CL&CL

computer
and
automation
INnstitute
hungarian
academy
Ol sciences

COMPUTER AND AUTOMATION INSTITUTE
HUNGARIAN ACADEMY OF SCIENCES

COMPUTATIONAL LINGUISTICS

AND

COMPUTER LANGUAGES

XIV.

ISSN 0324-2048

Budapest, 1980.

Editorial board:

Balint DOMOLKI (chairman) Theoretical Laboratory, Institute for Co-ordination of
Computer Techniques

Gabor DAVID Computer and Automation Institute, Hungarian Academy
of Sciences

Ern6 FARKAS (editor) Computer and Automation Institute, Hungarian Academy
of Sciences

Tamas GERGELY Research Institute for Applied Computer Sciences

Tamés LEGENDI (editor) Research Group on Mathematical Logic and Theory of
Automata, Hungarian Academy of Sciences

Arpad MAKAI Research Group on Mathematical Logic and Theory of
Automata, Hungarian Academy of Sciences

Gyérgy REVESZ Computer and Automation Institute, Hungarian Academy
of Sciences

Imre RUZSA University Eo6tvds, Budapest

Gybrgy SZEPE Research Institute of Linguistics, Hungarian Academy
of Sciences

Dénes VARGHA Hungarian Center Technical Library and Documental Center

Secretary to the board: Erzsébet CSUHAJ VARJU

Computer and Automation Institute, Hungarian Academy of Sciences

Distributor for: Albania, Bulgaria, China, Cuba, Czechoslovakia, German Democratic Republic, Korean
People’s Republic, Mongolia, Poland, Romania, U.S.S.R., Socialist Republic of Vietnam,

Yugoslavia

KULTURA

Hungarian Trading Co. for Books and Newpapers
1389. Budapest,
P.O.B. 149, Hungary

For all other countries:

JOHN BENJAMINS B.V.
Periodical Trade
Amsteldijk 44

Amsterdam, Holland

Responsible Publisher:

Prof. Dr. TIBOR VAMOS
Director of the Computer and Automation

Institute, Hungarian Academy of Sciences

CL & CL

COMPUTATIONAL LINGUISTICS AND COMPUTER LANGUAGES

A scientific periodical published in English under the auspices of the
COMPUTER AND AUTOMATION INSTITUTE, HUNGARIAN ACADEMY OF SCIENCES,

Topics of the periodical!

The editorial board intends to include papers dealing with the syntactic and semantic
characteristics of languages relating to mathematics and computer science, primarily those
of summarizing, surveying, and evaluating, i.e. novel applications of new results and develop-
ed methods.

Papers under the heading of ”Computational Linguistics” should contribute to the
solution of theoretical problems on formal handling and structural relations of natural lan-
guages and to the researches on formalization of semantics problems, inspired by computer
science.

Papers under the heading of ’Computer Languages” should analyse problems of
computer science primarily from the point of view of means of man-machine communica-
tion. For example it includes methods of mathematical logic, examining problems on
formal contents and model theory of languages.

The periodical is published twice a year in December and June. Deadlines are 28
February and 31 August.

All corresponsence should be addressed to:

COMPUTER AND AUTOMATION INSTITUTE
HUNGARIAN ACADEMY OF SCIENCES
Scientific Secretariat

1502 Budapest

P.O.B. 63.

Subscription information:

Available from: JOHN BENJAMINS BV.
Periodical Trade
Amsteldijk 44 Amsterdam (2)
HOLLAND

NOTES FOR AUTHORS

Original papers only will be considered. Manuscripts are accepted for review with the
understanding that all persons listed as authors have given their approval for the submission
of the paper; further, that any person cited as a source of personal communications has
approved such citation.

Manuscripts should be typed in double spacing on one side of A4 (210 x 297 mm)
paper, and authors are urged to aim at absolute clarity of meaning and an attractive
presentation of their texts. Each paper should be preceded by a brief abstract in a form suitable
for reproduction in abstracting journals.

The abstract should consist of short, direct, and complete sentences. Typically, its lenght might
be 150 to 200 words. It should be informative enough to serve in some cases as a substitute
for reading the paper itself. For this reason, the abstract should state the objectives of the
works, summarize the results, and give the principal conclusions and recommendations. It
should state clearly whether the focus is on theoretical developements or on practical questions,
and whether subject matter or method is emphasized. The title need not be repeated. Work planned
but not done should not be described in the abstract. Because abstracts are extracted from a paper
and used separately, do not use the first person, do not display mathematics, and do not use
citation reference numbers.

Number each page. Page 1 should contain the article title, author and coauthor names,
and complete affiliation(s) (name of institution city, state, and zip code). At the bottom of page
1 place any footnotes to the title (indicated by superscript +’ +’ ~) Pake 2 should contain
a proposed running head (abbreviated form of the title) of less than 35 characters. References
should be listed at the end in alphabetical order of authors and should be cited in the text in
forms of author’s name and date.

Diagrams should be in Indian ink on white card or on cloth. Lettering should conform
to the best draughtsmanship standards, otherwise it should be in soft pencil. Captions should
be typed on a separate sheet. Particular care should be taken in preparing drawings; delay in
publication results if these have to be redrawn in a form suitable for reproduction.
Photographs for half- tone reproduction should be in the form of highly glazed prints.

List of Symbols.Attach to the manuscripts a complete typewritten list of symbols,
identified typographically, not mathematically. This list will not appear in print but is essential
in order to avoid costly author’,s corrections in proof (If equations are handwritten in the
text then fhe list of symbols should also be handwritten.) Distinguisg between ”oh.” zero”
7el.” on”: ”kappa.” ”“kay”:upper and lowe case “kay”; etc. Indicate also when special type
is required (German, Greek, vector, scalar, script, etc.); all other letters will be set in italic.

Authors are themselves responsible for obtaining the necessary permission to reproduce
copyright material from other sources.

A,. MATHEMATICAL SEMANTICS

Computational Linguistics and Computer Languages VoL XIV. 1980.

ADDITIONS TO SURVEY OF APPLICATIONS OF
UNIVERSAL ALGEBRA, MODEL THEORY, AND CATEGORIES
IN COMPUTER SCIENCE

by

Hajnal ANDREKA and Istvan NEMETI

Mathematical Institute,Hungarian Academy of Sciences
Budapest

In the original survey™ ~ nine main directions 1 - 9 of
research were briefly outlined. Below directions 10
added to this list.

, 11 are

Convention: To distinguish references to items in the original
survey from references to items listed below:
Burstall-Goguen [77 3 refers to the original survey while
Burstall-Goguen C793“ refers to an item listed below. 1.e.
the asterix stands for "below".

10 THEORY MORPHISMS, STEPWISE REFINEMENT OF PROGRAM
SPECIFICATIONS, REPRESENTATION OF KNOWLEDGE

To investigate connections between different theories for-
mulated in completely different languages is a problem in many
branches of computer science, e.g. in structured programming,
in structuring program specifications Burstall-Goguen [773,
[793 ,Goguen-Burstall [783,[793,[793 , Domdlki [793*,

*I' W.Andréka-1.Németi : Applications of Universal Algebra, Model

Theory, and Categories in Computer Science. CL X CL Vol.XIIlI,
1979, f>p. 251-282.

-8 -

Mosses C79356, in data types and semantics Blum-Estes C773, in
A.l. Andréka-Gergely-Németi [72]ft, McCarthy-Hayes [69]A,
Andréka-Németi C79a3° etc. The “"connections" between the diffe-
rent theories and languages can be called interpretations or
"translations™ but translations would suggest something much
simpler than the thing we have in mind. Most often they are
called "Theory Morphisms". One point to be stressed is that
between two theories there are many theory morphisms usually.
The subject of investigation here is actually a category con-
sisting of theories and their morphisms. The notion of a theory
morphism from the theory T into the theory T' was defined
e.g. in Winkowski [78] 81. ip.277) and there it was called a
modelling y of the theory T in the other one T' .In that
paper theory morphisms are used to study "Computer Simulation".
There is a related'branch of "standard"” Universal Algebra

called "Lattice of Varieties" see Grdatzer [79]" p.389. That
lattice is a special subcategory of the Category of Theories
considered here. For the purposes reported here, it is too spe-
cial for two reasons:

1/ The main point in the presently reviewed field is that

the theories are of different similarity types.

2/ Between two theories there are many morphisms.

(In some Computer Science papers the Category of Theories

was called "Hierarchy of Languages"” to emphasize that the

underlying languages, similarity types, or even logics are

usually different, see Andréka-Gergely-Németi [72]",

Rattray-Rus [77], Andréka-Németi [79a] , Sain [79b]*.)

Here we quote three approaches which are complementary
(and are most useful when applied together).

(101): Let the theories Thj and Th2 be equational but possibly
heterogeneous (many sorted). Let bg and F2 be the countably
generated free algebras of the varieties ModiTh® and Mod(Th2)
respectively. Then a suitable homomorphism h : could

-9 -

establish a connection between the two theories i.e. between
the two varieties. The problem is that ~ and £2 are usually of
completely different similarity types! Hence the notion of a
homomorphism between them is just meaningless. To help this
situation, Blum-Estes £771 generalized the usual notion of homo-
morphism to be defined between algebras of different similarity
types. One definition could be to say that f . ~-——o- M) is a
generalized homomorphism if f takes every term function of @
into some term function of l.e. the image of an operation of
® is required to be a function definable in ~ . One can then
make restrictions (or generalizations) on the notion of defina-
bility used e.g. "term-definable", first-order definable, imp-
licitly definable by first order formulas etc. Then the Theory
of Definability which is a branch of Model Theory, see e.g. the
Chang-Keisler monograph, can be used as a guide for choosing
the notion with the desired properties from a fairly broad
spectrum of existing and well understood ones. For some varying
choices see Blum-Estes £771, Blum-Lynch C79aDn, £79b|n, C79ch.

(10.2) : One of the main aims of Algebraic Theories of Lawvere
is to deal with the present problem. I.e. the aim is to inves-
tigate the "structure™ or "system™ consisting of several theo-
ries of several similarity types and several possible "inter-
pretations™ (i.e. connections)between these theories and lan-
guages. Hence this is not a mere translation of Universal
Algebra into category theoretical language, but instead this is
an approach to a problem inherent both in Universal Algebra and
in Model Theory: to a problem which has not been attacked in
standard Universal Algebra or Model Theory yet. Though it should

be mentioned here that: the "Lattice of Varieties", the"Reducts"
the "Clone algebras"”, see Gréatzer C79] , are branches in stan-
dard Universal Algebra which might be applicable to the present
problem. Our reason of pointing this out is that there have
been misinterpretations saying that Lawvere's Algebraic Theori-

es were "new bottles for old wine".

-10-

Algebraic Theories have been widely applied to the quoted
Computer Science problems and from these applications the
theory itself benefited considerably. Some of the references
are: Elgot [713, CrbO, Tiuryn [79a3,Wand [75a3, C77al' ,Goguen-
Burstall [783, Goguen et al [75c¢3, Wagner et al [771, [761,and
other works of the ADJ team. The field is too extensive to make
proper references here: our references are samples chosen in a
random manner.

Burstall and Goguen have made a distinction here which is
worth of emphasizing. Namely: Stepwise refinement of programs
and stepwise refinement of Specifications are two different
matters which need different tools. The former needs Rational
Algebraic Theories ADJ [761 , or iterative ones Elgot [751,
while the second needs only "plain"™ Algebraic Theories. In
program specifications, in their stepwise refinement etc no
algorithms are involved. Specifications are only declarative
statements. Hence in the theory (or foundations) of Specifica-
tions no algorithmic or "iterative” notions are needed.

Specifications are important in themselves. Specifications
are answers to "what" while programs are answers to "how".
Sometimes it is more important to understand clearly what we
are trying to do than to understand how we are actually trying
to do it. Consciousness of what one really does intend to do
and what one does not (and what one just happens to do without

really intending) is of value.

An autonomous theory of specifications in their own right
is badly needed. An approach to that is Burstall-Goguen [771,
[79]'", Goguen-Burstall [78], [791 , [79] , Mosses [79] etc.

(10.3): The category of all first order theories and their
morphisms can bentreated naturally by using Cylindric Algebras
Németi-Sain [78] . Here a theory corresponds to a cylindric

-11-

algebra and a theory morphism corresponds to an ordinary homo-
morphism between two cylindric algebras. This correspondence
works both ways. A representation theorem to this effect was
formulated in Németi-Sain [78] , and Sain C79bl .The category
of theories obtained this way is complete and cocomplete, thence
"Theory Procedures” of Burstall-Goguen [77 Ido work in this
setting too. Here, the so called "Regular Cylindric Algebras™
are the main tool to handle all first order theories see
Németi-Sain [78]**. For Regular Cylindric Algebras see Henkin-
Monk-Tarski [79]’, Andréka-Gergely-Németi [77], Németi-Sain

[78] , In the latter two references they were called "i.-finite"
instead of "regular™. "Base homomorphisms” of cylindric set
algebras do represent theory morphisms see Sain [79b] ,Andréka-
Németi C79b]

By this kind of Algebraic Logic one can go beyond classical
first order logic and languages as was shown in Andréka-Gergely-
Németi [77], and Németi-Sain [78] . l.e. Cylindric Algebra
Theory is a natural frame for doing Abstract Model Theory the
importance of which stems from the fact that many of recent
activities in Computer Science do belong to Abstract Model
Theory Makowsky [80] , Sain [79a] . About other connections
between cylindric or related algebras and computer science see

van Emde Boas [79], Pratt [79b]5, Kozen [79]", Schonfeld [78],
Andréka-Németi [79c] ", Andréka-Németi-Sain C80] , Németi [80]

The above quoted 3 approaches to the Category of Theory
Morphisms are complementary, it is not the issue "which one is
the real one" but instead: "how to use them together, how each
one can profit from the others”. Such connections between (10.2)
and (10.3) has already been elaborated in Németi-Sain [78]
which was also intended to be an easily comprehensible intro-
duction to (10.3) and to parts of (10.2).

-12-

11 DYNAMIC ALGEBRAS, MODEL THEORY OF DYNAMIC LOGIC,
OF LOGIC FOR REASONING ABOUT PROGRAMS, ABOUT
ACTIONS

If Boole's work was a breakthrough in classical logic then
Dynamic Algebras Pratt [79: are a breakthrough in dynamic logic
and related systems (e.g. programverification).

In Computer Science and related fields there have been
around logical systems in which reasoning about consequences of
"actions" is also possible. I.e. in addition to being able to
say "AIll humans are mortal”, "Sokrates is human" etc. we are
also allowed to say "After throwing the switch there will be
light " or "After touching the hot stove there will be pain ".
The new pattern of thought appearing in these logics are of
the kind "After doing action p it will be the case that o "
where @ is a formula of classical logic. These patterns of
thought are at the very core of human reasoning and hence such
logics have appeared not only in Computer Science but also in
"Child Psychology"”, "Developmental Psychology"”, "Linguistics",
"Cybernetics", see e.g. Pask [76:. In Computér Science some of
these new logics for reasoning about actions are :

Logic for Reasoning about Programs: Floyd [67:,

Buratall [69:, Emden-Kowalski [74:, Hoare-Lauer LIAI,

Manna C74:, Janssen-van Emde Boas [77b:, Harel-Pratt [77:,

Pnueli [77:, Cook [78:, Gergely-Sz5ts [78:,Gergely-Ury [78:

Andréka-Németi-Sain [79:, [79a: ', [79b: , Bergstra-
Tiuryn [79: , Németi [80a:

Logic of Actions: McCarthy-Hayes [69: , Hayes [71:,
E.Téth [78:

Robot Logics: McCarthy-Hayes [69:", Hayes [71:,[77:,

Stepadnkovéa-Havel [76: , [77: , Stepadnkova [78:

-13-

Logic for Representing Knowledge in A.l.: McCarthy-Hayes
[693 , Hayes [773.
Logic for Systems which Generate Plans: McCarthy-Hayes
[693\ Warren [763”, Bowen [793

- Processlogic: Pask [763, Pratt [79c3
Algorithmic Logic: Rasiowa [733, [773, Engeler [743,
Mirkowska [773, [783, [803*, van Emde Boas [783,
Gtabowski [783, Salwicki [78].

Dynamic logic is intended to be the common "backbone"” of all
these and related logics, and accordingly its aim is to find
that basic structure which is common in all these logics, that
basic structure which makes all of them tick Pratt [773,
Parikh [78], Segerberg [773,

Just as in Boole's case, the most basic ideas again were
boiled down into algebraic form, see Pratt [79a]53, [79b3",
Kozen [79]“, [79a]”, [79b]“, Andréka-Németi [79c]“, Andréka-
Németi-Sain [80]“. Dynamic Algebras are intermediate between
Boolean algebras and Cylindric Algebras, see Pratt [79b]".
For Cylindric Dynamic Algebras see Németi-Sain [78]"

The Propositional Model Theory of Dynamic Logic is a clear
Kripke style one Pratt [77], Segerberg [773, Pratt [79a3 which
fits beautifully into the system of model theories of well
understood logics. About the First Order Model Theory of
Dynamic Logic there are some controversies: there is a "Stan-
dard Model Theory" school and a "Nonstandard Model Theory"
school. This controversy is studied in S&ntdné-Toth-Sz5ts [793*
and Sain [79a3*. The latter is a deep analysis of the situation
and throws some light on what is really behind all these
"schools".

Behaviour of programs in nonstandard models is analogous
to behaviour of sets in "non-6 "-models of Set Theory: There

exist models of Set Theory(ZF)in which there are infinitely
descending chains,but still the Axiom of Foundation is wvalid in
them. The reason is that one can blow up a model of ZF by e.g.
ultrapowers but then the "measure” or "scale"” of "being a set
or not" is blown up "synchronously". Analogously, when blowing
up a model of Dynamic Logic into a nonstandard one the time-
scale of "program runs™ is blown up synchronously and this way
one obtains reasonable program behaviour.

Some references from Nonstandard (or Henkin-Type) Model
Theory of Dynamic Logic are Andréka-Németi C78H , C78a3, C78J,
Andréka-Németi-Sain C79aH , C79b3 , C793, Csirmaz C793 ,C79a3 |,
(80H , Gergely-Ury C78H, Németi C80aJ , Németi-Andréka-Sain
C79a)J , Sain C79aH . For the Standard Model Theory approach to
First Order Dynamic Logic see e.g. Harel C793

Remark :

In addition to the above surveyed directions 10 , 11 , the

enclosed bibliography contains some new references in directions
1 -9 too, e.g. Lehmann-Pasztor H80 which contains

results connecting seemingly different branches succesfully,

and introduces new methods to investigate the "ADJ-tools of

Algebraic semantics of programming".

Adamek,J. C793 : Construction of free ordered algebras.
Preprint, Praha, 1979.

Adamek,J. C79a3 : On the Cogeneration of Algebras.
In: Mathematische Nachrichten 88 11979/ pp.373-384.

ADJ: See Goguen et al, Thatcher et al, Wagner et al,
Wright et al.

ADJ C76~ : Goguen,J.A. Thatcher,J.W. Wagner,E.G. Wright,J.B.:
Rational Algebraic Theories and Fixed-Point Solutions. Proc.
IEEE 17th Symp. on Foundations of Computer Science /Houston,
Texas/ 1976, pp.147-158.

-15-

Andréka,H. Burmeister,P. Németi,| .£80" : On Quasivarieties of
Partial Algebras. /In the series: Toward a manageable model
theory of Partial Algebras/ Preprint Technische Hochschule
Darmstadt 1980.

Andréka,H. Gergely, T. Németi,I. £723 : Hierarchy of languages
for A,I, In Hungarian. Publications of Central Res. Inst.
Phys. Budapest, No. KFKI-72-46. 1972.

Andréka,H. Németi,I. £78" : A characterization of Floyd provable
programs. To appear in Proc. Coll. Logic in Programming
Salgd6tarjan 1978, Collog. Math. Soc. J.Bolyai - North-Holland.

Andréka,H. Németi,I. £79a® : Néhdny magyarorszagi kutatds a széa-

mitastudomany matematikai alapjai terén. Proceedings of the
"NJSZT Els6 Orszédgos Kongresszusa", 1979. pp.5-12.

Andréka,H. Németi,I. £79bl : Base homomorphisms of generalized
cylindric set algebras. Manuscript, 1979.

Andréka,H. Németi,I. £79c : Every free algebra in the variety
generated by the representable dynamic algebras is separable
and representable. Preprint Math. Inst. Hung. Acad. Sei.1979.

TO 1pnop W mVvpnro*- re»>l o r- Qrfi P

Andréka,H. Németi,I. Sain,l. £79a: : Completeness problems in
verification of programs and program schemes. Proc. Coll.
MFCS'79 Olomouc, Lecture Notes in Computer Science 74
pp.208-218, Springer-Verlag, 1979.

Andréka,H. Németi,l. Sain,l. £79b] : Henkin-type semantics for
program-Schemes to turn negative results to positive, 1In
L.Budach/ed/: Fundamentals of Computation Theory FCT'79,
pp.18-24. Full version available from the authors as a
preprint.

Andréka,H. Németi,l. Sain,l. [8011 : Representable Dynamic
Algebras are not first order axiomatizable and other consi-
derations on the Representation Theory of Dynamic Algebras.
Preprint, 1980.

Apt.K.R. van Emden,M.H. [80D : Contributions to the theory of
Logic Programming, Preprint Dept. Comp. Sei. Univ.Waterloo
Canada, 1980.

Banaschewski,B. Nelson,E. [793 : Completions of partially
ordered sets as reflections. Comp. sei. techn. rep.
no. 79-CS-6, McMaster Univ., Ontario, 1979.

Berman,F. [793 : A completeness technique for D-axiomatizable
sematics. Proc. 11th ACM Symp. on Theory of Comp.
/May 1979/ pp.160-166.

-16-

Bergstra,J. Tiuryn,J. C79I : Implicit Definability of Algebraic
Structures by means of Program Properties. In L.Budach/ed/:
Fundamentals of Computation Theory FCT'79. pp.58-63.

Blum,E.K. Lynch,N.A. C79aD : A difference in expressive power
between flowcharts and recursion schemes. Math. Systems
Theory 12, pp.205-211, 1979.

Blum,E.K. Lynch,K.A. :79b: : Relative complexity of operation
sets for numeric and bit string algebras. To appear in Math.
Systems Theory.

Blum,E.K. Lynch,N.A.. C79c: : Relative complexity of algebras.
To appear in Math. Systems Theory.

Bowen,K. C79: : PROLOG, School of Computer and Information
Syracuse Univ., 313 Link Hall, Syracuse, N.Y., 13210 USA,
Preprint, 1979.

Burstall,R.M. Goguen,J.A. C79U : Some Fundamental Properties of
Algebraic Theories: A Tool for Semantics of Computation.
To appear in Theoretical Computer Science.

Burstall,R.M.-Goguen,J.A. 80 : The Semantics of CLEAR, a
Specification Language.Abstract Software Specifications.
Lecture Notes in Computer Science, Vol. 86. ,Springer,1980.

Csirmaz,L. L79II : On definability in Peano Arithmetic. Bull.
Section of Logic, Wroclaw» Vol.8, No.3, pp.148-153, 1979.

Csirmaz,L. C79a3 ; Structure of program runs of non-standard
time.Acta Cybernetica, Tom.4, Fasc.4,1980.

Csirmaz,L. C803 : Programs and Program verifications in a
general setting. Preprint No 4/1980, Math.Inst.Hung.Acad.
Sei. 1980.

Démolki,B. 179: . An example of hierarchical program specifi-

cation .Abstract Software Specifications. Lecture Notes in
Computer Science, Vol.86. Springer, 1980.

Ehrig,H. Kreowski,H. Weber,H. C781 : Algebraic Specification
Schemes for Data Base Systems. Report of the Hahn-Meister-
Institute, Berlin, HMI-B 266, Febr. 1978.

van Emde Boas,P. Janssen, T.M.V. : 79I : The impact of Frege's
principle of compositionalitv for the semantics of program-

ming and natural languages. Report 79-07 Univ. Amsterdam,
1979.

FCT'79 : L.Budach ed : Fundamentals of Computation Theory
FCT'79. Band 2. Akademie-Verlag Berlin, 1979.

-17-

Goguen,J.A. Burstall,R.M. C793 : CAT, a System for the Struc-
tured Elaboration of Correct Programs from Structured
Specifications. In preparation.

Goguen,J.A. Varela,F. E793 ; Some Algebraic Foundations for
Self-Referential System Process. Submitted to International
Journal of General Systems. 4

Gratzer,G. E793 : Universal Algebra. Second Edition. Springer-
Verlag, 1979.

Guessarian,l. E793 : About Algebraic Semantics. In the Report
of the Second International Workshop on the Semantics of
Programming Languages. Presented in the Rundbrief d.
Fachgruppe Kianstliche Intelligenz in der Gesellschaft fir
Informatik, No.17, 1979. Publisher: P.Raulefs, Institut fir
Informatik 111, Univ. Bonn, Kurtfirstenstr. 74, 5300 Bonn 1.

Guessarian,l . E79a3 : Program Transformation and Algebraic
Semantics. Theoretical Computer Science 9 (1979) 39-65.

Harel,D. L793 ; First-Order Dynamic Logic. Lecture Notes in
Computer Science 68, Springer Verlag, 1979.

Henkin,L. Monk,J.D. Tarski,A. E793 : Cylindric set algebras
and related structures 1. Preprint Univ. of Colorado
(in Boulder) , 1979.

Kozen,D. [79] : A representation theorem for models of *-free
PDL. Report RC7864, IBM Research, Yorktown Heights, New York,
Sept.1979.

Kozen,D. [79a] : On the duality of dynamic algebras and Kripke
models. Report RC7893, IBM Research, Yorktown Heights,
New York, Oct. 1979.

Kozen,D. [79b] : On the representation of dynamic algebras.
Report RC7898, IBM Research, Yorktown Heights, New York,
Oct. 1979.

Lehmann,D.J. [78] : On the Algebra of order. Proc. 19-th

Symp. Found. Comp. Sei. pp.214-220, 1978.

Lehmann,D.J. P&sztor,A. [80] : On a conjecture of Meseguer.
TECHNION, Dept. Comp. Sei., Haifa,lsrael, Technical Report
170, 1980.

Maibaum, T.S.E. [79] : The semantics of nondeterminism.
Preprint Dept. Comp. Sei. Univ. Waterloo, Canada, 1979.

Maibaum,T.S.E. C79a3 : 10 and 01 Revisited. Preprint Dept.
Comp. Sei. Univ. Waterloo, Canada, 1979.

-18-

Makowsky,J.A. C80D : Measuring the expressive power of Dynamic
Logics: An application of Abstract Model Theory. Preprint,
Math.Inst. derlTreien Universitdt Berlin, 1980.

McCarthy,J. Hayes,P.J. [69] : Some philosophical problems from
the standpoint of artificial intelligence. Machine
Intelligence 4, 1969.

Meseguer,J. [79] : Order completion monads. Preprint of the
Math. Dept. Univ. of California, Berkeley, CA 94720, USA.

Meseguer,J. C80 1 : Varieties of chain-complete algebras. To
appear in journal of Pure and Applied Algebra. Jan. 1980.

MFCS'79: Mathematical Foundations of Computer Science 1979,
Proceedings, Olomouc, Czechoslovakia. Ed, J.Beevar.

Springer Verlag, Lecture Notes in Computer Science 74,
1979.

Mirkowska,G. [80] : PAL - propositional algorithmic logic.
To appear in Fundamenta Informaticae.

Mosses,P. [79]: Modular Denotational Semantics.Iln the Report
of the Second International Workshop on the Semantics of
Programming Languages. Presented in the Rundbrief d. Fach-
gruppe Kidnstliche Intelligenz in der Gesellschaft fir
Informatik, No 17, 1979 pp.50-51. Publisher: P.Raulefs,

Institut fur Informatik 111, Univ.Bonn, Kurtflirstenstr. 74,
5300 Bonn 1.

Németi,I. [80] : Some const étions of cylindric algebra theory
applied to dynamic algebras of programs. To appear in
CL &CL, Budapest.

Németi,I. [80a] : Complete first order Dynamic Logic, Math.
Inst.Hung.Acad.Sei. Preprint 1980. Submitted to Acta
Cybernetica Szeged.

Németi,!. Andréka,H. Sain,l; i79: : Program verification within
and without logic. Bull. Section of Logic. Wroclaw, Vol.8,
No 3, 1979. pp. 124-129.

Németi» I . Sain,l. C783 : Connections between Algebraic Logic
and Initial Algebra Semantics of CF Languages. To appear in
Proc. Coll. Logic in Programming Salgdtarjan 1978. Colloqg.
Math. Soc. J.Bolyai, North Holland.

0O'Donell,M.J. [77: : Computing in Systems Described by Equations.
Lecture Notes in Computer Science 58, Springer Verlag 1977.

Pasztor,A. [79] : Surjections in the category of w,-continuous
algebras. Preprint Univ. of Stuttgart Bericht 1/79, 1979.

-19-

Pratt,V.R. C79a: : Dynamic Algebras, MIT Preprint 1979.

Pratt,V.R. C79b: : Dynamic Logic. In the Abstracts of Invited
Papers of the 6th International Congress of Logic,
Methodology and Philosophy of Science, Hannover 1979.

Pratt,V.R. C79c: : Process Logic. Proc. 16th Ann. ACM Symp.
on Principles of Programming Languages. January 1979.

Pratt,V.R. C79d: . Models of Program Logics. To appear in the
Proc.of 20th Annual Symposium on IEEE Foundations of

Computer Science.

Pratt,V.R. C80 : : Dynamic algebras and the Nature of Induction.
In 12th ACM Symp. on Theory of Computing, Los Angeles, CA,

May, 1980.

Sain,l. :79a: : There are general rules for specifying semantics
Observations on Abstract Model Theory. ClI uCL Budapest.
(*Computational Lingquistics and Computer Languages) Vol XIII,

1979, pp.251-282. "

Sain,l. 179b: : Theories, Theory Morphisms and Cylindric
Algebras. Manuscript 1979.

Sa4ntané-Toth,E. Sz5ts,M. [79] : A report on Colloquium on Logic
in Programming 10-15 September 1978, Salgdtarjan /Hungary/.
Rundbrief der Fachgruppe Kunstliche Intelligenz in der
Gesselschaft fir Informatik, No.17, pp.20-26, 1979.
Publisher: P.Raulefs, Institut fir Informatik 111, Univ.
Bonn, Kurtfirstenstr. 74, 5300 Bonn 1.

Smyth,M.B. Plotkin,G.D. :78" : The category theoretic solution
of recursive domain equations. Dept, of Artificial
Intelligence, Research Report No0.60, December 1978.

Stepadnkova,0. Havel,I.M. C76: : A Logical Theory of Robot
Problem Solving. Artificial Intelligence 7 (1976) , 129-161.

Stepadnkova,0. Havel,I.M. C77: : Incidental and State Defendent
Phenomena in Robot Problem Solving. Proceedings of AISB,
Edinburgh, 1976, 266-278.

Stepankova,0. C78: : Planning in Uncertain Environments.
Proceedings of AISB Conf., Hamburg, 1978, 330-339.

Thatcher,J.W. Wagner,E.G. Wright,J.B. [79: : More on Advice on
Structuring Compilers and Proving them Correct. Preprint,
IBM RC 7588 /[# 32847/ 4/2/79, 1979.

Tholen,W. :79: : General Machines and Concrete Functors. In
L.Budach/ed/: Fundamentals of Computation Theory FCT'79,
pp.443-461.

-20- o

Tiuryn,J. C793 : Fixed points in the power set algebra of
infinite trees. Schriften fir Informatik und angewandten
Mathematik, Bericht Nr.54, Juli 1979, Rheinisch-Westfalische
Technische Hochschule Aachen.

Trnkova,V. C79 3 :Machines and Their Behavior in a Category.
In L.Budach/ed/: Fundamentals of Computation Theory FCT'79,
pp.450-461.

Wagner,E.G. Wright,J.B. Thatcher,JJW. ¢79: : Many-sorted and
ordered algebraic theories. Preprint, MIT, RC 7595 /=//32868/
4/9/79, 1979.

Warren,D. C763 : WARPLAN: a system for generating plans, DCL
Memo 76, Dept, of Artificial Intelligence, Univ. of
Edinburgh, 1976.

Wand,M. :77a: : Algebraic theories and tree rewriting systems.
Technical Report No.66, Comp. Sei. Dept. Indiana Univ.,
Bloomington, Indiana 47401, 1977.

Wand,M. M77b3 : First-Order Identities as a Defining Language.
Technical Report No0.29, Univ. Indiana. To appear in
Theoretical Computer Science, 1977.

Winkowski,J. C78H n Towards an understanding of computer
simulation, Annales Societatis Mathematicae Polonae,Series
IV: Fundamenta Informaticae | /1978/, pp.277-289.

Wiweger,A. 1793 : Pre-adjunctions and lambda-algebraic theories.
Preprint Nr.184 Institute of Math. Polish Acad.Sei.,1979.

Computational Linguistics and Computer Languages Vol. XIV. 1980.

A SURVEY OF SEMANTICS OF FLOYD-HOARE DERIVABILITY

Laszl6 CSIRMAZ

Mathematical Institute, Hungarian Academy of
Sciences, Budapest

The aim of this paper is to give some recent results and
some open problems on this subject. The reader is supposed to
be familiar with the basic notation of program verification
and model theory, the concepts used here are basically from [6]
and [10].

1. Definitions

1.1. The syntax of programs

Here we use the expression "program" instead of
"program scheme"” in [10]. Let d be a similarity type, i.e.
d = <C,R,F,f ,fF> where C,R,F are the sets of constant, rela-
tion, and function symbols respectively, and the functionsfR
and f_r, assign to the. relation (function) symbols their arities.
The set Y = (y*:i Gw} is the set of variable symbols, here w de-
notes the set of natural numbers. L = { 1 € adis the set of
labels. Finally, the programs may contain the following other
symbols, too:

, IF, THEN, HALT, and
There are three types of (labelled) commands, namely

(i) assignation of the form £ : vy « T, here £ G L is a
labeL, y G Y is a variable symbol, and 1 is a d-type

-22-

term [6] with variables from Y;

(ii) if—statement Z : IF x THEN Zf, here ZfZ' € L and x is
a d-type quantifier-free formula; finally

(iii) the halt command Z : HALT.

The program is a finite sequence of labelled commands, in
which

- no two members have the same label,

- every label occurring in the program is a label of some
command,

- the last command is a halt command, and

- (for technical reasons) this is the only halt command in
the program.

The set of programs is denoted by P*, if p G then its
parts are denoted as

p —n fAL e f71°JAn-1 * un-j * HALT>

Moreover, the set {yQ,yl,. ..,ye-1} contains all the variable
symbols occurring in the program p, such that (e-1) is the
maximum of the indices of variables occurring in p. We call ye
the control variable of p.

1.2. The semantics of programs

While (almost) everybody agrees with our definition
of program syntax, there are great deviations in the defini-
tion of semantics. Here we try to be as general as possible,
and we hope that our proposal covers all the previous defini-
tions. To define semantics, we need, first of all, the univer-
se D of data values. We are allowed to operate on data values
(by the symbols of the similarity type d), therefore D must be
endowed with a structure. This structure will be denoted by Q
(cf.[6,5]). The definition of the semantics of a program is a
precise definition of the run of this program. But the run is
not a static but a dynamic phenomenon so we should know some-
thing about the structure of "time"™. This structure is often

-23-

identified with o but we need not go so far. The program run is
discrete and it starts sometime. Therefore, if T denotes the
set of time points, we require every b G T to have a (unique)
successor time point denoted by b+1, and we require T to have
a very first time point denoted by 0 G T. So the time structure
I is supposed to be of type t where t contains the constant
symbol 0 and the function symbol "+1" of arity 1.

Finally, we should have memory registers (or locations)
such that every location should be capable to contain any data
value from D. The set of locations is denoted by I, this can
be a finite or infinite set. And, of course, we have a func-
tion C(s,b) which assigns to the location s G 1 and the time
point b G T the actual content C(s,b) G D of the location s at
the time b. The content of location s G I may change during
time, this can be expressedbyCiSjbr) f C(s,b2). Summarizing, the
environment in which our programs run is a quadruple
M =<T,D,I,C>, where ” is the time structure, Q is the data
structure, 1| is the set of the locations, and C : I*T - D is
the "content of... at time..." function. We refer to the quad-
ruple M= <T,Q,I,C> as a time-model, cf. [1,4,5,11,12].

Consider, e.g. the statement "y y+1" which frequently
occurs in programs. Suppose that the variable symbol y corres-
ponds to the location s G I. The exact definition of the exe-
cution of this statement can be given by "C(s,b+1) = C(s,b) +1".

Now, we have all the tools to define the semantics.
Let p G be a program and let M= <£,Q,I,C> be a time-

-model. We assume that Q is a d-type structure, and the set L
of labels consists of constant terms of type d. Consequently

we may associate to each labe G L a unigue member £. G D
defined by the same term, and assume that if ifj then NOEN,
Let the set (¥Ya,...,ye "} contain all the variables occurring

in the program p = <£Q : uQ,£1 : u”~..., £n : HALT>

-24-

The (e+Il)-tuple of locations s = <SgM..,se> is a trace

(of the run)of p in M, if the following statements (i), (il)

hold. Recall that X‘e is the control variable.
(i) C(se,0) = £*

(ii) For every b G T, C(se,b) is an element of

*
If C(s ,b) = Zm where m a4n and the command U is
"Yw «t” then C(se,b+1) = £*+1
C(Sj,b+1) = C(Sj,b) for every j < e,
j#w,
C(sw,b+1) = T[C(sQ,b),... ,C(se_1,b)]
"IF X THEN £" then C(Sj,b+1) = C(Sj,b) for every i < e, and
C(se,b+l) is either Z* or £*+1
depending on whether xCC(Sq,b),...,C(sg_",b)] is true
or not, finally in case of
"HALT" C(sj,b+1) = C(sj,b) for every j & e.
The data values C(sQ/0), C(s”,0),...,C(se_1,0) form the

input of the program, and if C(se,b) = £* for some b G T (i.e.
the program halts) then the values C(sQ,b),...,C(se_”",b) con-

stitute the output. Now let and <€Qut be two d-type first

order formulas, and fix the time model M. The program p is

correct with respect to oqn and @ in M, if for every trace
of p in Mwhenever the input data satisfy the formula ¢”n (in
g), the program halts and the output data satisfy 4dout*

In this paper we intend to deal with Floyd-Hoare derivabi-
lity which is capable to prove partial correctness only. The
program p is partially correct if for every trace of p, when-
ever the input satisfies @. and the trace halts then the out-

-25-

put satisfies <pout' We write this assertion in the form

m t- (*in.P.*out>-
1.3. The Floyd-Hoare induction assertions method

This method introduced in R.W.Floyd and reformulated
by C.A.R.Hoare is the most commonly used method for proving
partial correctness from a d-type theory Th. In our case this
method can be restated as follows.

Let p E be a program of the form

p <i,Q iUgjA* : ulf...,T-n : HALT>,

and let cpm and <$ut be two d-type formulas. The program is
Floyd-Hoare derivable from Th with respect to ¢*mn and <$eoutf
denoted by Th (cq.n 'R’Cpout)’ if there are formulas c|om for

m i n of type d (with variables from Y) such that the follow-
ing implications are derivable from Th:

(ii) if the command U is"yW m t" then

% * % +1 [yw/T,y0....... ye-111
(iii) if the command um is "IF x THEN then

ot n X[yoO seye-i] * «r
and
@r 1-[X1yO0. ye-11* ¢r+1
(iv) on thoub
It is easy to see that if the time structure 5 is just
the set of natural numbers with the usual successor function,
and D Th (i.e. D is a model for the theory Th) then
Th (Pin'P'<Pout) implies Mh=(®tM»P/(PQut)e The converse of
this claim is not true, see [4,2,9]. Here we give a new and

very simple counterexample.

-26-

Let the similarity type d consist of the one-placed rela-
tion symbols A and B, the one-placed function symbol f, and the
constants 0,1,2,3. The program in question is

p = <0 : IF y0 = f(yQ) THEN 3,

1 : Y0 £(Yob
2 : IF yQ = y0 THEN 0,

3 : HALT>.

Let the structure 2 be as indicated on the figure.The
effect of the function f is shown by the arrows. The elements
satisfying the relation A(x) are just the ones which are in
the cloud A. Similarly for B. Let Th be the set of formulas
which are true in D (this Th is recursively enumerable), and
let <pn = A(y0), ,out = B(y0).

Obviously,M |= (p™n,p,P) for every time model M the

time structure of which is w and Q Th. But Th / in’9’<p N,

Indeed, suppose the contrary, and let $>(yQ) be the for-
mula attached to the first statement uQ. This formula, say,
contains k symbols (including the brackets, indices, etc.) and
let a be the middle element of the thread of length 10k+lI

-27-

starting from A. Then, by the hypothesis, g ~® (a). But then
g M ®(a') too, where a' is the middle element of the other
thread of length 10k+Il, because the formula ® can speak about
elements ~(y0) with -k < i < Kk only and they have the same
properties for a and a'. So the uppermost element of the thread
containing a' satisfies the formula <4Qut» a contradiction.

2. The Results

We should like to give a semantical counterpart to the
Floyd-Hoare derivability, therefore we may not restrict our-
selves to time structures isomorphic to o. A natural generaliza-
tion would be allowing the time structure to be any model of
some axiom system. But if there are unreachable time points
(i.e. b ¢ T such that b ¢ 0+1+1+...+1 for K G o) then, in gen-

k times
eral, we can say nothing about the contents of the locations at
the time b. To solve this problem we require the time-models M
to satisfy some induction-type formulas. To describe the exact
definition we need the following definitions.

2.1. The time-formulas

Let t be the similarity type of the time structure
T, d be that of g. We have two sorts of variables. Variables of

sort t are elementsof X = {Xq,x.,...} and variables of sort d
are elements of Y = {y0O,y”~,...} . Let the set | of locations
be fixed. The elements of | will be used as constants in the

time-formulas. The elements of TF, the time formulas are de-
fined by the following (recursive) schemata.

(i) The first order formulas of t are elements of TF
(with variables from X).

(it) The first order formulas of type d are elements of
TF (with variables from Y).

-28-

(iii) If s 6 I is a location, G Y,and T is a term of
type t with all variables in X, then the formula
Yj = C(s,t) is in TF

(iv) If ¢ and Y are in TF, then the formulas ncp, (tpA'F)
(pY/Y), (p » ¥Y) etc. and the formulas Yx*p, 3x.\p,
Yyr®d, y*h are elementsof TF, too.

In the formulas TF we amalgamate time and data with the
help of the content function C.

If we have a time model M = <T,Q,1,C>, and a formula
® G TF, then the phrase "¢ is true inM under the interpreta-

tion bg,bj,...,ag,a",... has its obvious meaning, and we de-
note it by M>= o[bg,b™,...,a",a” ...], supposing that b, GT

and a® ¢ D for i G o. We writeM U o if ¢ is true in M under
every allowed interpretation.

