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THE FULL EMBEDDINGS OF THE CATEGORIES OF UNIFORM
SPACES, PROXIMITY SPACES AND RELATED CATEGORIES
INTO THEMSELVES AND EACH OTHER. 11%

E. MAKAI, Jr.2

We use the same notations as in Part |. For the definitions we refer to
Part 1. Here we just recall some special notations and definitions (others are
rather standard). Sff denotes the category with objects all pairs (X,X), X a
set, {0,X}cA C 2”7, and morphisms /: (Xi, Aj) = (X2, Xgf) characterized
by /: X\ —=X2, /-1(A2) C X\. Coz, the category of cozero-spaces, is the
full subcategory of S(f determined by ObCoz = {(X,X) | 3 uniformity on
X, X —{ cozero-sets of all uniformly continuous real functions w.r.t. this
uniformity}}. A uniform (etc.) space is called special if for any uniform (etc.,
resp.) space Y with UY = UX (= underlying set of X) U(Y,Y) =U(X,X)
(= {uniformly continuous functions X —*A}) implies Y = X. For a concrete
category C the underlying set functor is denoted by Uc (or Uj; this will be
sometimes omitted). J : Prox—Unif is the concrete functor associating to a
proximity the compatible precompact uniformity. Subcategories will always
be assumed to be full.

8 5. Embeddings of subcategories of Prox (Unif) in SO

For the case of full embeddings Prox —»Sq we have a negative result. For
analogous negative results, concerning full embeddings of categories connect-
ed with closure spaces into iS" cf. [3], [2].

The proof of the following proposition is related to the proof of [27],
Proposition 13.

P roposition 2. 1) Let Cc Unif and let ObC contain a uniform space
Co which does not have a base composed of all partitions of cardinality less
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than some cardinal. Let F: C—#S0 be a full embedding. Then VC E ObC
for FC = (X, X) (where for simplicity we assume Uc —Us-F) we have X D

D{Ac X \A, X \ A are farin C}.

2) LetVCEObC VAcUC, A,(UC)\ A proximal in C 3D £ ObC (dB,
B' CUD, B,(CO)\ O near, B\ {UD)\ B' near B £ U(D, O), *(B ) = B")
3f £U(D,C), 3f?i, B2 near subsets of D, f(Bi) CA, f(B2)c(UC)\A. (A
space D has this property e.g. if, denoting by N* the proximity on a countable
discrete topological space corresponding to its one-point compactification, we
have B CUD, B,(UD)\ B near in D =3 embedded copy of N *in D, which
has infinite intersections both with B and (UD)\B and which is a retract of
D by a retraction mapping B into B and (UD)\B into (UD)\B (e.g. D has
a discrete topology and its completion is a zero-dimensional compact metric
space). An above / £ U(D,C) exists for such a D with non-discrete prox-
imity if we have: A C UC, A, (UC)\ A near in C =3g: N *—»C, 3 infinite
disjoint subsets Ni, N2 of N* such that g(N\) CA, g(N2) C (UC)\ A (e.0.
the completion of the To-reflection of C is compact Fréchet-Urysohn).) Let
F :C-*S(( be a concrete full embedding satisfying the conclusion of state-
ment 1), C € {indiscrete spaces}. Then VCEObC for FC = (X, X) we have
X ={ACXIAX\A are farin C}.

3) If 3Ci,C2€ ObC such that for their reflections rCi,rC2 in (C €
€ Ob Unif|C has a basis consisting of finite partitions} there holds U{C\,C2) *
A U(rC\ ,rC2 (where for simplicity we assume the universal map Ci —=*rCi
has underlying function luCi) then there exists no concrete full embedding
F: C—yS({ satisfying the conclusion of statement 2).

In particular {C € Ob Prox| 8dC = 0,the To-reflection of C has a metric
completion} has a unique full embedding into Sqg — up to natural isomorphy
— namely the one given under 2), but no subcategory of {C € Ob Prox | the
To-reflection of C has a metric completion} strictly containing the above
subcategory admits one.

Proof. 1) By [22], Corollary to Lemma 2 Uc and U%--F are naturally
isomorphic, thus we may assume Uc = Us-F. We have by [23], Remark 2

U(CO0,CO0) # X*°, where X0= UCO0. Hence for FC0 = (X0X0) {0,XG# X0+
N 2X°. Let 0 A0O9 X0, AOGX0 and let CGObC, X = UC. IfA X\A
are far in C, define / € i7(X,X0) = hom((X, X), (X0, X0)) by f(A) c {zo}>
/(X \ A) c {r/lo}, where x0GAQ, yoG X0\ AO. Then A = f~1(AQ0)e X.

2) For the second statement we first show for FD = (UD,V) that T>=
={BCUDIB, (UD)\B are far in D}. By the conclusion of statement 1)
V D{B c UDIB, (UD) \ B are far in D}. If, however, 3B £V, B,(UD) \ B
are near in D then \UD\ > 1and for any other set B' ¢ UD with B*,(UD)\B"
near 3g £ U(D, D) = hom((UD,V),(UD, V)) such that B' = g~x(B), hence
B' £ V. Therefore V = 2UD, hence U(D,D) =hom((UD,V),(UD,V)) =
= (UD)”ud\ hence by [23], Remark 2 D has for basis all partitions of UD
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of cardinality less than some cardinal. Thus D is either indiscrete or is finer
than a discrete proximity. However, B, (UD)\B are near in D, therefore the
first possibility must hold. Now for any C EOb C and FC — (X', X') we
have hom(D, C) = hom((UD, V), (X', X")) = (X")"UD\ hence by \UD\ > 1
C is indiscrete as well. This is a contradiction to our hypothesis. This
contradiction proves V = {B CUD \B, {UD)\ B are far in D}.

Now we show VC€0ObC X = {Ac X \A, X\ X are far in C}. Suppose
the contrary, i.e. 3A EX, A X \ A are proximal. Then 3/ E hom(L>, C) =
= hom({UD,V),(X,X)) with the property described in Proposition 2. Then
/-1(A), X \f~\A) are proximal and f~x{A) €V = {B CUD\B, (UD)\ B
are far in D}, a contradiction which proves X —{ Ac X\A ,X\A are farin
C}.

The statement in brackets is mostly evident.

For a space D with the property described there and B,B' C UD like
above, a map g: D —D satisfying g~1(B) = B' is given as follows. We
have embeddings j,j': N* —D, associated with B, resp. B', and we have
k': D —N* such that k'j' = ljy* and k'~]'~1(B') = B'. We may assume
j~1(B) =j'~1(Bl) (—{ odd natural numbers }, say). Let g—jk': D —D.
Then g~I(B) = k'~1j~1(B) =k'~1j ,~1(B') = B’. We still have to show that if
D has a discrete topology and its completion is a zero-dimensional compact
metric space, B CUD, B,(UD)\ B are near in D then there is an embedded
copy of N* satisfying the requirements of the statement in the brackets. Let
D denote the completion of D. Then B and (UD)\B have a common accu-
mulation point x in D\ D, hence there is an embedded copy iN* of N* (with
an embedding i: N* —=D), B fl (UIN*), [(UD)\ B] fl (UiN*) being infinite,
iIN* having the accumulation point x. There exists a bijection h E U(D, N*).
h is an isomorphism on iN*, i.e. hiN* CN*. Evidently 3”: N* —=N*
which is a retraction onto hiN* and which satisfies tp((hB)\(UhiN*)) C
C(hB)n(UhiN*),<p([(UNM\(hB)J\(UhiN*))c[(UN*)\(hB)\n(UhiN*).
Then (17h)-1i7(y>h) = Uip, ipE U(D, D) being the desired retraction.

3) We have by conclusion of statement 2) U(rCi, rC2) = {/: X\ —#X 2\
(A CX2A X2\ A far in C2) =» (/-J(A), Xx\ f~\A) far in CMN} =
= hom((Xi, Xi), (X2,X2)) —U{C\, C2) ((X,,T,) = FC,), contradicting the
hypothesis.

4) For the last statement observe that the categories in question contain
spaces like D in 2), and each space contained by them has the property as
C in 2). Therefore 2) applies. It remained to show that for (C E Ob Prox|
SdC —0, the To-reflection of C has a metric completion} * Obcc{CE
E Ob Prox Ithe To-reflection of C has a metric completion) there is no full
embedding F: C—Sq. Let CEOb C, SAC" 0. Then rC has for basis all
finite uniform partitions of C, hence the compatible compactification rC of
the To-reflection of rC is the 0-dimensional T2-reflection of the compatible

compactification C of the To-reflection of C. However, rC is a T2 continuous
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image of a compact metric space, hence is compact metric as well ([4], Theo-
rem 3.1.22). Therefore rC G ObC and we have U(rC,C)” luc c U(rC,rC),
hence U(rC,C)6U(rC,rC). By 3) this proves the statement. O

Corollary 5 Let CC Unif. Let there exist a non-indiscrete Co GObC
such that the condition (A ¢ Xg(=UCo), A,Xg\A far in Cq) implies (A=10
or A = Xo), or let there exist Ci,C2Gc0b C, C\~ C2, UC\ = UC2= X,
Ci,C2 having discrete topologies, such that for the compatible compactifi-
cations Ci of pCi and the canonical mappings fc: BX —C, (X taken with
discrete topology) we have {/11(Ai) | A\ is dopen in the space Ci\Ci) =

= {f2 x(A2) IA2 is clopen in the space C2\ C2}. Then the conclusion of
statement 3) of Proposition 2 holds.

PROOF. In the first case Co does not have a base composed of all par-
titions of cardinalities less than some cardinal, hence by [23], Remark 2 we

have U(Co, C0)/ X*° = U(rCO0,rCQ0). )
In the second case let B C X, B, X\B be farin C\, i.e. §C1fI(X\B)CI*:

= 0. Then (BO1\ Ci) n (X\B)d \ Cx) =0, hence /fx(5CI\ Ci)D

nf-\(X \B)A\Ci) = 0. By hypothesis 3A2 clopen in C2\ C2, ff 1(B('1\

Cr) = /121(A2), thus also ff\(X\B)dA\C\) =ff\(C2\ C2\ A2). The
disjoint closed subsets A2, (C2\C 2)\A 2 of C2 can be included in disjoint
open sets UV of C2. Since UUV DC2\ C2, therefore UUT s cofinite in
C2. Then A2=U is clopen in C2, A2fl (C2\ C2) = A2. Therefore

filA\C xCf2\72),
f~\(X\B fI\Ci)Cf2\C 2\ A2).

Since /f1LBCI) DBRX, ff\(X \ B f1) D(X\B)RX and the left-hand
sets are disjoint, both of these inclusions are equalities. Therefore

BRX\x =/r1* 1\Cl)c f2\A'2)=f-1((A'nc2f 2) = (A2nc2f x
and
CxTsfA\x =/r1(W\B)Ji\CIl) C/2(C2\A") =
=f21 ((C2\A')nC 2C2) = (C2\A ')nc/*,

the last equalities following from farness of A2flC2 and (C2\ A2)flC2 in
C2 (analogously to the equality f*1(B°i) = BRX). Hence B\ (A2fl C2)
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and (X \ B)\ [(C2\ A2) UC2] are both finite, that is B A (A2DC2) and
(X\B) A[(C2\ A2)nC2] are finite. Since A2C\C2 and (C2\ A2)C\C2 are far
in C2, and both C1, C2have discrete topologies, this implies B, X\B are far

in C2as well.
Changing the role of the indices we obtain (B,X\B farin C\) O (B, X\

B far in C2). Hence Ix is an isomorphism FC\ —»FC2, but Ix ~ U{C\, C2)
or Ix £ U(C2C\). O

Remarks. 1. The hypothesis in Proposition 2 about the space Co or
non-indiscreteness of spaces is necessary. Namely if CC C\ —{C £ Ob Unif |
C has a base composed of all partitions of UC of cardinality less than some
cardinal (depending on C)} C Unif, C ~ {empty space), C €{C \\UC\ = 1),
then all the full embeddings F : C—Sq can be given — up to natural iso-
morphy — as follows.

Case 1. C C {discrete spaces) or 3 cardinal a, CC {C £ Ob Unif |C
has a base composed of all partitions of UC of cardinality less than a);
then there are two (concrete) full embeddings, given by F\C = (X, 2X), resp.
F2C = (X,{<D,X}) (X =UCQC).

Case 2. C=C'06C", C a category like C in Case 1, containing a non-
indiscrete space, C" a non-empty class of indiscrete spaces with underlying
sets of cardinalities > 1; then there is one (concrete) full embedding: FC —
= (X,2*) for Ce ObC and FC = {X, {0, X}) for Ce ObC".

Case 3. C is not of the above forms and then there is no full em-
bedding. This follows from Proposition 5in § 7. Namely VC £ Ob Q
U(C,C) = (UC)(uc\ hence, supposing F concrete, by [33], proof of The-
orem 4.1, [27], Lemma 2 FC = (X, 2X) or FC = (X, {0, X)). Thus FC C
C{(X,2*), (X,{0,X)) IX is a set ) =CqC Sq. However, Co is isomorphic
to the subcategory {discrete proximities) U{indiscrete proximities) of Unif,
hence we can apply Proposition 5 about full embeddings C—»Unif.

2. One easily finds a single proximity space C with metric comple-
tion such that {C)(C Prox) cannot be fully embedded into SJ. It suf-
fices that C satisfies the property required for D in Proposition 2 and
U(C,C) 9 U(rC,rC). This last relation holds, e.g., if C or rC is a spe-
cial uniform space; thus it suffices that rC is infinite, has a discrete topology
and a zero-dimensional metric completion ([23], Corollary 6). If rC is re-
quired to be any such space C\ then we can find a space C as follows. Let
C1 be the completion of C\ and let C2 be any connected compact metric
space, |C2|> 1. Let us consider C\ x C2 and select a subspace C of C\ x C2

for which Vi £ Cx |({Cl) x C2)DC| = 1and C°l  =C U ((CA\ Cx) x C2).

(This can be done since C2 has a countable dense subset {c2,r») and C\ \ Cx
has a countable dense subset {ci>) and in C\ one can define by induction
countably many disjoint sequences, each c\<smbeing the limit in Cx of count-
ably many of these sequences, say of {ciimn)i|[i£ N}, n £ N . Then we may
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let C = {(ci,ron,, c2,,) |m,n, i GN} U {(cx, c2i) | cxGCx\ |m,n,ie
€ 1V}), with the proximity inherited from C\ XC2.) Then the far two-element
partitions of C are the same as the (inverse images by the restriction of the
projection C\ x C2—» C\ to C of the) far two-element partitions of Cj. (In

fact if C=C'UC", C',C" far in C then their closures C, C", taken in the

compact space C 1 2 form a far partition of C .1 f the projections of
C, C" on C\ are not far then 3cxGC\\ C\, c2,c2GC2, (cx,c2) GC, (cx,c2) €
£ C". Then the connected set (5i) x C2 intersects both C and C", a con-
tradiction.) Therefore in fact C\ = rC. The retract property of suitable
embedded copies of N* in C follows from the corresponding property for Cx,
shown in Proposition 2, statement 2).

Now we shall prove another statement on the full embeddings of sub-
categories of Prox into «§T Following J. Pelant and J. Reiterman [24A], let
us call an ultra-proximity a proximity on a set, X, say, corresponding to a
compactification of the set X (dense map into a compact T2 space) which is
the quotient of the Stone-Cech compactification R X of the set X (X taken
with the discrete topology) under identification of two different ultrafilters
(the dense map is obtained by composing the embedding X  RX with the
qguotient map; if both ultrafilters are fixed this map is not injective, if one
is fixed and the other free it is not onto a topologically discrete' subspace).
Each proximity is the intersection of all ultraproximities finer than it (the
same holding for compactifications) cf. [24A],

P roposition 3. Let CC Prox and let C contain each ultraproximity.
Let F:C—=Sq be a full embedding. Then VC GOb C for FC = (X, X)
(where for simplicity we assume Uc —U5-F) we have X ={A CX |A, X\ A
are far in C}. 1f 3CXC2GOb C such that for their reflections rCx,rC2
in {C GOb Prox |C has a basis consisting of finite partitions) there holds
C(Ci, C2Q~ f7(rCi, rC2) (where for simplicity we assume the universal map
C{ —rC{ has underlying function lucj then there exists no full embedding
F : C—<F" In particular the subcategory {C GOb Prox| C has a basis con-
sisting of finite partitions) admits a unique full embedding into S(f (namely
the above one) but no subcategory of Prox strictly containing this subcategory
admits afull embedding into S(f.

The proof follows the lines of [27], Proposition 5. We begin with a lemma
proved on the lines of [27], Lemma 5, and generalizing it (it dealt with the
case of C defined by a free and a fixed ultrafilter, which is the fine proximity
on a free ultraspace, cf. 8§ 4 or §6).

Lemma 2. Let C be an ultraproximity with underlying set X, let X C
C 2a’ and let U(C, C) Chom((X, X), (X, X)). Ifp,qGRX (X taken with
the discrete topology) are the ultrafilters used for defining C then for (X|> 2
X= {ACX\p£A-&qf A} or X ={AcX\pEA=>qg€ A} or X —{AC
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CX\qEA=>pE A] (closure taken in RX) or X = 2X or X C {0, X}. If
U(C,C) =hom((X, A), (X, X)) then the last two possibilities cannot occur.

Proof. C is neither discrete nor indiscrete, thus by [23], Lemma 1
X x I U(C,C), thus in case U(C, C) = hom((X, X), {X, X)) we have X <
€ {0,X}, X 2X. Henceforward we will suppose these last two relations
hold. Say A£ X, 07A X. Let BCX, B,X\B far in C. Define
[: X - Xbyf(B) C{a CA, f{X\B) C{a2}CX\A. Then/ GU(C,C)C
Chom]]™),1',~)), hence B = f~x{A) € X. Hence X D{ACX \p £
GAoqge A}

Suppose X does not equal this set system, i.e. 3A GX, where e.g. p £ A,
qGA. Let Al C X be any other subset with p Al, gGA'. Then p£ AUA',
qGA fl Al. Choose points x GX \ (AUA"), y £ ACIA!. Define /: X —X as
identity on | "\(dU A") and on AflAl, and let /(A \ A") C{x}, f(A'\A)C
C {y}. Then / G17(C\C) C hom((X, X), {X, *)), hence Al = f~\A) GA’.
Thus X {AC X \p£ A=>q£ A). If here we do not have equality, i.e. 3A £
£X, qE A, p£ A, then similarly as above also X D{Ac X \qf A=>pf A]
holds, therefore X =2X. O

The last two cases in the lemma can evidently occur. Even for U(C,C) =
= hom((X, X), (X, X)) each of the first three possibilities can occur, for the
case of a free and a fixed ultrafilter ([27], proof of Proposition 8, since these
are the systems of all clopen, open, resp. closed sets of a free ultraspace). For
both p,q fixed the second and third possibilities cannot occur; use bijective
functions f £ U(C, C), f(p) = q, f(q) = p. The same holds for both p, q free
if 3/ GU(C,C) bijection, for whose Stone-Cech extension :RBX —RX we
have f8(p) —q, f*(q) =p\ however, the general case is not clear.

The next lemma follows the lines of [27], Proposition 4.

Lemma 3. Let C be an ultraproximity on a set X , defined by using the
ultrafilters p,q. Let D be an ultraproximity on X X X, defined by using

some ultrafilters r,s such that denoting by wf: B(X X X) =RX (X X X,
X taken with discrete topology) the Stone-Cech extension of the projections
i . XxX—=X we have (7rf(r),7r2(r)) = {p,q), (7rf(s), ~(s)) = {q,p)- Then
for any concrete functor F : {C, DH{C Prox) — satisfying FC = (X, {A C

CX|p£f A=>qf A}) we have FD = (X x X, 2XxX). In particular F cannot
be a full embedding.

Proof. Let FC = (X,X), X ={Ac X |pEA =q£f£A}. Let Ac X,
p™rA (ile. pEX\VA), qf A thus A £ X. Denote FD by (X x X, X").
Then by 7i GU(D,C) we have X' 3 ®'1(A) = Ax X. However, (p,q) £
G GX\VAXRBX, (q,p) £ Ax BX, hence (from now on closure taking in
B(X x X)) rE(X\VA)x X (i.e. rEAx X), s£Ax X. Similarly, by using
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mMweseei'3IxA ,rG Ix A ,~1x 1. This implies by Lemma 2 and
|X x X| >4 the statement. O

Lemma 4. Lei CC Unif (Prox) contain a uniform (proximity) space C
and some uniformities (proximities) Ca on the same underlying set whose
intersection C isfiner than C. Let F : C—S(f be a concrete functor. Sup-
pose Vq FCa—(X ,Xa), where XaC{A CX \A , X \ A are far in Ca}. Then
for FC —(X,X) we have Xc{AcX\A,X\A are farin C'}.

Proof. Since Vq Ix € U(Ca,C) we have X C f]Xa. However, if A, X\ A
a

are far in each Ca then they are far in C as well. In fact {A,X\A} is a
uniform partition in each Ca, it is a star refinement of itself. Thus it is
normal ([17], p. 6) with respect to the (finite) coverings which are uniform
in each Ca, i.e. is a uniform cover of C as well. Therefore X C f]Xa ¢

C{ACX IVgA X \ A are far in Ca) C{ACX |A, X \ A are far in C).
O

P roof Of Proposition 3. We have for each C€ObC X D{ACX \
A, X\ A are far in C} by Proposition 2. The converse inclusion follows
from Lemmas 2, 3 and 4 (in Lemma 4 choosing {Ca} —{ all ultraproxim-
ities on UC finer than C}, thus having C = C), except for C = two-point
indiscrete proximity. In this case, however, U(C,C) = X x, thus X = {0,X}
or X —2X ([33], proof of Theorem 4.1). However, in the second case for
any non-indiscrete ultraproximity C and FC = (X', X’) we have (X')x =
= hom((X, X), (XX ")) =hom(C,C) (X", a contradiction. The second
statement of Proposition 3 follows like in Proposition 2.

Lastly, let Cb {C € Ob Prox |C has a basis consisting of finite partitions)
(D {ultraproximities}). If here equality holds the functor F given by FC =
= (X, {ACX IA, X \ A are farin C}) is a full embedding. Otherwise 3C €
€ Ob C whose reflection rC € Ob C given in Proposition 3 (with universal map
having underlying function Ix) is not isomorphic to C, thus Ix ~ U(rC,C)C
CU(rC, rC)91Ix, hence U(rC,C) 8 U(rC, rC). a

8 6. Embeddings of Coz into SQ

We will prove a theorem on full embeddings Coz—»S(f. The definition
of Coz cf. in §4 or the beginning of Part Il of this paper. We will use the
properties of Coz listed in §4 without further reference. A free ultraspace is
a space X for which D C X CRD, \X \ D\ = 1for some discrete space D. We
note that {(i7[0,1], {open sets of [0,1]})} C Ob S<f has infinitely many not
naturally isomorphic full embeddings into Sq ([26]). Therefore the method
used in Theorem 3 (83) is not directly applicable.

First we prove a statement on inductive generation of cozero-spaces.
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P roposition 4. Let C £ Ob Coz. Then there is a set of morphisms
fa - Ca”C in Coz inductively generating C (i.e. C has the final structure
w.r.t. them) with the following property: for each non-cozero subset A of UC
there is an a such that f~ 1(A) is not a cozero-set in Ca, but it is a zero-set
in Ca.

Proof. Inductive generation follows from the property mentioned in
Proposition 4, thus it suffices to prove the mentioned property.

Let AcUC (C £ Ob Coz) be a non-cozero subs&t)in C.LetD/ (0,{0})
be a cozero-space, which has a partition UD —(J An, the union of any

I

cofinitely many An-s being dense in the topology generated by D. Con-
sider the product C —C x D £ Ob Coz. Let A" —inverse image of A by the
projection Cx D —=C. Let An= {(UC)\ A) x An. Then C is a retract of C
(with injection i: C —C and retraction r : C —C, say), the inverse image of
A under this retraction being A!, and any cozero-set in C intersecting some
An intersects infinitely many of the ji(,-s. These will be the only properties
of C used further.

We define the cozero-structure C” on UC _as the inverse image of the
usual topological cozero-structure of J~ [n £N Ju {0} by the map g: UC —*
—{" |n € M}u {0} defined by g(A") = {0}, Vng(A'n) C {*}. That is, the
cozero-sets of C" are arbitrary unions of the sets An and the unions of
Al and an arbitrary cofinite family of the v4(-s. Let C* = C VC" denote
the supremum of the cozero-structures C and C". The composition of the
identical set-map C* —C and the above retraction r : C —C gives a map
f :C*—=C. Then (UC*)\ f~I(A) = (UC*) \ Al is a cozero-set in C", hence
in C* as well.

It remained to prove that f~x(A) = A" is not a cozero-set in C*. C* is the
initial structure w.r.t. the identical seCBmaps on UC* to C and C". Hence

the cozero-sets of C* are of the form LIJ(’\fc HBk)> Bk a cozero-set in C, B'f

a cozero-set in C".
Suppos&)on the contrary that A' is a cozero-set in C*, i.e. is of the

form A’ —(?(B'k N B'f) (B'k,B'k like above). Since each Bk either contains

®
A' or is disjoint to it and we also have A' = | N Bk A", in the above

representation of A' we may suppose that each Bk contains Al, i.e. Bk is
of the form Bk —A' U [N GN \ Nk}), Nk ¢ N finite. We have Bk H
fl Bk ¢ An, i.e. Bkfi (U{v4(, [n£ N \ Nk}) C Al, or equivalently Bk c Al U (U
U{#0 In 6 NKk}). However, if Bk intersected U{zI(, |[n £ Nk} then it would
intersect infinitely many of the An-s, a contradiction. Therefore Bk c A',



10 E. MAKAI, JR.

00 00 00
thus A" —U(fcnBk)eljé ve A', hence Al —(J Bk. Thus A" is a cozero-set
1 1 i

in C . Then i~lA"=1i_1r_1A —A is a cozero-set in C, a contradiction. O

Unfortunately, our proof does not give a nice inductively generating class
for Coz (while {[0,1]} is a projectively generating class, since for each cozero-
space C {cozero-sets of C} = {/-1(0,1] |f : C —[0,1] is a cozero-map}).
Here and also in Theorem 4 [0,1] denotes the cozero-space (U[0,1], {topologi-
cal cozero-sets of [0,1]}). Evidently, Proposition 4 holds for a subcategory C
of Coz, closed under the operation C —aC*. E.g. the following is sufficient:
Ob C contains a space D like in the proof, and all (onto) inverse images of

In €ivj u{0}, and is closed under products (in Coz) of two spaces and
suprema (in Coz) of two cozero-structures.

T heorem 4. 1) Let Cc Coz. Let [0,1] c Co£ ObC, and let for any set
0"~ G " UCq open in the topology generated by Co and for any cozero-set
A of Co there exist f £ hom(Co,Co) such that f~1(G) = A. (E.g. for any
set 0 G %UCo open in the topology generated by Co there is a copy of
[0,1] in Co intersecting both G and (UCo)\G.) Let C contain all cozero-
spaces of the form (UCo, {topological cozero-sets of a free ultraspace D with
UCo = UD}) or (UCo, {AUB |AC((UCO)\{p,?}, (B=0o0rB={p?H})
where p,qf£ UCo, P* @ LetF: C Sff be afull embedding. Then, supposing
F concrete, we have for each C £ Ob C FC —(X, X), where X D {cozero-sets
of C}, orfor each C £ ObC FC =(X,X), where X J {zero-sets of Cj.

2) Let C £0bC, A £ UC, A no cozero-set in C imply 3C £ 0bC, 3/ £
£ hom(C/,C), /-1(A) is not a cozero-set in C , but it is a zero-set in C .
Let F\C-+Sqg be a concrete full embedding satisfying the conclusion of
the preceeding statement. Then Fr: C—=Sq is naturally isomorphic to the
concrete functor given by FC = (UC, {cozero-sets of C}) or to the one given
by FC = (UC, {zero-sets of C}).

3) Consider Coz as (fully) embedded into Prox by the concrete functor
F' given by all finite cozero-covers. Let Cc Coz satisfy the conclusion of the
last statement (for any full embedding F: C—»Sq), let Ob C3 Co D [0,1],
let F'C c C c Prox and suppose 3CO£ ObC' (c Ob Prox) whose coreflection
cCqin F'Coz satisfies Cq cCqf F'(ObC). Then there is no full embedding
F:C —8q.

In particular Coz admits just the above two full embeddings into SO —
up to natural isomorphy — but no subcategory of Prox, strictly containing
F'Coz admits one.

P roof. 1) We assume, as we may, for simplicity Uc = Us-F. We remind
that T3i can be considered as a full subcategory of Coz, by the concrete full
embedding Ob T3t 9 D —(UD, {topological cozero-sets of D}). Therefore
by [27], Proposition 4 for each free topological ultraspace C on UCo, with the
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cozero-structure of all topological cozero-sets we have FC = (Xo0,X) (Xo =
= UCq), where X C { open sets of the topology generated by C}, or for
each of these spaces C we have FC = (Xq,X), where X C {closed sets of
the topology generated by C}. In the second case consider instead of F the
full embedding iF: C—*Sq, where i:Sq —»6q is the concrete isomorphism
introduced at the end of 84 (i(X,X) = (X,{ACcX \X \ AGX})). Thus we
may suppose we have the first case (note that the statement of the theorem
for iF implies the statement of the theorem for F). For a cozero-space of the
form C - {UCq {AUB |Ac (UCg)\ {p,q}, (B=0or B- {p,?}}). p.qG
&UCo, p” g we have by the remark following Lemma 2 in § 5 X = {cozero-
sets of C} = {open sets of the topology generated by C} = {closed sets of the
topology generated by C}.

Thus we have for all the above considered spaces C FC = (Xq, X ), where
X C {open sets of the topology generated by C}. This implies by the proof
of [27], Corollary 4 that for FCq= (Xo, Xq) we have XqC {open sets of the
topology generated by Co}. (Note that by the coreflectivity of (an embedded
copy of) T3i in Coz, mentioned in 8 4 and in the beginning of this proof, for

C as a topological space finer than the topology generated by Co, I1x0is a
cozero-map C —*(Xo, {all topological cozero-sets of the topology generated
by Co}), hence also is a cozero-map C —»Co.)

If X0={0,X0} then hom(Co, Co) = hom((X0XO0), (Xo, x q)) implies Co =
(2fo, {0, ~o}) or Co = (Ao, 2X°) ([33]), proof of Theorem 4.1, [27], Lemma 2),
contradicting to [0,1] C Co- Therefore 3G, 0~ G/ UCq, G open in the
topology generated by Co, G € x 4. By the assumption on Co for any cozero-
set A of Co 3/ e hom(Co, Co) = hom((Xo, X0), (X0, X0)), / _1(C) = A. Hence
{cozero-sets of Co} C XO0.

Since the restriction of Co to C[0,]] is the cozero-space [0,1], there is a
cozero-set Ao of Co for which 140D [0,1] = (0,1]. By what has been shown
above, ™0 £ X0. Take now any C € ObC and any cozero-set A of C. Then
3/ Ghom(C, [0,1]) C hom(C, Co), A =/-1(0,1] = f~1(A0). Hence for FC =
= (X, X) we have A GX, i.e. X D {cozero-sets of C}.

Still we have to show that if Co satisfies the hypothesis in brackets in 1)
then for any set 0" G " ucq open in the topology generated by Co and for
any cozero set A of Co 3/ 6 hom(Co, Co), f~1(G) = A. cq contains a copy of
[0,1] intersecting both G and (UCo0)\G, and we may assume [0, I]fIC = (0,1],
[0,1] H((UCo) \ G) = {0}. Then there is a cozero-map /: Co —»[0,1] (C Co)
such that A=f~1(0,1 =/ -1(G).

2) Similarly like above, by passing to iF if necessary, we may suppose
without loss of generality that for each C GOb C we have FC = (X, X),
where X D {cozero-sets of C}. Suppose for some C € Ob C X  {cozero-
sets of C}, i.e. 3A GX, A is not a cozero-set of C. By hypothesis 3C' G
GObC, 3/Ghom(C',C) such that Al = f_1(A) is not a cozero-set of C
(thus, denoting UC' by X', 0/ Al'~ X") but X'\A" is a cozero-set of C

(thus C 7 (1',{0,r}),C 7 (r,2r )). Let FC' =(X',X"). Then by / G
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Ghom(C7C) = hom((X7 A", (X, X)) we have A" G A" and by the hypothesis
on F we have X'\ Al G {cozero-sets of C74 C A". Thus {A', X"\ A"} CA".
This implies by hom(C7,C) = hom((X7 A), (X', A"), {0, X'} ™{cozero-sets
of C7} 2%, and [27], Lemma 2 that {A/,X7\ A'} C {cozero-sets of C7},
contradicting to Al £ {cozero-sets of C7}. This contradiction shows VC G
G ObC X —{cozero-sets of C}.

3) By Cg” cCDO we have |I7CQO| > 1, hence by [22], Corollary to Lemma 2
any full embedding F : C —»<>{ satisfies Uc' ~ Uj-F. Thus we may suppose

F concrete. Then FF'l:C—Sq is a concrete full embedding (I: C  Coz
is the inclusion functor), and similarly like above we may suppose VC GOb C
FF'C =FF'IC = (UC, {cozero-sets of C}).

Let UCD=X'Q We have cCOGFAObC) C ObC7 cC0=F'Cq, say, where
Cq GObC C Ob Coz. We have, considering [0,1] as a cozero-space (and re-
calling that also c is concrete) FcCO0= FF'C q = (Xq, {cozero-sets of C"}) =
—(X6,{/-1(0,1]}/Ghom(Co,[0,1D}) = (Xq,{/_1(0,1]}/G U(F'Cq,F[O, 1]) =
= U(cCq, [0,1])}) (the equality holding since F' is a full embedding, and
the last time considering [0,1] as a proximity space, which is the image of
the cozero-space [0,1] by F') = F'~Ic cCq=F'~1cCq= (X q,{/_1(0,1] |/ G
G U(Cq, [0,1D}) (by the definition of the functor c, cf. § 4). We have by
hypothesis U(cC'0,C0) 9 \XQ$ U(Cq,cCq). Therefore for FCO = (Xq,Xq)
and FcCq=(XT7{/-x(0,1]f/ € UCQIO0,1]D}) we have hom(FcCE, FC'q) 9
9 1x,i hom(FC'q,FcCaq), i.e. X’$ {/-x(0,1]|/ cU(C'Q[0,1])}.

However, by Co G Ob C we have FF'Cqg= (UCo, {cozero-sets of Co}),
and since Co D [0,1], we have {cozero-sets of Co} | U[0,1] = {cozero-sets of
[0,1]} 9 (0,1]. Hence similarly as in 1) we conclude that for each C7GOb C
with FC = (X7 X") we have X' D {f~\0,1] |/ cU(C',[0,1])}. For C7=CD
this is a contradiction, hence such an F does not exist.

Finally, the last statement follows from the above ones, taking into con-
sideration Proposition 4. O

8 7. Embeddings of Prox and Unif to Unif

There are still two cases missing, those of the full embeddings Prox —»
—>Unif and Unif —»Jnif. These conjectures of the author have been settled
by M. Husek, J. Pelant (the first one) and by J. Pelant - J. Reiterman (the
second one). They have sent a complete proof of the first one and a sketchy
proof of the second one and have kindly agreed that these should be included.

Theorem 5 (M. Husek - J. Pelant). Let CC Prox and let C contain
a space Cq which is a special uniform space containing [0,1]. Let further
PN, (PN)nGObC (N is a countable discrete uniform space, n >1 afixed in-
teger). Let F : C—Unif be afull embedding. Then F is naturally isomorphic
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to the composite inclusion functor C  Prox®» Unif. In particular each full
embedding Prox—Unif is naturally isomorphic to J.

Here the word “special” can be deleted, cf. 8§ 7, Remark 1.
For the proof we need two lemmas.

Lemma 5. Let CCProx and let F :C—»Unif be a functor with pF =
= the restriction ofJ to C. Let X 6 ObC and FX DD, D a discrete uniform
space. Then\/ly GObC, V/. Y —pD {f~1(d)\d£ UD} is a uniform cover
of FY.

Proof. By FX DD we have X =pFX J pD < Y, since p preserves

subspaces. Applying the functor F we have a map FX FY. Thus we
have the following commutative diagram, where the underlying functions of
the vertical arrows are identities.

FX 3 D
I I
] 1 f
X=pFX 3 PO - — YrpFY
f I
. 1
L0 FY

Hence Ug factors across the underlying function of the embedding of the
discrete space D into FX, thus induces a map FY —»D, and the lemma
follows. O

Lemma 6. LetCC Unif, X,Y\,... ,Yn€ ObC (n a natural number), and
letf : X —> | Let F : C—»Unif be a concrete functor with FY\,... ,FYn

discrete. Then {f~1(yi,... ,yn)| € UYi} is a uniform cover of F X.

n
Proof. Let ir- denote the projections nI/\« —»I» Then F(nif): FX —»

—>FYi, hence we have a map (F”if),... ,F(irnf)): FX —*J? FYi whose
underlying map is Uf. Since FY, is discrete the statement follows. O

P roof of Theorem 5. We suppose, as we may, for simplicity of no-
tation Ug = FunifF. Then by 8 3, Theorem 3 we have that pF is nat-
urally isomorphic to the composite inclusion Ct> Prox t»Unif. Thus it
suffices to show F = pF, i.e., VX 6 ObC FX is precompact. Suppose on
the contrary that FX contains a countable discrete subspace N. Apply-
ing Lemma 5 with Y =pN, / = Ipjv we see FpN = N. Applying Lem-
ma 6 with X = (pN)n, Yi =pN, f = I(pA)n we see F[(plIV)n]= Nn. Thus
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(pPN)n=pF[(pN)n]=p(Nn), contradicting to (pN)nfi p(Nn) ([17], II. 40).
L]

T heorem 6 (J. Pelant - J. Reiterman). Let F: Unif - Unif be a full
embedding. Then F is naturally isomorphic to the identity functor on Unif.

In their letter the authors of this theorem have hinted to that the below
T r’s are proximally minimal ([16], p. 410, (2)), which implies F(Yj?) =Y,
and since {Yjr} inductively generates Unif, F ~ lunif- (Proximal minimality
means any strictly finer uniformity induces a strictly finer proximity; this
can be used together with Theorem 3 if we know that F(Yjr) is finer than
Yjr.} The proof given below is possibly a bit different from theirs, and we
give their theorem in a slightly modified form. Before stating it we need
some

Notations. 1) For a set Y and a an infinite cardinal or a = 2 F(a)
denotes the uniformity on Y having as base all partitions of Y of cardinality
< a (thus y(2) is indiscrete).

2) For aset Y and T a (possibly improper) filter on Y Yfi denotes the
uniformity on Y x {0,1} having as base all covers {{(y,0)}, {{y, )} |y €
£y \ F} U{{(y, 0), (y, D)} ly €F}, where F €T.

The spaces Yjr are useful in several problems, their significance is given
by the following

Lemma 7 ([17], Ch. Ill, Exercise 3, [16], pp. 410-411). Each uniform
space X is the quotient in Unif of some space Yfi (where Y = (UX)2, T —
= {entourages}). Thus the class of all spaces Yjr inductively generates Unif.
Moreover, this last statement holds even for the class of all spaces Yjr, with
J- an ultrafilter. a

Theorem 6°. Let CC Unif and let C contain non-discrete spaces Y(a)
with a arbitrarily large, and a class of spaces Yjr inductively generating Unif.
Let F : C—Unif be a full embedding. Then F is naturally isomorphic to the
inclusion C  Unif.

For the proof we need two propositions, the first being a generalization
of [23], Proposition 8.

P roposition 5. Let C be a subcategory of the category consisting of all
uniform spaces Y(a) (c Unif), where for convenience we assume a = 2 for
lyl <1, a=Ho for 2<jy| < Ho, a <|y|+ otherwise, and let C”* {empty
space}, C£ {X \\UX\ —1}. Let F:C—Unif be a full embedding. Then
one of the following possibilities holds. 1): F is naturally isomorphic to
the inclusion C <+Unif. 2): Denoting A = {a |3Y,Y(a) 6 Ob C} the class
Ag= {a €A lais not a maximal element of A and 3Y, Y(a) is not discrete,
y(a) € ObCj is a set. Let B be the smallest cardinal (B infinite or /3= 2)
greater than all a € Ao- F is naturally isomorphic to the concrete functor
G defined by G(y(a)) =Y (a) ifa is not a maximal element of A and U (a)
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is not discrete, and G(Y(a)) = Y(min(]Y |+,/?*)) where B* > (and Rm=2
or B* is an infinite cardinal or a symbol following all cardinals) and for
W\ £ 1 or 2<|YI < Ho, resp., |Y|+ is to be replaced by 2 or by Ho, resp., -

if a is a maximal element of A or if Y(a) is discrete.

Proof. Denoting by Uc:C—=Set and tAjnif: Unif —Set the underlying
set functors, by [22], Corollary to Lemma 2 Uc and U\inl(F are naturally
isomorphic; for simplicity of notation we assume Uc = U\jn\fF. By [23], Re-
mark 2 U(FY(a), FY(a)) = U(Y{a), Y(a)) = YY implies FY(a) =Y(a") for
some a'.

LetY1l(al),Y2(a2)eObC. Then U(Y1l(al),Y2(a2) =Y2 ifa*a”and
U(Yi(ai), Y2(a2)) —{/ GY%L||/(Yi)| < ax}ifct\ <a2. In the second case for
Ki(qi) non-discrete (i.e. ax<\YX) U(Yi(ai), 12(02)) i1Y2 , since ax<a2<
<\Y2\+ implies Qi < |y2| hence 3/ GY*1, |/(Y])| = aj. (Throughout this
proof we use the notation |Y|+ in the modified sense given in the statement of
the Proposition.) Hence if Yi(ai) is non-discrete and ax is not maximal in A
we have for some a2 >ax U(FYx(ax), FY2(a2)) = U(Yx(ai),Y2(a2) ={/ £
EyNM I|/(Fi)| < ax} # yh , which implies FY1(al) = Yx(a[), FY2(a2) =
= Y2(a'2) with ai <a'. Thus {/ €Y" ||/(r1)]<ttl}=U(YLa]), Y2(a'2) =
= {/€P2i \\f(YI)\<a\} and 3/€Y™* , |/(yi)|=Q, imply ai =a' (< a'),
ie. FYl(al)=Yl(al).

If, on the other hand, Yi(ai) € Ob Cqg= {Y(a) 6 Ob C\Y (a) is discrete
or a is maximal in A} (Co a subcategory of C) then \/Y2(a2) € Ob C
U{Yx(ai), y2(a2)) = Y 1, hence for FY1(al) =Yi(a[), FY2(a2)=Y2(a'2) we
have [/(y1(QL),y2(a'2)) = YM as well. This implies in turn that Yx( ) is
discrete or a\ is maximal in Al = {a'|3Y,Y(a') € F(ObC)}. Thus either for
all Yi(ai) GOb Co we have FYi(ai) discrete, and then we are done, or there
is a smallest ¢%i such that this does not hold. In the second case we have
for this smallest ¢4 FY\(ot\) —Yx(B*) with R* (< |Yx|) maximal in A" and
also for any Y (a) GOb CO with |Y|>|Yi] FY(a) = Y(B*) (FY(a) =Y(|Y|+)
being impossible by |Y |+~ |Y]j|+ > R*).

If the class Aq is a proper class then noting Y (a) GOb C\ Ob Co
=FY(a) =Y (a) we see AD={a' GA! \a' is not a maximal element of A’
and 3Y, Y(a') is not discrete and Y(a') GF(ObC)} is a proper class as well.
Thus the above B* cannot exist, therefore F = the inclusion C<*Unif. If
Aqis a set but the above /?” does not exist we are also done. Suppose now
Ao is a set and the above B* exists. If C= Co then the above considerations
prove the statement. Otherwise 3Yi(ai) GObC\ObCo; thus 3Y2(a2) GObC,
a2> o\ and we have shown above FYi(ai) = Yi(au), FY2(a2) =Y2(a2) with
o\ <a?2. Therefore ai < B* and the statement follows. O

Proposition 6. Let C—{E,Yjr} ¢ Unif. Let F : C—Unif be a concrete
full embedding, and let E contain a discrete subspace D such that the restric-
tion of FE to UD is discrete as well. Let further \D\ > |Y| (]D|>2 for Y
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finite). Then FYyr = Yjr.
For the proof we need

Lemma 8. Fei X be a uniform space, f7X=yx{0,1}, and let (y,0),(y,D}
y £ Y} be a uniform partition of X . Then X —Yqg for some (possibly im-
proper) filter Q on Y.

P roof. It will be convenient to use entourages. Thus U{{(y,0),(y, 1)}2]
y£y) is an entourage. X has a base consisting of symmetric entourages
contained in U{{(y, 0), (y,)}2|y £ Y}, i.e. of entourages of the form Ug = (U
U{{(y,0).(y.D}2]y£G))U (U{{((y.0).(y,0)), ((y, ). (y, )} [YEY \ G}),
for some G CY . Then for each above G\, Gi there is an above G3 such that
UglTUg2 DUg3, he. G\ flGi DG3, and for each above Gandany GCH CY
also H is of the form of the above G’s. Thus Q—[the set of the above G’
(9 y) is a (possibly improper) fdter, and X =Yg. O

P roof of Proposition 6. We have {/ £ U(Xr, E) \f(Yjr) CUD}={/ £
£ U(F(Yr),F(E)) If(F(Yr)) CUD}. However, {{f~\x) \x £ D} \f £
£ U{Yjr,E), f(Yjr) c UD} is a subbase of {uniform partitions of Yj}, and
similarly for F(Yf), hence {uniform partitions of Yjr) = {uniform partitions
of F(Yjr)}. Thus in particular {{(y, 0), (y, D} |[Y£ Y} is a uniform partition
of F(Yjr). Hence by Lemma 8 F(Yyr) = Yqg for some (possibly improper)
filter Qon Y . However, both Yy and F(Yj?) = Yq have bases consisting of all
their uniform partitions, and we have seen above that these bases are equal.
Hence F{Yjr) =YT. O

Remark 1. One can show Proposition 6 in another way, too, only
using {{(y,0),(y, 1)} |y £ T} is a uniform partition of F(Yyr) —Yq (and
U(YF,Yj)=U(Yq,Yq)). Namely one sees easily that Y\A £ F<$U(Yyr,Yjr) =
= f7(Xr\(Ax{0, 1}),yr-)xy~x"01" (i.e., each / @ U(Yjt,YF¥) can be changed
arbitrarily on A x {0,1), still obtaining an element of U(Xf, Xf)<>Y \A£ Q.
Actually one can characterize similar subsets of any uniform space X. Let
I1/5C 1, then U(X,X) =U(X\B,X)x XB iff X is indiscrete or X is
the uniform sum of B and X \ B and there is an infinite cardinal a such
that B has as basis all covers of B of cardinality <a and X \B has a basis
of uniform covers, each of cardinality < a. More generally for 0/ 6 C X
U(X,Y)=U(X\B,Y) xYb iffy is indiscrete or X is the uniform sum of
B and X \ B and there is an infinite cardinal a such that every cover of
B of cardinality < a is uniform and Y has a basis consisting of covers of
cardinality < a. In fact the hypothesis implies U(B,Y) =Y B, which implies
by [23], Remark 2 the statements about B and Y. If Y is not indiscrete,
y contains a two-point discrete subspace {yi,y2}, say, then /£ Y x defined
by f(B) = {yi}, /(X \B)C {y2} is uniformly continuous by the hypothesis,
hence X is the sum of B and X \ B. For proximity (topological) spaces
by the proof of Theorem 4.1 in [33] we have analogously for 0/ B C X
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UX,Y)=UX\B,Y) xYb (C(X,Y)=C(X\B,Y)x YB) [Wj,y2G
€y, (2,22 € TZC Y 2 (where the transitive and symmetric (resp. transi-
tive) closure of K is Y2) VB' CB {B',B\ B'} Ga covering subbase for
the discrete proximity on B (B1Ga subbase of the discrete topology on
B) 3/ GU(B,Y) (C(B,Y)) f(B")c{yij, f(B\B')c{y2] and Vyuy2Z
ey, (yi,y2 en 3geU(X,Y) g{B) = {yi), g(X\B)c{y2} (Wi,y2eY,
(yi,y2enVbeBVxeX\B 3g,hzC{X,Y), gb) =yl Z(X\fl)c{22},
fi(x) = ilx, fi(5) = {2/2}] ™ [y is indiscrete or X is the sum of B and X \ B,
B being discrete].

Remark 2. There is an evident connection between U(Yjr,Yjr) and
C'(Y(X),Y(X))! ~. Here Y(F) is a topological space Y U {00} (00 £Y)
with y open and discrete and neighbourhoods of 00 are of the form Fu {00},
FeX. Further C’(Y(X), Y(X)) = {/ GC(Y(X),Y(X)) \/"(oo0) - {00}}
and ~ is the equivalence relation on C'(Y(X),Y(X)) defined by / ~ g iff
/ and g are identical on a neighbourhood of 00. This raises the following
question. Let us consider pointed topological spaces (X, X0), Xq€ X. Let
C'(X,X) —{/ £C(X,X) If~1x0) = {x0}} and define ~ as above. Prove
speciality results for C'(X,X)/ ~ rather than C(X,X), i.e., for some spaces
X show that for any space Y (possibly from some restricted class of spaces)
the isomorphism of the semigroups C'(X, X)/ ~ and C'(Y,Y)/ ~ implies e.g.
local homeomorphism — or some weaker equivalence property — of X and
y. E.g. for X =y =[0,1] (or {0} U |n € N } with the usual topology),
x0 = 20= 0 is each semigroup isomorphism of C'{X,X)/ ~ and C(Y,Y)/ ~
induced by a local homeomorphism X —=*Y1 For X T3i a weaker equivalence

property can be, e.g., the homeomorphism type of X* = (/3i)—(x0), where
Ri is the Stone-Cech extension of the inclusion i: X \ {xo} =X (cf. [19])
and one can ask if the isomorphism of the above semigroups implies home-
omorphism of these spaces, which moreover renders the following diagram
commutative:

Here the vertical arrows are determined by letting to correspond to an / G
GC'(X,X)/ first its restriction X \ {xo} —X \ {xo0}, then taking Stone-
Cech extension, lastly restriction to X* (and similarly for Y ), while the lower
horizontal arrow is induced by the homeomorphism X* —Y *. Of course one
can ask all these questions for categories of spaces rather than for single
spaces, and for full embeddings.

Proof Of Theorem 6°. By [22], Corollary to Lemma 2 f/unife’~ UcmFor
simplicity of notation we suppose t/unifE’= Uc- Apply now Proposition 5 to
the subcategory C of C, where Ob C = {X GOb C\X =Y (a) for some Y and
a, X is non-discrete}. Thus the restriction of F to C equals the embedding
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C Unif. Applying Proposition 6 to {Z(a),Yjr} ¢ C where Z(a) 6 Ob C',
a > \Yjr\ we see FYj? = Yjr for each Y? £ Ob C.

By hypothesis {Yyr \Y? £ Ob C} inductively generates Unif, i.e. VX €
£ Ob Unif has the finest uniformity making each function / £[/ (!>, X),F> €
£ Ob F, uniformly continuous. Now, by the technique developed in [15] (only
applied dually as in Theorem 3) we see for each C€ ObC FC —C. O

It is not clear if Unif is either projectively or inductively generated by
special uniform spaces. (For topological — resp. T3i — spaces both analo-

gous statements are true. For projective generation take any space X having
a two-point subspace with exactly three open sets, and such that not all in-
tersections of open sets of X are open (cf. [27], Corollary 1), resp. [0, 1].
For inductive generation — actually representation as a quotient of special
spaces — cf. [25], Corollary 4 — where *“space” means Ti-space — and [31],
Theorem.) One has projective generation of Unif by unit balls of ~°°-spaces
([17], 1. 21) and inductive generation by the spaces Yjr, T a filter on Y.
However, the former ones are metric and in general not precompact and the
same holds for Yjr if Y is infinite and T has a countable base. By proxi-
mal fineness of metric spaces (cf. [17], Il. 38) for any such uniform space X
we have U(X,X) = U(pX,pX) (= U(paX,paX), pa denoting reflection in
spaces having bases consisting of coverings of cardinalities smaller than a,
[17], p. 52 and Il. 33), hence X is not special. It is not clear how can one
describe for the above mentioned projectively/inductively generating spaces
X al uniform spaces X' with UX = U X\ U(X,X) = U{X",X").

We can settle for Prox the above question. We use the term ultraprox-
imity as given in 8 5.

Lemma 9. Let C be an ultraproximity, \UC\ > 2. Then C is a special
proximity space.

P roof. An ultraproximity C satisfies 6dC —0. Hence by [23], Corol-
lary 3 for any proximity spaces C, D, D' satisfying UC' —UC, UD' —UD
we have U(C,D)CU(CD') =D’ is indiscrete or C is finer than C, i.e.
C =C or C s discrete. In particular U{C,C) —U(C, C) C=C since
by [23], Lemma 1 U(C, C) = U(C, C), C non-discrete, non-indiscrete prox-
imity imply C is not discrete or indiscrete either. O

The following lemma is proved analogously to [25], Theorem 2 (on sums
of special topological spaces).

Lemma 10. Let Ca (a 6 A) be special proximity (uniform) spaces,
sup |[UCa|> 1, and let C = jjA Ca be their sum. Let D be another prox-
a ae

imity (uniform) space with underlying set UC and let U(D, D) = U(C,C).
Then D is coarser than C and is finer than the proximity on ]j UCa de-

fined by B16B244 [Va (Bi fl Ca)<)f2HCa) in Ca, and with the exception of
finitely many a’s one of B\ n Ca and B2fl Ca is empty] (or the uniformity on
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1j UCa having a base j Bai U...URa,,U{ U UCa|i—1,... ,m}|n,m GN,
atA

aeA,
ai,... ,anGA, Bai is a uniform cover of Ca, and {Ai,... ,Am}is a finite
partition of A\ {ai,... ,an}j). If, moreover, Vo SdCa = 0 or 3a Ca D[0,1]

then D —C (pD = pC).

Proof. We treat the case of uniform spaces (the other case is similar).
Supposing D indiscrete by [23] Remark 2 C is indiscrete or has for basis all
partitions of UC of cardinality less than some infinite cardinal 3. If C is
indiscrete then |A| = 1, A = {ao}, say, and since \UC\ > SL(J]? \UCa\> 1 we

have that Cao is not special (the indiscrete and discrete uniformities on a
set or the uniformity on that set having for base all partitions of cardinality
less than some infinite cardinal all have the same set of self-maps). If C
has a basis as given above then each Ca has an analogously defined basis
consisting of partitions and is special, thus, like above, Va \UCa\” 1 which
has been excluded.

Thus 3{ci,C2} C UC = UD, {ci,C2} is a discrete subspace of D. Then
for any partition {Ai,A2} of A the function / defined by /(a£% Ca) C

C {ci}, /( U Ca)C {C2} is uniformly continuous from C to C. Hence

U Caand U Ca are far in D as well. In particular Ca and U Cai
atAi afA?2 a'~a

are far in D. Denote by Da the subspace of D with UDa = UCa. We

have U(Ca,Ca) = {(/ IC«) I/ € U(C,C), f(Ca)C Ca} = {(g\Da)\g €

GU(D,D),g(Da) C Da}= U(Da,Da). By hypothesis this implies Da = Ca.

Hence D is coarser than ]J Da= JJ Ca= C. D is finer than the unifor-
atA atA

mity with the base given in the lemma since Da = Ca and for each partition

Ai, A2} of A Da and Da are far in D.
A

Suppose now Va SdCa —O0, thus 6dC —0, or 3a Ca D [0,1], thus C D
D [0,1]. Then by [23], Corollary 3 U(D, D) = U(C,C) implies D is indiscrete
or D is finer than pC. The first possibility having been excluded above we
havepD =pC. O

The second statement of Theorem 7 is proved on the fines of its topolog-
ical analogue [25], Corollary 4.

THEOREM 7. The category Prox is inductively generated by special prox-
imity spaces (e.g. by the ultraproximities with underlying sets X satisfying
\X 1>2). Moreover, each proximity space is the quotient of a special prox-
imity space D satisfying 8dD = 0. Let C C Prox contain a subclass con-
sisting of special proximity spaces which inductively generates Prox and let
F:C-* Prox be afull embedding. Then F is naturally isomorphic to the
inclusion C <+ Prox.

P roof. Taking in account Lemma 9 inductive generation follows since
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each proximity is the intersection of all ultraproximities liner than it (resp.
any proximity on a two-element set is a quotient of an ultraproximity on a
three-element set). The statement about the full embeddings follows like in
Theorem 6.

Let now C be any non-discrete proximity space, \UC\ > 2 and let {Ca}
be the set of all ultraproximities on UC finer than C. Following [25], Corol-
lary 4 we put C* —n Ca and ia: Ca —»C* the canonical injections. Define

a

f: C*—»C by U(fia)=luc- Since C is inductively generated by the maps
fa - Ca —€ with Ufa —1jje-, f is a quotient map. Evidently SdC* = 0. Also
by the last statement of Lemma 10 C* is a special proximity space. Further,
if C is discrete then either C = 0 which is special or C is the quotient of a spe-
cial proximity space D satisfying 6dD = 0, e.g. of an ultraproximity defined
with the help of two fixed ultrafilters, where |Z7D| > 2. Lastly, a two-point
indiscrete space is a quotient of an ultraproximity on a three-element set.
O

Thus we have examples of special proximity spaces which are not special
uniform spaces. Namely for an ultraproximity C of an infinite set X , defined
with the ultrafilters p, gGR X, where p GX , qGRBX \ X, we have, using the
remark before § 5, Lemma 2, U(C,C) = C(tC,tC) =U(C',C"), where C is
the fine uniformity on rC (or C" is any GtC from § 4, Corollary 2 or the
remarks at the beginning of § 4).

A question dual to the second statement of Theorem 7 is the following:
is every proximity space the subspace of a special proximity space? (For Ti,
resp. topological spaces there is an analogous statement, cf. [25] Corollary 3,
resp. [27], Corollary 1.) To answer this question we first prove a proposition
which is an analogue of [32] Theorem 4 (it dealt with the case C was a T 3i

space). Also our proposition sharpens some results of [23].

P roposition 7. Let C be a uniform (proximity, cozero) space, C D
D [0,1]. Let further D be another uniform (proximity, cozero) space with
Uub =UC, U(b,D)= U(C,C). Then pD =pC (resp. D=C). IfC is
precompact and has the finest uniformity compatible with its proximity (i.e.
by [18] C has no subspace which is a countable discrete proximity space and
also is a retract of a proximal neighbourhood of itself) then D =C.

Lemma 11 ([33], Proof of Theorem 3.1). Let C be a concrete cate-
gory, Co,Ce ObC, i: Co->C, r: C-*CO0, ri = \cOm Then {Uf\f 6
Ghom(C, C), (Uf)(UC) C UCO} | (UCO) = {Ug\g €hom(CO0, C0)}. O

P roof of Proposition 7. [0,1] is a retract of C by [17], IIl. 9, IIl. 17.
Denote Dqthe subspace of D with UDg= C[0,1]. By Lemma 11 we have
U(Do, Do) = C([0,1], [0,1]), hence by [23], Corollary 5 Do = [0,1]. Therefore
both pC and pD are projectively generated by {Uf \f Ghom(C,C),/(C) C
C [0,1]} = {Uf I/ Ghom(D, D), f(D) C [0,1]}, hence pC = pD. The rest is
obvious. O
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Corollary 6. Each proximity (cozero, T3i) space is a subspace of a
proximity (cozero, T3i) space, which is special as a uniform space, namely
of a product of some power of [0,1] and an indiscrete space. O

Embeddings of proximity spaces into special proximity spaces (even as
a subspace far from its complement) are even simpler; using Proposition 7
embed X into the sum Y =X ]J[0,1]. However, Y is not a special uniform
space in general; if X =pX', X £ X\ U(X, X) = U{X", X*) then X U[0,1] #
#*'H[O0,1], [/(A'U[0,1],*11[0,1]) = t/(X'HI[O,I],*'11[0,I]). (In fact
p(X'UI[0,1]) = -XU[O0,1], and if /: X" ]J[0,1] —X" {J[0,]] is proximally con-
tinuous then it is uniformly continuous as well since 1) its restriction to [0,1]
is uniformly continuous; 2) its restriction to X 'n/-1[0,1] C X" is uniformly
continuous, since p(X' fl / _1[0,1]) = X n/-1[0,1] and f(X' n/_1[0,1]) C
C [0,1]; 3) its restriction g to X' n /_1(X") is uniformly continuous since
we can extend g to a map h: X' —=*X" by defining h on X'n/_1[0,1] as
constant, h is uniformly continuous by hypothesis, hence its restriction g is
uniformly continuous as well.)

Remarks. 1 Proposition 7 implies that in 8 3, Theorem 3 (hence also
in 83, Corollary 1 and §7, Theorem 5) the word “special” can be deleted. In
fact, in the proof of Theorem 3, we have by Proposition 7, without speciality,
instead of (*) pCo = pFCo (supposing ic0 identity); this, however, suffices to
finish the proof of Theorem 3.

2. Almost all the statements of our paper remain valid if we everywhere
assume the To-axiom. (Possible exceptions are e.g. the last statements of
Propositions 2 and 3, § 5, and T3i being a maximal subcategory of Top,

admitting a full embedding in Prox, second Remark in 8§ 4, where the given
proofs do not work in the To case.)

3. In [23], Remark 5 it was asked if e.g. for Xo = [0,1] or Xg= Cantor
set with the usual uniformity U(Xo,Xo) C U(X,X), X some uniformity on
the underlying set UXgq, inducing a discrete topology (proximity) implies
X has a basis composed of all covers of cardinality less than some cardi-
nal. The answer is no. Namely take any cr-algebra £ C 2UX° containing
each one-element set such that V/ GC(Xo0,Xo0) / _1(£) C E and consider the
cozero-space (Z7Xo,£) and remind there is a full embedding Coz —»Prox.
(Or consider the uniform space with subbase {countable Borel partitions) U
U {finite partitions), which is separable. However, in case Xo = [0,1] the
countable partition {Pn|n GN) =V - {{0,1)) U{h(Y -fr) | r rational) is
not a uniform cover, where h: R —(0,1) is a homeomorphism and Y CR is
a maximal set with all y\ —yi (* 0), t/i, y? GY irrational, with Y bounded.
In fact there is no finite subset NiC N such that U{/i-1(Pn) |n GN\} con-
tains a Borel set of positive measure. For the case of the Cantor set C let
g: C —»0, I] be the quotient mapping identifying neighbouring points of C
in its usual order. Since g induces a homeomorphism of C \ ({neighbouring
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points} U (0,1}) onto [0,1]\ {dyadic rationals}, g 1{V) is not a uniform cov-
er.)

4, In [22], following [27] we have posed some questions about the determi-
nation of all full embeddings of Unif (Prox) into some larger categories. E.g.
let A4 be the category with objects all pairs (X,/i), X a set, fxC 22 , with
morphisms /: (X\, fix) = (X2, Hi) characterized by/: Xx —»X 2,/ -1#2 C fix-
J. Reiterman has kindly drawn the attention to the fact that there are many
more full embeddings Unif—A4 than those given in [22] (in fact at least a
proper class). Such are given e.g. by all open (closed, Gs) uniform covers
(or more generally by those consisting of sets which are intersections of < a
open sets, a a cardinal). By Proposition 1, using Koubek’s strongly rigid
class with the fine uniformity, with the concrete functors F' given by the
open uniform covers, F" given by all uniform covers and H given by the
uniformity generated by /i as a base we obtain as many not naturally iso-
morphic full embeddings as there are subclasses of a proper class. However,
these examples are still bases of the uniformity. Alternatively, let Af be the
category with objects all pairs (X,fi), X a set, fi C 22 , with morphisms
[ (Xi,/xi) —=(X 2ifi2) characterized by f: X 1—»X2, ffix C#2. A proper
class of not naturally isomorphic concrete full embeddings Fa: Unif -»M
(2 < g is a cardinal) is given by FaC = (UC, {{Aa} | {Aa}(C 2x ) contains ar-
bitrarily small sets of C (i.e. Vuniform cover W of C 3W 6 W, 3A, A\ CW)
and VA 1" |Aa| < a}), as follows from [28]. Actually one can give as many
not naturally isomorphic concrete full embeddings as there are subclasses
of a proper class. Use Koubek’s strongly rigid class with the line uniformi-
ty, with the concrete functors F' = F3, F" = F4, but using dually inductive
generation rather than projective generation in the proof of Proposition 1.
(Note that this amounts to using the statement about topological categories
over any base category in the Remark following 8§ 4, Proposition 1, since
topological category cotopological category. Choose Ob % = {(X,fi) £
6 ObAT|IV{AAGMVA |AAg2>.)
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ON THE DENSITY OF FLOATING BALLS

L. HARS

We have an infinite supply of balls whose radii belong to the fixed interval
[r, R], and if we throw these balls into water, they float with half of their body
under the water. We deal with the problem to find the densest configuration
of the balls on the infinite plane ocean.

Formally: We consider a system of circles (the great circles of the balls)
drawn on the plane (the “ocean”), such that their interiors are pairwise
disjoint and their radii belong to the fixed interval [r, R]. We will prove the
following

THEOREM. There exists a number gss 5.88, such that if R/r < q then
the maximum volume density of the circle packing is attained when all the
circles have radius R, and they form a honeycomb system (i.e. all the circles
are as large as possible, and each one is tangent to 6 others, like the cells of
the honeycomb).

IfR/r —3+ 2V "~ 6.46 then the maximum volume density circle packing
consists of two kinds of circles, having radius r or R. The large circles form
a honeycomb system and the small ones are put in the holes between them,
touching the 3 large circles that pairwise touch each other. (See Figure 1.)

1980 Mathematics Subject Classifications (1985 Revision). Primary 52C17.
Key words and phrases. Packing, circles, density.

Akadémiai Kiad6, Budapest
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The cases of other intervals remain unsolved, but Lemma 0 always gives
good upper bound for the density.

Roughly speaking, by volume density or for short by density, we mean
the sum of the volumes of the balls in a very large circular “sea”, divided by
the area of this sea. More precisely, let vt denote the volume of ball B, of
great circle C, of the packing, and De the circle of radius g centered at some
fixed point 0 on the plane, then the volume density is defined by

Y/
* (?iCDe

Ii&&f g2m

A similar theorem is proved for perimeter density in [4], while for the usual
(area) density only weaker results are known (see [3]).

Proof. Toprove our theorem, we start with the reduction procedure of
L. Fejes Téth and J. Molnar (see [1]):

First we make the circle system saturated by adding new circles to it
until no room remains for any other one. This obviously does not decrease
the density.

Second we construct the hyperbola cells around the circles, where each
cell consists of the points closest to the given circle. It is proved in [1] that
the dual of this cellulation consists of triangles, with the following properties:

1. The vertices of these triangles are centers of some circles of our system;

2. These circles do not intersect the opposite sides of the triangles to
which they belong;

3. Only the circles centered around the vertices of a certain triangle can
have points inside that triangle.

Since these cells tile the plane, the maximum density relative to the
triangles gives an upper bound for the density of the whole circle packing.
Naturally, the (volume) density relative to a triangle means the sum of the
angles weighted by 2/3 times the third power of the radii of the circles around
the vertices, divided by the area of the triangle.

Third step. It is proved in [2] that in a triangle the maximum weighted
density occurs when the circles centered at the vertices touch each other,
while we move the circles, but do not change their size. In particular, this
theorem applies to the volume density as well, if the circles are weighted by
2/3 times the cube of their radius. Thus we reduce our problem to consider
the density in triangles of the type shown by Figure 2, where unity is chosen
equal to the longest radius, and so a” x * 1.
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Fourth step. We consider the density in this triangle when the side length
x varies. It will turn out that this density is a quasi-convex function of x if
X G[a, 1], i.e. it is maximal, when x = aor x =1

Fifth step. Comparing these two values, we find that x —1 gives the
larger density.

Sixth step. We fix the two congruent circles of radius 1, and let the third
circle vary. We will show that the density first decreases then increases as
the smallest radius increases from 0 to 1. Therefore there exists a longest
interval [ro, 1], where the density is maximal, if the third radius also equals
to 1. Increasing the three equal radii increases the density, therefore three
pairwise touching circles of radius R yield the only “best” cell, where the
density is maximum, if an interval [r, R], R/r <qis to be used. Fortunately,
the honeycomb circle system can be cut into such cells, thus it is of maximum
volume density.

Seventh step. If R/r =3+ 2\V/3 in the sixth step of the proof we see that
the density is maximal if we chose x —r, so the “best” cell is formed now
of one small and two large circles. The circle system of Figure 1 can be cut
into such cells, therefore in this case it is of maximal density.

P roof of Step 4. Using the notations of Figure 2 the density to be
considered is given by

4 a3a+ B+ z37
3(a+ 1)(x + 1)sin/?'

Disregarding the constant factor later on we use

_ a3a + [ +x37
(2) SICY (x + 1)sin?
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From the cosine theorem in the triangle of Figure 2 we get
_ 2ylax(x -fa+ 1)

COS?:l_(X+|)(Xfa)’ sin7 = (x + )(x + a)
2ax i 2yfax*x +a+ 1)
(3) osB=l—in@+1)y ST e+
2X . 2ylax(x + a+ 1)
Cosa:l_(x+a)(a+1)’ sina = (x +a)(a+ 1)
Here a,B and 7 are functions of x. Their derivatives are
(cos7)' a(2x +a+l) 1
"7 sin7 (x+ D(x +a)ylax(x +a+ 1)’
' a 1
(4) S lylax(x + a+ 1)’
a 1
T Tx +aMax(x +a+ 1)
We have 52(x)
sgn 5i(x) = sgn (x + 1)2sin28 = sgn S2(x),
where

52(x) = (a3a"+ B'+ 3x27 + xV)(x + 1)sinB -
-(a3a + /3+ x37)[sin/3 + (x + l)cos/3 m3'].
Applying (3) and (4) the term above in square brackets can be written in

the form 28(2x + a-f 1)

sin7(x -f)(x + a)(a+1)
It is positive, therefore we can divide S2 by it without changing the sign.
Let us denote the quotient by S3,

(5)

(6) >*)=3x"t+ a + I1'“ x3<7+ S 7)+
+(2x+4aV ib6"R ~RB) +°3("XFaF1lr °~ '
We need the derivative of 5a(x), too. For this we calculate
6x3(x + a+ 1)
2x+a+1
24x +3a+ 3- 2x(x +a+ 1)
(7) 7 [6X @x+a+1)2

3 .
- X (7T+sin7
-3X2 +

+Y \6X ~ x3(l + cos7)] —3x2sin7,
J

L ZXtd t 1
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a+1l . a Q 2(4x + a+ Jax(x + a+ 1)

(8) L2x+a+l J (2x +a+ 1)2(x + \)2y/ax(x + a+ 1)
a+1l . ]1 2(4x + 3a+ Dax(x +a+ 1)

©) L2x+a+l J (2x + a+ 1)2(x + a)2Max(x + a+ 1)

Putting these together we get

(10
e 2Mz2+ 36(a+ I)x + 15(a+ 1)2 sin7
3 7 2x+a+1)2 2x+a+ 1)2(x + I)(x +a) X

x[16x6+ 36(a+ I)x5+ (24a2+ 72a + 24)x4+ (9a3+ 39a2+ 39a + 9)x3+
+(3a4+ 15a3+12a2+ 15a+3)x2+(6a4+6a3+6a2+6a)x+3ad+2a3+3a”]

Let us denote 24x2+ 36(a + I)x + 15(a+ 1)2 by g2, and the polynomial in
square brackets by p”. Let us divide in (10) by the positive coefficient of
7 and denote the result by S4, with

_ 2peylax(x +a+ 1)
(1 41 7 xPghx + 1)2Ax + a)2

We need its derivative, too.

a2x+a+ 1)
x+D(x + a)ylax{x +a+ 1)

SAX) = -

[2Peyax(x + a+ 1)+ x2g2& + 1)2(x + a)

(12 X4qj(x + 1)4(x + a)4 i

2p6Vax(x+a+D[(2xg2+J202)(:r+ 1) 2(x+a)22x2g2(x+1)(x+a)(2x+a+I*
x4g™(x+1)4(x+a)4

If we multiply it with y/ax(x + a+ I)(x + 1)3(x + a)3x2q|/a, we get the poly-
nomial S& Its coefficients are
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(13)

a0 al a2 a3 a4 ab ab a7 a8
x° 0 0 0 135 495 810 810 495 135
X1 0 0 405 2460 5355 6600 5355 2460 405

X2 0 405 4050 12084 17589 17589 12084 4050 405
X3 135 3060 12366 17460 15462 17460 12366 3060 135
X4 855 6840 3834  -22857 -22857 3834 6840 855 O
x5 1485 -2124 -50877 -96456 -50877 -2124 1485 O

x6 -1233 -31941 -109530 -109530 -31941 -1233 O 0 0
X7 -7518 -53784 -97716 -53784 -7518 0 0 0 O
x8 -10608 -41232 -41232 -10608 0 0 0 0 O
X9 -7200 -15552 -7200 0 0 0 0 0 O
x10 -2496 -2496 0 0 0 0 0 0 O
x11 -384 0 0 0 0 0 0 0 0

Here each column is a polynomial of x multiplied by a power of a. The
polynomials corresponding to the last three columns are always positive. In
each of the other columns the sequences of coefficients have only one change
of sign, therefore the polynomials corresponding to them have exactly one
positive root according to the Descartes’ rule (see e.g. [5]). If we substitute
x = 0.4 into these polynomials we get the following (positive) results

19.24921 163.6838 540.952
2053.3248 5191.5404 7453.03

Each of these polynomials are negative for sufficiently large values of x, so
their roots are larger than 0.4 and 5s(x) > 0 for 0 < x < 0.4. Consequently
54 and £3 are increasing functions of x in this interval, thus they have at
most one root here.

Now we show that S3is positive for x > 0.4. For this we need the following

Lemma 1.

1 —Cos X X
<-— forO<x<TL

+
1 3 sin x
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P roof of Lemma 1. Multiplying by sinx we have

4 . 1 .

X - SIn X -—-= Xsmi-1I;
w ) 3 S 3cos S ;
” 2 2 4 2
5(z)= - 3Cos x+ - cosx- - |

4sin x
9 (x) =—r— (cosx - 1).

Here g"{x) <0, so g(x) is concave and <7(0) = 0, the x axis is the tangent of
g(x), so the graph of it is under the x axis, what was to be proved.

Applying this Lemma in (10) for 7, "7 < M + 1~957) sin 7”, and multi-

plying the result with the positive quantity (2x + a+ 1)2(x + a)(x + 1)/ sin7
we get the polynomial ge, with gb< S3.

g6=8x6+24(a + 1)x5+(27a2+70a+27)x4+(6a3+66a2+66a+6)x3+
+(—3a4-f10a3+38a2+10a—3)x2—ba(a3-fa2+a+1)x—3a4+2a3+3a2).

Here the first four coefficients are positive, the last two ones are negative for
all positive a, so with any sign of the fifth coefficient ge{x) has one positive
root. Since <7/6(0) < 0O, if we show that 56(0.4) > 0 with any 0< a <1, it proves
that ~(x) > g&(x) > 0 here. But

96(0.4) = -5.88a4- 2.416a3+ 5.5952a2+ 5.46176a + 0.873728,

again a polynomial with one positive root. This polynomial is negative for
sufficiently large values of a and for a= 1 it takes 3.634688, therefore it is
positive for 0<a<1

These show that £3 is either positive or first negative then positive for
x £ [0,1], i.e. S(x) is quasi-convex here.

P roof of Step 5. For proving 5(1) < S(a) we need

Lemma 2.
arcsin x
ifx£[0,1

o L+ ifx [0.1],

arcsin .
X X ifxe[0.1/2],
X

where c¢ is defined by the equation arc*21’2= 1+ (c =5.29688498 ...).

P roof of Lemma 2. Let us define in this case p(x) = arcsin x —"x +
with the nonzero constant b. Now ~'(0) = 0 and

g"{x) =x 1 6)
\/(i-*2)3 V
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If we chose 6= 6 then g"(x) >0 for x € [0,1), so g(x) is convex, its graph is
above the x axis, i.e. its tangent at x = 0. It proves the first inequality.
If 6= cthen g(x) is first concave then convex in [0,1] since the function

N~ s increasing. The concave segment of g(x) is under the x axis (its

tangent at x = 0), and the convex segment is under its chords, which chords
are under the x axis because of the choice of c. This proves the second
inequality.
Turning back to the proof of «S(I) < S(a), we have to show
a3(Tr- 2/3i) + 2Bi ™ 2a3ga+ (x - 2aa)

<,+1)anr > ( « + '
Here we have

If*=1 Bi =1i, sinB\ = ot\ = 'K—2Ri;
If x =a: aa=ja, cosaa="y, Ba=ir- 2aa,sinfla=

Let us substitute Ri = arcsin and aa= | —arcsin into (14) and
multiply the result by we get
(15

'5\$V V N J)V2a+| s( ————— > 1 U
Va+1 (a2+ a+ I[a+ 2Ffyja(a+ 2)(2a + 1)]

where we define s(z) = arc™™2. We apply now the first and second inequality
of Lemma 2 for the first and second term of (15), respectively, noting that

a@+2) r—--- a2 1 (a /I 1V A
6(a+ 1)2vi2a+ 1~c(a+l)2> (a+1)2\3_ (c_6/ )> '

Consequently it is enough to prove that

(16) V20O +1-1= > v,
\2a £1T 1 (a2Tas D[a42 f \Ja(a £2)2a T 1]

or the equivalent inequality

N

(17) S a(a+ )2[\/l2a+ 1+ ]]
AT @2+ a+ D[a4d2+ yja(a+ 2)(2a + 1)

The function

(«+1)2 _1. 1

(18) .
a2+ a+l (ir+a)+l
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is increasing since ™ + a is a decreasing function in (0,1]. If we divide the
right-hand side of (17) by this, the result

a(y/l2a+1 + 1) _ \2a+ 1+ 1
2+a+ via(a+2)(2a+1l) 2)i j"2(a+ £)+5

Here the denominator of the right-hand side expression is decreasing, the
numerator is increasing, the whole expression is an increasing function of a,
thus (17) is only to be verified for a=1

0.6366197724 ...= -> = 0.6071224017... .
m 18
This completes the proof of Step 5.

P roof of Step 6. Now we have the situation depicted in Fig. 3.

Here B = arcsin and the density to be considered is
2(*3 -
(20) Ty TrPC3-1)
yjx1+ 2x

We need its derivative, too

(21) T'(x) = «2 4 9%

Here the coefficient of B is positive, because x ~ 1, thus dividing T' by it, the
sign does not change. The result is

(x3- Dv/x2+2x+ f(x+1)2

(22)
(x+ D(2x4+ 5x3+ x + 1)
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We calculate the derivative T[ and, multiply it by (x + 1)2(2x4 + 5x3+
+X + 1)2\/x2+ 2x we obtain

(23) T2(x) = %\Jx2+ 2X(x + 1)2(6x44- 18x3 + 15x2)—
-X(x + 2)(2X7+ 14x6+ 15x5+ 14x4+ 38x3+ 21x2+ 2Xx + 2).

Its sign does not change if we replace both terms by their squares (i.e. mul-
tiplying by their positive sum). The result could be divided by x2(x + 2)
giving the polynomial

(25) T3(x) =

o
= — (4xn +4xl0+176x9+444x8+701x7+708x6+446Xx5+160x4+25%3) -

—(4x15+ 64x14+ 368x13+ 988x12+ 1721X11 + 3106x10+ 5068x9 + 5622x8+
+5664x7+ 6008x6+ 4073x5+ 1534x4+ 560x3+ 184x2+ 20X + 8)«
« —4x15- 64x14- 368x13- 988x12- 1632.173xxl - 2217.7356x10-
-1159.6367x9+4237.7348x8+9902.833x7+9714.279x6+5831.148x5+
+2019.0576x4—4.83475x3—184x2—20x—8.

In this case there are two changes of sign in the sequence of coefficients, so
T3(x) has 0 or 2 positive roots. T3(x) is negative for x = 0 and for very large
values of x, but T3(l) = 25054.671 > 0. Thus T3(x) has one root say xo, in
[0,1], where its sign changes from  ” to “+”, and so Ti(x) is decreasing in
[0, xo] and increasing in [xo, 1]. Since 7i(0) = 0and Ti(l) = #/18, T7(x) itself
is first negative then positive in [0,1], and so T(x) is first decreasing then
increasing here, what was to be proved in Step 6. Numerical calculations
for the value xi, where T(x\) —T () holds give xi = 0.1701271803 ..., q—
I/x x=5.877955529....

P roof of Step 7. The proof of Step 6 also gives the following

Lemma 0. The volume density of the packing of circles of radius from
the interval [r, 7] never exceeds the volume density relative to the triangle of
the centers of three pairwise touching circles

a) if R/r< g then all three radii are R;

h) if R/r >q then two of the radii are R, the third is r.

Step 7 is a corollary of Lemma 0, and our proof is complete.

Remark. If we give weights to the circles of the packing, such that it
is the pth (p > 3) power of their radius, then part a) of Lemma 0 remains
true. Namely, changing the weight of a circle of radius g to Rp~3g3 will
decrease neither the weight nor the weighted density, and with this new
weight-function we can enlarge the circles until their radius equals to R
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further increasing the density. But with three pairwise touching circles of
radius R the density is the same as with the original weight-function.

Part a) of Lemma 0 is obviously true for linear combinations of the above
weight-functions with positive coefficients, so we have the following

Theorem 1. The weighted density of a packing of circles of radius from
interval [r, A] never exceeds the weighted density relative to the triangle of
the centers of three pairwise touching circles of radius R, if R/r ~ q and the
weight of a circle of radius g G[r, R] is given by

Ec.y (c,->0, pi >3).
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A CONTRIBUTION TO KELLER’S CONJECTURE
K CORRADI and S. SZABO

Abstract

The algebraic form of Keller’s conjecture holds for the direct sum of cyclic groups of
orders pe,q,... ,0, respectively, where p and q are different primes.

Introduction

The so-called Keller’s conjecture is a geometrical problem originally.
Namely, in 1930 0. H. Keller [3] conjectured that in a cube tiling which
consists of translates of a closed n-dimensional cube there exist two cubes
having a common (n —1)-dimensional face. The algebraic form of Keller’s
conjecture is the following. If G is a finite additive abelian group and

(1) G=H+ [<he]+ ...+ K,,r1,]

is a factorization, then (H —H) fl {ripi,... ,rngn}~ 0. Here H —H —{h —
—h':h,h" 6 H] and [p-r] = {0#,, 2<7,-... ,(rt—1)<7,}. For the geometrical
background see [9].

If G is the direct sum of the cyclic groups of orders m i,... , to*, respec-
tively, then we will say that the fc-tuples of integers (mi,... ,m*) is the type
of the group G. Keller’s conjecture has been proved for the groups of types
(pe,qf) in [7] and (pe,p,... ,p) in [1], where p and g are distinct primes.
Further, independently of the structure of the group G it is proved for n <6

in [4],
In the rest of this paper we prove Keller’s conjecture for groups of type
(pe,q,... ,q). This can be viewed as a step towards the complete solution

since according to an argumentation of [10] the verification of Keller’s conjec-
ture can be reduced to (p, g)-groups with elementary Sylow subgroups that
is whose type is (p,... ,p,Q,-.. ,0).

1980 Mathematics Subject Classifications (1985 Revision). Primary 20KO01; Second-
ary 10E30, 52A45.
Key words and phrases. Factorization of abelian groups, cube tilings.

Akadémiai Kiadd, Budapest
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The result

A subset H of G is said to be periodic if its stabilizer subgroup stab(ii)
is not {0}. (H) and \g\ denote the generatum of H and the order of g,
respectively. We need the next two lemmata.

Lemma 1 (Proposition 3 of [5] p. 370). 1fG =A. [g,r] is afactorization
of the finite abelian group G, then (rg) C stab(A); and if in addition v is
prime to r, then G = A-\- [vg,r\ is afactorization of G.

Lemma 2 (Theorem 2 of [2Z] p. 374). Ifp and g are different primes e>\,
f > 1 and the m —peg”-th cyclotomic polynomial divides polynomial H{x)
whose coefficients are non-negative integers and whose degree is less than
m, then there exist polynomials P(x) and Q(x) with non-negative integer
coefficients such that

H(x) = P(x)((1- xm)/(l - xm!*)) + Q(x)((1- xm)/(l - xm/«)).

If Mi is the i-th character and g0is the j-th element of G, then the matrix
Mt(gf) is nonsingular as it may be shown by the standard orthogonality
relations. We will use the independence of the columns.

T heorem. Keller’s conjecture holds for groups of type (pe,q,... ,Q),
where p and q are distinct primes.

Proof. Let G be a group of type (pe,q,... ,q) with basis elements
t,si,... ,suof orders pe,q,... ,q, respectively. As we have already seen in
[1] we may suppose that each r, is prime and H ~ {0} in the factorization
(1). We will prove that one of the factors is periodic in (1) which is, in the
well-known way, enough to prove our result. To prove it suppose that none
of the factors is periodic. We may arrange the factors such that

r\=eee=Tk=pand rfcH =...=rn=q.

According to [1] Keller’s conjecture holds if the p-component of G is cyclic
and either \H\ or r\ ... rnis a power of p. Thus we may assume that k <n.

Now we shall prove that k > 0. Let g, = afi + &iiSi + ... + bfusu, where
0<Rj<pe- land 0<6,i,... ,blu<qg—1 Note that a- 0 for i >k since
otherwise = qgi = ga,t = 0 which means that the factor [gt:r;] is a cyclic
group, that is, a periodic subset. Thus (rigfi = (qafi) D (pe~1t) for each
k+ 1<i<n.

According to Lemma 1

(r,gt)Cstab(h + # »]) e
1=1.}1&
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Hence
n n n
(pe_1) C P(r,fIfi) C P| stab(tf + [&,»*]) =
1=1 1= 1 J=I,j&
n n
=stab(f'J(tf + = stab(tf).

Thus H is periodic, unless k > 0.

If la,il >p2 for each 15iS k, then since (r,#,) D (piqi) D {pe~1t) using
the previous consideration we have that H is periodic. Thus |a;f| <p for
some i, 1£ i <k. We may assume that |a.ji| <'p. According to Lemma 1 in
the factorization

(2) G =H + [5i,p] + ... + bfc,p] + [5fc+i,?] + --- + [3n,tf]

the factors [gi,p].... ,[gk,p\ can be replaced by [qg\,p\,... , [ggk,p\, that is,
by [qait,p],... , [gakt,p], respectively. So a, » 0 for 1~ i S k. Consequently,
laitl —p and since [</i,p] is not a subgroup of G there exists a non-zero
term among bn,... ,&i,. We may suppose that & ~ 0. Moreover, we may
suppose that &2= ... = 6lu = 0. Indeed, hitherto the basis t,si,... ,su was
arbitrary. It is clear that én6i + ... + b\usu can be augmented to a basis for
the group (si,... ,su) and si,... ,sumay denote this new basis as well.

Now we prove that \a2t\ >p2,... ,[|a%i| > p2. Assume the contrary, say
|a2i| Sp. Then \a2t\ —p. From |oji| = |a2t| —p it follows that a\ = pe-1cl
and a2—pe~1c2, where 1”ci,c2”p —1. Let x be the solution of the system
of congruences

xc2= gci(mod p), XxEO(mod ?).

Clearly, this x is prime to p and satisfies the congruences
xa2= ga\(mod pe), x=0(mod q).

In the factorization (2) factors [gi,p] and [g2,p\ can be replaced by [qgi,p] —
[ga\t,p] and [xg2,p\ = [qaif,p], respectively. But this is a contradiction since

in a factorization no factor occurs twice. Thus |a2i| >p2,... ,| | >p2
Summing up our information about pg2, ... ,pgk, qgk-+i, mmm ggn we have
n n n
(pe_1)cP|(r-t51)C p| stab(tf + Y 19j,rj\) =
i=2 i=2
n n

=stab(p(tf+ Y =stab(77 + [in,ri]).
i=2
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In other words H + [<7Lri] has a factorization in the form
3) H + {gl,r1} = A + {pe~h).

Let T = (t,si), S = (s2,.. m,su) and let g be a primitive peg-th root of unity
and let M be a character of G defined by M(t) = gq and M (01) = gre Ob-
viously, if M runs over all of these characters then its restriction to S runs
over the characters of S.

Applying these characters to the factorization (3) we have

(2 M(h)) firm ly )= (£ fotttf-'tfi).
hEH «=0 atA i=0

Note that

E(M(p*-h)y=o

and
(m (9))*=Y MM (ait+ =YI(M (pe~lcit+ 5i))*/ °-
t=0 i=0 i=0
Hence
(4) £ m(/lo=o.
heH
Let H = {di(t + si) + hi,... ,dv(t + 01) + hv}, where 0S d, <peg—1 and

hi € S. From (4) it follows that
(5) gdM(hl) +... + gd*M(hv) =0

for each character of S.

If h[,... ,hw are all the different elements among h\,... ,hv, then H =
=Hi+h[U... UHw+ hw is a partition of H, where Hj = {di{t + Si): h, =
= hj,hi GLf}. From (5) we have

(£, «*)c«) +eme+ (£, =0

for each character of S. The notation ~ emeans that the summation is taken
for i £ {i: h,—h"}. The non-singularity of the character matrix gives that

g = ... = (Ylw = 0- Since this holds for each peg-th primitive
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root of unity the peg-th cyclotomic polynomial divides polynomials Hj(x) =
= Ylj for each 17 j £ w. According to Lemma 2 there exist polynomials
Pj(x) and Qj(x) with non-negative integer coefficients such that

Hj(x) =Pj(x) (1 - x™) /(I - *eI)) + Qj(x) (1 - x*) / (1 - xPa)) .
If Pj(x) is the zero polynomial for each j, 1% j"w, then
(si) Cstab(//j); and so (si) Cstab(H).

Otherwise for somey Hj contains a coset modulo the subgroup (pe_1f). Thus
H D (pe~1t) + h with a suitable h£ H. In the factorization (2) factors H and
[<7>ri] can be replaced by H —h and [xpi,ri], respectively, where x is the
solution of the congruences

xci = I(mod p), x=0(modg).
This x satisfies the congruences
xa\ =pe-1(mod pe), x=0(mod9)

as well. Now H —h D (pe~1t) —[x”"i,ri] violates the factorization. This
contradiction completes the proof.
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ON A UNIFIED THEORY OF ITERATION METHODS
FOR SOLVING NONLINEAR OPERATOR EQUATIONS, Il1

B. JANKO

The present work is a continuation of the papers [5], [6], [7]. Here we
have tried to offer a unified theory for certain classes of iteration methods,
applied for the solving of nonlinear equations defined in the classical Banach
spaces.

We shall resume the above problem in the conditions of R"-spaces, i.e.
linear semiordered complete spaces, normed in a general sense, namely in L.
V. Kantorovic’s sense. (Here the axiom V of the linear semiordered space is
satisfied only for a numerable upper bounded subset [13], p. 21.)

We shall show also in this system of conditions that the concept of conver-
gence order, defined in R™-spaces, implies a direct influence on the structure
of iteration methods. Thus based on a certain principle of construction of
iteration methods — still in the conditions of derivability — our purpose is
to generate systematically new, large classes of iteration methods. In this
way we can generate step by step and classify as well as the obtained itera-
tion methods and the present circumstances enable the common treatment
of these methods. We shall give at the same time common conditions for
convergence. Obviously, the common treatment of all known iteration meth-
ods of higher order is a necessity in the development of this domain, and in
this way that represents a fundamental question.

Remark. Next we shall study only the case of simple solutions of the
given nonlinear equation P(x) =0, i.e. existence of [P'(x*)]_1 is assumed,
x* being the solution. Elsewhere, the present work is not dealing with the
optimality and complexity of the generated methods [25].

1. Let us consider the equation

(1) P{x) =Q

where P is a nonlinear operator defined in a given domain D of a R™-space X ,
having — for simplicity — his range also in X , without essentially restricting
the conditions.
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Our basic problem is to replace in a suitable manner the given operator
equation (1), by another equivalent one

1" x - i'(x) =0,

in such a way that the convergence order should be k > 2 for the iteration
method

2 xn+l = i(a;n),

where k is a natural number. For this purpose we shall use the following
concept of convergence order:

Definition. Let x* be a solution of the operator equation (1). We
say that the above considered iteration method (2) possesses the order of

convergence k, if
(i) the generalized norm |x* - zn| tends in Kantorovic’s sense to the null-

element of Y, when n —*00, where Y is a linear semiordered space, and the
generalized norm has its value in this spaces;

(i) the derivatives of the iteration operator $ (introduced in the condi-
tions of the 5fc-spaces X [29], pp. 369) satisfy the following equalities:

(A) «V)=0U9"(xm=02.., =0k u ¥ K\x*)t Ok,

where Oi (*=1,2,... ,k) are i-linear null-operators.
In the above mentioned work [7], we have considered already at the first
time the following iteration operator

(3) i(x) :==x- [P\x) +/ri(z)P(2)]_IP(z) + A2(z)[P(x)]2,

where 'i(x) is a nonlinear operator with domain D C X and range in X;
moreover fj-i (x) and A2(z) are bilinear operators for fixed x, being defined in
the domain D XD CX XX and having range also in X.

Using the above iteration operator we have constructed the corre-
sponding iteration method (2), and we have applied it for solving the equa-
tion (1). In such a way we have generated two essential classes of iteration
methods of second and third order, respectively. So as particular cases we
have obtained the well-known Newton-Kantorovic method, the Tchebycheff
method and the method of tangent hyperbolas. Moreover, we have shown
that besides these there exist a class of transfinite number of methods of
second and of third order, respectively [7], [6], [5]. [4].

In the case that the iteration operator was chosen in the form

(37 (%) =x- [P + IXI(Z)P(2)]_L (P(x) + AAX)[P(X)]2)

we have recovered L. K. Vohandu’s method and the method of U. Kaasik,
which are included as particular case in the class of methods zn+i = ~("n)
constructed by (3°) [28], [10], [8].
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Some more general iteration operators may be constructed in the follow-
ing form

4) #(*) —x —{P'(x) + R(X)]~1P{x) + Q{x)
and
(4°) ¥(z) =x- [P'(x) + R{X)]-\P(x) + Q(x)),

respectively, where
R(x) :=ni(x)P(x) + ... + m+i (X)[P(x)],+1
and
Q(x) = AR(X)[P(X)]2+ oo+ AHL(X)[P(X)]I+1, (i +] =k-1).

We mention here the operators Q and R that possess certain “multilin-
ear” or “polynomial” character, being constructed by the above multilinear
operators A and /X.

On the other hand we can notice that the iteration method constructed
by (4) contains among others the Tchebycheff-type methods, indicated by a
formal development of the inverse of the nonlinear operator P (treated only
under the conditions of classical Banach space) [17], [19 p. 72],

It is well-known that certain iteration methods have already been treated
— in isolated manner — in semiordered spaces [2], [12], [16].

2. Now we are going to present more general classes of iteration operators
and we shall generate certain interesting iteration methods, without limiting,
of course, the above mentioned multilinear character. The supposed problem
is formally similar to the case of Banach space. However, in the conditions of
Bk-space our problem needs an other concept of convergence and convergence
order and, of course, moreover we shall use an other notion of differentiability
— as in the case of the classical Banach space [29], [13].

Let us now consider the following large class of iteration operators

'K(X) —x - | ql7(x)+ 2 aiU(x + A;(x)) + r(x) j-

®) -f/3P(x) + b (x + Qi(x)) + g(X)]f,

<2
where

R{)=Y ~ (X))} r(x):=Y

J k

Q.(x):=" aF(X)[P(x)]j,



46 B. JANKO

Q(X)-=AiXk(X)[P(X)]k,

then a, R, a,, b, denote real numbers and i=k{x), \k{x) are also
multilinear operators for fixed x. In the next step we shall give the nonlinear
operator U of certain concrete expressions.

A. As a first particular case we shall consider the above iteration operator
(5) in the following particular form

AMX) =x- UX)P(x + A2(X)[P(X)]2).
In this case the condition \U'(x*) = 0\ leads to the relation
$'(x):=/-F(x*)P'(x*) =01,
which implies U(x*) = T(x*). This means that the operator U may be chosen
more generally — for any x — in the following form
UXx):=r (x + Pj(x)iP(x)Y + ut X)[P{x)]k) m
j k
In order to choose A2(x) we have to use the condition ~"(x*) = 02, i.e.

3//(x*)(Ax)2= 0 for any Ax £ D, where 0 is the null-element of X; so we
have

r(x*)(Ax)2:=-2il'(x*)P'(x*)(Ax)2- F(x*)P"(x*)(Ax)2-
-P(x*)P'(x*) {2A2(x*)[P/(x*)(Ax)]2} = 0 2(Ax)2.
Based on the above expression of U and on his first derivative of the form
E/'(X*)(AX) = -r(x*)P"(x*)(AX)r(x*)(AXx)
we get from (6) the relation
F(X*)P"(X*)(AX)2- 2A2(x*)[P'(x*)Ax]2= 0.
Thus we have
A2(x*)(Ax)2= ~r(x*) [P (x*)(r(x*)(Ax)]2
and for any x may be chosen

a2(x)(Ax)2= ~r(x)p"(x)[r(x)Ax]2+ Y ei(x)[p (x)}2-
|

For the generality here we can pose instead of the variable x a multilinear
form of P, too.



ON A UNIFIED THEORY OF ITERATION METHODS 47

B. Let us here observe that in the particular case when we have
"k (x ) x —U(x -f-/x(x))P(x)

and U= P-1 then we obtain from ~(x*) = 0\ and from = 02 the
following relations

U@E*) :=T(X"), Ix(x*):="r(x*)P(x*).

This iteration method xn+i = I'fxn) of third order constructed in this way
needs two inverses but having only a single derivative of first order (it is
well-known that sometimes the derivative of second order can be very com-
plicated). This particular method was treated only in case of Banach spaces
[15], [4] p. 171.

C. The generalized Traub method
Xn+i =xn- r(x,,) {P(xn)+ p(xn- r(xn)P(xn))}

treated in [26] belongs also to our class of iteration methods given by (5).
For this purpose we consider a =1, a, —0, r(x) =0, R =1 fg=1, 6 =0,
(i=2,...), q(x) = 0. For simplicity we can put Qi(x) = U(x)P(x). Thus we
can use the following special iteration operator

ip(x) :=x+ UX){P(x) + P[x + P(X)P(X)]}.

From $'(x*)Ax =0 we get U(x*) = —T(x*) and if we choose U(x) := —T(x)
for any x £0, then the condition 'k//(x*)(Ax)2= 0 shall be satisfied.

The most important are those concrete iteration methods and algorithms,
— of course — which can be adapted directly and can be applied effectively
at digital computers.

Referring to the construction of classes of iteration methods, in the con-
ditions of Pfc-spaces, we mention that in the definition of convergence’s order
we should have posed instead of (A) the conditions

(A”) *W(xn)=0, ¥U=1,2,.. 1), SPW(xn)/0.

Of course these definitions may be considered equivalents in Banach spaces.
However, using this second definition for the construction of iteration meth-
ods we shall obtain certain systems of differential equations, which are incon-
venient and represent difficulties in the construction of iteration methods.

3. Now we are going to give common conditions of the convergence
of order k for the general class of iteration method xn+i = 4'(xn), where
'L(x) is defined by (5). For this purpose let 'L be uniformly differentiable of
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order k and we shall use the generalized Taylor’s formula, established in the
conditions of R™-space, [2], [23],

$(rn)=$(x*) + 'H'(*)(xn- x*) + i\P"(X*)(xn- x*)2+ ...

) 1 J7

--0 +

\x)(xn-x)k dx
x*

where x = x* + i(xn —x*), and the notion of integral is considered
in the sense [29], [2].

Let us assume that the following conditions are fulfilled:

1°. Let P be defined on the order-segment D, given by the elements x
satisfying the inequalities Xg<x < xq where x0, xq are certain known initial
approximate solutions of the equation (1). There exist some additive and
homogeneous operators A and T with positive inverses A-1, T-1, such that

a. Ax=P(x -f AX) —P(x) <LAx
for any positive Ax and for any x,x + AX 6 [xq, xo;

b. r-1P(x) is monotone (isotone) and (O)-continuous; [29];

c. P{*o)~0 P(x0)
for the initial approximate solutions x0,Xo, where .4 < xq;

2°. The iteration operator $ defined by (5) is uniformly differentiable of
order k [2], [23].

3°. The conditions (A) are satisfied for odd k and for \H({f(x) > Ok for
any x e [x"xo].

These circumstances permit to use our comprehensive theorem estab-
lished in [7], i.e. the following

Theorem. Let us assume that the above conditions 1°-3° are satisfied.
The operator equation (1) possesses a unique solution x and the general
iteration method xn+\ —$(xn), given by (5) is convergent of order k to x*.
The monotone increasing lower iterations {xn}, defined by the algorithm

xn+i = ~(x,,) and xn+tl=1i(xn)
respectively, converge to the solution x*,

x* := (Bk) - limxn= (Bk)-limx,,,
where xn and xn satisfy the following inequalities
(8) XX N .. X L X, HXEXng Xn ! <...AxX<Xa

Remark. At last we mention that a similar theorem can be used for
the case when k is even by imposing the condition $(f)(x) < OKk, instead of
UR*)(*) > Ok, for any x e [z0,z0].
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MHTEPMONALUMOHHBIE NMPOLUECCHI PMNTA-®PEVNEPA
CITrPAHUNYHBIMWN YCNOBUNAMMU

4. 1. BEPMAH

MycTb

2k —1)* _ _
(1) %Kk — kn —COS on K—1,2,...,I'I, I'I—1,2,...

n C-MHOXeCTBO BCeX PYHKUMIA /(X), HenpepbiBHbIX B [—1,1]. O603Ha4YUM
yepe3 An(/, X) MHOrouneH creneHn 2n—1I1, ogHO3HAYHO OMpeaensemblii
N3 ycnosui

9,0, 1)cn) =/0bl), Hn(f,xkn)=0, f=1,2,....n,

roe / eC. Kak ussectHo, npouecc {An(/, X)} Ha3biBaeTca MHTepnong-
LIMOHHbIM npoueccom dpmuTa-deiiepa. /1. Peitep [1] pokasan, uto Ans
noboi /| GC BbINONHAETCA paBHOMepPHO B [—1,1] cooTHOLWeHMe

(2) Aan(/,x)->/(x), n-> oo.

