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ON BITOPOLOGICAL SPACES II

J. DEAK

In this paper, we investigate the relations between multifunctions and bitopolo-
gical separation properties. § 5 contains the definitions and gives, in terms of (fami-
lies of) multifunctions into topological spaces, conditions guaranteeing that a bispace
is S;, respectively that one of its topologies is Sfwith respect to the other (i= 1,2, 3).
(The results for 1—3 are cited from Smithson [12].) Only a few of these conditions can
be shown to be necessary and sufficient, so several problems remain open. § 6 gives
a complete answer ro the same question with i—n. 8 7 contains some results on
multifunctions between bispaces. § 8 deals with a special case of multifunctions
into topological spaces, namely the decompositions of spaces. For §8 0...4, see the
first part of this series [5]; notions defined there will be used without explanation.

Acknowledgement. The author wishes to thank Prof. M. Bognar (Budapest)
for raising the problem of inducing bitopologies by decompositions of topological
spaces.

8 5. Bitopologies induced by families of multifunctions into topological spaces

5.0 Let X and Y be sets. A function in assigning to each X asubsetof Y isa
multifunction (multivalued function, set-valued function) from X into Y. If we are
given a topology J on f [and also a topology Sfi on X], we shall refer to in as a
multifunction[from the space (X, SYj] into the space (F, .T). A multifunction m into a
topological space will be called compact valued, respectively closed valued if for each
xEX, m(x) is compact, respectively closed. For AczY and BczX, put

= {XCA" m(x)(T/4 ~ 0}, m(B) — Urn[21].
m is onto if m(Z)=F.
Remarks, a) The formula
xrmy *>F€m(x)

establishes a one-to-one correspondence between multifunctions from X into F
and relations between elements of X and F, so we could just as well speak of rela-
tions instead of multifunctions. It is, however, more in keeping with the traditions to
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2 J. DEAK

work with multifunctions, although some authors prefer the relations. In addition,
if the definition below were formulated for relations, it would be in conflict with the
usual definition of lower/upper semicontinuity in the special case when (Y, 2~)=
= (R, S) and rm happens to be a function.

b) The notations and m(B") are motivated by the equalities m_1(/1}=
=r*A] and m(F)=/s,,[£]

c) Closed valued multifunctions are sometimes called point closed.

Definition (Wilson [15], Kuratowski [8] and Bouligand [3]). A multifunction
m from a space (X, Sf) into a space (Y, ,T) is

a) lower semicontinuous if for each ~-open set G, trt-1(G) is .S™-open;

b) upper semicontinuous if for each ~-closed set F, tn_1(F) is ~-closed.

Remarks, d) For the motivation of the names, see e.g. [7] 1.7.17 (a).

e) Kuratowski gave these definitions only for closed valued multifunctions into
compact metrizable spaces. (Wilson considered an even more special case.) The
restriction on Y was later dropped, but upper semicontinuous multifunctions are often
closed valued or compact valued by definition; the same applies sometimes also to
lower semicontinuity; see e.g. [13], [2], [6], [7], and also the references in [13].

f) It is often contained in the definition of lower/upper semicontinuity (or even
in the definition of a multifunction) that m(x)"0 for each x£X, cf. [2], the foot-
note on p. 114

g) Sometimes other names are used instead of lower/upper semicontinuity,
e.g. infra- and supra-continuity in [15]; cf. [13].

51 Definition (Smithson [12]). Let X be a set and i a family of multifunctions
m from X into topological spaces (Ym ,Tm). Let and be the coarsest topologies
on X making each m£&R lower, respectively upper semicontinuous. Then (IPm, 2m)
is the bitopology induced by SR. For a single multifunction m, (*{n%}, J{n}) is called
the bitopology induced by m.

Notations. ®m= 0n), 3 m= 2 (m), Xa= (T; 2W), Xrt= (X; O&m, J n).
Remarks, a) The systems

(m_1(G>: GEM-mmESR}
and
{m-1(F>: JL\F€/~n,m6SR}

form a subbase for respectively a closed base for . In the case of it is
enough to take inverse images of open bases (but usually not subbases); in the case
of £m, it is not enough to consider inverse images of closed bases.

b) = sup {£2m: mESR}, = sup {UCT mifil}.

c) We have interchanged the role of 43and 2. in the above definition in order to
adjust it to our other definitions,1e.g. R

1 Added inproof. Cf. the footnote to 0.4.
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d) In place of QN it would be more precise to take {(m-, $9\ idl). We have
chosen, however, the simpler terminology and assume instead that when-
ever

e) As the results of this paper are evidently valid for the empty bispace, we
may always assume in the proofs that X?+0.

5.2 If arbitrary multifunctions into arbitrary spaces are allowed then each bi-
topology can be induced by a family of multifunctions. Indeed, put Y= {1, 2},
~{1}} and
Y if *G _ iy if xEF

{2} if x3$G W “ {1} if x$F
A ={mG 0 GEIU{mF:0* FE£co-J}.

Then X= Xfl,. The problem is more complicated if the multifunctions tn and/or
the topologies 3Im are supposed to satisfy some conditions. The cardinality of
can also be restricted; in particular, it is an interesting question which bitopologies
can be induced by a single multifunction (satisfying certain conditions). Let us
start the investigation of such problems with some remarks:

a) One can usually assume without loss of generality that m(x)?+0 (x£Z)
[equivalently: m-1(Fm)=Ad. Indeed, if this condition is not satisfied then take the
topological sum of Y and a one-point space {z} and put n(x)=m(x)U {zZ}. Now
ti(x)"0 (xEX) and X,=Xm. What is more, n and inherit from tn and ZIm
most of their good properties, in fact all the properties considered in what follows
(multifunctions will be closed valued or compact valued, topological spaces will be
compact and/or they will satisfy one of the usual separation axioms).

b) In contrast, supposing m to be onto is a real restriction. We can make tn
onto by substituting m(A") for Ym, but in this case the non-hereditary properties of
SIm (e.g. compactness) are lost.

c) Let (Z, be the TO-identification of (Fm Tf) and

nx) = {z€Z: m(x)ilz 0} (z£2).

Then X,,=Xm and n is compact valued, closed valued, respectively onto if th has
the same property. Consequently, the topologies 3Im can always be assumed TO.

d) Each family of multifunctions can be replaced by a single multifunction in-
ducing the same bitopology. Let (T, .5") be the topological sum of the spaces (ym, 3m)
(mC&Jl) and Z —Y\J{w} where wWEY. To simplify the notations, assume that the
sets Ymare disjoint and Y= U {Fm: m€9Jl}. Put

"(*) = (U mE))U{w} (x€T)

and let AE2Tn iff A{w}£&~ and either w$A or A covers all but a finite number of
the sets Tm. Then X, —Xpi, furthermore, rt and Slhinherit many good properties of
the multifunctions mC3O and of the topologies 2Tm.

In particular, ¢) and d) give:

Theorem. Each bitopology can be induced by a single compact valued multifunc-
tion onto a compact normal TO-space.

i*
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5.3 We shall try to characterize certain classes of bispaces by the existence of
some special (families of) multifunctions inducing their bitopologies.

Theorem, a) For a bispace X, the following conditions are equivalent:
(i) S is S\ with respect to 2;
(ii) its bitopology can be induced by afamily of multifunctions into Sx-spaces;
(iii) its bitopology can be induced by a compact valued multifunction onto a com-
pact Tx-space.
b) The following conditions are also equivalent for a bispace X:
(iv) 2 is Sx with respect to
(v) its bitopology can be induced by afamily of closed valued multifunctions into
arbitrary spaces;
(vi) its bitopology can be induced by a closed valued multifunction onto a compact
Ti-space.

Proof. (ii)=>(i): Since the half Si property is preserved when taking the supre-
mum of bitopologies, it is enough to show that for a multifunction m into an Sx-
space (X, FT), S mis SLwith respect to 2m. Since ST is Sx, each H *S is the union of
some ""-closed sets. Thus m-1(//> is the union of the inverse images of these closed
sets, and these inverse images are, by definition,  -closed. The sets m~1(H) (HES)
form a subbase of Sm, so S mis indeed Sxwith respect to 2m.

(iii) =>(ii): Evident.

(i)=>(iii): Let WxGZ.S be fixed and denote by S' the family of the non-empty
A-closed sets contained by G. Since S is Sxwith respect to 2, we have G~ US'.
Put Y=(SXco)U{0},

m(x) = ({FE3F: x€F}Xco)U{0} (XEX)

and let S' be the co-finite topology on Y. S' is a hereditarily compact Tx-topology,
therefore mis a compact valued multifunction onto a compact Tx-space. m_1({0})=
=X and for each (F, n)£Y, in_1(((F, n)})=F, thus the inverse image of any S~
closed set (i.e. finite set or Y) is u-closed; furthermore, we get each FES' in this
way. Any intersects all the sets {F}Xco (F”S-), so if
0$H and m~1(H)—X if 06//. Take now such a multifunction mG for each
QX-G7S. These mG together clearly induce (S, 2) (in the case of 2, recall that
G—X has not been excluded, thus we get each F£co-2 as the inverse image of a
closed set). To complete the proof, apply now Remark 5.2 d).

(v) =>(iv); Let m be a closed valued multifunction from X into a space (Y, S~).
Assume XxEG=X\m~1F) where Fis M-closed. m(x)(TF=0, so with H=Y\
m(x)ES~: FaH and X\G =m~1F)(zm~1(H)eSm. Clearly, x$m _1(f/), i.e.
r\nr2E)cG isa”,-closed setcontaining x. Thus G is the union of ~,,-closed
sets, and the same holds for each element of a subbase for 2m. Consequently, 2m
is Sxwith respect to S m. According to the observation made in the first sentence of
the proof, a similar statement holds for families of multifunctions.

(vi) ~>(v): Evident.

(iv) =>(vi): Let GxO be a U-open set. If G is at the same time ~-closed, let
(Y, S") be a one-point space and m-1(y)=AG . It isevident that (Sm, 2m) is
coarser than (S, 2) and G is J mopen. On the other hand, if G is not ~-closed then
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let~denote the family of the ~-closed setscontained by G. Since 2 is Sl with respect
to we have G=OF. Put Y—F[J{G} (recall that G$F),

m(x) = {SEY: *£5} (XxEX)

and let the topology 9~ on Y consist of (i) the family F of the ascending subcollec-
tions of F (i.e. Fksftr, FczF~F imply Fids/) and (ii) the sets of the form
j/U {G} where (h”s/dT. It iseasy to check that F is indeed a topology. If Qd&dF
then 38&=Y or 09=F, thus any ~-open covering of Y has a subcovering of cardi-
nality 22, hence F is compact. For xdG, m(x) is a proper descending subcollec-
tion of F (proper because cl, {x}€M\ttt(*)), so it is M-closed. For xdX\G,
m(x)—Y. So m is closed valued. G is not *-closed, therefore X\G 0, thus m
is onto, too. We claim that the inverse image of any ,-open set is *-open. It is
enough to show this for QAAdT, since m-1({G})c:m-1({F}) for any FdF,
thus
nt_1(jafU(G}> = m-1(*">Um_1({G}) = m-1(.s/).

But m_1({F}>= A \F is &-open for each FdF, consequently is &-open,
as it is the union of the F-open sets m_1({F}) (Fds/). Let us consider now the in-
verse images of the ~"-closed sets. {G} is *"-closed (this follows from G <F) and
m-1({G})=A"G. Any other non-empty ~-closed set intersects F in a non-empty
descending subcollection, i.e. it contains 0 as an element, and its inverse image con-
tains m-1({0}) as a subset; but m*“1({0})=Z. To sum it up: nt is again a closed
valued multifunction onto a topological space such that (Fm, 2n) is coarser than
(F,2) and G is Jmopen

For ecah non-empty Gd2, let  denote the multifunction we have just defined.
Then

{mE£ : 0 jt Ge3}U{mc: 0 * GdF)

(with mGtaken from the beginning of 5.2) induces (F, 2). The proof can now be
completed by applying Remark 5.2 d).

Corollary. Anyfamily ofclosed valued multifunctions into Si-spaces induces an
Si-bitopology.

Problem. Can each Sl-bitopology be induced by a family of closed valued multi-
functions into Sx-spaces?

5.4 Proposition. Any family of compact valued multifunctions into S2-spaces
induces an S 2-bitopology.

Proof. Let m be a compact valued multifunction from X into the S2-space
(Y, F). Assume xdGdF, zdX\G. We may suppose without loss of generality
that G belongs to the subbase furnished by m, i.e. G—m-1(/f) for some HdF.
Take a point yfm(x)i)//. Any point /Em(z) is outside the ~-neighbourhood H
of y, so they have disjoint neighbourhoods. As trt(z) is compact, there are disjoint
A"-gpen sets U and V such that ydU and m(z)c:V. Now

() xdm~'(U)dF,

and these two sets are disjoint. Consequently, Fmis S2with respectto 2m. (Fm, 2m)
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is Si by Corollary 5.3, thus it is S2, too. To complete the proof, observe that the supre-
mum of S2-bitopologies is S2.

Problem. Is the converse to the above proposition true?

5.5 On the analogy of Corollary 5.3, one could expect that Proposition 5.4
remains true if “compact” is replaced by the weaker condition “closed”. The next
example disproves this conjecture.

Examine. Let 2f=T=R3 S=]0, -~[X{0}, i=(0,0),
2T~ (F2U{T\S}, m(x) = {x}US (xEX).
m is a closed valued multifunction onto a T2-space. It is easy to check that
{Ac=]-c,c[AS: ¢ >0}

isa 0n-neighbourhood base of /. To get a closed subbase of J2m, it is enough to take
the inverse images of *-closed sets not meeting S (since nt_1({x})=X for each
S£S). ButforsuchasetF, m S o theJ'-closed sets disjoint from S, which
are just the ("-closed sets disjoint from S, form a closed subbase for J m, conse-
quently they are the J mclosed sets different from X (since they satisfy the inter-
section and finite union axioms). Thus the non-empty  -open sets are <2-open sets
containing S, so they intersect each Ac, i.e. for sES and t, there are no disjoint
UMSPm and with tEU and s£V, although t has a ZAn-neighbourhood not
containing s. Therefore ZAmis not S2 with respect to Jm. Similarly, Jmis not S2
with respect to 2.

5.6 Theorem (Smithson [12]). a) If JR is a family of multifunctions into S:i-
spaces then Is 5;i with respect to
b) 1f 4Ji is afamily of closed valued multifunctions into normal spaces then Jj,

is S3 with respect to San.
c) Any family of compact valued multifunctions into S3-spaces induces an S3-

bitopology.
Problem. Can a) or c¢) in this theorem be reversed?

Remarks, a) Part b) of the theorem cannot be reversed; this will follow from
Theorem 6.5.

b) Part c) of the theorem does not remain valid if “closed” is substituted for
“compact”; an example will be given in 6.9. Observe, however, that any family of
closed valued multifunctions into S3-spaces induces an S2-bitopology [apply a)
from the theorem and Corollary 5.3].

5.7 The statement “if 9l is a family of multifunctions into S;-spaces then
is Sj with respect to Jj,” holds for /=1 (5.3), i=3 (5.6), and also for i—n (6.4).
Example 5.5 shows that this statement is false for i=2. What is more, we have:

Theorem. If2?is Sxwith respect to J then {2P, J) can be induced by a multifunc-
tion onto a T2-space.

Remark. We cannot expect this multifunction to be compact valued (cf. Propo-
sition 5.4), or even only closed valued (cf. Theorem 5.3 b)).
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Proof. For any cardinality x>0, let (ZX£PX be a T2-space such that there
is an open set H<zZx satisfying the following conditions:

(i) there exist x disjoint dense subsets of H;

(i) any I2%-closed subset of H is finite.

We shall construct such a space at the end of the proof.

Let fi*Gga9 be fixed. Denote by 3F the family of the non-empty (-closed sets
contained by G. Since 3P is Sxwith respect to U, we have G=U”". Put (Fm En)=
=(ZX E) where x—\"\. As there is no restriction on the values of tn, it will be
more convenient to define m—tinstead of m. Let HczYm be as given at the beginning
of the proof. By (i), there are disjoint dense sets AF with H— FI‘E? Ae. Let

if YEAF,
if yEYMH .

If ScFm and S<tH then evidently m~1(S)=A\ Let SczH be En-open; then
nt_1(S)= Uir=G, since S intersects each AF. On the other hand, if SczH is En-
closed then S is finite by (ii), i.e. m_1(S) is J-closed, being a finite union of in-
closed sets. In particular, we get each & as the inverse image of a one-point set.
Consequently: PmE {6} and &nc i: in the special case G—X, we have | m=1.

For each let mc denote the multifunction defined above. Then
(mG: 0"G€"*} induces (&, 1). According to Remark 5.2 d), this family can be
replaced by a single multifunction onto a T2-space.

Now we get to constructing the spaces (Zx, £). Let x be fixed and assume x>io
(the space (Zmi,En) will obviously do for countable cardinalities, too). First we
define H as the power set of x. Take the topology Ot on H for which

W{d) = (Clc(a) = {b£H: aflc = hflc}: cEH, |c] S ai}

is a neighbourhood base of a (aEH). Let (i'€x) be disjoint uncountable subsets
of x. Put
D, = {b£H: \b\d,\ Bto, \d\b\ S a} (Zex).

These sets are disjoint and dense. In (H, 32), each GAset is open, therefore disjoint
countable subsets of H are contained by disjoint open sets. Take now a maximal
almost disjoint collection  of countably infinite subsets of H, i.e.

@ Crh-CczH, \C\ =
@) Clt C%2&, Cx C2=|CM1CA< w;
(3) BczH, B=a, BW =>3CE<g, |B(TC| = cu

(Zorn’s Lemma guarantees the existence of such a collection.) For each C€#,
take the open filter

0C={S czH : |C\int,,S| < ai}
If CLC2%, ClZC., then € and 04 have disjoint elements (by (1) and (2));

if aEH and Cf/é then °U@) and 0C have disjoint elements. Therefore any exten-
sion of (H, 32) with the trace filters Oc(C #) is Hausdorff. Let (Zx, £&) be the loose
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extension belonging to these trace filters, i.e.
Zx = tfU{0c: C"S),
4V(a) is an 5*-neighbourhood base of a (a£H) and
{{0c}US: SeOc}

is an *-neighbourhood base of 0C (C€/£). H is clearly an open subset satisfying
(i). To show (ii), take an infinite set laH. By (3), thereisa Ce” with |/nC|=co,
thus Ocd&lI-cll, i.e. | is not closed. This completes the proof.

Problem. Characterize in terms of multifunctions the property “a3 is S2 with
respect to H”.

8 6. Multifunctions and complete regularity

6.0 We begin with establishing a connexion between inducing bitopologies by
multifunctions and by pseudo-directions, thus making Theorem 4.14 applicable.
Let d be an orderly pseudo-direction on the set X and put

"W = hd(x), -[ (xEX).
Then n is a closed valued multifunction from X into (d, .X<d) and X,,—Xd. Indeed,
observe that
1) n-i<{(G, P}> = F (GdF)
and
n-1<]--, (G, F)[) = G (GdF).

Consequently, 3xa3P,, and Jrfc J n. On the other hand, to prove that
it is sufficient to show that n_1(a) is always 3-open if a is an open interval or an
open half-line (cf. Remark 5.1 a)); this is, however, evident since

«<p>, (G, F)D) = G if 1y, (G,F)[*0
wa) = x if y*(x,x).

It remains to show that | nc\2.d, i.e. that n_1(a> is J r-closed whenever a is closed.
Two cases are to be considered.

a) If a has a last element (G, F) then n~1(a)=F, a J*-closed set.

b) If a does not have a last element then the set

and

b = {zed: yea =y <dz}
cannot have a first element (otherwise a would not be closed), thus
n-1(a) = U{F: Tirana} = D{G:G6domlI»} = fI{F: F6ran b}eco-£ld

by (1) and the orderliness of d.
Now we define a closed valued multifunction onto (d, sr<d\.

m(x) = {(0,0)}U[yrf(x), -[ (xeX),
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i.e. m=nU{(0, 0} As m I<a)=n-1(a> or m_1(a)=Ar (aad), we have
and a . Further,

m”1» | P} =F (GdF, F* 0)

nt”1(](0,0), (G, F)D = G (GdF),

thus Cda0>m and & jc im. Consequently, Xm—Xd. We shall denote the multi-
functions n and m just defined by ndand mrf, respectively. If d is in particular an
orderly direction then md is a compact valued multifunction onto a compact T2-
space.

Thus we have seen that inducing a bitopology by an orderly pseudo-direction
can be regarded as a special case of inducing bitopologies by multifunctions. The next
example shows that no similar statement holds if we allow arbitrary pseudo-direc-
tions (or only directions).

Example. On X={1,2}, take the direction
d = {(0,0),(0,{1}),(*,*)}.

Suppose that the bitopology of Xd can be induced by some multifunction m into
(d, 3=d). As ST<dis discrete, {m-1(a): aad} is an open subbase for 3> as well as
a closed subbase for 9d\ this is a contradiction since 2R is indiscrete while Hd is not.

and

Remark. Compare the definition of md and ndwith the following well-known
fact: a real function/is lower/upper semicontinuous iff the multifunction m defined by
rrt(x)=]-<-/(*)] (xEdom/) has the same property. (See e.g. [7] 1.7.17 (a).)

6.1 Definition. Let m be a multifunction from X into Y. For a pseudo-direc-
tion d on Y,

m-'d = {(M~\G), m_1(F»: <7<fFRU{(m-1(F), X), (X, *)}.

Lemma, a) If d is a pseudo-direction on Y and m is a multifunctionfrom X into Y
then m_1d is a pseudo-direction. 1f d is normal then tn-1d is normal, too.

b) I1fd is apseudo-direction of the space (Y, ST) and m is a multifunctionfrom X
into (Y, ST) then m-1d is a pseudo-direction of the bispace Xm.

Proof. m-1d is a pseudo-direction because in”1 preserves the ordering by
inclusion. Assume now that d is normal and take <ffranm 1d, JAffdom m -y
with r. Then there are F€rand and Gddom d such that ¢=m~1F) and
F=m-1(G). As dom dUran d is ordered by inclusion, <PQT implies FaG;
thus there are G'ddomd and F'drand with FaG'aF'aG. Therefore

Pa m~1(GYa m~\F") a F,
m-1(G,)€dom m_1d, m” 1(F")6ran m” 14,

so d is normal.
b) Evident.

6.2 We intend to prove the theorems of this section without using real functions
(cf. 4.13), therefore the obvious way of proving the next two lemmas (i.e. through
Lemma 4.8) has to be avoided. Both lemmas could be stated in a stronger form, with
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orderly directions instead of normal pseudo-directions (cf. Lemma 4.9). On the other
hand, these lemmas will be needed in this section only in the special case SP—3.
(But in 8 7 we shall use them in the bitopological form proved below.) Compare these
lemmas with E. Dedk [4].

Lemma. Let X be a bispace. If S is S,, with respect to £, AS\B=0, A is in-
compact and B is SP-closed then A can be separatedfrom B by a normal pseudo-direc-
tion of X

Proof. Straightforward from Definition 4.13 and Lemma 4.11 a).

6.3 Lemma. If X is normal, A£co-3, Bico-aP, A(~)B=Q then A can be sepa-
ratedfrom B by a normal pseudo-direction of X.

Proof. Let d be a maximal pseudo-direction of X containing
{©,0), @ A), (X\B, X), (X, X)}.

Clearly, d separates A from B. If (GL; /])<1(G2, F2 are neighbours then choose
G"SP and F£co-3 with FjCGc Fc G2 by the normality of X. Now GdF, since d
is maximal, therefore G=F=Gi=Fi with i—1 or 2, thus d is normal.

6.4 Theorem. For a bitopology (S, 3), the following conditions are equivalent:

(i) SPis Sn with respect to 3;
(ii) (SP, 3) can be induced by afamily of multifunctions into Sn-spaces;
(iii) (SP, 3) can be induced by a multifunction onto a compact TAspace.

Proof. (t)=a(i): Assume that (SP, 3) is induced by a family 53 of multifunctions
in into S,,-spaces (Ym,<3'm). Take xCm _1(/7) where nCTCt and Choose a
yfm(x)C\H. By Definition 4.13, there is a normal pseudo-direction d of (Tm, 3m)
separating {y}from X\G. By Lemma 6.1, m_1d is a normal pseudo-direction of X.
If FEranrf and Gfdom d with yGFcGc:// then

xEm_1(F) ¢ in_1(G) ¢ rt_1(/)),

i.e. m-1d separates {3} from X\m ~1(H). Hence SPis S* with respect to 3, by Lem-
ma 4.11 b) and Definition 4.13.

(iii)=»(ii): Evident.

(i)=>(iii): Postponed until 6.7.

6.5 Theorem. For a bitopology (SP, 3), thefollowing conditions are equivalent:
(i) 3 is S,, with respect to SP;
(ii) (SP, 3) can be induced by afamily of closed valued multifunctions into normal
spaces;
(iii) (SP, 3) can be induced by a closed valued multifunction onto a compact normal
TO-space.

Proof. (ii)=>(i): Assume that (SP, 3) is induced by a family 501 of closed valued
multifunctions m into normal spaces (Ym,3~m). Take X£X\nt-1(X) where tnf50i
and Ais  -closed. m(x) is also .A,-closed and AHm(x) = 0, thus there is a normal
pseudo-direction d of (Ym, ,Tm) separating A from trt(x) (Lemma 6.3). Now m-1d
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is a normal pseudo-direction of X, by Lemma 6.1. If F€ran d and GEdom d with

Ac Fc Gc Xmm(jc)
then

¢ m-1(F) ¢ m_1(G) c: .Y\{x},

i.e. nt-1d separates from {x}. Therefore 3 is S* with respect to 48 by Lemma
4.11 a) and Definition 4.13 [cf. the observations made in the proof of Lemma 4.11 b)].
(iii)=>(ii): Evident.
()=>-(iii): Postponed until 6.7.

6.6 Theorem. For a bitopology (3P, 3), thefollowing conditions are equivalent:
(i) it is SK

(ii) it can be induced by afamily ofcompact valued multifunctions into Sn-spaces;

(iii) it can be induced by afamily of closed valued multifunctions into Si-spaces;

(iv) it can be induced by a closed valued multifunction onto a compact Tz-space.

Proof. (iii)=>(i): Apply (ii)=>(i) of Theorem 6.4 and 6.5.

(i))=>(i): FPis S* with respect to 3, by Theorem 6.4. To show that 3 is also S,
with respect to 3P, repeat the proof of (ii)=>(i) in Theorem 6.5, using Lemma 6.2
instead of Lemma 6.3.

(iv)=>(ii) and (iv)=>(iii): Evident.

(i)=>(iv): Take a compatible orderly directional structure D of X (Theorem 4.14).
For each d£D, let md be the multifunction defined in 6.0. Then {md: dED} is a
family of closed valued multifunctions onto compact T2-spaces and it induces (3>, 3).
To complete the proof, apply 5.2 d).

6.7 Proof of Theorems 6.4 and 6.5 continued.

a) (i)=Kiii) of 6.4: By Corollary 4.14, there is a topology 3xa3 such that
{3, 3Jis .By Theorem 6.6, (3P, 3% can be induced by a multifunction m, onto a
compact T2-space. Let (Y, ST) be tu+1 with the order topology. For each non-empty
J-closed set F, we define a multifunction mF onto the compact T2-space (Y, 3T) by

Y if XEF
o if x $F

Now ntFl({ai})=F; for any Qy AczY different from {cu}, we have m
therefore OnF is indiscrete and 3mr™ {T\F}. Thus

§J = {mjJUintf: 0 ~ F?co-J}

mF(x)

induces {3P, 3). According to 5.2d), Blcan be replaced by a single multifunction onto
a compact T2-space.
b) (i)="(iii) of 6.5: Take a closed valued multifunction onto a normal space such
that &micz3P and 3mx—3 (Corollary 4.14 and Theorem 6.4). Now with mGfrom
5.2.
{nti}U{mc: 0~ Gi*8}

is a family of closed valued multifunctions onto normal spaces, inducing {&, 3).
Finally, apply again 5.2 d).
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Remark. The proof of 6.4 is somewhat “less internal” than the other proofs in
this section, or in 84: it uses not only the natural numbers, but also the set of the
natural numbers. To see that using secannot be avoided in the proof of 6.4 (i)=>(iii),
consider X={1, 2} with Pindiscrete and 2.é {{1}}; here 5?is S*with respect to k,
X is finite, but {8, 3) cannot be induced by a multifunction into a finite T2-space,
(cf. Example 6.0).

6.8 If using real functions is allowed, the lemma below may replace Lemmas
4.11, 6.1, 6.2 and 6.3 in the proof of Theorems 6.4, 6.5 and 6.6. In the proof of (i)=>
=>(iv) in Theorem 6.6, 5.3 €) can be used instead of Theorem 4.14. The construction of
6.0 can be replaced by the following: a function f\ X-+[0, 1] is bi-continuous on X
iff the multifunction m defined by

m(x) = {0YU[/(*), 1 (xiX)

is Slower and ,2-upper semicontinuous; cf. Remark 6.0. Corollary 4.14 could also
have been proved directly, without using directional structures.

Lemma. Let m be a multifunction from a set X into the space (Y, ST) such that
nt 1(y)= T and letfbe a bounded continuous real function on (Y, -T). If

g(x) = inf/[[m(x)] (XEX)
then g is a bi-continuous real function on Xm.
Proof. For any fdR, put

G, = t[, F = t].
It is easy to check that
so g is -upper semicontinuous. Further,
g-'m =NSME=1 =M
s>l I
so g is -lower semicontinuous, too.

6.9 Example. [Showing that “compact” cannot be replaced by “closed” in
Theorem 6.6 (ii) and Theorem 5.6 c).] Let (7, ST) be a non-normal T*-space (e.g. the
Tikhonov plank). Take disjoint closed sets A,BczY which are not contained by
disjoint open sets. Choose a yZA and put

*=(rveuw, «®={£, [ x-fA

Now trt is a closed valued multifunction onto a T,-space, but Xmis not even S3.
Indeed, assume that | mis S3with respect to S\ then there are G"3Pmand F£co-3m
such that

(@) Bc Ga Fc. Y\A,
since B=m~1B) is -closed. One can readily show that the 3 x+open (respec-

tively, the 3m-closed) sets not containing y are just the ~-open (respectively, 3T-
closed) sets not meeting A, i.e. (1) is a contradiction.
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§ 7. Multifunctions between bitopological spaces

7.0 Definition. A multifunction from a bispace X into a bispace (Y;3,3)
is semicontinuous if it is (3, y)-lower and (2, A")-upper semicontinuous. It induces
the bitopology (3, 2) if (3, 3) is the coarsest bitopology on X for which it is semi-
continuous. A family of multifunctions into bispaces induces the bitopology (3, 3)
if (3, 3) is the coarsest bitopology for which each of the multifunctions is semicon-
tinuous.

7.1 Those parts of the theorems in 85 and §6 which claim that the induced
bitopologies satisfy certain separation axioms can be generalized for bitopologies
induced by families of multifunctions into bispaces; the proofs are essentially the
same, therefore we shall state only some of the results, and the proofs will be left to
the reader. For example, the generalized form of Theorem 5.6 runs as follows:

Theorem. Let (3, 3) be induced by afamily $01 of multifunctions m into bispaces
(rm;3m,3J. Then:

a) 1f3mis S3with respect to STm (mg$0D) then 3 is S3with respect to 2.

b) 1f(3m, .Tm) is normal and trt is 3m-closed valued (mg$0l) then 2 is S3 with
respect to 3.

c) 1f3mis S3 with respect to 3mand m is 3 m-compact valued (mg$1) then 2
is S3 with respect to 3.

d) I'f 3mis Sxwith respect to 3mand m is 3m-closed valued (mg$1) then (3, 2)
is S3.

e) If (3m, 3 is S3and m is 3 m-compact valued (mg5) then (3, 3) is S3.

Remark. In b) and d), also SKcould have been concluded, instead of S3.

7.2 The similar results for S, and S* can also be generalized in the same way:
compact valued and closed valued are to be replaced by 3 mcompact valued and
3m-closed valued, respectively. In the case of S,,, real functions are not necessary in the
proofs; the lemmas in 86 have been formulated in the generality needed here. Axiom
S2deserves some attention, since it is not enough to copy the proof of Proposition 5.4.

Proposition. Let (3, 2) be induced by afamily ¥ of multifunctions m into bi-
spaces (Ym;3 m, 3m). Assume that m is 3 m-compact valued (mg%).

a) 1f3mis S2with respect to 3m (mg#) then 3 is S3with respect to 2.

b) 1f3mis S2with respect to Sm (mg$0l) then 2 is S3with respect to 3.

c) If 3m .Tm is S2 (mg$L) then (3,3) is S2, too.

Proof, a) Modify the proof of Proposition 5.4.

b) Take zg/7g4d and x£X\H. Assume that X\H=m~1F) where mg$0l
and Fgco-,“n. Choose a j>gm(xX)flF. Now YmF is a ~.-neighbourhood of
tit(z) not containing y, therefore there are disjoint sets Ud3m and V£3m such that
ygC and m(x)czV [since m(x) is ~.-compact and 3mis S2with respect to 3m),
So we have again 5.4 (1).

c) Combine a) and b).

Remark. Part b) of the above proof was not needed in the proof of Proposition
5.4 because it is enough to prove half of Axiom S2if the bispace is already known to
satisfy Sx.
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7.3 The converse results are in some cases trivialities; e.g. each Sa-bitopology
can be induced by a multifunction onto an S2-bispace such that it is compact valued
in the second topology: take m(x)= {x}into the original bispace. The similar weaken-
ing of Problem 5.3 can also be answered by putting m(x)=cl*{x}. In several
other cases, the converse results were proved in §5 and §6 in a much stronger form.
Concerning multifunctions between bispaces, see also [9], [10], [11].

8 8. Bitopologies induced by decompositions of topological spaces

8.0 Let 3) be a decomposition of the topological space (Y, ST) (i.e. a family of
non-empty disjoint sets with U3=Y). We define the topologies 0=a and on 3
as the coarsest topologies for which

{D"Sr.D”S * 0}

is open, respectively closed, whenever S is open, respectively closed. These topologies
individually (but not together as a bitopology) have been considered by several
authors, see e.g. [14] (“g-space” and “c-space”), [1] (“schwacher Zerlegungsraum™).
Clearly, the bitopology (&a, 2.f) is identical with (3>n, 3m) where v,i(D)=D (Df3).
In this section, we shall investigate the problem whether or no bitopologies inducible
by multifunctions into certain types of spaces can also be induced by decompositions
of spaces with the same properties. As the points of a bispace (3> ZPa, SIf) are always
disjoint sets, the property of being inducible by a decomposition in the above sense
is not an invariant under bi-homeomorphisms, so let us agree on the following defi-
nition, which will remove this inconvenience.

Definition. A multifunction m from X into Y is a decomposition of Y if
(i) m-1(T>= X;

@iy m(T>=Y;

(i) x, "X, x A z =nt(x)rim(z) = 0.

Clearly, a bitopology can be induced by a decomposition in this sense iff it is
bi-homeomorphic to a bitopology inducible by a decomposition in the earlier sense.

A closed/compact valued decomposition will be called a decomposition into
closedlcompact sets.

8.1 In the results of 85 and 6, families of multifunctions can always be re-
placed by single multifunctions, furthermore, 8.0 (i) and (ii) can always be assumed
without loss of generality [(i) by 5.2 a)]. Applying the well-known construction of
resolving a relation into the composition of a function and the inverse of another
function (see e.g. [12]), it is easy to define a decomposition inducing the same bitopo-
logy as the multifunction: let m be a multifunction from Tinto (Y, 3~) satisfying 8.0
(i) and (ii), and denote by R the relation rmintroduced in Remark 5.0 a); define a
function f: R-*Y by

(C>y) =y (i€m(x))
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and put
b(*) = {& y): (xdX);
then b is a decomposition of the space (T?,/-1*-) and 39=(tPm, 3m).
IfS'isS( (/= 1, 2, 3,n, 4), compact, or normal then so isf~)8'\ if m is a com-
pact valued multifunction then b is a decomposition into compact sets, since m(x)

and b(x) are homeomorphic. On the other hand, closed valuedness and axiom TQ
are lost in this construction. Thus we have from Theorem 5.2

Theorem. Each bitopology can be induced by a decomposition into compact sets o f
a compact normal space.

8.2 In the above theorem, we cannot assume that the space is TO. Indeed, let b
be a decomposition of a compact TO-space (7, ST)\ then there is a closed one-point
set in Y [for each ordinal a, take @AFxdco-ST such that (i) if/i-=a then FaczFR,
(i) if |FJ=~1 then Fd+biFa (here we make use of T0); the compactness of ST
guarantees that the recursion does not break off at limit ordinals; the sets Fxare all
different as long as |FJ>1, so |FJ=1 ifa is large enough]. Now if {7} is closed
then b-1({y}) is a -closed one-point set.

8.3 We have, however:

Theorem. Each bitopology can be induced by a decomposition of a normal TO-
space.

Proof, a) Let S be a non-trivial subset of X; let Ys be a linearly ordered set with
the normal TO-topology 35 consisting of the descending subsets of Ys. Fix an AdS~s
and define a decomposition bs of (7S, 3s) such that dombs=X, bs(x)c:/l is
coinitial and cofinal in A if xdS, bs(x) is coinitial and cofinal in y if x*S. Now

is indiscrete and

b) The same construction, with Adco-S~s, gives a decomposition bs such that
Sks™ (AX5L and 30s is indiscrete.

c) Given an arbitrary bitopology (SP, 3) on X, it can be induced by a family of
decompositions of normal TO-spaces, as described in a) and b).

d) To replace this family of decompositions by a single decomposition, we shall
apply a modified form of the construction in 5.2d). Let Xbe the family of decomposi-
tions b of spaces (Yb, Sh) obtained in c¢) and let Z be a linearly ordered set. Assume
that the sets Yh (b£D) and Z are disjoint and put

y —ZU n

The topology S*' on Y is defined as follows: for yéys, the ~-neighbourhoods ofy
form a ""-neighbourhood base of y (b£35); for z£Z, the sets

{adz: flISzJUUft: b€$G (3>0c D, |ID\©O0OI< ©)

form a neighbourhood base of z is to be understood in the ordering of Z). Let e
be a decomposition of Z such that dom z=X and for each xdX, e(x) is coinitial
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and cofinal in Z. Then
c(x) = c(x)U bl€JS b(x) (xEX)

defines a decomposition c of the normal TO-space (Y, ST) such that (Px, J 9= (*, M.

8.4 It is not true that each bitopology can be induced by a decomposition
into compact sets of a TO-space. Indeed, if X is finite and b is a decomposition into
compact sets of the TO-space (Y, ,T) then ST is compact, thus there isa  -closed
one-point set by 8.2.

8.5 From Theorems 5.3 a) and 5.7 we have, through the construction in 8.1:

Theorem. For a bispace X, thefollowing conditions are equivalent;
(i) & is Stwith respect to 3\
(ii) its bitopology can be induced by a decomposition into compact sets ofa com-
pact Si-space;
(iii) its bitopology can be induced by a decomposition of an S2-space.

Remarks, @) S4and S2cannot be replaced by Tt and Ta: ifb is a decomposition
ofa T4-space then Ui 6is Tx, too; thus Ris an S4-bispace which cannot be induced by a
decomposition of a Tx-space.

b) Theorem 5.3 b) does not hold for decompositions: if a bitopology on a finite
set X can be induced by a decomposition b into closed sets of a space then each b(x)
(xEX) is open-closed, therefore and are both discrete. Thus the two-point
sub-bispace of R (which is S4) cannot be induced by a decomposition into closed
sets of a space.

8.6 Similarly, we have from Theorems 6.4 and 6.6:

Theorem, a) In a bispace X, P?is Snwith respect to Qiff {&P, 1) can be induced by
a decomposition of a compact S2-space.

b) A bitopology is Sniff it can be induced by a decomposition into compact sets
of a compact S2-space.

Remark. Concerning Theorem 6.5, see Remark 85 b).

8.7 Conjecture. A bitopology is sT* iff it can be induced by a decomposition
into closed sets of a compact T2-space.
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ON BITOPOLOGICAL SPACES Il
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We shall consider the following questions: connexions between bitopologies and
different kinds of asymmetrical proximity relations (89); internal characterizations of
complete regularity in bispaces (810); compactifications of bispaces (§11). For
notations and terminology, see Part | (880...4) [22] of this series; the present paper
can be understood without being familiar with Part Il (885...8) [23],

8§ 9. Bitopologies induced by generalized proximities

9.0 There are two approaches to proximities and their generalizations: as a
primitive term, one can take either “near to”, or “is a proximal neighbourhood of”.
We have chosen the second way; the definitions and the statements can be easily
transcribed by putting: A is near to B (AOB) iff the complement of B is not a proxi-
mal neighbourhood of A (A\ZX\B), see e.g. [11] or [55].

Definition. The relation ¢ between subsets of a set A is a pseudo-proximity
on X if

Pl AC X;

Plc Oc O
P2=P2C A CB=>Aa B;

P3 AcBcC=>AcC;
P3e Ac Bc C=>AeC;
P4 A CB, AoC=>A C BHC;
P4C ACC, BCC=>AUB o C.
Defining

Arsrh ASVpEA, {°} ¢ A,

we get the topology STc induced by C. , "¢ )—("c *&ce) is the bitopology induced
by C. (See 0.1 for the definition of Cc)

Remarks, a) To see that the above definition is correct, two trivialities are to
be observed: 3TUis indeed a topology; if C is a pseudo-proximity then C cis a pseudo-
proximity, too, since Pi holds for C iff P/cholds for Cc.

1980 Mathematics Subject Classification. Primary 54E55; Secondary 54D15, 54D35, 54E05,
54E99.

Key words and phrases. Bitopology, completely regular, compactification, quasi-proximity,
orderly directional structure.
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b) A pseudo-proximity is called symmetrical if

S C=(C
i.e. if the relation “near to” associated with C is symmetrical in the usual sense, cf.
[11].

c) Pseudo-proximities were introduced, as “topogenous orders”, in [10],

d) Pseudo-proximities satisfying no further conditions provide an inadequate
tool for inducing bitopologies: it does not depend only on the wTO-identification of
the bitopology whether or no it can be induced by a pseudo-proximity. (The topology

ST6 {cu\{0}} on mcan be induced by the symmetrical pseudo-proximity Q where
for O"MAczB”co we have

Ar Bo(A = {0}, |<u\2?| < o) or (B = co\{0}, \A\ < ),

while the wT0-identification of (ST, 2T) cannot be induced by a pseudo-proximity.)
Therefore we shall consider some special classes of pseudo-proximities.

9.1 For a pseudo-proximity C,
intc A ={q: {q) C A)

defines an interior operation in the sense of [8] 14 A.10,and s the topology asso-
ciated with intc ([8], 15A).

Definition. A pseudo-proximity ¢ on A is
a) a quasi-T-proximity if

T {p} C B =>{p} C intc B,
Tc {p} E'B =>{p) ticintCcP;
b) a quasi-L-proximity if
L A CB=A C intcB,
Lc A c cB=>AccintccB;
c) a quasi-S2-proximity if
S2=SI {p) C A\{"}~3C, {p}CCrc Z\{9}
d) a quasi-R-proximity if
R {p}EB~3C, {p)CC\IB,
Rc {p} CB =3C, {p}CC c TB;
e) a quasi-E-proximity or simply a quasi-proximity if
E=EC ACB=>3C, ACCCB.

Remarks, a) Quasi-proximities were introduced in [10], with the terminology
“{CZ is a topogenous structure”.

b) Observe that if C is a quasi-A-proximity (A=T, L, S2, R, E) then sois E ¢
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c) Clearly, E =>R ==X

o
L=>T

and the same holds with eadded to each letter. It would be possible to define a num-
ber of similar conditions, see [15] for the symmetrical case.

d) If O is a quasi-T-proximity then intc =~ ¢ -int and {A: {p}E.A} is a neigh-
bourhood base for at p. A dual statement holds for Ccand .

e) For special kinds of symmetrical pseudo-proximities, we shall drop the prefix
“quasi-" instead of using the adjective “symmetrical”, e.g. a T-proximity is a sym-
metrical quasi-T-proximity.

f) There is no general agreement on the terminology concerning asymmetric
(or even symmetrical) generalizations of proximities. Authors working in bitopolo-
gies clearly need Axioms A and Actogether (A=P1, P3, P4, T, L, R), while those
using such relations for inducing a single topology assume only one ofthe twin axioms,
or both, according to their particular needs (see [31], [33], [41], [46], [53], [72], [66]
[71], respectlvely[39] [47], [48], [55], [57], [58], [74], [37], The term “quasi-proximity”,
however, seems to be universally accepted in the above sense, although it was used
orlglnally for a slightly more general notion, see [57].

9.2 Let X be an Sx-bispace. Then

A $13 clEA G mtpB

defines a quasi-L-proximity on X, which induces {2P, 2) [72]; if X is S2then

is a quasi-S2-proximity (straightforward); if X is S3then E?,# is a quasi-R-proximity
[72]. Using Remark 9.1 d), it is easy to show that the bitopology induced by a quasi-A-
proximity is Sj (A=T), S2(A=S2, respectively S3 (A= R). So we have:

Proposition. For a bitopology (I?, 2), the conditions within each of thefollowing
groups are equivalent.

a) ([72] for (i)«*(iii)) (i) It is Sx;

(if) it can be induced by a quasi-T-proximity;

(iii) it can be induced by a quasi-L-proximity.

b) (i) It is S2

(if) it can be induced by a quasi-S2-proximity;

(iii) it can be induced by a quasi-S*-proximity, which is also a quasi-L-proximity.

c) [72] (i) It is S3;

(ii) it can be induced by a quasi-R-proximity;

(iii) it can be induced by a quasi-R-proximity, which is also a quasi-L-proximity.

9.3 The following theorem is well-known; it is essentially the same as the theo-
rem of Fletcher [29], [30] and Lane [44], [45] stating that a bitopology is S,, iff it is
quasi-uniformizable (apply the results from [11] concerning the connexions between
quasi-uniformities and quasi-proximities; cf. [38], [49], [13] and [31]); see also [46],
[66] and [41].

Theorem. A bitopology is S* iff it can be induced by a quasi-proximity.
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We are going to re-prove this theorem, using the results of 84. Our method is
similar to that applied in the proof of [21] (1.1). To begin with, a connexion between
pseudo-proximities and pseudo-directions has to be established.

9.4 If dis a pseudo-direction on a set X then
A n?B oBF~rand, 3G€dom<f, AczFczGczBciX

(i.e. ACAB iff d separates A from X\B, in the sense of 4.8) defines a pseudo-
proximity. If d is normal then (aV, If) =@&d, 3d) where C = Cf, In particular,
(“c,Jc)=("r 2j)) if d is orderly.

Lemma. Ifd is a normal pseudo-direction then r dis a quasi-proximity inducing
&1).

Remark. It is impossible to recover d from Cif, even if d is assumed to be an
orderly direction.

9.5 Let Hi and C2be pseudo-proximities on the same set X. We say that C2
is finer than Q if Cic: C2. For a family R of pseudo-proximities on X, there exists
a unique pseudo-proximity sup R (i.e. a pseudo-proximity coarser than any pseudo-
proximity finer than each element of R): in case R”fi, we have sup R=(UR)q
([ii]; see 0.1 for the definition of g. It is easy to show that if R is a family of quasi-T-
proximities then supR is a quasi-T-proximity, too, and

dfupR —sup {2~: C H?%

If R consists of quasi-proximities then supR is also a quasi-proximity ([11] 8.24).
If D is a pseudo-directional structure, define

ZD = sup {Crf. d£D}.

P roposition. If D is a normal pseudo-directional structure then is a quasi-

proximity inducing @D, 2ff). In particular, if D is a compatible orderly pseudo-
directional structure of the bispace X then CD induces {3P, 2).

Remark. In [21], the proximities (Cf)s (cf. 0.1) and
(C8)s = sup {(DO5: dED)
are used, where d is an orderly direction and D an orderly directional structure.
9.6 Lemma. Assume that r is a relation between subsets of X satisfying

Q) FrG =Fc G,3F', 3G, FrG'c F'rG

and FOrGa. Then there is a normal pseudo-direction d on X such that
) 0dFo, GOdX,

3 dom d cz ran rU{0, X}, rand a dom rU{0, 2f}.

Proof. Let d be a maximal pseudo-direction on X, satisfying (2), (3) and

@ (GLF D~ J(Gi,F*=>F1rGi.
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We claim that d is normal. Indeed, assume that (Gu Fi) and (Gz, F[) are neighbours
ine,; such that

®) Ft.

Now FirG2 by (4), so e=dlj {(G, F')} is a pseudo-direction on X satisfying (2),
(3) and (4), where G' and F' are chosen according to (1) (with F=FIt G—GI).
(5) implies e~d, a contradiction.

Proof of Theorem 9.3. a) If X is SKthen apply Theorem 4.14 and Proposition

9.5.

b) Conversely, assume that the bitopology of X is induced by a quasi-prox-
imity C.
1° Define
FrG o FC G, Fdco-3, Gd"-

If FrG then, by Axiom E, there is a C with FCCcG, thus, by Axioms L and Le,
F C int”"C ¢ claC C G,

i.e. r satisfies (1). Take now xdG*dSP- From Axiom Lcwe have clj {x}rGO0, therefore,
according to the lemma, there is a normal pseudo-direction of X separating {x} from
X\G 0. Hence S is Sn with respect to 3, by Definition 4.13 a).

2° To prove that 3 is also S, with respect to 8, apply 1°to (A; 3, d?) and Cc.

8 10. Some more characterizations of complete regularity

10.0 There exist several internal characterizations of complete regularity in
topological spaces, see e.g. [1], [12], [21], [32], [35], [36], [42], [73], [75], [82]. The bito-
pological counterparts of some of them can be found in [25], [27], [64], [66J. In this
section, we shall obtain some characterizations of S,,; the proofs will be based on
ideas due to E. Deék and Hamburger [21] and Hamburger [36].

10.1 Lemma. Let X be a bispace. If there is a closed subbase * for 3P such that
{x} can be separated from F by a normal pseudo-direction of X whenever x([ Fd
then & is Sn with respect to 3.

Proof. Definition 4.13 a) and Lemma 4.11 b).

Theorem. The bispace X is Sniff there is a relation f between subsets of X such
that

(i) ran/ is a closed subbase for 3P,
(i) dom/ is a closed subbase for 3;

(iii) AfB=>Af\B = 0;

(iv) xdCdran f=>3A3B, xdAfB"C;

(v) x<ICddomf=>3A3B, C c AfB”x;

(vi) AfB=>3A'3B', AfB', A'fB, A'UB' = X



24 J. DEAK

Proof, a) If X is Sethen choose a compatible orderly pseudo-directional struc-
ture D and put

AfBo AOB = 0, 3dED, Afrand, BEco-dom d.
b) Conversely, assume the existence of an/. Put
FrG Ff(X\G).

(iii) and (vi) imply 9.6 (1), thus, by Lemma 9.6, there is, for each AfB, a normal
pseudo-direction dAB of X separating A from B (it is a pseudo-direction of X by
(i) , (ii) and 9.6 (3); it separates A from B by 9.6 (2), where FO=A, Ga=X\B). If

Cé6ran/ then dAB separates {x} from C, where A and B are chosen according
to (iv). Thus Sis S* with respect to 2, by (i) and the lemma. Analogously, (v) and
(ii) imply that 2 is S* with respect to 3P.

10.2 The conditions in Theorems 9.3 and 10.1 are internally equivalent to SK
(see 4.13). It is an open question whether the same holds for Theorems 10.2 and
10.3, cf. [21] (3.3). (An internal proof for (i)=>(ii) below ought to be found.)

Theorem. For a bispace X, thefollowing conditions are equivalent:

(i) itis S,;

(ii) there are a closed base $ for Pand a closed base 3Ffor 2 such that $ and
are lattices (i.e. closedfor finite unions andfinite intersections) and

(1) E£S, F<i& EOF = 0=>3E1€<?3Fle#r, EIJUF1 = X, EC\F1= 0 = F{AEX

(2) Xx$E€& =»3FZ3F, XEF, EHF = 0,
3) xiF£3? =>3E£q, x£E, £fIF = 0;
(iii) there are a closed subbase £ for Sand a closed subbase CFor 2 satisfying (1),
(2 and (3).
Proof. (i)=>(ii) (cf. [64]): Take
« = {E, = g~H[O0, -[): g€C(X)}, f = {Fg= g6C(X)},

where C(X) denotes the family of the bi-continuous real functions on X. EgUEh=
=Enmx(gh), EQC\Eh=Emin(gd). If EgC\Eh=0 then Ei=Eg+h, F1=Ft+h satisfy (1).

(if) =>(ii1): Evident.

(iii) =>(i): Observe that S=S\3 (0, X} and ,#=&\J {0, X) also satisfy (1)—(3),
and then apply Theorem 10.1 to the relation/ defined by

AfB <>T€#, £€<?, ADB =0.

Remarks, a) Saegrove [64] proved that (i) is equivalent to a condition lying be-
tween (ii) and (iii); see also [25], [21]. (The proof given in [27] does not work since the
operations applied there to elements of C(X) lead out from it.)

b) Theorem 10.3 will make (iii)=>(i) in the above proof superfluous.
10.3 Notation. For a set S, [5]/={Tc.S: \A\<co}.
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Theorem. A bispace X is S, iff there are a closed subbase £ for S and a closed
subbase S' for A_such that

) EGif, FOEF, EonFO=0=>3%*e[tY3**S[*Y,
EOc1j”, FOcz\JS?*, MEag*VFiF*3SEF<L[SY3FEr(L[Fy,
UAFUUAEF =~ Fnu”,i=0=£ilUirEf;
2) x$E0<LS=>3g*<i[fy, Eacz{JE*, \|[EE**3FeZ&, x£Fe, EDFe = 0;
3) Foa[J**, VFE&*3EfLE, x€E>, Ef OF = 0.

We omit the proof, since a stronger statement can be deduced from the results
of our paper “Preproximities and internal characterizations of complete regularity”
(to appearlin Studia Sei. Math. Hungar.); cf. 5.34 c) of that paper.

Corollary. A topological space (X, S') is S* iff it has a closed subbase £\3SF
such that £ and S' satisfy (1), (2) and (3).

Proof. If SAco-£ and (”co-#-then (S’, S) and (U, H9 are both S, by the
theorem, thus (S~, S~) is S,, by 3.3 b), i.e. S’ is S,

Remark. This corollary can also be deduced from [36] Theorem 2.1: take the
preproximity (<FVI2RV} {0, X}, rllr-1), where

ArB o AE£U{0,X}, BeS?U{0,X}, TnB =0.
Letting £=Sr would weaken the corollary, see the example below.
Example. Let A"=J*\{(1, )} (J=[0, [ with the Euclidean topology),

£ = {IX[0,T, [0, t]1XJ: /€)Y, & = {Ix[i, 1, [i, LXJ: /GI}*.

The pair (£, S') satisfies the requirements in the corollary, but (E{JSr, £\JS) does
not so (consider {1}X[0,  and [0, 1[X{1}).

811. Compactifications

11.0 In this section, we intend to deal with a bitopological generalization of the
concept of a T2-compactification (or, more generally, reduced S2-compactification)
of a topological space. (An extension Y of a topological space X is called reduced if
distinct points Y and y£ Y \X have different neighbourhood filters in Y, see e.g.
in [14].) First of all, we have to choose from the different bitopological generalizations
of “S2’, “compact” and “dense”. So let us consider the following bitopological
notions, and examine which of them lend themselves to a reasonable theory of com-

1 Added in proof. 24 (1989), No 2—3, 147—177. See also: Aarts, J. M. and Mr&vis, M.,
Pairwise complete regularity as a separation axiom, J. Austral. Math. Soc. Ser. A 48 (1990), No 2,
235—245. MR 90ra: 54029.
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pactifications:

$S2—y S2—yW&2
- _y. _yq82=>sup-82, pairwise S2

=>hi-compact

sup-compact = quasi-compact .
P P g P == palrwise compact

sup-dense=>quasi-dense=bi-dense=>pair\vise dense

(cf. 0.9, 0.10, 15, 16).

Choosing sS2, bi-S2 or pairwise S2 would exclude such good bispaces as the
bitopological interval J; on the other hand, a compact (in whichever of the above
senses) wS2-bispace is not necessarily regular (Example 1.5 b)) or normal (X=
= (1, 2, 3} M{{1}, {2}, {2 3}, U~{{1, 2}, {2}, {3}}). Take now the sub-bispaces
A, Band Cof Jwhere A= {0, 1}, B=]0, 1, C—J\{l/2}. Aand Jare compact (in
any sense) and Ais bi-dense (therefore also pairwise dense) in J, an undesirable situa-
tion in a good theory of compactifications. On the other hand, Band C are dense in J
(in any sense), Band j are pairwise compact, C and J are bi-compact.

Thus we are left with S2, sup-compactness and sup-density, and there is in fact
a theory of bitopological compactifications based on these notions, which shows a
great analogy to the topological case (Csaszar [13], Salbany [65], [66]; see also
[28], [69]). Another argumentation in favour of just this type of compactifications
was given by Salbany [68],

We shall show (but not work out in detail) how to build up a theory of bitopolo-
gical compactifications using directional structures.

For notions of bitopological compactness (including some not even mentioned
in this paper), see also [2], [3], [4], [5], [6], [9], [16], [17], [24], [26], [30], [43], [50], [51],
E%]] [[54] [59], [61], [64], [76], [80], [81] [7]. [34]. [561. [62], [63]. [67]. [77],

111 Notation. Let Y=(7; &, J%), Z=(Z; & 1*%).

Definition. The bispace Y is a compactification of X if Y is S2, X is a sub-
bispace of Y, and (Y, 3P*/2*) is a reduced compactification of (X,

Remarks, a) If Y is a compactification of X then Y is $4 (Reilly [60]) and X
is S,, (Remark 1.7 f) and 3.3 d)).

b) The next examples show that there is no one-to-one correspondence between
the compactifications of X and of (X, *vJ2), i.e. that the results on bitopological
compactifications are not direct consequences of the similar results on topological
compactifications. Observe also that in the second example SP=2I, but ~*"31%*,

Examples, 8) R is pairwise compact, so it has at most one compatible quasi-
proximity (Jas and Baisnab [40]), therefore it has at most one compactification
(Csaszéar [13]). But it is clear that R has a compactification bi-homeomorphic to J.
Thus R has neither a one-point-compactification, nor a compactification Y with
0>*v2*=<$.

Added in proof. See the footnote to 1.8.
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b) Take
* = [0, 1[X[0, 1, T=2Z = [0, I]2

=2 =<z, N ANUNDR, I* EEJU (EXS)VY, &* = £** = <T|Z

Now Y and Z are both compactifications of X, and their sup-topologies coincide.
Moreover, the bitopology of Z is strictly finer than that of .

c) The same construction starting from Y—Z —fw*+ 1)X[0, 1] (aij-fl taken
with the order topology) shows that more than one compactification may correspond
to the Stone—Cech compactification of the sup-topology.

11.2 Definition (Csaszar [13]). Let Yand Z be compactifications of the bispace
X. Yis said to befiner than Z if there is a bi-continuous mapping /: Y-»-Z such that
f{x)=x whenever x£ X. Y and Z are equivalent compactifications of X if Y is finer
than Z and Z is finer than Y.

Remarks, a) The mapping/ in the above definition is onto (/ is sup-continuous,
Y is sup-compact, therefore f[Y] d | is sup-compact).

b) Y and Z are equivalent compactifications of X iff there is a bi-homeomor-
phism/ from Y onto Z such that f(x)—x for x£X.

11.3 Definition. Let D be a compatible orderly directional structure of the
wTO0 (hence TJ bispace X. The D-compactification of X, denoted by Q0 X, is the
sup-closure in D of equipped with the bitopology inherited from D (cf. 4.3 c)
and Notations 4.4). We shall write

CRX = (cDX, ci”™, c24).

N otation. Let DX denote equipped with the bitopology inherited from D
(i.e. from C>X).

Remarks, a) The notations introduced in the definition contain redundant

elements: as D determines X, it would be enough to write e.g. ¢D=(c°D; C>, cd).

b) As a matter of fact, cDX is not a compactification of X, but of %X, which
is bi-homeomorphic to X. In order to obtain a compactification of X bi-homeomor-
phic to cflX, we can take e.g.

@) cDZ = *U (cO*\Xi>[Z])x{*},
) cDX = (cDX; g-'cb”g-iclIR)
where

®) if yexoin

0 \(y, X)  otherwise.

c) If Xis not wTOthen ¢cDX is clearly not bi-hnomeomorphic to a compactifica-
tion of X, but cDX defined by (1)—(3) is again a compactification of X. For the sake
of simplicity, we shall state and prove the results to follow for cDX (where X is
wT0), but everything remains true for cDX (with wT,, dropped).

d) Definition 11.2 does not apply to O-compactifications, so we shall say that
cDX s finer than cEX if cDX is finer than cEX, i.e. if there is a bi-continuous map-
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ping /' Cd X—£X such that yE=/oy0; similarly, a compactification Y of X is
finer than c£ X if there is a bi-continuous mapping g: Y—c£X such that gflY=y£;
Y and c£X are equivalent if this g is a bi-homeomorphism.

e) For Z)-compactifications of topological spaces, see E. Deéak [18], [19], [20].

P roposition. If Ec~D then cDX is finer than c£X.
Proof. Restrict to cDX the projection from 11D onto LIE.

11.4 Proposition. |f cd X isfiner than c£X then there is a D1zdE such that
cO X is equivalent to QdX.

Proof. Take DX=E\JD. By Proposition 113, c[D X is finer than cDX. Con-
versely, let /: CaX->m£X be bi-continuous such that XD=f°XE and let h be the
identity mapping of cDX; define the flth coordinate of g: cfl X—/7Z), to be the
dth coordinate of/if gdE and of izif gED (for gEDC\E, the two definitions give
the same, since they are both equal to Xd°Xdl on the sup-dense subset Xd[X] and
they are sup-continuous mappings into a sup-T2bispace). Now g is a bi-continuous
mapping into cDX and X.D=f°XD-

11.5 Proposition. If D is a compatible orderly directional structure of the
wTO-bispace X then there is a largest one among those directional structures C of X
for which ¢cDX and ccX are equivalent. Denoting this directional structure by Dm,
we have DmzEmiff cDX isfiner than GEX.

Proof. Let Dmbe the union of all the Cs mentioned above. By Proposition
11.3, cBnXis finer than cDX ; on the other hand, the argument in the foregoing proof
(applied now to the Cs instead of D and E) gives that Co X is finer than cDnX. The
second statement follows from Propositions 11.3 and 11.4.

11.6 Theorem. Let D be a compatible orderly directional structure of the com-
pact wT0-bispace Y and let X be a sup-dense sub-bispace of Y. Then Y (regarded as a
compactification ofX) isfiner than CDXX. Y and cfl XX are equivalent, assuming
that D satisfies the following condition: whenever 0AAAY and A”dom dflran d
for some d£ED, thereare eED and BcY such that either AeB and
or BeA and (d\B)ni”~0.

Remarks, a) D clearly satisfies the condition in the theorem if it contains all
the directions
{(0,0), (0, A), (A, Y), (Y,Y)} (AE&>*Hco-J*).

b) The proofis analogous to that of [19] Theorem (3.1), but there is an impor-
tant difference: in contrast to the topological case, it is not enough to prove the exist-
ence of a bi-continuous one-to-one mapping, since such a mapping from a sup-com-
pact bispace onto a T2-bispace is not necessarily a bi-homeomorphism (take the
identity mapping from (J; <?|J, <?J) onto J).

’ dPrl;)of. 1° Denote d\X by d" (dED). For each dC D, define a mapping :
-d" by

Q((G, F)) = (GC\X, FOX) (GdF).
The sup-density of X implies that if Ed'<P then d 1[{(F, i>)}] has a first and a last
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element in the ordering (in fact, it cannot have more than three elements, see
E. Dedk [19] Remark (2.3) (d)), therefore nd is bi-continuous (copy the proof of
[19] Lemma (2.4)).

For each d£ED, (pd=Qd°Xd- Y-+d" is bi-continuous and (pd\X=xd> so
(p*—Vdt whenever d[=d'i (because they coincide on a sup-dense subset), hence it
is admissible to define mappings fd= Y-*d" by (pd=fr (d"£D\X) and /: Y-*
-*|1(D\X) such that its d"th coordinate is f d* Now fAX=xDx and/ is a bi-contin-
uous mapping onto c” X . Therefore Y is finer than cfl XX

2° Assume now that D satisfies the additional condition, too. First we show that/
is one-to-one. Take y,z£Y, yAz; then, by wTO, there isa ddD suchthat x.d(y)”
AXd(z), say Xd(y2<dXd(z).

If Fd(y)?i Gd(z), then, by the sup-density of X,

(Gd(z)\Fd(y))nx * 0,
thus with an arbitrary point x from this set we have
fd’(y) <d-fd“(x) < rfd'(2)

{fd'(y) —d'fd’(x) is evident, but if equality held then we would have Fd(y)C\X=
=Fd(x)C\X=Fd"{x), implying x£Fd(y), a contradiction; the case of the second
inequality is analogous); thus f(y)9if(z).

On the other hand, if Fd(y)=Gd(z) then choose e and B to A=Fd(y). If
AeB and (2?\/1)nAVO0 then

fAY) WSXACIX, BOX) -4t*fAz)

(the first inequality follows as above, the second one is a consequence of z $Gd(z) =
—A); i.e. f(y)*f(z) again; the remaining case can be similarly dealt with.

3° To complete the proof, we have to show thatf~ 1is bi-continuous, i.e. that/
is bi-open. For this purpose, it is enough to prove that /[<?]€cDx 3 whenever
0"G#F, GE£dom d and dED (the case of the second topologies is analogous).
But this certainly holds if there are a c£Z) andan Fc Y such that (G, F) isthe <c-
smallest element of ~7*[{?c((G, F))}], because then a p£cfl]xX belongs to f[G]
iff the ¢"th coordinate ofp is -smaller than qc{(G, F)). [Indeed, YEG iff yc(y)<c
<C(G, F), ie. iff fAy)=Qc(Xc(y))*c Q((G, F)).]

a) If G $rand then there is a unique F with GdF, and (G, F) is the first ele-
ment of F)}. [Indeed, if ed((Gl, F))=Qd((G, F)) and (Gx, FX<d
<d(G,F) then FnA'=FinA'cGnTc;FnX, so (G\F)C\X=9, ie. FX=G
by the sup-density of X, a contradiction.]

b) Ifthere are eED and BcY suchthat GeB and (F\G)nAVO0 then (G, B)
is the first (in fact, the only) element of e7 1[{6e((€>5))}].

c) 3 Finally, if there are e£D and BczY such that BeG and (G\.B)nAVO0
then let b=](B, G), <[ (in the ordering <,,). Now b has a smallest element (GO, F0)
[otherwise (G}Uco-ran b would be a sup-open covering of Y having no finite sub-

* This part of the proof is superfluous if D is assumed to contain the directions mentioned in
Remark a).
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covering, contrary to the sup-compactness of Y], By the orderliness of e, G=G0,
and (G, FO is the first element of ged[{i,e(G> FO0)}].

11.7 The quasi-proximity CDintroduced in 9.5 is not suitable for establishing
a connexion between the two theories of bitopological compactifications, namely the
one presented in this paper and the one given by Csaszar [13]. Instead, we have to take

A CaB <>3(Ci, jA), (G2, F2£d, Ac Flc G2c B, Gj " Fa,
Cd —sup {\d- d£D},

cf. E. Deék [20], where the proximities ( and (CR)sare considered (see also Re-
marks).5).
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ON LOCAL FUNDAMENTAL SOLUTION OF COERCIVE LINEAR
PARTIAL DIFFERENTIAL OPERATORS
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Introduction

Let G be an open set in R* and let L(x, D)= \%ASran(x)D" be a linear partial

differential operator with C* (G)-coefficients. Suppose that L(x,D) is formally
hypoelliptic, that is, L(x, D) is of constant strength in G and in addition L(x0,D )=
—\&&aa(*o)D” is hypoelliptic. Let 3Spy, PE[ L °°] be the Hormander

space (cf. [2], p. 36). Furthermore, let £JC be defined by
L~o@=\Z\["L (x0,2)
r

Then for each xEG one can find an open neighbourhood UxczG of x and an
operator E\ Cj?{Ux)-~38p kL~ such that

(1.1) E(L(x,D)g® = (p in Ux

(1.2) L(x, D)(Etp) —<p in KX

and that

(1-3) m \PkL; » C x\q\Pk

for all (p6Cj°(C/J (cf. [2], p. 174 and [9]). Especially, one gets the inequality
(1-4) IMIp.*1,, —CX\L(x, D)(p\Pk forall <pdC?(U",

where Ux is a relatively compact open set of Ux. In addition, one knows that
L~0(0—o0 With |i|-»0o. The operator E is so-called local fundamental solution of
L(x, D).

Let 88Ptk(G) be the completion of CA(G) in &?pk Furthermore, let Bpk(G)
be the subspace of S3'(G) such that for each nmEBRJ(G) there exists fu(z pk such
that u—fu in G. We topologize the space Bpk(G) in the obvious way (cf. Section
2.1).

Choose k and k~ from jf such that k (O-"00 with |£|-*«> We show a local
existence result of distributional solution for the equation

L(x,D)u=f; Uuf£Bnkk-(G), fEBpk(G)
The basic assumption is that the formal transpose L'(x, D) of L(x, D) satisfies the

1980 Mathematics Subject Classification (1985 Revision). Primary 35E05, Secondary 35D05.
Key words and phrases. Coercive operators, minimal and maximal realizations, generalized
solutions, local existence of solutions.
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36 J. TERVO

a priori estimate

(1-5) IL'(x, D)(pl — IPAIp’ ik COMAME . IKKK )" o
Herep lies in the interval 11, »]; p' and kEpf are defined by (I/p)+(I/p*)=I and
k~(E£)=k(—£). For the sufficient algebraic conditions of the validity of this kind
estimates we refer to [1], [5], [3] and [7], for example.

Supposing that

(1-6) 1Z/(x, D)<p\2Am~r —CillRRifc CPRI®Ila,i/(fcO"
and
(1-7) lIL (2t 2)<pll2t= C1f|<pl2>lt— C2\\(phk

for all g>£Co(G), we show that essentially for each x£G there exist a neighbour-
hood UxczG of x and a continuous linear operator E: * 2,k(Ux)-"B2kk (Ux)
such that

(1-8) E(Luxu) =u in Ux, forall u”DiLud

and that

(1.9 L*x{Ef) — in Ux, for all fC % k(Ux).

Here Lvx (L*X) is the minimal (the maximal) realization of L(x, D) in the spaces in
question.

Finally, we consider the regularity of the Schwarz kernel KZ@'(UxX Ux) of E.
A sufficient criterion under which K is a Cmfunction outside the diagonal D of
UxXUX is given.

2. Preliminaries

2.1 For the needed (unexplained) notations about the distribution theory and

for the definition of spaces %k and (G); pE[l, > kEJf, we refer to the
monograph [2], pp. 1—45. Here G is an open set in R". Let &p>(G) be the subspace
of 3dPk such that for each WE&?pn(G) there exists a sequence {gczCO(G) with

\Wn-u\\,,,k- o with n- co.
Then one has

CPIW-= Rf PnX)Hx)dx  TOP) for all paC™
with n—oo. The space 33Pik(G) is essentially the completion of Q°(G) in 38Ptk.

Furthermore, let A be a closed set in R". We denote by &pk(A) the subspace of
3SPik such that for each vd"Spk(A) one has

suppv a A.

One sees that &pk(A) is closed in 3tk and that 38pxt(G)ca?Pik(G).
Let Bpk(G) be the factor space

(2.1) B;W(G) = * pJ<*PIk(R*\G).
We equip the space B~k(G) with the norm
limn;,* = inf Hull ,*

Then Bp *(G) becomes a Banach space.
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Assume that T belongs to Bp,k(G) and that uT is a representative of T. Then the
linear mapping /: BpJt(G)—"'(G) defined by

J(T) = yj|o

is injective (here uT|Cdenotes the restriction of uT on G). We define a linear subspace
BP*(G) of 9'(G) by

(22) BAKG)=y(B;,t(C).
The linear space Bpif(G) is equipped with the norm
(2.3) iiihii,.* = w - iv\\\; .k,

and then Bplk(G) becomes a Banach space. One sees easily that a distribution
VE@'(G) lies in BpG) if and only if there exists fvZ&p.k such that

(2.4) V(<P)=MV) forall <p{C?@G).

Let C(5,(G) be the subspace of C* (G) such that for each iJ/tCfifiG) one finds
an element f+iC8 with
(2.5) \J/(x) = f#(x) for all x£G.

When p£[l, °°[, CM)(G) is dense in BAf(G), since Cq is dense in 8pk. We also
remark that CE° is not dense in 89,,tk. Hence we have that a%>(R")*al»3. When
p lies in the interval [1, »[ we however get 39Ptk(Rn)=89Ptk.

2.2. We establish some further properties of the space 89Pik(G),a?Pi*(G) and
Bpk(G). Clearly for every open set G of R" the inclusion

(2.6) 8pk(G) c 8Pik(G)
holds. For the first instance we give a sufficient condition for the equality
2.7 a Pik(G) = « PI»(G),

where p lies in the interval [1, °°[.
Let A be a closed set in R”and let S’(A) denote the subspace of S’ such that for
each u”S'(A) one has supp uczA.

Lemma 2.1. The space 8pkDd’(A) is dense in the space 83pk(A) (when
PE[lL~])- O

The proof of Lemma 2.1 follows from Theorem 2.2.11 of [2], p. 42.

We set the following property for the boundary dG of the open set GcR"

Condition 2.2. For every x*dG there exist an open neighbourhood i/xcR"
of x, a vector yx6Rn and a positive number ex>0 such that

(2.8) GClUx+B(eyx,e) ¢ G for all e£]0, ej.
We show

Theorem 2.3. Suppose that the open set GgR" satisfies Condition 2.2. Then
the relation (2.7) is valid (when p£[l, °°].
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Proof. Because of Condition 2.2 for every xEG there exists an open neigh-
bourhood i/JCR" of x , a n d £>0 suchthat

(2.9) GD Ux+B(eyx,e) ¢ G for all €6]0, ex.
Choose a nonnegative function IXZCo(B(yx, 1/2)) such that

("ipxX)(0) = J*ftx(y) dy = \.

Here 3F denotes the Fourier transform 977 -+SP. Furthermore, define functions
tf'jecr by
(2.10) <PIy) = jnr(jy), YEN.

Assume that u is in S&8MKC\$'(G). Since one has

suppuc U Ux
pp G

and since supp u is compact in R", one finds elements x*G, 1=1, ..., N such that
N
supp ucz i1_.]i UXI. Take the C*-partition of unity {£} for the set suppu (with
respect to the covering {&X}). Then for each y€N the distribution
(2.12) .
i=i
belongs to C” (R"™) and in addition one has
(N \oooN
2 (kKW I' ¢ U supp((E«)"y")

/=1 / J=1

(2.12
¢ U (supp (E,w)+supp ¢ U (GD UX+B(yxJj, U).

Hence in virtue of (2.9) supp " (£, u)*X/jF is a compact subset on G, when j is

large enough.
Furthermore, for every ££R"

Aeiu)*rM ) ="«,«)(ow?0(€)
- *E«, )« )W'OKZ/) -
with j—o and in addition

(2.13)

(2.14) Pm(¢,M)**J-) )l s |* «,ii) (0] R/" = |7 (i,«) (8l

for all ££R". Since belongs to &?Pi* for every /EN, the Lebesgue Dominated
Convergence Theorem implies that

mu)*~-Z ,u\\Pk- 0 with j —
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and then
l;{Ziu)*'Pj' - /%i Ziu=u in ®.k-

Hence in virtue of Lemma 2.1 the proof is ready.

Remark. A. Every open ball Be.R" and every interior of the complement of
an open ball obeys the Condition 2.2. Hence for each open ball B

(2.15) £,,'’k(B) = aPk(B) and £pR"\B) =#HKR"\B)
(when pf\1, °°].

B. Using the proof of Theorem 2.2.1 of [2] one sees that (8, tk(RNCi<f'(A) is

dense in 38n,k(RN0&~>k(A), where .4c R" is a closed set.

Letk bein and let p€[l, *°]- We define and p'€[l, *°] by k~(£)=
=k(—£) and (LIp")+(11p)= 1 Applying the Hahn—Banach Theorem and Theorem
229 of [2], p. 42, we can establish for the dual dB*>lt (G) of &pi/k-(G) the
following characterization

Theorem 2.4. Let G be an open set in R" and let p£]l, °°]. Then for every
T(zi8P,i/k- (G) there exists a unique element t£BRft(G) suchthat

T(p = ticp) for all (pECAG).
On the other hand, suppose that t belongs to BPtk(G). Then the linearform T: C6(G)—
—*C defined by
Tee = t(cp)
has a unigue continuous extension onto the whole space a%.i/*-(G). Furthermore,
one has
(2.16) 1 = niMp.A-
In addition we have

Theorem 2.5. Let G be an open set in R" and let p{E]l, °°[. Then for every
QEB*pk(G) there exists a unique element g*.BPtl/k~(G) suchthat

OOplg) = 2<P) for all
On the other hand, suppose that q belongs to 3BRi/k-(G). Then the linear form
Q:CMH(G)—C defined by
QU = q(f+)
has a unique continuous extension onto the whole space Bpk(G). Furthermore one has

(2.17) N = HillpM/*-.

Proof. Since p belongs to ]1, °°[, the spaces afp-l/k- are reflexive. Hence the
spaces 3P,nk~(G) are (as the closed subspaces of dSp.Alk-) reflexive, as well. Let
xp\i/k~: *p-,ilk~(G)-"p*iik~(G) be the canonical isomorphism. In virtue of
Theorem 2.4 the linear mapping Jpk: Bpk(G)-~&p,i/k-(G) such that J,,kt=
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=T is an isometrical isomorphism and it satisfies

(2.18) (Ip.kt)((p) = t(<p) for all (pECE(G).

Hence one has for each QE£B* k(G) and

QWa) ={KJJU'QWU = VttQW ,*Wg) =
= (CFAI)CIT» - M ),

where we used only the elementary properties of dual operators. Let {{pn}czCo(G)
be a sequence such that Wpn—xp lk~(Ipk Q)\p-,iik~—0. Then by (2.19) and (2.18)
one has

(2.19)

Qwe) = Iim@pkm g)<m) = lim(pm) =

(2.20)
and = (*p-"-("r*10))«0 =: g ffl
(2.21) nan =tv .ia' (~ 10)llpmm-

It is easy to prove the converse of the assertion and then the proof is complete. O

Remark. A. In virtue of Theorems 2.4 and 2.5 there exist isometrical isomor-
phisms JPtk: Bp,*(G)-*£..1/*-((?) and jp-lk-: Bp¥dk-(G)-B*KG) such that

(2.18) (JIp.kt)(<p) = t((p), for all <peCo(G) (p<Ell, °°])
and
(2-22) (y,M/»-?2)(Mc) = <A, forall ipeCf (/€] 1, °°].

B. Inthe case when p£]l, °°[ the spaces 35ptl/k-(G) and Bp(l(G) are reflexive.
C. Furthermore, we remark that the norm |||F|||Pk of VEBPk(G) can be

replaced with .
" niniip>=inf., dv-n kX

when p€[l, ° and when the relation (2.7) holds for Rn5.
Finally we show for ks 1
Corollary 2.6. Let k and k~ be in K and let p£]l, °°[. Then the imbedding
h' Bp,«-(G)-*-Bpf(G) is compact if and only if the imbedding i2: &Ri/k (G)—
3BRwvnkk-y (G) is compact.

Proof. Suppose that q is compact. Then the dual operator if. B* «(G)-*
- (G) is compact, as well. One sees that

(2.23) i2= jpi(kk=)"-oli ojp-,iik->

where Jp-i/k-: &ptlik- (G)—B* f{G) is the isometrical isomorphism (mentioned
above). Hence i2is compact. Similarly one sees that

(2-24) ii=J~R°itoJpkk~
and then the proof is ready. O
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Remark. A. One sees also that the compactness of the imbedding
12 Kkk~y(G) implies the compactness of the imbedding q:
Be,**-(<?)-+-B,,ilKG) (cf. Theorem 2.4).

B. In the case when G is a bounded open set and when k~(£)—°° with |“m
the imbedding i2: 3SPikk~(G)—a9%k(G) is compact (cf. [2], p. 38).

3. Existence results of solutions

3.1 Let G be an open set in R" and let k, k~£K and p€[1, °°]- Furthermore,
let L(x,D) be a partial differential operator
(3.2) L(x,D)= 2 a,(x)Da

\a\—r

with C* (G)-coefficients a,,. The formal transpose
3.2) L'(x, £>)(*)= I\%_F(-DY{aa(X)('))
satisfies the relation
(L(x,D)ep)(il)) — (p(L'(x,D)\I/) for all <u~E£C“(G).
Define a linear operator L'G: ~Sp',iik~(G)—"p-ti/iuc~y(G) with
r3 3t ID(L'o) = Cq(G)
(w [Lacp = L'(x,D)<p for (pEC?(G).
Then La is densily defined.
We need the following lemma

Lemma 3.1. Suppose that G' is a relatively compact open subset of G, that is, G'
is open and G' is a compact subset of G. Then the operator La.: tMp*lk- (G")—
-~$P,i/(kk~)- (G is closable.

Proof. Let <p6Q°(G) be such that <p(xX)=1 for all xEG'. Suppose that
{8BcCj°(G") is a sequence such that lim [|<pJP,i/ir —0 and

Ilj%\\L'(x,D)(pn— f\\p.-mkk~y =0
with some fd& p-,mkk~y (G"). Then for each one has
f(<p) = Jim (L'(x, D)p.)(<P) = Jim HL(x, D)<p) =
= lim (n(<>Lx D)<p) = 0,

rt-~00
since for all h"3SPk and \J/EC~ the inequality
(3.4)

is valid. Hence f —0, which implies that L'a. is closable (cf. [10], p. 77). O
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Remark. Similarly one sees that
Lg- ‘u G)

is closable, when L(x, D) has C"(R")-coefficients and when G is an arbitrary open

setin R\ (In [7] it appears a misprint. The operator (2.4) of [7] must have C°°(R")-
coefficients.)

When Lqis closable, we denote by L'G~ its smallest closed extension
&pilk~(G) -»&p',inkk~y (G).

Furthermore, we define a linear operator Lg : Bpke(G)—Bpli(G) with
the requirement

D{L'*) = {«6Br f&c(G)l there exists g€BP*(G), suchthat

(3.5) v(L'(x,D)q>) = g(cp) forall (plc™(G)}
LGv=g.

Since for all ivEBRXG) and one has

(3.6) MM2AmU p,km, .I*-,

one sees that the operator Ly is closed. In the case when G—R", one sees that

Lr»c:Z,d. The equality Lr»=Ld holds when L(x, D) has constant coefficients.

Let Lg\ (G)—4ép-'ilk-(G) be the dual operator of L'G. Then one
sees easily

Theorem 3.2. Suppose that p belongs to ]1, »]. Then one has
(3-7) Ly = Jp%o{l'q)olpkk- =Jp\o(L'G*)oJpkk~. D

3.2. Let x be in G. Choose ex>0 such that the open ball B(x, 2ex)czG. In
virtue of Lemma 3.1 the operator L'B(xilx): &@A/k-{B(x, E))-*aSPA/(kk~)~(B(x, X))
is closable. Denote by Gp-1jt- the subset of G defined by

GpmA- = {*€G = {03}

In the case when the principal part 2 aAx)N\" is different from zero for each

(x, NEGXR", we know that GpA/k——G (cf. [4], p. 469).
We have

Theorem 3.3. Suppose that there exist constants Cx>-0 and C2*0 such that
for all (pECB(G)

(3-8) IIL"(x, D)(P\P"i/(kk~)" — —Calgpjl/(KE) ",

where pf[ 1 «, and such that k~(£)—°° with \E\—  Then
L'b[xex)5 x$G, is. a semi-Fredholm operator with

(3.9) dim N(L'BOY) < O

For the proof we refer to [7], p. 226, for example.
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Corollary 3.4. Suppose that (3.8) isvalidfor L'(x, D). Thenfor each x€Gy,i/*-
there exist constants <5CJ0, £ and C>0 suchthat

(3.10) It||p.Iifc" —C MIg, /("
for all uED(L'g{X9).

Proof. Since dim N(L'BXCX)<<¢> and since x£Gyil//r one sees that there
exists a constant <G€]0, €] such that

(3.11) N(L'BXS) = {0}

Because the range R(L'BX0)) is (by Theorem 3.3) closed, the Closed Graph Theorem
implies the validity of (3.10). O

We can now show

Theorem 3.5. Suppose that p€]l, °°] and that (3.8) is validfor L.'(x, D). Then
for each xE£Gyillc- there exists a constant &€]0, ej such that

(3.12) R(L$x3) =Bpk(B(x, <9).

Proof. Let 6 be as in Corollary 3.4. Then L'fix i) is (by (3.10)) correctly solv-
able. Thus one has

(3.13) R(L'b;:,9) = (B(x, ),
and then (3.7) completes the proof. O

3.3. We now assume that p=p'=2. Then the spaces "Tk(G):~3d2tk(G) and
Hk(G):=B2k(G) are Hilbert spaces for each Hence we are able to show the

following result:

Theorem 3.6. Suppose that there exist constants Cx>0 and C2=0 such that
for all <p6Q°(G)

(3-14) IITCx, T2 (&) = C{ |a@ifc— C2|l<jzi/(h™)"

Then for each xEG2i/k~ there exists a constant <&£]0, £] and a continuous linear
operator O: Hk(B(x, €)—Hkk~(B(x, ) such that

(3.15) L'%,6)Qv = v, fur all vEHK(B(x, S)).

Proof. Let <&56]0,eX] be as in Theorem 3.5. Since N(LBX6)) is closed in
Hkk~(B(x, 5)) there exists the orthogonal complement N of N(LB**,«). The linear
operator ":= L BXti)N: NC\D (LBXS)-<-Hk(B(x, <9) is closed, since N is closed.
Furthermore, one sees that jV(.S?)={0} and by Theorem 3.5, R(EE) =Hk{B(x, 5)).

The operator Q:=&~y: Hk(B(x, <5)—N satisfies (3.15) and in view of the Closed
Graph Theorem, Q is continuous. O

A subset G2kk~ is defined (as G23/*-) by
otkk~= = {o}}.
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HereZ,G: Jfkk- (G)-~yfk(G) is defined as L'a (cf. (3.3)) and L-a is the smallest closed
extension of La.

We show

Theorem 3.7. Suppose ihat there exist constants Cx>0 and C2=0 such that
(3.14) holds and that for all cpECNG) the inequality

(3.16) \\L(x,D)cp\2k» CAcph”-CJcphk

holds. Then for each xfG2il/t-nG 2H- there exist a constant a£]0, e] and a con-
tinuous linear operator

E : 3/ek(B(x, S)) - Hkk-(B(x, ©)

such that

(3.17) E(LBXi)u) = u\BXS for all u(zD(LBX")
and

(3.18) LRtx.tfEf) =f\BXxs) for all fe * k(B(x, O)).

Proof. Let (56]0, ex] such that the assertion of Theorem 3.6 holds (then the
assertion of Theorem 3.6 holds for each <&£]0, S7], as well). For each x&G2ikk~
we find a number <&6£]0, 5] such that R{LB(X0)) is closed and that

(3.19) IMUU" —CA\LBXYUZK for  u€-D(LBx»)

(cf. the proofs of Theorem 3.3 and Corollary 3.4).
Let R be the orthogonal complement of R(LB(xi)) and let n: /fk(B(x, (5)—
R(LB(xi)) be the continuous projection. Since the restriction operator rk:

YT (B (%, 9)Hk(B(x, ) defined by
rku = u\B(Xtl)
is continuous, one sees that the operator
_ E: yPk{B(x, 8))~H kk~(B(x, <)
defined by

(3.20) Ef= rk-(L ;" (nf))+Q(rk((1—n)f))

is continuous and satisfies (3.17)—(3.18). Here Q: HK(B(x,S))-»Hkk-(B(x,S))
is the operator as in the assertion of Theorem 3.6, and | is the identical operator

* k(B(x, S)) -~tfk(B(x, 6)).
Hence the proof is ready. O

4. On the regularity of the Schwarz kernel of E

4.1 In the previous chapter we gave a sufficient criterion under which for every
x -GitUk~C\G2dH there exist a number <6£]0, ej and a continuous linear operator
E: yfk(B(x. Sj)—Hkk~(B(x, <) suchthat

(4.1) R(RB(Xs)«) = «Bs forall u€D(LBiXit))
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and
(4.2) L'B»{Ef) = f\BXi) forall f " k(B(x,5)).

We denote Ux=B(x, ¢). Since the imbeddings C*(Ux)—JIk(Ux) and Hkk~(Ux)~*
-~3>'(UX are continuous (here CB(UX is equipped with the standard inductive
limit topology and 3>'{UX) is equipped with the weak dual topology), one sees that
the restriction E of E on Cq (Ux) is a continuous linear operator Cq (Ux)-~i&'(UX).
In virtue of the Schwarz kernel theorem (cf. [8], p. 531) we find a distribution
Ki£>'(UxXUXx) such that

(4.3) (Eiff(<p) = Kili<gnp) for all (p,\I/"CB (UX),

where \J/<g)(PEC6(UxXUX) is defined by (|I/<g>(p)(xy) il/(x)(p(y). In the sequel
we shall study some regularity properties of the kernel

We assume further that L{x, D) has C“ (G)-coefﬂments and that there exists
constants C\>0 and C2sO such that for all <pZCB(G) one has

(3-14) \\L'(x, D)<pll¥(*it-)" —CilMli/ie  C2|AY(h~)"
and
(3.16) \\L(x, D)cp\ks C M « --C 2\gk.
Here we denoted | ¢||2*=|| *I* when Similarly we denote 111-1112*=

= ||| |||k.- The open ball B(x, S), where &£]0, ex] is chosen so that the assertion of
Theorem 3.6 holds, is denoted (as above) by Ux. Let d,, be a positive number defined
by
dn=inf{d > 0] / (I/(I+|<i|®)</E is finite}.
R

We show

Theorem 4.1. Assume that the inequalities (3.14) and (3.16) are valid with the
weight functions k and which satisfy
4.4 fo(0:= (I + |E|Q7/irC(fcfe-)(£) for all £eR",

where y>d,,+m. Then there exists a mapping q: Ux-*Jff(Ux) such thatfor each
vAJMK(UX) the function z—{q(2))(v) is in Cm(Ux) and that

(4.5) B®)<p) = f (9@2)(V)<p@)dz for all <pEC?(UX),

where E is as in (3.20). Furthermore, one has
(4.6) sup W@\ <oo.

2iVx

Proof. A. For all (piCB and [a]Sm we get
(2r)-"1(Z)»(2) = |/ (Jrg>m?eM*dli\ 5
R"

* 1 W(0(*<p)(0Vd Z * { f (VA2 m(0)2" ) 12HqLr
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and then by (4.4)
(4.7) sup|(£>>)(z)[=9gC'ML-
ZzER"

with the suitable constant C'>0. Hence every /€«%k~ is in Cm(R") (more pre-
cisely, the density of/is in Cm(R")). The inequality (4.7) implies that for each /€ 3fkk-

and for all H'i"®t(RAC/X) one has

(4.8) Z%J& \(Dd) (2)\ = ZSiL\J/pX\(D*{f+W))(Z)\ =C " \f+w\\kk-
and then
(4-9) zs'éjLPx\(D H(2)\s C'HI/Iudlljyf.

Hence every gEHkk~(Ux) lies in CmUx) and
(4.10) ZSRPX\(ng)(Z)\AC'\\\g\\\kk_ forall giHkk-(Ux).
B. Let z be in Ux. Then the function qz: JFk{Ux)—C defined by

qz(v) = (EV)(2)
is well-defined and in addition by (4.10)

(4.12) \gM\ = \(Ev)Q\* C'HI"HL- "~ C'm M t-
Hence gz lies in Ok (Ux). The function q: Ux—3k (Ux) defined by
q(z) = "z

is well-defined and by (4.11)
(4.12) sup 11M11 SC'U?||<~.
2ZVxX

Since (q(2))(v)=(Ev)(z) and since EVECm(Ux) one sees that the mapping z-*
-*(q(2))(v) isin CmUx). Finally, we see that

(Ev)(tp) = f (EV)(@)cp(2)dz = f (a(2))(v)(p(z)dz,
VX VX

and so the proof is ready. O
4.2. Let Jlk~- : Hlk- (UX)—Jifk (Ux) be the isometrical isomorphism
given in Section 2. Define a mapping e: Ux-'HIjk- (UX) by
(4.13) e(z) = Jyi~(a(2)),
where q: Ux—~3tfk (Ux) is as in Theorem 4.1.

Lemma 4.2. The function e: Ux-mHItk- (Ux) has the continuous partial deriv-
atives D*e up to the order m (for the definition ofpartial derivatives in locally convex
spaces cf. [8], p. 285)).

Proof. A. Let z be in Ux. Then one sees that
(4.14) \D°(EV)(2)\ S C'\\EV\\\kk- » C'lIEIM*
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for all VvEJi%k(Ux) and |ot|]Sm (cf. (4.10)). Thus by Theorem 2.4 there exists
ea,zEHiik’ (UX) such that

(4.15) eXil(<p) = (D*(E<p))(2) for all <pEC»(UX).
We show that (Dxe)(z)=eXZ and that the mapping z— is (well-defined) and
continuous.

B. As in the proof of Theorem 4.1 we see that for all z,ydUx and (pE£C"(Ux)
\(e(@)-e(y)(@>)\ = a@)-ay)(<p)\ = (E<p)@)-(E@)Y)\ *
(4.16) S ((2*)- f (\e”™ - e P\/ky(0)UtHIMIT**- S

A((@2n) - Rfl{\e*'—*—eto*\/k?(QY)inmi<Ph—

Thus we obtain
(4.17)

\M z)-e{y)\\i* = IF(*)-<20) 17 ((2%)- 1 (k' «-~-«|/A :y(0)DLU21[E].
-

According to the Lebesgue Dominated Convergence Theorem, the right-hand side of
(4.17) is tending to zero with y-»z (note that pd,,+ma(/,,). Hence e is continuous.
Similarly one sees that

\\-“((e(z+heJ-eizWty-eao....0),*Illit" S
N(271)- 1O 1(-i(e* +kr<o<d<ml)/h)- & ei(Z *>)|FT<DD 1/2)|E]|,
R

(4.10)

(where ek=(l,0,..,0) and then D(L0™0V exists and (D(L° ”0)e(r)=
=e(lj0  0),z The continuity of £1° 0O)e is seen as the continuity of e. In the
same way we can show that DV exists and is continuous for each |a|Sm. O

In addition we need
Lemma 4.3. Let e: Ux—HLk~(Ux) be defined by (4.13). Then one has

(4.19) e(z)\WwAU)EN(L*Xiz)) for each z£Ux,

where L* (for an open set UczUX) is defined (as L'*) by

D(L$) = {uEHk~(U)\ there exists fE£H IKkk~" (U) such that
(4.20) u(L(x,D)(p) =f((p) forall (pECS(U)}.
L*u =f.

Proof. The distribution e(z)|i/d{z} is in H1k~(UX{z)). Furthermore we
get for all P£CGH(Ux)

e@)(Lx.DN>) = {q(z2))(L(x, D)ip) = (E(L(x,D)\p))(2) = iA(7) = Gfiip),
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where we used the relation (4.1) and the definition of g. bz is the Dirac measure at z.
Hence for all (pCCAt/IMX]jz})

. (e(2))(L(x,D)(p) = O,
as desired. O

Remark. The proof of Lemma 4.3 shows that the relation
(4.21) Ll(e(z)) =02
is valid.

4.3. We assume further that the assumptions of Theorem 4.1 are valid and that
the mapping e: Ux-*Hlk- (Ux) is defined by (4.13).

Lemma 4.4. Suppose that the inclusion

(4.22) N(L$)cjr'ke(U):=@'ZI~(U)

is valid, where U is an open set of Ux and k~ . Then thefunction e: WAl U+
- N ° ¢(fl) defined by

(4.23) i(z) = e(2)\v

has continuous partial derivatives up to the order m.

Proof. A. SinceL* isa closed operator, the kernel N(LvV) is closed in H1/k~(U).

The imbedding i: N(Lu)-~~f*-c(t/) is closed. Hence due to the Closed Graph
Theorem i is continuous, in other words, for each (p*C~(U) one can find a constant
C=>0 such that

(4.24) Wcpuh*CWMU- forall uEN(Lt)

(cf. [10], p. 42 and note that the topology of (V) is defined by the semi-norms
U—-\<pul\k* , <PECT(E/)).

B. In virtue of (4.21) one sees that e(z)=e(z)\vEN(Lt) for each z£Ux\U_.

Since the restriction mapping R: HLk- (Ux)*#H1k~(U) defined by is
continuous and since
(4.25) e(z) = (ioRoe)(z) for all z£ UXU,

one sees by Lemma 4.2 that e has continuous partial derivatives up to the order
m. O

Assume that k~ satisfies the inequality
(4.26) ky(0 s CkfO for all c€R",
where y>dn+m. Then for every w”yfl°c(U) there exists a function fwdCm(U)

such that _
W(<p)= ffjy)(p(y)dy forall (p£C?(U).
U
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Furthermore, the mapping A defined by
AWw) = /w

is continuous (for die definition of the topology in Cm(U), cf. [8], p. 86). Hence the
mapping e: UXAU-+Cm(U) defined by

S = Aoe

has (by Lemma 4.4) continuous partial derivatives up to the order m.
Let D be the diagonal of UxX Ux (thatis, D= {(z, g€UxX Ux\z—y}). We have

Theorem 4.5. Suppose that the assumptions of Theorem 4.1 are valid and that the
inclusion

(4.27) N{L$)c mmU)

holds for each open set UaUx. Then there exists a function h6Cm(UxX UXD )
such that

(428) K luxXvx\ ¢ = h

Proof. It suffices to show that for each (z,y)EUxXUXD there exists a neigh-
bourhood V of (z,y) such that K\v is a Cmfunction. Suppose that zXy. Choose
(5>0 such that B(z, S)XB(y, 5)czUxX UXD (that is, B(z, 6)XB(y, 0 is a rela-
tively compact open subset of UxX UXD). Then the mapping e: B(z,6)—

-+Cm(UX\B (z, 6)) is a Cmfunction (as we above verified). Since UXB (z,5)z
Z)B(y,(5), one sees that also the mapping e: B(z, 5)-*Cm(B(y, 6)) is a Cmfunc-
tion. Hence the function h: B(z, d)XB{y, 5—C defined by
h(t, s) = (S(t))(s)
is a Cmfunction (cf. [8]). In addition, one sees that
f h(t,s)ip()\)/(s)dsdt=f (e(®))\/)(p(t)dt =

B(z, O

= I (A0)WO?(0<fr = (CayO(p) = K(\I/®<p).

B(z.

Since the linear hull of the subset ®  dC”(B(z, (5)) (p£C"(B(y <)} is dense
in C6(B(z, S)XB(y, 6)) we get the assertion from (4.29).

Remark. With the assumptions of Theorem 4.5 one sees that for each z£EUx

(4.29)

(Eip)2)= f h(z y)<p(y)dy forall \/ECHUX{z}).

Vx\{z)
One sees immediately
Corollary 4.6. Suppose that there exists a number m,fN such that
1°for each mSmO there exist constants Cj>0 and C2S0 such that
(4-30) L (x, —CL|(pllVkm—C 2|<ix{i/(:-)"

4
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and
(4.31) IZ,(x.£>)<p|*m” C 1{M|4mi- - C 2||<plkm for all cp(LC?(G),

where &'(£)-*-« when

2° every solution u"SH'(U) of the distributional equation
(4.32) L'(x,D)u =0
lies in C°°(U), where U is an open subset of G,

3 2 aa(x)»aX 0 forall (x,HeGXR"

lir]=r

Then for each XEG there exist a neighbourhood UxcczG and a continuous linear
operator E: .?f (UX)"yTk k~(Ux) such that

(4.33) E(LWw) = uwx for all ueD(Lw]
and
(4.34) Lwx (Ef) =flvx for all f~ km{Ux).

