Now we use double counting for the pairs (x,A(y)) where x £ D, y GB
and x € A{y). Since every x £ D uniquely determines the corresponding A(y),
obviously |[{(x, A(y)):x £ A(y), x £ D)\ = \D\. On the other hand, \A(y) D
n D| <2 for any fixed A(y) since three binary sequences that coincide at
every even-numbered coordinate could not be quasi-trifferent. This implies

\{(x,A(y)):xED ,xEA(y)}\<2\{A(y):yE{O, I} }\r2-2",
Combining this inequality with the previous equality we get \D\ #
£ 2 +211/2). This implies n ™ 2 «21y2(2'3,n)/2) and thus the theorem follows. O

Tedious calculations give an upper bound by random choice that we omit
here because of its irrelevance.
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Tricolored triangles

Let Kn denote the complete graph on n vertices. An edge-tricoloring
of Kn is a partition of the edge set of Kn into three different classes. We
refer to the members of these respective classes as red, blue and green edges,
respectively. We call a triangle edge-tricolored (ET) if all its edges are
colored differently. Let t(n) denote the minimum number of edge-tricolorings
needed to make every triangle ET in at least one of them. Write

T =limjinf '(")
n—®0 logn
Determining T seems hard and our lower and upper bounds are far apart.
The lower bound is trivial. The main interest of the next result is that the
upper bound is obtained via an explicit construction for this does not seem
to happen frequently with similar problems.

T heorem 2.

<T< 1
log 3
Proof. The lower bound is trivial. In fact, fix any vertex and look at
all the adjacent edges of which there are n —1. Clearly, any two of them
must have differing colors in at least one tricoloring. This gives

log(rc~ 1)

log 3 <i(n).

To prove the upper bound, assign to every node of Kn a different bi-
nary sequence of length [logn]. We will define [logn] edge-tricolorings of
Kn through these sequences. Let us look at the edge having the different
vertices a and b as endpoints. Let x=x\,x2,¢¢¢ % and y=jq,y2,..., yt be
the corresponding binary sequences. Define the z'th tricoloring of (a, 6) as
follows.

Let (a, b) be blue if x; = -

Let (a, b) be green if x, ™y, but Xj —yj for all j <i.

Let (a, b) be red else.

Let us say that the i’th coordinate cuts the edge (a,b) if the z’th coordinates
of the sequences assigned to a resp. b are different, i. e, if x, 7 j/,. We
claim that the edges of every triangle get 3 different colors in a coloring in
some coordinate i > 1. To prove this, notice that every edge of Kn is cut in
some coordinate and that a coordinate cutting any edge of a triangle will cut
exactly two of them. From these two observations it follows that in every
triangle at least two different pairs of edges are cut in some coordinate.

Now fix a triangle and consider the smallest coordinate i for which all
the edges of the triangle are cut in some coordinate with j <i. This means
by the foregoing that in this coordinate i there is an edge cut for the first
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time and therefore never cut in a coordinate j <i. Notice, however, that the
triangle cannot have more than one edge with these properties, for some pair
of edges had to be cut before. Furthermore, there is an edge that is not cut
in the Pth coordinate. This proves that our triangle has tricolored edges in
this coordinate. Thus

t(n) <[logm —1. O

It seems unlikely that the lower bound be tight. In this context, it is
worth noticing what happens if we just want to bicolor every pair of adjacent
edges. More precisely, let u(n) be the minimum number of edge-tricolorings
needed to make every pair of adjacent edges of K n bicolored in at least one
of the tricolorings. Write

U= timinf UM
n —+00 |Og n
We have
P roposition 3. 1
U=
I°g 3

P roof. The lower bound is true by the same argument as in Theorem 1.
To prove the upper bound label every vertex of Kn by a different ternary
sequence of length [j§|§81- Next label every edge by the modulo 3 sum of
the ternary vectors assigned to its two endpoints. The Pth coordinates of

all these vectors give rise to the Pth edge-coloring in the obvious way. It is
immediate that this family of colorings satisfies our condition. O

Other tricolored subgraphs

It follows from our previous observations that substantially more tricol-
orations of the edges of Kn are needed to tristinguish any triple of edges of
the complete graph on n vertices than to tristinguish just the three edges of
triangles. In fact, by definition, the number of tricolorings needed to tristin-
guish every triple of the edges is T(3,3, (I)) which is about 2F(3, 3) log n
> 3.4 logn while we have seen that for the tristinction of the three edges of
any triangle we need not more than about log n tricolorings of the edges.
It is therefore interesting to understand what happens if we want to tristin-
guish the three edges of some other 3-edge subgraphs of Kn by the minimum
number of 3-colorings of the edges of this complete graph. In particular, it
is interesting to see whether there is a single type of subgraph which in itself
is responsible for the total number of colorings needed to tristinguish all the
edge triples of Kn, in the asymptotic sense.

MAGYAR
TUDOVIANYCS AKACHVIA
KENYVWTARA
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Let s(n) denote the minimum number of tricolorings of the edges of Kn
needed to make every tristar edge-tricolored in at least one of them. (Here
a tristar is a graph on 4 points with 3 edges all of which have a common
endpoint. Just as for triangles, we say that a tristar is edge-tricolored if all
its edges are colored differently.) Write

5= o i
We have

P roposition 4.

S =F(3,3).

Proof. The lower bound F(3,3) <5 follows from the fact that if we
want to tristinguish just the n —1 edges meeting in a single fixed vertex of
Kn, then this is equivalent to the problem of trifference and thus

Y (@3,3,n- I)<s(n).

To prove the upper bound label every vertex of Kn by a trifferent ternary
sequence of length y(3,3,n). Then label every edge by the modulo 3 sum
of the ternary vectors assigned to its two endpoints. O

We will call trident a graph on 6 vertices with three vertex-disjoint edges.
Let r(n) denote the minimum number of tricolorings of the edges of Kn
needed to tristinguish the three edges of any trident in at least one of them.
Write further

R = liminf
n—eo log Tl

We claim that

P roposition 5.
R = F{3,3).

Proof. The lower bound .F(3,3) ~ R is obvious. In fact, notice that a
maximal matching of the graph consists of [|J pairwise vertex-disjoint edges.
If we only restrict ourselves to coloring these, we see that T (3,3, |_.\) » r(n).

To prove the upper bound, let us assign trifferent ternary sequences of
minimum length to each of the vertices of Kn. Next assign to every edge
one of the ternary sequences assigned to its two endpoints in a completely
arbitrary manner. The sequences will define the tricolorings in the obvious
way establishing

r(n) *y(3.3,n). O

The last proposition is somewhat surprising for numberwise the configu-
ration of three vertex-disjoint edges is dominant among all the configurations
of three edges. The proof shows that for very general criteria for colorings of
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k vertex-disjoint edges the minimum number of colorings is asymptotically
the same as for criteria on vertex-colorings involving arbitrary fc-tuples of
vertices. The same remark applies for stars with k edges.

All our above constructions share the feature that the edge-colorings are
constructed from vertex-colorings in a straightforward manner. We wonder
whether this is due to our lack of imagination or something more relevant to
the subject.

We have failed to give non-trivial bounds for the minimum number of
tricolorings needed to tristinguish the edges of the two missing subgraphs.
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DISCREPANCY ESTIMATES FOR SETS WITH SMALL BOUNDARY

M. LACZKOVICH

Let p be a non-negative, finitely additive measure defined on the mea-
surable subsets of the fc-dimensional unit cube k= [0,1) . The quantity
D(p\ H) = |p{H) —x«(H)\ is called the discrepancy of p with respect to the
set H C1k. The family of all cubes, intervals, and convex sets contained in
1 k will be denoted by qk, 1k, and ck, respectively. We define

Da{p) =sup{D(p; H):He Qfc}, D(p) =sup{D(p; H):HE£1k}, and

Dc(p) =sup{D(p; H) :H eCk};
then we have Dq(p) < D(p) <Dc(p) for every p.

It was proved by E. Hlawka that Dc(p) » CkD(p)2* holds for every p,
where ck is a constant only depending on the dimension k (see [1], or [2],
Theorem 1.6, p. 95).

A substantial generalization of this estimate was given by H. Niederreiter
and J. M. Wills in [6]. Let b:(0,00) -* (0,00) be an increasing function such
that lime +o+b(e) = 0, and let Mb denote the family of those subsets H C I k
for which

e L kK\H :dist (x, H) <s}) <b{e)
and
Afc({x 6 H :dist (x, Ik\ H) < £}) £ b{e)
hold for every e > 0. Niederreiter and Wills prove that

D{p-H) <:4b{2VkD{p)1/k)

holds for every H € Mb, supposing that b(e) > e for all e > 0. They actually
give a somewhat better, but more complicated estimate, which holds also
without the condition b(e) * e. If H is convex then H € Mce and thus the
special case when b(e) —Ce gives Hlawka’s inequality.

For this special case W. M. Schmidt [8] proves the sharper estimate

D(p-,H)<CkDq(p)I k;

that is, in this case D(p) can be replaced by the smaller Dq(p).
In this note we show that in the theorem by Niederreiter and Wills D(p)
can be replaced by Dq(p) for every 6(e).
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Theorem. FOreveryincreasingb: (0, o0) —m0, oo) andfor every H £ Mb
we have
D(fi\ H) < Ckb(VkDq(fi)VKk),

where the constant Ck only depends on k.

Proof. We shall use the following notation. If r is a positive integer,
then we shall denote by Qk< the set of cubes

n (a, = I,... ,r, *= 1, — k)
For every m £ N we put

= + a,£Z i=1,...

Thus T> is the set of unit cubes. The system of dyadic cubes is defined as
vt= Ucinp
m=0

Foreverya£ Rand AC  we shall denote aA —{ax :x £A). The boundary
and the closure of the set A will be denoted by dA and cl A, respectively.
The cardinality of a (finite) set E is denoted by |17].

Let b: (0,00) —(0,00) be an increasing function and let H £ Adb be
arbitrary. Since Dq(p) * 1, there is a non-negative integer s such that

Q) Dq(p)-Vk<2s<2Dq(prlk.
We put r=2s, E={Q £ Qkr:QNndH £ 0},
HMUiQeQk'T-QcH and QndH =<}=H\[J{Q :Q £ E},
and
H2=|H{Q£ QkemQ (NdH "9} =H U (H{<D5:QeE}.
Then H\ CH CH2and hence

- *k(Hi)) + (ak(H,) - ak(H)) T p(H) - ak(H) <
(P(H2) - ak{H2)) + (Xk(H2) - ak(H)),

which implies

D(p\ H) $ maxD(p-, Hi) + max|Afc(/f,) —\ k(H)\.
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If Q GQktr then \x —\ < \fk/r for every x,y GQ and hence

H2\ H C {x GIk\ H :dist (*, H) < Vk/r},

and
H\ Hi C {x GH :dist (x, Ik\H) < Vk/r}.

Therefore, by H GMb and by (1) we have
max|Afc(ir,) - Xk{H)\ ~ b(Vk/r) <b(VkDg{")xlk) =f60

and thus

2 D(n;H) < fﬂi)éT)(A; Hi) -f bO.

Since AS(U{Q:Q GE}) = (H2\ Hi) <260, we have \E\ <2rkb0. It is easy

to see that dHIHint1k C U{dQ :Q GE} (i= 1,2). Let A*_i denote the
k —1-dimensional Hausdorff measure (surface area); then we have

(3) Ajt!(dH, DintIk)» ~  Afc 1(dQ) —\E\2krl~k”" 4krbo  (*= 1,2).
QeE

If k = 1then this means that dH, fl (0,1) contains at most 4r60 points and
hence H, is the union of at most 4ri»0 non-overlapping intervals. Therefore

) D(fi;Ht)<4rbOD(n)=4rb0Dg(n)

since, for &= 1, -D(/i) = Dq(n). By (1) we have rDg{n) <2, and hence (2)
and (4) give D(n; H) <980 This proves the theorem for k = 1.

Now, in order to estimate D(n; Ht) in the case k >2, we shall need some
additional notation.

If A is a system of sets, then we shall denote by 5(*4) the closure of A
under the operations of disjoint union and proper difference (A \B , where
B C A) with the restriction that each element of A can be used only once.
This system can be defined inductively as follows. We put So(A) = .4u{0}.
If 5n(™4) has been defined then we put a set A into 5n+i(.4) if and only if at
least one of the following conditions is satisfied: (i) A G5n(™); (ii) there are
disjoint subsystems A\, A2CA and sets A\ G5n(™4i), A2GSn(.42) such that
A=A\ UA2and A\ ft A2= 0; (iii) there are disjoint subsystems Ai,A2CA
and sets Aj GSn(Ai), A2G5n(A2) such that A= A\\ A2and A2CAL1. This
defines 5n(A) for every n GN. Finally, we take 5(A) = UETO5n(A).

If Ai,... ,An are measurable subsets of Ik and H G5({Aj,... ,An}),
then we have

D(jr,H)<A2D"Ai).
1=
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This is an easy consequence of the definition of 5({Ai,... ,A*}), and the
fact that An B = 0 implies

fi(AUB) - Xk(AuB) = (fi(A) - XK(A)) + «/i(s) - xk(B))
and that B C A implies
H(A\ B) - Xk(A\ B) = (Ix(A) - Xk(A)) - (p(B) - Xk(B)).

We denote Qo = rlk, then Qo€ TX Let Ji'i = H\ if Ak{H\) £ 1/2 and
let K\ =1k\H\ otherwise. Then rK\ is a finite union of unit cubes, rK\ C
C Qo and Ajt(rA'i) < Xk(Qo)/2. By Lemma 3.2 of [3], this implies that there
are dyadic cubes Qi. ... ,QnC Qo such that rKi € S({Qi,... ,Qn}) and for
every m £ N,

- Xh-i {d(rKi) n int Qq)

where Ck only depends on k. Since k ~ 2, this, together with (3) imply

n—A~  nm<2CkXk-i(d(rK\) fiint Qo) ~ ACkrk~I Xk \{dK\ Aint 1 k) =
m —0
) 2Ckrk~1Xk-i(dHi flint N 8CKkkrkn0.

Putting T,=r_1Qi (t= 1,... ,n) we have K\ £ 5({Ti,... ,Tn}) and hence,
by (1) and (5),

D{WH1) =H(z;Ki) g  D{n\T,)) <nDa{n) i 8CkkrkbDafy) <8Ckk2Kb0.
t=i

The same estimate holds for and hence, by (2), the theorem is
proved.

Remarks and problems. The theorem by Niederreiter and Wills has
applications in numerical integration (see [5], p. 982). Recently it found an
application also in the theory of equidecomposable sets. In [4] we proved
that if A,BC are bounded measurable sets with the same positive mea-
sure and if the box dimension of dA and dB is less than k, then A and B
are equidecomposable using translations. The proof is based on a sufficient
condition of equidecomposability using the discrepancy of some special se-
quences ([4], Theorem 1), and, in order to apply this condition for the sets
A, B in question, we need the estimate given by Niederreiter and Wills. It is
interesting to note that both this sufficient condition and our theorem above
use the same combinatorial result (Lemma 3.2 of [3]). In connection with
this result the following question arises.
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Suppose that the set H C Rt is the union of finitely many unit cubes. Is
it true that H is the union of at most Ck”*k-i{dH) non-overlapping cubes
(with a constant Ck only depending on k)?

There is another important problem concerning our theorem above, name-
ly the question whether or not it is really an improvement of the result by
Niederreiter and Wills. The same question could have been asked about
W. Schmidt’s theorem [8] stating D(r\H) < CkDq(B)I"k for H € Mb with
6(e) =Ce. The point is that replacing 2)(/i) by Dq(R) leads to an improve-
ment only if Dg(p) is smaller than D(R). But is it really smaller? When |1
raised this question in the Research Group on Uniformity and Irregularity
of Partitions, Imre Rlzsa proved that for k = 2 the answer is no: there is an
absolute constant C such that D(fi) < CDq(fi) for every # defined on |2 (see
[7]). His proof does not work in higher dimensions, so the following problem
remains open.

Does there exist a constant Ck depending only on k such that every
measure # defined on |k satisfies D(B) i C kDq(R)?
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LOW-DISCREPANCY SEQUENCES AND NONARCHIMEDEAN
DIOPHANTINE APPROXIMATIONS

H. NIEDERREITER

1. Introduction

We consider discrepancy theory in the classical setting, namely for finite
and infinite sequences of points in an s-dimensional unit cube Is= [0, I)s.
Although it has been customary to speak of “finite sequences” in the theory
of discrepancy, we prefer the term “point set” since the discrepancy of a finite
sequence does not depend on the order of the terms. Here “point set” means
the same as “multiset” in combinatorics, i.e., a set in which the multiplicity
of elements is taken into account. Instead of “infinite sequence” we will just
say “sequence”.

Let P be the point set consisting of the N points x0,xi,... ,xjw-i G
Gls,s”™ 1. For asubinterval J of I's the counting function A(J; P) is defined
as the number of integers n with 0O<n”~ N - 1and xnEJ.

Definition 1. The (star) discrepancy of the point set P is defined by

an(P)=sup "y - Vo)

where the supremum is extended over all subintervals J of Is of the form
J=ILW (U). For a sequence S of elements of I s we define DN (S) to be
the (star) discrepancy of the point set consisting of the first N terms of 5.

Informally, a point set P is called a low-discrepancy point set if D**(P)
is small, where N is the given number of points in P. A sequence 5 is
called a low-discrepancy sequence if DIN(S) is small for all N > 1. In the
s-dimensional case, “small” is usually interpreted to mean O(Ar_1(log N)s).
Background material on low-discrepancy point sets and sequences can be
found in Hua and Wang [3] and Niederreiter [8], [17].

The most promising current methods for the construction of low-dis-
crepancy point sets and sequences are based on the theory of (t, m,s)-nets
and (t,s)-sequences. These are point sets and sequences, respectively, which
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Key words and phrases. Discrepancy, nets, diophantine approximations of formal Lau-
rent series, continued fractions.
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show a very regular distribution behavior with regard to special classes of
subintervals of Is. In the following, let s™ 1 be a given dimension and let
6> 2 be a fixed integer.

Definition 2. An elementary interval in base bis a subinterval J of I's
of the form

J = Yl[ath-d,(ai+1)b-di)
t'=i
with integers a, and d, for 1" i <s.
Definition 3. Let 05t ™ m be integers. A (t,m,s)-net in base b is a

point set P of bm points in Is such that A(J; P) = 6( for every elementary
interval J in base b with Vol(J) =bt~m.

Definition 4. Let t~ 0 be an integer. A sequence xo0,Xxi,... of points
in I'sis a (t,s)-sequence in base b if for all integers k >0 and >t the point
set consisting of the xn with kbm <n<(k+ 1)bm is a (t,m, s)-net in base b.

Definitions 3 and 4 were introduced by Sobol’ [18] in the case 6= 2; the
general definitions are due to Niederreiter [10]. It is easily seen that any
(t,m, s)-net in base 6 is also a (u, to,s)-net in base 6 for t*u”m and that
any (t, s)-sequence in base 6 is also a (u, s)-sequence in base 6 for u >t.
Therefore, smaller values of t mean stronger regularity properties. Upper
bounds for the discrepancy of (t,m, s)-nets and (t,s)-sequences have been
established in [10]. These bounds are completely explicit, but for the sake of
simplicity we give them here in an abbreviated form. The implied constants
in the Landau symbols depend only on 6 and s.

T heorem 1. If P is a (t,m, s)-net in base b with s> 2, then
Dn(p)”" 5(s,6)6i7V-1(logNy-1+0(btN~1(\ogA)s' 2).
If either s=2 orb=2,s= 3,4, then

B(s,b) g

otherwise

(IV2)\°
5(56’6) = (TTT)7 {h"™bj

T heorem 2. IfS is a (t, s)-sequence in base b with s> 2, then
D% {S)  C{s, 6)6iiV-1 (logN)s+ O iV -1 (log AO*'1) for 2.
If either s=2 or b=2,s = 3,4, then
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otherwise L 6.1
= - MV
CEBY =5 2[6/2j Wogh J
There remains, of course, a crucial problem, namely that of constructing
(t, m, s)-nets and (t, s)-sequences explicitly. Some special constructions were
given by Sobol’ [18], Srinivasan [19], and Faure [2], In Section 2 we describe
a general principle for the construction of (f, m, s)-nets and (i, s)-sequences.
The most powerful applications of this general construction principle are
based on the machinery of formal Laurent series over finite fields and lead,
in particular, to diophantine approximation problems with respect to the
nonarchimedean degree valuation on the field of formal Laurent series, as
will be discussed in Section 3.

2. A general construction principle

A general principle for the construction of (t, m, s)-nets and (t, *-sequen-
ces was introduced in Niederreiter [10]. Although this construction principle
works for arbitrary bases, we now consider only the special case where the
base 6 is a prime power g. Let Fq be the finite field of order q and let Zq=
= {0,1,... ,g—1} be the least residue system modulo g. For the construction
of nets we fix integers m >1and s >1 and we choose:

(i) bijections  :Zg—Fqfor 0<r <m —I;

(i) bijections 13 :Fq Zqfor 17i%s, 1<j <m;

(i) elements € Fgfor 1M iNs,1<j<m,o<r"m- 1

Forn=0,1,... ,gm—1 let

m—t
n=""ar(n)gr with all aT(n)£Zq
r=0
be the digit expansion of n in base g Put
m
=72 Vnjg~) for o<n<gm,I*ti<s,
i=i
with
(m=A
v = Vi QirVr(ar(n)) 1€ 2q for 0<n<gm1<i<s, 17j " m,

,r=0

and define the point set

(1) X,,= (*£>,... ,scW) €J* for Oin<qgm.
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We collect the elements  GFqinto the system C of vectors

4° = (40 »eom» 1) for 1" *<51<j<m.

Definition 5. For the system C= {c” :1<i<s,17j * m} as above

let g{C) be the largest integer d such that any system {c” :1<j <¢c/,18
<i<s} with0<di®m for 1<i<sand ]JC&i = d is linearly independent
over Fq (here the empty system is viewed as linearly independent).

Here we have followed Definition 4.27 in [17]. Note that this definition is
slightly different from that in the original paper [10]. In fact, if £5i(C) is the
guantity introduced in Definition 6.8 in [10] and g(C) is as in Definition 5
above, then £i(C) = g(C) + 1. We always have 0 < g(C) » m. The following
result was shown in [10, Theorem 6.10] (see also [17, Theorem 4.28]).

Lemma 1. The point set (1) isa (t,m, s)-net in base g witht = m —g(C).

From Lemma 1 and the general discrepancy bound in Theorem 1 it fol-
lows that if P is the point set (1) and s >2, then

DN(P)<B(s,q)g-"c)(\ogNy-1+0 (<re(C)(logN p 2 ,

where the implied constant depends only on g and s. According to [16,
Theorem 1] we have the lower bound

These bounds show that DN(P) is small if and only if p(C) is large. A
general study of how large one can make £5C) was carried out in [15].

The analogous method for the construction of (t,s)-sequences proceeds
as follows. For a given s > 1 we choose:
(i) bijections W:Zq Fq for r >0, with ipT(0) = O for all sufficiently large r;
(ii) bijections r/j :Fg—Zq for 1<i<sand j > 1;

(iif) elements GFqgfor 1~ i~s,j>1r>0.
Forn=0,1,... let

n— afT(n)qr
r=0
be the digit expansion of n in base g, so that all ar(n) GZgand ar(n) = O for
all sufficiently large r. Put

[e]e]

=72 VnjQ~ f°r n=0,1 =*"s,
3=1



DIOPHANTINE APPROXIMATIONS 115
with
vni = Vij (X1 4@ ariny) Yezg for n>01 <i<s,j>1,

and define the sequence

2 xn= for n=0,1,—-

We impose the condition that for each n and i we have <q—1 for
infinitely many j, and in this way we guarantee that all points x, are in
I's. The following result was established in [10, Theorem 6.23] (see also [17,
Theorem 4.36]).

Lemma 2. Let t [>0 be an integer. Iffor each integer m> t the system
C<m) given by

cl')= (40-eee»d [-i) 6 F™ for I<i<:S,I<j< m,

satisfies g(C ") >m —t, then the sequence (2) is a (t,s)-sequence in base g.

Constructions of (t,m, s)-nets and (f,s)-sequences based on the princi-
ples above have been carried out in Niederreiter [10], [11], [12]. Further
applications of these principles will be given in the next section.

3. Constructions based on formal Laurent series

The method of formal Laurent series for the construction of (t, m, s)-nets
and (t,s)-sequences was introduced by Niederreiter [11]. The idea is to use
the coefficients of formal Laurent series over Fq for the construction of the

elements 0-} € Fq that are needed in the general constructions in Section 2.

Let F9((a:_1)) be the field of formal Laurent series over Fq in the variable
x_1. Every nonzero L € Fg((x-1)) has the form

(e]e)

L = "2 tk*~k,
k=w

where w is an integer, all tk 6 Fg, and tw” 0. If we put u(L) = —w and i/(0) =
= —o0, then v is the degree valuation, which is a nonarchimedean discrete
exponential valuation on F9((x-1)). Note that F7((x-1)) contains the field
of rational functions over Fq.

The following construction of (t,m, s)-nets based on Laurent series ex-
pansions of rational functions over Fq was given in Niederreiter [16]. For
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s>2 let / £-Fjz] with deg(/) = m> 1and let <L,... , &£ -Fjz]. Consider
the expansions

/\ 00}

77-r= Cui X £ GF?((z_1)) for 1~
k=wi

where te, < 1for 1 ”~s- Then define
GY = wi-'lj € F, for I"i<s,I<i<m,0<r”~m-1.

With this choice of the elements ¢™? we then apply the general con-
struction principle in Section 2. This yields the point set (1) consisting of
gm points in Is. We denote this point set by P(g,/), where we write g=
= (91, mmm 9s) e P9[z]s. Put

(3) e(g,f) =s- I+ min~deg(/it),
t=i

where the minimum is extended over all nonzero (hi,... ,hs) £ Fq[x]s with
deg(h{) <m for 1~ i~ s and **=1/i<-= O0mod/, and where we use the
convention deg(O) = —1. Then, using Lemma 1, the following result was
shown in [16].

T heorem 3. The point set P(g,f) is a (t,m,s)-net in base q with t =
=m —g(9./).

From Theorems 1 and 3 we obtain a bound for the discrepancy of the
point set P(g,/). In [16] it was also proved that if g is prime (so that Fqand
Zq can be identified), if every bijection 77j is the identity map, and if s 2
and / £ P9[a] with deg(/) = m ~ 1 are fixed, then “on the average” we have
Dft(P(g,f)) = 0(IV_1(log N)s) with an implied constant depending only on
s, where the average is taken over all g= (g\,... ,9s) with gcd(<7,,/) = 1and

deg(i7,) < r for 1q4i<s. For the special case f(x) = xm it was recently
shown by Larcher [4] that by a suitable choice of g we can always obtain

DN(P(g,f)) =0(N-1(\ogNy-"\og\og(N+I))

with an implied constant depending only on s.

In the case s = 2 there is a connection between the quantity g(g,/) in
(3) and continued fractions for rational functions over Fq, where g is again
an arbitrary prime power. Let g= (1,5) with £ Fq[x], deg(<7) < m, and
ged(<7,/) = 1, and let

J —0; A\, A2, eee A\
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be the continued fraction expansion of the rational function g//, with partial
quotients Ad E Fg[X] satisfying deg(A</) > 1 for 1<d<u. Put

(4)

Then it was shown in [16] that

(5) e(gj)=n + 1 -«

The quantity K(g/f) was studied in detail in [9]. The formula (5) makes it
clear that there is a connection between the construction of (i, m, s)-nets in
this section and diophantine approximations in F,((x-1)).

We now introduce an analogous construction for sequences. A formal
Laurent series L E F9((x-1)) is called irrational if it is not the expansion
of a rational function over Fg. For sH we choose irrational Li,... ,LSE
€72((z-1)), say

[e]e]

L{= ur x~k f°r 1=z=s>
k—wt
where W{ < 1 for 1<i <s. Then define
(6) EFq for 17i~s,j >1,r>0.

With this choice of the we then apply the general construction prin-
ciple in Section 2, which yields the sequence (2). The assumption in Lemma
3 below guarantees that the condition imposed after (2) is satisfied; here r}~x
denotes the inverse map of the bijection 77j.

LEMMA 3. If the bijections ryj are such that 1) is*0 and inde-
pendent of j for all sufficiently large j, then for eachn>0 and 1 i~ s we
have y"J <q—1for infinitely many j .

Proof. Suppose that for some n and i we had y* =q—1 for all suffi-
ciently large j. Since for a suitable integer Rnp we have tpT(aT(n)) = 0 for

all r>Rni it follows from (6) and the definition of the y"j that

Rn

Wv(ar (ft)) = Vij1» ~ 1) f°r  sufficiently large j.

By hypothesis, there exists a nonzero m- E Fq such that THlI{qg—1) = m,
for all sufficiently large j. Thus, with a suitable integer jo” 1we have

Rn

AVr(Or(n)K'ij =m* frall =Jo

r=0
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Hence, if we put Kk = for k > 0, then the sequence vO,tq,... of
elements of Fq satisfies a nontrivial linear recurrence relation and is thus

ultimately periodic (see [6, Ch. 8]). Consequently, the sequence u['\ u*\ m..
is ultimately periodic, and so T, is the expansion of a rational function over
Fg, which is a contradiction. O

We assume henceforth that the condition in Lemma 3 is satisfied. Then
the construction above yields the sequence (2) of points in I's, and we denote
this sequence by S(Li,... ,Ls). A fairly detailed analysis of such sequences
can be carried out in the case 5= 1, by again using continued fractions. For
an irrational L € ~((a:-1)) let

L = [A0; A\, A2, ...]

be its continued fraction expansion, with partial quotients Ad € Fq[x],d —
=0,1,..., satisfying deg(A”") > 1for d 1. In the usual notation, let

Rl ra a Ad]
gl =[a°'a
be the dth convergent to L. Then we have deg(Qo) = 0 and
d

deg(Qd)="deg(AHK) for </>1,
k=1

and furthermore
= - deg(Qd) - deg(Qd+1) for d>0;

compare with [13]. We need the following result on best diophantine approx-
imations to L.

Lemma 4. IfheF g[x] with 0<deg(/i) < deg(Qd+\) for some d ~ 0, then
v >y for all be Fqx],

P roof. Suppose that for some b€ Fq[x] we have

Then

v{hL - b) <v + n{h)
(7)
= ~ deg(Q4) - deg(Qd+i) + deg(h) <0,



DIOPHANTINE APPROXIMATIONS 119

and so it follows from [13, Lemma 3] that h = CkQk with Ck 6
and deg(Cfc) < deg(A*,+i) for j <k”m and Cj ~ 0, and that

i'{hL - 6)=deg(Cj) -deg(Qj+1) > -deg(Qj+i).

On the other hand, from (7) we get v(hL —b) < —deg(Qd), and so we
must have j >d. Since deg(h) <deg(Qd+i), we cannot have j >d+ 1, thus
j —d and h=CdQd- This implies

deg(Cj) —deg(Qd+i) —v{hL —h) < - deg(Qd) - deg(Qd+i) + deg(/i)
= deg(Cd) -deg(Qd+i),
which is a contradiction. O

In analogy with (4) we put
K(L) =sup deg(Ad),
(L) I I? g(Ad)

where we may have K (L) = oo.

T heorem 4. If K(L) < oo, then the sequence S(L) is a (¢, 1)-sequence
in base g with « = K (L) —1.

Proof. Let L = AMkLw uk%k with w <1 and let cjr = ur+ as in (6).
By Lemma 2 it suffices to verify that for each integer m>t the vectors

g=(cjo,... ,.gm_i) GF™, I<j<m-t,
are linearly independent over Fq. Suppose that for some m> t we had

m —t

3=1

where not all hj GFg are 0. Then

=t
(8) rEh‘j'dntj—o for 0Or"rA*m- 1
j=i
With h{x) = hjxi~1 GF9[x] we get
m —t \ / o0 \ m —t 00

J2 hix3~X (E UkX~k/):E hi £ ukx~k+3~1
=1 k=w -1 k=w

m —t 00

Fl1  r=w+
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and so by (8) the coefficient of x_r_1 in hL is O for 0~ r m —1. Thus,
v(hL —b) <—m for a suitable b£ Fq[x]. Since deg(h) <m —t —1, it follows
that

(9) deg(/i) + u(hL —b) < —t —I = —K(L).

On the other hand, there exists a d > 0 with deg(Qd) ~ deg(h) < deg(Q"+i),
and so Lemma 4 yields

deg(h) + 1{hL - b) = 2deg(fi) + v ("L - P2deg(Qd) + v ("L - j
=deg(Qd)-deg(Qd+l)- - deg(Ad+l) >-K(L).

This is a contradiction to (9). O
Example. Let g—2 and L = XX~V € -~((z-1))- Then
00 00
L2=J2 *2~21=*Y, X'~2=xL + T
i=1 j=2

and so X=x+ T_1. This yields the periodic continued fraction expansion
L=1[0; x,x,...].

Thus, L is irrational with K(L) = 1 It follows from Theorem 4 that S(L) is
a (0, )-sequence in base 2.

For an arbitrary irrational L £ F9((a;_1)), Larcher and Niederreiter [5]
have obtained a bound for the discrepancy of the sequence S(L) in terms of
the continued fraction expansion. If qdes(Q<-1) < N <qde&Q) for some d't 1,
then

d

D'n {S{L)) <cN-1 qdee{AK)
k=1

with an absolute constant c. Together with the probabilistic theory of con-
tinued fractions for formal Laurent series developed in Niederreiter [14], this
yields probabilistic results on the order of magnitude of D**(S(L)) for “al-
most all” L £ E9((a;_1)), in the sense of an appropriate probability measure.

Now we consider sequences S(Lj,... ,Ls) with any s >1 The following
result of Larcher and Niederreiter [5] establishes a connection with simul-
taneous diophantine approximations in ./A((x-1)). For any L £ /~((x-1))
let Fr(X) denote the fractional part of L, i.e., the part of L containing only
negative exponents.

T heorem 5. If the irrationals ,LSE”((x-1)) are such that for
some integer t* 0 we have
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for all nonzero (hi,... ,hs) £ F9[x]i, then the sequence S(Li,... ,LS) is a
(t,s)-sequence in base g.

An 5-tuple (L\,... ,Ls) issaid to be of constant type if the diophantine
condition in Theorem 5 holds for some t >0. For s= 1 the irrationals L of
constant type are exactly those with K (L) < 0o. For any s >2, Armitage [1]
claimed the construction of an 5-tuple of constant type. It was later shown
by Taussat [20] that none of these 5-tuples is of constant type. This leads to
the first of the open problems that we pose in conclusion.

P robtem 1. Determine whether there exists an 5-tuple (Li,... ,LS) of
constant type for 5> 2.

P roblem 2. Characterize the polynomials / £ Fq[x] with deg(/) ~ 1 for
which there exists a g £ Fg[X\ with gcd(<7,/) = 1 and K(g/f) = 1, where
K (g/f) is given by (4). Partial results can be found in Mesirov and Sweet
[71 and Niederreiter [9].

Problem 3. Givens>2and /£ Fjjz] with deg(/) > 1, develop methods
for the explicit construction of s-tuples g £ P9[a]s with a large value of g(g, /),
where g(g,f) is as in (3). Here, “large” means as close as possible to deg(/).
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FEW MULTIPLES OF MANY PRIMES

I. Z RUZSA

Erd6s (1978) considers (among others) the following question. Let Q =
={pi <p2<... <pn} be a set of primes and | an interval of length N. Let
m(Q,l) be the number of those integers in | that are divisible by at least
one pj and put

m=m(Q, N) —minm(Q,1),

where the minimum is taken over all intervals of length N . Estimate m(Q, N).

If N is small, there may be no multiple in I. If N >pn, each prime must
have at least one multiple, but they may all coincide. If N  2pn is assumed,
then each prime has at least two multiples and under this assumption Erd&s
and Selfridge proved m 2\Jn+ 1- They also constructed examples where
this is exact, and even N > (3—e)pn. The problem for N > 3pn is left open.
We give an upper estimate of m for N ~ gpn which is perhaps not very far
from the actual size, though | cannot find any better lower estimate than
that of Erd6s and Selfridge given for g= 2.

Theorem. Let g >3 and write k = [p]. There is a constant C depending
only on g such that for every n >no(g) there is a set Q = {pi < ... < pn} of
primes satisfying

™(Q,QPn) <C(n logn)1-1/*.
I cannot show the existence of infinitely many such sets Q.
P roof. Define the numbers a and B by

These numbers satisfy

<a <AR.
k+1
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Let N —[A”nlogn], where the constant K will be specified later. Our primes
will lie in the interval (aN, BN). The total number of primes in this interval
is

L =n(BN) —&(qiV) ~ (B- a)-l-aé-N—~ li(R —a)n.
Let A be a random subset of the integers in [1,AT], where each integer

is selected into A with probability cN~x*k- later we specify c in terms of g.
The expectation of the cardinality of A is obviously cNI~1"k.
We call a prime p € (aN, BN) useful, if there is an integer a such that all
integers
/=a(modp), le[l,N]

are in A, and useless otherwise. Let R be the set of useful primes; this is
also a random set (it is uniquely determined by A).

Fix a prime p€ (aN,RN). We estimate the probability that it is useful.
We consider only residues a € ((1 —ka)N,aN). The number of these a’s is

>((k+1)a-1)N-2>~N

for large N with, say, 7= ((k T lI)a —)/2 > 0.
For such a number a the numbers | = a(modp) in [1,]M are a,a +
+p,... ,a+ (k- Dp. Indeed, a<aN <p, soa—p <1, while

a+ kp> (1 —ka)N + kaN > N.

For each number a+jp the probability that it is in A is cN~I/k, thus the
probability that all are in A is ck/N . Hence

P(@a+jp& A for some j) = 1—ck/N,

P(p is useless) < P(a+jp£ A for some j)
a

< (l-ck/NyN<e~"ck< 1/2
if c—(1/7)1*. We conclude that every prime is useful at least with proba-

bility 1/2.
The expectation of \R\ is

m\=Y , P(pis useful) » L/2.
Since [i2| never exceeds L, we have
E|A| <L/4 + LP(\R\>L/4),
and comparing these inequalities we obtain

P(|JA| > X/4) > 1/4.
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Since
E|A| = cNI~1tk,
by Markov’s inequality we have

P (JA| >4ciV1~1Ulc) < 1/4.

Consequently there must be a choice of A such that |j4| < 4civV1l 1/t and
\R\ > L/A. Since L ~ K(RB —a)n, with K = 5/(/3—a) for large n we have
\R\ >n. Select a subset Q C R with |Q| = n; this will be our set of primes.

For each p £ Q let ap be the number making p useful. Take an integer s
that satisfies all the congruences

= -ap(modp), pEQ.
In the interval [s-f |,s +JV] all multiples of p lie in the set s+A, that is,
their total number is

<IA| <C <C(nlogn)l-1/t

as claimed. Since all the primes were » BN = N/ g, the condition N >gpn is
also satisfied.

REMARK. The same argument can be used to find an interval of length
N, in which the total number of multiples of all primes aN <p<N \s small.
This problem was also proposed by Erdds. The difference is that we need all
primes, not just a positive portion. This can be achieved if

P(p is useless) » N~2
for all p> aN. If a > 1/k, k integer, then similar arguments show that this
holds if the probability of selecting a number into A is c(log with

a suitable c. In this way the minimum of the total number of multiples can
be shown to be 0 ((log N) ¥V kN 1~VK).

Acknowledgements. | profited much from discussing this problem
with P. Erdos. The idea of applying a random construction to this problem
was inspired by a remark of Erd6és and Spencer (unpublished) about a related
problem of mine concerning the maximal number of arithmetical progressions
with different increments in a set of n numbers.
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SETS OF SUMS AND COMMUTATIVE GRAPHS

I. Z RUZSA

1. Introduction

For two sets A, B (in any structure with an operation called addition)
by their sum we mean the set

A-fB—{a+bid6 A, 6£ B}.
We use A —B similarly. For repeated addition we write
Ak = A-\---- + A (k times),

in contrast to
kA = {ka :k £ A}.

We shall be interested in the “impact” of a fixed set B, that is, we want
to know how “bigger” A + B must be than A. There are different ways to
measure size: cardinality of finite sets, density of infinite sets of integers,
measure of sets of reals, and all give rise to similar problems. Here we focus
on the finite case. We shall consider finite sets of integers, of lattice points,
and of elements of an arbitrary commutative group.

For a fixed finite set B, we define its impact function by

(1.1) f(n) =fR(n) = min{JA + B\ : |A| = n}.

We want to understand the behaviour of this function. It turns out that the
asymptotic behaviour of £ depends only on a few simple properties of B. For
instance, if B C Zd is a set of lattice points in d dimensions (which is not
contained in any affine hyperplane), then we have

(1.2) E()L/d-n 1/d- 17 2.7,
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where B* is the convex hull of B, p denotes volume (Lebesgue measure) and
i is the index of the subgroup generated by B —B in Zd.

The basic tool in proving (1.2) and related results will be a graph-theo-
retic method developed by Pliinnecke [13] and explained in detail in Section
6.

The paper consists of two parts. The first is a survey of related results,
and the second is devoted to the proof of an effective version of (1.2).

We use this occasion to introduce a few basic conventions.

We shall work in a d-dimensional space Rdfor a fixed d. Volume (Lebesgue
measure) will be denoted by p.

By a lattice we mean a discrete additive subgroup of Rd\ sublattice means
an additive subgroup of a lattice. For the most important lattice Zd (points
with integer coordinates) we preserve the notation L.

X* denotes the convex hull of a set X .

Ci, C2,.. mare constants that may depend on the dimension d.

PART I

2. Bases, essential components, density

From the related concepts of cardinality, density, measure, definitely car-
dinality is the simplest, but historically the first to get investigated was
density.

In 1932, to establish his famous quasi-Goldbach theorem, Schnirelmann
introduced a new concept of density. For a set A of integers we write

T(x) = |Tn[l,z]],

its counting function. (A may contain negative numbers, but they are ignored
in the definition of A(x).) The Schnirelmann density of A is the number

£(A) —inf 'V'n”)

Observe that if 1£ A, then automatically c(A) —0. In comparison with the
asymptotic density

d(A) = XIim
or the corresponding lower (upper) density in which the liminf, limsup is
taken, there are fundamental differences. Asymptotic density is transla-
tion invariant and remains the same if finitely many numbers are added or
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deleted. The Schnirelmann density does not have these nice properties. To
compensate for this, Schnirelmann proved the inequality

(2.1) a{A +B)"0o(A) +0o(B)-0(A)o{B)

for sets, at least one of which contains 0. Using (2.1), he proved that every
set A with afA) > 0 is a basis, that is, Ak DN for some k. He then applied

this to the set
A= {0,1} U{p+ q:p, q primes},

to prove the quasi-Goldbach theorem, which means that every sufficiently
large number is the sum of k primes with a certain constant k.
A direct analog of (2.1) for the asymptotic density fails, as the example

A= B = {even numbers}

shows; here d{A + B) = d(A) = d(B) —1/2. There are more complicated
results that describe the connection of d(A + B) to d{A) and d(B); for these
and other improvements and variations of (2.1) we refer the reader to the
book of Halberstam and Roth [6].

(2.1) has the consequence that if 0GB and o(A) > 0, then

(2.2) a{A + B)>a(A)

for every set A such that 0< g(A) < 1. Sets B that have property (2.2) are
called essential components. In 1935 Erd8s proved that every basis satisfies
(2.2) as well; he gave the estimate

2.3) 0(A + B) >cr(A) + °{A){;l;(t{A))
whenever B is a basis of order k, that is, Bk DN, and 0 GB.
We can define the (Schnirelmann) impact function ofaset B for 0" x <1

by
(2.4) f(z) =£s(z) = inf{a(A + B) :<r(A) >x}.

Observe the analogy to (1.1); only the way of measurement of size is different.
Every set with £(z) > x for all 0 < x < 1 is an essential component, and
the converse is also true (though not completely obvious). (2.1) and (2.3)
estimate the impact function of sets of positive Schnirelmann density and
bases, respectively. The name itself is much younger than these results, it is
probably due to Pliinnecke [12] (Wirkungsfunktion).

Essential components that are not bases were first constructed by Linnik
in 1942; see Ruzsa [18] for the thinnest possible ones.

A substantial improvement of (2.3) was given by Pliinnecke [13]. He
proved that for bases of order k we have

2.5) ofA £ B) > e(A) 17K
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It is immediately seen that for cr(A)-»0 (2.5) is of a much larger order of
magnitude, but it is also better for any cr(A).

Pliinnecke’s method of proving (2.5) will be one of our main tools and
will be explained in detail in Section 6.

Various improvements of (2.5) were given for specific sets. Pliinnecke
[11] investigated squares and in general, sets of the form

B = {[f{n)]:nEN}

where / is a smooth function. | considered squares and primes in [16], and
prime-powers in [17]. Asymptotic density is also considered in these papers;
there is often a striking difference between Schnirelmann and asymptotic
density. For example, if P is the set of primes (and 0 and 1), then we have

but
£'(x)x -
[og 1og 37X

where £' denotes the impact function defined for asymptotic density (in (2.4)
we replace £ by d).

3. Results on finite sets

In comparison to the density, little attention was paid to the correspond-
ing finite questions. We have the obvious inequality

(3.1) \A + B\>\A\ +\B\-1,

in which equality holds if and only if A and B are arithmetic progressions
with a common difference. Freiman devoted a book [1,2; see also 4] to
the important special case when A =B. His deep main theorem essentially
characterizes those sets A that satisfy

\A + A\<:c\A\.

He also improves (3.1) for A = B CRd. Assuming that A is proper d-dimen-
sional, that is, it is not contained in an affine hyperplane, he shows

(3.2) A+ A[>(d+DIA[-"~",

which is best possible in this generality.
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Freiman, Heppes and Uhrin [5] consider another important subcase,
namely B = -A. They prove the analog of (3.2):

(3.3) VA-A\S (i+ DVAV-AT£A

However, unlike (3.2), (3.3) is probably not optimal for large |A|.

| proved [23] the following common generalization of (3.2) and (3.3). Let
A, B CRd and assume that A+ B is proper d-dimensional (that is, A and
B are not contained in parallel affine hyperplanes). Assume that \A\ —m<
A i?l = n. Then we have

(3.4) \A+B\*.n+dm-—

Here the constant term can be improved to d if n—m > d (which is also
exact).

The papers Freiman-Pigaev [3], Ruzsa [14, 15, 19, 20, 21] treat related
questions in which not the structure of the sets is connected with the cardi-
nality of sumsets, but different cardinalities to each other. For instance, if
IA\ =n, then with the notation s=\A+ A|/n we have

riy/s <\A —A| < ns2.

A common feature of (3.1-4) is that only the size of the sets is used to
estimate the size of the sum. Now we plan to explore the dependence of the
impact function on the structure, not just the size of the set B. We shall see
that its behaviour at infinity depends essentially on one simple parameter
only, the volume of the convex hull.

The main results of this paper sound as follows.

Theorem 3.1. Let B C Zd. Assume that B is not contained in an affine
hyperplane and define v by

v=p{Bm/i,
where i is the index of the sublattice generated by B —B in L. We have

(3.5 Z(n)l/d- n 1/d™ v 1/d.
An equivalent formulation of (3.5) is
(3.6) £(n) = n + dv¥'dnx~xd + o(nx~x'd).

We have the following effective improvements of (3.5-6).
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T heorem 3.2. With the notations of the previous theorem, if d*. 2 and
n™.v, we have

(3.7) £(n) < n+ dv1?dn1~1"d + C\V2*dn 1~27q,

(3.8) £(n)Vd ~ nVd <vl/d+ c2v2/dn~1/d.

(ci,c2 depend on d.)
Remark. For d =1 we have the obvious inequality £(n) <n+ v.

T heorem 3.3. With the notations of the previous theorems and m —\B\,
for large n we have

(3.9) f(n) >n + dvi*dnl~I"d—c v Ar m_1/2n1_2A

(3.10) t,{n)lIld —nxld ™ v1* —cAv~"™~m~]12n~]" 20\

Probably the real error terms are much smaller than my estimates.

It is possible to treat sets of points that are not necessarily lattice points,
or even sets in an abstract commutative group. Let G be a commutative
group; we use additive notation. Take a finite B C G, and assume for sim-
plicity that 0€ B (this simplifies the description; otherwise we just need to
replace B by B —b for any fixed b€ B, which does not change the impact).
Let G' be the subgroup of G generated by B. By the structure theorem of
finitely generated commutative groups, we have

(3.11) G'~HxZzd

for some integer d, where H is a finite group. Define the dimension of B as
the integer d in (3.11). Let (f):G'—Zd be the homomorphism induced by
the representation (3.11). Define the volume of B as

(3.12) v=\H\g{4>(BY).

It is easy to see that this volume does not depend on the particular choice
of the homomorphism < which is typically not unique (and this also follows
from the theorem below, since a function cannot have two different limits at
00).

T heorem 3.4. Let G be an infinite commutative group, B C G finite,
and define d and v by (3.11) and (3.12). For d > 1 we have

(3.13) £{n)Ild-n 1d-+vlld.

This theorem will be proved elsewhere.
If d =0, then by taking unions of cosets of G' as A, we see that £(n) —n
for infinitely many n.
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4, Results in one and two dimensions

If d =1, then £(n) —n is integer, so the only way it can be convergent is
that £(n) = n-\-v for n > n0(B). We describe the situation more exactly.

Theorem 4.1. Let B be a set of integers, |5 = m, and let v be the
smallest number for which

Be {a,a+g,... ,a+ ig}

for suitable a and g. For any set A with |A| = n we have
4.1) A + B\ >min

In particular, for n >v2/ (m —1) we have
\A-fB\'t n+ v.

This result will be proved elsewhere. Observe that the definition of v is

consistent with the multidimensional case.
In two dimensions, the behaviour of £ is already more varied. We use

ei,e2 to denote the unit vectors.
Theorem 4.2. The impact function of the set 5 = {0,ei,e2} satisfies

(4.2) £{n)-y/n>ylv

for all n.
The proof of this result will be published elsewhere.

Theorem 4.3. The impact function of the set

(4.3 B = {0, ei, e2, —{ei + e2)}
satisfies
(4.4) E(n) - yln<ylv

for infinitely many n.

Proof. Ingeneral, take a convex lattice polygon U with h lattice points
on its boundary (including the vertices) and / lattice points in its interior.
A familiar result from the geometry of numbers tells us that
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This implies that
(4.5) \UnL\ =h+I1=n{U) +" +|.
Put B = UflL; then B* —U and

v=nB*)=1+"~ 1

Now consider the sets Ak —kU C\L. One easily sees that the number of
points on the boundary of kU is kh, and then (4.5) implies

\AK\ =n(kU) + — +1=k2v+ — + 1.

Since Ak + B C Ak+\, for n —\Ak\ we have
f(n)<|,4*+i|.
A routine calculation shows that
yNAK+\\ - \NAK\ < y/v
holds if (and only if)

(4.6) h2< 16u.

The set B defined by (4.3) and its convex hull U= B* give u= 3/2, h=3,
thus (4.6) is satisfied.

I cannot decide what happens if (4.6) fails, except for a few simple sets
like the one in Theorem 4.2. If (4.6) holds, we learned that £(n) —y/n <
< y/v for infinitely many n. | cannot decide whether there is a set such that
£(ra) —yfn < y/v for all n.

5. Results on measure

Take now (Borel) measurable sets in Rd. A famous inequality of Brunn,
Minkowski, Lusternik (which also will play an important role in our proof)
asserts that

(5.1) n(A + B)1tdZn{A)ltd+ p(B)Ifd,

with equality only if A, B are homothetic convex sets. If we introduce the
impact function by

f(x) = inf{/z(A + B) :fi(A) =x},

(this is the third different concept for which we use the same name and
letter), then this can be reformulated as

(5.2) t{x)1'dlx I'd+fi{B)1d.
For this concept | can prove the following analog of Theorem 3.1.
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Theorem 5.2. Let B ¢ Rd, and assume that p(B) > 0. With v= p{B*)
we have

(5.3) f (x)I7<i —i 1/d —>v1/d.

A proof of this result will be published elsewhere.

Comparing this with the Brunn-Minkowski inequality, this tells that for
large x, B behaves as if it filled its whole compact hull. | also have an analog
of the estimate in Theorem 3.3. The estimate of Theorem 3.2 can be replaced
by the obvious

£{x)1/d- x 1/d<v'"d,

which can be shown by taking sets homothetic to B* in the place of A.
In [22] | prove the following measure analog of Theorem 4.1.

Theorem 5.2. Let A, B be bounded Borel sets of reals. Write p{A) = a,
p(B) —b, p{B*) —v. We have

(5.4) p(A + B) ~ min (a + v, *y/a+ \Jbf2\
In particular, if

(5.5)

then
(5.6) p(A+B) >aT v

Observe that here v has a simple interpretation: it is equal to maxB -
—min B, the diameter of B. |can also show that in 2 dimensions, yff{x) - yfx
may not reach y/v.

6. Pliinnecke’s method and an outline

In [13], Pliinnecke developed a graph-theoretic method to study the
Schnirelmann density of sumsets A +B, where A has a positive Schnirelmann
density and B is a basis. In [19] I simplified his proof and applied his method
to addition of finite sets. Let us quote his main result and some consequences.

We consider directed graphs G = (V,E), where V is the set of vertices and
E is that of the edges. If there is an edge from x to y, then we also write x —
—y. A graph is semicommutative, if for every collection (x; Y\ Z\,Z2, ... ,zt)
of distinct vertices such that x —y and y  Z there are distinct vertices
2/i,... ,yk such that x —yt and y, —=z-. G is commutative, if both G and the

graph G obtained by reverting every edge of G are semicommutative.
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Our graphs will be of a special kind we call bridging. By a (k+1)-bridging
graph we mean a graph with a fixed partition of the set of vertices

V =S0USi U... USk

into k + 1 disjoint sets such that every edge goes from some Si-1 into St.
For X, Y CV, we define the image of X inY as

im(X,Y) ={y£Y : there is a directed path from some x £ X to y}.

The corresponding magnification ratio is defined by
D(X,Y) =minj - ZCX,Z+t0j =

For a bridging graph we write
Di(G) = D(S0,Si).
Now Pliinnecke’s result can be stated as follows.

T heorem 6.1 (Pliinnecke [13]). In a commutative bridging graph DX
IS decreasing.

Write a = |5i|/|50|. Since obviously D\ <a, a consequence of Theorem
6.1 is Dk ak. This also can be formulated as follows.

Statement 6.2. There is a nonempty X C So such that
[im(X,S*)|<a*|X]|.

These results will be applied to the addition graph. Let A, B be subsets
of a commutative group. We take the sets So= A, S:= A+Bi (i=1,... ,kK
(in different copies of the group for disjointness), and x —+y for x £ S,_i,
y £ Si if y—x £ B. This graph is easily seen to be commutative, moreover
this corresponds to the commutativity of the addition, which also explains
this term. An application of Statement 6.2 to this graph yields the following
result.

Statement 6.3. Let k be an integer, A, B sets and write |A|=n, |AT
+ B\ —an. There isan X ¢ A, X 0 such that

(6.1) \X + Bk\<ak\X\.

My applications of this method always use only Statement 6.3. The
reader is invited to find other applications.

Now we outline the proof of Theorem 3.1. To get the upper estimate, we
consider sets A of lattice points lying in AB*. Then A + B is contained in
(A+ 1)B*, so we expect to have

IAl~  B¥=\dv, \A+B\&/i((A+ 1)B*) = (A+ I)dv.
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The main difficulty is here that the error terms in the estimates for the
number of lattice points in a domain are bigger than our second main term.

To get the lower estimate, we show that for large k, Bk contains a large
portion of the lattice points in kB*, except those near to the boundary. Then
we show that its discrete impact is similar to the measure impact of kB*,
for which we can apply the Brunn-Minkowski inequality. Finally, Statement
6.3 is used to connect the impact of Bk with the impact of B itself.

PART Il. ESTIMATES FOR THE IMPACT

7. Reduction to the standard case

Definition 7.1. We say that a set B of lattice points is standard, if
0GB and B generates L.

We show that the description of impact functions of arbitrary sets of
lattice points can be reduced to the standard case.

Lemma 7.2. Let B C L be a set of lattice points, not contained in an
affine hyperplane. Let L\ be the lattice generated by B —B and i the index
of L\ in L. There is a standard set B' such that

(7.1) p(B") =p(B)/i-
and the impact functions of B and B' are identical.

P roof. We can achieve 0€ B by a translation, which does not change
the difference set B —B or the impact function. So assume that 0 € B. In this
case B also generates the lattice L\. There exists an isomorphism (f):L —L\
between L and L\. It is a linear function and has a unique linear extension

to Rd, for which we use the same letter. The determinant of the matrix of
Eis the same as the index of L\, hence the set

satisfies (7.1), and it is obviously a standard set.
Let £= £b>C = €b' be the impact functions of B and B'. We show that

£=C- To this end take an A CL such that
Al =n, JA+ 2*|=£(n).
Assume that A intersects k cosets of L\, and write
k
A= (Al + 1)),
j=i
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where Aj C L\ and each tj is in a different coset. The sets Aj + B +tj are
disjoint, hence

\A+B\ ="£\Aj + B\.
Put A'j —<1(AJ); we have

14-1= 171, \Aj+B’\=\Aj + B\
by the isomorphy. Now define A! as

A'=\jJA'+
where zj is selected so that all sets Aj + Zj are disjoint. We have

m =£>"'l =n
and
\A'+ B'\<'£tWA] + B\=Y ,\Ai + B\=ttn)’
thus £'(n) <£(n) as claimed.
Finally we show £(n) ~ £'(n). Take A' C L so that |A|=n, |Al -f B\ —

= £'(n). The set A —<t{A) satisfies |A| = n, |JA + i?| = |Al + B'\ —£'(n), so
indeed £(n) <£'(n).

8. Fundamental sets

Definition 8.1. A measurable set Q C Rd is a fundamental set, if for
every x £ Rd there is a unique y GQ such that x —y € L.

This means that L + Q fills the space exactly. A typical fundamental set
is the unit cube. Any fundamental set obviously satisfies p(Q) = 1.

Lemma 8.2. Every measurable set X such that L + X = Rd contains a
fundamental set.

This is well-known (and easy).

Lemma 8.3. If Uj,... ,ujG i are linearly independent, then the paral-
lelotope
(8.1) P={" Au,;0<A<1j

contains a fundamental set.

Proof. Take an arbitrary x 6 Rd. We can express it uniquely as

x=J>ut.
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Then
y= XM aQu*. . - x~y =" {au. GP,
hence the previous lemma can be applied.
Lemma 8.4. For any set A CL and fundamental set Q we have

(8.2) \A =p(A+ Q).

P roof. This follows immediately from the disjointness of the sets a+ T,
a GA.

Lemma 8.5. Let UCRd, Q CRd and define E CL by
(8.3) E={U-Q)DL.
If Q+ L =Rd (in particular, if Q is a fundamental set), then we have
UCE + 0.

Proof. Take an x 6 U and express it as

*=qt+y, QgeQ,yeX.
We have y=x—q€ 0—Q, so y € E.

Lemma 8.6. IfQ + L = Rd (in particular, if Q is a fundamental set),

then for every U C Rd the number of lattice points in U—Q or U+ Q is at
least p(U).

Proof. Take a fundamental set Qi C Q and define E by
E=(U-QIl)nL-,

our aim is to estimate its cardinality. We apply Lemma 8.5 for Qj in the
place of Q to get UC E + Q\, and then Lemma 8.4 yields

\E\=p(E + Q)<p(U).
To get the result for U + Q, observe that if Q is a fundamental set, then so
is -Q.
We now apply these lemmas to deduce a lower estimate for the number
of lattice points in domains that are homothetic to lattice polytopes.

Statement 8.7. Let V C Rd be a convex lattice polytope with volume
p(V) = v> 0. For any A>d and x 6 Rd the number of lattice points in
XV + x is at least

(8.4) a -d)dv.
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P roof. We may assume that one of the vertices of V is 0. Take d other
vertices Ui,... , that span Rd;these are lattice points. Take a fundamental
set Q that is contained in the parallelotope (8.1). Since u, £V, we have Q C
CPC dV. Now aply the previous lemma to the set U= (A- d)V + x. We
obtain that the number of lattice points in

U+Q=(A-dV+Q+xCA-dV+dV+x=AF+X
is at least
n(U) ={\-d)adv.
Remark. Astandard estimate for the number of lattice points is volume—
—surface. We need an estimate that depends only on the volume.

The example of a simplex shows that for A< d we cannot guarantee the
existence of lattice points in XV + x. The same example shows that even
for large A the din (8.4) cannot be replaced by any number <d/2. On the
other hand, (8.4) can probably be improved if v is assumed to be large.

9. Upper estimate for the impact

Here we prove Theorem 3.2.
Lemma 9.1. £(n+ 1) >f (re) + 1for all n.

Proof. Take aset A with |A|=n+I, \A+B\ =£(n+1). Take an x £ Rd
such that all the scalar products (a,x), a£ A and (b, x), b£ B are different.
Let a* £ A, b* £ B be those points for which they are maximal. Then

(a+ b,x) <(@+ b*Xx)

for all a£ A,b£ B, and equality holds only if a= a*, b = b* This shows that
a* A b* does not have any other representation in the form a+ b. Hence for
A\ = A\{a*} we have a* + b* A\ + B, consequently

En+ 1) = IA+ B\ 1 1+ |Aj+ B\ > 1+ £(n).

Proof of Theorem 3.2. By Lemma 7.2 it is sufficient to prove the
theorem for standard sets, so assume that B is standard. Define Aso that

A- d)d—n,

and consider the sets
Ax= (A5* + x)fU .

We have |AX n by Statement 8.7, hence
(9.1) [AX+ R [M (JA x)™M(n) + |JAX|-n
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by the previous lemma. Let Q denote the unit cube. For any set U C Rd we
have

I a7+ x)nL\dA(\) = n(U),
Jq

thus by integrating (9.1) and taking into account that (A+ 1)5* DAS* + 5
we obtain

li((A + 1)5%) = (A4-1)dv”™ £(n) - n+ Xdv,
that is,

(9.2) N M (A FHINM-AT).
By a mean value theorem we have
9.3 A+ 1)d- Ad<d(X+ I)d 1.

Using the definition of Aand a mean value theorem again, we find

< A= (0 JHA T

*(=)*F (=)
for n>v, with a constant C3 depending on d.
By combining (9.2-4) we obtain (3.7), (3.8) follows from (3.7) and the
inequality
9.7 (I +x)i/*<i + £,

valid for all x >0 and d " 1.

10. Set addition in finite groups

This and the next sections contain some preparation to the proof of
Theorem 3.3.

Let G be a finite commutative group, with additive notation.
Lemma 10.1. LetA,BcG. We have either

(10.1) \A+ B\>\A\ + \B\,
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or
(10.2) A+B=G,

or there is a subgroup H of G such that A-\-B—A +B H and
(10.3) \A+ B\ =\A+H\+\B+ H\-\H\.

This is a very special case of a theorem of Kneser [7]. It is essentially
contained in the papers [8], [9] of Mann (see also [10]), but it is not formulated
there exactly in this way.

Lemma 10.2. LetA,BcG. Assume that 0€ B and B generates G. We
have

(10.4) \A + B\ >min NA| + Ay-, |G| .

Proof. If(10.1) or (10.2) holds, we are ready. Assume that (10.3) holds.
Since B generates G, B <€H , thus B + H consists of at least two cosets of H .
Consequently

\B+H\>2\H\, \B+H\-\H\>"B+2H] > ",

and then (10.3) yields (10.4).

Lemma 10.4. Let B C G. Assume that 0£ B and B generates G. For
every positive integer k we have

(10.5) \Bk\ >min

P roof. The case k = 1is obvious, and (10.4) supplies the inductive step
for a transition from k to k -f 1.

Lemma 10.5. Let B C G. Assume that 0 € B and B generates G. For
f2|G|I

we have Br =G.
P roof. An immediate consequence of (10.5).

11. Estimating Bk

Throughout this section we assume that B CL = Zd, 0GB, B generates
L, \B\ = m and p(B*) =v.
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Lemma 11.1. There is afundamental set Q and a positive integer p such
that

(11.2) Bp+ QDB d+ Q+1
for some t 6 L. Moreover, p can be bounded by
(10.2) p <c5v/m.

Remark. Without (11.2), (11.1) would be almost obvious.
Proof. Select bi,... ,pdEB so that the volume of the simplex

A={"A b, :A>° " A <I}

is maximal, say p{R) = w. Since R CB*, we have w " v.
We claim that the parallelotope

P={"A b, |Atl<I}

of volume 2dd\w contains B. Indeed, every b 6 B has a unique representation

b=]TA,bt.
If we had |A] > 1 for some i, then replacing b, by b we would get a larger
simplex.
Consider the lattice L\ generated by 3bj,... ,3b”" and the factor group
G =L/L\, with the natural homomorphism Observe that

\G\ = [L :Li] = 3dd\w %3dd\v = c6t;.
Take B' = ij(B) CG. We claim that
\B'\ =\B\ = m.
Indeed, take b,b' GB and represent them as
b=J>b, b'=£*l>In
The representation of b —b' is
b-b'=~A(At-A)b', |a - aji<2,

thus b- b'~ L\.
Since B generates X, B' generates G. By Lemma 10.4 we have B'r =G
with
r="%  <cjvm
A*1.
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Take a fundamental set Q contained in the parallelotope
P1= {"A ,b::0<At<I}

(Lemma 8.3). Applying Lemma 8.5 for U= dB* + Q we obtain
dB*+QcE +Q,

where
E={dB*+Q -Q)nL.

Take an e GE and express it as
(11.3) e=y"Q,b,.
From B* CP and Q C Pi we deduce that
(11.4) -1 <a,<d+ 1L
Also, since ) GG = B'r, there are xj,... ,xr GB such that
(11.5) e = xaH--—-- Exr + sil»! H------ T

with integers s, (all multiples of 3, but we do not need this extra information).

Expressing each Xj as a linear combination of the b,’s (with coefficients
that are at most 1 in absolute value by B C P) and then comparing the
coefficients of b; in (11.4) and (11.5) we see that

Is-15a,|+rAr+d+1 =t/

Hence with
t=r(b! H--—- bbd)

we have
e+t—X J +XxXr+ (sj+r,)bi+ eeet+ (ST rbj,

a combination with nonnegative integral coefficients. Here the sum of the
coefficients is
r+(si+r)4-—-%(d+r)=r(d+ 1)+ sx4--—--—-- hsd
<r'2d+ 1) = (r+d+1)(2d+1)
=p<Csv/m.
Since 0 GB, we can add further terms to have exactly p summands.

In the last inequality we implicitly used the fact that v/m cannot be very
small. To see this, decompose B* into empty lattice simplices, each of which
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contains exactly d+ 1 lattice points and has volume > 1/d\. This shows that
vim 1/(d +1)!.
We proved that
E +1 C Bp,

hence
Bp Q E Q-mt3dB TQ

as asserted.
Lemma 11.2. With the same p and t as in Lemma 11.1, we have
(11.6) kB* + Q+tcB{k +p)+Q

for every positive integer k.

Proof. Ifk”d, (11.6) follows immediately from (11.2). Assume k > d.
We have

(11.7) kB* = B{k-d) + dB*

by a special case of the Shapley-Folkman theorem. (For a direct proof of
(11.7) , take an arbitrary b £ B*, express it as a linear combination of at
most d+ 1vertices of B, multiply the coefficients by k and then separate the
integer and fractional parts.) From (11.7) we obtain

kB* +Q+ 1cB{k- d)+dB*+ Q+1
B(k+p—d)+QCB(k p)+Q.
Remark. Considering a set of the form
B ={0,ei,... ,ej, 2ej,3e”,... ,(m- d- lej, ne"}

where ei,... ,e” are the unit vectors and comparing the volumes for k —p-\-
+ d+ 1it can be shown that in our estimate of p at most the constant c5 can
be improved.

12. Lower estimate for the impact

We prove Theorem 3.3.
Lemma 12.1. Forx >0 and y <1 we have

(12.1) @+ z2)y™ 1+ y{x - x2/2).

P roof. We have

log(l+ 2) > x -y
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for x 0. Indeed, there is equality at x= 0 and the derivative of the differ-
ences is

1
1+ x L0
Hence
1+ x)y=exp(j/log(l -ha:)) >exp(y(x - x2/2)) » L+ y(x - z2/2).
Take our fixed set B and a set A with |A] = n, \A 4-B\ —£(n). We want
to show that A + B is large. Define the number a by
(12.2) [A+ 5| =em.

By Statement 6.3 for every k there is a nonempty A' C A (possibly depending
on k) such that

(12.3) \A' + BK\<ak\A\.

Take the number p and the fundamental set Q provided by Lemma 11.2.
We have
Bk + QD{k-p)Bm+Q +t

for k > p, therefore
IA"+ Bk\ =p{A'+ Bk + Q)> p(A' +{k-p)B* + Q)
Z (li(A"+Q)ld+ M((k - p)B*)/d)d= (|A"\I'd+ (k-p)Vv y .
Here We*applied the Brunn-Minkowski theorem (5.1) for the sets Al + Q and
(k-%)ol?nb'ining this with (12.3) and taking d’th roots we obtain
ak/d\A"\i/dMA"\1/d+{k - p)vl/d.
Hence

\A'\lld rA/d

We take fc'th roots and estimate the right side by the previous lemma. With
the notation w= (v/n)2/d this yields

(12.4) aild>1+w-w (» + n

We want to minimize the parenthetic term to optimize the result. Assume
that w < 1/p. Then with the choice

k= ylp/w+ 1 <2yl/p/w
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we obtain
(12.5) i+~ S2/S,

This choice of k is admissible if k >Pi that is, w < I/p, which is equivalent
to n> vpd; for large n this is satisfied.
Substituting (12.5) into (12.4) we find

QuUAdN 1+ w—2,/pw3/2,
which in turn yields (recall that w= (v/n)I"'d)
[{n)I"d—v}d—nxrd((xd — 1) > v—2y/pn.™vid .

Now (3.10) follows by the estimate p< c”v/m, and (3.9) follows from (3.10)
and (9.7).

This concludes the proof of Theorem 3.3, and hence also that of Theorem
3.1
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A PROBLEM IN COVERING PROGRESSIONS

J. SPENCER and P. ERDOS

A natural question in what might be called extremal number theory is to
ask for the largest T £ {1,... ,n} that does not contain any sets A in some
natural family T . For example, when T is the set of arithmetic progressions
of a fixed size k the celebrated theorem of Szemerédi gives that |T| = o(n),
though more precise results have been difficult. When T is the family of
sets {x,2x} such a set T is called doublefree and the problem of finding
its maximal size has appeared in a number of competitions. Fortunately
the problem splits. For each odd u<n let Cu—{u2' :u2' ~ n}. One now
wants T so that each T fl Cu has maximal size. The solution is precisely to
take T to be the set of all u2l where i is even. Its natural to expand the
problem and let T be the family of all sets {x,2x,3x}. Again the problem
splits, for each u relatively prime to 2,3 let Cu= {u2'V :ti2*3] < n}. Now
the problem is not so clean. There is an asymptotic (in n) solution, at least
in theory. For every fixed integer q there are asymptotically values

ué that are relatively prime to 2,3. For each of these Cu looks

the same (when viewed appropriately as a lattice) and so \TC\CW—g(q)
where g(g) can be found (for each g) by a finite, though possibly involved,

computation. Then asymptotically |[T|~ n* so that \T\ ~ cn where

c can be computed (theoretically) to any degree of accuracy by taking g
appropriately large. Here we have examined the natural to extension to
letting T be the family of sets {x, 2x,... ,sx}. Instead of T it is more natural
to consider its complement S. Thus we arrive at the following formulation:

Definition. /S(N) be the minimal size of a set Sq {1,... ,n} with the
property that

5fl {i, 2t,... ,st}i 0 for IMt< re

From our previous comments we know that for all s there is a positive
constant c3so that
/s(n)~csn

as n-*00. Our concern in this paper will be the asymptotics of cs.
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T heorem.

=0
sins

For convenience set At= {t, 21,... ,is).

Let M (t) denote the smallest prime p dividing t, with M(1) = +00. Ob-
serve that the density of integers with M{t) >p is

no-ft"»-1¢«

Pl Sp

where p\ above runs over primes only. All t with M(t)> s give disjoint sets
At and hence 1

@®>s InO Pll) sins

Plns

For the upper bound we shall find a set S that overlaps At for all square-
free t <j. The adjustment to overlapping At for all t is left to the end.

List the primes 2,3,5,... in order for as long as their product is less
than s1/3. Let A denote the first prime not on that list. Basic bounds give
A~ Insl3~ I Ins. Define SMALLP to be the product of all primes p <A so
that SMALLP<sY3. Now place the primes starting with A in consecutive
blocks, each maximal with product less than s1/3. Terminate this process
when the next block would start with a prime p > s 1 Let B be the final
prime in the final block. Let F be the set of first primes of the blocks. For
p GF let BLOCK(p) denote the block of primes of which p is the first, let

denote the largest prime of BLOCK(p), let p* denote the product of all
primes in BLOCK(p) and let r —r(p) denote the size of BLOCK(p). Rough
bounds give that p < 3p for all blocks. (Indeed, except for the first “few”
blocks p(L)~p.) As all p' € BLOCK(p) have we almost have
r~ . The rounddown for r with p large makes this not quite accurate
(the right-hand side being a small integer) but since we stop at p~s J we
can certainly say ¥

ns

TP iRp

for all p GF with room to spare.
With pG F note that (letting p' range over BLOCK(p))

1=J- V- <—y|<|2W|" <i2V o Rl
p r{p . p~r{p p’ plns

As Inp'~Inp for all p GBLOCK(p) we also have

olip S13Y YV piifffins s - p
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We shall denote these as smoothing inegalities, they shall prove useful in the
analyses. Note that if we apply a smoothing inequality to each term of a
sum over all p EF it becomes a sum over all primes p' with A<p'<B.

For any P the set of positive integers t with M(t) > P has density
np<p(l —}), P ranging over primes. This product is asymptotic in P

to ®(hTp)- In application below we will have A< P <B and count t up to
pi or pgH but alwaYs UP t° some dn where d does not depend on n, though it
will depend on s. In that case the number of such t%dn with M(t) > P is at
most with k\ an absolute constant. We call this the sieve inequality
in later analyses.

The set S will consist of four parts, BASIC, CLOSEP, ONEP, NOP,
each designed to intersect different At. Together they will intersect all At
with t squarefree, t < j. Each will have size The analysis of each
is done separately.

» BASIC. For each pair of distinct p,qf F with p< g take all x of the
form

X = (SMALLP)p*g*u
with
n
u<--— and M(u)>q.
~ Spq

Let t <j be squarefree, suppose t has at least two prime factors in [A, B]
and, further, letting p\ <aq\ be the first two such primes, suppose p\,q\ lie
in different blocks. We claim that then there is an x GBASIC with x £ At.
Indeed: set a = lcm(f, SMALLF). Letp,gG.Fbe such that p\ 6 BLOCK(p),
gi € BLOCK(qg). Write t —ap\q\U so that M(u) >q\>q and

We set
X = (SMALLP)p*g*u.

Then t divides x and

X SMALLPp* g~

. < (SMALLP)p*qm<s1/3s1/3sl/3 =s,
t a Pi q\

as desired.

The critical analysis is of the size of BASIC. For a given p,g£ F with
p <qthe sieve inequality gives at most k\ ~ mvalues u so that (employing
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the smoothing inequalities)

\BASIC\ A KU ”In
pﬁ? pging
Ins Ins
A<p'<q/<B sp'g'Ing Inp' Ing
- k3n | a > Inpf
A<q<B AABQ@ q _p
k4n
< E yin g
< N Ininfl< ken
SIN2S oo, sins

as desired.
» CLOSEP. For each p E F take all x of the form
X = (SMALLP)p*u
with -
uf — and M (u) >p.
spl

Let t < j be squarefree, suppose t has at least two prime factors in [A, B]
but now, letting pi <qg\ denote the first two such primes, suppose p\,q\ lie
in a common BLOCK(p). We claim there is an x ECLOSEP with x EAt.
As Dbefore, set a = Icm(f, SMALLP). Then t = apiqd4u with M{u) > q\>p
and u <~ <A-. Set

X = (SMALLP)p*u.
Then t divides x and
vk

X SMALLP p <slV [/3<s,

t a piqi
completing the claim. Now we bound the size of CLOSEP. For a given pE
E F the sieve inequality gives that there are less than k7s 2'np values u so,
employing the smoothing inequality

\CLOSEP\<k7|2)(dFSIOHnlo
Inp'
Ap<B s{p’)2Inp’ Ins

< k8n Y _

5InSASp' (P,)2
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which is actually 0(7x77)-
* ONEP. For each p £ F take all x of the form
X = (SMALLP)p*u
with 71
M(u)>B and uS —.
sp
Let t <j be squarefree and suppose t has precisely one prime factor, call
it pi in [A B] We claim there is an x £ ONEP with x £ At. Let p£ F be

such that pi 6 BLOCK(p). Set a =\cm(t, SMALLP). Then t —ap\u with
M(u) >pi>p and u<-A-<”, Set

x = (SMALLP)p*u.