H. M. Kpbiios n . A. WTaepmaH [2] yanuHWAK npouecc IpmMuUTa-
deiiepa. OHM 3ameHunu nonuHom HA,(/, x) cTeneHn 2n —1 Ha nonu-
HOM P, (/, X) cTeneHn 4n —1, 04HO3HAYHO OMpegensemMblii U3 YyCNOBUN

Pn(ft xkn) —/(x£n), pn (/, xkn)—0, j —1,2,3, k—1,2,... ,n rae pn (/, X)
- npoussBogHas nopaaka j ot pn(/, x). B [2] gokaszaHo, 4To Ana no6oi
/ £ C BbInonHAeTca paBHOMepHO B [—1,1] cooTHOLWeEHMNe

(3) Pn(f,x)"> /(*), M-YOO.

Yonmuum npouecc {pn(f,x)} ewe Ha ogumH war. O6GO3HauYnum 4epes
Pn,\Uix) MHOrouneH ctenexHn 6n- 1, 04HO3HA4YHO ONpepensemblii U3 yc-
nosuu Pn,i(/> xkn) —f(xkn), png(/, Mcn) —kn>J—1,2,... 5, Kk 1,2,... ,n,

roe {xfen} — y3nel (1) n/ £C. Hanepej 3afaHHble BellecTBEHHbIe
yncna. MoXHO AoKasaTb, YTO A5 No60in / £ C BbINONHAETCA PaBHO-
MepHOo B [—1,1] coOTHOLEHME

(4) pnt\(f,x) —/(x), n-* oo,
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AO. . BEPMAH

echn [d™2l~n, j=1,2,3,45, k=1,2,... , e ®=1,2,, roe A — ab6-
CONIDTHAA KOHCTaHTa. PaccMOTpUM YacTHbIR cnyyain K, (/, X) nonmHoma
Pn,i(f, X), korga d* =0, =1,2,3,4,5, k=1m® ®=1,2,~—-—MO0XHO [0-

Kasatb, 4Tto npu y3nax (1) Kn(f,x) nmeer Bua:

(5)

T(1-z2u 48

M M
Kn(f, x) = AT f(xkn)[tk(x)]6(j2 aks{x - Xk)6-3+ 1b
k=1 i=i
Tn(x)
oY
2) 5. kK (xK)'
1935/ XK (1 -Te2)(49x3+ 3re2-27)
6 Vi— ¥y "40(1-x24" 40(L -X 2)3
XK |y619Te2 g_393A ) (Te2—16)(Te2 —4)
T 1-x2)31A 60 G 4 120

X3 r2341(l_n2)+77(4 Te2) 20( 3. g+

Tn(x) = cos rearccos X,

7 pBB—OR2 x|  (e2—1)x?2 ®—1 T™-—94
16 1—x]| 4 F2- D0 g 140
+ 33162
41 —0 2 ki3 >)e
2 Ix? \
aka oon -1 +7—nr

1~ X1
3xt

aKk3 —-

Ofcs =

B 1965 r. nosaBmnacb ctatbs aBTopa [3], B KOTOPOW M3yyancs npo-

uecc {Hn(f,x)} anqa ysnos

(6)

£o=1, xk=cos(2fc—L7r/ 2re, k=1,2,... ,/® xn+ti=—, ®=1,2,...,

NONYYEHHbIX pacwupeHnem y3noB (1) pgobaBneHMeM B KayecTBe Y3/10B
Touek *1. Oka3anocCb, YTO 3TOT MPOLECC, NOCTPOEHHbIW Anga /(x)=|x|,
[(x) = X2 pacxogutcs Bcroay B (—1,1). Mpu /(X) —x 3TOT npouecc pac-
xoamtcsa Bo Bcex Touykax x 90 m3 (—1,1).1 3T pe3ynbTaTbl HEOXUAAH-
Hble, eCnn y4yecTb pe3ynbTar (2) J1. ®deitepa. NTak, npu paclinpeHunm
mMatpuubl y3i108 (1) gob6aBfeHMeM B Ka4eCTBe Y3/10B TOUEK =1 ANA 0YeHb
npocTbiX (yHKymin npouecc {/1n(/, X)} cCTaHOBMTCS PacxoAAWwMMcs BCHO-
ay B (—1,1). bygem 3To sfBneHWe HasblBaTb siBneHMem U (0T unexpec-
ted). BrnonHe ecTecTBEHHO BO3HWK BOMPOC MMEET /M MecTo fBneHue U

Lewm 141, 151, 101
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anga npouecca Kpbinosa-lWtaepmaHa? /1. Kyk u T. M. Munnc [7] po-
Kasanu, 4to npouecc KpbinoBa-LU TaepmaHa, NOCTPOEHHbIA MpuK y3nax
(6) ona /(x) = (1 - x2)3 pacxoantca npu x=0. HegaBHo P. b. CakceHa
n C. P. Mucpa [8] gokasanu, 4To 3TOT MnpoLecc pacxoauTcs BClOLY B
(—2,1). Pesynbtat Kyka-Munnca-CakceHa-Mucpa MoXeT ObiTb YyCM-
neH. imeet mecTto

Teopema 1. MycTb yeTHaa yHKyMsa /(X) UMeeT OrpaHUYeHHYH YeT-
BepTYyt npoussogHyt B (—1,1) n nycTs /(1) =f"(1) = 0. Torga gnga ToOro
yTO06blI npouecc {pn(fix)} pasHomepHo cxogmnca B [—1,1] Heo6xo4MMO K
JocTaTouHo, 4To6bbl /(3)(1) = 0. Ecam /(3)(1)70, To npouecc {pn(f,x)},
NMOCTPOeHHbI npwn y3nax (6) gna /(x) pacxoguTcs scogy B (—1,1) [10].

B cBA3M ¢ cooTHOWweHMEM (4) BO3HUKaeT CneAytoLnin BONpoc: MMeeT
nn mecTo asneHune U gna npouecca {Kn(f, X)}? 3tomy BOonpocy n noces-
leHa 3Ta cTaTbs. BBegem cnegytouine nonmHombl: C,,4(/, X) MHOrouneH
cTeneHu 6ra+ 1, ogHO3HA4YHO onpegensemMblin M3 ycnosuii Cn,o(f,xk) =
=/(**:), CMo(/, Xfc) =0, r=1,2,3,45, *=1,2,... ,m Cr{(/, £1) =/(x1),
n=1,2, C,na(/,X) — mMHorouneH cteneHu 6ra+ 3, 04HO3HAYHO OmNpe-
pensemblit 3 ycnosuin C,,,i(/,Xit) = /(x*), c~\(f,xk) =0, i=1,2,3,4,5,
*=1,2,...,n, Cng(/,£1), CWA(/,x1) =/(xl); C;a(/,x1) =0. C,f/,x)
— MHOrou4sieH cteneHn 6ra-f5, ofHO3Ha4YHO onpefensieMblii M3 YyC/O-
Bun CM2(/,xf) = /(xfy, Cr2(/,xf)=10, r=1,2,3,4,5, CM2/, £1) = /(x1),

+1)=0,j=1,2,*=1,2,... ,n, m=1,2---- OTHOCUTENIbLHO NpO-
ueccos (CIL(/, x)}*L0O, r=10,1,2, cnpaBegn1Bbl cregyoune TeOpPeMbI.

Teopema 2. NHTepnonaymoHHblii npouecc {Cro(/, x)}, nocTpoeHHbI

npu y3nax (1) gna / 6 C yposneTsopsieT paBHOMepHo B [—1,1] cooTHo-
LUEHWNIO X) —=/(x), ra—%00.

[JokazaTtenscteo. W3 onpegeneHns nonHoMo Kn(f, X) n Cn,o(f, x)
criefyeT, 4yTo

(7 C.o(/,X) - k. (i,*) = (R ICIE:
+AC(L - ))x+ /() *,,(, 1)+ /(-1)- A',(/,- D]

OTctopa n n3 (4) cnepgyet Teopema 2.

Teopema 3. MycTb /(X) NMeeT OrpaHnYeHHy BTOPYH0 NPOU3BOLHYHO
B (—1,1). Ana Toro 4To06bl B [—1,1] BbLINOJHANOCH PaBHOMEPHO COOT-
HoweHne C,a(/,X) —%/(X), m—>00, HEO6X0AMMO U AOCTATOYHO, YTOObLI
/'(£1) = 0. Echn xoTb 04HO U3 uucen /'(x1) OT/AUYHO OT HynsA, TO Npo-
Liecc pacxoguTca scrogy B (—1,1).



t=1i
ol +,_,,(»*- xynv Ax - T1)=
(si)

[ Ux =X\
IvW uU.
aITJ
I=*
I(),ff(1) M ,I)/% 7A:(I‘/)“J (ti)

AMVA A (x If) u)d VOHAION MSLLMMBE -00 <+t “o«— SUB

‘scus+ [(ux )ucfi- {ux ) up+ x((na ) wmdg + (ux ) u)\
(zx -1)(x)U (01)

=(*7)°Db -(*7)%

0Xb ‘pussibonrsise (2) eii n ATreTaXxo
mflE=C ‘004u ‘O0<-Twu3 “fm+ ((MgNu<A-(W*)mM)* =9
€34 ((4) Y+ () - =

YI0RIW1 (6) u (s) Avuo g
((1- MHuy - (xX_)Hm9- (1- 7 )ua = (uY )uA

n (L TYOY - (1))@ + (1 7)Y = (WY)W _
alrx
3¢X= 2 00 «<-U ‘Q+—fu3s

BB+ (uY )ud= (1- 7)°=5 XB+ (W) Ue= (1 (©)

VLLFOXSH (1) EIX

((1-7)°b - (17 - @ ((T-7)°" +(17)°Bb)* =1 (8)
OXR “iXHhAIrOn SUIrcsaxo
o(IT7)°«p - = IT=*(9 + - iX"OgiZ]

MUHAHAACIX M MaXxamns en koxslloxsnw QU » aiTx

XS000re usod=(x)w I{9+xv)(zx-1)(x)gl,=(x f)&D-(xf)IUuD (,2)

oxh ‘ullMosma (x ) T'n3d
(xIf)°luO domoHuson Kiraairatradiio ejx eoaxDgiraxvEVMOU'

Hvwaaa xr v i9
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OueBngHO, 4TO
/[ 6n2 6 \
Yl-**)6 _(1-**)7"

Pagn nNpocToThbl BblYUCNEHWUIA nonoxum, yto /(—1) = /(1) = 0.1 Bbl4uc-
nmm gn(Kn). CornacHo (13) umeem

(13) '

60*(1)
(14) ®n(AKBK) @- X6 (- XK)7

N3 dgopmynbl (11) nonydvaem

(15) mkm)- - " /(xk)on(AkBKm

k1
Mo dopmyne Teinopa
(16) [(xK)=/1"(\)(xk-\) +L "-(xK- 1)2, XKk<ck<Ll

n3 (14), (15), v (16) BbIBOAUM
a7 ®n(Bn) —H,n 4*T2n,
raoe
1) w  BBkK() Bk(1) u
m "M |I*“®)% (1-Zfc)5'

0*(1) GBk(I) \

2 2n6 E (<) @ xs @- x1s)

NEMMA 1. BbINnonHseTCHA paBeHCTBO lim_r|* = 0, rge
P dimyri A

TE,LI)I_ 3 rr\ k@)

- fosl (1- xky
O okasaTtenbcTtBo. fcHo, uTO
L., 3 VAN 2®(] 11 lak2l B3|
(18) Jt=i 5
\Nidl lafcg

L-r*)3 0 (1-Xfeya T (1 xk)

1 OTO OrpaHNyeHne He ABNSAETCHA CYLLECTBEHHbLIM.
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roe ||/"]] = _rl1<a§(>;\1\f"(x)\. Bce cnaraemble n3 npasoit yactu (18) oue-

HMWBAK TCA OAMHAKOBbIM 06pa3omM. Mo3ToMy paccMOTpUM NuWb Cy N <b.
CornacHo topmynam (5) umeem, 4To

. A3 WA 23( 1935 9 0(n2)
616 K v16!1-2)5 (i-**)3
0(n4) 0(a2)

Bce cnaraemble paccmaTpuBarTCqd 0A4MHaKOBO. [103TOMY orpaHuymmcs
paccMoTpeHueMm <S, 64 n 65. Mimeem

(19) CsE Yoty

N3BecTHO, uTO [9]

A +
(20) 1 nd+ 2n2
OTtctopga n n3 (19) BeiBOAUM, UTO &G = OueBnAHO, 4TO
h mmE S (»4>=00.
Nmeewm:
c 0(n2)
2l
fc K

Bocnonb3yemcs Tenepb TOXAeCcTBOM [9]
(21) 1/(1 ~ xK) =n2-
K=1

Torpga nonyumm, 4yto 05= O(,HA/). MTak, aoKasaHo, HTOn|iQI oy = 0. Pac-
cmoTpum (TR OueBMAHO, 4TO

< 24| Y _|
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HO [9]
N

(22) AL/(1-1%)2= (2nd+ n2)/3.
fc=i

CnepoBaTenbHo, a6=0 . Moatomy lim = 0.

Nemma 2. BbinonHseTcs paseHcTBo lim 2 =0, rge

n-0o z,n

B e 5 B e

Jfe=1

O okasatensctso. O4YEBMAHO, YTO

i (i~ ¢ acla Alafc? 3|af03 2| |af05|
IF}JSAEa **) (51 :H' TTk.+J-1| Xfc))\z “%)24'& Xfc

[oka3aTeNnbCTBO OCTaNbHOM 4YacTu JleMMbl 2 He OT/M4yaeTcd OT [OKa-
3atennctsa Jlemmbl 1.

Cnepcteue 1. BbINONHSAeTCHA paBeHCTBO lim 12, = 0.
M—e0

LelicTBUTENbHO, T2N= + T/, Ctano 6bITb, CNeACTBME BbiTEKAET
n3 Nlemm 1 v 2. Boluncaum tenepb lim tr)rl

Jlemma 3. CnpaBefnnBo paBeHCTBO

6/'(1)y~ Bk(1) 11067 ,
(23) ( ){ FPFS‘I)IB = -1, T1 (D).

fc=1 v

Jokaszatenbcteo. CornacHo (12) nmeem, 4To

Beit) o T2 akl | o2 | a3 |
(24) (1-**)6- (1 Ifc) 11-x fc+ (1-x*)2+ (1-xfc)3+

T
(1 —xf)a " (1-Zfc)5~ (1- 24@6) "

MofcTtaBnAs B NpaByk 4YacTb 3HavyeHusa kKoahguuumeHtos {afc}=1 co-
rnacHo qopmynam (5) M NpoM3BOAS COOTBETCTBYHLLME BblYUCNEHUS,
nonyyum (23). B xofe BbluMcneHWi ncnonb3oBanncb toxgectsa (20),
(21), (22) v ToxpecTtso [9]

" 1 on2
(25) EJs%%@fo’Q = ’\3~ (8nd + 5n2 + 2> 6k= (2k - 1)ar/2n.
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AHaNOrM4yHblM 06pa3oM A0Ka3blBAeTCH
Nemma 4. VIMeeT, MECTO pPaBeHCTBO

B'k(1) 57227
fmi (L-*K)p 240

CNEACTBUE 2. WMeeT MecTO paBeHCTBO lim T\n= ,q4|;|p/‘(1).
n—oo

OelictButensHo, Cneactene 2 BbiTekaeT U3 Jlemm 3 n 4. N3 Cneg-
CTBMIA 1 1 2 cnepyer.

Cneancteue 3. CnpaBejinMBO paBeHCTBO

1835

(26) lim n(km="""no.

[eincTBnTenbHo, paBeHCTBO (26) BbiTekaeT m3 (17), Cnegcteuii 1 u
2. AHanorm4yHbiM 06pas3om BbIBOAUTCSH, YTO

_ 1835
(27) lim M Kn)= “ft- 1)

n—oo 0

N3 paseHcTB (10), (26), (27) BbiTekaeT, 4TO

c,tl(/,*) - Cn,0(/, *) = — TLH(X)(1 - x2)[(/'(1)+
+f'(-1))x +f(1) -/'(-!)] +£,6, n-toc, £,6->0.

(28)

OTcrofa n n3 paseHctBa (7°) cnefyeT, 4TO MPOLECC CXOAUTCA PaBHO-
mepHo B [—1,1] Torga n TONbLKO TOrAa, Korga /'(1) =/'(—1) = 0. Ecnum
B kakoW TO Touke (/'(1) + /'(—))a -f/'(1) —-'(—) dp0, aG(—,1), T0
B 3TOM Touke npouecc {Cna(/, X)} pacxogutcsa, n6o mn3BectHo [5], 4TO
ana no6oin g G(-1,1) MOXHO HalTW Takyl NOCNeL0BATE/IbHOCTb Ha-
TypanbHbiX yucen {nfc}, M <n2< ..., uTo KIlr&TZ(a;): 1. OTcropa u

n3 (28) cnepyet, uto npouecc {C,a(/, a)} B Touke x pacxogutca. MNpwu
3TOM YyuuTbiBaeTcs Teopema 2, cornacHo Kotopoi npouecc {C1,Db(/, X)}
cXoAuTcs paBHOMepHo B [—1,1].

Mepexogum K uccnegosaHuto npouecca {C, a(/, a)}. Ana npocToThl
BbIYMCIEHWUI NONOXUM, 4TO (YHKUMA f(X) — YeTHad. BTO orpaHnmyeHue
He ABNAETCH CYLLEeCTBEHHbLIM.

T eopema 4. TlycTb /()K) UMeeT OrpaHUUYEHHY TPETbI0 NPOU3BOLHYIO
B (—1,1). Ecnu /() — yeTHasa dyHkuma u f\'1) = 0, To anga T0ro 4yTobsbl B
[—1,1] sbinonHaAnocb paBHoOMepHO cooTHoweHne C,a(/, a) —/(k), n —00,
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Heo6xo4MMo 1 AOCTaTOouHo, YTo6bl /(1) = 0. Ecom /" (1)"0, To npouecc
{Cn2Ifi 2)} pacxoguTca sciogy B (—1,1).

[ okasatenbcTteo. W3 onpegeneHna noamHomos C,2(/,xy u
cnA(/,x) w yeTHocTU /(X) cnepyeT, 4TO

C...2(/,x) - C,a(/,x)=L(xX)(1 - x2)Y
Yutem, uyto npn x =1, C"2(/, 1) = 0. Moatomy — C’n = [T®(K)(1—

—x2)]” _iCtano 6biTb, d= - NTak,
(29) C...2(/, x) - CnA(/, x) = 1).
Bbluncnnm gyHkumoHan 1). N3 (7) nmeem,24t0o CnO(/, 1)=

= Kn- 6n2Kn. Janee u3 (7) sbiBoAUM, 4Tto C"0(/, 1) = K- Kn(T%)"=1.
Tak kak (T®)"=1l = 2n2(16n2- 1), T0 nonyumm, 4to C"0(/, 1) = K-
—2A'.,n2(16n2- 1).
N3 paBeHCcTBa
Cng(/, X)- C,,0(/,X) =i(l - x2)TB(x)C:,0(/, 1)
BbIBOAMM
<3,(4,) = A" - (12n2+ 1)K'n+ 8n2(5n2+ 1)4,,,
KP =(Kn(f,*)téi, 3=0,1,2.
Onsa panbHeilwero Hy>KHO Bblumcantb Qn(AkBk). B cuny (30) nmeem
(31) Qn(AkBk) = Ak(D)Bk(l) +2Ak(\)B'k{\) + n*(1)4"(1)-
—12n2+ 1)K(1)2?*(1) + Afc(D)" (1)) + 8n2(5bn2+ 1)T*(1)4*(1).
3aMeTum, 4YTo

(30)

5(n2(1 —xk) —1)2 n2(n2—1) 2(n2(1 —xk) —1)
(1-x*)8 + 3(1-x*)6 (1-x*)8
5

8=1

(32) 5
si(i)=(i-4)3E(6-»Ki-xy-,

am =0-4Y 5> - «K«- «Xi - Xi)4-.
3=1

2 CunTaem, uTo /(1) =0.
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Nemma 5 CnpasefiviBo paBeHCTBO

(33) Qn(AkBk) —(1 —Xfc) (Y ,akslks ~b1Kb);
a=1
rae
11 24
W= st (1027 ™= (1 s (1-x)3°
12 3 20
(337) 3= 1 —x)5+ - x)a’ 4= (1—x)6 ! (1- x)5°
30 5 42 6

7feh~ (1_x)2 (1-x)6’ 76 (l-X)8+' Zii-:-sz-)T_’]ﬂ X = xfc

Mpun aTom KoatpdmumeHThl {afcs}5=1 3apgarTca paseHcTBamu (5).

[ okasatenscteo. lMoAcTaBnsgeM B NpaByk 4acTb paBeHcTBa (31)

3HauveHusa {A~ND)}, {47(1)} cornacHo ¢opmynam (13), (32) n cobu-
paem crepBa 4Y/ieHbl COfepxaliue abl, 3aTeM cobMpaeM YneHbl copep-
Xawme G2 n T1.4. MNocne aneMeHTapHbIX Npeobpa3oBaHWil Nony4yum pa-
BeHCTBO (33).

NNemma 6. BbINONHAKTCA paBeHCTBA

1 N
lim - &/l - x®)3(1 - x1)3\jkiakl\=
(34)

lim -1 ;;I( |- x ©3786| (1-x|)3= 0, *=1,2,3,4,5.

[ okasatenscteo. OrpaHnynmmcs fokKasaTe/NibCTBOM /MLLb NEpPBOro
N nocnefHero n3 atTux paseHcTB. Vimeem cornacHo (5)

. 0(n2) 0 (rra)
lofcil i (1-x25 "FEox38 T a 2w

CTano ObITh,
(I-Xfc)3(1-x£) |7fciafci|"J""(K)
i~1

roe

Mk) _ C(1 -Sfcbfci ,(fc) _ 0(n2)iTl

PI (I +x2 - 1+ xt ~’
(35) R3)=0(nd)(l - Xk)3iTrcil,

11

IkX ~ (1 - Xfc)3 + (1 - Xfc)2'
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OrpaHv4yMmcs NnLWb OLEHKOM ; B\ " A'Zlﬁio"\ . flcHo n3 (35), uTo
i K=

(36) a"6£ [Bift)7*i| <£ 24/ (1- xE)V 6.
N3 (20) n (36) BbIBOAMM, 4TO n-6 f)()_/:i-1‘c"|chiI —%0, n —00. N3 (35)
BMAHO, 4TO “

(37) »-BX X '=oll £(2+TM (1-x,)).
fc=1 Jt=1
Ho
n
(38) £ (2 +11(1-*fc)) = 13n.
k=1

Mostomy u3 (37) 3aknw4yaem, 4YTOo rx6 Y2 [33 —O (™). WNTtak, nepsoe
K=1

n3 paBeHcTB (34) fokaszaHo. [Jokaxem nocnefHee U3 paBeHCTB (34). B

cuny (33") umeem, 4uTto

Um n“6~ (1-xfc)3(I-xifc)3[7fA<
(39) fol
< HppCn-6V | 1/(1 —XK).
k=

n

Bocnonb3yemcsa Toxgectsom  1/(1 - x*)=n2. Torga u3 (39) nmeem
=1
esD 1- “ xfo)3|7fce| = 0.
k=i

Cneacteue 4. VIMeeT MeCTO pPaBeHCTBO

. 1 n
(40) n|I_rI](D 9 V VI ~xk3A\Qn(AkBK)\ = 0.
Jfe=1
NNemma 7. VIMeeT MeCTO pPaBeHCTBO
n 1 29

(41 Ji“ E 476 11- **)2<?2n(A*0*) = 256 -,
K=1
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[ okazatenscteo. [MOfCTaBfsfseM B JieBYK 4acTb (41) 3HauyeHue
Qn(AkBKk) cornacHo Jlemme 5, a 3aTeM B MOJIy4eHHOM paBeHCTBE MNOA-
cTaBnsaeM 3HauveHus KoagpgpuumeHTos (lifo}f=1 cornacHo (5). Mocne ane-
MeHTapHbIX Npeobpa3oBaHUii M MpefenbHOro nepexoja, Korga n—»o0o,
nonyymm (41). Mpun 3TOM HY>XHO 6YyfeT BOCNO/Ib30BaTbCA TOXAECTBAMMU
(21), (22), (25).

[l okasatenscteo Teopembl 4. be3 orpaHnmyeHns o6WHOCTU MOXHO
cuymTatb, 4to /(1) = 0. Mo dopmyne Telinopa ¢ yyetom, 4Tto /(1) =
= /'(1) = 0 umeem

(42) f(xk):’\-li‘-(xk-l)2+" {)Ck\ xk-1)3, xk<ck<l

Tak Kak no ycnosuto Teopembl 4 /'(1) =0, To cornacHo Teopeme 3 npo-
uecc {Cna(/,a;)} cxopgutca paBHomepHO B [—1,1]. TloaTomy cornacHo
(29) Hy>XHO pokasaTtb, yto C"(/, 1)—0, TT—>00, rge C"(/, 1) onpepens-
eTca no qopmyne (30). N3 (11), (42) cnepyeT, 4TO

(43) Qn{Kn)=ang + a,,,2,
roe
/(1) i
1— oL KT:1\XK N2Qn(AkBk),

<MR2=76 E /"(cY)(** - i)3Qn(HfS ).

fc=l
OueBnAaHo, 4To |an2|” £ |zfc- 1]3|<3,,(AfS o). MoaTomy m3 cnea-
k=1
cTBua 4 BbiBoguM, 4To BT an2 = 0. CornacHo Jlemme 7 lim an\ =
n—oc n—oo0

= 256]1/"(1). Ctano 6bITb, n3 (43) 3aknw4yaem, 4yto lim C"(/1) =

= 256|8/"(1). 3aknuMTENbHAA 4YacTb AoKa3aTenbCcTBa Teopembl 4 He
OT/IMYaeTCs OT 3aKMHUYUTENbHOM YacTu foKasaTenbCcTBa Teopembl 3.
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THE VARIETY OF DOUBLE HEYTING ALGEBRAS
IS CONGRUENCE UNIFORM

M. E. ADAMS and R. BEAZER

1. Introduction

A congruence relation on an algebra is said to be uniform if all its con-
gruence classes have the same cardinality and an algebra is called congruence
uniform if all its congruences are uniform. It is particularly advantageous to
know that an algebra having a lattice reduct is congruence uniform because
such algebras can often be represented pictorially and congruences on them
can be visualized as suitable partitions of their diagram. Boolean lattices are,
of course, congruence uniform and countable congruence uniform distributive
lattices are characterized in [1]. Congruence uniform algebras in the varieties
of pseudocomplemented semilattices, lattices with pseudocomplementation
(alias, p-algebras), bounded relatively complemented lattices (alias, Heyting
algebras), and double p-algebras are described in [4]. In that paper it is
shown that every finite double Heyting algebra is congruence uniform and
the problem: “Which infinite double Heyting algebras are congruence uni-
form?” is posed. The purpose of this note is to answer this question in the
best possible way. We show that every such algebra is congruence uniform;
in other words; the variety of double Heyting algebras is congruence uniform.

2. Preliminaries

A double Heyting algebrais an algebra (A; V, A, *, +, 0,1) oftype (2, 2,2, 2,
0,0) in which (L;V,A,0,1) is a bounded (distributive) lattice, the binary
operation *is given by aA x <biff x £ a*b, and the binary operation -f is
characterized dually.

For any x in a double Heyting algebra L the element x* = x *0 (x+ =
= x + 1) is the pseudocomplement (dual pseudocomplement) of x in L and
so any double Heyting algebra L gives rise to a distributive double p-algebra
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(L; V, A *,+,0,1) of type (2,2,1,1,0,0). For any x in an arbitrary distribu-
tive double p-algebra, we have
X++ N X <x** and X+* N X N x*+,
The centre of L, denoted Cen(X), is given by
Cen(L) ={x £ L: x —x+*} —{x £ L: x =x*+}.
Elements xni-+*1are defined inductively by
X°(+*) = x and x(n+1)(+*) = x"(+*)+*
If, for all x 6 L, a(n+1*+**= xn(+©, for some n < us then L is said to have
finite range; equivalently, if, for all x £ L, x"(+*) £ Cen(i), for some n <u> A
normal filter in L is a lattice filter F having the property that x £ L implies
x+* £ L. The lattice of all normal filters of L is denoted Fn(L).

By a congruence on a double Heyting algebra (or double p-algebra) L
we mean a lattice congruence preserving the operations * and + (or * and
+) and the congruence lattice of L is denoted Con(X). If F £ Tn(L) and
6 £ Con(T), then it is known (see [8], for example) that ©iat(-F), the smallest
lattice congruence on L collapsing F, is a congruence on L and 6 = ©iat([1]#)
so that Fn{L) = Con(T) under the mapping F h-»Ciat(F) (see also [6]).

For the standard rules of computation in (double) Heyting algebras and

(double) p-algebras we refer the reader to [2], [3], and [7]. All other unex-
plained notation and terminology can be found in [5].

3. Congruence uniformity

We begin with some elementary results about double Heyting algebras
which are pertinent to the proof of our main theorem.

Lemma 1. IfL is a double Heyting algebra then the identities:

(i) a=((bVa+)Aa)V(b Va+)+,

(i) a= (aVvh)A(*a),

(iii) ave=av (6A(6*a)+)
hold in L.

Proot, (i) ((bva+)Aa)v(b Va+)+ = aVv (6 Va+)+=a, SINCE (6 Vo+)+ A
< a++ < a.

(ii) (avb)A(b*a) =(aA(D*a)) v (6A(6™a))

= a V(6 A= a)), since b*a >a,
a, since ba (b *a) <a.

(iii) Obviously, avb>aVv (bA (b*a)+) and for the reverse inclusion it
is enough to show that av (b *a)+ >b. However, a >ba (6 *a) and so
ave*a)+>{0OA®b*a)) Vv (b*a)+ =bv(b*a)+ >b. O

Henceforth, L wiH denote a double Heyting algebra, 9 will be a congru-
ence on L and $iat(x, y) wiH denote the principal lattice congruence coHapsing
the pair x,y £ L.
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Lemma 2. If[IN9 =Ta), for some a GL, thenaGcCen(z) and 9 = #iat(a, 1).

Proof. If [1]0= [a), then a+*= 1(0). Therefore, a+*>a and it follows
that a G Cen(L). Finally, 9= OJat([I]0) = ¢lat(a, 1). O

Corollary 3. If[I}9= [a), for some aG L, and bE L is arbitrary, then
[b}9 and [1]0 are isomorphic lattices.

Proof. By Lemma 2, a GCen(X). Clearly, x aVx is a lattice ho-
momorphism from [b]9 to [a). Furthermore, if a VX =a Vy and x,y G [b]9,
then x = 2(#iat(a, 1)), by Lemma 2, so that x Aa= y Aa, by the well-known
description of principal congruences on distributive lattices, and therefore
X =y. Thus, the mapping is injective. To see that the mapping is surjec-
tive, let yc [a@) and x = (bVa') Ay where alis the complement of a. Then
aVx = aVt/ =7 and x Aa= baa, so that x = b(9\'t(a, 1)). Therefore, x G[b]9
by Lemma 2. O

The following simple observation will be used repeatedly. Let k be an
infinite cardinal T, L be a lattice, C={c,;i<k) CL, D={d,:i<«}QL,
and B = {&: i <k} QL, with b, =03 iff i =j, whenever i,j < k. If either
6, =c, Vd{, for all i <k, or 6, =c, Ad, for all i <k, then at least one of the
sets C or D has cardinality k.

Lemma 4. If [@]9 is infinite, then |[1]0] > |[a]O].

P roof. We begin by showing that either |[O]0| > |[a]O] or |[1]0| > |[a]O.
Suppose |[a]0] = « which, by hypothesis, is an infinite cardinal and write
[a]0 = {6,: i <k} where bi = b3 iff i=j, whenever i,j <n. By Lemma 1 (ii),
bi = (a Vhi) A(a*6,-), for any i < k, and so {aV6,: i <k) or {a*6,: i <k} has
cardinality k. In the event that {aV6,: i <k} has cardinality k, then so does
{& A(6,*a)+:i<k), by Lemma 1 (iii). But 6;A(6,*a)+=aA(a*a)+(0) and
aA(a*a)+=aAl+ =0 so that 6 A(6, *a)+ G [O]0. Thus, |[O]0] > k = |[a]0].
In the event that {a *6-: i <k} has cardinality k, we have |[1]0] /c= |[a]0],
since a * 6, G [1]0.

To complete the proof we need only to show that if |[O]0] > |[a]0] then
[[1]0] ~ |[O]fl]. Since \[O]O\ = k1, where k' /c, we can write [O]0= {6" i <K'}
and assume that, for i,j <k, bt=00iffi=; Now, b; —b* A (b{Vb*) and
so {6**: i < Kk} or {b,v b*:i <K'} has cardinality k'. In the event that
{6**: i < k'} has cardinality k', then so does {6*: i < k'} and, therefore,
[[1]0] > k' = |[O]0], since b* G[1]0. In the event that {6, Vb*:i < kl} has
cardinality klwe can again conclude that |[1]0] ~ |[O]Q], since 6, Vb* G [1]#. In
any case, |[1]0] > |[O]0| and the proof is complete. O

Lemma 5. If[l]9 is infinite, then |[6]0| > |[1]0], for any 6g L.

P roof. Suppose |[1]0] = k where, by hypothesis, kis an infinite cardinal
and [1]J0= {bi:i <k) with 6, = bj iff i =], whenever i,j <k. By Lemma 1
(i), bi = ((bVbf)Ab,) V(6 Vbf)+, for any i <k, and so {(6 Vbf) Abi:i <k} or
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{(6 v 6t)+: i <k} has cardinality «.  In the event that {(6 v bf) A6;: i <k}
has cardinality k, we have |[6]0] > k = |[1]0|, since (6v bf) A b 6 [B}9. In the
event that {(6 ve+)+ : i< «1 has cardinality « K then so does {6 v bf . i< /c)
and again |[6]0] > |[1]0|, since bv bf £ [b]O. O

Clearly, if every class of 9 is finite then 9 is uniform, by Corollary 3.
On the other hand, if some class of 9 is infinite then 9 is uniform, by the
conjunction of Lemmas 4 and 5. Thus, we have:

T heorem 6. Every double Heyting algebra is congruence uniform. O

Remark. In [4], it was shown that a double p-algebra L is congruence
uniform iff it is congruence regular; by which is meant that any congruence
on L is uniquely determined by any one of its classes. The bulk of the proof
entails showing that the congruence regularity implies congruence uniformity
and is heavily dependant on the validity of the, so called, determination
principle (namely, x* = y* and x+=y+ imply x =y) which is known to
characterize congruence regular double p-algebras; see [6] and [9]. However,
T. Katrinak [6] has shown that any regular double p-algebra L is, in fact, a
double Heyting algebra and that a binary relation on L is a double Heyting
algebra congruence iff it is a double p-algebra congruence. Consequently,
Theorem 6 yields an entirely new proof of the main result of [4].

4. Strong congruence uniformity

Motivated by Corollary 3, we will say that a congruence 9 on a double
Heyting algebra L is strongly uniform if all its classes are isomorphic lattices
and call L strongly congruence uniform if all its congruences are strongly
uniform. Our next objective is to characterize strongly congruence uniform
double Heyting algebras.

T heorem 7. For a double Heyting algebra L, the following are equiva-
lent:
(i) L is strongly congruence uniform;
(ii) every class of any congruence on L has a least element;
(iii) Con(L) is Boolean;
(iv) L has finite range and finite centre.

P roof. Suppose that L is strongly congruence uniform. Let 9 be a
congruence on L. Then, for any a£ L, [a}9= [O]0 and so [a)9 has a least
element. Thus, (i) implies (ii).

Suppose, now, that (ii) holds. Let F be a normal filter of L and 9=
= ©lati-F)- Then 9is a congruence on L and F —[1]0. Hence, F = [a) for
some a £ L which, by Lemma 2, must belong to Cen(L). Thus, every normal
filter of L is of the form [z) with z € Cen(L). It is now clear that Cen(L)
is isomorphic to Fn(L) under the mapping z i»{z') where z1denotes the
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complement of z and, therefore, Con(Z-) is Boolean, since Con(L) = F n(L).
Thus, (ii) implies (iii).

The equivalence of (iii) and (iv) has been established by H. P. Sankap-
panavar in [8] and so it remains only to show that (iv) implies (i). Suppose
then that (iv) holds. Let F GFn(L). Then F =\/(N(a): aGF), where
N(a) is the principal normal filter in L generated by a GF. Now, it is

straightforward to verify that N(a) = {x GL: x >am(+*) for some m <uj)
and, since L has finite range, the existence of a smallest integer n such that
an(+*) £ Cen(T) is guaranteed. As a direct consequence, N(a) = iV(an(+*))
and so F = \/(N(a): aG F fl Cen(T)). However, FnCen(L) is finite, so
that 2 = /A(F fl Cen(T)) exists and z G Cen(X) from which it follows easily
that F = N(z) = [2). Consequently, if 6 is a congruence on L, then [1]0 G
GFn(L) and [I]0= [z), for some zG Cen(L), so that 6 is strongly uniform,
by Corollary 3. O

Remark. All the concepts and results about double Heyting algebras
that we have employed or proven are, in fact, meaningful and valid in the
context of Heyting algebras with dual pseudocomplementation; in particular,
Theorems 6 and 7 are valid for such algebras.
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ON THE INVERSE FUNCTION THEOREM IN F-SPACES

B. SLEZAK

The well-known Inverse Function Theorem says that if X and Y are
Banach spaces, / £ X —*Y is a function which is strictly differentiable at the
point x and the derivative Df(x): X —*Y is an isomorphism then / is a local
homeomorphism, i.e. there exists an open neighbourhood V of the point x
such that f\y is a homeomorphism between the set V and the open set f{V).
However, there are examples (see [5]) when / is continuously differentiable
function between Fréchet-spaces, Df(x) is an isomorphism at each point x
but / is not a local homeomorphism because its range is nowhere dense in
y.

The following question arises: under which assumptions is it true that
the derivative “locally characterizes” the function in the sense that if the
derivative is an isomorphism (an injection or a surjection) then / is a local
isomorphism (injection or surjection, respectively). In this paper | give a
sufficient condition in the case that X is a complete metric space, Y is a
metrizable topological vector space with an invariant metric and the func-
tions and / EX —»Y are “close enough” to each other (Theo-
rem 1). In Theorem 2 | give a generalization of the open mapping theorems
given in [2] and [8] to p-homogeneous pseudonormable vector spaces as a
special case of Theorem 1.

T. Szilagyi called my attention to some results which are closely related
to this problem (private communication). Indeed, the Miliutin Theorem (see
[3] or [4]) is equivalent to Theorem 1 (i). The Dmitruk Theorem (see [3]) is
more general than the Miliutin Theorem and the Open Mapping Theorem of
Phan Quoc Khanh (see [6]) includes some general open mapping theorems
as consequences, for instance the Dmitruk theorem and the Ptak’s closed
graph theorem.

Definition 1. Let (X,di) be a metric space, Y a metrizable topolog-
ical vector space with the metric d2,U C X a nonempty set. Suppose that
A: U—Y and f : U—Y are functions such that A —f satisfies Lipschitz
condition on the set V C U. We define the semidistance of the functions A
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and / in the following way:
dy(A, f) :==min{A: |V{u,v}eV: d2((A- f)(u),(A - f)(v)) » kdx(u, u)}.

If A —f is not Lipschitzian on V then let dy(A, f):=oo.

The function A and / are strictly tangential at the point x £ U if A(x) —
= f(x) and for each positive number e there is an open neighbourhood V of
the point x such that dy(A, f)<e.

If X is a topological vector space, A is continuous affine mapping and
A and / are strictly tangential at x then / is strictly differentiable at x and
Df(x) =A-A(0).

Remark. It is easy to see that if (X, di), (Y, d2) and (Z, 0i3) are metric
linear spaces with invariant metrics, A and / are strictly tangential at x £
£ X, B and g are strictly tangential at x, C and h are strictly tangential
at f(x) then A+ B and f +g are strictly tangential at x and C 0 A and
ho f are strictly tangential at x. Furthermore, A, B,f and g are pairwise
strictly tangential at x. But we give a counterexample after Theorem 1 for
two different continuous linear mappings which are strictly tangential at a
point. It means that the derivative defined above is not necessarily unique.

Notation. Ifris a positive number, (X, d) is a metric space and x € X
then
R(x;r): ={u€ X |d(x,u) <r}
denotes a closed ball of radius r.

Definition 2. Afamily S of closed balls in the metric space X is called a
complete system if B (x;r) £ E implies B(x'; r') 6 S whenever r' + d(x,x") £r
(see [4] and [3]). Let a and b be positive numbers, X and Y metric spaces.
The function T : X —»Y is said to be a-covering on the system E if

f2(r(x); am) C T(B(x\r)) whenever B(x\r) £ E.

The function S: X —aY is called b-compressed on the system E if
S(B(x; r)) CB(S(x);b m), whenever B(x;r) £ E. (If, for instance, S is a
Lipschitzian function on every ball belonging to E with constant b.)

Let X' be a non-empty subset of X. If the set

E' {R(x;r)nX'\x£X"and B(x]r) £ E}

is not empty then E' is called the system in the metric space (X', d\x'xX")i
inherited from the system E.

LEMMA 1 LetT and S befunctions between the metric spaces (X, d\)
and (y, d2), E a system of closed balls in X.

(1) If T is invertible then T is a-covering on E if and only if T~I is
L-compressed on the system E2 := {B(T(x);ar)) |B(x,r) £ E}.
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(ii) If E is complete and S is b-compressed on E then S satisfies Lipschitz-
condition on the balls B(x;r) with the constant b, whenever B(x]3r)£ E.

(iii) Let X' be an arbitrary nonempty subset of X . If E is complete and
the system E' in X' inherited from E exists then E' is complete.

Proof, (i) The two properties are equivalent because p(T(x):ar) C
CT(B(x;r)) if and only if T_1(6(T(x); ar)) C B(x\ r).

(i) Let us suppose that 5(x0,3r) £ E and u,x C B(x0'r). Then
B(x\ di(x, u)) £ E since d1(2,u) <2r ~ 3r —di(x0, X). So

S (.0 (x; dx(x,u))) C B (S(x)\bd\(x, u)),

hence d2(S(x), S(u)) <bdfix, u).

(iii) Suppose that B'(x'Jr) £ E', u £ X' and rl+ d(x',u) <r. Then
B(x'; r) £ E and O(u; r') £ E since E is quasicomplete. Hence B'(w, r') £
£E" O

Lemma 2. Let (X,d\) be ametric space, Y metrizable topological vector
space with the translation invariant metric d2, A: X —=*Y and f: X —»Y
continuous functions, E complete system in X . Let us suppose that A is
a-covering and A —f is b-compressed on E, 0< b<a. If B(xq;r) £ E and
y £ 0(/(x0); (a —b)r) then there exists a sequence (X, }ETOC 0(x0; r) with
the following properties:

i) AMX,+t1)=(A- N(X,)+y, nEN;

(i) xn and A(xn) are Cauchy-sequences in X and in Y, respectively;

(iif) lim d2(A(x,,), A(x0)) " ra.

Proof. Put k:=£. We show by induction on n that if xn is defined
then we can give xn+i such that A(xn+i) = (A —/)(xn)+y and

1) di(x/,ira)Sr*"*(l-fc/-m),
furthermore

di(xn,xm)) £ E
and
2 P(xn;fcdl(xn,x,, _i))e E

whenever 0<m <~<n + |.
If n =0 then

(A- 1)(x0)+ye (A- /)(x0)+ B{f(x0);r(a- b)) =
= B(A(0); r(a-4))c ala | =A (B(x0;r(1-k))),
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because d2is translation invariant, Ais a-covering on £ and B (xo; r(1 —k)) £
£ ££, as B(xo',r)£ £ and r(l —k) ~ r. Hence there exists a point x\ £
£ H(xo; r (I —£)) such that A(xi) = (A - f)(x0) Ay.

Also, it is easy to see that the properties (1) and (2) hold.

Suppose that xn is defined. Then

(A- )(xn)Aye(A- N)(H(xn_i;di(xn,xn_i)) + A(xn)- (A- /)(xn_1) C
C5((A - /)(xn_i); bdi(xn,xn-i)) + A(xn) - (A - /)(xn_i) C
CH(A(xn), 6di(xn,xn_x)) "
Cd(5(xn,kdi(xn,xn_i)),

as A —f is 6-compressed on £, d2 is translation invariant, H(xn_i;
dx(xn,x,,_i)) £ £, A'is a-covering on £ and H(xn; &cf(x,, xn_i)) £ £.
It follows that there exists a point xn+i £ B(xn;kdi(xn,xn_i)) such that

A(xn+i) —HA /)(xn)Ay
and ifOAm <n + | then

AAn-t-lyxm ) A di (XN 0 xn) Adi(Xn, )=
<MI(xn,xn_)AreEm(l - kn-m) <rkm(l - kn+1~m).
B (xn+i; kdi(xn+i,xn)) £ £, since
Ni(xn+i, xn) Adi(xn+i,x0) £ r
and B(xo] r) ££.
Furthermore, B(xm,di(xn+i, xm)) £ £ because
di(x,+1,xm) Adi(xm,x0) * rkm(1- fn+1-m)Ar(l - fan) Sr.

Hence the definition of the sequence {x,} is correct and the inequalities
(1) show that {x,} is a Cauchy sequence. Now we show that (A(xn)} is a
Cauchy sequence, too. Indeed, if 0 m <n then

d2(A(xn+1), A(xm+i)) = d2((A - /)(xn), (A- /)(xm)) "
= bdi(xn,xm)
because xn £ B(xm;<fi(xn,xm)) £ £ by (2), so
(A- N(xn)GA - f)B{xm\di(xn,xm)) C H((A - /)(xm); 6di(xn, xm)).
In the end, let us see the sequence {d2(A(xn), A(x0))}.

n—1

d2(A(xn),A(x0)) <™ d2(™.(xi+i), M(x,)) Ad2(A(x!), A(x0)) <
«=i

N 6di(xi, x, i) A(a—6)r " 6r A=1(1 —AA(a—06)r"ar.

i=i »=1
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These inequalities show that if d2(A(xn), A(x0)) converges then
lim d2(A(xn), v4(x0))  to. But

d2{A(xn), A(x0)) < d2(A(xn), A(xm)) + d2(A(xm), A(x0)),
SO

N2(A(xn)>A(xq))  d,2(A(xm"), A(x0)) ™ bd\(xn=, xm_j),

whenever 0 < m < n. It follows that d2(A(xn), A(zo)) is a Cauchy sequence.
O

Proposition 1. Let (X,d\) be a metric space, (Y,d2) metrizable topo-
logical vector space with the translation invariant metric d2, W <2X a nonemp-
ty set, A: X =Y and f : W —Y functions. Suppose that A is continuous
and dw{A, f) =b<o00. Then

(i) / is continuous on W .

Suppose furthermore that A is injective, A~I is Lipschitzian on A (X) with
the constant ~ for some a> b. Then we have

(if) fi is injective and /-1 is Lipschitzian with the constant

(i) 1fthe set H := A(X)Df(W) is not empty then dij(A~I,f~1)"

Proof, (I) If {U,V) c W then

N(I(u), f{v)) =d2(f{u) - A(u), f(v) - A(u)) <
Sd2((f- A)U), (/ - A)V)) + d2((f - AYE), [(t>) - AU)) <
A bd\(u, v) + d2{A(u), Au)).

This shows that / is continuous.
(ii) Suppose that {u,u}cw ,u /r and f(u) =f(v). Then

d2{A{u), A(v)) =d2({A- /)(«), (A - N)(t>)) <
A bdi(u, v) = 6d1(A_1(A(u)), A_1(A(w))) < éd 2(A(u),A{v)),
which is a contradiction. Let us suppose that y,zC f(W)

di(f 1(z)) =d1(A 10Ao/ \y),A 1loAof x(z))<
< d2(Aof~1(y), Ao f~1(z)) —

=Ad2((A- 1) o/ -1(y) +V, (A- 1) 0/ -1(2) + 2) <

+d2 (A —/) o/ 1z)+y,(A-f)of 1) +2) <
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= adi (/ N+ \ dhytzn
Hence
diU~\y)J~\z))k-~-bdAy,z) = — -rd2(y,z).
cL| — a cL u

(iii) If {y,z} CH then
“A-L- T _D(Y).(AL- 1 1)) =
=dM ~\y - Aor\y)), A~\z - Ao <
<id2(y- Aof~1(y),z-Ao f~1(z)) =

=~ 2((/- Aor 10, (/- Ayor 10))~

A-di{f~1y) - 12)) <= d2Ay.2). O

Theorem 1. Let (X,di) be a metric space, Y a metrizable topological
vector space with the translation invariant metric d2) W CX be a nonempty
set, £ C £(W) a complete system, A: X —Y and f : W —#Y functions.
Suppose that A and f are continuous on every ball belonging to £, A is
a-covering and A —f is b-compressed on Y, 0< b<a. Then

(i) If (X,di) is complete then f is a —b-covering on E.

Moreover, let us suppose that (Y,d2) is complete, i.e. (Y, d2) is an F-
space. Then

(i) 1f A is homeomorphism then f is a —b-covering on E.

(iii) 1f A has a continuous right inverse Ar which is compressed on the
system £2:= {H(A(x); ag) \B(x\g) G£} and the system Y' in X' := im(Ar),
inherited from E, exists then f\x" is b—a-covering on S'.

Remark. In fact, the continuity of / at the interior points of the balls
follows from Proposition 1 (i) and from Lemma 1 (ii).

Proorf, (i) Wehave to show that H (/(x0); r(a—h)) C/(B (xo0;r)), when-
ever B(xo;r) GE. By Lemma 2if B(xo;r) GE and y GB(f(x0); r(a—b)) then
we can give a Cauchy sequence {in} in B(x0-r) such that

Axn-fi) —(A _/)oa) T e

Since X is complete and A and A—/ are continuous, so xn converges to a
point x belonging to B(xo;r) and A(x) = (A —f)(x) +y. Hence f(x) =y.
This means that B(f(xo);r(a-b))C f(B(xo;r)).

(if) We only have to show that if A is a homeomorphism and (Y, d2) is
complete then the sequence {x,,} given in the point (i) above converges in X.
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By Lemma 2 {A(xn)} is a Cauchy sequence and lim d2(A(xo), A(:rn)) < ar,
hence A(x,,) converges to a point 2 £ B(A(x0); ar). It follows from the con-
tinuity of A-1 that xn converges to the point x := A_1(z) £ B(x0; r). Now
we can follow the proof on the same way as in the point (i) above.

(iif) The function Ax> is a homeomorphism. The system £' is complete
in X' by Lemma 1 (iii). Furthermore, A/"<is an a-coveringon S' by Lemma 1
(i). We are done by (ii). O

Remark. Let / and g be functions mapping an F-space to another. If
they are strictly tangential at a point x and / is a covering on a complete
system S, then g is obviously locally open at x, provided B(x;r) £ S for
some r > 0. By the well-known Open Mapping Theorem every continuous
linear mapping between F-spaces is open if it is onto. But it depends on
the metrics whether it is covering or not. In Proposition 2 we show that
every continuous linear mapping between p-normed spaces (see Definition 3)
is open if and only if it is covering. The following question arises:

Suppose that A and / are functions between F-spaces, they are strictly
tangential at a point x and A is continuous and linear. The question arises
whether it is true that / is locally open at x. The answer is the negative.
If A is not covering then it is possible that / is not locally injective and
not locally open even if A is a linear homeomorphism, as it is shown in the
following

Counterexample. Let two metrics be given on R:
di{x,y):=\x - y\l2 and d2(x, y) := \x - W\

Then they are linear functions mapping from (R,d\) to (R,d2) strictly tan-
gential to each other at the point zero. Indeed, if

f :=Clidfi: (R,di) -> (A, d2)

9 : (A, di) >(A,d2), C\~C2
then
M (f-9)(x),{f-g){y)) =\Ci- C2\\x - y\<
AEAL(x,y) =e\x - y\1/2
whenever

It follows that the function 0: R —»R, x 0 and the function id# are strictly
tangential at O, however, 0 is neither injective nor locally open.

Definition 3. Let X be a metrizable topological vector space with the
translation invariant metric d. The function ||.||: X —R, x  d(x, 0) is said
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to be a *-homogeneous pseudonorm if there is a positive number p such that
for every point x £ X and for every scalar t the equality ||tx|| = |i|p|[x|| holds.

Now we give a generalization of the theorems given in [2] and [8]: if the
function / between two Banach-spaces is strictly differentiable at a point xq
and the derivative Df(xo0) is surjective then / is locally open; if Df(x0) is
injective and its range is closed then / is locally injective.

P roposition 2. Let X and Y be topological vector spaces with the p-
homogeneous pseudonorms ||.|[i and ||.||2, respectively, and A: X —»P be a
linear mapping. Then

(i) A is continuous if and only if there exists a positive number K such
that for every x£X:

IA(®)|[2<tr|Mli
(i.e. A is Lipschitzian on X with the constant K).
(i) Let 5(0; 1) and 5(0; a) be closed balls in X and in Y, respectively.
If 5(0;a) C A(5(0; 1)) then A is a-covering on the complete system £(A).
P roof. If r>0 then

50;r): {x 1Ix|| <r} =AM <1 -

fir
= {flrx x||*"} =~5(0;I).

Hence

4) t5(0; r) = tf/rB(Q\ 1) = 5(0; tpr),

whenever the scalar t is positive.

(i) It is clear that the condition is sufficient. Let us suppose that A is
continuous. Then it is bounded, i.e. if the set H is bounded in X then A(H)
is bounded in Y. The equalities (4) show that every ball in X and Y is
bounded, so there is a number s > 0 such that

A(5(0; HxHr) = A(VNM?(0; 1))= -e/NM W ; 1)) C
C ~Mpli7s5(0;1) =5(0;P||x||2).

It means that ||A(X)[|2” /L||x]||i, whenever x £ X , A(5(0; 1)) Cs5(0; 1) and
K > sk

(ii) For every point x £ X and for every positive number r

5(0; ar) = 0;a) CA("5(0; 1)) = A(5(0; r)

holds, hence

5(A(x); or) CA(5(0;r)) + AX)=ABMO; r) +x) =A(B(X; ). O

The following proposition shows that the strict derivative of a function
between p-normed spaces is unique. Also, it is easy to see that if A and /

are strictly tangential at a point xq then tA and tf are strictly tangential at
xq for every scalar t.
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Proposition 3. Let X and Y be p-normed topological vector spaces,
A and B be continuous linear mappings from X into Y. If A and B are
(strictly) tangential at a point £0 then A —B.

Proof. Suppose that for every positive number e there exists a number
6 such that ||x —xol|i * implies

WA - B)(x)- {A- #)(z0)||12 ~ £||z - zolli-

Since for every point u £ x there exists a number t such that ||iu]|i » S and

I(A- B)(tu+s,) - (A- Ti)(sO)l|l2- [«H|(A - P)(u)[[1"
<e[M i = |«pE[lu]l1,

we have that ||(A —B)(u)||2= 0 for every u £ x. Hence A= B. O

Theorem 2. Suppose that (X, [|-||i) and (Y, ||.||2) are complete p-homo-
geneous pseudonormed topological vector spaces and the function f £ X —»Y
is strictly differentiable at the point Xq£ X .

(i) If Df(xo0) is surjective then f is locally open on a neighbourhood of
Xa.

(P) 1f Df(x0) has a continuous linear right inverse R on Y (i.e. the kernel
of Df(xo0) is complemented in X) with Lipschitz constant ” then f has a local
right inverse fT which is strictly differentiable f{x0) and Dfr(f(x0)) = I

(if) 1f Df(xo0) is injective and its range is closed in Y then f is locally
injective on a neighbourhood of the point xOm

(i) If Df(xo0) has a continuous linear left inverse L, i.e. the range of
Df(xo0) is complemented, then f has a local left inverse ft € Y —=X , which
is strictly differentiable at the point f(x0) and Dft{f(xo)) - L.

(i) If Df(x0) is an isomorphism then f is locally homeomorphism and
the local inverse f~1 of f is strictly differentiable at f(x0) and

D f-\f(x0)) = [Df(x0)rl.

Proof. It is clear that (iii) follows from (i), (i’), (ii) and (ii’). Let
A:= Df(xo0). It follows from the Open Mapping Theorem (see for instance
in [7]) that A is an open mapping from X onto the range of A, because by
our assumptions the range is an F-space. Hence there is a positive number
a such that 5(0; a) C A(5(0; 1)). So A is a-covering on the complete system
£(X) by Proposition 2 (ii).

Let W be a neighbourhood of the point xq and g be a positive number
such that b:= d\y(ft A) < a and B(xo',g)C W. By Proposition 1 (i) / is
continuous on W. It is clear that A —/ is 6-compressed on the complete
system E(1Y).
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(i) It follows from the point (i) of Theorem 1 that / is a- 6-covering on
E(W), so it is open on the ball B(xo0; g). Hence the statement (i) holds.

(i) Put Ar:= R —A(A(x0)) + xo and X' im(Ar) fl W.  Obviously,
X' 70 because xO£ X'. Since A —f and Ar are Lipschitzian on X' with
the constants 6 and respectively, f\x' is invertable by Proposition 1 (ii).
Denote (fx -1 by fT. By Lemma 1 (i) A y<is an a-covering on the system

E'in X' inherited from E(W) and E' is complete by Lemma 1 (iii). We have
that B(f(xo0); (a- b)g) Cf(X"), implying Theorem 1 (ii).
As

H :=A{X") n B(f(x0); (a- b)g) =B(f(x0); (a- b)g),

it follows from Proposition 1 (iii) that d}j(Ar, fr) %b-f~.

As the definition of fr does not depend on the choice of 6 (if 6 < a), it
follows that fris strictly differentiable at f(x0) and Dfr(f(x0)) = R. Indeed,
the number 6 can be arbitrary small because / is strictly differentiable at Xg-

(i) The function A: X —*A(X) is open by the Open Mapping Theorem.
So A-1 is continuous linear mapping and Lipschitzian with some constant
“a” by Proposition 2 (ii). Since A is the strict derivative of / at xo, we can
choose the neighbourhood W of x0 such that 6:= dw(A; /) < a We have
that f\w is injective, applying Proposition 1 (ii).

(ii’) If A has a continuous linear left inverse L then Y = E © F, where
E denotes the range of A and F denotes the kernel of L. The function
prg: E©OF —E, u+v u(u £ E,v£F) is continuous and linear. Hence
pri o/ is strictly differentiable at Xgand

D(vrEOQ/)(*0)= prE oA =A.
By the point (ii) pr# o f\W is invertable and

T>((pre 0/]iv)_1)(Pr£;(/(:r0))) = A-1, if dw(prBo/, A) <b<a,

where - is the Lipschitz constant of L. So the function // := (prE 0f\w) 10
oprE is strictly differentiable at f(xo) and Df { x)) —A~xoprj%= L. Fur-
thermore, ft of{x) = (pr# o f\w)~X0Phe of(x) = X, whenever x £ W. O

In Theorem 1 (iii) we assumed that the function A has a right inverse Ar
which is compressed on the system E2. When A is a covering linear mapping
then E2 = E(Y) and Ar is compressed if and only if it is Lipschitzian, as it
follows from Lemma 1 (iii). But we do not know whether a Lipschitzian
linear function has a Lipschitzian right inverse, even if it is between Banach
spaces. This question is equivalent to the following

Problem. Let Fl be a Banach space and A be a closed subspace of it.
Does the canonical projection 7r: E —E/N between E and the factor-space
E/N have a locally Lipschitzian right inverse?
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The Michael’s selection theorem says that there is continuous right in-

verse, but it is not Lipschitzian, and we cannot apply the so called Approx-
imate Selection Theorem, because the relation 7r_1 is not upper semicontin-
uous (see [1]).
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A NOTE ON THE ARITHMETIC FORM OF THE LARGE SIEVE
A SARKOZY

1. Throughout this paper, we use the following notation: We write
e2ra = e(a). The distance from the real number x to the nearest integer is
denoted by ||x||. p(n) denotes the least prime factor of the positive integer n,
while P(n) denotes the greatest prime factor of n. t/(n) is the total number
of prime factors of n so that u(p"1.. .p"r)=a\+ ... + ar. The cardinality
of the finite set 4. is denoted by |.4].

2. The analytical form of the large sieve is the following:

If K is an integer, TVis a positive integer, a”+i, R3ft"+2, eee Ok +n are
complex numbers, A’is a set of real numbers for which |x —"\ >6> 0
whenever x and x‘ are distinct members of X , and we write

K+N
S(x)— "2 ane(nx),
=K+1
then "
K+N
) Eis(*)il«(«-*+i0 Y,
xeX n=K+1

In fact, Montgomery [9] proved this with a constant factor 1 on the right-
hand side:
K+N
(2 AMSM IPSOT +ff) Y
XEX n=K+1
(See also [8], pp. 12-13))

To derive the arithmetic form of the large sieve, assume that AiE.{K+I,
K+2,.. K+N}, and write

(3) Z= A", Z(q,h)=\{n: n£Al, n=h (modg)}|
1991 Mathematics Subject Classifications. Primary 11N35.

Key words and phrases. Large sieve, distribution of integers in residue classes.
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F(a) ="*2bhe(ha),

h=0
then by a well-known Parseval-formula type identity we have
9-1 9-1 2
(4) *Ew!=E FO
h=0 a=0

Choosing here bh = Z(q, h) —j and writing
(%) T(<) = e(nQ0>
NEAf

clearly we have F(0) = 0and F(*) =T (|) for qfa, hence (4) can be rewritten
in the form

Let Q be a positive real number. Then writing up this identity for every
prime p and adding the formulas obtained in this way, we get

2

(7)

To estimate the right-hand side, we use (1) with T(a) = S(a) and X —
= |":p<Q, I<a<p—-]|. In this way, we get the standard arithmetic
form of the large sieve:

In the most applications we use this large sieve inequality for giving an upper
bound for Z under the assumption that for many primes p <Q, the set AT
must not meet many (say, > cp) “forbidden” residue classes modulo p.

3. In several problems studied recently one would need an extension of
the arithmetic form (8) to composite moduli. In other words, one would like
to give an upper bound for
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for any set A4 of sifting moduli (and for any set Af).

Extensions of the large sieve to composite module have been given by
Montgomery [7], Johnsen [6], Gallagher [5], Salerno and Viola [11], Elliott
[2], Erd6s and Sarkdzy [4] and Elliott and Sarkdzy [3]. Montgomery’s idea
was to replace the identity (6) by

@o)
(a.0)=!

If the sifting moduli are primes and there are “many” (~p/2 or more) “for-
bidden” residue classes for every p < Q (including the small primes), then by
using (10) he could sharpen (by saving a log Q factor) on the estimate for
Z that can be derived from (8). On the other hand, in the general case one
cannot give an upper bound for (9) in this way. Johnsen [6] and Gallagher
[6] have studied the more general case when the “forbidden” residue class-
es belong to prime powers (including the primes). Salerno and Viola [11]
studied sifting by almost primes under quite strong conditions on both the
sifting moduli and the forbidden residue classes. Elliott [2] estimated a sum
quite close to (9) in the case when the sifting moduli are small. Erdos and
Sarkdzy [4] gave an upper bound for (9) in the special case when A4 consists
of prime squares. Finally, Elliott and Sarkdzy [3] estimated a sum like (9)
in a special situation.

In general, one cannot expect a non-trivial estimate for the sum (9) with-
out any condition on A4. This can be illustrated by the following example:
Let M.—Al —{n: n<1V,2|n}. Then both Z and \A4\ are large (in terms
of N), however, also the “variance” (9) is large. In this paper our goal is
to show that this difficulty can be avoided by certain mild assumptions on
the prime factor structure of the elements of A4. In fact, we will derive
a non-trivial and nearly best possible estimate for (9) from the composite
moduli analogue of (7) in each of the important special situations when the
sifting set A4 consists of (i) prime powers; (ii) almost primes; (iii) integers
all whose prime factors are of medium size; (iv) highly composite numbers
(i.e., numbers having many small prime factors).

4. We will prove the following theorem:

THEOREM. Let K be an integer, let N be a positive integer, assume that
AiC{K+ 1, K+2,... ,K+N), and define Z, Z{qg, h) and T(a) by (3) and
(5), respectively. Let A4 be a set of positive integers, and write M = \A4)\,
Add = {m:m € A4, d\ m}, Md= |Add\. Then we have

(M)=1
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Furthermore,
(i) If k is apositive integer and v is a real number, then we have

(12) EANE <(vZ+N)Z.

(i) Ifk >2 is a positive integer, u, t are real numbers with 2 <u, uk <t
and Ad = {m:m"t, p(m) f u, v(m) =k}, then we have
(13)

J2 mE [ z@radl)-~) <C(i+)T~7(loglog<_loglogU)fc 2) tZ
mEjVt h=0

where ¢ = c(k) depends on k (but it is independent of all the other parame-
ters).

(iii) Ifu, v, t are real numbers with 2<u<v”™t <N, u2”t, and A4 —
={m:1<m%t u”rp(m) <P(m) ~v}, then we have
(14)
m—1 (12+ z feruv " <
(z(m™h)
mMGAI  h=0 {? + S r + utogufogt) z f°ruv<i-

(iv) If u, v are real numbers with 2<u <v, k is a positive integer and
A4 denotes the set of all the square-free integers that are products of exactly
k prime factors p satisfying u <p<v, then we have

m—t m(v) —7(-u)

(15) E mE z(m.h < (2vZ+ N .1
nNGM  h=0 m -

Remarks 1. One can use (11) for deriving a good upper bound for (9)
only if the numbers Mj are small, say, = o(M) for all d. The example
A4 = Al = {n:n~1V,2|n} given in Section 3 shows the necessity of this
condition; in fact, in this case the problem is that M2 s large. Thus to get
a nontrivial upper bound for (9), one needs an assumption which implies
that the numbers are small. The simplest assumption of this type is to
assume (as in (i), (iii) and (iv)) that p(m) is large for every m € A4.

2. Both (12) and (15) involve (8) as a special case.

3. In the special situations studied by Montgomery [7], Gallagher [5] and
Elliott [2], their estimates give an upper bound for Z better by a logarithm
factor than the one that can be derived from our estimates above. However,
as also Montgomery’s and Gallagher’s comments show, it seems hopeless to
save this logarithmic factor also in the general case (e.g., when u is large),
and in the most applications this loss is irrelevant.
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4. (11) generalizes (14) in [4], and (12) in (i) generalizes the inequality
used in [4], (14) in (iii) covers the situation studied in [3] while applications
of (15) in (iv) (to attack problems like the ones in [1] and [10]) will be given
by G. N. Sarkozy and by Stewart and me.

5. Proof of the Theorem. First we are going to prove (11). By (6), we

have
m=ds/ j\2 __ mA

(\/v mGAl h=0 mGE aE K
If 1£ A4, then the contribution of m —1 to both sides of (11) and (16) is
0, thus we may assume that 1~ A4. Let us write every fraction ~ in the
sum on the right-hand side in the reduced form £ where d > 1, (b, d) = 1 and
dIm. Then we get

m—1

E EK>| - E TO)

m£Ad d\m O<b<d

17) d>1(M)=I
B dEZ \ImC;‘-E % ?b%qjl " B) _EZ m O<b<d r(5)
)~ (M)=1

(11) follows from (16) and (17).
6. Now we are going to derive (i)-(iv) from (11).
(i) We use (11) with A4 = {pk:p prime, p <v}. Then clearly,
Md = l) ifd—p_l, prv, 1<j ™k
- otherwise.

Thus it follows from (11) that

pk -1/ n\ 2
E E V. *>-| E Z =
p<t> ( ) mGAl li= ( ( ) )
=EE E
i=10<6<pl TI?
(M=1

To estimate the inner sum, we use (2) with an= 1if n £Af, an= 0 if n £AT,
an—0 if n £Al and X = p<n, 1<j <fc 0<b<p3, (6,p) = 1j. If
~Ex, pE-Tand " then clearly

pige  (pg)k uZX
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Thus (2) yields

EE E  (9) <(&+N)Y" 1=(EN)Z

p<v j=10<6<pl ngM
(6,p)=I

7. (ii) Let us write
n{y,z,j)= [{n: n<y, p(n)"z, v(n)=j}\.
Clearly, forj =2,3,... we have
*(.z.J)=_E
Z<p<yllj

By using this recursion and the prime number theorem, it can be shown
easily by induction that for fixed j (> 1) and 2" z <y, y—+00 we have

(18)
+0 (i~ (loglog(r+~ " 2

(where the implicit constant in the error term may depend on)).
Let us write
Vr={n:n"t p(n) *u, v(n) —r).

Then by (11), we have

, 7\ 2 +°°
7 -
me iB (- (mA) J O<b<d T
(19) (M)=1
E E A Hs)l-
r=1 deX>r 0<b<d 1
(M)=1
Clearly,
(20) dEVrimplies d>ur,

thus in view of (18) for d £ Xr we have
Md —I{rri: m <t, p(m) ~u,v(m) =k, d|m} =
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= [{n:n<t/d, p(n)>u, v(n) = u(m) - v(d) =k - r} = F(t/d, u,k-r)<

(21)
1
(k S r- 1) d Io t/d (log log t/d —og logu)k T J+
d dTogi/d (loglog(l + t/d))k r 2 for 1”~t<k—1,t/d>uk r
and clearly,
(22) Md<1forr=k
(23) Md=0 for I<r<:k- 1, t/d<uk-r.

Define the positive integer L by
(24) t<2Luk <2t,

and forr=1,2,... k,j —1,2,... ,L, write I(r,j)= (t/23uk r,t/23~1uk~r]
Then in view of (1), (20), (21), (22) and (23), it follows from (19) that

E -E (XmIV*-

ieM
2 Jfe-l
=Euw- E +EEM E
deVk 0<b<d r=1 devr O<b<d
(M)=i (M)=I
r *-1 L
SE E r +EE(tS/ ) E 114 <
delh 0<b<d V 71 r=1>1 deVrnI(rJ) 0O<b<d
6<0-1 (b,d)=1
ifcl L /
<(t2+iv)z+njn( (ioglog2*«* r-loglog«)* r V
N e L 4
(25)
23uk~r / o\ k+=2
+iog 2>uk~r (*°gl°8(l + 2,f -r)) \b27iz(fc 1) tWV 2=

-pFt» > * o+ £ ((t 2)’-rm
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v k - k-r-2
*—
loglogu)t r 1+ 23uk~r log 23 7(loglog(l + 23u* 1)) +
<t Vuk \k—r—1
g
+J\E1EI \ (k—r —1)\0gVuk-r peglog2” Lk r - 103108 *
r=1j

Vuk~T
Iog . E;c?(loglog(l + 2>Uk- T))k-r-\

An easy computation shows that it suffices to keep the first term (t2-f N)Z
and the first half of the r = 1, j = L term of the last double sum, since the
total contribution of all the other terms is less than a constant multiple of
these terms. Thus, in view of uk” t and (24), it follows from (25) that

Y mWYﬁ -) <
mEM h=0 :
« (i-+N)Z+ 81oS2L" _1 - loglog «
< +N + tN loglogt- loglo k 2)Z<
r ulogt( g log g log u) )
t+ N loglog t —log lo k 2)tz
ulogt(g g t—log log u) ) tZ.

8. (iii) If d>1and Md > 0, then clearly, u d < and, writing V =
{n:1<ndi, urp(n) £P(n)"u), we have d £ P. Let

A ,P2:Pn max/u,f\_ '
Vu J L V V] U
o P flu, £) for uv <t
-{ 0 for ur > t.
By (11), we have
meAt /=0 V 7

(26)
=E * E [TQ)f=EL+E2+E3

dev
(M) i
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where

E=E* E K S) (fori=1,2,3).
! devx ' O<b<d
(M)=1
If d GV\ and Md > 0, then there is a positive integer k with dk £ M..
This implies that

(27) k—21orp(k) ~u
and

tle 1 -
(28) K iyl

It follows from (27) and (28) that k =1, hence Md = 1. Thus

E=E E TC

deVi 0<b<d
(b,d)=1

To estimate this sum we use (1) with X —{|:d ZT>i, 0<6<d, (6,d) —1}.
If $€2>i, and 3/57, then

b
d~ d

Inv

1
v

d

Thus we obtain

(29) < {t2+N)Z.
Assume now that d £V 2. Then

Md = [{m: m£ M, d|m}| = {fc: dic6 Ad}| =
= {/c: u<p(k)<P(k)<v, k5 t/d}|.

By d € £52, here we have
3= =

and

Thus by Brun’s sieve,

= : R W
Md = f{fe: u<p (k) k<t/d}\ <ot
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so that
t
E'K/E d |0gu E <
devz o <b<d

(M)=1

t i
(30) ) logu E d E <

maxiu,t/v)<d<t/u 0<b<d

M)=i
«i1"Ee E E
J=Ji v~ i<d<2l O<h<d
~ ?M%zl
where the integers j4, j2 are defined by 2J1 1 < max(u, f-bigr) » 2J1, 22 *

2N < 2J2+1, respectively. The last double sum can be estimated by using (1)
with 6 >(2-J)2= 2~2j. Then we obtain from (30) that

5 logu 3§1 m+m<

t t
L - —_—  — A , -
(31) < Iogu(2J2+A2 jihz< | max\u Y
t
logu \u \u t
Finally, assume that uv <t and d£V 3. Then

Md—Km:m£Ewm ., d\m)|=|(fc: dke A4}\ =
= \{k: k<t/d, u*p(k) " P(k) "v}\.
Here we have d”t/v, hence v~t/d. Thus by Brun’s sieve,

1-- 1.
p<u y v<psit/d P,
t  logv
< C2&'Iog t/d logu
As in the estimate of A 2, we define the integers J3, j4 by 2j3 1 < u <23 and
24 < 2™ < 2J4+1, respectively, and we use (1):

E « E i logu
3 ey, dlogthd logu p =y T (s

(M =i
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<t logv 1 E
IOgU u<f\d<t/ d IOQ t/d 0<6<c/
(M)=i
tlogV 1 \ > v >
<

logu J:3a2l\0gt(2> T |S

2J-1<d<2-> 0<b<d
" (M)=I
t logv
logu y thdglﬁ \§221 tAQZ <

t logv / 2H N
N logn \logi/2j4  2Blogt/2*>) ~ »
t logv { tlv N

logu |o&|) ulogt/u Z
hence, in view of u2” t,

\Y Nt log v
vlogu ulogulogt,

It follows from (26), (29), (31) and (32) that for uv>t we have

E ME (z2(m/0-8) =ExtE X

<(i2+iV)Z + - j*
( ) log f+UJIZ<\|'+qugu

(32) E |«

(since t~ N and u2” i), while for uv <t we have

nrIIQEAt» I.:o(vz(«">)_!) =£, +£, +£3«

iVi log t;

o N n o
<<(i2+ |V)Z+[Og U(\ u+ t))z + ﬂv 'IEog u+ 4 log Ulogt
M N L v Nv Nt log v

T Ulog U™ Viogus * V" *logU) * Ulog Ulog t

Nv Nt log v
Iog uu log U log t
and this completes the proof of (14).

2
t

Z<

93
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9. (iv) Let us write #(v) —ir(u) =s. If k > s, then M =0 so that (15) is
trivial. Thus we may assume that k 4s. We write

Vr={d:d\ p, i/(d) =r].
uRy

Then clearly,
(33) d<vrfordeVr.

Furthermore, for d*Vr (1  ~k) we have

Md —\{m:d\m,m£ M}\=\{n: dn£ M} \=
= jn:n|d-1 p, u(n) = k —i/(d) —k —rj

u<p<v

Here n has k —r distinct prime factors which can be selected from the s —r

distinct prime factors of d_1 J] p, so that
u<p<v

M'= (* -r) = C - *) (tOr<i€l,")-

Thus by (11), we have

E " (mb)>F s
MYt fi=9 C g2 ?%ﬁ :

s—r
=EE .« E
r=1 tiexX>r O<b<d
(M)=1
r

S_
E .« EE
r=1 deVr O<b<d
(M)=

In view of (33), the last double sum can be estimated by (2) with $=v 2r
so that
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(34)

Writing Ar= (*_£)v2r, for 2 <r <k we have

Ar ! (s-r+1) s 1

Ar (k—r-fhn2<v2<u’
hence
(35) TA r<Ak;¥.v 3:v2k-1- 1. <2vk

=T i b —1/u
(15) follows from (34) and (35).
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Abstract

We consider the class of all convex discs with areas and perimeters bounded by given
constants. Which disc of this class has the least possible perimeter deviation from a convex
fc-gon? By perimeter deviation we mean always the metric defined in [5, p. 135] and denoted

there by i 1(C, D). Some of its properties are developed in [7] and, independently and in
a different way, in [4]. We shall answer this question and discuss some related results.

1. Introduction

By a convex disc we mean a convex compact subset of the Euclidean plane
with interior points. We shall concern ourselves with the approximation of
convex discs by convex polygons. One method of measuring the deviation
between two discs is given by their perimeter deviation. Let p(M) denote
the perimeter of the set M. If X and Y are convex discs, the perimeter
deviation between X and Y is defined by

) SP(X,Y) =2p([X.Y}) - p(X)-p(Y),

where [X, Y] stands for the convex hull of X UY . This distance function,
introduced in a different way in [5, p. 135], is a metric on the class of all com-
pact convex non-empty subsets of the plane. Its properties are discussed to a
certain extent in [4] and [7]. It should be noted that Sp differs substantially
from the perimeter deviation used in [1] which is not a metric. 6P(X,Y)
may be considered a counterpart to the area deviation between X and Y,
defined by

(2) EA(X,Y)=a(XuY)-a(XnY) =
1- =a(X) +a(Y)-2a(XnY),

where a(M) denotes the area of the set M.
In Sections 2 and 3 we shall use a and p to denote positive constants
satisfying the isoperimetric inequality

P2
3) " > 47t

1991 Mathematics Subject Classifications. Primary 52A40; Secondary 52A10.
Key words and phrases. Approximation of convex discs, perimeter deviation.

Akadémiai Kiad6, Budapest
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Let C(a,p) be the class of all convex discs with area not less than a and
perimeter not greater than p. A convex polygon with at most k sides is
called a fc-gon. By a regular k-gon we mean a regular polygon with exactly
k sides. Let Vk denote the class of all fc-gons. A measure for the closeness
of the approximation of k-gons to discs from C(a,p) is given by

(4) Ap(a,p,k) =inf6P(C, P),

where the infimum is taken over all C GC(a,p) and all P GVkmThis function
is interesting only in the case when

02 I
— < J—
(%) 3 4k tank .

which means that p is less than the perimeter of a regular fc-gon of area a
Otherwise we have C(a,p) so that AP(a,p,k) =0.

In Section 2 we shall find the infimum of p([C,P}), taken over all C G
GC(a,p) and all fc-gons P of given perimeter. In Section 3 this result will be
applied to determine those members of C(a,p) and Vk for which 6P(C, P) is
minimal. The corresponding problem involving the area deviation in place
of the perimeter deviation is solved in [3],

2. A minimum problem

Let Vk(po) denote the class of all fc-gons of perimeter p0. In this section
we shall deal with the following

Probtem. Find a member ofC(a,p) and a member ofVk(po) such that
the convex hull of their union has the least possible perimeter.

Accordingly we introduce the function
(6) m(a,p-k,p0) =mmp([C,P]),

where the minimum is to be taken over all discs C GC(a,p) and all A;-gons P G
GVk(po)- The existence of the minimum follows from the Blaschke selection
theorem. Obviously, m is an increasing function of pO0.

In certain cases, the solution to our problem can be deduced from two
previous results, which we are going to recollect for the reader’s convenience.

Let P* be a regular k-gon and let C* be a convex disc that is bounded
by k congruent circular arcs, each joining two consecutive vertices of P*.
We call C* a regular arc-sided k-gon with kernel P*. If (5) is satisfied it
can be shown (see [2]) that there is exactly one regular arc-sided fc-gon C*
with area a and perimeter p. Let 2p be the central angle of the circular
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arcs bounding C*, where 0 < y?” n/k. We define a function $(q) by the
parametric equations

@ ") = 0= TRl <penig

for 0 < g<gq, where q corresponds to ip= n/k, and put 4>0)= 1. Elementary
calculation yields the equation

8) Pi =4fcsinl *(9)
a k cos(7r/AY) + q sin(n/k)"

which has a single root g £ (0,?]. Note that p(Pm=(p sinp)/(p=p(*(q))~V2.
It will be convenient to consider P* itself as a degenerate regular arc-sided
fc-gon with kernel P*.

Let the function gi(a,p,k) be defined by

) if g < 47Ti
(9) gi(a,p,k)
if Ec1 > 47r<,

where t = t(k) = (k/n) ta.n(n/k), and $(g) is given by (7). Let C be a disc
from C(a,p) and P a k-gon with P C C. It was proved in [Z] that

(10) P(P)fi;9i(a,p,k).

Ifp2/a” Ant and p(P) = <7i(a,p, k), then C is a (possibly degenerate) regular
arc-sided A:-gon of area a and perimeter p, and P is the kernel of C.

Let C be a convex disc of area not less than a, and let P be a A-gon
from Vk(po) with P CC. Since gi is a strictly increasing function of p, for
p >y/Ana, it follows from (9) and (10) that

(11) p(C)*>G(a,k,p0),
where

y/Ana ifPo<fa sinf

2) G(a.k,p0) PQ\f${q) if yj*-k sin f 2 Po<y/Anta

_Po if y/Anta<po,

and q —Aka/pfi —cot(n/k). For po € [y/Aa/nk sm(n/k), y/Anta] equality
holds in (11) if and only if C is a (possibly degenerate) regular arc-sided
fc-gon of area a, and P is the kernel of C. From (9) and (10) we further
conclude that

(13) gi(a,p,k)<p
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and
(14) rn(a,p;k,po)<p if p0<gi(a,p, k).

Let P be a regular fc-gon, and let C be a convex disc obtained from P
by rounding off the corners of P_by k congruent circular arcs. We call C a
smooth regular k-gon with case P. It will be convenient to consider P itself
as a degenerate smooth regular k-gon with case P.

Let C be a disc from C(a,p) and P € '"Hc with C C P. By applying the
isoperimetric inequality for fc-gons to the formulae (17) and (18) in [3] we
obtain

(15) p(P)*92{a,P, k),

where

t(p- y/(p2- 4a7r)(l - i“1 if <4nE
16 grap < | (P VP2 40 iD)
s/Airta if 2r >471.

Equality holds in (15) if and only if C is a smooth regular k-gon of area a
and perimeter p, and P is the case of C(p2/a < 47ri), or C =P is a regular
A:-gon of area a(p2/a > 47r/). By (15) we have

m(a,p;k,po)=Po if p0~gi(a,p,k), and

(17) m(a,p-,k,po)>p0 if p0<g2(a,p,k).

Returning to our problem, we distinguish the cases p2/a ~ 47Ti and p2/a <
< 47ri.

Case (a). p2/a >4rri.
From (9) and (16) we see that

92(a,p,k)<gi(a,p,k).

Let po <g2(a,P, k), and let C and P be members of C(a,p) and Vk(po) such
that

(18) p([C.P]) =m(a,p;k,po).
Inequalities (15) and (14) imply that C (JiP and
(19) P([C.,P])"p.

We shall see in the proof of Theorem 1 (Lemma 6) that, whenever (18)
together with the assumptions P (EC and C <£P is satisfied, then p(C) =p,

MAGYAR
TUDOMANYOS AKADEMIA
KONYVTARA
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whence p([C, P]) > p. Still, by (19) this is impossible. Thus we conclude that
PC C, and from (11) and (18) it follows that

(20) p([C.P]) = G(a,k,p0).

The results in (17) and (20) can be summarized in
Remark 1. If pZa >Ant, we have

(21) m(a,p-,k,po) = G(a,k,p0).

From the suppositions (18) and yfAa/nk sin(7r/k) ~ pO~ \/Anta it follows
that C is a (possibly degenerate) regular arc-sided k-gon of area a, and P is
the kernel of C.

Case (b). p2a < 47Tl
In view of (9) and (16) we have the inequality

(22) gi(a,p,k) <g2(a,p.k),

which is contrary to case (a). Let p0<gi(a,p, k), and let C GC(a,p) and P G
GVk(po) satisfy (18). By repeating the argument used in case (a) we again
come to the conclusion that P is contained in C and that (20) holds in case
(b) as well. Taking into account that g2(a,p,k) >y/Anta we see from (12)
and (17) that (21) continues to hold for Po* <Ag>P, k).

Remark 2. Ifp2/a <Ant and either po £ gi{a,p, k) or po ~ g2(a,p, k) we
have

(23) m(a,p-k,po) = G(a,k,p0).

If C and P satisfy (18) and if po = g2(a,p,k), then C is a smooth regular
k-gon of area a and perimeter p, and P is the case of C. If C and P satisfy
(18) and if y/Aa/nk sin(n/k) <p0<g\(a,p, k), then C is a regular arc-sided
A--gon of area a, and P is the kernel of C.

We now proceed to find the minimum of p([C, P]) with C GC(a,p) and
P GPfc(po) in the more complicated case when

g-i(a,p,k) <p0<g2(a,p,k).

To describe the extremal configuration we consider the outer parallel domain
C of a regular arc-sided A;-gon C* at some distance rj. If C* is not a circle,
then C is bounded by k equal circular arcs of radius rq and k equal circular
arcs of radius V2>rg. The tangents at the end points of the i-th arc of radius
7q intersect at a point, say, A{. The points ,Ak are the vertices of
a regular A-gon P which we call the k-gon associated with C (Fig. 1). By
a k-gon associated with a circle C we mean any regular k-gon concentric
with C.
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T heorem 1. Let

0] 9i(a,p,k) <p0<g?{a,P,k),
and let C £C(a,p) and P G'Pfc(po) be such that
(ii) p([C.P]) = m(a,p;k,p0).

Then C is an outer parallel domain of a regular arc-sided k-gon and P is the
k-gon associated with C. Furthermore, C has area a and perimeter p.

We shall, in fact, prove Theorem 1, making the weaker assumptions (ii)
and

(iii) CEP, PEC
instead of (i) and (ii). Theorem 1, in union with Remarks 1 and 2, solves
the problem raised at the beginning of this section. Observe that a regular
arc-sided k-gon and its kernel (as well as a smooth regular k-gon and its
case) may be regarded as a degenerate parallel domain of a regular arc-sided
k-gon and the associated fc-gon.

P roof of Theorem 1. Let us assume that C GC(a,p) and P € Vk(Po)
satisfy the conditions (ii) and (iii). We will develop the properties of C and
P in a series of nineteen lemmas, the last showing that C and P correspond
with the statement of our theorem.

By (iii), there is a vertex of P outside C. We now show

Lemma 1. In the exterior ofC there is a vertex of P which is an extreme
point of [C, P].

P roof. From assumption (iii) and the Krein-Milman theorem it follows
that there is an extreme point of [C, P] outside C. Such a point is necessarily
a vertex of P. O
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Lemma 2. IfP' is ak-gon with p(P") >p(P), then p{[C, P']) > p([C, P]).

Proof. Since p{[C, P']) < p([C, P]) clearly contradicts (ii) we can sup-
pose that p([C, P\) = p([C, P]). Thus P1E C, so that there exists a vertex
A\ of P' outside C, which is an extreme point of [C, P']. Let P" be a A-gon
obtained from P' by a small displacement of Axinto P'. Then p(P”) > p(P),
yet p([C, P"]) < p([C, P]), which is impossible. O

Lemma 3. P has exactly k vertices (and therefore interior points).

Proof. Otherwise we choose a point P £ C\P and consider the k-
gon P' = [P, {P}]. Since p(P') >p(P) and p([C, P'l) —p([C, P]) we have a
contradiction to Lemma 2. O

We denote the vertices of P in the anti-clockwise sense by Ai,... , Af,
Afc+i = A\ and write A VB for the line joining the distinct points A and B.

Lemma 4. Every side A, A,+1 of P contains the intersection of C with
A, VAi+i-

P roof. Otherwise we choose a point U 6(Cfl (A-VA{#+X))\ A,A+i and
conclude as before. Observe that P' = [P, {P}] is a k-gon. O

Corollary 1. No vertex of P lies in the interior of C.
Lemma 5. C and P have interior points in common.

P roof. Suppose that this is not true. Then there is a line t supporting
P and separating P from C. t intersects [C, P] in a segment UV and divides
[C, P] into two convex discs C and P' containing C and P, respectively.
Hence

(24) [C,P]=C'uP', C'nP"'=UV.

We shall denote the length of a segment or an arc by |.|. Because UV is a
proper subset of P', there exists a point W on i such that 2|PW| =p(P"),
and V is between P and W. The points P and V divide the boundary of C'

into the segment UV and an arc denoted by VU. From the definition of C
it follows that
C' = [C,UV\.

Thus

(25) [C, UW) =[C, UV u VW] =[C\ VW] =[UVu VU, VW] =
=conv [WV UVU UUW).
The segment UW = Q may be considered a A-gon of perimeter

(26) p(Q) =2\UW\A=p(P")>p(P).
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By (24) we have
p([C.P1)=p(C") +p(P")-2\UV\ =
=\UW\ + \VU\ + 2\UW\ - 2\UW\ =
=\WV\ +\VU\ + \UW\,

and this is the length of the closed curve composed of WV, VU and UW.

This length is not less than p(conv(WU UVU UUW)) (see [6]). Using (25)
we conclude that

p([C.PHZp(.IC.Q})

which together with (26) contradicts either Lemma 2 or Lemma 3. O
Supposition (iii) and Lemma 5 imply
Corollary 2. The boundary of P contains interior points of C.
Lemma 6. a(C) = a and p(C) =

PROOF. Because C (E P, there is an extreme point E of [C,P] outside
P. ObV|oust, E is a boundary point of C. Suppose now that a(C) > a
Let the origin be an inner point of C and choose a positive A< 1 so that
AC = C satisfies a(C') >a. From E £C it follows that [C\ P) [C,P], so
that p([C',P]) <p([C,P]). Since C € C(a,p), we have a contradiction to
assumption (ii).

Supposing p(C) <p we choose g >0so that P (fCe and p(Ce) <p, where
Ce is the outer parallel domain of C at distance g. The set C = Ce0 [C, P]
is a member of C(a,p). Since C contains C we see that [C,P}= [C, P]. Let
Ai be a vertex of P outside C. There are points of [C, {A]j)] belonging to
Ce\C. Thus C » C and a(C') >a. Since C and P satisfy condition (iii),
we have a contradiction to the part of Lemma 6 proved before. O

Lemma 7. If a side of P intersects the interior of C, then both adjacent
sides contain points of C.

P roof. Suppose that the side A{-\Ai intersects the interior of C and
that A,Ai+i flC = 0. By Lemma 4, C and A,_i are contained in the same
open half-plane H bounded by A; VA,+i. Let 6 denote the line bisecting the
outer angle of P at the vertex A;. A small displacement along b carries A,
into a point A" in If. Denoting the &-gon A\ ... A[... Ak by P’ we have

(27) p(P)>p(P),

because A(is outside the ellipse with the foci A,_i, A;+i and passing through
A,. We distinguish two cases:
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(a) CQb=0. tand t' are half-lines starting from A, and A" and support-
ing C at points B and B' that are separated from P by A_x VA, (Fig. 2).
Then

p([C, P}) - p([C, P'}) =|Af+1A,| + \AiB\ + \BB'\-
S|A L +1A |- |A 5.

Since \A,B\ + \BB'\ >\AtB\ + \BB'\ * |A,fl'|, we have
(28) P{[C.P')<P{[C,P}),

provided that
|a,*la,| + |a,5'|> |a,tla:i+ |a'5'|.
But this inequality is true because A( is an inner point of the ellipse with
the foci A,+i,J3" and passing through A{.
(b) CHb” 0. Since A(6 [C, P], inequality (28) holds also in this case.
(27) together with (28) contradicts Lemma 2, and Lemma 7 is estab-
lished. O

Lemma 8. Every side of P intersects C.

Proof. By Corollary 2 we may assume that A1A2intersects the interior
of C. We suppose that A,_iA, contains points of C and that A,A,+i does
not. In view of Lemma 7, A,_iA; contains no inner point of C, so that
A,_i VA, supports C. We displace A, on this line toward A,_i into A(
such that 1A, A'lis small and denote the Ar-gon Ai ... AJ... A* by P'. Then

p(P') <p(P) and
(29) p([C, P}) - p(IC,P]) =p(P) - p(P).

Lemma 7 implies that CD AMAi * 0. We may assume without loss of gen-
erality that A* VAi supports C; otherwise we consider Ak-\Ak instead of
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AkA\. By displacing Ai on Ak VA\ into the point Ax$ P' we obtain the
new k-gon A[ ... A[... Ak = P" with p(P") >p(P')- We choose Ak such that
p(P") =p(P). Let B and B' be two points on the boundary of C, but not
on Ak VAi, such that Ai VB and A[ VB' support C (if Ai € bd C, take
B = Ai). Then

(30) p(P") - p(P") = |AiAi|l + |AIA2] - |AXA2|

and

(31) p([C,P"])-p([C, P}) =\AXAIX + IALS'l - \A\B\ - IBB'\

Note that the quadrangle A\A'XB'A2is convex if |A,A(] is sufficiently small.
The triangle inequality shows that

IAIA2I + IAIB'l > 1A1A2I +
so that by (30) and (31)

(32) p{P") - p(P") >p([C, P"]) - p([C, P']).
By combining (32) with (29) and observing that p(P") =p(P) we obtain

p([C.PI)>p([C,P"}).
This contradicts assumption (ii) and the lemma is proved. O

Let A{ be a vertex of P outside C. Let T, and i7, be distinct points
on the boundary of C such that A; VTtand A, VU support C, and AT,-D
fic={T} AUnC={U Lemma 8 implies that AT, and A/, are
boundary segments of [C,P]. T, and U, divide the boundary of C into two

arcs. Let TiU, denote that arc which lies between A, and the segment Ti7-.
Lemma 9. is either a circular arc or a line segment.
P roof. It suffices to show that any subarc VW of Tit/,-, where V and
W are different from T, and U, is either a circular arc or a segment. Since
VW lies in the interior of [C, P], it has a positive distance g from bd [C, P}.

We cover VW by a finite number of subarcs, say 61,... ,br, such that each
overlaps the following and has a length less than g. Lemma 9 is proved if we
can show that every 6j is either a circular arc or a segment. Suppose that

bi = W W is neither the one nor the other. 6, is replaced by the circular
arc b, with the same length and the same endpoints and lying on the same
side of the chord V'W . As |&| < g, b, lies in the interior of [C,P\. Thus the
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(possibly non-convex) disc D = (C\convd,)Uconv6, is a subset of [C, P] with
p(D) =p. In view of the well-known isoperimetric property of the circular
segments we note that a(D) > a Hence

(33) C =convD€C(a,p), [C,P)C[C,PL

By (ii) we have [C, P] = [C, P], Using (iii) and Lemma 6, we see that C P
and P C ,sothat a(C') =a The contradiction to a(D) > a completes the
proof. O

The following lemma states that C has a smooth boundary.

Lemma 10. Through every boundary point of C there passes exactly one
support line.

Proof. Suppose that B is a non-regular boundary point of C. Let s
be a support line through B different from the limiting support lines. Let
b be a subarc of bdC covering B and such that its chord is parallel to s.

On a circular arc (possibly a segment) of type TiUi considered in Lemma 9
we choose a subarc b' such that b and 6 have chords of the same length.
By cutting the sets conv b and conv b' off from C and interchanging their
positions we obtain a set D with p(D) =p(C) and a(D)=a(C). If bis
sufficiently small, D is non-convex and contained in [C, P]. Thus C = conv D
satisfies (33) and, moreover, a(C') > a. Then we can conclude as in the proof
of Lemma 9. O

Lemma 10 shows that in Lemma 9 the arc T,f7i cannot be aline segment.

Corottary 3. The subarcs of type T{Ui of the boundary of C, considered
in Lemma 9, are circular arcs. We shall refer to them as arcs of type I.

Lemma 11. All arcs of type | have the same radius.

P roof. Suppose that two arcs of type I have different radii. Let c and
d be proper subarcs of them with chords of equal lengths. By exchanging
the positions of the circular segments conv ¢ and conv ¢’ we obtain from C
a non-convex disc D. Obviously, p(D) =p, a(D) =a, so that C =convD €
€C(a,p). If cand c' are sufficiently small, then D C [C,P]. The rest of the
proof is the same as in Lemma 10. O

By Corollary 2, at least one side of P, say contains interior
points of C. Ai-i and A, may be outside or on the boundary of C. If A,
is outside C, let T, and U, be two points on the boundary of C such that
A VT, and A VU; support C and A, T, flC = {T,}, Ajtl, fIC = {{/.} (see the
notation used in Lemma 9). If A, € bd C, put T, = f#e= A,. We consider
that boundary arc of C which is separated from P by A® i VA,. This arc

contains the points 17, i and T,, and the subarc i/, iTf. Since the boundary
of C is smooth, Ui-\Ti is not a line segment.
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Lemma 12. Ui-\T1i is a circular arc.

P roof. Thelinetsupporting C at a point X of U,-iT, does not intersect
the interior of the segment A, iA,. Thus t is a support line of the convex
polygon Aj ... Aj-jXA, ... A*. That means that C and P lie in the same
closed half-plane determined by t. Hence t is also a support line of [C, P] and

U,-iT, is part of the boundary of [C, P]. Let c be the circular arc with the
same length and the same endpoints as and lying on the same side

of Ui-i VT{. Suppose that Ui-\Ti ~ c. Similarly as in the proof of Lemma 9,
we form the (possibly non-convex) set

D = (C\ conv Ui-\Ti) Uconv c.

Then p(D) =p(C) and a(D) > a(C), so that C —conv D £ C(a,p) and
a(C') >a. Since P and conv Ui-\T, do not overlap, the set E defined by

E = ([C, P]\ conv U,-iTt) Uconv c
has the properties
p(E) =p([C,P]), DCE, PCE.

The required contradiction follows from [C', P] C convP and

P([C", P]) SHconvE)"P(E) =P([C, i3])
in a similar way as in the proof of Lemma 9. O
The circular arcs of type UIM\TI will be called arcs of type Il. We denote
the centre of the corresponding circle by IVm
Lemma 13. All arcs of type Il have the same radius.

P root. Suppose that two arcs of type Il have different radii. Let ¢ and
c' be small subarcs of them with chords of equal lengths. By exchanging the
positions of conv c and conv ¢' we obtain from C a non-convex disc D with
p{D) —p(C) and a(D) = a(C). Since the further argument is very similar to
that used in the proof of Lemma 12, we omit the details. O

Lemma 14. Let r\ and r2 denote the radius of the arcs of type | and type
I, respectively. Then

(34) rx<r2.

Proof. Suppose that rq>r2. Let G and c2 be small subarcs, with
chords of equal lengths, of two arcs of type | and type I, respectively. By
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interchanging the positions of conv ¢\ and conv @ we obtain a non-convex
disc D with a(D)= a(C) and p(D) =p(C). Thus C = conv D € C(a,p). Note
that [D, P] = [C,P]. In view of ri > 72 [-D, P] is a proper subset of [C, P],
which implies p{[C, P]) < p([C, P]). But this is impossible. O

Lemma 15. C is strictly convex.

P roof. Suppose that a segment s is part of the boundary of C. We
may assume that s lies either on the boundary or in the interior of [C,P].
Let ¢ be a small subarc of an arc of type Il. We cut conv c off from C and
join it to s, so obtaining from C a non-convex set D with p(D) =p(C) and
a(D)=a(C). Thus C = convD 6 C(a,p) and a(C') > a. By this process
we obtain from [C, P] a (possibly non-convex) set E, where DUP CE and
p(E) <p([C,P]). The contradiction follows from

p([C, P1)ip{conv E) <p{E) Zp([C, P])
and a(C') >a. O
From Corollary 3, Lemma 12 and Lemma 15 we infer

Corollary 4. The boundary of C is composed of circular arcs of type
I and type II.

Let A, be a vertex of P on the boundary of C. At least one of the sides
and 1 intersects the interior of C, and the other touches C.

Lemma 16. The normal to the boundary of C at A, bisects the angle
<Ai-i AAj+i.

Proof. Otherwise the ellipse with the foci A, i and At+l and passing
through A, would intersect the interior of C. Thus we could displace A, into
the interior of C without changing the perimeter of P or [C, P]. But this
contradicts Corollary 1. In particular we see that both A,_i A, and A A, +i
intersect the interior of C. O

The Lemmas 12, 13 and 16 imply

Corollary 5. If A, is a vertex of P on the boundary of C, then A,
is an inner point of a circular arc of radius r2 that forms part of bd C and
bd[C, P).

Let A- be a vertex of P outside C. Following the notation used in
Lemma 9 we consider two points T, and t/, on the boundary of C such that

A, VT, and A, VU, are tangents of C. T,i7, is a (circular) arc of type I. We
denote the centre of the corresponding circle by Mi.

Lemma 17. The line A, VM, bisects the angle <Ai_iA A, +i.

Proof. To simplify the notation, we take i = 1. Suppose, on the con-
trary, that Mi and A2 are on the same side of the line bisecting <AfcAiA2-
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Thus A\Ai intersects the interior of C. The line through A\ normal to M\A\
determines two open half-planes, one of them containing C. We displace A\
into this half-plane and write A'x for the new position. The support lines to
C containing A'x intersect the boundary of C at, say, T[ and U[. We can
choose A'x so that (Fig. 3)

(a) i} n21= + 17MA21)

i) IMjAIll <\M\A\\, and A

(7) T[ hes on T\U\, and U{ on UiT2, i.e. the arc of type Il adjacent to T\U\.
By (a), the A:-gons P and P' = AXA2... Ak have the same perimeter. Observe
that A'x” [C, P]; otherwise [C, P'\ would be a proper subset of [C, P], which
implies a contradiction to assumption (ii). Thus (B) and (7) are satisfied if
A'x is sufficiently close to A\. To prove the lemma it suffices to show that

(35) A=p([C,P])-p([C,P"))>0.