Here LV fffkmk~(UX - * (W) and L™x\ Hkmk-{XJf)*Hkm{Uf) are defined
as above. Furthermore, the Schwarz kernel K of E satisfies

K lcxxvx\ d = h,

where h: UXXUAD —C is a C°°-function. O
Remark. A. The assumptions of Corollary 4.6 imply that one has for all

UE*kp(Lix)n r (ux)

sing supp (L (x, D) u) = sing supp u
(cf. [6], p. 39).

B. Suppose that the assumptions of Theorem 4.1 are valid. Choose an open set
U of Ux such that U is compact in Ux. Let 0€C* (Ux) such that 0(x)~ 1 for all
xEU. Then one has for all p*.C*U)

{Exjifiz) = (<2@)(i/0 = (e(2))(ip) = (Oe(z))(W
= (2n)~n f ~(0e(2))(O e-i(i-zH <1/)(i)eii(2)d f

Rn

where E(z, #):="(0e(z))(M)e_i{2)=(e(z))(0e-i(i"")e-i(i,zZI=£ (0e“ <" ))(z)e-,(i,I)
is a Cm(UXY.R")-function.
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PEWETKN 3KBALUMOHANbHbLIX TEOPUMN YHAPHbBIX ANITEGP

C. P. KOTA/TOBCKUI

CraTbsl COLEPXWUT pasBepHYTOe W3/IOKEHWE pe3ynbTaToB M3 [1], MOsyyYeHHbIX
B 1982—83 r. B Hell faeTcsA xapaKTepuCTMKa PELUETOK 3KBaLVOHA/IbHbIX Teopwii
YHapHbIX anrebp, NPOACHAOLAA NPUPOAY PAfa M3BECTHbIX (PAKTOB O TaKUX peLueT-
Kax. B yacTHOCTW, [OKa3bIBaETCA CrefytoLas TeopemMa: PeLleTKN 3KBaLUMOHATbHbIX
TEOpWin yHapHbIX anrebp, MMeLLMX NOCTOSHHbIE TepMasibHble orepaumm, — 3To (C
TOYHOCTbIO 0 M30MOP(HU3MOB) BCE PELUETKM KOHIPY3HLMIA MOHOWMAOB C JIEBbIMU
HYNAMU U TOMbKO OHW. W13 3TOl TeopeMbl CrefyeT, UTO pPeLleTKU 3KBaLMOHa/IbHbIX
TEopuiA anrebp, UMeroLLMX Hy/IbapHble U pa3Be NMLb YHapHble ornepaumm, — 3To BCe
PeLeTKN KOHIPY3HUWA MOHOMAOB C SIEBbIMU HYNSIMU U TOIbKO OHW. 3ameuvaeTcs,
YTO BCAKAasA anrebpavyeckas peLleTKa NpeLcTaBUMa Kak rNaBHbI niean peLleTku
KOHIpy3aHUMIA MOHOMZa € neBbIMU HynsMu. OTCHOL4a BbIBOAUTCA, YTO BCAKasA anreob-
pavuyeckas peLleTKa npefcTaBuMa Kak rMaBHbI MAean peLleTKy 3KBaLMOHaIbHbIX
TeopuiA yHapHbIX anrebp. OTcloga e BbIBOAUTCSA, UTO BCHAKas anrebpavyeckas
peLleTKa MnpeAcTaBMMa Kak MOMHbIV 3HAOMOPMHbIA 06pa3 peLleTKy KOHIPY3HLMIA
MOHOMAA C fieBbIMA HynssMU. [epBblii M3 Ha3BaHHbIX Pe3ynbTaToB 6bl1 COO6LLEH
B 1983 r. Ha MexayHapoaHoi anrebpanyeckoin KoHgepeHumn B Cerege.

Bbipaxkato npusHartenoHocTb J1. A. CKOpPHAKOBY 3a BHMMaHME K CTaTbe, 3a
yKasaHue Ha 6/13Kyto no gyxy ctatbio [2], u b. M. LUaiiHy 3a npefocTaBneHHyO
MM BO3MOXKHOCTb 03HAKOMWUTLCSA CO CTaTbel [3]. A rnyboko 6narofapeH peLeH3eHTy
3a LeHHbIe COBETbI MO YNyYLUEeHUIO O(OPMIIEHUS CTaTbW.

MycTb X — HeKoTOpbI KapauHan. Bygem paccmaTpuBaTb S3bIK LX y3KOro
WCUYMCNEHNS TMpPeSuKaTtoB C  OAHOMECTHbIMU  (PYHKLMOHANIbHBIMA  KOHCTaHTaMu
[0, % X) 1 6e3 MHANBUAHBIX N NPeaUKATHBLIX KOHCTAHT. [ BCAKOrO HaTypasibHOro

0 6ygem o6o3HaqaTb yepe3 T,(1,) MHOXKECTBO BCeX TEPMOB (TOXAECTB) SA3blka
b> B KOTOpble He BXOLAT WHble MepeMeHHble, Kpome X0, ..., Xn j.

3aMbIKaHueM B /,, cuctembl ToxaecTB 1Q In 6yfemM HasblBaTb HaMMEHbLLYHO U3
cuctem [, Brmovaowux | v yaoBNeTBOPAIOLWNX YC/I0BUSAM

(1) P="Pel,

2 P=Qtr =Q-=Per,

(3) p = Qei'AQ =Rer =p =Rer,

4) p = Qer =R(P) = R(Q)er,
(5) P(x,) = Q(xj)er =P(R,)) = Q(Rj)er

ansa Besakmx P, Q, R, Rj, Rj u3 T,, (S(T) o6o3Ha4aeT Tepm, 06pasyemblii noacta-
HOBKOV Tepma T BMECTO NepeMeHHOl B TepMm S).

1980 Mathematics Subject Classification (1985 Revision). Primary 08B15; Secondary 03CO05.
Key words and phrases. Lattices of equational theories, unary algebras, congruence lattice of
monoids, representations of the algebraic lattices.

Akadémiai Kiad6, Budapest
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W3 mn3secTHOW Teopembl Bupkroga (cm. [4], § 64) cnegyeT, UTO 3aMbiKaHue B /,,
cuctembl XQ/,, COCTOUT U3 BCEX TOXAECTB U3 ABMAOLWMNXCA CNEACTBUAMM CUC-
TeMbl Z, U 4TO 3KBaLMOH&IbHbIE Teopun Z B bx B3aumoornpegenumbl ¢ ZM 12,
MoaTomy BClOAY HVMXe Mbl ByfieM paccMaTpuBaTtb /UL TOXAecTBa U3 12 1 ycno-
BUMCS 3aMblKaHVe B 12 BCAKOM cucTeMbl Z Q12 HasbiBaTb 3KBaLMOHa/IbHOW Teo-
pueii, onpegensiemoin E, n o6o3HayaTb uyepes CL(E).

[na BcAkoi akBaumoHanbHol Teopun E 6ygem o6o3Havath yepe3 JIXE) wm
JI(E) peweTKy Bcex 3KBaUVOHa/IbHbIX Teopwii, BKMwuvarowmx E. Pewetky /1(0)
bynem o0603HavaTb 4yepe3 J1x wnam Jl.

3amblkaHua (B /2 cuCTeM perynspHbIX TOXAeCTB, TO eCTb TOXAeCTB Buaa
P(xi)=Q(xi) («'€{0,1}), Oygem HasblBaTb PErynspHbIMMA 3KBaLVNOHA/IbHLIMA
TeopuaAMK. [InA BCAKOM perynsipHoli aKBauMOHa/IbHON Teopun E perynsipHble 3KBsa-
LMOHa/IbHble TeopuW, BKOYatoLLme eé, 06pas3yroT peLleTKy, ABNSAIOLLYIOCS [aBHbIM
naeanom (CT(O)] pewetkun JI(E). 3Ty pewleTky 6ygem o6o3HayaTb 4epe3 J1X(E)
unn NK(E). OHa un3omopHa peLleTKe 3amblKaHUA B [, BCEBO3MOXHbIX CUCTEM
ToxXgects m3 [, Bkmwovarowmx XM 4.

MycTb 3KBaUMOHasIbHasA Teopusi cofepXxuT ToxaecTBo P (xQ=Q(x). Torga
B cuny (5), oHa cofepxnt P (x)=Q(x), a3Hauut, u P(xad =P (x}).

Myctb n E2 — HeperynsipHble 3KBaUMOHa/IbHble Teopuu, LL(x0)= LU x"c 1;
(/={1,2}). Torpa, B cuny (5), HeperynsapHoe ToxgectBo VI(V2(x0)=VIUV2(xD)
npuHagnexuT Zi, a B cuny (4) oHo npuHafnexxuT Er. Takum o06pa3om, Heperynsp-
Hble 3KBaLMOHa/IbHbIe Teopyn 06pasytoT nogpeLueTky J1X (3TOT (akT NpMBOAWTCS B
[3]. Ero pokasaTenbCTBO, MCMOMb3YHOLLee CyMMbI [10HKKW, faeTca B [5]). 3Ty noa-
peweTKy 6ygem o0603HadaTb 4epe3 JIx wam AN

[nsa Bcsakoro TepMa P 0603HauuM yepes cLIP) umcio BXOXAEHWUA B HEFO (OyHK-
LUMOHasIbHbIX KOHCTaHT. [nsa BcsAKoro Toxgectsa a: P—Q uepes d(a) 6ygem 0603-
HauyaTe min {d(P), d(Q)}, a uepe3s 3(a) — max {d(P), d(Q)}. lNycTb npasuno
BblBOAA S' TakoBO, YUTO [/1 BCAKOro KopTtexa ToxaecTs (al5..., CT) TOXAECTBO
<P ABIAIOLLEECH Pe3y/ibTaTOM MPUMEHEHUSA S' K 3TOMY KOPTeXy, YAOB/ETBOPSET
ycnouto 3(<p)smin {3(cj), ...,3(aw}. Torga 6ygem roBoputb, YTO “MOHOTOHHO.

(6) NMyctb *:>0, D:P=Q — HeTpuBUa/IbHOE TOXAECTBO W F-Tepm, Ans
koToporo 3(F)>3(10Q. Torga Toxgectso T: V(P)=V(Q) Takoso, uto CT({T}) —
cobcTBeHHass noacuctema CT({T0}).

[OelictBuTtensHo, nycteb CL~((t}) — HaMMeHbLUasA U3 CUCTEM TOXAECTB, COAep-
Xawux T v ygosnetsopsilowmx yciosusaMm (2)—(5). Tak Kak npaBunia BbIBOAA,
Bblpa)KaeMble 3TUMW YCNOBUAMM, MOHOTOHHbI U 3(T)>3(T0Q, TO 3(<P)>3(TO
ana Bcsakoro cpECb~ ({1}). CneposaTesnibHo, TOECL“ ({T}), a Tak Kak pediexcus-
Hoe 3ambikaHve CO,_({1}) ectb CL({T1}) 1 T0 — HeTpuBMasIbHOE TOXAECTBO, TO
Toi CL{{T}).

M3 (6) HenocpefACTBEHHO cnefyeT

(7) Ecrm a>0, TO JIX He umeeT atoMoB (cMm. [6]).

Tak Kak T perynisipHo (He perynsipHo) B c/iyyae perynspHocTu (HeperynspHoCcTH)
70, TO M3 (6) cnefylT TakKxe

(8) Ecm 9>0, TO JIX He mmeeT atomoB (cMm. [3], npegnoxeHve XV);

(9) Ecnn y >0, TO JIX He MMeeT MUHUMASIbHbIX 3/1eMeHTOB (cM. [3], Teopema 1).
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Jlerko BufeTb, YTO 3TU MPELNOXEHUA CNPaBes/IMBbl N A5 3KBALMOHA/TbHBIX
Teopuin anrebp, UMEOLUMX He HyfbapHble CUrHaTYpHbIE OMepauum.

PaccmoTpum Knace Ji BCeBO3MOXHbIX anre6panyeckux cuctem M= (M; o, N,
€, tV) TaKnx, YTo o — OMHapHas onepauus (Ha M), NQ M, cuCM, v yA4OBNETBOPS-
IOLLIMX YCITOBUAM

(@ (M; o, e) — moHoug n (N; 0, €) — ero MoOAMOHOUA,

(b) 0 — neBblii HOoNb B (M; o),

(c) 7V\{e} — cucTema obpasytownx ang M (U 3HaunUT, BCAKUIA anemeHT M
nnéo npuHagnexxmt N nnbo ectb PoT ansa Hekotoporo PCN),

(d) Pom=0om=>P=Q pna Bcakmx P,QC.N.

W3 aTnx ycnoBuii cregyeT, UTo mMEN BMeYET OAHO3/IEMEHTHOCTb M 1 Uto POmMEN
Bnedyetr PoT =P pana scakoro PEN.

Bcakasa cuctema (M o, N, e, c0), ygosnersopsilowlas (a) M Takas, uTO
(M; 0) obpasyetca u3 (N; o) MPUCOESUHEHMEM BHELUHMM 06pa3om /IEBOTrO Hysis
co, npuHagnexut Ji. Knacc Bcex Takux cucTem 6ygem o603HadvaTb uepe3 N .

KoHrpysHuuto E Ha ~/-cucteme M 6yaem HasbiBaTb ../[-KOHFPY3HLVERA, ecnn
M\EE ,//. Jlerko BUAeTb, 4To E B TOYHOCTM TOrga ecTb .IZ-KOHrpyaHuus, Korga
OHa Y[J0BJIETBOPSET YCMOBUIO

(10 (PoT, Qom)C_E=>(P, Q)dE pana Bcakux P, QEN.
Bonee Toro, 4nsa BCAKOW . //-KOHTpyaHUMM E Ha M nmeeT mMecTo
(11) (P, Qom)C_E=>(P0S0, QoS"CE pana BcAkmx P, QCN, SO,S"M .

[OevictButensHo, (P, Qom)C.E Bnever (PoT, OoT)EE, a 3Hauut, (P, Q)C.E un
(Qooj, Q)EE. CnepoBaTenbHo, AnA BcAkMx Sa, StCM  umeer mecto  (PoSO,
Qom)EE un (RBoco, QO0S*"CE, otkyma (PoS0, QoSYCE

JI-KoHrpyeHUMNn Ha M”™XK  06pasyloT MNOSHYK pPeLLeTKy, KOoTopyk Oynem
0603HayaTb 4epes Conm M.

Myctb LLx- (Mx\ o, NX, e, W) — cuctema u3 .// Takasn, 4to Nx= (NX; o, €) —
MOHOUS O cBOBOAHbIMU 0bpasyownmm /s(a<*:), un 3Hauut, (MX; o) obpasyeTtca
npucoefuHeHnem K (NX; o) BHeELUHUM 06pa3om neBoro Hyna co. O6o3HauuM yepes

(byHKLMIO, onpegeneHHyo Ha Tr, co 3Ha4YeHnssMM B MX, 4nst KOTOpOK

ecm i =0,
ecm [ =1.

Ons BcAkoro ToxkgectBa P—Q 6ygem o6o3HauvaTh 4epes PP(P=Q) napy
(3r(P), ,T(OY). nsa BcAKOW cucTeMbl TOXAeCcTB | Oygem o6o3HavaTb 4yepes 3~(1)
MHOXecTBO {&(0)\<T£E}.

MycTb | — 3KBauMoOHaslbHas Teopus, TO eCTb 1 YA0BNETBOPSET YC/0BUAM
(1)—(5). Torpga T(1) — KoHrpysHuusa Ha M¥*, yposnetsopstowas (10), 1 3HauuT,
€CTb .//-KOHrpyeHums. O6paTHO, 415 BCAKOW «-KOHTPyaHUMM E Ha M* MHOXeCTBO
mT~[(E) ynosnetBopseT (1)—(5) u, cnefoBaTe/lbHO, CTb 3KBaLUMOHa/IbHAsA TEOPUS.
OTcroga v 13 Toro, 4To 3~ B3aMMHO OHO3HAYHO M M30TOHHO BMECTE C 0OpaTHbIM
oToOpaXkeHMeM, cfegyeT, YTO A7 BCSAKOW 3KBaUMOHa/IbHOW Teopuun | pelueTka
N(X) nsomopHa pelueTke BCeX .//-KOHTpysHUMA Ha MX, Bkodawowmx Y (E).
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Tak Kak nocnefHsas nsomopgpHa Con” T0 JI(T)=Con”" B
yactHocTu, J1= Con ii M*. Takum 06pa3om, UMeeT MecTo

Teopema 1 PeweTKn 3KBaUMOHATbHbIX TEOPUA B LX—3TO BCE peLIeTKM
Conm M gns Jl-cuctem M, umerowmx S x 06pasyoLmx, 1 TOAbLKO OHU.

MycTb | — perynapHas akBauuoHanbHaa Teopus. Torpa -T([) — KOHIpysH-
uma Ha MX, HaTAHyTaa Ha HEKOTOPYH KOHIpy3aHuuio Ha (Ny, 0) U NOTOMY SIBNAO-
wasca N-KoHrpysHumein. OueBMAHO M 06paTHOe: ANS BCAKOW KOHrpysHUuMM E Ha
(Nx; 0) HaTsHyTas Ha He€ KOHTpysHUMs E' Ha M* ecTb JI-KOHrpysHUMs TaKas,
yto '~ 1(E') — perynspHas skBalMoHanbHas Teopus. (My 0)/E' obpasyeTtcs u3
(Ny 0)/E npucoefMHeHMeM BHELLHUM 06pa3om neBoro Hyns @/E'. CnepoBaTefib-
HO, crpasej/vBa

Teopema2. [jns BCAKON perynsipHoii aKeaunoHanbHoii Teopun | B Lx cywecTByeT
cuctema MG/C, wnmetowas Sx obpasylowmx m Takad, yTo Ax(Z)sCon™M.
O6paTHo, Ans BcAkoi cuctembl MEJT, umewowen Sx 06pasyroLlmx, CywecTByeT
perynsipHas aksauuoHanbHas Teopus | B Lx Takas, yTo Conm M = JIX2).

Onsa scakoro MoHomga N=(N; o,e) 6ygem o0603HayaTb 4yepes N* moHoua,
06pa3oBaHHbIli NpucoegnHeHneM K N BHELUHMM 06pa3oM 1eBOro Hyns, . KoHrpy-
3HUMIO E Ha N* 6yfem HasblBaTb "-KOHIPY3HLUMel, ecnu oHa yaosneTsopseT (10).
N3 paccyXneHuid, [oKasblBaloWnX Teopemy 2, crefyet

Teopema 2*. [nsa BCAKOW perynsapHoi akBauMoHam bHoi Teopun | B LX cywecT-
ByeT moHoug N, mmewowmin  Sx obpasylowmx u Takoir, yTo AX(Z) wnsomopHa
peweTke Conm N* Bcex JI-KOHrpyaHunii Ha N*. O6paTHO, Ansd BcAkoro moHouga N,
NMeloLLero Sx 06pasyloluX, CyLWecTBYeT perynapHas sKsaluoHanbHas Teopus | B
bx Takasa, yto Con™ N*=TXZ). B uacTHocTn, CONAMXSAX.

N3 Teopembl 2* 1 13 TOrO, YTO PELLETKA KOHIPY3HUMIA Ha MX, HaTAHYTbIX Ha
KOHrpy3sHumm Ha (Nx; o), usomopgHa Con (Ny, o), cnegyet

Teopema 3 (A. . Manbues [7], §13). Ans BCAKOIA perynspHoil aKBaLMOHaTbHOI
Teopun | B Jix peweTka J1x (1) npeAcTaBMMa Kak pelleTKa KOHTPy3HUMIA MoHouga
S x obpasyrowumu. O6paTHO, ANS BCAKOrO MOHOMAA Sx 06pasylwuMu pewweTka
€ro KOHrpysHuuii npegctasuma kak JIX(E). B wacTHocTM, Con N, = Ax.

[ns Bcsikoid nonyrpynnsl A peweTka Con A npeAcTaBuMMa Kak rnaBHbIi naean
Con Al rge A1— nonyrpynna, obpa3oBaHHas MpUCOeAMHEHMEM K A eanHMUbI,
e, a Con Al npeactaBMMa Kak rnaBHblii mgean Con”™M ansa "/-cucTembl
M=(Af; o, N, e, co). Echm A umeeT Sx o06pasyrolnx, To, COrnacHo Teopeme 2,
Con® MsAXx(Z) pna HeKOTOPOWA PerynspHoil aKBauMOHanbHOW Teopun |.
OTcropa cregyet, 4to ANs BCSKOM noayrpynnbl A ¢ Sx obpasywowmmu Con A
npeacTaBMma Kak MHTepBan [1+ T B JIX TaKoW, YTO Z1n X2— perynspHble TEOPUN.
Tak 4TO, B 4YaCTHOCTM, cripaBeAnuea cnegytowas Teopema f. M. CmupHosa [8]:
N5 BCAKOW MOAYrpynnbl pelleTka €8 KOHTpysHUWiA MpeAcTaBuMa Kak [1aBHbIiA
naean peLleTkn 3KBaLMOHa/IbHbIX Teopuidi YHapHbIX anrebp. Hwke ata Teopema
bynet 0606LeHa.

3amMeTVM TaKXXe, YTO U3 BNOXMMOCTU pelleTku Part(co) pasbreHnin cHeTHOro
MHOXEeCTBA B PELUETKY KOHIPY3HUMWIA MOAYrpynnbl ¢ ABYMS 06pasyloymu u u3
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B/IOXXMMOCTW nocneaHeid B J12 cnegyeT pesynbTaT Exeka [9] v Bappuca [10]:
Part (W) Bnoxuma B 2.

3amKcmMpyeM  Kakoe-HWGyab HeperynspHoe Toxgectso a:  V(x0—V(xD.
<X-3aMblKaHMEM CUCTEMbI TOXAECTB | OyfeM Ha3blBaTb 3KBALMOHAbHYIO TEOpUHo
CLa(Z2)=CL (ru{<r}).

(12) Ons Bcakoro HeperynspHoro ToxgectBa T: P(xQ—Q(x) c-3aMbikaHue
cuctembl {T} coBnagaer C «T-3aMblKaHUMEM CUCTEMbI, COCTOSLLEA W3 TOXAECTB

™ P(xQ=P(V(xQ) n 12 P(x0=Q(x0.

[JelctButensHO, NycTb Z — Kakas-HMOyap cr-savMkHyTas cuctema. Ecnm TE1,
10, B cuny (5), P(R)=Q(S)CZ ana Bcakux R, S u3 T2, u 3HaumT, 121 P (V (x0)=
Q (x4 npuHagnexat z. I3 rcz 1 Q(xD= pP (v (x0)cz cnegyer Ticz. O6paTHO,
nycts tl, t2CZ. Tak Kak o£Z, TO, B cuny (4), P(K(x0Q)= P(K(xD)6I'. OTctoga u
n3 T1,7r€l" cnepyet, uto ToxgectBa Q(xX=P(xD)=P (V(xj))—P (V (xQ)= P(x0
npuHagnexar 1. CneposaTenbHo, T<ET

[ns BcsKOM cuCTeMbl TOXAeCTB Z 6ygem o603HayaTb uyepes h(Z) cuctemy,
obpasyemyto 13 Z 3aMeHoin BcAKoro eé Toxxaecta P ix"-Q ") Ha P(x0=Q(X,.),
a BcAkoro toxgectBa P(xQ=Q(xD) wam P(xi)=R(x0) — Ha napy TOXAecTB
P(x0=P(V(x0), P(x,,)=Q(xn. W3 (12) cnepyet

(13) CLa(/i(2))=CLa(Z) ona BCAKOW CUCTEMbI TOXAECTB Z.

Myctb Z=h(Z), 710 ectb ZQIX UYepes cl,(Z) 6yaem 0603Ha4aTb 3aMbl-
KaHue B [l cucTeMbl Z, MOMOJSIHEHHOW BCEBO3MOXHbLIMW ToXAecTBaMu V(xQ =
—V (R(x0). 3710 3amblkaHue 6yfeM Ha3blBaTb CMabbiM <T-3aMblkaHVeEM Z.

Nerko BugeTs, uto h(Z)=Z 'l ans Bcsakoii a-3aMKHYTOI cuctembl Z. Cnego-
BaTe/IbHO, ecnnm Z n-3amkHyTa, To h(Z) cnabo o-3amkHyTa. MHade rosops,
h(CL,,(Z))~c\,,(h(CLx(Z))) ana BcsAkoli cucTeMbl ToXaecTB Z. Bonee Toro,

h (CL,,(Z))=c\«h(Z)) gna Bcskoi cuctembl Z. VHave rosopsi, MMeeT MecTo
(14) h(CLa(Z))=Z pns BcsAkoi cnabo 0-3aMKHYTON CUCTEMbI Z.

[JelctButensHo, nyctb Z cnabo cT-3amMkHyTa. BroveHvne ZC=h(CLa{2))
oyeBuaHoO. Bcskoe ToxaecTso u3 CL,,(Z) BbIBOAMTCA U3 CUCTeMbl Z*, 06pa3yemoit
fo6aBneHnem K Z TOXAeCTBa a M BCEBO3MOXHbIX TOXAeCTB P=P, npumeHeHnem
npaBun BbIBOJA, BblpaaeMblx ycnosusimn (2)—(5). NHayKumein no AnnHe BbiBOAA
[OKaXxeM, 4To BcAKoe ToxaectBo u3 h(CLa(Z)) npuHagnexuT Z.

[na BCSKOro HatypanbHOro K depes Zk 6yaem 0603HayaTb CUCTEMY BCEX
TOX/AECTB, BbIBOAUMBIX U3 Z* NpyMeHeHNeM npaBun BbiBoga (2—(5) He 6onee /c pas.
#AcHo, uto h(Zn), To ecTb h(Z*), BkntovaeTca B Z. MycTb h(ZNQZ. Mokaxem, 4To
Torga h(ZnH)QZ. [na atoro nokaxem, 4to ecnn Toxpaectso T0: P(xI)= Q(xJ)
npuHagnexut Z,,+l, To Toxgectso T: P(x,,)—Q(S), rge S=x0 wnam S —V(X,,)
n ixq, npuHagnexut Z.1

1 MycTb TO 06pasyeTca M3 NpUHALNEXaWero Z, TOKaecTtsa  NPUMEHEHUEM
npasuna (2). Torga Q(xQ=P(x0 npuHagnexut h(Z,,), a 3Haunit, n Z. OTCclofa
P(x0)= Q(x0£Z. Ecnu VA 7o u Q(x0)=Q(V(x®)£z. OTcoga n m3 P(x0=
= Q(%,,)C_Z cnepfyer, B cuay cnabon rr-3amkHyTHoCcT Z, P(xd =Q(V(Xn)C Z. Takum
06pa3oM, B paccMaTpuBaeMoM cryvae TCZ.



58 C. P. KOFANNOBCKUI

2. Myctb TO 06pasyeTcs M3 NpuHagnexawmx 2, Toxgects TX P(Xi)~R(xK)
n 12 R(xKH=Q(xj) npumeHeHnem npasmna (3). Tak kKak Toxxgectea P(xQ=R(x0
n R(xQ=Q(x0 npuHagnexart h(Z,,), To oH1 npuHagnexat n Z. Ho torga P (x0=
=Q(xQ£Z. Myctb i?+j. Ecnm nmpu stom k=i, 10 PXO—R(XQ wn X*0)—
=Q(y(x0) npuHagnexat 1. Ecnm k”i, 10 JP(XQ=R(V(XQ) n R(E(x0)=
—Q(V(x0) npuHagnexat Z. B oboux nogcnyuvasx P (xQ0—Q{T(x0Q)6z. Takum
obpasom, B cryvae 2 TEI.

3. Myctb TO o6bpasyeTca W3 MpuHagnexawero 7, Toxgectsa 71X T(x,)=
--U(Xxj) npumeHeHvem npasuna (4), a s3Haumt, T0ectb H (r(xi))=fV(U(xJ) ansa
HekoToporo Tepma W. M3 TxEZn cnegyet T(xQ=U(xQ£Z. Ho Torga, B cuny
cnaboii g-samkHyTHocTM Z, W(T(x0)=W(U(x0)C.Z. Ecm iAj, 170 T(X0=
= U(V(x0)EZ, otkyga W (T(xQ)=W (U(V(x0))EZ. Takum o06pa3om, B paccmart-
pnuBaeMoM cnyvae TEZ.

4. Myctb 70 06pasyeTca M3 npuHagnexailero Zn toxgectsa 1x T(Xj) = U\Xj)
npumeHeHnem npasuna (5), a 3Haunt, T0ectb T(Ri(xil))=U(Rj(Xj )) Ans HeKOTOPbIX
TepmoB Ri,Rj. Tak kak T(xQ=U(XQ£Z, 10 T(Ri(XQ)=u(ki(XQ)EZ. MNycTb

Torga T(xQ=U(V(x0)¢Z. OTctoganns T(x0= U(XQCZ cnegyeT, 4To TOX-
pectBa T(xQ=T(k'(xQ)=[/(K(x0)—U(xg npuHagnexaTt Z. Ho Torga, B cuay
cnaboi cr-3aMkHyTHOCTM Z, ToxkgecTBa T(Ri(x0)=T(V(Ri(x0))=T(V(x0Q)=T(x0
npuHagnexar Z B uactHocTu, T(Ri(xQ)=T(xQCZ. N3 U(xQ=U(E(x0)CZ
cnepyet, yuto Toxgectea (J(Rj(V(x0))=U(V(Rj(P(x0)))=U(V(x0)=U(x0 npu-
Hagnexatr Z Otctoga T(Ri(x0)=b (Rj(V(x0))eZ n T(RI(x0)=UNOx0)<EZ,
a 3Hauut, TGZ

[ns BcAKOW aKBauMoHanbHOM Teopum Z0 6yaem o0603HayaTh 4epes Aa(Z0
PEeLIeTKY BCeX A-3aMKHYTbIX CUCTEM TOXAECTB, BKtovatowmx 20, a yepes /P(Z0)
peLueTKy Bcex €nabo A-3aMKHYTbIX CUCTEM TOXAECTB, Bkovaowwmx h(Z0Q. OTo6-
paxkeHue h peweTkn N12(2'0, nepeBogsiLee BCAKyto eé cuctemy Z B h(Z), M30TOHHO.
Tak Kak h(Z) cnabo f-3aMKHyTa 415 BCAKON A-3aMKHYTON cucTembl Z, To h 0Tobpa-
xaeT N1"(lo) B Af(rQ. B cuny (13) h B3aMHO 0AHO3HAYHO W /I-1 N30TOHHO. 3HAYMT,
M — wn3omopdHoe BnoxeHne N<4(IQ B 1'(X,,). OTtctoga n n3 (14) cnepyet

(15) »(10 - (2:0.

Aa(z,,) nsomoptHa JIn(CT(/r(IQ)). CornacHo Teopeme 3 nocnegHsst UI3oMopPHa
pelleTke KoHrpysHumii moHoupa Njy(CL(h(Z0)), umetowero neeble Hynu (Ta-
KoBbIM aBnseTca &~(V(x0))). Takum obpazom, J1TO wn30oMOpdhHa peLleTKe KOH-
rPYyaHLMIA MOHOMAA C NEBLIMU HYNSIMU, UMEIOLLEr0 S x  06pasyHoLLyX.

Myctb M — MOHOMA C fIEBbIMM HYNAMK, WMeEKWNiA SX 06pasyroLuX.
M =NJE ansa”noaxopsileid KOHIrpysHUMU E TaKoW, 4TO ANS HEKOTOPOro 3feMeHTa
v BCe Mapbl (v, VoR) MpuHagnexar E. Jlerko Bugetb, 4To ~“_1(E) — cnabo a-
3aMKHYTas cucTemMa TOXAECTB, rae 4 ectb V(xO=V(xD, a .T~(V) ectb F(x0,
n 3HaunT, Con MsZa(, T~1(E)). Otctoga n n3 (15) cnepyet

Teopema 4. [1na BCAKOI HEperynspHoii aksaumoHanbHoi Teopun Z B bxpeweT-
kKa NIX(E) npeacTaBMMa Kak pelleTKa KOHTPYeHUMA MOHOMAA C NIEBbIMW  HYNSAMMU,
nmerowero Sx obpasywouwmnx. ObpaTHO, 41 BCAKOTO MOHOMAA C NEBbIMU HYASMMU,
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MMetoLLero Sx 06pasytolmX, pelleTKa ero KOHrpysHUMin npeacTasuma Kak JIX(E),
roe Z — HeperynspHas 3KsalUMOHasbHas Teopus.

N3 Teopembl 4 o4eBUAHLIM 06pa3oM BbIBOAUTCA

Teopema 4*. [ins BCAKOI 3KBaLMOHaNbHOW Teopun Z B A3blKe L*, 0 THOCALLEM-
ca K anrebpam, WMEIOLMM HynbapHble ¥ pasBe UL YHapHble onepauumn, pelleTka
L*(Z) Bcex aKBaLyoHa/IbHbIX TEOopWid B L*. BKAtoYaroLWwmx |, npeAcTasnma Kak pelueTka
KOHIpyaHLMIA MOHOMAA C NeBbIMU HynsiMK. O6paTHO, AN BCAKOr0 MOHOMZA C fIEBbIMU
HYNSIMU peLleTKa ero KOHrpyaHUuMiA npeAcTaBuMa kak L*(Z) ons HeKoToporo A3blka
L*, oTHocAweroca K anrebpam, MMEKLLWM HyNbapHble 1 pa3Be N1Lb YHapHbIe onepa-
L.

W3 paccyxaeHuid, [OKa3blBalOLWMX TeopeMy 4, NErK0 BbIBOAUTCA chefytollee
npeAnoXeHve: NpeobpasoBaHue I pPeLleTKU AXK NepeBoAsLLee BCAKYHO SKBaLMOHab-
Hyt0 Teopuio Z B eé perynspHyto yactb r(E)—CL(h(Z)), ecTb nonHbIA 3HAOMOp-
thusm. [OeicteutensHo, paBeHCTBO r(V T,)=Vr(X,) 04eBUAHO 4N perynspHbIX
Ecnu e kakoe-HMbY b U3 HUX He PerynsapHo, TO ecTb eMy MPUHALNEXUT HEKOTOPOe
ToxgectBo o V(xQ=V(xD, To VZt=VCL,,(Zi), a 3HauuT, r(VZ)=r(VCL({(ri). B
cuny (15) F(VCL,,(£,))=\h{CL&{Zf) = V/i(X)), a 3HauuT, A(Vz})—Mi(Xf), oTKyga
f(Vr,) = \fr(Zi). PaseHcTtBO r(MZt)= Dr(Z,) oyeBugHo.

Myctb Xj 1 Z2— HepaBHble HePerynapHbie 3KBaLMOHabHbIE Teopun, a: V (X0 =
= V(xi) — TOXAecTBO, npuHagnexawee Z11)22. W3 (13) u u3 TOro, 4Yto X,=
—CL,,(Z)) (/£{1,2}), cnepyeT h(Zj)*h(Z2, a 3HaumT, r(Xj)?ir(X2. Takum 06-
pasoM, OrpaHuyeHve I Ha JI>KB3avMHO OfHO3Ha4yHO. CrefoBaTebHO, OHO €eCTb
BnoXxeHue Sk JIR. OTcioga v u3 (15) cnegyet TeopeMa 3 u3 [3]: orpaHMyeHme T Ha
JDHecTb BMIOXKEHME, NPU KOTOPOM BCSKWUIA TNaBHbIA UNLTP NEPEXOAUT B TNaBHbIN
hunbTp.

3 ocHoBHOro pesynbTata paboTbl J/1amna [11] cnegyeT, uTo BCAKas anre6-
pavuyeckas peLUeTKa MNpefcTaBMMa Kak [/aBHbIi MAean pPeLleTKu KOHMPY3HLWiA
rpynnonga. bonee TOro, MMeeT Mecto

Teopema 5 Bcakas anrebpavyeckas pelleTka npeacTaBMMa Kak rNnaBHbIi
noean pelleTKM KOHIPYSHUMA MOHOMAA.

[JelicTBuTensHo, nyctb L — anrebpanyeckan pewetka, A= (A; F) — yHapHas
anrebpa Takas, uto Ls;Con A u L-kioH. Paccmotpum rpynnong M={AUL; o)
TakoW, 4To

a) anemMeHTbl A — fieBble Hynu M;

b) ans Bcakmx /E L 1 aCA aneMeHT/o a ecTb /(a) — pe3ynbTaTr onepauumn/
Hag a B A

c) ons Bcakux /, g u3 F anemeHT fog ecTb KOMNo3uums onepaunii/ ng B A

OueBUAHO, YTO M — monyrpynmna ¢ eauHnLeR. MNycTb E — KOHIrpysHUms Ha A
Torga EU Ap, rge AF—{(/./)|/EL), ecTb KOHrpysHUMs Ha M. OTcloga ICHO, YTO
Con A wn3omoptHa rnasHomy wugeany (A2UAH pewetkun Con M.

3 TeopeM 4 n 5 crefyeT, YTo BCAKas anrebpavyeckas pelleTka npeacraBuma
Kak rnasHbiii ngean JIK(E) 4na HEKOTOPOro X M HEKOTOPOW HeperynapHoii sKkeauumo-
HanbHON Teopun Z.
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3aMeTVM TakKXKe, YTO C MOMOLLLI0 TEOPEMbI 4 U KOHCTPYKLMKM, UCMONb30BaHHOM
B [0Ka3aTe/bCTBe TeopeMbl 5, HETPYAHO, OTNpaBnsAsAch OT NI060I anrebpanyeckoi
PeLLeTKW, MMEKLLel napy KOMMAKTHbLIX 3/1EMEHTOB C HEKOMMAKTHLIM MepeceyeHu-
em, MOCTPOUTb Napy KOHEYHO 06a3npyeMbiX 3KBaUMOHAbHBIX TEOPUIA YHApPHbIX
anrebp, nepeceveHne KOTOPbIX HE KOHEYHO 6asnpyemo (cp. [12]). Tak, U3 CyLlecTBo-
BaHWS Mapbl KOMMAKTHbIX KOHIPYSHUMWA C HEKOMMAKTHBIM MEpeceyeHneM B Mony-
rpynne ¢ AByMsi CBO60HbIMM 00pa3yIoLLMMUN (TAKOBbl KOHIPY3HLUSA, HaTAHYTasA Ha
(a, b), 1 koHrpyaHuus, HaTAHyTaa Ha (ba, a2b), rae a s b — cBobogHble obpasyto-
wme; aToT npumep npuHagnexuTt O. . MongasaHckomy u J1. M. LLHeepcoHy)
cneayeT CylecTBOBaHME Napbl KOHEYHO 6a3npyembix (6onee Toro — ogHobasmpye-
MbIX) PErynsipHbIX 3KBaLMOHa/IbHbIX Teopuid B J12, nepeceyeHne KOTOPbIX He KOHeY-
HO 6a3unpyemo.

W3 paccyxaeHuit, [OKa3bIBaOWMX TeopeMy 5, cregyeT, UTo 4/ BCAKON anre6-
panyeckoin pewetkn L cyuiectByeT napa (M, A) Takas, yTo M — mMoHoua, A —
noanonyrpynna M n L u3omopctHa pelleTke Tex KOHIpysHUuiA Ha A, KOTopble
WHAYLMPOBAHbI KOHIPY3HUMAMU Ha M. OBbIrpbiBas 3T0 06CTOATENLCTBO, Mbl [JOKa-
XKEM Cefyolyo Teopemy:

Teopema 6. Bce anrebpavyeckyie peleTK (M TOMbKO OHW) MpeAacTaBUMbl Kak
MOMHbIE 3HAOMOPMHbIE 06pa3sbl PELLETOK KOHIPY3HLMIA MOHOWAOB (C NEBLIMI HYNAMMW).

MycTb L —anrebpanueckan pewletka, A 1 M — Te Xe, 4TO U B [JOKa3aTe/IbCTBE
TeopeMbl 5 h — npeo6paszosaHne Con M Takoe, uto b(E)—(A2IN\E)0 Ar. fcHo,
yto h(E) — KoHrpyaHumn Ha M. Tyctb {Z?,iC/3}QCon M. OueBMAHO, uTO
h(C\Ei)—C\h(Ej). OueBmgHo Tarke, 4to Ah(Ei)Qh("JE)). Lokaxem obpaTHOe
BK/THOUEHNE.

Myctb (a,b)Eh(VEI). Torga (a, b)eY E:. 3HaunT, cywectsytoT g0,9l, ..., gn
Takme, 4vto (a,gQ£Ei), (g0,gi)tEh, ..., (gn, b)C.Einl pgna HekoTOpbIX
..., ITt1€/. Ho Torga gns BcAkoro CCA wMMeeT MecTo

(aoc, gOoc)£Eio, (gloc, gloc) Eil, ..., (g,,0c, boc)EEin+,
Nn:
(a, g0oc)eEio, (gloc, gioc) Eil, ..., (gn°c, b) "Ein+L

Tak kak gloc, gnoc npuHagiexar A, to
(a, gloc)Eh(Eig, (gloc, g”ciehiEid, ..., (gnoc, b)eh(Eintl).

OT1ctopa (a, b)EVTh{E?). 3Tum gokasaHo, YTo h — MOMHbIA 3HAOMOP(HU3M PELLETKM
Con M. Eé&h-06pa3 ecTb eé rnaBHbIil ngean, n3oMopdHbIii Con A, a3HauuT, 1 L.

N3 paccygeHunid, JOKa3biBalOLWMX TeopeMy 5, HETPYAHO YCMOTPETb, UTO ANA
BCAKOM KOHEYHOW anrebpbl pelleTka eé KOHrpysHUWIA NpefcTaBvMa KakK rNaBHbIN
naean pewleTKy KOHIPYsHUWIA KOHeyHoro moHouga. OTcrofa U U3 pacCyXeHuid,
[lOKa3blBalOLLNX TeopeMy 6, creayeT, Y4TO AN11 BCAKOW KOHEYHON anrebpbl peLleTka
€6 KOHIpysHUMIA npeficTaBUMa Kak 3HAOMOPMHbIA 00pa3 PeLIeTKUN KOHTPY3HLMIA
KOHEeYHOro MoHouga. EctecTBeHeH cnefytoLuiA BONPOC: BCAKAA /I KOHEYHas peLueT-
Ka npeactaBMMa Kak SHAOMOP(MHbLIA 06pa3 peLueTKM KOHrpYsHUMIA KOHEYHOro
mMoHomga? (Mnn, 4To TO e, BCAKas M KOHEYHas peLueTka npeAcTaBuMa Kak 3H-
JIOMOP(MHBIA 06pa3 PELIETKN KOHIPY3HLMIA KOHEYHOW anrebpbl?) MonoxutensHoe
peLleHne 3TOro BOMpoca AaBano 6bl, KaK KaXETCs, MPOAYKTUBHYIO XapaKTepUCTUKY
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KOHEYHbIX PELLETOK. M3 oTpuLaTenbHOrO pPeLleHnst CrefoBano Gbl, YTO HE BCsKas
KOHeYHasi pelleTKa NPeAcTaBMMa KakK PeLleTKa KOHTPY3HLUMIA KOHEYHoW anre6pbl.

B 3ak/oyeHne — cnefytolyie OTKPbITble BOMPOChI:

1 CylUuecTBYIOT NN KapavHan y. v perynapHas (HeperynspHast) akBaLuuoHanbHas
Teopus | B Lx Takue, 4to JIX(1) He nsomopdHa J1x(1') HY ans Kakux kapguHana X
N HeperynapHoi (perynapHoil) aksauuoHanbHOW Teopuu I ?

2. CyllecTBYIOT NN KapfAuHan y W perynspHas skeauuoHaibHad Teopus | B
Lx Takue, uTo JIX(1) He npefcTaBMMa Kak pelleTKa KOHrpysHUMA nonyrpynmnbl?

3. CyulecTBYHOT M A3bIK L, OTHOCAWMIACA K YHUBEpcanbHbIM anrebpam, u
3KBaLMOHanbHasA Teopusa | B L Takue, UTO peLLeTKa BCeX BKIOYaroWmx | sksaumo-
HafbHbIX Teopuii B L He npefcTaBMMa KakK pelleTKa 3KBaLMOHabHbIX Teopwuii
YHapHbIX anrebp?

C 9TVMM BOMPOCOM CBsi3aHa Credytolas 3agava:

4. HailTy npo3payHyto abCTPaKTHYI XapaKTePUCTUKY PELUETOK 3KBaLMOHa/b-
HbIX TEOPUIA YHapHbIX anreop.

BeposATHO, 3Ta 3afaya He MeHee TpyAHa, YeM 3afava abCTPaKTHON XapakTepu-
3aUMn PeLIETOK 3KBaLMOHAMbHBIX TEOPWIA YHMBepcanbHbIX anrebp. B [13] copep-
)KaTcsa HOBble BaXHbIe pe3y/ibTaTbl, CBA3aHHbIE C nocnefHen 3agadeid. (Monb3ytoch
CNyyaem COO6LINTb, YTO MHe He YAanocb BOCCTAHOBUTb [OKAa3aTe/bCTBa 3asB/EH-
HOrO MHOK pe3yfbTaTa O CnpaBes/IMBOCTV 06palleHnst ieMMbl MakKeHsu, 06CyX-
paemoin B [13]).

Kak nokasbiBaeT Teopema 1, 3agava 4 61m3Ka K 3afaqve abCTpakTHON XapaKTepu-
3alMn peLleTOK KOHIPYsHUMIA nonyrpynn. Becbma BeposTHO, YTo JIX onpegeiMmel
Kak nogpeLueTku JIx xopowo 0603puMbIM abCTPakTHbIM CBOMCTBOM. Ecnm 3To Tak,
TO 3afaya 4 He MeHee TpyfHa, YeM 3afaya abCTPaKTHOW XapakTepu3auum peLleTok
KOHIPYy3HUMIA MOHOWLOB.
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ON A PROBLEM CONCERNING ORTHOGONALITY
IN NORMED LINEAR SPACES

ADAM P. BOSZNAY

Introduction

In [1], the following orthogonality concept in the real normed linear space
(X, || «ll) was introduced.
We call the vectors x, y*X orthogonal in the following cases.

Case |. INl eMI = 0.

Case Il. X = Y2

INI

We denote the orthogonality of x andy by x _Ly. In inner product spaces, this
trivially coincides with the usual orthogonality concept.

We say that the above orthogonality relation is additive, if xxy and x Lz
imply xj_(y+2).

In [1], the following open problem is mentioned: Does additivity of the above-
defined orthogonality imply that the space is an inner product space?

Clearly, this is not the situation in the case of two-dimensional spaces.

In this paper, we solve the problem affirmatively in the case dim X"3.

The result

Theorem. Let (A, | ¢||) be a real normed linear space with dim Afs3. Let us
assume that the orthogonality relation is additive. Then (X, || ¢|) is an inner product
space.

Proof. Let (T, | ¢|)) an arbitrary three-dimensional subspace of (X, || ¢|)).
We prove that (Y, || ¢||) is an inner product space.

First, we need some lemmas.
Lemma 1 Let y€Y, y*O. Then the set

yl = {xEY; x_Ly}
is a two-dimensional subspace of Y.
1980 Mathematics Subject Classification (1985 Revision). Primary 46C05; Secondary 46B20.
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Proof of Lemma 1. [1], 3.07 says that x_Ly implies x +ay for arbitrary
atR. So, x1,xAyl yields that ax1+Rx2y+ for all a, BdR, henceyx is a sub-
space of Y. Because y+y is absurd, yl1+ Y. On the other hand, elementary conti-
nuity reasoning shows that dim>-*£2. Lemma 1 is proved.

Lemma 2. Let YEY, |ly||=1, IIX||=1}. Then for all x*yx, aER
we have |ly+ax]||El.

Proof of Lemma 2. Without loss of generality, we can assume that ||x|| = I.
Clearly, there exists x*£y+, |x*|=1 such that

1 flix* +*ax|| S1
(1) M—x+ax|| £'1

Let SASHy-1 If zES', then |ly—z||=/2. This implies that

for all aER.

F fr;22}cS-

where the left-hand side is a homothetic image of S'. Because of this, (1), and
X*€S', x€S"

X+ 'y
2 ——|-ax £ 1 forall afR.
(2) 12 |
Clearly, x is an element of the subspace generated by x and L_:EX-. Now, applying
i

the same argument again, an easy computation shows that
©) p*+y’|-L

| v2 )
Let

st =snf

if2

For all z€S",

Ii*+y
/2

r:rh
i2

This implies that

Because of this and (3),
X+y XxX*—y
f2 172
7f
So, |ly+ax]||El for all aE R. Lemma 2 is proved.

m-ax 1 for all a€R.
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Lemma 3. Let MezY a two-dimensional subspace. Then there exists a y£'Y,
H 1= 1 such that y-L=M.

Proof of Lemma 3. Let be linearly independent. One can easily
check that L=yj- C\yt is a one-dimensional subspace. Let yEL, |ly||= 1. Clearly,
y+Yi, yx-yt, and so, yxayl+Ryi for all a, BER.

Using Lemma 1, Lemma 3 follows.

Lemma 4. Let Mc Y be a two-dimensional subspace. Then there exists a linear
projection P: Y—M such that ||P||= 1

Proof of Lemma 4. Let |ly||= 1 and yx=M. (Here we have used Lemma 3.)
Using Lemma 2, we have for all mEéM, B, €R

) \am-+Ry\ £ [af[jm].

We define
P(txm+Ry) = am.

(4) easily implies that ||P]|= 1. Lemma 4 is proved.

Applying now the Kakutani characterization of the inner product [2 p. 157],
the Theorem follows.
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STRONGNESS IN /-LATTICES

GERD RICHTER

Abstract

The investigations of strongness in lattices of finite length in [3], [12], [13] shall be continued for
/-lattices of arbitrary length. In such lattices we investigate geometric exchange properties, the basis
exchange property, join symmetry in the sense of Gaskill—Rival [4] and further properties as
well as strong and strict elements.

1. Introduction

In [3] Faigle—Richter—Stern investigated some kinds of exchange properties
and showed the equivalence of them with strongness in semimodular lattices of finite
length. In [13] we extended in lattices of finite length the notion of a strong join-
irreducible element to arbitrary lattice elements in two ways using two unary opera-
tions and we got the notion of a strong element and the notion of a strict element.
Since lattices of finite length are special algebraic /-lattices we shall continue this
investigations for /-lattices of arbitrary length. Some of the obtained results are im-
provements of unpublished results of [9].

In Section 2 we give some basic notions.

Further we investigate strongness and semimodularity in arbitrary /-lattices in
Section 3 and strong semimodular /-lattices in Section 4. In Section 5 we restrict the
investigated class of lattices to algebraic strong semimodular /-lattices. As a main
result in this section we give a generalization of the Theorem of Kuros-Ore for in-
finite join representations. In the foreground of Section 6 we are engaged in join
symmetry and basis exchange.

2. Basic notions

Let L be a complete lattice. An element vEL is called join-irreducible, if the
implication
(*) TQL and v —VT imply VvET

is satisfied for each finite subset T of L. v is called completely join-irreducible, if
(*) is satisfied for each subset T of L.

Let /=/(£) be the set of all completely join-irreducible elements of L. If an
element bdL has a join representation b=VU with UQJ we say b has a decom-
position. A decomposition b=WU is irredundant if h=»V(t\{w}) holds for each
ueu.
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L isaJ-lattice if each element of L has a decomposition. If asx”b (a, b, xdL)
implies either a=x or b=x we say a is covered by b or b covers a and we write
a<b. In a complete lattice each completely join-irreducible element v covers exactly
one element. This element will be denoted by v'.

An element cdL is called compact if TQL and c¢~fT imply cS\IT" for
any finite subset T' of T.

Let K=K(L) be the set of all compact elements of L. L is an algebraic or a
compactly generated lattice if each element adL has a join representation a= VT
with TQK.

An element gdL is called precompact (or inaccessible from below, cf. Birk-
hoff—Frink [1]) if TQL and g=\JT imply q=\/T"' for any finite subset T' of T.

Let Q be the set of all precompact elements of L. L is a prealgebraic lattice if
each adL has a join representation u=VT with T =Q.

It is obvious that JQQ and K”~Q hold in each prealgebraic lattice. In an
algebraic lattice JQK=Q holds.

For lattice elements x and y we define the interval y/x to be the set of all zdL
such that x~zSy holds. If y/x=$% and x/y =0 hold then x and y are said to be
incomparable.

For Ed{/, K, Q} we denote by E(y/x) the set of completely join-irreducible,
compact and precompact elements, respectively, of the interval y/x.

A lattice L is (upper) semimodular if, for a, bdL, a/\b<a implies b<afb.

A /-lattice L has

a) the derivation property (D) if vdJ, TQJ and »sVT imply v'?
y(t':tdT),

b) the derivation property (DO) if adL, v£J and v*a imply afv'*afv,

c) the derivation property (DI) if adL, vdJ and vARa imply a\hf<afv,

d) the exchange property (EI) if adL, u,vdJ, vs.afu and v*afu' imply
mS GVmVi,

\e/) the exchange property (E2) if adL, u,vdJ, v&aMu and v*afu' imply
uta\lv,

f) the exchange property (E3) if adL, u,vdJ, vSafu and v*afu' imply
rsafv and udBafv',

g) the hereditary property (HJ) if adL and vdJ imply a\lvdJ{a\lv/a).

(El, (E2) and (E3) are called geometric exchange properties (cf. [3]). It is ob-
vious that a lattice with property (Ei) also has property (Er—1) (/—3,2) and a
lattice with property (DI) also has property (DO).

A /-lattice L is strong if it has (DO).

For adL let Ua:={u: udL, u<a}.

If Ua=0 then we define a+:=a otherwise let a+:=N\Ua. Further let
a':=\j{y': vdJ{a/0)) for each element a of a /-lattice L.

An element a of a /-lattice L is strong if xdL and asxfa' imply a”x.

An element a of a /-lattice L is strict if xdL and a“xfa+ imply asx,

A minimal pair (p, A) of L is an antichain AQJ together with an element
pdJ such that the following three conditions are fulfilled:

(Mpl) pdA
(Mp2) p"MA _ iy
(Mp3) p$\JA for every antichain A<A.
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A~A holds if to each AEA there exists an afA suchthat 4Sa holds.
The lattice L is join symmetric if it satisfies
(Js) (p,A) minimal pair of L and g£A imply that (g, ("4\{5}HU {p}) is a minimal
pair of L.
An antichain AQJ is called a basis of x€EL if the following two conditions are
satisfied:
Bl) x=\JA
(B2) x~V A for every antichain A<A.
A /-lattice L has the basis exchange property if it satisfies
(Be) x£EL, Bt and B%bases of x and b~ Bi imply the existence of an element
b2£B2 such that {bZ is a basis of x.

3. Strongness and semimodularity in arbitrary /- lattices
The first definition of strongness of a lattice was given by Faigle [2] by a property
(St) p,qdd, g<p, XxEL and ps. gMx imply p ™ x
In lattices of finite length properties (DO), (St') and
(SY) pE£/, xEL and p S xVp' imply p S x
(given in Faigle—Richter—Stern [3]) are equivalent. It is obvious that (St) and (DO)

are equivalent for arbitrary /-lattices. But there are /-lattices which have (St')
but not (DO) as is shown in Figure 1 (cf. also Richter [9], Figure 9.4).

Fig. 1

Conversely, the following lemma holds.
Lemma 1 (Richter [9], Satz 9.5). Every strong lattice has properly (St').

Proof. Let p,g€J, gq"p, xXEL and pSxVq. Since g<p we have g”p’,
ie. pAxVg-"xMp'SxVp and, therefore, xVp'=xVp holds. If L is strong, i.e.
if L has (DO), this is possible only in the case that /?Sx holds.
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By the definitions of strong lattices, strong elements and strict elements one can
simply verify the subsequent

Lemma 2. For a J-lattice L the following conditions are pairwise equivalent:

(i) L is strong.
(i) Each element of J(L) is strong.
(iii) Each element of J(L) is strict.

In the following we want to characterize strongness and strictness, respectively,
of an element of a /-lattice by forbidden join-subsemilattices.

Theorem 3. Let L be a J-lattice. An element adL, aAO0, is strong (strict) iff
a?:a' (aAa+) holds and L does not contain ajoin-subsemilattice oftheform of Figure
2 or of Figure 3.

Proof. If adL is not strong (strict) then there exists an xdL such that
GaxVo' (aSxVa+) and a”Bx hold. Then there are two possibilities:

(1) a=a' (a=a+) or

(2) a'<a (at<a) and al/x=a'\lx (aVx=a+\Jx).

In the second case we have x"“Ra' (x"=a+) since x*a' (x"a+) and a'“a
(a+<0() vyield x\la'<a (x\fa+<a) contradicting a'Jx=a\/x (a+jx —aMx).
Therefore, x”*a yields a join-subsemilattice of the form of Figure 3 and x3pa
yields a join-subsemilattice of the form of Figure 2.

If L contains a join-subsemilattice of the form of Figure 2 or of Figure 3 then
there is an xdL with a*xWa' (aSxVfl+) but a”x what means that adL is
not strong (strict).

Remark. If adL is a precompact element then there is no element xdL such
that there exists a join-subsemilattice of the form



STRONGNESS IN /-LATTICES 71

Fig. 3a

Since in the interval a/x there would exist an element cEL suchthat xS.c<a holds.
Then a+Sc and, therefore, a”a+Vx"c<a would hold, a contradiction.

In [13] (Proposition 3) we proved that a lattice of finite length is strong iff
each of its elements is strong. In /-lattices of arbitrary length this does not hold, since
there can exist, for instance, injective elements which are not strong. An element a
of L is called injective if a=a! holds. But we are able to prove that in a strong lattice
each compact element is strong.

Proposition 4. Let L be a strong J-lattice. Then each compact element c£L
(c”O) s strong.

Proof. Let cEK, c*O and x£L with cs.x\lc'=xMc and c”Bx. Then there
holds ¢S jeVe'=x\I\j(y': v£J(c/0)). Since c is compact there are vit ..., vnEJ(c/0)
such that ¢Sxfv'fd ..\Jv'n holds. Without restriction of generality it is possible to
assume that b—x\lv'1\J..\Jv',, is an irredundant join representation of b. Therefore,
there exists an index i (1S/Sn) such that vtsb —x\lc and VfiRxMv M...
WYL AIvin<b  hold.

This is a contradiction to our supposition that L and, therefore, each completely
join-irreducible element is strong.

In [13] (Theorem 6 and Corollary 8) it was shown that in a strong lattice of finite
length a'*a+ holds and in a semimodular lattice of finite length a+S / holds. In
Theorem 5 and Theorem 7 these results will be generalized.

Theorem 5 (cf. Richter—Stern [13], Theorem 6). Let L be a strong lattice.
Then for each aEL always a'“a+ holds.

Proof. Let afL. If t/,=0, i.e. a+=a, then it is obvious that a'*a+=a
holds. Let Ua™& bfUa (i.e. b<a) and v£J(a/0). If v'iBb holds, it follows
a=b\lv' and thus v*bWv'. Since v'*b also implies v*b we obtain a contradic-
tion to our supposition that L is strong. Hence r'sft holds for each vdJ(ajO) and,
therefore, if=V(v': v£J(a/0))*b for each bEUa. This implies a'® AUa=a+.

The following lemma which is interesting in itself will be needed for the proof
of Theorem 7. In [13] this lemma was called “Butterfly lemma” since in the proof
was made use of a diagram in the form of a butterfly.

Lemma 6 (cf. Richter—Stern [13], Theorem 7). Let L be a semimodular
lattice andfor a£L let a=w,V...V«,, («!, ..., unEJ(a/0)) be an irredundant decom-
position of a. Then a+*u[V..Vi/' holds.

The proof is the same as the proof of Theorem 7 in Richter—Stern [13], since in
that proof was not made use of the assumption that L is of finite length.

Theorem 7 (cf. Richter—Stern [13], Corollary 8). In a semimodular J-lattice
L a+Sa' holdsfor each precompact element afL.
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Proof. In a/-lattice L each precompact element a has an irredundant decompo-
sition a=«1V..Vw,, with ult ..., M,,C/(a/0). The definition of a' yields a'suiV ...V u'.
Since L is semimodular it is possible to apply Lemma6and we obtaina'~u 'fl... Vh's
=za+.

In Faigle—Richter—Stern [3] (Theorem 1) it was shown that a lattice of finite
length is strong semimodular iff it has the geometric exchange property (E2). We
will show that in arbitrary /-lattices this is not so.

Lemma 8 (cf. Richter [9], Hilfssatz 5.4). Each semimodular J-lattice has the
geometric exchange property (EI).

Proof. Let afL, u,vEJ, u*aWv, u™BaWv'. Then vA(a\fv)=v'-<v holds.
This implies aMv'Vv=aVv>a\Jv' by semimodularity of L. Therefore, we obtain

a\/v—a\lv'\lu, i.e. wSaVv'Mu.
The converse of Lemma 8 does not hold. It is even possible to show that a
["-lattice with (E3) and, therefore, also with (E2) and (EI) must not be semimodular

Lemma 9 (cf. Richter [9], Satz 9.3). A J-lattice L with geometric exchange
property (E3) is not necessarily semimodular.

Proof. In Figure 4 a /-lattice L is shown, in which the conditions u, »£/,
atL, u”™ajv and h” GVi> are satisfied only in the case a<u=v, i.e. itis ob-
vious that L has (E3). But L is not semimodular, since cAb<c and b<cdb hold.

0
Fig. 4

In lattices of finite length (EI) and semimodularity are equivalent (cf. Stern
[14], Theorem 2).
For strong lattices the following theorem holds.

Theorem 10 (cf. Richter [9], Satz 5.5). Let L be a strong J-lattice. Then the
following conditions are pairwise equivalent:

(i) L has (D).
(ii) L has (EI).
(iii) L has (E2).
(iv) L has (E3).
(v) L is semimodular.
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Proof. (i)=>(v): Let a, bEL and af\b<a. Then there is a vdJ(a/Q) with
vipahb, i.e. a=(aAh)Vr holds. By (DI) we obtain a/\b”(al\b)\/v'<(al\b)Vv=a,
i.e. (a/\b)\/v'—al\b and, therefore, also v’s.at\b-"b hold.

Further a\lb—al\b)\Jv\db=b\lv holds. By (DI) we obtain a\lb=v\lb>
>v'Vb=b, i.e. L is semimodular.

(V)=>(ii): This holds by Lemma 8.

(ii) =>(iii): Let afL, u”ayv and u”aMv'. Then vSaVv'Vu holds
by (EIl). Assume vE£a\/u. Then we obtain a\lv=-{a\lu)\]Jv=(a\lu)\Jv' in contra-
diction to the strongness of L. Therefore, L has property (E2).

(iii) =>(iv): Let a£L, u,vEJ, u”aMv and ir*aMv'. Then v*aMu holds by
(E2), i.e. a\/v=a\/lu. Further u*aWv' implies u”a. Consequently, aWu'"*aWu
holds since L is strong. v*aMu' would yield aVvSaVu'<aVu=aVv, a contra-
diction. Thus holds, i.e. L has (E3).

(iv) =>(i): Let aEL, v£J, v$a. Then aVv'<allv holds since L is strong. If
there is an element b with aVr'<ii<flV«, then there is also an element u£J(b/0)
such that u”BaMv' holds since otherwise b=aMv' would hold. u*RaVv' and
uSh*aMv vyield v*aMu by (E3), i.e. aVv=aVu”b holds in contradiction to
b”raMv. Thus L has (DI).

4. Strong semimodular ./-lattices

As a consequence of Theorem 10 we obtain immediately the following corollary.
Corollary 11. A J-lattice L has (DI) iff it is a strong semimodular lattice.

Proof. Since a lattice with (DI) always is strong the assertion follows from Theo-
rem 10.

Theorem 12 (Richter [9], Satz 5.6). Every strong semimodular J-lattice L has
the hereditary property (HJ)-

Proof. Let afL, vEj, v$a. By (DI) a\lv'<allv holds. If aVv$J(allvla)
holds then there exists an element b with a*b”aWv and b*paWv'. Therefore,
thereisa u£J(b/0) with u*aMv' and u”aVv since L is a /-lattice. By Theorem 10
L has exchange property (E2). Thus we get aMv—aMu”b contradicting b*aWv.
Therefore, L has (HJ).

Remark. There are finite strong lattices with (HJ) which are not semimodular
(Figure 5) and there are also finite strong lattices which have not the hereditary
property (HJ) (Figure 6).

Figm5
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As a corollary of Theorem 12 and results of the papers [7], [8] and [10] we obtain
the following

Corollary 13. Let L be a strong semimodular lattice and let a=«1V...\V«,, =
=vfj...\vm be two irredundant decompositions of a with ult VX, ...,vnfj.
Then the following conditions are satisfied:

(1) n=m (Theorem of Kuros-Ore).

(2) For each ut there exists a Vj such that

a = nV..Vni_IVAVnr(+1V...Vu,
= viv..avionvuivvi HV . Wyn.
(3) There exists a permutation n of the numbers 1,  n such thatfor i=1, n

a = MV..VM|_IVr«j)Vwf+1V
holds.

Since L has property (HJ) by Theorem 12 the assertion is proved by the Theo-
rems 1, 4 and 7 of Richter [7] (Remark: In [7] property (HJ) is denoted by (Vi)).
Analogously Theorem 7 of [7] yields the proof of the following corollary.

Corollary 14 (cf. Richter [7], Theorem 7). Let L be a strong semimodular
lattice and let a—\/T=VR (T, RQJ) be two decompositions of a. Then for each
tfT there exists an rfR such that a=rW\/(T\{t}). Moreover, this resulting decom-
position is irredundant if the decomposition a—VT is irredundant.

In the subsequent lemma it will be shown that a strong semimodular /-lattice
has the derivation property (D) restricted of finite sets TQJ.

Lemma 15 (cf. Richter [9], Satz 5.8). Let L be a strong semimodular lattice
and let

v~ vfj..\jyvn=a0 (v,vx, ...,vnEJ).
Then LAlvin holds, ie. df—V1. \v'n.

Proof. Let 10=0, a,=v'0\/..\lv'l_1VvI+1\ / and bi=vx\/...Vi>_iV
\WvI+1V Vv, (Is/sn). Without restriction of generality it is possible to assume
that

(*) v$ b
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holds for /=1,Further we have y”*a0=tdva”—vflay. Let us assume that
y'SymvVam and y'“r*Vu*, (ISmS/i) hold. Then there exists a u£J(v'/0) with
uramMvm and uiBajdvm. Since L has exchange property (E3) by Theorem 10,
vimtamMu and, therefore, amlvm=amlJu=am\Jv' hold. Let cmrylV...Vymt.
Then al0=cnf(am/vm) and hnmivy,=cnvV(anvVy') hold, ie. a0=bmW' since
anVy'=lmvym holds. Thus v”aO=bm/v'*bm\/v holds, i.e. we obtain bmwWv'=
—bm\/v in contradiction to the strongness of L since v bm holds by (*). Conse-
quently, v'*amwm and also v'-*anivn—v'fj...\/v'H hold.

An important class of /-lattices is the class of AC-lattices (cf. for instance Maeda-
Maeda [6]). An AC-lattice is an atomistic lattice, that is a /-lattice in which each
completely join-irreducible element v is an atom (i.e. y>-0), which has the covering
property (C) a,pRL,p atom and a/\p=0 imply a<djp.

In the subsequent we investigate connections between strong semimodular /-
lattices and AC-lattices.

Theorem 16 (Richter [9], Satz 5. 11). Let L be astrong semimodular J-lattice
and let aBL. Then the interval ala! is an AC-lattice.

Proof. Strongness, semimodularity and v's.a' yield either y g/ or a'-c.a'vv
(vBJ(a/0)). Let uRJ(aja’) and u”a!. Since L is a /-lattice u=V(y: y£/(w/0))=
=f (a'Vv: vBJ(u/0)) holds. Since u is completely join-irreducible in the interval
a/a' there is a yE/(«/0) such that u=a'Mva, i.e. u=a'\lva>a’ holds. Therefore,
each element uof J(a/a’) with u*a' isan atom in aja\ i.e. L isatomistic. In addition
to that we have only to show that L has the covering property (C).

Let bfa/a' and g an atom in a/a’ with q~b. Then there isan v£J(a/0) with
g=a'Mv, v*8b and v'*a'*b. Consequently, b=b\lv'<b\lv=Db\lg holds, since L
has property (DI).

At last in this section we intend to compare a' and a+ for precompact elements a
of a strong semimodular lattice L.

Theorem 17 (cf. Richter—Stern [13], Theorem 9). Let L be a strong semi-
modular J-lattice. Thena+=a' holds for each precompact element aB L.

Proof. Theorem 5 and Theorem 7 yield the assertion.

5. Algebraic /-lattices

In algebraic /-lattices we are able to sharpen some of the above mentioned results.

Theorem 18 (cf. Richter—Stern [13], Proposition 3). Let L be an algebraic
J-lattice. L is strong iff each compact element is strong.

Proof. In astrong /-lattice each compact element is strong (Proposition 4). Let L
be an algebraic /-lattice in which each compact element is strong. Since in an algebraic
lattice each completely join-irreducible element is compact, each completely join-
irreducible element is strong, i.e. L is strong.

Proposition 19 (cf. Richter—Stern [13], Proposition 10). Let L be an algebraic
semimodular J-lattice. Each compact element of L is strong iff it is strict.
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Proof. If each compact element is strong then L is strong by Theorem 18. Thus
c'=c+ holds for each compact element cEL by Theorem 17. Hence c&xMc+
(—x\Jc") yields cSx, i.e. each compact cEL is strict.

Conversely, if each compact element of L is strict, then also each completely
join-irreducible element is strict and, therefore, strong, i.e. L is strong. Thus c+=c'
holds for each compact cdL by Theorem 17. Consequently, c”*xjc' (=xVc+)
yields car, i.e. each compact cfL is strong.

Coroltary 20 (cf. Richter—Stern [13], Corollary 11). Let L be an algebraic
semimodular J-lattice. Then the following three conditions are equivalent:

(i) L is strong.
(if) Each compact element ofL is strong.
(iii) Each compact element of L is strict.

P roof. The equivalence of (i) and (ii) follows from Theorem 18. Proposition 19
yields the equivalence of (ii) and (iii).

Theorem 21 (cf. Richter [9], Folgerung 5.9). Let L be an algebraic strong
semimodular lattice. Then L has the derivation property (D).

ProoF. Let v£J, T"~J and v*MT. Since in every algebraic lattice JQK
holds, there exists a finite subset S of T with rdV 5. By Lemma 15 v'~ VO™
s<=SQT)7SV(t": tiT) holds.

Proposition 22 (cf. Richter [9], Hilfssatz 5.10). In each algebraic J-lattice
which has derivation property (D) and, therefore, also in each algebraic strong semi-
modular J-latticefor any subset TofJ always (VT)'= V(C: tET) holds.

ProoF. By definition (\ZTY—{y":v*.J(WT/0)) W (t':t*"T) holds since
TQ/iVT/O). For each vEJ(VT/0) weget »'sV (i":1C7) since rsV F holds and
L has property (D), i.e. (Vr)'AV(C: ?2€T)a(VTf.

An algebraic AC-lattice is called a geometric lattice. As a consequence of Theo-
rem 16 we obtain

Coroltlary 23 (cf. Richter [9], Folgerung 5.12). Let L be an algebraic strong
semimodular J-lattice. Then for each af£L the interval ala' is a geometric lattice.

Proof. Head [5], (Lemma 1), proved that each interval b/a of an algebraic
lattice is also algebraic. Thus Theorem 16 yields the assertion.

In Corollary 14 we proved that if d=VT=\JR (T, R€J) are two decomposi-
tions ofaina strong semimodular J-lattice L then any element / of T can be replaced
by an element <iR- But if these decompositions are irredundant there are no state-
ments about the cardinality of T and R except in the finite case (Corollary 13). For
algebraic strong semimodular /-lattices we are able to generalize the Theorem of
Kuros-Ore for infinite decompositions and to give a statement about the cardinality
of T and R. The proof of the following Theorem 24 will be published in the subse-
quent paper [11], since for this proof it is necessary to investigate an abstract inde-
pendence relation in a special subset of / in prealgebraic lattices. One can find the
proof also in [9] (Satz 5.15).
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Theorem 24 (cf. Richter [9], Satz 5.15, and [11]). Let L be an algebraic strong
semimodular J-lattice. if a=VT—\/R (T, R*=J) are two irredundant decompositions
of a then T and R have the same cardinality.

6. Join symmetry and basis exchange

In [3] Faigle—Richter—Stern investigated in connection with strong semimodu-
lar lattices of finite length also join symmetric lattices and lattices with basis exchange
property. In lattices of finite length the equivalence of the following three conditions
holds:

(i) L is strong and semimodular.
(i) L is join symmetric.
(iii) L has the basis exchange property.
In infinite /-lattices this does not hold as it will be shown in the subsequent results.
At first we prove that a finite strong lattice is not necessarily join symmetric.

Proposition 25 (cf. Richter [9], Satz 9.8). Let L be a strongfinite lattice.
Then L must not be join symmetric.

Proof. Figure 5 shows a finite strong lattice which is not semimodular. There-
fore, this lattice is not join symmetric by Theorem 4 of Faigle—Richter—Stern [3]

Proposition 26 (cf. Richter [9], Satz 9.9). Let L be a strong semimodular
J-lattice. Then L is not necessarily join symmetric.

Proof. Figure 7 shows a strong semimodular /-lattice, since afL, u€/=
= {XVyX ...,z,q} and v*a imply a\/v'<allv. The pair (g, (x, z}) is not minimal
but the pair (z, {x, q}) is minimal. Thus L is not join symmetric.

Fig. 7
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Ifin a strong semimodular /-lattice each element has an irredundant decomposi-
tion what is satisfied, for instance, in each lattice of finite length, then L is join sym-
metric but the converse does not hold.

Theorem 27 (cf. Richter [9], Satz 9.10). Let L be a strong semimodular
J-lattice and let each q' with qfJ have an irredundant decomposition. Then L is
join symmetric.

Proof. Let (p, C) be a minimal pair and let gEC and x= V(C\{#}). Then by
the supposition g' has an irredundant decomposition q'—\IB and2?is an antichain.
Since b<qg holds for each bEB we obtain D=(C \{<HU(_B\(x/0))< C, where D
is also an antichain. Thus pSxjqg'= VE<VC=xVqg would be a contradiction to
the minimality of (p,C), i.e. p*xjg and p”~xjqg" hold. By Theorem 10 L has
exchange property (E3), i.e. q”xjp and g”~xjp’ hold. Let M=(C\{i})U {P}
Then the pair (g, M) satisfies conditions (Mpl) and (Mp2). If (g, M) violates con-
dition (Mp3) then there exists because of g”xjp"' an antichain £<C\{”*} such
that g-"VEjp and qiRjEMp'-~xjp' hold. By (E3) we obtain p*"WEVq, i.e.
p” VF where F=(E\(q/0))U [qg) is an antichain ofJ with F<C. This is a contra-
diction to the minimality of (p, C). Thus (g, M) satisfies condition (Mp3), ie. L
is join symmetric.

Theorem 28 (cf. Richter [9], Satz 9.11). Let L be ajoin symmetric J-lattice
which has the basis exchange property and in which each element has an irredundant
decomposition. Then L must not be strong or semimodular.

Proof. In the lattice of Figure 8
J L*Xj,y i./—0,1 12 2 ...j—0 1 2.}

holds. Each element has an irredundant decomposition with at most two elements ofJ.
Let aEL and ure{v,,,yn,zn} (NE{0, 1, - 1, ..}) or un=xn (n£{0, —1, —2, ..}).
Then u,=un-x and, for a”un, a\lun=aVun_,=aVu, hold especially also if
u,,"3a holds, i.e. L is not strong.

Further x0=v/\z<v and z<vMz=\ imply that L is not semimodular.

Since to each antichain B£J and to each wgL with B and \B\"2 there
is an antichain B'={b": bdB}<B with urVB", there exists no minimal pair in Lf
i.e. L isjoin symmetric. The same reason yields that except the elements of J no ele-
ment has a basis, i.e. L has the basis exchange property.

The following theorem shows that each strong semimodular lattice has the basis
exchange property.

Theorem 29 (cf. Richter [9], Satz 9.12). Each strong semimodular J-lattice
L has the basis exchange properly.

Proof. Let xZL and let B and C be bases of x. Since by Theorem 12 L has the
hereditary property (HJ) there exists to each b£B an element cfC with x=
= V(B\{h})Vc. This decomposition is irredundant since x=JB is an irredundant
decomposition (Corollary 14). Let us assume that there is an antichain D with
D<(B\{b})U {c}=B' and x= VD. Then there are an element dED and an ele-
ment e£B' with d<e, i.e. d*e'. Let y= V(BA{e}). Then x=yVe—VC=V
S V(J>\{/})Ve'=>Ve holds, i.e. ey andyde=yje' hold contradicting that L is
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i

Fig. 8

strong and semimodular. Therefore, there is no antichain D with D<B'. Since B'
is an antichain ofJ, B' is a basis of x, i.e. L has the basis exchange property.

Theorem 29 and Proposition 26 yield that a /-lattice which has the basis exchange
property must not be join-symmetric. There are even finite lattices which have the
basis exchange property but which are not join-symmetric (cf. Figure 5). By Theorems
4 and 5 of [3] each join symmetric lattice of finite length has the basis exchange prop-
erty.

Probtem. Does there exist an infinite join-symmetric /-lattice which does not
have the basis exchange property?
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IRREGULARITIES OF DISTRIBUTION AND CATEGORY THEOREM

JOZSEF BECK

1. Introduction

Suppose that we have a configuration P—P(N) of N points, not necessarily
distinct, in the unit square £/2=[0, 1)2 Let Z2denote, as usual, the set of integer
lattice points in the plane R2 Denote by P* the set of points p+nwhere p£P and
n£Z2 Thus P* is a periodic set.

Let 5cR* be an arbitrary compact set with usual Lebesgue measure (i.e.
area) p(B). Write Z[P*\ B] for the number of points of P* in B, and

D'OMP; B] = Z[P*; B] - Np(B).

The quantity D'*’[P\ B] tells us how far Z[P*\ B] deviates from the expected number
Np(B) of points of P* in B.

Let A be an arbitrary compact and convex set in the plane. For arbitrary real
number a and two-dimensional vector VER2 set

A(a, v) = {ax+ v:ixEN}.
Clearly A(a, v) is a homothetic image of A. Let
AofP; A] = sup|D,orfF; A(a, v

and
AZ'[A) =infd,ofi> A]

where the supremum is extended over all contractions —sas| and translations
VvER2 and the infimum is extended over all N-element sets P in the unit square U2
We say that d$r [A] is the “torus discrepancy” of the homothetic family A(a, v),
—SaS|, vER2 (note that reflection across the origin is allowed).
We recall the following two results from Beck (1987) (see Corollary IB and
Corollary 4C, respectively).

Theorem A. Let AczR2 be a compact convex region such that the boundary
curve of A is twice continuously differentiable and has strictly positive curvature. Then

WIAT g

Nmint i\ ruaog Ay~12
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82 J. BECK

Theorem B. Let ~IcR2 be a convex polygon. Then for any e>0,

i AWIA]
M (log TWHE

Comparing Theorems A and B, we see that the torus discrepancy A'STA] is
“large” or “small” according as A is “smooth” or “cornered”, respectively. The next
result demonstrates the existence of a compact convex region with very irregular
discrepancy behaviour. We shall actually prove that “most” (in the sense of category)
convex regions have this property.

Let CONV(2) be the metric space of all compact convex regions in R2endowed
with the Hausdorff metric, defined by

distH(A, B) = max gml% min X —y, T%erén |X—X|)

for A, CONV(2). Here |x—y| denotes, as usual, the euclidean distance. By the
Blaschke selection theorem (see, for example, Hadwiger (1957), p. 154 and p. 201),
CONV(2) is locally compact. It follows from the Baire category theorem that the
sets of first category in CONV/(2) are “small” compared to their complements.

We have

Theorem 11 Let f: N—R+ and g: N—R+ satisfy (TVs2)

= 0.

48, ~fogrnms > 0

g(N) _
n~~ TVU/4(logTV)- 12
Thenfor all /fACONV (2), except those in a set offirst category,
(i) Af[A]<f(N) for infinitely many TV and
(i) A-fIA] >g(N) for infinitely many TV
Note that Theorem 1.1 was motivated by Gruber and Kenderov [2] (see es-
pecially Theorem 2).

for some £>0 and

2. Proof of Theorem 1.1

The simple underlying idea of the proof of Theorem 11 is as follows: Let P1
be a convex polygon. By “smoothing” the comers of P 1slightly one can obtain a
convex region B 1of differentiability class two. In B 1one can inscribe a convex poly-
gon P2 which approximates B1very closely. By “smoothing” the corners of P2
slightly one can obtain a convex region B 2 of differentiability class two. And so on.
If in this process, P1LB1P2B2 ... differ by only very little, then A—Pir\BICQ
C\P2C\B2C\... satisfies the requirements (i) and (ii) of Theorem 1.1.

After the heuristics, we begin the proof of (i). We shall actually deduce it from
Theorem C below (see Theorem 4B in Beck [1]).

Theorem C. Let AczR2 be a compact convex region. Given any integer =2,
let AtdA denote an inscribed I-gon (i.e. polygon with I sides) of largest area. Denote



IRREGULARITIES OF DISTRIBUTION 83

by £n(A) the smallest integer /S 3 such that p(A\A,)*I2N x Then for any
N~2 and e>0,
A'STA] < CI(A, e) f,,(A) *(log Nfi+*.

Let POL(rt) denote the subspace of CONV/(2) consisting of all convex polygons
of at most n vertices. For every .4ECONV(2), let

V(A, n) = infp(A\P),

where the infimum is extended over all PdPOL(n) satisfying Pa A.
The following lemma was independently proved by Schneider and Wieacker
[4] and by Gruber and Kenderov [2].

Lemma 2.1. Let h: N—R+ satisfy h(n)—0 as n—-°. Then for all Ad.
€CONV(2), except those in a set offirst category, Vv(A, n)<h(n) for infinitely
many n.

Proof. The function A-*v(A,n) is clearly continuous for each ndN. Thus
the sets (TBCONV(2): v(A, n)*h(n)} are closed for each «€N. It follows that the

set
Ak= {T6CONV(2):v(.4, n)s h(n) forall n™ k) —

= rlk {y46CONV(2):v(T, n) * h(n)}

is again closed for each KEN. We shall show that
) Ak is nowhere dense in CONV(2) for each kEN.

In view of (1), it is sufficient to show that Ak has empty interior. Suppose that for
some KEN, the interior of Ak is non-empty. Since the set of convex polygons is
dense in CONV/(2), there exists a convex polygon PEAk. Then v(P, n)—0 for all
sufficiently large n. This contradicts the definition of Ak. Hence (2) is established, and
Lemma 2.1 follows. |

Let /i(«)=2 2 and write
si = {TECONV(2):v(T, n) < h(ri) for infinitely many n).
Then for every Ads/ and ATS3,

liminf, (")
N-00 " log log N
and so, by Theorem C,

Ant[A] < f(N) for infinitely many N

(here f(N) is a function satisfying the hypothesis of Theorem 1.1). Theorem 1.1 (i)
follows, since by Lemma 2.1, CONV/(2)\s/ forms a set of first category.

Next we prove (ii). The proof is based on the following result, which is implicitly
contained in the proof of Theorem A (see Beck [1]).

6»
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Theorem A*. Let A ¢ R2 be a compact convex region. If the boundary curve T
of A is twice continuously differentiable and if, for some real number y>0, the ratio

minimum curvature of T
maximum curvature of T

is greater than y, thenfor arbitrary 0<<5< 1 andfor arbitrary n-element set Pc U2
we have
O-1 f (JDW[P; A(A X)]l2dxje-W'dA » yo mnp(A))12

-co V1

Remark. The Vinogradov’s notation » r means that the implicit positive con-
stant may depend on the value of y.

For every TECONV(2), let

a(A, n) = infl(A, n) AA X)]2dx)e->"PA dA,

co Vi

where (A, n)=log (2+np(A)) and the infimum is taken over all «-element subsets
& of U\

The function A—Q(A,n) is continuous for each nEN. We indicate this as
follows: Let A, i?£CONV(2) and distalA, B)<5. Observe that if 6<&(A,e),
then
3) (1—e)22+uc Ac (I+e)B+\

for some u, vVER2 For the sake of brevity, let
Daf{Ay) =D torfa?; A(Ay)].
Then by (3), for arbitrary x,
min {\Db((1- s)A, Aut+x)[- (p(A)- (1- €)20(B)),

12B((1 +e)A, Av+ x)|—{(1+B2p(B) —p(A))} * \DA{A x)|
—max {|IDb((1- e)A Aut+x)|+ (p(A)-(1 - e)(B)),
\Db((1 + e)A, Av+ x)|[+ ((I + €20 (B)—p (A))}.
Ub(A)= LP]‘\Db(A, y)|2dy.

Moreover, let

Clearly (let d(B) stand for the diameter of B)
IZ2AA y)| « nAd(B),
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and so we have (note that n= # 3P is fixed)

IfDOC/B((I+e)A)*-*'<tt- /DD =
® = |/ BANL-AH) L MdO
<kn2(d(B))2 _j; X- Il_l-ie— e—i'/O-«)*—'_+J? I.fa.

Since the right-hand side of (5) tends to 0 as B-~A and e—®9, the continuity of
A—q(A, i) for fixed n easily follows from (4) and (5).

We need
Lemma 2.2. Let G: N—R + satisfy
G(n)
nllog m-1

Then for all CONV/(2), except those in a set offirst category, q(a, n)>G(n)
for infinitely many n.

Proof. We repeat the argument of the previous lemma. Since the function
A-+Q(A,n) is continuous, the sets {/iECONV(2): e(A,n)sG(n)} are closed for
each nEN. It follows that the set

B = {/ieCONV(2);e(/i, n)5 G(n) for all n*sk} -

= f| {46CONV(2):e(4,7i) S(7(n)}

is again closed for each fcEN. We shall show that
(6) 38k is nowhere dense in CONV(2) for each /+N.

Suppose on the contrary that for some the interior of 3k is nonempty. Since
the analytic convex sets are dense in CONV/(2), there exists an analytic set B£38Kk.

We now recall Theorem A* with 6~I=I(A, n)=\og(2+np(Aj): If A satisfies
the hypotheses of Theorem A*, then
(7) KA, n) f A(l, X)]-3*)"-»«M M » , ,

where S is an arbitrary «-element subset of U2
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Applying (7) to the analytic set B"fl3k, we get

fe a(B, ri)
lim inf hi(logn)-1
This contradicts the definition of 28, and Lemma 2.2 follows. |
Let 0=d Ji, where be arbitrary but fixed. Clearly

\Dia,[2A A (A X)]| <« nAd(A), where d{A) is the diameter.
Thus we have
I(A, r) f (f IDiof& A(A X)]|2dx)e-W .* dA
i v

Ul»i

f (NAd(A)(I(A, n))-»'«m*) dA" |
x\ti
if n is sufficiently large depending on A.
It follows from Lemma 2.2 that for all /i(ECONV/(2), except those in a set of
first category,

« I(A, n)
\

(8) I(A, ) £ (/ Bor[»; AA x)]|2dx) e~xm">dA > G (n)-0(1)
-
for infinitely many n. Since
J e~“dl = nl1/2
we obtain Hml
€)) 7i2|dor[é»; AJI2S /(A, ri) fI [ f A(A, X)]|2tfx) e -» * A™dA.
-l

Theorem 1.1 (ii) now follows from (8) and (9). |
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SOME FACTORIZATION THEOREMS FOR
HILBERT SPACE OPERATORS

ERNESTO JAIMES and ZOLTAN SEBESTYEN

The present paper contains two theorems about factorization type problems
with respect to not necessarily bounded operators in Hilbert space. We give neces-
sary and sufficient conditions for the existence of a positive (resp. self-adjoint) opera-
tor B on H satisfying the identity

@ Ax = BCx (xdD(A))

where H is a (complex) Hilbert space, A and C are given densely defined operators
with domains D(A) and D(C), respectively.
Of course, it is assumed once and for all that the following relation holds true

@) D(A) ¢ D(C).

As a reference we use a theorem ofZ. Sebestyén [1] concerning positive extendibility
of an operator on a subspace of a Hilbert space.

Theorem 1 Let A and C be densely defined operators in the Hilbert space H, with
D(A)cD(C). Then there exists a positive operator B on H satisfying (1) if and only if
there exists m=0 such that

3) (AX,(MC-A)X) S 0 (XED(A)).

Proof. Assume first that such an operator B exists. Since B is positive, B satis-
fies the Schwarz inequality:

P2 S [B][ {By,y) (VEH).
Using this we have by (1), for any xED(A)
WAxIF = WB(CxW S ||5]| (B(Cx),Cx) = W\B\\(Ax,Cx).

Therefore (3) is true with m=||2?||.
Assume now (3), let b: C(D(A))-+H given by

4 b(Cx) = Ax.

Now b is well defined because if Cx=0, then (3) gives Ax—0. Moreover, b is
linear because A and C are linear operators. We have thus b is a linear map satisfying

1980 Mathematics Subject Classification (1985 Revision). Primary 47A20; Secondary 47B15.
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the Schwarz inequality
() lbyVAM {by.y) (yeC(Z>(T))).
Indeed, for y=Cx we have by (3)
|&(Cx)||2= WAX||2S m(Ax,Cx) = m(b(Cx),Cx)
(xtD(A)).

Therefore by Theorem of [1] there exists a positive extension B of b to the space H.
The theorem is proved. (For another proof of this Theorem see [2].)

Theorem 2. Let A and C be densely defined operators in a Hilbert space H, with
D(A)aD(C). Then there exists a self-adjoint operator B on H satisfying (1) if and
only if there exists msO such that

3) (MC+A)x, (MC—A)x) » 0 (X H(A)).
P roof. Assume first (1), with a self-adjoint operator B. Then, since B is bounded,
we have
WAxE = H*(Cjg|| S |Ifil[lIC*|] (xED(A)).
(\BWC+A)x, m\C-A)x) =
= I*H21CxI12+ [|*]| (Ax, Cx)—I*1l (Cx, Ax)-\\AxV =
= \Br\\Cxr + \B\\{BCx,Cx)-\\B\\(Cx,B(x)-\\Axr =
= \BV\CxV + \\B\\{BCX,Cx)-\\B\\(BCx,Cx)-\\AV =
= [|*]]2]|ICx][2-M * 112~ 0

((3)" is true, with m=|*|]).
Assume now (3), let b: C(D(A))—H defined by

4y b(Cx) = Ax
Clearly:

a) b is well defined since if Cx—0, then by (3)' Ax=0.
b) b is linear because of the same property of A and C.
c) b is bounded since by (3)'

(*) (Ax, Cx)—(Cx, AX)ER (XED(A)) =Im (Ax, Cx) = 0 (x"D(A))
=>(AX,Cx)ER (XCD(A)).
Now we have by (3)', (4)' and (*)
m2||Cx||2-||[fc(Cx)||2= m2||Cx||2-M x||2 =
= m2\Cx\2—\AX\i +m ((Ax,Cx)—(Cx, AX)) =
- ((MC+A)X,((ImC—A)x) S O (xED(A))

and therefore b is bounded with ||fc||S/n, moreover,

Therefore



FACTORIZATION THEOREMS 89

d) b is symmetric in C(D(A)) since in view of (*)
<b(Cx), Cx) = (Ax, Cx) —(Cx, Ax) = (Cx, b(Cx)) (XED(A)).

Now, by Krein’s Theorem (see [1], Cor. 3) there exists a self-adjoint extension B
of b defined on the whole space, with the same bound.
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REFINEMENTS FOR FINITE DIRECT DECOMPOSITIONS
IN MODULAR LATTICES

ANDRZEJ WALENDZIAK

1. Introduction

In the present paper we investigate finite direct decompositions of the unit
element of a modular lattice. We give here a generalization of some results of papers
[2], [3] and [5].

Let L be a bounded lattice. Then L has a least and a largest element, these ele-
ments will be denoted by 0 or 1, respectively. Denote by V or A the join or meetin L,
respectively.

Ifais an element of L, then we say that a is a direct join of the elements ax, a2, ...

and we write

a = GjVazv..Vfl,
if a=alvazV..Va, and for each *=1, 2,
alA(GiV...Val_iValHV...vVan) = 0.
The direct join of the elements a,, /£/ is also written V(at: idl).

An element b is called a direct summand of a if and only if a=b\Ix for some
element x. We denote by S(L) the set of all direct summands of the unit element of L.

Let adS(L). Anelementbiscalleda complement of aiff \=a\!b. For adS(L),
if b is a complement of a, then the function a of I defined by

Q) xot = aA(xVh) for every xdL,
is called a decomposition endomorphism of a.

Let
) 1= a\lb,

and let a be the function of L defined by the formula (1). Define the function 8 on L
by xB=bh(x\'a). The maps a, B are called the decomposition endomorphisms
related to decomposition (2). We say also that a, B is a pair of complementary
decomposition endomorphisms of L. Any member of the pair will be called a
decomposition endomorphism of L.

Let E(L) denote the smallest set satisfying 1) and 2):

1) if (p is a decomposition endomorphism of L, then cpdE(L),

1980 Mathematics Subject Classification (1985 Revision). Primary 06CO05.
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2) if (p \I/EE(L), then (pi]/EE(L)1
The elements of the set E(L) are called the endomorphisms of L.

Let (p£E(L) and a,b£L. If a<p=b and from cSa, ccp=0 follows c=0,
then we say that grinduces an isomorphism of a onto b. In particular, if @induces an
isomorphism of a onto a, then we say that (p induces an automorphism of a.

Definition 1 Let a£S(L). We say that a satisfies the B-condition in the lattice
L iff for every decomposition endomorphism a of a and for every pair § e of comple-
mentary decomposition endomorphisms of L, there exists a direct decomposition

a—afija2 such that an automorphism is induced in ax by aSc and in a2 by ac

We shall say that a direct summand a of 1 satisfies the 8*-condition (in L) if
for every afiL such that a' is a direct summand of a, a' satisfies the B-condition
(in L).

The main result of our paper is expressed in the following refinement theorem.

Theorem 1 Let L be a bounded modular lattice. If the unit element of L has
two direct decompositions

3) 1 = afj...<jam= bx\J...<Jbn

such that, for each \"j=n—1, bj satisfies the B*-condition, then there exist direct
decompositions

at = an\i...Vain (i= 1 2, n)

4 . .
®) bj = bj}X\J..Mbjm  (j = 1,2, ..., m)

with the property:
if 1SkSm, andifJ is a subset of {1, 2, ..., «}, then

(*) 1= V(- |~ K)<N(akj-KI)V\I(bjk:R J)
holds.

In Section 4 we give some consequences of this theorem. Throughout this paper L
will denote a bounded modular lattice.

2. Properties of decomposition endomorphisms

The following lemmas state elementary properties of endomorphisms of lattices.

Lemma 1 (cf. [3], Lemma 2). If (pis an endomorphism of a lattice L and T is a
subset of L such that VT exists, then

(VT)<p = V(tcp: i£T)
holds.

Lemma 2 (cf. [3], Lemma 3). Let (pEE(L), x,ydL, and xcp—y. Thenfor any
y'€L with y'=y, thereis an x'dL satisfying x'*x and x'(p=y'.

(s is the map of L defined by x((pij/)—x<p)y/, x£ L.
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Lemma 3 (cf. [3], p. 92). Let (pdE(L), and let a, bEL. If (pinduces an isomor-
phism ofa onto b, then (p is an isomorphism between a/02and b/0.

Lemma 4 (cf. [4], p. 453). If (p induces an automorphism of elements xy and x2,
and x"Ax2—0, then @ induces an automorphism of xfjx2.

Lemma 5 (cf. [4], Theorem 20). Let a be a decomposition endomorphism of L and
let 6,e be a pair of complementary decomposition endomorphisms of L. We put

N = xSxex, ix= abBa 1j2 = aea.

For every natural number i, 1j induces an automorphism of I f iff an automorphism of
Irjk is induced by nk, for k= 1,2.

Lemma 6 (cf. [1], Lemma 1). Let r* and r;2 be given as in Lemma 5. Then for
every xdL,
= xr\2r\x.

Lemma 7. Let a be a direct summand of 1 and let <xbe a decomposition endomor-
phism of a. Then for every x£L,

X S a implies xu. = x.

Proof. Let b be a complement of a such that xa—af\(x\!b) for every x£L.
Hence by modularity we obtain

xx = xV(aAh) = xVO = x.

Lemma 8 (cf. [6], Lemma 3.1). Let |—afb and

(5) a = afja2
Then
(6) 1= afliafjb).

Ifxl,a2and x[, x2are the pairs ofdecomposition endomorphisms related to decomposi-
tions (5) and (6), respectively, then for every xS{ we obtain

xxk= xx[ and xx2= xa2

Let g be an endomorphism of a lattice L. We denote by k((p) the join of all
XxEL such that xcp=03.

By Lemma 1 we have
@ k(<P = 0.
Lemma 9 (cf. [4], Lemma 6). | f <pEE(L) and i is a natural number, then
k(g = k(<pt+l) ifandonly if I(p‘Ak((p) = 0.*

* For two elements x,ydL, y/x={udL: xSuSy}.
a By Lemma 4 from [3], V(x: xip—0) exists.
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Lemma 10. For every endomorphism <p of L the following conditions are
equivalent:

(i) there exists a natural number i such that I(pi=lcp‘+l and k(cpi)=k((pi+),

(ii) there exists a natural number i such that an automorphism of I’ is induced

by .

Proof. The proof of the implication (i)=>-(ii) is given in [5], p. 7486.

(i) implies (i). Suppose that an automorphism of 1< is induced by (p. Conse-
quently,
®) V =V +1
Now we will prove that I<piAk((pi)=0. Suppose on the contrary that Ip'A&OpO"0O.
Then there exists an element x"O such that x sl and x"k(<p‘. By (7), we
have x<p'=0. Hence x=0 because < induces an automorphism of lip*. Thus we

obtain a contradiction and therefore we must have IcpiAk((pi)=0. By Lemma 9
we conclude that k((p)=k((pi+l). From this and (8) we obtain (i).

3. Proof of Theorem 1

The following lemmas are required for the proof of refinement theorem.

Lemma 11. Let axbe a direct summand of the direct summand a of 1. | f axsatis-
fies the B-condition in L, then ax satisfies the B-condition in the lattice a/0.

Proof. Since ax is a direct summand of a, there exists an element a2 such that

a=afja2. Letal5a2be the decomposition endomorphisms related to this decompo-
sition of a. Let Rx, R2be a pair of complementary decomposition endomorphisms of

a/0 — for example — induced by a direct decomposition a=b1Vvb2. Since a is a
direct summand of 1, there exists an element b such that 1=a\Jb. Therefore,

1 = ax<J(afilb) = bx\/{F f! b).

Let «&x a2and B[, B2be the decomposition endomorphisms related to these decom-
positions of 1 Since ax satisfies the B-condition in L, there exists a direct decomposi-
tion ax=afi/al such that an automorphism is induced in a[ by ajR[ax and in a"
by a'xg2a'x. By Lemma 8, for every x~a we have xoilgiai=xa'1sioix, /= 1, 2. There-
fore, XxBxXx induces an automorphism of a[ and alf32alinduces an automorphism
of ax- Then, by Definition 1, av satisfies the B-condition in a/0.

The next lemma is an immediate consequence of Lemma 11

Lemma 12. Let ax be a direct summand of the direct summand a of 1. |f axsatis-
fies the B*-condition in L, then azsatisfies the B*-condition in a/0.

Lemma 13. Let the unit element of L have two direct decompositions
9) | = a<mp = dVe,

and let at least one o fthe summands of these decompositions of 1satisfy the B-condition
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in L. Then there exist direct decompositions

(10) a=a\la", b=Db<Jb\ d=d\Jd", e=e'\e"
such that

a'\Jb' = b'<dd' = d'Ve' = e'Wa',

a"Md" = d'"e" = e"Vb" = b"\la".
Proof. The proof of the lemma is given in [5] (cf. Theorem 1).

(11)

We need the following
Lemma 14. I1f an element a£L has two direct decompositions

a=dVay ..Van= dWhb,
then b=b1V..Wb,,, where

bi = b/\(dVa,), i=12 ..n,
and
d\Jflj = dWhi for i= 12, .., n

Proof. The proof of the lemma is just the same as the proof of Lemma 3
from [5].

Lemma 15. Let 1—a\/b and let albe a direct summand of a. If a0 is a direct
summand of 1 such that

(12) bWwa0 = bVax,

and i f a0 satisfies the B-condition in L, then at satisfies the B-condition in a/0.