Now let us fix the set | of locations and the similarity
types t and d. These determine uniquely the time formulas TF,
let S GTF. If in every possible time modelM= <T,D,I,C> with
the given |, M S implies that the program p is partially
correct in M with respect to LT and dyut (i.e.M I/I:»(qlm,P,opout))

then we write this fact by S N ~in'P <pout”* The followin5 ira_
portant results are due to Andréka and Németi [5,1,11,14]:

Theorem 1

Suppose S N= (‘Pin'P' fout)* Then there is a finite subset
1 1 * N
S'" of S such that S' H Qmi'n'p’mout)'

Theorem 2
Let S be recursively enumerable. Then the triplets

(n,p,(pout) for which s ~ (pln'P'dom”™ holds are recursively
enumerable, too.

Their proof C14,113 of the second theorem gives a calculus

-29-

which proves the partially correctness of a program if it is
indeed partially correct. This calculus can be constructed
effectively from the enumeration of S, i.e. this is not only an

existence theorem.

But we are given a concrete calculus, namely the Floyd-
-Hoare method and we ask in which cases it is complete.

2.2. Axioms on the time structure

From now on we assume that the time structure satis-
fies a set of axioms denoted by TA (time axioms). We shall dis-
tinguish three main cases.

1. TA is just the minimal set of axioms, denoted by TA".
It consists of formulas stating that every element has exactly
one predecessor except for 0, which has no predecessor, and

there is no "loop"” in the time, i.e.
X+l=y+l-x=y
X 0 o Jy(x=y+l)
x+1l ¢ 0
X+J. + 1+ ... + \ px for every k=1,2,...
K times

The models of TA” contain a thread isomorphic to co and
(perhaps a lot of) threads isomorphic to the set of integer

numbers.

2. The similarity type t contains the two-placed relation
symbol "@#" and TA is the theory of discrete linear ordering
with initial element. (This theory states that i is a linear
ordering and every element has an immediate successor, and
every element, except for the least one, has an immediate pre-
decessor.) The initial element is 0, and x+1 is the smallest
element greater than x. This theory, denoted by TA2, is finit-
ely axiomatizable. The models of TA2 are similar to those of

-30-

TAN but the threads are linearly ordered.

3. TA is the set of Peano axioms for the type<5,+,-,0,1>
this theory is denoted by TAM.

Observe, that TA™ and TA2 are complete theories (TA™ is
not) and TA” is a subtheory of TAi+1 (i.e. TAi+1l b- TA" for

If we speak about TA, we always suppose that TA™ is a sub-
theory of TA, i.e. the formulas listed under point 1 are valid
in every time structure T.

2.3. The induction axioms

Let o(x) € TF be a time-formula such that x is a
variable of sort t. Then <* € TF denotes the following formula:

[<p(0) JT Vx(<p(x) - <p(x+1))] - Vxcp(x).

It is important to stress here that <p(x) may contain other
free variables of sort t and d. All the free variables of <p(x)
are free in ¢* except for x. They are the parameters of the in-
duction. Now the induction axioms are

IAY = {d* : d(x) 6 TF}.

We introduce a proper subset of IA”, namely
IAg = {& : ®©(x) G TF and o(x) does not contain quantifier
on variable of sort t}.

These formulas say that if a property changes during time
then it must change some time, i.e. there is a time point
b G T such that o(bLU6 true and ¢(b+1l) is not.

-31-

2.4, Completeness of Floyd-Hoare derivability

In this section we list the most important results
concerning the Floyd-Hoare derivability. These results seem to
mark out the border of the validity of this method. The first
result states that our time models are reasonable enough, they
do not contradict to the Floyd-proof rules [1,3,7,11].

Theorem 3

Let Th be any d-type theory, p G Pd and #in, gqQut be d-
-type formulas. Suppose Th Db- (cp™Mm,p, ut) e« Then

TA U IAq UTh) N» (Pin'P'Aout)*
(

Here, of course, TA is any set of time axioms, for which
TA h~ TA”, and IAQ denotes the induction axioms of the restrict-
ed form. Because M N* IAN implies Mf= IAQ, this theorem holds
even if we change IAq to IA . Throughout |—denotes Floyd prova-
bility.

In the following theorem we give two tables with 18 en-
tries. The rows indicate the strength of the time structure,
1— 1 row for TA”, TA2, TA”®. The left hand side table stands for
the induction axioms IA® of restricted form, the right hand
side table for IA”. Finally, in the columns we indicate the
status of the theory Th and the type d. The first column shows
the case where Th is just the set of Peano axioms and d is just
(£,+,*,0,1). In the second column d contains the symbols
£,+,*,0,1 and Th contains the set of Peano axioms where the
Peano induction axioms are stated for the symbols £,+,*,0,1 on-
ly. Finally, in the third column we have no restriction on Th
and d.

The difference between the first and second columns is due
not to the number of axioms but to the new symbols in the se-
cond column without induction axioms in Th for them. In the se-
cond column (Th PA) d may contain symbols for which there is

-32-

no induction axiom in Th. Actually, all the results about the
first column remain true if we replace the requirement

"Th = PA" by "Th 3PA and for every formula ¢ of type d there
is an inudction axiom about ¢ in Th".

Theorem 4

In the following table the entry of the square indicated
by TA®, 1A. and Th is Y if for every p G P.,
(TAX U IAj U Th) N= implies Th b- (4in ,p,Qut);

the entry is N if this implication does not hold. The mark ?
indicates that the result is not known.

the induction axioms are IAq the induction axioms are I|A”
the theory Th is the theory Th is
=PA =PA any =PA =>PA any
TA Y Y Y TA Y Y N
ta? Y Y Y ta? Y Y N
? ?
TA3 Y N Az Y N

Compare Theorem 4 with Theorem 3, Y means the complete-
ness, and N means the incompleteness of the Floyd-Hoare deriva-
bility under the indicated conditions.

Proof
Part of the proofs can be found in [1-8]. Most of them
are based on [7,13]. The proof of [TA2 u IAQ un Th &=(<Hn 'P>Put)-

% TA2 u IAg u Th H (p*n'P/®onf)] for any Th can be found in

[13].

It is not without interest to mention the following re-
sult , which checks how our intuitive feelings agree with the
strict notion of program traces. Recall that the trace
s = <Sq,...,s > of the program p halts at the time point b G T

-33-

if C(se,b) =£* , and the output of the program is the e-tuple
<C(sQ,b), C(si#)f...f C(se_1,b)>

of the elements of D.

Theorem 5

With the same notation as above, the following table
shows whether for every p G and for every trace s of p, the
outputs coincide or not. (l.e. whether the output is unique or

not.)
=PA OPA any =PA opA any
TAX Y Y N TAX Y Y N
ta? Y Y Y TA? Y Y Y
TAS3 Y Y Y TAS3 Y Y Y

Part of the proofs can be found in [1,3-5,7,8,11,12].

Theorems 4 and 5 can be used to compare some of the
literature as follows. TA® U IAQ was used in [2,3]; TA3 U IAq

was used in [7,8]; and TA™ U IAj was used in [1,5,11,12] and in

a way also in [9].

2.5. Reasoning about programs in large

The problems with theorems stated until now is that
they require the use of non-standard time structures. Theorems
1 and 2 tell that in that case a nice completeness theorem holds,
but someone may ask the following question. Is there no other
possible method, some reasoning in large giving partial correct-
ness for programs which works, in fact, well if the time struc-

ture is isomorphic to co?

-34-

This new method should be a syntactical one, therefore by
Godel's incompleteness theorem, it cannot prove the partial
correctness of every partially correct program with standard
time . But still it could be possible that by this method one
could prove partial correctness of programs which are out of the
scope of theorems 1 and 2.

Now suppose that this "global®™ method can be described
within the framework of set theory. Let d be a fixed type, Th
be a theory of type d, p G be a program and <pm and <$out be
two formulas. Suppose that the 5-tuple <d,Th,<pin,p,cpout> is

definable (by set theoretical tools). If the method gives that

"M *= ((p£n,p,<pout) for every M = <T,g,l,C>

where £ is isomorphic to o and g h= Th "

then the statement between the quote symbols holds in every
model of set theory. But the "o" in that models are, in general,
not isomorphic to the real o, which shows that the role of non-
standard time structures is more than a successful but artifi-
cial tool for proving completeness. We feel, moreover, that
there is no such "global” method which would go beyond the

scope of Theorems 1-2, more precisely the following Theorem
holds.

Theorem 6

Let Th be a set of first order formulas of type d. Assume
that Th is recursively enumerable. Then there are a similarity
type t, a set I of locations and a recursively enumerable set
S CTF of time formulas such that for every triple

(<Pin"P"'<$ut)con<titions (i) and (ii) below are equivalent.

(i) SN (d1n.P.®oub)

-35-

(ii) For every model ¥ of ZFC we have
Y]= "for every time model Mwith standard time such

that M H Th we have m WU ('P'*“out” *

Proof
The proof is based on results in [1,11] and on Theorems
2.1 and 2.10 of [12].

3. APPENDIX (Equivalence with the Classical Formalism)

The formalism of [1,4,5,11,12] is slightly different
from the one used in the present paper. In this section we
show that our formalism is completely equivalent with their
formalism and therefore all the results stated in the present
paper can be applied to [1,4,5,11,12].

Recall that a time model M = <T,Q,I,C> is a 3-sorted
structure the sorts being t, d and i (where T, D, | are the
universes of sorts t, d, i). Recall that X and Y are the sets
of variables of sorts t and d respectively. Let
Z = (Zj :j < o be the set of variables of sort i. (Of
course, X, Y and Z are pairwise disjoint.)

Let F%d’ be the set of all first order formulas in the
language of M with variables in X, Y, Z as defined below.

DEFINITION

F ~ and Te”™ are the smallest sets satisfying conditions
(i) - (vii) below.

(i) The first order formulas of type t with variables in

X are in Ftd"

(ii) (z+ = zj) G Ffed for all i,j G co

-36-

(iiti) C(zift) e Ted for all i e o and for all term 71 of

type t with variables in X.

(iv) If f is an n-ary function symbol in d and
t1 t N E Ted then f(Tl.,...,rn) E Ted. Further
Y CTed-

(v) | f T© t2 6 Ted then (T = 712) E Ftd

(vi) I f TIw -t 6 Tea and r is an n-ary relation syirv

bol of type d then r(TI,...,Tn>e Ftd-

(vii) If @y E Ftd then nd 6 Ftd, (®n) e Ftd,
x1th G Ftd' ~ i 4 G Ftd ' 321 G Ftd -

Now, clearly TAX, TA2, TA3 Z Ffcd.

*

Let ®(xQ) e Ftd- Then ¢ is the following formula
([@(0) A VXQ(h(Xag) - ¢(xQ+1))] - VxQo(xQ))

Clearly o* E Ftd’ We define
* .
lai T e s ¢ E Ftd’} .We define
3 = (4% re Ftd and 4* contains no quantifier of sort t}.
l.e. let ¥*6 lax. Then V*E la~ iff for all i E o "3x”’ does

not occur in f.

PROPOSITION 7

Let Th CI Ft be such that (Vieco)zI does not occur in Th.

d1
(Note, that then Th C TF.)

Let p E P* and let e be as in Section 1.1. Let T and Q be
fixed. Let s : T - D be a function for all idaé. Then state-

ments (i) and (ii) below are equivalent, for every j < 2.

(i) <s™~ : i & e> is a trace of p in some <£,B,I,C> N*

(th U iQj) such that (Vi & e)(Vr E T)C(s",r) = s~(r)

-37-

(ii) <si : i %W e> is a trace of p in some <i,2,1,0 *=

* (Th U IAj) such that (Vi # e)(Vr G T)C(s™r)=s”(r)

Proof
Let Jj < 2.
() Assume (ii). Then <£,Q,1,C> £= (Th U IA”) and

(Vi me)[sd GI and C(s”*,r) = s”r) for all r G T].
Let S = {s : i # e} and let M = <5,B,S,C> or more
precisely M = <T,D,S,Sxtl1C> where Sxtlc is the func-
tion C domain-restricted to SxT. Clearly <s™ : i I e>

is a trace of p in M. To prove (i) it is enough to
prove Mt= laj .

We define a function h : F d # TF U P'd by recursion,
h(zi=zk) - Vxo(C(z.,x0) = C(zk,xQ)) for all i,k G o.

Let ¢ G Ffcd be any atomic formula such that
® i1 {(z*=zk) : i,k G o} . Then we let h(o) & ¢ (By

these h is defined on all atomic formulas in F d>)

Assume that bl ¢) has already been defined. Let i G co.
Then h (3z"p) =[p(r1/230)¥Yd (zi/s1)V...Vo(zx/sq)]

where w(z”/s® is obtained from ¢ by replacing every
free occurrence of z™ in ¢ by sk.

h(3x"d) & 3xib(dh), b(3yi1d) U 3yib(d) and h (“lp) &
MTb(p). Assume that h(o), h(Y) are defined, then we
let h(o N1 4) =(h(d) N h(r)).

The definition of h : FAd + TF u Ffcd is completed.

Let ® G Ftd be arbitrary. Then we define h+(0) to be

the formula obtained from h(o) by replacing every sub
formula in h+(o) of the form VxQ(C(si,x0) = C(sk/xQ))

-38-

with TRUE if and with FALSE if si ¢ s™. Since
si(i i e) are constants we have AI\//II/I h(«) iff

M h- h+(cp).
Now it is easy to check that statements (*) - (***)
below hold, for every $ GF

(*) If 9 contains no free variables then
[h(¢) G TF and h+(p) G TF].
(**) M ¢ iff Mh bl) iff Mh b+(D)#

(***) Assume that all the free variables of ¢ are in
X,y,z resp. Let @' be the formula vx vy Vz .
Then if ¢ G la® then b+(¢') G IAM.

Note that (***) holds for ¢, b(dp) and j=1 but for j=0
we need h+(o').

To be precise, instead of b+(d') G IA.3 we should have
written IA® M h (o) in (***) above.

Let ¢ G la® and let x,y,z contain all the free variab-

les of &@. Then let ¢ be the formula vx vy vz .
Clearly Mh ¢ iff Mh* @' iff Mh 1+(¢p') by statement
(**). By (***) we have b+(dp') G IA™ for all ¢ G lan.

By the assumption (ii) we have <71,Q,I,C> h» IA™ hence
M WN* IAj too and thus Jah* la® by the aboves. Clearly
<£,Q,1,C> h» Th iff Mh» Th and thus Mh(Th U la*)by

our assumption (ii). We have proved (ii) * (i).

(2) Assume (i). Then <T,g,I,C> h»(Th U la”) and
S = {si :i e} C1l and (vs G S)(Vr G I)C(s,r) =s(r).
Clearly <T,2,5S,Sxt10 W Th. Let the only "location-
-constants™ occurring in IA. be the elements of S.

Then <I1,B,I1,C> IAj and hence M = <1,Q,S,Sxtlc> h»
IAj. This completes the proof of the proposition.

-39-

The language Ffcd and the axioms la® (j < 2) were used in
[1,4/5,11,12] . These papers were based on axiom systems of the
form (TAi+1 U IAj) for various choices of i < 3, j < 2.

By Proposition 7 above our Theorems 3-6 can be applied to
the above quoted papers too.

Next we turn to the so called Continuous Traces approach
[2,3,7,8]. We shall show that it is a special case of our pre-
sent formalism. First we quote the definition of continuous
traces from the literature.

DEFINITION ([2,3,7,8])

Let p GPd and Q be a d-type structure. Let
(Yo/eee/Ye-1} contain all the variables occurring in p. Let
Sq,...,s6 e TD for some set T. Let s = <sQ,...,se> Then s is

said to be a continuous trace of p in | if conditions (i) -(iii)
below hold for some f : T & T and Kk G T.

Note that <T,k,f> is a structure of type t such that k is the
interpretation of the constant symbol o and f is the interpre-
tation of the function symbol "+1" in <T,k,f>.

(i) <T,k,f> TA

(ii) <T,k,f>, Q and s satisfy the conditions in the defini-
tion of a trace (in Sec.1.2. of the present paper) if
0 is replaced by k, b+1 is replaced by f(b) and
C(e6",b) is replaced by s™b) everywhere.

(iii) Notation s(b) = <Sg(b),...,se(b)> for any b G T.
For any formula ¢(xq.,..., x) of type d it is true
that

D H* [(cp(s(k)) /T A [<p(s(b)) - <p(S(f(b))))- A cp(s(b))].
beT bGT

-40-

PROPOSITION 8

Let p, g and e be as in the above definition. Let

SQ,...,se G TD for some set T. Then statements (i) and (ii) below

are equivalent.
(i) <sg...., se> IS a continuous trace of p in g.

(ii) There is M = <1/2,1,C> such that a.) - c.) below
hold.
a.)M M(TA1 U IAqQ).

b.) <Sg,...fs > is a trace of p in m.

c.) (Vi £e)(Vb GT) C(st,b) = si(b).

Since [2,3,7,8] were based on continuous traces the re-
sults of the present paper can be applied to these works too by
Proposition 8 above. By Propositions 7-8 above we have a con-
nection between all the quoted approaches.

Note that in (iii) of the definition of continuous traces
above ¢ may have free variables , jJ > e. These are the
parameters of the induction in (iii).

-41-

REFERENCES

Cil Andréka,H. Csirmaz,L. Németi,I. Sain,I.: More
Complete Logics for Reasoning about Programs.Preprint
Mathematical Inst.Hung.Acad.Sei. Budapest, /1980/

C21 Andréka,H. Németi,l.: Completeness of Floyd Logic.
Bulletin of Section of Logic,Vol.7,No.3,Wroclaw, 11978/
pp.115-121.

C31 Andréka,H. Németi,l.: A Characterization of Floyd
Provable Programs, Proc. Coll. Logic in Programming

Salgo6tarjan /1978/ Colloa. Math.Soc.J. Bolyai,
North-Holland. To appear.

£43 Andréka,H. Németi,I. Sain,l.: Completeness Problems in
Verification of Programs and Program Schemes.
Proc.Coll. MFCS 79 Olomouc. Lecture Notes in Computer
Science 74,Springer Verlag /1979/ pp. 208-218.

£53 Andréka,H. Németi,I. Sain,l.: Henkin-Type Semantics for
Program Schemes to Turn Negative Results to Positive.
Proc. Coll.FCT 79 Berlin, Akademie Verlag,Berlin/1979"
pp.18-24.

£63 Chang,C.C. Keisler,H.J.: Model Theorv, North-Holland,
11973/

£73 Csirmaz,L.: Completeness of Floyd-Hoare Programverification
submitted to the journal of Symbolic Logic.

£83 Csirmaz,L.: Program Runs in Nonstandard Time. Acta
Cybernetica,Szeged,Tom.4. /1980/ pp.325-331.

£93 Gergely, T. Ury,L.: Mathematical Theory of Programming.
Budapest, /1978/ ,Manuscript.

Manna, Z. : Mathematical Theory of Computation, McGraw
Hill, /1974/

£3-13 Németi,l.: A Complete Dynamic Logic.Preprint Math. Inst.
Hung. Acad. Sei. 11980/

£123 Sain,l.: There are General Rules for Specifying Semantics

Observations on Abstract Model Theory, CL and CL
Budapest, 13 , /1979/ pp.251-282.

-42-

C133 Csirmaz,L.: On Completeness of Proving Partial

143

Correctness, Math. Inst.Hung.Acad.Sei. Preprint
No. 19/1980, Acta Cybernetica,Szeged to appear.

Andréka,H., Németi,I.,Sain,|I .: A Complete Logic for
Reasoning about Programs via Nonstandard Model Theory.

Theoretical Computer Science, to appear.

Computational Linguistics and Computer Languages VoL XIV. 1980.

SOME CONSTRUCTIONS OF CYLINDRIC ALGEBRA THEORY APPLIED
TO DYNAMIC ALGEBRAS OF PROGRAMS

by
Istvan NEMETI

Mathematical Institute, Hungarian Academy of Sciences
Budapest, Hungary

Dynamic Algebras were introduced in Pratt [79] and Kozen
[79] to investigate programs, program schemes, dynamic logics
of programs and other subjects of Computer Science. Pratt [79a]
pointed out that Dynamic Algebras are related to Cylindric
Algebras. In this paper we intend to initiate directions of
applying the theory of Cylindric and related algebras to Dyna-
mic Algebras, and more generally we intend to initiate work on
the connections between these fields.

Our main reference is the monograph: "Henkin-Monk- Tarski
[71]: Cylindric Algebras” which will be refereed toas HMT[71]. In
this paper wediall use the notations of HMT[71]. E.g. through-
out a is an arbitrary ordinal. Throughout t denotes the follow
ing fixed similarity type (of algebras)

th ~ {<+,2>,<—1>,<cN, 1>, <d™j, 0> : ifj £ ci}

e.g. any Boolean algebra is of similarity type tQ and a
cylindric algebra of dimensions a is of type ta-

BA denotes the class of all Boolean algebras and by "A is
a BA" we mean to write A € BA. Similar convention will be used

-44-

for other classes of algebras, e.g. by "a Bo® A" we understand
"an a-dimensional Boolean algebra with operators™ see HMT[71]

and Definition 1 below.
DEFINITION 1 (HMT[71] Def.2.7.1. p 430)

By a Boa we understand an algebra A of type t such that

A = <A +,-,ci,dij>i™» e at<A+,-> G BA and
(Vi < a) A (crx+y) = cix + c.hy)
A is normal if (Vi <a) A h* ci0 = 0 where 0 = -(x+-X).
More generally, let H be any fixed set. By a BoH we under-

stand an algebra A = <A,+,-,c|.,d1.J>. /3 E n such that <A,+,->GBA
and (Vi G H) A (cM(x+y) = c™x + c”y). A is normal if
(Vi G H A c™”O = 0 where 0 was defined above.

END of Definition 1

REMARK: Boa is a variety defined by schemes of equations in
the sense of Andréka-Németi [78].

Throughout we shall use the derived operations * 0, 1
d th lati a. E.g. let A = <A, +,- d > L GB
an e relation a g e o, ,cl, i '3 Ga Oa
and let x,y G A. Then x-y = -(-x+-y), 0 = -(x+-x), 1 = x+-x
and X Wy means X+y =vy.

DEFINITION 2 (HMT[71] Def.2.2.1)

LetAGBoa and w G A

rIW: rl\',lo‘v: <w*x : x G A>. Clearly, rlw:A- A.

RIWA = Ro riw Ci-e. R/ ={w-x : x G A})

RIWA:<R/' N\/N : f GDo t> i.e.

RIWA = <RV +W “Wl C\;V. d\i\é'>'i,3' . a where (vi,j G a)
W, A

(VX, y GR/> [x twy =mx WU Y, -"(x) T w-- (x), c\i’.vx :W.C?X and

-45-

A
i

w. d

1.

END of Definition 2

Proposition 1 below says that RZw A is a Bo™ even if rlw is not
a homomorphism.

PROPOSITION 1

Let A 6 Boa and w G A. Then RIW A G Boa. If A is normal
then so is RZW A.

Proof
We have to prove that R™W Afe cM(x+y) = c¢™x + c?y for all
i < a, because rl is always a homomorphism on BA-s. Let

X,y G RI A Then cVx =w *x . W shall write ci for c”.

cV(x+y) = w.ci(x+y) =w-(cxtx + c?y) = (w.czxx) + fa.chy) =
= M + Ay
Suppose, that A is normal, i.e. that c¢c”0 = 0.
Then C\va = W.C.IO = w*0 = 0, i.e RIWA is normal, too,

QED of Proposition 1

Recall from HMT[7]] the followings. Let h : A - B. Then
h 6 Hot(J1,0) iff h is a homomorphism from A into B, i.e. iff
h : A- B. h GHo(Nn,£) iff h is onto B. Further h G Ho(J1) iff
(3B) h G Hom(i4,£). We define ker(h) = {<a,b> : h(a) = h(b)}.
CoAdenotes the set of all congruence relations on A.

PROPOSITION 2

Let A be an algebra of type tQ. Assume A N Xx*(x*y) = x*y.
Let w G A. Then statements (i) and (ii) below are equivalent.

-46-
©O) rI;V\ 6 Ho(J1) (1.e. ker(rl;v\) 6 Co A)

(ii) ri% GHoU, RI A (i.e. rlp : A ~ Ri A

Proof

(i) - (i) is obvious, hence we prove only (i) -(ii).
A be of type t , w6 A and assume rl e Ho[A), i.e. assume

A c* w
ker(rlw) G Co A. Let f be an arbitrary operation symbol of A
such that ta(f) = n. Let a1,...,an 6 A. Then by
(Vi £n)riw(azx) = rlw(w*ai) we have rlw(fA(aJL ... ,an)) =

A A
= r*w”" (w<al,...,w.an)), since ker(rlw)is a congruence. Then
rirf(fA(al,...,an)) =rlw(fA(w,al,... ,w-an)) =
= fw(rlw(al) ,...,rlw)), where fw is the interpretation of
the operation symbol f in the algebra RI® A. This proves that
rIW DA - RIW A. Clearly rIW DA RIWAb¥ definition,

QED of Proposition 2

THEOREM 1

Let A be a Boa and let w G A. Then (i) - (iii) below hold.

(i) Assume that (Vi < a) c.l(-w) & -w. Then rIW G Ho(N).

(i1) Assume that A is normal. Then rlw G Ho A iff

(Vi < a)ct -w & -w.

(iii) Assume that A is not normal. Then there are v G A,
i < a such that c”-v > -v and rlv G Ho(A).

Proof

1.) Proof of (iii): Assume that A is not normal. Then
there is i < a such that ¢~ > 0. Let v = 1A. Then -v = OA and
thus c”-v > -v. Since BA t= Vx(l-x = 1) we have rlv G Ho(4)

since rlv : A -*A is an automorphism of A since rl.» = al Ild.

Let

-47-

2.) Proof of (i): Let A be a Boa, w € A and let
(vi < a)ci -w #n -w in A. Clearly rlw 6 Ho(<A,+,-,d"j>) always
holds. Thus, we have to prove (vi < a)rlw e Ho(<A,ci>). Let
i < a and x e A be fixed. By Proposition 2 it is enough to

prove that rlw(Cfl X) = C; rIW(x) where c, is the interpreta-

tion of C; in RIWA.] '

Fact 1; Bogq VyWVz (y n z wmcry Uchz).

Fact 1 is true because y W z - y+z=z - ¢y + c”z = c.z
- ¢y W ochz.

By the hypothesis on w and by Fact 1 we have -w a c*w K
£ ci(x*-w) and thus w*c”(x*-w) = 0. Since x = (Xx-w + X’-w) we

have ¢"x = ¢*x'w) + c. (x*-w). Using these facts we obtain

rIW(c.>i) = W*C.% = \/{(c.(x*w) + cl(x*-w)) = w.cJ_(w.x) +

+ wc.fx--w) = w-cI(w-x) +0 = Wcl. (w. x):cq‘((rlw(x)) -
We have seen rIW 6 Ho(Nl).

3.) Proof of (ii): Assume that A is normal and we A,
i <a are such that c*w 4 -w. Let z = w*c®w. Then z > 0. Let
X = -w. Then rlw(clx) > 0, rIW(x) =0 = rIW(O), and

rIW(cio) = 0. Thus <x,0> e ker(rIW)but <c,x,,c.0> ker(rIW).

1771

Hence rIW £ Ho(J).
QED of Theorem 1
As a contrast to Theorem 1 see Proposition 7.
The condition ANAW c~(x+y) = (cix + c™y) is needed in
Theorem 1 and cannot be replaced with the condition that c”

be monotonie, increasing and normal as Proposition 3 below
shows.

-48-
PROPOSITION 3

Let a > 0.

Then there are an algebra A of type t» and w e A such
that <A,+,-> 6 BA and for every i < a

A [cAx + c”ACx+y) = ci (x+y) and
X + ¢c”x = C.X and
cx0 =0 1.
for every i < a we have c”-w = -w and c*w = w but
rir$ Ho(A).
Proof
3

Let A=Sb 3, w=2, x = {1,2}.

For every i < a we define ci = (A 1 Id)* o
A = <A’U’3/C|:'io,>'j . . See the Figure. Then rIW rls = w-ciX
= 2MNcrx = 2N 3 = 2= w.

cVrl X = w-c.(w-x)
w 1

J-

w Tl Cj(2 n{1,2}) =winfec {1y =

wfl {1} = {1} " w.
QED of Proposition 3

-49-

Recall from HMT[71] that CAa is the variety of a-dimensio-
nal cylindric glgebras and that Cra :W{RZ A w G A and A GCAa},,
Note that CAa Cr

a :
Recall from HMI[71] that JAx = Ax = {i < a ctx ™ x}

for every Bo™ A and every x £ A.
The following corollary is a generalization of 2.3.26. of
HMT[71].

COROLLARY 4

Let A 6 HSP Cra and let w GA. Then
rIWGHo(J'I) iff Aw = 0.

Proof

Bé(Thm.2.2.3. of HMT[71] we have HSP CraS Boa and each
member of HSP Crpg is normal. By 2.2.3 of HMT[71] we also have

(Vi < a)[HSP Cra c X £ x and HSP Cra P:ic.-lc.x = -c.lx] . Thus

(Vi < a)[HSP Cr *= (cix = X cl.-x = -x)]. Assume Aw = 0. Then
a

we have (Vi < a)cw = w and hence (Vi < a)c”-w = -w. Then w and

A satisfy the conditions of Theorem 1 which then yields

rli, & Ho(A). Assume i G Aw. Then cw >w. Since

(cr~w = -w - C™ = w) holds we have c”-w ~ -w. Then by

C,X & x we c;lonclude c.-w > -w. Then by Theorem 1, rIWi Ho(4).

QED of Corollary 4

Now we turn to applications of Theorem 1 in Dynamic
Algebras.

Notations (HMT[71])

Sb U= {x : xS U}. The function ~ : Sb U * Sb U is defined as
~ = <U~x : x GsSb U> where U~x = {u GU : u $ x}.

Let R,S S 2U then
RIS = {<x,y> : (3z GU)(<x,z> GR and <z,y> G S)}, and for any

-50-

x S Uwe let R*x = {y : (3z G x)<z,y> G R}, and

R 1= {<y,x> : <x,y> G R}.
Ds stands for Dynamic set-algebra, see Definition 3 below.

DEFINITION 3 (Andréka-Németi[79], Pratt[79], Kozen[79],
Andréka-Németi-Sain[80])

By a Ds with base U we understand a two-sorted algebra
D = <A,B,0> such that A £ Sb 2U, BS Sb U and

A = <A/l,u,®> where (Va GA) ap=NnN {b GSb 2U : aSb and b
is reflexive and transitive},

B <B,u,qg> and

(Va G A)(Vx G B)0(a,x) = (a *)*x.

The variety Da of Dynamic Algebras was defined in Pratt
[79], by finitely many equations. We shall use here the follow-
ing properties (*) - (***) of Da only

(*) Ds S Da

(**) Da *= {HAz,x) + d(z,y) =d(z,x+y), ¢ (z,0) = 0}

(***) If D G Da then D = <N,3,0> where B8 G BA and

0 : AX B - B.
END of Definition 3

Notations: Let D = </1,B,0> be a Da. Let a G A. Then we define
the function 0O0(a,-) : B - B as follows:
(vx GB)O(a,-)(X) =0(a,x) i.e. 0(a,d = <<>(a,x) x G B>.

For any function f E "B and a G A we write fa f(a).

Let B &€ BA, ¢ € “(BB) and d e “ Xc,B. Then

<s'ci'dij>i,jea =<B+'*'ci'dij>,:ea uhere s =

Note that <B,c1.,d... >

ii71.j ea is an algebra of type t

a

-51-
PROPOSITION 5

Ox A
Let D= <A,B,0> be any Da and let d 6 B. Then

<B,p(a,-), dab>a befd isanormal Bog. In addition let n G aA and

b G aXaB be arbitrary. Then < # 01(n.b..> . is normal BOG'

Proof
By Properties (**) and (***) of Da in Definition 3.

QED of Proposition 5

The theory of many-sorted algebras can be found e.g. in
the monograph Lugowski[76] Chap.ll1.2. (pp.137-170). See also
Birkhoff-Lipson[70], Matthiessen[76], ADJ[77].

Recall thatahomomorphism between two-sorted algebras is not
a function but a pair of functions, see Lugowski[76] p.147 Def.

11.2.(1) in Sec.11.2.2. E.g. if D1 = <A"BAA>> and

2

D2 <A2'B2 > are two Da_s then h G Hom(zZ?1,P2) iff

[h

<hA,hB> and hA G Horn h G Hom(S1,B2) and

(N0 G AL)(Vx G Bx) hB(01(a,x)) = 02(ba(a), hR(x))].

COROLLARY 6

Let D = <A,B,0> be any Dynamic Algebra (Da), let w G B and
h G Ho(J1) . Then statements (i) and (ii) below are equivalent.

(i) <h,rlf> G Ho(0)
(ii) (Vva G A) ~(a,-w) # -w and

(V<a,b> G kerh)(Wx G B) [x & w *w«$(a,x)=w*$(b,x)]

Proof

Recall from Lugowski[76] p.154 Sec.l1.2.3 that a congruen-
ce of a two-sorted algebra is not a single relation but is a

-52-

pair of relations.

Notation: <RA,Rg> e Co {<A,B,0>) if

[Ra e Co(4), RB G Co(S), and (Vka“a” G RA)(V<xQ,x1> G RR)
<M(aQ,x0), d(a1,x1)> G RRB].

Clearly, <fQ,f1> G Ho(B)iff <ker fQ , ker f1> G Co(D)

Cf. HMT[71] 0.2.21 (ii) and Lugowski[76] p. 157 Sec.ll1.2.4.
item (1).

We let A T ker h and =g = ker ri\t)‘b.
Then clearly =g G Co(J1) by h G Ho(/1) and g Co(R)

since riW G Ho(B) by Theorem 1 since B G BA = Boo,.

Now, <h,rl > G Ho(B) iff Ty £ Co(D) iff
(Vao,a1,xQ,x1)[(aQ =gax and xQ =Bxx) -$(aQ,xQ)=B$(ax,x2)] iff
both (*)and (**) below hold.

(*) (Va G A)(VXg,xx)[xg"bx1l - 0(a,xQ)=B"(a,x)] and
(**) (Vx G B)(vaQ,a2)[ao=pal - <(aQ,x)=Boal,x)]

Now by Theorem 1 and Proposition 5 (*) holds iff
rilw G Ho(<B,d(a,-)>aGA) iff (Va G A)p(a,-w) & -w.

Suppose (*) holds.

By rlw riwx = rlwx we have that riI*x =B x for all x G B. Then

by (*) we have that (Va G A)’\(a,x):B(a,w*x) . Now by the aboves
(**) holds iff

(Vx G B)(VaQ,a1)[aQ=A ax - <>(@aQ,w.x) s”*a”w-x)] iff

(V<aQ,al> G ker h)(vx G B)[x " w- w.a,x) =w~0(b,x)]

Now, the following tautology ((pj*memq1) A (p1-»(P2 q2)))-*

¢ ((Pji_ AP2)«—(~2 Aqg2)) of propositional logic completes the

-53-

proof (by substituting (*) for (**) for p2 and (ii) for

(g1 N1 g2) in an appropriate way).
QED of Corollary 6

For a deeper application of Theorem 1 in the theory of Dyna-
mic Algebras see Andréka-Németi-Sain[80].

REMARK:

Let AS B 6 Bo . Let w G B. Consider AIlrlR which is either

in Ho(J1) or not. Let rI:\NR = Alrl\:v. Then the condition

: AB :
cM-w a -w is no more necessary for rl”? to be a homomorphism.
Namely, there are A i=B G Bo®, w GB such that

AB
(Vi <a)ci“W$ -w and rl G Ho(JZ1). Moreover, we can choose
B G CAa if 1 G CAa and we can choose B :<C,Q/(nl.,-),0.i> ita
for some Dynamic Algebra <N,C,0> and mapping n : a>->N if A is
a normal Bo”. See Propositions 7 and 10 in this paper.

Both in the theory of Cylindric Algebras and in the theory
of Dynamic Algebras some of the most useful relativization ho-
momorphisms are of this rIABkind, i.e. they are such that
c.-w $ -w, but rIAB G Ho(J)I(). Proposition 7 below says that every
h%momorphism is thhe form rIAB for some B. (Of course, this
is not true for rl\'/A‘v’ there are J1 G BA and R G Co(J/1) such that

(MW G AR ™ kerirl'4).)
w m

PROPOSITION 7

Let J1 be a Boa and let R G Co(J1)
Then there are a Boa BZ2 A and w G B such that

R = kér (r1’"). Further, if N1 G CA_ then B G CA_.
w a a

-54-

Proof

By 2.7.5., 0.2.15, and 2.7.6. of HMT[71] there is a complete
B E BoQ such that AS B and (VXS A)[supSX = 1 - (3XQ£f X)(IXQl<
< o0 and sup Xg = 1)]. (This is the so called Stone-represen-
tation of A.) By 2.7.15. of HMT[71], if A E CAa then BE CAa
too.

Let R E Co(J1) be arbitrary and define 1 = 0A/R.
Let w = supB I. wexists since s is complete. Consider the
function rl’\‘N Clearly1 rI(@Ne Ho(<B,+,->). Let K = ker rl\ﬁl and

J = 0B /K. Then K E Co(<B,+,->) and K is determined by the
ideal J of <B,+,->.

Claim: J n A = 1.
Proof

Suppose y E J MA. Then y W w. Therefore b = supB(l U{-y})=
= 1 since b a way and b a -y. Then sup(lIQ U (-y}) = 1 for

some finite 1QS |, by the properties of B. l.e. y i sup Ilq
which implies y G 1 since | is an ideal. We have seen
JDASSI. 1'SJnAis clear.

QED of Claim

Since <A,+,-> S<B, +,-> are BA-s and R E Co(<A,+,->),

K E Co(<B,+,->), | = 0/R, J =0/K, I =J n A, and since the
ideals of BA-s determine their congruences (e.g. by 0.2.26 (i)
of HMT [71]) we can conclude that R = "A n K. Then R = ker rI@S

B

since K = ker rl
w
QED of Proposition 7

Notation (HMT [71] 0.3.1. (ii), 0.3.24)

B is a direct factor of A, in symbols B\A, iff A =B* C

-55-

for some C.

pj~ is the i-th projection function of any direct product,
specially let i < 2 then pj® : Ag x A™ - A™ is such that

(V<aQ,al> G Ag x Ax)[pjil(<aQ,al>) = al and
Plo”~o'V "' =ao!
Hence pji G Ho(/4g x A™,A™) for all i < 2.
Is (A,B) is the set of all isomorphisms of A onto B, i.e.
Is (N,B) = {h G Ho(A,B) : h is one-to-one (i.e. injection)}.

Let R G Co(/1). Then R is a direct factor congruence on A iff
there are Bq,B" and h g Is(,4,Bg x Bj) such that

R = kér (pj joh).
THEOREM 2

I. Let A and B be two normal Boa-s.
Then bzA iff B = RIW A for some w G A such that

(Vi < a)[ciw i w and c™-w) & (-w)].

Il. Let A be a normal BoQ and let R G Co(n).
Then statements (i) and (ii) below are equivalent.

(i) Ris a direct factor congruence of A.

(ii1) R = ker(rlw) for some w G A such that

(Vi < a)[ciw S wand c*-w) a (-w)].

1. Let a>0.
Then there are AG Boaand w G A such that ker(rIW) is
a direct factor congruence on A and cQwv > w and
Cg-w > -w.

-56-

Proof
Proof of Illls
Let a > 0 be arbitrary. Let B G BA and d G a*a B be arbit-

rary but assume IBI > 2. Let (Vi < a)ci = B X {1m}. Then

- D 0 - -
A = <B’9"dl']'>i,]£a is a Boa. Let w € B~ {0 ,1 } Exists since
IBIl > 2. Then -w ~ 1S. Thus (Vi < a)[w ~» ¢c™w = 1 = ci~w" -w].

Clearly, rlw G Ho(N1), rl_w 6 HoU) and

rl_aal

This easily follows from the fact that c” is a constant function

(3h GIsU, RzZzw A xW_"A))[pjQ@h = rlw and pjjoh

in A and that the equation Vx(c”x=l) is preserved under both
products and homomorphisms.

Statement | is an immediate corollary of Statement Il and
therefore it is enough to prove 1I.

Proof of I1I:
Let A be a normal Bo” and let R G Co(/).

Proof of (i) - (ii):
Suppose A =B * C. Let w = <OB,1C>. Since A is normal
c’w = ci<o,l> = <0B,cCIC>i w and c”-w = c"<1B,0> =
= <cMS,0C>n <IV>= —w for every i < a. By Theorem 1,
rif, G Ho (/4). {x GA :rl x =0} = {x :wx =0} = {<y,z>
<y,z>»<0,1> = 0} = {<y,0> : y G B} = B x {06*}.

Clearly, {x GA : pj~x) =0} = {<y,z> : z = 0*}= B x {0"}.
This proves that (vx G A)[rlax = rlw OA iff pjrx) = pj1(0'4)]

which by observing that A is an expansion of a Boolean algebra
<A, +,-> implies that ker rl® = ker pj»

-57-

Proof of (ii) < (i):
Let w G A be such that (M < a)[c*w £ -w and c*w £ w].

Then by Theorem 1 we have rlﬁ G Ho(4) and rI_W G Ho(4). Let

R = ker(rl@) and S = Ker(rl_fIW).

It is known from Boolean Algebra Theory that our R and S
are a direct decomposition of the Boolean reduct <A,+,-> of 4.

Fact 2 (Universal Algebra)

Let B be any algebra and let K G *Co(B). Then K is a direct
decomposition of B iff K is a direct decomposition of some re-
duct of B. See 0.3.22. of HMT[7I],

Hence by Fact 2, R is a direct factor congruence of 4.
QED of Theorem 2

Corollary 2.4.8. of HMT[7l] saying that the direct factors of a
CAa4 are exactly {RZW4 :w GAAw =0}, is a corollary of
Theorem 2 above. (Moreover, Theorem 2 shows that 2.4.8. of HMI
[71] is true for HSP CrQ in general.)

In connection with Corollaries 8 and 9 below we note the
following: Let D = <4,B,p> be a Ds with base U. In Andréka-N¢é-
meti[79], a we B is said to be a subbase provided that
(Va G A)aS 2w u?(U ~ w), which means (va G A)[d(a,w) £ w and
O(a,-w) £ -w]. Hence Claims 2 and 3 in Andréka-Németi[79] are
special cases of Corollaries 8 and 9 below. Again, a deeper app-
lication of Theorem 2 to Da-s can be found in Andréka-Németi-
-Sain[80].

-58-

COROLLARY 8

Let D= (A,B,Q) be a Da and let <RA'RB> € Co(D) be a direct
factor congruence on D.

D
Then there is w G B such that R—B = ker(rIW) and

(va G A)[O(a,w) ¥ w and O(a,-w) # -w].

Proof
Let D+ = <S,0(a,-) ,0>ael and let De = «A ,a>at[] , D+,Q>.

Then D is a reduct of De and Co(D) = Co (D&). Hence by Fact 2
we have that <WA,R™> is a direct factor congruence of De. Then

RB is a direct factor congruence of D+, by basic definitions in
the theory of two-sorted algebras, see Lugowski[76] p.150.

item 11.2.2.(10). D+ is a BOA, by Proposition 5. Now, applying
Theorem 2 to 04* and RR compIAetes the proof.