We shall use the following notations: \M\AR —d; = 6, N\ is the
centre of the arc U\T2 (by Lemma 10, the points Ni,Mi, U\ are collinear);
IVXALl=¢c; <NIM\A'x—y?if r2> rx (note that ip> <N\M\A\ > f).

The configuration in Figure 3is determined by the five parameters 77, r2,

d, band ip Keeping fixed the other parameters, we consider A as a function
of r2 only, where r2 rx by Lemma 14. Elementary calculation yields

A =2\TXAX + \ThV[\- ITITil - \T[AX - \AXUX =

r2 . bsing
=r2 arccos--—-—— arcsm----- =

(36) ¢

- i (Rarccos J —arccos  + P— +

+2\Jd2-r\- \UJb2—r\—\jc2-r\ = A(r2),
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where
(37) c2=D0b2+ (r2—fi)2- 2b(r2- ) cos<p.
Since ¢ —pb and arcsin(6 sin <p/c) —»t—<pas r2 tends to rj, we have

( Lg} 0\
arccos -— arccos — +
b as
+2 Myltp-rl- y/b2-r{j .

By condition (/?) we have b<d, so that
(38) r&l_r;@n A(r2)>0.

This proves (35) in the case r2=rj. If r2>r1( we make use of (37) and
obtain from (36)

r2bsinip r2—j —6cos<p
+ N c Vi1i-?7
Observe that arccos(r2/c) —arcsin(6 sinp/c) =ip is the central angle of
the arc U\U[. Hence

dA . .
(39) el if) —sin ip > 0.

(35) now follows from (38), (39) and Lemma 14. O
From Corollary 2 and the Lemmas 16 and 17 we infer
Corotlary 6. Every side of P intersects the interior of C.

Let us denote by 2a, the angle formed by the two support lines of C
passing through A;, and by 23- the interior angle of P at A,. The follow-
ing lemma points out that the vertices of P satisfy a certain ‘condition of
equilibrium’.

Proof. It suffices to show that the supposition

CO0S ax cosa?z2

(40) cos R\ cos 82
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leads to a contradiction with the assumption (ii). (40) implies that AXx is
in the exterior of C. We displace A\ through a small distance x\ on the
bisector of <t\A\U\ into the interior of P and denote the new position by
A\. Writing P' for the k-gon A\A2... At and \MiA\\= d1 we have

p((C,P])-p((C,P}) =

—2 \Vd\-r\—,{/(d\ —Xxi)2- r\—\ arccos ;r+rx arccos . ll*l

Observing that rx= d\ sin ¢*x, we find

(1) limP ([e,p])-K [€,13) - 5 o

as xi tends to 0. Writing |A,A,+x| = s, we note that P' has the same side-
lengths as P except for Sk and si, which are replaced by sk = |AfcAX and
s[ —\A\A2\ where

(42) sk = (si +x\- 2skxx cos3x)1/2
and
= (si + x\ —2sxXx cosBx)1"2

respectively.

We now displace A2 through a small distance x2 on the bisector of
<T2A2U2 into the exterior of P' to a point A2. (If A2GbdC, displace
A2 on the normal of bdC.) By this process we obtain from P' a new k-
gon AIXAI2AS... Ak —P" (Fig. 4). We take x2 so that p(P") =p(P). P"
has the same side-lengths as P' except for  and s2, which are replaced by
s" = |AjA2| and s2= |A2A31 Denoting the angle <AxXA2A( by AR2we have

SXsin AR2=x\ sin Rx

and
§'" =524+ x\ - 28IX20QB(IT—R2+ AR2).

Some trigonometrical calculation yields
s" =[(«i “ *1 cosBi +*2cosB2)24 (xx sinBx+ x2sin 32)2]1/2,
s2=(s\ + X2+ 252X2 cosR2)X2.

The above condition p(P") —p(P) is equivalent to the equation

(44) Sk+ s'l+s2=Sk+ bx+ s2.

By means of (42) and (43) it is easy to show that (44) determines x2 as a
unique continuous function x2(xx) on some interval 0 <xx < £ with x2(0) = 0.
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By differentiating the left-hand side of (44) with respect to x\ and X2, one
proves that £2(2:1) is differentiable and that limx”xi) = cosR\/cosR2 as
xi —0. Hence

X2 _ cosBx

m — )
xi—0 Xi cosB2

Fto- 4 A

Let A2VTj be a support line of C, where TE€ U\T2- Using the notations
IM2A2| = d2 and \N\A'2\= we have

==X 72=(d2+ x2)2+ (r2- ri)2+ 2(r2- ri)(d2+ x2)sina2

P([C,P"]) - p(IC, P]) = 2|A'T'| - 2|A2r2|- 2|T2T'| =
2 ("2 + ~2) cosa2

= 2N\A2-r2~27"2% |- 2¢ arccos-z----arcsi'n .

A straightforward calculation shows that

PSP D)-PUCPT)
22

as z2 tends to 0, and this continues to hold when r2=r\ or a2= x/2.
The combination of (40), (41), (45) and (46) leads to the conclusion that
p{[C, P]) >p([C, P")) for sufficiently small x\. Since p(P") =p(P), this is
impossible and the proof of the lemma is complete. O

Since at least one vertex of P is outside C, it follows from Lemma 18
that cosa, >0, for i=1,... ,k. This implies

(46) 2cosa2
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Coroltary 7. All vertices of P are outside C.

We displace the single vertex Ax of P on the bisector of the angle
<T\A\U\ through a small distance x\ in one or the other direction, ob-
taining the fc-gon AXA2...A* —P'. From (42) and two similar equations we
infer that lim[p(P) —p(P")\/xi = +2co0s/3i as Xi -> 0. Combining this with
(41) and (46) we can note for later use

. P([C, PT) —([C, P']) _ cos qu
I
(47) Mo p(P)-p(P") cos I3\

In the case r2 = iq, C is a circle. By Lemma 17, the fc-gon P is circum-
scribing a circle concentric with C, and Lemma 18 shows that P is regular.
This proves our theorem when r2=r\ or, equivalently, when p2/a = Ait. Thus
we may now assume r2>r\.

Lemma 19. C and P correspond to the statement of Theorem 1

Prooft.

Keeping up the notations used in Lemma 18, we recall that \M\U\\ =

= |M2P2|=ri, | 7I=\NiT2\=r2, and N\Ui and NiT2 are orthogonal

to A\U\ and A2T2, respectively (Fig. 5). A\A2 intersects M\U\ and M2T2.
We first show that

(48) \AXUr\ = \AZT2\.

Without loss of generality we may assume that |Aii7i| > |[A2P2|. Let F be
the orthogonal projection of A2 onto A\ v U\, and set |A2P| =v, |FPi| =w
and |AiPi| = x. Keeping fixed the other parameters, we consider B\, ai and
R2 as functions of x. By using

X W + X
cos ax = COs(Q!x —Pi) =
\/x2+r{ AMw +Xx)2+ V2
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we obtain

The derivation of this function differs from

only by a positive factor. Because ri/x = tan ai > tan(e*i —3\) = v/{w-\- x),
we conclude that cos/Ji/cosaj is strictly decreasing in x. Obviously,
cos /3/ cos ¢?2 is strictly increasing in x. Since x —IA2T2l implies the re-
lation cos/?i/cosai = cos 2/ cosa2, which is to be satisfied by Lemma 18,
equation (48) is proved. Hence A\A2\\M\M2, so that al= a2, Bi =/?2, and
more generally

(49) H=..=cf Bi=..=fk

Thus P is an equiangular fc-gon. Since, moreover,
IA,A,+i 1= 2(r2- rj) sin(a, - 29+ 2rx—

P is also equilateral. Hence P is regular and so is the fc-gon P* = M\M?2
... MkmP* is the kernel of a regular arc-sided fc-gon C* bounded by circular
arcs of radius r2—r\. C is the outer parallel domain of C* at distance r\,
and P is the &-gon associated with C.

This completes the proof of Lemma 19 and Theorem 1. O

Let C be a parallel domain of a regular arc-sided fc-gon, and let P be
the k-gon associated with C. We conclude this section by showing that the
parameters a(C) =a, p(C) =p and p(P) —po determine C up to isometry.

Let C = (C*)ri, where C* is a regular arc-sided k-gon, and let a(C)=a
and p(C) =p be given. Let 2pdenote the central angle of the arcs bounding
C*. The discs C form a pencil joining the smooth regular fc-gon, correspond-
ing to p—0, with the regular arc-sided A:-gon, corresponding to ip= < where
g=q(ip*) is determined by (7) and (8). Let r and r* be the in-radius of P
and P*, respectively, where P* is the kernel of C*. Then

XIA:
(50) = D)+ ol

COS(ITR =P

By applying (8) to C* and Steiner’s formulas to (C*)ri and setting cot(n/k)=u,
we find
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(p2—4a7n$ \
ar Po s _mn+q)k |

From (50) we obtain by differentiation
n(u+aq)]32 / g0S(X/A:) sin(xX/A; —P)\

2fctan —sin3<p $ r+rl-
ctan k—Sln P v cos2(7r/ A—p)

= —y p 2—4a7r(sin p—Ppcos <p)[tan(7r/A; —p) —(X/A; —)],
which shows that r,(<? < 0. Thus <is uniquely determined by p(F) = pO.

3. The perimeter deviation

We now turn to the problem of finding such members C of C(a,p) and
P € Vk for which £P (C, P) is minimal. In view of a remark made in Section 1,
we can restrict ourselves to values of a, p and k satisfying condition (5).
For a disc C € C(a,p) and a fc-gon P € Pk(Po) we have by (1)

(51) 6P (C, P) =20o{[C, P]) - p(C) - p(P).
Because p(C) ~ p, it follows from (51) and (6) that
(52) 6p(C,P) >2m(a,p; k,p0)-p-p 0.

If Po =92(a,P,k), Remark 2 implies that
Sp(C,P)>g2(a,p,k)-p,

with equality if and only if C is a smooth regular k-gon of area a and perime-
ter p, and P is the case of C. Let P' be the k-gon obtained from P by
displacing the vertex A\ of P inwards on the bisector of the angle <AkA\A2
through a sufficiently small distance. By using (47) with ag = Ri, it follows
easily that & (C, P') < SP(C, P), which shows that SP(C, P) is not minimal.
Thus we can assume in the following that p0< g2(a,p, k).

Since p(C) *p([C, Pj), we conclude from (51) and (6) that

(53) Sp(C,P)>m(a,p-1k,p0) - po-
If Po ~ 9\{a-,P-ik), we have by (53) and Remark 2
SP(C, P) >G(a, k, po) - po,

where G is given by (12). The function on the right-hand side is strictly
decreasing in po, and thus attains its minimum for po = pi(a, p, k). Therefore,
we need to consider only such values of po for which

(54) 9i(a,p,k)"p0<g2{a,p,k).
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We again make use of (52) and observe that, by Theorem 1 and Remark 2,
equality takes place in (52) if and only if C is an outer parallel domain
of a regular arc-sided fc-gon of area a and perimeter p and P is the fc-gon
associated with C. If p0=gi(a,p, k), then C is degenerate, which means
that C is a regular arc-sided k-gon with kernel P.

Let us first assume that 8P(C, P ) is minimal for somepo with pi(a,p, k) <
< po <g2(a,p,k). Resuming the notation used in Lemma 18, we can state
that

) T=n  9i{a,Pk)<p0<g2ap,k).

Otherwise, we could reduce 6P(C,P) by displacing the vertex A\ of P on the
bisector of the angle <AkA\A2. This follows from (47) and (51). Secondly, if
we assume that 8P(C, P) is minimal for po =pi(a,p, k), a similar argument
shows that

COS0-1 1 )
(56) z&BT =9 IfPo=09i(a,p,A).
Note that op = | - ) andB\ =| Since

cosai _ sin(l - 9
cos [3i sin J

is a strictly decreasing function of g for 0 ” <% we have to consider two
cases.

(i) Ifsin(7r/k —tp*) < (sin 7r/Ar)/2, (56) is impossible and the minimum of
8p (C,P) is attained in the case indicated by (55). C is a (proper)
parallel domain of a regular arc-sided k-gon, and P is the A-gon
associated with C.

(i) 1f sm(n/k —) >(smn/k)/2, (55) is impossible and the minimum
of 6p (C,P) is attained in the case indicated by (56). C is a regular
arc-sided fc-gon, and P is the kernel of C.

Note that
e Z arcsh | LM Z
is half the central angle of the arcs bounding a regular arc-sided A-gon Cq
with cosor/cos/?i =|. By (8), the isoperimetric ratio of Co is
g[®) = 4k sin T 309y

K cos(e/A:) + 90Sin(7T/K)

where ¢0 = o(<p0)- Observing that the right-hand side of (8) is a strictly
decreasing function of q (and also of <p), we can summarize the result of this
section in
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Theorem 2. Suppose that p2/a <4k t&nn/k. There is exactly one disc
C from C(a,p) and one k-gon P such that

6p (C,P) =Ap(a,P,k).

C and P are characterized by the following properties:

() a(C) =a,p(C) =p.
(ii) if p2Za < RB(k), C is a parallel domain of a regular arc-sided k-gon
and P is associated with C. Furthermore,

cosai 1
cos/?i 2

(iii) if pZa~t g(k), C is a regular arc-sided k-gon, and P is the kernel
ofC.
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O MOAANTEBPAX KOHEYHOWM KOPA3MEPHOCTW

A. MEKEW

MycTtb R anrebpa Hag nonem F, A eé noganre6pa. Ecnn paamepHoCTb
npoctpaHctea (R/A, +) KoHeuHa Hapf nonem F,T.e. dim.p(i2/A, +) <
< 00 TO rOBOPAT, 4TO nofanre6pa A VMEeT KOHEeYHYy KOpPasMepHOCTb.

B pa6ote [1] A. L. ManbueB nokasan, 4TO BCAKUA OJHOCTOPOH-
HWUIA naean KOHEYHOW KOPasMepHOCTW, COAEPXWUT ABYXCTOPOHHWIA npe-
an anrebpbl, Tak >XXe KOHeYHol KopasmepHocTu. B pabote [2] I. Lewin
nokasan, 4Yto n060e MoAKoJbLAa KOHEYHOro MHAEeKCa COAEPXUT wupaean
KO/bLa, TakKXe KOHeYHOro mHaekca. OCHOBHOW pe3y/nbTaT HacToOsLLel
paboTbl ABNAETCA ChnefytoLas

Teopema. [lycTb A nopganredbpa anre6pbl R Hag nonem F umerowas
KOHeYHY0 KopasmepHocTb: n = 6\mp-(R/A, +). Torga B A copep>kuTcs
ngean | 0 R Tak>Ke KOHEYHON KOpPasMepHOCTU, NPUYEM

dim/r(A/7) A n(n2+ 2n + 2).

Jokazatensctso. PacCMOTpuMm fABa cny4as.

Cnyyain 1 NMyctb A — 6ecKoHeyHOMepHasi noganre6pa. baswuc
ai,a2,... ,an,... anrebpbol A gononHum po 6asuca anrebpbol R, ane-
MeHTamu e\,... ,e,. Torga anemeHtsbl ¢, -fA, r=1,n o6pasytT 6asmc
(hakTop-npocTtpaHcTBa (R/A, +) = ¥Ya. na npocToTbl 3TOT 6asuc Tak-
e bynem ob6o3HauvaTb 4yepes ei,e2,... ,en. PaccMOTpMM NPOCTPAHCTBO
V=F®Yg c 6asaucom Bo= 1, ei,... ,e, rae 1£F.

Onpefenum NuHeHble 0TO6paXxkeHWs M3 npocTpaHcTBa V®V B Y4
C NMOMOLLbIO 3/1EMEHTOB anrebpbl A Mo cnegyrowemy npasuny.

Myctb aeA ne®er,j=0,1,.. ,® 6asmc npocrpaHcTea V ®V
TOrAa, NOMIOXUM:

I‘I
(1) /a(e, Oe0) = e,-agj(mod JT) =~ a”emod A)
k-1
a Ans NPoM3BONLHOIO 3/IEMEHTA V
Mn
V=12 Rijei® €jeV ®V :
m=0

1980 Mathematics Subject Classifications (1985 Revision). Primary 16P10; Second-
ary 16D15, 16P99.
Key words and phrases. Subalgebras, ideals, codimension.
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n n
fa(v)= Y Rijfari® ej) = Y Bij(*kek(m-0dA).
1,j=0 i,30

Kaxpgomy nuHeinHoMy oTobpaxeHuto /a rge a € A onpegensemomy
no npasuny (1) conoctaBum maTpuuy

AX = GF k=1,2,...,m rj=0,1,... ,n
MycTb ai, a2,... ,am,... 6asnuc anredpbl A, fai,fa2, =, /am,... COOTBET-
CTBYHOLWWMNE UM NUNHEWHbIE 0TOOpaxeHns. COOTBETCTBYHOLWMNE UM MaTPU-
Lubl 6ynem o603HauaTb 4yepes Aaj = (a~ f, 5=1,2,... ,m,

HeTpyAHO NpoBepuTh, UTO

5 /at + /a3 —/aT +a5? adam Jaam
(2) T :y’\aT+a3 arat =raami a €F.

LOanee, dim(K®K) = (n+ 1)2, dimYg = n, noatomy maTtpuubl Aa,
nmetoT pasmepHocTn d=nx (n+ 1)2. MHOXeCcTBO BCeX MaTpuUL, pasmep-
HocTM n X (n + 1)2 Hag nonem F ABNAETCA BEKTOPHbLIM MPOCTPaHCTBOM
pasmepHocTu d. lMoatomy cpeam martpul, Aa, CyLecTBylT, He 6osee
yeM d NMHEAHO He3aBUCUMbIX MaTpul. MycTb OHM ecTb Aal,... ,Aak rge
k N d, NpnYeM MOXXHO CYMTaTb, 4TO ai,a2,... ,a 4acTb 6a3UCHbLIX 3ne-
MEHTOB anrebpbl A.

Torga Bce maTtpuubl A ,, j >« COOTBETCTBYHLME OTOOPaAXKEHMAM
faj, j > k ABNAKOTCA /IMHENHbIMA KOMOMHALMAMW MaTpuy A i,... ,Aak,
T.€.

K
Aj —'YrBmAam
T=1
K

roe j > k. OTO O3Ha4yaeT, 4YTO faj — Rmfam, j > k. CornacHo (2),
T=1
oTClHO4a UMeeM:

0-faj *N2 fmfam -faj fABRmam~f i >k
m=1 aj— 'yt BRmam
CnepoBatenbHO, oTo6paxeHue / k ABNAETCA HYNEBbLIM OTO-
aj Y]Bmam
m—

6paxeHuem no mod A, T.e.

K
(3) / * (er®es)=0 er("aj- ¥ Bmam)es(modA)

aj Y' Rmam T=1
T=1
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nnn 10 XXe camoe, 4YTO

K
er(a3 Y MmQmj€sGA.,, rge j>K
T=1
ans nwob6eix r,s=0,1,2,... ,0.
B cuny nuHeinHON He3aBMCMMOCTM 6a3UCHbLIX 31EMEHTOB UMeEEM, 4TO
K
aj- Ylgmamdp OThe j >«
T=1
Kpome TOro, 13
CLj N ABmam £ Y A —O0
'H"|=1 al Y] BmAm
cnefyeT, yTo
K
apRj "~ A"AMin"m)agi Zr[aj " “Bmam')agi “aj " ' Bmam €r £ *4)
m=1 n= m=1

rape p,q-1,2,... ,n,...~Ar=0,1,2,... ,n,j >k
O603HauMm yepes A noganrebpy anre6pbl A, NOPOXAEHHYIO BCEMMU
aneMeHTamu Bupga:

K K K
CLj Y "Bm &T & 61 "CLj Y ~BmA~Arn” 4y ~p(~3 Y N Bm&rnhj
T=1 T=1 T=1
A A
BryCli Y ~RBmamj ,,,, TNB q, rae j > K,
=1 T=1
A
P,9=123,.. ,n,...;r,5=0,1,2,... ,n, n aj- £ [frrar, >> K ane-
mn=1
MeHTbl anre6bpol A o6nagatouine csolicteom (3), T.e. / K =0.

al ANNBmaT
T=1

OTcropa AcHo, 4To A fABnseTcs ugeanom anrebpol [ cogepxawuminca B
N. Cymmy Bcex npgeanoB anrebpbl [ cogepxawuxcad B A 0603Ha4YnM
yepes |I.

dakTop anrebpa R/I copgepxut noganrebpy A/l npuyem npocTpaH-
ctea (R/1)/(A/1) = R/A TaK e nmeeT pasmepHocTb n. Ecin dim A/1>
>n(n+ 1)2Torga paccyXxpgas Kak v Bblle HalfeM HETPUBUANbHbIN naean
anreopbl R/l cogepxauwminica B8 A/l. 3T0 NpOTUBOPEUNT MaKCMMaNbHO-
cTn npeana /, cogepxauweroca B A. CnegoBaTeflbHO

dimA/1 ~Te(n+ 1)2.
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OTclopa cnepyet, yuTo
dimR/lI <n+n(n-f1)2=n(n2-f2n + 2).

Cnyvaii 2. Myctb noganrebpa A — KOHeyHoMmepHa. Ecnm dim A %
<n(n-\-1)2un dim(A/.4, +) = n TorAa B Ka4eCTBE UCKOMOI0 neana MOXHo
6patb ngean (0). Torga ficHo, yto dimR ~ n(n2+ Zra+ 2). Ecnn dim ,4>
> Te(Te+ 1)2, TOrga paccyxgaem kak B caydae 1 1 HailjeM HeTpuBMab-
Hbli ngean | yLoBneTBOPAWOLWUA YCNOBUIO TEOPEMbl WU.T.4.

EcTecTBeHHO BO3HMKaeT BONpoc: Henb3a M CHU3NTHL oueHKYy? OHa
JOCTUTAeTCH CRefyllWmnMmn 3aMeqyaHnamu.

3ameuanue 1. Ecnu anrebpa R o6napgaet eavHuyy, 1™ A, Torga
He HY>XHO paccmoTpetrb Va ®F =V, a cpasy ¥Ya, Torja npoctpaHcTsa
Va ® Va uMMmeeT pa3MepHOCTb N2 M Mbl PacCMOTPUM MaTpuLbl pasmepa
nXxn2=n3. Torga dimR/lI *n3+n=n(n2+ 1).

3ameuanue 2. Ecnun anrebpa R Heo6nagaeT eAuMHuULUeR Torga c ca-
MOr0 Hayajia MOXXHO paccMOTpeTb npocTpaHcTBa Va ®Va pasmepHOCTHU
n2un 3aTem LOMOSIHUM ero npocrtpaHcteamu: F®Va, Va®F, 1.e. paccmo-
Tpum V\ = (E®Y 1)®(YL®E)®(YsOYn). Torpa npoctpaHcteo V\ nmeer
pasmMepHOCTb N2+ 2. Torga Ham HY>XXHO 6yfAeT pacCMOTpeTb MaTpuLbl
pas3mepa n X (a2-f2n). B atom cnyuae

dim A/7 ~ n+ n(n2+ 2n) = n(n + 1)2.

MocnefHMe OUEHKN Ny4yllle YeM AaHHOW, B OCHOBHOW Teopeme.

Cnepcteue 1. lNycTb anrebpa R Hag nonem F obnagaeT noganrebpoi
A KOHEYHOW Kopa3MepHOCTU K npuyeM A annpokcmpyema KOHEYHOMEPHbI-
Mun anrebpamu. Torga anrebpa R annpokcumupyemMa KOHeYHOMepHbIMU an-
rebpamum.

[ okasatenbcTtBo. TaK Kak A o06nagaet cuctemoin upaeanos Aa
a € J , KOHeYHOW KopasmepHocTu, T.e. dim A/Aa <00 ans Bcex a £J .
Kaxpas Ac ectb noganrebpa anrebpbl R KOHEYHOM KOpa3MepHOCTH,
noaToMmy Aa cofepXuT npeanbl Ba anre6pbl R TakKe KOHEYHOW Kopas-
mMepHoCTu. U3 IZ)_Aa = 0 paBeHCTBa cnefyeT, 4yTo fd| Ba= 0. OTcroga

a a

BbITEKaeT 4To anrje6pa R annpokcumupyeTtcs KOHel-IHOJMeprIMVI anre6-
pamu.

Cneacteue 2. Anrebpa R Hag nonem F annpoKCMMUpYyeTCs KOHeu-
HOMepHbIMK anrebpamu Torga v TOMbKO TOrAa, Korga sce eé noganrebpbl
KOHEYHO KOpasMepHOCTMU MepecekarnTCa TpusManbHbIM 06pas3oMm.

Cnepcteue 3. beckoHeyHOMepHasa npocTas anrebpa He obnagaeT
noganrebpy KOHEYHOW KopasMepHOCTMW.
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Cnencteue 4. MycTb A nopanrebpa KOHEYHOW KOpasMepHOCTU anre-
6pbl R Hag nonem F. Ecnu anrebpa A npeacTasnmo maTpuuyamn Torga u
anrebpa R npefcTasumo maTpuuamu.

MocnegHee cneacteme 6bIN0 fokaszaHo B [1], B cnyyae Korga A ofHO-
CTOPOHHWI naean KOHEYHOW KOpasMepHOCTWU, anre6pbl R. Jloka3aTenb-
CTBO cnefcTBMe 3 cpasy cnefyeT U3 OCHOBHOW TeopeMbl W fOKa3aTenb-
cTtBa Teopembl 10 m3 [1].

B 3ak/it0oyeHne 3aMeTUM, YTO OCHOBHOM pe3ynbTaT paboTbl OblN aHOH-
CMpOBaH B Te3ncax BCEMWPHOro KoHrpecca matemaTukos 1986 roga.
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RADICALS AND O-BANDS OF SEMIGROUPS

A. V. KELAREV

Introduction

The concept of radical plays a crucial role in the structure theory of
rings (see [2]). It can be extended to various classes of algebras including
semigroups, and is useful in investigating their structure, too.

In the structure theory of semigroups, however, there is another basic
concept, namely, that of decomposition of a semigroup into a band of its
subsemigroups (see [3]). In [22] Weissglass proposed a natural way to extend
the notion of band to rings. In [10] we studied interconnections of radicals
and bands of rings and described such situations when their interaction is
good in some sense. The aim of the present paper is to consider interactions
of radicals and bands of semigroups.

There are several analogues of ring radicals in semigroup theory. Defin-
ing radicals as some ideals of semigroups seems to be most similar to the
ring approach. (See [6]-[9]. Preliminaries on such radicals are included in 8
1 of the present paper.) These radicals, however, are defined only for semi-
groups with zero. And a band of semigroups with zero need not have a zero.
Therefore we modify the notion of band slightly, making it applicable to
semigroups with zero.

Let il be a band, i.e., a semigroup satisfying the identity x2—x. A
semigroup S with zero 0 is said to be a 0-band of subsemigroups Sa, a eil,
if

(1) 5= U Sa;

Q&R

(2) SaGSp —{0} when a/j3;

(3) SaSR C Sal for each a,R eil.

If il is a semilattice, i.e., a commutative band, then we call S a 0-semi-
lattice of subsemigroups Sa. If il is a left band, i.e., a band satisfying the
identity xy = x, we call S a left 0-band of subsemigroups SamThe semigroups
Sa are called the components of the band. In case when S is a 0-band il of

subsemigroups Sa, we write 5 = (J5a.
n

1980 Mathematics Subject Classifications (1985 Revision). Primary 20M11.
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In what follows, the word “semigroup” will mean “semigroup with zero”
unless stated otherwise. The concept of 0-band is likely to be first introduced
in [11]. It is quite natural and is virtually a well-known object. One may
consider 0-unions of semigroups as an example of 0-bands, see [3] §6.3. Some
authors used 0-bands without giving the definition explicitly. For instance,
in [13], [14] and [15] left and rectangular 0-bands are applied when describing
primitive regular and primitive inverse semigroups, and in [4] left 0-bands are
used for characterizing semigroups having completely 0-simple semigroups
of quotients. Rectangular 0-bands were investigated in [13]-[14], where they
were called “O-matrix decompositions”. The authors of [13]—4] used the
term “rectangular 0-bands” with a different meaning.)

It is well-known that a semigroup S is a band of subsemigroups if and
only if there exists a homomorphism of S on Il, see [3] 8§ 1.8. Now we give
an analogous characterization of 0-bands.

Remark 1 A semigroup S is a0-band i1 of subsemigroups if and only if
there is a mapping f of S onto I! such that for each x,y£S, xy*fO implies

f(xy) =f(x)- f(y).
Proof is easy and we omit it.

Let us return to the question on interaction of radicals and 0-bands. How
to formulate this in a concrete way? In the corresponding ring situation the
following problem was posed in [5]: to describe the radicals g such that
the radical of a band of rings is equal to the sum of the radicals of the
components. This problem is solved in [10]. Here we consider its semigroup
equivalent: which are the radicals gsuch that the radical of a 0-band is equal
to the union of the radicals of the components? The following definition will
be useful for discussing the results. Let A be a class of bands. We say that a
radical g commutes with 0-bands of A if, for every I) € A and every S = (J5a,

n

the equality g(S)= |[J p(Sa) holds.
ft

The present paper carries out a thorough investigation of radicals com-
muting with 0-bands. It consists of two sections. In § 1 we study some
properties of semigroup radicals. In 82 for each class A of bands all radicals
commuting with 0-bands of A are described.

The author is grateful to Professor L. N. Shevrin for his kind supervision
and to Drs M. V. Volkov and L. Marki for useful advices.

8 1. Properties of semigroup radicals

We give the following definitions according to [9]. Let g be a mapping
which assigns to every semigroup 5 an ideal g(S) of S. A semigroup S is
said to be a radical (semisimple) semigroup if g(S) =S (g(S)= {0}). The
mapping g is called a radical if, for each semigroup S,
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(1) B{S/1)2 (q{S) u1)/1 whenever | is an ideal of 5;

(2) g(S) is the largest radical ideal of S;

(3) the quotient semigroup S/g(S) is semisimple.

We denote by TZ and S the classes of all radical and semisimple semi-
groups, respectively, belonging to the radical g. We call a radical trivial if
its radical or semisimple class consists of one-element semigroups only. Note
that each radical is uniquely determined by fixing its semisimple or radical
class. Thus, there are exactly two trivial radicals.

In [9] (see also [16]) the following description of radical classes has been
given.

Proposition 1. A class TZis a radical class if and only if

(a) TZ is closed under Rees quotient semigroups;

(b) TZ is closed under ideal extensions;

(c) the union of all TZ-ideals in an arbitrary semigroup belongs to TZ

Semisimple classes were described in [15]. We shall use this description
in a corrected form (see [18], 11.1.8). A semigroup S is said to be a Rees
subdirect product of subsemigroups Si, i GI, if there are ideals T,, i €1, in

S such that Q T-= 0 and S/Ti = Si for all i.
iel

P roposition 2. A class S is a semisimple class if and only if
(d) Sis hereditary, i.e., closed under ideals;

(b) S is closed under ideal extensions;

(e) S is closed under Rees subdirect products.

In [1] and [8] it has been shown that each semigroup 5 contains a least
ideal p(S) such that S/p(S) has no nonzero nilpotent elements. Evidently,
the mapping p is a radical. It is analogous to the generalized nil radical of
rings (see [2] ch. 4 §2), soin [7] p has been called the generalized nil radical.

Lemma 1 ([6] and [8]). A semigroup is p-semisimple if and only if it is
a subdirect product of semigroups without zero divisors.

Like in ring theory, we call a radical g strict if all subsemigroups of
any semisimple semigroup are also semisimple. A radical g is said to be
hereditary if for each ideal 1 of a semigroup 5 the equality g(I) =1 n g(S)
holds. The strictness of p is obvious, so Remark 2 of [7] implies

Lemma 2. The generalized nil radical p is strict and hereditary.
Now we can prove the following

Lemma 3. Let TZ be the radical class of a nontrivial strict radical g.
Then TZ contains the radical class Af of p.

PROOF. First we show that TZ contains a semigroup S with S S2
Choose {0} * R€TZ Let A = {0,a} be a semigroup with zero multiplica-
tion. Denote by W the free product of A and R with common zero. Let
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V =W \ {&}. Since gis strict, p(W) 2V, as V is an ideal generated in W
by R. If g(W) =V, then V is the sought semigroup, because V » V2. On
the other hand if g(W) * V, then g(W) =W and W is the sought one.

We have proved there is S GTZ {0}/ S/S2GTZ By [6, Th. 3] this yields
that all semigroups with zero multiplication belong to 71

Now let T GAT. We show that T € 7Z Suppose the contrary, let F =
=T/p(T) be nonzero. Since F is 77-radical, it contains an x ~ 0 such that
x2= 0. The subsemigroup of F generated by x has zero multiplication and
belongs to 71. This contradicts the strictness of g, and completes the proof.

We obtain a description of strict radicals.

Theorem 1. Let A4 be a nonempty class of semigroups, and denote by
TZm the class of semigroups S such that each nonzero Rees quotient semi-
group S/I contains a nonzero subsemigroup from A4 or a nonzero subsemi-
group from the radical class Af of p. Then there exists a (clearly unique)
strict radical pm with radical class TZn m Conversely, each strict radical co-
incides with pm for an appropriate A4.

P roof. The converse is evident: it suffices to choose A4 to be the class
of all radical semigroups.

First we prove the following statement. Let A be a semigroup containing
a subsemigroup R from TZm < Denote by | the ideal generated in A by R.
We claim that 16 TZm mindeed, for any proper ideal J of I we need to show
that 1/J has a nonzero subsemigroup from A4 UAf. If J does not contain R,
then 1/J contains the subsemigroup (P UJ)/J = R/(R flJ) which contains
a nonzero subsemigroup from A41)Af. Therefore we may assume that J 2 R.
As | = A1IRA1L, we deduce 73Cc (A11A1)J(A11A1) QJ. Hence 1/J is a 3-
nilpotent semigroup belonging to Af. We have proved that in both cases
| GTZn m

Using this statement it is routine to verify that TZm satisfies all conditions
of Proposition 1. Hence, there is a radical pm with radical class TZn m By
the above statement pM obviously is strict, which completes the proof.

Note that our result is distinct from the description of strict ring radicals
[21], which has the following form: Let At be a class of rings, TZm be the
class of all rings A such that every nonzero homomorphic image of A contains
a nonzero subring which is in A4. A radical class is strict if and only if it
coincides with TZm for some A4.

It is impossible to get the semigroup description in such a form. The
difference is that there exists a least nontrivial strict semigroup radical —
the generalized nil radical, whereas in the case of rings or algebras over a
field there is no least nontrivial radical.

The proof of Theorem 1 yields

Corollary 1. For each strict radical and for each semigroup S, the
ideal generated by any radical subsemigroup of S is also radical.
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We call a radical g weakly hereditary if, for any semigroup S and any
ideal I, the inclusion g(l) 2 /g9(S) Ug(S)I holds.

Lemma 4. Let g be a strict and weakly hereditary nontrivial radical.
Then g coincides with the generalized nil radical.

Proof. By Lemma 3 the radical class TZ of g contains the radical class
Al of ). Suppose that there is a semigroup S 6 71, S <fAf. Then the quotient
semigroup F =S/r](S) belongs to 71, and by Lemma 1it has an ideal | such
that R = F/I is nonzero and has no zero divisors.

Fixing an arbitrary semigroup Q we show that Q 6 7. We may assume
that Q fl R —{0}. Defining on the union W = R UQ a multiplication by
tg—qt=qfort6T, q6 Q, Q becomes a semigroup which is a O-semilattice
of the subsemigroup R and the ideal Q. So g(Q) 2 Qg(W) 2QR = Q, whence
Q 6 TZand 71l is trivial. This contradiction completes the proof.

Now we shall investigate two properties of semigroup radicals. We call
a radical g right (left) weakly hereditary if, for each semigroup S and every
right (left) ideal | of S, the inclusion g{l) 2 1g(S) (or g(I) 2 g(S)I) holds. A
right and left weakly hereditary radical is obviously weakly hereditary. We
say that g is right (left) strict if, for each semigroup S, the radical of every
right (left) ideal is contained in g(S). Obviously, a strict radical is right and
left strict.

LEMMA 5. If a right (left) strict radical is right (or left) weakly hereditary
then it is trivial.

Proof. Let gbe right strict and weakly hereditary. Suppose that there
is a nonzero semigroup S belonging to the radical class TZofg. If S2” S then
TZ contains the nonzero quotient semigroup S/S 2 which has zero multiplica-
tion. If S2=S, then we denote by R a semigroup with zero multiplication
such that |A| = |5|, ADS’= {0}. We claim that R6TZ- Let n be one-to-one
mapping of R onto S, 7r(0) = 0. Define on W = AU S a multiplication by
the rule rs = &1(7r(r)s), sr =0, where r6 R, s6S. Then W becomes a
semigroup with (right) ideal R. By right strictness g(R) 2 RS = R. Thus,
inevitably, TZ contains a nonzero semigroup with zero multiplication. Hence
the semigroup A = {0,a} with zero multiplication is radical.

For an arbitrary semigroup T we shall prove that T 6 TZZ Denote by W
the free product of T and A with a common zero. Consider the subsemigroup
B generated by {at \t6 T) and {ata \t 6 T}, and put C- B UA. Let o be
the congruence on W generated by all pairs (sat, st) with s,t6 T. Denote by
/ the natural homomorphism of W onto W = Wjo. Let C—f(C), B = f(B),
T—f(T),a =f(a). Evidently, T =T.

The semigroup C is a right ideal in W, and A is a right ideal in C.
By right strictness g(W) ~ g(C) ~ g(A) = A. Hence g(W) 2 W 1AW 1. Since

TaT =T2and Ib'AW1=AUTauUaT UaTaUT2 W/W 1AW 1is a semi-
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group with zero multiplication. This yields that W/g(W) has zero multi-
plication.. Since A is radical, it follows that all semigroups with zero multi-
plication are radical. Hence W is radical, because 7Z is closed under ideal
extensions. 2 o

By hereditariness we conclude g(B) 5 BW =&aT UsTq. Hence B/g(B)
has zero multiplication, which implies B £7Zand T =B/aTa £ 7Z We have
proved that 1Z contains all semigroups, so g is trivial. The lemma is proved.

8 2. Radicals commuting with 0-bands

Firstly we consider radicals commuting with nhoncommutative 0-bands.

Theorem 2. Let A be a class of bands containing a noncommutative
band if. Then every radical commuting with 0-bands of A s trivial.

Proof. Let a radical g commute with 0-bands of A. The semigroup if
is known to have a left or right zero subband A, |A| = 2. Assume that Ais a
left zero band. We claim that g commutes with A. Indeed, for an arbitrary
0-band S = (J5Qwe put Sa= {0} ifa£ Q\ A, and obtain
A

(s) = 9(9$9: Udtsa) = Uesa)

We will show that g is right strict and right weakly hereditary. Fix any
semigroup S and aright ideal I in S, and take a semigroup A such that A =1,
An5 = 0. Denote by # an isomorphism of A onto |I. Defineon W =S uA
a multiplication by sa = S7r(a), as —7r_1(7r(0)s). With this multiplication
W is a semigroup which is a 0-band A of its subsemigroups 5 and A. So
g(W) = p(S)Up(A). Since g{W) is an ideal in W, we get Ag(S)Q g(A).
Hence 1g(S) Qg(.f), so that g is right strict.

Likewise we infer g(A)S Qg(A) and 5p(A) Qg(S). So V =g(l)Ug(S) is
an ideal in 5. Hence V is an ideal extension of g(S) by the radical semigroup
g(l)/(g(1) fl g(S)), which implies that V is a radical. It follows that B(1)Q
Qg(S), i.e. gis right weakly hereditary. By Lemma 5 g is trivial, and the
proof is complete.

Theorem 3. Let A Dbe a nonempty class of nonzero semilattices. A
nontrivial radical g commutes with 0-bands of A if and only if g coincides
with the generalized nil radical y.

P roof. Necessity. Let g be a nontrivial radical commuting with an L
from A. Being a nonzero semilattice, if contains a subsemilattice A= {0,1}.
As in the proof of Theorem 2, it follows that g commutes with A.

We show that gis strict. Suppose the contrary, and let S be a semisimple
semigroup containing a radical subsemigroup R. Take a semigroup T = R
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such that T fl S = {0}. Denote by # an isomorphism of T onto R. Define on
W = S(JT a multiplication by st = sn(t), ts = 7r(t)s, where sSES,t£T. Then
W turns into a semigroup which is a 0-semilattice A of its subsemigroup T
and ideal S. Since g commutes with A we conclude that g(W) = T. Because
g(W) is an ideal in W, we have STIiTS Qg(S) = {0}; so that SR = RS = {0}
and R is an ideal in S. This contradicts to the semisimplicity of S.

We show that g is weakly hereditary. Fix an arbitrary semigroup S and
an ideal I in S. Take a semigroup T =S, T DS —{0}. Denote by n an
isomorphism of T onto /. Endow W =T uS with multiplication by the
rule st —7T 1(s7r(i)), ts = n~1(n(t)s), where s£ S, t£T. Then W becomes
a semigroup which is a O-semilattice A of its subsemigroup S and ideal T.
Hence g(W) is equal to U —g(S) ug(T). Since U is an ideal in W, it holds
g(S)TuTg(S)Qg(T). Transforming this inclusion by the isomorphism 7r_1,
we get g(S)I(J 19(S) QEX().

Thus g is strict and weakly hereditary, hence by Lemma 4 it coincides
with the generalized nil radical 77

Sufficiency. We will show that ij commutes with all O-semilattices. Take
any semigroup S —(JS'a where Il is a semilattice. Let la=r](Sa), | = (J/a.
n n

We need to prove that | = €(5).

The inclusion 1Q rj(S) follows from Lemma 3. For proving the converse
inclusion, we firstly show that I is an ideal in S. Choose any s£ S,t£1. Let
t£1a, s £ SR. We need to prove that ts,st £ lag. Since 7is hereditary, ts
and st belong to g(Q), where Q — |J Because the radical class AT of 7is

7=c*/3
closed under Rees quotient semigroups, st and ts belong to Q/ y(JOSy = Sa3
<al

Hence | is an ideal in 5.
Let P=S//, Pa= Sa/la. Obviously P = (f’Pa. Each Pa has no nonzero
I

nilpotent elements, which implies that P is 77-semisimple. Hence g(S) c/.
The theorem is proved.
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DIE REGELFLACHEN DES En, DIE EINE AUS EBENEN KURVEN
BESTEHENDE KONGRUENZSCHAR TRAGEN. |

H. WRESNIK

1. Die EK-Regelflachen des waren schon seit langer Zeit Gegen-
stand geometrischer Untersuchungen. So zeigten A. Mannheim [1] und A.
Schonflies [5], daR die Scharkurven der EK-Schar einer Regelflache Ellipsen
(speziell Geraden) sind.

Obwohl bereits 1970 von H. Sachs [3], [4] nichttriviale Gegenbeispiele
gefunden wurden, bemerkte erst E. Vogler [8], da der obige Satz in dieser
Form nicht richtig ist. Falls ndmlich die Tragerebenen der Scharkurven ei-
ner EK-Schar zu einer raumfesten Geraden parallel sind, so missen, wie H.
Vogler zeigte, die Scharkurven keinesfalls Ellipsen sein. In allen anderen
Féllen stimmt jedoch die Aussage von Mannheim und Schonflies und die
Scharkurven sind durch den Bewegungsparameter affin aufeinander bezogen.

In den letzten beiden Jahren behandelte H. Vogler in einer Reihe von
(bisher unverdffentlichten) Arbeiten analoge Fragestellungen im n-dimen-
sionalen, reellen, affinen Raum An. Er betrachtete Afflnbewegungen einer
Geraden g, deren Punkte ebene Bahnen durchlaufen. Dabei zeigte es sich,
dal} die Scharkurven durch den Bewegungsparameter affin aufeinander bezo-
gen sind, wenn ihre Trdgerebenen keinen gemeinsamen Fernpunkt besitzen.

Die folgende Arbeit behandelt die EK-Regelflaichen des En. Dazu sei
im En ein kartesisches Normalkoordinatensystem gegeben, das bei der pro-
jektiven Erweiterung des En zu einem projektiven Raum Pn in naturlicher
Weise ein projektives Koordinatensystem induziert. Des weiteren wollen wir
den Pn, falls ndtig, komplex erweitern.

2. Sei nun $ eine EK-Regelflache mit der Parameterdarstellung
1) ~x(u,v)=I(u) + u"exu)

mit uEICR, 1,~ £C3, 2=1, ve R, wobei die Scharkurven der EK-

1980 Mathematics Subject Classifications (1985 Revision). Primary 51N20; Second-
ary 53A05.
Key words and phrases. Ruled surfaces, family of plane congruences.

1 Weitere Arbeiten zu diesem Themenkreis stammen von K. Meirer [2] und dem Ver-
fasser [9], [10],
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Schar durch v =const, gegeben seien. Dann gilt identisch in uund v 2

(2) XA XxAx=1

Setzt man (1) in (2) ein und beachtet die Multilinearitat des dufReren Produk-
tes, so erhalt man eine kubische Form in v, die identisch in v verschwindet.
Daher verschwinden ihre Koeffizienten (identisch in u) und man erhalt so die
Bedingungen

T AT AT ='C

©)
1AUTA'®'+ e AlAe + eAeA 1=0

-« Ae Ae 0.

(3i) ist nach Voraussetzung erfullt und (34) bedeutet, dal das sphdrische
Bild von $ eben ist.

Sind nun a und R zwei verschiedene Tragerebenen von Scharkurven der
EK-Schar, so spannen sie einen hdchstens 4-dimensionalen Raum auf. Daher
liegt $ in einem hdchstens 5-dimensionalen Teilraum des En, weshalb die
folgenden Ansétze gemacht werden kdnnen.

[ a™tt) cosg \ / cosu\
0 sinu
(4) ai(u)sind  +» Kk
V o a2(u) |/ \ 0/
bzw.
A / cos u\
( B sinu
(5) x (u.v)= Oi(u)coss -Fv k
Oi(u) sine 0
\' a2gy vV o /
mit 01,a2€ C3,Be [-8§, f R 3

3. Untersuchen wir zunéchst den Fall (4), so erhalten wir aus (32,3)
cos R[Ai2(u) cos u —Ai3(u) sin u —A23"u) cosu] = 0
(6) sin B[Ai2(u) sin u + ~13(0) cos u —*.23(0) sinu] —0
sin B[—A\2(u) cos u+ Ai3(u) sinu + A23(u) cosu] =0

2 Mit bezeichnen wir die Ableitungen nach u.

3 Mit (4) ist der 4-dimensionale und mit (5) der 5-dimensionale Fall erfafit. Der 3-
dimensionale Fall wurde wie in 1. erwéahnt, bereits ausreichend behandelt.
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mit A\2(u) = 4{82—4&aia2 usf. und

@) smBR(ai +ax)=0, &+a2=0.
Aus (72) folgt somit fur a2 die Darstellung
(8) a2(u) =A2cosu+B2smu +C2

mit A2, B2,C2€ R. Wegen (7i) missen nun die beiden folgenden Félle be-
trachtet werden.
a) Ist B~ 0, dann erhélt man

9 aBu) = Ai cosu4B\sinu4-C1

mit A\,B\,C\ GRmlist hingegen
b) B —O0, so kann die Funktion di(u) in (4) beliebig gewahlt werden.
Wie man nun leicht nachrechnet, erfillen die Ansatze (8) und (9) fur
a2(u) und aBu) auch die Gleichungen (6), weshalb man im Fall B ™0 als
Parameterdarstellung der Ldsungsflachen

/ cos B(Ai cosu + Bi sinu)\ (cosu\

sin u
sin B( Ai cosu + Bi sin u) 40 k
V  A2cosu+ B2sinu / v 0 /

(10

erhdlt. Da $ nicht in einem dreidimensionalen Teilraum liegen soll, muf}
(A2,B2) ™ (0,0) und fur k = 0 noch zusatzlich 8/ 0 und (Ai,Bi) * (0,0)
vorausgesetzt werden.

Betrachtet man nun den Fall B = 0 und setzt die Darstellung (8) flr a2(u)
in (6) ein, so erhdlt man die Bedingung

Ist A2 70, so erhédlt man fir Ri die Darstellung (9) und die zugehdrigen
Losungsflachen sind durch (10) erfaft.

Fir den Fall A2 = 0 hingegen folgt als ParameterdarStellung der Ldsungs-
flachen

/ ai(*) N (cosul
0 sinn |

0 +tv k
\ B2sinu/ \' 0 )

(12

wobei ai EC3, k und B2 von Null verschieden sein muissen.

4, Die analoge Vorgangsweise wie in 3. liefert fiir den Ansatz (5) mit
(32) die Gleichungen

(13) sin/J(&i + ai) =0, cos/?(ai +ai)=0, G+ az2=0,
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weshalb ai(tt) und a2(u) die Darstellungen (9) und (8) besitzen mussen.
Da mit diesen Ansétzen auch die Bedingung (33) erflllt ist, erhdlt man als
Parameterdarstellung der Ldsungsflachen

R / cosu\
( 8 sinu
(14) cos B(Aicosu+ Bisinu) +v Kk
sin B(Ai cosu+ Bi sin u) 0
\  A2cosu+ B2sinu [/ vV 0 )

wobei (A,,B{)” (0,0), i=1,2, 8" 0und im Fall k = 0 noch zusatzlich R »
7™~ gelten muB. Des weiteren darf auch, wie im folgenden gezeigt wird, der
Ausdruck A1B2—AZ21?i nicht verschwinden.

5. Wir wollen uns nun mit der von den Trégerebenen der Scharkurven der
EK-Schar gebildeten 3-Regelflache 1/ (im Sinne von [7]) beschéftigen. Die
im folgenden verwendeten Begriffe aus der Theorie der verallgemeinerten
Regelflachen koénnen in [6] und [7] nachgelesen werden.
Fir die EK-Regelflaichen vom Typ (10) erhélt man fur die 3-Regelflache
die folgende Parameterdarstellung

/ Ai cosR + v\ / B\ cosR\
n - o V
15)  X'WAM AlsinR 1+ Bising
V0 v o A2 ) V b2

Setzt man
"e*i := (AicosB +v,0, AisinR, A2E -e2m={B\ cosB, Vv, B\sinR, B2)*

S0 besitzt das asymptotisches Biindel A(v) von ~ wegen

(16) det(*?1, "?25">i"?2) = (A20%i - A\B2)s'mR

genau dann die Dimension 4 (fur alle v€ R), wenn (16) nicht verschwindet4.
Insbesondere kann in diesem Fall keine Scharkurve Teil einer Geraden sein.
Da somit das asymptotisches Blindel A(v) den Gesamtraum aufspannt und
maximale Dimension besitzt, mul (15) eine Gratregelflache mit einer Kehl-
linie g sein. Um eine Parameterdarstellung von g zu finden, bedenkt man,
dall g nach [7] die Menge der singuldren Punkte von 4' ist. Dabei ist ein
Punkt von genau dann singulér, wenn

(17) i?1 A"?22A7 = 0

* Von nun an bedeute die Ableitung nach v.
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mit % = (A,n,k,Oy gilt. Dies fuhrt nach kurzer Rechnung auf

" K[(A2B1- A\B2)cosl3- B2v) kvAo
{A2B1—A1B2)sin/3 (A2B1- AiB2)sin/3’

woraus man fiir g die Parameterdarstellung

MN(A2Bi-A.Bobsing +  COtRv ™
kA2\2

(19) FF(w) = (e B—  sin3
2kv
v 0 /
erhalt. Wegen (A2,-02) 7 (0,0) handelt es sich dabei fir k ~ 0 um eine
Parabel in der Ebene

/ cot R\ f-B 2\

(20) A=A "2
Voy voli

fur A= 0 hingegen ergibt sich eine fastkegelige Gratregelflache, fiir die der
Punkt (0,0,0,0)* der einzige kegelige Punkt ist.

Betrachten wir nun den Fall, fir den (16) verschwindet und damit die Di-
mension des asymptotischen Bindels A(u) von 't kleiner als 4 ist. Zun&chst
wollen wir allerdings untersuchen, ob es Scharkurven gibt, die Teil einer
Geraden sind. Die dazu gehorenden v-Werte wollen wir dann in (15) aus-
schlieRen, da sonst die 3-Regelflache $ nicht definiert ist. Obiges tritt genau
dann ein, wenn ~e1 und e 2 linear abhangig sind, was, wie man leicht
nachrechnet, mit

(Ai cosB+v)v=0, Risinf3v=0, A2V=0
(Aif?2 —A2B\) cosR T B2V=0, Aisin/3v=0

gleichwertig ist. Somit ist eine Scharkurve genau dann eben, wenn

a) A:B. —A:. B. = Ogilt — die entsprechende Scharkurve gehoért zu V=0
— oder wenn

b) A1B2 - A201 ™0 und A2 = 0 gilt — die entsprechende Scharkurve
gehort zu u= —Ai.

Nun untersuchen wir das asymptotisches Blndel A(u) von \t, das von den

Vektoren ~i,"?2, «,'?2 aufgespannt wird. Da sie nach Voraussetzung
linear abhangig sind, betrachten wir die beiden Vektortripel «T1, €2, T*1

bzw. ~ei,~e 2,2- Wie man leicht nachrechnet, sind die VVektoren des ersten
Tripels genau dann linear abhangig, wenn

(22) Ai=A2=0o0der3=A2=0

(21



138 H. WRESNIK

gilt, wéahrend man fir die lineare Abhéngigkeit der Vektoren des zweiten
Tripels die folgenden Bedingungen erhalt:
Ist AlB2 - A2B1 0, so sind die Vektoren hochstens fir v =

— cosB hnear abhéngig, wahrend fir A2Bi - A\B2= 0 die Be-
dingungen

(23) B1=f2=0oder 3 —B2=0

lauten.
Wir wollen, da das asymptotisches Bundel A(i>) konstante Dimension

besitzen soll, auch v = {A"B" -~ BA osf3 fur die weiteren Betrachtungen aus-

schlieBen. Wegen (A2, B2) 7 (0,0) erkennt man, dal nicht beide Vektortripel
gleichzeitig hnear abhangig sein kénnen, weshalb die Dimension des asymp-
totischen Biindels A(v) drei ist.

Betrachten wir nun zuerst den Fall, dal "e", "e*2, e 1 hnear unabhéngig
sind, dann gilt wegen (22), (16) und (A2, B2) 7(0,0) auch A2 0. Damit ist

fur k 720 — im Fall k = 0 ist <« fastkegehg — auch det( 1, e’i,F 2,"?i) =
= vkA 2 von NuU verschieden, weshalb I' eine 2-Zentralregelflache besitzt.5
Um eine ParameterdarsteUung derselben zu finden, berticksichtigt man, dal

ein Punkt 1t von $ genau dann Zentralpunkt ist, wenn der Tangentenvektor

= 1+ A1+ \~ei+ji~e 2+ 2 aus der hnearen Huhe der Vektoren
~ 1, T*X5In’ ist, wobei sich der zu A(v) orthogonale Vektor zu

(24) IT= (0,0,1,-*-sin/3)

berechnet. Dies zeigt insbesondere, dall 'fr (streng)konoidal ist.

Hiermit ergibt sich nach kurzer Rechnung fir 1 die Zerlegung 1 =
—a1 e 1-Pazez2+ i*3ei-t- ct4 n mit
kKA —2 sin

= . . «2=0
o5 A2sin2i3 + Aj
(25) KAi sin B(A\ cos B + V) KA\
e A\ sin2B + A\ A\ sin2@ + A2
und wegen A?2—R i \ ARv~e . + Rz~z . mit
= -c~~ = ~ = A\ - N
(26) Bi=--%5, B2= - Bz= € (A B1- AxB2)+1,

list dabei die in der Darstellung (15) von 4 verwendete Leitgerade.



DIE REGELFLACHEN DES E, 139
sind, wie man durch Einsetzen in die Darstellung von uf erkennt, die Zen-
tralpunkte durch
(27) a3+ \ +R3x=0

gekennzeichnet. Damit erhélt man als Parameterdarstellung der 2-Zentral-
regelflache von

(28)
/'a3(Ai cosB +v)' Bi cosR —33(A —L1cosB + v)\
0 V
kv + «3A\ sin (Bi - a3Ax) sin
\ 0t3A 2 B2 —«372 /
Sind jedoch die Vektoren linear abhéngig, dann mdussen, wie

bereits gezeigt, die Vektoren ~e 1,272,722 linear unabhéngig sein. Daher

berechnet sich die Determinante der Vektoren 1,~e*, 2, 2zu

(29) det( 1,~ei,~e 2,~e 2) =k[(AiB2- A2Bi)cosl} + B2v].

Fir k—0ist I fastkegelig und fur k 70 ist im Falle A2Bi - Ai B2=0 wegen
B2"0 die Determinante (29) von Null verschieden. Ist aber A2B\ —A\B2*

/0, dann verschwindet (29) hochstens fur v = "A"Bl MB2)cosl} **as wjr ~gj.

bereits oben ausgeschlossen haben. Daher besitzt $ auch in diesem Fall eine
2- Zentralregelflache.

Da sich der Normalvektor  des asymptotischen Bindels A(v) zu
(30) ~n = (0,0, ! —~sin

berechnet und nicht von v abhéngt, ist $ auch hier (streng)konoidal. Mit

den Zerlegungen 1 =oti+?1+a2-e2+ a3~ 2+ 04+l mit

kB2sin 3 cos 3
~ (B\sin2BBI)[(AiB2- A2BX)cosB +vB2]
kBi B2sin 3( A\ cosB + v)
(Bf sin2R + B2)[(AXB2- A2BX)cos/? + vB2\

(31) vkB\B2sin R(A\ cosB + v)
(Bl sin23 + B%)[(AiB2- A2Bi)cosB +vB2]
kB2

4 Bl sin2R + Bl
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und ~e | = Ri~e i+ R2~e 2+ Rz~e 2 mit
B2

= (AIn2 - A201) cos/3 + vB2 B2

R -
(32) (Axi?2 —A2B\) cos/3 + vB2

A A
(A\B2- A2B1) cos/3+ uf32

folgt analog zu obigem als Parameterdarstellung der 2-Zentralregelflache von
9:
/ -a3Bicos/3 \ ( Ai cos/f3+ u—/33i?i cosB '
-n 3v LA -3 3v
vk —a3Bi sin B (Ai - R3Bi) sinf
\ —a3B2 / A2—R33B2

Wenden wir uns nun den Regelflaichen vom Typ (12) zu, so erhalt man fir
die 3-Regelflache T die Parameterdarstellung

0 (O\ /A
(34) x(u,A,/x) W A ey
V) \§1 \p/

Man erkennt daraus unmittelbar, dal alle Tragerebenen zur Geraden y —z =
=t = 0 parallel sind. Fiur den Normalvektor rT des asymptotischen Biindels
A(v), aufgespannt von den Vektoren V 1:=(0,v,0,B2* ~e2:=(1,0,0,0)*,

~ 1 findet man if = (050,1,0)*, weshalb auch hier I (streng)konoidal ist.

(33)  ~x(v,\) =

Desweiteren ergibt sich daraus sofort die Zerlegung 1 = k~n fir den Tan-

gentenvektor der Leitkurve 1 := (0,0, vk, 0)* von 4L
Daher besitzt ~ eine 2-Zentralregelflache, fur die man die Parameter-
darstellung

(8" ib\

(35) (iD= 4 Mg
\ 0} w

erhalt. Es handelt sich dabei also um ein Parallelstrahlbtischel in der Ebene

y=t=0.

Zum AbschluB unserer Uberlegungen betrachten wir die EK-Regelflachen
mit der Parameterdarstellung (14). Fir die 3-Regelfliche $ der Scharkur-
ventrédgerebenen ergibt sich daraus

( 0\ [ v\ / 0o \
0 0 Vv
(36) vk + A Aicosh Bi cos}
0 Ai sin 3 Bi sinf

VO) \' M / \ b2)
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Das asymptotisches Bundel A(u), aufgespannt von den Vektoren -~ei :=

= (u, 0, Ai cos /2, Ai sin/?, A2)‘, ~2'm=(0, v, B\ cos /?, B\ sin/?, B2y, ‘&1, "2
besitzt genau dann die Dimension vier, wenn
(37) A2BIl - A 1B2" 0
gilt.

Ist (37) nicht erflllt, dann Uberzeugt man sich unschwer, daR alle Tra-
gerebenen zur Richtung (f?i,-A1i, 0,0,0)* parallel sind, weshalb die EK-
Regelflache $ sogar in einem 4-dimensionalen Teilraum liegt und bereits

diskutiert wurde.
Gilt hingegen die Bedingung (37), so besitzt ~ wegen

det ((0,0, k, 0,0)%, "£L, "e®, ~e\, ] =k(A2B1- AiB2)sin/?

fur k 0 eine Striktionslinie s, wahrend $ im Fall k = 0 fastkegelig ist.

Desweiteren ist $, da der Normalenvektor = (0,0, sin/?, —cos/?, 0)4 des
asymptotischen Bindels A(v) nicht von v abhdngt, (streng)konoidal.

Mit der Zerlegung 1 =c * i{-a2€.+ «3"! + £*47"2 + a5"n der Leit-
hne | von # mit

. kB2cos 3 fcA2 cos R
(38) ol A2B1—AiB2 2 AiB2—A2B1
03 = kaZcosr_S w vkA2cos R 05 = k sinR
A1B2 —A2i?i A\B2—Ai52
findet man fir die Zentralpunkte von 'k die Bedingungen
(39) Af@B=0, fiTW=0
und damit ergibt sich als Parameterdarstellung der Striktionslinie s
( v2kB2 cos B
AR
(40) YU yk(1+ cos2/?)
vk sin3 cos 3
0

die wegen (A2,B2) 7(0,0) fur /27 f und k 70 eine Parabel in der Ebene
/ B2\ ( 8 \

—a?2
(41) 0 +g 1Fcos2B
0 sinf3 cosf
\ 0/ \ 0 )
ist und fir B =| mit der dritten Koordinatenachse zusammenfallt. Fassen

wir die Ergebnisse zusammen, so erhalt man
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Satz 1. Eine EK-Regelflache 4> des En liegt bereits in einem Teilraum
Ek des En, wobei k<5 gilt. Ist k =4, so besitzt $ die Parameterdarstellungen
(10) oder (12) und im Falle k =5 die Parameterdarstellung (14).

Die von den Tragerebenen der Scharkurven der EK-Schar gebildete 3-
Regelflache $ ist fir k —O fastkegelig und fir k~ 0 im Fall (10) eine (1,3)-
Gratregelflache mit einer Parabel als Gratlinie oder eine 3-Regelflache mit
einer 2-Zentralregelflache.

Im Fall (12) ist $ eine 3-Regelflache mit einem Parallelstrahlbuschel als
2-Zentralregelflache und im Fall (14) eine 3-Regelflache mit einer Parabel als
Striktionslinie.

Eine eingehende Diskussion der EK-Regelflachen (10), (12) und (14)
und die Betrachtung spezieller EK-Regelflachen soll in einer zweiten Arbeit
durchgefihrt werden.
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COMMON FIXED POINT RESULTS FOR ITERATIONS
IN METRIC LINEAR SPACES

LIAQAT ALI KHAN

Abstract

In this paper we obtain some common fixed point results for Mann iterates of two
self-mappings on a metric linear space under various contractive conditions.

In ([1], [3], [4]), it has been shown that for a self-mapping T on a normed
space X satisfying various contractive conditions, if the sequence of Mann
iterates associated with T converges, it converges to a fixed point of T.
These results have recently been extended by the author in [2] to the case of
metric linear spaces. In this paper we consider two self-mappings S and T
on a metric linear space X and show that if the sequence of Mann iterates
associated with S or T converges, it converges to a common fixed point of S
and T.

In the sequel we assume that the topology of X is generated by an F-
norm g which has the following properties:

(@) g(x) ~ 0, and g(x) —0iffx = Q;

(b) a(x +y)*a{x) +alyy,

(c) g(rx) q(x) for all (real or complex) scalars r with |r| * 1;

(d) If rn—r and xn—»x, then g(rnxn —rx) —0.

For any xq £ X , we consider the Mann iterative process associated with
S as z,,+i = (1 - cn)xn+ cnSxn for n > 0, where {cn}£T0 satisfies (i) cO= 1,
(i) 0~ cn”™ 1for n> 0, (iii) there exists an integer N > 1 and a constant
r > 0 such that r £ cn for all n >N . We mention that the condition (iii) here
is less restrictive than the corresponding conditions considered in [1], [3], [4].

Theorem 1. LetS and T be self-mappings on X satisfying at least one
of the following conditions:

(1) a(x-Sx) +q(y-Ty)"aq(x-y), a>0;

(2) a(x-Sx) +q(y-Ty)<B[kq(x-y) +q(x-Ty) +q(y-Sx)]; 0<R<I
and k > 0;

(3) a(Sx - Ty) +a(x - Sx) +q(y - Ty) $ jla(x - Ty) + a(y - Sx)];
0<7<2

1980 Mathematics Subject Classifications (1985 Revision). Primary 47H10; Second-
ary 46A06.

Key words and phrases. Metric linear space, F-norm, contractive mappings, Mann
iterates, common fixed point.
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(4) q(Sx - Ty) <imax{"(i - y),a(x - Sx)+q(y- Ty),a(x - Ty)+
+q(y —Sx)}, 0" 6<1 and k > o,
for all x,y £ X. 7/ /or some X0€ X, the sequence {Xn}}E O of Mann iterates
associated with S or T, converges to apoint u EX , then u is a common fixed
point of S and T .

P roof. Suppose xn+i = (1 —cn)xn+ cnSxn for n > 0, with n1_1.rg10 Xn =u.

Choose an integer N t 1 and a constant r > 0 such that r<cnforallnt N.
Then, for n't N,

n g(Tu —u)%q(Tu- Sxn)+ q(Sxn- xn)+ g(xn- u) <
Ag(Tu- Sxn)+ 2(r_1(X,,+i - X,,)) + g(xn- u).
If 5 and T satisfy (1), then
q[Tu —Sxn)<g{Tu —u) + g(u-xn)+9(X, - Sxn)”" (a+ 1)1 - Xxn).
If 5 and T satisfy (2), then
q{Tu- Sxn)<q(Tu-u)+ q(u- xn)+ g(xn- Sxn) <
S B[kg(u - xn)+ q(u - Sxn)+ g(x,, - T} +qg(u-xn)<
<(BA+ B+ 1)1 - X,,) + Bo(r_1(xn+i - i,)) + Bg(xn- Tu).
If S and T satisfy (3), then
g(Tu —Sxn) <7 (a1 —Sxn)+ q(xn-Tu)} - 911 - Tu) - 9(xn- Sxn) <
Nzo(u- xn)+ 7 - Do(r_1(xn+1 - xn))+7q(xn-Tu)- qu-Tu).
If S and T satisfy (4), then
q(Tu - Sxn)S $max{kq(u - xn), gfu —Tu) + q(x,, —Sxn),
gq(u- Sxn)+g(xn-Tu)}<
N6 max{kq(u - xn),q(u-Tu) + 9(r-1(xn+l - xn)),
g(u - xn) + g(r~1(xml - xn)) + g(xn-Tu)}.
Substituting the values of q(Tu - Sxn) in (5) and letting n —o0, we obtain
q(Tu —u) S Aq(Tu —u),
where A= max{/3,7 —1, &< 1 Hence Tu = u.
Now, to show that Su = u, we apply again each of (I)-(4) and obtain
q(Su —u) —q(Su —u) + q(Tu —u) * aq(u —u) =0,
q(Su —u) —q(Su —u) + g{Tu —u) fERq(Su - u),
g(Su —u) = q(Su —Tu) < (7 —I1)9 (5 u—u),

and
gq(Su —u) = q(Su —Tu) fE6q(Su —u),
respectively. Thus Su = u, and this completes the proof.

Regarding the uniqueness of the fixed point, we have the following results.
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Corollary 2. Under the hypothesis of Theorem 1, suppose that in place
of conditions (1)-(4), S and T satisfy at least one of the following conditions:

(6) q(Sx - Ty)+q(x - Sx) +q(y - Ty) <7[a(x - Ty) +ay - Sx)],
0=/<;

(7) q(Sx - Ty) <5nax{g(a; - y).a(x - Sx) Fa@y - Ty).a(x - Tin+
+q(y - Sx)}, 0s6<1,
for all x,y £ X . Then u is the unique fixed point of S and T.

Proof. If S and T satisfy (6) and (7), then they also satisfy conditions
(3) and (4), respectively, of Theorem 1 with « = 1. Therefore Su =u=Tu.
For uniqueness, suppose that Sv=v=Tv for some v (7*u) 6 X . Using (6),
we can write

q(u- v) = q(Su—Ty)<
£ ~l[qu—Tv) + g{v—Sk)] —q(u —Su) —q(v —Tv) =
=2yq(u - v).

Since 0" 27 < 1, we have u = v. Similarly, using (7), we obtain
q(u —v) = q(Su —Tv) " 6q(u —v),

and so u—v, as required.

Corollary 3. Under the hypothesis of Theorem 1, suppose, in addition,
that at least one of the following strict inequality conditions holds:

(A) q(u - Sx) <g{u- x) +q(x - Sx);

(B) a(u - Tx) <qg(u—x) +q(x —Tx);

(C) a(u - x) <q(u—Sx) + q(Sx - x);

(D) g(u- x)< q(u —Tx) +q(Tx —x)
for all x  u) GX. Then u is the unique common fixedpoint of S and T.

Proof. By Theorem 1, Su=u=Tu. Suppose also thatSv —v —Tv for
some v (/u)€1. Using (A), we have

g(u —v) —a(u —Sv) <g{u—v) + q(v —Sv) = q(u —u),

and so u—v. Similarly, the other conditions also imply that u=v.
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ON MAHLER’S APPROXIMATION FUNCTION FOR POWERS
OF CERTAIN ALGEBRAIC NUMBERS

C. ELSNER

Abstract

Let u>n(C) denote Mahler’s approximation function. The following theorems are
proved:
i) For an integer m and some positive integers s and t with (s,t) =1, t<s and s >3

we have
w»-2(C) = Ub-2(C*)

for C€ C with (s —m =0 and deg C—s-
ii) Let n be a positive integer greater than 2. If b and c are integers with b~ 0 and if
m is any positive integer with m\n, we prove

u'n-2(C) = «h>-2(Cm)

for each ( satisfying (n+ b(+ c=0and degC= deg .
Both equations are deduced from a theorem, which allows to prove more general results
for un (C)-

1. Introduction

If P is a polynomial with integer coefficients we write H(P) to denote
the usual height of the polynomial P.

In his famous papers [1] Mahler introduced a function to measure the
approximation of complex numbers by algebraic numbers whose degree does
not exceed a fixed integer n: For ( 6 C and n £ N the positive real number
wn(() denotes the supremum of all positive numbers wn, such that there
are infinitely many polynomials P £ I[x) satisfying degP ~ n and |P(C)| $
< H(P)~Wh. This is equivalent to the following definition of u;n(£): Let

M(n,H;Q ={Pei[x]: degP<n, H(P)<H, P(C)"0}.
Then

(1.1) wn(H.Q:=_ min _ IF(C)]

1980 Mathematics Subject Classifications. Primary 11J82; Secondary 11J68.
Key words and phrases. Mahler’s approximation function, approximation by algebraic
numbers.
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logwn(H, O
logH

The most important relations for wn(() are tabulated in (1.3).
If £ is algebraic, we write s —deg £, otherwise s = oo

(1.2) Wi (C):= Iirtn

£ without Creal I not real
_ restrictions
s w_|th_out 0=wi(C) * 20" <l(0)=0
restrictions ... <00 @ 2
s and n without wn(Q<s- 1
restrictions ©) @
s < 00, n Without  wn(Qs 2n- 1 uji(C)=1 WHO) - «—1
restrictions G5 (s>1) (6) @
n<s run(C) —n M(C) > 7
@1 ©)
n>s—1>1 W,(C)=3-1 wn(C )="
(11)
Table 1.3

A proof for (1), (3), (8) and (9) can be found in chapter Ill of [2]; (2)
follows from wi(H, £) min{l; [ImQ} >0 (He N); (6) can be deduced from
(5), (8) or the theorem of Thue-Siegel-Roth; Theorem 2 and Theorem 2.2
in [3] imply (5), (7); and (10), (11) can be proved with (1), (3), (4) and two
equations from [4], which were first deduced by E. Wirsing from some of his
deep estimates for wn(().

W ith regard to Table (1.3) the following conjecture seems reasonable:

Let £ and 7 be algebraic numbers, and furthermore we assume that they
are either both real or both non-real. Then we have wn(() =wn(rj) for all
ne N. From (2), (6) in Table 1.3 and from the condition n >s —1" 1 for
(10) and (11) it is easy to see that this conjecture will only be of interest
if 2<n<s—2, s>4 Now let £ and g be both transcendental numbers. If

m
there are integers a0, ... ,am and a positive integer m such that I\%Zoan] 1=C
we obtain from (14) and (15) in [2 chapter IlI]:

wn(rj) - m+1
m

(1.4) Wnm(v) » Wn(C) » for all n€N.

2. Some lemmas and obvious applications

Lemma 1. LefEEC\{0}. Then we have

w,,(() =wn
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for every positive integer n.

Proof. If
n n
P(x) = and Q(x) — an_,2;,
/=0 V=0

are polynomials with integer coefficients, we obtain |P(£)| = |C|" Q
and the assertion immediately follows from (1.1) and (1.2).

Lemma 2. Let££ C; qi,q2EQ; qgi/ 0. Then we have
An(C) = *n(9IC + 92

for every positive integer n.
Proof. Let H £ N. Now we choose integers a0, mm an such that

wn(B,qiC + 92)
il=0
Furthermore let z 6 N satisfy z(q\g2) G2 (if g2 7 0) or zgi 6 Z (if 2= 0).
Then
(2.1) znwn(ff,ql( +g2) =
Mo\=a w

For every /r with 0~ X™ n we have by K :=zz\qig2\ (g2* 0) or K  ¥2||

(92 = 0)

E 0°Q z"9i?2 " <2n+lKnH.

From (2.1) we conclude
znwn(H,q1C+ g2) >wn((2r,+1K nH), (),
and by definition (1.2) this leads to
(2.2) Wn(qi( + g2) *w n(().
As before, we obtain for 7= + g2 (91 ™0):

wn(0 =wn( V- ) Mn(r) = w,(9iC + 92),

and this (together with (2.2)) proves the lemma.
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Corollary 1. Let b,cf£ Z c/ 0; ii,s EN. Furthermore let ( be an
algebraic number, defined as a root of one of the polynomials
i) m~(X) :=xs+ bx+c or
i) mA(x)xs+ bxs~1+c.
Then we have
wn(C) =wn(C~1).

Proof. If£is aroot of a polynomial from i), the assertion follows from
£= Crtfb by use of Lemma 1 and Lemma 2; otherwise we know £s 1 =

Corollary 2. Leta,b,c,del; ad- ber 0; EC. Then we have for
every positive integer n

fa( + b\

Wn{Q W\ 4 gy

Proof. First assume ¢ = 0. This reduces the corollary to Lemma 2.

Now let ¢/0. With
af+6 a 1ad—be

¢cC+d ¢ c2£4d

the assertion is proved.

3. A basic theorem to prove more general results

THEOREM 1. Let £ be any algebraic number of degree s, assume that
m~(x) € Za] is the minimal polynomial of £ By R we denote the ring of

polynomials Let P(x) 6 Q[x]; nEN; n”s —1. For every k with 0 <k <

s —1 we write
s-1

Pk{x) = {P{x))k=Y ,a» x*

where the rationals ak,v (0" k <s—1, 0$i/S s-1) define the irreducible rep-

resentation of the polynomial Pk(x) in the ring R. Furthermore we assume
that the following conditions are satisfied:

i) det Uak,v)o<k_<s-i)/ 0-
OZvis-V
ii) Let bO,m.. ,&s-i be arbitrary integers, + ...+ b2 1>0 Then let
xd, ... ,XS-\ be the solution of the inhomogeneous system of equations

— / OSi/Ss—2 = (M0<I/<S-1*
0
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For all integers b0, ... ,6s5_i, + eee+ "«-i > O» there exists a polynomial
T(x) 6 Q[X] such that we can assume for

U(x):=T(x)(xo+ Xix + ... + X4_ix4 *):
The coefficients of U are integers,

H(U) = O(max{|6o|> |&i|

(3-1) degI7<n
iii) At last
3.2) IT(P(C)I =0(1)
holds for all polynomials T defined above. The constants in 0(...) are in-
dependent of vo, bi,... ,6S_i resp. «a,x1,... ,Xs-\. Then we have

Wn(O*Wn(P(0 ).
Proof. Let He N. The identity

(3.3) un(jr,o = 1Q(OI
holds for a certain polynomial Q(x) = bO+ b\X + ... + bnxn g Z[x]. Now
set 6ntl = 0,... ,65 x = 0; from i) we deduce the existence of the solution

xq, ... ,Xs_i of the system in ii). If we sum up all the equations of this
system, we get

3—1 3—1 3—1 3—1
a(x)- "2 b'x=> Xkp k(x)
- k© v k—
s-1
(in R). Hence the polynomial R(x) = ~ x ~ satisfies
/i=0
(3-4) a (0 =R(p(0)-

From ii) we know that there is a polynomial T(x) e Q[x] such that (3.1) holds
for the polynomial U(x) = T(x)R(x). Denote by Cq the constant from the
estimate of H(U) in (3.1). From the definition of Q(x) we know

max{|60|, *+m, |i»n|)

and therefore we obtain [i/(P(C))I = wn(CoH, P(C))- With respect to (3.3)
and (3.4) it is clear that

\T(P(0)\wn(H,0>wn(COH,P(0).
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Now let C\ be the constant from the estimate of (3.2). Then
logCi -log wn(H,Q < - logwn(COH,P(Q) log(COH)
logH + logH = log(CO/T) logH ~

By use of Definition (1.2) we finish the proof of the theorem, because Cqand
Cx are both independent of bo,... ,bn (and therefore of H, too).

Remark, a) Condition i) in Theorem 1 holds if and only if
deg C—degP(C).
b) From the proof we know

s—1 s—1

=Y, X kPK(x)
i/=0 f=0

if condition i) of the theorem holds. Sets = nand 6n_!=0. If we have xn_!=0
for all bo,... ,6n_26Z, it follows that wn_2(C) =Wh-2(P(0), because I\x)
becomes a constant polynomial consisting of the least common multiple of

all denominators of xo,... ,xn_2. Obviously, every x; (0~ i~ n—2) is only
linearly dependent on all 60,... ,6n_2, and since 60,... , 2 are integers we
conclude that the denominator of x, remains independent of 60,... , 2.

Hence T depends only on m”~(x) and P{x). We will make use of this principle
in the proof of Theorem 3.

4. Two applications of Theorem 1

Theorem 2. Let mei; s,teN; (s;t) =1;i<3;s>3 With ( we
denote an arbitrary root of the polynomial xs—m; and let deg C=s. Then

WS-2{0 = WS 2(C).
P roof. We have m”~(x) xs—m, Pk(x) :=xkt (0 <k”™s—1). The
reduction of Pk modulo leads to
Pk{x) —m©°xkt~0s, ii0<kt”*s-I
Pk(x) = mIxkt~ls, ifs<kt<2s- 1
Pk(x) = m2xkt~2s, if 2s <kt <3s—1

Pk(x) = if (t—I)s A kt <ts —1
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Thus we have
akv —0, ifvrikt-rs (0$8r<i—l)
asiy=mr, \iv =kt —rs

for the coefficients of the system of equations in Theorem 1. Hence we are
able to compute the unique solution of this system:

Xk —m°bkt-osi ifO<kt s—I1
xk =m ~Ioki-is, iis<kt<2s~I
xk = if (t- I)s <kt<ts- 1,

and therefore

(4.1) bo+ &ET -e-Ths—iCs 1= T T +eeeTxs-iQs A
holds. Furthermore we know

(4.2) mt~1Xi G1 forall 0™ i s—L

Now assume n —s —2, which means 6s_i = 0 in Theorem 1. We want to re-
duce the exponents of £ on the right-hand side of (4.1). Letu £ {0,1,... ,s—1}
denote the uniquely determined subscript satisfying x,, —6s_i = 0. With this
number we determine n\ : = (s —v —I)t. From (4.1) we obtain

5—1
(4.3) o (0O+...+b" rc-1)=y ~cMHie

<=0
Thus we know that every exponent of £ on the right-hand side of (4.3) is

divisible by t. Let /z6 (0,1,... ,5—1}. Then there exist uniquely determined
nonnegative integers and r” such that

H +ni =(s-i/+n-1)t =(mBs + rh)t,
and 0~ <. Particularly, we deduce from O<u”s- land 0 /z<s—1

th—s 1 4=>s-v+/z- 1=ms+(s- 1)
4=>[z7 = v.

Notice that £/i>1 = mtm'J£tr, and if we substitute into (4.3):

1 3-2

3-
cni (DO + e 2c -2)=Y =Y x»rntm»xr»
H=0 fi=0
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The last equality holds with respect to (4.4) and xv=0. From (4.2) we
deduce that there are integers c0,... ¢s_2 such that

S- 2

(4.5) Mi~10ni(80+ e-+ bs-2C~2) =
XC

Now we specify the polynomial T and the constant C1from Theorem L

T(x):=mt-Ixs-l-1, Cx:=1Im " 0O |.

It is easy to see that 711, C\ and mQ, ... ,ms_1are independent of 60, e , {s- 2.
By (4.5) we obtain
S2
max{|a;o|,... ,[xs_2} "
ti=0
< Co max{|i»Ql,... ,[6S_2|),

because every xt (0 <i<5—2) is only linearly dependent on all bo, mm. ,6S 2.
Hence we have checked all the conditions of Theorem 1, and we conclude
(4.6) ws_2(C) ™ ws-2(Ct)-

(s, t) = limplies that there is a positive integer w satisfying w <s and wt =
= I(mods). Then

(m*") =rmr
for some positive integer r. Thus by analogous arguments as used to deduce
(4.6) we obtain
ws-2(C) M ws-2 ((V Ar) =ws_2(rMrn) = ws-2(()

(by use of Lemma 2). Together with (4.6) the theorem is proved.

Theorem 3. Letb,c£T; bf O;n,mEN; n't 3; m\n, m<n. Assume
( to be an algebraic number of degree n, which is a root of the polynomial
mf(x) :=xn+ bx + ¢. Furthermore let deg CM= n. Then

wn_2C)=w,-2Cm)-

Proof. Forevery k (0 £ k" n- 1) we have Pk(x) :=xkm and we calcu-
late two numbers u and j defined by

u ”:]k and 07 Si—1 j =k modA Aj .
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In the first part of the proof we show that with

4.7) Pf(x) = (-1),/~ mod (m*(x))
=0

we have a representation of Pk(x), which is completely reduced in the ring
~1. From the construction of j we obtain:

i) r .= — ——j for some non-negative integer r,
i) o™ <
m lIn yields 0<” j <1, hence »* —1<r We know r G NO, and

thus r —v; at last we gather km = nv + jm.
Now we compute

Pk{x)=xjm(xn)u=xjm(-bx - cf =

=(-1)" mod (mc(x)).

To prove that this representation is completely reduced we have to check
(4.8) Q<jm +v—n<n —\ forevery A€ {0,1,.. ,n—1}
The lower estimate is obvious, the upper one follows from
jm-\-v—fi* jm +is® n —m-\- v <n,
because
v <%k < nm—(n—l) < to.

Now we use the principle described at the end of the proof of Theorem 1
To do this we prove: There are non-negative integers i/, fi and j as defined
above with

jm-\-v—n=n—1
if and only if
(4.9) k=n- 1

Without loss of generality we may put n = 0; notice (4.8) and 0" /X" il.
If we set k = n —1 we obtain from v —[m —*-] and m |n: v=m —1; and
from the relation mentioned above, =k —j, we deduce j = —1. This
implies
jm +v= (---—-- )m+ (m—1)=n—L
jm +v= (1) m o+ (m —1)

On the other hand we assume k*n-2. With regardtov® Im— " m—1
we have to distinguish two cases:
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First case: v—m —1.
From v—=k —j we obtain j <——2, and this yields

jm-\-v< (Fﬁ---z)/m +(m—)=n—m —I<n —1
Second case: v<m —2.

Im + f\Fn_l)/er(m —2)=n- 2

Notice degC = deg(m; condition i) in Theorem 1 holds. Hence we deduce
from (4.7) and (4.9)

(4.10) ™ 2(C)*n-2(Cm)-

Now we define r]\—£m and q ~ At the beginning of the second part of
the proof we show

(4.11) R(v)-= [J2 cr ™ (-6n =o0.
i/=0

First we raise (n+ c= —6£ to the power m, and by use of the binomial
theorem we get

(-b)mc

If we substitute £nm n" = Qwm "gm = 1jn into this expression, we have
proved (4.11). It is obvious that

(4.12) degR —n.

Q(x) denotes the polynomial xg. Let 0~ v < n—1. Then we compute the
completely reduced representation of Qu(x) modulo R(x); and we write down
all exponents of x appearing in this reduced representation. This gives the
following table:
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1; 69
2q

_ (m-1)q
m<ug2m —1 (m- Dg, (m- 2)q,... ,0; (Og+ 1)

(m-1)gq,(m-2)q,... ,0; (Ig+1),(0r+ 1)

(m-1)g,(m-2)q,... ,0;(m- I)g+1,... ,(0g+1)
2mEv ™A 3m —I:(m - I)g,... ,0; (m —)g+ 1,... ,(0g+ 1); O+ 2)

(k- hm<v<
~Nfem—1 (m- 1)g,... ,0; (m—I)g+ 1,... ,1;
=n -1 (m-Dg+2,...,2,0g+(g-1

(m-Dg,... ,0;(m-ljg+1,... ,1;

(m-Dag+2,...;(m- g+ (q- 1),... .00+ (q- 1)
Every integer of the table can be rewritten as

rg+ s with0O<r<m—land 0" s <q—1L.
First case: s <g—1L1 Then
r9+ 5=(m-1)<7+(<2—2)=mq —2< mq —1.
Second case: s= d—1and r <m —1. Then
rg+s<(m- 2)?+(q—1)=(mg—1)—q< mq —L
Third case: s=g—2L1and r=m —1 Then
rq+s=(m-—1x+ —1)=n—1.

We notice that the third case arises if and only if v =n —1. Hence by the
same argument as used to deduce (4.10) we obtain from (4.11) and (4.12)

u>n-a(»7) » wn-2(vaqy,

notice deg  =deg £ = deg(-6£ —c) = deg At last we remember (4.10),
and by use of Lemma 2 we get

™n-2(C) » Wn-2(Cm) A ™n-2( 0 = ™np-2(C") = t0,-2(-6C ~ <0= W,,-2(C),
and the proofis complete.
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PARTIAL CORRECTNESS WITHOUT ACTUAL INFINITYZ

M. A. SUCHENEK

Abstract

In this paper the problem of Andréka, Németi, Sain [1], and Csirmaz [4]: “Does there
exijt aset 5 Q Ftj, such that for every set £ Q Fj, and every statement q£ HFj, conditions

£ |=gand 5u £ (=s are equivalent?” where:
e Fj is the set of all first-order formulae of type d (describing data structure);
« Fidi is the set of all first-order formulae of many sorted type td (describing temporary
states of memory, and time and data structure);
» HFd is the set of all Hoare-Floyd partial correctness statements of type d;

» \=Iis the standard relation of semantical implication:
» f=is the relation of semantical implication of the nonstandard dynamic logic of [1];
is solved negatively. For this reason a new concept of finitely approximative partied cor-

00
rectness is proposed. The relation |= of semantical implication of the new concept is shown
ul 0o

to be axiomatizable within nonstandard dynamic logic of [1]. Moreover, relations (= and (=
are proven (Theorem 2.5) to coincide for a broad class of theories and partial correctness

statements.

1. Non-standard dynamic logic vs. partial correctness

Following Andréka, Németi, and Sain [1], we use the notations and con-
cepts of nonstandard dynamic logic. Notions from ordinary logic, such as
structure, formula, sentence, satisfaction relation |=, etc., are standard and
may be found in any textbook of mathematical logic, e.g. in Barwise [2],
and also in [1]. In particular, if M is a first-order structure then we write
M |=ip iff M |= y[s] holds for all possible valuations s in M; and if E is a
set of formulae then we write E |=tp iff for every first-order structure M the
following implication holds: if 7€ E)(M |=a) then M (=tp.

We apply the following conventions:

1980 Mathematics Subject Classifications (1985 Revision). Primary 68Q60; Second-
ary 03B45, 03B70, 03C13, 68Q55.

Key words and phrases. Dynamic logic, finite models, models with explicit time, par-
tial correctness in EC& classes, program semantics.

1This paper constitutes a revised version of [7],

Akadémiai Kiadd, Budapest
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0 is the empty set;

AB is the set of all functions from A into B]

D m (f) is the domain of /;

d is a similarity type;

Fd is the set of all first-order formulae of type d]

Pd is the set of all finite effective program schemes over type d;

Xd is the set of all variables of elements of Pd]

HFd is the set Fd x Pd x Fd of all Floyd-Hoare partial correctness state-

ments of type d]

* t is a similarity type, such that Dm(d)DDm(t)=0 and {0,1,+,x "} Q
Dm(t);

» Ft is the set of all first-order formulae of type ]

* Int is a relation symbol of many-sorted type (0,t,d)]

* Ftd is the set of all first-order many-sorted formulae, generated by

Fd UFt and Int.

(Formulae of FAUFt are treated as many sorted formulae here, e.g. the
symbol ~ is of type (t,t), and the symbol + is treated as a ternary relation
symbol of type (t,t,t)).

We call the quadruple (T,T>,Xd,int) a time-model of type td iff:

* T is a (time) structure of type t]

* V is a (data) structure of type d;

e int € XdXTD, where T is the universe of structure T, and D is the

universe of structure ™ and

0,1, +,x,™ are interpreted in T as usual.

In particular, the standard structure N of all natural numbers must be em-
bedded in T.

We define valuations in (T,V,Xd,int) as triples (u,w,v), where u is an
infinite sequence of elements of T, w is an infinite sequence of elements of D,
and v is an infinite sequence of elements of Xd] the first sequence corresponds
to objects of type t, the second one to objects of type d, and the third one to
objects of type 0. We assume int as the semantics of symbol Int. Definition
of satisfaction is standard, e.g.

(T, V, Xd, int) |=Int(x3,x0,x7)[{u, w, V)]

holds iff int(v3,u0) —w7, and so on.

We call a time-model (T,V,Xd,int) of type td a realization of program
p € Pd iff there exists an execution of p over data structure V within time
structure T, such that for every variable x of p, its value after r-th step is
int(x, i), where i runs through T. The semantics of Floyd-Hoare statements
is defined as follows. Let (<p,p, if) € HFd and (T, V, Xd, int) be a time-model
of type td. We write (T,V,Xd, int) f=(<p,p, if) iff:

» (i) the execution corresponding to int diverges (i.e. it does not halt),
or
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o (ii) for some t £ T, this execution halts after t-th step with the impli-
cation V [=p>[ext(0)] ==V (=ip[ext(i)\ being satisfied,
where ext(n) denotes the valuation in V defined by ex<(«;)(x) = int(x,K) for

all x £ Xd, and « £ T. Note that the time structure T is allowed to contain
transfinite numbers, thus infinite executions do not necessarily diverge .

We consider two relations f= and )= of entailment. Let £ Q Ftj and
(<p,p,ip) £ HFd. We write £ (= (<p,p,ip), iff for every realization M of p,

M (= {<f,p,ip) holds whenever M |= £. We write E [=((p,p,rp) iff the above
implication holds at least for standard (i.e. with the time structure isomor-
phic to the standard slgucture n of all natural numbers) realizations of p. It

is easily seen that E |= (ip,p,rp) expresses the usual partial correctness of p
in every data structure that satisfies E, with respect to the precondition <
and the postcondition ip.

The relation |= is less investigated than the relation (=. Therefore it
would come handy to reduce E(=pto5U E~p for some S CFtd by proper

axiomatization S of )= within (=. Several attempts have been made in this
direction (one of the most natural of them was taking Peano Arithmetic PAt
of type t as S), but they turned out to be unsatisfactory in some cases. It is
already known from Bergstra and Tucker [3] that for every E QFd which has
only infinite models, there exist a similarity type t, and S Q Ftd conservative

over E, such that for every g £ HFd, £ f=Qis equivalent to SUE [=¢g
Unfortunately, [3] does not guarantee that there is an S CFtd which works
for all such E QFd-

The problem of uniform axiomatization of \= within ~ has been posed
in Andréka, Németi, Sain [1] (problem 1, page 276), and next in Csirmaz [4]:

P roblem 1.1. Does there exist S Q Ftd, such that for every E Q Fd and
gf£ HFd, E H Qis equivalent to SUE gl

We prove that the answer to this problem is negative (even after we relax
the restriction on S and allow it to be an arbitrary subset of the set DFd of
formulae of nonstandard dynamic logic of [1], which is a proper superset of
Ftd)- F°r that purpose we need some prerequisites.

DEFINITION 1.2. A binary relation r between sets E of formulae and
formulae ip is said to be compact iff the following equivalence holds for every
E and

£ry> iff Eoiy for some finite £0 Q£. O

Fact 1.3. The relation \= of entailment of nonstandard dynamic logic
is compact. (Proofin [1].) O
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Fact 1.4. Every Hoare-Floyd statement (<p,p,if) is expressible by the
formula DD(p,if) of DFj (see [1] for details). O

Y
Fact 1.5. E is not compact.
Proof. Take £ = ¢->c00 = 0+ 1+ ... + 1) |i 6 u>}, where oo is a constant

t times

symbol, and g—(true, {1 : x—x+1; 2 : if-1(00 =x)gotol;3 rhalt), false).
It follows that £ }=p, but for no finite £0 0 £, £0 (=Q O

Now suppose that S is the required set. Let g= (<p,p,if) and let £ f=g.

£ 1=g is, by this supposition, equivalent to S U£ (=g, which, by Fact 1.4,
is equivalent to SUE£ |= pD0O(p,if). By Fact 1.3, it follows that for some
finite SO8 S and finite £0Q£, SOUEO0(=p DD(p, if), which by Fact 1.4, is
equivalent to SOU£0 (=gm Hence we get S U£0 )= £ which is, by the above

supposition, equivalent to £O[—g Thus we have shown that (— is compact,
which contradicts Fact 1.5.

2. Finitely approximative partial correctness

As we have demonstrated, |— cannot be axiomatized uniformly within |—
in the usual sense. The reason for this is an |nf|n|tary character of relation |—

caused by its lack of compactness2. Consequently, (: does not coincide with
[= on some infinite theories with infinite models. But do we really need them
in Computer Science? Aristotle in Physics (d>vatK7 Angdacnc,) refused to
accept the actual infinity, postulating only the existence of potentially infinite
objects. Mycielski has shown in [5] how ordinary analysis may be successfully
handled within first-order logic without the assumption of actual infinity.

[e]e]
Inspired by his ideas we introduce a relation \= of finitely approximative

partial correctness, which seems to be a reasonable approximation of (=

Because of the finitistic structure of contemporary computers, it indeed
does not seem practical to assume that they may contain infinite or in-
finitely axiomatizable data structures. On the other hand, imposing fixed
upper bounds (say, 1010 ) on the number of their semantical or syntactical
components would make a too restrictive, even if an incidentally satisfied as-
sumption. Therefore we postulate, after Aristotle, that the potential infinity
is the one and the only one which, at least for a time being, is needed in
investigations of behavior of computers and their programs.

w
2 This fact implies also a certain kind of non-effectiveness of (=; see [6] for details.
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In this paper we consider the following circumstances the potential in-
finity may manifest its presence. A time and data structure M, is finite but
is allowed to grow unboundedly, and the same concerns its specification £;.
Their intention is to approximate some possibly infinite structure M with
possibly infinite specification £. The Aristotelian potential infinity principle
says that if M or £ are infinite then their existence should not be postulated.

In what follows we apply the following conventions. £ denotes a subset
of Ftd interpreted as a set of constraints on a time-model with arbitrary (in
particular finite) time structure. If X is a set, we write X » M iff X is a subset
of the union of the universes of time and data structures of M. For time-
models of type id, we write (T, V,Xj, int) C(T'D’, Xd, int") iff T QT, VQV
and int = intlfDm(int) (recall that T and V are many-sorted models, thus
their functions are treated as special cases of relations). In the sense of the
defined inclusion, we apply the union operator u to increasing sequences of
time-models.

From now we allow all functions in time-models to be partial ones. E.g.
given a and i, the undefined value of int(a, 1) means that the corresponding
computation has been aborted, which is never understood as a proper termi-
nation. Execution in time-models with finite time structure is said to diverge
iff it has been aborted or it reached the last time point (i.e. the one, for which
the successor function is undefined) before execution of a halt statement. In
light of such a definition, partial correctness in M is understood as impossi-
bility of yielding an incorrect output in the case of proper (i.e. by execution
of a halt statement) termination of an execution.

Definition 2.1. We write £ |= (p,p,ip) iff for some finite £0Q £ and
every finite (i.e. with finite time and data structures) realization M of p,

M (= £0 implies M (U):(p,p,tp). O

[e]e]
It is obvious that the relation (= of finitely approximative partial correct-
ness does not requwe the actual |nf|n|ty Of course, }— cannot always coincide

with f- for }— is compact while (- is not. However, f— seems to possess just
the features of practical partial correctness, because the real execution of the
real program is performed under finite number of explicit assumptions, on
finite computer system and in f|n|te time.

The relation (— in contrast to (— is axiomatizable within nonstandard
dynamic logic.

Fact 2.2. There is S QDFj such that for every £ QFd and every g£
£ H Fd conditions £ [=g and S u £ j=g are equivalent.

Proof. We define S as follows. Put (i",p, £5 iffo|=(ip,p,ip). More-
over, for every sentence n £ Ftd, n D (p,p,rf) e S iff (t A <pp, VW EDS. It is
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easy to check that S is the required axiomatization. O

(e]e]

Now we show that (= and [- coincide in practically interesting cases.

Definition 2.3. Let [ QFtd- E is said to be Y-meaningful iff for every
€ r the following implication holds:

if pis true in all finite time-models of some finite subset of E then E |= <
(The converse implication follows from the compactness of first-order logic.)

It should be noted that for every T-meaningful theory E the intersection
of T with the set of semantical consequences of E does not depend on whether
actually infinite objects are allowed or not.

Definition 2.4. Let T c Ftd. Program pE Pd is said to be of the prop-
erty T iff all tests and formulae that define substitutions of p are in P.

(>
The following theorem gives a characterization of E’s for which \= and

[e]e]

|= prove exactly the same partial correctness statements.

Theorem 2.5. Let T be closed under logical connectives and substitu-
tions of variables. E is T- meanlngful ifffor every <p|p ET and every program

p of property T, the conditions E (— (<p,p,ip) and E |— (<p,p,ip) are equivalent.

L
P roof. First, let us note that E (<p,p, v) I1s equivalent to:
for every complete and finite path in p, corresponding path
predicate 7T, and formula / of the resulting substitution, E |=

-ifaAir A-in[y7 x*1 AI("?,V)),
where:
» ~X is the sequence of all variables of p;

* -~y is the sequence (of length of ~x) of variables beyond <p ip and p;

» Tp[lf/~x]is obtained from ip by substitution y, —»xp, and

» f(~x,L?) says that after the execution of the path, variables ~x as-
sumed values "j™.

(To see why, let a abbreviate pAx A~{ip[~yf/~x] Af(~x, ~y))- Suppose E ’9
(<p,p,ip). Take a model M of E and a finite execution in M which does
not satisfy the partial correctness specification ((p,xp). Take n and / as the
corresponding path predicate and resulting substitution. We obtain M |=

a, hence E~ ->a. On the other hand, if E  ->a then for some model
M of E, M|=B'x'Jifa, or in other words, there is a sequence ~s of elements
of M, such that M (=a["sH. Any such ~s defines the initial values of —x that

produce incorrect execution of p in M. Thus E * (ip,p,ip).)
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Now, let us turn to the proof of the theorem.
(=s>) Let E be T-mfj\ningful and let p, tp,p be as required in the theorem.

As we have noted, E |= (p,p,ip) means that for every a as above, £ (= ->a
Obviously a € T. Thus, by T-meaningfulness of E, this condition is equivalent
to the existence of finite Eo QE, such that -keis true in all finite models of

Eo, that is to say, once more applying the above observation, E f=(p.p. ip).
u) 00

(<= Letip£ r and g(-npVip, {1 :hal&}, ip). Suppose that E|=gand E (=g

are equivalent. We have E (=ip iff E |= g, which by the supposition is the

same as E J=g. The last condition means that there exists finite Eo Q E,
such that every finite model of EO satisfies ip. O

3. Examples and open problems

In this section we give a few examples of sufficient conditions for T-mean-
ingfulness. Such conditions, by Theorem 2.5, guarantee the interchangeabil-
L 00

ity of 1= and (=. We start from a strictly finite case.
Exampte 3.1. Take To= Ftd. If E is a finite theory only with finite
models, then E is To-meaningful.

In case of potentially infinite structures the notion of absoluteness is
useful.

Definition 3.2. A formula p is said to be E-absolute iff for every pair
M, N of models of E such that M SN, and every valuation v in M, conditions
M |=p[v] and N \=p[v] are equivalent. O

In the process of approximating an infinite structure by an increasing
sequence of finite ones, absolute formulae are exactly the ones which maintain
their logical values independently of temporary state of approximation. E.g.
all formulae with bound quantifiers (i.e. of the form W £y or 3x £ y) of
Zermelo-Fraenkel set theory ZF, are ZF-absolute. Also every quantifier-
free formula is absolute. Constructibility aspects may impose additional
preferences on theories whose models are subjected to approximation. The
following class seems particularly promising.