Proof. Since at is direct summand of a, there exists an element a2 such that

a=ay\Jai. Let 0" a2be the decomposition endomorphisms related to this decom-
position ofa. Let , R2be a pair of complementary decomposition endomorphisms

of a/0. Then there exists a direct decomposition a=bi\/b2 of a such that ,/i2
are the decomposition endomorphisms related to this decomposition. Clearly,
1= ay(a2Jb) = bfl{bfib) = adV(a2vh).

Denote by <, a2, B[, R2and a', B' the pairs of decomposition endomorphisms rela-
ted to these decompositions of 1 Since a0 satisfies the B-condition, there exists a

direct decomosition a0=a'0Va'é such that an automorphism is induced in a0 by
a'fia’ and in &6 by ot32a’. From (12) we conclude, by Lemma 14, that a2=afjaf
where dl=alA(bVa'0, a'{=alA(bwad) and
(13) b<d,, = b<Ja\, b<ld6 = bJa'f

It is obvious that for every xItx2€i,
(14) if xyb =x2vb, then Xjal = x2di and x1B[ = x2B'-
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Hence in view of (13) we obtain

(15) dlai = 2%ax and aORx = axR'i-
Now we shall prove that for every Xx£L
(16) xa'Vh = xa.[Vb.

Indeed, using (12) and by modularity we have
xx'Mb = [a,AXVfI2Vh)]Vh = (aOVfc)A(;cVa2vf>) =
= (axVb)A(xV a2vb) = [ax/\(x\a2Vh)]Vb —xa"Mb.
By (14) and (16) we conclude that for every X£L,
a7 xa'a[ = xaxoy = xa[ and xa'B[ = xxxR'x-
By Lemmas 8 and 7, and from (15) and (17) we obtain
fliaiBiai —aiai/Aai —aiBiai —auli&i —aollia ai —(ala B[a)%im

Then, since a'R[a' induces an automorphism of &0 we have dlalBl«l—d0al, and
hence, by (15) and Lemma 7 we obtain

(18) axaxdox = al.

Suppose now that x~a[ and xalRlal=0. Since a0«l=a'l and x~a[, by
Lemma 2 we conclude that there exists an element y£L suchthat y~a'Qand y<x[=x.
Compute:

yet &OL = (using (17) and yax = x) =

= yetxB{a = xBiot.' = (apply Lemmas 8 and 7) =
= xBxU = xa-xBxa' i; xoijBxa\lb = (by (16) and Lemma 8) =
= xotxBxU[Vb = xcexBx cCjvh.

Hence, since xoclixxi= Q' we get ya'R[a'~b. Furthermore, ya'R'x<x'*a0. Conse-
quently, yx'B[a.'sbAao=0, thatis yx'R'xX.'=0. Therefore, since x'R[a! induces an
automorphism of a0 we conclude that y —0. Then x=yx[=0. Thus, from x~a[
and x¥<x%—Q follows x=0. From this and (18) we obtain that og/*oq induces
an automorphism of a

Now observe that

(19) a'doq = a{og, a0R2ax = a'iRx'x, and for every XxEL, xx'B2' = xaxB'2x".

The first equality holds because (i6'Vh=(iiVh. We prove the second. By (13) and

Lemma 1 we obtain
aZRA/bR'2= aZR'zVbRI

Since bR'2=b, we have alR'2\to~a'{R'2vb. Hence in view of (14) we get the second
equality of (19). Similarly, by (16) we conclude that the last equality of (19) holds for
every XEL.
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Applying (19) it is easy to verify that aj/”a, induces an automorphism of a{.
As an immediate consequence of Lemma 15 we get

Lemma 16. Let 1=aVh andlet ai be adirect summandofa. Let aObe a summand
of 1 such that (12) holds. If a0 satisfies the B*-condition in L, then ax satisfies the
B*-condition in a/0.

Finally, we prove the following

Lemma 17. Let
(20) i d<Je = bx<lbt\!...Vbn

be two decompositions of 1. I1ffor every j£ {2, ..., n), bj satisfies the B-condition, then
there exist direct decompositions

bj = bj<I% j = 1,2 ..., n

(21) .
d = dxM...Mdn, e = exW...Ve,

such that

(22) 1=dVV(e, V(*5: M

and

(23) 1=e\\NJ{dj: jEI)<IS/(b): j$J),

hold for every subset J of {1,2, ...,«}.

Proof. We prove Lemma 17 by induction on n. Let n=2. By Lemma 13, two
direct decompositions 1=d\le=bAib2 have refinements:

d = dx</d2, e = etVex, bx= bx\/bx, b2= tivfcl
such that
dx<Je2 = e2<Jk = b[\Jbl = b;<Jdit

df/bl = bxWh2 = bt\iex = ex<id2.
Therefore,
1 = dVerJbl = d<Je2<dbX = e<ldx\Ibt =

= e<Jd2<bix = d<Jbl<Jbl’ = e<Ix<b2,

and hence the lemma holds for n=2.
Let «>2. We set

=a bn=h

Then we obtain direct decompositions (9). By Lemma 13 these decompositions of 1
have refinements (10) such that (11) holds.

We consider the following decompositions of a:

(24) a=d<Ja” = bxd..<Jbn_x.

7



98 A WALENDZIAK

From Lemma 11 we conclude that each bj, j —2, —1 satisfies the B-condition
in a/0. Therefore, by the induction hypothesis we obtain refinements:

bj = bj<ibl j —1.2 , n—,

(25)
a'= o0iV..\Va;_ 1, a" = aixJ..<Ja:_t
such that
") a=o0VV(]:jr"J)<N(b]: j$J),
a = a"\jy{at jEJ)V\V(b'j: j$J),
where / is a subset of (1, 1}. Since e"\a'=e'\Jd’ and a'=a]}J...\ldn I5 so

e'yva{\/...\/ah 1=e'Vd'. Hence, by Lemma 14, there exists the following direct
decomposition of d':

(27) d =dV..V4-L
where dj = d'A(e'V/a'j) for y<n, and
e'Va'j =e'Vvdj, j = 1,2, ..., n-1.

We set ej—e"A{d"ya'j) for /</?. Then it follows from eHJd"=d"\Ja", a"=
=Cc£V..V<C-i and from Lemma 14, that

(28) e" = exV...\enx
and
(29) d\Jaj’ = d"\le}, for j =n.

Finally, we let
= h'*=h;, d'=dn e =¢eH
Then, from (10), (25), (27) and (28) we obtain (21).
We have to show the validity of two contentions (22) and (23). For reasons of

symmetry it suffices to verify one of these properties, say (22). We distinguish two
cases.

Case 1. n does belong to J. Then we may assume without loss of generality that
J={« 1,2,...,i} for some /<«. From (29), and from equalities d'Ve'=e'\]a’
and &"=dGiV..Va',_ 1 we obtain

1=dVe = d"\Jd"tlei\ ... Wn-iVe' = </'Ve'Vd"VaiV..Va; 1=
= e’\ flvd'ga" = e'VcTVo.
Hence, by (26) and (29) we have
\=e"\Jd"<Ja = e'<Jd"\Ja'\Jdi<J...\/a';<JIb'U-Sj=
= d/Ve'Vy, VelV...VejMc,+IV..Vh:_1= dVV(*: XW Vib]:MJ).
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Case 2. n does not belong to J. Then we may assume without loss of generality
that J—{1, 2, [} for some z<n. Then

1= d'<le’<dd'<ktV..Ve<sb'US/... VK-i =

= d'Wb\Jdk e 1V/...\/e NIb{HV.. \/b: 1 =d\\f(ej: MJ).

This completing the verification of (22) and completing the inductive proofof Lemma
for every n.

Now we are able to prove our fundamental refinement theorem.

For m=2 and for every n the statement follows from Lemma 17. Now let us
assume the statement to hold for m—1 and for every n. Let

(30) d= dgiV..Vam It e = am.

Then we obtain direct decompositions (20). Applying Lemma 17 upon these de-
compositions we obtain refinements (21) meeting the requirements (22) and (23).
From (23) we infer in particular that

(31) 1= eVfciV..\Vt,.

Let Vj=dA(eVbj). Then, from 1=e\Jd, (31) and Lemma 14 it follows that d=
d=v1V...Vv,, and

(32) eVbj = eAvj  for j = 1,2, .., n

For every j=1, 2,...,«—1, bj satisfies the  "-condition in L, and therefore, by
Lemma 16 and (32), Vj (j= 1, 2,..., n—1) satisfies the 5 *-condition in d/0. Thus we
may apply the induction hypothesis upon the direct decompositions

d= ¢jV..Vam 1= »iV... Viv
Consequently there exist direct decompositions
A at=aaV..Vain (i =1, 2, m-1)
Vj = vn <..<vJtm. i 1,2..... n)
with the property
if 0<&<m, and if/ is a subset of {1, 2, ..., n}, then
(34) d = V(at: i * k)\/\/(akd:y€/)V V(vIk: j$J)
holds.

Let bj*bjAieVvj,), j=1,...,n, i=l, 1 In view of (32) and (33),
from Lemma 14 we infer that

n foy = feyiv...vV
e\JVji = e\Jbdiy
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for 7=1,2,,..,n and f=1,2,....m—L Finally, we let
(36) bdm = *» and aml=¢j for j =12, ..,n
Then it is clear that

ai = aaV...,<Jain, bj — b}\l.mvbIn

for /=1,2, m, and j= 1,2, n. Now we shall prove that these direct decom-
positions have the property (*).
Let/ beasubset of {1,2, n}andlet 1*kSm . We shall consider two cases.

Case 1. k<m. We may assume without loss of generality that k= 1 By (34)
and (35) we obtain
1=d<Je = a2d...V an'<\J{aid: 7<E7)VV(u;i: 7<J/)Ve =
= aV..Vim-iVV(flij:y€/)VV (": yil)Ve =

= V(fl;: DVV(ay:y€/)VV (*:yV).
Cave 2. k=m. From (22), (30) and (36) we have

1= rfVV(e,: JEJ)VV/(b]:rtd) = <hV... Var-ivVV(fl*,: jiJ)</V(bJIm: ftJ).
Thus Theorem 1 is true for every m and n.

4. Some consequences of refinement theorem

Let L be a modular lattice with 0 and 1. If every direct summand of the unit
element of L satisfies the B-condition in L, then we shall call L a "-lattice.
From Theorem 1 we obtain now

Theorem 2. Let L be a B-lattice and let the unit element of L have two direct
decompositions (3). Then there exist direct decompositions (4) with the property (*).

Remark 1 By Lemma 10 from [2] (p. 489), Theorem 2 implies Theorem 2 [2].
Remark 2. By Lemma 14 [3] (p. 98) and Theorem 2 we obtain Theorem 5 [3].

D efinition 2 (see [3], p. 95). We say that an endomorphism <pof a lattice L is
distinguished if there is a decomposition endomorphism a of L and a pair 5, e of
complementary decomposition endomorphisms of L such that (p=oidaea.

Lemma 18. Let every distinguished endomorphism ¢~of a lattice L (L is modular
with 0 and 1) satisfy condition (ii) of Lemma 10. Then L is a B-lattice.

Proof. Let a be a direct summand of 1, and let a be a decomposition endomor-
phism of a. Let §e be a pair of complementary decomposition endomorphisms of L.
By assumption, endomorphism i7= afefe satisfies (ii), that is, there exists a natural
number i such that an automorphism of 1tj‘is induced by tj. By the proof of Theorem
11 from [5] we obtain

a = [aA*(i/i)]V[aA* (2] VIiji,

MAGYAR 3
XyOOMANYOS AKADEMIA
KONYVTARA
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where tJl=abtx and r2=aaix. We put
Gj = aAk(t]d, a2= [aAAETVW.

By the proof of Lemma 12 from [3] we conclude that rjix induces an automorphism of
aAk(t]2 and 12induces an automorphism of aAk(r\[).

Now we will prove that an automorphism of 1j* is induced by 2. In view of
Lemma 6, we have

(W)fI2 = = (Wi+)ni-

By Lemma 5, j2induces an automorphism of 12, and therefore 1i24&*1—Wi- Hence,
(b7iyN72= 172 71= 17 Moreover, if xSIAl and xrj2=0, then x=0. Thus 12 induces
an automorphism of lij*, and by Lemma 4 we conclude that an automorphism of a2
is induced by f]2. Therefore, a satisfies the B-condition and the proof is complete.

Definition 3 (see [3], p. 101). We say that an element x£L has property (AY
iff, for every y, zEL with if the lattices y/0 and y/z are isomorphic, then
z—0. We say that an element x£ L has property (A2 iff, for every y, z"L with
zSySx, ifthe lattices y/0 and x/0 are isomorphic, then y—z.

Lemma 19. Letfor every distinguished endomorphism tp o fa lattice L thefollowing
condition (iii) or (iv) be satisfied:

(iif) L(phas property (AX and the lattice I<p/O satisfies the descending chain con-
dition;

(iv) 19has property (A2 and the lattice I<p/O satisfies the ascending chain con-
dition.

Then L is a B-lattice.

Proof. By Lemmas 18 and 10, it suffices to prove that (iii) implies condition (i)
of Lemma 10 and (iv) implies (ii).

(iii) implies (i). Since lips Ip2"...SI<p"S..., and the lattice Icp/0 satisfies
the descending chain condition, there exists a natural number / such that 1= 1+1.
Moreover, by the proof of Corollary 1from [5] (p. 747) we conclude that k(<p9)=
=k((pi+1). Therefore (p satisfies condition (i).

(iv) implies (ii). Since

\(pAk(cp) S lcpAk(<pd S ... S ItpAk(tpn s ...,

and lip/0 satisfies the ascending chain condition, there exists a natural number i
such that I(pAk(cpi~)=I(pAk((pi). Clearly, (I<p)<p= Ii+1l. Furthermore,

(37) if xS Lpl and xtp =0, then x = 0.

Indeed, since xS (I1<p_1, by Lemma 2, there exists an elementy such that ySltp
and y<pi_1=x. Hence y<pl—0, and so ySk((p‘). Then yslipAk(ipi)=I(pAk(ipl~1)
and therefore x—yipi~1s(lipAk(ip,~)Hpt~1Sk({pi~Dipi~1 (by (7))=0, i.e., x=0.
Thus, ip induces an isomorphism of Ir/r onto 1qi+1. Then, by Lemma 3, the lattices
1(p70 and 1pi+1/0 are isomorphic. Since I(pi+1s|ip18|ip, and lip has the prop-
erty (A2, we conclude that lip‘=lipi+L This and (37) implies that tp induces an
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automorphism of Icp'. Then condition (ii) is satisfied. This ends the proof of

Lemma 19.
By Lemmas 18, 10 and 19 we obtain the following

Theorem 3. Let L be a bounded modular lattice. | ffor every distinguished endo-
morphism tpofL at least one ofthe conditions (i)—(iv) is satisfied, then L is a B-lattice.

From this theorem we get at once
Corollary. Every modular lattice of finite length is a B-lattice.
D efinition 4. Let

(38) 1= aivVazv..Vfin= bfdbfil ...\/bn.

We say that these decompositions are exchange isomorphic, if there is a permutation
n of the set /= (1,2,...,«} such that

1= dIV.. Vai_IVhniVii+1lV...Vd,,
for all /£/.

Direct decompositions (38) are said to be directly similar if there is a permutation
7t of 1 such that for each /£/ there exists an element cf such that

1= at<Xk = h,()VcE

Theorem 2 give the following

Theorem 4. If L is a B-lattice, then any two finite direct decompositions of the
unit element of L have exchange isomorphic refinements (and so also directly similar
refinements).

Combining Theorems 3 and 4 we obtain

Theorem 5. Let L be a bounded modular lattice. |1ffor every distinguished en-
domorphism @ of L at least one of the conditions (i)—(iv) is satisfied, then any two
finite direct decompositions of 1 have directly similar refinements.

Remark 3. From this theorem we have immediately Theorems 3 and 4 of
paper [2] and Theorems 11 and 12 of [5].
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o 0gHOM 3KCTPEMAJNbHOM NMONVMHOMWANTBHOM
ONEPATOPE AVND®PDPEPEHLUUMPOBAHWA

4. 1. BEPMAH

1. Pagu npocToTbl pe3y/bTaTbl HOPMYMPYIOTCS 1 AOKa3blBaOTCA AS NPOCT-
paHcTBa C 2n-MepuoAMYecKMX HernpepbiBHbIX yHKUMiA f(x) ¢ Hopmoi ||/|| =
= Max |/(x)|]. O603Ha4uM uyepes +M MHOXXECTBO BCEBO3MOXHbIX JIMHENHBIX
onepaTopoB n3 CB C, obnagarownx ceoicteamu: ans nwoboin /£C
n,,,,+T(/, X) ecTb TPUrOHOMETPUYECKMIA MOMAMHOM MOPsSAKa He Bbile N+T, U
ecu T(X) TPUroHOMETPUYECKMI NONMHOM MnopafKa He Bbiwe n, To U, ,+m(T, X)=
= I(N)(x). Nonoxum ejft+m= inf() ||d,.nt . MycTtb onepatop U us AE£>+T.

By/em roBoputb, YTO OH 3KCTPEMa/lbHbliA, eC/IN BbINONHAETCA PaBeHCTBO R/ i+n=
= ||I7]. BO3HMKAeT eCTECTBEHHbIA BOMPOC O HAxXOXAeHUW B MHOXecTBe [ ” +m
3KCTPEMaJIbHOr0 onepartopa 1 0 BblumcneHnn Bk +m 3Ta 3agadva 6blia noctaseHa
B [1]. OHa, kaKk HaM KakeTcs, elle He pelleHa. B [1] oHa 6bina peweHa gna r=1 nu
m=n—L1 B HacToALLe 3aMeTKe AaeTCs NOHOE peLLeHmne 3TOoI 3agaum ana noboro
HaTypanbHoro r 1 T=n—L1

2. O603HaUMM uepe3 mw MHOXECTBO BCEX TPUrOHOMETPUYECKMX MOSMHOMOB
nopsaKa He Bbille .

Teopema 1 Ans nwoboro HaTypanbHOro r v nwo6oro Tall,, MMeeT MeCcTO
TOXKAECTBO

(1) Tin(x) =

rjr\ n

1 " ( -1
— f T(x+t)cos\int+— 1v+2 2 krcos(n—k)t] dt.
nf \Y 2.) *=j

[Joka3zatenbctBo. Ana nwoboro TEMM nveem
TX) =1 T T(t)D,,(x—t)dt
no
roe
“n(n+T)"

2sinj

Dn(t) =

MpoangdepeHynpyem 370 paBeHCTBO I pa3, Torga nNoAyyum, 4To
= - N = ' ~
@ r<>(X) ﬂ/ T(x+)D<pO)dt, D"(1) =,2 K co<\/kt+2)\.

Akadémiai Kiadd, Budapest
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C papyroit cTopoHbl, agna nwo6oro TCI1,, BbINOAHAETCA PaBEHCTBO

1 » W r rr
©) — ] T(x+1) 2 krcosL\(Zn-k)t+-Z7\r1\dt_o_
N3 (2) n (3) cneayet, 4ToO
TMHX) = J T(x+1t)|nrcos + 28 r(cos(M+-A) +

@

+ oS "(2n—k)t+{'22

Tak Kak

cos ME+ -"-j + cos N2n— = 2cos (wi+~"~) cos (n~k)t,

TO 13 (4) BbiTekaeT (1).
3. TMocTpoum Tenepb 3KCTPeMasbHbIA OMnepaTop.
Teopema 2. OnepaTop

1 2¢ / " nj
(5) U((f,x) = - 9f(x+t)cos WH-—’Z‘—H_HHZ 2 krcos(n—k)t\ dt

npuHagne>knT knaccy Oji\n_1.

[okasaTenbcTtBo. W3 paBeHcTBa (4) cnegyeT, uto U(f, X) MOXHO 3anucaTtb

B BuUAe

U(fx) =2 f f(x +1)[DEA04-1 ~ c°s((2fi-*)i+-y-)] A.

MoaTtomy ficHo, uTo onepatop U(/, X) nepeBogut yHKUMN 13 C B TPUrOHOMETPU-

ueckume nonvMHoMbI nopaaka 2u—>L fanee, B cuny Teopembl 1ana TEM,,
= 7'9)(x). WNtak, UeQn.ir,-1-

4. Qna panbHeMHero BaXkHa
Teopema 3. [na Bcex tE(— BbIMONHAETCA HEpPaBEHCTBO

Fn(t) = nr+2 2  Krcos(n-k)t s o.
(t 2 (n-k)

Ldoka3zatenbcTBo. JI. ®eliep [2] agokasan Teopemy: [MycTb MOIMHOM

Tn(x) = a0+2alcos t+...+2a,, cos nt
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Y[O0B/IETBOPSAET YCNOBUAM
(6) av-2av+l+ fly+8 S 0, Vv=0,1,-, (n-2),
(7) a,-i-2a, SO, ans 0,

Torga Tn(x)LLIO, —oo<x<oo0.

370 yTBEPXKAEHUE [0Ka3bLUAeTCs BeCbMa MPOCTO. [JoCTaTOMHO K NpaBoil vacTu
NPUMeHWUTL [Ba pasa npeobpasoBaHve Abens U 3aTeM BOCMO/b30BATLCA Hepa-
BeHCTBamMu (6) 1 (7) 1 Tem (hakToM, 4TO fap0 Deitlepa HeOTPULATENLHO Ha BCEN
ymcnosoii ocu. MNposepum, 4To NonnHom F,,(t) yaoBneTBOpseT HepaBeHCTBaM (6) 1
(7). AcHo, 4TO HepaBeHCTBO (7) BbINoOAHseTCsA. W3BecTHo, yto npu a0, b0
W NOOOM BELLECTBEHHOM T Si  BbIMOHATCH HepaBeHCTBA

Na+b tf+bl

Moetomy (n—Wr—=2(n—v+iy+i« —v+2)rs0, v=0, 1,...,(n—2). Ctano 06bITb,
BbIMNOMHAETCS HepaBeHCTBa (6).

CnepctBune 1 Mpu Bcex fE£(— °°) BbLIMONHAETCS PaBEHCTBO
8 Sign F,,(r) cos —Sign cos M+

3a MCKMIOYEHNEM KOpHeii nonmHoma Fn(t), rae neBast YacTb paBeHCTBA (8) paBHa Hyo.
5. [na pancHelwero HyXHa Teopema u3 [1].
Teopema 4. Cnpasef/mMBO paBeHCTBO

en—1= )!)r)lk-*(((i’ oo, ®1‘|, A, "*'>Bn'|),
roe
J =J (ax Bli - ,A,-) =

= fojrin(o+ 1z (<XjCos(n+j)t+Bjsin(n+j)t)\dt.

Ecnv wHTerpan J pocTwraeT HauMeHbLIEro 3HauveHws mpu  ai=ajl), RJI=Rf),
7=12, ..., (n—1) wo 3KCTpemabHOW ABnseTCA onepawus

O(f, x) = — f f(x+t)[D(U)+ "Z («f0 cos (n+j)t+B{)sin (n+7")/)] dt.
n o 7=1

3ameTVM, YTO MpU YETHOM T, r=2s, (X) — ueTHaa hyHKUMSA, a NpU HeyeT-
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HOM r,r=2s+\,D " +I){X) —HeueTHaa hyHKUWA. [103TOMY CnpaBes/MBbl paBeHCTBa

n 4
inf /|~ 2s)(0+ _Ll(cchos(n+j)t+Bjsin(n+j)t)\ dt =
i=

9) X n—1
=inff |"Y O + 4 yjcos(n+j)t\dt,

1
mf 3 [+ 2 {<XCOS(n+)t+BiSin(n+))\dt =
(10) -

n—1

= ipf ﬁz<2i+1)(o+)§i 8jsin(n+j)t) dt.

Bocnonb3yemcs Tenepb M3BECTHbIMM (PaKTamMy TEOPUU HanUAyuyLLIUX MPUBIVIKEHNIA B
meTpuke L [3]. Torga ns Teopembl 4 1 paBeHcTB (9), (10) nonyunm

Teopema 5. 1) Ans Toro uTobbl onepatop U(f,x) obnagan HaumeHbLLed
HOPMOW B KNacce OnepaTopoB R (2f*, i HEOOXOAUMO W AOCTATOYHO, YTOObI uucna
blY-1 13 copmynbl (9) ygoBneTBopsnn ycnoBusm

/ sign [B(25)(0 + 3 yjCOs(n+j)t]cos(n+i)tdt = 0, /= 1,2, (n—1).
0 J=1

2) [ina Toro yTo6bl onepatop U(f, X) obragan HavMeHbLLE HOPMOIi B Kiacce
onepaTopoB HeobXoAMMO 1 OCTaTOuYHO, YTOObI Yicna £&"“* u3 hopmynbl
(10) ypoBneTBOPAAM YCNOBUAM

I Sign [2<2s+1) (1) —l;?l 8js\n(n+j)t]sin(n+Ntdt =0, i —1,2,.... (1—).

lMoatomy mn3 cneacteus 1 BbiTeKaeT

Cneacteue 2. 1) [ina Toro yTobbl onepatop U(f, X) o6nagan HaumeHbLLEN
HOPMOI1 B Knacce OnepaTopoB R~fln-i HEOBXOAMMO W [OCTATOYHO, YTOObI BbIMOMHS-
/UCb paBeHCTBA

T

(12) J Signcos ntcosjt dt = 0, J=n+1, (2n—D).
0

2) [ns Toro yTo6bbl onepaTop O(/, X) 06nagan HaMMeHbLLIE HOPMOIA B Knacce
onepaTopoB B~ flnii HEOGXOANMO U AOCTATOYHO, YTOObI BbIMOMHANMCH PABEHCTB

K

(12) J Signsinntsinjt dt =0, j = wn+l, (2n—-Y),
0

Teopema 6. Cpean Bcex NMHeiiHbIx onepaTopos i/r2, 1 (/,x) 3 C B C,
nepeBoaALLMX pyHKLMM 13 C B NOMMHOMbI MOpPsiAKa 21—1 1 0bnagaroLmx Tem CBONCT-
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BOM, YTO 415 Nto6oro nonvHoma T MOpsiAKa He Bblle N WMeeT MeCTO PaBeHCTBO
U,'in-A T, X) = 7'<)(x), onepaTop (5) 06nagaeT HauMeHbLLE HOPMOiA. Takum 0bpas3om

\Wwn\\ = B A -x = ~n", r=1,2

[JokasaTenbctBo. B [3], cTp. 99—100, AOKa3aHO ChefytoLlee YTBEPXKAEHNE.
MycTb MHTerpupyemas yHkumsa ®(x) yaoBnetsopseT ycnosuno @O (x+n)——>d(x).

T
FlycTb T, N — Uefble Ynucna U OTHOLLEeHMe F He eCTb He4yeTHOe 4ucno, Torpa

-
(13) f enap(micix = 0.

B uyacTHocTn, Geps d(x)=signcosx un P(x)=Signsinx nonyyaem wu3 (13)
paBeHcTBa (11) 1 (12). Ona BblumucneHna Qfyn-x 3ameTum, 4To U3 POPMY”bl Ans
akcTpemasibHoro onepartope (5) crnefyer, 4To

_ | fn\ / \ n2
BAXMN-X — \COS\H/+4£-H [nr+ Zt;gi Arcos(n-k)t]dt.

MMpy 4YeTHOM r, r—2s Mony4y”um

1 r n-1
— f Jcos nt\\rf+2 2 krcos (n—k)t] dt.
no

(14 eA -i
Mpn HeyeTHOM r, r=2j+ 1, nonyunum

i »—
(15) eJifU-i Ff|sinn/||y+2 2 krcos (n-k)t]dt.

K paBeHcTBam (14) u (15) onATb npuMMeHsieM paBeHCTBO (13), Torga BbIBOAMM, UTO

; m Yyl rf g2’ .
(16) Cifai-1= —; 1, fcos n t, eJSfto—i=—Tig Efa
Jlerko BUAeTb, 4To
2it 2n

J |cos nt\dt = J |sin nt\ dt = 4.

MoaTomy 13 (16) nony4yum, 4To
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KREISUNTERDECKUNGEN AUF EINEM HYPERZYKELBEREICH
IN DER HYPERBOLISCHEN EBENE

I. VERMES

K. Béroczky hat in [3] gezeigt, daB die Dichte eines Systems von kongruenten
Kreisen in der hyperbolischen Ebene keine eindeutige Erklarung hat. Er konstruierte
zwei Zellenzerlegungen zu demselben Kreissystem so, daf} die Dichten beziiglich
der ersten und der zweiten voneinander verschiedene Werte geben.

In dieser Arbeit wollen wir uns mit den Kreisunterdeckungen auf einem Hyper-
zykelbereich und mit ihren Dichten beschaftigen.

Man versteht unter einem Hyperzykel (oder einer Abstandslinie bzw. Aquidis-
tante) die Gesamtheit derjenigen Punkte der Ebene, die von einer Geraden (Grundli-
nie) gleichen Abstand / haben, und alle auf derselben Seite von ihr gelegen sind. Die
beiden kongruenten Aquidistanten, die auf verschiedenen Seiten der Grundlinie
sind, begrenzen einen Teil der Ebene, der als Hyperzykelbereich vom Abstand /
heilt.

Unsere Untersuchungen grinden sich auf einem Satz von K. Bezdek [1]:

Sind nS2 einander nicht Uberdeckende Kreise Klt ..., Kn vom Radius r>-0
in der hyperbolischen Ebene, so gilt

Tr A )12

wo T die konvexe Hille der Mittelpunkte von KIf ..., K,,und Trdie &uRRere r-Parallel-
menge (oder Aquidistantmenge) von T im Abstand r bedeutet. (Tr ist die Vereini-
gungsmenge der Kreise vom Radius r, deren Mittelpunkte zu T gehéren. Wir bezeich-
nen den Flacheninhalt eines Bereiches ebenso mit demselben Symbol wie den Bereich.)

Vor allem definieren wir den Begriff des //-Bereiches vom Abstand /. Unter
einem //-Bereich vom Abstand / verstehen wir denjenigen Teil der hyperbolischen
Ebene, der auf folgende Weise begrenzt ist: durch zwei Aquidistantbogen vom Ab-
stand /, die zu einer Strecke von GroRe h>0 gehdren, und durch zwei Halbkreise vom
Radius /, die diese obigen Bogen beruhren (Fig. 1).

1991 Mathematics Subject Classification. Primary 52C15; Secondary 51MO09.
Key words and phrases. Packing and covering in two dimensions, elementary problems in hyper-
bolic and elliptic geometries.
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Fig. 1

Die groRe Achse des //-Bereiches ist der Durchmesser, der auf der Grundlinie der
Aquidistanten liegt, und seine Lange h+2l ist. Die Radien dieses //-Bereiches sind
die gerichteten Strecken (PT), die aus den Punkten der Aquidistanten auf die Grund-
linie senkrecht stehen, bzw. die die Radien der oben erwahnten zwei Halbkreise sind.

Wir beschaftigen uns mit den gesattigten Kreissystemen in den //-Bereichen
vom Abstand /. Es ist klar, daf die Ungleichung r”1 fir die Radien der kongruen-
ten Kreise gilt. Wir betrachten die Dichten der Unterdeckungen der kongruenten
geschlossenen Kreise vom Radius r in den geschlossenen //-Bereichen. Dazu muf}
man das folgende Lemma beweisen:

Lemma. Es seien zwei Kreise vom Radius r (r<I) in einem geschlossenen H-
Bereich vom Abstand | gegeben. Betrachten wir die Abstandslinie vom Abstand r, deren
Grundlinie aufder Gerade liegt, die die zwei Mittelpunkte verbindet, und so berthrt
die Abstandslinie beide Kreise. Wir behaupten, dal der Bogen dieser Abstandslinie
zwischen den Beriihrungspunkten zum H-Bereich gehort.

Zum Beweis ist es genugend nur untersuchen, falls die beiden Kreise die Grenze
des //-Bereiches berlhren. Insofern man einen oder beiden von Kreisen in das Innere
des //-Bereiches bewegt, so verbindet dieser Abstandsbogen vom Abstand r zwei
innere Punkte, und hat er — wegen #<& — eine kleinere Krimmung, als die Grenze
von H, also liegt dieser Bogen im Inneren von H.

Falls die beiden Kreise Kx, K2die Grenze von H in den Punkten Sx, S2beriihren,
und Sj, S2auf einer Abstandslinie oder einem Kreisbogen liegen (Fig. 2), so schlief3t

die Verbindungsstrecke der Mittelpunkte 01 und 02 wie mit dem Radius S10 1als

auch mit dem Radius S20 2des H-Bereiches einen spitzen Winkel. Folglich schneiden
die auf 0 X0 2 senkrechten Geraden diese Kreise in den Berihrungspunkten TIt Tt
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der Aquidistante vom Abstand r. Die Punkte 7\, T, und folglich der Bogen TXI2

liegen im Inneren des ~/-Bereiches.
Ebenso kann man das Lemma beweisen, falls der erste Kreis Kx mit dem Kreis-

bogen von H den Beruhrungspunkt Sx und gleichzeitig der zweite K2 mit dem Ab-
standsbogen von H den Berlihrungspunkt S2haben (Fig. 3) und falls die Radien S10x
und SoOt auf derselben Seite von 00 2gerichtet sind.

Falls Kxden Kreisbogen von H in dem Punkt Sxberihrt, und K2 mit dem Ab-
standsbogen von H den Beruihrungspunkt S2hat, ferner die SxOxund S20 2Radien in
verschiedene Halbebene bezuglich 0>0 2zeigen (Fig. 4), so bilden diese Radien mit
den Strahlen 002 bzw. 0 2xje einen spitzen Winkel. Daraus folgt, dafl die auf
00 2 senkrecht stehenden Geraden OxTx bzw. 02T2 die Kreise Kx bzw. K2 in den
Punkten Ty bzw. T2 schneiden. Die Punkte T\, T2 und auch der Abstandsbogen

TxT2vom Abstand r sollen im Inneren von H liegen.

Fig. 4

Auf dhnliche Weise kann man die Félle — inklusive auch die Grenzfalle — er-
ledigen, wenn Kx und K2 zwei verschiedene Kreis- bzw. Abstandsbogen von H be-
rihren.

Damit ist unser Lemma bewiesen.

Ein unmittelbaren Korollar unseres Lemmas ist die folgende

Behauptung. Es seien KX, die Elemente eines gesattigten Systems von
kongruenten Kreisen aufeinem H-Bereich, und P die konvexe Hiuille der Kreismittel-

8
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punkten OX, On. Die duRere r-Aquidistantmenge (oder Parallelmenge) Prvon P
gehort zum H-Bereich.

Nach dem Satz von Bezdek ist die Dichte dieses Kreissystems Kleiner im Bereich
Pr als V—’_([:Z folglich besteht die Ungleichung auch fur die Dichte d,, bezliglich H :

14

dH —fn

Falls man die GroRe der grolen Achse des //-Bereiches unbegrenzt steigert, so
erhalt man eine willkirliche Folge HlczH.iczH3c:...<zHkc:... von //-Bereichen.
Auf Grund des obenerwahnten Lemmas gilt die Ungleichung

flr alle Bereiche //;, in denen dtdie Dichte eines gesattigten Kreissystems vom Radius
r bedeutet (/= 1,2, 3,...).

Ein Hyperzykelbereich vom Abstand / kann durch die obigen {//;} Folgen will-
kirlich approximiert werden. Dieses Verfahren zeigt, dafl die Dichte eines Systems
kongruenter Kreise auf einem Hyperzykelbereich erklart werden kann, und diese

Dichte kann nicht groRer a |s " sein.
yi2

Anmerkung. Man kann — wie obenan — eine ebensolche Ungleichung fiir
die Dichte eines geséttigtes Systems kongruenter Kreise beziiglich eines Horozykel-
bereiches auf Grund der folgenden zwei Tatsachen erhalten.

Erstens hat K. Bezdek in [2] bewiesen: Sind in der hyperbolischen Ebene in
einem Kreis mindestens zwei kongruente Kreise eingelagert, so ist die Kreisdichte in

dem Kreis kleiner als -4L=,
\ 12

Andererseits kann jeder Horozykelbereich durch die Folge der Kreise von un-
begrenzt-zunehmenden Radien willkirlich approximiert werden.
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TAUBERIAN THEOREMS FOR POWER SERIES
OF TWO REAL VARIABLES, II

L. ALPAR

Dedicated to Professor Paul Erdés on his 75-th birthday

8 1. Introduction

This paper concerns the generalization of some theorems from [1] and is the
continuation of [2] in the sense that we apply here the same methods as in [2].

Notation, @) & B, Y, S, t; are positive constants, r and s signify positive finite

parameters and is a variable tending to infinity, so that if
(1.1) X ~ g UrX~ry ~» g—1lsA
then x-«-I, y—1 for and 0<r, .v<°° means that when the point (x,y)

approaches to (1,1) on an arbitrary continuous curve it is not tangent to the straight
lines x—1, y= 1 These curves will be called admissible.

b) Let us denote by L an open, two dimensional, bounded, Jordan measurable
set in the first quadrant of the plane (x*O, y=0) with closure L, boundary dL
and measure \L\>0. We shall use the same notation for other sets of similar nature.
We derive from L the following sets: if (x, y)EL then

(i) (Ix, Xy)iLx, Ly=1L,
@iy (*<,/)€E*, Li1=L.

c) RUVis called a basic rectangle if it has a vertex at the origin and two sides of
length uand v on the axes Ox and Oy, respectively. Itf ,,isthe basic rectangle obtained
from Rw by the mapping (1.2) (ir).

d) Finally we use the square

(12

Q= {(*>T7): 0SS x < 1, 0S8 y< 1}
Our starting point is the following result of Taran [5].
Theorem T. Let the series

be convergent in Q and assume that

lim/(x, y)(I—x)(1 —y) = 1

1980 Mathematics Subject Classification (1985 Revision). Primary 40EO05.
Key words and phrases. Power series of two real variables, Tauberian theorems.
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as (x,y)-»(1, 1) on an arbitrary admissible curve, then

(1.3)

Hm A2 2  «... =1L\

Remark 1. Since in (1.3) the pairs of indices (m, n) are taken on the closed set

jL; , we may neglect the cases in which a subset h of QL consists only of inner points
of L (see Fig. 1).

For

in such a case hx consists merely of inner points of L; and the two-dimensional

Jordan measure of h is equal to zero, so that \L\h\=]|L]|.

8§ 2. Statement and proof of results

1. To formulate the first theorem we still need the notation
M4=0xnl4, N'=0ynl 4.

Theorem 1 Suppose that the series

f(x,y)= m,2n 0amn*rryn, am=0

is convergentin Q and if (X, y)—(1, 1) on an arbitrary admissible curve, we have
(2.1) [(x.M-0-x"-i+0-y)-4

Moreover if the linear sets Mi and iV4 are Jordan measurable, then

(2.2) AfL) = lim A-4 2 am,= (IM4a~4+|iV4/T W £ + 1)

or

Proof. We have by (1.1) and (2.1)

(2.3) lim A 4
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Let psO, <?S0 integers. Replacing x and y by xp+Land ygH, respectively, then
(2.3) yields
1

il JL - () +(?) (9+ ¢

[ f eXrx 8. 1e-9yi-1 -

Therefore if g(x, y) is any real polynomial, it follows from (2.4) that

(2.4

*m-'[g) = lim A« 2 ammxmyng(xmy’”) =
2.5) mn-9

=JJf [(7)f e xSie NJ=Zhdx+[j) je 'g(l.e V XV

It is easy to see as in [2] (p. 170) that for fixed r and s, SFr'sis a positive linear func-
tional on the normed linear space of real polynomials g(x,y) where |g||=
=max(I>,)e2|g(x,y)|. Obviously #'rs is positive, additive and homogeneous and it
results from (2.3) that it is bounded, too, namely

BFr's[g]| ss (lim 2 amxmy') max A N _[(7) +(?)|W )
that is

«''mx»* (-ii+i?/-

Hence it is natural according to the theorem of F. Riesz that has the integral
representation (2.5).

The polynomials form an everywhere dense subspace of the normed linear space
of continuous functions on Q with maximum norm. Consequently, by the Hahn—
Banach theorem &r.s is extendable uniquely to the entire space without changing
the norm. Furthermore, the representation theorem of F. Riesz [3], [4, pp. 250—=261]
states that &mrscan be extended to the class of functions which are limits (everywhere)
of sequences of continuous, increasing, bounded functions. This larger class con-
tains the discontinuous function

il/xy if e 17 xs 1 and e~xs 1
26 WX, ) =10 it ygle-1,1], or ySle-1, 1
That is we may write w(x,y) instead of g(x,y) in (2.5):

&rs[w = lim a-{ 2 _amxmyX w yn =
2.7) mn-0

=775[(?) /**-*+(7)
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In virtue of (2.6) and (1.1) we have to consider the values mrX*e~1 and
merely, such that m”rX, nSsX and so (2.7) gives

(2°8) h m MEXOm= r«+i) [(7) + (@) 1= AIR?-
rthsk
Hence if L is the basic rectangle R,, (see notation c)) then |M4=/'4, |\4=.r4, further
mArX, n*sX means that (m, n)ELx. In other words, (2.8) proves (2.2) in this partic-
ular case.
Moreover, let L~R X be the rectangle with the side (a, b) on Ox, 0*a<b and
the sides parallel to Oy of arbitrary positive length, then we have by (2.8)

(29 ~(ig = limA« 2 nnB= (&-ad/r(E+1)adH M 4/r(£+ 1)ad
A—ce ak”m bk
n~sk
for any j>0. Likewise we have for a rectangle Ry—L defined as Rx with the side
(c,d) on Oy, Osc«/

(2.210) AARy) = lim A4 = (di-c<)/r(M+ D/?24= |N<Vr(t+ 1)/74
canIEk

for any r>0. We infer from (2.9) and (2.10) that if a=-0 and c¢=*0 and RO is the

rectangle with vertices (a, c), (b, c), (a, d), (b, d) then /t1(/?90=0. Thus if the set

L'czRO then 0MAi(L")"A1L(Ro=0. Therefore Ay(L) does not change if we com-

plete or truncate L by any set having no common points with the axes. This fact

enables us to prove Theorem 1in full generality.

Assume first that M4=0 and Mj is the unique interval (a4, f&). Consider two
rectangles of type Rx. One of them R _ with the side [(a+s)4, (b—e)4, e>0 and
the other one R+ with the side [(a—e)4 (h+e)] if 0 and [0, (e+e)q if a=0.
Their sides parallel to Oy are of the same length 0O . Ifc and e are small enough
then R.cL and by (2.9)

AAR-) = [(6—e)4—(a+s)4/r(*+1)a4S At(L).

On the other hand (L -R HC\Ox=Q so that AL —R+)=0 and AXL) being
an additive set function we have

Ai(L) s AI(L-K+)+ALK+H = [(ft+£)4- (a - B /r(i +1)«4,
whence for £—0
Aj(L) = (h4-n 4/r(£ + Nad= [M4/F(£+1)ad.

This is the desired result. This proof remains valid even if Af4and A4are the union
of a finite number of pairwise disjoint intervals. Finally, let M ( be a general Jordan
measurable set, then to any s>0 we can find two sets H and K each of them gener-
ated by a finite number of pairwise disjoint intervals and such that

Hc M(a K, [IM4-e”|/l], M4+ es|tf|

and e*0 completes the proof.
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2. To announce the next theorem we introduce some new notation. Let I
be the half straight line y=(#/<x)x, XSO and denote by  the image of Is? obtained

by the mapping (1.2) (ii), this is the half straight line Y=(B/a)iX where Y—yi
and X=x(. Put

Fak = l6f r Il Gif = IifDD.

Theorem 2. Assume that the series

Ax,y)= 2 amxmxn, ams 0

m, n=0

is convergent in Q and if (X, y)—(1, 1) on an admissible curve we have

(2.12) f(x,y) ~ (I-xV ) _i-

Moreover, if the linear sets P&, Gift are Jordan measurable and
(2.12 \Gi3-F iR = UiROdL"N =0,

then

(2.13) At(L) = lim A{ (mr%eZ‘Aann: \FiR\/rA+\) (M + B2 .

Proof. Using (1.1) and (2.11) we obtain

+Rs

Replacing x and y again by xp+l and yg+l, respectively, we have

limX~{ Z _amxmynx s
g YTV g s(p+1) +Br(g+1) =
(2.19)
— r S I" p-(»s+Rr)tp-(asp+Prq)tti-1 J,
r(z)J

It follows from (2.14) as previously that for fixed r and s and any polynomial g(x, y)
we may write

A or's[g]l = lim 2-« Z amnXmy"g(xm,yn) =
00 m, n=0

(2.15)

J e~(*sH¥*g(e xste Br)fi 1dt.
F (0 ( 9( )

p-r.s js a pCative linear functional on the normed linear space of polynomials in
0 like in the proof of the Theorem 1 with
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Thus we may write once more w(x,y) instead of g(x,y) and taking (2.6) and (2.15)
into account we have for Rr*ocs

“ ri*« \Br
2.16 Jm>5w] = lim A« 2 amxmynw(xm, =- — dt,
(2.16) ol = fim Av< 2_ amxymGany ) = 4 7
i.e. for L4=Rfs we conclude from (2.16)
(2 17) AiiL) = m=TJ{i+ W'

(2.17) exhibits that A2(L) is independent of and a and F4" is a unique interval in
this case (see Fig. 2) further

(2.18) A = \PY\RU/(x2i+ IF412

(2.17) and (2.18) yield (2.13) in this special case.

Hereupon we may draw another conclusion from (2.17). Figure 2 shows that
jL4is the union of the basic rectangle F4Swhere Q= (o(/R)isi and the rectangle F#
which is the difference of F &and F|s. In view of (2.17)

(2.19) A2(L) = A2RGE+Trs) = A2(RJI+A2(Trs) = A2(Res)
where Tisis the inverse image of F# by (1.2) (ii). Hence (2.19) yields
(2.20) A(Trs) = 0

for any rif Brhocs. Likewise A2(Ts)=0 for any yvif Rr”cis. Tsrhas a similar mean-
ing as Trs. These rectangles have a vertex on Ig! and a side on Ox or on Oy. We shall
call them rectangles of type T. Consequently, if S is a set contained in a family of
rectangles of type T, then T2(5)=0.

Now we can prove Theorem 2 when L is a rectangle R with sides parallel to the
axes and with a diagonal on IxR. The rectangle of this kind will be called of type R*.
Let us denote the co-ordinates of the vertices of R by (a, b), (c, b), (c,d), (a d)
such that b=(R/ix)a, d—(/oi)c (see Fig. 3). Clearly,

(2.21) Rcd = RabU TcbU RU T da.
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Fg. 3

Taking into account (2.20) we obtain from (2.21)
(2-22) A2R) = A2(Ra) - A 2(Ra).
n, being the diagonal of R( (2.17) and (2.22) imply

(2.23) A2R) = r*~*RT = \FU\M I+ IX 7 + P2)I*

Thus the theorem is proved for L=R.

At present we are in position to show the statement in the general case. Assume
first that F£R is a single interval, then its inverse image by (1.2) (ii) is an interval
PQ”Lp- Let R be a rectangle with the diagonal PQ of type R*. If L—R can be
covered with rectangles oftype T, so A2(L—R)=0 and A2(L)=A2(R) given under
(2.2|§) . If some subset of R is not contained in L we make a subdivision of PQ—

—(J Jj where the intervals 1J=AJ-1AJ, /=12, ..., k, A0=P, Ak=Q are such

=1
that each rectangle R} with the diagonal Ij and of type R* lies in L.
This is possible in virtue of (2.17) except perrllaps at the endpoints P and Q.

If no difficulty arises at the endpoints, then (CL—(@ Rj) is included in a family of

k
rectangles of type T and A2(L—(J Rj)=0. So it follows from (2.23) that

At(L) = a2 U Rj) = FRIr(Z+I)(0<x+RKy/*,
=i

which furnishes the proof. If Rxor Rkis not entirely in L, say thisis the case of Rk, then
we choose Ak“kand Akon the two sides of Q such that |Ak- kQ\—\QAK\=e and we may
write

A, P)—AZL) S A2 R)

and £-*0 gives the result. Similar procedure may be applied in the neighbourhood
of P—A,,. A simple modification is required if Pis at the origin. This proofholds if P&
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is the union of a finite number of pairwise disjoint intervals. Lastly, if F3 isa Jordan
measurable set we may use the same reasoning as in the proof of Theorem 1

Consider still the eventuality when the condition (2.12) is not satisfied, that is if
I/jpfldLM-O, in other words when <)1J contains at least an interval of IE£R, see
Figure 4 where AB—P&8, AC=GIiR and BCczI*}. In such a case there are no rec-
tangles of type R *with diagonals on BC. Consequently, our preceding argumentation
is not valid in this place.

3. The third result is a simple corollary of Theorems 1 and 2
Theorem 3. Let the series

f(x,y)= tn%]_Oannxmyn, amS 0

be convergent in Q. Assume that we have

fOxy)~ (1-*)-«+ (1-*y)-«
when (x, ¥)-*(1, 1) on an admissible curve and in addition that the other conditions of
Theorems 1 and 2 are simultaneously satisfied, then

ML) = limA-« im,%)iLAarm: [\Mt\ort+F*t (y2+6K)-V*]/r(Z+1).
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MULTIPLICATIVE FUNCTIONS SATISFYING
A CONGRUENCE PROPERTY

BUI MINH PHONG

Let J{ and Jt* be the set of integer-valued multiplicative and completely multi-
plicative functions, respectively.
In 1966 M. V. Subbarao [4] proved that if /£ J( satisfies the relation

@) f(n +m) =f(m) (mod n)

for every positive integer n and m, then f(n) is a power of n with a non-negative in-
teger exponent. In 1972 A. Ivanyi [2] showed that if and (1) holds for a fixed
m and every n, then

0 I(«) = rf,

where a is a non-negative integer; furthermore if £~ 3 ( satisfies the relation

(3) f(n+m) =f(n)+f(m) (mod n)

for every positive integer n and m, then (2) holds with a positive integer exponent a.

In this note we extend the above mentioned results of Subbarao and Ivanyi
for cases, when (1) and (3) hold for every positive integer n and every prime m, or
for every prime n and every positive integer m.

We first prove the following result.

Theorem 1 Let /£ Ji. If one of the following assertions holds
(@) f{n +p) =/(p) (mod n)
(b) f(m+p)~f(m) (mod p)
for every positive integer n, m and every prime p, then

An) = if,

where a is a non-negative integer.

Proof. 1L Assume that fA*.M satisfies the relation

4) I(«+p)=/(p) (modn)

Research partially supported by Hungarian National Foundation for Scientific Research Grant
No. 907.
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for every positive integer n and every prime p. We first prove that for a prime g and
integer n

(5) g\f(n) implies q\n.
Since we have to show it only for the case, when n is a power of a prime
number.

Let g be a prime and let gb\f(g), where b”O is an integer. By Dirichlet’s
theorem there exist infinitely many primes p(q)*q of the form gtk+ 1 For such
a prime p(q), using (4), we have

{p(a))fiq) =f{p(q) +4) =f(qb+k+q) =/(?) (mod gb+l)
and so

(6) {p(gi) = 1 (mod q).

Let p be a given arbitrary prime, adl be an integer. If g is prime divisor of
f(py) and g”p, then there is a prime p(q) satisfying (6) and there exist positive
integers x,y such that

() Cx,p)=l and pxx=p(q)+ay.
Using (4), (6) and (7), we have

0 = f(P*)f(x) =f(P*x) =f{ay+p(a)) =Hp(q)) = 1 (mod q),
which is a contradiction, since g is a prime number. So we proved (5).

We now prove that fdJt with (4) implies We shall show it by proving
that for each prime p and each positive integer a

8 f(px) = {f(pif.

We prove (8) by induction on a. Obviously, (8) holds for a= 1L We assume that (8)
holds for a. Let g~-p be an arbitrary prime. Then there exist positive integers u
and v such that

9 (hp) —1 and p*u =qv+l
Let p(q) be a prime, which satisfies (6) and
(10) p(a)>p“u
Using (4), (6), (9) and (10), we have
f{pxu) =f(p(a))f(p*u) =f(p(q)p*u) =f(p(a)av+p(q)) =
=f(p(q)) = 1 (mod q)
f(pxtiu) =f(pqv+p) =f(p) (mod q).

f(px+lu) =f(p)f(pxu) (mod q)
and so, using (5) and (9),

(11) f(px+1) =f(p)f(px) (mod g)

and

From these
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follows. Since gq>p is an arbitrary prime, by (8) and (11) we have

A p°+]) =f(p)f(P°) = (f(p)T+1-
Thus (8) holds for every positive integer a”1, and so

Since and (4) holds, by the result of Ivanyi mentioned above the proof
of the first part is finished.

2. Assume that satisfies the relation
(12) f(m+p) =f(m) (mod p)
for every positive integer m and every prime p. We note that by (12) it follows that
Am+kp) =A m) (modp)
for every positive integer k, and so
(13) /(m+n)=Am) (mod n*

holds for every positive integer n and m, where n* denotes the product of all distinct
prime divisors of n.

In this case, using (12), (13) and a little modification of the first part’s argument,
we also have fEJ(* and for a prime g, a positive integer n

(14) g\An) implies q\n.
From this for a prime p
(15) AP) = zP°

follows, where a”O is an integer. If /(/>)=—#* then applying (13) with m=1
and «=/>'—1, where t is an odd integer, we have

f(p') = (/(/>))' = (- Py =-pa,= 1 (mod (p*- 1)*)
and so it follows that
2=0 (mod(p'-D*)

for any odd integer t. This is a contradiction, since by the result of G. D. Birkhoff
and H. S. Vandiver [1] we have

(p-* A i+

for any integer 6. Thus Ap)~P*“
For distinct primes p and q, let

Ap) =Pa and /(<?) = gbh,
where are integers. Then using (13) with m—1 and n=pqgs—1, we get
f(pas) =f(p)fW) =Pagb=1 (mod (pgs- 1)*).
From this it follows that
(16) pa~b=\ (mod(p”-1)*)
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for every positive integer s. But it is well-known that
(pg"—)* == as s-*%
(see, e.g. [3]). Thus (16) implies a=b, and so

(17) ftp) = pa

for every prime p, where ussO is an integer.

Finally, ftJi* and (17) imply ftn)—na for every n. It completes the proof of
the second part.

From Theorem 1 we deduce the following

Theorem 2. Let ftM . If one of the following assertions holds:

(a" ftn+p) =/(n)+/(T) (mod n)

(b") ftm+p) =fitri) +ftp) (modp)

for every positive integer n, m and every prime p, then
ftn) = tf,

where a is a positive integer.
Proof. 3. Assume that ftJi satisfies the relation
(18) ftn +p) = ftn) +f(p) (mod n)

for every positive integer nand every primep. Using Theorem 1(a), we prove Theorem
2 (a') by showing that
(19) ftn) =0 (mod n)
for every positive integer n.
Using (18), by induction on k, we have

(20) ftkq) = kftg) (mod q)

for every positive integer k and every prime g. Ifp isa prime and p”q, then by (18)
and (20) we obtain

Ha(p+a)) =f(a)f(p+a) =f Aq)+f(p)fta) = fAq)+ftpg) =
=fHq)+pf(q) (mod q)
f(a(p+a)) = (p+a)f(a) = pf(q) (mod q).
ftq) = 0 (mod q)

and
From these

and so, by (20)
(21) ftkg) = 0 (mod q)
follows.
We shall prove that ftM *. First we show that for every fixed prime q there
exist infinitely many primes p{q)*q such that

(22) f(p(q)) = 1 (mod q).
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Let q be a prime. We choose the prime pa*q and the integer s such that
.yfee+1l and Poig’+L

where ge\\f(p0). By Dirichlet’s theorem there are infinitely many primes p(q)”*p0
of the form ge+lk + 1 with (A/?,)=1 We can choose Ain the form

q,-<e+n(p0t+ 1).
For such a prime p(q), using (18) and (21), we have
f(Po)f(p(aj) =f(PoP(q)) =f(p0Og*+lk+pa) =f(pOge+lk)+f(pQ =
=f(Po)f(qe+lk)+f(Po) =/(/>0) (mod q‘+l),

and so (22) follows.
Using (18), (21) and (22), the fact that

(23) g\f(n) implies g\n,

where g is a prime and n is a positive integer, may be proved similarly to the proof
of Theorem 1 (see (5)).

Finally, using (18), (21) and (23), similarly to the proof of Theorem 1(a) we also
obtain that faji*. Thus (21) implies (19). This completes the proof of the first part.

4. Assume that fEJ( satisfies the relation
(24) Am+p) =f(m)+f(p) (mod/?)

for every positive integer m and every prime p. Using Theorem 1 (b), we have to
prove that

(25) Ap) =0 (modp)
for every prime p.

By (24) it is easily seen that

Apd =pAp) =0 (modp)
for every prime p. Applying (24) with m=p2, we have
nd A p2+p) =Apd+Ap) =Ap) (modp)
Ap2t+p) =Ap)Ap+1) =Ap)+f2Ap) (mod/?).

f2(p) =0 and AP) =0 (mod/?)

From these

follow. Thus we proved (25) and the second part of Theorem 2.

Acknowledgements. | am thankful to Professor I. Katai for the indication of
the problem and for his help in the preparation of this paper.
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AN ERROR ESTIMATE FOR INTERPOLATION BY MARKOV
SYSTEMS

R. GUNTTNER

1. Results

The system of functions <, continuous on (a, b), is called a Markov
system if for every natural number »Sm the system {<?}'=lis a Cebyéev system
which means that every ‘polynomial of degree n—v

p,,-i(x) = al(pl(x) +a2g2(x)+...+cc,,(pn(x), X£(a, b),

Y real, |al-|-]a3+ ...+ |an>0, has at most n—1 zeros.
Associating with each Cebyéev system {v>}'=i a set of n interpolation nodes

) a -C x<n) «=xM"l«=... «xn) < b,

then given a function/ on (a, b) there exists a polynomial P,,-i[f] of degree n—1
possessing the interpolation property, i.e.

®)) Pn-i[f]VP) =/(*in)). i=12, n.
This interpolation polynomial can be written in the form

@ P-i[/1(*)= i4(* iB4BM
where the polynomials 4 ) of degree n—1 are uniquely determined by the property
(5) sP(xI">) = Sk, 1Sf,ksn.

The so called “Lebesgue-function” Ln is defined by

(6) A (%)= 24 KB
Now for every fixed x*xj"\ (/= 1,2, let us suppose the set of n+ 1numbers
{x, x<">, xE">,..., <V} = W">}7il
to be ordered by size, i.e.
O a< nme <..< < b
1980 Mathematics Subject Classification (1985 Revision). Primary 41A05; Secondary 41A50.
Key words and phrases. Interpolation by Markov systems, approximation by interpolation.
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We then define
(8) a4, = max |y -yit.

Isisn

Finally if co(f, *) denotes the modulus of continuity of/,/being continuous and
bounded on (a, b), we prove the following

Theorem 1 If gx(x)=1 in the Markov system then
9) \Pn-Af](x)-f(x)\ S J (Ln(x)+ 1)« (/ <).
Now let
(10) R,= 8&5_([1

where x*n)=a, xI$i=b. Of course we have o0g/¥?, thus (9) remains true if a, is
substituted by Bnthe latter not depending on x. The following theorem shows that
the estimate given in (9) is optimal.

Theorem 2. Given a Cebysev system {<>}S and a point xd(a, b), x*xf,
(i=142 , n), then there exists a nonconstantfunction f, continuous and bounded on
(a, b), such that

(11) \Pn-xUKx)-m\ S "‘(Ln(X)"'\)a)(f /?,,).

Of course in (11) Bnmay be replaced by a,,.

2. Proofs

As f)j(x)~ 1 in the Markov system {(Pj}= and because of (5) we must have

(12) A'l_|4 n(x)=1,
therefore .
(13) Pn-i[f](x)-f(x) = i_l ((<">-f(x))  (¥).

In the following we omit the superscript (n). Now let
(14) xf< X < Xi+], i=20,1,2, n,
(x0=a, xHH=b). From (13) we obtain by Abel’s transformation

P[f}(x)-(x) = 2, (F(xK)-F(x keD)ake+(F(xi)-F(x))ai+
(15) ~
+ 2 (AXK—(xkei)) bk+ (f(xi+)—H(x)) bi+1,
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where
ak = ak(x) =t2=iijW—
(16) lc —1,2, eee, K
K = k() = 2, 53(6)’
(as usual, empty sums have to be replaced by zero).
Lemma. For x£(xi5xi+]) and i=0, 1,2, ...,n we have
7) (-1) +kak(x)”0, ksi,
(—)i+H+bk(x) ~ 0, [ <k.
Proof. Let us show that
(-1)i+kak(x) > 0, x€ (xt,xi+1), ks iSn,
which in view of (12) is obvious if k=i—n. Now let fc<n. From
rl, j= 1,2, ...,k
Uk(Xj) =10, j =k+1,...,n

it follows that in each of the k —1 intervals (x1; x2), (x2, x93, ..., (xft_I5xk) the poly-
nomial ak of degree n—1 has at least one extremum and the same must happen in
each of the n—k —Llintervals (xfctl, xfctd), ..., (X,,_1, X,) which amounts to at least
n—2 extrema. We note that the number of extrema of such a polynomial cannot
exceed n—2 (cf. [3] or [4]). Apart from xk+1, xk+i, ..., X,, there are no other zeros of
ak in (xk, x,,+1) otherwise this would yield further extrema. But now ak does change
sign at each of the zeros xk+1,xk+s, ..., xn, otherwise this would lead to further
extrema at these points, and as ak{xk—1, *(xk+1)=0, the function ak starts with
positive sign on the interval (xk, xk+1). The proof of the second part is quite similar
therefore being omitted. This completes the proof of (17).

To prove Theorem 1 we start from (15) which yields
(18) \P,, [F1(x)-T()\ B«(/, &,) (t,z—-l \ak(*)\ +t,—-i2+I \bk(x)]).

But now using (16) and the lemma we get

r(x) :kgl\ak(x)wt;:lz-*-l |W| :k=ll [(— I)"I'klélsj(x)] +

(19) 5 N - o )
LD +I+le<yW] =(IliW +vaW +ii-tM +-)+

+ (Si+1(x)+si+3(x)+Si+5(X)+...).

o*
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For reasons of simplicity the subindices are assumed to range only from 1to n,
(remember that for certain values of i one of these sums may be empty, which of
course does not upset the proof). Bearing this in mind we conclude from (19)

rx) =y (JIW -Jj_109+1i_2(x)-Ji_3(je)+]j_4(x)-+...) +

+4-Q(*)+  (*)Hmeet (*)+(H (¥)Hmeet

z

—

M)'s 1, 2\ kOO r2 sk =

which in view of (18) and (19) completes the proof of Theorem 1
To prove Theorem 2 it is easy to construct a function/ such that for fixed x * x k

(20) f(x) =- 1 f(xK =sgnskx), (k=12  r

f being continuous on (a, b) and not exceeding 1 in absolute value. Of course
2"co(f J?,)>0 thus we conclude from (4), (20) and (6)

Pr-i[f](x)-f(x) = Ln(x)+ 1S -1co(f R,) (Ln(x)+ 1),

which proves Theorem 2.

3. Remarks

The estimate given by Theorem 1 has first been suggested in case of ordinary
interpolation by Kis [2] then proved by Brass—Giinttner [1], To infer algebraic
interpolation from Theorem 1on the closed interval [—1, 1] we take (EIJ(x)—xJ~1
and (a, b)=(—1—e, 1+e), e>0 sufficiently small, but of course we simply can
choose (a, b)=(—1, 1), if —1 or 1 are no points of interpolation.

In [1] it is made use of Rolle’s theorem whereas no differentiability is needed here.
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ON EXTENSIONS OF SYNTOPOGENOUS STRUCTURES I

J. DEAK

Abstract

I Weinvestigate the possibility of extending a syntopogenous structure compatible on a subspace
of a topological or bitopological space to a compatible structure of the whole space.

We shall follow the terminology and notations of Cs&szar’s book [3], except that
(i) cwill be replaced by -1 (or just ~ before another operation), and 1lby 1; (ii) a
topology in the sense of [3] will be identified with the associated “classical topology”,
cf. [7]; (iii) a “quasi-uniformity” in the sense of [3] will be called (in conformity with
current terminology) a quasi-uniform base; the quasi-uniformity inducedby y is the one
for which the “quasi-uniformity” associated with y is a base; (iv) if y =y 'p then
we say that y induces the topology y , or that it is compatible with ST.

AczxB means that AaBczX (i.e. » x={crx}). p(X) denotes the power set of
X. For ttcp(l), seca=secxa consists of those subsets of A'that meet each element
of a.

(y~tp, y tp) is the bitopology induced by the syntopogenous structure y. (The
two topologies are taken in reverse order in [5].) We shall also say that y is a com-
patible syntopogenous structure in the bitopological space (X;y~Ipy Ip.

§ 0. The problem

0.1 Let us be given a topological space (X,y), and a compatible syntopo-
genous structure yo on the non-empty subspace (S,y\y). We are looking for a
compatible extension y of y0, which means that y Ip=y and y\S~y0. (So
density is not required when we speak about an extension of a syntopogenous struc-
ture. The terminology concerning extensions of bitopologies will be different.)
This question was investigated in [7], and we have very little to add. (In [7], S is
assumed to be y -dense, but, as we shall see, this restriction does not make much
difference.)

The analogous problem in bitopological spaces seems to be unexplored: let 5
be a compatible syntopogenous structure on the non-empty subspace (S; 2T-MS,
y\\S) of the bitopological space (X; J.j, yfj; find extensions y of yocompatible
with (*_i, yj.
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We shall describe in 8§ 1 a general construction, which will be applied to the
topological case in §2, and to the bitopological case in §3.

0.2 The appropriateness of the definition of an extension is open to question:
why do we not demand 9\S=90 instead of 9\S ~9a One can argue in favour of
the weaker requirement that equivalence classes of syntopogenous structures are more
important than the structures themselves (similarly to the case of uniformities v.
uniform bases). Should this reasoning not carry conviction, the doubts will be
settled by the following lemma, in consequence of which the two possible definitions
are essentially the same: if there is a compatible extension then there exists one in the
stronger sense as well (because equivalent structures induce the same (bi)topology).

Lemma. Let9Uand 9 be (perfect/biperfect/symmetrical) syntopogenous structures
on S, respectively on X, and 9\S ~ 9 0. Then there exists a (perfect/biperfect/symmetri-
cal) syntopogenous structure 9' suchthat 9”~9, 9'\S=90 and \9"'\"\9\ =90\

Proof. 1° Assign to each and -<€.9 satisfying the condition
(1) <0c<|S
a relation -='=<'(<,,, «9) as follows:
2 A~'B iff AAB and ~(T5<05nS.

«="is a topogenous order on X, (bi)perfect or symmetrical if <,, and < are so (the
simple proof will be given for a more general construction in 1.1). Take the order
family

s <t (<o, <) <,c=<[S}.

We do not have to prove that 9 ' is a syntopogenous structure, since this will follow
from 9 ’~9. The statement about \9'\ is evident.

2° Let us prove that 9 °~9. Each <'£9' isofthe form <'(<,,, <); now
mNM<z<"9, and so 9'<9.

Conversely, take < ”"9. In consequence of 9\S~9a, there are <(CE90
such that

©) <il5 a

and <29 with As 9 is directed, we can take satisfying
<lU<2C<-Now <0c< 2A*c:<ISthus <'=<'(<0,<)Ey', and so 9<9'
will follow from <jcr

Assume A<X. Then A<B, and also by (3), so A"'B
indeed.

3° It is clear from (2) and (1) that for any <'£9’,
@ =IS= <'(<0,<)IS =
so 9'\Scz90. To prove the converse, take an order -=0£9a. By 9\S~9”", we
can choose satisfying (1), and then, according to (4), < Ois the restriction of

some order from 9 ', hence 9ticz9,\S. O
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Remarks, a) If  and Sf are finite then \9”\=\9Q\ can be required: with the
notations of the proof, let

st ={<'(< ) <of&)},

where = is the finest element of &.
b) It is clear from the proof that the lemma remains valid for directed order
families.

8 1. A general construction

11 Let <_j, <, and < 2be semi-topogenous orders on X, and <0a semi-
topogenous order on SaX. Define a relation < —< _x, <¢c, <j, <2 between
subset of X as follows:

A"B iff A<2B at}d there exist sets A', B’czX such that
A N XA\ A'OS “oB'DS, B'< xB.

(Such sets A" and B* will be referred to as “showing A-=-B".) Equivalently: A<B
iff A<2B and there exist A", B”c.S such that y4<li*U(A\S"), A"<®B" and
B”<_IB. (To prove the equivalence, take A"=A'f)S, B"=B'C)S, respectively
A'=A*\J(X\S), B’=B". The second version of the definition will look more
symmetrical if we write A-<IA"U (X\S) in the form S\A"<{'IX\A.)

Lemma. Let < —[<_X <0, <x <2

a) < is a semi-topogenous order on X. <c <2 and <|5¢c<0.

b) If each (—Sy™2) is topogenous, perfect or biperfect then so is <.

c) < _1=[<f1 <iTy <Ii, ¢ 1. Consequently, if <0and are symmetrical
and <rlr=<-i fhen < is symmetrical, too.

Proof, a) 0<0 and X<X are shown by A'=B'=0, respectively A'=B'=X.
If A<B then A<2B, and therefore AczB. If A,,czA<BczB0O, and A', B' are
chosen to show A<B then they show AO0<BO as well.

If C(<|S)Z) then there are sets A, B with A<B, ADS=C, BHS=D. Take
A', B' showing A”B; then CaA'r\S<aB'DSczD, hence <|Sc-=0.

b) Leteach *5 be a topogenous order, and assume Ak<Bk (k= 1,2). We have
to show that AIOA2<BInB2 holds for 0= () and D= U. Ak~=Bk implies
Ak< 2Bk, therefore AInA2<2B1nB 2 Choosing sets Ak, Bk, with Ak<1AKk,
/finS < n#*n,S'" and Bk-".IBk, we take A’=AxnA2 and B'-—B[nB2\ now
these sets show that A1UA2<B, OB2 (e.g. AIOA2<1A' because < Xxis topoge-
nous). To prove the statement about (bi)perfectness, repeat the above reasoning
with arbitrary collections instead of pairs.

c) An easy calculation. O

Remark. With the notation from the proof of Lemma 0.2,
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1.3 Let j/_15sixand si2be order families on X, and siOan order family on S.
We consider the following order family on X:

[s?-i, si0, six, sig = {[<_!, <0, <!, <Z: -Cjzs/j (-1SyS2)}.
Lemma. If each sij is directed (—1S/S2) then so is [si-X,sin, sél, sid.
Proof. Lemma 12. O
14 Lemma. If sij<.@j (-1 ~y'2) then

[si_j,si0, six, sid” [a? 15 N
Proof. Lemma 12. O
1.5 Lemma. If each sij is directed (—s/'s2) then
[si-x, si0, sis, sijf = [sili, sif sil, sii\.

Proof. Let si=[si_x, siQsix, sid, &=[si, 1,sifsil,si£]. From sij<sij
and Lemma 1.4 we have si<&2, which implies si* because 'Mis a simple order
family.

To prove 4?<<*", we have to show that < c<' where a?={<} and si"*=
= {<'}. Assume A<B. As sij is directed, we have sij={\Jsij} ([3] (8.38)).
A<B means now that there are A' and B' with A(\Jsi2B, A(VisifA\ A'D
IT5(U”0)*n5"and BfUsiJB. Hence there are < j*sij for which A" and B' show

that A<"B where <*=[<_x, <0, <i, <'fsi, therefore <"(=<', and
so A<'B.
si'=Sd follows now from si’ since both order families are simple. O

1.6. Lemma. Let si=[si-1,siu,sil,sij.
a) si<si2, si\S<siO.
b) If sia<sij\S (j= +1, 2) and si0 is a syntopogenousstructure then si\S~si0.

Proof, a) Lemma 11 a).
b) Given <w£siO, we need “jdsij suchthat

(@) 700 G [*--1» MO» <i> N
Take <f_si0 suchthat <coc<o- As si0'sij\S, there are <jtsij with
(2) <0 <= 0 =,£1.2).
These orders -<j will do in (2).
Indeed, assume C<QOD, and let <=[<_i, *5, <3~ Pick C\ D' with

C~0C'~0D'<OD. By (2), C(<,/S)C', D,(<_15)D and C(<25)Z). Thus
the sets C'U(X\.S) and D' show that C<DU (X\S), and so C(<\S)D. O

1.7 In the most important special case of the general construction, the three
order families on X coincide: if si is an order family on X, and siOon S then define

si+si0= {< + <o; -"dsi, <0(-si(}

< + > =

where
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Lemma. |f s4 is directed then +s/0~[.s/, ,sd,si]. O

1.8 Lemma. If Of is a syntopogenous structure on X and sd0an orderfamily on S
then

@) ~ {<+* <0 ),

where, for A, BczX, T (<+*<(2? iff there are A',B' such that A<A'<B'<B
and A'ns< aB'f\S.

Proof. < + *<0c < + <0 is evident. Conversely, we are going to show that

if <cz<'3 and then <+ <Qc:<'+*<,,.
Assume ,4(< + <QF. Then there are A’, B' such that A<B, A<A\ B'<B
and As A<B, we may pick A",B" with A<-’A"<-'B"A'B.

Now if A"'=A'f)A" and B™=B'VJB" then AMNA"'"'Bm='£ and A™C\S<O
<<R"™C\S, implying A(<'+*<(QB. O

Remarks, a) The lemma remains valid if we replace A'"B' by A'czB"
b) 1f SPis a topology then equality holds in (1).

1.9 Lemma. If Sf and if0 are syntopogenous structures, and then
SA+SAa is a syntopogenous structure, too. Moreover, Sf+ 9 a-<£f and (SA+£ff)\S

Proof. The statements in the second sentence follow from Lemmas 1.7 and 1.6.
£A+£A0 is directed by Lemmas 1.7 and 1.3. To prove that s@+£/a is a syntopogenous

structure, it is enough to show (taking Lemma 1.8 into account) that if and
then there are and such that
D) <+*<0c (<'+-=))*.

This will hold if we choose <0 and satisfying the following conditions:
(2) <;c<"2S, <c< 2.
In order to check (1), assume A(< +*<,)5, and take A', B' with
(3) A<A'<B'<B
and ¥4 n5,-=05/(T5. According to (2), there are C0O, DO,E, A", B" such that

@) N'ns<ic0<iz>0<65'n5,
(5) CO<'E«="A,U(Z\S),

(6) ANA"NAY B'ANMB"A'B.
We claim that if

(7) F=(EUA")NB"

then

®) M+ <J)F(-="+<i)5.

The first part of (8) is shown by the sets A" and CO: it follows from (3) and (6)
that A"<"B", thus A<'F by (7) and the first part of (6); we have A-z'A" from (6);



140 J. DEAK

A'DS<'ConS=CO0 is contained in (4); finally, CO<'F, because CO<'F is known
from (5), and COc:B'<'B" follows from (4) and the second part of (6).

An analogous reasoning gives that the second part of (8) is shown by the sets
DOU (X\S) and B'. Thus (1) holds indeed. O

1.10 Lemma. If sf is a syntopogenous structure on X then Sf+ (Ef\S)™ Sf.

Proof. By Lemma 109, it is enough to check that S). Given
<€«S', take with < c<'3; now <c¢ < ,+(<'|5"), sinceif A-MA'-NMB'M'B
then the sets A',B' show that >4(-='+(<,5))B. O

1.11 For a syntopogenous structure  on X, the if-tracefilter f(x) of the point
XEX is the trace on S of the A -neighbourhood filter n(x) of x, i.e.

f(x) = n(x)|S = {FfIS: FEN(T)}.

Letsi be a directed order family on X. The filter f on X issi-round [2, 4] if for
any F£f there are FEf and < Ssi such that F-=F. fis Ground iff it is si'-
round.

Lemma. |f Sf is a syntopogenous structure on X, andsiOa directed order family
on S then +7/0p=""tp iff each Si-trace filter is siground.

Proof. Let and (Z*+sig‘={<"}.

1° Necessity. Fix a point XxEX and take an FE£f(x). Now FU(X\S) is
an ~-neighbourhood ofx, so {x}<"FU(T\S). From the assumption (Sf+sintp=
= {<"} it follows that {x}<",FU(2T\S'). £f+si0 is directed by Lemmas 1.3 and
1.7, so, according to [3] (8.38), there are and <lisia with

{*}(< + <0)FU (*\S).

Hence there are A', B' such that {x}<A\ B'"F\J(X\S) and T'nS'<0B,nS"
A ia an ~-neighbourhood of x, so f(X)G/4,n»S'<oF'nS'cF, i.e f(x) is siQ
round.

2° Sufficiency. Assume that the trace filters are round. We have to show that
{3<"2? iff {x}<"£. If (x)<nmB then {x}(<+ <OQF with suitable
and <06l/n, thus {x}<2?, and therefore {x}<"B.

Conversely, assume that {x}<"2L Then {x}<'B with some m<wf£?. \We need
< Sfif and such that

1) {x}(<+ <,)E.

a) If x lies outside the 5"p-closure of S then there is a such that {x}<
~=X\S and now an arbitrary <0€j/0 will do: A'=X\S and B'—{x)
show (1).

b) If x is in the closure then take and B'czX with and

£,nS7f(x), so (as f(x) is round) there are A'cX, <ZXSi and
such that {x}"2A' and yi'ITS<of?PIS. Choosing <€5" with -CjU
U-=2c <, (1) is shown by the sets A' and B'. O
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Remark. In this lemma (and in some other statements to follow), p(S) is to
be counted among the filters on S (which is in this case evidently a round filter), or
we have to use the convention that the points outside the closure of S have no trace
filter.

§ 2. Syntopogenous extensions in topological spaces

2.1 Let y, bea compatible syntopogenous structure on the subspace S of the
topological space (X, F). If £fahas a compatible extension then each trace filter is
-round ([15] 2.1 or [7] 15).

Theorem. |fthe IF-tracefilters are  -round then there exist compatible exten-
sions of £fa\ ,T+£fa is the finest compatible extension.

Remark. The statement of this theorem is contained by [7] 2.1 and 2.2 for the
casewhen S is dense; F +£f(i does not appear in the theorems, but the construction
given in the proofis in fact the version of F+F0 described in Lemma 18 (cf. Re-
mark 1.8 b)).

Proof. F+£f0 is a compatible extension by Lemmas 1.9 and 1.11. Let F* be
another compatible extension. Then we have F'~F'+ FO0 from Lemma 1.10, thus
Lemmas 14 and 17 imply that £f'<F+FO0 (since F'<F). O

2.2 Let 6 be a proximity on ScX, and e a proximity on X. The following de-
finition can be obtained through the associated topogenous structures:

Ae+SBiff AeB and there are A', B' such that
Ae(X\A", (X\B")eB, A'OSSB'OS.

One can arrive at this definition of £+5 in another way, too, see [11] Remark 2.2 a).
Take now a closed subspace S of a normal regular space (X, F), and let $bea
compatible proximity on S. We are going to re-prove the non-trivial part of the
theorem in [1], stating that $has a compatible extension. (See also [12], where totally
bounded uniformities are used.) The explicit form of £+5 will not be needed.

For A, BczX, let AeB iff the closures of A and B meet. This £ is a compatible
proximity (in fact the finest one) on X (e.g. [6] (3.1.13)). If A,BczS and AeB then
clearly ASB, thus e|S is finer than <§ and it follows now from the lemmas of § 1
that e+(5 is a compatible extension of &

Remarks, @) IfFnand 1f are biperfect, H and v denote the quasi-uniformities
induced by Fo, respectively by F , then, with the notation of [10] 1.1, F + s the
same as the quasi-semiuniformity induced by the biperfect order family F+FO.
Thus the operation + introduced in the present paper can be regarded as a generali-
zation of the one defined in [10].

b) See [7] for further results on syntopogenous extensions in topological spaces.
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§ 3. Syntopogenous extensions in bitopological spaces

3.1 Let now (X; Sff) be a bitopological space, and if0 a compatible syn-

topogenous structure on SczX; we are looking for extensions of  compatible
with {ST_I5if). If there is such an extension then (A 1?iff) has to be completely
regular ([5] (1.1); for the sake of simplicity, let “completely regular” mean “quasi-
uniformizable” by definition; see [14] for the original definition given in terms of
semicontinuous functions). The .~-trace filters are necessarily 5*-round (i—z 1),
because if if is an extension of if0 compatible with ST then if' is an exten-
sion of if'0 compatible with

We shall say that the bitopological space (X\iT_i, iff) is an extension of
(S; 2fL\, if S=2T{and S is dense in both topologies. (f_1(x), fH*)) will denote
the trace filter pair of the point xf X (i.e. f/(x) isthe -trace filter of x). The filter
pair (f_1, f)) in the syntopogenous space (X, if) is called round if f is &\'-round
(/= £ 1). Using this terminology, we can say that if a syntopogenous structure has a
compatible extension to an extension of the induced bitopology then the trace filter
pairs are round.

To formulate a third necessary condition, we need the following

Definition. The filter pair (f_1, fl) in the syntopogenous space (X, if) is
compressed if A<B with some < iif and A secf 1 imply BZfl

Remark, (f-1, f)) is .A-compressed ifif (f1, f-1) is ~ "~-compressed. This is clear
from:

Lemma, (f-1,f]) is if-compressed iff for each < iif, C,Esecf’ (i=z%1)
implies C_j<€T\C X O

Being ~-compressed depends only on if1 It follows from the above lemmathat a
filter pair is *-compressed iff it is compressed (in the sense of [8] Definition 5.1) with
respect to the quasi-proximity associated with if'} An analogous statement holds
for round filter pairs.

Proposition. |f a syntopogenous structure mohas an extension compatible with
an extension {2T x,STf) of the induced bitopology then each (2T X 2Tf)-trace filter
pair is if0-compressed.

Proof. Let {X, if) be a compatible extension. Assume Afsec f-1(x),
and A<OB. Choose <dif with <0c< 25" The assumption v4£secf-1(X)
means that each /m 1=<9’~tp-neighbourhood of x meets A, hence {}<E€-1X\A, and
S0

D A*
On the other hand, A<,,B and the choice of < imply that there exists a set C with
A < C < BU(X\S).

1 The notion of a proximity associated with a symmetrical topogenous structure has to be
extended here to the non-symmetrical case in the obvious way.
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Now xE£C follows from (1), so BU (X\S) isa & ” “-neighbourhood of x. i.e.
BE£?(x). O

3.2 Our next aim is to prove that the necessary conditions given in 3.1 are suffi-
cient in a special case. (The example in [8] 5.4 shows that they are not sufficient in
general.) For this purpose, let us recall some facts from [8],

A bitopological space (X; 2T _X ST) is regular ([13]; a condition weaker than
complete regularity) if each point has a .*[-neighbourhood base consisting of 3r_r
closed sets (/= + 1). We gave a necessary and sufficient condition for the existence
of regular bitopological extensions inducing prescribed trace filter pairs ([8], 2.1 (1)).
Assuming this condition to hold, there is a finest one among such extensions, called
fine regular, which can be constructed as follows ([8] Theorem 2.2): for x£ X, i= %1

and FEfI(x), define
iV)(X) = {x3}U{y: Ffsecf~'0>)};

now a base for the ~[-neighbourhood filter of x (where (&LX &]) is the fine regular
extension associated with the trace filter pairs (f_1(x), fl(x))) is given by

b'(x) = {Nf(x): FEFf'W}.

Theorem. If (S,&0) 's a syntopogenous space, (X\ is afine regular
extension of (S; 970"y, IXf), and the tracefilter pairs are round and compressed then
has extensions compatible with (3T _X *]).

& = [l *2,9X
is one of the finest compatible extensions.

Remark. If round and compressed trace filter pairs are prescribed in a syntopo-
genous space in such a way that the neighbourhood filter pairs are assigned to the
original points then there does exist the fine regular extension. (Check [8] 2.1 (1)
directly, or apply [8] Lemma 2.3 to the totally bounded quasi-uniformity compatible
with the quasi-proximity associated with £F0.)

Proof. 1° is a directed order family by Lemma 1.3.
S, and E£fo<@s=@x\S, so it follows from Lemma 16 b)
that Sr\S”0.

2° if is a syntopogenous structure. Let &\={*=}* It is enough to show that if
<0, suchthat < 0Ocz«=03 then < c < '2 where

<= [<2ii <0 = [< 2j, <6, <i, cj.
Assume A<B. Then there are A',B' such that

A<XA', A'OSA,,B'OS, B'<.z\B.

Pick D, E satisfying
A'DS™ODNOENOB'T\S.

We claim that A<'C”'B holds with
C = AU{xeX: DCsecf-H*)}.
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D being a subset of S, Ddsec f-1(x) is equivalent to2 Ddsecn-1(x), hence
c=auci~1D.

a) A<’C isshown by the sets A'and D: AaC by the definition of C; A<)’
was assumed; D <z\C is equivalent to the statement that CI“'Z)c;C; finally,
A'CiS"D"DCiS.

b) C-~'B is shown by the sets E'—E\J(X\S) and B': B'<z\B means
that Cl_1B'czB, so CczB follows from Dc.B' and AczB\ if xdC\A then
Dfsec f-1(x), therefore Edf*(x) (because D<OE, and (f-1(x), fHx)) is com-
pressed), and so E'dtfiix), implying C\A < X', whence C < 1£/, since A<1A'cE";
B'<z\B was assumed; finally, E'd\S—E<'0B'C\S.

3° if is compatible. We only show that iflv=Sfx; the proof of if~Iv~if_x
is analogous. (Or Lemma 1.1 c¢) can be applied.)
a) Let us first check that If {x}<B for some

1) <=[JCl. <0>"i»"

then take A',B' with {x}<xA\ B'<z\B and A'OS”aB'"S- Now with
/r=y4,n5'€f1(x) we have FczB', thus Cl _1Fc5. This means that B is a ITXx
neighbourhood of x, because Np(x) can be written as {x}UCI_1F, and xdB.

b) Conversely, assume {x}<xB. As (f-x. &) is regular, there is a sf_x-
closed set B' with {x}<,5'cB. Now B'C\SdfHx), which isifa-round, so there
are GCf*x) and with G<O0A'nS. Defining < by (1), the sets A'=
=GU(A\5) and B' show that (x}<2? {B'<z\B holds because B' is a 3~ x-
closed subset of B).

4° if is thefinest extension. Let if’ be another compatible extension; we have
to show that i f < if. Given <'dif, take <"dif with <'c:<"3 As if’\S~if0,
there is suchthat -="|Gc: <0. Define now < by (1). Then <'<z<.

Indeed, if A<’B then take A’, B’ such that A<"A’<"B’<-"B. These sets A\
B' show that A<B: <’dif and 5% ,p={-<x}, thus <"c:<x, and so A<XA"
similarly, i.e. and therefore B'<z\B; A'r\S~"0B'C\S
follows from <"|Sc<0. O

3.3 Concerning extensions from arbitrary subspaces, we have only:

Theorem. The following conditions are equivalent for a syntopogenous structure
9" compatible on a subspace of a bitopological space:
(i) ifa has a compatible extension;
(i) ifa has a compatible extension;
(iii) ifahas a compatible extension if with \if\= 1

Proof. (i)=>(ii) and (ii))=>(iii). If if is an extension of ifXor of if\ then if‘is an
extension of ifa

(ii)=»(i). Let if—if* be an extension ofif0. Take if=if-iifaa Now
ifukK f'o IS, thus it follows from Lemma 1.9thatif isa syntopogenous structure

rt'(x) denotes the ~-neighbourhood filter of x; CI*is the *-closure.
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and &’\S~Sf0. By Lemmas 17 and 15, &,,=.9",+&0=Sf+(£f\S), thus Lemma
1.10 gives and therefore 9 and if induce the same bitopology. O

Remarks, a) When proving that 9 is compatible, we could have used Lemma
111

-b) Theorem 3.2 (without its last statement) can be deduced from [8] Theorem
53 and (iii)=>(i).
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PREFACE

The Mathematical Institute of the Hungarian Academy of Sciences at March
18-19, 1991 celebrated the 70-th birthday of late Professor A. Rényi, the
founder of the Institute. The Organizing Committee of this Memorial Meet-
ing invited a few of his friends and a few younger mathematicians whose
works are strongly connected to, or influenced by Rényi’s research.

The Editorial Board of the Studia Sei. Math. Hung, decided to devote
a special Issue of the Journal to the memory of Rényi, the founder of the
Journal. This Issue consists of some of the lectures held at the Meeting and
some other papers devoted to the memory of Rényi.

The Organizing Committee is indebted to Prof. D. Kosary, the Presi-
dent of the Hungarian Academy of Sciences for his valuable help. We also
acknowledge the support provided by the Hungarian National Foundation
for Scientific Research Grant No. 1808 and 1905.

The Organizing Committee
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PROGRAM OF THE MEMORIAL MEETING

March 18, 1991

10.00

10.15

11.00

11.45

14.30

15.15

16.00

D. KOSARY President of the Hungarian Academy of Science: Opening

J. SZENTAGOTHAI (Hungary): An early probabilistic model of synap-
tic transmission

P. ERDOS (Hungary): My work with Rényi

V. T. SOS (Hungary): Quasirandom graphs

N. H. BINGHAM (UK): The work of Alfred Rényi: Some aspects in
probability and number theory

I. CSISZAR (Hungary): Axiomatic justification of the methods of least
squares and maximum entropy

G. 0. H. KATONA (Hungary): Combinatorial search problems
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PROGRAM OF THE MEMORIAL MEETING

March 19, 1991

10.00

10.45

11.30

12.00

12.30

14.30

15.15

16.00

P. DEHEUVELS (France): Functional Erd6s-Rényi-type laws

M. CSORGO (Canada): A note on local and global functions of a
Wiener process and some Rényi-type statistics

E. CSAKI (Hungary): Erd6s-Rényi laws for local times

I. BERKES (Hungary): Limit theorems related to the a.s. central
limit theorem

I. VINCZE (Hungary): A few words on A. Rényi

J. L. TEUGELS (Belgium): The region of convergence of the Laplace
transform: almost sure estimation"”

P. MAJOR (Hungary): Poissonian limit law for the number of lattice
points in a random stripe with finite volume

P. REVESZ (Hungary-Austria): On the coverage of Strassen’s set
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ALFRED RENYI: A TRUE EUROPEAN

DAVID KENDALL

I think | must first have seen Rényi at the International Congress of
Mathematicians in Amsterdam in 1954, a delightful meeting taking its colour
from the fact that the activities centred (perhaps appropriately) around
the Zoo. He startled everyone by reading a paper announcing his recent
discovery of conditional probability spaces.

Our first personal encounter followed later. | remember asking him why
all the references to genetics had been deleted from the Russian language
edition of Feller’s book, and he teasingly replied with another question: why
were the references to dialectical materialism deleted from the English lan-
guage edition of Gnedenko’s book? After that, we got on famously.

Rényi often visited us, at our home in Oxford, and later, at our home in
Cambridge. We saw a lot of him and his daughter when they spent a long
period in Cambridge during his tenure of a Fellowship at Churchill College.

Of course we also met frequently at conferences. | remember inviting him
to a NATO sponsored conference, and getting a reply saying: ‘Of course |
want to come, and | think | will indeed be able to come if you will kindly send
me a slightly modified invitation: just replace ‘NATO’ by ‘North Atlantic
Treaty Organisation’ - there will then be no problem’.

About this time | started a series of Rényi-type visits on my own account,
attending meetings in Eastern Europe every year for a long period, until |
knew all the countries really well, except for Albania - somehow | never
managed to get to that country. | know that Rényi and | were at one in
believing such exchanges to be of the highest importance, and not just for
mathematical reasons.

My knowledge of the Hungarian language never advanced very far. In
a journey into the Hungarian countryside | noticed in a small village a sign
that | thought said Matematikai Kutaté Intezete, and | expressed surprise
that it too should have a mathematical research institute. ‘Ah,” said Rényi,
‘this time it means ‘Beware of the dog’ ".

Later | had another encounter with this mysterious language. | had been
invited to write an account of Rényi’s life and work for an international sci-
entific encyclopaedia. | managed to get together a suitable selection of ref-
erences from the enormous corpus of his writings, with the titles in English.

Akadémiai Kiad6, Budapest
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But the publishers would not have this: they demanded that they all be
translated back into Hungarian.

Rényi told me that in the fighting in Budapest during the war he became
worried about the fate of his mathematical books. These were hidden in
packing cases in the basement of a house in the battle zone. So he stole a
German uniform and a wheel-barrow and pushed them to safety.

I am sorry to have no mathematical reminiscences to grace this occasion,
and even sadder that | cannot be with you. When | wrote an Obituary
Notice for Rényi in one of the Applied Probability journals | remarked on
his passionate belief in the basic unity of Europe, both East and West. How
happy he would have been, to know that there is no longer any need to insist
upon this. One dream, at least, came true.
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COUNTEREXAMPLES RELATED TO THE A.S. CENTRAL
LIMIT THEOREM

I. BERKES*, H. DEHLING, T. F. MORI*

1. Introduction

Let (Xn) be a sequence of r.v.’s, (an) a numerical sequence and G a distri-

bution function. We say that (Xn) satisfies the a.s. central limit theorem

with norming (an) and limit distribution G ifsetting Sn = X\ Hem (Xnwe
have
(1) lim - — v 'yl (— <il = G(X) a.s. forall X¢ SCq.

N —oo log N K u = J S/)

(Here SCqg denotes the set of continuity points ofG.) In recent years several
papers dealt with limit theorems of the type (I) and related asym ptotic
results. Fisher (1989) and Lacey-Philipp (1990) proved that if XN are i.i.d.
with EXi= 0, EXJ= 1then

(2) lim ———Vv' — | —f=< = A(i) a.s. for all X.
N->o00 log N k \~k J v’

(Under the existence of finite (2 -f5)-th moments this was proved earlier by
Brosamler (1988) and Schatte (1988).) A more general result was obtained
by Berkes and Dehling (1991) who proved the following

THEOREM. Let Xi, X2,... be a sequence of independent r.v.’s and put
S,, = Xi + «««+ Xn; let an > 0 be a numerical sequence such that

(3) an/n'< is nondecreasing for some 7 > 0

‘Research supported by Hungarian National Foundation for Scientific Research, Grant
No. 1905.

1991 Mathematics Subject Classification. Primary 60F15, 60F05.
Key words and phrases. Weak and strong central limit theorem, logarithmic density,
domain of attraction.
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and either
(4) E\Sn/an\p < K exp((log n)1_e) for somep >0, e >0, K >0

or
(5) £((loglog|Sn/a,|)1+e) < K for some e > 0, K > o.

Then for any distribution function G the a.s. central limit theorem (1) holds
iff

(6) lim

— \ — A = G(x) for all xe SCq-
N—00 log N p\gik <% 0 d

The above theorem shows that under mild technical assum ptions the a.s.

CLT (1) is a consequence of the weak convergence relation

(7) Sn/ant G.

Thus, despite its pointwise character, the a.s. central limit theorem (1) is
actually a weaker statement than the distributional result (7). It is natural
to ask if any converse relationship between (1) and (7) holds i.e. if the a.s.
CLT (1) yields any information on the weak convergence properties of Sn/an
or the class of its weak (distributional) limits. The purpose of this paper
is to show that, except the case of a limiting normal distribution G, the
answer is negative even in the simplest case of i.i.d.r.v.’s (X n). In fact, we
are going to construct (see Examples 1,2) i.i.d. sequences (X n) such that (1)
holds where G is a stable or mixed stable distribution but the distribution
of Sn/an fluctuates irregularly without a limit as n —* oo and the tails
P(Xi > t) behave, as t — 00, in a very erratic way. Example 1 also shows
that the class of all possible limit distributions G in (1) for i.i.d. sequences
(X n) is larger than the class of limit distributions in (7) (i.e. stable and
normal laws) and also that under the validity of (1) Sn/an can have limit
distributions along subsequences which do not even resemble the limit G in
(1). The case of a normal limit distribution in (1) is an exception: from
a concentration function inequality of Esseen (1968) it follows easily that

if an i.i.d. sequence (X n) satisfies (2) then we have EX\ = o, EXj —1

i.e. automatically n~1/2Sn -i iv (0,1). However, Exam ple 3 below gives an
independent, nearly identically distributed sequence (X n) satisfying (2) but
with Sn/\/n having no lim it distribution (in fact the weak limit set of Sn/y/n
being the class of all normal laws N(p, 1/2), p. real).
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In conclusion we note that by the examples of our paper there is a fun-
damental difference between classical domains of attraction and their ‘loga-
rithmic’counterparts defined by means of (1). By the standard definition, a
distribution F belongs to the domain of attraction of a nondegenerate distri-
bution G if there exist numerical sequences (an),(6n) such that for any i.i.d.

sequence (Xn) with distribution F we have, setting Sn= Xi + «ee+ Xn,
a,,ISN- bN-i G (N —»o00).

In analogy with this, let us say that F belongs to the domain oflog attraction
of G if there exist numerical sequences (an),(6,) such that for any i.i.d.

sequence (An) with distribution F we have

li — vt A\l (—- 6+ I = G(X) as. f I xe SCq-
N-I’[Q)ologN k \(ak k<xf (K)las °ore d

As iswell known, a distribution G has a nonempty domain of attraction iff G
is normal or a-stable (O < @ < 2) and the corresponding dom ains of attrac-
tion consist of distributions having regularly behaving tails and truncated
variances at infinity. As our examples show, the situation is completely
different in the log case: there exist nonstable distributions with nonempty
dom ain of log attraction and the domain of log attraction of any nonnorm al
stable law contains many ‘pathological’ distributions with irregular tail be-
havior. Hence any characterization (if exists) ofthe domain of log attraction
of a stable law Ga (0 < @ < 2) must be of an entirely different nature than

that of the ordinary domain of attraction.

2. Examples

In the constructions that follow, we shall make repeated use of the fact that
if relation (1) holds along a subsequence NKsuch that log Nk+i/log Nk —»1,
then (1) holds for all N. This remark is immediate from the fact that
denoting the sum on the left hand side of (1) by TV, we have \Tm —TV]| <
< log N -logM for1< M < N.

EXAMPLE 1. Let a and B be positive numbers, 1 > a > B > 0. Let
ip R —»R be a continuous even function, increasing and concave on the
non-negative halfline, in addition, \p(t) ~ ta as t —» 0 and Xp(t) tP as
t —»oo. Then exp(-ip(t)) is a Pélya type characteristic function. Let

ax, = (fch2/(a+/?), k> 1,
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while for K\ < n < [k + 1) let

aw = (0(«. DD/ («H), “TW .

where S—(logn - log /c!)/log(A: + 1) (that is, n = ((fc + 1)1)~A*;1)1-*) and

a+ B a
if s< 8
-, _2a,S a +
f(s) =" a¥R> a-0n
if a> ,
20 20 a+i
For the sake of convenience let us introduce c* = (&!)("“ then
(8) E - = °
k °° t=ifc+i C*
and
i
®) Wil gy 93 <=
Kt=1
Clearly, k\Ma = 1/c* and K]/@a™, = c*. It is
decreasing and Nn/a& is increasing.
Finally, let
l,
MO = 53 ZiM“*¥» MO = exp(-A(t)).
fe=i *e
The above sum is convergent since rp(@ic\t)/k\ ~ |tjo/c* as kK —»oo, and y5
is again a Pélya type characteristic function. We suppose Xi,X2,... i.i.d.

with characteristic function <
We shall prove that ipn(t/an) does not converge for i ~ 0, but at the

same time

a i
lim exp(-]t|*“) + e X -
N —*00 a+R P (-1t a+ R pCIH")
from which (6) will follow immediately with G being a mixture of symm etric
stable distributions. Finally, we show that the conditions of the Theorem in

Section 1 are met, completing the counterexample.
First we show that for K\ < n < (K+ I)! the series

€))
n A(t/an) = 53
=1
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isasym ptotically equal to the sum of its fc-th and (fc+1)-st terms, as n —»oo0.

Indeed,
(1o) Yi% (*t)y- "N y & <N y N Ny od
1 > fe.-r U a- = “ L ti *! ¢ h
which tends to 0 by (9). Similarly,
00 R
i=k+2 an i=k+2
KA+, Dyt o %T i
A BT L o %
a (*+11! i=*+2 ' »=*+2 !

also converging to O by (8) as n —»oo.
Let us deal with the remaining two terms. Suppose n —»o00 in such a
way that (logn —log k\)/log(fc + 1) —S, 0 < S < 1, where Al < n < (k+ 1)1

Then
12 1+ (Mt). + 7.
(=2 kr (an)\] (k+ 1 \ an J
~ {k+ £ (it +
"lila if s <
a+B
s> °
\AR if a+hR

Thus gn(t/an) = exp(—nA (t/a,)) does not converge for t ~ 0. However,
letting n(s) denote the integer following ((K+ DHy*A:)1— (0 < s < 1) we
have
(fe+)!
Tk :=
i (Rt X
log« - I° - 1))<Pn{t/<*n) = ¢ AN{tlan™)ds
oatter 1y 0000 PO RIS = tan)

and since by (12) and (logn(s) —log k\)/log(A:+ 1) -> s the last integrand
converges, as K —> 00, to exp(—|ila) or exp(—]|t|*) according ass < a/(a + R)

or § > al(a + R), the dominated convergence theorem yields

JI Tk =g T3a« p(W) + - 5 eXPHil)*
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Consequently, using the remark at the beginning of this section we get

lim lim o e 7-y log(* + 1)T,
TV—H1><>I£'V ° .00 log(fc+ 1)1t 1

LX) H—exp(-lil").

The only thing left is to check the moment type condition (4) for Sn/an.
This can be done on the basis of the following well-known fact (Zolotarev,
1957): Let f be a random variable with characteristic function % Suppose
Re(l - X(l))z O(M*) as i—>0, 0 < /? < 1. Then f has finite moments of
order less than R. Furtherm ore, for0 < 7 < f3 Edfl7) can be estimated in
terms of B,7 and supO<t<l |i|~~"Re(l —X(O)'

Thus, we are going to estimate supO0<i<l |i|_~ (I —<m(t/an)) uniformly
in n. Clearly, tp[t) < Ka\t\a and ip(t) < KB\t\& for all t and thus for
K\ < n < (k+ I)! we have

f=fyi<r+io-~ 1

(fcH)! t=>+]
k 0o 1 .
= K*\t\a- y ¢ i + Kfi\tfck+l y - <k\t\g  (0<t<i),
c* N i=*+i

where K does not depend on n or K. Since 1 —<n(t/an) < nA (t/a,), this
implies that supnE (|5n/0,|'T) < 00 for all 0 < 7 <.

In conclusion we note that for N —Kk\ the first sum in (12) is
rp(t) + (k+ 1)-v ((* + 1)2(a+/?)i) = m + o(l) as k—00

for any real tby the choice of ipand 0 < B < a Thusalong the sequence n =
Alwe have nX(t/an) —*ip(t) for all t, i.e. along this sequence Sn/anconverges
weakly to the distribution with characteristic function exp(—ip(t)). Hence
the validity of (1) with a simple G allows that along suitable subsequences

Sn/an has limit distributions which do not even resemble G.

EXAMPLE 2. Let 0 < a < 2 and let A be a symmetric r.v. taking the

values 3, +4,... such that

POX\ = 0 = ci"“"1(logi) 1  «= 3.,4,...
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for some (uniquely determined) C > 0. Let F denote the distribution func-

tion of X. By a simple calculation,

(13) P{AX\ > t) ~ cif-a(logt)-1 (i -> oo),

(14) dF(xX) —»0 (n —»oo0),

n f
Jix|"n 1®
(15) ni-2/« x2dF(X) —0 (n —»oo).
J\x\<nlta
(Here, and in the sequel, C\,C2,m Bdenote positive constants.) Let
ck= 2k, dk= 2k +k , Ik= [ck,dk]

and define tK by

* = /* *’"(-')/ A "% u)l

Clearly i* € /*; a simple calculation shows actually that

(16) t* ~ C 22* +(1- “/2)*3.
Let /i be the atomic measure on N defined by /1({n}) = P(|IX] = n) (n =
3,4,...) and construct a new probability measure // from Nby concentrating,

for each K > 1, the total mass of /i on the interval [cK,dK] into the single
point tk. Let X" be a symmetric r.v. such that the distribution of |[X '] is p'\
let F denote the distribution function of X'. Set also

H={ne N:nu“e [j/*}

Jo>1
It is easy to see that
(17) H is of log density 0,
(18) n dF'(x) -+0  (n -*o0o0, 77),
J\x\>n|/a ()
(19) »u-*[« | XZdFl(X) -» 0 (n — 00, n ~ Lf),
JI*i<nV-
(20) f dF'(X) =00 (fc -» 00).
(21) f dF*(x) 0 (n-> 00),

x> 6,
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(22) nh~2 X2dF'(x)—0 (n —o00),
J\x\<bn

where

(23) bn= n1/aexp ~~j\/log Nj .

To verify (17) note that H = Nn|J*>i Pkwhere k= [2%\ 2« (*4+*2)]. Given
n € N, let ft = K(N) be the largest integer such that 11 C [0,n], Clearly
Kk~ c3(logn)l4and

A i _1~ar2log2 as r —oo.
*€/;
Thus

£ o '< £ E rl = 0 (fc3) = 0 ((1°e->)s/*)

*<n r<fc+l tEJ*

ieH
proving (17). (18) and (19) follow immediately from (14), (15) and the fact
that by the definition of tk and // we have

J\x\>n|/a aF () J\i [>n»/« AFLx)

and

x2dF'{x)

x2dF(x)

f
JI\x\<nJl a i [<nwi<

for N~ H. To prove (20) note that using (13) and the definition of /z' we
get P(|X ' > tk) —pP(A"| > eh) ~ const. 2~ak*k~4 whence (20) follows in
view of (16). For the proof of (21), (22) we first note that for t > to

(24) P{AX'\ >t) < e2'fi°*ip(\X\ > t)

and

(25) J* X2dF'(x) < e2v/i°*7 f* x2dF{x).
[0} Jo

Let H* = u=*>i h\ it suffices to prove (24) for t G H* since P(|A"| > t) =
P(IX| > t) fort £ H*. Given t € H*, let kK = K(t) denote the integer such
that t € IK] obviously K (logt/log2)1l/4 as t —woo. Setting

Bk = P(\X\ > ck)/P{\X\ > dk)
we have for t € Ik

P(l*' > f) < P(AX\ > ck) = BkP (\X\ > dk) < BkP{\X\ > t).
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By (13) we have BK ~ 2a*3 < exp(2(logi)1/2) for t > t0 and thus (24) is
valid. The same argument yields (25); now using (24) and (13) it follows
that for n > no the left hand side of (21) is < 2Cjn6“a exp(2(log 6n)x/2)
which is o(l) by (23). Relation (22) is verified similarly.

Let now Gadenote the distribution function with characteristic function
exp(—lila) and define the i.i.d. sequence (XN) by XN = Yn+ Zn where
(Yn),(Zn) are i.i.d. sequences, independent of each other, with respective
distribution functions Ga and F'. set Sn= X\ + ece+ Xn\we claim that

(26) n 1,a5, Ga as n —»oo, N~ H,
(27) n~1/aSn has no limit distribution as N —»oo.
‘38), I\Ii—mooﬁg N y hk (XZ;(J; < iI/ = Ga(x)> a.s. for all X.
(26) is immediate from n-1/¢ Y{ = Ga and the relation
n A 0 as n —»oo, NE£ H
i<n

which follows from (18) and (19) by truncating the r.v.’s Z{, 1< i< n at
nl/*“ and applying the Chebisev inequality. To prove (27) note that setting
rk = tk —y/tk we have by (20) for k > ko
P(|*i| > rk) > P{AZX > i*)J,(1*il < Vh)
> \P(\Z"\ > tk) > uktka > tukrka

where LK —poo. Thus limt_MQi“P (|X i| > t) = +o00 and thus by a classical

criterion (see e.g. Feller (1966) p. 547) n~1YaSn/» Gaforn —»oo. Together
with (26) this implies (27). Finally, to verify (28) we note that

(29) b~ryYizZ o, b~yz”"o (n —+ 00).
»<n ><n
The first relation of (29) is obvious from Y{ = Ga and n —» 00 while
the second follows from (21) and (22) by truncating the r.v.’s Zi, 1< *< n
p
at bn and applying the Chebisev inequality. (29) shows that —» 0 as

n — 00 and since by (23) we have

bmn/bn < m 1/01+T(n)
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where r(n) = 2a 3/2(logn) */2 —»0, a trivial modification of the proof of
Theorem (6.1) of de Acosta-Giné (1979) shows that

E\Sn/bn\p —o0 (1) for each p < a

(30) E\n YVaSni“/2 < K\ exp{A"2\/log n) for some Ki > 0, Ki > 0

We also note that since H is of log density 0, (26) implies

li 1 Y' |P Ga f I
f(sl)' N-';noorogN l( WZ“< X& (X or all X.

Now (28) follows from (30), (31) and the Theorem in Section 1.

EXAMPLE 3. We first construct a numerical sequence (A,, n > 1)
satisfying the a.s. central limit theorem (2). Let (cn, n > 1) be a uniformly

distributed sequence of real numbers in the interval (0,1), that is,

lim — Y I{ck<t)=1tforall0<t< 1
N—>ooNkL<,'\I

Define XN=$ ~¢c,,)-~- % Xcn-i)\/nr*—1, n > 1; clearly for the sums
Sn —Xi + —— hXnNwe have

5n/vd = $ - 1(c,)

whence

viim TF 12 I(Sk/\/k <t) = 1lim 2-Y < $(*)) = $(0
NA°° N k% NA°e N

for all real t. This is stronger than (2).

Being degenerate themselves, the random variables Sn/y/n can only
have degenerate weak limits. But the set of limit points of the sequence
(~_1(c.), n > 1y is clearly the whole real line and thus Sn/y/n does not
converge in distribution.

Note that (Xn, N > 1) can be constructed in such a way that lim ,,-» Xn-=

0. For example, set

‘= (1-4-2(ITT))«i+ 18~ 91
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and for 5 < n < (K+ 1)s let

N+ {n-k5)dk if Kis odd,
cfl

j[— -— (n —k5)dk if Kis even.
2k

Thus, for kb <n<(/C+|)5 c, wanders from one end of the interval (0,1)

towards the other one by equal steps. Hence cn is uniformly distributed in
(0,1) and defining XN as above, itisnot hard to see that for (K—1)5< n < kb

X\ < *5/1 - *x-x(n)) +
= 0((Kk log k)~179).

Of course, our degenerate sequence (A«, N > 1) can be smoothed by
adding i.i.d. random variables to the terms. For example, let (F,, n > 1)
be a sequence of i.i.d. N(O, I) random variables, and let us define Xn=
(Xn+Yn)/V2. Then (XN, n > 1)is asequence ofindependent random vari-
ables, not identically distributed but converging in distribution to N(O,l/ 2).
As to the corresponding sums SN, the set of weak limits of Sn/\/n coin-
cides with the translation family {N(p,I/2) : p € R}, while using again
&n/\/n = $ - 1(cn) and the equidistribution of CN'we get for all t

if E P&/VK <1)

k<N

=Nm 4 E p((yi +eee+n)/V* <v2t- *-\cK)

k<N

= JM T/ E @(>/2-®1(Y)

Tv—o0 iV rTZ

ri
= |/ $(>/21-<f>-\u))du
Jo

/ $(v/21- 2)d<f>{z) = $(t).

-00
Consequently

lim £ \p(Sk/Vk< 1) = =(1).

N —oo
The conditions of the Theorem in Section 1 are trivially met since
E5n/vA| < |$-1(Cn)|+ E[(yl+ —--+ F,)/vA | < |*-1cn)|+ | = O(y/logri).

Thus the a.s. central limit theorem (2) holds.
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The mathem atical output of AIfréd Rényi was so extensive and so diverse
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than a few themes. | shall concentrate here on those aspects of Rényi’swork
which have particularly interested me, and British mathem atics generally.
Rényi’s personal influence on British probability was strong; see e.g. the
obituary acticle Kendall (1970).

We write [n] for the nth paper in Rényi’s Selected W orks, and refer to

works of others by author and year.
1. Geometric probability
2. Information theory
3. Records
4. Erd6s-Rényi laws
5. Exponentiality
6. Expansions of real numbers
7. Summability methods
8. Divisors
9. The large sieve; Goldbach’s conjecture
10. Probabilistic number theory
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1. Geometric probability

In geom etric probability, one deals with a measure M (defined by, e.g., a suit-
able invariance requirement); typically m will be unbounded, and determined
uniquely to within constant multiples (as with, e.g., invariant measures for
M arkov chains). This indeterminacy vanishes on taking quotients; this quo-
tient operation allows an interpretation in terms of conditional probability.

Thus one obtains formulae of the type

P(X eA |led) = m(A)m(B), AC B.

This point of view was advocated by Rényi, in his book Wahrscheinlichkeits-
rechnung (8811. 10, 11) and in his papers [110], [120]. The resulting theory,
w hich has roots going back to Buffon and Crofton, finds its textbook synthe-
sis in Santalé (1976). The subject was dear to Rényi’s heart, and for good
reason: recall the closing paragraph of Mark Kac’s foreword to Santald’s
book:

“Above all the book should remind all of us that Probability Theory is
measure theory with a “soul”,which in this case is provided not by Physics
or by games of chance or by Economics but by the most ancient and noble

of all mathem atical disciplines, namely Geometry.”

On a personal level, I cherish the memory of Rényi giving (in Cambridge,
on 28 May 1969) what | regarded then and regard now as the best math-
em atical talk | have ever heard (‘Conditional probability spaces defined by

unbounded measures’).

Rényi’s parking problem - or packing problem in one dimension - concerns
limz_*oo EN[X)/X, where N(X) is the number of unit line-segments (‘cars’)
which can be packed (‘parked’) in [0,z] ([149]). For a textbook treatment,
see Hall (1988), §1.10. For background and further developments, see Paléasti
(1960), Ney (1962), Mannion (1964), (1976), (1979), (1983).

Rényi and Sulanke [208], [223], [302] also worked on convex hulls of ran-
dom points. For further developments on this important topic, see e.g.
Fisher (1969), Eddy (1980), Jewell and Romano (1982), Brozius and de
Haan (1987), Davis, Mulrow and Resnick (1987).

For a survey of developments in geometric probability, see Baddeley
(1977).
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2. Information theory

Rényi wrote extensively on this subject. In particular, his book Wahrschein-
lichkeitsrechnung is distinguished for the weight it gives to information theory
(Anhang dber Informationstheorie, 435— 498) and for its proof of the lim it
theorem for Markov chains'by information-theoretic methods (ibid., §9).

One particularly important contribution is [180]. Here Rényi considers
the question of characterization of Shannon’s entropy by functional equa-
tions, as well as generalizations of it. For an account of current progress,
see e.g. Aczél and Dhombres (1989). Here also (85) is given the proof of the
limit theorem for Markov chains via information theory; cf. Csiszar (1963),
Kendall (1964), Fritz (1973). Rényi raises the question of simplifying the
information-theoretic proof of the central limit theorem in Linnik (1959).
He did not return to this, but see recent work by Barron (1986) and Takano
(1987).

In [160] Rényi gives a theory of e-entropy related to that of Kolmogorov.
See Csiszar’s comments to [160] (Selected Papers, Volume 2, 342), and -
for the Kolmogorov theory - Cover et al. (1989), 82, Shiryaev (1989), ‘The
fifties’ (910— 920).

In his later work, Rényi considered the application of information the-
ory to statistics - principally to parametric statistics by Bayesian methods,
but to non-param etric statistics also. See in particular [285] (Bayesian ver-
sion of the Neyman-Pearson lemma), [288] (Kakutani’sdichotomy) and [328]
(large-deviation theory; commentary by Csiszar, 574— 6). For background
on information theory in statistics, see e.g. the paper of Csiszar (1975) and
the books of Kullback (1959), Kullback et al. (1987), Liese and Vajda (1987),
Vajda (1989); cf. Vajda (1990).

The information-theoretic approach to statistics is connected with the
idea of stochastic complexity. Again, this involves Kolmogorov’ work; see
e.g. the obituary article Kendall (1990), 44— 5, the works of Rissanen and
others cited there, and Chentsov (1990).

3. Records
Suppose that X\,X-i,... are independent and identically distributed (iid)
with continuous law F. call Xna recordif Xn>max(Ai,..., An_i); write
(L(n)) for the record times, defined inductively by L (l) := 1, L(n) :=

min{A: > L(n — 1) : Xk > Ai(n_i)}, (Ai(n)) for the record values.

So far as the record times are concerned, m atters do not depend on F
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(are ‘distribution-free’). For if H := —log(l - F) is the hazard function of
F, Ui H(Xi) are iid with the unit exponential law £ (1); the record times
of (Xi) and ([/,) are the same, and RN := CAL(n) are the record values of (Ui).

This distribution-free property is due to Rényi [194], who also showed
that (L(n)) is a non-homogeneous Markov chain, with transition probabili-
ties

P(L(n) = ki1L(n- 1)=j) = A< <k- 1)

Rényi also gave a law of large numbers (LLN), acentral limit theorem (CLT)
and law of the iterated logarithm (LIL) for (L(n)). He considered the num ber
of records up to time n, identified its law with that of the number of cycles
in a random permutation, and found it in terms of Stirling numbers.

Rényi’s ideas have done much to fertilize the extensive subsequent work
on records. For instance, Resnick (1973) observed that (R(n)) is a unit
Poisson process (‘structure lemma for records’), whence the LLN, CLT and
LIL for (f?(n)). Resnick also finds the limit laws for (-X£(n)) under the
appropriate condition on F; the almost-sure behaviour is in de Haan and
Resnick (1973). For a synthesis of record-value theory, see Chapter 4 of
Resnick (1987) (cf. Bingham et al. (1987/89), §8.14).

The method of strong approximation may be combined very fruitfully
w ith the above structure theory for records. This idea goes back to W illiams
(1973), and has been developed by Deheuvels and others; see e.g. Deheuvels
(1983) and the references cited there.

In his work on the combinatorial aspects of records, Rényi weis partially
anticipated by Foster and Stuart (1954). For subsequent work, see e.g. Bar-
ton and Mallows (1965), Imhof (1983), Bingham (1988), 8§4.2, Goldie (1989).

4. Erd6s-Rényi laws

Laws of large numbers have traditionally been used to average out the dis-
tribution to leave the mean. Thus for X, Xi,Xli, iid, with law F, mean /z
and variance a2, the strong law tells us that /z is all that survives averaging
in the a.s. limit, while the central limit theorem tells us that /z and a are all
that survive in the limit distribution.

It has been realised over the years that a less harsh averaging, in which
more of F survives when we take the limit, is often more appropriate. A
flexible framework is provided by taking moving averages, of the form

n n<fc<n+a,,
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in which the length of the averaging block a, is accurately tied to the prop-
erties (e.g., integrability) of F; for a recent survey see Bingham (1989). The
results there illustrate the general principle that the more integrability F
has, the less averaging is needed.

Suppose now that F has extremely good integrability properties: that
its characteristic function is analytic in a neighbourhood of the origin. Then
we may use the moment-generating function instead or - more conveniently

- its logarithm, the cumulant-generating function:
k(t) := log Eexp-ftA).
This is convex, so we may form its Fenchel dual k-

k*(a) := sup{af - k{t)}, k(t) = supf{at —k*(a)}.
t a

In their ‘new law oflarge numbers’of 1970, Erd6s and Rényi [342] considered
moving averages with an= clogn, where ¢ = c(a) and a = a(c) are linked
by

lic = k*(a).

They showed that then

m ax — - E - * a a.s. (n —>o00).
0<*<n-clogn Clogn ,_,.
»'<A:<»+clogn

Here the a.s. limit a is the a(c) above. So by varying ¢ we can determine
successively a(-); its inverse function c(-); then k*(-) = 1/c(-); then its dual
&(+); then F. Thus the entire distribution survives the passage to the limit.

This very interesting phenomenon (called ‘almost-sure non-invariance’, in
contrast to the more usual a.s. invariance principles) goes back even earlier,
to the work of Shepp (1964). For a good account, see de Acosta and Kuelbs
(1983), who consider the three cases a,/logn —»o0o0,—»c G (0,00),—»0, for
random vectors (taking values in a Banach space). The critical growth-rate
an = O (logn) is of great interest, and has been studied intensively by, e.g.,
Deheuvels and Steinebach (1986), Deheuvels, Devroye and Lynch (1986),
Deheuvels and Devroye (1987).

For recent developments, motivated by problems involving DNA, see Ar-
ratia and W aterman (1989), Arratia et al. (1990).
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5.  Exponentiality

The special properties ofthe exponential and uniform distributions, and their
ram ifications in the theory of Poisson processes, empirical processes, order
statistics, spacings and many other fields, have attracted many authors; see
e.g. Chapter | of Feller (1971), or Chapter 8 of Shorack and W ellner (1986).
Rényi’s interest in this area is reflected in his papers [84], [86], [127], [246],
[284]. Related to this are Rényi’s ideas on thinning of point processes, (see
e.g. [84]), which have been developed at length by Mogyorédi and others.
We note in particular one result (whose short proof we include for con-
venience); see [84] and, e.g., Kakosyan et al. (1984), Th. 2.4.10. |If (Xn)
are iid with mean p > 0, and V is independent of (X,) and geometrically

distributed with parameter p, then

\
pY,Xk-E(p) ((p —0) in distribution,

=1

where E(p) denotes the exponential law with mean p. For, if the XN have
characteristic function < then that of pX )i X Kis
¥ k
Ee\p{itpJ2x k} = v -
| Jt I

= >k (O:=1-p)

_  pld
1- o<{tp)

Now <gXt) = 1+ ipt+ o(t) for small t, so as p —»0 the right is

P(1+_°(1)) P ol
1- (1- p)( + iptp +o(p)) p-iptp + o(p) 1-ipt’

the characteristic function of E[p).

This simple result has extensive and importantconsequences. The mono-
graph of Keilson (1979) develops the reliability theory of M arkovian systems
with many degrees of freedom, in which limiting exponential laws are ubiq-
uitous in view of the results above. Similar ideas have been developed by
Aldous (1982), (1983) in his theory ofrapidly mixing Markov chains. A good
illustration of these ideas is provided by the classical Ehrenfest urn, which
may be viewed as a random walk on the group Z2 (the d-cube), for d large.

For detail, we refer to the survey by Bingham (1991).
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6. Expansions of real numbers

The representation of rationals X £ (0, 1) preferred by the Egyptians was a
sum ofunit fractions; thus | was written as | etc. Such representations
can be extended to irrationals as series expansions. A number of variants
and generalizations (Engel, Cantor, Sylvester, Oppenheim,...) are known;
for background, see e.g. Perron (1921/39), Galambos (1976). Rényi, with
his deep sense of history, was no doubt attracted to this area for historical
as well as mathem atical interest.

Just as one may apply probabilistic methods to obtain LLN, CLT and
LIL for ordinary decimal (or dyadic,...) expansions, one may do the same
for expansions of the above type. A detailed treatment was given by Erdés,
Rényi and Sziisz [150]; cf. [199], [151], §88-10. There are interesting connec-
tions with the theory of records; see Williams (1973).

Consider, for instance, the Sylvester series dn{t) fort £ (0,1], where
d\(t) is the least integer with 1/di(t) < t, and then dn(t) is the least integer
with 1/dn(t) < t — I/dfc(t). The rate of growth of the denominators
dn(t) is of particular interest. In [150] it weis shown that

2~nlogd,(t) — L{t) < oo (n —>00) for almost all t £ (0,1].

A full account ofthe limit function L is given by Goldie and Smith (1987). In
particular, L is the first explicit, deterministic example known of a function
having a jointly continuous occupation density (previous examples involved

sample paths of stochastic processes: the theory of ‘local time’).

7. Summability methods

Links between probability theory and summability theory are to be expected,
since a summability method is essentially a (limitof) a weighted average, and
weighted averages are extensively used in probability theory (expectations,
etc.) and statistics (sample means, etc.).

The classic book by Hardy (1949) provides a rich harvest for anyone with
a background in both probability and analysis. Rényi was such a person par
excellence, and addressed himself to the probability-sum mability interface
in [168]. He considered matrix methods A = (a,*), mapping a sequence
S = (sn) to t —(£,), where

In := ) [ankSki
k



172 N. H. BINGHAM

the case of greatest probabilistic interst is that of A stochastic,

ank = P{vn= =0, say.

The Hausdorff methods are those with
ank = Jo xk{\ - x)n~kdF(x)

with F aprobability law on [0,1] (Hardy (1949), Ch. I1X); Rényi (§2) studied
their composition properties, using the probabilistic interpretation in terms
of binomial mixing. Replacing the binomial by the Poisson, one obtains
the Henriksson methods, which Rényi (83) interpreted similarly. He also

considered (84) limit distributions, where one has
(A) f{sn) -» \] f(y)dS(y)

(convergence in the sense of the summability method A) for all bounded
continuous /. The case with S degenerate reduces to the concept of almost
convergence (Zygmund (1979), Vol. Il, 181); cf. statistical convergence (see
e.g. Fast (1951)).

We note that Schmetterer (1963) also discussed probabilistic interpreta-
tions of summability theory.

A rather different application of probabilistic methods to summability
theory has been given by the present author, in a series of papers (see e.g.
Bingham (1984a), (1984b), (1988), Bingham and Rogers (1991)). The mo-
tivating examples, as in Rényi’s work, are the methods of Euler and Borel
(see e.g. Hardy (1949), VIII, IX). Instead of being regarded as, respectively,
degenerate Hausdorff and degenerate Henriksson methods, these are han-
dled together as instances of the circle methods or Kreisverfahren, for the
theory of which see Meyer-Kdnig (1949).

In [168] 85, Rényi proved a gap (‘high-indices’) theorem, under a (Taube-
rian) condition later proved superfluous by Haldsz (1967). Rényi worked on
gap theorems elsewhere ([198], with Erdés); see Turdn (1984), 222.

8. Divisors

W rite fl(n), w(n) for the number of prime divisors of n e N, counted with
and without multiplicities. If Bjt(i) denotes the number of N < X with
Q(n) —u>(n) = Kk, Rényi [112] showed that
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where the generating function of the densities pkis given by

T RO

(Up denoting a product over primes). (Thus in particular, taking Z = 0, we
get do = 6/ 72, giving the well-known density of the square-free integers.) A
simpler proof was later given by Rényi and Tur&dn [144], 84. This elegant
formula clearly fascinated Mark Kac, who proved it in the following paper
(Kac (1955)), and again in both his books (Kac (1959a), §1.4, Kac (1959b)).
The result generalises, to the context of Beurling’s theory of generalized
primes; see Bateman and Diamond (1969).

The rate of convergence of the density can be estimated:
Bk(x)/x = dk+ 0 (z-1/,2(loglog X)k~1/ 10g2x)

(Delange (1965), (1968), (1973); cf. lvic (1985), Ch. 14). For generalizations
- local theorems for additive functions - see Kubilius (1964), Ch. 1V, Elliott
(1980), Ch. 21.

If E is a set of primes (with J2PEE™/P — °°)> one may consider the
divisor functions £le> with divisors restricted to lie in E. Delange (1956)
showed that if A is an arithmetic progression, Q ~1(A) and WE*(A) both
have a natural density, equal to that of A. This was extended to more
general A by Haldsz (1971). Tenenbaum (1980) showed, by an intersting
Tauberian argument adapted from work of hardy and Littlewood, that the
necessary and sufficient condition on A for existence of a natural density for

curl(A) is existence of a density for A in a sense (Valiron, Euler,
Borel, ...) stronger than the usual Ceséaro sense. For further developments
see Bingham (1984a), Bingham and Tenenbaum (1986).

For the number r(n) of unrestricted (instead of prime) divisors, for which
the theory goes back to Hardy and Ramanujan in 1917, see Elliott (1980),
Ch. 15, Hall and Tenenbaum (1988).

9. The large sieve; Goldbach’s conjecture

The large sieve originated in the work of Linnik (1941); his ideas were devel-
oped by Rényi in a series of papers [17], [20], [23], [29], [151], [155], [161] and
(with Erd6s) [315], In particular, [315] contains both a commentary on the
probabilistic aspects of the large sieve (the distributions modp and modg

of integers N < N are, for distinct primes P,7 < JV1/3, almost independent:
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532) and an account of the development of the large sieve by Roth, Bombieri,
G allagher and others. In addition to the references cited there, we mention
the accounts in Elliott (1979) (Ch. 4 gives the link between the large sieve
inequality and the Turdn-Kubilius inequality, while pp. 183— 4 outlines the
history), and Montgomery (1971), (1977). Hildebrand (1986a) gives a proof
of the prime number theorem via the large sieve.

The Goldbach conjecture of 1742 - that every even integer > 6 is the sum
of two primes - was attacked by Rényi [9], [200] using his large sieve. He
showed that every even A > 6 isthe sum ofa prime p and an ‘almost-prime?’,
Pk (a number with at most Kprime factors, for some absolute constant K). A
detailed commentary on [200], with references to subsequent developments,
is given by Turan. The best result known is that every sufficiently large
even N is of the form p + p2 (Chen (1973); see e.g. Halberstam and Richert
(1974), Ch. 11).

10. Probabilistic number theory

This subject may be said to begin with the Erd6s-Kac central limit theorem
(Erdés and Kac (1939), (1940)) for the divisor functions:

- Y] H{u[n) - loglog X < i>/loglogx) -* 3>(i) := —)= J e~v*2dy
X n<z \/2* J-00

(x —00) vVvie IR

and similarly with W replaced by H. This may be loosely paraphrased in
probabilistic language: ‘u;(n) is asymptotically normally distributed with
mean loglogn and variance loglog N\ For the origins and early history of
this result, see Elliott (1980), 24; for generalizations, see Kubilius (1964),
Elliott (1980), Ch. 12. The rate of convergence has been considered (by Le
Veque and others); it is in fact O ((loglogx)1/2) (Rényi and Taré&n [144]; cf.
Elliott (1980), Ch. 20 and Ch. 12, 18— 24, Kubilius (1964), Ch. 1X).

The basic idea is to use suitably defined finite probability spaces, and
independent random variables defined thereon, to bring to bear the powerful
machinery of probability theory on number-theoretic problems such as the
above. This is due to Kac; see for instance his books Kac (1959a), (1959b),
the monographs of Kubilius (1964) and Elliott (1979), (1980) and the survey
of Billingsley (1974). See in particular [151], 85 for a nice account of the

theory above, and Billingsley (1979), 349— 351 for a very short proof of the
Erdés-Kac CLT.
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Probabilistic methods may also be applied to diophantine problems; see
[135], [151] §6.

Rényi [251] applied the Turdn-Kubilius inequality to give a simple proof
of a theorem of Delange (1961) on mean values of multiplicative functions ¢
w ith < 1. For subsequent developments, see e.g. Haldsz’scommentary
to [251], Elliott (1979), Ch. 6, (1980), Ch. 19, Daboussi and Delange (1982),
Delange (1983), Hildebrand (1984), (1986b), (1987). For g > 0, see Erdés
and Rényi [250].

Related to [251] is Rényi’s paper [210] on the Erd&s-W intner theorem; see
Haladsz’s commentary on [210], Elliott (1979), Chs. 5, 6, Galambos (1970).

To close, we consider a succinct application of one of Rényi’s interests,
entropy (specifically, its role in the theory of large deviations) to another,
the prime divisor functions w ,n of §8. If t in the Erdds-Kac theorem is
O(v/loglogx) (for t = o(\/logloga;), see Kubilius (1964), Ch. IX), the cen-

tring and scaling coalesce, and one considers
Z E n cu(n < aloglog X) (0< ac<l,
* r»< X

—~  H(u>(n) > alog log X) (a>1).

n<x

By Selberg’s formula (Selberg (1954)),

I £ = (F(z)+ ~U1)(logn)R— 1
(S log n
m=1
with F(-) entire.
W riting Pn, EnN for probability and expectation on {1,2,...,n} with

probability 1/n on each point, and replacing Z by €el, the left is Enexp{ia;}.

Selberg’s formula gives

leg Enelpttull o' 1 (n —roo)

In the language of large-deviation theory, the limit, C(t) = e* — 1, is the
free-energy function. 1t is convex; form its Fenchel dual

1(z) := sutp{iz - c(i)},
the entropy function. Thus

I(z) = ztogz- 2+ 1 (z>0), +oo0(z < 0).
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Application of the large-deviation theorem of Ellis (1984) (or (1985), VII)
yields

dlog logn) ~ —loglogn(aloga-a+l) (n 0o0) (a > 1),
|

and similarly for 0 < a < 1. With more work, much stronger results may be
obtained: an asymptotic formula for * > aloglogn) rather than its
logarithm - due to Delange - is given by Erdés and Nicolas (1981), Balazard
et al. (1991); cf. Norton (1976), (1979), (1982). The situation for fi is more
complicated, as the value a = 2 then becomes critical; for details, see the

references above, and Tenenbaum (1990), Il. 6.1.
POSTSCRIPT

‘A wise man has remarked that every mathem atician has his own personal
view of Kolmogorov’ (Kendall (1990), 45). Each of us too has his own view

of Rényi; here in brief outline in mine.
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ON THE INCREMENTS OF ADDITIVE FUNCTIONALS

ENDRE CSAKI *

1. Introduction

Let be a sequence ofi.i.d. random variables such that {S,}* 0> S0 =
0, S{=X\+ bX,, *= 1,2,... is a recurrent aperiodic random walk on
integer lattice Z. Let /(z), z € Z be a real valued function vanishing outside

a finite set. Define the additive functional by

N-1

(1.1) N=1,.2,..
i=0

Assume that 0 < ajy < N is a nondecreasing sequence of integers and let

(12) An= - Ay).

The local time £(X,N) of the random walk {S i}~ is defined by

V-
(is) £(*,*)= E 1l«}A).
t=0

where 17(z) denotes the indicator function of A. (1.3) is obviously a partic-

ular case of (1.1). Put
(1-4) G =n<max {z{0,j + aN)~ £(0,i)).
It was shown in [2] that under the condition @2 = varXi < oo we have

(1.5) lim -1 a.s.
\Y ' AT—*00 B N

‘Research supported by the Hungarian National Foundation for Scientific Research
Grant No. 1905.
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provided that
log(iV/ajv)

(1.6) = 00
N —oo log log AT
and
N
(1.7) lim 20 = ¢

IV—00 log N

with 0 < C< oo, where

(1.8) BN = (aN\og(N/aN))1/2/a if c= oo
and
(1.9) BN = bc\ogN if 0 < C< oo

with certain positive constant b—Db(c).

The result (1.5) may be regarded as an Erd6s-Rényi law (see [4]) for
local times. (1.5) was extended in [7] under certain conditions on X,, more
general than being in the domain of attraction of a stable law of index a > 1
and also, the conditions (1.6) and (1.7) were relaxed. In general, however,
when (1.6) does not hold, the lim in (1.5) should be replaced by limsup.
In the case when X, is in the domain of attraction of a stable law of index

a, 1 < a < 2,itwas shown in [7] that

I/a
aN 1/a ( logW ajv) + loglog Nj

(1.10) ~ Ca Ry

with certain (explicitly given) constant Ca and slowly varying function £i(*),

provided that (1.7) holds true with ¢ = o0o. More precisely in this case

(1.11 limsup =1 a.s.
IV—*00 PIV

and if (1.6) holds true, then

(1.12)

lim = a.s.
IV—eo Bj\f

In this paper we study similar problems for AN and show that in the
case when ¢ = oo in (1.7), the limit behaviour of AN is the same as that
of We treat also the case when 0<c<ooin(1.7) and show that an

Erdés-Rényi-type law holds for AN provided that a large deviation result is
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valid for An- We do not know, however, any general condition under which
such a large deviation holds. It certainly holds in the cases treated in [2]
and [7].

Similar problems can be investigated also for additive functionals of a
W iener process. Let (W (i), t > 0} be a standard W iener process and let
L(x,t), Xx€ R, t> 0 be its jointly continuous local time. Assume that g(X)
is an integrable function having compact support. The additive functional

is defined by

(1.13) Bt= f $(w (s))ds= [ g{x)L(x,t)dx.
Jo J-

Let at be a nondecreasing function of t. Then we consider

(1.14) Bt = sup {Bt+aT - Bt).
0<t<T—a?
Put
(1.15) It = sup (L(0,i + ax) - L(0,t)).
0<t<T-aT

It weis shown in [I] that

r*
(1.16) limsup —2 =1 a.s.,
r—*0 It
where
(1.17) 77 = (T ~log ~ + 21log log

If we also assume that

(1.18) lim
T~>00 log log T
then limsup in (116) can be replaced by lim.

Here we show that the same result is true for B~ provided that ay

logT. We investigate also the case when 07 = clogT.

2. The random walk case
THEOREM 2.1. Assume that is a sequence of i.i.d. integer val-
ued random variables such that So = o, Si,Sz,... is a recurrent aperiodic

random walk on z. Let An be defined by (1.1) where f(z), z 6 z is a real
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valued function having finite support. Let {tn}”~=i be a nondecreasing se-
quence of integers. Let furthermore £(x,N) be defined by (1.3) and N by
(1.4). Assume that

(2.1) i*N-0{fiN) a.s. N »oo
where {BN”"-i ,a a non-random sequence of positive numbers. Then we
have
(2.2) \Ai+aN ~ Aj - J{Z(0,j + aN) - £(¢0,j))]| =
0<J ~aN

—O0{{Bs logN)¥2+ logiv) a.s., N —»00,

where J = £ zez f(X)-

PROOF. Since /() has finite support, there exist x\ and X2 -00 < x\ <
X2 < 00 such that /(x) = 0ifx < xi or x > £2- Moreover, since the random
walk is recurrent, we can define a.s. an infinite sequence {p,}“ 0 such that
Po= 0 and

(2.3) pi = min{fc :5* = 0,p,_i < Kk}, i=1,2,..

Put p = pi and let
(2.4) p=p(x) = P(((x,p) > 0).
Then we have for x = +1,+2,...

(2.5) P(t{x,p) =0) =1-p

(2.6) P(E(X,p) = k) = p2(l-p)*-1, k= 1,2,...

It is then easy to see that

(2.7) E(((z,p)) =1 xeZ

and

(2.8) =1+ i"\~_MP)et(cosht- 1), t<logo -

it follows from the aperiodicity of the random walk that 0 < p(x) < land
therefore there exist constants K > 0 and to > 0 such that for x\ < x < X2

(2.9) £ (e*(«*.d-i)) < eKt\  [t]< tO.
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Let
(2.10)

From Jensen’s inequality and (2.9) we conclude that

( 52I=x I(*)«(*./>)-1)'
(2.11) £(et(z_/)) = E et(I2*1,+1) sa-i+i | <
< 1 £ (ei(z2-*i+)/(2)(i(z-p)-1)") <
m2- xi+1
< 1 y © eifta(xa-zi+1)2/ 2(*) < eAii2 < to
~ X2-X1 +1xi(
with certain ifi > 0.
Define
X
(2.12) zi = 53 f{Sk)= Y1 f(x)(Z(x'Pi) ~ £(x>P«-i))> »= 1,2,...
*=H>-1+1 X=Xl
Then is a sequence of i.i.d. random variables. From exponential

Markov inequality and (2.11) we get

(2.13) P(max |53(2\- f)|>u”?) <
w12
<e-ar (EE@ESI(NT) +A(e-*EN(*-7))) <
< 2e <M Hiiirtii = 2e~*t"<2i

with the choice t — u/(2K\\/n), provided that 0 < u < 2Kito\/n. From
(2.13) we get

jBc
(2.14) O<T<aﬁ(-rn 121<"’2‘m <_E+i(s S C O(vr,logn) a.s. n —o00,

where rn is a nondecreasing sequence of integers. Let

(2.15) 2 = 53 |/(5t) = £ [(i)(e(x,P.) - i(i,P,-i)).
k=p, i+i F=i
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Then zZ-, = 1,2,... are also i.i.d. random variables having finite
moment generating function in some neighbourhood of zero. Therefore

(2.16) max \Zf\ = 0(logn) a.s., n->o00.

It is easily seen that the estimation

(2.17) IAj+a,, - Aj - f(E£(0,j +aN)- e(0,))) <
I+k

< max max . +2  max <
- 0<1<Z(ON)-Cn 19N 5, (7 7 1 i<r&foiv) 21

I+k

< &_/)+2maXZ

max max g i
0<I<N-fNI<k<t"N Z4q 1<1<N 1
holds true for 0 < j < N —an - Hence (2.2) follows from (2.1), (2.14), (2.16)
and (2.17).
Theorem 2.1 and the result of [7], mentioned in the Introduction, imply

the following

COROLLARY 2.1. Assume that Xi, 1 = 1,2,... are i.i.d. integer valued
random variables being in the domain of attraction of a stable law of index
a (1 <a<?2), EXi —0, the random walk Sg= 0,S{ — X\ + ... + A, t =
1,2,... is aperiodic and f(z), z € Z is a real valued function having finite
support. Let apf (0 < ajv < N) be a nondecreasing function of integers such
that N /on is also nondecreasing and (1.7) holds with ¢ = 0o. Then

(2.18) limsup —f a.s.
N—oo PN

where AN is defined by (1.2) and fix is given by (1.10). Moreover, if (1.6)
holds, then

(2.19) im 4/ = 7 a.s.

NI-kx> iX
If (1.7) holds with 0 < ¢ < 00, then

(2.20) An = 0(log N) a.s., N —oo.
REMARK 2.1. In the case when / = 0, it is an open problem to find

the right normalizers and constants in (2.18) and (2.19). This is equivalent
to finding the sharp limsup (or lim) in (2.2).
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In case when (1.7) holds with finite ¢, (2.20) and 0-1 law imply that

. An
(2.21) limsup —~ = constant a.s.
N-o00 log N
The Erdds-Rényi law for local times (cf. [2] and [7]) suggests that in fact,
we should have lim in (2.21). To prove such a result we would need large
deviations for An - In the next theorem we show that an Erd6s-Rényi law
holds for &n assuming large deviations for An and also, the extra condition

I(*) > o.

THEOREM 2.2. Assume that {-X,}?" is a sequence of i.i.d. integer val-
ued random variables being in the domain of attraction of a stable law of in-
dexa (1 < a < 2), EXi = 0, the random walk So = 0, 5, = X\-\- ee+ Xj, i =
1,2,... is aperiodic. Let/(z), z G z be a nonnegative function having finite
support. Suppose that for fixed x we have

(2.22) - ’\lli_r]%o log Pz(An > Ny) = tp(y)

where Pz(-) denotes the probability under the condition that the random walk
starts at x and V/(y) Is a decreasing continuous function which does not
depend on x. Let a# = [elogiV] and AN be defined by (1.2) with this on-
Then

A*

2.23 i ; = .S.
(229 N clogn — Y 2%
where y is defined by

(2.24) "W =exp{-2i_i}.

PROOF. First we prove the upper bound in (2.23), i.e.

2.25 limsup—" — < a.s.
(2.25) N—oopclogN y

We follow [2] and [7]. Let
(2.26) = min{A: : Sk+j = i, kK>0}, i Gz
and

2.27 Kj = in__[cjz),
@27 = i )
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where [xi, 12] is an interval containing the support of f(x). Then
j+a—lI

POE1(5)N ) =

o— 12 j+a—l
= E p(E /(sO - I = k>si+k=x)p(Ki - k>si+k=x) =
k= Ox Xi

E E ft(aE * f(s9 > «vilfo = * 5i+* = *) <
feo *=*| 1=0

A
M*_@ p-(lE/(S() *V)p(*i = k>SJ+k—*)<
<EE - e))apki =k>si+k =5 <

J0z=zi
< (V»(y(i - e)))apiKj < «- 1)

for e > 0 provided that a is large enough. But

P(/ICj<a-1)< E p([Kjx-a~1)
X=X\
and this can be estimated as in [2]:
p{~rl<a- 1)=E P~ XYx<a~I\Sj =2z)P(Sj = 2).
z
It follows (see [5]) that
(2.28) p(s,.=2)< _ 7 _ , 2e Z

where £i(-) is a slowly varying function, and by considering the reverse ran-
dom walk one can see that

P(/cdz) < a- 11Sj = z2)

Pz(4x) < a- 1)

E =k =J2p{p>k, Sk=1z- x),
40 k=0

hence from [7], Proposition 6.1

p(«'-><«-i)< 70 x;p(,> ao<
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£

< ¢ e A foL ey CAYeE)
fc=l - '

Here we obtained the following estimation:

(jra— 0w
e f(si) >ay <Vl -e)))a’ @
=] jJH or

From this we get

P(A-,, > a,,u) < C2W (y(1- *)))“» £ S

< C,WV(i - Uy *«**1/\)/\*"*7*

and we can complete the proof of (2.25) by the usual way of taking subse-
quence and applying Borel-Cantelli lemma (cf. [2] or [7]).
To show

2.2 liminf ----- - S.

\(/ %) }\Imalgo clog N 2y as

define

(2.30) N=0, ©pdic=min{y :j > +aN,Sj = 0}
and

(2.31) vs = max{r:r< N}

WuVi ~ VIi mmmare i-i-d- random variables with the properties (cf. [7])

(2.32) h (N)
Ni(ajv)
and
(2.33) S(1IA W )~Jv(r):  MAO
M *°n)
Hence
P(vN < K) = P(r)K > N) <
i K K
- EMVE~ AN)+ H P(P_ AN A
1=1 1=1

A

CK (gNy ~ 1/a ti-{N)
\NJ hias)
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with certain constant C.

Since
»jy+ow-I|
7,
(2:34) Az, E oo
o=h
and
foy+°jv —1
E /(59» 3=012.
«y
are i.i.d. random variables, we have

P(A*n < aNy) <
< P{A*n < aNy,vN > K) + P(vn < K) <

jy+al/v-I

<P(M™M=*K E /(59 ™ auy) + P{yN <k) <
-J~ i=r,j

atbZ1 in \J tI[N)
< (1-P(E f(Si)>aNy))K+C K (")

[J=(¢] ! !
< e-KA((i+«)V))“V+ ¢ x I-llo.

"i(ajv)
Now using (2.24) and choosing
\i-l«-«i

(2.35) K =KN= (J"]

with some ej > 0, one can complete the proof of (2.29) as in [2] or [7].

3. The W iener process case
We have the analogue of Theorem 2.1.

THEOREM 3.1. Let (w (i), t > 0} be astandard Wiener process and let
{L(x,t), —oo < X < oo, t > 0} beitsjointly continuous local time. Assume
that g(x), x € R is an integrable function vanishing outside a finite interval
\x\,12]e Let Bt and Bj be defined by (1.13) and (1.14), resp. Letax, T > o
be a nondecreasing function ofT such that T/ax is also nondecreasing. Then

(3.1) sup IBt+aT - Bt- g(L(0,t + aT) - £(0,i))]| =
O<t<T-ar
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= 0((7rlogT)V2 + logT) a.s., T —»o00,
where 7t ,s defined by (1.17) and

oo
/ g{x)dx.
@
For the proof of this theorem we note that (cf. [6])
(3.3) E(exp{r)L(x,Tr)}) = exp | , n<1/(2®)

where Tr is the inverse local time process defined by
(3.4) Tr=inf{t :t >0,L(0,t) >r}, O<r

Moreover, Tr is a process with independent increments, so the proof can
be given along the same lines as that of Theorem 2.1, with the obvious
modification that sums, at times, should be replaced by integrals. Here Z
defined by (2.10) should be replaced by

3.5 Z — X)L (x,Ti)dx.
(3.5) JXI gO)L(x,Ti)
Note that (3.3) implies that E(L{x,T\)) = 1for all x GR. Thus
(3.6) EZ - J g(x)dx = g.
Xi

We omit further details.
Similarly, to the random walk case, we have

COROLLARY 3.1. Under the conditions of Theorem S.l. and, in addi-
tion

. ar
. I mm—— = 00.

S L log T °

we have

(3.8) limsup -1- = 1 a.s.

T—oo IT

If (1.18) holds, then

(3.9) A S a.s.

If

(3.10) Ta_rILO 'lo—gT—< 00,

then

(3.11) Bj = 0(logT) a.s., T —»o0.
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Here again, we consider the case, when ay = clogT with some positive
finite c.

THEOREM 3.2. Let t > 0} be a standard Wiener process and
let g(x), x € R be a nonnegative function vanishing outside a finite interval
[11,0:2] « Let Bt and B£ he defined by (1.13) and (1.14), resp. with aj =
clogT (0 < ¢ < 00). Assume that

(3.12) - tllrﬂp}' log Px(Bt > ty) = tp(y),

uniformly in x 6 [11,0:2]; where Px(-) denotes the probability under the condi-
tion that the Wiener process starts at x and ip(y) is a decreasing continuous
function which does not depend on x. Then

. B*
\(/3.13) T%clbgTT— =y a.s.
where y is defined by
(3.14) t>y)=exp|-"J.

PROOF. First we prove

*

3.15 lim su T < a.s.
( ) Xmop Clog 1 y

Put a —at and estimate the probability

t+a
/ P{Bt+a - Bt > ay\rt= S)dsP(Tt < s),

where Tt = inf{u :t < u, w(u) E [*i,X2]}- But

P{Bt+ta~ Bt > ay \rt=s, W) = x) =

= Px{Bt+a - Bs > ay) < Px[Bt+a - Bt > ay) < (i/>((I - e)y))a
if a is large enough. Hence

(3.16) P(Bt+a - Bt > ay) < ("((1 - e)y))aP(rt< t+ a)
An easy calculation shows that
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with certain positive constant C.
Hence we obtained

(3.17) P(Btta—Bt> ay) <£ ~ * ((1 - e)y)a

for 0 < t and large enough a.

Since
(3.18) sup [Bt+a ~ Bt) < sup (Bt +a(l+i) - Bti),
0<t<T-a 0<,<
where
(3.19) ti = iae,

we have from (3.16),

(3.20) P{_ sup (Bt+a- Bt) > ay) <
O<t<T-a
274

« m m

197

with certain constant C\. Using this estimation, one can complete the proof

of (3.14), as in [1], proof of Lemma 2.
We show next .

o B
\(/3.21) Ill%fcleTT >y a.s.

For a > 0, define
(3.22) No=0, VK= inf{t:t> +a, W(i) = 0},

and
(3.23) vj = max{A: :rk < T - a).

As shown in [3], we have
(3.24)

Since

3.25 su Ht+a - Bt) > su Br.k+a - Bnk
( ) O<t<pT-a( ) O<k<pi/T{ )
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and {B,lk+a - are i-i-d. random variables, we get

P( sup (Bt+a ~ Bt) < ay) <
0<t<T-a

( fT\(1_e)/2\
<P sup (Bt+a- Bt) <ay, ut> (-
\0<t<T-a \a/ /

+P U<

< P( sup {Bnk+a - Bnk) < ay) + 3\/2 (")

0<*<(?)(1- )2 U
= (1- B[Ba> ay))!?)“""R+ 3va <
T\ (1—=)/2
< exp <- (aj) (V»(y(l + e)))a| + 3vr A

and one can complete the proof of (3.2) as in [l], proof of Lemma 1.
Now (3.12) follows from (3.14) and (3.20).
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A NOTE ON “THREE PROBLEMS ON THE RANDOM
WALK IN zdv BY P. ERDOS AND P. REVESZ

ENDRE CSAKI *

Consider a simple symmetric random walk on the line, i.e.

(1) Sq=0, Sn —Xi + - bXn, n>1
where is an i.i.d. sequence with
(2) P(X1= 1) = P{XI =-1) = 1/2.

In [I] the waiting time needed to meet a new point is defined by
3) vn- min{A: :k >0, Sk+tn+ Sj (j = 0,1,...,n)}.

One of the results for d = 1 in [I] reads as follows:

@ <l =

im < — as.
4TR }1->(S)(L)Jpn(loglogn)2 mn as

In this note our aim is to show that the exact constant in (4) is in fact
equal to 1/ u2.

THEOREM. For d = 1 we have

(5) Ilr?lfobjph(loglogn)“4_ iz &

PROOF. First define the following quantities:

(6) mn = —min S
¢ Mn = g, <l
(8) Rn = Mn—mn.

'Research supported by the Hungarian National Foundation for Scientific Research
Grant No. 1905.
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60J15.
Key words and phrases. Random walk, waiting time.
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It is then readily seen that

(99 P(un>N) =

n C c—a

= XIX!V' E p{mn- -a, Rn=¢ Sn=Kk -a <Sj <c- a,
c—10=0 Jfc=-a
j=n+1,...,n+N)

EE E P{™n=-a, Rn=¢ Sn=Kk)
c=10=0 k= —a

xP(-a- k<Sj<c-a—k j=1,...,N).
These probabilities can be obtained from the following formulae (cf. [2]):
P(-a <Sj<c-4aj=12,..,n; Sn=Kk) =
(10

n
2" v [(n + k) + r(c + 2)1 I|[(n+fg+a+ 1+r(c+ 2

where the binomial coefficients (£) are understood to be 0 if 6> aorifbis
not a nonnegative integer. (10) has also an equivalent expression (cf. [2]):

P(-a <Sj<c—a, j=1,2,....,n; Sn=k) =
(11

0s sin
c+2=V c+ 2/ vV c¢c+2 o0 a c+ 2 )e

Summing up for the possible values of k, we obtain

2 Céij nr An. frir(c-a+ty, . {rn(e—a+1—k)

P(-a <Sj<c-aj=12,.,0)=
(12)

¢+l

m VvV e« (r*{c-a+I)\ 1+cos™ [1I- (~1)™
c+ 2J V c+2 ) sin”® \Y/ 2 )

Cos

+
¢ 2r=|

Now we prove the upper bound, i.e.
li a.s.
(13) Irqn—-Sb&P n(loglogn)2 n2 *
It follows from (12) that there exists an absolute constant K\ such that

1
(14) P(-a-k<sj<c—a-kj=1..N) <K\ {egs- "
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forall 1< N, 1<c<n O<a<cand —a< k < ¢c—a. Hence

(15) P{un > N) <Kxtz P(Rn = c) (cos

One can obtain from (10) that there exists an absolute constant Kj such

that
K-> (c+2)2

(16) P(Rn = C) < —f=¢ 2« for 1<c<n.
Vn

Therefore by using the inequality

17 log OBX < ——  0< X< T
0 —_ I
(17) g 3 5
we get
~ 1 _ist*E_
(18) P{vn> N) < KIK2 sy=e” 2v TBR+)*
c=l Vn

N3 i°°e- £ - £ Ndu= Kde-ry/%,
Vn Jo

where if3 and A4 are appropriate constants. For the evaluation of the
integral in (18) see [3]. By putting N = ((1 + £)/x2)n(loglog n)2 and using
that vn + n is increasing, one can complete the proof of (13) by the usual
Borel-Cantelli argument.

To show
(19) Iquj&blp_nr(_lo_g 6é__ S2 > - ~ 2% as-
we estimate the following probability in (9) from below.
(20) Plyn> N) >
[/nlogr»] ¢ -°+[¥]
p(M«= _..RrR" = ¢> sn = k)
GU=-1 a=°k=-*+[i]
[ lo* )]

xP(-a - k<Sj<c—a-k j=1,..., N).

For these values of ¢, a and k one can see from (10) and (12) that there
exist absolute positive constants K i and K2 such that

. _ / jt \N
(21) P(-a- k<Sj<c-a-k, j=1,.,N)>Kx(cos——]
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and

K +2)2
(22) X X p(mn=~a, Rn=¢, Sn=k) > _\_70:e (Cz')
«

a=0*=-a+i
Hence
[*nlog n]
(23) P(r,,>H)>KI1K, £ _e-i*i-(cos— |
<=[sSi]
Now for n large enough and n < N < nlogn
" K~ ng)z
24 A > 1- > K% 2h-
(24) (cos™) 2(c + 2)2
provided -y/n/logn < ¢ < ~/nlogn, thus
[ev~ilogn 1 2 »2 ,,
(25) P{un>N)> Ka\ r- ;Vne-"-"Ndn>
logn
Sio (7 ek Ny & T - A
Wo Vn Jo yn
— ™ _j=e ndu”
Js/nlogn \ n J
> ik5e v n§

Now we are ready to show (19). To this end define the events:

(26) Ah = { Si < SJ:L_< - <rrl%i+n* S~

j = 7E 4 k4 )ese TiK}

min
Tk™ 1 <i<TkA 1+nk

where
(27) nk = e (I°9(*H-N)2
(28) Nk - -~n*(l - e)2(loglogn*)2,

(29) Tk = YXni+ Nt).
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Then the events are independent and (25) implies that
(0 0]
(30) Y, P{Ak) = oo,
hence
(31) P{Akio.) = 1

This implies that

(32) P{"Tk.*nk > Nki.o) = 1
Since Tjt i nk, (19) follows, completing the proof of the Theorem.
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NEW AXIOMATIC RESULTS ON INFERENCE FOR
INVERSE PROBLEMS

I. CSISZAR

A bstract

The axiomatic approach to inference for linear inverse problems developed by Csiszar
[3] has led, among others, to intuitively appealing characterizations of the meth-
ods of least squares and maximum entropy. Here some further results with this
approach are presented, including an axiomatic characterization of the method of
minimizing an ~-distance (1 < p < 00). We also study selection and projection
rules for a larger resp. smaller class of possible feasible sets than in the reference
above. In particular, certain non-linear inverse problems are also covered.

1. Introduction

Often, an unknown function / has to be inferred from known values of certain
linear functionals Rif, i = 1,..., k. A typical example of such “linear inverse
problems” is image reconstruction, e.g., in computerized tomography. In X-
ray tomography, the unknown X-ray attenuation function / is inferred from
its line integrals Rif along the pathes of the rays. Another example is
when a probability density or mass function / has to be inferred from the
knowledge of certain moments; then Rif represents the expectation of some
known function of the underlying random variable.

Since the known constrains typically do not determine / uniquely, the
inference problem is solved by using a more or less arbitrary selection rule
to pick one element of the set of feasible functions. If this selection depends
also on a “prior guess” of the unknown /, the selected function is considered
an abstract projection of the prior guess onto the feasible set, and we speak
of a projection rule. The obvious question of what selection (projection) rule
is best is hard to give a mathematical meaning. Csiszar [3] suggested an
axiomatic approach, based on the intuitive idea that a “good” rule, when
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Key word» and phrase». Logically consistent inference, linear inverse problem, maxi-
mum entropy, non-linear projection, selection rule, updating a prior guess.
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applied to a class of problems, should lead to “logically consistent” infer-
ences. The latter is interpreted to mean that the selection or projection rule
has to satisfy certain intuitively appealing postulates. It should be empha-
sized that this approach does not involve stochastics. In the above paper,
selection and projection rules satisfying various postulates were character-
ized. In particular, the “least squares” and “minimum I-divergence” (or
maximum entropy) rules were arrived at from small sets of natural axioms.

Here, this axiomatic investigation will be continued. In order to keep
the paper self-contained, the basic definitions and some results of Csiszar
[3] will be briefly reviewed in Section 2. As there, for technical convenience
we concentrate on the discrete case (i.e., the functions to be inferred are
represented by finite-dimensional vectors)and we consider in parallel three
different choices for the basic set S of all potentially permissible vectors;
these three cases represent inverse problems where the unknown function can
be any real-valued function, or any non-negative function, or a probability
mass function, respectively.

In the above reference, it was assumed that the available information
consisted in linear equality constrains, and any set of vectors defined by
such constrains could arise as a feasible set. In Section 3 we prove some
further results under the same basic assumptions, including an axiomatic
characterization of the selection and projection rules defined by minimizing
an f£p-distance (1 < p < 00). We also show how all such results extend to
the case when the closed convex sets are the possible feasible sets, whereby
some non-linear inverse problems are also covered.

In Section 4 we study selection and projection rules for a much smaller
class of possible feasible sets, corresponding to particularly simple linear
inverse problems, and also prove results about the possibility of extending
them to “good” selection (projection) rules for the class of all linear inverse
problems.

Finally, in Section 5 we indicate some problems for future research.

Our axiomatic approach to inverse problems has been motivated mainly
by Shore and Johnson [11]. For further relevant references cf. Csiszar [3]. It
is appropriate to add that, indirectly, Renyi’s work on information measures
also provided motivation for this investigation. Indeed, Renyi’s views on
the “pragmatic” (operational) and axiomatic approaches to the problem of
measuring information substantially influenced the author’s thinking. Rényi
[10] wrote: “These two points of view are according to the opinion of the
author of this paper not as opposed to each other as they seem to be; they
are compatible and even complement each other and therefore both deserve
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attention. Both of the mentioned approaches may and should be used as
a control to the other”. Rényi also emphasized that the operational sig-
nificance of information measures need not be restricted to communication
and coding. As inverse problems represent one of the fields where infor-
mation measures are being successfully applied (even though no intrinsic
relationship of this field to information theory is apparent), it was clearly
desirable to complement this “pragmatic” side by an axiomatic approach.

It may be interesting to point out that our original goal was to give an
improved axiomatic ‘justification” of the method of minimum I-divergence
and it was a welcome result of this effort that axiomatic characterizations
of other standard (such as “least squares™) or potentially useful methods
could also be obtained. Needless to say, I-divergence was not distinguished
by its being an information measure, rather, it emerged as a measure of
distance whose minimization gave rise to a particularly attractive projection
rule. Some new families of distances obtained by our approach may also
be useful in certain applications, cf. the remarks after Theorems 2.3 and
3.2. Of course, not all selection and projection rules we have axiomatically
characterized are expected to withstand a “pragmatic control”. It is likely
that many of our results will remain of mathematical interest only.

2. Review of definitions and results from Csiszar [3]

The real line and the positive half-line are denoted by R and A+, respectively;
the latter does not contain zero. The vectors in Rn whose components are
all zero or all one are denoted by O or 1, respectively. All vectors are column
vectors. The set of n-dimensional vectors with positive components of sum
1 is denoted by An, i.e.,

(2.1) A,={v:vefi”, I Tv = 1}

We consider three cases in parallel, namely our basic set S of all po-
tentially permissible vectors is either of Rn, R" or An where n > 3 or, if
S = A,,, n > 5 According to the three cases, V will denote R, R+ or the
open interval (0,1), respectively. Unless stated otherwise, u,v and w will
always denote elements of V, and u,v,w are vectors in Vn. Further, C
denotes the family of non-void subsets of 5 defined by linear constraints.
Thus L € C iff
(2.2) L={v:Av=Db}" 4
for some kx n matrix A and some b € R*; in the case S = An it is assumed
that Av = b implies | Tv = 1
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A selection rule (with basic set 5) is a mapping H : £ —* S such that
n(L) E L for every L E £. A projection rule is a family of selection rules
n(», ukES, such that u £ i implies IT(L|u) = u.

A selection rule U is generated by a function FAv), v E 5, if for every
L E £, n(L) is the unique element of L where F(v) is minimized subject to
v E L. A projection rule is generated by a function ,F(vju), u ES, VES,
if its component selection rules are generated by the functions ,F('|u).

If a projection rule is generated by some function, it is also generated by
a measure of distance on 5, i.e., by a function with the property F(v|u) > 0,
with equality iffv = u.

For any set of indices J = {ji,---,jk} C {l,...,n} and any vector
a E Rn, we denote by aj the vector in Rk defined by
(2.3) aj = (a;i,..., a;t)T.

For a selection rule Il, we denote (il(L)),/ briefly by 11j(L).
Our basic axioms on selection rules are the following:

(1) (consistency) if L' C L and n(L) E L' then 11(1/) = II(L);

(2) (distinctness) if L L' are both n—l1-dimensional (or n—2-dimensional
ifS = A,) then II(L) 1I(Z/) unless both L and L' contain v° = 11(5);

(3) (continuity) the restriction of 1l to any subclass of £ consisting of sets
of equal dimension is continuous;

(4) (locality) if L E £ is defined by a matrix A in (2.2) such that for
some / C {1,....,k}, J C{l,...,n} we have aij = 0 whenever (t,j) E
(/x Jc)u(lcXd), then Ilj(i/) depends on A and b through
and b/ only.

For projection rules, these postulates are required to hold for all com-
ponent selection rules n(-|u), u € 5 (notice that in (2), I1(5|u) = u by
definition), and in (4) it is additionally required that Ilj(L|u) depends on
u through uj only.

As explained in Csiszar [3], axioms (I) and (4) are intuitively compelling
(though not necessarily for all kinds of inference problems), and axiom (3) is
an obvious regularity condition. Axiom (2), needed for a technical reason, is
intuitively less compelling than the others. It would be desirable if it could
be dispensed with.

The key result of Csiszar [3] was the following theorem. In that theorem,
the term standard n-tuple with zero at v° means an n-tuple of functions
(/i>---> fn) defined on V such that
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(i) each /, is continuously differentiable and
fi(vi) = fl(vi) ~ > *= Inees ¥y
(ii) in the cases S = i?" or A,,, f[{v) 00 as t; —»0;

(iii) F{\) = 52" i is non-negative and strictly quasi-convex on 5, i.e.,
forany v and v'in S

(24) F(av+ (1- a)v') <max(F(v),F(v)), O0<a<Ll

THEOREM 2.1. (a) If a selection rule Il ;: £ —»S satisfies the basic
axioms (1)-(4) then it is generated by afunction

(2-5) nv) =£/,K)
t—+
where (fi,..., /,,) is a standard n-tuple with zero atv® —11(5). Conversely,

if (/i>eee)fn) is a standard n-tuple with zero at v° then (2.5) generates a
selection rule with 11(5) =v° that satisfies the basic axioms.

(b) If a projection rule satisfies the basic axioms then it is generated by
a measure of distance

(2.6) F{viu) = f~fi(vilui)
i—+
where the functions /i(-|uj),...,/,,(.|u,,) form a standard n-tuple with zero

at u. Conversely, any such measure of distance generates a projection rule
satisfying the basic axioms.

(c) Two functions F and F as in (a) or (b) generate the same selection
or projection rule iff their terms fi and fi satisfy fi = cfi, i =1,...,n, for
some constant ¢ > 0.

REMARK. If a selection rule Il : U —* S satisfies the basic axioms, its
generating function (2.5) also has the following property:

(iv) gradF(v) ~ 0, and in the case 5 = A,, also gradF(v) ~ Al, for all
v G5 with v ~ ve°,

Indeed, this has been established in the mentioned reference, cf. eq. (5.20).
On the other hand, for the converse assertion in Theorem 2(a) property
(iv) is needed to check axiom (2). Thus, unless the properties (i)-(iii) in
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the definition of a standard n-tuple already imply (iv), the latter has to be
explicitely added to fill a minor gap in Theorem 2.1. Itremains open whether
(i)-(iii) imply (iv) if S = A,. In the cases S —Rnand R", however, it is an
immediate consequence of Theorem 3.1 in the next Section that (i)-(iii) do
imply (iv).

The class of functions F occurring in Theorem 2.1 can be restricted
by imposing somfe further postulates. We recall the intuitively appealing
postulates ofinvariance and transitivity, for projection rules. Another highly
intuitive postulate, called composition consistency, that lead to the perhaps
most interesting result of Csiszar [3], will not be recalled here because it will

not be used in this paper.

(5a) (scale invariance, for S = Rnor R™)

17(AL|Au) = AFI(L|u) for every LEC, A>0, u &S

(5b) (translation invariance, for S = Rn)

n(L + /ilju + /il) = n(L|u) + n1 forevery LE £, fi ER, uES.

REMARKS. selection rules can also be scale invariant, i.e., satisfy II(AL) =
AlI(L) for every L E C and A > 0, but only in the case S = RN (because
L —S yields n(S') = O) Translation invariance is not possible for selection
rules.

It should be mentioned that in the case 5 = RN, postulate (5a) and its
analog for selection rules could be imposed also in a stronger form, for A < 0

as well. This stronger postulate, called Strong scale invariance, will be used
in Section 3.

(6a) (subspace transitivity) for every L1C L and i E S
n(L'|u) = n(En(L|u))

(6b) (parallel transitivity) for every L and L' defined as in (2.2) with the

same matrix A, and for every u E S

n(L» = n(L[n(L|u)).

The main results invoving these postulates were:
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THEOREM 2.2. A projection rule satisfies the basic axioms (I1)-(4) and
the transitivity postulate (6a) iff it is generated by

(2.7) F(viu) —$(v) ~ $(u) - (grad<i>(u))T(v - u)

where <I>V) = =1L "> (t>), the functions g{ defined on V are continuously
differentiable, ${v) is strictly convex on S, and in the cases S = R'f or
An, limu o i(v) = —e0. Further, subject to the basic axioms (1)-(4), the
transitivity postulates (6a) and (6b) are equivalent.

REMARK. Measures of distance associated with strictly convex functions
<$as in (2.7) were introduced by Bregman [2],

THEOREM 2.3. (a) In the case S = Rn, aprojection rule as in Theorem
2.2 is location and scale invariant iff it is generated by

(2.8) Avlu) = awe- - U2
.:i
for certain positive constants ai,..., an.
(b) In the case S — R'f, a projection rule as in Theorem 2.2 is scale

invariant iff it is generated by

(2.9) AVIU) = a<1
1=

where v

vlog—u————v+ u ifa=1

u
= log- H-—- 1 ifa=0

(2.10) Mt>|u) gV 0

a u) otherwise
and a\,... ,an are positive constants.

REMARKS. Part (a) is an axiomatic characterization of ordinary orthog-
onal projections for weighted £2-norms. The distences (2.9) with a\ = ... =
an = 1 resemble the a-divergences of Rényi [9]; still, a closer relationship
of the two families is not apparent, except that both contain (for a = 1)
Kullback’ I-divergence or “information for discrimination” (Kullback [8]).
The family (2.9) contains the Itakura-Saito [5] distance, as well (a = 0),
and there are indications that other members of this family may also be
practically useful, cf. Jones and Trutzer [7].
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3. Some further results

In this Section, we first show that for selection rules Il : £ —* S satisfying
the basic axioms (l)-(4), the generating function (2.4) is necessarily convex
if S equals Rn or Rff; in Csiszar [3] this was mentioned without proof. Then
we determine how the invariance postulates (5a), (5b) restrict the class of
possible generating functions when - unlike in Theorem 2.3 - a transitivity
postulate is not imposed. Finally, we show that a simple additional axiom
permits to uniquely extend any selection or projection rule, satisfying the
basic axioms, from C to the class C of all closed convex subsets of S.

THEOREM 3.1. Let fi,...,fn be continuously differentiable functions
on V = R or R+ having the properties (i) and (iii) in the definition of a
standard n-tuple. Then each fi is convex and there can be at most one i for
which fi is not strictly convex.

PROOF. Since F(v) = £?=i fi(vi) satisfies (2.4), for i » j there can
not exist intervals fi and 1j such that fi is linear in fi and fj is linear in
Ij. Hence it suffices to prove that each /, is convex and, clearly, this will be
done if we show that f\ is convex.

From the non-negativity and strict quasi-convexity of F(v) together with
the assumption that 0 is a possible value of fi for each t, it follows that
F(u,v) = f\ (tt)-(-/2 (u) is strictly quasi-convex on V 2, and F(u,v) > 0 except
for the point (uo,t;o) where /i(uo) = /2(fo) = 0. It follows, in particular,
that /i(u) and fi{v) are strictly increasing for u > uo and v > vo, and they
are strictly decreasing for u < uo and t; < . Further, the level sets

(3.1) Ac= {(uyv) :fi(u) + f2(v) <c}, c> 0

of F are strictly convex, i.e., any convex combination of any two points of
Ac are in the interior of Ac. We denote

(3.2) le= (u:/i(u) <c} c¢>0

First we show that
(3.3) Iige A(v) = oo.

Supposing, indirectly, that lim”~oo fi(v) = ¢ < oo, we would have (uo,v) £
Ac for all v > t0, and also we could find uj > uqg,t3 > i>osuch that /i(ui) +
[2(t>i) = c. But then (ui,t>) ~ Ac if v > vi, and this gives the desired
contradiction. Indeed, if (uqg,v) £ Ac for all v > vq, the convexity of Ac



NEW AXIOMATIC RESULTS ON INFERENCE FOR INVERSE PROBLEMS 215

implies that also (ui,t>) € Ac for all v > Vo, because (u,vo) € Ac for all
uaclec.
Consider now the function v = vc(u) defined in the interval Ic by

(3.4) fi(u) + f2{v) = ¢, v >\0;

on account of (3.3), this function is well-defined for any ¢ > 0, and its graph
is the upper boundary of the set Ac. Thus v = vc(u) is a strictly concave
function, in particular, its derivative can vanish only at its uniqgue maximum,
i.e., at u = uqg. As

dvc _  /|(u

du fAVC

if f'i(vc) y* 0, this proves that f[(u) ~ 0 if u ™ uo (because, given u yt u0)
picking any t; > uo with f*v) 0, (3.5) certainly applies with the choice
c = /i(u)+ fiiyY)’ Since /i(u) is strictly increasing (decreasing) for u > Uq
(u < Uo), it follows that f[(u)>0 as u>uo- By symmetry, we thus also have
m >0 if v > t,0, and it follows that (3.5) holds for all u in the interior of
Ic-

Now let u and 1l be arbitrary such that | <u < uo or uo < u < U. The
convexity of /i(u) will be proved if we show that in both cases

(3.6) <.

Let v and v satisfy
(3.7) fi(ti) + h{v) = /i(tt) + /2(v), v>vO0,v>vDO0.

Taking for c the common value of both sides of (3.7), the strict concavity of
the function vc(u) and (3.5) imply that

if U< U< Uo
m

and the reversed inequalities hold if uo < u < u. It follows that in both
cases
(3.8)
fL(u) /2H
The right hand side of (3.8) equals the derivative of the function V = v(v)
defined by (3.7) (on account of (3.3), this function is well defined for any
fixed u and U if v is sufficiently large). Since (3.7) implies t < v in both
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cases U < u < uo and uo < u < 0, this derivative can not have a lower
bound greater than 1. Thus, (3.8) proves (3.6), and this completes the proof
of Theorem 3.1.

We recall from Csiszar [3] the notation

_ {v v+ V= t} if S =Rnor
B LYM = vy Visvj=t Etyijvt=1-t} if S=A,

For a selection or projection rule generated by F(v) resp. F(v|u) as in (2.5),
(2.6), the j-th and jf-th components  and \j of ll(L-3(t)) resp. n(L,; (f)|u)
are determined by the equations

(3.10) fl(vi) = fj{vj), v-+Vj=t

(3.11) li(v<l«<) = fj{vj\uj), Vi+ tH=t.

A projection rule will be called smooth if for every »» j and t G V,
the t-th and j-th components of n(LjJ(i)|u) depend continuously on u, and
ui. While smoothness is a natural regularity postulate, it was not needed
in Csiszar [3], It will be used here, in assertions (b) and (d) of Theorem 3.2
below. In that Theorem, by “selection rule” or “projection rule” we mean
selection or projection rule satisfying the basic axioms (1)-(4).

THEOREM 3.2. (a) A selection rule with basic set S = Rn is scale in-
variant iff it is generated by

n
(3.12) F(v) = ~"Cj(signt;))|u,lp, p > 1,

o=j
where Cj(signv,) denotes a positive coefficient depending on i and the sign of
Vi. Further, this selection rule is strongly scale invariant iff the coefficients
do not depend on the sign of u-, i.e., iff

(3.13) F(v) = ]Tat qp, p>1I.
<=
(b) A projection rule with S —f?" is smooth and scale invariant iff it is
generated by

(3.14) F(vlu) = £ > “/,(*), aER,
i=l
where (/j,..., fn) is a standard n-tuple with zero at 1.
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(c) A projection rule with S = Rn is scale invariant iff it is generated by

rfftC -) if u>0
(3.15) f(v|u) = [.H u) hipf~C-) if u<o
<=1 . .
¢, (signv,)Mip ifu=0
where (fi, mmm f,) and are standard n-tuples with zero at 1,

the c,(signu,) are as in part (a), and p > 1. This projection rule is strongly
scale invariant iff here /+ = f~ and the coefficients c, (signi»f) do not depend
on signv,.

(d) A projection rule with S = Rn is smooth and translation invariant
iff it is generated by

(3.16) F(v\u) = "£ e RBUifi(vt - u i),
where (/j,..., fn) is a standard n-tuple with zero at 0.
(e A projection rule with S = Rn is both scale and translation invariant
iff it is generated by
n
(3.17) -F(v|u) = ~c,(sign(t/,- - ti))|vi- u<p, p>1
«=1

It is also strongly scale invariant iff here the coefficients do not depend on
the sign of v- —ttj, i.e., iff

(3.18) F(v|u) = - ujp, p>1.

REMARKS. Assertions (a) and (e) provide axiomatic characterizations of
the families of (weighted) tp-norms and £p-distances, respectively. We notice
that the projection rules characterized in (c) are not necessarily smooth
because the functions /,(t>Ju) in (3.15) may be discontinuous in u at u = 0.
The straightforward conditions needed for smoothness are omitted.

Among the families of projection rules characterized in Theorem 3.2, only
those generated by £p-distances, viz. (3.18), look familiar. It appears to this
author that the distances (3.17), whose p-th root may be called a “skewed tp-
distance”, also deserve interest. They might turn out useful in such problems
where positive and negative discrepancies from the “prior guess” u are not
equally significant.
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PROOF OF Theorem 3.2. (a) Consider a scale-invariant selection
rule n with basic set S — Rn, generated as in Theorem 2.1 by F(y) —
Z)r=i where (fi, mmm fn) is a standard n-tuple. The scale-invariance
ril(AL) = An(L) means that F(v) is minimized subjecttov € XL byv = Av*
iff minV6i F(v) is attained at v = v*. Thus Pa(v) = F(Av) also generates
Il. Since the scale invariance of Il implies 11(5) = 0, the standard n-tuple

(/i,..., /,,) has zero at 0, and therefore the functions /i(Av),..., /,, (Av) also
form a standard n-tuple with zero at 0. It follows by Theorem 2.1 (c) that
(3.19) »(AV) = c(A),(u), i=1,..,n.

Clearly, this implies that the factors c(A) satisfy
(3.20) c(AiAa) = c(Ai)c(A2

for all Ai > 0, A2 > 0, and c(A) is a continuous function of A Hence (cf.
Aczél [l], Section 2.1.2)

(3.21) c(A) = A", aeR.

Substituting in (3.19) A = |v|_1, it follows with (3.21) that /,(v) equals
</*/,(Y) if v>0and |vja/,(-1) if v < 0. Writing p — a, this establishes
(3.12); the condition p > 1 comes from the property of a standard n-tuple
that its component functions are continuously differentiable. Conversely, it
is clear that the function (3.12) generates a scale-invariant selection rule,
and the latter is strongly scale invariant iff c,(signv,) does not depend on
signv,.

(b) Consider a scale invariant projection rule with basic set 5 — i?",
generated as in Theorem 2.1 (b) by F(v|u) = X),"=i /(v,-1it,). It follows as in
part (a) that .F\(v]ii) = F(Av|Au) also generates this projection rule, hence
by Theorem 2.1 (¢)

(3.22) I(AVIAU) = c(A)j(v]u), i=1,...,n

for every A> 0.

Again, (3.22) implies the functional equation (3.20) for c(A) but unlike
in part (a), the continuity of c(A) does not follow from (3.22). We claim,
however, that the smoothness postulate already implies the continuity of
c(A).

To verify this, fix i » j, u, u and t, and denote the t-th component
of n(Ljj(f)|u) by vx if the i-th and j-th components of u are Au and tt,
respectively. Then by (3.11)

(3.23) [l (valAu) = fj(t —valu).
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Next, differentiate (3.22) by t>and then substitute v = A to obtain
(3.24) XFI(vx\Xu) = c(X)fI(X~2\ |u).

Since v\ is a continuous function of A by smoothness, and /,-(uju) is con-
tinuous in v for every fixed u, it follows from (3.23) and (3.24) that c(A) is
continuous, as claimed.

Having established the continuity of c(A), we again have (3.21). Then,
substituting A= u_1, (3.22) gives that

AHU) = ““/«(* 11)-

Denoting /,-(f|l) by /,(i), this completes the proof of (3.14).

(c) Changing the setup of (b) to S = Rn, the proof remains almost
identical except that now we get for free (without requiring smoothness)
that c(A) = Ap for some p > 1, namely by applying the result of part (a) to
the scale invariant selection rule n(-|0).

(d) Consider a translation invariant projection rule with basic set S = Rn
generated, as in Theorem 2.1 (b), by .F(v|u) = )T"=1/,(f,|u,). It follows as
in (a) and (b) that /~(vfu) = jF(v+/il|u+ /i1) also generates this projection
rule (for any p € R), and therefore by Theorem 2.1 (c)

(3.25) fi(v +p\u+p) = cm)/,(viu), t=1,...,n
This implies that c(p) satisfies the functional equation
(3.26) c{m + p2) = c(mi)c(/i2),

and as in part (b), smoothness implies the continuity of c(/i). Hence (cf.
Aczél (1966), Section 2.1.2) we have c(/z) =
Finally, substituting &x= —u in (3.25) results in

fi[viu) = eBufi(v - tx]0).

Writing fi(t) = /,(i|0), this establishes (3.16).

(e) If a projection rule with basic set 5 = Rn is both scale and trans-
lation invariant then, by (c) and (d), its generating function .F(v|u) can be
represented both as in (3.15) and as in (3.16). For the latter, the smoothness
postulate is now not needed, because (3.15) implies that the terms /,(v|u) of
F(v|u) are continuous in u except possibly at u = 0, whence the continuity
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of ¢(/i) in (3.25) follows. Since from (3.15) /,(t>|0) = c,(sign)|u|p, we obtain
that in (3.16)
(3.27) fi(viu) = e?uc,(sign(v —u))|v —ulp.

Comparing (3.27) with (3.15) for v = 2u > 0 yields that euCj(+) = 2
for all u > 0. Thus 8 —O0 and (3.27) gives (3.17). Finally, it is clear that
F(v|u) as in (3.17) generates a scale and translation invariant projection
rule, and this is strongly scale invariant iff the coefficients c,(sign(t>,- —«,*))
do not depend on sign(v,- —u,).

The proof of Theorem 3.2 is complete.

We conclude this section by a result about the possibility of extending
the domain Z of selection and projection rules to the class C of all (non-void)
closed convex subsets of S (when 5 equals A" or A,,, the sets C E C are
closed in the relative topology of 5). Selection and projection rules with
domain C are defined analogously to those with domain Z considered so far;
when needed to avoid ambiguity, we will speak about C- and ~-selection
(projection) rules, respectively. The need for considering the larger domain
C arises, e.g., in inverse problems where the available information consists in
linear inequality constraints; then the feasible set consists of those v E S that
satisfy the given inequality constraints. More generally, non-linear inequality
constraints also often lead to convex feasible sets.

For C-selection rules Il : C—»5, we adopt the following modification of
the consistency axiom (1).

() IfC c C arein Cand 11(C) € C then II(C") = 11(C). In addition,
if C is determined by one linear inequality constraint, i.e.,

_ {v:arv >6} if S=RnorA*
(3.28)  C= riaTvs>blTw=1} if S=An

and C does not contain v° = 11(5) then 11(C) = n(L), where L E £ is the
boundary of C defined by changing > to = in (3.28).

THEOREM 3.3. Every Z-selection rule satisfying the basic axioms (I)-
(4) can be uniquely extended to a C-selection rule satisfying axiom (1°). This
extension is still generated by the function F(v) of Theorem 2.1 (a), i.e.,
N(C) for C E C is that element of C where F(\) attains its minimum on C.

PROOF. The function -F(v) generating Il : C —S as in Theorem 2.1
(a) attains its minimum on each C E C, at a unique point v* E C; this
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follows from properties (i)-(iii) of a standard n-tuple in the same way as it
was shown in the proof of Theorem 2.1 (in Csiszar [3]) that F(\) attains
a unique minimum on each L G L. If v° € C then v* = Vv°. Otherwise
F(v¥*) =c>0and A —{v:F(v) <c} (orA={v:F(v) <gc, lrv =1} if

5= An) is aconvex subset of S such thatAC\C = {v*}. Hence thereexists
i {v:arv = 6} if S =Rn or 27
((v:aTv="Db lrv=1} if S = A,

containing v* that separates C and A, i.e,, Cc C, A c C',where C is
defined by (3.28) and C" is defined by reversing the inequality in (3.28).
Then the minimum of ~(v) on C or on L is also attained at v = v*.

It follows that if n : C -+ S is an extension of n : £ —»S satisfying
postulate (1°) then necessarily n(C) = v*. On the other hand, it is obvious
that letting n(C) = v* gives rise to an extension of n : £ —S to Csatisfying

(1)

Of course, a similar result holds for the extension of ~-projection rules
to C-projection rules, subject to the obvious analogue of postulate (1°) for
projection rules. Further, if an ~-projection rule is scale and/or translation
invariant then so will be also the C-projection rule obtained as its (unique) ex-
tension. A somewhat weaker assertion holds for transitivity, as well. Namely,
if an C-projection rule satisfies the transitivity postulate (6a) then for its
unique extension to C satisfying the analogue of (1°) the following holds: For
any L¢ Cand C ¢ Cwith C ¢ L, we have for every u ¢ S

n(cfu) = n(cin(L|u)).

This is an immediate consequence of the fact that every measure of distance
as in (2.7) has the “Pythagorean property”

(3.29) F(v|u) + ,F(w|v) = F(w|u) if n(Lju)=v, wé€L, L€L.

Notice that for jF(v|u) = |[v —u |2, (3.29) reduces to the Pythagorean theo-
rem. Recently, Jones and Byrne [6] showed that the Pythagorean property
(3.29) was equivalent to an intuitively desirable postulate called projectivity
(unlike us, they used a continuous framework).

4. Selection and projection rules with a restricted domain

Perhaps the simplest special case of linear inverse problems is to infer an
unknown function / from its mean values on the atoms of a given partition
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of the domain of /. For probability density or mass functions this means that
the probabilities of certain mutually disjoint sets are known. The solution
offered in the literature for this case is “Jeffrey’s rule”, cf. Diaconis and
Zabell [4], which means the choice <7j(ulu) = J in (4.22) below.

Formally - restricting attention to the discrete case as before - the class
of inverse problems we have in mind is determined by the following family
P of possible feasible sets.

Let P denote the family of all those non-void sets E ¢ S (where S is

either of and An) which are of form
(4.1) E = <v:”"2vh=1t# i=
{ heli
where (Ji,..., Jm) is a partition of {1,...,n}andb\,... ,bmare constants.

A P-selection rule isa mapping Il : P —*S suchthat II(2E) G E for every
E G P. A P-projection rule is a family II(-|u), u G S', of T-selection rules
such that II(E\u) = u whenever E contains u.

Selection (projection) rules with domain £ as before will be referred to
as £-selection (projection) rules.

In this Section we study P-selection rules and T-projection rules. We
adopt as basic postulates consistency (same as postulate (1) in Section 2,
the family £ being replaced by P) and locality (viz. postulate (4) in Section
2) which now means that for E as in (4.1), IIjt[E) depends only on bi and,
for projection rules, I1j<{*|u) depends only on bt and u/r

Recall that V denotes R,R+ or (0,1) according as S equals or
A,,.

Given a /’-selection (projection) rule that satisfies the locality postulate,
for any i # j and t G V we denote by q(i,j,t) and q(i,j,t\u,u') the t-th
component of II(f€) and FI(£Ju), respectively, for E as in (4.1) such that
Je — {7 bi = t for some t, and for any u G S whose i-th and j-th
components are equal to u and u'. By the locality postulate, this definition
of gq(i,j,t) and q[t,j,t\u,u') is unambiguous. Of course,

(4.2) q[i,j,t) + qfj.i,t) =t q(i,j,t\u,u) + qfj,i,t\u’,u) =t

(4.3) q(i,j,t\u,u)=u if t—u+ul

If the given /’-selection or T-projection rule is the restriction to P of
an £-selection or £-projection rule then q[i,j,t) equals the t-th component
of n(£,j(i)), and q[i,j,t\u,u’) equals the t-th component of fI(Liy(i)|u) if
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u, = u, Uj =u',where Ly(t) E Cis defined by (3.9) (notice that L,;(t) » P

except when S — An). Having this in mind, we extend the notation & of
Csiszar [3] to arbitrary /’-selection and /’-projection rules that satisfy the
locality postulate, writing

V&V iff v=aq(ij,t), vli= q(j,i,t), t=v+ Vv
(vlu) & (v'|lu( iff v=q(i,j,t\u,u’), vi—qlj,i,t\u’,u), t—v + v
(4.4)

The third basic postulate we adopt in this Section is

(M) (monotonicity) for every i * j, q(i,j,t) is a non-decreasing function
of t, resp. q(i,j,t\u,u') is a non-decreasing function of t for every fixed u
and u'.

On account of (4.2), (M) implies that the functions in question are con-
tinuous.

Clearly, postulate (M) is intuitively very appealing, and so is also the
stronger postulate

(SM) (strict monotonicity) the functions above are strictly increasing.

For the main results of this Section, the “natural” mathematical condi-
tions will be intermediate between (M) and (SM). In particular, the following
(intuitively not too suggestive) postulates will be useful:

(QM) (quasi-strict monotonicity) in addition to (M), to any»€ {1,..., n}
and vEV (and u € V) there exists at most one j such that for some t' E V
(and u' E V) satisfying q(i,j,t') —v resp. q(i,j,t'\u,u') = v, the function
q(i, j,t) resp. q(i,j,t\u,u") is not strictly increasing at t = t"\

(RM) (restricted strict monotonicity) in addition to (M), the functions
q(i,j,t) resp. q(i,j,t\u,u’) are strictly increasing except possibly for a fixed
j E {lI,...,n}; for projection rules, q(i,j,t\u,u") is strictly increasing at
t = u+ u' even for the exceptional j.

With the notation (4.4), postulate (M) means that for any v > v, the

relations v & v', v & vl (or (vju) & (M) and (v|ju) & (v*u')) imply
v' > v'. Postulate (SM) is satisfied iff, in addition, v & v' and v & v1 (or
(v|u) (t/Ju) and (vju) & (v'luY)) imply that v' = u'. Postulate (QM)
requires the same except possibly for one index j depending on » and v
(and u), whereas (RM) means that this exceptional index j (if any) must be
fixed (and, for projection rules, (uju) (vf|t/) implies v' = u' even for the
exceptional j, cf. (4.3)).

We notice that the restriction to P of an ~-selection or ~-projection rule
satisfying the basic axioms (1)-(4) in Section 2 necessarily satisfies (RM) if
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the basic set is equal to Rn or 7i"; indeed this follows from (3.10), (3.11)
by Theorem 3.1. On the other hand, in the case 5 = An not even (M) is
necessarily satisfied by such a restriction.

Another kind of monotonicity postulate, intuitively very natural, would
be to require the limit relations

(4.5) tgggooq{l,J,t) = %00, t_ﬂr(])o q(i,j,t\u,u') = xoo0

if the basic setis S = Rn, and the same for t —+00 if S — Rn. These would
make sure, for any i # j and vEV (and u E V, u € V), the existence of

v' E V satisfying v & V' or (vju)  (t/|u"), respectively (in the cases when S
equals Rnor A"). The limit relations (4.5) will not be used as postulates in
our main results. The following “non-degeneracy” property, however, which
is substantially weaker than the above consequence of (4.5), will enter some
of our results as a postulate:

(N) (non-degeneracy) given any v A V' or (vlu) & (t/|u'), there exist
k j and v" (and u") such thatt; v" or (t>u) & (vwul), respectively.
LEMMA 4.1. Given a P-selection rule Il : P —»S satisfying the postu-

lates of consistency, locality and monotonicity, and a set E as in (4.1), write
n (£?) = v*. Then

(a) for everyi ™ j in the same Jt in (4.1), we have vf & v*
(b) if certain Vj’s satisfy Vi & Vj for some i E Jt and allj E Ji\ $7}, and
also Y~jedivi = YljeJivj> then necessarily v* = vf.
COROLLARY. To any distinct i,j,k and any s E V, there exists a
unique triple (vi,Vj,vk) such that
{2.6) vidvi, vibw, ik, vitvi+w=s

If v,v' and v" with v & V', v & v" are given then for the triple (vi,Vj,vk)
satisfying (4.6) with s —v + v' +v" we have t = v. In particular, if (QM)

holds then v & v', v & v" imply v' & v" provided, in the case S = An, that
V+ vli+ vt < 1

PROOF, (a) Let E be as in (4.1), and II(i2) = v*. For given i and j
both in J\, say, let J' = {i,j}, t = vf + B, and consider

E'={v:vi+vj=1t Y vh=bi-t, Y vh=bt,£=2,...,m}.
h€Ji\J* hEji
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Then E' C E, v* € B! thus n(£') = v* by consistency. This means, by
definition, that q(i,j,t) = v*, q(j,i,t) = v*, proving that vt* & iy

(b) Comparing the hypothesis that v, & Vj for all j E Ji \ {1} with
the relations v & by just proved, it follows by (M) that if we had v- >

v,*, this would imply Vj > v*for each j £ J/\ {»}. This contradicts the
hypothesis that J2jeJivi = ~2jeJtvj- The assumption u, < uf leads to a
similar contradiction, hence necessarily t-= v* as claimed.

The Corollary follows by applying the Lemma to E as in (4.1) with
m= 2, J\ = {ij,k}, o= J{ bi —s, 6 arbitrary if S —Rn or ii" and
62=1—s if 5 = A,,. To obtain the last assertion of the Corollary from the
previous one, notice that since v & v' and v & v" imply that (4.6) holds with
Vi = v, it follows by (QM) that at least one of vi= u- and v" = u* must hold.
Either of these inequalities implies the other, as v-+ Vj+ fjt = s = v+v' +v",

and then (4.6) gives that v' J‘—k>v".

On account of Lemma 4.1, ~-selection rules satisfying our three basic
postulates are uniquely determined by the corresponding relations of

course, so are P-projection rules, too. We henceforth concentrate on char-
acterizing these relations.

THEOREM 4.1. In the cases S = Rn and R”, for a P-selection rule Il
satisfying the postulates of consistency, locality and monotonicity, the fol-
lowing are true:

(a) There exist strictly increasing, left continuous functions gi,...,gn
such that
(4.7) v&vl iff g{(v) <gj(v' +0), g{{v+ 0) > gj(v)

(b) if Il satisfies (QM) and, in addition, for every i j and t' at least
one of the functions q(i,j,t) and q(j,i,t) is strictly increasing at t = t', then
there exist continuous non-decreasing functions gi,... ,gn such that

(4.8) v& Vv iff gi(v) = 0y(u);

these functions gi are strictly increasing iff Il satisfies (SM)

(c) if Il satisfies (RM), it can be extended to an £.-selection rule satisfying
the basic axioms (I)-(4) in Section 2, provided in the case S = Rn that
neither component of the vector I1(£,(i)) is independent of t, where E(t) =
{v:£ h = =1t}
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REMARKS, (i) The functions < appearing in Theorem 4.1 are not unique;
clearly, if certain gi are suitable then so are also <, = <), for any strictly
increasing continuous function ip.

(ii) In part (a), it may be assumed (by (i) above) that <«v°) < 0 < y,-(ttf+
0) where v° = n(F7(t)) for some fixed t, E(t) being defined in part (c). Then
it follows that Il can be extended to the ~-selection rule generated by F(v) =
EJLi fi(v), fi(v) = /Jg[)gi{t)dt, where the functions /, are non-negative and
strictly convex with fi(ve) = 0, but not necessarily differentiable; thus the
£-selection rule generated by F(v) need not satisfy axiom (2) in Section 2.

(iii) The sufficient condition for extendability to an ~-selection rule sat-
isfying axioms (I)-(4), given in part (c), is necessary, as well (the necessity
of (RM) has already been established). Notice that the extra condition im-
posed in the case S = Rn is automatically satisfied if S = i?”.

(iv) For the assertion of part (b), the sufficient conditions given there
are easily seen to be necessary, as well. It can be shown by an example that
the condition imposed in addition to (QM) can not be dropped, i.e., it is
not implied by (QM). On the other hand, (QM) and (N) already imply that
additional condition. Notice also that the assertion of (b) does not imply an
extendability result, because if the functions gi in (4.7) were used to define
F(v) as in (ii) above, this F(v) would not necessarily generate an ~-selection
rule.

(v) No similar results hold in the case S = An. On the other hand,
our results on projection rules - to which some additional conditions will be
needed - will cover also that case.

PROOF, (a) Given II, define

ini{q(k,i,t) :gqfi,k,t) >v} if k*i

(4.9) aik{v) ) S

(with the understanding that the inf of the empty set is +00). Further, let
<p(x) be any strictly increasing, continuous and bounded function defined on
the extended real line, e.g., <p(x) = arctgx. We claim that the functions

n
(4.10) S-(v) = X "~ (a™(v))
*=i
satisfy the assertion.
Notice first that the functions a,*(u) are obviously non-increasing and
left continuous and ait/u) = v is strictly increasing. Thus & (t>) defined by
(4.10) is strictly increasing and left continuous.
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Observe next that the sets
(4.11)  lik(v) = {w:v&w} = {qg{k,i,t):q[ik,t) = v} {k=xi)

are either void or singletons or (possibly infinite) intervals that contain their
finite endpoints. It follows from (4.9) that in the case /*(v) 0 the left and
right endpoints of /,*(t;) are a,jt(v) and afct>+ 0), respectively (with some
abuse of terminology, if /jjt(v) is a singleton {in} then its “endpoints” are
meant to equal w). In the case Uk{v) = 0, a,*,(u) and a,k(v + 0) are equal
and infinite.

We will show that for every k

(4.12) a,.k{v) < +0) if v vl

This and the similar inequality with i and j exchanged will prove that the
functions defined by (4.10) satisfy the inequalities in (4.7) if t; A v'.

Now, (4.12) clearly holds for k —i and k = j. Suppose therefore that
k™ i, k™ j and a,t(u) > -00. Then either q(i,k,t) < v for every t (thus
a,k(t>) = +00) or /,*(u) 0 and ojfc(u) is the (finite) left endpoint of /,*,(v).

In the latter case, set v —af{k(v) and apply the Corollary of Lemma 4.1
to obtain v,,Vj,Vk satisfying (4.6) with s = v+ v' + v" and t-= t= Then
Kk € fik(v) implies that > v" = a,jk(u), hence u-+ w-)v*= v+ v + V"
with Vi = v yields Vj < V'. Thus, in this case, there exist Vj and v* satisfying

(4.13) vi Kk v <vi vk > aik{y),

In the remaining case when q(iykyt) < v for every t, use the Corollary
of Lemma 4.1 to obtain (w,vy,u*) satisfying (4.6) with s arbitrarily large.

Then t5 £ Wk implies by definition, cf. (4.3), that t5 < v. This and ut & wy
together with v v' imply by monotonicity that uy < v'. Since w+ w+ v* =
s can be arbitrarily large, we have shown that in this case there exist vy and
K satisfying ” |

(4.14) Vi vk, Vi<V, \karbitrarily large.

Since Vj l‘—k> VK, i.e., Wk € ljk{vj) means that v* < ay*(vy + 0), cf. the
passage containing (4.11), by the monotonicity of the functions ay*(u) it
follows from (4.13) that ay*;(v,+0) > ajfc(v) and from (4.14) that ay*(t/+0) =
+00. This completes the proof of (4.12).

We still have to show that if v v' does not hold then either gi(v) >

gj(v' + 0) or g,(v + 0) < ffy(v). If t; & v' does not hold, it may be assumed
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by symmetry that fort = + = ¢g{i,j,t), » =q(j,i,t) we have w <.
We claim that in this case gj(v) > gj{v' + 0). This will be proved by showing
that

(4.15) XVoOXV, V>, V' <x
implies
(4.16) dik[v) > ajk(.v' + 0)

for all k, with the strict inequality for k = i and k = j. Since the assertion
for k = i and k = j is obvious, suppose that k * i, k* j and apply (4.12)
to xv' and xv in the role of v and v' (interchanging i and j). It follows that

(4.17) ajk(xv') < aik(xv+ 0);

since the functions afc(i>) are non-decreasing, (4.15) and (4.17) imply (4.16).
The proof of part (a) is complete.
(b) Given a ~-selection rule satisfying the hypothesis of part (b), we can

define an equivalence relation on {I,...,n} XV by letting (i, ~ (j, V)
iff either i ytj and v & V' or i = j and there exist £ and xv such that
vV < xv, V' X*wori —j, v=v. Toshow that then (t,u) ~ (.,xj")
and (t,v) ~ (k,v") imply (j,Vv") ~ (k,v"), first use (QM) to cover the case
i j, ik (by the last assertion of the Corollary of Lemma 4.1) and notice
that of the remaining cases it suffices to deal with i = j, i A for that

case use the previous resultifv ~ xv, v' & xvhold with t y*k and use the
“additional condition” in the statemere(t of the Theorem to check that if the
last relations hold with £= k then v & v" and v y V' imply that v" = xv.

Now, for any k G {1,..., n}, a subset of V is the A:-section of an equiv-
alence class of the relation ~ iff it either equals /,jt(u), cf. (4.11), for some
i y* k and v GV, or it is a singleton {in} such that not and t; exist
with v x. Let ipk(s) be a continuous and bounded fuction defined on
the extended real line, constant on those intervals which are A:-sections of
equivalence classes of the relation ~, and strictly increasing outside these
intervals.

For t y* k, define /i,jt(u) as the value of gk on lik(v) if /,jt(u) y* 0, and
otherwise let ht*(v) equal ~*(xo00) according as q(i,k,t) < v for all t or
q{i,k,t) > v for all t (of course, the latter is possible only if S = Rn).
Further, let ha[v) = £&%*>) Then, clearly, the functions h{k are continuous,
non-decreasing, v v' implies hik(v) —hjk(v') for all k, and (4.15) implies
hik(v) > hjk{v") for all k, with strict inequality whenever the A:-section of
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the equivalence class containing (t,v) and (j, v') is non-void, thus at least
for k = 1 and k = j. It follows that the functions

(4.18) gi(v) = ~2 hik[v)
k=1

satisfy the assertion of Theorem 4.1 (b).

(c) Suppose that n satisfies the hypothesis of part (c) and let j denote
the exceptional index of postulate (RM), or any fixed index if there is no
such exceptional one (i.e., if (SM) holds). Consider the functions gi as in
part (b). Then these are strictly increasing except possibly for i = j.

We need to find v° € S such th”t &2 & Vj, i.e.,
(4.19) Si(t>°) = 9j{v°) for eacht

and gj(v) is strictly increasing at t; = v*-. Clearly, these properties hold for
v® = n(£(t0)) if the j-th component of I~I(R(i)) as a function of t is strictly
increasing at t = to (cf. Lemma 4.1). The existence of such a io is obvious
if S = R” and has been assumed if S —Rn.

Now, by remark (i), we may assume without any loss of generality that
in (4.19) actually gi(Vj) — 0 for each i. Further, in the case S = R” the
limit of each gi(v) as v —0 must be the same, on account of (4.5). Again,
this common limit may be assumed to be —e0. Then

I<(«)=1
(«) Je
defines a standard n-tuple (/i,..., fn) and it is clear that the given n is the
restriction to P of the U-selection rule generated by R(v) = Z)r=i fi(vi)-
This completes the proof of Theorem 4.1.

For P-projection rules we do not have available an exact analogue of The-
orem 4.1. Still, we will prove results similar to parts (b) and (c) of Theorem
4.1, under some additional hypotheses, that represent, in a practical sense,
hardly any restrictions. Unlike in Theorem 4.1, also the case S = An will
be covered. We will need the following postulates for T-projection rules.

(S) (separability) there exists a sequence {u(m)} C V such that for every
fixed t € {1,...,n} and u GV, the supremum and infimum of q(i,j,t\u,u")
for all permissible j, t and ulremain unchanged if ulis restricted to be from
the sequence {u(m)}.
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Here the infimum has to be considered in the case S = Rn only because
otherwise always inf* q(i,j,t\u,u') —0.

(P) (prior regularity, for the cases S = Rf or A,) forevery i ~ j, tG
V, UEV

(4.20) \imqg{j,i,t\u’,u) = 0.
u'—*0

The separability postulate is technical but /’-projection rules not satis-
fying (S) can hardly have practical interest. Obvious sufficient conditions
for (S) are, e.g., the limit relations (4.5) or the continuous dependence of
q(i,j,t\u,u") on u'; postulate (P) also implies (S), cf. below. The intuitive
meaning of postulate (P) is clear and it certainly appears desirable.

LEMMA 4.2. Given a P-projection rule satisfying (P) (with basic set
S —5” orAn), toanyi”™ j, uUEV, vV, e>0 a8>0 can be found
such that to every u' G (0,5) there exists v' G V satisfying

(421) (UlU) (t,,lU,)> v < £-

COROLLARY. Postulate (P) implies both (N) and (sS).

PROOF. Apply (4.20) tot = v+ e (in the case S = An, we assume
without any loss of generality that e < 1 —v). It follows that for a suitable
S >0, for uc (0,5 we have q(j,i,v +e\u',u) <e. On account of (4.2), this
means that q(i,j,v +e\u,u’) >v. Hence, by continuity, there existst < u+e
with q(i,j,t\u,u') = v, and then v' —q(j,i,t\u',u) satisfies (4.21).

The Corollary is obvious.

THEOREM 4.2. Let us be given a P-projection rule satisfying consis-
tency, locality and (QM). In addition, in the cases S = Rn or Rf we assume
(N) and (S), and in the case S = An we assume (P). Then there exist func-
tions <7,-(uu), v GS, u G S, continuous and non-decreasing in v for every
fixed u, with <7-(uu) = 0, such that for every i * j

(4.22) (uju) ~ (t/u"y iff gi{vilui) = gj(vj\uj),
provided in the case S = An thatu+ul< 1, u+t/ < 1. Further, if also (RM)

is satisfied then this P -projection rule can be extended to an C-projection rule
satisfying the basic axioms (1)-(4) in Section 2.
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REMARK. It is easy to see that (QM) and (S) are also necessary for
(4.22) ,and in the cases S = Rn or R", (RM) is necessary for extendability.
In particular, if S —Rnor S = R” then consistency, locality, (RM) and (S)
represent the necessary and sufficient conditions for extendability within the
class of /’-projection rules satisfying (N). A general necessary and sufficient
condition for extendability remains elusive, particularly in the case S = An.

PROOF. Our first claim is that under the hypothesis of Theorem 4.2 we
can define an equivalence relation on {I,...,n} x V xV as follows (actually,
here the separability hypothesis is not needed). Let us say that two triples
(i,v,u) and (j,v',u") are comparable if they are either identical or else i * j
and in the case S = Analsou+ u < 1, v+ v < 1 Write (t,u,u) ~

(j,v',u") if these triples are identical or (v|u) (t/|t*8 or the two triples are
incomparable but there exists (£, {7, t2) such that

(4.23) (t>]u) (1M ()t (vItl).

We have to show that if (i,v,u) ~ (j,v',u') and (i,v,u) ~ (k,v",u")
then also (j,v',u") ~ [k, v",u"). The following consequence of the Corollary
of Lemma 4.1 will be used: If postulate (QM) holds then for any distinct

i,k
(4.24) (tu) & (t/|t/) and (vju) & (v, |u”) imply (v*u*) U (vwu")
provided in the case S = A,, that
(4.25) ufulfu" <1, vFvl)vi< L
Now, we distinguish several cases.

(i) (vju) A (v'u'), (vju) & (v"[u™). In this case (j,v',u') ~ (k,v",u")
holds by definition if these triples are incomparable, and (4.24) ap-
plies if j ji k provided in the case S = An that (4.25) holds. In the

remaining subcase (S = A,,, the triples and [k,v",u") are
comparable, but (4.25) fails) pick any i distinct from i,j, k; by Lemma
4.2, there exist tZyv such that (vju) & (t>ju) and are sufficiently

small to make sure that replacing in (4.25) either of u,u',u” by i and
either of v,v',v" by v, the inequalities will hold. Then, by the result

already proved, we first obtain (v[tI) A (u'lu’), (Uld) ~ (u"|«") and
hence, in turn, that (t/[tt) ¥> (v"\wu").
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(i) (t>|u) & (t/'luN), while (i,v,u) and (j, v',u') are incomparable and
(4.23) holds for some £,v, (. Suppose first that S — Rn or ?”, then
the incomparability assumption means that i =j. Ifi » k in (4.23),

it follows as above first that (vju) ~ (v, |ttw) and then that (v*u®)

(t/'lu™). If£= k in (4.23), we use postulate (N) to pick £ (distinct
from t —k and from t = j) and ti',t/ such that (t>|u) «» (U'|0"). Then
by (4.24), also (£, v',tl") will satisfy (4.23), and (v'|u) U (uMu") holds
by the previous result. Next, if 5 = An, pick any £ distinct from
i,j, k,£ and use Lemma 4.2 to find u',v' such that (tJju) <> (t£|u") and
(£','»",0") is comparable to each of (t, u, u), (j, t/,u"), (k,v",u"). Then,
applying the result of (i) repeatedly, we first obtain that (£',%,11")

also satisfies (4.23), hence that (U'|u") 14 (t/"|u"), and finally that
(i, t/,u)~ (*,1'«").

(iii) (*,v, u) and (j, v',u') are incomparable and so are (t, v, u) and (k,v", u")
but both pairs of triples are related by ~. In this case, consider
(£, 17,12 satisfying (4.23). By the result of (ii), it follows that (£,tJ,u) ~
(fc, v*,u™). Thisand (4.23) imply by (i) or (ii) that (t, v, u) ~ (k,v", u").

Having established our first claim, we notice some easily checked facts about
the equivalence classes of the equivalence relation introduced above.

(a) All triples of form (i,u, u) belong to the same equivalence class, say
Ao (it is not claimed that these triples are the only members of Ao).

(b) For any equivalence class A * Ao, if (i, v, u) and (j, v',u") are both in
A (where t and j are not necessarily distinct) then v>u according as v'>u'".
If, in addition, x satisfies u<w <v or v<w<u ana the equivalence class
of (i,w,u) is distinct from A and Ao then there exists w' with u' < w' < V'
resp. v' < w' <ulsuch that (i,w,u) (j, U),u).

(c) For any equivalence class A, every section of form

(4.26) a(i,u)= {&: (i,u,u) € A}

is either void or a singleton or an interval that contains its endpoints except
for the eventual o0, or 1if S = An (in the case S = A,,, Lemma 4.2 can
be used for checking this).

We will also need the following property that depends on the separability
postulate (S); recall the Corollary of Lemma 4.2, by which the hypothesis of
Theorem 4.2 implicitly include (S) and (N) also in the case S = An.

(d) If an equivalence class A is not a singleton then there exist k £
{1,...,n} and some u(m) from the sequence appearing in postulate (S) such
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that A(k,u*m?) is non-void and it is not an infinite interval, resp. not an
interval with right endpoint 1if S = An.

To check (d), suppose that (» v,u) G A with v > u, say (the case v < u
is similar, and that of v = u is trivial by (a)). Since A is not a singleton,
it follows by postulate (N) that there exist (j,v',u’) and (£,v",u") such
that i,j,£ are distinct and (vju) A (t/|t/), (u]u) (t/'lu™). Then for
t'>v+ v, t" >v+v" atleast one of <(Lj, t'\tt, tt") and q(t,£, t"\u,u™) must
be larger than v, by (QM). Thus, by postulate (S), there exist u"m\ k and
t such that q(i, k, iju, u*m') > v. Hence, by monotonicity, there exists t with
q(i, k, iju, u(m)) = v and any such t satisfies u+ u(m) <t <t. Then by (4.26)
we have v G A(k, u c (u™m\ q(k, i, u)), proving (d).

Now, we proceed similarly as in the proof of Theorem 4.1 (b). For every
kG {1,..,n} and tt G V, let <pku{") be a function defined and continuous
on V, constant on each interval (if any) which is the section A(k,l) of some
equivalence class A, cf. (4.26), strictly increasing elsewhere, and satisfying

(4.27) =0, jpf wri®) = -1, sup <pknv) = 1

Further, for every t G {I,...,n}, define the function (V[tx) as the value
of <Pk\i{y) f°r v such that (tt>,u) ~ (fc,i, tt) if such t; exists, and as +1
otherwise according as t»>u.

By (b) above, hi*. u(t;|u) is a continuous, non-decreasing function of v (for
any fixed u G V), and if (*,v,u) and (» w, u) are not in the same equivalence
cleiss then
(4.28) ALK, O(v]«)>/i.,ib,G("Mu) according as  v>w,

providing not both hi k,i{v\u) an” /i, * ,(tt;ju) are equal to +1. Notice that
hi,k,u(w\u) — 0 holds iff for the equivalence class A containing (x,w,u), its
section A(A:,u), cf. (4.26), is either void or it is an infinite interval or, in the
case S = An, an interval whose right endpoint is 1
We claim that the functions
n 00
(4.29) gi(vlu) = 72 2 -mhitktUim)(v\n)

k—1m=1

satisfy the assertions of Theorem 4.2, if {u(m)} is a sequence as in postulate

S).
The function (4.29) is continuous and non-incresing in v because each
term of (4.29) is, and the series in (4.29) converges uniformly. Also, <7,-(uju) =

0, by (4.27) and (a) above. Further, (t>u) & (*lu') implies *(vju) =
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gj(v\u*) since each term of (4.29) depends on (t,v,u) through its equivalence
class only. To show that A gj(viwa') if (i,v,u) and (j,v',u') are com-

parable but (vju) A (v'|u') does not hold, consider w = q(i,j,t\u,u’), w' =
q(j, i, t\u',u) with t = v+ v'. By (4.2) we have w + w' = v + V' and by
symmetry we may assume that v >w, v' <w'. Then

(4.30) hitkin(v\u) > /i, fe,i(u>lu) = hjtdia{w'\u’) > hjikA{v'\u')

for every K £ {I,... ,n} and U £V , and we have to show that for at least one
k and 0 = \Am\ at least one of the inequalities in (4.30) is strict. By (4.28),
akand u=uwill be suitable if the common value of the middle terms
in (4.30) is different from +1, because the assumption that (vju) & (t/|u’)
does not hold implies that at least one of (t,v,u) and (j,v',u') does not
belong to the equivalence class containing (i,vu,u) and (j,w',u'). Denoting
the latter equivalence class by A, we have by the last observation in the
passage containing (4.28) that a k and O = uwill be suitable if the
section A(k,u(m> of A is non-void and it is not an infinite interval or, in the
case S = An, an interval whose right endpoint is 1. Since such k and

do exist by (d) above, the proof of (4.22) is complete.

Finally, if (RM) holds then the functions <7j(v|u) satisfying (4.22) must
be strictly increasing in u except possibly for one index j (not depending
on u), and even for that exceptional index (if any), <jy(ulu) must be strictly
increasing at v —u. Further, in the cases S —i?” or An it can be attained
by a suitable transformation that <7j(tiju) ——e0 as v —»0 (as in the proof
of Theorem 4.1 (c)). Then the desired ~-selection rule that extends the
given T-projection rule is the one generated by F(v|u) = X)i=i /t(v,]itt),
with /»(t>|ti) = /J gi(t\u)dt, cf. (3.11).

5. Open problems

The axiomatic theory of inference for inverse problems is still in its beginning
stage, and there are so many open questions that it is hard to select only a
few. Below we hint to some general directions for further research.
Undoubtedly the most important would be to extend the axiomatic ap-
proach to inverse problems involving errors, at least to the extent of covering
the methods used in practice for this kind of inverse problems (more com-
mon than those without errors), and possibly to arrive at new methods, as
well. For some comments on this problem cf. Csiszar [3], Section 1. Even
if the possibility of errors is discounted, it may still be desirable to permit
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“solutions” that are not “data consistent”, i.e., do not necessarily belong to
the feasible set determined by the available constraints. At present, it is not
clear how this situation could be treated axiomatically.

Within the framework adopted here, there are at least three natural
directions for further research. First, other choices of the basic set S could
be considered. Optimistically, one might try a “general” S (say any convex
subset of Rn), but already the natural modifications of our choices S =
f?" and S = A, by adding the boundary to S lead to substantial new
mathematical problems.

Second, one should study selection (projection) rules whose domain is not
the whole z (or c) but a perhaps small subfamily thereof. If an inference
method is “good” for a particular class of inverse problems where the pos-
sible feasible sets are of some restricted form (such as in X-ray tomography,
cf. the Introduction) but it cannot be extended to a “good” selection (pro-
jection) rule with domain Z, it remains elusive in an axiomatic study dealing
only with the latter. A problem whose positive solution would significantly
enhance the power of our results is to show, for a possibly large class of sub-
families of Z, that “good” selection (projection) rules whose domain is such
a subfamily of z must be restrictions of “good” selection (projection) rules
with domain ZmOur study of /’-selection (projection) rules in Section 4 rep-
resents a first step in this direction. Of course, further study of /’-projection
rules would be desirable, in particular to specialize the permissible functions
Zi(ulu) in Theorem 4.2 by imposing intuitively appealing further postulates.
We recall from Csiszar [3], Section 1, that inverse problems involving errors
can be interpreted within our framework by letting the errors be part of the
vector to be inferred; this interpretation, however, leads to feasible sets of
a restricted type. Thus, a sufficiently general positive answer to the above
problem might also permit coverage of inverse problems involving errors.

Third, even for the present choices of the basic set and domain, the
basic axioms might be challenged. Since axiom (2) (“distinctness”) is in-
tuitively less compelling than the others, the consequences of dropping it
(and perhaps introducing some other axiom) should be considered. It may
be conjectured that Theorem 2.1 would still remain valid, except that the
“generating function” were not necessarily differentiable. One hint in this
direction is provided by Theorem 4.1, cf. Remark (ii) to that Theorem.
Another natural question is whether if axiom (4) (“locality”) were dropped,
could still a result like Theorem 2.1 be proved, with a “generating function”
not necessarily of a sum form as in (2.5). Even if without axiom (2) or (4)
a meaningful result could not be obtained in general, this might become
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possible when imposing some other intuitively attractive postulates, such as
invariance and/or transitivity.
The author intends to return to some of these questions elsewhere.
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A NOTE ON LOCAL AND GLOBAL FUNCTIONS OF A
WIENER PROCESS AND SOME RENYI-TYPE STATISTICS

MIKLOS CSORGO1, QI-MAN SHAO2 and BARBARA SZYSZKOWICZ3

We give an improved single characterization for a class of local and global functions
of a standard Brownian motion starting at zero. We also detail an application to
Rényi-type statistics.

1. Introduction and review of results

Here we give some definitions and discuss a few known, as well as new results.

A function g defined on (0,1] will be called positive if inf$<4<i q(s) > 0
forall0 < 8 < 1L

Let Q be the class of those positive functions on (0,1] which are non-
decreasing in a neighbourhood of zero.

Given a standard Wiener process (W (t), t > 0} and a function q E Q,
by Blumenthal’s 0-1 (cf. Ito and McKean [14]) or by the direct 0-1 law for
Brownian motion as in Doob [12], we have

(1.1) P{Iimnsoup W (i)I/?(0 <°°} =0o0r 1L

The class of functions q € Q for which the latter probability is 1 was
called the Erdés-Feller-Kolmogorov-Petrovski (EFKP) upper-class of W in
M. Csorgd, S. Csorgd, Horvath and Mason [8]. Here we will call these
functions simply local (t [ 0) functions of W. This is due to one of the
aims of this paper, which is to discuss the latter functions of W, as well as
their global (f —00) duals, in terms of the classical definitions of upper and
lower-classes of W .
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Given a function r € Q, by BlumenthaPs 0-1 law we have P{|W (i)| <
r(i), i j 0} = 0 or 1; r is said to belong to the local upper-class if this
probability is 1 and to the local lower-class otherwise.

We note in passing that excluding from Q all positive functions which
are not nondecreasing near zero, i.e. the decreasing ones, constitutes no loss
of generality in the above definitions and statements when t j 0, since we
start W at zero with probability one.

As in Ito and McKean ([14], p. 33), Kolmogorov’s test states that if r
is a positive function in C(0,1], non-decreasing near zero and i/r(t)/il/2 is
non-increasing for small t > 0, then r belongs to the local upper or to the
local lower-class according as

£ st r(exp(—r2)/(20)dt
0

converges or diverges.
In agreement with our just mentioned convention, a function q& Q will
be called a local function of a standard Wiener process (W (i), t > 0} if

(1.2) Iir?_sup\W(t)\/q(t) <00 as.
io

An application of BlumenthaPs 0-1 law shows that (1.2) holds true if and
only if there exists a constant 0 < B < oo such that

(1.3) limsup W (t)|/g(f) = B a.s.
no

i.e., a positive function g on (0,1] which is non-decreasing in a neighbourhood
of zero, is a local function of a standard Brownian motion starting at zero if
and only if (1.3) obtains.

A local function will be called a Chibisov-OReilly local function if 8 = 0
in (1.3).

The statement (1.3) with 8 > 0 is equivalent to saying that for any e > 0
we have

(1.3a) P{\W (t)\<(B +e)q(t),ti 0} =1
and
(1.3b) P{\W (t)\< (B-e)q(t), ii 0} =0,

i.e., g GQ is a local function for W if and only if (8 + e)q belongs to its local
upper-class and (8 —e)q belongs to its local lower-class.
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We introduce the following integrals:

(1.4) E0(q,c) :=} t~3"q(t)e\p{-ct~1qg2(t))dt
0

and

(1.5) lo(g,c) := Jfo t~lexpect-1qg2(t))dt

with some constant 0 < ¢ < oo.

The integral Eo(q,c) appeared in the works of Kolmogorov, Petrovski,
Erdos and Feller. For details we refer to 1t6 and McKean ([14], Section 1.8).

The integral lo(g,c) appeared in the works of Chibisov [3] and O’Reilly
[21].

For further comments on these two integrals, as well as for the proof of
the next three theorems we refer to [8]. We have (cf. Proposition 3.1, and
Theorems 3.3 and 3.4, respectively, of [8]):

THEOREM A. (i) Whenever the integral lo(q,c) < oo for g G Q, then
Eo(g,c+ e) < oo for every e >0 and ,(!)/!m/* —%*00 as t | 0.

(i) Whenever Eo[qg,c) < oo and q(t)/tl12—»00 ast [ O for q E Q, then
10(g,c) < oo.

THEOREM B. A function g £ Q is a local function of a standard Wiener
process starting at zero if and only if the integral lo(g,c) < oo for some ¢ > 0
or, equivalently, if and only if the integral Eo(qg,c) < oo for some ¢ > 0 and
limtio<7(0/il/2 - oo.

THEOREM C. A function g £ Q is a Chibisov-O'Reilly local function if
and only if the integral lo(g,c) < oo for all ¢ > 0 or, equivalently, if and only
if the integral Eo(g,c) < oo for all ¢ > 0 and \\mt[oq{i)/tll2 = oo.

By making the connection between the two integrals, Theorem A enabled
the authors of [8] to prove Theorem B and C, which amount to saying that
there can be only one characterization of local functions.

We note that in O’Reilly [21], as well as in [8], a Chibisov-O’Reilly local
function g on (0,1) is defined by requiring q(t) and g(I —t) to be Chibisov-
O ’Reilly local functions on (0,1/2], The definition of a local function is
extended to (0,1) in a similar way in [8]. This convention in the latter paper
is only for the sake of enabling ourselves to talk about local functions of a
Brownian bridge as well.

While proving Theorem B (cf. Proof of Theorem 3.3 of [8]), [8] actually
established more than what the second part of the latter theorem claims.
Namely they proved also
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THEOREM D. Letq€ Q, andW(-) be a standard Wiener process starting
at zero. Then lo(g,c) < oo implies

(1.6) limsup |W(t)I/?(0 < (2c)¥2 a.s.,
no

and if (1.3) holds true for some 0 < B < o0, then lo(q,c) < oo for any
c > 8R2.

Hence [8] conjectured that (1.3) holding true for some & > 0 should
imply lo(qg,c) < oo for any ¢ > R2/2, for then the latter combined with (1.6)
and Theorem A would amount to saying that when testing for (1.3a) and
(1.3b), the assumptions inherited from the classical EFKP local upper-lower
functions integral test that q be continuous, and be such that q{t)/tl12 is
non-increasing for small t > 0, could be dropped.

We prove in our Section 2 here that this conjecture is true. Namely we
have

THEOREM 1I.1. Let g G Q, and W(-) be a standard Wiener process start-
ing at zero. Then (1.3) holds true with some 3> 0 if and only if
(17) lo[g,c) <oo forany c¢>R22
and
(1.8) 10{q,c) =00 for any c<R2/2,

or, equivalently, if and only if

(1.9) EO0{q,c) <oo for any c>R22.
(1.10) EO0{g,c) = oo for any c<R22,
while limtjo q{t)/tIf2 = oo.

Another, somewhat more convenient version of Theorem 1.1 reads as
follows.

THEOREM 1.1*. Let q£ Q and W (*) be a standard Wiener process start-
ing at zero. Then with some ¢ > 0 we have

(1.11) limsup W (i)|/g(t) = (2¢)V/2 a.s.
no
if and only if for any e > 0 we have lo{g,c + &) < oo and lo[g,c —e) = 00

or, equivalently, if and only if Eo[g,c+ €) < oo and Eo(q, c —e) = 00 with
limtjo q{t)/tl12= oo0.
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Consequently, requiring only that ¢ E Q, with e > 0 we conclude that
((2c)V 2+ <7 belongs to the local upper-class (resp. ((2c)1/2—e)q belongs to
the local lower-class) forW if and only if lo(g,c-\-e) < oo (resp. lo(gq,c—e) =
00) or, equivalently, if and only if Eo(q,c +e) < oo (resp. Eo(g,c —e) = 00)
with limt|o gr(i)/i/2 = oo.

REMARKS. Theorem B constitutes a test for the two statements in (1.1)
by saying that with g E Q

(1.12) P{limsup\W(i)|/g(t) < oo} = 1,
no

i.e. qE Q is alocal function of W, if and only if there is a ¢ > 0 such that
lo{q,c) < oo (or, Eo(q,c) < oo and \\mt[Qq{t)/tI12= 00), while we have

(1.13) P{limsup\W(t)\/q(t) < oo} = 0,
no

i.e. g E Q is not a local function of W, if and only if lo(g,c) = oo (or
Eo[qg,c) = o00) for all ¢ > 0.

Theorem C is an extension of O’Reilly’s [21] Proposition 2.1 for possibly
discontinuous functions in Q.

Naturally, if with g E Q we have

(1.14) P{\W (t)\<q(t), U0} = 1,

then we have also (1.12), i.e. all EFKP local upper-class functions q E Q
of W are local functions of W and hence, for any local upper-class function
g E Q of W there is a ¢ > 0 such that lo{q,c) < oo (or, Eo(g,c) < 00
and lim*jo~(OAL1 2 = °°)- Conversely, however, we can only conclude (cf.
Theorem B) that q E Q is a local function of W, i.e. that we have (1.12)
but not necessarily also (1.14) at the same time. Thus, such a g E Q may
not be an EFKP local upper-class function of W. If it is, however, then it
does not have to be in C(0,1], nor does it have to be such that ~(i)/*1/2 is
non-decreasing for small t > 0, as required by the classical EFKP test as
quoted above from I1t6 and McKean [14]. What Theorem 1.1 achieves is to
test for (/2 + e)q(t) E Q, respectively for (B —e)q(t) E Q, with e > 0 and
as in (1.3), being a local upper-class, respectively local lower-class function
of W, i.e. that g E Q is a local function of W, without requiring the just
mentioned continuity and monotonicity assumptions of the classical EFKP
test. Whether such a test is feasible along the lines of Theorem 1.1 also for

(1.15) P{IW(i)| <?(*), t]|0} =0orl,
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assuming only that g € Q, remains an open question. In the light of Theorem
1.1 one should like to believe that the answer to this question is in the
affirmative.

In Section 3 we translate these local (t j 0) form results to their global
(t —o00) forms and obtain a single characterization for both of these forms.

2. Proof of Theorem 1.1.

First we show that (1.3) implies (1.7). From the second part of Theorem D
we find that it suffices to show that (1.3) implies (1.7) when 8 > 0. For
arbitrary but fixed ¢ > £2/2, let e > 0 be such that

(2.1) (I+e)v7(2(l -e))<c.
We have

P{W (t) > q(t)(1+ e)R for some t in (0,6]}
> P{W(b) > (1 + e)Bqg(b)} = 1- $((1 + e)Bq(b)b~1/2),

where <) is the unit-normal distribution function. The left-hand side of
the latter inequality tends to zero as 6 0 by (1.3). Hence we have

(2.2) lim,(i)/(*/! = 00

for any local function g of W. Let us assume that 6 is so small that we have

(2.3) P{Osupb \WW(t)\Vq(t) < @+ e)B}> 1/2,
<t<

and that g is non-decreasing on (0,6], We introduce the following notations:

bik = 6eJ(L+e)k, j=0,1,.., k=0,,..ko,
KO- 1+ [log(l/e)/log(l + e)].

Then, for each 0 < k < ko

P{IW (i)| > (1 + e)Rq(t) for some t in (0,6]}

>p { > 1+ £)*(»«)I

N-1

(2.4) > 1jm Y, P{\W(bjlk\ > (I + e)Bq(bitk) and
P j=2
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IW(&i k)| < (1H forallj <i < N}
Jim £ [eee]  P{W(bjik)-W (bj+lik) + xj+1\
7=2 |*.-|<(1+*)/3i(6,-,1)
J<i<N

> (1 + e)Rg{bjtk)}dP{W{bitk) <x t=J+ 1,...,N},
where the last equality holds because W(bjik) —W(bj+! *) is independent of

{W(biilg), j <i < N}. Noting that 1—(3>(a+ x) —$(—a+ i)) as a function
of x with a > 0 has minimal value at x = 0, we obtain

P{OW (bjtk) - W(bj+i[B) + xj+1\ > (1 + *)Bq{bjtk)}

P{\W (bj<k) - W(bi+1KI > (L+ e)Rq(bjtk)}
2(1 - *((1 + e)Rq(bjtk)/(bjik - bj+1,%)1/2))

\

(25) > ( (6ilt - bi+lik)'/* _ f (6ilfc - bjtky/>y \
' (2MV2 A (1 + e)Ba{bjik)  \(1 + e)Rq{bjik)J J
(I1+OWfotA
X exp

2(6;,* - fry+it) /

> exp (l£i)W M )
2(t;* ~ hj+ik) )’

where the first before the last inequality is the well known lower estimation
of the function 1 —$(e) (cf., e.g, Feller [13], p. 175), while the last one is
obtained via (2.2) by taking bsmall enough, after adding and subtracting the
exponent of the exponential function of the last inequality to the exponent of
the exponential function in the first before the last inequality. Consequently,
from (2.4), (2.5) and (2.3) we get

P{IW (i)| > (1 + e)Bq(t) for some t in (0,6]}

N-1 S
s nim £ «p (- AFOW (il

3 2{b3k ~ bj+l,k) J
xP{|Py(6,i¥)] < {1 + e)Bq{bi,k) for ally <. < N}
(2.6) > £e,pf-4+e>er,A
3> 2M 1 ¢ «)

X P ik itko < (1 +£)?)
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N— ..
( @+EW ik
” im, _2_ exXP T opjik(l-e) )

Xp{osééﬂb \W(\Vg(t) < (L + 3)B}

1 00
>('j£exp 0/uk(*
2PV %W (*~f) )

i
> i lex
210g(l + ¢) N R R

> i lexp(—eq2(t)/t)dt,

where in the last inequality we made use of (2.1). On summing now in Kk,
from 0 to ko, on both sides of (2.6) we obtain

ko+ 1> t lexp(~cq2(t)/t)dt

t lexp(—eg2(i)/t)di
f=230¥
rbc
2e | tllexp(—eqi(t)/t)dt,

which, in turn, implies that lo(qg,c) < oo for any ¢ > 2/2.

Assuming (1.3), by (1.6) we conclude also (1.8), and using now Theorem
A, we obtain (1.9) and (1.10) as well. From here the converse direction is
obvious, and hence the proof of Theorem 1.1 is now complete.

3. Global forms of local functions

In this section we show that global functions for a standard Brownian mo-
tion are equivalent to local functions, and give a single test for these under
conditions which are duals of those of Theorem 1.1.

A function h defined on [1, oo) will be called positive if infi<i<i/i h{t) >0
forall 0 <6<l

Let Mbe the class of those positive functions h on [l,00) for which h{t)/t
is non-increasing in a neighbourhood of infinity.
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REMARK 3.1. If g G Q then q(l/t) is well defined for t G [l,00), positive
and non-increasing in t as t —*00. Hence tq(l/t) GR.

Given a standard Wiener process (W(t), t > 0} and a function h G H,
by the 0-1 law as earlier, we have that

(3.1) P{limsup W (i)|//i(i) < °°} = O or 1.
t—00

The functions h £ H for which the latter probability is 1 will be called
global (t —»00) functions ofW , i.e. iffor h G we have

(3.2) limsup W (D)]//i(i) <00 a.s.,
t—o0

then h is said to belong to the latter class.
Applying again 0-1 law for Brownian motion, we have (3.2) if and only
if there exists a constant 0 < 7 < 00 such that

(3.3) Iir(]ls‘&jp W ()/h(i) = 7 as.

Those global functions of W for which we have 7 = 0 in (3.3) will be
called Chibisov-0Reilly global functions.
Using the time-inversion property of the Wiener process, namely that
t > 0} being a standard Wiener process implies that

tW (1/f), t>0,

W' 0, t=0,

is again a standard Wiener process, we get

PROPOSITION 3.1. Let G Q. Then q is a local function if and only if
tg{\/t) is a global function of a standard Wiener process. Also, q G Q is a
Chibisov-0Reilly local function if and only if tq(l/t) is a Chibisov-0Reilly
global function.

OBSERVATION. Obviously, h G U being a global function of W is equiv-
alent to saying that th(l/t) is a local function for W .

REMARK 3.2. We noted that for ¢ G Q which is a local function of
{W (t), t > 0}, the fact that for some 0 < B < 00 we have

limsup W(t)\/g{t) = R a.s.
<10p (HVa{t)
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implies not only that tq(l/t) is a global function for W but also that

Iitm sup\W (i)\/[tq(\/t)) = B a.s.
—00

The most well-known example of a local function is
q(t) = (2iloglog(l/f))1/2.
The famous Khinchin [15] local law of the iterated logarithm (LIL) states

limsup [IV (D)|/(2iloglog(l/i))Y2= 1 as.
no

Combining Proposition 3.1 and Remark 3.2 we obtain that tq(I/t), namely
(21log logt)V/2, is a global function and hence

limsup\W(t)\/[2tloglogi)lV/2= 1 a.s.
t—*00

The latter is known as Khinchin’s global LIL (cf. also Levy [17], [18], and,
for further considerations along these lines, Révész [23] and Bingham [1]).

Our Proposition 3.1 and Remark 3.2 amount to saying that the duality
of Khinchin’s laws is valid in a more general context for standard Brownian
motion starting at zero.

Since any global function can be viewed as a simple transformation of
a local function, the characterization of local functions of W as given in
Theorems B and C is the characterization of global functions as well. Namely
we have

COROLLARY 3.1. A function tq(l/t), where g E Q, is a global function
of a standard Wiener process if and only if the integral lo(qg,c) < oo for some
c > 0 or, equivalently, if and only if the integral Eo(qg,c) < oo for some ¢ > 0

and limtjo?(i)/il/2 = oo.

COROLLARY 3.2. A function tq[\/i), where g€ Q, is a Chibisov-OReilly
global function if and only if the integral lo(g,c) < oo for all ¢ > 0 or,
equivalently, if and only if the integral Eo(q,c) < oo for all ¢ > 0 and
limt|0?(*)/iV2 = oo.

In terms of a function h(t) —tq(l/t), q G Q, the integrals Eo{q,c) and
lo(q,c) will be transformed into

(3.4) EO t 3/2h(t) exp(—et xh2{t))dt
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and
(3.5) exp (—et 1h2(t))dt

respectively.
Consequently, corresponding to Corollaries 3.1 and 3.2, we have the fol-
lowing equivalent ways of characterizing global functions.

COROLLARY 3.1*. A function h E H is a global function for W if and
only if the integral M M < oo for some ¢ > 0 or, equivalently, if and only
if, the integral Eoo(h,c) < oo for some ¢ > 0 and itmi_>00A (i)/i¥2 = oo.

COROLLARY 3.2*. A function h E M is a Chibisov-O™Reilly global func-
tion for W if and only if the integral loo{h,c) < oo for all ¢ > 0 or,
equivalently, if and only if, the integral Eoo(h,c) < oo for all c > 0 and
limt-,00 h(t)/tl12 = oo.

Given a function r € 1/, by the 0 —1 law as earlier, we have P{|f7(t)| <
r(t), t Too} = 0or 1, and we will say that r belongs to the global upper-class
if this probability is 1 and to the global lower-class otherwise.

We note in passing that Remark 3.2 also implies that any global upper
(resp. lower) class function h E H can be transformed into a local upper
(resp. lower) class function and vice versa.

Since, for gE Q,

limsup (W(i)|/gi(i) = B a.s.
ijo

is equivalent to
limsup W ()]/(i<7(l/t)) = B a.s.,
t—*00

Theorem 1.1 translates into
THEOREM 3.1. Let qE Q. Then we have

limsup [W (t)|/(ig(I/t)) = B a.s.
t—>00

for some 0 < B < oo if and only if (1.7) and (1.8) hold true, or equivalently,
if and only if (1.9) and (1.10) hold true.

Theorem 1.1* has the following translated form.
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THEOREM 3.1*. Let g€ Q. Then with some ¢ > 0 we have

limsup MV/(i) 1/(Eg(1/i)) = (2c)¥2 a.s.,
t—+00

i.e. ((2c)¥Y2+ e)(in(1/i)) belongs to the global upper-class (resp. ((2¢)V/2 —
e)(tq(l/t)) belongs to the global lower-class) for W, if and only if, for any
e > 0 we have lo(g,c-{-e) < oo (resp. lo(g,c—e) = 00) or, equivalently, if and
only if Eo(q,c + €) < oo (resp. Eo(q,c—e) = 00) with limtjo gq{t)/tll12= °o.

In terms of h{t) —tq{\/t), q€ Q, these theorems read as follows.

THEOREM 3.2. Let he M Then
limsup W (i)|//i(i) = B as.
t—*o0
if and only if
I<x>(hc) <oo forany c>R22

and
loo{h,c) =00 forany c<R2/2

or, equivalently, if and only if
Eoo{h,c) <oo for any ¢ > R*/2,
Eoo{h,c) =00 for any c<R2/2
and limt_oo /i(i)/ f1/2 = oo.
THEOREM 3.3. Let he M. Then with ¢ > 0 we have

limsup\W{t\/h(t) = (20)V2 a.s.,
t—*o0

i.e. for any e > 0, ((2c)V2+ e)h{t) belongs to the global upper-class (resp.
((2¢c)V/2 - e)h(t) belongs to the global lower-class) for W if and only if for
any e > 0 we have I"ikjC + e) < oo (resp. loo[h,c —e) = 00j or, equiv-
alently, if and only if Eoo(h,c + €) < oo (resp. E~h, ¢ —e) = 00) with
limt-,00 h(t)/tY/2 = oo.

We note that Remarks of Section 1 can be repeated also here, relating
now our notion of global functions to that of the classical EFKP global
upper-class and lower-class functions of a Wiener process.
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Sometimes it is more convenient (cf., e.g., Révész [23]) to talk about
upper and lower functions for the process {W(t)ftY/2, t > 0} where W is a
standard Wiener process starting from zero with probability one.

Let § be the class of those positive functions on (0,1] which are such
that tx12g[ft) is non-decreasing near zero, i.e. ti2g{t) E Q

Let 7 be the class of those positive functions on [l,00) which are such that
[(1j/tY2is non-increasing in a neighbourhood of infinity, i.e. tI12f{t) e M.

Introducing exactly the same way as before the notions of global and local
functions for the process {W (£)/i1/2, t > 0}, as well as those of EFKP global
(resp. local) upper and lower-classes, we arrive at the following conclusions.

REMARK 3.3. If g E Q then <?(I/t) is well defined for t E [l,00) and
g{\/t)/tl12 is non-increasing in a neighbourhood of zero, and hence g(l/t) E
7.

PROPOSITION 3.2. Letg€e £. Theng is alocal function for {W (t)ft 112,
t > 0} if and only if g{l/t) is a global function for the same process.

The first example one should have in mind is g(t) = (21loglog(l/i))V2,
which is a local function for W (t)ft 112, and hence g(l/t) = (2loglogt)l/2 is
a global function for the same process.

Exactly the same way as before, we have a single characterization for all
these functions of W (t)/t*/2. We introduce the following integrals:

~lofg,c) = [ t~lexp(-cg2(t))dt,
Eo{g,c) =Jf t~1g(t)exp(-cg2(t))dt,
0

/OO r lexp(~cf2(t))dt,
/Oot~lf(t)exp [-cf2{t))dt.

tHeoremM 3.4. For local and global functions of the process {W{t)/t1/2,
i > 0} we have the following characterizations.

(i) Letg e $. A function g(t) is a local function and g(l/t) is a global
function if and only if lo(g,c) < oo for some ¢ > 0 or, equivalently, if
and only if Eo(g,c) < oo for some ¢ >0 and lim®oS?¥) = oo.

(ii) Letf e 7. A function f(t) is a global function and f(1/t) is a local
function if and only if /«>(/,c) < oo for some ¢ > 0 or, equivalently,
if and only if £00(/,c) < oo for some ¢ >0 and limf_,o0 f(t) = oo.
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(iii) Let g € 5m A function g(t) is a Chibisov-O Reilly local function and
g(l/t) is a Chibisov-O™Reilly global function if and only if lo(g,c) <
oo for all ¢ > 0 or, equivalently, Eo{g,c) < oo for all ¢ > 0 and
limtjo g(t) = oo.

(iv) Let f € 7. A function f(t) is a Chibisov-OTReilly global function and
[(1/f) is a Chibisov-OReilly local function if and only if foo(/>c) <
oo for all ¢ > 0 or, equivalently, i?00(/>c) < oo for all c > 0 and
limt-,00 /(f) —O00.

For the process {W (f)/f1/2, t > 0} Theorems 1.1*, 3.1* and 3.3 read as
follows.

Theorem 3.5.

(i) Let g€ Q. Then for some ¢ >0 we have

n™dup = (2e)l1/2

i.e. for any e > 0, ((2c)V¥2+ e)g(t) is a local upper-class function and
((2c)1* - >M*) is a local lower-class function, and

lins“pii7TMVij = (2¢),/! os"

i.e. for any e >0, ((2c)¥2~he)g(l/t) is a global upper-class function and
((2c)Y2 —e)g[l/t) is a global lower-class function, if and only if, for any
e > 0 we have lo(g,c + ) < oo and lo{g,c - €) = oo or, equivalently,
Eo(g,c+ €) < 00 and Eo(g,c - €) = oo with limjloff(i) = oo.

(ii) Let f E 7. Then for some ¢ > 0 we have

nN™»p” m = (2c)1/' os"

i.e. for any e > 0, ((2c)V/2+ e)f(t) is a global upper-class function and
((2c)/2 —e)f(t) is a global lower-class function, and

“To“p m m = (2c)1/!

i.e. for any e > 0, ((2c)V/2+ e)/(l1/i) is a local upper-class function and
((2c)vd - ))/(1/t) is a local lower-class function, if and only if, for any
e > 0 we have 100(f,c + ) < oo and loo{f,c —e) = oo or, equivalently,
Eoo(/,c + e) <00 and Eoo(f,c - €) = oo with lim~oo /(f) = oo.

o I8ll
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4. Applications to Rényi-type statistics

Let U\, Uz, ... be independent uniform-(0,1) random variables and, based on
the first n > 1 of these random variables, we define the uniform empirical
process an hy

an(s) :=nl2(En(s) - s), 0<s <1,

where Enis the uniform empirical distribution function, i.e. with 1{A} being
the indicator function of the set A, En(s) := 1« < «}» Rényi
[22] studied the asymptotic behaviour of statistics like

sup an(s)/s and sup a,, (s)/(I —s),
242,00 o (/0

as well as that of their two-sided versions. His idea of introducing these
modifications of the classical Kolmogorov-Smirnov statistics was to make
them more sensitive to detecting deviations on the tails from a hypothesized
distribution.

We quote here Theorem 2.8 of Cséki [2], where he proves several further
results, which were also inspired by Rényi [22],

THEOREM E. Let an be any sequence of positive constants such that, as
n —* 0o,
(4.1) an —0 and nan-—»o00.

Then, as n —»00,

“2 (1 Q) e g8 WO
(4-3) (I-_°Q n} os,f‘£><i|a”(5)|/s'Ao<5}%ri W (1)1,

where W is a standard Wiener process.

In the special case when an — a, a positive constant, then (4.2) and (4.3)
are due to Rényi [22], [See also M. Csorg6 [4] and page 165 of M. Cso6rg6
and Révész [11].] A slight generalization of Theorem E, requiring only that,
instead of an — 0, we have 0 < an < a, for all large enough n for some
0 < a<1,is Theorem 4.5.1 of [8]. For further results along these lines we
refer to Mason [19], M. Csdrg6 and Mason [9], and M. Csbérg6 and Horvath
[7]. Here we prove the following weighted version of Theorem E.



254 MIKLOS CSORGO, QI-MAN SHAO and BARBARA SZYSZKOWICZ

THEOREM 4.1. Let an be a sequence of positive constants as in (4.1). Let
g e Q be a Chibisov-O'Reilly local function of a standard Wiener process.
Then, as n —+o00, we have

4.4 N osup W(t)/q(t
(44 oy V(O1a
and
(e 1/2 M 3)
: n : A osup \W(H)Vq(t).
48) _0 sup “ 1—s | gup \WOVa(®)
1- an

Also, if an of (4.1) is decreasing inn — 1,2,..., then (4.4) and (4.5) hold
true for any local function q € Q of a standard Wiener process.

The right-sided versions of (4.4) and (4.5) for

a,(s)j i(l - s)q rb)}

can be easily formulated. Similar results hold true for the uniform quantile
process, as well as for general quantile process under further conditions on
its underlying distribution function like in M. Csérg6 and Révész [10], and
M. Csorg6 and Horvath [7],

As an example for Theorem 4.1, with the local function

q(t) = (iloglog(I/f))12 £ Q

we have

SUp |«n(s)| /(« (1l —s)logloghr— "4)
On<*<l-an [ an(l  s)v

-b sup |W(t)| / (tloglog M

ol WI /- (tleglog ¥
For the sake of proving Theorem 4.1 we first state some known results.

LEMMA A. We can define a sequence of Brownian bridges (Rn(s), 0 <
s < 1} such that, as n —* 00,

Jan(s) - Bn(s)j iOp[n ¥2logn), if v =1\/2

(4.6) o<i<! (S(1-5))1/2- IO pin-"), if 0<v<1/2,
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and

lan(s) - Bn(s)l _
AN<K2-Aln (-(1“ s))V2"
for all A> 0.

The statement 9f (4.6) is Lemma 7 in M. Csorg6 and Horvath [6]. In the
case of i/ = 1/2, this result follows from Komlds, Major and Tusnady [16].
For 0 < v < 1/4, (4.7) is by the [8] inequality, and a new direct proof in
this case is given by M. Csorgé and Horvath [5], Mason and van Zwet [20]
established (4.7) for 0 < v < 1/2 (cf. also Remark 2.1 in [8]). We note also
that the [16] inequality gives (4.7) immediately with Op(n~I/logn), 0 < v <
1/ 2.

(4.7) Op(n-), if 0<v<1/2

PROOF OF THEOREM 4.1. With the Brownian bridges of Lemma A we
consider

1/2
an(s) - £,(<01
wp 120 - £
a,<«<l-g» cq { _un 1___
~a, S J
/1 an V12 a,(s) - £,.(5)]

-V -aj adf<ss N «n |-«

(4.8) * (rAt) 2 sup BME - E.G)
\1- a, s J
V 2 su lan(a) ~ £n(M)|

o
\1_a'n/ l-6<i<l-a,, (an{ L—)\

8y \s(l - a,)J
= /i(n) + /2(n) + h{n).

Let n be so large, and hence a,, so small, that q(-) is already non-decreasing.
Then

1 1
i<i<l-T  /Qn(l~g)\ ~ g ( a”s \
9\s(l-a,)J \(1-5)(1- a,)J

Consequently, by (4.6) and (2.2), as h —>00 we obtain

(4.9) J2(r
g{(l-S)(l-an)J
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= Op(n X2logn)o(l).
Next, with 0 < v < 1/2, we have

lan(s) - B.(s)l _ fan(l - s)x12

li(n) = sup — , VS(| ) an)J
-« M- )*> (8 N )
(onfl__s)X »
T _-@n(s)| Wi1-0n)J
< (1-5s) SUE6 m III;-Z»_ .;S<UrP<* Glm %) x
s(I on)/
(4.10) < (1- S)-xlia-vOP{n-3 sup
fffeS <*c 1
( X
fil2 t1/2
< Op((nan) "Jmax sup

V«(l-a») S 1KE
Op((na,)_1)0(1) = op(l),

on account of (4.1), (4.6) and (2.2).

We have also
T <n\ < ol la"(s) ~ Bn(s) sup
l-i<4<l-a, («(1 - S))1/2
(1-a,) (1
(4.11) = Op(ho(l) = op(l),

by (4.7) and (2.2).
A combination of (4.8), (4.9), (4.10) and (4.11) yields

(4.12) (\-"—Y "7 sup = op(l), n-*oo0.

—anl an<i<l-a, (an(l s)

g\s(l - an)

We note that, by Doob’s transformation (cf., e.g., (1.4.5) in M. Csoérg6
and Révész [11]), we have for each n= 1,2,...
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On} 7
and, therefore, for each n= 1,2,...
sup | f--20 ) V2Bns) p sup weiaM = 8,
4, V1~ anJ S 0,,<i<I-On \(lI —an)s/
(4.13)
sup IV (1).

(a )"
Hence, in order to obtain (4.4) and (4.5), by (4.12) and (4.13) it suffices to
show that we have

(4.14) sup W{t)/q(t) sup W{t)/q(t)
te ) '<«!
and
(4.15) sup \W{t)\/q{t)*> sup \W(t)\/q(t).
ia Vv o<t<l
(a ) ™M«

Now if g E Q is a Chibisov-O’Reilly local function of W then (4.14) and
(4.15) are immediate, for in the latter case we have by definition

(4.16) lim  sup  \W{t)\Vg{t) ='0.

o<t<

On the other hand, if 6 Q is a local function of W, then, on assuming
that an of (4.1) is decreasing inn = 1,2,... to zero, the proofs of (4.14) and
(4.15) can be easily established along the lines of the proof of Lemma 4.2.2
of [8],
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FUNCTIONAL ERDOS-RENYI LAWS

PAUL DEHEUVELS

Abstract

We present the functional form of the Erdés-Rényi “ new law of large numbers”.

1. Introduction

Let X,Xi,X2,... be a sequence of independent and identically distributed
random variables. Let g>) = £(exp(tA)) be the moment-generating func-
tion of X, and let to = sup{f : ) < oo} and t\ = inf{t : <) < oo}. We
will assume, at times, that the following conditions hold:

(Al) E(X) =: n G (—00, 00);

(A2) X is nondegenerate, i.e. P(X = x) < 1for all x;
(A3) t0 > 0;

(Ad) t\ <0

(A5) Var(X) =: <26 [0,00).

Note for further use that (A3)-(A4) => (Al)-(A5). On the other hand,
(A3) (resp. (A4)) alone is not sufficient to ensure (Al) or (A5).

Denote by So = 0 and Sn = Xi -f eee+ Xn for n > 1 the partial sums of
Xi,...,Xn and set S(t) = 5[t] for t > 0, where [i] < t < [i] + 1 denotes the
integer part of t. In this paper, we are concerned with the limiting behavior
as T —y oo of the standardized increment functions, defined for x > 0 by

(1.1) Vx,t{s) = a”1(S(x + sd?) —S(x)) for 0< s <1,
where 0 < ar < T is a function of T > 0. We will use the notation

(1.2) Tt = {WTm<x<T- clt},

1980 Mathematics Subject Classification. Primary 60F10, 60F15, 60F17; Secondary
60G50.

Key words and phrases. Functional laws, strong laws, laws of the iterated logarithm,
laws of large numbers, increments of partial sum processes, large deviations.

Akadémiai Kiadd, Budapest
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and assume, at times, that the following conditions are imposed upon
{ar, T > 0}:

(KI) ax t and T~lax j;
(K2) ax/logT —»c € (0,00] as T —00;
(K3) (log(T/aT))/log2T -* d E (0,00] as T -» oo0.

Here, and in the sequel, we set log2T = log(log(max(T, 3))). We will make
use of the following notation. 0(0,1) (resp. C(0,1)) denotes the set of
all bounded (resp. continuous) functions on [0,1]. These spaces will be, at
times, endowed with the topology U of uniform convergence on [0,1] defined
by the sup-norm ||/|| := sup0<3<1|/(s)|. In general, we will denote by (£, T)
the set i , endowed with the topology T. Forany S>0and/ G A c .0(0, ),
we will set

(13) Ne(f) = {g€B(0,I):\\f-g\\<e},

and

(1.4) Ae={h G5(0,1) : \h—qg|| < e for some g GA} = ("J Ne(g).
geA

Whenever (Al-2-3-4-5) and (KI-2) hold with ¢ = oo, the description of
the limiting behavior of 7x follows from the corresponding results for the
Wiener process. Namely, the strong invariance principle for partial sums
due to Komlds, Major and Tusnady (1976) (see also Einmahl (1989)) shows
the existence of a probability space on which is defined a standard Wiener
process {W(t), t > 0} such that, under (Al-3-4-5)

(1.5) sup |5(i) —fit —aW[i)l = O(logT) a.s. as T —»00.
o<t<T

By combining (1.5) with the results of Révész (1979) and of Deheuvels
and Révész (1991), one obtains readily the following Theorem 1.1. For the
statement of this theorem, we need more notation. It will be convenient to
set (under (Al-2-5))

(16)  Xx =bA[7x ~ R1) - {bxI{frj ~RI) : 0<x<T - aT},

where | is the identity function on [0,1], and bx := aa”1"{2[\og{T/ax) +
log2T)} V2
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Let further, for / € 2J(0,1),

J(f) —fo f2(s)ds if / is absolutely continuous on [0,1]
-7 with Lebesgue derivative / = df/ds;
J(f) = oo if / is not absolutely continuous on [0,1].

For any A > 0, consider the Strassen-type sets (see e.g. Strassen (1964) for
A=1):

(1.8) S\ = {f € C{0,1) :/(0) = 0 and J{f) < A}

Note for further use that S\ is a compact subset of (C(0,1),{7) (see e.g.

Varadhan (1966) and Lemma 2.1 and Example 2.1 in Deheuvels and Mason
(1990)).

THEOREM 1.1. Assume that (Al-2-3-4-5) and (KI-2-3) hold with ¢ =
00. Then:

1°) Whenever d = oo, for any e > 0, there exists almost surely a T(e) <
00 such that for all T > T(e)

(1.9) Si ¢ Hi c S2e.

2°) Whenever d < oo, for any e > 0, there exists almost surely a T(e) <
00 such that for all T > T(e)

(1.10) 5(i)C C Si*,
Moreover, we have
(1.11) lim c~rC SnJ =1,

and for any f € Si, there exists almost surely a sequence T(n, f) — oo as
n —»00, such that f € ~T(nf) for n-

PROOF. By (1.5) and the assumptions imposed upon {aj, T > 0} the
proof of (1°) is a consequence of the results of Révész (1979), while (2°)
follows from the results of Deheuvels and Révész (1991). O

REMARK 1.1. Let K(*) denote a continuous functional on (8(0,1), U).
A direct application of Theorem 1.1 is that, under the assumptions of this
theorem, we have:
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1°) For d —oo0, almost surely

(1.12) lim {sup K(N} = sup K(/) as.;

Tr°° fenT lesi

2°) For d < oo, almost surely

(1.13) liminf{sup AT()} = sup AT()
7-°° fe»r fesSn
<limsup{sup AI(/)} = sup X(f),
T—*00 feHr feSi
and
(1.14) lim {sup AI(/)} = sup AN(/) in probability.
r~" 1€S(JI,)

Typical examples of functionals AT(-) are A(/) = £/(1), |[/(1)],
sup0<5<i £ /(s) and suPo<a<i |/(s)I> in which case (1.12)-(1.13) yield well-
known results due to Csorgé and Révész (1979, 1981) and Book and Shore
(1978), for increments of Wiener processes (and partial sums via (1.5)).

Whenever (Al-2-3) and (K2) hold with ¢ < oo, the fact that Theorem
1.1 does not hold in general is easily deduced from Remark 1.1 and the
famous Erdés-Rényi law of large numbers which we will now discuss. We
refer to Csorg6 (1979), de Acosta and Kuelbs (1983), Deheuvels, Devroye
and Lynch (1986), and Deheuvels and Devroye (1987) for general references
and refinements of the original statement of Erd6s-Rényi (1970). We will
need the following notation. Denote by ip(-) the so-called Chernoff function
(see e.g. Chernoff (1952)) of X, defined for all -00 < a < oo by

(1.15) tp(ct) = sutp{a:t - log <>(b)},

where the supremum in (1.15) is evaluated over all t’s such that 4>{t) < oo
(i.e. over an interval with end-points t\ and to). It is noteworthy (see
Lemma 2.1 in the sequel) that i~(-) is a convex function of (—00,00) onto
[0,00], satisfying (under either (Al-3) or (Al-4)) b(n) = 0. Therefore, for
any v > 0, there exist —00 < ot~(v) </i < a+(v) < 00, defined by

Jsup{a < /z:V0) > 1/v} if & <©

(1.16) | —00 if s =9

and

(117) + [inf{a>n:ip(@@ > 1/} if o>°

j 00 if fo=o
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The following theorem gives a general version of the Erd6s-Rényi theorem
for partial sums.

THEOREM 1.2. Assume that (Al) and (KS) hold with ¢ < oo. Then:
1°) Whenever (AS) (resp. (A4)) holds (i.e. to > 0 (resp. ti < 0)), we
have, almost surely,

(1.18) lim{ sup rliT(D} = a+(c)
T—@0D 0<X<T-ar

(resp. 1“-@00{ inf e »Jz.H1)} = oT(c)).

2°) Whenever (AS) (resp. (A4)) does not hold (i.e. to = 0 (resp. t\ —
0)), we have, almost surely,

(1.19) limsup{ sup >7zr()} = oo
T—00 0O<x<T—ax
. . M
(resp. I|Tm|nf{0”!nnf_a>er,t( )} = ~o00).

PROOF. (1.19) is due to Steinebach (1978) (see also Lynch (1983)),
while (1.18) is the so-called “full form” of the Erdds-Rényi theorem due to
Deheuvels and Devroye (1987) (see also Csorgé (1979)). O

REMARK 1.2. In the original statement of their “new law of large
numbers”, Erd6s and Rényi (1970) assumed that (A3-4) (and consequently
(Al-3-4-5)) hold. Moreover, they also assumed that £**(c) in (1.18) is re-
stricted to vary within the set {m(t) = €)/<f) : ti < t < to}- De-
heuvels, Devroye and Lynch (1986) showed that this condition entails that
C > co := fo° tm'(t)dt in the “+” case, and ¢ > ci := /@ tm'(t)dt in the
case, and characterized the distributions for which @ > 0 (resp. ¢\ >0). De-
heuvels and Devroye (1987) proved that (1.18) holds for all ¢ > 0. Following
an observation of Steinebach (1978), it may be verified that the assumption
(Al) that -00 < p <00 may also be relaxed in Theorem 1.2.

REMARK 1.3. In the degenerate case where P(X = p) = 1, we have
t/’>@ = oo for a / /j and tp(p) = 0. Thus, by (1.18)-(1.19) ax(c) = p
for all ¢ > 0. Theorem 1.2 is then a trivial consequence of the fact that
"z T — 0as-as T —»o0, uniformly over 0 < x < T —ay. We will
not consider this case further and assume throughout the sequel that (A2)
holds.
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REMARK 1.4. In view of Remark 1.1 taken with K (/) = =/(l1), and
Theorem 1.2, we see that the conclusion of Theorem 1.1 is invalid for ¢ < 00
when X is not normally distributed. This is essentially the solution of the
so-called “stochastic geyser problem” proved originally by Bartfai (1966)
(see e.g. 82.4 in Cs6rg6 and Révész (1981), Erdés-Rényi (1970) and Grill
(1989)).

In view of Theorem 1.1 and 1.2, it is natural to seek functional versions
of the Erd6s-Rényi Theorem 1.2. We will obtain these results in Theorems
3.1 and 3.2, stated in Section 3, and which constitute the main contributions
of this paper. Before stating these theorems, we will need several technical
results, concerning large deviations and functional spaces, which will be
proved in Section 2. In Section 4, we mention briefly some applications of
these functional laws.

We conclude this introduction by mentioning the following relevant refer-
ences on the topic of Erd6s-Rényi theorems. The list is far from exhaustive,
but shows evidently that this topic has received a continuous interest in the
last decades. We refer to Arratia and Waterman (1989), Arratia, Gordon and
Waterman (1990), Book (1973), Book and Truax (1976), Cséki, Fdldes and
Komlds (1987), Csorg6 and Steinebach (1981), Deheuvels (1985), Deheuvels,
Erd6s, Grill and Révész (1987), Erd6s and Révész (1975), Foldes (1979),
Guibas and Odlyzko (1980), Révéesz (1983), and the references therein.

2. Large deviations and moment-generating functions

2.1. The Chernoff function

We inherit the notation of Section 1, and let t/>(¢) be as in (1.15). The
following lemma describes some useful general properties of rp(-).

LEMMA 2.1. Under (Al), the Chernofffunction rp(-) is a (possibly in-
finite) non-negative convex function on (-00,00), such that V(m) = 0;

(2.1) Jip (t/>(a)/a) = to and _lim (tp(a)/a) —U.

PROOF. The case where ti = to = 0 is trivial for then ip(a) — 0
for all a e (-00,00), and (2.1) is satisfied. For t\ < to, the convexity of
UX() is straightforward since ip(-) is the supremum of the linear functions
a —pat —log<£(f), when t varies in the interval (with end-points tj and to)
in which ) <00. If t\ —O0 (resp. to = 0), then ip(a) = 0 foralla < /z
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(resp. a > RB). It remains to consider the cases ti < 0 < to and ti < 0 < to,
which are equivalent after the formal change of X into —X. Thus, all we
need for (2.1) is to show that, whenever tj < 0 < to, we have

£2.1a) giimoérp(a)/a) = to-
To prove (2.1a), it is convenient to set c(cc) = I/i/>(a), or equivalently
(2.1b) exp(-l/c(a)) = inf{<?.(i)e-t“} = exp(-tp{a)).

The study of the functional relation (2.1b) is made in Deheuvels, Devroye
and Lynch (1986). By setting A = lim”t,, m(f), where m(t) = <[ty <x(t),
they show (see their §2 and Theorem 2) that, under (Al), c(a) varies between
00 and co = 1//60tm'(t)dt when a varies between £ and A. Moreover, if
t*(a) is the solution of the equation m(i) = a, then t*(a:) = ip'(ot) and varies
between 0 and to when a varies between 8 and A. Finally, G = 0 except in
the following two cases:

(i) A < oo, to < 00, in which case esssup Xi = 0o and co = l/(Ato —
logi(io));

(i) A < o0, to = 00, in wh ch case esssup X\ = A, P(X = A) >0 and
c0= -1/log P(X = A).

Consider the remainder case:

(ili) A — oo, in which case tp(a) — l/c(a) varies between 0 and oo
as a varies between B and o0o. Here, limQ oo(i/i(a)/a) = limc-" ip'{a) =
lima_,oot*(a) = to, yielding (2.1a) as sought.

In case (i), 4>(to)) < oo and ) = oo for all t > to- It is readily verified
here that t/>(@) = ato —log”~(to) for all a > A, so that again (2.1a) holds.

Finally, in case (ii), log™(t) = (1 + o(l))At as t — 00, so that, by
(1.15), tp(a) = oo for a > A, tp(A) = - logP(X = A). Since then
lima tOo(V'(a)/Q) = oo and to —o0, we have (2.1a).

Combining the preceding three cases, we obtain readily the proof of (2.2).
This completes the proof of Lemma 2.1. O

LEMMA 2.2. Under (Al-2), the Chernofffunction tp(-) is always finite
on a non-empty sub-interval of (—00,00). This sub-interval has upper (resp.
lower) end-point equal to a (resp. b) if and only if a — esssup A < 00
(resp. b= essinfX > —o0), and an infinite upper (resp. lower) end-point
otherwise.

PROOF. Excluding the trivial case where ti = to = 0 and rp(a) = 0
for all a, we see that for ti < to, the function m(f) = o>ty <) is strictly
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convex and increasing on (ii,io) (see e.g. Deheuvels, Devroye and Lynch
(1986)). Let, accordingly,

(2.1c) B = [imm() and A= limm().

Denoting by t*(@!) the solution of m(i) = a for B <a < A, we see that
(2.1d) N(a) = at*(a) —log >(t*(@)) < oo for B <a < A.

By (2.1d), t>(?) is finite on a non-empty sub-interval of (—00,00). The
conclusion of Lemma 2.2 corresponds to the fact that, by the just-given proof
of Lemma 2.1, tp(a) = 00 for a > A in case (ii), while t/»(a) < 00 for all
a > n in the other two cases. O

2.2. Functional spaces

Let BV (0,1) denote the space of all right-continuous distribution functions
of bounded Lebesgue-Stieltjes measures on [0,1], Namely, any / € BV(0,1)
is of the form

f(s) = i/([0,s]) for —00 <V <0,

where v = W —u2 is the difference of positive measures on (—00, 00), satis-
fying i/,-([0,1]) > O and 00,-1) U (l,00)) = 0 for »= 1,2. In general,
such a decomposition is not unique, and we are led to choose a specific
representative. For this sake, we set

K

[x£(s) = sup{~({/(r,) - [(r,e_D)(*) :r0=0- < &x< ... <rk= s} fors >0,
«l

(2.2

where the sup istaken overallk >2and 0 < T\ < ... <r*_i < a, (tH)") :=
max(xu,0), and 0- denotes an arbitrary value oft < 0 (for which f(t) = 0).
By letting further

(2.3) Jx(s) = 0 for s < 0, and /£(0) = (/(0))(2),

it is readily verified that / = /+ -/_, and that both /+ and /_ belong to the
subset 1R (0,1) of BV (0,1) which consists of all right-continuous distribution
functions of non-negative and bounded measures on [0,1]. Moreover, f+ (S) =
i/£([0,s]), where df = i/+ — is the Hahn-Jordan decomposition of df (see
e.g. Rudin (1979) p. 173). This decomposition is such that there exists
measurable sets A+ and A- with

(2.4) A+tnA- =0, A+U = [01], i"+(A) = 1_(A+) = 0.
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A direct consequence of (2.3)-(2.4) is stated in the following lemma.

LEMMA 2.3. For any decomposition f = /(+) - /(_) of f G BP(0,1),
with G 772(0,1), we have, letting v+ = df+ and = df(x), for each
measurable subset B o/[0,I],

(2.5) v+{B) < V(2){B).

PROOF. By (2.4), if v = df, we have v+(B) = vx{B PiA%) = i/(B n
At) < V(x)(Bn Ax) = i/(z)(B) for B C A%, and v+{B) = 0 < i'(¥)(B) for
B C hence result. O

Write the Lebesgue decomposition of the non-negative measure df as
follows. Let

(2.6) /£(s) = 5 fx(u)du + fx\s) for - 00 < s < 00,
o

where f+ — jif+ denotes the Lebesgue derivative of f£, defined uniquely
up to an a.e. equivalence, and /(5) denotes the distribution function of a
measure orthogonal to the Lebesgue measure on [0,1]. In view of (2.4),
we will assume, without loss of generality, that f+ is a finite measurable
function such that

(2.7) fx{s) = 0 for s [0,],
[_(s) =0 for s€ A+,
f+(s) = 0 for sG A_.

Following (2.6), we will set for / € BP(0,1),

(2.8) (s) = [ f(u)du+ f(s\s) for - oo <8 < oo

where / = /+-/_ and =fr —f[S\

It will be convenient to denote by |/|u(s) := f+(s) + f-(s) for —e0 < s <
00 the total variation of / in the interval [0,s].

We will consider the following topologies defined on BV (0,1) and 772(0,1).
We denote by W the weak (abbreviated from weak*) topology on either
BP(0,1) or 772(0,1). On 772(0,1), the weak topology may be metricised by
the Levy metric d/, defined as follows. Forany / ¢ 772(0,1) and g G 772(0,1),
set

(2.9) dL(f.9) =
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=infly>0:/(x -y -y<gX <f(x+y)+yfor - oo <x< 00}

The weak convergence of fn £ 77?(0,1) to f  772(0,1) is equivalent to
the (pointwise) convergence of /n(s) to f(s) for each s, continuity point of
/. Such a simple characterization does not hold for the weak topology on
72V (0,1). Given a net fa e f?V(0,1), the weak convergence of fa to / E
BV (0,1) is equivalent to the convergence of 7(s)dfa(s) to 7(s)df(s)
for each continuous function 7 (recall that dfa and df have support in [0,1]
so that no restriction on 7 is needed). The following result, due to Hognas
(1977), gives a simple characterization of this convergence. Introduce the
metric

(2.10) dw(f,9) = o 1710 —g(u)\du + |7(1) —Ff(1)],
for / e BV(0,1) and ge BV (0,1).
We will denote by BVc¢(0,1) the setofall / e BV (0,1) such that |/|,,(1) < C.

LEMMA 2.4. A net fae BV~0,1) is weakly convergent to+ e OV(0,1)
if and only if:

(i) There exists a constant 0 < C < 00 such that fa is ultimately in
BVC(0,1);

(ii) dw (fa, f) -* 0.

PROOF. See e.g. Hognas (1977). O
The nice properties of the weak topology on IR(0,1) are not always sat-
isfied on BV(0,1) as shown in Example 2.1 below. Denote by 0 the null
function, and set “—7” for the convergence in the topological space (S, T).

EXAMPLE 2.1. Let {un} be a bounded positive sequence such that
un /* 0. If fn denotes the distribution function of the measure with mass

unand | —£ and -u,, at | + n>we see ~hat fn ~*w 0. On the other hand,
| is a continuity point of 0, and /,,(]) = un/* 0(]) = 0.

LEMMA 2.5. For any 0 < C < o0, (BVc(0,1),W) is a compact met-
ric space (with the specific choice of dw)- Moreover, from any sequence
{fn} C BVc(0,1), one can extract a subsequence {/,,.} such that {(/,, )+}
and {(fn,)-} are convergent in both (7i?(0,1),W) and (*Vc-(0,1),W).

PROOF. The result immediately follows from the Helly selection lemma
and the observation that, if (/n))x ~*w /(%), then fnj —w /(+) - /(-)s O
The following lemma gives a useful inequality.
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LEMMA 2.6. For any f EBV(0,1) and g E BV (0,1), we have

(2.11) ft - gt < (/ - g)t.

PROOF. For r,_i < Ti, we have

() -1 (rj-D)x£-(9(r0-9("-i-1))x <{(/(ri)-/(ri-.))-(s(r,)-9(ri-1))}%,
so that (2.11) follows readily from (2.2). O

REMARK 2.1. For 0 < C < 00, denote by Wi (resp. W2) the topologies
defined on RVc(0,l) as follows. A net fa E BVc(0,1) satisfies fa —\W f
(resp. fa /) if and only if (fa)x -*w f(x) and / = /(+) - /()
(resp. (/a)x —*w /+)- Note here that Lemma 2.3 implies that /() —ft E
BVc (0,1) n IR(0,1) = IRc{0,1) := {/ e IR(0,1) : /(1) < C}. Since
a compact metric space is totally bounded (or precompact), Lemma 2.5
implies the existence of a sequence {hn, n > 1} C IRc(0,1) whose clo-
sure in (/i?(0,1),W) is equal to IRc(0,1). Moreover, for any e > 0,
there exists an N(e) < 00 such that, for any k E IRc(0,1), we have
mini*n”~jv”) dL(hn,k) < e. Let now, for any / E BVc(0,1) and g E
BVC(0,1),

Dc(f,9) —m>|,inn>fm>|{dL(f++qhm,g+ + ghn) + dL(f-+qhm,g-+qghn)}.

It is readily verified that (fa)x —w f(x) & Dc(fa>f) 0. Moreover, for
f,g,IE BVc(0,1) and e > 0, there exist mj, ni,g\ and m2,ri2,g2 such that

Dc(f,9) + Dc(g,t) > dL(f++ glhmi,g+ + qihni)
+ M <+ + g2hm2,t+ + gihni)
+ dL(f- + g\hmi,g- + g\hni)
+ dL(g- + g2hm*,t- + 92h,3) —c
> <Nj(/+ + 1i*m! + g2hmi,t++ gihni + 92/5)
+ dL(1- + ihmi + 92"m2)i- + g\hni 92"n2) ~ £

where we have used the triangle inequality and the fact that di(f,g) =
dL(f + k,g + k).

Since our assumptions imply that there exist ms,.s and 93 (we may
choose 93 = 9i + 92) such that dL(gihmi + 92"m2,93*m3) + dL(qgihni +
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92"n2j<7IM3) < £ it follows from the triangle inequality that

Dc[f,9) + Dc(g,E) > dL(f++ gzhm3,I+ + ?3hn3)
+ A (/_ + 93hm3> + ?3h,3) - 2e

> Dc{f,t)~ 2c.

Since e > 0 may be chosen arbitrarily small, we see that Dc satisfies
the triangle inequality. By all this, BVc (0,l) is, when endowed with the
topology defined by W\, a metric space. Since Lemma 2.5 implies that
(BVc(0, I),Wni) is sequentially compact, it follows that (BVc(0,1),Wx) is a
compact metric space.

Likewise, we may define on BVc{0,1) the topology Wz by means of the
metric

D'c{f,9) = dL{f+,g+) + dL{f-,9-).

Obviously, Wi is stronger than W\, which is in turn stronger than W.
Even though (BVc(0,1), W) and (BVc(0,1), W\) are compact metric spaces,
it is not the case for (BVc(0, I),W2) as follows from Example 2.1.

In view of the characterization given in Lemma 2.4, it is convenient
to extend the definition of W\ (resp. W2) to SV(0,1) as follows. A net
fa £ BV (0,1) will be said to satisfy fa —»nq f (resp. fa —wqg /) if and only
if there exists a 0 < C < 00 such that fa is ultimately in BVZ(C), 1), and
fa ~>wlf (resp. fa -*w2f) in BVC(0,1).

In the sequel, we will consider a function i(-), defined on (-00,00) and
taking values in [0,00], which satisfies the following properties.

(CI) $ is convex and non-negative;
(C2) < 00 on some nondegenerate interval, and 'I'(O) = 0;
(C3) To :=lima_,0Xi'(a)/a) >0 and T\ := lima_>00(i'(a)/a) < 0.

For any 't(-) satisfying (ClI-2-3) and / G W (0,1) being as in (2.6)-(2.8),
let

(2.12) I®(/) = Tb/5)(1) - T r/irl) + | 1¥(/(W))du,
0

with the convention that To/+S*(l) = 0 if To = 00 and /+”~(1) = 0 (resp.
Ti/i5~(1) = 0if Ti = —00 and /i5”(l) = 0). Set further, for any v > 0,

(2.13) 3* () = VM f/v)

TOHIS\I) - Tx/is)(l) + |* v*(f(u)/v)du,
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It is readily verified that the definitions (2.12)-(2.13) of J* (/) and 7*>U/)
do not depend of the specific representative of / (recall that / is defined
uniquely up to an a.e. equivalence, with respect to the Lebesgue measure).

LEMMA 2.7. Under (Cl-2-3), we have, for anyv > 0 and f € 7?V(0,1),

(2.14) 7*() = J#U+) + 7*(-/_) and

PROOF. Consider a Hahn-Jordan decomposition of df as in (2.4) with
df+ = vt. We have, by (2.6) and (2.8),

JD V{f[u))du= Ia+'t>(f(u))du+ JL_ *(f(u))du

= 50 *([+(«))<* + \[O *(-1-(«))<*«>
which, in view of (2.12) and (2.13), yields readily (2.14). O

For any u > 0 and 0 < A< 00, consider the sets

(2.15) Aa= {/€BV(01): (/)<A and
Aau= {/€ W (0,1): J*t,(/)< Ak

LEMMA 2.8. Under (Cl-2-3), for all A> 0 and v > 0, the sets A\ and
Aau are compact in (BV(0,l),Wi). Moreover, if To = oo and T\ = —o0,
these sets are also compact in (BV(0,1), i7).

PROOF. By convexity of 'F(-) and making use of the assumption that
Ti <0 < To, we obtain readily from (2.12) that there exists a C < oo such
that Aac BVc (0, 1) (resp. A\iVc BVc(0,1)).

In the remainder of our proof, we will make use of the following facts.

FACT 1. The function/ € 772(0,1) —»7*(x/) is a lower semi-continuous
mapping of (772(0,1),W) onto [0,00]. Moreover, for any 0 < A < o0, the
sets Aj = {/ e 772(0,1) : 7#(x/) < A} are compact in (772(0,1), W).

The proof of Fact 1 is due to Lynch and Sethuraman (1987) (see e.g.
Lemmas 3.3 and 3.4). Recall that when (£,T) is a metric space, a map-
ping 0 : £ —»[0,00] is lower semi-continuous whenever, for each sequence
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en —r e in £, we have 0(e) < liminf*oo 0(e,). Denote by J\ the clas-
sical Skorohod topology (see e.g. Skorohod (1956) and Billingsley (1968),
pp. 111-123). This topology is metrizable and such that, whenever / is
continuous, /,, — f is equivalent to /, f. Note in general that

fn Wfnr fn i f fn ~*W fe

FACT 2. When To = oo and T\ = —e0, / —»Jyif) is a lower semi-
continuous mapping of (017(0, 1),Ji) onto [0,00]. Moreover, for any 0 <
A< oo, the set A*= {/ € BV (0,1) :J*(/) < A} iscompact in (C(0,1), U).

The proof of Fact 2 is due to Varadhan (1966). It follows readily from
(2.12) that, for To = oo and Ti = -00, A* is composed of absolutely con-
tinuous functions on [0,1]. Thus, the compactness of A\ in (BV(0,1),Ji) is
equivalent to that of A> in (BV(0,1),i7).

Consider now a sequence /,, = (/,,)+ —(fn)- € SV (0, 1), and assume
that fn -qvj /, or equivalently, that (/,,) ->w /(x) and / = /(+) - /().
Applying Fact 1to (/,,) + and (/,,)_, we obtain, by semi-continuity of on
(IR(0,1),W) and by (2.14),

(2.16) I*(/(H) + I*(-/(_j) < IminfI*((/,)+) + liminfd*(-(/,,)_)
< 1imigf{d4r((1,)+) + </*(-(/.)-)}
= limjpf Jyifn)-

Consider now the decomposition (2.6) applied to /(x)- We have namely
(2-17) f(£){s) = j [/(@)(u)du+ /(fj(s) for - 00 < s < oo.

By (2.4)-(2.7), we see that, without loss of generality, we can choose the
representatives of /(x) and f+ in such a way that the following inequalities
hold:

(2.18) [x(u) < /(x)(u) for —o00 < u < o00.

[Notice that if B+ = {u£ [0,1] :/+(u) > /(x)(u)}, B+ is measurable and
such that, by (2.4)-(2.5), i"£(Bx) < i/(x)(Bx). By eventually extracting from
B+ a set of Lebesgue measure 0 corresponding to the singular components
of vt and i'(+-), we see that this implies that the Lebesgue measure of B+ is
0] '

It follows from (CI-2-3) and (2.18) that

(2.19) Jg V{zf+{u))du <  A(z/(x))(w)du.
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By (2.12), (2.14), (2.19) and the obvious fact that —/i5"=
/(+} - /(fj, we have

(2.20) JUif) —~*(/+) + < I*(I(+)) + I*(~I(-))m
Combining (2.16) and (2.20), we obtain
(2.21) o/*()< liminfe/*(/,),

so that J* is lower semi-continuous on (BV (0, 1), Wj), which, in turn, implies
that and uare closed in (BVc(0,1),VFi) [recall that 0 : 1 —+[0,00] is
lower semi-continuous on a metric space (£, T) iffthe set {e &i :0(e) < A}
is closed for each A>0],

Since by (2.14),

(2.22) Ax = {fe BV(0,1) :J«(/+) + o/*(-/-) < A}
c {/€ W(0,1) :3*(/+) < A and J#(-/_) < AL

Fact 1 implies that from any sequence {fn} we can extract a subsequence
{/r»y} such that {fn-)x -»w /(z) e 7/?(0,1). Therefore /n> -»wq [/ :=
[(+) - /(L) and A* is relatively compact in [BVc(0,1),W\). Since A\ is
closed in (BVc(0, I),VFi), it follows that A™ is compact. A similar argument
proves that A\iVis compact in (BV(0, I),Wi).

The fact that A® and A*\Vare compact in (BV(0,1), 17) when To = o0
and Ti = -o0o0, is a direct application of Fact 2. The proof of Lemma 2.8 is
now complete. O

LEMMA 2.9. Under (Cl-2-3), the mapping Jy :f G BV(0, 1) —T*(/)
is lower semi-continuous on (BV(0, I), W).

PROOF. Observe that, the topology W\ being stronger than W, a
set may be closed (or open) with respect to W\ without being closed (or
open) with respect to W. Thus, the just proven fact that 7* is lower semi-
continuous on (BV(0,1), Wi) is not sufficient to prove that the same holds
on (EP(0,1),W).

Fix a A > 0. By convexity of ~ and since To > 0 and Tj < 0, we
obtain readily from (2.12) that there exists a C = C\ < o0 such that
A\ ¢ BVc{0,1), where BVc(0,l) is as in Lemma 2.5. By this lemma,
(BVc(0,1),IF) is a compact metric space. Therefore, all we need is to show
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that A* is complete in (BVc(0,1),PV), with respect to a metric defining W .
Consider therefore a sequence {/,,} C A* such that

Jim sup  dW[fm,fn) = 0.

N->00 m>N, n>N

Since, by Lemma 2.8, A\ is compact in (BV(O, I),Wi), the set £ of all
possible Wi-limits of subsequences of {/,,} is non-void. Moreover, if /,» —\W
f and fnii —w f", then we have also fni>—>wf and /"<§ — " m Since
dw fn'l) 0) it follows that /' = /", and that £ = {/} consists of
one single function / € BP(0,1). If d\y(fn,f) ~h 0, then, there exists a
subsequence {/ny} such that liminfJ_0dw{fnj,f) > 0. However, since A>
is compact in (BVjO, I),Wi), one can then extract a further subsequence
which converges to / in [BV{0,1), W). Since this is impossible, we see that
fn —»w /e This proves that A™ is complete (and hence closed), as sought.O

In the sequel, we will use the following notation. Let P = {o < 0 <
t\ < ... < m1 < rn = 1} define a partition of [0,1], and set d{P) =
max{q, #- Ji,..., r, —rn_I}. We will denote by d(P) —+ 0 the fact that
P belongs to a directed net M, under the partial order defined by inclusion,
and that d(P) —*0 (in the usual sense) along >/. Let further

o ~ ({Tj-1)\
(2.23) Jlv(f) = V< o { Wr-- 1%
and
_ [ *(/(»-2) -1(1j-x))*
=»1* 1 vii )Nt 5:3 My v(r,-r,_x)
(2.24)

LEMMA 2.10. Under (CI-2-3), we have, for any v > 0, P, partition of
[0,1], and fe B V (0,1),

(2.25) =i+ )+ (1) <JE.(/+)+

Ad<iv{f-(-) + Njlitl(—/-) = J<tiv[f).

PROOF. Since 'P(O) = 0 by (C2), we see that for any —e0 < x < 00,
'i'(z) = ™Ma:+) + i (—x ). Therefore, the first equality in (2.25) follows
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directly from (2.23)-(2.24). For the next inequality, observe that / = [+ —_,
so that for r,_i < r, we have

(226) (/(r) - I(r-))* = (U+(1) - 1+(*_)) - (-(r) - I-(r,-))*
<1i(l) - /+(r-)-

By (CI-2), 'I'(*) is non-increasing on (—€0,0] and non-decreasing on
[0,00). Thus, the first inequality in (2.25) follows from (2.23), (2.24) and
(2.26)

Since the last equality in (2.25) is stated in (2.14), all we need is to prove
the inequalities

(2.27) JE, (/) < J*u(x/) forall / G 772(0,1).

The proof of (2.27) is due to Lynch and Sethuraman (1987), who showed
(see e.g. their Remark following Theorem 3.2) that

(2.28) sup j £ v[£f) = Jyi(xf) forall f € IR(0,1).

O

LEMMA 2.11. Under (Cl-2-3), for each f G BV(0, I); there exists a
directed net M of partitions of [0, I] such that d(P) —0 along M, and

(2.29) a* d(P) —»0.
PROOF. For any P as given above, define

(2.30) /'(.)

E(I(*) - I(1-))* + — (/W - /h-i))*

for <s<Tk 2<k<n,

[+(s) = n—/(ri)i— for 0 < s < tv

It follows readily from (2.2) and (2.30) that one may define a net U such
that
(2.31) fl -+w f£ as d{P) - 0.

A weak neighborhood of f+ in /R (0,1) is defined by a finite set {ry, 1<
j < K} of continuity points of f+ and e > 0 as N(ft) = {g G IR(0,1) :
B{Ti) ~ /x(ri)l < e 1<]j < 7i}. Since the weak topology on 772(0,1) is
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metrizable, for each /, there exists a countable basis of such neighborhoods,
which may be defined by an increasing sequence of continuity points {tj}
defining partitions P\ c Pic ... c Pnc . . with d(Pn) —0, and a sequence
e = en i 0. Obviously, the net defined by Pi, Pi,.m, satisfies (2.31).

Since Jy is lower semi-continuous on (.BV(0,1)W) by Lemma 2.9, it
follows readily from (2.31) that, along M,

(2.32) J¥,u(2/1) < JminfJ*iMzft) = Ijminfj£ v(xft).
Combining (2.27) and (2.32), we obtain that j£ v(xft) —+ v(£/%) as

d(P) —0. In view of (2.14), this proves (2.29) and completes the proof of
the lemma. O

2.3. Large deviations

We now assume that —ip, so that, by Lemma 2.1, (CI-2-3) hold if (Al-2)
are satisfied with B = 0. We will assume here that these conditions hold.

Let P={ro<0<ri<...<rn. <r,= 1} define a partition of [0,1].
Define, for any subset B of 517(0,1),

(2.33) J*AB) = jgk JIA B) = jaf,d{M),
and
(2.34) K =
{(*!,-e¢,*») € R" :v{A * )n+ A v(r." T.X))(r*~r«~0} > Jlv(B)}-
Note for further use that for / ¢ BV (0,1) and B ¢ BV (0,1),
(235) j'Af) > J'AB)
o (/(d),ffa) - /(ri),..., I(r,) - I(rn_i)) € F%.

LEMMA 2.12. Assume that (Al-3-4) hold. Then, for any closed subset
Fof R we have

(2.36) limsup A-1 logP(X~1S (A) G F) < -I<,{F),
X200

and for any open subset G o/R, we have

(2.37) liminf A-1 log P(A-1S(A) ¢ G) > -1JG),
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where we set, for each H C R,
(2.38) = injj xp(x).
PROOF. Cramer (1937) and Chernoff (1952) (see e.g. Theorem 3.1 of

Lynch and Sethuraman (1987)) have shown that, under the assumptions of
Lemma 2.12, for F, closed subset of R,

(2.39) limsupn 1logP(n~1SnE F) < —H*(F),
n—+00

and for G, open subset of R,
(2.40) liminfn-1logP(n~1Sn € G) > -77(G),

where, in (2.39) - (2.40), n is integer. For each H C R, set tox(H) =
+ inf(zxy :y £ H} and H =] —oo,u>- (H)\U [+ (/7), oo[. Observe that, when
F ¢ Ris closed, F C F and /y,(P) = I*(F) = min{t/>(u>+ (P)),i/>(ci;_(P))}.
Thus, we have the inequalities for n < A< n+ land w_(P) < 0 < w+(F)

A

(2.41) P(A-X6(A)e F) < P(A_1S,, >w+{F)) + PfA"1* < w_(P))
Pin-'Sn > u;+(F)) + P(n-15n< w_(P))

P{n~1Snel).

N

Thus, by combining (2.39) and (2.41), we obtain (2.36). The proof follows
along the same lines when u>_(F) = 0 (resp. u;+(F) = 0).

Assuming now that G is an open subset of R fix any e > 0 and choose
F=1[a6 CG with—e0 <a<6<0<o000r —e0 <0< a<bc< oo, and
IN(F) < 7MG) + e = o0 if 77(G) = 00). It is readily verified from
the Cramer (1937) and Chernoff (1952) theorems that in this case we have

(2.42) Jhrm*n-1logP(n~1Sn€ F) = -I*"F) € [-7*(G) - e,-J*(G)].
Since, uniformly over n< A <n + |,we have ultimately as n —o00
(2.43) PIA-~"[AJeG) > P(n~15,€ P),

we obtain (2.37) by combining (2.40), (2.42) and (2.43) and by choosing
e > 0 arbitrarily small. O
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REMARK 2.2. The Cramér (1937) and Chernoff (1952) theorems show
that for any v+ > 0 (resp. < 0), we have

(2.44) lim n-11logP(n~1Sn > w+) = -ip(0j+)
(resp. lim n-1log P(n~1Sn < u>) = -ifi(aj-)).

Since t/>(-) is convex, it follows readily from (2.44) that for any sequence un
such that un > 0 and u,, — 0 as n — 00, we also have

(2.45) lim n_1logP(n_1Sn > v+ - un)= —/>(w+)
(resp. nllnng n~xlogP(n-15n < + Uu,,) = —/>u;)).

On the other hand, (2.45) is not true in general if un is negative [consider
the example where P(X = I) = P(X = —1) = 1/2; we have P(n_15, >
) = 2“" while P(n_15n > 1) = Q]

By combining (2.45) with the first inequality in (2.41), we obtain the
following extended version of (2.36). Under the assumptions of Lemma 2.12,
for any closed subset F of R, we have

(2.46) limsup A-1 log P(r(A)-1S(A) GP) < -I"F),
X —00

where r(A) is any function of Asuch that A 1r(A) —1 as A—oo0.

Likewise, the arguments used for the proof of Lemma 2.12 show that,
under the assumptions of this lemma, for any open subset G of R, we have,
for any such function r(-),

(2.47) liminf A-1 log P(r(A)-1S(A) G G) > -11G).

LEMMA 2.13. Assume that (Al-3-4) hold. Fixn > 1anduq > 0,...,
wn > 0, and set for A> 0

i «3
(2.48) VXi = A-1{S(]r AW)) - S(%2 Aty;)} for 1<t <n,
3=1 3=1

with the convention that X)o() = 0- Then, for any v > 0, and F, closed
subset of R", we have

(2.49) limsup A-1logP((vV\i,..., vWXn) GP) < -u_1/AudU...\Mh(F)>

X —*00
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and for any open subset G 0/R n, we have
(2.50) Ii&gifif A-1log P((Wai,**e.vWAN) €G) > -v _1 N (G),

where we set, for each H ¢ Rn and >0,...,wn>0,

n
(2.51) iviwi..wn(tf) = inf{53w,-"(—) : (*i,...,*,) G #}.
=1

PROOF. Following Lynch and Sethuraman [LS] (1987), we will say that
the measures {Pa} satisfy the large deviation principle [LDP] with rate func-
tion /(e) if the following conditions hold, with 1(H) infx*h /(x):

(i) /() is positive, lower semi-continuous, and such that for each ¢ < oo,
{x : I(x) < c} is compact;

(i) For each closed set F, limsupA_,0A-1 logP*(P) < - 1(F);
(iii) For each open set G, lim infa-,amA-1 log Pa(G) > -1(G).

We will say also that the measures {Pa} are large deviation tight [LD tight]
if for each M < o0, there exists a compact set Km such that the complement
of Km satisfies

limsup A-1 \og Px(Km) < -M.
A-fD

We will consider first the case where Pa = P{ is the probability dis-
tribution of the random variable vW\,;f. In view of (2.48), an application of
Lemma 2.12 and Remark 2.2 shows that P{ satisfies the LDP with rate func-
tion 7(x) = AN e fact that the above conditions (i) are satisfied
for this choice of /(¢) is a consequence of Lemma 2.1. Moreover, Theorem
3.1 of LS (1987) shows that P{ is also LD tight.

The proof of Lemma 2.13 now follows from Lemmas 2.7 and 2.8 of LS
(1987). By these lemmas, ifPa:= Pf X ... X P”,and if the P{ are LD tight
and satisfy the LDP with rate functions /*(¢) for 1= 1,..., n, then, so does
Pawith rate function ~(xi) 4----- Kln(xn). The conclusion follows from the
observation that Va,I>ee«>"An are independent. O

LEMMA 2.14. Assume that (A-I1-3-4) hold. Let v > 0 be fixed, and
denote by Z\ G BV(0, I) the function defined by Zx(t) — A 15(At) for
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O0<t< 1 and A> 0. Then, for any C > 0 and for any closed subset 7 of
(W C(0,1),W), we have

2.52 limsup A-1 logP{yZx € 7) < -v~137M\V7),
(2.52) P gP{y ) M7)

and for any open subset § of (BVc(0,1),W), we have

(2.53) liminf A-1logP[vzx € Q) > -v~1I

PROOF. Forany P= {ro<0<d <...<m= 1} setin-=r-- r,_X
fort = 2,...,n, and (see e.g. (2.48)) VXji = ZX{Y.)=i wj) ~ *a(E}=i ™)) for
t=1, ,n. Inview of (2.33)-(2.35), we have

(2.54) P{yzx€ 7) < P{IN{ZX > Ipv7)) = P((VXL, ... ,VXiH) € Fp).

Since Fj, as defined in (2.34), is closed in R", it follows from (2.23),
(2.51) and (2.54) that

2.55) limsup A-1logP(vzxe 7) < ~v~11~, MG (FT) = -v-1</E ().
(2.55) p gP(vZxe 7) v Wi (F1) ()

We now make use of the assumption that 7 is closed, which, by Lemma
2.5, ensures that 7 is compact in [BVc(0,1),W). Consider a directed net
Al of partitions P such that d(P) —0 along A/. Noting that tp is a convex
function and that 7 is compact, for any P G A/, there exists an fp such
that j£ v{fp) — J$iM7). Recalling the notation (2.30), set fp = fp —fp
for any partition P and / £ 5P(0,1). Recalling that the total variation
of / € 13P(0,1) on [0,i] is W[t (i) = f+{t) + f-{t), we have the following
inequality, where dly is as in (2.10).

(2-56) dw{fjP )< ap.|/|u(l).
For the proof of (2.56), we observe that, by (2.10) and (2.30),

dw{f.fP)= [1\f(s)-Tp(s)\ds= r\f(a)--f(r)\da

+t P k* - /(r,-i) - - I(«-.))\is

i=2 Jt>-i o~ r*-|

< {1/Unn +BI/M*) - 1.Oi-iHfa - *.)}

v .
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It follows from (2.56) and from the definition of f p, that dw{f, fp) <
for each / €7 C BVc"O,!). Moreover, we have

(2.57) JIAT7)=JIAfr) = J*Afp)-

Since 7 is compact in (BVvc(0,1), w), there exists a sub-net X of X, and
and f E 7, such that fp —w /, or equivalently by Lemma 2.4, dw{f,fp) —»
0 along X. Since d(P) —0 along X, we have by the triangle inequality
dw{f, fp) < dw{f, fP)+ ~p C —»0 along X. Since, by Lemma 2.9, is
lower semi-continuous, this, in combination with (2.57), implies that, along

On the other hand, (2.25) readily implies that Jsv(7) < J~v{7), soO
that, by (2.58), we have, along X,

(2.59)

Combining (2.55) and (2.59), we obtain readily (2.52) by choosing P such
that V{7, is arbitrarily close to J~ v{7).

Consider now an open subset ¢ of (SVc(0,1),V*). Since (2.53) is ob-
viously true when J*v{5) = °°> we may limit ourselves to the case where
JMNv{5) < °°- Fix an arbitrary e > o, and select g E Q such that J*iMg) <
Je,v{5) + £- Since Q is open, by Lemma 2.4, there exists a /2> 0 such that
Vi := {7/ e Bvc(o,1) : dw{f,g) < p) C Q. Let now P be an arbitrary

partition of [0,1] such that d(P) < £, and set V" := {fp E BVc(0,1) :
dw[fP,gP) < \p3. By (2.56), for any fp ¢ V', we have

1 10C
(2.60)  dw[fp,g) <dw{fP,gP)+ dw(gp,9) <-p + =p,

so that v* C vj, C Q. Observe that, for any / E J3Vc(0,1) and h E
5Vc(0.1), we have

(2.61) dw{fP,9P)
Ti+l - T)K{F[Ti) - g(Ti),f[Ti-i) - g{Ti-1))}
L i=2
+ 1/(1)-0(1)1,

where

2
if |tt|+ 1 > 0, and K(u,v) = 0 otherwise.
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Set now xi = /(rj), x{=/(r,) - /(r,_i), yi = y(ri), y, = y(r.) - yfa-i),
and observe by (2.61) that

(2.62) dw{fP,gP) < 2n r&a&hm - Y

Moreover, we have

(2.63) = "W e * (V[r. <*-

= H (xI,...;1,).
Since H(yi,..., yn) - J*v(gP) = J$iMg) < Jl=v(g) < oo by (2.25), we see
that #(*) is continuous in the neighborhood of (yi,...,yn)- Therefore, we

may select a I < ~ such that, if Gg = {(zi,... ,zn) € R" :maxi<,<n |z- —
y,| < £}, the following conditions hold:

(i) Gg is an open subset of Rn;
@) (i,. ..,»,) EGs=>fPe v

(UI) }..vwn (GS)
= inf{E,"=ivwinr (~:) m(zi.**e.*») € Gi} € [+/£,($) - e , " iU«

where v = T\ and =r-—r, i fora=2,...,n
Next, using the notation of Lemma 2.13, we see that

piX-lzxeg) > p ((a-% ); 6 v;) > p ((vail,..., va»)€G i),

which, when combined with (2.50)) and (i-ii-iii) above, yields

> —v~1J7v(g) > -v-"j+pig).

Since we have chosen y in such a way that —NIMg) > ~J~N(5) - «,
(2.53) follows from (2.64) by letting e > 0 become arbitrarily small. O

3. Functional Erd6s-Rényi theorems

Throughout this section, we will assume that (Al-2-3-4-5) hold with p = 0.
We will let jX{T and 7t be as in (1.1) and (1.2), and assume that {ax, T > 0}
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satisfies 0 < ax < T, together with (K2) with 0 < ¢ < 0o. We assume
specifically that

(3.1) aj/llogT —*c€ (0,00) as T —»oo0.
For each ¢ > 0, we will set Zt = ¢?T = {cf :/ G7r}, and
(3.2) JW = {/eBV (0,1): «/* *(/)< 1),

where cis asin (2.13), with $ =xp, v=¢, To=to and Ti = ti.
It follows from Lemma 2.8 and Facts 1-2 in Section 2 that D\WV is a
compact subset of (BV*O, 1), W). Moreover, if in addition to = oo and
= —o0, Dpwis also a compact subset of (BV (0,1), U). It will be convenient
to use the following notation, with dw as in (2.10). For any B ¢ BV(0, 1)
and e > 0, set

(3.3) Be —{/ € BV(0,1) :dw[f,g) <e for some g G B}.

THEOREM 3.1. Assume that (Al-2-3-4-5) hold with ft = 0, and that
(KI1-2) hold with 0 < ¢ < 00. Then, for any e > 0, there exist almost surely
aC < oo and aT(e) < oo such that, for all T > T(e),

(3.4) Dy,<Ct& C DAc and Zt C BVc(0,l).

PROOF. The proof will be achieved through the following successive
steps.

STEP 1. Set An = [clogn], and 7mn(s) = cA“1(5(m-|-Ans)- S(m)) for
0O<s<land m=0,1,...,n. Let further Kn= {7Tmn:0 < m < n —en},
for en= Anoren= 1 Forany Zc¢ BP(0,1),

(3.5) P(Kn£t) = P{ U {imn££})< nP(cZAn ££),

O<m<n-e,

where Z\ is as in Lemma 2.14, and n > elI®

STEP 2. Observe that |7m,,]|,,(I) = cA~I [*m+»|-  Set 0(i) =
E(e*W). Obviously,
/ 0- ro
(3.6) e~txdP(X < *)+ / etxdP (X < Xx)
=D Jo

< <) + <>[-) < oo for |i|] < min(to, —*i).
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Thus, by applying Theorem 1.2 to the partial sums of the sequence
{\Xn\, n > I}, we readily obtain that there exists a constant C = C(c) < oo
such that

A%{qu%—en [7m,,,lu(l)} = EC a.s.,

which in turn implies that, almost surely for all n sufficiently large
(3.7) Knc BVC(0,1).