QED of Corollary 8
COROLLARY 9

Let A G Boa and let R G "*CoiA) (i.e. <Ri : i G I> is a
system of congruences of A). Then statements (i) and (ii) below
are equivalent.

(i) Ris a direct decomposition of A (i.e. there is

A = with projections <pji : i G I> such that

Ri = ker pj» for all i G1).

(ii) There is a system w G JA of elements of A such that
(Vi G I)(V] < ct)Cj-wi & -wi and (Vi,jGl) (9% - w/Wj=0),

supiw™ - iGI1} = 11, (Vy G IA)sup{yi*wi : i g 1} exists

and (vi G I)R.I = ker rlA
W.

-59-

Proof
(i) - (ii) follows from observing that if R is a direct de-
composition then is a direct factor congruence for all i € 1

and then applying Theorem 2.

(i) ~ (i)
Let R1 * ker(rIWi) for all i G 1. Then for every i G I
Ri G Co(/1) by Theorem 2, since satisfies the conditions of

Theorem 2. Then we have a system R G *Co(J1) of congruences of /.
From BA-theory it follows that R is a direct decomposition of
the BA <A because Fact 3 below is a theorem of BA-theory.

Fact 3

Let B G BA and b G B be such that (Vi,j G 1)(i ®j -

- b~rb. = 0), sup b*I = 1B and (Vy G IB) sup {y*hi : i G 1}
D
exists in B. Then <rl, 1 G I> is a direct decomposition of B
i D

i.e. (3h G Is (B, pi6IR> R)Xvi G I)pjich = rlf

Now by Facts 2 and 3 we have that R is a direct decomposi-
tion of /.

QED of Corollary 9.

DEFINITION 4 (HMT[71] Def.2.7.33. p. 453)

Let N be a relational structure N <N,R such

o Be” g6
that (Vi < a)Ri S 2N and (Vi,j G a)Ex* Si N.

Then the complex algebra Cn N of N is defined as On N =

= <Sb N,U~"/R*»E~j>™ jGa . Clearly, Cn N is of type tQ.

END of Definition 4

-60-

Part (i) - (iv) of Proposition 10 below is taken from the
representation theory of Cylindric Algebras, see HMT[71],
chapter 2.7. We shall show that it can be used in the represen-
tation theory of Dynamic Algebras, too.

PROPOSITION 10

Let C be an algebra of type t
Then statements (i) - (vii) below are equivalent:

(i) Cis a normal Boa

(ii) C = ISCm N for some relational structure N.
(iii) C = \act N for some relational structure
N =<N,R.,E..>. . such that the same identities
i 11 1,16a
hold in <C,+,+,0,1 ,c.,,d....>.. .. and in
| ij - i,iea
<sb N,U,n,0,N,R* E. .m> .
1 '11 illfea
(iv) C = <B’U’Jﬂ’R1'E1J>1/Jta for some relational structure
N = <N,R.,E..>. and for some B SSb N.
i 11 7,1€a
(v) €= 1S <B,c|o(ni.,-), el]'>1'f])ta for some Ds D =<A,B'0>

and mappings n : a - A, e : axa w B.
(vi) C= 1S5S <B,O(n1.,-),e|]>l.,\]tafor some full Ds D = <A,B,Q>

and mapping n : a - A, e : axa - B such that the

same identities hold in <C,+,-,0,1,ci.,d and

i1°71,1 Ga
in <B,n,nN,0,1 ,0(n™,—9,e?j>£ jga'

(vii) C

<B,(p(ni.,-),ei.].i/].ta for some B-free Ds

D <A,B,p> and mappings n : a - A, e : axa * B.

-61-

Proof

The equivalence of (i) - (iv) follows from HMT[71] Def.
2.7.4., Thms 2.7.5.(i), 2.7.34, 2.7.35, and Def. 2.7.13. Each
of (v) - (vii) implies (i) by Proposition 5.

Proof of (iii) - (vi):
Let C= 1" Cm N where N = <N,R|.,Ei.j>.I iGa is a relation-
al structure, and the same identities hold in <C,+,*,...> and

in <Sb N,U,MN,...>. Let D = <<Sb 2N,l,U,®> | <Sb N,U,~>,0> be
the full Dynamic set algebra with base N (see Andréka-Németi
[79] Def.2).

Let n : a % Sb 2n and e : axa - Sb N be defined as

rIl and e~ = Ei]' for ail i/] G a. Then ¢(n.?,-) =

1»~) _ P for ail i <a. l.e. CmN =<Sb N,U ,Ri E"

= <Sb N, U, ﬂl’m(nl"’-)’el'j'>’|,jGa . The additional requirement

about identities clearly holds.¥

(vi) implies (v).
Proof of (v) o (vii):

Let C = 1S <B,Q(/n|.,-) ,e . for some Ds D = <A B,p>

'>j'G—a
and mappings n : a -»A, e : a*a mB. Then

Cs <B',(p(n|.,-), where B'" S B and (Vi,j] G a)

e1'3'1>',3 Ga
[p(n~,-): B'" - B'" and e G B'].

Let A' = {a GA : (W GB')p(a,x) G B'}. Clearly,
{ni 1 Ga} S A'. We show that A' is a closed subset of

<A,l,U>

Let a,b G A" and let x G B".
(alb) I*x = (b *la 1)*x = b 1#(a 1#x) G B' since a 1#x G B' by

a G A" and then b 1#(a 1#x) G B' by b G A".

-62-

(a Ub) 1#x = a 1#x U b 1#x g -B' since both a 1#x and b 1#x

are in B' by a,b e A', and B' is closed under wu.

Let a' = <A',|,u> . Now clearly £ = <n',B'/<» is a ©-free
a * A' and

Ds, and C = <B /0(n1.,-), eID>'i/D'£a where n
G : axa -~ B'.

QED of Proposition 10
DEFINITION 5 (Cf.Pratt[79])

By a ¢-free Da we understand a two-sorted algebra
D =<<A,;,v> Bt(y> such that s E BA, and

D N (d(a,x+y) = <Ka,x) + <>(a,y)
¢ (a,<>(b,x))

(1) 0(a;b,x)
®(a,x) + o(b,x)

(2) <>(avb,x)

O(a,0) =0 }

A Da D = <A>B,0> is separable iff

(ya,b 6 A)(a"b ~d(a,-) ¢ d(b,-)).

END of Definition 5F

The following result is due to Kozen, we show that it can

be derived from the representation theory of CA-s, too.

COROLLARY 11 (Kozen)

Any separable ®-free Da is isomorphic to a ®-free Ds.

Proof
Let D= <A,B,0> be a separable ®-free Da.
Let C = <£,p(a,-),0> epn. Then Cis a normal Bog by Proposition

5. By Proposition 10 (i) -* (vi) there are a full Ds

-63-

D' = <A',B',0'> , a mapping n : A - A' and a one-to-one homo-
morphism h G Hom(C, <B',QO' (na,")»0>afn) » such that the identities
(1) and (2) in Definition 5 hold in D'.

First we show that n G Hom(4,<A',|,u>). This will follow
from the facts that D' is full and d' satisfies (1) and (2),

as follows:

Let a,b G A. Let the base of D' be N and let k,m g N. Then

{m} g B' since p' is full. Now by the definition of O' and by
identity (1) we have

(k,m) Gn(a:b) iff k G~'(n(a;b)) iff
k € O(na,O(nb,{m})) iff (x,m) Gna | nfa

We have seen n(a;b) =n(a) 1| n(b). The proof of

n(a Vb) =n(a) nun(b) is entirely analogous, the only diffe-

rence is that we use (2) instead of (1):
(k,m) G n(avbh) iff kK GO'(n(avb),{m}) iff

K G (<¥(na,{m}) m O0'(nb,{m})) iff (k,m) G na U nb
By these we have seen that n G Hom(A,<A', |,u>).

Then <n,h> is a homomorphism from D into the ®-free reduct
<<A', l,u> B tO'> of D' since h G Horn(B,B"') and

(va g A)(Vif G B)d' (ngq,hx) = h~(a,x) hold by

h G Hom(<f,<>(a,-),0>aeA / <B',0’("a,-),0>afA).

By separability of D we have that n is one-to-one, since
a ~b-0(a,-) i<Xh,~) - " (na,-) ¢ </(nb,-) na i nb

Since both n and h are one-to-one, we have that <n,h> is an

isomorphism of D into a ®-free Ds.

The fact that ®-free Ds-s are closed under subalgebras
completes the proof.
QED Corollary 11

-64-

Andréka-Németi[79] exhibits a different parallelism bet-
ween the representation theories of Da-s and CA”-s. About a
representation theory of CA*~sand related algebras see Henkin-
-Monk-Tarski[79], Andréka-Németi[79a], Németi[78] Chapter 7,
Andréka-Németi[75]. The connection between Logic, Model'Theory
and CA”-s is made explicit and is elaborated in Chapter 7 of
Németi[78] to a certain extent.

REFERENCES

ADJ[77]: Goguen,bJ. A.,Thatcher ,J.W ., Wagner ,E. G., Wright,J. B. ,
Initial Algebra Semantics and Continuous Algebras,
JACM Vol. 24, No 1, 1977, pp. 68-95-

Andréka,H., Gergely, T.»Németi, | .[77]: On Universal Algebraic
Construction of Logics, Studia Logica 36 (1977),
pp. 9-47.

Andréka,H. »Németi,| .[75]: A Simple, Purely Algebraic Proof of
the Completeness of some First Order Logics,
Algebra Universalis 5 (1975), pp. 8-15.

Andréka,H., Németi,|.[78]: On Systems of Varieties Definable by
Schemes of Equations, Math.Inst.Hung.Acad.Sei
Preprint 1978. To appear in Algebra Universalis.

Andréka,H., Németi,| .[79]: Every Free Algebra in the Variety
Generated by the Representable Dynamic Algebras is
Separable and Representable,Math.Inst.Hung.Acad.Sei.
Preprint 1979.

To appear in Theoretical Computer Science»

Andréka,H., Németi,l .[79a]: On Regular Cylindric Set Algebras,
Math.Inst.Hung.Acad.Sei. Preprint 1979.

Andréka,H., Németi,| .»Sain, | [80]: Representable Dynamic Algebras
are not First Order Axiomatizable and other Considera-
tions on the Representation Theory of Dynamic Algeb-
ras, Math.Inst.Hung.Acad.Sei. Preprint 1980.

Birkhoff ,G.» Lipson,J.D. [70] : Heterogeneous Algebras, J.Combinat.
Theory 8 (1970), pp. 115-133.

HMT[71]: Henkin,L.rMonk,J.D., Tarski,A.[71]: Cylindric Algebras
Part I, North-Holland 1971.

Henkin,L.» Monk,J .D., Tarski,A.[79]: Cylindric Set Algebras and
Related Structures I, Univ.of Colorado at Boulder,
Preprint 1979.

-65-

Kozen,D.[79]: A Representation Theorem for Models of *-free
PDL, RC 7864, IBM Research, Yorktown Heights, New
York, Sept.1979.

Lugowski,H.[76]: Grundzige der Universellen Algebra, Teubner
Texte zur Math., Lepzig 1976.

M atthiessen,G.[79]: Theorie der heterogenen Algebren, Disserta-
tion, Univ.Bremen, 1976. Mathematik-Arbeitspapiere

Nr. 3.

Németi,| .[78]: Connections between Algebraic Logic and Initial
Algebraic Semantics of CF Languages, Proc.Coll.Logic
in Programming, Salgé6tarjan 1978, Collog.Math.Soc.J.
Bolyai, North Holland, to appear.

Pratt,V.R.[79]: Dynamic Algebras: Examples, Constructions,
Applications, Report MIT/LCS/TM-138, July 1979.

Pratt,V.R.[79a]: Dynamic Logic, 6th International Congress of
Logic, Methodology and Philosophy of Science,
Hannover 1979. abstract

Pratt,V.R.[79b]: Models of Program Logics, Proc. 20th IEEE Conf.
on Foundations of Computer Science, San Juan, PR,

Oct., 1979.

Computational Linguistics and Computer Languages Vol. XIV. 1980.

SOME PROBLEMS OF THE SEMANTIC TREATMENT
OF THAT-CLAUSES IN MONTAGUE GRAMMAR

Miklds SANTHA
Institut of Linguistics, Hungarian Academy of Sciences

Budapest, Hungary

1. That-clauses are known to play several different roles
cmmplex sentences, for instance, as illustrated by the following
examples :

(1) The proposal that he would marry me caught me unpre-

pared.

(2) That Peter is right is clear as noonday.

(3) He complained that he had to go out.

In sentence (1), the that-clause can be said to expound the
content of the proposal that caught me unprepared. In (2) there
is no word to sum up the content of the that-clause (as opposed
to proposal in (1)) but it would be easy to find a suitable one.
(3) on the one hand shows a structure parallel to (2), on the
other, its that-clause can be understood as an indirect quotation.

In general, sentences with that-clauses can be approached
in two different ways. On the first approach, that-clauses are
sometimes directly subordinated to the matrix verb, like the
other arguments, while sometimes they are subordinated to an
abstract nominal. According to the second approach it is always
the latter which is the case, only the abstract nominal may
happen to be absent from the sentence. Here one regards this
correspondence as the most characteristic property of that-
clauses. Illona Molnar [1980] also accepts this fundamental re-
lation between the abstract nominal and the that-clause; never-
theless, she makes it explicit by means of a transformation in-
to an attributive sentence having an abstract nominal in its

-68-

main clause; i.e. instead of (4) and (5), she relates (4) and
(6) by transformation:

(4) 1t is well-known that Mary is pretty.

(5) Mary's prettiness is well-known.

(6) The fact that Mary is pretty is well-known.

Now it is clear that sentence (1) exemplifies the special type
in which this relation is explicit. In this paper | will deal
with sentences like this and demonstrate that despite its
apparent simplicity, a satisfactory semantic account for the
relation between the abstract nominal and the that-clause is
not self-evident. (I will not treat the problem how and when
sentences can be transformed into the desired form of (1).)

One more remark in advance: it is evident that an abstract
nominal can be followed by infinitely many different subordinate
clauses. It is already not so evident, however, that the that-
-clause does not have a unique 'summarizing' abstract nominal
either. (Naturally, we can have only a finite number of abstract
nouns.) For instance from (7) we can get either of (8 a, b, c):

(7) They published that John had escaped.

(8 a) They published the statement that John...

(8 b) They published the supposition that John...

(8 ¢) They published the news that John...

From now on | will call the abstract nominal related to the
that-clause a ‘'sentential name' (cf. Molnar (1980)).2

2. I will carry out my analysis in the framework of R.
Montague, defined by means of intensional logic in Montague
(1974). Let me begin by sketching what we can expect for the
logical formulae to reflect. Consider sentence (9):

(9) The decision that John is leaving for Berlin surprises

me.
We can rightly expect that the translation of (9) should express
that

(i) something surprises me,

(ii) this is a decision, and, moreover,

-69-

(iii) the very decision that John is leaving for Berlin.

In the following part of this section | will review the proposal
made by E.B. Delacruz (1976), where he endeavours to satisfy
these conditions, although without stating them explicitly. His
approach is really the most natural one and although I will try
to criticize and modify his proposals it is worthwhile to have
a look at them since in this inductive way we can get a better
insight into the problems which render our task more difficult.
The first idea is that propositions (by this notion is
understood the declarative sentence preceded by the connective
that) can play a role in the building of the sentences at issue
which is similar to that of entities in the building of the
usual categories, the difference being that entities are rep-
resented by variables or constants of type <s,e> and proposi-
tions correspond to ones of type <s,t>. On the basis of this
observation proposition-level basic categories, syntactic and
translation rules can be given quite automatically. For the
sake of parallelism | will use the same letters for naming en-
tity-level and proposition-level categories except that the
latter are underlined.
Categories and their basic expressions:
BIV : proposition-level intransitive verbs of category t/t.
E.g. happen, turn-out
B¢N : proposition-level common nouns of categoriy t//t (in fact,
the members of this set are sentential names).
E.g.: news, fact, assumption, dream
BT = BtylV : proposition-level terms of category t/(t/t).
(No basic expressions)
Bjv/t : transitive verbs taking propositions as subject, of
category (t/t)/(t/(t/e)).
E.g. : sujprise, trouble, amuse
Bj-v/t : transitive verbs taking propositions as object, of
category (t/e)/(t/(t/t)).
E.g.: know, hear, suppose
Bjv/t : transitive verbs taking propositions both as subject
and object, of category (t/t)/(t/(t/t)).
E.g.: be

(o]

o0 @0
©

The

-70-

New syntactic rules:

If a G Pj_, then F'(a) G PT, where F~A'(a) = that a
If y GPT and m G PCN, then F2' (y,u) e PT, where

the ny if y is of the form that a

F:' (Y) =
y otherwise

introduction of the following variables is necessary for

the stating of the corresponding translation rules:

p,q,r,p',q',r' G Var<S,,[>

P.R G Var<S’<<S’t>’t>>

Q/Q’ G Var<s,<<s,<<s,t>,t>>,t>>

z G Var<s,<<s,<<s,<<s,t>,t>>,t>>,t>>
C,D G V

Mecs t>, t>

Translation rules:

the translation of a basic expression is a constant of
the appropriate type, designated by the primed variant
of the word. Exception: be translates as be' =

= XQ. Xr .(VQ)(AN\Q" (r=97))
If aGPt, then F~'(a) translates as \P.VP(A').

V
1o If vyg PT CN then
\R.3q(Vp((u'(p)Abe’ (Ay"))(?)<=> p=q)AVR(q))
F2'(y,n) translates as
Applying this latter rule we can already obtain the trans-
lations of the sentences examined. E.g., after the automatic
application of PTQ-rules A-conversion will yield the following

formula corresponding to (9):

(9') 3q(Vp((decision'(p) Np' = AJohn is leaving...') <=>
<=>p=q)A surprise' (n1/)(q))

This form of the translation already shows that the three re-

quirements are satisfied because

-71-

(i1) and (iii): it follows from the lefthand side of the con-
junction within the scope of the existential quantifier that
there is a unique g which is a decision, and from its righthand
side that it is identical to that John is leaving for Berlin,
and (i): this g surprises me.

3. This most natural looking construction is practically
the same as what we find in Delacruz's paper (without the expli-
cation of the requirements). Nevertheless, the translation ob-
tained in this way has two properties which cast serious doubts
at its correctness. In the following parts | will try to remedy
this situation by modifying the construction. Before turning to
that, however, | will show that there exists a much simpler
formula which is equivalent to (9') although we cannot get it by
X-conversion. (9') has the form 3q(F(g)AG(q)). Obviously, such
a formula is true iff the sets determined by F and G have a
common member i.e. iff

(10) {a : F(@)}Mq : G(a)} o<

Notice, however, that {g :F(q)} may at most bea wunitset (its
only member being AJohn is leaving...'), depending on whether
decision' (AJohn is leaving...") is true. It is therefore evi-
dent that the two sets may have no other common member either,
that is, (9') is true onlyif (11) is true:
(11) decision' (AJohn is...")1 surprise' (Al ")
(AJohn is...")

The problems to get rid of are already perspicuous in this
formula. Let us first form the negation of (9):

(12) The decision that John is leaving for Berlin does
not surprise me. The translation of (12), drawing from (11) is
(12') decision"' (AJohn is...")V Asurprise ' (Al ")

(AJohn is...")

This cannot be an acceptable translation for (12), however,
since (12) implies that it is a decision that John is leaving
for Berlin while (12') can be true even if the contrary is the

-72-

case. It is clear that this problem does not result from anything
particular to (9) but it concerns all the sentences under in-
vestigation. The reason is that in all those it follows both
from the sentence and its negation that the subordinate clause
is conceived of as its sentential name. In other words, (9)
and (12) presuppose (13), which is not reflected by the above
translation :

(13) It is a decision that John is leaving...

This kind of presupposition is worth dwelling on a bit further
since it can be said to be a generalization of factive pre-
supposition. Kiparsky and Kiparsky (1970) assign a special
status to predicates like regret, the that-complement of which
is presupposed to be true and thus it is a defining property
of so-called factive sentences that the that-complement of their
predicate can always be prefixed with fact without changing
their meaning. It is certainly true that the truth of the sub-
ordinate clause follows both from those sentences and their
negation; if however we define the constant fact' so that the
intension of a sentence is a member of it iff the sentence it-
self is true,

(14) fact' (a') is true iff a' is true
then this natural definition renders factive presuppositions as
a special case of the above stated kind. Let us take a complex
sentence with a factive predicate. In view of the factivity of
the predicate the that-clause may be prefixed with fact. In
view of the generally valid presupposition (cf. (13)) the in-
tension of the that-clause must be a member of fact' and, in
view of (14), it must be true. In other words, factive presup-
positions constitute a special case insofar as the sentential
name fact has a special semantics among sentential names in
general. Consequently, the question which predicates are
factive in the sense of which predicates may be related to the
sentential name fact will also become a special case of the
guestion which predicates may be related to any given senten-
tial name.

-73-

The treatment of presuppositions requires an extension
of Montague's intensional logic. Here I will only indicate the
outlines, referring the reader to ROzsa (1978). To the set
{0,121} of truth values we add a new element 2 to designate the
truth value gap, which comes into play if, for some reasons,
we cannot or do not want to assign a truth value to the sen-
tence (e.g. because one of its presuppositions fails). We de-
fine such a degenerate element (null-entity), not only for the
set of truth values but for all types. The key idea of the de-
finition is that givgn the null-entity of domain D”, the null-
-entity of domain a is that function which, for every ele-
ment of , takes the null-entity of as its value.

In syntax we define the iota-operator. Let ME" be the
set of meaningful expressions of type a.

A.l. If F G MEt and contains a free occurrence of the

variable x e I\/Ed. then ox(F) e I\/E3.
rthat element of Dd of which F is true
« if Da has exactly one such element

B.1. V(ix(F))
the null-entity of otherwise

The new proposal for the translation of (9) makes use of
the iota-operator :
(9'") surprise'(Al")(ip(decision'(p)/1 p=Alohn is..."))

That this translation really corrects the first mistake can be
easily seen from the table of its values:

0, decision ' ¢«(AJohn...")1 I surprise’
(Alohn...'X

4. Now | %u derfd s point (WGEM - 1- rdfafddPddSthe second
Al Alohn. ..")

essential mistake in 59'). As it.can be seen from (11), (16")
is a trivial consequedecel bf {gecision’ (AJohn...")

-74-

(16) That John is leaving for Berlin surprises me.
(16') surprise' (Al ")(Alohn is...")

Notice, however, that (16) is not necessarily a consequence of
(9). It may well be the case that John goes to Berlin every
week-end and therefore the fact itself does not surprise me but
this being a decision (or, with other sentential names, a dream,
an urgent message etc.) it does, indeed. To put it in another
way, the present construction would make (17) a contradiction
- since both (16') and its negation would follow from its trans-
lation - while it is not:

(17) I am not surprised by the fact that John is leaving

for Berlin but | am surprised by the decision that

John is leaving for Berlin.

The table in (15) also makesit clear that the new translation
(9™) has not corrected this mistake, either, that is, further
corrections are needed.

The source of the mistake in (9'') is that the relation
between the sentential name the the that-clause is indicated by
means of equating the variable bound by the iota-operator with
the embedded proposition. This problem can be resolved if, in-
stead of an equation, we saythat the iota-bound variable con-
tains the proposition as its member. In this way we introduce
an intermediate category between propositions and sentential
names (or, predicates) applicable to them. The new category will
have the type <<s,t>,t> (so far reserved for proposition-level
intransitive verbs and common nouns) and all the other catego-
ries become one level more complex, i.e. are built up from this
new category in the same way as they have so far been built up
from t. The new category has mainly logical significance. No
direct translation will yield a constant of this type and the
meaning of its elements cannot be described in natural language
any more precisely than 'the way/the kind of thing as the sub-
ordinate clause can be conceived of".

-75-

5. Before giving an exact definition of the new catego-
ries, syntactic and translation rules | will demonstrate this
final translation proposal on the example discussed above and
show that the two crucial objections no longer apply to it. The
final translation of (9) is (9''"):

(9""") surprise' (AI™)(A1C(decision' (AC)N1 C(AJohn is...5))

Compare with the final translations of (16), (13), and (18):
(16) That John is leaving for Berlin surprises me.
(16'") surprise' (Al ")(AC(C(AJohn is...")))

(13) It is a decision that John is leaving for Berlin.

(13''') 3C[decision' (N1C) NC(AJohn is...")]

(18) The decision is that John is leaving for Berlin.

(18'") 3C[WVD[decision ' (AP)<*:l0O=C] A C(AJohn is. ..")]

(16'") is no longer a logical consequence of (9'")
since for the former to be true it is necessary that there be
exactly one element of DN’I\’IIS'L"'/L:X that AJohn is leaving for
Berlin is a member of. This is not a necessary condition of the
truth of (9'") however, since it can be true even if there are
several such members of but only one of them is an
element of decision'. That is, we have got rid of the second
mistake. As for the first one: (13'") remains a consequence of
both (9'") and its negation since these sentences now pre-
suppose that

(19) 3!C[decision'(AC) A C(AJohn is.. .")]
which obviously implies (13'"). Note, that from (9'") one
cannot infer (18'"), which is quite right, however, since the
former does not say that there is only one decision.

The definition of syntactic rules and their translations
is somewhat complicated by the fact that in sentences like
(9'") and (16""') the iota-operator binds the variable cha-
racterizing the embedded proposition and this proposition can-
not be retrieved. Therefore the structure of (9'") cannot be
obtained from that of (16"'). A simple solution seems to be to
provide that with various translations (which is also justified
by the variety of roles this word may play in syntax). Con-
sequently, the same proposition may belong to various types

-76-

depending on the role it plays in the sentence and the syntactic:
rules applicable to it vary with those categories.

The proposition-level categories redefined (members remain
unchanged):

Biv

Bt/(t/t)

BCN = Bt//(t/t)
BT = Bt/IV = Bt/(t/(t/t))

BIV/T

B(t/(t/t))/(t/(tle))
BIV/T

B(t/e)/(t/(t//(t/t)))

New categories and basic expressions:

BK : B(t/t)/T be

BHL = B(t///(t/t))/t that”

BH2 BT/t that,,

BH3 B(T/CN)/t that,,

Syntactic rules:

83 If aePCN then F3 -7~(a), F3’2.,\..) 6 PT where
F2 (a) = a(n)a and FA 2,(a) = the a

Sy If a G and B G then Fa'(a,B) G Pt/ll(t/t)
where FA'(a,B) = it »all. 1

Sg If a G Bu2 and R e Pfc then Fs'(a,R) G Pm where
Fs'(aB) =it *aB .

S If a G BH3 and B g Pft then Fg'(a,R) G PT/C;N Where

Fg'(a/B) = aBi.

Since the present paper focuses on the semantic problems of that-clauses,
the syntactic rules | give here are merely meant to illustrate the work-

ing of my proposals . Therefore, | ignored the intricacies of the alterna-
tion of bare that-clauses and their dummy-it version in subject position

and provided only for the generally applicable it-version. It appears that
the only case in which this procedure is not viable is the type (18) since
the sentence It is the decision that... is not synonymous with The deci-

sion is that... although my fragment treats it as if it were.

-77-

S?' : If a G PT/'CN and 3 e PCN then F7'(a,3) G PT where
F7'(a,3) = the 3a.

Sg' : If a GPR and 3 G PT then FQ'(a,3) €Pt/t where
Fg'(a,3) = a3.

Sg' : If a GPt///(t/t) and 3 G Pt/t then Fg'(a,3) e Pf
where Fg'(a,3) = a [*/3]. ?

SI0O" : If a GPT and 3 G Piy then FIO0O'(a,3) G Pfc where

Fio'(a,3) = a3 if a = FA'(ti6) and

Flo'(a,3) a[*/3] if a F5'(t»6).
The new basic expressions translate as;

be' = \Z . \p.vZ(A\R.VR(p))

that® = \p.\PvP(p)

that2 \p.\Q.vQ(AoC(C(p)))

that, \p.\Q " \Q.vQ(aiC(V (aC) N C(p)))

Translation rules:

T3 . F3 ~(a) translates as \Q.3C[a'(AC) AVQ(C))]

T3 2' : F3 2*"Ma) translates as \Q.3C[VD[a' (AD)<=>C=D]aQ(C)]
Ti'(i=4,5,6,7,8,9,10) : F~ial/BR) translates as a'(A3").

To derive sentence (9) | used Sg', S7' and S1 ', for (16)
and S*0', and for (13) and (18) S3', S4', Sg' and Sg'.

That is, Fg'(a,B) is obtained by replacing * by 0 in a.

REFERENCES

Delacruz, E.(1976)7 Factives and Proposition Level Construction
in Montague Grammar. In: Partéé, B.(ed.), Montague Grammar.
Academic Press, New York

Kiparsky,P . #C .Kiparsky(1970)* Fact. 'In: Bierwisch,M.-K.E.Hei-
dolph(eds.), Progress in Linguistics. The Hague

Molnar,l1 .(1980) * Existential Relations in "hogy"-sentences
(Sentences Containing a that-clause) in Hungarian. In:
Kiefer, E.(ed.), Hungarian Contributions to General Lin-
guistics. John Benjamins, Amsterdam

Montague,R. (1974): The Proper Treatment of Quantification in
Ordinary English. In: Thomason, R.(ed.), Formal Philosophy,
Selected Papers of R. Montague. Yale Univ. Press, New
Haven and London

Ruzsa, 1.(1978); A New Approach to Modal Logic, Computational
Linguistics and Computer Languages XII

B. SYSTEM ARCHITECTURE

Computational Linguistics and Computer Languages Vol. XIV. 1980.

ON THE BASIC CONCEPTS OF SDS
ISYSTEM DEVELOPMENT SYSTEM/
PART 1.

by
Gabor DAVID

Computer and Automation Institute of the
Hungarian Academy of Sciences, Budapest,
Hungary

ABSTRACT

The problem of programming technology is embedded here in
the more general problem of system development technology and
presented here in this environment. The reason to do so is that
the level of system development is rather architectural than
the level of programming, hence the underlying question can be
formulated: "which type of architecture is suitable for system
development"? Architecture is meant here as both hardware and
software and it is interfaced with users via the operating sys-
tem, specially designed to this problem. This operating system
consists of two pairs of /pairwise "orthogonal”/ notions of
processors and processes and of specifications and implementa-
tions. The flow of the system development /or as a special case:
of the program-development/ is an appropriate sequence of the
/verified/ steps through the specification -implementation and
allocating and activating processors - processes. The common no-
tion for these is the frame, which can be qualified by the user
as process or processor and specification and implementation.

System Development System SDS is being designed as an ex-
perimental operating system with specification and implementa-

-82-

tion languages although

described here in details.
1. INTRODUCTION, MOTIVATIONS

System development methods
cess from the
the realization

This process

of solution, until

the problem. includes

- the adequacy of

gether with its environment/

- the completeness of the description

- verified /or proved/

- a comparison of the real-life

mode1 .

From technological
reformulated as

- design methodology

- implementation and

- documentation

- verification.

They are interconnected.
of the problem means that given a

one/, in which the problem

the available

require an
formulation of problem through
of the solution

the description

point of view,

language /a formal or
is described.

languages will not be

iterative pro-
the description
and of

the questions on:

of the problem /to-

funambiguity, etc./
realization of the problem
problem and the realized

y

these problems can be

realization methodology

The adequacy of the description

natural
The system designer

should know that the description reflects the real-life prob-
lem with or without restrictions and if the description of the
problem caused some restrictions, then the distance of the "re-

duced"” model and problem is significant or not. Our approach is
that a model is adequate if every question which is relevant in
the problem, can be answered by the system designed. This is

should be formulated in

or practical requirement

the same

rather philosophical than theoretical
because the relevant questions
language in which the system had been described.

-83-

The completeness of the description is a little bit oppo-
site: if given a description, whether this model covers the
application or not. If the description is ambiguous, the model
is either empty or non-deterministic. We may assume that the
problem to be solved, the system is deterministic. The model
should not contain contradiction.

The verification of the problem-realization includes the
question of the implemented model /the system itself/ and the
description in the design language.

The process of system-development can be represented as
shown in Fig.lI,

problem-formulation
specification comparison
system-design
implementation verification
system-realization

Fig.l.
System development

where the arrows on the left side lead us to the solution and
those on the right side do the quality control of the solution
We used the words specification and implementation to distin-
guish the actions of description of what the system will do
/the specification/ and of how it will do /the implementation/
Due to the structured approach, these actions can be repeated
on the lower level again, describing the more elementary sub-
systems by specification and by implementation. Hence the
scheme can be reduced to

specification : what

implementation : how

-84-

The other side: the comparison is made between the speci-
fied system and the problem or it is made between the imple-
mentation and specification. Assuming that the problem formu-
lated in a formal language, then the comparison between the
system designed and problem, is a special case of verification,
and the development cycle is completed:

This cycle is repeated until the verification states the
correspondence between the implementation and specification,
and on the lower-level subsystems can be repeated this cycle

again.

This scheme is an oversimplified one. System development
is a process not only in time, but also in the tools applied.
In order to illustrate this, a list of cases is given as fol-
lows :

- in some phases the designer wants to use only the specifica-
tions in a structured way /hence the implementation part is
empty/,

- designer could modify, delete or rewrite the specifications,

- the implementation-part may vary in time: for example, at
the first step the designer wants to simulate the subsystem
in question and later he will realize it in an algorithmic
language suitable for his purposes, or there will be a hard-
ware component realizing the subsystem,

- the notions of specification and implementation are inter-
changeable: the implementation may consist of a set of lower-
-level specifications and sometimes the implementation des-
cribes the problem itself,

- the specification language should reflect the nature of the
problem, hence we used a set of languages in which the sys-
tems can be specified /and on different levels they may vary/.

Hence we need a set of implementation-languages, a set of
specification-languages /not necessarily disjoint ones/, and a
set of mechanism by which one can verify the described versions.

-85-

Until now we discussed mostly the requirements /but it is
not an exhaustive discussion/ to illustrate the main reasons
for research System Development System, SDS. This project
started with automatic programming /1-5/ in 1975, an indepen-
dent research was made in the line of description of control
structures /7, 8/, and for architecture-description /e/, [14]/.

SDS is an experimental operating system, integrating the
classical procedural and non-procedural /new principled/ lan-
guages, like Structure Logic Language SL /1-5/, PROLOG /9/,
following the line of Kowalski /1o/. SDS has the same philoso-
phy as described by R.M.Burstall and J.A. Goguen /11/-, R. Na-
hijama et al. /12/, and W.A. Wulf et al. /13/.

In SDS the basic notion is the frame: frames are the ele-
mentary units which can be manipulated by both SDS and the us-

er.
A frame consists of:
- specification-part and

- implementation-part.

In the specification-part the user expresses what this

frame will do: on which data-structures and which transforma-
tions will be executed on data structures, which assertions
will hold. The implementation-part is a realization of the

frame, written in an implementation language.

A frame may contain locally declared subframes and in the
implementation-part they can be activated. Also it may use ex-
ternally described frames; hence frames can be structured.

Before we would go further, let us analyse a typical ac-
tion in present-day's operating systems. The program consists
of :

- a set of declaration d
- a program-body B

-86-

and the system will execute it. We had assumed that the program

written in a language L either had been translated into an ex-

ecutable form or L had an interpreter. In a program like
integer i,j

} D
integer array x(0:10), y (0:10);
1 begin read x;
2 for i:= 1 step 1 until 10 do
3 y (i):=x (i); boB
4 print vy;
end,

The declaration-part describes a processor P /a hypothet-

ical one/ in which the data structures i, j, X, y would be im-

plemented and this processor has those instructions what L has:
P : {L,D}

The body between begin and end uses this processor only.
Let us introduce a programcounter C varying on the statements
labelled with 1,...4, initially 1.

Process F here is meant as an execution of the program-
-body by the processor
P :{ P, C B}
The counter C is shared between P and B3 we may assume that it
is a part pf the processor, but we want to separate it.

In this model the first significant step was made by SIMU-
LA '67. The concept of the class means that the processor P is
described not only by the users' data structures but the inter-
preter of the language L is extended by special "instructions",
i.e. transformations defined on user-declared data. Hence in-
stead of D we have a declaration D33in which the set of trans-
formations T has been added

D3={ D3 T }
and the processor p3 will be able to execute not only its in-
structions, but the new ones also belonging to T
P>={ L3 D3}

-87-

The process F remains the same /although in the SIMULATION
class the user may use sophisticated control-structures, manip-
ulating C/:

F: {P>, C 3 B}
In the body B the wuser may use all instructions of P*. This
step made by SIMULA '67 can be treated as a dynamic extendibil-
ity of processors. In the model of SIMULA '67, the process re-
mains the excution.

The second step is due to those which can be represented
here by Alphard /13/ introducing the forms the concept of the
process is extended: not only the execution, but the verifica-
tion, abstraction, implementation are also introduced as typical
processes and they are embedded in the language itself. /This
project has many other main results, too, but here from our
point of view we are interested in this step./ In this approach
one can build up processes with other processors not only with
the language-processor but a processor P"executing" reasoning,
i.e. the verification mechanism, Pand processes

F, A Pvr{DU B}}
The body B contains the appropriate "instructions”, i.e. logi-
cal statements for invariants, preconditions and post-asserticns,
etc., and also the declaration-part is included in this process.
/Here the counters C have been omitted./ The notion of processes
extended by Alphard and the same "body" B can form different
processes with different processors.

From this we may summarize the results quickly. In this
system of notions the language of control structures made pos-
sible to change the control dinamically /based on Petri-nets,
this result is due to Kotov /7/ and David /8/, [/14//, realizing
the notion of "computed control™. The logic programming or new
principled programming teams /1-5, 9, lo/ proved that the body
may be empty if .the "declaration-part”™ written in a logical lan-
guage having correct semantics and calculi. From this time the
declaration-part is named by specification-part.

-88-

Burstall, Goguen /11/ and Nahijama et al. 1121 showed that
with an appropriate set H of transformations defined on the
specifications /represented by D/ one can form a process of
processes

Pt <Y hU®) 3} b hoihLihg' e *hiels N,C H
Having these results, what we want to do is not else but to try
to extend all of the notions of processors, processes, specifi-
cation, implementation, control- structure, etc. more or less
systematically and apply them for system-development purposes.
SDS will do this, and it will support design-methods like struc-
tured design, non-deterministic programming, etc. also.

In our approach a frame F is a pair of specification Sp
and implementation ip

F * { IF }
and the controL-structure Ch is described in Sf, as an extension
of the notion of the "counter".
Let be given a processor p then
pp - pusF
forms an extension of processor P.P is called abstract pro-

cessor and is meant as a set of abstract data-types and the
transformations defined on them.

The ordered pair

R <P ks
is a process, /where p, - an abstract processor,/F -implementa-
tion/.

The implementation Ip is a transformation defined on ab-
stract data-types of sp hence R <can be treated as a processor

again.

Hence one can define a frame

F1 = ip 3}

-89-

with a processor

V PF KySF.

and resulting the process

in that case the frame F is activated by F

The typical batched-job run can illustrate this. In a
language, for example FORTRAN, the program F is written. The
program is the frame F , consisting of declarations and the
algorithm as the body B

F={D B}
The FORTRAN translator FT is a processor, hence

P - FTUD
declares those data on which the body B will be executed. Dur-
ing translation the process

R = <FT Dy B >
will be formed. If we have data A in this actual run, the
R« FT VD B>A >
* *

is again a process, where R stands as a processor. This rea-
soning is true, regardless of the fact that the R as an abstract
processor had been defined as a process previously and had
been translated into another processor /the existing hardware
processor/ of assembly or of lower-language. This means, that
in a deeper level of investigations /that of the system, name-
ly/ not the R itself will be an abstract processor, but the
processor of the machine-language MACHL, and R can be re-
written as
R = <<MACHL, <FT”D, B» 9,(A> 2,

*

From the point of view of the user - and his command lan-
guage - the version of /1/ is of great interest because he
sees that level and not the internal one of /2/.

The stars below commas in /1/ and /2/ should be explained.

-90

These sign just the actions on operating systems, controlled
by the users' commands, read left to right as translate and
execute. This is the everydays interpretation of the follow-
ings: In

R = <P31 >
the user says:

- qualify P as a processor,

- define with | the process R
that

role

Qualification means

regardless of the

it is a process or a processor/.

The qualification-mechanism
R can be wused as an /abstract/
inition, R should be formulated

transformations defined on them.

cribed by the algorithms,

description of what Ip will do. This means that in the same
language in which the specification-part SB of the frame F has
been described, one has to formulate Ib’ also. Let us denote
this description by 5i|'p and the algorithms realized by IF by
Ai *
i ~ »
P =)
F={S (Sj-y AT)} 13/
F F
If this frame will be used later as a processor, then the
processor
declares that one, which is equivalent with Rb from the users'
point of view. The frame F in /3/ assumes a processor PN 3
P{Sp){SI nA)}= PS U SF
F F
and this processor will interpret Ar as it is described in SI
AF F
is the process, for which
and one can form a new frame
F1={sT, (S jAj)}
1 XF Fl Fl

/falready defined/ P will
played by P

implemented by Ib

be allocated

previously /i.e. whether

assumes that a process, like

processor. Recalling the def-

as a set of data-types and the
But the transformation is des-
Hence we need the

-91-

and its processor:

=P <u S.
FI Sl mp|
In the remaining parts of “ Part Il. the informal description
of the frames will be given and the architecture required by
SDS will be discussed. In this early version the author wants

to explain those tools which are necessary during systems' de-
sign and development and integrated into the operating system
SDS.

REFERENCES

[1] David, G.:. Structured Automatized Design of Microprograms
in Large Scale Integration,H.W.Lawson et al.
/eds/ ,North-Holland /1978/

[2] David,G., Keresztély,S. and Sa&rkdézy,A.: Microprogram
Synthesis by Theorem Proving. Proceedings of the
Il. Hungarian Comp.Sei. Conf. /1977/, Part 1, 291-310.

[3] David,G., Keresztély, S., Losonczi,l. and Séarkozy,A.:
Logic-Based Description of Microcomputers /1978/
MTA SZTAKI Koézlemények, Budapest, Hungary

[4] David,G., Keresztély,S., Losonczi,l. and Sarkdzy,A.:
Microprogram Synthesis /1978/ MTA SZTAKI Koézlemények,
Budapest, Hungary

[5] David, G.: Proving Correctness and Automatic Synthesis
of Paralel Programs. In Algorithms,Software and Hard-
ware of Parallel Programs. 1980. VEDA, Bratislava,
Academic Press /in print/

[6] David, G.: Architecture Language. MTA SZTAKI Kdézlemények,
Budapest, 1979 /in print/.

[7] Kotov,V.E.: Concurrent Programming with Control Types.
In: Constructing Qality Software,North-Holland,1978.

[8] . David,G.: Description of Dynamic Control Structures,
Algorithms*79. Proceedings.

[9] Warren,D. and Pereira,L.: PROLOG-The Language and its
Implementation Compared with LISP.Proc. of
ACM SIGART-SIGPLAN Conf. on "Al and Programming Languages",
Rochester, N.Y. August,1977.