Definition 3.3. E is said to be asymptotically modellable iff for every
model M of E, and every finite Eo QE, there is finite model N of Eo, such
that NQM. O

The following example shows that absolute formulae form a T which
guarantees the T-meaningfulness of asymptotically modellable theories.

Exampte 3.4. Let E be asymptotically modellable. Take = {p\p IS
Eo-absolute for some finite EOQE). Then E is Ts-meaningful and, moreover,
every program p is of property Te-
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Proof. Let £ be asymptotically modellable and <pbe £o-absolute, for
some finite £0QE£. Let 9 be true in all finite models of some finite £1 Q £.
Of course y?is SqUEi-absolute and true in all finite models of EOUEi. Let
M |= £. Take finite N QM such that N |[=£0U£1. In particular, N (=y> But
M |=EoU Ei, therefore, by £0U"-absoluteness of ip, M (=<p

For every £, every program is of property Te because only absolute
(quantifier-free) formulae are allowed as its tests and definitions of substitu-
tions. O

It turns out that quite weak assumption about complexity of the prenex
form of formulas in T suffices for its T-meaningfulness.

D efinition 3.5. Y £ Ftj is said to be inductive iff it is of the form
Vxi ... Vxn'tp or 3x\ ... 3xnip, where ip is any quantifier-free formula. We
denote the set of all inductive formulae by V3. O

Remark. Since the usual meaning of a formula ip{~x) with free variables

~X within a theory £ is VT>yXT>), the above definition is consistent with
others known in the literature, e.g. in [2], Chap. A2, def. 2.15.

In practice, the inductive formulae are the most common cases of input-
output assertions. It is also obvious that every program is of VV3-property. So,
V3-meaningfulness makes a practically sufficient condition for the equivalence

of (UJ: and |=.
Example 3.6. If £ is asymptotically modellable then it is V3-meaning-
ful.

Proof. Let £ be asymptotically modellable. Let M\=£ and let pbe
true in all finite models of some finite £0 Q £. Construct an increasing
sequence (M- |i£u), such that for each i, M- (=£0, and M= U{M-- | i £ v}
Mi |= (f for all i, hence by Chang-Los-Suszko Theorem (Barwise [2], chap.
A2, thm. 3.13), taking into account that sis an inductive formula, we obtain
M |= (p. O

proBLEM 3.7. Find the greatest T such that every asymptotically mod-
ellable theory is L-meaningful.

We end this paper with a concrete example of asymptotically modellable,
and hence V3-meaningful theory.

Example 3.8. If £ is universal (i.e. composed of formulae of the form
Vxi ... 'slknip, where ipis quantifier-free) then it is asymptotically modellable.

P roof. By the Los-Tarski Theorem (Barwise [2], chap. A2, thm. 3.11)
every substructure of a model of £ is a model of £. Thus if £ is universal
then it is asymptotically modellable. O

Probiem 3.9. Find the greatest T such that every universal theory is
T-meaningful.
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ON A REPRESENTATION OF ALGEBRAIC INTEGERS

B. KOVACSt and A. PETHOX

1. Introduction

Let R be an integral domain (with unit element 1), a 6 Rwith a * 0, Af =
= {b0, b\,... ,6m}, where 6- (0~ i~ m) and m> 1 are fixed integers, {a, Af}
is called a number system in R if every 7 GR can be uniquely represented as

(1.1) 7=a0-faXQ+ ... + akOtk

where a- GAf fori=0,1,... .,k and a*/ Oifk* 0. IfAf=Alg= {0,1,... ,m}
then the number system {a, Af] is called a canonical number system. The
exponent k will be denoted by L(7,0).

In the rings of integers of quadratic number fields (over Q) all canonical
number systems are known ([2], [3]). E. H. Grossman [1] proved an asymp-
totic estimate and an upper bound for X(q, a), if a belongs to an imaginary
or to a real quadratic number field, respectively. We know from [4] that
an integral domain R of characteristic 0 (with unit element) has a number
system if and only if R = Z[a], where a is algebraic over Q.

The aim of our paper is to give a generalization and refinement of the
estimates of [1] in case of R = Z[/3], where [} is an algebraic integer. Namely
we shall prove the following

Theorem. Let R be an algebraic integer of degree n't 1, and let {a, A*}
be a number system in Z[/3]. Then there exist effectively computable constants
C\(a,Af), 62(0, A9, depending only on a and Af, such that

log IT()I . \ log|7()I
B fERloglay T AL DT RE jog ey * C2OAD
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holds for every 0776 Z[/3], where a(’) and 76) denote the i-th conjugates of
a and 7, respectively.

Remark. When B is an imaginary quadratic integer, (1.2) was proved
by Grossman [1]. He gave also an upper bound for L(7,0), if B is a real
quadratic integer. It follows from our theorem that his upper bound is not
sharp.

2. Proof ofthe Theorem

Let {a, Af} be a number system in Z[/3]. We can see from Theorem 3 [4],
that Af is a complete residue system mod \Nk/q(oi)\, and |a(")| > 1 holds
for every conjugate of a. Let now 7 € Z[R\ and

(2.1) 7=a0+ ai0i + ... + &kOk\ ajeAiioiO"j*k and ak+ 0.
Taking conjugates this implies
(2.2) 7i)= D.(-arar + ...+ ak(otr) FOrevery 1 <isin.

From (2.2) we get

(2.3) |7»]| =|«,+a,aW+ ... +at(Q(»t|SD .
3=0

where D —max 16l Thus

beAT 1
(2.4) (la()I- DI7OL2 ,Og,-),*‘*'!
' D
and
Nk
(2.5% !9.9..(J§.6%|€’_EF;%{__9_QR- ilgg'g (;\: < A+ lforevery 1gtsn.

But the first summand of (2.5) is an effectively computable constant,
depending only on a and Af, and so it follows from (2.5) that

2.6 L{7,c0> 09|72 +Ci(qg,W).
(2.6) {7, bl |O§|av*| i(a,W)
Let now k denotes the minimum of those natural numbers for which

(2.7) a ()
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holds for every conjugate of a. Such a k exists because [a*")| > 1for 1"~ i " n.
By Lemma 4 of [4] there exist a, GAf, 0<j £ k—1 and 716 Z[[] such that

(2.8) 7 = ao+ aia + eee+ afc-iQ™ 1+ ONi
and
i D D
29 M. <1+ e o=c2d
. lo(ojx a(01- 1= a()l —1

because A <1and |a(')] > L Here C2-s are constants depending only on
a and Af. From the definition of k we can deduce that

I°q79|
(2.10 g]tgn log |ab

Since 7i € Z/5] = Z[a], we can write

(2.11) 9= x0+ x1a() + ... + xn_i(a(*)n \

where x3GZ for j G{0,1,... ,n- 1). Using (2.9) and (2.11) we obtain
—1
(2.12) 1771= x0+ *107 + ... + x,_x(Q™)n 1 <C2,

But it is well-known that (2.12) has only finitely many solutions in (xo,Xi,
... ,X,,_1) G Zn and these solutions are effectively computable. Let T be the
following subset of Z[R\:

r = {i 16GZ[a] and 6 is solution of £C2i,1 i~n},

and take T(L) = max$er L(6,a)- Since T is a finite set and {a, AT) is a num-
ber system, hence r(L) exists and it is an effectively computable constant.
From (2.8) and (2.10) we get now that

(2.13) N7.«<)SmAN||N] +r(i)+1.
(2.6) and (2.13) proves the theorem.
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AN ELEMENTARY PROOF OF SOME RESULTS CONCERNING
SUMS OF DISTINCT TERMS FROM A GIVEN SEQUENCE
OF INTEGERS

U. ZANNIER

Introduction

A number of papers have been devoted to the following additive problem:
Given a sequence S = {si < S2< mm} of natural numbers investigate its
partition function

gs(n) = number of solutions of n= +5;2+ ... + 5,1

where r is unrestricted and i\ > > ... >V

We mention, among others, the papers of Birch [1], of Erd6s [4], and the
very general results of Cassels [2] and Roth-Szekeres [6].

In [6] the authors obtain an asymptotic expansion for Qs(n) under very
general and natural conditions on S and Cassels shows Qs(n) >0 for large n
under even less restrictive assumptions.

However, the method used by these authors is analytic, inspired by the
circle method, and so it may be of some interest to have elementary combi-
natorial proofs of some results in this direction.

Three elementary papers on this subject are, for instance, the above
mentioned ones of Birch and Erdés, and the paper of Perelli-Zannier [5].

In all these papers the conclusion is that gs(n) >0 for large n, under
various different conditions on the sequence S. Anyway, the theorems do
not apply when S consists for example of the values of a polynomial at
natural numbers, a situation which is covered as an extremely particular
case by both Cassels and Roth-Szekeres’ results.

The object of this article is to give, in a completely elementary way, a
condition on S sufficient to imply ps(n) > 0 for n> n0, which is fairly general
and, moreover, works for polynomial sequences.

Define

Cs - {™e N,Bs(n) >0).
We shall prove the following

1980 Mathematics Subject Classifications (1985 Revision). Primary 11BXX.
Key words and phrases. Sequences of integers, sums, additive problem.
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T heorem. Assume S —{si < S2<m .} is an infinite sequence such that

() "t au = o(MW)i oy

(ii) there exist integers n\,... ,nk and a number B such that, for infinitely
many indices u

0< [7U(-5uH —SU) T see'F" ~ Au)| A B]

(iii) for every integerm, 1~ m ~ B, Cs meets every arithmetic progression
with difference m.
Then Cs contains every sufficiently large integer.

Remarks. (1) The inelegant condition (ii) may appear more natural
observing that a special case occurs when the fc-th difference of SUis infinite-
ly often bounded and nonzero: of course this fact suggests application to
sequences which behave like a polynomial.

(2) A proof completely similar to the one given below gives the stronger
Theorem in which condition (ii) is replaced by

(ii)* There exist integers ,nk and an infinity of sets of indices

v\, ... Wk Uc}k with U <V and u\<ui< m.< Uk such that

(0) sM~suv»>  (/3) slk—0 (sUI)
(7) 0< - BUl)+ ... + nk(s\k-s WKl < B

where B is absolutely bounded.

For the sake of simplicity we have, however, preferred to prove only the
weaker result.

(3) Our Theorem does not follow from Cassels’ result in [2], his condition
(*) being independent from our (i), and “generally” stronger. However, our
main restriction is (ii) and this implies Cassels’ (*) for every irrational 6.

As a simple instance we shall prove the following

COROLLARY. Assume that either S = {f(x),x £ N} where f is a non-
constant polynomial taking integral values on N which have no common
prime divisor, or S —{[<7(2:)]x £ N} where [ ] denotes integral part, and
where g is a nonconstant polynomial with an irrational leading coefficient.
Then the above Theorem applies.

(This result follows, however, from both papers [2] and [5].)

Before commencing the proofs we introduce some notation.

If 5 is a sequence we let S(x1,22) = {s£ 5, X\ <s %22} and S{x) =
—5(0,x).

We define upper and lower asymptotic densities d(S),d(S) as usual

d(S)=limsup [5(x)[/x,  d(S) = liminf |5(x)|/x,

where, for a set A, |A| = card(A). When these numbers coincide we denote
their common value by d(S), the asymptotic density of S.
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Proofs. We shall need some simple lemmas.

Lemma 1. Assume S - {si < S2<... } satisfies s,+i < 2s, for all i>lq.
Then every positive integer n may be written as

(1) n=SxAS2+ ...+sr+c
where *i > 2> eee> *r A > (0 <c< 5,0 and
Si,, > 5L+i + + eeet slr+ ¢

for ¥=1,2,... ,r —1.

P root. Use induction on n, the result being obvious for n <s,0.

When n >s,0 choose i\ to satisfy sH” n < sl1+1, and apply the induction
to n— . We obtain (3) where s@,s,3,... ,Sir, c satisfy the conclusions.

Now, since ii >i0,0~ Si2A ...+ +c—n —stl <s,iHl —stl < whence
the result. O

Lemma 2. Assumptions being as in Lemma 1, suppose Cs meets every
congruence class mod b, for a certain positive b. Then there exists T > 1
such that for every natural number n, at least one of the numbers

nn+b,.. ,n+Tb
belongs to Cs-

Proof. Let R be a finite subset of 5 such that c r meets every congru-
ence class mod b, and set
S'=S\R= {sl<s2<...}.

We may assume, increasing eventually R, that s'+1 < 25" for all i > 1. Let

T' =Sj-f Yj riand apply Lemma 1 with S' in place of S and n+T'b in place
rER
of n, obtaining

NAThb=s s,hpe, i\>22 Nih=1 o”c< Sj.
Let no £ Cr be such that n0= c(mod b). Then no=c+ Ub, where \U\ <
<no+ c<T', whence
n+ (T1A Ub—stl A eem s3h+ no € Cs
and O<T'+ £ 2T', making Lemma 2 true with T =2T'. O

Lemma 3. Let A be afinite set of integers and assume that, for some b>0
and T >1, andfor every integer n, not all the numbers n, n+b,... ,n+ Th
belong to A. Set B ={a£A,ar bE A]. Then \B\ <|T|(1 —T-1).

k
Proof. Write A= |J P,, where the P, are short arithmetic progressions
i=i
with difference b: P, —{a, -fmb,m=0,1,... ,d,}. We may clearly assume
them to be pairwise disjoint and maximal. We have d, + 1= |P,j T and
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If a=aj-fd{bthen a+ bEf A, whence
\B\<"2di=\A\-k<\A\(I-T-1),

as claimed.

Lemma 4. Assume S satisfies (i) of Theorem. Then the asymptotic
density of Cs exists.

In a paper entitled “On the density of the set of sums” (to appear in
Acta Arithmetica) I. RUzsa has considerably weakened the assumption of
this lemma, replacing (i) by s,+x<2s- for large 1i.

Proot. It is convenient to define a function g : R+ —R as follows. If
Sh < x < Sh+1 set g(x) =s/,+1 —sk (= o(x)). Let £> 0 be given. Select g so
large to make (])e<e and then xo such that g(x) < |[x —1 for x ~ xo-

Set d = d(Cs), and find m > xqg such that \C(m)\ > (d—e)m (C = Cs)- If
S, X <m<suthen

) IC(sv)| > [C(m)[ > (d - £)s"- g(m) >(d-£- -)sv.
Construct a new sequence R = (rx <r2< ...} as follows: set r\ = sv.
Having constructed rx,r2,... , assume
Sh<2r* <§+X and define rfctl=¢/,.
From our conventions we derive
(3) 2r%, > rfctl ~ 2rfc - £f(2rfc)

whence in particular
(4) 2rfc> r fokx > (-?Sr* for k>1 (ife< ])

Let dk = \C(rk)\/rk.
Firstly, we have

|C(rjt+x)| > \C{2rk)\ - g{2rk) >2|C(rfy| - 1- g(2rk), whence
(5) dk+1>dk-2~.
Q

On the other hand Lemma 1 applied to the sequence
(rx,r2,... ,rk) U{2rk,2rk+ 1,2rc+ 2,...}
gives an expression

(6) rt+i = r-, +r-, + ...+ ris+c
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where k™ ii > 12> mm>is, 0/ c< ri, and where
(7) % >rv+i + Mf2 + -+ rL+ c-
One trivially has
IC(r, + T >\C{r3\+ |C(T)] forO0O"T <r3

(remember that r3GS). Iterating this inequality and using (6) and (7) we
get

\C(rk+I\ > |C(rtl + ... + r,8)| > |C(rtl)| + ... + |C(r,-5)| >
A (FJD dj)(rn + eee+ ris) >(E1gikn d3)rk+1 - ru

whence )
dk+1~7 miknd, - rx/rk>_mkin d3- (-) (by (4)
j< Jj< 0

and, for any h>1

dk+h>mmd3-{")k (b + f +if) +eee) = di~ 3(8)*

In particular, setting k-g and remembering that (8)e<£

(8) dg+k >min d3—3£
ive

while for j £ g our first inequality (5) gives, after iteration,

d3>dx- j- =d\ - e

In conclusion dk ~ dx—4e ~ d —6e for all k > 1 (we have used (2)).
Let n be a large integer. Apply Lemma 1 to n and the sequence R
obtaining

(€)] n=rn+...+rs+c 0<c<rx
rv > %-+i + eee+ ris + C.
Repeating the above argument we get
[C(n)| >|C(rth + ... r,J >|C(rn)| + ... + |C(r,s)| >
N (d- ee)(r,1+ ... +ris)>(d- 6e)(n - rq),

whence
liminf|C(n)|/n >d —6e.

Since £> 0 is arbitrary the lemma follows.
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Proof of the main theorem

First we show that d = d(Cs) - L
Let C=Cs as above and C=N\ C. Select a sufficiently large u such
that
K (su+i - su) + .. e+ nk(sutk - su)| = b" 0, b<B.

By Lemma 4
|C(su)| ~ dsu, |C(2su)| ~2dsu and so |C(su,2su)| ~ dsu.
Let m be such that
su+k - su<m<su, m+sufC.
There are at least
su  |C(su, 2su)] (1 d)su-fo(su)

such integers.
We contend that, for these integers m in fact

m - (suti-- su)eCfori=0,1,. k.

For, since m (suli su)<2su ~ 5 m Au)-F QHH
would otherwise clearly belong to C. This implies that, setting t, = su+l —su,

I(m,tk<m< su,m-ti£C fori—0,1,... ,k}\ >

(10) > (1 - d)su+ o(su) > |C(5U)| + o(su).

Define now, for v >0, sets C,, inductively as follows. Put Co = C(su)
and, for v>1,
(12) Cu- (m,utk<m <sum- t, £CT-i fori=0,1,... ,k}
We can rewrite (10) in the form
(12) |C 1] = 10)1 + o(su).

Observe that, since t0=0, C,, £ C/-i for any v~ 1. Let now >" 2 and pick
m£ C,-1\C,- Then, by definition, m - ft CV-i for some i/ 0. Since
anyway m £ C,,_i we have that m —tj £ C,,_2 for all j, whence

m —t, £ Cy_2\ C, -1 for some 1i.

Since the number m —tt can be counted correspondingly to at most k
values of m as above, we get

[C._1\ C,\<Kk\Cv-2 \ Cv-r| for v >2
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Now, by (10),
|CO\C i| = o(su)

whence inductively, for any fixed o

\Cv-i \ CvI= o(su)

and
|CO\C,,| = o(5u)
implying that
(12) |C,,| = ICol+ o(su) (for any fixed 5).

Note that m 6 Cv implies that
vik < to,su and m - —tj2—... - ttu€CO

for every choice of i\,... ,z, k).

Consider the sums tn + ...+ tiv. It is clear that, if is> 2(|ni| 4- «- <+ [Tifd]),
at least two of these sums will differ by |nifi + ... + n*tk| = b. (For instance
look at |ni|<i + ... + |nfctfc and {|ni| -f n\ }ii + eee+ (Jufc| + Ufc}f.) This leads
to the existence of p, of the form tn + ... + ttl/, such that

m€ =>m-—, m—g+hbECo-
At this point we appeal to Lemmas 2 and 3 which, applied in an obvious

way to our situation give

|IC 1M (1-*)|C o]

for some integer T bounded independently of u.

Comparing this inequality with (12) we get |C(au)| = o(su), i.e. d= 1, as
asserted.

To complete the proof of the Theorem, let fibea finite subsequence of S
such that Cr meets every arithmetical progression with difference bounded
by B, and set S' —S\R.

Choose then an infinite sequence of indices {u"} such that to satisfy
assumption (ii), and moreover such that

13) U+

Extract from S' an infinite sequence S" = {sf <s'f<...} such that2
Is!'< s'"< 28"
21

and s" " sUj-Tforall iandj and r " k.
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This is certainly possible, in view of the relatively slow rate of growth of
s and in view of (13).

It is now clear that the sequence 5i = S\S" satisfies the same assumption
as 5, whence, by what has been proved above,
(14) d(csh)= 1

Moreover, from the inequality s"+l < 2s- and Lemma 2 (applied to S"
with b= 1) we obtain
(15) d(Cs") >o.

Now the proof can be completed by means of a quite standard argument:
Let n be a large integer and consider the integers

n—a, l<a<n, a(ECs'm

There are |C5»(n —1)| such numbers, and in the same interval there are
|C51(n)| integers belonging to Csx- Since, by (14) and (15),

|Csi(rc)| + ICS"(n- 1) >n

for all n >n0, there exists, for large n, some a 6 Cs" such that n—a 6 Cslm
But, in view of S\ fl S" = 0, this implies n € Cs-

Proof of Corollary

(a) Take first S = {/(&)} where / is as in the statement, and let us verify
the three conditions of the Theorem.

Condition (i) is trivial. For (ii), assume f(x) = axh lower terms and
take the h-th difference of f(x). We obtain

f(x +g) = |ah!|

whence

{(x +p)-/1(x)} =\ah\ 0

e=o0

if h—deg/ so (ii) is satisfied with k =deg/ and any u.

(iii). Let m be any integer >2 and write m —p"1gX2 mmP?r, where the
Qi are distinct primes. By assumption, for i = 1,2,... ,r there exists xt €
€N with Qff(xt). Now since / is integral valued on N, it has rational
coefficients, whence, for sufficiently large e we have

f(xi +tge)=/(x,) (modp") forallt€Z and all i.
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Find then m0= z,(mod p,) fori=1,... ,r. Then
/(mO0+ *1!1 Q) =/(m 0)(mod m)

for all t, and (/(mo),m)= 1. It follows that, adding a suitable number of
distinct terms of the sequence S, all congruent to /(m O)mod m, we may
represent every congruence class modm.

(b) Take now 5 = {[ff(x)]} where g is a non-constant polynomial with
irrational leading coefficient, (i) is again trivial. To verify (ii) write again
h = deg g, but take the h+ 1-th difference. Asin part (a) we see that we are
done provided

for infinitely many integers x. Assume the contrary. Then clearly

IN(FF(* + g))) =0 for x > Xo, xeN

where (( )) denotes the fractional part.
But then ((g(x)))xeN X>Q would be a polynomial, necessarily constant.
This fact in turn means that the polynomial g(x-\-1)-g(x) would assume,
for integral x > Xq, integral values, a contradiction since its leading coefficient
is irrational.

Let now n be any positive integer. Since the polynomial has irra-
tional leading coefficient it follows from known theorems (see for example
[3] chapter 10) that the sequence is dense in (0,1), whence, for

infinitely many integral x and any fixed b, 0<b<m,

It follows that
tm +b<g(x) <tm +b+ 1,

for some t£ Z, i.e.
[<7(¥)] = tm + b= 6(mod m).

Further remarks

We have given in the Corollary only a simple example of how the Theorem
can be applied, giving known results.

It is clear, however, that the sequences there defined contain many more
terms than what is needed for the assumptions to be satisfied.

By a slight modification of the proof, it is possible to make it effective,
i.e. to calculate a number M, such that, for n » M, Rs(n) >0. Such an M
will depend on
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(1) An effective measure for the rate of decay of (,su+l —su)/su;

(2) The distribution of the values u satisfying (ii);

(3) The integer k, B and the magnitude of the n;;

(4) The magnitude of the terms of S needed to satisfy (iii).

In both applications of the Corollary these parameters can be effectively

calculated, substantially in terms of the height of /, and of an effective
measure of irrationality for the leading term of g.

(1]
[2

(3]

(4
[l
(6]
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UNIQUE ENVELOPE PROPERTY

E. FRIED and G. GRATZER*

1. Introduction

A partial lattice P has the Unique Envelope Property if it can be com-
pleted in only one way to a lattice. This concept is a generalization of the
Unigue Amalgamation Property we investigated in an earlier paper.

There are a number of natural ways to complete a partial lattice P to
a lattice; all these completions have to be isomorphic if P has the Unique
Envelope Property. In this note, we prove that if two of these completions
(namely, the free completion and the sublattice of the MacNeille completion
generated by P) are isomorphic, then P has the Unique Envelope Property.

2. Preliminaries

For the basic concepts and notation of lattice theory, in particular, for the
basic concepts and results concerning partial lattices, the reader is referred
to [4],

We start this note with two definitions related to partial lattices. The
reader should note the subtle differences between the lattice theoretic and
partial lattice theoretic versions.

Definition 1. Let L be a partial lattice, and let X be a subset of L.
By restricting the V and A from | to X, we obtain the partial lattice X ,
called the partial lattice induced by L on X .

Definition 2. Let X and L be partial lattices and let £>be a map of X
into L. Then 4>is an embedding of X into L iff O is an isomorphism between
X and the partial lattice Xcfr, the partial lattice induced by L on the set Xt=

1980 Mathematics Subject Classifications (1985 Revision). Primary 06B99; Second-
ary 06A10.

Key words and phrases. Partial lattice, freely generated lattice, ideal lattice, MacNeille
completion, essential extension.
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If 4&is the identity map, then X is a subset of L, and X is called a partial
sublattice of L.

Note that an embedding is a one-to-one mapping and a homomorphism;
the converse is not true.
The next definition defines the central concept of this note.

D efinition 3. Let P be a partial lattice. P has the Unique Envelope
Property (UEP) iff there is a lattice Pe (the unique envelope of P) such
that P is a partial sublattice of Pe, and whenever P is embedded into a
lattice L and L is generated by P, then L and Pe are isomorphic over P.
Alternatively, P has an embedding ipinto Pe; moreover, whenever P has an
embedding <pinto a lattice L, then there is an embedding 6 of the lattice Pe
into L satisfying ipS= <

Observation. Take the lattices A and B sharing the sublattice 5, and
take the partial algebra Part(A, B, S) and the poset P(A,B,S) as defined
in [1]. Then we can make Part(A, B, S) into a partial lattice P1(A, B, S) by
defining aVb=c(a€ A, b€ B, c6 AUB) iff (a] V(6] = (c] in the ideal lattice
of Part(A, B,S), and dually (see, e.g., [4]). Then P1(A,P,5) has the UEP
iff A and B over S have the Unique Amalgamation Property.

There are a number of lattices in which P is naturally embedded: the
free lattice, F(P), over P; the ideal lattice, 1d(P), of P; the dual ideal lattice,
D (P), of P; the MacNeille completion, Pc, of P. P has a natural embedding
into each, denoted by ipF, ipld, ip°®, ipc, respectively.

The image of P under ipF generates P(P). The analogous statement
fails for the other three lattices, in general. So it is useful to introduce
notation for the sublattices generated by the natural images of P: Idfa(P)
is the sublattice of Id(P) generated by ipld; Dfd(P) is the sublattice of D(P)
generated by ijp\ P(d is the sublattice of Pc generated by ipc (“fd”stands for
“finitely defined”; this is not the same as “finitely generated”).

Applying the definition of UEP twice, we conclude that if P has the UEP,
then P(P), Idfa(P), Dfa(P), and P£j are isomorphic; in fact, isomorphic over
P, that is, the isomorphisms commute with the isomorphisms tpF, ipld, ipD,
ipc.

3. Results

Any one of the isomorphisms mentioned at the end of Section 2 yields
useful information. Let us illustrate this point with the isomorphism, a,
between Idfy(P) and Dfa(P):

Craim 1. Let the partial lattice P have the UEP. //sup(u,u) =w in P,
then (u] V (uj = (] in Idfa(P) (and in Id(P)).
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Proof. If sup(w,v) —w in P, then [u)n [u) = [iu), and so [u) V [u) = [in)
in D(P). Applying the isomorphism a, we obtain («] V(u] = (in] in Idf<j(P),
as claimed.

Since (u] V(v] = (in] in Idfd(P) can easily be described using the structure
of P, Claim 1 states a very strong consequence of UEP.

To obtain a characterization of the Unique Amalgamation Property, in
the papers [2] and [3], we used a number of such consequences. So it was
a great surprise to us that one of the many such consequences characterizes
UEP. It is the purpose of this note to prove this statement.

Theorem 1. Let P be apartial lattice. Then P has the Unique Envelope
Property if, and only if, there is an isomorphism a over P between F(P) and

Pfd (that is, ipFa =ipc).

The proof of this result easily follows from the following theorem which
seems to be of independent interest; but first we need one more definition:

Definition 4. Let A and B partial lattices, and let B be a partial
sublattice of A. Then A is said to be an essential extension of B provided
that whenever 0 is a congruence relation of A such that the natural map &
of B into A/Q: b<p=[f>]0 is an embedding of B into A/Q, then 0 =u>.

In this definition, [6]0is the congruence class of A under 0 containing b

Note again the subtle distinction between lattice theory and partial lat-
tice theory: If A and B are lattices, B a sublattice of A, then A is said to
be an essential extension of B provided that whenever 0 is a congruence
relation of A such that the restriction of 0 to B isu, then 0 = co. This same
definition would not work for partial lattices.

T heorem 2. Pfd is an essential extension of P (or, of Pip0, to be more
precise).

4. Proofs

In this section we prove Theorems 1 and 2.

P roof of Theorem 2. Let 0 be a nontrivial congruence relation of
Pfd such that the map <$>of Pip0 into Pfd/Q defined by (pl4&>= [(p]]O is
an embedding. Let X,Y £Pfd, X CY, X = T(0). Let peY —A; then
X A@E] =Y A(p](0), that is, X A(p] = (p](0), and X A(p] C (p]. In other
words, without loss of generality, we can assume that Y 6 Pxpc. Let Y = (p].

If X is also principal, then x € Pipc, and we found two distinct elements
of Pfd congruent under 0, contradicting that <pis one-to-one. So, without
loss of generality, we can assume that X is not principal.

p is an upper bound of X in P. Ifthere is a smaller upper bound gqof X in
P, then X =Y (0) implies that X v(q] = Y v (g](0), that is, (g] = (p](0), and
we found two distinct elements of Pfd congruent under 0, again contradicting
that <$is one-to-one.
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Thus we may assume that p is a minimal upper bound of X in P. Since
X is closed, p is not the least upper bound of X in P. Therefore, there is an
upper bound u of X in P which is incomparable with p.

Then X =T(0) implies that X V(U] =Y V («](©), that is, (u] = TV
V (u](0). Thus, in PE/Q, [(p]10 £ [(u] V(PIIQ = [(u]]0. Since ¢is an embed-
ding, we conclude that (p] ~ (u], a contradiction. This contradiction proves
Theorem 2.

Proof of Theorem 1. The “only if” part is trivial by Definition 3. So
let a be an isomorphism over P between F(P) and Pj*; a satisfies  a =ipc.
We choose Pe to be P(P). To show that P has the UEP, whenever P has
an embedding $into a lattice L, we must find an embedding S of the lattice
P(P) into L satisfying ifjf 6 = 4= So let $=be given. Since both F and 9
are embeddings, there is an isomorphism p between P ipF and Ri>satisfying
tpFp —<= Since PipF freely generates P(P), p extends to a homomorphism 6
of P(P) into L satisfying #>F0 —<> It remains to show that 6is an embedding.

Let O be the kernel of 6 is nontrivial. Using the isomorphism a, we
obtain an isomorphic copy 0' of 0. P~/Q" is isomorphic over P to F(P)6,
hence, the natural map n of Pipcinto P£j/0": qr)= [g]0; is an embedding of
P-0Cinto Pfj/07 By Theorem 2, P£j is an essential extension of P~c. By
Definition 4, we conclude that 0 = w; thus 6 is one-to-one, completing the
proof of Theorem 1

5. Concluding remarks

One can derive many consequences from Theorem 1, along the lines of
Claim 1, by comparing the arithmetic in P(P) with the arithmetic in Pc,
as we do it in [3].

Theorem 1is not as powerful as the characterization of the Unique Amal-
gamation Property in [2], which is structural. It is an interesting problem to
find a structural characterization of the Unique Envelope Property.

Let us mention an interesting group of problems: one can take the set
of natural completions of a partial lattice P into a lattice; each pair of
such lattices have to be naturally isomorphic. Compare the effect of these
isomorphisms. For instance, if Idfd(P), Dfd(P), and Pfd are isomorphic, does
that imply the Unique Envelope Property?

Finally, we should point out that there is a characterization ofthe Unique
Envelope Property in a universal algebraic framework. Let K be a variety
of universal algebras; let P be a partial algebra that can be embedded in an
algebra in K. Let P(P) denote the free algebra in K generated by P. Then
P has the Unique Envelope Property with respect to K if and only if P(P)
is an essential extension of P. The proof is very easy.
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ON THE COHOMOLOGY Hn{Lk,L,,)

A. FIALOWSK1

Introduction

Let = Wi be the infinite dimensional Lie algebra of vector fields
on the line with polynomial coefficients. The Lie algebra W\ has an

additive algebraic basis consisting of the fields ek = xk+1 k> 1, in which
the bracket is described by

= (£-K)ek+i.

Consider the subalgebras Lk, k >0 of Wi, consisting of the fields such that
they and their first k derivatives vanish at the origin. The Lie algebra Lk
is generated by the basis elements {ek,ek+i, mm}e The algebras W\ and
Lk are naturally graded by dege, = i. Obviously, the infinite dimensional
subalgebras Lk of W\ are nilpotent for k > 1.

The cohomology theory of inhnite dimensional Lie algebras is worked
out in [6]. The cohomology rings H*(Wi) and H*(Lk), k> 0, with trivial
coefficients are computed in [7] and [8]. The main results are the following:

for g- 0,3
1
for all other g,
for q=0,1
n forg>1
3 dimA(M)=(X-7D) + ("-22) f°or k>1.
In particular,

dim Hq(L\) =2 for q > 1,
dim Hq(L,2) =2g+ 1,
dim Hq(L3)=(q + I)2.
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W ith the help of this last result, one can compute the cohomology of the
Lie algebra W\ with coefficients in different modules. For each A£ C, let F\
denote the Wi-module of the tensor fields of the form f(z)dz~x, where f(z)
is a formal power series in z. Then the formula

=iaf ~\fg')dx~x

gives the action of W\ on F\. The module F\ has an additive basis {fj |j =
=0,1,...} where fj —x*dx~x and the action on the basis elements is

eiff=(~*TDA

Denote by F\ the LFi-module which is defined in the same way, except that
the index j runs over all integers. Define the adjoint modules Fx, T'x as
modules of linear functionals F\ —&C, F \—=C which are finite in the sense
that they take nonzero values only on a finite number of fj-s. Obviously
Tx=F—3%-aand Fx="_! AF a a-

Let us define now the To-m°dule F\tl as the subspace, generated — like
F\ — by the elements fj, j —0,1,..., on which LO acts by

eiff —(j +h _ (*+ 1)Mfi+j-

In this definition ji can be an arbitrary complex number. Let Fx denote the
module, conjugate to F\tfi. Finally define the modules F\4_over W\ as F\*
above, without requiring the positivity of j. Obviously, T'x = and
Fx The cohomology of the Lie algebra W\ and L\
with coefficients in the above mentioned tensor field modules are known (see
[2], [3]). The computation reduces to that of the cohomology of the algebra
L\ with trivial coefficients. In the case of the Lie algebra W\, the problem
is also solved for cohomology with coefficients of the form F\ ® F* [2].
Considering the adjoint representation as coefficient space, we get a

very important application of the cohomology. The elements of the space
H2(L,L) correspond to the infinitesimal deformations of the Lie algebra L
(see e.g. [6]). In the case of the Lie algebra Lqg, we get that H2(Lo] L0O) =0,
consequently, Lqgis rigid (see [5] and [6]). As an Li-module, L\ is Fjj,
and we have the result dim L\) =dim C) (see [4]). In
particular,

1 form=2,34

0 form 2,3,4.

Here the cohomology space is defined in the graded sense:

dim H2 mJ(L1-L1) =

H5>(L1-L) =QH*_m)(L1;L1)

m
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where for the cocycle 45 representing a class of Li), the weight of
Heii)emw e.,) is -m +ii + ... +iq.

The analogous problem for the Lie algebras Lk, k> 1 seems to be very
difficult and has not been solved. Nor has any other cohomology space
for these Lie algebras been computed, with other than trivial coefficients.
We naturally want to know first of all the cohomology with coefficients in
the adjoint representation. In this paper, we prove the finiteness of these
cohomology spaces, and also give lower bounds for their dimensions. In fact,
we give estimates in the more general cases, where the coefficient module in
an Ljfc-module Ls: we study the cohomology spaces H*(Lk', La) with k> 1
and s > 1. We make the computations for the lower bound for k = 2.

Special attention is paid to the cohomology H 2(L,2,L2) which is, accord-
ing to the general theory, the space of infinitesimal deformations of the Lie
algebra L2. The computation of H2(L,2\L2) is the first step in determin-
ing the base of the versal deformation of the Lie algebra L2; recall that the
similar problem for L\ is completely solved in [4].

I would like to thank Dmitrij Fuchs for stimulating discussions.

81. Upper bounds. Finiteness

Suppose first that s> k. Then the X~-module cohomology Hq(Lk', La)
may be estimated via the cohomology Hq(Lk+1). Consider the module

Indjj*+i(l). It has the following structure: it has the basis X,Es X, ...
and efcx, = x,+i, e*x, = 0 for [ > k. The sum

k

is isomorphic to the module Nk,a which has the following structure: it has
the basis y8, r/ +i >2/3t22 eeee

y» y».k y». XK ys.3k

The action of the vector field is shown by the arrows, while the fields
et with i > k act trivially. One may assume that ekyt = (t —k)yt+k- (It is
important here that s >k, so that the difference t —k cannot vanish.)

Now consider the complex C*(Lk;La). It has a natural (decreasing)
filtration: Fm’qg= FmCa{Lk\ La) consists of those c€ Cq(Lk\ La), for which
c(ejj,... ,e?=0for N T ... + ig<m. Consider the groups

Fmagnd- 1F m+r'9+1
(Fm'gndFm-~r'g- 1) + (Fm+1gn d - 1IFn+r9+1)"

G m,g
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They lie between the groups E™'q~m and E'ff\~m of the spectral sequence,
corresponding to our filtration, and hence the sum ®mGmyq gives the upper
estimate for Hg(Lk;Ls). On the other hand, for r = k + 1this sum is precisely
the cohomology of the complex with all the summands corresponding to the
action of et with t >r removed from the formula for the differential. But
this is nothing else but Hq(Lk\NKkiS).

Remark. The descending filtration {Fm} of the complex C*(Lk; Ls) is
infinite, and this could create some convergence problems for the spectral
sequence, but in our case everything is good thanks to the finite dimen-
sionality of H*(Lk). What we have to check is essentially the fact that
PlIni{/f9(Fm) —Hq(Lk;Lg)} = 0. But actually Hq(Fm) = 0 for m being
m
large enough. Indeed, let H @iS(Lk) =0 for m! > m (the subscript is related

to the grading in Lk). Let then c= cTOE Fmq be a cocycle, also of some fixed
degree d. Then c(eq,... ,e9)=0fori\+... +ig<m and let c(eq,... ,e,?) =
=ctl...9em_d forii + ... + iq- m. Thenc, c(eq,... ,eiq) =cg...,-, iS a cocycle

in C"mj(Lfc), and hence ¢ = Sb, b£ Cg~"(Lk)- Define bm GFm,g~1 by the
formula

f b(eh,... ,eJgx)em dfor +...+j, '=m,

I 0 otherwise.

Evidently, cm- Sbm GF m+1; we set cm+i = cm —6bm and acting precisely as
before find b+l with cm+i - 6bm+i GEm+2; set cr+2 = cm+i - <&n+i, and

0o

so on. The series bm obviously converges (bm have disjoint supports),

p—m .
and ¢ = 6bwhere bis the sum of the series.
Hence the following statement is valid.

Theorem 1. Ifs> Kk,

dim H\L k-Lg) £ kdim Hq(Lk; IndE*+i (1)) =
= kdim Hg(Lk+\) < oo.

Remark. The last inequality follows from [8].

The general case (5 is arbitrary natural number, may be less than or
equal to k) can be traced back to the previous one. If s <k, then consider
the exact sequence

0—Lk+1+ Ls—»L,/Lk+1—90.

The cohomology spaces Hqg(Lk;L,/Lk+i), g= 1,2,... are finite dimensional.
In particular,
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Lemma.

dim Ha(LK]L jL k+i)< dim Hg(Lk) dim Hg{Lk\L J L k) =
—(k + 1—s) dim Hg{Lk).

Proof. Denote the module Lk-i+\/Lk+ by Mi. We have the exact
sequence
O-maM, ! "maMi -» C-»0

from which it follows that = C. Then
La/Lk+1= Mfc+l , DMk+a D.. .D Mi DMg=0,
and we have the next cohomology sequence:
see- Hqg(Lk-Mi-i) - Hag{Lk;Mt)- Hq(Lk-C)
From this it follows that
dim Hg(Lk;M.) < dim M<_i) © dim Hg(Lk)
which gives dim Hqg(Lk;Mi) ~ i dim Hg(Lk). The lemma is proved.
Theorem 2. Ifs<k,

dim Hg(Lk\Ls)™ kdim Hq(Lk+1) + (k+ 1- s) dim Hq(Lk).
Proof. Consider the next cohomology sequence:
... > Hq(Lk;I1*+i) - Hq(Lk;X.) - 1,/Z*+1)-> ...
From this it follows that
dim Hq(Lk;L,) <dimHg(Lk; Lk+1) + dim Hg(Lk;L,/Lk+1).

Using now the lemma, we get the result.
Example. For small values of g,

1 for g=0
dimHq(Lk)=1i A+ 1for g=\
for q= 2.

Consequently, we have
dim HI(Lk;Lit) <k(k +2)+ (k+ 1) = A2-f3k+ 1
and

dimH\W, L,,)S~* +13(t +4) + |'£*2+ = *(t>+ «*+ 7).
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The first inequality shows that our upper bounds are too crude, because
for H1(Lk]LK) we have

P roposition.

dim H1(Lk'Lk) = k.
Proof. Consider the TA-module To, and the following exact sequence:

0—=*Lk—=*To—=*To/Lk =*0.

Obviously, the dimension of the trivial module To/Lk is k. Then we have
the next cohomology sequence:

Ho(Lk-, To) - H\L k-Lo/Lk) - H\Lk;Lk)- H\Lk-TO)-

Here H°(Lk, To) = O as there are no invariants. Further, dim H°(Lk;Lo/Lk) =
k and r is monomorphism. Easy to see that /x is zero, consequently
dim TT1(T*;; Lk) = k. Remark that the exterior derivations of Lk are the
bracket operations with eo, e\,... ,ek+Hi.

For k = 2 the second inequality gives

dimtf2(T2;T2)<23.

§82. Lower bounds

We can compute the cohomology H*(Lk'Ls), with the help of the spec-
tral sequence associated to the filtration

L8-9LgH 2 Lg'2 3 **+

in the coefficient module. As Tt+i/Tfis a one-dimensional trivial TA-module,
the first term of this spectral sequence consists of the group Hq(Lk). The
spectral sequence itself is a modification of the one introduced by Feigin
and Fuks in [2] for computing the cohomology space of the Lie algebra L\
with coefficients in the modules F\tli (see Introduction). Let us give a more
convenient construction of this spectral sequence. We have the grading in
the cohomology spaces:

Hn{Lk-,La) = ($H{r)(Lk;LB

where H*r’\(Lk',La) is the cohomology of the cochain complex of the form

(*) eii A... A€iqg—* +ctom € Z.



ON THE COHOMOLOGY H*(Lk,L,) 195

Denote the cochain groups ofthis complex by Cq”{Lk’, Ls). These cochain

groups are similar to the cochain groups Cq(Lk), with the following differ-
ence: in (*) one should have i\ -f... + ig+ r* s. So we have the following
situation. The cochain groups C*(Lk) are also graded:

and we have the isomorphism

(**) Caq)(LK\Lt)= ® Cda)(LKk).
>5—+

This isomorphism is given by the mapping
[esiA... A *0ii...i4Ci1n. A TAr] G Cai(Lk, Ls)
<mictl A... Aeiq-*a-It.i9 GCO(L k), t=il+ ... +iq.

We assign to the summand CjALK) in the expansion (**) the filtering index
t. So we have the spectral sequence with:

EPO=1 C(-p)(LM forP"s-r,

yO0 forp <s—;
£P9 1 H(-p)(Lk) forp>s- r,
[0 forp<s—r.

The spectral sequence converges in usual sense to H*"(LK]L,,). For r*>s the

E 1term of our spectral sequence does not depend on r; for example, if k = 2
it has the form

§2

1A

wo,

(Here m means a one-dimensional space; the differentials act by the usual
way to the right and then down.)
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Let EE = 0 Ea'qgand gn= pn(r) be equal to the sum of ranks of
p+qg=n

differentials d": E" —E£+L (for a > 1). Clearly
dim H?r)(Lk;L.) = dim EJ- f?""1- gn.

For almost all r > 5, the numbers gn(r) are the same (as the differential
depends on r polynomially). These generic values of gn(r) may be easily
calculated since we know that dim Hg(Lk; Ls) is finite for any q (see Section
1) and thus H~(Lk'Ls)= 0 for almost all r.

Consider the case k = 2. In this case the dimensions of E° are the

following:

r
sf2 1 ES\ _ & —S7T
5+1 1 » 3 5 “=m7 -“m

S 1 »3 —+ 5
s—1 0 3 =» 5 F 7 o
5-2 0 2 =5
5-3 0 1 -* 5 o 7 o»
s—4 0 0 5 > 7 >
5-5 0 0 5 % 7 H
s —b6 0 0 5 7
5—7 0 0 5
5-8 0 0 4 > 7 *
5-9 0 0 3 7
3-10 O 0 2 w7 N
5-11 0 0 1 7 -+
s-12 0 0 0 7 —
5-15 0 0 0 7 > ..
a- 16 0 0 0 6 —a. . .etc.

The complex

1-»3 5->7->9

(the numbers are the dimensions of the spaces) is acyclic iff the differentials
are of ranks 1,2,3,4,5,  Thus at a generic point our complex is of the
form

(the rank of the differential is shown above the arrow). At a finite number
of exceptional points the ranks are smaller. In those cases the complex is
truncated. If a matrix A = m has rank <r then the rank of the truncated
matrix H cannot be larger than max(r, k).

X
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The cohomology space will be the smallest, if the ranks are maximal as
we described (the smaller the rank, the larger the cohomology space). The
maximal possible ranks are the following (the rank does not drop anywhere):

cohomology

H° H1 H2 HS3
) 2 3 4

r>s 1 -i- 3 5 7 0 0 0 0

s-1 ) 2 3 4 1 0 0

3 5 7 ye 0

s-2 0 1 0 0
2 3 4

5—3 2 5 7 0 0 0 0
1 3 "

5 —4 1 5 7 0 0 1 0

5—5 1 2 , i o 0 2 0

5-6 5 7 0 2 0

) 0 0

5-7 0 0 2 0
3 4

5-8 4 7 0 0 1 0
3 4

5-9 3 7 0 0 0 0
2 4

5-10 2 7 0 0 0 1
1 4

5-11 1 7 0 0 0 2
4

5-12 7 —4». 0 0 0 3

5-13 7 A 3

5-14 7 s 3

5-15 7 A 3

5-16 6 —. 2

5 -» 1

4 0

0 2 8 18
Here the ranks are maximal, but everywhere we must have

rank ~ 3 and
rank < number of rows.
From these computations one obtains:

T heorem 3.

dimH\Lk-L,)>2q2
for any g, not depending on s. In particular, we obtain

dim H2(L2\L2) 8,
dimH3(L2,L2)> 18.
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Proof. From the above computations we get

dim 1) = + 1)+ ESZii=V.

Comparing the above result with the estimation from Section 1:
dimHg(L2\La) s2Hq(L3) =2(q+ I)2for s >2.

This means that the dimension is between 2g2 and 2(q+ 1)2. The lower
bound is perhaps closer to the real value of the dimension.

Let us write out separately the results for the 2-dimensional cohomology
space of the Lie algebra L2 with coefficients in the adjoint representation:

8 < dim H2(L2]L2) £ 23.

The computation in Section 2 for Lk with k > 2 is analogous, but, be-
cause of the unwieldy formulas for dim Hq”(Lk), the answer would be very
complicated. But it seems likely that the following is true.

Conjecture. For any k and s,

dim Hq(Lk\ Ls) = kdim H g~ 1(Lk+i).

If this is true, then the estimate of Theorem 3 is actually exact. But the
similar estimates for Lk with k > 2 are only close to reality. For example,
the procedure of this section gives for q—1,2,3,4

dim//9(T3;Ls) >3,15,41,87,
while the conjecture asserts that

dim Ho{Ls\ Ls) = 3,15,42,90.

83. Another method for computing H2(L2\L2)

With the help of results from [3] we have another method of computing
the cohomology H2(L2;L2). We have

H2{L2-L2) = H2{LX,M)
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where M is the “coinduced” module Coind£‘L2. This module is generated
by the elements

e2) €3, 64,...
c2) xcs) X64, ...

x2e2, x%e3, x%e4,...

The action of the Lie algebra is the following. The action of the field ei is
multiplication by x, while in the upper row e2,e3,... act in the natural way.
The actions of the other elements are defined using the previous ones. For
instance, for n >2, k >2 we have

T k) = - 2 ~1(®A:) — ®m —1(®®fc)]

from which it follows that
em(xek) = (k- m)xem+k - (m- I)(k-m-1I)em+k+i.

Analogously,

em(xnek) =xem(xn 1ek) - (m - Dem+i(xn lejt) =
= (A- m)xnem+k + n(m - (A - m - I)x"_lem+jt+i+
+lower degree terms at x

which gives a recurrent method of determining em(xnek).
Having the structure of the module M, we apply the complex

1 2 3
M«-MOM M OM A/OM «- ...

(see [3]). To find the space H2(L2;L2), it is enough to know the singular
vectors in the Verma module Vb0 of degree 5, 7, 12, 15. We should remark
that although the above computation can be worked out, and should give a
precise answer, it leads to complicated formulas.
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ON THE LEFT HEREDITARINESS OF PSEUDOCOMPLEMENT
OF HEREDITARY RADICALS

E. R. PUCZYLOWSKI

In [7] Snider proved that if Si,S2 are hereditary radicals of associative
rings then (Si :S2)= {R |S2(A") i Si(A") for every homomorphic image R’
of A} is a radical and is the pseudocomplement of S2 relative to Si in the
lattice of all radicals of associative rings. (Actually Snider uses (Si :S2) to
denote the pseudocomplement in the lattice of hereditary radicals. We hope
that this small change of notation will not lead to misunderstanding). In
[2] Jaegermann and Sands proved that if Si,S2 are iV-radicals then so is
(Si :S2). Recall that S is an A-radical [6] if it is left strong, left hereditary
and contains the prime radical B. In [4] it was shown that (Si :S2) is left
strong whenever S2 is left hereditary and Si is hereditary, left strong and
contains B. In this paper we show that (Si :S2) is left hereditary whenever
Si is left hereditary containing B and S2is hereditary and left strong. This
result is in a sense dual to that of [4] and together they generalize the quoted
Jaegermann and Sands’ result. We also discuss necessity of the assumptions
of the theorem.

Throughout all rings are associative. To denote that / is an ideal (left
ideal) of a ring A, we write | <R (/ <R).

All considered radicals are radicals of associative rings. Recall that a
radical S is called hereditary (left hereditary) if | <R (/ <R) and R €S
imply |1 €S. A radical S is called left strong if | <R, I £S imply I  S(R).
Fundamental definitions and properties of radicals may be found in [8].

The lower radical determined by the union of radicals Si, S2 is denoted
Si VS2. We use 0,1 and B to denote the radical consisting only of the
trivial ring {0}, the radical of all rings and the prime radical, respectively.
Observe that for every hereditary radicals Si, S2,(Si :S2) = {R | for every
homomorphic image R' of R if Si(A") = 0 then S2(A'") = 0}.

1. In this section we prove the following

THEOREM. If Si is a left hereditary radical containing 8 and S2 is a
hereditary and left strong radical then the radical (Si:S2) is left hereditary.

For the proof we need the following lemmas.

1980 Mathematics Subject Classifications (1985 Revision). Primary 16A21; Second-

ary 16A22.
Key words and phrases. Hereditary radical, left hereditary radical, strong radical,

pseudocomplement of radicals.
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Lemma 1. For the hereditary radicals S, 5i,52,(5x:52)Q(SiVS :52V5).

Proof. We have to show that if R £ (5X:52) and (5i v S)(R) = 0 then
(52v S)(R) = 0. However, (5* V5)(A) =0ifand only if 5i(8) = 0and S(R) =
=o0. Since R £ (5i :52) and 5i(R) = 0also S2(R) = 0. Thus (S2v S)(R) = 0.

Lemma 2 ([5], Corollary 10). IfS is a left strong and hereditary radical
then so is the radical S v .

Lemma 3. Suppose that 5 is a radical, | <L <R and S(L/I) = J/I.
Then LIR <R and J + LIRfLIRe SVR.

P roof. Obviously, LIRoR and J. LIR/LIRzz J/U, where v = JO
OLIR. Observe that 13QU, I13<J and J/13jU/13~ J/UmNow J/I €5, so
JI« J/13///13£5. However, I/13£R, so J/I13£S\/R. Thus J/U, being
a homomorphic image of J/13,is in 5vzg.

P roof of the theorem. Let R £(Si :S2) and L <R. We have to show
that if for an ideal I of L, S\(L/1) =0 then S2(L/I) =J/1 = 0. Putting in
Lemma 3,5 = S2, one gets that J + LIR/LIR £ S2V/L Since the radical
52 VR is hereditary and LJ -fLIR/LIR<J + LIR/LIR, LJ+ LIRfLIR £
£ S2VR. Observe that LJ + LIR/LIR < R/LIR. Hence by Lemma 2,
LJ+LIR/LIRQ(S2'JIR)(R/LIR). Since R £ (Si :S2), putting in Lemma 1
5=1R, one gets B£(51V/3:52V/i) = (51,52V/]). Thus LJ + LIR/LIR Q
Q(S2VR)(R/LIR) CS\(R/LIR). Now, since 5i is left hereditary and LJ +
+ LIR/LIR< R/LIR, LJ +LIR/LIRE Si. Observe that LJ +LIR/LIR<
J+ LIR/LIR and (J + LIR/LIR)2CLJ + LIR/LIR. Thus, since BQ Si,
J/U saJ + LIR/LIR £5X where U=JOLIR. Since JJU2U/U2E 5X
and B QSi, J/JU2€ 5X Observe that U2QLIRJ QLIL QI. Thus J/I &
« J/U2/1/U2£ S\. Hence J/1 QS\(L/I1) = 0 and the theorem is proved.

2. In this section we discuss necessity of the assumptions of the theorem.
It is well-known [1, 7] that if 5Xor 52 is not hereditary then usually the
class (5X:52) is not radical. Because of that in our discussion we consider
hereditary radicals only.

Observe that for every radical 5, (5: 5) = 1. This shows that for given
radicals 5X52 the assumption that (5X:52) is left hereditary says nothing
about the properties of 5Xand 52. However, for every radical 5, (5:1) = 5.
This shows that to get that for every left strong and hereditary radical 52,
(5X:52) is left hereditary one has to assume that 5Xis left hereditary. The
foHowing proposition gives slightly more.

P roposition 1. If Si Csz are hereditary radicals such that S= and
(Si :S2) are left hereditary then Si is left hereditary.

P roof. Observe that 5XQS2implies 5XQ(5X:52). Let L<R and R £
£ Si. Since (5X:52) is left hereditary and 5XQ (Si :S2), L £ (5X:52). Thus
S2(L) ¢ 5i(L). However, since 5XQS2 and S2 is left hereditary, L £ S2
Hence L = SftL) CSi(L), which gives L £ 5X
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Observe that for every radical 5, (5 :0) = 1. Hence one cannot omit
in the proposition the assumption that 5i QS2- Since for every radical 5,
(S :S) —1, the assumption that S2is left hereditary cannot be omitted as
well.

The following proposition shows that one cannot omit in the theorem
the assumption that 8 QS\.

P roposition 2. If S is a hereditary radical such that (S :R) is left
hereditary then R ¢ 5.

Proof. Let R = Ai2iQ) be the ring of 2 x 2-matrices over rationals.
Clearly, R £ (5:R). Now if Z° is the zero ring on the additive group of the
ring Z of integers then Z° ~ 4(9°) <(9°) < R. Hence, since (5 :B) is left
hereditary, Z° e {S :R). This gives Z° = 3(Z°) C S(Z°). Thus Z° e S and
consequently RQS.

We have not been able to answer the question whether a given hereditary
radical S2 such that for every left hereditary radical 5i containing R the
radical (Si :S2) is left hereditary, must be left strong. Although the general
answer seems to be “not”, the following two propositions show that some
assumptions of such sort are necessary.

Let V be the Brown-McCoy radical. It is well-known that U is not left
strong.

P roposition 3. The radical (R:U) is not left hereditary.

Proof. Let R be a simple domain with 1 which is not a division ring.
Obviously, R € (B :U). Let a™ 0 be a non-invertable element of R. It is easy
to check that Ra is a simple ring without 1. Hence Ra € U but 8(Ra) —O0,
so Ra” (B :U).

Let for a given ring R, M(R) be the ring of all N x iV-matrices over
R containing finitely many non-zero entries, where N is the set of positive
integers.

Lemma 4. M(R) « M(M(R)).

Proof. Let f: N —= NxN be a bijection. Given a matrix A £ M(R)
define f{A) as the matrix of M(M(R)) which has at (k, m)-position the
matrix of M(R) with (/,n)-entry equal to (i,j)-entry of A, where f(i) =
= (k,1), f(j) —(m,n). The map / gives an isomorphism between M(R) and
M(M(R)).

Lemma 5. Let N be the nil radical. Then N\ = {R\M(R) € iV} is a left
hereditary radical contained in N.

Proof. Straightforward.

Proposition 4. The radical (N\ : N) is left hereditary if and only if
(N1:N)=1,ie N\=N.
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Proof. If Ni =N then clearly (N\ :N)= 1 and so (N\ :N) is left
hereditary. Conversely, let R be any ring and R1 the ring R with a uni-
ty adjoined. Given an ideal I of M(R), let I* be the ideal of M(R1)
generated by I. By Andrunakievich lemma, J = (1*)3Q/. Since J is an
ideal of M(R}), J =M (K) for some ideal K of R. Now N(M(R/K))
and Ni(M(R/K)) are ideals of M(RI/K), so N(M(R/K)) = M(K\/K),
Ni(M(R/K)) = M(K?/K) for some ideals K\,K2 of R. Now Lemma 4
gives M (K 2/K) € Ai, so Ai = K2. Obviously, N(M(R)/I) = M(Ki)/l and
N\(M(R)/1) =M(K2)/l. Thus N(M(R)/1) =Nx(M(R)/I) for every ideal
I of M(R). This shows that M(R) £ (N\ :N). Now let L be the set of all
matrices of M(R) whose entries outside the first column are equal to zero.
Clearly L is a left ideal of M(R) and R is a homomorphic image of L. Thus,
since (Ni :N) is left hereditary, R £ (Ni:N). This proves that (Ni:N)= 1

Remark. The same arguments show that if S is any radical containing
B and S\ = {AIM(R) £ 5} then (5i :S) is left hereditary if and only if
(Si:S) =1

Krempa [3] and Sands [6] proved that N is left strong (i.e. Koethe’s prob-

lem has a positive solution) if and only if N = N\. This and Proposition 4
give

Coroltary. The radical (N\ :N) is left hereditary if and only if the
radical N is left strong.

We close with the following

Question. Is the radical (B :N) left hereditary if and only if N is left
strong?
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ON PRIME-ADDITIVE NUMBERS

P. ERDOS and N. HEGYVARI

Throughout this paper ¢j,C2,... will denote positive absolute constants,
A(x) — 1?7 B(x)= "2 1, i'(n) denotes the number of the distinct prime
axsSn bxSn
factors of n. Let us observe that, e.g.

2x3x5 =30=2+ 3+ 52
22 x 3 x 19 =228 =27+ 34+ 19

5x 7x 89 =3115= 54+ 74+ 89

and
32x 23 x 919 = 190233 = 311+ 233+ 919

(found by P. Massias).
We call a number n strongly prime-additive if

n= pap with gp > 0 and pap <n< p°p+1L
p\n

We conjecture that there are infinitely many strongly prime-additive num-
bers, but we could not prove this.

Assume that there are numbers 1" Bp <ap so that n —" y p then we

pIn
call n prime-additive. We could not prove that there are infinitely many
prime-additive numbers. Also we suspect that the number of prime-additive
numbers not exceeding x is for large x very much larger than the number of
prime-additive numbers < x, but we could not prove this (e.g. 42 = 2x3x 7 =
=7+ 3+ 25is prime-additive but not strongly prime-additive).

Perhaps the following remark is of some interest: 2x3 x5 is prime-
additive, 2 x 3 x5 x7x 11 =2310 =29 +3 + 54+ 73+ 113 is prime-additive,
too. Perhaps the product of the first 2r + 1 primes is always or at least
infinitely often prime-additive.

1980 Mathematics Subject Classifications (1985 Revision). Primary 11P45; Second-
ary 11A41.

Key words and phrases. Other additive questions involving primes, primes, Hardy-
Ramanujan theorem, de Bruijn’s function, representation of a number by the powers of its
prime divisors.
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If instead of all prime divisors, i.e. we require only

*) n= pap with gp >0, i'(n) > 1

some p|n

then we can already show that there are infinitely many such values of n.
Let us call these numbers (i.e. numbers satisfying (*)) weakly prime-additive
(briefly w.p.a.).

T heorem 1. For every prime p there exists a w.p.a. number n for which
p In.

Denote by A —{01,02,...} the set of w.p.a. numbers. Then we shall
prove the following

Theorem 2. Let ¢\ and c2 be sufficiently small. Then

<a(logn)3< A(n) e(lotn”

Proofs

P roof of Theorem 1. Let p > 2 be an arbitrary prime number. We shall
seek n in the form

(1.1) n=2aFpRFql

where also g is a prime number.
The relation 2| nis trivial. Let now s be a quadratic non-residue mod p.
It is well-known that there exists a prime g which satisfies

(12) 9=i(modp)
g= I(mod 4).

Ifa=r(p—Yand 7=(2uT I)(p - 1)/2 then
2or+p™ + @)= I-fOH— 1= 0 (mod p)

so we have p \n.
Furthermore, by the law of reciprocity and because of (1.2) we obtain
that

i.e. p is a quadratic non-residue mod g
Thus ifa=t(p—1) and B = (2v + I)(g —1)/2 then we have

n=2°+pB+ IF=1-]-(-1) + 0= 0(mod q)
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ie. qlin.

Summing up: ifa=z(p- 1)(- 1),8=(2v+1)(g- 1)/2, 7= (2u+I)x
x(p —)/2 then 2pq|n, i.e. nis a w.p.a. Q.E.D.

P roof of Theorem 2.

Lemma 1. Let s« — {p"1+ p"2+ eeo+prywd, =wa;+r-, t=1,...  fck
Then

#*(*) > cjb(logx)*
Proof of Lemma 1. We shall apply mathematical induction. For k
the statement is obvious. Now let k > 1 and let
= {p"2+ ... +phk:a,=id, +r- i=2,... ,kand
p? + ...+ pZ*<Pidl+ri(Pi1-1)}e

By the inductive hypothesis we have
W, +r'(pi‘- iIJOw-.liogfpf'+'Hpi - 1))}*-1=

Because of (Pid+ri + )n y = 0 for ji 4if and

50U (5i-i+Pidl+ri)

thus we have that

log X/ 1

Bk(x)> £ *&(*)>4 x y -1 ci(logx)t
i/=i

(where t=d\ logpi).

By Theorem 1 we have that n = 24fc-)- 34t+2 -f 520+l is w.p.a. thus we
established the lower bound by Lemma 1. Now we are going to show the
upper bound. Let og <02 < ... < ar <x be the sequence of w.p.a. numbers

up to x. Assume that
(1.3) r>x/e<log*)1/2-C2.

We shall show that (1.3) leads to a contradiction. For this we need two
lemmas.
Lemma 2. If >0 issufficiently small then for all but o ~x/e(l o g /2 f2»

integers n<x we have

i/(n) < (log x)Y 2 log log x.
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It is known that

x (2loglogz)t 1

o) =k n< 2y < o T

(see [1]). Thus
fl(x) := {n: n(n) > (logz)1,2/4 loglog z; n " z} <
<c(z/logx) Y (210g[°g” <c(z/logz) ~"(4 loglogx/k)k
k>L k>L

where L = (logz)1/,2/4loglog x, and because of (4 loglog x/k)k is a decreasing
function for k> L we have

i1(z) <c(z/logx)(2loglog L) *v 1= o(a/etogx*2 c2).

k>L

By Lemma 1 we can assume that there exists a subsequence {a[ < a2<
<...<a'} of {ai < ... <ar} for which

i'(a") < (logz)V2/* log log z

and
s> 2z/3e<logx)li2 2.

Lemma 3. Let \H(x,y) denote the number of integers not exceeding x
whose all prime factors do not exceed y. Then

¥(n, e(logn4/2) < n/2e(logn)l/2_£.

This is a consequence of the theorem of De Bruijn (see [2]). So we can
select elements {4j < ... < az} of {ctj < ... < a"} for which

z> z/6e(logx)12 @2

and whose largest prime factors are bigger than e(logx)1/2.
Denote the largest prime factor of a, by g and put 6, = &i/gi. Since

bi A z/e(logx™1/2, there exist at least
x/6e(logx)l/2 @1 z/e(logx)l/2 > eU°sx)1/2/2

bX such that btj = bt if 1<j <t <e(losx)/2/2. Put

=(loga:)1/'2/2

K=Px---Pk i=
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The 6j are w.p.a. numbers so

phreees P &

where £t = 0 or 1 and {ptl,... ,ptr} i {pi,... ,pk}- Here k <
£ (logx)1,24 log log a, hence the number of integers which can be written
in the form

plll+ ---+PT/
is less than (log x)(1°gx)1/2/ 4logl°g* —e(I°g*)1/2/4_ This imphes that there exist
at least e(logx) V22 j e(loga;)V/ 2/4

atj for which

et] = 0 or 1, where p* + .. .+p”r is a fixed sum of prime powers. In this case
aX is said to have property F.

The number of distinct values of the powers of g} is at most log r, so we
obtain that there exist at least

e(logx)1/2/4 / log x y e(logx)l/2/5

aq with property F for which the largest prime factors are distinct. The atj
are w.p.a. numbers, so gj \a¥ and thus g3 \pj* -f... + p£ must hold, as well.
Thus we obtain that

(log i )1/21/5

NGijzpfi+...+pH" JJ %" (e
a=i

(logx)U2\e(lc8®)*"* IS -

if x is large enough. This contradiction proves the upper bound.

Added in proof to Theorem 2. The authors conjectured and very
recently A. Balog and C. Pomerance proved that for every k there are
pi,p2, == Pk primes such that p“1+ ... + p£* is w.p.a. This argument and

Lemma 1 show that A(x) > (logx)t for every k. The proof goes as follows.

Fix k > 2. We show that for each j <k there are distinct primes pi,... ,pj
and positive integers or,... ,a3 with
a
*) 5> “ EE;-*(modpi...pJ).

We do this by induction onj , the assertion being the casej = k. Let pi be any
prime factor of k —1 and let oj > 0 be arbitrary. Then p“1= 1—fc(modpi),
so that we have (*) for j = 1. Assume (*) is true for j and j <k. Let
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m —YI’\p°'. Then m + k - j =0(modpi .. .pj), so that if pj+1is any prime

factor of m -fk —j —1, then pj+1~ {pi,... .pj3. Let aj+i = <p(pi .. .pi).
Then p°% = I(modpx ..-Pj), so that

S:=m+plljl+k-j-1=m+k—j =0(modpi.. .pj).
In addition, by the choice of Pj+\, we have S = 0(modpJ+1). Thus
ji
=J+1- KmodPi mmPj+1)
i
and we have (*) forj -f 1

Acknowledgement. The authors express their gratitude to R. Freud
for his remarks concerning Theorem 1.
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ON QUERMASSES OF SIMPLICES

H. MARTINI and B. WEISSBACH

Our considerations refer to Euclidean vector space Rd (d ~ 2). We shall
prove that the projection body and the difference set of a d-simplex S are
polars with respect to a sphere of radius y/dV(S), where V(S) denotes the
volume of S. This is equivalent to the property that each Steiner sym-
metral of S has exactly two extreme points outside of the corresponding
symmetrization space. As a consequence we obtain sharp bounds for outer
(d- I)-quermasses of a d-simplex in terms of the volume and inner 1-quer-
masses of this polytope. By means of these bounds a characterization of
regular d-simplices is observed.

1. Notation and definitions

Let Rd (d > 2) denote the d-dimensional Euclidean vector space with
scalar product (e, ¢) and unit sphere Sd~1:= {u6 Rd| (u,u) =1). We shall
write K d for the set of convex bodies, i.e. compact, convex subsets of Rd with
interior points. For further notation and background material the reader
should consult the books [1] and [6].

In particular, the area of the orthogonal image of K EK d in the (d—1)-
subspace H = {x ERd\(x,u) = 0} is called the outer (d —1)-quermass or
brightness Vd-\{K,u) of K with respect to u E Sd~1. Further on, the length
of the longest chord of K in direction u is named the inner 1-quermass
V_i(K, u) of K and u. The measure Vd-i(K,u) is the restriction to 5rf 1 of
the support function h(HK,u) of a convex body IIK, called the projection
body of K, whereas Vx(K,u) is reciprocal to the correspondingly restricted
distance function g(DK,u) of the difference set DK —K + (—)K. Thus we
have the relations

Vij-i(K,u) —h(TIK,u) = max{(x, u) \x £ UA},

1,)—t= g(DK, u) =min{p > 0|u GgK}, uGSd~1
u)

1980 Mathematics Subject Classifications (1985 Revision). Primary 52A20; Second-
ary 51N10.

Key words and phrases. Convex bodies, simplices, projection bodies, difference sets,
Steiner symmetrization, outer and inner quermasses.
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These two measures are invariant under Steiner symmetrization of K GKd
at H which we define in the following: Let G be a line orthogonal to H. If G
meets K GfLd, then let Sh (G DK) be the line segment in G and of the same
length as Gf)K, which is centred about G DH. The union of all such line
segments Sh (GC\K) is the Steiner symmetral Sh {K) of K and u, whereas
the described transform is called the Steiner symmetrization of K at H.

Finally, V(A" denotes the volume of K, which is also invariant under
Steiner symmetrization.

2. Results
Our basic statement is the following

M ain theorem. FOrevery directionu G5d_1 the quermassesVd-i(S, u)
and VAS", u) of an arbitrary d-simplex S (d » 2) satisfy

(1) Vd-1(S,u)-VS,u) =dV(S). O

Let us denote by h(Ki, x) and g(Ki,x), x GRd, the support functions
and the distance functions of K{ GKdwith 0 Gint Ki (i = 1,2). The equality
h(K\, x) = g(Kz2,x) for every x GRdimplies that K\ is the polar set regarding
K2 with respect to S“-1. The converse statement is also true (cf. [6], 127-
128). Moreover, with 0 Gint Qi the bodies Q, GKd (i = 1,2) are polars with
respect to the sphere {y GRd| ||?/|| = r} if and only if for each x GRd\ {0}

(2) )

holds. It is further known that for this polarity of Qi and Q2the restriction
to Sd~I of (2) is sufficient, i.e.

@2 X =7 tiGSd_1.

These remarks verify the equivalence of the main theorem and the following

Corolttary. The projection body IIS' and the difference set DS of a
d-simplex S with volume V(S) are polars with respect to a sphere of radius
VdV(S)- O

To obtain bounds for Vd~\(S, u) we shall use also the width Fi(5, u) of
S in direction u. This measure is called the outer 1-quermass of S and u,

too.
Clearly, for a convex body K the extremal values of F1(/I, u) and

V\(K, u) coincide ([1],51). Hence, using (1) and the notations max V-\{K, u)=
= maxiéi(K,u) = D, minV1(K, u) —min Vi(K, u) =: A for diameter and
minimal width of the body K GKd, we get immediately
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Theorem 1. For every d-simplex S (d” 2) the equalities

©) minVa-i(s,u) =G maxv-i{K,uy =

dv(s)

hold, and these extremal values are attained if and only if the corresponding
directions are normal to parallel supporting hyperplanes of S with maximal
and minimal distances, respectively.

There exist various estimates for quantities of simplices where the cases
of equality are characteristic properties of the regular representatives. By
Theorem 1 we shall add such a characterization.

For an arbitrary d-simplex S we write r for the radius of the greatest
inscribed ball and R for the radius of the smallest circumscribed ball. Then
we have (cf. [2], 291-292)

a+l
(d+ 1) 5
d

(d+1

)/\
d d~IRd.

d2rdiv(s)<:

(From this we also obtain dr ~ R.) Moreover, by theorems of Jung and
Steinhagen (see [1], 77-79) the relations

)
- acr 42080
(m 3

hold. In all cases equality holds if and only if S is regular. Hence, by (3)
and simple transformations we get

THEOREM 2. For an arbitrary d-simplex S (d> 2) we have

(4) minVd_i(5,u)£ER (d-1jr 211
(5 maxFEi(5,u) 3] o drlbede2
(d-Dt (d+iy 2 2
maxFd_i(5,u) i rataiz
6 minyd_x(5, it) 1
In each case equality holds if and only if S is regular. O

(It should be remarked that (5) was given already in [10].) Relations
between outer (d —I)-quermasses, diameter, minimal width and volume are
known for arbitrary convex bodies, too. They were observed by Firey (cf. [3]
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and [4]). In the second paper it is shown that for a convex body K in every
direction u65d 1

©) Vd-1(K,u)V1(K,u)<idV(K)

holds. To see this, one has to symmetrize the convex body K at a (d—1)-
subspace H with normal direction u. Then Sh(K) has the same volume as
K and is intersected by H in a (d—1)-dimensional set of area Vd-i(K, u).
Further Sh (K) contains at least one line segment L, whose length is given by
V_i(K,u). Since the convex hull of the (d —)-dimensional intersection and
L is contained in Sh(K), (7) is observed, and equality holds if and only if
this convex hull and Sh (K) coincide. Clearly, in that case the only extreme
points of Sh(K) outside of H are the end-points of L. Therefore we can
formulate a second statement which is equivalent to the main theorem.

T heorem 3. Each Steiner symmetral of an arbitrary d-simplex S (d't 2)
has exactly two extreme points outside of the corresponding symmetrization
space. O

Ifu (ESd-lis assumed to be a direction of the diameter or of the maximal
brightness of a convex body K £ K d, then (7) implies the estimations

8)  dV{K)>D mmVd- XK,u), dV(K)>A max u).

We want to correct the answer given by Firey to the question in which cases
equality holds. Equality in (8) is not only obtained if K is degenerate, as
follows by (3).

3. Proofs

The main theorem shall be verified by proving the equivalent corollary
related to the sets 115 and DS (H. Martini): It is trivial to show that these
bodies have a finite set of extreme points, i.e. 115 and DS are convex d-
polytopes. Hence these sets are uniquely determined by their vertex sets and
sets of support numbers, respectively. (Note that the support number in the
outward normal direction of one (d —l)-face is defined to be the oriented
distance of the corresponding facet hyperplane to the origin.)

Consequently, for the confirmation of the polarity we can restrict our
attention to the sets of all facet hyperplanes of n5 and of all vertices of DS.
It is shown that all vertices of DS lie exactly on those lines through 0 which
are parallel to edges of S. On the other hand these and only these lines
are the facet normals of n5. (These proofs shall be given later.) Thus it is
sufficient to show (1) only for all directions parallel to edges of S.

The direction of the joining edge regarding the vertices e/,, et of the
simplex shall be denoted by Uhke Let us consider the uniquely determined
affinity a with e/, eft as fixed points, which transforms the remaining ver-
tices of S into a hyperplane with normal direction Uhk, where the joining
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line segments of corresponding points with respect to a are (degenerate or)
parallel to ek —ek. Obviously, this affinity is a shear with fixed lines of

direction Unk. Hence a preserves the measures V(S), Fd _i(5,and
V.i(S,uhk) = \\eh - ejt||. But for a(S)
dVv(a(S)) =Vd-i(a(S), uM)Vj(a(S), uhk)

holds by means of a classical formula.

Now the postponed proofs for the used statements on the boundary struc-
ture of the polytopes DS and n5 shall be presented. The difference set of
a convex body K is given by DK = K + ()K. Clearly, x = X\ -f x2 is only
an extreme point of the Minkowski sum K' —K[-f K'2, if 2, is extremal in
K[ with i= 1,2 (cf. [6], 90). Consequently vertices of the difference set of
S = conv{eo,.. .e"} are at most the points e/, —ek. On the contrary, every
such point is a vertex of DS for h"k. We assume that eh- ek (h”" k) is not
a vertex of DS. Then there would exist two points p\ *p2from DS with

elfj —ek = Alipi + A2p2; Ai+ A2=1; A, >0; 1= 1,2.
Each point p € DS is representable by

d d
P=Y 7~ ¢ with =0; -I"Pj"+L,
3=0 3=0

and ph~ 1, Mc —1 would imply p = eh —ek. Suppose

d
By the assumption that e/, —ek lies between p\ and p2 we have Y Tjej —0
J=0

d
and Y T =0 with
3=0

T =Aj/ir+X2pf\ je{O0,... ,d}\{h,k}
Th—AiPh "+ APh A—D» Tk = Al M Az[2*+ L
Since the points eo,... , are affinely independent, the coefficients Tj have
to vanish in each case. By p® <land A >0 (i.e. Aip™ ™ Al and A2/x" »
< A2) the condition 77,= 0 (i.e. + A?p”™ = 1) can only be satisfied for
p” =p = 1 An analogous conclusion leads one from rk=0to p* =

= pk¥’ ——1. But then the equality p\ =p2= e/, —ek would be contradictory
to the supposition.
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The projection body I1A of A GKd can also be described in a simple
manner, if A is a polytope. Let u- (JJu,j] = 1 1=0,... ,») present the
outward normal direction of the ith facet of K. Further Vd-\(«m) shall be
the area of this (d —I)-face. Introducing a, := Vd~\{u%u,, we obtain

n n
a,=0 and A =72 conv{0, a}.
«0 i=0

A supporting hyperplane of IIA with uG5d 1 as its outward normal direc-
tion is determined by

(@>u>="r5ZI1(acw)l= ~2 (ai,u) - vd-i(K,u)
=0 ieJ(u)
with
J(u) = (zG{O0,... ,n} I(ai, u) > 0}.

Only sets of the form

conv {0, aio) + ... + conv {0, a,k} + Afctla,kH + ... + Aha,,,
with AtjG{0;l) can be reahzed as (d-r)-dimensional faces (re{l,.. d—L1})
of 11K (see [8]). These faces are special translates of convex bodies

k
zio,...,ik:=J"conv{0,a,v}
3=0

with no more than k + 1 dimensions.

For the generation of a facet of 11K one has to assure dim =d—1
Therefore only vector products of d—1 linearly independent points from
{00,... ,an} can lead to outward facet normals of IlA.

For a d-simplex we have n —d. As is well-known, each (d —I)-tuple
from (do,... ,ad} is linearly independent. Therefore always points hk €
G Sd~x exist, which are uniquely determined up to reflection at the origin
and satisfy (a-u/,fc) =0, i G{0,... ,d}\ {h, k} with 0<k, k<d, and h"k.

Facets of I1A can only he orthogonally to the directions given by these
points. On the other hand, this is valid in each case. The scalar products
(ah,lhk) and (ak,uhk) cannot vanish, but we have (ah,lhk)+(ak,uhk)=0. For
example, if (ah,uhk) >0 holds, then the supporting hyperplane of 1A' with
uhk as its outward normal direction is determined by (x,ihk) — (ah,ihk),
X GRdm Clearly, ah is a point of that hyperplane. But the points ah + a,,
i G{0,... ,d}\ {h, k}, are also elements of this linear manifold, i.e. altogether
d linearly independent points of the projection body. Consequently, the set
of directions given by uhk and the set of directions determined by edges of
the simplex coincide.
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One might prove Theorems 1 and 2 also without the main theorem,
namely by means of statements in [7] or using equivalent assertions on the
projection body of a simplex 5 (B. Weissbach):

The minimal outer (d —I)-quermass of 5 belongs to the set of distances
between facet hyperplanes of 115 and the origin. According to the preceding
remarks these distances are determined by

dhk *—|(a/n “hk) 1—|(«fc, Ank)| >

ek
_ h”k).
Lhk IK —ejt]| ( )

Taking the centre of gravity of 5 as the origin, we obtain

[EEN
=<
[EEN

A

Thus —\ ehis a point from the convex hull of the points e, with i 6 {0,... ,d}\
{/i}. Further —2¢/, lies in that facet hyperplane of 5 which does not contain
eh. The direction determined by ah ~ 0 is assumed to be normal to this facet
hyperplane. Therefore (a/,, e, + \eh) =0, i £ {0,... ,d}\ {/i}, and we get

dhk = Wﬁ__“f_-_kﬂ,\gl

If ¢h denotes the orthogonal projection of eh onto the line through O and
ah, and if b(uh) represents the width of 5 in the direction of this line (i.e.
the corresponding altitude of the simplex), then

(ah,eh) = 4KIUKII = -V d-! (ufc)*-j-6(u/,) = -~y V (5).
Accordingly we have

The maximal outer (d —I)-quermass is contained in the set of distances
between O and vertices of the projection body. Remember the statements on
extremal points of a Minkowski sum of convex sets and on the representation
of 115: Only points of the form

p(J) —'y'a,, JC{O0,...,d},
ied
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with 0 < cardJ <d+ 1 satisfy this condition. As an immediate consequence
we observe
maxhj_i(5, u)=max|ly® a,| .

Once more we assume the centre of gravity of S to be the origin. By a
suitable numbering for every permissible i then the relations

(aiei) =-~-jV (S), {ateh)=-~V{S), h7i;

(@a-i.effj -0, i”™hx«,

hold. We introduce J  {0,... ,d}\J. By the supposition regarding card J
every dissection («7,/) generates a dissection of the vertex set of S, too. It is
well-known that for an arbitrary dissection of vert S there exist two uniquely
determined parallel hyperplanes H(J) and H(J) with the following property:
H (J) contains the vertices e, (i GJ) and H(J) the remaining vertices. Hence
these hyperplanes are given by

H(J) =jx ] x-eh'j-0, h£jj,
iel
HJ) =jx J x—ekj =0,k£/j.
iel
The distance of H(J) and H(J) shall be denoted by q(J) = q(J)- It is not

difficult to show that the minimum of all such distances yields the minimal
width of S. Therefore

1 " 1 |
q(d) = MV oo ) Mh 1gh  Ek\ — dv(s)
1 i
21 e 6% e
with h 6 J and k€ J, and consequently we have

dVv(s)

maxkrd_i(5, u) ‘1_dF(S): A

min ofJ)
(For this convenient approach to the minimal width of a d-simplex we also
refer to [11].)
4. Concluding remarks

At the Oberwolfach meeting on Convex Bodies in 1974, E. Heil posed
the following problem (see also [5], no. 23): Let K be the convex hull of d
line segments in Euclidean d-space. Is the volume of K greater than or equal
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to the volume of a simplex S generated by translates of these line segments
having a common endpoint? In [9] McMullen gave an affirmative answer to
this problem, moreover in a cleverly generalized form. It should be noticed
that the affirmative answer to Heil’s original problem can also be obtained
as an immediate consequence of our main theorem. Using the measures
ud_i(-,u), V_i(-,u) of K and S in the direction u of one such generating
line segment, we get V (K) > F(5) by a simple inductive argument regarding
Ud_i(-, u) and by the obvious inequality V x(K,u) > Ki(*$\ «) (cf. (1), (7) and
the assertions leading to Theorem 3).

Finally we remark that the first named author meanwhile could charac-
terize d-simplices in Kd (d 2) by the properties given in the main theorem,
its corollary and Theorem 3.

REFERENCES

[1] Bonnesen, T. and Fenchel, W., Theorie der konvexen Kdérper, Ergebnisse der Mathe-
matik nnd ihrer Grenzgebiete, Bd. 3, Springer, Berlin, 1934. Zbl 8, 77

[2] Fejes Toth, L., Regulare Figuren, Akadémiai Kiado, Budapest, 1965. MR 30 #3408

[3] Firey, W. J., Lower bounds for volumes of convex bodies, Arch. Math. 16 (1965),
69-74. MR 31 #5152

[4 Firey, W. J.,, Lower bounds for quermassintegrals of a convex body, Portugal. Math.
25 (1966), 141-146. MR 38 #607

[5] Gruber, P. M. and Schneider, R., Problems in geometric convexity, Contributions to
Geometry, eds. J. T6lke and J. M. Wills (Proc. Geom. Sympos. Siegen, 1978),
Birkhauser, Basel, 1979, 255-278. MR 82d: 52001

[6] Leichtweiss, K., Konvexe Mengen, Hochschulbicher fir Mathematik, 81, Deutscher
Verlag der Wissenschaften, Berlin, 1980. MR 81b: 52001

[71 Martini, H. and Weissbach, B., Zur besten Beleuchtung konvexer Polyeder, Beitrage
Algebra Geom. 17 (1984), 151-168. MR 85j: 52017

[8] McMurien, P., On zonotopes, Trans. Amer. Math. Soc. 159 (1971), 91-109. MR 43
#5410

[9] McMutten, P., The volume of certain convex sets, Math. Proc. Cambridge Philos.
Soc. 91 (1982), 91-97. MR 83a: 52008

[10] Weissbach, B., Eine Kennzeichnung der reguldren Simplexe, 2nd Colloquium for ge-
ometry and combinatorics, Part 1 and 2 (Karl-Marx-Stadt, 1983), Techni-
sche Hochschule Karl-Marx-Stadt, Karl-Marx-Stadt, 1983, 225-228. MR 87h:

52023
[11] Weissbach, B., Schranken fir die Dicke der Simplexe, Beitrdge Algebra Geom. 26
(1988), 5-11.

(Received January 23, 1989)

SEKTION MATHEMATIK
PADAGOGISCHE HOCHSCHULE
WIGARDSTRASSE 17
d/0-8060 DRESDEN

SEKTION MATHEMATIK
TECHNISCHE UNIVERSITAT

PSF 124

d/0—-3010 MAGDEBURG

FEDERAL REPUBLIC OF GERMANY






Studio Scientiarum Mathematicarum Hungarica 27 (1992), 22S-233

NONLOCAL AND STRONGLY NONLINEAR THIRD BOUNDARY
VALUE PROBLEM

I. M. HASSAN

& . Introduction

We shall consider the following third boundary value problem:

(1) A (—)~daffao(id, uu)] +go(id,uy=F inO
MSi

(2) <9*(u) = hi o (id, u) + h2o(id,u0$) on Oil
where Q is a possibly unbounded domain in R",

da* = IU 0(id>u, u")\va,

l«l=i

va denote the coordinates of the normal unit vector on dfl (ja] = 1). $ is a
C 1-diffeomorphism in a neighbourhood of Oi2 such that S :=$(6ii) C fl, dfl
is bounded, continuously differentiable.

It must be emphasized that in the terms po(id,u) and h\ o(id,u) no
growth restriction is imposed but it is supposed that g, hi satisfy the sign
condition g(x,rj)r)'*:0, hi(x, N)]~ 0. It will be proved the existence of weak
solutions of (1), (2) by using arguments of [1] (see also [2]).

Weak solution of (1), (2) will be defined as follows. Assuming that u is
a classical solution of (1), (2) by Gauss-Ostrogradskij theorem and by using
an integral transformation we obtain

Y2 I[fa°(}&,'u,u)]dav — i [hi o (id, u)Jvd(j—
MSin n
3
—y [fi20(id, u)l(v o+ 1)d<+ Y <o (id, uyv = J Fv.

1980 Mathematics Subject Classifications (1985 Revision). Primary 35J55.
Key words and phrases. Nonlinear third boundary value problem.
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Thus weak solution of (1), (2) will be defined by (3).

Nonlocal linear boundary value problems have been considered e.g. in [4]-
[7]. The importance of nonlocal boundary value problems in plasmaphysics
has been emphasized in [8]. In [9], [10] nonlocal and nonlinear boundary
value problems have been studied.

82. Existence theorem

Denote by Wp(fi) the Sobolev space of real valued functions u, whose
distributional derivatives of order < 1 belong to Lp(ii) (1 <p <o00). The
norm in Wp(fl) is defined by

M k“(i»={£ [ r«ip}l'>
Main

The points £ £ Rn+1 will be written also in the form £= (77,£) where 7£ R
and £ € Rn.

Assume that

(a) fa,hi,li2 and g satisfy the Carathéodory condition, i.e. they are
measurable in x for each £ resp. 77and continuous in £ resp. 77 for a.e. x € fi.

(b) There exist constants Q. > 0, p (1 < p < 00), and a function k\ £ Lq(Q)

where | =1, such that
Va(*,0isctiirl+M¥*)
for all |a| » 1, ££ R"+1 and a.e. x £ II.
(c) For all (77, C), (77, £0 € Rn+1 with £ 7°£' and a.e. x in Il
Y [f«(*» *I>C)-lar(*»*7iC/)] (ior -16)> °-
M=1

(d) There exist a constant c2> 0 and a function &€ LI(SI) such that for
a.e. x in fi and all ££ Rn+l

Y J«(x-0*a”c2Mp- k2(x).

la]<I
(e) For each s > 0, there exists g, £ TA(il) such that for a.e. x in I2
\g(x,v)\ <ga(x) if IM<s.
(f) For any 7£ R, a.e. x in I
5i(x, 7)77>0.
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(9) For any fixed s > 0, there exists nv<ae LI(dEl) such that fora.e.x ed
mn if \v\Us-
(h) For any mewx, a.e. x in dil we have
hi(x,T])rj"0.
(i) There exist numbers ¢ > 0, g with 0 < g<p —1 and a function k e
EL 1‘r"d(S) such that for any 7 R, a.e. x € S
"2(xiV)\ = c\v\e + k(x).

The main result of this paper is the following

Theorem. Assume that conditions (a)-(i) are fulfilled. Then for any
F e (VFp(il))* there exists uEWp(CI) such that

go(id, u) ETL(ii), [5o(id, u)Ju ETI(l),
@) hi o(id, u) E Lx{dfi), [hi o(id, u)Ju E L1{dSI)

and

f [fa, o (id, u,u’)ldav - /[h20(id,u)](u°$ Il)da-
W Sin 5
©)
—Y [hi °(id, u)\vdo + J go (id, u)v = (F,v)

dn n
for all v E Wp (i) satisfying v E T°°(ii), ujan E L°°(dil) and for v = u.

Suppose that the assumptions (a)-(i) are satisfied. For any u, v E Wp (ti)
let

’,

(T(u),v):=~ | [ao(id,u,un] d"u-

(6)

—FMijo(id, u] uos DL

S

and for any number /r> 0 let

| \<n
(7 g»(X,r]):: < i:‘ |1A(*.*7)| > P e =1%

0 if |x| > /i
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and )
i hx{x,r]) if \hi(x,rj)\ x Gdil

AT AT if \hl{x, Tj)\>fi, x GOIl.
Define operator 5P by

(5#(n),n):=J  o(id, un- J hi o(id, u)vda.
an

Firstly we shall prove several lemmas (similar lemmas are proved in [1] and
[2])-

Lemma 1. T + S is pseudomonotone operator.

Proof. By (a), (b), (i), (6) and (7) T + is bounded. Suppose that
(Uj) converges in (if) weakly to u, ((T + S™)(uj)) is convergent weakly in
(W'p(f))* to y and

9 inDSUP ((T+ Uj —u) <0.

Then there is a subsequence (u'j) of (uj) such that
j!;crgo(ué)—u a.e. in |1

Thus by Lebesgue’s dominated convergence theorem

lim W\g,, o (id, uj) -g”o (id, u)|lii{n) = 0,
lim \hItdAo (id, uj) - hit o (id, ti)[x,«(3n) = 0,

(10)
where q is defined by A+ ~ = 1, whence

jIln}gI)S"(u'.) =S"u)
weakly in (Wp(fl))* and so

lim T(u'j) =y - S,,(u)

j —too
weakly in (kFp(fl))*. From equality

(S™u'f), uj-u) = (Sfj(uj) - Sn(u),u’j -u) + (S, (u),Uj- u)

it follows that

(12) Jim (51(u"), uj - ) =0,
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because by (10), the boundedness of W'- —u||w£(n) and Holder’s inequality

JIim (St - SMu), uj- u) =0.

Therefore (9) implies that
(13) JIim sup (T(u'j), vl. —u) ~ 0.

Since T is pseudomonotone (see [4]) by (11) and (13) we have

T(U) - y - S”(u)i
(T+ Sliy(u) = y.

jliBi?(T(u:]j)’ uj—u) =0

Further,

and so by (12)
(14) J_Iim ((T + sMH{u'-), uj—u) - 0.
(14) is valid also for the sequence (Uj) (because else by the above arguments
we get to a contradiction) and so the proof is complete.
Lemma 2. Assume that (uj) converges weakly in VFp(fl) to u and there

is a constant ¢ such that
(15) J [gj o (id, Uj)Juj - J [hij o (id, UjIuj <ic.

n an
Then

go(id, u) GLLCI), [go(id, u)Ju GLI(fl),

h\ o (id, u) GLI[dCIl), [hx o(id, u)Ju GLI(dCI),

and there exists a subsequence (Ujk) of (uj) such that

(16) lim Uk—u ae. in d and on dCl,

% o (id»ud * )-s o (id” u)lli,i(fi)= 0’

(a7 lim ik o(id, ujk)-hi o(id, u)]|Li(sn) = 0.
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Proof. As (Uj) tends to u weakly in wp(ii) thus there exists a sub-
sequence (Ujk) of (uj) with the property (16). Since for the trace of Uj
IMIIIA (an) is &so bounded thus it may be assumed that

lim Uk=u a.e. on dtl.

Thus, by (a) it is easy to show that
(18) lim gjk(x,Ujk(x)) =g(x,u(x)) for a.e. x6ft
fc—*oo0

and
lim hijk(x,u(x)) =hi(x,u(x)) for a.e. x£dtt.

k —KX>

By (7), (15) and the assumption (f), (h) we have

\] [j o(id, Uj)]uj <c,

n
-jJ\K , o(id, ujyujder ™ C.
an

Therefore by (18), (f), (h) Fatou’s lemma implies that
[go(id, u)Ju £ F1(ii), [hi o(id, u)Ju £ LI(dil).

Thus we have proved the first part of Lemma 2.
Now we shall prove the second part of Lemma 2. For any 6> 0 we have

by (e)
I<7n(z, «i*(*))1 ~ 9s-i(x) + 8 BjK(x, ujk(x))ujk{x)1.

This implies that gjk(x,Ujk(x)) is equiintegrable. Because, for any measur-
able set E in Il

J Wjk(x,ujk(x))\dx< J gs-i(x)dx + 6C.

E E
Given e > 0, let &= Then for sufficiently small measure of E

\] Wjk(x,ujk(x))\dx<e
E

and there is a set Ae of finite measure with
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By Vitali’s theorem and (18) this shows that
9jk o (id) ujk)~*9 0(id, u) in L"CI).
Similarly can be proved that
hijko(id, Uk) -* h\ o (id, u) in i/2(&il).
Lemma 3. The operator T + SR is coercive, i.e.

{((T +SB)(u),u)

lim --foo.
flull-> \ IMI
Proof. From (f) and (h) we obtain
J gi(x,u)u> 0, / u)udcer ~ 0.

an

This imphes that (SR(u),u)>0. Thus by using conditions (d) and (i) we
obtain

((T + SB)u, u) _ (T(u),u) + (SB(u), u)

(19) y

> |i = C2lIMIIvvi(n) c3 Call'ull”n(n)  c5['"*|[tvI(fl)

(c3—G are constants). From this inequality and g+ 1<p it follows that
T + SR is coercive.

The proof of the Theorem. By Lemmas 1 and 3 the operator T -f Sj is
bounded, pseudomonotone and coercive for all j = 1,2,3, By using the
well-known theory of pseudomonotone operators in reflexive Banach space

we obtain that for any F in (Wp(ii))* there exists uj in VFp(ii) such that
(20 (T + Sj)(uj) =F.

By (19) (where the constants are independent of p) the sequence (uj) is
bounded in VFp(fl). T is a bounded operator and so the sequence (T (uj)) is
bounded in (Wp (i))*. Since VFp(il) is a reflexive Banach space, there exists
a subsequence (v,jk) of (uj) such that

I(Il_r>n00(||jk)-u weakly in V)I/:p(u)

2y lim T (Ujk) = Kly i
Jm T (Uk) =y weakly in
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By definition of Sj and (21) we find

\ [Sik 0 (id, ujk)] ujk~\] ihi Jk 0 (id. ujk)] ujkda =
an
—(bjk (ujk), ujk) —(F, ujk) (T (tijk), Uk) <

SRR i YR e
Thus by Lemma 2

[go (id, u)\u GLA(ii), go(id, u) GLI(fi),
[hi o (id, u)Ju GX1(67i), hi o (id, u) GLLGfI)

and there is a subsequence (WIk” of (ujk) such that

ullr}ﬂ U- —u a.e. in II,l

(22) . )
ilclm ug(:u a.e. on dil
—00
and also
lim 9k 0 (id, *4) ~ 90(id, u) =0,
(23) k—e0

Jim = hijke (id, udk) -hio (id, u) o~ ©

Prom (20) it follows that for any v in (1) with v GL°°(ii) and ulafl G
GLee(dil)

(24) ((r+SJ(u't),v) = (F,v).
By using (21) and (23), as k —00 we find

(25) (v,v) + J[go(id,u)Jv- J [ni o (id, n)]v=(F, v).

n an

Now we shall show that y = T(u). Since T is pseudomonotone, it is
sufficient to prove the inequality

S‘PIT K») euik - “) SO-
We have

TK) «&-“)=TKM.) - (r(-4M
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and so by (20), (21) and Fatou’s lemma
kll)rpoosup (T («m),uj -u)=kﬂmosup QF - SyK(u J ,ijk)/ - (y,u) <

=(F —y,u) —Iiminf{\] K, o(id, u'j] ujk - \] [h[Jk o (id, ujk) u'J da} <
n an

={F —y,u) —Jin o((id,u)]Ju + \] [hi o(id, u)Juda.
n an
Thus, for any w £ Wp(ii) D by using (25)

limsup (T (u'J ,uljk- u) <(F-y,u-w)+
k—»m

+y [50(id, u(w—u) —j [/, o(id, u)](in- u)da.
an

Since dtt is continuously differentiable thus u£ Wp(fl) can be extended
to Rn such that we obtain u £ (R"). We know (see [1]): there is a sequence
(wj) in Wp (Rn) fl L°°(Rn) such that (Wj) converges to u in Wp(Rn) and a.e.
in R"; further,

(27) Ul = M(X)| ae-  R™

Now we show that for the trace of wj and u we have

(28) W :W for a.e. X£du.

We have in a.e. Yy £Rn
Ml =uic) =M
Thus for any rne£ Co°(R") with the properties
supple CBE={XE£R":|x| <€}, k>0 and Jrjc=1,
we have

] \U(y)\Ve(X-y)dy<J Wj(y)rIe(x - y)dy <J \ufy)\rc(x - y)dy,

[ ] « '

and so by using notation ue(x) : =/ v(y)Vc(x - y)dy

(29) “ Melan = wi,e\an = lu\an-
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Since (wijicy —»w ;i and (Jule) —»u| in Wp(R™) as £—0 (Jul GWp(R™)) thus
widan  wj\di
and
Mdan  Mian in

as e —*+0. Consequently, for a suitable sequence (s*) with lim (E*)= 0 we
kK —»m
have
w3” o Fewjlam Mian SaMian

a.e. on d as k—00. Therefore, from (29) we obtain

M lanM ) A ™ilan(x) > MlanM )

which proves (28).
Now we have
(F- y,u- wj) "m0

and

ifgo Gd, wlwi ] [go (id, )«

n n
J [hi o (id, u)]wjda—h] [hi o (id, u)jud<?
an an

by (27), (28) and Lebesgue’s dominated convergence theorem, since
[go(id, u)] GT1(ii), [hi o(id, u)Ju GX1(&il).
Thus from (26) it follows that

limsup (T (Ujk) ,ujk- u) <O0.

k —too
Consequently, y —T(u), and (T (uJk), ujk- u) —=*0. Therefore, from (25) we
obtain (5) for all v GWjJ(ii) with v GT00(ii), u G T00(OI2). Setting u = wj

in (25) we find that (5) is true also for v=u. The proof of the existence
theorem is complete.
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A NOTE ON J2-RADICALS OF T-NEAR-RINGS

G. L. BOOTH

Abstract

The ~-radical for zerosymmetric T-near-rings and the J2(o)‘ra(lical for arbitrary T-
near-rings have been defined by the author. In this paper, we characterise the left operator
near-ring of a I'-subnear-ring A of a T-near-ring M . If M is zero-symmetric and has a strong
left unity, then for any invariant subgroup A of M, it holds that 72(A) = A OJ2(M). A
similar equality holds for ~2(o)i where M is an arbitrary T-near-ring with a strong left

unity.

1. Preliminaries

A r -near-ring is a triple, (M, +,T), where
(i) (M ,+) is a (not necessarily abelian) group;

(i) r is a nonempty set of binary operators on M, such that for each

7GT, (M, +,7) is a (right distributive) near-ring;

(iii) For all x,y,zGM, 7,p GT, xj(ypz) = (Xjy)pz.

If, in addition x7o=0forall x GM, 7 GT, then M is said to be zerosym-
metric. Let A be a normal subgroup of the additive group of M. If for all
X,y GM, 7 GT and aGA, it holds that xy(a + y) - 2:7y GA and ajx GA,
then A is called an ideal of M, denoted A <M. The same notation will be
used for ideals of near-rings.

A subgroup B of M for which 2:7aGB and 072; GB for all aGA, 7GT
and x GM, is called an invariant subgroup of M. Note that all ideals of a
zerosymmetric T-near-ring M are invariant. A subgroup of M which is itself
a T-near-ring is called a T-subnear-ring of M .

If A<M, then the factor group M/A is a T-near-ring with the operation
(x + A)-y(y-\- A) =x~iy{A. If M and M' are T-near-rings (for the same T),
and /: M —M" is a group homomorphism such that f(xjy) = f{x)*f{y)
for all x, yE M, 7 GT, then / is called a T-near-ring homomorphism.