Then t divides x and
X  SMALLPp*

P\

giving the claim. Now we bound the size of ONEP. For each p£ F the sieve
inequality gives that there are less than kgsp® B different u so, employing

the smoothing inequality and recalling In5 = 0(In s),

<slV /3<s,

\ONEP\<kw Y~
peF

kun E 1Inp’
sins ' 1/0 Ins
A<p'<B

spins

sin2s * ~ p
2" Uijnp < k"n’
sIn2s sins

as desired.
* NOP. All x of the form
x = {SMALLP)u
with
M{u) > B and U%s_'

Let f<j be squarefree and suppose t has no prime factors in [A B]. We
claim there is an x £ NOP with x € At. Set a = Icm(t, SMALLP). Then
t—au with M(u) >B and u<t< - . Set

x = [SMALLP)u
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Then t divides x and

X  SMALLP
¢ <SIt3<S,

giving the claim. Now we bound the size of NOP. By the sieve inequality

1 n

n
N
\NOPA klss InB <K HXsins’

as desired.

Hence the total size of 5 is less than £157x77-

To complete the proof we must find an 5 that overlaps At for all t*
< j, not just the squarefree t. Let m —m{n) slowly approach infinity, for
definiteness take m —[Inn\. For 1£i<m let S, be a set that overlaps all
At for t squarefree, 1 * The argument above still applies as ni~2 is
approaching infinity for fixed s and so there is such a set of size at most
fc1572"-7 » The set i2Si has the same size and overlaps all At for t fi 7 where
i2 is the maximal square dividing t. Let 5° be the union of the 125, for
1<i<m. Then, making critical use of the convergence of S° has
size at most ~16777. Let 51 be all t <7 with a square factor j2,j >m. As
m —m(n) — 00, the size of 51is o(n) (fixed s, n—00). The set 5 =5°U51
then overlaps all At, t <7 and has size less than &177~771 completing the
proof.

(Received February 14, 1994)
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ON THE MINIMUM NUMBER OF EMPTY
POLYGONS IN PLANAR POINT SETS%

P. VALTR2

Abstract

We describe a configuration (related to Horton’s constructions) of n points in gen-
eral position in the plane with less than 1.8n2 empty triangles, less than 2.42n2 empty
quadrilaterals, less than 1.46n2 empty pentagons, and less than n2/ 3 empty hexagons. It
improves the constants shown by Barany and Firedi.

1. Introduction

We say that a set V of points in the plane is in general position if no
three points of V lie on a line. Erd6s and Szekeres [4] proved that for any k
there is an integer n(k) such that any set of n(k) points in general position
in the plane contains k points which are vertices of a convex fc-gon.

We call a subset Ao( k points in V an empty k-gon if the convex hull of A
contains no point of V in its interior. Erd6s [3] asked whether the following
sharpening of the Erd6s-Szekeres theorem is true. Is there an N (fc) such that
any set of N(k) points in general position in the plane contains an empty
A-gon? He pointed out that iV(4) = 5 and Harborth [5] proved iV(5) = 10.
On the other hand, Horton [6] showed that N(k) does not exist for k >7.
The question about the existence of N (6) is still open.

Denote by fk{V) the number of empty fc-gons in V and let

fk{o)— \W\—n and V s in general position}.

Katchalski and Meir [7] proved that there is a constant K < 200 such that
for any n't 3

2 Uf3{n)<lin2
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Horton [6] constructed configurations giving fh(n) = 0, for k> 7. Barany
and Furedi [2] proved

n2—O0(n logn) </3(n) ~ 2rc2,
-n2—0(n) ~/4(n) <3n2,

n
Li& </5(n) <2n2,
1

fe{n) < "n2.

They proved the upper bounds only when n is a power of 2. However,
one can prove them with a bit more effort for any integer n. To show the
upper bounds Barany and Firedi used the construction of Horton [6] giving
fk(n) = 0, for k~ 7. Barany [1] still improved the lower bound on /4(n) to

An2-0(n)</4(n).

In Section 2 we describe two simple random configurations where the
expected number of empty triangles is 2n2+ o(n2).

In Section 3 we show a construction giving the following better upper
bounds:

/3(n) < 1.8n2, /4(n)<2.42n2,
/5(n) < 1.46n2, fé(n)<”n2.

Let us note that the construction in Section 3 is a simplified version of a
complicated construction which gives still a bit better estimations (see also
the remark at the end of the paper).

2. Random constructions

Barany and Firedi [2] proved that the following random construction
gives a similar upper bound of /3(n) as Horton’s construction.

T heorem 1. Let be parallel unit intervals in the plane,
li = {[x,y\ix=t,0<y £ 1}. For any i, choose a random point pi from
Then the expected number of empty triangles in the set V —{p\,P2, ¢« iPn}
is at most 2n2+ O(n log n).

In the following we show that another random construction gives a similar
result:



ON THE MINIMUM NUMBER OF EMPTY POLYGONS IN PLANAR POINT SETS 157

T heorem 2. Let K be a bounded convex area in the plane. Let V be
a set of n points placed randomly (according to a uniform distribution) and
independently inside K. Then the expected number of empty triangles in V
is at most 2n2—2n.

Proof. Without loss of generality, assume the area of K equals 1. Con-
sider two points pi, pj from the set V \= {pi,P2,--- ,p,,}, and denote the
Euclidean distance between p, and pj by /. Define the axes so that p, = [0,0]
and pj = [Z0]. Let Sij be the strip of width | between the y—axis and the
line x = I. For all triangles p,p:pk with the longest side p,pj, the vertex pk
lies obviously inside 5,j. The expected number of points pk from V RFiSI} such
that PiPjPk is an empty triangle can be easily estimated. For any real num-
ber y, define the line segment ly := {[x, i/]:0 <x %/}, and let \ly DK\ denote
the length of the line segment Iy fl K. If |p| > j then Iyfl K —0 (otherwise
the area of K would exceed 1). For any k,I<k”n,k*i, k"],

Prob(pk 6 S,j and PiPjPk is an empty triangle) =

*Prob(prP3Pk is empty | pkGly) dy =

Hence, for any pair {i,j}, the expected number of empty triangles PiPjPk,
where p,pj is the longest side, is at most *2 (~-2) = 4, and the overall

expected number of empty triangles is at most 4(””) = 2n2—2n. O

Note that the estimations of the number of empty triangles for the above
three configurations (Horton’s construction, the random constructions from
Theorems 1 and 2) are the best possible in the sense that the (expected)
number of empty triangles in each of them is at least 2n2—o(n2). In Section
3 we show a configuration with a smaller number of empty triangles.

Let us mention that the method of the proof of Theorem 2 can be ex-
tended to the higher dimension for the counting of the number of empty
simplices. In IRd,d~ 2, d+ 1 points of a set V C IRI form an empty simplex,
if they are vertices of a simplex containing no other points of V.

THEOREM 3. The expected number of empty simplices in a set of n points
chosen independently and randomly (according to a uniform distribution)
from a full-dimensional bounded convex body in IRI,d"2, is smaller than

A(d) < (d-i)\ndm
We omit the proof of Theorem 3 here, it will appear elsewhere.
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3. Construction

We start with Horton’s construction: For any positive integer n, we will
define a point set H(n) of n points. In H(n) the set of the first coordinates
is just {0,1,... ,n—1). First we define by induction a set H(n) when n is
a power of 2. Let H(1) = {(0, 0)} and H{2) = {(0,0), (1, 0)}. When H (n) is
defined, set

H (2n) = {(2x,y) :(x, y) €H(n)} U{{2x+ Ly +dn):(x,y) e H (n)}

where the numbers dn are fastly growing, say = 3" —1. These sets H (n)
are just the sets defined by Horton [6]. Now let n be a positive integer, and
let n' be the least power of 2 which is not smaller than n. Set

H(n) = {(x,y) e H(n") :x <n}.

All y—eoordinates of points of H (n) are smaller than 3n. The building blocks
of our construction are sets Q(n) which are obtained from H{n) by replacing
each point (x,y) by (x, (12 + n)~13~ny). Obviously, all points of Q(n) lie in
the (12+ n)_1—neighborhood of the x—axis ((12+ n)-1 is no specific number;
it is only a sufficiently small positive number). Now let m = 4n be a positive
integer divisible by 4 (for simplicity). We construct an m—point set Sm in
the following way:
Sm = QlUQ2UQ3UQ4,

where

Qi =Q(n), Q2=Q(n) + (* 1),
Q3=Q(n) + (0,2),  Q4=Q(n) + (.3).

Q{n) + (a,b) denotes the set Q(n) shifted by the vector (a,b). So the points
of Sm lie in the (12 + n)_1—neighborhoods of points of the set Sm= N U
(W+(i,1))UQV + (0,2))U(7V+(i,3)), where iV = {(0,0), (1,0), ...,
(n —1,0)}. Note now that the number (12 + n)_1 is small enough in or-

der that the set Sm is combinatorially equivalent to the set Sm, except that
the sets Q,-, z= 1,2,3,4, do not lie on a line.

The shifts (|,1), (0,2), (|,3) in the definition of Sm were chosen to
ensure that e.g. no triangle with one point in Q4 and two points in Qi is
empty. This, and some related properties are used in the proof of Lemma 4
below.

Define, for any s >3, the following two sets:

0,(3) ={<7: g is an empty s-gon in QxUQ2UQ3,gn Q\ ~0,5flQ3#0},
Gs(4)={g: g is an empty s-gon in Q\UQ2UQ3UQ4, gC\Qx" 0,g DQA+ 0}.
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Lemma 4.

IG3(4)[<In2,
|G3(3)|<3n2, g
|C%4(3)I< 3n2, IG4(4)|<-n2,
I"5(3)|<n2, |G5(4)|M-n2,
|G6(3)| = 0, 3

|Ge(4)|<-n2.

Proof. Fori—1,2,3,4, denote the elements of Qi by qij,j=1,2,... ,n
in the order according to their x—oordinates. First we estimate the sizes
of the sets Gs(4). Each empty s-gon g £ Gs(4) contains only one point of
Qi and only one point of Q4. For i,j= 1,2,... ,n, we can easily count the
number of empty polygons g such that gD Qi = and gHQ 4= {54)}-

If i =j(mod 3), then g Q{q\,i, g2 2+,, g3 yeii 94,;} and 9 is one of
the two empty triangles 24 94 and g\y 3, A1 or the empty
quadrilateral qit{ qz 2+) g3 94,-

Ifi=j~ I(mod 3), then g Q{51,, @ 93ilH* 11594} and g is again
one of two certain triangles or a certain quadrilateral.

Ifi=j+ 1(mod 3), then

9 = {91.,0) 92~2ijj_j, 93jp  1» 94,j}

and g is one of four triangles, six quadrilaterals, and four pentagons, or a
hexagon.

There are pairs {i,j} such that i =y+ I(mod3), and there are

I other pairs {i,j}- Therefore

n 2n2
|G3(4)| - T 4+ y I
n "2n2 8 2
G4(4)| = 6+ —nons
| ()l y 1=3°2
Gs(4)| = PR

|G6(4)| = ;,2 el<-nl.

Now we estimate the sizes of the sets Gs(3). Each empty s—gon g £ Gs(3)
contains either one or two consecutive points from Q\. In the second case
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the points from g are from one of the ", ™ sets
{<Z1,0 9l,«+I> 92,.+A, 92, t+A+1. 93,«+2A+l}.
i n——1
—1=pn __ <AL
1=1=n—1) ) )

Each of these sets contains one triangle (g~, i, +i 93,i+2A+i) from (73(3),
two quadrilaterals (qijtgi,,+i 92, '+A 93..+2A+1 and q4)t 91,*+i 92,i+A+i 93,i+2A+i)
from G4(3), and one pentagon (gi.t ghi+l 92,.+A 92.+A+1 93,.+2A+i) from
G5(3).

Consider now the empty s—gons g 6 (7S(3) containing only one point of

the set Q\. Most of these polygons'are contained in one of the nm~1" sets

{91,.! 92..+A-1>92«+A, 93, +2A —1. 93..+2A}?

17 i<n, <A< " O

Each of these sets contains 5 triangles from £ 3(3), 4 quadrilaterals from
G4(3), and one pentagon from G5(3).
For odd i> 1, the points of g can be also from the set {g4,, 92i-i,

R ixii 931} There are such sets, each with two triangles from £ 3(3)
and one quadrilateral from G4(3). For i —1, we have to consider only the
triangle {ql}l g2i g3,i}.

Ifi™ n (mod 2), then the points of g can be still from the set {91,., g2 n+—1,
g2 93,.}. There are such sets, each with two triangles from £ 3(3)

and one quadrilateral from G4(3).
The required bounds follow:

IB@)|=1++il +!1+J+ .5+ "1 .4, 2 )< an

=+ 0+11 n—1
|G4(3)|=+1+1l.2+ M 4+ N
Gs@=+ A +M < +
G6(3)| = 0. .
T heorem 5.
f3{Sm) <1.8mz, h(Sm) <2.42m2,

fs(Sm) <1.46mz2, fe(Sm)<im 2.
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Proof. LetV beapointsetinthe plane and consider two points u\, u2f
EP, u\ = (21, yi), V2= (x2,32)5s "L <% We say that the line segment u\u2 is
open from below if there is no point of V inside the strip S = {(X,y) :x\ <
<x<x2and (x,y) lies below the line uiu2}. A subset X of V is called open
from below if all the line segments connecting two points of X are open from
below. Analogously, we define open from above.

For any positive integer r, denote by hf (V) and hf(V) the number of
r—point subsets in V empty from below and above, respectively.

Barany and Firedi [2] showed
hf(H(n))<2n, {H(n)) < 2n,

and

hA(H(n))<n, hr(H(n))<n.

They proved the above inequalities when n is a power of 2. However,
one can prove them for any positive integer n.

The construction of H (n) is done so that, for any r > 3,
K{H{n)) =h+{H{n)) =0.

Obviously, all the above relations are satisfied for the set H(n) as well as for
the sets Q(n) and Q,,i=1,2,3,4.

For any s~ 3, and any r,0<r <s, the number of empty s—gons G in
Q\ UQ2 with \GC\Q\W\ =r is equal to hf(Qi) mh~_T{Q2). This is carried out
by the construction (more precisely, by the fact that the set Q2 lies entirely
above any line containing two points of Qi and similarly the set Q\ lies
entirely below any line containing two points of Q2)- Thus

5@ U@= 150 +1(@D+E M(QIKT(Q).

Since /s(i?2U1?3) = /s(Qi U(?2) and /*(Q2) = fs{Q\) we obtain

fs(Qi UQ2uU Q3) —fs{Qi uQ2) + fs{Q2 U Q,) - fs{Q2) + 9s5¢(3) =

5—1
=2/s(Qlug2) -/ s(i?i)+5s(3)=3/s(i?) + 2 E ~ +(Qi)*-r(i?2)+55(3).
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Similarly

fs(QiUQ2UQ3UQ4) =
fs{Q1"Q2"2Q3)+ fs{Q2"Q3" Q4) —/s(02UQ3) + gs(4) =

s—32
2(3MQL) +2Y /ht(Qi)h; r(Q2)+gam -
r=
5—11
~(2fs(QI)+ Y /h:(Qi)h7-AQ2))+9s(4) =
r=
. 1
= 4fs(Q\) + 3% hf (Qi)hs_r(Q2)+ 2gs(3) + &(4).
r=1

Now the required bounds follow:

f3(Sm) < 4w2n2+ 3 m(n ®n + 2n *n) + 2-3cmH—§ n2= %nZ: 1791 ...m2,

/4(5'm)<4-3n2+ 3-(n-n + 2n-2n + n-n) + 2-3n2+ én 2= —3-n 2=
= 2.416. ..m 2,
/5(5m) < 42n2+ 3 m2n en + ne2n) + 2-n24—3n2: ?n?z 1458 ... m2,

'\ . - N = N A
fs(Sm)<4Zn2+3 (n n)+21)+0n20 0 n2="m20

The proof that for any positive integer m (not necessarily divisible by 4)
there is a set Sm satisfying Theorem 3 requires only more computation.

Remark. The author [8] constructed, for any n, a set An of n points in
general position in the plane with the following unrelated property: The ratio
between the maximum and minimum distance is at most Q(y/n), and the set
An does not contain more than ("(nY3) vertices of a convex polygon. This is
essentially the best possible result. Imre Barany suggested that the sets An
might be used to improve the best known upper bound of f3(n). Indeed, the
set An contains less than 1.68n2 empty triangles, for any large n. However,
the proof of this fact which we know is involved and so we considered the
simpler construction which gives slightly worse results.

Acknowledgements. The author thanks Imre Barany and Emmerich
Welzl for fruitful discussions.
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STRONG STABILITY OF HILBERT SPACE
CONTRACTION SEMIGROUPS

K. N. BOYADZHIEV and N. LEVAN

Abstract

This paper studies strong stability of strongly continuous semigroups of contraction
operators on Hilbert space by: (i) a canonical decomposition type approach, and (ii) a
Tauberian type approach. In the former we derive a decomposition of the Hilbert space.
This then results in conditions for the semigroup to be strongly stable, as a consequence,
we are able to show that a contraction semigroup with a strictly dissipative generator need
not be strongly stable. In the latter, necessary and sufficient conditions for strong stability
are obtained, in terms of the behavior of the resolvent of the generator on the imaginary
axis. We then give a method for generating “new” strongly stable, weakly stable, or strictly
contractive semigroups from a given one which has the same properties.

1. Introduction

A semigroup T(t), t>0, over a Hilbert space H is said to be strongly
stable if

lim [T()a] =0,  VXx€H.
t—*00

This paper will study strong stability of Hilbert space contraction semi-
groups from two directions.

The first one is based on the canonical decomposition of contractions due
to Langer, Nagy and Foia8 [1]. Here we make good use of the strong stability
operator of a contraction semigroup. First, the canonical decomposition of
this operator and that of its defect operator are combined to give a decom-
position which results in conditions for the semigroup to be strongly stable
(Theorem 1). It has been claimed that a contraction semigroup with strictly
dissipative generator is strongly stable [2]. However, this is not the case in
general, as will be shown using either our decomposition, or using a basic
property of strict contractions (Lemma 2). Secondly, properties of strongly
stable contraction semigroups (Proposition 2) as well as stability properties
of strict contraction semigroups (Theorem 2) are obtained directly from the
strong stability operator. Counterexamples will then be given.

1991 Mathematics Subject Classification. Primary 47D03; Secondary 47A45.

Key words and phrases. Hilbert space contraction semigroups, strong stability and
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The second direction is a Tauberian type approach. We derive a Tauberi-
an type criterion for strong stability using the Nagy-Foia§ Model Theory for
Hilbert space contractions [1]. The key tool of our development is the Char-
acteristic Operator Function (coF) — of the adjoint of the cogenerator of
a contraction semigroup. Necessary and sufficient conditions for strong sta-
bility will be given in terms of the behavior of the resolvent of the generator,
on the imaginary axis (Theorem 5).

We must note that very interesting results have been obtained recently
by Arendt and Batty [3], Lyubich and Vu [4], and Batty and Vu [5], for strong
stability of semigroups on Banach spaces. Their techniques are different from
ours and the conditions are more restrictive.

A nice and interesting consequence of our study is that, by means of
the Functional Calculus of Hilbert space contractions [1], we are able to
generate strongly stable contraction semigroups from a given strongly stable
one (Theorem 6). Thus our paper has three “cluster points”, uniting several
topics and results in one place for convenience.

The main results are given in Section 2. We close the paper with two
remarks. The first one involves a necessary condition for strong stability,
while the second one relates to the generation of strictly contractive, or
weakly stable contraction semigroups from a given one which admits the
same properties (Theorem 7).

Throughout the paper, by semigroups we always mean strongly continu-
ous, i.e., of the class Co, semigroups of bounded linear operators over sepa-
rable Hilbert spaces. A contraction semigroup T(t), t >0, with generator A

will be simply written as [T (f)] or, at times, as eAt.

2. Main results

2.1. Strong stability, strict contraction semigroups. vret [T(t)] b
strongly continuous semigroup ofcontraction operators over a separable com -
plex Hilbert space H, with inner product [.,.] and norm |[[.||, and let A be
its generator.

The Cayley Transform ofA, denoted by T,

T=[A+I1][A-1]-\

is called the cogenerator of [T(i)j, and it is also a contraction operator.
M oreover, a contraction semigroup and its cogenerator share a number of
important properties. We recall here a few key ones and refer to [1, p. 140
and p. 143] for details.

P iti 1. () Forx (~o0)eH: T (i)a:||= i Tna;.
roposition (i) (~0) [T (i)a:]| pm [T na|

lim
t—*00

(ii) A contraction semigroup [T ()] is self-adjoint, normal, isometric or
unitary, if and only if its cogenerator T is of the same type.

@
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(iii) A subspace of H is invariant for [T(i)j if and only if it is invariant
for T.

Let Hu denote the unitary subspace of [T(<)], hence of T also, i.e., the
maximal subspace which reduces [T(f)] to a unitary semigroup. Then its
orthogonal complement in H, denoted by Hcnu, is called the completely
nonunitary (cnu) subspace. This means that the only subspace of Hcu
which reduces [T(i)j to a unitary one is the trivial subspace. These two
subspaces play a key role in the well-known Langer-Nagy-Foia§ canonical
decomposition of Hilbert space contractions [1, p. 9].

It is clear that a strongly stable contraction semigroup is necessarily
completely nonunitary. But a cnu contraction semigroup is, in general, only
weakly stable:

for x and yEH : tIlerO[T(t)x, y] = 0.
This is a consequence of a result on weak stability of contractions due to
Foguel [6].

Now let us define the isometric subspace of [T(i)], and of T also, to be
the closed invariant subspace on which the semigroup acts isometrically, i.e.,
the subspace
(21) BAT) ={xeH: [[T(<)x|| = [Ix]|, t>0} = {xeH: ||T"x][ = [|x]|, n>0}.
It is evident that if [T(t)] is strongly stable then H,(T) is trivial. This, of
course, implies that the semigroup is cnu. However, a cnu semigroup can be
isometric, e.g., a right shift semigroup.

To proceed, we define the strong stability operator of [T(t)] to be the
non-negative contraction C given by

(2.2) C2= strong lim T(t)*T{t) = strong lim T*"Tn.
£—»00 t—*00

This definition makes sense since the contractions T(t)*T(t), t > 0, are non-
increasing. It follows that, for x GH

lexli2= lim [IT (Ox|2

Therefore,
(2.3) kérC = {x G-if: lim ||T(i)x|| = O}

is invariant for [T(i)] and the semigroup is strongly stable on it. Thus we
shall refer to kerC as the strongly stable subspace of [T(i)j and denote it by
HSYT).

Next, let D be the defect operator of the non-negative contraction C,

i.e.,
D={1-C2u12
Then D is again a non-negative contraction, moreover, it commutes with C
[1, P- 7],
(2.9 CD = DC.

We have
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LEMMA 1. For a contraction semigroup [T(i)] with cogenerator T and
strong stability operator C,

(2.5) HUC) = ker (I —C) =ker D —HXT)
and
(2.6) HUD) = ker (7- D) = kerC = H,,(T).

P roof. We have, by definition and since C is self-adjoint,
HUC) = {x e H : ||Cnx|| = ||z||, n > 0}.
Then, since C is a non-negative contraction,
ICX|| = |X[<=>"Ca: = a<=>a:€ ker (I —C).
Thus, for x Gker (7- C),
Cnx —x, Vn”"O.

Therefore
ker (1-C)Q H U[C).
Next we have, again by the fact that Cn is a non-negative contraction,
xeHa{C)*"Cnx=x, Vn>0.
Therefore
HUC)= fl ker(7-C")gker(7-C).
n"O

Thus one half of (2.5) is proven, while the other half follows readily from the
definitions of the operators C and D. Exactly the same argument applies to
(2.6) . This completes the proof of the Lemma.

Now, with respect to the non-negative contractions C and D, we have
the following unique orthogonal decompositions for H:

2.7) H = Ha(C) © 77cnu(C) = HUD) © Hcnu(D).
Next, it follows easily from Lemma 1 that
(2.8) Hu{C)QHcnu(D), HWC)-LHUD), and 77u(7?) Q 77cnu(C).

Combining (2.7) and (2.8) we obtain the unique orthogonal decomposi-
tion:

(2.9) H = HYC) © Henu{C) n Henu(D) © HUD).

We are now ready to state the next theorem.
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Theorem 1. Let [T(E)] be a contraction semigroup over H. Then H
admits the unique orthogonal decomposition:

(2.10) H=Hi(T)®L(T)®H,,(T),

where any one of the subspaces on the right-hand side may be trivial, H\(T)
is invariant for \T(t)) and T(t)\Ht(T) is isometric, HT) is invariant for
[T(i)j and the semigroup is strongly stable on it, while L(T) is invariant for
[r(*n, and

forx 0)GL(T):0< tIlr>r100||T(t)®|| <|z]|.

Moreover, [T(i)] is strongly stable if and only if the subspaces HfT) and
L(T) are trivial.
P roof. The proofisall but trivial. The decomposition (2.10) is actually
the decomposition (2.9) in which we have set
L{T) = Hcnu(C) n Hcnw{D).

This subspace is invariant for [T(i)*] since it is the intersection of two in-
variant subspaces of the semigroup. Finally, for x ((¢0) € L(T) we must

have:
LTt e LI

Otherwise x would either belong to H\(T), or to HYT), which leads to a
contradiction. The last statement of the theorem is self-evident from (2.10).
This finishes the proof of the theorem.

We note that a decomposition similar to (2.10) was obtained in [7] for
completely nonunitary contractions, without using the defect operator D.
Also, HUT) = {0} is a sufficient condition for weak stability, while H\(T) =
= {0} does not, in general, imply strong stability!

More can be obtained from the non-negative contraction C as is shown
below.

It follows readily from (2.2) that, for t >0:

(2.11) T(t)*C2T(t) =C2

Therefore, for x GH and for t~ O:

(2.12) HCT(D)z]| = [IC*]l.

Following Nagy and Foia§ [1], we define V(t), t >0, by
V{t)Cx =CT(t)x, forx £H and fort”O0.

Then it is evident from (2.12) that V(t), t > 0, is a well-defined isometric
semigroup on Cl Range (C) — the closure of the range space of C. Thus if
C >0 then we have
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P roposition 2. If a contraction semigroup [T(t)] is ‘totally’ unstable
on H, i.e.,
for x 0)€H: <|i_%IIT(f)XII > 0,

then it is a quasi-affine transform [1, p. 70] of an isometric semigroup.

We note that the semigroup of Example 2 below satisfies the condition of
this proposition. Also, if both [T(f)] and [T(f)*] are totally unstable then, as
has been shown in [1, p. 79], [T(t)] is quasi-similar to a unitary semigroup.

To proceed we define

Definition 1. (i) A closed densely defined operator A in H is strictly
dissipative if

Re [Ax,x] < 0, for x (YEQO) € Z>(A) — the domain of A.

(if) A contraction semigroup [T(i)] over H is strictly contractive, or sim-
ply “strict”, if

ITHx|| < |Ix]|, fori>0and x  0) € H.

It is evident that if the generator A of a contraction semigroup [T(f)] is
strictly dissipative then [T(i)] is strict. Moreover, if [T(i)] is strict then its
isometric subspace H\(T) is trivial. Therefore a strict contraction semigroup
is completely nonunitary. More is true as it is shown in the next Lemma.

Lemma 2. If [T(t)] is a strict contraction semigroup over H, then so is
[T(tn
P roof. Suppose that [T(t)] is strict and for some y / O

Ir(i)*2/|| = [li/ll, for any t > 0.

Then, for such at> 0:

lyn2= 1] (t)ylla= rOT=yvM
MTOE()FY)] IMEITOM L IME = M= IMI2-

This is not possible, therefore [T(i)*] is strict as claimed. This finishes the
proof.

Let [T(i)] be a strict contraction semigroup and suppose that the impli-
cation “strict  strong stability” holds. Then, since [T(i)*] is also strict by
Lemma 2, both [T(f)] and [T(t)*] are strongly stable. This certainly is not
the case in general. In fact, if [T(f)] and [T(t)*] are strongly stable then the
semigroups belong to the class Coo of. Nagy and Foia8 [1, p. 72],

Another way of seeing that “strict need not imply strong stability” is
via the decomposition (2.10) of Theorem 1. First, if [T(i)] is strict then, as
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discussed above, its isometric subspace H\(T){= HUC) = ker (/ —C)) = {0}.
Therefore, (2.10) becomes

H=L{T)®HXT),

where L(T) is now Hcnu(D) which, by (2.6), is equal to ClI Range (C). Thus
it need not be trivial, even though ker (/ —C) is trivial. Therefore HSYT)
need not be all of H.

The next theorem shows, yet, another stability property of the class of
strict contraction semigroups.

Theorem 2. Let A be strictly dissipative and generate a contraction
semigroup [T(f)] over H. Then there is a norm ||.||o and a Hilbert space Ho
containing H such that the semigroup can be extended to a strongly stable
semigroup [To(f)] on Ho-

Proof. We associate with [T(i)], as in the above, the stability operator
C and the defect operator D. Then, since [T(<)] is strict, C2 is also strict,
hence D is positive. Therefore we can define the inner product:

[x, p]Jd —[Dx, Dy], for x and y £ H,

and the norm:
[IX|[D=||IDx]|, for x GH.

Let Ho be the completion of H in the norm ||.||d; then of course, H is dense
in Ho-

Next we have from (2.11) and from the definition of D, for x GH and
for t>0:

\DT(t)x\\2- ||T(F)x||2- ||Cz||2= ||T (i)x||D.

Letting M 00 we obtain:

(2.13) Hn (1T (1) *]|d = 0.

If [To(i)j is the extension by continuity of [T(f)] from H to Ho, then it
follows that the semigroup [Td(<)] is strongly stable. This finishes the proof
of the theorem.

We note that if the generator A is strictly dissipative, we can define the
norm

[X]|2= -2 Re [AX, x] >0, for g G.D(A).

Let K be the completion of D(A) in this norm. We have, for x GD(A) and
for t>0:

AMIT (1)*]]2= 2 Re [AT(t)x, T(t)x] = -||T (t)a:]|2.
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Therefore it is easy to see that, for x GD(A):

[e]e]

(2.14) He*[12-1W 1= - ] [Ir(v)ili;<ft.
0

This shows that, for x GD(A), the function T(t)x belongs to the space
L2(R+, K). However, it is clear from (2.14) that the semigroup [T(t)] need
not be strongly stable! This is another way of showing that the strict con-
traction semigroup [T(t)] generated by a strictly dissipative generator A need
not be strongly stable. Indeed it follows from (2.14) that [T(t)] is strongly
stable if and only if:

(e]e]

(2.15) for iG D(A): Wwa2=J WTt)x\\adt.
0

If the generator A is only dissipative then ||.||,, is @ seminorm. In this case
the space K is taken to be the completion of D{A) modulo the “null” vectors.
In either case, (2.15) results in a representation of a strongly stable contrac-
tion semigroup, namely a strongly stable contraction semigroup is unitarily
equivalent to a part (i.e., the restriction to an invariant subspace) of the left
shift semigroup — over the space L2(R+,K). We refer to [1] and [8] for
details. We note also that, from (2.14), if [T(t)] extends to a Co semigroup
on K, then it is exponentially stable on K in the norm ||.||n, by a result of
Datko [9].

We now give examples of strict contraction semigroups which are not
strongly stable.

Example 1 Let [T(i)j be an isometric semigroup over a Hilbert space
H with generator A. Let BB* be a linear bounded positive operator on H,
BB* > 0. Then A —BB* again generates a contraction semigroup [5(i)j
(say). We have, for x GD(A):

Re [{A- BB*)x, X] = Re [Ax,x] - [BB*x, x] = 0- ||[R*x||2< 0.

Thus A —BB™ s strictly dissipative, hence [5(i)j is strict. Let Cs denote
the strong stability operator of [5(t)j, then as in the above

ICsx|[2- [Ix|l2= -2 J [[R*5(t)x|[2dt, for x GH.
0

This shows that [5(t)] need not be strongly stable. It is plain that [S(i)] is
strongly stable if and only if
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Otherwise, the subspace Hss(S) is characterized by

thss(S) = {*€#: INI2= 2J |[fI*S(f)z||2di}.
0

Then, since [5(f)] is strict, H,(S) is trivial. Therefore
T(S) = tf8(S)x.
One explicit case of this example is the next example.
Example 2. Let H=¢t2(rR+) and define A by
(Au)(x) = —'(x),
and
D(A) = {«€ C1(R+) OZ°°(R+), u(0) = 0= u(00)}.

Let b(x) be such that
6ex1(R+)nx°°(R+),

b(x) >0, for all x ER+,

and define BB* by
(BB*u)(x) = b(x)u(x).

Then
(A - BB*)u)(x) = —u'(x) - b(x)u(x),

(A - BB*)u, Uk —J uw(xu(x) dx - J GHJUGY2.
0 0

From which it follows easily that, for all u (y*O):

and

Re [(A - BB* dx <0,

i.e., A—BB™* is strictly dissipative.
Next, let [5(t)j denote the contraction semigroup generated by A—B B *,
we find

0, for x " t,

GO =< ap (- F bla)da)u(x - 1), for x > t.
S .
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Therefore
(e]e] X
exp - 2J b(o)doM\u(x —1)\2dx,
t X—t
(e]e] X
exp”™-2 i b(o) do"\u(x —t)\2dx.
0 x-t

From which it follows that

(2.16)
00 y+t 0o 00
[15(Htz]|2 =/exp (-2 jb(a)doMu(y)\dy>Jexp (-2 Ib(<j)do™Mu(y)\2dy
0 y 0 0
>exp(-2||&|[i)|MI.
Therefore,

[|I5(f)zz|| -/»0 forall u/ 0,asioo,

i.e., [5(F)] is totally unstable: Hss(S) is trivial while L(S) is all of Z2(R+).
We note that, it follows easily from the equality in (2.16) that [5(f)] is indeed
strict.

2.2. Strong stability of contraction semigroups: A Tauberian type result.
We now turn to our second approach to strong stability. We investigate
behavior of the resolvent of the generator A of a contraction semigroup [T(i)]:

(u=l—A)-1=J e~wtT(t) dt
0

near the imaginary axis zR, which results in strong stability of the semigroup.
Such behavior is clearly of Tauberian type.

We must note that Tauberian type results for exponential stability of
contraction semigroup were obtained by Gearhart [10].

T heorem 3 ([10], see also [11]). Let eAt be a contraction semigroup
with generator A in H. Let £4) denote the resolvent set and r(.) denote the
spectral radius. The following statements are equivalent:

(i) ZRCi»(a) and ||(zf) —)-11<K<oo0, for t GR,
where K is a constant;

(i) C={\2\=1}CR(eA)}

(iii) r(eA) <1

(iv) |leyH| £e-ot, for some a>0 and all t sufficiently large.
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It is clear that the correspondence between (i) and (iv) is a Tauberian
type criterion, in the sense that the behavior of the resolvent on zR deter-
mines the behavior of the semigroup at infinity. Gearhart’s proof is based
on the Nagy-Foia8 theory. Here, we shall show that, in the same way, this
theory also helps to answer similar questions regarding strong stability.

Now let [T(t)] be a contraction semigroup over H, with generator A and
cogenerator T. We shall take [T(t)] to be completely nonunitary, hence so
is the contraction T. Therefore T does not admit any eigenvalues on the
unit circle C. This implies that the generator A has no eigenvalues on zR.
To see this we only have to note that to each 2 in the spectrum &(T) of T,
there corresponds (2+ 1)(z- 1)_1in o (A), and vice versa, and the fact that
the transformation 2—(2+ 1)(2- 1)-1 maps the unit disk D onto the left
half-plane, and the unit circle C on the imaginary axis zR.

To proceed, we need to recall the definition of the Characteristic Operator
Function (COF) of the contraction operator T* [1, p. 237]:

(2.17) 0(2) = -T* +zy/{l - T*T)(7 - zT)-1ly/(1 - TT¥)

which is defined for all 2 in the open unit disk, and acts from Hilbert space
CI(Dj'H) to CI(DtH), where Dj and Dye are the defect operators of T
and T*, respectively.

We have

Lemma 3 ([1, pp. 238, 241]). The COF 0 (2) satisfies the following
properties:
(i) For \2A < 1 and for x 6 H:

(2.18) IE>r.*][2- \e(z)DT.x\2= (L - |z12)11(3 - 2T)~'DZ.x\\2.

(i) 0 (2) is a bounded function with ||0(.z)|| < 1on C\(Dt-H). Its bound-
ary values on the unit circle C exist almost everywhere in the strong operator
topology, and

Q(exs)x =1im0 (2)1, for x GCI

when 1< 1 and z —e,s is non-tangentially for a.e. sG (0,27¢).

The boundary values of 0(z) determine when the cogenerator T is strong-
ly stable, i.e., Tnx -* 0, when n—oo, for all x in H, hence when the semi-
group [T(P)] is strongly stable, by Proposition 1. This is due to the fact that
from the functional model of T [1, Theorem 2.3*, p. 248] we obtain

Theorem 4. The cnu contraction T is strongly stable if and only if
0(e“J) is an isometric operator on CI(Dt-H) for a.e. s£ (0,27r).

Now, let
w= (1T2)(l-2) L
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Then
w+w 1—2\

2 |l-z]2

Therefore \z2\ < 1 corresponds to Re(u;) > 0 and C corresponds to iR. We
have

Re(zn) =

- zT=00-2)(A- wh(A- "],
and

(- zT)-1=(L- z)-\A - I) (A—wl)-1
=(1-2)~1[1+{w-1)(A-w1)-1].

Therefore (2.18) becomes

i219v \DT.x\\2-\\Q (z)D T.x\\2
J  =W\Re{w)1/2D$.x + (w-I)(Re(w))1/2(A-w 1)-1{I-TT*)x\\2.

This allows us to express the condition of Theorem 4 in terms of the behavior
of (A —wl)~1 near iR.
We are now ready to prove our Tauberian Criterion for strong stability.
Theorem 5. Let [T(i)j be a cnu contraction semigroup over H, with
generator A and cogenerator T. The following statements are equivalent:
(i) [T(H)] is strongly stable;
(if) There exists a set M of iR such that iR\M has measure zero, and

(2.20) ReH” A -wJrr-tO, forallye (I- TT*)H,

when Re(u;) > 0 and w tends to a point in M non-tangentially (conver-
gence may be considered only on horizontal lines, i.e., with Im(ui) fixed, and
Re(tn) —0+J.

P roof. Suppose (2.20) holds. To the set M there corresponds the set
5={s€(0,2): L+ es)(l - e*)“16 M}

whose complement in (0, 2ir) has measure zero.

Now as w—>wo in M non-tangentially, the right-hand side of (2.19) goes
to 0, while 2—sets, s 6 5, non-tangentially. It then follows from Lemma 3 (ii)
that 0(e,s) is isometric on D y R , hence on its closure also, for a.e. s G (0, 27r).
Therefore T, and [T(t)] also, is strongly stable by Theorem 4. This proves
one half of the theorem.

Conversely, if T is strongly stable, then 0(e,s) is isometric on Dt>H for
a.e. s by Theorem 4. Let 5 be a subset of (0, 2n) such that (0,2n) \ S has
measure 0, and

lim \&{z)Dt.x\ = |[0(e,s)i>r*z|| = [|]22e**||, for x GH,
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when s £ 5 and z —e,s non-tangentially — see Lemma 3 (ii). Let M be the
set:

M={u=0+e3)(l-e”)-1, fors£S}.
Then, for Re(u;) > 0 and w —wg in M non-tangentially, z —ets, (s £ 5),
non-tangentially, and as the left-hand side of (2.19) goes to 0 so does the
right-hand side. Finally, as Re(ip)¥/2Z?j.x —0, we must have
Re(W)1/2(A- wl)~\l - TT*)x ->0.
This completes the proof of the theorem.

We note that the operator 7—TT* can be expressed as
7-7T*= =2(A- 1)“1- 4(A- 7)_1(A*- 7)_1- 2(A*- J)~\

where —2(A —I)~1 —4(A —J)-1(A* - 7)_1 maps H into 7)(A), and
—2(A* —7)-1 maps 77 into D(A*). Thus

(7- TT*)H QD(A) UD(A%*)
and we have the following sufficient condition for strong stability.

Coroltlary 1. Letu= Re(tC) and v= |m(U,) If
Wl/2(A —ivl —ul)~1x =0, for x £ D{A) UT)(A%),

as u—>0+ and for a.e. v £ R, then eAt is strongly stable.

Another immediate result is Proposition 6.7 in Nagy-Foia8 [1, p. 85]
which can be expressed in the spirit of this paper as follows.

Corottary 2. If <7(A)ruR has measure zero then eAt is strongly stable.

As indicated in the Introduction, for linear bounded Co semigroups on
a Banach space, one has the following Tauberian type results for strong
stability.

T heorem ([3, 4, 5]). Let eAt be a bounded linear Co semigroup on a

Banach space. 7/<r(A)niR is countable and Jpoint(A*) fl iR = 0 then eAt is
strongly stable.

The techniques in [3, 4, 5] are quite different from ours.

2.3. Generating strongly stable contraction semigroups from a given
one. We now close the section by showing how to “generate” strongly stable
contraction semigroups from a given one. This is given in Theorem 6 below.
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Theorem 6. Let eAt be a strongly stable contraction semigroup over a
Hilbert space H. Let /(.) be a holomorphic function defined on the open left
half-plane LHP: {26 C: Re 2 < 0}, and /(.) maps LHP into LHP. Then

f(A) generates the strongly stable semigroup e~ A™.

To prove the theorem we first recall some preliminaries.
Let D denote the open unit disc. Then the transformation

_2+1
A= 2-1
maps LHP onto D, and
9= A+1
TA-1

maps D onto LHP, as

Since /(.): LHP—»LHP, the function

<pfW  (say)

maps D into itself, so that belongs to H°® and |<p/(A)| < 1for Ain D.

As Dbefore, let T be the cogenerator of eAt, and define <Pf(T) as in [1].
Then, by von Neumann’s inequality

o /() ll<lrl[8 B lw (A)I<]irll.

Therefore <p/(T) is again a contraction. This allows us to define f(A) as
f(A) = Pf(T) + I|[<PF(T)-1}-\

and it is maximal dissipative. Moreover, if T is cnu then so is <p/(T)
[1, p. 113].
We now prove the next Lemma before giving the proof of Theorem 6.

Lemma 4. LetT be a completely nonunitary and strongly stable contrac-
tion. Then

@) //*,(.): D—D is a holomorphic function with <X0) = 0, then <p(T)
is strongly stable.

00 U
A- a
<MA)=1_ x, M«<1,

then <Pa{T) Is also strongly stable.
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Proof. FOr (i) we have,
¥(A) = AV>(A),
where iBE /f°°(D), and ||*|| 4 1. Therefore, for x in H:
M T)mx\ = \{TiR(T)}nx\\ = [V>(T)nr nx|| ~ ||[T"*|| ->0, as n  0o.

Part (ii) follows from the fact that T is strongly stable if and only if the

contraction Ta= sa{T) = [T - al][| —ST]-1 is strongly stable. This is so
because of the relationship between the COF’s of T* and T* (see [1, p. 240,
(1.7)], and Theorem 4). Hence the proof of the Lemma is completed.

We are now ready to give the proof of Theorem 6.

Proof of Theorem 6. Let /(.): LHP->LHP and consider <pf(A) as
defined in (2.21). We need to show that yij{T) is strongly stable. If </?/(0) = 0
then this is indeed the case, by Lemma 4(i). Suppose now that <pj(0)”"0.
Set a— 0) and define

V(A) = <PfW ~ a

then iR maps D into D, and ~(0) = 0. Therefore ip(T) is strongly stable. But
A(T) = [IR{T) + a][I+&iR(T)]-\

therefore, by Lemma 4 (ii), <pf(T) is strongly stable. Hence so is e~ a~. This
completes the proof of the theorem.

It is of interest to note that all functions which preserve LHP are given
by the following formula:

fz) = az+ ib+ LT
/ z- it

where a >0, bGR are constants, and /i is a non-negative measure on R such
that

J dfi(t) < oo.
R

See, for instance [12, p. 22], This together with the results of Theorem 6
allow us to “generate” new strongly stable contraction semigroup from a
given one.
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3. Concluding remarks

We have seen in Corollary 2 that a sufficient condition for a contraction
semigroup [T(<)], with generator A, to be strongly stable is that the inter-
section of the spectrum cr(A) and iR has measure 0. It is natural to ask
whether this condition is also necessary?

Now returning to the necessary and sufficient conditions for strong sta-
bility of Theorem 5 we can show that, by adding a further condition, we
come close to answering the above question.

First, we know that, for a contraction semigroup,

<3 1 >

for w GC and Re(ic) > 0. Moreover, [13, p. 566],

| 1
(3.2) HANT=A)_1> Gict fw, a(a)}

Suppose now that for some b€ R, ib£ <r(A), and let w=a+ib, a> 0. Then
dist {w,cr(A)} = Re(tn). It then follows from (3.1), (3.2), and since cr(A) is
contained in LHP,

”(U;?- A)_1” = |—y on the ray {lm(|e) = 6, Re(u;) S 0},
and,
yIRe(W)[|(WT —M)}-|| — A ——froo, as Re(u;) —0+,
VRe(ie)

Therefore, we conclude that the condition:

-VRe(u;)||(it;/ - A)-11—0, as Re(tc) —=0+, for a.e. b= Im(u)),
in the uniform operator topology, implies that
(3.3) mes{(r(A) DiR} = 0.

This in turn implies strong stability by Corollary 2. It follows from this and
from Theorem 5 that the condition:

ARe(u;)(u;d —A)_1Ix—0, as Re(u;) —0+,

for a.e. b= Im(u;) and x 6 Range (7 —TT?*),

is “close” to implying that (3.3) is necessary for strong stability!
Finally, we note that functions which preserve the LHP, preserve also
other interesting properties. These are given in the next theorem.
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Theorem 7. Let /(.) be a holomorphic function which preserves the
LHP. Then /(.) preserves the strict dissipativity property, as well as the
weak stability property, of a contraction semigroup.

As in the case of Theorem 6, we have the following Lemma which is the
analogue of Lemma 4.

Lemma 5. Let T be a strict contraction on H: [Tt/ < |ji/|| for all y

(#0)€H. Then
() /¥>(.): D —»D is a holomorphic function with y>0) = 0, then <p(T)
is also a strict contraction, and

(i) Ta=ya(T) = [T —al][l —aT]_1 is also a strict contraction for all
M <1

Proof, (i) As in the proof of Lemma 4, we have, since <p(z) —zip(z)
and ip(-): D—D,

M T)y\\ = \TA(T)yW<WrP(T)y\<\\y\\.
(i) This follows from the fact that [1, p. 14], fory = (/ —0T)_1x,
IM|2-|T ca:f[2= (1-]a [2)(llyl|2- |r 3|2)
and we complete the proof of the Lemma.

Proof of Theorem 7. Let [T(f)] be a contraction semigroup on H

with generator A and cogenerator T. Then, for x £ D(A):

[[(A +J3)x]|2- ||(A- J)x]||2= 4Re[AX, X].
Thus A is strictly dissipative if and only if T is strictly contractive, since for
y
M= ||(A + RN->yll <M - 1)(A - 1)-YII = [l.]l.
Then, if T is a strict contraction then so is <p(T) for all holomorphic functions
9(.): D-4 D by Lemma 5. Thus, as in the proof of Theorem 6, we apply this
to the function <€) and we are through.

Similarly, suppose that [T(t)] is completely nonunitary then so is its
cogenerator T and vice versa. Moreover, [T(t)] is weakly stable if it is com-
pletely nonunitary. Thus we only need to show that if T is cnu, then so is
<p(T) for every holomorphic function (p(.): D —D. However, this is indeed

the case as has been shown in [1, p. 113]. As before, applying this to the
function </?%() and we are through. This finishes the proof of the theorem.
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COMMUTATIVITY OF SEMIPRIME RINGS WITH
POWER CONSTRAINTS

H. A. S. ABUJABAL, H. E. BELL*, M. S. KHAN and M. A. KHAN

For thirty years, various authors have studied commutativity in rings
satisfying polynomial identities of the form

*) (xy)n=xny \ n> 1

(see [7] for a fairly inclusive list of references). In the last few years there
have been studies of rings satisfying variable-n versions of (*) or conditions
of the form [(xy)n- xnyn,z] = O0or [(zt/)n—xnyn, z] = 0 [1,2]. Most recently,
H. E. Bell and A. A. Klein [8] have proved that a semiprime ring R must be
commutative if for each x € R there exists an integer n= n(z) > 1 such that
(xy)n—xnyn is central for each y € R.

Naturally enough, some authors have explored conditions of the form

**) (xy)n=ynxn,

but apparently only for fixed n [4,5,6]. It is our purpose to study variable-n
versions of (**) and generalizations thereof.

Throughout the paper, [z, y] will denote the commutator xy —yx, and Z
or Z(R) will denote the center of the ring R.

1. Rings with [(xy)n—ynxn,z] =0

Theorem 1. Let R be a ring with no nonzero nil ideals. If for each
X,y € R there exists an integer n = n(z, y) 1 such that [(xy)n—ynxn,z] =
= 0= [(yx)n—xnyn, x], then R is commutative.

Proof. Let x,y £R. Then there exists n = n(z, y) > 1such that
[{xy)n- ynxn,x\ =0 and [(4/z)" - x2yn,x] = 0.

1991 Mathematics Subject Classification. Primary 16U80; Secondary 16U99.
Key words and phrases. Commutativity theorems, semiprime rings, power constraints,
commutator constraints.
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The first of these conditions may be written as

Q) x{{xy)n - (yx)n) =xynxn- ynxn+1-

the second may be written as

2 ((xy)n- (yx)n)x =xn+lyn- xnynx.

Right-multiplying (1) by x and left-multiplying (2) by x gives
xynxn+l - ynxn+2=xn+2yn- xn+lynx,

that is, x[yn,xn+1] = [yn,xn+1]z. It follows that [[yn, an+1], £n+1] = 0, hence
R is commutative by Theorem 1 of [9].
Making use of this result, we obtain an analogue of a result in [2].

T heorem 2. Let R be a semiprime ring, and suppose that for each x E
ER, there exists an integer n —n(x) > 1 such that [(xy)n—ynxn,x]= 0=
= [(/xX)n —xnyn,x] for all y ER. Then R is commutative.

This theorem is an immediate consequence of Theorem 1, once we estab-
lish the following lemma.

Lemma 1. Let R be semiprime, and suppose that for each x ER there
exists an integer n= n(x) > 1 for which [(xy)n—ynxn,x\ —0 for all y ER.
Then R has no nonzero nilpotent elements.

Proof. LetaER with a2= 0. Then there exists n= n(a) > 1 such that
[(ay)n —ynan,a] =0 for all y ER. It follows at once that (ay)na= 0, so that
(ay)n+l = 0 for all y ER. Thus aR is a nil right ideal of bounded index,
which must be trivial by a well-known result of Levitzki [11]. Hence a = 0.

2. Semiprime rings with (xy)n—ynxnEZ

Our final theorem, a companion theorem to Theorem 4 of [8], is

T heorem 3. Let R be a semiprime ring with the property that for each
x ER there exists an integer n =n(x) > 1 such that (xy)n—ynxn E Z(R) for
all y ER. Then R is commutative.

Before beginning the general proof, we dispose of an important special
case, which parallels the result in [1].

Lemma 2. Let R be a prime ring such that for each x ER there exists
an integer n = n(x) > 1 for which [xy)n= ynxn for all yER. Then R is
commutative.

P roof. By Lemma 1, R has no nonzero nilpotent elements; and since R
is prime, it has no nonzero divisors of zero. In fact, R is an Ore domain, hence
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embeddable in a division ring; therefore we shall be able to use multiplicative
inverses in appropriate contexts.
Let x,y GR\ {0}, and take n, m > 1such that

(3) @@:z)n=znxn for all 2 GR,

(4) ¢yz)m=zmym for all 2 GR
It follows by induction that

n Xlz)n= znxnt and (ytz) = zmynt
for all z GR and all positive integers t.

Now right-multiplying (3) by x and left-multiplying by x~I gives
(zx)n= x~Lznxn+l for all 2G72

Thus
{yx)nm=({yx)n)m= (x~lynxn+l)m= x~' {ynxn)mx,

and using (5), we get

(0) (yx) =x  y }X=x Yy X
On the other hand, (4) and (5) give

(7 (yx)nm= ((yx)m)n= (xmym)n= ynmxnm,

and comparing (6) and (7) yields (xnm~1lynm —ynmxnm~1)x = 0. Since R is
a domain, we now have xnm~xynm= jnrnxnm-1, and R is commutative by a
well-known theorem of Herstein [10].

P roof of Theorem 3. Since R is a subdirect product of prime rings,
we may assume that R is prime, hence (by Lemma 1) a domain. By Lemma 2,
we need only consider the case of Z(R) » {0}, so we can localize at Z(R) \
\{0}, thereby embedding R in adomain R* with 1which satisfies our original
hypothesis. Our immediate goal is to show that Rmis a division ring.

Consider x € R\ {0}. If for each v 6 xR there exists m = m(v) > 1 such
that (vy)m= ymvm for all y £ xR, then xR is a nonzero commutative right
ideal of R, which forces R to be commutative. Thus, we may assume that
for each x £ R\ {0}, there exists xw GxR such that

for some y GxR.

In particular, there exists u GR for which xuf£ Z \ {0}; and noting how R*
is constructed, we see that R* is indeed a division ring.
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Now let x be an arbitrary element of R*. Since there exists n = n(x) > 1
such that (xy)n—ynxn 6 Z(R*) for all y £ R*, we have

8) xyynxn=ynxnxy for all t/EA*,

Thus R™* satisfies a generalized polynomial identity, hence is finite-dimen-
sional over Z(R*) by Theorem 13 of [3]. In view of Wedderburn’s theorem
on finite division rings, we assume that Z(R*) is infinite.

We now apply a typical Vandermonde argument. For x £ R*, choose n
such that (8) holds, and replace y by t/+ Afor A£ Z(R*), thereby obtaining

9 X(y + \)n+lxn~(y + X)nxn+1(y + A = 0.

In view of (8) and the fact that the y-free terms of (9) sum to O, we get

n

(10) A2 Xwi(xiy) = °

where W{(x,y) denotes the “coefficient” of A on the left side of (9). Doing
this for n distinct nonzero A we get a system Aw = 0, where A is an n X n
Vandermonde matrix with nonzero determinant and w isan n x 1 matrix with
ith entry Wi(x,y). Thus, W{(x,y) =0 for each i; and examining wn(x,y), we
get (n+1)xyxn_- xn+ly—nyxn+l =0 for all y £ R*. But this condition can be
written as [xn+1,y] = (n+ I)[x, y]xn for all y £ R* hence R* is commutative
by Theorem 1 of [8].
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COMPACT ABELIAN LIE GROUP ACTION AND THE GROUP N°[F\

N. J. DEV and S. S. KHARE

Abstract

The object of this paper is to construct suitable family rj of G-slice types for every
compact abelian Lie group so that the bordism theory n2[rFj] vanishes.

8 1. Introduction

In [4] Kosniowski constructed, for a finite abelian group, an equivariant
bordism theory which vanishes. His results were later extended in [1] for a
finite group (not necessarily abelian) and in [2] for a torus. Here we consider
the action of a compact abelian Lie group G and construct a family Fj of

G -slice types such that JVGI[jj] is zero.

8 2. Preliminaries

By the structure theorem, a compact abelian Lie group G can be de-
composed as Tk XQ where Tk is the A:-torus and Q is a finite abelian group.
By a G-slice type we mean a pair [H\V\, # is a subgroup of G and V is
an ff-module containing no trivial if-submodule. For a G-manifold M, if
we take Gx to be the isotropy subgroup at x £ M then it is well-known that
there exists a Gx invariant neighbourhood of x which is equivariantly dif-
feomorphic to a Gx-module VX= VX@ v~, where VX is the Gx-submodule in
which no nonzero vector remains fixed by all of Gx and Vx is one on which
Gx acts trivially. The pair [Gx;VX] is designated as the slice type of x. a
family F of G-slice types is a collection such that [H;V] £ F implies that
[Gx; W\ £ F for every X £ G x//V.

Denote an element of G by (pi, 2>+ ,Vk,9), where p-GS1, 1<i <k and
g £Q, and define homomorphisms p,: G =G, 1<i<kbyp,(tq,... ,yk,g) =
= (0,0,..., jl,,0,... ,0,e). Consider the elementary abelian 2-group Zk

1991 Mathematics Subject Classification. Primary 57R85.
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contained in Tk C G. |If x; is the generator of Pi(Zk) then we see that
{xi, X2,... ,Xi} form a basis of Z2- Consider

Fj = {[H;V] :p,(H) = finite or S1, Viand (xt) €Pi{H) for at least
(k — ) values of i}.

Clearly, FqC F\ C .. mC Fk are families of G-slice types. For [K\ U] GFj,
0<j <k, we consider H = K x(xtl), ii being the first place for which
(xt) € pi(K). The projection p: H -» K enables us to extend the A-action
to A-action on U. We denote the corresponding A-module by p*U. Also
the real line with the antipodal action of (x(1) becomes an A-module via the
projection map g\ H —(xtl) and will be denoted by V(K) or sometimes by
V(x,-1). As in [3], we define an extension map e on each of the families Fj,
Qnj<k by
e[K-U] = [H-V{K)®p*U]

for [K; U\ G Fj. By writing Fj = FjUe(Fj), we see that Fj is also family with
FICFjCFj+i.

Let T CT' be a pair of families of G-slice type. A compact G-manifold
Mn is said to be (F1JF)-free if the G-slice type [GX;VX]GT', VX G Mn
and [Gx;VX\GT,WwaedMn. If* =0, Mn is called F*-free. Two (T',T)-
free compact G-manifolds M” and M% are said to be (F1F’j-bordant, if
3 an (n T I)-dimensional (F1F)-free compact G-manifold Wn+1 and an n-
dimensional [F,J'j-free G-manifold Vn C VF'+1 for which the disjoint union
Mjlu M% is equivariantly embedded into dWn+1 and (Mjlu ME) uVn =
—dW n+l with dMAUdM” = = dVn. This is an equivalence
relation in the set of all compact (F',F)-free compact G-manifolds. The set
of equivalence classes forms an abelian group N*[F', F], the operation being
induced by disjoint union. We denote Nn[F',ty\ by N,,[F']. N*[F',F] —
—@NM*[F',F] is a graded iV,,-module, A* being the bordism ring.

n

For a given G-slice type p = [if; 17], a G-vector bundle E over a manifold
M is said to be of type p if the set of points in E having slice type p is
homeomorphic to M. A G-vector bundle E\ over M\ of type p is said to
be bordic to another G-vector bundle E2 over M2 of type p if there exists a
G-vector bundle F over W of type p such that dW —M\ u M2, F\m, —E\
and F\M2 —E2. This bordism relation leads to the bundle bordism group
A”[p], where n is the total dimension of the vector bundles in consideration.

Let F A F' be families of G-slice types with F' = FU {p}. We have a
natural A,-module homomorphism

up: N?[F",F}*N?[p]

given by Q]) = the bordism class of normal bundle to the submani-
fold A in M, where A consists of all x GM with slice type [Gx;Vx] at X
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being equal to p. The homomorphism up is an isomorphism, for the inverse
homomorphism p can be defined as

p: N?[p\"N?[r,T]

given by = the bordism class of the top space of the disc bundle D(£).
Also we have the following commutative diagram:

N?[F,T] A N?2.[?)
vP S

N?2\p]

where £[£] = the bordism class of the top space of the sphere bundle S(£).
Therefore the long exact sequence

-------- IN?[F] _'+ NG[K t] NQX"* »---
associated to the pair {T'F) gives the following exact sequence
—>N?[f] -U N*[F'] -% N?[p\ A N? x[?) —>—,
where vp[M, 6]= the bordism class of the normal bundle to the submanifold
N of M consisting of points with slice type p.

The proof of the following is similar to that given for the Lemma 4.5.8
of [3],

Lemma 2.1. Ifp is a G-slice type of Fj, 0<j<k, then

X?[e(p)]=N?-M O

This lemma together with long exact sequence provide an inductive
method to calculate iVG[Fj].

8 3. Ordering the G-slice types
For 0 <:j <k, the family Fj is at first partitioned into subsets
Fp={[H;V]eFj:dimV =n}.
Each of these subsets Ff is further partitioned into subsets

f"jr = {[#! F] e Fp : the maximal torus of H is r-dimensional}
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O=r=JmFor [H',V]E Fj'1, we look at X—\H/(S1)7 and order the G-slice

types of Fjr in increasing order of A A typical subgroup H with [H;V\e Fj
and with maximal torus of H being r-dimensional will look like

(erraon, . emifion), Mo einrtrer):0<0ir2t x H,
where H is a finite subgroup and the greatest common divisor of Tin,...,

Tin, is 1, i=1,... ,r. Therefore G-slice types having the same value of Aare
countable and are ordered arbitrarily. But once an ordering is chosen for

them we stick to it throughout. We start ordering the members of Fj° as
Po, Pi, p2,eee
by the ordinals less than u= The members of Fj1 are ordered as
Pw, Putl, —Pu>+2, se.

by the ordinals less than u>2). We order members of F°P as

Pa),  RE(H, -

by the ordinals less than u(j + 1). Similarly, we order G-slice types of Fj
starting from pw(j+1) as below

Pui(j+1), Pui(jH)H, mee
Pui(j+2), Pu(+2)+1j--*

Puj(2j+1), Pu(2j+1)+1, m®e® < Pui(2j+2)-

In general, members of Fj1 are ordered as

Puj(nj+n)) m(rj't'n)-l'lj...
eee pyu(nj+n+1)) Puj(nj+n+1)+1 >Hee

eee  Pw(nj+n+j), Pu(nj+n+j)+1l, e < A*/((n+])i+(n+])) ¢

It is clear that for every countable ordinal a, the collection Fa= {pt:0"t~"
"N a} is a family and for a limit ordinal a, both Fa and Ta= Fa—{pa} are
families.

Next we construct three mutually disjoint sets Aa, Ba, Ca, whose union
is Fa for every a 0. We start with

Ag—{po), Bg—0 and Go—O0.
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Now suppose AR, BR and CR are defined for all B <a for some countable
ordinal a with TR as the disjoint union of AR, BR and CB. Then

ca=(U CclhHuM ad BZ= (U bp) ufz}
R<a R<a

if pa= e{p) for some p GAy, 7<a and
Ca:(UCB) and B°:(UBP)
R<a R<a

if pa™ e(p) for any p GAy, 7 <a. In either case we take
Aa=Ta~ (Ba u Ca).
That the construction is meaningful will be clear from the following Lemma.

Lemma 3.1. Corresponding to any pa there exists at most one G-slice
type p GAy, 7 < a with e(p) = pa.

Proof. For pa= [H; V] to be the image of a G-slice type p=[K;U] G
GAy, 7 <a, we must have H=K x (xtl) and V = V(K)0 P*U, where xq
is chosen minimally and p :H —FK is the projection. For the sake of defi-
niteness, we assume that the 12 copies which can be factored out of H in
different coordinates of Tk be (x,,),... ,(x,m) and i\ <i*<... <im. There-
fore pa can be equal to e(p) for at most m different values of p. Denote
these possible G-slice types by ps, 1<s<m and write ps=\KS, i79, where
the least value of i for which (xB <*Pi(Ka) is is. Clearly

H=Ksx(xu) and V=V(KSO0 (Ps)*Us,

where ps: H —Ks is the projection. Note that V contains one and only one
copy of each V (Ks).

Now consider p\ and ps, 2~ s<m. Writing L —K\ fl Ka, we get K\ —
=L x (Xit), Ks=L x (xq) and H= L x (xtJ) x (x,3. Also

V=V{KY®V{KSH®WS

for some ~-module Wa. The action of (xq) x (x;s) CH on Wa is clearly
trivial. In fact H acts on Wavia its projection on L. But Wa considered
as an T-module cannot contain any trivial representation of L, as if it does
then it is bound to contain a trivial representation of H.

Considering Waas an T-module we look at the G-slice type [X; Wa]. Since
L cannot be factored out by any (x,) for i <ij, [X; Ws] cannot be extension
of any G-slice type and

e[X; Wal = [X x (xtl): V(L) © q*Wa = [Ks; Ut]

g: Lx (xtl) =X being the projection. This shows that [A';Ua]£ Ay for any
7<a. O
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8 4. Vanishing of the group

Lemma 3.1 establishes a one to one correspondence between Ca and Ba
for every a. The proof of this lemma together with the fact that Fj = Fj U
Ue{Fj) reveals that if a G-slice type p £ Aa then it must have an extension.
This shows that for every n, there exists a countable ordinal number B,
sufficiently large, such that AR has G-slice types of dimension higher than n.
Also BR and Cp are countable. We rewrite the elements of CR and Bp in
increasing order of G-slice types as

CB = {po, P2, mmm,Pwi PU>t2, mmm)Pw(2)) Pu»(2)+2i me+})
BR ={P\i PZt *¢i M 1 Pus+3, mm PW(2)Hi Pu(2i3>eeele

T heorem 4.1. ForO<j<k, the group N*[Fj] = o.

Proof. First we note that Fj = Tp = Bp UCp for some countable ordi-
nal 3, sufficiently large. Therefore N*[F3]—N"[Fp\ = N*[BpL)Cp]. Further
= {paGFj:0<a”i} is a family, Vi>0. Also e:Cp—Bp is a bijective
map. Obviously,
N?[Fo]*N?[pQ].

The long exact sequence
------------ *N?[Fo1-> N?[F\-4 N?[pxX\-> N?_X{F0]— »—

together with Lemma 2.1 shows that N~[Fi] = 0. Now, suppose that
AB[T2i] —ArGJp2i] for some i <B. The long exact sequence

............. 1N?[F2]-> N?[F2+1]->N?{p2+1\ -> — >
shows that iVG[*2i+i] —0. Therefore the long exact sequence

........... wGA2i+]] —>NZ[F2+2] »NA[p2i+2\ —NAAKi+1]

immediately gives that
~.GH)] =" GpAHI))
Thus, by transfinite induction, we have
N?[F2j\=N % 2j] and N?[F2j+1]= 0,
Vj < . By taking the direct limit, we have

N?{Fp\=0= N?[FJ}. O
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UBER EIN KREISUBERDECKUNGSPROBLEM AUF DER SPHARE

G. BLIND und R. BLIND

1. Einleitung

Auf der Einheitssphére S2 seien nt. 3 kongruente, abgeschlossene, sphé-
rische Kreise gegeben. Die 2 klassischen Problem dazu lauten:

1 Die Kreise bilden speziell eine Packung. Wie grof3 ist die maximale
Dichte Dn einer Kreispackung aus n kongruenten Kreisen?

2. Die Kreise bilden speziell eine Uberdeckung. Wie groB ist die minimale
Dichte Dn einer Kreistiberdeckung aus n kongruenten Kreisen?

Es sei un:= |. Dann gelten die Abschétzungen
— n 1 n
- und D,,>— 1—
) D.< -2 2 cos \/3 tan <jn

Diese Abschétzungen sind fur n = 3, 4, 6, 12 scharf; die Kreismittelpunkte
sind dann die Ecken eines reguldren Dreiecks, Tetraeders, Oktaeders bzw.
Ikosaeders. Fir n —o00 gehen die Schranken in (1) gegen die optimalen
Dichten der entsprechenden ebenen Probleme (siehe [4, S. 114]). Fir andere
Werte von n ist Dn bzw. Dn in einzelnen Féallen bekannt, in manchen Fallen
gibt es Vermutungen oder gute Abschétzungen, siehe etwa [5] und [6].

Ein Kreissystem zerlegt die S 2 in mehrfach, einfach und Gberhaupt nicht
uberdeckte Bereiche. Beim Problem 1 wird der von den Kreisen einfach
Uberdeckte Teil der S2 abgeschétzt unter der Voraussetzung, daR es keinen
mehrfach (berdeckten Teil gibt. In [4, S. 97] wird nun folgendes (ebene)
Problem gestellt: Der wievielte Teil der Ebene l&Rt sich durch beliebig gele-
gene kongruente Kreise einfach tberdecken? Geht man von der dichtesten
Packung kongruenter Kreise aus und vergrofRert die Kreise konzentrisch, bis
jeder Kreis von den 6 benachbarten in den Ecken eines reguléaren 12-Ecks
geschnitten wird, so Uberdeckt das entstehende Kreissystem 100(\/48 —6)%

der Ebene einfach. Es gilt: i):=\/48 —6 ist die maximale Dichte des von

1991 Mathematics Subject Classification. Primary 52Ad45.
Key words and phrases. Arrangement of congruent circles on the sphere, simply cov-
ered area, density.

0081-6906/95/$ 4.00 ©1995 Akadémiai Kiadd, Budapest
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einem beliebigen System kongruenter Kreise einfach Uberdeckten Bereichs
des E 2. Dies wurde unter starken Voraussetzungen an das Kreissystem in
[4] bzw. in [1] bewiesen (siehe auch [7]), und schlie}lich ohne jede Vorausset-
zung in [2]. Analog l&Rt sich auf der Sphare fragen:

3. Gegeben seien n't 3 kongruente sphérische Kreise Ki,... ,Kn mit Ra-
diusp (O<p<). E(Ki,... ,Kn) sei der davon einfach (berdeckte Bereich
der S2. Wie groB ist
\E(K],... ,Kn)\
Un := max (KJ....Kn)

4T

wobei sich das Maximum auf alle Familien aus n kongruenten Kreisen bezieht?
Wir vermuten, dal gilt:

(2) mh %.7‘(n 2) (ojn —7+ 2arccos = {n> 3).

4cos !
Diese Abschatzung ist fir n —3, 4, 6, 12 scharf; die Kreismittelpunkte sind
dann die Ecken eines reguléren Dreiecks, Tetraeders, Oktaeders bzw. lkosa-
eders, und die Kreisradien sind (analog zum ebenen Fall) so groR, daR jeder
Kreis die k benachbarten in den Ecken eines regularen 2k-Ecks schneidet.

Sn ist wachsend in n weil

QI_Un. ) ojn —/T-~2 arccos 4cos 'p-
in un fallend ist, wie man durch Ableiten sieht. Es ist 53 = 0,809 839...
und 54 = 0,881423 .... Fir n—00 geht Sn gegen die maximale Dichte des
ebenen Problems.

Nachdem schon das ebene Problem recht unzugénglich ist, wird hier
zunéchst gezeigt:

Satz 1. Die obere Vermutung ist richtig fir n=3. Es ist also % = S*;
beim zugehérigen Kreissystem liegen die Kreismittelpunkte &quidistant auf
einem GroRkreis von S2 und der Kreisradius ist po := arccos

Satz 2. Fur ein Kreissystem {Kj,... ,Kn} aus n >4 kongruenten Krei-
sen mit Radius p gilt: Ist ptpo = arccos oder liegen alle Kreismittelpunk-
te in einer abgeschlossenen Halbsphére, so ist

\E(Ku...,Kn\
(3) 4t =
Satz 2 besagt, dal zum Beweis der oberen Vermutung nur Kreissys-

teme “in allgemeiner Lage” und mit Kreisradius p < po berticksichtigt werden
muissen. Dies ist fir weitere Untersuchungen wesentlich, siehe [3].

Sn.
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2. Vorbereitungen

_dM bezeichne den Rand einer Menge M. Zu einem Kreissystem
{A'l,.. /Kn) sei T(Ki,... ,Kn) der mindestens zweifach tberdeckte Be-

reich.

HILFSSATZ 1. Fir ein Kreissystem {K\,... ,Kn} aus n> 3 kongruenten
Kreisen mit Radius p> " gilt

\E{K\,... ,Kn)\
4n
Beweis. Offensichtlich ist
|A'i] + eee+ \Kn\< [K\ U .. .U Kn\+ (n —1)|T(K\, ... ,Kn)|.

Nach Voraussetzung ist |A%|+ ...+ |A'n| > n-2n, und weil die Kreise hochstens
die ganze S2 Uberdecken, ist |A'i U.. .UKn\<4n. Deshalb ist

\T(Ki,... ,Kn)\>H_1(n -27¢- 4it) > n.
Aus
\E(Ki,... ,Kn)\+ |T(Ai,... ,An)=\K\U.. .UKn\» 4w
folgt damit
\E(Ku ...,Kn)\

T <0,75 <537 5n.

Hilfssatz 2. Seien K\, K2 kongruente Kreise mit Radius p <\. Dann
ist mit den Bezeichnungen von Fig. 1

(4) [T(ATi,Ar2)| = 2(ir - 27coSp - 24).
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Beweis. Der Kreisausschnitt mit Winkel 27 hat den Flacheninhalt
27(1 —cosl/o), das gleichschenklige Dreieck O\AB hat den Flacheninhalt
27 + 2i? —7T Daraus folgt (4).

Hilfssatz 3. Seien K\, K2, K3 abgeschlossene, kongruente Kreise mit
Radius p <j. Sei K\ flA2flK3s/ 0. In einer Lage mit minimalem
\T(Ku K2,K3)\ enthalt dann K\ DK2f] K3 genau einen Punkt p, und die
Kreise liegen symmetrisch bzgl. p. In dieser Lage ist

5) \T(K\, K2, K3\ = Z7t- 12 cosp arctan Taceer

Beweis. Als erstes zeigen wir, dal die Behauptung tber die Lage der
Kreise richtig ist, wenn K\ HK2flit3 nur einen Punkt p enthalt. Denn sonst
ware z.B. | 1fl A21> |A'in/i'3|. Dann ist auch \dKiD K2\> |d/v'in/i'3|. Bei
festem K2 und A3drehe man nun K\ um p so, daB \K\C\K2\ verkleinert wird.
Bei einer geniigend kleinen Drehung wird \K\ fl K2\+ |K\ fl A’3| kleiner, so
daB auch \T{K\, liz, A=) j kleiner wird im Widerspruch dazu, dal} es minimal
ist.

Enthalt Ain K2n K3 nicht nur einen Punkt, so sind 2 Falle moglich.

(i) KinKz2fl4is ist ein Kreisbogenzweieck, d.h. z.B. A3DKi flK2.
Dann ist \T(K\, K2, A'3)| hdchstens dann minimal, wenn K3 bzgl. des GroR-
kreises durch die Ecken von K 1D K2 symmetrisch liegt, und wenn eine solche
Ecke p auf dKs liegt. Drehung von Afj bzw. K2 um p zeigt danach die
Behauptung.

(i) KinKzn A3 ist ein Kreisbogendreieck. Dann ist \T{Ki, li2, A'3)|
héchstens dann minimal, wenn A3 bzgl. des GroRkreises G durch die Ecken
von A'iriA'2 symmetrisch liegt. Dann sei bi :=dK3 G (KiD K2), b2 := dK3\
\ (A’i UA’2) und B sei der zu G symmetrische Halbkreis von dK3 durch bi. Es
ist \dK3DKi\ +\b2\= IO A3\A 11+ I&il, und aus |9/i3\/t 11> |6A'3nA'i| folgt
1621> I& - Verschiebt man nun K3 langs G so, daR |A1fl A2fl A31abnimmt,
so wird \T(Ki, K2, K3\ kleiner: Im Fall \b2\> \\d K 3\ ist dies klar, und sonst

gilt + 182 > \\d K 3\. Bei minimalem \T(Ki, K2, K3\ enthalt also auch
hier Ki fl K2fl K3 genau einen Punkt.

Das minimale T(Ki, K2, 1i3) berechnet man nach (4).

3. Beweis von Satz 1

Es seien also Ki, K2,K 3 kongruente Kreise mit Radius p. Wegen Hilfs-
satz 1 kann p< 7 angenommen werden.

Es ist \E{Ki,K2,K3\ = Kil+ |A2| + IA3| - 2|T(/i'1/i2A'3)|-
—\K\ flK2n K3\ Wegen Hilfssatz 3 ist also \E (K\,K2,K3\ maximal fir
minimales |[T’(Ai, A2, A3)|, und dann enthalt A’ fi K2fl K3 hochstens einen
Punkt. |r(Ai,A2A3)| ist also minimal, wenn die Mittelpunkte von

MAGYAR

TUDOMANYCS AKACEMA
. ~



UBER EIN KREISUBERDECKUNGSPROBLEM AUF DER SPHARE 201

K\, A2, K3 dquidistant auf einem GrolRkreis liegen. Variiert man nun p, so ist
\E(R\, K2,K3)\ maximal, wenn jeder Kreis die beiden anderen in den Eck-
en eines reguldren 4-Ecks schneidet, was p = arccos * ergibt. Jetzt ist

\T{KUK2, K\ =3\T{KUK2\ =6 (W- %" - 2arccos”™ nach (4). Da-
raus folgt 13= Sa.

4. Beweis von Satz 2

Es seien also n >4 kongruente Kreise K\,... , Kn mit Radius p gegeben.
Wegen Hilfssatz 1kann p <\ angenommen werden. Es ist 54=0, 881423 ..
?5,, (n >4), und

\E(KU... ,Kn\=4uw- IM(KU...,Kn)\- |52\ (R\U.. .UKn)\
Wegen T(Kj,... ,Kn) DT{K\,... ,K4) ist also (3) richtig, wenn
M{Ki,... ,/A'4|+ |52\ {KxU.. .UAn)| > 1,4901.