[10] Kowalski,R.: Predicate Logic as Programming Language,
Proc.IFIP Congress,1974, North-Holland.

[11] Burstall,R.M and Gougen,J.A.: Putting Theories together
to make Specifications.Proc. of the 5th IJCAI, Cambridge,
Mass .1977.

12] Nahijama,K., Honda,M. and Nakahara,H.: Describing and

-92-

Verifying Programs with Abstract Data Types. Proc. of
"Formal Description of Programming Concepts”, E.J. Neuhold
/ed./ North-Holland, 1978.

-93-

[13] Wulf,W.A., London,R.L. and Shaw,M.: Abstraction and
Verification in Alphard: Introduction to Language

and Methodology.Techn. Rep. Carnegie-Mellon University,
Pittsburgh, PA.1976.

[14] D4vid,G.: Restructurability-a Tool for Systems
Development in "Microprogramming,Firmware and

Restructurable Hardware", Lorth-Holland, /1980/ Ed. G.
G. Chroust /in print/

Computational Linguistics and Computer Languages Vol. XIV. 1980.

S1 LI CEA
A SIMULATOR FOR 'REALIZABLE' CELLULAR AUTOMATA*

W.O. HOLLERER
Lehrstuhl C fir Informatik
Technische Universitdt Braunschweig

Braunschweig
FRG

Abstract

The topic of this paper is the demonstration of a simulation
software for cellular processors which are composed of MEALY-
type cells. Although such processors are also of theoretical in
terest, here they are treated as models for (LSI-) realizable
cellular structures. This approach is motivated by the manifold
works of LEGENDI. The simulation software was developed for a
highly interactive graphic system and makes extensive use of
its capabilities concerning the input of transition functions,
the design of configurations, and the control of simulation
runs. Whenever it is appropriate and efficient the dialogue
with the system is based on light pen interactions. We made ef-
forts to design the system as self-explanatory as possible. By
our experiences, unpracticed students can start to develop
their first own cellular algorithms after a short oral introduc
tion of ca. one hour.

N This work was partly supported by the Deutsche Forschungs-
gemeinschaft, Grant Vo 287/1.

-96-

0.0 A SUMMARY OUTLINE OF SOME EXISTING SIMULATION SYSTEMS FOR
CELLULAR STRUCTURES

In the following we give a short overview of existing si-
mulation systems, as far as they have been published and the
publications have been available to us. Surely, there may exist
a lot of further simulation programs; but in general these have
been developed to test hypotheses concerning a special and small
class of problems. A typical example is the multitude of simula-
tion programs for CONWAY's game of life existing all over the
world. In this case transition function, neighbourhood and
state set are fixed and the only varying parameter is the ini-
tial configuration. As the underlying cell is a two-state auto-
maton input and (representation of) output of configurations
are no sophisticated tasks and the overall data management is
simple. The simulation systems discussed below were all designed
with respect to special problem classes, but they are ‘'univer-
sal' in that sense that they apply to a variety of application
fields which are different from those they were originally in-
tended for. A further criterion is that the discussed systems
provide higher level features for (I) definition of the space
topology (including local neighbourhood(s)), (2) definition of
the basic cell type(s), (3) (re)definition of the local transi-
tion function(s), (4) definition of (initial) configurations,
(5) formatted output of (intermediate) results, (6) control of
the simulation steps, if possible by interactive intervention,
(7) flexible control of data,- and information-flow.

BAKER and HERMANN(1970,1972) have developed a modular pro-
gramming system (called CELIA, in FORTRAN) for the simulation
of linear arrays of identical MOORE-type cells which are con-
nected according to the von NEUMANN template. As the authors'
main application field is that of biology - especially the de-
velopmental behaviour of organisms - during one global state
transition a cell may divide into two or more cells, or may dis-
appear: This program is therefore a simulator for LINDENMAYER
systems. The transition function is either read in as a table

-97-

by a standard subroutine, or, it is itself defined as a subrou-
tine in terms of (in general relatively few) logical instruc-
tions. Besides, the system allows to test for cycles - concern-
ing the overall state of the array - and to tabulate certain
(standard) phenomena as well as histograms. Special user defin-
ed statistical modules may be incorporated. The simulation runs
can be controlled in that sense that they can be stopped upon
the occurence of (the states of) certain kinds of cells. The
authors demonstrate the capabilities of their system by veri-
fying LINDENMAYER's famous example of the development of the
red alga Callithamnion Rosemium Harvey. In HERMANN and LIU(1973)
a 'daughter' of CELIA, an improved version of CELIA, is intro-
duced. Some improvements concern a more efficient memory mana-
gement making possible the simulation of longer arrays. States
are now represented by structures of (different) data types and
lists which can be accessed by appropriate selectors (for func-
tion definition and outputs). A simple interpretative control
language is added to control the execution of CELIA in the
batch environment by the user. This makes possible the simula-
tion of more than one system at a time (and to compare the re-
sults).

BRENDER(1969) describes (a compiler for) CESSL, a simula-
tion language for two-dimensional cellular spaces. The system
is implemented on a configuration of two closely (100 KHz core-
to-core) coupled small computers, an IBM 1800 and a PDP-7 with
a modified 338 interactive graphic display. CESSL is a procedu-
ral higher level language.The specifications of the cell state
structure, neighbourhood relationship, size of the cell space
and the initial states are included in the language itself as
well as the definition of the necessary subprograms that must
be supplied. The latter must define: The local transition func-
tion (in terms of logical and arithmetical expressions), (up
to ten) so-called mapping functions (mapping the actual (select-
ed field of a) state to one of 128 different graphic symbols),
user defined commands (for additional interactive control of
the simulation run), and input functions (to influence cells

-98-

by additional time-dependent inputs from the ‘'outer world").
During run time the system is controlled either from keyboard
or via light buttons on a display menue. This is facilitated by
the fact that one can only simulate arrays of up to 32x32 cells
which can be represented (by one of the mapping functions) on
one screen. The run time system permits, for example, a redefi-
nition of the neighbourhood (provided the number of neighbours
remains unchanged), the specification of inputs from the ‘'outer
world', the change of the actual mapping function and the rede-
finition of (selected components of the structure representing)
the state of single cells. BRENDER's simulation examples refer
on the first place to biological models. Keeping in mind that
a cell state can be especially a real number, it is not surpris-
ing that a further example demonstrates the solution of the
LAPLACE equation with relaxation methods. It should be mention-
ed that BRENDER gives a lot of hints concerning the development
of cellular simulation languages that exceed the frame of his
specific implementation. BRENDER and FRANTZ(1971) give an ex-
panded description of CESSL and its extensions since 1969.

LEGENDI(1976) describes CELLAS, a batch oriented, command-
type language which is implemented as an interpreter. There ex-
ist several versions of CELLAS for different computers (in
fact, LEGENDI therefore speaks of a whole family of simulators).
A very interesting variant within this family is INTERCELLAS
- see LEGENDI(1977)—which again stands for a whole ‘'subfamily’
of simulators. Roughly speaking, concerning the instruction set
INTERCELLAS is a shrunken version of CELLAS which is additional-
ly supplied with some interactive capabilities. Therefore, it
is well suited for small real-time systems like the PDP-8 or
the MITRA-15. There exists cross-software that permits to create
versions of INTERCELLAS that are adapted to the specific machine
and configuration on which they are to be run. We don't want to
go into the differences between the two programming systems and
mention only some of the common main features.

One of the most distinctive characteristics are the vari-

-99-

ous ways to define the local transition function of the cellu-
lar space. This can be done either by tables, by lists of terms,
by definition of terms in tree form, or by so-called feature
definition (for examples of these types see LEGENDI (1977)).The
space to be simulated may be inhomogeneous in such a way that
different cells may have different (predefined) transition func-
tions. The presetting of the space is facilitated by some simple
geometrically oriented instructions and copying features for
(initial sub-) configurations. The presentation of intermediate
and final results is basically controlled by three parameters
which specify (1) at which time (i.e. after how many global
transitions), (2) what subconfiguration has to be displayed,

and (3) how this should be done, i.e. there is a conversion
table defining which (external) characters correspond to the
cells' states. The simulation software was designed for the de-
velopment of cellular algorithms and higher level languages (for
g. 2- and 16-state) cellular processors. A lot of yet unpublish-
ed algorithms have been developed, e.g. concerning integer- and
vector-arithmetics, sorting and further non-numerical applica-
tions. In LEGENDI(1978) TRANSCELL, a language for the definition
and minimization of transition functions is given. The main
goals are (1) to provide a tool for an easy and impressive for-
mulation of transition tables, (2) to generate from this inform-
ation very compact (optimized) presentations. As the function
definition is performed in terms of so-called properties this
optimization must be done (3) concerning a specific set of bas-
ic properties, i.e. those that are realized by the hardware of
a given cellular processor.

SIBICA has been developed by PECHT(1977). It was designed
for the interactive simulation of two-dimensional cellular
spaces with two-state MOORE-type cells and MOORE-neighbourhood
and is implemented in RT-11 assembler for our GT-42 graphic sys-
tem. Roughly speaking, SIBICA is an interactive, stack-oriented
interpreter for operators which are defined concerning the fol-
lowing operands: Integers, transition functions, configurations,
stacksymbols and (recursively defined) lists of such operands.

-100-

Typical operators are: Arithmetical operators on integers; defi-
nition and calls of (sub-) programs; definition of transition
functions which, again, may be combined with already existing
ones by (componentwise) logical operations to form new ones.
Configurations can be input from keyboard as 4x4-subconfigura-
tions, or in an obvious way by light pen interaction. During
run time the local transition function, (sub-) configurations
and the control program may be modified in various ways (con-
cerning the sources for that changes). As the structure of the
original system is very complex, for an easier handling of the
basic operations a block oriented control language - BISICA -
was integrated. A typical task for SIBICA was the search for
all stable 4x4-configurations in CONWAY's game of life. We men-
tion this example to illustrate that SIBICA provides the mecha-
nisms for the algorithmic generation of (in our example, all
4x4-) configurations (and, as the transition function is sym-
metric, to omit the symmetric ones).

VOLLMAR(1973) has developed SICELA, a simulation system
for two-dimensional cellular spaces. It is implemented in
FORTRAN as an interpreter. Therefore, the system is really port-
able and easily adaptable to special user demands. For that rea-
son SICELA exists in a lot of versions, and, as far as we know
it is the most spread out simulation software for cellular
spaces. In contrast to all simulators mentioned until now,
SICELA allows to define totally inhomogeneous cellular spaces.
l.e. the cells themselves as well as their neighbourhood con-
nexion scheme may vary from point to point of the underlying lat-
tice. A further unique feature is that to each cell type there can
be explicitely allocated a (fixed) number of counters that are
updated during each transition step dependent in the neighbours'
states. Note, that (1) implicitely this is possible e.g. in
BRENDER's system, too, (2) these cells are specifically organiz-
ed MEALY-type automata. These principles were originally intro-
duced by the aim to keep the transition tables small and simple
concerning special biologically oriented simulations (see e.g.
VOLLMAR 1973)). Originally, SICELA was designed for batch-ori-

-101-

ented systems; therefore,all definitions fixing a cellular
space (e.g. the transition table or initial configurations)
must be defined in the system itself or be read in as data.
BREDE and SZWERINSKI(1979) have added to SICELA a lot of new
features which make the system more comfortable to the program-
mer and provide interactive capabilities; but as far as these
additions concern graphic capabilities they are only applicable
to our present machine configuration (a PRIME 300 as host com-
puter and a GT-42 as graphic terminal). Local transition func-
tions can be computed now, i.e. the basic types 'logical' and
‘integer' with the full set of operations are introduced as
well as 'if-then-else' and 'while' constructions for computing
the next state by expressions. Configurations can be generated
by repeated setting of a subconfiguration which, again, may be
mirrored or rotated. The output of intermediate results can be
formatted in various ways; concerning the graphic display states
can be represented by user-defined graphic symbols and such fi-
gured configurations can be copied by the (HP 7245A) plotter.
During run time the simulation can be controlled from the screen
by light pen sensitive buttons which correspond to (sequences
of) SICELA commands. Naturally, cell states can be redefined by
light pen interaction in this context. It should be mentioned
that the interactive capabilities of SICELA - as far as they
are not specific for the graphic terminal - are available with
any alpha-numerical terminal, too. The interactive version of
SICELA is therefore adaptable to any (virtual) multi-user sys-
tem (provided with FORTRAN). The improvements resulted from the
aim to make the handling of the system more comfortable with
respect to research that had been done by our chair concerning
the 'Computing Space' of K. ZUSE(1969). The object of this work
was the modelling of physical laws in a cellular automaton which,
again, serves as a model for the physical space. A further vari-
ant of SICELA is SICELA-H. This adaption was done by LEGENDI
and DIOSLAKI(1979). Mainly they improved the original system in
such a way that the originally format driven input is abolished
by a preprocessor.

-102-

0.1 MOTIVATIONS AND THE STRUCTURE TO BE MODELLED

In the rich literature on cellular automata (e.g. see the
surveys of SMITH(1976) and VOLLMAR(1977)) most of the authors
concentrate on such, where the basic cell is a MOORE-type auto-
maton with identity output function. At least with respect to
(LS1) hardware realizations this is not very realistic, because
in this case we have to keep small the complexity of the neigh-
bourhood connexions (LEGENDI(1976)). Three consequence are:

- the choice of a simple neighbourhood (e.g. the canonic-

al von NEUMANN neighbourhood),

- a distinction between internal states and outputs,

- to keep the number of output lines small.

On account of the last two points it seems to be natural to
choose a MEALY-type automaton as the basic cell for the models
of 'realizable cellular automata'. But there are still some
other reasons for this choice.

Consider a MEALY-type cell M= (I, Q, 0, 6, w), where O
is the output alphabet and | = 0**°ExOgxOwxCc is the input
alphabet, and (X =0, ie(N ,E,SW,C}, and Q is the alphabet
of internal states.

6 : IxQ mQ is the next state function, and
w : IxQ -» O is the output function.

The cell works in the usual way: dependent on its own (Centre)
and its (North, East, South, West) neighbours' outputs it calcu-
lates its next state (by means of 6) and the next output (by

means of w). ON

Fig. 0.1

Then
(the

-103-

M can be decomposed into two MOORE-automata and M
latter at the first glance non-deterministic), where Mg

can be imagined as an automaton performing a microprogram which
indicates to the automaton the (index q of the partial)
function v to be applied (Fig.0.2).

W ((

Formally, we have

- = (1,Q,Q,6,id), where
$ 1 Q Q is the next state function from above, and
id: Q »Q is the identity output function on Q.

- Mu = (ONxOEx0sxOw, 0C, o, {cog | qge Q}, id')/ where

e

i le QF is the set of transition functions, and

id" : O¢ + O is the identity output function on 0C = 0.
And the connexion between and My is given, setting
), Ogq) —o((g",0g,0g9,0",0"), q) for all inputs

and for all states.

At a first glance, this decomposition seems to be a very

formal and artificial action. On the other hand it illustrates

that

it is admissible to associate with a cell at any instant

-104-

the present state and the present (index of the) function to be
applied. Besides, such a decomposition (introduced by LYAPUNOV
and YANOV) was used by GLUSKOW as a model for ‘real' microprog-
rammed computers. With respect to an LSI realization it is desi-
rable to pack as many cells as possible on one chip (LEGENDI
0-976) claims 10 to 10 «cells/chip). This can only be reached
by a reduction of the cell size itself. On the other hand there
are experiences from cellular programming advising us not to
choose the cell to small concerning the number of functions to
be implemented. Bearing in mind that the cell size is to a large
extent determined by the microprogrammed control unit - i.e.
the transition table complexity - from these two aims obviously
results a conflict.

To escape from this dilemma, LEGENDI(1976) therefore propo-
ses to emulate cellular automata according to the following

scheme (Fig.0.3):

Fig. 0.3

-105-

- The cellular structure itself is built from the less com-
plex operational units Mu.

- The generally much more complex control unit My is
only existing once (or 'few times') and shared by the
operational units in order to calculate their next out-
put and the index of the transition function to be ap-
plied next.

If we understand 'sharing a common microprogram' as a se-

rial process this concept could be filled out with a structure,
sketched in Fig. 0.4.

Fig. 0.4

The cellular structure is built from uniformely connected 'pseu-
do-cells’ which are functionally realizing the operation
al units . In order to perform this task the 'pseudo-cells’
are linked to a common bus system controlled by a unit, called
CCU. Among other things the CCU functionally realizes the con-
trol unit M~ This is done in the following way:

-106-

Initially the CCU is loaded from the host computer with the

needed - not necessarily complete - transition tables represent-

ing the partial functions w . To emulate one transition of the
underlying cellular automaton the CCU steps through these tab-
les and sends them line by line ((0"T,0”, 0", 0" 0", qfc,ot+1,qt+1))
consecutively to the bus. The 'pseudo—ells' are equipped with

a logic enabling them to perform the basic tasks roughly sketch-

ed in Fig.0.5 :

Fig. 0.5

-107-

Thus, after one run through the set of transition tables
by the CCU each cell has assumed its next output as well as its
next function index, and one global transition has been perform-
ed. From this results that one emulation step directly corres-
ponds to the overall number of entries in the transition tables,
and, one consequence is that the transition tables should be
specified as little as possible. Concerning the layout of the
bus this means that it must be equipped with a care/don't care
logic permitting to 'mask out' the outputs of irrelevant neigh-
bours. As in many cellular algorithms (e.g. arithmetics and
sorting) a cell is only influenced by few neighbours from this
design principle there results an enormous increasing of the
time/performance ratio of cellular algorithms by orders of
magnitude.

It should be pointed out that LEGENDI proposes this
'table-driven' structure of 'pseudo-cells' as 'the organic
part of a computer architecture'. This fact is indicated in
Fig.0.4 by the link to the host computer.

The structure is much more flexible than the structure
(an array of MEALY-type cells) we started from. As the transi-
tion table is centralized it can be easily exchanged, which
means that (0 and Q fixed) any pair of functions 6 and w
can be implemented. The transition table can even be swapped
dynamically after each global transition. The proposed struc-
ture is therefore comparable with the advantages of microprog-
ramming to the architecture of conventional computers, and, on
account of its high flexibility, it is more than an emulator for
cellular spaces, but a self-contained conception of a cellular

structure.

-los-

0.2 THE DESIGN OF A SIMULATOR FOR A LEGENDI-TYPE CELLULAR
STRUCTURE: S I LI CEA

The simulator is implemented on a system GT-42 which is
roughly speaking a PDP 11/10 additionally equipped with a graph-
ic processor and a vectorized working screen with a resolution
of 1024*IC>24 points and light pen interaction capabilities.
The structure of the actual configuration is sketched below
(Fig.0.6):

Light Pen

Fig.0.6

The main advantages of the system are obviously its graphic and
interactive capabilities. Its disadvantages are obviously the
small primary- and secondary-storage capabilities. It should be
mentioned that during the implementation period the configura-
tion neither contained the fixed head disk (enabling the effici-
ent handling of overlay structures) nor the plotter (which is in

-109-

the first place used to procedure hard copies of the screen).
This had consequences concerning the software architecture.

SILICEA allows to simulate arrays of up to 128x256 cells
Concerning the basic cells the set of external states (i.e. the
output alphabet) is 0={0,1) (1 Bit); the maximal number of qua
lifiers - i.e. the number of different function indices, or in-
ternal states - is 128 (7 Bits). The choice of 0 is motivat-
ed by the aim to reduce the neighbourhood connexions to the mi-
nimum. From the theoretical point of view, we want to find out
whether it is possible to develop efficient (concerning the
time/space complexity) algorithms with a two-state cell. The
choice of the array size and of the number of qualifiers is ob-
viously determined by the machine's size and structure and the
aim to avoid overlay structures whenever this is possible. In
order to attain efficient run time characteristics (e.g. it is
hard to keep a packed screen flicker free by programming it in
a higher level language) SILICEA was implemented in RT-11 Macro
Assembler.

From our point of view the development of cellular algo-
rithms is in many stages strongly related to the interactive
manipulation of geometrical objects. For example, starting with
some basic cells, these are geometrically arranged to form a
subconfiguration which again may be combined with another sub-
configuration, and so on, until a configuration is established
that performs some cellular algorithm. Bearing this is mind we
tried to make extensive use of our system's graphic and inter-
active capabilities whenever this seemed to be advantageous and
to meet the requirements listed below:

- Simple and impressive input of transition tables. Easy
access to the latter for the purposes of editing, renam-
ing, copying (into different libraries), etc..

- Qualifiers can be associated with free definable graphic
symbols in order to allow an impressive identification

of cells conerning

-110-

their location in libraries,

the arrangement of cells to bigger units during the
MOLECULE phase,

the interactive control of the real simulation during
the EXEC phase, where the dynamic behaviour of single
cells, i.e. the actual state and qualifier and their
change to the next state and qualifier , are of inte-
rest,

classification: different qualifiers can be associated
with the same symbol,

selection: cells can be located on the screen without
knowledge of their absolute coordinates.

- Easy and comfortable arrangement of cells (referenced by
atoms here) and already existing configurations (which
we call molecules here) to form new configurations. As
these geometrical operations are performed without expli-
cit knowledge of absolute coordinates, here seems to be
one of the most powerful applications of the graphic sys-
tem's interactive capabilities.

- Comfortable presetting of molecules with initial states
including editing functions.

- Implementation of a simple but powerful control language
making possible

an efficient supervision of the real simulation,
an easy development of cellular algorithms by inter-
actions during program execution (break in and trace
concepts!),
flexible format-controlled layout for the output of
(intermediate-) results to all RT-11 devices in order
to reduce the amount of information,

and, producing good run time characteristics.

It should be emphasized that the purpose of the simulator
is not to simulate the structure of a ‘'table driven cellular
processor' but to develop cellular algorithms that can be run

on such a structure. In some sense any simulator for a cellular

-111-

automaton is a table driven device, which means that in general
the transition table only exists once, and, concerning the sin
gle cells only as much information is held as necessary to com-
pute their next (overall) state. Thus, SILICEA can be regarded
upon as to be a simulator for cellular automata, where the bas-
ic cell is a MEALY-type automaton with the above mentioned re-
stictions concerning the cardinalities of the sets of external

and internal states.

When building a simulator, one of the most important prob-
lems is always how to represent and to input the transition tab-
le: In our case the latter may have up to |O5]«IQI = 25,27 =
= 4K entries. From existing cellular algorithms we can derive
that in practice the underlying transition table is not an un-
structured list but can be disassembled in subtables defining
subautomata (in the usual sense). Thus, it is an obvious advance
to compose the transition table successively by the transition
tables of subautomata which, again, are composed from socalled
atoms. By an atom we understand a single qualifier qg~(CKQq"£I27)
associated with a transition table 1™ which may be obviously
identified with a mapping r”~:(0,1}5xiqi} -+ {o,1}x{o,1,...,127}.
A local partial function is defined by a set of qualifiers
Q" = (qo>qgpee»gn)f (0<n<_127), such as to the induced mappings
Ti ,(0<i_<n), for all inputs pe{0,I}y5 it holds that T (P,p*_)e(0,1} x
xQ". Thus we have defined a subautomaton in the usual sense, and,
returning to the notion we started with 6 and 0 are

IXCr IxQ
well-defined.

In the following we give a short description of the user
interface of SILICEA, whereas we do not go into the details how
it was implemented. Basically, concerning the figures it should
be mentioned that m is always a light pen sensitive switch, and,
that light pen interactions are possible and can be combined
whenever this gives sense. In its entirety the simulator as well
as some utility routines are described in the german user hand-
book, SILICEA(1979).

-112-

1. ATOMS

An atom is uniquely defined by a qualifier and is (not ne-
cessarily is a unique way) referenced by a name and a graphic
figure or a pair of hardware-generated special symbols. In the
first instance an atom exists or is to be defined with respect
to the library at the moment being used. Fig.1.0 shows the lay-
out of the screen the system initially responds with

« ATCM « MOLECULE m BEXEC
LIB-1 USED . SORTER LIB-2 USED , SORHF
B STOP CYCQLE

* DEFINE ATGM

m EDIT ATGM
B COPY ATOM
B ASS LIB-1 2-0 '000
I ns-XOR (001) ©
¢ ncomp (002) =
B ASS LIB-2 a<b (003) 1
* acomp (004) «I1
v a(C0o0S) 1
B LIST LIB 1 a>b (006) <+
w-poll 00 =
w-?del (020) <N
B FIGURE w-£del (G21)
*-2del (e22:
*_
5 2del (@3) +4
« FREE CORE

Fig. 1.0

And, in general, one of the first actions is to assign the Ilib-
raries we want to work with. This is done by marking the appro-
priate switches (ASS LIB-1, ASS LIB-2) and entering the apper-
taining standard RT-11 names from keyboard. The library in pre-
sent use (LIB-1 USED, LIB-2 USED) is blinking and we can change

-113-

over to the other one by marking it with the light pen. Marking
the switch LIST LIBrary results in the representation of the al-
ready existing atoms in a special scrolling area of the screen.
In Fig.1.0 we see this listing: E.g. there exists an atom
ns-XOR with qualifier 001 and the user-defined symbol ® ;
the atom ncomp is associated with the pair of hardware-gene-
rated symbols <=+ The advantage of user-defined symbols is
that they can be formed very impressive concerning the local
partial function of the cell they are associated with; their
disadvantage is that their drawing is very time-consuming, and,
thereof may result a flickering screen during the MOLECULE- and
EXEC-phase when we have to deal with bigger structures built
from cells. This can be avoided by the use of pairs of special
symbols (so-called shift-out characters, including the 'blank’
symbol (see the atom w-poll)). Examining the atoms named w-2del
we see that the unique identification of an atom is its quali-
fier; besides, these four atoms define a partial local transi-
tion function such that the cell - initialized with qualifier
20 - delays the west neighbour's output by two time-steps. It

is obvious that one needs four qualifiers for internal storage
to perform this task. This is onlyymentioned to make clear that,
in some sense, in many applications we cannot make such a clear
distinction between 'data' (i.e. outputs or external states)
and ‘'function' (i.e. to comprehend the qualifier only as a func-
tion index) as it would be desirable with respect to the clari-
ty and transparency of (the development of) cellular algorithms.

1.1. DCFINE ATOM

If we have marked this switch an initial dialogue is
started, and, to begin with, we are asked for the symbolic name
of the atom we want to define. Afterwards we are asked for the
qgualifier and the input qualifier is checked whether it already
exists in the library. |If this is true an error message OcCCUTrS
and the dialogue restarts. This difficulty can be avoided by
generating the qualifier automatically (see Fig.1.1). If we
mark this switch the first unoccupied qualifier is offered. W

-114-

can confirm this choice, or, marking
unoccupied qualifier is offered.

SNTEN SYMBOLIC NAME

the switch again

-ENTEM QUALIFIE* , U1

GENE*ATE QUALIFIEN

Fig.1.1

n.-XOF

Eventually this initial dialogue will

ended and it is turned over to the next display

m ATOM « MOLECULE
LIB-1 USED i SORTER
m STOP CYCLE
DEFINE ATOM « nm-XON <0QU
» LIST LIB

a COVPLETE NOW

Z-0 (000) 1|
1 ncomp (002) i
4, a<b C003) 1
mComp G043 «T
* a<b (005) 1
'V a>b (006)
1 w-poll (010) @

w-2del (020) «3
w-2del (021) 3
w-2del (022) «4
w-2del (023) +24

Fig.1.2

DO YYD OO

BEXEC
LIB-2 USED i SG&HLP

5 WNE

Ha Ha
0« 0%
o« I M
I» oy
|
o* o*
oR | «
1K OK
1K 1«

PRPRPRPPRPOOOO

the next

be successfully
(Fig.1.2):

ORPRPOORRO

LIST LIB performs the same function as mentioned above.

CYCLE is the exit from this section
having occured until now. The normal

exit

'forgetting’

saving

all
the

result

O NEW QAL I

a
001

001
001
001
001
0)1
03!

activities
of

-115-

all activities (i.e. the established transition table) s
COMPLETE NOW. Fig.1.2 shows the end of a session during which
we have defined an atom ns-XOR having occupied the qualifier
001. The right side of the screen shows the established transi
tion table which may have up to 32 entries. In our case it has
8 entries because we left the east and the west neighbours’
states unspecified; this is indicated by the * symbol (i.e.
don't care) in the table. Fig.1.3 shows that initially the sys
tem responds with a totally unspecified table. Concerning the
old state (OWN) the table is preset with the two alternatives
0 and 1; the next state NEW is in both cases preset with 0
whereas the next qualifier (QUALIF) is preset with that we are
starting with, namely o0o01.
+ ATOM m MOLECULE 1 BEXEC
LIB-1 USED | SORTER L13-2 USED = SORHLP
m STOP CYQLE
S WNE OM NEW QUAwUI:
DEFINE ATOM , nm-XOR (001) iotovoe . .
1o o< 0 0 001
m LIST LIB D S ot
m COVPLETE NOWV
Fig.1.3
Starting from this rudimentary entries the transition table is
successively developed. This is done by three different opera-

tions :

- Expand don't care.
W and an appropriate
position is

cupied by a don't care

doubled and the don't

line
uniquely determined.

symbol *
care

Marking one of the neighbours N,E,S,

the transition table one
If this
the marked

the

in

position is oc

line is

is expanded to two alter

-116-

natives ¢ and 1. If this position is occupied by a 1

or a ¢ it is searched for a line that differs from the
marked one only in this position. If this is true the
two lines are fused to one line by inserting a don't
care symbol at the marked position and deleting the se-
cond line; thus we have an operation Retract which may
be considered as the inverse of Expand. If this is not
true an error message occurs and the command is ignored.

- Invert NEW. Marking NEW and an appropriate line of the
transition table results in inverting (0+1 and 1+0) the
so selected state. Naturally, Invert is invariant a-
gainst twice repeated application.

- Change QUALIF. Marking QUALIF and an appropriate line
the system is prepared for replacing the selected qua-
lifier. This can be done in three different ways:

First, we can enter the new one from the keyboard.
Secondly, we can mark an existing qualifier in the
scrolling list of the atoms.

Thirdly, we can mark (the line of) a qualifier al-
ready existing in the transition table.

Obviously, any atom (and therefore any local transition func-
tion) can be easily established and even edited during the in-
put by these operations.

1.2. EDIT ATOM

After some initial dialogue (the simplest way to specify
the atom to be edited is to mark it in the scrolling area) the
system responds with the screen which is shown in Fig.1.4:

-117-

m ATOM = MOLECULE « EXEC
LIB-1 USED . SORTER LIB-2 USED . SORHLP
« STOP CYCLE

OMN NEW QUALIF

a
001
001
0,1
001
001
001
001
001

EDIT ATOM r nm-XO/r (BED

ROT 90 DER

a MRROR S-N

DYDY DD

= hOO——0O0 9 O
Xyooxxxx®=
RPOROROROY Z
XXXX2ynxxn®m

Z° a0 e
ns-XOR (001)
ncomp (002) «1

P R, OO0OO
orRroox—o®

a DELETE ATQM),

a<b (003) 1_
\ (004) «I

a FENAVE ATOfy g0gmP ol |
I a> (006) «+

a LIST LIB w-goll (010) «
w-2del (020) «4

w-2del (021)

a COMPLETE NOW W' 2del (022)
w-2del (023)

Fig.1.4

Naturally, all operations (Expand/Retract, Invert,
Change) that have been described above are applicable to the
displayed (here ns-XOR) atom, too. And, there are some further
operations. Marking ROT 90 DEGR results in a cyclic shift of
the neighbours7 states: E>N~W'S*E By MIRROR S-N the states E
and W are exchanged. The effect of these operations is immedia-
tely applied and therefore visible. In connexion with the COPY
ATOM feature (see Fig.1.0) it is easy to derive similar atoms
from an already existing one. The functions DELETE ATOM and
RENAME ATOM are applied and initiated, respectively, by marking
the appropriate atom in the scrolling area; the complete dialo-
gue (which can be held from keyboard, too) is not demonstrated.

-118-

FIGURE and CHAR

During these two program sections either user defined
symbols can be established or a pair of special characters can
be arranged, and, in both cases, afterwards allocated to an
atom. Fig.1.5 shows the screen during the FIGURE section after
we have defined a figure. This had been done using the two
switches POINT and LINE. If we mark one point in the grid and
afterwards mark POINT we have fixed an absolute point; if we
afterwards mark LINE we draw a vector from the last marked
point in the grid to this point. CLEAR retracts this step. |If
we mark ALLOCATE FIGURE the scroller for the figures are turned
on. In Fig.1.5 the latter only contains the just defined figure
which is referenced by the pointer. By marking ns-XOR the allo-
cation takes place.

The allocation of figures consisting of a pair of speci-
al symbols is very similar to the above mentioned procedure.Fig.
1.6 shows the screen during this program section: By moving the
bar under the list of special symbols we select a symbol, and,
marking SET FIRST or SET SECOND we position it at the corres-
ponding place of the pair to be defined. Repeated application
of this procedure overrides previous set symbols.

m ATOM
LIB-1 USED | SORTER
S STOP CYCLE

F1 CUKE-CHANGE

a LIST FIGURE-DIR

a ALLOCATE FIGURE

8 DELETE

-119-

= MOLECULE

a COVPLETE DEFINITION

=0

na-XOR
J, ncomp

m<b
* acomp
a<b
a>b
w-poll
w-Zdel
w-2del
w-2del
w2d*“l

- =

(000)
(001)
002)
(003)
(004)
(005)
(006)
(010)
(020)
(021)
(022)
(023)

Fig.

a BEXEC
LIB-? USED | SORHLP

LIST’NG OF FIGURES

© ORIGINAL SIZE m

a line
a point

a CLEAR

1.5

-120-

m ATOM = MOLECULE m EXEC
LIB-1 USED . SORTER LIB-2 USED . SORHLP
« STOP CYCLE

CHAP-CHANGE

« ALLOCATE

Zsdi* TIKXSTiN-Tiri-i'~M0
m SET FIRST
« SET SECOND FIGURE i «d

Z-° Coo0) i

ns-XOR coon ©
J, ncomp (002)

a<b Cco03) i
* scomp (004) «T
*j4 a<b (005)
1 a>b (006) «¢

w-po 11 (010) =
w-2del (020) «-d
w-2del (021) «-d
w-2del (022) «d
w-2del (023) «-d

Fig. 1.6

-121-

2. MOLECULES

Concerning the usual terminology in the theory of automa-
ta a molecule is, roughly speaking, corresponding to a (initial-)
configuration, i.e. a function cM: {0,. ..,255}*{0, ..., 127}
0*Q. Thus, every automaton within the finite integer grid to be
realized is at any time step defined by a state and a qualifier.
At least the behaviour of an automaton is defined by the (de-
fault) qualifier o, i.e. the transition table which assigns to
an automaton independently from the neighbours' states the next
state 0 and the next qualifier 0. In the following we iden-
tify a molecule with the set of automata having not occupied
the qualifier o, i.e. with its support
sup =M)= {(i,j) I cM((i,j)) @& (0,0), o0eO, 0<i<255, 0<_j<_127).

IT we reference a molecule as a geometrical object, we referen-
ce it by the south-east corner of the minimal circumscribing
rectangle of its support. The purpose of the MOLECULE phase is
to create more complex molecules from less complex molecules
and from atoms. Besides, after a different initial dialogue the
switch EDIT MOLECULE results in the same screen as DEFINE
MOLECULE. This screen is demonstrated in Fig.2.0.

The screen is essentially subdivided into four areas be-
ing of basic interest. The upper left area is occupied by the
switches. Under that there is the scrolling area which contains
- dependent on the marked switch - the directory of the so se-
lected objects, i.e. ATOMS, MOLECULES, or LABELS, respectively.
In Fig.2.0 our well known atom directory is switched on. Thus,
we are performing a SET ATOM operation. The upper right region
contains a rectangle which represents the total grid of 128*256
automata to be simulated. Within this rectangle a window (in
Fig.2.0 located in the left down corner) can be roughly posi-
tioned by marking appertaining positions at the light pen sen-
sitive edges. The fine positioning of the window is done with
the bars of the cross at the right side of this area. By mark-
ing one of the bars the window moves stepwise (incrementing/
decrementing the x/y-coordinates) into the marked direction.

-122-

This process is controlled by the contents of the window which
is displayed in the square under that. Within this area the
automata under consideration are represented by their allocated
figures. The window contains 20x20 automata, and, the actions
to be performed on these automata are controlled by a cursor
which, again, is set by the light pen sensitive edges. As, for

instance, the identification of an atom is in general not unique,

we can mark this atom with the cursor. Marking afterwards NAME
the name and the qualifier of this atom are displayed. Fig.2.0
shows the result if we had marked the atom scomp with the cur-
sor in position (2,0). If we afterwards mark FIX the allocation
of this atom is definite in that sense that it can only be re-
tracted by FORGET. A simple repeated structure can be generat-
ed in the following way: Firstly, we position the cursor and
allocate an atom by marking it in the atom library. Afterwards
we position the cursor again. By the first and the second posi-
tion there is uniquely determined a rectangle with edges in
parallel to those of the window. If now is marked REPEAT this
rectangle is filled out with that atom (and can be Fixed!).

Molecules are allocated by a similar procedure: mark SET
MOLECULE select molecule (from directory) mark FIX. But, in
contrast to atoms a new situation may arise; namely, the (sup-
ports of) two molecules may superpose. In this case we have to
make things definite. By AND the intersection of both supports
is displayed and is viewed in the (appropriately positioned or
moving) window. By marking OLD the atoms of the first loaded
molecule are displayed, by marking OLD again those of the se-
condly loaded one are displayed, etc. The Fixed new molecule
is built from the displayed constellation. The process whether
the OLD or the new molecule should define the intersection is
supported by turning the switch OR on or off in order to dis-
play the symmetric difference of both supports or not, depend-
ent on the fact whether this information is helpful or confus-
ing. Thus, by pairwise well defined combination we are able
- starting from simple atoms and molecules - to establish very
complex molecules. It should be mentioned that this process is

« ATOM
LIB-1 USED
m STOP CYCLE

EDIT

MOLECULE . LOCSOMT

« SET ATOM

a SET MOLEQULE

B LABEL-PAGE

a QOMVPLETE
= o (000)
ns-XOR (001)
nco.np (002)
ace (003)

a see-mp (004)

~ A (005)

| a (006)
w-poll (010)
w-2del (020)
w-2de 1 (021)
w-2del (022)
w-2del (023)

supported by the
possible to
over to

nary strings.
commands.

I SORTER

s MOLECULE .

<l

»T

il
e+
€

*.

+A

*.

interactive
interrupt
the EXEC phase,
ration whether it
cule LOCSORT which
This
Afterwards we switch back to

really functions.

is

simple structure

-123-

EXEC

LIB-2 USED i SORHLP

reduced area for
256x128 automata

-»-window

a Figur? a omn a sit s a scoping

contents of window in ori-

ginal size (20x20 automata)
r i
G @
c-r-nE3.
a forget a fix A repeat
Fig.2.0
execution language. It is

the design process
the so established
E.g.

to work as a

and to test
Fig.2.0 shows
intended local
is easy

the

(COMPLETE), to

sorter

oon X-POS
000 Y-POS
S SET LUPE

a name

002 X-POS
000 Y-POS

« AD
« AND
A)P

;
1
.
1
 :

a stat

always

switch
configu-
a mole-

for bi-

to verify by some
MOLECULE phase and

we can be quite sure

ly

works;

as

sorting element.

I ATOH

LIB-1 USED |

m STOP CYCLE

EDIT
MOLECULE « SORT

SET ATOM

SET MOLECULE

LABEL-PAGE

COMPLETE

LOCSORT
3S

SORT
TST

S2

-124-

that the shorter shown in Fig.2.1 proper-
it presents itself as a repetition of the local
= MOLECULE B EXEC
SORTER LIB-2 USED SORHLP
oCco
000
« SET | UDE
a FIGURs a own a bit 6 a scoping a NAVE
004
000
* OD
1003,003}
1013,003} a AND
1013,024]
1013,007] 9 CP
1013.003]
a Z-a
jrr l€ r/jr f €je @ FOF [T € i
Je o O 0™ v STATE ;
jf F tr- <«ke ke FIF Jr rOtv x| 8 INY
orr br o or r |
> Vv e Je tv »Ird>vi-tv TOr4&e rartvt | SET
lov r 0OV V ©V r
Vv TONtv T v vty I Ir TOtv ~ex0v a Cl»
1 oV T ©V v O Vv 1
f VTOr4 TITtv ver- 4rvey tv rOr4r TOTtv ! a STAT
S ©V © Vv *e © VvV \% 1
fcJdt tA Jt.cA _Ni3tiv. j-_J
B FORGET B FIX 8 REPEAT

Fig.2.1

-125-
3. STATES AND DATA

A molecule (more precisely the whole simulation area) is
preset with state 0. By marking STATE and afterwards SET the
automaton which is referenced by the cursor indicates by a small
bar that it is preset with state 1 if we FIX this action.Again
the repeat function can be used. Let us assume that we had run
through a sequence position cursor *» STATE % <action> @posi-
tion cursor * REPEAT M FIX. Concerning the rectangle determined
by the two cursor positions the effect depends on the type of
<action>. SET: all automata are set to state 1. CLR: all automata
are reset to 0. INV: all states are inverted. Naturally, all
functions (e.g. AND, OLD) apply to the states, too. With one ex-
ception: if two molecules superpose and STAT is marked then the
atoms of the first loaded molecule remain unchanged, while the
switches OLD, AND and OR affect the states of both molecules as
described concerning qualifiers. Thus, we have the facility to
carry over the whole 'pattern of states' from one molecule to
another without altering the qualifiers of the latter.