Let x GM, 7GT. If y GM, we define [x,7]y= X7y. Let C be the near-
ring of all mappings of M into itself, with pointwise addition and composition
of mappings. The subnear-ring L of C generated by the set Lg= {[x, 7]: X G
GM,7 GI), is called the left operator near-ring of M. Lo is called the

1980 Mathematics Subject Classifications (1985 Revision). Primary 16A76; Second-

ary 16A78, 16A20, 16A21.
Key words and phrases. T-near-ring, left operator near-ring, J2-radical, strong left

unity.

Akadémiai Kiadd, Budapest



236 G. L. BOOTH

generating set of L.

An Lo-wordis an algebraically meaningful expression made up of symbols
from the set LqU{(,), +, — We will use notation of the form F{71,... ,7,)
to denote an Lo-word which contains the elements 71,... ,7,, of Lo and
no others. Lo words may be added and multiplied in the obvious way. If

F(71,... ,7,) is an Lo-word, n > 1, then there exist Lo-words G and H such
that either
L(Ai,... ,An) —G[p\,... /) &+ 7(rq,... , Vo)
or
F(X1,... /A,)= .o dip) + L,
where p,g <n and {/q,... ,pp,¥\,... ,ng} S {Ai,... ,A}. Note that ev-

ery element of L has at least one representation as an Lo-word. We will
frequently identify an Lo-word with the element | of L which it represents.

If AQ L, we define A+={xEM:[xf]EA V7 €T). If BQM, then
B+ ={££L:IXEB\/XEM}.

It may be verified (cf. [2]) that these operators take ideals (invariant
subgroups) onto ideals (invariant subgroups), and preserve intersections. If
l£L, x£M,7£T, it may be shown that I[x, 7] = [Ix, 7]. A strong left unity
for M is an element (d, 6) of M XT such that d6x = x for all X £ M. It is
easily seen that, in this case, [d, d] is the (two-sided) unity for L.

PROPOSITION 1.1 ([3], Proposition 1.1). Let M be a T-near-ring with
left operator near-ring L. Then M is zerosymmetric if and only if L is
zerosymmetric.

All other notations, definitions and conventions concerning near-rings
will be as in Pilz [7]. Let V be the variety of near-rings, zero-symmetric
near-rings, T-near-rings (for a fixed T), or zerosymmetric T-near-rings. A
Kurosh-Amitsur radical (KA-radical) is a subclass 1Z of V satisfying:

(i) TZis closed under homomorphic images.
(if) Each element A of V contains a unique maximal 7-ideal, 'TZ(A),
which contains all the 7£-ideals of V.

(iii) If ALV, B <A, then B,A/B £1Z, implies A£I1Z.

If, in addition, A€V, B <A implies that TZ(B) —B n 7Z(A), then 7Zis said
to be ideal-hereditary.

2. The Lo_radical

Throughout this section, let M be a T-near-ring with left operator near-
ring L.

Let A be a T-subnear-ring of M, and let » be a nonempty subset of T.
We will denote by [A, H the subnear-ring of L generated by {[0,7]: a£ A,
7 £ <3 If7 £T, [A {73 will be denoted [A,7]. It is easily verified that
[A, 7]= {[a,7]a<E A).
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Theorem 2.1 (cf. [1], Theorem 2.3). Let A be a T-subnear-ring of M,
and let V be the left operator near-ring of A. Then V is isomorphic to the
factor near ring [A, T]/K where K = {£G[A, T]: A =0).

Proof. Let L0 be the generating set for L'. We will use the notation
(z,7) (aGA, 7 £€T) to denote elements of L', in order to distinguish them
from elements of the generating set Lqgof L. Let To= {[0,7]: a£ A, 76
eT). If A= [0,7] GTo, we define A= (a, 7). It may easily be verified that
the operation A—» A'is a well-defined mapping of To onto L'0. We define a
mapping /: [T, T] —a_' as follows:

IFEGIT, T], there exist Ai,... ,AnGTo such that £= F(A1i,... , An) where
F is an To-word. Let f(£) = F (\i,... ,A,), and let a€ T. It is clear that, if
AGTo, then Aa= Aa. It follows by induction on n that
(1) F(ATL,... /An)a= F(\i,... ,Xn)a.
Now suppose that pi,... ,pm€ To and G is an To-word such that
£=F(X1,... ,A,)) =G(pi,... ,Pm)
Then, ifaGT
F(AL,... ,An)a—G(pl,... ,pm)a
whence

F[X1,... ,An)a —f?(Ai,eee
by (1). It follows that

F(X\) ese ,An) — G (A, +++ Am)

whence the mapping /: [T, T]—L" is well-defined.
It is easily seen that / maps the near-ring [T,T] homomorphically onto
V . Let K be the kernel of /. Then

i GKo f(E) =0
AN f{lh)a=0 forallaGT
<»fa=0 for all aGT, by (1).

Hence K ={£GL: £A =0} The result now follows from the fundamental
homomorphism theorem for near-rings.

An additive group G is called an MT-group if, for all x,y GM, 7,/iGT
and 7 GT, it holds that:
(i) 227geG
(i) x'{{ypg) = {x'iy)pg
(i) (x +y)ig = x"g =y"g.
A subgroup H of G is called an MT-subgroup of G if xjh GH for all
XxGM, 7 GT, g GG such that G = M~g = {x*g: x GM}, then G is called
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monogenic. The set {x £ M :27g=0} for all 7 £T, g€ G is called the
annihilator of G, and denoted annMrG. It is easily seen that annjv/rG<M.

Let M be a zerosymmetric T-near-ring. An MT-group G is said to be of
type 2 if G is monogenic and contains no MT-subgroups other than 0 and G
itself. An ideal P of M is called 2-primitive if P —annMrG, where G is an
MT-group of type 2. The J2-radical of M, J2(M) is the intersection of the
2-primitive ideals of M.

Lemma 2.2 ([3] Proposition 3.3 (b) and [5] Theorem 2.2). Let M be a
zerosymmetric T-near-ring. Then

(a) J2(L)+=J2(M), where J2(L) denotes the J2-radical of the near-ring
L.

(b) If A is an invariant subgroup of M, then J2(A) QAC\ J2(M).

LEMMA 2.3. Let M bezerosymmetric, and let A be an invariant subgroup
of M. Then

J2(A) = J2([A,T])+
={afA: (a7)€/22Z/) for all 7GT}

By Theorem 2.1, L" isisomorphic to [A, T\/K, where K ={l £ [A, T]: la =
0 for all a£ A). Suppose that 1,1' £K, and that x £ M. It may be shown
that, since A is an invariant subgroup of M, I'x £ A. Hence 1(1'x) = 0 by defi-
nition of K. It follows that ££'= Ofor all t, £ £ K. Now L is zerosymmetric by
Proposition 1.1, and J2is a KA-radical in the variety of zerosymmetric near-
rings, which contains the nil near-rings. Hence, K QJ2([A, T]). It is easily
shown from the definition of KA-radical that J2([A, T]/K) —J2([A,T])/K.
Hence

J2(A)={aEA: (a,7) £ J2(L)Vj £ T}
={a£A: [37]+ K £ J2([A TJAVT £ T}
={aGA:[a,7]1E7 A[A,[))VTET}

Theorem 2.4. Let M beazerosymmetric T-near-ring with a strong left
unity (d,S). Let A be an invariant subgroup of M . Then

J2(A) =AnJ2(M).

Proof. It is easily shown that [d, & is the (two-sided) unity for L.
Hence, if | £L, then | = I[d, §= [Id, 6], whence every element of L is of
the form [x,£] for some x £ M. Suppose that | £ [A, T]. Since A is an in-
variant subgroup of M, Id £ A. Hence | = I[d, £] = [Id, £]. Thus, [A, 6] is an
invariant subgroup of L. It follows from [6], Theorem 8.6, that

(2) J2([A,6]) = (A,6]DJ2(L).
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Now if a€ A and 7 £T, then [0,7] = [a, 7][d, £] = [eryd, §£ [A, £]. Hence,

(3) AC[A,6]+.

Now
=J2([A, T+ by Lemma 2.3
=H[A,6})+ by (1)
=([A.ilny2(i))+ by (2)
=[A,S]+nJ2(L)+
=[A,6]+nJ2(M) by Lemma 2.2 (b)
QANJftM) by (3).

The reverse inclusion is Lemma 2.2(b). This completes the proof.

Let N be an arbitrary (i.e. not necessarily zerosymmetric) near-ring.
Veldsman [8] defined an ideal A of N to be 2(0)-primitive if N/A is a 2-
primitive, zerosymmetric near-ring, J2(0)(N) is the intersection of the 2(0)-
primitive ideals of N . In [8], Theorem 4.2.4, it is shown that *2(0) is a KA-
radical in the variety of all near-rings, and that if A<N, then J2(0)(A)
fl S2(0)(1V), with equality if A is invariant.

Similarly, for an arbitrary T-near-ring M we define

J200)(M) = n{P <M :M /P is zerosymmetric and 2-primitive}.

In [4], Propositions 3.7 and 3.10, it is shown that J2(g{M) = /2(0)(T)+ and
that if AaM, then J2(0)(A) Q/2(0)(M) fl A. In view of these facts, and using
the same arguments employed in the proofs of Lemma 2.3 and Theorem 2.4,
we may prove the following result:

Theorem 2.5. Suppose that M has a strong left, unity, and that A is an
invariant ideal of M. Then

“20)(A) —AnN J2(9(M).

Remark. Let M be a zerosymmetric T-near-ring and let A be an invari-
ant subgroup of M. It is an open question whether in general, it holds that
J2(A) = An/2(M), as is the case for zerosymmetric near-rings. If it does
hold, then J2is an ideal-hereditary KA-radical in the variety of zerosymmet-
ric T-near-ring. In view of [4], Proposition 3.1, this would also imply that
J2(0) is a KA-radical in the variety of all T-near-rings.
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TRANSILLUMINATION OF LATTICE PACKING OF BALLS

T. HAUSEL

The paper of J. Horvath [1, see Theorem 2] contains the following state-
ment: If a lattice packing of balls is given in En (n> 3), then there exists
an affine subspace of En of dimension n — 2 which is disjoint to the balls. In
the proof of this statement (see [1], pp. 424-425) he uses the following (for
simplicity we only take the special case ¢ = 2 and s3 = a shortest non-zero
lattice vector of a lattice). Let a\, a2,63,64,... ,bn be an arbitrary system of
linearly independent vectors from a lattice in E', that contains ¢3. Then he
considers the orthogonal projection of E™* to an orthogonal complement E£ of
liN{&s, ... This E)( is a 2-plane in E", and can be supposed to contain
0. However, for arbitrary o1,02,64,... ,bn (of length at least ||s3|[) EN is in
general no subspace of lin{oi, az,s3}, hence this projection has no restric-
tion to a projection of lin{oi, a2,63} into itself, which is however used in [1]
further. Namely [1] applies to this restricted projection lin{oi, az,63} —>E£
a theorem of I. Hortobagyi, that necessitates E” Clin{oi, a2,63}.

In fact, [1], Theorem 2 itself is invalid, and here we actually prove the
following

THEOREM. There exists a lattice packing of balls in E™* intersecting every
affine subspace of E'* of dimension n —[cy/n\, where c is a positive absolute
constant.

P roof. Throughout the proof we use the terminology, notations and
results of the paper of R. Kannan and L. Lovéasz [2], in particular Ai(L,,)
denotes the minimal length of a non-zero vector of a lattice Ln, and fij(K, L,,)
is the j-th. covering minimum of a convex body K with respect to a lattice
L,,.

According to the result of Conway and Thompson [3, Chapter Il, Theo-
rem 9.5] there exists a lattice L,, of rank n with L,, = L* in En for which

(1) A(LN)AI(L*) A cin,

where ci is a positive absolute constant. Let us draw balls around all points
of L,, with diameter Ai(L,,). We show that this lattice packing of balls
possesses the property claimed in the Theorem. Let » be one of the points
of L,,. Let us consider the ball B which is drawn around r . Since I/Ai(L*)
is the maximum of the distances of two parallel and neighbouring lattice

Akadémiai Kiad6, Budapest
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hyperplanes in L,,, (1) implies that the lattice width of B is not less than
c\n. Thus, /Xi(B,Ln) <i/¢cin)y. Using Theorem (2.7) from [2] we get that

c'j2
) A(B,Ln)<c'iV1(B,L, AC?J

with a positive absolute constant d. If we choose j = (cy/ny With 2= c1/c,
then (2) proves our Theorem.

Remark. If the conjecture /Zj+i(B) < #j(B)-f #i(B) (where B is ball)
were true, see [2], then we could replace n —(cy/ny by n — (cnv in the Theorem.
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MULTIEXTREMAL ALLOCATION PROBLEMS
(models and solution methods)

V. R. KHACHATUROV

Abstract

In the paper models and methods are considered for solving various multiextremal
allocation problems in combinatorial formulations.

1. The main theses of the methods which are used

Let a function f(u) be defined on the set il consisting of a finite number
of elements wG IL It is required to determine such an element

(1) aeil
that
(2) /(a) = min/(w),

Practically any discrete programming problems may be written in such
a form.

If the number of elements in the set il(]il|) is small and the values /(u>)
for u Gl are calculated simply enough, one can use the method of the to-
tal enumeration to determine a and /(a). Otherwise the necessity arises to
elaborate methods excluding the total overselection. Among known methods
which proved to be effective in solving problems of different types one can
mention the methods of linear and dynamic programming [1, 2], consecu-
tive calculations [3], branch and bound method [4] and some others [5-7].
However, all of them suffer from the common drawback, namely, “the sen-
sitivity” to small alterations of problem conditions. For example, if in a
linear programming problem the convexcave function is considered in place
of a linear functional the simplex-method becomes inapplicable for finding
its minimum although the set on which this minimum is accomplished (ver-
tices of a polygon) remains the same; addition of a complementary constraint
often makes inapplicable the dynamic programming method which is used
successfully in solving the problem without the constraint; a violation of the
condition S(6,7) < 0 can make inapplicable the method of consecutive cal-
culations; even the universal (in exposition) branch and bound method has
this drawback: an insignificant alteration of the conditions of the problem
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244 V. R. KHACHATUROV

under consideration may demand the construction of new rules of branching
and estimate calculation.

The approximation-combinatorial method [8, 15], presented below, shows
ways of modification of the methods to decrease their “sensitivity” to an
alteration of the problem conditions and enlarges the class of problems which
can be solved.

We describe the basic aspects of this method in solving the problem (1),

(2). .

1. On the set Il an approximating function P(u>) is defined in such a
way, that
(3) fw>P(a),

and for P(u>) there are effective methods and algorithms for determining not
only Qo € fl with

4) P(a0)=runinP(u;),
but all the elements u Gil with the values P(oj) differing from P(a0) in not

more than some fixed number R > 0. In other words it becomes possible to
determine such a subset iio C I, that

(5) P(a0) <P(u) <P(ao) + R,  wE£ii0,

(6) PU)>P(a0) TR € fl\ ilo-
2. Certain number c is chosen in such a way that
P(a0)” c.
3. The subset ilo C il is determined by solving the problem (5), (6) under
@) P(ao)+R =c.
4. The element & 6 fto is determined in such a way that

(8) f(&) :\II’E\IE) /(«).

The value & and /(a) are adopted as a solution.
A criterion of optimality. If

©) /(<) ~ c5
holds then

(10) a=a, f(a) =f(a).
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To prove the criterion of optimality, we show that a 6 i)o, i.e. (5) is valid.
Using (7), (9), (2)-(4) in succession, we get

P(a0)+R=c> f(&) " f(a) Z P(a) >P(a0).

Afterwards taking into consideration (8) and (2) we get /(&) = /(a),
which was required to prove.

Approximate solution. If

(11) /(a) >c,
holds then
(12) c</(a)<I/(fi),

i.e. a and f(&) define an approximate solution.
The right-hand side of the inequality (12) follows from (2). The left-hand
side will be proved from the contrary. Let c>/(a), then

(13) P(a0)+R=c>f(a)*P(a)lP (a0).

Thus a € fio (see (5)). From this and also from (2), (8), (13) /(a) =
= /(&) " cfollows which contradicts (11). Hence, c< /(a).

Corollary 1. If we determine beforehand in some way or other the
upper bound c for /(u>)

/I(a)gc,
and take c—c, then /(&) = /(a) always.

The proof follows from (13), (5), (2), (8).
Using the relations (7), (5) and (6) consider flo as a function of the value
c, i.e. fio=Ho(c). Then

Corollary 2. //ci™c2, then
iio(ci)CfioEc2) and [ii0(ci)| < [ii0(c2).

Corollary 3. Iff(u) > P(oj) for each u € i1 then all ui € ii belong to
tto with the value f(u>) ~ c.

In fact, since P(ao) + R =c>f{u) > P(qj) > P(ao), u Gilo- Thus if
iiqC il is the set of all 4 € H with f(u) < c then [iqC Ho- In this case the
function f{u>) itself possesses the properties (4)-(6) of the approximating
function and may be used in an approximation combinatorial method for
solving more complicated problems.

In papers [8, 15] the approximation-combinatorial method is presented in
more detail and various classes and examples of approximating functions used
for solving various mathematical programming problems are given. Here
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we shall consider a wide class of approximating functions used in the ap-
proximation-combinatorial method for solving allocation problems, namely,
functions satisfying the sufficient condition of application of the consecutive
calculations method [3].

In the method of consecutive calculations the functions P(u>) defined on
the set Ii of all subsets u> of the set | = {1,2,... ,m) are treated. (The
number of elements U>£ i1 or t>C/ is equal to [il] = 2m.)

The requirement of application of the condition

(14) S(6,7)=P(6)+P(7)- P(6UT7)- P(Sn7)<0

for any two subsets 6 and 7 of the set I is the sufficient condition of applica-
tion of the method of consecutive calculations for determination min P(u) =
= P(a0) for all w€ il.

There are three rules of rejection [3, 9, 20] of wittingly not optimal
subsets, which are used in the algorithms of consecutive calculations [3, 9,
20] for the determination of the optimal subsets (global minimum) op C
C /. These rules of rejection allow to determine the global minimum of
the function P(U>) by looking through about m3 of variants from the total
number 2m of variants.

For solving the problem (5), (6) three generalized rules of rejection [9,
10, 20] are suggested from which as a particular case the rules of rejection
for determination of the global minimum follow.

Any algorithm for seeking a global minimum [9] may simultaneously
serve as an algorithm for seeking all close variants if instead of the rules of
rejection used in them one will apply the corresponding generalized rules of
rejection.

The modified algorithms of consecutive calculations [9], successfully
passed the experimental test [11,, 12, 13] are elaborated to improve the algo-
rithms of solving the problems (5), (6).

The first generalized rule of rejection. If for any subsets u\ Cu=2C | the
values P(u>i) and P{u2) are known and if P(u>1) + R <P(Uu>2), then one can
neglect (exclude from the consideration) all subsets w3 u2 because
for them wittingly

P(u) >P{a0) + R.

Let P(ux)-\-R <P{u2). Take S=u2and 7 = ¢ji U(a>\w2), then SU'f —uj,
6n7 =ui. Such values § 7, <UJ7, 6C\y are possible as (A Ca2C u> From
the condition S(6,7) <0 get P(cj) ™ P(u2)+ P(ulU(o;\u;2) - P(aq), and
since P(u>1U(ij\ u2)) ~ P(a0), P(w2)- P(”i) > R, then Pu>) >P(a0) + R,
which is asserted in the rule of rejection. For R = 0 this rule coincides with
the first rule of rejection from [3].

The second generalized rule of rejection. If for any subsets U\ C u2C /
the values P(u>i) and P(u2) are known and if P(u>1) > P(u>2) + R, then one
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can neglect all subsets u Cwi, because for them wittingly
P(cj) > P(a0) + R.

Let P(u>i) > P(uji2)+ R. Then 6 = > and 7 = wU(a>2\wi) then TU7 =<2,
6 fi 7 = w. Such values §, 7, 6U7, 6 D7 are possible asuCwiCw2” As well
as in the previous case, we get

P(u) > P(ui) + P(uU @2\ uq)) - P(u2) > P(a0) + R,

which is asserted in the rule of rejection. For R —O0 this rule coincides with
the second rule of rejection from [3].

The third generalized rule of rejection. If for any subsets 07 C it turns
out that either Pi(a") > P(60)+ R or P2(a/) > P(a0)+ R then there is no

necessity of considering all subsets ui C w C U2 because wittingly
P(a') > P(oto) + R, i.e. among all the subsets of this kind there is close to
the optimal subset. Here it is assumed that:

P(60) is the known value of the function P(u>) for some &o C/;

P(a') =m@mp(w),

A(a)=P(a7)- £ AxCO" V),

P2(a')=P(u2)- £ A2(0<F(«"),
['EBVIA Wi

where
f P(wi)-P(wiUO0, if P(wi)- P{usiUi) >0

1 \ o, if P(0Ji) - P(ui Ui) <o0.
I P>2) - P{u2\i), if P{u2)- Pu>2\i)>o0
\ 0, if P(u2)-P (u2\i)<o.

The validity of this rule of rejection follows from evident inequalities
P(a") > Pi(ct') (or P2(a')) > P(&0) + R >P(a,,) + R.

Give the proof of the estimate Pi(a'). As u\ Ca' then it is obvious that
a'=wiU{a\ui}. Let |a'\wi|=r and a "= {ti,*2,... ,ir} Take ii €
Go'\ wi and define the subsets 6 —uq Utx, 7 = a'\ix, then a —e U7 = al,
e=6Cl7=07. From the condition (14) we obtain
(15) P(a'") >P(a'\ h) - [P(uq) - P(UlUIix)].

For P (a'\ix) we obtain similarly

P(a' \ii)>P{{<*"\il}\*2) - [P(W!)- P(ut Ui2)],
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where i2€ (o' \iijwi = {a'\  }\i\. Substitute to the previous inequality:
P(a') =P{a'\ *1}\ *2) - [P("i) - p(ui Uil][P(wl)- P(ug Ut2)].

Making it r times for all ij6a'\w i= fGl:Jli"‘, we get:

Pia) >P M - E [pM -n “iVi)}-
i€a'\Ux
From (15) it follows that
PM - P(ug Uii) >P(a'\ix)- P(ct") >0.

Since (15) is valid for all i/ 6 a' \uq, then P(aq) —P(uq Ui) ~ O for all i £
6 a'\ uq. Therefore one can write down

P(a)>PM- E AY-

i£0'\ui
According to the definition A(i) ~ 0 for all i €u22\uq, therefore

P(a')>P(«i)- E A()=Pi(a")
a2V
which was required to prove. The proof of the estimate P2(a") is carried out
similarly.
The condition (14) is satisfied by the function of the sufficiently general
kind. We give examples of such functions.

Example 1.
P(u) = P1(u) + P2(1\u).

If Px{u) and P2(w), w’=C/ satisfy the condition (14), then the function P(u>)
satisfies (14) as well. This is settled by direct verification.

Example 2.
P(u=pV )-P 2(w)
P(w) satisfies (14) if the function Px(u) also satisfies (14) and for P 2(w) the
inverse inequality is valid, i.e.
S(S, 1)>0.

Example 3.

T n
P(uj) = P(uq, ...,W,)=E E CuP~M-

t=1 i=1
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Let every function /" *(w,) satisfy the condition (14), ¢t~ 0, a, C/ =
= {1,2,... ,m}. Then P(u>i,... ,u;n) also satisfies (14) under the corre-
sponding definition of notions 6U7 and 6 Cl7.

Introduce for P(u>) the notions of the unification a and intersection e for
two elements 6 and 7.

If 6= (<5i,.. ,5,), 7=(71,... ,7,,), then

I=£U7=(ijuU71,... ,inU7n), and e=&A7=@®BLn71,... ,4,n7,).
Now (14) is observed which one can easily verify directly.
If any clt < 0 and functions PIt(<59 corresponding to them satisfy the

condition S (£,7) * 0, then P(w) satisfies (14).
Example 4.

Pu>) = P(u>1,... k) —E1(u»i) + P2(ujlUu2)+ ...+ frrUuij .

Let every function P'(r]) satisfy condition (14) for 7C/ = {1,2,... ,m}
and a and e are defined as well as in the previous case.

The function P(oj) satisfies condition (14) if the functions P'(r)) possess
the property P'(€1) ~ P'(rj1) for 71 C 92.

This statement is verified by directly substituting into (14) the corre-
sponding values P(u>) and by using the property of functions P'(r]).

2. Classes of allocation problems solved by the method
of consecutive calculations

One can present numerous particular formulations of problems in which
condition (14) is valid. Allocation problems of various kinds are mostly
examined. Present some of them.

Problem 1. Find

FQ»I.” Z, '2—3/C.iXIi + N2 Tsisn *e
iel je

under the conditions

y~] x5 = bji xij £ 0,
«E/ jeJ
where iz 0
|:
sign Xi ’
9 Xi >0,

jed
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cij=0, Ti>0, bj>0, dij > 0.
The proofisin [3, 9, 13].
Problem 2. Find

min
J 'miei jeld iei
under the conditions of Problem 1, gi(x,) is piecewise linear, discontinuous

function.
See the solution in [9].

Problem 3. Dynamic allocation problems without constraints on capaci-
ties of production points: find

mn E E E dxw+E E 3(e

ter jeld iei ter ifi =1

under the conditions:

(16) xtj=b), jed, tece={l,... ,r), x\3>o0, iei, je J, ter.

iei
Z=E 4r iel’ <Gr-
jeld
If
(17)
(D\ + fc2)sign(x*), if Y xf =
< s=|
\s=1 ' *ixj if EIxf>o(i;Ift,o0),
. 5=1 \5=1 /

ctj(xij) is the convex upward function, then it can be shown that the function

P(u>!,... ,wj) corresponding to this problem is presented in a form of the
sum of the functions from Problems 3 and 4.

Ifg\rY xf sign(a;J), then the corresponding function
P(ui,... ,1jt) =Y P4wt), where all Pf(ait) satisfy (14).
ter
Thus in this case it is required to solve T problems mér: P“(w() by the
ut

method of consecutive calculations. If D\ —Di, ter, iel, then not the
vector (uq,... ,wj) is the allocation variant, but u C J, whereat is the subset
of production points created for the time interval (1,T). l.e. in this case it
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is required to solve one problem rr/1|r|1 P{u) by the method of consecutive
u/C

calculations.

Problem 4« Dynamic allocation problems with constraints on capacities
of production points and on communication capacities.
These problems differ from Problem 3 in the additional constraints:

x\<a[, i£l, tEr,
x\j i£1,jEJtET.

If c*.(x*+) = c\jx\j then for solving these problems the method of consecutive
calculations is used as well as in the previous case. However, for the calcu-
lation of values of the functions P{oj) it is required to solve transportation
linear programming problems.

3. Classes of allocation problems solved by the
approximation-combinatorial method

1. Allocation problems with additional constraints. An appearance of
additional conditions in Problems 1-4 may lead to violation of condition (14)
for them, and this may imply that the method of consecutive calculations
will not be applicable to solve them.

For example, the following conditions are often met.

Condition 1. The constraint on the total extension of communications:

Y Y, X3d'l-=d-
iei jel

Condition 2. An attachment of a customer only to one supplier:
Xij £ {0, bj}.

In the first case it is necessary to carry out an approximation by ne-
glecting the additional condition. After determination of the subset Do the
calculation of f(u) for all u £ Do is determined by solving transportation
problems with the additional Condition 1.

In the second case Condition 2 at first is substituted by the condition
Xij > 0. After the determination of the subset Do for the approximating
function the calculation of f(u>) for 1>£il0 (already with condition 2) leads
to solving transportation problems with Boolean variables which are solved
by various methods; in particular, the approximation combinatorial method
[14] may be applied to such a problem, too. Other additional conditions are
possible as well.
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2. Allocation problems with communications. There is a set J =
= {1,2,... ,n} of raw material sources with known raw material amounts
bj > 0. The set of possible points of raw materials work 7= {1,2,... ,m}
with unknown amounts of work ag, a;> x- > 0 is given. For each i £ | the
function gi(xi) of raw materials work cost

I x_ 1 °, =0,
0,[X) ~ {kiX.+Ti, Xi>0

is given.

Worked raw materials are to be delivered to customers located on the
set of points Q.

Two total graphs of possible communications are given. The graph
Ui(J UI) connects the raw material sources J with the possible points of
work 7; the graph u2(7 UQ) connects points of work with customer points.
On ribs (j; z) Cu\ and (i; t) C W2 the functions rjz(wjz) and Pn(yit) equal to

wjz =0,
Wijz > 0,
Vit = 0,
dit > 0,

Ptlyt) {Mt+

are given.

Here Wjz is the amount of raw materials conveyed along the rib (commu-
nication) (j, z); yu is the amount of worked raw materials conveyed along the
communication (i,f); ljz, are the conveyance cost of a unit of load along
communications (j, z) and respectively; djz, ult are the construction
costs of the communications (j,z), (t,i).

For each w C 1 one can construct the network »Si(>UJ) (subgraph of the
graph ui) connecting J with u along which all raw materials are conveyed to
the point w, and the network «2(k>UQ) (subgraph of the graph u2) connecting
u with Q along which all worked production is conveyed to the customers

The costs of these networks determined by means of the functions rjz
and Pa, will be denoted by ci(u;U7) and c2(wUQ), respectively. The cost of
raw materials work at the points uC / determined by means of the functions
<7,(x,), ifoj, will be denoted by g{uj).

Then for each u C |

m {5 (U-uJﬁTSZ(u-LQ)}(Ci(Cj UJ) + g(u) + c2wUQ)).

The problem consists in determination of such a C 7, that /(a) = min f(w)
for each wC7.

Under the most general conditions it is highly difficult to obtain the exact
solution of this problem as even with fixed u the determination of /(u>) is



MULTIEXTREMAL ALLOCATION PROBLEMS 253

not an easy problem. The application of the approximation-combinatorial
method as it has been shown in practical calculations gives quite acceptable
approximate solutions.

In the simplest case the exact solution can be found.

Let djz=vu=0. Then it is easy to show that for each uC /

under the conditions

N NOQj —Diji =" "%j~0, %j"0)
iew jej
where X,y is the amount of the raw materials conveyance from the j-th source
to the t-th point of work; |[|cij|| is the matrix of the shortest “distances”
calculations on the basis of the variety of values {/j,} corresponding to arcs of
the graph Ui (the value cy implies the minimum conveyance cost of a unit of
raw materials from the j-th point to the t'-th); a, is the minimum *“distance”
(the minimum conveyance cost of a unit of worked raw materials) from the
point i to the set of customers Q. For such a function /(u>) the optimal
solution (a,/(a)) can be found by the method of consecutive calculations.
Let djz”™ 0, vu™ O (for some arcs it is a strict inequality), x- " 0.
For each j £J and i £ 1 find the values

S{j— i [dkT (kT 5

where c.jt is determined as in the last case and c,, = 0.
For each i £ 1 one can define the function

0, X, =0,
r,+/,x, X >0.

The line rt+ /x,- passes through two points:
tg]blb(wt + (uit + dtt)a)

mi[b(« it-(-(«it-1-at)a)

"teiu
where at is determined as in the previous case and if at=0if t£ Q, a=
—min bj, 4= bj.
jed JEJ

Let us construct the function P(u):

NIEXI+ T {ki+ii)Xi
J LW

n»)=

+D T +7r1)
fip
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under conditions

AN A —Dbj, X M0, X, —'y AXij.

ifew jeld

It can be shown that f(u>) ~ P(qj) for allu C/. By using the approxima-
tion-combinatorial method we find flo C il. Since it is difficult to calculate
the values /(u>), some solution is determined with the value f(u) > f(u) in-
stead of /(u>), for example, as follows. The values xy = x,,j(Lj) for which the
value P(u>) is accomplished are determined simultaneously with calculating
P(u>), and for each ig u the subsets of raw materials sources A CJ attached
to the z-th point of work are determined

=) Al A=

By Xij(u)
xi(u) =Y rx'AU)’
jeld
are determined.
Then it can be determined

f(U ) = Wl({»}UA*)} u Al) + MKIXIA + r*‘)+ {%&&?ICZU,U<2)’
xi = Xi(0j),

by solving |w| + 1 problems of the network optimization with the discon-
tinuous functions rjz and P,t on ribs. There are efficient algorithms and
programs for solving such problems.

It is accepted

af£ilo with /(a) = L@Eof{u%

as an approximate solution of the original problem.
In this case /(a) is estimated as follows:

7(4)>/(a)>P (a0).

3. The problem of allocation of territorial-industrial complexes. There
are n industries with different kinds of production. The set of points of
possible facilities construction / is known. At each point i £ 1 a construction
of a facility of any industry is possible. The sets of points Jk, k=1,2,... ,n
in which customers of production of the fc-th industry are located are known.
Every jr*.-th customer of the k-th industry consumes bkk > O production of

the fc-th industry. The matrices i61, jk GJk of the conveyance cost
of a unit of production of the fc-th industry from the i-th facility to the
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jk-th customer are known. The upper bounds a* > 0 for the amount x1 of
production of the fc-th industry at the i-th point are known. The functions

0, z* =0,
W +2Z?, *?>0, (1?>0),

of the cost of production x* for the k-th industry at the i-th point are
known, too. By assumption that a facilities allocation at one industry does

not influence a facilities allocation at the other the total expenses P (uik)
associated with the facilities allocation of the fc-th industry on the subset
of the points u* C 1 and with the corresponding transport expenses are
determined as follows:

pkM =min53 53 (<**+li)xak+ 53 Tk=ck® + 53rk
k *ukjkEJk ‘Swt «GNF

under constraints

53 =bjk, x- = 53 su>=ai> xik = 0.

However, this assumption is inadmissible in planning a facilities alloca-
tion of various industries on the territory of any district, republic or country.
A construction of different kind of facilities at one point leads as a rule by
many reasons to a decrease of the total expenses due to common commu-
nications, fuller employment of labour resources, cheapening of housing and
living facilities etc. The concentration of difficult kind of facilities at one
point (the creation of territorial-industrial complexes) is the basis for the
rise of new settlements and towns.

We denote by u) =(wi,... ,0>n) the totality of territorial-industrial com-
plexes defined by an allocation of facilities of the fc-th industry on the corre-

sponding subsets of the points ik k=1,2,... ,n. Let a= Uw*. For each

=1

i € e one can determine the number n, signifying the quantity of facilities

of various industries located at one and the same i-th point. Thus, n,, 1<

<n is the amount of the subsets Uk containing point i. The totality of

facilities of various industries located at the i-th point defines the framework
of the i-th territorial-industrial complex.

We consider the optimization problem of the allocation of territorial-
industrial complexes assuming that with increasing by a unit the number n,
of facilities located at the i-th point the common expenses correspond to the
i-th territorial industrial complex diminished by the value D{ >0. Then for
each 4y one can determine

[(<SH(W,... ¢ )53p\uk) 53D(n| )
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The problem consists in the determination of such a = (al5... ,an) that
/(a) = min f(u=i,... ,w,) for all uik CI, k—1,2,... ,n. For f(u) construct
the approximating function P(u>):

S|, e E P E Dc- 7) =

J=1 fc= I»€lj>k
~G{H)+EEN-EE O+ Y
fc=l fc=I fc=I igwfc n
- "cfd()+E E ( N)= tewar(r),
k=1 fc=1 iglufc fc=I

ptk )=pV t)-E P|(!,~1)-

Thus _P() is one of the above given approximating function of the gen-
eral kind for which the condition is valid. Determined for it Do we find

1(0) = min f(u).

Note that in this case the value /(u) is determined by the simple formula:

[<»)=««)+e M N
=

4. Dynamic allocation problems with additional conditions

t-i t-i
min
0 Lter «£/ jel 5=1 ter iei  \s=1
under conditions (16).
If *9>x<) Is of the form (17) and

(ctj + cfjfaj)) sign(r'j), if £ 4 =0

if 5,43:14 > 0,
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c\j{x\j) is the convex upward function, /(u;) will be of the form

f(u) =f(uu ... ,uT)= Di + S S (ch(xh) + ***x)+
ter ieu, X' ‘jed ter t
e u, us

+ E E ««"“gnfe **
jed fe bt on L. N3

under conditions (16).
To determine rljr;ie'qf(u>) (here fi is the set of all u = (u>i,u>2,... ,u;x)),

wt C 1 for all t Gr apply the approximation-combinatorial method. As an
approximating function take the function of the form

p(u) = Pusi,... ut)= E E at

ter ieut

+Y,S min icxi(6)+ + y-tf) m

jeJ ter ie u us \ ter 99

It is easy to note that P(w) # /(u>) for all u £ i1 and P(u>) satisfies the
condition S(6,7) ~ 0 as P(oj) is of the form of the function from Problem 3.
After the set flo is determined the question arises about the determination
of the values of the function f(u>) for all u=e il0- Denote

eij(x\j) = CU XW + Kixij>

(18)
[i(Wl, eee «r) =mini2 5N *L(*%) + ensign(  x\j) }
x'j ~ter .t leuwj ter :
e _u ter
5=1
under conditions
V  x\j= tet, x\3>0, ter, ie 0 5.
51
* Uub
5=1

Then

Im=EE°.'"+E«"“}

i€ it PGe
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The problem of finding the value of the function /(uq,... ,uj) reduces to the
determination of the value of function fj{ui,... ,up) for all j € JmDenote

V= t(yru:t, vt =Sylus- It is evident that v = t(ng«(. Suppose d\J(x|JQ: c]j (xjj-)

forall t £r, i £vt; dij(x\-) = o0 for all tEr, i £ v\ vt. It can be proved that
(18) is equivalent to the following problem: to find

*Piv)=min| £ 5%iSn E 4 + EE < (*t)
}

'ter / ter ieV

under conditions

X x\j=bh), tEt, x\j >0, i£v, tEr.

e«

Choose any subset zC r in such a way that sign(  x\i) = 1for all z€ 2,
Yer

signi 'YJ XB —0?for all i £ v\ z. Denote the minimum expenses in choosing

o sey=¢ Ytninx £ (UM

iez X'l ter iez

under condition:  X\-= & for all tEr, X\-> 0. Then
iez

fj(v) = <Pj(v) =min 'Sj(z).

Note that siljiz) = S and satisfies the condition
iez ter 'z

5(6,7) < 0. Thus the problem of determination of the value of function
t(u) on the fixed « consists in solving » problems (18) by the method of
consecutive calculations.

If there are constraints on capacities of production points the approxi-
mation-combinatorial method can be used, too. However, the calculation of
the values of the function f(u) for wCilo gets significantly complicated and
commensurable with the difficulty of solving the problems of Balinski [19].

In more detail these problems are described in the paper [16] where other
cases are treated, too.
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BHEWHEE OCBEWEHWE ABYXCTOPOHHEIO KOHYCA

E. BOHHE u . C. COJITAH

MycTs RN — eBKAMAO0BO NPOCTPaAHCTBO Pa3MepHOCTM N C HayaaoMm
kKoopauHaTt O. B aTOM nMpocTpaHCTBe HaM NMOHaf06AaTCA CNefyoLne KOH-
CTPYKL UK.

PaccMOTpMM 3aMKHYTbIN BbIMYKbIA KOHYC C" ™ Rn TOW e pa3mep-
HOCTK N ¢ BepwmnHoi O. N3BecTHO, yTo C" npeactaBuM B BUe Npon3se-
penus AfcxCf, k-\-1=n, rae A"-nofnpocTpaHCTBO NpOCTpaHCcTBa RN, a
Cf-BbINYK/bIA KOHYC C e4MHCTBEHHO BepLnHOA O, 06bIYHO Ha3blBaeMblii
BbICTYNaLWMM KOHYCcOM [1]. JTerko npoBepuTsb, 4To ecnm C"-BbiCcTyNalo-
WM KOHYC, TO B Rn cyuwecTByeT runepniockocts An_1, nepecekatoLlias
C" no orpaHV4YeHHOMY BbINYKIOMY MHOXecTBYy A™-1 pasmepHocTn n —1.
B cnyuae, korga Amtl — mMHoOrorpaHHuk, 1o Gf* Ha30BEM MHOTOrpaHHbIM
KOHycoM. B yacTHoCcTK, KOrga An_l-cumnnekc pasmepHocts n—1, o C"
Ha30BeM M-rpaHHbIM KOHYCOM. J1y4y KoHyca CJ*, ucxogsuimii us ero Bep-
LWNHbI U MPOXOAALMNIA Yepe3 3KCTPeMasibHY0 TOYKY BbIMYK/I0ro MHOXec-
TBa Kn~1, HazoBeM pebpom koHyca C". O4YeBUAHO, Y N-TPaHHOro KoHyca
MMEKTCA B TOYHOCTU N pebep. Tenepb, nyctb C" n CE — BbINYK/ble
KOHyCbl npocTpaHcTBa R" c o6uweil BepwnHol O, CUMMETPUYHbIE APYT
APYry OTHOCMTENbHO 3TON BepwmrHbl. MHOXecTBo C" = CfUCJ Ha3oBeMm
[BYXCTOPOHHUM KOHYCOM npocTtpaHcTBa Rn. Touky O Ha3oBeM BepLiu-
HOI 3TOro KoHyca. J1ns cny4dan kKorga, Hanpumep, C" npeactaBum B BU-

fe Rkx Cf, To gna C2=#2 x Cf — Kak CUMMeTpUYHOro KoHycy C", Rk
npocto cosnagaet ¢ Rk. Moatomy C" =(4* UO*) x (CfUCF) = Rkx CL1.
[BYCTOPOHHbIN KOHYC Ce Ha30BeM Mo aHanorum ¢ Cf Takxe BbICTynato-
wum. Yepes intC" n bd C" 0603Ha4MM COOTBETCTBEHHO BHYTPEHHOCTb
N rpaHuuy KoHyca C".

[anee, nyctb S — HekoTopas Toyka MHoxecTBa Rn\Cn, a x Gbd C”
— NpPOU3BOJiIbHAA rpaHMyHaa Touyka gna C", oT/iM4yHaa ot BepwmnHbl O.
Byzem roeopuTtb, UTO TOYKA X BHeLUHe OCBeLLaeTCs TOYKOM 5, ecnn OT-
KPbITbIA OTPE30K SX AU3BIOHUTEM KOHYycYy C" u ny4y SX NpoxoauT 4yepes
BHYTPeHHOCTb int C" KoHyca C" [2]. Touky O 6ygem cumTaTb MO onpeje-
NEHWI0 BHELLUHE OCBELLEHHOW Nt60i Toukoin n3 Rn\C n. Hac nuHtepecyet
cnefyowas
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3apaua. HaliTh MuWHMManbHOe 4YMCNO TOYEK npocTpaHcTBa Rn,
BHELLUHE OCBellalLWnX B COBOKYNHOCTU BCHO rpaHuuy bdCn kKoHyca C".
O603Ha4YnmMm 310 umncno uvepes p(Cn).

T eopema. Yucno p(Cn) yLoBneTBOPSAET, HepaBeHCTBAM
27p(C")<2n,

npuyem ana n >3 paBeHcTBO p(Cn) =20 MMeeT MECTO Torga U TO/bKO
Torga, korga Cn — [ABYXCTOPOHHWUIA N-TPaHHbIA KOHyc. Ans n—2 umeeT
mecTO p(Cn) = 2.

Mepen Tem, Kak MepeiTM K AOKa3aTeNbCTBY YKa3aHHON TEOpeMbl,
[0Ka3eM HECKO/IbKO BCMOMOTraTe/ibHbIX MPeaioXXeHuN.

Ons GopMynnpoOBKN 3TUX MPEANOXKEHUN HAMOMHUM CNeaytoLLee MnoH-
ATne [2, 4]. bygem ropopuTb, 4To Touyka XGbdC" BHYTpeHHe ocBella-
eTca TOYkKol S ¢ X npocTpaHcTBa Rn, acnm otpes3ok [5,X] cogepxuT
BHYTPEHHNE TOYKM KOHyca C".

Nemma 1. Ecnn Touka S GRN\C n BHYTpeHHe (BHelHe) ocBewaeT
Touky XiGbdC", TO S BHewHe (BHYTpeHHe) OCBeWaeT CUMMETPUYHYIO
ans X, Touky X2 Ghd C".

JokasaTtenscTeo. [10OK&XXeM yTBepXJeHue
ONA MepBOro cny4yas, BTOPOR cnyuval pac-
cyXpaeTcsd aHanormyHo. MNycTb z Takas Tou-
Ka oTpeska [5, xi], uto npamas zO napan-
nenbHa npamon Sx2 (puc. 1). Torga nto-
6ad npamas yO, rge y HaxoguTca Mexnay z
n x\, nepecekaeT NpsAMy0 SX2 B HEKOTOPOU
TOUKe y' TakKOW, 4TO Xr Haxo4auTCcA Mexay
S n yl Ecnn Xe TouyKa Yy ABNAEGTCA BHYT-
PeHHel TO4YKOh KoHyca C", To u Touka yl
TaKXKe fABNAETCHA BHYTPEHHel TOUYKOW, K60
nyun Oy n Oyl— BHyTpeHHUue. CyuliecTBo-
BaHWe TakKOW TOYKW y /Ierko cnegyet U3 yc-
NOBUSA BHYTPEHHEN OCBELLEeHHOCTM TOUKM X \.

Takum o6pas3om nemma 1 gokasaHa.

Nemma 2. Ecnn HekoToOpas Touka x nyya Ox, oTanyHasa ot O, oc-
BelwaeTcs (BHYTPEHHe MMM BHELWHE) TOYKOW S, TO 3TOW >Ke TOYKON S
ocseuwiaeTcsa (B TOM >Ke CMbIC/e) u nobas apyrasd Toyka 3TOro nyya, oT-
nmyHasa ot O.

[ oKa3aTenbCTBO SABNSAETCSA O4YeBMAHbIM (puc. 1).

NEMMA 3. TycTb KT — orpaHu4YeHHOe BbINyKN0e TEN0o NUHEAHOro
npocTpaHcTBa Rm, a S\, S2,... ,Sp — TOouku rpaHuusl bd/vm Tena KT,
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BHYTPeHHe ocselyatolime BClo rpanuly Tena KT. Torga B Rm\ KT M0o>K-
HO nofobpaTb cucTemy Touek S{,S2,... ,Sp Tak>Ke BHyTpPeHHe OcCBella-
owme BCO rpaHuyy Tena K.

[ okasaTenbcTBO. O603HauYUM yepes Xj,XZ,... ,Xp obnactn ocse-
LWeHHOCTU rpaHuubl bd KT Tena KT COOTBETCTBEHHO MCTOYHMKaMK Si,
S2,... ,SP. OueBungHo, Kaxpgoe X, r=1,2,...,p, ABAAETCA OTKPbITbIM
MHOXECTBOM, a C/ieloBaTe/IbHO COBOKYMHOCTb (Xi,X2,... ,Lp} o6pasyeT
OTKPbITOE MOKPbLITE KOMMNAKTHOro MHOXecTBa bdA'm. N3BecTHO [3, A),
cTp. 98], UTO AN TAKOro MOKPbITUA CYLLECTBYET Takoe 3aMKHYTOe no-
KpbiTue b\,b2, ... ,bp MHOoXxecTBa bd KT,uto LNCX,,i=1,2,... ,p. Oa-
Nee, pacCMOTPUM MONOXUTENbHOE YNCO T, YAOB/IETBOPAIOLLEE YC/OBUIO

r< min min lS- —xll.

3T0 uYMcno cyuiecTByeT BBUAY OcBeweHHOCTU (S; $ XF) n 3aMKHYTOCTH
MHOXecTBa b\. Tenepb AN KaXA0N ToUYkM X GX' pacCMOTPUM UHTepBan
1S;.x[. B cuny onpegeneHns BHyTPeHHeW OCBeWweHHOCTH, |S;, X[c intivm.
MycTtb y{X) — To4YKa 3TOro MHTepBana, 41 Kotopowh ||S; —y(X)|| =T, a
Y] = {y(x) :XGX,} — COBOKYMHOCTb BCEX TakKuUX To4eK. MHOXeCTBO Y,
eCcTb MOAMHOXEeCTBO cihepbl XS, r) c LeHTpoOM S- ¥ paguycom r (puc. 2).
BBuay 3amMKHyTOCTM b\ nosnydaem, 4uto M Y] — 3aMKHYTO€ MHOXECTBO
(Kak TONoNOrn4yecknii 06pa3 KOMNAKTHOrO0 MHOXECTBa X- NpU LeHTpab-
HOM npoekTuposaHuu B cepy P(5,-,r) c ueHTpa S;). 3aMeTUM, YTO MHO-
xectea Y] 1 bd KT He nMetloT 06LMX TOYEK:

bd KTNY, Chd KTMu{]5,-, X[ x GX} Cbd KTMNint KT =0.

CnepoBaTenbHO, M3 3aMKHYTOCTU MHOXecTB Yj, bd KT umeem, 4yto pac-
CTOAHME MeXAYy HUMMK NON0XWUTeNbHO. MNycTb £@— yucno, Bblipaxatoliee
3TO paccTtosHue. [anee, paccmoTpum wap JT(S,~£m) paguyca £mc UeH-
TPOM B TOYKe S,. YUuTbliBad rPaHNYHOCTb TOYKM S, 419 MHOXecTBa KT
nosyyaem, 4TO MHOXeCTBO £Y(S,£,) COAEPXUT TOYKU, HE MpPUHaANexa-
wue teny Kn. MNyctb S- — Takan T1oyka. lNMoKaxem, YTo S EMBHYTpPEHHe
ocBel,aeT MHOXecTBo X]Chd K T.

B camom fpene, nycTb X — MPOU3BOJIbHAA TOYKA MHOXecTBa X], u
y'(x) Takan Touka wHTepsana [S- X[, uto |S- - Xx|[/||?/(x) —X|| =
= |IS,- —xU/LUy”*x) —x|| (puc. 2). MycTb ganee h' — obuiee 3Ha4YeHNe 3TUX
yacTHbIX. Torga [|[2/(x) - j/'(X)|| < h"—IS- —S5-| < h1-B <£- CnepoBaTtenb-
HO, TO4Yka Yy'(X) Haxo4uTCcA OT MHOXecTBa Y] Ha pacCTOAHUU MeHblue,
yem £,. B cuny Bbibopa umcna £2 3TO 03HAYaeT, 4To y\x) — BHYTpeHAq
Touka Tena KT. Takum 06pa3om, S' BHYTpPeHHe OCBelLaeT MHOXEeCTBO
X(ChdKT,i=1,2,... ,p. lemma fjoKa3aHa.

JokasaTtenbctso Teopemnui. [1YyCTb Cn — ﬂpOVIBBO]'IbeIVI ABYX-
CTOPOHHMIA KOHYC npocTpaHcTBa Rn c BepwwuHoit O. B cuny oTmeuaH-
HOro B camom Ha4vane umeem Cn= Rk x Cn~k. O603Ha4ymMm 4yepes Am+1,
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NVNHEHOe NPOCTPaHCTBO, HaTAHYToe Ha Cn~K, T -\-1 =n —k. 3ameTum,
4YTO A1 BHELUHEro UJn BHYTPEHHEr0 OCBeLWeHnsd rpaHuybl Cn 4oCcTaTou-
HO OCBETUTb rpaHuyy (oTHocuTenbHO RmHl) KoHyca Cmtl B mpocTpaHc-
TBe Rn. N60, ecnn HekoTopas Touka X GbdCm+1l ocBeweHa Kakoii-nn6o
TOUYKO S B MpocTpaHcTBe Am+1, To Toraa TOI XXe TOYKOi HO yxe B Rn,
OCBELLEHO W BCe /INHeilHOe MHOroo6pasne Rk, npoxogsuiee yepes TOUKY
x W nexallee Ha rpaHuue kKoHyca C", rge Rk= Rk-fx.

(Sir)

puc. 2

Tenepb pacCMOTPUM MPOCTPAHCTBO Am+l v NpoBeaeM B HEM rumnep-
NMNOCKOCTb Rm, nepecekawLwy OLHY M3 BbINMYK/bIX KOMMOHEHT KOHYyca
Cn, Hanpumep, KoHyc C™+1, no orpaHM4eHHOMY BbINYKIOMY MHOXeC-
1By AT (puc. 3). B cuny Teopembl pa6oTbl [4] Teno KT BHYTpeHHe
OCBellLaeTCA He MeHee ABYMSA U He 60nee yeM T + 1 UCTOYHMKAMUK CBeTa
51,52,... )5m+i, nexawumu Ha rpaHuue bd KT Tena KT B npoctpaH-
ctee Rm. Torpga, Ha ocHoBe fiemmbl 3, Ang Bbinyknoro Ttena KT CRm
cywecTtBytoT B Rm\K T, Takne Ttoukm 5(, S2,... ,5(,,+1, KoTOpble B COBO-
KYMHOCTW BHYTPeHHe 0CBeLWaloT BClO rpaHuuy tena K. anee, ucnonb-
3ya nemmbl 1, 2 n npeactaeneHmne KoHyca Cm+l = C™+1 UCB+1L nonyyva-

eM, 4YTO rpaHuua BbiNyKnoro koHyca C™+1 (puc. 3) BHellHe OcCBeLLaeTcs

TOYKamMu ,5(,,+1. MoBTOpAA paccyxaeHus atoro absaua and
BbIMYKA0ro kKoHyca C™+1, pagHoro C™+1, nonyymm, 4TO CTO/IbKO >Xe
NCTOYHWKOB, NyCTb OHWM 6yayT 5",5J,... ,5", LOCTATOYHO AN1A BHeLl-

HEero ocBelleHMs rpaHuubl KoHyca C™+1. Takum obpasom, AN KOHyca
Cm+l = C™+1 UC™+1 nmeemM HepaBeHCTBO

(1) p(Cm+l)<2(m+l1).
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puc. 3

[danee nokaxem, 4to Ansg n =2 HepaBeHCTBO (1) MOXeET 6bITb yNyuy-
weHo. B camom pgene, ecnnm kKoHyc Cmt+l MmeeT pasMepHOCTb 2, T.e.
T = 1, T0 HepaBeHcTBO (1) nmonyuaeT Bug: p(C2) < 4. Ho B Takom cnyvae
KT — 3T0 npocTo 0Tpe3ok, a N S2 BHelLHe OCBeLlaeT He TO/IbKO rpa-
Huuy KoHyca Cf, Ho un rpaHuuy koHyca Cf, T.e. S" n S% — wunsnnwHue
NCTOYHUKMN.

HakoHel, OofjHa TOYKa He MOXET BHELIHe OCBeLiaTb BCeN rpaHuubl
bd C", noToMy 4YTO OHa BHELUHe OCBelWlaeT HEKOTOPYH Touky x\ €bdC™,
HO Torga B cuny neMmbl 1 He ocBelaeT CUMMETPUYECKOW Ansa X\ Touku
X2- 'Tak, OKOHYaTeslbHO nony4vyaem

p(C")=2pgna =2, n 2<p(Cn)<2(m+1)<2n gna nt 3

HakoHel gokaxem, 4to Ans n > 3 paseHcTBO p(Cn) = 2n BepHO TOrga
M TONbKO TOrpga, Korga C" — ABYXCTOPOHHUI N-TPaHHbIA KOHYC.

Myctb C" = C"UC2 — p[BYXCTOPOHHUIA Nn-rpaHHbI KOHYyC. Torga
p(Cn) <2n. Aanee, gna Kaxporo peépa koHycos C"-y/nCJ Hy>XeH O0fuH
MCTOYHUK CBeTa WM HMKakue ABa pebpa 3TUX KOHYCOB OLHWUM WUCTOYHU-
KOM, pa3mMelieHHoro B Rn\C n, BHelHe He ocBewatoTca. HO y KOHyca
Cf umeetcs n pebep, a y obvegnHenns Cp UC" Bcero 2n pebep. Cne-
posatenbHo, p(Cn)t 2n. OTKyga nosiyyaem, 4YTo ANA ABYXCTOPOHHEro
n-rpaHHuka p(C") = 2n.

O6paTHO, nycTb Cn — TaKoW ABYXCTOPOHHWUI KOHYC NpOCTpaHCTBa
Rn, yto p(C") = 2n. Mokaxem, 4To Cn — [BYXCTOPOHHWUIA M-FpaHHUK.

MepBOHaYyanbHO 3ameTuM, UTOo Cn — BbICTynaro WK KOHyc. B camom
pene, ecnn 66l Cn=Rk x C1, rae C1 — BbiCTynatwouwmii KoHyc, K > 0, T0
B cuny opmynbl (1) Mbl umenu 6ol

p{Cn)<,p(C1)<,2K2n,
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4TO NPOTUBOPEYUT npepnoxeHuto p(Cn) = 2w

Tenepb nyctb Cn=C"uC" — Kak 3T0 OroBOpPeHO Bbille. PaccMoT-
pUM BbINYK/bIA KOHyc C" C Rn- B Rn npoBefem runepnnockocte A"-1
Takum obpasom, 4to nepeceyveHre An_1lMC" ecTb orpaHuM4YeHHOe BbiNy-
Kfoe MHOXecTBOo Kn~1. 3T0 BO3MOXHO B cuay 10ro, 4to Cn — BbICTY-
nawwmnii KoOHyc. Y TBepxpgaetcs, 4To Kn~X — CUMMNIEKC pa3MepHOCTM
®'—1. B camom pgene, ecnum A"-1 He 6bln Obl CMMMJIEKCOM, TO B CUNy
paboTbl [4] BCcA rpaHuua Tena Kn~1BHYyTpeHHe ocBewanacb 6bl He 60-
flee yeM T UCTOYHMKAMMK CBeTa, fiexawumum Ha rpaHuue Tena A™-1 B
npoctpaHcTee An_1l, a cnefoBaTefibHO, COrNacHO pacCyXeHusam, npo-
BEEHHbIMUN BbiWwe Npu noayvyeHun qopmynsl (1), noayumnm 6bl, 4YTO
p(Cn) < 2T 4TO NPOTMBOPEUYNT npeanoxeHutw. Wtak, Kn~1 cumnnekc
pasmepHocTu Te—1, a cnegosatesnibHO, U Cn — [ABYXCTOPOHHUIA Te-rpaH-
HUK. Takum 06pa3om, Teopema MOJIHOCTbIO A0Ka3aHa.

3ameuanue. [l na CNydyasd LBYXCTOPOHHero rnagkoro koHyca Cn C
C Rn BepHO paBeHcTBO p(Cn) = 3. OTOT MHTepPeCHbIW (akT 6bln yCTAHOB-
neH M. Miouxom (OpesgeH, TAP).
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SUBDIRECTLY IRREDUCIBLE ALGEBRAS IN VARIETIES
DEFINED BY EXTERNALLY COMPATIBLE IDENTITIES

J. PLONKA

0. We consider algebras of a given type r : F —#N where F is a set of
fundamental operation symbols and N is the set of non-negative integers
(see [1]). A term p of type r will be called non-trivial if it is different from
a single variable. A term q will be called non-trivial unary if it is non-trivial
and exactly one variable occurs in g. For a non-trivial term p we denote by
ex(</?) the most external fundamental operation symbol in p, i.e. if f £ F and
Ry eee, W (/)-i are terms of type r then ex(f(pO, mm, ¥\/(/)-1)) =/«

An identity p —ip of type r is called externally compatible (see [2]) if it
is of the form x = x or both p and ip are non-trivial and ex(<>) = ex(ip). For
every variety K oftype r we denote by Aex the variety of type r defined by all
externally compatible identities from Id(A). Studying externally compatible
identities seems to be interesting since if K is a variety, then the set of all
externally compatible identities from Id(A") is an equational theory (closed
under Birkhoff’s derivation rules, see [6]). Put F*={/€F :r(/) > 0}

In this paper we find all subdirectly irreducible algebras from Aex under
the assumption that F* 0 and for every / € F* there exists a non-trivial
unary term gj such that ex(<7/) =/ and the identity gf(x) = x belongs to
Id(A).

(T)his assumption is satisfied if A is a variety of groups, of rings with 1,
of lattices, of Boolean algebras and many others. The results of this paper
were announced on the conference in Bachotek, May 1987.

1. Preliminaries. Let us denote by Ex(r) the set of all externally com-
patible identities of type r and denote by 7v(Ex(r)) the variety defined by
Ex(r). The following three properties (i)-(iii) were noticed in [2].

(i) the set Ex(r) is an equational theory. The following identities form
an equational base of it:

[(*0,eee ., *r(/)-i)=F(Vo,,yT(H)-~I) (/™NE)e

(i) A'(Ex(r)) is a non-degenerated variety such that in every algebra
from A'(Ex(t)) the realization of each / € F is a constant.
(iif) For every variety K of type r we have Aex= A VA'(Ex(r)).
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In [4] and [5] a construction called a dispersion of an algebra was defined.
Here we give a shortened definition of this construction (cf. [3]).

We say that an algebra 21 = (A; Fa) of type r is a dispersion of an algebra
T=(/; F") of type r if there is a partition (A,}iej of A and a family {0/}*£ir
of mappings from | into A such that for each iE / we have 0/(i) EA-; and if
ak<EAL(k=0,1,, r(f) - 1) then

(iv) /a(a0,... ,aT(/)_x) = O/(/'T(t0,... ,tr(/)-i))

It was shown in [5] that

(v) Ifip(xo,... ,a™n-i) is a non-trivial term of type r on variables xq, ... ,
xn_i, 2lis a dispersion of T, Uk EA* (k=10,... ,n —1), then

\B (flO) *++ tan—) = 065 (*0, =+ >*n4))

Assume that a variety K satisfies two conditions:
(ax) There exists a non-trivial unary term g of type r such that for each
[ E f the identity

2(/(*0,. ¢, *T(/)-x)) = 1 (/(?(*0), .*=,9(*r(/)-1)))

belongs to Id(/v).
(a2) For each / EF* there exists a non-trivial unary term qj of type r
such that ex(g/) =/ and the identity

9/(2(/(*0, o=, *1(/)-1))) = [(*0, soe , *1(/)-I)

belongs to Id(A").

It was proved in [5] (Corollary 4) that:

(vi) If K is a variety of type r satisfying (ax) and (a2) then an algebra 21
of type t belongs to Kex iff 21 is a dispersion of an algebra from K.

2. Subdirectly irreducible algebras in Kex. If Ais a set and P is a
partition of A, we shall denote by E(P) the equivalence relation induced in
A by P. Denote lja=F({{a) |aEA}).

We have:

(vii) Let 23= (H;F®)E /L(Ex(r)). Then IB is subdirectly irreducible iff
IB has exactly two elements.

The proof is left to the reader.

Let 21 = (A; Fa) be an algebra. We denote by Con(2l) the set of all
congruences on 2L

We shall say that an element a E A is congruently non-isolated if for
every congruence ~E (Con(21) \ {w”}) the congruence class [a]* of a is not
1-element.

Let K be avariety oftype r. Let us consider the following two conditions:

(Cl) F* 7.

(C2) For every / EF* there exists a non-trivial unary term gj such that
ex(qy) = / and the identity g/(x) —x belongs to Id(AT).
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Theorem 1. If a variety K satisfies conditions (ci) and (o2) then an
algebra 2L £ /vex is subdirectly irreducible iff one of the following three condi-
tions holds:

(di) 2L belongs to K and is subdirectly irreducible.

(d2) 2L is a 2-element algebra from A (Ex(r)).

(dB) 2 is a dispersion of an algebra T = (/jF 1) from K, |/| > 1, there
exists io GI such that |A-Q| = 2, say A,0= {0i,02}, to is congruently non-
isolated in T, 1Ai| = 1for i £ (7\ {to}) and there exists a partition {F\, F2}
of F* with F\ 720" F2 such that 0/(io) = 0" for f £ At (k= 1,2).

Remark 1. Note that many varieties satisfy the assumptions of the

theorem. For example we have x m(x ®x_1) = (x-1) 1= X in groups, lex =X
in rings with 1, xVx =xI\x =x in lattices, (x')' —x in Boolean algebras.

Proof of Theorem 1 (necessity). Let 2L= (A; Fa) £ Kex. By (vi),
2l is a dispersion of an algebra T = (/; Fx) £ K. In fact, conditions (cx) and
(C2) imply (ax) and (a2) since it is enough to take as g from (ai) an arbitrary
<u(/en

(1° If 1A= 1for each i £1 then 2LE£ K since each 0/ sets up an isomor-
phism of T and 2i. So 2L is subdirectly irreducible iff (dj) holds.

2° If |/] = 1then 22£ A'(Ex(r)) and by (vii), 2Lis subdirectly irreducible
iff (d2) holds.

3° Assume |/| > 1 and there are i £1 such that |A,| > 1. For each such i
we define a relation A-in 2L putting for a,b £ A:

aRb if a=b or a,bf A,

By (iv), A, is a congruence of 21 different from

Now if there are two different i,j £1 such that |A,|ji 17\|Ay| then 2L is
subdirectly reducible since A; flRj = u”.

4° Assume |/| > 1 and there is exactly one io € | for which |A,0]> 1. If
there is a congruence A on T different from w/ such that [[io]fl = 1 then 2
is subdirectly reducible. In fact, let us denote by ai the unique element of
Ai for i £ 1\ {io}- We define in 2L a relation R' putting

XR'y if x =y or x —ai, y=aj, i io” j and iRj.

Then R' is a congruence on 2L by (iv) and A'” ua-Consequently A,onA/=
= ua- Thus in this case if 2 is subdirectly irreducible then i0 must be
congruently non-isolated.

5° Let |/| > 1and |A,0| > 2. For each a£ A,0 denote by A(a) the relation
on A defined by:

xR(a)y if x=y or x,y£ (Aj0\ {a}).
Then every A(a) is a congruence on 21 different from ua and ae]l oA(a) = ua-

So 2l is subdirectly reducible.
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6° Let |/| > 1, |A,0] =2, Ai0={0i,02} and 0/(io) = 02 for every / £ F*.
Denote R"=E ({A\ {0i}, {0i}}). Then R" is a congruence in 2L different
from ua and A0fl R" =ua- So 2lis subdirectly reducible.

P roof of the sufficiency. For (di) and (d2) the proof is trivial.
Assume that (da) holds. To prove that 21 is subdirectly irreducible it is
enough to show that 720 is the unique atom of Con(2l). Let ~£ Con(2I)\
{u;"}. It cannot happen that |[0i]?| = |[02]~| = 1, since then denote by S the
relation in 7 defined by:

iSj if i—j or and a,~0j.
So 5 is a congruence on T different from ug and |[fo]*l= L Consequently
i0 is congruently isolated — a contradiction. i
Assume [[0i]* > 1, aj £ [0i]™ for some j © Ig and 02~ [0i]*. By the
assumptions, there exists / £ F2. Then q/(0i) = 0/(io) = 02 and gf(aj) =
= 0f(j) —aj by (v). So ~ is not a congruence. Thus O ~ 02 for every
~£ Con(2l) \ {u"}.

By Birkhoff’s subdirect decomposition theorem we conclude:

Corollary 1. If K is a variety of algebras satisfying (c3) and (c2) then
every algebrafrom Kex is isomorphic to a subdirect product of algebras of the
form (di), (d2) or (d3).

For two varieties K\ and 7i'2 of type r we denote by K\ ® A2 the class
of all algebras 21 such that there exist 2li £ K\ and 212 £ /if2 such that 21 is
isomorphic to a subdirect product of 2lj and 212. Obviously we always have
li\ ®Jt2Q K\ VA2

Let 7"i: F™ N be atype of algebras such that F = {/JU{cr}r£R, Ti(/) >
>0 and 7q(cr)=0for all r £ R.

Corollary 2. IfK is a variety of type T\ and there exists a non-trivial
unary term g such that the identity q(x) = x belongs to 1d(7F) then Kex —
- K ® K (Ex(rx)).

Indeed, we can use Theorem 1and there are no algebras of the form (d3)
in Aex.

Example 1. If K is a variety of groups with fundamental operation

symbols «and 1satisfying xn = 1then Kex=K ®/F(Ex(ri)). In fact, we can
take g(x) = xn+l in Corollary 2.

EXAMPLE 2. If K is a variety of idempotent groupoids then Kex =
= K ®/F(Ex(ri)).

Corollary 3. IfK is a variety of type t such that |F*| > 1, K satisfies
(ci) and (c2) and there exists an algebra T in K such that |/| > 1 and there
is a congruently non-isolated element in T, then Kex® K ® A(Ex(r)).

Proof. In fact, we have in Kex algebras of the form (d3) belonging
neither to K nor to 7' (Ex(t)).
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Example 3. If A'is a non-degenerated variety of lattices or the variety
of Boolean algebras then Kex® K ® 7f(Ex(r)).

In fact, we have two-element algebras in K and the assumption (ci) and
(C2) are satisfied, by Remark 1.

Example 4. If K is a non-degenerated variety of groups with funda-
mental operation symbols *and -1 then Kex” K ® 7i'(Ex(r)).

Indeed, take as T a group generated by one element different from the
identity.

Corollary 4. Let K be the variety of all distributive lattices. For ev-
ery positive integer n there exists in I(ex a subdirectly irreducible algebra of
cardinality 2n-j-1.

Proor. Let £2 be a two-element lattice. Since every finite Boolean
lattice is congruence uniform, so each element in the direct power C —C"
is congruently non-isolated and we can construct a subdirectly irreducible
algebra of the form (ds) being a dispersion of C.
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ON THE ISOMETRIC DISSECTION PROBLEM
FOR CONVEX SETS

M. EDELSTEIN, K. JOHNSON and A. C. THOMPSON

§0. Introduction

A set S in a metric space X is said to be decomposable (under a given
family of isometries) or, more precisely, 2-decomposable if it is the disjoint
union of two subsets which are mutually isometric (by isometries from the
family). Throughout this paper the family will be the group of all isometries
of the space onto itself.

Recently E. Hertel proved [7] that every closed, bounded convex set
in Euclidean (finite dimensional) space is indecomposable. He also asked
whether this is true in more general spaces. The purpose of this paper is to
show that this is so. We prove that every closed, bounded convex set in a
strictly convex, reflexive Banach space is indecomposable; and that the same
is true in all finite dimensional Banach spaces, whether strictly convex or
not. Clearly, the result of Hertel and its generalization to all strictly convex,
finite dimensional Banach spaces follow as corollaries. For several reasons,
however, we include an independent proof of the latter fact. First, because
we consider our proof simpler and more direct (no induction is involved) even
in the Euclidean case. Secondly, because the proof for all finite dimensional
spaces depends on the strictly convex (actually Euclidean) case and it seems
preferable to us that this not rely on the infinite dimensional case. Thirdly,
because it sheds light on the conceptual difference between the arguments
used in the finite dimensional and the infinite dimensional situation. At a
certain stage of both proofs we exhibit an invariant line. In the one case this
is done by straightforward classical methods of linear algebra; in the other
we need to employ nonlinear (and non-constructive) methods of functional
analysis.

In the second section (dealing with the infinite dimensional case) we
exhibit examples of decomposable sets in Ix. Examples of a similar nature
are possible in c0, t°° and C[0,1]. Finally, in 83 we give a fuller discussion
of the history of the problem.
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81. Finite dimensional space

Proposition 1. ITS is a closed, bounded convex set in a strictly convex,
finite dimensional, normed linear space E, then S is indecomposable.

P roor. SUPPOSe that, contrary to the assertion, S is decomposable so
that S is the disjoint union of sets A, B and that F: E " E is an isometry
mapping A onto B. Then (cf. [2]) F is affine, i.e. F(x) —T(x) + a (x £ E),
where T is a linear isometry and a £ E.

To prove the proposition it suffices to show that either a line or a point
remains invariant under F. In the latter case, if F(x0)=xQ let be the
(necessarily unique by strict convexity) nearest point of S to x0. Since A and
B are disjoint, sa cannot also be fixed under F. However, since F and F~I
preserve distance, ||F(s0) —xO0| = [|sQ—xO0|| = ||F_1(s0) - xQ|. Thus neither
F(s0) nor F_1(s0) is in S which is absurd since sais in either A or B.

Similarly, if a line L in E exists such that F[L\ =L then the set Sa of
nearest points of S to L is a line segment (parallel to L) and F[An50] = BCI
n SO. Here the known (cf. 8§3) one-dimensional version of the proposition
applies to establish the truth of the assertion.

To complete the proof we now establish the claim that there is either
a line or a point which is invariant under F. First, suppose that T — is
invertible. In this case one verifies directly that xQ—(T —/)-1(—a) is fixed
under F. Next, if T — is not invertible, let U be the null space of T —I,
ie. U—{x ITx =x}, and let W be the range of T —I. Then E —UOW
and so a can be represented as a= uQ+wawith uaf 17 and wQE W . Now W
is invariant under T and, restricted to W, T —I is invertible. Hence, if we
define Fw: W —W by setting Fw(x) = Tx + w0, then, as above, Fw has the
fixed point xa= (T- /)-1(—wa). Therefore, F(xa+ Au0) —T(x0+ Xu0)+a =
-(Tx0+ wQ)+ (ATuO+ u0) = Fw(x0) + (A+ Du0= xQ+ (A+ I)u0, showing
that the line L ={x £ E \x =xa-pu0,p £ R} is invariant under F.

Trheorem 1. IfS is a closed, bounded, convex set in afinite dimensional
normed linear space X then S is indecomposable.

P roor. Let C be the unit ball of E. Let G be the group of all isometries
of E and Go the subgroup of those which leave the origin fixed.

It is well-known (17 that there exists a unique ellipsoid (the Loewner
ellipsoid) D of minimal volume circumscribed about C. If F £ Go then it
is necessarily linear and so F(D) is again an ellipsoid circumscribed about
F(G) = C. Now, since F(C) =C, F clearly preserves volume (|det F\ = 1)
and so F(D), having the same volume as D is, by the uniqueness of D, equal
to D. Thus F is also an isometry of the Euclidean space (Rn, D) whose unit
ball is D. In addition, all translations are isometries in both metrics. This
shows that G is a subgroup of the group of isometries of (Rn, D).

Since Proposition 1 shows that S is indecomposable by the group of
Euclidean isometries, afortiori it is indecomposable by G.
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82. Banach space

In the infinite-dimensional case the situation is more complicated, as
the following example illustrates. In the Banach space C(R) of absolutely
summable sequences in R, let 5 be the closed convex hull of all the vec-
tors in the standard basis of that space, and let F be the unilateral shift,
ie. F((xi, x2,... ,xn...)) = (0, xi, X2, Let A be the subset of S
consisting of vectors (t/i, 22--- ,ri?---) whose first nonzero coordinate is
yn with n odd and let B = S\ A. Clearly FfA] —B so that S is indeed,
decomposable.

The above example may lead one to suppose that the non-invertibility
of the isometry is important for such an example. (In the Introduction we
said we would be dealing with the group of onto isometries.) In the next
Proposition, however, we show, by using a bilateral shift, that this is not so.

P roposition 2. With S denoting the same set as in the above example,
there exists an invertible isometry under which S is decomposable.

Proof. Let {e,:n=1,2,...} be the standard basis in *(R) and define
F on 11 as follows: F(e2-i) =e2+i (i=1,2,3,...), F(e2) = e2_2 (i =
=2,3,4,...), Fe2=e\\extend F to the whole of*1linearly and continuously.
Now F maps S isometrically onto S. Thus if x 6 5, the orbit (Fn(x) :
n—0,+1,£2,...} lies in S. Form the set Ao by choosing one point from

each orbit. Finally let A —n:gOOFZn(A4o) and B :n:yoo F 2n+1(zlo). Clearly
F[A] = B, and, again, S is decomposable under this isometry.

Remark. The above construction is based on a general one used in [4].
Since F is a free isometry (in the sense of [4]) S allows decompositions into
m isometric pieces 2<m < NO.

The examples above show that we cannot expect Theorem 1 to extend
to all Banach spaces. We do, however, have:

Theorem 2. Let X be a strictly convex, reflexive Banach space and let
S be a closed, bounded, convex subset of X . If A is a nonempty subset of
S and if F is an isometry of X such that S = AUF(A), then A fl F(A) is
nonempty; i.e. S is indecomposable.

In this theorem, and its proof, as well as in the following lemmas, we
employ standard terminology and facts from Banach space theory (cf. e.g.

[2D-
Lemma 1. Under the hypotheses of Theorem 2 the set D = (F —I)(S),
where | is the identity map on X, is convex and weakly compact.

P roof. The isometry F is affine, i.e., F(x) =Tx +a where T is linear
and a is a fixed vector. (To see this one may appeal either to the strict
convexity or, since F is onto, the Mazur-Ulam Theorem, cf. [2].) Thus D
is a translate of (T —I)[S]. Since T —I is a bounded linear operator it is
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obvious that (T-/)[5] is bounded and convex and, therefore, so is D. It
now suffices to show that (T —I)[S] is closed. Let {yn} be a sequence in
(T —7)[5] converging to y in X, and let {xn} in 5 be a sequence such that
(T- D(xn)=ynforn=1,2,3, _ Choose {x,t} as a subsequence of {i,,}
which converges weakly to x, say. Since x lies in S it suffices to show that y =
= (T —)(x). Givenany / € X* we have that f(T xn.) = (T*f)(xni) converges
to (T*f)(x) =f(Tx). Hence f((T —I)xni) converges to /((T-/)(x)). This
being true for all / £ X * it follows that (T —I)x =y.

Lemma 2. Under the hypotheses of Theorem 2 if F(x)”x for all xE5 then
there is a straight line L which intersects S and is mapped into itself by F.

P roof. The weakly compact convex set D contains a member z of least
norm; i.e. |z[] = inf{||x|| :x € D}. Let x €S be such that z = F(x) —x. We
consider two cases 1) F(x) € S and 2) F(x) ~ S. In the first case let u = F(x)
and v = (u+ x)/2. We have ||.F(u) - v|| > [|[P(x) —x]| since vGS. On the
other hand

IP(i5)-t7]] < [[P(v)-P OOl + [P O)-vI] = [[v-x][ + [[F(x) —=ull = [|F (x)-x][.

Thus, by strict convexity, u,v and F(v) are collinear. Similarly, in case 2), let
u=F-1(x) and v=(u+x)/2. Here again ||[F(v) —17 > ||F (x)-x|| and, since
[|F(t;) —X]|| = |[F(v) —F(u)|| = |lu- u]|, the reverse inequality, ||[F(u) —u|| »
N|IF(x) —x]||, readily follows. Thus, as in case 1), x,v and F(v) must be
collinear.

Let L be the line through u and v. Since v= u+Xx), xis also on L. In
case 1), u—F(x) and F(v) are on L and in case 2) x = F(u) and F(v) are
on L; in both cases F[L\ C L.

Proof of Theorem 2. We may assume that F has no fixed points
in S. Choosing L as in Lemma 2, we see that the result follows from the
one-dimensional case.

R emark. Reflexivity is needed in Theorem 2 only because we prefer to
confine ourselves to closed and bounded convex sets. The proof, of course,
holds for any weakly compact set in a strictly convex Banach space.

84. Historical notes and open problems

The question of the indecomposability of the unit ball in E2 occurred as
Problem 51 in Elemente der Mathematik posed by van der Waerden ([11]).
A solution for the more general case of a compact, strictly convex subset of
E2 was presented by Puppe in the same journal ([9]). Another proof can
be found in [6]. Hertel [7] deals with closed, convex sets in n-dimensional
Euclidean space. The case n = 1 was investigated by Gustin in 1951 ([5]),
who established the more general result that [0,1] cannot be decomposed
into m mutually isometric subsets for any m > 1. The proof of this more
general result is quite involved, Hertel [7] gives a different, and shorter proof
of the result. An easy proof of the case m = 2 appeared in [10].
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The question of what happens when 2-decomposability is replaced by m-
decomposability (to finite) is largely unresolved. The one-dimensional case
is solved, as mentioned above. For n > 1, however, there are only sporadic
results. For X —E2, m = 3, indecomposability has been established when
5 is a square or equilateral triangle by J. Currie (unpublished), but not
for any other choice of S. In particular the case in which S is the unit
ball is unsolved. For n > 2 and S the unit ball in the Banach space being
considered, S is known to be m-indecomposable provided o™ n [4]. The
Euclidean case of this result was first proved by Wagon [13] whose paper
also gives an excellent survey of the status of the problem at that time.

If m is allowed to be infinite (and, in particular, countable) then the char-
acter of the problem changes considerably. For example, von Neumann [12]
showed that an interval (closed, open or neither) is countably decomposable.
This was extended in finite dimensional spaces by Dekker and deGroot [3]
and by Mycielski [8]; and in certain infinite dimensional spaces by Edelstein

[4]-
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ON MEET-DISTRIBUTIVE LATTICES

M. STERN

Abstract

It is shown that meet-distributive lattices are both strong (in the sense of Faigle) and
consistent (in the sense of Rung), but not balanced (in the sense of Reuter). In fact, we
prove that a meet-distributive lattice is balanced if and only if it is distributive. These
results are derived from more general theorems on lower semimodular lattices and on
locally modular lattices.

1. Introduction

In recent times, there is a rebirth of a class of lattices which were discov-
ered by Dilworth [6] in 1940 and subsequently rediscovered several times by
several authors and given several names. In recent papers these lattices are
called meet-distributive (see Edelman [7], [8], Edelman-Jamison [9]). Their
duals are also called locally free lattices (see Crapo [3]). The story of the
frequent rediscoveries of this concept is narrated in Monjardet [17] (see also
Edelman [8]). The present revival of the subject matter is largely due to the
fact that meet-distributive lattices or their duals (i.e. locally free lattices) are
shown to be closely linked to two external objects, that is, objects outside
of lattice theory: these are the abstract convex geometries (see Edelman [8],
Edelman-Jamison [9]) and the greedoids in the sense of Korte-Lovész [13]
(for the special greedoids related to locally free lattices, cf. Crapo [3]; for a
general introduction to greedoid theory* we refer to Bjorner-Ziegler [2]).

Aside from these external links, meet-distributive lattices have also a
number of interesting intrinsic lattice theoretic properties.

In the present paper, we clarify the connection of meet-distributive lat-
tices to the recently introduced concepts of strongness (see Faigle [10]), con-
sistence (see Rung [14]), and to the property of being balanced (see Reuter
[18]).

In particular, we shall see that a meet-distributive lattice is always both
strong (Corollary 5) and consistent (Corollary 8) but not balanced, in gen-

1980 Mathematics Subject Classifications. Primary 06C10; Secondary 06B99.
Key words and phrases. Meet-distributive lattice, locally free lattice, strong, balanced,
consistent, upper semimodular, lower semimodular, locally modular.
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eral. We show that a meet-distributive lattice is balanced if and only if it is
distributive (Corollary 12).

Let us recall some notions. All lattices are assumed to be of finite length,
although there are several deep extensions of some of the subsequent asser-
tions to broader classes of lattices.

If L is a lattice of finite length, we denote its dual by Ld. We write c—< d
(c,d GL) if cis a lower cover of d.

An element u £ L is called join-irreducible if it has exactly one lower
cover u'. By J(L) we denote the set of all join-irreducibles of L.

An element s £ L is said to be meet-irreducible if it has exactly one upper
cover which we denote by s*. Thus, for our purpose, we do not consider
the least element 0 (the greatest element 1) to be join-irreducible (meet-
irreducible).

A lattice L of finite length is said to be (upper) semimodular if, for
X,yeL,

XAy —< vy implies x —<x Vy.
L is called lower semimodular if, for x,y£ L,
X —<x Vy implies x Ay —<y.

For general information on lattice theory we refer to Crawley-Dilworth [5]
and Gratzer [12].

2. Dual local modularity and meet-distributive lattices

If L is a lattice of finite length and b6 L, we denote by b+ the join of all
elements covering 6; dually, b+ denotes the meet of all elements covered by
6.

According to Crawley-Dilworth [5], Ch. 7, p. 50, we say that the lattice
L is locally modular if the interval [b 6+]is a modular sublattice for all b£ L.

A finite lattice L is called locally free (see Crapo [3]) if the interval [b, 6+]
is a Boolean suhlattice for all b£ L.

It is clear that any locally modular lattice is upper semimodular. Thus
we have the following implications:

(+) locally free => locally modular => upper semimodular.

It is easy to see that these implications are non-reversible, in general. Dual-
izing the concept of a locally free lattice we obtain meet-distributive lattices:
A finite lattice L is called meet-distributive if the interval [6+,1] is a Boolean
sublattice for all b6 L. A lattice L offinite length is said to be dually locally
modular if the dual lattice Ld is locally modular. Dually to (+) we obtain
then the following non-reversible implications:

dually locally _s lower

+ + meet-distributive => = .
(++) modular semimodular
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Meet-distributive lattices have a number of interesting lattice theoretic prop-
erties characterizing them. Among others, we have

T heorem 1 (Dilworth [6], Avann [1], see also Edelman [8]). For afinite
lattice L, the following conditions are equivalent:
(i) L is meet-distributive;
(i) L is lower semimodular and every modular sublattice of L is distribu-
tive;
(iif) Every x £ L can be uniquely expressed as the join of a minimal set
of join-irreducibles.

In fact, it was the arithmetical property (iii) of finite distributive lattices
which stimulated research to characterize the class of those finite lattices
having this arithmetical property.

An example of a non-distributive meet-distributive lattice is exhibited in
Figure 1.

3. Strongness, consistence, and the property of being balanced
in meet-distributive lattices

Upper semimodularity and lower semimodularity are generalizations of
modularity. There are other properties of modularity which have been iso-
lated and proven to be fruitful concepts. These are, among others, the
properties of being strong, balanced, and consistent which we consider here
in connection with meet-distributive lattices.

The concept of a strong lattice is due to Faigle [10] and may be reformu-
lated as follows:

A lattice L of finite length is called strong if, for all u £ J{L) and for all
X £ L,

implies u”x.
From the definition it is immediate that any atomistic lattice is strong.

We shall see (Corollary 3) that strongness may be viewed as a weak-
ening of lower semimodularity. This will easily follow from the subsequent
considerations.

For a lattice L of finite length, we define the so-called arrow relations
(see Wille [21]) between J(L) and M (L) by

uls iiVs=s’ and uS s<">uAi=a'

for u€J(L) and s £ M(L) with u”s. Next we split up the concept of being

balanced due to Reuter [18]:
We say that a lattice of finite length is lower balanced if

u/ s implies u/s
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and that it is upper balanced if
uS's implies US's.

A lattice of finite length is said to be balanced if it is both upper and lower
balanced.

It is immediate that any upper semimodular lattice of finite length is
upper balanced and that any lower semimodular lattice of finite length is
lower balanced.

For an example of a balanced lattice being neither upper nor lower semi-
modular, we refer to Reuter [18]. Whereas a strong lattice is not balanced in
general (see Figure 1), we can show that a balanced lattice is always strong.
In fact, the property of being lower balanced characterizes strongness:

T heorem 2 (Stern [20], Theorem 18.3). A lattice of finite length is
strong if and only if it is lower balanced.

An immediate consequence is

Corollary 3 (Faigle [11]). Any lower semimodular lattice of finite
length is strong.

Thus we have the following implications for lattices of finite length:
lower semimodular =>m lower balanced <=> strong.

The first implication is non-reversible: for example, the lattice of flats of a
finite affine incidence geometry is strong but not lower semimodular.

Corollary 3implies also that any modular lattice of finite length is strong.
Moreover it is a direct consequence of the isomorphism theorem for modular
lattices that any modular lattice of finite length is balanced. In fact, it follows
from Theorem 2 that, in an upper semimodular lattice of finite length, the
property of being balanced is equivalent to strongness:

Corollary 4 (Reuter [18]). An upper semimodular lattice of finite
length is strong if and only if it is balanced.

P roof. Any upper semimodular lattice of finite length is upper bal-
anced. By Theorem 2 it is lower balanced (and hence balanced) if and only
if it is strong.

Since a meet-distributive lattice is lower semimodular (see Theorem 1),
Corollary 3 also yields

COROLLARY 5. Any meet-distributive lattice is strong.

Whereas the notions of strongness and balance coincide in upper semi-
modular lattices (see Corollary 4), the situation is different in lower semi-
modular lattices:
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1=dvu

As the dual of a locally free lattice (see Crapo [3], Figure 11), the lattice
of Figure 1is meet-distributive; hence it is (lower semimodular and) strong.
However, we have (notation of Figure 1) d Au= u'—<u but d is not a lower
cover of d Vu, that is, the lattice is not (upper) balanced.

Let us now turn to the property of consistence as introduced by Rung
[14]. This property may be reformulated for our purpose as follows:

Let L be a lattice of finite length. A join-irreducible uEJ(L) is said to
be consistent if x Vu € J([x, 1]) holds for all x GL with u”™ x. The lattice
L is consistent if each of its join-irreducibles is consistent. We remark that
this differs from Kung’s original definition in that here we do not consider 0
to be join-irreducible. (In Kung’s theory — leading to a solution of Rival’s
matching problem for modular lattices — it is essential to include 0, see
Rung [14], [15], [16]).

A lattice L of finite length is dually consistent if the dual lattice Ld is
consistent.

From the isomorphism theorem for modular lattices it is again clear that
any modular lattice of finite length is both consistent and dually consistent.

A concept equivalent to dual consistence was already formulated and
used by Crawley [4] to characterize lattices (of finite length) possessing the
Kurosh-Ore replacement property for meet-decompositions:

For all x, y € L, if the sublattice [x, x Vy] has exactly one atom, then the
sublattice [x Ay,y\ has exactly one atom (see Crawley-Dilworth [5], p. 53).

In the presence of semimodularity, one has

Theorem 6 (. Crawley-Dilworth [5], Theorem 7.5, p. 53 and Theorem
7.6, p. 54). Let L be an upper semimodular lattice offinite length. Then the
following conditions are equivalent:

(i) L has the Kurosh-Ore replacement property for meet-decompositions;

(i) L is locally modular;
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(iti) L is dually consistent.
Dualizing Theorem 6, we obtain

T heorem 7. Let L be a lower semimodular lattice offinite length. Then
the following conditions are equivalent.
(i) L has the Kurosh-Ore replacement property for join decompositions;
(i) L is dually locally modular;
(iii) L is consistent.

From this we get immediately
Corollary 8 (Reuter [18]). A meet-distributive lattice is consistent.

P roof. Follows from the fact that any meet-distributive lattice is dually
locally modular (see Section 2) and from Theorem 7.

As we have seen, any lower semimodular lattice is strong (Corollary 3).
On the other hand, a lower semimodular lattice is not consistent, in general:
consider e.g. the dual of the lattice of flats of an affine incidence geometry.
This is again in contrast to the situation in upper semimodular lattices: it
can be shown that an upper semimodular lattice of finite length is strong if
and only if it is consistent (see Faigle [10]; cf. also Reuter [18]).

We show now that if a meet-distributive lattice is balanced, then it is
distributive (the converse holds trivially). This will be a consequence of the
more general assertion of Theorem 10 below. As a preparation, we shall need

T heorem 9 (Stern [19]). A lattice L of finite length is upper semimod-
ular if and only if, for all u £ J(L) andfor all b£ L,

uAb —u'—<u implies b—< uWh.

Now we are in a position to prove

T heorem 10. Let L be a locally modular lattice offinite length. Then
L is balanced if and only if it is modular.

P roof. Any locally modular lattice L of finite length is upper semimod-
ular. We show that L is also lower semimodular, provided it is balanced.
To prove lower semimodularity it suffices by the dual of Theorem 9 to show
that for any meet-irreducible element d£ M(L) and for any y £ L,

d—<dVy—d* implies dAy —<y.

From local modularity we get by Theorem 6 that L is dually consistent.
Hence the interval [d Ay, y] has exactly one atom, say p.

Consider now a join-irreducible u £ J{L) for which u <y but u ” dAy.
Then u "jfd and from u < d* it follows that d* = d Vu.
The property of being lower balanced implies
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Then also (d Ay) Au = u" —< u and semimodularity yields
dAy —< (dAy) Vu<y.

Hence (d Ay) Vu is an atom of the interval [dAy,W and thus we have
(dAy) Vu=p. Since u is a join-irreducible with the properties u”y and
u™d Ay but otherwise arbitrary, it follows that p —y.

In other words, we get dAy—< vy, that is, L is lower semimodular. Since
L is also upper semimodular and of finite length, it is modular. The converse
is obvious.

Since the properties of being balanced and of being modular are self-dual,
dualizing Theorem 10 yields

Theorem 11. A dually locally modular lattice offinite length is balanced
if and only if it is modular.

This implies, in particular,

Corollary 12. A meet-distributive lattice is balanced if and only ifit
is distributive.

Proof. Let L be a balanced meet-distributive lattice. Any meet-dis-
tributive lattice is dually locally modular (see Section 2). Hence L is modu-
lar by Theorem 11. From Theorem 1 (equivalence of conditions (i) and (ii))
it follows that L is even distributive. The converse is obvious.

We close with the observation that, for upper semimodular lattices of
finite length, the property of being balanced (which is in this case equivalent
to both strongness and consistence) does not imply modularity, in general.
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EIN ISOPERIMETRISCHES PROBLEM
BEZUGLICH ZERLEGUNGEN DER EUKLIDISCHEN EBENE

EVA VASARHELYI

Wir betrachten ein konvexes Vieleck mit héchstens sechs Seiten und zer-
legen es in endlich viele konvexe Teilvielecke Ai, A2, ... ,An - Wir bezeichnen
den Flacheninhalt, den Umfang und die Seitenzahl von A mit a,, p, bzw. §
*=1.2.... V).

G. Fejes Toth [1] und L. Fejes Toth [2] haben diesbeziiglich die Unglei-

chung
N pomeen N

Y R=

i=I =1
mit der Nebenbedingung min”/07/ max”~/dj > go —0.562 ... bewiesen. Die
Ungleichung besagt, daB man aus anndhernd gleichen Vielecken keine bessere
Zerlegung erreichen kann als mit regelmé&Rigen Sechsecken.

G. Kertész [3] hat ein Mosaik konstruiert, fir welches diese Nebenbedin-
gung nicht erfullt ist und fur das die obige Abschédtzung nicht gilt. Daher ist
eine Einschrankung vom Typ min y/al/ max y/al* qo nétig.

L. Fejes Toth hat die Frage nach dem Infimum 1(g) von EP«'/E\/®
aufgeworfen, unter der Annahme, dalk A\, A2,... ,An konvexe Vielecke sind,
die in einem Vieleck mit hochstens sechs Seiten eine Zerlegung bilden und
min y/al/ maxy/al >q, q6 (0; 1] ist.

In dieser Arbeit wird eine untere Schranke fir 1(g) gegeben.

Die Homogenitat qu und der zu untersuchende Quotient au der Vielecks-

menge H = {A,}” wird durch

_ min y/al
~ max y/al
und
N
pi
aH= le
N
f /a,
=l
definiert.

Aus dem Eulerschen Polyedersatz folgt, dalR die mittlere Seitenzahl in
den zu untersuchenden Mosaiken nicht gréRRer als 6 ist.

Akadémiai Kiad6, Budapest
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Im folgenden wird die Forderung, nach der die Vielecke ein Mosaik bilden
sollen, auBer Acht gelassen und wir beschaftigen uns nur mit Vielecksmengen
der mittleren Seitenzahl hdchstens 6.

Satz. Es sei H eine endliche Vielecksmenge mit den Eigenschaften B\,
B? mit
B i: Die mittlere Seitenzahl der zu H gehérigen Polygone ist héchstens 6.
gH = 9; wobei q ein fest gegebenes Element im Intervall (0; 1] ist.

Weiters sind /,,, Q™, Qm und F™(q) gemaB (a), (b), (c) und (d) erklart:

= 2\In tan —
(a) /. \Vn an . n>3
(b) Qm _ (6 —k){fm —fm+1) m=>6 k=45
k fk-fm-{m- 6)(/m- frn+l)’
2/5 —fi~ fm
(c) Qm=

~ (m-6)(/4-15)"
g(m-6)fk +{6- k)f,,
(d) F2@) = qm- 6)+ 6—k

Bezeichne ferner F(q) das Infimum des Quotienten ujj solcher Mengen
1, dann gilt die folgende Gleichung

TO?), siQ ry m=6;7;...;1,Qf=1
FP(a), ge(q™;QsU g-=QL

FI12(a), qe(QV2q-

F2(t ge(Q jQ ry, ™M=1314;....

Bemerkungen. 1. Aus der Definition von 1(g) und F(q) folgt, daB
F(q) eine untere Schranke fur I(q) darstellt. Der Satz gibt uns die exakte
Bestimmung von F(q).

2. Geometrisch 1aRt sich /,, als der Umfang eines regelméRigen n-Ecks
mit dem Flacheninhalt 1 interpretieren.

Die Werte fo, /4, ... ,fn bilden eine monotone abnehmende konvexe Folge
mit dem Grenzwert 2y/n —3,55----

3. FfBR(q) bezeichnet den Quotienten an, wobei H aus regelméligen m-
Ecken mit dem Einheitsflacheninhalt, sowie aus regelméRigen fc-Ecken mit
dem Flacheninhalt g2 besteht und die mittlere Seitenzahl der Menge 6 ist.

Durch &quivalentes Umformen erhalten wir die folgende Form von Fffl

(*) Ha)={

Fjf(q) =fk~ (fk ~fm)me -~; m >6; A= 345
6-k 9+ 1
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Daraus ist es leicht ersichtlich, daB F~(q) fir 0< g < 1 eine monoton
zunehmende Funktion ist. Ist m —6, dann gilt

5 (1) =P = Ff(2)=1e= =372....

Fir m > 6 ist F™(q) eine streng zunehmende, konkave Funktion. Weiterhin

. KX 19 =fm

Fir den Beweis des Satzes verwenden wir noch folgende Aussagen:
Hilfssatz 1. Istk=3;4;5 m” 6 und g£ [0; 1], dann gilt die Gleichung

F(o) =iF?(q).

Beweis. EsSei H* —{A*}" eine Menge von Vielecken. Wir bezeichnen
den Flacheninhalt, den Umfang und die Seitenzahl von A* mit at, p*, bzw. s*
(i=1,2,... ,N). Setzen wir voraus, dafl die Bedingungen B\ und Bi erfillt
sind. Dann gibt es dazu eine Menge H = {A,}"x, die aus regelméRigen
Vielecken besteht, deren Summe von Seitenzahlen gleich 6N ist; ferner ist
Ai ein regelméBiges s,-Eck mit dem Flacheninhalt a,, wobei s, >s-. Wegen
der isoperimetrischen Ungleichung bekommen wir die Abschdtzungen

Pt A fpeyldi>fry/al= pi,

und dadurch fir den zu untersuchenden Quotienten die Ungleichung

N N
E p* E p,
=i _ . N =i
Sz &y

/a,
=1 >

Wir wollen jetzt fur er// eine untere Abschéatzung angeben.

Es sei H die Vereinigungsmenge von n Exemplaren von H. Wegen der
Voraussetzung X)5«= 61V, gibt es entsprechende naturliche Zahlen “n” so,
dall wir die Menge Ft in folgende Teilmengen Hij einteilen kénnen: die Teil-
mengen Hij bestehen aus hdchstens zwei verschiedenen Vielecken und die
mittlere Seitenzahl der Teilmenge ist 6. Wir wahlen eine so erhaltene Teil-
menge aus. Setzen wir voraus, dafl diese Teilmenge aus u Examplaren von
Ai und v Exemplaren von Aj besteht, dann gilt
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und (fur die ausgewadhlte Teilmenge)
cyji — Lp ”.
Uyl Y4
Ist Si = sj =6, dann bekommen wir die Gleichungen

0« = *»(«)=*»(«)=/«e

Falls die ausgewéhlte Teilmenge keine Sechsecke enth&lt, dann gelten s, < 6
und sj > 6 (mit passender Wahl der Numerierung). In diesem Fall gilt

=(V 6 S - - .
( (S -)/<rs)y/z;1(~ + (6 - Si)y/4j (> ()

Wir bemerken, daR au ein gewichtetes arithmetisches Mittel der Werte
Oij mit den Gewichten (Sj—6)v/67+(6 —s.A/6jist. Andererseits ist au = a-U-
Da das gewichtete Mittel niemals Kkleiner als der Wert min @, ist, kann man
fir beliebige Mengen H* mit den Eigenschaften B\ und B2 sagen, dal3

au» * au ® mina{j» |'<an F™(q).
Folglich gilt die Ungleichung
F(a) = jnf F™().
Die umgekehrte Ungleichung
T@ =jnt F(a)

ist nach der Definition von F(q) evident. O
In dem Hilfssatz 2 sammeln wir die technischen Hilfsmittel.
Hilfssatz 2. A) Ist m> 6 und q£ (0; 1], dann gilt

Q) FI?(q)>F?(q), ?€(0;1],
und die Ungleichungen

(2) *T+I(?) [>T (i), (*=4.5)
gelten dann und nur dann, wenn

(6-fe)(/m~/m +i)
fk - 6)(/m- /m+1)"

(27)
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Die Folge Q™ (m > 6) ist streng abnehmend mit dem Grenzwert 0:
(3 Q™+1<QZ, lig gjr = o.
B) Es seien m > 7 und g£ [0; 1]. Die Ungleichungen
(4) *T(9)i*T(i)
gelten dann und nur dann, wenn

AU Ms U fTIX

(4) g>" ~ (m—6)(/4 —fs)

C) Fur m > 13 gilt die Ungleichung

(5) Qm>Q?~1
Beweis. Da diese Relationen mit Hilfe der Eigenschaften von /,, und
durch einfaches Umformen einzusehen sind, beweisen wir exemplarisch nur
die Behauptung C).
Wir wenden vollstdndige Induktion Gber m an.
a) Nach numerischen Rechnungen folgt
Q13><?52-

b) Durch dquivalentes Umformen bekommen wir aus (5) fur m =n die
Ungleichung

(5°) 2s-U - I, i>(n- 7)(Un_!-1,).

Addieren wir auf beiden Seiten von (5°) den Wert /,,_i —/,, und benutzen
die Abschatzung /n_i - fn>fn ~ fn+i, dann erhalten wir die Ungleichung

(5”) 2ls—4-/,>(n —6)(/,, -/n+l).