Dies wird als erstes fir p >po gezeigt. \T(K\,... ,A4)| wachst in p
bei fester Lage der Kreismittelpunkte, so daB \T[K\,... ,A4)| fir p —po
abgeschétzt wird. 2 Félle werden unterschieden:

(i) T(K1,...,A4) besteht nur aus doppelt tiberdeckten Bereichen. Zu
je 3 verschiedenen Kreisen Kt,Kj, Kk € {K 1, ¢+, K4} ist dann

minimal, wenn die Kreismittelpunkte aquidistant auf einem GroRkreis liegen.
Zusammen mit (4) und wegen p —po gilt also

\T{Ki,KJ,Kk)\>0,7741....
Die Bezeichnung sei so gewahlt, dal \T{K\, K£)\ >|T(/i'2 AV3)]. Dann ist

\T{Kx, ..., Ka)\=
= \T(Ku K2\ + iT(R\, K3\ + T{Ki, 1U)+
+\T(K2, A3)| + \T(K2 K4l + IT(K3 A4)| >
AT (Aj, A2, AB)| + |T(A2 1i3, A4)| > 1.5482 ... > 1.4901.

(i) O.B.d.A. ist A'i DA2fl A3~ 0. Dann ist
\T(KU...,KHI>IT (K i,K 3)I™1,7877...
nach (5) mit p = po.

Als zweites wird der Fall betrachtet, daB alle Kreismittelpunkte in einer
abgeschlossenen Halbsphédre H liegen. Dann enthélt 52\ (A'iU... UKn)
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einen Kreis K um den Mittelpunkt der zu H komplementaren Halbsphare.
Es ist

[S2\ (A'iU... UKn)| >\K\ >2u(l - cos (| - p)) =M 1- ship),

was in p monoton fallt. Zur Abschatzung von \T(K\,... ,A'4)| unterscheidet
man wieder 2 Falle:
(i) T(Ki,... ,A%) besteht nur aus doppelt tiberdeckten Bereichen. Es

wird gezeigt, dal dann \\T(K\,... ,A4)| abgeschatzt werden kann durch
den Flacheninhalt des von 2 Kreisen mit Mittelpunktabstand | doppelt
uberdeckten Bereichs, d.h.

\T(KX... ,A4)I1>4 (Tr—z COSp arccos En_fomz arcsin Vo sinp
2

was in p monoton wéchst fir p >*.

Zum Beweis kann 0.B.d.A. angenommen werden, dal mindestens 3 Kreis-
mittelpunkte 0\, 02,03 auf dem Rand dH liegen. Die Behauptung ist klar,
wenn auch O4 £ dH gilt, oder wenn 0\, 0 2, 03 schon in einer Halfte von dH
liegen. Ist O der Mittelpunkt von H, so kann also angenommen werden,
daR die Dreiecke 01020, 02030 und 03010 eine Zerlegung von H bilden.
Deshalb gilt z.B. 04€ 01020. Dann ist \O ~\ + \(hPI\ <\(hO\ + \O"O\,
so daB |T(A'i, A4)| + |T(A'2, A4)| fur alle Lagen von 04 in 01020 minimal

ist fir 04=0. Aus |[T(A'l,... ,A4)| > \T(KUKA)\ + \T(K2,K4)\ folgt die
Behauptung.
(i) O.B.d.A. ist Al fl X2fl A3~ 0. Nach (5) ist dann
Mm{Ki,..., K4)I>2m—12cosparctan r "--->
\/3 cosp

was in p monoton wachst.

In beiden Fallen wird [T(A'},... ,A4)| + |52\ (A1 U.. .U An)| durch die
Summe zweier Funktionen von p abgeschdtzt. Unter Ausnutzung der Mono-
tonie der Summanden rechnet man in beiden Féllen nach, dal fir p~po die
Summe einen Wert > 1,4901 hat.
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ON THE A POSTERIORI ERROR ESTIMATES
FOR STIRLING’S METHOD

. K ARGYROS

Abstract

New a posteriori error estimates for Stirling’s method are given under natural assump-
tions. It is shown that they are better from the viewpoint of the accuracy and the cost of
the information used than the ones already in the literature under similar assumptions.

1. Introduction

A fixed point x* of an operator F defined on a subset Dp of a Banach
space E and taking values into itself satisfies the equation

@ x = F{x).

We want to construct a sequence {x,,}n>0C Dp converging to x* for a suit-
able starting value xo- To achieve this construction we attach to the pair
(F, xo) an operator P : Dp CE —=E and consider the iteration

2 At —P(Xn), 1-0,1,2,...,
where P is given by
©) P(x) =x- (I- F'(F(x)))~1x - F(x)).

This particular choice of P in (2) defines the so-called Stirling’s method
[10], [11]. Stirling’s method can be viewed as a combination of the method
of successive substitutions and Newton’s method.

We derive new a posteriori error estimates for Stirling’s method. We also
show that they are better from the viewpoint of the accuracy and the cost
of the information used than the ones already in the literature under similar
assumptions [10], [11]. Moreover, we provide an example where we show
that for the same starting point Xo Newton’s method fails to converge but
Stirling’s method converges to the fixed point x* of F. Finally, we provide
a simple example of a two point boundary value problem where our results
compare favourably with the ones obtained before under similar assumptions
[10], [11]. We are interested in the case where xn€ Dp, n—0,1,2,....
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From now on for simplicity we will assume Dp = E.

Let a, 7, ro be real numbers suchthat 0<a< 1,7 >0, and ro”™ 0. Let us
denote by C(a,7,r0) the class of all pairs (F, x0) satisfying the conditions:

(ai) F is an operator defined on E and with values into itself and Xq is

a point of E.
(@2) The Fréchet-derivative F' of F is uniformly bounded on E. That is,

there exists a with 0< a < 1 such that
4) lirf(x)||<a forall xX£E.

(@3) The Fréchet-derivative F' of F is Lipschitz continuous on E. That
is, there exists 7 > 0 such that

5) —FW)| A T7lIx =2 forall x,yeE.

(a4) The following inequality is true:

o - F(*0)I| - (A _
(6) 1—a ro<min(*0 ,q )=q
where we denote
_7(1 + 2a)
5- 2(1-a)
and
7(3-2a)
Q- 2(1-a) °

We now define a convergent iterative procedure for the class C (a,7,rQ)
by associating with each pair (F,Xq) s C(a, j,ro) the iterative algorithm
(P, x0) with P given by (3). The iteration (2) becomes

(M) xn+r1=xn-(1 - F\F(xn))yl(xn-F (xn)), n=0,1,2,....

2. Error bounds for Stirling’s method

For the proof of the main theorem, we will use the method of nondiscrete
mathematical induction [6], [8], [9]. Let T be either the positive real axis or
an interval of the form T={r£R ;0<r” ro}.

Definition 5. A function w: T —+T is called a rate of convergence on
T (see, e.g. [6], p. 65) if the series

(8) afr) = whn\r)

n=0
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is convergent for each r GT, where the iterates of w are defined as
follows:

u>(°)(r) = r, U;(ri+1)(r) = u;(ii/n)(r)), n=0,1,2,....

The functions w and a from Definition 5 obviously satisfy the following
functional equation:
9) a(w(r)) =a(r) —r, reT.
Using Definition 5 and (8) it is easy to check that the function
(10) w(r) —qr2
is a rate of convergence on T = {r€ R, 0<r S ro} and the corresponding

series a is given by

(11) a(r) = - for all 0 <r <r0.
q k=0

It can easily be seen that < converges if 0 < qr <1 Moreover, the iterates
of w are given by

(12) w(n)(r) = -(gr)2', n=0,1,2,...

in this case. Denote by U(x,r) the closed ball centered at x and of radius
r>0.
We will need the following corollary of the induction theorem [see e.g.

[61, [71. 81l
Theorem 1. (a) Suppose that we can attach to the pair (F,xo) a rate

of convergence w on an interval T and afamily of sets Q(r) CE, r £ T such
that the conditions

(13) z0€ Q(ro) for acertainroe T and (r£T andx£Q(r))

(14) =>P(x) £ U(x,r) nQ(w(r)).

Then the iteration generated by (7) converges to a fixed point x* of equation
(1), in such a way that the following estimates are satisfied:

(15) *n€g(u»<n>(r0)),

(16) [I*n- In-ill 5 Us(n_1)(ro),
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and

a7 |lEn- Z*¥| ~ <r(u;(n)(ro)), n=0,1,2,—-
(b) Suppose that for a certain n £ {1,2,...} the condition

(18) Xn-1 €Q(\\xn - Xxn-ill)

is satisfied then for this n,

(19) n % A 7L SA—2II)

where we have denoted

(20) d(r) =o(r) —r.

(c) Moreover, suppose that for a certain N, equality is attained in (17),
then equality will be attained in (16) and (17) for all n?:N.

We will need the following theorems on the convergence of Stirling’s
method ([10], Theorem 4 and Theorem 4', respectively).

T heorem 2. IfF' is Lipschitz continuous with constant7 and ||jP'(cc)|| <
£ a <1for all x£ E, then iteration (7) converges to x* starting from any
x0e E such that

zp - F(x0
o1 ns—q!@ 5 FOOI g

Moreover, the convergence is quadratic, with
22 n-x1S (/,,)2"-11|Xo~ f(lo)I1, n=0,1,2,... .
(22) [xn-x 1S (/,,) I 1—(a )

Theorem 2 in bounded regions can be stated as follows.

T heorem 3. Suppose that F' is Lipschitz continuous with constant -
and uniformly bounded by a non-negative constant a < 1 in the ball

U(X0,rE) = jz e E/\\x - zoll Ar*= 2/x°r j.

7/(21) holds, then Stirling’s method converges to the unique fixed point x* of
F in U at the rate given by (22).

We will now prove a theorem, concerning the convergence of Stirling’s
method in the class C(a,j,r0).
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T heorem 4. If (F, Xo) € C(a,7,ro0), then the iterative algorithm (7) is
well-defined, the sequence {xn}n>0 produced by it converges to a fixed point
x* of equation (1) and the following estimates are true:

(23) [|X,, -x n_i]|<ti;(n_1)(r-0),

(24) [Ixn_i - x0| <a(r0) - crt;(n-1)(ro)) < <(r0) - <r(||x,, - xn_i||)
(25) I[*,,-®*[| ~ <r(ii/n)(r0))

and

(26) [[xn-x*{|<d(|[xn-x, -3

where w, o, d are given by (10), (11) and (20), respectively.

Proof. The proof uses Theorems 1 and 2. Since 0< a < 1 the linear
operator I —F'(F(x)) is invertible for all x £ E. Therefore, the sequence
generated by (7) is well-defined for all n=0,1,2,  We can now attach to
iteration (7) the rate of convergence w given by (10) and the family of sets

@7)  Q(r) ={x££; [x - xO <<7(r0) - <r(r), [x - Fx)|| < (- a)r}

where a is given by (11). The hypotheses of the theorem imply that Q(ro) =
= {xo0}, so that (15) is satisfied. Now let x be an element of Q(r) and denote

y by

(28) y=x—(I- F'(F(x)))-1 (x =F(x)).

We want to show that y £ Q(tc(r)). Using (27) and (28) we get

(29) |I¥- x0] < Hy- x1+ Ix - xO| * r+ o(r0) - o(r) = <r(r0) - <r(u;(r)).
Using the identities

(30) y- F(y) = F(x) - F(y) - F'(F())(x - ),

| F{x) —=F(@y) =F'(F())(x —=y) =

(31) =I[F\Ox + (L- O)y) - F;(F(x))](x - y)dO
0
we obtain
(7 -r(P(31)))-1(2/-F(31))][<
=of) 7 A\ (W ~ + 1IMF(QID:- yiiN
) =507 W (9l y

STk rHrte - <

< qrz = w(r).
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Thus, we have proved that condition (14) is also satisfied. Hence, the first
part of Theorem 1 assures the fact that the sequence generated by (7) con-
verges to a point x* and that the relations (25) and (36) are satisfied. By con-
tinuity, iteration (7) gives x* = F(x*). From the fact € Q(u)in_17(ro))
and from the monotonicity of a we get

lkn - =, -ij = q1¢9- IM(P(as,_2)))-1x,,_1- T > n_1)H » tu(n_1)(ro0)
and
[lz,-1 - Zoll » o-(r-0) - cr(m(” x)(ro)) ™ <j(r0) - a(||xn- x,_x|).
Thus, the relation (15) is also verified for n = 1,2,.... The rest of the

theorem follows from Theorem 1 immediately and that completes the proof.

Remark, (a) It can easily be seen that our estimates given by (25) are
eventually sharper than the ones given by (22) if

gro< qor0
that is if

(b) Estimates of the form (23), (24) or (26) are not given in [10].
Moreover, we can show

PrRopPosITION 1. Under the hypotheses of Theorem J the following are
true:

©
(33) Iz, - x| <-~(g]|lzn-z~lir"™ ~/?i(n,r0), n—1.2,3,
5 k=0
and
1 [ q \2*+n
(34) wen %= ANAAN won - Faxn—1) 1 5 n=12,3,.
gk=0 ~a
where e
Ri{n,r) =- ~(gie(n_1)(r))2Chn
* h=0

Proof. From 0< a < 1 it follows that | —F'(F(xn)) is invertible for all
n and

(35) I1(/- P'(F(xn))) 1 < n=0,1,2,.. .

1- Q’
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Consider a pair (F, x0) eC (a,7,r0) and denote
(36) ro_, = ||(/- I*(F(xn_1)))-1(xn_1- J(*w_1))|.
We will show that (F, xn_i) € C(a,7,rn_i). By (6) it suffices to show that

NE<T.
But by (7), (23) and (36) we have
rn-1=||x,, - X,,-i ||~ ie(n_1)(r0) < -(gr0)2" “~ ~(qr0) - r 0 <q.
q q

Applying Theorem 3 to the pair (F,xn_i) € C(a,7,rn_i) we deduce (33).
Finally, noting that

- *ml=||(/- F(F(X,,_,))-“(in., - F(X,,.))| S
S -1J_-A|x n_l-f(xn_1)
and using (33) we obtain (34). That completes the proof of the proposition.

We can now prove the following:

P roposition 2. (&) Under the hypotheses of Theorem 4 the following
estimates are true:

X, = x || >
4{-1
37) >2 + 23+ 29) A 154 He \xn Xn+\ |
1+1 (1 _a) i -+ u)
and
(38)
3+ 2a -1

P»~**11> 1+ o (|.a)<qu(n)(rn-1)) HXn_x"+i||. n=0,1,2,... .
(b) Suppose that in addition to the hypotheses of Theorem 4, the condition
(39) ro < min(</, r0)
is true, where fo is the maximum positive number such that
(3+ 2a)iqgers+ 2(1 - a)qgr —2(1 —a) <0 for all r € [0, «0].
Then the following estimate holds

(40) IP» - *1 £2[2(1 - a) - (3+ 2a)7a(ti;<">(rn_I1))]-1|*n- F(xn)|| <
AR 2{n,r0, |x,, - F(xn)|]), n=0,1,2,...,
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where
Ba(n, r,t) = 2f[2(1 - a) - (3+ 2a)7CT(w(n(n_1))(r))]~1.

Furthermore, if

ro<min(fo'(3 T *h)’

then

(41)

II*n- **<{(1-a)- [(1- a)2- B+ 2a)7||lzn- ~(x,)H]VZ}(3 + 2a)7) -\
n=0,1,2,... .

Proof, (a) By taking norms in both sides of the identity

*,+i - Xn=x*-xn+ (I -F(F{xn)))-1F{xm - F(xn)- F'(xn)(x*- xn)],

we obtain
(42) [I*n+l ~*»|[ ~
< |Ixn- I*|| + — F'(Oxn+ (1- O)x*) - F'(F *- xn)de <
[Ixn - 1] T [ (F'(Oxn+ (1- 0)x*) (F(xn)))(x* - xn)de
0
|
< |Ix,, - x*|| + J Woxn+ (L- 9per - F(xn))[llxn- x*||de <
0
1
Alxn- XH| + -1|’—a { TL—9)(x* —x,) + (xn—ir(xn)lf[lxn —x*1d0 A
0

STkn-x1+i-2 (2 +Q)|lx,-X-||2

The result (37) follows now immediately from (42). Furthermore, by (42)
and (25) we get

[xB+i - *n|| ™ Il¥n =12+ 24-Q Ja(w(n)(rn=1))" 1"

from which the estimate (38) follows.
(b) The linear operator defined by
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is such that the operator I —L is invertible if (39) holds. Indeed, from the
identity

I-{1- F'(F(xn)))-\I-L)=({—F'iFixJ))-1* - F'(F(xn))),
(35) and (5) it follows that

1
/- (1-FIEE))-10/-X ) |1< 4 A J jjoxn F1-*)z*-F (x n)||d*<

3+ 2q)

@+ 2a9)7 |, A
\"\n X || 2(1-2)

2(1-a) 1
5:\’,+2q_)7_ 2n \2k's
sMrM i) X>m s

< (3+2a)7 23 1~ (g™0)* < (3+ 2a)7g2g
2(l-a)* °fro 1- 9ro =2(1-a)(l-gr0)

< T arum)(ro)) <

by the choice of r0.
According to Banach’s lemma it follows that the linear operator I —L is

invertible and

| (3 -f 201)7 -1
) *m))-1(/-Z)1- 1|

(43 IIQ-F(F(*m))-1(/-2)]1-1] 2(1-a)

Finally, using the identity
xn-xm=((/- F'(F(xn)))-\1- L))~\I - F'{F{xn)))~\xn- F{xn)),

(25), (35) and (43) we obtain (40) and (41) under the corresponding hy-
potheses. That completes the proof of the proposition.

We now complete this paper with two applications.

3. Applications

We provide an example where Newton’s method fails to converge where
Stirling’s method converges to the fixed point x* of a certain operator F.

Example 1. Let us consider the real function F given by
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Using Stirling’s method given by (7) with xo —2 we obtain
X\ —0 = x*.

But, using Newton’s method with xo=2, the method fails to converge since
F'(2) does not exist.

We now provide a simple example of a two-boundary value problem with
a trivial solution to compare our error estimates with the ones obtained in
[107.

Exampite 2. Consider the differential equation

(44) N+ Y22y, 2/0) = 2/(1)= 0.

We divide the interval [0,1] into n subintervals and we set h = Let {f"}
be the points of subdivision with

O=to<ii <em<tn= 1
A standard approximation for the second derivative is given by

n_yi—l 72*T 2A+l
2 = h2

Take 2o= 2n= 0 and define the operator F : R" 1—R” 1lhy

yi —y(ti), i—1,2,... ,n 1

F(y) =\H(y) + h2<p(y),

2 1
= 1 -2
0

\V(*) = [2522i--- >2/, i]tr and y= [ya,y2, eee, 2/ni]"

Then
2

212
F'(x) = 4H +2h2

0 2/n-1 .

The solution of (44) can now be obtained as the fixed point of the equa-
tion

(45) Fy) = y-



A POSTERIORI ERROR ESTIMATES 215

Let yGRn 1, H£Rn 1XR" 1and define the norms of y and H by

n—1
IMI = ) §rjn~m1 \yj\ and ||tf]|| = Jnsugtx_' E/:\ \hjk\.

For all y,z GRn_1 for which \y\ >0, |z;] >0, i= 1,2,... ,n- 1we obtain

I-F'(y) - -F'MII = ||diag2/i2(ifj - Zj)l| = 2hz max \ys- z3\<2h2ly- 2\
jSn -

That is 7 = 2/i2. We choose n = 3. Since a solution would vanish at the
end points a reasonable choice of initial approximation seems to be y(x) =
= sin tex. This gives us the following vector:

(46) Vo = [8.66025403.10“5, 8.66025403.10_5]tr.

Let us choose the ball 17(u0,.1). Using Theorem 3 we get the following
results

a = .772202977

vo - F(r>0)||
1=

q—.70998588, @ = 1.241068778, q=q 1 and hs= 5.897732996.10~4.

Set w= 1 to obtain xo = 1.000475374. With the above values it can
easily be seen that the hypotheses of Theorem 4 are satisfied in the ball
U(v0, .1) D U(xo,r*).

Therefore, there exists a unique fixed point v* =v*(t) = 0 for all <€[0,1]
of equation (44) which can be obtained as the limit of iteration (7) with v0
given by (46). That is (F, v0) € (a, 7,r0) and (F, v0) € C (a,y,r0,w).

We can now tabulate the following results

4.752140333.10-4 = r0, Tg= 9.504280667.10-7,

n Rail (22) ARG. (25) ARG. (33)

0 4.752140333.10“4 4.75374.10~4 ;

1 2.802685484.10-7 1.603349543.107 1.621601384.1047
2 9.748652245.10~4 1.825181975.10—44 1.825181902.10-14

3 0 0 0
Moreover,
6.66185.10~10 . 6.10-19 ]
6.66185.10~10 * Y2~ .g1049 NdB-
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The above table indicates that our results are better when compared with the
corresponding ones in (22). This fact strongly recommends their usefulness
in numerical applications.

(1
(2]

(3]
[4]
[
(6]
(7]
8]

[
[10]
[11]

[12]
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DREHKEGEL DES ZWEIFACH ISOTROPEN RAUMES
DURCH VIER GEGEBENE PUNKTE

S. MICK

Zur Lésung eines kinematischen Problems hat H. Schaal in [5] die ein-
parametrige Menge der Drehzylinder durch vier Punkte des dreidimensio-
nalen euklidischen Raumes E3 bestimmt. Im AnschluB daran wurde von
U. Strobel in [6] und [7] die zweiparametrige Menge der Drehkegel des Es
durch vier Punkte untersucht. Die Drehkegel des zweifach isotropen Raumes

I A durch vier Punkte sind im projektiven Einbettungsraum P3 des 1" die
Kegel 2. Ordnung durch vier gegebene Punkte, die im absoluten Punkt die
absolute Gerade beriihren. Von Weddle wurden in [8] die Kegel 2. Ordnung
durch sechs Punkte des P3 bestimmt und von Hierholzer in [2] die Glei-
chung der Kegelscheitelflaiche erneut dargestellt. In dieser Arbeit werden
zwei der Punkte durch ein Linienelement ersetzt und die dabei auftretende
Kegelscheitelflaiche im zweifach isotropen Raum beschrieben.

1. Einleitung

Es sei A3 der dreidimensionale reelle affine Raum. Durch die Festlegung
der Absolutfigur {oj,f,F}, bestehend aus der Fernebene ui des A3, einer
Ferngeraden / und einem auf/ liegenden Fernpunkt F, wird der affine Raum

A3 zum zweifach isotropen Raum 7g \ Jede Untergruppe der affinen Gruppe,
die gleichzeitig Automorphismengruppe der Absolutfigur ist, bestimmt eine
zweifach isotrope Geometrie. Wahlen wir die sechsgliedrige Gruppe Ge der
isotropen Bewegungen, die die isotropen Abstdnde und Winkel invariant l&0t,
so erhalten wir die zweifach isotrope Bewegungsgeometrie (siehe [1], 120 ff).
H. Brauner hat in [1] die zweifach isotrope Geometrie entwickelt und auch
beziiglich weiterer Begriffshildungen der zweifach isotropen Geometrie wird
auf diese Arbeiten verwiesen. Zur analytischen Darstellung des Raumes
wahlen wir ein affines Koordinatensystem {0,x,y,z}. Jeder Punkt des 1*
kann dann sowohl durch inhomogene Koordinaten (x,y,z)1 als auch durch
seine homogenen Koordinaten (xq :x\: x2 'x3)* dargestellt werden, wobei fir
xo 70 (io WXi :X2 :£3) = (1: x :y :z) gilt. Die absolute Ebene u>wird durch
die Gleichung

1) Xg—0

1991 Mathematics Subject Classification. Primary 51N25.
Key words and phrases. Doubly isotropic space, isotropic cone of revolution.
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festgelegt. Wahlen wir das Koordinatensystem so, dal} die absolute Gerade
Ferngerade der i/z-Ebene und der absolute Punkt Fernpunkt der z-Achse ist,
dann ist die absolute Gerade / durch das Gleichungssystem

2 xg=x\=0
festgelegt und fiir den absoluten Punkt F gilt
3 -F=(0:0:0:1)*

Metrisch dual zu den isotropen Kreisen sind die als Ebenenmannigfaltig-
keiten aufgefalten Drehkegel definiert (siehe [1], 124 f). Ein nichtisotroper

Drehkegel, kurz Drehkegel des zweifach isotropen Raumes 18 ist ein Kegel
2. Klasse mit eigentlicher Spitze, der eine vollisotrope Erzeugende mit voll-

isotroper Tangentialebene enth&lt. Da bekanntlich die Fernkreise des J3 '
die Fernkegelschnitte sind, die das absolute Linienelement {/, F} enthalten,
umhuillen die Ferngeraden der Ebenen eines Drehkegels einen Fernkreis. Im
folgenden fassen wir die Drehkegel als Punktmengen und ihre Fernkreise
als Punktkegelschnitte auf. Als Punktkegelschnitt kann ein Fernkreis auf
zwei Arten zerfallen, entweder in ein Paar isotroper Ferngeraden oder in
die absolute Gerade und eine nichtisotrope Ferngerade. Dem entsprechend
bezeichnen wir als zerfallende Drehkegel Paare isotroper Ebenen und Ebe-
nenpaare, bestehend aus einer vollisotropen Ebene und einer nichtisotropen
Ebene. Anstelle der Scheitel treten die Kerngeraden, wobei ein Paar isotro-
per Ebenen eine vollisotrope Kerngerade, eine vollisotrope und eine nichti-
sotrope Ebene eine isotrope Kerngerade bestimmen. Die weiteren Typen von

Drehkegeln des 1$ ’ heiRen Drehzylinder, Punktkugeln und Punktgrenzkugeln.
Ein Drehzylinder hat einen isotropen Scheitel und beruhrt die Fernebene
langs einer isotropen Ferngeraden, eine Punktkugel hat einen vollisotropen
Scheitel und beruhrt die Fernebene langs der absoluten Geraden und eine

Punktgrenzkugel schlieBlich hat ihren Scheitel im absoluten Punkt des 7@2’
und berthrt die Fernebene langs der absoluten Geraden.

2. Synthetische Uberlegungen zur Kegelscheitelflache $

Zuné&chst betrachten wir die Menge der Drehkegel durch drei gegebene

Punkte des I\ Fur ein Dreieck ABC des 1"\ von dem keine Seite auf
einer isotropen oder vollisotropen Geraden liegt und dessen Trégerebene eine
nichtisotrope Ebene ist, gilt: Die Menge der Drehkegel durch die Punkte A,

B und C ist dreiparametrig, denn es gibt zu jedem Punkt 5 des 13 , der
weder auf einer Dreiecksseite noch auf den vollisotropen Geraden durch eine
der Ecken liegt, genau einen Drehkegel durch die Punkte A, B und C mit S
als Scheitel. Wenn S nicht in der Ebene ABC oder in der vollisotropen Ebene
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durch eine der Ecken liegt, tragt der Kegel die Erzeugenden SA, SB, SC
und langs der vollisotropen Erzeugenden SF berthrt die vollisotrope Ebene
durch SF. Fir Punkte S der Ebene ABC, die auf keiner Dreiecksseite liegen,
zerfallt der Drehkegel in die Ebene ABC und die vollisotrope Ebene durch
S und fur Punkte S, die in der vollisotropen Ebene durch eine der Ecken,
aber nicht auf der vollisotropen Geraden durch diese Ecken liegen, zerféllt
der Kegel in die vollisotrope Ebene durch S und die Verbindungsebene von
S mit den restlichen beiden Ecken. Liegt S hingegen auf einer Seite des
Dreiecks ABC, oder auf der vollisotropen Geraden durch eine der Ecken, so
gibt es eine einparametrige Schar von Drehkegeln mit Scheitel S durch die
gegebenen Punkte.

Es sei nun ABCD ein Tetraeder des I32>, von dem keine Kante auf
einer isotropen oder vollisotropen Geraden und keine Seitenflache in einer
isotropen Ebene liegt. Die Menge der Drehkegel durch A, B, C und D

ist zweiparametrig und die Punkte S des I\ die Scheitel eines Drehkegels
sind, liegen auf einer Flache <, der Kegelscheitelflaiche. Um Geraden auf $
zu bestimmen (Fig. 1), wahlen wir zunédchst einen Punkt S auf einer Tetra-
ederkante oder auf einer der vollisotropen Geraden durch die Tetraedereck-
en. Fir einen solchen Punkt S stimmen zwei der Erzeugenden SA, SB, SC,
SD und fs — das ist die vollisotrope Gerade durch S — des Drehkegels
Uberein, es bleiben also nur vier wesentliche Bestimmungsstiicke und mit der
vollisotropen Ebene durch fs als Tangentialebene ist ein Drehkegel eindeutig
bestimmt.

Also liegen die Tetraederkanten und die vollisotropen Geraden durch die
Ecken des Tetraeders auf € Nun betrachten wir die zerfallenden Drehkegel
durch A, B, C und D. Jeder Punkt einer so bestimmten Kerngeraden gehort
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dann als Scheitel eines zerfallenden Drehkegels zu 4> Zu den zerfallen-
den Drehkegeln durch A, B, C und D gehéren die drei Ebenenpaare, die
aus den isotropen Ebenen durch die Paare von Gegenkanten bestehen. Die
vollisotropen Schnittgeraden sind gleichzeitig die Gemeinlote der Gegenkan-
tenpaare und die Kerngeraden dieser zerfallenden Drehkegel. Weiters sind
die Ebenenpaare, bestehend aus einer Tetraederseitenflache und der voll-
isotropen Ebene durch die Gegenecke, zerfallende Drehkegel. Die vier Schnitt-
geraden solcher Ebenenpaare sind isotrope Geraden, die ebenfalls auf $
liegen. Damit gilt

Bemerkung 1. Auf der Kegelscheitelflache $ liegen 6 nichtisotrope, 4
isotrope und 7 vollisotrope Geraden, ndmlich die & nichtisotropen Kanten des
Tetraeders, die 4 isotropen Kerngeraden der zerfallenden Drehkegel, die eine
Tetraederseitenflache enthalten, die 4 vollisotropen Geraden durch die Ecken
und die 3 (vollisotropen) Gemeinlote der Gegenkantenpaare des Tetraeders.

Schneiden wir die vollisotropen Geraden mit der Flache < so erhalten
wir
BEMERKUNG 2. Im allgemeinen liegt auf jeder vollisotropen Geraden

genau ein Punkt, der Scheitel eines Drehkegels durch die Punkte A, B, C
und D ist.

Beweis. Essei S' ein Punkt der Ebene e —ABC und fs die vollisotrope
Gerade durch S'. Wir suchen nun Drehkegel durch die Punkte A, B, C und
D, dessen Scheitel auf fs liegen. Es sei <gs die vollisotrope Ebene durch
S' und (fs fl£=s' die isotrope Gerade von £ durch S1 Bestimmen A, B,
C und das Linienelement (S', s') einen Kegelschnitt k, so ist der Punkt S
auf fs genau dann Scheitel eines Drehkegels durch die Punkte A, B, C und
D, wenn der DurchstoBpunkt D der Geraden SD mit der Ebene e auf dem
Kegelschnitt k liegt (Fig. 2).
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Bezeichnen wir mit D' den Schnittpunkt der vollisotropen Geraden durch
D mit der Ebene e, so ist S'D' = d! die Schnittgerade der isotropen Ebene
fsD mit der Ebene e und D der zweite Schnittpunkt von k mit d!. Konstru-
ieren wir D mit Hilfe des Satzes von Pascal (Fig. 3), so ist S= DD fl/s der
gesuchte Kegelscheitel. Diese Konstruktion liefert genau einen Kegelscheitel
5 auf fs, auBer die Geraden fs und DD stimmen (berein oder sind parallel.

Fur die vollisotropen Geraden, auf denen kein Punkt Scheitel eines Dreh-
kegels durch A, B, C und D ist, gilt

Bemerkung 3. Bis aufendlich viele Ausnahmen liegt aufden Erzeugen-
den des vollisotropen Zylinders 3. Ordnung durch die Brennpunktskurve k$
des Kegelschnittshiischels mit den Grundpunkten A, B, C und D" kein Punkt,
der Scheitel eines Drehkegels durch A, B, C und D ist. Aufden Erzeugenden
durch die Grundpunkte und durch die Ecken des Diagonaldreiecks ist jeder
Punkt Scheitel eines Drehkegels durch A, B, C und D. Ausnahmen sind also
die 7 vollisotropen Geraden von Bemerkung 1

Beweis. Wir betrachten das Kegelschnittsbischel mit den Grundpunk-
ten A, B, C und D'. Die Tangenten durch den absoluten Punkt F\ =f De
von e an jeden Kegelschnitt des Buschels sind seine zwei isotropen Tangen-
ten, die in den isotropen Brennpunkten berlhren (siehe [4], 72). Wahlt
man einen Brennpunkt als Punkt S', so liefert die obige Konstruktion D =
= D', also ist DD eine vollisotrope Gerade und fur DD'jfi fs gibt es keinen
Kegelscheitel auf der vollisotropen Geraden durch S'. DD'=fs liefert die
7 Ausnahmegeraden. Die Brennpunkte eines Biuschelkegelschnittes liegen
also auf den Polaren des absoluten Punktes F\ der Ebene e. Alle diese
Polaren gehen durch den doppeltkonjugierten Punkt F\ von F\ beziiglich
des Kegelschnittsbiischels. Das Strahlbischel und das Kegelschnittsbiischel
sind projektiv aufeinander bezogen. Die Projektivitdt zwischen einem Kegel-
schnittsblischel und einem Geradenbischel erzeugt eine Kurve 3. Ord-
nung, was zu bewiesen war. Fur verschiedene Typen von Kegelschnitts-
bischels hat V. Scuric diese Brennpunktskurven untersucht. Unter den voll-
isotropen Zylindern, die durch das Kegelschnittsbischel mit den Grundpunk-
ten A, B, C und D' bestimmt sind, wird im allgemeinen keine Punktgren-
zkugel Vorkommen.

3. Gleichung der Kegelscheitelflache <>

Um die Gleichung der Flache 4>zu bestimmen, verwenden wir folgende
Bedingung fir die Kegelscheitel: 5 ist genau dann Scheitel eines Drehkegels
durch die Punkte A, B, C und D, wenn die Fernpunkte Au, Bu, Cu und
Du der Geraden SA, SB, SC und SD auf einem Fernkreis liegen. Da ein
Fernkreis das absolute Linienelement enthélt, lautet seine Gleichung

4 x0 = 2qxix3+axixz2+0xj + 712= 0.
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Wie man aus der Gleichung abliest, zerfallt der Fernkreis fir = 0 in ein
Paar isotroper Ferngeraden und fiir 7 = 0 in die absolute Gerade und eine
nichtisotrope Ferngerade. Sind

S:(| X-.y.z)1
A=(l d:a2..)
(5) o, b\b2\tBy
C=(l ci-c2:cyy
D=(1 d\d2\dy
die Koordinaten der Punkte, so sind die Koordinaten der Fernpunkte der
Erzeugenden
—Ww d\ —x 12—y :a3—z)(
Bu:{O bi-x:b2-y:bs-z)t
Cu= (0 ci- x:€2- y:c3- 7)1
d,=ro d\— :d2—y:d3—z)1

(6)

und wir erhalten durch Einsetzen von (6) in (4) ein homogenes lineares Glei-
chungssystem fur die Koeffizienten g,a,l3, 7 des isotropen Fernkreises:

2g(a1- x)(a3- z) + a(ai - x)(az- y)+R(ai - x)2+7(02- y)2=10
2g(bi - x)(bs - z) + a(bx- x)(b2- y) + B{bx- x)2+ 7(62 - Y)2= o0
2g(c1- x)(c3- z) + g(c! - x){c2- y)+B{c1- X)2+71(c2- J2=0
29(d\ - x)(d3-z) + a(dA- x){d2- y)+R(di - x)2+i(d2- y)2=0.

Dieses Gleichungssystem hat genau dann eine nichttriviale Losung, wenn
seine Determinante Null ist. Entwickelt man diese Determinante und ord-
net nach den Monomen in x, y und z, so erhdlt man die Gleichung der
Kegelscheitelflache in den Unbestimmten x,y und z. Um die Berechnung
der Determinante zu vereinfachen, fiihren wir eine isotrope Koordinaten-
transformation so durch, dall im neuen Koordinatensystem die gegebenen
Punkten Koordinaten

A= (1:0:0:0)°
5=(l:a:0:0)t
8) C=(l'b:c:
=(l:b:c:0y
D=(l:d:e:fY

haben. Damit keine Kante des Tetraeders auf einer isotropen oder voll-
isotropen Geraden und keine Seitenflache in einer isotropen Ebene liegt und
das Tetraeder auch nicht entartet, mussen alle Zahlen a, 6, c, d, €und / von
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Null verschieden und zusatzlich a, b und d paarweise verschieden sein. Mit
(8) vereinfachen sich auch die Koordinaten (6) und das Gleichungssystem
(7) und seine Determinante lautet
XZ Xy x2 y2
(a—x)z (a- x)y (a- x)2 Y2
b—x)z  @-x)(c-y) (b-x)2 (cly)
(d—x)(f —2) ey @—=02 (e~y)
Wir erhalten als Gleichung der Kegelscheitelflache $
(10) Det=2T3(x,y) + T4(x,y) =0
mit
Tz(x, y) = ce(c —e)x3 + 2ce(d - b)xay+
(1) + [cd(a —d) + be(b —a)]xy2+ bd[c(d —a) + e(a —b)]y2+
+ ce[e(a + 6) —c(a + d)]x2 + 2ace(b —d)xy-\- ace(cd —be)x

und
(12) Ta(x,y) = fy{cx - by)[-cx + (b- a)y+ac](x - d).

Flachen 4. Ordnung mit einer Gleichung der Gestalt (10), in der Tz(x,y)
ein Polynom 3. Grades und T4 (X, y) ein Polynom 4. Grades bezeichnen, haben
einen dreifachen Punkt im Fernpunkt der z-Achse. <% ist also eine Flache 4.
Ordnung mit F als dreifachen Punkt. $ ist rational, genauer gibt es zu
jeden Punkt P' = (x,y,0)1der Ebene wd = ABC mit der Gleichung z =0

einen Punkt P = 7x,y, der Flache 4> soferne T3(x, y) M 0 ist, was

in Ubereinstimmung mit den Bemerkungen 2 und 3 steht. Wegen (10) und
(11) ist

Tj(Xx, y) = ce(c —e)x3+ 2ce(d - b)xay+
(13) + [cd(a —d) + be(b —a)]xy2 + bd[c(d —a) + e(a - b)]y2+

+ ce[e(a+ 6) —c(a + d)]x2+ 2ace(b —d)xy-\- ace(cd —be)x = 0
die Gleichung des Tangentialzylinder 3. Ordnung T3 von $ in F und in der
Ebene  seiner Spurkurve 3. Ordnung, die nach Bemerkung 3 gleichzeitig

die Brennpunktskurve des Kegelschnittsbischels mit den Grundpunkten A,
B, C und D ist. Speziell erkennt man, dal wegen / 0, =0, in
den Punkten A)B, C und D' die Tangenten von f3 isotrop sind. Schreibt
man (13) homogen, so erkennt man, dal} der Fernpunkt F\ der j/-Achse der
Restschnittpunkt dieser Tangenten mit der Kurve ist. Damit ist auch gezeigt,
dall A3eine Kurve 6. Klasse ist. Aus der Gleichung

(14) Ta(x,Y) =fy(cx - by)[-cx+ (6- a)y+ac](x- d)=0
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des Zylinders T4 erkennt man, dal der Zylinder T4 in 4 Ebenen zerféllt.
Seine Spurkurve o4 in 7T besteht aus den Seiten des Dreiecks ABC und der
isotropen Geraden der Ebene 74 durch D'. Die Schnittgeraden der beiden
Zylinder TR und T4 liegen auf 4> es sind die vollisotropen Geraden durch A,
B, C und D, sowie die 3 vollisotropen Geraden durch die Punkte

I _ /cdj-6¢c \

vec—e |/
/ acd ace \
(15 ' v—ae + be —cd7—ae + be —cd)
/ abe ace \

die gleichzeitig die Gemeinlote der Gegenkantenpaare des Tetraeders ABCD
sind. Das bestétigt eine Teilaussage von Bemerkung 1 Darliber hinaus
erkennt man aus der Gleichung von 4> daf die vollisotropen Geraden durch
A, B, C und D Torsalgeraden der Flache sind, die Torsalebenen sind die voll-
isotropen Ebenen, die l&ngs dieser Geraden $ beriihren. A, B, C und D sind
Doppelpunkte von 4und der Tangentialkegel in einem solchen Doppelpunkt

ist der Drehkegel des 13%* durch die restlichen Doppelpunkte. Als néchstes
untersuchen wir die Fernkurve von 4> Aus (10), (11) und (12) erhalten wir
die Gleichung der Fernkurve der Flache <~ Sie lautet

czx((ce(c —e)x2 + 2ce(d —b)xy+ (cd(a —b) + be(b - a))y2-\-

(16) .
+ fxy (—c2x2—b{b—a)y2+ (c(b —a) + bc)xy) = 0.
Ergénzend zu Bemerkung 1 erkennen wir, dal3 die absolute Gerade als
Bestandteil der Fernkurve von $ eine Gerade durch den dreifachen Punkt F
von $ ist. Der zweite Bestandteil der Fernkurve ist eine rationale Kurve I3
mit dem Doppelpunkt F, der fir spezielle Koordinaten von A, B, C und D
zu einer Spitze werden kann. Zist die Scheitelmenge der Drehzylinder des

I3 ' durch A, B, C und D. Dieser Menge gehdrt im allgemeinen genau eine
Punktkugel an (siehe [3], 47). Als Ergebnis erhalten wir den folgenden

Satz. Sind vier Punkte A, B, C und D des 7g ; gegeben, die Ecken
eines Tetraeders mit lauter nichtisotropen Kanten und nichtisotropen Sei-
tenflachen sind, so liegen die Kegelscheitel der Drehkegel durch diese Punk-
te auf einer rationalen Flache $ f. Ordnung. Der absolute Punkt F ist
dreifacher Punkt, die Punkte A, B, C und D sind konische Doppelpunkte
von <& Auf 4 liegen 18 Geraden, speziell sind die vollisotropen Geraden
durch A, B, C und D Torsalgeraden von 4> mit vollisotropen Torsalebenen.
Die Tangentialkegel 2. Ordnung in den Doppelpunkten sind die Drehkegel

des 7g2" durch die restlichen Doppelpunkte der Flache, der Tangentialkegel
3. Ordnung im absoluten Punkt F geht durch die Brennpunktskurve k3 des
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Kegelschnittsbiischels mit den Gtundpunkten A, B, C und D', wobei D' der
Schnittpunkt der vollisotropen Geraden durch D mit der Ebene ABC ist.

Fig. 4



Fig. 4<

Die Figuren 4, 4a, 5, 5a zeigen die Kegelscheitelflachen fir a = 12, b= 3,
c=—e=f=5d=9, bzw. a— 12, b=3,c=f=5, d= 9,e =2,7.
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S fiaa

Fig. 5

Die Flachen wurden von Herrn Michael Schmidt von der TH Darmstadt auf einer
VAX 8530 generiert und dargestellt, wofiir ich ihm an dieser Stelle danken mdochte.
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Fig. 5a
Bei besonderer Lage der gegebenen vier Punkte treten Modifikationen
der Flache vierter Ordnung ein, die wir mit Hilfe der Gleichungen (10), (11)
und (12) leicht verfolgen kénnen. Zum AbschlufR soll ein interessanter Son-
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derfall beschrieben werden. Sind zwei der Tetraederkanten im Gegensatz
zur allgemeinen Voraussetzung isotrop, so zerféllt die Kegelscheitelflache in
die beiden vollisotropen Ebenen durch diese Kanten und eine Flache zweiter
Ordnung durch den absoluten Punkt F. Das von den vier nichtisotropen
Kanten des Tetraeders gebildete windschiefe Vierseit ist ein Erzeugenden-
vierseit dieser Fldche zweiter Ordnung, die dadurch bereits bestimmt ist.
Dies erkennt man, indem man in (10), (11) und (12) d =a—b= 0 setzt. Im
allgemeinen wird die Flache zweiter Ordnung ein Hyperboloid sein, wenn
allerdings zwei der nichtisotropen Kanten des Tetraeders zu einer isotropen
Ebene parallel sind, stellt sich ein hyperbolisches Paraboloid ein.
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A COMMUTATIVE NEUTRIX CONVOLUTION
OF DISTRIBUTIONS ON Rm

CHENG LIN-ZHI

Abstract

Let r(i) g C°°(R) having the properties: (i) r(r) = r(—), (i) 0™ r(z) ™ 1, (iii)
r(x) = 1for |z|<£, (iv) r(x) =0 for |z| > 1 be fixed. The unit sequence {7-n(x)}, xg Rm,
and ng Im, is defined by ©,(z) = r(zi/«i) . r(zm/nm) for n\,... ,nm=1,2,.... The
neutrix convolution f®g of two distributions / and g in Z/fR"*) is then defined to be the
neutrix limit of the sequence {/n * <}, where /,, =/ mn and gn= g mrnm Several results
are given.

1. Introduction

The following definition for the convolution of distributions compatible
with the convolution of summable functions was first given by Schwartz [8].

Definition 1. Let/ and g be distributions in D'(Rm). The convolution
product f *g=g *f is defined by

() (f*g9,$) = (F(x)xg(y),V(x.y))
where ~
y) = $(:c +y), V$6U(Rm)
if the right-hand side of (1) has meaning.
Either of the following conditions, see [8],

(a) either f ox g has compact support,
(b) the supports of / and g are limited on the same side,

is sufficient for the convolvability of two distributions under Definition 1

However, the convolution / *g under Definition 1is not usually defined,
since G D(Rm) does not imply that 4> defined as a function on R2m by
(x, y) FE2{x+ y), is in D(Ri7n).

The method of the sequential completion is another way to define the
convolution of distributions that is also compatible with the convolution of
summable functions. This was first used by Mikusinski [7].

To deal with the sequential approach we now let r be a fixed function in
D{R) having the properties

1991 Mathematics Subject Classification. Primary 46F10
Key words and phrases. Convolution of distributions, unit sequence, sequential ap-
proach, decomposition theorem.

0081-6906/95/$% 4.00 ©1995 Akadémiai Kiado6, Budapest
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(i) r(x) =r(-x),
(i) 0<tfp)™ 1,
(i) t(x)= 1for |x| <[,
(iv) r(x) =0for [x| > 1.

The function r,, is defined by T(X) =t(x/t) for n—1,2,... . It is obvious
that {rn} is a sequence of functions in D(R) converging to the unit function
on R in the sense that

nl_igj)(rn(x), $(2)) = (1,4>(2)), \<£ GU(R).

For an arbitrary distribution / we will define the truncating fn by fn(x) —
f(x)rn(x) forn= 1,2, It follows that {/n} is a sequence of distributions
with compact supports converging to /.

The following definition was given by Jones [6].

D efinition 2. Let/ and g be distributions in D'(R). Then the convolu-
tion product f®qg is defined as the limit of the sequence {fn*9n}, providing
the limit h exists in the sense that

(f®9,®)= iim (fn*gn,®) = (h,$)

for all $ in D{R).

The convolution fn *gn in this definition is in the sense of Definition 1
since the supports of f n and gn being compact. It is clear that the convolution
f ®g is commutative if it exists under Definition 2.

In the following we are going to generalize Definition 2 to define the
neutrix convolution f®g of two convolutions / and g in D'(Rm) on applying
the special technique of the separation of variables to deal with the product
of distributions, see [1] and [4].

2. The neutrix convolution product in D’{Rm)

First of all we define the function rn(x), where x = (aq,... ,xm) £ Rm
and «= («!,... ,nm)e lm, by

Tn{x) =r(xi/ni) ...T(xm/xn)

for ni, meinm= 1,2, It is obvious that {rn} is a sequence of functions
in D(Rm) converging to the unit function of Rm in the sense that

lim eee [im (rn(x),4>(x)) = (I,«L(x))

or more briefly
nIi_|rr<1x)(rn(x),$(x)) = (1,i»(x))
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for all 4in D(Rm).
For an arbitrary distribution / in D'(Rm) we define the truncating fn(x)
by
fn{x) = f(x)rn(x).
It follows that {/,} is a sequence of distributions with compact supports
converging to / in the sense that

7l|_irknx>(/,,(x),$(X)) = (/(a;),$(:r))

for all $ in D(Rm).
Following [5], but with a different unit sequence r,,(x), we have

DEFINITION 3. Let / and g be distributions in D'(Rm) and let fn(x) =
=f(x)Tn(x) and gn(x) = g(x)Tn(x). Then the neutrix convolution product
f®g is defined as the limit of sequence {/,, * </} providing the limit h exists
in the sense that

(3) %—_Iim semN-lim (/,, *gn,4) = (h, $)

FOO 71771 FOO
or more briefly

4 N-lim(/,, *gn,$) = (h<b)

for all 4in D(Rm), provided h is independent of the order in which the neu-
trix limits are taken, where N is the neutrix, see van der Corput [2], having
domain V= {1,2,... and range the real numbers with negligible
functions finite linear sums of the functions

Inr_1n,Inrn />0, r=1,2,...)

and all functions which converge to zero in the normal sense as n tends to
infinity. In particular, if

) lim eee lim (/,*5,,9%) = (/£%)

711 ~00 7177 KX)

for all $ in D(Rm), we simply say that the convolution product / ®g exists
and write

f®g =f®g.

The convolution /,, *gn in this definition is again in the sense of Def-
inition 1. Clearly the neutrix convolution f®g is commutative if it exists
under Definition 3. The following theorems can be proved by modifying the
corresponding proofs of theorems in [6].
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Theorem 1 Letf and g befunctions in Lp(Rm) and Lg(Rm), respec-
tively, with p~x+ g~x—1 and 1~ p,q$ 0o. Then the neutrix convolution
f®g exists and

{(feg)(x)= J f{t)g(x-1) dt,

the classical definition of the convolution product.

Theorem 2. Letf and g be distributions in D'(Rm). Suppose that either
the condition (a) or the condition (b) in Definition 1 is true. Then the
neutrix convolution f®g exists and

f®g = f*g.

In order to prove our main results we need the following lemmas (see
Schwartz [8]).

Lemma 1. The convolution product of two direct products is equal to the
direct product of the convolution products

(At XCy) - (BXxDy) = (Ax*Bx) x{Cy - Dy)
if Ax, Bx ¢ D'(UP) and Cy, Dy D'{Rg) such that each of Ax and Cy has
compact support.
Lemma 2. The vector subspace of the functions <f>¢r) in the form
LEM) = A AN (R]) eee
i
is dense in D(Rm), where .. 4,8 mi GZ2(R).

T heorem 3 (Decomposition theorem). Letf andg be distributions
in D'(Rm) such that

f(x) = fi(xi) X eeeX g(x)=gi(xi) X mmmxgm(xm)
with fi,... ,/m, gi,... ,gm in D'{R). Suppose that the neutrix convolutions
fi®oiimm fm®om exist and equal h\,... ,hm, respectively. Then the neutrix

convolution f®g exists and f®g = h\ xeeexhm, i.e.

ifi{xi) x ee-x /m(im))® (ji(ii) x mmmxgm(xm)) = (fi®9i) X -x {fm®gm).

In particular, if the convolutions f\ ®g\,... ,fm ®9m exist, then

(/1(zi) X---XTfMEmM)®GI(™MT) Xeo"XIM (M) —(/I®51) XeeeX (M. ®9Im )«
P roof. Putting

fn{x) = f(x)Tn(x), gn(x)=g(x)Tn(x)
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and
fin;{xi) = > 9in,(xi) = 9i{xi)xni (B
fori= ,m. Then
fn{x) —ini (") XeeeXfmnm(xm) = fin, "™-t)>
1=1
m

In (¢ = Olni (M) Xeee X {ImNm (®M) = | j 9in, (Xi)=
t=I

By Lemma 1 we have

((fn *9N) ®j ™1 (@) mem  (xmM)) —
m m

=<n</* Fu)(am>,
t=i t=i
m

=n«/* S m> $ (X))
i=i

for all $1,... <>m in D(R). Now since the neutrix convolution /©<7, exists
and equals hi fori=1,... ,m, it follows that

N-Lim ((n *ff,)(x), $1(11) .. 4>m(im)

m

= TTN-lim((/n, *gini){xi), $<m)>
i—1
m

—11{hi, 5@ = (/lj XeeeX/IM,$),
=1

and by Lemma 2 it follows that
N-lim{fn*9n, $) = <lii X eeex hMm<&Q

for all $ in D(Rm). The result of the theorem follows.

An analogical decomposition theorem has been proved for a different unit
sequence rn(x) in [5].

In the following, several neutrix convolutions of distributions in D'{R) by
Definition 3 are given, and then we will extend them from D'(R) to D'{Rm)
on using the decomposition theorem.
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3. Several neutrix convolutions of distributions in b*(R)

T heorem 4. The neutrix convolution product xr®xs exists in D *(R) and
() X,'©is=
forr,s=o0,1,2,--
P roof. Putting
(xr)n—xrr(x/n), (xs)n-x sT(x/n)

then

xON*(x)n= J (x - Orrx -t)/n)tsr(t/n) dt =
_H
1

= Nr+s+1 J vsT(v)((x/n) —v)Tr(v - (x/n)) dv
-1
forr,s=0,1,2,..., where the substitution nv=t has been made.
By Taylor’s theorem we have
I
(xr),* {xs)n = np J vsT(v)J1(n,x,v)I2{n,x,v)dv
-1

where p+ r+s—1and

Jinxv) =2 (0 (-iy~jxn)jvr-j,
j=o

J2(n, x, v) = "2 A-A-TIRYv){X/n)k+ °((x/n)P)-

k-0
Then
N-lim((xr)n* (xs)n,$)=V  (hjk,$)xp
—eo Jik=p
]J=0,1,... ,r
where

hjk= — 7~ -—--Cj) J vtts~jt(v)tw (v)dv
-1
forj=0,1,...,rand k=r+s-j+1
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Note that r + s — —k = —1 the integrands are odd, then hjk = 0 for
j=0,1,... ;rand k=r+s— + 1 Hence

I}I;Irg[)n((xr)n *(xa),, =10

for all $ in z)(rR). This completes the proof of the theorem.

Theorem 5. The neutrix convolution product x+®xs in the sense of
principal value exists in z2'(r) and

r+1_r+s+1

SHirr+5+1
+

(7) G+®X§=5(r+|,s+|)(‘1) (-1

forr,s =0,1,2..., where B denotes the Beta function.
PROOF. It is clear that

(8) XT=x\ + (-\)rxT, xs=x; + (-1)V

for r,s = 0,l,2 ----Suppose the neutrix convolution

XF®xs = N-lim{(x!, )n*(xI)n}

exists for r,s=0,1,2 .... It implies that the convolution xI®x+ exists by

the commutativity of the neutrix convolution product. We then have by (8)
0= xr®xs

X#®H + { -1y +axr ®xs + (-1)*xX;® xi + (-i) rXxr ®x;

B(r+ 1, a+ )xp+ (=Dr+sB(r + 1,s+ Dxp+ (-)*xr®xt+

+ (-1)rxr ®x;

exists forr,s=0,1,2 ..., where p=r+s+ land B denotes the Beta function,
on using Theorem 4 and the distributivity of the neutrix convolution product.
Let

x+®x| = B{r + 1,s+ 1){h(r, s)xp + k(r, s)xp}
in which h and k are undetermined coefficients. Then
(10) Xr®x; = x+®xi = B(r + 1,s+ I){/i(s, r)xp + k(s, r)xp }

by the commutativity of the neutrix convolution and the symmetry of the
Beta function. Now equation (9) can be deduced as

x\ + (-1)r+sxp + (-1)s{h(r,s)xp+ A;(r,s)x!.}+
+ (- r{h(s, Nx*_+ k(s,r)xp}=0.
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To take account of that functions xpg- and xp_are linear independent we have
| + (-1)sh(r,s) + {-1)rh(s, N=O
1+ (-1)rk(r,s) + (—)skes, DE Q

or
H(r,s)+ H(s,r) =0, K(r,s)+K(,n=0

where
H{r,s) =~ + (-1 )sh(r,s), K(r,s) ="+ (-1)Tk(r, s).

It is natural to put
H(r,s)=0and K(r,s) =0

which implies that H(s, r) = K (s,r) = 0. Then

n(rs) =ks.1) =T his = k() = 200

Hence we define the convolution products xF®xs and xr ®xs-, called ‘in
the sense of principal value’, as follows:

-)s+Hla+7+s+1l + (-1)T+H
(11)  xw@xs =B(r+ 15+ 1) (-1)THax_Teses

_| ’+1 +r+s+1+ _I s+1j. r+s+1
(12) @xs=B(r+ ls+ 1) N2 (-

for r,s=0,1,2,... and employ the same symbol as the neutrix convolution
product.

It is easy to verify that equations (9) and (10) are true under this defi-
nition. Note that equality (11) implies equality (12) by the commutativity
of the neutrix convolution, the result of theltheorem follows.

Tk The neutrix convolution products xr®sdr, xr@®xs , m
and ) in the sense of principal value exist in D'(R) and

(13) xr®xs B(r+ 1,s+ I)xr+s+l

B{r + 1,5 + 1)(—1)5+ V + 4
(14) xToxs = o Hhs+ D=

(15) Xr®|x|s = | B(r + l,sar xr+s+1, s odd
' S even,
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. . i 0, s odd
(16) ar (S)(las sgn x) \ B(r + 1,s+ I)xr+s+1, s even
forr,s =1,2,..., where B denotes the Beta function.

Rt By equalities (8) and (12) we have

Xr®s+ = x+Ox+ + (-1) rxr ®x;

s+l + (S1)r((-i) r+dx+res+l + (=) s+Ix_r+i+l
Bgr 4154 1.5 DD (-i)stix_r+i+1)

dier L
-B(r + 1,s+ 1)xr*X () rSHIX-TeS

Wr+s+l

=B(r + 1,5+ 1);

Replace x by —x in (13) we obtain

r s S5((r+ 1,5+ 1)(-1)s+1lxr+s+1
X *X - 5 .

The equalities (15) and (16) follow by the addition and the subtraction,
respectively, from (13) and (14) on noting that

IX|A— +xs, |x|asgnx = X" -x s,

and the neutrix convolution being distributive with respect to addition.

(cacllxs/1. The neutrix convolution product )@g}; in the

sense of principal value exists in .D'(R) and

7 Xr®(xssgnx) = — - X r+s+l
for r,5=0,1,2__  In particular, if r =5 then
(18) Xr®(xrsgn x) = X2r+1 = xr ® (Xrsgn x).

2r+ 1)
The last equality was given by Fisher [3]. If r—O0 then (18) becomes
(19 1®sgn x = x = 1®sgnx.

The last equality was given by Jones [6].

Let 5 be odd in (15) and let s be even in (16), respectively, we

have
xr|x|s=B(r + 1,5+ I)xr+s+1, 5 odd

xr(x[*sgn x) = B(r + 1, s + I)xr+s+1,  5even.
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Equality (17) follows by the combination of the above two equalities on
noting that

[X|s= xssgnx, s odd, |x|ssgnx = xssgnXx, seven.

Equalitites (18) and (19) follow immediately.

The compatibility mentioned above shows that the selection of the prin-
cipal values of the neutrix convolution products are reasonable.

4. Several neutrix convolutions of distributions in D'(Rm)

Let r= (rq,... ,rm) and s = (si,... ,sm). We put
X — Xﬁ! ."Trm5 {+s+l __r'\+sj+l eeer M * SN 9
X% = (xx);1... (xmy -, Xt = (xx)i'... (xm)im,

[x|ssgn x = (|xx| sgnaqg) .. . ([xm|imsgnxm),
[IS1 = 5% + ----- b Sm, rh=(rx)! ... (rm)!,
(r+ 6-b)!=(rx + sx + D! ... (rm+ sm+ 1), [x|5=:|xi|s ... \xm|A
Theorem 7. Let f and g be distributions in D'{R) of the form

f(x)=x\ x fi{x2,... ,xm), g(x) -x\ xgi(x2,...,xm)

and suppose that the neutrix convolution product A\®g\ exists in D'{Rm_1).
Then the neutrix convolution product f®g exists in D'(Um) and

f®g =0
for r,s—1,2, ... . In particular, the neutrix convolution product x T®XS ex-
ists in D'{Rm) and
(20) Xr®xs=0
forr= (rx,... ,rm), s=(s1?... ,sm), andrx,... ,rm,s:,... ,sM=0,1,2,....

Proof. It follows immediately from Theorem 4 on using the decompo-
sition theorem.

T heorem 8. The neutrix convolution product x+©a;i in the sense of
the principal value exists in jD'(Rm) and

(21) xE®x' = 2~mH Bin+ Mi+ 1){(-1)s-+1(xt)+ + (-1)ri+1(xt)p}
i=1
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forv—(ri, .. ,rm)fs— ,smfandrj,... ,rm, ,... ,sm 0,1,2,...,
where B denotes the Beta function and p,=r,+Si+ 1fori=1,... ,m.

Proof. It follows immediately from Theorem 5 on using the decompo-
sition theorem.

Theorem 9. The neutrix convolution products Xxr®xs, Xr®xs, xro|x|s
and xr©(|x|*sgnx) in the sense of the principal value exist in D'(Rm) and

ris! o4l
(22) X+Ox+ = 2' s
(r+5+ 1)
. = o (- NI* _r+s+l
(23) Xi© xi = 2-m(-DI*1+m (r+s+
(24) XH®(xssgn x) = (r Iy Xr+s+1
forr=(rl,... ,rm), s=(si,... ,sm), andrl,...,rm;su ... ,sm=0,1,2,....

P roof. Equalities (22), (23) and (24) follow from equalities (13), (14)
and (17), respectively, on using the decomposition theorem.
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EXPONENTIAL SERIES IN THE PROBLEMS
OF INITIAL AND POINTWISE CONTROL
OF A RECTANGULAR VIBRATING MEMBRANE

S. A. AVDONIN, S. A. IVANOV and 1. JOO

1. Introduction

In the present paper we consider vibrations of a rectangular homogeneous
membrane with Dirichlet boundary conditions in any finite time. We prove
that arbitrary trajectories of any finite number of points of the membrane can
be obtained choosing appropriate initial data T (Theorem 1(a)). It is shown
that this problem is in some sense dual to a pointwise control problem. The
reachability set of the system under any pointwise control in finitely many
points is proved to be not dense in the phase space (Theorem 2(b)).

Our approach is based on the reduction of these problems (with the help
of the Fourier method) to the investigation of the family £ of the exponential
vector-functions rjmn exp(xiu>mnt) where the vectors tjmn € CN are expressed
by the eigenfunctions of the Laplace operator and the umn are the eigen-
frequencies of the membrane. It is proved that for any T > 0 and for any
integer r >0 there exists a subfamily £r C £ which forms a Riesz basis in the
Sobolev space HT(Q,T\CN) (see Theorem 3).

The important role of exponential families in the control theory of d.p.s.
(distributed parameter systems) is widely known (see e.g. the review of Rus-
sell [1]). The minimality and the Riesz basis property of exponential families
are the most essential tools in the investigations of such kinds of problems.
Riesz basis criterion for exponential families obtained by B. S. Pavlov [2],
cf. also [9]. Riesz bases from exponentials in the Sobolev spaces H T(0,T)
have been investigated by Russell in [4]. In the problems where the system
is controlled in finitely many points, exponential families in the space of vec-
tor-functions L2(0,T;C/v) and Hr naturally arise. Properties of
such families and their applications in controllability problems of d.p.s. have
been considered in [6-11], [16-19], [21], Some results of these works are used
in the present paper.

Some results of the present paper have been obtained during the visit
of I. Joo in Leningrad, May 1989. Due to the difficulties in private contacts
and in changing information these are prepared for publication only by now.

1991 Mathematics Subject Classification. Primary 49B22; Secondary 49B27.
Key words and phrases. Wave equation, Riesz bases from exponentials.

0081-6906/95/$ 4.00 ©1995 Akadémiai Kiad6, Budapest
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2. Statement of the results

I"et
fi = (0,a) X (0, b)

be a rectangle and denote j4 the operator —A with domain
D{A) :=H2{Q)nH"(Q).
Let further

twta . n
Pmn {p) n---é-XS'ngy, p:= (x,y)\ m,ne N.

2 .

Si
y M
These functions form in Z2(fl) a complete orthonormal sequence and are
eigenfunctions of the operator A:

Apmn —*mn”rnni

Introduce the spaces Wp, B GR as follows:

Im—\ wW—» JAHIIN —~ AMdmn\ bmn A
\V/ m,n m,n

In case R > 0 the space Wp is the domain of the operator A13 If R < 0 then
Wp is the dual of the space W-p by the duality

idi = ~ dmnmni 9 — ~ PmnPmne 113> h— "'y~ e W-R.
m,n

We know [12] that W\ —Hqg, W-\ = H 1. Denote
Wp-WpQWp-L

Fix N distinct points p\,... ,pp/ Gi2, Pk —{xk,Uk) and let T > 0 be
arbitrary. Consider the initial-boundary problem

iitt= An infix(0,T),

(+) ai2x(0,T)
UO, u =
t, £, b

and let
$(i,u0,ul) ;= (u(pi,f),... ,u(pN,t)).
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Theorem 1. Let r>0 be an integer. Then

(d) For any vector function F GHr(0, T; R™) there exists an initial state
(u0,  GWr such that 4X£ uq, Ui) = F(t).

(b) The dimension of the set of (ug,u\) GW with <&(t,uo,u\) —0,
0Mt< T isfinite.

To formulate Theorem 2 consider a membrane controlled at the points
Pki i~k ~ N, where the motion satisfies

N
vu(p,t) = Av(p,t) +' A 6(p-pk)fk@®) in fix(0,r),
fosi

2) dQx(0,T) 0

=0 Vt<:0= 0.

T heorem 2.

(@ IffkGL2(0, T), k=1,...,N then (n,vt) GC ([0, T]; Wi) .
(b) For the reachability set

R(T) == {(»(.,T),vt(.,T)):fkGL\O, T), k=1,... ,N}
is not dense in Wi and codim R(T) = oo.

3. The proof of Theorem 1

We use Fourier method and the theory of vector exponentials. The initial
data ug GWt, W GWr_i have the expansions

() Ug—" W =~ ' bmnipm

4 A2\amn\2d  n <00, A\ mmMWAr<OC.
By the Fourier method we obtain the following expansion of the solution
u(p,t) of (1):

bmn .
uiPfi) =~2 Q"mn COSW-mnt ‘h ===~ sinumnt Vmn{p)-
m,n

Using the vector functions

Amn(*) «— Vmn COS $mn (0 —Vm sin ,
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vmn ——imn (</3m(Pl), ***=Tmn(PN)) £
we get the following expression for $(2):

(5) $(t,U0,Ui) =E I Q"mn"rnn"m*i(’\) Amn~rnn ~mn tO]-
m,n

Introduce the notation

Lemma 1. If there exists a subset M CN X N such that the family Tr\~
={<-77, B (T7ANEMC T forms a Riesz basis in HT(0, T ; R"), then statement
(@) of Theorem 1follows.

H(IfExpand an arbitrary function Fe Hr(0,T;R'v) in the basis Tr\

©) W = A~ A [fmnCmn{t) + fmnSrnn{t)] ,
(ra,n)EM
©) X)  [UmTiP + /mnl2] < 00
(m,n)G M

In (5) we define

(8) Q"mn — bmn —0 If A

9) <W=/L A , &= | L winr if (m,n)eM.

Then (4) holds and the initial data (mo mi) defined by (3) belong to Wr.
Finally, by (5), 4>(f, uo, ui) = F(i) which completes the proof. O

For the construction of the subsystem Tt it is convenient to introduce
the following family £ of vector exponentials:

S:={ 1} raniN> emnW := VmnextUmnt.
Lemma 2. A family
7= {e7M, STAA}mngAf, McC N x N
forms a Riesz basis in Hr(0, T; RN) if and only if the family

— {e7hn}(7N,NEA
forms a Riesz basis in Hr (0, T; CN).
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Proof. T+ is Riesz basis in HT(0,T;RN) if and only ifit is Riesz basis
in Hr(0,T-,CN). By a classical' theorem of N. K. Bari [3] a system (ipn) is
Riesz basis in a Hilbert space H if and only if (gn) is complete and there
exist constants 0 < Ci < ci < 00 satisfying

(10) 2

for every finite sum with arbitrary (complex) coefficients. Since the concrete
value of the constants is not interesting for us, we use the abbreviation

I 2

instead of (10). So T, is Riesz basis if and only if it is complete and

(11) £1 (lamnl "Hamnl )~ || £1 (amnCmn+ amnSmn)
(m,n)EM (m,n)&M

holds for every finite sum; £, is Riesz basis if and only if it is complete and

(12) £] (I"mnl "H®mnl )~ || £1 ( i + “mne mn)
(m,n)6M (m,n)6M

By the Euler formulae e*n = cmn = ismn we see that T+ is complete if aid
only if £» is. Furthermore the linear hull of T* and £» is the same, name./

£ (amn mn + ar, 0= £ (fgf“lhnf-: mnT O
(m,n)eM (m,n)eAi
if
af’hn = af‘hn +ar ®mn *(®mn  ®mn)
and then
\amn\2+ lamn|2~ 2 (I“mn|2+ |&mJ 2) ,

which shows that (11) and (12) are also equivalent. The proof is complete.
O

4. Existence of a basis family

We shall prove

T heorem 3. For any nonnegative integer r and any T> 0 there exists
afamily £r C£ which forms a Riesz basis in HT(0,T; CN).
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We begin the proof with
Lemma 3 ([18, 19]). The family {§mn)™n=\ complete in CN.

Choose a basis {j}jLi C {{Hmn}*n=\ > CN. Then

Lemma 4 ([18, 19]). For any £>0 and T > 0 there exists a family
£ ¢ £ which can be represented in the form

£=£1U---UEn, £j :={pLex ~ 3} 00
where the following inequalities hold:

(13) [|777-i13]|<£,

(14) j, m\< £

forallj=1,... N;m=R,R+ 1,....
Lemma 5. Let the family

“ INGN,H,.eCw
be a Riesz basis in L2(0, T; C”). Then there exists e > 0 such that any family
E := {"Hne'iint\
nGN
with
\\Hn-U n\<£, \pn-RBn\<§£, «€ N
is necessarily a Riesz basis in L2(0, T;Cv).

P roof. Perturbate first the vectors only. In [8], Ch. Ill, 85.2 the authors
proved that_for small £\ > 0 there exist constants 0 < ¢ < C <00 such that

the family Mis a Riesz basis in X2(0,T;CAj and

(15) cYy\dnkP

whenever \[Hn- RnW < £i for all n; the constants ¢, C do not depend on
{iin).

Next perturbate the spectrum. In this part we use the estimation tech-
nique of Duffin and Eachus [20]. Fix £\ > 0 and define an operator L on the

linear hull of the family {'Hne,Bnt} by the formula

L U neifnt :="Hneillnt.
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Define
—f'n Bni W\~ A2

for all n, and consider a finite linear combination
h:=YJdJInei,lnt.

Expanding e'6nt in a Taylor series we obtain

—

|£ d BAnei*"t(l-e*5") =

n k=1

00 e
"£,dnhneilnt(ién)k
n

fzm

I
>
~
=

Kiz2
SN E IT(E PSR

k-\
00}
Te2)k
SVCE (T x> |
=i

= y/C (eTc? - 1)

Comparing with (15) we see that

For sufficiently small £2 > 0 it implies ||J —L\\ < 1and then L can be continued
to an isomorphism; hence we showed the statement of Lemma 5 for e :=

= min{el,e2}- [}

Lemma ¢ . For any T > 0 there exists a family £ c£ such that
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forms a Riesz basis in L2(0,T;CN) (namely the family £ constructed in
Lemma 4 is appropriate).

Proof. The family

C.:= <1jle
T Y 12unez
is of course a Riesz basis in T2(0, T; C”). For small e > 0 the estimations
(13), (14) show the statement by Lemma 5. O
P roposition 1 ([18]). If the family is complete in

L2(0,T;Cn) then for any R >0 and 0 < T\ < T the family {'Hn t>int}<=R
is complete in L2(0,Ti\CN).

Proof of Theorem 3 in the case r= 0. As Lemma 6 and Proposi-
tion 1 show, the family £ is complete in T2(0, T; CN) for any T > 0. Again by
Lemma 6 the family £ is also a Riesz basis in its closed linear hull V£ (which
has finite codimension in X2). Since £ is complete, we can take EGE\VE.
Then {e}uf is again a Riesz basis in V(e,£) whose codimension is smaller.

Starting from {e} u £ instead of £ we can diminish further the codimension
by adding elements of £. In finitely many steps a complete Riesz basis can
be constructed in this way which finishes the proof of the case r = 0.

Remark. In [19] I. Jo6 proved the existence of a basis from £ via the
following

P roposition 2 ([19]). Let {'"Hne,Rnt}nez be a Riesz basis in L2(0, T; CN)
and let po GC#, po” pn. Then the new family

[W A Une”r:nGZ\{0}}
is also a Riesz basis in L2(0,T;CN).

For the proof of Theorem 3 in the case r > 0 we need the generalization
of the classical (one dimensional) then em of Russell [4] stating that if the
family {e,Rnt} forms a Riesz basis in L (0,T) then the family

{(I+\pn\)-Me"}j°\u{e*V W ? nfa}? =9
\ n—
fcrms a Riesz basis in HT(0,T). The gei eralization for vector exponentials
is gi\en in the book [8] Ch Il, §5.3, an ' by another method in [19] by the
;hi"d author (it was obtained at the same time, independently, with different
proof) ’lamely
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P roposition 3 ([8, 19]). Suppose that
(i) the family {Hne,'i"i}*_j forms a Riesz basis in L2(0,T;CN) (and
tine ¢ N),

(i) the family {'HijeiRP :j =1,... ,1V; /=1,... ,r} is linearly indepen-
dent and {pij} fl {pn} = 0]

(iii) there exists a matrix polynomial P(z) = + Aizr-1 + eem+ Ar such
that the zeros of det P(z) coincide with {pij}, the zeros are semi-
simple (the geometrical and algebraical multiplicities are equal) and
P{pij)'Hij = o.

Then the family

iRnt *° N, r
uo L+ ||\/|n|)"Unel pa o I e

forms a Riesz basis in Hr(0, T; CN).

Remark. In contrast to the scalar case the additional condition (iii)
IS necessary to the Riesz basis property as the following example shows.
Consider the orthonormal basis

N

uo rl”é]mt

j=1,n€l
in T2(0, 2n; CN), where {/iy} | is an orthonormal basis in C”. The family

EOU satisfies (i) and (ii), however, it is neither minimal nor
complete in R 1(0, 2t,;C”"). We can verify also directly that property (iii)
fails. Indeed, for r = 1 the polynomial P{z) has the form z - A\ and the
equalities {vnl + A\)h\ =0 cannot be fulfilled for different values of un.

Lemma 7. Let e R, /= 1,... ,r be distinct numbers and fix a basis
{v:}jLi in ENm Then for sufficiently small e > 0 the system {'HijelB3tjt}* 1 [=1
satisfies condition (iii) of Proposition 3 whenever

A7) \pij —ilil<e,  WUij- fw<e, /=1, j=1,... 1V.

P roof. We use induction on r.

(@) The case r= 1.

For small e> Othe vectors LL\j give a basis in C*. Denote B\ the matrix
whose eigenvectors are TI\j with eigenvalues p\j. Now it is trivial that the
matrix polynomial P\(z) = z —B\ satisfies (iii).

(b) The case r—2.

As 6 approaches zero, we have

B[=i/i7+ a(l) 7id =r>+5(1), pg =i+ ~ ().
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n2: = PLAZ)) = {{v%- Vi)1+ o()} {v3+ o(l)) = {v2- vi)rf + o(l).

Consequently, for small e the vectors 773 form a basis in C”. Denote
B2 the matrix with eigenvectors 77 and eigenvalues /X2 and let P2{z) .=

= (z-B cpP1{z). Then
= (Mijl - B\) P\{pij)"B-\j] —0,
P2{I"2))T~(-2j = {~2jl “ B\) B-2j —o0,

hence (iii) fulfills.
(c) In case r >3 we use induction

Pr(z):=(z-B"r)Pr-1(z),
firj = Pr_u1(firj)'Hrj are the corresponding eigenvectors with eigenvalues f.irj .
The details are similar to case (b).

Proof of Theorem 3 for r>1 Define f := 2T, = y(2/+ 1),
I=1,... ,r. Take a basis Lj by Lemma 3 and fix e> 0 correspond-
ing to Lemma 7. Now by Lemma 4 there exists a subsystem

£2T = {v theHXm]t I, m=H
satisfying
(18)

Consider all elements of £2t with even m; as we have seen in the proof of the
case r = 0, we can join finitely many elements with odd index m to obtain a
Riesz basis in T2(0,T; Cw). Let Q >R be so large that all used odd indices
m are » 2Q + 1. Introduce

Mq-A2(/+Q)+i,j - —2Q I—1,...

Blj eI 2(1+Q) +1

We apply Lemma 7; the estimates (18) show that property (iii) holds. Hence,
using Proposition 3, we can extract a Riesz basis in iir(0, T; C*) from the
elements of [2T- Theorem 3 is completely proved. O

Proof of Theorem 1. Lemmas 1,2 and Theorem 3 imply statement

(a) of Theorem 1. To see (b) take the Riesz basis £TC £2T constructed in
the proof of Theorem 3. Clearly, the set £\ £r is infinite. Denote Tr the set
corresponding to £T:

J~t -= {CmTu *mn} (m,n)EM> M —{(*> fi) e I}
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By Lemma 2, Tr is a Riesz basis in L2(0,T]JCN). Take an element Ci Tr
and expand it in Tr\

(19) cu(t) = E viamnrmn (0 + gmnrmn (%))
(m,n)6M

In analogy with (8) and (9), define

-= mn —9 f(TLIDA M U {(fc, N},
®mn -= ~ran”nini Amn -= Bmn”~Amn ("3>
0«:=-1, &*[:=0.

Then by (5)
$(t,u0,«i) =0, tG[O, T],

e 2*omn™mn € ITr,
W —" ' bmnpmn € 1.

There are infinitely many elements Gk ” .?>, and the corresponding coefficient
sequences {am,,iimn} are linearly independent (it is enough to consider the
indices (m, n) f. M). Consequently, the space of pairs (mg,”) GWr keeping
3>(t, uo,u\) to be zero, is infinite. The proof of Theorem 1is complete. O

5. The proof of Theorem 2

For the proof of the statement (a) we use the transposition method [12].
Denote u>(p,t) the solution of the initial-boundary problem

wu{p,t) = £uj(p,t), tG(, T, pEil,

u —Uq, = Wi, LJ =0
t=T t=T anx(o,T)

I_EEI"‘BS If cig GWi, u\ GW_\ then for any point po EQ we have
w(p0,.) GX2(0,T) and

(20

(21) lIk>(po. )20, = ity WO ||| + || T

The constant ¢(T') remains bounded if T is bounded.

Proof. Take the expansions

AQ —N A®M7iI9mni kfi — " “mnrn»
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(22) 1170111 —~ * [®@mnl “mn ~ a5

[I"1]]_1 —~ A[*mn| Wmn < OO

Then the Fourier method gives
(23) uj(po,t) =Y~ amncosumn(T'- t) + <"nn5in WN(T'- t)  sPmn (Po) »

Recall the following result of Y. Meyer:

P roposition 4. Let/i_m=-pm, g-m=gmfor m£1. Then the esti-
mate

N A Jim =q") 5
mEl L2(0,T)
holds for all sequences {am} if and only if

su 1m <CO- [
1N | <Mm</+1

We transform the expansion (23) in exponential form:

A(Po,t) =72  amnUmnOiYnrt + a~ nUm?2 Pmn (PO) s

X1 (1Qran| +Tamn| ) X Wo||l + ||ML™ i,

By Proposition 4 the necessary and sufficient condition of (21) is:

(24) sup <@
leN <t w </+i

The numbers [ggnn(po)| are bounded by 2/y/ab, hence it remains to check
that

1
sup < 00,

y/m2+ n2
AN l<y/m2+n2</+1

or equivalently

1
sup 7 E 1< 0o
N 1 ie\im2+n2</+l
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By symmetry it is enough to estimate the pairs (m,n) with n < m,
I ~ yIm2-fn2~ |-f-1. In this case to any n there exists only 0(1) many
m satisfying these inequalities, hence

E IS,
lyif 34
which completes the proof of Lemma 8. O

Returning to the proof of Theorem 2, we apply the Fourier method to
(2) to obtain

V(p,t) =""2Mrx()<Pmnip),

(25) - x_ o
Winn {Pj) fi (r)S'”'“T];’fl ©)

It follows that

(26) Vvmn= I Emn(Pj)/j(T)cosa;mn(f-r)(ir.
1=1 0
Fix any T’e [0,T]; then by (22) and (23) we get

(v(.,THu;D) + (vt(.,T,),u,0) =

—EE / brm"'Pmn/;Pj)ftj\WS'nwrm(f At

J=1m,n L

(27) e
£ Omn(pmniPj) fj{t) costumn(re t) dt

N 1

= [ fA*)u (PjA)N
1=l n

We know from Lemma 8 that the linear mapping {wojuq} -+ui(p0, ¢) is con-
tinuous from Wi to L2(0, T') hence the right-hand side of (27) is a continuous

functional on Wh; consequently
v(.,T')eW;, vt{.,T')eW_zl
and

WAAO THITIW An),  ={/i)f=i.
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To prove the continuity of (u, vt) in T' introduce the notation

Then

(28) Y, (14n(m 2+ lenini2)~igiX [[(v(. , TYOWi( T ))|vvA
m,n

and we have to show that

5] 14n(M>+h)-zin(T)Ru;-i -> 0 ifh->0,

m,n

By (25) and (26)

(29) (t) = v /évv ih)/J(r)e+,"n'(<-T)dr
J=in

and then

An(rat A)-z*n(T) =

A ST
=Xavimnb )| J I(r)eswm (T TW +
(30) = 3

V
+J fJ(T) [et,UW‘/I— 1 eti'L])mn(T'-t)dr I

Here the first member can be integrated in the way that the function _/)(t)
is zero unless t G[T', T' + /i]. Now we can apply (28)

T'+h
yj I-Jmﬂl <?mn(Pj) J fj(r)t ttwm,, (T'+h-r) dr
m,n,+ -

N

=C{T'+ 1) Y Wi\R2(T",T'+h) —*0 if h-> 0.
i=
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Next we estimate the second term of (30):

2
gilWmnh extum(T'-t)fa <

gimh L2(0,T';Kw) T

1 ¥y URd

m-+n>/?

By (28) and (29) the second series converges, hence for large R it becomes as
small as we want. If we fix such an R, the first sum tends obviously to zero.
This finishes the proof of Theorem 2 (a). To see (b) consider the problem
(20) in case T' —T. Taking the change of variable t —+T —t it becomes
problem (1). The linear set

V = {(wo,wi) e Wi:ux{pj,t)=0, j=1,... ,N; te [0,T]] C Wi

is infinite dimensional by Theorem 1 (b). From (27) we see that

is orthogonal to this subspace V which proves also Theorem 2 (b). O

Remark 1. The statement (a) of Theorem 2 is true for any bounded
domain in R2 for which the spectral function of the Laplace operator satisfies
the Weil’s asymptotics. Indeed, in this case the key inequality (24) is the
well-known square-sum estimate for the eigenfunctions.

Remark 2. In [1], p. 180, Russell proved that Uj>0A(T) is dense in WL

ifand only if a “range condition” is fulfilled. If the multiplicity of eigenvalueé
is not bounded, then this condition fails, so Theorem 2 (b) follows directly
from Russell’s theorem in case of a square membrane. If a2/b2” Q in a
rectangular membrane then the multiplicity of every eigenvalue is 1 (the
spectrum is simple) and the range condition holds for almost all points p3 €
6 IT Then Ut>0A(T) is dense but, by Theorem 2, R(T) itself is not dense
for any T >0.

REFERENCES

[1] russerr, D. L., Controllability and stabilizability theory for linear partial differential
equations: recent progress and open questions, SIAM Rev. 20 (1978), 639-739.
MR 80c:93032



258

[

(3]

“

5]
(6]

&
[

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]
[19]

[20]

S. A. AVDONIN, S. A. IVANOV and I. JOO

Paviov, B. S., The basis property of a system of exponentials and the condition of
Muckenhoupt, Doki. Akad. Nauk SSSR 247(1979), No.l, 37-40 (in Russian).
Zbl 429:30004; MR 84j:42042

Niko1'skii, N. K., Paviov, B. S. and Hruscev, S. V., Unconditional bases of ex-
ponentials and of reproducing kernels, Complex analysis and spectral theory
(Leningrad, 1979/1980), Lecture Notes in Math., 864, Springer, Berlin-New
York, 1981, 214-335. MR 84k:46019

Russet1, D. L., On exponential bases for the Sobolev spaces over an interval, J. Math.
Anal. Appl. 87(1982), 528-550. MR 83g:46035

Avdonin, S. A., On the controllability of singular strings, Mechanical problems of
controllable motions, 1982, 3-8 (in Russian).

Avdonin, S. A. and Ivanov, S. A, A generating matrix function in problems of
the control of the vibrations of connected strings, Doki. Akad. Nauk. SSSR
307(1989), no.5, 1033-1037 (in Russian). (Translation in Soviet Math. Doki.
40(1990), No.l, 179-183.) MR 90k:35145

Avdonin, S. A and Ivanov, S. A, Riesz bases of exponentials in a space of vector-
functions and controllability of an inhomogeneous string, Operator Theory and
function theory, No.l, Leningrad Univ., Leningrad, 1983, 62-68 (in Russian).
MR 86b:46058

Avdonin, S. A and Ivanov, S. A, Controllability of distributed parameter systems
and families of exponentials, Kiev, 1989 (in Russian).

Avdonin, S. A, Ivanov, S. A and Jod, I, On Riesz bases from vector exponen-
tials I, Ann. Univ. Sei. Budapest. E6tvds Sect. Math. 32(1989), 101-114. MR
92m:42034

Avdonin, S. A., Ivanov, S. A. and Jod, 1., On Riesz bases from vector exponen-

tials Il, Ann. Univ. Sei. Budapest. E6tvs Sect. Math. 32(1989), 115-126.
MR 92m:42034

Avdonin, S. A, Ivanov, S. A. and Jog, ., Initial and pointwise control of a rectangular
membrane, Automatika 6(1990) (in Russian).

Lions, J. L. and Magenes, E., Problémes aux limites non homogenes et applications,
Vol. I-H, Travaux et Recherches Mathématiques, Nos. 17-18, Dunod, Paris,
1968. MR 40 #512, 513

Cassels, J. W. S.,; An introduction to Diophantine approximation, Cambridge Tracts
in Mathematics and Math. Physics, No.45, Cambridge University Press, New
York, 1957. MR 19-396

Meyer, Y., Etude d’un modele mathématique issu du contrdle des structures spa-
tiales déformables, Nonlinear Partial Differential Equations and their Appli-
cations, College de France séminaires, Vol. VII (Paris, 1983-1984), Res. Notes
in Math., 122, Pitman, Boston, Mass.-London, 1985, 234-242. MR 88e:73021

Hormander, L., The spectral function of an elliptic operator, Acta Math. 121(1968),
193-218. MR 58 #29418

Avdonin, S. A, Ivanov, S. A. and Joé, 1., Families of exponentials and controllability
of a rectangular membrane, Studia Sei. Math. Hungar. 25(1990), 291-306 (in
Russian). MR 92¢:93011

Avdonin, S. A, lvanov, S. A. and J00, 1., Applications of exponential bases in the
pointwise control of rectangular membranes, Math. Inst. Hungar. Acad. Sei.,
Budapest, Preprint No0.64/1990.

Horvath, M., The vibration of a membrane in different points, Ann. Univ. Set. Bu-
dapest. E6tvos Sect. Math. 33(1990), 31-38. MR 92j:35108

Joo, L., On some Riesz bases, Period. Math. Hungar. 22 (1991), 187-196. MR 93a:
47025

Duffin, R. J. and Eachus, J. J.,, Some notes on an expansion theorem of Paley and
Wiener, Bull. Amer. Math. Soc. 48(1942), 850-855. MR 4-97



EXPONENTIAL SERIES 259

[21] Jod, L., On the control of a circular membrane I, Acta Math. Hungar. 61 (1993),
303-325. MR 94a:93010

(Received June 17, 1991)

EOTVOS LORAND TUDOMANYEGYETEM
TERMESZETTTUDOMANY!I KAR
ANALIZIS TANSZEK

MUZEUM KRT. 6-8

H-1088 BUDAPEST

HUNGARY






Studia Scientiarum Mathematicarum Hungarica 30 (1995), 261-263

ON RANGE CHARACTERIZATION OF ADJOINT OPERATORS
ON HILBERT SPACE

Z SEBESTYEN and L KAPOS

We prove in this note that the inverse image of a finite dimensional
subspace under an adjoint map can be characterized as the orthogonal com-
plement of the image under the original linear operator of the subspace which
is just the intersection of the domain of the map with the orthocomplement
of the given finite subspace in a Hilbert space.

This is an improvement of the first named author’s results in this direc-
tion [1, Theorem],[2]. The proof given here is a refinement of the one used
in [2, Theorem] the trick owed to Riesz and known by his representation
theorem of continuous linear functionals on Hilbert spaces.

Theorem. Let A be a densely defined, not necessarily bounded, linear
operator on its domain D (A) in a Hilbert space H . Let K be a closed subspace
in H that has finite dimensional orthocomplement K1-. Then the orthocom-
plement L of the linear manifold {Ah: h E L)(A) HA’} belongs to D{A*), the
domain of the adjoint operator A* of A and one has

) An(L) =A(A*)nA_i.

Proof. To see the inclusion R{A*) n Kx CA*(L) let y E D(A*) so that
A*y EK £, that is (A*y,x) = 0 holds for any x E K, moreover for each of
x GD(A) fl K. Hence we have that (y, Ax) = (A*y,x) = 0 for any x ED(A) fl
C\K. This implies that j/GX and thus A*y E A*{L) indeed. We check now
that the reverse inclusion A*(L) C R(A*) fl K1 also holds together with the
fact to be proved L C D(A*). To this end let y\,..., yn be base in K1 and
let

Hi={xEH: (x2/)=0 (j+i 1<j<n)} (t=1,2,..,n).

Then Hfis are finite codimensional closed subspaces in H such that D(A) fl
fl H, remains dense in Hx via denseness of D(A) in H. For the reader’s
convenience we show this fact by an easy induction on the codimension. For
if M is one codimensional closed subspace in H then K= {x EH : (x,¢e) = 0}
for some unit vector e in H. Let x EK be fixed and let xn ED{A), f ED{A)

1991 Mathematics Subject Classification. Primary 47A20; Secondary 47B15.
Key words and phrases. Hilbert space operators, closed operators, restrictions.
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with the requirements that |[xn —x|| =0 (n —»00) and |le —/|| < 1. By the
last assumption we have that

I(/.c)| = [(/-e,c) + (ee)]> (ee) - [(/-e,e)] >
>1- |le- /[ [le]| > 0.
Let

yn:=xn - (I>¢) f e D(A) (n=1,2,...),

then yn € -D(A) n K because (y,,€) = (xn,e)- "~ (/, e =0for any n=
=1,2,... and moreover

’ =\wn- X[j+ [xn-x.e <
I(f,e) I(/>e)l

AMxn- x| M+ 0 (n—00).

n- Z|~ Pk -*]] +

Since D (A)nHI| = HI there exists u, € Z)(A) Pi Ht with the requirements
(vi,yi) =1, (viyyj) =0, {j/ i, j=1,...,n) for any i= 1,2,...,n. Then

we have N

D(T)n A'= jx -~(x,t/,)u,-: x GD (A)].
t=I
On one side, for any x G-D(A) we see

e 7

(x -7 (x, jhutjh) =(x,yj)-~(x,y,) (i;trj)=
i= t=

={xV) ~ (x ) =0
so that

(x,yi)vie d (A) r\K.
H
Otherwise, for each x € Z)(A) HA' we have (x,y,) =0 for i=1,2,...,n so

that x = x —" (X, yi)\W{.
Now, if ZGX then have that

Nb(x- N (x,21>)2)=° (x615(i)),

that is

(Ax,y) =3~ (x,y,)(Aui,2) = (x, (x€0(4)),

t=
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therefore that y 6 D(A*) and

n
A*y = J2(y> Avyyi 6 K1, A*ye R(A’)DKL.
i—
The proof is complete.
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POLYNOMIAL APPROXIMATION ON LOCALLY COMPACT

ABELIAN GROUPS 11

R WINKLER

Abstract

The object of this paper is to describe the topological closure of the set of polynomial
functions on a locally compact abelian group with respect to the topologies of pointwise
convergence, uniform convergence on compact subsets and uniform convergence. In every
case one gets again locally compact abelian groups which can be classified up to isomor-

phism.

1. Notations and abbreviations

Let G be a locally compact abelian (LCA-) group with operation +. (All
groups considered are supposed to satisfy the HausdorfF separation axiom.)
We shall use the following abbreviations:

H <G
G
U{G)
Idm

M*0
dil —y @

N={0,1,2,...}
P={2,3,57 ...}
z

R

T=RIZ=2Z

This means that H is a closed subgroup of G.

The dual group of G, also written additively.

The system of open neighbourhoods of 06 G.

The identity map on a set M.

This symbol as well as the words “isomorphic” and “iso-
morphism” etc. will always be used not only in their
algebraic but also in their topological meaning.

The topological closure of the set M with respect to the
topology .

The limit of the net (a where (N, is a directed
set.

The set of nonnegative integers.

The set of all prime numbers.

The additive (discrete) group of integers.

The additive group of reals with the natural topology.

The one-dimensional torus with the natural topology.

1991 Mathematics Subject Classifications. Primary 22B05; Secondary 08A40.
Key words and phrases. LCA-groups, polynomial function, approximation.

I would like to thank Wolfgang Herfort for several stimulating discussions and his
continuous encouragement.

0081-6906/95/% 4.00 ©1995 Akadémiai Kiad6, Budapest



266 R. WINKLER

Td = Rd/Z The one-dimensional torus with the discrete topology.
Td= The dual group of the discrete torus, isomorphic to the
Bohr-compactification of Z by the embedding k G

GZ ~AddxdGTj.

C(n) = {fGT Int=0} ~ T The finite cyclic group of order nGN, n>1,
considered as a subgroup of the torus when-
ever convenient.

C(p°°) = UN C(pn) < Td, p GP The p-Priifer group with discrete topology.

ne

C(p°°), pG P The dual group of the p-Prifer group which may be iden-
tified with the compact group of p-adic integers.

We are going to consider the following sets of mappings:
Fn(G) = {f\f:Gn-+G},

Vn(G) = {76 TN(G) |/(xx,... ,xn)=g+ Y Kixi, 9 *G, kte Z},

the set of polynomial Jﬁjlnctions in n variables on the
abelian group G,
£(G) = {/G F\{G) I/ is algebraic endomorphism},
IC(G) —{f £ £{G) If{H) CH for all H<G},
V(G) = {/IG F{G) If{x) —kx for some k GZ}.
(Note that the considered maps in Tn[G), £(G) and IC(G) are not nec-
essarily continuous.)
pw,co,u By taking the operation pointwise the sets defined above are
abelian groups, too. On these sets we are going to consider
the topology pw of pointwise convergence, the topology co of
uniform convergence on compact subsets (compact-open topol-
ogy) and the topology u of uniform convergence (on the whole
set G).

2. Introduction and auxiliary results

G. Kowol, cf. [2], was the first to consider polynomial approximation on
topological universal algebras. The problem is to determine the topological
closure of the set of polynomial functions. In [3] the case of locally compact
abelian groups has been studied. This paper will complete the investiga-
tions of [3] and give a description and classification of the topological group
Vn{G)W in terms of the underlying topology t =pw,co and u and of the
structure of G.

Beside some standard theory of LCA-groups (cf. Proposition 1) we shall
use the main results of [4] where the topological group /C(G)pw has been
described (cf. Proposition 2) and some auxiliary results from [3] (cf. Propo-
sition 3).
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Proposition 1. Let G be an arbitrary LCA-group. Then it is exactly
of one of the following types:

a) Type 1: Z=D <G for some D.

b) Type 2: G is periodic — i.e. every compactly generated (closed) sub-
group is compact — and not totally disconnected.

c) Type 3: G is periodic and totally disconnected. In this case o £ G has
a topological neighbourhood base of compact open subgroups. Ifexp (G/H) <
< oo for every compact open H* G we say that G is of Type 3a, otherwise
of Type 3b.

Proof. These facts are well-known (cf. for instance [1]).

P roposition 2. Let G be an LCA-group. Consider pw-topology. Then
for the topological group 1C(G)pw the following classification holds (cf. Propo-
sition 1):

a) If G is of Type 1 then

c{G)pw Z

by the isomorphism klda>-tk.
b) If G is of Type 2 or 3 then

IC(G)pw T { G )M fdIT{G)+.

Here T(G) denotes the set {x(fif) IX€ G, g £ (7} with discrete topology which
is in fact a subgroup of and T(G)1- its annihilator. An isomorphism

&= T(G) —FIC{G)pw, ai-}£a is characterized by the relation
a°x = X°£a forall x"G.
If G is of Type 2, this means
IC{G)pwSi = /C(T) = £(T) “ Z{B).
If G is of Type 3, this implies

ic{G)pwv=n e w
P

(topological direct product). Here pep—exp (Gp) £ NU {oo} (p°° —oo0) denotes
the p-exponent of G which is the exponent of the topological p-Sylow subgroup
Gp of G defined by

— im o"g — ?
Gp—{g£G I lim p*g —0£ (?}.

If eP<oo then C(pep) = C(pep) is a cyclic group of order pep, otherwise
C(p°°) may be considered as the compact group of p-adic integers.

Proof. Cf. assertions a) and b) of the Theorem and the remarks at the
end of Section 4 in [4].
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From [3] we use the following results:

P roposition 3. a) Suppose that the LCA-group G is not totally discon-
nected. Then the topological group V (G )” is discrete, i.e. V(G)* =V(G)U,
and V (G )" = Z via the isomorphism

&:V(G)M->2Z, $: bldg

b) 'P[C)"mw*QIC(G) for every LCA-group G.

Proof. Cf. [3] a) follows from Theorem 1 and b) is contained in Theo-
rem 2.

3. The main results

T heorem 1.

Pn(G)(EGX (P(G)(”

holds for every abelian topological Hausdorff group G (not necessarily LCA)
and each topology t —pw,co,u. An isomorphism

$:Gx (p(G)W)n->P,,(G)()
is given by the definition
${g.£i,... .En){xi,... ,xn)=g+ £i(xi) + ... +en{xn).
P roof. Section 4.

By Theorem 1our problem reduces to describe the topological group
with respect to the topologies t—PW,CO,U. This will be done in Theorem 2
and Theorem 3. Theorem 2 is a rather easy consequence of Proposition 2

and treats pre-topology, Theorem 3 describes the structure of the set V(G)A
also for t=COand t=u.

T heorem 2.

V(G)W = IC(G)pw
holds for every LCA-group G. For the structure of K,{G)pw cf. Proposition 2.
Proof. Section 5.

T heorem 3. For the structure of the topological group V(Gfit> t =
—pw, co,u, the following two situations (which coincide if G is of Type 1)
are possible (we use the notations of Proposition 1):

Situation a):

V(G)” =L via the isomorphism kidag k
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if G is of Type 1 and t—pw,co,u or
if G is of Type 2 and t =co, u or
if G is of Type 3b and t=u.
Situation b):

V(G)W= IC(G)t = IC(G)pw

and the topologies t and pw coincide on IC(G)
if G is of Type 1 and t =pw, co, u or

if G is of Type 2 and t = pw or

if G is of Type 3a and t —pw,co,u or

if G is of Type 3b and t=pw,co.

For further information about the structure of 1C(G)pw cf. Proposition 2

FiGIfSection 6

If G is of Type 1cf. Lemma 1.

If G is of Type 2 cf. Lemma 2.

If G is of Type 3a cf. Lemma 3.

If G is of Type 3b and t =pw, co cf. Lemma 4.
If G is of Type 3b and t —u cf. Lemma 6.

4. The proof of Theorem 1

Let t be one of the topologies pw, co and u. The following proof runs
the same way for each of the three cases. We have to prove the following
statements:

() $(Gx (7>(G)<>p») QVn{G)"\

(i) Vn{G)W C $(G x CP(G)(0)n), i e. 4>is onto.

(iii) $ is injective.

(iv) €>is an algebraic homomorphism.

(v) $ is continuous.

(vi) 41 is continuous.

(i) Pick gCG, £ €V(G)™ and UCIi(G) arbitrarily. To prove (i) it
suffices to find k\,... ,kn£ Z such that

) £,)(fifi,... ,gn)- @ +Aiififl + se-+kngn)e U

for all gi£ Mi CG, i=1,... ,n, where the sets M, are arbitrary but fixed
and finite (in the case of pre-topology) or compact (co-topology) or Mi —G
(u-topology). Take V £1i{G) with

NV = {uj+ ...4vniMs V} QU.

Since £i GV ( G there are f GZ with kigi —£i(<7;)) GV for all p, GM,, i=
=1,... ,n. Of course this implies (1).
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(if) Pick e GVn and define g=1¢(0,... ,0) GG and

£i(xX)— ,0,_i, %, 0l+i,... ,0n) g
fori=1,... ,n. We have to prove
2 Eiev(G)®\ i=1,...,n, and
3 e(Xi,... ,xn)=g +£i(xi) + ... + £n(xn).
For doing this take any M, as in (i) (w.l.o.g. assume Mi= ... = Mn= M,

0GM) and UGU(G). Now take V GU{G) with {2n+2)V CUand -V = V.
Since e GV n there are ' GG and GZ i=1,... ,n, such that

4) ee gn)~ (g'+hgi + m-4-kngn) eV
for all < GM . In the case gj = 0 for j ~ i this means

(5) s(0,... ,0) - {g'+ kigt)eV
for all gi GM and, if also gt= 0, we have

(6) g'-ge-V =V.
Summation of (5) and (6) yields

) £t(g,)-k,gieV +VQU

for all g{ GM proving (2). Furthermore

£(ffii «mmiOn) —(g+ £i(<7i) + em £n{gn)) —

= (e(si,... ,bn) - +{g'- g)+

oA (™, - £((51))G(2rH-2)Pg[/
i=i

for all gi GM by (4), (6) and (7). Since U GU{G) was arbitrary and G is
Hausdorff this proves (3).

(iif) Suppose
£,)=%(5"£1,... En)
for g,g'gG and £-, £ GV, i.e.

g+ E£1(ffl) + eo"+ £n(ffn) —g' + £i{gi) + =+ £n{gn)
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for all § GG, i=1,...,n. Choosing g\ = ... =gn= 0 and using £ (0) =
=e(-(0)=0fort=1,... ,n we get g=g' and hence, now choosing gj = 0 only

for j ™ i, also £i(gt) = e\{gi) for all g, GG, i.e. £o=¢".
(iv) Trivial.

(v) This is an immediate consequence of continuity of group operation
with respect to the topologies pw, co and u.

(vi) By (iv) it suffices to prove continuity at the point 0€ Vn{G)"\ Let
therefore

with respect to the topology t. In every case we have

in G, implying also

»

with respect to t for i=1,... ,n. Now the proof of Theorem 1 is complete.

5. The proof of Theorem 2

We have to prove two inclusions:

“Q”: Proposition 3 b).

“2”7. a) G is of Type 1, i.e.,, not periodic: Then, by Proposition 2 a),
every £ GIC(G) is of the form £=k Ida, k GZ hence e GV(G) QV(G)(pwA

b) G is of Type 2 or 3, i.e. periodic: By Proposition 2 b),

K{G)pw=T[G) “ Td/IT{G)L.

Td = Z*s\ isomorphic to the Bohr-compactification of Z, is monothetic and
generated by Idxd- Thus the isomorphism ~ described in Proposition 2

b) shows that IC(G)pw= T(G) is generated by Idc e P(G), thus /C(G) C
gp(G)W.

6. The proof of Theorem 3
IEE)M Theorem 3 holds if G is of Type 1, t=pw,co,u.
PROOF. Proposition 2 a) and Theorem 2 imply

P(G) QV{G)(U) c p(G)(co>g V{G)(w) = /C(G) = P{G),
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proving Lemma 1
Lemma 2. Theorem 3 holds if G is of Type 2 and t =pw,co,u.

Proof. t=pw: Theorem 2.

t = co, u: Let Go be the component of connectedness of 0 GG. On com-
pact sets co-topology and u-topology coincide, Go is compact (G periodic),
hence by Proposition 3 a)

V(Go)r =V{Go)" =V(Gqg = Zvia the isomorphism k Id g0«uk.
Now it is clear that
$:P(G)<c0)=P(G)(*)->2Z, kldG"k

is isomorphism as well.
Lemma 3. Let G be of Type 3a. Then

V{G)(* = P(G)(>=P(G)() = £(<?)

and the topologies pw,co and u coincide on this set. Hence Theorem 3 holds
in this case.

Proof. Assume £, —0 pointwise, £, G/C(G) = V(G)(pw) (cf. Theo-
rem 2). The Lemma is proved when we can show that £, -> 0 uniformly.
To do this take any U GU(G). Since G is of Type 3 there is a compact
open HQU,H”~G. H'=G/H is discrete and, by definition of Type 3a,
exp (H') = n<oo. Thus we can find an h+H GH' with order n. If we define
gu{g+ H) =eu(g) + H (this is well defined) we have ev GIC(H") ="'P(H,)(pw) —
=V (H’) =C(n) (cyclic group of order n). £, —0 pointwise in G obviously
implies €u->0 pointwise in H' and therefore e’ = 0 or, equivalently, ev{G) Q
QH QU forall v og. Thus Lemma 3 is proved.

Lemma 4. Theorem 3 holds if G is of Type 3 and t =pw,co.

P roof. t=pw: Theorem 2.

t —co: Assume —>0 pointwise with ev GV{G)"pwA For an arbitrary
compact AT G we have to show £, —0 uniformly on K. Since the closed
subgroup generated by the set K is compact, too, w.l.o.g. we may assume
K %G. It is clear that e,,\K =0 in V{K)*pwA Consider any compact open
subgroup H ™ K, then, by compactness of K, K/H is finite. Hence K is of
Type 3a and Lemma 3 applies proving Lemma 4.

For G of Type 3b and i = «we need
Lemma 5. Let G be of Type 3. Then for

£GIC(G) —V{G)(m) 2 V(G){u
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the statements (i) and (ii) are equivalent.

(i)eeV {u)G).

(i) For every compact open H <G there exists a kn GZ such that £// =
= kn if we put £n{9+ H) —e{g) + H. (Note that £// GIC(G/H) is
well defined.)

Proof, (i)=>m(ii). Suppose e GV {G )" and take any compact open H £
< G. By definition there is a kn GZ such that e{g) - kng GH for all g GG.
But this immediately yields

£H(g+ H) =e(g) + H = kH(g+ H).

(i) >»(i). To show (i) take any U £1i{G). Proposition 1 c) guarantees
the existence of a compact open subgroup H QU. By (ii) there is a kfj GZ
such that £n —kfi Id o/Hi hence

£(g)-kHgeHcu

for all g GG. U £U{G) was arbitrary, thus Lemma 5 is proved.
Lemma 6. Theorem 3 holds if G is of Type 3b and t —u.

Proof. For
Z->P(G)(u), kt-tk 1dG

we have to prove the following statements:

() $(2)Cp(G)W.

(i) 72(G)I“1 Q<I>(2), i.e. $ is onto.

(iii) <>is injective.

(iv) $ is an algebraic homomorphism.

(v) $ is continuous.

(vi) 4>1 is continuous.

Let H <G be a compact open subgroup such that exp (G/H) —o0 which
exists since G is of Type 3b.

(i) Trivial.

(ii) Take any £GV{G)" and any compact open H' * H. By Lemma 5
we have &//,&/» GZ such that

{kH1dG-e)(G)QH and (fow»ldG- €){G) QH".

First we prove k~ 1= kfj. For every g£G we get

(kH-k H")(g+H) =
= 1dG- £)(g+H) +(e-kwldG){g+H)c H+ H'¢c H.
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Since exp (G/H') = exp (G/H) = oo this yields kfj —kf{i = k. H'~ H was
arbitrary, hence

£{d) - kg€ n{tf' =H\ H' compact and open} = {0}

by Proposition 1c) and indeed e —"(k).
(iii) As in the proof of (ii) k™ k' implies k 1d g/u/ kildg/h and

$(k) = kIdG™ k" 1d g = $(*").

(iv) Trivial.
(v) Trivial, since Z->P(G)W acts on a discrete space.

(vi) Suppose **(k™)(g) — 0 uniformly. Since H is open this implies
k"G QH or k(g + H) —0 in G/H for all g£ G and all u>vo- Together
with exp (G/H) = oo this yields fctM = 0 for v * vq, i.e. kK* —=0in Z
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ON THE SURFACE AREA OF CONVEX POLYTOPES

A. BEZDEK* and T. ODOR

Abstract

In this paper we prove that the surface area of a given three dimensional convex
polyhedron is less then the sum of all products ef where e and / are disjoint edges of the
polyhedra and ef denotes the product of lengths of the edges e and /. We generalize this
statement for n-dimensional convex polytopes and state a conjecture.

The second author motivated by a result of H. G. Eggleston, B. Grin-
baum and V. Klee [2] asked the following question:

Is it possible to estimate the surface area of a given three dimensional
convex polyhedron by the sum of all products ef where e and / are disjoint
edges (have no common point) of the polyhedron and ef denotes the product
of lengths of the edges e and /? In this paper we give an affirmative an-
swer (Theorem 1) and prove an analogous theorem for n-dimensional convex
polytopes (Theorem 2).

Let k be an integer such that 0< k <d. Denote the set of the fc-dimen-
sional faces of the given convex polytopes P by P*. If F is a A:-dimensional
face of P, then V(F) will denote the fc-dimensional volume of F. Although
the notation Vjt(F) would be more precise for V (F), we believe that omitting
the index k does not cause any confusion in this paper. In accordance with
this notation V (P) will denote the volume of the polytope P. Finally, S(P)
will denote the surface area of the polytope P, i.e. S(P) is the sum of the
d —1-dimensional volumes of the d —1-dimensional faces.

We are going to prove the following two theorems.

Theorem 1. IfP is a 3-dimensional convex polyhedron with edge set Pi
and surface area S(P), then

(1) S(P)S £
eJdP
SE0
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Theorem 2. IfP is an n-dimensional convex polytope with edge set P\,
volume V(P) and surface area S(P), then

/ \ >
(2) V(P) i vn E
\'eehf€—PQ /

where vn denotes the volume of the n-dimensional unit sphere, and

n—1
2

©) simis E «
via p |/

Remark 1. We do not believe that (1) and (2) are sharp, probably both
in (1) and (2) S(P) and V(P) can be replaced by xS(P) and xV(P) with
x> 1

Remark 2. It is known that vn is maximal for n =5 and vn tends to
Zero as n increases.

Remark 3. For tetrahedra we will prove a stronger inequality than (1).
If T is a tetrahedron with pairs of opposite sides (a, a'), (b,b") and (c, ¢') and
with surface area S(T), then

(4) ArS{T)<aa'+hb'+cc'.

Remark 4. We believe that besides (2) the following general inequality
holds. Given positive integers a\,a”",..., &, and s such that d+1;i/i; + ai +
+ mee+ at and s~ ai A+— <+ a*, then there is a constant ¢ not depending on
the choice of P, such that

( \ aiH--tafc
(5) S.(P)= £ V(F)<c £ V(F1)...V(FKk)
FePs
\F,nF}=Q
Note that ifd=3; s= k=2; = a&i=1then (1) is a special case of (5). It

would be interesting to prove (5) for the special case when k =2; Ri + a* —
—d—Il and s=a\+ 2.

The second author has an argument to show that once the integers
ai,. .., a%, s are given such that s >aj H— <+ &% and (5) holds for any poly-
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eder P of the dO= oi + e+ a* + k —L-dimensional space, then it also holds
for any polyeder P of the d”* do-dimensional space. He also claims that from
these inequalities it follows that the famous conjecture “Ss(P) < (Sr(P))s/r
(s>r)” is true in some previously not considered cases, too.

We start with three lemmas.

Lemma 1. If the quadrangle g has pairs of opposite sides (a, a") and
(6, b"), then

(6) 2area(g) <aa + bb'.

P roof. Denote the vertices of g by A, B, C and D so that a—AB and
b= BC. One of the diagonals, say DB, lies in g Let A' be the image of
the vertex A under the reflection around the perpendicular bisector of the
diagonal DB. The quadrangle ABCD has the same area as that of A'BCD
which is either the sum or the difference of the areas of the triangles A'DC
and A'BC. Thus area (q) = area {A'BCD) < {aa' A bb")/2. O

For our purposes we need to extend the class of convex polygons of
the Euclidean plane. Reader familiar with manifolds will recognize that we
essentially define 2-manifolds using multiple layers of the Euclidean plane.

Members of the extended class C are either convex polygons or are gener-
ated by gluing together a finite number of convex polygons. Now we explain
how and when can we glue together the convex polygons pi,... ,pn and will
also define the edge set and the area of the new polygons. Start with a
polygon p\. Glue the second convex polygon p2to Pi along a complete edge,
say e, so that pj and p2 are on different side of e. We consider g2=p\ Up2a
member of the class C with edge set consisting of all edges of p\ and p2 ex-
cluding e. Two edges of g2 are said to be adjacent edges, if they are adjacent
edges of p\ or p2 or if they share an endpoint with the edge e. The area of
02 is defined as the sum of the areas of p\ and p2. Suppose p\,... ,pi, i<n
are already glued together and they determine the member gi of C. Then we
glue the convex polygon p,+i to gt, along a complete edge, say e, so that at
least in a small neighbourhood of e the polygons gt and p1+ are on different
side. Although some points of g, and p,+i may lie over each other, we do
not consider them identical (we say that they belong to different layers of
the plane). We consider gt+1 =g, Up,+i a polygon with edge set consisting
of all edges of gxand pt+l excluding the edge e. Two edges of qt+y are said
to be adjacent edges, if they are adjacent edges of gxor p,+L or if they share
an endpoint with the edge e. The area of <+l is defined as the sum of the
areas gxand g,+i.

We show that

Lemma 2. If p is a generalized polygon with edges ey,...,en (n > 4),
then

(7 2area (p) < e e3.
e;nej=0
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Proof. We prove (7) by induction on N. If n= 4, then (7) is the same
as (6). Suppose N>4 and we know (7) for all generalized polygons of at
most n — 1 sides.

The generalized polygon P must have four adjacent sides, say ex, €2, €3
and es4 such that

(8) ex + e4N g2+ C3e

Indirectly suppose the opposite is true for all consecutive quadruples of sides
of p Adding together the corresponding inequalities we have that 2Se; <
< 2Sex, acontradiction. Let Vi, V2 and V3 be vertices of psuch that ViVa2= e2
and V2Vs3 = e3. In view of (8) there is a point X such that the triangle ViVaVs
do not overlap ViXV3 and |VIi\T| < ex and IV3X | < e4.

Applying Lemma 1 for the quadrangle WV VX we get

(9) exe3 + ~2e4 = IVi_Xjes T |V3ACle2 ~ 2 area (VxV2V3A ) N 2area(VxVaVs) .

We show that the segments ex, VxVs,e4,..., €N are the edges of a generalized
polygon p'ofn—l sides such that area (P) ~ area (P') + area (VxVzVs). W ith-
out loss of generality we may assume that p is obtained by gluing together
triangles only and let <x, ..., tn-i be these triangles. Finally let ibe the index
so that ti —XV\v2. The vertex X is either identical to Vs or there is an index
j such that tj =XV2V:. In the first case p' isobtained by gluing together the
triangles tk, 1 <k —, kA i, in the second case p' is obtained by gluing
together the triangles tk, 1~ k< n—2, K~ I,j and the triangle tXposlIt is
apparent that in both cases area(p) < area(p') + area (VXV2V3).

According to our inductive assumption (7) holds for p'. Thus

/ \
(10) YJ ee] * |VX\/3|(95H ----- ken) > 2 area(p').
emnej=Q
Vij£{2,3y [/

By adding (9) and (10), and replacing |VxVj| with the larger e2 + e3 we get
(7). m|

Let P be aconvex 3-dimensional polyhedron with surface 5. The union
of some 2-faces of P is called a polygonal piece of the surface S (in short
a polygonal shell) if it is simply connected subset of the surface S. we say
the polygonal shell has n sides if its boundary on the surface 5 consists of N
edges. A polygonal shell is said to be primitive if it does not contain vertices
of P other then those belonging to its boundary.

LeMMA 3. The surface of a convex polyhedron can be cut along its edges
into primitive polygonal shells each having at least 4 sides.

Proof. We construct a desired partition. First form single element
groups using all faces having at least 4 sides. Then turn to the triangular
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faces and form two element groups so that triangles of one group have a
common side. After exhausting the set of triangular faces in this respect we
start to enlarge our groups by adding triangular faces to them maintaining
the property that the union of the faces in one group form a primitive poly-
gonal shell. The rule is that we add a triangular face i to a group if t shares
an edge with one of the faces of the group and besides this edge t is disjoint
from the group elements.

It is not hard to see that the procedure terminates only if all faces are
used. a

Proof of Theorem 1. According to Lemma 3 we can cut the surface
of P along its edges into primitive polygonal shells p\ .m-Pk each having at
least 4 sides. Each p, (i=1,..., k) can be flattened in the following sense.
Consider p, as a framework where the faces are rigid plates so that the
neighbouring faces can rotate freely around their common edge. It is easy
to see that this framework can be brought into a unique position where all
faces lie in the same plane and adjacent faces do not overlap (non adjacent
faces might, but it is not our concern).

Notice that the flattened polygonal shells p, (i=1,..., k) are generalized
polygons. Applying Lemma 2 we get k inequalities. Since each product exe3
occurs in at most two of them, adding these inequalities together we get (1).

O

Proof of Theorem 2. First we recall two well-known theorems:

1 For the volume V(P) and the surface area S(P) of an n-dimensional
convex polytope P holds the isoperimetric inequality ([1], p.109):

where vn and sn are the volume and the surface area of the n-dimensional
ball with radius one. Note that for any n

(12) sn=nvn.

2. Let a be a unit vector and nu(P) be the projection of the convex
polytope P onto the hyperplane with normal vector u. Then the surface
area S(P) can be computed by the Cauchy formula ([1], p.48):

(13) s(P) :%_1Jv(nu(P))du,
B

where B denotes the n dimensional unit sphere and du denotes the spherical
area element.

We prove the inequality (2) by induction on n. If n is 3, then raising
both sides of the inequality (1) to | and applying (11) with n = 3 we get the
desired inequality, with even a better constant what we need.
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Suppose that (2) holds for any n—1 or less dimensional convex polytope.
Using the inequalities (11), (12) and (13) we have that

{V(P))"< 'v'r{:i\: - é[ V(Uu(P))du.

Applying the inductive hypothesis for the quantity under the integral sign
we get that:

du.
{v{F))n E/Z'E@H(F);e, u

Since the edges of IIUP) are projections of certain edges of P the function
to be integrated can be estimated from above by the constant 53 ef, where
e,feE, efl/=0and thus we end up with the inequaljty:

n
1 ( \ 2
n— a
(V(P)— < E «

e,/EE,

\en/=0 /
In view of (12) Tyvnn = (un)"» . Raising both sides of the above inequality
to the power we get (2).

If n =3 then (3) is the same as (1). If n > 3, then using (13) we have
S(P) = — } v(nu(P))du.
Vn-1

Applying (2) for the convex polytope 1HUP) we have

\ 2

/
sPyE~ | e du.
vl I o 178

Since the edges of I1L(P) are projections of certain edges of P the function

to be integrated can be estimated from above by the constant (53 :
where e,/GP, efl/ = 0 and thus we end up with the inequality:

1
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Proof of Remark 2. Cut the surface of the tetrahedron T into two
pieces along the edges 6, ¢', b' and c. By flattening the pieces out and using
Lemma 1 we have that

bb' + cc'>S.
Similarly we have that
bb’+ ad > S
and
ad +cc' >S .
Adding these inequalities together we get (2). O
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HOMOMORPHISMS OF DISTRIBUTIVE LATTICES
AS RESTRICTION OF CONGRUENCES:
THE PLANAR CASE

E. T. SCHMIDT

Given a lattice L and a sublattice L', then the map of ConL to ConV
determined by restriction is a meet-homomorphism preserving 0 and 1. If V
is a convex sublattice, then this map is a lattice homomorphism. G. Grétzer
and H. Lakser [1] proved that any {0, I}-preserving homomorphism of finite
distributive lattices can be realized by restricting the congruence lattice of
some finite planar lattice L to the congruence lattice of an ideal L' of L. In
this note we give a short proof of this result.

THEOREM. Let D and D' befinite distributive lattices and let *: D—D'
be a {0,1}-preserving lattice homomorphism. Then there exist a finite planar
lattice L, an ideal L' of L and lattice isomorphisms

p:D—-ConL, p":D'—+Conl
such that typ' is the composition of p with the restriction of ConL to ConV .
Moreover, the lattices L and V have no nontrivial automorphisms (see
Figure 1).

lattice hom.

D

Fig. 1

Proof. Let tp:D —D" be the given {0, I}-preserving homomorphism.
By the duality between finite distributive lattices and finite posets »P de-
termines an isotone map ip:J{D") —FJ{D). Conversely, *P is determined
by
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Let T be the set J(D) UJ(D'). We can extend p to T by setting xp —
= x for x £J{D). Denote pi,p2 pm resp.pm + 1 ,pn the elements of
J(D') resp.J(D). p can be characterized by a quasi-ordering » on T:

f Pidpj inJ(D"), i,j<m and

* Pid Pj ifand only if .
) ‘ Y U X PiPAPjP in J(D)  otherwise.

It is easy to check that is a quasi-ordering. Let O be the equivalence
relation of T induced by this relation, i.e., Pi&Pj iff Pi dPj and po dPi- Then
T/0 is a poset. By (*) if 0< i<m then p, dPiP and PipdPii i-e., piOpip.
This implies T/Q =J(D).

We define two types of lattices AtJ and BI], 0 <j <idn by the dia-
grams illustrated in Figure 2. Let n={0< 1< eee< n} be an n+ 1l-ele-
ment chain. Ay is the direct product n X2 augmented with the elements
¢, C,Cj-1,..., @ Btlis n x 2 augmented with the elements dj,di,
eecidn.

Let Jij be the ideal of Ay (resp.5y) generated by (n,0) and let Fy be
the filter of Ay (resp. .By) generated by (0,1). Then Jij = Fy = n. An easy
computation shows that the following hold:

(i) Every congruence relation of Ay (resp. By) is determined by its
restriction to Jij and similarly to Fy.

(i) If1Jk then (/—1,0) = (/,0) forces A—1,0) = (k, 0) in Ay iff =i
and k =j.
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(iii) For I~ k (/—1,0) = (/, 0) forces (k—1,0) = (£, Q) in BI: iff/=j, A=
We define the lattice L. Consider the bijection er:[i —1, i] —pi between

the prime intervals of n and the elements of T (a is called a coloring of n).
For 1<j <i<n define

A “ 1 Aij ifpj <pPi in T,

J \ Bij ifp, <p3in T.

Order the pairwise disjoint i?,j-s say Rioj0,Riij1,..., Ri,j,, mmsuch that
(*0,jo)> (*i,ji), mme (ii,js) are exactly the pairs which satisfy 1<ik, jk ~ rn
and either pik <Pjk or p]Jk <Pik in J(D"). Now we apply the Hall-Dilworth
gluing: the filter F,0j0 of A0 is isomorphic to the ideal of Rigjim
Identify F,0)0 and via the isomorphism, we obtain the lattice Riojou
URilh which contains F,Ul as a filter. Then take A,32 and its ideal Jizj2.
We apply again the gluing construction, by identifying F,lj1 and Jiz2j2. We
continue this procedure, the resulting lattice is L. Then J —Jiojo is an ideal
of L. Riojo is isomorphic to one of the A,j-s or B{j-s, let k* be the element
of Jiojo C R,go which corresponds to the element (A:,0) of (or Bij).

The properties (i), (ii) and (iii) imply that every congruence relation of
L is determined by its restriction to J and (j —1)*=j* forces (i —1)* = i*
(i™j) in L iff pi <pj in T. Consequently, J(ConL) =T/Q which proves
ConL =D.

Finally, we define the ideal V of L. If D' is a Boolean lattice then
L'={0* < 1* < ese< 5*}.

R,.j, is isomorphic to one of the Atl-s or Bij-s. Denote « £ Ri3j3C L the
element which corresponds to (0,1) € Aij (or Bij) by this isomorphism, m* £
£ Jiojo (m is the cardinality of J(D')) and consider the ideal L' generated
by the element m* V't (see Figure 3).

Fig. 3
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By the given ordering of the “rows” At] we obtain that in J DV —
= Jigon L» U~ )*=3* forces (*~ 1*= * (*~j) ifFPi <Pj in J (&)*
i.e., ConT") = J(D'"). This is equivalent to Conid'=D". It is clear
that the restriction of Coni to Coni' is just the given {0, I}-preserving
homomorphism i'.

If a is an arbitrary automorphism of i (and similarly of i') then its
restriction to a “row” RIKk is an automorphism of RIkkmTherefore we have

only two special cases if a is a nontrivial homomorphism of Riljkm In these
cases we modify the construction slightly.

(1) If RiGO—A{j and i=n. Then the interval [(n —1,0), (n, 1)] is
isomorphic to M3. We replace this block by the lattice illustrated in Figure 4.

If [(n —1,0), (n, 1)] is isomorphic to the lattice illustrated by Figure 5a,
then replace this lattice defined by Figure 5b.

(2) We use the same modificated construction if Rikk is the least row
and Rikjk = Aij or B{j where j = 1 then the first block is again M3 or the
lattice illustrated by the dual of the lattice defined by Figure 5a.
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DENSE SUBSPACES OF QUASI-UNIFORM SPACES

H.-P. A. KUNZI and A. LUTHY

Abstract

A subspace D of a quasi-uniform space (X,U) is said to be doubly dense in (X,It)

provided that it is dense both in (X,U) and (X, W-1) and it is said to be supdense in (X,U)
provided that it is dense in (x,u *). (Here, as usual, u* denotes the coarsest uniformity
on X finer than u.) For various properties o we study variants of the following problem
which originates in the theory of completing quasi-uniform spaces. If (X,U) is a quasi-
uniform space having a doubly dense (resp. supdense) subspace with a given property o,
does (x,u ) necessarily have property o, too? Of course, the answers to these questions
are negative in general. We show, however, that they are positive for several important
properties o of quasi-uniform spaces.

1. Introduction and preliminary results

Given a quasi-uniform To-space (X,li) having some nice property O it
is often interesting to know, whether its bicompletion (X,U) has property
O, too. Simple examples show that our problem has a negative solution in
general:

Example 1. (a) Recall that a quasi-uniform space (X,li) is said to be
point-symmetric (resp. locally symmetric [12, pages 36 and 37]) provided
that for each U Eli and each x E X there exists a symmetric V Eli such
that U(x) QU(x) (resp. V2(x) QU(x)). Consider an arbitrary non-discrete
(topological) TR-space equipped with its Pervin quasi-uniformity V. Then
(X,V) is locally symmetric [12, p. 37]. However, the following argument
shows that the bicompletion (X,V) of (X, V) is not point-symmetric, al-
though it contains (X, V) as a T(V*)-dense subspace [12, Theorem 3.33]:
Point-symmetry of (X,V) implies that T(V) is a Ti-topology [12, p. 36]. It
follows that V is a uniformity [13, Proposition 2.1] and that X is a discrete
topological space [12, Corollary 2.35] — a contradiction.
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(b) Recall that a quasi-uniform space (X,U) is called uniformly regular
(see e.g. [14]) if for each U 6 W there is a V € U such that dt(u)V{x) =
QU(x) whenever xgA . Consider the totally bounded quasi-uniform To-
space (X ,V) described in Example 8 of [20]. Both V and V-1 are uniformly
regular, but Vis not a uniformity. By [13, Proposition 2.1] the bicompletion

(A V) of (X,V) is not a Ti-space. Hence (A,V) cannot be (uniformly)
regular.

It is the aim of the present paper to show that — nevertheless — our
questions have (at least partial) positive answers for surprisingly many im-
portant properties of quasi-uniform spaces, among them various conditions of
completeness and precompactness and, astonishingly, even some conditions
of symmetry.

Notation and terminology of this note coincide with that of reference
[12]. Additionally we shall make use of the following concepts. A subset
D of a bitopological space (A, TATf) is called doubly dense (compare [6])
in X if D is dense both in (X, T\) and {X"Tf)- It is said to be supdense
in X if it is dense in (A, sup{7i,72})- Similarly, a subspace D of a quasi-
uniform space (A,Z7) is said to be doubly dense in (AZV), if D is both
T(ZY)-dense and T(U~1)-dense in A. If D is T(Z7*)-dense in A, it is called
supdense in (A,U). Clearly, each supdense subspace of a quasi-uniform space
(A,ZY) is doubly dense. Examples show that the converse does not obtain
in general. Of course the converse holds if the two topologies T(U) and
T{U~1) are comparable. The following lemma contains an elementary fact
about supdense subspaces of quasi-uniform spaces. It is related to Lemma 3
of [18] and should be compared with the remark made in [17] after the proof
of Lemma 6.

I_EETEM. Let U and V be quasi-uniformities on a set X such that
T(K) = T(V) and T(U~I)~ T(V_1). If UID —V\D where D is supdense
in (A,U), thenU=V.

See [4, 811]. (In the proof of [6, Lemma 2.5] a similar idea is
used.)

%Elf(l(added during revision). The authors would like to thank
Professor J. Deék for informing them about the extensive work done on ex-
tensions of quasi-uniform spaces in Hungary recently [1,3,4,5,6,7]. At several
places in this note we shall make use of the notation and terminology intro-
duced in these papers. In particular, the reader might wish to study 811 of
[4] (dealing with firm extensions) before reading on.

Finally let us note that the following simple construction can be used to
show that for many properties O our problem has a negative solution in the
case of doubly dense subspaces.

. Let (£, V) be an arbitrary quasi-uniform space and let —ec
and oo be two points not contained in the set E. Let A = E U{—o0, 00} and
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let U be the quasi-uniformity on X that is generated by |[{—e03 XX]U F U

U[X X{o031:V £ vj. Then {—oo,003 is doubly dense in (X,U).

2. Completeness conditions

We recall that a filter F on a quasi-uniform space (X,U) is called a U-
Cauchy filter on X if for each U £ U there is an x £ X such that U(x) £ F [12,
p. 47]. A quasi-uniform space (X,U) is said to be (convergence) complete if
each TCCauchy filter on X has a T(ZY)-cluster point (a T{U)-limit point) in
X [12, p. 50].

In [8,9] D. Doitchinov introduces a different notion of completeness for
a quasi-uniform space (X,U). As usual, let us call a filter Q on X a D-
Cauchy filter provided that there exists a filter F on X so that for each
U£U there are F £F and G £ Gsuch that F x GQU. (In this case one
writes (F, Q) —0and calls (F, G) a Cauchy pair offilters.) The space (X, U)
is called D-complete provided that each D-Cauchy filter on X converges in
(X,U). Furthermore, {X,U) is said to be strongly D-complete provided that
if (F,G)—0, then T has a T(7/)-cluster point in X [15]. A quasi-uniform
space [X,U) issaid to have the Lebesgue property [12, p. 97] if for each T(U)-
open cover C of X there is 7 £ U such that {[/(i):iEI] is a refinement
of C.

. Let D be a supdense subspace of a quasi-uniform space
(X,U). Then (X,M) is (convergence) complete if (D,U\D) is (convergence)
complete.

H(IfAssume that (D,G\D) is (convergence) complete. Let T be a
7/-Cauchy filter on X and let T qbe the filter on D generated by the filterbase
{FnD:F £T(U*) n7}. Consider an arbitrary U£U. Choose W £1A such
that W2QU. Since T is a Tf-Cauchy filter on X , there is an x £ X such that
W(x) £T. Because D is T(7/*)-dense in X, there exists y£ D HW -1 (x).
Then W{x) CW2(y) C U(y) £ F and {U\D)(y) = U(y)nD £FO0. Thus Fo is a
7/|D-Cauchy filter on D. Since (D,U\D) is (convergence) complete, there is
a z£ D such that z is a T{U\D)-cluster point (a T(7/|D)-limit point) of Fq.

In the first case let us show that z is a T(Z7)-cluster point of F . Assume
the contrary. Then there is an F £ F such that 2~ clj\U)FmChoose V £U
such that V (z) DV-1 (F) = 0. Since V~I(F)C\D £ Fo and zisa T (£/|/*-clus-
ter point of Fo, we have reached a contradiction. Hence (X,ll) is complete
provided that (D,IL\D) is complete.

In the second case let us show that z is a T(Z7)-limit point of F. Let
V £U. Choose W £ U such that W2c y. Since (W\D)(z) £ Fo, thereisa G £
£ T(U*) fl F such that Gfi D Q W'(2). Hence G Q cle{U*G =
=cWU,){GC\D)Qc\j(it.fiV(z)&W 2(z)(V(z), since D is T(M*)-dense in
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X and G is T(H*)-open (see [11, Theorem 1.3.6]). Thus V(z) GT and T
converges to z in (X,U). We have shown that (X,U) is convergence complete
provided that (D,U\D) is convergence complete.

The referee points out that our proof shows (in the light of Lemma 1.1
of [1]) that the statement on convergence completeness in Proposition 1
remains valid if one assumes only that D is doubly dense in (X,U) and T(H)
is a strict extension of T(U\D) (compare [4, 11.1]). He also observes that
Proposition 2(a) can be generalized in the same way (see [1, Theorem 1.3]).

Proposition 2. (a) Let D be a supdense subspace of a quasi-uniform
space (X,U). If(D,U\D) is D-complete, then (X,U) is D-complete.

(b) Let D be a doubly dense subspace of a quasi-uniform space (X,It).
If (D,U\D) is strongly D-complete, then (X,U) is strongly D-complete.

Proof. We prove these two results simultaneously. Suppose that
(D,U\D) is (strongly) D-complete. Let (T,G) be a Cauchy pair of filters
on (X,U), let To be the filter on D generated by the filterbase {FnD: F G
GT(U~I)nT) and let Go be the filter on D generated by the filterbase
{GnD:GeT(U)nG}.

First we note that (To, Go) —=0: Let U 2Y. Choose W ¢ U such that
W3 QU. Since (T,G) ->0, there exist F ¢ T and G G such that F x
xGCpp. Thus [W~1(F)nD]x[W(G)nD]QU\D, W"1(F)n D GTo and
W(G) n D ¢ Go. Hence (TO, Go) ->0.

Since (D,U\D) is (strongly) D-complete, €) (resp. To) has a T{U\D)-
limit point (resp. a T(ZV|D)-cluster point) 2 in D. An argument similar to
the one given in the final two paragraphs of the proof of Proposition 1 shows
that 2 is a T(U)-limit point of G(resp. a T(ZY)-cluster point of T) in X . It
follows that (X,U) is (strongly) D-complete.

Exampite 3. Let X = Ruf{oo}. Furthermore, let U be the quasi-uni-
formity on X generated by {Ut:e> 0} where Ut = (UxeR"1} X[x,x + €] u
u (] —e, 0[x{00}) v ({00}x]0, e)) v {(00, 00)} whenever e> 0. Clearly D —R
is a doubly dense subspace of (X,U) which is D-complete (for a proof see
for instance Example 1(b) of [21]). However, the filter Jon | generated
by {[0, e[u{oo}: e> 0} is a D-Cauchy filter on (X,U) that is not convergent.
Hence (X,U) is not D-complete.

Remark 2. Note that a quasi-uniform T2-space (X,U) cannot have
proper doubly dense complete (resp. D-complete) subspaces: Assume that
D is a doubly dense complete (resp. D-complete) subspace of (X,U) such
that there exists x GX \ D. Since (U~1(x) PD) x (U(x) C\D) Q U2 whenever
U £Lt, \t is clear that the filter T generated on D by (F(x) f)D: UEU} is a
D-Cauchy filter (and thus a £/|D-Cauchy filter) on D. Obviously, however,
T cannot have a cluster point in (D,U\D), because (X,U) is a T2-space —
a contradiction.

Proposition 3. Let D be a supdense subspace of a quasi-uniform space
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(X,1d). If (D,Id\D) has the Lebesgue property, then (X,ld) has the Lebesgue
property.

P roof. We show that as in the preceding results on convergence com-
pleteness, it is sufficient in Proposition 3 to assume only that D is doubly
dense in (X,Id) and T(Id) is a strict extension of T(Id\D). (Then the sets
S(G) = {x£1: There is UEId such that U(x)PD QG) whenever G is open
in T{ld\D) form a base for T(ld); see e.g. [1].): Suppose that (D,ld\D) has
the Lebesgue property. Let C be a T(ld)-open cover of X . Set H={H E
e T(Id\D): s(H) Q C for some C EC}. Clearly Ti is a T(ld\D)-open cover
of D. Since (D,ld\D) has the Lebesgue property, there is a U £11 such that
{(U\D)(x):x ¢ D} refines {H: H EH}. Let W ¢ Id be such that W2 QU.
Without loss of generality we assume that U(y) is T(U)-open for each y o
¢ X (¢i [12, p. 3]). Fix x e X . Since D is doubly dense in X, there is a
yeD -1(x). Then W{x) QW2{y) QU{y) Qs{U{y) DD) Qs(H) QC for
some H ¢ H and some C ¢ C by definition of H. Hence {W{x): x ¢ X) is a
refinement of C. We have shown that [X,U) has the Lebesgue property.

Exampte 4. Let X be an orthocompact topological To-space and let U
be the fine transitive quasi-uniformity of X. Then the bicompletion (X,U)
is orthocompact: Since, by [12, Theorem 5.6], (X,U) and thus, by Proposi-
tion 3, also {X,U) have the Lebesgue property, and since, by an argument
similar to Corollary 5 of [18], U is the fine transitive quasi-uniformity of
(X,T(ZV)), the assertion follows from [12, Theorem 5.6].

Example 5. Let [0,1] be the unit interval of real numbers equipped with
its usual (unique) uniformity U and let D = Qfl[0,1] where Q denotes the set
of rationals. Then D equipped with the subspace uniformity induced by U on
D has none of the completeness properties studied in this section, although
D is T(ZY)-dense in [0,1] and ([0,1],U) satisfies all the five completeness
properties considered above.

3. Compactness conditions

In this section we consider several variants of precompactness. While
all these conditions are equivalent in the realm of uniform spaces, they may
differ considerably in the class of quasi-uniform spaces. Recall that a quasi-
uniform space (X,U) is called Cauchy bounded [16] if each ultrafilter on X is
a D-Cauchy filter. It is called precompact [12, p. 51] if for each V Eld there
is a finite subset F of X such that V(F) =X and it is called totally bounded
if for each V EId there is a finite cover {A,:i= 1,... »} of X such that
(A{ x A,)) QV whenever i=1,... ,n[12, p. 12]. It is well known (and easy to
see) that each totally bounded quasi-uniform space is Cauchy bounded and
that each Cauchy bounded quasi-uniform space is precompact.
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Proposition 4. (a) Let D be a supdense subspace of a quasi-uniform
space (XM). Then {D,U\D) is hereditarily precompact (totally bounded) if
and only if (X,li) is hereditarily precompact (totally bounded).

(b) Let D be a T(U~I)-dense subspace of a quasi-uniform space (X ,Ii).
Then (D,U\D) is Cauchy bounded if and only if (X,K) is Cauchy bounded.

(c) Let D bea T(U~I)-dense subspace of a quasi-uniform space (X,li).
Then (D,li\D) is precompact if and only if (X,H) is precompact.

Proof, (a) If(X,li) is hereditarily precompact (totally bounded), then
(D,1i\D) is hereditarily precompact (totally bounded), because each sub-
space of a hereditarily precompact (totally bounded) quasi-uniform space is
hereditarily precompact (totally bounded) [12, p. 12]. Since a quasi-uniform
space (X, V) is totally bounded if and only if both (X, V) and (X, V-1) are
hereditarily precompact [19, Lemma 1.1], it remains to prove only that the
quasi-uniform space (X,U) is hereditarily precompact provided that it has a
supdense hereditarily precompact subspace D: Let AQ X and UEIi. Choose
W EIA such that W3 QU. For each a E A there exists daE (W DW-1)(a) C\D.
Since B = {da:a £ A} is a precompact subspace of D, there is a finite subset
F of A such that B Q{JfeFW(df). Let afA. Then aEW(da) QW 2{df) Q

QW3 (f) QU(f) for some / EF. Hence (X, U) is hereditarily precompact.

(b) Suppose that (D,li\D) is Cauchy bounded. Let Q be an ultrafilter
on X and let Go be an ultrafilter on D containing the filterbase {Gil D:G E
ET(U~I)fI(/}. Since (D,li\D) is Cauchy bounded, there is a filter X on D
such that (F,Go)-4 0. bet £ be the filter on X generated by the filterbase T
on X. Consider an arbitrary entourage U Eli. Choose W EU such that W 2Q
QU. Since (X, (0)—0, there are F GT and H 6 Go such that F XH C W\D.
If X\ W(H) 6 G, then VF*1(X\ W{H)) n D e Go, but W' 1(X\ W(H)) ft
HH = 0 — a contradiction. Since G is an ultrafilter on X, we conclude
that W(H) € Gm Furthermore, F XW(H) QU and F € Z. It follows that
(Z,G) -4-0. Hence (X,U) is Cauchy bounded.

In order to prove the converse assume that (X,U) is Cauchy bounded.
Let G be an ultrafilter on D and denote by TL the ultrafilter on X generated
by the filterbase G on X. Since (XZY) is Cauchy bounded, there is a filter
T on X such that (X, Tb) —0. Let Xo be the filter on D generated by the
filterbase {FDD:F e T(U~X) fIX}. Consider an arbitrary U £IL. Choose
W EU such that W2Q U. Since (X,Li) —0, there exist F £ X and H ETL
such that FxHQW. Then (VF-1(F)nD) x (BTDD) QU\D, W~I(F)nDE
EXo and HnD EG- Thus (Xo, G) -4 0. Hence (D,U\D) is Cauchy bounded.

(c) Assume that (X,U) is precompact. Let UEU and choose W EU such
that W2 QU. There is a finite subset X of X such that (J{"b(/):/ € F} =
= X. For each f EF choose df EDC\W _1 (/). Thus X Q1J{bF2(d/):/ G
EF} QD{U(df): f £f}. It follows that (D,U\D) is precompact.

In order to prove the converse we assume that (D,U\D) is precompact.
Let U EU. Choose W Eli such that W2 QU. Since (D,U\D) is precompact,
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there is a finite subset F of D such that D QU {~(/):/€ F}. Then X =
clr«-»)u w /):/ € F} = U{cIT(U-*)W(f):f6F}C \J{W2(f): f EFj Q
=U{~(/):fTEF}. Hence (X,£E/) is precompact.

PROPOSITION 5. Assume that is a quasi-uniform space with a
T(Z/_1)-dense compact subspace D. Then (X,U) is compact.
Proof. Let C be a T(U)-open cover of X . Set TL={HgT (U)\ Q

CC for some C GC}. Since LLis a T(ZY)-open cover of X and since (D,IL\D) is
compact, there is a finite subcollection TI' of Li such that D QU7I". Thus X =
—CIr(W-)(uwi) = U H' G'H'} QUC for some finite subcollection
C of C. Hence (X,T(U)) is compact.

4. Symmetry conditions

In this section we show that the studied questions have positive answers
even for some kinds of symmetry conditions. Of course, in view of the
examples presented in the introduction we cannot expect too much.

We begin by discussing some auxiliary results that seem to be of indepen-
dent interest. Let us recall that the weight (cf. [11, p. 427]) of a quasi-uniform
space (X,U) is the minimal cardinal number of a base for U.

P roposition 6. Let D be a supdense subspace of a quasi-uniform space
(X,U). Then the two spaces (D,U\D) and (X,It) have the same weight.

P roof. The assertion is an immediate consequence of [4, Theorem 11.2].
Let us mention that the nontrivial part of the statement also follows from
the fact that {cIT(UmxT(u,)B: B GR] is a base for (X,U) whenever B is
a base for (D,U\D): Consider U£U. Choose V GU such that V3 QU.
There is a B £ B such that B QV\D, because B is a base for U\D. Since
dT(If)xT(u,){V\D) =~ 3i we have that cl7-(*.)X7-(*)i? QU. It remains to
show that J\x (U )xT(U*)B € U. Choose L £1t such that L\D C B. Fur-
thermore, choose a T(U~I xZY)-open entourage H eli such that H QL [12,
Corollary 1.17]. Then H CdTA.Ax7Ww*)H Q o-Tu.*r (it.A{H\D) Q
N eW{ie)xT(Ic){L\D) * W(u*)xT(U*)b by [11, Theorem 1.3.6] and thus
cW(U’)xT(u*)BEU.

A quasi-uniformity U on X is called Smyth symmetric [15] provided that
whenever A and B are T(U)-open sets and UeU such that 17(A) Q B, there
are T(U)-open sets Al and B' and V GU such that AflAl—0, B UB' =X
and V (B") QA1 It is known that a quasi-uniformity U is Smyth symmetric
if and only if its quasi-proximity is a proximity [15].

Lemma 2. Let D be a doubly dense subspace of a quasi-uniform space
(X,U) such that U\D is Smyth symmetric. Then D is supdense in (X,U).
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P roof. Assume the contrary. Then there exist a£ X and U £IL such
that (UDt/-1)(a) n D =0. Choose a T{U~I XZV)-open entourage W of U
[12, Corollary 1.17] such that W2 QU. Then fW\D) D[(W(a) n D) X
x(W-\a)nD)]=9 because W(a)r\W~\a)C\D=$. Since U\D is Smyth sym-
metric, there exists a T{U~I| XZ/)-open entourage H £Z7 such that (!T|Z))n
n[(ty-1(a)nx>) x (W(a) n D)] = 0. Hence H n [\T{u-i){W~x{a) n D) x
Xcl™Mi/)(W'(a) n 27)] = 0, because H is T{U~XXE/)-open. However, since
D is doubly dense in (X,U), we have (a,a) £ H n [cl-r*-i"W -1 (a) fl D) x
Xcl77)(W (a)fID)] — a contradiction. We conclude that D is supdense
in Let us note that our argument shows that it is sufficient to as-
sume that (D,U\D) is semi-symmetric (= closed symmetric) (see e.g. [15])
provided that T(U) is regular.

Some readers may prefer the following less computational proof of Lem-
ma 2 suggested by the referee (using the terminology of [3,4]): Assume that
U\D is symmetric. Any trace filter pair (f, g) is round and Cauchy. It follows
from the symmetry that f fl g is a Cauchy filter. Hence f = g, since round
Cauchy filters in a uniform space are minimal Cauchy. Thus D is supdense.
The statement on Smyth symmetry follows by applying this observation to
the totally bounded reflection.

P roposition 7. Let (X,U) be a quasi-uniform space and let D be a
doubly dense subspace of (X,U). ThenU\D is a uniformity if and only ifU
is a uniformity.

P roof. Assume that IA\D is a uniformity. Note first that by Lemma 2
D is supdense in (X,U). Let B be a base for U\D consisting of symmetric
entourages. The second argument given in the proof of Proposition 6 shows
that T = {\Mt(u*)xT[U)B'-B eB) is a base for U. Since the members of
LI are symmetric, we have shown that U is a uniformity. The converse is
obvious. (Of course, we could also use [4, 811].)

A quasi-uniformity U on a set X is called open symmetric [15] provided
that whenever A and B are T(Z7)-open sets, ASyB if and only if BSyA. Here
bu denotes the quasi-proximity induced by U on X . It is known (and easy
to see) [15, Proposition 4.2] that a quasi-uniformity U on a set X is open
symmetric if and only if, whenever Ais a T{U)-open set, B is a T(£/)-closed
set and U~1(A) QB for some U EIl, there is a V EIl such that V(A) QB.

P roposition s . (a) Let D be a supdense subspace of a quasi-uniform
space (X,H). IfU\D is open symmetric, then IA is open symmetric.

(b) Let D be a T{U)-dense subspace of an open symmetric quasi-uniform
space (X,U). Then (D,U\D) is open symmetric.

P roof, (a) Suppose thatU\D isopen symmetric. Let A be aT(77)-open
subset of X and let B be a T(77)-closed subset of X such that U~I (A) QB for
someUEU. Hence ({7|2>) 1(DfiA) QDA B. Since U\D is open symmetric,
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there is a V EU such that {V\D)(DC\ A) QDnB. Without loss of generality
we assume that V is T(ZY-1 x Z/)-open. Since V fI[(DRA) x (D\ 5)] =
= 0, we have that V n {DDA) x cl*if) (D\ 5)] = 0. Furthermore,
A Qdt(u.)A =clr(w.)(DnA) g clr(W-J)(DCA) and X \B c cl'j-(u)(X\B) =
—ON(U)[{X\ B) fl D] = c\-r(u)(D \ B). Consequently, V(A) CB. Hence U is
open symmetric.

(b) Let A be open in (D,T(U\D)), let B be closed in (D, T{U\D)) and
let U be a T(U~Xx ZV)-open entourage of U such that [U\D)~I(A) QB.
Choose a T(ZY)-open set G of X such that GfID=A. If GRIU(D\ B)
/ 0,then GnDnU{D\B)"0, because D is T (W)-dense in X , and we see
that (U\D)~I{A) 2 B — a contradiction. Thus GDU(D\ B) = 0. Choose
a T(U~I x Z2V)-open entourage W GU such that W2 QU. Then W~I(G) C
QX\W(D\B). Since (X,G) is open symmetric, there exists V Gesuch that
V(G)QX\W{D\B). Thus {V\D){A)QB. We have shown that (D,U\D)
iS open symmetric.

P roposition 9. Let (X,U) be a quasi-uniform space and let D be a
doubly dense subspace of (X,M). Then U\D is Smyth symmetric if and only
iU is Smyth symmetric.

PROOF. Obviously, Smyth symmetry is a hereditary property of quasi-
uniform spaces (cf. [12, Proposition 1.30]). The assertion follows by applying
Proposition 7 to the totally bounded reflection.

We finish this section by exhibiting two further symmetry properties for
which the studied question has a negative answer.

Example 6. A quasi-uniform space (X,U) is said to be small-set sym-
metric [15] provided that for each U EIl and each T(U)-open set A we have
that clt (U)AQ U(A) [15, Lemma 3.1(c)], It is known that a quasi-uniform
space (X,IL) is small-set symmetric if and only if its conjugate (X,U~I)
is point-symmetric [20, Lemma 4]. In particular, small-set symmetry is a
hereditary property.

Arguing as in Example 1(a) we see that if (X, V) is a non-discrete T3-
space equipped with its Pervin quasi-uniformity, then the space (X,"P~1) is
not small-set symmetric, although it contains the supdense small-set sym-
metric subspace (X,V~1).

A quasi-uniform space (X, U) is called equinormal [12, p. 37] provided
that for each T(ZY)-closed subset F of X and each T{U)-open set G of X
containing F there is a I7EU such that U(F) QG. Note that uniform spaces
need not be equinormal.

Example 7. Let X be a normal topological T2-space whose Hewitt
realcompactification is not normal (e.g. take for X the E-product in RP1

with base point 0; see [2]). Consider the completion (X,C{X)) of the uniform
space (X,C(X)) where C(X) is the uniformity on X initial with respect to the
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family of all continuous real-valued functions on X (see [11, Example 8.1.19
and Example 8.3.19]). Then (X, T(C(X))) is the Hewitt realcompactification

of X. Since (X,T(C(X))) is not normal, the uniformity C(X) cannot be
equinormal. However, since X is normal, it is obvious by Urysohn’s Lemma
that the T(C(X))-dense subspace (X,C(X)) of (X,C(X)) is equinormal.

On the other hand, let X be a non-normal Tychonoffspace and let C*(X)
be the uniformity initial with respect to the family of all continuous bounded
real-valued functions on X [11, Example 8.1.19]. Since T(C*(X)) is compact
[11, Example 8.3.18], the completion (X,C*(X)) of (X,C*(X)) is equinormal,
although C*(X) is not equinormal, because X is not normal.

It seems worthwhile, however, to point out that for the property of
equinormality our problem has a positive solution in an important special
case.

P roposition 10. A normal quasi-uniform space (X,U) with a supdense
equinormal subspace D is equinormal.

proor. Letri and »» be disjoint T(Z7)-closed subsets of x . Because
(X,M) is normal, there are T{U)-open sets G\ and G2 of X such that Pi C G\,
F2QG2 and c\T*"G \ fl cl&(")G2—0- Since (D,U\D) is equinormal, there
exists H eU such that Hs((c\p"G\) fID) T ((cIr"G~) flD) —0. Thus
H iy £l P2 QH{c\p(n»)Gi) fi c\J(U)G2 ~ H(cixiw ji~i fl D)) fl cl7'(*)(G12 n
HD) CH2(Gir)D)nH~1(G2r\D) = 0. We have shown that (X,I1) is equinor-
mal.

5. Miscellaneous results

We conclude this paper by considering the properties of transitivity,
quietness and stability. Let us recall that a quasi-uniform space (X,U) is
called transitive [12, p. 27] if it has a base consisting of transitive entourages.

P roposition 11. Let D be asupdense subspace of a quasi-uniform space
(X,U). Then (D,U\D) is transitive if and only if (X,U) is transitive.

P roof. The nontrivial part of the assertion is a consequence of [4, 811]
and [5, Theorem 3.14].

A quasi-uniform space (X,U) is said to be quiet [8] provided that for
each U €U there isa V € U such that whenever (T ,Q) —0and x and y are
points of X such that V(x) 6 Qand V~1(y) GT , then (x,y) £ U. Note that
quietness is a hereditary property of quasi-uniform spaces.

P roposition 12. Let D be a supdense subspace of a quasi-uniform space
(X,U). Then (D,M\D) is quiet if and only if (X,G) is quiet.

P roof. The statement is a consequence of [t , 2.2] and [4, 11.2].
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Let us mention in connection with Proposition 12 that Lemma 1 (see
Section 1) can be strengthened in the case of doubly uniformly regular quasi-
uniformities. (A quasi-uniformity U is called doubly uniformly regular [6] if
both U and U~I are uniformly regular. It is well known that quiet quasi-
uniformities are doubly uniformly regular.)