One of the most powerful application fields for cellular
processors might be seen in the implementation of pipeline
structures. In these applications we understand a configuration
as a (less or more complex) functional unit that transforms a
steadily fed in stream of data to an output stream of data. For
the simulation of such structures we must provide means to con-
nect single automata to an input library as well as to an out-
put library, repectively. Besides, the capability to influence
a cellular automaton by inputs from the ‘'outer world' is of
pure theoretical interest, too. Marking LABEL-PAGE results in
the screen which is shown in Fig.2.2. A sequence mark DEF m
position cursor % enter symbolic name for label from keyboard
mark GET NEW LABEL causes the so defined label to be appended
to the label list. Fig.2.2 shows the situation after the
last definition of label OUT5 with obsolute coordinates
(012,023). If two molecules superpose, dependent on how we
define the resulting structure, by GET NEW LAB labels of the
second loaded molecule (with recalculated coordinates) are

-126-

. ATOM a MOLECULE
LIB-1 USED . SORTER
- STOP CYCLE
EDIT
MOLECULE , SORT
1 LIST LABELS
a DEF. ,A‘
1 MFTP 1AR '
- LB a FIGURS
a QUIT
OUTS 1012,0233
| OUT4 [010,023]
4 OUT3 [006,0231
aun 1004,0231
oun (002,0231
1 Qo (000,0231
1 ING (012,0001
INA [010,0001 t *p*ke
IN3 [006,0001 ©~7 «
IN [004,0001 le « e
INI [002,0001 ©
IND [000,0001 p % (ilele
© « «
-« A~ T
©
fm A

— O -
L-k _nar_tr_TAT.r_TATJT-

a FORGET

9 BEXEC
LIP-2 USED . SORHLP

axo
ao
* sET LWE
a onn a bit 6 « scoping a NAPS
000
I QD
B UD
I 1 AD
4 (R
) 0 Z-0
e % Rf Ae A BSR4/~ L
© = *—A © « 4 1 STATE |,
W< Al +0- Ae <A ke A Re B INV
Cl4 4 ok !
P TRe AR AR AAE e A~ A Te i 9 77—
@4 4 © « < }
Ke T R~ Xe ™« P * AR
« ©«- <« ©e- * i
A% T A Ae WA e *A* Je +A*-Twe a STAT
©4- 4 ©4- <«
_t-TiAZin Map |
a FIX a REPEAT

Fig.2.2

-127-

appended to the label list of the resulting molecule. The dyna
mic supply of labelled automata is controlled by an EXEC-prog-
ram (see 4.2.2). Fig.2.3 shows the initial screen from which

all activities concerning molecules are started:

m ATOM m MOLECULE « EXEC
LIB-1 USED « SORTER LIB-2 USED » Sr»'LP
¢« STOP CYCLE

DEFINE MOLECULE

S EDIT MOLECULE

PELETE MOLECULE

DELETE TEMP-MOL LCC30RT 1003.0031

| 3S 1013.0031

X SORT 1013,02*1

«LIST ATOMS TST [013.0071
« 62 [013,0031

LIST .MOLECULES T

RENAME MOLECULE

FREE CORE

Fig.2.3

4. PROGRAM DEVELOPMENT AND PROGRAM EXECUTION

The real simulation (i.e. the transitions of defined con-
figurations) is supervised by so-called EXEC-programs. Natural
ly the language must have more capabilities than a 'naive' ad-
vancing step by step through the transition table to perform a
given number of global transitions. At least, this is true for
the period where cellular algorithms are developed and tested
out, and, for the representation of intermediate and result
configurations. The basic properties of the control language

-128-

defines the states of the input automata. Analogously,
a WRITE statement causes the states of the output auto-

mata to define the next word of the output file.

4.2.3 Concerning outputs, the screen plays a special role. By
the statement WRC DISPLAY ('y-pos', 'x-pos'),the output

is directed to the screen in a special performatted way:

« ATOM * MOLECULE « EXEC

m BREAK [N
*« FIGURS = OMN a BIT S

m NO MAIT

m FREE CORE

10

ca ALL INPUT - LINE BY LINE - FROM KEYBCARO «)

-LIB'SORHLP.LIB* C* SELECT LIBRARY *3

-RDC'SORT* CM SELECT CCHFIGURATIOH *)

-EXTERNAL INO,INI,IN? .IN3,IN4,INS (m DECLARE INPUT CELL? *3

-EXTERNAL 0OUTO,OUTI,OUT2,0UT3,0UT4,0UTS C* DECLARE OUTPUT CELLS *)
-RDD'SRT.DIN* CINO.INI,IN2,IN3,IN4,IN5T C* CONNECT INPUT STREAM *)

-MRD’ RES. OUTm COUTO,OUTI,OUT2,0UT3,0UT4.CUTS>

-(« THE OUTPUT STREAM IS NOM CONNECTED, TOO *>

-(« THE NEXT SEQUENCE CONTROLES THE REAL SIMULATION «)

-LOOP 100 IN WRC DISPLAY, HAIT:READC*INPUT*ILEXECITEC*OUTPUTrj prOLQ

Fig. 4.0

-129-

are listed and shortly discussed below.

4.1 The control language is block structured, where ‘'block"' is
defined recursively.

4.2 Configurations can be input from any file-structured RT-11
device. Outputs can be directed to all RT-11 devices:

4.2.1 Concerning the output of configurations it can be dyna-
mically specified in what subconfiguration of the ac-
tual configuration we are interested in. Furtheron,this
information can be formatted and therefore reduced to
the amount we are really interested in. E.g. we can spe-
cify that only the first three characters of the name,
the state, and bits seven and three of the qualifier of
the automata should be printed.

4.2.2 In order to simulate pipeline-configurations, the follow-

ing features are provided:

- Up to sixteen arbitrary automata of a configuration
can be selected in each case to work as input and out-
put automata. This can be done during the molecule
phase by lightpen interaction, and, in this case they
must be declared as EXTERNALS in the EXEC program. The
other way is to declare labels in an EXEC program it-
self explicitly as variables of the type LABEL, or, to
use them there implicitly as constants. In this case
we must have knowledge (even if we compute them by ‘'label-
expressions') of absolute coordinates.

- By declaration of a data input file (RDD ‘filename")
and a data output file (WRD 'filename') the selected
automata are connected to these inputs and outputs.
More precisely, the up to sixteen input automata are
identified with the corresponding bits of a sixteen
bit input buffer which is connected to the input file.
The output automata are treated analogously.

- Whenever in the EXEC program a READ statement is en-
countered, the next sixteen bit word of the input file

4.3

4

3.

-130-

- The actual configuration is visible within a window of
20*20 automata starting from ('y-pos','x-pos') defin-
ing the leftmost down corner. Changing to BREAK-IN con
text (which is explained later) we can modify ('y-pos’
'X-pos') and move the window to make visible any sub-
configuration of interest.

- At the left and the right margin of the window the
eight most significant sixteen bit words of the input
stream and the output stream, respectively, are visib-
le. This does not depend on whether the input or out-
put automata are visible in the window.

- Some further useful functions are:

State (OWN) and bit 6 of all automata can be made
visible.

Positioning the cursor to any automaton within the
window its name and qualifier are indicated.

The number of EXEC steps performed until now is dis-
played.

- Concerning program control a BREAK IN can be performed
by lightpen interaction and a WAIT statement of the
actual EXEC program can be suspended as long as NO
WAIT is sensified.

Program execution (and therefore the real simulation) can
be controlled by the EXEC program itself in various ways
at different levels.

Almost the simplest way to do this is by loops of type

LOOP ‘'expression’ IN 'block® POOL. Initially ‘'expression
is evaluated to an integer determining how often ‘'block’
is to be performed (if 'block' does not contain further
program modifications!). In simple applications 'block"’
is the following type:

READ; WRC DISPLAY; WAIT; WRITE; EXEC.

This sequence is executed as follows:

- First, the next 16 bit word of the connected input

4.3

4.3

4.4

.2

.3

-131-

data file defines the states of the input automata.

- Next, the window mentioned in 4.2.3 (fixed at the de-
fault position (0,0)) is displayed.

- Now the program waits for the permission to continue.
WAIT is suspended either by an arbitrary keyboard ac-
tion (except JIC) or (in this context) by sensifying
NO WAIT at the screen.

- The output buffer is written to the connected output
data file.

- By EXEC one global transition is performed. Besides,
the states of the output automata define the new con-
tents of the output buffer.

A more powerful construction is the if-then-else clause:
IF ‘condition' THEN ‘'block' / ELSE ‘'block® [/ FI . As
'block® can contain a GOTO statement the simulation can
be efficiently controlled if we keep in mind the various
ways ‘condition' can look like. E.g. it can be a logical
AND or OR over the states of a predetermined set of auto
mata and values gained in this way can be combined by
boolean operators to form new ones. Besides,statements
like TRACE and TORUS are considered as boolean variables
i.e. they may be dynamically switched on.

A further useful statement is the TRACE statement. It
can be disabled and enabled dynamically by any boolean
expression and is used to produce runtime information to
the screen like programlabels, the present value of in-
teger variables, the contents of the input and output
buffers, respectively, etc.

Another way to control the simulation is provided by the
implementation of a BREAK IN concept. A BREAK IN causes
the current EXEC program to halt due to one of the follow-
ing conditions :

- from program, by a BREAK statement,
- from keyboard, by entering JIC,

-132-

- by lightpen, sensifying BREAK IN,

- from switchregister.

In BREAK IN context program control is transferred to key-
board. The interrupted program can be continued (CONTINUE) or
abandoned (QUIT), or, the values of some variables can be exa-
mined or reassigned etc. But the most powerful feature of the
language in conjunction with this concept are:

- Any program can be executed now, without destroying the
interrupted program or its data.

- Programs can be entered from keyboard, line by line, too
and executed.

- A BREAK IN will also occur in case of a non-fatal error
which can be corrected now.

In any case afterwards (entering continue) the interrupted
program can be continued at the point where it had been stopped

It should be mentioned that most of the features of the
EXEC language have not been implemented to support the real si-
mulation, but to support the development of cellular algorithms
Once, a cellular algorithm is developed, the EXEC program will

be very simply structured.

Besides, calling back Fig.0.4 in our mind, the EXEC lan-
guage has to cover functions of the CCU (Cellular Control Unit)
and of the Host computer. It depends on the specific realiza-
tion how autonomous the CCU is tailored and how close the con-
nexion between these two components is. And, from these design
principles results in which component these functions are im-
plemented. Some examples for such functions are: initialization
of the cellular structure, initial loading (and possibly time
dependent swaping) of the transition table, initial loading of
the single cells with the appertaining states and qualifiers,
dynamic supply with data and output of (intermediate) results.
Obviously, the simulator should not depend on a specific reali-

-133-
zation, and has to provide these functions at a higher level.

5. CONCLUSIONS AND OUTVIEWS -

At the beginning of this paper we gave motivations for our
attempt to add a further simulator for cellular structures to
the broad spectrum of already existing ones. The simulation
software is basically characterized by three features .

- There are simulated MEALY-type cells with a fixed neigh-
bourhood and fixed output- and state-alphabets. From
this results an easy interactive development of transi-
tion tables which, again, is supported by the qualifier
concept (due to LEGENDI).

- The design of configurations - and thus of cellular algo-
rithms - is facilitated by modular and orthogonal con-
struction principles as well as by the interactive (in
general not depending on absolute coordinates) manipula-
tion of subconfigurations in the plane.

- The real simulation runs are controlled by a high level
programming language. The run time system is capable to
enter into dialogs with the programmer and provides break
in and trace concepts.

At the present time we implement the time varying case; i.e.
the dynamic, time-dependent swaping of the transition tables.
Moreover, we are in the implementation phase of a higher cellu-
lar programming language which, roughly speaking, allows the
algorithmic generation of configurations.

ACKNOWLEDGEMENTS : In the first place | would like to thank
Mr. V. Henkel who has done the hard labour of the implementa-
tion. At any time he was an Iimaginitive and cooperative partner.
Many thanks to Prof. R. Vollmar and Dr. T. Legendi that encour-
aged me to this work. And, last not least, many thanks to my
dear colleague Mr. J. G. Pecht to whom | am indebted for many
stimulating discussions.

-134-

REFERENCES :

Baker . w., Herman, G. T.: CELIA - a cellular linear array
simulator, Proceedings of the Fourth Conference on Applications
of Simulation, 64-73, New York, 1970.

Baker R. W., Herman» G. T.: Simulation of organisms using a
developmental model, Part 1: Basic description, International
Journal of Bio-Medical Computing 3, 201-215, 1972.

., Szwerinski , H.: SICELA-1 - Benutzerhandbuch,

Brede, H J
1. Sept. 1979, internal doc., Braunschweig, 1979.

Stand:

Brender, R. F.: A Programming System for the Simulation of
Cellular Spaces, Ph.D.diss., Univ.of Michigan, 1969.

Brender, R. F., Frantz, D. R.: The CESSL Programming Language,
Technical Report, No. 012520-5-T. Univ. of Michigan, 1971.

Herman, G. T., Liu, W H.: The daughter of CELIA, the French
flag and the firing squad, Simulation 21, 33-42, 1973.

Legendi, T.: Cellprocessors in computer architecture, Computa-
tional Linguistics and Computer Languages XI, 147-167, 1976.

Legendi, T.: INTERCELLAS - an interactive cellular space simu-
lation language, Acta Cybernetica _3 261-267, 1977.

Legendi, T.: TRANSCELL - a cellular automata transition func-
tion definition and minimization language for cellular micro-
programming, Computational Linguistics and Computer Languages
X1, 55-62, 1978.

Legendi, T., Diéslaki, F.: Benutzerhandbuch fir SICELA-H,
internal doc., Szeged, 1979.

Pecht, J. G.: Erfahrungen mit SIBICA einem Programmsystem zum
interaktiven Studium von 2-dimensionalen binaren zellularen
Netzen, in: GOLZE, U., VOLLMAR, R. (Hrgs.): Beitrage zur Theo-
rie der Polyautomaten, Informatik-Berichte, Nr.7703, 77-86,
Braunschweig, 1977.

SILICEA, Benutzerhandbuch, internal doc., Braunschweig, 1979.

Smith 111, A. R.: Introduction to and Survey of Polyautomata
Theory, in: LINDENMAYER, A., ROZENBERG, G. (eds.): Automata,
Languages, Development, 405-422, Amsterdam, New York, Oxford,
1976.

Vollmar, R.: Uber einen Interpretierer zur Simulation zellu-
larer Automaten, Angewandte Informatik 6, 249-256, 1973.

-135-

Vollmar, R.: Cellular Spaces and Parallel Algorithms - An
Introductory Survey -, in: FEILMEIER, M (ed.): Parallel Com-

puters - Parallel Mathematics, 49-58, IMACS, Amsterdam, New
York, Oxford, 1977.

Zuse, K.: Rechnender Raum, Vieweg, Braunschweig, 1969.

Computational | inguistics and Computer latntuanes Col. JT/IT 14XO0.

AN EXPERIMENTAL LANGUAGE ARCHITECTURE
DESIGN AND IMPLEMENTATION

Géabor SIMOR
Institute for Coordination of Computer Techniques
Budapest, Hungary

ABSTRACT

The subject of the paper is an experimental language ar-
chitecture, which is aimed at optimized machine code size and
execution time for programs written in COBOL. During design
and implementation of this architecture many programming tools
- generally applicable in high-level language architecture de-
velopments - will bo used for evaluation and realization of dif-
ferent alternative solutions. "One-to-one correspondence prop-
erty", locality-based field size minimization, frequency-based
encoding are used as optimization methods. Most of these opti-
mization measures promote autonomous phase processors to be
relevant for overlapped instruction execution, while the price/
performance ratio also depends on the complexity of the actual
operations included in the instructions. Different instruction
formats and representation codes are proposed to be evaluated
and implemented by programmed tools which transform the formal
description into encoding and decoding modules, FPLA programs.
Development flexibility is promoted by using the abstract data
type concept when structuring the machine language interpreter
program. A technological language is used for the construction
of the interpreter to be implemented by hardware firmware
tools, applying more levels of interpretation.

This work has been sponsored by the State Office of Technical
Development

-138-
1. INTRODUCTION

1.1 Machine Language Optimization Methods

The extensive use of microprogramming technics for
implementation of machine architectures and the demand on ded-
icated language processors in distributed systems has promoted
numerous research works which are aimed at the elaboration of
a methodology for defining optimal "execution-oriented™™* in-
struction sets /providing minimal machine code-size and execu-
tion time for programs written in a high-level language:[1],
[2]. These methods propose ™"1: correspondence”™ between opera-
tions, data objects of the source language and those of the
machine language; locality-based minimization of instruction
field sizes [1]; frequency-based compact encoding [21.

1.2 Flexibility of the Development Process

Using the above mentioned design methods, various
concrete instruction sets may be defined and various imple-
mentation solutions may be applied. For the final design deci-
sion, the trade-off between several environment characteristics
should be investigated taking into consideration the complex-
ity of operations and other properties of the source language,
the usage statistics of various language elements, the cost of
certain microarchitecture features /e.g. see Chapt. 3 for the
discussion of the relevance of autonomous phase processors
for overlapped instruction execution, or Chapt. 2 for the
illustration of a possible use of high-speed local stores for
"locality descriptions™/. Therefore, simulators are needed for
the evaluation of different alternative architectures. The
growing number of various problem-oriented high-level languages
- needing architectural support - and the great variety of al-

*

Architecture support considerations for the program development and
compilation process are not discussed in this paper

-139-

ternative architectures to be evaluated* demand, that sim-
ulators should be created and modified in a very flexible way.
On the other hand, it is desireable to avoid double coding of
the instruction set interpreter /once for the simulation and
again for the implementation/. Therefore the simulator has to
be used as a "development-interpreter™, which initially serves
for the verification and evaluation of the instruction set, it
is also the object of a subsequent performance tuning for the
selection of the interpreter modules to be implemented direct-
ly by HW-FW means or to be executed parallelly, and finally
the whole simulator is turned into the implementation using
powerful translators, program tools for generating and synthe-
tizing. This approach also promotes the application of stand-
ard implementation elements to different source languages and
architecture solutions.

In connection with the above described requirements, nu-
merous researches have also been carried out: formal architec-
ture descriptions have been used for generating evaluator-sim-
ulators [3], microprogram sequences [4], and even for the
synthesis of hardware logical design [5].

1.3 An Experimental Project

In our experimental language architecture project we
intended to apply a development methodology with the aim of
both, previously discussed research directions /i.e. machine
language optimization methods and development flexibility/.
The steps of this kind of development process are illustrated
in Fig.l and discussed in certain perspectives in the follow-
ing chapters.

1.3.1 A COBOL-Oriented Machine Language for Experimental
Purposes

Works described in [1], [2] have pointed out, that an appropriate machine
language may increase the main efficiency parameters by a factor of 3-I5.

-140-

A COBOL subset has been chosen as the source high-
-level language to be supported in a first experiment, first of
all for its simplicity and wide-spread use. The architecture
levele data structures and an instruction set skeleton has been
specified for the COBOL machine, applying the "Canonic Inter-
pretation Form™ definition rules [1]. The proposed architecture
has explicit access to the tables for the description of data
objects, paragraphs, addresses; contains stacks for the expres-
sion evaluation and for the nested paragraph calls; performs
dynamic /locality-dependent/ instruction field selection and
decoding functions. More details are presented in Chapt.2.

1.3.2 Development Tools

At the "development-interpreter™ creation the flex-
ibility and the automation of the development are promoted in
the following ways:

a., The interpreter has been modularized by the abstract data
type concept, therefore generally applicable optimized archi-
tecture component types are being defined for various target
languages and implementation environments /see 4.1/;

b., Certain modules /which are to be frequently replaced during
the development: e.g. format-interpretation, representation-de-
coding/ are intended to be generated /both for simulation and
HW-FW implementation purposes/ from a formal, non-procedural
specification of the functions, easily executable by logical
arrays /see 4.2/;

c., Aprocedure-oriented language /CDL2/ is used - as a "Tech-
nological High-Level Language™ for the development of the in-
terpreter /see Chapt.5/. Hence:

- an efficient programming technology may be applied;

- the prevailing part of the CDL2 code of the interpreter
may be used also for the generation of an implementation
without significant performance losses, because of the
following properties of the CDL2:

- the language itself may be directly interpreted in a

-141-

relatively simple way /demanding limited microprogram
storage capacity/;

- it provides efficient performance tuning possibilities,
and the "performance-critical™ functions may be easily
substituted by microprogram sequences;

d., The function distribution among the phase processors was
the base for the structure of the interpreter /see Chapt.3/,
therefore :
- the load-balance of the phase processors may be previous-
ly estimated;
- the communication procedures between the phase processors
may be experimentally verified.

2. OPTIMAL INSTRUCTION SET DESIGN

A design methodology - called ™"Canonic Interpretation
Form" /GIF/ - has been published in [1] based upon a criteria
set, independent of language usage statistics and hardware im-
plementation /Phase 5 in Fig.l/. Instruction sets designed in
this way may be characterized by the ™1:1 property”™ and "local-
ity-based™ field size minimization.

Application of "1:1 property™ of the CIF in our COBOL
architecture may be illustrated by the COBOL source statement
PERFORM THRU UNTIL, implemented in a single CIF machine in-
struction: PTU /see Fig.2.a/. Executing this instruction the
paragraph /a procedure without explicit parameters/ p~ will be
called, and the subsequent paragraphs performed up to the para-
graph p2. After the execution of the paragraph p2 control is
returned to the calling paragraph and this cycle is repeated
depending on the logical expression evaluation performed by the
code sequence between ™"addr™ and the PTU instruction. The top
element of the paragraph stack identifies the currently exe-

"The CIF was originally applied in a FORTRAN emulation research

-142-

cuted paragraph, the element under the top identifies the last
saved paragraph /p”~/, the last paragraph to be subsequently

performed /p”~/, the saved address in paragraph p~ /addr”/, and
the number of PERFORM executions /N/ for the case of the TIMES
option in the source PERFORM statement. The implementation of
source operations with similar complexity would demand 5-r20

machine instructions on a conventional, general-purpose archi-

tecture .

The ™1:1 property™ pertains not only to the relation
between the number of operations in a source statement and the
number of corresponding machine instructions, but also to the
relation between the number of data objects to be distin-
guished in a source statement and the number of operand fields
in the corresponding machine instructions /see Fig.2.b/. For
this purpose additional format fields are used in the machine
instructions J/e.g. F2 g> F2 5/ define the role of the
operand fields. Format codes /e.g. F2 F2 12/ may also be
used for the selection of implicit operands from one of the
two top elements /"T" and ™"U"™/ of the expression stack. Al-
though in the case of source statements with more sophisti-
cated syntax /e.g. Fig.2.c/, keeping "1:1 property”™ would sup-
pose more complex, syntax-oriented formats to be used /than
applied in [1]/ . The "™1:1 property™ corresponding to the data
objects also means that operands in the same machine instruc-
tion may have different descriptions /e.g. different positions
of the decimal point/, the conversion functions required will
be included in the execution of the same instruction, too.

Solution for the locality-based™ field size minimization
is also illustrated in Fig.2. Operand fields will not identify
immediately the operand address in the main memory, but merely
contain the sequence number of the object description inside
the actual program locality /the current paragraph/. The orig-

"a more detailed analysis see in (6\.

-143-

inal concept in [1] - aimed only at the minimization of data
reference field sizes - has been extended for the case of many-
-sorted operand decoding, when different descriptions are pro-
vided for data objects /DDT/, address pointer objects /1PAT/
and paragraph objects /PDT/. Paragraph descriptions are valid
for the whole program, address pointers only inside a paragraph,
data objects may be local or global and distinguished by the
operand field code itself /namely by its first bit/. On the
other hand in [1] operations were also coded in fields with
“"locality dependent™, minimized size; in our architecture this
solution has been omitted due to the relatively small number
of different operations in COBOL.

A "frequency-based”™ encoding method has been published in
[2] /see Fig.5.a and Phase 7 in Fig.l/. Applying this method we
consider that e.g. statements IF, GOTO, MOVE make up statically
more than 60% of all statements [7], therefore quite short bit
patterns are used for the corresponding operation codes in ma-
chine instructions. Certain operands, e.g. "ZERO"™ and '"SPACE"
figurative constants, numeric literal ™"™1", the most frequently
referred paragraphs /e.g. those for error message output/ and
variables for a given paragraph, have also a relative high fre-
guency, so an "integrated™ encoding method [2] is expedient to
be used for them without explicitly separated operand and oper-
ation and/or format fields in these cases.

3. PHASE PROCESSORS FOR OVERLAPPED INSTRUCTION EXECUTION

The CIF approach [1] is directed by ™"absolute™ optimality
criteria /minimal length of machine code, minimal number of
main memory references during the execution/ supposing "ideal"
hardware implementation environment /e.g. large capacity of
local storage with high-speed access, ideally efficient "field-
-extracting'"™ capabilities/. In real cases compromises are
chosen, both, in the design of the instruction set and in that
one of the implementation structure. The variable instruction
and instruction field sizes, the indirect accesses to the oper-

-14 4-

and objects in the previously described instruction set demand
a more sophisticated instruction fetching, decoding and operand
selection functions during its interpretation. These two kinds
of functions are included in those instruction execution
phases which are often overlapped with each other and also
with the actual operation execution phase, even in the case of
conventional, general-purpose architectures. Realizing the
"1:1 property”™ of CIF means that the complexity of the func-
tions of the execution also increases, therefore extensions in
the previous two phases may be "covered™ in time. Furthermore,
the larger the complexity is for all phases, the more effi-
ciently distinct autonomous processors can be used for these
phases parallelly working either on both of the microinstruc-
tion level and machine instruction level in synchronous sys-
tems /e.g. EMMY [1], or UNIVAC Moo/80/, or on the machine in-
struction level in asynchronous systems /e.g. FCPU [s8],
COMBAT [9]. The latter solution may provide a better load-bal-
ance between the phase processors but is more expensive due to
the synchronization tools.

The relevance of the phase processors is illustrated in
Fig.3. In the case of low operation complexity, the relatively
sophisticated instruction decoding and operand selection func-
tions increase execution time. In the case of higher operation,
complexity optimizations in the previous two phases have less
significance. A final design decision on the application of
phase processors has to be based upon simulation measurements.
In order to enable the COBOL architecture simulator for this
evaluation and the possible implementation on distinct phase
processors, it is structured according to the functions of the
three phases. The structure of the interpreter and the "inter-
-phase™ procedures - which form the base for the communication
protocol between the phase processors - are roughly illus-
trated in Fig.4.

According to this structure the instruction fetching and
decoding processor sends the operation code to the execution

-145-

processor after the decoding of each instruction. Similarly
operand names, /which are relative to the current locality/ and
their sort /which is the base for the selection of the relevant
object description information/ are sent to the operand pro-
cessor. When an instruction for locality change occurs /e.g. a
PERFORM for a paragraph call/, the name of the new locality is
passed to the operand processor in order to determine the new
area /corresponding to the new locality/ in the object descrip-
tion tables. Otherwise the instructions for locality change are
performed by the first phase processors itself /change of the
locality description information, update of the locality stack,
definition of a new instruction address in the code memory/.

In the case of instructions for conditional locality change,
the change is performed /the probable alternative/. The condi-
tional branches /e.g. ON SIZE ERROR condition/ inside a locali-
ty and the erroneous locality changes are recognized by the
operation execution processor. In this case a branch command

is sent by the 3rd processor to the 1st one. The 1st processor
responses by stop commands in order to prevent processing of
information being active, or waiting in the FIFO-queues of the
two other processors /except the store of the result of the
last successfully executed instruction/. The communication be-
tween the 2nd and the 3rd processor is needed for sending data
descriptions /or actual values in the case of short data
lengths/.

4. CHANGE OF THE IMPLEMENTATION MODULES

4.1 Modularization by Abstract Data Types

Development flexibility has been promoted by using the
abstract data type concept in the specification of the notions,
realized by the modules shown in Fig.4. Here, abstractions are
used for the development of modules with a higher degree of
independence, both, on the implementation and on the language
particularities. A data type /e.g. instruction, format, queue,
selector, etc./ is specified by the effect of the procedures

-146-

allowed for access to an object with given type. For example
the format type is specified and implemented by two procedures
shown in Fig.5. The specified procedures are implemented by
subsequent, alternative, cyclic or recursive invocation of
lower level procedures /e.g. procedures defined by Code Memory
module for instruction code fetching, Locality Description
module for operand field extractions, Code Representation mod-
ule for decoding format and operation fields/.

4.2 Automatic Generation of Certain Modules

As has already been mentioned, the choice of used in-
struction formats and code representation has a significant
impact on the instruction set efficiency, and might be finally
justified by simulation measurements, only. Therefore, a u-
nigue notation has to be used for the formal definition of the
format and the operation code representation /Fig.6.b/ which
might be applied as source for the automatic generation of
code representation decoding module /for the interpreter,
Fig.6.c/ and encoding module /for the code generation in com-
pilers, Fig.6.d/. These modules - written in a procedure-ori-
ented higher level language, suitable for the well structured,
portable programming of compilers and simulators - provide a
very low efficiency /a distinct procedure call sequence for
each case in the decoding rule/. Therefore translators are al-
so relevant for the generation of assembly instruction se-
guences and even logic formulas as symbolic FPLA programs
/IFig.6.e/ for the more efficient lower level implementation
based upon the same formal specification /Phase lo in Fig.Il/.
Similar tools are relevant also for format handling.

5. USE OF A TECHNOLOGICAL HIGH LEVEL LANGUAGE /THLL/

As it has been shown by the illustrations referred above,
a procedure-oriented, well-structured high level language is
suitable for writing the architecture simulators. In order to

-147-

promote easiness of implementation and possibilities of appli-
cation of standard hardware-firmware architecture implementa-
tion modules, it would be advantageous to use the same simu-
lator also for implementation; minimizing in this way the need
for algorithm reformulations. For this purpose we can make use
of the below-described properties of a relevant language, ap-
plied as a THLL to language-oriented architecture development.
We have decided to use the CDL2 language [lo] as a THLL, since
it was the only available one bearing these properties.

5.1 Compactness of the THLL

The main disadvantage of the higher level languages
is usually the waste of the microprogra*m storage when trans-
lating the HLL programs into microcode . The most obvious way
of writing compact programs is the intensive use of subroutines
/Iprocedures/. In a procedure oriented language like CDL2, the
only /built-in/ ™available™ operation is the procedure invoca-
tion, so control structure of the language itself provides a
very compact code. The implementations of CDL2 [lo] contain
many of automated optimization facilities /eliminating dupli-
cated sequences, simplified translation of nonrecursive pro-
cedures, use of ™"closed”™ procedure definitions instead of open
ones, etc./. Furthermore, instead of translation, an inter-
pretation of the "CIF"-form of the THLL may be used - at least
for the prevailing part of the code.

5.2 Performance Tuning Possibilities of the THLL

The use of THLL interpretation instead of translation
causes losses in execution time; therefore the "performance-
-critical™ parts of the target HLL architecture interpreter
* Although - as stated in 131 - the assembly code generated from CDL

programs written by "skilful” programmers, do not exceed those ones,
originally written in assembler, by more than 20-30 %

-148-
should not be executed by this kind of "double interpretation™.
Experimental measurements have stated [13] that more than 80%
of the execution time is spent by running merely 30% of the
program code. The hierarchical procedure invocation structure
of the THLL enables /by incorporating frequency and time meas-
urements into the procedure invocation and return functions/ a
very accurate and easy separation of the heavily used part from
the rest of the code.

5.3 "Open-ended” Language as a THLL

The THLL itself does not contain actual operations. At
the bottom of the procedure hierarchy of a program such primi-
tives are called which are not refined further by invocation of
lower level procedures, but are defined by the programmer in
the "host" language /i.e. in the microcode, in the case of mi-
croprogrammed interpreters/. A procedure is decided to be di-
rectly microprogrammed /or hardware implemented/ primitive,
either if its function is very close to the microarchitecture,
or when the above mentioned performance-tuning analysis quali-
fies it to be heavily used /e.g. instruction format decoding/.
The latter case corresponds to the "traditional™ problem-ori-
ented instruction set design method: replacement of frequent
instruction sequences by one new instruction [14] , although,
here it is supported by the procedure-oriented structure and
the performance tuning facilities of the THLL. This method is
aimed at the realization of the optimal proportion between
translation and levels of interpretation in the case of a mi-
croprogrammable machine /Fig.7,8 and [15] /.As the functions
of the primitives are relatively simple and implementable by
short microprogram sequences, the "machine state resolution-
-based” microprogram synthesis methods /[4]; Phase lo in Fig.
1/, assuming relevant specification of these functions, seem

to be of practical applicability.

5.4 Architectural Supportability of the THLL
A THLL may be supported efficiently by hardware-firm-

-149-

ware tools, in two respects.

A HLL may be supported efficiently if "performance-criti-
cal™ built-in functions are unambiguously definable. In the
case of the CDL2 the only functions to be supported, may be
connected with the procedure invocation: save and restore the
actual control point, load and store the actual parameters, se-
lect the called procedure, set and restore the procedure stack
pointer, etc.

Optimization methods /discussed in Chapt. 2/ are mainly
based upon separability of localities inside the program and
therefore they may be used efficiently for interpretation of
procedure-oriented languages as they provide as narrow locali-
ties, as possible by procedures. Furthermore, additional opti-
mization may be yielded here by making use of the fact that the
only THLL program to be supported is the interpreter of the
canonic target architecture. Thus, e.g. the minimal size or in-
tegrated encoding for procedure identifiers, globally and lo-
cally variable, parameter identifiers may be strictly based
upon simple deterministic measurement data, instead of proba-
bilistic ones, which would require leaving a large tolerance,
too.

6. STAGE OF DEVELOPMENT

An instruction set "skeleton" has been specified for
COBOL, using CIlF-rules [/[6], Phase 5 in Fig.l/. The machine
code size of a benchmark COBOL program has been compared, man-
ually coding with the proposed instruction set and using a
COBOL compiler for the SIEMENS BS 2000 operating system /4/.
A 1:5 proportion has been reached /for the procedure division
of the COBOL program only/. Elementary data structures of the
proposed COBOL-architecture have been specified as abstract
data types, using the syntax of the ALPHARD language [11]. On
the base of this description, a simulator has been written[16]
for a subset of the proposed instructions in a logic-based lan-

-150-

guage /PROLOG: [12] with a resolution-based execution mecha-

nism
CIF

. Currently a COBOL - COBOL CIF compiler /6/ and a COBOL

is under development using the CDL2 language. A bit-slice

microprocessor-based implementation is planned.

The applicability of the PROLOG language has also been ex

plored for instruction set design [/ 5, 7 : [17]/ and benchmark

synthesis purposes /3, [18] /.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[lo]

REFERENCES

Hoevel,L.W., Flynn,M.J.: "The Structure of Directly Exe-
cuted Languages : A New Theory of Interpretiv System
Design"”, DSL Technical Report 130, Stanford Univer-
sity, March 1977.

Tannenbaum,A.S.: "Implication of Structured Programming
for Machine Architecture”, Comm, of ACM, March 1978,
p. 237-246.

Barbacci, Burr, Fuller, Sieworek : "Evaluation of Alter-
native Computer Architectures”, Carnegie-Mellon
University, 1977.

David,G.: "Structured Automated Design of Microprograms",
EUROMICRO '78, Miinchen, p.241-245.

Parker, A.C., Hafer, L.: "The Application of a Hardware

Descriptive Language for Design Automation” Informa-
tion Technology, North Holland P.C., 1978 p. 349-355

Simor, G. : "An Instruction Set Design Approach for HLL-Ori
ented Microprogrammed Machines” SZKI, Budapest, 1978

Chevance, R.J., Heidet, T. : "Static Profile and Dynamic Be-
haviour of COBOL Programs"”. SIGPLAN Notices, March,
1978, p.44-57.

Lawson,H.W. : "The DATASAAB Flexible Central Processing
Unit /FCPU/, Background, Concepts and Basic Design",
DATASAAB Report, 1972.

Yamamoto,M., Hakozaki,K.: "A COBOL-Oriented High Level
Language Machine", EUROMICRO

Jahn, S. : "CDL2 im BS2000", SIEMENS DV-Technische Berich-
tung FWO 121, November 1976.

[11]

[12]

11 1]

[14]

[1"]

[1b]

[17]

[18]

-151-

Wulf,W.A., London,R.L., Show,M.: "Abstraction and Verifi-
cation in ALPHARD:Introduction to Language and
Methodology"”, Technical Report Carnegie-Mellon Uni-
versity, Pittsburgh, 1976.

Warren,D., Pereira,L.M., Pereira,F.: "Prolog -the Lan-
guage and its Implementation”, SIGPLAN Notices Vol.
12., no.s. 1977.

Bolgar,G.: "Optimization and Measurement of the Perform-
ance cf a Compiler, Written in a High Level Lan-
guage", Informéci6 és Elektronika 1977/5. p.286-290

/in Hungarian/.

Abd-alla,A.M., Karlgaard,D.C.: "Heuristic Synthesis of
Microprogrammed Computer Architecture”, IEEE Trans,
on Computers, Vol.C-23, No.s8., Aug.1974, p.802-807.

Démélki,B., Rajki, P.: "Microprogram Implementation of
High Level Languages"”, INFELOR 1973, Budapest-Székes-
fehérvar.

Kiss,V., Simor,G.: "Evaluator-Simulator for the Design

and Experimental Verification of a High Level Lan-
guage Oriented Architecture”, SZKI, Budapest, 1979
/in Hungarian/.

Simor,G.: "Illlustrations for Certain Phases of Computer
Aided Computer Architecture Design”, SZKI, Budapest
1978.

Kiss,V., Simor,G.: "The Preliminar Specification of an

Architecture Design Environment and Its Programming
Aids", SZKI, Budapest, 1978. /in Hungarian/.

Fig.l

Language-Oriented Canonic Architecture
Development Process Phases

41}

Source Statements

a. ,
b. ,

PERFORM
ADD A B

-153-

PARAGR1 THRUU PARAGR2 UNTIL [+2=M
GIVING C

MULTIPLY A BY A GIVING A
C., PARAGR1
ADD ABC...TODEE...

Abbreviations :

PNL -
GNL -
LNL -

Paragraph Name Length PCA - Paragraph Code Area
Global Name Length IPAA - In-Paragraph Address Area
Local Name Length LDDA - Local Data Description Area

IPAL- In-Paragraph Address Length

In Paragraph Address

for Pcurr

Fig.2 Canonic COBOL Instruction Examples

-154-

Fig. 3 Expediency of Phase Processors

Phase L: INSTRUCTIONS Phase N.:OPERAND SELECTION Phase M. OPERATION EXECUTION
FETCHING AND DECODING

Connections with data structures in Fig.2:

Locality Description: PUL, GIL, PDT /PCA, LNL,IPAL/
Called module---»-Caller module

Fig.4

Data Description: DDT, PDT, /LDDA/
Address Table: IPAT, PDT /1PAA/
Locality Stack: PS

Canonic Language Architecture Structure
/supposing asynchronous phase processors/

-SS1I-

-156-

format-decode (> code mem.addr., operation code >)
format-reado”erand (operand>, sort>, nex code mem.addr>)

sort_Xk values may be:

- global data item identifier;
- local data item identifier;
- address identifier;

- paragraph identifier;

- file identifier

next code mem. addr.:
Has value /code memory address for the next instruc-
tion to be executed/ only in the case of the last
operand /after which the "format-decode"” procedure
has to be involved again/

notation: >par - input parameter
par> - output parameter

* *

in the case of the canonic COBOL architecture discussed
here

Fig.5 Procedures Specifying FORMAT Type

-157-

a., Encoding Example

0 3 4 7 8 9 10 11

o o X X IF T=true THEN <addr>

o 1 X X GOTO <paragr.>

1 o X X - MOVWE <var 1> TC <var 2>

1 1 o o format code ADD

1 1 o 1 - * opcode format : A*B-A

1 1 1 o - format code opcode

1 1 1 1 - procedural or 1/0
operation (intearated

code)
b., Description of Encoding by a Formal Notation
Constants :

Masks: bit01=4aC00, bit03=<SF00, bit09*"FPC, bit47=<&0F0,....

Patterns: if=0, goto=l, move=2, add=12, f25=13, perform=<£P08, —

Opcodes: add=I, sub=2, if=25, got=27,...

Formats: fll=1, fl2=2,...f24=9, f25=10, ..,fparagr=22,faddr=23,...

Encoding

n - bito1: (patt-if - if-code, format - faddr;
patt-goto- goto-code, format - fparagr;
patt-move- move-code, format - fll);

N mask - bit03: (patt-add - add-code, format:n mask bit47
patt-f25- opcode: Amask-bit47, format-f25;
patt-form- opcode: Amask-bit811, format: n mask-bit47)

A mask - bit09: patt-perform -perform-code, format-fparagr;

Fig.6 Format and Operation Code Encoding Specification
and Implementation

c. ' Dscodirig Proedure Declaration in the Code Representation Module of a Canonic Language Interpreter

Codereprdecode (>instr. code, format>, opcode>, nextfield >):
extract (>instr.code, >mask-bit0l, pattem>),

[equal (>pattem, >patt.if),let (opcode”>if-code), let(formt>,> faddr), let(nextfield>,>two) ;

equal (>pattern, >patt-goto),let(opcode>,>goto-code),let(format>,> f paragr), let(nextfield>,>two);

equal (>pattem, >patt-move), let (cpcode>,> move-code),let (format>,>f 11), let(nextfield> ,>two)],
extract (>instr.code, >mask-bit 03, pattem>)

[equal (>pattem,>patt-add), let(cpcode>,> add-code), extract(>instr.code,>mask-bit47,format>, let(nextfield>,>eight.

d., Encoding Procedure: Déclaration in the Code Representation Module of a Compiler Code Generator

Coderepr.-encode (>format,>opcode, instr.code>, nextfield>):
equal (copcode, >if-code), equal(format,>faddr), and(>maskbit0l,>patt-if, instr.code>).let(>nextfield>two);

—-84T—

equal (opcode,>goto-code),

e.) Use of FPLA circuits for decoding format and operation codes

Instruction Code

*format decoding functions are included in the

of interpreter /see Fig.4.,5/

"Format"

operation codes and/or

format codes or
decoded format* codes

module

-6ST-

-160-

Fig.7 Performance Tuning of a Canonic Interpreter,
Written in a THLL

i/p - interpreter

Fig.8

Mixed Double Interpretation

for

a COBOL-CIF Architecture

Scheme

-T9l-

MATHEMATICAL ASPECTS OF PROGRAMMING

Computational Linguistics and Computer Languages Vol. XIV. 1980.

THE NOTION OF CONSEQUENCE IN MANY-
VALUED LOGIC

by
Peter ALBERT

Technical University for Heavy Industry

Miskolc, Hungary

Preliminaries

The general theory of inference in many-valued logic was
not elaborated up to the present. According to classical two-
valued logic, B follows from A /or, B is a consequence of A/ if
and only if the truth of A logically excludes the falsity of B.
Using 0 and 1 for the truth values, falsity and truth, respec-
tively, and denoting the truth value of X by "|X|", one can say
that B follows from A if and only if

lal * [b]

holds /in all interpretations/; i.e. inference may be conceived
as a minoration of /the truth value of/ the conclusion by /the
truth value of/ the premise.

This approach may be extended to multi-valued logic as
well. In two-valued logic, only the cases |a|] =1 are impor-
tant /since 0 ~ |b| holds always/; whereas in many-valued sys-
tems the cases |a| = c where ¢ is any intermediate value, are
to be taken into consideration as well.

In a certain sense, a deduction in the classical first-
order calculus may be conceived as a minoration, too. If B is

-166-

deducible from the axioms A .,..., A , thenlIA.&... &A I*BI
holds trivially /since A”, ..., An, B are universally true for-
mulas/. However, it would be wrong to identify deducibility and
consequence.

In classical propositional logic, B follows from /is a
consequence of/ A if and only if "A = B" is a truth-functional
tautology. This seduces to say that B follows from A if and
only if "A B" is true. However, this is unacceptable, and
shows how misleading it is to call /material/ implication.

In classical logic, the notion of consequence, deducibili-
ty and material implication are closely related. /This is the
source of a lot of misunderstandings./ In the present paper |
argue /in Sections 1 and 2/ that these notions are to be treat-
ed rigorously separately, especially in many-valued logic.

In Section 3 | outline a formal system frame incorpo-
rating the general theory of consequence-relation for many-
valued systems of logic. It is a two-level system where the
second level is to be interpreted as the metalogic of the first

level. Here 't /the sign of material implication/ belongs to

the first level; the sign 'i#' connects first-level formulas,
yielding a second-level formula where "A"B" is to be interpret-
ed as "B follows from A"; and V ' is the sign of deducibility
belonging to the metalanguage of our system /if a is a second-
level formula, "Ha" means that a is deducible in the formal

system/.