Andererseits ist (5”) &quivalent mit (5) fur m = n+ I. Das bedeutet aber,
daB (5) fir m > 13 gdltig ist. O

Der Beweis des Satzes. Wir betrachten die Funktionen
Fk(a) :=ipf F™(a), k=345

und nennen diese Funktionen Dreiecksschranke, Vierecksschranke bzw. Fiinf-
ecksschranke. Wir kdnnen die Funktion F(q) durch

F(g) = min{Fk(q) \k =3; 4; 5}

angeben. Wir zeigen, daR die Schranke F(g) mit der Vierecksschranke im
Fall g~ g* und mit der Flinfecksschranke im Fall g > g* koinzidiert. Nach der
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Relation (1) spielt die Dreiecksschranke in F(g) keine Rolle. Wir betrachten
die Intervalle

im=(Q?;Qr1} Ad Jm=(Q?-,Qri1}

wobei Q\=Q\'=1 m > 6.
Aus (3) folgt die Tatsache, daR die kleinen Intervalle Im und Jm das
Intervall (0; 1] ausfullen:

00 00
\JIm=\JJIm=(0; 1]
m=6 m=6

Nach (2) und (2°) kénnen wir die Funktionen F4 und F$ explizit angeben:

FA(q) =F™(q) fiar qg€Jm,
Fs(q) =F~(q) fir qg£Im.

Nach numerischen Rechnungen folgt

QU Ein P)an,
und dies bedeutet fiir g = Q12=0,0329 ...,
W ) =F\\g*) = Fa2g*) = Fs(q*) = F(q*).

Wir wahlen die Intervalle Jm C (0; g*] aus. Mit Rucksicht auf (4), (4°) und
(5) ergeben sich die Relationen

(6) Fs(q)=fT (?) > *7(?) £ F4(q), 9€/; m>13),
(7) Fs(q) =F32(g) > F42(g) > F4(9).(9 € (Q™; g*]),
(8) Fs(q) <F42(q) = F4(a), (q€ (g% Q"))

Wir betrachten nun die Intervalle Jm C (g*; 1]. Dies bedeutet, dal 6 <
A'm ~ 11 gilt. Die Relationen

(9) FA(g) = F4(g) = /6>F 5(g), (g€ J6),

sind evident. Wir bemerken, dak Qmin (4°) fir m —7; 8 negativ ist. Daraus
folgt, daR die Ungleichungen

(10) F4(g) = F™q) > F™(q) >F5(@),  (9€Jm;m =7,8)

gelten. Die numerischen Werte zeigen, dal Qm < Q™ fur m = 9; 10; 11 gilt.
Daraus und aus (4) und (4) bekommen wir die Relationen

(12) F4(q) =FZ'(q)>F?(q)>F5(q) (qedm, m=9;10;ll).



EIN ISOPERIMETRISCHES PROBLEM 293

Aus den Relationen (6)-(Il) ergibt sich die untere Schranke F(q) in der
Form (*). O

Es sei bemerkt, dafl die Gleichungen
lim F4= lim F5=1Iim F(q) =29 &«
m —meo m —eo q—*-O

fur die Grenzwerte gelten. Das Diagramm drickt den Verlauf der Schranke
F(q) aus.

Erweiterung fir normale Konvexe Mosaike der euklidischen Ebene

Wir sagen, dall ein Mosaik normal ist, wenn ein Paar (f?,£52) positiver
reeller Zahlen existiert mit der Eigenschaft, daf sich jeder Mosaikstein durch
einen Kreis mit Radius @ tberdecken 1&4Rt und andererseits, in jedem solchen
Mosaikstein ein Kreis mit Radius g\ enthalten ist.

Die Menge der normalen konvexen Mosaike, die Menge der konvexen
Bereiche und die Menge der konvexen Vielecke werden durch Ad, B bzw. V
bezeichnet.

Es sei M € M und wir bezeichnen mit A, die Flachen des Mosaiks, ferner
bezeichnen wir mit a-, p, bzw. s, den Fladcheninhalt, den Umfang und die
Seitenzahl von A, (i 6 A, A ist eine Indexmenge). Wir betrachten einen
Bereich B GB. Es sei O ein innerer Punkt von R; AB bedeutet das Bild

von B beziiglich der Ahnlichkeit mit Zentrum 0 und Koeffizient A Jetzt
nehmen wir diejenigen Flachen von M, die in AB enthalten sind. Die mittlere

Seitenzahl s\b und der Quotient YIPi /H2 — dieser Flachen hangen
davon ab, wie wir B, O und Awéhlen.
Die mittlere Seitenzahl die Homogenitat gm und der isoperimetrische

Mittelwert om des Mosaiks M werden durch

sm =sup sup limsupsAS,
BEBO & 'mtB »00

gM = infy/al/ sup y/a~
und
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<M= inf inf _liminfean
BE£R OEintB A—00

definiert.
Wie allgemein bekannt ist, gelten fir Mosaike M € M die folgenden
Zusammenhénge:

SM =6,

inf _inf _liminfa\p
PGVOE£intP A—o0

QM €(0; 1].

Nutzt man diese Beziehungen, so kann man zeigen, daB F(q) eine untere
Schranke auch fir normale konvexe Mosaike der euklidischen Ebene ist, d.h.

aM = F(q\i)-

Diese Schranke ist offensichtlich nicht genau, da F{q) in einem Intervall
mit FI(q) koinzidiert, obwohl aus regelmaRigen Funfecken und Siebenecken
in der euklidischen Ebene kein Mosaik gebaut werden kann.
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SOME REMARKS ON 2-GROUPS HAVING SOFT SUBGROUPS

L. HETHELVYI

A maximal abelian subgroup A of ap-group in G is called a soft subgroup
G if A is maximal in its normalizes The basic properties of soft subgroups
were investigated in [1]. In this paper we shall consider 2-groups with soft
subgroups. We shall characterize those 2-groups in which every maximal
abelian group is soft.

We shall investigate the special case when a 2-group G contains a soft
subgroup of index 2. We shall show various conditions which guarantee that
all maximal abelian subgroups are soft in this case.

Throughout the paper we use the notation of [1].
We shall need the following result which is valid for an arbitrary prime p.

Lemma 1. Suppose G is a non-abelian p-group. Let A be a maximal
abelian subgroup of G with index p in G. Suppose that G' or Z(G) is cyclic.
Then every maximal abelian subgroup of G is soft in G.

Proof. By Statement 1 of [2] we only need to prove Lemma 1 in the
case of G' being cyclic. Let XxEG\A. Then Ki(G)—[Ki-i(G), (x)] for t=3,
. ,cl(G) + 1. As xpeA,exp(Ki(G)/Ki+1(G)) =p. Thus \K,(G)/Ki+1(G)\=
=p for 27 i<cl(G). Then G'n Z(G) = Kn(G), where Kn(G) is the last
nontrivial term of the lower central series of G. Let B be any maximal
abelian subgroup of G different from A. Let N=Ng{B). Then N =(Ni\A)B
and clJV)=2. Thus N'nZ(N) <Z(G). Thus N' <Kn(G). However, as
\Kn{G)\ =p, N' =Kn(G). As \N:N n A\ =p and as \Z\\N\\N'\ =\Nn A\,
JIV:Z(N)I=p2follows. Thus \N:B\=p. O

Statement 1. Suppose G is a non-abelian 2-group. Let A be a maximal
abelian subgroup of G with index 2 in G. Suppose that Z{G) is cyclic. Then
G' is cyclic.

Proof. It is easy to see that for any x €G\ A and y £(?' x~1yx = j/-1.
Thus fli(G") < Z(G), and so |ilj(G")| = 2. Then as G' is abelian it is cyclic.
O

P roposition 1. Suppose G is a 2-group and that every maximal abelian
subgroup of G is soft in G. Then G' is cyclic.

1980 Mathematics Subject Classification (1985 Revision). Primary 20D10.
Key words and phrases, p-groups, central series, abelian group, commutator series.
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P roof. The assumption of the proposition guarantees an abelian sub-
group A ofindex two in G. Moreover we can assume that |[<<XG)DZ(G)\ = 1
Otherwise let Z\ = 4>(G) fl Z(G). Let G = GfZ\. Let B be a maximal
abelian subgroup of G, B/ A. Then B = (x,Z(G)) for some x £ G\ A. Now
C = (x,Z(G)) is a maximal abelian subgroup in G, hence C is soft by as-
sumption. For B >C, Lemma 2 of [1] yields \Nq(B) :B|= 2, hence B is soft

in G. Then G is cyclic by an induction, so G' is cyclic. Thus exp(G') = 2.
However, ili(G') < Z(G). Then G'~ Z(G). So every maximal abelian sub-
group of G is of index two in G by assumption. Then \G:Z(G)\ =4, and
thus \G\'=2. O

P roposition 2. Suppose G is a non-abelian 2-group. Then every max-
imal abelian subgroup of G is soft in G if and only ifG/Z{G) is dihedral.

Proof. If every maximal abelian subgroup of G is soft then there ex-
ists an abelian subgroup A of G such that |G :A\ = 2. If cl(G) = 2 then
IG :Z(G)\=4 and thus \G"\=2. So we can assume that cl(G)>2. Let B be a
maximal abelian subgroup of G which is different from A. Then as A-B =G,
\B : A fl B\ =2 follows. Thus |B :Z(G)|= 2. Let T be a maximal abelian
subgroup of G which is different from A and which is not contained in the
same maximal subgroup of G as B. Then (B, T)=G by Theorem 1 of [1],
Thus G/Z(G) is generated by two involutions and so it is dihedral.

Suppose now that G/Z(G) is dihedral.

Then G has an abelian subgroup A of index 2. Moreover it is easy to
see that for any maximal abelian subgroup B of G which is different from
A we have B = (x)Z(G) for some x £G. As Ng(B)/Z(G) =4 we have
\Na(B):B\=2. O

P roposition 3. Let G be a non-abelian p-group where p is an arbitrary
prime. Suppose that G contains an abelian subgroup A of index p, and that
\G:<f>(G)\ —p2. Then every maximal abelian subgroup of G is soft in G.

Proof. First we note that Ki(G) =[A"_i(G), (x)] fori=3,... ,cl(G) +
+ 1 for any x GG\A. We claim that exp(A',(G)/A"+i(G")) =p.

Suppose Ui £ A'i(G) \ A'+i(G). Then [al5x] GA+i((j). Let G =
= G/ K,+2(G). Then [&x,®p] = [4i,*]p= 1. Then [ai,x]p£ A'+1(G), which
proves the claim. We now show that |/E,(G)/A,+1(")1 =pfort=2,... ,cl(G).
The claim is certainly true if cl(G) = 2

Let Kn(G) be the last nontrivial term of the lower central series of G. Let
the bar denote homomorphic images in G/Kn(G). Then |A'-(G)/A',-+i(G)| =
=p fori—2,... ,cl(G). Thus we only have to show that |A,,(G)| =p. Let
a An_x(G)\ A',(G). Then [Kn-i{G), X] = [(x)Kn(G), X] = [a, X]. However,
as exp(A',,(G)) =p, |A',(G)| =p follows which proves the claim. Now G’ fl
n Zf{G) = An(G) follows where A',(G) is the last nontrivial term of the
lower central series of G. However, let B be any maximal abelian subgroup
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of G different from A. Then N = NG(B) = (An NG(B))B and N' <Z(N) <
< Z(G). Then N'*Kn(G). Thus |7V'|=p.As \AnN\=\Z(N),\N%\N :Z(N)\ =
= p2 follows, which proves Proposition 3. O

Corollary. Suppose that G is a non-abelian 2-group generated by two
elements. Assume that G contains an abelian subgroup A of index 2. Then
every maximal abelian subgroup of G is soft in G, so G/Z(G) is dihedral.

Proof. The corollary follows from Proposition 2 and 3. O

P roposition 4. Suppose G is a non-abelian 2-group. Let A be a maxi-
mal abelian subgroup of G of index two. Then the following conditions hold.

a) \G":<f>(G"\<\G:<t>(G)\.

b) exp(G') = 2clig)-1.

c) Every subgroup of A containing Z(G) is normal in G. Moreover every
subgroup of G' is normal in G.

d) Ki(G)/Ki+i(G) and Z,(G)/Z;_i(G) are elementary abelian for i =
=1,... ,cl(G).

e) cl(G) = max{cl(tf); H <G\H : <4}

Proof, a) We can assume that exp(G') = 2. Then 4x{G) 5, Z(G) follows.
So \G: 4G > IG: Z(G)\ > \A:Z(G)\ =|G'|, as |A| = \G\Z{G)\._

For c) we note that x26 Z(G) for any x e G\ A. Thus |x y\ —2 for
any x € G\A-y € A where the bar denotes homomorphic images in G/Z{G).
Thus for any x £ G\A x inverts every element of G/Z(G) by conjugation.

d) is trivial.

For e) let y be an element of G such that [x,y] —exp G'. Take H = (x,y).
Then c\(H) = cl(G). O

P roposition 5. Suppose G is a non-abelian two generated 2-group which
contains an abelian subgroup of index 2. Then every subgroup of G can be
generated by at most 3 elements.

Proof. By Proposition 1 and 3 G' is cyclic and every subgroup of G/G'
can be generated by at most two elements. O

It is easy to see that if G is a non-abelian p-group which contains an
abelian subgroup A of index p then for every x 6 G\Z(G), CG(x) is abelian.
The following proposition is a partial converse of this when p —2.

PROPOSITION 6. Suppose that G is a non-abelian 2-group and that for
every x € G\ Z(G), CG(x) is abelian. If (@ is not contained in Z(G) then
G contains an abelian subgroup A of index 2.

Proof. We shall need the following lemma.

Lemma 2. Suppose that G is a non-abelian 2-group and that CG{x) is
abelian for every x € G\Z(G). Let A be a maximal abelian normal subgroup
of G. If G/A is cyclic then \G:A\ =2.
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P roof. Wemay assume that |G :A| =4. Let M be a maximal subgroup
of G containing A. Let Mi be another maximal subgroup of G. Then Mi/An
HMi is cyclic. If API M\ A Z(G), then it follows that M\ is abelian. Then

cl(G)=2,1G:Z(G)| =8and as » = |A| = \GW\Z{C)\, \G'\ =2. On the other
hand |G'|Z(G)| = Mi = This contradiction proves that A DMi * Z(G).
Hence by assumption CG (AnMi) is abelian. It contains the maximal abelian

subgroup A so Cg(ADMi)= A. Thus An Mi is a maximal abelian subgroup
in M i, and we are done by induction. O

Proof of Proposition 0. Let A be a maximal abelian normal sub-
group of G. By Lemma 2 G/A is elementary abelian so 4G 5 A. As for
any x GG\ A Caf{x) @A = Z(G), x2GZ(G) for any x outside A. Let the
bar denote the homomorphic images in G/Z(G). As <XQ is not contained
in Z(G) there exists an u in A such that [¥| > 4. However, |v| = 2 for any
v GG\A. Thus vuv =u~1 Therefore Cq{u) = A. However, if Vi, v2 are two
elements in G\ A such that v\ is not contained in Av2 then on the one hand
V1-V2IiA while on the other VAV2€ C~fu) = A. This contradiction shows
that [G:A|=2. O

Proposition 7. Suppose G is a non-abelian 2-group and that for every
X GG\ Z(G), Cq(x) is abelian. Suppose that every nonabelian factor of G
inherits the above property. Then one of the following conditions hold:

(i) G contains an abelian subgroup A of index 2.

(i) \G:Z(G)\<s8.

P roof. Suppose that G does not contain an abelian subgroup of index
2. We first show that if Zi is a subgroup of order 2 in fli(Z(G)) then
Z(G/Zi)=Z(G)/Z\. If not, then take an element u” Z(G) such that G G
G Z{Gjz\) where the bar denotes the homomorphic image of u in G/Zi.
Then Cg(u) is a normal subgroup of G and |G : Cg(u)\ —2, which is not
the case. This proves the claim. Next we observe that if x GG\ Z(G)
then ICq(x) :Cg(x)| » 2 (where the bar denotes homomorphic images in
G/Zi). Now by induction either G contains an abelian subgroup of index
20r 8=|G:Z(G)| = |G :Z(G)|. In the first case G contains an abelian
subgroup B of index 4, such that Cq(B) is of index 2 in G.

Next we show that |B :Z(G)| = 2. Suppose the contrary. Let & and 62
be two elements of B\ Z(G) such that 62 Is not contained in biZ(G). Let
a be an element in G\B such that [a,B) <Z\. Then as |Zi| = 2 and as
CG(b1l) =CG((b2) =B

a~1bflabi = a- 16j 1]a62
follows. Thus 62M = && £ Gg(6). So (a,B) * Gg(il&) is nonabelian.

Thus 6i62€ Z(G) contrary to the choices of 61 and b2. This proves that
B :Z(G)|=2. Thus |G:Z(G)|=8. O
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Corollary 4. Suppose G is a non-abelian 2-group. Then c-d-(G) =

= {1,2} if and only if for every x £ G\ Z(G), Cg{x) is abelian and this
property is inherited by every factor of G.

(1]
(2
Kl
[

Proof. See chapter 12 of [4]. O
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ON THE CHARACTERISTIC OF A PROJECTIVE GEOMETRY

H. LAKSER

1. Introduction. In Hermann and Huhn [4] lattice identities were given
that determine the characteristic of a ring R in terms of the lattices of sub-
modules of unitary A-modules. These results were generalized in Hutchinson
and Czédli [5]. Animportant special case is when R is a division ring; the lat-
tices are then the lattices of subspaces of a desarguesian projective geometry.
(See Fried, Gratzer and Lakser [1] for an application to this case.)

In this note we establish identities determining the characteristic in the
case of a projective geometry using a more elementary, geometric approach.
Although our results are subsumed by [4] and [5] in the desarguesian case,
certainly the most important one, our results also apply to non-desarguesian
planes, where the above-mentioned results do not seem to apply.

We base our approach on the following lemma, announced in Grétzer and
Lakser [3], useful for proving lattice identities in modular geometric lattices.
A proof is given in [2, Lemma IV.5.11, p. 207].

Lemma 1 [3]. Let e be a lattice identity of the form p 51 q where p and
g are lattice polynomials and each variable occurs in p at most once. If £
holds for the atoms and the minimal element of a modular geometric lattice
L, then e holds for L.

2. The coordinates. Any projective geometry of dimension > 3 satisfies
Desargues’ Theorem, and the classical coordinatization of von Staudt ap-
plies. Since we wish to include non-desarguesian planes in our discussion,
we present a modified approach to the coordinatization. We essentially fol-
low the procedure given in Hughes and Piper [6, Chapter V], although our
notation departs from theirs.

A coordinate system in a projective geometry G of dimension > 2 is a se-
quence of four coplanar points, (0, i, 00, 00*), no three of which are collinear.
Note that this notation precludes the use of “0” to denote the minimal ele-
ment of a bounded lattice. We let R denote the set of those points on the
line 0V oo distinct from o0o. In [6] a ternary ring structure is defined on R;
this ternary ring structure determines two loop structures on R, an additive
one, denoted +, with identity 0, and a multiplicative one with identity

1= (i Voo*) A(0 Vo00).
This research was supported by the NSERC of Canada.
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We need only the additive structure, and so we recall only that part of the
construction.
Set
I* = (iV 00) A(0V 00*)

and
loo = (I VI*)A(ooVoo¥*)

For each a€ R set
a* = (aVlg) A0 Voo*).
Then, given a, b€ R, we set
a+s - [((@a* Voo) A(6Vo0*)) Vloo] A(0V00).

(See Fig. 2.) Then (R,-f,0) is a loop with 0 the identity; O+ a=a+ 0 for
all G £R.

Fig. 2
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For each positive integer n and each a € A we define na by setting
la=a

and
(n+ Da=a+na

(see Fig. 3), that is, we associate on the right.

If the projective geometry G satisfies Desargues’ Theorem then R is a
division ring under the additive and multiplicative operations, and any two
such division rings determined by two different coordinate systems in G are
isomorphic. Otherwise, two different coordinate systems generally yield non-
isomorphic ternary rings.

3. The identities. We define the 4-ary lattice polynomials z,r,sn,pn by
setting

zZ(x0,xi,x2,x3) = (i0Vii)A (x2Vx3),
r(x0,xj, x2,x3) = (x0Vx3) A(xxVx2),
Pi(x0,xi, x2,x3) = Xo,
Sn(x0, XI, X2, X3) = (p,,(x0, XX, x2,x3) V x2) A (xx Vx3),
pn+1(x0, Xx, X2, x3) = (r(x0, XX, x2,x3) Vs,,(x0, xx, X2, x3)) A (x0VxXx).

We define two identities for n > 1,
(M x(x0, Xx, X2, X3) N Pn(x0, XX, X2, x3)

and
Tn: z(x0,xx x2,x3) < x0Vpn+1(x0,xt,x2,x3).
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Lemma 2. Let (0,z, 00,00%) be a coordinate system in the projective ge-
ometry G, let a€ R, the associated ternary ring, and let n > 1. Then

na=0
if and only if
z(a, 00, 00*, a*) < pn{a, 00, 00*, a*)
and, ifa” 0, i/zen
na ™0
z/ and only if
z(a, 00, 00*, a*)"aV pn+1(a, 00, 00*, a*).

P roof. By definition of a*,
z = z(a, 00, 00*,a*) = 0
and
pn =pn(a, 00, 00*, a*) - na
(see Fig. 3).
Since both z and pn are points,
2 <pn 2=pn O0=na
and, if a 0=z,
z™.aV pn+lt>a/ Pn+it’B~(n + )a=a-fna4*na”™ 0

since (A, +,0) is a loop, concluding the proof. O

It thus follows that if the lattice L(G) of subspaces of a projective geom-
etry G satisfies the lattice identity on then any ternary coordinate ring of
G satisfies the identity ni = 0 and that if L(G) satisfies the identity rn then
any ternary coordinate ring satisfies x 720 =>na; 0. To prove the converse,
we shall make use of Lemma 1. As usual, we are obliged to consider certain
degenerate cases.

A set of points {a, b,c,d) of the projective geometry G is said to be non-
degenerate if all are distinct and no three are collinear. Otherwise, the set is
said to be degenerate.

Lemma 3. If {a,b,c,d} is a non-degenerate set of coplanar points in
the projective geometry G, then G has a coordinate system (0, i, 00, 00*) with
(a,b,c,d) — (1,00, 00*, 1%).

Proof. We set 0= (aVh) A(cV d) (this is a point by coplanarity), and
set 00 = 6, 00* = ¢, and i = (aV 00*) A(d V00).

Lemma 4. If {a,b,c,d} is a degenerate set of distinct points then
z(a,b,c,d)fjpn(a,b,c,d)

for all n > 1.
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Proof. If all a b,c, d are collinear then z- r- s\- sn- pn- a\/bfor
all n> 1. If only a, b,c are collinear then z=¢, r- a sn- bfor all n> 1,
and pn=aVb>c for all n> 1. Ifonly a, b, d are collinear then z- d, r- b
Ssi- a, sn=aVhb, and pn- aVb. dfor all n> 1. Ifonly a,c, d are collinear
then z- a, r- ¢, sn- d, and pn- a for all n~ 1. Finally, if only b, c,d are
collinear then z- b, r- d, si =¢,sn- 6Vc, and pn- bforall n. 1.

Thus z ~ pn in each case, proving the lemma. O

For any other degeneracy, that is, if either at least two of a, b, ¢, d coincide
or if the minimal element 06 {a,6,c, d}, the result z * pn follows from the
modular identity alone:

Lemma 5. Let L be a modular lattice and let 00,01,02,03 € L. If either
1) there are distinct i,j with a*—aj,
2) there is an i with a- < aj for all j
then
Z(a0, Oi, U2,03) ~ Pr»(ao, ai, 02,03)

for all n> 1.

Proof. If 1) applies, then, for each of the six possibilities, we need only
check z < pn in the free modular lattice on three generators. Similarly, if 2)
applies, we need only check each of the four cases in the free modular lattice
on three generators, setting the relevant a, equal to the minimal element of
that free lattice. The details are left to the reader. O

Theorem 1. Let G be a projective geometry of dimension > 2 and let
n> 1. Then the following three conditions are equivalent:

1) The lattice of subspaces L(G) satisfies the identity on.

2) All ternary coordinate rings of G satisfy the identity nl

3) All ternary coordinate rings of G satisfy the identity nx

Proof. 1) =>3) by Lemma 2.

3) =m2)is clear.

To establish 2) = 1), let nl = 0 in all ternary coordinate rings of G.
Note that . (.4, 1\, £2,£3) has no repetition of variables. Thus, by Lemma 1,
we need only verify on for substitutions ao,ai,a2,a3 that are points or the
null subspace 0. If either 0 6 {ao0, ax, 02,03} or {00,01,02,03} is a degener-
ate set of points then it follows by Lemmas 4 and 5 that 2(00,01,02,03) <
= Pn(ao, «3)-

So let {00,01,02,03} be a non-degenerate set of points in G. If these
points are non-coplanar then

z{a0i ®>Q2iGs) —0 ~ Pn(*0i ®1) ~2i 03)-

If they are coplanar then, by Lemma 3, there is a coordinate system
(0,1, 00, 00*) with (a0,01,02,03) = (1,00, 00*, 1*), and, by Lemma 2,

z(aO,al,CECa: O: ri = pn(a0, au (2&3.
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Consequently, 2) =1), concluding the proof of the theorem. 0O
By the obvious similar proof we get:

Theorem 2. Let G be a projective geometry of dimension > 2 and let
n> 1. Then the following three conditions are equivalent:

1) The lattice of subspaces L(G) satisfies the identity rn.

2) All ternary coordinate rings of G satisfy nl ~ 0.

3) All ternary coordinate rings of G satisfy x O=mnx / 0.

In the desarguesian case we get the following:

COROLLARY. Let G be a desarguesian projective geometry of dimension
>2, and let R be the coordinate division ring of G.

R has characteristic p for some prime p if and only if the lattice L(G)
satisfies the identity op.

R has characteristic 0 if and only if L(G) satisfies the set of identities

{rplp prime}.
The usual model-theoretic argument shows that characteristic O cannot
be determined by a finite set of identities.
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CONTINUITY AND TRANSFINITE SEQUENCES OF MAPS

J. EWERT

Let X denote a topological space and let il be the first uncountable
ordinal number.

A transfinite sequence {a": £ < (1} of elements of X is said to be conver-
gent to a GX if for each neighbourhood U of a there exists £0 < Ii such that
ci((EU for each £, fo f < I, [5].

In the sequel we will use the following

1. Lemma [5]. Let X be a first countable T\-space. If a transfinite
sequence {a": £ < fl} converges to a£ X, then there exists £o < I such that
a*=aforevery f, f05f <L

A transfinite sequence {/*: £< (1} of maps of X into a topological space
(Y, t)is called convergent to amap /: X —» if for every x e X the sequence
{ft(x) mE£ < converges to /(x), [10]; then we write / =r - lim  or shortly

f= t}<rrr1] fi.
A topological space X is called a sequential space if a set A C X is closed
if and only if together with any sequence it contains all its limits [1, p. 78].

It is known that every first countable space is a sequential space but the
converse is not true [1, Examples 1.6.18 and 1.6.19].

2. Lemma [1, Prop. 1.6.15]. A map f of a sequential space X into a
topological space Y is continuous if and only if /( Ii_rp X, )c lim f(x n) for
n 00 \

n—+00
every sequence {xn:n” 1} in the space X .

A set Y with two topologies txand r2is called a bitopological space and
it is denoted by (Y, [3].

3. THEOREM. Let X be a sequential space and (Y, ri,r2) a bitopological
one in which (Y,r2) is a first countable T\-space. If f*: X —Y is a Ti-
continuous map for £<ft and f = r2—;i<nr1] ft, then f is T\-continuous.

Proof. Assume that / is not rj-continuous at a point xo&X. According
to Lemma 2 there exists a sequence {x,,:n>1} of elements of X such that

1980 Mathematics Subject Classification (1985 Revision). Primary 54C60.
Key words and phrases. Multivalued map, upper and lower semicontinuity, transfinite
sequence.
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X0G lim Zn aRd f(ZO)ATi*nELT}J f(x,,). Without loss of generality we can

assume that there exists a ig-neighbourhood V of /(x0) such that f(xn)£V
for n>1. From Lemma 1 we can choose numbers an<fl for n=0,1,..., for
which it holds /*(xn)=f(xn), n=0,1, Using properties of ordinal
numbers we can choose £0 < I1 satisfying an <£0for n=0,1, _ So we have
ft(xn)=t(xn) for n=10,1,..., £~ £0 Let £> £0 be estabhshed. Since s
Tx-continuous we have /$(f7) C V for some neighbourhood U of xo- Thus we
can take no = 1 such that ft(xn) GV for n > no- Hence f(x,,)=f"(xn)GV for
n>no what is the contradiction finishing the proof.

If X is first countable and ©= T, then Theorem 3 gives Corollary 1in
[7]. For metric spaces X and Y it is Theorem 1in [10], and if X =Y =R we
obtain the result contained in [9].

In a topological space (Y, r) the symbol C(Y, r) or shortly C(Y) is used to
denote the family of all non-empty closed subsets. For any U Gr we denote

(U)={AeC{Y): ACU}
(U,Y)={AeC(Y): ADU "~0}.

t is the Vietoris topology in C(Y) induced by r. Moreover r+ and t~
denote topologies in C(Y) induced by the base {(i7): U € r} and the subbase
{(U,Y): U Gr}, respectively.

If F,F{, £< i2 are multivalued maps defined on a topological space X
with closed values in (U,r), we will write F, F*: X —Y . The transfinite
sequence {F~:£ <)} of multivalued maps is called convergent to F if for
each x GX the sequence {F~(x): £< 1} is convergent to F(x) in the space
(C(V), r). As aconsequence of Theorem 3 we have the following corollaries:

4. Corollary. Let X be a sequential space and (Y ,t) a topological
one such that (C(Y),f) is afirst countable Tx-space. If FAF: X —*Y are
multivalued maps with closed values, F —f —I£|<nf1I Ft and Ft are upper (lower)

semicontinuous, then F is upper (lower) semicontinuous.

P roof. A multivalued map F" is upper (lower) semicontinuous if and
only if the single valued map F{: X —C(Y),r+,f) is r+-continuous (resp.

Fj: X —C(Y),t~,r) is r~-continuous). Thus the conclusion follows from
Theorem 3.

A multivalued map F: X —»Y is said to be upper (lower) c-continuous
at xo GX if for each open set V CY with Y\ V compact such that F(xo) C
CV (resp. F(x0)nF~"0) there exists a neighbourhood U of x0 such that
F(x) CV (resp. F(x)ilF 0) for x GU, [2]. Amap F is called upper (lower)
c-continuous if it is upper (lower) c-continuous at each point.

5. Corollary. Let X be a sequential space and (Y, r) a topological
one such ihat (C(Y),r) is a first countable Tx-space. If F F: X —Y are
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multivalued maps with closed values, F =f —Ilim Fj and Ft are upper (lower)

c-continuous, then F is upper (lower) c-continuous.

PROOF. The family rc={W er:Y \ W is compact} U{0} is a topology
on Y. A multivalued map Ft is upper (lower) c-continuous if and only if the
single valued map Ft: X —*(C(Y, r), (rc)+), (resp. Ft : X —(C(Y, r), (rc)-))
is continuous. Thus it suffices to apply Theorem 3 to the single valued maps
F$ with values in (C(Y, r), (rc)+,f) or (C(Y,t),(tc)~,t), respectively.

6. Corollary. Let X be a sequential space and let ft'. X —=*R, £<if
be real functions. If f =Ilimft and ft are upper (lower) semicontinuous,

then f is upper (lower) semicontinuous.

Proof. Let r denote the natural topology on R and let T\ = (0, A) U
U{(—e0,a):a6 R}, 2= {0,R] U{(a, 00):a ER}. Then it suffices to apply
Theorem 3 to functions with values in (A, rl5r) or (A, r2r), respectively.

If X is a metric space, then Corollary 6 gives Theorem 1" in [10].

For a bitopological space (T, t1, t2) we denote by Z(Y, r,) the class of all
non-empty Tj-closed compact subsets of Y. If F: X —»Y is a multivalued
map, then the symbols C+(F, r;) and C~(F,Ti) are used to denote the sets
of points at which F is upper or lower r;-semicontinuous, respectively.

In a bitopological space (T, ri,r2) the topology r2is said to be regular
with respect to T\ if for each r2-open set U and each x 6 U there exists a set

V G72 such that xeVcV”~cU, where P*1 denotes the ivclosure of V, [3].

7. THEOREM. Let X beafirst countable locally separable space, (Y, ti, t2)
a bitopological one such that r2 is regular with respect to T\ and (Z(Y, r2), f2)
be afirst countable T\-space. Let F, Ft'. X —»Y , £ <ft be multivalued maps
with values in Z(Y, r2) and F =f2—im Ft. If each Ft is lower T\-semicon-
tinuous, then

C+(F,£2)= fl U C+(Fa,r2)= U P) C+(Fa,r2).

a<n af<fi
P roof. Evidently we have
o U BRc+ra e @ Uc+rat
a<ii a<i)
Now, suppose in Giyn «Ue C+(Fa,r2\C +(F,r2). Then we can choose a
sequence {xn:n > 1} in X converging to zo and a r2-open set V contain-
ing F(xo) such that F(xn)fl(Y\V) 0forn—1,2,_  Using analogous
arguments as in the proof of Theorem 3 we can choose an a < Il such that

xq € C+(Fqg,t2) and Fa(xn)=F(xn) forn=0,1,2,..., what is a contradic-
tion. Thus we have shown
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(2) fl U C+(Fa,r2)cC+(F,r2).
i<n ]
<%
So it suffices to prove
(3) C+(F,r2)C fl f| C+(Fq,t2).
£<17 c*>E
a<17

Assume that x0£ C+(F, r2)\ i<Un )félli C+(Fa,r2). Let i7be a separable neigh-
bourhood of xo and {x,,: n > 1} a dense subset of U. We can choose a <fl
such that Fa(xn) = F(xn) for n=0,1,2,... and x0 C+(Fa,r2). Hence
there exists a r2-open set V containing Fa(xo) such that each neighbour-
hood U' of xg contains a point x' for which Fa{x") fl(Y \ V) ~ 0 holds. Since
F(xo0) is r2-compact and r2 is regular with respect to T\ we have / (xo) C
CW CWA™ CV for some r2-open set W. The condition x0 € C+(F,t2)
implies that there is a neighbourhood Ui of x0, U\CU such that F(x) CW
for x £ U\. On the other hand for some z £ U\ we have Ya(z)n(Y\ 0.
Using the lower Ti-semicontinuity of Fa at z we can take a neighbourhood

U2 of z, U2C W such that FQ(xX) n (Y\JY ™)~ 0 for x £ U2. Thus for xn£

£ U2 we have Fa(xn)D(Y \ IY™ ) fi 0 and Fa(xn)=F(xn) CW what is the
contradiction finishing the proof.

By the same way we obtain

8. T heorem. Let X be afirst countable locally separable space, (Y, rj, t2) a
bitopological one such that r2 is regular with respect to T\ and (C(Y, r2),f2) a
first countable T\-space. Let F,F*: X-+Y, £<il be multivalued maps with
values inC(Y, r2) and F=f2—éir1r; F{. If P* are upper Ti-semicontinuous, then:

<

C-(Cr)=n U C~(Fa,T2)=U flI
a<il a<fi
9. Corollary. Let X be afirst countable locally separable space, (Y, r)

a locally compact second countable T2-space. Let F,F*: X —»Y, £< fl be

multivalued maps with compact values and F —f —1i<mI Fe.
I<i

(a) If P~ are lower c-continuous, then

C+(Y ,r)=f| 1J C+(Fy,r) —(J f) C+(Fa,r).

£<17 a™£ £<17 a>£
ct<17 a<i7

(b) If Ft are upper c-continuous, then



CONTINUITY AND TRANSFINITE SEQUENCES OF MAPS 311

C~(F,t)= n U C-(Fonr)= U f) C~(Fc,t).

a<il a<i)
Proof. Letusconsider the topology rc= {W £r :y\LU is r-compact}U

U{0}. Ifaset ACY is relatively r-compact, then A= A |, where A
denotes the rc-closure of A. This fact implies that in the bitopological space
(Y, tc, t) the topology r is regular with respect to rc. Under assumptions on
(y,r), (Z(y,r),f) is a first countable Ti-space. Moreover the lower (upper)
c-continuity means the lower (upper) rc-semicontinuity; thus the conclusions
simply follow from Theorem 7 and 8, respectively.

Now let £be a normed space with the norm topology rand the weak to-

pology tw. Since for each open ball K we have K = K* where is the
Tvclosure of K ; in the bitopological space (E . tw, t) the topology r is regular
with respect to tw. Moreover the space (Z(Y, r), f)is T\ first countable. So for
upper or lower weakly semicontinuous (i.e. r,,,-semicontinuous) maps we have

10. COROLLARY. Let X be a first countable locally separable space and
(E,tw,t) a normed space with the weak and the norm topology. Let F,F":X—
—*E, £<il, be multivalued maps with compact values and F =f —Ilim F"

(a) If P are lower weakly semicontinuous, then
C+(F,t)= fl U C+(Fa,r)= U p C+(Fy,r).

£<n a>t £<n a>t
a<0 . . a<fi
(b) If P are upper weakly semicontinuous, then

C~(F,t)—P| U C~(Fa,T)= U P C-(Fa,T).

t<n a>t ~<ii a>c

a<ii a<il

Let X, Y be topological spaces; a multivalued map F: X —py is said to
be upper (lower) quasi-continuous at xq£ X if for each open set V CY with
F(xo)cU (resp. F(xoXiy 770) and for each neighbourhood U of xqg there exists
an open non-empty set U\CU such that F(x)cV (F(z)ny”0) for x€U\,
[6, 8]. F is called upper (lower) quasi-continuous if it is upper (lower) quasi-
continuous at each point. If / is a single-valued map, then upper and lower
quasi-continuity coincide with quasi-continuity defined by Kempisty [4].

11. Remark. Theorems 7, 8 and Corollaries 9 and 10 remain true if the
upper (lower) semicontinuity of Fj is replaced by the upper (lower) quasi-
continuity with respect to suitable topologies.

In particular for single-valued maps we obtain

12. Corollary. Let X be afirst countable locally separable space and
Y a first countable T"-space. If fA: X —»Y , £< {, are quasi-continuous
maps and f = lim fa, then
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<Y uom Hw

a<i) at<Q
where C(f) is the set of all points at which f is continuous.

Finally let us observe that the last result is not true for usual sequences
(even for uniformly convergent sequences) of real functions.

13. Example. Let us take the functions R —R defined by f(x) =
= 0 for each x £R and

1 00 00
= fora€ U [22k+ 1JU |J [-2k, —2k + 1]
n k=0 fc=1
fn(x) —< © o
0 forx GkU (2fc —1,2Kk) Uk(Jl(—Zk —1, —2K).
=0 =

Then the /,,’s are quasi-continuous functions, fn~*f uniformly and C(f) €
(0 0]

t n u cum).
n=l m>n
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ON THE LINE METHOD APPROXIMATIONS TO THE
CAUCHY PROBLEM FOR PARABOLIC
DIFFERENTIAL-FUNCTIONAL EQUATIONS

Z KAMONT

Abstract

The initial value problem

Dxz(x,y) = f(x,y,z(x,y),z,Dyz(x,y), Dyyz(x,y)), (z,9)€[o,a] x Rn,
z(x,y) =w(x,y) for (x,y) €[-r0,0] xRn,

is treated with the longitudinal method of lines. We consider a general class of differential-
difference schemes corresponding to (i)

Dxzlaix) = <t>hx 3 z(m\x), z, Azim\x), A(™ (M™ (X)),
(i) Xe [o,a], meZ,

= Ifi*M\x) for x € [—r0,0], meZ,

where A and A~ are difference operators. The aim of the paper is to give sufficient
conditions for the convergence of the sequence {u”~} where u/, is a solution of (ii), to a
solution u of (i). We prove that if the method (ii) is stable and satisfies a consistency
condition with respect to (i) then it is convergent. We assume that / and <h satisfy
the Volterra condition. The proof of the convergence is based on theorems on countable
systems of differential-functional inequalities.

1. Introduction

Let us denote by C(X,Y) the class of all continuous functions with do-
main X and range in Y\ X, Y being arbitrary metric spaces. Let E =
= [0, a] x A", = [90,0]x Rnwherea>0,r0” Oand fi= Ex RxC(E*U
UE,R) x Rnx Rn. Ifz: E UE—R is a function of the variables (x,y),
y —{y\i ® >Jn)> and there exist derivatives Dyiz, Dyyrz, i—1,... ,n, then
we denote Dyz = (Dyiz,.. .,Dynz) and Dyyz = (Dyiyiz, Dy*y"z, ... , Dynynz).
Assume that f : il =R and u: E(°) —»R are given functions. We consider

1980 Mathematics Subject Classification (1985 Revision). Primary 65M20; Secondary
35K15, 35R10.

Key words and phrases. Differential-functional inequalities, discretization with respect
to spatial variables, discretization error, consistency condition, stable methods, Volterra
condition.
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the differential-functional problem

Dxz(x,y) =10, y, 2(x,y), z, Dyz(x, y), Dyyz(x, y)),

(1) z(x,y) =u;(x,y) for (x,y)eE"0).

For (x,y) GE we define H[x,y\ = {(t,s)= (M i,... ,s,,):tG[-r0,x], |s,| 4
< |j/,|fori=1,... ,n}. Assume that the differential-functional problem (1) is
the Volterra type,i.e. f(x,y,p,z,q,r) =f(x,y,p,z,q,r) for (x,y,p,q, r) GEx
XR XRn XRn, z,z GC(.EM)UE, R) and z \Hxy]—"\H[x,y} The problem (1)
contains as particular cases, initial-value problems with a retarded argument.
Differential-integral equations can be obtained from (1) by specializing the
operator /.

The method of lines for partial differential equations consists in replac-
ing spatial derivatives by difference expressions. Then the partial equation
is transformed into a system of ordinary differential equations. The line
method approximations for nonlinear differential problems of parabolic type
were examined in [8]-F10], [12], [14]. The monograph [14] contains a large
bibliography. The line method is also treated as a tool for proving of exis-
tence theorems for differential problems corresponding to parabolic equations
[11], [13] or first order hyperbolic systems [4] (see also [15], [16]). A simple
example of the line method for nonlinear differential-functional equations
was considered in [3].

We introduce a general class of differential-difference scheme correspond-
ing to (1). They are characterized by increment function 4 and difference

operators A = (Aj,... JA,)), A= (A",... ,A™). The main problem
in our investigations of a general class of line methods is to find such a
differential-difference scheme which is stable and satisfies some consistency
condition with respect to (1). We prove that if a nonlinear differential-dif-
ference method of the parabolic type is stable and satisfies a consistency
condition with respect to (1) along solutions of (1) then it is convergent.
The basic tool in our investigations are theorems on countable systems of
differential-functional inequalities. In the first part of the paper we prove a
comparison result for these systems. It will be a generalization of an ade-
quate result from [8] where an initial value problem for a parabolic equation
in two independent variables was considered. If we assume in our theorems
that the right-hand sides of equations do not include the functional argu-
ment, then we obtain more general theorems than those results in [8], [12],
[14]. Existence, uniqueness and convergence properties of the line method
approximations are investigated under the classical assumption that the ini-
tial function ui: E  —*R satisfies the condition |u(x,2/)| < const exp[5]]y||2],

(z,y) GE(°\ where || | is the Euclidean norm in Rn.
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2. Differential-difference inequalities

The following assumption will be needed throughout the paper.

Assumption Ho- Suppose that the sequence g = {£>}"0 satisfies the
conditions: _

1° QG for i —0,1,2,..., R+ = [0,-foc), Qis strictly monotone in-
creasing and |Earv?<)£>’: -(-o0,

2° there exists b GR+ such that for i=1,2,..., we have

0.01+1- 0.-1) A b>

2 0i(Ri+i ~ 2pi + 0i—4) A b

We define a mesh on Rn in the following way. Suppose that Assumption
Ho is satisfied. Let h > 0 and

3 —hpj, j—0,1,2,..., i—1,... .+,

N ?) . . .

v =~hBj, j=~1,-2,..., 7=1,.. T
For rn= (7771,... ,7h) where 777, 7= 1,... 77, are integers, we define 7/(m) -
= with j/-m) given by (3). Let Z = {777= (w7i,... ,777,):
m=0,£1,+22,... forj=1,... 77} and Eh = {(x, x G[0,a], MGZ},

Ho = {(x,j/(m): x G[—T0,0], ®GZ}. If 1" y< 77and me Z then we denote

j(T77) = (7771, . .. 1,7773+1, ... | 777,),
-j(777) = (777i,... TR _i, T, - 1,70+1, ..., 777.).

For a function z: E” UEh —R we write z m\x) = z(x,y"), (x,y") G
GE ™ UEh- In order to replace spatial derivatives by difference expressions
we introduce the operators A=(A1l;..., An) and A(Q=(AjA A", ..., AL)).
If 22 E® UEh—R then

@) Akz("™)(*)= (y;m,+1) = i/im- 1)) “1 (z(("*)) (x)-2¢"(")(X))

i=1,... 77

and

G)  AL22m)(") = AImzZWnm(x) + Bjm)zm\x) + ¢ H 2H("*))(x)5
7=1,... 71,

where
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Mnm>=2 (»'m,+,) - (s'im+1) - 9im~1)" 1.
(6) sjm)= - 2 (yjm'+i> -ytmhy
CM =2 Pyrt-vy' (e yl7 -1

For 2: E~ UEh —A we write Az(m)(x) = (Ai2(m)(x),... ,Anz"m\x)),
A(2z(m)(x) = (Ajrz(m)(x),... , Az ""x)), (x,y(m)) £ E~ UEh- Let
Ec(Eji°\ R) denote the class of all functions 2 defined on E * taking values

in R such that z(-,y”) £ C([-ro0,0],A) for m£ Z. We shall use vectorial
inequalities, with the understanding that the same inequalities are satisfied
between their corresponding components.

Assumption Hi. Suppose that
1° Ch GEQE™\ R) and there exist constants A, B £ (0,+00) such that

|C/(x,y(m))| M A exp[H]li/(m)||2], x € [T0,0], m £ Z,
2° the positive constants a, E, L, C, D satisfy the conditions

D>C if n=1,2 and D> if n>3,
C>B, E>D and a=(AEL)~I.
We define for (x,y) £ [0,a] x Rn

_ _ C\y\2 |
) fl(x,y) =(1 —ADLXx) Iepo  ADLxi"
w(x,y)=g(x,y) exp -"P(y) +iLx"
where
P(y) = fA’C92+n yeRn,
(8)
nE n2
7

=1+ A(E-D)+ T

We will use the symbol EQ E » UEh, R) to denote the class of all functions
2: E A UEh —#R such that z(-, y(")) £ C([—tq,a], R) for m£ Z. Let T/, de-

note the set of all 2 £ Ec(Efi UEh, R) such that [z(x,y(m))| <
< A0 exp[C||2(m)||2], x £ [*0,0], m£ Z, for a certain Ao £ R+ and

S.p”Wn% :x£[0,a], mE Z >< +00.
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We denote il/, = Eh XR XT/, XRn XRn and 70= (0,60), b0> 0. Assume that
for each h e Iqgwe have < 1l/, =»R. We consider the following line method
for the problem (1)

Dxz"m\x) =M x, I/(m), 2(m)(*), Az<"*)(x), A(2M m)(x)),
9) xe (0,a], me Z,

m\x) =c[m\x), xe [—0,0], meZ.

If x e [0,a], me Z then we denote 77/[x, m] = {(f,y(ml): te [Jo,x], m=
=(mi,... ,mn), Im,| <|m,|, i=1,...,n}. The function <, ii/, =R is said
to satisfy the Volterra condition on i1/, if for x e (0,a], me Z, z,z€ T/, such
that zZ\Hh[xM=z\Hh[xm] we have $a(x,J(m),p, X, g, r) = Ea{x, y(m\p, z,q, r)

where (z, y(m\p, q,r) e Eh XR XRn XRn. For a function ze T/, we define

lZIIEL = max {I*(i, 2(m))!: (t, p(m)) € Hh[x, m]| .

Assumption H2. Suppose that the function < il* —R of the variables
(xX,¥,p,z,q9,r), q=(qi,... ,qn), r= (»T, ==+, t,,), satisfies the conditions
1° for each me Z, (p,gq,r) e R XRn XRn, he lo, we have
e, y"m\p, z,q,r) £ C([0, a], R) where z 6 T/, and there exists a positive
constant 77such that
n
A(z,y,P,z,q,r)~ A(x,y,p,z,q,r) P~ Tlr,-r.) on 0h
«1

where r > r,
2° ([Ehis nondecreasing with respect to the functional argument and there
exists Lg> 0 such that

\<F>h(xy, p, z, g, r) - $A(X, ¥,p,z,qr)| <

(10) 3
MLO p- p\+ Wz - %1113+ i_t,I Io*  o<I+ tEI Ir" «
1= =

on fi/, where y = y(m\ assume that L > 2Lgq,
3° |<>Ax2/(m),0,0,0,0)| ~ A exp[5]lj/(m)]|2], (x,j/<m)) 6 £/,, where A, B
are the positive constants from Assumption Hi.

Remark 1. It follows from (10) that dhsatisfies the Volterra condition
on Il/,.
We define fora >0
u(x,y(m)=a(l + x)ip(x,j/(m)) for (x,j/(m))6 Eh,

(h v(x, y(m) =atn(0,y ) for (x,y ") e
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T heorem 1. If Assumptions HO-H2 are satisfied then there exists 6>0,
8=28(C, D, E, T,L0, g) such that for 0 <h <8 we have
(i) the differential-difference problem (9) has the quasi-monotone prop-
erty,
(if) there exists a > 0 such that the function v given f&/ (11) satisfies the
inequalities

Dxv(m\x) > Eh (x, yam>v(m\ix), v, Av m\x), A<V m)(x)) ,
x6(0,0], meZ,

(iii) if the functions u,u 6 T/, satisfy the initial inequality u"m\x) <
A u(m\x), x €[—0,0], Me Z, and the differential inequalities

Dxu™m\x) < 4k (x, y(m\ u(m\x), u, Au”ix), Aru(m(x)) ,

(12) Dx® m\x) ~ <k (x, y(m\ &"m\x),d, Aa(™)(x), A(Qd(m)(x)) ,
x€(0,a], meZzZ,
hold then u(m)(x) < i*m\x) for x e [0,a], me Z.

P roof. Suppose that x € (0,0], M€ z, z,ze T/, z(m)(x) = j(m)(x) and
z(m)(x) » zam)(x) for me Z. Let K = sup{pl+i— :i=0,1,2,...} and
8= Then for 0< h <8 we have

Shx,y(m\ » m\x),z,A*m\x ),A * mx)) -

<th X, y(m\ z(m\x),z, A z"(X), A2 (X)
n
> AX<F(M»(X) - *«en(*) + F-e<Men(*) - xH ™)) (x)]x

which completes the proof of (i).
Now we prove that

L 1Dxw (x,y)-"j Dywytw {x,y)-Y J\Dyiw{x,y)\-w{x,y) (w(x,i/)) 1>
«=1 =]

(13) > L IDxg(x,y)- I « yyg(x,y)ug(x,y)) x>

«=1

>2(2D - nC)+ 4C|lj/|[2@>- C) >0,
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where (x,y) £ (0,a] XRn. It follows from (7), (8) and from the estimation

DyM *y) _ _JCy.
w(X,y) \ —ADLx 2

! >0 for (x,y)£(0,a] x A",

AC

1—ADLx P(y)
that it suffices to prove (13) on (0,a] XA". It follows from (7), (8) that

n

{w(x,y))-1[1 - 1Dxw(x,y)~Y ] Dy.yMx, V)~
=1

n
~ A2 \Py,wixiJ)l - w(x,if)] =

1—1
n

(</(*,y))”I\L~IDxg(x,y)-"2 Dy.y,9(x,y) +

(14) L1
+(ff(a:,y))‘1i_i Dv.9(x,y)[Dy,P(y) - 1]-
E (1G».C0O) - if - 20,,*A(inN} +7 - 1+]j,
- (x,j))G(0,a]x A".

Since

t-t2(t2+12) (,t£(0,+00),

then we obtain

12 Dytg(X.y)[1 - DViP(y)\(g(x.y))

(15) 11 ADLX’
(x,y)e (0o,a] x A".

It follows from (8) that

(16) [1-DV,P(y)}2-2DytyiP(y)<n +1,  y£A" *=1,. ,n.

Using (14)—€16) we obtain (13).
We prove that to every £> 0 there exists a <G, ij = <5i(g, C, £), £, p), such
that for 0 <h <Si we have

AT, ym>) - DLg(x, Um)l's (1 + I 2) 1(%,

(17 .
xe(0,a], mf£z, i=
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and
A\?g(x,yW)-D yiy,g(x,y{m)
(18)
<E |+ @my2 9(x,y(m),  xe{0,al,meZ,i-I,.. ..n
Let
CE B C

C=E~D' ") =rr ADLx
Suppose that m, > 0. Then we have

A5(x,SW) _ DiHg * y("0)] (g(x, ,,M))"1=

= (2/im+1) - 2im,_1))  {exp[*(X)[(t/km,+1))2- (2/im,))2]]-

—ofNXIE:m-D) -(EIm) I-2eoyim) ~
<(1+xM*) l),’(m,+i) _ 2y(mi) + yj-1)] + 2XT,(x)y\mi\
*= | ees .
where 0 < x < 1and h satisfies the condition
(20) A2+ —Qi-i) = I°g(l + X)> *= 1,2,
In a similar way we obtain
|A,-£f(z,2(m)) - Dyig(x,y{m)\(g(x,y(m)) 1<
@ aaxye T TSBEITYED )|

t=1,..., n, *6(0,0], meZ.

Now, conditions (2) and (21) imply (17) for sufficiently small h. We are
going to show (18). It follows from (5)-(7) that

a3y ‘ral)] (ilix =

2 )@p| 1) -(srim'Y)2) -

Cfomy) o my = . s s P
HVi -V ) expy*)((im-i)i- (L m))i)!

—29(x) —4(g(x))2(yjrmn") 2.
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Let 0< x < 1and assume that h satisfies (20). Then we have

4 )0(z.s(m|) - «*, g(m)f1S
+ *»|+
+(1/1m +1' - + (K7 * - jG—» A

+ y(mi+|) -VI(m’) y,(m,) ) yjmi—l) +

thxbIm' llstm+1) - ii-> ]+ xdi= "- +

+4xc2[j/im)|2, *=1,— ,n, meZ, xe(0,a].
Now, Assumption Ho and the above estimations imply (18) for sufficiently
small h.
It follows from (17), (18) that for any e > 0 there exists €@ > 0 such that
for each h with 0 <h < & we have
(23) [Au;(x,.2/(m)) - Dy,w(x,y{m)I(w(x,y")) 1<e(l + 2fm,)),
i=1,...,n, xG(@,a], m, >0,
and
(24) Aii)w(x’y(m)) - Dv.vMx,yim)) (w(z,j/(m)))_1 < £(1 + i/im,))2,
i=1,..,n, xG(0,a], m->0.
Now we prove that there exists 6 such that for 0< h <6 we have
Oxtn~x) >LL<m>(x)+J2 |A.u;(m)(x)| + Aj2u;(m)(x)I,
i=i i=i
m€Z, xG(0, a].

We define d = min(2(2D - nC),4C(D - C)), £\ = |, £= min(£0,£i) where
£0 > 0 satisfies the inequality £gH+ e0(2n + 1)4d - 4d2< 0. Then there exists
S* > 0 such that estimations (23), (24) hold for 0< h < 6* with the above
defined £ From (13), (23), (24) we have form->0,i=1,... ,n

£, Jm)W e Wlm)W ' (U>(m)(*))

(25)

-(Ltn(rd) (x) r 191 tn(m)(x) + |15_£A M) - v A )] (M)(X)) " 1+

n

+EIA IV -Ax) - Dy.tn*HxAinWix))“1<
i=i

< liM)I2(E - d) + [li,(m)||3 ~ +2En- d <0,
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which completes the proof of (25) for to, >0, i=1,... ,n. In a similar way
we prove (25) for m € Z.

Now we prove (ii). It follows from (7) and from Assumption Hi that
there exists a > 0 such that

(26) tn(m)(0) > A exp [5]|t/fn)||2 m 6z

Using (11), (25), (26) and Assumption H2 we obtain
Dxv*m\x) =a(l + x)Dxw'm\x) + aw*m\x) >
>LOov(m\x) + LOa(l + z2)exp - — +"Lx +
i it

IA-im>@)] + L™ [A Ru(m»(X)| + au;(m)(0) >
i=l i=l

>L0 CSWHMSLHE iax(,(i+E. i4 2w (i +
I—+ 1—+
+A exp 5lli/m2 >
> [efhx ym\ VA ), v, A A rar(i), AQRM m)(x)) —<B(E Ym0, 0,0,0)]+

A-Aexp B\W{m\2} A M Ay (Tn),

vim\x),v,Avim\x ), A"2um'(a;)), a?€(0,a], m¢€7Z

which completes the proof of (ii).
We define

(C + D)\W\\ 2 ex _
2(1-4 DLx) P -2P(y) +iLx
(x,y)e [0,a XRn,

w(x,y)=(1- ADLx) 1lexp

and

w(x,yym> ui(a:,i/'mJ)
Let < be chosen such that for 0 < h <60 we have
n n
DMmx) >L[Wm)(x) +Y [Aw(m)(z)| +Y
(27) =1 =1

mEZ xE£(©al,
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and
(28)

*(«+ 1-ft) ®«"»(*) >
We define ™ (j) = (™) - £f(")X), (x,y(m) G Eh, and Mp =
= max{F(m)(x): xGJ[0,0], m —(mi,... ,m,), Im,| <p for i=1,... ,n}
where p is a natural number. We prove that Mp<0 forp=1,2,.... Let us

assume that there exists po and h G(0, £0) such that M~ > 0. Then we have
Mp MR >0 for p” po- We prove that for each p >po there exists xp G

G(0, a] and j, I <j <n, such that Mp= V" m\xp) and m =(mi,... ,rrij-i,
p, rrij+1,... ,mn) or m = (mi,... ,m”-i, —p, mJ+i,... ,mn). Suppose that
there exist p>poand m=(mi,... ,m,), |m/| <p fori=1,... ,n, such that

0< Mp= F(m)(xp). Then we have
(29) DxV A (xp)Z 0
and
V(mxp)- V2 \xp)>0, V~A(zp)- y(-"m»(xp)>0,j=1,..,»,

where for each j, 1<j <n, equahty holds in at most one place. Let
u*(t,j/(m)) = max{u(i, j/(m)),ia(i,2/(m))} for (f,y(m)) G Hh[xp,m] and
U*(t, 3(m)) = u*(t,y*)(w(t, j/(m))) 1 where fG[O,xp], m= (mi,... ,mn),
Im,| <pfori=1,... ,n. Since A(2W m)(x) > 0 and

AgVm>(xp)- ArUAXp) - VIm\x ppw(m\x p) =

=AfrwArixp) [*(G(m))(xp) - VA (xp) +
+CPw”-jA \ x p) [v(-,(" »(ip) - V™ \xp) <0,
J: !’n.o , &,

then
£>x~(m)(Xp)W(m)(xp) + Dxw A\ x p)VAm\x p) =

= Dxv,(™\xp) —Dxv,(™\xp) £
A [Me(*p, uW (xp),u\ Aun(xp), ArNIXp))-
-<M *p, jl(firsw(iirc(xp), tt*, Ait*(Xp), A(Qu(aip)+y M (Xp)A (QlINXp))]+
+[0fc(ip, 2(;h), R(ii1)(xp), u*, Au<~(xp), A(2)G " (xp)+

+y M (Xp)A <2)uI<™(xp))-
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-<t>h(xp,y ™ 0" (xp), U,Ald”(xp)A U ~\xp)] <

< - 0 [ Rfingi<( )(xp) (y * (xp) -y ((sD))(xP))+

«=

tepW -.2) (xp)(vGin(xp) -y (. (f))(xp)]+

+LOAA (X AT INX,,) + MV rC(fir (xp)ALlT;(fin) (xp) +

=1

HZY(M)XPALY(M)@p) + £ VA \x p)AL-TW A\xp) .

The above estimation and (27) imply

DXV ™ (xp)w™(xp) I ~V{,M)(*p))+
i=i

+Cfm™ (- (M) (xp) (F(M)(xp) - y (- (M) (xp))]+
n
+T£(V ™ (xp)- Va™»(xp))|AIZ(™)(xp)[+

1=1

n
+LE w(-“(EN)(XP)[(y (Ixp) - y(*(5m(xp))+

«1

+(F A (xp)- VCMOp)Iird+1) - y p - )-1.
Then we have from (28)

m('(")(Xp) (hW (X p)_y('W )(X p))X

DxV(m\x p)<,Y,
xV(m\x p) it w N (X Pp)

N 2LvA-iM \ x p) 27]
e(=)ee  Jim+) -

+E wr 1 'sA vISIIM - v< =™ \*p))x

W (Xp)
2n
x L- (1) (mi-1)
Vi -Vi
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which contradicts (29). Thus we see that for each p > p0there exist xp £ (0, &]
and j, 1<j " n, such that Mp=V"m\x p) and to= (toi,... ,to,), |toj| = p.
Since u, U £ T/, then there is Qo> 0 such that

_ti(m)(zp) - G(m)(*p) * g(xP.y(m)
P w(m\ x p) = Ow(xp,y(m)
Because Ijmoog(xp,y(m))(w(xp,j/(m)))_l —0, we have Mpo —0 in contradic-
tion to the assumption M* > Q.
Remark 2. If Assumptions Ho-H:2 are satisfied then there exist 6> 0

(E=<SC D, E, 7,Lo, p)) and a >0 such that for 0 < h < 6 the function

v(x, y(m)) = - aw(0,y(m)) for (z, £e]°\

v(x, t/"N) = —a(l + x)w(x, 3/"") for (X, £ Eh

satisfies the differential-difference inequalities
(30) DxvM\x) <4&h(*, Gm)(x), v, Avr\x), Arv2r\Xx)) ,
x£(0,a], tGZ

We omit the simple proof of (30).

3. Stability of the line method

Theorem 2. 1fAssumptions HO—H 2 are satisfied then there exists ho > 0
such that for hf Iq= (O,ho) we have
(I) the initial problem (9) has exactly one solution U/,€ T/,,
(i) ifze Th, 74~ 0 for h £ 1q and
|[C<m)(x )-~m)(x)|<7Au/m)(0) for x £ [—r0,0], m£ Z,
(31) \Dxz"m\x ) — <t>h(x, y"m\zAm\x),z, A*m*(i), A*2" m~"(i))] <

<‘'yvhw (m\x), x£(0,a], mez,

then
(32) ui,m)(x) - z<"*>(*) < Ih(l + x)u;(m>(x), x £ [0,a], m£ Z.
P roof. We define the sequence {u,}°I0, u;: UEh —R, as follows:
(a) t>0(z,y ) =v(x,y(m) for (x,j/(m) £ E" UEh where v is given

by (11) with a satisfying the assertion (ii) of Theorem 1,
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(b) if Vi, i >0, is a known function then n+i | (= C, and n,+i is a
solution of the problem

Dxz(mix) =ah (X, d"*), z2an)(x), A NN ), vz, v rmix))
(33) xe[0,a], meZ,
z(mo) =c(™\o), meZ,

where U[z, n] = (Vi[z,Vv,],... ,vn1z, n]) and

vitz, n](m)(x) = Aduij(m))(x) + 8z ~xx) + <>H (M))(x),

j= n.

Since the right-hand side of (33) is Lipschitz continuous with respect to z*m\
there exists a unique solution of (33) on [0,a] for every m EZ. Then

we have n-EEQE”™ UEh,R) for i—0,1,2, Using a simple theorem on
differential inequalities ([2], [5]-F7], [14]) we get from the assertion (iii) of
Theorem 1 (see also Remark 2) and from (33) that

(34)  G(m)(x) S u,Nj(x) < vimix) <i/m)(x), x6[0,a], mEZ

Consider the sequence “or a “xed m e Z. Since the sequences

{t,H}.=0 are equicontinuous on [0,a] for every m e Z it follows from (34)
and from the Arzela-Ascoli theorem that there exists u/, E T/, such that

UN\Fw=Ch and wm)(x) = lim ufm)(x)

uniformly with respect to x E [0,a] where m EZ. Considering the integral
equations corresponding to (33) we get that u/, is a solution of (9). The
uniqueness of a solution of (9) follows from the assertion (iii) of Theorem 1,
and the proof of (i) is complete.

Now we prove that

(35) «i"/\(X) Namax y + 7/,(' + X)tn(m)(x), X G[O, a], mE Z.

It follows from Assumption H2 and from (31) that the function z(x, y(m)) =
= /A ml(x) + 7/,(1 + x)wW (x) for (x,y(m)) EEh and z(x,y *) =z(m)(x) +
7/,w(m)(0) for (x,t/m)) EE ”* satisfies the conditions

D*z<m>(x) >fa (x, 2%%), zam)(x), z, Az"\x), A"z~ x)) +

H4>h (x,2/(m),z<m)(x),z,Az<m)(x),A(2z<")(x)) -
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4h (=, Y(M), {m)(x), z, Az<m>(x), A(Dz(")(x))]+

+7fc(l + x)Dxw(m\x) | 4n (x, y(m\zIm\x), z, Az"m\x), Az~ X))
n n

Lo7/»(I + *) [2ui(m)(x) + £ |AR;(m)(x)| + /\ . AgV"r*)]+
i—+

+7/i(1 + x)Dxw™m\x) »
>/, (x,ylm\z (m\x),z,A~z(m\x),AW~zIm\xj), x€(0,a], meZ.

Since ur"x) N z(m)(x) for x € [90,0], m£ Z, and u/, is a solution of (9)
then we have (35). In a similar way we prove

(36) ’m\x) - 7a(l + x)u/m)(x) <u”™\x), x6[0,a],meZ.

Estimations (35), (36) imply (32), which is our claim.

4. Convergence of the line method

In this part of the paper we prove that if the line method (9) is stable
and satisfies a consistency condition then it is convergent. Let T denote the
setofall z6 C ( E UE,R) such that |z(x,y)| < Ao exp[C]|ly||2], x E[-r0,Q0],
y£ Rn, for a certain A0 € R+ and sup{|x(x, " ("(x,1/))-1: (x,y) e E} <+00.

T heorem 3. Suppose that

1° Assumptions Ho —#2 are satisfied,
2° f eC(Q, R) and there exists an M >0 such that

n n

on il,

3° z is a solution of (1), z€ T and there exists 7, 7~, h 6 10, such
that

1—ADLXx
(37)

Dy,yiz{x, YW) - A<Q)z(x, j(™) < 7<) - ADLx)-lexp\B\\yA\\Z

1—ADLx\"’
xE[0,a], meZzZ, t=
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and Lim 7~ =0,i=1,2,

4° the following consistency condition holds: for each h£ lo there exists
7°°) > 0 such that

hh AM r)« ) -

X £[0,a], m€Z,

where zh =z \EmuEh and lim 7°0) = 0,

5° for each h £ lo there is -77,> 0 such that A@QW =0 and

|w(x, i/(m)) - Ch(x, y(m))| < 7/»™(0, 2(m)), meE£Z x£[-r0,0]
6° Unh is the solution of (9) on E * UEh-
Under these assumptions there exists 7* >0, h £ lo, such that lim 7/,= 0 and
(38) - um*0)| N 7L+ x)¥m(x), x £[0,a], of Z
P roor. Weapply Theorem 2 for proving (38). Since
IDxz{m\x)-(f)h (x,y (m),jj,m)(a:),Jh, Azjm)(x),A (24 m)(a;)) | *
< 1/ (*,2/(m), I<m)(x), z, Az*m\x), A " m\x)) -
-f (%, V(m\ 2°m\x), z, Dyz"m\x), Dyy* m\x)) |+
+ 1/ {x,y(m "~ m\x),z, A m)(x), A(2% m>(x)) -
~<th (*, y(m A\ x ), 2 h, Az<™>(x), A(2)jd,m)(x)) 1<
it
m [MA J¥*>(F) - Dy, ZN\x)I+ £ |AL2V ">(X)- Dm * ”\x) +
1=1 i=I
+u?(x,2/(m))7[0), x£[0,a], mE Z,

it follows from the conditions 3° and 5° that there exists 7/, * 0, such that
lim 7/, = 0 and the estimations (31) hold. Now we obtain our assertion from

Theorem 2.
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Remark 3. Let us assume that 1: UE —R is a solution of (1) such
that i—1,... ,n, are continuous on E and there is Mo ~ 0 such
that "

B\\y 1
<
Dy y,z(x,y)\ <MOexp 1 DLx {x,y)eE.

Then there are 77, 7"2A h G/o, such that rl]iin‘)?" =0, i—1,2, and (37)
holds.

Remark 4. Let S= (s =(si,... ,sn):s; G{0,1} fori=1,... ,n}. Sup-
pose that z GEQ E”* UEh, R). We define Whz: E UE —»R in the follow-

ing way. Suppose that (x,y) GE(®) UE. Then there exists m GZ such that
y(m) <y < y(TF+1) where m + 1= (mi T 1,... ,m,, + 1). We define

W/,2)(x,y) =3 V. m+s)(X)[j[ (j/im+1) - X
os e
i=i -
1~(yi-y!'mi)(y!m,+1)-y I'mi))*

Then we have ([1]) WhZ GC (E” UE, R). Suppose that /: 11 —»R. It is easy
to formulate sufficient conditions for the convergence of the line method (9)
if €h(x,y,p,z,0q7r)=1f(x,y,p, Whz,q,r) on Il/,.

Remark 5. The results obtained in this paper can be extended to weak-
ly coupled systems of parabolic differential-functional systems.
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JOINS OF SOME VARIETIES OF SEMIGROUPS%

SHELLY L. WISMATH

1. Introduction and summary

The problem of describing the join of two or more varieties of semigroups
is not in general an easy one. Viewing varieties as equationally defined
classes, we would like when given equational descriptions of two varieties
to produce a set of identities which will define their join. In this paper we
investigate this problem for joins of various varieties V with the varieties
of rectangular bands, and of fc-nilpotent semigroups. The choice of which
varieties to consider, and of defining sets of identities, has been greatly moti-
vated by the author’s work on hyperidentities for varieties of semigroups ([5],
[6]). The results obtained, while not in themselves particularly deep, have
proved useful in obtaining hyperidentity results for varieties of commutative
semigroups.

Section 2 establishes the notation and terminology to be used, and de-
scribes the varieties of semigroups to be considered. It also outlines the two
approaches, structural and syntactic, to be used in showing that a conjec-
tured set of identities does indeed define the join of two specified varieties.
The next two sections deal with joins of the form V VW, where W is ei-
ther RB, the variety of rectangular bands, Nk, the variety of fc-nilpotent
semigroups, or a closely related variety.

2. Preliminaries

This section describes the notation and techniques to be used throughout.
Our interest in varieties of semigroups will be in terms of the identities they
satisfy; that is, we will view them as equational classes. We fix a countably
infinite set of variables, including x,y,z,w,xi,X2,... ,J/i,32>*->and use
words from the free semigroup on this set. For any word u, |w| denotes
the length of u. An identity is then an equation u = v where u and v are
words. For any set | of identities, we use V{l) to denote the class of all

1980 Mathematics Subject Classification (1985 Revision). Primary 20MXX.
Key words and phrases. Joins, varieties of semigroups, equational descriptions.
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to Simon Fraser University, Burnaby, Canada. The author is grateful for the help of her
supervisor, Dr. N. R. Reilly, and for the financial support received from Simon Fraser
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semigroups satisfying /; if 1 contains only one identity u=v, we simplify

this to V(u —v). A set | of identities is a basis for a variety V if V (/) =V,

and hence all the identities satisfied by V are consequences of the identities

in 1. For convenience we list below the varieties of semigroups to be referred

to in subsequent sections:

A =V (xy = yx), the variety of abelian semigroups.

M —V(xyzw =xzyw), the variety of medial semigroups.

B = V(x2= x), the variety of bands (idempotent semigroups).

SL —V(xy =yx, x2—x) —A (1B, the variety of semilattices.

RB —V{xyz =xz), the variety of rectangular bands.

NB =V (xyzw =xzyw, x2= x) = M fl B, the variety of normal bands.

Nk = V(x\ ... xk = 2fi eeevk)i the variety of A;-nilpotent semigroups. Note
that N? —Z, the variety of zero semigroups.

ANk —V{xy = yx, x\ ... Xk = Ji.. -Jfc), the variety of abelian fc-nilpotent
semigroups.

MNk —V(xyzw = xzyw, x\ ... Xk = yi mwyk), the variety of medial fc-nil-
potent semigroups.

Am = V(xy =yx, xym—x), the variety of abelian groups of exponent m.

Anm = V(xy = yx, xn =xn+rn), the variety of commutative semigroups sat-
isfying xn=xn+m. Note that Aiti = SL, and Ai“m=SL\/ Am-

Bntm = V(xn=xn+m), the variety of semigroups satisfying xn —xn+m.

Mmem= V(xyzw—xzyw, xn = xn+m), the variety of medial semigroups sat-
isfying xn= xn+m. Note that M\ti = NB.

In the next two sections we produce sets of defining identities for various
joins of these varieties. The choice of identities has been suggested in most
cases by knowledge of what hyperidentity instances we have been able to
obtain for the relevant varieties. To prove that a conjectured set of identities
does indeed define the required join, we use two approaches, a structural
one and a syntactic one. Let V =V (1), W =V(J), and U=V(K), where
I,J, and K are sets of identities, and V vW qu. The syntactic approach
is to consider the identities satisfied by V v W. If we can show that any
non-trivial identity satisfied by V v W is a consequence of the identities in
K, then any such identity is also satisfied by U. From this it follows that
UQV VW, givingusu =V v W.

For the structural approach, we show that UQV v W by showing that
every semigroup in U is a subdirect product of a semigroup in V and a
semigroup in W. The following Lemma sets up the machinery to be used in
proofs of this type.

Lemma 2.1. Let V and W be varieties of semigroups, and let C bLe
any semigroup. Suppose that there is a map 0: C —C which satisfies the
following conditions:

1. 0 is a homomorphism;

2. 0 is a retraction; that is, 02=0;
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3. the image 0(C) is an ideal of C;
4. 0(C) isinV;
5. the Rees quotient C/0(C) is in W.
Then C is a subdirect product of 0(C) and C/0(C), so that C is in V VW.

Proof. Let g be the canonical homomorphism from C to its Rees quo-
tient C/0(C). The condition that O is a retraction ensures that the inter-
section of the kernels of g and 0 is trivial. From this it follows (see [1])
that C is a subdirect product of the images 0(C) of 0 and C/0(C) of g.
Conditions 4 and 5 then imply that C isin V VW.

3. Joins with RB

The first type of joins we consider are those of the form V VRB, for
certain varieties V of semigroups. We will use for V the varieties Am and
Ar>m and Nk, MNKk, and ANk, forn, m > 1 and k > 2. A useful observation
is that since Ai>m= SL VAm, and NB =RB VSL, we have A, jmVRB equal
to A,imVNB for all n and m > 1. Petrich has proved in [3] that for m > 2,
A\WVRB = Afi)m. For AntmVRB when n > 2 the structural approach used
by Petrich does not work, and we turn instead to a syntactic method. Also
unlike the n = 1 case, A,,mVRB is a proper subvariety of Mr>m when n > 2,
as indicated by the identity xn~1yx = xn~1+myx used in the next result.

Proposition 3.1. Letn't.2andmt 1. Then the variety Anm VRB is
defined by the identities

Xyzw = xzyw, xn=x"lrn, and xn~lyx = xn~1+myx.

Proof. Let the variety defined by the three given identities be called
W. Clearly AmnVRB C W. For the opposite inclusion, suppose that u=v
is any non-trivial identity satisfied by A, jmVRB. We show that W also
satisfies u = v.

Since RB satisfies u = v, we know that u and v start with the same letter,
x say, and end with the same letter, y say (with x and y possibly the same).
Since An m satisfies u = v, u and v have the same content, and for each letter
Z in this content, either the number of occurrences of z in u is equal to the
number of occurrences of z in v, or these two quantities are both >n and are
congruent modulo m. Using this information we show how to deduce u=v
from the identities defining W.

We first transform u and v into a “standard form” U and v as follows.
Write

U=xaz*“l... ZpRyb and v =xcz\l... Zpye,

where X, 2\,... ,zp,y are the distinct (except possibly x = y) letters appear-
ing in u and v, and if x =y, then b=e= 1. The identities u=0 and v=v
hold in W, just by use of the medial identity.
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If x  y, then from the above information we may deduce u —v simply
by using the identity xn —xn+m. Hence in this case, W satisfies u—v.

If x =y, we have b==e = 1 by construction. Again we may deal with
the “interior” letters , Zp using only xn= xn+m, so we may reduce this
case to considering words ul= xawx and v*=xcwx, for some word w. From
the comments above, either a+ 1=c+ 1, or a+ 1 and c+ 1 are both >n
and are congruent modulo m. If a—c, we are done; otherwise, both a and ¢
are i>n —1and aand c are congruent modulo m, and we have two cases to
consider.

If a and c are both > n, with a and c congruent modulo m, then xa =xc
holds in W, and so does U = v. Finally, suppose that a—n —1 and c>n
(or dually). Then cis congruent to n —1 modulo m, and ¢ may be written
as km + n —1for some k > 1. But then vf = xn~lwx and v' —xkmJrn~1wx,
and vl —v' holds in W by repeated use of the identity xn~1yx =xn~1+myx.
Hence in either case W satisfies u —v and therefore also u =v.

For the remainder of this section we focus on the joins of some nilpotent
varieties with RB.

P roposition 3.2. Let k>3. Then
i) NkMRB =V (xi...xk = Xiy2...yk-iXk), and
ii) MNKVRB -V (xyzw =xzyw,xX...xk=xiy2... yk-ixKk).

Proof. We will call the right-hand side variety from i) Wk. Clearly it
contains Nk VRB. To prove the opposite inclusion, let C be any semigroup
in Wk. Define amap 0: C —#&C by 0(c) = ck, for all cin C. Then it is
easily verified that O satisfies the five conditions of Lemma 2.1, giving the
conclusion that C is in Nk VRB. The proof of ii) is very similar to the
previous one, with the map 0: C —C as before. But now 0(C) is in RB
and C/0(C) isin MNKk, so that C isin MNkV RB.

P roposition 3.3. Letk't. 2. Then ANKkVRB = MNk\IRB.

Proor. IFk—2, ANK= MNKk= Nk, and the result is obvious, so we
assume that k> 3. Since ANkVRB » MNkVRB, it suffices to prove that
every non-trivial identity satisfied by ANKkVRB is also satisfied by MNkV
RB. So suppose that ANk VRB satisfies u—v. Since RB satisfies u —v~u
and v have the same first letters and the same last letters. Thus if both |u|
and |u| are >k, then we are done: we use the identities defining MNkVRB
(from the previous Proposition) to deduce u = v. Otherwise, consider the
case where |u] <k or |u] < k (or both). Since ANk satisfies u —v, there exists
a chain u —Ug—u\ = ... —U( —v, with each step Uj — Uj+1l a consequence
of either xy =yx or ... xk=y\... yk. But steps which are consequences
of the first of these identities do not change the length of words involved,
while steps which are consequences of the second identity can only be used
on words u, of length > k. Thus if |u| <k or |u| <k, then Ju,j < k for all
0=*~f,and in fact the abelian variety A satisfies u =v. Then M —AM RB
also satisfies u=v, so MNk VRB does, too.
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4, Joins with Nk

Volkov [4] has proved that if V is a finitely based variety then so is V VNK,
for k > 2; Clarke [2] has given a method for converting a basis of identities
for a variety V into a basis of identities for V VZ. In this section we try
to extend both these results. For certain varieties V we are able to produce
identities which define V VNk, for all k > 2. We begin with the varieties
Bl m, including the variety B = B\t\ of bands.

Proposition 4.1. Letm” 1 and k™ 2. Let a be the first number >k
which is congruent to 1 modulo m. Then the variety B\ mVVNk is defined by
the identities

xay = xya= (xy)a, xa=x"m+l"a, and x\.. . Xk =(x\ .. .Xk)a.

Proof. Let W be the variety defined by the given identities. First, since
a is congruent to 1 modulo m, xa=x holds in Bi>m and so f2Irn VNK is
contained in W. Conversely, let C be any semigroup in W. Define 0 : C —¢C
by 0(c) =cafor all cin C. Then

1 0 is a homomorphism, since xaya= (xy)” = (xy)aholds in W because
a2 and a are congruent modulo m;

2. 0 is a retraction, since xa2 = xa holds in W\
3. 0(C) is an ideal of C, since for any c and d in C we have cad = (cd)af
0(C), and similarly dca is in 0(C);
4. 0(C) is in 5i,m, since xa= (za)m+l holds in W;
5. C/0(C) is in Nk, since for any Ci,... ,&in C, Cj... &= (ci .. .Ck)aE
0(C);
( %’herefore by Lemma 2.1, C is in 5i,mV NKk.

Proposition 4.2. Let W~ BImfor m> 1 Letk>2 and let a be the
first number > k which is congruent to 1 modulo m. Let E be a basis for
W, with x =im+l in E. Write E = Ei UE2 UE3, where Ex= {x —zm+1},
E2={u=1i)6E: |u|,|u >k}, and E3=E —Ej UE2). Let EJ = (u* = v*:
u=v € E3}, where u* is obtained from u by replacing each letter x in u by
xa, each time it occurs. Then W VNk is defined by the identities in E2UE3
plus the additional identities xay —xya = (xy)a, X\.. , Xk = (xi.. .Xk)a, and
xa —xi”1*1)0

Proof. Note that since xa= x holds in W, VWV Nk satisfies all of these
identities. The proof then follows exactly that of the previous proposition,
using 0, up to part 4. This time we have 0(C) in W, since by construction
0(C) satisfies all the identities in E. The conclusion follows.

Corollary 4.3. Let k> 2, and let W be a subvariety of Bj m for some
m > 1. Then any semigroup in W VNKk is a subdirect product of a semigroup
in W and a k-nilpotent semigroup.



336 SHELLY L. WISMATH

Corollary 4.4, Let W = V(x =x2,u=vV) be . variety of bands. For
k~ 2, W viMcis defined by the identities xky = 2y = (xy)k, x\.. , Xk =
— (Xi .. .gfc)fe, 2fc = 22fc, and either u=v, if both |u| and |u] are >k, or
u* —v*, otherwise, where u* and v* are formed from u and v, respectively,
by replacing each letter x by xKk.

We now give an equational description for the varieties Mremv M Nk
for n > 1. These varieties turn out to be significant in the investigation
of hyperidentities for varieties of semigroups, and the equations used are
motivated by hyperidentity equations. Note that when n » k we have MNk Q
QMnm, and hence Mrsmv MNk = Mn/n, so we now consider the case where
n<Kk.

Notation 4.5. Let k #2 and n,m> 1, with n<k. Sets=k—n+ 1
We use f°r the set of identities

X7 X2 eeeXs = 2]+mZ2 eee2S,

X\VX2XA...XS—X\x2 23 .®.Xa,

n n ” ,n-f-m
% s — s — Ss—1A75 ?

and

2yzw - xzyw.

The special case » — 1 of the following proposition may be dealt with
by a structural proof using Lemma 2.1, but for » > 1 we must turn to a
syntactic proof.

Proposition 4.6. Let m > 1, k > 2 and lA n < k. Then

MnflnV MNk = L (Enm,it).

P roof. Since M, mVA/iv* » it will suffice to prove that any
identity satisfied by Mnjm V MNK is also satisfied by

Let « - v be a non-trivial identity satisfied by MnmVw ~ «, and hence
by both m »wn and m ~ « « Then either « = « is a consequence of medial, and
so is certainly satisfied by P (S,, imijt), or both |u| and |v| are - «. So we
will now assume that « » |u| < |v|]. We will prove that there is a sequence
U= uqg —ui = ...=ur= v Such that each move u, = uJ+lis a consequence of
the medial |dent|ty or the identity 2" = x»+ =, and such that |u,| > « for all
0~ ™. From this it will follow that V(En,m,fc) also satisfies v = v.

We now describe how to produce such a sequence. First, by repeated use
of the medial identity, we may write any word in in a “standard form” . as
follows. Rewrite any string (w\ ... wiy)c in w as ...w\. Then as in the
proof of Proposition 3.3, express the rewritten string as



JOINS OF SOME VARIETIES OF SEMIGROUPS 337

where X, y\,... yp,y are the distinct (except possibly x =y) letters occurring
in the word w; yt occurs at times in w for 151 <p; and x and y occur a and
6 times, respectively, in w, except that if x =y then 6=1and x occurs a+ 1
times in w.

Now by construction M nifn satisfies u =u and v =v, and in fact there are
deductions of these two identities involving only words of length > k. Since
Mn m satisfies u —v, it also satisfies ¥ = t= Also, |u| = |u| and |u| = |u|. Thus
it will suffice to produce a deduction of i = v in Mremin which the length of
any intermediate word is " k.

Consider first the case where x and y are distinct letters. Then we can
write

u—x jf ...ypFy , and v- x ytl...yppy .

Since M,,>msatisfies u = v, we must have at —Q or at and ct both > n and
congruent modulo m, for each 17 i ~ p, and similarly for a and ¢ and 6 and
d. For any variable z in i, the net change in power on z as we go from 0 to
v can then be accomplished as a series of moves of the form ze —ze+m (an
increase) or ze+m =ze (a decrease), for some e >n. It is clear that having
grouped together all occurrences of each such variable z, the moves done to
one variable are independent of those done to another, and such moves can
be done in any order. Therefore we can arrange to move from 0 to v in such
a way that all increases are done first, and then any decreases. Since |u| and
lu] are >k, this guarantees that any intermediate word in the sequence of
moves also has length >k, as required.
The case x —Y is handled in much the same way. This time we have

u=xay°l...ypPx and v —xcy\l... ypPX,

which we will simplify a bit and write as u = xawx and v —xcw'x, where w
and w' are words not involving the letter x. As in the x * y case, we can
always change w to w' using only Mrem identities by doing all the necessary
increases first, then all the decreases, so that the greatest possible length is
maintained. So we concentrate now on the letter x. If a= c, we are done.
Otherwise, we must have a and ¢ both ~ n, and congruent modulo m. So
again the net change in power on x is either an increase or a decrease, by a
multiple of m. If this net change is an increase, we do it first, then change w
to w' as previously described; if the net change is a decrease, we do it after
the change from w to w' is made. In either case we move from i = xawx to
v = xcw'x, maintaining at each stage a word-length > k. This completes the
proof of the proposition.

We will conclude this section with the join AmmVRB VMNk- The
syntactic proof given below combines the arguments used for ArmVRB in
Proposition 3.1 and for Mn<mVVMNK in Proposition 4.6.

Proposition 4.7. Letk> 2, 2<n<k, and m> 1 The variety AnmV
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RB VMNKk is defined by the following identities:

Xi ...Xfc-n+1 = oo Xfe-n+ 0,
EI#2 eeeXk—n-fl= X\Xy eee —-f1A

» ~on _n n+ra

X1l eeoo"fc-n+] —X1eeoxk-n+ |’

and
An_121 eeeyk-nx = Xn_1+m2l ...y k-nx.

Proof. Let v be the variety defined by the given identities. Certainly
AnmVRB VMNKk ~ i7. Conversely, we show that any non-trivial identity
u = v satisfied by A,,im, RB and MNk is als® satisfied by U.

When MNk satisfies u —v, either M and hence U satisfies u=v, and
we are done, or |u| and |n| are both >k. Since RB satisfies u=v,u and v
have the same first letter, x say, and the same last letter, y say, with x and y
possibly equal. Since Anym satisfies u=v,u and v contain exactly the same
letters, and for any letter z in u or v, either the number of occurrences of z
in u is equal to the number of occurrences of z in v, or these two quantities
are > n and are congruent modulo m. Therefore we will transform u and v
into the standard from i and v of Propositions 3.1 and 4.6. As before, Anm
and Mn/m still satisfy u—u and v—v, and |«| = [T and |v| = |i|]. The two
cases, x = y and x~fiy, are handled much as in the proof of Proposition 4.6.
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VARIETIES OF LOCALLY BOOLEAN ALGEBRAS

T. WESOLOWSKI

Abstract

Following J. Plonka (see [10]), an algebra 21=(A; V, A") of type (2, 2,1) will be called
alocally Boolean algebra if (A: V, A) is a distributive lattice and there exists a congruence
~ of 2L such that all congruence classes [a]-*, a€ A are Boolean algebras with respect to
the operations V, Aand '. It was proved in [10] that the class 1(B) of all such algebras is
a variety. In [14] all subdirectly irreducible members of I(B) were described. In this paper
using irreducibles we characterize the lattice of all subvarieties of 1(B).

0. Introduction

Our nomenclature is basically that of [5] and [6]. In [10] J. Plonka defined
a locally Boolean algebra as an algebra 2L= (A; V,A/) of type (2,2,1) where
(A: V,A) is a distributive lattice and there exists a congruence ~ of 21 such
that all congruence classes [a]®, aG A are Boolean algebras with respect to
the operations V,A and ' restricted to [a]*. Locally Boolean algebras have
an interesting application in logic and were investigated from this point of
view in [7]. In [13] a representation theorem for some algebras of this kind
was given.

It was proved in [10] that the class /(B) of all locally Boolean algebras is
a variety determined by the following identities:
(1) identities in V and A which define distributive lattices;
(2) (x7)'=x;
(3) (xVX'Y- xXAX;
(4) (X Vy)AXVY)' = (x AX') V(y AY);
(5) XAJHVXA)LI=(XVX)A(YVyH.

Further, there exists at most one congruence of an algebra 21 = (A; V, A/ )
of type (2,2, 1) which decomposes 21 into its Boolean subalgebras, namely

(i) a~biffaAa =bAblfor a, bGA.

In [14] all subdirectly irreducible members of /(B) were described. To
construct these algebras we used disjunctive and codisjunctive distributive
lattices.
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The notion of a disjunctive lattice is an utilization of a notion of disjunc-
tive poset for lattices. In accordance to the definition (see [3]) a poset (X; <)
is disjunctive if for any a, 6GX, b£a there exists ¢ GX such that ¢” b and
there does not exist in I a common lower bound of a and c. If a poset (X;
has the least element O1, then (X; <) is called disjunctive if for any a,b GX
b£ a there exists ¢ GX\ {0} such that ¢ S b and 0" is the only common
lower bound of a and c (see [12]). A disjunctive poset with the least element,
which is a lattice will be called disjunctive lattice (see [14]). It is easy to
see that a lattice (X;V, A) with zero 0" is disjunctive iff for any a, bGX the
following condition holds:

(i) if a<b then there exists c€ X\ {01} such that c” band aAc= 01-

Dually, a lattice (X;V,A) with unit 11 is called codisjunctive if for all
a, bGX we have:

(iii) if a <bthen there exists cGX\ (11) such that a<cand bVc= 1"

Obviously each Boolean lattice is simultaneously disjunctive and codis-
junctive and a finite disjunctive (codisjunctive) distributive lattice is Boolean.
An infinite pseudo-Boolean lattice is an example of an infinite disjunctive
distributive lattice which is not Boolean.

Denote by DL (CL) the class of all disjunctive (codisjunctive) distributive
lattices. For C\ = (Xi; V,A) GCL and £2 = (£2; V, A) GDL with L\dX2=10
let Ci ®£2=(£1 U£2; V, A/) be an algebra of type (2,2,1) such that (L\ U
U£2; V, A) is the order sum of C\ and £2 (see [1], p. 39) and the operation '
is defined as follows: 1* = 012>0 = 1}* and &' —a otherwise. Denote by 2
the algebra ({0,1); V, A,") in which a Vb=max{a, 6}, a A6= min{a, & and
a'=aforall a, bG(0,1). It was proved in [14] that algebras of the form

(@) £1 ®£2 where C\GCL and £2GDL

and algebras isomorphic to 2 are the only nondegenerated subdirectly irre-
ducible members of /(B). Note that for C\,C\ GCL and Ci,C'2GDL we
have:

(iv) if L'i is a sublattice of C\ such that 1™»
subalgebra of £1 ® £2;

(v) if L'2is a sublattice of £2 such that 0%/
subalgebra of £1 © £2.

For a non-negative integer n denote by 2" = (£?n;V, A) the Boolean lattice
of all subsets of the set {0,1,... ,n—1). Observe that each finitely generated
subalgebra of an algebra of the form (*) is finite, so using (iv) and (v) we
obtain:

(vi) finitely generated subalgebra 21 of an algebra of the form (*) can be
embedded into the algebra 2" ©2m for some n,m> 0; if C\ = 2n for some
n” 0 then 2L embeds into 2n©?2s for some s O; if £2 = 2m for some m >0
then 21 embeds into 2r © 2m for some r > Q.

T heorem 1. Let £ = (X;V,A) GDL. Then for each integer n - 1 the
following conditions are equivalent:

then £X®£2 is a

012 then C\®C2 is a
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(@) |L[>2";
(b) there exist elements do,... ,dn£ L\ {0"} such that doA... Ad,, = 01 and
doA... Adi-\ Ad,+1 A... Adn™ 0" fori=0,1,... ,n.

Proof. It follows immediately from the Kuros-Ore theorem (see [2]).

Theorem 2. Let £ = (L; V,A) £ CL. Then for each integer n't. 1 the
following conditions are equivalent:
(@) \L\ >2n;
(b) there exist elements Co,... ,cn£ £\ {1/J such that @V... Ven=1R and
cOV... Ve, iVve+iV...Ve,/! 1 fori=0,1,... ,n.

Corollary 1. Let £ £DL (C£CL). Then C is infinite iff for each
nt O the Boolean lattice (5n;V,A) is (up to isomorphism) a subalgebra of
C. Moreover, if £ £ DL then 01 = ORn and if CE CL then IR = IR,,.

Proof. If £ is finite then it is isomorphic to 2" for some n > 0. Hence
2n+1 is not a subalgebra of £. Let £ £ DL be infinite and n > 0. Obviously
(1?70;V,A) and (i?i;V,A) are subalgebras of £. If n—1> 1 then we can

use Theorem 1 since \L\ >2n_1. Hence there exist elements dO,... ,d,_i £
£ L\ {O1}such that doA... Adn_i = 01 and all elements e-= doA... Ad,_j A
di+i A... Adn_i, i=0,... ,n—1 are different from O1- Obviously, Aej —
=01 forinj (i,j=0,... ,n—1), SO «0,... ,en-i are the all atoms of the

sublattice L of £ generated by the set {eo,... ,en_j}. Hence £' = (Z/; V, A)
is isomorphic to 2” = (H,,; V, A) and OB = 0jy = ORn. The proof for £ £ CL is
similar.

1. Equational characterization of some subvarieties of /(B)

For an ordinal a <u denote by SE the class of all algebras of the form
(*) where \L\\ = 2“. Symmetrically, if 8 <u then 8£ denotes the class of all
algebras of the form (*) with |22 = 2. If a, R <1j then we denote by sf the

intersection of 8" and S”. Finally, let S" be the class of all algebras of the
form (*). Let us put

(vii) K,, = HSP(Sa U {2}) for a,k <u + L

Observe that HSP(Sq) = B where B is the variety of all Boolean algebras.

Further, HSP({2}) = D where D is the variety of all distributive lattices with
additional unary operation ' satisfying x1= x. It is easy to see that ifa” 0
or B8~ 0 then 2£ HSP(So). In fact, if 2LE for a + 3 >0 then using the
congruence ~ of 21 defined by (i) we conclude that 21/ ~£ D and 21/ ~ has
at least two elements. Therefore, 2 is isomorphic to a subalgebra of 21/~.
Hence we have

(viii) Ka=HSP(Sa) fora,A <u+1land a +R >0.
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Remark. It was proved in [4] that K§=BVD = BxD, i.e. Kq consists
of all direct products 2Ix X 22 of algebras 2Ix GB and 212 GD. Moreover,
varieties B and D are the only proper and nontrivial subvarieties of K°.

For variables x0,xx, ... ,xQwhere 0 < a <u, denote by p(x0, ... ,xQ) the
term XoAx\ A ... Axa and by q(xo,... ,xa) the term Xov X\ v ... v xa. For
i=0,1,... ,alet p,(xo, Xi,... ,xQ) be the term X0A... Ax, X AX,+1 A... AxQ
and gi(xo, X\,... ,xa) be the term Xov ...vX,_ivXx,+iv...vxQ Ifpis a
term of type (2,2,1) then we denote by 0(<p) the term p Ap' and by I(<p)
the term p v ip. Observe that if O(<p)a and 1(<p)a are the realizations of O(<p)
and I(<p), respectively in an algebra 21= (A; v, A/) G/(B) and p is a term of
variables r/0,2/i, <+ ,ya, then for all do, Oi,... ,aa GA, 0(<p)a(do, Oi,... ,aQ)
is the zero and I(<p)a(do, oi, **+,aa) is the unit of the Boolean subalgebra
[{=(d0,dx,... ,da)L of 2L

Let us consider the following identities:

(1°) O(p0(zo,zi)) Al(pi(x0,X!)) = 0(p(xo, X!));

(la) O(po(xo,... ,xa))A ... AO(pa(xo,... ,xa)) = 0(p(xo0,... ,xa))
forO0<a<

(lo) 1(90(a:0, xi)) VO(9i(xo,xx)) = 1(9(x0, Xj));

(1a) 1(90(2:0, «++ ,a:<)) v ... v 1(9a(20, -+, aQ)) = 1(9(a:0, «++ , 2:«))
for 0<a <u.

T heorem 3. (2) Ifa <u then the variety KJ is determined by identities
(1)-(5) and (1Q); _ _ _ o

(b) If a<u> then the variety K" is determined by identities (I)-(5) and
(la);

(c) Ifa,B<u then the variety K« is determined by identities (I)-(5),
(la) and (F3).

Proof, (a) It is easy to see that each algebra C\ ©2° G  satisfies (1°).
On the other hand, if an algebra of the form (*) satisfies (1°) then |Z2L= 1- In-
deed, otherwise there exists dXGL2 such that do= 012< di so O(po(«o, «i))A
Al(pi(d0,di)) = 0(di) Al(d0) = di AdO™ Ui = 0(dO = 0(p(dQdi)).

Let 0<a <u and C\ © £2 be an algebra of the form (*) with IL2] = 2",
Let us take ao,...,aa G li UL2 and put O(po(oo,e+,0a)) A... A
AO(pa(dQ... ,da)) = h. Since p(do0,...,da) = d, Ap,(d0,... ,da)) <
< p,(do,... ,d0) so by (4) we have O(p(dQ... ,dQ)) < 0(p,(dO, ... ,da)) for
i=0,...,a. Hence 0(p(do,..., da))£/>. We shall show that b<0(p(ao, ... , dQ)).

If d- < li xfor some i G{0,... ,a} then obviously p(do,... ,da) < I1i and
Pk(ao,---,aQ < 1L for k = 0,... ,i—1,i+ 1,...  a. Hence b »
< 0(po(«o, *** ,«a)) A ... AO(pi_x(d0,... ,dQ)) AO0(pi+x(dO,... ,dQ)) A .. .A
AO(po(®0,- *+,aa)) = Po(ao,...,0a) A...APi-1(do,..., do) APi+1(d0,. ..,do)A
A ... ApQdo, smm, dQ) —p(do, *=- ,a) —0O(p(do, *mm, 23))’

If dO,...,da” 1* and d.~I”~j for some iG{0,...,a} then p(a0,...,da) =
= Ih and pk(do,... ,da) = 1" for A=0,... ,i—1,i+ 1,... ,a. Hence b<
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N 0(po(ao,... ,aa)) A ... A 0(p,_i(ao,... ,aa)) A o(p;+i(ao, ... ,aaya
A... AO(pan,... yaa)) = 1Li = O(p(ao, ... ,aa)).

Let a0, *e*,aa € L2. If p,(a0,... ,aa) = 012 for some i € {0,... ,a} then
also p(a0, e++,aQ) = 012« Hence b” 0(p,(ao, ... ,aa))= ILI=0(p(ao0,... ,aa)).
If Pi(a0,... ,aQ) " 012 for i =0,... ,a then a0,... ,aQ€ £2\ {012} and we
can use Theorem 1 since |Z21" 2a. Hence p(ao,... ,aa)” 012 and therefore
b= Po(flo,+=+) ) A... APq(fl0) ee+) ) —P(@0>+++5@8) —0(p("Oi... )

We proved that each algebra from 82 satisfies (I"") so by (V|||) each
algebra from KE does.

Now let us assume that an algebra C\ ® £2 of the form (*) satisfies
(P) where 0<a <u. Then by Theorem 1, |E2| ~ 2* so £2 is isomorphic
to the Boolean lattice 2" = (Bn;V,A) for some n < a. But Bnis (up to
isomorphism) a subalgebra of 2a = (Ba\V, A) and 0Bn= 0Ra. Thus by (v),
£1 © £2 € K2- Consequently, if 2LG/(B) satisfies (P) then each subdirectly
irreducible factor of 21 does, so 21 € KE.

(b) The proof is similar to that of (a) but we use Theorem 2.

(c) It follows from (a) and (b).

Corollary 2. (a) Ifa<u then C\ © £2€ KE iff |£2|A 2Q;
(b) 1fa<u then C\ ©£2 € KE iff \L\| ~ 2

(c) Ifa,B <u then C\ fii £2 € Kf iff |Ei| ~ 2° and |E2| ™ 2"
Proof, (a) If|Z221= 2a then |£2|= 2fcfor some k <a. Therefore C\ fii £2

is (up to isomorphism) a subalgebra of C\ ffi2a € KJ so £1 fiif2 € KE. If
IE21= 2> 2° and £2 = {012,a} where 012< a then

0 (po(012,2)) A1 (pi(0//2,a)) = 0(a) A1(012) -« A0I2- U, =0 (p(012,a)),

so £1 fii£2 does not satisfy (1°). Hence by Theorem 3(a), £1 fii£2 ~ K*. If
I£21> 2 for 0< a <u then by Theorem 1, there exist elements do,... ,daf
6 £2 \ {012} such that p(dO,... ,da)=0 and 017 <p,(d0,... ,da) for i =
=0,... ,a. Hence 012<0(p,<o, ... ,da)) for i=0,... ,a and therefore 0125
AN O(po(do, ... ,da)) A... AO{pa(do,... ,da)). But O(p(do,ees,da)) =1L <
012 what proves that C\ ffi £2 £ KE.