Throughout the sequel, C will denote a generic positive constant such
that (3.7) holds. We will make use of the following variant of (3.3). Let, for
B€BVc{0,1),

(3.8) Be= {/ «€BVc(0,1) :dw(f,g) <e for some g E B}.

Note that Be as defined in (3.8) depends upon C. However, and in view
of (3.7), this dependence will not affect our arguments in the sequel. We
will choose without loss of generality C < oo (this is possible by Lemma 2.8
and Fact 1) so large that

(3.9) 5Vc/2(0,1).

STEP 3. With the conventions of Step 2, and by assuming C sufficiently
large, it is readily verified by the triangle inequality that X*is almost surely
ultimately included in P*e& whenever

(3.10) P{Kn £ K ei-0-) = 0.

Denote by 7 the complement of DE cin BVc(0,1). Obviously 7 is closed,
and therefore compact, in (BVc[0,1),W). Moreover, 7 satisfies JNi7) =:
1+ &> 1 An application of (3.5) with i = D”c and of (2.52) with v = ¢
and A= An now shows that for all n sufficiently large

(3.11) P(Knt p;<9 <nexp(-A,c-1(1+ \ﬁ)) <

Introduce now the sequence of integers n* = max{n : An —k}. Recalling
that An = [clogn], we see that n* is properly defined for k > ko, where
ko is large enough. Moreover, e*/c < nk < e(fct])/c, and Kn ¢ Knt for
n" i <n<ncandk >ko+ 1 Thus, (3.11) is equivalent to

(3.12) P(<nkt Kc i-0"(in k)) = 0.
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By (3.11), we obtain that, for M sufficiently large,

0o [e]e] [e]e] ic

(3.13) £ P(Knkt fyc) < £ ni6R2< £ eXP(-":) <°>
k= = k-M

M k=M

so that (3.12) follows by Borel-Cantelli. This, in turn, proves that (3.10)
holds.

STEP 4. Let Rn = [(n- An)/An}, and set Mn = {7rA,n: 1< r < R,}.
Observe that M C Knm Select now any / € PMCand e > 0, and set
K{f) = (¢ € BVC(0,1) : dw(f,g) < e}. Since Q = Ke(f) is open in
[BVc(0, 1),W) and =: 1—5 < 1, by (2.53) and making use of
the independence of the 7ran,n for r = 1........ fin, we obtain

(3.14) P{ftM h)

P{ fl (7rAn,ntMf)})
1<r<Rn

(1- P{cZAne >/,(/)))*»
exp{-RnP{cZAn e

A

A

exp(-A,exp(-c-1A,,(I - ?)))

N

expt-n*/2)

for all n sufficiently large. Since by (3.14) J2np [f £ .M*) < 00, the Borel-
Cantelli lemma, when combined with .Mh C Kn, shows that

(3.15) P{fi<n i.0) = 0.

STEP 5. Since P*c is a compact subset of (BVc(0,1),W) by (3.9),

for any e > 0, there exists a finite sequence with /, € P~x for
t=1,...,m, such that PAc C (JEi -Ne/2(/«)» By applying repeatedly (3.15)
with the formal replacements of / by /, and e by e/2, fori=1I,...,m, we

obtain by the triangle inequality that

(3.16) P(EV,Ct Kn i.0.) = 0.

STEP 6. By combining (3.7)-(3.9) with (3.10)-(3.16), we obtain a version
of (3.4) corresponding to the formal replacements ofaj, T and Ct by An, n
and Kn. To obtain the original statement (3.4), some more work is necessary.
In the first place, we observe that the arguments given in Steps 1,2,3,4,5
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remain valid when we assume that An = [un], where uy is a function of
T > 0 such that

(3.17) uj/logT Ic and wut T°° as T f oo

We now choose ut to be any function of T > 0 such that ut > aj + 3
for T > 0 and satisfying (3.17). To prove that such a function exists is
routine analysis. Consider now g = c)Xit = cajl(S[x + Jaj) —S*z)) for
0 < x < T —ax, an arbitrary element of Ct- Let n = [T], m = [X], and
g—CcA“xX(5(m+ IAn) —S(m)) = 7mn. It is readily verified that

(3.18) g(s) = {An/aT)g(A~I{[x+ans\ - [1])) for 0<s < 1
ForO<p<1 A>0 and / € BVc(0,1), let

(3.19) H(p,\-,f) = dw (\f(pl),f).
If / G D'e, then, we obtain by (3.19) and (2.10)

(3.20) H{p, A;/) < 2(A+ De + sup dw{*h(pl),h).

Since for each h E Dig the mapping (p, A) —=*d\y{\h{pl),h) is continu-
ous, the compactness of PAiCentails that the RHS of (3.20) can be rendered
less than an arbitrary 0 > Oforall0 <e<eo, Po<P< land Ao< A< 1,
with eo > 0 sufficiently small and po < 1, Ao < 1sufficiently large.

It follows readily from (3.18) that, for all n sufficiently large, we have

(3.21) sup dw{g,9) < ©

We now apply (3.10) (with en = 1) and (3.16) (with en = An), combined
with (3.21) and the fact that e > 0 and 0 > 0 can be chosen as small as
desired to conclude that (3.4) holds. O

THEOREM 3.2. Assume that the assumptions of Theorem 3.1 hold, and

that to = oo and t\ = —e0. Then, for any e > o, there exist almost surely a
C < oo and aT(e) < oo such that, for all T > T(e),

(3.22) iVccee Cvin.
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PROOF. We will show that Theorem 3.2 is the consequence of Theorem
3.1 when combined with the following two statements.

STATEMENT 1. For any e > 0, there exists a 8 > 0 such that, uniformly
over 0< s'< 1, 0<s"< 1, |s'- s"\ < 8and g E DMG we have

(3.23) \g(s')-g(s")\<e.

STATEMENT 2. For any e > 0, there exist almost surely a 8 > 0 and a
Tc < oo such that, uniformly over0 < s' < 1, 0<s" < 1, \s —s"| <8 T >
Te and / E Ct, we have

(3.24) [/(0 - /(O] <«

We conclude the proof in three steps.

STEP 1. We show that Statements 1 and 2, when combined with The-
orem 3.1, imply Theorem 3.2. Let e > 0 be fixed, and let 8 > 0 be such
that both (3.23) and (3.24) hold for g € P*iCand / E Zt, T N Tt. We

will show that these conditions imply that, uniformly over g E and
| € Ct, T >Te,
(3.25) dw {f,g) <e8 =\\f- g\ < 6e.

To prove (3.25), set ¢ = \\f —y||. There is nothing to prove if ¢ = 0.
When ¢ > 0, let 0 < s < 1 be such that |/(s) - <Xs)| > ¢/2, and let [a, 6] be
an interval of length 6 with 0 < a <s < b < 1. By (2.10), we have

dw{f,g) >j |/(«) - fif(u)ldu > 5]/(s) - j(a)l - 28e > 8{]| - 2e),

which in turn readily implies (3.25).
Assume now that (3.4) holds with the formal replacement of e by e6. By
(3.25) , we have then

pec Cpc Pff,
which, since e > 0 may be chosen as small as desired, suffices for (3.22).

STEP 2. To show that Statement 1 holds, it suffices to combine Fact
2 with the fact that the mapping (f,8) —=*sup{|/(s') —f(s")\ : 0 < §' <
1, 0<s" <1 Is- s"\ <5} is continuous on (C(0,1),[/) x R.
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STEP 3. By Section 2 and Theorem 5 of Deheuvels and Devroye (1987),
we have

(3.26) max max {5,+-- 5}/(logn) —na+(u) a.s. asn —»oO,

when k = kn — [logn] and v > 0 is arbitrary. Under the assumptions
of Theorem 3.2, it is readily verified from (2.1), (2.2) and (1.17) that i0 —
00 => ua+(v) —0 as v J 0. Repeating a similar argument with the formal
replacements of max by min and of ¢ {) by o._ () in (3.26), we see that
Statement 3 is a direct consequence of the fact that uax(u) —=0as v | 0,
and (3.26).

The proof of Theorem 3.2 is now completed. O

REMARK 3.1. In view of (1.19), there is no possible functional form of
the Erd&s-Rényi (1970) theorem with the topologies U and W when t\ =
0 < to°rti < 0= to. The problem of finding a topology which would render
such a law possible is open.

4. Applications

Let K (*) be a functional defined on BV (0,1) and continuous on (BV (0, 1), T)
where T will denote either the weak topology W, or the topology U of uni-
form convergence. A direct application of Theorems 3.1 and 3.2 is stated in
the following corollary.

COROLLARY 4.1. Under the assumptions of Theorem 3.1, if T — W,
then

(4.1) lim {_ su >C(ca™1(5(x + Jaj) - 5(x)))} = sup K(g) as.
T—o0 0<i<T-aT

Likewise, (4.1) holds under the assumptions of Theorem 3.2 when T = U.

PROOF. Straightforward (see for instance Section 5 in Deheuvels and
Mason (1991a)). A typical example of functional K is given by A(f) =
+/(1). An application of Corollary 4.1 in this case yields directly Theorem
1.2. Interestingly, by using the convexity of mand (2.13), it is readily verified
that the functions g which maximize the right-hand-side of (4.1) are linear
in this case, and of the form

(4.2) g(s) = scax(c) for O0<s< 1l
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The computation of the constant on the right-hand-side of (4.1) leads to
a variational problem in an Orlicz-type space. Deheuvels and Mason (1991)
have treated this problem in the special cases of the Poisson and of the
exponential distributions, the latter being of great impotance for applications
to empirical processes. However, their methods can be adapted to the general
case considered here.

Extensions of these results to other processes which may be derived from
partial sums, such as renewal and cumulated renewal processes will be con-
sidered elsewhere.

5. Discussion and further comments

The essential part of this paper originated from discussions | have had with
David M. Mason in 1987. We were working on tail processes (see e.g. Mason
(1988), Einmahl and Mason (1988), and Deheuvels and Mason (1990)), and
made use of the remarkable large deviations results of Lynch and Sethu-
raman (1987), which were instrumental in the study of quantile processes.
Because of the similarities of empirical and partial sum processes, it weis
obvious that one could obtain a functional form of the Erdés-Rényi theo-
rem of the form given in Theorem 3.1 by the same arguments. In fact, the
large deviation principles of Lynch and Sethuraman (1987) are sufficient to
obtain such a result for partial sums of nonnegative random variables. Like-
wise, one may use Varadhan (1966), but here the restriction that to — oo
and ii = -00 is needed. In 1989, | attempted to join efforts with James
Lynch and Jayaram Sethuraman, and to write ajoint paper concerning these
Erd6s-Rényi laws in the general case. However, we ended up in shifting our
interests to different aspects of this problem, James Lynch and Jayaram
Sethuraman being more interested by large deviations for the positive and
negative parts of the partial sums, while my own concern was limited to
the study of the fluctuations of partial sum processes. It is likely that their
results will enable in the future to obtain refined versions of Theorem 3.1,
as far as the topological aspects are concerned. By all this, it turns out that
these two authors have in hands, to my best knowledge, unpublished results
which come close to Theorem 3.1. | wish also to mention that, after | had
submitted this paper, | learned from Endre Csaki that K. A. Borovkov had
made in June-July 1989 a communication at the Fifth International Vilnius
Conference, in which he obtained a result essentially identical to Theorem
3.2 for Revalued random vectors (see e.g. Borovkov (1989)). The list of
authors who may have good reasons to share parts of Theorem 3.1 and 3.2
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is very likely not complete. To whom must go the credit of the discovery of
these functional laws will be judged by history and is not very important to
my point of view. The Erdds-Rényi theorem in the case of partial sums is
only a piece of a very large puzzle in a much wider setting. W hat is however
extremely important to point out is that the first paper which motivated
all these developments is the “new law of large numbers” discovered by Pal
Erdds and Alfred Rényi. Interestingly, a version of the Erd&s-Rényi law
had been given by Shepp (1964) quite a few years before was published the
afore-mentioned Erdds-Rényi (1970) paper. However, the interest into these
results really began in 1970, which fully explains why these strong laws are
named after these two scientists.

It is a great priviledge for me to dedicate this paper to the memory of
Alfréd Rényi whose example has greatly stimulated my own work in the field
of probability and statistics.

ACKNOWLEDGEMENTS. | wish to thank the referee for his helpful com-
ments.
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THE ISLAMIC MEAN: A PECULIAR L-STATISTIC

H. G. DEHLING, J. N. KALMA, C. MOES and W. SCHAAFSMA

Abstract

We study the limit behavior of the islamic mean Tn, a certain L-statistic with
moving weights. Under some regularity conditions, Tn is a consistent and asymp-
totically normal estimator of the median. Nonstandard limit results are obtained
in case the regularity conditions are violated.

1. Introduction

Let Xi,...,Xn be a sequence of independent random variables, each having
the same distribution function F(x) = P(X < x). Let A[nd],..., AL,.n]
denote the order statistics of the first n observations. If n = 2t then the
arithmetic mean can be computed by taking pairwise averages. The first
run results in 2(-*[n:1] "I Nm2])> 2(-N[n:3] ~b A[n:4])> e« «>2('"*[n:n—4] "b A[n:n]).
The second run is executed by applying the same procedure as above to the
2fc 1 pairwise averages in the first run. In this way one obtains an increasing
sequence of 2*~2 numbers and one can continue the procedure until after k
runs a single number is obtained, which is the arithmetic mean.

The islamic mean is obtained if the above-described procedure is modified
by allowing overlap. More precisely, we define inductively

M>,1, eem>Fio<n o AN
and Mh+i'i = It is easy to see that
for1= 1,..., n—h. The final result Mn_i i is the islamic mean. Henceforth

it is denoted as

n

Tn —) Ju,ni-?(n:i]
1=1
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where the weights are given by

wni = 97+l
The islamic mean was brought to our attention by S. A. Mahmoud (1987).
He gave a theological motivation, derived from the fact that the prophet
prays at one third, one half and two thirds of the night. He also noted the
representation of the islamic mean as a linear combination of order statistics.
Note that the weights tum correspond with the probabilities of a binomial
distribution with parameters (n- 1,]|). As this distribution centers around
we are led to conjecture that Tn is close to the sample median

Ti 1 -*[n:2+l] n odd
n 1 2(*[»:“]1+ *[n:f+i]) «even

We thus try to establish asymptotic properties of Tn by studying the differ-
ence Tn—Tn and by using the well-known asymptotic properties of T,,. Under
some regularity conditions we can indeed prove that

nY2(rn- Tn) - 0 in probability

with as a consequence that

in distribution. Obviously, we have to assume that the median £1/2 =
F-1(1/2) is well-defined and that / = F1exists and is continuous in a
neighborhood of £1/2- I« addition a weak moment bound is required. We
will prove these results first for the special case of a uniform distribution
on [0,1]. This is needed for some of the proofs in the general case. In the
final section we study the limit behavior in some cases where the regularity
conditions are violated.

REMARK. The extensive literature about L-statistics is surveyed in
Shorack-Wellner (1986). However, all known results are either concerned
with a single quantile or with linear combinations of the form

n+1

where the score functions Jn : [0,]] — R converge pointwise to a limit
function J(x). The islamic mean is peculiar in the sense that its weight
generating function Jn converges to a Dirac delta function.
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2. The case of a uniform distribution on [0,1]

Suppose now that the random variables X{ are uniformly distributed on [0,1].
The Glivenko-Cantelli theorem implies that supo”** | - X\ tends to O
with probability 1. Here Fn denotes the empirical distribution. It follows
immediately that almost surely

max ~

n+1
and hence
H wni n+i) O
=1
which is equivalent to
1

almost surely.

PROPOSITION 1. If the underlying distribution is uniform on [0,1] then
nd*(r,,- m,) - MG,
in distribution.

REMARK. Since the sample median is known to be asymptotically nor-
mal, we can infer from Proposition 1 the asymptotic normality of Tn. This
can also be deduced from a general result of Hecker (1976). However, the
statement of Proposition 1 is strictly stronger than asymptotic normality
and we will need later that n/2(Tn - Tn) = op(l).

PROOF. Let Yi,... ,y,,+i be independent random variables with an ex-
ponential distribution with probability density /(y) = e_vl[0,00)(y)- Let
Zj = Yi+ ... +Yj be their partial sums. It is well-known (see e.g. Breiman
(1968)) that the vector (z"j, mm, ~"7) has the same joint distribution as
the uniform order statistic (X[n;i],..., X[n:nj). For notational convenience
we restrict the attention to odd n so that we can write

nd4(Tn- T') A -ZN).
Zn+1 =1
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As nZn+i —1 in probability, it suffices to show that

Dn~ n-1/4f > m(Zt- Zazi) - AT (0,~")
t'=1 2
in distribution. As Jf = ~J.=1 T we get
£ «nd=£(wm X =S
<=1 1= 1 Ife=1 A4

and thus

0= neve £ (£ ~DyBr X, (E W)

A=l =Jt
1/4 4
=n- - +
’?S' \ t>=<| k=>rgA \i§

To this sum of independent random variables we can apply the Lindeberg
central limit theorem for triangular arrays. The Lindeberg condition is easily
checked, it remains to compute the variance. By symmetry we have

<1
tUhi
var(D”) =" 2?2 || £

Now let Bn-1and B'n_I be two independent binomial (n—1, |) random vari-
ables and define Mn-i = max(i?n_i, B'**). Then we can write (X*=i wni)2
= P{Mn-l < k —2) and hence

n+l
2 2
(Dn) = -= £ P(Mn-i <k- 2)=
Vn jt=1
o Tk
=7jJE E w -.=1i =
Vn *=iy=0

re+ |

A X X P(MM =i) =

* j—Ok:j+2
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&3
=4 E (A -0+2)+ =) =
V" <3 2
2 fiJ
= A E{~2 =

0 L M Dy am A fyvsris_ i),
Observe that

2~ (N r - - -x @@~ T (fN -i),s n (m - 1))

converges in distribution to V = max(M\, W), where W and W' are two
independent standard normal random variables. So finally we get

var(D,,) -¢ -EV I{V<Qy

The density of V being 2<p(x)<&(x), where $and $ are the standard normal
density and distribution function, respectively, we find

I'o I'o
—EV\2hy<o} —-2 / 4>{x)<b(x)dx = 2_/ <b(x)dx =
y<o} —-2 { xa>{<b(dx = 2,/  EIx)<b(x)dx

= 24.(X)* (X)W - 2 f

1 yl/2-1
\Z2« 27t 2>[Tr

A SMALL SAMPLE COMPARISON. If one postulates a location model
and tries to estimate the point of symmetry of a uniform distribution on
[6,6 + 1] from a sample of size 3, then various estimators can be considered
and their exact variances can be calculated. The variance of the median T1
is equal to the variance of the Beta{2,2) distribution, i.e. The variance
of the islamic mean T = j(*[i] + 2X[2] + X[3)) is equal to that of the
ordinary mean is while that of the mid-range [(X [+ A[3j) is smallest,
namely

3. The general case; consistency

To prove convergence of the islamic mean towards the population median
we have to assume that the median is uniquely defined in the sense that
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fi2 = fE (Assumption A), where
fi
)

THEOREM 1. Suppose that Assumption A holds. Then
(a) Tn converges to fi in probability if and only if
2

inf{x : P{X <x)> "},

inf{x : P(X <x)> ’I:}.

P(|X|>x)—o(—lo—gz as i-too.

(b) Iffor somee >0

oo
EnP (|X ] > ene) < oo
n=1

then Tn converges to fi almost surely.

REMARK. It is easy to see that the assumption in (b) holds for all e > 0
if and only if it holds for some e > 0. Moreover the assumption is equivalent
to the moment condition P(log(X V1))2 < oo.

The proof of the theorem requires an estimate of the tails of the weights
wni, a sharper version of which is needed in the following sections. We
therefore state this result as a lemma for future reference. Let for0 < x <1

I(xX) = xlogx+ (1- x)log(1l- x) + log2

denote the large deviation rate function of a symmetric Bernoulli variable.
Note that I{x) is strictly convex with minimum at x = | and /(]) = 0.

LEMMA 1. Forr < + 1 we have

J(1—1) _ ———(" log 27T+
- (n—l) - n—T(Z o
1
2 n—1 '+ 12(r- D(n-r1 12n- 1)<
o1 .o r—1
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PROOF. The right-hand side is a well-known basic inequality in large
deviation theory. It can be proved by observing that

r
X Wni = PiBn~l <r~1)=

i=1
= P(etgn-1 > <
< e <r_1)EetBn~l =
= exp[-(n - D{t-—y - log(~ + Ye')}]
holds for all t < 0. Thus log(]Ci=i wni) is bounded from above by

—supt<0{i*Y —og(| + |e O} which using elementary calculus is seen to be
equal to - /(™).
The left-hand inequality is a consequence of

. _ n-n+1 ("-1!
i)(:IWn|>Wnr (r-|)|(n-l’)'

and a sharpened version of Stirling’s formula, which can e.g. be found in
Feller (1968):

N n n+l/2e el < nl < v/22nn+l/2e_neT/.

PROOF of T heorem 1. Givene > 0, let Si = F(£i +e)- 1/2 > 0 and
62 = 1/2 —F(E1—=e) > 0. Then by the law of large numbers Fn(£1 + e) —»
2 2

§ + ii and Fn(£E$ —e) —* k —s2 almost surely. Hence

limsup X, <fl+e
n-oo0 2

IR X >, - £

s v MITS
Let s —min{<5i,52}- Since by Lemma 1 we know that wni —% 1 as
n — 00, these inequalities imply n2

U~e< luninf X t"i>"[n:i] < limsup X + e

The sufficiency part of the proof can be finished by showing convergence of
the tails of the sum to zero in probability under the conditions of part (a)
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and almost surely under the conditions of part (b). By Lemma 1 we have
with a= /(") > 0

flji
K

t=] L 1+S
2

nP{\Xi\ > eena) \ n
- = - - <
< P(t:r?,?(’n |A-| > eena) = 1 \(l 0
< nP(\Xi\ > eena)

Under the assumption of part (a) we have nP(|Xi| > eena) —+ 0, which
proves convergence in probability. Under the assumptions of part (b), we

have that
0

> eena) < 00
n=1
and hence almost sure convergence follows from the Borel-Cantelli lemma.
The proof of necessity in part (a) is more delicate. We will give the proof
for non-negative random variables X{. In this case Tn > 2~nX[n:nj and hence

P{Tn >c)>P{ max X> > c2~n)

nP(Xj > c2~n)\ n
n )
Thus, if Tn converges to in probability, then nP(Xi > c2n) — 0 for
2

some ¢ > 0. But this is equivalent with P{Xi > x) = °(teh)- The pr°of
for random variables that take both positive and negative values uses the
same idea, combined with the asymptotic independence of the left and right
extreme order statistics. Details are left to the reader.

4. The general case: asymptotic normality

To prove asymptotic normality of the islamic mean, we need a stronger
assumption than assumption A, namely that the density / = F1 exists and
is positive and continuous in a neighborhood of £i (Assumption A%*).

2

THEOREM 2. Under assumption A ’the following are equivalent:
(i) n'INTn- T'") - 0 in probability.

(i)
(iii) P(IX.] > X)= .(tL).
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PROOF. It is well-known that Assumption A’ implies asymptotic nor-
mality of the sample median, i.e. n1/2(T" —£1) N (0, 4(/(*1j)2) This
proves that (i) == (ii). If (ii) holds, Tn converges to fi in probability and

hence by part (a) of Theorem 1 we have (iii). For the remaining part (iii)
== (i) note that under assumption A’ the quantile function

F *u) = inf{z : F{x) > u}

is continuously differentiable at u = 1/2 with *F _1(1/2) = . Hence

given any e > 0 there exists a ¢ > 0 such that
"M - f**H - 777]<01i - “I

if v—|| <6 and |u—i| < s. We represent the underlying random variables
X{ as F~1(U{) where the i/, are independent random variables, uniformly
distributed on [0,1]. We assume again for notational convenience that the
sample size is odd, so that we may write

n'IN\Tn- Tn) = nl2€ uhi(*M -
i-1
We split the right-hand sum into its central part
n'l2a
n " wm(™[n:»'] —-~[n:axl])
<=nV
and the two tail parts. That both tails converge to zero in probability can

be established as in the proof of Theorem 1 (the extra factor of n1/2 gets
swallowed by the negative exponential). In the central part we write

Al “ Mo.atij = flel (ni«] ~ M[n:N]) +
PR

where < e2{/[nty - f/[n;tttj.j| if Cn:y and arein [| - &,| + 5].
Note that by the law of large numbers
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converges to 1. Thus we get

P{nl/2 ~2 tim|Rm|> ¢e) <
|~r—
7(
P{ni/z2e2 » 2 wm\U[n:i]- U[n.nzij| > e) + o(l) <
t=i

N

N

- E(ez2na2 J2 MniNU[n:i] - i/[n:azi]]) + o(l) <
6 i=1

N

enl/2ru/m|~-j- - A+ o(l) <
t'=1

A

en~12E\Bn-i - - w1+ 0o(l) <

A

m-1/*(E(Bn-1 - ~ ) 2)1/2 + 0(1) <
< ez + o(D).

From Proposition 1 we get that the linear part

tl

7

converges to 0 in probability and thus the proof is finished.

5. Some nonstandard limit theorems

In the previous sections we have shown consistency and asymptotic normality
of the islamic mean under regularity conditions. What happens if these
conditions are violated? We will give an answer to this question in two cases.
First assume that the median is not uniquely defined, i.e. that there is a non-
degenerate interval of medians [*/2» C1/2]¢  this case the sample median
has a limit distribution that attaches mass 1/2 to each of the endpoints of
the interval.

THEOREM 3. If £1/2 < £i/2>an” if the tail probability assumption

pm <.)=0(i")

is satisfied, then Tn converges weakly to the uniform distribution on the in-
terval of medians.
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PROOF. We begin by showing this for a symmetric Bernoulli sequence.
Note that in this case

n Sn
Tn - A wnj —”  wnj
j=n-Sn+l j-1

where Sn = £"=1 X, has a binomial (n, distribution. By the de Moivre-
Laplace limit theorem we know that

converges to zero, uniformly in k, as n —00. Hence

r»=* (i (~" M +o()

almost surely. The distribution of the random variables in brackets converges
to N(0,1). Hence that of Tn converges to the uniform distribution on [0,1].
The proof of the general case follows now by approximating by

X- = tl/21{Xi<U/*} + N/21{AT>>2}

and by proving that the difference between Tn and the islamic mean of the
new variables tends to 0 in probability.

EXAMPLE. Finally, we want to treat Bernoulli random variables with
P(Xi = 1) = p < 1/2 as an example where £1/2 = ~ 2, but F is discontinu-
ous at £i/2. In this case of course Tn converges to 0 quicker than any power
of n and it seems appropriate to look for the exponential rate of convergence.
Precisely, we obtain the following result:

n1/2(ilogT., + J(p)) ~ N(o,flog—" 12(l - p))
n —Pp
where 1(p) is the large deviation rate function introduced in section 3.
To prove this assertion, we make use of the result of Lemma 1, which
shows that

1 m- 1
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converges to 0 provided that

0 < liminfr,/n < limsuprn/n < —

Thus it suffices to show that

»112(/( - Up))- N [log - 7
This can be established using the familiar delta method.

NOTE ADDED IN PROOF. The statistic Tn was also introduced by N.
L. Hjort {Ann. of Statistics 14, (1986), p. 54) in the context of Bayesian
estimation of the median based on the Dirichlet prior process. Hjort states
(without proof) that n2/2(T,, - Tn) —op(l) under regularity conditions on
the tails of the distribution of X. We thank R. Helmers for this remark.

ACKNOWLEDGEMENTS. We would like to thank R. Helmers, G. Shorack
and D. Weiner for their comments on an earlier draft of the paper that
helped improving the presentation, and P. Révész for a conjecture that gave
Proposition 1its present form.
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THREE PROBLEMS ON THE RANDOM WALK IN Zd

P. ERDOS and P. REVESZ

Abstract

Let {S,; n=0,12,...} be the simple, symmetric random walk in Zd and let
i'(n) = minfifc: k>0,Sk+n £ Ss (j = 0,1,2,... ,.n)}

be the waiting time needed to meet a new point. The limit behaviour of i/(n) is
investigated. Two further similar problems are also treated.

1. Introduction

Let Xi, X2,... be a sequence of independent, identically distributed random
vectors taking values from Zd with distribution

P{AX=¢}=P{X1= -e,} = (‘= 1,2,¢¢°0)
where {ei, e%..., e} is a system of orthogonal unit vectors of Zd. Let
So=0= {0,0,...,0}and S(n) = Sn=Ai+ X2+ seeXn[n=1,2,...)
i.e. {£,} is the simple symmetric random walk in Zd. Further let
£(x,n) = #{k :0 <k <n, 5* = x}
(n —1,2,...; x —(*i> eee,z-d)i —0,x1,£2,..., j 1,2,...,d) be
the local time of the random walk. We say that the ball

Q(N,u;d) |x = (xi,x2,...,xd) :|x - ul <N

1980 Mathematics Subject Classification (1985 Revision). Primary 60G50; Secondary
60F15.

Key words and phrases. Strong laws, covering of large balls, favourite values, local
time.
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(where u = (tij, u2)..., ud)) is covered by the random walk in time n if
£(x,n) > 0for every x G Q[N, u; d).

Let Rd(n) be the largest integer for which there exists a random variable
u= u(n) G Zdsuch that Q(Rd(n),u\d) is covered by the random walk in

time n i.e.
f(x,n) > 0 for every x G Q(Rd(n), u; d).

Révész [5], [6] proved

THEOREM A. (i) For anye>0andd > 3

(logn)™i-i < i?d(n) < (logn)*r2+* a.s.

for all but finitely many n,

(i) Let

60 = — and x0 = 0,42.
Then for any 0 < t/' < o Xo we have
< Ri(n) < nx as.

for all but finitely many n.
Here we prove

THEOREM 1. For anye >0 and d > 3
Rd(n) > (log «)<<-* * a.s.
for all but finitely many n.

Theorems A and 1 combined imply

THEOREM 1*. For any d > 3 we have

logRd(n) _ 1

n-*0o loglogn d—2 2%

(if) of Theorem A suggests the following

CONJECTURE. There exists a < (F < Xo such that
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Our second problem is to investigate the time needed to meet a new
point. In order to formulate this question introduce the following notation:

i/(n) = v{n,d) = min{fc :k > 0,Sk+n ™ Sj (j = 0,1,2,..., n)}.

Since clearly
I|nn1>|(an i/(n,d) = 1 as. (<2=1,2,..)

we are interested in the limsup of i/(n). This question seems to be very hard
and we can present only partial results. In fact we have

Theorem 2.

16
< S.
(1) 442 - h™ Pn(loglogn)2~ 2 &°
1 AN
(2) lim suplﬁg-'-/-(-r]-’-z-2 S 2 a.s.
n—e foga 50
i/(n, 2
(3) Iimsup!—g—n—’——l: 0 as.
n—oo0 n
(4) Iimsupm—’—(—j—)— =0 as. foranye>0, 2= 3,4,...
n—eo  ne
(5)  limsup 77____}/_(_n,d2 o0 as. foranye>0d=3,4,...
n—eo (log

Our last problem is concerned with the favourite values of a random
walk. We say that xn is a favourite value of {Si,S2, .. ,Sn} if

£(X,,, ) = max £(*,n) = £(n).
xezd
Let 7n be the set of favourite values i.e.

n- {x:xGZd, £® n) = max ~(x, n)}
xezd

and let /,, = \7n\ be the cardinality of In our paper [2] we proposed to
study the properties of the sequence {/n} It is easy to see that
/,, =1 io0.as <2=1,2,...

/,, =2 1i0.as <2=1,2,...

Hence we proposed the question
(6) P{/n= 3i.0}=? <2=1.

This question is still open. Now we prove
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T heorem 3. Ifd> 3 then
(7) limsup fn=o00 a.s.
n —mo

Hence beside the question (6) we also propose the questions

P{/, =3i.0.}=? d—2.

2. Proof of Theorem 1

In the proof the following lemmas will be used

LEMMA A. ([4]). For any d > 3 there exists a positive constant Cd such
that

P{Sn=xforsomen=1,2,...} =P{J(x) =1) = (R 00)
where R = ||z|| and

j(x\ _ fO0 *TE(™>«) =0foreveryn= 1,2,...,
! I 1 otherwise.

LEMMA B. ([5]). There exists a constant K > 0 such that
P{e(x,n)>0}>7i?2-d R=\\x\\
if n > KR? where Cs is the constant of Lemma A.
Let L = L[n) = [(logn)1-e] and define
n = ri(n) <0i=0i(n) <rz=r2(«) <02=02(") <... <t =rL(n)
by

Tl = n + [(logn)«*-],

01 = inf{A :k > ti, Sn = Sk},
2
T. = 01 + [(logn) 3=5],
02 = inf{A:k> €2, Sn = Sk},...

Clearly with a positive probability (depending on n) 0i is not defined. How-
ever we have
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LEMMA 1. For any S > 0 there exists a constant M = M(s) > 0 such
that
(8) P{ —r1, < M(logn)<i-2} > n s.

PROOF. Clearly for any N > 0 there exists a constant 0o < p= p(N) < 1

such that
Rkai- s)<Ne) 3=P-0

Observe that by Lemma B we have
P{t/»i < M (logn)i-a}
> P{V>i < M (logn)A 1]||5T- 5,]| < N(Nogn)tt} x
P{]|5n -5 n| < iV (logn)a"}

provided that M > KN 2 where Cd and K are the constants of Lemma B.
Since rpi, fa,... are i.i.d.r.v.’s we get

Fimax”i < Kflogn)*} > ¢ dp J\(|CIJD1 > ns

which implies (8).
Let
An= AN = {max~t <M (logn)~r}

and x be an arbitrary element of Zd for which
9 II* —Sn|| < (logn)TA3_2t.
Then applying again Lemma B we have

Cd
2((log n)il(«*-2)-2«)(4-2)

Cd
2(logn)1-M a-2)-

P{f(*>n + [(logn)A]) - £(x,n) = 0} < 1-
= 1-

Hence the conditional probability (given A(n)) that x is not covered is less
than or equal to
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Consequently the conditional probability that there exists a point for which
(9) is satisfied and which is not covered is less than or equal to

O (logn )~ -2-20) exp (-*"(logn)2* -2)-") .

Let a > 1then by Lemma 1

¢ T(n)

P < < exp

(

for any £ > 0 where T(n) = na-1(logn)_"3:2+1 e).

Consequently with probability 1 for all but finitely many k between 2k
and 2fctl there exists an n for which An holds. Given this n the conditional
probability that Bd(n) < (logn)”-2*is less than or equal to

_p <>

O ((log,)*I(*-*)-»«<*) exp (-~ (logn)2i(d- 2)-¢) .

Hence among these n’s there are only finitely many for which i?d(n) <
(logn)U~-2)-2* i.e. between 2* and 2k+1l there exists an n (if k is big
enough) for which f2d(n) > (logn)1Y”-2)-2® This implies Theorem 1.

3. Proof of Theorem 2

(i) THE PROOF OF THE UPPER PART OF (1). Let the range of
{fir(o):A“),...,S(«)} be

R(n) — max S(k) — rpln S(k).
It is well-known that for any e > 0
(10) K{n) —((1 + e)2nloglogn)¥2 a.s.

for all but finitely many n. It is also well-known that

N1/2 T

11 m Sfc —5n| > (1 —£)7- ——

{/ ?] n<q<X<I\J | (( Ioglogl\/)/ /%

for all but finitely many N. Choose N such that
* | n y /2

> ((1 + £)2nloglogn)1/2
\/8 \'1 £ loglogn) (« ) glogn)
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s lrel n(loglo n)2
1 e ptiegiog

Then (10) and (11) combined imply the upper part of (1).

(1) THE PROOF OF THE LOWER PART OF (1). Consider a path with
the following properties

(12) doax, Sk > (2cmloglogn)Y/2 (0 <a < 1)
(13) $(0,2n) —f(0,n) >0

(14) min Sk < -(2cm loglogn)l/2

(15) £(0,4n) —f(0,3n) >0

(16) max \Sic\ < (2anloglogn)y2 (Q > 0).

4n<A:<<3n(loglogn)2
A simple calculation implies that the probability to get such a path is

2

O((logn)-4a- ¥a

Choose a = 1/8 and 0 < Q <\/n2. Then

n2Q <1
16a

and by the usual way one can see that there exist infinitely many n for which
conditions (12)-(16) are satisfied.
Let N = 4n. Then

4a +

i/(iV, 1) > Qn(loglogn)2 > NQog log N2
i.e. the lower part of (1) is proved.

(il) PROOF OF (2). In order to prove (2) we have to present the
stronger version of (ii) of Theorem A.

THEOREM B. ([6]). Let Vo = 1/50. Then for any 0 < tp < rpo there
exist a sequence of random vectors u = u(n) 6 Z2 (n = 1,2,...) and an
e > 0 such that

<1l--e as.

limsup "X_ﬂr)qu E(un)
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and
imint™5 S e as.
n-.00 log* n
Following the proof of Theorem B one can easily prove

THEOREM C. For any 0 < mp < mo there exists a sequence of random
vectors u = u(n) € Z2 (n = 1,2,...) and an e > 0 such that

ffKn)

liminl-— i<+ > e a.s.
n-oo 10g*n

and
t(x,N)> 0

for every x € Z2 with ||z —u|| < where
N = inf{A: : £(u,k) > -log2n}.

Clearly Theorems B and C tell us that if we are waiting till the time
when the point u will be visited (e/2)log2n times then the disc Q(n”",u]2)
will be covered and if after that we wait till n then u will be visited at least
elog2n times.

Having Theorem C it is clear that v(N,2) > n2" with positive probabil-
ity. This proves (2).

(iv) PROOF OF (3). The proof of (3) is based on the following

THEOREM D. ([1]). Let L(n) be the number of different vectors among
5(0),5(1),... ,S[n) (d = 2). Then

lim (logn)L(n)

n->00 Tn

This result implies that for any e >0
L((I +e)n) >L(n) as.

for all but finitely many n. This, in turn, implies (3).

(v) PROOF OF (4). At first we prove
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Lemma 2. Let

~(Q(R,u;d),00) = f(*,00) (d> 3)

XxEQ (fi,u;d)

be the occupation time of Q(R,u\d) (R = 1,2,...). Then for any e > 0 and
T>0

sup E(Q(R,u]d),00) < R2H a.s.

M<T

for all but finitely many R.

PROOF. Define the following r.v.’s

ni — ni(.R,u)= min{dA: : k> 0, S(k) G Q(.ff,u;d)},

n2 = U2(>i?,u)= midA: : A> n\, ||S(A) - 5(ni)|| > 4R},

ns = M3(R,u)=min{/c :k>n3, S(k) E Q(2R, S'(rii); d)},
nd = n4(f?,u)= min{/c : k>n3, ||S(k) —S(ni)|| > 4R},

75 — ns(R,u)= min{A: : k> n4, SA) GQ(2R, S(ni); d)},
fi6 = ne(R,u)—min{A: : A> n$, |S(A) —5(ni)|| > 4J7)},...

Observe that

P{ri2 —M > R2+e} < exp(-0(R¥£)),
P{n3< 00} <p<1

P{n4- ri3 > R2+c} < exp(-0(A*)),
P{ri5 < 00} < p <]

P{n6- n5> /?22+*} < exp(-0(f?*)),...

Consequently
P{E(Q(R,u;d),00) > R2+e} <exp(-0(fwW 2)

and
P{ sup E(Q(R,u;d),00) > R2+e} < exp(-0(/?¢/4)).
NI<*T

Hence we have Lemma 2.
Consider the ball

Qi = Q(n*,S(n);d).



318 P. ERDOS and P. REVESZ

By Lemma 2 it consists of at most n5i/2 elements of the sequence 5(0), 5(1),
... ,5(n) (with probability 1 for all but finitely many n). Let

7i(n) = inf{& :k >0, S(k + n) * Qf)-
Then
T\(n) < n5%/2 as.

if n is big enough. Clearly the probability that the sequence 5(n + 1),
5(n + 2),...,5(n + ri(n)) does not contain any new points is less than or
equal to nW 2_ed.

Now we consider the ball
Q2 = Q[ne, 5(n + ri[n))-.d)
and define
r2(n) = inf{& :k >0, S(n + Ti(n) +k)  Qi}.

Similarly as above one can see that the probability that the sequence 5(n +
7"in) +1),5(n+ri(n) + 2),..., 5(n+ri(n) -f72(n)) does not contain any new
points is less than or equal to n5e/2 i<l. Repeat this procedure ne times we
obtain that the probability that we do not get any new points is less than or
equal to n(5e/2-ed)n’' . Since during the procedure the number of steps made
by the random walk is less than n5i/2ne = n7e/2 we obtain (4).

(Vi) PROOF OF (5). Repeating the proof of (2) but using Theorem 1
instead of (ii) of Theorem A we get (5).

4, Proof of Theorem 3

Let A c Zdand x € Zd. We say that A is blocking x if any path going from
x to infinity hits A. For example

A —{(0,1), (1,0), (0, 1), (1,00} c Z2
is blocking x = (0,0).
Let A c Zdwith |A| = / < 00. Assume that A is not blocking 5n (n is

fixed). Then there exists an aj > 0 such that

(17) P{E(A,00) = 5(A,n)} >a; >0 (d>23)
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where
E(A,n) = ff{k : 0 < k <n, Sk€ A}

By (17) it is also easy to see that
(18) P{nag&( fk >j and 7Kis not blocking SK\B} >0
where « > n is the smallest integer for which fK=j + 1 and
B = {/,, = j and Jnis not blocking Sn}.
(18) clearly implies that for any i = 1,2,...
P{limsup fn >t} >0.
n—c0

This, in turn, by the zero-one law implies (7).

5. Two questions
We recall the following

THEOREM E. ([3]). Let d-2. Then we have

< liminf n” n\o < i .
arr |_g10|0n P 0g H)g Imsulo(Iogn) 2r a:s
Theorems D and E combined easily imply

THEOREM 4. Let A[n,d) C Zd be the largest set on which £(-,n) is a
positive constant i.e.

£(x,n) = £t/,n) ~ 0 if x E A(n,d) andy G A{n,d).
Then for any e >0

r2n

IA(n,2)] > (1 -e) (log n)3

for all but finitely many n.
Similarly one can see that for any d > 3 there exists a Cj > 0 such that

A(n,d)| > .S.
Andl > as

for all but finitely many n.
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The analogous result for d — 1 is not clear. We present the following

Conjecture.

and

lim |A(n,l)] = oo as.

P{limsup min  £(x,n)<oo0} =1 (d=1).

n—*00 {®:f£(z,n)>0}

Note that it is easy to see that for d > 2

{2:5(2;!;5>0} £(x,n) =1 as.

for all but finitely many n.

[

[
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[
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THE EXTENSION OF WILLIAMS® METHOD TO THE
METRIC THEORY OF GENERAL OPPENHEIM
EXPANSIONS

JANOS GALAMBOS

1. Introduction

There has much been written on the metric theory of series expansions of real
numbers. One usually chooses, as we shall do here, Lebesgue measure on the
Borel subsets of the interval (0, 1j as the underlying probability space, and
asks about metric (distributional) properties of digits in an expansion by a
specified algorithm. For a variety of results on this line, see the monograph
Galambos (1976). In this paper we return to the Oppenheim algorithm
(see Oppenheim (1972) and Galambos (1970)), and extend an “imbedding”
method of Williams (1973), developed for a particular case known as Engel
series, to the metric theory of digits in Oppenheim expansions. This will
simplify proofs of known results as well as lead to new ones.

The Oppenheim algorithm is as follows. Let hn(j), n > 1, be a sequence
of rational valued functions on integers j > 2. We assume that hn(j) > 1
for all n and j. Let 0 < x < 1, and define x\ = x, and, forn > 1,

~ dn(dn- 1)
(1) Xn+1 =C'-"|) hn(dn)

where the digits dn = dn(x) are defined as positive integers satisfying

1 .
2 N 2n 8
(<) Tn dn~ 1

The algorithm (1) and (2) leads to the convergent infinite series representa-
tion
1 =4
X) = —+ - . + ...
) YO = T - &+ - + i da, - 1)dn
1991 Mathematics Subject Classification. Primary 11K55; Secondary 60J10.

Key words and phrases. Infinite series representation, Oppenheim algorithm, matric
theory, mftdeling of a Markov chain.
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and, in fact,
(4) y(x) = x for all x.

In order to see this last claim, put yn(x) for the first n terms of y(x) in (3).
Then the algorithm (1) and (2) entails

(5) 1~ y*(x)= x"+i n da(d[_\)>

and thus, by the right hand side’s being positive, we get 0 < y,(X) < X,
yielding
y(x) = limyn(x) < x (n -> 00).

But then from the convergence of y(x) we have that the general term in (3)
converges to zero which, on account of (2), is of the same magnitude as the
right hand side of (5). This proves (4).

Upon applying the upper bound of xn in (2) to the right hand side of (1),
we get xn+i < 1l/hn(dn), while by the lower bound in (2) xn+i > I/dn+l-
Consequently, for every n,

(6) dn-+\ > hn(dn).

Therefore, by the choice of a fast growing sequence hn(j), one can automat-
ically guarantee a fast growth for dn(x) for all x. This is satisfied in several
classical cases, out of which we mention (i) Engel series corresponding to
hn(j) h(j) = j —1 for all n, (ii) Sylvester series obtained by choosing
hn(j) h(j) = j(j - 1) and (iii) Luroth expansions which we obtain via
hn(j) = h(j) = 1 for all n and j. Note that, in terms of (6), Luroth se-
ries stands out as an expansion in which the value of dn does not impose
a condition on dn+1, while in the cases of Engel and Sylvester dn and dn+i
are strongly dependent. Therefore, if one can expect a unified approach to
all Oppenheim series from a probabilistic (metric) point of view, one can-
not start with the direct investigation of the sequence dn but rather with
some relation between dn+\ and hn(dn). The present author’s previous tool
was an integer approximation to the ratio dn+x/hn(dn), which reduced ev-
ery Oppenheim series to that of Liroth (see Chapter 6 in Galambos (1976)).
However, while this approximation proved to be very powerful for proving
a variety of strong laws of large numbers and central limit types of theo-
rems, it is not sufficiently fine to be comparable with imbedding methods
first proposed by Williams for the Engel series which, in a modified form, is
fully exploited in a paper of Deheuvels (1982), and more recently, adopted
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to the Sylvester algorithm by Goldie and Smith (1987). The present paper
is devoted to the extension of the method of Williams to the general case of
Oppenheim expansions with the single restriction of assuming that hn(j) is
integer valued for all n.

2. A new method for studying the metric theory

As alluded to earlier, we use Lebesgue measure as the underlying probability
over Borel sets. In other words, we view the initial value x as a uniformly
distributed random variable over the interval (0,1]. Then, by looking at
cylinder sets of the form

{x :di =ji,d2 =ji,-..,dn = jn},

which are intervals whenever (6) is not violated, the algorithm (1) and (2)
immediately yields that the sequence d\,d2,...forms a Markov chain with
initial distribution

@) p(ii=j) =16 — vy J- 2
and with transition probabilities

(8) P{dn=k Idn_x=j) = ( k(k -"I) lik>
[0 otherwise.

Now, since the distributional properties of a Markov chain are uniquely
determined by its initial distribution and its one step transition probabilities,
one can study the metric theory of the sequence dn through any Markov chain
Dn to which (7) and (8) apply when dn is replaced by Dn. Upon utilizing
an idea of Williams (1973), we shall introduce the following Markov chain
Dn in place of dn.

Let Xi,X2)... be independent random variables on some probability
space with common distribution function F(x) = 1 —e~x, x > 0. We shall
refer to this distribution as unit exponential. Set

9 Dn+i = [hn(Dn) exp(An+i)] + 1, n >0,

where Do —2, ho(2) = 1, and [y] signifies the integer part of y. Clearly, the
sequence Dn is a Markov chain, and since, for k > hnU),

PIIK[j) exp(Xn+i)] + 1= k) = P(k - 1< hn(j) e\p(Xn+i) < k)
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hn(j)

k(k —1)°

while this same probability equals 0 if hn(j)/k < 1, we have that both (7)
and (8) apply to Dn, n > 1. Hence, our method for proving metric results
on dn is that we prove a similar statement for the Markov chain Dn, n > 1.
The term Do plays no rule other then defining the first term D\.

The following two properties of the sequence Dn will repeatedly be uti-
lized. First, note that if hn[Dn) —+00 with n then (9) entails

(10) Dn+1 _ eXn+| l
hn(Dn) m hn{Dny

Furthermore, the elementary inequality log(l +2z) <z, z > 0, yields from
(10),

D cnexp(-Xn+i
n+l Xn+1+ P( ) O<cn< L1l

(1) Rn=log, oy — K{Dn)

Another consequence of our new method for proof is that it gives a new
light to the earlier approximation method of the present author, which has
already been mentioned in connection with (6). Define the positive integers
Tn by

(12) Tn< TATTIT <Tn+ |
hn\Dn)

and let

(13) Un = [exp(Xn+1)].

The present authors’s previous tool was to utilize that the Tn are independent
and identically distributed random variables whose common distribution is
the one given at (7). Since (8) reduces to (7) for Liiroth expansions, that is,
the Liiroth digits are independent, one actually has that the approximation
by Tn to the ratios in (12) is a comparison of these ratios to the Liiroth
digits. We can now understand this so far unexplainable phenomenon: it
turns out that Tn = Un for every n > 1. Indeed, if we write

exp(Xn+i) = Un+r,, O0<r, <1,
and if 0 < gn < hn(Dn) is an integer such that

on A AN D>
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that is, gn = [rnh,,(E>n)], then

pn+tl _ [MPnexp(An+i)l + 1 gn + 1
hn(Dn) hn(Dn) - n+ hn{Dny

Since the last fraction on the extreme right hand side is positive and does
not exceed one, we got that Un does satisfy the inequalities of (12), that is,
Un = Tn.

3. Applications of the new method for proof

An essential part of estimating speed of convergence is the establishment
of a strong law of large numbers for Rn of (11). From our new method
we immediately have that if hn(Dn) —+00 with n almost surely then the
arithmetical mean of Rn of (11) converges almost surely to one. Simply
apply (11) and the classical strong law of large numbers to A,,+i. This short
argument now replaces the proof of Theorem 6.17 in Galambos (1976), which
theorem in turn plays a fundamental role in several other estimates, including
those for speed of convergence.

In an equally simple manner can one get several new results concerning
the sequence rn of (11). Before we state such results we assume that nn ¢j) >
i —1, and conclude that in such a case nn(pn), and thus o n itself (recall
(6)), diverges to infinity with n, for almost all x. We just have to observe
that for all n, with the exception of perhaps of a finite number of its values,

(14) Pn+i > hn(Dn)+ 2 > Dn + 1.

Indeed, by (6), the violation of (14) means that Tn+i = nn(pn) + 1, which,
on account of (9), is equivalent to

exp(*™+,)<1+M kr

By one more appeal to (9) we see that X n+i and Dn are independent, and
thus by the exponentiality of X n+i and by the total probability rule we get

+00

P((14) fails) = £ 7 °" 7 ©

koo hnik) + 1

However, by an induction argument, using the Markov property only, it is
shown on pp. 101 - 102 in Galambos (1976) that the right hand side above is
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bounded by (5/6)n. Hence, its sum over n is finite, entailing, via the Borel-
Cantelli lemma, that, for almost all x, (14) fails at most for a finite number
of n. Consequently, when we choose such hn(j) which satisfies hn(j) > j —1
for all n, we can ignore the error terms in (10) and (11) in most asymptotic
results. The following theorem summarizes a selective list of results utilizing
the just mentioned possibility.

THEOREM 1. Let hn(j) >j —1. Then, putting Sn = dn+i/hn(dn) and
Rn ~ log Sn, we have almost surely

(M (I/n)(Si+ Si+ ...+ Sn)—+o00;

(ii) if bn —+00 and such that (Si + S2 + ... + Sn)/bn does not converge
to zero then its limsup equals +00;

(iii) (I/n)(F2i + 22 + see+ Rn) —*1;

(iv) Rn > logn + log log n infinitely often; Rn <logn+ (1 + a) log log n for
all but afinite number of n, whatever a > 0.

One could go further and include the iterated logarithm theorem in order to
extend (iii), or even finer results are obtainable by approximating the sum of
Rlc by a Wiener process. But the power of the new method for proving results
on the sequence dn is adequately demonstrated by the collection in Theorem
1. Details of proof are not needed; one has to appeal to (14) and then to
(10) and (11) without their error terms. Well known results on independent
and identically distributed random variables then entail Theorem 1.
Weak convergence results also follow from (10) and (11).

THEOREM 2. Assuming that hn(j) > j —1for all n, we have

(i) (Si-fS2+ ...+ Sn)/nlogn —»1 in probability;
(i) (Ri + i?22 + e+ Rn ~ n)Inxll is asymptotically standard normal;

(iti) max(f?i, R2,.. Rn) —logn has the asymptotic law exp(—exp(—z)).

While there is a proof for (ii) in Galambos (1976), it is quite lengthy; by our
new method it is immediate. Part (iii) is new, and indeed, it was attempted
by previous methods but the errors were always too disturbing. By our new
method it follows from (14) and (11) upon observing that the maximum of
the set /?i, 1?2, *++, Rn has the same asymptotic behaviour as the maximum

of Rm, Rm+1,..., Rn, where m is an arbitrary large, but fixed number.
In concluding we wish to point out that both Williams’s approximation
method and that of Deheuvels heavily rely on Rényi’s (1962) work. These
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authors restrict their investigation to the Engel series. In addition, much of
the early research on series expansions was influenced by the paper of Erdds,
Rényi and Sziisz (1958).
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ON THE INCREMENTS OF THE WIENER PROCESS

KARL GRILL

Abstract

Let W(t) be a standard Wiener process and a(i) a positive nondecreasing function
with a(t) < t. We investigate the a.s. asymptotic behaviour of some increment pro-
cesses defined in terms of W( ) and a( ) (the “large” increments in the terminology
of Ortega and Wschebor [20]), obtaining an integral test for the upper classes and
also some results on the lower classes.

1. Introduction

Let (W(t),t > 0) be a standard Wiener process. Furthermore, let a(t) be
a positive nondecreasing function that is regularly varying as t tends to
infinity. Define the following types of increments:

Fi(i,a(t)) = a(i)_ /2 sup (W(u+ a(i)) - W(u)),
O<u<t—e(t)

*2(*>a(0) = a(0~1/20<u§Lfa(t) [W(u + a(t)) - W(u)l,

Y3(t,a(t)) = a(i)-1/2 sup sup (W(u + s) - W(u)),
O<a<a(t) O<u<t—»

Yi(t,a(t)) = a(t)~¥2 sup sup |W(tt+ s) —W(u)|.

O<i<a(t) O<u<t-a

We are concerned with the strong limiting behaviour of these quantities as
t —o00. We shall make use of the following definitions (see, e.g. Révész [21,
22]):

Let Z(t) be a stochastic process. Then we formulate:

DEFINITION 1. The function f(t) belongs to the upper-upper class of
Z(t) (f € UUC(Z(t))) iffor almost every o E A there is a to = to(oj) such
that Z(t) < f(t) a.s. for all t > to.

1980 Mathematics Subject Classification. Primary 60J65; Secondary 60F15.
Keg words and phrases. Strong asymptotics, Wiener process.

Akadémiai Kiadd, Budapest
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DEFINITION 2. The function f(t) belongs to the upper-lower class of
Z(t) (f E UEC(z(i))) if for almost every u E ft there is an increasing
sequence tn —tn{dS tending to infinity such that Z(tn) > f(tn) for all n.

DEFINITION 3. The function f(t) belongs to the lower-upper class of
Z{t) (f € CUC(z(t))) if for almost every u E ft there is an increasing
sequence tn = tn( tending to infinity such that Z(tn) < f(tn) for all n.

DEFINITION 4. The function f(t) belongs to the lower-lower class of
Z(t) (f E CZC{z{t))) if for almost every U>E ft there is a to = io(") such
that Z(t) > f[t) a.s. for all t > to.

The limiting classes of Yj(t,a(i)) have been investigated extensively since
the pioneering work of Lai [17, 18], Taylor [26], Cs6rg6 and Révész [4] and
Cséki and Révész [3]. A study of the weak limit behaviour of these statistics
is given in Deheuvels and Révész [8], while related increments have been
investigated by Hanson and Russo [12, 13]. Among the most sophisticated
results on the subject are those of Révész [22] and Ortega and Wschebor
[20], the latter of whom having proved the following Theorems A and B,
close to a complete characterization of UUC(Yi(t,a(t))), i = 1,2,3,4.

THEOREM A. Let 4>be a positive, continuous, nondecreasing function
such that <) —o00 as t —00. Then for i —1,2,3,4

/00 £ (1)a~1(t)exp(-<f>2 (1)/2)dt < 0o = <) E UUC(Yi).

Suppose in addition that
a{t) = Coexp( f dy),
Jcl vy

where rj(-) is a continuous function such that <k [t)r}[i) is ultimately bounded
ast—»o00. Then fori=1,2,3,4

I 00
(2) h{4>) —J  0(t)a-1(i) exp(-<£2(f)/2) dt < 00 => d>t) E UUC(Yi).
On the other hand, if r)(t) j 0 and €= (t)rj(t) | then for i = 1,2,3,4

/ - TR(3)<E3(t)a-1 (t) exp(-<f>2 (t)/2)dt < 00 => 4x{i) E UUCFYi).
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THEOREM B. Let §>be a positive, continuous, nondecreasing function
such that §>ff) -too as t —»00. Then fori = 1,2,3,4

(4) 1@ = c0=xf>eUCC(Yi(t,a(t))).

Motivated by (2), (4), and the similarity of with the Erdos-Kolmogorov-
Petrowski upper class test for the Wiener process (see, e.g., Ortega and
Wschebor [20], Theorem A), Ortega and Wschebor [20, p. 332] conjectured
that the finiteness of h(<p) might be a necessary (as well as a sufficient) con-
dition for £€ UUC(Yi(t,a(t))), i = 1,2,3,4. It is the purpose of Section 2
of the present paper to give an integral characterization of UUCa (t)))
which will show that this conjecture is not true in general, and the following
statement holds instead:

THEOREM 1. Let ¢>be nondecreasing and positive. Let also

a(t) = COexp(JCi T)—/dy)

be as in Theorem A, where r)(y) is slowly varying as y —* 00 and a(t) < 71
with some 7 < 1. Thenfori= 1,2,3,4

K{4>) = + exP(- A2 /)% < 00 ** &e UUC{Yi{t,a{t))).
(5)

Remark 1.

1. Theorem 1 is in agreement with Theorems A and B, and shows that
the range of the above-mentioned conjecture of Ortega and Wschebor
corresponds to the case where 22{t)r](t) is ultimately bounded.

2. It is easy to construct a positive slowly varying function t] such that
fy) -* 0 asy -¢ 00, /“ r7(y)y_1dy = 00, and r/(y)logy a as
y —»00, where 0 < a < 00 is arbitrary. For a = 0, we see that
J<= < 00 y» +E UUC(Yi(t,a(t))) while if a = 00,we have likewise
KH<t>) <o00& 4>eUUC{Yi{t,a{t))).

3. The form of the function a as demanded in the statement of Theorem 1
may seem very restrictive. However, most functions that one quickly
thinks of happen to fit this description. A few examples follow, giv-
ing also “typical” upper and lower class functions (We use the usual
notation logn for the n-th iterate of log).
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(@) a(f) = (logfH)“, (a > 0). Here 77(f)

a/logf. The function

C m =
= (2log£+(3-2a) loglog i+2 log3i+2 log4i+ .. .+(2+e) logn £)I/2

belongs to the upper-upper class of Yj(f,a(f)) iffe > 0. This can
also be obtained from Theorem A.

(b) a(t) = exp((logf)*), (0 < a < 1). Here 17(f) = a(logf)“-1. The
function

C m =
= (2logi-2(/ogi)“+(3+2a) loglogi+2 log3i+..,+(2+e) log,, i) 12
belongs to the upper-upper class of Yi(t,a(t)) iffe > 0.
(c) a(f) —ta, (0 < a < 1). Here 77(f) = a. The function

C m=
= (2(l-a)logi+5loglogi+21og3t\2logd: [ ..+(2+e)logni) L2
belongs to the upper-upper class of Yi[t,a(t)) iffe > 0.
(d) a(f) = at, (0 < a < 1). Here 77(f) = 1 The function

C m=

= (2log logi+ 5log31+ 2logdt+ ... + (2 + e) lognt)i2
belongs to the upper-upper class of y,(f,a(f)) iffe > 0.

ACKNOWLEDGEMENT |. While this paper was with the editor, the
author learned that N. K6éno [16] obtained a result that contains Theorems 1
and 2 of the present paper.

We now turn our attention to the lower class for which the following
theorem has been stated by Révész [22, Theorem 2.1].

THEOREM C. Let a(t) be such that (log(f/a(f))/log logf) -* 00 as f -+
00. 5ef A(f) = f/(a(f) loglogf). Thenfori= 1,2,3,4

1. For C < log(7r/512)
(2log A(f) + loglogA(f) - C)V26 £UC(y;-(t,a(t))),

and
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2. For C > log(7r)
(2log A(i) + loglog A(i) - C)126 ZE,C(Yi(t,a{t))).

Révész’ proof of the lower class result, however, contains a slight error.
Namely, for the sequence t* used in his proof of formula (2.6) in that paper,
the use of his formula (2.3) yields an error term that is too large to give the
desired result. This can be mended by using the same argument with the
sequence £ = exp(A:1/3 A), resulting, however, in a larger constant (log(9")
instead of log7r) in the final result.

In Section 3 we precise this result, namely by showing that there exist
constants C,, i = 1,2,3,4 such that, under suitable assumptions on a(i),

C <Ci =m(2log A(f) + loglog A(t) —C)1¥2€ CUC(Yi[t, a(t))), i= 1,2,3,4,
and
C >C{=(QlogA(i) + loglog A(t) —C)V2€ £CC{Yi(t,a(t))), i = 1,2,3,4.

For a restricted range of a(t), we find the explicit values of C\ = log7r
and C2 = log(7r/4), and bounds for C3 and C4. In view of the limiting weak
laws of Deheuvels and Révész [8], we may only conjecture at present that
C3 and C4 could be also equal to log(?r/4) which is in agreement with our
bounds stated as follows

I n
log 7° C3 < log 4ir and IOgE < C4 < log”.

Our methods may be applied to cover increments of partial sum pro-
cesses which can be treated by invariance principles for large increments,
and by direct evaluation for increments of the order of some power of log n,
where n is the length of the observed series. This problem has been studied
recently by Deheuvels, Devroye, and Lynch [6], Deheuvels and Devroye [5],
Deheuvels and Steinebach [9, 10] and Mason [19] among others. This will
appear elsewhere.

In the sequel C, with or without index, will denote an absolute constant
whose actual value may differ from one occurrence to the next, so that
notations like C = C + 1 are possible. As usual, f(t) ~ g(t) will denote
asymptotic equality and f[t) x g{t) will mean that the ratio f(t)/g(t) is
ultimately bounded away from both zero and infinity as t —»00.
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2. The upper classes

The proof of Theorem 1 rests on the following

LEMMA 1. Let 0 < a < b <6t and x > 1 be given and assume that
b < Ka, where 0 < 9 < 1 and K are some constants. Then there are positive
constants K\,K% (depending on K and s) such that

P(sup sup sup lemmmmmeme i 1> X) < Kip,
a<s<b 0<v<s O<U<t—v V s
% o\ -rw W(u+ s) - W(u) ~ .
z2{p- p2) < P( sup sup - > X),
a<3<bhOo<u<t-s Vs
where
p—p(a,b,x,t) = tR/1+ ———é——x2/) a—exp(—x2/2).

PROOF. First observe that, by a standard reflection argument,

W (ti —W
P(sup sup sup | (t|+v)r ()

> X) <
a<s<b O<v<s O<u<t—v Vs

\W - W
< 2P( sup sup {u+s) W >

a<s<bO<u<t-s

*)’

so it is sufficient to prove the upper inequality for the double sup.
We shall only prove the lemma for the case (b—a)x2 > a since otherwise

it would be a trivial consequence of Lemma 1 in Ortega and Wschebor [20],
In this case, define

Ajk = {MJalk —j) <w (") - W(") < \alk-j)(1+ ~)}
and

Bjk={ sup W) - W(u)| >Ja(k-j - 2)}.

jax~2<u<v<kax~2

Furthermore, let

Lt b,
S={(.0:0<j<k<Z x2<k-j< o

and

2t
' —{(.k :0<j <k< Z(E"-f- Lx2 <k—j < —g———bZ}.
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It is readily obtained that, for (j, k) E S resp. S',
Cix~lexp(—=22) < P{Ajk) < P(Rjjfc) < Cax~xexp(-x2/2),

(the latter inequality follows from (3.1) of Ortega and Wschebor [20]), and
since

W(u + s) - W(u)
u Ajk C { sup_ _ sup > x) C U Bjk,
U,k)es a<s<b0<u<t-a ~7i U k)es>
we get
Wlu+ s) - W(u
P( sup sup [ ) W >x)< £ p (5;%)

tx3(b - a) , 2
< Co-----5-- ~exp(—i 2/2
2 b~ exp(Si 212)
which proves the first part of our lemma. In order to prove the second part,
we use the inclusion-exclusion formula to obtain

*

W(u + s)-W (u
P(sup sup ( ) (u) >
0<i<6 O<u<t—a

-y, P 2 A~ P {Ajk Aim).
(j-k)es (i.k)es
(1,m)€s

We now estimate the second sum on the right-hand side. To this end, ob-
serve that the correlation coefficient between W[ka/x2) —W (ja/x2) and
W(ma/x2) - W{la/z2) isjust
min(A:;, m) - max(y, /)
Vik ~

P=PU,k,I,m)

if the intervals [j, Al and [/, m] intersect, and O otherwise.
In the first case, if (j,k) and (/;m) are both in S, this can be upper
estimated by

Ly i+ fe—m
(6) . -2

where K is a suitable constant.
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Namely, let us assume w.l.o.g. that j < I. Then, as the intervals [j,k]
and [/, m] intersect, we must have | < k. If now m < k then m —I —
K—j —\j —/j—jlc—m] and

( m - ( jj-jH t-m iy /2 li- N+ k- m|

P \k —jJ | K-j ) 2(fc- i)

On the other hand, if m > Kk,

Kk —I _ m —j —\k —m\ —\j —N\

P V{k-))(m-1) si{m-j-\k- m)m-j-Y\-1/)
_\k-m|+ 0§ -1
2(m-j) m

In both of the above inequalities the denominator of the last fraction is
bounded above by a fixed multiple of x2 which proves assertion (6).

Now, as W(kax~2) —W (jax~2) and W"(max-2) —W (/ax-2) are jointly
normally distributed, we have

notel/x rnotelx

P(AitAIm) = J° i s2-2Pst+t\,

==exri-

substituting s = x+u, t = x + v, the fraction in the argument of the
exponential equals
(2x2+ 2x(u + v))(I - p) + u2—2puv + t;2
W =72?)

—1 12 1 x(u+v) u2—2puv+vz”
1+p ' 1+p 21-p2 J°

As both u and v are bounded above by e/x, and by our estimate (6), we see
that the second and third terms of the last sum are bounded by constants,
s0, using again (6) to estimate \/lI - p2, we obtain the estimate

P [AjKAIM) < — exp(--"—).
X 1+p

Observing that P(A>) x ex~l exp(-x2/2) and

X2 x2 (1- p)xz
l+p- =2 4
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we finally obtain by another application of (6),
P{AjkAim) < Ceexp(—(]j - N+ \k- m]|)P(Ajt),

where ¢ and C are suitable positive constants.
If the intervals [j, & and [/, m] do not intersect, clearly

P (MA im) = P(AJKP(Aim).
If we now fix (j, k) € S, we get

Xl F{AjkAim)

(i,m)es

< ?{Ajk) (Ceexp(-c(ly-/[ + [fc-m])) + P(j4jm))
(I,m)es

<P{Ajk){Cs+ £ P {Aim)).

(i,m)es
Applying this result to (2), we obtain,

W{u + a)-W{u) ~» X

P(sup sup — ————’=mms = >y,
a<s<bO<u<t-a Vs
>(U-c) £ p@@Y-hE p@)
(j.fc)es 0',%)es

By choosing e small enough, we finally obtain the second part of our lemma.
Let us now proceed to the proof of Theorem 1. Define tr = AP with
some M > (1 —7)-1 and let

fT(u+ u) - IP(u)

Dr={ sup sup sup > 4>{tr)},
a(L)<i<o(lr+1) 0<V<3 0<U<ir+l -V y/s
W(u +s) - W'(u)
Er —{ sup sup > <t{tr4)},
a(t,)<i<a((l+i)tr)tr-i<u<t,-a yB

withe<1- 7 —M-1.
By Lemma 1 and the trivial relations tr x fr+i, a(tr) x a(tr+i), we get
the estimates

P(Dr) x (1+ r](tr}= (tr))—g-[Ir<)l>(tr) e\p(-<f>2 (tr)/2)
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and

P(Er- (1+ r?(ir+i)“2(ir+i))-3(fi1.-.T</>(ir+i)exp(-“2(ir+i)/2)-
a(ir+ij

Thus, it is seen that both £)P(.Dr) and £P (£r) converge or diverge as
K{<f>) converges or diverges, respectively.

Furthermore, the events Er are independent.

Now, if K{<ty is finite, the Borel-Cantelli lemma implies that only finitely
many of the events Dr occur with probability one. We are going to show
that this implies that <) € U.UC(Y%(t, a(t)). To this end, let us look at a
t for which Ya(t,a(t)) > There is an r such that tr < t < ir+i. As ¥
is nondecreasing, we have V4(i,a(i)) > a>(tr), and, since also o(tr) < a(t) <
a(tr+i), we see that the event Dr occurs. Now, as only finitely many of the
events Dr occur with probability one, one half of our theorem is proved.

If K(<f>) is infinite, infinitely many of the events Er occur with probability
one by the second Borel-Cantelli lemma.

Let r be such that Er occurs. This means that we can find an s between
a(tr) and a((I+e)ir) and au < tr-s such that W (u+s)-W (u) > sl2<%r+i).
By the continuity of a(t), we can find a t between tr and tr+i such that
s = a(t). For this t we have Fi(i) > <r+1) > Thus, Theorem 1 is
proved.

A case of special interest that is not covered by Theorem 1is a{t)/t —1
For that case we state the following theorem which can be proved by the
methods used in proving Theorem 1

THEOREM 2. Let a(t) = f(I —b(t)), where b[t) is decreasing to 0 and
slowly varying ast — 00, and (£(+) be positive, nondecreasing and continuous.
Then 4>{t) € UUC{Yi{t, a{t)), i = 1,2,3,4 iff

fj @+ O{0)"~ exp(-<j> (1)/2)dt < oo.

3. The lower classes

Regarding the lower classes, the picture currently is far less complete than
for the upper classes. For an account on the subject, see, e.g., Deheuvels,
Erdds, Grill, and Révész [7].

Our investigation branches into two cases. First, we shall consider the
case where A(i) = a(t) loglogi/t tends to zero, then the other extreme,
where A(f) tends to infinity. The intermediate case where A(i) remains
bounded poses too many problems to be handled by our crude methods.
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Before going on to the theorems, let us prove some lemmas which will
be useful in both cases. To this end, first recall the following

LEMMA 2. Let M+(t) = max{W(@u) : 0 < u < i} and M~(t) =
min{W(u) :0 < u < i}. Then it holds for a,b>0 and —-b<c<d<a:
P(M +(i) < a\ft,M~(t) > -b\ft,c\ft < W[t) < d\ft)

=Y {*{d+:2kfa+Db))-*{c +2k(a + h)))
IcEZ
—Y, ($(2a- c+ 2k(a+ b)) - $(2a - d+ 2k(a + h))).
c£Z

For a proof, see, e.g., Billingsley [1], p.79.
LEMMA 3. For 0 <t < 1it holds true:

PF:(L+t 1) < x\W[I) = y,W(t + 1) - W{t) = 2)

io ili<yVv?2
l1-e x p ( - ili>yV?2,
P(y2(l+i, 1) <x\W{l) = y,W{t+1)-W{t) =2)
_To STI<[Npv \2\
1ChD ALV 2\t
where
, - [ 4/cV + 2kx{z - y)N
Gt[x\y, z)X= ¥ exP( ¢ +: X{z y))
kez 1
A yz - ek + Dz(y + 2) + 2k + 1) 2x2.
- I<2 exP( : )
ez

~ o 2\Ini “ Ay ~ 2)2 n2?r2t_.S.inn_n(ég(-y)_s.mnn(zx— )

PROOF. We shall only prove the second assertion here; the first one can
be proved in a similar way.
To this end, let Y(u) = W (u+1)- W (u) and observe thatfor0 < t,u < 1
B(u) = (2t)«L2(P(ut) - uY[t) - (1 - u)r(0))

is a Brownian bridge independent of Y(0) and Y (t).



340 K. GRILL

This implies that

P(y2(l +t,1) < xX\W{\) =y, W{l +1) - W(t) =2)
- P( sup [F(tii)] < x|T(0) =vy,Y(t) = 2)

O<uc<lI

= P(sup 1(1- uwy + uz+ (2)V2B8(u)| < x|7(0) = y,Y (1) = 2)
O<uc<l

= P( sup 11 —u)y + uz + (2i))V25(u)| < x)
O<uc<l

P( sup [W(u) + (2t) 1/2y] < (2D)~12x|IV(I) = (2f)-1/2(z - V).

The last equality follows from the fact that W(u) - tiw(l) is a Brownian
bridge independent of W (I). This conditional probability is readily obtained
using Lemma 2 to calculate

. ty(2) - M
v P((20)-*/2(z-y)<W (1)< [20)~'\z - y) + 6)

yielding the first expression for Gt[x\y,z) given above. The second form is
obtained from the first by an application of Poisson’s formula.

Integrating the formulas of Lemma 3 with respect to the joint distribution
of F(0) and Y(t), we obtain the following two lemmas:

LEMMA 4. If t < a and xzt/a — 00, then the following asymptotic
relations are true for all a > 0:

P(Yi(i + @ @) >X)--—-- N=xexp(-x2/2)
a\/zn

and
P(Ya(i + @,a) >X) ~ —~—ZXexp(—x2/2).
a\lzir
The first of these assertions can also be obtained from Slepian’s [24] result
(see also Shepp [23], pp. 348-350).

We shall again only proof the second assertion. It suffices to carry out
the proof for a = 1as by the scale-change property of the Wiener process the
distributions of Yj(i, a) and Yi(t/a, 1) agree. So, as W (1) and W (f+1) —WT[t)
are jointly normally distributed with correlation coefficient p = 1 —t, the
probability in question can be calculated as

, y2-2(1- t)yz+x2 ]

I RN IC LR )V




ON THE INCREMENTS OF THE WIENER PROCESS 341

Using the first form of Gt(x\y,z) given in Lemma 2, we see that in the first
series the summand for k = 0 cancels against 1. In the same series, all
terms with \k\ > 2 are readily seen to be negligible. The contribution of the
summand with k = 1 can be estimated by extending the inner integral over
the whole real axis, yielding $>(3x) —<£(1) which, too, is of smaller order
than our asymptotic formula. In the second sum, the only summands that
are not negligible are those for k = 0 and k = —.

The integral of the term with k = 0 evaluates as

i
J—X0—a 27TV/f(2 - t)

Xexp(—:y2 - 2(1- t)yz + z2 JrZIéZ i)t){yz - x(y+2) + X2)—)dydz

L2, xf 1/ IN ., (- 2~
= exp(-x /2) f_u WotA T ) A XIUDRp(-

where we have used the substitution u = y + z. In the latter integral, the
part for u > 0 is dominating, yielding

xexp(-x2/2)(1 + o(l)).

The integral for k = —1 can be obtained from the one for k = 0 by substi-

tuting y for —y and z for —z. Summing up, we finally get the assertion of
our lemma.

REMARK 2. It is readily seen from our proof of Lemma 4 and from
Lemma 1 that if we only assume that xz2t/a is bounded away from zero, we
still have

PV;(L+t1)>x)=0 (;exp(—x2/2))
fort = 1,2,3,4 (for «= 3,4 use a reflection argument).
LEMMA 5. Fort < 1 and x2/t —0
16X , 12t

Py +1,i)<x)~

PROOF. We use the second form of Gt(x,y). It is obvious that the
dominating term of the series is the one for n = 1. This yields the integral

21(2_1)
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By our assumptions on x, the exponential within the integral is 1+ o(l), so
we get

+ * *o 0
oY) s 3 s 3dvd:
16x2
= il+ «(OHj cos™y )2=11+°(1)) 0>

S0 our assertion is proved.
From Lemma 4 we obtain the following

LEMMA 6. Ifx —=00,t anda <t vary in such a way that
a lixexp(-x2/2) —»00

then
P(Yi(t,a) < x) = exp(—1+ o(l))— exp(-x2/2)),
a\/zn
P(y2(t,a) < x) = exp(-(I + o(l))="= exp(—=2/2)),
ay/an

Of T
P(*3(i,a) < x) > exp(-(I + o(l)) y= exp(—=2/2)),

ay 21Ir

. AT n
P(Yi(t,a) < x) > exp(-(1 + o(I))—=exp (-x22)).
a\fzir
If, in addition, 0 < R <1 and 0 < d < 1 then

P (#delkg yi(i,a(l+ S)) -

< exp(—l+ o))l - 0)"N|= exp(—x2(l + d)/2)(1 - ~exP (~")))

and

r(oM Y AtA i +5s)) <x)

*fr 1 22
< exp(—1+ o(D))(I —/?)—"==exp(—x2(l + d)/2)(I - - exp(-

Again, by the scale-change property of the Wiener process, we may assume
without loss of generality that a = 1. We shall only prove the assertions for
Y\ in detail; the remaining can be proved in a quite analogous way.
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As the upper half of the first assertion is a consequence of the second, we
only have to prove the lower half. In order to do so, let G(t) = W (t+1)—W (f)
and G'(k +t) = Gjt(i) for0 <t < 1and A€ IN, where G*(-) is a sequence of
independent copies of G(-). The one-dimensional marginals of both G(f) and
G'(t) are standard normal. Their correlation functions p[ti,tz) and p'{ti,ti)
agree if [ti] = [ij], and otherwise we have that (£i,£2) = 0 < p{ti,t2)- Thus
Slepian’s lemma [25, Theorem 1] is applicable, yielding

P(Yi(i, 1) < x) = P(O<Etig_lG(u) <Xx) > P(O<32EX G'(u) < x)

> I[31 P( sup G(u) < x) > exp(—1+ 0(1)) = exp( 2/ 2))»
fc=i  o<u<i

which proves this assertion. For the other one, choose m in such a way that
m — 00 and mxexp(-x2/2) —»0. Define

Bk = { inf sup W(t+ 1+s) —W(t) <xy/l +d}.

0<s<d (j._i)m<i<*m—-d
The events B are clearly independent, and

[t/m]-1
(7) PynfAnIM + sJSxISPf f| Bic)

= n  p(B*)= (p(Bi))[U/mi_i.
Jt=1

Now, in order to estimate P(Bi), we proceed as follows: First, we want to
get rid of the infimum. To this end, observe that

{ sup W[t+ 1) - W(E) > xvl + dH-}

C B?2 U{ inf sup W(£41+s)—W(£)<x\/\+d,

O<s<d t<m-

sup WE+D-WE >x\I\+d+ -}
t<m— —d X

and by a simple reflection principle argument the probability of the last
event is overestimated by

P su W(t+ 1) - W) >x\/l +d+ -)P( sup W(s)>-),
(t<m—p|—d ( ) () X) (O<s<% () X)



344 K. GRILL

so it follows that

P(Bf)

> P( sup W(t+ 1)- W(i) > x\/\ +d+ -)(1 —P( sup W(s)>-))
t<m— —d % O<»<d %

>P( sup W(t+ 1)- W) >xy/l +d+ -)(1- "exp(--~-)),
—d X L LX a

t<m—

where we have used the inequality 1 —<BXU) < | exp(—2/2) that holds for
all u > 0.

In order to achieve somewhat simpler notations, let us define y = x\J\ + d
+ b/x and B = {supt<m_1 dW (t + 1) - W (i) > y}. Furthermore, let

Dj = { sup W(u + 1) =VF@u) <,

max(0J-1)/2<u<yl/2

sup W(u + 1) - W(u) >y}

yl2a<u<(j+1)I2

Clearly,
[2m-2d—3
B d ] Dit
i=0
and it follows from the inclusion-exclusion formula that

(8) P(B)> £ p{Dj)~ J2 *{DjDr).
0<j<2m—2d-3 0<j<r<2m—2d—3

Now, forj < r, the events Dj and Dr are disjoint ifr = j-HI, and independent
if r >j + 4. In the remaining cases we have

P{DjDj+i) < P {Dj{  sup W{u + 1) - W{u) >*})
rl2<u<(r+l)l2

= P(G,-)P(A»j

and
P(D,D,«)<P({ sup Y, (2A )y -1V SA -U)|>7})

+ P(Dj)P({OiLdEI IW-fa-t* +u) - IV (izi) > i »

= o(P(Dj)).
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This yields
[2m.—2d—3] [2m—2d—3]

£ P (¥ n<P(Gi)( £ p (A) +di))

r=J+1 r=0
and

[2m—2d—3] [2m—2d—3]
E P{Djpr)<{ E P(o)!+°( E p(D))
O<j<r<[2m—2d—3] i=0 j'=0

Now, in order to estimate x* 3"P(DO0> observe that

p(po)+ P(z2i) = P{DOU DO = P(yi(2,1)>17)~+ exp(-y2/2),
by Lemma 4, whereas for j > 2 we have
P(D;)=P(n(2,1) > ») - P(Vx(].1) >y)-~ exp(-y2/2).
Putting everything together, we obtain
P(P) > (1 + o(l))-~==exp(-y2/2).

This implies
P(Pf) > (I +°(l))rexp (-y2/2)(l - "exp(-"")))

> (1+o0(1))(1-26)-2exp(-x2(1+ d)/2)(1- \

and inserting this estimate into (7) completes the proof.

We are now able to state

THEOREM 3. Let a(t) be chosen in such a way that a(t) j oo and A(t) =
t/(a(t) 1oglog t) j oo. Then for i = 1,2,3,4 there are constants K{ which
may still depend on a, such that

= A ® Howad- K 1lej \I K<K
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and
logn < Ki < log 41
T
Iogz1 < K2 < log 71,

T

log 2 < K3 < logd7T,
T

Iogl—b < K4<log T

/I, *n addition, either a(t) is of the form

9) a(t)=CoexpS|'C y dy)

uui/i limsuplogrj(i)/loglogi < — /i/us is roughly equivalent to a(i) —
o(exp((log i)e) /or all e > O/, or

(10) log log(i/a(t))/ log log i —»0,
then
Kl = log 7T,
m
#2 = log

m
Iog-4 < Ks < logm,
| " K4 < | 1
OgB 094"

We shall again only carry out the proof for t = 1, the other cases are
similar.

First observe that ifwe find both an upper class function and a lower class
function of the form <€#(¢) then the existence of the constants Kj already
follows from the Hewitt-Savage zero-one law.

Assume now that K = log(47r) + ¢ with 0 > 0. We are going to prove
that <t>K{t) is in the lower-lower class of Yi(f,a(f)). To this end, let tk =
exp(kl/i~e) and

Dk = Yi{tk,u) < 9K {tk+1)->

{a(l'*)'<iun<fa(|’*+,)

By Lemma 6, we have

PE) =@ +a)-2 | o T

xexp(-$r(t+1)(I + d)/2)(1 - Cexp(— {tk+i)d )
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for any b > 0, where we have put d = a(tk+i)/a(tk) —1. Using that

att) ~ tk

and some calculation, we obtain that
P [DK) < exp(—1+ o(D)(l - 2R)e6/2(1 - 26) log k),

so, by choosing both s and 8 small enough, we can achieve that
(0 0]

E p (D*)<«>>
*:i

and the Borel-Cantelli lemma implies that <f>x({t) € CCC(Yi(t,a[t)).

If a satisfies condition (9) then, for any e > 0 and t < u < 2t we have
a(u)/a(t) < 1+ c(logi)E_1(u—i)/i, whereas if condition (10) is satisfied, we
have 5. (logf)*. In either case, we can use the sequence tk = exp(fcl _A)
instead of exp(/clY/2-5) in the above proof, yielding the sharper estimates on
Ki.

It remains to prove the upper class result. So, let now K = logx-—0,
tk = exp(fcl+i), and

Ek = {Yi(tk,a(tk)) < <BKtk)}.

By Lemma 6, it is readily verified that the series

Ep()

is divergent if ¢ is small enough.
In order to show that with probability one infinitely many of the events
Ek occur, we shall use the following Borel-Cantelli

LEMMA 7. Let (Ak, k 6 IN) be a sequence of events satisfying the
following conditions

(e6)
(0 E p(AY)="°°
k=1
Y .Z P (AtAr)
T <1
) Jim
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Then it holds:
P(Ajfc i.0.) = 1

So, now we are going to estimate the sum

£ VWr).

1<k<r<N

For sake of simplicity, in the following few lines, we omit the argument tr in
both a(tr) and <>K[tr)- It holds:

P{EKEr) < P[Ek{t*<?1u<Fgr-a W[u +a)-W[u)<4>K"})
= P(Fijt)P({tkABLg%r_aW(u +a)-W (u) < 4>KVa})-
The latter probability can be estimated in the following way:
P({ sup WJ[u+a)- W[u) <4>K\fai})

<P({ sup WJu+ a) —W (u) < <j>KVa})

0<u<t,—a

+ P({O%I%W{u +a)-W{u)> EKy/a,W{tk+a)-W {tk)<<I>Ky/a}).

Here, the first probability is just P(£T). If tk > a<>K then, with the help
of Lemma 4, the second probability can be overestimated by

C—gKexp(-<n/2) < C”- loglogtr
a zy
< C log r exp(A:l+i - r1+A),

and it is readily verified that the sum over all r > k is bounded by a constant
not depending on k.
On the other hand, iftk < then we have for all z

P( sup. W[u+ a) - VF(u) > <t>K\fg,

O<u<ijt
W{tk + a) - W{tk) < 4&Ky/a\W(a) - W (tk) = 2)
< 2exp(—(z ~ <t>K\fo)2,
stk

Namely, if z > «*-al/2, then we have to assume that W[tk + a) —W[a) be
less than feal/2—z, whereas in the opposite case there must be a u < tk
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such that either W(a + u) - W (a) or W (i*) —W (u) exceeds (z —<"*al/2)/2.
Using the reflection principle and the estimate 1 —3$(x) < | exp(—<2/2),
the stated bound is obtained. Integrating this conditional probability with
respect to the distribution of W (a) —W (f*), we obtain

P({OEH%W(U—\—a)—W(u) > 4>Ka} W (tk +a)-W (tk) <

< C\j~ exP(-"K-/2)-

It is readily verified that the sum of these expressions over all r > k is
bounded by a constant not depending on k. Summing up, we see that

£ PE*BR)<( £ PEKf+c( £ PE¥).
1<|§’£<N I<k<N 1<k<N
Thus the hypotheses of Lemma 7 are satisfied, so we can conclude that
infinitely many of the events E* occur, which clearly implies that 6
CUC(Yi(t,a(t)).

Now, let us turn to the case where a(t) is large, namely that A(i) —0. In
this case, it seems more convenient to consider a(i)) = av2(i)y,(i, a(t))
instead of Yi(t,a(t)). For these a(i), even the first-order asymptotic be-
haviour is known only for J\\ Namely, it has been proved in Cséaki-Révész
[3, Theorem 2J:

Theorem D. If A(t) -» 0 then

gt ot ioging = =70/

where

and
r=[I/*].

REMARK 3. The original proof is given only for the case that a(t)/t —
a > 0. However, it is easily extended to the general case.

For the remaining increments, we shall need some additional lemmas:
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LEMMA 8. As in Lemma 2, let
M +(t) = sup W (u),
o<uc<i

M~It) = inf W(u),
M(t) = sup |W(u)l.

O<u<t
It holds:
(11) P(O sup  |W(t/) —VF(Q)| < x\/t)
<u<v<t
= P(M+(t) - M~(t) < xylt)
=2£ ((-1)> + D(G+ Dx) - #(>*)))
nE£Z
0@/ 1\ @2n+ 1)V 2.
~ U2+ Ln+ )W j GXP 2X2 A
and
(12 P( sup W () - W (u) < x\ft)
O<u<v<t
= P( sup W (u) —M~ (u) < x\ft) = P(M(i) < x\ft)
O<u<t
= E((-im(2H 1)x)-$((21;-1)i)))
ngZ
4 N 1 (2n + 1)2&2
= A gip(— s?— >

PROOF. To obtain (11), observe that by putting ¢ — —b and d =
a in Lemma 2, we get the joint distribution of M +(t) and M~(t). By
differentiating this distribution function we get its density, and integrating
this density over the domain M~ <0< M+ < M~ + xy/t yields the first
part of (11). The second half of this equation follows by another application
of Poisson’s formula.

For (12), we use the fact that by a well-known theorem of P. Levy the
processes W (i) —M~(t) and |W(i)| are identical in distribution. Thus, in
particular, the distributions of supO<u<t W (u) —M~ (u) and of M[t) are the
same. The latter is well-known to be of the form given in (12), cf., e.g.,
Feller [11], pp. 340-343.

From Lemmas 5 and 8 we obtain
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LEMMA 9. If x/y/a —0 then it holds:

P(J3(t,a) < )9= exp(-~(I+ o))

and
PJ4(i,a) <x)=exp (-l + o(])).

If, in addition x/y/t —a —>0 then

P{Jz{t,a) < x) <exp(-7 °AL+ o(l)).

PROOF. To prove the first statement, observe that
A3(i,a) < su VF(V) - W(u)).
(i2) < sup (VF() - W(W)
By Lemma 8 this implies that
n2t
P(J3(t,a) <x) >exp (-~(I + o()).

For the other inequality, let n = [t/a] + 1, a1 = t/n and

D ={ , sup (Y- W) <)

The events Dj are independent, and by Lemma 8

P(Dy) = exp (-0 (l + o(h)).

So,

P(Mt, a) <x) >P(f) Dj) =P (DDn =exp(-0 (1 + o(l))).

The second assertion is proved along the same lines as the first one.

In order to prove the last assertion, let n = [t/a] and

I {suPu_n)a<uga\W(u + a) - W{u)\ <x) ifl<j <n,
1\ {sup(n-i)a<u<t-a\w{u + a) - W(u)| < x} ifj —n.
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We have
n [(ri+D)/2]
{Jz2(t,a) <x} = PIEjC P| Ezj-i.

3=1 3=1

So using Lemma 5 and independence, we get that

[(n+i)/2] 2(f— \
PU2(,a) <i) < [J P(£3-i) < exp(———L j-~(1 + o(l)).
3 =1

Thus, Lemma 9 is proved.
By another standard Borel-Cantelli argument, we can derive the follow-
ing theorem from Lemmas 5 and 9.

THEOREM 4. Assume that A(i) j 0 and that a(t)/t is nonincreasing.
Then

18 log log t

Ilt%f J$[t,aft)) 4ot =1,

12log logt

liminf J\{t, a[t)) 12t 1,

and if a(t) <t then

I 4loglogi

K2(t - a(t)) 2

< liminf J2(t, a(v)\

If, in addition, a(t) > t/2 then

liminf J2(t, ary) 109109t _ 4

«W)

REMARK 4. We conjecture that the last statement is true in the general
case.
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ON SOME LARGE DEVIATION PROBABILITIES FOR
FINITE MARKOV PROCESSES

K. HORNIK

Abstract

For a continuous-time, finite state space Markov process, we investigate the tail
behavior of the numbers of jumps between different states before time T and the
amounts of time spent in states before time T as T tends to infinity.

1. Introduction

Let £ = (£(*),f > 0) be a continuous-time Markov process with finite state
space X = {l,...,n} and infinitesimal generator 7. For T > 0, let z(T) =
[zij{T),i £ j\ and p(T) = [p,(T),i e X\', where

Zij(T) = T~1 [number of jumps from i to j before time T],
p.(T)

and ' denotes transpose. The statistics z(T) and p(T) are of basic interest in
both theory and applications of finite Markov processes; in particular, they
compactly summarize the whole information which the sample (f(t),0 < t <
T) contains about the underlying generator.

If for simplicity we assume that all off-diagonal entries of 7 are (strictly)
positive, then (Albert [1, theorem 6.9])

T-1 [total amount of time spent in t before time T],

Jim (M = ~(07,; as,  _lim p(T) = *.(7)  as.,

where ~(7) = [*1(7),... ,,(7)]" is the stationary distribution of 7 (i.e.,
the unique probability vector p on X which satisfies 7'p = 0), and it is
very natural to ask how “feist” the above convergence occurs, in the sense of
exponential rates of convergence. Of course, the tail behavior of the empirical
measure p(T) is easily identified using the elegant Donsker-Varadhan theory

AMS Subject Classification: Primary 60F10; Secondary 60J27.
Key words and phrases: continuous-time, finite state space Markov process; large
deviations; information distance between infinitesimal generators.
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(see e.g. Donsker and Varadhan [2] and Varadhan [8]), which however cannot
be applied to the jump-type statistic z(T).

In this paper, we show that the joint tail behavior of z(T) and p(T) can
be identified by means of more or less standard large deviation-theoretic
tools. We explicitly compute the rate function and show that it is intimately
related to the (Kullback-Leibler) information distance between generators.
The main result is given in section 2; section 3 discusses three particular
cases of special interest.

2. The Main Result

Let Z be the set of all arrays z = [z-y,i M jf] which satisfy zy > 0 for all
i j, and let P be the set of all probability vectors on X. Then for all
T>0, (z(T),p(Ty) e Z x p. Forz e Z, it will also be convenient to write
4. — zij and similarly z- = zjimFinally, for u > 0 and v > 0,
let H(u,v) = ulog(u/u) —u + v; then H(u,v) > 0 with strict inequality for
un v.

We have the following main result.

THEOREM. (z(T"),p(T)) satisfies a large deviation principle with rate
function

n\ _ /[ Xbp->0 PiH(zij/pi,'Hj), if (z,p) e R,
N Z'P)-\oo, otherwise,

where R is the set of all (z,p) e Z x P for which z- = z-for allie X and
Zij = 0 whenever pi = 0, i.e., for all open subsets U of Z x p,

lininf log P{(z(T),p(T)) € Uy > - infS(z,p),
and for all closed subsets C of Z x P,

limsupT-1logP{(z(T),p(T)) € C) < - inf5(z,p).

T—»00 c

PROOF. Let W be the set of all arrays w = [wij,i * j], for w,w E W,
let (w, td) =  ft wij™ij, and let
Qw,b{z,p) = (w,z) + b'p.

By using the method in Albert [I], cf. also Grenander [5, theorem 2, p. 311],

Et rexp [TQWI(z(T),p(T))} = p exp(TA(w,b))l,
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where 1 = [I,...,1]', p is the initial distribution of f, and A(w,b) =
[oij (w, 6)] is an n x n matrix with entries given by

7 if *7J.

7ii + bi, if»- .
Clearly, for all (tn, b) € W XIRn, A(w, b) £ A, the set of all nx n matrices with
(strictly) positive off-diagonal entries. By the celebrated Perron-Frobenius
theorem (cf. e.g. Ellis [3]), for every A € A there exists a unique real and

simple eigenvalue A(A) of A, the so-called principal eigenvalue of A, such
that 5R(A) < A(A) for all other eigenvalues of A and

TIi_n}*{ljoT llog(exp(TA)),; = A(A) Wi,j.

To A(A) there corresponds a unique right eigenvector r(A) € P with strictly
positive entries. In particular, if A1 = 0, then A(A) = 0 and r(A) = n_II.
Furthermore, if for some s, A= A(t>) is an *-valued C°° function of v G IRS,
then A(A(i>)) and r(A(t>)) are C°° in v. Hence,

lim T-Mog2explrg?izirj.piT))] = A(A(tn, b))
is C°° in (w,b) 6 M>x IRn. By lemma 1.1 and 1.2 in Gartner [4], it follows
that (i(T),p(T)) satisfies a large deviation principle with rate function

S(z,p)= sup 3v<,(z,p), $wb(z,p) = Qwhb(z,p) - \(A(w,b)),
Wx J?"
and it remains to compute S[z,p).

To start with, suppose that (z,p) € R. Denote the t-th component of
r(A(w,b)) by 6) and let

.. fvK 6)\

* = i A_r lb

w,b(z,p): Pi H o aij(w )r»(m’b))
and

V{z,p)~ £ H Pi H(ij/Pi>lij)-
i:pi>0j:j&

Then, as £,:A.>0 Zijlogfo/x.) = £ ,:;A>0(*4 ~ *'*) log x, = O for arbi-
trary Xi,..., xn >0 and

ai}(wh)rAw>b) = (A>GL(u7,6)) - (7.~ - 6,))r,(tn,6),
ri*i
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we have
V(z,p) - <Wib(z,p)

+ Pilij - Piaij{w.0) &\

— (w,2) +b'p- A(A(w, b))
= &w,b(z>P)-

Hence, as =Jb(z,p) > 0, we immediately deduce that S(z,p) < V(z,p). On
the other hand, if for e > 0, w(e) is such that wtl(e) = log(max(z,y,e)/pt7»y)
whenever p, > 0 (and e.g. zero otherwise), and we choose 6(e) in a way that
A(u;(e), 6(e))i = 0, then r(A(w(e), 6(¢))) = n-11 and lim£_ 0™ u(e)t»(e)(*>p) =
0, such that we actually have S(z,p) = V(z,p).

Next, suppose that for some i, 4. » z,~ Then, for a € 1R, construct
tuer) G W as follows. Forj ~ :, let iuy(er) = a and Wji(a) = —er, and let
all other entries of tu(er) be zero. Then A(u;(or),0) = D(a)*D(a)~I, where
D(a) is the diagonal matrix with t'-th entry equal to ea and all other diagonal
entries equal to one. Hence, for all a, A(tn(cr),0) has the same eigenvalues
as 7, in particular, A(A(tn(cr),0)) = 0 and thus

$«,(<7),00Z>P) = °{zim~ z i)
Hence, by either letting a — o0 if z~= > zt or a ——o0 if z\ < z,, we
conclude that S(z,p) = oo if for some t, < * z,-.
Finally, suppose that there exists two distinct states k and / such that

zu > 0 and pjt = 0. In this case, define tu(a) € W and 6(<r) € IRn by

a, if(*\i) = (M)> 1~e ift = Kk,

0, otherwise, 0, otherwise.
Then A(tn(er), 6(<r)l = 0, hence X(A(w(a), 6(a))) = 0 and " w(@),b(0){z,P) =
tTZimBy letting a —* 00, we conclude that S(z,p) —oo ifZzki > 0 and Pk = 0
for some pair (k,l), and the proof of the theorem is complete.

3. Three Special Cases

Let © respectively 0° be the set of all generators on X with nonnegative
respectively positive off-diagonal entries. For i G 0°, the (Kullback-Leibler)
information distance between 0 and 7 is given by (see Hornik [6])

K(»1) = E *iV)H(0Ijt7y).
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where #(0) is the (uniquely determined) stationary distribution of s..

Let the mapping t : 2 x P —* 0 be defined by letting the («,jT)-th
entry, i ~ j, of £(z,p) be 2,y/p, if Pi > 0 and zero otherwise (and letting
tii(z,p) = —Zi./pi if pi >0 and zero otherwise to make £(z,p) a generator).
Then ¢{T) = t(z(T),p(T)) is the so-called standard maximum likelihood-
estimator of the underlying generator from a sample (f(f),0 < t <T). If Z°
denotes the interior of Z, i.e. the set of all pairs (z, p) € Z X P such that all
Zij and all p- are positive, then £is a bijection between Z° and 0°, and, as
clearly

Y,Pjtji{z,p) = H~ 7" = wc s 7<=
3

n(t{z,p)) —p and thus

S{le) = K(I(Z,p),n).

Unfortunately, | is not continuous (or lower semicontinuous) at the boundary
of Z; hence, with the aid of our theorem, we can only describe the asymptotic
behavior of P{0O(T) € A} for subsets A of 0°. Using different methods, the
tail behavior of 0(T) has completely been described in Hornik [7] where it
was shown that 0(T) “basically” satisfies a large deviation principle with a
rate function which is given by

K{0,'i)= min Pi H(6ij,"iij)

and is the unique lower semicontinuous extension of K(9,7) = S(£_1(0))
from 0° to 0. It is quite remarkable to mention that the level sets of this
rate function are not necessarily bounded.