1 Deduction and Inference

Deductions /or formal proofs/ play a central role in the
so-called syntactico-deductive /or "axiomatic"/ systems of
logic. In such a system, certain formulas are called axioms and
a /finite and nonempty/ sequence of formulas is said to be a
deduction /or a formal proof/ if each term of the sequence is
either an axiom or follows from previous members by an elemen-

-167

tary syntactical rule /fixed previously/. A formula A is said
to be deducible if and only if there exists a deduction ter-

minated by A. The metastatement "A is deducible”™ is denoted by
VA". In many cases, the only elementary rule of deduction is
the modus ponens which may be formulated as follows:

"LAU h a”~B)—y hB". This sentence expresses a metastatement
about the calculus and, hence, it belongs to the metalogic of
the calculus. Consequently, the expressions

v \a'- *
are symbols of the metalogic. Here 'h' is a unary functor
forming atomic metastatements from formulas of the object sys-
tem whereas and '-m' are binary connectives forming com-
pound sentences from sentences of the metalogic.

In most cases, the metalogic of a calculus is not defined
formally. In the case of classical calculi, it is tacitly pre-
supposed that the laws of metalogic are contained in the laws
of the object system. However, the deducibility of
"(A & (A B))o B" or "(Ak B)ac(BE£ A "™ in a calculus, need
not have any theoretical link to the rule modus ponens and to
the commutativity of 'and' in the metalogic, respectively.
Such a theoretical link holds only in the classical systems
where the hierarchy between object logic and metalogic might
remain hidden.

In many cases, the connectives of a propositional calcu-
lus may be interpreted as truth functions, and its wvariables
as truth variables ranging on a fixed set of truth values.
Given such an interpretation and a set of designated values as
a proper subset of the truth values, a formula is called tau-
tology if it takes only designated values by all possible
assignments of its variables. An interpretation is said to be
sound if every deducible formula is a tautology; and an inter-
pretation is said to be complete if all tautologies are deduc-
ible. Interpretations which are both sound and complete, are
called adequate ones with respect to the calculus.

-168-

Thus, in the case of a calculus with an adequate interpreta-
tion, all deducible formulas are tautologies and, hence, from
the view-point of the interpretation, all are of the same se-
mantical rank. None of them "follows" from the other ones in a
nontrivial sense of inference. Hence, deduction must not be in-
terpreted as inference from the axioms. In fact, another set of
axioms /and another set of primitive rules/ might yield the
same set of tautologies. Deducibility is only a technical no-
tion without semantical significance.

The sign V ' is used sometimes as a two-place functor of
the metalanguage: if a is a set of formulas, then "al-A"™ means
that A is deducible from a in the sense that there exists a
sequence £ of formulas terminated by A, such that each term of

is either an axiom or a member of a, or follows from previ-
ous terms by an elementary rule. If a is empty, one gets the
notion of deducibility in the previous, narrower, sense.

In the case of classical calculi, if modus ponens is
the only elementary rule, then "oif-A" may be interpreted as "A
follows from a" in the sense that A is true in all models of a*
The possibility of this interpretation is based on the fact
that modus ponens is truth-preserving /in contrast, e.g. to
the quantificational rule "A”Bic) “m Asayx.B(x) " where ¢ does
not occur in A; this rule is only validity-preserving/; and
the latter follows from the truth-functional character of ma-
terial implication.

If the mentioned conditions are not fulfilled, the inter-
pretation of "ai-A" as "A follows from a" fails. Thus, in ge-
neral, the notions "deducible from a " and "consequence of a"
need not coincide. So much the more, deducibility and conse-
guence must be treated separately in many-valued logic.

Let us see now a quite natural generalization of the con-
sequence-relation /of two-valued logic/ in many-valued logic.
In two-valued logic, B is a consequence of a set a /of pre-

-169-

mises/ if and only if B is true whenever all members of » are
true. If a is finite, say, o = iA" ..., A", then this condi-
tion may be formulated as follows: "B is true whenever AM is
true and ... and A is true". Assuming that the conjuction of
the object language and that of the metalanguage coincide, one
might go further by saying that B follows from 1A%, ...» A~"} if
and only if

Ay e A 11341B]
holds for all assignments of the variables occurring in A ,...,
éﬂ, B. Here denotes the conjunction of the object language,
and Jxj denotes the truth-value of the formula X, where truth
and falsity are represented by the numbers 1 and O, respective-
ly. From this view-point, consequence-relation is a minoration
of the conclusion by a certain truth-function /namely: conjunc-
tion/ of the premises.

Given a multi-valued logic, and a fixed ordering " of its
truth-values /assuming that & is reflexive, antisymmetric,
transitive and connected/, the scheme

If(A,B, ...)14&|KI

expresses that a truth-function f_ of the premises A, B, ... mi-
nordates the conclusion K. Here the conjunction of the premises
is replaced by an arbitrary truth-function of the premises.
This is the general formulation of the consequence-relation of
multi-valued logic. If

f (A,B,...)|s|K]|, 12.(a,B, ...)14 1K
f (A,B,...)iS|g.(A,B, ...)1

but
la(A,B,...)IHf(A,B,...)l

then 2 gives a stronger minoration /of K/ than f does.

As a further step, we can enlarge the formal system by a
partial formalization of its metalogic. Then, one gets a two-
level formal system. Formulas of the first level are that of

-170-

the primary system, whereas atomic formulas of the second lev-
el might have the form "A”B" where A and B are formulas of the

first level and represents the minoration relation out-
lined above. /This step will be treated in Section 3./ By this,

deducibility and consequence will be clearly distinguished.

One could get a seemingly natural adaptation of the two-
valued consequence-relation in many-valued logic, by replacing
"designated value™ for "true"™ in its definition, as follows:
B is a consequence of {A”™,...,An} if and only if B assumes a
designated value whenever each of A-7,...,An assumes a desig-
nated value. By this, the consequence-relation remains, in
essence, two-valued, even in the case, the object logic doest
not admit two-valued interpretations. Our approach outlined
above evades this disastrous conclusion.

2 Material Implication and Inference

According to the deduction theorem, "AHB' and " A = B"
are equivalent metastatements about the classical propositional
calculus (PC). However, the replacement of '=> by V' in a tau-
tology gives, in some cases, unacceptable metastatements. /The

same holds if 'o' is replaced by the word 'implies'./ These
cases are well-known as the paradoxes of material implication.
An attempt to avoid these paradoxes is the introduction of a
more rigorous /non-truth-functional/ connective for expressing
implication /strict implication, entailment, relevant implica-
tion etc./. None of the various attempts have got a general
appreciation. Some systems are criticised for excluding non-
paradoxical formulas, some for not excluding all paradoxical

formulas and some for both.

To avoid the paradoxes, it seems to be necessary to dis-
tinguish the occurrences of the sign of implication in the de-
ducible formulas. In fact, if A is a PC-tautology, then the

main occurrence of 'o' in A is always substitutable by V' J/or

by 'implies'/ without paradoxical appearance. However, this

-171-

condition is not necessary. The tautology "A*(A =B) m> B" ad-
mits the metalogical interpretation: From A and from the fact
that B follows from A, follows B. In contrast, the analogous
interpretation of the tautology "A (B 3? A)" would lead to
the unacceptable metastatement: From A it then follows that A
follows from B.

In the light of our analysis given in the preceding sec-
tion, the best way to avoid the so-called paradoxes of materi-
al implication consists in treating separately the three no-
tions: deducibility, inference and material implication. In
the case of PC, the following metastatements are equivalent:

B follows /semantically/ from A,
Ah B
hA B.

But these equivalences are peculiarities of PC and,are not
universal requirements of formal logical theories; still less
are they laws of many-valued systems; and the least are they
giving any reason to interpret "Ar> B" as "A implies B". Mate-
rial implication is a truth-function of two sentences, and does
not express any logical relation between two statements. /lIn
short: material implication is not implication./

Some systems of many-valued logic contain the following
semantical rule for material implication:
(1) | A3 b| is a designated value ~ |A| & |BJ[.
/Here, '&' denotes an ordering of the truth-values; see, e.g.,
[2] and [3]./ This rule may be considered as the first step
toward the multi-valued generalization of the consequence-re-
lation. For, if "A o B" is deducible, then it assumes only de-
signated values. Then, by (1), the value of A minordates the
value of B /for all assignments of their variables/, and,
hence, B follows from A /in our sense of "follows"/- Thus, in
such a system, "A implies B" means not only that "if A takes a
designated value, then so does B" but that "the value of B is
never smaller than that of A".

-172-

The following rules for |a b| satisfy condition (1):
(2) 1A = B = min(l, i-]a] + Ib|)

(3) 14 f si = min(1, 18| : la])
are symbols of arithmetic.

In (2), the truth-values are the fractions k/n where kK and n
are integers, 0 = = o and nd is fixed. /This is taken
from Lukasiewicz's n+l-valued logic./ In (3), the truth-values
are the real numbers of the closed interval [0,1] /this example
comes from the theory of conditional probability/. In both
cases, the only designated value is 1. Another example /for a
four-valued logic/ may be found in L3].

However, (l) does not make possible to use an implication
in an inference, unless its truth-value is a designated one.
According to our programme outlined in Section 1, we should
like to infer B from a truth-function of A and "A cs B". In the
case of (2) and (3) above, a minoration of B by an arithmet
ical function of 1Al and |A = Bl is possible:

(27) Wi Bl Al
3") 1Ap81- 1A1 als1l.
is symbol of arithmetic.
A sufficient condition of such a minoration of B is, in gener-
al, the existence of the inverse function of the material im-

plication /i.e., the possibility of calculating the value of B
from the values of A and "A 3? B"/- Of course, not all implica-
tions fulfilling (1) are invertible.

In the different systems of many-valued logic, the truth-
-functions corresponding to the two-valued ones /negation, con-
junction, disjunction, material-implication/ are defined some-
what arbitrarily. Moreover, the same system may contain two or
more types of negations, conjunctions, implications etc. In
contrast, the concept of consequence-relation is not in the
least explained in these systems. Hence, there is no difficul-

ty to introduce it in the way outlined in Section 1. In order

-173-

to have a uniform formulation of the consequence-relation in
all kinds of multi-valued logic, it seems to be appropriate to
separate it from material-implication; i.e., the minoration
[Al4a]|B| need not to be interpreted in the sense of (1). Rather,
we have to introduce the second-level formula "A G B" where A
and B are formulas of the first level /i.e., formulas of an
object system of multi-valued logic/ and we have to formalize
the logical laws governing the consequence-relation expressed
by "A g B

In doiii so, it seems, however, to be appropriate, to
introduce a certain form of modus ponens in the generalized
theory of inference. There are two ways for solving this prob-
lem. The first one is to postulate axiomatically the deducibi-
lity of the second-level scheme "A.(A 3 B) &4 B". The second
approach consists in postulating the unique solution of the
equation

as b =c
for b, given the truth-values a and c. /Here 'b' denotes the
truth-function corresponding to the object language sign '9'
in the multi-valued interpretation of the formal system./; i.e.
we assume here the invertibility of /mentioned above/. In
general, a weaker condition, namely, the existence of a unique
lower bound for b, is sufficient. Of course, the invertibility
of 'z>' might assume certain conditions, e.g. that a should not
have the minimal value /be not "absolutely false"/; but these
conditions depend from the peculiarities of the particular
multi-valued calculi. Also, the invertibility of other truth-
-functions might be postulated.

If modus ponens is conceived as the inverse of material
implication, and if "A & B" is deducible only in the case, all
atomic components of B occur in A, then the counterparts of the
paradoxes of material-implication are avoidable. E.g.

"A.A a B" "A £ B«B"
are not deducible. /Here ,— denotes negation./

174-

These remarks refer to the role of the object language
implication in the consequence-relation represented by '@', and
are absolutely independent from the rule modus ponens of the

metacalculus.
3 The Formal System

In most cases, the atomic statements of a metasystem are
of the form 'VA" where A is a formula of the object system and
the meaning of "hA" is that A is a tautology. However, the
Boolean type algebraic formulation of the classical proposi-
tional logic does not belong to this type of systems. Here, if
A and B are object-language formulas, then the identity of
their values expressed by "A = B" is a metastatement; and'VA=B"
which expresses that the identity of A and B holds tautolog-
ically, is a meta-metastatement. Hereinafter two types of sys-
tems will be called "system of tautologies™ and /"system of
identities™.

A formalization of a many-valued logic as a system of tau-
tologies does not reflect the fine structure of its many-valued
semantics. It only represents the rough dichotomy of designated
and non-designated truth-values. Apparently, the many-valued
interpretation of such a formal system is solely and ingenious
device to explain why the set of deducible formulas is not the
same as in two-valued logic.

This method of formalization seems to be highly inade-
guate, especially in the case of infinitely many-valued systems
and particularly in the case, the scale of truth-values is not
well-ordered /e.g. if the scale of values is a closed interval
of real numbers /.

The dichotomy of designated and non-designated truth-
values is fully avoidable in the formulation of logical laws
by means of identities, or, rather, by means of inequalities.
Given an ordering of the truth-values, the atomic metastate-
ments might have the form "A & B" where A and B are object-
language formulas. Then, the logical laws /expressed in the

form of compound formalized metastatements/ do not govern the
truth-values of the object-language formulas. Instead, they

govern the ordering relation holding between truth-values of
object-language formulas.

In what follows, I shall introduce a two-level formal
system frame which reflects the mentioned principles. Formulas
of the first and the second level will be called object formu-
las and metaformulas, respectively. Object formulas are built
up from atomic ones, by means of three truth-functors
"+, these may be called negation, disjunction and con-
junction, respectively/, and quantifiers /'IT' and further
details of the system of object formulas is left open. Atomic
metaformulas are of the form "A i B" where A and B are object
formulas. Compound metaformulas are built up from atomic ones,
similarly as in classical logic.

The logical laws of the system govern the system of meta-
formulas; they will be formulated axiomatically. The first
group of the axioms regulates the ordering properties of the
sign /le.g. transitivity/, while the second one might cha-
racterize the peculiarities of the object formulas. /In our
general frame, we give only two axioms regulating the functors

"‘and '+'. The particular structure of the object logic may
be expressed by additional axioms belonging to this group./
Finally, the third group of axioms - together with the rules
of deduction - formulates the notion of tautology in the
sphere of metaformulas.

The rules of deduction include modus ponens. This rule
might be formulated in the meta-metalogic as follows:

(Vot & h(a w R)) -+ FB

where a and g stand for metaformulas. Another rule of deduc-
tion is based on the transitivity of s illustrated as
follows. /Here A, B, C are object formulas./

-176-

1. D)

2. hji c)

3. I-((A£EB I BacC)+Adac) [transitivity/
4. NWA i C) [from 1,2,3/

It might be a tempting idea to formalize the metalogic on
the basis of the same multi-valued logic which is assumed in
the object-language. /By this, the used multi-valued logic
would be proved to be self-contained./ However, a series of
arguments supports the application of two-valued logic in the
metalanguage. Using any metalogic, it is to be based on a
meta-metalogic, and so on, and finally, one has to use a frag-
ment of everyday-language based on two-valued logic. Moreover,
the use of a multi-valued language would imply the /theoreti-
cal/ undecidability of atomic metastatements of the form "A”B".
By these, the simplest way is to use two-valued logic in the
metalanguage.

The detailed description of our formal system is as fol-
lows .

- Definition of object formulas

We assume a denumerably infinite supply of each of the
following type of symbols: /a/ individual constants, /b/ indi-
vidual variables, /c/ for all natural numbers n /n = 0 includ-
ed/, n-place predicate constants, and /d/ for all n ~ 0, re-
place predicate variables.

/1/ For n ~ 0, a sequence consisting of an n-place predi-
cate constant, followed by n individual constant is an /atomic/
object formula.

12/ 1f A, B are object formulas, then so are "A", "(a»B)"
and "(A+B)".

{3/ If A is an object formula, x is an individual vari-
able, c¢ is an individual constant, occurring in A /in the
usual sense/, and "A—' is the expression obtained from A, by
substituting x for all occurrences of ¢ in A; then "MNx A&' and
"£X AC— are object formulas. 3

-177-

/4] An expression is an object formula only if it is com-
posed according to the rules /1/.../3/ and perhaps some other
additional rules stated explicitly.

- Definition of metaformulas

/1] If A, B are object formulas, then "(™A 1 BJ)" is an
/fatomic/ metaformula.

/21 1f a,3 are metaformulas, then so are "~a", "(a 1 3)",
"(a V 3)" and "(a - 3)".

/3/ 1f a is a metaformula, ¢ is a constant /of any type/
occurring in a and x is a variable of the same type as c¢, then
"yx a —" and "Ox a —' are metaformulas. /Concerning the nota-

tion "af", vide /3/ of the preceding definition./

/4] An expression is a metaformula only if it is composed
according to the rules /1/.../3/.

- Abbreviations

If A, B are object formulas, then:
"(A = B)" abbreviates "((A @i B) (B #n A))" and
"(A p B)" abbreviates "(A + B)".

- Definition of the "classical counterpart of a metaformula"”
For all metaformulas a, we define /by induction/ a formu-
la a* of classical first-order logic, called the classical
counterpart of a, as follows.
Il Let <6 > be an enumeration of all atomic meta-

formulas. If ¢, ,. .., ¢, (k * I) is the list of the different
constants /of any type/ occurring in /say, in the order of
their first occurrence in <h , then we let ™ be
"B (E]_,*°°*» " where is a kK-place predicate constant /of
first-order logic/, and c”,.. ., ¢ are to be considered as in-
dividual constants of first-order~logic. /If W n, then £m
and p must be different. / By this, "p (c.,..., ¢,)" 1is an
atomic formula of first-order logic.

1211f a and 3 are metaformulas, then

(~a)* = -(a*) (a % 3)*= (a* k 3%

-178-

and similarly for "Y' and
(Vx o) = VX @E*)-
_ X —_ X

and similarly for '3'; here, x is to be considered as an indi-

vidual variable of first-order logic.

- Axioms

(ACL) Given a fixed standard system of classical first-
order calculus, a metaformula a is an axiom if its classical
counterpart, a* is an axiom of the first-order calculus.

(AS) AIll metaformulas obtained from one of the five
schemata below, by replacing object formulas for A, B, C and D
and a O-place predicate variable for X, are axioms.

(Al4) (A 4 B~ (BSA)
(A:4R) AL A

(AiaT) ((A it B) (B ii£)) m(Ai C)

(A:1+) (((a+B) 4 (C+E>)) & (C 4 A) ~VX(X & A)) ->(B & D)
(A:l.) (((A.B) £ (C,D)) kK (C~ A & ~VX(C & X)) -+(B it D)

/Outermost parentheses are omitted./

- Rules of deduction
The same as in the first-order calculus referred to in

(ACL) above.

Remarks. Axioms (A:4), (A:4R) and (A:4T) ensure that 's '
represents a linear ordering relation. (A:1+) and (A:1*) are
necessary for the invertibility of the functors '+' and
respectively. For, let us substitute C by A in (A:1+); from
this and A:“r one gets /by first-order logic/:

(1) K((a+tb) N (a+d)) | ~VX(X & A)) = (B a D)
By changing the role of B and D in /1/, we have:
(2) t((fA+D) & (A+B)) 1 'VX(X & A)) m (D & B).

From (1) and (2) it then follows /again, by first-order logic/
(3) — VX(X a A (((A+B) = (A+D)) -» (B = D)) .

This means, intuitively, that if A is not maximal, then the
equality "A+X = C" has at most one solution for X. The dual

- 179-

law for is deducible from (A:l):
/4/ H~VX(A a X) » (((A.B) = (A1}))-* (B =D)) .

4 Applications

It is evident that our axioms do not determine uniquely
the structure of a multi-valued object logic. The complete cha-
racterization of a particular object logic might be given by
additional axiom-schemata formulated as /schemata of/ metafor-
mulas. Of course, new functors and operators of the object-
language might be introduced as well. A related system /[/R-fuzzy
algebra/ was investigated, e.g. in til.

Atomic metaformulas (A & B) are to be interpreted imme-
diately as inferences of object logic /in accordance with the
introductory motivations of Sections 1, 2/. Now, let us show
how modus ponens related to the object-language is expressible
in particular cases /due to the axiom-scheme (A:l+)/.

As a fragment of an interpretation of our object logic,
let us consider a structure consisting of a set of truth-values
together with an ordering relation a, a one-place function n(x)
and two two-place functions a(x,y_) and m(x,”). Let us assume
that Kk / nf a and m are interpretations of i |, , + and -,
respectively. Furthermore, we assume that an assignment V de-
termines the value of all atomic object formulas, and V is
extended for compound object formulas by the evident rules:

V(A)= n(V(A)), V(A+B) = a(v(A),V(B)),

V(A.B) = m(V(A), V(B)).
Now, the atomic metaformula "A £ B" is said to be true /accord-
ing to the given interpretation/ if and only if v(a) Kk V(b)
holds. Finally, we assume that all axioms AS are true /in the
obvious sense/, according to our interpretation.

On these assumptions, if "~vX(X £ A)" is true and if V(a)
and V(A B) /i.e. V(A+B)/ are known, then V(b) is reckonable

-180-

by
V(B) = a_1(V(A B), V(A))

where "a 11 denotes the inverse of the function a. /Cf. (3) at
the end of the preceding Section./ Let us note that an object-
-language functor corresponding to a 1 /i.e. the inverse of the
functor '+'/ is not definable syntactically in our general
frame, although the function a ~ may exist in several interpre-
tations. /See, e.g., in [L./

If "(A#B) & B" is deducible /due to the additional axioms
characterizing a particular object logic/, then "A*B" minoréates
B immediately. Given. V(A), a stronger minoration is possible,
namely :

V(B) = m_1(V(A#B), V(A)),

provided " ~VX(A i X)" is true. /Cf. (4) at the end of the pre-
ceding Section./ Here, 'm ~' denotes the inverse of the func-
tion m .

If both "A = A" and "(A+B) & (B+A)" are deducible, then
the antecedent of an implication might minorate a compound in-
volving the implication and its consequent. Namely:

151/ V(A) = n(a_1(V(A B) , V(B)),

provided "~VX(X #n B)" holds true. This inference form has no
classical counterpart. - Assuming that "3xvy(Y & x)" is deduc-
ible, the truth of "Vx(x »~ (aD b) " implies "VX(A*X)WX(XaB) ".

This means that /5/ is nontrivial only in the case, none of the
premises /"A o B" and B are "absolutely true” /i.e. none of
them assumes the maximal value/. /Cf. the motivations of [1] ./

Similarly, if "~vx(x & A)" holds true, then
V(B) = a™1(V(A+B), V(A))

represents an inference from a disjunction and one of its mem-
bers to its other member.

-181-

Intuitive motivations of the inference patterns mentioned
in this section are minutely discussed in [1].

Acknowledgement. The author is indebted to |I.
helpful criticism.

Rizsa for his

REFERENCES

[1] Albert, P.: The algebra of fuzzy logic. Journal
Sets and Systems 1 /1978/, 203-230
[2] Gaines, B.R.: Foundations of fuzzy reasonings.

of Fuzzy

Internation-
al Journal of Man-Machine Studies 8 /1978/, 623-668

[3] Belnap, N.D.*. Jr., A useful four-valued logic. In: Modern

Uses of Multiple-Valued Logic /Ed. by J.M.Dunn and G.
Epstein/. D. Reidel, Dordrecht, 1977.

Computational Linguistics and Computer Languages Vol. XIV. 1980.

IDENTITIES IN ITERATIVE AND RATIONAL
ALGEBRAIC THEORIES

by
Zoltan ESIK

Department of Computer Science, University of Szeged

Szeged, Hungary

ABSTRACT

In this paper we present a basis of identities of rational
algebraic theories. It is conjectured that this basis forms a
basis of identities of iterative algebraic theories, as well.
It is shown as a result that free rational theories coincide
with the free theories over the equational class corresponding
to the basis.

1. ALGEBRAIC THEORIES

An algebraic theory T is a special many-sorted algebra
whose sorting set is the set of all ordered pairs (n,p) of non-
-negative integers. Let us denote by T(n,p) the carrier of sort
(n,p) of T for each n,p. The operations in T are: composition,
source-tupling and injections. For each n,p,q, composition (de-
noted by . or juxtaposition) maps T(n,p) x T(p,q) into T(n,q).
For each n,p, source-tupling associates with f~ e T(I,p)
(i=1l,...,n) a unique element <f~,...,fn> e T(n,p). Particularly,
if n=0, source-tupling picks out an element 0~ e T(0,p). Final-
ly, injections are nullary operations; there is a corresponding
injection € T(l,n) to each i and n such that 1 i i & n. The
operations are required to satisfy the following conditions

-184-

(cf. [1]):

(i) (fg)h = f(gh) if f £ T(n,p), g GT(p,q), h GT(q,r);

(ii) f<nj,...,n~r> = ff f 6 T(n,p);

(id) nil<f =fi, 1 @i wan, f. GT(l,p)
(j=1f... ,n);

(iv) <n*f,. .., n~> = f, f GT(n,p).

In particular, if n=0, the last condition asserts that
T(0,p) is singleton.

Under these assumptions T becomes a category whose objects
are the non-negative integers and in which each object n is the
n-th copower of object 1. In fact, it was the original defini-
tion of algebraic theories (cf. [7]). In this category the i-
dentities are the elements 1" = <n*,...,n"> - 0). According

to the categorical analogy, the elements of T are called mor-
phisms and f G T(n,p) is written as f : n #p

It seems convenient to extend source-tupling as follows.
Let f :n »p, g : mmwp. Then <f,g> = «Cn?, ... ,nnfjn"g, ..., nmg>.

Evidently, this derived operation is associative. Hence, we may
write <f,g,h> to denote either <f,<g,h>> or <<f,g>,h>.
Another derived operation is the separalted sum. First, let us

. _ W .
consider 1n and Op' Then, 1n +0IO = <nn4p""’nn+p>" while
0+ <nn+1| nn+p>
n n+p n+p
In general, if f : n p and g : m ‘mq, then f + g =
= <f(lp+0q), T"e separated sum is associative, too.

Concerning other identities the reader is referred to [3].

-185-

The algebraic theory T is called non-degenerate, provided
n™ao * A morphism f : n - p is said to be ideal if none of

the morphisms n*f,...,njjf is an injection. Finally, T is called
ideal if it is non-degenerate and for arbitrary f and ideal g,
gf is ideal.

One can introduce homomorphisms - called theory maps -
between two theories. These are exactly homomorphisms of algeb-
raic theories considered as many-sorted algebras. Let T and T'
be ideal theories and take a theory map F : T * T'. If F pre-
serves ideal morphisms, then it is called ideal as well.

Algebraic theories, as they were introduced, have an equa-
tional presentation. Hence, for every ranked alphabet or type

E = nUg En there exists a free theory generated by E. This is
denoted by T~ and has the following property. There is a ranked
alphabet map M: e - T» such that any ranked alphabet map

F : E- T into an algebraic theory T has a unique homomorphic
extension F : T - T; i.e. a theory map F which satisfies

F = nF. Here, by a ranked alphabet map we mean any mapping

F : E - T such that F(En)S T(l,n).

T~ can be described as the theory of finite E-trees on the
variables {x~x"...} (cf. [4], [6]). n can be chosen as the
mapping f I- f(x”*,...,xn)(f G En,n £ 0)- Since n is injective,

we can consider E as a subset (more precisely as a subsystem)
of T . In this way F = nF corresponds to F| = F.

In particular, if E is the void alphabet, T becomes the
initial theory. This is isomorphic to the theory 0, in which
O(n,p) is the set of all mappings of [n] = {I,...,n} into [p],
composition is composition of mappings, source-tupling is sour-
ce-tupling of mappings, finally, the injection 1 - n is

-186-

the mapping which picks out the integer i from [n]. Since 0 is
initial in the category of all theories and theory maps, each
theory T has exactly one subtheory which is the homomorphic
image of 0. Further on this subtheory will be denoted by OT or,

simply, 0. If T is non-degenerate, OT is isomorphic to O,
otherwise both 0 and 07is isoirorphic to the terminal theory,

a theory whose each carrier is either void or singleton. The
elements of 0 and OT are called base morphisms and, in the se-
qual, they are identified. Lower case Greek letters,except O,
always denote base morphisms. For arbitrary p :n-p GO, ip
stands for the image of i G [n] under p. A base morphism is
called surjective, injective etc. if it is surjective or in-
jective, resp. as a mapping.

We distinguish a subset (or subsystem) fron T~1' This will be

denoted by ™, <« f G T, (n,p) if and only if the frontier of f,
i.e. the sequence of variables appearing in the leaves of f,
is exactly Xj-..x . T, has the following important property:

Every element of T~ can be wuniquely written in the form fp,

where f G T and p GO

The morphisms f : n - p (n > 0) which can be obtained as
n
(i-1fi)p'" where f-L e £(i=1,..,n) and p G 0, constitute the sub-
set EO.

Now we are ready to prove :

Lemma 1.1F
Let f :n - n+p, g : m- m+p and p : m ®n be morphisms in a
free algebraic theory T. Assume that p is surjective and g(p+IP):

= pf. Then, there exists a morphism h : £ “mt+p such that for

some surjective a - m we have
(i) h(a + 1) = ag,
r

-187-

(ii) if B is a left inverse of a, i.e. Ba= 1 then
aBh = h,
(iii) for every left inverse y of 71T there are base morphisme
i % Hsatisfying both 11T = 1T and
n*trblt® +1p) = nf£h (i=1f , where T denotes the

composition op.

Proof

Since every free algebraic theory is freely generated by a ranked
alphabet, it is enough to verify the statement of the lemma for theories
T=T , the free algebraic theory generated by a ranked alphabet I .

Let gi denote the i-th component of g, i.e.
g. = nlg (i=l,...,m). It can be written in the form
g. = giai(Ri + RBf), where gi G T(1,kx + k'), Bi : kx *m,
B2 : k? - p and finally, eu : k" +k™ - K.™K! is bijective and
satisfies that both and a. « , the restrictions of
N
1 1
. oo xif
to N. = {ja"11 1 a j & ki} and Nj = ki < 7 * ki+kf},

are monoton mappings.

Assume that ip = jp(i,Jj G [m]). Then, also g.(p+1it) =

= gj(p+lp), i-e. giai fRi+R:)(p+lp) = gjaj(B™+Ri)(P+Ip).
But there is a unique way to get a morphism of as the
composition of an element of T and a base morphism.

Thus, we can conclude that k~+k~ = k~+ki , g~ = g

ai(Bi + Bj)(p+tlp) = aj(Rj+Bj)(p+lp). SuPP°se that b e Ni* Then,
tot. (R.+R.")(p+tl) £ n and hence, ta.J(BJ. +§i)(p+|) £ n. Therefore
n * r i r

%)

taj nm kKj, i.e. t G N.. The converse inclusion is similar. This

proves the equalities N* = Nj, = N , ki = kj and k? = k»

-188-

Or even, since the mappings a.i , a.i a.i and a.i
1'N 1'Nf 3 'N. 3 'Nl
1 I X 3
are equally monoton, cu = an; and it results from this that
3eP = 3P and Rj = Ri
nP = i !
m
Define V = E k., Z=m+i/. For every i G [m] let h. de-
i=i 1 1
i-1 m
note the morphism hi = Om+gl'al(t:E10’Kt+l’ki+ t:F+1 O,kt+3|f).
Let a= <1/,B",...,Rm>, h = <hl,...,hm>. A simple computation

shows that h.(a+1) g. for each i G [m].

Indeed, hi'(a+1p)

- v oty -
i-1 m
= <OMH5i“l(tA ° kt+lki+ t==+i V. («P'V V
1 m
Vit R Ky
i-1 m
E
°k +1y. +
t=| Wit t=Er

g.ap(3+3{) = g.
This proves h(a+IP) = qg.

Assume again, that ip = jp (i,j G [m]). Define p.

1'D
bY f>i,j =+ pi,j Where Py
-1 r£ j-1 m m
<, S L , ' +
==k, e O\Iét tEI Okt 1K

It is easy to check that

i-1 m j-1 m
(EO +1 + E onp' .
t=1 Kt Ki t- i+i kt 1,3 t=1 kt kj t=j+I1 kt

h.(p, .+1 =
i(pl 3 P)

1
m
o

+
[EEN

+
m
o
—
=
c
w

-189-

- (OmSsici<”™) V + Vv tJd +H1°ktHli=)(lapi,j +S* =

= O+p.a/1y41 0 +1. + ¢ 0 + 0!) =h (
J 3 t=I Kt Kj t=j+] Kt D -1

i.e. hi(p'if]' + 1P) =h Furthermore, if 71 denotes composi-
tion op, we have .

P p|/D

]
.

= T. Indeed,

pi,jT = (Im+ pi,j)<im,BI/*** 3m>p =

= Simfpi,j<ei’***,3me>p <Im,31' **e 3i-1,3] 30+ 1 ety P
PF3AP, oo« f3jA APF3jP,3jA j AP/ eeef3AP *A_PE3jP, «« « fAfIPA*
= <Iim, 3i,...,3m>P = ap = T.

Let h = ah and denote by h” the i-th component of h. For
each (i,J) such that ix = jx let j = P”a ja < Then we

have h.(x. .. + i_) =h. and 1. .T = T.
170 P] 1]

h(a+IP) = ah(a+IP) = ag, this proves part (i) of Lemma 1.1.

In order to verify (ii), take 3 an arbitrary left inverse of a
Obviously, a3h = asah = ah = h. Finally, let y : n > i be a

left inverse of t. For each i € [£], define x* by x* = x* A
This can be done by ixyx = ix. Evidently, x*x = x and

— A — N 1
n)rexyh(x1 + 1P)— n£xyh(x.ixy,I + 1p) = n£h , ending the proof of

the lemma.2

2. ITERATIVE AND RATIONAL THEORIES, IDENTITIES

By an algebraic theory with iteration we mean a theory T
equipped with a new operation +, called iteration, which, with
each f : n - n+p, associates a morphism f+ : n - p. An itera-
tive algebraic theory T (cf. [3]) is an ideal theory with ite-
ration, except that the iteration is partial. For f e T(n,n+p)

-190-

f+ exists if and only if f is ideal in T, considered as an al-
gebraic theory. Furthermore, f+ is required to be the unique
fixed point of f, i.e. f+ is the unique morphism g G T(n,p)
auch that g = f<g,lp>.

Homomorphisms between two iterative theories are the ideal
theory maps. Observe that ideal theory maps preserve iteration.

Rational algebraic theories were introduced in [9]. A ratio-
nal algebraic theory T is a theory with iteration. Each of the
carriers of T is ordered, f+ is the least fixed point of f,
and ordering subject to some other conditions (cf. [9]). Homo-
morphisms of rational theories, as they were defined in [9],
are certain theory maps, but, likewise in case of iterative
theories, they preserve the iteration as well.

In a sense, iterative and rational theories have a common
generalization which will be introduced here. Consider an ar-
bitrary theory with iteration. It will be called generalized
iterative theory, provided it satisfies the following identi-
ties, (A) to (E):

(A) f+ = f<f+,1 > where f : n -»n+p,

IT

(B) <f,g>+ = <h+,(gp)+<h+,1ir>>, where f : n - n+m+p,

g :m- ntm+p, h = f<ln+°p,(gp)+,°n+lp> and

P= <0 +1,, 1..+0 > +1p
(C) (°n-f)+ - f, where f : n - p,

(D) o/ =0y, Where f :n *n+p,

(E) <n”pg (pi+lp),-c*/n™pg(pmtlp)>+ = pf+ if f : n - n+P’
g : n- m+p, p : m- n is surjective, m- m

are base, furthermore, p p =...=pmp = p, as well as

-191-

f = g(p+tlp) is satisfied.

In the above mentioned identities f and g are treated as
variables of the given sort.

Theorem 2.1

Every rational theory is a generalized iterative theory.
Every iterative algebraic theory satisfies identities (A) to
(E) if ideal morphisms are substituted for f and g.

We do not present a complete proof of this theorem here.
The reason is that most of these identities, except possibly
the last one, were already discovered in papers [3], [9]. For
(B) cf. [2], too.

Let us remark, however, that it would be enough to prove
the theorem for free rational and free iterative theories. And
what is more, since free iterative theories can be viewed as
weak subalgebras - subtheories closed under the iteration of
ideal morphisms - of free rational theories, it would be enough
to consider free rational theories only.

We have already mentioned that all free iterative theories
exist. This fact was first shown in [1]. Another proof can be
found in [5].

1~, the free iterative theory generated by the alphabet Z
can be obtained as follows (cf. [4], [5]). First consider T™,
the algebraic theory of all, possibly infinite, E-trees on the
variables {x"*x”...}. t“ is an ideal theory, even an iterative

theory. Then, construct the smallest subtheory of t” contain-
ing Tj,and closed under iteration of ideal morphisms. This will
be the iterative theory 17, called "free" because every ranked
alphabet map F : E * T into an iterative theory T,such that
F(E) contains ideal morphisms only, has a unique homomorphic

-192-

extension F, i.e. an ideal theory map F : I - T, satisfying
FjE = F. Recall that by EE£ and T™, C. 1, E£. 1” holds as
well.

Rj,, the free rational theory generated by E, has a similar

description. Take I’\-’i’ where EI is E except (El)l/l = E(bJH}/ and

J is a new symbol. There is exactly one way to extend | to a
E!
generalized iterative algebraic theory in such a manner that

1+
we have nl = X- When forgetting orderings, R" becomes this

theory 10 . R”™ is free in the following sense. For any ranked

alphabet map F : E- T into a rational theory T, there is ex-
actly one homomorphism (of rational theories) F : R -» T extend-
ing F, i.e. such that F|® = F. This was proved in [9]. Actually,

this theorem remains valid even if F is required to be an ite-

ration preserving theory map, i.e. a homomorphism of theories
with iteration.

Further on, let us consider R. as an unordered theory. Do

not forget that I2ii’ and hereby I as well, is a weak subal-

gebra of RY, and the carriers of 1 and R\ coincide.

We now proceed by stating some consequences of the identi-
ties (A) to (E). In these statements, if (A),...,(An+") are

sentences of first order, expressed in the language of theories

with iteration, we write (A),...,(An) 1= (An+1) to mean the

fact that every theory with iteration which satisfies
(A™),...,(An), satisfies (An+1l) as well.

(X) g+ = pf+ if f : n - n+tp, g : m - m+p, p :m- n is

surjective and g(p+l) = pf,moreover for anv left

-193-

inverse a of p there exists base morphism
p, : m -»m (1EC ml) with PP =p and

~pag(Pi+Ip)=Trg.

Lemma 2.2.

(E) N (X).
Proof

Assume that (e) 1is satisfied by the algebraic theory

with iteration T. Let f: n-»n+p , g:m ¢ m+p and P:m % n

content the assumptions of (x) and fix an arbitrarv left
inverse a of p . Define g' by g=ocg . Then g'(p+ 1n_) = f.
But there exist morphisms PL eeeceepm :m m m satisfying

both pArp=... =PmP =P and

< %pg'Mpi+lP)’eee»nSpg'Cplil+ 1p) > =cT.

Thus, by (E) we obtain g+= pf+#
Further on the following special case of (X) will be used.
(X*) g+= pf+ if f: n -*n+p , gm-» m+p / p:m ®n

is surjective, g(p + 1P):pf, moreover there 1is a

base morphism ann-*-m with ap=I- and a=pag.
P

The next identity can be derived from (X') and from (e) ,too0.
Indeed, if in identity (E) we have n=m as well as
g=f(p-1+1), where p*'l denotes the inverse of P, furthermore

pA=Im is satisfied for each i e[m r then we

-194-

obtain identity

(F) pe(p'l+lp))+ =pf+

and the following lemma:
Lemma 2.3. (E) 1= (F).
The next identity is the dual of (B)

(B') <f,g>+ = <f+<h+,|P>,h+> if f : n - n+tm+p,

g : m & n+m+p and h = g<f+,|Im+p>.
Lemma 2.4. (B), (E)I= (B").

Proof

We prove that (B), (F) 1= (B')» For this purpose let T be
an arbitrary theory with iteration which satisfies both (B)
and (F). Take f and g as in (B') and define p by

p = <On+rg1 , 1n+r9 > The inverse of p is p 1= <0m+n1 '1m+r9 >,
Let fJ = f(p 1+1H), g = g(p 1+1|’r)' Obviously

p<f,g>(p-1+Ip) = <gl,f1l>.

By (B) we have <gl,fl1>+ = <h* (fA"pM)+<h*,Ip>>r where
°1 = p+lp' hl " gl<tmOop ' (flpl)+" °m+V -

But, = f(P 1+1p~ P +1p” = f and thus

h-& = gi|<n%m+6)", f+/0m+1p> = %(p- *+1p)<1m+0p,f+,0m+1p> =

N —_
g<0 1 +0 L1 k0 L 00 B e R ST 0 f 0 L > =

g<f+,1n41-0p,0r4ﬁ1p> =g <f+’|m+p> = h.

Thus, <gl1,f.>+ = <h+,f+<h+,IP>>. By (F),

(p 1<gl,f1>(p+l))+ = p“1<gl,fl>+ = <f+<h+,1 > h+>.

-195-

It results from this that <f,g>+ = <f+<h+,Ip>, h+>.

Another identity is;

(G) (f(lIn+g))+ = f+g, where f : n & n+tm, g : m -»p.
Lemma 2.5. (B), (C), (D), (E) 1= (G).

Proof
We show that (B), (B'), (C),(D) |= (G). Hence, the proof

follows by Lemma 2.4.

Let fj = f+0p : n - n+m+p, g2 = On+ratg : m - n+m+p

in an algebraic theory with iteration satisfying (B), (B'"),
(C) and (D).

By (B) we have <fl,gl1>+ = <h+,(glp)+<h+,lp>>, where

0 = <0m+V W +V h =fl<vep' '91p)+- W BUt'

*1» “ (On+m+9>(<0m+1n' W +1p)=°n+m+9 ' henCe' by <C)’
(glp)+ = on+g. Therefore, h = fj<In+0 , (9P)+"' °n+1ip> =

= 9f+0p3<1n+0 0,+9, 0n+1p> = f<|n+op, 0,+g> = f(I +g).

pn
We have already seen that <fl,91> = <(f(In+g))+t(0On+g)<h+,1 »

= <(f(In+g))+>g>e On the other hand, by (B')f

<fl,gl>+ = <fl <h+,1p>"'" h+>'" where h = gi<fi'lm+p> ' now*

By 9I<fl' V " (0On+mt 9)<fl ' Ira+tp> “ °m+g and (C)'
h+ = g. It results from this and by (D) that

<fi,gi> = <fi<g'1lp>'g> = <(f++0p)<9'ip>> g> = <f+gf g>.

If we put the above mentioned two facts together, we get
(f(ln+g))+ = f+g.

The next identity contains (G) as a special case.

-196-

H) <fl,91>+ = <fF+<g+,h>, g+>, where T n ®n+m+p,

g:w-m+q, h:p - q, » = Ff(In+m+h) and ar = On+g.