Lemma 3. Let U and V be doubly uniformly regular quasi-uniformities
on a set X such that T{U) = T(V) and T(U~I)= T(V-1). If U\D —V|D
where D is doubly dense in (X,U), then U= V.

P roof. See [6, Lemma 2.5].

Using the results of [6] the reader will readily verify that if D is doubly
dense in a doubly uniformly regular quasi-uniform space (X,U), then (X,H)
is quiet whenever the subspace (D,U\D) is quiet, and the quasi-uniformities
U and U\D have the same weight. In fact, whenever B is a base for U\D,
then the sets X ON(U)"*2-B\ x B2 QB} where B £ B form a
base for U.

Afilter Jo n a quasi-uniform space (X,U) is called stable if for any U £U
there is an F £T such that FQ U(F') whenever F' £T . The space {X,U)
is called stable [10] if every D-Cauchy filter on it is a stable filter.

P roposition 13. A quasi-uniform space (X,U) is stable if and only if
it has a supdense stable subspace.

Proof. One easily checks that each subspace of a stable quasi-uniform
space is stable [21, Corollary 4(a)]. For the converse assume that (D,U\D)
is a supdense stable subspace of (X,Il). Let Q be a D-Cauchy filter on
(X,Id) and let (D be the filter on D generated by {GGD:G £ T(H)D
DQ}. According to the proof of Proposition 2, @is a D-Cauchy filter on
{D,U\D). Let UEU. Choose W £U such that W3 QU. Since (D,It\D) is
stable, there is G £ T{U) fit/ such that GO D Q (W\D)(G') whenever G' £
£Q. Let EEG Then W(E) fID £ @ Hence we have G ” clt u*G =
= ONU G fID) Qc\t ic"W(W{E)) QW3(E) Q U(E). Consequently Gis
stable in (X,U) and thus (X,U) is stable.

The referee observes that it is not possible to generalize Proposition 13
like the results on convergence completeness (in the remark following the
proof of Proposition 1), since in [7, Example 8.5] Deak constructs a doubly
stable quasi-uniformity such that its D-completion (in the sense of [10]) is
not stable, although it is doubly strict.

Problem. Find a (categorical ?) characterization of those quasi-uni-
form properties O such that each quasi-uniform space containing a supdense
subspace with property O has property O.

We would like to thank the referee for his helpful comments.
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IN THE MAX-SEMIGROUP OF PROBABILITY DISTRIBUTIONS
OVER THE PLANE THERE IS NO KHINCHINE-TYPE
DECOMPOSITION THEOREM

A. ZEMPLENI1

Abstract

We consider the multiplicative semigroup of probability distribution functions on R2,
which corresponds to the coordinatewise maximum of Revalued independent random vec-
tors. Irreducible and anti-irreducible distributions with given marginals are constructed.
These turn out to be the random vectors with minimal and maximal correlations, respec-
tively. For a class of distribution functions with independent components over separate
rectangles the nonexistence of a decomposition into irreducibles and an anti-irreducible is
proved.

1. Introduction

Let the multiplication of distribution functions (d.f.’s) F and G over R2
be defined as
F oG{x) = F(x) mG(x) .

The d.f. F mG is the d.f. of the coordinatewise maximum of independent
random vectors with d.f. F and G. We denote this semigroup by D(R2,V),
emphasizing that it can be considered as the convolution semigroup defined
over the maximum-semigroup (R2,V) of R2 (we use the notations V, A for
the coordinatewise maximum and minimum of vectors in R2, respectively).
All d.f.’s are assumed to be right-continuous. Furnishing D(R2,V) with
the weak topology we get a commutative semigroup which has been widely
investigated. Balkema and Resnick [1] characterized the infinitely divisible
distributions in this semigroup, de Haan [3] gave a representation for max-
stable distributions via point processes. The most important field for its
application is in the multivariate extreme-value theory.

Decompositions of d.f.’s were first investigated in case of the usual con-
volution semigroup of d.f.’s over the real line. Khinchine (see e.g. [4]) proved
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the following theorem. (The precise definitions of the notions we use will be
given in Section 2.

T heorem 1. Any d.f. F can be decomposed into the form

a) F=n-G,.if

t=i
where the d.fs G, are irreducible, H is anti-irreducible, ’>£ NU{oo} and the
limit of an infinite convolution product is meant in the weak topology.

Meanwhile several generalizations of this theorem were proved. One
interesting direction is to prove decomposition theorems for general com-
mutative semigroups. The work of Davidson and Kendall [2] on Delphic
semigroups and the recent monograph of Ruzsa and Székely [7] on Hun
and Hungarian semigroups are the most important works in this direction.
These theories imply the existence of decomposition theorems for several
semigroups of probability measures. As an example we present the following
theorem (Zempléni, [11]).

T heorem 2. Let S be a commutative, Hausdorff topological semigroup
such that

(i) there exists a unit element u in S;

(if) S is associate-free (there are no elements s,t £5: s”t: s\t,t\ s);

(iii) Ts={te S :t\s} (the set of divisors of s) is compact for every s£ S ;

(iv) to every s£ S and open set U with U D Ts there exists an open
neighbourhood V of s such that y£V, x|y implies x £ U.

(Conditions (i) to (iii) characterize the so-called Hun semigroups while
(iv) is the stability property.) Then D(S) is Hun again, thus by the results
of RUzsa and Székely [7] there is an analogous decomposition to (1) in D(S).

Theorem 2 is applicable to (Rij., V), thus we have decomposition theorem
in D(R+,V) (the maximum-semigroup of bivariate distribution functions,
corresponding to nonnegative random vectors). Unfortunately neither (i)
nor (iii) holds for (R2,V).

In Section 3 we give a negative answer to the problem posed in Zempléni
[91 whether despite the unapplicability of the general theory, Theorem 1
remains valid for D(R2,V). The construction is based on results of Sec-
tion 2. These results are interesting on their own, since here irreducible
and anti-irreducible d.f.’s in Z?(R2,V) and D(RIj_, V) with given margins are
constructed.

2. Arithmetical properties and correlation

Now we give the precise definitions of the notions we use in the sequel.
(*, V) can denote any subsemigroup of (R2,V).
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Definition 1. Fe D(*V) is called irreducible (F £ Irr (D(*, V))), if
F=G Hfor G,HeD{*,V) implies G=F or H=F.

Definition 2. FeD(*,V) is called anti-irreducible (F £ Air (D(*, V))),
if F is not irreducible and F =G H for G, H £ D(*, V) with an H irreducible
d.f. implies G = F.

(F is anti-irreducible if a decomposition with an irreducible term is not
effective in the sense that F appears as remainder term, too.)

Definition 3. F £ D(*, V) is called infinitely divisible (F £ /(E>(*, V))),
if for every ngN 3Fn £ D(*, V) such that F = (Fn)n.

The notions in Definitions 1 and 2 coincide with the classes “effective
irreducible”, “effective anti-irreducible” in Rlzsa and Székely [7] but we do
not use different classes, thus we omit the adjective.

Throughout the paper we identify D(R2,V) with its homeomorphic im-
age D(R+,V) under

+R2—>R+

y) = (exp(-x), exp(-y))
D(R2,V) corresponds to the d.f.’s of strictly positive random vectors. The
following remarks are obvious.

Remark 1. FEL(D(R2V)) (where L is any of the classes introduced
in the definitions above) if and only if its image <>F) £ 7(.D(R+, V)).

Remark 2. IFFED(R”, V) isin Irr(D(R2,V)) then F£ Irr (D(R",V)).

Thus we can concentrate on D(R+,V) and its subsemigroup D(R2,V).
The irreducible d.f.’s in these semigroups were investigated in Zempléni [9],
the characterization of Air (D(R*_, V)) can be found in Zempléni [10]. We

cite this result since we need it to our construction of anti-irreducible distri-
butions.

Theorem 3. F £ Air(D(R".,V)) if and only if

supp (F) = {(*(*), y(1)) :t£1},

where | =[0,1] or I —[0,1), x and y are nondecreasing functions such that
if exactly one of its components is constant over the interval [0, e) then the
constant is zero.

Corollary 1. Iffor FE D{R+,V) the conditions of Theorem 3 hold,
then F£ Air (D(R"_, V)), too.

Proof. It is easily seen that F £ 7(D(R2,V)) (since such an F is es-
sentially a real d.f. and any F £ D(R, V) is infinitely divisible; F £ D(R”", V)
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implies F1/neD{R*,v)) thus F £ Irr(D(R2.,V)). From this point on the

proof of Theorem 3 in [10] can be repeated. O
Let us introduce the following notations: for a rectangle T —[a 6] x
X[c,d] in R+ let S~ = [0, a] x[c, d] and = [a, b] %[O, c] denote two related

rectangles to the left and below the original one, respectively. (By writing
rectangles, we always mean parallel ones to the coordinate axes.)

To the proof of our main result we need the following lemma, which is a
slightly modified version of Theorem 2.1 in Zempléni [9]. Its proofis identical
to the original one (the difference in its formulation is caused by the fact that
now noneffective decompositions of irreducible distributions are allowed, see
Remark 1 in [9]).

Lemma 1. Suppose that to FED (R”_,V) one can construct a sequence
of rectangles Tn (n £ 1, where | denotes N or Z) with the following properties:

() Tn and Tn+l have exactly two common vertices for all n where n,
nNT 1£1/

(i) Pp(Tn)=0 (Pp denotes the distribution corresponding to F) while
Pf{Su >0fori—1,2 and for allnfl;

(iii) supp (F) C U Sn” for eitherj=1orj —2.
tel

(See Fig. 1.) Then Fe Irr (D(Rf, V)).

Fig. 1. An example for irreducible d.f. (I=N, j=2)

One needs an infinite sequence of rectangles in Lemma 1 because of (iii).
It is possible to prove an analogous lemma for finite number of rectangles,
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but it would be not enough simply weaken (iii) by supp (F) C 1J. UI*Sn .
j—t«e
See the class of almost independent d.f.’s in Section 3 as a counterexample.
Definition 4. We call the real d.f.’s F\,F2 left-coincident, if for x, =
= min(suppF,) we have F\(xi) = |R2(x2) and cross-coincident if with y; =
= sup (suppFi) Fi(x1) =1- F2(y2) and F2(x2) = 1- -Fi(j/i).
Obviously continuous d.f.’s are always both left- and cross-coincident.
Now we are in position to present the main result of this Section.

Corollary 2. Let F\ and F2 be real d.f.s with
)] F1(0) = F2(0) = 0.

(@ If I\ and F2 are left-coincident, then there exists an F&T £
£ Air V)) D Air (D(R+, V)) with marginals F\ and Fz;

(b) if Fi and F2 are cross-coincident, and there exist neighbourhoods
SXI and Sy2 of Xi and j/2 such that Fi and R are continuous in SX and
Sy2, respectively (or an analogous condition holds for x2 and y\) then one

can construct an 3Firr £ Irr (D(R”.,, V)) D Irr (D(R”_, V)) with marginals F\
and F2.

Especially
(3) Fair {x,y) = Fi (x) AF2{y)
and
(4) Firr(x, y) =| Fi(x) + F2(j/) - 11+

is a suitable choice.

By the results of Hoeffding [5] we have that (if Fi and F2 have finite
variances) (3) and (4) are the d.f.’s with maximal and minimal correlations
among those with margins Fi and F2. The irreducible and anti-irreducible
d.f.’s with given marginals are not unique in general.

Proof, () By Corollary 1 it is enough to prove that for Fafr the
conditions of Theorem 3 hold. Fair £ _D(R" , V) immediately follows from (2).

supp (FaiT) = {(f\ 1(i), 2 1(*)): € [0.1]}

where F~x(y) = inf{x :F(x) >y} (see Whitt [8]). F~( are obviously mono-
tonic functions. Ff1(t) =c for i£[0,e] implies iri(xi) = e but then by the
left-coincidence we have F2(x2) =e, too ensuring that neither component of
the reparametrized version can start as constant.
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(b) In this case

supp (Fair) = {(Ffl(t),Ffl(z-<)):<€ [0,113.

It is a graph ofa monotonically decreasing function. By the cross-coincidence
and our condition it is continuous in a neighbourhood of one of its ends. This
implies that one can construct such sequence of rectangles above supp (F)
as required in Lemma 1 (see Figure 1) which ensures that F@ is irreducibIeE.I

3. A class of nondecomposable distribution functions in F(R+, V)

Definition 5. Let F € Z?(R+, v) be called almost independent if

(i) there are rectangles T\ —|0, a] x [&, 62] and T2 = [al7a2] X[0, 6] where
(0O<a<ai<a20<b<bx< b2)suchthat supp (F) —TiUT2. (Let us denote
[0, a] x [0,6] by T) AT2);

(ii) there exist real d.f.’s (i, = 1,2) such that F \T,(x,y) —
=Pi *F~(x) ®E"iy) for i = 1,2 where pi —Pf (T{) (thus F”* is concentrated
to Tt);

(iii) min{ supp (Fj1V} = min{ supp (F*2Y} = 0.
(Le. F has independent coordinates separately both on T\ and T2]P\+p2=1
by 0)-)

T heorem 4. Let F be continuous and almost independent. Then

(1) Its decomposition in £)(R*_V) has the form

[e]e}

() F=(pl-FR)+p2-F2)f]GC J,

where supp (Gj) CFj AT2.
(2) F has no decomposition of the form

U
F=Y[G]jH,
i—
where G3 G Irr {D{R2JV)), H e Air {D{R%,V).

Proof. We start with (1). First we show that the d.f. F is neither
irreducible nor anti-irreducible even in F(R™_, V). Let G be a d.f. such that

(6) supp (G) =TiAT2
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with marginals = yj/N(x) and GM2\y) = yIJ~FMy)- It is easy to
check that G\F and F/G is continuous, almost independent d.f. again: T\,
T2 are the same as for F and the marginals are

) iJEFiL 0§, Fj2), y [if\

respectively. By the continuity of F~ and F * Corollary 2 can be applied
ensuring the existence of an irreducible G \F. We can continue the process
of decomposition and finally as n->00 we get the decomposition (5) since

>1 as a —»0. Finally we show that (5) is a Khinchine-type decom-
position, which is done by showing that H = (pi =~ + (1- p\) mFj2Y is in
Irr (D(R+, V)). By the straightforward equality

supp (F ®G) = supp (F) Vsupp (G)

(Lemma 3 in [9]) we have that in a decomposition H = H\ ®H2 where H\ + &
(the degenerate d.f. in 0) supp (Hi) fl {(x,0): x>0} 0. Thus supp (H2)fl
~1{(0,2/) ; 2/> 0} = 0 which implies supp (H\) o {(0,y): <y<Db2}and hence
H2 —ge

(2) Let

8 F=F G

be an arbitrary decomposition of F in Z?(R*, V). By Lemma 3 in [9] again
we have that in decomposition (8) one of the components is concentrated to
T\ AT2, let this be G. It follows from condition (iii) of Definition 5 that G
has to be continuous, thus F' is continuous as well. Let (x,y) GT\.

F(x, y)=pi- F[X\x) w=?\y) = F'(x,y) *Gi(x),

where G\ is the first marginal of G. Thus

(9) F'(x,y)

Ww)

and an analogous decomposition to (9) holds over T2 as well. By these
decompositions of F' it is easy to check that it is almost independent;

(10) F'P=F", F'id=Ff2).

By Part 1ofthis Theorem we get that F has irreducible components, thus
it is not anti-irreducible, meaning that the Khintchine-type decomposition
procedure can be started. F' is almost independent, thus it is not irreducible
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(see Part 1again), so G has to be irreducible. But F' is not anti-irreducible
either, so the procedure can be continued. As nothing was assumed about the
properties of G £ D{R2,V) in decomposition (8), the almost independence

and (10) follows for a general decomposition F = F' m 1G{. Thus there is no
t=
way of completing the sequence of decompositions, proving our assertion.
It is worth to mention that the only chance of finishing the procedure

would be by achieving = F'M =60 as it was done in (5) but F —
= (pi + P2 +F ™) does not belong to D{R2,V). O

The unusual lack of Khinchine-type decomposition and the fact that
A>r(F(RMV))EJ(F>(RMN,V))

(see Zempléni [12]) shows that this semigroup has surprising properties de-
spite its relative simplicity. This gives one more reason to consider its com-

pactification D{R”",V) instead, as it is done in some related works, for ex-
ample in Pancheva [6].

Acknowledgement. The paper was written while the author held a
fellowship of the Royal Society visiting the Department of Probability and
Statistics at the University of Sheffield.
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EINE EXTREMALEIGENSCHAFT DES REGULAREN MOSAIKS
{p.4} IN DER HYPERBOLISCHEN EBENE UND
IHRE VERALLGEMEINERUNG FUR DIE MOSAIKE {p,2k}

A. ILLES und I. VERMES

Herrn Professor LaszI6 Fejes Toth zum 80. Geburtstag gewidmet

Es wird in dieser Arbeit die Parkettierungsmaoglichkeit der hyperbolischen
Ebene durch kongruente rechtwinklige p-Ecke (p >5) gezeigt (Lemma 1) und
eine Extremalaufgabe fir diese Vielecke gelést (Lemma 2). Daraus folgt
unser Ergebnis Uber die Extremaleigenschaft der Mosaikklasse {p, 4}.

Betrachte man ein p-Eck, dessen benachbartete Seiten sich rechtwinklig
schneiden, und sei es kurz Recht-p-Eck genannt. Zum Beispiel ist es leicht
zu sehen, daRB ein Recht-p-Eck fir p = 5 durch die Seitenlangen zweier nicht-
benachbarteten Seiten von ihm eindeutig bestimmt werden kann. Fir p> 5
kdnnen immer Recht-p-Ecke durch geeigneten Seitenstrecken bestimmt wer-
den. Es hat noch keine regulére Eigenschaften, aber ist es streng konvex, mit
dem konstanten Flacheninhalt Betrachte man einen willkirlichen
inneren Punkt P eines Recht-p-Eckes A\ .. ,Ap. Wir fallen von P aus das
Lot PT, zur Seite AIAI+i (i—1,2,... ,p und Ap+l:=Ai). Die FuBpunkte
T, sind die innere Punkte von A, AlH, und der Kreis um P mit dem Radius
r := min{PTt} ist ein Inkreis des Recht-p-Eckes, folglich hat es zu jedem
inneren Punkt einen Inkreis mit geeigneten Radien.

Lemma 1. Falls ein willkiirliches Recht-p-Eck (p>5) in der hyperboli-
schen Ebene gegeben ist, so gibt es eine Parkettierung der Ebene, deren
Elemente die kongruenten Exemplare dieses Recht-p-Eckes sind.

Beweis. Betrachte man das Recht-p-Eck A\...AP (p>25), und seine
Ecke A{. Spiegelt man es an die Seite bzw. A,A;+i, so erhélt
man die Spiegelbilder A\ ... Ap bzw. A" ... Ap. Eine weitere Spiegelung an
die Seite A(A(+1 bzw. A"A" j dasselbe Exemplar des Recht-p-Eckes ergibt.
Damit ist die Ecke A, luckenlos umgelegt. Auf derselben Weise konnen die
anderen Ecken durch die Spiegelbilder an die geeigneten Seiten liickenlos
umgelegt werden. Diese gespiegelten Exemplare bilden einen Gurtel um das
vorgegebene Recht-p-Eck. Auf Grund des Alexandrow-Poincaréschen Satzes
(vgl. Z. Lucic und E. Molnar [2] und [3]) kann die ganze Ebene durch die kon-
gruenten Exemplare des betrachteten Recht-p-Eckes parkettiert werden. O
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Die Extremalaufgabe beziglich des Recht-p-Eckes ist das folgende

Lemma 2. Es sei ein Recht-p-Eck (p”™ 5) gegeben, das einen Inkreis
K(P,r) (mit dem Mittelpunkt P und mit dem Radius r) hat. Das Recht-p-
Eck kann so umgeformt werden, dal es auch ein Recht-p-Eck —also mit kon-
stantem Flacheninhalt — wird, dessen Seite einen Kreis K (P, g) beruhren.
Das umgeformte Recht-p-Eck ist regular, wobei g ~r ist und folglich soll g
der maximale Halbmesser von Inkreisen der Recht-p-Ecke sein.

Beweis. Betrachte man ein Recht-p-Eck A\..,APund die geféllten Lote
PTi, wobei PTi auf A,A{+i senkrecht stehen, und Ti die inneren Punkte
von A{Ai+i sind. Diese Lote zerlegen das Recht-p-Eck in die Lambertschen
Vierecke AiTPTi-i (mit T\-\ :—Tp und Ap+l := Ai), deren spitze Winkel
<T,PT,_i :=/3, sind. Bezeichnen ri,r2)... ,rp die Strecken PT\, PT?,...,
PTp (Abb. 1). Das Viereck A, T,PT,_i vom Winkel Ri kann durch ein Lam-
bertsches Viereck AiT-PT'_1 mit demselben Spitzwinkel /?, — also mit kon-
stantem Flacheninhalt — so ersetzt werden, dalk es an die Winkelhalbierende
PA\ symmetrisch wird (PT[_I = PT' =r[). Dazu soll man beweisen, dal
rf~ min(r,, r-_i) auf Grund r-”~ r immer besteht. Wir kdnnen r,-_i > r,
voraussetzen. In diesem Fall schneidet die Winkelhalbierende von Ri die
Strecke A{Ti in einem Punkt D, denn das Spiegelbild T von T an die Winkel-
halbierende wird ein innerer Punkt von PT,_i = rt_i. Ebenso folgt, dal
<TiDT 26>]| =<T,_iAT, ist, dal das Dreieck PA[T mdas Dreieck PDTi
enthalt, und daB die Ungleichungen r,- i > r[ > r, gelten. Die Gleichheit in
re® min(rt,r*_i) kann nur im Falle bestehen, falls das Viereck A,r,PT, i
schon symmetrisch ist. Fir alle vorkommende Vierecke kénnen solche Um-
formungen konstruiert werden, und die Ungleichungen r[ >min(r,-, r,_i) fir
*=1,... ,p sich ergeben. Fur die Dreiecke P A\Tmkann man aufschreiben:

;I-\ i ﬁ: n
p(h ch kSIH 5= Cos
Daraus folgt, da die Funktion Bi» >ri{fi) in Bi streng abnehmend ist.
Dem Makarowschen Lemma gemaR (vgl. [1] 87. 16 und [4]) existiert genau

v
ein g, wobei zu jedem Ri ein B[ entspricht so, daR _lel Ri = besteht, und
1=

g >r :=min{r} ist. Falls g <r wére, so bestdande /?, < B[ wegen (1) fir
p p
alle ie {1,... ,p), was aber den Voraussetzungen Yh Ri —2"=Y Ri wider-

spricht. Damit ist es gezeigt, dalR ein Recht-p-Eck existiert, dessen Seite
einen Kreis K{P, g) bertuhren. Daraus folgt unmittelbar, daf es ein reguléres
Recht-p-Eck ist. Weiter ist g der maximale Halbmesser der Inkreisen fir alle
Recht-p-Ecke. Wenn aber ein Inkreis vom Radius g' > g ware, so wére ein
anderes reguldres Recht-p-Eck von einem groReren Inkreis, was aber wegen
des konstanten Flacheninhalt unmdglich ist. O
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Anmerkung. Das Lemma 2 gilt auch in dem Falle, wenn einige Winkel
von aj,... ,ap bei den Eckpunkten ,A P vorgegeben sind, wobei das

p
p-Eck konvex ist und o ai < (p~ 2)w besteht. Naturlich soll man hier ér-
ré

setzlich voraussetzen, daR die FulRpunkte T, zu A, At+l gehoren. Daraus folgt
die Existenz eines Tangentvieleckes um K (P, g) mit gleichen Winkeln aufRer
den vorgegebenen. Der Beweis geht ganz &hnlich, wie vorher.

Die Extremaleigenschaft der Mosaikklasse {p, 4}: Die Parkettierung der
hyperbolischen Ebene durch reguldre (und folglich kongruente) Recht-p-Ecke
ist dadurch charakterisiert, dal sie unter den Parkettierungen durch Recht-
p-Ecke das grofte Inkreisradius hat. Diese Behauptung ist ein unmittelbarer
Korollar unser beiden Lemma. Die Abbildung 2 zeigt einen Teil des Mosaiks
{5,4} im Poincaréschen Kreismodell.

Verallgemeinerung. Die Parkettierungsmoglichkeit der hyperboli-
schen Ebene durch kongruente gleichwinklige p-Ecke des Winkels |
(k >2) ist auf &hnlicher Weise beweisbar, wie das Lemma 1. Diese Vielecke
sind streng konvex und das Lemma 2 gilt auch fir solche Vielecke. Fur die
gleichwinklige Vielecke gilt die folgende Ungleichung

(p—2)7T>pZ—r oW,

Daraus folgt zum Beispiel, daB k=2 und p > 5 k—3 und p > 4 bzw.
k >4 und p> 3 bestehen. Die gleichwinkligen Dreiecke sind regulédre Drei-
ecke, aber die gleichwinklige vier-, funf-, ... ,p-Ecke sind im allgemeinen
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nicht-regulare Vielecke. Das groRte Inkreisradius charakterisiert das reguldre
Mosaik {p, 2k} fur k >3 und p >4.

Ganz besonderen Dank sind wir Herrn Prof. E. Molnér fur seine wertvol-
len Bemerkungen beim Lesen des Manuskriptes dieser Arbeit verpflichtet.
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A NON-INTERACTION MODEL OF COMPLEMENT-MEDIATED
LYSIS DIRECTED AGAINST TWO POPULATIONS
OF SENSITIZED ERYTHROCYTES

T. BAKACS, K. BOGNAR and G. TUSNADY

Introduction

The complement system, a set of proteins, defends the host from poten-
tially dangerous microorganisms or other antigens by eliminating them from
the blood and tissues. This is done either by the complement components
alone or in collaboration with antibodies and/or cells [7]. The complement
system is activated either by antibodies which acquire complement fixing
properties as a consequence of their interaction with antigens (the classical
activation pathway, [11]), or in the absence of antibodies by the surface of
certain microorganisms (the alternative activation pathway, [4]). Although
its exact mechanism is not completely understood, the function of the com-
plement is exerted through a large protein complex termed the membrane
attack complex (MAC) which has the ability to form a hole in surface mem-
branes, thus lyse microorganisms and cells [3], [5]. In contrast to antibodies
whose binding to antigens is strictly specific, complement can bind to vari-
ous antibodies [9]. The binding of Clq, the first complement component, to
antibody sensitized target cells activates a cascade process which is indepen-
dent from the sensitizing antibody [7]. Since lysis of a cell by complement
does not necessarily depend on activation of the system on the surface of
that same cell [6] interactions between competing targets by using a com-
mon pool of activated molecules can be envisaged. We have earlier observed
that in some combinations of antibodies interaction-like phenomena could
indeed occur [2]. The purpose of the present paper is, therefore, to investi-
gate the classical activation pathway of complement under condition when
lysis is directed against two different populations of sensitized targets. Our
central question was to confirm or reject the presence of genuine interactions
between the lytic processes of the competing populations of erythrocytes by
using a mathematical model.
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Human blood group A and B erythrocytes sensitized by anti-A and an-
ti-B IgM monoclonal antibodies (mabs) were mixed (either the A or the B
cells were labelled in the mixture by 5lchromium) and incubated with human
serum (the source of complement) in the so called cold target competition
assay where labelled and non-labelled erythrocytes (target and competitor
respectively) competed for the complement [2], The relative lysis was de-
termined from the released isotope with a measurement error of size 5%.
Three concentrations of target and competitor erythrocytes were used (24,
48 and 72*106/ml). Since the fluid-phase concentrations of anti-A and anti-
B mabs (BRIC.131 and BRIC.30, obtained from P. Judson, South Western
Regional Transfusion Centre, Bristol, U.K.) were found to be 195 and 110
/ig/m1 respectively, similar sensitization conditions were provided by using
the anti-A mab in 1/256, 1/512 and 1/1024, the anti-B in 1/128, 1/256 and
1/512 dilutions. (Under the experimental conditions used in the absence
of sensitizing antibodies no lysis was detected, combinations without mabs
therefore were not carried out.) Three dilutions of complement were em-
ployed (1/12, 1/20 and 1/28) and the assays were incubated for 0.33, 0.66
and 1.33 hours. Multiplying the number of possibilities we can see that 1215
individual measurements can be done, these were all carried out.

We have eight variables with the following measurement units:

Ta,Tb target A and B in units of 1*106/ml,
E the effector (complement) in units of 100 times dilution,
Aa, Ab anti-A and anti-B mabs, in units of 1000 times dilution
on 50 * 106 target/ml,
t time in hours,
Ta,Tb the relative lysis of target A and B
(this quantity is a ratio, and does not need a unit).

The dynamics of competitive lysis, employing heterogeneous targets

At the beginning of our investigation of experimental results we were
trying to decide if any form of interactions was present. After a while we
realized that we have no usable general concept of non-interacting processes.
In the particular model that we are using there is a natural way to define
the lack of interaction, as it will be described below.

Let us suppose that the dynamics of the process for one target can be
described by a pair of equations

E'=f{E,T),
T =g(E,T)

with functions /a, 5a for target A and /b, 50 f°r target B, i.e. for target A
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the equations
E'=f\{E,Tx),
Ta —9a{E, Ta)
hold true, and for target B the equations
E'=fB(E,TB),
Tb —ob{E, Th)
hold true (E' and T' denote derivatives with respect to time t). How to
apply these dynamics for a competing situation?
Let us imagine that at a given moment t the total amount E of effector

present in the process is cut into two parts: one is going to act on target A,
denoted by Ea, and the other part EB is going to act on target B. Then

E=Ea+Eb,

and the ratio Ea :EB may depend on the present value of all factors.

Our basic assumption is the following. The part e . of effector attacking
target A behaves as if all target in the process were type A. Since the dy-
namics is not linear, we have to blow up everything to the size E with the
enlarging factor E/Ea- By doing so we figure out how much effector and
target would be eliminated in the process in a short time period At. The
hypothetical reaction with target TA= Ta *E/Ea and effector E has the
infinitesimal quantities

aex =la(e,t;)ar,

AT'A=gA(E, T-A)At,
and similarly

AEZ =fB(E,TE)At,

ATE =gB(E,TZ)At,

where TE = TB*E/EB. These quantities would be measurable only in a
virtual, artificially separated world. In the real process we have to recalibrate
the infinitesimal quantities for real sizes:

AEa- (Ea/E)AEX, aTa= (Ea/E)AT>a,
AEb= (Eb/E)AEb, ATb= {Eb/E)ATaq.
This argument leads to the following system of equations
EA={EA/E)fA(E,ETA/EA),
Ta = (Ea/E)9a(E,ETa/Ea),
and a similar pair of equations holds true for target B:
Eb = (Eb/E)/b(E, ETb/EDb),
T~ = (EB/E)gB(E,ETB/E B)
resulting for E the combined equation
E'=(EA/E)fA(E,eta/ea)+ (EB/E)fB(E, ETB/EB).
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The dynamics of non-competitive lysis, employing homogeneous target

The functions /a, /bi 9a, 9b Will be approximated by a product of four
terms:

- a constant,

- a profile function of effector,

- a profile function of target,

- a profile function of antibody.
The profile functions are normalized in such a way that for some specific
value they are equal to 1. This value for target was To = 300, for effector
Eo —5, for antibody Ao = 500/128 (i.e. for effector it corresponds to 1/20
dilution, for antibody 1/256 dilution on 50* 106/ml).

The individual profile functions are approximated by the function Y (X, a)
determined by the equations

InY (s) = (eas - e-as)/2,

In X (s) = (s/2) + (e —1)/4,
where a is the shape parameter of the family. This family of functions was
chosen because of its flexibility: for a= 0.1 the function Y(x) is similar to

the square root of x, for a= 1 it is a sigmoid, for a=2 it is J-shaped (see
Fig. 1).

Fig. 1. Theoretical profile curves for the values 0.1, 1 and 2 of the shape parameter a

The parameters of the profile curves were fitted together with the param-
eters giving the ratio :Es- This ratio was approximated in the following
way:

IN(Nalee) — o« «i INCAAINB) + 22In(TA/TBR)+
+ k$T\ + k"TB + k$AX + keA™ + Kkjt + k%E
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with estimated values for constants

ko =-2.0202, = OFD k6= 0.3391,
Jy= 5.0404, ka=-0.0117, k2= -6.0358,
k2 — 3.9625, its = -0.3396, [t8= 0.4851.

Here the main terms are fg and k2 resulting in the approximation
(EA/EB) ~const(AA/AB)s(TA/TB)4.

The terms k$ and ka4 give little effect, £5 and ke, however, seem to be impor-
tant, it is remarkable how close they are to each other. The actual value of
constant k2 is seemingly large but the lysis is fast, thus the corresponding
time value is small. The sign of kj means that lysis starts with TA then the
effector turns to TB. The same effect is shown by fog The logarithms of the
estimated shape parameters are given in Table 1, the logarithms of scaling
constants in Table 2, where the logarithm of the main constant is also given.
E.g., hA(E), the profile function part of fA(E,T), has the form

hA(E) = HA(E)/HA(EO),

where Eo =5 and
HA(E) =Y(E/b,a),

where Y (X, a) is the function defined above and
Ina = 0.3437, Inb=1.6761.
The function fA(E,TA) has the form
la(£,Ta)=cpA(AA)hA(E)qA(TA),

Table 1
Logarithms of the estimated shape parameters

Target A Target B
Equation for Equation for Equation for Equation for
effector target effector target
Profile of target -0.4246 0.3962 -0.3618 0.4074
Profile of effector 0.3437 0.1425 0.2990 0.1642

Profile of antibody 0.5234 0.4992 0.5651 0.5036
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Table 2
Logarithms of scaling constants and the main constant

Target A Target B
Equation for Equation for Equation for Equation for

effector target effector target
Profile of target 3.4763 2.1074 3.7303 2.4202
Profile of effector 1.6761 1.5473 2.0123 1.9376
Profile of antibody -5.9654 -3.6355 -1.4201 -1.9494
Main constant 5.2201 8.0014 4.9880 7.8880

500 600

(b)

Fig. 2. Target profile curves (A erythrocytes Fig. 2a, B erythrocytes Fig. 2b)

where Inc = 5.2201 and the form of functions g\ is similar to h& The
profile functions are shown in Figure 2.a,b, 3.a,b, and 4.a,b, respectively.
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The standard error of this model is 8.5% which is somewhat larger than
the 5% measurement error but the individual errors exhibit no pronounced
tendency. Perhaps with more flexible profile functions and regression form
for the effector distribution between E\ and E& the difference could be
eliminated.

©CoOCooC o pRrRrRELE

(b)
18
16
14
12

0.6
0.4
0.2

0.0
1 2 3 4 5 6 7

Virtual concentration of effector

Fig. 3. Effector profile curves (A erythrocytes Fig. 3a, B erythrocytes Fig. 3b).
Labels as in Fig. 2
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(@)

Fig. 4m Antibody profile curves (A erythrocytes Fig. 4a, B erythrocytes Fig 4b).
Labels as in Fig. 2

As we can see, we fitted altogether 37 parameters to 1215 data points.
The experimental data contained the input values Ta, Tb, e , Aa, Ab, + with
outputs Za, Zb- This latter pair was approximated with the pair Ka, Ab
calculated from differential equations. Our system of differential equations
is rather cumbersome (observe that the ratio E\ : Eq depends on time, t00).
There is no hope for having explicit solutions for a system of equations like
this. That is why the equations were integrated numerically by the Runge-
Kutta method, then the sum of squares

(ZA- Aa)2+ (ZB—A'b)2

was minimized by a gradient method. This body of numerical work is close
to be unmanageable with present day computers. All details were balanced
between reliability and feasibility. One may ask of course whether our pa-
rameters or functions can be identified. On the one hand, perhaps under



A NON-INTERACTION MODEL 325

certain conditions one may prove it. On the other hand, we are quite sure
that the same experimental results are approximable with quite different
models.

Discussion

We have shown in this paper that our non-interaction model describes
the cold target competition experiment with a remarkable accuracy (the
error of the model was only slightly larger than the error of the measure-
ments). This result was interpreted to mean that under the conditions used,
no stimulation and/or inhibition between the lysis of the sensitized A and B
erythrocytes could be proven. Furthermore we have demonstrated that using
the formula describing the effector distribution between the sensitized A ad
B cells, the heterogeneous lytic process could be transformed into a sum of
two homologous lytic processes. It is of importance to note, however, that
in the presence of different mabs stimulation and/or inhibition were experi-
mentally demonstrated (data not shown). Calculations using more complex
models with interaction effects had indeed shown that it was possible to fit
those models with similar standard error as in the present paper (manuscript
in preparation).

The profile functions, describing the influence of a single component on
the lytic process, were closely or practically linear (all but one shape pa-
rameters were larger than one). Since these are the corner stones of our
model, it is of importance to note that similar relationships between the
reaction components and lysis using sheep erythrocytes, rabbit antibodies
and guinea pig complement has been previously demonstrated [9]. There
were, however, two exceptions which are worth to consider. Firstly, it was
the departure from linearity of the effector curve in the antibody equation
(Fig. 4b). This suggested that in the presence of the ongoing A cell lysis the
E g fraction of the effector was less efficient than it would have been alone,
i.e. the A cells exerted an inhibitory effect on the lysis of B cells. Secondly,
the profile function of target cells in the effector equation approached a hor-
izontal line (Fig. 2a,b), suggesting that on a per cell basis the complement
worked more efficiently at high than at low target cell concentration. This
phenomenon was interpreted to mean that a relatively low number of tar-
get cells were able to accumulate a higher concentration of complement on
themselves than what was necessary for lysis, while addition of further target
cells to the system resulted in a more ‘economical’ complement distribution,
i.e. more erythrocytes were lysed.

All effector profile functions demonstrated a characteristic lag phase (Fig.
3a,b). It seems, therefore, that there is a threshold value (Et) of the com-
plement under which practically no lysis occurs, above this threshold, lysis
is closely linear in the surplus (E —Et) of effector. A molecular analysis by
Kitamura and Inai [8] of the complement mediated lysis revealed that lysis of
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sensitized sheep erythrocytes, opsonized by CI-8 components of the human
complement (EACI-8hu) proceeded with lag phase in the presence of C9hu.
Their results suggested that in the case of human complement components
Cl-8hu and C9hu haemolysis was a multi-hit process, therefore more than
one molecule of C9hu was necessary to produce a membrane lesion responsi-
ble for haemolysis of EACI-8hu. Takeda et al. [12] confirmed that C9hu step
was indeed a multi-hit process, but found that the whole human complement
serum followed a one-hit process. The lag phase of our effector profile func-
tions suggested, however, that the whole human complement serum followed
a multi-hit process in the case of human blood group A and B erythrocytes
target cells.

The relative concentration of the sensitizing antibodies regulate the lytic
potential of complement by determining its distribution among competing
erythrocytes [1], [2]. A mathematical approximation of this phenomenon can
be expressed by a general function of form

\n(EA/EB) = U(Ta/Th) + V(Aa/Ab)

without any effect of time and effector. Although there is no theoretical
reason to suggest that EA/E B does not depend on E, considering the very
short half life of the activated complement components compared to the
kinetics of the haemolysis, it is reasonable to suggest that this experimental
system is not sufficiently ‘sensitive’ to reveal the kinetic of the complement
distribution between the competing erythrocyte populations. It is important
to note, however, that according to this approximation effector distribution
is proportional to the 5th and 4th power of the ratios of competing antibody
and target cell concentration, respectively, i.e. even a small difference in the
absolute concentrations of the sensitizing antibodies and target cells will
result in a strongly asymmetrical accumulation of complement between the
two populations of sensitized cells. Our results therefore suggest that the
sensitizing antibody is not only a receptor site for the complement but also a
“driving force” which determines its “recruitment” among potential targets.
A detailed discussion of the biological consequences of the presented results
is given in Tusnady et al. [13].
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COVERABLE GRAPHS

S. MILICI1 and ZS. TUZA2

Abstract

We introduce and study the concept of F-coverable graphs. For two graphs F and G,
we say that G is T-coverable if some weights f(H) can be assigned to the subgraphs H

isomorphic to F in G in such away that 0< f(H) < land ~ /(#) = 1holds for every
e£HCG

edge e of G. We concentrate on the case where F is the complete graph on three vertices.

We prove necessary conditions, reduction theorems, and non-existence results concerning

A'3-coverable graphs. Our theorems can be applied in the theory of triple systems with

index A> 1, and further applications are expected in design theory.

1. Introduction

Let F and G be two finite undirected graphs, and let T be the collection
of those subgraphs of G which are isomorphic to F. We say that G is F-

coverable if there is a real function /: T —[0,1] such that H /(-S)=1
eeHer
holds for every edge e of G.

The concept of E-coverable graphs is a common generalization of various
structures much studied in combinatorics. Let us show two examples.

Example 1. If G has an edge decompaosition into subgraphs isomorphic
to F (sometimes this relation is denoted by F \G, ‘F divides G™), then G
has an integer-valued covering function /: T {0,1}.

Example 2. Let S be a triple system of index A>2, i.e., a multiset of
3-element subsets — called blocks — of an n-element set X such that each
pair x,x"'E X is contained in precisely A blocks. The leave graph, G(»S), of
S has vertex set X, with two vertices x,x"' being adjacent if and only if the
pair {x,x'} is contained in blocks of multiplicities less than A Then G has

1991 Mathematics Subject Classification. Primary 05C70, 05B40; Secondary 05B07.
Key words and phrases. Graph, triangle, edge cover, triple system, leave graph.
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a AVcovering, e.g. we can assign m(S)/Ato each block 5 of multiplicity
m(S) <A

Motivated by the second example, in this paper we restrict our attention
to AVcoverings / such that / assigns a value strictly smaller than 1to each
triangle of G. More formally, assuming that G is a graph with edge set E,
we denote by T = T(G) the collection of “triangles” of G, i.e., 3-element edge
sets {e, €', e"} QE forming a complete subgraph K3 on three vertices. A real
function

[ : T —>{0,1]
is called a uniform covering of G if

E /T

for every edge e£ E. A uniform covering / is strict if
f(T) <l foral TeT.

We say that G is coverable if it has a strict uniform covering (i.e., “cov-
erable” is a slightly stronger requirement than “/i 3-coverable”). By covering
we shall always mean a strict uniform covering.

In Section 2 we show how a coverable graph G can be reduced to a smaller
one when some local structures with small vertex degrees occur in G, while
in Section 3 we present necessary conditions for a graph to be coverable.
Those observations are then combined to prove that a coverable graph must
have a relatively large number of edges (Sections 4 and 5). Beside giving
general bounds, we pay considerable attention to coverable graphs having
all degrees even. An application of those results is given in [3].

Although we restrict our investigations to the case F = K3 throughout,
most results of Section 3 can be generalized for F-coverable graphs, for any F.

Notation. Let G= (V, E) be a graph with vertex set V and edge set
E, and let x 6 V be any vertex. We denote by N (x) the set of vertices
adjacent to x (= the set of neighbours of z); by T(x) and r[z] the subgraph
of G induced by N(x) and by iV(z)U{z}, respectively (= the open resp. the
closed neighbourhood of x); by Kpand by Cp the complete graph and the
cycle on p vertices; and d(x) := |A(z)| stands for the degree of x. If H is
any graph, V(H) and E (H) denote the vertex set resp. the edge set of H.
Finally, by definition, the vertices of a triangle T are those of the edges e € T.

Remark 1. As an immediate consequence of the definitions, each edge
e GE of a coverable graph G —(F, E) is contained in at least two triangles
T € 'T{G). In particular, d(x) >3 for every non-isolated vertex x € V, T(z)
has minimum degree at least 2, and ifd(x) = 3then T (i) = Kz and T[z] = K4.
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2. Reductibility

In this section we point out how a coverable graph G = (V, E) can be
reduced to a smaller one when the neighbourhood of a vertex of degree 3, 4,
or 5 satisfies some properties. Those reductions will be referred to as <R3>,
<R4>, and <R5>.

<R3> (Degree-3 reducibility)

If two adjacent vertices x,x' £V have degree 3, then G\.E(r[a;]) is cov-
erable if and only if so is G.

The other two reductions deal with the cases where <R3> cannot be
applied.

<R4> (Degree-4 reducibility)

If a vertex x with d(x) = 4 has two non-adjacent neighbours of degree 3,
then GRE(r[a;]) is coverable if and only if so is G.

<R5> (Degree-5 reducibility)

If a vertex x with d(x) = 5 has two non-adjacent neighbours of degree 3
and at least two neighbours x',x" of degree 5, then G\E(r[x] Urjx']Jur[z"])
is coverable if and only if so is G.

In order to prove the validity of those reductions, we shall need the
following simple observation.

Lemma 2. IfF(x) is an odd cycle (and, in particular, if d(x) —3) then
in every covering f of G, f{T) = 1/2 holds for all triangles T incident to x.

Proof. Let Tj, T2,... ,Tj= To (d= d(x)) be the triangles incident to x,
taken in a cyclic order; i.e., T, and r; (i”j) share an edge if and only if
F—j\ =1 Then T, and Tt+i are the only triangles incident to their common
edge, therefore

f{Ti) + /(T,+1) =1 for 0<i<d.

Taking the sum of these d inequalities divided by two, we obtain

d
EN(T )=dl2.

On the other hand, summing up f~j) +/(T"+i) for 1<j <d/2,

d
X ;/(1m)=(</- d/2
1=2

follows for d odd. We conclude that /(Tj) = 1/2, and similarly /(T)) = 1/2
for all i, by symmetry.
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In the particular case where d(x) =3 the property is implied by the fact
that r (x) is the cycle of length 3. O

FiGEfof <R3>. Ifx and x' are adjacent vertices with d(x) = d(x') = 3,
then N(x) U{x} —N(x") U{x'} and r[x] = K\. Moreover, by Lemma 2, each
triangle T sharing a vertex with (x,x'} has f(T) = 1/2, in every covering /
of G. Hence, the four triangles meeting {x,x'} provide a uniform covering
of T[x] (as each edge of T[x] is contained in precisely two of those triangles).
Consequently, / is a coverings of G ifand only if it is a covering of G\.E(r[x])
and assigns weight 1/2 to each triangle meeting {x,x'}. In particular, there
is a one-to-one correspondence between the coverings of G and those of
G\E(T[x]). O

HGEfof <R4>. Let d(y) =d(y') =3, y,y' € N(x). Then r[y] nr[y'] is
a triangle To and r[r/Jur[i/'] = T[x] (since x has just two neighbours distinct
from y and y').

Each edge of Tois contained in one triangle Ty meeting y and one triangle
Tyi meeting y'. By Lemma 2, f(Ty) =f(Tyi) = 1/2 holds in any covering / of
G, so that the triangles meeting {y,y'} provide a uniform covering of T[X].
Thus, / is a covering on GAT(T[x]) if and only if it can be extended to a
covering of G. O

Hﬂifof <R5>. Let d(x) =5, N(x) ={x', x",y,y", z}, d(x') =d(x") =
=5, d(y) =d(y') =3. Observe first that \N(y) D7V(t/")] = 2. Indeed, N(y)
and N(y') are 3-element subsets of the 4-element set {x, x', X", z}, i.e., they
share at least two vertices. On the other hand, if r[y] fl r[r/'] = To were a
triangle, then the argument described in the proof of <R4> would yield that
G\E (r[r/1 Ur[yl]) is a coverable graph G'. In this G', however, x would have
degree 1, a contradiction.

Let eo be the unique edge in T[j/] fl T[j/']. Since x £ eo, we can assume
without loss of generality that x' ~ eo- Then the six triangles meeting {y,y%
have total weight 1 on €0, as well as on each of the six edges meeting {y,y'},
moreover, they have weight 1/2 on four other edges of T[x], two of them
incident to x, the other two not containing x, as shown in Figure 1. The wavy
lines at each vertex of the figure correspond to the edges covered uniformly
(i.e., with total weight 1) by the triangles considered so far, while a label
1/2 on an edge indicates demand for the total weight of the other triangles
sitting on the edge marked.

So far, three edges are covered at x, and d(x) = 5, therefore the two
edges of weight 1/2 have to induce a triangle T\ with f(T\) = 1/2. This T\
completes the covering at x, and yields demand 1/2 on its third edge incident
to x'. At this point, however, x' can have just one further neighbour z'
(for d(x') =5), with demand 1 on the edge xV. Consequently, x'z' induces
triangles of weight 1/2 with each of the two edges of weight 1/2 incident to x'.
In particular, z is adjacent to eo\{x}, yielding x" ~ eo, eo = xz, d(z) >6.
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Fig. 1

The two triangles containing x'z' complete the covering of the edges
incident to X leaving demand 1/2 on the edges x"z' and zz'. Since d(x") =
=5, it follows that f[x"zz') —1/2, and this triangle completes the covering
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of all edges in r[x] Ur[x']Ur[x"]. (This graph does not have any further
edge, since 2 and z' are the only vertices in the neighbourhood which might
be incident to non-covered edges, but the edge zz' has already been covered).

Hence, we conclude that / covers G if and only if it assigns the weights
given above to the triangles in r[iJur[i'Jur[i"], and its restriction to
G\E(r[x] Ur[x7Ur[x"]) is a covering as well. O

The effects of the above reductions on the degree sequence of G are as
follows.

<R 3> deletes two vertices of degree 3 and decreases the degrees of two
further vertices by 3 (some or both of them may become isolated).

<R 4> deletes two vertices of degree 3 and decreases the degrees of three
further vertices by 4 (at least one of them becomes isolated).

<R5> deletes two vertices of degree 3, deletes three vertices of degree 5,
and decreases the degrees of two further vertices by 3 and 6, respectively
(some or both of them may become isolated).

It is convenient to give a name to graphs which cannot be reduced to
smaller ones by those operations.

Definition. A graph is called irreducible if <R3> cannot be applied in
it. Call a graph strongly irreducible if none of <R3>, <R4>, and <R5> can
be applied in it.

3. Cut and degree constraints

In this section we provide three necessary conditions for a graph to be
coverable. Those properties will be useful in the non-existence proofs later
on.

For X CV, in a graph G = (V,E), denote by N(X) the set of those
vertices of VAX which have a neighbour in X , by e(X) the number of edges
induced by X in G, and by t(X) the number of triangles T 6 T(G) belonging
entirely to X and having at least one vertex of degree 3. For two disjoint
sets X, Y CV, e(X,Y) denotes the number of edges joining X with Y (called
X -Y edges, for short).

<C> (Cut Constraint)
Let G = (V,E) be a coverable graph. If X UY =V and X flY =0, then

e(X,Y) + 3t(X) + 3t(Y) <2e(X) + 2e(Y).

P roof. Every triangle containing an X-Y edge has precisely two X -Y
edges and one edge induced by X or by Y. Thus, the total weight of those
triangles is i.e., their contribution to a covering of the edges con-

tained in X or in Y is exactly f\ —e(@‘Y). Moreover, by Lemma 2, all
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triangles incident to degree-3 vertices must have weight 1/2. Hence, the to-
tal contribution of such triangles contained in X or in Y to the covering is
f2=](t(X) +t(y)). Certainly, the sum f\ -h/2 of weights cannot exceed the
demand e(X) H-e(Y). O

Property <C> gives an upper bound on e{X,Y), the number of edges
joining the partition classes. The following related inequality provides a
lower bound under some assumptions.

<C*> (Dual Cut Constraint)

Let the graphs F, (1 £1i t) be triangle free induced subgraphs of a cover-
able graph G, with e(Fi) edges and with mutually disjoint vertex sets V(.Ft).
If G has e’ edges which meet some F(/,) but are not contained in any V(F,),
then

e*>2e(Fi) + ... + 2e(Ft)-

Proof. The total demand on the edges of the F, is £)e(F,), and each
triangle sharing an edge with some F, has exactly two edges in e*. Thus, in
any covering / of G, the total weight of the e* edges is at least 2 Y le(F,)
(just provided by triangles covering F(Fi) U... UE(Ft)). This sum cannot
exceed their demand e*. O

Recall that adjacent vertices of degree 3 can be eliminated from any
coverable graph G, applying <R3>. One can see that every G can be
transformed to a unique irreducible graph Go in this way.

Definition. The kernel G* of a graph G is the subgraph induced by
the vertices of degree >4 in the (unique) irreducible graph Go obtained from
G by repeated application of <R3>. The 6'-sequence (or reduced degree
sequence) <$%(G) of G is the multiset {6\, ... ,<$}, ft=|V(G*)|, in which each
vertex of G* is represented by its degree in Go-

Remark 3. (i) Since <R3> does not change the degrees modulo 3,
i*(G) is non-empty whenever G has a vertex x with d(x) = 1or 2 (mod 3).

(i) If all degrees are multiples of 3, then S*(G) may or may not be
empty. For instance, if G is the graph with 3k + 1 vertices composed from
edge-disjoint AYs sharing one vertex, then Gg—G* —0, <G*G) = 0, while
(A7\A 4)o= A7\A 4, (A'7\A 4)*= A's, i *(A'7\A'4) = {6,6,6}.

(iii) The ~’-sequence may be non-empty even if G is decomposable into
AYs, e.g. i*(AY) = {12,... 12}.

<D> (Degree Constraint)
If6*(G) = {Y ... ,it} 70 in a coverable graph G, then

- max 6;
> + 1.

Moreover, a vertex of degree § in Go has degree at least S,/2 in G*.
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P roof. Since every vertex of G* can have at most k - 1 neighbours in
G*, the lower bound on k is a consequence of the second part of the assertion.
To prove the latter, let x £ V(G*) be a vertex of degree d in Go, adjacent
to t vertices vx, ... ,vt of F(Go)\F(G*) and hence having d -t neighbours
in G*. Note first that each Vi has degree 3 by definition. Moreover, since Go
is irreducible, any triangle containing an edge xv{ has its third vertex in G*.
Thus, the total weight t of triangles containing edges xv, cannot exceed the
demand d —t on the edges incident to x in G*. This fact implies t <d/2. O

From <D> one can deduce the following observations.

Lemma 4. For the class of coverable graphs,

(i) there is no s*-sequence of length 1,

(ii) there is no e*-sequence of length 2;

(iii) the unigue S*-sequence of length 3 is {4,4,4}, with Go shown in
Fig. 2(a);

(iv) there are precisely three e*-sequences of length 4, namely {5,5,4,4},
{6, 5, 5,5}, and {6,6,6,6}, with their corresponding Go shown in Fig. 2(b),
2(c), and 2(d), respectively.

P roof, (i), (ii), and (iii) Since each degree in a ~’-sequence is at least 4,
we must have k A 3 vertices in G* by the Degree Constraint. In case of
equality, no degree can exceed 4, i.e., <$*G) = {4,4,4}; and the three vertices
of G* must be pairwise adjacent, each having precisely two neighbours of
degree 3.

(iv) Assuming k = 4, it follows from <D> that ~ 6 holds for | *i <k.
Also, we have § >4, and consequently each vertex of G* has a neighbour
of degree 3 in Go\G*. This also implies that Go has at least two vertices of
degree 3.

Fig. 2. The four coverable and irreducible graphs with s*-sequences of lengths
at most four.
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Let y,y'EV(Go\V{G*). If T(y) = r(j/') held, Lemma 2 would imply
that the graph G' = GoX-E”rjt/jurfj/]) is coverable as well. This edge deletion
decreases precisely three degrees of G* by 4, leading to a coverable graph
of minimum degree < 2, a contradiction. Hence, we obtain T(y) / r(y') for
all y*y', dfy) =d(y') = 3. This property yields 2 < |y(Go)\Vr(G*)| * 4. If
there are three or four vertices in Go\G*, then their neighbourhoods induce
K4 in G*. Also, though the neighbourhoods of two vertices form 1i4 minus
an edge only, the missing edge has to be added for otherwise Go were not
coverable.

Conversely, it is easily seen that for each graph Go in Fig. 2 there is a
covering/: T(GO0) {0,1/2}. O

4. Graphs with small excess

The results of this section (and also of the next one) are valid for all
graphs, not only for irreducible ones.

Let G= (V,E) be a graph on n vertices, V = {tq,... ,vn}. The degree
sequence <SG = {di,... ,dn} is defined as d, = d(v,-). We introduce the
concept of excess sequence (e-sequence) that consists of the non-zero elements
of the multiset {ei,... ,en}, where

e, =d, for d, even,
g-—di —3  for d, odd.

The excess e(G) of G is now defined as

e(G) =1} + £i.

Since the excess £+ at \{ is even by definition, the excess of a graph is an
integer. Note further that if G is coverable and a vertex \{ has the smallest
positive excess, £#= 2, then d, = 5 holds.

Let us begin with the observation that every e with e= 0 (mod 3) is the
excess of some graph. Indeed, take 2fc+ | vertex-disjoint triangles (k ~ 0) and
join all their vertices to a new vertex w (in other words, 24-F 1 edge-disjoint
K 4. are incident to w). Then w has degree 6fc-f3, with excess 6k, while the
degree-3 vertices have excess 0. Hence, the graph has excess 3k. (The same
excess is obtained if we take only 2k blocks isomorphic to iT}.) Part (iii)
of the following result shows that the other two residue classes modulo 3 do
not provide us with graphs of a very small excess.

Theorem 5. Let G be a coverable graph without isolated vertices.
0] Ife(G) =0, then |F(G)| = 0 (mod 4) and all connected components
of G are isomorphic to K4.
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(if) 1f e(G) = 3, then all but one connected components of G are isomor-
phic to K4, and the last component is one of the two graphs shown in Fig. 3.
In particular, if all degrees of G are odd, then \V(G)\ =2 (mod 4).

(iii) 1f e(G) is not a multiple of 3, then e(G) 8.

Proof, (i) The assumption e(G) = 0 implies that G is regular of de-
gree 3. Hence, T[X] = K4 for all x ¢ V (G), and G cannot have larger compo-
nents.

(i) Now e(G) = 3 implies ™ £(a) = 6. Since s(x) is even, there cannot
occur more than one vertex of degree ™ 4, for otherwise G would have a
~e-sequence of length 2 or of length 3 but not {4,4,4}, contradicting Lem-
ma 4. Thus, d(x) = 6 or 9, and S*(G) = 0. Then the degree of x uniquely
determines G, yielding the graphs shown in Fig. 3.

(iii) Note first that the reductions <R3>, <R4>, and <R5> do not in-
crease the excess (usually they decrease it), and the number of edges delet-
ed in them is a multiple of 3. Hence, in order to prove the statement by
contradiction, we may assume that G is a stronglu irreducible graph with
77 e(G)=1or 2 (mod 3).

The £-sequence cannot be shorter than the ~‘-sequence. (In fact, for
irreducible graphs they have the same length, as the excess-O vertices are
omitted from both of them). By Lemma 4, the <$*-sequences of lengths £4
yield ~-sequences {4,4,4}, {2,2,4,4}, {6,2, 2,2}, and {6,6,6,6}. In each of
these four cases the excess of the graph in question is a multiple of 3, and
consequently the initial graph G cannot have ¢(G) = 1or 2 (mod 3). Hence,
|[V(G*)| >5 and, since e(x) > 2 for each x EV (G*), s(G) > 5 also holds.

If s(G) =5, then we must have |P(G*)| = 5, e{x) —2 and d(x) —5 for
every x GV(G*), d(y) = 3 for every y GP(G)\P(G*), and F(G)\P(G*) has
to be an independent set. Then each x GV(G*) has a neighbour of degree 3,
i.e., V(G*) meets at least five edges not belonging to G*. On the other hand,
the total degree sum for the vertices of G* is 25, therefore the number of
edges not in G* is odd. Finally, their number is a multiple of 3, so that there
are exactly 9 or at least 15 such edges. Then G* has 8 or at most 5 edges,
respectively; hence the latter is ruled out by <C>, as well as by <D>.

Assuming |E(G*)| = 8, we have three vertices y,y',y" of degree 3. Then
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some x €V (G*) has just one neighbour of degree 3. Set X = V (G*)\{x} and
Y —{x,2,j/',y"}. Now e(X) =4, e(T) =1, and e(X, Y) —12, contradicting
<C>.
Suppose that e(G) —7, £(z) = 14, |[F(G*)| > 5. The four possi-
xeV (G *)

bilities to decompose 14 into at least five positive even numbers are:
6+2+2+2+2, A4+44-2+2+2, 4+2+2+42+2+2, 2+2+42+2+2+2+2

We are going to show that none of them corresponds to the excess se-
guence of a coverable graph. Recall that a vertex of excess k has degree k or
k+ 3, and that e(x) = 2 implies d(x) = 5 if G is coverable. Note further that
excess 4 and 6 may correspond to degree 4 or 7 and 6 or 9, respectively.

Case 1 The s-sequence is {6,2,2, 2,2}.

Now the ~“-sequence is {6,5,5,5,5}, for d{x) —9 is ruled out by <D>.
For the same reason, G* has minimum degree > 3, so that each vertex of
degree 5 is adjacent to at least two other vertices of degree 5. Since <R5>
cannot be applied in G (by the assumption of strong irreducibility), the
degree-5 vertices can have no more than one neighbour in G\G*.

Thus, |[F(G)\V'(G*)| —2, G* —KS5, and G is the graph exhibited in
Fig. 4(a). Let X be the set of the four marked vertices, and setY =V (G)\X.
With the notation of <C> we have e(X,Y) = 10, t(X) =1 (the triangle in
question is shaded), and e(X) —e(Y) =3. Consequently,

e(X,Y) + 3t(X) = 13> 12= 2e(X) + 2e(Y),

implying the contradiction that G is not coverable, by <C>.

Case 2. The e-sequence is {4,4,2,2,2}.

The three possible degree sequences belonging to this particular e-se-
quence are {7,7,5,5,5}, {7,4,5,5,5}, and {4,4,5,5,5}. As described in
<D>, vertices of degree > 5 have at least 3 neighbours in G*. Moreover,
if a degree-4 vertex were adjacent to more than one vertices of G\G*, then
<R4> could be applied, contradicting our assumption. Hence, in each of
the three subcases, G* has minimum degree 3, i.e., has degree sum 16, 18,
or 20.

Taking into account that the number of edges joining G* with G\G* is
a multiple of 3, we obtain that G*= A5, and its vertices of degree 7, 5, 4
have 3, 1, 0 neighbours respectively. This fact rules out each of the
three degree sequences as follows.
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Fig. 4- Some graphs ruled out by the Cut Constraint; the vertices of the
partition class X are marked.

In {7,7,5,5,5} we have |V(G)\V(GF)| = 3. Moreover, the two degree-7
vertices, say x and x', are adjacent to the three vertices of degree 3, yielding
the contradiction that the triangles containing the edge xx' should have total
weight at least 3/2, by Lemma 2.

In {7,4,5,5,5}, the degree-7 vertex should have three neighbours of de-
gree 3. Thus, at least 9 edges should join G* and G\G*. However, the degree
sequence admits just 6 such edges.

In {4,4,5,5,5), G\G* has one vertex, adjacent to the degree-5 vertices
of G*, i.e., G is the graph shown in Fig. 4(b). Then the set X of the marked
vertices, with Y = V (G)\X, has e(X,Y) =9>8 =2+ 6= 2e(X)+ 2e(Y),
contradicting <C>.

Case 3. The £-sequence is {4,2,2,2,2,2}.

Now there are two possibilities for the degree sequence, namely {7,5,5,5,
5,5} and {4,5,5,5,5,5}. Asin Case 1, each degree-5 vertex can have at most
one neighbour in G\G*, so that |T(G)\Vr(G*)| 52.

In the first subcase, the degree-7 vertex forces that indeed there are two
vertices of degree 3, and the graph is the one in Fig. 4(c) (since r(r/) = K3
for d(y) =3). Again, we have a contradiction to <C> ase(X,Y) = 13> 12=
=4+ 8= 2e(X) + 2e(Y).

In {4,5,5,5,5, 5}, the number of odd degrees in the subgraph G* must
be even, therefore G\G* has precisely one vertex y) and G* has 13 edges.
The three neighbours of y are adjacent to each other and to y, so that they
have at most two neighbours not in N(y), yielding at most 6 edges from
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N(y) to V(G*)\N(y) and just 3 edges in N(y). Hence, the 3-element set
V(G*)\N(y) should induce more than 3 edges, a contradiction.

Case 4. The e-sequence is {2,2,2,2,2,2,2}.

Of course, the degree sequence must be {5,5,5,5,5,5,5). Again, by the
assumption that <R5> cannot be applied, each vertex has at most one
neighbour in G\G*. Since the degree sum in G* is even and the number of
edges meeting G\G* is a multiple of 3, G\G * consists of just one vertex y
and G* has 16 edges.

Now each x GN(y) has 2 neighbours in V(G*)\N(y),and N(y) induces 3
edges; that is, 9 edges of G* meet N(y). Thus, the 4-element set V(G)\N (y)
should induce 7 edges, a contradiction.

We note that part (iii) of Theorem 5 is sharp for both residue classes * 0
modulo 3; namely, K5 has excess 10 while Kg—e (an edge deleted from K8)
has excess 8, and one can see that both graphs are coverable.

5. Graphs with all degrees even

Let us say that G is an even graph if the degree of every vertex
X 6 V (G) is even. Below we show how the results of the previous section
can be improved for such graphs. (Those stronger bounds have proved to be
useful in the study of triple systems, see [3].) Note that in coverable even
graphs without isolated vertices, the minimum degree is at least 4, and the
£-sequence is identical to the degree sequence; in particular, e(G) = |-E(G)|
holds.

T heorem 6. Suppose that an even graph G is coverable.

(i) Ife(G) =0 (mod 3), then either e(G) > 18 or e(G) = 12 and G is
isomorphic to Kq—3K i, the complete graph of order 6 minus three pairwise
disjoint edges.

(ii) 1fe(G) = 1 (mod 3), then either e(G) > 19 or e(G) —10 and G = Ks.

(iif) 1fe(G) =2 (mod 3), then e(G) > 20.

Proof. By d(x) » 4we have |[V(G)| ~ 5and e(G) * 2\V{G) \ > 10. More-
over, if G has a vertex of degree > 6, then ~(G)! ~ 7 holds, implying Yht(x) "
NGB+ 4(|P(G)|- 1) > 30, s0 that e(G) > 15 unless G is 4-regular. In particular,
e(G) > 15 holds whenever e(G) is odd.

(i If G is 4-regular, then e(G) = 2|V(G)| is even. The unique even
multiple of 3 between 10 and 17 is 12, hence in this case we have |V (G)| = 6,
and G is the unique 4-regular graph, Ke —&Kz, on 6 vertices.

If G has maximum degree 6 and e(G) < 18, then e(G) = 15, |V(G)| = 7,
G has a vertex y with d(y) = 6, and d(x) = 4 for all x GF(G)\{y}. Then the
complement of G —y is a regular graph of degree 2 on 6 vertices, i.e., either
the cycle CB or two disjoint triangles, 2/i3.
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Let x, x' be either a pair of antipodal points on Ce or two vertices from
distinct triangles of 2K3 (according to the structure of G —y). The choice
of x" implies that x' has degree 1in T(x) in G, and therefore G cannot be
coverable, by Remark 1.

(if) Since G has to be 4-regular for e(G) < 15, the case e(G) = 13 is
impossible, and Ks is the unique graph having e(G) = 1 (mod 3) with e(G) <
< 16. For e(G) = 16, there are two possibilities for the degree sequence;
namely, {6,6,4,4,4,4,4} and {4,4,4,4,4,4,4,4}.

In the first case the five degree-4 vertices have to induce a 2-regular graph
Fi which, therefore, is the cycle C5. Moreover, there is an edge F: joining
the two degree-6 vertices. Here F\ and F. are vertex-disjoint triangle-free
graphs with 6 edges in all, and the graph has 10 < 2 <6 further edges. Thus,
G is not coverable, according to <C*>.

Hence, suppose that G is a (coverable) 4-regular graph on 8 vertices.
The neighbourhood r(x) of any vertex x has minimum degree > 2. Thus,
there exist at most 4 edges which are incident to, but are not contained
in, N[x] = N(x) U{x}. Consequently, some vertex y £ F(G)\IV[a:] has at
most one neighbour in N[x], Since it has at most two further neighbours in
F(G)\1V[2:], G cannot be 4-regular, a contradiction.

(iii) We have to show that e(G) / 11,14,17. We have already seen that
e(G) < 15 could hold only if G were a 4-regular graph on 7 vertices. Hence,
the complement of G should be either Cy or the vertex-disjoint union of C3
and C\. The former graph, G = C7, is not coverable since it has some edges
contained in just one triangle, while the latter is ruled out by <C>, setting
X =V(C3)and Y =V{CA). (Then e(X) =0, e(Y) =2, and e(X,Y) = 12)

Suppose that e(G) = 17. The maximum degree in G is 6, for otherwise
G would have at least 9 vertices and more than 17 edges. Hence, the de-
gree sequence is either (6,6,6,4,4,4,4) or (6,4,4,4,4,4,4,4). The former
corresponds to a unique graph whose degree-6 vertices are adjacent to every
vertex and hence they induce a triangle K3, while each degree-4 vertex has
just one degree-4 neighbour, i.e., those four vertices induce 2AV Setting X =
=V (A'3) and Y —V (2X 2), we obtain e(X) = 3, e(Y) = 2, and e(X, Y) —12,
a contradiction to <C>.

Suppose that the degree sequence is (6,4,4,4,4,4,4,4). Then the degree-
6 vertex y is non-adjacent to just one degree-4 vertex x. A vertex adjacent to
y but not adjacent to x must have a common neighbour 2 with x. This 2 can
have at most one common neighbour with x, so that G cannot be coverable.

O

The bounds in Theorem 6 are best possible, as shown by the following
examples. The graphs in Figs. 5(a) and 5(b) have excess 18 and 19, re-
spectively, and they are easily seen to be coverable. (The former has been
obtained from two copies of the graph of Fig. 2(a) by identifying two pairs
of degree-3 vertices.) Moreover, a simple coverable graph with excess 20 is
2Ks.
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Fig. 5. Coverable graphs with excess 18 and 19

6. Concluding remarks

(1) A main motivation of this paper is the study of triple systems in
which each pair of points is contained in the same number, A" 2, of triples.
Applying the results of Sections 4 and 5, in [3] we could settle almost com-
pletely the problem of how many blocks of multiplicity A a triple system
TS(v, A can have. (The missing cases are where A= 0 (mod 6) and v=2
(mod 12).)

(2) In the context of leave graphs of Steiner systems, several necessary
conditions have been established, and their proof techniques can be applied
to prove some of the results given above. In this sense, part of this work may
be viewed as inherent in some previous papers, e.g. in [4, 1, 2. We have
to note, however, that not every coverable graph is a leave graph (consider
2Ks, for example) and at several points, in order to keep our more general
problem under control, we had to introduce new ideas different from the ones
in the papers cited.

(3) It seems to be an important advantage of our approach that it can
handle the relatively small structures without the use of a computer. There-
fore we can expect that some statements which have been verified so far only
by computer search (see e.g. Lemmas 2.15 and 2.16 in [2]) will have fairly
simple mathematical proofs.

(4) An open problem, perhaps solvable by a refinement of our method, is
to find all irreducible, coverable graphs G with excess e(G) = 10, or to prove
that K5 is the unique such graph. Probably any answer to this problem
(affirmative or negative) would have interesting consequences concerning re-
peated blocks in triple systems of index A (It can be proved that there is
a unique graph G, shown in Fig. 6, such that e(G) = 10 and G*= /v5, with
d(x) odd for all x € V(G). In this way, if A'5were unique, then the spectrum
of blocks of multiplicity Ain TS(v, A would completely be characterized.
On the other hand, if there were some graphs G** K$ with an extension G
such that all degrees in G are odd, e(G) = 10, and |T(G)| = 2 (mod 12), then
some attempts could be done to find a construction that fills the gap in the
spectrum problem.)
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%) Because of the generality of F-coverable graphs, one can expect fur-
ther applications of them in design theory as well as in other branches of
combinatorics. We also note that the concept of coverable structures can
be extended to other classes such as e.g. directed graphs, finite set systems
(hypergraphs), sequences over a given alphabet, matrices over the set of
integers, etc., offering wide areas of challenging open problems.

Fig. 6
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SOME DISTRIBUTION RESULTS ON RANK ORDER STATISTICS

J. SARAN and S. RANI

Abstract

This paper deals with the derivation of the null joint and marginal probability distri-
butions of some rank order statistics by using Dwass technique. The rank order statistics

considered include the number of positive reflections, the index of the iI* positive reflection
and the interval between the i1 and the positive reflections.

1. Introduction

Let Xi,X2,... ,Xn and Yi, Y2, ... ,Yn denote random samples drawn
from populations with unknown continuous distribution functions F(x) and
G(x), respectively. Let Fn(x) and Gn(x) be the corresponding empirical
distribution functions. Denote by Z\ <Zg < ... < Zgn the ordered combined
sample and let Zg= —00. On replacing each Xk in this ordered set by +1
and each Yk by —1, there results a sequence of rank order indicators. A
random variable defined as a function of the Xk and the Yk only through
these indicators is called a rank order statistic. Such statistics are often
expressed in terms of

Hn(u) = n[Fn(u) - Gn(u)], -00 <u<o0.

Dwass [4] developed a new technique (other than the combinatorial one)
based on simple random walk with independent steps, in order to determine
the distributions of some rank order statistics for the case of equal sample
size. By using the Dwass technique Aneja and Sen [2], [3], Aneja [1], Mahen-
dra Pratap [7] and Kaul [6] have derived the joint and marginal distributions
of various rank order statistics. In this paper we derive the null joint and
marginal distributions of two-sample rank order statistics viz., the number
of positive reflections, the index of the tth positive reflection and the length
of the interval between the ith and the Zh positive reflections by using Dwass
technique.

1991 Mathematics Subject Classification. Primary 62G30.
Key words and phrases. Dwass technique, simple random walk, rank order statistics

— positive reflection, the index of the ith positive reflection, the length of the interval
between the and the 2% positive reflections, probability generating function.
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2. The method

In deriving these results we use the Dwass technique which is based on
the simple random walk

js; :Sj=" W{ So=Wo= 0j

generated by a sequence {Wi} of independent random variables with common
probability distribution

P(Wi=+I1)=p, PWI=-1)=q qg=I-p, I<:i<oo.

The assumption that p < 1/2 implies that the random walk {Sj} is tran-
sient so that with probability one, Sj = 0 for only finitely many values of j.
Let T be the largest value of j for which Sj = Hn(Zj) = 0 and let U be a
function defined on the random walk. Then U is said to satisfy assumption
A when its value is completely determined by W\, W., .=, Wj. The main
theorem used for finding the distributions of rank order statistics is quoted
from Dwass [4].

T heorem 1 Suppose Un is a rank order statistic for every n and U is
the related function satisfying assumption A. Define

E(U) =h(p), O<p< 1/2.

Then the following power series in powers of pq is valid for 0<p < 1/2:

71=0

If 9 is a function defined over the possible values of U then 4>Uh) is
also a rank order statistic. In particular if 4>is the set indicator function
of B then E((f>(Un)) —P{Un in B). While applying the theorem we shall
let the symbols U, Un represent 4X{h) for the various versions of ()
that may be convenient to the problem at hand. This implies that the
coefficient of (pg)n in the power series expansion of P{U =k)/(I —2p) equals

3. Definitions of rank order statistics

The following is the list of rank order statistics whose distributions will
be derived. In what follows, we shall use the dual notation U, Un for these
rank order statistics as suggested in Theorem 1.
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I. Return to the origin. A ‘return’to the origin occurs at an index j for
which Sj = 0.

Il. Positive and negative sojourns. A ‘sojourn’is defined as the segment
between two consecutive returns to the origin. The segment between the
origin and the first return point is also regarded as a sojourn. Let 0<
< ¥ < *2< eee< 2n be the indices for which Hn(Zi) = 0. If Hn(Zi) >0 for
ij-1 <i<ij, we say that the jth sojourn is positive and if Hn(Zi) <0 for
ij-i <i<ij, we say that the jth sojourn is negative.

I11. Positive and negative reflections of height a. A reflection at height a
occurs at an index j when Sj=aand Sj-i = 5j+ti=a- 1=Sj—1or Sj-1=
= Sj+i =a+ 1= §j T 1, the reflection being positive or negative according
as Sj-1 = sj+i = a+ 1lor Sj-\ = Sj+\ = a—1. Let A, (a) denote the total
number of reflections of height a of which A+ (a) are positive and R~ (a) are
negative with

Rn{a) = R+(a) + R-{a).

IV. The index of the zth positive reflection of height a. Let R+'(a) denote
the index of the ith positive reflection at height a. Then A+*(a) = the index
J where Sj ~aand Sj-i = Sj+i = a+ 1for the ith time, 1<i<i2+(a).

V. The length of the interval between the tth and the Ith positive reflections
of height a. Let denote the length of the interval between the ith
and the /th positive reflections of height a (1 <i<Il< R+(a)), then

The above mentioned statistics with respect to the origin (i.e. for a= 0)
are denoted by the same symbols without parentheses for a, e.g., -RO) =

= A+, A+*(0) = R+\ M+(,V)(0) = Mr(,2, etc.

4, Some basic results

Some of the results we list below concerning simple random walk appear
in Feller [5] and the rest are easily derived from elementary considerations.
The following list covers what is needed in the sequel.