Next, let us consider linear combinations of the form QWit,(z(T),p(T)).
The statistics QWb play an important role in statistical inference for finite
Markov processes. Choosing e.g. Wij = 1and b= 0 we get T _1 [total number
of jumps before time T\, and, more general, choosing 6 = 0 and wt} = 1 if
»E£ Y,j] € Z (where Y and Z are subsets of X) and O otherwise, we get
T~1 [total number of jumps out of Y into Z before time T]. The choice
Wij = log(0Oij/Sij), bi —da —sa gives T~I [log-likelihood ratio between Ptj
and Pt;s], where Fy,« denotes the probability law of (£(t),0 < t < T) with
generator ¢. Finally, taking w = 0 gives

Qo,b(z(T),p(T)) = £ DbiPi(T) = T- 1 [ T b(£(t))dt,

i=1 Jo
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which is the empirical mean of the function b = [6,-t E X]* based on the
sample (£(1),0<t<T).

COROLLARY 1. Qwhb(z(T),p(T)) satisfies a large deviation principle with
rate function

Swb{u) = Qu,fE:?’I,p):u S(z,p).

If UMb denotes the image of 0° under the mapping QWbo £ 1, then for all
u$ dUWb (and thus in particular for all u if UNb = IR),

Sw,b(u) = inf {k (0,7) :9E e°,QWb (r:(0)) = u} .

PROOF. The first assertion follows immediately by an application of the
contraction principle (see e.g. Varadhan [8]), and it remains to establish the
formula for the rate function.

To start with, let (z,p) €R and 9 E 0° be such that Qwb(z,p) = u and
Qw,b{t~1{0)) —v. For 0 < e < 1, define 2(e) E Z and p(e) E P by means of

*j(0 == (1 —c) Zij + eiTi(0)9ij
Pi(e) = (1 - f)Pi + £TTi{9),

and let s (e) = £(z(e),p(e)). Then for all e E (0,1], 6 (e) E 0°, 7r(6(e)) = p(e),
Qw,6(™_1(6(e))) = QWb(z(e),p(e)) = (1 - e)u+ ev, and lim”o K(s(e),"l) =
S(z,p).

Let us write RWb(u) = inf{K(9,7) : 9 E @ ,QWb(E~1(9)) — tt}. If
u E UWb, we may take v = u in the above construction to conclude that
for all (z,p) E R such that Qwb(z,p) = u, S(z,p) > and thus
5tu,i(n) > Rw,b(u); °n the other hand, it is trivial that Rwb(u) > Swhb(u),
hence SWib(u) = Rw,b(u) for all u E UWb- If u is in the complement of the
closure of UWb, then by definition no 9 E 0° exists such that Qwf,(£-1(0)) =
u, and the above construction shows that there is also no (z,p) € R such
that Qw,b(z,p) = u, hence, in this case, SWib(u) = 00 =

Finally, we have the following result. For vectors u = [u,-,i € X]' let us
write u > 0 iffu, > 0 for all 1
COROLLARY 2. p(T) satisfies a large deviation principle with rate func-
tion
I(p) = m|5(2,p) = - inf
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If P > Q, then I(p) is the information distance between the set of all gen-
erators in 0° with stationary distribution p and the underlying generator

1 -

PROOF. Again by an application of the contraction principle, it is im-
mediate that p(T) satisfies a large deviation principle with rate function
I(p) = infzez S(z,p). That J(p) equals J[p) := - infu>0  pi(7u),/u, fol-
lows from results in Donsker and Varadhan [2], but can also very easily be
established directly. On the one hand, for arbitrary u > 0 and (z,p) € Kk,

M i
s{z,p) + o
t 1
= ~ Zij + Pilij
EE piij 0
— Zjjuj .. A
—E E o= Zij + Pilij
i:pi>0 PIIIJUJ
= zalPixinuj/u.)
i:pi>o j:jfr
>0

and thus /(p) > J(p). On the other hand, as (cf. the proof of the theorem)
b'p- X(A(O,b)) =- E P i |l ij <J(p

and clearly I(p) = supjjfc'’p —A(A(0,6))], we have I(p) = J(p) as asserted.

Finally, let p > 0 and consider an arbitrary z 6 Z such that zt. = z-
for all i. If we choose some 9 € 0° with w(0) —p and apply the construc-
tion in the proof of corollary 1, we obtain a sequence 5(e) € 0° such that
7r(5(e)) = p and S(p,z) = lim£ o A(5(e),7), whence /(p) = infze/ S(z,p) =
iniGee’:x(6)=p K[6,i).

CONCLUDING Remarks. Ifthe underlying generator 7 is not in 0°, but
ergodic in the sense that all states in X communicate, the theorem continues
to hold, with k now the set of all pairs (z,p) G Z XP such that z- = z\ for
all i and zy = 0 whenever pilij = 0.

Finally, as pointed out by P&l Révész, it should be possible to generalize
the results of this paper to the case of a countable state space X, at least
when H7ll := Yli*j Uj < 00. This question will be investigated elsewhere.
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RENYIl AND THE COMBINATORIAL SEARCH PROBLEMS

G. O. H KATONA *

1. Introduction

The whole story has started with the Hillman, Rényi’s car. It was a kind of
a member of his family. That time, in the early sixties, very few people had
cars in Hungary, the gasoline weis cheap, there was no parking problem. Once
he gave me a ride from the Institute to the cafeteria, less than 200 meters.
One day, however, the Hillman stopped its smooth services. Obviously, there
was some electrical problem with it. The electrician, however, was unable to
find the source of the trouble. Rényi had to find it, himself. He has found
it, and in the mean-time he has developed a general mathematical model for
the situation.

The car can be considered as a finite set of its parts. The car does not
work since one (hopefully exactly one, so we suppose it) of its parts does not
work properly. When trying to find it, tests are performed. One test tries
to function a subset of the parts. If it does not work then the defective part
is in this subset, otherwise it is not contained in it. After performing several
such tests we have to determine the defective part.

Let us formulate it a little more mathematically. A finite set X of n
elements is given. A distinguished element z of X is given but it is unknown
by us. Furthermore, a family A of subsets of X is given. We can ask the
questions if “x is in A” or not, for members A of A. We have to identify x
on the basis of the answers for the above questions. We call the members of
A question sets. They are the potential questions.

There are two basically different models. If the sequence A%,..., Am of
actual questions (a subfamily of A) is fixed in advance then we say that this
is a linear search. The obvious mathematical aim is to minimize the number
m of questions. On the other hand, the choice of the next question may
depend on the answers to the previous questions. The first question set is

"The work of the author is supported by the Hungarian National Foundation for Sci-
entific Research Grant No. 1909.

1980 Mathematics Subject Classification. 68E05; 94A15.
Key words and phrases. Search, group testing, sorting, entropy.
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A £ A. If the answer is x » A then the second question set is Ag€ A while
in the case of the answer x € A the second question set is A\ £ A. The third
question set is Aoo £ A, Aoi £ A, Aio £ A and An £ A, resp. depending on
the two previous answers, etc. This is called a tree search. In this case the
maximum number of questions (the length of the longest path of the tree)
should be minimized. The tree search seems to be more practical, however
the linear search is much simpler to organize, so in the era of fast computers
it might be equally important.

W ith this model Rényi [27] initiated an area, the combinatorial search
problems. He and his followers have written many papers. However his work
was not the only source of these investigations. Now we show some other
sources.

Let X be a set of soldiers in World War Il. A sample of blood is drawn
from every person. The ones .containing syphilitic antigen should be found
using the Wasserman test. It was an original idea that the blood samples
could be poured and tested together. In this way it can be decided if a
certain subset of soldiers contains an infected person or not. This model
is basicly identical with the previous one, the only difference is that the
number of elements to be identified is not known, in advance. (See [10] and
[31].) This kind of models are called group testing and considered to belong
to Mathematical Statistics.

An even older question was raised by Steinhaus [30]. A set of n table
tennis players is given. Suppose that their abilities are constant, it can be
described with a real number, there is no randomness, so the better one
always defeats the weaker one. The aim is to determine their total order
by pairwise comparisons, that is, table tennis matches. Although it is not
clear at the first sight, this problem is also covered by the above model. Let
X be the set of n! permutations of the players. One of these permutations
is searched. One match determines if this unknown permutation belongs to
the set of n!/2 permutations where player a is better than player h.

So, one can say that the area has three sources (Fig. 1). The present
author wrote a survey paper [16] containing 66 references, the book by
Ahlswede and Wegener [I] has 166 references and finally the most recent
summarization of the area, the book of Aigner [2] quotes 198 papers. These
numbers show that the area became quite large, a small paper cannot survey
it. Therefore the aim of the present paper is to survey those papers which
were written (mostly by Hungarian authors) under a direct or an indirect
influence of Rényi.
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GROUP TESTING

Fig. 1

2. Qualitatively independent sets and partitions

Let A, B C X be two question sets. Suppose that they are disjoint. First
ask if the unknown x is in A or not. If the answer is no, we have to ask B,
as well. However, if the answer is yes then there is no need to ask B, we
know that x is not in B. If one of

1) AUB, AuB, AUB, AUB

is empty, the situation is similar, that is, one of the possible answers to the
first question makes the second question superfluous. We say that A and B
are qualitatively independent if none of the sets in (1) is empty.

Rényi [28] raised the question what is the maximum of |>I| on an n-
element set if any two different members of A are qualitatively independent.
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The answer is very easy for even n-s. It is easy to see that the sets in (1)
are all non-empty iff there is no inclusion among the sets A, A, B, B.
A family S of subsets is called a Sperner family iff there is no inclusion in it,
that is, C 2 D holds for any two distinct members of S. Using this notion,
we can state that any two members of A = {A\, Ay,... ,Am} are qualita-
tively independent if and only if A* = {Ai, A2,..., Am,A\, A%,..., Am}is a
Sperner family. However, the maximum size of a Sperner family is known:

Therefore, if A is a family of pairwise qualitatively independent sets then
A* is a Sperner family and 2m is less than equal to the above binomial
coefficient, so

This inequality is true for any n but it is also sharp for even n-s, due to
the following construction. Take all n/2-element subsets containing a fixed
element /.

The odd case is non-trivial, but easy. It was independently discovered
by many authors [17], [6], [7], [20],

THEOREM 1. The maximum size of a family of pairwise qualitatively
independent sets on n elements is

The construction coincides with the even case.

[20] also contains good estimates on a more general problem. We say that
r > 2 sets are qualitatively independent, if they divide X into 2r non-empty
sets. The maximum size of a family in which any r sets are qualitatively
independent is estimated.

One may consider a more general condition. If all the sets in (1) are of
size at least d then we say that A and B are qualitatively independent of
depth d.

PROBLEM 1. What is the maximum size of a family of pairwise quali-
tatively independent sets of depth p on n elements?
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It might be true that the obvious generalization of Theorem 1 holds for
fixed d and large n. The case when d = cn seems to be hard.

In what follows, we will consider another generalization. Before that a
further motivation will be presented. It can be considered as the fourth
source of the area of combinatorial search problems. Given n coins, one of
them is counterfeit. It is known that the counterfeit coin is lighter than the
good ones and it should be found by the minimum number of weighings using
an equal arm balance. (No additional weights can be used.) The novelty
in this problem is that one question (weighing) devides the groundset into
three parts: the set of coins in the left arm, the set of coins in the right arm
and the rest. In our earlier model the groundset was devided into two sets:
the question set and its complement. This example of the equal arm balance
suggests to introduce the notion of the question partition: P = {Ai,..., Ar},
where Ai,...,Ar is a partition of the groundset X. The answer to this
question determines the unique i satisfying x G A,. In this case a family P
of partitions is given and the partitions for a linear search or tree search are
chosen from this P. If the number of parts in a partition does not exceed r
we call it an r-partition.

The notion of the qualitatively independent partitions is straightforward.
Pi and P" are qualitatively independent r-partitions if they divide X into r2
non-empty subsets. One cannot expect that the exact maximum number
m(n,r) of the pairwise qualitatively independent r-partitions could be de-
termined, only its exponent. Poljak and Tuza [25] proved that

1, .2
limsup n—log m(n,r) < -

A recent great achievement is

THEOREM 2 (Gargano, Kdrner, Vaccaro [13]).
lim —I in,r) = -.
i supn ogmin,r) .

One should mention the preliminary work of Kérner and Simonyi [22].

The following result does not belong to this section, but it is a surprising
development in the area of the counterfeit coin problem and this is the best
point to mention it. Suppose that n coins are given, m'< n of them are of
weight 1—£ (counterfeit coins) the rest of them are of weight 1 (good coins).
Find the shortest tree search determining all the counterfeit coins. As the
number of possibilities is (*) and one question has three different answers,
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the minimum number of questions (in the worst case) is at least log3 (*).
This lower estimate is not the best because we cannot always divide the
possibilities into 3 equal parts. The exact result, in general, expected to be
quite complicated as it depends on number theoretical properties of n and
m. The cases m = 1,2,3,4,5 are considered in [8], [32], [33], [34], [35].

It is surprising that the above lower estimate is still almost sharp in the
following sense.

THEOREM 3 (Pyber [26]). If exactly m (lighter) conterfeit coins are to
be found among n coins then it can be done in at most

1°g3 ., 1+ 15m

w

steps in all cases.

3. Optimal search with constraints on the sizes of question sets

Let us turn back to the original question. Suppose, again, that there is
exactly one unknown element x E X, the family of question sets is the
family of all subsets in X and a tree search is used. Let k denote the length
of the longest branch of the tree, that is, the number of questions in the
worst case. Then the number of sequences of answers is at most 2k since a
sequence cannot be an extension of another one. For different x the sequence
must be different. Hence 2k > n holds. This implies k > [log2n]. Now we
show a construction of a (very special) tree search whose length is [log2n].
It will be a linear search. Label the elements of X by 1,2,..., n. These labels
can be written with [log2n] binary digits. Let Aj consist of the elements of
X whose label’s jth digit is 1. The answers to these questions determine all
digits of the label of the unknown x. Thus we can formulate the following
theorem.

THEOREM 4 (Folklore). The minimum number of questions in a linear
(tree) search to find the only unknown element in an n-element set is

[log2n].

Rényi asked what the situation is if A — {A : AG X, |A| < k}. The
situation is considerably different here. E.g. the results for the tree search
and the linear search do not coincide any more. The case of the tree search
is easier both to describe and to prove.
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Observe that any question set can be replaced by its complement. Thus,
k < n/2 can be supposed. Furthermore, if after some questions in a tree
search it is known that the unknown x is in a subset ofsize s < 2k then x can
be found by [log2s] further questions, using Theorem 4. Now let us give an
optimal tree search. Write n in the form n = gk + s where k <s < 2k and
take a partition Bj, B2, m.., Bq,Bg+1 where |Bi| = ... = |B9| = k, |Bi+i| =
s. Ask B\, Bz,... until the answer is “yes”, x € B, (1 < q). Then x can be
found by [log2fc] further questions. If the first such case is 1= g+ 1 then
we need [log2s] more questions. It is not hard to prove that this is (one of)
the best tree search [16].

THEOREM 5. Suppose that the question sets are the subsets of size at
most k < n. Then the shortest tree search needs

When, in his seminar, Rényi asked what the minimum number of ques-
tions in a tree search is, many students (B. Bollobas, J. Galambos, T.
Nemetz and D. Szész) brought the solution for the next seminar for the
case + 1 < n. Then the result is The present author has
constructed ([15]) the best linear search for all k. This leads to the following
estimates.

THEOREM 6. Denote by I(n,k) the minimum length of a linear search
finding an unknown element in an n-element set using question sets of size
at most k. Then

log2n n

" <I(n, k) <
~100 T + ————- l0Q --—mm- - log 7
- IogI + log g

(See also [23] and [37].) As it is pointed out by Dyachkov, the lower
estimate is asymptotically sharp when k = cn.

Baranyai [5] generalized the construction for r-partitions whose parts
(except the last one) are bounded in size. Proving this result he proved a
“small lemma” which turned out to be a 120 year old conjecture of Sylvester:

THEOREM 7 (Baranyai [4]). Suppose that k divides n. Then the set of
all k-element subsets of the n-element set X can be partitioned into such
classes that each class forms a partition of X.
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Although this famous result does not belong to the Combinatorial Search
Theory, it was created under an indirect influence of Rényi. It is obvious
to ask what can be said if k does not divide n. To formulate a conjecture
concerning this general case, a new definition is needed. Suppose that the

elements of the groundset X are ordered: X = {xi, 12, s, xn}. Define
Al = {x(*_ifc+i, .o *(e-D*+*} where the indices are considered
modn. The family A\, Az,..., Awwhere w = n/gcd(n, k) is called a wreath.

(Neighboring ifc-element subsets are taken after each other until the end of
one fits to the beginning of the first set.)

CONJECTURE (Baranyai and Katona). There are permutations of the
groundset in such a way that these permutations of the wreath give all k-
element sets exactly once.

It seems to be hard to settle this conjecture. Sylvester’s conjecture was
earlier attacked by algebraic methods and an algebraic way of thinking.
Baranyai’s brilliant idea was to use matrices and flows in networks. This
conjecture, however, seems to be too algebraic. One does not expect to solve
it without algebra. (Unless it is not true.)

Let us turn back to the search problems with restrictions on A. We will
use the problem of Steinhaus to obtain motivations. The problem actually
became an important problem of computer science (with numbers rather
than table tennis players). It is the simplest one of the so called sorting
problems (see [21]). It is obvious by Theorem 4 that a tree search to find
the actual permutation needs at least flog2n!] pairwise comparisons. This is
n log2n-fcin-fo(n). The tree search given by Ford and Johnson [12] (which is
belived to be the best) needs n log2n+C2n+o(n) steps. That is, the first term
is determined, but not the second one. Let us see the reason why the lower
estimate [log2n!] cannot be realized by a tree search. To reach this bound
we have to halve at each stage the set of possible cases, therefore the question
sets should divide the groundset (of permutations) into 4 equal parts. This
is, however not always possible. Consider the comparisons a <? < b and
b <?< c¢. Denote by A and B the set of permutations giving positive answer
to the first and the second question, resp. Then two of the sets in (1) have
size n!/3 and the other two have size n!/6. This is the motivation to the
following investigations.

THEOREM 8 ([18].) The minimum length of a linear search using ques-
tion sets satisfying

\AnB\ < |
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v8n-7-1
2

Let us mention that this strange formula is equal to the smallest m such
that

n<1l+m+

[18] also gives the exact minimum up to an additional constant 1 for the case
IAn B\ < 2. Fairly good estimates are given for the cases |An B| < k where
k < c-"n.

For the case of tree search let us start with an observation of Sebd [29].
If the first question set is A and the answer is X e A and the second question
set is Ai then it can be replaced by An A\. On the other hand, when x * A
then Ao can be replaced by An Ao- Continuing in this way we obtain a
modified tree search where the question sets on different branches of the
tree are disjoint while the ones along the same branch are in inclusion. Of
course the lengths of the branches are unchanged. Thus, when looking for
the shortest tree search, this strong property may be supposed. E. g. ifA=1
then the original condition becomes simply the condition that all question
sets, with exception of the very first one, are of size 1.

Sebd [29] has determined the length of the shortest tree search under
the condition |[An B\ < k for all k < n/4, however the formula is rather
complicated so we give only the case k = 1 here.

THEOREM 9 (Sebd [29]). The minimum length of a tree search using
question sets satisfying
[An B\ < 1

\/8n - 7 —1
2 1

Compare it with Theorem 8. The best linear search is not longer than
the best tree search, in this case. For k — 2, however, the former one is
about \/3/2-times larger than the latter one.

[29] contains good estimates also for the case when the intersection of
any m question sets is bounded.

The combination of the previous two types of constraints has not been
studied, yet:
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PROBLEM 2. Determine the length of the shortest linear and tree
searchs, resp., under the conditions

|Al < k, IAn P| </ forall A,B EA

Let us see the situation at the search of a permutation by binary com-
parisons. We observed that the comparisons a <? < band 6 <? < ¢ imply
the existence of two question sets dividing the set of permutations into four
parts containing one third, one third, one sixth, one sixth of the whole set,
instead of the “good” proportion one fourth, one fourth, one fourth, one
fourth. However, this is not true for all pairs of questions! What we can
say is that among any f + 1 questions there is one such pair. One way of
expressing the fact that two question sets are not intersecting each other in
a “good” proportion is the use of the entropy function of the Information
Theory. The entropy of the partition A\ U Ai U A3 U A4 of X is

M
£ INI
This expression is 2 for the case when A, = |[|X |. It is known from Informa-

tion Theory that it is smaller in all other cases. This suggests the following
problem.

PROBLEM 3. Determine the length /(£, E) of the shortest linear search
under the condition that among any t question sets there is a pair such that
the 4-partition induced by them has an entropy at most E.

We have only estimates. To formulate them some more definitions are
needed. Put h(x) = -xlog2x - (L - x)log2(l —x). The inverse of h is
defined using the interval 0 < x < 1/2 where it is monotone.

Theorem 10.

\' log2n- (t- < f{t, E) < -| log2n + 0{log2n).

PROOF. Start with the lower estimate. Let f be a random variable
taking on values from X. Define the probabilities to be equal: P (f = x) =
1/n. Denote the question sets by Ai,...,Am. They define some further
random variables:

0 if £$AI
1 if T€A,.
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Now define the entropy of a random variable r) taking on its different values
with probabilities p\,... ,pn:

Hid) = ~ S PilogPi-
ts:1

Observe that £ determines the random vector (Ci,...,£m)- On the other
hand, as the answers to the questions “x E A,” determine X, therefore the
converse is also true, (£1,..., fm) determines f. Consequently the distribu-
tion of the two random variables are identical and

) UT( = ff((e!,....,&*)) = log, n.

Here we need an elementary lemma from Information Theory (see any text-
book on Information Theory, e.g. [11], [9]):

3) H((m,m))< Hin” + Hir,2).
(2) and (3) imply

@) log2n < H(((i, 6)) + ff(ts) + ff(((4, (7)) +

for any partition of the set ..., "m} into one and two-element subsets.
If they are all one-element sets then (4) leads to log2n < m, only, since the
entropy of one f, is bounded by one. However if we find M such disjoint
pairs that f;)) < E(< 2) then (4) results in

(5) log2n -M (2 —E) <m.

To find the best M, the problem will be reformulated for graphs in
an obvious way. Define a graph whose vertices are £ and two vertices
are connected iff < E. The following graph theoretic lemma is
needed:

LEMMA. Given a simple graph G on m vertices, there is at least one
edge among any t vertices. Then it contains at least

m—t+ 1
(6) 2

vertex-disjoint edges in G. This result is sharp.
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PROOF. Take the largest set L of vertex-disjoint edges. Let \L\ — 1. If
m —21 > t then there are t vertices not contained in any member of L. By
the conditions of the lemma there is an edge among these t edges which is
vertex-disjoint to the members of L. This contradicts the maximality of L.
The contradiction proves m —21 <t and the first part of the lemma.

Now consider the graph G of m vertices consisting of a complete graph
on m —t + 2 vertices and isolated vertices. This graph obviously satisfies
the conditions of the lemma and cannot contain more vertex-disjoint edges
than (6). O

The lemma and (5) imply

and the lower estimate in Theorem 10.

The upper estimate will be proved by a simple construction. Define
k — [nh-1 (E/2)\. Question sets of size at most k will be used. Then, by
the monotonity of h[x), we have #(£,-) < h(k/n) < h{h~I(E/2)) = E/2. (3)
implies H(£i E, as needed.

Use the construction mentioned after Theorem 6 as k/n is a constant.
Then the lower estimate is sharp in Theorem 6. It gives the upper estimate

/.(A-W 2)) + 0(108 n)

which coincides with the one given in the Theorem. O

Let us have some remarks concerning this Theorem.

1. It gives an approximate solution to the problem of Theorem 8 in a
new case.

2. Problem 3 and Theorem 10 are not intended to help finding the
shortest linear search for a permutation by pairwise comparisons. F is a
trivial problem, one has to compare all (£) pairs. However the solution of
the analogous problem for the tree search might give a better lower estimate
on the permutation problem.

4. Miscellany

As it was mentioned earlier, a tree search needs nlog2n+ 0(n) steps to find
the proper permutation of n objects (numbers) by pairwise comparisons.
Modern computers have complex hardwares able to execute many operations
simultanously. This is called parallel computation. As one object can be
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used only in one comparison at each moment, not more than n/2 parallel
operations are possible. Therefore at least O(logn) steps are needed even if
parallel steps are allowed. Ajtai, Komlos and Szemerédi [3] proved that this
can really be done in this many steps.

A. Varecza has proved many interesting results of sorting type. Let us
mention only one of them here. Let x\,..., xn-2>yi, \o be distinct integers.
It should be decided by pairwise comparisons if y\ are 12 neighboring in the
natural order of all these numbers. It is easy to see that 2(n —2) steps are
enough. However it is not at all trivial to prove that there is no shorter tree
algorithm. It is proved in [36].

If there are more unknown elements in X then one question set A may
give different answers. One of the natural models is when there are two
possible answers: either a) there is one unknown element in A or b) there
is none. Hwang and Vera Sos [14] gave good estimates for the minimum
length of a linear search when the number d of unknown elements is known
in advance.

J. N. Srivastava’s following idea connected search theory with the theory
of statistical factor analysis. The usual aim of factor analysis is (roughly
speaking) to determine the weights of the influence of different factors for
the investigated quantity. Now suppose that there are many possible factors,
very few of them have a real influence the other ones have no influence (or
are negligable). However it is not known which ones are the non-negligable.
Thus in this model two things are done simultanously: a) determination of
the non-negligable factors, b) determination of the weights of them. [19]
contains results on the tools used to solve this problem, the so called search
designs. These investigations led to the problem of finding the largest family
S closed under the operation symmetric difference and such that S —{0} is
a Sperner family [19]. Generalizations can be found in [24].
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WAITING FOR THE COVERAGE OF THE STRASSEN’S SET

P. REVESZ

Abstract

Let {W(t), t >0} be a Wiener process and for any e > 0 define
= inf{s : 3 >t, W(s) > ((1 —e)2s log logs)1/2}.

The limit properties of u(t, ) (t — 00) and some other similar waiting times are
investigated.

1. Erdés - Rényi strong law of large numbers

Let (W(t), t > 0} be a Wiener process and let a(t) < t (t > 0) be a real
valued function satisfying the conditions

(i) a(t) is a positive nondecreasing function,

(if) t-1a(f) is a nonincreasing function.
Further let

I(T,a(T))= sup _(W(i+a(T))-W(1)).
0<t<T-a(T)

Then a special case of the Erd6s - Rényi strong law of large numbers [5]
runs as follows

THEOREM A. For any C > 0 we have

/(T.ClogT) /2
r —eo logT v
A generalization of this special case is the following
1980 Mathematics Subject Classification (1985 Revision). Primary 60F17; Secondary
60G50.

Key words and phrases. Strassen’s law of iterated logarithm, Erdés - Rényi strong law
of large numbers, increments of a Wiener process.
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THEOREM B. (Csorgd - Révész, [2].) Assume that a(-) satisfies condi-
tions (i) and (ii). Then

(1.1 limsup7(T,a(T))I(T,a(T)) =1 a.s.
where
L1
7(T,a(T))= (2a(T) (log + loglogt))
If a(T) also satisfies the condition
r-s log(r(a(T))-°) 00
then
(1.2) IETOY(T,a(T))/(Tm(T)) =1 as.

Note that in case a(T) = C log T we obtain Theorem A as a special case
and in case a(T) = T we meet the classical law of iterated logarithm (LIL):

(13) lim sup b(T)W (T) a.s.
T—»00

where
b(T) = (2TloglogT)-V2.
Theorem B gives the best possible result in the sense that if condition
(iii) is not satisfied then (1.2) does not hold true. In fact we have

THEOREM C. (Book - Shore, [l].) Assume that a(-) satisfies conditions
(i) and (ii). Assume also that

(iv) hm7"_ o 24prfart)-1)_
oglogT

Then
1/2

(1.4) Iirﬂ)xr%ﬂ(r,a(r))/(r,a(r)): \(r_l_l)/ a.s.

We also mention that a somewhat stronger version of the lower half of
(1.3) is also valid:

THEOREM D. (Erd6s [4], Feller [7], Kolmogorov - Petrowsky [8].) For
any p — 2,3,... there exists a random sequence 0 < 7\ = Ti(w,p) < <& =
A (N jP) < eemwith limn_>0Tn = oo a.s. such that

r (0<r < 00).

(1.5) W (Tn) > (2Tn (log2Tn + | log3Tn + logdTn + ... + logpT,,)) "

Here and in what follows

log! x = logx and logpx = log(log XxXx).
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Consider the process
£(t) = sup{s: 0<s <t VF({s) > (6(s))-1}.
(1.5) with p = 2 implies

lim f(f) = oo and limsup =1 as.

t->00 i-.00
The lim inf behaviour of £(0 is described in the following

THEOREM E. (Erd6s - Révész, [6].)

16 9 fody 1o e 97 = €

where C is a positive constant with
2-2 <C <214

Let
i/(t) = inf{s: s>t IV(s) > (6(a))-1}

Then a trivial reformulation of Theorem E is the following

THEOREM F. For any e >0 and t big enough we have
ilgi)y < t1+'W a.s.

where
e(t) = (214 + e)(log3t)(log2t) - 112

and there exists a random sequence 0 < ti = t\(w) < 2 = [2(w) < ... with
limn-Kx, tn = oo a.s. such that

HQ > {i+i(tn)

where
m = (J - e) (log30(lo620 - 1/2.

It is natural to ask how Theorem F should be changed if the definition
of i/(t) is changed as follows. For any 0 < e < 1 let

v(t,e) = inf{s: s>1i, W(s) > (1 —e)V2(6(s))-1}.

Then we have
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THEOREM 1. For any t big enough and 0 < /x < 1 we have
(1.7) < [(i,e) = iexp *(logi)L ME* a.s.

Further for any 1 < A < e-1 there exists a random sequence 0 < ti —
ti(uj,e, A) < 2= e, A) < ... with tn — 00 a.s. such that

(1.8) v(tn,e) > tnexp ((login)l Ae) -

We are also interested to find the analogue of Theorem 1when we replace
the process W(-) by the process /(=,*) in it. Let

v(t,a(t),e) =inf{s : s >t, 7(s, a(s))I[s, a(s)) > (1 - e)L/2}.
Then by Theorem B we have
Iitminfl'_li/(l',a(i),e) =1 as
If a{t) satisfies condition (iv) with
r >1-¢e
r+1
then by Theorem C we have: for any i big enough
v(t, a{t),e) —t as.

Hence we are only interested in the limsup behaviour of v when

<1l-e
r+1

In this case we have

THEOREM 2. Assume that a(t) satisfies conditions (i), (ii), (iv) with

r>0 and < 1—£f.
r+1

Then for any s >0 and t big enough we have

(1.9) v{t, a(t),e) < texp ((logi)(r+1H1- *)-r+<n
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2. Strassen’s theorem

Define the Strassen’s set S C C(0,1) as follows: a function / 6 C(0,1) is an
element of 5 if and only if

@ /(0)=0
(b) /(*) is absolutely continuous in [0,1] and
jO (f'(x))2dx < le
For any e > 0 and for any set G C C(0,1) let
G* = {/(.)eC(o,i), [[/(0-G[|<«}

where
11/(0 ~ Gll= M OSlPI 1/(*)-s(*)I-

Consider the stochastic process
wt(x) —b(mw(xt) (0<x < 1, t>0).
Then Strassen proved in [10]

THEOREM G. (1) For any € > 0 there exists a random variable to =
to(e,u>) > 0 such that

(2.1 wit(x) € 5% it 1>t

(2) For any S(-) € S there exists a random sequence 0 < t\ = ti(s,cu) <
2= i2(S>W) < «eewith limn_o00tn = 00 a.s. such that

(2.2) M%no ,Sup. lu/tlt(z) - «(i)] = 0.

(2 of Theorem G implies that the net {uit(z), 0 < x < 1} (¢t > 0)

eventually “covers” the Strassen’set 5. In fact we say that a set of functions
7 C C(0,1) e-covers a set G ¢ C(0,1) if for any p(-) ¢ G there exists a
function /(x) = /(x; (/(+), €) € 7 such that

sup |/(x) -s(x)]| < e.

0<z<lI

Then it is natural to ask what is the waiting time for the coverage of S. We
prove
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THEOREM 3. Let
p(t) —inf{u > t: ?2tu= (Uz(-)>t < z < u} e—covers s}.
Then for any t big enough and 0 < p < 1 we have
(2.3) p(t) < texp ((logi)l ME) a.s.

Note that Theorem 1 implies that (2.3) is the best possible result in the
same sense as (1.7) gives the best possible rate in Theorem 1.
A common generalization of Theorems B and G is the following

THEOREM H. (Révész, [9]) Let
T(x,t) = r{x]t,a{T)) = -i{T.a{T){W{t + xa{T))-W(t)) 0<x< 1
and define the random set Vj = V (T, a(T)) € C(0, 1) as follows
VT = V{T,a{T)) = (r(x,i) : 0< t<T - a{T)}.

Assume that a(T) satisfies conditions (i) and (ii). Then
(1) for any e > 0 there exists a random variable To = To(e,w) > 0 such
that

(2.4) VI cSe if T>T0

(2) for any s(-) E S and e > 0 there exist random variables
T = T(e,s(-)\uj) >0 and O0<t=t(es(-);u>) <T —o(T)

such that
(2.5) sup |r(x,t) - s(x)] < e.

O0<z<lI

If a{T) also satisfies condition (iii) then for any e > 0 there exists a random
variable To —To(e,s(-);w) > 0 such that

(2.6) Sc /Ty forall T >TO.

As Theorem 3is a sharpening of (2) of Theorem G we can give a sharp-
ening of (2.5) and (2.6) as follows
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T heorem 4. Let

p(T,a(T),e) =inf{tf > T : 7{U,a{U)) = (J V(Z,a[Z)) e-covers S}

T<z<u
(a) Assume that a(i) satisfies conditions (i), (ii), (iv) with

——>1-e (0O<ex<l).

Then for any T big enough
(2.7) p(T,a(T),e) =T as.
(/?) Assume that a(t) satisfies conditions (i), (ii), (iv) with
——<1-£ (0O<ex<1r>0).
r+1 \(/ ’ )
Then for any S > 0 and T big enough we have

(2.8) p[T,a{T),e) < T exp ((log a.s.

3. Proof of Theorem 1

At first we prove (1.7). In order to do so introduce the following notations:
for any t > 0 and £i > 0 define the sequences

Tk = rk{t) = tek (k= 0,1,2....... [(logiy1-'71 = K),
Ak = Ak(t) = {W(rk) > (1 - ei)l2(i>(rt))-13.

Observe that

K
P{AOAi ...Ak} = P{Ac}I] ?M* Iak1l ... A0}
*:i
K
=(G-p{a0>)n(i-PM *M *-i--.A 0»
*:i

and

P{A* |A* i...Ao} >P{A*|Wrfo-i)| < To_\ |At_i...Ao}

= P{AK I|W(r*_i)| < Tik\,Ak-1...A0}P{\W(Tk- I\ < t2\ \Ak- X...A0}
> P{AGCIW{rk-X = -rA 1P d~-0 | < tiJ\ IAk-1-..A0}

loglogrtOogr*)1-'»
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for any k big enough. Hence

K
«Ci-ne
< exp _(10g*)
(log log t)2
Choosing ei > fie and applying the above inequality with tf = (E —

1,2,...; 0 > 1) we obtain

sup  6(s)IV(s) > (L —ex)V/2 as.

tI<a<Tk(ti)

for all but finitely many 1. That is (1.7) is proved for ti. In order to prove it
for any ti <t < t(+i it is enough to prove that if IT(tk) > (1-£i)V2(6(t*))_1
then W (tk+i) > (1 - e)V2(6(ifc+l))_1. Clearly

W (tk+1) = W (tk+1) - W (tk) + W{tk)
> W{tk+1) - W(tk) + (L- ei)U2~ )) " 1

> (1- ei)12(B(*f) 1- (1 - e)l/2(6(*+1- i*))-1
> (1- £)V2(6(ifc+l))-i

if 0 —1 is small enough and ei < e. Consequently (1.7) is proved.

Now we turn to the proof of (1.8). Introduce the following notations: for
any t > 0 let

(log t)I—\e

= trpk  [ip>1 k=0,1,2,..., logth

= K = K(t)
Bk = Bk(t) = {W(rPk) > (1 - e2V2(6("))" 1}

Observe that
K
P{HOPi essk) = (1- P{EQ) i3 (" - P{BKk IBk.t...BO)
k=1

and

P{BkIBK"...B 0} < P{Bk} < (logt/>*)-1+*2 < (logi)_1+e2
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Hence

K
V{BoBX...BK} > XI(!“
Jt=0

> (1 - (logt)_1+e2)(logt)l A'/logh > 1 - (I°%)é;%>— -

if £2 < Ae which implies that there exists a random sequence 0 < ti < t?
< ... with limn_oo tn —co a.s. such that

o<m&tn]b (M tn))W(Mtn)) < (1- .)>/» (n=1,2,...)
Choosing £2 > £ and tp close enough to 1 we obtain (1.8).
4. Proof of Theorem 2

Let

W(i,j.T)

W(e'T + (i + Da(e,+1T)) - W(ejT + ta(eJ+1T)))
(iI=0,1,2,..., [(e'+l - e))T(a((e+1 - e~T))"1],
J=20,1,2,..., (logy)(r+D(1-£)_r+i))

7(eJ+1T, a(ei+1T)).

Then we have

P{ max
Eira((eir))-°
=1- I W*\0,T) < (L- ei)Va(7(0,T))"1}
»=0
(«-)T(a(«T))-* J
- " n ~ (logT)(r+D(I-«»)

_ 1 n
> Lo =gyt g

forany 0 < £2 < ei <e < 1ifT is big enough. Similarly for any j and s <e
we have

P{0<t<(e>+l—e>5nTa():§1((i;|+W)T))_‘W(i’j’T) > @ - EDVA7(y.T))-1}
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-1 GXP( (logT)(r+1)(1_*2)-r)
Consequently

P{max max 7G, T)W{i,j, T) < (1 - ei)1"2} < exp(—(log T)i-r+1re_*2n).
| )
Assuming that S> (r + I)(e —£2), T* = 0*, © > 1 we obtain
max max i(j, TYW(i,j, 7%) > (1 - ex)1l/2 as.
3

for all but finitely many k. Choosing © close enough to 1 we easily obtain
Theorem 2.

5. Proof of Theorem 3
Let
V() = ~(01,02,... ,ad\t)
= a{W () + a2{W(2t) - W(i)) + ... + ad(W(dt) - W(d - Di))
(a2+ a2+ ... +add—1, t >0),
X(0 = x(ai>az,*e*>&d\t) - inf{s: s>t Vv(s) > (1- £)1/2(6(s))-1}.
Then

LEMMA 1. For any t big enough and 0 < p < 1 we have

X{t) < texp((logi)l M) a.s.

PROOF is essentially the same as that of (1.7). It will be omitted.
Let

C
\Y

C{d) = {(xi,i2).. e,xd) : x\ + X+ ... + xd = 1},
V(d,t) = (W(t),W(2t) - Witr.AWidt) - W((d-1)t)),
x —x{d,t) = inf{s : s >t, 7S~ (K(d,u); t <u <5s)
e-covers the set C}.

Then
LEMMA 2. For any t big enough and 0 < fi < 1 we have

X < texp((logi)l-ie) a.s.
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PROOF. We give the proof for d = 2. For larger d the proof is similar
and immediate. Lemma 1 implies that the set

{y(2,u)i t <u < x(2,1)}

e-covers the circle {(xi,X2) : x? + x\ = 1}. In the same way one can prove
that the set

{y(3,u),i <u< x(3,0)}

e-covers the sphere {(*1, X2, X3); x*"+x"+xf — 1}. These two facts combined
imply the statement for d = 2. Hence we have Lemma 2.

For any real valued function / £ C(0,1) and positive integer d, let /*
be the linear interpolation of / over the points i/d i.e.

(d - X=d~"*= °>">2..... d- 1) .
Then, as it is well-known, we have

sup |wf(x) — < sup sup lu~rx +s) — <d a.s.
0<icl 0<lI<10<)<l /d

if t is big enough. Hence we have Theorem 3.

6. Proof of Theorem 4

Combining the proofs of Theorems 2, 3 and H we easily get the proof of
Theorem 4.

7. A note

Assume (iv) with

Then Theorem C implies that Ve will not e-cover S i.e. p(T,a[T),e) > T
(cf. (2.7)) for infinitely many T. It is also easy to see that Vt will not e-cover
5 for any T big enough. However it is natural to think that Vt e-covers a
big subset of S for every T big enough. In fact we have
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THEOREM |. (Deheuvels - Révész, [3].) Assume (iv). Then for any
£ > 0 there exists a random variable Tg= To(e,w) such that for any T > To
the set Vt e-covers ("jjj)/2S where

fr . r+1
[ €f-— \) Sif and only if (f———§ f €8S.
In other words (cf. Theorem 4) if
p{T,a{T),e, A) = inf{lU > T, T(U,a{U))e-covers\S}.

Then for any T big enough
(7.1) P T,a(T),e, . =T as.

(2.8) told us that

p{T.a{T).e, 1) = p{T.a{T).e)
(7.2) < Texp ((logT)(r+1)(1-i)-r+i) .

Comparing (7.1) and (7.2) it is natural to ask about the limsup behaviour
of p(T,a(T),e, A) whenever a(T) satisfies (iv) and

1/2

<A< 1
r+1
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THE REGION OF CONVERGENCE OF THE LAPLACE
TRANSFORM: ALMOST SURE ESTIMATION

ANN VANMARCKE and JOZEF L. TEUGELS

1. Introduction

Let X be a non-negative random variable with distribution function F on
[0, 00) and with Laplace transform

r oo

L(s) == E(e-X) = J/o e~‘XdF(x).

We assume that L(s) converges for s > —a, 0 < a < 00. To any sample
Xi, X2,..mXn of X, let Xi:nXz2:n,..., Xn:n denote the corresponding set
of order statistics where Xi:n<Xz2n < ... < Xnn.

There are different ways to obtain estimators for a or <<1. One of them
is looking at the way a is calculated if F is known. Theorem 2.4.d. of Widder
[9] gives us that

lim.uplog(l- F(*» = -<,.
x —*00 X

If we replace in this formula the distribution F by its empirical version Fn
and choose x — X n-k:n, we get an estimator for 1/cr, namely

/IT\ =
Uu) logs -

We can look at this estimator for fixed k or for kn —00 as n —»00. To
prove any property of this estimator we will need at least that

(1) Jim —og[1 —F(x)I = —a

This assumption tells us that we may find a slowly varying function I(x)
such that

(2) - log[l - F(x)] = axl(x)

1980 Mathematics Subject Classification. Primary 60E10; Secondary 60F15.
Key words and phrases. Laplace transform, almost sure convergence, region of
convergence.
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and I{x) —1as x —»00. If in addition to (1) F is ultimately continuous,
then we can use a result of J. Beirlant and M. Browniatovsky [Z] to obtain

that rooi _ pi\ 1

e(l):=A | e
and
(3) Jingye(x) — ==

We get a Hill-type estimator for 1/cr by replacing F by Fn and x by X n-k.n-
After some calculations this leads to

*
ek,n = kin) — TN Xn=t+l:n  An—k:ne
i-1

To prove a.s. convergence for both estimators we will need results which
found their inspiration in results by Rényi [8].

2.  Almost sure convergence for ~ and

Letting n tend to oo while k remains fixed, we get a.s. convergence of
when (1) fulfilled.

THEOREM 1. Assume that F is a distribution function satisfying (1) for
some 0 < a <o0o0. Ifk is fixed and n —»00, then

To prove this we make use of a result of Barndorff-Nielsen [1]. He men-
tioned in the preliminaries of his paper Lemma 1 and Lemma 2 of Rényi

81-

LEMMA 1. IfAnis the event {Xn>Xn-in-i}, then Ai,A2,...,An,...
are independent and P(A*) = £ for k= 1,2,

LEMMA 2. If F is continuous and r* is the rank of Xk in the set
X\, X<i,..., Xk, then the random variables ri,r<,..., r*,... are independent
and P{rk=j)= j=1,2,....k

Letting kn tend to oo with n, but controlling it such that ~ —»0, we

also get a.s. convergence of if () is fulfilled.
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THEOREM 2. Assume that F is a distribution function satisfying (1) for
some 0 < a < 0o. If kn —»00 as n —*00 and kn = o(n), then

Xn:-knn 1 oo

lo& "

If we put stronger conditions on F, we can say even more about the
relation between X n- nk:n and ~ log -jr according to the rate of growth of kn.

THEOREM 3. Assume that F is ultimately continuous and satisfies
4) lim [ax + log(l - .F(x))] = C
with C finite; then

(i) if kn~ Aloglogn as n —»00; where 0 < A< 00; then

j n j
|Inr_rllor(1)f[X,,_ "f7___| g 'rI;/;\ﬁ] = = leg(l + ) + q a.s.,

limsup[Xn_f,:n--—--- log—]= — log(l + ot\) + — a.s,,
n—*00 a Kn a a
where —1 < ¢*A < 0 < a A are the roots of the equation

1

-1 |
(5) aA - Tog(san)

(ii) if fm/loglogn —00 as n —*00 and kn —o(n) as n —* o0, then
lim [Xn- kn:n- - log — as.;
(Hi) if kn/ loglogn —0 as n —*o00 and kn > 1for all n> 1, then

liminf[Xn * :n - - a.s..
nrp‘oo[ - 00

élog kn

To prove Theorem 3 we use Theorem 6 of Kiefer [7] which we also need
in the proof of the next result on a.s. convergence for éj~.

THEOREM 4. Assume that F is a distribution function satisfying (1) for
some 0 < a <00 and that F is ultimately continuous; then
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(i) UK Aloglogn as n —o00, where 0 < A< 00, then

limsupx(éin----- = +—a* a.s.
p£ (6t ) = £

N —00

where —1 < aA< 0 < aj are the roots of the equation (5);
(ii) if £n/loglogn —00 as n —»00 and kn = o(n) a«n-> 00, then

(Hi) if A:,,/loglogn —0 as n —=*00 and kn > 1for all n > 1, then
Iinnl*iorlf gt,, = 0 a.s.

and
limsup gfen = 00 a.s..
n —*00
Note that e ™ is a strongly consistent estimator of ~ only in case (ii).
The proof of this theorem follows along the same lines as that of the
Theorem in [6], For (i), P. Deheuvels, e.a., first prove this result for random
variables with an exponential distribution with mean one. To obtain this,
they choose two subsequences of {n}. These subsequences are suitable to
enclose all with probability one. For the proof of the latter result,
they need to introduce an exceedence number. To get limit results for this
exceedence number, they use Lemma 1 [8] and a variant of Lemma 1; i.e. the
fact that the events {X,, > JEn_,-ri_i} are forn = 1+ 1,t+ 2,... independent
and of probability

3. Proofs

PROOF OF THEOREM 1. Theorem 4.1. and 4.3. of Barndorff-Nielsen [l]
tell us that a.s. convergence will hold if Vs > 0,



THE REGION OF CONVERGENCE OF THE LAPLACE TRANSFORM 397

It follows from (1) that V7 > 0, 3xq such that VX > xq:

(6) —a—7 < 00~ F@] o 4 47,
X

For the firstsum take x — +e)log * in (6), then we getfor n > M,
log~ +log[l - P((™ + e)logM)] < (7(*+¢e)- *0 log
Choose 7 < such that-S := +e)- ae <0 and

1- F((é+e)log¥)< K for n> M.
For the second sum note that
- <?)0og") < exp{-[l - F[{" -e)log")]}.

Taking x = (» —e) log | in (6), we get for n > M,

log ™ + log[l - P((" - e)log-)} > {~I(~ “e)+ °e)I°gj.-

Choose 7 < such that<$== —e) + ae >0 and

1- F((- - o)l f M.
(((J e) °ch)> ‘ orn >

We also have that 1- F((® - €)logx)< 1 Now the boundedness of the
second sum follows immediately. O

PROOF of THEOREM 2. We can write condition (I) as in (2). We use
Theorem 1.5.12 and Proposition 1.5.15 of [3] to obtain that inverse function
satisfies

F,<-(1 —s) ~ = logsl® (-logs) for siO.

Furthermore, it follows from Theorem 1.5.13 [3] that if/(x) — 1 as x —»00 so
does I*{x). This leads to the fact that there exists a slowly varying function
L(x) such that

F*~(I-s) = >y logsL (-logs) and L(-logs) 1 as sl10.
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We also know that X n-krizn = F**(l - (1- :n)), where is the
(n —An)-th order statistic from the sample U\, U?,..., Un of uniformly (0,1)
distributed random variables. Now we can write our estimator as

Xn—knn 1- log(l ~ Un—kn:r)

0 logfg

From Theorem 6 in [7] we derive that for ~ —»0 as n —00

L{~ log(l —Un-kn:n)).

- log(l -
|™ r~ n 1 a.s..

"-*00 loS

This fact also implies that 1 —Un- kn:n —0 a.s. as n —00, so that
L{- log(l - Un-kn:n)) -*» 1 a.s. as n —»00. O

PROOF of THEOREM 3. We can write x n-kn:n- xlog as

- - - . - N AN N - 1 °
(7) r-(1- (1- Un—krtn))- F~(I n) + FA(l 0 N log [(n
From (4) and the fact that F is ultimately continuous it follows that

\ 1 X C kn
8 F (1o ) - log ------- ¢ — — -»0.
(8) ( n ) a o9 kn a a n 7

(4) also implies by Fact 1.4 [4] that
9) F*~( - s) = — logs + loga(s) + [ du,

for s sufficiently small, where a and b are functions on (0,1) which satisfy

limo(s) = a0 where 0 < ao < 00,

sJO

uw6(s) = 0.
It follows immediately from (9) that

(10) F<( _LK) —F ~(|————)Z) —oglog U as X —»oo,

for all u > 0, uniformly in u. Using Theorem 6 in [7] (see also [5], [6]) and
(7), (8) and (10) we obtain the three results. O
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PROOF OF T heorem 4. Using (9) we can write eich as

k
= --7T “ Un-i+1,) + -log(l - Un-kn:n)
i ka
+ T~ log[a(l —Un-i+i-n)/ a{\ —Un-k,,:n)]
Kn <=1

- —V rl-Un~i+im Hu)du
knfr[Ji-un-knn u

Note that in the first line of the sum is the Hill estimator. From here
on the proof is exactly the same as that for the Hill estimator [6]. O

[

[
3

[4

[6]

[8]
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ON LEYY-BAXTER THEOREM FOR GENERAL
TWO-PARAMETER GAUSSIAN PROCESSES

CHEN XIONG and PAN XIA

Abstract

This note extends to a broad class of two-parameter Gaussian processes the
theorem of G. Baxter: for a two-parameter Gaussian Process X, under some con-
ditions,

2.

vikl , VIKj - 1 k2—Ix
ANn’2n +A 92 ’ 2n

T2

fc,=ifca=i

' 2n 12n v2n* 2n

- f(s1,32)dald32 a.s.
Jo Jo

1. Introduction

As we know, P. Levy [4] proved almost sure convergence to 1 of the quadratic
variation X)kIi[-B(*2_n) - B ((k- 1)2—=)]2 of the Brownian motion on [0,1].
This result was extended to other processes with Gaussian increments defined
on [0,1] by G. Baxter [1].

In two-parameter case, there have been many results on quadratic vari-
ation of two-parameter martingales, which have played central role in this
theory [2]. On the other hand, it seems that there is little discussion about
the quadratic variation of other two-parameter processes. In this paper, for
two-parameter Gaussian processes we shall give a result similar to that of
Baxter. And as a corollary, we get the quadratic variation of Brownian Sheet
and Two-Parameter Ornstein-Uhlenbeck process either.

1980 Mathematics Subject Classification Primary 60G48, 60G07; Secondary 60G60,

60G44.
Key words and phrases. Quadratic variation, two-parameter Gaussian processes.
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2. Results and proofs

LEMMA 2.1. Let R(s\, s2;ti,f2) a rea* valued continuous function
defined on [0,1]2X[0,1]2, having continuous and bounded third derivative on
[0, 112x [0,1]12- A, where A — {(s,i;s,t), s,t £ [0,1]}. Then the following
limits exist and are bounded, for any fixed (si,s2) € [0,1]2

a2p
i = lim - - --(si,s2\ti,t2
D++(si,s2) Lllll:%ll Stad i (si,s2\ti,t2)
2

d2R .
i ti,t2
D +(si,s2) A Eﬁ%dt?dt\ (s\,s2\ti,t2)
T
(2.1
d2R . .
i — i si,s2;ti,t2
D+ (si>«2) !Il% dt2dti( 2 )
D (si,s2) A hm dZR_ (si,s2]ti,t2)
:(%tai dt2dti
I*2
furthermore, we have

d2R

dtogp, CHSZILI2) < c(lel - Tl + |s2- f2))

(2.2) |D++(si,s2) -

the similar results like (2.2) holds for jDxfc(si,s2).

PROOF. We only prove (2.2), the others are easy.
For any (i*,n) € [0,1]2, by the mean value theorem,

GR 5ot 12 2R s 2;t\,t2)
dtodn (D820 - i (S1.s2T,12)
d3R d3rR , ,

dt2d t\{sl,52 t1,tz) -1+ - M

< cdti-til + Ita-i2)),

where c is the bound for the third derivative. In the inequality, let t\ j ti,
*2 12, we can prove (2.2).
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THEOREM 2.2. Suppose {X(i), t £ [0,1]2} is a mean zero Gaussian
process, whose covariance function R(si, s2]ij, t2) satisfies the conditions
stated in Lemma 2.1, then

2n 2"
n“—ggo kY—lg—l v2an 2n * v 2n 2n
y(kl—l’\2 y (ki kz2- 112
(2.3) on *on' on’ op '

= Jo Jo f{si,S2)dsids2 a.p.

where, f{si,s2)=D++(s1,52) + D~~(si,s2) - D+~{si,s2) - D~+(s1,52).

PROOF. Our method is similar to Baxter’s, but more complicated.
(a) Denote Y kj= A~ ~X, where, £=(£*, f*), *AY);

Zn = gjfc"=l £fc"=1 [YtL] mlfcis easx to See that Okiba* ki = I,2,...,2n,

i = 1,2} is a Gaussian system, which can be ordered as {Y "\ k' =
1,2,...,22"}. Then

ZnH = E [n-n]2= (Vn.Vn),
ft=1

where Yn=(Y i"\ eee a Gaussian random vector with mean zero and
covariance matrix Vn = {vfy, f A= 1,2,...,2210), vy = E (Y ™).
By J. Yeh [3] Th.16.16, we have

s Eh- Y= trvm = e Al
=

EzI = E[(Y,,,Y,,)Z]
—3E >3 +2I§JI<E PH&+I")]

So,

aZZ)—Em - [EZn)Z—2E E (’$)"

=1 <fe]
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2" 2" 2n 2"
=2iz iz iz (vi*)2= A"
J=112=1*1=1%2=1
where, VAAE Y AY A o= (ji,j2), *= (*i,*2)-

(b) By the Chebyshev inequality,
(2.5) P(u:1Zn- EZn\> -Ajn) < "2Af

Since limn-.00 75 = 0, if we can prove Anh = O ("), then by the Borel-
Cantelli lemma,
lim {Zn- EZn}=0 a.s.

(c) Hence, we hope to estimate An. Since,

EYapYkI,
EAYs gt o X1
= R{ki,k2\ji,j2) + R{ki,k2-ji - 1,2 - 1)

- R{ki,k2-ji - 1,J2) - R[ki,k2;ji,j2- 1)

+ R(ki - 1,k2- 1;ji,32)+ R{ki - I,k2- L;ji- 1,j2- 1)
(2.6) - R(kx - 1,k2- I1ji - 1,j2 - R(ki - L,fc2- 1;Ji,J02- 1)

- R(ki - 1,k2;j\,j2) - R{h,k2- I;ji - 1,j2- 1)

+ R(h - I,k2-ji - 1,j2)+ R(ki - 1,k2\j\,j2- 1)
R(k\,k2- 1;3i,J2) - R{ki,k2- Lyi - 1,j2- 1)

+ R(ki, k2- I-ji - 1,j2)+ R(k\, k2- 1J1J2- 1)

=h+h+I[+1

where, R(ku kz-,ji,j2)=R("k, 3$).
(d) By Taylor’s expansion formula,
h [R{ki, k2\ji, j2) - R(ki, k2-ji - 1,j2)]
+ [A(fci, k2\ji - 1,j2 - 1) - R(k\, k2\ji,j2 - 1)]

1dRfl , . 1 d2rR,, , .
ALK A T =~ L)+ AATLKX K 2\i - 1,j2)
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71,32~ N

D

1dR,, 1 d2Rn

¥dhnklk2,J1 ~ 132~ "N+

23
2]r_1 SN 174 D A G T R R I (R N I R

02A . A . .

+ 20 A2id1 - 1,02) ~ -~2"(«l,«2:j1 - 1,32 ~ 1)
+° (2
o BiaaiL Kb @t —Lig) m

1 a3

7, 1x
* oo afe8igku

L1
K23~ 1327 ) -~ + ° ()

(27) = M Ea tA A 1IN DY)+ °T25Y)»
where, j2 £ (j2- 1,J2), IV € (j2- 1,32)¢

(e) By the same method,

where y G (72 - 1,J2)- So,

azp s2p
7NN+ 4 = A SEMi—(kl,kZ;jl - 1J2) ¢ 6?26?1~(fcl~
1
£ ()
d3fi 1 f d3R \h - 2
(28) = 5c 5si6i20ii 2n dtldti 2n

For the same reason, 12+ I2= 0 (33"). Hence

(2.9)

:O(ft‘r?'

2 Ji - 1,i2)
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(f) We hope to estimate . Now,

h = [R{kiik2;k1,k2) - R(ki,k2\ki - 1, /c2)]
+ [R{ki, k2,ki- 1,k2- 1) - R{ki, k2\ki, k2- 1)
= [M{kuk”~ki- I,k2) m» + ~-(k1,k2]kl- 1,*2) ~ +o0(~)1

c™~R

d~R \ 1
CN(*is kr K-l k2-1)- — + k2]k! - 1,k2- 1)A

+0(M)1

a2-5 1 1
#x A x A w1 stz ]+ 0(5=)
1 @1 3

= AdAadi;(khkizki- 17ki)+ 07

By the same approach as for I\, we can evaluate I[, 12,12, hence,

*I? = AN[R ++(£ .£) +0--(£,£)

(2.10)
12n 2" 123
okt zn77) + 0 (g5
So,
W2 1 r2( "2
K?) 24p-" N2 2nN N95Ep) M (Pdke)'
Finally,

2"A,, = 2"«{2J 0 (57) + 23"(23" - DO (M)} = 0(1).

Hence, An = O ("), we have Zn- EZn—0 (n —*00) a.s. or, limn-*o0 Zn =
limn—mEZn as.
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By (2.10)
N N .
E £ i)=E Eos/(3.0) o),
From (2.4),
2 2
ﬂEzl*zE:l’\/(fb £) +<>(E)e
Let n -> 00, -» [0 [} /(s 1,52)"5icis2- So,

Zn—1 [ /(si, S2)dsids2 a.s. the end.
JO Jo

NOTE. The condition EX{t) — 0 is not basic. One can replace it by
some weaker conditions.

3. Corollaries

COROLLARY 3.1. Let {w(t), t E [0,1]2} be a Brownian Sheet, then
A

*=172=1

fo ~ 1 -~V o
2«< ’2n 20 27 )

Proof. Now

R{si,S2]ti,t2) - £'1F(s1,S2)M/ (i1,t2)
= (L Aii) *(s2At2), (si,S2)t (™1, 02>

For any fixed (si,s2) E [0, 1]2

(i) When ij > sx, t2>s2, R =sis2,
(il) When tx < sx, t2>5s2, R = txs2,
(iii) When ix< slt t2< s2, R = txt2,
(iv) When tj > sx, t2<s2,R = sit2,

0, G++(s1,52) =0
0, D~+(al,s2) =0
1, D~~(si,s2) =1
0, >+ (si,S2)=0
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So, /(si,s2)= 1, by Th. 2.2:

2n 2n r
ki:I*ZE:l v2n*2n va2nJ2ny
Ai- 1 f2 ki k2- 1
- W( on ’2n)_ (2n’ on 1 as. (n—»o0).

COROLLARY 3.2. Let {X(t), t 6 [Q,l]2} be two-parameter Ornstein-
Uhlenbeck process,

n t2 y

X(t) = ae |

where t — (ti,t2), then
2" 2"
E E
ki—2—4
P roof. Now,

R[si,s2-,ti,t2) = EX (si,s2)X(ti,t2)
e2ai(siAti) _ j e202(*2At2) _ j
— A.ig-0iSi—0282 .g-0:itl-*2i2 .

2ax 2a2
(i)’ When t\ > s\, t2> s2)
N ) v : 1 »2272 1
A(«i,«2;ti,i2) = a2e-Q(“ +th)-an +t* o o
(«i,« ) (" +tl) } pax o33
Dt a2 a \e-Oi(ai+ti)-ai2r2+t) POt 1p20272 4
dti \ ) 2ai 2a2
D ++( 2) d 2R 02 | | |
= Mm. - Ao = - e - 2%t -e-2%n
st e !'Lljlgl_ ot2ot\ 4( ) e :

ial*j

(i)’ When t\ <s\, t2 > s2,
D~+(si,s2) = -1 +e 2“2,0)(] —e-2“3*3).
(iii)” When *i < »i, i2 < s2,

D (si,s2) = "4—(1 +e 2°1AN(l + e~2a").
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(iv)’ When ij > Sj, i2< s2,

D+-(sus2) = ~(1 - e-“141)(L + e-2¢

So,
/(si,s2) = D++(si,s2)+ D (si,s2) - D+~(si,s2)- D~+(si,s2) = 01.

By Theorem 2.2,

2n 2¢
*%:]_ *7%:1 N oatlisey Japd Yoty vy 11 a.s.

REMARK. After we finished this paper, Professor P. Révész called our
attention to C. M. Deo’s work related to the topic. Deo’s result is more
general. He considered general partitions of [0, 119, while we only discuss
nested partition case. Anyway, for the nested partition case, our condition
is weaker than that of Deo. We only require the covariance function has third
continuous bounded derivative, but Deo’ conclusion need fourth derivative
and some other conditions. Since the methods and forms of our results are
different from Deo’s it seems that our paper has somewhat independent
interest.

ACKNOWLEDGEMENT. The authors are grateful to Professor Wang Zi-
Kun for proposing this problem and to Professor P. Révész for his warmly
encouragements and recommendation for the paper, and sending a copy of
Deo’s paper to us.
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ON THE COINCIDENCE OF SOME NOTIONS OF
QUASI-UNIFORM COMPLETENESS DEFINED BY FILTER PAIRS

J. DEAK

Abstract

Four types of quasi-uniform completeness coincide in uniformly regular spaces satis-
fying a common generalization of symmetry and equinormality.

The aim of this note is to answer a question raised by Fletcher and
Hunsaker [5]. First we have to recall some definitions; see [5] for the sources,
and [6] for basic definitions; see also [2, 3].

A filter pair (f, g) in a quasi-uniform space (X,tf) is (i) convergent if there
is an x 6 A such that f W~tp-converges and g £ftp-converges to x; (ii) Cauchy
if for any U £1i there are F Gfand G Gg with F XG C U; (iii) linked if
FnG /0 whenever F Gfand G Gg.

The quasi-uniform space (X,U) is (i) pair complete (equivalent to the
double completeness of [1]) if each linked Cauchy filter pair is convergent;
(ii) D-complete if the second element of each Cauchy filter pair is Wtp-con-
vergent; (iii) strongly D-complete if the first element of each Cauchy filter
pair has a Witp-cluster point; (iv) quiet if for any U £U there is a V GU
such that xUy whenever there is a Cauchy filter pair (f, g) with Vx Gg and
V~xy € f (in the terminology of [3]: the system of all the Cauchy filter pairs
is uniformly weakly concentrated); (v) uniformly regular if for any U £U
there is a V GU such that VxCUx for each x G | ( always denotes the
Utp-closure); (vi) equinormal provided that if C is i/tp-closed, H is Wtp-open,
C C H then there is a U £U with U[C] C H; (vii) locally symmetric if for
any U @U and x GX thereisaV GU with V~XVx] cUx. Observe that, in
contrast to [4, 5], Ti is not assumed, not even in the definition of quietness.

According to [5] Corollary 3.2, the three notions of completeness defined
above coincide in uniform spaces as well as in equinormal uniformly regular
quasi-uniform spaces. Now [5] Questions 4.1 runs as follows:

Does there exist a natural class of quasi-uniform spaces containing all
uniform spaces and all equinormal quiet spaces in which the concepts of D-

1980 Mathematics Subject Classification (1985 Revision). Primary 54E15.
Key words and phrases. Quasi-uniformity, pair complete, (strongly) D-complete, half-
complete, uniformly regular, quiet, equinormal, locally symmetric.
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412 J. DEAK

completeness, strong D-completeness and pair completeness coincide? In
particular, do the locally symmetric quiet spaces comprise such a class?

We are going to give a counterexample for the second part of the question,
and offer a solution to the first part, with quietness replaced by the more
general notion of uniform regularity.

(By [4] Proposition 1.2, any quiet quasi-uniformity is uniformly regular:
the entourage V in the definition of quietness will also do in the definition of
uniform regularity; indeed, if y € Vx then let f be generated by {{y}}, and
B by the trace on Vx of the Wip-neighbourhood filter of y.)

Example. Let X —R \ {0}, and define U by the quasi-metric

{ min{y-x,I} ifx<0<y,
0 if x=1y,

1 otherwise.

Both Utp and U~ip are discrete, therefore U is locally symmetric (and so is
U~1). U is quiet (even if Ti is required in the definition), pair complete,
but not D-complete, because if fis generated by {] —£,0[: £>0} and B by
{10,£[: e > 0} then (f, B) is Cauchy, but B is not Mtp-convergent.

Definitions. A quasi-uniform space (X,U) is

a) half-complete (equivalent to completeness in the sense of [1] p. 228) if
the second element of each linked Cauchy filter pair is Utp-convergent;

b) semi-symmetric provided that if C is i/tp-closed, H is 2v¥p-open, C C
C H, and U~I[C] C H for some U &U then there is a V £11 with V[C]C H.

THEOREM. The notions of D-completeness, strong D-completeness, pair
completeness and half-completeness coincide in semi-symmetric uniformly
regular spaces.

Remarks, a) It is evident that equinormal or symmetric spaces are
semi-symmetric.

b) A semi-symmetric uniformly regular (or just regular) quasi-uniform-
ity is locally symmetric: for x £ X and U €U with Ux open, take a V £U
such that Vx is closed and V2C 17, let C = X \ Ux and H = X \ VX; now
V-1[C] CH, thus there is a W 6 U with W[C]C H, i.e. W-1[Vx] C Ux.

c) Parts of the proof below could be cited from [4, 5]; we prefer, however,
to give a complete proof, mainly because Ti is assumed (although not used)
throughout [4, 5].

Proof. 1° Strong D-completeness implies D-completeness without any
further assumption, since if (f, B) is Cauchy and x is a t/tp-cluster point of f
then taking F ¢ fand G ¢ B with F x G C U, we clearly have G C U2x.

2° A D-complete uniformly regular quasi-uniformity is pair complete:
Assume that (f, B) is a Cauchy filter pair, and let the filter B be generated
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by {G: ¢ ¢ 5}. is Cauchy, too, because if Vx C Ux (i£ X)) then

FxGCV, FE€f GGg imply that F x GC U. Let p £/tp-converge to X;

taking F Gfand G€ g with Fx GC U £ U, we have F Cc U~Ix from i GG.

This means that each Cauchy filter pair is convergent, whether linked or not.
3° It is evident that pair completeness implies half-completeness.

4° Assume now that U is half-complete, and let (f, p) be a Cauchy filter
pair; we have to show that f has a 2vtp-cluster point. We have already seen
in 2° that (f,fl) is Cauchy; but so is (f,g), too, since if F £f, G € g and
FxGcU then FxGcU?

If FEf, GEOand FflG =0 then we have UF] flG/ 0 (U£U) from
the Cauchy property, and hence t/-1[FJHG ~ 0 (U £ U) from the semi-
symmetry; the last statement is evidently valid in the case Ffl G/ 0, too.
Thus a filter ) is generated by

{FD U\G]: F£f, Geg, UeU}.

If Fx GCUEU, Fe f, GEgand x,y £ Fn U[G] then xU2y; so (fj,fj) is
linked and Cauchy, ) is £/tp-convergent by the half-completeness, therefore
fC f) has a Wtp-cluster point, and then so has f itself.

REFERENCES

[1] Csaszar, A., Foundations of general topology, Pergamon Press, Oxford, 1963, MR 28
# 575

[2] Deak, J., Extensions of quasi-uniformities for prescribed bitopologies I, Studio Sei.
Math. Hungar. 25 (1990), No. 1-2, 45-67. MR 92b: 54058.

[3] Deak, J., Extensions of quasi-uniformities for prescribed bitopologies Il, Studia Sei.
Math. Hungar. 25 (1990), No. 1-2, 69-91. MR 92b: 54058

[4] Fretcher, P. and Hunsaker, W., Uniformly regular quasi-uniformities, Topology Appl.
37 (1990), 285-291. MR 92b: 54062.

[5] F1etcher, P. and Hunsaker, W., Completeness using pairs of filters, Topology Appl. (to
appear).

[6] F1etcher, P. and Lindgren, W. F., Quasi-uniform spaces, Lecture Notes in Pure Appl.
Math. 77, Marcel Dekker, New York, 1982. MR 84h: 54026

(Received September 25, 1989)

MTA MATEMATIKAI KUTATO INTEZETE
P. 0. BOX 127

H-1364 BUDAPEST

HUNGARY






Studia Scientiarum Mathematicarum Hungarica 26 (1991), 415-422

ON POWERS OF /-DIVERGENCES DEFINING A DISTANCE

P. KAFKA, F. OSTERREICHER and I. VINCZE

Summary

This note deals with conditions on the value a € (0, 00) and the convex function / so
that the power 7/ of the /-divergence 1j defines a metric on the set of probability distri-

butions on a measurable space. In Section 2, for a given a € (0, 1], a sufficient condition on
/ is stated, whereas in Section 3, for a given /, two necessary conditions on a are given.

1. Preliminaries

Let (fi, A) be a nondegenerate measurable space (i.e. |.4| > 2 and hence

[fl| > 1) and let p(i1,a) be the set of probability measures on Fur-

thermore let F be the set of convex functions /: R+ —R which are contin-
uous at 0. And let the function /* £ T be defined by
[*(u) = for uG(0,o0c).

Remark 1. Owing to the continuity of / and /* at 0 and by setting
0</(8):=() V/elF it holds

=2/"(y) VX, t/€ R+-

Definition (cf. Csiszar [4] and Ali and Silvey [1]). Let P,Q Gp(£l,A).
Then

11(0,P) = J T{1)-P¢?P

is called /-divergence of P and Q. (As usual g and p denote the Radon-
Nikodym-derivatives of P and Q with respect to a dominating cr-finite mea-
sure p.)

We are interested in conditions on a G(0,00) and on/ 6 T so that
9a(Q,P) = [If(Q,P)]a
defines a metric on p(f1,A), i.e. that ga has the properties
(M) aq(Q, P) ~ 0 with equality iff Q=P VP, Q6 p(i), A),

1991 Mathematics Subject Classification. Primary 94A17.
Key words and phrases. Information, measure, convex functions, /-divergence.
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(M2) ga(Q,P) =0a(P,Q)
and
(M33) ga(Q,R) + ga(R,P)>ga(Q.Pp) VP,Qé&g
P roposition 1. The above definition is justified and
if(Q,P)>f(i) vp,Qep(n,A),

where equality holds if @ —P. Moreover, Q = P follows from equality iff f
is strict convex at 1.

P roof. This follows from the property of the (convex) function f £T
3c£R: f{u) >/(l) + c(u—1) VUER+,
where strict convexity of / at 1is by definition equivalent with the fact that
equality above implies u = 1. O
P roposition 2. Let fEiF. Thenlf(Q,P) =If(P,Q) is equivalent with
the condition 3c £ R: f*(u) = f(u) + c(u —1).

For the proof we refer to the Uniqueness and Symmetry Theorem 1.13
in [8]. Note, however that owing to Remark 1 1f(Q,P)=1f(P,Q) holds,
so that the converse direction is obvious.

REMARK 2. The properties (MI) and (M2) are equivalent with the fol-
lowing properties on the function / € T:
(1) /(1) =0and / is strict convex at 1 and
(f2) 3c€R: f*(u) =f(u) +c(u- 1).

Unless otherwise stated we will assume in the sequel that / £ T has the
properties (fl) and /* = /. The latter since we can restrict ourselves to c=0
in (f2) without loss of generality.

Remark 3. Let / £ T satisfy /(1) =0and /* =/. Then
f(u) 20 Vu GR+.
This follows from the subceeding consequence of Jensen’s inequality

f(u) + fn(u)

u-1-1 u+

2. A sufficient condition concerning / for some power a £ (0,1]

P roposition 3. Leta£ (0,1] and let f £ T satisfy f(u) >0 Vuf R+,
Then

(*.“> =(p/(p)) VMITER +'
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is a sufficient condition for the validity o/(M 3,a).

Proof. Let P,Q,RE£ p(il,.4), p be a dominating cr-finite measure and
p.q,r be the corresponding Radon-Nikodym-derivatives of P,Q,R with re-
spect to p. Then the application of (*,a) and Minkowski’s inequality yields

@ l/o

wo<nr=(j [{pf(l d <

- ([ [(ri©) +(p/7)) 1/ ) s
=(/LCri(e))T8) +(IL(p/G))

= (L, (2, R+ (11(«,2))" O

1/a

Summarizing Propositions 1, 2 and 3 and Remark 3 we get Theorem 1

Theorem 1. Leta £ (0,1 and let f £T satisfy (fl), /* =/ and (*, a).

Then
ga(Q.P) = [If(Q.P)]a

is a metric on p(Q,A). O

Let a £ (0,1] and let ~2(0) be the subset of functions f £ T satisfying
/()=0,/*=/ and

lua - 1jV/0O
f(u) h(u)

where h: R+ —%R satisfies h(0) < 00 and is decreasing on [0,1] and continuous

at 1. (In view of the class of Examples (E2), s < 1/2, it is not appropriate
to assume in addition h(\) ~ 0).

Remark 4. /[* =/ and (**,a) yield h(u) = Hence h is increasing
on [1,00).

Theorem 2. Let f £ Tfia) for a ¢ (0,1]. Then f satisfies (fl) and
(*,«)e

Proof. Proof of (fl): In view of Remark 3 a function / £ ~2(0) is
nonnegative. This yields together with (**,a)

0<h(u)Zh(0) Vue [0,1)
and, consequently, in view of the continuity of h at 1 and Remark 4

|UQ_ II:U“ VUeR+.
PO hu) K0)
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Because of h(0) € (0, oo) this implies f(u) >0 for u+ 1 O

Proof of (*,a): We can and do restrict ourselves to the case q< p since
p < g can be led back to the above case by exchanging p and g and observ-
ing /* =/ and since for p = q (*,a) follows immediately from /(1) = 0 or
0/ (5) =0, respectively.

Proof of (*,a) for the cases (i) g<p ™ r and (ii) r » g<p: Since / is
decreasing on [0,1] and / is nonnegative,
() ie. - <- < 1limplies and

(i) ie. &~ A< limpliesP/(~) =

Consequently (*,a) holds in either case.

Proofof (*,a) for the case (iii) g<r <p: For g—0<r<p (* a) reduces
to f(u) ~ /(0)ju* —II1Y" or, equivalently, to h(0) > h(u). Hence, let us
assume further on g > 0.

The form of / implies

b« i/«

(%) =
« —ra
Now let 7 = ---------- . Then C a), reduces to
a- ga

<*y

r
However, because of —< -<| it holds h ( - 2 > h (—) and because of 9< -< |
pr \'r W op

Hence
pr

(i 7)A(2) +7fcQ < A(i).

Together with the fact that the function x —x *“ is decreasing and convex
this and the application of Jensen’s inequality yield

(i-7)y(Cm(C)) "+ 7 (*(£)) a



ON POWERS OF /-DIVERGENCES 419

Let a G(0,1] and let ~3(0) be the subset of functions / GT satisfying
/(1) =0,/* =1 and

Itt- 1j2Q

(*%2) 1<) (a1 va-1/10(«)

where h0: R+ —R satisfies ho(0) < 00 and is decreasing on [0,1] and
continuous at 1.

Remark 5. /* =/ and (* **,a) yield hO(u) =
Hence ho is increasing on [1, 00).
Proposition 4. Leta G(0,1]. Then ~s(o) is a subset of 0.).
Proof. Let /GJFs(a). Then
Ju° - 1XQ iua- 1 '/a

N poghic) with h\) (u+ HY"-1

If ho and h\ are nonnegative and decreasing on [0,1] then so is h = h0 mh\.
However, h0 has these properties by assumption and the nonnegativity of hO
is obvious. To see that ho is decreasing on [0,1] let u G(0,1). Then

hi(u) a
with k(u) = 2—a + era—aua~l —(2 —a)ua. Since k is concave and &(1) = 0,
fc'(l) = 0 it holds k(u) < 0 and hence, h\{u) ~ 0.

From the following (classes of) examples

(E1) I*(«)= 2 ulk_1 k G[1,00)

(E2) /*(«) = s l-(u™ +u@ * sG(0,1)

(E3) *K(u) = ;(Ju+_|)l1|°c1 k G[l,00)
(n-1)2

E4 f(u)= \Ju2+ 1- (u-(-1)/\/2 =\
(E4) ( 2VI2TT + (w+ 1)/V2

obviously /< belongs to ~(1/k) but not to ~3(1 /fc), 44t belongs to To{\/k)
and for (E4) / belongs to ~3(1/2). Finally, it can be shown that for the class
(E2), for which z1/2= /2 from (EI), /* belongs to J2(min(s, 1—s)).

For ffc from the class of Examples (EI), introduced by Boekee in [2],
Example 4.1.2, it is an immediate consequence of Minkowski’s inequality that
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Qx/k is a metric. According to [3], Bemerkung 3.1, the so-called Hellinger-
distance, given by /2, can even be related to the norm of a Hilbert space on
the set of bounded signed measures on (il,.4).

For /* from the class of Examples (E2) Csiszar and Fischer have shown
in [3], 84 that " (*,1-*) is a metric.

For $2 from the class of Examples (E3), introduced by Puri and Vincze
in [10], a direct proof of (M3, 1/2) may be found in [7], chapter 4.2. For
further information see also [11].

The /-divergence associated with Example (E3) has a geometric meaning
because

I vV +P2(fit gl

is the perimeter of the risk set
A(P,Q) =co({(P(A),<2(Ac)):AeA and P(A)+ Q(AQ< 1})

of the testing problem (P,Q). It has been used in [9] to construct least
favourable distributions. The conjecture that the corresponding gl/2 is a

metric was made in [6], Example 8.

3. Two necessary conditions concerning the power a

Once more, let / EF satisfy /(1) =0 and /* = /. Now we discuss some
necessary conditions concerning the power a E (0, oc) so that ga is a metric,
or equivalently, so that (M3,a) is satisfied.

The first part of the following remark deals with the existence of such a
power a.

Remark 6. Owing to [5], Theorem 3/(0) < oc is, in essence, a hecessary
condition for the existence of a power a E (0, 00) such that ga is a metric on
p(il,-4).

Furthermore, if gg is a metric for 8 —a E (0, 00) then it is a metric for
all B8 E (0,0]. This holds owing to the following general fact.

Let <= R+ —R+ be increasing, concave, continuous at 0 and satisfy
<>0) = 0. And let g be a metric. Then so is 4g

Now let a0 be the maximal power for which gao is a metric on p(Q,A).

Finally we mention two upper bounds for c*o, reflecting the behaviour of
/ at 1 and, respectively at 0.

P roposition 5. Letf ET satisfy f* =f, /(0) E (0, oo) and
(&i) f(u)~c\u-I\kl  for u-—»1, ki E(0,00), c€(0,00).
Then Ai > 1 and op * 1/fcj.

Proof. k\ > 1is obvious by observing f(u) < /(0)Ju —1].
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Evaluating (M3,a) for ii = {0,1}, P —(p, 1—p), Q = (1 - p,p), p G[0.1]
and R = (1/2,1/2) gives owing to /* =/

of

or, equivalently, a< [2- 2og (inf{*(p):p G[0,1]})] 1 whereby
_1(@2p) +/(2(1-p))

(r-2)/1(*)

Since f* —f the function ip: [0,1] —R+ is symmetric with respect to p = 1/2.
Furthermore it can be shown to be convex. Hence

inf{ip(p): p G[0,1]} = lim tp(p) = 22 Kl,

the latter being a consequence of (k\). O

Let / GT satisfy /(0) + /*(0) < oo or, equivalently, /(0), /*(0) < oo and
let the function g: R+ —R be defined by

g(u) =f(0) + u/*(0) - f(u).

Remark 7. If, in addition, /(1) =0 and /* =/, then for u 6 [0,1] holds
f{u) ~ /(0)(1 - u) and hence g(u) >2/(0)u (and hence ko G(0,1], ko from
below) and 0~ /(0)u —/ (I —u).

P roposition 6. Let f tiT satisfy (fl), f*=/, /(0) < oo and
(k0) g(u)~cuk® for ujo0, fcoG(0,l], cG(0,00).
Then ao ™ "o-
Proof. By considering f(u)/2f(0) we can restrict ourselves to /(0) =
= 1/2. Then the evaluation of (M3,a), a G(0,1], for Il = {0,1}, P = (0,1),
Q=1(1,0) and R=(r, 1—r), r G(0,1) gives owing to /* =/
Q) [f(r)+ @- n)/2]°+ [/(1 - r)+r/2]" >1 Vr G[0,1],
The application of
f(ry+@-nr)/2=1-[(r+ 1D/2-/(r)] =1- g(r),
(I —r) rl2=r—[r/2—/(1 —D)]"
and the inequality (I + z~"I-f-ax gives
[/(r)+ @X-r)/2]Ja- 1+ [f(\- r) +7r/2]° <-ag(r) + ra.

Hence
ra > atg(r) Vr G[0,1]

is a necessary condition for the validity of (1). Taking into consideration
(Ifeg) this implies a<ko-
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Since for the classes of Examples (EI) and (E3), fk € /&) and £
£ ~3(1/k), Proposition 5 implies qq = 1/k. For Example (E4), / £ IF3(1/2)
and hence a0= 1/2. For the class of Examples (E2), finally, Proposition 6
implies Oo* min(s, 1—5). Together with faf jT2(min(s, 1 —s)) this yields
ao = min(s, 1- s).
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MARTINGALES CONDITIONNELLES

B. BRU, H. HEINICH et J. C. LOOTGIETER

Summary

Let (f2,v4,P) be a probability space, [ a sub-algebra of A, and E be a Kdthe space
of B-measurable real variables. We say that X, a real random variable on (fi, .4, P), is

E-integrable if E~(|X|)6E. When E is weakly sequentially complete such a variable is a
real analogue of E-valued random with Pettis integrable absolute value. Then we study in
a real setting generalization of Banach lattice-valued martingales, amarts and measures.

Introduction. Soit (fii,.Fi,Pi) un espace de probabilité et E un espace
de Banach. Il est classique de considérer les variables aléatoires vectorielles
X de fii dans E Pettis intégrables et de lier les propriétés géométriques de
E a celles de ces variables. Lorsque E est de plus un bon espace réticulé,
il est isomorphe & un espace de variables aléatoires réelles — v.a.r. — sur
un autre espace de probabilité (i12, X2, P2) ce qui permet de considérer X
comme une v.a.r. définie sur I’espace produit (fii X112, T\ %Ti, Pi ® P2)
dont I’espérance conditionnelle par rapport a une sous-tribu appartient &
E. Cet aspect nous a conduit & I’étude des variables conditionnellement in-
tégrables c’est-&4-dire celles dont I’espérance conditionnelle appartient & un
espace déterminé. D’autre part la notion d’amart a permis de développer
simultanément la géométrie des Banach et la convergence des suites de vari-
ables aléatoires réelles ou vectorielles.

Une propriété fondamentale des amarts est la réticulation. Nous nous
sommes attaches a étudier la réticulation des v.a. conditionnellement inté-
grables pour obtenir les meilleures convergences possibles.

La partié | donne les définitions de base et les premieres propriétés de
convergence des martingales et des amarts conditionnels.

La partié Il s’intéresse & I’étude des mesures vectorielles et des densités
conditionnelles.

La réticulation est abordée dans la partié Ill. On y trouve outre les
propriétés de convergence, une version vectorielle du théoréme d’Andersen
et Jensen.

La partié 1V traite de la théorie classique des bimesures qui trouvent ici
un cadre natdréi.
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Enfin nous étudions en V le cas des tribus indépendantes qui correspond
au schéma traditionnel des v.a. vectorielles.

Nous avons adopté la présentation de [18] pour les espaces de Kothe et,
celle de [19], pour les espaces de Riesz.

1-1. Variables conditionnellement intégrables

Soit (fl,X, P) un espace de probabilité et B une sous-tribu de X. Soit
E un espace de Koéthe de v.a.r. B-mesurables c’est-a-dire un Banach tel que
Le°°(if, B,P) c E c LI{$I,B, P) les injections étant continues. On note E* le
dual topologique de E et E'=[Y € L1(B);XY GLI(B), pour tout X GE}
son dual de Kothe.

Definition 1. Une v.a.r. définie sur (Cl,X, P) est conditionnellement
E-intégrable ou, plus rapidement, E-intégrable si E B(\X\) GE.

Faisons quelques remarques.

a — Reprenons les notations de I'introduction et posons i2 = flj x fl2,
A =X ®Bet P=Pi ®P2. Identifions B avec {{0, flj} ®B) et T avec {X ¥
{0, fA}}- Une v.a. X de (fli, X, P) dans E Cc L1(fl2, P) définit une v.a.r.
sur (fl,.4, P) que nous noterons de la méme facon. Supposons que |X| soit
Pettis-intégrable  [6]  alors, pour Y G E+ E(YEB(\X\)) =
= E{EB(Y\X\)) = E{Y\X\) donc Y mEB{\X\) GL1. Si E possede la pro-
priété de Fatou [18] i.e. (E'Y = E, on en déduit que £'S(JA']) GE : X est
E-intégrable.

Inversement, supposons E & norme continue pour l’'ordre — n.c.0. — i.e.
E' = E*, et soit X une v.a. E-intégrable, alors pour tout uGE+ E{u\X\) —
—u(2?(|X])) donc |X| est Pettis-intégrable. Par suite, si E est faiblement
séquentiellement complet — f.s.c. — nous pouvons identifier I’ensemble des
v.a.r. X ®B-mesurables telles que £ R(|X|)EE, et I'ensemble des v.a. X-
mesurables a valeurs dans E qui sont de valeur absolue Pettis-intégrables par
la correspondance

X(u,u")y =X(u)(u’).

b — Soit X une v.a.r. E-intégrable, E n.c.o., I’apphcation A-* EB(1p4)
définit une mesure vectorielle a valeurs dans E signée, a variation bornée
dans L1(N), mais qui, bien qu’elle soit absolument continue par rapport a
P, n’a généralement pas de densité, — prendre X = 1 —. Le point de vue
adopté ici est donc, d’une certaine fagon, plus général que l’aspect vectoriel
classique. Rs coincident lorsque les tribus X et B sont indépendantes, voir
8V.

¢ — Lorsque E = L1(R) les v.a.r. E-intégrables qui sont aussi de valeur
absolue Pettis-intégrable sont aussi Bochner-intégrables et I'identification du
a — précédent est classique.
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De maniére évidente on voit que le théoréme de Lebesgue est valable
pour les v.a. E-intégrables:

Lemme 2. Soit (X,,) une suite croissante de v.a. E-intégrables, positives,
telles que Sup EB{Xn) EE, alors Sup X n est E-intégrable et Sup EB{Xn) =
=EB(SupXn).

Lemme 3. Soit (Xn) une suite de v.a.r. E-intégrables, telles que Sup|Xn|
soit E-intégrable. Si X n—*X p.s. Alors X est aussi E-intégrable et, si E est

n.c.o0., EB(Xn)—»EB{X) p.s. et dans E.

Signalons en outre la possibilité d’étendre la définition 1 aux espaces
intermédiaires entre L1 et L°, comme cela a été fait dans le cadre abstrait
de [4]. En effet soit E un idéal complétement réticulé de L°(r) tel que
L°°(B) soit dense pour l'ordre dans E. Une v.a.r. X € L°(fi,,4., P) est dite
E-intégrable si sup EB(\X\ An) 6 E. Le lemme 2 montre que cette définition
coincide avec la précédente, celle des espaces de Kothe. On retrouve ainsi
I'intégrale pour I'ordre de [4].

1-2 Martingales conditionnelles

On pourrait examiner, pour les v.a. conditionnellement intégrables les
versions adaptées des théoréemes classiques comme la loi des grands nombres
ou le central-limite. Nous nous limiterons aux martingales et aux notions
adjacentes.

Soit (fi, .4, P) un espace de probabilité, B une sous-tribu de A et E un
espace de Kothe de v.a.r. *-mesurables. Soit (Xn) une filtration croissante
de sous-tribus de A, telle que Xo = (0, fi) et \/X,, = X..

Definition 4. Une suite (Xn) de v.a.r. adaptées a la filtration (XnVv B)

est une E-martingale conditionnelle, ou plus simplement, une E-martingale
sachant B, si les X n sont E-intégrables et si

EB(Xnmlg) = EB(Xmmln) pour tout J1eX nAT.

En notant Ti la famille des temps d’arréts bornés liés a la filtration
(X,,) et, T2 celle relative a la filtration (XnVB) on obtient la caractérisation
suivante:

Lemme 5. Soit (X n) une suite de v.a. adaptées a (XnVB) E-intégrables
ou E est un espace de Kothe n.c.o. de v.a.r. B-mesurables. Les assertions
suivantes sont équivalentes:

(i) (Xn) est une E-martingale.

(i) EB(XT) = Xqgpour tout r e T\.

(iii) EB(XT)=Xo pour toutr ET.

(iv) EB(Xnmy ) = E(Xmeu ) pour tout A e Xn/it VB.
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En particulier (X,) est une martingale pour la filtration (XnVB).

Démonstration. Il suffit de montrer (i) =» (iv). Soit pn la mesure
associée a X: pn(A) = EB(Xn ml?) pour Prenons alors A € Tn
et B EB: pour m >n on a:

pn(A -B) = IB -E B{XnmlA) =18 mE B(Xm mlA) = pm(A =B).

Donc pn et pm coincident sur I’algébre engendrée par T et B. Comme E est
n.c.o., pn et pm sont rr-additives, elles coincident sur XV B. O

Comme dans le cas réel nous obtenons une convergence p.s. ce qui cons-
titue un résultat curieux.

P roposition 6. Soit (Xn) une E-martingale positive, E n.c.o., il existe
une v.a.r. X, E-intégrable, telle que X,, —X p.s.

Démonstration. (Xn) est une martingale ordinaire, d’apres le 1ém-
mé 5, elle converge donc p.s. vers X. Le lemme de Fatou conditionnel
montre que EB(X) < Xo, par suite, X est E-intégrable. O

I est naturel de considérer I’extension des notions bées aux martingales:
Une suite (Xn) de v.a.r. E-intégrables adaptées a (Xn VB) est une E-sous-
martingale — resp. E-sur-martingale — si:

(i)Y n*met AGXnimpbquent E(Xnmlg) < E(Xmm") — resp. > —.

Comme dans le lemme 5, cette condition est encore équivalente a I’'une
des trois suivantes, lorsque E est n.c.o.:

(ii") EB(XT)Y lorsque T/ dans 7j — resp. décroit —

(iii’) EB(Xr)Y lorsque TY dans T2 — resp. décroit
(iv) n<met AeXV B=" EB(Xnmle) <EB(XmeIlA) — resp. > —.

Les E-sous- ou sur-martingales sont en particuber des sous- ou sur-

martingales ordinaires. I en résulte:

P roposition 7. Soit E un espace de Kathe f.s.c. et soit (Xn) une E-
martingale telle que Sup |[Ue(|]Xn|)||[E < 00. Alors X,, =X p.s. et X est
E-intégrable.

Soit (Xn) une martingale a valeurs dans un Banach réticulé f.s.c. Si pour
tout n, |X,,| est Pettis-intégrable et de norme Pettis bornée, en représentant
E comme un espace de Kdthe, la Proposition 7 assure que X,, converge p.s.
vers X, avec X Pettis-intégrable. Nous reviendrons sur cet aspect. Si, de
plus, E vérifie la propriété de Radon-Nikodym et que les X,, sont Bochner-
intégrables et bornées pour cette norme, alors X est la bmite usuebe.

1-3 Amarts conditionnels

Soit E un espace de Kothe f.s.c. et soit (X,,) une suite E-intégrable de
v.a.r. adaptées a la filtration (Xn VB).
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Derinition 8. (X,,) est un E-amart fort — resp. faible — (amart con-
ditionnel pour E) si la famille ((EB(Xr))reTi converge fortement — resp.
faiblement — dans E selon le filtre T\.

Remarque. Contrairement a ce qui se passe dans la cas des martingales,
les E-amarts ne sont généralement pas des amarts réels, comme le montre
I’exemple suivant. Choisissons B = A ei Xn= X = {$,£1}. La famille T\ se
réeduit aux temps constants. Dire que (X,,) est un E-amart fort signifie que
la suite (X,,) converge dans E. Si maintenant E= L1etque o< Xn< 1, X,,
convergeant vers o dans L1 mais pas p.s.; ce n’est pas un amart ordinaire
pour la filtration constante.

La théorie des E-amarts differe donc de la théorie des martingales vec-
torielles. Nous allons montrer cependant qu’il est possible d’étendre des
résultats de la théorie des amarts réels au cadre adopté ici.

Soit (Xn) un E-amart faible, pour A G (J T()B, Ila famille
<re’i

(EB(XT-1n))Te? converge faiblement dans E vers une limite m(A). C’est
en effet évident si B EB et si A ETaQ.

L’argument classique de la théorie des amarts réels, permet d’écrire, pour
tout Y EE'et a0”a<r ET,

E((Xr- Xv)\aY)=E((XT- XTi)Y) =0, en posant t'=a-<1lg+ I *lac.

La limite, m(A) est une fonction additive d’ensembles de I’algébre engendrée
par (.J Bi & valeurs dans E, et dont les restrictions a chacune des sous-
g

tribus Ta sont <T-additives.
On a de plus:

Proposition 13. Soit (X,) un E-amart faible (resp. fort), tel que
Sup |jEe(|X ., ])||[E < 0o. Alors (X,,) s’écrit de maniére unique sous la forme
Xn=M,, -f Zn dans laquelle (Mn) est une E-martingale et (Z,,) un E-amart
faible (resp. fort), vérifiant EB(Z,, -1") —»0faiblement (resp. fortement) dans
E.

Démonstration. Soit (Xn) un E-amart faible et soit no EN. Pour tout
A € Xno, la suite EB(X,, m1*) converge faiblement dans E. T existe donc
une v.a., M,,0, XTbV R-mesurable et E-intégrable telle que EB(Xn ml1") —

—»EB(Mno ¢ 1g) faiblement dans E. H est clair que la suite (Mn) est une
E-martingale et, si I’on pose

Zn - Xn ~ Aln,
la suite (Zn) est un E-amart faible vérifiant

EB(ZTe+1p) —»0 faiblement dans E, pourtout AeT,,.
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Le cas des amarts forts est analogue. O

Remarques 1. Sous les hypothéses de la proposition précédente, la
deuxiéme partie de la Proposition 11, montre que la E-martingale (M,,)
vérifie SHD [[ER(IM |)||E < o0 et, par conséquent, converge p.s. Vers une v.a.

X , E-intégrable (Proposition 7), qui apparait alors comme une limite de
I'amart (Xn) en un sens trés élargi. En effet on ignore généralement si la
suite (Z,,) converge vers 0 p.s. (reprendre le contre-exemple du début pour
lequel Mn=0et Zn = Xn ne converge pas p.s. vers 0).

2. Dans le cas reéel, les potentiels (Z,,) intervenant dans la décomposi-
tion de Riesz des amarts, convergent vers 0 dans L1. Nous ignorons si, dans
le présent contexte, {EB(\Z<\))a® converge vers 0 en un sens raisonnable.

Nous verrons plus loin que Es(|Z<{) —0 pour cr(E,E") sous des conditions
plus fortes.

3. Si E posséde la propriété de Radon-Nikodym, toutes les v.a. mises
en jeu s’interprétent comme de vraies variables vectorielles (si les mesures
associées sont & variation bornée) et on retrouve le théoréme d’Edgar et
Sucheston [11] classique. L’artifice utilisé ici permet d’étendre ce théoréme
a des espaces de Kothe qui, tel L1, ne possédent pas la propriété de Radon-
Nikodym.

I1-1 Mesures E-conditionnelles

Afin d’étudier les propriétés de réticulation des E-amarts, nous allons
aborder maintenant I’aspect mesures E-conditionnelles. Notons PO(E) I’en-
semble des v.a.r. E-intégrables avec la norme Po(") = ||EB(|X|)||[Es Cet
espace est complet seulement si E = L1(5). Par contre Po(E) est com-
pletement réticulé et I'injection X —»E B(X ¢1) de PO(E) dans I’ensemble
Mo (A, E) des mesures signées de A dans E est un isomorphisme d’ordre:

si. h(A) =Eb(X-\a) alors p+(A) =EB(X+-1A).

Les propositions 6 et 7 permettent de situer la place de Po(E) dans
M.o(T,E). C’est I'objet du corollaire suivant qui est & rapprocher des
résultats de [2] et [4].

Soit E un espace de Kdothe faiblement séquentiellement complet de v.a.r.
B-mesurables (I’espace Mo (X,E) muni de la norme ||/z|| = |||[/x(i1)|||E est aussi
faiblement séquentiellement complet). Soit T une sous-tribu séparable de A
et (JF,,) une filtration atomique engendrant T .

Corollaire 14. Soit p EMo(X,E) telle qu’il existe Y, E-intégrable
avec |/i(A)| » EB(Y mlA), pour tout Ae T . Alors on peut écrire de maniére
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unique p(A) = EB(X m\A) ou X est E-intégrable et de plus |/r|(>1) =
= EB(\X\-1A).

Démonstration. Supposons p o, la restriction de p a T, s’écrit
p(A) = EB(X,, mA) pour AETnet Xn=Yi, *a somme portant

sur les Ai atomes de Tn. (Xn) est alors une E-martingale positive adaptée
a la filtration (T,, VB) et sa limite p.s., X, Vvérifie:

EB(Xn-1A)=EB(X-IA) tout Ae }Tn.

Donc
p(A) =Eb{X-1la) tout AET.

Pour p = p+—p~ on applique ce schéma a chaque composante. Supposons
maintenant que p{A) = EB{X «17) = EB{X' m\A). On voit que I’égalité de-
meure pour AET UB et donc pour TM B. La derniére partie n’offre guére
de difficultés. O

De ce corollaire il résulte que PO(TM B, E) se plonge canoniquement dans
M o T,E). Plus précisément, si Ps est la mesure définie par F -* EB(\p),
FET alors:

P roposition 15. L ’espace Po(T MB,E) est isomorphe & la bande en-
gendrée par PR dans Mo(T,E).

Démonstration. Soit p une mesure vectorielle positive telle que
p/inwPR/ p EMoO(T,E).

I existe XnEPo(-* VB, E) avec pAn- PS(A) = EB(X,, *17). La suite (Z,,)
est croissante et sa limite p.s., X , vérifie

p(A) = EB(IA). O

Nous aurons besoin en outre de propriétés de compacité faible, ce que
nous examinons maintenant.

M-2 Convergence faible dans Po et Mo

Dans toute cette partie nous nous donnons un espace probabilisé
(i1,.4,P), A séparable, T et B deux sous-tribus de A, E un espace de
Kothe faiblement séquentiellement complet de v.a. *-mesurables. L’espace
Mo = Mo(T,E) n’est pas complet pour la converge simple faible ou forte
induite par E. On dispose cependant du résultat suivant:
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P roposition 16. Soit (pn) une suite de mesures de Mo Vérifiant
Sup [|[Mn|(iT)]|E < oo et, pour tout ACIT , la suite (pn(A)) converge faible-
ment dans E. 1l existe p e Mo telle que

Pn(A) —%p(A) pour £(E,e') et aciT.

Démonstration. La limite, p(A), de la suite (pn(A)), définit une me-
sure de F dans E.

Pour montrer qu’elle est signée, il suffit d’établir que, pour toute famille
finie, (j4q,... ,An) de F on a:

VmU .) S C pour une certaine constante C.
0
Prenons donc Ag— 0, a i.... ,ax une suite d’éléments de . Pour tout n:

o<\/Kpn(At)<\pnm :
0

La suite VA, (A,) est donc bornée dans E.

Pour montrer qu’il existe une sous-suite convergeant faiblement dans E,
il suffit d’établir cette propriété dans L1, corollaire 3 de [7]. Comme chaque
suite (p,, L )n converge faiblement dans E donc dans L1, la suite (V/x,,(yl,))

est faiblement compacte dans L1. Ainsi: ||[V/X(A))||E < Sup [|[/in|(iD)||E (hem-
me 1de [7]). O

Remarque. Cette proposition s’étend aux famille de mesure de Mo
en utilisant le théoréme d’Eberlein. Donnons, en application, I’analogue de
cette propriété pour les v.a. de Po(FWB,E).

P roposition 17. Soit (X,,) une suite de v.a. J VB-mesurables, telles
que SLIJ_P [IER(|X,,])]|IE < oo et pour tout AC: IF, (Es(Xn\a)) converge faible-

ment dans E. Alors il existe une v.ia. X de po(rrve,E) telle que:
EB(XnlA) EB(X mU) et de plus

IHEBCOINE <Supl[ER(Xn)IIE.

Démonstration. Posons pn(A) = EB(XnlA) les hypothéses et la propo-
sition précédente assurent qu’il existe p EMo{F,E) telle que pn{A) converge
faiblement vers p(A). Pour tout Y e E+, la suite (Y|X,,]) est équi-intégrable
dans L1. Ainsi, pour une sous-suite convenable, |Xn,| et |X,,.| Y convergent
faiblement dans L1, vers respectivement Z et Z -Y. Le Corollaire 3 de [7],
assure que Z est E-intégrable et que

EB(Xni) converge, pour oE,e'), vers EB{Z).
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En particulier, ||£R(Z)|| < Sup ||EB(|Xn[)||. Enfin, en passant aux mesures
associées, nous avons: |*(A)| ~ EB(Z mlpg). Le Corollaire 14 permet alors de
conclure. O

Afin de généraliser la Proposition 13, introduisons les E-amarts mesures.
Soit (pn), Un £ M(En,E) une suite adaptée de mesures vectorielles [5, 6].
Nous dirons que (/1,,) est un faible — resp. fort — E-amart mesure, si la
famille (/xr(0))reTl converge faiblement — resp. fortement — dans E. De
méme, c’est une E-martingale mesure si /x,,(*) = pm(A) pour tout A Gf,, Am.

Proposition 18. Soit (pn) «n E-amart mesure faible — resp. fort —
tel que SHO [I/zn|(fi)|] < oo. Alors (pn) s’écrit de maniére unique comme

pn=m, + @ ou (m,) est une E-martingale mesure et (g,,) un E-amart

mesure, verifiant pour tout AE (J
<GTi

re7i
qt{A)--—--—--—-- >) faiblement — resp. fortement —.

111-1 Famille de Riesz

Comme auparavant on se donne un espace de probabilité séparable
(fl, A, P), B une sous-tribu et E un espace de Kothe f.s.c. de v.a *-mesurables.

Soit | un ensemble d’indices, filtrant croissant, et (Jr,)tg/ une filtration
croissante de sous-tribus de A. Pour chaque i, donnons nous une mesure
signée pi GMg>(IFi, E) — par exemple si | = N, (pn) est la famille de mesures
associées & un E-amart (X n) —. Nous voulons déterminer, dans cette partie,
des conditions sur la famille (/z,)lg/, assurant la convergence — au moins
faible — de

(N (11)W -
H est évidemment nécessaire que Sup |||/z,|(f)|IE < oo. Supposons, pour sim-
t

plifier, que 1 = N et T —Tn- Soit T une topologie d’espace vectoriel sur
Mo(E,E) telle que pn—*0 pour T, implique |/zn|(fT’2—>0 our zr(E,E"): la
topologie T est plus fine que celle induite par M C(! ,E*(éJ D’autre part
comme Sup |||/zn|(fl)|] < oo, la faible convergence de (|/z,|(f))) dans E est

équivalente a la faible convergence dans Ll(B).
Ainsi la plus faible définition acceptable est:

DEFINITIONS 19. — Une famille adaptée de E-mesures, (Mi),e/, 14 £
GA40("i,E), est une E-famille de Riesz si
a) SLIJp [[)/ii](TH||E < o0

b) Pour tout e > 0 il existe ieGl tel que j >t> ic impliquent

E Sup \(pj - /zt)(A)|l <e.
AZ‘P, (p] ) )|l
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— Une famille (X,)Jg/ de v.a. adaptées a la filtration (X, VB) est une

E-famille de Riesz si, la famille de mesures associées par Pi(A) = XS(X,-17),
A GX,, est une E-famille de Riesz de mesures.

Exemptes. Avec les notations de la partie précédente soit (Xn) une
suite de v.a. adaptées a (XnVf?) et telle que Sup |.E.R(]XT|)||E < oo.
r€Ti

* Si (X,,) est une sous- ou sur- E-martingale, alors (XT)r¢ri est une
E-famille de Riesz.

* On dit que (X,,) est un E-o-amart si (EB(Xr))r€Ti est convergeant
pour l’ordre dans E, (voir [15] pour une version vectorielle), alors

Sup \EB(X<,-XT)-1/\-----—--- >0
AeTa riirgTi
pour lI’'ordre de E et par suite (X )" est aussi une E-famille de Riesz.
* On dit que (Xn) est un uniforme E-amart (voir [2] pour une version
vectorielle) si

*) vark (fi, - NT\r ) -0

en posant varg(/r) = Sup _ |[/i(A,-)|le; (A,) partition finie de T et ou pr\X(r
[
est la restriction de la mesure pr(A) = EB(XTe*1%), a la tribu X~

De (*) il résulte que var~*g”/v —pT\ra)------—-- >0,

r ><r
Maintenant il est aisé de voir que la norme varLi est équivalente a celle
de M.q(X \-1{B)): |l/r]lo = X(|/i|(f])) (voir [6] pour détails). Il s’ensuit que
(Xr)TeTi est une E-famille de Riesz. Inversement si (et seulement si) E =
= L1(R), (Xr) est une E-famille de Riesz, alors (X,,) est un uniforme E-
amart.
* Par contre, si (Xn) est un faible E-amart tel que

Sup||Xs (X r]]|E <oo.
reTy

Alors (Xr)reTi n’est pas en général une E-famille de Riesz.

Donnons & présent le principal résultat de cette partie:

Theoreme 20. Soit (pi)i¢l une E-famille de Riesz adaptée a lafiltration
(% m» " . . .

1) pi s’crit de maniére unique /r, = m, + p, ou (m,) est une E-martingale
mesure et |p,|(M)-*0 faiblement dans E.

2) (pf) est une E-famille de Riesz et pf = (m+)|:r + - ou m+ est la
partie positive de m dans |’espace complétement réticulé de toutes les fonc-
tions additives, a valeurs dans E, et définies sur (J X, et, enfin, |u,|(Q) —»0

. «ef
faiblement dans E.
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En particulier rn+ est limite de la E-famille de Riesz (pf).

Démonstration. FiXons ic | et Ac Tp alors la famille (pj(A))jel

converge dans L1(B) vers une limite, m,(A). La condition a) de la définition

assure que Pj(A)-—--é/- >m,(A) faiblement dans E.
>

Ceci montre, avec la Proposition 16, que mi € Mo(Ei,E). Posons p, =
= pi- mi. Comme SLIJp [llpi|(iT)||[E < oo. Pour montrer que |p,|(Q) —*0 faible-

ment dans E, il suffit d’établir que £(|p,|(iT)) —0. Ce qui résulte de I’'inéga-
lité:
£(Sup I(pj - m;)(A)) N £, pourj >i assez grands.
Azr,

Mest clair que (m,) est une E-martingale mesure de la forme m; = m\p , ol
m est additive sur I’algebre engendrée par les M est également clair que
(mf) est une E-sous-martingale mesure. Donc (mf (D))<6/ est une famille
croissante convergente dans L1(R).

De la, il résulte que (mf) et donc (Jm,|) sont des E-familles de Riesz.
Montrons qu’il en est de méme pour (pf). Comme \mf —pf\ ~ |p,| I'inégabté

Mm.- HTI2 1T - mf I, I+ |mt|» - mf|+\mf- pf]|

implique que E(\pf\ - /i*[(77)) ~ e pour j > i >ie. Et, par conséquent,
(pf) est une E-famille de Riesz. Finalement, montrons que la limite, dans
LAR) et pour AG|JTp de (pf (A)) est m+(A).

Soit A GFia; pour tout e > 0, il existe Bj,... ,5ar, € ;et feGL1 tels

que
N

B,CA, E(f)<:£/2 et m+(A)<\/Im(B,) +f"

Nous pouvons supposer, pour jo assez grand, que tous les R, appartiennent
a 'HO0. Donc pour j grand, on peut écrire: m(R/t) <pj(Bk) + ou g GLj_
~ N.
est telle que E(gk) % Hen résulte que: m+(A) *VPj(B.) + S dk+ /« "
<pf(A)+ heou E(hc)”*e. Or
[/r+(A)-mt(A)|< |p7](M)-yO dans 1J(R).

Ainsi nous avons montré que pour tout £> 0 et tout A GEIi0, il existe jo G/
et h~ 0 avec E(h) " £, tels que, si j >jO0:

mf(A) <m+(A) <mf(A) +h + |p>|(i7).
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C’est-a-dire: plf{A) —*m +(A) fortement dans 1r($). O

Nous allons donner maintenant une condition assurant une convergence
forte de la partie potentielle, p, = pi —rii, |||pt|(iT)]| —%0. Pour I’obtenir nous
devons établir un lemme technique similaire a ceux de [7]. Rappelons qu’une
suite (X,,) de v.a. a valeurs dans un espace de Kothe E est E-équi-intégrable
Si

Ve3r) tel que: P(B) S rj=>||X,, ¢lg]|| < oo.

Lemme 21. Soit (X n) une suite bornée en norme d’un espace de Kéthe
f.s.c.. Alors elle converge fortement si, et seulement si, elle converge dans
L1 et elle est E-équi-intégrable.

Démonstration. Supposons que Xn —*X dans L1. Alors X EE car
Sup [|X,,]] < 0o. Posons Yn=|Xn- X\. La suite (Y,,) converge vers 0 dans
L1 et pour n(E,E"). Le lemme de [16] montre que |Y,, *1(yn<?)|| =0 pour
tout k. Si (X,,) est en outre E-équi-intégrable il en est de méme pour (Y,,) et
on a: |IY,, «l(yn>fc)| S £ pour k suffisamment grand, ce qui achéve la preuve.
O

Remarquons qu’une famille est E-équi-intégrable si, et seulement si, pour
toute suite (r,,) il existe une sous-suite extraite, (r*), telle S116 (X,-*) soit E-
équi-intégrable.

On déduit du lemme précédent:

Corollaire 22. Soit une E-famille de Riesz telle que lafamille
(M (il)) soit E-équi-intégrable. Dans la décomposition de Riesz, fi, = m, + gt,
les familles (|m,|(iT)) et (|p,|(fi)) sont E-équi-intégrables et |||pt|(f1)]|] =>0.

Démonstration. I suffit de considérer des sous-suites, que nous note-
rons pour simplifier, encore (pn). Nous avons: |*n|jrpl(*) ~&Impl(”) dans
L 1 et faiblement dans E. Donc

[[Imp](iD)||<lim[||/in]|(iT)-Is ||*"E£ si P{B)<q.

Ce qui montre la E-équi-intégrabilité des familles considérées. Enfin comme
|pn|(iT)—w) dans L 1, le lemme précédent montre que |||pn|(fi)|| —»0. O

I11-2 Décomposition de Lebesgue

Les E-famille de Riesz ont aussi une décomposition de Lebesgue. En
effet si est une telle famille, il est possible d’écrire de maniére unique

Pi = p] + Pi o0 (pi) est une E-famille de Riesz de mesures appartenant a
la bande engendrée par P dans X1o(X,E), iE/, ie. p] = H", AnP, pour

tout r, et (p'i) est aussi une E-famille de Riesz, orthogonale pour l’ordre a
P: p] AP =0.
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La démonstration de cette décomposition est standard, par exemple [15].

Applications. 1— Les propositions précédentes permettent de retrou-
ver tous les résultats classiques de la théorie des amarts pour l'ordre: réti-
culation et décomposition de Riesz.

2 — Si (Xn) est un uniforme E-amart, (Xt)tC7-, est, nous I’avons vu

une E-famille de Riesz. b en est de méme de (X+). La fonction additive
d’ensembles limite de (X+), m, est la partie positive de la limite de (Xr).
En considérant les mesures associées on voit que: |/r+ —m+\ | < [fiT—m\jrT|

donc varE("x+—m + |Xr)------ >0. M en résulte que I’espace des E-amarts uni-

formes est réticulé lorsque E est un espace de Kothe f.s.c..

3 — Soit (Xn) un E-amart faible tel que (XT)reTi soit une E-famille
de Riesz. Alors on peut écrire de maniére unique Xn=M,, + Zn ou (Mn)
est une E-martingale convergeant p.s. et (Zn) est un E-amart faible tel que
[1ZT||i-—-- >0. En particulier (ZT)reTi converge vers 0 en probabilité. Mais

r€Ti
la suite (Zn) ne converge pas, en général, p.s..

4 — Soit (Mn) une E-martingale de limite, m, (m(A) = EB(Mnmlp), si

A g X,,). On vérifie facilement que les énoncés suivants sont équivalents:
(i) Mn= ERvjr*(M) pour une v.a. M E-intégrable.

(i) (M,,) est équi-intégrable.

(W) me

5 — Soit (X,) une E-famille de Riesz, alors (X,) converge en probabilité.
En effet par le Théoréme 20, on se raméne au cas 0" X, £ 1, et on utilise
le Corollaire 22. Remarquons enfin que dans le cas B triviale, on obtient la
propriété classique de convergence p.s. des amarts L 1 bornés [10].

I11-3 Le théoréme d’Andersen et Jessen pour les familles de Riesz

Soit (fi, (Xn), T, P) un espace probabilisé filtré, T —VX,,. Soit 4 une
mesure positive réelle et bornée sur X, notons fin sa restriction a Tn et
un = X nP -f i/n sa décomposition de Lebesgue. Le théoréme d’Andersen et
Jessen [1] affirme que X,, converge p.s. vers la dérivée, X, de 4 sur X par
rapport & P: f,= X «.P + u. Ce théoréme s’étend aux fonctions additives
d’ensembles réelles et bornées voir [3] et [9].

Réciproguement, si une surmartingale positive (Xn) converge p.s. vers
X, la fonction additive d’ensemble limite, notée u: y(A) = limE(X,,la), a
une décomposition de Lebesgue du type:

fi=X P+ V.

Donnons tout d’abord quelques précisions sur les limites de Banach de v.a.r..
Pour cela notons S I’espace dessuites (X,,) de v.a.r. qui sont équi-intégrables
dans L1.
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P roposition 23. |l existe une application L de S dans L1 telle que:
a) limX,, 5 L((Xn)) SlimXn

b) LWL X s1+x)) = UL X ,,))

;L ((Xn)[[1<Hm][Xn][1.

Démonstration. Pour A EA la suite (E(X,14)) est bornée. Si Lgest
une limite de Banach sur 1°°, la fonction d’ensemble m(A) = bo((E(Xnla)))
est cr-additive et absolument continue par rapport a P. Définissons L((Xn))
comme la dérivée de m. Il est aisé de vérifier les assertions de la proposition.
O

Soit (Xn) une suite de v.a. E-intégrables adaptées a la filtration crois-
sante (XnVB), formée de sous-tribu de A et ol E est un espace de Kdthe
f.s.c.

Supposons que (Xr)r Ti soit une E-famille de Riesz. Ecrivons la décom-
position de m(A): m(0) = E(X -lo) + i/(0) (limite faible dans E de E (X T\g),
pour A E H]Fn) dans la bande engendrée par PR. La version vectorielle du
théoreme d’Andersen et Jessen devient:

T héoréme 24. Sous les conditions précédentes on a:
a) La suite (Xn) converge en probabilité vers X .

b) ¥(0) =limL ((EB (Xn.lon(|*n[>*))))
De plus lorsque E = R i.e. B —(0, fi) nous avons:
c) Il existe une v.a. Y =X p.s. telle que
m(0) = EB(Y m10) + /(0 M (\Y\ = 00));
eim<P si, etseulementsi, Xn—X fortement dans L 1.

Démonstration. Nous pouvons supposer X,, >0, avec le Corollaire 14
et le Théoréme 20; I’assertion a) s’ensuit avec I’application 5 ci-dessus.

Montrons b). Si pn est la E-mesure associée & Xn: (/x(0) = EB(Xn «l0))
on a:

(pn —Pn AkP)(0) —EB X nmon(x,>*)" —« mE B(lon(xT>k)j *

Ce qui montre que (pn —pn AKP)(0) converge faiblement dans L1 vers
(m —m NNk «PB)(0) et la suite est trivialement équi-

intégrable.
Prenons les limites de Banach, il vient:

(m-m A k wPB)(0) = L{eb(x,lon(jfn>*))) =k-L"EB(lon(Xn>k)))
d’ou pour K assez grand:

IiHA' A R (IAn(Arn>fe))||i *-nX>fc)<E.
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Par conséquent
lim(m - m A k «P)(0) = EB(X =10) = lim b (e 8 (x nelon(;rn>fc))),

c’est I’assertion b).

Montrons c¢). Supposons m cr-additive, v et P sont étrangeres, et il existe
Ae T tel que v(A) =0et P(A)=1 Onpose Y =X m +o00e1lac. H est
clair que Y vérifie la premiére partie de I’assertion c). Si, enfin, m <CP alors
I/=0et E(Xn)—>»E(X) ce qui, avec la convergence en probabilité, équivaut
a la convergence dans L1. La réciproque n’ofFre guére de difficultés. O

IV Bi-mesures

Par analogie avec l’intégrabilité conditionnelle des v.a.r. ou la théorie
réelle des v.a. vectorielles, il est naturel de considérer de la méme fagon, la
théorie réelle des mesures vectorielles. Cette étude nous permettra notam -
ment de caractériser simplement la bande engendrée par PB dans Alo(E).

Soit donc (if,*4,P) un espace probabilisé, T et B deux sous-tribus de
A. Notons, en accord avec les écritures précédentes. MO(B) I'ensemble des

mesures réelles, signées, définies sur B et M.(T,M g(B)) — resp.
Xto(X, Mo{B)) — I’ensembles des mesures vectorielles — resp. des mesures
vectorielles signées — sur T a valeurs dans Ado(B).

Soit Cl'algébre engendrée par XUB et L<r(C) — resp. LO(C) — I’espace
des fonctions additives d’ensembles, réelles, définies sur C —- resp. additives

signées, définies sur C et telles que leurs restrictions a chacune des sous-
tribus X et B soient «r-additives. On aura reconnu la version ensembliste des
bi-mesures, étudiées dans [22]. Introduisons enfin les notations suivantes:

ML X, M(B)) = {nc Mo(X, Mo(B)); fi(F)(B) = 0 dés que Fn B = 0)

M*(X,M{B)) = (ne M(X, Mo(B)); fi(F)(B) = 0 dé¢s que FIl B = 0).
M existe des isomorphismes canoniques, préservant |’ordre, entre
M(X,MO(B)) et M{B,MO{X)\ M*{X,MO{B)) et M=*(B,MO(X))-,
et M g(X,Mo(B)) et M g(B,M g(X)). De plus on a:

Théoreme 25. Il existe un isomorphisme (p préservant |'ordre entre
M*(X, M¢>(B)) et VX{C). De plus, pour cet isomorphisme, les espaces
M of X,Mo(B)) et Lq(C) se correspondent.

Déemonstration. Il suffit de montrer que, pour p € M*(X,Mqg{B)), la
fonction additive d’ensembles M(FTB) = p(F)(B) est bien définie et peut
se prolonger, de maniére unique, en un élément de L<r(C). Supposons que

(1) FDB =" FiDBi.

| fini
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Posons F* = FINF,;B*=B N5, ;F, = F* fiA, et F, = B*fi-Ci. Des relations
FNOB="2(F* + Ai)NI(F*fiCi)=Y, K MF*,

On déduit
A-TF-= 0= F, MC-.
Donc
KF)(F)=MF*)(F)+ M n(5%*).

Par suite nous pouvons supposer, dans (1) que F = (JF, et F = (J F, et ainsi,
que les F, sont disjoints. De sorte que: F, flF = FiMF,. b vient

M(F)(F)=£ [i(F,)(F) = 5>(fl)(F,-).
t I

Soit maintenant les atomes de <7(F,, 1< i< A) et (C/)ref ceux de
t(F,-, 1~ t~ fc). On a alors

F=A Aj et F=~ C/
J,

et I’égalité: FNF = £) A, ANCf=1T)( ]F A; INCf) montre que Aj 1Ci —0 si
*  «»Xh\

j, ¢ £(J,- XF,. Par ailleurs
«

FNF=~ AjNF
i

et par conséquent

mf)(b)= =E E MXYer

i JiXL

M ne reste plus qu’a remarquer que /x(F,)(F,) = X) Ir(Aj)(C/) pour
i Ji XLf
achever la premiére partie de la preuve.
Appelons tp I'isomorphisme ainsi construit. b préserve l’ordre. Remar-
quons enfin que Lg est un espace de Banach réticulé pour la norme: |m|| =

= Sup Im(C)|. b en est de méme pour Adq(F, M o(B)) avec la norme ||/r|| =
c

= |/x|(i)(iT) qui est équivalente a la norm« variation. b en résulte que

(V(»)+=\h+) etc. ... O

Considérons maintenant, comme dans les paragraphes précédents, un
espace de Kothe E de v.a.r. F-mesurables, f.s.c.. Nous supposerons que les
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sous-tribus T et B sont complétes pour P. Toute mesure, p, sur T a valeurs
E, est alors nécessairement absolument continue par rapport a P.

SiYG6E'Ilav.ar. Y ep(F) appartient a L"R), pour tout FET . Ce
qui permet d’identifier Y -p comme mesure de T dans L1(B). En effet si
F ,,\O \\Y wx(Fn)|| < [/X(Fn)||E ||Y ||E/ —0. Il est clair, d’autre part, que si
p GMo(F, E) et Y GE'+, alors |Y -p\ = Y ®/x|. Nous pouvons aussi considérer
Y ep comme un élément de M (F, par la relation

Y p(F)(B) = E(Y */x(F) *IR).
Ainsi pour toute v.a.r. ¥ GE', strictement positive p.s., nous avons construit
une injection ¢y de M (*,E) dans \-x(B)) ou ,Afo(R)), définie
par py(p) —Y-p. Cette injection préserve l’'ordre et de plus
dy(Mo(3r,E)) C Mo(F,L-I(B))
et
(2) dy(M=*(I',E))C M*0(F,0(B))
ou M ¢(F, E) désigne I’espace des mesures p GMo(F,E) telles que
p(F)-1b =0 dés que P(OflF) =0
L’inclusion (2) résulte du lemme plus précis suivant:

Lemme 26. Soitp GMo(P,E). Alors p £ AAq(F, E), si et seulement si,
pour tout Y GE', ¥ »p G 1°(0)).

Démonstration. Comme les espaces considérés sont réticulés, on peut
supposer Y et p positives. Le lemme est alors évident en approchant ¥ par
des suites croissantes de v.a. étagées. O

Remarquons que les injections ¢ et gy pour ¥ GE+ sont liées par la

formule:
®o thy = by o Do Px.
On obtient enfin:

Théoréme 27. SOit pGwm q(7.e); p peut sécrire p(F) = EB{X -17),
si, et seulement si, podpy(p) est une mesure sur C absolument continue par
rapport a P.

Démonstration. La condition est évidemment nécessaire. Montrons
qu’elle est suffisante. Soit p € M g(F,E) telle que ho1(p) soit une mesure
absolument continue par rapport a P. On peut en outre supposer que p
est positive. Par hypothese d(cp\(p))(F'M\ B) = E(p(F) mR) = E(X *1fhb)-
Pour toute v.a. étagée, Z, B-mesurable, on a:

E(p(F) «Z) =E(Ip *Z +X), pour tout F GF.
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Cette égalité se prolonge, par approximation croissante, a toute v.a. Y GE+.
Avec la propriété de Fatou sur E, on en déduit que X est E-intégrable et que

p(F) =EB(X-1F). O
Notons M Pe(X, E) la bande engendrée par p B dans M qfF ,E), on déduit
du résultat précédent:

Corollaire 28. Soit p GM.o{X,E); les énoncés suivants sont équiva-
lents:

(i) fiGAipe”, E)

(u) fieMpe(x,L\B))

(iii) E(fi(F) m\g) définit une mesure surC.

V-l Cas T et B indépendantes

Soit (fi, A,P) un espace de probabilité, T et B deux sous-tribus in-
dépendantes, E un espace de Kothe fs.c. de v.a.r. B-mesurables. Nous
avons clairement Ps = P et par suite M pb(X, E) est identique a la bande

N4p(X, E). Notons Po(F,E) I’espace des v.a. “-mesurables a valeurs E,
X , telles que |X | soit Pettis-intégrable. Sur P O(F,E) nous considérons
la norme |.E(|X|)||E. Soit O I’application de fi dans fix fi définie par
Awm>) = Si A" G P o(X,E) il est clair que X = X o4 GPo{F VB, E)
espace des v.a. N-mesurables, E-intégrables avec la norme [|E® (|X])||E.
Plus précisément:

Lemme 29. L application X —»X = X o[ est une isométrie pour |’ordre
de P o(X, E) sur Pg(X VB,E) et on a EB{X m\p) =E(X -1f) pour F C.X.

Démonstration. L’unique chose a montrer est que X —»X o[ est

surjective. Soit X GPo(*" VN,E). Définissons p GM o X,E) par p(F) =
—EB(X mf); donc p GM .pB(T,E) = Mp(F, E). Comme E est f.s.c. il existe

X G P o(",E) unique telle que
p(F) =E(A -I1f).

Posons X = X of]. Or |X| est Pettis-intégrable dans E, donc Bochner-
intégrable dans L1(N). Ainsi

E(X-1F)=1 X(u)(u')dP(u) = EB(X-IF)
F
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et les deux variables X et X définissent la méme mesure p. On achéve la
preuve avec le Corollaire 14. O

Remarque. Soit (Fn) une filtration croissante engendrant T, et soit
(*») une martingale adaptée a cette filtration et a valeurs E telle que

SupllER(|™,]| < oo.

Posons Xn= X nof, (X,,) est clairement une E-martingale telle que

Sup|lEB(|Xn])|I<oc.

Ainsi elle converge p.s. vers une v.a. réelle X appartenant a PO(*'V B, E).
Avec le Lemme 29, on lui associe une unique variable vectorielle

IC Po("E) telleque Xo0A =X ps.

Donc X,, o4 -*1 o p.s.. Comme précédemment, on peut aussi consi-
dérer (X n(u;)(u/)) comme une martingale réelle, adaptée a (Fn® B), dans
I’espace de probabilité (fl x fl, F®B, P®P) et, dans cet espace, X,,(u))(a/) —»
—» (u)(d) p.s..

Y-2 Enveloppe de Snell

Soit (X ,,) une suite de v.a. E-intégrables, adaptées a la filtration (FnVB)

et telle que (Xr)r67l soit une E-famille de Riesz. Nous notons //,, et X n
respectivement la E-mesure et la v.a. a valeurs E associée a Xn. On a:

IX,,(F) = EB{Xne+1”) = E(XnmF) pour FeFn.
Théeoreme 30. Si V E£RB(JAr|)EE alors (Xn) est contrlable au sens

de Snell. C’est-a-dire q-ur€|7'existe deux suites (i/n) et (gn) respectivement sur
et sous-martingales-mesures, adaptées a (F,,) a valeurs dans E et telles que:

VhA Mh”A Qm nENj vI—A2y (RrlFT)

etQr=V ITr), r G7i; vn et gn appartiennent a Mp(Fn,E). De plus,

<T>T

si on écritvn= E(s" mlp) = EB(sne*1"), et

gn=E(Sn-1F)=EB(Sn-1F) pour FeXn.
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Alors si<Xn<Sneten outre Sn= V STn(Xr); -, = 4 ETn(Xr). Nous
T™n r>n

obtenons aussi les mémes relations avec s, X et S:snS Xn”S,, ... etc.

Démonstration. {pT)Terx est une famille de mesures pour I’ordre pre-

nant ses valeurs dans la bande engendrée par e0= V (IMT1|(W1) V1) dans E.
re-Ti

Cet idéal est isomorphe a L°°. Par suite pour chaque r, pT€ M p (x T, L°°).
Appliquons le Théoréme 5-3 de [17]: il existe deux familles (pr) et (gT) re-
spectivement sous et sur martingales mesures, contrdlées par (pT) et |pT|(iT) V
|pr|(iT) < Bo- Mest aisé de vérifier que vT et gT6 Atp(~%,L°°). Dela on en
déduit leurs appartenance a Aip~r, E). La preuve s’achéve alors de maniére
standard. O

Un cas particulierement intéressant est celui ou: gn—un —%0. Dans ce
cas (pT) est un o-amart et la réciproque est également vraie, (Corollaire 5-5
de [17]). On obtient une généralisation de la caractérisation des amarts réels
de [14].

Corollaire 31. Sous les hypotheses du théoréme précédent, (x,) est
un E-o-amart si et seulement si, E(S,, —sn) —0; de plus X,, converge p.s..

V-3 Hypomartingales

Dans cette partie nous considérons uniquement des variables a valeurs E,
Bochner-intégrables, et des E-mesures a variation bornée. Rappelons que p G
GAio(E, E) est a densité Bochner-intégrable, par rapport a P, si et seulement
si, elle est a variation bornée et appartient a Xip(X,E) (comme d’habitude
E est supposé f.s.c.) [6]. Pour simplifier les écritures, nous noterons X (sans
fleche) une v.a. a valeurs dans E.

D eéfinitions 32. Une suite (X,,) dev.a. positives, E-Bochner-intégrables
est dite
— équi-intégrable au sens de Bochner (ou e.i.) si la suite (||Xn(iT)||E) est
équi-intégrable (dans L1);
— équi-intégrable pour I’ordre (ou o.e.i.) si

lim[Sup E(\Xn—X,, f\k-1])]= 0  [15];
K n

— faiblement équi-intégrable pour I'ordre (f.0.e.i.) si pour tout n GE',

Ii][Cn[Sup U(E(Xn—XnNkml))]=0.

Remarques 1. Ces notions s’¢tendent aux suites non nécessairement
positives, en considérant les suites valeurs absolues.
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2. L’espace LXE) des variables Bochner-intégrables est un nouvel espace
de Kothe. Il est aisé de voir qu’une suite (X,,), positive, de LXE) est o.e.i.,
si et seulement si, elle est Lx(E)-équi-intégrable. De plus nous avons les
implications suivantes: (Xn) converge dans LXE) => (X,,) est o.e.i. = (X,,)
est f.o.e.i. et si E(Xn)—0 alors (X,,) est f.o.e.i..

Soit maintenant (X n) une suite a valeurs dans E, adaptées a une filtration
croissante (Xn) et Bochner-intégrables.

Derfinitions 33. (X,,) est une hypomartingale — resp. épimartingale
— si on peut écrire Xn=Mn—Zn — resp. Xn=Mn+ Zn — ou (M,,) est
une martingale (a valeurs dans E) et (Zn) un potentiel positif, faible.

Donnons quelques propriétés:
a) Si v E(ZT) GE, ou T est I’'ensemble des temps d’arréts finis, alors
TeT

(Zn) est un potentiel fort: \ZT\ —»0. En effet, comme 0 < E(ZT) < V7™E(ZT)

et E(ZT)—0, il suffit d’utiliser le lemme de [16].
b) (X,,) est une hypomartingale — resp. épimartingale — si et seulement
si, pour tout A G%An’ la famille (E(XTe1n))ret converge faiblement dans

E en restant en dessous — resp. au dessus — de sa limite.

c) Soit (Xn) une hypomartingale ou une épimartingale positive. Alors
pour tout iG E +, (XnA:r) est un amart convergeant fortement p.s. dans
| x(E).

En effet, pour une épimartingale: Xn=Mn+ Zn on écrit

M, IX* XnAX<MnAXx+ Z, JI1x

Or (ZnAX) est un potentiel fort (assertion a) & valeurs dans le compact
faible [0,x], donc la Proposition 6 de [8] assure la convergence faible p.s. de
ce potentiel, et le lemme de [16] montre la convergence forte p.s., et aussi
celle dans LXE), vers 0.

De méme, (M,, Ax) est une surmartingale positive et on recommence le
raisonnement, ce qui prouve |’assertion pour les épimartingales. Si, main-
tenant, (X,,) est une hypomartingale positive, I’inégalité

M,NX—2Zn< XnAx< M, AXx

montre, en utilisant la méthode précédente, que (XnAx) est un amart fort
a valeurs dans un compact faible, et on conclue de méme.

Lemme 34. Soit (X,,) une hypomartingale positive a valeurs dans E,
LXE) bornée. Alors (||Xn||) est une hypomartingale réelle, Lx-bornée et
lim |[Xn(u)||= Sup limu(Xn(c;)) P-p.s..

DEMONSTRATION. MM s’agit en fait d’une extension du Lemme V. 29 de
[21] et d’une version vectorielle d’un résultat de [12] sur les sous-martingales.
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Soit uCE+, il est clair que (Ju(Xn)|) est une hypomartingale réelle; par
suite le Iémmé résulte de la propriété suivante.
Soit ((1'AQ),,), i €/, une famille dénombrable d’hypomartingales posi-
tives, réelles, et telle que Sup E(Sup X[) < oo. Alors (Sup X[)nebl est une
n 1 1

hypomartingale L1 bornée, et

lim Sup X* = Sup lim p.S..
n | | n

On achéve la preuve de maniere classique. O

T héoréeme 35. Les assertions suivantes sont équivalentes:

() E alapropriété de Radon-Nikodym.

(i) Toute hypomartingale positive, L~E) bornée, converge fortement P-
p.s..

(iii) Pour toute hypomartingale (Xn), positive, LA"E) bornée, les proprié-
tés suivantes sont équivalentes ‘(AV,) estf.o.e.i.”; ‘({Xn) est 0.e.i.”
\ X n) est e.i.”

(iv) Méme assertion que (iii) en remplacant ‘hypomartingales”par “mar-
tingales™.

D émonstration, (i) =» (ii): Dans la décomposition Xn = M,, - Zn
d’une hypomartingale positive, IJ(E) bornée, la partie martingale est aus-
si L1(E) bornée et donc converge p.s.. De I’inégalit¢ 0 < Zn < Mn et, en
utilisant un raisonnement similaire a la partie c) ci-dessus, on voit que Zn
converge fortement p.s. vers 0.

(i) => (iii) Soit (X,,) une hypomartingale L1(E) bornée, positive et f.0.e.i..
b existe MGL*(E) telle que

XnAxkme—»M Jlkm®e p.s. et dans LJ(E),

e étant un point quasi-intérieur de E (que nous pouvons supposer séparable).
En effet les arguments de c¢) assurent que

Xn/\k-e-+Mk p.s. et dans L"E),

avec
Mk+l ik =Mk p.s.et \/\\MKWHKE) < oo.
K

Ce qui prouve I’existence de M car E est f.s.c.. Enfin, si nous supposons
que (A'n) este.i., alors la convergence p.s. de X n assure sa convergence dans
L1(E) donc que la suite est o.e.i..

(iii) == (iv) et (ii) = (i) sont triviales car toute martingale est la différence
de deux hypomartingales positives.

(iv) = (i): Soit (Mn) une martingale positive o.e.i., alors Mn= E~n(M).
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En effet, (M,, J1k =€) converge p.s. et dans 1'(E) vers une v.a. Y*
L’inégalité:

lYp Yjt|i_i(e) ™ |[YP—Mn Ap-e\\ + \Mn hp-e —Mn Ak-e\\ + ||A/,, A A-e ||

montre qu’il existe M GLa(E) telle que Y*—»M dans L~E). Par ailleurs la
suite (Yjt) vérifie

YfcH Ik ee=Yjt p.s.,, dou Yk=MAk-e.
Enfin, I'inégalité:
IM,, - M| < [IM,, - M, JTA<e|| + [[Mn/IA:-e-JI/JIA;-e|| + [[M JTk me —M|

montre que A/n—M dans L!(E) donc M,, = Ejr,I(M), ce qui achéve notre
preuve. O
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ON A MULTIVARIATE EXTENSION OF PETROV’S
LARGE DEVIATION THEOREMY)

E. DERSCH

Abstract

Let {Xh}n>1denote a sequence ofindependent k-dimensional random vectors, having

the same strongly nonlattice respectively lattice distribution. Using moment generating
function techniques and refinements in the central limit theorem a uniform asymptotic
expansion of the probabilities of large deviations for the sum Sn = Xi +... + X n is proved.
This result is a multivariate analogue of a well-known large deviation theorem on the
real line due to Petrov (1965). As an application the limit distribution of Xi under the

condition Sn -i na (a> EX\ component-wise) is determined. The result is a multivariate
analogue of a conditional limit theorem on the real line proved by Bartfai (1972).

1. Introduction

Petrov (1965) proved the following important large deviation theorem on
the real line:

Theorem A (Petrov). Let(an3n-1 beasequence of independent identi-

cally distributed (iid.) real-valued random variables with moment generating
function

<p(t) = E exp(fAi) < oo, te[0,<i).
Then one has uniformly in a E[ao,ai] CA := (tR (0,ii)}
(1.0 P(5,, N na) = £>"(a)(27rn)-1/,26n(a) (1-f o(l)) (n-*00)
with
bn(a) = (hoh) 1for nonlattice distributions and

bn(a)= T f-e x p Ifor “a”,ce distributions with span d.
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Key words and phrases. Multivariate large deviations, uniform asymptotic expansions,
Petiov-theorem, maximum entropy distribution.

AThis research is based on part of the author’s Diplomarbeit written under Professor
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Here h = h(a) denotes the unique solution of the equation <p'(t)/ip(t) = a,
g(a) := inf IAf) exp(—ta) = <p(h) exp(—ha) (Chernoff-function),

and
0,(a) if P(Xi=a0)>0.

The goal of the present paper is to prove a multivariate analogue of
Theorem A. As on the real line, we have to distinguish between the lattice
and nonlattice case. A random vector X is called a lattice random vector
if there exists a lattice L = AZk with a nonsingular k x k matrix A, so that
P(X £x0+ L) =1 for some xo £ Rk. X is called strongly nonlattice if the
modulus of its characteristic function equals one only at the origin. We will
treat only these two cases, noting that for k > 2 there exist nonlattice random
vectors which are not strongly nonlattice.

Before stating our main result in Section 3 we collect some (well-known)
facts about moment generating functions, conjugate distributions and the
Chernoff-function. In Section 4 a refinement in the central limit theorem
is discussed, which is used in the proof of the main result in Section 5. In
Section 6 we apply our result to generalize Bartfai’s (1972) conditional limit
theorem.

2. Conjugate distributions and some related functions

Let X be a A:-dimensional random vector on a probability space (fi, 21, P)
with moment generating function

y2() = E exp((<, X)), t£Rk

Define Dv := {t £ Rfc: <p(t) < oo}.
The family {X(t)}teDo of random vectors on (i2,21,P) is said to be
conjugate to X if

(2.1) P(X(t)eB)= f  exP((*;x)) dP for all #£03~*.
J
{xeB}

PX (t) is called the conjugate distribution.
For fixed tg we have:

(2.2) ift(s):=E exp({s,X(t))) =<pis +t)/<p(t) for sE -t
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(2.3) E X (t) =grad <p(t)/<p(t) = (grad log
CovX(t) = (Hess log ¥)(<)

(Here Hess/ denotes the Hessian matrix of second partial derivatives of the
function /: Rk—»R).

(2.4)  P(XeB) = Px (B) = <p(t) Jexj>(-(t,x))Px{t)(dx), Be® 1.
B

The Chernoff-function g of the random vector X is defined by

(2.5) p(a):= tl‘isr[1)1‘%v>(0exp(—(f, a)).

If we define A := {(grad log :t€ I>°} and X is nondegenerate we have

for a GA the following assertions:

(2.6) The equation grad (p(t) = cup(t) has a unique solution t=t(a) in A.
All partial derivatives of the function t=t(a):A—» exist.

(2.7) e(a) = <p(t(a)) exp(~(t(a), a)).

(2.8) grad g(a) = -t(a)g(a).

(2.9) —logp(a) is strictly convex on  A.
(2.10) 0O<g(@<1 forall a£A with t(a)”0.

3. Main result

In the sequel we write for a = (oi,... ,a"), b= (6j,... b€ Re:a b
(a<b)iffa, <bi (a,<6)foralli=1,. k. R*:={ifRt:i> 0}.

The following multivariate extension of Petrov’s Theorem A will be
proved for strongly nonlattice as well as for lattice random vectors.

Note that, if X is a nondegenerate lattice random vector, there exists
a unigque minimal lattice L for X in the sense (see e.g. Bhattacharya and
Ranga Rao (1976), Lemma 21.4 and 21.5)

(i) P(X €x+ L)=1forall x £ Rtwith P(X =x) >0;

(it) If M is any closed subgroup of R* such that P(X Gyo+ M) = 1 for

some yo € R*\ then L C M;
and
det L := |detA| if L=AZk.
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THEOREM 1. Let {Xn:n > 1} be a sequence ofiid. k-dimensional strong-
ly nonlattice respectively nondegenerate lattice random vectors on some prob-
ability space (il,21,P) and let D be an open, convex subset of Rk with

(i) w(t) = Bexp((i, Xi)) <oc for t£D
(ii) i+

Further let

(iii) A:={gTa,d<p(t)/<p(t):teD+}°

and I CA be a compact set.

Put Sn- X\ + Xn,n=1,2,.... Then uniformly for a£ | respectively
foraf ID (xg+ L/n) if X\ is a lattice random vector with minimal lattice L

and P(Xi=Xo)>0:
(3.1) i>(i,>,a) =" 0™ jisrn~ I7ii(a)(I +0o(l)) (b- o0),

with
b(a) = (hi m... mhk)-1 JEX1 is strongly nonlattice, and

6(a) = (det L) exp(—h,a)) if X\ has a lattice distribution with

minimal lattice L.
cr>0

Here h=h(a)=(hi,... ,hk) denotes the unique solution of a=gT&d(p(h)/ <p(h),
Qa) = inf V»(0 exp(-(*, a)) = <p(h) exp(-(A, a))

and Vh is the covariance matrix of a random vector X\(h) conjugate to X\.

Remark 1. a) By definition of A the solution h = h(a) is strictly positive
for a £1, h(a) is continuous in aand 0< g(a) < 1for all a£ 1. Condition (ii)

is always satisfied if 0 £ D.
b) If Xi is strongly nonlattice the distributions of X\ and X\(h) are

nondegenerate. Hence M, is positive definite with det Vh > 0.

4. Expansions in the central limit theorem

Notation. Let /: Rt—R be a bounded, measurable function. Then
we set with B(x :e) := {y £ Rt:||x - y|| < £}, x £ Rk,e> 0, ||.|| := (.,.)1/2:
wf (x :e) :=sup{|/(z) - f(y)\:z,yEB(x: £)},
w p ) fujf(x:e)p(dx), p a finite measure on Rfg

cj}(s:p):= sup Gfy(e:p), fy(x) :==f(x +y),
ye*k
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M /(x:e):=sup{/(y): YE B(x:e)},
mf{x :e):=inf{/(j/):y € B(x:e)}.

The proof of Theorem 1 is mainly based upon the following lemmas (cf.
also [4], Theorem 2.1, 2.2 and 2.3):

Lemma la. Let {Xn(h): n't 1}heH be a family of sequences of iid. k-
dimensional random vectors on a probability space (il,21, P), satisfying the
following conditions:

(i) EXI(h) =0, covXi(h) =Vh, £[|X1(/1)]|3<p3.
(if) There exist constants 7, T € R+, independent of h, so that the eigenvalues
7j(h) of Vh satisfy

0<7>7j(h)rr  {j=1,... k.

(iii) For 61,62 GR+ there exists a ©(61,62) < 1, so that

(4.1) sup  \E exp(i(t,Xi(h)))\ <0(6i,b2) forallheH.
6l<||t||"i>2

Then, for all bounded measurable functions f : RE—»R,

(4.2) vhy <C,n-"~"2Mf(Sn) + 2W(26n:$,,,V]

where Qh,n is the distribution of n~I*{X\{h) T ... + Xn(h)), 4>y, is the
k-dimensional normal distribution with mean 0 and covariance matrix Vh,
ci is a positive constant independent of f and h,
Sn= o(ra-1/2) (n —=*00) independent of f and h€ H,

Mf (6n) := max 6,,)|JAf(dz), J Imj(x:6n

provided these integrals exist (Xk denotes the Lebesgue-Borel measure on Rk).

In the lattice case we make use of

Lemma Ib. Under the assumptions (i), (ii) of Lemma la, however with
E Xi(h) = mh, let the following conditions be satisfied for h £ 11 :

(iii") X\(h) is a nondegenerate lattice random vector with minimal lat-
tice L, fundamental domain F* = {x: |E~X)| < * forall j =1,... ,k} and

P(Xi(h) ex0+L) =1 (x0e Rfg (Ci, « « ,0fc) a basis of L).



452 E. DERSCH

(iv) For d £ R+ with Ej := {x: ||X|| < cf} C F* there exists a Sd < 1, such
that

(4.3) sup{|E exp(i<<,*1(*)))!: t£ F*\ Ed) =: 6d(h) <6d< 1.

Then, for £, £nxo+ L and h£ H:

(4.4) S\éI[p\Ph,n(ya,n) ~ 9h,n(2/a,n)| » hfin) = 0(n_(*+1)/2) (n-* Qo)
ot

with hi(n) independent of fn and h,

yanm=n~12(a+ {,- nmh)

Ph,n(ya,n) :=P(*i(*) + eee+ An(/»)=a+i,)=l>(»-U2£ (X ,(/i) - a)=ya,n)
j=i
9/.,n(l/a,n) := (det L)(27rn) _fc/2(det VJ,)_1/2 exp (~(ya,n, V),"lya,n)/2) .

Remark 2. a) For the properties of the fundamental domain F* we refer
to Bhattacharya and Ranga Rao [2], p. 229. Note that

F*D{tE£Rk :IE exp(i'(<,X1(/i)»| = 1} = {0},
so that Sd(h) <1forall h£ H.
b) Lemma Ib yields
f(a)(Phn(ya,n) - ghnfyan)) =0(n_(fc+1)2) (n  00)
aelL

uniformly in n £ H for / : Rt—R with ~ |/(a)] < °°-
aeL

For the proof of Lemma 1 we need the following auxiliary facts (see e.g.
Bhattacharya and Ranga Rao [2]):

Lemma 2. Letp,v befinite measures on R*. Lete be a positive number
and Ke be a probability measure on Rk satisfying

a=Kc(B(0:e))>1/2.
Then for any bounded measurable function f : R* —R,
(4.5) 1//d(Ix-iy)|<(2a-1)_1(7*(/:i:) + w}(2£:i/))
where
7f(f:e) sup*max 1) Mfy(. :e)d(p- v) *Ke, -] mfy(.:e)d(p

Proof. See Lemma 11.4 in [2].

The next lemma provides an expansion of the characteristic function of
a normalized sum of iid. random vectors:
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Lemma 3. Let X be ak-dimensional random vector with mean zero, pos-
itive definite covariance matrix V, finite third absolute moment p$= £||X ||3
and characteristic function tp. Then,

(4.6) [V>"(n U2t)-exp(-(t,Vt)/2)\<n "12P*{~) " INBexp (-y][i[|2)

for all t GRE satisfying
\V3/2

(4.7) V2
2p3r 12

Here T,7 denote the largest, smallest eigenvalue ofV.
Proof. See Theorem 8.4 in [2].

Proof of Lemma la. Let Ke be a probability measure on Rk with
(4.8) Ke(B(0 :£))> 3/4 and Ke{t) =0 for || > e

where Kc denotes the characteristic function of Ke. (This is possible due to
Theorem 10.2 in [2].)

Let gh,ne denote the density of the finite signed measure (Qh,n ~ $o0,Vh)*
*Ke with respect to \ k. By Lemma 2, for e > 0,

(4-9) ly fd(Qh,n. $0,vh) <2\\ghnJ ooMJ(E) +"(2e:<i>o,vh)

With ||5/,,n,e[|oo= SUp |<7/i,n.e(2/)-
ye*k
We now set £=7/n-1/2 and show that for all rj > 0 there exists an 71(77) £ N
so that for n ~ 7477

(4.10) [fIW lloo * CiTl 1/2.

This will complete the proof.
Using Fourier inversion we obtain

\9h,nA%0 | 270~k I IQhn(t) - exp(-<«, Vht)/2)[\Ke(t)\Xk(dt) <
Hk
i(2n)~k j Voh(re=1/20 - exp(-(i, Vht)/2)| Ak(dt)
{lltl<c2-in+W2}

(4.11)

where iph(t):= E exp(i(t, X\(h))).
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Lemma 3 together with conditions (i) and (ii) of Lemma 1 yields for all
heH

(4.12) J 'Phi7l 1" t) -exp (—{(i, Vht)/2) Xk(dt)<c5n 1/2.
{llijl<Can+/"}
Now by condition (iii) of Lemma la for small />0
sup {{Ww>(n-1/2i)| :canl/2< |*|| <C27/_1n1/2| < 0(c4,c2r? 1)< 1,
so that
J \rh(n-21/2t)\\h(dt)ic6(r,)nk/*Qn(c4, c2r,~k) <
(4-13) {C4H1/2<||t||<C2T7—1ln 1/2}
A n-172 for n>n(r)) (say).
Thus (4.10) follows from

) exp(-(t,Vht)/2)Xk(dt)<
AT A {llil[>c4nli2}

eXP (~ 2 HI2) A i~ = C7n_1/2-

lPoAniZy

Proof of Lemma Ib. Let iph denote the characteristic function of
X\(h) and WAn that of n~2Y2(Xi(h) + ... + Xn(h)- nm/,). The inversion
formula in the lattice case (see e.g. [2], p. 230) yields:

Ph,n{ya,n) = (det L)(2it)~k! ipjftt) exp(—i(i, a + £n))Xk(dt) =

F*
= (det L)(2n)~kn~k/2 ]  mhtn(t) exp(-i(t,yain))Xk(dt).
#LI2F*
Also by Fourier inversion
gh,niVex,n) = (det L) (2w)-kn-k/2] exp Vht) - *(i, ya,n)y Xk(dt).
Rk

3/2
Now choose d > 0 such that Ej C F* and d < --*qy=2 (see Lemma 3). Hence

(4.15) |p/i,n(3/a,n) - g/i,n(3/a,n)| ~ (det L)(27r)-fm~fc2(7i + h +h)
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with
h BE | |wien() —exp(—  Vici) Xk(dt)Ac8n 172,
rf-I'Ei

eg independent of h GH and £, by Lemma 3 together with conditions (i)
and (ii) of Lemma 1.

h. = J IMoam k(dt)
nif2 (F*\Rd)
<nk'H dj 1Ak(dt) (by condition (iv) of Lemma Ib)
=
=nff27(27r)fo(det L)-1 (see e.g. [2], p. 230)
=o(n_1/2) (71-+00) independent of h and £n.

I3 J exp(-+(t,Vht))xk(dt)
R*\nl/2£4
S I exp(-[[[If)A*(*) =
R"\nY/2Fd
—o{n~1"2) (n-+ 00) independent of /i and £n.

This completes the proof of Lemma 1

5. Proof of Theorem 1

Let aGl respectively aGIl A (x0+ L/n) in the lattice case and h = h(a)
be the unique solution of the equation grad<">(/i) = a<p(h). By the definition
of A, hf R*.

Further for each n £ N let X\(h),... ,X,,(/i) denote iid. random vectors
conjugate to X i,... ,X,,, so that in distribution

(5.1) sn(h) = X\(h) + ... + X n(h)

where Sn(h) is conjugate to Sn=X\ + ... + X,,. For B e*Bk we define with
mh :EXi(h) = grad <p(h)/ ip(h) = a

(5.2) Phn(B):= P(S,,(h) eB) =P ~ h ) + ... + Xn(h) GB)

Qh,n(B) = P(n~1/2(Xi(h) + ... + Xn(h) - nmh) GB) = Phn{nx'2B + nmh).
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Then, by the inversion formula (2.4) for conjugate distributions,

P{Sn>na) = | dP =

(5.3) {Sn="a}
=din(h) ]  exp(—(h, x))Ph,n(dx) =gn(a)In(h)
{x>na}
with
(5.4)
J exp(-nl12{h,x))QKn(dx), if Xi is strongly
{i>0} nonlattice,
Uh)= <fexp(-(/i,a))P(Xi(h)+..}X,(h)=na+a), if X\ has a lattice
% distribution with
P(Xifxg-\L)=I,
and g(a) = inf <)) exp(—t, a)) = exp(—h, a)).

Note that in the lattice case X\(h) has the same minimal lattice as X\.
The above representation of In(h) in this case is possible only when na £
£ nxo+ L and hence P(Sn~naf L) =1

The following lemma shows that we can use Lemma 1 in the preceding
section to get a precise estimate of In(h(a)) uniformly in a£ | respectively
inaf£ln(zo+ L/n).

Lemma 4. Let X be a nondegenerate k-dimensional random vector on
(ii,21, P) with moment generating function <p(t) = E exp((t,X)) < oc for
t£ D CRfc D open and convex. Further let H C D, H compact and for
h £ H let X(h) be a random vector conjugate to X with characteristic func-
tion iff- Then we have:

(i) If X has a strongly nonlattice distribution, for every 61,62 € R+ there
exists some ©(61,62) < 1, independent of h £ H, so that

(5.5) sup VM)~ 0(6i, 62) for all heH.
6l<||t||<f>2

(if) 1f X has a lattice distributio ith minimal lattice L and fundamental
domain F*, for d £ R+ and = {x: |laj]]| < d} C F* there exists some
0(d) < 1, independent of h such that

(5.6) sup (JV>fc(t): t£ F*\ Ed} s 0(d) for all he H.
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(iii) There exist positive constants p,,, 7,T € R+, so that £||X(/i)||* » ps for
all he H and s >0, and the eigenvalues 1j{h) of the covariance matrix
Vh of X(h) satisfy 0<7 ~ 7j(h) <Tforj=1,... ,k and all he H.

Proor, (i) Since Px is absolutely continuous with respect to Px(h),
|[*h(t0)] = 1 implies \ip(itQ\ = 1. Hence X'(h) is also strongly nonlattice and
for bi, b2e R+ there exists a 0(h, bl, b?) < 1 so that

(5.7) sup <0(h,bu b2).
Now note that by the dominated convergence theorem

58 m N h+sit)=\\*o{(p{h + 8*~X expr * "x)+(h+S' X))px(dx) =
= iph(t) uniformly in te ftkm

Consequently for all h0€ H there exists a neighbourhood U(ho) of hO and a
0(ho,bx,62) < 1such that

(5.9) sup  \iph()\ ~Q (hO0,bi,b2) for all heU(h0)

and (5.5) follows from the assumption that H is compact.

(i) Since Px ~ Px(h)i X and X(h) have lattice distributions with same
minimal lattice L and therefore with same fundamental domain F*. Let
de R+ be such that Ej = {x: ||X|| » d} C F*. By definition of F* we have for
he H: F* G{t e Rk:\iph{t)\ = 1} = {0}. Thus there exists a 0(/i, d) < 1, so
that

(5.10) sup {[Vv»(0l mte F*\ Ed) < 0(/i, d).

Hence assertion (5.6) follows from (5.8) as in (i).

(iii) Let ip, <th be the moment generating functions of X,X(h). Then
iph{t) = <p(t + h)/ip(h) for te Dh := D —h. Since he D° = D it follows
0e DE = Dh- Hence all moments of X(h) exist and F|X(/i)||® " p,, follows
from

lim £]|X (/i + £)||* =
= JjmJd.ipih + S))-11 [IXI[* exp((/i + 6 x))Px(dx) = F|IX (/i)|I*

and the compactness of H .
Moreover VI, is positive definite since X(h) is nondegenerate. Hence
the eigenvalues 7j(h) of Vh are real and positive. Since VW, = Cov X(h) =
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= (Hess logy?)(h) the eigenvalues of \J, are continuous functions of h GH
and the assertion follows again from the assumption that H is compact.
We now come back to the
Estimation of In(h) in the strongly nonlattice case

Let
(5.12) H:={h(a):a€l}.

Since h(a) :A —D+is a continuous function and | is a compact subset of A
it follows that H is compact. Since E\\Xi(h) —£"1(71)11* < 2a+IE\\Xi(h)\\s
Lemma 4 allows for using Lemma la to estimate:

(5.13) In(hy = 1 exp (-n 1/2{h, x)J $0vh(dx) + R,.(h)
{*>0}

with

(5.14) IA,(A)] < cIO1/2M/n(i,) + 2g*n (26n :

where Sn - o(n-1/2) (n —moo) independent of /,, and h£ H,

fn(x) = exp(~n+1/2(h, x))T{y>0}(x), x £ Rk
Vh = CovXi(h), ci £ R+ independent of /,, and h. Now

I exp(—n+1/2(/i, x))$0y h(dx) = (27rn)*“fc/2(det Vh)~IIn(h)
{*>0}
with
(5.15) In(hy=J exp”™h,*)-~=* A"1*%)) Afdz).
{x>0}

Thus the first part of Theorem 1is proved if we can show that
(5.16)  /,,(h) = (hi m... hjt)-1(1 + o(l)) (n —»00) uniformly in h £ H
and
(5.17) \Rn(h)\ = o(n~k/2) (n—00) uniformly in h£H.
Proof of (5.16). Since VI, is positive definite we have

(5.18) sy~ 1 exp(-(h,x))\k(dx) = (h1-...-hk)~1.

{x>0}
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Now |[Vh J|| ~ 7-1 for all h GH (by Lemma 4) and hence 07 {x,Vh *x) »

=7 1||xI-
Since H is a compact subset of R+ there exists a /i, € R, so that with
h=(i.,...,h) ¢ Rk: 0<h < h forall h{ H. Thus, by the dominated

convergence theorem
(h1-...-hk)-1-1n(h)\ =
= ] exp(-(/i,x)) "1-exp Af(dx)<
{x>0}

< ] exp(—{fc,x)) M -exp (-~ 1|xir)) Vk{dx) =

{x>0}
=o(l) (n—o00) wuniformly in hEH.

This proves (5.16).

PROOF of (5.17). Recalling the definitions of Mfn and in Section 4
we see that

(5.19) Mn(S,) <2] Min(x : §)Af(dx),

since fn ~ 0, and

(5.20) u*jn(26,, : *,,,vj < (2tr7)"*/2] w/n(x :2S)Af(dx),
since det\J, > 7ftby Lemma 4.
Let 6n= (£,,...,ifD€ER* and /i= (h*,... ,h*), h=(/i,,... ,h,) GR*_{
such that 0<h<h <h for all h£ H. We write
k
(5.21) Rl1=M.ul[JM,
1=0
with
All'= {x=(li,...,It) IX™ -int ${*° >/=0,I,...,fc
- = Rk\ {x:x>—<$}
where denotes the number of elements of the set M. Now

(5.22) ufn(x:6n) = Mfn(x:Sn)=0 for x6M _,
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(5.23) w/,(x :S,,) » M/,(x :S,,) <1 for x € Mfg since 0~ /,, ~ 1,
(5.24) M/n(x :Sn) <exp(-nl,2(/i, x —Sn)) for x £ Mq,

W/L,(® 7 n) N exp(—n12(/i, x - <§,)) - exp(-nl/2(/i,x + £,)) =
(5.25) =exp(-n1/2(h,x - £,)(@A - exp(-n1/2(h, 2£,))) <
AN exp(—n12(/i, x —&))Akv}I2h*6n

for x € Mo, n > no, which is possible since 6,, = 0(n-1/2),
(5.26) w/,,(x :Sn) < M/n(x :6n)~ exp(-nl/2/i,((x/+1- £,)+ ... + (xk- £,))
for x 6 Mi, 0</< k and, for example,
®L?eee X/ < &, ®J+Ineecixk” =m

Relations (5.21)-(5.26) yield

[ u/n(x:En)A*(dx)< / Min{x-.Sn)\k(dx)<

Mi Mi
(5,27) < «'(">12f (U0 (*) =0(,-*/1),

=0(re-*/1), 1=0,

| win(x :<n)A”(dx) <4kh*n}128n{han}I2)
(5.28) o

=o(n fdf2), since 6n—o{n X 2).

(5.27) and (5.28) hold uniformly in he H. Thus assertion (5.17) follows with
(5.19), (5.20) and (5.14).
This completes the proof of Theorem 1 in the strongly nonlattice case.

Estimation of In(h) in the strongly lattice case

As before let H = {h(a):a£/}, i.e. H compact. Now Lemma 4 again
allows for using Lemma Ib to estimate In(h) as follows: By Lemma Ib, with
fn=na forallaf£/ D(x0+ L/n) CI (note: EX\(h) = a):

P(X\(h) + ...+ Xn(h)=na+ a) =

(5.29)
= (det Z2)(27rn)-fc/2(det Vh)~12exp ( - (a,F"1l«)) + Rn(h)
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where |A,,(/i)] » rn=o0(n k!2) (n —=00), r,, independent from 0 € L and h €

£ Hn:={h(a):ae IC\(x0+L/n)} C H. Since exp - 10

N —l|al|2for n > na (by Lemma4) and ~ exp(—(7t,a)) converges uniformly
n'l aelL

a>0
in hé if we get
(5.30)
rexp(-(/i,o))exp(-~(a,V A lo))a= exp(-(A,0)))(1 + o(l))
2 &

uniformly in h GH if n —»00, and hence by (5.4), (5.29) forh6 HnC H :
(5.31) In(h) = (27rn)-f2(det Vh)~~*2b{a){\ + Rn(h(a)))

where |A,(/D)] » rn= o(l) (n —moo0), r, independent of h £ Hn and thus
independent of a£ / fl (zo + X/n), and 6(a) := (det X) YlaeL exp(—(h, a)).

This completes the proof of Theorem 1.

6. An application

Bartfai (1972) proved the following conditional limit theorem on the real
line:

T heorem B (Bértfai). Let {An}” be a sequence of iid. real-valued
random variables with moment generating function

if(t) = E exp(iA'l) < oo, te[0,/i).
Then, for x £ R and
atA:= {<p\t)/<p(t) :t£(0,fi)}

(6.1) lim P(Xi <xISn>na)~ -}-r [ exp(hz)PXI(dz)
n—oo {hy J

(-00,X]

where h = h(a) denotes the unique solution of the equation p'(h)/(p(h) = a.

Thus the Iiamit distribution is equal to the distribution Px(h) °f a random
variable X(h) conjugate to X\. Note that E X(h) =a>EX\ for a £ A.

The problem of determining the conditional limit above is interesting
from the point of view of statistical mechanics and has many physical inter-
pretations (see e.g. Vincze (1972)).
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Recently Csiszar (1984) gave an elegant proof of a much more general
result than Theorem B, considering random variables taking values in a
convex topological vector space and making only use of the Sanov property
(see Sanov (1957)) and generalized /-projections.

In the present section, as an application of Theorem 1, we prove a mul-
tivariate analogue of Theorem B in the case of strongly nonlattice or lattice
random vectors and show that the convergence in (6.1) is uniform in a£ IC
C A for any compact I.

As before we write a< 6iffa, <6, foralli=1,... ,k

T heorem 2. Under the assumptions of Theorem 1 one has, uniformly
in a £ respectively inaf£ 1 fl(xo+ Z/n) := In in the lattice case, for all
X £ R*:

6.2 lim P(Xxq{x ISn>na) = §— exp((h, 2))PXI(dz
(6.2) N (Xx4q ) v J[ p((h, 2))PX1(dz)
(-00,x]
where h = h(a) £ R denotes the unique solution of the equation grad ip(h) =
= a<p(h).

Proof of Theorem 2. The proof follows the lines of Bartfai (1972),
using Theorem 1 instead of Petrov’s large deviation theorem (Theorem A).
By Theorem 1, for a£ | (resp. /,,), P(Sn >na)> 0 for n >n0. Hence, for
n >no0 and x £ Rft
P(X!<x,Sn>na)

P(Sn>na)

By the definition of conditional probabilities we can write

(6.3) P(Xi <x\ Sn>na) =

P(Xi<x,5n>na) =] P{Xx<,x,Sn>na\Xl=z)PXl(dz)=

= ] P(Sn>ua\X1=2)PXl(dz) =
(00 .x]
= ] P(X2+ ...+ Xn>na-z)PXlI(dz) =
(-00.x]
= ] Z(5, i >na—z)PXI (d2).
(00 .x]

Hence, for n > no,

(6.4) P(X1<x|5n>na)= J/ P(SN > na)? Z)PX1(dz).

(-00,x]
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Let us first consider the strongly nonlattice case:
Dividing the numerator in (6.4) by P(Sn-\ >na —y) (y GR* fixed) The-
orem 1 yields (uniformly in a G/):

(fi=\ P(Sn-i"na-2z) e-'"(°-Bt)'(“- Brt) (n

[ PG5, _1>na-y) (i+»0)) 00),

" (“-ST)<»-H)

with c(a) :=(det VV/,)_1/2(/ile... «fit)-1 and h = h(a) defined by grad ip(h) =
= cup(h). Since h=h(a) is continuous on /I and det V), is continuous on 7/o=
= {h(a):a 6 A} we have

z—a

=1
(6.6) n—1 1—1/

uniformly in a G/ for all fixed j/,z € Rfc
Since grad logp(a) = —h(a) we can write

log =(n“1)(k*i(a- *tt) - lo* -S)) =

(6.7)
= (—h(a),y- z)(I +o(l)) (n—o0)
uniformly for a€/ and y, z £ R* fixed. Thus, for y,z £ Rfc
P(5n_i " na- 2)

(6.8) lim

n:00 P(5,_i >na-y) exp(-(/i,y —2))

uniformly for a£ /.
Now let y~.x. Then for all z” z and large n
P(Sn_i " na- 2)

P(5, i >na-y) &1

and we can change the order of limit and integration to achieve

(69) lim_ _)( Bz Mo APy ()= f exp(-(ii/ —2)PXI(d2)

(—o00,x] (—CX),x]
uniformly in a£ 1. Theorem 1 also yields, uniformly in a£ I,

P(Sn >na) gn(a) c(a)
®10 pisnisna-y) Ani_iti) c(a_ T (nmseo)
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By substituting z =a in (6.7) and using the continuity of c(a) it follows

. P(Sn>na) _ . )
(6.11) r|>"’poo P(sn-1>na-y) = g(a) exp(—h, y —a)) uniformly in a6 I.

Combination of (6.9) and (6.11) yields

P(Sn-i >na -
lim (Sn-i 2)

im P(Sn > na) Pxi(dz) =

(6.12)
= obesilliaf] 4 ep(h2)PXid2)
( 00X

uniformly in a6 /.

Taking into account that p(a) = <p(/i) exp (-(/i, a)) this proves Theorem 2
in the strongly nonlattice case in view of (6.4).

In the lattice case we have to show (6.12) uniformly in a G/, =
=1 fl(xo+ L/n)C/. Choose /£x0+ L and also assume z £ xq+ L. Then
a——t,a— € xnH-"r, and we can use Theorem 1in the lattice case to

obtain (6.5) uniformly in a €/, with

c(a) := (det T)(det V/)-172~ exp(—h, a)).

afL
a™o

Since h = /i(a) and c(a) are continuous on yl and Inc I ¢ A we get (6.8)
uniformly in a € /,, for almost all 2 with respect to Px1 and thus (6.9)
uniformly in a £ In.

In the same manner we get (6.11) for y € xo + L uniformly in a €
Combination of (6.9) and (6.11) completes the proof of our theorem in the
lattice case.

Acknowledgement. | would like to express my thanks to Professor J.
Steinebach for introducing me to the problems of large deviations and many
helpful discussions.
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ON it-INDEPENDENT SUBSETS OF A CLOSURE

A. HAINAL and E. C. MILNER

1. Introduction

A closure operator on a set E is a function p: P(E) —=P(E) such that
X Q<p(X) = p(p(X)) ™ p(Y) whenever X ~ Y Q E. The dimension of p is
dim(<") = min{| A\: p{A) = E}.
A subset X ~ E is independent for p if x * p(X \ {x}) for all x £ X; and we
say that X is n-independent, where k is a cardinal, if
p(Y)UX =Y forall Y € [[X]-*={Y QX :\Y\ x«}.
The closure p is n-generated if, for every X QE,

p(X)=0{p(Y):Ye[X}"}]
and p is said to be algebraic if it is (< H0)-generated, i.e.

v>(X)=uMY): ye [*]<*»} (xce)
Note that, if p is K-generated, then «-independence is the same as indepen-
dence.

If (E, <) is a partially ordered set and we dehne p(X) = {y £ E :y -<x for
some x 6 X} (X QE), then p is a 1-generated closure on E and, in this case,
the independent subsets are the antichains, and the dimension, dim(y?) =
= cf(£,;<), is just the cohnality of the partial order. Milner and Pouzet [3]
considered the question whether it is possible to extend to arbitrary closures,
the following known result for partial orders (i.e. 1-generated closures) (see
(11, [2]. [4D:

Theorem \.If(P,<) is apartially ordered set and the cofinality, cf(p, x),
is a singular cardinal X, then (P, <) contains an antichain of size p =
=min{/l: A >A).

It is not known if p can be replaced by cf(A) in Theorem 1, although p =
= cf(A) if we assume, for example, that Ais a (singular) strong limit cardinal.

Milner and Pouzet [3] proved:
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Theorem 2. If if is a closure relation which has singular dimension,
then there are arbitrarily large finite independent subsets for f.

This result is best possible since they also showed that there is an No-
generated closure < such that dim(</?) is a singular cardinal and there is no
infinite independent subset for p. (In fact, they noted that it is consistent,
e.g. \fV =L, that there is even an algebraic such p.) On the other hand,
Theorem 1 clearly implies that, if 9is a 1-generated closure with dimension
dim(</p) = A> cf(A), then there are infinite independent sets, in fact of size
p = min{/z": A~ > A}. They asked if the same is true if p is 2-generated.

We do not know the answer to this question for arbitrary singular A
but there is a positive answer in the case when A's a singular strong limit
cardinal. We prove the following theorem.

T heorem 3. If X is a singular strong limit cardinal, and ifp is a closure
relation on a set E with dimension dim(<®) = A, then, for each k <u, there
is a k-independent subset of E having cardinality cf(A).

2. Proof of Theorem 3

Let Abe a singular strong limit cardinal and let p be a closure relation
on E with dimension dim(y>) = A Let E' G[£]* be such that p(E') = E. For
any set X QE, we define

6(X) =min{[Y|:YQE",X<g y?(Y)}

Thus, in particular, S(E') = A and <$(X) < Afor X G[£']<A

Note first that, if A'< A and X G [£’]<A, then there is a set Y
G [E'\ V?(Af]<A such that 6(Y) > A. To see this, write E'\p{X)
= U{Y,:a <cf(A)} where |Y,| < A(a <cf(A)). If 6(Ya) <A for each a
< cf(A), then we obtain the contradiction

Al @

B(EN<:6(X) +\'-d{\)<\.

From the above observation, and the fact that Ais a strong limit, it
follows that there are sets Aa G[F']<A (a < cf(A)) such that

AagE'\p(Aa),

where Aa = |J *}' ai*d
(3<a

S(Aa)>Xa={2" +d(X)y .

(As usual, k+ denotes the cardinal successor of k.)
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Let A= U{AQ q < cf(A)} and let
S={B QA: 6(B(@1Aa)>\a forall a<cf(A)}.

For a < cf(A) and B ES we write Ba= Bfl Aa and Ba= Bft Aa. Let

1= {T QA: |Tn Aa|< 1 for all @ <cf(A)} be the set of partial transversals

of the sets Aa(a <cf(A). For T EIl we define L(T) = u{AQ: Aafl T ™ o0}.
For VQA and k< uw, we say that a set Bc A is (v, k)-good if

ip(Mu Tafific L(T) (v Te[fl]=fen/).

We will prove, by induction on K< U, that the statement P(k): VF E[A]=cf(A)
V5 ES3B'c B (B'ES and Blis (V,/c)-good) is true.

Note that the theorem follows immediately from the fact that P(k) holds
for K< U. For, given K< w, there is B"~ A such that B'ES and B" is (0, k)-
good. Choose the set HKQ B' so that \HKE\ Ba\= \ for all a < cf(A). Then

\Hk\= cf(A). Also, if X E [Hk]=K, then
v(X)nHKQL(X)r\Hk= x,

as required.

It remains to prove P(k) (k<u). clearly, P(0) holds; we simply put
B'= B\ <p(V). suppose P(k) holds for some K< u>. We have to show that
P(k + 1) also holds.

Let V E[<4]=cf(A), B ES. For a <cf(A) and U E[Ba]<u define a partition
Aa(U) of Baso that Xx=Yy (mod Aa(U)) holds, if and only if,

<p(VuUU {x}) nBa=<p(VIHUII {y}) fl Ba.

Let Ag= JJAa(f7) be the common refinement of all the AQ(i/) (U E [Uar]<*)-

Then |[Aa|<Aa (a<cf(A)), and so there is a set CQQ Ba such that 6(Ca) > Xa
and X =Y (mod Aa) for all X,y ECa. Choose caECa (a < cf(A)) and put
V = {ca:a < cf(A)}.

Since C = U{Ca:a < cf(A)} E5, it follows from the induction hypothesis
that there is C QC such that C ES and C is (v UV, fc)-good. Put Ba—
= Ca\<f(VUF'UAa) (a < cf(A)). Then B'=U{B'aa<cf(A)} QB and B'ES.
We claim that B"is also (V,K + 1)-good.

Consider any T E[B']<fc+l fI . 1f |T| < K, then, since C is (v U V' K)-
good, we have

<p(Vu T )nfl'c <p(Vu v 'urjnc'i L(X).

Suppose |T| = k+ 1. Let a = max{/3: T n B~ 0} and let T n Ba —{i},
T'= TN\ {i}. From the definition of the sets B~ (7 < cf(A)), it is clear that

A(yuT)nB'C B 'uB"
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Moreover, since t = ca (mod Aa(T')), it follows that

<p(VUT'U <3y nBa= <p(vUT'U cq3) NBa C
g<(vuf'ut)ncag 1(t)gi{t),
since C is (VU V7, fc)-good. Since Bag L(T) also, it follows that
<p(VuT)nB'g L(T)

and so Blis (V,k+ I)-good, as claimed. ]
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REMARK ON SUBDIRECT REPRESENTATION THEOREM
FOR ECE-VARIETIES OF PARTIAL ALGEBRAS

M. PALASINSKI

One of the most important theorems in wuniversal algebra is that of
Birkhoff for varieties which reads that each variety is generated by its sub-
directly irreducible members. In the case of partial algebras there are also
theorems of this kind (see [1]). However, it seems to the author that for ECE -
varieties of partial algebras it is impossible to prove an elegant, non-trivial
and interesting analégon of Birkhoff Theorem. The best possible result for
ECE-varieties in author’s opinion is Theorem 2 below.

W e shall freely use notation and terminology of [1].

Let us start with the following theorem proved by P. Burmeister and M.
Siegmund-Schultze in [1].

Theorem 1. Each ECE-variety K of partial algebras is the class of all
(Hc, Sc)-subdirect products of (Hc, Sc)-subdirectly irreducible K-algebras.

This Theorem looks very elegant. However, as the examples below show,
the idea of Birkhoff Theorem to separate a proper subclass of relatively
simple algebras of a variety, generating the whole variety is missed.

Example 1. Let K\ denote the class of partial algebras A- (A, V, A,->,
0,1, /, g) of type (2,2,1,0,0,1,1) axiomatized by the following set of ECE -
identities

(1) X=X=>XVy=XxXVy, X=X=>XAy=XxAW

(2) X = X >m->X = =X;

(3) x=x=0=0 X=x=>|=1;

(4) X = X =>ti = t2, for every axiom t\ = 2 of Boolean algebras;
(5) fx =fx=>xAy =%, fx =fx=>fxAy =y;

(6) x=x=af0O=/0;

(7) gx=gx=>xAy =Yy, gX=gX==0gXAYy=gx;

(8) x =x =g\ = g\.

The class K\ is a non-trivial ECE-variety.

It is obvious that if A€ K\ then A*= (A, V,A, 0,1) is a Boolean alge-
bra and that any congruence relation on A is also a congruence relation on

1980 Mathematics Subject Classifications (1985 Revision). Primary 08A55; Second-
ary 03CO05.

Key words and phrases. Partial algebra, homomorphism, full homomorphism, closed
homomorphism, closed subalgebra, category, morphism, object.
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472 M. PALASINSKI

A*. As for any non-trivial congruence relation R on the algebra A* there is
an element @a£ A, a/ 1 (in case A is non-trivial) such that (&, 1) £ R it fol-
lows that A — the identity relation — is the only closed congruence relation
on A and consequently A itself is the only closed homomorphic image of A.
Thus we have the following

Fact. Every element of the ECE-variety K\ is (Hc, Sc)-subdirectly irre-
ducible.

Corollary. A direct product of any family of members of R\ is
(1 ¢, Sc)-subdirectly irreducible.

The above fact means that in this case the class of (Hc,5c)-subdirect-
ly irreducible partial algebras is too wide to be an analégon of a class of
subdirectly irreducible algebras for a variety of total algebras. Let us note
that to obtain a good subdirect representation theorem for the ECE-vari-
ety K\ one should consider the class of all surjective full homomorphisms
instead of closed ones, i.e. (Hf,5c)-subdirect|y irreducible algebras. Then
it appears that there is exactly one non-trivial (Hf, Sc)-subdirectly irre-
ducible partial algebra Q in Ffi-two-element one and it generates K, i.e.

K\ = (si(H/’Sc)(Q)y

E xample 2. Let us consider ECE-variety Ki of partial algebras con-
sisting of algebras A - (A, VA 0,1,/,0,h, k) oftype (2,2,1,0,0,1,1,1,1)
such that A*= (A, VA —0,1,f,g) £ K\, satisfying the following ECE-iden-
tity

(9) hx = hx k kx = kx => hx = kx.

It is easy to see that each member of K2 is (Hc,Sc)-subdirectly irre-
ducible. Thus as in Example 1 we can try to replace the class Hc by a class
of full surjective homomorphisms.

Now let B = ({0,1,a,6},v,A ,-qo0,1 f,g,h,k) £ K2 be a four-element
partial algebra, where dom /i = {a}, ha= 6, domfc = {1}, fcl = 1. It is easily
verified that the following partial algebras 5 It B2 are full homomorphic
images of B by full homomorphisms Fj, F2, respectively,

Bx=({o0,1}, VA -10,1,/,9,h,K) where dom h=dom A= {1}, hl = 0,

kl =1

B2=({o0,1},V,A -10,1,f,g,h, K) where dom h= {0}, hO= 1, dom k= {1},
kl = 1.

M oreover, ECE-identity (9) fails to hold in and it does hold in B2, i.e.

B\l K2,B2G6Ki-Note that F2isnot closed and B isisomorphic to BXXB_2.
Let us observe that such a situation could not happen in the case of a
variety V of total algebras, for the product of a family of algebras belongs
to V if and only if all members of this family belong to V.
(Taking Bf an inner extension of B, where dom K—{13}, dom h —(a, 6),
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hb—a one can easily check that Bf is a product of two (isomorphic) partial
algebras neither of which belongs to K-f).

The above examples show that it will be very difficult or even impossible
to find a uniform elegant subdirect representation theorem for ECE-varieties.
There are two reasons of such a situation. If we have given ECE-variety K
there can be non-closed homomorphisms preserving the axioms of K. The
second reason is that it may happen that the axiomatization of an ECE-
variety can be replaced by another one consisting of e.g. E-identities. Here
the situation is similar to that concerning quasivarieties and varieties of
total algebras. To answer the question whether a given quasivariety of total
algebras is a variety, i.e. if a set of quasiidentities axiomatizing V can be
replaced by a set of identities is usually very difficult. The same is probably
for different kinds of varieties of partial algebras.

Remark. Inthe case ofthe ECE-variety K2 it follows from the subdirect

representation theorem for E-varieties that it cannot be axiomatized by any
set of E-identities.

In author’sopinion the best possible but neither elegant nor useful is the
following

Theorem 2. Let K be any ECE-variety of partial algebras, Hr a class
of all surjective full homomorphisms such that Hk (K) ¢ K. Then

K = ?2s(Hk’SJ (si{Hk 'SAK )~ .

Here it should be noted the following

Theorem 3. Under the assumptions of Theorem 2 if Hk = Hc then K
is a class of total algebras.

Proof. Let us note that in any ECE-variety of partial algebras there
is at least one total algebra — one element algebra T. Now, let A be any
member of K. Then TXA belongs to K and projection p:T XA —»T belongs
to Hk - By assum ption P is a closed homomorphism which is equivalent to
the totalness of A.

We end this paper with the following
Question. Is it true that if Hk = H/ then K is an E-variety?

The answer is probably negative.
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RANDOM MEASURES WITH VALUES IN
TOPOLOGICAL ABELIAN GROUPS

CZ. co6iDi and M. POLAK

Abstract

Let A be a random measure defined on a cr-ring R of subsets of a set £ with values in a
topological Abelian group (G, r). The purpose of this paper is to describe the distribution
of X(E), Ee R

The main theorem presented in this note can be considered as a generalization of the
results given in [1], [3].

1. Introduction

Let (SI,A,P) be a probability space, (E,R) a measurable space (thus R
is a J-ring of subsets of X). A classical random measure X is a real-valued
function. X (E,uj) defined for E £ Rand w fil with the properties that for a
fixed U it is a measure on (£, R), and for a fixed E it is a random variable.
We consider group-valued random measures that is, X(E,u>) £ G for some
abstract Abelian group G. Measures X (-,0;), U are cr-additive thus we
need to consider infinite sums of elements of G: to this end we assume that
G is a topological group, endowed with a Hausdorff topology r.

Following Kingman [6], we declare X to be completely random if, for
any finite collection Ei,E2,... ,EnNn of disjoint members of R, the random
elements X(Ei), X(E2),... ,X(E,,) are mutually independent.

In addition we assume that the completely random measure X is such
that:

(A) There exists an open neighbourhood Uof9 (9 is the null-element of
the Abelian group G), such that =0, where u, £ U and u, are possible
values of the measure X (E,uj), implies that u, = 9.

We shall say, that a set E 6 Ris small (with respect to X and U) if, for
each point UIEll, X(E,u>) £ U, and if X(E) = 6 a.s.

For EER,1et (P,,(E),n> 1} be a sequence of finite partitions of E, i.e.,
E = N2 EjU0 where EN £ Rand Ejn™ 1 E = 0, for i/ j.

£<n)eP n(E)

1991 Mathematics Subject Classifications. Primary 28C10, 60G57; Secondary 54H11,
28BXX.
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The sequence (P,,(J5),n > 1} will be called a fundamental sequence of
partitions of E, if for all n > 1, the partition P,,+i(.E) refines Pn{E) and sets

of the form i, Eh/\ are small.
n=1

It is easy to see, if E\fIE? = 0 and Pn(J?i), P,,(E2) are fundamental se-
quence of partitions of E\, E2,respectively, then Pn(£i)U P, (£12) constitute
the fundamental sequence of partitions of E\ U E2.

The purpose ofthe present paper isto describe the distribution ofrandom
elements X(E), EER.

The main theorem of the paper can be considered as a generalization
of the result obtained by Brown and Kupka [1]. In particular cases we
obtain the Poisson measure (see [4]) and the bivariate Poisson measure (see
[10], [5]). The method of the proof used in the present paper is not quite
elementary, since it uses both operator theoretic methods, with relevant
concepts described by Le Cam [7] and Ramsey’s theorem [9]. We also use
the technique given by G6zdz and Polak [3].

In the next section a simple combinatorial principle will be used known
as Ramsey’s theorem [9].

THEOREM. Let each pair (i,j) of disjoint positive integers he coloured
either ‘red” or ‘“blue” in any arbitrary fashion. Then there exists a strictly
increasing sequence (n,, i > 1} of positive integers such that all of pairs from
this sequence have the same colour.

2. The parameter of a random measure X

In what follows we assume that the following assum ptions hold:

(a) for every E £ R, there exists a fundamental sequence of partitions
{P.,(£),n> 1} of E,

(b) there exists a neighbourhood Xg of the null element 6 £ G such that

nIi_rp]doP [ X (En)e Ve\{0}] =0

provided {E,,n > 1} is a decreasing sequence of elements EN£ P, (£).

THEOREM 2.1. If X is a random measure satisfying the assumption (a),
then for every u £ti, there exists an integer nu such that, for every integer

n > nu, and for every Ejn' £p,(£), we have X(Ef,u) £u.

Proof. In order to prove Theorem 2.1, we suppose to the contrary that
there exists a subsequence P, ,(£) of P,,(P) containing sets Eni £ P.,.,(£) for
which X(Eni)£Uc. By Ramsey’s theorem there exists a strictly increasing
sequence {m ,-,i> 1} of positive integers such that either Enm n£,m 770
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or Enm ¢ Enm for m, < Mj. Suppose that £nmin EnM~ 0. Then this

contradicts to the fact that

£ *(Enm,,«)=* (£ £nm,
«>1 1>1

(the necessary condition of convergence of the series ™2 X(E,,m ,w) in topol-
i>1
ogy t is not satisfied for the neighbourhood U).
Now, suppose that Eniri ¢ E,,m for m, < mj. Then the sets E,,m. form

decreasing subsequence of {£,.} whose intersection f) ELjn is small by (a).
1>1

It follows that

r —lim X(Emni,u) = X (f1 Enm>) € U,

o>

which contradicts that the set Ucis closed. Therefore Theorem 2.1 is estab-
lished.

Corollary. For each point u£il and for every Eer, we have X(E)£
£ (u), where (u) is a semigroup generated by u.

Theorem 2.2. If X is a completely random measure satisfying the as-
sumptions (a), then the set function

p(E) =-\nP[X(E) =8, EeR
is well defined and it is a finitely additive measure on R.

Proof. At first we shall show that the set function P is finite for every
set EMR.

Suppose that P[X(E)= 8] = 0 for at least one set EER. Then X(E)”™ 8
a.s. Let (PN(E),n > 1} be a fundamental sequence of partitions of E £ R.
The inequality

0=P[X(E) =8 =P ] ey 2

> n P[X(Et-1)) = 0]
£j-BePi(£)
shows that X (E”~) ~ 8a.s. foratleast one set E™ £PIi(E). we repeat this

argument with E” in place of E and continue by induction to produce a

decreasing sequence of sets E~ € P, (£), n> Llsuch that X(E") " 8 as.
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By (a) the set f) Pj" s small and therefore X ( f) ) = 6a.s. Since
n>i ” Ki=i "
for each point U G II

r-1im A (£E«;l)=x (n ef£>),
n=1

it is easy to see that, for every neighbourhood Xg of 9,
pP[x(E~")e\o 1l as N —»oo.

But, from assumption (b) it follows that there exists a neighbourhood Xg of
0 such that

PIX(EN)eXg =, [x (££))gV \{*}] 0, as N —oo.
This is a contradiction.

Now we will show the finite additivity of Al.
Taking into account Theorem 2.1 it can be proved that

(2.1) n p[Xx(E™)e ul — 1, n-oo0.
4 n)eP ., (£)

Indeed, for every U G1il, we have
N xGineull @) =t
'M n)eP, (£)

where I[A] denotes the indicator of an event A.
In view of the last relation and Lebesgue’s theorem we may write

[] p[x(E”n))eu =P
£}n)eP,,(£) -£jn)GP,,(£)

[X (~(n))eu dP —a1, as n —»oo.
£EPN(£)

Hence the proof of (2.1) is complete.

For disjoint sets Ei,E2GR. Let P, (Fi) and Pn(£2) be fundamental
sequences of partitions of E\ and E2, respectively.
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It is known that F,,(Ej + E2) =P, (£i) u P,,(JS2) is a fundamental se-
quence of partitions of E\ + E2.
Let us put

an=  fl  [x(Fjn)eu
FjreTAEI+Ei)

Since P(A,) -» 1, as n —»oo0, therefore
P [X{Ex+ Ei) = 0, An]-> P [X(El + £2)= 0], asn-. oo.

Now, for every € > 0 and n sufficiently large, we have

P [X(Ei+ E2)=0]- ei P[X{Ex + Ei)= 0, An\=

P y. xajgpz N xEme

"Fjn)EFn(Ei+E2) FfeF,,(F,+F2)
=p n [x(Fjn)=¢e n i(f{n)eu
M n)eF, (£:1+£;2) Hn)eFn(E1+E2) -

The last equality follows from (A).
Furthermore

f) [Xx(Fjn))= 01iA n,

thus
P[X(El+ E2)=6]-eiP [X(EI)=9]P [X(E2)=9).

The inverse inequality is obvious, so the proof of finite additivity of P is
complete.
Notice that, if a set E € R is small, then p(E) = 0.

Theorem 2.3. If X is a completely random measure satisfying the as-
sumptions (a), (b), then for every number e > 0, there exists an integer nc

such that, for every integer n > nc, and every set E™ ¢ pn(£), we have
P(E\n))<e.

The proof of this theorem is essentially the same as the proof of Theo-
rem 2.1.

Proof. We suppose to the contrary that, there exists €> 0 and subse-
quence Pn,(£) of PN(E) containing sets Er>€ pPn,(E) for which p(En>) > e.
From Ramsey’s theorem there exists a strictly increasing sequence {m,-, | >
A 1} of positive integers such that either E,,m.D E,,m= 0 or E,,m.C
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for m, < Irij. Suppose that EUnN o Enm = 0 then this contradicts the fact

that the measure /z is finite.
Now, suppose that c Emm for m, < mj. Then the sets EmMi> form

a decreasing subsequence of the sets ENi whose intersection (") is small
el

by (a). So we have

By the countable additivity of X, we may write
Plr-1imX(Enrni)=¢} =1,
and in consequence for every neighbourhood Xg of 9, we have

(2.2) lim P [X(F,, )~ V#] = 0.
I—*00 !

It is evident that
P [X{Emmi)=9] =1- P [X(Enrr)eXe\ {9}] - P [X (£nm,)i XO\,

where Xg is certain neighbourhood of 9G G.
From the assumption (b) and taking into account (2.2) we obtain

lim P[X(Enm.)=9] = 1.

Finally
lim n(En )= - |n’&.nmP [X(En )= 9 =o.

|—»00

The last equalities contradict the fact that /x(F,,m )/ 0.

3. Construction of the probability measure Ge

Now we assume that {9} £ G, i.e., the set that contains only the null-
element of the group G is an element of the cr-field G generated by r.

Let us put S(E) = P[X(E)”9] and CX(E) denote the distribution of
the random element X(E, ). For each E £ R, let us put

(3.1) CX(E) = 1+S(E)(Me -1),

where | is the probability measure whose mass is entirely concentrated at
the point 9£ G and Me is the probability measure such that

(3.2) Me{9) = o.
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For each E £ R, we define

(3.3) A(PN(E))= E A( ~ n))-
N n)EPn(E)

Taking into account Theorem 2.3 and the fact that 6(E) < p(E), it is
easy to see that for every £¢e R

(3.4) lim A(P,(£)) = /z(£).
N—»mo
Now let us define

(3.5) M (P, (£)) = A PR() E (n).
£'n)ePn(E)

Let V be a finite signed measure on G. For any finite signed measure V
on G let nv\ be the norm defined by

IM I«M (G),

where |u|(G ) is the total variation of V.

Let M be the system of all finite signed measure on G. It is not difficult
to show that M, with the norm defined as above is a Banach space.

It may also be shown that

(3.6) sup [t?(A)| < IMI < 2 sup |v(A)]
AGG AeG
(see Gihman, I. L, and Skorohod, A. V. [2] for details).

Theorem 3.1. If X is a completely random measure satisfying the as-
sumptions (a), (b), then for every E £ R

(3.7) Ge = r%i_rp]X)M(¥n(E))

is a well defined probability measure on ¢ such that GE(u \ {#}) = 1.
Before the proof of Theorem 3.1, we will prove the following Lem m as:

Lemma 3.1. IfX is a completely random measure satisfying the assump-
tions (a), (b), then for every disjoint set Ei, Ei £ R, we have

(3.8) N6(Ei +'E2)MEI+Ei - 6(E])MEIl - 6(E2)Me,\ < 2p(EX)p(E2),
where 6, ME and p are defined as above.

Proof. Let us put

v = 6(Ei + E2MEi+Ei - 6(E\)MEl - 6(E2)ME2.
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Taking into account (3.1) and (3.2) it is easy to see that for each 0~ A,
V(A) = V(A\ {0}). Now, we may write

/I P[X(E1+ E2)eA]-P[X(ELD€A]-P[X(E2eA] ifA? 6
(A )= \o if
Hence for each A~ 9, we have
V(A) > P[X(E\) 6 A, X(E2)=9AP[X(EIl)=0 X{E2) G A] +
-P[X{E\) c A] - P[X(E2)eA] = P[X{EX) ¢ A}+
-P[X(E1)cA ,X(E2)/ 01+ P[X(E2) ¢ A]+
-P[X(E2eA ,X(E2)jiO]>
-2 P[X(Ex)t 9}P[X(E2)jéd]> —=2fi(Ei)fi(E2).

For every Ajf 9, we put

k(A) = P[X(E\ + E2) £A] —P[X(Ei)c A, X{E2)= 6]+
-P[X(E1)=9,X(E2)eA\.

It may be seen that k(A) ~ 0 and also u(A) »~ k(A). Hence
lu(A)l < max[2p(EV)p(E2), k(A)] .

Therefore
su

sup |v(A)] < m&X[2p(EV)p(E2), k(G \ {o})].
ofies [2p(EV)p(E2), k(

It is obvious that if X is a completely random measure, then
k(G\{9}) = P[X(E1+ E2)/ 9} - P[X(E\) # 0]+
+P[X(E1)jL9. X(E2)+9]- P[X{E2) % 0]+
APIXIiEJ * 9,X(E2)~ 0] » n(Ei)fi(E2),

which proves that
sup \V(A)\<2fi(Ei)n(E2).
e™AcG

Taking into account (3.6) and the last inequality, we obtain (3.8).

Lemma 3.2. IfX is a completely random measure satisfying the assump-
tions (a), (b), then for any disjoint sets E\, E2,... ,£,,gR

(3.9) 6 M n Y /s(ej)mEj | v (E e,).

= j=i 3=1
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Proof. The proofofthis Lemma will be settled by induction argument.
Let E\, E2¢ R and E\fl £7 — Then using Lemma 3.1, we have

li(gi + E2)MEi+e2- 6{EX)MEl - 6(E2)Me 1l < 2h2(Ex+ E2).

From (3.9) and (3.8), we obtain

< (E E-)Mv.r -"ZmwB,
-1 L B j=1
J=1
n—
sQTel m”N -£6(Ej)AfH -+
3=1 E) 3=1
J=I
n—1
+ 6(j2Ej)M -SfeE"M 2 -6 (En)MEn <
i=i _ Ei j—
i=i i=i
A ?
S e)tKE  Z9EB
3=1 3=1 =i

The last inequality ends the proof of Lemma 3.2.

Proof of Theorem 3.1. Taking into account that M is a Banach space
it is enough to prove that (M(P,,(E)), N> 1} is a Cauchy sequence. Suppose

that EjU0 j = 1,2,... ,n are elements of the partition P,(£') of the set E,

and let Ej™\ k=1,2,... ,nj, j = 1,2,... ,n be elements of the partition
Pm(£), M >nNofthe same set E. ]
nj

Assume (without loss of generality) that E~ A B j=1,2,000 0.
fc=i

From Lemma 3.2 we obtain

£ £ (* r) mEJf*" , - £ (e&"))M,.(--)

>=]1
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< ISZE )= o) p o, viEn
j=i fo=i j=i

Theorem 2.3 ends the proof of the existence of lim M (Pn(F)).
n —+0

Now, we will show that Ge does not depend on the choice of the fun-
damental sequence of partitions {Pn(F),n> 1}. We suppose that (Qn(F),
N> 1} is another fundamental sequence of partitions of the set E.

Let zn(E) be the sequence of partitions of the set E consisting of all sets

of the form Ejn) D F\n\ where E\N) €Pn(F), Fn) € Qn{E).

It is easy to see that for all N, the partition Z,(F) refines the partitions
Pn{E) and Q, (F). Hence, and from the first part of the proof, we have

IM(P..(F)) - A < 1IM(P..(F)) - M(Zn(F))Il+
+|IM(Z,(F)) - M(Q.,(F))|| < 2fi(E) [max/i(F*n)) + m ax/i(Fjn))
Therefore Ge does not depend on the choice of the fundamental sequence
of partitions P, (F).

In fact Ge s countably additive, which follows from the fact that
M (P (F)) is uniformly countably additive [8].

In order to finish the proof of this Theorem, we will show that

Ge (V\{8}) = 1.
Taking into account (3.1) and (3.5) it is sufficient to prove that

(3.10) E KO o» = 0.
E~ePniE)
To prove (3.10), we consider the following inequality

XA —lIn (1 —X).

Now putting x = P [x (F~) fu , we obtain

0 < J2 P [X (Ajn)y6u <-In n X(E”n))e u
E~ePniE) EnyePm(E)

Finally (2.1) proves (3.10). The proof of Theorem 3.1 is now complete.

4. The main result

W e can now state the main theorem of this paper.

T heorem 4.1. If X is a completely random measure satisfying the as-
sumptions (a), (b), then
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CX(E) = expn(E)(GE-1),
where p and Ge are defined as above.
First we will prove the following
Lemma 4.1. IfX is acompletely random measure satisfying the assump-
tions (a), (b), then
NCX(E) - exp A(PN(£)) (M (P, (£)) - TI<2 1T  p\Ejn)),
E”~ePnlE)

where X and M are defined by (3.3) and (3.5), respectively.

Proof. The method used in the proof of this Lemma is essentially the
same as the one given by Le Cam [7].

For the sake of simplicity we assume that the fundamental sequence of
partitions VN(E) consists of N sets. Let us put

FE() = exp 6(E”n)) Si . j=12....n

V)i B >

i= 1

and let

For 1< k< n, we define

V. 0L,

Then, for K= 1,2,... ,n, we have

#E (n) * FQi™) — NERN <A (MK

Now, it is easy to see that

nN-E£* (£jni)-n «*>> CX(Ef) -

>
J=i j=i 1

= £ *E<e>*
j=i

Since R™N) is a probability measure, this implies

-« <4V N s> CX(Ej") —FE(M
j=i

j=i i=i J
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The difference F (,> —CX(E”) can be written as follows

FE(M) - CX{E\n))= e~6(E"}- 1+ S(Ejn)) /+

+S(E\n)) (e~ M) - )M ~ +e -~ A S AE A) (mn [ K.
\ / 1 jff>2 \ >/

Hence
FE() - EX(£jn)) ~26{Ep 1) (I - e-8(E" <27~{E().

This proves the desired result.

Proof of Theorem 4.1. At first we note that from Lemma 4.1, we have

INICX(E) - exph{E){Ge - ||~ 2 =~ AN W)+
EnjePn(E)
+ lexp A(Pn(£))[M (P.(£)) - I]- exp h(E)(Ge ~ 1)].

Taking into account (3.4) and Theorem 3.1 it is easy to see that the
right-hand side of the last inequality tends to O.
The proof of Theorem 4.1 is complete.

Remark. 1f the topology r is discrete, then the assumption (a) implies
(b) and all the results are valid under (a).
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