Lemma 2.6. (B), (C), (D), (E) 1= (H).

Proof
Instead of this we prove that (B), (G)I= (H). Suppose that

T is an algebraic theory with iteration satisfying both (B)

and (G). Take the morphisms f,g and h and let
fl =f(W b)" gl= °n+3-

+
By (B) we have _.. Q> = <h|, (gIP)+<hi»liqg

f.1<1n+Oa, (gIR)+. On+1q>. 0 =<0Q+1.,1 +0

0 +1 > =

9. p (O'n+g)<0m+1n+oq’-:m"'on-t-q’ n+m" g

g<lmtOn+q' °n+m+l1lg> “ g(1mOn+1lgb APP!Y1n9 (G) we get
(gxpf = g (on+l) = °n+9+ m Therefore hl =

= f1lln+m+h'<ln+0q'°n+g+' °n+1gq> = f (1ln+<g+,h>> A9ain by (G)

we get h* = f+<g+,h>.

Hence <f1/gl1>+ = <h|,(On+g+)<h]|,lg» = <f+<g+,h>,g+>>.

Further on, we shall use the following consequence of (H):

(H') <fl,g1>+ = <f+<n”g+,h>, g+> if f n - n+l+p |

g :m- m+tq (m”" 1)» h = p - qand f, =T(,.+0_ ,+h),
g_l = On+g.
Lemma 2.7. (H) |= (H").

Proof

Assume that T satisfies (H), f n ®n+l+p, g : m ®» m+q

(mé 1) and h : p q are morphisms in T. Let

-197-

A= f(In+1+40m_1+h) e = °n+9 * Furthermore, let
f ~ fAIn+1+0m-I1+1p", fﬁ = f'(ln#m+h)' It is easy to check that
f =f" . It follows from this and by (H) that <fl,gl>+ =

<f,+<g+,h>, g+> By (G), a consequence of (H), f,+ =
mif <ln+11+0m-1+1p)'+ - E£+(11+0m-1+1p>-
Therefore, f'+<g+,h> = f+<n%g+ ,h> ending the proof of

Lemma 2.7.

Finally, we prove a consequence of (B), as well as that
one of (A) and (B).

(1) (1ﬁ4)m)<f1,g>+ = f+ if f :n - n+p, g : m - n+tm+p,

f.1 = f(1n+0nf1p)'
Lemma 2.8. (B) 1= (i).

Proof
By (B) we have <f*,g>+ = <h+,(gp)+ <b+,17>>, where

h = fl<in+0p"' (90>+"' °n+1lp>"'" p*“ <Omtln' V V + X ¢ We must
prove that h = f. But this can be immediately seen since
h - W \% <90)+"' °n+lp> =

- f(W Ip)<imOp' (9f)+' °n+lp> = f<V°p-°n+Vv - f-

(J) <f' f'>+ = <f|+,f+< f |Ip>>, where f = <fl1,...,fn>
n - n+l+p , f+ = <f* .. f*>,
f =<f', ... f*> = f(<01+In, 11+0n>+Ip)/ n 2 1

Lemma 2.9. (A),(B) 1= (J).

Proof

Assume that T is an algebraic theory with iteration satis-

-198-

fying (A) and (B), and assume that the variables appearing in
(J) are interpreted in T. By application of (B) we get

<f', f'>4 = <h+, (f'p)+<h+,Ip>># where
h = £;<il+op,(f'p)+ ,0l+ip> |, P= <on+ij, Ip+t+o”™ + Ip

f'p= f«xol+xin, VOj> t £fH)(<®rii - IN+0i >
= f(<In+01, On+11> + Ip) = f. Therefore, h = f(<0j+In, 1j+On>+1)

o<1l+0p,f+,°I+1p> = fjiOj+Ip+Op, 11+0n+p'0i+tn+lp><1i+Op' £+'0!+ip>=

*fAf+, 1140 ,0 1+lp> = fj< f+ jli+p> = £i last equality is

obtained by application of (A).
Thus we get (f.,f') + :<f41+,f+ < I ,1p».

Summarizing the results of this section, we have proved
that any generalized iterative theory satisfies the identities
(B"), (F), (G), (H), (HHf (1) and (J), as well as the implica-
tion (X). In fact, the same proofs can be used to show that all
these sentences are valid in iterative theories, too.

3. THE MAIN RESULTS

We now turn to prove that the identities (A) to (E) form a
basis of identities of rational theories. This is accomplished
by verifying that free rational theories are exactly the free
generalized iterative theories. As an intermediate step, we
also show that every ranked alphabet map F : E - T into a gener-
alized iterative theory T has a unique homomorphic extension
(a theory map, preserving iteration of ideal morphism)

F : I w=T. In fact, the proof of the last mentioned theorem is
based upon the observation that all considerations in [5] can
be carried out under weaker assumptions, i.e. by using the i-
dentities (A) to (E) and their consequences only.

For the rest of this section, E is taken as an arbitrary
fixed alphabet. With the exception of the last two theorems all

-199-

statements relate to theory |

Lemma 3.1.
Let f : n - n+p, g : m- m+p e eq . Assume that

{n*f+ | i e [n]} = {n*g+ | i e [M}. Then, there exist surjec-

tive base morphisms p : n +y4 and a : m * as well as a

I,
morphism h : j -» £+p such that both f(p+IP) = ph and

9(a+lp) = ah hold.

Proof
Let i denote the number of distinct components of f+. We
can choose the base morphisms cg :£- n, 3Q :£- m, p : n - £

and a : m-* J1 in such a way that each of the following condi-

tions is satisfied, i.e.
Ogp- 1/ 3g° — » Pao® - ~ ' <"0g —g an<® Qgf - &0g *
For an arbitrary a : £- n, if ap = 1*, let f~ denote the

composition f~ = af(p+lp). Similarly, 39(a+lp) is denoted by
g3, provided pa= 1&. It is easy to check that both paf+ = f+

and a3g+ = g+ hold. Thus, fCt<af ’1|’r> = af and gP<39 '1B"> = 39

showing that f* = af+ and g = 34+. But we have
af+ = aof+ = 399+ = 39+ for every choice of a and 3, there-

fore the morphisms f and g~ have the same iteration. Hence,

by Lemma 3.5. in [5], it follows that there exists an ideal

element h e T8 such that f~ and g~ are the partial unwindings

of h, for any a and 3. But both, f* and g” are in EO resulting

that f = h = .
a g3

We have shownthat for every a : | ®n and3 : £ *mif

ap = 1 and 30 = lare satisfied then so is f =f = 0,
K £ £ a «g 34

and by definition, this morphism was chosen as h. Now, we
have to verify theequality f(p+Ilp) = ph.Let i G [n] be ar-
bitrary.Choose a in such a way that both ap= 1" and ipa = i

-200-
are valid. For this a we have
nnf(p+V = nnpaf(p+V * nipaf(pfVv = nnpfa “ ni ph*

Since i-€ [n] was arbitrary, this proves that f(p+I”) * ph.
The proof of g(a+lp) «ah is similar.

At this point recall a definition from [5]. Let f : n - n+p
be in T~ i,j G [n]. The j-th component of f is said to be
reachable from the i-th one if there exists a non-negative in-
teger m such that n”~fm contains an occurrence of variable

Here, fmis defined by induction on m : f° * 1 + 0 |,
fm+l = f<fra,On+Ip>. Furthermore, the j-th component of f s

called "superfluous” if it is unreachable from the first compo-
nent of f and j>jfcl.

Lemma 3.2.

Let f : n mn+p, g : m - m+p G EG. Assume that neither f
nor g contains superfluous components. Furthermore, let
F : T~ - T be an arbitrary theory map into the generalized i-
terative theory T. Then na‘(F(f))+ = nr’ﬁ(F(g))+, provided that

Proof 8

It follows under the assumption of the lemma that
{nr’]\f+ i G[n]} * (nr’;]g+ !ti 6 [m]}. By virtue of Lemma 3.1. we
have f(p+IP) = ph and g(a+IP) = ah for some surjective Dbase

morphisms p : n @3 and a : m % £ and a morphism h :£* A+p 6 10.

Without loss of generality, we may assume p and a to be
such that Ip * la = 1.

By virtue of Lemma 1.1. we obtain that there exist

f'in’-ri+p in EG and surjective p':n'-*n satisfying

(1) p'f=f(p'+lp) ,; (2) f'=p'a'f" if a’p'=In; (3) for arbitrary

-201-

a:A. -n', if a p'p=I , then there are base morphism p”,...,pn
n'-n' with plp'p=p,p and ni,pepaf’(p.+1)=n"f' (iG [ne1)
From this, and using the fact that F is a theory map, by (x)

we get F(f')+=pepF(h)+and F(f')+=pF(f)+. Hence, F(f)+=pF(h)+
The proof of F(g)+=o0F(h)+ is similar.

Hence, n*(F(f))+ » n*p(F(h))+ =n*a(F(h))+ = n~(F(g))+ is obtained.

The next statement is analogous to Lemma 3.10. in [5].
Lemma 3.3 F

Let f : n - n+tp 6 EG. There exists one g : m - m+tp G EG
which has no superfluous component and satisfies the condition

n"(F(f))+ = n*(F(g))+ for any generalized iterative theory T

and theory map F : T" -T.

Proof

First, assume that those components of f which are not
superfluous, are exactly the first components m. In this case,
”rﬁon-m')f can be written as g(Im+0n_m+1p), where

g : m- m+tp G EG. Since F is a theory map it follows that
(Im+On-m)F(f) = F(g)(1mtOn-m+1p)"' furthermore,

F(f). = <F(g)(1rﬁ0n-m+1p)’ (01) (f)>.

It results from this by (1) that (Im+On_m)(F(f))+ = F(g)+.

This implies n*"(F(f))+ = n*(F(g))+.

In the general case, let i™,...,i be all different in-
i m
dices such tbat{n i j t G[m]} is exactly the set of not super-
fluous components of f. We may assume that i® = 1. Let the bi-

jection p : n - n satisfy ifcp =t for each t G [m]. Applying

the first case for p '*'f(p+IP), we get a morphism g @ m & m+p

-202-
in EO which does not contain superfluous components and satis-
fies n*(F(p 1f(p+lp)))+ =n"~(F(g))+ for any theory map
F TZ->T. Since F is a theory map, by the identity (F), this
implies n*p-1(F(f))+ «n”(F(g))+ , i.e. by Ip - 1,

* N
n>(F(f))+ wn2(F(g))+.

We are now ready to state
Theorem 3.4.

Let F : E<T be an arbitrary ranked alphabet map into a
generalized iterative theory T. There exists exactly one homo-

morphism F : I -T extending F, i.e. such that FI2 = F.
Proof
Since E generates T, and T» generates , there can be at

most one F extending F. Thus, we have to show the existence of
F only.

We know that there is a theory map from T into T (con-
sidered as an algebraic theory) which extends F. Let us denote
this theory map by F, too.

Define F as follows:

(i) P(nJ) “n* if n £ 1, i e [n],

(iit) F(f) = n~(F(a))+ if a : n - n+p 6 EG and f

(iii) F(<f...,fn>) = <F(fl),...,F(fn)> if n o 1,

f+£ :1- P-

By Theorem 4.1.1 of [4] and lemmas 3.2. and 3.3, F is a
mapping of 1 into T. By (i) and (iii) F|0 = F|q.

-203-

Take an arbitrary element f : 1 & p € E . Since
f = (0~M+f)* and C~+f G EO, we have F(f) = n”(F())+ =

= n™"01+F(f))+ = n| F(f) = F(f). Observe that we have used iden-

tity (C). By (iii) this results F| = F.

By virtue of (iii), F preserves source-tupling. We now
prove that F preserves composition. Since it preserves source-
-tupling, it is enough to show that for any morphism f : 1 #p
and g : p-*q F(fg) = F(f)F(g). This is obvious if f is base,
hence we may assume that f is ideal. Or even, by a note in [5],
we may confine ourselves to the case that g is base, or its first
component is ideal and all other are base.

First, assume that g is base, g = p. We know that f = n*a+,
where a : n +n+p e EO. By (G) fp = nl(a(l +p))+' Therefore,n
F(fp) = n*(F(a(ln+p)))+ = n*(F(a)(IR+tp))+. On the other hand

F(f)p
that F(f)p = n~(f(a)(In+tp))+. Hence, F(fp) = F(f)p.

n“(F(a))+p, and this, by an application of (G), results

The proof of F(fg) = F(f)F(g) in the second case, i.e. the
first component of g is ideal and the others are base, is simi-
lar, only apply identity (H') instead of (G).

Finally, we prove that for ideal f : n & n+p we have

(F(f))+ = F(f+). Since F is a theory map and by identity (B) it
is enough to deal with the case: n = 1.

Since f is ideal there exists an a:m* m+l+p6 EO such that
f = nt a+. Let b = a(<0|H , I1+rg> J|51), ¢ = <nr/1\1’b' b> . By (J)
we get f+ = +. Since ¢ 6 EO, it follows that
F(f+) = n*+"(F(e))+. Similarly, a repeated application of (J)
yields (F(f))+ = (nw(F(a))+)+ = nE+l<n”P(b), F(b)>+ = (F(c))*

This ends the proof of Theorem 3.4.

-204-

Corollary

Theorem 3.4 holds under certain weaker assumptions, too.
In fact the iteration need not be defined for arbitrary mor-
phisms in the theory T. But we require F to be such that it
being (J:ronsidered as a theory map F : TA T should satisfy
(F(f)) to exist in T that whenever f e E9, or f = OP for some
p. Furthermore, likewise in Theorem 3.4, we have to require
the identities (A) to (E) to be satisfied in T in the strong
sense: for every evaluation the left hand side of an identity
exists if and only if the right hand side exists, and if both
of them exist, they are equal. This is always the case if T is
an iterative theory and F(f) is ideal for every f e E.

Theorem 3.5.

is the generalized iterative theory freely generated

by E.

Proof

By virtue of Theorem 3.4 and since 1* is a weak subalgeb-
ra of R moreover, the carriers of R, and | coincide, it is

4 L L1
enough to prove the following statement: for every ranked al-
phabet map F : E! @T such that F(]) = (n”*)+, remember that

J = nj+ holds in R , the free extension F : | - T construct-

ed in the proof of Theorem 3.4 is a homomorphism (of generaliz-
ed iterative theories) from R” into T.

We know that F preserves theory operations, i.e. composi-
tion, source-tupling and injections. Hence, we have to show
that F preserves (arbitrary) iteration. By identity (B) and
since F is a theory map, it is enough to deal with scalar
morphisms.

-205-

Take an arbitrary morphism ¥ - 1 - 1+p. If T Is i1deal then,
by Theorem 3.4, F(f+) = (F(F))+. Otherwise f is an injection

n*+p. IT 1 =1 then F(nJd+) = (n™0p)+) = Fg_tOp) = PU)+ Op =

= nl + °p* on the other hand (F(n™+p))+ = n™+p -(Nnj + °p)+ =

1+ - -
=n + OP . Observe that identity (D) was used. Assume now that

i1 > 1. Then n%,rp = O1 + npi 1 . Therefore, b}/ ©,

= m "1 *ni+p= (ff,i+P,)+-

We are now able to prove the main result:
Theorem 3.6.

Identities (A) to (E) together with those defining algeb-
raic theories, form a basis of identities of rational theories.

Proof

We have to prove that the equational class of all generaliz-
ed iterative theories coincides with the equational class gen-
erated by the class of rational theories (considered as un-
ordered theories). But this can be done immediately by Theorem
2.1 and Theorem 3.5.

Corollary

cj-continuous algebraic theories were also examined in [8]
and [9]. These are special rational theories. It was proved by
[8] that the free u-continuous algebraic theory generated by e

exactly is the theory t” with a certain ordering.
B

What is important for us from this fact is that R™ is a sub-

algebra of t7 . It results from this that the equational class
L\
generated by the rational theories exactly is that one generat-

ed by the class of all u-continuous theories. Therefore, Theo-
rem 3.6 remains valid even if rational theories are replaced

-206-

by a-continuous theories. The same holds for some other types

of continuity (cf.O -continuity), too.

At the beginning of this paper we have mentioned that by
the author's conjecture, identities (A) to (E) together with
the defining identities of algebraic theories form a basis of
identities of iterative theories, too. This conjecture is based
on Theorem 3.4 and its corollary. Unfortunately, we do not
know any definition of validity of an identity in a class of
partial algebras by which we could prove Theorem 3.6 for ite-
rative theories, and which is accepted by mathematicians work-
ing in partial algebras.

4. FURTHER REMARKS

We know that identities listed in (A) to (E) are not
completely independent; e.g. it would be sufficient to require

(A) in case n = 1, etc.

On the other hand we conjecture that all of the identities
grouped in (A) or in (B)etc. cannot be omitted. A simplifica-
tion of the basis will probably be introduced in a forthcoming
paper.

Another note concerns with the connection of iterative and
and generalized iterative theories. We have actually verified
in the proof of Theorem 3.5 that Rv is the free generalized
iterative theory generated by | . Roughly speaking, R can be
obtained by adjoining a new element j to | . It can be seen that
this remains valid in the general case, too: for every iterative
theory T there exists a free generalized iterative theory gen-
erated by T and this free theory can be obtained by adjoining
a new element to T. This helps us to prove another interesting
statement. Let T be an iterative theory and assume that T(1,0)
is nonvoid, say J e T(1,0). Then, there is exactly one way to

-207-

extend T to a generalized iterative theory such that we have

REFERENCES

[1] Bloom, S.L. and Elgot, C.C.: The Existence and Construc-
tion of Free Iterative Theories, J.Comput. System Sei.
12/1976/, 305-318

[2] Bloom, S.L.,Ginali, S. and Rutledge, J.D.: Scalar and
Vector Iteration, J.Comput. System Sei. 14/1977/,
251-256

[3] Elgot, C.C.: Monadic Computation and Iterative Algebraic
Theories, Logic Colloquium'73, Rose, H.E. and Shepherd-
son, J.C. Eds., Vol.s8o0o, Studies in Logic, North-Holland,
Amsterdam, 1975, 175-230

[4] Elgot, C.C.,Bloom, S.L. and Tindell, R.: On the Alger
braie Structure of Rooted Trees, J.Comput. System Sei.
16/1978/, 362-399

[5] Ginali, S.:" Regular Trees and the Free Iterative Theory,
J.Comput. System Sei. 18/1979/, 228-242

[61] Goguen, J.A.,Thatcher, J.W.,Wagner, E.G. and Wright, J.B
Initial Algebraic Semantics and Continuous Algebras, J.
Assoc. Comput. Mach. 24/1977/, 68-95

[7] Lawvere, F.W.: Functorial Semantics of Algebraic Theo-
ries, Proc. Nat.Acad.Sei. USA 50 /1963/, 869-872

[8] Wagner, E.G.,Wright, J.B.,Goguen,J .A. and Thatcher,J . W.:
Some Fundamentals of Order-Algebraic Semantics, Mathe-
matical Foundations of Computer Science, 1976, Mazur-
kiewicz, A. Ed., Lecture Notes in Computer Science 45,
151-168

[9] Wright,J.B., Thatcher,J .W., Wagner,E.G. and Goguen,J.A.:

Rational Algebraic Theories and Fixed-Point Solutions,
17th IEEE Symposium on Foundations of Computing, Houston
1976, 147-158

Computational Linguistics and Computer Languages Vol. XIV. 1980.

SIMPLE DETERMINISTIC MACHINES AND THEIR
LANGUAGES

Ngo The Khanh
Socialist Republic of Vietnam*

1. INTRODUCTION

The relationship between automata and formal languages
has a very deep influence on the development of their theories.
Automata-theoretic aspects in studying formal languages are
also related to the theory and practice of compiler-construc-
tion for programming languages. From the practical point of
view it is quite natural to impose some restrictions on the way
of working of language processors in order to increase their
efficiency. A very important restriction of this kind is deter-
minism which is ment to avoid the need for back-tracking while
processing an input string. Deterministic context-free langua-
ges introduced by S. Ginsburg and S. Greibach [2] in 1966
have influenced a number of investigations which have still
left open some very interesting problems. Deterministic con-
text-free languages form a proper subclass of the family of
context-free languages. In the paper by E.P. Friedman [1] a
further restriction has been introduced, namely the number of
internal states of deterministic pushdown automata has been
limited to one which gave rise to the family of4simple context-
-free languages. These languages bear a number of interesting
properties established in [1] and [3].

*
Presently working with the Computer and Automation Institute,
Hungarian Academy of Sciences

-210-

In the present paper we extend the ideas of E.P. Friedman
and develop a complete hierarchy of simple deterministic ma-
chines and that of the corresponding language-families. First,
we define simple finite deterministic machines and the related
subclass of regular languages which is, at the same time, a
subclass of simple context-free languages. A direct generaliza-
tion of the simple finite deterministic machine leads us to the
concepts of the simple deterministic pushdown machine and the
two-memory simple machine. The corresponding classes of langua-
ges are compared with those defined by E.P. Friedman and some
of their properties are established. A common feature of the
languages in our hierarchy is their prefix-free property which
means that no initial substring of a word belonging to some
language may belong to the same language. This is due to the
fact, that whenever a simple machine accepts some input string
it cannot move any further since no transition is defined in an
accepting state. The same property is true also for E.P. Fied-
man's classes of languages but it is not their characteritic
property. In our case, however, we show that it is a characte-
ristic property, i.e.,every prefix-free, deterministic context-
-free languages is accepted by some simple deterministic push-
down machine and similarly, every prefix-free regular language
must be accepted by some simple finite deterministic machine.
For two-memory simple languages which are not included in the
context-free family, we are not sure but have a homomorphic
characterization for them.

2. SIMPLE FINITE DETERMINISTIC MACHINE

Let us consider the standard definition of the finite
deterministic automaton (abbreviated as fd-machine) [4]; i.e.
Let M= (K,E,6, qQ,H) be a fd-machine, where

K is the nonempty set of states,

E is the nonempty set of inputs,

gQ is an element of K (the initial state),

H 1is a subset of K (the set of final states),
6 is a mapping from KxE to K

-211-

Notation. Given a fd-machine M, let Ié—, or —when M is under-
stood, be the relation on K x E defined as follows.

For a 6 E and w GE . Let gawl—pw if 6(g,a) = p.
Let |I— denote the transitive closure of I— Finally, we
define the language accepted by M as:
L(M) = {wGE*/qQw I— for some p GH}

Definition (2.1.)
a. / A fd-machine M= (K,E,6,9 ,H) is called "simple"
(abbreviated sfd-machine) if and only if the function
6 is a mapping from (K-H)XE to K
b./ A language is said to be a simple finite deterministic
language (sfd-language) if L = L(M) for some sfd-ma-
chine M
The family of all sfd-languages is denoted by £ scj3
Notice that a sfd-machine is defined such that once
the momentary state is a final state, no further input
can be processed. Thus, if L is a sfd-language, then
L must be prefix-free. Hence, if x GL and xy G L,
then y =X (where X is the empty string); and in this
way, if X G L then L = {\}.
By the prefix-free property of a sfd-language, we can
easily see the following:
Lemma (2.2)
If L is a sfd-language, then L is not a sfd-language.
Hence, the familyis not closed under complementation.

Theorem (2.3)
The family is closed under concatenation.
Proof
Assume that L = L(M) and L' = L(M")/ where:
M= (K,E,6,g ,H), M = (K',E',6"',qQ"',H") are sfd-machines.
Without the loss of generality, we may assume that
K nK = 0.
Construct a sfd-machine from M and M as follows:

Let

1.)

2.)

3.)

-212-

ML = (K1#E1#6"~q~H"'), where:
Kt = (K-H) U K",
EA=E UE'" and 6" is defined so that:

for every q E (K-H), a 6 E:

if 6(q,a) = p, then d72q”) = p,
where 0 if p £ H

gr if p EH

for every q' 6 (K'-H"), a e E

if 6'(q'»a) = p', then 67(q',a) = p

All other transitions are undefined. It is
that

w = w™w2 £ L.L", where w* E L, w2 E L'

qgowl 'm p e H' and

qow2 'MW'P' G H'

easily seen

& {goWw2'ir; géw2'i*p' G H' : W= wiw2 G L(M)}

Hence, the result.

Theorem (2.4)

The family is closed under intersection.
Proof
Assume that L = L(M) and L' = L(M'), where
M= (K,E,6,q ,H), M=(K',E,6',q",H') are sfd-machines.

Construct a sfd-machine M2 from M and M

Let M2 = (K2,E,62,[q0,q”],H2) , where
K2 = {[q,q9']/g E Kandq'EK'}
H2 = {[p.,p']l/p EHand p'EH"'}"* K2 ,
and 62 is such that:
1.) for ever;i afeE, ﬂlEK’ H/I EK':"|'6’(q,a'):p,
69([g.q9'],a) = [p.p'] iff

U(g', a)

as follows:

and

p

-213-

2. all other transitions are undefined.

First, we can easily see Dby induction on the length
of w, where w G L*
qwir p and
[a.q’ twl—z[p,p'] <=>
qg'wlM p'
Thus,
‘gow N p, for p GH and
wGL NL" <= <
p for p' 6 H
<=> {[qO0/gé6” wli™ [p/P'Il, for [p,p'l g H2}
<=> w g 1 (m2)
Hence, the result
Theorem (2.5)
The family is not closed under union.
Proof
First, we consider the following language:
L - {anb/n a 1} U {anbb/n 7T 1}.
By the prefix-free property of sfd-language, we can
easily see that L is not a sfd-language.
We now prove that:
L1 = {anb/n £ 1} and
L2 = {anbb/n £ 1} are sfd-languages
Provide two sfd-machines , M2 that accept these languages

Let
M:<K|i{a,b}62/CQ) where :
I’Q.:<qo'qllvl
H .- <gh D and is defined so that:
6laqo.2) —q
6]_(@08) * qi

-214-

6jiqife) _ gp

and M2 = (K2,(a,b>,62,q90,H2), where
K2 = {gqo'qi'q2'qh}’
H2 = {9"} , and & is such that:

62(qo‘'a) = ql

62(ql,a) = ql

62(ql,b) _ q2

Thus, L = L(M1), L2 = b(M2) are sfd-languages such that

L1 UL2 is not a sfd-language.

Hence, the result.

3. SIMPLE MACHINE

Definition (3.1). (Definition (2.1.) in [1])

a.) A simple machine is a 4-tuple M= (E,r,6,Zo), where
E 1is a finite input alphabet,
I is a finite pushdown alphabet,
Zg e I is the initial pushdown symbol,
and 6 is a mapping from (E u{X}) x r
to I'* such that:
for every Z G I either 6(a,Z) contains exactly one
element for each a G E and 6(\,Z) is undefined, or
6(\,Z) contains exactly one element and 6(a,Z) is un-
defined for all a G E.

b.) A configuration of Mis a pair (w,a), where: w G E*
is the portion of the input tape remaining to be read,
a G I is the current contents of the pushdown store,
where the top of store is the rightmost symbol of a.

c.) We define the operator I—on configurations of M as

follows :

-215-

for eachaGE,wGE* z €1, a, 3 G I*:

i.) (aw,azZ) I- (w,a3) i ff 6(a,z2) = 3 or
ii.) (aw,aZz) I- (aw,a3) iff o6(\,z2) =3
LIOt | riannfo fho franc:f U70 rancnro nf I

d.) We shall be concerned with acceptance of an input
string by empty pushdown store. Accordingly, we define
the language accepted by a simple machine M to be:

L(M) = {w G E* /(w,ZQ) I"U X)}

A language L is said to be simple-context-free (sc-
language) if L = L(M) for some simple machine M. The
family of all sc-languages is denoted by .£

Theorem (3.2)

a.) For every sfd-machine M, there is a simple machine M
such that L(M") = L(M).

b.) There is a simple machine such that L(M”) is not a
sfd-language.

Proof
a.) Let M= (K,E,6,qo,H) be a sfd-machine. We con-
struct a simple machine M from M, as follows:

Let M = (E,K,6',g) , where:

6' is defined so that:

for each a G E, g Gin-H):
1.) 6'(a,q) =p iff 6(q.a) = p,
2.) 6'U/P) =\ for all p G H,

3.) all other transitions are undefined.
Evidently, L(M") = L(M).

b. To show part (b), we reconsider the non-regular
language (also non sfd-language) first seen in [5].
L {anbn/ n ¥ 1}

-216-

We now provide a simple machine M* that accepts this
language :
= ({a,b}, {ZQ,A,B}, 61,ZQ),

where 6”7is as follows:
1.) 61(a,ZQ) = B

2.) 6.(a,B) = AB

3.) 6rMtMA) = 672bfB) = X
Definition (3.3). (Definition (3.1) in [1])

a.) An extended simple machine (abbreviated as es-machine)
is a 4-tuple M= (E,r,6,Z), where
E is a finite set of input symbols,
I is a finite set of pushdown symbols,
Zqg G I' is the initial pushdown symbol,
and 6 is a mapping from E x I to M~ x{0,l)and
satisfies: for each a GE, Z G T if 6(a,zZ) is defined,
then 6(a,Z)contains exactly one element.

* *

.) . MNe .
Notation Given an es-machine, let I|I—be the relation on E x I

(The set of all configurations) defined as follows
For z G T,a,B G TI* a GE, wGE*
i) (aw,aZ) I- (w,aB) iff 6(a,z) = (B,1), or
ii) (aw,az) I- (aw,aB) i ff 6(a,z) = (R,0).
Define |I—to be the transitive, closure of IIVI'

b. An input string is accepted by es-machine M when the
entire tape has been processed and the pushdown store
is empty. That is,

L(M) = (w G E*/(w,Zo)|T U,X)}

We say that L is an es-language if there exists an es-
-machine M such that L = L(M).
The family of all es-languages is denoted by«feg.

-217-

Theorem (3.4). (Theorem (3.2) in

a.) For every simple machine

that L(M') = L(M).

such

b.) There is an es-machine
simple context-free
Proof
a.) Let M=
an es-machine M
Let M

where 6'

(E,IN',6',2q),
for
1.)
2.)

if 6(a,2)
if 6(\,2)
a £ E.

seen

is
is
for all

It is easily

b.) To show part (b),
language first
(al bl $/i

we
-free
L

seen
£ 0} U

We now provide an es-machine

language :
M_

where 67
61(a,ZQ)

is

(AZo 1)

61($,2Q)

(X, 1)

61(b,ZQ)

6x(b,A)

(B,1)

61(d,A) (D, 1)

61(b,B) = 61(d,D)

61($,B)

6_ ($,D)

(E, I,6,2ZQ) be a simple machine.

is defined so
each a 6 E, ZG T
defined,
defined,

that

reconsider

61(d,ZQ) =

[11)

M, there is an es-machine M

such that LiM") is not a

language.

Construct

from M as follows:

that:

then 6'(a,Z)
then 6'(a,Z)

=(6(a,2),1)
=(6(\,2),0)
L(M) = L(M).

the non-simple contexts

[6]:
{ald1$ i

in
s 0}

that accepts this

((a,b,d,$},{20,A,B,D},61,20)

as follows:

(X,0)

(\,0)

u ,1)

-218-

Theorem (3.5).

Let M= (E,r,6,Z) be an es-machine satisfying the follow-
ing condition:

"if 6(a,Zz) =(0,0), then 101 & 1, where a GE, Z G I " then
L(M) is a sc-language. (where 101 denotes the length of 0).

Proof
Since 10! & 1, we can write 0 = 01Z, where Z G T

e *.
Construct a simple machine M from M, as follows:
Let M = (E,r,6',Zo), where 6' is defined so that, for each

a GE, Z G TI:
1.) if 6(a,z) = (0,1), then 6'(a,Z) = 0

2.) There exist zZ» o .., Zn: (1 "nn & IT!) such that
6(a,Zi) = for i=1,2,...,(n-1), where Z = ZJ
Z~ o Z™ for i 17 j . Here we have three cases to con-
sider :
2.a) if 6(a,Zn) = (&/1) [then 6'(a,Z) =(0 ...0n);

2.b) if 6(a,zZn)

(Onzi ,0), where i G {1,2,...(n-1)}
then 6'(a,Z) is undefined,;

2.c) if 6(a,Zn) is undefined, then 6'(a,Z) is undefined
too.
3.) All other transitions are undefined. It is easily seen
that L(M') = L(M). Hence the result.

Notice, that a simple machine and es-machine is defined so that
once pushdown store is empty, no further input can be processed.
Thus, if L is a sc-language, or an es-language, then L must be
prefix-free, and by their prefix-free property, we can easily
prove the following:

-219-

Lemma (3.6).

If L is a sc-language (or es-language), then L is not a
sc-language (not an es-language). Hence each of the families

etse' X es * n°"N c”nose<™ under complementation.

By theorems (3.4), (3.2) and the proof of theorem (2.5)
we can easily see the following:

Lemma (3.7).
Each of the families 'Esc’nes is not closed under union.
Theorem (3.8).23

Each of the families Xsc’z es is not closed under inter-
section.
Proof

First, we prove that the language
L = {anbncn$/né 1} is not context-free. Assume the
contrary, and let
M (K,E,",6,ZQ,q0,H) be a pushdown automaton such that

L

L(M). (The definition of a pushdown automaton in [4]).

We now construct a pushdown automaton M from M as follows

Let M' = (K,E‘,r,6',ZO,q0,H) , where:

E' = E - {$}
and 6' is defined so that: for each g G K, Z G T ,
d GE':
1.) (p,a) 6 6'(q,d,z) iff (p,a) G 6(q,d,Z), where p G K,
a G I ;
2.) If (p,a) G 6(q,%,2), then (p,a) G 6'(q, ,Z), where

pGK, aG T ;

3.) All other transitions are undefined.

It is

But it is well-known

easily seen
L(M') = {anbncn / n £ 1}

(see e.g. in [4]
tect-free either

-languages.
these

Thus,
that
free,

L2

Evidently,

languages:

),

(a”bncn$/n a 1,

L

Provide

that:

and
Now
(anbnci $/n £ 1,

vy - ((a bc

612 20) =

61(2A
61 (b-A)
61(¢:°C)
61 (.10

and

CA

AA

M2 = ({a,b,c

that

-220-

{anbncn/n a 1}is non-context free

thus L={anbncn| / n i? 1} cannot be con-

let

i a 1} , and

i s 1}

Mm~L2 . We prove that L”~, L2 are sc-

two simple machines , M2 that accept

whered”™ is:
such that

where 62 is:

- such that
622y = A
62(a,lA) = A
62(b,l°\) = CB
62(bj—B) = BB
62(C(B) = X
62($’ C) = X
LA, L2 are sc-languages (and are also es-languages) such
I 1 L2 is not a sc-language (since n L2 is non-context
hence N L2 is also not an es-language).

-221-

Theorem (3.9).

tion.

Each of the families XSC ’Xes is closed under concatena-

Proof
First considerXSC:
Assume, that L = L(M), L' = L(M")/ where
M= (E, I,6,2q9), M = (E',",6',Z") are simple machines.

Without loss of generality we may assume again that:

i.y rnr- =0 ;

ii.) Zq 0 6(a,Zz) for a 6 E U{\}, Z 6 I such that 6(a,Z)
is defined. (Assume the contrary, then we can in-
troduce a new initial pushdown symbol ZQ and take

the new machine
M= (E, T U{ZO},G,ZO) , Where 6(a,ZO) = 6(a,Zo) and

6(a,Z) = 6(a,z) for all Zz G T, a GE U{\}).

Construct a simple machine from M and M as follows:
Let = (E1,r1,61,Z0), where:

Ej = E UFE'

ri=rur:

and 6~ is defined so that: for each a G E~ U{\}
Z Gr-{zZQ}, Z G TI':

1. if 6(a,Z) = a, then 6.(a,Z) = Z"a;
2. if 6(a,Zz) = a, then 6”°(a,zZ) = a;
3. if 6'(a,Zz') = a', then 6 (a,Z2') = a’';

4, All other transitions are undefined.

We now prove

L(M) = L L'

Let w = wlw2, where w» GE , w*» G E' ;

-222-

'w = w™w2 € L L' wl,Zg) I- (\,X) , and
<=>{
Lwhere w™ £ L, w2 £ L' JwW2'Z6 "~ 1 AFA)
<=> {(WIW2/ZQ) !'j™-(w2fzd) }

<=> w G LM)

Hence the result.

Now we considerlL os

Let L = L(M) and L' = L(M")# where
M= (E, I,6,Z2q9), M = (E','",6"',Z") are es-machines.

Similarly, we may assume again that

i.)y rnr-~=o and

ii.) if 6(a,Zz) = (a,i), where a GE, Zer, i £ {0,1}
then Z0 £ a

Construct an es-machine M2 from M and M', as follows:
M2 = (E2,T2,62,2Zq), where

E2 = E UFE

r2Z=runr'

and 62 is such that: for each a £ E, Z G T -{ZO},

Z' G I':

1.) if 6(a,ZzQ) = (a,i), where a G TI* , i G {0,1}, then

02(a,zq) = (Z"a,i);

2.) if ¢6(a,z) = (a,i), where a G I*, i £{0,1}, then
62(a,Z) = (a,i);

3.) if 6'(a,Z2') = (a',i), where a' G I''*, i G {0,1}, then
rn2(atht) = (atti)e

4, All other transition are undefined.

It is easily seen that L(M2) = L L".

-223-

SIMPLE DETERMINISTIC PUSHDOWN MACHINE

Let us consider the standard definition of a deterministic
pushdown automaton (abbreviated as dp-machine) [2].
That is:
Let M= (K,E,IN',6,9 ,ZQ,H), where:
£ is a finite set of input symbols,
K is a finite set of states,
I is a finite set of pushdown symbols,
is an initial state (an element of K),

is an initial pushdown symbol (an element of TI),

H is a subset of K (the set of final states), and
6 1s a mapping fromKx(£€ U {\ })xTI to Kx I, and
satisfy :

for each ¢ G K, Z G I': either 6(q,a,Z) contains exactly
one element for a G £ and 6(a,\,Z) is undefined; or
6(g,\,Z) contains exactly one element and 6(a,q,Z) is un-
defined for all a G £.

Notation

Given a dp-machine M, let lmor I—when M is understood,
be the relation on K x £ x r defined as follows:
for q,p G K, aG £ U{\), 2z GTI, a, B G TI*:
let (gq,aw,az) F (p,w,al) iff 6(g,a,z2z) = (p,B), and definelg)

to be transitive, closure of k.

Finally, we define the language accepted by M as:

L(M) = {w G £*/(qo,w,ZQ) 1™ (p,X,a), where p G H,
a G I*}

Definition (4.1).

a.) Adp-machine M= (K,E, I',6,9 ,Z ,H) is called a
simple (abbreviated as sdp - machine) if and only if
the 6 Ls a mapping from (K-H) x (£ U{\}) x I to
Kx T

-224-

b.) An input string is accepted by the sdp-machine M when
the entire tape has been processed and the momentary
state is an accepting state, and the pushdown store is
empty. That is,

L(M) = {w € E*/ (qo,w,ZQ)I~(p,\,\) for some p e H}
A language L is said to be simple deterministic con-
text-free (abbreviated as sdc-language) if L = L(M),
for some sdp-machine M. Finally, the family of all
sdc-languages is denoted by£sd2* It is easily seen
that: if L e £sd2, then L must be prefix-free.

Theorem (4.2)

a.) For every es-machine M there is a sdp-machine M such
that L(M') = L(M).

b.) There is a sdp-machine such that b(M”) is not an -
es-language.

Proof
a.) Let M= (E,I'6,Z9) be an es-machine. Without loss
of generality we may assume again that:
if 6(a,z) = (a,i), for a EE , Ze6 T, iG{0,1},
then Zgq y a
Construct a sdp-machine M from M, as follows:
let M = (K,E, T",6"',0Q,ZQ,H), where

K= {gqo,qgh> U (qa/a 6 E} |, where
40'4h * {4ala e

H = (qh>,

' = ru{s} where $ ~Mor

and 6' is such that:

for each a G E, Z e r-{ZQ}:

-225-

1.) if 6@.2Q) = (@.,1), then stqo,a,z0)= (qQ, $a) ;
2.) if 6(a,ZzQ)
3.) if 6"a,Zz) = (@,1), then 6°(qQ,a, Z) =(qQ,a);
4.) if 6(a,2) = (a,0), then 6°(qg,a,2) =(q4,a);

(a,O), then 6’(q0,a’zo): (qa’ $m) :

5.) 6*(%_,\,2) =6’(% ,a,Z2) for all a £ E, Z G r-{Z0 }

such that e6(qo»a,Z) is defined;
) 67(9Q,X,$) = (qh,X);
.) all other transitions are undefined.
It is easily seen that: for a GE, w G TI* Z Gf-fz":

~N O

(aw,aZ) (w,R)<?=£ (qgo,aw,$azZ) 1% (qQ,w,$R).

Hence, we can easily prove by induction on the length of w:
(w,ZQ) "J <=> (qQfw/ZQ) 1jy (qQ.X,%a)

Thus, w G L(M) <= (w,Zq) 1™ (X,X)

(aQ/w, ZQ) Ijjj, (qQrX,$) I (9" rX,X)

<4> w G L(M")
Hence, the results

b. To show part (b), we reconsider the non es-language,
first seen in [3]

L = {a”ba”b/i a 1} U {aicaic/i & 1}

We now provide a sdp machine that accept this language
~ (K,{a,b,c},r,6j,q0,Z0,H), where

K= {qo”*b'?c'V"

H = {qh},

r = {Zq,A}, and

6 is defined so that
1.) 66i (qo,a,ZQ) = (qQ,AAA)

2.) 661(qo,a,A) = (qQ,AA)
3a.266"""A) (qb,\)

3b.) 661(qo,c,A) (gc'X)

-226-

4a.)66"(qb,a,A) (gqb/x)

4b.)661(qC,a,A) (qC'x)

5a.)56vgb ,b,A) (qh »*)

5.)66i(qc,CfA) (qgh/\)

By the prefix-free property of a sdc-language, we can easily
see following:

Lemma (4.3).
If L is a sdc-language, the L is not a sdc-language.

Hence, the family *£sd2 is not closed under complementation.

By theorem (4.2) and the proof of theorem (3.8), we can
easily prove following

Lemma (4.4).
The familyé .£Sdz is not closed under intersection.

By theorems (3.2),(3.4),(4.2) and the proof of theorem (2.5),
we can easily see following.

Lemma (4.5).
The famll)é)(.sd2 is not closed under union.
Lemma (4.6).
The family *’sd2 is closed under concatenation.
Proof

Assume that L,L' are accepted by two sdp-machines:
M= (K,E,r,6,9q0,20,H)
M' = (K|1E‘1r|16l’quZA1H')-
Whithout loss of generality, we may assume again that:
i.) KNDK =T nr#= 0 and
ii.) For each g 6 K, g GE U{\}, Z G T: if
6(g,a,Z) = (p.a), then zq ¢ a

We now construct a sdp-machine from M and M', as follows;
M_= (K1,E1,ri,61,q0,Z0o,H") , where

Ki = K UK",

-227-

Ex = EUE",

N = rwmr', and is such that:
for each a GE U{\}, q G K-H, g GK'-H', Z6 r-{ZzQ}, Z 6 I

1.) if 6(qo,a,Zo) = (p,a) then 61(qo,afZo) = (p,Z£fa)
2.) if 6(q,a,Z) = (p,a), then 61(q,a,z) = (p,a)

3.) if 6'(q',a,2") = (p',a"), then 6"',a,r") = (p',a’):
4.) For all p 6 H 6~pnrzZ™) = (q"rZN);

5.)AIl other transitions are undefined.
"Prove: LiMj) =L L'

let w = w!w2 ' w'ere wi £ £ r w2 6 £
W=47~2 G LL', where wl G L, w2 6 L'

r(qQ/wWi,zo)I1~(p,\,\), for p G H, and

V((Q@o6,W2'26)'irp' X, X)" for p' 6 H'
<=> {(q0'WIw2,zo) Ij~(p,w2,z")*"~ (q;,w2,zM)iii-(p"' ,\,\),for p'e H'}

<=> w e b(MX)

Hence the result.
Theorem (4.7).