(i) The probability generating function (PGF) for the first return time
to the origin is

f()y=1-(I-4paty’'2
from which the probability of ever returning to the origin is /(1) = 2p.
(i) The PGF of the length of the first passage through k is (f(t)/2qt)k.
(iii) If the PGF of the length of a positive sojourn is denoted by F+(t)
and that of a negative sojourn by F~ (t) then

F+(t) = F-(t) = f(t)/2
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(iv) The PGF of the path segment between the origin and the first pos-
itive reflection is given by

co oo ® 13

t=o j=o L i=i
= F+(t)/(1-F-(t)-F + (t)F -(1)).

For the proof of this result, one may observe that in the requisite path
there may be some negative sojourns in the beginning. After that there may
be segments each beginning with a positive sojourn and ending with at least
one negative sojourn. Lastly there is one positive sojourn.

(v) The PGF of the path segment between any two consecutive positive
reflections is

£ F()M(F-(F)*  F+() =
j=o L i=i
= FH{O{1- F" ("))/(1- F-(t) - F+tF~(1).

(vi) The probability of the path segment between any two consecutive
positive reflections is

(vii) The probability of the path segment between the last positive re-
flection and the last return point to the origin is

(viii) The following power series expansions in powers of pq valid for
positive integers i, j and k which follow immediately from Dwass [4], (14)
and (16) are frequently used in the sequel:

NI [e]e]

)1} = E A -.(i,2)(P5ir

where
b (b+ac
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(b) p7(1-2J>)=E (25_/)(P9)*'
© Pk=r2 At-k{k,2){pqY.
t=k

For ease in expression, while dealing with bivariate PGF’s we will abbre-
viate /(s)/2 and f(t)/2 by a and B, respectively, where /() =

= L- [L~dpg( +)2L02.

5. Joint distribution of J2+(a), i2+'(a) and Mn~',\a), a>0

Theorem 2. The bivariate probability generating function of the joint
distribution of R+,(a), the index of the ith positive reflection of height a
and M +b>0(a), the length of the interval between the ith and the Ith positive
reflections of height a (L <i<l<r) when R+(a) equals r >0 is given by, for
a> 0,

h(p) = E (aA+*()tM+C.0(0); R+(a) = r) =

= P(R+i(a)=a+ 2j,M+(i'la)=2u,R +(a) = r)sa+2jt2u =
j=i Ut
=a“+,(1-a) 1(1-a-a2d-13-“(1-~"-(1 -B - B2)~ "x
X/ 19 "aO-p2-(r_'+Ds_a(l- 2p).

FiCOIfLet OABCDEF be a random walk path envisaged in the the-
orem where A and F be the first and the last return points of height a and,
B, C, D and E be the first, ith, /th and the rth positive reflection points of
height a, respectively (Fig. 1). Then the path comprises seven segments viz.
OA, AB, BC, CD, DE, EF and a segment beyond F. Of these, the first
segment OA is a first passage through a with its length having PGF (a/qs)a,
by (ii) of Section 4. The segment AB has a PGF a(l —a —a2)-1, by (iv).
The segments BC and CD involve exactly (i —1) and (/ —i) positive reflec-
tions with PGF’s (a(l - a)/(l - a- a2))1-1 and (/31 - B)/{l - B - RB2))I~,
respectively, by (v). The segment DE involves exactly (r —/) positive re-
flections with probability (pg/(q - p2)T~t, by (vi). The segment EF has no
positive reflection with probability p/(q —2), by (vii). The last segment
beyond F does not involve a return to the height a with probability (1 —2p).
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E (sR+'MtMH")M-R+(a) =r) =
t'-1 I-i

o a(l —a) B(I-B)
= (<) | _3 a3 Vi—a — I-B-R2
—
x R (1-2p)
- P2) q-p*
which leads to (1).
* I\ F

X\ooog ¢\l D VX £\

Fig. 1

Deductions, (i) Putting t—21and s= 1in (1), we get, respectively,

E (sR**-,R+{a) =r}=

(2)

= a,+a{l-ay-1{l-a-a2)-"pr-i+lgr-t-a{q-p2)-{r~i+a)s-a{l-2p)
and
(3) E (iMH<O0(a);A+(@) = 7-) =

= RI~i(1=RB)I~"(1-R-R2)~(t~i)pT~I+i+a+igr~l+i~a~1(&- p 2)-(r-/+1+1) (1-2p).
(if) Putting s—t= 11in (1), we get
4 P{R+{a) =r)=pr+atlgr-a- 1{q-p2)-(H+NI-2p)

(equivalent to [1], eh. 11 (93d)).
(iif) Summation of (1) over r from / to oo gives
E (sRHlaMHI1(@)j =
©)

= a,*(-a)y*-1(l—a—a2-¥i-,( —&) 1~ [1—R — p(\/gs)a.

(iv) Summing (2) over r from i to oo and (3) over r from / to 0o, we get,
respectively,

(6) E = Q,+a(l - a)t_1(l - a - a2)~ip(qs)~a
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and

E(im+o()) =
(7)
= Bl~"(L - R)I~' (L—2—#2)- (i_°V +a+lg'-0-1{q- p2)~'m

Probability distributions. The following probability distributions corre-
sponding to the PGF’ (1) to (7) can be derived with the help of Theorem
1 and the power series expansions ((viii), Section 4).

C") P(Rti{a)=a+2,m+~Na) =2u,R+(@)=r) =

£ EEEEEE <- )+t

(8) k=® B=0 m=0 6=0 ¢=0 /=0 3=0
XA, (i - vh+ @ 2)A"2(U- we,2)Ar3(r - /+ 2+ 3C+ &, 2)
where
ipi=j-i-k —h—f,
B=u—Il+i—m-b —g and iB—n—2¢c— - u—r —a-\-1—1
(27) p (@=a+2j,R+(@=r)=
X
XAN) (y A+ 2)AN2(r —i + 3cH{-a+2,2),

where

if>i=j—i—k —h—f and V2=n_2c—r-j-a +i-1.

(Q;.)\ K 'A/W\#Z),*W m)éEOLEO szo i:EO <- ‘)n +6+c,

x\(n +c+a-u+2- 18,2),
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where

tpe=u—Il+i—m —b—g and tw=n—c—a—u—r-\- —i —I.

(11)
p (A+(@)=r)=£ (-1)c(_(rer1))An-a-r-ac-1 (r+2a+ 3c+ 3,2)

(equivalent to [1], eh. Il (101)).

(27) P (a+>) =a+2j, M+™{a) = 2«) =

t—l_oo_ I 00 _h o .
:EEEEEEhIk+m+h+b(\/A;AJ\~;
(12) 6=0/i=0 m=06=0 /=0 3=0
fh"j ]
mJ\ b ) (G—V+ 2X

—2j —2u—2a- 1

XAA(U - i02,2) fz”n_j R

where
rpi=j —i —k —h — and ip2—u — —m —b—qg.
a t—21 @ |1
m o -+ *)- JESRT X X
(13) 5") () ' ) égoégzogo d V(V
fhvt . .(2n- 2j-2a- 1\
y A*I»-*+m>. 2)( ) .
where ip\=j —i —k —h —f.
/c\ \. I—i 00 6 oo.
<{IW): _ +6+c A
(14) ("J p( ! %E% 3 E:rac—EJaI f
(b) M A*(j- 2j( 2»- 2«
m /\ b )\gj\c/ \n-ii +c+ a-fiy

where tz=u- I+i—m —b- g.
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STRAIGHT LEFT ORDERS

VICTORIA GOULD

1. Introduction

A subsemigroup S of a semigroup Q is a left (right) order in Q if every
element of Q can be written as a&b (ba*) where a,b£ S and a# is a group
inverse of a and if, in addition, every square-cancellable element of S lies in
a subgroup of Q. For the definitions of group inverse and square-cancellable
element we refer the reader to Section 2, where further details of the terms
used in this introduction may be found. If 5 is a left (right) order in Q then
Q is a semigroup of left (right) quotients of 5; if S is both a left order and a
right order in Q then S is an order in Q and Q is a semigroup of quotients
of S. These notions were introduced in [FP], although only in the context
of orders in completely 0-simple semigroups.

Our approach to orders in semigroups is obviously inspired by the concept
of a classical order in ring theory. Ore’s theorem tells us that a ring R is
a (classical) left order in some ring Q if and only if R contains a non-zero
divisor and satisfies the left Ore condition, that is, given any a,b £ R, where
a is a non-zero divisor, there exist elements c,d £ R where c is a non-zero
divisor such that cb= da. Orders in various special classes of rings have
also been described; perhaps the best known example of a result of this sort
is Goldie’s celebrated theorem characterising left orders in simple artinian
rings.

Fountain and Petrich give a description in [FP] of orders in completely
0-simple semigroups. A number of subsequent papers have characterised left
orders in other well known classes of semigroups. But what of an analogue
of Ore’s theorem? What are the semigroups that can occur as left orders in
any semigroup? This question is much more complex than the corresponding
one for rings, essentially because we consider group inverses in any subgroup
of a semigroup of left quotients, whereas for rings one concentrates on the
group of units. A first step in the direction of an answer is made in [G4]. In
that paper we characterise left orders in semigroups in the class of regular

1991 Mathematics Subject Classification. Primary 20M10; Secondary 20M17.
Key words and phrases. Square-cancellable, group inverse, semigroup of left quotients,
straight left order.
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N-semigroups, where a semigroup Q is an TL-semigroup if Green’s relation

TL is a congruence on Q. A sequel, [G5], shows how this result yields as

corollaries the previous characterisations of (left) orders in semigroups in

particular classes, for all those classes considered had been classes of regular
semigroups.

If 5 is a left order in a regular ~-semigroup Q, then as shown in [GI], any
element of Q may be written as a&b where a, b£ 5 and aTzb in Q, a property
which facilitates greatly consideration of products of elements in Q. In view
of this we say that a left order 5 in a semigroup Q is straight if every element
of Q can be written as a*b where a, & 5 and aTzb in Q. Straight right orders
and straight orders are defined in the obvious way. The aim of this paper is
to characterise those semigroups that are straight left orders.

In Section 2 we give a number of definitions and preliminary results.
Section 3 introduces and investigates the notion of a *-pair V = (*/, £r) of
preorders on a semigroup S. If 5 is a subsemigroup of a semigroup Q then
defining % (<r) on S by a<ib (a<Tb) if and only if QlaQQ1b (aQ1 Q
QbQ1), then V —(*;, *r) = V(Q) is always a *-pair, the *-pair induced by Q.
Additionally, if 5 is a straight left order in Q then V{Q) satisfies a number
of properties: any *-pair with these properties we call an embeddable *-pair.
Using the concept of an embeddable *-pair we describe in Theorem 4.1 of
Section 4 straight left orders.

Given a straight left order 5 in Q, if CP D (5 XS) = C*s and RP fl
D (S XS) = TZ*S then 5 is stratified in Q; stratified left orders have been
investigated in a number of papers. If V(Q) — (*E*, ~7?*)) then we shall say
that S is fully stratified in Q. It is immediate from the definitions that a fully
stratified left order is stratified, however, the converse is not always true. In
Section 5 we apply Theorem 4.1 to characterise fully stratified left orders.

The final section shows how the description of left orders in regular TL-
semigroups given in [G4] may also be deduced from Theorem 4.1.

2. Preliminaries

We assume a familiarity with the basic notions of semigroup theory, in
particular, Green’s relations. As far as possible we follow standard notation
and terminology, as can be found in [H],

The relation <£ is defined on a semigroup S by the rule that for any
elements a,bof 5, a<c b if and only if SlaQ S1b. Clearly ~c is a preorder
that is right compatible with multiplication and whose associated equivalence
relation is C. The dual relation to is denoted by <n.

The relation is defined on a semigroup 5 by the rule that for any
elements a, bof 5, a<£* b if and only if

bx —by implies that ax = ay
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for all x,y £ S1. Then <£e is a preorder that is right compatible with
multiplication, as is the associated equivalence relation £*. The preorder
<7j« and the equivalence relation TZ* are defined dually. The relations £*
and 17* have the following alternative description.

Lemma 2.1. [F] Let S be asemigroup and leta,b£ S. Then aE*b (alZ*b)
if and only if aCb (aTzZb) in some oversemigroup of S.

The intersection of £% and 1Z* on any semigroup S is denoted by TL*
It is easily seen that and N7j2£7z*, so that £~E*, TZffTZ* and
TiQTi*. If 5 is a regular semigroup then <c and <n =<7”. so that
£=£* TZ=TZand H = H*.

An element a of a semigroup S is square-cancellable if aTi*a2. Thus a is
square-cancellable if and only if for all x, y £ 51,

a2x = azy implies that ax —ay

and
xaz = yaz2 implies that xa =ya.

Note that if 5 is a subsemigroup of Q and a£ S lies in a subgroup of Q,
then a is square-cancellable in 5. By definition of (left, right) order, all such
elements must lie in subgroups of any semigroup of (left, right) quotients.
The set of square-cancellable elements of a semigroup 5 is denoted by *S(5).

Let a be an element of a semigroup 5. If a lies in a subgroup of 5, then
Ha is a subgroup, the maximum subgroup containing a. Thus if a# is the
inverse of a, in the sense of group theory, in a subgroup of 5, then a* is the
inverse of a in Ha and so is well-defined. Given a semigroup S and a € 5, by
writing a* it will be implicit that a lies in a subgroup of S.

The notion of a left order in a group is much older than that of a left
order in an arbitrary semigroup. We recall here that a semigroup is right
(left) reversible if 5a(~156”~0 (0506570) for any a, b6 S. A theorem of
Ore and Dubreil (Theorem 1.24 of [CP]) states that a semigroup 5 is a left
order in a group G if and only if 5 is right reversible and cancellative.

This paper is concerned with a special sort of left orders: straight left
orders. We summarize here some of their properties.

Proposition 2.2. [GI] Let S be a straight left order in a semigroup Q.
0] Ifaf£S(S), then Ha 0 S is a left order in Ha-

ifa) Every H-class of Q contains an element of S; if gEQ and g—a”b
where a£ S(S), b£S and aTzb in Q, then gHb in Q.

Considering only left orders that are straight imposes regularity on the
semigroups of left quotients.

Lemma 2.3. The following conditions are equivalent for a semigroup Q:
(i) Q is regular;
(i) Q is a straight left order in Q;
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(iii) there is a straight left order in Q.

Proof. That (i) implies (ii) is easy and that (ii) implies (iii) is imme-
diate. Suppose that (iii) holds and 5 is a straight left order in Q. Then
if £ Q, gq= a*b for some a € 5(5), bG5 with aTzb in Q. By Proposition
2.2, qUb in Q so that gqlzaHaa# in Q. Thus every P-class of Q contains an
idempotent and so Q is regular.

Finally in this section we make a remark on notation. If (X)(I) denotes
a condition having an obvious left-right dual, then (A)(r) will denote the
dual condition. In this case, ‘(A-)’is shorthand for ‘(X)(/) and (X)(r)’.

3. Embeddable *-pairs

An ordered pair V—(<;(P), ~r(P)) of preorders on a semigroup 5 is a
*-pair if </(P) is right compatible with multiplication, <r(P) is left compat-
ible with multiplication, ~/(P) £=£e and =r(P)E ft*- Clearly (<£*,"7j*)
is a *-pair for any semigroup. Given a *-pair V = (*/(P)5"r(P)) for a
semigroup 5, then we denote by C'(V) and TZ'(V) the equivalence relations
associated with <;(P) and “~r(P), respectively. We remark that C(V) is a
right congruence and is a left congruence. Where there is no danger
of ambiguity ~/(P), ~r(P), £'(P) and TZ'(V) are written more simply as <i/,
<r, C and TZL The notation for the equivalence relation £'(P)nP'(P) is
7i'(V) or 7{" and the P'(P)-class of an element ais Ha(V) or Ha. IfaR" (V)a?
then a is V-good or simply good.

If 5 is a subsemigroup of a semigroup Q then

P(Q) = (*£Q n (5 XS),<nQn (5 X5))

is clearly a *-pair for 5: it is called the *-pair for S induced by Q.
We wish to consider the *-pair for a semigroup 5 induced by a semigroup
Q in which 5 is a straight left order. To describe such *-pairs it will be
convenient to use the following notions.
Let P = (<;, <r) be a *-pair for a semigroup 5. For a good element a of
5, put
L{a,V) = L{a) ={beS: 6<,a}
and
L{a,V) = L{a) = {[b\c,:beL{a)}
where [b]c is the M-equivalence class of 6. Note that L(a) is a union of
£'-classes and if bGL(a) then ba a2H'a so that baEL(a). Thus one may
define a map pa(P) —pa: L(a) -> L(a) by bpa= ba. Further, as £' is a right
congruence, pO(P) =pa: L(a) -> L(a) given by (\b\c)pa= [&«k' is a maP-
One defines in a dual manner R(a,V) = R(a), R(a,V) = R(a) and maps
Aa(P) = Aa: R(a) #R(a), Aa(P) = Aa: R(a) —=R(a).
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The main theorem of this paper gives necessary and sufficient conditions
on a *-pair V for a semigroup S such that S is a straight left order in a
semigroup Q where V =V(Q). Given such a *-pair V, we know that Q is
uniquely determined up to isomorphism.

P roposition 3.1. Let S be a straight left order in semigroups Q and
Q’', where V(Q) = V(Q"). Then Q is isomorphic to Q' under an isomorphism
which restricts to the identity map on S.

Proof. This is an immediate consequence of Theorem 3.1 of [G2],

A subsemigroup 5 of a semigroup Q is very large in Q if S has non-empty
intersection with every 7/-class of Q. From Proposition 2.2 we know that if
5 is a straight left order in Q then S must be very large in Q.

P roposition 3.2. Let S bea very large subsemigroup of a regular semi-
group Q and let V{Q) =V = (*/, <r). Then S satisfies the following condi-
tions with respect to V.

(Ei) C'olz'=1Z'0C.

(Eii) (/) For all b,cE S, b<ic if and only if bC'dc for some d£ S;
(Eii)(r)
(Eiii) Every C-class and every TZ'-class contains a good element.
(Eiv) For all good elements a, pa is one-one and preserves TZ'-classes, pa

is one-one, \ a is one-one and preserves C-classes and Xa is one-one.

Proof. (Ei)(Eiii) These follow directly from the fact that 5 is very large
in Q and CoTZ=TZoC in Q.

(Eii)(/) If bC'dc then Qb = QdcQQc so that b<ic. Conversely, if
then b=qc for some q£Q. Now gTih for some h £ S so that b=qgcChc in Q
and bC'hc in S.

(Eiv) Given b, c£ L(a), we know Qb Q Qa and QcQ Qa. Since a is good,
a&a = aa"TLa for some a# £ Q. Certainly bQ = baa”"Q QbaQ QbQ so that
blZ'ba —bpa. If bpa= cpa then baa* = caa& from which we have that b=rc.
The proof that pa is one-one is similar.

Dual arguments now complete the proof.

A *-pair V for a semigroup S is an embeddable *-pair if V satisfies condi-
tions (Ei), (Eii), (Eiii) and (Eiv). We give below an equivalent formulation
of these conditions and deduce a number of further properties held by em-
beddable *-pairs. It is convenient at this point to list the conditions under
consideration.

Let V be a *-pair for a semigroup S.
(Ev) (/) For all a,b£ S where a is good, if b </ a then balZ'b.
(Evi) (/) For all a, b,c£ S where a is good, if b,c<ia and ba= ca, then b=c.
(Evii)(2) For all a, 6,c£ S where a is good, if 6, c<;a and baC'ca, then bC'c.
(Fi) () For all a, b, c£ S where aisgood, ifb,c<;aand ba ca, then b</c.
(Fii)(/) For all a,&£ S where a is good, if at'b then baTi'b.
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(Fiii) If & 5 then there exists an s€ 5 with
bn'bsC'sn'sbC'b-

further, given such an s,bs and sb are good, bsb'H'b and sbsTi's.

(Fiv) If a is good, then Ha is a subsemigroup all of whose elements are
good.

(Fv) (2 For all a,b €5 where a is good, if a </ b then baC'a.

Lemma 3.3. Let V be a *-pair for a semigroup S. Then V is an em-
beddable *-pair if and only if V satisfies conditions (Ei), (Eii), (Eiii), (Ev),
(Evi) and (Evii).

Proo+. ThiSisjust a matter of rewording.

Lemma 3.4. LetV = (</, <r) be an embeddable *-pair for a semigroup S .
Then V satisfies conditions (Fi), ..., (Fv).

proor. (FI)@ If b,c<ia where a is good and ba<ica, then we know
from (Eii)(l) that baC'dca for some &£ 5 and further, eZc</c</a. Thus by
(Evii)(/), bC'dc and it follows that b”ic.

(Fii) (@ If aC'b where a is good then certainly by (Ev)(Z) we have baTZ'b.
In addition, baCafU'aC'b so that baC'b.

(Fiii) If b£ S then using condition (Eiii) there are good elements c, d in
5 with ¢JZ'bC'd. Then from (Ei) we may choose s £ S with cCsiz'd. We
claim that s is the element required. For using (Fii), b'HbdTZbs and so by
symmetry we obtain

bn'bsC's'R'sbC'b.

It is then easy to see that bs and sb are good. The last part of the condition
is immediate from (Fii).

(Fiv) If ais good and b,c£ Ha then bcTZ'baTL'bH'a, using (Fii). Dually,
bcC'a so that be6 Ha and H'a is a subsemigroup, which clearly can consist
only of good elements.

(Fv) @ Ifa,6€5 where ais good and a bthen aiH!a2 <i ba </ a so that
aC'ba.

4. Straight left orders

Given a straight left order S in Q, then by Proposition 2.2 and Lem-
ma 2.3, Q is regular and 5 is very large in Q. Hence Proposition 3.2 gives
that the *-pair V(Q) is an embeddable *-pair. In this section we give neces-
sary and sufficient conditions on an embeddable *-pair V for a semigroup 5
such that 5 is a straight left order in a semigroup Q where V =V(Q).
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T heorem 4.1. Let S be a semigroup having an embeddable *-pair V —
= (=*>=»)* Then S is a straight left order in a semigroup Q such that V =
=V(Q) if and only if S satisfies the following conditions with respect to V.

(Gi) 5(5) ={a£S : ais good}.

(Gii) Ifa£5(5) then Ha is right reversible.

(Giii) Ifb,c £S then b”ic if and only if there existh£5(5) and K£5
with hTZ'k, b<Th and hb—kc.

(Giv) //a,c£5(5) and b£S with aTZb, then there exist u,h £ 5(5),
v,kES with hTZ'klZ'uTZ'v, auTZ'bc, v*ic, u”ra, k™ia, hua —kaz and
hvc2- kbc.

Remark. Given a *-pair V = (/, ~r) satisfying (Gi) and (Giii), condi-
tion (Evii)(/) in the list of conditions V must satisfy to be an embeddable
*-pair becomes superfluous. For in this case, if b,cf 5, a £ S(S), b,c<ia
and baCca, then using (Giii), hba = kca for some /i £5(5) and k £ 5 with
ba h and hlz'k. By (Eii)(/) and (Evi)(/) we have hb —kc and by (Ev)(/)
bTZba <r h. Again by (Giii),b<,c. Dually one obtains c<; b so that bC'c.

Proof Of Theorem 4.1. Let 5 be a straight left order in a semigroup q
where V = V(Q). Then a£5(5) ifand only ifaliaz in Q. So a £ 5(5) if and
only if aH'az in 5, that is, a is good. Given a£5(5) then Ha is a group
and by Proposition 2.2, Ha—S DHa is a left order in Ha . Theorem 1.24 of
[CP] tells us that Hais right reversible.

To see that (Giii) holds, take 6,c£ 5 where 6<;c. Then b—h"kc for
some h£5(5) and k£ 5 where hTZ*k. Then bQ —h"kcQ Qh&Q —hQ and
hb = hh&kc = kc. Conversely, given elements 6,c, AE5 and /i £ 5(5) with
b h and hb= kc, then b—h#hb = h&kc so that Qo CQc and b</c as
required.

Finally we consider (Giv). Let a,c£5(5) and beS with aTZ'h. Then
a#tbc# = u*v for some u£5(5) and v £ 5 with uTZv. This gives that

Qv—Qu”™v —Qa*bc& QQc& =Qc

and
uQ = uMvQ = a&bhc&Q QaqQ.

Now bc& = au&v so that auTZ”auv = bc"TZ"oc. We also have that
ua#bc = vc2 and ua# = h#k for some h £5(5) and k£5 with hlZ'k. Since
u<ra and u is good we have by (Fv) that uaTZ'u, so that

uTZQuaTZQua*TZQhIZQk
and u, v,h and k are M'-related. Also,

Qk =Qh"k = Qua” QQa” = Qa.
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From ua* = h#k we have hua = ka2 and from h#kbc= vc2 we have kbc —
= hvc2.

Conversely, we suppose that 5 satisfies conditions (Gi), ..., (Giv) with
respect to V. Our aim is to construct via equivalence classes of ordered pairs
of elements of 5 a semigroup Q in which S is embedded as a straight left
order. This we do using a series of lemmas.

Let

£ = {(a,b) G5 x5 :a€S5{S),aU'b}.

We note that by (Eiii), £ is a non-empty set. Define a relation ~ on £ by

(a, b) ~ (c,d) ifand only if aTZ'c and there exist h,kf Ha with
ha2 —kca, hb=kd.

If (a, b) ~ (c, d) then by (Fii) and (Fiv) we have b'H'hb = kd'H'd.
Lemma 4.2. The relation ~ is an equivalence relation on £ .

Proof. Let (a,b) e £. Putting h= k=a we see that (a, b)~ (a, b).

Suppose now that (a, b) ~ (c,d) so that aTZ'c and haz =kca, hb—kd for
some h,k GHa. We have that acK'cH!c2 so that by (Gii), uac = vc2for some
u,v GHc. Then uac, hac 6 H'c so that suae = thac for some s,t6 Hc. Since
TZ Q TZ* we have hac = kc2 so that from

sve2 - suae = thac = tkc2,
c2TZ'd and aclZ'b we have svd =tkd and sub =thb. Thus
sub = thb = tkd = svd

and as ubTZ'vdTZ's, condition (Evi) gives that ub —vd and so (c,d)~ (a, 6).
It remains to show that ~ is transitive. Consider (a, b), (c,d), (m, n) £
where (a, ft) ~ (c,d) and (c, d) ~ (m, n). Then alZ'bTZ'clZ’dTZ'mTZ'n and there

are elements h,k EH4&, u,v € Hc with

ha2=kca, hb=kd, uc2—vmec, ud—vn.

Since Hc is right reversible there are elements u', t/ € Lf' with u'c2=
—v'amc and then one may pick s,t£H ¢ with su =tu'. Thus

svmc = suez=tvlc2 - tv'amc
and as mcTZ'n, svn —tv'an. Also,
tu'd —sud —swn - tv'an
gives by (Evi) that u'd —v'an. Now pick p, g€ H'c with pkcz—qu'c2. Then

[ph) a2 —pkea —qu'ca = (qv'a)ma
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and
(ph)b = pkd = qu'd = (gv'a)n

using the fact that aTZ*clZ*c2lZ*d. But ph,qv'a€ Haand so ~ is transitive.

Put Q=Y1/~ and denote the *-equivalence class of (a, b) £ by [a, 6],
Define a multiplication on Q by

[a 6][c, d] —[u, vd]

where there are elements u,h £ <§{S), v,k£S with h1Z'klZ'ulZ'v, auTZ'bc,
vAic, u”ra, k™ia, hua=ka2 and hvc2a —kbc. Certainly by (Giv) such
elements always exist. By (Ev), vd'JZ'vc'R.'vIZ'u so that (u,vd) e~.

Lemma 4.3. The given multiplication on Q is well-defined.

Proof. Suppose that [a 6] = [s,t] and [c,d] = [x,y] in Q. Then
alZ'blZ'slZ't and there exist m, n £ Ha with

Q) maz =nsa, mb—nt.
Also, cTZ'dTZ'x1Z'y and there exist p,q£ Hc with
3] pc2=gxc, pd = qy.
By the definition of multiplication,

[a, 6][c, d] = [u, vd]

where there are elements u,h £ S(S), v,kE S with h1Z'k1Z'u1Z'v, auTZ'bc,
v<ic,u a, k<iaand

3 hua = ka2, hvc2= kbc

and
[MI[*,1/] = iy, V'Y\

where there are elements u',h" £ (S), v',k' £ S with 'TZ'’K'TZ'U'TZ'V', su'H 'tx,
v' X, u' <rs, k' <is and
4 h'u's =k's2, h'v'xz =Kk'tx.

To show that the multiplication is well-defined we must prove (u, vd) ~
~ (u'v'y).

Since u”Ta and ma2 = nsa we know that mau = nsu. Then

nsuTZ'mbc = ntcTZ'ntxTZ'nsu’".

Certainly ns£S(S) and u <TalZ'ns, u' sTZ'ns so that by (Evii), uTZ'u"
Then as Hu is right reversible, there are elements e,/ £ Hu with

(5) euz =fu'u.
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The elements hu2, h'u'u lie in Hu so there are elements g,i in Hu with
(6) ghuz =ih'u'u.
We can then pick j,I GH'u with

jeu2= Ighu2.

Now u<rma and maES(S) so by (Ev), mauC'u'H'lghu2. From (Giii)
there are elements 0 G5(5) and r G5 with olZ'r, Ighu2 o and olghu2 —
= rmau.

This gives that

(7) rnsu = rmau = olghu2 = olgkau

using (3) and u”Ta. But auTl*bc so that rmbc = olgkbc. Then using (1)
and (3),
rntc = rmbc = olgkbc = olghvc2.

Since clZ*x this gives that rntx =olghvcx. We use (7) again to obtain
rnsu = olghu2= olih'u'u = olik'su,
from (4) and the fact that ulZ'u' ~rs. But sulZ'su'TZ'tx and so
olghvex = rntx —olik'tx.

From 1IZ'lghuz o and o G5(5), (Eii) and (Eiv) give that Ighvcx =
= lik'tx. The same two conditions then yield ghvcx = ik'tx and so by (4) we
have that ghvex = ih'v'x2. Now from jeuz —Ighu2 we have jev= Ighv and
so jevex = lih'v'x2. From (6),

jfu'u = jeuz=Ighuz=lih'u'u,

so that jfv' —Ilih'v'. Thus jevcx =jfv'x2 and so evex = fv'x2. Since
evex <iixTi'pex there are elements wES(S) and z G5 with wTZ'z, evcx
m and wevcx =zpcx. This gives by (2) that

wfv'x2 = wevcx = zpcx = zgx2
and as cxTZ'd and x2TZ'y we have that
wevd = = zqy—wifv'y.
But ev'ydlZ'evex 5+ w and
fv'ylZ'fv'xTZ'fv'1Z'v'1Z'evT Z'evclZ'evd
so by (Evi), evd —fv'y. Thus (u,vd) ~ (uyv'y) as required.
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|_EETE1.4. If[a 6] £ Q and x £ <S(5) where xlIZ'a, then [xa, xb] £ Q and
[a, b] —[za, xb].

Since xaH'a and xbH’b, certainly [xa,xb] £ Q. By the right,
reversibility of Ha, there are elements p,qf Ha with pa2= gxa2= q(xa)a,
and as a2TZ* one has pb = gxb.

I_EETH.S. The given multiplication on Q is associative.
Rof Given [a, 1], [c, ], [h, K] £ Q let
X = ([a,6][c,dD[/i, K]

and

Y = [a, 6]([c, d][h, AD.
Then X = [ul?vid][h, A] where there are elements ui,h\ £<S(S), v4,ki £5
with h\IZ'kilZ'U\1Z'v\, au\H'bc, A\ ¢, u\ &, k\ </a and

(8) h\U\a = k\a2, h\V\c2—k\bc.
Now by Lemmas 4.3 and 4.4,
X = [MU\, /iiUid][/i, Al = [«2, "2

where there are elements W,h2 ES(S), "2, A2 £ £ with hfRIkflZ'v-i,
hiU\UilZ'h\W\dh, V2 /i, <2 ~i“i) & lii«! and

9 h2Uzh\Ui = k2(h\Uv)2, h2Veh2 = kz2h\V\dh.
Considering Y , we have that
Y =[afc][u3, u3A

where there are elements /i3,us £ 5(5), k3,v3eS with haTZksTZ'us TZ'v3,
cuzR'dh, B <ih, u3<rc, A3 cand

10 hau3c=ksc2, hsvah2 = kadh.
Again by Lemmas 4.3 and 4.4,
y = [a, b][h3u3, hav3k] = [u4, wd/i3\3A

where there are elements u4,ha £ S(S), v4,ka £5 with haTZkalZ'uslZ,v4,
auaTZ'bhsu3, v4 <1 hau3, u4 a, A<;a and

(12) hauda = ksa2, hava(h3aus)2 = kabhsu3.

Using Lemma 4.4 once more gives that X = [/i2«2) h2\kK] and Y = [/i4u4,
havahavzk). Since hausfl'us ¢ we have from (8) that h\V\chsus = k\bhzus
and so as u4 kTa,

h\U\U4 —k\au41Z'k\bhaus = h\V\ch3uz1Z'h\V\cu3IZ'h\V\dhTZ'h\U\U2
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so that by (Evii), UiUslZ'uiu2. Now au~TZ'bh*u”R'bu” ~ rbc'JZ'aui so as
W,ui <ra (Fi) gives that us <TU\. In addition, u2z <rhiUiTl'u\ so that
by (Evii), uaTl'u2. Then h2lUz1Z'haus and we can pick m,nG Hh  with

mh2u2h2U2 = nh4u4h.2U2.

We can now make the following sequence of deductions. From h2u2TZ'uz2,

mh,2U2 —nh4u4v,2

and so as u2 h\U\ and u2 a we have from (9) and (11) that

mk2h\U\u2 = mh2u\ = nhaus4u2 = nksau2-
Now using (8) and u2*T
mk2k\au2= mk2h\U\u2= nk4au2

and so as WIZ'u4,
Tnk2k\au4 = nk4au4.

But aus4H'bhj,U3JZ’bus and so
mk2k\buz = nk4bus.
We now use the fact that us <rc, h*u*R-'u®, (8), (10) and (11) to obtain
mkz2hiVicus = nk4bus = nhavah”™u\ = nhavak*cu”.

We know that cu*TZ'dh and so

mk2hiVidh = nh4v4k3dh
from which (9) and (10) give

mh2\; h2 = nh4v4h” v/ h2.
Finally as h217*k we have

mh2V: k = nh4v4h”™vk.

We have constructed a semigroup Q, which we now show is the semigroup
of left quotients for which we are looking. First we show that S is embedded
in Q.

Let s GS: from (Eiii) we know that slZ'a for some a G<S(5). Define
4> S ->Q hy

scj—[a,as] where aG<S(S), alZs.

Since as'h'sTZ'a this definition makes sense. Moreover, if b£.S(S) and
blZ's, then blZ'a and there are elements h,k GHa with haz —kba. But then
has = kbs and so [a, as] = [6,6s], showing that < is well-defined.
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I.EETH.6. The function $embeds S in Q.

Proof. Suppose that s,t £ S and gf>= tf>, so that (a, as) ~ (b, bt) where
a,b£S(S), alZ's and blz't. Thus alZ'b and there are elements h,k £ H'a with
ha2= kba and has = kbt. Since alZ't,

hat = kbt = has

so by (Evi), s=t and < is one-one.
To show that <is a homomorphism, again consider s,t£ S where sR'a,
tR'b and a,b £5(5). Then

Q)>—1[a, as] [b, bt) = [u, vbt]

where there are elements u,h £S(S), v,kE S with hR'kR'uTZ'v, auTZ'asb,
v<ib,u <Ta, k a, hua = ka2 and hvb2 —kasb.

Choose ceS(S) with stTZ'c, so that (si)0 = [c,cs<]. Now u<Ta, sb<T
<TslZ'a and so from aulZ'asb, (Evii) gives uTZ'sb. Then uTZisblZ'stTZ'c and
we may choose p, g€ Hu with pu2= gcu.

From hua = ka2 we have hus = kas so that

hvb2= kasb —husb
and so by (Evi), vb2=usb. But blZ't and so
pvbt = pust = qcst

as required.

In view of the preceding lemma we may where convenient identify an
element s of S with its image under ¢#in Q, and 5 with Sf>

lEETﬂ.?. Let x £ S(S) and [a, b]eQ. Then
(i) ifa”rrx then [x,x][a,b\ = [ab\,
(iiy ifb<ix then [a, 6][x,X] = [a, b).

Proof, (i) By definition of multiplication,

[x, X][a, 6] = [u, ug]

where there are elements h,u £ S(S), k,vE S with hTVhVJuRlv, xulZ'xa,

v<ia, u”rx, k<ix, hux —kx2 and hvaz —kxa. Hence uTZ'a and there

are elements p, q £ Ha with paz = qua. From hux = kx2 and a <rx we have

hua —kxa = hva2 and so ua = va2. Thus paz = qgvaz and as az1Z'b, pb = gvb.
(i) By definition of multiplication,

[a, bI[x X] = [u, vx]

where there are elements h,u £ S(S), k,vE S with hVJkIZIuRlv, auR'bx,
vV X,u”Ta, k a, hua= ka2 and hvx2—Kkbx. Since b</x by assumption,
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we have that auTZ'bxTZ'bTZ'ab and so ulZ'blZ'a. Thus we may pick p,g£ Ha
with paz = qua.

From hvx2= kbx and hvx, kb<ix we have hvx = kb. We now pick m, n £
GHu with m/iu = nqu, from which we obtain

npa2= ngua = mhua —mkaz2.

Then
np6 - mkb —mhvx -nqvx

since uaTZ'vlZ'vx, and then by (Evi), pb—qvx as required.
LEET&.& Let b,c,df£ Ha where a£S{S). Then [6,c][c, 6]= [d, d\.

H(IfCertainly [x,y] GQ for any x,t/G Ha. Now [6, c][c,6] = [ii, u6]
where there are elements h,u £ S{S), k,v GS with hJI'kTZ'uTZ'v, bulZ'c2,
u<ic, u<Th, k <ib, hub= kb2 and hvc2= kc2.

Since bulZ'c2lZ'bd and u <r6, we have ulZ'd and so there are elements
p,g GHd with pd2 = qud. Now hub = kb2 = hub2 and so ub = vb2. Thus
pdz2 = gvbd and so pd = qvb as required.

The following lemma is an easy consequence of Lemmas 4.7 and 4.8.

I_EETm.9. Every square-cancellable element of S lies in a subgroup
of Q. IfaGS(S) then the group H-class Ha of Q has identity [a, a] and the
inverse of af>=[a,aZ] in Ha is [a2,a]. Moreover, ifb£H"a then [a, a] = [6,6].

LEMMA 4.10. Let g= [a,6]GQ. Thenq = a#b.

FiGEfGiven g= [a,b] by definition we have that a£S(S) and aTZb.
Thus a lies in a subgroup of Q with group inverse a# = [a2, a] and b= [a, ab].
Then

06 = [a2, a][a, ab] = [u, vab]

where there are elements h,u £ S(S), k,vE S with hIZkTZ'uTZ'v, a2u!Z'a2,
v <ia, u<ra2 k</a2, hua2 = ka4 and hvaz = ka2. From a2ulZ'azlZ'a3 and
u <raz we have uTZ'a and so there are elements p,qf£ Ha with paz —qua.
Since v <i a2z and k </ a2 we have from hvaz = ka2 that hv= k. Thus huaz —
—hvas and so uaz = va4, giving ua =va3. Now paz—qvas so that pb = gvab
and [a, 6] = [«, vab] = a&b as required.

From Lemmas 4.9 and 4.10 we have

GE.EI.SA.ll. The semigroup S is a left order in Q.

We now proceed to show that V = V(Q).



STRAIGHT LEFT ORDERS 369

I.EETﬂ.lz. Let 6£ S and as in (Fiii) let s£S where
bsTZ'bC'sbTZ'sC'bs
so that bs,sb £ S(S), bsb'H'b and sbsTi's. Then 6&= [6s, 6s6] and has (semi-
group) inverse [56,5] in Q. Further,
[6s, 636][s6, S] = [6s, 69]
and
[s6, s][6s, 656] = [s6, s6].
FiGEfo definition of multiplication,
[Bs, 6S6][S6, S] = 1. w1
where there are elements h, u £ S(S), k, v £ S with hRIkR!uTZ'v, bsuTZ'bsbsb,
v <1sh, u<Tbs, k<ibs, hubs = kbsbs and hvsbsb = kbsbsh. Since u " rbs
and bshTi'oTZ'bs we have from bsuTZ'bshsb that ulZ'bsblZ'bs. Thus there are
elements p, g£ Hs with pbsbs = qubs. We have
hvsbsh = kbsbsb = hubsb
and so vshsb = ubsb and vsb = ub. Then pbsbs = qvsbs so that pbs = qvs and
[6s, 6s6][s6, s] = [6s, 65].

Computing now [s6, s][6s, 6s6] we have that it equals [u',v'bsb] where
there are elements h',u' £ S(S), k',v' £ S with h'TZ'K'IZ'U'1Z'V", sbu'TZ'sbs,
v'<ibs, u'~rsb, k'<isb, h'u'sbh —k’sbsb and h’v'bsbs = k'shs. From
u',s shand sbu'TZ'sbs we have u'TZ'sTZ'sb and so there are elements p',q' £
£ H's with p'sbsb = q'u'sb. We have

h'u'sb = k'sbsb = h’v'bsbsh
giving that u'sb = v'bsbsb and u's = v'bsbs. Then p'shsb = g'v'bsbsb from
which we deduce p'sb = g'v'bsb so that [s6, s][6s,6s6] = [$6,56].

To see that [s6, s] is the inverse of 6 is now a straightforward application
of Lemma 4.7.

I.EETH.lB. The embeddable *-pair V is induced by Q.

FiGEfLet 6,c £ S and suppose that s,t £ S are chosen so that
bTZ'bsCsTZ'sbC'b and cTZ'ctC'tTZ'tcC'c. Put 6'= [s6,s] and c' —[tc,t] so that
b' and c' are inverses in Q of 6, c, respectively.

Assume first that 6 A rc. Then bsTZb <rclZ'ct so that cch =
— [ct, cE][6s, 6s6] = [6s, 6s6] = 6 by Lemmas 4.7 and 4.12, so that bQ1QcQlI.
Conversely, if bQ1C cQ1 then either 6= ¢ (and certainly 6<rc) or b= cq
for some q= [m,n] in Q. Now cq = [ct, ctc][m,n] = [u,vn] where in partic-
ular uES(S), VES and u”rctTZc. Then from [6s, 6s6] —[u, vn] we have
bTZ'bsTZ'u%Tc. The proof that 6</c if and only if QIbQQIc is similar and
so we deduce that V = V{Q).

larex .14, The semigroup S is a straight left order in Q.

FiGEflf q£ Q then by Lemma 4.10, q = [a, 6] = a#6 where aTZ'b in 5.
But V =V(Q) so that aTzbin Q and 5 is straight in Q.
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5. Fully stratified left orders

If 5 is a straight left order in a semigroup Q and V(Q) = Ar), then
5 is stratified if C = £% and 1Z = 17*, and fully stratified if </ =~£* and

=<n*. Clearly a fully stratified left order is stratified.

Stratified left orders occur naturally in the theory of semigroups of quo-
tients. It is known, for example, that every left order in a bisimple inverse
w-semigroup is stratified [G2] and it is easy to see they are indeed fully strat-
ified. Moreover from Lemma 1.7 of [FG] it is immediate that a ring R that is
a straight order in a ring Q is also fully stratified in Q. However, not every
stratified left order is fully stratified, as is shown in the following example.

Example 5.1. Let 5 be a right but not left reversible, cancellative semi-
group. Thus there are elements a,b in S with aS flbS=0. Pick s£ S ar-
bitrarily and let P be the 2x2 matrix over S given by pn = a, p12= b,
P2i = 5, P22 —0. Put T —M*°(2,5,2; P) and Q = A4°(2, G,2; P), where G is
the group of left quotients of 5. As shown in [G3], T is a stratified left order
in Q. We claim that T is not fully stratified.

Let a —(1,5,2) and B = (1,s,1). If x,y £T1and Rx =Ry then either
x=y=0and ax=ay or x/ Oand y® 0. Clearly if x,y 0 and XxTZy in
Q then x =y and ax —ay. But we have now covered all possibilities for
x and vy, for if (1,s, 1)(1,t,j) = (1,s,1)(2,u,j) then sat=sbu, giving at =
=bu and a5fl65y~0, a contradiction. Further, if (1,s, 1)(1,t,j) = (1,s, 1
then sat = s gives sath2= sb2 and atb2 = b2, again a contradiction: similarly,
1,s, 1)(2,t,j) = (1,5, 1) gives a contradiction. Thus a<£.B8in T, but Qa is
not contained in QR.

We now use Theorem 4.1 to describe fully stratified left orders.

Theorem 5.2. A semigroup S is a fully stratified left order in some
semigroup Q if and only if the *-pair V = (“"£*,A77*) satisfies conditions
(Ei), (Eii)(r), (Eiii), (Evi), (Evii)(r) and (Gii), (Giii) and (Giv).

Proof. If 5 is a fully stratified left order in Q then the *-pair V =
= (<£.,<7j)) =V(Q) is an embeddable *-pair. Thus by Lemma 3.3 and
Theorem 4.1 V satisfies the given conditions.

Conversely we suppose that P = (<£*,<k*) satisfies the stated condi-
tions. Clearly (Gi) holds and so by Theorem 4.1 it is enough to show that
V is an embeddable *-pair.

Suppose that b£ S and a £ >S(5) where b<£. a. Then if x,y £51 and
xba = yba we have by (Evi)(/) that xb = yb, for it is clear from the definition
of that xb,yb<c*b. This gives that b7Z*ba and so (Ev)(/) holds: dually,
(Ev)(r) holds. Considering now (Eii)(/), suppose that b,c£S and b<E£. c.
Then from (Giii) hb = kc for some h£5(5) and k £ 5 with b<jz h. But then
by (Ev)(r) bC*hb= kc and it follows that (Eii)(/) holds. By the comment
at the beginning of the proof of Theorem 4.1 we also have that V is an
embeddable *-pair as required.
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6. Left orders in regular ”-semigroups

We recall from the introduction that an H-semigroup is a semigroup
on which Green’s relation H is a congruence. Any left order in a regular
A-semigroup is straight [G1]. The aim of this final section is to specialise
Theorem 4.1 to obtain Theorem 3.1 of [G4], which describes those semigroups
that are left orders in regular 7Csemigroups.

Lemma 6.1. Let S be a straight left order in a semigroup Q. Then Q is
an H-semigroup if and only if H® fl (5 x S) is a congruence on S.

Proor. It is clear that if Q is an A-semigroup then V9 D(5 x S) is a
congruence on S. The proof of the converse is just as in Lemma 3.20 of [G4].

The approach of [G4] is via consideration of suitable pairs of equivalence
relations on a semigroup. If O —(£', TZ) where £', TZ are equivalence rela-
tions on a semigroup S, then O is a suitable pair if £' is a right congruence
contained in £*, TZ is a left congruence contained in TZ* and for any a ES,
aG<S§(S) if and only if aH'a2, where 7£ = £' n TZ.

The following corollary makes use of two lemmas from the proof of The-
orem 3.1 of [G4]. However, our object is to avoid the ‘constructive’ part of
the proof of that theorem.

Corotltlary 6.2. LetS be asemigroup and let O —(C ,TZ) be a suitable
pair for 5. The following conditions are equivalent:

(i) S is a left order in a regular 'H-semigroup Q such that CP Fi (5 XS) =
=£"and1ZQn(SxS) =TZ;

(i) S satisfies conditions (A), (B), (C), (D) and (E) with respect to O:

(A) H' is a congruence on S and S/H" is regular,

(B) ifaeS(S) then Ha is right reversible,

© ) ifaeS(S),b,ceS, aCbC'c and ba=ca, then b=c,

(D) (/) ifa,b 6 S(S) and aC'b then baH'Db,

(E) (/) ifa,b,cE£ S and aC'cha, then aC'ba.

Proof, (i) = (ii) Certainly 5 is a straight left order in Q and so by
Theorem 4.1 V(Q) =V = (£;, <r) is an embeddable *-pair satisfying (Gi),
(Gii), (Giii) and (Giv). Note that there is no ambiguity in the notation
£', TZ, H'. From Proposition 2.6 of [G4], H' is a congruence on 5 and
S/H' = Q/H so is regular. Condition (B) is just (Gii), (C) follows from
(Evi) and (D) from (Fii). To see that (E) holds, let a b,cE S where aC'cba.
Then Qa = Qcba QQbaQ Qa so that aC'ba\ dually one can show that (E) (r)
holds.

(i) = (i) Let T =S/H" and let &¢ S —T be an onto homomorphism
with kernel H'. From Lemma 3.3 of [G4],

af>f) in T ifand only if aC'b in S
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and
af>TA() in T if and only if aTZ'b in 5,

for any a,b £ S, from which it follows that T is "-trivial.
Define relations </, on 5 by

a”ib if and only if Ta(f>"Th<f)

and
a%rb if and only if acf)T Q b<t=T

where a,b£ S. Then 5i/,"r are preorders on 5 with associated equivalence
relations C , TZ1, respectively. Let V = (*;, ~r): we show that V is an embed-
dable *-pair satisfying (Gi), (Gii), (Giii) and (Giv). Note that it is built into
the definition of a suitable pair that an element a of 5 is square-cancellable
if and only if aTi'a2 and we remark that this is also equivalent to ap being
idempotent.

It is easy to see that </ is right compatible with multiplication and <r
is left compatible. Given b,c£ S with 6</c, then bj)= og)J))= (dc)ct> for
some d £ S, so that bTL'dc and certainly bCdc. Thus bC*dc”c* ¢ by the
assumption that £'CE*. So and dually, £r =77 We now have
that V is a *-pair for 5. Again, there is no ambiguity in using the notation
£, TZ\W.

Using the above paragraph it is immediate that (Eii) holds. Moreover, it
is straightforward to show that (Ei), (Eiii), (Ev) and (Evii) hold. Considering
(Evi)(f), suppose that 6,c G5, a£S(S), b,c<ta and ba=ca. Now from
(Evii) (1) we certainly have that bCc and so bCcCd for some d £S(S). In T,
Tdcf) Q Tacp so that Td({f>Q Ta(f)d(p QTd(f) and dC'ad. Further, adad'H!adPIVad
so that ad £ S(S), bad = cad and bCcCad. Condition (C) (/) gives that b= c.
The dual argument shows that (Evi)(r) holds. Thus V is an embeddable
*-pair satisfying (Gi) and (Gii).

Let b,c £ S where b</c. Then bH'dc for some c£ S. Let s be the element
of 5 associated with b whose existence is guaranteed by (Fiii). Since H' is a
congruence on 5, sh'H'sdc and since %' is right reversible there are elements
p, g in H'sh with psb = gsdc so that bpsb = bgsdc. It is routine to show that
bTZ'bpslZ'bgsd and bps £ S(S) so that putting h = bps and k = bgsd, h and k
are the elements required for (Giii). Conversely, given elements h and k as
in (Giii), then bC'hb=kc c.

To apply Theorem 4.1 it remains to show that (Giv) holds. Let a,cf
£S(S) and bE S, where aTZ'h. We use Lemma 3.4 of [G4] to find elements
s €«S(5), tES with slZ'fH'abc2 and sabc2 = tc4. From (Evi)(/) we have that
sab = tc3. Put h=s, k=s2a, u=sa2 and v—tc. We claim that h, k, u and
v are the elements required by (Giv). For from sTZ'abc2 we have s <Ta and
as s,a£S(S) it follows that asTL'sIZ'saTi'ulZ'k and u£S(S). Also,

v = tc'H,abc37i'abc2'H,tTZ,s
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so that h, k, u and v are TJ'-related. Since s<rawe have
au —asai'H'sa2 = uTZ,abc2'Hbc.
Clearly v</c, u<ra and k </a. Finally,
hua = s(sa2)a = (s2a)a2 = kaz

and
hvcz —s(tc)c2= (sz2a)bc = kbc.

By Theorem 4.1, S is a straight left order in a semigroup Q such that
V =V{Q) and Lemma 2.3 gives that Q is regular. In addition, '"H —VP D
D (5 X5) is a congruence on S so that by Lemma 6.1, Q is an 7~-semigroup.
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ON THE SPECTRUM OF THE LAPLACIAN
IN NEGATIVELY CURVED MANIFOLDS

A. BORBELY

Abstract

Let M" be an n-dimensional, complete, simply connected Riemannian manifold with
sectional curvature K < —k ” 0 and Ricci curvature Ric ~ —a < 0. Then the spectrum

of the Laplacian on Mn is bounded below by ~(n —2)\fk + yja —(n —2)kj /4. This
improves a previous result due to A. G. Setti and H. P. McKean.

1. Introduction

Let Mn be an n-dimensional, complete, simply connected Riemannian
manifold with sectional curvature K < —k < 0 and Ricci curvature Ric ?
N —a <0. A G. Setti [4] improved an earlier result of McKean showing that
the bottom of the spectrum Ao of A (considered as a positive selfadjoint
operator on L2(Mn)) is bounded below by (a -f (n —I)(n - 2)fc)/4.

The proof of this theorem hinges upon a geometric estimate for the trace
of the second fundamental form of geodesic spheres. This, however, is not
sharp, unless M n has constant sectional curvature. We improve this estimate
(Lemma 2) such that it becomes sharp when Mn has constant sectional
curvature or Mn is the complex hyperbolic space. In the case of the real
hyperbolic space our estimate reduces to that of McKean and Setti.

Using the same method as in [4], [3], [5] and [1], this estimate gives us
the following generalization of Setti’s result:

Theorem 1. Let Mn be an n-dimensional, complete, simply connected
Riemannian manifold with sectional curvature K £ —k <0 and Ricci curva-
ture Ric <—a < 0. Then for the bottom of the spectrum Ao of the Laplace
operator A we have

Ao~ ((n - 2)Vk+ yla —(n —2)7 /4.
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2. Notation

Let pe M be fixed. Denote by STpM the unit sphere in the tangent
plane at p and by Sp(t) the geodesic sphere of radius t around p. Following
Chavel [1, pp. 64-67], consider the map At: STPM —»Sp(t) defined by

At(v)=expp(tv).

After identifying TpM and Texp" tv)M via parallel translations along geodesics

we can regard the derivative of this map A(t,v):TpM -»TpM as an endo-
morphism of the tangent plane at p£ M.

Therefore in geodesic spherical coordinates at p, (t,v) 6 R+ XSTpM we
can write the metric in the form

ds2= (dty2 + IA(t, v)dv
and the volume element of M as (cf. [1, p. 67])
dV (expptv) =g(t,v)dtdpp(v),

where g(t, v) = det A(t, v) and dpp denotes the (n - I)-dimensional measure
on the unit sphere STpM.

Define also by U(t, v) the second fundamental form of the geodesic sphere
Sp(t) at expptv. It is well-known [1, p. 72] that U(t, u) = A(t, v)'A~x(t, v):
vl —>v-1, where again we identified the tangent planes at p and at expptv
via parallel translation. That is

@ tr U= (In(detA))'=g'/qg,

where_ = JV. It is also known [l, p. 72] that U(t,v) satisfies the Riccati
equation

2 U'+U2+R =0,

where RE = R{v, £)u is the curvature tensor at exppf? and (again we

identified the tangent planes via parallel translation along expptv).

3. Proof of Theorem 1

Following the idea of [3], [1], [4] and [5] we need the following geometric
estimate:

Lemma 2. Let Mn be an n-dimensional, complete, simply connected Rie-
mannian manifold with sectional curvature K ~ —k <0 and Ricci curvature
Ricr*—a< 0. Then

tru=g/g>(n—2)vr+ —  =2)k
The proof of Lemma 2 follows from two simple observations.
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Proposition 3. Letf:R+-» R be a Ci-function with limt_ 0O+ f(t) =
= -foo and inff(t) =R >—e0. Then for every e >0 there is a to such that

|/'(*0)| < £ and \f (t0) - R\ <£.

Proof. The proof is elementary and we will leave it to the reader.

Proposition 4. Let U be a positive definite (n- 1) x (n- I)-matrix with
eigenvalues y/k < Ai < eee< An_i and tr U2" a. Then

tr &> (n—2)y/k+ yla —(n —2)k.

Proof. Again it is easy to see that the minimum is assumed when
ylk = Al = eee= An 2 and An_i = y/a —(n —2)k. Suppose this is not true.
Then let A be the first eigenvalue such that A > y/k, i<n - land consider a
symmetric matrix V with eigenvalues Ai,... ,A,_i, Vfc, \J" + A+l —k, A+2
. ,An_i. Obviously, every eigenvalue of V is larger than or equal to y/k

and
trvza=tru2.
However, an elementary computation shows that
tru>trV,

which completes the proof of the proposition.

Proof of Lemma 2. Let v£ STPM be fixed and /3= inftr U. The
comparison principle for the matrix Riccati equation (2) shows (cf. [2]) that

every eigenvalue of U is larger than or equal to y/k. Taking the trace of (2)
we have

(3) (tr U)' + tr i72= —tr A > a.

Obviously, the function tr U satisfies the condition of Proposition 3, so for
every e >0 there is a to such that

tr U2(t0,v) >a - e and B >tr U{t0,v) - e.
From Proposition 4 we know that
B>(n—)y/k+ yla——(n- 2)k- e
Letting £ go to zero proves the Lemma.

Now, the proof of Theorem 1is the same as in [4, p. 281], [1, p. 47] or
[5, pp. 67-69] but for the sake of completeness we include it. By Rayleigh’s
Theorem, it suffices to show that for every / GCq°(M),

fIV/|2dV > ({n-2)Vk+y/a-(n-2)ky /4 [ fdV.
M M
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For convencience, set B = (n —2)y/k+ y/a —(n —2)k. Using spherical coor-
dinates (f,v) GR+ X STPM, from Lemma 2, we have for every v£ STpM,

JF2(t,v)g(t,v)dt< 1/B J f2(t,v)g'{t,v)dt =
0 0

00

= -2/133f(t,v)f'(t, v)g(t, v)dt <
0

< 2 (‘lj tM gM dt) SEATE (v (e v) a2
0 0

Using the fact that |V /|2> (f'(t,v))2 and integrating over v£ STpM, the
Theorem follows immediately.
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REGULAR LATTICES

D. D. ANDERSON and C. JAYARAM

Abstract

Let L be a compactly generated multiplicative lattice with greatest element compact.
We show that L is a finite Boolean algebra if and only if (i) L is reduced, (ii) every proper
compact element is a zero divisor, and (iii) 0 is a product of compact primary elements.
We define a lattice L to be regular if each compact element is complemented. Regular
lattices are investigated and several conditions equivalent to a lattice being regular are
given. For example, we show that L is regular if and only if L is reduced and every prime
element is maximal.

1. Introduction

A multiplicative lattice is a complete lattice in which there is defined
a commutative, associative multiplication which distributes over arbitrary
joins (i.e., a(\Zaba) = va (aiQ) and has greatest element 1 (least element 0)
as a multiplicative identity (zero) (see [1]). In this paper, we prove that a
compactly generated multiplicative lattice L with compact identity element
is a finite Boolean algebra if and only if L satisfies the following three con-
ditions: (i) L is reduced, (ii) every proper compact element is a zero divisor
and (iii) 0 is the product of a finite number of compact primary elements.
Next we introduce the concept of a regular lattice and establish some equiv-
alent conditions for an r-lattice L to be a regular lattice. It is shown that
a compactly generated multiplicative lattice L in which 1is a compact el-
ement and every finite product of compact elements is a compact element
is a regular lattice if and only if L is reduced and every prime element is a
maximal element. This result is used to show that L is regular if and only
if every primary element is a maximal element. Finally, we prove that L is
Noetherian regular if and only if L is reduced and every radical element has
a unique representation as a meet of prime elements.

2. Preliminaries

Let L be a multiplicative lattice. An element p different from 1 is called
prime if ab<p implies either a<p or b<p. An element p(* 1) is said to be
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primary if for every pair of compact elements a, 6 L, ab”p implies either
a<p or bn<p for some nc Z+. A proper element m of L is said to be a
maximal element if m ~ a for any other proper element a of L. An element
ac L is called compact whenever a< VX, X L, implies the existence of a
finite number of elements Xi, X2, ... ,xn of X such that a” xiVx2V- «-Vxn.
L is said to be compactly generated if every element of L is the join of compact
elements.

3. Finite Boolean algebras

Throughout this section, L denotes a compactly generated multiplicative
lattice with 1acompact element. Since 1is a compact element of L, maximal
elements exists in L and every maximal element is a prime element.

An element ac L is said to be complemented if aAb= 0and av b= 1for
some be L. Ifav 6= 1 then aAb =ab. Thus in the definition of a being
complemented we can replace the condition a A6 = 0 by ab—0. Let C(L) =
= {a ¢ L\a is a complemented element of L). It can be easily verified that
C(L) is a Boolean algebra with ab=aAb for every a, 6 C(L). An element
ac L is said to be nilpotent if a" = 0 for some n ¢ Z+, while a is called a zero
divisor, if ab=0 for some nonzero element 6g L. L is said to be reduced if
0 is the only nilpotent element of L. A nonzero element ac L is said to be
an atom if 0~ b” a implies either 0=bor b—a. For undefined terms from
lattice theory, the reader is referred to [2].

Now we shall begin with the following lemmas.

Lemma 1. 7/aV6 =aV c=I, then aw(be) —1.
P roof. Obvious.

Lemma 2. Suppose L is reduced and every proper compact element of L
is a zero divisor. Then every compact primary element is a maximal element.

P roof. Suppose x is a compact primary element. Let x * y < 1for some
ye L. As L is compactly generated, we have y = VOaa, where the aa’s are
compact elements. If y~x, then we are through. Suppose not. Then there
is some aa such that aa ™ x. So x < xVaa <1 Since x Vaa is a proper
compact element, by hypothesis (x Va,,)i = 0 for some nonzero element be L
which may be chosen to be compact. Since aab= 0<x and x is primary, it
follows that bn <x for some ne Z+ and so 6n+l £ xo = 0. As i is reduced,
we get 6= 0, a contradiction. Therefore every compact primary element is a
maximal element.

Lemma 3. Suppose L is reduced. If x is a maximal element and xy =0
(y*O), theny is an atom.

P roof. Suppose 0~ z Ny for some ze L. As x is a maximal element,
we have either xVz = lorz<x. IfxVz=Il, then y=y(xVz)=yz"z
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and so y=1z. If z<x, then zy <xy =0 and therefore z2<zy=0. As L is
reduced, we get z=0. Hence y is an atom.

Lemma 4. L is afinite Boolean algebra with xy = xAy if and only if
every maximal element is a complemented element.

Proof. The ’only if’ part is obvious. We now prove the ’if’ part. Using
Zorn’s Lemma, it can be easily proved that every element is a complemented
element and hence L =C(L) is a Boolean algebra with xy =x Ay. For each
maximal element ma, let ya be its complement. By Lemma 3, ya is an
atom. Now 1= Vya. Since 1is compact, 1= yai Veee\r/On. This shows that
L contains only a finite number of atoms and hence L is a finite Boolean
algebra.

Lemma 5. L is afinite Boolean algebra with xy —xAy if and only if for
every maximal element m £ L, there is some complemented atom n 6 L such
that n*m .

Proof. The ’only if’ part is obvious. We now prove the ’if’ part. By
Lemma 4, it is enough to prove that every maximal element is a comple-
mented element. Let m be a maximal element. By hypothesis, there is some
complemented atom e £ L such that e m. We claim that m —e' where €'
is a complement of e. Since ee'=0<m and m is a prime element, it follows
that e' <m. Again since 0<dem <e, e m, and e is an atom, it follows that
em = 0 so that m= ml = m{e Ve') = me' <e'. This shows that m —e"' and
hence every maximal element is a complemented element. This completes
the proof of the lemma.

We now characterize finite Boolean algebras as follows.

THEOREM 1. L is afinite Boolean algebra with xy =xAy if and only if
L satisfies the following three conditions.
(i) L is reduced.
(if) Every proper compact element of L is a zero divisor.
(iif) O is the product of afinite number of compact primary elements.

Proof. The ’only if’ part is obvious. We now establish the ’if’ part.
By hypothesis and Lemma 2, 0= aia2...an) where the a,'s are maximal

elements. By (ii), for each *6 {1,2,... ,n} there exists a nonzero bt 6 L with
a,6,= 0. By Lemma 3, each bt is an atom. Also a, V(& Vmee\/6n) >a, V&= 1
fori=1,2,... ,n; sothat by Lemma 1, V"=i = L Now the result follows

from Lemma 5. This completes the proof of the theorem.

Remark 1. It is not hard to show that the conditions (i), (ii) and (iii)
of the above theorem are independent.

Lemma s . Every complemented element of L is a compact element.

Proof. Let a£ L be a complemented element of L. Suppose a <VX.
Then 1=aVa' <VXVa' (a'is a complement of a). Since 1 is compact,
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it follows that aVa'= 1" (a2Va?VeeeVan)Va' for some a2,02,... ,anG
GX. Now a=al = a((al Va2v-"V an)Vva') = a(ai Va2Vee+Va, Va') =
—a (V"=i ai) = V’=i a*ar*d hence o is compact. This completes the proof of
the lemma.

Observe that X is a Boolean algebra with xy = x » y if and only if every
element of X is a complemented element of X. Using this fact, we prove the
following theorem.

THEOREM 2. The following statements on X are equivalent.
(i) X is afinite Boolean algebra with xy —x/\y.
(i) X is a Boolean algebra with xy —x/\y.
(iif) X is reduced and every proper element of X is a zero divisor.

Proof, (i) = (ii) == (iii) is obvious. We now prove (iii) = (i). Suppose
(iif) holds. First we show that every element of X is a complemented element.
Let aG X Put a*= V{x GL\ax = 0}. Obviously aa* = 0. We claim that aV
v a*= 1 Suppose aV a*/ 1. Then by hypothesis (av a*)b =0 for some
bi 0. Observe that ab= 0 and a*h—0. Since ab= 0, we get b*a* and so
b2” a*6 = 0. As X is reduced, b= 0, a contradiction. Therefore aVa* = 1
and hence every element of X is a complemented element. Consequently, by
Lemma ., Xis a finite Boolean algebra with xy = xa y.

4. Regular lattices

Throughout this section, X denotes a compactly generated multiplicative
lattice with 1asa compact element. We also assume that every finite product
of compact elements of X is a compact element. For any ac X, let yja=
= v ¢x GL\x is compact and xn< a for some n s Z+}. It can be easily shown
that y/a=A{p GX|a<p and p is a prime element} (see also Theorem 3.6
of [6]). For any a,bGX, let (a:b)=V{x GL\bx ~ a}. According to [4], an
element m ¢ X is said to be meet (join) principal if aa mb=m((a :m) a b)
(av (b:m)= ((amv 6): m)) for all a,b£ L. An element m ¢ Xis called roeaA
meet (join) principal ifaa m=m(a:m) (av (0:m) = (ma:m)) for all aGX
and m is said to be (weak) principal if m is both (weak) meet and (weak) join
principal. A multiplicative lattice Xis called an r-lattice ([1]) ifit is modular,
principally generated, compactly generated, and has 1 compact. Note that
in an r-lattice, every finite product of compact elements is a compact element
(see [1]). For details on principal elements the reader is referred to [1] and
41-
¥ In this section, we introduce the concept of a regular lattice and obtain
some equivalent conditions for X to be a regular lattice. Next Noetherian
regular lattices are characterized.

We shall begin with the following lemma.
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Lemma 7. Let af£ L be a complemented element. Suppose a' is a com-
plement ofa. Then

(i) a@=(0:a), and

(i) a is weak principal.

Proof, (i) Since aa'=0, we get a'<(0:a). Now (0:a) = (0:a)l =
=(:a)ava)=(0:a)aV(@:a)a'=(0:a)a"<a’, so (0:a) ™~ a' and hence
a'=(0:a).

(if) Obviously a is weak meet principal. Now we show that a is weak join
principal. Let ba <ca. By (i) and Proposition 1.1 of [1], it is enough if we
show that ft*cVo'. Now b=bhl=Db(aVa") = baVba <cVa'since ba<ca<c
and ba' <a'. Thus a is weak principal.

Lemma s . Suppose L is an r-lattice. Then an element a£L is a com-
plemented element if and only if a is an idempotent principal element.

P roof. Suppose a is a complemented element. Obviously a is an idem-
potent. By Lemma 7 (ii), a is weak principal. Since L is modular, by Propo-
sition 1.1 (6) of [1], a is principal and hence a is an idempotent principal
element.

The converse part is obvious.

We now introduce the concept of a regular lattice and characterize them.

Definition 1. L is said to be a regular lattice if every compact element
of L is a complemented element of L.

A commutative ring R with identity is called (von Neumann) regular if
for each a 6 R, there exists x £ R such that axa =a. The lattice of all ideals
of a commutative regular ring with identity is a regular lattice. The lattice
of all ideals of a Boolean algebra is also a regular lattice.

T heorem 3. An r-lattice L is regular if and only if every compact ele-
ment is an idempotent principal element.

Raafroiows from Lemma 8.

Lemma 9. If L is regular, then every element of L is an idempotent.

Proof. Let a£ L. As L is compactly generated, we have a = \faaa,
where each aa is a complemented element. Note that each aa is an idempo-
tent. Now a2=a (\faaQ = \Jaaaa=\Jaaa = a since aaa —aQ for each a.

Theorem 4. Let L be an r-lattice. Then the following statements are
equivalent.
(i) L is a regular lattice.
(if) Every element of L is an idempotent.
(iii) aAb —abfor every a,b £ L.
(iv) For any a£ L, there is some x £ L such that a= axa.
(v) a=y/afor every af L.
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Proof, (i) = (ii) follows from Lemma 9 and (i) => (iii) = (iv) =» (v) >
(if) is obvious. Now we show that (ii) = (i). By (ii) every principal element
is an idempotent and so by Lemma 8, every principal element is a comple-
mented element. Consequently every compact element is a complemented
element. That is, L is regular. This completes the proof of the theorem.

Remark 2. It can easily be shown that an r-lattice L is regular if and
only if every principal element is a complemented element.

Definition 2. L iscalled a Noetherian regular lattice if it is regular and
satisfies the ascending chain condition.

Remark 3. It can be easily verified that L is Noetherian regular if and
only if L is a Boolean algebra.

It is well known that a commutative ring R with identity is von Neumann
regular if and only if R is semiprime (0 is the only nilpotent element of R)
and every prime ideal is a maximal ideal. We now establish the abstract
version of the above result.

T heorem 5. L is regular if and only if L is reduced and every prime
element is a maximal element.

Proof. Suppose L is regular. By Lemma 9, L is reduced. Let p be a
prime element. We claim that p is maximal. Suppose not. Then p<m for
some maximal element. As L is compactly generated, there is some compact
element a such that a p and a<m. Let a' be a complement of a. Then
aa=0<pand soa$p”™ m. Therefore 1=aVa'< to, a contradiction.
Hence every prime element is a maximal element.

Conversely, assume that a is a compact element which is not a com-
plemented element. Let D = {b £ L\b is compact and aVb= 1} and D\ =
= {/°n|/ 6 D and n€Z+ U{0}}. Observe that 0™ D\, so by the Separation
Lemma of [6], there exists a prime element p EL such that t ~p for all t 6
GD\. Obviously pVa<1and hence pVa<m for some maximal element m
of L. Again since p<m, this contradicts the fact that every prime element
is a maximal element. Therefore every compact element is a complemented
element and hence L is regular.

Definition 3. L is said to be semisimple if 0= A{a e L\a is a maximal
element of L}.

THEOREM s . Let L be an r-lattice. Then the following statements are
equivalent.
(i) L is Noetherian regular.
(i) L is semisimple and satisfies the descending chain condition.
(iii) L is the direct product of afinite number of two element Boolean algebras.

P roof, (i) = (ii). By Remark 3 and Theorem 2, L is finite Boolean
algebra and hence L is semisimple and satisfies the descending chain condi-
tion.
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(i) =5 (iii). First we show that L contains only a finite number of maxi-
mal elements.

Let S={a GL\a is the meet of a finite number of maximal element of L}.
Since L satisfies d.c.c., it follows that 5 contains a minimal element, say aG
GS. Suppose a= A" -I P& where p,’s are maximal elements of L. We claim
that a= 0. Suppose a” 0. Then a ™ p for some maximal element p of L,
since L is semisimple. So b— (A I Pi) Ap GS and b<a which contradicts
the minimality of a. Hence 0= A"=i Pi- Now it can be easily shown that
Pi,... ,pn are the only maximal elements of L, and L= Z/pi X eeex L/pn
where each L/pxis a two element Boolean algebra. Thus (iii) holds. The
implication (iii) == (i) follows from Remark 3. This completes the proof of
the theorem.

5. Primary elements in lattices

Throughout this section, L denotes a compactly generated multiplicative
lattice in which 1is a compact element and every finite product of compact
elements is a compact element. An element a of L is said to be a radical
element if a=y/a. An element a of L is called completely irreducible if
whenever a = Aaaa, then a—aa for some a. In this section, regular lattices
are characterized in terms of primary elements and also it is shown that L
is Noetherian regular if and only if L is reduced and every radical element
has a unique representation as a meet of primary elements.

Now we need some lemmas.

MO. Every element of L is the meet of completely irreducible
elements.

RHaErollows from 6.1 of [3, page 43].
I.EET‘EIll. Letm£ L and {aa} CL. Then fla(m\aa)=(m:\Ja aa).

FiGIflt is easily established that this identity holds in any multiplica-
tive lattice.

Let aGL. Anelement bGL is called prime to a if whenever bc<a then
c<a. For any a i3 we denote pa= V{x £ L\x is non-prime to a}.

I.MZ. Suppose a is a completely irreducible element of L and let
{aa}QL. Ifaa is non-prime to a, then \Jaaa is non-prime to a.

R By Lemma 11, we have Aa(a m») = (a:Vaaa) Since each aa
IS non-prime to a, for each a, there exists ba GL such that aaba < a and
ba” a So a<(a:aQ for every a. As a is completely irreducible, we get

a< A Jama) —(a®Woaa)- Therefore \faaa is non-prime to a.
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Lemma 13. If a is a completely irreducible element of L, then pa is a
prime element.

P roof. Suppose xy<pa. As L is compactly generated, we have xy =
= VcgA & where the 6a’s are compact elements. We claim that each ba is
non-prime to a. Let a 6 A. Then ba <pa and so ba” ai VeeeVan for some
ala2,... ,a, G{c€ L\c is non-prime to a}. By Lemma 12, a\ VeeeVan is
non-prime to a and hence ba is non-prime to a. Again by Lemma 12, xy =
= \Jaba is non-prime to a and hence either x or y is non-prime to a. This
shows that pais a prime element.

Lemma 14. If every element of L is a minimal prime element, then
every completely irreducible element is primary.

Proof. Let x be a completely irreducible element. Then by Lemma 13,
px is a prime element. We claim that px = y/x. Obviously y/x <px. Suppose
a is a compact element and let a y/x. Then a" ~ x for all n 6 Z+. Put
5= {ban\b is compact, b*px and ne Z+ U{0}}. Observe that 5 is a mul-
tiplicative subset of L. Also 1€5 and 0*5. So by the Separation Lemma
of [6], there is a prime element pe L such that t~ p for all te S. We show
that p <px. If p” px, then there is a compact element be L such that b<p
and b™ px. As b/ px, it follows that be S and so b” p, a contradiction.
Therefore p<px and hence by hypothesis p =, x. Again since af S, we have
a”p=px. Thus, for every compact element a GL, a” y/x if and only if
a~px. Consequently, y/x=px. Now we prove that x is primary. Suppose
a and b are compact elements of L such that ab<dx and a” x.Then b is
non-prime to x, so b<px= y/x. As bis compact we have b<a\ VeeVan,
where a”*~ x for some n, £Z+ (»=1,2,...,»). Again by Lemma 1 of [2,
page 336] bm ™ x for some me Z+ and hence x is primary. This completes
the proof of the lemma.

We now characterize regular lattices as follows.

T heorem 7. The following statements on L are equivalent.
(i) L is a regular lattice.

(i) Every primary element of L is a maximal element.

(iii) Every primary element of L is a minimal prime element.

Proof, (i) (ii). Suppose (i) holds. Let p be a primary element of L.
Suppose p is not a maximal element. Then p < g for some maximal element
gof L. As L is compactly generated, there is a compact element be L such
that b~Aq and b p. Since L is regular, bis a complemented element. Let
b' be a complement of b. As bb'= 0~ p and p is primary, we have either
b'~ p or bn <p. But b is idempotent and so bl<p <gq. Consequently g= 1, a
contradiction. Therefore, every primary element is a maximal element.

(if) = (iii). Obvious.

(iii) = (i). Suppose (iii) holds. Then by (iii), every prime element is
a minimal prime element and so by Lemma 10, Lemma 14 and by (iii),
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every element is the meet of prime elements and hence every element is an
idempotent element. Consequently L is reduced and hence, by Theorem 5,
L is regular. This completes the proof of the theorem.

It is well-known that a commutative ring R with identity is Noetherian
regular if and only if R is semiprime and every radical ideal has a unique
representation as an intersection of prime ideals (see Theorem 2 of [5]). Our
last theorem gives an abstract version of the above result.

Theorem 8. L is Noetherian regular if and only if L is reduced and ev-
ery radical element has a unique representation as a meet of prime elements.

Proof. Suppose L is Noetherian regular. Then by Remark 3 and The-
orem 2, L is a finite Boolean algebra. Obviously, prime elements coincide
with maximal elements in L and also it can be easily shown that in a finite
Boolean algebra, every element has a unique representation as the meet ofa
finite number of maximal elements.

Conversely, assume that L is reduced, and every radical element has a
unique representation as a meet of prime elements. First, we show that every
nonzero radical element is a complemented element. Let a be a nonzero
radical element. Put b= A{p 6 L\a %p, p is a prime element}. As L is
reduced, ab=A{p 6 L\p is a prime element} = 0. We claim that aVb= 1 If
aVb<1, then there is a prime element pO such that aVb<po- Then b=
—A{p £L\a %p, p is a prime element} = A{p£L\a "/p, p is a prime element} A
Apo. So that b has two representations, a contradiction. Therefore aVi= 1
Thus every nonzero radical element is complemented.

Now we show that every nonzero element is complemented. Let i be a
nonzero element. Since y/x is a complemented element, by Lemma 6, y/x is
a compact element. Again since y/x is compact, we have y/x <« a\ V...Van,
where a"“” x for some n, £ Z+ (*=1,2,... , ™), so that (y/x)k”~ x for some
k GZ+. As y/x is idempotent, we get y/x <x and therefore x = y/x is a
complemented element. Consequently, by Lemma 6, L is a regular lattice
in which every element is compact. Hence L is Noetherian regular. This
completes the proof of the theorem.
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Abstract

In this series, we look for notions of quasi-uniform completeness and corresponding
completions that are symmetric in the following sense: (i) U is complete iff U~1 is so; (ii)
the completion off/-1 is isomorphic with the conjugate of the completion of U.

The present paper only contains introductory material. The main results will follow
in Parts Il and III.

The problem mentioned in the Abstract will be described in more detail
in § 1. The reader is recommended to glance through § 0, because we use
some unconventional notations and terminology. The notes in parentheses
in the Contents should perhaps be read only after 8§ 1
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Part 11
8 5 Special properties of filters and filter pairs
(Stability is the most important property. For any stable Cauchy filter pair
there is a minimal one coarser than it.)
8 6 Extensions with stable trace filter pairs
(Two constructions; one of them, denoted by 5f/, is new.)

8 7 Comparing °U with other constructions
(Namely with 2Wand 4u from [De].)

§ 8 S-completeness
(Each stable Cauchy filter pair is assumed to be convergent. We can only prove
the existence of a very bad S-completion.)

8 9 A modification of D-completeness
(SD-complete = each stable D-Cauchy filter is convergent. There exists a better
SD-completion than D-completion.)

§10 SA-completeness
(Each stable Cauchy filter pair has a cluster point. The completion is better
than in 8§88, but it is neither finest, nor a complete hull.)

§11 SF-completeness
(In a To space, it means that each free stable Cauchy filter pair is convergent;
one has to be more careful when To is not assumed. There is a completion
satisfying the requirements from § 1)

§ 12 U-completeness
(Each stable Cauchy ultrafilter pair is convergent. The completion is even better
than in § 11: the extension theorem for maps also holds.)

§13 R-completeness
(Each round Cauchy filter pair has a cluster point. It is easy to construct a
good completion, but R-completeness does not satisfy some of the conditions
from 8§ 1)

814 Comparing the bitopological notions of completeness
(The implications between 14 notions of completeness are shown in a diagram.
17 examples prove that no more implications hold.)

815 Complete quasi-proximities
(No C-completion of quasi-proximities can satisfy some quite natural condi-
tions.)

§16 Summing up
(The properties of the 14 notions from § 14, and of the corresponding comple-
tions, are summarized in a table, cf. §2)

INDEX

(The notations containing no constant letter can be found at the end of the index.)
A-complete 4.2 cl, cl-1, cl1, CI, CI"1, CI1, cls
basic completion 1.2 Cls 0.3
basic extension 0.4, 0.7 cluster point of a filter pair 0.3
basic half-extension 0.7 clusters (of filter pair) 0.3
bitopological completeness 1.1 coarser filter pair 0.2
bitopological completion 1.2 cofilter 0.6
Cauchy filter (pair) 0.6 cominimal filter 5.2
C-compact 15.3 cominimal quasi-uniformity 9.2

C-complete 4.2, 15.1 complete hull 1.2
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completion 1.2

compressed filter pair 15.1
concentrated filter pair 5.1

(', )-continuous 0.5

convergent filter pair 0.3
convergence (of filter pair) 0.3
Cs-complete 2.1

D 2.2

D-Cauchy filter 0.6
D-complete 2.1

deu 0.8

distance 0.8

double extension 9.1

doubly (oftopological property) 0.4
dse, dso 0.8

E 0.6

e, e0>e j, ej, e(), e0(), e x(), CI()
0.9

envelope 0.6

extension of a bitopology 0.4
extension of a quasi-uniformity 0.7
extension of a topology 0.4
extension theorem for maps 1.2
5¢ 0.6

F-compact 15.2

F-complete 14.1, 15.1

5d 0.6

oF 115

fii, Fil 0.2

filter 0.2

filter (base) pair 0.2

filter pair generated by 0.2

fine regular extension 0.4

finer filter pair 0.2

finest complete extension 1.2
firm extension 4.1

N 2.2
FN-complete 2.1
50, 5r 06

free filter pair 10.2
5s 5.5

fully free filter (pair) 11.1
half-extension 0.7
hereditarily Cauchy filter 5.8
K-complete 2.1

L 41

L-complete 4.1
linked filter pair 0.2
LO s 16
LO-complete 14.1
loose extension 0.4
LR § 16

LR-complete 14.1
m M q?2

ml(), m°() 5.2
maxim al filter pair 0.2
minimal filter pair 0.2
MN 2.2

M N-complete 2.1

n, N 0.6

-N, 1/N, —1/N 0.9
natural completion 1.2
° 816

O-complete 14.1

open filter (pair) 0.3
overlaps, overlays 0.2
p,-P 0.5
*Pc 0.6
% 11.3
‘P11, Po,
<PS 5.5
<Pu 12.2
Q 0.9

quasi-closed 1.1

<Pr 0.6

quasi-dense 3.1

quasi-extension 3.1
quasi-uniformity of semicontinuities
0.5

R 13.2

Ro, R-i, Rii R-i, Ri 0.9
R-complete 13.1

0.4, 0.7

reduced half-extension 0.7

reduced extension

regular bitopology 0.3
round filter (pair) 0.6
s 0.5

s 8.4

SA 10.3

SA-complete 10.1
S-complete 8.1

SD 9.1

SD-complete 9.1
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sec 0.1

SF 11.6

SF-complete 11.2

so 8§16

SO-complete 14.1
Sorgenfrey quasi-uniformity 0.5
sp 2.2

SP-complete 2.1

SR 133

SR-complete 13.1

stable filter (pair) 5.1

stable quasi-uniformity 8.5
strict extension 0.4

strictly tame filter 5.7
strongly cominimal filter 5.2
strongly cominimal quasi-uniformi-
ty 9.2

substable 8.6

symmetric completeness 1.1
105

topological completeness 1.1
tp, ~tp 0.5

To quasi-uniformity 0.5

Ti quasi-uniformity 0.5
trace filter (pair) 0.4

trace of a filter pair 0.2

To reflexion 0.3, 0.5

U@, UW{)() 08
zi() 0.8

u 12.3
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U-complete 12.1

Ueu 0.5

uniformly concentrated 7.1
uniformly continuous 0.5
uniformly loose half-extension 0.7
uniformly weakly concentrated 7.1
7y, Uso 0.5

w 2.2

W-complete 2.1

weakly basic completion 1.2
weakly basic extension 0.4, 0.7
weakly basic half-extension 0.7
weakly concentrated filter pair 5.1
(n) OT

fe, f“\ f\ f 0.2

1 0.2

f(a), f°(a) 0.4
V,°lt 0.7
77(5),77(<£) 0.7

d Xe, d2 0.8

fx fj, fox f), fx fj°, f°x fj° 0.10
2, (f0)2 0.10

02,03 0.11

X, X", X" o.11

*X 1.2

XU, U 6.1

5tf, 5577 6.2

By, (&z7, 3J, U 6.3
A U, V, 471 71
U*[S], r 102

§ 0 Preliminaries

A. Notations and terminology

0.1 Set theoretic notations. There is in general a fundamental set X,
which is assumed, as a rule, to be non-empty. For aCexpX, seca = secx a
consists of the subsets of X meeting each element of a. For a, bC expX,
a(n)b = {Anl?: A£a,56b}. In order to get along with as few parentheses
as possible, let us agree that (i) X precedes the other set theoretic operations;
(i) U, n and \ precede |, which denotes the restriction (i.e. trace on a subset)
of structures, relations, filters, etc.; (iii) bAa (with A, a, b, c standing for any
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letter, number or other symbol) is to be understood as (6(Aa))c (when b and
c denote operations).

0.2 Filters and filter pairs. A filter is usually a proper filter; it will be
explicitly stated when expX is allowed as a filter. A filter (base) pair is an
ordered pair of filters (filter bases) in X. For aCexplJ, fila= fibca is the
filter generated by a (or expX if a is not centred). If a filter (base) pair
is denoted by f° then it is understood that f© —(f—, f1), and similarly with
other letters (also with letters having indices); conversely, if systems f-1 and
f1 are defined then (f-1,f1) is denoted by f°. Given centred systems a-1 and
al, Fil a° = Fil™ a°= (fila- 1,filal) is the filter pair generated by a0. We say
that a filter base pair f° has a property defined for filter pairs if Fil f° has
the property. The filter pair f° is finer than the filter pair g° (g° is coarser
than f°) if f Dg* (i= £1). A filter pair is minimal/maximal with respect
to a given property if it has the property, but no strictly coarser/finer filter
pair has it. If 5 is a family of filters or filter pairs then denotes the
family of the minimal elements of {J, and that of the maximal ones. A
filter pair f° is linked if S_i n Si #0 whenever S, G (equivalently: f—2(ft)fl
is a filter). For a filter pair f°, fx= {S_i x Si: S, Gf (i= £1)}. (Similarly
with other letters.) If k Gfx then we write k =« -\ x « \; conversely, given
ki G (i==x1), K-1 x «\ isdenoted by « . (Again, similarly with any letter
replacing K.) For families 5 and 0 of filters (filter pairs), 0 overlays $ if for
any fG5 (f°G 5) there isa gGO0 (g° GO) coarser than f (than f°); 0 overlaps
5 if for any fGt? (f° G5) there isa gGO (g° GO0) such that (f, g) is linked
((f*,g") is linked for i= £1). f°|S= (f 1]|S, f11S) is the trace of f°> on S C X.

0.3 (Bi)topological spaces. In a bitopological space (X;T"“1, T x), c* de-
notes the T'-closure, and cl8 the sup{T-1, T 1}-closure. cl”* is the closure in
the subspace S (i = %1,s); if a superspace of X is also given then the clo-
sures in it are denoted by CI*. The notations cl and Cl are used in topological
spaces. The bitopology (7--1,7-1) is regular if each point has a T ‘“-neigh-
bourhood base consisting of T _,-closed sets (i = £1). The Tg-refilexion of a
bitopological space is defined just as for topological spaces: those points are
identified that have the same neighbourhood filter pair (equivalently: the
same sup{T_1, T 1*neighbourhood filter). The filter pair f° in a bitopolog-
ical space converges/clusters to x if f* T'-converges/clusters to x (i = £I);
the following expressions will also be used: is convergent, is a cluster point
of, has a cluster point. ° is open if f is T “-open for i=+1 (i.e. it has a base
consisting of T'-open sets).

0.4 Extensions of (bi)topological spaces. The topological space (Y,5) is
an extension of the topological space (X, T) (S is an extension of T) if (X, T)
is a dense subspace of (Y,5). The trace filter f(a) of a GY is the trace on X



394 J. DEAK

of the <S-neighbourhood filter of a. Ifx G X then f(x) is the T-neighbourhood
filter of x; for any a c F, f(a) is T-open. Conversely, if we prescribe T-open
filters f(a) for each aeY D X then there are extensions of T with just these
trace filters. (We shall also use other expressions: extension for f(a), inducing
f(a), etc.) There exists a finest and a coarsest one among such extensions,
called the loose extension, respectively the strict extension (for the given
trace filters). The neighbourhood filter ofacY is fily{5u {a}:S G f(a)} in
the loose extension, fily{{6: 5 G f(6)}: S ¢ f(a)} in the strict extension.

The bitopological space (F; «1,M) is an extension of the bitopological
space (X', T~I,TX if X is doubly dense in Y. (For a topological property
P, a bitopological space, a subset of it, or a bitopological extension is doubly
P if it is P in both topologies separately.) The trace filter pair of aeY,
denoted by f°(a), is the trace on X of the neighbourhood filter pair of a, i.e.
f'(a) is the trace filter of a in the extension S' of T*. Each f°(a) is open;
for a G X, it coincides with the neighbourhood filter pair of a. Conversely,
if we are given trace filter pairs with these two conditions then there are
extensions belonging to them; the doubly loose is the finest, and the doubly
strict the coarsest one. If there exist regular extensions for some trace filter
pairs then there is a finest one among them, called fine reqular extension
([De3] 2.1, 2.2).

The extension (F, »§ of (Jf, T) is reduced [Cs3] \fpeY\X ,aeY ,p" a
imply that p and a have different ~-neighbourhood filters; it is weakly basic
(a stronger condition) if the same holds for the trace filters instead of the
neighbourhood filters; it is basic if the trace filters of the new points are non-
convergent and different. A basic extension is clearly weakly basic. Reduced
and (weakly) basic extensions of bitopological spaces are defined similarly,
with filter pairs instead of filters.

0.5 Quasi-uniformities. See [FL2] for fundamental information on quasi-
uniformities and quasi-proximities. IP is the quasi-proximity induced by
the quasi-uniformity U\ Sp is the topology induced by the quasi-proximi-
ty G thus Utp denotes the topology of U. The bitopology of U or 6 is
(U~tp,Utp), respectively (6-p,6p), where U~tp = (£/-1)tp, 6~p—(£-1)p. The
(bi)topological notions in a quasi-uniform or quasi-proximity space (open fil-
ter (pair), convergence, clustering, closures etc.) are to be understood with
respect to the induced (bi)topology. If a map / between the quasi-uniform
spaces (X,U) and (F, V) is quasi-uniformly continuous then we shall shortly
say that / is uniformly continuous, or that / is (U, V)-continuous. IlIs de-
notes the uniformity s up (O b serve that Usip=sup{E/-tp,E/tp}.) A
quasi-uniformity U will be called (i) Tqif Utp is To (equivalently: U~ip is To,
Ustp is To); (ii) Tj if Utp is Ti (equivalently: U~tp is Ti). The Tq reflexion
of a quasi-uniformity is defined in the same way as for bitopologies. The To
reflexion clearly commutes with taking the induced (bi)topology.

Three important quasi-uniformities on R: Ueu is the Euclidean unifor-
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mity; Uso is the Sorgenfrey quasi-uniformity, i.e. {U(e):e > 0} is a base for
it, where U)X = [x, x + s[; Zse, the quasi-uniformity of semicontinuities, is
defined similarly, with U *x =] <=x {-¢[.

0.6 Filters and filter pairs in a quasi-uniform space. Let (X,ZV) be a
quasi-uniform space, f and 0 filters, f° a filter pair in it. fis round ([Kow],
[Cs4]) if for any 5 Gf there are UEU and T Gfsuch that U[T] CS. (Round
filters are open.) f° is round [De3] if f* is Z¥-round (i = xl). f is Cauchy
[SP] if for any U£U there is an x GX with Ux Gf. f°is Cauchy [De3] if for
any UEU there is a K Gfx with K CU. 0 is a cofilter [Do3] of f if (0, f) is
Cauchy, fis D-Cauchy [Do3] if it has a cofilter. The envelope of f [Sam] (of
) is the finest round filter (filter pair) coarser than f (than f°); it will be
denoted by fE, respectively fOE; for f° is allowed here to be only a filter base
(pair). Clearly, fE= {[/[5]: 5 Gf,U£Ili} and foE= (f-IE ’,fIE), where E-1
denotes the Af£1-envelope. If a superspace (Y, V) of (X,U) is given then E
stands occasionally for the V-envelope instead of the ZY-envelope; this will be
either explicitly mentioned, or clear from the context (e.g. because f or f° is
not in X). We introduce notations for some families of filters or filter pairs
in a quasi-uniform space:

5¢ = the Cauchy filters,
5d = the D-Cauchy filters,
50 = the open Cauchy filters,
5r = the round Cauchy filters,
= the Cauchy filter pairs,
*Po = the open Cauchy filter pairs,
P r=the round Cauchy filter pairs,
<P1= the linked Cauchy filter pairs.

Given a family 5 of filters, 5n and 5N consist of the non-convergent, respec-
tively non-clustering elements of 5, while 5E= {fE: fG 5}- tpn, tpN and tpE
are defined analogously for a family 3 of filter pairs.

0.7 Extensions of quasi-uniform spaces. Let (Y,V) be a superspace of
(X,U). We say that V is an extension of U if X is doubly dense in Y
(i.e. if (V-tp,Vtp) is an extension of @¥-tp,E/tp)); V is a half-extension of
U if X is £ftp-dense in Y (i.e. if Vtp is an extension of Vip). An extension
(or half-extension) of a quasi-uniformity is reduced, basic or weakly basic if
the corresponding bitopological (or topological) extension has this property.
(Caution! A quasi-uniform extension can be (weakly) basic without having
the same property when regarded as a half-extension.)

There exist half-extensions of U for prescribed trace filters iff they are
round; if so then the finest of them can be described as follows ([Cs4] 2.5):
{Y(/,U): 1 G UG} is a base for °*U (called the uniformly loose half-
extension for the given trace filters), where $ denotes the family of all those
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functions /: Y —»expX for which /(a) £ f(a) (@£ Y), and V(f, U)a= {a}u
UI7[/(a)]. Similarly, there is an extension of U for prescribed trace filter
pairs iff they are round and Cauchy; if so then there is a finest extension
°U for these trace filter pairs, where

{V{r\fiu):feV (i=z1), ueu}
is a base for °li, < denotes the family of the functions /. Y —»expX for
which /(a) £ f'(a), and
aVvV(f~1,f1,U)b iff either a—b
or Bxefl(a), 3y £/-1(6),x Uy

([De3] 3.3 and [De4] 6.1). °*U induces the loose extension of Utp ([Cs4] 2.1),
and °U the fine regular extension of (U~tp,Utp) ([De3] 3.1).

Let now J be a family of filters in (X,U). Then denotes taken
with
(€)) y \ X = {f£5: fis round, fis not a 2MMp-neighbourhood filter},

and f(p) = pforp£Y \ X . The notation *U($) will be used in the same way,
where *U is some other construction yielding a half-extension for prescribed
trace filters, possibly only under some additional assumption on the filters
(in which case we shall only use this notation if the filters in (1) do satisfy
this assumption). Analogously, if is a family of Cauchy filter pairs then
°U(VR) denotes °U taken with

y \ X = {f£73: 2 is round, f° is not a neighbourhood filter pair},

and f°(p) =p (p£Y\X). *U{fp) will be used in the same way if * denotes
a quasi-uniform extension for prescribed trace filter pairs. Clearly, *U(5) is
always a weakly basic half-extension, and a weakly basic extension.

B. Notations used in the counterexamples

0.8 Distances. A real valued function d defined on a subset of X 2 is a
distance [De3] on X if the Triangle Inequality

(1) d(x,y) +d(y,z)>d(x,z)
is satisfied in the sense that if d(x,y) and d(y,z) are both defined then so
is d(x, z), and (1) holds. If d is a distance then (17(e): £>0} is a base for a
quasi-uniformity M(d), where

UB = Ufe)(d) = {(*.*): x£ X} U{(z,y):d{x,y) <e}.

For example, Ueu = M(deu), Mse = U(dse) and Hso—U(dso), where deu is the
Euclidean distance on R,

dse(x,y) = y-x,
dso(x,y) =y-x if x<y.
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When a distance d already defined is used in the definition of another dis-
tance, a condition like
=d(x,y) if...

is to be understood as follows:

=d(x,y) if d(x,y) isdefined and....
For a distance d, let
fd(xy) ifxzy,
ay) g if x = y.

U(d) —U{d). If d is a distance on X and eon Z then a distance / = d Xe
can be defined on X X Z as follows:

1((*, 2), @ w)) = max{d(x, y),e(z, w)},
such that the left-hand side is not defined when either of the two distances
on the right-hand side is not defined, d?—dx d.

0.9 Sets and filters in R. The set of the rationals is denoted by Q. For
a> Db, Ja, b means 16, a[.
-N={-n:nGN}, 1I/N={l/n: n€N}, -1/N={-1/n: n EN},
Ro= R\{0}, R_i=]<-,0[, Ri=]0,—],
R_i=]1<-,0], Ri = [0,—].

e(x) is the Euclidean neighbourhood filter of x; €0(x) = (e_x(x), ei(x)) is the
Afo-neighbourhood filter pair of x. (Lower indices are used exceptionally in
this notation.) e=e(0), 0= (e_j, €j) = e0o(0).

0.10 Products of filters. If fis a filter, f° a filter pair in X, his a filter,
fj° a filter pair in Z then a filter fXi) and filter pairs f° x f)°, f° X)and fx f°
are defined in X x Z as follows:

FXH=fil{Fxtf: GH3},
1°xf)0=(r 1x r 1,f1xf)J),
f°X fi= f°X fXfj°o= (f, f) Xfe.

f2= f Xf, (f0)2= f° x f°. The product of three filters and/or filter pairs is
defined analogously, such that it is a filter pair whenever at least one of the
factors is a filter pair.

0.11 Points and filters in R and rR3. 02 = (0,0), 03 = (0,0,0). If1 6 R2
or x GR3 then the coordinates of x are denoted by x',x" (and x'"), and
similarly with other letters. Given x GR2, N(zO X t(x") will also be written
as e2(x’,x") or e€2(x), and similarly for the products of other niters ard filter
pairs defined in 0.9. Analogous notations will be used for products of filters
and/or filter pairs in r3.
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8 1 The problem

1.1 We are looking for a notion of quasi-uniform completeness that satis-
fies the conditions below, or at least most of them; cf. [Ded] 12.6. (The last
sentence in 12.6 b) is mistaken; for the last two lines of it, read: “there may
appear in Y new non-convergent stable Cauchy filter pairs.”)

a) It is symmetric in the sense that U is complete iff U~x is so.

This condition is certainly satisfied if a quasi-uniformity is defined to be
complete iff the filter pairs of some kind or other (having a property shared
by all the neighbourhood filter pairs, such that if (f-1~ 1) has this property
in (X,M) then (f\f_1) has it in (X,U~1)) are convergent, or have a cluster
point; such a completeness will be called bitopological. Most of the symmetric
notions of completeness considered in this paper are bitopological. Similarly,
a notion of quasi-uniform completeness is topological provided that it can be
described with the i/tp-convergence or -clustering of certain filters.

b) For uniformities, it coincides with the usual completeness.

c) A closed subspace of a complete space is complete.

For non-symmetric notions, the meaning of “closed” is clear: it has to
be understood in the topology Utp. For symmetric notions, the appropriate
definition of closedness runs as follows: a subset A in the bitopological space
(AT; T _1,T1)is quasi-closed ([Da]; see also [De], [De2]) if it is the intersection
ofa T _1-closed and a Tud6sed set (equivalently A= cl-1A Dcl1lA). Assume
namely that U is complete in the sense that each filter pair having some
property P is convergent (clustering), and let A be a quasi-closed subset
of X ; trying to prove the completeness of A, take a filter pair f° in A with
property P; now if Fil* f° also has property P then it ~/-converges (ZY-clusters)
to some x GX, and the quasi-closedness of A implies x GA. Thus c) holds
with quasi-closedness for bitopological notions of completeness, assuming P
is good enough to allow the conclusion above that Fil* f° has property P.

d) Uso is complete, £/so|Ro is incomplete.

e) Mese is complete, 26e|Ro is incomplete.

These conditions are required on the analogy of Ueu being complete and
Zél1|Ro incomplete; Uso and Use are the natural non-symmetric counterparts of
Aéu, and it is difficult to tell which is the more natural one: (H”"tp,HsF) takes
the role of the Euclidean topology in the embedding theorem for completely
regular spaces (see [B]), while UsO has better separation properties.

One could also require that a space should be “compact” iff it is “com-
plete” and “precompact”, or at least that compact spaces should be com-
plete. The meaning of “precompact” is not clear here, and that of “compact”
is even less so in the bitopological case.

1.2 By a completion we mean a prescription that assigns to each quasi-
uniformity U a complete extension *U (only half-extension in the non-sym-
metric case). In the case of a (bi)topological notion of completeness, the
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filters (filter pairs) in question clearly have to be overlaid or overlapped (ac-
cording as convergence or clustering is assumed) by the trace filters (filter
pairs). If the notion of completeness depends only on the To reflexion of the
quasi-uniformity then we may assume (discarding the superfluous points)
that *U is a reduced extension, respectively half-extension, of U. Some au-
thors prefer to consider only To spaces, or they define a completion to be a
complete (half-)extension of the To reflexion rather than of U itself.

We would like the conditions below to hold. The loose notation *X will
be used for the fundamental set of *U. (The same convention applies to
other symbols instead of *.))

f) If U is a uniformity then *U is its usual completion.

g) *W-1= *(W"1).

More precisely, g) means that there is an isomorphism / between the
two quasi-uniformities such that /(x) —x (zGX). A completion satisfying
g) will be called bitopological. Similarly, f) also means the existence of an
isomorphism. A completion will be called (weakly) basic if *U is always a
(weakly) basic extension of U (respectively a (weakly) basic half-extension
for non-symmetric notions of completeness). Assuming b), any weakly basic
bitopological completion satisfies f). A completion is natural if any isomor-
phism between two spaces can be extended to an isomorphism between their
completions. All completions in this paper are natural and weakly basic.

h) is a complete hull of (X,U).

This means that no proper subspace of *X containing X can be complete.
A weaker assumption: if U is complete then *U=U.

i) *U is a finest complete extension of TV.

More precisely, if (Z,V) is another complete extension then there exists
a (*nV, V)-continuous map / such that f(x) = x (x £ X). We cannot speak
about the finest extension, because there may exist different, even non-
isomorphic, finest ones. It would be an essentially weaker assumption that
*U is the finest one among the complete (half-)extensions belonging to some

trace filters or filter pairs. [E.g. °)E/({{X}}) is complete in any conceivable
topological notion of completeness; cf. [CnH] Construction |.j One could re-
quire several stronger versions of i), e.g. that any uniformly continuous map
from (X,U) into a complete space can be extended to a uniformly continuous
map from {*X,*U) (“extension theorem for maps”), or that the extension
of the identity in i) has some additional property (injective; an embedding;
surjective if V is a basic (half-)extension; essentially unique), or that *U is
determined by i), i.e. it is basic, and if V is another finest complete basic
(half-)extension then there is an isomorphism / between *U and V such that
f(x) =x (x£X). Ifthis last condition holds for a quasi-uniformity U (i.e. it
is not assumed that each quasi-uniformity has a completion) then we shall
say that U has a unique finest basic complete (half-)extension. The exten-
sion theorem for maps is sometimes valid ([Cs2] (16.76), [Cs5] 3.5); in other
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cases, it holds only for a special class of spaces (completion is defined only
for certain quasi-uniformities, and V is also taken from a special, possibly
different, class, see [Do3] Th. 4, [Do5] Th. 2, [Cs6] § 3).

Assuming that c) holds, i) is equivalent to the following stronger state-
ment:

i) If (X,U) is a subspace of the complete space (Z, V) then there is a
(*2V, V)-continuous map / such that f(x) = x (x £ X).

Requiring / in i') to be an embedding, we obtain an even stronger con-
dition equivalent to:

i") If (X,U) is a subspace of (Z, V) then there is an embedding / of
(*X, *U) into (*Z, *V) such that f(x) —x (X £ X).

Doitchinov [Do4] regards i") as a very important property of a reasonable
notion of completion. This condition is, however, too strong, since it does
not allow a space to have two different complete basic (half-)extensions with
the same system of trace filters or filter pairs. We only have one notion of
completion defined for all quasi-uniform spaces that satisfies i"') (see LA/later;
cf. [Kr], [Cs2], [Sal], [Kr2], [LF], [FL2], [De4]). The completion satisfying i")
introduced in [Do4] is defined only for a special class of spaces; extending
the construction to a somewhat larger class (see [De7]), i"") is lost.

1.3 We shall also look for notions of completeness and completions for
quasi-proximities, such that conditions analogous to a) to i) above are sat-
isfied. In terms of totally bounded quasi-uniformities, this means that com-
pleteness has to be defined only for totally bounded spaces, and *U has also
to be totally bounded. Given a notion of completeness for quasi-uniformities,
it yields one for quasi-proximities; but a completion for quasi-uniformities
does not necessarily yield one for quasi-proximities, since it can happen that
U is totally bounded, but *U is not so, while is not complete (see sU
later).

8 2 Non-symmetric notions of completeness

2.1 In this section we look over the non-symmetric notions of complete-
ness from the literature, ignoring the ones that do not satisfy b) ([FL], [Cs5]
88 1-2, [Sz]). Where not stated otherwise, properties of filters are to be
understood with respect to U and Utp. A quasi-uniformity is

SP-complete (“complete” in [SP], “convergence complete” in [FL2]; pre-
sent terminology in [Cs5]) if each Cauchy filter is convergent;

MN-complete (“complete” in [MN]) if each Cauchy filter has a cluster
point (equivalently: each Cauchy ultrafilter is convergent);

FN-complete (“almost complete” in [FN]) if each open Cauchy filter has a
cluster point (equivalently: each maximal open Cauchy filter is convergent);



QUASI-UNIFORM COMPLETENESS. | 401

W-complete (“P-complete” in [W]) if each round Cauchy filter has a
cluster point (equivalently: each maximal round Cauchy filter is convergent);

D-complete (“complete” in [Do3]-[Do6j; present terminology in [Kp] and
several other papers) if each D-Cauchy filter is convergent;

K-complete (based on an idea from [Kp], introduced in [FH] as “strongly
.D-complete”) if each A£1-D-Cauchy filter has a Atp-cluster point (equiva-
lently: each [/_1-D-Cauchy ultrafilter is 2vtp-convergent);

Cs-complete (an equivalent notion is called “complete” in [Cs], “C-com-
plete” in [CrH]; “half-complete” with the present definition in [De5]) if the
second member of any linked Cauchy filter pair is convergent.

On the analogy of MN-, FN- and W-completeness, we could, but do not,
consider spaces in which each (open/round) D-Cauchy filter has a cluster
point, respectively the second member of any open/round linked Cauchy
filter pair has one; it is namely not the purpose of this paper to introduce new
non-symmetric notions of completeness. It does not change the definition of
Cs-completeness if only the existence of a cluster point is required: if f°isa
linked Cauchy filter pair then sois (f—(fl)f1, f_1(n)f1), and then flconverges
to any cluster point of f—(D)fl. (Cf. [Cs] (15.49) and [CrH] p. 42.)

2.2 The next table shows some properties of the above notions; and of
the corresponding completions, a) never holds, b) always does; e) and @)
are irrelevant for non-symmetric notions ( as to e): Us is a good space only
from the bitopological point of view). Some comments and remarks will
follow the table (including the explanation of the symbols J and "3 in the
last two lines).

completeness c) d) completion f) h)
SP + - SPA/= °)ZV(3E) - -
MN + - MW=°)W(5*nE) - -

+ + + + + O

FN - - FNZ/=°W(i?onE) - —

w -+ wZ=°W(?Rn) - +

D + o+ - -

K + - ?

s+ fow)y T ¢
1 °um + — —

To SP: SPU is given in [Cs5]. i) (in fact, the extension theorem for maps)
is proved in [Cs5] 3.5.

To MN: [W] 86 introduces MNA/ with the unessential difference that the
trace filters are taken with multiplicity (the non-convergent Cauchy ultra-
filters, and not their envelopes, are the new points). A worse construction
(essentially °o/(3cE)> but again with multiplicity) is considered in [FL2]

3.40. We prove that MNZY'is indeed MN-complete (since the construction in
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[W] is within the proof of a theorem that contains additional assumptions):
let f be a Cauchy ultrafilter in MNX; if X Gf then f|X is Cauchy in (X,Z2)
(the proof given in [Cs5] 3.1 with SPZZworks for uniformly loose extensions
with arbitrary systems of Cauchy trace filters), thus if f| X is not ZAp-
convergent then (f|X)EG 3c*nE, implying that f converges to a new point in
MNX . The extension theorem for maps can be proved in the same way as
in the case of SPZZ one has only to observe that if f is an ultrafilter then so
is /(f), and /(f)EC/(fE). Concerning h), see Example 2.3 ¢) (which deals
with h) for SP-completeness, too).

To FN: If fis an open Cauchy filter in FNX then f|X is ZV-open and
ZZ-Cauchy (just as above), so there is a maximal open Cauchy filter finer
than it that is either convergent in X, or it FNZAp-converges to a new point;
thus f|X, and also f, has a cluster point in FNX, i.e. FNZis FN-complete
indeed. Concerning h), see again Example 2.3 ¢). i) is clear. Let (Y, V) be
an FN-complete extension, f(x) —x (XxEX). ForpGFNX\X, f(p) is of the
form hE with  GSqll As AT is dense in Y, there is a maximal Vip-open
filter h' such that " \X —h. The V-envelope of h is coarser than h', thus h'
is Cauchy, and so it is convergent. Let now f{p) be any of the limit points
of f)/; then the filter base f(p) Vtp-converges to f(p). Now / is FNZap, Vip)-
continuous, which implies uniform continuity, since / is an extension of a
uniformly continuous map (namely the identity) to a map from a uniformly
loose half-extension (cf. [Cs5] 2.3). i') is, however, false (hence the extension
theorem for maps cannot hold either):

Example. Let X =]0,1] x {0}, X»=]0,1] x [0,1], ZZ -U (deu x d0) \ X*
where the distance dO is defined on R by

(1) do(x,y) =\y-x\ if y/0.

Now (X,ZZ) = (X,ZZ, 1X) is a subspace of the FN-complete space (Y, V) =
_ (FNX,, 'NzZ". Assume that the identity of X has an (ANZZ V)-continuous
extension /, and consider a maximal open filter fin X finer than e2|X. Let
p GFNX \X be the corresponding point. As the filter base fis not convergent
in X*, we have f(p) GFNX*\X,,, implying that f is finer than the envelope
of a maximal ZAp-open filter, a contradiction, since such a filter can have no
trace on X. O

To W: It is proved in [W] that WZ is W-complete. WZis the unique
finest basic W-complete half-extension of U (the proof is straightforward),
i) is false: U and Z& from the above example will do again (consider now
the minimal round Cauchy filter f= e21X; or check that XQInE= XpIn in X
as well as in X»).

To D: See [Cs6] 2.1 and 3.2. Concerning h), see Example 2.3 b).

To K: Strictly speaking, K-completeness is not a topological notion in
the sense of 1.1, since the ZAp-neighbourhood filters are not always U~1-D-
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Cauchy. This shortcoming can be remedied by considering a more compli-
cated class of filters, namely those that are either A£1-D-Cauchy or Utp-
convergent (see [CrH] for a similar technical modification of the property
2YSCauchy). There exists a K-complete half-extension with only one new
point (see in 1.2 after i)); the question mark in the table means that we do
not know whether there is a less crude K-completion, e.g. one in which the
trace filters of the new points are *-envelopes of non-Z/tp-convergent U~I-D-
Cauchy ultrafilters. with these trace filters will not do: let X =]0,1] x
x [0,1], U = £/(d) I X . For each p € [0,1] x {0}, f(p) = €2(p) | X belongs
to the class of filters in question. Denote by Y the fundamental set of the
extension. Now
fo=Fily(e2/]10,I1x{0},e2X)

is a Cauchy filter pair, but f-1 has no °2Zvtp-cluster point.

To Cs: is the family of the linked round Cauchy filter pairs whose
second member is not convergent; £ consists of these second members. To
prove that °~(5) is Cs-complete, take a linked Cauchy filter pair f° in °)X.
Now if f1 has a trace on °~X\X then this trace is of the form fil{{p}},
implying f-1 = fil{{p}}, so, f° being Cauchy, fl converges to p. Otherwise,
fe IX is linked and Cauchy, and the proof can be concluded in the usual way.

is not a Cs-complete hull, since it can occur that 5 is overlayed by
a proper subfamily of it (see Examples 2.3 a) and b)), and taken with
such a subfamily is also Cs-complete (the proof is the same). The extension
theorem for maps is valid: for p£°)X\X, let f°(p) be the round linked
Cauchy filter pair for which fx(p) is the trace filter of p\ now g° = /(f°(p))
is also linked and Cauchy; hence gl converges to some point f (p), and the
uniform continuity of the map / defined this way can be proved as in the
case of FN-completeness.

°ZY(fp) is also Cs-complete: If f° is a linked round Cauchy filter pair in
°X then f° IX has the same properties (to prove that it is linked, take °Uitp-
open sets 5, £f, and pick a£ S_i fl5i; the trace filter pair f°(a) is linked,
and 5,n I £f(a), so S-i fISi HX / 0). Now f1|X is °ZTp-convergent, which
implies that f1is convergent, too, provided that the topological extension is
strict and flis open ([Cs6] 1.1); but a quasi-uniform extension with linked
trace filter pairs is always doubly strict (see [De4] Theorem 11.2, which gives
also several alternative descriptions of °U taken with linked trace filter pairs).
If U is a uniformity then ~ consists of the filter pairs (f, f) where fis a non-
convergent round Cauchy filter; as there is only one quasi-uniform extension
for prescribed linked trace filter pairs (again [De4] Theorem 11.2), °U(ty)
has to coincide with the usual uniform completion, h) does not hold, for the
same reason as in the case of °~(5).

2.3 Examples, a) On X = [—1,1]\ {0}, consider the distance
dix,y) =\Wy-x\ if xy>0 or x<O0<y.
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U{d) is totally bounded. f°x—(e_x|A, e|X) and = (e|A, ei|X) are linked
round Cauchy filter pairs. As e|X C Ci|X, both Cs-completions remain Cs-
complete if we drop ei|X from 5, respectively  from ”3.

b) In R2, take halflines Hn (n GN) starting from 02, and let

An = {xnk- fcGN}, X — U An

where xnk GHn and dau(x,fc, 02) —1/k. Define U =U(d),

Now the filter pairs

are linked, round and Cauchy, D Dwmm but the filter p]  is not even

Cauchy. (In fact, any Cauchy filter is finer than some f*.) We shall see in
Lemma 9.2 that there is no similar example with U totally bounded.

c) In the above space, let gn be a free ultrafilter with AnGgn (n GN).
As Utp is discrete, gn is also a maximal open filter, gE= f*, thus g G
G3/~nE= 5QnE. This shows that some of the filters can be superfluous in the

definition of SPU, and FN2/ but we cannot take °~(52h), Em),
respectively °)ZV(I”QnEin).

8 3 Symmetric but not bitopological notions of completeness

3.1 There is an obvious way to introduce symmetric notions of com-
pleteness: assume that both U and U~I have one of the non-symmetric
properties from 8 2. As the simplest example, let us consider doubly SP-
complete spaces. There are quasi-uniformities that do not possess a doubly
SP-complete extension, since the existence of such an extension implies that
all the Cauchy filters are D-Cauchy. (Indeed, if fis Cauchy in (X,U) then
it converges to a point a in the extension, thus fl(a) is a D-Cauchy filter
coarser than f). So the appropriate question is whether or not each quasi-
uniform space has a doubly SP-complete quasi-extension, which means that
X is only quasi-dense in the larger space (Y,V), ie. Y =ClI-1 X UCI1X.
(In [De6] 8 3, we used the expressions “extension” and “proper extension”
for quasi-extension, respectively extension.) Doubly closed subspaces have
to be considered in Condition c).
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Any quasi-uniform space (X,U) has a very simple doubly SP-complete
quasi-extension: with p,qf X , take on Y =X U{p, <} the quasi-uniformity
for which

{Pu{p} xYuYx {g} VEU)

is a base. We do not know whether there is a better double SP-completion,
with finer trace filters. The following modification of SPU might seem to be
a promising candidate:

Let y = X UP-\ UPi where X, P_j and P\ are disjoint, and let  be
a bijection from P, onto the family of the non-ZPtp-convergent ZP-round Ux
Cauchy filters. Denote by O' the collection of the functions F defined on P%
satisfying F(p) £ (p) (p E Pi). Assign to any UEU and F, E4> (i —x1) the
entourage V —V(U,F-\,Fi) defined by

xVy iffxUy (x,yEX),

pVy iffpEPj, YyEU[Fx(p)] (pEP_iUPIi, YEX),

xV q iffqE P-i, x EI7_1[F-i(g)] (X EX, qEP -\UPI),

pVvaq ifft/[Pi(p)InP_i(g)#0 (pE Pi, gE P-i),

pvVq iffp=qg {p,gE P-iUPi, (g~"A xP.,).
Now the above entourages form a base for a quasi-uniformity V on Y\
formally, it is °U taken with the “filter pairs” (expX, *(p)) (p EPi) and
(f_1(9),expX) (q EP-i) (cf. [De6] § 3, where one of the members of a fil-

ter pair is allowed to be expX). This V is, however, not always doubly
SP-complete:

EXAMPLE. Let I = NxROUfi where H consists of all the functions
N —Ri. Consider the distance

mx \_ /[ y"~x" if* VENXRQ x' =y, x"<0< y",
\ /X ifXENx RO, yEH, x" ER-i U{y(x")}.

If we define (Y, V) for U=U(d) as above then V-1 is not SP-complete: the
filter f generated by the sequence pn (n EN) is V_1-Cauchy but not V-tp-
convergent, where p,, EPi and f*Pn) = fil(ej(n, 0) | N x RO).

To prove that fis VV_1-Cauchy, take a V =V (U”*, P_i, Fi), and pick hE
E H such that (n, h(n)) EPi(pn) (n £N). Now pnV h holds for n> I/t, thus
V~IhE f.

f clearly does not converge to any point of PXUN x Ro- For h £ H fixed,
take F\ £ I»1 with

@) Pi(Pn) = {n}x]0,/i(n)[ (n £ N),
and let F_1£ i»-1 be arbitrary. Then V~1h £ f where
(2 Yy =YdD).,p_1.pD;
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thus f does not V tp-converge to h either. Finally, let qc jP_i, and choose
x e X such that Urx ¢ f-1(<),. If xG N xR o then it is evident that f does

not V_tp-converge to q\ if x = h ¢ H then V~Ig£ fwhere V is defined by (2),
with Fi satisfying (1) and jF_i (q) = U”x. O

8 4 C-completeness

4.1 A quasi-uniformity will be called L-complete (equivalent notions in-
troduced as “complete” in [Kr], “doubly complete” in [Cs], “bicomplete” in
[FL3]; present definition, with the name “pair complete” in [LF], “complete”
in [De4]; see also [Cs2], [Kr2], [Sal]) if each linked Cauchy filter pair is con-
vergent (equivalently: each linked round Cauchy filter pair is convergent;
each linked Cauchy filter pair has a cluster point; see [De4] Lemma 12.2).
Any quasi-uniformity has a unique finest basic L-complete extension, namely
°N(®1)>which can be described in several simpler ways, see [De4] Theorem
11.2, or, with 7/s-Cauchy filters instead of filter pairs, see in some of the
references cited above. U is L-complete iff the uniformity Us is complete. It
is more appropriate to consider now firm extensions, which means that the
original space is Vstp-dense in the extension (T,V); =" (1) Is essential-
ly the only reduced L-complete firm extension ofM, cf. [Cs2] (16.76) or [LF]
Corollary 17. The theory of L-completeness and L-completion is well-known,
so we do not go into details; see [Ded] § 12 and the references therein.

For all its good properties, L-completeness has a disadvantage: there are
too many complete spaces, e.g. any subspace of (RZ7s0) is complete (as Z®
is discrete). The class of the complete spaces can be easily made smaller: let
us use less filter pairs in the definition.

4.2 Making the most obvious choice, we call a quasi-uniformity

C-complete [De7] if each Cauchy filter pair is convergent;

A-complete if each Cauchy filter pair has a cluster point.

Both notions satisfy Conditions a) to e). To b): A complete uniform
space is C-complete, because if f° is a Cauchy filter pair in it then f~IE =
= f1E is a Cauchy filter. To e): U —Us|Ro is not even L-complete, since
Us=Z7eu IRo is not complete. Given a Cauchy filter pair f° in (RZ/se), take
K (1) DK(2) D... DG f with K(n) C~(i/n); now with xn=infK _i(n), yn=
= sup K\(n) we have yn < xn+ I/n, thus, the two sequences being monotone,
Iirr1n yn A Iirm xn, and f° converges to any point between these limits.

We do not know whether each quasi-uniformity has a C-complete, or at
least an A-complete, extension. °U is namely the only construction available
for arbitrary trace filter pairs in arbitrary spaces, and it is not A-complete
in the next example, independently of how we choose the trace filter pairs.

Exampte. Consider on (—1/N) x Rou Rox (1/N) the quasi-uniformity
U —U{dl0) \X. Assume that (°X,°U) is A-complete with a suitable system
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of trace filter pairs. The filter pairs
n=-eg(-1/n,0) IX, fn=-eg(0,1/n)\X (n€N)

are Cauchy, so  has a cluster point pk in °X (k GxN). Now f°(i>A)(n)f°
is round and Cauchy, implying f°(pfc) = f°, since ° is a minimal as well as
maximal round Cauchy filter pair. Take the filters f* in °X generated by
the sequence (pin) (i = £1). f°is Cauchy: for V = V(U{t), F-i, F\) we have
P-mVpn whenever m,n> 1/t. The assumption that f° has a cluster point b
will lead to a contradiction.

Pick K GfXf>) with K c i7(i), and let V =V(U(iy F-i,F\) where Ft(b) C
c Ki (i==z1),

Ai(P-n) C{-1/n} XRi, F-i(p,,)CR-iX{l/n}  (aGN).

As b is a V~tp-cluster point of -1, there is a k GN with p_k V b, A
A b, implying the existence of x GFi(p_k) and y GK-i such that x y.
From x" > 0 we get y" > 0. Now K\ CU”y C [y\ —=x[j/", -4 [, so UM KIi]fl
nF_i(pn)=0if n> 1/y", i.e. bV pn does not hold, contradicting the as-
sumption that 6 is a Vtp-cluster point of fl. O

We can, however, hope for a complete extension if only some special
Cauchy filter pairs are used in the definition of completeness (preferably, a
class essentially larger than that of the linked Cauchy filter pairs): there exist
several other constructions with special trace filter pairs, and, on the other
hand, it seems to be possible that even °U will do in such situations. Before
introducing the new notions of completeness, some properties of filter pairs
will be defined in the next section, and some constructions will be given in
8 6 and compared in 8§ 7. These three sections continue investigations from
[De4] 8 7 and 8; some of the results, included for the sake of completeness,
will not be needed in the sequel.
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A BITOPOLOGICAL VIEW OF QUASI-UNIFORM COMPLETENESS. II
J. DEAK

Abstract

A quasi-uniformity is S-complete if each stable Cauchy filter pair is convergent. Using
an extension for stable trace filter pairs (which is different from the one given in [De4]),
we show that each quasi-uniformity has an S-completion. The following modification of
D-completeness will also be considered: each stable D-Cauchy filter is convergent.

8 5 Special properties of filters and filter pairs*

51 Let (X,K) be a quasi-uniform space. A filter fin X is stable (]I],
[Cs4]) if for any U £U, f] 1/[S] E f. A filter pair f in X is
sef

stable [Ded] if f is U'-stable (t= xI);

concentrated [De4] if for any K E fx there is a UEU such that L CK
whenever LEfx and L C U\

weakly concentrated [De4] if for any U £11 there is a Uo EU such that
K,LEfx,A,LCUoimply A" xxi,C U.

Some simple results from [De4] § 7. A filter pair coarser than a weakly
concentrated one has the same property. fOE is stable iff f° is so. (It is easy
to check that a similar statement holds for weak concentratedness.) The
following implications (and no more) are valid:

non-Cauchy linked 2 stable

| AT
concentrated ==>  weakly concentrated
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where 1 holds for round and :% for Cauchy filter pairs. A Cauchy filter
pair is concentrated iff it is weakly concentrated and minimal Cauchy. A
Cauchy filter pair f° is weakly concentrated iff

(1) for any U there is a ToGU such that xUy whenever Ugx G f1
and Uqlv Gf-1

For any weakly concentrated Cauchy filter pair f° there exists a unique con-
centrated Cauchy filter pair m° coarser than it that can be defined as follows:

(2) m*= fil {Mi(U) :UeU} (i=tl),

3) Mi(U) = Mt(U, ) = U{A't:K Gfx, K CU}.

The fact that a certain class of Cauchy filter pairs is overlayed by its
minimal elements can be of use when looking for complete extensions, since
the filter pairs in this class (at least, the ones in X ), can be made convergent
using only the minimal elements as trace filter pairs; in this way we have a
chance of obtaining a completion that is a complete hull. We are going to
show that for any stable Cauchy filter pair there is a (not necessarily unique)
minimal stable Cauchy filter pair coarser than it. Instead of giving now a
direct proof, we choose a roundabout way in order to point out a connexion
between the two statements on minimal filter pairs (for weakly concentrated,
respectively for stable ones).

5.2 Given a filter fin we define

m*(f) = {MI(U):UeU},
M*(U) = M'(U, f) = {x GX : U~'x GTf}.

If UCYV then M'(U) C MI{V)- if 5D MI(U) then 5= M'(V) with V =
= UU(S x X)_<; thus m*(f) is either a filter or expX; clearly, it is a filter iff
f is ZV'-Cauchy. Thus if f° is a Cauchy filter pair then

me(f°) = (m-1(f1), m1( r 1))

is a filter pair. In fact, m°(f°) = m° (with m° from 5.1), since if x G Mt({7)
(cf. 5.1 (3)) then x G/i, with some K Gfx, K C U, so U~'x DA' tGf-* i.e.,
x GM'(U, f“%), and -conversely, if x GM'(U,f_t) then, taking a K Gfx W|th
K CU, we have L Gfx, L C U where LXx=¢(xyuva-. T ,= hence
Mt(U) = MIU, f_I). (Thus “fil” was superfluous in 5.1 (2).)

Let f° be a Cauchy filter pair. m°(f°) is coarser than f° (since Mi(U) Gf is
clear); f° is concentrated iff = m°(f°) (a simple rewording of the definition,
already used in [Ded] 7.13).
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If fis a D-Cauchy filter then (by the first statement of the preceding
paragraph) m- 1(f) is coarser than any cofilter of f; hence if (m- 1(f)>f) is
Cauchy then m- 1(f) is the coarsest cofilter of f. These observations make the
following definition plausible:

Definition. A filter f in a quasi-uniform space is

a) cominimal if it has a minimal cofilter;

b) strongly cominimal if (m-1(f), f) is a Cauchy filter pair. O

If g and 1) are cofilters of f then so is gD h; thus a minimal cofilter of fis
the coarsest cofilter of it.

Lemma. Forafilter in a quasi-uniform space, each of the following con-
ditions implies the next:
(i) stable D-Cauchy,
(i) strongly cominimal,
(iii) cominimal,
(iv) D-Cauchy.
If f is strongly cominimal then is its coarsest cofilter.

PROOF, (iii) == (iv) is evident, (ii) =>+ (iii) and the second sentence
have already been proved. To show (i) => (ii), let f be stable and D-Cauchy,
and UEU. With F—r) gs716 fwe have M~1(U) x F C U2, thus (m-1(f), f)

: . meet
is Cauchy indeed. O

Remark (A. Cséaszar). The above proof only uses that fis Cauchy in-
stead of D-Cauchy. Therefore any stable Cauchy filter is D-Cauchy. In par-
ticular, the Cauchy and the D-Cauchy filters are the same in totally bounded
spaces (since all filters are stable in such a space, see [Cs4] 4.5). See also 5.7
and 5.8.

5.3 The next lemma shows that there is indeed a kinship between stability
and weak concentratedness. (We have already cited stronger results from
[De4].)

Lemma. Iff° is weakly concentrated Cauchy then f1 is strongly comini-
mal. O

Remark. If f°is weakly concentrated Cauchy then either of the filters
P alone determines m°(f°), since m_'(f") = m_'(m,(f_,))i this explains the
notation m'(f) used in [De7j. (A different construction for m° can be found
at the end of [De7] 0.3.)

Examples, a) Astrongly cominimal filter that is neither stable nor the
second member of a weakly concentrated Cauchy filter pair. On X = Ro X
X {0} URi x {!}, let U=U(d) be defined by the distance

If X‘<O<y‘, yll:0'
if x'<O0<y, y'=g
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f= e2\X is clearly not stable. m_1(f) = t2x\X, so (m_1(f), f) is Cauchy, i.e., fis
strongly cominimal. If there existed a weakly concentrated Cauchy filter pair
(g, f) then the coarser filter pair (m_1(f), f) would also be weakly concentrated;
but it is not: no entourage Up) is good for in 51 (1), since we have

U~nr(—/2,0) Gf, Unr(2/t, 1) Gm_1(f), but the distance of these points is L
b) Cominimal, not strongly cominimal. On X = Ro, let
d(x,y) —y-x if x<0<y, (XEQ=—x>Yy).

With f= ei|X, (m-1(f), f)= e0]X is not Cauchy, but f has a coarsest cofilter,
namely fil (e_i|Q).

¢) D-Cauchy, not cominimal. The filter c2\X in (X,11(d)), where X =
= R_! XNURIi x {0}, and

d(x,y) =y'—x' if x'<0<y' <1x". O

5.4 Lemma. The intersection of a non-empty collection of stable filters
is stable, too. O

5.5 Lemma. For any stable Cauchy filter pair there is a minimal stable
Cauchy filter pair coarser than it.

P roof. Let f° be stable and Cauchy. Denote by g-1 the intersection of
the A£1-stable cofilters of f1. g_1 is A£1-stable (Lemma 5.4), and (g-1,!1)
is Cauchy (Lemma 5.2). Thus g 1 is the coarsest 2¥-1-stable cofilter of f.
Similarly, there is a coarsest ZCstable 2/ 1-cofilter g1 of g-1. Now g° is a
stable Cauchy filter pair coarser than f°. Assume that f)° has the same
properties, and it is coarser than g°. Then (fi2,f1) is stable Cauchy, thus
fl-1 D g*“1by the choice of g-1, i.e., f) 1= g-1. Therefore 1D gl, now by the
choice of gl. O

The minimal stable Cauchy filter pair furnished by this lemma is in
general neither unique, nor minimal Cauchy:

Examples, a) In Example 2.3 a), f°t and f° are minimal (stable) Cauchy
filter pairs coarser than eo|X.

b) On X =ROX {0} UR_i x {1}, let
d(x,y) =y'—x" if either x" =y"—0
orx"=1, y >0
f°= Tg\X is a minimal stable Cauchy filter pair, but it is not minimal Cauchy,
since it remains Cauchy if e21 is replaced by fl 1). O

Notations. denotes the family of the stable Cauchy (stable D-
Cauchy, cf. Remark 5.2) filters; 'Jg s the family of the stable Cauchy fil-
ter pairs. O
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Probiem. Does fp™ overlay *$5? A positive answer would be surprising,
but probably not of much use in the theory of complete extensions.

5.6 Lemma (in [De6] 3.12 without proof). Each stable minimal Cauchy
filter pair is concentrated.

Proof. If f° is stable Cauchy then (m_1(f1),f1) and (f_1, m1(f-1)) are
Cauchy by Lemma 5.2. Thus the minimality of f° implies that m°(f°) = f°,
i.e., f°is concentrated. O

A minimal stable Cauchy filter pair is in general not weakly concentrated,
see [De4] Example 7.17 b).

Corottary. In a totally bounded space, overlayed by the concen-
trated Cauchy filter pairs.

Proof. Lemmas 55 and 5.6, recalling that all the filter pairs are sta-
ble. O

Observe that the quasi-uniformity in Example 5.5 a) is totally bounded;
thus unicity does not hold in this corollary either.

5.7 Remark. A filter fis called strictly tame [De6] (introduced in [Cs4]
as “weakly Cauchy”) if for any U (EId there is a Co Gld such that p|{[/x:
UgX € f} € f. A filter is strongly cominimal iff it is strictly tame and D-
Cauchy; this is straightforward from the definitions, and D-Cauchy can be
replaced by Cauchy, just as in Remark 5.2.

5.8 According to [KMRV] Proposition 9, if U~xis hereditarily precompact
then each ZV-Cauchy filter is U —D-Cauchy. The proof given there shows
more: the filters in question are strongly cominimal. We are going to prove
a yet stronger result (found independently by Kiinzi and Junnila, see [KJ]
Proposition 1): ld~l is hereditarily precompact iff each filter is TZ-stable.
(Knowing this, one can apply Lemma and Remark 5.2.)

Definition. A filter fin (X,1d) is hereditarily Cauchy if for any 5 Gsec f,
|5 is ZV|S-Cauchy. O

I.&T‘EllAn ultrafilter is Id-stable iff it is hereditarily Id-1 -Cauchy.

PROOF. Assume first that the ultrafilter fis not ZZ-stable. Then there is
a Ueld such that p| Z7[S] ™ f, therefore H=X \ fj t/[5] Gf. If x GH then

sef sei

x 17[5] for some 5 Gf, thus U~Ix D5 =0, U~Ix $secf, U~Ix £ f. Hence
fI[H is not Id~I|7f-Cauchy, i.e., fis not hereditarily Z/-1-Cauchy.

Conversely, assume that fis not hereditarily 2¥1-Cauchy, and take H G
Gsec f= fsuch that f|H is not Id~I|Lf-Cauchy. Then there is a U Gld with
Z-1x " f(x £ H). Now Sx=X\i7-1£ Gf (x GH). Foreach x GH, x * Z7[5X,
soT= fj CZ59CX\H,thusTE£ f, implying that f is not Testable. O

X£H
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Proposition. Each filter is stable in (X,U) iffU 1 is hereditarily pre-
compact.

Proof. Each of the following statements is equivalent to the next one:

(i) each filter is stable;

(ii) each ultrafilter is stable (Lemma 5.4);

(iii) each ultrafilter is hereditarily Z7_1-Cauchy;

(iv) for any S C X , each ultrafilter in S is U~x|5-Cauchy;

(v) any S CX is U~x|5-precompact (since a quasi-uniformity is precom-
pact iff each ultrafilter is Cauchy, [FL2] 3.14). O

Corottary (improves [Cs4] 4.5). A quasi-uniformity is totally bounded
iff each filter pair is stable.

P roof. Aquasi-uniformity istotally bounded iffit is doubly heredltarlly
precompact ([KU2] Lemma 1).

Remark. Hereditarily Cauchy filters (or a weaker version, with S E sec f
replaced by S Ef in the definition) could perhaps also be used for defining
quasi-uniform completeness (in [Sm], a quasi-uniformity is called complete if
each round filter satisfying the weaker condition is the neighbourhood filter
of a unique point, see also [De9]).

59 According to [KMRV] Theorem 3, a quasi-pseudometric space is
hereditarily precompact iff each countable subspace of it is precompact. The
same holds for quasi-uniformities, too, because any quasi-uniformity is the
supremum of quasi-pseudometrizable quasi-uniformities ([Cs] (13.47)), and
the supremum of hereditarily precompact quasi-uniformities has the same
property ([KMRV] Corollary 8; or use the lemma below). This result can
also be proved with the help of stable filters: Assume that U~x is not hered-
itarily precompact, and take a non-stable filter f (Proposition 5.8). Then
there isa U€U with Z = f) i/[5] £f. Define SnEfand xne X\Z (ns N)

Sef

by recursion as follows: S\ —X\ xnESn\ Z\ Sn+i CS,, and xn U[5n+i].
Now the filter generated in C —{xn:n EN) by the sequence (xn) is not U\C-
stable, thusZ7-1|C is not hereditarily precompact (again Proposition 5.8).

Lemma (similar to [KJ] Lemma 2). Assume that ¢ is an ultrafilter in
(X,I), S is a subbase for U, and f) I7[5] E f for each U€S. Then f is

sei
stable.

Proof. Let U=f\Uk, where each Uk GS. Then = f) WK[S] Ef We
i sef
claim that T = f]Tk C H U[S]- Assume the contrary, and take 5 E f such

set
that T <€17[S]. PICk ayET\ f/[5]. Let Sk ={x ES :yf Ukx). For each
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n
X £ S, y$ Ux, implying that there is a A with y£UkX. Thus S = |
and so there is a Asuch that Sk € f. Now y J7i[Sfc], hence y £Tk DT, a

contradiction. O

8 6 Extensions with stable trace filter pairs

6.1 Let round Cauchy trace filter pairs f°(a) (a€Y) be prescribed in the
quasi-uniform space (X,U). In [De4] § 8 we proved that { XU : U £Id} is a
base for a quasi-uniformity XJ on Y , where

alUb iff either a—b
or U[A\fIB/ O forany AE"(a), B £f_1(6);

XU\X —U\ U induces the prescribed trace filter pairs iff they are stable;
if so then XU —°U. Thus MU is not a new extension, but only a simplified
description of °U in the case of stable filter pairs. It is the aim of this section
to define an essentially different extension for stable trace filter pairs. We
begin with recalling a construction with stable trace filters:

6.2 Let us be given round trace filters f(a) (@€ F) in (X,M). For U£U,
define
a5'Upb iff F[5] € f(6) whenever Sef(a),

cf. [Cs3] 6.3, [CsM] 6.3, [De6] 1.7, [Do5], [Do6], [Cs6] § 1. Parts of the next
lemma are contained in these papers.

Lemma. {5 :Use U} is always a basefor a quasi-uniformity U onY ;
PMU\X—U. The SWtp-trace filter ofa 6 7 isfiner than f(a) (possibly exp X).
5)zv is a half-extension inducing the prescribed trace filters iff they are stable;
if so then s5"HIp is a strict extension of Uip. X is 5W tp-dense in Y iff
the filters f(a) are Cauchy; if so then m-1(f(a)) is the s"U~tp trace filter of
aty.

Proof. IfF CUthen 5'FC s"U, thus B—{s"U:U G2V} is a filter base
consisting of entourages. 5F2C 5'U whenever V2 C U, so B is indeed a base

for a quasi-uniformity. If V2C U then 5*"V\X C U and V C s"U\X, implying

that Pr*U\X =U.
For aeY fixed, define

Hu = n{t/[S]:5 Gf(a)} (UeU).

If V C U then Hy C Hu, thus {Hu : U € U] is a base for a filter h(a) (allowing
f)(a) = expX). It follows from the roundness of f(a) that f(a) C h(a). Now
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f(a) is stable iff f(a) = fj(a) (since, by definition, it is stable iff f}(&) C f(a)).
We claim that f)(a) is the U ip-trace filter of a.

Indeed, s*Uar\X C Hu is clear. Conversely, assuming that V £U, V2C
C Zi, we have Hv C s"UaC\X, since if x GHy and S Gf(a) then x GV[5],
thus f/[5] 6 f(a).

Let each f(a) be stable. We have just seen that 5)U is a half-extension
with the trace filters fi(a) = f(a). "Uip is strict, since {b€Y :Hu € fib)} C
C 5>Ua.

Fora€Y,V GU and V2 C U we have

5V*ilan X cA f"1(if,f(a))Cc b)U~lar\X

(straightforward from the definitions), thus m_1(f(a)) is the s"H~tp-trace
filter of a; it is a proper filter iff f(a) is Cauchy (see 5.2). O

Corottary. Ifthe trace filters f(a) are stable and (D-)Cauchy then
is an extension for the trace filter pairs (m_1(f(a)), f(a)); s"ldtp is a strict
extension of Utp. O

Under the assumptions of the corollary, IS not necessarily a doubly
strict extension of U:
Exampte. Let X = ROx RU{02}, U=U{dso x deu)|Jf, Y = R2,

(1) f(0,s) = ti Xe(0,8)|X (sGRO).
The trace filters are round, stable and D-Cauchy, and
(2) m_1(f(0,s)) = e_i x e(0,5)|X (sGRDO).

5£/-tp is not a strict extension of U~tp, because (0, s) 5f7(()02 does not
hold for any sGRo and t > 0, implying s"U”"02 C X , although e_i x e is

the neighbourhood filter of 02 in the strict extension of U~tp with the trace
filters (2). O

6.3 Let us return now to the bitopological case where round Cauchy
trace filter pairs f°(a) (a € Y) are prescribed. 5)U taken with ~(a) is not
an extension for the given trace filter pairs, even when they are stable, since

m_1(fl(a)) can be strictly coarser than f-1(a). Nevertheless, 5ZY("Ps) or
5W(fp™) could perhaps be used for making the stable Cauchy filter pairs
converge since 5'U induces in these cases trace filter pairs overlaying *$5.
5)IA is, however, not bitopological in the sense of 1.2 g). A bitopological
modification 53U of 5)U can be obtained as follows:

W= sup{% , SW= A(W"1)"1}
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where 5)(ZP) is taken with the trace filters f‘(a) (aGP). In other words,
{5U :VGU) is a base for 3J where

abuUb iff i/[5'1Gf1(6) whenever SGf-1(a),
i7_1[5] Gf_1(a) whenever 5Gf_1(6).

We shall write a(5Ub iff the condition in  the second line holds. (Thus5U =

= 5If7fl U.) If B is a base for U then  {5i7: U6 B] is a base forhU\the
analogous statement for subbases is false.

Lemma. 5zZVe 1U.

Haafifv2c U then W c sU. Indeed, if alVb, arb and 5 Gfra)
then, taking K Gfx(6) with K C V, we have F[5]fIA' i /0, hence Z7[5] J
D K\ G/{b), thus as"Ub, i.e., IV C 5\i7; analogously, 1V C "sU. O

6.4 Lemma. 9U is always a quasi-uniformity such that hU\X—U. 55U
is an extension for the prescribed trace filter pairs iff they are stable.

FiCOIfo Lemma 6.2, 5A/and (5M are quasi-uniformities such that
their trace on X is A/ thus the same holds for their supremum. If the
prescribed trace filter pairs are stable then and induce the trace
filter pairs (m_1(f1(a)), f*a)), respectively (f-1(a), mi(f_1(a))) (Lemma 6.2).
m-,(f(a)) is coarser than f-,(a) (Lemma 5.2), thus hU induces f°(a). If, say,
f1(a) is not Z/-stable then the 5Wtp-trace filter is strictly finer than f:(a)
(Lemma 6.2), and the sMtp-trace filter of a is even finer than that. O

For stable trace filter pairs, XJ and hU can be different. In fact, XU
induces the fine regular extension associated with the given trace filter pairs
([De4] Theorem 8.7), but 53U need not do so:

Example. Let X = RoxR,y = R2,7/ =U{dso x den)|x, and consider the
stable trace filter pairs €0 Xe(0,s)|X (s GR). Now IU is doubly loose, while
5J —U (dso x deu) is a doubly strict extension (and the two bitopologies are
evidently different). O

6.5 Assume now that U is totally bounded. Then each filter (pair) is
stable, thus XU and 577 are always extensions for the prescribed trace filter
pairs. Even now, the bitopologies of XJ and hU can be different, as the
following modification of Example 6.4 shows:

Exampie. Let X = ([-1,1]\ {0}) x [-1,1], Y =[-1,1]2, U =U{dx
x deu)|X with d from Example 2.3 a), °(0,s) = eox e(0,s)|X (—1<s<1).O

XU is not totally bounded in this example, since 17/|T\X is discrete; on
the other hand:
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PROPOSITION. If U is totally bounded then so are 5°UJ and hU taken
with arbitrary trace filters (filter pairs).

Proof. It is enough to deal with sw, because that result applied to
U~ vyields that is totally bounded, too, and the supremum of totally
bounded quasi-uniformities has the same property.

Let f(a) (a GV) be the trace filters. We have to show that for 7 GU
fixed, there is a finite cover p of Y such that

(1) P2C5U {Pep).

As U is totally bounded, there is a cover {Ai,..., An) $0 of X such that
Aj c U @~j%n). X being dense in Y, c= {CI1Ai,..., Cl1An) is a cover
of Y. We claim that the partition p of Y generated by csatisfies (1).

It can be assumed without loss of generality that

k n
p = nci % \_u ci%
I fcH

where 1” k<n. Let a,b GP, and 5 Gf(a); to prove (1), it is enough to check
that C[?(] Gfib). For j <k, pick Xj G5 DAjj then Aj C Uxj C I7[5], thus

CI[5] DLIJAj, and this union belongs to f(6), since if j >k then b£ Cl1Aj
n k
implies that y\Aj is a neighbourhood of 6, hence f(6) 9 fQH{X\Aj) czI(J vly-O

6.6 In Example 6.5, the trace filter pairs are not minimal Cauchy, while
the minimal Cauchy filter pairs in that space are all linked, and such filter
pairs are in general useless in counterexamples (as too many positive results
are valid for them). We give here a general method for constructing totally
bounded counterexamples starting from not totally bounded ones (in this
case: from Example 6.4). This method was already used in [De7] Examples
3.2 and 3.3.

Assume that we have an example built in some way or other on 2eu,
Ho =zUso\Ro and the minimal ZVo-Cauchy filter pair €0|RO- Ueu clearly has
to be replaced by its trace on an interval. On the other hand, the totally
bounded space {X,li{d)) from Example 2.3 a) is not a good substitute for
(Ro,£/0)i since €0|X is not minimal Cauchy. It is, however, easy to remedy
this shortcoming:

Example. We give a quasi-uniform space (X°,U°) and a subspace
(Xo00,M°°) of it such that they are totally bounded, and there is a non-
linked minimal £/00-Cauchy filter pair f)°. {Ho will be replaced by U°° in the
counterexamples, and, occasionally, Uso by U°). Let

X° = {x GR2:|x'| = W\ <1}, AT0=X °\ {02},
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d°(x,y) =dlu(x,y) if either x'<0”y'

or x'y' >0<x"y",
d°° =d°\X00. U° =U(d®°) is clearly totally bounded. Let U°° —U{d°°).

) fio= *ox e[X°°

is @ minimal ZV°°-Cauchy filter pair, which is not linked. There are also other
(linked) non-convergent minimal Cauchy filter pairs in X 00, namely

h?,-1 = (fil (€2]X °°\ R2), el X e_\X°°)

and three similar ones, denoted by h? p h°i, i and )°jj (the indices show in
which quarter-plane the elements of the two filters meet). Check that there
are no more non-convergent minimal Cauchy filter pairs. O

6.7 Exampre (improving Examples 6.4 and 6.5). With X°, X°° and
d°° from Example 6.6, let X =X°° x [4,1], 7 =1° x [-1,1], U =U(d°° x
x deu |X), °(02,i) = I)° x e(02,s) (for s 6 [1,1], with f)° from 6.6 (1)). The
trace filter pairs are minimal Cauchy. IU and bU induce different bitopolo-
gies. O

6.8 The following modification of Example 6.2 shows that bU is not
necessarily a doubly strict extension, even if U is totally bounded and the
trace filter pairs are minimal Cauchy:

Exampte. With the notations of Example 6.6, let X = X°° x [—,1] U
U{03}, Y =1° x[-1,1], U = U(d° x deu)|X, f(p) = 0 x e2(p)\X (p €
GEV™*). 5W-p is not a strict extension of U tp, for the same reason
as in Example 6.2. Similarly, (5Afp is not a strict extension of 2vp; hence
neither topology of hU is a strict extension. O

§ 7 Comparing bu with other constructions

We shall compare bU with 2U and AJ introduced in [Ded]. This section
can be skipped without breaking the continuity of the paper.

7.1 Recall from [De4] §8that for U and trace filter pairs f°(a) (@ £T),
entourages 2U and 4UonY are defined as follows:

a2Ub iff eithera=b
or there are K € fx(a), L € fx(& with K,L C U,

ad4Ub iff there are A Gf-1(a) and B 6 f1*) such that AxB CU.
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For k=24, { :UEZ2A}Lis a base for a quasi-uniform extension with the
given trace filter pairs iff they are uniformly concentrated (which means
that they are concentrated, and also uniformly weakly concentrated, i.e., the
condition in the definition of weak concentratedness holds with Ugdepending
only on Z7, and not on the filter pair); see [De4] Theorems 8.11 and 8.13.
In the trace filter pairs are uniformly concentrated then 4U is the coarsest
extension for them, and it is doubly strict ([De4] Theorem 8.13).

Let us assume now that U, 2U, AU and SU are all extensions for the
prescribed trace filter pairs, i.e., that these are stable and uniformly con-
centrated ; in other words: stable, minimal Cauchy and uniformly weakly
concentrated. (The other conditions imply that the trace filter pairs are
(weakly) concentrated, cf. Lemma 5.6, but here they have to be uniformly
so. A family of Cauchy filter pairs is uniformly weakly concentrated iff 5.1
holds with Uo depending only on U, see [De4] Lemma 7.15 b).)

We already know that bU can be different from IU (Example 6.7), and
also from AU (in Example 6.8, the trace filter pairs are uniformly concen-
trated, AU is a doubly strict extension, but bU is not so). The next example
shows that

() 2U and 95U are incomparable,

(if) the bitopology of bU is not determined by that of U (i.e., there are
two quasi-uniformities inducing the same bitopology such that the trace filter
pairs are round, Cauchy and stable with respect to both, but the extensions
induce different bitopologies);

(iii) the bitopology of 2U is not determined by that of U either (this fact
was mentioned in [De6] 3.12 without proof).

7.2 Exampie. Let U= U(dQO)\X on

A=[-1,0[x{0}U U (—/n,I/n]\{0})x{I/n}.

On the same set, we consider V~U{d), too, where

If XII — yn, XI <y\
d(x,y) = if x'>0<i/, x"<y",
if xX'<0<% x"<y"

U and V induce the same bitopology (the sum of the Sorgenfrey bitopologies
of the intervals). Let Y = ATU{02}U {0} X 1/N,

(1) f(p) = e2(p)IX  (peY\X).

1 In. other words, a 2Ub iff either a= b or there is an x 6 X with U Ix£ f 1(a), Ux £
e™(b).
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These filter pairs are stable, minimal Cauchy and uniformly weakly concen-
trated with respect to both quasi-uniformities (Z7((/2) is good for Upj in 5.1
(1)). Hence 22/ 5A/ 2V and 5V are extensions with the trace filter pairs
(1). Now the sequence ((0, I/n))n€N converges to 02in 2Utp and 2Vtp, but
neither in ZAfp nor in 5Vitp (because it is not convergent in (5Vtp). O

7.3 We conclude this section with an addition to [De4] 8 10; see there the
definition of the operation **.

PRoPOSITION. If the trace filter pairs are stable then SZV**{{X}}= XU.

Proof. Let UEU be fixed. Pick V £U with V2C U, and assume that
abV **Xb, aib. Then there is an x £ X such that a5Vx 5Vb. Now as"Vx,
so for A £ fl(a), x £ F[A]; similarly, x (5Vb implies that for any b £ f—(6),
X £ This means that F2[A]DB »~ 0, i.e.,, UJA\fIB ~ 0. Hence
5V **X C 11U, and so XU C hU **{{X}}; the latter is also an extension for
the prescribed trace filter pairs ([De4] Theorem 10.5), and 1U is the finest
extension, so equality holds. O

Compare this result with [De4] Theorem 10.7 stating that AU **{{X}} =
= 2U. Observe also that 2U **{{X}} = 2U. (And evidently XJ **{{X}} =
— 1U.) In [De4] Example 10.7 b), 53U does not give anything new, since
5J = AU there (although described with different notations, U and the trace
filter pairs are the same as in Example 6.4 of the present paper.)

§ 8 S-completeness

8.1 Definition. A quasi-uniformity is s-complete if any stable Cauchy
filter pair is convergent. O

It is enough to consider open, or even round, filter pairs, since if ° is
stable then so is fOE. The next example shows that there is no S-completion
of the form IU (or °U, since the example is totally bounded, so any filter
pair is stable, implying °ll = [U).

Exampte. Let Aj, Bj and Cj (1 < 4) be disjoint half-open intervals

4 4 4
in R2, with their open ends at 02, A = (IJAj, B =1]jBj, C= I\JCj. On
I

X =Au BuC, let U= U{d) with

d(x, y) —dai(x,y) if either x and y are in the same interval,
or z GAj, y £ Bk with j » k,
or x £Bj,y £ Ck with j ~ k,
orx£EA y£EC.
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U is totally bounded.
f)° = (fii (c2|Ai U A2), fii (e2153U B 4UC))

is a non-convergent stable minimal Cauchy filter pair. Assuming that U is
S-complete with suitable trace filter pairs, there has to be a p\2 G IX \ X
such that f°(pi2) = f)°- Similarly, there is a 913 £ 1X\A ’such that

f°(g13) = (fii (2 [AU 52U B4), fii (€2|Cj UC3)),

and P34,024 E * X\ X with the role of the indices interchanged. For any
t >0, pjk 1UM)gmn, since there isa u £ {1,2, 3,4} different from all the indices
j,k,m,n, and then arbitrary elements of f1(Pjk) and f~I{gmn) meet in Bu.
Therefore
te= (fil {{pi2,P34}} fil {{913, 924}})

is a ~-Cauchy filter pair, which has to converge to some cG 1X. Take a
K € fx(c) with K C 1i7(i). Now pi21U(DC1U(i")qgi3 and pu " ¢ ”* q x3 (because
e.g., p341f7(i)Pi2 does not hold), so there are

XeegsUsBasUCE fl(pi2)) ViERIEV (c), Zesa2uBsu Ae | '(gm)

such that xU *y-iU AyiU”z. x£B3UC is impossible, since xU *z would
imply z £ B3\JC. Thus x £ B4 and similarly 2 GBa4; hence y~\, y\ £ Bs,
too. Replacing qi3 by <24 the same reasoning furnishes a y[ £ B3 C\K\, a
contradiction, since y-\U(\*y[ cannot hold. O

8.2 It is our next aim to show that 52Y, taken with suitable trace filter
pairs, is S-complete.

Lemma. Ifthe trace filter pairs are stable, and f° is an open Cauchy filter
pair in (5X, 5U) such that f°|X = f°(a) for some af£ 5X then f° converges
to a.

P roof. For reasons of symmetry, it is enough to show that fi bUtp-
converges to a, i.e., that s"Uaf fi and (5Ua £ fi for any U £U.

1° LetT — AGTfIM)}. Then T £ ~(a), thus T £ fA X, implying
that there is a 52vp-open S £ flsuch that 5HATCT. Now 5 C 5"Ua, because
ifbES then T DSn X £ fi(b), and U[F] DT (F £ ~(a)), so as™Ub. Hence
5'>Uaf f1.

2° f° being Cauchy, there is a K £ fx such that A'C (sU. We claim
that K\ C i5i7a; hence (sUaf fl, too. Indeed, assume that b£ K\. Take
aTETf 1(b). Then for any x £ K-1DX , x (sUb, thus U~I[T] £ f_1(x), X £
£ U~1[T]; so A~fIIC U~I[T], ie, U~I[T] £f 1A= f*1(«)- As T £ f-"b)
was arbitrary, we have a”sUb, so K\ C (5Ua. a
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Remarks, a) [Cs6] 1.1 (cited in the last paragraph of 2.2) could have
been used in 1°, but the application is not straightforward, because slllp
can be different from s*lip.

b) It is used in 1° that f°|X is finer than f°(a), and in 2° the converse.
It is in fact not enough to assume that f°|X is finer than f°(a), see later in
Example 8.4.

8.3 Lemma. Let (T, V) be a half-extension of [X,U) for stable trace fil-

ters such that VC bU where b™U is taken with the same trace filters, and
assume that f is a V-stable Vtp-open filter in Y. Then f|Jf isU-stable.

Proof. It is enough to show that
(@) rnMSnX]:5£f, 5 is Vip-open}€f|it,

since the sets 5f1 X considered here form a base for f|X. Let a Vtp-open set
S Gf be fixed. We claim that

2 uf[snx]D b'>u[S]nx.

Indeed, take a y from the right-hand side, and choose aG 5 with as"Uy;
S being open, 5fIX Gf(a), so 17[SnX] Gf(y), therefore y is in the left-hand

side of (2). Now TD f| 5)U[S] n X, and f] 5)[/[S] Gf, since 5>t/G% CV
sei sef
and fis V-stable. Thus T Gf|X, proving (1). O

Corollary. Ifthe trace filter pairs are stable, and f° is stable and open
in (5X, bU) or in (LY, XJ) then f°|X is also stable in (X,U).

Proof. 5U csU ¢ XU, so the lemma gives that fx|X is ZY-stable; f x|X
is i/_1-stable by the lemma applied to U~x and the trace filters f-1(a). O

8.4 Notation. sU = 5ZY(}xs).
Theorem. sZYis always S-complete.

Proof. Let f° be a round stable Cauchy filter pair in (SX, SU). j°\X is
round and Cauchy in (X,U); it is also stable by Corollary 8.3. Thus if f°is
not a neighbourhood filter pair then it is the trace filter pair of a new point.
Hence fOJA" = f°(a) with some a G SX , and f° converges to a by Lemma 8.2. O

This theorem shows that any quasi-uniformity has an S-complete exten-
sion, but it does not give a good completion. Take e.g., the space (RZYs0).
For any iGR, there are three round stable Cauchy filter pairs different from
f°(a:) and converging to x\ they all have to be taken as trace filter pairs, al-
though Uso is already S-complete. One would expect on the analogy of some
results from [Cs6] and [De7] that 52V(tp) is S-complete whenever tp overlays
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<Pg (in particular when fp = "Pgl), or at least when <P = ~Pg. This is, however,
not the case:

Example. Let X ,Y and U be as in Example 6.2, and take bU with the
trace filter pairs

@) f°(p) = Oxe(p)|X (pey\i).
Each f°(p) is stable and minimal Cauchy. 5U is not S-complete, because
2 0° = Filv(e2ly\X,e2ly\X)

is a stable Cauchy filter pair that does not converge to 02, and it clearly
cannot converge to anywhere else. It is straightforward to check that all
the non-convergent round Cauchy filter pairs figure in (1). Thus 52Y(fPg) =

= ~N("Pgl) is not S-complete. .
P roblem. Does every quasi-uniformity have an S-complete basic ex-

tension? For a positive answer, we would need a construction different from
both 1U and bJ (Example 8.1 and the one above).

8.5 A quasi-uniformity is called stable ([Do5], [Do6]) if each D-Cauchy
filter is stable (equivalently: each round D-Cauchy filter is stable, since if fE
is stable then so is f). Similarly to [Do5] Theorem 1

P roposition. IfU is doubly stable then ~ ( Pc) is C-complete.

P roof. "Pc= *Pg in this case, thus bU is an extension of Z7, and all the
round Cauchy filter pairs are trace filter pairs. If f° is round and Cauchy in
5X then f°|X = f°(a) for some a £ 5X, and f° converges to aby Lemma 8.2. O

It is important in the proof that f° in Lemma 8.2 was not required to be
stable, since it can occur that U is doubly stable, but bU{”c) is not so:

Example. On X from Example 7.2, let
Q) d(x,y) =deo(x,y) if x"<y", x"+x"(y"- x")<y".

dxo (x,y) was defined for x" <y, x' y'\ the conditions in (1) are stronger
than that, since x* 0 in X, and y" - x" >0 by the first condition. do is a
distance, so in order to prove that d is distance, it is enough to check that if
d(x, y) and d(y, z) are defined then so is d(x, z). x" <z" is evident;

X'+ X" X" =Xy X X2 - YY) %y Yyt y) oz

Let U —U(4) and V =Ili(d"a|X); they induce the same bitopology, because
for x fixed there is a « > 0 such that if d»o (x,y) <« then x" =y", and so
d(x,y) =dlo (x,y) (and the same can be said about the pairs (y,x)). VCM,
so any ZZ-Cauchy filter pair f° is also V-Cauchy, therefore it converges to
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some w Gr2 inU(dD). Ifw/ 02then f° is stable because it behaves just like
a Cauchy filter pair in (R0,Z7s0|Ro)- So let us assume that w —02. Then f°
is finer than f)°=egl. We are going to show that flis ZY-stable (it is much

simpler to check that f-1 is 2¥1-stable).
It is enough to know that for any t > 0,

) n{UI)[S\:S€11}D]O,t\inX,

because the right-hand side is in I)1C f1. To prove (2), let S Gf1 be fixed.
For 0 < s <t/2 take x GS such that x',x" <s (this is possible, since f1
U(d2o )tp-converges to 02). Now

(3) U~rx j]2s,t[2nx,

since if y is in the right-hand side then y"and x'+ x"(y" —x") <s+
+s’f =y'mFrom (3) applied to each 0 < s <t/2 we obtain f7(<)[5] D]0, t[2fIX,
which holds for any S Gf1, proving (2).

Consider now the filter pairs

(4) f°(p) = e2(p)[X (PG {0} X 1/N),

and take 5U such that 5X DH —{0} X1/N, with the stable minimal Cauchy
filter pairs in (4). We claim that bU is not stable. Let f be the filter in 5X
generated by the sequence ((0,I/n))n6N. f is D-Cauchy, with the cofilter
fil (e2; |X). Ifp,q€ H, g then p 5°Uq never holds, because

5=]0,p"[x{p"}Gfl(p), "(V[5]1"FfL(9).
Thus fis not 5Z7-stable, hence not 5ZY-stable either. O

8.6 Let us call U substable if is overlayed by (in the terminology
of [Cs6]: {X,U) is a D-space). According to [Cs6] 1.7, if U is substable then
5)ZV(3s) is D-complete, and so is 5 (5) with any 5 C 3s overlaying Js- The
analogous generalization of Proposition 8.5 is false: in the next example, <Pc
is overlayed by 73$, a°d yet 5Z7("3) is not C-complete with any tp C “Ps- (This
is not at all surprising after Example 8.4.)

Example (a modification of Example 8.4). On X = ROx RU{02}, let
U =U(d) where

d(x,y) =deefx,y) if x' <y', [x"|>X".

fPc is overlayed by fPg, since any non-stable Cauchy filter pair is convergent.

@& is finer than the restriction of the C-complete quasi-uniformity
U(dso X deu), so each Cauchy filter pair f° is finer than eo Xe(a)|X with
some a GR2. If f° is not stable then [a"| = &'; the Cauchy property implies
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now that f-1 has no trace on the set {x £ X :\x"\ <x'}; hence f° converges
Oa.)

Assume that U is C-complete. The filter pairs 8.4 (1) are again stable
and minimal Cauchy, so there are points in 5X with these trace filter pairs;
as in 8.4, we identify the corresponding new point with the elements of {0} X
XRo- The filter pair 0° from 8.4 (2) is Cauchy, so it has to converge to some
CG5sX. QOE also converges to c, and

OOEJAT —Fil* (€0 X e[ROX R) = f)°.

Now f)° is finer than f°(c), a contradiction, since f°(02) is the only stable
Cauchy filter pair coarser than f)°, and 0° does not converge to 02. O

8 9 A modification of D-completeness

This section can again be skipped; it deals with the non-symmetric ana-
logue of S-completeness, and contains also some remarks on D-completeness
and on stable spaces.

9.1 It is proved [Do6] that if U is stable then is D-complete; it is
in fact enough to know that U is substable, see [Cs6]. Although any quasi-
uniformity has D-complete half-extensions, cf. 2.2, 5'U is of interest because
it has two additional properties: it is an extension, not just a half-extension
(to avoid ambiguity, we shall use the expression double extension in this
section), and s"Utp is a strict extension ofZvtp. It is not known whether each
quasi-uniformity has a D-complete double extension; concerning strictness,
see 9.4. A complete double extension can be obtained, however, if we change
the definition of D-completeness:

D efinition. A gquasi-uniformity is SD -complete if each stable (D-)Cau-
chy filter is convergent.

Notation. SdZY= 5"~(3K).

Proposition. SAZYis a basic ST) -completion; it is a double extension,

and SDUtp is a strict extension of Utp. If U is a uniformity then is
its usual completion.

PROOF, SDAMp is strict and U is a double extension by Lemma 6.2. Let
f1 be a stable D-Cauchy filter in SDX , f-1 a cofilter of f1. Then 6° = foE|X
is a Cauchy filter pair, and f}lis */-stable by Lemma 8.3. Thus fH converges
to some a G SDX, and then so does f1, see in the second paragraph of “To
Cs” in 2.2. IfU is a uniformity then it is stable, thus SDA/= 57\(5d ), which
is the usual uniform completion ([Do5] Proposition 6). O
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The following can be added to the table in 2.2:

( Sbu +
SD + + { °>i/(a8) - - +

0)ZY(5s) * SD-complete, because if fis a non-convergent stable (D-)Cauchy
filter in °)X then X € f, implying that flJA is ZV-stable; it is also Cauchy (see
the reference to [Cs5] in 2.2 “To MN™), hence D-Cauchy. (It was possible to
avoid here the more complicated reasoning from [Cs6] 2.3. Lemma 8.3 could
also be used when establishing that f|X is stable.)

Remark. Stable analogues of MN FN - and w -completeness could al-
so be introduced, cf. the last paragraph of 2.1. The following implications
hold between the non-symmetric notations of completeness (we do not inves-
tigate whether there hold others, too; squares stand for the notions having

no name):
SP = MN = FN w

if if if
K D => O O O
4 if if if
O =S8 = @O O O
if if if if if
O o CGCs O O = 0O

The reverse implication in the left bottom corner is valid, because if f° is
linked and f1Uip-converges to x then x is clearly a AMp-cluster point of f-1.
Below K, it is not clear whether we should consider first members of stable
Cauchy filter pairs, or rather the filters having a ZV-stable -cofilter.

9.2 Both in and °W above, it is enough to take trace filters overlaying
3s (the same proof; stability has to be assumed in the case of 5W). We
cannot, however, take s)I/(3g*) or °W(5sl), since 591 does not necessarily
overlay 3s: n Example 2.3 b), fj Dfj D... are stable and Cauchy, but their
intersection is not Cauchy. We are going to show that 3™ overlays 3s in a
special class of spaces.

DEFINITION. A quasi-uniformity is (strongly) cominimal if each D-Cau-
chy filter is (strongly) cominimal. O

For a quasi-uniformity U, we have the following properties, each implying
the next one: U is totally bounded, U~x is hereditarily precompact, U is
stable (5.8), U is strongly cominimal (5.2), U is cominimal (5.2).

Lemma. If U~x is cominimal then 3g1 overlays 3s-

PROOF. We intend to use Zorn’s Lemma. Let 3 C3s be ordered by
inclusion. By Lemma 5.2, (m-1(f),f) is a Cauchy filter pair (f6 3), and
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if fC 0 then m_1(f) o m“1"). Thus 9= :f€ 5} is also ordered by
inclusion, f)= (Jf) is a filter, his Z7_1-D-Cauchy because it is finer than such
filters. U~x being cominimal, there is a coarsest filter t for which (f],E) is
Cauchy, fo m_1(f) implies that (fj, f) is also Cauchy, thus EC f (fe if), and
so (b,f]3) is Cauchy, too. H 3 * a*%o stable (Lemma 5.4). O

P roposition. If U~l is cominimal (in particular, if U is hereditarily
precompact) thenU has an SD-complete hull, which is a double extension as
well as a basic strict half-extension; for uniformities, it coincides with the
usual completion.

Proof. "(Sgl has the required properties: use the lemma, and the
observation before the definition. IfU is a uniformity then 5™ = =5r.0

Similarly, if U is substable and U~I is cominimal (in particular, if U is
doubly stable) then is a D-complete hull with the properties men-
tioned in the proposition. In Example 8.5, U is doubly stable, but sW(3p)
is not stable. Let us also note that a quasi-uniformity can be stable and
hereditarily precompact without being totally bounded, see [KJ]], after the
proof of Corollary 3.

9.3 The existence of a D-complete double extension can be guaranteed,
besides for substable spaces, in another special case, too:

P roposition. Assume that there is in (X,U) afinite family of D-Cauchy
filters overlaying . Then U has a D-complete double extension which is
also a strict half-extension.

Proof. Let J denote the finite family of filters. Taking the envelopes
and then discarding the superfluous filters, we may assume that the elements
of J are round and incomparable (i.e., none of them is finer than any other).
Let f-1 be a Af1-round cofilter of f1 (fLE5), and = {f°:fl1E3}. Now
°7/(fp) is a double extension. It is also strict by the Lemma below, thus
°ZY(tp) is D-complete ([Cs6] 1.3). O

Lemma. There belongs only one topological extension to any finite family
of incomparable non-convergent open trace filters given in a topological space.

Proof. We show that the loose extension is strict. With the usual
notations, let aEY, and N a neighbourhood of a in the loose extension.
Then there is an open S E f(a) such that {a} US CN. For each p£Y \
\ (X U{a}), f(a) €f(p) (either by the incomparability, or because f(p) is not
convergent), so it can be assumed that S f(p) (a”p£ T\X), and therefore
{a} U5 is a neighbourhood of o in the strict extension. O

Remarks, @) If Y \ X is finite then U~tp-density is not needed in

[Cs6] 1.3.

b) (A. Csaszar.) The construction from [Cs4] 7.6 can also be used if
the filters in J satisfy the additional condition called there “weakly Cauchy”
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(strictly tame in [De6]); in this case it is not necessary to make the elements
of 5 incomparable.

c) U from Example 9.4 restricted to RO x {0} U{0} x Ro shows that the
conditions of the proposition can hold without the filters being strictly tame.

Problem. Is it true that if is overlayed by a finite family of Cauchy
filter pairs then there is a C-complete extension?

94 Any quasi-uniformity has a D-complete (in fact, SP-complete) strict
half-extension: if (X,M) is not SP-complete then f= {X} is not convergent,
and so °~({f}) is strict. It would be better to have D-complete strict half-
extensions with D-Cauchy trace filters; in the next example, there does not
exist such a half-extension.

Example. On X —R2, let U—U(d), where

d{x, y)=d\u(x,y) if either x"~ 0=y",
or x"—y"=0, x'<y'.

Assume that (P, V) is a D-complete strict half-extension of (X,U) with D-
Cauchy trace filters. Then there are points pt \X (tGR) such that
f(pt) = e(t) x fil r{{0}}, since these filters are minimal D-Cauchy. For each
aGrRx {0}U{pt:tGRr} = Z, rR x {0} Gf(a), therefore (V|Z)tp is a strict
extension of (zvir x {O})tp. Identifying r x {0} with r, we obtain that Uso
has a strict half-extension with the trace filters e(t) (f GR), a contradiction
according to the example after [Cs4] Theorem 6.1. O
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ZUR KONSTRUKTION DES REGULAREN SIEBZEHNECKS

J. STROM MER

Meinem lieben Freund, Herrn Prof. H. Sachs zum 50. Geburtstag gewidmet

Abstract

At the construction of the regular 17-gon one has to solve a chain of dependent quadrat-
ic equations. All the authors of the various constructions have been concentrating on ge-
ometric representation of the roots of these equations. As F. Klein ([5], p. 19 and 26),
F. Enriques ([2], p. 175), Th. Vahlen ([9], p. 155) and later also H. Lebesgue ([6], pp.
149-150) emphasized their wishes to construct the regular 17-gon on the base of purely
geometric analysis. This is the intention of this paper giving such a discussion, which can
be treated also in a textbook of plane geometry.

Von Alters her sind uns von den reguldren Polygonen mit ungerader
Seitenzahl nur die Konstruktion der Polygone von 3, 5 und 15 Seiten be-
kannt. Erst Gauss hat im Jahre 1796 bewiesen, dal} auch die Konstruktion
des regulédren Siebzehnecks mit Zirkel und Lineal durchfliihrbar ist. Man hat
zu diesem Zweck eine Reihe zusammenhéngender, quadratischer Gleichun-
gen konstruktiv aufzulésen. Die Entdecker der verschiedenen Konstruktio-
nen beschrénkten sich darauf, die Wurzeln dieser Gleichungen geometrisch
darzustellen. Wie schon F. Klein ([5], S. 19 u. 26), F. Enriques ([2], S.
175), Th. Vahlen ([9], S. 155) und spéter auch H. Lebesgue ([6], S. 149-
150) bemerkt haben, wdare es wiinschenswert eine nur aus geometrischen

Erwdgungen abgeleitete Konstruktion des Siebzehnecks zu haben.1) Im Fol-
genden geben wir eine rein geometrische Analyse, die in jedem Lehrbuch der
Geometrie Platz finden kdnnte, und aus der sich die bekannten Konstruktio-
nen leicht ableiten lassen.

1991 Mathematics Subject Classifications. Primary 51M15; Secondary 51M20.
Key words and phrases. Constructions, regular polygons.

V Eine rein geometrische Analyse mufd Erchinger gehabt haben, von dem Gauss in den
Gottingischen gelehrten Anzeigen (19. Dezember 1825) berichtet (s. [3], S. 187): ,,Das
eigentlich Verdienstliche der Abhandlung des Hm. Erchinger beruht ... in der rein ge-
ometrischen Begrindung ... und diese ist mit so musterhafter mihsamer Sorgfalt, alles
nicht rein Elementarische zu vermeiden, durchgefiihrt, daR sie dem Verf. zur Ehre gereicht.”
Diese Abhandlung ist aber verlorengegangen (vgl. [4], S. 15 u. 68).

0081-6906/95/$ 4.00 ©1995 Akadémiai Kiadd, Budapest
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Zu diesem Zweck sei O der Mittelpunkt eines Kreises mit dem Radius
OA —1 (Fig. 1), in den das reguldre 17-Eck AA\Ai... Aie einbeschrieben
werden soll. Es seien Pi, P2, +++ Pg die Projektionen der Eckpunkte Ai, A2,

. ,Ag auf den Durchmesser AB des Kreises. Die von denselben Eckpunkten
auf den zu AB senkrechten Radius OC gefdllten Lote sind gleich der Hélfte
je einer der Diagonalen eines demselben Kreis einbeschriebenen reguléren 34-
Ecks. Wir bezeichnen diese Diagonalen in abnehmender Reihenfolge ihrer
Grole mit Xi, £2,... ,£s- Dann gilt:

2 +*0OP\ = x2, 2 +0OP5 = £7,
2 0P 2= x4, 2 *OP6 = x5,
2 OP3=x6, 2 +0P7 = £3,
2 OP4-XS, 2 0Ps=x1.

In der Figur sind die MaRzahlen der einzelnen Winkel in Bezug auf ff
als Winkeleinheit angegeben.

Aus jenen gleichschenkeligen Dreiecken, deren Basen der Reihe nach
gleich £i,£2)... ,£8 und deren Schenkel alle gleich 1 sind, kann man ein
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gleichschenkeliges Dreieck zusammensetzen (s. Fig. 2).2) Aus diesem grolien
gleichschenkeligen Dreieck folgt unsere Grundgleichung:

*LF E3F £5+ «x7 - £2- £4- £6- xs =1

Aus der Figur ergibt sich ferner die Relation 1: =x\:1+\x2,d.h.
£2=2+ £2;
ebenso 1: =x2:|(£i F £3), d.h.
X\i2—x\ +x3;
usw. Die so erhaltenen Relationen fiir die Produkte von je zweien der GroRen
£i,£2,... ,xg stellen wir in der folgenden Multiplikationstabelle3) zusammen:
X\ X2 3 £4 2:5 xe £7 Xg

1 2Fg2 X\Fes £2Fes e3F X9 £4F t6 25+ 27 £6FE8 :7 - 28
X2 £1+x3 2-(-%X4 g1 Fgs X2+ X6 23F g7 g4F g8 £5- 2.8 £6 - X7
*3 g2+ X4 g1 Fes 2F g6 X\VFe7 xoF g8 23- X9 £4—27 XB xs
£4 X3F s x2r g6 g1 Fer 2F gs Xi Xg g2—27 Xg- XB £4 . Xs
x5 X4+ X6 £3+ £7 yoF gg X Xg 2 —£7 g1. g6 X2- X5 XQ- £4
xe £5+ X7 xaF Xy £3- Xg £2- £7 £1 - €6 2.g5 £1 —£4 22 . 23
X7 x5+ xs X5- Xg £4 —£7 23- 26 £2- £5 £1 —£4 2- £3 x\ X2
Xs X7- Xg £6-£7 xs XB X4 X5 £3- £4 £2 .y, g1 —g2 2—£1
Aus den GroBen x konnen wir nun folgende, aus je zwei verschiedenen
Faktoren bestehende Produkte zusammenstellen:
XAX2iXVX$) X\X4,X\XB , XjXB, Xx\x*j, XjXg,
AQHAG] RAQRALT RAQHAG 1 *Ageag]  ZWAT T WAy age
FAZFNLT N3*ABT X3XQ1 £3 X7, XBXg,
XA X BT *Aangr XAXTA Mg

X B XB, *AG*ATT *Nsxngq

X6X7,X6X8;

XjXg.

2) Esist leicht zu sehen, daR3, wenn n eine nattrliche Zahl der Form 21;+ 1ist (c> 1) und
V>=J, aus jenen gleichschenkeligen Dreiecken, deren Basiswinkel 9 2v>,... , kip und deren
Schenkel alle gleich 1sind, sich immer ein gleichschenkeliges Dreieck zusammenstellen la03t.
Die Basis des gleichschenkeligen Dreiecks mit dem Basiswinkel Kip, ist gleich der Seite des
dem Kreis vom Radius 1 einbeschriebenen reguléren 2ra-Ecks. Diese Figur verwendet ein
anonymer Araber, der vor ungefdhr tausend Jahren lebte, und spéter auch Vieta, um jene
(kubische) Gleichung abzuleiten, von der die Konstruktion des regelmaRigen Siebenecks
abhéngt (vgl. [9], S. 83).

3) Diese Tabelle verwendet Th. Vahlen ([9], S. 148-152), um jene quadratischen Gleichun-
gen abzuleiten, auf deren Losung sich die Teilung des Kreises in 17 Teile zurtckfihren 1a3t.
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W ir gehen nun von dem Produkt X\X2 aus und suchen diejenigen Gréf3en
x auf, deren Summe bzw. Differenz mit diesem Produkt gleich ist. Dann
suchen wir diejenigen GroRen x auf, deren Summe bzw. Differenz mit dem
Produkt der so erhaltenen GroRBen x gleich ist, usw. So kommen wir nach
acht Schritten zu jenem Produkt zuriick, von dem wir ausgegangen sind,
wéhrend wir der Reihe nach die, in der Spalte | aufgeschriebenen Relationen
erhalten. Wenn wir von dem Produkt xixs, xixs. xaxe, XN xaxs, xaxs
oder £72:8 ausgehen, so bekommen wir dieselben Relationen in derselben
zyklischen Reihenfolge. Wenn wir aber von dem ersten, in der Spalte 1nicht
vorkommenden Produkt X1X4 ausgehen, dann erhalten wir die in der Spalte
Il aufgeschriebenen Relationen. Auf dieselbe Weise erhalten wir die in der
Spalte Il und zuletzt die in der Spalte IV aufgeschriebenen Relationen.

. . Il. V.
XiX2= Xj+ X3, xix4 = X3+ X5, 206 —X4+ XB, XiXe= Xs5d-X7,
X1X3 = X2 + X4, 2:32:5 — 2:2 d- 2:8, X"Xq—3’2 X7, XsXJ—X2 X5,
X2X4 — X2 f" Xg, x2x8 = x6 -x 7, X2X7—X5 Xg] X2X5—Xg “I 37}
2276 — 2:4 d- X8, xsx7= xi — x4 XEKG—Xg M? xox; —x1 —x7,

2:4"8 —24 25 x3xa — x\ v 37, XaXJ—33 XB)
X4X5= Xi x8, )Q)q:)ﬁd-m, XgXB —Xg  Xg 9
XiX8= X7-X 8, x6x8 — x2 - x3, XgXg —X§ Xa,
Xng—X\—XZ— x2x3 — X\d- 255 xaxs —x\ - x6.

Die in einer und derselben Spalte stehenden Gleichungen driicken die
unter acht bzw. vier Gber der Verbindungsstrecke von je zwei Punkten P als
Durchmesser beschriebenen, einander in bestimmter, zyklischer Reihenfolge
folgenden Kreisen bestehenden Relationen aus, nachdem die Potenz von 0
in Bezug auf einen dieser Kreise gleich der Entfernung des Mittelpunktes des
folgenden Kreises von O ist. Beispielsweise kann man die Relation X2X6 =
= X4 d 28 auch so schreiben 4 «OPi «OP3 = 2(0P2 + OP4), d.h. man hat

OP1 OP3=i(OP2+ OP4);

hier ist das Produkt auf der linken Seite gleich der Potenz von O in Bezug
auf den lber P1P3 als Durchmesser beschriebenen Kreis und der Ausdruck
auf der rechten Seite ist die Entfernung des Mittelpunktes des uber P2P4 als
Durchmesser beschriebenen Kreises von O.

Da die Gleichungen der Spalte Il zwischen der Potenz von O in Bezug
nur auf vier, die tber P3P5, PRP7, P1P4, P2P8 als Durchmesser beschriebenen
Kreise und der Entfernung der Mittelpunkte E, F, G, H derselben Kreise
von O bestehenden Beziehungen ausdriicken und auBerdem fur diese Entfer-
nungen

oP=i(OP3-0P5)=i(x6-x7),

OP=i(OP6+ OP7)= ~(x3+ x5),
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O G =}(OPI+0P4) = (x2+Xs),

OH='2(OPs-OP2)= F(x1-x 4)

auch unsere Grundgleichung driickt eine Bedingung aus, so wird es unser
Ziel sein, zwischen den Punkten E, F, G, H weitere Beziehungen zu finden,
mit deren Hilfe diese Punkte konstruiert werden kénnen. Wenn wir ndmlich
diese Punkte kennen, so kénnen wir das gesuchte Polygon auf verschiedene
Weise konstruieren. GemaélR der letzten Gleichung der Spalte Il ist z.B.

OP3 OPs=0OH=0AOH

und daher schneiden sich die uber AH und P3P5 als Durchmesser gezeich-
neten Kreise in einem Punkt K des Radius OC (s. Fig. 1). Kennt man also
die Punkte E und H, so kann man die Punkte P3 und P5 und mit deren
Hilfe auch das gesuchte Polygon konstruieren.

Indem wir zwischen den Punkten E, F, G, H neue Beziehungen suchen,
bemerken wir zun&chst, dalk die iber EF und GH als Durchmesser beschrie-
benen Kreise die Verldngerung des Halbmesser OC in demselben Punkt D
schneiden. In der Tat gilt

OE mOF ="|6(xe - X7)(x3+ x5)
= N (X3X6 - X 3X7 + X5X6 - X 5X7)

='|'Oz(xs- X8 ~ x4+ X7+ Xi - X6- X2+ x5)
und so ist infolge unserer Grundgleichung

EOF=—.
OEOF=-

In &hnlicher Weise zeigt man, dal3
OG OH= "(x2+x8)(x1- x4)=~,

also
OE ®OF =0G mOH

gilt. AuBerdem ist OD =\.
Ferner bemerken wir, dalR G die Strecke EF innerlich in demselben
Verhéltnis teilt, wie H &auRerlich. Es ist namlich

EG wH = (OG - OE)(OF - OH)

= qg2 X8 - X6 --X7)(X3+ XS- Xi +x4)
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und
FG sEH = (OF + OG)(OE + OH)

- TAM{X3+ X5+ X2+ X8){X6- X7+ XL -X4)
lo

:B(-®i+xz+z;3+X4+X5- X6 + X7 + X8),

also EG WH = FG sEH, bzw.
EG :FG =EH :FH.
Ferner folgt, wegen <EDF= <GDH —R, dal

<GDE=<EDH=<HDE="R

gilt.

Es sei nun | derjenige Punkt der Geraden AB, der die Strecke EF
auBerlich in demselben Verhéltnis teilt, wie O innerlich. Dann gilt die Pro-
portion OE :OF =E |:F1 und somit OE | = OF- El bzw. OE{OF +
+ Ol) = OF(OI - OE), und folglich

_ 2°0F -OE _ (x6- x7)(x3F35)
OF-0OE xs +x7)°
oder wegen (2"- x7)(23+ x$) = 1 schlieBlich

J(2:3F M5 g )

Da <EDF =R ist, so hat man ferner <EDI = <ODE.

Es sei nun J derjenige Punkt der Geraden AB, der die Strecke GH
auBerlich in demselben Verhaltnis teilt, wie 0 innerlich. Dann gilt die Pro-
portion OG :OH = GJ :HJ und somit OG HJ= OH ®GJ bzw. OG[0OJ —
—OH) = OH(OG + 0J), und man findet

aqj _ 2°0G -OH _ (x2+ x8)(xi - x4)
O0G —OH 2(2:2 + 2:8 - X\ . X4)

Beachtet man, dall (x2+ £8)(:ri —x4) = 1ist, so ergibt sich

1
2(2:2-x8 - xi + 24)

Wegen (x2+ x5- x8 + x7)(x2+ x8 - x4+ 24) = 4 erhdlt man

0J =

Ol ®0J- - ~(Td2
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und daher

O/=16i07=i(I12+18“1“+1l)
bzw.

0J = 16"0j = + X5 X6+ X7)-

Demnach ist | bzw. J die Mitte von GH bzw. EF.
Es sei nun M der Mittelpunkt von 1J. Dann gilt

= —(z3+ X5- X6 +X7- X2- X8+ Xi - -
oM 10(23 X5- X6 +X7- X2- X8+ Xi - x4) o

und hieraus folgt <ADM —R, wegen OA «OM = j» —OD2.

Wir bemerken noch, dal der Punkt A die Strecke IJ &auRerlich in dem-
selben Verhdltnis teilt, wie O innerlich, und demnach gilt <ODI = <IDA,
also <4 «ODE= <ODA.

Inder Tatist 0OJ- 01 =| =2m1-0J, d.h. 0J(1-01) =0I(1 +0J),
also OJ(OA —OIl) —01(0A + 0J), und schlieBlich OJ wAl = 01 mAJ, bzw.

Al:AJ=01: 0OJ.

Aus unseren Uberlegungen ergibt sich folgende Konstruktion des dem
Kreise mit dem Mittelpunkt O und dem Radius OA einbeschriebenen regu-
laren 17-Ecks (s. Fig. 1):

Wir zeichnen in dem Kreis den zu AB senkrechten Halbmesser OC und
verlangern ihn um die Strecke OD = \OA. In D errichten wir die Senkrechte
auf AD, welche OA in M schneidet. Dann beschreiben wir einen Kreis um
M mit dem Radius MD, der OA in | und OB in J schneidet. Auf der
Verlangerung von BJ und Al tragen wir das Stuck JE —JD und IH —ID
ab. Uber AH als Durchmesser beschreiben wir einen Kreis, welcher OC in
K schneidet. Dann beschreiben wir von E durch K einen Kreis, der AB in
den Punkten P3 und Ps schneidet. Die in diesen Punkten auf AB errichteten
Senkrechten schneiden den gegebenen Kreis in den Eckpunkten A3, Av4 und
As, Ai2des gesuchten Polygons.

Diese Konstruktion stammt allem Anschein nach von H. Lebesgue. Er
leitete sie aus der allgemeinen algebraischen Theorie der Kreisteilung ab (s.
[6], S. 145-148).

Aus den obigen Uberlegungen folgt auch die folgende Konstruktion des
17-Ecks (s. Fig. 1):

Auf der Verldngerung des Halbmessers OC tragen wir wieder das Stiick
OD =\0A ab. Dann bestimmen wir auf OA und OB die Punkte E und H
so, daB <EDO = <\ADO und <EDH ="R wird. Mit Hilfe der Punkte E,
H konnen wir dann die Ecken A3, Al4 und A5, Al12 des gesuchten Polygons
ebenso finden wie oben.
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Diese Konstruktion hat H. Richmond im Jahre 1893 angegeben. Der Be-
weis bei ihm (s. [7] und [8]) beruht auf der Bemerkung, dalR die geometrische
Lésung quadratischer Gleichungen, wenn die Koeffizienten gewisse Bedin-
gungen erflllen (u.a. die absoluten Glieder ganze Zahlen sind) auf Winkel-
halbierung zurlckgefihrt werden kann.

Auf Grund unserer Erérterungen konnen wir die bekannten Konstruk-
tionen des reguldren 17-Ecks (s. z.B. [4]) leicht beweisen; so z.B. auch die
ziemlich geldufige Serret-Bachmannsche Konstruktion, welche in den Lehr-
bichern, die die Siebzehnteilung des Kreises behandeln, stets zu finden ist
(s. z.B. [1], S. 216-217, und [2], S. 177-179).

Es sei OA = 1 der Radius des gegebenen Kreises, welcher in 17 gleiche
Teile geteilt werden soll (Fig. 3). Senkrecht zum Durchmesser AB des Kreises
zeichnen wir den Radius OC. Dann tragen wir auf OB das Stick OM' =
—\O A ab und zeichnen um M' mit dem Radius M'C einen Kreis, der OA in
I' und OB in J' schneidet. Aus J' mit dem Radius J'C beschreiben wir einen
Kreisbogen, welcher AB in E' schneidet. Ferner beschreiben wir aus I' mit
dem Radius I'C einen Kreisbogen, welcher die Verldngerung von AB in G’
schneidet. Dann beschreiben wir tiber BE" als Durchmesser einen Halbkreis,
der OC in N schneidet. Wir stechen mit der Strecke \OG" in N ein und
schlagen einen Kreisbogen, welcher AB in W schneidet. Wenn dann der aus
W durch N gezeichnete Kreis AB in U und deren Verldngerung in V schnei-
det, so ist OU gleich der Seite des dem gegebenen Kreis einbeschriebenen
34-Ecks und der Mittelpunkt von OV ist die Projektion Pi der A benach-
barten Punkte A\ und A16 des gesuchten reguldren 17-Ecks.

In der Tat gilt

UV=0G"'=40G =x2+xs



und
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OUmOV =0N2=0B OE'=0OE'=4m0E =x6 - X7 = X2Xs,

und somit folgt OU —xg und OV = Xo-

(1
(2

[3]

“

[5]

[6]

(6

[9]
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EXTERNAL CHARACTERIZATION OF GENERALIZED MANIFOLDS
M. BOGNAR

Dedicated to Professor Akos Csaszar on hts 70th birthday

We shall describe a type of generalized manifolds that is related to some
fundamental properties of n-manifolds with boundary lying in the (n+ 1)-
dimensional euclidean space Rn+L1.

The starting point is a theorem of Schoenflies [6]. He proved in 1902 that
if M is a compact set in R2 such that R2\M has two components and every
point of M is accessible from each of these components then M is a closed
Jordan curve.

Since each Jordan curve in R2 admits these properties above and the Jor-
dan curve is the only compact connected 1-manifold, the Schoenflies theorem
gives an external characterization of Jordan curves or of compact connected
1-manifolds lying in R2.

The question whether the compact connected 2-manifolds lying in R3
could be characterized in an analogous way was answered by Brouwer in
1911 in the negative [3].

The next important step was the result of Kaluzsay [5]. On the en-
couragement of Frederic Riesz he stated and proved in 1915 that a compact
subset M of R3 must be homeomorphic to a 2-sphere if it satisfies the fol-
lowing three conditions:

(1) R3\M has two components;

(2) Each point of M is accessible from every component of R3\ M ;

(3) Every closed polygon in R3\M is contractible continuously to a
point in R3\M .

However, while conditions (1) and (2) are fulfilled for each topological
sphere in R3 condition (3) fails to be always satisfied. Alexander constructed
in 1924 a topological sphere in R3 which does not satisfy the third condition
of Kaluzsay [1],

Finally, Wilder characterized in 1929 and 1930 the 2-spheres [7] and the
connected compact 2-manifolds [8] in R3 in the following manner:

A compact set M in R3 is a 2-sphere if and only if

(1) R3\M has two components and M is the common boundary of each
of these components.
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(2") The components of R3\M are uniformly locally connected, i.e., for
each component D of R3\ M and for every positive real e there is a positive
real 6 such that for any two points x and y of D which are nearer to each
other than S x and y may be connected by an arc in D whose diameter is
less than e.

(3") The 1-dimensional Betti number (mod 2) of R3\M vanishes.

M is a connected 2-manifold if and only if besides the preceding first
and second conditions the 1-dimensional Betti number (mod 2) of R3\M is
finite.

Starting from this latter theorem Wilder has defined (n—I)-dimensional
generalized manifolds such that those embedded in Rn may be characterized
as compact sets in Rn possessing analogous external properties as the 2-
manifolds in R3 [9].

However, these external properties are also of algebraic character so as
the third condition in the case n=3.

We want to escape from the algebraic conditions. Generally, we are satis-
fied if our figures will be manifolds in the 1-dimensional case. We expect only
in the triangulable case that the 2-dimensional figures should be manifolds.

We shall define objects in arbitrary T2-space which could be considered
as generalized manifolds.

Let R be a T2-space and (X, A) acompact pair in A, i.e., X is a compact
set in R and A is a closed subset of X .

A domain (a connected nonvoid open set) v in R is said to be A-regular
mod (X, A) if the following conditions hold:

(d LnA =0;

(b) FnX isa domain in X;

(c) V\ X consists of two components;

(d) the closure of each component of V \X contains VfIX.

The compact pair (X, A) itself is called a k-manifold in R if it satisfies
the following two conditions:

(@) X \ Alis a nonempty connected space;

(b") for every q£ X \ A the A-regular domains that contain the point q
form a basis for the neighbourhood system of the point g in R.

Now if R is the 2-euclidean space Rz and (X, A) is a A-manifold in R2 then
X \ A'is either a closed Jordan curve or it is homeomorphic to the real line R1
(see [2] 4.7). Hence X \ A is always a 1-manifold. If A= 0then X is a closed
Jordan curve. The proof of these facts depends on a theorem of A. Csészar [4]
which says: A separable connected locally connected complete metric space
which is not a singleton and fails to contain any triode is homeomorphic
either to a circle or to the line Rl or to a segment of R1 or to a closed
halfline of R1.

If R = R3 then we can find a fc-manifold (X, A) in R3 such that X \ A is
not a 2-manifold. This compact pair (X, A) can be constructed as follows:
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Let A be the frame of the unit square

Q2= {(Zjy,2) e A3;0< X< 1,0<y< 1, 2= 0},
i.e.,
A=Q2\{(x,y,2) e A3;0<a:<l,0<j/<l,z =0}

For gGR3 and A6 R let ip(g, A be the central similarity of R3 with the
center g and ratio A i.e., ~(g, A is the map ~>(g, A): A3-> R3 defined by the
formula

ip(a, A)(u;) = Au;+ (1- A)g  (WERD).
Let 91 = (0,0,0), 2= (1,0,0), g3= (1,0,0),94= (I,+,0), g5= (1,1,0), g6=
= (5,1,0), g7= (0,1,0) and g8= (0, £,0). Let

C={(x,1,,2)€fiZyx€{y},iS,s|,0<i<lI}>

0={(w )E*3iS*S|, »<={}|},0<*<i,

E={(*,, NEM(I-7)2+ (3- 5)2=~ "5SrS&}
and let Xi=5uCU U U £ (see Figures 1and 2).

Fg. 1 Rg. 2

For*=1,2,... ,8let V, =V (g, 3)- We construct the sets X \,, XK,
in a recursive way. X\ is already defined. For k * 2 let

8 8
x*=xk xu U MXk-1) =xxu (J ACXk-1).
«=

= X=i
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(00} 00)
Let X be the closure of (J X*, i.e.,, X = (J X*. Obviously, X is a compact
fc=I A=

set and A C X . It is easy to see that (X, A) is a A-manifold in Rz and X \ A
is not a 2-manifold. We omit the proof of these facts.

IfY isthe cone over A with the center (0,0, —1) and Z = XUF then (Z,0)
is a fc-manifold in R3, too. Observe that the counterexample of Brouwer is

not a Ar-manifold in R3.
Notice that in R4 we can find triangulable fc-manifolds (Y,B) where the

Y \ B -s are not 3-manifolds. Indeed, let B be a torus in R3 = {(x,y, z,w) £
£iZ4; w = 0}, and let Y be the cone over B with the center (0,0,0,1). Then
(y, B) is a triangulable compact pair, it is a fc-manifold in iZ4 but Y\B is

obviously not a 3-manifold.
However, if (X, A) is a triangulable compact pair, which is a fc-manifold

in R3 then X\ Ais a 2-manifold.
The proof of this last statement is also omitted.
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WHY IS THE POTENTIAL LOGARITHMIC IN THE PLANE?
J. HORVATH

Dedicated to Akos Csaszar on the occasion of his seventieth birthday

1. George Green and Carl Friedrich Gauss

The first hero of my tale is George Green (1793-1841), a self-taught sci-
entist and a baker by trade in Nottingham, England. In 1828 he published a
booklet under the title “An Essay on the Application of Mathematical Anal-
ysis to the Theories of Electricity and Magnetism”. The Essay was dedicated
to the Duke of Newcastle, Lord Lieutenant of the County of Nottingham,
with whose financial help it was published, and there were also fifty-one sub-
scribers; regrettably the dedication disappeared from the collected edition of
Green’s work [7].

In a long footnote at the beginning of the Essay, Green recalls that when
two small bodies are charged with electricity, the force of repulsion will be
proportional to the product of the charges and inversely proportional to
the n-th power of their distance. He adds that Charles Augustin Coulomb
(1736-1806) has shown in 1785 that “n is equal to two”.

The Introductory Observations of the Essay consider a body carrying
a charge specified by a density. Green says that the force which the body
exerts on some charged point “will be expressed by a partial differential of a
certain function of the coordinates which serve to define the point’s position
in space. The consideration of this function is of great importance ... and
[we] will call it potential function. .

With modern notation we say that if the body is the domain Il in R3 and
/ is the density of the mass or charge on fi, then the value of the potential
at the point x = (xj, x2,X3) is

n

and the force exerted on the unit charge placed at x is F(x) = grad£/(x).
Actually the function U was already introduced by Pierre Simon marquis
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de Laplace (1749-1827), who proved that it satisfies the equation Al7 = 0,
where

A - — _ _
dx\ dx\ dx\

is the operator named after him. Laplace omitted to specify that Al7 = 0
holds only outside fi. This was done by Denis Poisson (1781-1840) who
stated in 1813 that U satisfies the Poisson equation AU = -4 t/, without,
however, giving a rigorous justification for it [6, p.54].

Let me immediately introduce the (Newtonian) potential in RZ for any
integer n >3. If / is a twice continuously differentiable function whose
support

Supp/ = {xeR":f(x) = 0}
is a compact subset of Rn, then we set

W) 1" h oy

where x = (aq,... ,xn), y = (31,-.. ,yn) and X\ = (x\ + ... +xB@)*. The
function U satisfies the Poisson equation

_da2u d2u

AU= .
dxj + " '+ dxA@

0

The deep reason for this relation and the significance of the numerical factor
on the right should become clear before the end of this lecture. Observe that
these formulas are meaningless when n=2.

In no. 3 of his Essay Green proves what is now called “Green’s theorem”
of integral calculus:

UAVAX+ g g¢d=JJIVADdI+! Il o

and puts the calculations of Laplace and Poisson on solid grounds. He also
proves (no. 2) that the charge on a conductor D is carried by its surface E,
and (no. 4) that if the potential U is given in the interior and the exterior of
ii, then the charge on E is determined by the jump of the normal derivative
of U at E. In no. 5 he considers what we, following B. Riemann, now call
Dirichlet’s problem: Given / on E, he looks for a function V such that
AV = 0 inside 2and V =f on E. He introduces the Green function

GOy iy k)
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which is such that for all x € R0one has G(x,y) =0ify6 £ and Ayh(x,y) =0
if y GQ. He gives the formula

E

for the solution. As to the touchy question of the existence of G, Green offers
the following famous argument: “To convince ourselves that there exists
such a function ... G ; conceive the surface to be a perfect conductor put
in communication with the earth, and a unit of positive electricity to be
concentrated in the point x, then the total potential function arising from
x and from the electricity it will induce on the surface will be the required
value of G.” It took about seventy years to give a mathematical proof for
the existence of G.

In England Green’s talent was soon recognized. He entered Gonville and
Caius College (Cambridge) in 1833 and was elected a fellow in 1839. He wrote
several more papers on mathematical physics of which “On the determination
of the exterior and interior attractions of ellipsoids of variable densities”
[7, pp. 185-222] has the particular interest that it is one of the very first
places where n-dimensional space is considered throughout. According to the
magnificent history of mathematics in the 19-th century of Felix Klein [17,
p. 19], the discovery of his talent did not benefit Green. Once in Cambridge,
he succumbed to alcohol which caused his untimely death.

On the Continent Green’s Essay became known only much later. It is
reasonable to assume that when in 1839 C. F. Gauss (1777-1855) wrote his
“Allgemeine Lehrsatze in Beziehung auf die im verkehrten Verhaltnisse des
Quadrates der Entfernung wirkenden Anziehungs- und AbstoRungs-Kréfte”
[6] he was totally unaware of Green’s contributions, which he rediscovers. He
introduces the potential with the following words [6, p. 6]: “Zur bequemeren
Handhabung ... werden wir uns erlauben, dieses V mit einer besondern
Benennung zu belegen, und diese GriRe das Potential der Massen, worauf
sie sich bezieht, nennen”.

Gauss tried to prove the existence of an equilibrium distribution, i.e. of
a charge whose potential is constant on the whole conductor, by minimizing
the integral which expresses the energy of the charge [6, no. 30]. He writes:
“... offenbar muR fur Eine solche Vertheilungsart ein Minimumwerth dieses
Integrals stattfinden.” Later generations did not find the existence of a min-
imum obvious. Also Gauss could not have given a correct proof because the
equilibrium distribution may not have a density and he did not have the
Stieltjes integral at his disposition.

To conclude this section, let me mention that Otto Holder proved in
his 1882 Stuttgart dissertation that if / only satisfies the condition \f(x) —
—f(y)\ = 0(\x —y|Q), with a > 0, named after him, then U is twice differen-
tiable and satisfies the Poisson equation [16, pp. 152-156].
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2. Marcel Riesz and Otto Frostman

The existence of an equilibrium distribution was proved only in 1935,
almost one-hundred years after Gauss’ Algemeine Lehrsédtze, by the Swedish
mathematician Otto Frostman in his Lund thesis “Potentiels d’Equilibre et
Capacité des Ensembles”.

For his proof Frostman uses the generalized potentials introduced a little
earlier by his teacher Marcel Riesz (1886-1959) but published only later [22,
nos. 40, 42, 47]. For n't 2 and 0 < Rea < n the Riesz potential of order a is
defined on Rn by

n—a

f = e - f{y dy,
a9 = i/ 21 ( )j Ty 7

where / is assumed to satisfy appropriate conditions. If n't 3, then a =2
is in the range considered and yields the Newtonian potential. Among the
properties of the operator 1Za Riesz emphasizes the composition formula

(1) KafalRf) = Za+if
and the relations
2 AlZaf= —Za-21 and a@ﬂZaf =f.

If we define TZf =/, we get formally the Poisson equation ———R-of —
= —/ and we see that —A behaves like what one would expect from 7£_2.
Using to-day’s terminology, we can say that 1Zaf is the convolution Ra *f
of / with the Riesz kernel of order a defined by

Ra(x) x &
2<7T"f2r

For 0 < Re a < n the function Ra is locally integrable, and for j <Rea<n
it is locally square integrable.

Motivated by his research on the Cauchy problem for the wave equa-
tion, Riesz considered the analytic continuation into the half-plane Rea ” 0
of the holomorphic function a ~ 7Zaf(x), and proved that under appropri-
ate conditions on / the formulas (1) and (2) remain valid for ao < Rea <
< n, in particular #_2f = He also made the false statement that
ay->7Zaf(x) is holomorphic in the whole half-plane Rea>a0 [22, p. 593].

Frostman considers potentials

: d°(y)
Y \x - t/1"-"
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of not necessarily positive charges (i.e. set functions or measures) a and the
mutual energy

.~ JJ doladr()
i —y\n~a
of two such charges a and r. One of his main Lemmas (no. 16, p. 28)

states that (crj<r) 20, and that (cr\a) = 0 only if <= 0. The positivity is an
immediate consequence of Riesz’ composition formula (1) since

U°(x)gt(x

n—a

— (@< =J(Ra*o)(x)do(x) =
2QW 2r \(/-:2/

JJ d<r() da(y)Ra2z - x)Ra/2(z - y)dz = J (Ra/2*a)2dz.

Henri Cartan [1, vol. Ill, nos. 70, 74, 75] reformulates the ideas of Frost-
man in the framework of the space £ of charges which have a finite energy.
The mutual energy is an inner product on £, and Cartan proves that the
cone £+ of positive charges is complete with respect to the distance 1I&— 1=

= (@—1<7 —r)2. The existence of an equilibrium distribution then follows
immediately from the Lemma of Frederick Riesz concerning the projection
onto a convex closed set. Why is the whole space £ not complete? The
answer to this question will be seen in the next section.

3. Laurent Schwartz and Jacques Deny

In 1944 Schwartz discovered the theory of distributions. | will summa-
rize the definitions and facts we shall need in the sequel. More details can
be found in my expository article [9] or in the recent well-written book of
R. Strichartz [25]. To study the theory in depth, the book of Schwartz him-
self [24] and the first volume of L. Hormander’s four-volume work [8] can be
recommended.

Denote by V (or by z>(rn) ifit is necessary to indicate the dimension) the
vector space of all test functions, i.e. functions tp defined on rn, with values
in r or C, which have compact support and continuous partial derivatives of
all orders. A distribution T on rn is a linear map <>t (T,<p) from V into r
or C which satisfies the following condition: For every compact subset K of
rRn there exist two constants M >0 and m > 0 such that

(3) [(T, p)\ » M max max \dpp(x)\
lpl<m  x

for every ip6 V with Suppp C K. Here we used the notation which is becom-
ing standard: the multiindex p=(pi,... ,pn) 6 N” is an n-tuple of positive
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integers, its order is [ =p\ + ... + pn weset dj = gfj L £j * n) and dp=
=d ...dn"m Inequality (3) expresses the fact that the linear form T is
continuous for a certain topology on V. The space of all distributions is
denoted by V (or, if necessary, by X>(Rn)).

Example 1 Let / be a Lebesgue-measurable function on Rn which
is integrable on every compact set. Such a function is said to be locally
integrable. Then / yields the distribution which with p £V associates the
number J f(x)p{x)dx. In (3) we can choose m = 0 and M = J\f(x)\dx.

K

This distribution will also be denoted by /.

Example 2. The Dirac distribution 6 is defined by (6,p) —<N0). This
time M = 1land m is again zero.

Motivated by the special case when T is defined by an appropriate lo-
cally integrable function, Schwartz introduced the following operations on
distributions:

Differentiation. For T € V , <p£V and p GNn one sets

(dpT,tp) = (- (T, cFV)-

Thus (d?,v>) = (-1)W (d<”)(0).
Multiplication. Let / be a function on R" which has continuous partial
derivatives of all orders. Then the distribution fT is defined by

(fT,<p) = (T.f<p)
for all (p€ V.

If ip and V are two test functions on Rn, we denote by the function
(x,y) =(p(¥)ip(y) on R2”. Clearly p<g)ip belongs to £5(R2n). Let now S and
T be two distributions on Rn. Their tensor product S <g)T is the distribution
on R2n defined by

(ST, pstf) —(5, <p){T,i>).
One proves that this defines 5 @T as a continuous linear form on all of
mD(R2n), i.e. that the functions form a total subset of T>(R2n).

The definition of the convolution is more delicate. If / and g are two
integrable functions on Rn, their convolution is the integrable function

(X)) =) f(x-y)g{y)dy.

Rn

The distribution it defines according to Example 1 is given by

{f*9, ) TVV H{x-y)g(y)p(x)dxdy

- f{x)g{y)<p(x +y)dxdy,
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which suggests to define the convolution S *T of two distributions 5 and T
by

(S*T.p) = (S<S>T,p(x + 2)).
The trouble is that the function (X, y) t>p(x +y) on R2n has compact support
only if p is identically zero.

To define S *T we introduce the space Bo = Bo(Rn) of all functions p on
R7Lwhich have continuous derivatives dpp of all orders and they all tend to 0
at infinity, i.e. given p 6 Nn and e > 0 there exists R > 0 such that \dpp(x)\ *
<f£ for |x| R. A linear map T from Bo into R or C is called an integrable
distribution on Rn [5] if there exist constants M > 0 and m > 0 such that

N
(T, N <M \r&gﬁ] m)?x\dpp(x)\

for all p e Bo. Clearly V CB and if T is an integrable distribution it satisfies
condition (3) with the same M and m for all compact sets K. Thus every
integrable distribution is a distribution: if we denote by Bo = #0("n) the
vector space of all integrable distributions on R”, then Bo CV . If now p
is a bounded function on R" with continuous and bounded derivatives of all
orders, and if T 6 BO, we define (T, p) as follows: Let ipEV be such that
ip(x) = 1 for |x| <1, ip(x) =0 for |x| >2 and 0~ ip(x) 5 1 everywhere. Set
ipn{x) = ip(x/n) for n 6 N. Then the sequence (T,ipnp) converges and its
limit will be (T,p). In particular, if 1 denotes the function whose value is
identically one, the expression (T, 1) is defined (it is called the integral of T).

We say that two distributions 5 and T on Rn are convolvable if for every
pEV(R.n) the distribution p(x + y)S<8>T is integrable on R2'. In that case
S *T is defined by

(S*T,p) = (p(x +y)S<S>T, 1),

where now 1is the function identically one on R2n [4, 12, 23].
Forany TeV one has 6 *T =T and more generally dpb*T = dpT. If S
and T are convolvable, then

dp{S*T) =dpS*T = S*dpT.

N. Ortner [19, 20] observed that the last two may be equal even if S *T is
not defined.

The theory of distributions cleared up a concept which was implicit for
a long time in the theory of partial differential operators P(d) = "~ cpdp

\p\=m

with constant coefficients. A distribution E is &undamental (oreleﬁnentary)
solution of P(d) if P(d)E =s6. If E and T are convolvable, then E*T is a
solution of the partial differential equation P(d)X —T since

P(d)(E*T) = (P(d)E) *T =6 *T —T.
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A theorem due to B. Malgrange and L. Ehrenpreis, for which P. Wagner has
given recently a remarkably simple proof, states that every P(d) * 0 has a
fundamental solution. My friend Norbert Ortner called my attention to the
fact that a definition of a fundamental solution, essentially equivalent to the
above, was given by N. Zeilon in 1911 [29].

In one of the first works which used the new theory [2, 3], J. Deny
considered the space of distributions which have a finite energy. Using the
Fourier transformation he proved that this space is isometric to a certain L2-
space, hence by the Riesz-Fischer theorem it is complete. Thus the elements
missing from Cartan’s space £ were distributions. The completeness of £+
follows because a positive distribution is a measure.

4. Holomorphic functions and Riesz distributions

Let A be some non-empty domain in C. A function av-"Ta defined in A

and with values in V is said to be holomorphic if for every and every
a € A the limit

(4) lim (TW AL (TA<P)

\Y li—o

exists. It then defines a distribution™* such that for ipGV the value ip) is

given by (4). Thus the distribution-valued function a\-~Ta is holomorphic if
and only if for every test function ipthe complex-valued function a  (Ta,ip)
is holomorphic.

Let now A be a domain contained in a larger domain A) CC, and a i->
—>Ta, a holomorphic function on A. Suppose that for every ip£V there
exists a scalar-valued holomorphic function Fv on Ai such that Fv(a) =
= (Ta,(p) for a € A. Then by the Banach-Steinhaus theorem there exists for
each g 6 Aj adistribution Ta such that Fv(a) =(Ta, ip), this time for a GAI.
The holomorphic function a  Ta on Ai is the analytic continuation of the
original function into the larger domain Ai.

It most often happens that for a € A the distribution Ta is associated
with a locally integrable function fa, i.e.

(Ta,<p) = J fap)<p(x)dx.
R
Then the analytic continuation of Ta is said to be a pseudofunction.

Suppose nowthat a Ta is holomorphic in A with the possible exception
of the point ao GA and that for a®ao one has

Ta= ---m-m- hSo + Sa,
a —ao
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where S_i, So€ V , the function a  Sa is holomorphic in all of A and Sao =
= 0. If the residue dR’_e&OTa: 5_i is different from zero, we say that a\-rTa

has a pole of order 1 at ao- The distribution
©) 0= al-'mao \ a —ao)
is the finite part of Ta at a = ao denoted by agefxo Ta or simply by PfTao [10,

11]. If S-i =0, then PfTao is simply the value of Ta at ao- The limit in (5)
is to be understood in the sense that (So, fi) is for any p€ V the limit of

(TA  a—a0

as a —»ao- Let the distribution Ta be defined by the locally integrable
function fa when a EA. Let Ai DA and assume that a * T a is holomorphic
in Ai with the possible exception of poles in Ai\ A Then for a GAi\ A
the value (PfTa,<p) is the classical notion of the Hadamard finite part of the
integral

(Ta ) =] fa(x)<p(x)dx,
in
which is defined when a e A. Both the residue and the finite part have an
importance for partial differential equations. For instance, the fundamental
solution of the wave operator
d2 dz2 d2
dx\ dx\ dx2

is the finite part when n is odd, and the residue when n is even, of a certain
pseudofunction introduced by Marcel Riesz [11, pp. 52-54].

One has
PE (dpTa) =d pazgjo Ta.

Schwartz [24, 11.2;28] claims that this is false. He considers the distribution
X° on r defined by

(x“,<p = J xatp(x)dx for Rea>-1
0
and says that the derivative of Pf x* is not -/ Pf This is true.

a=-i + a=-r +

However, the derivative of Pf x" is aEf r(ax‘J;-l) and one has

a= -1
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We are nearing the conclusion of this lecture. Let n't. 2 and on RMlet us
consider the distribution \x\a~n which for Rea > 0 is given by

& 'Sé:\] FF n<p(x)dx.

tn

The function a4H.‘!FQ V has an analytic continuation into the whole
plane with the exception of the points a = —2k (k € N) where it has simple
poles with residues

2X /2 Aké:
22kk!Tr(i+*)
The scalar-valued function a —T (]|) has simple poles at the same points
with residues 2(—)fAlL Therefore the distribution

rG

is a holomorphic function of a in the whole plane, i.e. an entire function
on C. Its value at is a = —2k is

2 - 2fcim/ 2

r( ™) (-A)*«

This motivates the definition of the (elliptic) Riesz distribution Ra by
n-a

Pf
Qm/ 2r A

for a GC. In particular R -2k = (—A)fe5for k € N. The distributions Ra and
Rp are convolvable if either Re (a + ) <n or if at least one of the values
a or R is equal to - 2k [13, 14], and then we have [18, 20] Ra*RBR = Ra+l}
which is the distributional form of M. Riesz’s composition formula (1). In
particular

(A)kR-ik= (- A)c8*RX=R-2k*#2k=Ro =

i.e. ()kRZ is a fundamental solution of the differential operator Ak. For
k = 1 and n >3 the solution of the partial differential equation AX =T s

therefore
In - 2!

-R2*T = n*T,
4R
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which is the solution of Poisson’s equation mentioned at the beginning.

The factor T we introduced in the numerator of the definition of

Ra produces poles at the points a = n-f 2k (fcEN). The finite part which
defines Ra at these points can be calculated to be

where 7 is the Euler-Mascheroni constant and g(x) = T(a:)/r(a;) [13, pp.
181-182]. Observe that if n is even, then Rn+2k is a fundamental solution of

(—A)"/2+c. In particular for n —2, k = 0 a solution of

Au{x) = f(x)

is the function

u{x) = (-R2*f)(x) = A j f{y) log |x - y\dy.
R2

This is why the potential is logarithmic in the plane!

(1

(2]
[

[
[
(6]

[l
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A NOTE ON SET MAPPINGS WITH MEAGER IMAGES
P. KOMJATH

Dedicated to Akos Csaszar on his seventieth birthday

Abstract

If a set of reals of cardinal at most N2 has a Sierpiriski type decomposition then that
can be obtained from an ordering but this is not true for N3.

0. Introduction

In this paper we consider set mappings on sets of reals, i.e., when a
function / is defined on some A QR such that x £ f(x) QA and we try to find
free sets, that is, subsets B CA such that x £ f(y) holds for x, y £ B. The set
f(x) is sometimes called the image of x. A classical theorem in combinatorial
set theory states that if A is uncountable and f(x) is always finite then there
is a free set B QA with |I?| = |A|. If, however, CH holds, then there is a set
mapping on R with countable images with no two-element free sets. This is
actually Sierpinski’s famous decomposition theorem in disquise ([2,3]). We
are interested in the question when it is possible to give a set mapping on
some set A of reals with meager images, with no two-element free subsets.
Now Sierpinski’s theorem can be re-stated as a “yes” answer if A has cardinal
Ki. In this case one can simply take a well-ordering of length uj\ and associate
to every point the set of its predecessors. (In fact, this argument works if
every subset Al QA with \A'\ < |A| is meager.) Miklos Laczkovich (Budapest)
asked if it is always the case that this is the sole reason for the existence of
such a set mapping, i.e., if there exists a set mapping as above, then there
is an ordering with all its initial segments meager. The answer is obviously
“yes”, if A has cardinal Nj. We show — building on some arguments of
C. Freiling — that this is also the case if |A| = N2- Also, a characterization is
given, in terms of cardinal invariants of A, of the property that every meager
set mapping has an n-element free subsets. This has the corollary that if set
mappings on A with meager images have 3-element free subsets then they
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have arbitrarily large finite free subsets. For A = R we can improve this to
the requirement of 2-element free subsets.

The main result of this paper, which will be given in the last two sections,
is a consistency proof of the existence of a set A of cardinal N3 such that
there exists on A a meager set mapping with no two-element free subsets
but there is no meager ordering of A.

We mention some problems which we have been unable to settle. First,
assuming that A is of cardinal N2, and every meager set mapping on A has a
3-element free set, can we conclude that they have infinite free sets? As for
the consistency result, can we make A —R? Is it possible to give a similar
consistency proof for the analogous measure case?

1. Notation, definitions

We use the standard axiomatic set theory notation. Notably, the set R
of reals is identified with the set “2 of infinite zero-one sequences. As usual,
a set A QR is meager (or of first category) if it is the union of countably
many nowhere dense sets. <w2 is the set of finite zero-one sequences. If A
is a set, k a cardinal, then [A]K= {X QA :|X]| = k}. With notions of forcing
we follow the convention that smaller conditions give more information.

If ACR is a set, a meager set mapping is a function f :A—P(A) such
that f(x) is meager for every x € A, and x £ f(x). A Sierpinski decomposition
is Ax A= BIIC such that B meets every horizontal line in a meager set, C
meets every vertical line in a meager set.

Statement 1. A set AER has a Sierpinski decomposition iff it has a
meager set mapping with no 2-element free subset.

Proof. If/ is a set mapping with no 2-element free sets, then put B —
—{(£,y) GAx A:x£f(y)}, C—Ax A—B. If .SuC is a decomposition, set
f(x) ={y- (x,y) £B or (y,x) £C). O

A (well) ordering <on A is meager ifevery initial segment {y £ A :y <x}
is a meager subset of A.

Statement 2. If a set has a meager ordering then it has a meager set
mapping with no 2-element free subsets.

PROOF. If-<is a meager ordering, set f(x) = {y £ A: y<xj. O

STATEMENT 3. If a set has a meager ordering then it has a meager well
ordering.

Proof. If <is a meager ordering then by Hausdorff’s theorem there is
a well ordered cofinal subset of < This gives rise to a decomposition of the
underlying set into a well ordered union of some disjoint sets {Aa :a < k}
such that (J{Ag :R <a) is meager for every a < k. This can be transformed
into a well ordering if one arbitrarily well orders the sets Aa. O



SET MAPPINGS WITH MEAGER IMAGES 463

If X isaset, (X,T) isa tournament if T QX x X and for any x, y GX ,
x Ny exactly one of (x,y)GT, (y,x) GT holds. For x GX set T(x) =
= {y :(x,y) GT} the points covered by x. Similarly, for Y QX set T(Y) =
= (J{T(2) :y€ T} Asubset X'gXis K-covered for some cardinal k if there
isaset YQ X, |y|<Ksuch that X'QTty).

2. Sets of cardinal " N

In this Section we assume that A QR is a set of cardinal ~2- We analyse
the situation using some ideas of Chris Freiling [1]. We consider the following
properties.

(a) Every B QA of cardinal Ni is meager.

(b) A is the union of KI meager sets.

() A—BuC where B is the union of Hi meager sets, and every subset
of cardinal of C is meager.

STATEMENT 4. If (a) or (b) holds then A has a meager ordering.

Proof. If(a) holds take any well ordering of A in type »2- If (b) holds
take theu;i type union of the Ni sets establishing (b). In this case every point
is preceded by the union of countably many meager sets which is meager. O

STATEMENT 5. If neither (a) nor (b) holds then every fneager set map-
ping on A has a 2-element free set.

Proof. Let / be a meager set mapping on A. As (a) fails there is
a non-meager B N A of cardinality « As (b) fails there is a y £ A such
that y~ LK/il) :*~ B}. If / has no two-element free sets then necessarily
B Qf(y) which is a contradiction as B is non-meager. O

STATEMENT 6. If (c) holds there is a meager set mapping with no 3-
element free sets.

Proof. Let /g, fa be meager set mappings on B, resp.C with no two-
element free subsets. Now fR Ufc works. O

Statement 7. If (c) fails and a meager set mapping f is given on A
then for every finite n there is a free set of size n.

Proof. By induction on 1<i<n select the non meager Bt QA —(B\ U
Uee-UBm ) such that 5, CA- U{/(x) :x € B\U-+*U —}, |5,| = Ni. This
is possible, as otherwise we could find witnesses for (c). We can now select
by reverse induction X{ GB{ (1™ i” n) such that X £ LK/"j) **<j =n}
This is again possible as no B( is meager. O

We notice that the last two statements have the following consequence.
If every meager set mapping on A has a 3-element free set then there exist
arbitrarily large finite free sets. In general, “three” here cannot be improved
to “two” (i.e., in some appropriate models of set theory), but can be, if
A=R.



464 P. KOMJATH

STATEMENT s . If A=R and both (a) and (b) fail for A then (c) fails,
as well.

Proof. As (a) fails for R there is a non meager B QR of cardinal Ni.

To show that (c) is not true, it suffices to show that if C QR is the union of
meager sets, then B A-x Q R- C holds for some i£R. In order to argue
that such an x exists it suffices to show that the set {igR:5 +a:*"R-C}
is the union of Ni meager sets. Put C = [ {Ca :a <wi} and enumerate B
as B = {bp:R <ui}. If (x+ B) fIC” 0then x + bp £ CQfor some g, B <u\,
and to any given pair a, B the set of these x’s is (—bp) + Ca, a meager set.
L]

3. Construction of a tournament

T heorem 1. The following is consistent with GCH. There exists a tour-
nament on u3 such that there is no ordering of g3 with u-covered initial
segments.

Proof. Assume GCH. Our notion of forcing with which we get the
model of the Theorem will be the following (P, ). A condition (s,t) is a
tournament with s £ [u3]=KI. (s',t') ~ (s,t) iffs'"2 s and t=1fl (s Xs). It
is easy to see that (P, <) is "wj-closed and N3-c.c. Therefore, forcing with
(P, <) cardinals, cofinalities, and GCH are preserved. If G QP is a generic
set, put T = |J{f:(s,t) 6 G}. T will obviously be a tournament on w3.

Assume that some p forces that < orders u;3 in such a way that every
initial segment is uncovered. We consider three cases.

Case 1. Some p' <p forces that the cofinality of <is

In this case a certain (s, t) = q”p' determines a set Y ofsome Kj elements
which establishes that u3 is wi-covered. We can as well assume that Y Q
Qs. But then, ifi €w3- s, g = (s, t) S (s, t) is the following s' = sU {x},
t'=tU ({x} Xs) then g forces that x is not covered by s, a contradiction.

Case 2. Some p' <p forces that the cofinality of <isw2.

Then, p' forces that there are countable sets Ya such that 48 is covered
by the union of any N2 of the {T(ya) :a <u;2}. As CH holds in the enlarged
model we can assume that these sets form a A-system, Ya= UUVa where
the sets {U, Va:a <u2} are pairwise disjoint. We can as well assume that
p' = (s, t) determines what the elements of U are and in fact that U Qs holds.
For £6 CB —s set p* = (sU{E}, tU({£} Xs)). For every £€ u3d3—s there is
some g* * p* which determines a /?(E) < u2 so that £ £ T(Ya) for a > /?(£).
For K3 of these £, B(£) = R holds and we can also assume, again by the A-
system lemma, that gE —(i'U i(,i() where the sets s',S£ are disjoint, and
i'=i*n(sx s) is the same.
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There is an r= (s",t") < (s',t") which determines a Va with R such
that Vafls'=0and VaQs". Select finally a £<  sothat s*ns"™ = 0. Then,
let r be the following condition

r - (s,,Usi,i"Uii U™ x (s"-s)))-
This condition forces that UUVa QT(£), so £~ T(Ya), a contradiction.
Case 3. Some p' <p forces that the cofinality of < is 0'3.

In this case u2is -«-bounded so it is uncovered. Some gq= (s, t) * p' forces
that Wb QT(Y) for a certain countable Y Qs. But again, if x EU2 —s, then
q=(s,t), ss=sU{a}, t'=tU{z} x s) forces that x is uncovered by s, a
contradiction. O

4. A set of cardinal Ns

Theorem 2. IfT is a tournament on n, a cardinal, then there is a ccc
forcing notion which adds a set A —{ra :0 < k} of reals such that exact-
ly those subsets of A which are indexed by u-covered subsets of k, become
meager.

P roof. A condition will be of the form p—(t,f,h,g) GP where fE
E [*]<", Dorn (/) = t, for a Et, f(a) E<u2, h(a,R) <u fora xR Et BE
ET(a). g(a,n) is a set of finitely many functions s <w2 for finitely many
pairs (a, n) Et x u such that s~ /(/?), f{B) 2 s hold whenever 8 ET(qg) and
h(a,R) =n.

P ={tf, h,g")"p= (t,/,h,g) ifft'2t, f'{a) 2/(«) (aEi), h'2h
g'(a,n) 2 d{oi,n) if the latter is defined.

The intuition behind this definition is the following, /(a) gives the first
several (binary) digits of ra. For every a, to make {rp :8 ET(a)} meager
we decompose this set into countably many pieces (this decomposition is
approximated by h) and finally the 0-1 functions ing(a,n) will approximate
the collection of open binary intervals giving a dense open set disjoint from
the n-th piece, therefore establishing that the set in question is meager.

Crlaim 1. For every a < k, n <uj, the set D = {(i,/, h,g) : a Et,
Dorn f(a) >n} is dense in (P, <).

Proof of Claim. Let p= (t,f,g,h) be an element of P and a <k.
Assume first that a t. Let IV be a natural number greater than any of the
values in the range of h. If we now take p' = (iU{a}, /', h', g) where /' is an
extension of / such that f(a) —O0, h' extends h in such a way that h(3,a) =
=N forevery R EinT (a), then p' will be a condition, as no contradiction
arises from the information we know so far about ra and the approximations
on the meager sets. If, however, a Et, we can arbitrarily extend /(0). O

If G QP is generic, set ra=U{/(Q):(*/,h,g) E<?}, a real, and A=
= {ra:a < k) will be our set.
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Claim 2. Given s G2, a <k, n<u, the set
{(<,/, h,g): some s'25 has s'6 g(ct,n)}

is dense.

Proof of Craim. Take a long enough (say of length N) extension of
f(B) for every R G<DT(a) such that h(a,B) = n and then extend s to an
s' of length TV, different from all those /(/?) values. The long extensions
are possible by the previous Claim. Now we can add s' to the g-part of the
condition. O

C1raim 3. InV[G], {p":/3gT(q)} is meager.

Proof of Craim. The set {rB:h(a,R) = re} is nowhere dense as is
witnessed by the intervals given by {g(a, n) : (i, f,g, h) GG} by the previous
Claim. 0

C1raim 4. (P, <) is ccc.

Proof of Claim. If p’\ are given (£ < u>i) we can assume that they are
of the form p*= (tUt", fU h”",gL)gR where the structures (t,tf, T, h are
isomorphic. Then, we can find a common extension (tUt"0U%,/ Uf*0U
U /fj, h,gUg”Ug") where h extends h"Uh” in such a way that h(a,) =N
for a Gtr0o, 8 G  where N is bigger than every natural number occurring
in the second coordinates of the domains of g"0, g"L. i

C1laim 5. In V[G\, if B QA is a meager set then {a<k:raGB} is
uj-covered.

Proof or Claim. AsSsume that 11— RQ A is nowhere dense. Let N be
a countable elementary submodel of the structure (H ((2K+); P, B, |—,...).
Our intention isto show that 1||— ifraGR then a (Nrlk). Assume that
p' forces that raGB and N Ok QT (a). Write p' as p’= (t6t1f U/', hlgU
Ug') where tQN, t'flN = 0, Dorn (/) =t, Dorn (/') = t1, Dom (g) Qt Xu,
Dorn (g') Qt'x u. By elementarity, N has an isomorphic condition p" =
= (UI", /U /", h",gUg") with t"QN. Let p*= (/*,/*, h*,g*) <p" be a
condition, p* GN, p*|—B_D7 = 0 where 7= I(s) is the interval of those
functions extending s for some s 3/'(a). Such a p* exists as B is nowhere
dense and N is elementary, p* and p1are compatible as if B Gt', 7 Gt*,
BGT(7), sGg*(7,n) for some n <u then s™ f'(B) as R has a twin B" in t"
for which B"£T(7) and so s %f"(R") =f'(R). Moreover, as NDKQT(a)
we can even extend the common extension to one which forces that raG7
which is a contradiction as this would force raG7d B —O. O

T heorem 3. It is consistent that there exists a set A CR of cardinal "3
with a meager set mapping that has no two-element free set but A has no
meager ordering.
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Proof. Let V satisfy the statement of Theorem 1. Let (P, <) be the
notion of forcing given in Theorem 2, for the tournament T, adding A =
= {ra:a < 0B} Then, {f(rp) :8 £ T(a)} is always meager and this set
mapping has no 2-element free subsets (as T is a tournament). If in Vp,
A is the increasing union of meager subsets, then Q13 is the increasing union
of uncovered subsets, 0®3= 1JjP" :£ < k} for some cardinal k. If now C( =
= {& : some p forces x £ B~}, then, by ccc of P, Q is cv-covered, and 0)3 =
= LKQ ®" < K} ‘s an increasing union of cu-covered subsets in V, a contra-
diction. O
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