(b) The proof is similar to that of (a).

(c) It follows from (a) and (b).

Corollary 3. Leta,a', §,R" <w-\-\ be the ordinals. Then the following
conditions hold:
(a) a<a' iff K« %

(b) B<B' iff Ka %Ka *

Proof, (a8) Let a <a'. Hence a'/ 0 so by (vii) and (viii), 2€ K*,. Let
£1fii£2 £8a- Then |Ei| = 2" since a <qj. If a' = u>then obviously C\ fi£26
€ KA ifa' <u then |£] |=2Q< 2°" and by Corollary 2, also £1 fi£ 2€ KA,.
Hence K,, Q K*,. Since a is finite so a + 1 is. Therefore, if § <u then
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2a+1 ® 2&GKM1L QKTf,, since a + 1< a'. But 2a+1 ®28 $ by Corollary
2 (b). Hence K,, £ kJ,. If?=w and £2€ DL then 2Q+1 ®£2€ K"+l Q K",
and 2a+1 ® £2” K*“. Therefore, * KA, for each B <u + 1. The proof that
Kg” K7, implies a <a' is obvious.

(b) The proof is similar to that of (a).

2. The lattice of all subvarieties of /(B)

Denote by (V(/(B)); V, A) the lattice of all subvarieties of /(B).

LEMMA 1. If KG V(/(B)) and Kg”™ K then K=B or K=D or K is the
trivial variety of type (2,2,1).

P roof. It follows from (vii) that Kq= HSP({2° ®2° 2}). But 2°®2°
is a subalgebra of each algebra of the form (*). Hence, if 2° ® 2° * K then
K= HSP({2}) =D. If 2°®2° GK then 2~ K since K° %K. Therefore, if K
is not trivial then by (vii) and (viii), 2°®2° is the only (up to isomorphism)
non-degenerated subdirectly irreducible member of K. Thus K = B.

Let VO(/(B)) be the dual ideal of V(/(B)) generated by the variety Kg=
= BVD. It follows from Lemma 1 and the Remark that V(/(B)) = Vo(/(B)) U
U{B,D, T) where BAD =T and T is the trivial variety of type (2,2,1).

T heorem 4. Varieties Ka for a,R <u + 1 form a /\-subsemilattice of
VOo(/(B)).

Proof. Let a = min{i*i, a2} and B = min{/3i,/?2} for Qi,a2, Ri,R? <
<uj+ 1. It follows from Corollary 2 and Corollary 3 that KM1LA = K,,.

Lemma 2. Let KGVo(/(B)) and a, R <g+ 1. Then the following condi-
tions hold:
(a) if KMQK for all m <u> then K" QK;
(b) if K,, QK for all n<u> then N K
(a) if KMCk for all n,m <u> then KE * K.

Proof, (a) Let 2a ®E£2GK", p —xi be an identity from Id(K) on vari-
ables xo0,... ,xr and let ao, e+ ,ar be the elements in 2a ® £2. By (vi), the
subalgebra 21 of 2" © £2 generated by ao, mm,ar embeds into 2a © 2m for
some to<u and therefore, 21 satisfies p —ty. Consequently, 2a © £ 2 satisfies
p = if, s0 2a ©£2GK. The proofs of (b) and (c) are similar to that of (a).

Now let us consider the Cartesian power (u + |)2 of the chain of all
ordinals a <uw+ 1. Obviously £w= ((» + 1)2;7) is a distributive lattice
in which (a,R) < (7,6) iffa <7 and B~ 6. For a non-empty subset M of
(uH-1)2let m(M) be the set of all maximal elements of M. Denote by AC
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the set of all anti-chains of £w. It is easy to see that each member of AC is

finite. It is well-known that the relation —< defined on AC as follows
A—<B iff for each x £ A there exists y £ B such that x <y

is a partial order.

Lemma 3. (AC;~<) is a distributive lattice.

Proof. For A,B £ AC let us put AVB =m(AUB) and AAB =
—m({x Ay: x £ A and y £ B}). It is easy to see that A VB is the supremum
and A AB is the infimum of the set {A, B}. Hence (AC; —) is a lattice. We
shall show that for A, B,C £ AC the following condition holds:

AA(BVC)-< {AAB) V(A AC).

Let z=x0A20c AA(B Vv C). Then xg£ A, yofE m(BuC) and z is a maximal
element of {x Ay:x £ A,y£B v C}. IfyO£ B then z is maximal in the set
Mi ={xAy: x£A,y £ B}. Indeed, z=xo0 Ayo £ M\ and if xo Ayo * x Ay for
X £ A, y£B then Xga yo ™ x At for some t £ B v C since <B v C. Hence
X0Ayo =X A t*"XA Yy~ "xAt, so xgAyo=xAy. Similarly we prove that if
yo £ C then z is a maximal element of the set M2 = {x Ay: x £ A,y £ C}.
Consequently, zE AAB oxz£AaC soz£ AaB\JAAC. But each element
from A AB UA AC is contained in some element from m(A AB I) A AC).

Denote by ACrltl the set of all elements {(aq, Ri),... ,(an,/?,)} £ AC such
that ordinals aq,... ,a,,, B\,... /2, are finite. Obviously we have

(ix) the set ACan is a sublattice of (AC; —<).

Theorem 5. For each variety K £ V(/(B)) there exists an anti-chain
(qi,/?i),... ,(an,Bn) of such that

(**) K=Kf;v..vKf;.

Furthermore, if ordinals oq,... ,an,81,... ,8n are finite then the presenta-
tion (**) is unique.

Proof. If Ka QK for all a,8 <u>then by Lemma 2(c), K= K£. Let us
assume that there exist a0,80 <w such that K" %K. Hence 2a° © 23 K
and 2a ®23 £ K for (go,/30) * (°:,8). We define a subset M(K) of (0;+ 1)2
in the following way. If a,R are finite then (a,R) £ M (K) iff 22 ® 2" £ K. If
(a,B)—(u=>B) and R is finite then (a,R) £ M(K) ifffor all n <u, 2"©20 £ K.
Symmetrically, if (a,/3) = (a,u>) and a is finite then (a,R) £ M (K) iff for all
m <ej, 22©2m£ K. Put (0q,/?i),... ,(a,,,Bn) the all maximal elements of
M (K). It follows from Lemma 2 that QK for each (a,R) £ M (K). Hence
Ko[ V... VKa" QK.

Let C\®C2 € K- If Ci, £2 are finite then |Ti| = 2n and IL2I = 2m for some
n,to< u. Hence (n, to) £ M (K) and there exists i £ {1,... ,n) such that
(n, to) < (ati,Bi) £ m(M (K)). Therefore Ci ©£2 is a subalgebra of 2°*©23 £

£K»,, s0 £1 ®£2 £ Ka,. If £1 is infinite and £2 is finite then |22| = 2np for
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some mo < u>and by Corollary 1, for each n <w, Bn is a sublattice of C\ such
that IR n —Iza * Hence by (iv), 2n©®2m° GK for all n <u. Therefore (>, mo) G
6 M(K) and consequently (u, mo) £ {&i,Ri) for some (a,,/3,) Gm(M(K)).
Thus © £ 2 is a subalgebra of C\ © 2~ GKa, and C\ ©£2 € K»,. Similarly,
if£10 £2€ K where C\ is finite and £2is not then £1 ©£2 GK«, for some
(cti,Ri) G m(M(K)). Thus K QK,* v ... vK,” and consequently we get
(**). The second part of the theorem follows immediately from the Jénsson’s
Lemma (see [9]) since subvarieties of /(B) are congruence distributive.

Theorem 6. The lattice VO(/(B)) is generated by the set (K,:a,B<

< g+ 1}. A sublattice of Vo(/(B)) generated by the set {hf:a,B<cj} is
isomorphic to the lattice (ACf{n; —<) so it is distributive.

P roor. Ihe first part of the theorem is obvious because of Theorem 5.

Let Vfin(Z(B)) be a sublattice of VO(/(B)) generated by varieties fora, R <
<u. Let us consider a mapping < ACfin->Vfin(/(B)) defined as follows

Y(<A),... (adn)})=KFLV..VKIH

It follows from Theorem 5 that <pis one-to-one and onto. Let A —{(alfRi),
we 1{Om Rn)} GACan, B = Ai)i eom»(tmi “m)} GACf\n and
(Er,1"r)} —AvB —m(AUB). It is easy to see that KM v ... v K*r =
= V--VKAVK*; V..V K™ 50 p(AVB) = <p(A) V<p(B). Hence by
Corollary 3 we have A~< B iff tp{A)”™ p(B). We see that ip(AA B) Cp{A)i\
and since tp is onto, (p(A)Aip(B) =<p(C) for some CG*4£fin. Hence
<p(C) ™ <f(A) and p(C) Q(p(B) so C A and C—<B. Thus C—<A A B, so
y2(AAB) = p(C).
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A SHORT PROOF AND ANOTHER APPLICATION
OF BROOKS-CHACON’S BITTING LEMMA

DINH QUANG LUU

1. Introduction

Let E be a Banach space and LE(A) denote the Banach space of all
(equivalent classes of) "~.-measurable E-valued Bochner integrable functions
defined on a probability space (fl, A, P). The main aim of this note is to give
a short new proof and another application of the following very important
Brooks-Chacon’s bitting lemma.

Lemma (Brooks-Chacon). Let(/,) be an L1-bounded sequence in L'r{A).
Then there exist a subsequence (f,,k) of (fn), a nondecreasing sequence (AKk)
of A with kIim P(Ak) = 1 and afunction /» € LR(A) such that for every p,

—*00

the sequence (f,,k \Ap) converges to /» | Ap in the cr(LR(A), LJf(A))-topology.

2. A short proof of Brooks-Chacon’s bitting lemma

Recently, Professors E. J. Balder [2] and C. Castaing and P. Clauzure [4]
have noted that the above mentioned Brooks-Chacon bitting lemma would
be very effectively applied to prove different existence results such as the
existence theorem of V. L. Levin ([7], Theorem 1). Unfortunately, however,
they could not find any proof of the above mentioned result essentially sim-
pler than the first one given by J. K. Brooks and R. V. Chacon [3]. Thus here
as an answer to their remark we would like to apply a very simple lemma of
M. Slaby [10] to give a short proof of the following more general version of
the Brooks-Chacon bitting lemma.

Lemma. Let E be a Banach space and (fn) an L1-bounded sequence
in Le(A). Then there exist a subsequence (n*) of N and a nondecreasing
sequence (Ak) of A with kIim P(Ak) = 1 such that (frk \Ak) is uniformly

—*00

integrable.

1980 Mathematics Subject Classifications. Primary 41A65.
Key words and phrases. Chacon’s bitting lemma, uniform integrability, best approxi-
mation.
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Proof. Let (/,) be as in the lemma. Then the simple proof of M.
Slaby ([10], Lemma 3.4) shows that there exist a subsequence (mq) of N and
a sequence (Bq) of A with lim P(Bq)= 1such that the sequence (/n?? |BQ)

is uniformly integrable. Thus one can choose a subsequence (Bgk) of (Bq)
such that

P(Bgk)> -2 " (fc+tl), keN.
Therefore, if we put At = n Bga, k £ N then (A*) is a nondecreasing se-

quence of A with At C Bagk, k £ TVand kIi%P(Afc) = 1. Furthermore, if we de-

fine tik = mak, kE N then Slaby’s result yields that the sequence (fmdk \Bagk)

is uniformly integrable, hence so is the sequence (/,,£| Afc). It completes the
proof.

Having this general bitting lemma in hand we note that one can apply the
Dunford-Pettis theorem ([5], 1V, 2.1) to improve Brooks-Chacon’s bitting
lemma and its vector-valued versions recently given by E. J. Balder ([2],
Lemma) and Ch. Castaing and P. Clauzure ([4], Theorem 3.2) as follows:

THEOREM 1. Let E be a Banach space such that E and its topological
dual E* have the (RNP'). Suppose that (/,,) is an L1-bounded sequence in

LB (A) such that for every A £ A, the sequence ~/ fndP?%j is relatively weakly

(r.w.) compact in E. Then there exist a subsequence (n*) of N, a nonde-
creasing sequence (A*) of A with lim P(Afc) = 1 and some /» 6 LE{A) such

k —i-00

that the sequence (IAkfn) converges to /* in the a(LE(A), A))-topology,
where IR denotes the characteristic function of B.

Proof. Let E and (/,,) be as in the theorem. By the Dunford-Pettis
theorem ([5], 1V, 2.1) it is enough to show that there exist a subsequence
(njfc) of N and a nondecreasing sequence (Ajt) of A with lim P(Afc) = 1 such
that i

(a) the sequence (IAkfnk) is uniformly integrable and

(b) for every A € A the sequence (/IAkfnkdP = /[ fnkdP\ is r.w.
M Ar\Ak :
compact in E.

For this purpose, let (n™) and (A*) be the sequences taken from the
general bitting lemma. Then it is clear that (a) is satisfied. Thus we have
to check only the property (b). But by the hypothesis, for every a£ A, the

sequence is r.w. compact in E, then by (a) and the property of

(Afc), obviously so is the sequence ﬁ / . fnkdP). More precisely, if (n"s) is
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a subsequence of (n*) and the sequence yf fnkidPJ weakly converges in E

then the sequence ﬁ\/l //A\* f,,k*d PJ weakly converges also and to the same
nNA*. ‘

limit. It proves (b) and the theorem.

Further, let Kcdenote the set of all closed convex bounded and nonempty
subsets off!. A multifunction X : fl —»Kcis said to be weakly *-measurable
if for every open subset V of E the set {{>£ fi: X(ij)DV ~ 0} £A. In
addition, if the real-valued function u h» |[X(w)| = sup{||X|| : x £ X (cj)} is
integrable then the multifunction X is called integrably bounded and written
XZC'C(E).

Now suppose that E is a separable Banach reflexive space and (X n) is a
uniformly integrable sequence in LE(E), i.e. the sequence (|Xn(u;)|) of real-
valued functions is uniformly integrable. Then by Lemma 3.1 of D. Q. Luu
[8], there exist a subsequence (n*,) of N and an X £ E-c(E) such that for all
A£A and x 6 E we have

Um \] 6rr(x,Xnk)dP=J 6 {x,X)dP,
A A
where given x £ E and K £ Kc, 6(x, K) = sup{(x,y),y£ K}.
This result together with the above bitting lemma yields the following

theorem which is a stronger version of Theorem 3.1 of C. Castaing and P.
Clauzure [4].

T heorem 2. Let E be a separable Banach reflexive space and (Xn) an
L1-bounded sequence in Cxg (E), i.e.

ﬁé{gf;l/ \X,,(U;)\dP < oo.
n

Then there exist a subsequence (n*,) of N, a nondecreasing sequence (Ak) of
A with lim P(Ak) = 1and an X £ Cg(E) such thatfor all A£ A andx £ E
one has

Um \] 6rr(x,X,,k)dP=\]6rT(x,X)dP.

AkNA A3

3. Applications

The main aim of this section is to apply the above result to establish the
following existence theorem for best approximations in LE(A).
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Theorem 3. Let E be as in Theorem 2. Suppose that H is a convex
subset of LE(A), closedfor convergence in probability and such that for every

A£A, the set j/ hdP, h£ Hj is rw. compact in E. Then for every f £
£ LE(A) there exists a function h,,£ H which minimizes the L1-distance of
f from H, i.e.

E(\\f-hm\)=mf{E(\\f-h\\),h€H}.

Proof. Let E and H be as in the theorem (thus H is not necessarily
N-decomposable for any sub-cr-field B of A). Let / £ LE(A) be given and
(/,,) a sequence in Il which minimizes the L1-distance of / from II, i.e.

lim £(||/ - /,ID = d(f, H):=inf(£(|)/ - hW\),hEH}
n —e0

Thus in particular, the sequence (/,) satisfies all the hypothesis of The-

orem 2. Therefore there exist a subsequence (n*,) of N, a nondecreasing

sequence (Ak) of A with lim P(Ak) = 1 and some h* £ LE(A) such that
k —»-00

the sequence (lah\fnk) converges to /i* in the a-(LE(A)), L|?.(.4.)-topol-
ogy, equivalently, (IAk|fnk) converges weakly to hmsince E* has the (RNP).
Thus by Mazur’s lemma, for every p £ N, /i* £ co(lAkfnk,k =p), where co(-)
denotes the closed convex hull of (¢)» Therefore, there exists an increasing
subsequence (ks) of N and a sequence (%) with

Ts € CO (IAksfnks, IAks+lfnks+1l>eee »24*3+1/n fc3+1)

such that (ug) converges in T1-norm, hence in probability to h,,.

ksH —ks
Now for every s£ N, let 3= ajlA ks+: fnkatd for a finite sequence
j=o
s s »+1 —k,
(ajl 1+1_ *with as>0and ~ as= 1 Then it is easily seen that by the
3~ j=o

property of ((A*), every function

ks+i-k,
9s'= A~ Qjfnkat) £ co {fnka, fnks+x fnks+l) C H

i=0

and the sequence (gs) converges also in probability to h*, since {||ps—<m|
~N 0} C Aks with P(Aki) =0 as s —»o0. Therefore by the property of Il it
follows that h« £ 11. We shall show that

E(Mf-h.\\) =d(f,H).
To see this, let us define the functional /://—»R+ by
1(h) =£(]|/-hH), heH.
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Then 1 is convex. On the other hand, the sequence (||/ —<8||) contains a
subsequence, say, (||/—3Bm||) converging a.s. to \\f—h*||. Then by the Fatou
lemma we get

d(f,H)ZI(h.)ilimmfi(g.m)<
AMimsup /(/n)=d(f,H).

It completes the proof.

Note that for the case, when H is a closed convex B-decomposable subset
of LE(A), where B is a sub-cr-field of A, the above theorem was earlier proved
by T. Shitani and T. Ando [1], N. Herrndorf [6], M. Valadier [11] and D. Q.
Luu [9].

Finally, by using a proof similar to that of the above theorem, one can
establish quickly the following existence result on best approximations in
Le (A) with respect to the Pettis norm.

Proposition 4. Let E and H be as in Theorem 3. Suppose more that
H is norm-bounded. Then for each f GLE(A) there is a function h+GH
which minimizes the Pettis distance of f from H.

Acknowledgement. The author wishes to express many thanks to Profes-
sor C. Castaing for useful discussions during his visit in the Hanoi Institute of
Mathematics, November 1988 and to the referee for his invaluable comments
on the first version of the paper.
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ON THE GAME OF MISERY

J. PACH

In the spring of 1986 an “epidemic” raised its head at the Mathematical
Sciences Research Institute, Berkeley, California. It was a very simple game
that “infected” most visitors of the institute and temporarily diverted them
from their researches.

The game, which will be referred to as the Game of Misery, can be played
with finitely many piles of disks sitting at some integer points (positions) of
a line. At each unit of time each pile independently is divided in half, with
half the disks being moved one position to the left and the other half one
position to the right. If there is an odd number of disks in a pile, then one
disk stays at the same place and the remainder are divided evenly.

To make our description more “formal”, let a,jt denote the number of
disks sitting at point i at time t (i and t are integers, —e0 < i < +o00, t > 0).
Then

ait+l + parity(a,jt),

2Ui+u
where parity(al)i) = 0 or 1 according to whether aljt is even or odd, respec-
tively. For instance, if we start out with a single pile of 6 disks at position
0, then after 7 moves we reach a final configuration where each pile is either
empty or contains exactly one disk. Moreover, the nonempty piles form two
intervals of length 3 separated by one empty pile at position 0:

1st move 3
2nd move 11
3rd move 12
4th move 20
5th move 02
6th move 10
7th move 111

(Note that it is not even clear a priori that the Game of Misery will always
end in finitely many steps! However, it is easily seen to be true.)

Some of the “victims of the Misery-epidemic” have recently published
a paper in the American Mathematical Monthly [1] analyzing the game.
They are mainly concerned with the case when the starting configuration is
a single pile of 2n disks. According to their first result, in this case the final

Akadémiai Kiadd, Budapest



356 J. PACH

configuration consists of two intervals of n consecutive piles with one disk
each, separated by an empty pile at position 0. This easily implies that, if
we start out with a single pile of size 2n+ 1, then at the final stage we get
an interval of 2n + 1 piles of size 1, symmetric about 0.

In this note we will consider the general case, i.e., when we can start the
game with any configuration. The following assertion (conjectured by a finite
but nonempty subset of the authors [1]) is easily seen to be a generalization
of the above facts.

Theorem 1. Suppose that in the initial configuration in the Game of
Misery there are at most k nonempty piles. Then the final configuration
consists of at most 2k intervals of consecutive piles of size 1.

Moreover, equality holds here if and only if all piles in the initial config-
uration are even (i.e., otjio> 0 is even for i\ <i* < m m ik) und

a.J+lo+S-° , 0 .
ij+1  ij = 5 N for 1<j <k

PROOF. In a Game of Misery, let S and T denote the starting and the
final configurations, respectively. Note that in T at each position there is at
most one disk, otherwise we could continue the game.

A maximal interval 1 of consecutive positions is said to be a block of a
configuration, if each position of / is occupied by at least one disk.

Assume that T has p blocks, i.e., it is the union of p intervals fi U U
U... Ulp of consecutive piles of size 1. We are going to prove by induction
that S contains at least \p/2] nonempty piles.

This clearly holds ifp <2.

Let p> 2, and assume that the claim has already been proved for 1,2,... ,
p —1. Starting with T , let us play the following, so-called Inverse Game. In
this new game a move is to pick some integer i such that neither of the piles
at positions i—1 and i +1 is empty, and transfer one-one disk from each to
position i. It is straightforward to see that, for a suitable sequence of the
integers i, this game will terminate with the configuration S. (We have to
break each move of the original game into smaller steps and play the game
“backwards”.)

Fix any block Ij of T, different from the leftmost and the rightmost ones
(1 <j <p). Consider the last configuration C occurring in the Inverse Game,
where 1j still has an intact position, i.e., a position that has been occupied
by exactly one disk all the time. Let I denote the block of C containing this
position, and let 'min and imax denote the smallest and the largest elements
of I, respectively.

Observe that, at the time we reach configuration C, every position of |
is still intact, because we could not put a disk next to an intact position.

We distinguish two cases.
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Case A: Cis not the last configuration in the Inverse Game, i.e., C/ S.

Then after the next move the last intact position of | disappears. Since
we touch only 2 disks, |/| <3 must hold. In fact, one of the following two
essentially different possibilities can occur (up to symmetry).

C. ...0 "T"SO m... ...0 f 0...
next move: ...0 0 2m —1... ...0 03 0...
Case A\ Case Ai

During the whole Inverse Game no disk can jump from one side of 'min—
to the other. Obviously, this cannot happen before imin seizes to be intact,
and after that both positions imn- 1and imin are empty and remain empty,
because we cannot put a disk on one of them unless the other one is not
empty any more. Hence, «otm—| is a outpoint of the game, i.e., the events
occurring on one side of it are independent of whatever happens on the other
side. Consequently, we can apply the induction hypothesis to the at least
j —lintervals of I ’s on the left side, and to the at least p —j+ 1 intervals of
I’s on the right side of imn— in T, separately. We obtain that S has at
least \(j - 1)/2)"| -f\{p~j+ 1)/2] ™ |p/2] nonempty piles.

Case B: C is the last configuration in the Inverse Game, i.e., C=S.

Then imjn —§ is again a cutpoint, for remains intact during the
whole game. Thus we can complete the argument in exactly the same way
as in Case A.

This proves the claim, and hence the first part of Theorem 1.

It is clear that equality holds in the first statement of the theorem if and
only if there is a sequence of empty positions ci < ci <... <c”-i in T such
that

(i) each G is a cutpoint;

(i) T has exactly 2 blocks between ¢, and cj+\ (1<j <A —1), and two-
two blocks on the left side of ex and on the right side of Ck-i, respectively;

(iii) each of these pairs of blocks becomes a single nonempty pile by the
end of the Inverse Game.

Set = —o00, = +00, and for any j (0 5j <Kk) let hj+i and hj+2
denote the blocks of T between c, and cJ+j. /2j+i and lij+2 are separated by
exactly one empty position ij+i, otherwise we could find a cutpoint between
these two blocks, contradicting condition (iii). On the other hand, if we
start the Game of Misery with a single pile at position i, then the final
configuration must be symmetric about i. Hence, (iii) implies that /2>+i and
hj+2 are placed symmetrically about ij+i- In particular, |[/2j+i| = |*2j+2]|
and a,J+lo= I"j+il + 1"2j+2| is even for every j. From this the second part
of Theorem 1 follows immediately. O

Essentially the same argument allows us to establish the following stronger
assertion.
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T heorem 2. Suppose that the initial configuration in the Game of Mis-
ery is the union of at most k blocks of consecutive nonempty piles. Then
the final configuration consists of at most 2k blocks of consecutive piles of
size 1. O

The interested reader is invited to analyze the cases of equality in this
result.

In the sequel we shall investigate how long it takes to reach the final
configuration in the Game of Misery. To this end, we first define another
related game, the so-called Free Game. In this new game we also have finitely
many piles of disks sitting at some integer positions of a fine. An elementary
move is to pick a pile with at least 2 disks and move one disk with one
position to left, and the other with one position to the right. A move in
the Free Game is the superposition of any nonempty set of nonconflicting
elementary moves. The Free Game ends, if there are no more moveable disks
left, i.e., each pile contains at most one disk.

It is clear that the Game of Misery is the special case of the Free Game,
when we move all possible disks on every step. In this sense, the Game of
Misery is the greediest way to play the Free Game. One of the most interest-
ing observations made in [1] is that no matter how we play the Free Game,
the final configuration is always the same. That is, the final configuration
depends on the initial configuration only.

Given a Free Game F starting with a configuration S, let tF(S) and f(iS)
denote the number of moves it takes to reach the final configuration in F
and in the corresponding Game of Misery, respectively.

We will make use of the following two simple facts.

Lemma 1. t(S) <tF(S).

Proof. Let k be the smallest number such that the &-th move in F is
not identical with the fc-th move in the Game of Misery. This means that
at this step, in F we fail to move at least one pair of moveable disks (di, cfo)
sitting at some position i. Since our disks are indistinguishable, and in the
final configuration there is at most one disk at each position, we can assume
that later on in F (say, at the fc'-th step) we move d\ and d2 to the positions
i —1 and i -f 1, respectively.

Let us modify F so that we move the pair (dj, (12) at the k-th step already,
and then we do not touch them until after the fc'-th move has been made.
The movement of the rest of the disks remains unchanged. Thus we obtain
another Free Game F\ whose each move is legal, except that the fc'-th move
may become void. In any case, tFI(S) <tF(S). Meanwhile, we have reduced
the sum jej by at least 1, where e3 denotes the number of elementary
moves comprising the j-th move of F. Continuing this process, we obtain
a finite sequence of Free Games F = Fq, F\, F2,... ,Fm such that Fm is the
Game of Misery, and tH+L(S) 5; tFi(S) for every O0<i<m. O

Lemma 2. Suppose that the starting configuration C in the Game of
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Misery consists of n+ 1 disks arranged in n consecutive nonempty piles, say
at positions 1 through n. That is, for some 15k <n,

{2 ifi—k
1 if1n A, il K,

0 otherwise.

Then t(C) = n, and in the final configuration all but one positions of the
interval [0, n + 1] are occupied by a disk. More precisely,k
a,‘'n~{ 0 otherwise. O

We leave the simple proof of this fact to the reader, in the hope that the
following examples for n = 8 are sufficiently instructive.

21111111 12111111 11211111 11121111
102111111 20211111 12021111 11202111
110211111 102021111 20202111 12020211
111021111 110202111 102020211 20202021
111102111 111020211 110202021 102020202
111110211 111102021 111020202 1102020201
111111021 111110202 1112020201 1110202011
111111102 1111110201 1111102011 1111020111
1111111101 1111111011 1111110111 1111101111

11112111 11111211 11111121 11111112

11120211 11112021 11111202 111111201

11202021 11120202 111120201 111112011

12020202 112020201 111202011 111120111

202020201 120202011 112020111 111201111
1020202011 202020111 120201111 112011111
1102020111 1020201111 202011111 120111111
1110201111 1102011111 1020111111 201111111
1111011111 1110111111 1101111111 1011111111

THEOREM 3. LetS be any configuration of m disks, and suppose that S'
can be obtained from S by adding one more disk. Then t(S') ~ t(S) -f m.

Proof. Define a Free Game F whose starting configuration is S', as
follows. The first t(S) moves of F are identical to the moves of the Game of
Misery played with S, except that the extra disk of S' remains still. Then,
either F ends, i.e, in the resulting configuration C there is at most one
disk at each position, or there is one pile of size 2. In the latter case, we
continue F as a Game of Misery starting with C. According to Lemma 2, it
takes at most nS.m further steps to reach the final configuration, where n
denotes the length of the block Cin C containing the pile of size 2. Hence,
by Lemma 1, we get t(S*) » tp(S') <t(<S)+n£t(S)+m. O
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Strangely enough, it is perfectly conceivable that t(S") is substantially
smaller than t(S). Therefore, we are unable to decide whether the function
t(S) is continuous in the following sense. There exists an absolute constant
c such that [f(iSi) - f(S2)| 5 cd(<5i,<52)(|51| + |<>2) for any configurations Si
and S2, where d(Si,S2) denotes the smallest number of disks that must be
changed (added or deleted) to obtain S2from S1

In [1] it is shown that if the starting configuration is a single pile of n
disks, then the number moves needed to finish the Game of Misery is cn2 +
+ 0(n2) for some positive constant c. Our next result, which is an immediate
consequence of Theorem 3, shows that, for any configuration S of n disks,
t{S) is at most quadratic in n.

Corollary. Given any initial configuration of n disks in the Game of
Misery, the final configuration is reached within (”) moves. O
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ON A NEW ITERATION FOR FINDING “ALMOST ALL”
SOLUTIONS OF THE QUADRATIC EQUATION
IN BANACH SPACE

. KL ARGYROS

Abstract

We introduce a new iteration for solving quadratic equations in Banach space. Under
certain assumptions the iterates are uniformly bounded below. In case of convergence we
can obtain *“almost” all solutions.

In this paper we introduce a new iteration
xn+i=B(xn)~\L\xn)-y), n=0,1,2,...
=xn- B(xn)~I (B(xn,x,,) +y- L'(X,,))

for some xg € X in a Banach space X to prove existence and uniqueness of
not necessarily “small” solutions of the quadratic equation

2 X =y+ L(x) + B(x,x), L'=1-1L1

in a closed ball centered at a specific z £ X, where y GX is fixed, L is a
bounded linear operator and B is a bounded symmetric bilinear operator
on X . Equation (2) has been also studied under different assumptions in [1],
2,1, [7 09 o, _ _

Iteration (1) has the interesting property (under certain assumptions)
that if Hzoll ~ d then ||x,|| ~ d for all n=0,1,2,... and d>0. In case of
convergence (1) provides us with a solution x such that |ja:]| > d.

We also study the modified version of (1)

3) xn+i =i, - #(z)_1 (B(x,,,%X,,) +y-L'(xn)), n=0,1,2,....

Finally, we provide two simple examples for (1) and (3).

Definition 1. Denote by L(X, X) the linear space over the field of real or
complex numbers of all linear operators from X into X , then a linear operator
B from X into L(X,X) is called a bilinear operator from X into X.

The motivation for this definition is the observation that for any x\ £ X ,
L = B(xi) is a linear operator from X into X, so that

y = (B(x1))(x2) = B(xu x2)

1980 Mathematics Subject Classifications. Primary 46B15.
Key words and phrases. Bilinear-quadratic operator, Banach spaces.
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is an element of X for x2GX .

D efinition 2. A linear operator L from X into X is said to be bounded
if

4 o —
(4) [l %Jlazlllﬂ*)ll

is finite. The quantity ||T|| is called the norm of L.

DEFINITION 3. A bilinear operator from X into X is said to be bounded
ifit is a bounded linear operator from X into L(X,X). The norm ||2?|| of B is
defined by (4), with B being considered to be an element of L (X,L(X,X)).

The inequality

P(Z,2/)"A||a|_M'N, ZEX, yex

is obvious from the above definition.

Definition 4. A bilinear operator B from X into X is called symmetric
if B(x, y)=B(y,x) forall x,y€X.

Remark 1. The operator B in (2) is assumed to be symmetric without
loss of generality since B can always be replaced by the mean B of B defined
by _

B(x,y) =1/2(B(x,y) +B(y,x)) forall if£l, yeX

Note that B(x, x) = B(x,x) for all x £ X.

Lemma 1. Let L\ and L2 be bounded linear operators on X , where L\
is invertible and ||Z2| ¢||L"1|| < 1. Then the operator (Lx+ L2)~I is also
invertible, and

I(L1+L2) 1~ 0
i- m -iivir
Proof. The operator (L\ +L2) 1is invertible if the operator I-\-Lx1L2
is invertible, since
(L1+ T2)-1=(/ + L11L2) IL -\

but

so | + Lx1L2 is invertible and

l(4-i+ L2)-1|= (1+L L2 IL~I

-1
i +17 12) 1 eiinrliin
(i ) 1oLz ™
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Lemma 2. Let z 0 befixed in X. Assume that the operator B(z) is
invertible, then B(x) is also invertible for all

xeU(z,r) ={xex/\\x - 2\ <r}

where r is such that 0 < r <[||B|| *\\B(z)~I]|]_1.
Proof. B(x) = B(x —z) + B(2).
Now, it is enough to show
B(x - 2)| *\B(2)-"\\ <[5 [[[B(z)-1f| <11 - «dl < [[B]| *[|5(z)-1[|r < 1

true by hypothesis.
P roposition 1. Equation (2) has at most one solution x € X such that

1-1W |
< opy

provided that ||Z/]| < 1.
Proof. Let *i,*2 be distinct solutions of (2) with

%0 Il < 1~\\L\\ | M ¢ i-1W |
m

’ 2||5]] *
By (2)

IM —211=\\(L + B(x1+ *2))(ii - X)|| "
<L+ EHIAFL-HF2DIFL-* 2<[[*1-* 2|
which is a contradiction.

Proposition 2. If (1) is well defined for all n = 0,1,2,... and
[|5(*n)—21 < c for some ¢ > 0 such that c||Z/|| < 1. Then in case of con-
vergence, the solution x 6 X satisfies the estimate

tI
AL BTV

Proof. We have by (1)

iPIANISCY i iiriljixni-+iiidi)

<cn+iiiLir+i POl Hpffi-W 1Dl

1 -clip'll
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since c||Z/|| < 1, by taking the limits in both sides of the above inequality as
n —00, we get
(M

i-cm
D efinition 5. Dehne the set Mi,M2, by
Mi ={L e L{X)/\\L\\ ®|xB - WA\ T \WL(xn)\ - [ly|I[}
M2={L £ LOOAWW - (] «f[=.|1 £ [lIL(xm)ll - [plll}

where the x,,5, n=0,1,2,... are given by (1) for some x0€ X. Note that
Mi, M2~ 0, since | £ Mi, | € M2.

P roposition 3. Let L'€ Mi and |[|x0|| ~ d in (1) then |[xn||>d, n =
0,1,2,... for some d £ [e?, d2] where
Hrell-V IV £-4 B [|-]|» ||
1 2||BJ1
, nim+vW NMiPiFw
sjjlji
provided that \L"\\2—4|-S|| «|lj/|| ~ O.
P roof. By (1)

HO[[-[[xn][-|K +1[|>[[L"(xn)-y ||
or
ill A pA M i * =
[k»+i| n||7(r|1Hrl1<n“ if 0,1,2,...,n

then ||xn+i|| > d if ~U|g|tjj~y* =d and since L' £ M\ it is enough to show

W O rr =dor =p A e n oid=|L'-U|BJ| which is true for de
£ [c7, d2].

The proof of the following proposition is omitted as similar to Proposi-
tion 3.

P roposition 4. Assume L'£ M2 and the following are true:
(i) the hypotheses of Proposition 2,
(if) there exists d > 0 such that

CfIM syl
a=i-c||Lir ~ =difin+ii'ii
and
AW\, W
L-c [ = dIft] + X
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then if |[xo|| ~ d in (1) then |jan||>d. Foralln=0,1,2,

Definition 6. Let z” 0 be fixed in X . Assume that the linear operator
B (z) is invertible then by Lemma 2

where x GU(z, r) = jx GX ||lar- 2\ <r <(||5]| *\\B(z) *1) -j.
Define the operators P,T on U(z,r0) by
P(x) = B(x,x) +y- L\x), T{x) ={B{x))~\L\x) - y)

and the real polynomials /(r), g(r) on R by /(r) = a'r2+ b'r + cl, g(r) —
ar2+ br+ c, where

a'=[|[i?||[i7(z)-1]]2,

b'=-2\\B\\\\B (z)-\

c' =1~ \B(z)-"\\W\L"\\ - [|B[||IB(z2)-1]|2||L'(z) - 3/,

a=|[fl].115(z)-1ll,

b=\\B(z)-\L"'-B(z)\\-I,

c=\\B(2)-'P (2)\\.

Finally, note that for any operator T on U(z, Tg), ro<r, |[T(u;) —T(u)|| <
N g\w —n|| for all w,v £ U(z,r), rO<r where

= SuUp  jin*)n
xeU(z,r0)

and T'(x) is the first Fréchet-derivative of T at x GX .

Theorem 1. Letz” 0 befixed in X such that (J3(z))-1 exists. Assume:
(i) b2- 4ac >0, b<0;
(if) ¢' > 0; and
(iii) there exists ro > 0 such that f(ro) > 0 and g(ro) ~ O.
Then the iteration z,,+i = B(xn)~1(L'(xn)—y), n=0,1,2,... is well defined
and it converges to a unique solution x of the equation

X —y A L(x) +B(x,x) in U(z,ro)

for any x0GU(z, r0).

Proof. Claim 1. T is a well defined contraction on U(z,r0).
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If w, vGU(z, ro) then
IT(ie) =T (V)| <glftu- ul| for all w, v€ U(z, r0)

where g = supxe® zro™||T'(a;)||- T is a contraction operator if 0< gq< 1, but

Wr(x)WW =\\B(x)-\-B(LXx)),B(x)-".)+
+B(x)-\B(y),B{x)-1)+B(x)-'L'|| <
-1 "
IB(z) R 115]]-115(z)-1 o
if f(ro) > 0, which is true by hypothesis.
Claim 2. T maps U(z,ro) into U{z, tq).
If w€ J7(z, ro), then
T(w)- z=B{w)~\L"- B(2)){x - z) - P(2)\

S0
IT(n3)-z]| <r0

i-iuii-iw -ii™ tlw *r, (i'- fl@)lre + 1ji<z)" 1i’@L s r”
or 9iro) = 0 which is true by hypothesis. The result follows from the con-
traction mapping principle.

We now state a theorem for (3) whose proof as similar to Theorem 1is
omitted. For simplicity we take L =0in (3).

Theorem 2. Letz”™ 0 be fixed in X . Assume:
(i) the linear operator B(z) is invertible,

(i) 15(z)_1(1 - 5(2))|| < 1 and there exists r° such that r e [ri,r2)
where

1-P(2)-HI--8(2))II

[(A - [92(N)-107- 12(2))I)2- 4lIBI| «[IfI(™)-1P (2)[ll|la(z) - 1|1 1/2
aMI-PM-'ll
i-P (»)-1J--g(W)il
2 2||fl|H [s(u-,I! ’
then (3) converges to a unique solution x o/(2) (with L=0) in {/(z,").

We now provide two simple examples for Theorems 1 and 2, respectively
(with L = 0).
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Example 1. Let X = 1R and consider the equation
(5) X =.2x2- |

here B(x, x) —.2z2, y —1and 1—4|6| |y| >0. Choose z —5, then according
to Definition 6 and Part 1 of Theorem 1c¢' = 1—|2?||2||fi(z)_1]|||3/]| (sharper
estimate if L =0).

/(r) = .04r2- .4r + .96 with solutions r[ =8.1622775, r2= 1.8377225,
g(r) = .2r2—r + 1= 0 with solutions rj, r2 such that
r2= 3.618033989 and rx = 1.38196601.

Therefore, Theorem 1 can be applied if r2” tg<r2 and then iteration (1)
becomes

xn+i=5(l-|-=\  n=0,1.2,..

with xo —z =5 we need 12 iterations to obtain the “large” solution of (5)
which is x = xi2=5.8541010966.

We know that zi2 is the “large” solution of (5) since ||x,,|| > 5, n =
0,1,2,... and by Proposition 1

AXn[l>2i6l = 2° n=0"12"----

Example 2. Let X = R X R equipped with the usual max-norm and
consider the equation
(6) X =y + xXtrMx

where, y= [£], yx= 1.55, y2=-.85.

"M .45 01 7
M= w M= g 0 ™% n s
with xtrMx = [Mr then (6) can also be written as

XX=—45x2+ 91xix2+ .02z2+ 1-55
22=.012) —68ziz2+ .hx\ —.85.

Choose 2= [j2], then

1*||=1.38
110(z)-/]|=.9
I8(2)_11=.555555
11*0011 =-05.
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Theorem 2 can be applied in the ball U{z,tq) for r$6 [ri,r2) where ri =
= .061321367 and r2= .326086956.

Choose x° ~ z and allow an error e such that e < 5.10~3 then we need

five iterations

(1

(2

Bl

4

[5]
(6]

(el
Bl
(1]

(11]

'-1.97222223'
.97368421)
'-1.996301957'
97283584 .
'-1.99715663
968165641
'-2.003524174'
.9654191
_ '-2.00038145'

X& 06224933
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A NEWTON-LIKE METHOD FOR SOLVING
NONLINEAR EQUATIONS IN BANACH SPACE

I. K. ARGYROS

Abstract

In this paper we introduce iterations to solve nonlinear equations in a Banach space
that are sometimes faster than the modified Newton’s method, under the assumption that
the nonlinear operators involved are once or twice Fréchet-difFerentiable.

Consider the equation
(1) F(x) =0
where F is twice Fréchet-differentiable at z 6 X , nonlinear operator mapping
a subset U of a Banach space X into a Banach space Y. We shall find it
convenient to assume that U is a ball. Suppose that the approximation xn

has been found. To determine the next approximation z,+i we replace (1)
by the equation

2 F(xn)+ F'(xn)(x - xn)+ *F'\xn)(x -xn,x- xn)=0

if the linear operators \F\z) —\F"(z)(xn)\ \ [F'(z)—\F"(z)(z)\ 1exist,
then (2) suggests the iteration

@  meixn- F)-FT@0m) | FGm), =012,
or the modified version of (3)
4) Xn+l =Xn- F'(2) - -F"(2)(2) F(xn), n=0,1,2,.

The above iterations converge to a solution x of (1) if the operators

(5) T{x) =x-[F'{z) + B(x)]-1F(x)
or the modified version of (5)
(6) P(x) =x-[F'(z) + L]~1F(x)

1980 Mathematics Subject Classifications. Primary 46B15.
Key words and phrases. Newton’s method, bilinear-quadratic operator.

Akadémiai Kiadé, Budapest
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have a fixed point in X , where B is a bounded symmetric bilinear operator on
X X X and L is abounded linear operator on x (usually, but not necessarily
B=-\F"{z),L =-\F"{z){z2)).

In this paper we give sufficient conditions for T and P to have unique
fixed points in a closed ball centered at a specific z £ X and then we compare
(3) and (4) with the modified Newton’s method [1], [2], [3], [4], [5], [6]. [7]

@) xn+l=xn-(F'(z))~1F(xn), n=0,1,2,...

using a simple scalar equation to show that (3) or (4) (most of the times)
converge to a solution of (1) faster than (7).

Derfinition 1. Denote by L (X,Y) the linear space over the field of real
or complex numbers of all linear operators from x into v, then a linear
operator B from X into L (X,Y)is called a bilinear operator from x into Y.

The motivation for this definition is the observation that for any x\ € X ,
L = B(xi) is a linear operator from X into Y, so that
y = (B(xi))(x2) = B{xi, x2)

is an element of Y for x2£ x .
DEFINITION 2. A linear operator L from X into Y is said to be bounded
if
(8) 1= sup [IZ(x)I|
1114

is finite. The quantity [|A|| is called the norm of L.

Definition 3. A bilinear operator from X into Y is said to be bounded
if it is a bounded linear operator from X into L(X, Y). The norm ||H|| of B
is defined by (8), with B being considered to be an element of L(X, L(X, Y)).

The inequality

PEVINBIHWHIM, xex. yey

is obvious from the above definitions.
DEFINITION 4. A bilinear operator B from X into X is called symmetric
if
B(x,y) —B{y,x) forall x,yeX.

Remark 1. The operator B in (5) is assumed to be symmetric without
Bs/s of generality since B can always be replaced by the mean B of B defined

B(x,y) =~(B(x,y) +B(y,x)) forall x£X, yf£Y.
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Note that B(x,x) = B(x,x) for all x GX .

Definition 5. If F is an operator from X into Y, and for some z € X
there exists a linear operator L from X into Y such that

im \\F(z + Ax)~ F(z)~ LAX\\ _
|| A1||—0 |A*]| o

then L is called the Fréchet derivative of F at z, denoted by F'(z), and F is
said to be differentiable once at z.

Definition 6. If for some r > 0, F is differentiable once at all x G

GU(z, r) —{x GX I||lz—2\\ <r}, and a bilinear operator B from X to Y
exists such that

\\F'(z+Xxi>- F'(z)- BAX —0o

Ax|

B is called the second derivative of F at z, denoted by F"(z), and F is said
to be differentiable twice at 2.

From now on we assume that X =Y, F is twice Fréchet differentiable at
z and B is a bounded symmetric bilinear operator on X .

A+

Lemma 1. Let L\ and L2 be bounded linear operators on X, where L1

is invertible and ||L2|| *H-Lf11< F Then the operator (L\ + L2)~1 is also
invertible, and

(1 1+ 12)-1||< v
l-iw 1i™ir
Proof. The operator (Li+ L2) Llisinvertible if the operator I + L1*L2
is invertible, since

(L1+L2)-1=(1+L-1L2)-1L "\

but
WLAL 2W\W<\\L-1\WA\L2\W< 1,

so /+ L2 is invertible and
NL1+L2)-iH= II(/+Li-iL2r1Fr1»
(/+L71L2)~1 e||L-1]|< -——-- —n
Lemma 2. If the linear operator (F'(z)+ B(z)) 1 exists for some z € X,
then the linear operator

[I + (F\z))~IB(x —z)]-1 exists for every x£U(z,r),



372 I. K. ARGYROS

where r is such that

Ocr < (0 +a M) -2l
P roof. By Lemma 1 it is enough to show
W(F\z) + B(z))-i\\.\\B(x - z)\\<lI,

or
11" (2) +5(2)-1l-1I5[].r<
which is true by hypothesis since x EU(z, r).

D efinition 7. Let z be fixed in x. Assume that the linear operator
C = [F'(z) + 5(z)]_1 exists and set d = ||C||, e= ||5]|. Define the linear

operator Aon U(z,r) = jz GX ||®- 2\ <r<”" | by

A(X) =[1+ (F'(z) +B(z))~1B(x - 2\ 1
Assume now that

/\ -AC*)— =Nillx - yll)
IHHCn*)« S»,

where x,y £U(z,r) and £i, n are nonnegative numbers. Define the numbers
Mict ]
P=\CB((2)\\
m=\CF(2)\\.

Note that [|A(2)| <
[|ICi?(a:))(x - 2)|| < ||C5(x —z,x —z)\ + ||Ci?(z, x —2Z)|| < hr2p pr.
Define the real polynomials on R by
[(r) =ar2p brp c,
g{r)=ar2+brpF
where
a—de(de p dI2p h), £2—'ifx
b=dep —h - di2—2de, £3—f:F
c=1 —p —hn

a—{"3Pe)dph
bl=p —1
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Finally, note that for any x,y£U (z,r)

T(x)-T(y)=[F'(z)+B(x)]-1[F'(z) (x-y)-(F(x)-F(y)) +B{x-z)(x-y}]-
B(z)(x —y) + B(x - y)(F\z) + B(y))-1F(y)],
and
F'(2)(x-y)- (F(x) - F(y)) =3 (F\z)- F'(x +t(y- x))(x - y)dt.
0
T heorem 1. Assume:

(i) The conditions (c) are satisfied for some z £ X
(if) There exists r such that /(r) > 0 and g(r) "~ 0.

Then (5) has a unique fixed point in U(z, r).
Proof. T is well defined in U(z,r) by Lemma 2.
Cilaim 1. T is a contraction operator on U(z,r).

If x,y£ U(z,r), then according to Definition 7,
hdn

WT(x)-T(y)\< L der

1
1 —der dt2r + hr +p + M-
Now T is a contraction if
r hdr
----- — + +p+ -———-—
T ger NPT T
or /(r) >0, which is true by (ii).
Claim 2. T maps U(z,r) into U(z,r).

If x £ U(z,r),

T(x) —=z—A(Xx) J(F'(z) —F'(z+t(x —2))(x —=2)dt+CB(x)(x —z) —CF(z) ,

0
then
WT(x)-z\\<:r
if
I:ag(d£2r2+ hr2+pr+n) <r
or

g{r) <0,
which is true by (ii).
The result now follows from the contraction mapping principle.

We now state a theorem for the modified equation (6). The proof as
similar to the proof of Theorem 1 is omitted.
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T heorem 2. Let z be as in Definition 7 and assume that there exists
tq € [s,t) where

-N(F'(z)+ L)-1Z |I-[A-I(F(2) + L)-1L{D2-2[[(F"(2) + L)-1[lII(F'(z)+ L)-1 F(z)|[K 11 I/2
N(F@)+")_I|-<

and
I-\\(F'(z) +L)-"L\\

\W(F\z) +L)-"\£i ~’
provided that the quantity under the radical is positive and

W(F'(z) + L)-1L\\<I.

Then (1) has . unique solution x in v (., .«). Moreover, the rate of conver-
gence q(ro) € [u, 1) where

o = 1 (i [(FWHH) D22 VW) I C)HY IR

Assume that z is sufficient for the application of Newton’s method and
Theorem 2, then if gx is the rate of convergence in Newton’s method the
iteration

9) xn+i=xn-[F\z) +L] xF(xn), n=0,l,2,...

converges faster to a solution x of (1) if

A0 o <aN=1-[1- 29|FA)-1FA2)-IT @12

Denote by D, Di the quantities under the radicals in Theorem 2 and
(10), respectively, then we have the following theorem.

Theorem 3. If the hypotheses in Newton’s method [4] are satisfied then
Theorem 2 can be applied also in (1) if

Moreover, ifg(ro) <gN then the iteration in (9) convergesfaster to a solution
x 0/(l) than the iteration in Newtons method (7).

Proof. By Lemma 1

ii(no+ = p +F'(zriL)-\F\z)r'L <

< @ino-Tiwi ty(")

i - nn*)-ilH iili

(12)
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Now, using (11) and (12)

1-2|IF (2)-1J-lILIN 2 211|F/(z)-1HHF,(z)-1F (2)
I 1 (=N
Dx- 4|[F'(z)-1f| «|IL[I(L - [IF/(z)-1]| «|IX][)
(i-im *)-iii-iwi)a

so, D>0if

Dx> 4||F,(z)-1| «|ILII(L - [IF/(z)-1] «[IX1I)
which is true by (11). Therefore, Theorem 2 can be applied. The rest follows
from the discussion after Theorem 2.

Example. Let | = RxR, be equipped with the max-norm. Define a
bilinear operator B on X by the following calculation scheme:
\b\1 b\2 i
B(x.y)= <(xi.x2) °'%
bY b?
k b2 J
(13) b\ixi+b21x2 b\2x\ + bzax2 i
ibAxi + bIXi+bl22 |ife

bl'xxyi + b\Ix2yx + b\2xxy2 + b22x2y2
bAXiyi + bl'x2yi + b\axxy2 +b]2x2y2J ’

X= y = yI GX
LifeJ
It can easily be checked that B is a bilinear operator on X and as in [9] we
can define the norm of B on X by

(14) [I5]| = sup maxj] b8kEk
1= () i=ie i

Define the linear operator B(x) on X by

B(x)(y) = B(x,y)

where
b\Ixi+ b21x2 b\i+ b 22

BO) = ipaxi + b2lx2 b\2xi + b2

Let us now consider the quadratic system on X given by

(15) F(x) =B(x,x) +Li(x) +y=0
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where
\ 1
B 1 "l
3 1
]
-1 2

L\ is a linear operator on X given by

L\ = (/, the identity operator on X)

and .
ri
6
..
* 161
Equation (15) can also be written using (13) as

y:

12 « 32 5 1
2Xl + 2xix2- 2*2+ 2Xl+ 16 =°
(16) 32 , 12 5 1

L]
o1

2X1- 2xix2+ 2X2+ 2X2~ 16

Let us choose

and
S = 0
0.
Then, obviously
|[ill=>
M =X,
and using (14)
and
= 2|IS]|.
Note that

F\z) =2B(z) +Li = Li.



A NEWTON-LIKE METHOD 377

Then we can easily compute the quantities

D\ =.84

N =.0834849
D =.9230769
tt =.0392311
s =.0025008
t =3.125.

Note that the hypotheses of Theorem 3 are satisfied for ro £ [s,f) and by
choosing q(ro) = u we observe that

q(ro) <QN

therefore, iteration (9) converges faster to a unique solution x of (15) in
17(0, r0) than Newton’s iteration.
Indeed, iterations (9) and (7) for solving (16) can now be written

(17) X,+1 =X,, - "F(xn)
and
(18) Xn+l = X,, - "F(X,,),

respectively, where

I,n
To="" in — , nN=0,1,2,..
.x2,n.) A2,n.

and
Xqg= x0=
Let e = (.5)10 2 be the desired error tolerance that is
x —xn||*"£ for n>N,

and
[[x —=Xn||[<£ I°r n=N.

Then the true solution x = [**] is given by

Xj = - (24302916852540)10-2,
x2 =(24062003442371)10-2.
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Moreover, we have by (17) and (18)

and

We

ii,! = - (24038461538462)10-2,
x2,i =(23705087903960)10-2,
xi,i = —(25)10-2,

x2,i =(24625)10-2,

Xi,2= - (24268665625)10-2,

X2,2=(24047248283457)10~2.

now observe that the number of steps N in (17) required to achieve the

desired accuracy £ is

N =1

whereas the number of steps N in (18) required to achieve the same accuracy

£ IS

(1
[
(3]
4
[

(el

[1

8]
[

N =2
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SPACES FOR WHICH THE UNIFORM
BOUNDEDNESS PRINCIPLE HOLDS

R. LI and C. SWARTZ

1. Introduction

In [2], a theorem due to Antosik and Mikusinski concerning infinite ma-
trices with entries in a metrizable topological group was systematically em-
ployed to treat a number of topics in functional analysis, classical analysis
and measure theory. In particular, the matrix theorem was used to give
a general form of the Uniform Boundedness Principle (UBP) that is valid
with no completeness or barrelledness assumptions whatsoever on the do-
main space ([2] §4). Recently Li, Jin and Bu ([6], [7]) have extended the
Antosik-Mikusinski matrix theorem to matrices with entries in an arbitrary
topological group. This extended form of the matrix theorem now allows us
to extend and improve some of the results of [2] for the UBP to arbitrary
topological vector spaces (TVS) which are not metrizable. In this paper we
discuss several such possible extensions and introduce a new class of spaces,
called A-spaces, which seem particularly natural for the UBP.

In Section 2 we discuss the basic matrix theorem. Since [6]is unpublished
and [7] contains a very technical generalization of the Antosik-Mikusinski
matrix theorem, for the sake of completeness, we give a straightforward proof
of the matrix theorem for topological groups. In Section 3 we establish a
general form of the UBP which is valid for arbitrary TVS. We next introduce
a new class of spaces, called ,4-spaces, for which a classical version of the
UBP is valid. These spaces are more general than V-spaces and enjoy more
desirable properties than the V-spaces. We give several examples of ~4-spaces
which are not /C-spaces. Finally, in Section 4, we discuss the relationship
between uniform boundedness and equicontinuity. The results obtained yield
equicontinuity versions of the UBP.

2. The basic matrix theorem

In this section we give a self-contained proof of the Antosik-Mikusinski
Theorem ([2] 2.2) for group-valued matrices. In this section let G be an
abelian topological group.

Theorem 1. Let xtJ£ G for i,j £N. Suppose

1980 Mathematics Subject Classification (1985 Revision). Primary 46A05
Key words and phrases. Locally convex space, uniform boundedness, equicontinuity,
/C-spaces.
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Q)] 11tmxij —x]j exists for each j and
(1) for each increasing sequence of positive integers {mj} there is a sub-

E XiJ > is Cauchy.
= | b 1=l
Then Ii{n xt) = Xj uniformly for j € N. In particular,

limlim Xij —limlimXij=0 and limx,, =o0.
] ] i i

P roof. If the conclusion fails, there are a closed, symmetric neighbor-
hood Uqg of 0 and increasing sequences of positive integers {m and {n"}
such that xmknk - xnk £ Uqg for all k. Pick a closed, symmetric neighborhood
U\ of 0 such that U\ + U\ Q Ug and set i\ = m\, ji =n\. Since x,Ul - xn =
— —Xin ) + (xi3d —xn ), there exists Iqg such that xlin —xi}{ f U\ for
i ~ i0. Choose kO such that

mko > max{fi,i0}, nko >jx and set 2= mko, j2= nko.
Then x,Ul —ag2jl £ W\ and x,212 - Xj2~ Uo. Proceeding in this manner pro-
duces increasing sequences {ik} and {jk} such that X{kk —xjk * Uq and
Xikjk - x,k+ljk £ U\. For convenience, set zkyl - xIkH - xik+je so zk}k U\

Choose a sequence of closed, symmetric neighborhoods of 0, {Un}, such
that Un + Un Q Un= for n ~ 1. Note that

Ug+ Us+ ... + Un= UQu
i=3
for each m >3. By (I) and (II), IiIEn zkt = 0 for each | and Iilm z™ = 0 for

each k so there is an increasing sequence of positive integers {pk} such that
ZPkPfzpiPk £ Uk+2 for k > 1. By (1) {pk} has a subsequence {gk} such that

f oo n 00
1B xiogk 1 is Cauchy so lim X) zgag =0. Thus, there exists kO such that
Kk=1 J*=1 k t=1
(€D)
E zok q(EU2. Then for m> kO
r=i 0
m Jq—1 m ko—1 m m-f 2
N2 Zgkoge= $3*9*0«+ XA X] Ut+2g Y Mue=ui
1= 1 *=1 f=fcO+ I <=1 t-ko+ 1 t=3
thiko
so fo= E <U2. Thus,
=1
I1*k0

00
=XZ2'0u ~ZKR"MNU2+ U27MU .
t- 1
This is a contradiction and establishes the result.
A matrix which satisfies conditions (1) and (lIl) is called a /C-matrix.
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3. The UBP and A-spaces

Let X and Y be TVS and let La(X,Y) be the space of sequentially
continuous linear operators from X into Y . If r is the vector topology of X, a
sequence {a*} Q X is said to be r —X-convergent to 0 (or X-convergent to O if
the topology r is understood) if e\é%ry subsequence of {x/t} has a subsequence

{xnj(} such that the subseries ) xnk * ~-convergent to an element x €
=1

€ X ([2], 3.1). Following the analogue of the sequential characterization of
boundedness in a TVS ([10]), Antosik introduced the notion of a X-bounded
set ([1]); a subset A QX is said to be r —X-bounded (or X-bounded if r is
understood) if for every sequence {x*} Q A and every scalar sequence tk —*0,
the sequence {ifcx/t} is r - X-convergent to 0 ([1], [2] 3.4).

The classical version of the UBP for normed spaces asserts that if T "
Q LS(X,Y) is pointwise bounded on X and X is complete, then T is uni-
formly bounded on bounded subsets of X. This result fails to hold if X is
not complete. The general versions of the UBP given in [2] are obtained
by replacing the family of bounded subsets of X by either X-convergent se-
quences or X-bounded sets. We now give a form of the UBP which is valid
for arbitrary TVS.

Throughout this section let T~/Js(X,y). Let a(r) be the weakest topolo-
gy on X such that all of the elements of T are continuous. The following UBP
extends the UBP of [2] from the case of metric linear spaces to arbitrary TVS.

Theorem 2. IfT ispointwise bounded on X, then T is
(1) uniformly bounded on a(T) —X-convergent sequences and
(2) uniformly bounded on o{T) - X-bounded subsets of X.

Proof. (1) Let {xj} be cr(T) —X-convergent, {Tj} ~ T and {tj} a se-
quence of scalars which converges to 0. The matrix M = [i,T,Xj] is a X-matrix
so by Theorem 1 UT.x, =0, and (1) is established.

(2) Let B Q X be <I()—X-bounded, {x.} QB, {T} Cp and {t} be a
sequence of positive scalars which converges to 0. Then M = [y/tiTAY/TjX]j)]
is a X-matrix so the result follows from Theorem 1

We next introduce a class of spaces for which the analogue of one version
of the classical UBP is valid. This class of spaces seems to be the appropriate
class for which this form of the UBP holds.

Definition 3. ATVS (X, r) is said to be an A-space if every r-bounded
subset of X is r —X-bounded.

For such spaces, we obtain the following UBP from Theorem 2.

Corollary 4. Let X be an A-space. If T is pointwise bounded on X,
then T is uniformly bounded on bounded subsets of X .

The following propositions give a large number of examples of A-spaces.
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P roposition 5. If X is locally convex and sequentially complete, then
X is an A-space.

Proof. Let A*X be bounded, {xj}QA and tj—*0. Given a subsequence
00

of {fy}, pick a further subsequence satisfying  "n>|<00. Setsn= Y tn}xn}
i=i i=i
J n+p
If p is any continuous semi-norm on X , then p(sn-sn+p)® Y  Vnj\p{xn,)
j=n+1
so {«,} is a Cauchy sequence in X and, therefore, convergent.

Wilansky gives a list of sufficient conditions for a locally convex space to
be sequentially complete in Table 30, p. 281 of [12]. All of these spaces are
,4-spaces by Proposition 5.

From Proposition 5, we have the following examples of ,4-spaces.

Corollary 6. If X is semi-reflexive, then (X,weak) is an A-space.
P roof. A semi-reflexive space is quasi-complete ([8] 23.3.(2)).
For the same reason, we have

Corollary 7. IfX is a barrelled locally convex space, then (X a ( X \ X))
is an A-space.

The following simple observation can also be used to furnish examples of
,4-spaces.

P roposition 7. If T € LS(X,Y), then T carries JC-bounded sets to A-
bounded sets.

Corollary 8. Let (Z,Z') be a dual pair and let t Q o be two locally
convex topologies which are compatible with this duality. 1f (Z,a) is an A-
space, then (Z,t) is an A-space.

P roof. The identity from (Z, er) to (Z, r) is continuous, and, hence,
every r-bounded set is r —A-bounded.

If X is a 5-space, then by Corollary 8 (X, weak) is an ,4-space which
is not barrelled. Thus, the version of the UBP given in Corollary 4 is valid
for spaces which are not necessarily barrelled (see the remark following [9]
39.3(2)).

Recall that a TVS X is said to be a A-space if every sequence which
converges to 0 is A-convergent to 0 ([2] 83). Thus, a /C-space is obviously an
,4-space. But, from Corollaries 6, 7 and 8, we see that (£p, weak), 1< p < 0o,
and (f11, weak*) are ,4-spaces but are not A-spaces [consider the unit vectors
et which have a 1 in the k-th coordinate and o in the other coordinates].
These examples also show that a sequentially complete space need not be a
A-space, but by Proposition 5 are always *4-spaces. Klis’ example ([5]) of a
noncomplete normed A-space shows that an ,4-space need not be sequentially
complete. The examples above also show that Corollary 7 is false for A-
spaces.
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The examples above of .4-spaces which are not /C-spaces are not metriz-
able. Indeed, for metrizable spaces, we have

Proposition 9. Ifthe metric linear space X is an A-space, then X is
a K-space.

Proof. Let Xk —»0. Then there exists a scalar sequence tk f oc such
that tkXk —m0. Now {tkXk} is bounded and, therefore, /C-bounded. Hence,
{(1/tk)tkXk) —{x*} is X-convergent to 0.

The proof above obviously holds for what Khaleelulla calls braked spaces
([41)-
4. Equicontinuity and uniform boundedness

The conclusion of the UBP for operators defined on either E-spaces or
barrelled spaces is often given in the form: if T is pointwise bounded on
X, then T is equicontinuous ([2] 4.5, [9] 39.3.(2)). We next consider the
relationship between equicontinuity and the conclusion given in Corollary 4.
The results obtained in Proposition 11 and 13 can then be combined with
Corollary 4 to obtain an analogue of this form of the UBP.

Consider the following:

(D) TQL(X,Y) is uniformly bounded on bounded subsets of X.

(1) T is equicontinuous.

It is routine to check that (Il) always implies (1). That the converse
implication does not hold in general follows from the example below.

Example 10. Let X be Go with the weak topology. Then r Q X' —Cl is
uniformly bounded on weak bounded sets if and only if T is norm bounded
in 11 The sequence {ejt} Ql1lnorm bounded but is not equicontinuous with
respect to the weak topology of Gosince {e*;} is weakly convergent to 0 in @
but (ejt, ejt) = 1.

We give sufficient conditions which guarantee that (I) implies (11).

PROPOSITION 11. Let X andY be locally convex with X infrabarrelled.
Then (1) implies (I1).

Proof. Let V CY be an absolutely convex, closed neighborhood of 0.
Put U=n{T~XV :T € T}. We show that U is a bornivore, and the result
will then follow from the infrabarrelled assumption. That U is closed and
absolutely convex is clear. Let A CXbe bounded. Then r(4) is bounded
so there is A> 0 such that I'(4) Q AV. Thus, A Q XU, and U is a bornivore.

This result improves Proposition 7 of [11].

In a certain sense Proposition 11 is best possible for locally convex spaces.
For, if X has the property that (I) and (1) are equivalent when Y is the
scalar field, then strongly bounded subsets of X' are equicontinuous, and X
is infrabarrelled ([8] 23.4.(4)).

From Proposition 11 and Corollary 4, we obtain
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COROLLARY 12. If X is an infrabarrelled A-space, then X is barrelled.
In particular, a locally convex, metrizable A-space is barrelled.

In [3] it is shown that a metric /C-space is a Baire space and, therefore,
barrelled. Corollary 12 gives a locally convex generalization of this result.
In the non-locally convex case, we have

P roposition 13. If X is a metric linear space, then (1) implies (II).

Proof. Let Xj—»0 in X . It suffices to show that TjXj —»0 for every
{Tj} 9 r. Pick tj I oo such that tjXj —=0. Then {Tj(tjXj)} is bounded by (I)
so (L/tj)Tj(tjXj) = TjXj —O0.

In [2] 85 versions of the Banach-Steinhaus Theorem were developed us-
ing AVconvergent sequences which required no completeness or barrelledness
assumptions. Using Theorem 1 these versions can now easily be extended
to the case where both the domain and range spaces are arbitrary TVS ([2]
5.3, 5.4). We omit the precise statements and proofs since they are identical
with those given in [2].
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A PROBLEM IN GAME THEORY

M. HORVATH, I. JOO and Z SZENTMIKLOSSY

The minimax theorems form a central part of game theory. If we are
given two sets X, Y and a function /: A XY —R, the equality

(1) sup inf/(x,y) —inf supf(x,y)
xeXyeY yeYxex

is called minimax equality. Several conditions ensuring (1) are known, we
only mention some of the latest results [1-9] of Hungarian mathematicians.
Denote by c* the right of (1) and for some ¢ < c* define

Hy = {x:/(at,y) >c}, Hx = {y :f{x, y)>c}.
In [5] is proved that (1) is equivalent to the assertion that

(2) n//iy~o forall c<c*.
\ yEY '

If X is compact and the sets Hv are closed in X then (2) is ensured whenever
the finite intersections of the sets Hy are nonempty.
An interval space on some topological space Y can be defined by a map-
ping
[*,]: Y XY -P (Y )

where P(Y) means the set of subsets of Y and if the following conditions
hold

3) Shi, 22 G [rfi, t2]

(4) [2i >22]CY is closed and connected

for any 21122 € Y. In an interval space we consider [21,22] as an interval
with endpoints yi and 22- A set K CY is called convex if 21»22€ K implies
[21,22] C K.

In the following theorems we consider subsets HxCY, Hy C X such that

(5) xeHy&yeHx.
This means that there exists a set Z CX XY such that

Hx ={y:(x,y)eZ}, Hy={x:(xy)€2Z).
Akadémiai Kiadé, Budapest



386 M. HORVATH, I. JOO and Z. SZENTMIKLOSSY

The second author of this paper raised the following

Problem. Let X be acompact topological space, Y be an interval space.
Define the set IlyC X , lIx CY satisfying (5) such that

a) Hy”~ 0, Hyn .. Pl H\ is closed and connected (may be, empty) for
all 2i,... ,WKEY.

b) Y \H Xis open and convex for all x GX . Does it hold in this case that

Ilyin...DHyk~0 forall yu... ,yk<eY?

We are not able to give the answer. In what follows we get positive answer
using some further conditions.

T heorem 1 Let X be a compact M\ space and Y € T\ be an interval
space where the intervals are convex. Suppose the following property. For
any convex set K CY contained in an interval and for any boundary point
y of K there exists y\ € K such that (y, y\ = [y,yi] \ {y} CK. Then a) and
b) imply the finite intersection property

(6) llyin...n//"0 yu ...,ykeY.
P roof. We establish first some consequences of a) and b). First,
(7) ye[yi,y2A="CHAUH ™,

Indeed, if x GHy\ {Hwx Ully2) then 21,22€ Y \ Hx, y£Y \H X which con-
tradicts the convexity of Y \ Hx. Secondly

(8) Hyin =0, vye[yi,y2]*"HycHyi or IlycH»

follows from a). Using this we remark first that it is enough to prove (6) for
two sets, then the general case follows by induction. Indeed, if (6) holds for
some k, then fix arbitrarily yi,... ,yk-\ and take Hyi fl... DH yk~1 instead
of A", llyflHyi fl.. .fl Hyk~1 instead of Hy; IIx remains the same, and apply
the statement for two members to obtain the case k -f 1. To see the case
k —2 suppose indirectly that for some a,b€ Y Hafl Hb= 0. Define the sets

Ka={yGJ[a b :llycHa}, Kb={yGJ[abl:HyC Hb}.

Then by (8) [a, b= KaU*Kb, and the sets Ka, Kb are convex by (7). Since
[a, 6] is connected, Ka and Kb cannot be simultaneously closed; e.g. there
exists a boundary point y of Ka not belonging to Ka. We know that there
exists t/o € Ka such that (y, 20]C Ka, y € Kb. Fix a neighbourhood basis
Un of y. There exists a point 21 £ (2?20] D U\ (otherwise {y} would be
open and closed in [y, 20]), there exists y2 € (y, 21]fl U2,... ,y,, € (y,yn-i] H
flUn, __ Since IlyC Hb and HW C lia, (7) implies that HW+l C HWh,
and then C\Hyn”~ 0 by the compactness. Take an x Gn//yn, then obviously



A PROBLEM IN GAME THEORY 387

x £ Hy. In other words, yn GHx, y * Hx, in contradiction with b) since Hx
is closed. Theorem 1 is proved.

Remark. The compactness of X cannot be omitted above. Consider
the following counterexample. Let X = R+, Y = [0,1] and let

HO U{1},

- [«+a
1 1
Hx = 1 X>0
2+ 2+X’
and define Hy by (5). It is easy to see that the other conditions of Theorem 1

hold, however
Her\H* = 0.

Theorem 2. Let X be a compact topological space, Y GT\ be an interval
space where the intervals are convex and compact. Then a) and b) imply the
finite intersection property ().

Remark. With a sketched proof this statement is given in [10]. We give
here the details.

P roof. Again it is enough to prove (6) for two members. Suppose in-
directly that Hafl Hb=0. We call an interval [a',6"] good if Ha'flHb = 0.
We establish a partial ordering between good subintervals of [a, b], namely
let

[a'b]<[a",b"} if [a'b'}D[a",b"] and Ha DHa", HO DHb".

By the Kuratowski lemma we have a maximal ordered subset Z. It is confinal
with its well-ordered subset [a®, b], £ <K where X is a regular well-ordering
type. Let & resp. b be condensation points of the sequence a$ resp. b\ they
exist since a*,b® G [a, 6] and [a, 6] is compact. Then [6, b] C [a®,6j] for all

Since # implies Hat D HaC hence by the compactness of X, fl//“«/

/ 0. Let xGn//a« then a* GHx and consequently a GHx, x GHa C Hat.

Analogously we get HbC Hb<for all £. So we see that a”b and that [a, b]
is a maximal element of Z. But this is impossible: by Y GT\ there exists
y G(d, b); now if I1yC Hathen [y, 6]> [a, b] and if Iy C Hbthen [6, y] > [4, 6].
The contradiction proves Theorem 2.

Theorem 3. Let X be a compact space, Y GTi be an interval space.
Suppose a), b) and
c) yi,y27y, jl'ylle(ili,il2)=i>(j/i,i/,In(j/i,i/"]/0.
d) Ifyi,y2,ya€Y, yis a net converging to y2 then [j/i,y2) C g[j/i, yQ).
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If a), b), ¢) d) hold then (6) follows.

P roof. Suppose indirectly that HaC\Hb= 0 and consider the sets Ka, Kb
as in Theorem 1. Suppose for example that there exists a boundary point y
of Ka with yf Ka. Take any point y\ GKa; we shall prove that (y, y{\ C Ka.
Indeed, let ya C Ka be a net converging to y, then d) shows by the convexity
of Ka that

(y.yilceu(ya,yilc Ka.

Now c) shows that if y', y" G (y, r/i] then there exists y G(y,y1] fl (v, y"], and
hence Hy' flHy" DHy”~ 0. Since X is compact, there exists xg G C\{Hy' :y' G
G (y, yi]l}. This means that (y,yi] C HX and then y € HXo, xq GHy. But
this is impossible, because Hy C Hband Hyi C Ha. This proves Theorem 3.

Remark. The above results give three minimax theorems. Namely if
/: X xY —Ris a function such that for all ¢ < c¢* the sets Hy = {x :/(Xx, y) >
Nep Hx= {y:/(x,y) > c} satisfy al and b) and if the spaces X , Y satisfy
the conditions given in the statement of the above theorems then

infsup/ = supinf/.
y X Xy

Now if the partial functions x t>/(x,y) for any fixed y are upper semi-
continuous, then Hy is closed, and if the other partial functions are also
upper semicontinuous, then Hx is also closed. We say that the functions
y t+f(x,y) are quasiconvex if the sets Y \ Hx are convex. The remaining
part of a), namely that Hyi fl.. .(~\Hyk be connected, can be ensured e.g. if we
endow X with an interval structure and in this interval space the functions
x /(x,y) are quasiconcave.
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ON LxNORM CONVERGENCE OF HERMITE INTERPOLATION
BASED ON THE ROOTS OF JACOBI, HERMITE, LAGUERRE
AND SONIN-MARKOV POLYNOMIALS

S. SZABO

The norm convergence of interpolation processes is investigated by many
authors. We mention first the classical result of Erdés and Turan [3] stating
that for a general class of weights, the Lagrange interpolation converges in
L2-norm on finite intervals. For the case of infinite intervals the analogous
theorem was proved by Balazs and Tdaran [4], [5]. In [6] the authors gave
an estimate for the speed of convergence in L2-norm of the Lagrange inter-
polation with Laguerre abscissas; it was based on a Jackson-type theorem
corresponding to the Laguerre weight. For the Hermite interpolation on fi-
nite intervals a general result is given in [2] p. 419. The aim of this paper
is to prove the L1-norm convergence of Hermite interpolation formed by the
Jacobi, Hermite, Laguerre or Sonin-Markov nodes.

Let x\ < ... <xn be the nodes of the n-th interpolation. Let

w(x) = :1|(* ~ *«)

and the polynomials

[(X)- ‘U x)- W (xt)(X-xt)

called the fundamental polynomials of the Lagrange interpolation. The Her-
mite interpolation polynomials of a function / € C1 are defined as

(1) Hn(f,x) =p F(xk) (1-27 (x -x Kj)+f(xk)(x-xk) 1(x).

Consider first the Jacobi polynomials pl?,f3x), a,R> -1 defined by
|
I pER)X)pCBX) (I - *)*“(! + xfdx =6nk.
-1

1980 Mathematics Subject Classification (1985 Revision). Primary 41A05; Secondary
41A10.

Key words and phrases. Hermite interpolation, L1-norm convergence, orthogonal poly-
nomials, Stone-Weierstrass theorem.
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Introduce the space

C(t,e)={/€C (-1,1): |\I/ilm_/(*)(l - X)7(l + x)s=0}

-»1

The Hermite interpolation polynomials for the Jacobi abscissas are defined
by

A owt(xk), \' I-x[a-B+(a+B+2)xk\+ (a-B)xk+(a+R+1)xR
V2) 1-— W WW(IQ)[X~XI() = :1— XF ]

We shall prove first the T1-norm boundedness of the operator sequence Hn.

Lemma 1. Leta,R >—1, 0<e<min(a+ 1,8-\-1). Then
(3)I

JI (I-x)a{l+x)R\Hn(f,x)\dx"c ImI?SXn [/(x)|(I-x*)a+1_e(l+z*:)/3+1 £+
-1 -
+c max \f'(xk)\(I - xk)a+1~e(l + xk)B+1~e.
ISkSn

Proof. Since —a —1--f<o, -B - | +e<0 hence

(2n)

RIS (4 ) 0-tre >0 Ixl < 1

(1-x)

(see [9]). Denote F{x) —(1 —x) a 1+e(l + x) ™ 1+e. Then
(4) F(x)>Hn(F,x) I*| <1.

Indeed, the function F(x) —Hn(F,x) is positive near =1 and it has twofold
zeros at xk, 1<k <n. Ifit admits also negative values then there must exist
a 2n - 1-th zero. Using repeatedly the Rolle-theorem we get that the 2n-th
derivative [F(x) —Hn(F, x)](2") = [F(X)](2b has a zero; this contradiction
proves (4). Multiplying by (1 - x)a(l + x) and integrating (4) and using
the orthogonality relation

|

[(1- x)a(l +x)Mx - xk)I\(x)dx =0

we get

|

J(1-x)a(l+x)BI2 (1-xk)-a- L+e(1+xk)-B- L+ell(x)dx< j (1-x 2y - Idx~c.
-1 k=1 -1
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Consequently
a) f1-x)a(l +xf £ f(xk)IR(x) Ox <
N max |[/(x®)|(lI - xf)a+l i(l + xf)/3+L £-
I<k<n

-/ (- X)"(1+ )P E(I-a;*:)_Q_L+i(I + Xk)~0~1+alI(x)dx <

max |/(th)|(| Xfc)QHL' £(1 + Xfc)3+1_£=:cAn.
I<fc<n

b) -/|(I -x ) QI Tx)N f%:|/(**)£3i$(*) dx <

<ARf(1-xa(l+ XVBE (1- *Foy™- Lre(l + xk)-8- 17111 (x) dx =

fc=i

An/ (1-x)ya( +X)BE (1 —xfc)-a~1+e(1 + XK)~0~I+e\z ttfXx)dx ~ cAn.
-1 fc=i

Since in the Jacobi case we have
w"(xk) <
. - < - 2
“(XK) (X - xk) CV ?'.:X{ Ix A
hence (3) follows from a) and b).

Theorem 1. Let a >-1, 0<£< mina+ 1.8 + 1) and /,/* G
Gt(a+1- £,/3+1—f). Then

|
(5) f(l-xr (l+xf|/(x)-~(/,x)]dx-,0 (n —00).
-1

P roof. By the Stone-Weierstrass theorem (see [8]) the polynomials are
dense in C(a + 1—e,B + 1—e), i.e. there exist polynomials of order ~ n
satisfying

(6)  sup [I'(x) - KO)|( - x)“+1-e(] + x)~1- -»0  (n —»o0).
W<i

We can also suppose /(0) =p,,(0) and then

1/(.)-*()! =]/ (/'(0 - PIM)* <

Ac(l-x)-"-1+e(l + x)-/3 1+e Beiee gt
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implies

(7) sup |/(as) - p,.(X)|(l - x)a+1l-e(l + x)R+1~e-*0 (n-MX>).

x]<1
Consequently from Lemma 1 we obtain

| |
3@ - x)all +)B\E(x) -4, (1, x)\dx< j (1 - x)a(l +x)B\E(x) - pn(x)\dx+

|
+3 (1- x)a(l + x)B\Hn(f - pn,x)\dx 0  (n-+ 00)
-1

by (6) and (7). Theorem 1 is proved.
Now introduce the normed Hermite polynomials

6}

J hn(x)h/j(x)e  dx —$nk’

Define the space

C(A):={/€C(R): Hm /(x)e- AQ=0}.

The Hermite interpolation polynomials are ([1])

Hn(f, x) - 72 f(Xk)(1- 2xfeX+ 2xRyl(x) + *2 f\xk){x - Xjt)/fc(x).
k=1 k=1

Lemma 2. LeiO<A<Il. Then
(0 0]
(8) J[ \Hn(f,x)\e x2dx”"c Imax |[/(xf)le A+ c max |/'(xT)le Ax-
="N=n

—00

PROOF. From the trivial inequality (eA2"2n*> 0, x 6 R we get as in
Lemma 1 that
exXx2 >Hn(eXt\x) X €R.

Multiplying by e~x and integrating we get
00 (00

f e~x2r2eXxI1R{x)dx< f e-"~-xx2dx<c
J i n
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hence
N 0'*
a) / e-* £ f(xk)II(x) dx<c max \f(xk)\e Ax*=:cBn.
—00 k=1
o Lk A
b) / | f( k)Z”l(X) dx<c max|/(x*)|e Ax* foh, exxUI(x)dx <
k=l —o00 W=t
£cBnif AA<Ll
o1 w oO7n1 »9
c) /I ex X f(xk)xll(x)dx <cBn f [x|e-x £ eAWE(x)dx »
fc=i fc=i
°0
N eBn f o \x\e~~~~x dx <cBn.

—00
Lemma 2 follows from a), b), c).
Theorem 2. Lei0O< A< 1land/,/'e C(A), then

(9) \]U e~x2\f(x) - Hn(f, x)\dx-+0 (n-+ 00).

Proof. There exist polynomials pn of order < n such that
(10) sup \f'(x) —pn(x)\e~XQ —0 (n —00).
X6R

We can further suppose that /(0) = pn(0) and then

\fix)-Pn{x\=1]y (/'(<)-Pn(0)* ~°(1)J eXxt*dt=o0(l)e
i.e.

(11 sup [/(x) —p.()le ™ o (n—>00).
X€ER

On the other hand
(12) j e~x2\f(x)-pn(x)\dx =o(l) j e- (1-A)x2dx =m0 (n-+00)

—00 —00

and then Lemma 2, (10), (11) and (12) imply

I e (x)-Hn(f x)ldx<

00 00

- (X)]dx+ \] e“‘XZ\Hn(f- P, X)ldx =0 (n->00).

1
—
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Theorem 2 is proved.
Now consider the Laguerre polynomials 1"\x), a > —1 defined by

j xae-xI"(x)I[a\x)dx = éntk.
0

Define the space

Cx(-a +s):=ifeC( R) Ilrnf{x)xa~ce~Xx :O’I 96& f{x)xa~ee~Xx :Q
X —*00 -
The Hermite interpolation polynomials are ([7])

Mo X) =22 F (X ——Q) + -g(Qtl—i* 220x)+\p £ (xk) (x-xK)II(x)
k=1 o=l

Lemma 3. Lei-1 <e<a, 0< A< 1 Then
(13)

f xae x\Hn(f)\dx<c max \f{xk)u% ee Xxk+c max \F'(xk)uh ¢ \xk
i="=n i="=n

Proof. Since a —£ > 0 hence
[ p \\*n)
>0 (1>0)
(see [11]). Denote F(x) = . Then we get as in Lemma 1 that
F(x)>Hn(F,x) (x > 0).
Multiplying by xae~x and integrating we get

0

[0}
\Joxae~x" e XxkxMa+ell{x)dx< \j xee~"-~xdx £ c.
k=1

Hence

/ x°e XxE f(xk)I(x)9x <
0 Ifc=1
< max |[/[(xT)|x“-'e-Ax=[ xae~x V x"ateeXxklR(x)dx <
I<fc<n J fel

< ¢ max |/(xfc)la;R Re "
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From this Lemma 3 follows with similar methods as in proof of Lemma 2.
T heorem 3. Let-1 <e<a, 0<A<1land/,f £Cx(-a +¢€). Then

(14) \] xae~x\f(x) —Hn(f, x)\dx —»0 (n—»00).

0

P roof. By the Stone-Weierstrass theorem there exist polynomials pn
of order < n such that

(15) sup \f'(x) - pn(x)\xa~ce~Xx->0 (n —mo0).
x>0

We can suppose that /(1) = pn(l) and then
\f(x)-pn(x)\ =]y (/'(i)-Pn(O) dt o(1)x'~aeXx,

i.e.

(16) sup\f(x) —p,,(x)]i"_ee Ax-+0 (n—%00).
x>0

On the other hand

a7) j xae~x\f(x) —pn(x)\dx =o(l) j xee~"~xXdx —0 (n—>00)

[¢] [¢]
and then Lemma 3, (15), (16) and (17) implies

J xae-x\f(x)-Hn(f,x)\dx< j xae-x\f(x)-Pn(x)\dx +
0 0

+ j xae~x\Hn(f —pn,x)\dx —»e (n —»00).

0

Theorem 3 is proved.
At last consider the case of the Sonin-Markov polynomials. The orthogo-

nal polynomials H ~\x) associated with the weight function w(x) = e~x7\x\"
(/3> —1) are called Sonin-Markov polynomials and are generalizations of the

Hermite polynomials Hn(x) = H”"\x) ([1], [10]).
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We investigate only the case n —2m. Let {x,}”" be the zeros of the
Sonin-Markov polynomial H~{x). Then
"(xk 2x\-B
wiixk) - 2x (k=1,... ,2m).
w'(xk) xk
Define the space

CA-I?+E£)={/€ C(R):, fim f(x)\x\"e~X7=o0}.

|x |—"00 J

Lemma 4. Let-1 <e<fB, 0< A<l Then

(e]e]

[ \xfe~x2\H2m (f,x)\dx<c max |/(xjfc)||xfd3_£e-A;r*+
(18) 1Sk<2m

+c max \fAxk)\\xk\3 ce Ax*.

I<k<2m

P roof. It is known that
WAX2 2m \x2

X\0-C £ W%\ =°’

see [11]. From this we obtain

2m
I Wx\0e x \J2f(xk)IR(x) dx <
-00 =1
°? 2m
* Na_ * o AN
1<rr&>§m |/(xfc)||xfc|/3_ee_AX J Ix"e zf \xk\e~BeXxU 1 (x)dx
-00 =1

00
<c ax |[/[(xfc)||xjt|3-Ee-Ax* [ |x|ce~"1-A" 2cfar <
Jax ll(xfe)lixjt 4 Ixl
— 00

<c max [/(xfc)||xfc|*-Ee_Ar*.
I<Jfc<2m

From this Lemma4 is following with similar methods as in proof of Lemma 2.
Theorem 4. Let-1 <e<B, 0<A<i1andf,f £Cx(-8 +¢€). Then

(19) j X\0e~x2\f(x)~ H2m(f,x)\dx->0  (m -+ 00).
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Proof. By the Stone-Weierstrass theorem there exist polynomials of
order » 2m satisfying

(20) sup |/'(x) - p2m(x)\x\B-'e-X7 —o0  (m-*oc).
X6R

We can also suppose /(0) =p2m(0) and then

[/(z)-i>2m(2)|=|y (f\t)-p'2m(t)) dt lc~RBext2dt =o (1)|x \'~BeXx
0

i.e.

(21) sup [/(x)-p2m(2)||2|"_ee_Ax2 -+0 (m —00).

On the other hand
(22)

(o] (o]
\j W\Be~x2\f(x) - p2m(x)\dx = O(l) j [x|'e- (1-A)x2dx —»0 (m —>00)

—0 —

and then Lemma 4, (20), (21) (22) implies

\jD\x\Be~x*\f(x)—H 2m(f,x)\dx < f)\x\ﬁe~x2\f(x)—p2m(x)\dx+

-00 -00

+ JD\X\Be~x2\H2m(f -P 2m,x)\dx-+0 (m —»00).
—
Theorem 4 is proved.

Remark. Let .

Ln(f,x) =""2f{xk)Ik(x)
k=1

be the Lagrange interpolation. Then we have for / € C
a,f >—and o <£<min(a-f1,/7+ 1)

|
(23) J (L —x)"(1 + x)M/(x) - Ln(f,x)\2dx —0  (n-»00).
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Indeed, take polynomials pn such that

sup |/(z) - p,,(X)|(I —x) +~ (@ - —»0 (n—-00).

[x[<1

Using the orthogonality relation

|
J IkG)(X)(1 - 2)QI +x)0dx =0 (k*j)
-1

we obtain
1 1
J (1- x)a(i+x)0\f(x)-Ln(f, x)\2dx <2J (I-x)a(l+x)B\f(x)-pn(x)\2dx+
-1 -1

1
+23 (1-x) QI +x)B\Ln( - p n,x)\2dx<

-1
J}
=o(1) + 2J (1 - M)"(1 +x)032\F(xk) - p,.{xk)\2AR(X)dx =
-1

= «(1) (1+I(1-X)a(l+Xf ~ (1-x f)-“- L+e(1+xk)-0~1+11(x)d~ = 0(1)
— fc=1

as we asserted. This result extends the function class for which the L2-
convergence holds. Namely Erdos and Taran [3] proved the convergence for

[/ € C\—1,1]; the class C is larger, the function f(x) may
grow by the order (1 - x) Q21+ resp. (1 + Xx) + if x —»1 resp. X —»—1.
Define

£, (f):= piaf sup [/(x) - pnQ)I(T- x)* (1 +x )7

then the above proofs give the estimates
|
(57 J(1-*)“@+ xf\f(x) - Hn(f, x)\dx <c£2n_2(/"),

(23) I(1- x)QI + xf\f(x) - Ln(f, x)\2dx ~ c(E,,_j(/))2
-



and

then
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in the case of Hermite nodes, if

E«():= inf supl|/(X)-p,(a;)|e" A
Pntiln xGR

00

i e~x2\f(x)-Hn(f,x)\dx<cEIl_2(f).
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GRAPHS WITH MAXIMUM NUMBER OF STAR-FORESTS

Z FUREDI

Abstract
Let H denote the vertex disjoint union of stars of ai,... ,a< edges. Here it is proved
that if a- > log2(<+ 1) for all 1~ i~ t and e is sufficiently large (e > eo(ai,... ,at)), then

a star-forest of e edges and t components contains the largest number of (not necessarily
induced) copies of H. A simple construction shows that the constraint a, = fi(log i) cannot
be omitted.

This (partly) settles a conjecture of Noga Alon.

1. Notations, preliminaries

Let G and H be simple graphs (i.e. undirected, finite, no loops and mul-
tiple edges) without isolated vertices. In this paper we investigate A(G,H),
the number of subgraphs of G isomorphic to H. For simplicity, we suppose
that the edges of the graphs are labelled, so, e.g., A(Kn,Km) =
=n(n—1)... (h—m + 1). Let

N(e, H) = max{7V(G, H): [£(G)]| = e),

the maximum number of ways as H can be embedded as a subgraph. G is
called maximal with respect to H if N(G, H) = iV (|JE£(G)|, H).

A star H(a) is a graph of a edges, a+ 1 vertices with a degree a. The
vertex disjoint union of H (ai),... ,H(at) is denoted by H(a!,... ,at), and
called a star-forest of type (ax,... ,at). The vector (oi,... ,at) is abbreviated
as a. In this paper we always suppose that a; > 2 for all t, and that t > 2,
except if otherwise stated.

Alon [1] determined the order of magnitude of JV(e,H) whenever H is an
arbitrary given graph and e —oo0.

CONJECTURE 1.1 (Alon [2]). 7/H(a) is a star-forest and G is maximal
with respect to H, then G is a star-forest, too.

lie proved the case t < 2. The aim of this paper is to prove 1.1 for a large
class of additional cases.

This research was supported in part by the Hungarian National Science Foundation
under Grant No. 1812.

Akadémiai Kiaddé, Budapest
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Denote the polynomial

E X¥X2

by p(ai,... ,at,xi.... . xn) or briefly by p(a,x), where i\, .. ,it run over all
the n(n —1) ese(n—i + 1) ordered t-tuples of {1,2,... ,n). Let p(a, n) denote

n
maxijp(a,x):x ™ 0 and X- 1j.
«=1

Finally, let p(a) = supp(a, n).

During the proof £1,e2>e¢+ and cu c:, mmdenote (explicitly computable)
positive constants depending only on a.

2. An asymptotic result
T heorem 2.1. Suppose that a; » 2 for all i and a, = A. Then
N{e, H(a)) =p(a)eA+ 0(eA~1), as e tends to infinity.

P roof. First we show that for some n0= no(a) one has p(a, no) —p(a, n)
for all n > no, whenever all a, > 2. Suppose that x is a maximum point with
x > 0. Lagrange’s multiplicator method gives that

(2.1) dp(a,x) X

for all 1~ j S n. As every term in the polynomial (d/dxj)p(a,x) has degree
A —1 and has a factor Zj (by a, > 2) we obtain

)3 (a,x) ™ (ma 1)6 s max aj —1
-p(a,x X a-— » = —
Xj dxj PLa. 8 J

implying
(2.2) AN Xj(maxa,- —1).
On the other hand, summing AXj for all j (2.1) gives a lower bound for A

A= A(X] xi) = = (A ~ OK*»*) A
(2.3)

>(A-i)p(a, (y,... ,y,0,0,... .0)) =(A-1)L.

If n>fA/it and < 1/n, then (2.2) and (2.3) contradict each other.
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Suppose that p(a) = p(a, xi,... ,i,,) where x >0, £)x¢= 1. Then the
graph H([xield,... , [xnej) contains p(&)eA —0(eA_1) copies of H(a).

To prove the upper bound, consider an H(a)-maximal graph G of e edges.
First we claim that there is a set C C F(G), \C\ * ¢\ (= cj(a)), such that C
intersects all edges of G and

(2.4) degG(u) » £\e

holds for all v £ C for some £i = £i(a) > 0.

For an edge E £ E{G) denote its multiplicity by M(E), i.e. the number
of occasions it appears in a subgraph of G isomorphic to H(a). Set Mmax =
=max{M(E):E £ E(G)}, and let {u,u} £ E(G) be an edge with maximal
multiplicity, M({u,v}) = Mmax. As p(a) > t~A we have that

(2.5) Mmax > £2e4 1

holds (for all e * A).

Consider an arbitrary edge {p, q} £ E(G) and suppose that M({p,q}) <
< 5-"max- At least §Afmax copies of H(a) contains {u, u) but not {p, q}.
At least half of these (i.e. » M/3) has u as a center of a star. Then delete
{p, q) from G and add a new edge {u, in} where w ”* V(G). This operation
increased N (G,H(a)), a contradiction. We obtained that

(2.6) M{E)>£3eA~1

holds for all edges E £ E(G). Denote the degrees of the end points of the
edge E by dx, d3, and let d —maxjdi,d3}. Then E is contained in at most

i X /

star-forests of G. Then (2.6) implies that at least one end point of E must
have degree at least (£3/2t)e, yielding (2.4).

Finally, let G' be the bipartite graph obtained by deleting all edges inside
C,C ={ui,... \v,,}, (n<cj). We get

N (G, H(a)) < A(G'(a), H) + (A - t)eA~\

It is quite clear that for x, := degG,(u,)/e one has
JVIG "arprx” +0107-1)
yielding the desired upper bound

(2.7) N (G, H(a)) < p(&,x)eA + 0{eA~1).
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3. An exact statement

THEOREM 3.1. Suppose that a, > log2(t + 1) for all 1<i <t and G is
an H(&)-maximal graph with e edges. If e >eo(a), then G is the union oft
stars.

This is not true in general. E.g., ifa= (a,a,... ,a), then
t\ (<+ 1)
?(o(*!’ooo’*t)): —t<!»(»>(*!,-0-» **+O): N o+

whenever a < In(<+ 1).
The main tool of the proof of 3.1 is the following technical lemma about
p(a,x). This lemma will be proved in the next section.

Lemma 3.2. Suppose that a->log2(i + 1) for all 1<i<t, A =" ai-
Suppose further that x\,... ,x,,>£ where n> t. Then

R&T@R+—=

Proof of Theorem 3.1. As we have seen in (2.4), there is a set C =
= {vi,... ,u,} CT(G) of large degrees (> £\e). Denote the degree sequence
of C by Xie,... ,xne. Then (2.7) implies that |p(a,x) -p(a)] = 0(l/e). Then
Lemma 3.2 gives that n =t.

There is no edge outside C, so each component of H(a) must intersect
C. Hence each edge inside C has multiplicity 0, that is, C does not contain
any edge by (2.6). Finally, it is clear that all vertices outside C must be of
degree exactly one.

4. The proofof Lemma 3.2

Suppose that X\ > A ... >Xxn>e. Denote the sum of all terms of
p(a,x) containing i, by p,- and let pn-i,n denote the sum of terms containing
both xn_i, xn. As xn is the smallest of the £+ we have that pn < (f/n)p(a,x).
Similarly, as x,,_i is the second smallest of the x- we obtain that

L t-1 i—1
(4-1) Pn—l,nSth—:IPn<—|—pn.

Consider the ratio of the sum of distinct terms in pn and pn-\ and use (4.1).
We obtain

&> pnfxn-i_\a

4.2 A\ A - _
(4.2) Pn— Pn—aw N (Pn~Pn-I,n =t Vxn)
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where a - min a;. Now define

X, fort=1,2,... 17 2
Xn-1 +*n fori—n —1
0 for i =n.

Consider p(a,y) —p(a,x). We have that the increase of p is at least

- o

/ , \
(4.3) ( Pn Pl Pndn) TwPnd pPadn)( | )

Using (4.2) we have that the expression in (4.3) is at least

, Pn (Xn-1Va((Xn+ Ep-iiy \
+ - 13-

Here the coefficient of pn/t is (1 + c)a- ca where c= £n_i/xn > 1. So this
coefficient is at least 2a—1 " t + 1. This implies that

P(a) n p(av n- 1) > p(a,y) > p(a,x) Ty n p(a,X) Ty

Remarks, problems

It is probably not too difficult to give an asymptotic formula like in
Theorem 2.1 for all H(a), when some a, = 1 appear.

Another step to prove Conjecture 1.1 would be to get rid of the constraint
a, > log2(<+ 1) in Theorem 3.1. It is easy to prove that if all a- > 3, then in
a H(a)-maximal G all the vertices outside C (see (2.4)) have degree 1.

It also seems to me a solvable question to investigate N{G, H) where now
G and H are multigraphs.
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ON THE ESTIMATE (xmin + zmax)/2

1. JOO and S. SZABO

In practice often occurs the following problem. We have to measure some
quantity and the results of n independent measurements are x\,... ,xn real
numbers. Give a “good” approximation for the quantity considered, using
the values ,xn. Usually we consider n_1(x1+ ...+ £,) as an approxi-
mation. Some critical remarks concerning this are given in [1]. Another pos-
sible approximation is e.g. - _i(xmjn + Xmax) where amin=min(xi,... ,X,,
and xmax = max(zi,... ,xn). This approximation is very sensitive with re-
spect to the errors, hence it is improbable that for n =00 the exactness of
the estimate increases. This estimate is investigated e.g. in [1], [2]. We mea-
sure the exactness of an estimate by the “interquantil halflength” — which is
in usual notations 2~¥(Q3/4- Qi/4). It is possible to prove that if £ is a ran-

dom variable with symmetric distribution, then 2-1(Q3¥4—Qi/4) £ y/2D(£)
if D(£) exists (see e.g. [3], p. 309, formula (2)).

It is known that if £ has uniform distribution, then the estimate
2_1(xmin + xmax) is betterl than n-1(xi + ... + xn). The aim of the pre-
sent paper is to investigate the exactness of the estimate in the title and
compare with that of the arithmetic mean. It is known ([5]) that the prob-
ability distribution of (xmin, i ma*) is

f(x,y) =n(n- DIF(y)~ F)In~2({x)f(y), y=>x

where / resp. F denotes the density resp. distribution function of the ran-
dom variable £. Hence one can obtain the distribution function G(z) of

2 (-BEminT ~max) QS follows.

2

Ve

G(z) —n | [F(2z —x) —F(x)In~1f(x)dx.

1980 Mathematics Subject Classification (1985 Revision). Primary 62F35; Secondary
62H10.
Key words and phrases. Distribution function, density function.

1l.e. 9374 —Qis/4 tends to zero faster.

Akadémiai Kiadd, Budapest
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We are looking for the solution — y := Q(n) — of the equation

(n)
(1) n 3 [F(2Q(n) - x) - F(x)]n_1 f(x)dx =3/4
—00

where F resp. / denotes the distribution resp. density function of a symmet-
rical random variable, i.e. F(—) —1—F(x), but our method works also for
non-symmetrical case. Important non-symmetrical distributions are e.g. the
log-normal and beta-distribution, we return to this case in a next paper.

We investigate here the following types

1. F(x) =1—e~w(x) where

a) w(x) is polynomial (Theorem 3, Case I), e.g. F(x) = 1—0.5e~x a =
=R =cb- 1,a=1log?2

b) w(x) is logarithmical (Theorem 3, Case Il), eg. F(x) =1— 7=
=R =c6= &= 1

c) w(x) has finite support (Theorem 3, Cases IlI, IV, V);

2. f(x) has the form
a) f(x) = dixse~'yx (Theorem 3, Case VI), e.g. f(x) = "==e-12, di =
= «=0,7=1/?=2;

b) f(x) = d2-——-- Theorem 3, Case VII), e.qg. f(x) =
) f(x) (Ox’\+$) A ), e.g. f(x)

d2=1i,£ =0,a=7=1,/1J=2,i =0.

We shall prove the following theorems.

Theorem 1. Let F be any distribution function of the form F(x) =
= 1—e-udx), x > 0 such that F(—x) = 1—F(x), (x * 0), ui(0) =In2, w\x) >
0, (In/(x))""~0 (x> 0), where f(x) =F'(x). Let a(n), B(n) be monotone
increasing sequences, suppose a(n) = o(n) and let T\ and t2 be any real num-
bers such that F(ti)= 1— and F(2)=1— . Then

E'(ri+ 2y)£ F\grx) 1+ 0(e M
F(T2+ 2y)> F'(;Z) 1+0(e 20"

T heorem 2. /I(In f(x))" ~ 0, (x > 0) but the other assumptions of The-
orem 1 are fulfilled, then we have

F'(n)
3

F'(e2+ 2y) < F \3t2) 1+ 0(e~a(n)

F'in + 2y) > I +0(c-“(")
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Remark. Aswe shall see in the proofs, in Theorems 1and 2 it is enough
to assume the desired properties of w only for x ~ x\ > 0.

From Theorems 1and 2 we get the following Theorem 3 where the param-

eters are chosen so that in every case the resulting function F is a probability
distribution function:

Theorem 3. I. If w(x) =cs(x*+a)a (x >x\>0), Ga,e >0, aeR
then
[(log3n)o - ac-1 +0( ). a>|
y= Rcs t V(logn) *~ J
AN (log3n)n-1+0 O<ac<l
laej” (1093M) Cogn

1. 1f w{x) —aglog™(x* F6) (x >xi > 0), c6,8, 7 >0, S6R then
Alogn +0(l), 7=1

o( 1 i), 71

g™+ (1) loglog3n+log v /+ x(logn) 7

A(Cilogn)™ +°((losn):rl)’ 0<7< 1

I 1 tn(x) = c7( +/) (h>x>xi>0),c7,q,8>0,/ €R then

Aog3.(log3n)i-1[(log3n)i-/c“1*"V o (-JA "), a>1

feylog3-(log3n)-A-1+ Q(. loSloSn, ), 0<a<|.
V(log™)

IV. If w(x) = GBi—yj(hzxjt+) (h>x>x1>0), c8,8, 7>0 i/ien

(16i»)” (log3,)""-1 g (8n) y- 1 4

y= +to( "»7TA), 7>1

N(log 3n)-b-“+o( mo<7il.
“(logn) +7 *
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V. If w(x) = c9log7*(hIX)R +~) {h> Xi, >0), c9,/3,7>0, 6 GR then

- A Pgn+°(lp 7—1

"5 (Mlogn) 7+ (~-Nloglog3n + log("-"£" ) +
logy =<

0 (LI >
+o( Jugbt "), 7> 1
_[ (A logn) 7+ °((gn)~ 1> 0<7< L
VI If f(x) —dixse~'ix3 (x > x\ > 0), d\, 8,7 >0, 8£R then

"N +o(e™), 0=1, M«
y=< + 0(exp(-a(n))), a(n)/"+00, a(n) =o(n), B=1, =10

(logn)?~1+ 6>f loSlof _\), 0</3< lor/?> 1
23r? V(logn) 3/

VIL 1ff(x) = d2------ A2

(*>*1> 0), d2>0,
(ai6+7) O

(a=0,>0,7>0,6eR,£<-1) or
(@a>0,R>0,7eR,8>—1,£eR) or
(@€R R<0,7>0,8€R, £<-1)

then

fa—0,8>0,7>0,8eR, e<-1
AYI +OI ) ) 1 i)
Iogy:<| llogn ()’\a£R,B<0,7>O, GR, £< -1

i+ylogn + 0 (1), a>0, B>0, t€R, <$>-1, e<ER.

Applying the estimate n_1(xi + ... + xn) we obtain y =c/y/n (using the
results of [6], p. 120). It follows that we can obtain better estimate than this
one only in the case when / has finite support, e.g. in case V, if 7" 1.

Remark that for the mentioned special cases we obtain:
1/a) F(x) = 1—0,5e~x then

_"3/4 - QU4 _log3 /loglogn\
N2 2 \ logn )"
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1/b) F(x) = 1- then

y=9iH—9 in =\ogn+o(i).
2/a) f(x) —"=e_x2 then

y= 9 A = Aop)-M+0( N

2/b) then

= Q3/4-Q 1/4 = elogn+o (1)
y 2
We prove only the case V; the proof of the other cases is similar. We
need some lemmas.
We are looking for the solution of the equation (1). First we prove that
this solution Q(n) is positive. Suppose indirectly that Q(n) 5 0; then

T»)
3/4=n J [FQ(n) - x) —F(x)]n~1f(x)dx <

e
2N R0 —FeoIn-1rx)dx= 172,

This contradiction proves that Q(n) > 0, because we assumed that F is a
symmetrical distribution with respect to 0, i.e.

(2 F(-x) =1- F(x), (x<0).
From (1) and (2) we obtain
®
(3) nJ[F(x —2y)+ F(x) HIn-1/(x)dx = 1/4, (n>1,y- Q(n))
y
(see [2], formula (4)).
00 2y 00

Using J = J+J and taking into account that for x £ [j/,2y]
y ¥y ey
—1/2 < F(x - 2y)+ F(x)—1"1/2 holds, we obtain

2y 2y
4) Il< J(1/2)-"f(x)iz<Qn.
y oy
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Denote Tn(y) = ?O[F(x —2y) + F(x) —]n~1f(x)dx. From (3) and (4) we
obtain Y
(5) (4n)-1 —2-n < Tn(y) <(4ra)-1 -f 2~n, (n >4).

First we give a simple estimate for T,,(y). To this we need the following
assumption on F:

(6) F(x) = 1—e~w(x\ t0(0)=1In2, w(x) /" oo (x-»00),

further suppose that there exist such function <pi(t) or g2(t) (at least one of
them) such that A 0 and

(7) w(x) - v?i(ii) » w(x - ii) Sw(x) - (f2(h) if x'tti'tO.
According to w(x —t) > tn(0) it is reasonable to assume that tn(0) < w(x) —
—Vi(fi); hence, for x =ti we get u;(0) %w(ti) — A tn(0), i.e. =

= w(ii) —u(0). If our assumptions on F are fulfilled, then
1 _e»(*) Q+cew() <FX_2y)+F(x)- 1<1- e~wW (I + eM())
(x > 2y). Here we have

e-w(x) A ec?i(2y)\ < e-u)(2y)™ | gU;2y)—ui(0) _ e~tn(2y) Q5 < 1,

i.e.
LEOO( + " f(x)dx
ny{
>J [ir(x)(l +eni2d) - eviiyi]"  f(x)dx,
2y
J [£(x) (I +eM(2y) -er2"]" 1/(x)dx =
2y
=/ 1+, (M) [(fwd+«nr>) - -
2y
% (1+Uv>) [I-(F(2rt(1+~v>)-e»))"
and so
rn(y)S [ra(l + e 2%
(8)

Tn(y)> [n(l+e™())j_1 [I - (F(2d)(1+e " 2") - e 2")"



ON THE ESTIMATE (*min+*m,,)/2 415

Here we have

F(2y)(l +eVi{2y)) - eVlizy) =
I _e-p,)(L+,,<*))ém - + - 1S 0)=1/2

which means that

From (5), (8) and (9) we get for y:

<10> AT T AS A, +0(r)yi T N

In the special case i = g2 according to (7) we have w(x) - tn(ii) + u;(0) <
<w(x —ti) <w(x) —w(ti) +w(0), i.e. w(x-ti) =w(x) - w(ti) +w(0), which
is the Cauchy function equation, the solution of which (according to our
assumption) is w(x) = c\x + w(0), (x * 0), i.e. =cUi (fi > 0).
Substituting this into (10) we get

in) s=lir +70(!0

Here the implicit constant is absolute.

Remarks. 1. If only one of <i or y= exists, then we have in (8) and in
(9) the corresponding inequality.

2. Now we give a simple sufficient condition for the existence of </q resp.
V2

On the existence of yq: We saw that if ipi exists, then <"i(fi) = w(ti) —
—Uu;(0). Using (7) it follows

(12) tn(x) - w(x —ii) ™~ w(ti) - w(0), x>ti "0

Here at x = t\ we have equality. If the left-hand side decreases for x >
A t\ then (12) is fulfilled, hence it is enough to assume w'(x) —w'(x —11) *
< 0. According to the mean value theorem we have 0 w'{x) —w'(x —ti) =
=il £ 6 (x,x —ti) if this theorem is applicable. We obtained: for the
existence of i the assumption w"(x) < 0, x > 0 is sufficient.

On the existence of g2 From (7) we get <"2(*) * w(x) —w(x —t\), x >
>t\ > 0, which gives at x —t\ the inequality <"2(*1) < w{t\) —u/(0). Because
of (8) and (10) we have to choose ("2 as large as possible. Investigate: What
is the largest possible y2>and what is a simple sufficient condition for this?
For the largest possible ("2 we have <2(™) = w(<i) —w(0), and in this case,
according to (7) we have

(13) w{t\) - tn(0) < w(x) - w(x —ti), x>ti >0.
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This is just the opposite of (12), and a similar argument as above shows that
w"(x) > 0, x >0 is sufficient for this.

3. Suppose that F(x) = 1 for x > xq > 0, xq = inf{f: F(t) = 1). Then
according to (1): y <xo and for w given in (6) we have w(x) S 00 as X —xq
instead of w(x) S' 0o, x —»00 (given in (6)). According to (7) we have
y< x0/2 and hence we can obtain (8) and (9).

Next assume (2) and (6) but substitute (7) with a new one, in order to
obtain more exact estimate for y. We have

J(F(x - 2y)+ F(x) - Dn-\F\x - 2y) + F\x))dx =

= n-1[(F(x - 2y) + F(x) - 1)"]~ = n"1+ 0 (n-J2-").

Using (7) we get

A+ 0(2-") = I(F(X - 2y) + F(x) - )" 18 * - 2y)dx —
(14) >

I(F{x) + F{x + 2y) - 1)n~1F,(x)dx
0

and we can write (7) in the following form

(15) (4n) 1+ 0(2™) = J(F(x) + F{x + 2y) - D)n~IF\x + 2y)dx.
0

Hence, it is reasonable to compare F'(x) and F\x-\-2y). First investigate a
special case F\x) —F\x + 2y)g(y), i.e. f(x) =f(x + 2y)g{y) where according

to (6) f(x)> 0{x>0). Hence f(Q)/g(y) = f(2y), ie. g(x +yj =gfyg(y),
g > 0. This is the “multiplicative” Cauchy equation; its solution, according to
our assumption, is g(x}—eC@X >0, x * 0, i.e. f(x) =cte~@22x —ce~Cx\
C3c4> 0, x™ 0. Then, from (14) and (15) we obtain

(4n)_1+0(2") = J(F(X) + F(x +2y) - 1)"~7(z + 2y)dx =

0
@

= e-2yJ(F(x) + F(x + 2y) - )n~lf(x)dx =e~2ciy( » +0(2"")).
0
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Hence,

(16) y:lzgj’+ag(n2"n)

where the implicit constant is absolute.
Now return to our general problem. Let h(x) := w'(x) —r(x), w'(x) > 0,
x > 0. We investigate the following two cases separately.

Case 1 h(x) is monotone decreasing (this is fulfilled if w"(x) < 0 and
w" (x)/w\x) is monotone increasing).

Case 2. h(x) is monotone increasing (this is fulfdled if w"(x) > 0 and
w"(x)/w\x) is monotone decreasing).

Substitute the assumption (7) by one of these cases. We investigate only
Case 1, because Case 2 is similar.

Lemma 1. Under the assumptions of Case 1 the function F'(x)/F'(x-\-2y)
is monotone decreasing in x (0 <y is fixed).

P roof. The statement follows immediately from the following identi-
ties:

F _ ew(x+2y)-w(x) WI(X)
F'(x + 2y) w'(x + 2y)'
d F(X
dx F'(x + 2y)

. o ) ) 2
w (X + Ey) - w(x) + %g; VV\:,((::Z))/I))

wW(Xx+2y)-w(x) W\X)
w'(x + 2y)

It is easy to see that

@an w(x) = —og(l —F(x)) and hence h(x) = L(x).

We shall substitute the integrals in (14) and (15) by that of J where we

Ti 00

choose T\ and r2so that 1(‘)_1;2: o(n_1) be fulfilled. To this let a(n) and R(n)

be positive increasing sequences, suppose a(n) = o(n) and choose T\ and T2
so that F(t\) = 1- and F(t2)=1- be fulfilled.
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Lemma 2. We have the estimates

n
(18) L(F{x) + F{x + 2y) - n- 1IF'{x)dx = O(,n~le-a"),
(19) J(F(x) + F(x +2y) - Dn=1F'(x)dx =0 ( ~ ) ,
)

(20{2
J(F(x) +F(x+2y)-1)n-1F'(x)dx= 1+0(~y) +0(c"“(n) i_,
(21)

J(F(X)+F(x +2y)-1)n- IF\x+2y)dx= 1+0(-") +0(e-“W) _L.

Proof. The estimate (18) follows immediately from the sequence of
estimates:

J{F(x)+F(x +2y)-1)n- IF'(x)dx< J(F(x))n~1F'(x)dx = n~1[Fn(x)]l1=
0 0

=n 1F"(r)=n lexp —nlog 1—n_1a(n) £n lexp a(n)

The proof of (19) follows from

(00} 0
J(F(x) + F(z +2y) - Dn~1F'(x)dx <J(F(x))n~1F'(x)dx =

o | n/?l(n))/ !

1-exp (—nlog <n L[l-exp(-giasy A0 Ly

= n'l

AHere we have used that log -- V - £ S " For the proof
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of (20) take into consideration (14), (18) and (19). We obtain:

J(F(xX)+ F(x +2y)- Dn_1F'(x + 2y)dx =
n

= 0L 0T ON 4y
°

+ J(F{x) + F{x +2y) - Dn_1[F'(x) + F\x + 2y)\dx =
n

=-fi+o \(rﬂkyie'Q("))\) an FN=TIF) + F(x +2</)-1)X -
Here we have
(F(r2)+ F(r2+2y)-Hn<F"(r2)=1- 1- F*(2)=1-0 (")

further

(F(.2)+ F(r2+2y)- D"a (2F(r) - »" = (1- "~ ) " >,-0 (5

i.e.

(FM +Flt&+2»)- 1)"=1- O({'gj(lr\{g :
(F(ri) + F(r+ 2y) - )" <F"(ri) ~exp(-a(n))

and we have proved also (21). O
From Lemma 1 we get

F'(r2) F'(x) F{rx)
F{t2+ 2y) F'(x+2y)“ F'(n +2y)

further

and hence, taking into consideration (20) and (21),

1+ +  °(5Si)] bS an

and

i+0(e-“(")+ 0 (-L J)j Asr: |:'(Fr;:-2)2y) L0E>CN* 0 h 33 4

follow. Theorems 1 and 2 are proved.
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Remarks. 1 The assumptions on w are used only on the interval
[ri,co), hence it is enough to assume the desired properties of w only for
x >x\ >0. According to the conditions we have t\ <T2 (n > no).

2. If F(x) = 1, for x > xq> 0 (x0< +00), then the above calculations are
meant in the interval [xi, Xo], (xo >xi > 0). In this case T\ < r2< xo, 7i —ikq
(n —*00) according to our assumptions further we obtain from (21): T\ + 2y <
X0, i.e.y < and hence y —»0 (n —00). We can say more than this if
we suppose that there exists an interval | of the form | = (xo —£, x0) (e > 0),
where F is differentiable and ir|1f F' >p >0 with an absolute constant p.

Then by the mean value theorem we obtain: = F'(£), £6 (ri. xo).
Hence a(n)/n w(£) = xo —rx, and we can choose a(n) so that y=0(I/n).
In the case when / is monotone increasing in the interval (x2,x0) where 0 <
N X2 < xo (obviously X2 < T\ if n » no) then T2+ 2y > xo is fulfilled. Indeed, in
the opposite case, because / is monotone increasing, hence (21) contradicts
to (20). If we suppose that / is monotone increasing and F is differentiable
in an interval of the form | = (xo —£, x0), (E > 0), further sup F' <q (@q>0s
|

an absolute constant), then by a similar calculation as above we get y>Kki/n
where ki is a constant, independent of n. (Here we have to choose R(n) to
be a constant independent of n.)

We shall often apply

Lemma 3. Let x > 0 be sufficiently large, s >0 be any fixed number
further a be a real number such that a—O(x) ifa>0 and |a] » gx ifa<O0
where 0 < g<1. Then

(26) (a+ x)4—x“=sa(a+ x)*-1 + O (sa2(a + x)4~2) -f O (s2a2(a + x)s_2) .

The implicit constants are independent of a, x,s, they depend only on the
implicit constant in the condition a= 0 (x).

P roof. The statement follows immediately from the following estimates

(0+x)'-x*=(+i)" (I- ("~ 7)*).

Lemma 4. Lety > q>0 where q is an absolute constant. Then

@
(27) \] sae-'ds =yae-y(l +0(l/y))
y
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where the implicite constant depends only on a.
Proof. Integrating by part

[
o}

\] sae~sds = yae~y + aJD sa~1le~3ds,

hence (27) follows for the case a = 0. In the case of a > 0 by repeated
integration by part ensure that the exponent of s in the integral be <0 and
then we have . .

\] sa~ke~3ds ya~k‘j e~sds = ya- ke~y.

y y
Here k > 0 is an integer such that a- k£ 0and a—k + 1> 0.
In the case of a <0 we have

n
00

J sa~le~tds </a~xj e~sds = ya- xe~y
y y
and Lemma 4 is proved. O

Proof of the theorem. We prove only the case V, because the other
cases are similar.

V: w(x) =c9log7 ( (h2x)$ +  {h>x >xi >0), ¢9,/J,7 >0, 6e R. Con-

sider the cases 1) 7=1, 2) 7> 1, 3) 0< 7 < 1separately. For each case we
have

(h =exp( (i log Y-l j~ p =exP{U 108"« “> -<o

0=l g T Y =) + 6(h—i)P)

w'(x)>0 (h>x>xi>0).
w"{1)=~ log’'2(jhh? + n-.w i+ nt-.ff:
X 0(T- 1)+ £6) (134 )(A - xf +:)

w" Lo-1/ 1 A 1
mAx)~ 06 I(h-xy +s)(h- x)(i +g(h- xY)*

XB(j-1)+log(—j —j MW+ 1)(h-a:)B+ 1)
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(«;')(*) 10g 2({h-x)P+6) (h-xy(l +6(h-x)PyX
X 120y—2)+[/3(t—1)+(t—)/3<S(/2+)([i—X)'3]x

xlog ([h—=)P~")  [I+™N(IN+HD)(N+2) (M=) B2+ (212 +1) (/i—) 23

log2({h"y +6

Case 1. In this case

h{x) (h- x)2[l +6(h- xyy X
X (CM - 1+6(R+ 1)(c93-RB - 2)(h- xf - 6\B +1)(28 +1)(h- x)28) .

Consider the cases i) c93—1> 0, ii) c93—1= 0, iii) c93—1< 0.

i) In this case h'(x) >0 (h > x >xx> 0), hence the conditions of Theo-
rem 2 are fulfilled in the interval [xi, h\. We have seen earlier that 2y +rx< h,
and 2y + Ti > Xi if n* no, so Theorem 2 is applicable. We obtain

» nn) a(n)

3(L1+0(~y)y+o0<-=my) - ["(n +2) n

(28) .
X exp c9 (h-n- 2yY

Here

106 +<)=/210Sir* r +0((A -r,)'d),

Ps((A_r,L. 20 +*) =~"°g A_ +0 (<A~

loglog( 1,0 +<) log/J+loglogy ~ ¢+ + o (in - 165 .

108log ((h- r,1- 2yY + =10g" + 106106 h - t| - 25 +° O'l~ T ) m

Using these, we can write (28) in the following form:

10g + + (R&)) ®i)O) - log

=(CsB~ 1}0gh-ri-2, (“+° (OP(-~ *g™ j) ('0g”™j) ")) e
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Hence

Here

Hence

xexp(0O(*W , +0 (7~ )+0((")--)).
Using e*= 1+ 0(t), 0<t5 ogwe can write the right-hand side as follows:
(29)
2,s8(1-3-7)(")-*(u0 (e»W)+0(sL)+O((")--)).

Now we give lower estimate for vy.
Distinguish two cases: a) y > (h —t2)/2, b) y< (h—2)/2. In the case

a) we have logy > — logn + 0(log/3(n)). In the case b) we can apply
Theorem 2 and we obtain:

3(1+0(-"<»>)+0 (" ))SFE£tolL

and hence, by a similar calculation as above we get

2y > (I - 3-i/(Q3 i)™ (n/3(n))-i/(cI9Y~1+0 ~e-a(n)+_L _j +0((nR(n))=dLco
According to a) and b) we obtain the following lower estimate

(30) logy "t-——-- -logn + 0(log B(n)).
cgP

From (29) and (30) choosing a(n) and [(n) to be appropriate constants
independent on n we get

(31) logy = —{c93) 1logn+ 0(1).
i) In this case

1
h\X)—(h_x)2[|+6(h_X)P]2(S)(r3 + 1)(h- x f (R+\-S{2B+\){h-xf) .
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Consider the cases *) 6<0, **) $= 0, ***)<$> 0 separately.

*) Now h\x) >0 (h> x >xi > 0), hence the conditions of Theorem 2
are fulfilled in the interval [xi,h]. We have seen earlier that 2y + Ti <h and
hence we get the following upper estimate for y:

(32) V< (h —ti)/2.

Now we give lower estimate for y. Consider the cases a) y  (h —r2)/2,
and b) y < (h —r2)/2 separately. In the case a) we have logy > —ogn +
O(log/3(n)). In case b) we can apply Theorem 2, we obtain

F\w2) _ 1

3+0(=M)+0 (")) < Lior 2y na(n)

X(h(-hT_2~ 2tN0HL ((h-Ti-2y)B + 6 +6 ‘
T2)R+i {v ™ +S) vyl r2v2n

Hence, taking into consideration cg/3=1 we get

3nB(n)(h - r2) <

where h —t2 = (nB(n)) 1(l +O ((nk(n)) Y@)). Taking into account
log(l + t) =t-f0(t2), O£ |i| £ ag< 1 we obtain

log3  S(h T~ +0 FoAT) 40 ((A- 1DW) S«(>- r2- 2yf
cog+ 1 co+ A

e

(h- r2)R

O_:1+f +O((h-”)")+(eg+I)i+0(«-<">+j88(|i]3li AL k)

Let a(n), B{n) »~ A" where A'is a sufficiently large constant, (independent
of n). Then we have

log 3
g+ )i +0 (e (", +"j)<

and hence from the estimate above we get

2y>h-T2-(h-T2) (c9+1) 1+0 ({h- r)~ / .
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For n > no we have + 0((/i —42)*)'< L < 1 (L is an absolute constant
— independent of n). From a) and b) we obtain:

(33) logy > —ogn + 0(log/3(n)).

If a(n) and B{n) are appropriately chosen constants (independent of n) then
from (32) and (33) we get:

(34) logy = -log n+ 0(1).

In the case (**) and (* **) we have proved before that 2y-\-T\<h and
hence

(35) y<(h-n)/2.

Now give lower estimate for y. Obviously f'(x) —e~w (w"(x) —{ix/(a:)]2),
hence

IV)= (i-* +HB+m -

According to the assumptions f'(x) * 0, x2< x <h, i.e. / is monotone in-
creasing in the interval (x2, h), and hence, as we have proved above r2+ 2y > /i
follows, i.e.

(36) y> (h- ©2)/2.

From (35) and (36) we obtain

(37) logy=—ogn+ 0(1),

if o(n) and /?(n) are appropriate constants (independent of n).
(i) We have proved before that 2y + ri < h, hence

(38) y<(h-n)/2.

Now we give lower estimate for y. We have in this case

V% e (% - - " CgB
rey @O e+ e (B ()" A Y sthp) 2

Now, according to the assumptions f'(x) » 0 (x2< x <h), i.e. / is monotone
increasing in the interval (x2,h), and hence, as we have proved, T2-\-2y>.h
follows, i.e.

(39) y> (li-r2)/2.
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From (38) and (39) we obtain
1
I°g2/ = - — logn + 0O(I)

if a(n) and B(n) is chosen appropriately (independently of n).

Case 2. In this case h'(x) >0 (h >x > x\ > 0), hence the conditions
of Theorem 2 are fulfilled on the interval [xi,h]. We have seen above that
2j/+ ti < h further 2y +Ti > X\ if n > no- We can apply Theorem 2, we obtain
(41)

. | ot o A9

e DT
(<,-n -2y)"i( i +<) " 1

X (A-r,,,« (N +9 +{)’

a) First we prove that ?//(/t —ri) = o(l).

k>g( ( ~  +<) ™ lon 0 ((*-n)-
106 ((A-r!-2yy +t)=R0gh-rl-2y +° ~ A
log log ( (h y3+<M) =logR +loglog-~ - +0 [[h-TXRY,

106log((h-n-2Vy +4) =lo**+loglogh-n-iy +10((*- ~"f) «

A-n=exp(-1 (I log™ ) ~) (I+O (exp (- (i log ))) .
Using these we can write (41) in the following form

log é{n_) +log3+ 0O

+0~(h-r1)B) —(7 —1)loglog j~~"r ~ log =

Bllog7 o1 (1 +O( ILEA-T = 2y)R
> cgiLlog7 -0 d 5y (ﬂﬁgﬁp;njgw\
%7-1)m9mgh_n_2y -10 g z=-mm -oe- ,

v T
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Here
(h-n-2yf _
llog(h - Tj- 2j/)| Hog(/l —7)I
=0 [exp (- ( —log -j?— lo
£/ pS/ (VCQ J <Jk(n) ’ a(n)

loglog h-r1-2y ~ logl°g 7RR
log7 h-r1-2y ~ 10S7 TT"T

1-7 1

Iogl7h_.|.i_2y Mogt L 4.

hence we get

(42) rga +1°g3+0(e"“nN"+iR )+
+0 [{h-n)'3 - (7- 1) loglog -logh ~ ~
= A log> h-rl-iyil+° (eXP(~ (SI0SSR) ) (IDg5r )" ) -
(T-i)ioeiogiAr 1 I\
cos37 log7 cor7 h-TiJd
Let
¢c937i0g7 ~ - c7 & fe-V

Obviously, 0< x < 1/2, n > ni, 2—0 (n -> 00), hence from (42) we get

1094 1 () + log 3 ‘exp(—a(n)) I | (h-TH"
oV Is +°1 Isir +0mlBs ls )
(7 —1) log log log 1 » , 1

________ Si* ———iR *)T R ~ “g,R7RR
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and from this, taking into account =1+ we obtain
log 3
K2log* oril +
1 \
+0
+0(~ (w108 log .

+0(exp(“ (™ lo6™ j) ) (1B j)
(7-1) loglog (7 —1) loglog R*n 1 1.7
+ -Iog
(1 - x)c9H¥*log7 (I-x)log*” (1 —x)cghl h-Tx

loS v "|Ogh_.|.i_2y

Here

(7 —1) loglog Z'IT (7 1)loglog 74" _
(1 —x)c$B~tlog7

= - n _ N AN
=0 exp, \Cglog a(n) Iogloga(n)r\floga(n))

logl“7

(1- X)CoR" =o(exp(- (—log

and hence

2y * h- T\ —exp

exp(—a(m) |
oS AJ  * P(n)los~fKj

+0 (exp (——log

+
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Hence
2y log 3 " / exp(—a(n)) !
hooq S 1—exp T3T+ 0
{\-x)Bcl (log”y) Cloatto)
\
+0
~(n) (iog ; 2(exp(* («logt 6)1))

1+ 0 [exp(: (—lo \Y,
* (/ p\/ ch ga(n)/

Let a(n), B(n) > K where K is a sufficiently large constant independent
of n. Then we have y/(h —Ti) =0 ((logn/a(n))7-1", i.e. we have proved:
y/(h-Ti) =o(l).

b) Using the estimates above, we can give more exact estimates for y.
From (41) we get

°g b +0b '+ b ) +0 (<*- b [ log> attT i-

(1+0O( ) ) +log(h- rj- 2y)- I°g(h- Tj)+(7-!) logl°g h—T\

-(7 ~ 1) loglog h-TX-2y

Here
log(A-Ti-2y)-log(/i-Ti) =log(l- YAr) =0(GY~y) =
_________ = _n7_—=logo > +17 +b L ~d) =

log log 7 log log — 7 08 < v log(h-TX ))

=iogiog_1i_+0(_" ..
glog 1 +0( Ti Ilog(/b-Ori) -

Using these we obtain
exp(-a(n))
B\ddo g b(n)/ ' M + 0§V |os *
{h-TX

+ 0 ((losh <2y + o ( Hog(/r —Tr)|
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Hence

+
According to Lemma 3
log -1L) * - (log - fj —|I031063 H+0(JS20L
{/g a{n)a § J a(Jngl 93 >) ((Iogn)2 |)

ep(> g” ) ") =ep(-<lagn)i) ("+0("* rr))e

so we get

2n exp(- (~ logn) A (170 (gopny 7))
x I 1—exp 10g3 (log3n)t-+ 0 f ,0ga<n> )+ o ( exp(-aW LA

Bl4h V(l,9.)2 ‘(logn)* <
n \"2
401 oo = — r=*) +0((lo6_ri)
) J \% a(n)

Using the estimate e*= 1+ t+ 0(i2) |i| < to we obtain the following upper
estimate for y:

(43)
»Eexp(-1 (ilog,y’) (AS~thbhgfcji- +0 1+
t V(iog™*)
+0| 1 ) T0("™ ) ) -
'«»» (log™*) Vv(ogB)

Now we give lower estimate for y. It follows from (43) that for n > n\ we
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have 2y + r2<h, hence we can apply Theorem 2, we get

3(1+0('-w+"0))s e 1
(j2+2y)  nB(n)

log7-1 ((fc”j? + ™) (h-r2-2y)"+1((* 12v)g + %)
(44) X

log7 1( (h_TaL2y)/»+") (/1- r2)5H((A =" +1i)
Xexp (c, log- (4"~ 5+ 1i)).

Here
\Y

-n
het2 h—T\h—°- O((logn/a(n))™ *)e
Using this, a similar calculation as above gives:
, J~i-(i°g3n); i+
s,=exp(- K *logn) *) ( 2gic\h
+o( exp(-«W) V 0/(l°g" log/?(n) \y
vlotf nB{n))V is \ ’B{n) ) V(logn)2 t/J
From (43) and (45) we get with a(n) =R(n) = logn:

(45)

—_ — . N N
(46) y—exp{—5 (&9 N} "} \op-scg ( 1093M 71+ 0 \y64n)2-

Case 3. We have proved earlier that 2y + t\ < h. Hence we get
(47) y<(h- n)/2.
Now we give lower estimate for y. Because
fAx) =e-wt*\w"(x) - (ti>'(x))2)

where

______ N " -1 —
"log? 1y iy WS learl i 2

" - ' 0 -] — ——— -
log7 1r|1'£x'hix'<w \x) %k6log7-1 v

according to the assumptions we obtain /*(x) >0, x2<x < h, i.e. / is mono-
tone increasing in the interval (x2, h). Hence, as we have seen before r2-\-2y >
~ h follows, i.e.

(48) y> (li-r2)/2.
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From (47) and (48) we obtain
logy=- -("logn) 7+ o((logn)7_1)

if a(n) and B(n) are appropriately chosen constants (independent of n).
Thus case V of the Theorem is proved. O

In a next paper we shall investigate the cases

f(x) :§}2|7_T5<e "1'2*%/2  “lognormal” ([4], p. 228),

fH{x)=r(p)T(Q)XP~1{1 ~ X)X "~ ’9>0" O0<a;<1) “beta” ([4], p. 240)
[(x)=Xe~Xx, x>0, A>0 “exponential” ([4], p. 188).
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THE MASS CENTRE AND THE GRAVITY CENTRE
ON THE HYPERBOLIC PLANE

TEODORA WIEGAND

A bstract

In this article the position of the gravity point of the hyperbolic triangle is determined
by the help of the triangle sides. It is well known that in the Euclidean plane the gravity
centre and the mass centre (it is the unique point around which the rigid particle system
with equal masses given by the vertices of the triangle has a free rotation) of all the triangles
coincide. We point out that in the hyperbolic plane only the equiangular triangle has this
property. Finally we point out what kind of connection exists in general case between the
gravity centre and the mass centre in the hyperbolic plane.

We denote in the following by H2 and E 2 the hyperbolic and Euclidean
planes; the points of H2 are A, B,C. . the points of E2 are A,B,C,
Let XY (Xy) be the natural distance of the points X, Y 6 H2 (X, y € E2).

We call the lines connecting the vertices with the midpoints of the oppo-
site sides the gravity lines of a triangle also in H2as well in E2. It is known
that the gravity lines intersect in one point also in the hyperbolic plane (cf.
[3]), which point G is called the gravity centre of the triangle.

Theorem 1. For the position of the gravity centre G of the triangle
ABC in the hyperbolic plane we have:

ShAG = /sh2AC +sh2AB + 2 +chAC «chAB - 2+.chBC
2(ch BC + chAC + chAB) + 3

sh2_A.B + CF“AC xh AB - chBC
sh AB «Vsh2AC +'sh2AB + 2+chAC echAB - 2+chBC

P roof. First we define a mapping (model) of the hyperbolic plane H2
onto the Euclidean plane E 2 (cf. [4]), and we use the rectangular coordinates
of E 2 for the description of some transformations of the hyperbolic plane.

The model: Let us take two oriented mutually perpendicular lines OX
and OY in H2, let the positive sense of rotation be chosen according to

1980 Mathematics Subject Classification (1985 Revision). Primary 51M10; Secondary
51N30.
Key words and phrases. Hyperbolic plane, gravity centre.

Akadémiai Kiad6, Budapest
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E2

FHg 1

XO0YZ =j, and let us take a rectangular coordinate system O Xy in E2
(Fig. 1).

Let the point 0 of H 2 be represented by the Euclidean origin, and if for
any point P different from O

XOPZ =tp, OP —q
then P mapped in E2 by the point V for which
XOVZ = OV =shp.

In this way we have made a one-to-one mapping between the points of
the hyperbolic plane and those of the whole Euclidean plane.

The properties of the model:

— the images of the lines passing through the origin and the equidistant
curves belonging to them are straight lines;

— the images of the lines non-passing through the origin are hyperbolas,
their asymptotes pass through the Euclidean origin; and the images of the
equidistant curves belonging to them are also hyperbolas, their asymptotes
are parallel to the asymptotes belonging to the image of the base line;

— if d is the distance between the equidistant curve and the base line
then

- the distance of image straight lines is sh d when the base line passes
through the origin,

- the distance between the asymptotes of the images is sh d when the
base line does not pass through the origin.

While proving we admit first that in the hyperbolic plane there exists
a point which having been chosen as the coordinate system origin of the
hyperbolic plane, the gravity centre of the triangle determined by the points
A, B, C obtained in the Euclidean representation is the Euclidean origin.
(The triangle ABC does not coincide with the image of the triangle ABC;
this image is namely surrounded at least by one arc of hyperbola.) We admit
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y=y

Fig. 2

that in the hyperbolic plane there exists only one such point and it is the

gravity centre of the triangle ABC; finally we determine the position of the
gravity centre.

Lemma 1. Let be given in H2 the translation of the coordinate system
O XY along the axis OX to the oriented distance O'O =t into the coordinate
system O'XY'. Let V and V be the images of the point P GH2 in the
Euclidean model corresponding to the coordinate systems O XY and O'XY",
respectively. The Euclidean coordinates of V and V' satisfy

X"—Xecht-}y/l x2+y2esht
y'=y

(Note: V and V' image points are described in the same Euclidean coordinate
system.)

Proof. For the triangle 00'P in Fig. 2 (cf. [1])

sh t mcth g=sin(180° - p) - ctgp' + cos(180° - <P mcht
(cotangent rule)
from which it follows:
y'=sh g ssinp’' =shgmin —y
X' =sh g mosip =sh g ssinp>mtgp' =
=shrecosp echt+ chgesht=
=x echt+ y/l +x2+y2mht.
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Lemma 2. Let ABC be a triangle in H2. We denote by A, B, C the
images of the points A,B,C£ H?2in the Euclidean model corresponding to
any O XY coordinate system in H2. There exists such a point T 6 H2 that
in the case of 0 =T the gravity centre of the triangle defined by the points

A, B, CisO.

P roof. First let o x v be any arbitrary coordinate system and in the
representation corresponding to it let the gravity centre of the triangle ABC
be denoted by Q Because of the rotation invariance of the model mapping
we can suppose that ¢ lies on the axis o x . When the polar coordinates
of the points A, B, C are denoted by (p,a), (q,R), (r, 7), respectively, then
the polar coordinates of the points A, B, C are (shp, a), (shq,R), (shr,7),
respectively. For the coordinates xg, yg of the point o we have:

xa+ Xo+ shp- cosa -fsh qecosB + shr ecos7
Xg= 3 3

ya + b+ Vc

We are looking for the coordinate transformation corresponding to Lemma 1
in which the gravity centre of the triangle determined by the image points
A', B', C corresponding to the coordinate system O'XY' is O. For the
coordinates of the points A', B', C we have

xa>= xaecht+ v/l + x2-fy2esht-
= xae*ch< + chp mhf

similarly:

X' —=bxhi+chg-sht

\b>=\b
Xci —xcecht+ chr esht

ye=¥c

When the gravity centre of the triangle A'B'C' is O then
0=xai+ xb + xc=
0 =ya>+ W + ycl-
The second equality is satisfied for any arbitrary t, however, the first one

0= (shp ecosa + sh gqecosB + shr ecos7) echip
+(chp +chqg+chr) msht
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Fig. 3

from where
shp mosa + shqgecos + shrecos7

chp+chq+chr

i.e. tis uniquely determined. The point O' =T, being at a distance with sign
TO =t from 0, meets the requirement that in the case of a representation
belonging to any arbitrary coordinate system with origin T the gravity centre
of the triangle ABC is O.

Lemma 3. Let ABC be a triangle in H2 and T a point which has the
properties mentioned above and let O XY be any arbitrary coordinate system.
Let the appropriate Euclidean image points be denoted by A, B, C and T.
If Q is the gravity centre of the triangle ABC then O, T, Q are collinear, T
separates O and Q and their distance is:

tht=

0Q =i”/2(ch5C + chIC + chAB) + 3-shOT.

Proof. Let us take first in H2 a coordinate system with origin T. In
this case the gravity centre of the triangle ABC is O. The cosine rules for
the triangles ABO, BCO, CAO are (Fig. 3, cf. [1]):

cha=ch gmhr —shqgeshr ecos(7 —)

chb=chpechr —shpeshrecos(a—7)

chc=chp mh g—shp eshgmos(’3 —a).
Adding these
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Fig. 4

eha+ehb+ eh =ehqeehr+ ehpmehr+ ehpeehg—
(1) _shgshr-cos(7—3)+shp-sh r-cos(a—7)+shp-sh g-cos(R-a)).

Since the gravity centre of the triangle ABC is O, therefore

O=shpecosa + shqecosB + shr ecos7
O=sh pmsina + shgmein 3 -fshr esin7.

Squaring and adding the two equalities we have

A 0=sh2p + sh2q+ sh 2r + 2(shgeshr ecos(7 —R)+
+shp eshr ecos(q —7) + shp- sh g mos(R —a)).

Adding the double of (1) to (2) we have
2(cha+ehb+ehc)=(chp+ehq+ehr)2—3

from where

(3) chp + ch<7 + chr = -VV2(cha + ch&+ chc) + 3.

Let us make a coordinate transformation in H2 according to Lemma 1
(Fig. 4).
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Hg 5

For the coordinates of the points A, B', C, T which are the images of
the points A, B, C, T corresponding to the system O'XV (Fig. 5):

xai—xamht+ chp msht
Va =Va
Xy —Xbecht+ chgmht
W' =2/6
Xci—xcecht+ chr esht
Ac' =21c
xt'=sht
2t 1=0.

Since the gravity centre of the triangle ABC is O, therefore

Xa d- Xb "h XC—o

2a+ 26+ 2c=0

and so for the coordinates of the gravity centre Q of the triangle A'B'C’
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replacing (3)

() xg:éy/Z(cha+ chb+ chc) + 3esht

Vg=0.
Since xg > Xj'i therefore T separates O and Q.

On the basis of the above results if we take any rectangular coordinate
system OXY in H2 the following is true: Let us map the points A, B,
C, T in E2 corresponding to the coordinate system OXY and draw the
gravity centre Q of the triangle ABC. Rotating both coordinate systems
with GOXZ. = i) (Fig. 6), on the basis of (4) and (5) Qand T are on the axis
OX', 7*separates O and Q and their distance is

(6) OG="2(ch5C + chAC + chAQ) + 3-shOT

because of the rotation invariance of the mapping.

Fig. 6

Lemma 4. T is the gravity centre of the triangle ABC.

Proof. Let us apply Lemma 3 to the following case:
— O =A;
— the axis OX is the line of the sides AB and its positive half-line
contains B.
Then to the triangle ABC a triangle ABC is given for which

~AB—shc, AC =shb, CABZ =CAB/.
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Fig. 7

(further on the coordinate systems can be left out). Then (Fig. 7) according
to the congruence of the triangle TaCT\ and TJB"

sh b m&in rj = sh c esin
in the rectangular triangles AD\C and ABD2 of H2 (cf. [1])

sh D\C =sh b min 77
sh BD: =sh c esin 1?

that is
DIC =5T)2.
In the rectangular triangles CD\N and D2NB
shCDX sh D:B
ShCN = Gpwez: BN Ginbaez
from where
CN =BN

because of D\NCZ —D2NBA. Therefore T lies on the gravity line passing
through the vertex A and the midpoint of the opposite side. The proof is
similar for the two gravity lines. In this way it has been proved that there
exists only one such point T and it is the gravity centre of the triangle.
The numerical determination of G location: in the triangle ABC (Fig. 7)

o= yfzsh 2b-f 2sh 2c —BC
3



442 TEODORA WIEGAND

where Bc 2= sh26+ sh2c—2shbmh cmosa. cosa can be expressed by the
hyperbobc cosine rule belonging to the triangle ABC (cf. [1])

_chb-chc—cha

cos a
sh 6 mshc

therefore
o= \/sh 2b+ sh2c + éch bmchc —2cha

and with the help of (6)

Sht_4|sh 2b+ sh2c+ 2ch6echc—2cha
a 2(cha+ chb+ chc) + 3

shAG=< fsh2AC + sh2AB + 2.chAC hAB - 2-chBC

For the triangle ATQQ

h2
QTC = 52+ " C s eshe scosi

where
1 2sh 2b+ 2BC2—sh 2c
9 4
replacing it and expressing cos 1?

" sh2c+ che echc —cha

+ ch~ AR _
005 SABA —— ceeeee sh2A0 + ch~ACmch~AB—ch5C

shAB mv Sh2AC + sh2A5 + 2 +ch*4C «chAB - 2+chBC
In this way we have proved the theorem.
The mass centre M of a triangle ABC in H 2is defined by the inequality
(7) sh2TM +sh2ini+ sh2CM <sh2AP +sh2irP+sh2CP (VPeH?2).
This point is uniquely determined and characterized by the property that the

rigid particle system with equal masses given by the vertices of the triangle
has a unique free rotation around this point (cf. [2]).



THE MASS CENTRE AND THE GRAVITY CENTRE 443

Theorem 2. Let ABC be any triangle with the mass centre M in the
hyperbolic plane and A'B'C"' an other triangle for which we have

~MA =2MA, WB1=2MB, ~MC'=2MC

and the points M ,A,A' and M ,B,B' and M,C,C" are collinear. The point
M is the gravity centre of this triangle A!B'C'. The gravity centre and the
mass centre of the triangle coincide if and only if when the sides of the
triangle are equal.

Lemma 5. “Magnifying” the hyperbolic triangle ABC from its mass cen-
tre M in an arbitrary ratio, the mass centre of the obtained triangle A'B'C"’
is also M if and only if when the triangle ABC is an equiangular triangle.

(“Magnifying” means: MAl=£mMA, MR —e-MB, MC' =e-MC, and
the points M, A, A" and M, B, B' and M, C, C are collinear; where e is any
arbitrary positiv number.)

Proof. Let (p,a), (q,R), (r,7) and (g,p) be the polar coordinates of
the points A, B, C and any point P of the hyperbolic plane, respectively, in
any coordinate system O XY (Fig. 8).

Fig. 8

Let us establish the expression of the right side of (7) as a function of g
and p: let us apply the hyperbolic cosine rule for the triangles AOP, BOP,
COP (cf. [1]):

ch AP =chp schg- shp +sh g xos(a —p)

ch BP =ch qmhg—sh gmsh g mos(l —p)

ch CP =chr echg—shr esh g mos(-y —p)
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f(e,v) =sh2AP + sh2BP + sh2CP =ch2AP + ch2BP + ch2CP - 3=
= (ch2p+ ch2g+ ch 2r) ech2p- 2[chp shp *cos(q —p)-\-
+ch gmeh qmos(/3 —<) + chr sh r mcos(7 —p)\ xch g ssh g+
+ [sh 2p ecos2(a - p) + sh 2gecos2(} - p) + sh2r ecos2(7 —p)\ *sh2p —3.
This function has its minimum in a unique point M of the hyperbolic plane
(this has been proved by P. Nagy (cf. [2])). This point M is the origin
O of the coordinate system if and only if when the value of the function
/'(p, ip) and p) is zero in the case g =0 and <pis arbitrary. That is the

parameters p,q,r,a,B, 7 determining the triangle ABC have to satisfy the
following equality for all ip in the case of M = O:

(8) sh2p ecos(a —p) + sh 2q ecos(/3—<) + sh2r mos(7 —p = 0.

This condition is equivalent to the assumption that the mass centre of the
triangle ABC is O.

Let us assume now that for the triangle ABC M = O, that is (8) is
satisfied. Let us “magnify” the triangle ABC from O in e ratio. O is the
mass centre of the obtained triangle A'B'C" if and only if when

sh2(ep) *cos(a —<) + sh2(eq) *cos(/J —<p)+
+sh 2(er) ecos(7 —ip) =0
is satisfied for all
By the notations cos(a —p> = X, cos(B —p) =y, cos(7 —p) = z (8) and
(9) can be interpreted as equations of planes lying in the Euclidean space.
The equations are satisfied by the same non-collinear points (x,y,z) if the

mass centre of the triangles ABC and A'B'C' is O. It means that the two
planes coincide, that is the normals

n(shzp,sh2q,sh2r) and n'(sh2£p, sh2eq, sh 2er)
are parallel. That is satisfied only if
p—q—r.
In this case from the conditions (8) and (9) remains:
cos(a - p) + cos(/3 —<p) +cos(7 - p) —0 (V92)
(cosa + cosl3 + cos7)ecosip+ (sina+sinfl +sin7)esintp=0 (W>)
which is satisfied only if when

cosa + cosfd +cos7=0 and

10 . . .
(10) sina + sinf§ +sin7 —0.
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Let us we assume first that 7 = 0. In this case from (10)

cosa + cosR = —1
sina+sinB =0,

its solution (apart from the multiple of 27r):

a- _<} , B= (or inversely).

)
The arbitrary rotated values of these angles are also solutions of (10) that is

47T
COS N ----- B+ cos’/‘ ————— f =-—cos6
. 12w . :
sin 'y + +3sin = - sin6.

Other solution does not exist because transforming the equations of (10) into
the forms

cosa + cosR ——cos7
sina + sinf = —sin 7,

squaring and adding them we get the equation:
cos(a—R) = -y

Its solutions are a —R ="~ and a —R = Accordingly, the triangle of the
hyperbolic plane can be “magnified” from the mass centre M if and only if
in a way that the mass centre of the obtained triangle is also M when

AM =BM =CM and AMBZ.=BMCA=CMA/.=?

that is the triangle ABC is an equiangular triangle.

Proof of Theorem 2. Let again the position of the coordinate system
O XY be arbitrary in H2 and let A, B,C be the notations of the images of
the points A,B,C in the Euclidean representation corresponding to OXY.
It is known that in E2 the gravity centre Q of the triangle ABC is determined
by the following inequality:
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Fig. 9

Let us establish the expression of the right side of (11) as a function of the
polar coordinates (p,<p) of the point V: applying the cosine rule for the
triangles AOV, BOV, COV (Fig. 9) we have:

g{g, P=AV2+BV2+ CV2=shp + sh2q+ sh2r + 3p2-
—2(shp scos(a- <) + shgmos(? - <)+ shr ecos(7 - <)) m.

In the Euclidean geometry the function g(g,<p) has its minimum in one point
of the plane (in the Euclidean gravity centre).

The gravity centre of the triangle ABC is O if and only if when the
value of the functions de(g,<p) and g'y,(g,ip) is zero in the case g—0 and <is
arbitrary, that is

(12) shp ecos(a —B + shqmos(/3—<) + shr ecos(7 —p —0 (V).

Let us now choose in H2the mass centre of the triangle ABC again as
the origin ofthe coordinate system. Then (8) is satisfied. However, satisfying
(8) in the Euclidean plane means that according to (12) the gravity centre
of the triangle A'B'C' is O, where the triangle A'B'C corresponds in E2 to
the triangle A'B'C' which is “magnified” in double ratio from M =0. But
according to Lemmas 2 and 4 the point M =0 is the gravity centre of the
triangle A'B'C".

If the gravity centre and the mass centre of the hyperbolic triangle ABC
coincide, then in the case of M = O in the Euclidean plane the gravity centre
of the triangle ABC is O according to Lemmas 2 and 4. That means that (8)
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and (12) are simultaneously satisfied, i.e., according to Lemma 5, the sides
of the triangle ABC are equal.

(1

(2
&l

4

The theorem is proved.
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ON THE LEBESGUE FUNCTION OF (0,1,2) INTERPOLATION

P. VERTESI

1. Introduction and preliminary results

If X = {&fc,} C[1,1], 1"k~ n, n=1,2,..., is an arbitrary interpola-
tory matrix, i.e.

(1.2) INrmn<£E£n_ i)n<C¥*<£in™l,  it—1,2,...

the unique Hermite-Fejér interpolatory polynomial Hnm(f,X,x) of order £
nm —1 (m” 1, fixed integer) for a continuous function /(x) in [—1,1]
(/ € C, shortly) is defined by

(1.2) HA(f,X,xkn)=60tf(xkn), k=1,2,...,n, t=0,1,...,m- L

By (1.2), Hnm, using some obvious short notations, can be written as follows:
n
(1.3) Hnm(f,X,x) =Y, f(xk)hknm(X,x)
Jt=i

where for the polynomials hk of degree exactly ran —1,
h”A\xj) =60tSkj, 1<k,j<n, O0<t<m-I.

The corresponding Lebesgue functions and Lebesgue constants

(1.4) Am(X, x) ;=  \hknm(X, x)|, A, m(X) := [JAnm(X, x)||
fa

(/x| = Imax_ |/(™)]) play a decisive role in the convergence and diver-
-l=Xx=1

gence behaviour of Hnm interpolation. For m = 1 (Lagrange interpolation)
G. Faber [1] proved that Ani(X)> clogn for any system of nodes i.e. for

arbitrary fixed X there exists an /£ C such that lim X )\ = oo.

n->o00

Considering the pointwise behaviour of Hni we refer to our paper P.
Erdos and P. Vértesi [2] where we proved that for any fixed X and e >0

Akadémiai Kiadd, Budapest
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there exist sets En=En(X,e) with |[En|<e and p —p(e) >0 such that with
- (—00, 00)

(1.5) A,i(X,x) >plogn if xeR\En.
The above statement implies that

(1.6) lim Anx(X, x) = oo a.e. on the real line
n —Kx

i.e. for almost every fixed Xo € R, Iingo\Hni(f,X,XO)\ = 00 with a proper
/ = 1XQe C. (Relation (1.6) can be obtained as follows. If (1.6) were not
true, then Iim Ani(z) < 00 on a proper set G with |G| = $> 0. Let e=

= G2 be flxed By (1 5), Ani(z) > plogn |f x €Sn where |A\5,| £e. Let

S = D Uk s./ :=knI Qk- Then R\S= (J (R\Qk):= ft where by
= 1= =
Qi DQ2D mmwe get PxC P2C ... whence \R\ 5| = I|m \Pk\~ e. By

construction hm Anl(z) = 00 if x GS whence G CR\ S ie. \G\ A AV S, a

contradiction.)
The process Hn3 for X"*a'~ (Jacobi nodes) was investigated in R. Sakai
[3] and P. Vértesi [4]. In [4]

1.7) An3(X(a”™) ~ max (log n, n3or+3/2, n3/3+3/2)

was proved. For arbitrary interpolatory matrix X , J. Szabados and A. K.
Varma [5] proved the Faber type result

A3(V) ™ clogn

using the important observation
(1-9)

being valid for arbitrary X . Here with

(1.10) W(z):vvn(X,z):cn]rll(a;-xfc), n-1,2,...,
fc=i

(1.11) ik{x) =4, (X, x) = Xky

are the fundamental polynomials of Lagrange interpolation, and k + 1 means
that the relation holds true with any of the signs (if it has meaning).
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2. Results
2.1. The main goal of this paper is to get an estimation for A3 similar
to (1.5). Namely we prove

Theorem 2.1. Let e > 0 be any given number. Then for any interpo-
latory matrix X C [—1,1] there exist sets En = En(X,e) with \En\”~ e and
7= r)(e) such that

(2.1) A, 3(X,x) > 7/logn whenever Xx£R\En.

Corollary 2.2. If{Sn} are arbitrary measurable sets then for any X cC
CI[-1,1]

(2.2) [ \n3(X,x)dx >(|5n|- £)T?logn
Sn
(e and r] are defined in Theorem 2.1).

2.2 Remarks. 1. Considering the Chebyshev matrix, we can see that
the order of (2.1) and (2.2) is the best possible.
2. If for a fixed matrix X and odd m

(2.3) \hknm(X,x)\ *em K ,, \ m_1K™)I, 1ZkZn,

then with the previous notations one can prove the relation
(2.4) (X,x)>r)\ogn if x€R\En

(see formula (3.9)). In many cases it is enough to suppose (2.3) for “many”
values of k to prove (2.4). We omit the details. As an example, by R.

Sakai [7] and R. Sakai, P. Veértesi [8] relation (2.3) holds true if X = X*a'"\
a,R> —, w is arbitrary odd (cf. 3.5 for recent results).

3. If o is even, Anm(X*a”™) - 0(1) if -1/2 - 2/m <a,B » —1/2 +
1/t and |a —\ < 2/to (cf. P. Vértesi [4]) whence (2.1) cannot hold for
arbitrary X .

3. Proof

3.1. The proof is based on P. Erdds, P. Vértesi [2], P. Vértesi [6] and
relation (1.9). In what follows let Jk = Jkn = [xfc+i,n,Xm], k =0,1,... ,n,

n=1,2,... ,x0On=1, £n+l,n = “ 1- Further with 0<gk=q(Jkn) * \ let

(1) Jk{ak ) — KIKBYK | e
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Let Ac= Zk(gk) be defined by

3.2 wn(zfc)l = min wn(x)|, 0<k”n,

(3.2) [wn(zfc)| x€]k{<ik)| (x|

finally let

(33) M'anq = maX(lX,'l'l - )g-fcl! |XfC+I - X!l)’ 0f iv k < n,
(3.4) B(Ji, IT) = min(x,-+i - x fd,|xfetl -x,[), O0~"i, kg n.

3.2. For the “long” intervals we quote [6, Lemma 3.1].

Lemma 3.1. Let|7fc,| > <§,:=n-1/6 (k isfixed, 0~ k5 n). Then for any
{isn} with (logn)-2 ~ sn < 1/4, we can define the index t =t(k,n) and the
set ekn C Jkn so that Jejtn| * 44,,|7fcn|, moreover

(3.5) Ktn(z)] >3 7 if xeJkn\ekn and n>nx

(n\ is an absolute positive constant, large enough).

Let An:= ( Jkand Bn:= (J (Jk(£) \e®y. Obviously Bn C An
(VY

further if sn= (logn)-2, |i4,,\5,,] < i25:0(* + Hg??) \Jk\ < saY (n " ni)-
\
Now let x GBn. Then by (1.9) and (3.5)

Ans(™) A \ht(x)\ A L An %b3_3NA> log2n, say (n>nx)

whence we obtain (2.1) for An apart from a set of measure < (logn) 1 if
n”" nx.

3.3. Now we consider the “short” intervals, i.e. when |JKk\ 5 <$,(=n-1/6).
We prove (cf. [6, Lemma 3.2])

Lemma 3.2. If\<k, r<n - 1 then

26 RN W{Zn 3o
(3.6) “\ﬂ?l+|’i}|‘|@ W(ZIK) s
provided x GJr(qr), g(Jr,Jk) ~ 26n and |[Jr| < Sn.

Proof of the Lemma. First we verify

zr - XS . _
(3.7) - XS <2 if xeldr(gr), s=k,k+1
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Indeed,

o T o 2 + 3’l> M
X- Xa \r Xsi:h = © ™
Ir XS 4 zZr—xS\— M 49
X-xa \ar—=s—h <! g

whence comes (3.7). By (3.2) and (3.7)

0ile,) Zr—xa
(3.8) I*,(™)| = u%z% X- XS K*(2r)| ~ ~» (zr)\, s=k,k+ 1 x £ jr(qr).

Using (1.9), (3.8), the definition of ok and (3.7) we get (by £K{zK)> 0, and
tk+i(zk) > (]

Hefa?)[ + [Metifx)] !

> |2 (x-xk)2
=2 V3 )2 } _
_ 4 @3(2r) \xk-Zk I} 1 (x - xky N

<9 w3(zjt) 3C)\Ir i (xk  xkrAfi(zr xkfi

1 />3 |/ Jgfc+1l-gfcl3 1 (~-~rfe+l)y2 1~

k+l *k \zr - X k+1 (xk - X k+1)2 (zr - « k+1)2J -

> Ve A3 L
=9 ns(zk) \Jr,dk\JK\2 \
which is (3.6) by £k(zk) + 4+1(zk)* 1 (n >6), whence {... }> 1/8. O
Remark. Replacing formula (1.9) by (2.3), the same argument gives
(3.9)
u{zr) W

\hknm (x)I + Ifc+i,nmIl= c(m)qk n>6, 1"k, r<n - L

u(zk) \JrJkVv

A reformulation of [6, Lemma 3.3] is

Lemma 3.3. Let Ik = (ak,bk), 1S.k fjt, <™ 2 be any t disjoint intervals

in [—1, 1] with |/;t] < 6, gk = g (1 < k <t) and |/*] = v. Let f> 6 be fixed.
k=1

Supposing that for a certain integer 4, we have o > 2Rf/q, there exists

an index s (1 S s”™ t) such that

y JhL >*, £.
\Ix» Jk\ 8 4q

«(/*.I»)E<
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Now applying the argument of [2, 3.5-3.7], we can complete the proof
for the interval [1,1].

3.4. If|x| > 1+ q, by xn-lzkY:jlxk~1"(x) we Set t1+ £)"~1:Jtrz:? [4(*)]

whence, using an argument similar to that at Part 3.2, we get An3(a:) > log2n
(say) if Id > 1+ QmThis completes the proof for the whole real line. O

3.5. Remark (December 3, 1991). Very recently we have proved The-
orem 2.1 for arbitrary \ nm(X, x), m odd (cf. [9]).
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DIE REGELFLACHEN DES En, DIE EINE AUS EBENEN KURVEN
BESTEHENDE KONGRUENZSCHAR TRAGEN. Il

H. WRESNIK

1 In [8] ist es dem Verfasser gelungen, alle EK-Regelflichen $ des n-di-

mensionalen euklidischen Raumes En zu bestimmen und Parameterdarstel-
lungen derselben anzugeben. Dabei zeigte sich, daB $ in einem hdochstens
5-dimensionalen Teilraum des En liegt. Desweiteren wurde die von den
Trégerebenen der Scharkurven gebildete 3-Regelflache ~ betrachtet.

Im zweiten Teil dieser Arbeit wollen wir nun die EK-Regelflachen ndher
untersuchen. Wir geben die in [8] gefundenen Parameterdarstellungen noch-
mals an.

( aiM \ / cosu\
0 sinu
0 k

I B2sinu/ Vo 7

mit a\ SC3, k und B2 von Null verschiedene reelle Zahlen.

/ cos B(Ai cosu + B\ sinu)\ / cos u\
° 1r Sinu
(2) sing(A\cosu+ Bisinuy ' Kk
\ A2cosu + B2sinu / \ o /

wobei (A2,B2)" (0,0) und fir k = 0 noch zusatzlich & ~ 0 und {A\, B\) »
A (0, 0) gilt und

( 0 \ (cosul
0 sinu
cosB(A\ cosu+Bisinu) +v k
sin R(A\ cos u + B\ sin u) 0

\  A2cosufB2sinu / V o)

mit (Ai, B,) ~ (0,0), i —1,2, 8 » 0, A2Bi —A\B2/ 0 und im Fall k —O0 gilt
zusatzlich B A\ -

1980 Mathematics Subject Classification (1985 Revision). Primary 51N20; Secondary
53A05.
Key words and phrases. Ruled surfaces, plane family of congruences
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Den Darstellungen (2) und (3) entnimmt man, dal die Scharkurven der
EK-Schar Ellipsen sind, wéhrend dies fir die EK-Regelflachen mit der Pa-
rameterdarstellung (1) nicht gilt, da ja die Scharkurven von der beliebigen
Funktion ai(u) abhé&ngen.1

Wie die Untersuchung der von den Scharkurventrédgerebenen gebildeten
3-Regelflache 'k in [8] gezeigt hat, besitzen alle Trégerebenen genau fiir die
EK-Regelflachen mit der Parameterdarstellung (1) einen gemeinsamen Fern-
punkt. Nach den in [8] erwé&hnten Ergebnissen von H. Vogler sind also in
den Féllen (2) und (3) die Scharkurven durch den Bewegungsparameter affin
aufeinander bezogen.

Wi ir wollen nun die Normalprojektionen der EK-Regelflichen mit den
Parameterdarstellungen (1) und (2) aus den Fernpunkten der 2- bzw. t-
Achse auf die dazu orthogonalen 3-R&ume betrachten. Werden sie mit
und bezeichnet, so erhalt man im Fall (2)

(cos/3(Ai sinu-(-Ri cosu) \ /cosu\
0 I+v(sinu)

A2cosu+ B2sinu / \ 0 /

bzw.

( cos B{A\ cosu + Bi sinu)\ /cos u\
1+vlsinu ).

sin B(A\ cosu + B\ sinu) ) \' k j

Wie man nun unmittelbar erkennt, handelt es sich dabei um EK-Regelfldchen
in einem 3-dimensionalen euklidischen Raum. Die Ebenenkoordinaten der
Scharkurventrédgerebenen berechnen sich zu

(6) (0:A2v:(A\B2—A2B\)cosB + B2v : —Ai cosB + v)v)
bzw.
@) (kv(A\v cosBR -fu):A\sinB :B\ sin 3 : —{A\ cosB + v)).

In [2] bzw. [7] wurde gezeigt, dal die EK-Regelflachen des euklidischen 3-
Raums nach der von den Tragerebenen der Scharkurven umhillten Torse A
in finf Klassen unterteilt werden kénnen. Ist ndmlich $ konoidal, so gibt es
den
Fall K: A ist ein irreduzibler Kegel 2. Klasse und
Fall B: A ist ein Ebenenbischel mit eigentlicher Trégergeraden.

Ist $ hingegen eine Bdschungsregelflache, so gibt es den
Fall T: A ist eine irreduzible Torse 3. Klasse,
Fall Z\ A ist ein irreduzibler parabolischer Zylinder 2. Klasse und

:Nur wenn ai(u) der Differentialgleichung 6i +&i = 0 genigt, so sind auch in (1) die
Scharkurven Ellipsen.
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Fall V: A ist ein Parallelebenenbischel.
Daher folgt aus (6), daB im allgemeinen vom Typ K ist; nur fir 22 =0
oder B2—0und B —\ oder B\ = B2=01ist  vom Typ B.
hingegen ist, wie man (7) entnimmt, fur k = 0 vom Typ B und fiir
kA 0im allgemeinen vom Typ Z, nur fir A\ —B\ = 0 oder 8 —0 vom Typ V.
Fir die EK-Regelflichen mit der Parameterdarstellung (1) erhdlt man
fir die Normalprojektionen und <t

( ai(u) \ /cosu\
0 )+ visinu)

B2sinu) v 0/

bzw.

ai(u) \ / cos u\

( 0 \V+visinul\.

Da im konoidalen Fall nur die EK-Regelflachen vom Typ B beliebige Schar-
kurven besitzen kénnen, ist (8) stets von diesem Typ, wahrend (9) stets vom
Typ V ist.

Bemerkung 1. Die Scharkurven der EK-Regelflachen $ des En werden
auf die Scharkurven der Bilder €Zund abgebildet.

Bemerkung 2. Nur in (8) tritt jede (vom Typ her mdogliche) EK-
Regelflache des £3 als Bild auf.

2. Nun sollen die Zentral- bzw. die Kehlrdume der Erzeugenden einer
EK-Regelflache $ betrachtet werden. Nach [6] kann eine Erzeugende e von
$ zylindrisch sein, einen Kehlpunkt K oder einen Zentralpunkt Z besitzen.
Dabei wird $ im ersten Fall l&ngs e von ein- und derselben Tangentialebene
beruhrt, im zweiten Fall stimmen die Tangentialebenen in allen von K ver-
schiedenen Punkten von e uberein, wahrend K singulér ist — die Erzeugende
e heillt in diesem Fall torsai — und im letzten Fall besitzen verschiedene
Punkte von e auch verschiedene Tangentialebenen an 4> Der Zentralpunkt
Z ist dadurch gekennzeichnet, daB seine Tangentialebene auf die asympto-
tische Ebene (das ist die Tangentialebene im Fernpunkt von e an $ normal
steht, e heilt in diesem Fall regulér.

Ist nun $ durch

(10) ~X(u,v)= 1(u) + uT*(u)

mit u€/, vER und V, 1 € C1gegeben, so gehort der Zentralpunkt bzw.
der Kehlpunkt einer Erzeugenden e von $ nach [1] zum Parameterwert v —
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Fur die Striktionslinie s einer EK-Regelfliche $ (das ist die Menge der
Zentralpunkte bzw. Kehlpunkte), erhédlt man somit

[ ai(u) + Bi(it) sinu cos u\

anu) sin2u
0 kai(u) sinu
\ B2sinu )
(12)
cos/?(Ai cos3u+Bi sinu(l + cos2u)) \
cos B(B\ cosu - A\ sinu)sin2u
Mi(sin 8 cos u—k cos B sin2i”+ii”sm [ sin u+k cos 8 sin u cos u)
A2cosu+ B2sinu )
und
@)
@)
(13) cos B{A\ cosuA Bi sinu)

sin B{A\ cosu + B\ cos u)
\ A2cosuAB2sinu [/

Bemerkung 3. Die Striktionslinien der Normalprojektionen und
von $ sind die Projektionen der Striktionslinie s von

Bemerkung 4. Die Striktionslinie (12) der EK-Regelflache (2) ist im
allgemeinen eine rationale Kurve 6. Ordnung, jene der EK-Regelfldchen (3)
gehort stets der EK-Schar an und ist somit eine Ellipse.

Mit obigen Uberlegungen lassen sich nun auch jene EK-Regelflachen mit
den Parameterdarstellungen (1) und (2) angeben, deren Striktionslinien der
EK-Schar angehoren. Diese Regelflachen sind dann Regelflachen mit ebenen
Kurven konstanten Striktionsabstandes.2

Da nach den Bemerkungen 1 und 3 die Scharkurven der EK-Schar und
die Striktionslinie von $ bei den obigen Normalprojektionen ihre Bedeutung
beibehalten, kann man die Fragestellung auf die EK-Regelflachen des E3
zuriickspielen.

Betrachten wir zundchst die EK-Regelflachen mit der Parameterdarstel-
lung (1), so findet man in [4] oder [9], da die Striktionslinie der Regelflache
(8) genau dann auch Scharkurve ist, wenn

(14) a”“u) =Aln tan;—

2 Fur die EK-Regelflachen in einem E3 wurde diese Frage von H. Sachs [4] beantwortet.
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mit A £ R gilt. Da mit (13) auch die Striktionslinie der EK-Regelflache (9)
der EK-Schar angehort, erhdlt man als Parameterdarstellung der Ldsungs-
flachen

/ Aln |tan || \ (cosu\
~ 0 sinu
(15) x(u,v) 0 + vV K

\ B2sinu / \ 0 /

mit A € R.

Nun betrachten wir die EK-Regelflaichen mit der Parameterdarstellung
(2). Mit analogen Uberlegungen erkennt man, daR die Striktionslinie der
durch (5) gegebenen EK-Regelflaiche  genau dann der EK-Schar angehdrt,
wenn fur k = 0 die Bedingung # =| und fir k~ 0 die Bedingungen B = j
oder Ai = B\ —O0 erfullt sind.

Mit diesen Werten besitzt auch die Normalprojektion von $ die
gewiinschte Eigenschaft, weshalb man als Parameterdarstellung der Lésungs-
flachen erhalt

( o N ( cosu\
0 sinu
(16) Aicosu+B\sinu TV Kk

\ Az cosuA Bzsinu/ \ 0/
mit (A2JO2)# (0,0), wobei im Falle k = 0 noch zusatzlich (A1?B\) ~ (0,0)
gelten muR.

3. In Verallgemeinerung des Dralls einer Regelflache des E3 definierte
R. Koch in [1] fir eine durch (10) gegebene Regelflache des En eine Drall-
funktion d(u) durch

(17) d(u) = - A 1 -(1V) -( 1w
e N

Er ziegte weiters, daR eine torsaié Erzeugende e(u) durch d(u) = 0 und ab-
wickelbare Regelflachen durch auf/ identisch verschwindenden Drall gekenn-
zeichnet sind.

Aus (18) erhalt man somit fur den Drall der EK-Regelflachen (1), (2)
und (3)

(18) d(u) = Bz cos u

(19) d(u) = y/(Az sinu —B2cos u)2—a( A\ sin u —B\ cos u)2
mit a :=sinB(2k cos 8 cos u -f (k2- 1) sin ) und

(20)  d(u) = y/(I —k2cos2R){A\ sinu—Bxcosu)2+ (A2sinu - B2cosu)2.
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Damit erkennt man nun, dall im Intervall | = [0,27¢ die EK-Regelflachen (1)
genau zwei reelle torsaié Erzeugenden besitzen, die zu den Parameterwerten
u—~" und u—’y gehdren, wéhrend die EK-Regelflachen (2) und (3) zwei
(im Sinne der algebraischen Wurzelzéhlung) torsaié Erzeugenden besitzen,
die far

sinB(2k cosB A (k2—1)sin/J) <0

bzw.
k2cos2B - 1< 0

nicht reell sind.

Die oben angegebenen Drallfunktionen ermdglichen es auch, die abwik-
kelbaren EK-Regelflachen anzugeben.

Da es im Fall (1) wegen (18) offensichtlich keine solchen Regelflachen gibt,
wenden wir uns zunédchst den EK-Regelflachen mit der Parameterdarstellung
(3) zu. Aus (20) erhédlt man mit der Forderung d(u) =0 auf | die drei
Bedingungen

0A2AA2—0, otB2Aff2—0, ciAiBi AA2B2—0

mit a = 1—k2cos2R.
Daraus folgt A2= ty/—aAi und A2=i\/-aR i, was aber wegen

AiB2—A2Bi —=+ (—Ai B\ A C*AiB\)=0

keine L&sungsflachen liefert.

Es bleibt somit der Fall der EK-Regelflachen mit der Parameterdarstel-
lung (2) zu diskutieren. Nach einigen Umformungen der Drallfunktion d(u)
erhélt man aus der Forderung d(u) =0 die Bedingungen

A2 —/iIA2AB\ —pf?2—0
—A2ARA2A 12—AN —0

L. [IA\Bi - A2B2 —Q

1 j XA1B1=0
A(A2A3B2) = 0
A(A2- B\) =0

mit A= 2k sinB cosB und /i = (k2—1) sin2R.

Aus (211,2,3) folgt 2 = i yfBAi und B2 —uz"JiBi. Ist nun A0, so
ergibt sich aus (215,6) Ai = B\ = 0 und damit A2 = B2= 0, was aber keine
EK-Regelflache (vom Typ (2)) liefert.

Also mull ksinRcosf = 0 gelten. Ist k =0, dann ist p < 0 und es gibt
keine reellen Losungsflachen. Ist B =0, so ist /r = 0 und damit gilt auch
A2 = B2= 0, was keine Ldsung liefert.
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Also mull B =j gelten und damit gibt es genau fur x= k2—1> 0 reelle
Ldsungsflachen mit der Parameterdarstellung

/ cosu\
99 ( 8 " + sinu
(£2) A\ cos u + B1sinu Vioook

Vylk2—IAj cosu + y/k2—I1B\ sin u/ \ 0/

mit k2> 1 und (Ai,l?i) ~ (0,0). Nach (16) handelt es sich bei diesen
Regelflachen um Torsen mit ebenen Kurven konstanten Kehlkurvenabstan-
des. Die Kehlkurve stimmt mit der Leitkurve in (22) uberein.

4, Zum Abschluf3 der Untersuchungen wollen wir noch jene EK-Regel-
flaichen $ bestimmen, deren Scharkurven Orthogonaltrajektorien der Erzeu-
genden von $ sind.3 Dazu mul} wegen eines bekannten Ergebnisses von C.

F. Gauss [5] nur gepruft werden, unter welchen Bedingungen die Leitkurve /
in (10) Orthogonaltrajektorie der Erzeugenden von $ ist.

Fur die EK-Regelflichen mit der Parameterdarstellung (1) folgt aus
dieser Bedingung ai(u) cosu = 0 und damit ai(u) =c, c£ R. Somit ergibt
sich als Normalform der Lésungsflachen

8 (cosul
( ~ sinu
(23) 0 + Vv K

\ Bisinu/ \ o0 /
mit k, B2~ 0.

Fur die EK-Regelflachen vom Typ (2) ergeben sich aus der Forderung,
dal | eine Orthogonaltrajektorie der Erzeugenden sein soll, die Bedingungen

kAi sinB - kB\ sin3 = A\ cos8 = B\ cos 3 —0
und damit erhdlt man fur k= 0 und /7= f die L&sungsflachen

/ 8 A (cosu\
p Sinu
(24) A\ cosu + Bi sinu 41& 0
\ A2cosu-fB2sinu/ AV

mit (Ai, Bi) (0,0), i= 1,2, wédhrend k= 0O und B~ | wegen A\ = B\ - 0
keine Losung liefert.

Ist hingegen k"L O, so ergibt sich Ai = B\ =0 und damit erh&lt man als
Parameterdarstellung der Losungsflachen

/ o n (cosu\
0 sinu
(25) 0 + v K

\ A2cosu + Z2sinu/ \ 0 /

3 Die analoge Fragestellung fiir Regelflachen des E3 wurde von H. Sachs in [3] behandelt.
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mit k ~ 0 und (A2,B2)/ (0, 0).

Fur die EK-Regelflachen mit der Parameterdarstellung (3) fuhrt die
Forderung fur | auf die Bedingungen kA\ cosB —kB1cos = 0, was fir k=0
als Parameterdarstellung der Ldsungsflachen

/ cosu\
( 8 ! sinu
(26) ~x(u,v) = cosB(A\ cosu+ Bisinu) +v 0
sin B (A\ cosu + B\ sin u) 0

\ A2cosu+ B2sinu / \ 0 /

ergibt mit 8 70, | und (A,, B,) (0,0) fir i —1,2 und fir k ™ O besitzen
die Losungsflachen die Parameterdarstellung

( 0 \ (cosu\
0 sinu
(27) ~ (u,v) = 0 + Vv k
Ai cosu+ B\sinu 0
\ A2cosu+ f2sinu/ \ 0 /

mit k~ 0, (Ai, Bi) ~(0,0), i = 1,2.
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LARGE PRIME FACTORS OF SUMS

I. Z RUZSA

1. Introduction

Let A C[l,iV], B C[1,T be sets of integers, |Al =k, |5| = /. Let P
denote the largest prime factor of the product

(1.1) 5= []1 (a+6).
atA,beB

We shall find estimates for P in terms of k, | and N, with particular attention
on the case « = 1.
Balog and Sarkozy [1] proved

P>W 1L
16 log N

assuming that kl 3>N(\og N)2. For ki  V2~d loglogAr Sarkozy and Stewart
[3] improved this to

(khy2 N
> log R loglog R ~ (khv2'
For k=1 N this shows P  k, and nothing better can be expected since
A and B may consist of the numbers 1,2,... |k

The proofs in the above papers were based on the large sieve and on
Hardy and Littlewood’s method of exponential sums. These methods are
extremely flexible and can be used to find small prime divisors or to estimate
the number of prime divisors in a given range as well, or to find a prime p
that appears in some sum a+ 6, a£ A, b£ B with a high exponent.

Our aim is to present an elementary method that gives sharper estimates
of P for k =1 and works for a much wider range. On the other hand, it is
quite rigid and seemingly it cannot be applied to anything else.

The principal results are the following.

Akadémiai Kiad6, Budapest
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Theorem 1. Let A, B be sets of integers, |A] = |5 = k. Let N =
=max{la+6|:a6A, b€ B}. LetS be the product defined in (I A). Assume
that 5 /0 and let P be the largest prime divisor of 5. We have

klogkI logN

. pA
(12 ¢ logN °d log k

with an absolute constant ¢ > 0.
Moreover, for k > C{e)\/~N we have

(1.3) P > (2/e —e)k.

Theorem 2. Let A, B be disjoint sets of integers, |Al = |27 = k. Let
N =max{|a—6|:a6 A, b6 B}. Put

(1.4) D= \a-b\
aeA,beB

and let P be the largest prime divisor of D. The estimate (1.2), and for
k >C(e)-yN the estimate (1.3) holds.

Remarks. 1) Since we did not restrict the sign of elements of A and B,
Theorems 1 and 2 are equivalent (we replace B by —B). In the proofs it will
be more convenient to work with differences.

2) (1.2) guarantees P —»o0 if &(loglogiV)/(logN) —o00. It guarantees
Pk for k Na with any fixed a >0.

3) If A=B ={1,2,... ,k}, then the largest prime divisor of 5 is the
largest prime below 2k. One is tempted to conjecture that P > (2 —e)k at
least for k>N and summands of equal signs. If different signs are allowed,
then A —{—kf2,... ,k/2}, B ={-k,-k +1,... ,—k/2+ Lk/2+ 1,... ,k}
yields P 3k/2.

2. An inequality

We prove the following inequality.

Lemma 2.1. Let a\ <a2< .mm< a" and b\ < b? < ... <hb be integers,
k~ . Put

U— a,),
i<j

V =U (bj-bi),
i<

d =n \ai~bQ\-

a.."ioj
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We have
(2.1) \D\ > UI/kVk/1(4/9)k.

We start with some preparation.

Lemma 2.2. Let f be a real function defined for x ~ 0, increasing and
concave. Let ox,... ,a", &i,... ,6/ be real numbers. We have

(2.2)

i=i ji=i i=ij-1
Proor. We may assume that / is bounded; otherwise, we can replace

it by /*(x) =/(min(x, M)), where M = max(|a,| + |6j]). A bounded / can
be written in the form

(2.3) f(x) =c-dg(x),

with real ¢, d > 0 and a function g satisfying <7(0) = 1, g(x) >0, decreasing
and convex.

Extending this g to negative numbers by g(—x) = g(x) we obtain a pos-
itive definite function. (These functions are known as Polya’s characteristic
functions; see Polya [2].) This means that the inequality

n n
(2.4) N2 £ B(*e " xi)zizd = o

i=ii=1
holds for arbitrary real x, and complex z{. We apply (2.4) with n = « + 1,
Xi=a, fori=1,... ,k, x*+j=Dj,j=1,... ,/. Put 2-= y/JTJIK) for i < Aand
A= -1y (xry for i >«k. We obtain

2 X) 5~ s(°<~ai)+1£ S
We substitute (2.3) to obtain (2.2). a
Lemma 2.3. Let a\,... ,ak, bj,... ,6/ 6e integers, f an increasing real-
valued function defined on nonnegative integers and satisfying
(2.5) /(n +1)-2/(n) +/(n —1)>0 (n>1).

Then we have (2.2).

P roor. We extend / to nonnegative real numbers by linear interpola-
tion between consecutive integers, and apply Lemma 2.2. O
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P roof of Lemma 2.1. We apply Lemma 2.3 for the function

This modified logarithm satisfies (2.5), moreover /(n) ~ logn for n > 1
and /(0) = 0. We obtain

(2.6) y, /(ax My = 1Y log@~a+ - 69
a./bj
We omitted the factor 2 because from the pairs (a, a') and (a', a) we include

only one.
Now consider the sum

(2.7)

For a fixed a, = a the only values of bj that can give a nonzero summand in
(2.7) are a+ 1, a+ 2, and altogether these give at most

Thus the sum in (2.7) is < k log(9/4). Combining this inequality with (2.6)
we obtain (2.1) in logarithmic form. O

Remark. The factor (4/9)ft cannot be omitted, as the example A =
{2,4, 6,8}, B ={1,3,7,9} shows. | have no conjecture about its optimal
value.

3. Inequalities for the exponents of primes

Let k, I, a,, bj, U, V and D be the same as in the previous section. For
any integer m > 2 let u(m) denote the number of pairs IMi<j ™Mk
such that m la, - aj, and define v(m) similarly for the numbers 6,. Finally,
let w(m) be the number of those pairs (i,j), | » ik, 1<j < Zfor which
m laj —bj.

Lemma 3.1. We have

(3.1)
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If w(m) = 0, then we have

I k 2kl k+1
(3.2) ?u{m) + I—v[m) dffé"
Proof. Let xt (t=1,... ,ra) be the number of integers a, satisfying

a-=t (modm), and define yt similarly for the We have

(3:3) u(m) =72 (29" MM =X] (1) " w(m)="}2xtyt-
Now we apply the inequality

1( 1 k. I (x kfy\ Ix+Kky
oy e fie 1=,
for the numbers xt, Summing up and taking into account Y Ixt =Kk,

Y,yt =1, in view of (3.3) we obtain (3.1).
Assume now w(m) = 0. Let K be the number of subscripts t with xt* 0.
By the square-mean inequality we have

E x»} ( E x*y=k2iK-
Since we must have xtyt =0 for all t, the number of nonzero values of xt is
at most m —K . Now similarly we find

Adding these equations we get

P-4) kKT, d+1Ey"™¥ T)i--
Applying (3.3) we can deduce (3.2). O

For a prime p, let ap, Bp and 6P denote the exponent of p in U, V and
D, respectively.

Lemma 3.2. We have

. k+1 logN
(35) kap+ iB="D "5 ogp.
If =0, then we have
2kl k+1

(3.6) k <P+ =
Proor. We have
aP =Y luwpi) BP='52v(p3), ~p)="2"(pj)-
Since la- —bj\ £ N, the largest exponent of p that can occur in an a, —h, is
at most ]+ Summing up the inequalities (3.1) for this range we obtain

(3.5).
To deduce (3.6) we use (3.2), keeping only the term m —p. O
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4, Proof of the theorems

We prove Theorem 2. We retain the notations of the previous sections,
but we fix k=1. We also assume P <k, since otherwise (1.2) and (1.3) are
obvious.

We start from Lemma 2.1. We decompose U, V and D into primes and
take the logarithm to find

N(ap+BRp- &) logp<k log9/4 <k.
p
We use Lemma 3.2 to estimate the coefficient of logp. We use (3.5)

for p < P, (3.6) for P <p < 2k, and drop the terms with p > 2k (they are
nonnegative by the assumption P <Kk). This gives the inequality

(4.1) 5] (™ -1) rgP<1+Z 109 logp.
Pepcok Vo ! .o . logp.
To show (1.2) we estimate the right side by
P log N

=1+ n(P)logN "

On the left side we use 2k/p —1> k/p for p ~ k and drop the terms with
k <p < 2k. To estimate the sum we use

N>1log (k/IP)-c.
P<p<k P

In this way we obtain
k log(k/p) <c +kym

By introducing the variable u = e~ck/p this can be written as

ulogu< C/Iog N
logp

To solve this inequality we use the following observation: if x logx <
Ny, x>0, y>1 then x» 2p/(l +logy). (Hint: add x times the inequality
log(v/x) = (y/x) ~ !s) This yields

logN
u=e ck/P " ¢//ogN 1+log %9
log P
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Rearranging and using the assumption P <k we get

P k / , [/logN \\
i"p>>irv (1+ °g\\ogk)) ’

from which (1.2) immediately follows.

To prove the sharp estimate (1.3) for large k we must be more careful.

We assume k» CyfN; from (1.2) we already know F > k, hence P > y/N if
C is large enough.

In the right side of (4.1) we distinguish the cases p > y/N, for which

'l‘:%'\; = 1 and the rest; this yields the upper estimate
1+ 0)(P) - x9(VN) + u(y/N) log N,
where x)(x) = logp. Now (4.1) yields

p<x

log P :
i E %97 < 1+ 021 - ti(y/N) + #("N) logN.
P<p<2k

Using the usual estimates for primes we find
2k
2k logy <2k +0(y/N).

For u= this yields
u logu< y/N/k.
Now if u~ 1, the proofis finished. Otherwise we use u logu ” log u to obtain

u<ecy/Nk <1+ £

for k > C(e)y/N. O

As we have already observed, Theorem 1 follows from Theorem 2 via
replacing B by —B.

5. Remarks on the case k|

Assume k <I. An obvious estimate for P can be obtained by omitting
some elements of B, retaining only k of them. In the considerations of
Sections 2 and 3 there was nothing specific for k =1. On the other hand,
observe that (3.6) yields a nontrivial estimate only forp<” < 4k.
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It is easy to improve (3.6) for large p. Assume p >2k. Then in (3.4)
(with to=p) we have K * k <p/2, thus K(p —K) < k(p—Kk), which gives
the estimate

| > Ip kel k(p—k—I)
k p™~1 p=2(p—k) 2 2(p—k) ~

nontrivial up to p < k +1. This indeed leads to an improvement of the bound
given by Theorems 1-2, by about a factor log(l/k), rather than I/k that can
be conjectured.

The problem lies more in inequality (3.5). It is sharp, with equality
occurring if, in the notation of Section 3, xt is proportional to yt. For m >k
this means that the / elements of B lie in k < m residue classes mod to,
which cannot typically happen. To exclude this case one may resort to the
large sieve. This works, however, only if kI N, and it yields only a minor
improvement over Balog and Sé&rkdzy’s result quoted in the Introduction (the
logarithm can be omitted from the denominator). | conjecture that the real
order of P is | unless k is very small, say, that we have P >c(e)l with c(e) >0
under the assumption /> A> Nc.
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SEPARATORY SUBLATTICES AND SUBSEMILATTICES

L. LIBKIN* and I. MUCHNIK

Abstract

A subalgebra of an algebra is called separatory if its complement is a subalgebra as
well. In this paper we study separatory sublattices and subsemilattices.

1. Introduction

Let (A, i) be an algebra with a carrier A and a signature fl. We say
that a subalgebra (B, fl) of (A, fl) is separatory if its complement A —B is a
subalgebra again, i.e. if it is closed under all operations from fl. This paper
studies the properties of separatory sublattices and subsemilattices.

Let us introduce some terminology. Throughout the paper S will denote
a semilattice and the semilattice operation will be denoted by o. We use the
customary letter L for lattices and A and Vv for the infimum and supremum
operations. We assume that the semilattices are ordered by letting x ~ y iff
X oy —y, i.e. S is always a join-semilattice. J(S) stands for the set of irre-
ducible elements of 5, i.e. x £ J(S) iff x =y o0z implies x —yoxx —z. J(L)
is the set of join-irreducible elements of L and M (L) is the set of meet-irre-
ducible elements where J(L) —J((L, v)) and M(L) = J({L, A)). The lattice
of subalgebras of (A,fl) will be denoted by Sub(A,fl). An algebra (A,fl) is
called idempotent if all operations in il are idempotent. The signatures will
be omitted if they are understood.

Incomparability of x and y will be denoted by x||j/. M3 and N$ stand
for the five-element non-distributive and non-modular lattices (diamond and
pentagon). An interval is a set [x,y] ={z\x <z and 2" y}. The lattice of
intervals of a lattice L is denoted by Int L.

The notion of a separatory subalgebra is similar to that of a half-space
and this observation motivated our study of the separation properties of sep-
aratory subalgebras. An analogue of the classical separation theorem from
convex analysis holds for arbitrary semilattices which is shown in Section 2.
In the lattice case, however, separatory sublattices even may not exist, and

‘While working on the final version, this author was supported by NSF Grants IRI-
86-10617 and CCR-90-57570 and ONR Grant NOOO14-88-K0634.
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the separation theorem holds only in a very restrictive subclass of distribu-
tive lattices. But a slight relaxation of the statement of the separation the-
orem characterizes the variety of distributive lattices. Finally, in Section 4,
we use interval representations of sub(semi)lattices of finite distributive (se-
mi)lattices of [1, 5, 7] to describe the separatory sub(semi)lattices. The
conditions saying that tops (or tops and bottoms in the lattice case) of the
intervals used in the representations form a chain (chains in the lattice case)
are necessary and sufficient for a sub(semi)lattice to be separatory.

For arbitrary idempotent algebras the notion of being separatory can be
characterized through pseudocomplements. In fact,

Lemma 1. Let (A, d) be an idempotent algebra. Then a subalgebra
(B, S7) is separatory iff it has a pseudocomplement in Sub(A, II).

Proof. Let B have a pseudocomplement C in Sub A. Assume B is not
separatory, i.e. w(xi,... ,xn) GB for some ui Gil and x\,... ,xn£B. Clearly,
at least one x-”~ C and the subalgebra {x,} is not a subset of C although
{x,} n B —0 which contradicts the definition of a pseudocomplement. The
other direction is immediate. O

2. Separatory subsemilattices

In this section we state and prove the separation theorem for semilat-
tices. Based on that theorem, we list some properties of the separatory
subsemilattices.

Theorem 1 (Separation Theorem). Let S be an arbitrary semilattice
and Si, S2 its disjoint subsemilattices. Then S\ and S2 can be separated by a
separatory subsemilattice, i.e. there exists a separatory subsemilattice S' Q S
such that Si ~ S', S2QS —S".

Proof. Let So(x) denote the minimal subsemilattice of S containing a
subsemilattice So and x GS, i.e. So(x) = 5b U{x} U(x Os |s G5b). We claim
that for every x” Si U£2 either Si(x) n52=0 or S2(x) n Si - 0. Assume
that both intersections are nonempty, i.e. there exist xj GSi(x)flS2 and
x2GS2(x) n Si. Then xi =x osi, x2=x0s2 where Si GSj, s2GS2. Then
S29 (x 05i) 0s2=(x0s2)o g Si. This contradiction proves our claim. To
finish the proof, consider a family {(S”Sj) | S(,S2GSubS, S(,S2 disjoint,
Si QSj, S2~ S2}. By Zorn’s lemma, this family has a maximal element
(S', S™). Moreover, S'US" = S follows from the claim proved above. Thus,
S' separates Si from S2.

This result immediately implies that any semilattice with two or more
elements has a proper separatory subsemilattice. Since a single element is
a subsemilattice, for any So G SubS and any x ~ So there is a separatory
subsemilattice Sx separating So from x. Obviously, So = n{Sj. | x * So}.
Therefore,
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Corollary 1. Every subsemilattice of an arbitrary semilattice is an
intersection of separatory subsemilattices. O

Corollary 2. IfS isfinite, every element of M{Sub S) is a separatory
subsemilattice. O

Remark. Matrix representations of separatory subsemilattices of finite
semilattices were studied in [3]. Those representations were based on ihe re-
sult for the Boolean case, or, to be more precise, for the semilattices of form
(2~ —(0},U), where U is a finite set. Separatory subsemilattices of such
semilattice are in 1-1 correspondence with \U\ x |17] symmetric 0-1 abso-
lutely determined matrices where “absolutely determined” means that every
submatrix has a saddle-point. This correspondence is established by S p»
A = |la»jili,j=i,...,n such that = 1iff {z,,xj} £S, where U= {zI5... ,z,}.

3. Separatory sublattices

In contrast to the semilattice case, separatory sublattices may not always
exist. Any prime ideal is a separatory sublattice; hence, the existence of
separatory sublattices is guaranteed for distributive lattices. But one can
easily verify that the lattice Part(4) of equivalence relations on a four-element
set does not have proper separatory sublattices. And neither does any finite
partition lattice Part(n). Therefore, one could not expect the statement of
the separation theorem for lattices to hold in a large class of lattices, and,
indeed, only a very restrictive class admits the separation theorem. However,
intervals can be separated in any distributive lattice.

We say that a lattice L satisfies the separation condition, if for any dis-
joint sublattices L\, To QL there exists a separatory sublattice L' such that
LigL', L2gL-L".

A lattice is called series-parallel, if it does not contain a subposet whose
diagram looks like the letter N [6]. This is equivalent to saying that L is
series-parallel \i a\/c —b,b/\d = chold for no four distinct elements a, b,c,d£
£ L. The following result appeared in [4]:

Theorem 2. A lattice L satisfies the separation condition iff it is dis-
tributive and series-parallel. O

In the finite case a distributive series-parallel lattice is an ordinal sum of
chains and four-element Boolean lattices, its width being one or two. This
is indeed a very small class, and our intention is to enlarge it by weakening
the separation condition.

We say that a lattice L satisfies the interval separation condition if for
any two disjoint intervals 1\,12%.L there exists a separatory sublattice L' 9 L
such that N QL' 1I7QL —L".
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Theorem 3. An arbitrary lattice satisfies the interval separation condi-
tion iff it is distributive.

Proof. The interval separation condition is inherited by sublattices.
Since five-element non-modular and non-distributive lattices do not satisfy it
(which can be checked directly as there are only a finite number of intervals),
any lattice with the interval separation condition is distributive.

Conversely, let L be distributive and [xi, %] n [00222] = 0, Syi, x2S
S 22 We claim that there are an ideal I and coideal V such that TC\V = 0,
one interval is contained in X and the other in V. In fact, if xi|ly2, then
V = [xi) and 1 = (y2A. If x2||y\ or yx <x2, then V = [x2) and 1 = (yi].
Finally, if yx>x2and xx and y2 are comparable, then y2 cannot be greater
than xi (otherwise yx Ay2 would belong to both intervals). Hence, y2 < xx
and V = [xi), X—(y2]. Having proved the existence of X and V, note that
there is a prime ideal V such that X~ V, V flV —0, see [2]. Hence, V is a
separatory sublattice separating [xi,yi] from [x2,y2].

Remark. It was proved in [8] that the separation condition for the lat-
tice of intervals of a complete lattice is equivalent to distributivity.

It was shown above that meet-irreducible subsemilattices of finite semi-
lattices are separatory. Again, in the lattice case the situation is much more
complicated. For example,

P roposition 1. Let L be afinite lattice. Suppose that M(SubL) con-
tains only separatory sublattices. Then L does not have a sublattice isomor-
phic to M3.

Proof. Assume that L does have a sublattice {0,a,6,c,e) isomorphic
to M3, where 0< a,6,c <e. Let V be a maximal sublattice of L which
contains e and c but does not contain 0, a and b. If L'=Lxf]L2and L' ™
7™L1 L2, then both L\ and L2 contain an element from {0,a, 6} and O£ L'
since aAc = 6Ac =0. This contradiction shows that L'6 M(SubL), but L'
is not a separatory sublattice (a, b€V, but aVb—e GL").

Corollary 3. IfL is afinite modular lattice and all meet-irreducible
sublattices are separatory, then L is distributive. O

The requirement that all meet-irreducible elements be separatory sublat-
tices turns out to be equivalent to distributivity, if we consider Int L instead
of Sub L. Furthermore, those meet-irreducibles can be described explicitly.

P roposition 2. Let L be afinite lattice. The following are equivalent:
1) Every element of M(IntL) is a separatory sublattice;

2) M(IntL) consists of all prime ideals and coideals of L;

3) L is distributive.

Proof. 1=>3. Suppose that 1 holds and L is not distributive. Then L
contains either N$ or M3 as a sublattice. Therefore each interval of N$ (or
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M3) must be represented as an intersection of separatory sublattices of N5
(or M3) which are intervals. But one can easily check that this is not the
case.

3=>2. It follows from the proof of Theorem 3 that each interval of a finite
distributive lattice is an intersection of prime ideals and coideals. Hence, it
is enough to prove that any prime ideal (coideal) is meet-irreducible in Int L
for a finite distributive lattice L. Assume that V %.L is a prime ideal and
V —[x,j/In [utn]. Then V —(a] where a £ M(L). Hence x Au —0 (the
least element of L) and y f\w —a, i.e. either V —[x,y] or V = [u, u>]. Thus,
V £ M\IntL). Similarly, any prime coideal is meet irreducible in Int L.

2=1is immediate. The proof is now complete.

4. Separatory sublattices and subsemilattices in distributive case

Recall that a semilattice S is called distributive, if X y oz implies the
existence of y' A y and z' <z such that x = y'0z' [2]. It is known that
the finite distributive semilattices and only they arise as distributive lattices
considered as join-semilattices, i.e. they are (L, V) where (L, V, A) is a finite
distributive lattice.

The next two theorems from [1, 5, 7] describe the structure of sub(semi)-
lattices of finite distributive (semi)lattices.

Theorem 4 ([1, 5]). Let S be afinite distributive semilattice. Then its
subsemilattices and only they can be represented as

(1)

Theorem 5 ([7]). Let L be afinite distributive lattice. Then its sublat-
tices and only they can be represented as

) io=£-(>..%j, Viel:  J(L), xteM(L).

Surprisingly little has to be added to the above representations in order
to characterize the separatory sub(semi)lattices.

Theorem 6. LetS be afinite distributive semilattice. Then its separato-
ry subsemilattices and only they can be represented as in (1) where {x-1i £ 1}
is a chain in S.

Theorem 7. Let L be afinite distributive lattice. Then its separatory
sublattices and only they can be represented as in (2) where (a; |i £ 1} and
{x; li £/} are chains in L.

Before we prove these theorems, we need an auxiliary combinatorial lem-
ma.
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Lemma 2. Let B = {&!,... ,6n} be a subset of a finite semilattice S.
Suppose thatfor any pair b', b" £ S there exists an element b> b'ob" such that
we are allowed to exchange either b' or b" for b. Then, using only exchanges
allowed, B can be transformed into a chain whose minimal element belongs
to B in afinite number of steps.

P roof. We claim that B can be transformed into a set Bo such that
bi £ Bo for an index i £1,... ,n and b”" 6; for any b£ Bg. Prove this claim
by induction on n. If B has a unique minimal element, no exchanges are
needed and we are done. Suppose there are at least two minimal elements,
b{ and bj, in B. By induction hypothesis, using a finite number of exchanges,
B —{6j} can be transformed into B' = {bk \k £ K} such that & is the minimal
element in B' for some index 1£1,... ,n, I*j. Notice that & %bj. If ff >
> then Bo=B'U{&} and we are done. If £|&, consider all pairs (bk,bj),
k £ A'. If for some k an exchange of bj for b~ bj otk is allowed, Bo = B' U
U {6}. If for any pair the only allowed exchange is bk for bf~.b'ko , then
BO= {bk Ik £ K} U{&} The claim is proved.

Now the lemma can be proved by induction on n. If nis 1or 2, we are
done. For n > 2 transform B into B' = {6" |k £ K} such that = bi and
k= f°r all k£ K. By induction hypothesis, B' —{6J} can be transformed
into a chain B" whose minimal element is in B' and therefore not less than
bi. Then B" U{&} is the desired chain whose minimal element 6, is in B.
O

P roof of Theorem 6. If {x-|i£ 7} is a chain, then 1] [a,, %] is a sub-

€/
semilattice of S and So (1) is separatory. Conversely, if So (1) is separatory,
consider two intervals [a,-xt] and [aj,xf\ from the representation (1). Let
X —Xi 0 Xj. It is enough to show that either [a-,x]n So=0or [a,, Xx] DSo = 0.
Then applying Lemma 2 will yield the desired result immediately.

Suppose that there exist x- £ [0-, X]n50 and Zj £ [aj, x]n50- Let 2 = Z{OZ.
Since 2" x = Xi0Xj and 5 is distributive, there exist X-* x-and x' < Xj such
that z—x\ ox'j. Now, 2 >4a, and 2" a, imply 2= (x-0a,) o(x' oaj). Notice
that x\ oa- £ [a,-x,] and X' 0aj £ [aj,Xj]. Therefore, 2" So because So is
separatory. But on the other hand, 2= 2,07 £ So. This contradiction
proves our claim and Theorem 6. O

Proof of Theorem 7. Let both {a, |i£ 1} and {x,-1i £ 1} be chains.

Then it can be easily shown that N [a,, X is a sublattice of L. Therefore,
iei
Lo (2) is separatory.

Conversely, let Lo (2) be separatory. Let [a,-,x,] and [aj,xfi be two
distinct intervals in the representation (2). We are going to show that there
is such x £ M(L) that x * x-VXj and either [a-,x]DLo= 0or [a% x] fl Lo 7
= 0. Reason by contradiction. Assume that for any x £ M(L), x > x, VA,
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there exist 0,(2) G[fl;, x] fl Laand aj(x) G[flj, X] fl La. Let ak = A(R*.(x) \x A
X, Vxj,x GM(L)), k=1i,j. Then atG[Bfcx-Vxjln L0,k —i,j. Clearly,
flI',flJ GLO.

Let p=R*VRIGTomThen p Ax, G[fl,, x;] and pAxj G[RJ?X]]. Hence, Lq
being separatory, (pAxi)V(pAxj) ~ Lo- By distributivity, (pAX,) V(pAXj) =
=p AX-VXj) =p GLqg. This contradiction proves our claim.

The existence of such x GM(L) and Lemma 2 show that we can turn the
tops of the intervals in (2) into a chain without changing the bottoms, i.e.
Lg= L —U([B;,c] li GI), where {c, |i G1} is a chain. Since the dual lattice
L* is distributive, the same is true of the bottoms of the intervals, which
gives us a desired representation. O
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