The intersection of a sdc-language L and a sfd-language L'
is a sdc-language.
Proof
Let L

L (M), L' = L(M"), where:

M

(K,E, I",6,9 ,ZQ,H) is a sdp-machine,

MI

(K')E,6',g",H") is a sfd-machine.

Construct a sdp-machine from M and M', as follows:
Let M2=(K2,E,r,62,[qo,q06],Z0,H2), where

K2 ={[q.q.j/ q GK and q' G K'}/
H2 = {[p,p']/ P GH and p' G H'},

and 6j is defined so that:

-228-

for each a GE , g G K-H, qg' G K'-H', Z <\[(pa" 2)

1) 62([a.9'],a,2) = ([p,p']»a) Tff nuiqi,ay

"
2.) 62([0,d71.7.2) = ([p,q],)Iff 6(q.1.2) = (Pa)

3.) All other transitions are undefined.
It is easily seen that for each a GA q G K, qg' G K

I(g, a ,u (P? X»3) »
(ta.q" 1.a,a) bp ([p.p"']/X,3) =
2 and q'a ljj, p#

(pf(x)

and

Hence, we can easily prove by induction on the length of w;

I(q0'w'Z0)’m (P'x'a)"

([aQn].,w,zq)l [p.p"], a,0) .
and q,W Ivgl
|(qo'w" Zo) i (p,x,x)" for P e H,
Thus, w GL ML’
and g™w |J, p' , for p' G H
<> (([9Q.,aQ],w,ZzQ) I~ ([p.p"] ., for
[p.p’] e h2>

< W g 1 (m2)
Hence the result.
Theorem (4.8).

Every sdc-language L can be expressed in the form

L = b(b® ML2), where h is a homomorphism, and is a sfd-lan

guage, L2 is a sc-language.
Proof
Assume that L is accepted by spd-machine:
M= (K,E,r,6,qQ,Zo,H).

First, construct an auxiliary spd-machine M from M as fo
Let M (K,E',I',6,9Q,Z ,H) , where

E 1

E UEx for L1 = {e} z]/qg G (K-H), 2 G T
such that 6(q,\,Z) is defined}, and

6' is such that:

Illows

-229-

for each a € E, q G (K-H), Z G
1.) 6'(@@.a,2) = (p,a) iIff 6(g>a,z) =(p,a)
2.) if (q,\,Z2) = (p,a), then 6'(q,e™ "zj,Z) = (p,a);

3.) All other transitions are undefined.
It is easily seen that:
i.) For all g GK, ZGT: 6'(q,\,Z) is undefined

ii.)L=h (LiM")) for h” is a homomorphism of E' into E

such that :
if a g E
hl(a) =
if a G E
We now construct two machines M1#M2 from M'f as follows:
Let Mx = (K2,E2,61,q0,H)/ and
M2 7 (E2'T2'62/Z0)" where :
E2 = E' UE" , for Z" = {x[q,a]/lq G (K-W), Z G I}
and E' M zZ" =0
K2 = K U{[q,Z]/qg G (K-H), Z G I}
r2 =1 UWlq,Z]/qg G (K-H), z G

and 6 , 62 are such that:
for each a GE', q G (K-H), Z2 G T

b) 61(a"x[q,Z]1} = [9"Z]
62 (*[a9.2]'2) =[q'Z] rei(lag.z].a)
2.) if 6'(q,a,Z) = (P,a), then Naf [g,z2])

and

I 1
» O

3./ AIll other transitions are undefined.
It is easily seen that,
is a sfd-machine,
M2 is a simple machine

Let h2 be the homomorphism of e2

f a if aGE
h?(a)
|\ if aGz"

We now prove: L(M') = h2(Lj n 12)

-230-

there exist u,,...,u G E" such that
*
<=> \J crUjaj. .-unanllg- p,nfor p e H, and

(ular - - unan'Zo> ~ U 'X)

&> {There exist Up,...,u G E" such that U@ U@ G

n nn

£ L1N

Thus, L(M') = h2 (L2 M L2).
We now can easily see that L = h(LI n LZ»), for h is a
homomorphism of E2 into E, such that:
r a if a GE

h(a) =
I if a GLLUE"

Hence, the result.

By theorem (4.8) and theorem (3.2), we can easily see the
following :

Corollary (4.9)
Every scd-language L can be expressed in the form L =

= M L2), where h is a homomorphism, and L”, L2 are two
sc-languages.

-231-

5. TWO-MEMORY SIMPLE MACHINE
Definition (5.1).

a.) A two-memory simple machine (abbreviated as ts-ma-

chine) is a 6-tuple:

M= (E,,",6,Z0,Z") , where

E is a finite set of inputs,

Mand I are two finite sets of pushdown symbols,

Z0 6 I and Z(‘) G I are two initial symbols of two
pushdow stores, and

6 is a mapping from I x (E U {\})xI"'" to I'* x I,
and satisfy: for each Z G T, ZGT' either 06(Z,a,Z2")
contains exactly one element for a G E, and
6(Z,\,Z') is undefined; or 6(Z,\,Z') contains e-
xactly one element and 6(Z,a,Z') is undefined for
all a G E.

b.) Aconfiguration of Mis a triple (a,w,a')/ where:

w G E* is the portion of the input tape remaining to
be read.

a GI (similarly, a' G I'') is the current contents
of the pushdown store [I'] (and [[']), where the
top of the store [I] (and [[']) is the rightmost
symbol of a (and a')

c.) We define the operator Il—on configurations of M as
follows: for each a GE, wGE* Z G T, Z2° GTI',a,
3 GIr*a" 3 G I'*:
i) (aZz,aw,a'Zz')I"(a3,w,a'3") iff 6(z,a,2') = (3,3"),

or

ii) (az,aw,a'zZz')lj~(a3,aw,a'3") iff 6(zZ,N,2') =(3/3")
Let IK/I denote the transitive, closure of IV'

d.) We shall be concerned with acceptance of an input
tape by empty pushdown stores. Accordingly, we define

-232-

the language accepted by a ts-machine M to be:

L(M) = {WG E*/(Zofw,ZE)IE(\r\ #)}
A language L is said to be a two-memory simple context-
-free language (abbreviated as ts-language” if L = L(M),
for some ts-machine M. The family of all ts-languages
is denoted Xts. It is easily seen that: if L is a ts-
-language, then L must be prefix-free.

Theorem (5.2)

a.) For every sdp-machine M there is a ts-machine M such
that L(M') = L(M).

b.) There is a ts-machine such that L(M1l)is not a sdc-
-language.
Proof

a.) Let M= (K,£,1,6,9Q,Z ,H) be a sdp-machine. Without
loss of generality, we may assume again that: for
q GK, a GE U{X}, zaGr, if
6(qg,a,Z) = (p,a) , then gQ ¢ p and
20 1 a

Construct a ts-machine M from M as follows:
Let M = (E,K, I'",6',09Q,ZQ), where
' = r u{s$}, for $ <€, and
6' is defined so that:
for each a G E U{\}, g G (K-H-{gqQ}), Z G (I -{Zq}):
1.) 6'(go,a,ZQ)= (p,%a) i ff (qo,a,ZQ) = (p,ai

2.) 6'(q,a,2Z) =(p,a) iff (9.a,2) = (p.,a);
3.) =(X,X) for allp G H;

4.) AIll other transitions are undefined.
We can easily see that:
W G L(M«=*>(qQ,w, Zq) 1* (p,\,\), for p GH

<= (qo,w,Zo) 1 (p,X,$) NE (X, X,X)

-233-

«* w6 L(M).
Hence, the result.
b.) To show part (b), we prove the following lemma:

Lemma (5.3).

There is a ts-machine such that L(M7)is not context-
-free
Proof of lemma (5.3)

We consider the non context-free language, first seen

in [4]:
L = (anbncn/n & 1}
We now provide a ts-machine that accepts this lan-
guage :
Let = (E, I, T",67,2Q,) , where
E = (a,b,c},
r={2Q A $}

r = (z*,B,$) and

6, = is such that:
1.) 61(ZQ,a,Z") = ($AA'%)

2.) 6.72,3,%)

(AAA$)

3.) 61(A,b,$) U,$B)
4.) 61(A,b,B) = (\,BB)
5.) 6~A'c'B) = U,X)
6.) 6,($,X,%) = U,X)

Thus, there is a ts-machine such that L(M”) is not context-
-free and evidently is not a sdc-language, Hence, the result.

Given a ts-machine M, let 6(Z,a,Z2') = (a,B), where
a 6 EU{A}, zer, Z er', aer*, B GI* , we write:

-234-

Valf6(Z,a,Z")

1
o))

Valsoé(zZ,a,zZ")

1
w

Theorem (5.4).

Let M= (E, ', T', 6,ZQ,Zo) be a ts-machine satisfying
the following condition:
" IVaIr6(Z,a,Z')I = IVaISG(Z,a,Z‘)I, for a GE U{\), 26 T

Z' e ' such that 6(Z,a,Z') is defined", (5.4)

then L(M) is a sc-language.
Proof

Let M« (E,[[',0,Z Zq) be a ts-machine satisfying
the condition (5.4), where

r = (Zq,z",...,Z"}
rl

Construct a simple machine M from M as follows:

Let M (E,r,06 ,Z,Voro;\/), where:

r

(z~ j)/i ¢ (0,12,...,n) and j 6 {O0,l,....m}} ,

and 6' is such that: for each a 6 E U{\):

1.) if 6(Zt,a,Zj) « ~zZii* **Zik,zZjl* ' *Zjk™ ' where k é |
then 6'(a,Z(x"j) =

2.)6Z+,a,Zj) - (X,X) , then 6'(a, 201 M) <

3.) AIll other conditions are undefined.

It is easily seen that L(M') = L(M)
Hence the result.

By the prefix-free property of a ts-language, we can easily

see the following:

-235-

Lemina (5.5)

If L is a ts-language, then Lis not a ts-language.
Hence, the family .£ is not closed under complementation. By
theorems (3.2),(3.4),(4.2), (5.2) and the proof of theorem
(2.5), we can easily prove the following:

Lemma (5.6)

The family .ELb is not closed under union.

Lemma (5.7)

The familyXts is closed under concatenation.
Proof

Assume that L = L(M) and L' = L(M"') , where:

M= (E,r,r',6,Z0,Z2"), and

M = (E',i,T',0',ZQ,) are ts-machines.
Without loss of generality, we may assume again that:

i.)y rnr=rnr'=2~2

ii.) Z0 i VaIpG(Z,a,Z‘) , ZO $ VaISG(Z,a,Z'), for

a GEU{A} z 6 I', Z° 6 I'' such that 6(Z,a,Z') is

defined.
Construct a ts-machine from M and M', as follows:
Let ML (EL'T1
L1~ E UE
- rurT

= wr
6/1\ is such that, for each a € E» U{\), Z G I -{ZQ},
zZ' G I - (zMm,

1.) if 6(zQ,a,z") = (a,B), then 61(ZQ,a,Z") = (ZQa,Z"3)

-236-

2.) if 6(Z,a,Z') *= (a,3)» then 61(Zfafz') = (a,3)
3.) if 6'(Zz,a,z') * (a4,3), then @(Z,a, Zz#) * (a,3)?-

4.) AIll other transitions are undefined.

It is easily seen that, let w = w*w2, where w*» E E , w2 6 E '

f(z0'wl ' Zc>)
{w = wlW2 6 LL-, where wx 6 L, w2 € L' (X, X, X)

<= {(z0/wi w2' zo'> Zo'w2'Z

<=> w = wiw2 e L() .

Hence the result.

Theorem (5.8)

The intersection of a ts-language L and a sfd-language
is a ts-language.

Proof

Let L = L(M), and L' = L(M"), where

M= (E,I'T",6,2Q,Zg) is a ts-machine,

M = (K,E,6',qQ,H) is a sfd-machine.
Without loss of generality, we may assume 4&gain, that:
i.) KNTr*>=0 and

ii.) Zg £ Valfé6(z,a,z2'), Z* £ Val 6(Z,a,Z2"'), for

a € E U{X}, zer, Z'er' such that 6(Z,a,Z') is
defined.

Construct a ts-machine M2 from M and M', as follows:
Let M2 = (E,r2,r',62,Z0,Z2”) , where

rz « I Uk
r2 = r" uf{lq,Z2']/q ¢ Kand Z' e I''} and

62 is such that:

and

-237-

for each a GE, ZzGT -{z2zQ}, zZ2' G T -{Zq}, a G T R G T
g G K-H:
1.) if 6(z0,\,Zz")- (a,B), then 62(Zo,\,Z2") = (aqQ,R)

2.) ifféo(z ,a,Z£) B(afR);
land a'(q0,a) - p then 62(Zo'a'zi> *“

where if p I H

V X if p GH

3.) 62(q,X,2') = (X,[q,Z]), for ail q G(K-H), Z' G I’;

4) if 6(z,X,2) — (a,B), then 62(zfX/[qfzf]) = (aq,B) ,
for ail g G (K-H)
'60(Z,a,Z2') « (a,RB),
5.) if! f then 62(Z,a, [q,Z'])= (ap, R)
and '6' (q X p
, where p if Pt H
P 1)
X if P H

6.) AIl other transitions are undefined.
It is easily seen that, for each a g£, Z G I -{ZQ},

ZGr' -{rf} a, al] GT* R, Bx G I'*, q G (K-H):

f(az ,a,BZ") ljj(al " X*B_),
H {(az,a,R[qg,Z2'])I "~Haxp,X,B*")} (5.8.1)
(and qa p

"p if p $H
where p =
t X if p GH

Hence, we prove by induction on the length of w:

(Zo ,w,Z X)L atX ./ .
< “ °» <=> (Z0,w,ZM)IM-(ap,X,e) (5.8.2)
Il and V 'r p 2

p if P $ H

where P =(X if p GH

-238-

Indeed,
* A case w = a G E: evidently, by statement (5.8.1),
and the forms (1), (2), (3), (4), (5).
* Assume that statement (5.8.2) is valid for all w G E,
such that Iwl < n.

We now consider the word w = al"'an-Ian’ and can write:

w = wa . where w, = a;...a ;.

(Zo'Wan'Z } 'm (alZ'an'Bl Z,) 'M

Let * *
| and gQwlan !, ga”, p, where q G K-H

Since Iw”l < n, thence statement (5.8.2) is true, and we have:

(Zo'wl 'Z0)'M («1Z,\,R1Z'),
(z0,Wi,Zo) | (a”Zq,X,8"Z"'),

*
and 4oWq bM g, where q GK-H

On the other hand, by the form (3) and statement (5.8.1), we
can see that,

r(al Zz'an,312Z2") 'sfaA,P)

and qa, IMp

<=> (<lizg,an,alz) (»Lz,arfsl[qg,z"))i™(c.p,x,a))

Thus, statement (5.8.2) holds.
Finally, let w G E*

f(Z ,w, zc'))i,\|>|/l(x,x,\), and
w GL ML >
\ \V/ 1~ p, for p GH
<=> w G L(M2)

Hence, the result.

-239-
Theorem (5.9)
Every ts-language L can be expressed in the form

L «h(L2 N L2), where h is a homomorphism and
-languages.

, L2 are Sc-

Proof

Assume that L is accepted by a ts-machine
M- (E,,r',6,20,2").

Contruct two simple machines M2 from M, as follows:
Mx =(E',r1,61,Zo),

M -(E',r2,62,Z£), where
E' = E UE™ for Ex « ix[z z/]lz €T, Z2° G I'},
rA

ru{[z,2'] /1ZGT, 22G '}

r2 rr v {zzij/zacr, zz r ,and oIf 62 are such
that: for each aGE U{\}, zZzGTI, Z20 G I":

1.) 6/1xr. 7n,Z2) - [Z,Z2']
1 J for all z GTI, 22 GgTI

62°X[Z2,2']1.Z "
2.) if 6(Z,a,2') = (a,3)» then f6r(a,[Z2,2']) *a

\62(af[z,2']) = 3

3.) AIll other transitions are undefined.

Let h be the homomorphism of E' into E, defined by:
f 3 if a GE
h(a) =i

| X if a € E,

We now prove: L(M) * h(L™ N L2), where

hl « L(M1) and L2 « L(M2).

First, we can easily see the following:
for aGE, 2GT, 2'G I', a, a, GI*, 3, 3_e I'™*

-240-

Let w=al...an GE' , we prove by induction on the length of
W

lMhere exist Ug.o U G E"
(407 eecan® 7 Zoulal---unan,N7 P and

u.8)

(ulal***unan'zo)1 Y @)

Indeed,
A case w = a GE'; is easily seen that
fthere exist nr z ,G E'' , and

*00
(P " la) iff lo n[qo%o]gi]'Ml 1Vio |%6|]9 IM_l P and

(x[qo,ZoJa"'Zo)IM; (a'[cv Zo])IM~(Xa)

Assume, that

the statement (4.8) is valid for all w G E'
such that Iwl < n.

We now consider a word w = Wlan’ where
wi = ai'***"al4"

Let (gqo,wlan,ZQ)Il (g,an,alz)i”r (p,X,a), where

g G (K-H) and 6'(q,an,Z2) = (p,[3), and a

I
o
>
=

Since Iw | € n, we have
'there exist u”..."

. *
AR goulal---un-lan-1 ‘M 4 - ad

G E"suchthat
(go/W1,2zQ) I-, (q,X,a"2)

(ulal---un-lan-1"2) "™ (Xal2?g
On the other hand,

we can easily see that:
for g G (K-H), z G,

there exist m_ = Xr_ ns such that
Iq, Zj

pq,z1*n'm W% &y m P and

N*[g,z]an'z)1Im2 wanffq'z” 1Im2 B
Thus, statement (4.8) holds.
Finally, let w =

= al...an G E/

w G L(M)<=> {(qo,w,ZQ)I-, (p, X,X), for p GH }

-241-

there exist u G E*, such that

(ua,az) . and

(az,a,3Zf) M@\, 3") iml (X/al)f (5.9.1)

!“(ua,SZ') Ijf (M &)
“2 1

Thence, we prove by induction on the length of w,

let wma, . . .2 : A
fthere exist u”,...,un G £~
(Zo,ar ..an,Z™)I£(a,\,3) & JSudh (unr..-unrar) r (\,a), (5.9.2)
\?nd (uia]:.. .unan,ZO')IWI_ (\,3)
Indeed,

* A case w = a G E evidently
* Assume that statement (5.9.2) is valid for all w G E¥*,

such that iwl Cn . We now consider the word w = Wi'% , where
Wi é_&.-.an_jl.
Let (zOwlan,z?))I”*(alZ,an,31Z2"') 1" (a,\,3)

Since IwA < n , thence statement (5.9.2) is true, and we have:

thegy exist u]/eee G .
h that (nia!-e-un_i'z0)~ U/CijZ),
d(u”™.-V iV rid <XBlz>
On the other hand,@y statement (5.9.1), we can see:
/"'\@re exist un G E”, such that
(a*Z,an,3"Z)17(a,\,3) ~r) * (un 'V al 2)lii[and

0 lhV BZ,)I* (X'S)

Thus, statement (5.9.2) holds.

Finally, let w= a”...an € E:
w * eeean £ L(M) (ZQ,al...an,Z") IM(\,X,\) <=

rthere exist u®,...,u GE"' , such that
<=> | (uiai* **unan»zZQ) Ij*- U na) ,and

'Wuiar - - W 20, "C

242-

There exist ulf...,u e £'*,

b=
such that ulal...unan 6 L~ M L2

Thus, L = b(bX M L2).

Corollary (5.10)

Every ts-language L can be expressed in the form

L =h(L1 NML2), where h is a homomorphism, and Lj, 12 are sdc-
-languages.

REFERENCES

[1] Friedman, E.P.: Simple context-free languages and free
monadic recursion schemes. Mathematical Systems Theory.
11 /1977/, 9-28 pp

[2] Ginsburg, S. and Greibach, S.: Deterministic context-
free languages. Information and Control 9 /1966/,
620-648 pp

[3J Friedman, E.P.: Equivalence problems for deterministic
context-free languages and monadic recursion schemes.
To appear in ICSS

[4] Révész, Gy.: Bevezetés a formalis nyelvek elméletébe.
Akadémiai Kiad6, Budapest /1979/

[5] Salomaa, A.: Formal languages. ACM Monograph Series,
Academic Press, New York-London, /1973/

[6] Korenjac, A.l. and Hopcrooft, I.E.: Simple deterministic
languages. IEEE Conference record of 7th Annual Sympo-
sium on switching and automata theory /1966/, 36-46 pp

Acknowledgement

I wish to express my thanks to Gy. Révész for his useful
comments and for the criticism of the manuscript of this
paper.

D. KNOWLEDGE REPRESENTATION

Computational Linguistics and Computer Languages VoL XIV. 1980.

CONSTRUCTIVE APPROACH TO KNOWLEDGE
REPRESENTATION

by
V.M. PONOMAREV and V.V. ALEXANDROV

Research Computer Centre of USSR Academy of Sciences

Leningrad, USSR

ABSTRACT

In the present paper we'd like to draw attention to some
new aspects of conception of constructive approach to knowledge
representation. The necessity of new approach is called by the
particular role of computer system in the field of collecting,
representing and application of knowledge. In fact the progres-
sive role of computer is connected first of all with its capac-
ity of storing and mass data manipulating. And here the problem
arises: how to get quickly and reliably scientific information,
how to organize synthesis of new formal knowledge based on
former information and how to provide selfdevelopment of intel-
ligent data base. The paper includes two parts. In the first
part we discuss some specific questions concerning knowledge
representation. The second part is devoted to a study of con-
structive principles of data representation aad processing.

I. MAIN FEATURES OF RISE, DEVELOPMENT AND REPRESENTATION OF
KNOWLEDGE

From the point of view of knowledge representation in com-
puter it is important that knowledge is a means of efficient
coding (description) of experimental facts. Thus this defini-

-246-

tion implies the following interconnected chain: Problem under
study - Experimental facts - Formalysed knowledge, which shows
that appearence of new knowledge is connected with constant
demand to compare experimental facts with formalysed know-
ledge. Such comparison is double-aimed: from one side to check
once more the correspondence of the process under study to
formalysed knowledge that we have and from the other side to
establish limits of application of given formalysed knowledge
and to find those experimental facts which demand to extend
the former mathematical model and hence stimulate knowledge
development. Thus knowledge that we have and the current ex-
perimental facts are continous source of knowledge development.
Knowledge development in its turn is always connected with
search of law, theorem, algorithm. We underline that the main
aim of such a search is a reduction of initial empirical facts.
Figure 1 shows a model of informational development of know-

ledge. Here 6" - is capacity of accumulated knowledge at
0
the moment tQ; tQ, t~,...tj - are levels of special knowledge

which symbolise a tendency of development of knowledge, marked
by (-). From Figure 1 one can see that for development of spe-
cial knowledge the search of information in neighbouring fields
of knowledge stored at previous levels of development of gen-
eral knowledge always takes place. And the problem of special
knowledge application is connected first of all with the rate
of getting information. It is possible to conclude that relia-
bility of special knowledge depends on analysis of general
capacity of stored knowledge, and the rate of its application
depends on capacity of special knowledge.

Well known is the fact that communicating in constant en-
vironment: sport, mathematical scientific seminars, etc. peo-
ple use a concise tesaurus to accelerate informational inter-
change .

We shall briefly enumerate main stages, providing know-
ledge development:

-247-

1. Reduction as a method of accelerating of informational
interchange and special knowledge application.

2. Increasing of capacity of general knowledge together
with enlargement of special knowledge using concise tesaurus.
Conciseness of tesaurus is a necessary condition of optimal
coordination between the rate of special knowledge application
and capacity of general knowledge.

3. Creation of "translaters”. Relation between capacities
of general and special knowledge is constantly increasing.
This fact evokes the problem of "translator”.

4. Understanding - is a coordination of special tesauri
provided by learning.

Knowledge understanding represented on Figure 1 shows
place and role of learning. Let us underline that tesauri
coordination is possible only through previous special levels.
That is the difficulty of creating of "translators”. The follow-
ing example will explain this situation: specialists in one
narrow field of knowledge speaking different natural languages
will quicker understand each other than specialists in zoology
and physics for example, using the same natural language.

It is quite evident that it is the problem of understand-
ing of special knowledge by specialists in neighbouring fields
taking into consideration permanent development of these fields
that causes the necessity of creating of problem-oriented dia-
logue systems and intelligent data bases with the help of com-
puter.

11, CONSTRUCTIVE APPROACH TO DATA REPRESENTATION. REDUCTION
PROBLEM.

There is only one problem on the initial stage of know-

-248-

ledge representation - approximation of experimental facts
connected with demand of effective reduction in their memoris-

ing.

Let E be a set of objects under study represented by experi-
mental facts list X {IXI '} - is a notation for symbol power
of initial alphabet of description E. Mathematically the prob-
lem of reduction consists in searching for algorithm @ of
enumeration of objects from E using such an alphabet of des-
cription Y in order to minimize {|Y| } - min. By symbol power
we understand reduced number of bit information necessary for
reestablishment of initial alphabet description of the set E
during computer memorizing. Objects under study forming the
set E are constructive objects, because the experimental facts
may be always represented by finite symbol configuration.

This definition of constructive objects corresponds to that
of (1). It is known that every constructive object may be coded
by a word of s table alphabet (1). The following reduction is
based on possibility of reenumeration of words in finite al-
phabet using for example lexicographical ordering. Thus, in
principle it is enough to examine enumeration ®: E£ X

only on integers (1,3).

Interesting is the fact that from one point of view integers
represent a natural model of ordering of objects of a set E,
and from the other point of view they represent adequate ad-
dresses of memory elements in computer.

Final solution of problems like approximation, pattern re-
cognition, cluster-analysis and identification of objects in
informational system may be conventionally represented in the
following formalism:

Let E be a given set of objects under study represented by
a list X of its experimental facts, which we mark by points

-249-

in space Rn , we should find a general recursive function
of enumeration of objects in E, X ¢ Rn on R+.

Problem of pattern recognition is connected with the fact
that this algorithm implies division of objects of a training
set (Fig. 2a).

Problem of cluster-analysis is connected with the fact of
condensing of objects relatively to a threshold element 6n

and distinguishing of a class of objects (Fig. 2b).

Problem of ordering of objects in E is connected with dis-
tinguishing of objects with certain property 6 (Fig. 2c).

Approximation is characterised by searching of a real di-

mension of a problem under study.

Given: E, X £ Rn , we should find ¢ under condition that
the difference function

f (Xci’ cp(Xd)) - min and

CD(Xd) = Y £ Rm, m - min, af E,
here m - is a real dimension of initial problem. In tradi-
tional (classic) representation @ - is an approximation
basis, f - is an approximation quality critérium.

Problems of pattern recognition and of cluster-analysis are
further enlargements of a problem of approximation because a
quality critérium of approximation depends on a representation
of the set E - union of homogenouos groups: E = UA”™ where

are known groups in pattern recognition, or it is necessary
to find Sj a priori such that E = US* (cluster-analysis).

Problem of associative search and identification:
Given E = {a, b, ¢ ...} , XE£Rn , enumeration function:

-250-

X

<EF]: Rn * R+ and >g< £ Rm, Rm £ Rn, xk ¢ E
Find Xk £ Rn, with f(X* , X*)<e ;
Xt £ Rm; X' Rm: L= o E o
m < n CDm: Rm
. . -1
min |j. - J, 19 . (Js. £ R+) + X3. £ Rn

-m X.Q Rn_m
3
Here k, i, j are indices of enumeration of objects of the set
E . n, m- are indices of enumeration of description features

of X

To solve problems of above mentioned class we use prin-
ciples of one-to-one application of points of spaces of dif-
ferent dimensions, that we have already realised (3), with
the help of general recursive function based on multidimensional
analog of Peano curve.

The first method of establishment of one-to-one correspon-
dence of points with different dimensions was proposed by G.
Cantor, but this correspondence was not continuous. Lack of
continuity of mapping makes it impossible to solve success-
fully practical problems with reduced dimension. Later on im-
possibility to construct one-to-one continuous application
was proved. The found out that continuity of mapping should be
provided only in one direction - from lower dimension to higher
one. Space-filling curves (SFC), historically connected with
the name of italian mathematician Peano, are just one-to-one
continuous mappings of unit interval on n-dimensional unit
hiper-cube. From the end of XIX century till recent time these
mappings were of pure theoretical interest, but nowadays atten-

-251-

tion to them and to their practical usage in different fields
has considerably grown. See for example (2,3,4,5).

Each SFC is a continuous non-differentiable curve which
pass through all the points of n-dimensional unit hiper-cube
Rn. It represents a limit of sequence of curves, called "ap-
proximations of SFC" (Fig.3). Approximations of SFC establish
one-to-one correspondence between quantified hiper-cube
(m - is a number of approximation) and quantified unit inter-

val Rr/ﬁ

Quanta of m-th division are elements between which the
correspondence by means of m-th approximation of SFC is es-
tablished. Every such quantum represent n-dimensional hiper-
cube with a side kK ra, where kK - is a number of parts of divi-
sion of a side of cube Rn, for construction of first approxi-
mation .

From geometrical point of view m-th approximation of SFC
is a broken line connecting in certain order centres of quanta
of m-th division. This broken line repeats several times (m-1)
-th approximation of SFC according to a law of the first ap-
proximation, that's why SFC are called also recursive self-

similar curves.

It is important that for application problems we need not
know precise correspondence between coordinates of points in
Rn and Rx . As a rule we need only definite number of decimal
places. Such a constraint of accurancy makes it possible to
use corresponding approximation instead of SFC for reduction
of dimension of initial problem. This fact simplifies consider
ably resolution of practical problems, because it allows to
find correspondence in finite number of steps of algorithm
(4,6). We shall use the following notation for such a mapping:

N -

and Rn~ R1

-252-

Having algorithm of constructing of any approximation
of SFC we get an opportunity to ennumerate all the quanta of
any division in quantified space R” and, if necessary, to
examine objects connected with the quanta (for example, to
calculate value of a function given in Rn).

Thus the power of SFC method is always equal to that of
exhaustive search of all possible solutions. Though it has
several properties which allow to decrease considerably a
number of variants for concrete problems without decreasing
power of this method (6).

Its first property is called "convergence by division"
and is a result of recursive definition of construction of
approximations of SFC. The main point of this property is
that it provides convergence of resolution for the searching
of correspondence between coordinates of points in R" and
Rn, when division number m is growing. In other words using
two different approximations SFC for solution of concrete
problem we shall get two solutions of proposed problem, both
of them lying in the region of true solution and the one with
greater number of approximation of SFC being more precise.

The second basic property of approximations of SFC is
called "quasicontinuity"”, because a limit of approximations
of SFC with m - *® is a continuous curve. This property shows
that "close™ points in R* have images which are "close" in
Rn during search of correspondence by means of any approxima-
tion of SFC, and if OX - is a distance between two points in
R, then nnado((X) u - distance between their images in
Rn - may be estimated by a formula:

(Ap(X) m & LIig(X)i*rn , L =const < ®

Most important practical result of this property of quasi-
continuity is the fact that Lipshitz property is preserved
in RX by functions given in R" and mapped on RX by means of

-253-

SFC.

We should underline that no other mappings possess such
properties (television raster, spiral raster, random walk)
of quantified spaces.

Let us consider solutions of some application problems
using SFC.

1. Search of global extremum of multi-variable function.
Given continuous real function ®(y) , yc Rn , having
in Rn a restrained Lipshitz constant. For sequence of points
X0, X7, eee we find values of functions @o(dh(Xg) , P> (XN),

and we may search for extremum in the region of R”, because
the function @ (@ (-X) possesses also the constrained Lip-
shitz constant in R" because of the property of quasi-continui-
ty. The later property allows to calculate the value of func-
tion using a constrained number of points but garantees conver-
gence to global extremum under condition of using of global
algorithm of one-dimension search. It in important that we did
not demand that a function should be differenciable or convex.

Similarly»method of SFC may be used to solve equation or
unequation systems.

2. Pattern recognition.

Given sets A”,...A” of points in Rn

We know that points
of one set belong to the same image. We shall map these points

from Rn onto R”. In this case we may construct such a covering

S that images of sets A”,...,A” on R* will not cross (7).
Thus we can decide to which set A”,...,A an object Q belongs
by mapping Q from R onto R, and analysing its position

relatively to covering S. AIll this makes it possible to exclude
from a procedure of decision making such informal component as
a choise of metric in multi-dimensional space. The algorithm

based on method of SFC is similar to that of "some close neigh-

-254-

bours™ according to its quality characteristics but it functions
much faster.

3. Cluster-analysis.

Given a set E of N points in Rn, each symbolysing one of
N objects of classification with n measured features, coordina-
tes of points being the values of these features. Then, using
a mapping <p.‘1 we may map all the points from k" onto K1 and
solve the problem in one-dimensional variant. In this case ob-
jects found in one quantum belong to the same class, and object
found in neighbouring quanta are also united in the same class.
It is worth mentioning that because of the property of quasi-
continuity of mapping objects found in neighbouring quanta in
Rm are neighbouring in Rn, besides according to the property
of convergence by division some one-dimensional mappings of the
set E with different m precise consequently coordinates of ob-
jects in Rx. In comparison with other methods of cluster-ana-
lysis the method of SFC is distinguished by its visible demon-
strativity and by its independence of number of classified ob-

jects (time of mapping is very short).

Both described procedures that of pattern recognition and
that of cluster-analysis are particular cases of decision making
by means of "precedent": inquiring object Q, k features of
which are known, appropriates values (n-k unknown features)
of the closest neighbour in R"™ according to above principles
of associativity for constructive objects.

More detailed discussion of problems concerning different
applications of SFC one can find in (6).

SUMMARY.
In the first part of this paper we discussed some general

principles of forming, development and representation of know-
ledge, as a basic element of transference of experience from

-255-

one generation to another. And from this point of view only
forms of knowledge representation change through time: from
oral narration to written documents, from written documents
to computer memory as a result of necessity of collecting and
application of permanently growing knowledge.

The second part is devoted to one of possible algorithms of
knowledge representation in computer based on constructive ap-
proach of creating general recursive function of one-to-one
mapping of constructive objects represented by a list of ex-
perimental facts in elements of computer memory. We use multi-
dimensional analog of Peano curve as a general recursive func-
tions .

-256-

VOLUME OF ALL EXISTING
KNOWLEDGE

LEVELS OF KNOWLEDGE
SPECIALIZATION

PROCESS OF VOLUME OF
UNDERSTANDING SPECIAL
KNOWLEDGE

Fig.1. A model of informational knowledge
development

Fig.2.

-257-

@: E£ Rn- R1
E= UyA= UAIfA2

T»“ (Y 1>
IF tTa< \ THEN yAE A

TO FIND A PEPMUTATION

a) pattern recognition;

6) cluster-analysis;

b) ordering and identification of
objects

Fig.3. SFC approximation for n=2

[2]

[3]

[4]

[5]

[6]

[7]

-259-

REFERENCES

MapTuH-1ép: OuyepkM NO KOHCTPYKTUBHOW MaTemaTumke. M. 1976.

Butz A.R.: Convergence with Hilbert's Space Filling Curves.
I. Comp. Sys. Sei. v.3. N2,1969.

AnekcaHgpos B.B., TllonakoB A.O.: CTpPYyKTYypHble MeTOAbl Kjaaccu-
pmkauun. B c6. "Apantauuma B CUCTeMax CO CJ/IOXKHOW CTPYK-
Typon'™, M 1977.

Alexandrov V.V., Polyakov A.O., Latchinov V.M. Synthese et

application d'analogue multidimensionnal de courbe Peano.

Comminication aux jorneese "Reconnaissance des formes et

Traitement des images", février, 1978.

Quinqueton 1. Classification rapide utilisant un balayage
de Peano. Communication aux jorneese "Reconnaissance des
formes et Traitement des images"”, février, 1978.

AnekcaHapos B.B., Topckmini H.A., MonsakoB A.O.: PeKypCuBHble
anropuTMbl 06paboTKM W nNpeacTaB/ieHMSA AaHHbIX. Pabouunii
oTyeT JIH/BLL AH CCCP, 1978.

AnekcaHgpos B.B., Topckmin H.A.: 0 BO3MOXHOCTM WNCMNONb30BaHUSA
0TOOpaXeHNN [LUCKPETHbIX MPOCTPAHCTB AN PeWeHNUss MHOro-
napamMmeTpuyeckmx 3apgad. Tesucbl ITT Bcecolw3HO KOHMepeH-
UMM nNo wuccnegosaHut onepaynin. Fopbkuin, 1978.

A

=

w »

CONTENTS

MATHEMATICAL SEMANTICS

H. ANDREKA - I. NEMETI: Additions to Survey of Applications

of Universal Algebra, Model Theory and Categories in Computer Science ?
L.CSIRMAZ: A Survey of Semantics of Floyd-Hoare Derivability 2
I. NEMETI: Some Constructions of Cylindric Algebra Theory Applied

to Dynamic Algebras Of Programs ... 43
M. SANTHA: Some Problems of the Semantic Treatment of That -

-Clauses in Montague GramMAar ..o e 67

SYSTEM ARCHITECTURE

G. DAV1D: On Basic Concepts of SDS (System Development System..Part 1 gj

W.O0. HOLLERER: SILICEA - A Simulation for Realizable”
(Orc LT T AN U] (o)1 (- - U 95

G. SIMOR: An Experimental Language Architecture Design and Implementation

137
MATHEMATICAL ASPECTS OF PROGRAMMING
P. ALBERT: The Notion of Consequence in Many-Valued Logic 165
Z. ESIK: Identities in lterative and Rational Algebraic Theories 183
N. T. KHANH: Simple Deterministic Machines and their Languages 209

KNOWLEDGE REPRESENTATION

V. M. PONOMAREYV - V.V. ALEXANDROV: Constructive Approach to
Knowledge RepresSentationcoccooiiiiioiiieeiee e 245

	A. MATHEMATICAL SEMANTICS��������������������������������
	1. H. Andreka–I. Németi: Additions to Survey of Applications of Universal Algebra, Model Theory and Categories in Computer Science���
	2. L.Csirmaz: A Survey of Semantics of Floyd-Hoare Derivability��
	3. I. Németi: Some Constructions of Cylindric Algebra Theory Applied to Dynamic Algebras of Programs���
	4. M. Santha: Some Problems of the Semantic Treatment of That-Clauses in Montague Grammar

	B. SYSTEM ARCHITECTURE�����������������������������
	1. G. Dávid: On Basic Concepts of SDS (System Development System) Part 1.
	2. W. O. Höllerer: SILICEA – A Simulation for ’’Realizable” Cellular Automata
	3. G. Simor: An Experimental Language Architecture Design and Implementation���

	C. MATHEMATICAL ASPECTS OF PROGRAMMING���
	1. P. Albert: The Notion of Consequence in Many-Valued Logic���
	2. Z. Esik: Identities in Iterative and Rational Algebraic Theories��
	3. N. T. Khanh: Simple Deterministic Machines and their Languages��

	D. KNOWLEDGE REPRESENTATION����������������������������������
	1. V. M. Ponomarev–V.V. Alexandrov: Constructive Approach to Knowledge Representation��

	Oldalszámok������������������
	_1���������
	_2���������
	1��������
	2��������
	3��������
	4��������
	5��������
	6��������
	7��������
	8��������
	9��������
	10���������
	11���������
	12���������
	13���������
	14���������
	15���������
	16���������
	17���������
	18���������
	19���������
	20���������
	21���������
	22���������
	23���������
	24���������
	25���������
	26���������
	27���������
	28���������
	29���������
	30���������
	31���������
	32���������
	33���������
	34���������
	35���������
	36���������
	37���������
	38���������
	39���������
	40���������
	41���������
	42���������
	43���������
	44���������
	45���������
	46���������
	47���������
	48���������
	49���������
	50���������
	51���������
	52���������
	53���������
	54���������
	55���������
	56���������
	57���������
	58���������
	59���������
	60���������
	61���������
	62���������
	63���������
	64���������
	65���������
	66���������
	67���������
	68���������
	69���������
	70���������
	71���������
	72���������
	73���������
	74���������
	75���������
	76���������
	77���������
	78���������
	79���������
	80���������
	81���������
	82���������
	83���������
	84���������
	85���������
	86���������
	87���������
	88���������
	89���������
	90���������
	91���������
	92���������
	93���������
	94���������
	95���������
	96���������
	97���������
	98���������
	99���������
	100����������
	101����������
	102����������
	103����������
	104����������
	105����������
	106����������
	107����������
	108����������
	109����������
	110����������
	111����������
	112����������
	113����������
	114����������
	115����������
	116����������
	117����������
	118����������
	119����������
	120����������
	121����������
	122����������
	123����������
	124����������
	125����������
	126����������
	127����������
	128����������
	129����������
	130����������
	131����������
	132����������
	133����������
	134����������
	135����������
	136����������
	137����������
	138����������
	139����������
	140����������
	141����������
	142����������
	143����������
	144����������
	145����������
	146����������
	147����������
	148����������
	149����������
	150����������
	151����������
	152����������
	153����������
	154����������
	155����������
	156����������
	157����������
	158����������
	159����������
	160����������
	161����������
	162����������
	163����������
	164����������
	165����������
	166����������
	167����������
	168����������
	169����������
	170����������
	171����������
	172����������
	173����������
	174����������
	175����������
	176����������
	177����������
	178����������
	179����������
	180����������
	181����������
	182����������
	183����������
	184����������
	185����������
	186����������
	187����������
	188����������
	189����������
	190����������
	191����������
	192����������
	193����������
	194����������
	195����������
	196����������
	197����������
	198����������
	199����������
	200����������
	201����������
	202����������
	203����������
	204����������
	205����������
	206����������
	207����������
	208����������
	209����������
	210����������
	211����������
	212����������
	213����������
	214����������
	215����������
	216����������
	217����������
	218����������
	219����������
	220����������
	221����������
	222����������
	223����������
	224����������
	225����������
	226����������
	227����������
	228����������
	229����������
	230����������
	231����������
	232����������
	233����������
	234����������
	235����������
	236����������
	237����������
	238����������
	239����������
	240����������
	241����������
	242����������
	243����������
	244����������
	245����������
	246����������
	247����������
	248����������
	249����������
	250����������
	251����������
	252����������
	253����������
	254����������
	255����������
	256����������
	257����������
	258����������
	259����������
	260����������
	261����������
	262����������
	263����������
	264����������

