
CL&CL
computer

and
automation

institute
himgarian
academy

oî sciences
I

*

COMPUTER AND AUTOMATION INSTITUTE
HUNGARIAN ACADEMY OF SCIENCES

COMPUTATIONAL LINGUISTICS

AND
COMPUTER LANGUAGES

XIII.

Budapest, 1979.

Editorial board:
Bálint DÖMÖLKI (chairman) Theoretical Laboratory, Institute for Coordination

of Computer Techniques
Gábor DAVID Computer and Automation Institute, Hungarian Acad

emy of Sciences
Ernő FARKAS (editor) Computer and Automation Institute, Hungarian Acad

emy of Sciences
Tamás GERGELY Research Institute for Applied Computer Sciences
Tamás LEGENDI (editor) Research Group on Mathematical Logic and Theory

of Automata, Hungarian Academy of Sciences
Árpád MAKAI Research Group on Mathematical Logic and Theory

of Automata, Hungarian Academy of Sciences
György RÉVÉSZ Computer and Automation Institute, Hungarian Acad

emy of Sciences
Imre RÚZSA Lpránd Eötvös University, Budapest
György SZÉPE Research Institute of Linguistics, Hungarian Academy

of Sciences
Dénes VARGA National Planning Office

/

Secretary to the board: Ákos RADO
Dep. Head of Scientific Secretariat
Computer and Automation Institute, Hungarian Academy of Sciences

Distributor for: Albania, Bulgaria, China, Cuba, Czechoslovakia, German Democratic Republic,
Korean People’s Republic, Mongolia, Poland, Roumania, U.S.S.R.,Socialist
Republic of Viet-Nam, Yugoslavia

K U L T Ú R A

Hungarian Trading Co. for Books and Newpapers
1389 Budapest,
P.O.B. 149, Hungary

For all other countries:

JOHN BENJAMINS B.V.
Periodical Trade
Amsteldijk 44
Amsterdam, Holland

Responsible Publisher:

Prof. Dr. T. Vámos
Director of the Computer and Automation
Institute, Hungarian Academy of Sciences

1

CL & CL

COMPUTATIONAL LINGUISTICS AND COMPUTER LANGUAGES

A scientific periodical published in English under the auspices of the
COMPUTER AND AUTOMATION INSTITUTE, HUNGARIAN ACADEMY OF SCIENCES,

Topics o f the periodical.

The editorial board intends to include articles dealing with the syntactic and semantic
characteristics of languages relating to mathematics and computer science, primarily those of
summarizing, surveying, and evaluating, i.e. novel applications of new results and developed
methods.

Articles under the heading of ’’Computational Linguistics” should contribute to the
solution of theoretical problems on formal handling and structural relations of natural lan
guages and to the researches on formalization of semantics problems, inspired by computer
science.

Articles under the heading of ’’Computer Languages” should analyse problems of
computer science primarily from the point of view of means of man-machine communication.
For example it includes methods of mathematical logic, examining problems on formal
contents and model theory of languages.

The periodical is published twice a year in December and June. Deadlines are 28 Febru
ary and 31 August.

All correspondence should be addressed to:

COMPUTER AND AUTOMATION INSTITUTE
HUNGARIAN ACADEMY OF SCIENCES
Scientific Secretariat
1502 Budapest
P.O.B. 63.

Subscription information:

Available from: JOHN BENJAMINS BV.
Periodical Trade
Amsteldijk 44 Amsterdam (Z)

HOLLAND

NOTES FOR AUTHORS

- 2 -

Original papers only will be considered. Manuscripts are accepted for review with the
understanding that all persons listed as authors have given their approval for the submission
of the paper; further, that any person cited as a source of personal communications has
approved such citation.

Manuscripts should be typed in double spacing on one side of A4 (210x297 mm)
paper, and authors are urged to aim at absolute clarity of meaning and an attractive
presentation of their texts. Each paper should be preceded by a brief abstract in a form
suitable for reproduction in abstracting journals.

The abstract should consist of short, direct, and complete sentences. Typically, its
length might be 150 to 200 words. It should be informative enough to serve in some cases
as a substitute for reading the paper itself. For this reason, the abstract should state the
objectives of the works, summarize the results, and give the principal conclusions and
recommendations. It should state clearly whether the focus is on theoretical developments
or on practical questions, and whether subject matter or method is emphasized. The title
need not be repeated. Work planned but not done should not be described in the abstract.
Because abstracts are extracted from a paper and used separately, do not use the first
person, do not display mathematics, and do not use citation reference numbers.

Number each page. Page 1 should contain the article title, author and coauthor names,
and complete affiliation!s) (name of institution, city, state, and zip code)̂. At the bottom
of page 1 place any footnotes to the title (indicated by superscript +’+ ,±)• Page 2 should!
contain a proposed running head (abbreviated form of the title) of less than 35 characters.
References should be listed at the end in alphabetical order of authors and should be cited

?

in the text in forms o f author s name and date.

Diagrams should be in Indian ink on white card or on cloth. Lettering should conform
to the best draughtsmanship standards, otherwise it should be in soft pencil. Captions should
be typed on a separate sheet. Particular care should be taken in preparing drawings; delay in
publication results if these have to be redrawn in a form suitable for reproduction.
Photographs for half-tone reproduction should be in the form of highly glazed prints.

List of Symbols. Attach to the manuscripts a complete typewritten list of symbols,
identified typographically, not mathematically. This list will not appear in print but is essential
in order to avoid costly author's corrections in proof. (If equations are handwritten in the
text then the list of symbols should also be handwritten.) Distinguish between ”oh,” ’’zero”;

”cL” "one”; "kappa,” ”kay"; upper and lowe case ”kay” ; etc. Indicate also when special type

- 3 -

is required (German, Greek, vector, scalar, script, etc.); all other letters will be set in italic.

Authors are themselves responsible for obtaining the necessary permission to reproduce
copyright material from other sources.

Készült a
SZÁMOK Reprográfiai Üzemében 9353

— 5 —

C o n t e n t s

A. FORMAL LANGUAGES

1. E. Farkas: COMPARISON OF SOME METHODS FOR THE DEFINITION
OF STATIC SEMANTICS ..

2. W. Hesse: A CORRESPONDENCE BETWEEN W-GRAMMARS AND
FORMAL LANGUAGE DESCRIPTION .. 19

3. E. Knuth - Gy. Győri: PATHS AND TRACES .. 31

В LINGUISTICS

4. T. Gergely - A. Szabolcsi: HOW TO DO THINGS WITH MODEL
THEORETIC SEMANTICS ... 43

5. 1. Kenesei: TRANSFORMATIONS OF GENERATIVE GRAMMAR :
THE RISE OF TRACE THEORY ... 57

6. F.Papp: MACHINES IN THE SERVICE OF THE HUNGARIAN
SUBSTANTIVE AS A MACHINE ... 89

C. SOFTWARE METHODOLOGY

7. P. Degario - F. Sirovich: INDUCTIVE GENERALIZATION AND PROOFS
OF FUNCTION PROPERTIES ... 101

8. M. H. van Emden: RELATIONAL PROGRAMMING ILLUSTRATED BY
A PROGRAM FOR THE GAME OF MASTERMIND ... 131

9. R. Fiby - J. Sokol - M. Sudolsky: EFFICIENT RESOLUTION THEOREM
PROVING IN THE PROPOSITIONAL LOGIC 151

10. T. Legendi: A 2D TRANSITION FUNCTION DEFINITION LANGUAGE
FOR A SUBSYSTEM OF THE CELLÁS CELLULAR PROCESSOR
SIMULATION LANGUAGE 169

D. MATHEMATICAL SEMANTICS

, i . I. Sain: THERE ARE GENERAL RULES FOR SPECIFYING SEMAN IKS.
OBSERVATIONS OF ABSTRACT MODEL THEORY .. 195

!2. A. Hajnal - I. Németi: APPLICATIONS OF UNIVERSAL ALGEBRA,
MODEL THEORY, AND CATEGORIES IN COMPUTER SCIENCE
(Survey and Bibliography) ... 251

A. FORMAL LANGUAGES

Computational Linguistics anil Computer languages loi. XIII. 14

COMPARISON OF SOME METHODS FOR THE DEFINITION OF
STATIC SEMANTICS

E. Farkas
Computer and Automation Institute Hungarian Academy of Sciences

Budapest. Hungary

Probably every programmer has an intuitive image what the syntax and semantics of a
programming language mean. However, it is very hard to find a commonly accepted exact
definition for these concepts.

From the pragmatic point of view the syntax is a set of rules which a compiler can check,
and semantics is the term for the features which we can detect only in runtime. This is a
very common opinion.

On the other hand, in several theoretical works syntax is a set of context-free rules and
all the others are called semantics. In this case semantics has two parts: features which we
can check in compile time (so-called static semantics) and other features, called dynamic
semantics.

Г

Here we do not want to discuss about the terminology, about whether the first, or the
second or a third nomenclature is rightful. We say that the context-free grammar will be
called syntax, some rules regarding the proper use of the words playing part in programs
will be called static semantics, while the expression dynamic semantics is used in the sense
how input-output mapping created by a given program can be established.

We suppose that a program is composed rather of words than of individual characters.
So in our case the terminal symbols in the context-free grammar will be the words.

In comparison with the natural languages we find that most of the programming lan
guages have a very strange feature, namely a significant set of the legal words have no
predefined meaning or the meaning is only partly defined. The necessary attributes of these
words are fixed only in the program. For example, an identifier in ’ALGOL 68’ can denote
any type of constant or variable or can denote a label or an operation, etc. In ’BASIC’ a
letter followed by an open parenthesis can denote either a one-dimensional array or a two-
-dimensional array. Similarly most of the programming languages has a built-in mechanism
to create syntactical/semantical attributes for the words of programs.

There are some very simple languages for calculators, industrial equipments etc, which
have not such a creative power, so every word has a predefined meaning. In this case the
language has no static semantics, and the context-free syntax can check whether a program
is formally correct or not. (Although the proper work of the program is not guaranteed.)

- 8 -

The creation of attributes has usually a limited scope. It is not valid any longer than the
program, furthermore it is often valid only in a smaller part of the program. When we speak
about creation, we do not mean declarative inctructions only; a lot of so-called executable
instructions have such a side effect. For example, in FORTRAN/II the 'DO’ cycle instruction
creates a new attribute for the cycle control variable, namely it must not be modified in the
cycle.

In the existing compilers checking is solved by the aid of tables where the current
attributes of the created words are registered, check goes in step by step from left to right
in the program.

In spite of the fact that the method is commonly accepted, it is not fixed in any
standard what checks must be fulfilled during compilation of the given language.

From the theoretical point of view, several abstract formalisms were developed. The
works were done in three different directions:

1. replacement of context-free grammar by another, more powerful grammar,
2. enclosure of attributes and checks into the context-free grammar,
3. introduction and stepwise modification of a declarational state.

In the first direction several unsuccessful attempts have been done before the
van Wijngaarden grammar was issued. The van Wijngaarden grammar was used in the
definition of the ’ALGOL 68’ language. Sevaral static semantical features were included into
the revised report, but not all. It seems to be a nice didactic tool to understand the language
but it is not clear how we can use it in compiler writing.

In the second branch the first important work was D.E. Knuth’s paper. In this paper
he introduces the idea that every syntactic unit has ascendent and descendent attributes.
The affix grammar is a more developed form of this idea which is a theoretical basis for the
CDL language. The functional grammar is a very similar solution. A similar method was
also proposed by M. Griffiths.

The third solution is based on H.F. Ledgard’s work. This was applied by M.H. Williams
and by the author. In this case we have a table (or something like that) containing the
current names with the current attributes and we have functions connected with the syntac
tic units for modification of the state of the table.

In the method elaborated by the author only the terminal symbols of the context-free
grammar have state transition functions. The attributes of the higher-level syntactic units
are included into the context-free grammar as the van Wijngaarden grammars. This method
enables clear separation of syntax and static semantics.

- 9 -

THE VAN WIJNGAARDEN GRAMMAR

The van Wijngaarden grammar is a context-free grammar having infinite production rules.
This infinite set of context-free rules are given in a constructive way.

The symbols of the grammar are denoted by long alphabetical strings, these are the
so-called protonotions. The terminal symbols end with the word ’’symbol” . The individual
symbols are separated by commas.

For the construction of context-free production rules, schemes (so-called hyper-rules)
are given. In the hyper-rules at both sides such symbols are given which are composed of
small-letter words (protonotions) and capital-letter words (metanotions). The metanotions
are parameters.

For each metanotion a context-free grammar generating a possibly infinite set of pro
tonotions must be given.

A production rule is generated from a hyper-rule in such a way that all of the meta
notions must be replaced by a corresponding protonotion so that the same metanotion
must be replaced by the same protonotion. This is the uniform replacement rule.

From the initial symbol we can derive a string so that the non-terminal symbols will be
substituted subsequently until the string contains only terminal symbols.

Using the metanotions we can generate production rules which can fulfil any algorithm
in a style similar to a Markovian algorithm. Those symbols in the hyper-rules have a special
role from which we can derive the empty string. Such symbols are called predicates. They can
express a relation between the parameters denoted by metanotions. If the relation is true, we
can derive the empty string. If it is false, the derivation stops and a non-terminal symbol
remains in the derived string. So the derivation is not valid.

F.xample:

In the following example we can see how it can be checked that each variable is declared
only once in the program.
(Note: the semicolon separates the alternatives.)

- 10 -

Metaproductions:

’ALPHA': : A; В; X; Y; Z.
’LETTER-: : letter ’ALPHA’
’NAME’: : LETTER’; ’LETTER' ’NAME’.
’DEF’: : ’NAME’ has ’MODE’.
’TABLE’: : ’DEF'; ’TABLE’ ’D EF’
’DEFSETY’: : TABLE’; ’EMPTY’.
’EMPTY': : .

Hyper rules:

Program: Begin symbol,
Declare of ’TABLE’,
’TABLE’ restrictions,
’TABLE’ statement train,
end symbol.

(The ” ’TABLE’ restrictions” symbol is a predicate which checks the unique declaration.)

’DEFSETY’ ’NAME’ has ’MODE’ restrictions:
where ’NAME’ is not in ’DEFSETY’, ’DEFSETY’ restrictions;
where ’DEFSETY’ is ’EMPTY’.

Where ’NAME1 ’ is not in ’NAME2’ has ’MODE’ ’DEFSETY’:
where ’NAMEГ differs from ЧМАМЕ2’, where ’NAMEГ is not in ’DEFSETY’;
where ’NAMEГ differs from ТЧАМЕ2’, where ’DEFSETY’ is ’EMPTY’.

Where ’EMPTY’ is ’EMPTY’: ’EMPTY’.

Where ’NAME1’ letter ’ALPHA 1’differs from ’NAME2’ letter ’ALPHA2’:
where ’NAM El’differs from ТЧАМЕ2’;
’ALPHA 1' is not ’ALPHA2’.

Where ’NAME’ letter ’ALPHA 1’ differs from letter ’ALPHA2’: ’EMPTY’

Where letter 'ALPHAГ differs from T^AME’ letter ’ALPHA2’: ’EMPTY’

A is not B: ’EMPTY’.
A is not C: ’EMPTY’.
A is not D: ’EMPTY’.

etc.

As can be seen from the example, this type of definition is easily legible and compre
hensive. On the other hand, we can see that the definition is rather redundant, not mathe
matically but in practice, since very simple functions are implemented in a tricky way,
using sophisticated string manipulations. Such a string manipulation is solvable in a computer
but it is surely an ineffective solution.

The van Wijugaarden grammar is a synchronous aspect of the language, it does not take
into consideration that a program is written and translated advancing in time. Theoretically
we can begin to analyse a program from any point. In practice, ’TABLE’ is constructed
during declaration, while in the other places of the program, TABLE' is used. This is not
included into this model.

THE AFFIX GRAMMAR AND THE CDL

Another solution was proposed by D.E. Knuth. He proposed a context-free grammar in
which every grammatical unit, i.e. every grammatical symbol has a set of attributes. An
attribute is called ’’ascendent” if it is derived from the attributes of lower-level units and
called ’’descendent” if it is originated from a higher level grammatical unit.

This concept and that one of the van Wijngaarden grammar was combined in the affix
grammar.

In the affix grammar three types of objects have to be considered. The non-terminal
symbols denote grammatical units, the terminal symbols are the words of the programs and
the checks are predicates over the attributes. All the three types of objects have a definite
number of attributes; the terminal symbols have no attributes.

There is a set of context-free like substitution rules given. A non-terminal symbol will
be replaced by a string composed of terminal, non-terminal symbols and checks. On both
sides of the rule attributes are connected with the objects. An attribute is denoted by a
symbol or it can have constant value, too.

If we have a non-terminal symbol with attributes having a certain value, we can replace
it by the string, standing on the right-hand side in a rule (having the non-terminal on the
left-hand side). The attributes of the objects must be given so that attributes which were
denoted by the same symbol must have the same value. (Cf. unique replacement rule.)
Then, in the new string we must substitute for the non-terminal symbols over and over again
and the checks must be evaluated. Every check means a recursive predicate over the attributes.
If the check is true, it will be substituted for by the empty string. If it is false, it will be
substituted for by a non-terminal symbol which has no further derivation. The derivation is
finished when a string of terminal symbols is produced.

- 12 -

Example:

This example is equal to the previous one, however, another part of the derivation is
given in detail

Program: Begin,
Declaration+’TABLE' ,
Restrictions+'TABLE’ ,
Statement train+’TABLE’ ,
End.

(Here the ’’restriction" is a predicate over the domain of the ’TABLE’S. It checks that every
name is unique in the ’TABLE'.)

Declaration+’TABLE':Declare+’MODE’+’TABLE’;
Declare+'MODE’+’SUBTABLE 1 ’,
Declaration+’SUBTABLE2’ ■
Union+’TABLE’+’SUBTABLE 1 VSUBTABLE2’.

("Union” checks that the TABLE’ is the union of the two ’SUBTABLE’s.)
Declaret’MODE V’TABLE’: Declarer+’MODE’,

Idlist+’TABLEVMODE’.

Idlist+’TABLE’+’MODE’: Identifier+’NAME’,
Include+’TABLE’+’NAME’+’MODE’,
Semicolon;
Identifier+’NAME’,
Include+'TABLE’+’NAME’+’MODE’,
Comma,
Idlist+’TABLE’+’MODE’.

("Include” checks that ’NAME' having ’MODE’ is included in 'TABLE’.)

The ’CDL’ language is a slightly modified form of the affix grammar. A ’CDL’ program is
a syntactical/semantical definition which can be translated into a code fulfilling the parsing of
the program. In the form of the grammar there were modifications which turn the description
of languages, and the execution of the parsing shorter.

The translation of a'CDL program is organised so that the grammatical symbols are trans
lated into recursive procedures, while the terminal symbols and checks are translated into
macros. The macros must be given by the user.

The body of a procedure is a sequence of macro and procedure calls. The calls are given
in accordance with the sequence of the objects in the substitution rule. The parsing of the
text goes on from top to bottom and from left to right. So the left-recursive rules are excluded.

- 1 3

The attributes are the parameters of the procedures and the macros. The descendent
parameters are the input parameters and the ascendent ones are the output parameters.

In the affix grammar the values of attributes are strings, generated by context-free
grammars. As we see. in the previous, example on the van Wijngaarden grammar, we can ex
press the necessary attributes in such a way. Nevertheless, we feel that tables and lists and
others would be more natural. In the 'CDL' the attributes are integers and integer arrays.
These physical data structures are used for the representation of the necessary logical data
structures mentioned above.

If we compare the van Wijngaarden grammar with the affix grammar we can see that the
conceptions and the solution are very similar, but the mechanism in the affix grammar is
more explicit, so the implementation is much easier.

Though the use of the ’CDL' is wide-spread in Hungary, in our opinion the application
of the method is far from being efficient. Inefficiency comes from two facts. One fact is
the inefficiency of the recursive procedure calls. This can be minimized by sophisticated
programming depending highly on the computer. Another problem is deeper and concerns
the essence of the method. Most of the attributes are born on the level of the terminal
symbols, but attributes are possessed usually by more higher-level syntactic units. So a
great number of parameter passing is necessary to use the attributes.

STATE TRANSITION METHODS

The van Wijngaarden grammar is a synchronous model as was already mentioned above.
Such model as a generative model of the language fits very well. Generative model means
that first we decide what words and attributes we require and then we generate the program
with the necessary words and attributes. Such a model is very suitable for users who want to
create a program.

The affix grammar can be regarded as a synchronous and generative model. But this
model may be completed by the consideration of the direction of the ascendent and descend
ent attributes. The model where the direction of the attributes is considered, determine how
to build up the parsing tree of programs. In some sense this model is more exact. We feel,
however that in a generative model such a consideration is unnecessary. Similarly, in practice
the model causes problems, since the parsing must be in accordance with the direction of
attributes. This means a restriction either for the grammar or for the parsing algorithm or
for both.

The implementor’s problem is absolutely different from the user’s problem. The imple

mentor must read and check existing programs. (The translation or interpretation is a

- 14 -

further problem, which is not discussed here.) For such a purpose a diachrone model is more
adequate. The diachronous model means that the program is considered in its development
in time . In the program new words are created first (defined, declared, etc.), later on these
words get used. Sometimes they get new attributes which are valid in a limited scope. It is
characteristical for most of the programming languages that words and attributes must first
be created before they get applied.

’CDL’, as an implementor-oriented realization of the affix grammar utilizes the dia
chronous nature of the languages. Sometimes this means a limitation for applicability. For
example, we cannot use it for languages, where declaration can appear everywhere in the
program, but it is valid retroactively.

Another approach was given by H.F. Ledgard, applied for the definition of static
semantics of PL/I. This method was developed by M.H. Williams and by the author in
different directions.

In this model the attributes are not included in the context-free grammar. They are
enclosed into tables or alike. The state of the tables changes step by step, advancing in the
program. Modification of the state is solved so that each syntactic unit, i.e. each substitution
rule in the context-free grammar is connected to a state transition function. When the
recognition of the syntactic unit is completed, we must perform the associated state transi
tion function. When the recognition of the syntactic unit is completed, we must perform
the associated state transition. When parsing is completed, associated state transition must
be performed and it must be checked, whether the table in a legal final state.

In this model the diachronous nature of the language is thoroughly utilized and parsing
goes on from left to right.

Example:

In this example we have two variables in the state, ’MODE" and ’NAME’ and
a table having the name ’TABLE’.

Program: Begin, Declaration, Statement Train, End.

Declaration: Declare;
Declare, Declaration.

Declare: Declarer /'MODE':= MODE/, idlist.

Id list : Identifier / ’NAME' := Identifier,
’TABLE’ - ’TABLE’ + HSAMÉ’. ’MODE’)/.Semicolon;

Identifier / ’NAME’ := Identifier,

TABLE’ ~ ’TABLE’ + (’NAME’ + MODE’) /, Comma, IDLIST.

etc.

- 15 -

Finally it must be checked, whether every declaration was unique. This means the
evaluation of the expression ’UNIQUE'('TABLE'). Here the 'UNIQUE' function is usually
defined by a program, similarly to the functions in the substitution rules.

As can be seen, not every context-free rule must have a state transition function and
the whole description seems to be more compact than the earlier ones. Nevertheless, it is
true that the structure of the program means a natural structuring for the data table con
taining the words with the attributes. This is very clear in the case of the block-structure
languages. In our method this structuring must be realized in the state table and in the table
handling function.

Our method differs from the latter one in the point that the state transition function s
are connected only to terminal symbols. The question arises, how we can implement the
transitions which are in connection with higher-level syntactic units (e.g. blocks, etc.). The
solution is very simple: such a higher-level unit has a first and a last terminal symbol and
the necessary actions are connected to these ones. Nevertheless the presentation of our
method differs significantly from other methods by the fact that the state transition func
tion is not included into the ’CF’ metalanguage but it is given in a separate table in the

»

following form: in the first column the terminal symbol is given, in the second one the type
of the lexical unit, and in the third one the state transition action. In the example the
terminal symbols are indicated by underscored lettering. The prefix ”D” indicates that it
is a defining occurrence for the identifier.

Example:

Program: Begin, Declaration. Statement Train, End.

Declaration: Declare;
Declare, Declaration.

Declare: Declarer, Idlist.

Idlist: D. Identifier, Semicolon;

D. Identifier, Comma, Idlist.

etc.

- 16 -

TERMINAL SYMBOL LEXICAL UNIT ACTION

DECLARER
□ IDENTIFIER
BEGIN
END
COMMA
SEMICOLON

MODE
NAME

’MODE’ = MODE
TABLE’ = TABLE’ + (NAME,’MODE’)

’’BEGIN”
’’END”

Our method has the advantage that lexical rules, syntax and static semantics are highly
separated. This means a benefit in implementation, namely static semantics has no influence
on the parsing method.

In H.F. Ledgard’s work the declaration state was described by abstract mathematical
objects and relations (like set, element, part of,etc.). In M.H. William’s paper lists, stacks
and variables are used for the description of the state, and for the transitions a special
programming language was introduced. In the present paper general list structures (lists of
lists) and 'LISP 1.5’ - like list handling functions were used.

For certain programming languages one pass from left to right is insufficient, in these
case more passes are required. A condition for a single pass and an algorithm how many
passes from left to right are necessary, is given in G.V. Bochmann ’s paper.

Most of the programming languages have the feature that a set of words has no predeter
mined meaning. The meaning of these words is rather determined by the actual program.

The rules regarding the consistent use of these words is called static semantics in this paper.

As it has been shown, each of the formal and practical methods are based on the idea
that the necessary attributes of these words are collected, registered and checked. There is
a great difference between the methods, how correspondence between the words and
attributes are represented and handled. Anyway, it is supposed in each method that for
their handling general recursive functions are necessary. This has the consequence that each
formal method is capable to accept or generate enumerable recursive sets.

Similarly we can see that in every method three types of attributes are used. It is not

stated anywhere explicity. however that the three types of attributes are: the literal, the

integer and the pointer-type. The literal-type attribute denotes the presence or the absence

Summary

17

of an attribute, the integer-type attribute has an integer value. The pointer-type attribute is the
name of another word having attributes (in practice it is usually implemented by the help
of pointers).

We can classify the definitional methods into two groups. In the first group the methods
are more suitable to create programs, we can call them user-oriented methods. These are the
generative synchronous models. The other class of methods is more suitable for checking
existing programs, which can be denoted as implementor-oriented methods. Such are the state
transitions methods.

R e f e r e n c e s

(11 J.C. Cleveland, R.C. Uzgalis: ’’Grammar for programming languages” Elsevier
North-Holland. 1977.

f21 A. Van Wijngaarden et al.: ’’Report on the algorithmic language ALGOL 68”
Offprint from Numerische Mathematik 14 79-218 (1969) Springer-Verlag Berlin.

(3] ’’Revised report on the algorithmic language Algol 68” ACTA Informatica 5 p 1-236,
(1974)

14 J Koster: "Affix grammars” In the book: Algol 68 implementation. North-Holland. 1971.

[51 Z. Laborczi: ’’Programnyelv teljesen formális Leírása, forditóprogramíró program”.
Számológép 1972/3.

161 A. Bedő et. al.: "Fordító leiró nyelv felhasználói kézikönyve” (CDL Manual)
Internal Document, in Hungarian.

I 7] D.E. Knuth: ’’Semantics of context-free languages” Mathematical system theory
p. 127-145. 1968 (2). Correction math. sys. th. 1975. (5) / 1.

Í8 Г H.F. ledgard: “Production system or can we do better than BNF? ” Comm, of ACM
1974/2. p. 94-102.

[9] M.H. Williams: ’’Static semantics features of 'ALGOL 60’. and 'BASIC'. The Computer
Journal Vol 21. No. 3. p. 234-242.

[10] M. Griffiths: "Relationship between definition and implementation of a language.”

In the book: Advanced courses on software engineering. Lecture notes in economics
and mathematical systems Springer-Verlag 1973.

[111 G. Riedwald: ’’Grammars of syntactical functions” Manuscript

"Die Grammatik syntaktischer Funktionen-eine andere Form der van Wijgaarden-Grammatik.
FIK 1 1 (1075) 7/8. 489-487.

18 -

[13] E. Farkas: ”A compiler oriented syntax definition" Computational Linguistics and
Computer Languages Vol.X. 1475.

[14] G.V. Bochmann:. "Semantic evaluation from left to right" Com. of ACM 1976/
p.55-62.

lom /una/ional l.inaiiis licv and-Computer I.anxuaxrii l a/. МП. 1Ч7Ч.

A CORRESPONDENCE
BETWEEN W-GRAMMARS AND FORMAL SYSTEMS OF LOGIC

AND ITS APPLICATION TO FORMAL LANGUAGE DESCRIPTION

W. Hesse

SO FTLA В (imbH, München

I RC,

Abstract

A one—to—one correspondence is pointed out between formal systems of logic, the well-known
tool for the formulation of logical calculi, and PW-grammars, i.e. W-grammars, whose
hypernotions are all predicates. Using that correspondence, every formal system can easily be
embedded into a W—grammar. Conversely, every PW -subgrammar of a W—grammar can be
used as a logical calculus for the derivation of theorems. The various applications of that
correspondence make W—grammars a well-suited tool for complete formal language
descriptions.

Introduction and summary

In the revised ALGOL 68-report (A68RR), the possibilities for the application of W —
grammars (’’van Wijngaarden grammars”, ’’two—level grammars”) have been considerably
enlarged by the introduction of "predicates” . Predicates are hypernotions (i.e. two—level
sentential forms), which either produce the empty string e or for which no production exists
(the so-called "blind alleys”). In this paper PW - g r a m m a r s (Predicative IV-grammars) are
defined, whose hypernotions are all predicates. Instead of the language L4i(G) generated by a
PW--grammar (merely consisting of e), the set L.t(G) of all those hypernotions is considered,
from which e can be produced.

Formal systems (’’canonical systems”, ’’Post systems”) are a well-known tool for the
formulation of logical calculi. We define fo r m a l G —s y s te m s which differ from the usual
formal systems only in a stronger formalization of the well-formedness rules (section 1).

In section 2, it is shown, that PW—grammars are equivalent to formal G—systems by pointing
out a simple way to translate them into each other.

PW—grammars can be embedded into general (non-predicative) W-grammars in a
straightforward manner. This is shown in section 3.

With respect to formal description of programming languages, two consequences are
immediate, which are dealt with in section 4:

1) Every part of a language definition formulated as a logical calculus can now easily be
incorporated into a W -grammar. Examples are calculi for the formulation of context

* The work reported in this paper was carried out at the Instribut für Informatik der Technischen
Universität München and was first published as technical report TUM-INI 0-7727 of that institute.

20

conditions as well as for the semantics or parts of it.

2) The rules of PW—grammars may be used as axioms and derivation rules to prove theorems.
For example, from a PW-grammar semantics description, program properties can directly be
deduced this way.

These consequences open a practicable way to use W-grammars for complete language
descriptions as proposed in /HFS 76/. A model for such descriptions is given in section 5. The
W-grammar method is proposed particularly for d e fin in g language descriptions, i.e. those
documents which form the central, binding definition of a particular programming language for
users and implementors likewise.

1. W—grammars, PW—grammars and formal G—systems

A W -g ra m m a r G is a 6—tuple (M, S, T, z. RM. RH). where

M is a finite set of m e ta n o t io n s (or meta—nonterminals).

S is a finite set of s —n o tio n s (in the ALGOL 68—terminology : "sequences of small
syntactic marks not ending with—symbol’'),

T is a finite set of te r m in a ls (M, S and T are pairwise disjoint sets),

MT c S is a set of m e ta te r m in a ls ,
+ 1)

H C (M и S) is a set o f h y p e r n o tio n s ,

z e S+ is the s ta r t s y m b o l ,

RM c M X (M и MT)* is a set of m e ta ru le s ,
■>)

RH c H x (H u T) * is a set of h y p e r ru le s .

Remarks:

1) Differing from /A68R , the hypernotion set does not contain the terminal set.

2) For brevity, we omit extra separation symbols within meta— and hyperrules (as e.g.
introduced in |KOS 74/) and suppose, that all members of the right hand sides can
always uniquely be separated (as is done in /A68R/).

Metarules (x(), Xj x, . . . xn > are denoted as xQ :: x, x . . . xn..
hyperrules (x().x . x, . . . xn) as xQ : x, , x ,xn .

Alternative meta—/hyperrules may be combined using the symbol, terminals are
underlined.

Ihe 5—tuple (M. S. T, RM, RH) — without start symbol — is called a W —p r o d u c t io n sy s te m .

For x e M. L(x) = j m e MT* / x рщ* m 1 (where denotes the usual context-free

production relation) is called the m e ta la n g u a g e of x. Every y e M u MT with x У

(y e L(x)) is called a (t e r m in a l) m e ta p r o d u c tio n of x.

A set RP of production rules (which is in general infinite) is obtained from the hyperrules
RH by consistent substitution of all metanotions by terminal metaproductions.

For a hypernotion h e H . th e s e t Lg(h) = J t e T* / h t \ is called the language

generated from h. F very y e H with h - j ^ y (y e L g(h)) is a (terminal) production of h.

Lg(G) = Lg(z) is called the language generated by G. (For more detailed definitions cf.
/ HES 76/.)

Example 1 :

Consider the W—grammar G = (M, S. j ji, b j , s, RM, RH) with M = | N. EMPTY!.
S = J s, X, y, i j , RM = i m j . m, j , RH = 1 h, , . . . , hs ! and

(m,) N :: EMPTY ; N i . (m,) EMPTY :: .
(h j) s : N x , N y , N x .
(h,) x : EMPTY . (Ц) N i x : N x . a
<h4) y : EMPTY . (h5) N i y : N y . b

The language generated by G is L (G) = 1 an bn an I n = o. 1 , 2 , . .

A PW-grammar W = (M.S, RM. RH) is defined as a W-production system (M, S, 0. RM, RH)
(the terminal set T is empty). Every hypernotion h of a PW—grammar is called a predicate.
Instead of L(h) . which is empty or J e J for every predicate h, we consider the language
L (W) = ! h e S+ / h e i and call it the language accepted by W.

Example 2:

W’= (M. S. RM. J h j , h , , h4 J) with M. S, RM, h j , h., and h4 defined as in example 1. is
a PW—grammar with accepted language L.^W') = J s, x, y j.

A forma! G-system GS is a 4—tuple (В, V. WFG, DR), where

В is a finite set of basic symbols,
V is a finite set of variables,
WFG = (V, B, w, WR) is a context-free grammar with nonterminal set V. terminal set B.

start symbol we V and production rules WR c V x (V u BF.Every x e L(v).
V e V (x e L(w)) is called a term (formula) schema, or - if it does not contain any
variable - a well-formed term (formula) of GS.

DR is a set of derivation rule schemata, i.e. (n + 1)—tuples of formula schemata (n> 0).
Instead of (g ,gn . g) <DR we write g , , . . . , gn i-UKg (or even omit "DR").
If n = 0, we write t- g and call the rule an axiom schema.

Remarks:

1) In contrast to usual definitions of formal systems, the wellformedness property is
expressed by a grammar WFG rather than by an inductive definition in natural language.

2) Elements of V may serve as proper WFG-noterminals or as ’’metavariables" of the
formal system. Rules of the form m: v. (where m, v t V) may be interpreted as domain

rules assigning a "domain” v to a "metavariable" m.

3) An extension to two-level WFG—grammars is also possible (cf. /FIES 76/).

D e riv a tio n ru les are obtained from derivation rule schemata by (consistent) substitution of
variables v by terms of L^iv). A formula f is d e r iv a b le in GS (denoted by l~GSf or
I- f), if there is a derivation rule f, , . . . , fn f f (n >0) and fj , fn are derivable
(inductive definition).

The set of all formulae derivable in GS is denoted by Th(GS).

2. The correspondence theorem

A one—to—one correspondence between formal G—systems and PW—grammars is established
by

Theorem 1: F o r e v e r y fo r m a l G - s y s t e m G S th ere e x is ts a P W —g r a m m a r W = q (G S) a n d

f o r e v e ry P W —g r a m m a r W th ere e x is ts a fo r m a l G s y s te m G S = q X(W) , s u c h th a t

X e L f W) i f f q (x) e T h (G S).

The correspondence is given by the following table, which juxtaposes GS-notions and their
W—correspondences:

formal system GS PW—grammar W

basic symbols В s—notions S
variables V metanotions M
substitution of variables consistent substitution of metanotions
WFG—rules WR metarules RM
derivation rules DR hyperrules RF1
(in particular:
derivation rule f , t'n 1 f hyperrule q(f) : q(fj) , . . . , q(fn).
axiom F f e -rule q(f) : e .)

Thus, production in W corresponds to reduction of a conclusion to its premises in GS.
Theorem 1 is proved by induction on the derivation of formulae or on the e —productiveness
of hypernotions, respectively.

Example 3:

Consider the formal G—system GS = (В, V. WFG, DR) for true boolean expressions in
prefix form. (By the way. this system corresponds to the first example given by Smullyan
for his ’’semantic tableaux”—method in /SMU 68/.)

В = ! tt, ff, “I, Л, v 1, V = ! prop, p. q j . WFG = (V, B, prop, WR), WR =] Wj, w2, w3 ' with

(w() prop : tt ; ff ; “I . prop ; Л , prop , prop ; v , prop , prop .

(w,) p : prop . (w3) q : prop .

(w7 and w-j assign to the ’’metavariables" p and q their ’’domain” prop.)

- 23

DR = ! d j , . . . , d? i with

(d,) 1- tt (d,) 1- И ff
(d3) p f НИр
(d4) p. q 1- Apq (d5) I p t- ПАpq

"1 q 1- HApq
(d6) p 1- vpq (d?) 1 p , 1q t ~lv pq

P •- vpq

The corresponding PW—grammar is W = (M, S, RM, RH) with
M = ! PROP, P, Q ! , S = i true, false, not, and, or 1 , RM = j m. m3 1 and
(m,) PROP:: true ; false : not PROP ; and PROP PROP ; or PROP PROP .

(m,) P :: PROP .

RH - ! h j , . . . , h? i with

(m3) Q :: PROP .

(hj) true : e . (h2) not false : e .

(h3) not not P : P.
(h4) and PQ :P ,Q . (h5) not and P Q : not P : not Q
(h6) or P Q : P ; Q . (h7) not or P Q : not P . not Q .

The following W-production tree corresponds to the proof of the GS-theorem 1 v Л tt ff ff;

not or and true false false

Г (h7)

not and true false

| (h5)
I

not false

not false
! (h,

(h2)

3. Embedding PW—grammars into general (non—predicative) W— grammars

A PW-grammar G can be viewed as a W-grammar with trivial terminal layer. For many
applications, it will not be satisfactory to describe a language L as accepted language L (G)
consisting of s-notions. One rather wants a W grammar G \ for which Ц (С) = La(G)
holds, i.e. which additionally converts the s-notions of L (G) into terminal strings. G' can
always be constructed from Ci using

Theorem 2: For every PW grammar G, there is a W-grammar G' with L^iG') = La(G).

Proof sketch: G' is obtained from G by "duplicating" the upper level of G into a lower
level of G'. For this reason, a new terminal set T is added to G, which is a 1 — 1-image
of the s—notion set S of Ci. Every terminal t is called a terminal representation of its
corresponding s-notion s, vice versa s is called a nonterminal representation of t.

A set of new hyperrules performs the conversion of s—notions into their terminal
representations. (A detailed proof can he found in /HES 76/.)

Example 4:

The introduction of terminal representations into the PW-grammar of example 3 leads to the
following W-grammar
W' = (M, S', T, z, RM, RET) with S '= S U j z, prop of i ,

T = { tt_, f f O. A. v j and RH’ = RH U | h8 , . . . , h |3 j , where

(h8) z : prop of P , P .

(hg) prop of true : tt .

(hJ0) prop of false : ff .
(hjj (prop of not P : П , prop of P .
(hp) prop of and P Q : Л . prop of P , prop of Q .
(hp) prop of or P Q . X • prop P • ProP of Q .

The production tree o f example 3 may now be extended in the following way:

z

prop of not or and true false false

prop of or and true false false

-------------------- !-- 1 <h ,3>
!

prop of and true false prop of false

prop of true

fh9)
I !

И V Л tt

!<h,2>
' IU '

prop of false

! ^ t o)

ff ff

i
not or and true false false

(cf. example 3)

e c.

Co-existing nonterminal and terminal representations can already he found in /A68R/. For
example,

’’structured—with -integral -field-detter—i—and—reference—to-boolean—field-
-le tte r-r— le t te r -b ”

is a nonterminal representation of a declarer, terminally represented as
struct (int I . ref bool RB) .

In a complete W-grammar language description (as advocated below), nonterminal
representations will form the bridge between the "concrete" (string -producing) and the
"abstract" (purely predicative) part of the description.

Combining theorem 1 and 2, we get

Theorem 3: F o r e v e ry f o r m a l G - s y s t e m GS, th ere is a W - g r a m m a r W w i th /._(W) = LAGS).

4 . Applications

4.1 Formal systems incorporated into W grammar language descriptions

Using one direction of the correspondence theorem, every formal system can be incorporated
into a W-grammar. In language descriptions, formal systems are used for the following two
purposes:

a) for the formulation of context conditions, i.e. the context-sensitive part of the syntax
(often called "static semantics”)

b) for the formulation of the ("dynamic") semantics.

Examples for a) are formal systems, which describe the uniqueness of identifier declarations,
the identification of applied occurrences of identifiers with their declarations, or the equivalence
of modes. For the corresponding W—grammar predicates cf. section 7 of /A68RR/.

Chomsky О-grammars (and Chomsky 1—grammars) can also be viewed as formal systems
describing context dependences. The application of theorem 3 to them results in a new proof
(detailed in /HHS 76/) of the well-known fact that W-grammars are as powerful as
Chomsky О-grammars. This proof differs from the known ones (e.g. in /BAK 72/. /DEU 75/)
in that the W-grammar productions simulate the Chomsky О-grammar rules in a bottom-up
manner rather than in a top down manner.

Of even more importance are formal systems for the definition of the semantics or parts of it
(b). The semantical aspects of the formal system / W—grammar-method are detailed in /HES7/.
In the following only some examples are given:

1) The computation of recursive functions is described by the system of ц recursive
functions or by Kleene's system of general recursive functions. These systems have been
formulated as W -grammars in /HES 76/. As a short example consider the PW—hyperrules for
the recursively defined "plus”— and ”times”-operations:

Example 5:

X plus о yields X : EMPTY .
X plus suce Y yields suce Z : X plus Y yields Z .
X times о yields о : EMPTY.
X times suce Y yields Z : X times Y yields W , W plus X yields Z .

- 26 -

If we assume, that every standard operation of a programming language is a recursive function,
then we can describe all possible standard operations within the W—grammar system and do no
need any additional descriptive means for this task (as many descriptions do).

2) A formal system for the Л—calculus may be used for the description of declarations
of (user-defined) objects and, particularly, of (recursive) procedures. Various parameter
mechanisms as leftmost—innermost substitution, leftmost—outermost substitution, Kleene’s
substitution rule and the ALGOL 68—parameter rule have been described by W— grammar
predicates in /HES 76/.

3) There are formal systems for full semantics description, as Milner's system for
denotational semantics based on Scott’s logic (cf. /W—M 72/, /SCO 72/) and Hoare’s system
using the propositional method (cf. /НОА 69/). The PW—grammar formulation of Hoare’s
system is demonstrated in

Example 6;

PW—grammar WH corresponding to Hoare’s system H for propositional semantics

Metarules:

(m,) STM :: ASS ; COMP ; ITER .
(m,) ASS :: ID ^ EXP .
(m3) COMP:: (' STM 7 STM) .
(m4) ITER :: while PROP do STM .

(These metarules describe the syntax of Hoare’s example language, which comprises three
sorts of statements (STM) : assignment (ASS), composition (COMP) and iteration (ITER).
Nonterminal representations of delimiters are marked by overlining.

The metarules for proposition (PROP), identifier (ID) and expression (EXP), which are
irrelevant for the system, have been omitted.)

(m5) P :: 0 : R В :: PROP .
(m,) S :: SI :: S2 :: STM .

О

(m ,) X :: ID ./
(mK) E :: EXP .

(P :: Q PROP is short for P : PROP . and 0 :: PROP . etc. These metarules serve
for the introduction of metavariables, which are used in the hyperrules.)

Hyperrules:

(h ! . rule of assignment)
Q I X : E I P : subst X by E in P yielding O.

(This rule corresponds to the H—axiom pc ' x := e j p, where x is a variable, e is an
expression, p is a proposition and p^ denotes substitution of e for x in p.

The subst—predicate is defined such that

subst X by E in P yielding Q i f f Q= Plx .

For a detailed definition ef. /HP'S 76/.)

(h , , rule of consequence)

P IS] R : P I S] Q ,Q D R ;
Q (S| R ,P Э g .

(h ,. rule of composition)

P I (" S 1 7 S2) | R : P[S 11Q . Q [S2| R .

(h , , rule of iteration)

P I while B d ô S | P A 7 B : P A B |S] P .

(Further hyperrules are assumed to provide basic properties of logic and arithmetic.)

4) The full semantics of simple ALGOL-like example languages has been described in
/C-U 73/ and in /WFG 74/, more complex languages are treated in /HLS 76/ and /HES 77/.
The latter contain among others the concepts of block structure, (recursive) procedures with
ALGOL 6b parameter mechanism, identity declarations, variables with assignments, serial
and collateral elaboration, conditional and repetitive clauses, composed objects (records and
arrays) with selections, generators, in/output and nondeterminism in the notation of
Dijkstra’s guarded commands (cf. /01J 75/).

4.2 PW—grammars as logical calculi

Using the other direction of the correspondence theorem. PW-grammars may be used as
formal systems for the derivation of theorems. In turn this applies to both PW grammars
which describe context conditions and PW grammars for the semantics. In a formal system
for the ALGOL 68 mode equivalence, for example, the equivalence of the two modes

m = struct (int I . ref m R) and

n = struct (int I . ref struct (int I . ref n R) R)

is a theorem which can be proved by the very hypperules of the language definition.

Partial correctness, termination or semantical equivalence are examples of theorems, which
can be stated and proved (or disproved) by PW grammars for the semantics.

Example 7:

From the PW-grammar W(| given in example 6, the (partial) correctness of a program
computing the factorial function is proved by the following derivation tree. Let x, y .z . . .
be terminal metaproductions of ID. analogously x. у 0. 1 , . . . x + у, x * y. x!. . . .
for EXP: true. \ y. x l y. . . . for PROP. Let furthermore S0 abbreviate the composed
statement (y : = y t 1 : z : = z *y): P(the proposition z = у! Л у Ф x and P the
proposition z * (у • 1) = (у * 11!.

27 -

- : s

truc 11 (y : 0: / : !): while y 1 \ do (y: y * 1: z: / *y))| / x!

-..1______ ___
1

(3)

truc I (y : 0; / : i)| / y!
I----------- 1------------- (3)

/ y! I while y /-- X do S | z / x!

• ' i
true I y : 0| 1 y! I y!|z: I | z y! / v!|S0 | / y ’ y x / y! y x / \ ’

.(2)
I

true ! ()’

(< I

i analogously
I 0! I y : 0| I y!

(4)

I s - I '

(-)

t I . suhst) (2)

P,. |y : y t 11/ « y y! / • y y!|z : / y / V

I t !. suhsl)
(2)

P„ 1 ? У’-

(*)

/ y ! I y : y
I

/. * y V :

(2)

/ y! J I’ , P, IУ : У M | / : * y y!

iI *) (I . subxî)

Natural numbers in parentheses indicate hyperrule numbers, i • i reters to logical or
arithmetical rules, (subst) to substitution rules.

5 Л model lor complete formal language descriptions

In sc lion 4 it has been shown, how \V grammars can be used tor the formalization ol the
semantics as well as for syntax description including all context conditions. Combination ol
several V\ grammars leads to the following model:

\ < 'iiuplcH !a n n u l nnrjiui^t d e s c r ip t io n is a № grammar V consisting of subgrammais
y y • i ». i v.iieic \ i-. die s y n ta x s t tb u ra n w ia r land the only string

;; , .)_ \ . . r , m ■mantles /'It \ и hf>runn nur. and \ . - • • V, . if necessary.

au pvc Mihgrantniars winch describe eomexi conditions. All syntactical and semantical
donums aie described by the metarules, while hyperrules serve ai loi the production ol
terminal representations, and I>) loi the delinition o! predicates.

The typical form of a derivation tree obtained from such a language description (with n = 3)
is shown in the following figure:

Л

/ V- ', : v 3- .. \
/ tttt L-------- lt t tL----- U t— —̂ (tt . . . t : terminal strings)

Example 8:

Extend the PW—grammar WH of example 6 by terminal representation rules for statements:

(hs) repr of X := E : repr of X , := . repr of E .

(h6) repr of (S I : S2) : (, repr of SI , i . repr of S2 ,) .

(h?) repr of while P do S : while , repr of P . do . repr of S.

Together with the start rule
(h()) z : repr of S . P [S] Q.

and the metarules the rules (hs) — (h8) form a W—grammar W()0. The system V = (WH(). WH)
is a complete formal description of Hoare's language. Now, z -^*s. iff there are a nonterminal
representation s of s, and some pre-- and postconditions p and q. such that p J s Jq.

Some advantages of such a language description are:

- complete formalization (natural language is no longer needed as an auxiliary description
tool, unless for comments).

uniformity (one unique description tool for syntax, context conditions and semantics).

- universality, i.e. applicability to various semantical models,

- generality, compactness and modularity.

- usage of PW-subgrammars as logical calculi,

- existence of implementation systems for two—level grammars.

In particular, these benefits make W-grammars a well—suited tool for defining language
descriptions, i.e. documents in the style and with the aim of reports such as /A60R/, /A68R/
or /A68RR/. The complete formalization of such reports is indispensable for rigorous and
unambigous language definitions and would facilitate the derivation of particular descriptions
for special purpose such as as program proving or implementation.

- 30 -

Acknowledgement

I thank my colleagues F. Geiselbrechtinger and B. Krieg- Brückner for many discussions.

References

[1] /A60R/

[2] /A68R/

[3] /A68RR/

[4] /ВАК 72/

15] /С-U 73/

[6] /DEU 75/

[7] /DU 75/

[8] /HES 76/

[9] /HES 77/

[10] /НОA 69/

[11] /KOS 74/

[12] /SCO 72/

[13] /SMU 68/

[14] /W-M 72/

[15] /WEG 74/

Naur, P. (Ed.) et al.: Revised report on the algorithmic language ALGOL 60,
Num. Math. 4. 420-453 (1963).

van Wijngaardcn. A. (Ed.), Mailloux. B. J.. Peck. J . L. L.. Koster. С . H. A.:
Report on the algorithmic language ALGOL 68. Num. Math. 14. 79 -218
(1969).

van Wijngaarden, A. (Ed.) et al.: Revised report on the algorithmic
language ALGOL 68, Acta Informatica 5 (1-3). 1—236 (1975).

Baker. J. L.: Grammars with structured vocabulary: a model for the ALGOL 68
definition. Inf. and Controls 20. 351 395 (1972).

Cleaveland, J. C., Uzgalis, R. C.: What every programmar should know about
grammar. Lecture notes UCLA (1973).

Deussen, P.: A decidability criterion for van Wijngaarden grammars. Acta
Informatica 5 (4), 353—375 (1975),

Dijkstra, E. W.: Guarded commands, nondeterminacy and formal derivation
of programs. Comm. ACM 18,453—457 (1975).

Hesse. W.: Vollständige formale Beschreibung von Programmiersprachen mit
zweischichtigen Grammatiken, Dissertation. TUM INFO—7623.
Techn. Univ. München (1976).

Hesse, W.: Formal semantics of programming languages described by
predicative W grammars, TUM-INFO-7728, Techn. Univ. München (1977).

Hoare, C. A. R.: An axiomatic basis for computer programming. Comm.
ACM 12.576-580(1969).

Koster. C. H. A.: Two level grammars in: Compiler construction, an
advanced course, Lecture Notes in Computer Sciene. 146—156, Springer 1974.

Scott. D.. Strachey. C.: Toward a mathematical semantics for computer
languages. Oxford Mono. PRG-6, Oxford Univ. (1972).

Smullyan. R. M.: First-order logic. Springer 1968.

Weyrauch. R.. Milner. R.: Program semantics and correctness in a mechanized
logic in: Proc. First USA-Japan Computer Conference, 384-390 (1972).

Wegner, L. M.: Two level grammars as a language definition system for syntax
and semantics. M. S. thesis. Univ. Karlsruhe (1974).

Ci mi int lali: inai liiiiiuislit л mul (01141111er languages Col. MII. 14 74.

PATHS AND TRACES

E.Knutli and Gy.Győry

Computer and Automation Institute Hungarian Academy ot Sciences
Budapest, Hungary

Abstract

Cyclic concurrent systems can be described and analysed using ’"path expressions'"
introduced by Habermann, Lauer and Campbell. There is another formal device namely the
concept of "traces” (i.e. partial orders induced by an independence relation) introduced by
Mazurkiewicz which enables us to examine systems’ behaviour. This paper is a first step to
find the interconnections of the approaches mentioned and presents characterizations for some
of the systems consisting of cyclic processes.

1. Introduction

When considering binary relations in the sequel we always relate d i f f e r e n t elements,
therefore we are not interested in the fact whether a certain relation is reflexive or not.
Notice this difference.

Let S be a set and R c S X S be a binary relation on it. We postulate s y m m e t r y by

(1) (5, z) e R => (z , s) c R , s . z c S

and a n t i s y m m e t r y by

(2) (s,z) c R => (z . s) f R , s , z < z S

supposing s f z , for there will be no case in consideration with s = z . In this sense we
postulate a p a r t ia l o r d e r as a binary relation being just antisymmetric and transitive.
Remember the following facts: If P is a partial order, there always exists a total order
containing P and

CD P = П T
г e тг

where тр is the set of total orders containing P.

We shall call a relation R to be a p r e c e d e n c e r e la t io n iff its transitive closure R*

is a partial order. Precedence relations are, therefore, antisymmetric, though, this fact
still does not characterize them.

Let R be a precedence relation. Pairs not comparable in R . i.e. the complement of
the relation R n R ~ 1 will be denoted by I (R) and called in d e p e n d e n t u n d e r R.

Relation I (R) is obviously symmetric.

- 32 -

1.1 Mazurkiewicz’s trace concept
Let К be a finite set called the a lp h a b e t . Let I d I’ X V be an arbitrary symmetric

binary relation called the in d e p e n d e n c e or c o n c u r r e n c e . Denote the least equivalence
relation in V * satisfying

(4) (v , v) e / => w ’v v w w v v w

Since every ií,ve V , w ' ,w" e V * T ra c e s are defined as equivalence classes with respect
to

The trace containing a given word w e V* will be denoted by [w]; or symply
[w]. When speaking of traces we abstract from the order of consecutive independent symbols.
A trace could be considered as a partial order among symbol occurrences constituting it.

Usual operations among words, (concatenation, union, iteration) can also be defined
for traces in the natural way allowing us to speak about trace la n g u a g es , regu lar trace

la n g u a g es , etc. For details see Mazurkiewicz [1].

1.2 Simple traces

A s im p le trace is a trace containing at most one occurrence of each symbol of I
In the sequel simple traces will be considered only.

Introduce the following notations. Denote / the restriction of / to a given smaller
domain U с V. Let Г be a simple trace. Denote J T j the set of words constituting T.

Denote o p (T) the set of symbols occurring in it. Denote a->- b the following facts:

i) (a , b) 4 1,

ii) a precedes b in one of the words (therefore in every word) constituting T.

Obviously, -* is a partial order with

(5) ^op(T) ~ ^

furthermore, from (3)

(6) n
where each word is considered as a total ordering relation between the symbols occurring
in it. The partial order -»• could be meant to be the trace T itself. A simple trace could
also be considered equivalent to a c a u sa l n e t in the sense of Petri [2] with flow relation
and concurrence /(*).

1.3 Concurrence in safe nets

Mazurkiewicz [1] has axiomatieally introduced the concept of c o n c u r r e n t sc h e m e

deriving it from the concepts of net theory [3]. In this paper, however, for the intuitive
suggestiveness, we use a less formal way instead. We shall speak about safe nets simply, on
which we shall mean 1-safe Petri-nets.

Let N be a safe net and M be its initial marking. Transitions /, , / , will be called
c o n c u r r e n t iff

i) there is a reachable marking enabling both,
ii) the sets of their input (and therefore their output) places are disjoint

(respectively).

The relation concurrence introduced will then be denoted by C(7V).

Mazurkiewicz [1] has reached the following results:

a) The firing order of concurrent transitions is immaterial and can be chosen
arbitrarily.

b) Firing sequences leading from M Q to any other given marking constitute a
regu lar tra c e language w i t h r e s p e c t to C (N) .

1.4 Representation

The question of constructing nets from given trace languages is answered by Janicki [4]
who has found a criterion whether a regular trace language is representable or not. Our present
paper deals with the characterization of some cases. We also need, however, a proper
representation concept and shall use the following.

Let R be regular language and / be a concurrence over V. Let be a safe net
and M Q, M l be two of its configurations (markings). We say the triplet (Д/,Л/(),Л/1)
re p r e s e n ts the language [/?j/ iff

i) There is a one—to—one mapping between transitions of N and operations
occurring in R ;

ii) C (N) c /, i.e. concurrent transitions correspond to independent operations;
iii) l*]r(/V) = [*]7, i-e. concurrence of the net generates the same language as the

one originally given;
iv) Every firing sequence starting from M Q can be extended to an M () -> M]

sequence i.e. a sequence ending in M x .

v) Every M {) -* Л/, sequence constitutes a word belonging to the language

i l*] /! >
vi) Every word belonging to \ [/?]; | is an M () -* M] sequence.

When considering languages of from R * we always suppose =

- 34 -

2. Adequate marked graphs

Adequacy is used in the sense introduced in Lauer, Shields, Best [5]. A net N is
a d e q u a t e iff it is live—5 and safe. (N is live—5 iff any transition can fire after any previous
firing sequence, see details in Lautenbach [6]).

Let t be simple trace. It follows from Mazurkiewicz’s results that the language t *

is representable by an adequate marked graph (N , M Q, M Q) iff sequences
containing unique occurrences of any symbol of t represent the simple trace t. These
sequences will be called e le m e n ta r y M Q -* words.

2.1 Sets of ’’bipole” cycles

Which we might call ”w e b s ” is the simplest special case of adequate marked graphs and
will be defined as follows. A web is a collection of two—phase cycles having arbitrarily
transitions in common. See e.g. fig. 1.

It follows from Shields’ adequacy theorem [7] that one can always choose an adequate
initial marking for a given unmarked web structure. Obviously, every marked web is
equivalent to a set of path expressions (defined e.g. in [5]) of the form

(7) { path a \ b : end j , a , £*,■. a r b j e V.

Now let VJ be an adequate web. Introduce the following relation. Define a > - b,

a, b e V iff there is cycle in W containing them in the way shown in fig. 2.

a

О '

Relation is a precedence relation, that is. the transitive closure >- is a partial
order since in the contrary case there should exist a pair г. г such that r > ' i and
г V- * V, implying a circle through v and г containing no marker at all. This is impossible
because of the well known liveness theorem for marked graphs.

Obviously, a > - ¥ b implies that a must precede b in every' elementary A/() -* Л/
word. Moreover. >- is the only condition of firability. i.e. transition b is firable iff
it is not fired yet but every other transition a j preceding b has already fired. In other
words, elementary -*■ M () sequences represent a simple trace, namely |.v|(.(|(,(where the

• _ ̂ *
word .«г as a total order is an arbitrary extension of the partial order > . Therefore.
adequate webs always represent languages of the form (*. where r is a simple trace.

Conversely, if t is a simple trace i.e. t = [5]. under given / then we can always
construct a web representing / in the following straightforward way. Build a cycle
according to fig. 2. whenever a letter a precedes an other letter b in the word s and
.V and b are not independent. The resulting whole net is an adequate web representing t M.

We show a simple example. Let Г = \ a . b . c . d \ . l ~ \ (a . c) A b . d) A u . d) \ and
5 = a b e d . Now t = js]/ consists of the single word a b e d for it contains no independent
consecutive letters. The language however, contains words having independent
consecutive letters and can be illustrated by an infinite precedence graph shown in fig. 3.

a

d

fig. 3.

The corresponding web expresses the same structure in the closed net shown in fig. 4.

- 36 -

у и

Ъ
А

fig. 4.

Statements discussed so far can now be comprised in the following:

Theorem

i) For every web one can always give an adequate initial marking;

li) L very web represents an iteration of a partial order that is a language of form
t* where t is a simple trace;

nil Iteration of a simple trace can always be represented by an adequate web;

iv) Any adequate set of path expressions of the form path a.; end; a(. Ф b p

/ = 1 ,2 n. represents an iteration of a simple trace.

2.2 Relation between two kinds of independence

Having a set of path expressions j path a .\ b j end j or, equivalently, considering the
precedence relation >- only, it is not obvious how the concurrence (independence)
determined by the corresponding net (web) could be given. Though, it can easily be shown
that

, x > ’ ' I ' l i ,ir> ! "!/,> ,

(where /() is defined in 1.). but C (W) is usually different from /(>—). We can state
only

0>) ('(If) /(>).

We shall show now. Iww the concurrence C (W) can be derived from the characterizing
precedence relation >-•.

Define a precedence relation > - to be complete iff

(10) a >~" h. h >-- с . a >- c =» a >— b. b >- c

- 39 -

i f f a and b o c c u r in su b e x p r e ss io n s sep arated b y a c o m m a . T h is re la tio n exp resses

exclusion i.e . b o th o p e r a tio n s can n ever o c c u r to g e th e r in an e x e c u t io n o f p. (O p era tio n s

c and d are e x c lu s iv e in fig . 6 .)

F o r a m o m e n t w e m igh t c o n je c tu r e th a t a G E —n et is a d e q u a te w h e n th ere ex ist tw o

d isjo in t re la tio n s > - and ** o v er op(E) p ro jec tib le to all th e r e la tio n s > - and +-*• .

U n fo r tu n a te ly , th is is n o t th e case . F ig . 7 . sh o w s a n et w h ic h is a d eq u a te th o u g h there e x is ts

n o d isjo in t p ro jec tib le re la tio n > - and -*-► fo r a >— b b u t a «-► b.
p 1 p 2

fig. 7 .

M oreover, it is p o ss ib le th a t a n e t is n o t ad eq u a te in sp ite o f th e d is jo in t p r o je c tib ility ,

see fig . 8 .

P1 = p a th (a; e), (b;f) end

p 2 = p a th (c; e), (d;f) end

F ig . 8 .

- 40 -

H ere tr a n s it io n a and d ca n fire and th en th e n e t is in a d ead m ark in g . We th in k ,

h o w ev er , p h e n o m e n a seen in fig u res 7 . and 8 . are th e k e y s and a liv e n e ss th eo rem can be

based o n th e p r o p e r t ie s o f r e la t io n s > - and .

T h e se c o n d p ro b lem w e w o u ld c o n s id e r very im p o r ta n t is p re se n tin g trace lan gu ages

rep resen tab le b y a d eq u a te G E —p a th s . T h is p rob lem se e m s n o t very ea sy e ith er . We h ave,

h o w e v e r , a s im p le resu lt tra n sfo rm in g G E —p aths in to a norm al fo rm w h ic h is th e e x te n s io n

o f th eo rem 2. 3 . iii, and w h ich m a y lead to th e d esired language r e p r e se n ta tio n later.

C o n sid er a n e t N derived fr o m a set o f G E - p a t h s u sin g tra n sfo r m a tio n rules

ex p la in ed in 2 . 2 , o f re feren ce [5] . W e in tr o d u c e a n ew n e t -/Vnorm in th e fo llo w in g w ay:

i) L e t op(iV norm) = o p (N) ; •

ii) F o r ev ery p lace o f N fo r m a su b n et in 7Vnorm a cco rd in g to fig . 9 .

fig. 9 .

iii) M ark p x i f p is u n m a r k e d o th erw ise m ark p 2.

A s an e x a m p le fig . 10. sh o w s th e n o rm a lized n e t co rresp o n d in g t o th e n et o f fig . 8 .

- 41

fig. 10.

O b v io u s ly , A 'norm is a lw a y s exp ressib le b y a se t o f p aths o f form

path (a . , . . . , a); (b. , . . . , b.) end
— 'l lk{ 'l ln.

Our last th e o r e m sta tes th a t a n y set o f G E —p a th s can be tra n sfo rm ed in to th e a b o v e

fo r m , th at is:

Theorem

L anguages rep resen ted b y N and N norm are th e sam e.

«

- 42

R eferen ces

[1] M azu rk iew icz, A .: C o n cu rren t p rogram sch em es an d th e ir in terp reta tio n s , A arh u s

W orkshop o n V e r if ic a t io n o f P aralle l P rocesses, J u n e 1 9 7 7 .

[2] P etr i, C. A .: N ic h ts e q u e n t ie l le P r o z e sse , G M D —IS F , In tern a l R ep ort 7 6 —6 , B o n n 1 9 7 6 .

[3] P etr i, C. A .: C o n c e p t s o f net th e o r y , M FCS 73 P r o c e e d in g s ,

H igh Tatras, 1 3 7 - 1 4 6 , 1973 .

[4] J an ick i, R.: S y n t h e s is o f co n cu rren t sc h em es, M FC S 7 8 P roceed in gs,

L ectu re N o te s in C o m p u te r S c ie n c e 6 4 . 2 9 8 —3 0 8 , 1 9 7 8 .

[5] L au er, P. E ., S h ie ld s , M . W ., B est, E .: O n th e d es ig n a n d c e r tifica tio n o f a sy n c h r o n o u s

sy ste m s p r o c e sse s , F in a l rep ort, A S M /4 5 , U n iv ers ity o f N ew ca stle u p o n T y n e , 1 9 7 8 .

[6] L au ten b ach , К .: L iv e n e s s in P etri n e t s , G M D -I S F , In tern a l R ep ort, B o n n 1 9 7 5 .

[7] S h ie ld s , M. W.: C la ss o f ad eq u ate p a th program s, A S M /4 2 ,

U n iversity o f N e w c a s t le u p o n T y n e , 1 9 7 7 .

В. LINGUISTICS

Сотри tat ionul linguistics ami Computer 1.апциацсх loi. МП. 1Ч7Ч.

HOW T O D O T H IN G S WITH M O DEL T H E O R E T IC S E M A N T IC S

T. Gergely and A. Szabolcsi
Research Institute for Applied

Computer Science

Budapest, Hungary

Institute o f Linguistics of the

Hungarian Academy of Sciences

Budapest. Hungary

1. T h e a im s o f the paper

In recent decades our way of putting questions about natural language has reached a stage
at which the application of nonnumerical i.e. qualitative mathematics is not merely possible
but also appears to be of heuristic value. The two milestones seem to have been the
introduction of the theory of formal languages into the study of natural language syntax, a
merit of N. Chomsky (see e.g. [1]) and the introduction of model theory into the study of
natural language semantics, most influentially by the works of R. Montague [2]. Here we will
only be concerned with this latter.

In spite of the growing interest in m o d e l th e o r e tic s e m a n tic s (M T S) the penetration of
those ideas into linguistic thinking does not proceed very smoothly. There have been several
serious objections to MTS, tantamount to questioning its relevance for natural language. It is
often difficult to tell whether those objections concern MTS as such or only particular uses
of it; nevertheless, let us list some of the more general—looking ones:

(i) MTS overemphasizes the descriptive aspect of language, taking no notice of the
communicative one,

(ii) meaning (in particular, word meaning) is a lot subtler than MTS believes,

(iii) MTS makes meanings relative to an arbitrary model and thus loses contact with the
actual reality people talk about,

(iv) MTS has no psychological reality,

(v) MTS is primarily concerned with truth, which is irrelevant for natural language,

(vi) MTS is but an exercise in translation (of texts of the object language into some
metalanguage) and so on.

It seems that these claims can take the form of objections because MTS is conceived of as
a mere d e v ic e , instead of being a m e th o d , and the possibility for this is provided by its
introduction in the form "My model of language is such and such” - that is. in a purely
mathematical form, without telling from which respects it is intended to be a model of
language and from which it is not. Therefore, when wishing to do away with those objections,
we first have to make clear what questions MTS puts and can possibly answer about language.
This will be the task of Section 3. Such a specification can hardly be fully satisfactory on
its own, however: it also needs to be shown how other questions, which are outside ot the
scope of canonized MTS in view of Section 3 and which one would still like to put can be

- 44 -

handled within the same methodological paradigm. The rest of the paper will be concerned with
with some of these.

In other words, in this paper we do not aim at creating brandnew' notions. Our aim is
to p la c c M T S in a b r o a d e r se ttin g , that is. to provide a coherent framework in which a
number of current notions may receive their proper places. This is also a precondition to being
able to decide how to improve the models we have available at present.

2. Methodology

Our task can only be accomplished if we make our backround assumptions as explicit as
possible. This section is devoted to such preliminaries.

2.1 Language is an objectively existing abstract system, which is to be distinguished from
its realizations and is to be studied as something self- contained. Being an abstract system,
however, language can only be approached through its realizations. The results of investigation
will thus to a great extent depend on what we regard as its relevant realizations.

Apart from the study of mere texts, the question of realization usually arises when one
wishes to complete the notorious sentence "Language is a means of . . .". In general people
tend to agree that models of language must somehow account for the fact the language can
be and is used in cognition and communication. This is probably so because we have a
functional view of language and a certain kind of language user in mind, which can in most
general terms be called an in te llig e n t s y s te m (see e.g. [3]). The least that this implies is that
whatever one states about language must be compatible with whatever one happens to know
about intelligent systems. We will actually use a stronger assumption, namely, that it is
heuristically useful to look at language as functioning in some intelligent system (IS).
Therefore a fundamental characteristics of the method to be followed in this paper is
ac ti v i t y - o r ie n ta t io n .

The second assumption is that seeking a unique answer to the " . . . a means of . . ."
question is not fruitful. There are several language using activities in which different,
theoretically important aspects of language can be most readily studied. We shall first of all
correlate such aspects with particular functions of language. Those functions appear in
various activities, sometimes quite mixed up, sometimes rather clearly. Therefore we need to
select such activities in which given functions of language feature most independently and
perspicuously, in other words, a s im p le s t e le m e n ta r y a c t iv i ty n ecessa ry f o r rea liz in g so m e

th e o re tic a lly im p o r ta n t fu n ction . We then form a model of that activity and study the model
in order to see what it implies for language. The last step is to abstract from peculiarities of
the activity and concentrate on language.

This assumption also implies that language is to be handled with a chain, or hierarchy, of
models, rather than one single model.

2.2 Before turning to concrete problems, it is in order to dwell on the way of modelling
those activities a bit longer. Having selected an elementary activity associated with a certain
function of language, we consider a system realizing that function and an object at which
the system’s activity is directed, or which directly influences that activity. We refer to this
object as the environment of the system in carrying out that activity. In this way, the function
under consideration is made re la tiv e to the relation between the system and its environment.
Moreover, we describe this relative situation from the position of an id e a l e x te r n a l o b se rv e r ,

thus introducing a f u r th e r le v e l o f re la tiv iza tio n . Let us spell out the observer's function more
in detail.

(i) When studying something one always expresses one's basic assumptions about it by
placing oneself into the position of an id e a l observer. For instance, one says "Let's
assume a system which is engaded in cognition”. This does not mean that in
empirical cases one would be able to unambiguously decide whether it is or it is not.
However, this not being the point in the investigation, one may well assume that one
possesses the sufficient knowledge to be able to tell. Furthermore, we assume along
these lines that the observer’s knowledge about the system, the environment, and
their relation is sufficient for this models to be a d e q u a te . Thus the nature of
idealization we employ can be in each case expressed in terms of the ideal observer’s
knowledge about the sample situation.

(ii) We also assume that the observer possesses a (m e t a —) language suitable for forming
models of the sample situation. In order to keep the properties of the object
(language) and the metalanguage strictly apart, we must assume that the observer is
e x te rn a l to the sample situation.

(iii) Points (i) and (ii) also imply that models are not "absolute” - they are re la tiv e to
the observer, both to this intentions and his limitations. It seems therefore
methodologically useful to keep his position explicit throughout the discussion. We
return to specific advantages of this at the end of Section 3.

3. Language in abstracto

3.1 The first question to put is: w h a t is language in th e m o s t a b s tra c t se n se a n d w h a t are

i ts b a sic c o m p o n e n ts . (That is, we have an explication of syntax and semantics in mind.)
Furthermore, we believe that this question is identical to the one model theory puts and
therefore the nature of its answer is dependent on the conditions under which this question
can be approached.

Can we take c o m m u n ic a tio n as the activity most representative of this problem? It is true
that by studying communication linguists have gained revealing insights into the nature of
language use but the aims are different in that case. As to our problem, we have to say that
communication is neither simple nor transparent enough. It certainly has to do with semantics
insofar as people "convey meanings” when trying to make themselves understood but in the

46 -

case of communication the main thing is not merely what a text means but also how that
meaning can be made available to the partner, also relative to the particular goals the
communicative act is directed at. In other words, communication in the normal sense involves
a need of " a d a p ta tio n '' to th e p a r tn e r , which is certainly irrelevant to our problem. The need
of adaptation could be avoided if we assumed the two systems to be perfectly identical
(with respect to both their "assumptions about the universe of the discourse” and their
’’means of expression”); this would make the situation more transparent but not yet simple.
The reason is that it would be doubling a single system, rather than taking two systems, and
thus we would be left with the question of what it means for a system to have ’’assumptions”
and "means of expression". All this means that we ought to reduce communication to a
trivial case and then in fact abstract from everything that makes it communication proper.

Therefore we suggest to abandon communication because of the interaction of at least two
systems and propose to study the texts themselves before studying their transmission. This
indicates that we must first investigate language as possessed by a single system and used for
cognition. We take that the c o g n itiv e a c t i v i t y is the one in which texts are primarily
produced.1 Moreover, we will approach cognition from an angle which epistemological,
rather than psychological.

3.2 In sum, we will consider an e le m e n ta r y c o g n it iv e a c t i v i t y as g o in g o n b e tw e e n a s y s te m

a n d i ts en v iro n m e n t, a s m o d e lle d b y an id e a l e x te rn a l o b se rv e r . By an elementary cognitive
activity we mean that the system, possessing some language L, describes the objects in the
environment. At the moment we abstract from the cognitive process itself, that is, from
the possible experiments the system has to carry out, and from the goals of the system,
from the precise knowledge obtained and its representation; furthermore, we also abstract
from the internal organization of the system (whether it be a human or a machine and
anything else). Our mere concern is the outcome of this activity, that is, descriptive texts and
their relation to the environment.

Our dramatis personae will thus be a system S, the system’s environment E, and an ideal
external observer O. (We will pronominalize the system by ’’she” and the observer by ”he”,
which has no significance aside from making the text more readable.)

To model this situation is a task of O; he forms models of S, of E, and of the S — E
relation. In accordance with what we said above, as far as S is concerned, О only models
her texts. A further important feature of O’s modelling activity is that he models E
independently of S. Note why it is so important: cognition is only possible if one distinguishes
oneself from the object of one’s reflections. In the present case we need not care about how
S does so; nevertheless, this requirement is satisfied at O's modelling level.

1 This is not meant to exclude texts that are usually only used in conversation (e.g. questions, commands, performatives)
from the scope of our discussion. It is the range of points of view of modelling rather than the range of texts that is
restricted (see e.g. [4], [5]).

- 47 -

Figure 1. Language in abstracto

In order that О should be able to form the intended models, he must possess the following
kinds of knowledge about the sample situation (and О being an ideal observer, we assume
he really does):

(1) О knows the level at which S may perceive and describe her environment; in
other words, he knows S’s sensitivity.

(2) О knows those fundamental aspects of E that S may describe.

(1)—(2) together ensure that О models E adequately with respect to S. Notice however
that in spite of this adequacy, we cannot say that О established ”S’s model of E”. At
present we are not interested in how the system represents her environment (those questions
will be tackled in Section 4) and this is not a matter of chance: for speaking about S’s
representation we first have to know what E itself is like (which, in view of the assumptions
in 2.2 means that we have to speak about O’s model of E). Without anticipating the 2

2 T he sensitivity o f S is a c tu ally m anifest in th e sy n tax o f th e language. F o r instance, le t L j be th e language o f c a teg o ry

th e o ry , w hich handles o b je c ts an d m orphism s, w ith o u t specifying w h a t an o b jec t exactly is. S u ch an o b jec t m ay be a

topo log ical space o r an a lgebra o r a set e tc . I f now L j is th e language o f topo logy , o r a lgebra, o r se t th eo ry , th e n th e

sensitiv ity corresponding to L j is "g rea te r” th a n th a t correspond ing to L j since in L j o n e a lso tak es th e in te rnal

s tru c tu res o f L j ob jec ts in to acco u n t.

- 48 -

discussion of representation, however, we can already state a point according to which Model
(E) cannot coincide with ”S ’s model of E ” :

(3) О knows that S is finite whereas E is both infinite and infinitely complex.

If we take infinity just in a spatial sense, we can say that, as a consequence of (3), S may
never know in which part o f E she is in. By infinite complexity we mean that E can be
described at infinitely many different levels (say, at a ’’molecular” level, at a ’’meteorological”
level, at a ’’touristic spectacles” level etc.), and having her fixed level of sensitivity, S may
only grasp it at a finite number of levels. Therefore whenever S believes to be talking about
some particular phenomenon, she is actually talking about all those possible ones that are
identical from her respect but differ from each other in infinitely many other respects. With
respect to the S — E relation this means that

(4) О knows that S ’s actual environment is accidental. The knowledge S may obtain
at each stage o f her cognition is compatible with infinitely many possible environments
(differing in both ’’extension” and ’’depth”). The S — E relation is therefore
uncertain: the texts of S always correspond to infinitely many environments, rather
than a unique one.

On the basis of (1) — (4) О forms the following models:
T h e m o d e l o f S will ju st be a system producing texts (more precisely, the material bodies of
texts, whatever they should be). In case О happens to be a mathematician, Model (S) will
be a formal grammar capable of generating the texts of the language.

T h e m o d e l o f E is a metalinguistic description of the environment, adequate with S’s
sensitivity. For purely theoretical purposes, О only has to take into account that S has
some fixed though arbitrary sensitivity, determining the possible character of the objects and
phenomena of E S may describe. (When modelling some concrete language, S’s sensitivity
is also fixed though no longer arbitrary.) In case О happens to be a mathematician, Model
(E) will be a mathematical object. Because of the uncertainty of the S — E relation, Model
(E) is a class of models o f infinitely many possible environments.

*

T h e m o d e l o f th e S — E r e la tio n is some correspondance between elements of texts and
things in the world—models. In case О happens to be a mathematician, Model (S — E)
can be a set of relations o r functions.

We have reached the point where we may define language as it appears at this level of
abstraction. B y an a b s t r a c t language L A w e m ean a tr ip le {M o d e l (S), M o d e l (E) ,

M o d e l (S — E)). Furthermore, we call Model (S) the syntax of LA, and Model (E) and
Model (S — E) together the semantics of LA . All these models are formed by an ideal external
observer and are described in his own language.

3.3 Let us now spell out some of the consequences of this way of modelling language, which
we also claim to be the very level of idealization that MTS employs.

49 -

(a) MTS takes the descriptive function of language as its point of departure but not out of
shere stubbornness. It does so because this is how the question as to the basic components
of language can be answered most simply.

(b) MTS does not and need not have psychological reality because it has nothing to do
with the representation of L in the system.

(c) The fact that MTS assigns a class of environment—models to a language (or, in other
words, refers to an arbitrary model of it) is not a mere consequence of the mathematical
apparatus MTS uses: it reflects the epistemological properties of the modelled situation, that
is, the necessary uncertainty of the S — E relation.

(d) As a consequence of (b) and (c), word meanings proper are not objects of MTS; MTS
may only take cognizance of their identity or non—identity. For more details, see Section 4
on representation.

(e) As to the objection that MTS is but a translation and thus leads to infinite regression.
This argument might be assimilated to the following curious rephrasal of Gödel’s theorem,
which may bring out what is false in it: ’’The notion of consistency is useless, since you
cannot prove that calculuSj is consistent, within calculuSj. You have to use a metalanguage
with calculus2, whose consistency can only be proved within calculus3. . . so you never can
tell whether calculuSj is consistent in an absolute sense”. In other words, the requirement
that you should be able to prove that your metalinguistic claim is consistent is equivalent to
requiring that you should model your object and your own modelling activity simoultaneously.
This absurdity is excluded by making the role of the observer explicit, i.e. by making the
definition of L. relative to an external observer.A

(f) If already speaking about calculi, we may note that model theoretic semantics is not
just an alternative to ’’calculus-semantics” , since the question whether a calculus is sound
and/or complete cannot be answered without telling what its intended class of models is.

(g) Note that we have not made any specific claim as to what kind of a mathematical
apparatus is to be used, e.g. whether Model (E) is to contain classical relational structures or
Kripke—models or intensional models or whatever else. That kind of choice depends on both
the nature of the language O’s models need to be adequate with and on O ’s own inventory of
modelling tools. Here we may also note that truth only features in MTS as a metalinguistic
device; to say that is true in a model m is but a mathematically comfortable way of
expressing that a certain text (a sentence #) corresponds to the situation modelled in m

(cf. the model of the S — E relation).

In accordance with the assumption in 2.1, Ьд is but one level in the hierarchy of
idealizations one has to use when approaching language in its totality. Now we turn to the
question of how a language can be represented in the system itself; its explication will
hopefully also make the significance of LA —idealizations clearer.

«

- 50 -

4. Language represented in an abstract system

4.1 We called language as defined as (syntax, semantics) an abstract language since when studying
the cognitive situation we abstract from all properties of the system, except for one — we
assumed S to have an arbitrary fixed sensitivity. (Notice though that even this was only made
use of in modelling E, and not in modelling S herself.) LA is not a system’s language in
the sense that a system might have it or use it; it is not even a language that systems might
partially possess. LA is an abstract construct, making the basic components of all such
languages explicit. From a methodological point of view, Ьд serves as a basis for
investigating languages, used by systems, from the angle of their cognitive function.

Assuming that we shall once wish to construct some intelligent system IS we also have to
explain what it means for a system to possess a language. For this, it is no longer enough to
know what the basic components of language are — we also need to know how they are
represented in a system. As a first step, we shall consider an abstract intelligent system and
study the abilities necessary for representing and using some language in rather general terms.
The concept of language to be formed on this basis is already more concrete than of LA ;
we define a general IS—language, one corresponding to the representation of abstract language
in an abstract system. For short, we call it a r e p r e s e n ta tio n lan gu age L R .

As we continue to study the cognitive function, the sample situation remains the same
as we envisaged in 3.2. Nevertheless, this level being less abstract, the observer will be
assumed to have some further knowledge about the situation. (Keeping in mind the
synthesis problem we might alternatively think of this new situation as one in which someone,
having the position of an external observer, introduces some language into an intelligent
system: in that case instead of telling what О knows about S, we could tell what О grants
to S.)

Our study being centered around semantics, let us assume S to have some text—generating
device already (syntax). In order that S may use a language, however, she also needs
something analogous to the semantics of LA . The reason why we may only speak of an
a n a lo g u e of semantics here is that semantics, by definition, contains an infinite class of
models of E, formed and described by the observer. S might only possess such a thing
if she could treat herself and her own environment from the position of an external
observer; an assumption which would only complicate the picture but would by no means
eliminate the problems we have to cope with if we do not make it.

Let us consider О’s knowledge about the situation. In 3.2 О already recognized that S
describes E at a fixed level of sensitivity. Now, coming closer to S herself, О postulates
that S has some kind of a ’’p e r c e p to r ” , which determines the nature of her sensitivity
(and through which she can receive influences from E — a precondition to internalizing it).
Through this perceptor S gets p ic tu r e s about her environment (the names ’’perceptor” and
’’picture” are intended to be most neutral as we continue to abstract from the specific
organization of S; ’’pictures” can be thought of as S—specific changes in her internal

9

51

structure, resulting from environmental influences and not vanishing with the moment but
remaining stable in S). Pictures are assumed to be objectivistic in the sense that they are
adequate representations of E—events, from some fixed point of view of adequacy.
Nevertheless, pictures cannot be said to be ”S's models of E” either. By a model we prefer
to mean a result of some ’’software abstraction” (i.e. goal-oriented and deliberate). It is true
that S’s pictures are ’’abstract” — e.g. if she has a perceptor through which she can only
perceive heat, then her pictures will be a ’’heat—abstraction” of her environment but this is
not a model because this is a result of ’’hardware abstraction” (i.e. S cannot help abstracting
from everything but heat). As a consequence of these, S cannot help identifying her pictures
with real E—phenomena either (i.e. she does not treat her pictures as her own states).

In sum, the set of pictures S gets about her environment constitutes her internal
representation of that environment.

Let us now see O’s knowledge about the e n v iro n m e n t. At the level of LA the observer
did not need to care much about what the actual environment of S was like since he knew
it to be accidental. At the representation level, however, this question also becomes crucial
as S’s actual environment determines her possible experiences and thus the nature of her
pictures; we assume that О knows what S’s actual environment is like. (Parallelly with saying
that S has some arbitrary fixed sensitivity we can say that at this level О has to take into
account some arbitrary fixed member of the class of models of E.) We call S’s actual
environment E — ACT. It is obvious that the objective relationship between pictures and real
phenonema is impossible to determine at the level of the system (since her fixed sensitivity
and her fixed E — ACT make her irrevocably subjective), it is only possible to determine at
the observer’s level.

The set of (lasting) pictures in S constitute a s y s t e m —d e p e n d e n t r e p r e s e n ta tio n o f s o m e

E - A C T .

The next thing for О to observe is that there exists a c o n n e c tio n between S’s pictures
and texts. (Some of the texts must be directly related to pictures whereas others only need
to be reducible to them by operations.) This connection is granted to S from the outside
so to say, by ostentic (deictic) definition. This assumption serves to emphasize the hardware
character of the language represented (i.e. that S has no additional language to talk about
this connection). As for the case when S has to apply this language to further E - ACTs,
see 4.3.

Having specified O’s knowledge about the sample situation, we can tell how he models it.

- 52 -

Fig. 2. Representation language

In the observer’s metalanguage names of S’s syntactic units and descriptions o f S’s
pictures from pairs. These pairs count as definitions, definiendum being a syntactic unit and
definiens being the description of a picture; their pairing models the connection between
the respective items in S. О calls his own description of a picture the m e a n in g of the syntactic
unit it is assigned to. Notice the sharp difference between the statuses of pictures and meanings:
in S there are only pictures — meanings exclusively belong to O’s metalevel.

Fixing the terms we shall use in connection with LR : a re p r e s e n ta tio n la n gu age is a p a ir

(sy n ta x , in te r p r e ta tio n) , w h e r e in te r p r e ta t io n c o n s is ts o f a s e t o f m ean in gs p lu s a m e a n in g -

a ss ig n m en t.

4.2 Let us now add a few comments on LR .

(a) As opposed to LA, the semantics component of which contains a class of models of
E, Lr contains no model of any environment whatsoever. Its interpretation component
contains meanings, that is, a description of some system—dependent representation of some
E - ACT.

(b) Semantics is objective (i.e. relative merely to the observer) whereas interpretation
is subjective (i.e. relative to both observer and system). A corollary of this is that to an LA
there correspond infinitely many LR ’s, in accordance with the possible subjective ways of
representing some part of the environment.

- 53 -

(c) Lr is the level where w o r d - m e a n in g s can be treated in the usual linguistic fashion,
that is, by analysing them in terms of oppositions, features etc. In other words, ’’w ord-
semantics” as opposed to ’’sentence-semantics” (as these terms are used in linguistic jargon)
is a representation problem. The claim that meanings belong to the observer’s metalevel
does not contradict this: remember that in usual word—semantics one does not investigate
what is actually in ’’people’s heads”, either. Furthermore, the fact that we treated the language
represented on a purely hardware level (i.e. we did not assume the system to be able to talk
about her pictures) makes no big difference in this respect. On the one hand, in the course of
such an investigation one actually always ignores the metalinguistic abilities of the language-
user. On the other hand, whatever metalinguistic abilities one may attribute to a system,
those may not have the whole of her representation language in their scope: any system must
have a purely hardware level language, analyzable for some external observer only. (For a
treatment of word—meanings similar to ours, see Pavilionis [6].)

(d) The general treatment of the LA — LR relation would also require us to model the
relationship between pictures and E — ACT and, further, to model the relationship between
E — ACT and E. These tasks are outside of the scope of the present paper.

4.3 Let us see what happens if the sample situation remains the same as in 4.1 with the
exception that S is assumed to face more than one fixed though arbitrary E — ACT. More
exactly, we assume that in connection with one and the same syntactic unit S may form
various pictures on the basis of several E — ACTs and she may also link them together. As
far as this linking is concerned, there are basically two possibilities. The first possibility,
which is actually very close to the situation sketched in 4.1 is that these pictures function
as elements belonging to different LR ’s, with the possible variation that S may also be
granted further quasi—metalinguistic devices for identifying the syntactic units related to
those pictures. The LR —model of this situation will in turn also contain a model of this
quasimetalinguistic connection and a model of the relations between pictures assigned to the
same syntactic unit. A more interesting second possibility is that S does not merely link
those pictures together in the manner described above but she also forms some kind of a
secondary picture out of them (where by ’forms’ we may either mean some goal-governed
software abstraction or just some hardware abstraction in the case of which those secondary
pictures are actually formed by the teacher—observer and are built into the system). Such
secondary pictures are conceived of as concepts that comprise the features common to all
(primary pictures of) real phenomena that are associated with the same syntactic unit. The
sharp difference between this possibility and the former one consists in the fact that in case
S is faced with an n + 1th E - ACT, in the first case she has to wait as long as О also
teaches her to handle this E — ACT as well, whereas in the second case she may apply the
syntactic units she already has to the pictures she gets about this new E — ACT, using the
respective concept as a mediating device. In other words, although her concepts are formed
on the basis of some designated E — ACTs, these concepts are further applicable to
brand-new ones as well, which grants a great amount of independence to S (a manipulated

- 54 -

kind of independence, though). We may also note that concepts (secondary pictures) are
already quite similar to what we would like natural linguistic meaning to be models of.

Both possibilities agree in that they have important consequences for the 1_д —level.
So-called classical (that is, purely extensional) models of E seem to be intuitively adequate
for the more primitive situation which we described in 4.1, whereas the more complex cases
of representation are matched by intensional models of E at the Ьд —level. Intensional
models (or, non-classical models in general) differ from classical ones in that they regard
different possible worlds or things occuring in different possible worlds as alternatives to one
another, in other words, as possible realizations of one and the same thing. In this sense
intensions are LA — level counterparts to LR — level conceptual meanings: meanings specify
w h y the system applies the same syntactic unit to different things she encounters, whereas
intensions specify h o w she would have to use them in all possible situations. The fact that
S’s concepts are formed on the basis of a subclass of all possible E —ACTs can be reflected
at the La — level by the use of meaning postulates as employed by Montague: meaning
postulates being non-logical axioms, they can be thought of as restricting the class of all
possible worlds to the subclass which conforms to S’s initial E — ACTs.

In sum, intensions and (conceptual) meanings belong to two radically different levels of
idealization but still closely correspond to each other, which justifies the use of intensions
as reflections of meanings at the Ьд — level. The radical difference between them, however,
makes it clear why intensional semantics may not be expected to account for traditional
questions arising in connection with word—meanings: the meanings that are analysable in
terms of oppositions etc. are par excellence L R — level units (i.e. models of S’s pictures).

5 . G o a ls and c o g n it io n

Very briefly, we may sketch a third level of abstraction in this paradigm, in which we
also take the existence of nonlinguistic components of S into account. We may say that
the functioning of those non-linguistic components can be at an abstract level characterized
with a set of goals (e.g. that S wants to survive, at least). In order for S to achieve those
goals she must have a perceptor adequate with her goals (e.g. if she has to be afraid of
microbes, she must be able to perceive them so that she can avoid them). Therefore the
kind of Lr she has is a function of her goals. Obviously, this implies that goals are
granted to S at a hardware level, too. In the case of an intelligent system proper (e.g. if
S is an adaptive system) we assume that in addition to hardware—goals she can set a
number of further goals in the course of her functioning, which also necessitates that she
should be able to alter her sensitivity and LR . This problem, however, belongs to the scope
of the theory of intelligent systems rather than to the scope of linguistics, and since at
present we focus on questions strictly connected with language we do not elaborate at this
point here.

Notice that in Sections 3, 4 and 5 we did not talk about three different systems: the
system remained the same but was viewed at different levels of abstraction

Even if one does not wish to go into linguistic and mathematical details it is apparent that
at least two large sets of problems are missing from the above treatment: (i) the application
of the results of Sections 3 and 4 to more complex cases, approximating the complexity of
natural language, and (ii) the treatment of communication in the same methodological
paradigm. We are convinced that (i) and (ii) do belong here; nevertheless, they must be
objects for futher research.

References

1 1] Chomsky. N.: Syntactic Structures. Mouton. 1957.

|2 | Thomason, R. (ed.): Formal Philosophy — Selected Papers of Richard Montague.
Yale University Press, 1974.

[3] Bratko, Л.А. and T. Gergely: Definition of intelligent system, Soviet Automatic Control
№ 3, 1977.

* ✓

[4] T. Gergely and L. Ury: A theory of interactive programming within the frame of
first order classical logic (to appear).

[5J A. Szabolcsi: Model theoretic semantics of performatives, in Kiefer, F. (ed.)
Hungarian Contributions to General Linguistics. John Benjamins. Amsterdam. 1979.

|6 | Pavilionis. R.: On "the global" conception of meaning, Kalbotyra XXVI 3, pp. 27-35.
Vilnius, 1975.

Computational Unguistics atu! Computer Unguagrs l oi. MII. / 9 7 У.

TRANSFORMATIONS OF GENERATIVE GRAMMAR:
THE RISE OF TRACE THEORY

I. Kenesei

Attila József University

Szeged, Hungary

Abstract

Empirical arguments againts the ’standard theory’ of generative grammar
led to its revision in the form of the ’extended standard theory’ (EST). Owing to
its impracticability, EST has now been replaced by the ’revised extended standard theory’ .
Trace theory, as this latest offspring of generative grammar has come to be called, revived
the idea of semantic interpretation in one block — with near-surface structures as input. This
paper examines the sources of the revisions as well as their effect on the syntactic
components of the various models, and discusses the claims concerning crucial issues such as
the power of grammars, the autonomy of syntax and restrictions on rules versus universality.
Since it draws heavily on the available literature, the paper makes no pretence to originality
in a number of problems touched upon.

1. The first cracks

1.1 When the uniformity of the principles of linguistic description of Chomsky’s A sp e c ts o f

th e T h e o r y o f S y n t a x was replaced by the ’mixed’ grammar of the extended standard
theory (EST), it was the result of the effects of several interrelated findings. In the first
place, some of the basic ideas of the earlier version proved to be untenable, as anticipated
already in A s p e c t s : ’’this claim [that the semantic interpretation depends only on deep
structure] seems to me somewhat too strong [. . .]. It seems clear that the order of
’ quantifiers’ in surface structures sometimes plays a role in semantic interpretation”
(Chomsky 1965:224). Secondly, the idea of the semantic interpretation of deep structures
in one block ensued from Katz and Postal’s thesis which stated that transformations do not
change meaning. At the time it was thought to be an interesting assumption but was
subsequently found to be too strong in the light of empirical evidence. Thirdly, there was a
growing concern in certain formal properties of both phrase structure and transformational
rules. Not long after the A s p e c t s model had won popularity it was shown, most of all by
Peters and Ritchie (1969, 1971, 1973), that the unrestricted nature of the apparatus made
the grammar equivalent to a Turing-machine. ’’That is to say, any language that can be
defined by a Turing—machine or an unrestricted rewriting system can be defined by a
transformational grammar and vice versa. This result is somewhat disconcerting. It shows
that claiming that transformational theory provides a theory of possible natural languages
is making no stronger claim than that natural languages are systems of some sort."
(Bach 1971:4) Note that there were already a number of conditions of various types on
rules of grammar in A s p e c t s without, however, any effect upon restricting the power of the

- 5 8 -

grammar. Furthermore, it is important to see that these conditions notwithstanding no formal
differences were found between natural languages and other systems generally believed to be
much more powerful. For those who accept the doctrine of ’linguistics within psychology’
this was tantamount to having uncovered nothing specific in the structure of the mind,
whereas for those who disbelieve it, the theory must inevitably have appeared as formally
uninteresting or even vacuous. Serious work therefore began to overcome these difficulties.
Finally, the dispute between the proponents of generative semantics’ and those of the
’standard theory’ on the autonomy of syntax had a catalytic effect on Chomsky’s and his

collaborators’ attempts at refurbishing the old model.

1.2 Before beginning to outline what the ’extended standard theory’ proclaimed to have
achieved, let us take a closer look at the issues listed above.

Obviously, the first two points are interrelated in a fashion that throws doubt upon
the significance of one or the other. For the question whether transformations preserve or
change meaning is the same question as whether deep structures alone determine meaning
(i.e. only deep structures are interpreted by the semantic component) or surface structures
as well contribute to semantic interpretation. What seems reasonable to ask is only whether
in a particular grammar two distinct phonetic strings of sentences derived from identical
deep structures are synonymous or not, as a piece of empirical evidence for (or more often
againts) that particular grammar or some subpart thereof. Our contention is that it is no
property of any transformation whether or not it preserves meaning unless we also accept
the assumption that transformations operate on strings of semantic units. We can of course
rephrase the original question by asking whether the meanings of sentences with identical
deep structures will differ as a result of the application of transformations and only of
those. Sure enough, in the 1965 model they are not allowed to. Surface structures are paired
with semantic interpretations, therefore it is per definitionem impossible to obtain two surface
structures that are derived from the same deep structure and are not synonymous. This is
no doubt a formal answer and internal in the sense that it is related to a particular theory.
But it must be clearly understood that the terms meaning (or rather semantic interpretation),
deep structure, surface structure, transformations and so on are defined within a particular
grammar, i.e. theory of language. What we do when we check two sentences for synonymy
or the like is testing the empirical validity of the grammar.

It may of course very well happen that a grammar of English or any other language
contains transformations which are required for well-motivated reasons but whose operations
on certain deep structures will ultimately result in non—synonymous superficial sentences as
established by independent and reliable tests. But then the grammar is simply empirically
(or. in a more technical term, descriptively) inadequate. If, for example, in a grammar of
the A s p e c t s type, the movement of quantifiers by some optional rule of Passive in presumably
identical deep structures ultimately yields two distinct and (at least on one reading)
non—synonymous sentences such as (1) and (2):

- 59 -

(1)

(2)

Many men read few books.

Few books are read by many men.

then we ought to conclude that either there can be no Passive transformation and/or there
are distinct deep structures underlying (1—2), but not that transformations (or some of them,
some of the time) change meaning.1

This problem was irrelevant in the first period of transformational grammar since
grammar was regarded as ’’autonomous and independent of meaning” , and it became
irrelevant again when Chomsky had completely abandoned the view of making semantic
interpretation a function of deep structures. But, as has been shown, it was probably
uninteresting if not void even when it could have been of any relevance.

1.3 The issue discussed in the previous section concerned a ’substantive’ property. The
power of grammars is, however, a purely formal topic, since in this case the relationship o f
grammars to systems in general is at stake. Undisputably, the statement that language
0la la n g u e) is a system was very important, and many of de Saussure’s findings still hold
valid in their own context. However, to content ourselves with what is a generality today
(even though the answer to the question what language is a system o f may vary from time
to time and school to school) would be a grave error. Why language is a unique system
(if it is) and not just one of an infinite array of systems, is a problem that can be solved by
specifying the restrictions, formal or substantive, which operate in grammars. Examples for
formal restrictions are the thesis of the recoverability of deletion (Chomsky 1965) or the
A -over-A principle (Chomsky 1964), while some of the substantive restrictions are the
various constraints on the movement of constituents (Ross 1967) or on surface structures
(Perlmutter 1971). It may turn out that formal restrictions are universal, whereas substantive
ones are language—particular. But even if that were the case, it would not preclude the
possibility of finding general enough or even universal principles underlying substantive
constraints. Although Peters and Ritchie’s research and Chomsky’s own efforts were directed
towards assessing and constraining, respectively, the power of the syntactic component, it
should be kept in mind that it is the power of the grammar as a whole which is investigated.
And if restrictions on the rules of syntax are imposed at the expense of increasing the power
of some other (notably the semantic) component, nothing will of course change in the
overall picture.

2. Topics in the dispute on generative grammar

2.11 The extended standard theory (EST) was called a ’mixed’ grammar to indicate that
it differs from the standard theory (ST) in that EST carries out semantic interpretation at
two stages while in ST semantic readings are assigned to deep structures in one block. As
was mentioned above, the change was called for by a large amount of data which were used
to demonstrate that interpretation based on deep structure alone was insufficient to
determine the semantic properties of sentences.

- 60 -

Another important and, with some modification, still valid innovation over the A s p e c t s

model was the introduction of the ’X—Bar Convention’ which delimited the possible types
of base rules. Let us first recall what the rewriting rules of ST were like:

”A rewriting rule is a rule of the form
() A -* Z / X — Y

where X and Y are (possibly null) strings of symbols, A is a single category
symbol, and Z is a nonnull string of symbols. This rule is interpreted as asserting
that the category A is realized as the string Z when it is in the environment
consisting of X to the left and Y to the right. Application of the rewriting rule
() to a string . . . X A Y . . . converts this to a string . . . X Z Y . . .’’
(Chomsky 1965:66).

Apart from the purely theoretical interest in limiting the types of base rules, syntactic
similarities between nominal and verbal constructions such as (3) and (4) were also instrumental
in introducing the new device.

(3) (3) a. the enemy’s destruction of the city
b. the city’s destruction by the enemy

(4) (4) a. The enemy destroyed the city.
b. The city was destroyed by the enemy.

Still more important was the fact that there were a number of incongruities found between
verbal expressions (tensed sentences and gerundive constructions) and nominal ones, cf.:

(5) (5) a. John is likely to win the prize.
b. John's being likely to win the prize.
c, * John's likelihood to win the prize.

The difficulty of accounting for the semantic dissimilarity of (6) and (7—8) also contributed
to the shaping of the new principle since (6) can be paraphrased by neither of the pair (7—8),
although the subject NP of (6) used to be thought to derive from something like that of (7)
or (8).

(6) (6) John’s intelligence is his most remarkable quality.
(7) (7) The fact that John is intelligent is his most remarkable quality.
(8) (8) The extent to which John is intelligent is his most remarkable quality.

Since the problems just presented can be solved in two ways, two positions crystallized
by the end of the sixties. The transformationalist, which held that there was a transformational
connection between tensed sentences, gerundive constructions and nominal expressions, i.e.
they are all derived from the same underlying structure with specifications on the
nonapplication of the rules; and the lexicalist. which maintained that there was no nominal-
ization transformation since structures like (3a) can be derived from a deep structure which

- 61 -

is distinct from that of (4a) but incorporates the relevant relationships by means of
subcategorization excluding certain contexts for nominals. This is achieved by imposing on
the rules of the base the X-Bar Convention (Chomsky 1970), which in effect requires that
every category of the type X be rewritten as a category of the type X and a phrase
associated with X and labelled as S p e c i f ie r o f X . The X immediately dominating another
category X is marked X , the category dominating X is then X . To put it formally

(9) * - [Spec X] X

where X can be N , V, or A d j . Then V can stand for S . N for N P , and À

for A d jP . The next rule is (10):

(10) X -* X . . .

where in place of the three dots complements of V , N , or A d j can occur — themselves
possibly of the type X r

Thus, according to the transformationalist position, the tree in (1 1) ultimately underlies
the constructions in (3—4) as well as the related gerundive nominal:

(1 1)

the enemy p a s t V NP
I Лч

destroy the city

whereas within the lexicalist framework there are two distinct structures (12a) and (12b),
and gerundive nominals are derived from (12b) in effect:

(12a)

[Spec N, N .N

the enemy N [Spec N, N
Л ч

i -------à»,
the citydestruction

[Spec V, N] V

the enemy V

destroy

[Spec V, N]

the city

Of course, several details are omitted from (12a—b) but they do not affect the validity of
the argument. A base component which incorporates the X-Bar Convention (or theory, as
it has come to be called) will not only capture a significant general property of the language
whose theory it is a subpart of, but will also simplify the transformational component to a
great extent by eliminating rules of nominalizations, the conditions on which are extremely
difficult to specify. Furthermore, it is now necessary to drop the view that the domain of
the transformational cycle is the sentence since the examples in (3) and (4) show that NPs
too may undergo transformations like Passive. In other words, there are now two cyclic
categories in the grammar: S and NP, or equivalently, V and N .

2.12 By the time of the formulation o f EST the influence of John Robert Ross’s seminal
dissertation was widespread. It set out to constrain movement transformations by limiting the
domain of individual rules rather than stating general restrictions on the transformational
component in toto. Its basic purport was to show which constituents cannot be moved from
which configurations (cf. Emonds 1970).

Here we present the Coordinate Structure Constraint to give an example. We can regard
question and relative clause formation as a movement transformation on an NP in roughly
the fashion of the examples below:

(13) a. [Q Henry plays wh-something] ->• What does Henry play

b. [the lute [Henry plays the lute]] -*■ the lute which Henry plays

However, if the NP to be questioned or relativized is part of a larger phrase of the
type as below in (14a—b) no grammatical structure results:

(14) a. [Q Henry plays wh-something and sings madrigals] -*•
->■ * What does Henry play and sings madrigals?

b. [the lute [Henry plays the lute and sings madrigals] -*•
-*■ * the lute which Henry plays and sings madrigals

Therefore the following constraint is in order:
"In a coordinate structure, no conjunct may be moved, nor may any element contained in a
conjunct be moved out of that conjunct.” (Ross 1967: § 4.2)

This and Ross’s other constraints could be easily built into the A s p e c t s version — they
were in fact its extensions and specifications. But at the same time they were the first
stepping stones to constructing a general framework of restrictions on transformations.

2.2 These two lines of research were, however, overshadowed for some while by the
emergence of a new conception of the relationship between syntax and semantics in
generative grammar. The quotation from Chomsky (1965) in 1.1 indicated his discontent
with the idea that semantic interpretation should be based exclusively on deep structure.
Simultaneously with the elaboration of ST (eg. Rosenbaum 1967) a loosely knit group began
to be formed of linguists who contended that a large body of data was incompatible with
any grammar of the A s p e c t s type (Lakoff 1967, 1970; McCawley 1968, 1970a. among
others) and leaned towards a grammar whose initial phrase markers would be more like
semantic structures. Then attacks from different quarters on ST followed; speech—act
theorists notably John Searle (1972) doubted whether the description of language presupposed
the independence of grammar as proposed by Chomsky. Thus it was a narrow and a broad
sense of the autonomy of formal description that proponents of ST had to defend.

2.21 Searle is convinced that language has a primary function, communication in the
broadest sense:
"The common-sense picture of human language runs something like this. The purpose of
language is communication in much the same sense that the purpose of the heart is to pump
blood. In both cases it is possible to study the structure independently of function but
pointless and perverse to do so, since structure and function so obviously interact. We
communicate primarily with other people, but also with ourselves as when we talk or think
in words to ourselves.” (Searle 1972:19)

Although we might have mild reservations to attributing such a paramount significance
to what Searle himself calls "quite ordinary [. . .] common-sense assumptions”, mostly
because common-sense is not always too reliable a guidance for research (as was shown by
the remoteness from common-sense assumptions of, for example, quantum-mechanics),
it is certainly true that nothing is elevated to the rank of theory solely by being far removed
from common-sense. Yet it is not impossible to conceive of the problem of "the central
function of language” as somewhat overemphasized. In another connection, which we will
discuss in a moment, Max Black wrote:
"There is a fairly obvious trap here, into which too many acute minds have fallen. A question
about the primary use (or: purpose, function) of an instrument as simple as a hammer is
readily answered in a single formula. But even something as simple by comparison with
language as, say. paper, is designed to serve a multitude of purposes: it has the primary
functions of being used for writing, for wrapping parcels, for lining compartments and

- 64 -

packages, and so on. Paper, unlike a hammer, has multiple uses.
’’Given the obvious complexity and versatility of language, and the enormous variety

of purposes to which words seem to be put, it might be expected that language would, from
the every outset, be recognized as having a multiplicity of uses. In fact, however, there is an
ancient tradition o f regarding language as an instrument with a single primary use - more
like a hammer than like paper.” (Black 1968:118)

Black’s remarks seem to apply with remarkable force to Searle’s considerations, although
they were originally meant to criticize a position which, among others, Chomsky has been
supporting. ’’Language, it is argued, is ’essentially’ a system for expression of thought.
I basically agree with this view.” (Chomsky 1975a:57) And when he blames Searle for
taking ’’communication in [a] broader sense [which is] an unfortunate move [. . .] since
the notion ’communication’ is now deprived of its essential and interesting character”
(Chomsky 1975a:57), Chomsky himself becomes equally vulnerable to similar criticism of
his own broader notion of ’thought’. Furthermore he is also suspect of substituting 'thought'
for 'whatever can be meant'.

’’But then a thought, in this indefensibly extended sense, can very well be a feeling, an
intention, and much else. It is misleading and unhelpful to use 'thought’ to cover all those
things. On this broad interpretation, language serves many purposes: the way is open for a
m u lt ip le theory o f linguistic uses.” (Black 1968:1 17)

It is important to realize that the problem of the central function of language is
uninteresting largely because it is inevitably accompanied by an overstretched use of words
on the one hand, and often by the assumption that there is an immediate derivative
connection between function and form on the other:

"It is quite reasonable to suppose that the needs of communication influenced the structure.
For example, transformational rules facilitate economy and so have survival value: we don’t
have to say, ’I like it that she cooks in a certain way’, we can say, simply, ’I like her
cooking.'" (Searle 1972:19)

Searle is right in part of course inasmuch as the general statement is concerned. But
hundreds of examples lend support to the view that economy, and the parallel notion of
redundancy, fall fatally short of accounting for changes in language. No argument from
communication alone will explain the phases of development of a language like English.
Further, to attribute to certain transformations properties such as this: ’’transformations
[. . .] facilitate communication” (Searle 1972:19) would unexceptionally lead to a
cross—classification of languages according to 'degrees of ease of communication,’ which is
no doubt an undesirable result. Chomsky can of course, escape this second consequence
simply by using 'thought' for 'whatever can be said' in his definition of the primary function
of language.3

- 65 -

Searle likes to think of speech act theory as at best including a formal theory of
language, i.e. syntax: ’The obvious next step in the development of the study of language
is to graft the study of syntax onto the study of speech acts.” (Searle 1972:23) He also
concedes that the study of the meaning of sentences and that of the uses of expressions
in speech situations ’’are complementary, not competing.” However, he also claims that
there is an ’’essential connection between meaning and speech act” since ”an essential part
of the meaning of any sentence is its potential for being used to perform a speech act.”
(Searle 1972:23) This theory of meaning was criticized partly by Chomsky for the
réintroduction of ’literal meaning’ as an unexplained notion, and partly by Deirdre Wilson
for two reasons:

"The view that knowing the meanings of words involves knowing what speech-acts they
are characteristically used to perform [. . .] seems largely false. In the first place, it seems
entirely irrelevant to specifying the meanings of such ordinary words as ta b le or v e n t i l a t e .

[. . .] More generally, there is a theoretical objection to the use theory of meaning which
parallels the objection often raised to truth-conditional theories, that they rest on a prior and
unexplicated notion of necessary truth—relations. In the case of the use—theory, the
objection is that it rests on an unexplicated notion of rules for appropriate use. When one
enquires into the definition of a p p r o p r ia te n e s s which is relevant for semantics, one is forced,
I think, to one of two conclusions. Either there is no distinction between knowing when
a given sentence could be appropriately used and knowing when it would in fact be true:
in this case the use theory is not distinct from a truth-conditional theory. Or the notion
of appropriateness includes, but goes beyond, the notion of truth—conditions. In this case
the problem is to define the non—truth—conditional aspects of appropriateness. These seem
to me clearly non—homogeneous, including reference to social conventions, discourse-
conventions, psychological considerations and contextual factors of many different types.
Moreover, they seem to me in most, if not all cases, to be clearly non—linguistic, and
certainly not matters of speaker-hearer’s competence.” (Wilson 1975:14)

It would certainly go far beyond the goals of this paper to discuss fundamental
questions of semantics in any detail, but it may perhaps be suggested that a possible way out
could be conceived either through the integration of formal linguistic and communication
theories along the lines of Lewis (1974) with a semantic theory in the fashion of Lewis
(1972) or through an extended version of truth—conditional semantics in the wake of
Kempson (1975) and Wilson (1975).

All l have tried to show in this section was the futility of inferring anything interesting
regarding the nature of formal linguistic theory from the assumption that there is a central
function of language. The overexaggeration of functional explanations for syntax may, in
addition, lead to such monstrosities as are examplified by Sadock (1975), who was duly
criticized even by the author of the theory he had intended to draw on (cf. Searle 1976).

2.22 Turning now to the narrow sense of autonomy, it is clear that this notion can be, and
has been, censured within the comparatively less extensive framework of generative
grammar. Indeed, that is the basic issue which separates generative semanticists and
proponents of the lexicalist-interpretivist position. To put it briefly, the heart of the matter
is whether the central component of the grammar is syntax or semantics. Almost all of the
other problems (such as lexical decomposition, the existence of the level of deep structure,
global rules, etc.) are derivative from it.

Generative Semantics (GS), in its more extreme version, proclaims to be virtually the
theory of cognition:
”In the theory of generative semantics [. . .] the abstract objects generated are not
sentences but quadruples of the form (S, LS, C, CM) where S is a sentence, LS is a logical
structure associated with S by a derivation, C is a finite set of logical structures
(characterizing the conceptual context of the utterance), and CM is a sequence of logical
structures, representing the conveyed meanings of the sentence in the infinite class of
possible situations in which the logical structures of C are true.

’’But even this is inadequate. One must take into account much more than conceptual
contexts (that is, assumptions of speaker and hearer). Rules of grammar also require that one
take into account the stylistic type of discourse one is in.” (Lakoff 1974:163)4

A more sober view is voiced in the following summary by Pieter Seuren:

’’Semantic Syntax [. . .] maintains that [the] ultimate underlying structure is the SR
[= semantic representation], and the transformational rules map SS’s [= surface structures].
In this theory the formation rules have a very different status [from that of the corresponding
rules in ST or EST]: they define the wellformedness of SR’s. Given the great deficiency
of our knowledge of SR ’s as well as of cognitive structures, it would be impractical to
formulate such rules at present.” (Seuren 1974a: 110)

In order to show the difference between ST and GS I have taken over the following
standard example from Lakoff (1971). The derivation of the two sentences (1) and (2),
according to GS, goes back to two distinct initial structures (14a) and (14b):5

(1) Many men read few books.

(2) Few books are read by many men.

- 67 -

(14) a.

read books.

(14) b.

men. V NP
1 I

bookSjread

- 68 -

The rule of ’Quantifier—lowering’ will apply first to the S, cycle yielding m e n re a d f e w

b o o k s in (14a), then to the Sj cycle with the result of (1). The structure (14b), however,
undergoes Passive in the S4 cycle (b o o k s are re a d b y m e n) , then cyclic Quantifier-lowering,
first on S 1 (b o o k s a r e read b y m a n y m e n) , then on Sj to give (2).

But Passive is an optional rule: it may or may not apply to either of the structures (14a)
and (14b), and if it does apply to (14a), the resulting sequence will be indistinguishable from
(2), but it has the meaning of (1). Conversely, if Passive does not apply to (14b), we will
have the surface sentence (1) with the meaning of (2) as defined by GS. In order to overcome
this difficulty it was necessary to introduce in the transformational component a ’global rule’
which preserves the order of quantifiers between the different stages of a derivation.

Seuren gives the following schematic representation for the GS (or, in his parlance,
Semantic Syntax) model:

SR ~)

T —rules

surface structure

phonological component

phonetic representation

It is a corollary of the GS hypothesis that there is no distinct level of deep structure,
since the input for T —rules is SR’s (in other words, the mapping relationship is between
SR’s and SS’s) on the one hand, and that lexical insertion is not carried out in one block
(as in ST) but is part of the functions of transformations, which can substitute single
lexical entries (eg. k i l l) for complex subtrees (eg. c a u se to d ie) within one derivation. Global
ailes will attend to wellformedness of (ultimately) surface structures by stating a relationship
between distinct (not necessarily consecutive) stages of a single derivation, while a
transderivational rule is "a relationship between some stages in a derivation and something
outside of the derivation — e.g., some stage of another derivation, or some logical inference
from the semantic structure of the derivation in question” (McCawley 1974:266), and
filters out ambiguous structures, for example.

semantic representation

transformational rules

- 69

Generative Semantics thus makes considerably stronger assumptions about the
organization of grammar on the one hand, which may well be viable but are difficult to
refute (cf. Seuren’s remark on our knowledge of semantic representations) and, on the other
hand, about the tasks of linguistics, which could lead to the dissolution of linguistics as a
discipline in the related fields of logic, psychology, sociology, and so on (cf. Lakoff 1974).
It is not the linguist’s fear of losing his job that has made various people raise serious
doubts about such an approach, but rather the conviction that the elusive nature of meaning
in itself does not perhaps provide sufficient reason for an unprecedented and uncalled for
extension of the boundaries of linguistics as GS demands.

Tcf make a final point, there is a tangible undercurrent in GS when it refuses to
accept syntactic structures as underlying surface sentences by indicating that it is more
’natural’ or closer to common—sense to suppose that sentences in natural language are
produced by first deciding on their content, which will in turn determine their form. Even
if some of the more conscientious writers of GS would certainly reject such an accusation,
it is an implicit possibility in GS and has undoubtedly contributed to its widespread
acceptance and popularity (cf. eg. Bouveresse’s remarks on Chomsky and GS in Parret 1974).
Another, related, misunderstanding has been the identification of generative—transformational
grammar with some kind of model of production requiring an immediate, one—to—one
correspondence between linguistic theory and the psychological processes which underlie
speech production (cf. eg. Chafe 1970, Bartsch and Vennemann 1972).

2.23 As far as the other position, the autonomy of syntax, is concerned, predictably enough
the best arguments in favour of it have been advanced by Chomsky himself. The most
important preliminary argument has helped to make it clear that the problem of
’semantically' or ’syntactically based grammars’ was of no interest, since grammars do not
’first’generate deep structures and ’then’ map them by means of transformations ultimately
into surface structures, but generate «-tuples of abstract objects such as deep structure
(in ST at least), surface structure, semantic representation, and phonetic representation
(Chomsky 1971, 1972, 1974). In this sense it is irrelevant to speak of a central component
in grammar.

The problem of autonomy is of course void for all those who postulate some kind
of semantic or logical structures as input to transformations. It would again go beyond the
purpose of this discussion to remove the misunderstandings that surround the issue, but
it should be noted that the concept of ’autonomy of syntax’ has undergone considerable
change since its inception, the publication of S y n ta c t ic S tr u c tu r e s , The earlier formulations
of generative grammar relied upon a strong version of autonomy:

’’The absolute autonomy thesis implies that the formal conditions on ’possible grammars’
and a formal property of ’optimality’ are so narrow and restrictive that a formal grammar
can in principle be selected (and its structures generated) on the basis of a preliminary analysis
of data in terms of formal primitives excluding the core notions of semantics, and that the

- 70 -

systematic connections between formal grammar and semantics are determined on the basis
of this independently selected system and the analysis of data in terms of the full range of
semantic primitives.” (Chomsky 1975b:21)

It does not, however, follow from this thesis that semantic considerations do not take part
in the choice of a theory of linguistic form. It is nevertheless possible to put forward a
weaker, and consequently less interesting, thesis of the autonomy of syntax, according to
which ’’the theory o f linguistic form may still be a theory with significant internal structure,
but it will be constructed with ’semantic parameters’. The actual choice of formal grammar
will be determined by fixing these parameters.” (Chomsky 1975b:22) The choice between
these and other possible versions of autonomy is an empirical problem though of a rather
abstract nature. But the refutation of a relatively stronger version of the thesis does not of
course entail the abandonment of a weaker formula. The ’parameterized autonomy’ thesis
has recently gained ground among the proponents of a lexicalist version of generative
grammar with the parameters localized in the dictionary.

3. Halfway between A s p e c t s and traces

3.1 The model of EST is not a radical departure from that of ST; it simply incorporates
the finding that deep structure alone is not sufficient to determine the meanings of sentences.
The schematic representation of the model is thus not unlike that of the grammar of A s p e c t s —

with the only exception of a mapping operation between surface structure and semantic
representation:

(PR)

- 71 -

Deep structures determine 'thematic relations' (Agent, Goal. Instrument, etc.), whereas surface
structures provide data deciding the scope of quantifiers, the anaphoric relationship between
pronoun and antecedent, topic—comment relations, and so on. For example, the sentences
(1) and (2) are derived from the same underlying structure (15):

(1) Many men read few books.

(2) Few books are read by many men.

(15)

few books

from which, if Passive does not apply, (1) is derived, and and, if it does, (2). However, the
surface linear order of m a n y and f e w in (2) differs from that in (1), therefore m a n y is within
the scope of f e w in (2), whereas the reverse holds for (1). The 'thematic relations’ of the
sentence have of course remained unchanged.

Similarly, ’precede’ and ’command” relations will determine coreference between
pronoun and antecedent. We will see below that while these relations are formulated in
GS as (global) constraints on (pronominalization) transformations, they are construed in
EST as rules of interpretation, since EST has rid itself of the idea of transformational
derivation of pronouns. The following four sentences in (16):

(16) a. If John is ill, he has to stay in bed.

b. If he is ill, John has to stay in bed.

c. John has to stay in bed, if he is ill.

d. He has to stay in bed if John is ill.

show that the only case J o h n and h e cannot be coreferent, is (T6d). Now we say, following
Langacker (1969), that a node A commands another node В if neither A nor В

dominates the other, and the first cyclic node (i.e. S or NP) that most immediately
dominates A also dominates B . The precedence relationship is self-explanatory. Then
in (17):

- 72

(17) a. b.

where X is a cyclic node. A commands В , and precedes В in (17a) but is preceded by
it in (17b). Returning to (16) it must now be obvious that a pronominal NP cannot both
precede and command the NP it is correferent with, or in other words, if a pronominal
NP precedes and commands another NP there can be no correference relationship between
them.

3.2 It was precisely pronominal anaphora that was used to demonstrate as a corroboration
of the lexicalist position that certain phenomena previously regarded as transformationally
derivable were better described by means of lexical insertion paired with semantic
interpretation.

Recall that in ST pronouns were accounted for by positing two full-blown lexical
NPs in deep structure marked for identity by, say indexing, and subsequently by replacing
one or the other with a pronoun as in (18a—b):

(18) a. Johnj knew Jolim was stupid,

b. John! knew he; was stupid.

However, evidence was discovered that pronominalization (as the process was called) could
lead to undesirable consequences. The famous Bach—Peters sentences (Bach 1670) were data
of this kind:6

(19) | N|) the pilot who shot at it,) hit | N|) the mig that chased him |
I i 1

(20) [Np the man who shows hej deserves itj] will get | N|, the prize luv desires)

It goes without saying that the transformational derivation of the pronouns in (19-20) would
involve multiply, if not infinitely, embedded sentences in somewhat like the following way:

- 73 -

(21) [Np the pilot who shot at [Np the mig that chased [NP the pilot who . . .]]]

hit [Np the mig that chased [Np the pilot who shot at [Np the mig that . . .|11

Another type of counterargument was based on examples like (22a-b):

(22) a. Every Italian thinks he(is handsome.

b. Every Haliam thinks every Haliam is handsome.

According to the transformationalist position, (22b) was supposed to underlie (22a), although
they have no common readings and furthermore they differ syntactically, cf.

(23) a. Every Haliam thinks he. alone is handsome.

b. * Every Italian thinks every Italian alone is handsome.

If, however, we assume that surface pronouns derive from ’deep’ pronouns inserted from the
lexicon into deep structure, which is a procedure independently needed for non-intrasen-
tentially anaphoric pronouns (cf. the extrasentential anaphoric reading of the pronoun in (18)
or (22a), i.e. when h e refers to an NP outside the context of the sentence it is in, as in
the discourse: A : P e t e r . has j u m p e d o f f th e w a ll . В : J o h n j k n e w h e j w as s t u p i d) , all that is
now necessary is a relatively simple interpreting device which will tell whether the pronoun,
or more generally the pro-form , can or cannot be the anaphor of whichever NP or other
constituent.

Another, slightly more complicated argument against pronominalization was put
forward by Joan Bresnan (1970a). It is based on the undisputed fact that the transformational
cycle works from bottom up’. If in (24a), where identical indexes mark coreferent
constituents, s o m e is the unstressed /sm/, nothing will prevent th ere Insertion from operating
on the embedded S cycle, yielding (24b):

(24) a. [Some studentsj believe [some students(are running the show]]

b. I Some studentsj believe [there are some studentsj running the show]]

Pronominalization can operate only on the next, the matrix S cycle, but now it either
has to change (24b) to (25a) by replacing s o m e s t u d e n t s j with th e y r or can leave (24b)
alone. Either way the result is ungrammatical:

(25) a. ‘ Some studentSj believe there are they, running the show.

b. ‘ Some studentSj believe there are some studentsj running the show.

The case of (25a) is straightforward; the asterisk must be assigned to (25b) since the
coreference required by the indexes does not go through.

- 74 -

3.3 EST had two advantages over its predecessor, indeed over any competing theory: the
X—Bar Convention and the deep pronoun hypothesis; the fact that one is a metatheoretical,
the other an empirical problem anticipated the directions of further research. The restructuring
of the model which now allowed for the interpretation of surface structure in addition to
that of deep structure was a necessary adjustment rather than an achievement of theoretical
value.

4. The rise of trace theory

Since there was not much controversy about EST it was rather peacefully superseded
by the latest offspring of the standard model, generally known as ’trace theory’. This time
there were no signs of growing discontent with the extant model in the literature, there was
no presentation of data to demonstrate that the model was inadequate. Yet the change was
probably not unmotivated.

4.1 First of all EST made no clear statements about how exactly ’double’ semantic
interpretation should be carried out, that is, how one kind of semantic data (gained from
surface structure) is to be integrated into another kind (those determined by deep structure).
Let us call this the ’matching deficiency’. But even if this matching deficiency could be
overcome there would still remain the, rather elusive, disadvantage of double interpretation
being relatively less simple than interpretation in one block. We can call this the ’aesthetic
deficiency’. A third kind of difficulty arose in connection with a curious phenomenon in
English, Verb + to contraction. Let us examine this problem in some detail.

Lakoff (1970) mentions the pair of sentences (26—27):

(26) Teddy is the man I want to succeed.

(27) Teddy is the man I wanna succeed.

using them as evidence for an argument supporting global rules by making the following
comment (in the quotation the numbers of examples have been changed):

"Here (26) is ambiguous, and can be understood as either of the following:

(28) 1 want Teddy to succeed.

(29) I want to succeed Teddy.

But (27) can only be understood in the sense of (29), since w a n t to cannot contract to
w a n n a if there is an intervening NP between w a n t and t o at an earliner point in the
derivation, as there is in (28)." (Lakoff 1970:632)

Clearly, no syntax of the type of EST, which refuses to employ global rules, could
cope with a problem like this, since once a constituent is deleted the resulting construction
will be indistinguishable from a similar construction which did not contain the constituent

in question at any stage of its derivation.

We have seen that semantic interpretation must take surface structure into account,
deep structure is simply insufficient in a number of respects to determine the meanings of
sentences, so the road back to ST is blocked. But there is another way out: the interpretation
of surface structure could surmount the problems of the matching and the aesthetic deficiency
if only the vital information from deep structure could be retained. The 'thematic relations',
the sole essential factor in deep structure for semantic interpretation, are changed by
movement and deletion transformations only. The solution is then self-evident. Roughly
speaking, the position from which a constituent was moved must be marked for that
constituent (by means of. for example, со—indexing), and instead of deletion transformations
some kind of dummy nodes should be introduced. Note that this innovation has sufficient
syntactic motivation: the difference between (26) and (28) can now be accounted for. Taking
(26) as synonymous with (28) the relevant aspects of the surface structures immediately
underlying (26) and (27) will be somewhat like (30) and (31), respectively :

(30) Teddy is the man [1 want t to succeed]

(31) Teddy is the man [I want PRO to succeed t \

where t is the trace left by the movement transformation and PRO is the dummy to be
interpreted for coreference (with Л.7 Now the trace between w a n t and tu in (30) will not
only help semantic rules to find what is the subject of s u c c e e d , but will also prevent
contraction. PRO. however, is defined as allowing contraction. Of course, neither trace nor
PRO has phonetic outcome, that is. both are phonetically null.8

4.2 Traces can be regarded as a special type of anaphora, indeed they are interpreted as such
by the semantic component. Transformations can. of course, move constituents both
'forward' and ’backward' and, like in the case of ordinary anaphora, traces must be properly
'bound', that is. in case of NPs, for example, no trace can precede its 'antecedent'. To
illustrate this we will show the derivation of a passive construction according to trace theory
(in its early period). The deep structure is thé same as in ST or EST (cf. (3). (4). (12)):

(32) fs [NP the barbarians] [vp destroy | Np the city] [PrcpP by NP]]]

But there is nothing like Passive transformation in this new version. Instead. NP Movement
will place the subject into the empty node:

%

(33) [s [Np t \ [vp was destroyed [the city] | pp by [Np the barbarians]]]]

leaving the trace fNp in its original position. If no more transformation applies to the
structure (33). it will be ungrammatical. That the ungrammatically is not the result of its
lacking a subject is demonstrated by the corresponding nominal, which, according to the
X-Bar Convention, is derived along similar lines :9

(34) [NP [NP the barbarians] [^ . destruction [Np the city] | pp by NP]]]

- 76 -

in which NP Postposing gives (35):

(35) [Np [Np t] [_ destruction [Np the city] lpp by [Np the barbarians]]]]
N

Now if t remains unsaturated in (35), or in (33), some rule of anaphora will filter out the
structure as ungrammatical, since the trace precedes the corresponding NP. No doubt, the
strings (36-37) are informed:

(36) *was destroyed the city by the barbarians

(37) * destruction of the city by the barbarians.

The trace can be erased as a result of another movement transformation. So if an NP,
like th e c i t y , is preposed in (33), it will take the position of the trace:

(38) [s [Np the city] [vp was destroyed] [Np t] [pp by the barbarians]]]

Then the trace in the tree (38) will be that of the NP th e c i t y , and will show that it is the
deep object of the verb. Besides, the derived subject NP th e c i t y now properly binds its
trace, so the stmcture will pass the wellformedness conditions set by the rules of anaphora.

Similar NP Preposing in the nominal construction will give (39):

(39) [Np [Np the city’s] [destruction [Np t] [pp by the barbarians]]]

When, however, no NP Preposing applies to (35), it can still be rendered grammatical by the
insertion of the definite article, which is allowed to occur in the S p e c N node having
replaced the trace:

(40) [Np [Spec the] [_ destruction] [Np the city] [pp by the barbarians]]]
N

w ith th e final o u t c o m e (4 1) :

(41) the destruction of the city by the barbarians.10

4.31 Before beeinning to discuss trace theory in a little more detail I will review two
proposals which have gained rapid and wide-scale acceptance in the current period of GTG.

Bresnan’s (1970b) suggestion concerns the introduction of a node Complementizer into
base phrase markers, and is thus a revision of the base rules. The idea is simple and easy to
prove. Embedded sentences (but not nominal constructions) may display one of three
devices, called complementizers since Rosenbaum (1967), which integrate them into matrix
or higher sentences: f o r —t o , possessive—ing, and th a t , as shown in (42), (43), and (44),
respectively:

(42)

(43)

For John to leave would be insane.

His singing annoys everyone in the room.

- 77 -

(44) Peter knew that John would leave.

Bresnan argues that introducing complementizers through transformations is illegitimate,
since it would require that complementizers be determined by matrix verbs. Therefore, the
relevant transformations would have to work ’downward’, inserting material into a lower
sentence, i.e. one that has already been passed by the cycle, and this is a violation of the
well-known Insertion Prohibition which was first formulated by Chomsky (1965:146) and
never disproved since. Instead of a transformational analysis, Bresnan suggests that a rule
of the form of (45) should introduce complementizers:

As to the content of the COMP node, there is no general agreement: some claim that
poss—ing constructions are derived from sentences through transformations but are ultimately
dominated by an NP node (see 2.11). Bresnan’s original formulation, which was intended to
cover embedded sentences only, has since been extended to become one of the initial rules
of the base and matrix sentences are also supposed to have complementizers such as [+WH]
for questions, [—WH] for noninterrogatives. If the COMP node is in an embedded sentence,
it will introduce indirect questions or t h a t—clauses (and possibly relative clauses), depending
on the plus/minus sign. So in observance of the consensus, COMP is analysed as follows:

4.32 The other proposal, Emonds’ (1970, 1972) typology of transformations, was also hailed
as a welcome innovation, although a number of its details are still being argued about. Emonds
distinguished three kinds of transformations. The first division is between minor and major
transformations: the former comprise small-scale ’readjustment’ rules which involve non-
phrase nodes, e.g., Affix Movement, while the latter move phrase nodes such as S, NP, AdjP,
etc., in rules like Extraposition, Passive, Subject—Auxiliary Inversion. This second group
is then divided into ’root’ and ’structure—preserving’ transformations. Root transformations
operate only on matrix sentences and include rules like Subject—Aux Inversion (in case of
questions, for example). Structure—preserving rules, however, apply all along the cyclic nodes
under an unexceptional condition that states that ’’node X in a tree T can be moved, copied,
or inserted into a new position in T [. . .] only if [. . .] the new position of X is a position
in which a phrase structure rule, motivated independently of the transformation in question,
can generate the category X”. (Emonds 1972:22). The new position X is generated as an
empty node; in Emonds’ original formulation, it was a node filled by some ’recoverable’
form like i t , th e re , etc. In more recent frameworks, the usual transformations are followed
by filters whose task is, among others, to mark as ungrammatical the trees which contain
empty nodes.

(45) S - COMP s

(46)

An illustration for structure-preserving rules could be the derivation of the passive
constructions in (32) to (41), or various instances of sentence Extraposition, which moves

- 7 8 -

an embedded sentence to the rightmost position in the cycle in question, as in (47) and (48):

(47) a. They pronounced the man [s who was accused of murder] guilty [s Д]

b. They pronounced the man guilty who was accused of murder.

(48) a. We heard [s that he had been stranded for days] from his own lips [s A]

b. We heard from his own lips that he had been stranded for days.

To see that this is a non—root transformation, it suffices to prefix a matrix clause skeleton,
like H e a sked w h e t h e r . . ., degrading the sentences of (47—48) to subordinate status.

Obviously, in the cases of both Passive and Extraposition there is sufficient independent
motivation for the relevant empty nodes in underlying structure. Indeed it was probably this
observation that led Emonds to an interesting conclusion, which was arrived along a separate
path by Bresnan (1970a), viz. That f o r plus infinitival constructions and t h a t clauses are
dominated not by NP (as was claimed by Rosenbaum 1967), but by S. Furthermore, the
classic case of Rosenbaum’s Extraposition from Subject will now work the other way round,
that is. the relevant S nodes are generated in a position adjacent to the verb, and a root
transformation of Intraposition moves them to subject position. In Rosenbaum’s solution,
(49) derives from something like (50):

(49) It is important for John to please Mary.

(50) For John to please Mary is important.

However, Emonds demonstrates that neither construction in question can occur in the
subject position of an embedded sentence:

(51) a. * Peter said that for John to please Mary was important,

b. Peter said that it was important for John to please Mary.

(52) a. *John wanted to know whether that he was too loud annoyed me.

b. John wanted to know whether it annoyed me that he was too loud.

Therefore, we either have to make do with an ad hoc prohibition (in the style of Ross
1967), requiring that there be no Ss in sentence—interior position, i.e. Extraposition is
obligatory in embedded sentences (and also in matrix sentences if as a result of a transfor
mation they become sentence-internal, cf. *Is th a t h e c a m e la te su rpr is in g?), or we admit
that there is no Extraposition from Subject, so it is (49) that underlies (50) rather than
conversely.

4.4 The current composition of trace theory is the result of the considerations entailed by the
innovations sketched above. It is easy to see, for example, that if surface structures are
the input to the semantic component, no deletion transformation must apply before the
structures become available for semantic interpretation; otherwise some information would

- 79 -

again be irretrievably lost. In other words, transformations must now be ordered in two
consecutive blocks: movement, adjunction, and substitution transformations will all be
followed by deletion operations. But it is at the predeletion stage that ’surface structures’
receive semantic interpretation (Chomsky and Lasnik 1977).

4.41 Thus the schematic outline of trace theory can be given as follows:

(53)

- 80 -

The other factor which has contributed to the shaping of the new model has been with
us for quite some time: the universal nature of linguistic hypotheses. Chomsky and Lasnik
(1977) assume that ’’there is a theory of core grammar with highly restricted options, limited
expressive power and a few parameters. Systems that fall within core grammar constitute
’the unmarked case’; we may think of them as optimal in terms of evaluation metric. An
actual language is determined by fixing the parameters of core grammar and then adding
rules or rule conditions, using much richer resources, perhaps resources as rich as
contemplated in earlier theories of [transformational grammar]” . (430)
Rules of the base are restricted by the X—Bar Theory.

The generality required of what was called here Transformational Subcomponent:
A (henceforth TSC:A) is achieved by the removal of ordering and obligatoriness as
constraints on transformations. In consequence,
’’the transformational rules of the core grammar are unordered and optional. Structural
conditions are severely restricted. [. . .] The operations are restricted to movement, left—
and right-adjunction, and substitution of a designated element. [. . .] Only a finite and quite
small number of transformations are available in principle” . (Chomsky and Lasnik 1977:431)

An important formal restriction on TSCA is Emonds’ structure preserving constraint.

4.42 In order to make up for the removal of ordering and obligatoriness in transformations
a new subcomponent has been created which also has the function of the structural analyses
of the old type transformations: filtering. Filters
’’will have to bear the burden of accounting for constraints which in the earlier and far richer
theory, were expressed in statements o f ordering and obligatoriness, as well as contextual
dependencies that cannot be formulated in the framework of core grammar”. (Chomsky and
Lasnik 1977:433)

Filters, as well as deletions, are language specific in contrast to the Base and TSCA.
They are placed in TSC :B and are ordered so that all deletions precede filters. A sophisticated
enough system of filters, like the one Chomsky and Lasnik (1977) propose, should be capable
of accounting for a very large number o f ungrammatical structures. The general form of
filters is given as follows:

(54) *la ^i >••• , '£„] , unless C, where

a. a is either a category or left unspecified

b. \p. is either a category or a terminal symbol

c. C is some condition on (a, ,. . . ,)

"If a of (54a) is unspecified, the bracketed construction is arbitrary; otherwise the filter
applies in the domain a . [. . .] ”We might interpret (54) as follows. Given a construction
(either unspecified or of the category a) that can be analyzed into the terminal strings
X j , . . . , Xn, where X . is a (in the sense of the theory of transformations), then

- 81 -

assign * to the construction (or, equivalently to the sentence in which it appears) unless
C holds of у>и).” (Chomsky and Lasnik 1977:488-89)

4.43 Let us now see a somewhat simplified example to witness the function of filters. In the
sentential complements to nouns like d e s ire the complementizer is f o r (cf. (46)). That is,
the relevant deep structure is (55):

(55) [NP the desire [_ [œMp for] fs John to leave]]]

If, however, the subject of the embedded sentence is the phonetically null and referentially
’empty’ PRO, as in (56a), the complementizer is to be deleted to yield (56b):

(56) a. [Np the desire [[C0Mp for] [s PRO to leave]]]

b. the desire to leave

That is to say, there should be a rule deleting f o r , informally given as (57)

(57) delete f o r

But, according to the requirements of trace theory, the conditions on the deletion can only
be given among the filters. Thus the filter (58) will in effect make (57) obligatory if f o r is
followed by to without any intervening lexical NP (note that PRO is not lexical):

(58) * [for—to]

This, however, is not enough. If (57) is optional, it may very well apply to (55), which would
result in the ungrammatical structure (59):

(59) *the desire John to leave

This will be prevented by another filter, (60):

(60) *[a NP to VP] unless a is in the context

f o r — or
V —

Since the relevant NP—to—VP construction in (59) is preceded by the noun d e s ire , (59) will
be marked as ungrammatical by the filter (60). Obviously, structures like (55) will be allowed
to go through unaffected by both filters (58) and (60). On the other hand, (60) forbids the
deletion of f o r also in full adjectival phrases such as the one in (61):

(61) a. It is [. p illegal [_ for John to leave]]
А Г s

b. *It is | др illegal [_ John to leave]]

but it will make deletion obligatory if the subject is PRO in the embedded sentence, cf.

- 8 2 -

(62) a. It is [др illegal [_ for PRO to leave]]

b. *It is illegal for to leave.

c. It is illegal to leave.

4.44 Although there are a number of incongruities in the formulations of the specific filters
by Chomsky and Lasnik and some of the claims Chomsky (1977) makes in order to reduce
the number and types of transformations are unsubstantiated, the threats that trace theory
must counter go back to different considerations. One may speculate whether the abandonment
of the idea of the semantic interpretation of deep structure cannot lead to an eventual
identification of deep structure and (pre—deletion) surface stucture. More specifically, if
Emonds’ hypothesis is correct, cannot cyclic movement rules be abolished and quasi—surface
structures be generated complete with trace (note that trace and empty nodes are syntactically
identical)?

We may also ask the question whether the removal of all constraints of ordering and
obligatoriness has not increased the power of core grammar. If it has, we may easily have
come back to the Universal Base Hypothesis as criticized by Peters and Ritchie (1969).

To sum up, trace theory arose basically as a theory of syntax. Its semantic component
is rather crude, and until this obstacle is overcome no overall view of the theory will be
available. It can, however, be safely said that as a syntactic theory it has a high degree of
internal consistency and practicability.

Notes

♦This paper is a revised version of the introductory section of my dissertation T race th e o r y

a n d re la tive c la u se s (Budapest, 1978).

1. Compare the following: ”In the standard theory [. . .], as developed, e.g. in [A s p e c ts] ,

it is postulated that deep structure determines meaning. Thus nonsynonymous sentences
cannot be assigned the same deep structure. In this respect, semantic considerations
provide a partial criterion for the selection of grammars [. . .].”
(Introduction from 1973 to Chomsky 1955; p. 49)

2. These categories can be easily reformulated in terms of features. Thus, with bars
neglected, S, VP, and V will be [+ verb, —noun], NP and N [—verb, +noun], AP and
Adj [+verb, +noun],

3. It should be kept in mind that the polemic is about the logical, not the historical
priority of functions.

4. It is an immediate consequence of this view that sentences like (i):
(i) John called Mary a Republican and then sh e insulted h im .

S3

(where italics indicate heavy stress) are marked as well—formed or ill—formed
according to whether or not the speaker believes that calling someone a Republican is an
insult.

5. Any details of trees and labelled bracketing not pertinent to the discussion are omitted
here and throughout.

6 . Two of their sentences are given only; the bracketing and the indexes are somewhat
altered.

7. At this point it is of no interest whether a ’lexical' NP or a relative pronoun was moved
and then deleted.

8 . For more detailed discussion see Lightfoot (1976, 1977). Note, however, that
contraction phenomena do not point to a single possible explanation. That is to say,
they do not provide unambiguous support for trace theory. For this see Emonds’
comments on Lightfoot (1977) in Culicover (1977), as well as Postal and Pullum (1978).

9. There is no ’phrase—name’ for N ; a possible candidate could be NOM (from
NOMINAL), but that has not been generally accepted.

Some elements of the terminal string are missing, such as the preposition o f They
can be fed into the tree automatically if no lexical information to the opposite effect
is contained in it, since they constitute the ’unmarked" case among syntactic relations
and are legitimately left unspecified, following the X—Bar Theory.

10. The above discussion of passive is modelled after Fiengo (1977), but it differs from
his analysis in that it is somewhat simplified and reflects an earlier stage in the
development of trace theory. However, even Fiengo’s solutions became outdated on the
publication of Chomsky and Lasnik (1977).

Critics from various quarters have since pointed out that neither is an entirely
satisfactory solution to passive constructions. Within the framework of trace thaory,
one can equally well envisage a derivation of passive in which there is an empty subject
and the agent phrase is already in position:
’’[The] rule of trace replacement in which the determiner replaces the trace and in
which phrases with no determiner (d e s tru c tio n o f p r iv a te p r o p e r ty is ille g a l) are
explained as a result of replacing the trace by null determiner [is an] analysis completely
unconvincing and ad hoc.” (Bach 1977:142) The ’empty subject’ assumption for
passive constructions fares better also because it entails a more consistent treatment
of traces.

- 84

References

[1] Bach, Emmon (1970), ’’Problominalization”, L in g u is tic In q u iry 1.,, 121 — 122.
(1971), ’’Syntax since A s p e c t s " , In: Richard O ’Brien (ed.), R e p o r t o f th e

T w e n ty —S e c o n d A n n u a l R o u n d T ab le M e e tin g o n L in g u is tic s a n d Language

S tu d ie s , Georgetown University Press, Washington, 1971, pp. 1 — 18.

I — J ------ (1977), ’’Comments on Chomsky (1977),” In: Culicover et al. (1977), pp.
133-155.

[31 Bartsch, Renate, and Theo Vennemann (1972), S e m a n tic S tr u c tu r e s , Atheneum Verlag,
Frankfurt/Main.

[4] Black, Max (1968), T he la b y r in th o f lan gu age , Encyclopaedia Britannica, New York.

[5] Bresnan, Joan (1970a), ”An argument againts pronominalization”, L in g u is t ic In q u iry 1 .,

122-123.

I 6] ------ (1970b), ”On complementizers: toward a syntactic theory of complement types”.
F o u n d a t io n s o f L anguage 6.

[7] Chafe, Wallace L. (1970), M ea n in g a n d th e s tru c tu re o f language, University of Chicago
Press, Chicago.

[8] Chomsky, Noam (1955), T he lo g ic a l s tr u c tu r e o f lin g u is tic th e o ry , Plenum Press,
New York [1975].

| 9] ------ (1957), S y n ta c t i c s tru c tu re s , Mouton, The Hague.

1 10]------ (1964), ’’Current issues in linguistic theory”, In: Fodor and Katz (1964), pp.
50-118.

11 1] ------ (1965), A s p e c t s o f th e th e o r y o f s y n ta x , MIT Press, Cambridge.

[12] (1970), ’’Remarks on nominalization”, In: Jacobs and Rosenbaum (1970),
pp. 184-221.

I 1 3]------ (1971), ’’Deep structure, surface structure and semantic interpretation”, In:
Steinberg and Jakobovits (1971), pp. 183—216.

[14] ------ (1972), ’’Some empirical issues in the theory of transformational grammar”,
In: Peters (1972), pp. 63-130 .

I 1 5] ------ (1974), ’’{Dialogue with] Noam Chomsky”, In: Parret (1974), pp. 27—54.

[16] ------ 1975a), R e f le c t io n s o n la n g u a g e , Collins, London. London.

[17] ----- (1975b), Q u e s tio n s on f o r m a n d in te r p r e ta tio n , P. de Ridder Press, Lisse.

8 5

I 18] ------ (1976), ’’Conditions on rules of grammar”, L in g u is tic A n a ly s is 2 ., 303-351.

I 19] ------ (1977), ”On w/i-movement, ” In: Culicover et al. (1977), pp. 71-132.

(20] Chomsky, Noam, and Howard Lasnik (1977), ’’Filters and control” , L in g u is tic I n q u iry 8 .,

425-504.

(21] Culicover, Peter W., Thomas Wasow, Adrian Akmajian (eds.) (1977), F o rm a l s y n ta x ,

Academic Press, New York.

[22] Emonds, Joseph (1970), R o o t a n d s tr u c tu r e p re se rv in g tra n s fo rm a tio n s , unpublished
Doctoral dissertation, M. I. T., Cambridge.

123] ------ (1972), ”A reformulation of certain syntactic transformations,” In: Peters (1972),
pp. 21 —6 2 .

I 24] Fiengo, Robert (1977), ”On trace theory,” L in g u is tic In q u iry 8 ., 35—62.

[25] Fillmore, Charles J. (1968), ’The case for case,” In: Bach and Harms (1968), pp. 1 —90.

[26] Fillmore, Charles J., and Terence D. Langendoen (eds.) (1971), S tu d ie s in lin gu istic

se m a n tic s , Holt, New York.

I 27] Fodor, Jerry A., and Jerrold J. Katz (eds.) (1964), T h e s tr u c tu r e o f language', readings in

th e p h i lo s o p h y o f lan gu age, Prentice—Hall, Englewood Cliffs.

[28] Grinder, John T. (1976), O n d e le t io n p h e n o m e n a in E n glish , Mouton, The Hague.

129] Halitsky, David (1975), ’’Left branch S’s and NP’s in English,” L in g u is tic A n a lys is 1.,

279-296.

130] Harman, Gilbert (1974), O n N o a m C h o m s k y , c r itic a l e ssays, Anchor Books, New York.

1311 Jacobs, Roderick A., and Peter S. Rosenbaum (eds.) (1970), R e a d in g s in English

tra n s fo rm a tio n a l g ra m m a r, Ginn, Waltham.

[32] Katz, Jerrold J., and Paul M. Postal (1964), A n in te g r a te d th e o r y o f lin g u is tic

d e s c r ip tio n , MIT Press, Cambridge.

[33] Kempson, Ruth M. (1975), P r e s u p p o s itio n a n d th e d e l im ita t io n o f se m a n tic s ,

Cambridge University Press, Cambridge.

[34] Lakoff, George (1967), D e e p a n d su rfa ce gram m ar, unpublished mimeo.

[35] ------ (1970), ’’Global rules,” L a n g u a g e 4 6 ., 627-638.

136] ------ (1971), ”On generative semantics,” In: Steinberg and Jakobovits (1971),
pp. 232-296.

8 6

137] ----- - (1974), ’’[Dialogue with| George Lakoff,” In: Parret (1974), pp. 151 — 178.

[381 Langacker, Ronald W. (1969), ”On pronominalization and the chain of command,”
In: Reibel and Schane (1969), pp. 160—186.

[39] Levine, Arvin (1976), ’’Why argue about rule ordering,” L in g u is tic A n a ly s is 2 ., 115 — 124.

[40] Lewis, David (1972), ’’General semantics,” In: Donald Davidson and Gilbert Harman
(eds.), S e m a n tic s o f n a tu r a l language, D. Reidel, Dordrecht, 1972, pp. 169—218.

I 41] Lewis, David (1974), ’’Languages and Grammar,” In: Harman (1974), pp. 253—266.

[42] Lightfoot, David (1976), ’’Trace theory and twice moved NP’s,” L in g u is tic In q u iry 7.,
559-582.

[43] ------ (1977), ”On traces and conditions on rules,” In: Culicover et. al. (1977),
pp. 207-238.

[44] McCawley, James D. (1968), ’’The role of semantics in a grammar,” In: Bach and
Harms (1968), pp. 125-170.

[45] ------ (1970a), ’’Where do noun phrases come from? ” In: Jacobs and Rosenbaum
(1970), pp. 166-183.

[46] ------ (1970b), S y n ta c t ic a n d lo g ic a l a rg u m en ts f o r s e m a n tic s tru c tu re s , unpublished
mimeo.

[47] ------ (1974), ’’[Dialogue with] James McCawley,” In: Parret (1974), pp. 249—278.

[48] Parret, Herman (1974), D isc u ss in g language, Mouton, The Hague.

[49] Partee, Barbara Hall (1971), ”On the requirement that transformations preserve
meaning,” In: Fillmore and Langendoen (1971), pp. 1—22.

[50] Perlmutter, David M. (1971), D e e p a n d surface s tr u c tu r e c o n s tr a in ts in s y n ta x , Holt,
New York.

[51] Peters, Stanley (ed.) (1972), G o a ls o f lin gu istic th e o r y , Prentice—Hall, Englewood Cliffs.

[52] Peters, S., and Robert W. Ritchie (1969), ”A note on the universal base hypothesis,”
J o u rn a l o f L in g u is tic s 5 ., 150—152.

[53] ------ (1971), ”On restricting the base component of transformational grammars,
In fo r m a tio n a n d C o n tro l 1 8 ., 483-501.

[54] ------ (1973), ”On the generative power of transformational grammars,” In fo rm a tio n

S c ie n c e s 6 ., 49—83.

N7

155] Postal. Paul M., and Geoffrey Pullum (1978), "Traces and the description of English
complementizer contraction." L in g u is tic I n q u iry 9., 1—29.

156] Reibel. David A., and Sanford A. Sehane (eds.) (1969). M o d e rn s tu d ie s in English,

Prentice-Hall, Englewood Cliffs.

157] Rosenbaum, Peter S. (1967), T h e g ra m m a r o f E nglish p r e d ic a te c o m p le m e n t c o n s tr u c tio n s ,

MIT Press, Cambridge.

|58 | Ross, John Robert (1967), C o n s tra in ts o n variab les in s y n ta x , unpublished Doctoral
dissertation, MIT, Cambridge.

[59] ------ "The cyclic nature of English pronominalization,” In: Reibel and Sehane
(1969), pp. 187-200.

160] Sadock, Jerrold M. (1975), T o w a r d a lin g u istic th e o r y o f sp eech a c ts . Academic Press.
New York.

[61] Searle. John R. (1969) , S p e e c h a c ts : an essay in th e p h i lo s o p h y o f lan gu age,

Cambridge University Press, Cambridge.

162] ------ (1972) ’’Chomsky’s revolution in linguistics,’’ T h e N e w Y o r k R e v ie w o f B o o k s ,

June 29, 1972. pp. 16—24. (Also in Harman 1974)

16 3] ------(1976). ’’Review of Sadock (1975)," L an gu age 5 2 ., 966-971.

[64] Seuren. Pieter A. M. (1974a), "Autonomous versus semantic syntax," In: Seuren
(1974b), pp. 96-122.

1651 ------ (ed.) (1974b), S e m a n tic s y n ta x , Oxford University Press, London.

166] Steinberg, Danny D., and Jakobovits Leon A. (eds.) (1971), S e m a n tic s : an in te rd is c ip lin a ry

re a d e r in p h ilo s o p h y , l in g u is tic s a n d p s y c h o lo g y , Cambridge University Press,
Cambridge.

167] Wasow, Thomas (1973), "More migs and pilots," L 'o u n d a tio n s o j L a n g u a g e У.

168] Wilson, Deirdre (1975). P r e s u p p o s itio n s a n d n o n —tr u th —c o n d it io n a l se m a n tic s ,

Academy Press, New York.

Computational l.inxuislics and C omputer l.atlKUaites l oi. XIII. IV 79.

MACHINES IN THE SERVICE OF THE HUNGARIAN
SUBSTANTIVE AS A MACHINE

F. Papp
University L. Kossuth, Debrecen

Hungary

1. INTRODUCTION

A morphological automaton receives the necessary grammatical information and the desired
correct surface form is produced: Eng. TABL + S IN G ----* table, TABLE + PL11R----*•
tables; Lat. TABULA + SING + ACC----* tabulant, TABULA + PLUR + GEN —«• tabularum.
etc. Two prerequisites are indispensable for a morphological automaton to work correctly:

(i) the structure of the automaton must be described, and
(ii) depending on, as well as serving, the description given in (i), every single word in the

lexicon has to be supplied with information of a certain type. Task (i) will be dealt with in
greater detail below (1.2.). In general terms, the structure of (ii) is such that it indicates

a) the change the stem of a word must undergo as well as
b) the condition on which this change must take place.

Thus, one finds the following with the word lady:

a) _y^ = i e

b) if +PLUR. to ensure the correct form ladies in the case of an orthographic output.
The dependence of (ii) on (i) means that, depending on the way the structure of the automa
ton is described (in fact, on the way the automaton itself is constructed), more or less informa
tion of this or that type is necessary to be fixed in the lexicon. Thus, it is conceivable that one
finds the following with the word lady:

a) y = /
b) if + PLUR, the automaton being devised in a way that it adds the ending -es to the

stem already modified (therefore the form ladies is created at about the same place as the form
dishes). It is also conceivable that the word lady as a lexical unit is not accompanied by any
information whatever (more exactly, zero modification can be found, which means that it is
a question of a "regular and standard stem wholly to be processed by the automaton”), but
then such a rule has to be built into the automaton as first transforms ail final -v’s into
-Je's, then adding the plural ending 5. Forms like m an -----men need separate treatment.
A block has to be built in so as to stop the formation of the plural of some words or to give
a unique solution (thus, the word information in the lexicon must be accompanied by a
warning like "sing, t.” or some such instruction that, in the case of the input information
PLUR, one should get as an output form, say, this: kinds/pieces of information), etc. It can
be seen, therefore, that even in the case of English, where the stem could be accompanied
merely by the two possible values of the category NUM as input data (SING, PLUR), one

90 -

has to deal with a rather complex automaton. If this automaton is intended to be realized in
a computer program, for this purpose one needs a good many instructions even in an advenced
programming language and a wellprepared lexicon, etc. Therefore, the task is not trivial even
in English (Latin, French, etc.).

It is even less trivial in the case of the Hungarian substantive. From the given viewpoint,
Hungarian nouns have the following characteristics:

(i) while English, French, etc. substantive stems can be followed only by the two-value
category (NUM) mentioned above, just as Latin, Russian, etc. substantive stems, after which
two categories may stand (NUM and CAS, the second with several values: NOM, ACC. GEN, etc.),
Hungaian substantive stems can be followed by

a) the category NUM more than once, according to the detailed rules given below,
b) the category PERS with three values, the category POSS with two values, and the

category CAS with seventeen-twenty-odd values, according to various scholars.

(ii) These pieces of information follow each other in a certain definite order.
(iii) While in English (French, Russian, etc.) lexicon phenomena like m a n ---- men.

in fo rm a tio n ---- 0 (pieces of information) occur in a random fashion, in a Hungarian
lexicon, besides contingencies similar to these, there is a cardinal piece of information
concerning vowel harmony for synthesis, which systematically pervades the whole lexicon
(every single word has either palatal or velar vowel harmony, or rather several dozen lexemes
are subject to standard variation between the two vowel harmonies). This information can be
unearthed from the sound shape of individual words by means of a separate small autmaton.
And if one has such an automaton supplying units in the lexicon with the proper information
on vowel harmony, it is worth expanding it in a way that it should be able to provide other
pieces of information necessary for synthesis on the basis o f the processing of the lexicon.
The theoretical point of interest of such equipment lies in the fact that through it, information
necessary for the synthesis of an arbitrary new lexeme can also be produced correctly with
great probability, the analysis not being bound up with a given lexicon, large as it may be.
At the same time, this has presumably resulted in a modelling of a Hungarian native speaker's
activity when individual newly-met lexemes are provided with appropriate information from
the lexicon, and their respective forms are compared in accordance with this:
SPUTNIK + SING + A C C ----» szputnyikot (velar harmony, the ending of the accusative
being -o t) , BEATLES + PLUR + NOM — -*■ bitleszek (palatal harmony, the ending of the
plur. nom. being -ek), HOTEL + SING + LOC - -+ hotelban/ hotelben ’in (a) hotel’
(unstable vowel harmony, the ending of the sing, locative-----inessive being -ban or ben),
etc. Obviously, any lexicon must be open and must ensure manageability in the course of
synthesis for new lexical units entering it. It is evident, at the same time, that this is not
so trivial a task for a language like Hungarian as for English, where the problem lies in
attaching (e)s for the expression of the plural, or for Russian in the case of consonantal
stems: various declined forms of word 'Beatles' are easily produced, as in б и т л з а

- 91

sing, gen./acc., б и т л з у sing.dat., 6ИТЛЗЫ plur. nom., etc.

The automaton that is able to generate all paradigmatic forms of Hungarian nouns, and
an essential part of which was realized in a computer program several years ago will be
described in brief below (cf. [3], [6]), to be followed by an outline presentation of what
kind of information was necessary for this, and how it was obtained through a machine
processing of the lexicon [1] (see [4] for details).

2 T H E A U T O M A T O N G E N E R A T I N G T H E P A R A D IG M A T IC F O R M S O F T H E H U N G A R I A N

S U B S T A N T IV E

It follows from the foregoing, that while, with respect to full paradigms, an English noun
has altogether two paradigmatic forms, a Latin substantive possesses ten, a Russian noun
twelve - disregarding the Latin and Russian vocative as well as a few deficient Russian cases —,
a Hungarian substantive with a full paradigm has a great many paradigmatic forms, according
to some scholars as many as 714 (see [2, 50]), which is somewhere around the lower limit.
Theoretically, however, — on account of a feature of the Hungarian substantive to be noted
below - the number of forms individual Hungarian nouns have could be infinite (i.e. it
could consist of an infinitely long series of letters). This situation is presented in Fig.l., to
which the following comments are added.

The automaton works in the direction of the arrows: a stem with the information that
determines its paradigmatic forms enters the automaton (further on: Ml ’morphological
information’), and the full form comes out in orthographic shape (of course, it could come
out in phonetic transcription as well). The peculiarities and meaning of certain parts of MI
are the following:

NUM-----is the category of number. Unlike Old Greek and Old Church Slavonic, etc.
where the dual also existed, it can take on only two values: SING (singular) and PLUR
(plural). However, as was noted briefly above, it may occur more than once within the full
Ml (in fact, it may occur an infinite number of times after the category POSS, which see
below). It always refers to the singular or plural form of a preceding element (immediately
to the left). Therefore, STEM + SG = the singular of the stem, PERS + PL = the plural of
the person, etc.

PERS-----is the category of person. It may take on one of three values: 1st, 2nd,
and 3rd person, an example being: könyvem ’my book’, könyved ’your book’,
könyve ’his/her book’. Combined with NUM: KÖNYV + SG + 0PERS^ könyv ’book’,
KÖNYV + PL + 0 PERS — könyvek 'books’, KÖNYV + SG + 1PERS + PL + NOM —
—* könyvünk ’our book’. KÖNYV + PL + 1PERS + SING + NOM —* könyveim
’my books’ . KÖNYV + PL + 1PERS- + PL + NOM —*■ könyveink ’our books’.

POSS---- is the category of possession. It may take on either of two values.
’possession’ or ’nonpossession’. For example, KÖNYV + SG + 0PERS + POSS + SG 4
+ NOM —*• könyvé ’that of the book’. (A folyóirat papírja szép, de a könyvé nem az.
’The paper of the journal is fine, but that of the book isn’t .’) The suffix -é_ of the possession
may appear after more complex antecedents as well: könyvemé ’that of my book',
könyveké ’that of the books’ , könyvünké ’that of our book’, könyveinké ’that of our books}
etc. Naturally, the possession itself may also be put into the plural: könyvéi ’those of the book',
könyveméi ’those of my book’, etc. When this is the case, the possessive suffix may be
added repeatedly in the literary language: könyvéié that of those of the book', which may
again be followed by a plural ending, etc. theoretically ad infinitum. This is indicated at this
place in Fig.l. by the loop (cycle). In reality, more than a twofold repetition hardly ever
occurs (-éiéi-), therefore a counter ought to be built into the cycle: if it has occurred twice,
the cycle is ended. In some Hungarian dialects the possessive suffix cannot be followed by
the PL, therefore this cycle does not occur at all in these dialects.

CAS is the category of case. It may take on a value out of at least 17, for instance
NOM. ACC, DAT. etc. Somewhat exotic case values can be demonstrated by the following
examples: instrumental — — könyvvel 'with (a) book', superessive — — könyvön on (a)
book’, subessive-----könyvié 'on(to) (a) book' (with direction indicated), delative - - könyvről
’off (a) book’ , in e ss iv e -----könyvben ’in (a) book', etc. As Fig. 1 shows, arbitrarily
complicated forms may be generated. For example: KÖNYV + SG + 2PERS + PL + 1NE —*
könyvetekéiben ’in those of your (plur.) book’.

The algorithm realized by the computer program presented in Fig.l., consisted of the
following blocks: JL An input lexicon: SG, PL; 1PERS, 2PERS, 3PLRS; POSS! NOM, ACC,
DAT, etc. 2̂. a block controlling the syntax of input information: some value of NUM may
figure anywhere, except after itself and some value of CAS. The other categories may follow
the stem only in this order: PERS-----PO SS------- CAS. If there was an error in stating the
task (in the sequential order of individual categories), the machine gave a feed-back signal.
T An output lexicon, which contained real (surface) Hungarian endings. _4._ A converter block
contained the input lexicon on the one hand, and the output one on the other. In addition
it also contained the requirements which had to be met for individual input data to be
transformed into surface output data of one or another kind. Examples:

(i) Everywhere at the output 0 corresponded to the input information of the SG.
(ii) (Among others) к corresponded as a concrete output to PL input information if

$

1PERS figured (cf. above: könyvünk ’our book’): the к shows that it is ’ours’ and not
mine’ but an output / corresponded to it if the suffix of PL figured after POSS. The

rules operate cyclically till all input information is converted into final output forms. In the
course of their operation, the rules also generated intermediary symbols, which were not part
of the input lexicon, but which were not Hungarian endings either, so that they gradually
had to be transformed into real endings.

3. IN F O R M A T IO N G A I N E D FR O M T H E L E X IC O N A N D HOW IT IS G E N E R A T E D

The automaton described under item 2. worked without any information from the lexicon
whatever. In its converter block (4L there were also such general rules among the prerequisites
that extracted the necessary information for a correct selection of endings from the shape of
the stem. In this way, however,

+ +
a) exceptions were to have wrong forms (as if in English forms like mans, tooths,

etc. had been generated);
b) in some cases two forms were generated and one had to choose from the two;
c) forms missing from the full paradigm of a given lexeme were also rccciwd. It is obvious

that information from the lexicon is needed for generating correct forms and only the correct
forms. It is advisable to detach the generation of information from the lexicon from the
synthesis itself.

3.1. NOUNS WITH DEFECTIVE PARADIGMS

Standard European languages surrounding Hungarian recognize, in essence, only two
types of defective paradigm: ”SG T” -----singularia tantum, and ”PL T ” ------ pluralia tantum.
A more complete picture is demonstrated by Table 1.

\ CAS
N U M \

___________J S |

TOT CAS NOM T OBL T

TOT NUM
words with a
full paradigm APPELL ? ?

SG T SG T APPELL se, sibi

PL T PL T APPELL ADV

Table 1.

- 94 -

This table shows that two kinds of defectiveness can be discovered in respect of cases as well:
a) if tin both numbers or in either of the two numbers) only the nominative exists, it is

a question of appellatives;
b) if only the oblique cases, or some o f them, exist (as in the case of the Latin reflexive

pronoun: se, sibi),. it is a question of nouns with a defective paradigm or, in fact, adverbs. It
is clear why this two-dimensional table was enough: the full paradigm could be set up only
according to the two obligatory categories of case and number.

Hungarian presents a considerably more complicated case: paradigm, in addition to the
above two categories, can also be formed according to the obligatory category of PERS. That
is why Hungarian forms with full/defective paradigms can only be represented in three dimension,
as can be seen in Fig. 2. (The POSS is not an obligatory category; that is why some authors
do not even treat it among paradigmatic forms. If this category were also obligatory-----
i.e. if a separate group of nouns were characterized by the fact that they are unable to have
a possession, and, consequently, would no_t be able to have a form in e_-----, the situation

could be represented only in four dimension.) As in Table 1., Figure 2. also reveals the
introduction of the simplification that it was not examined which oblique cases were missing
from the list of cases. Only such distinctions are introduced that the NOM is missing, or
that some/all of oblique cases are missing.

It can be seen that non-defective elements (having a full paradigm) can be found in the
upper left corner of Fig.2., with the classical SG T and PF T below them.

Fig. 3. sets out to demonstrate what ways are missing from the synthetizing automaton
outlined above in the process of generating Hungarian nouns with defective paradigms. (It
should be noted that the processing of about 35 000 nouns to be found in fl] showed
that they included approximately 3000 SG T and a further 700 defective elements.) Here
are some examples to illustrate Hungarian nouns having rather peculiar defective paradigms,
in accordance with the numbering given in Fig., 2.:

19 TOT NUM, PERS T, TOT CAS. That is to say all the cases of the two numbers exist,
but the word can only appear in a form having a personal ending. Such are fia ’his/her son’,
neje ’his wife’ and some words having similar semantic characteristics,

22 SG T, PERS T. TOT CAS: jioltom, holtad, holta 'my death, your death, his/her
death’, főztöm, főztöd, főztje, ’my cooking, your cooking, his/her cooking’. It should be
noted that ’death in general’ also exists, but it is a different lexeme. The same can be stated
about other defective nouns. (Occasionally, however, there occur nouns that do not exist
independent of some person. Such are főztöm, főztöd, etc. It is possible to have in mind food,
meals, lunch etc. in general, but the concept itself of ’the result of somebody’s cooking’ can
only have forms with these possessive endings.)

- 95 -

25 PL T. PERS T. TOT CAS: eleim, eleid, elei . . . 'my ancestors, your ancestors, his
ancestors . . . It is important to emphasize that there is a lexeme having the same meaning
but with a full paradigm: j3s_’ancestor’. The existence of elei proves precisely that it is a
question of real defectiveness of paradigm here rather than, say, that the concept designated
by the given lexeme as such prefers to figure in the company of several others like possessive

definiteness,etc. One is not interested in reality or notions referring to parts of reality here:
one has to establish the defectiveness of a lexeme as a linguistic unit. That is why in the given
sense one would never come across lexemes like *elcL ^elők. etc. in the course of analysis,
lor it is the appropriate forms of the lexeme ős that always figure in such cases. In the course
of synthesis, however, this lexeme may. in theory, be accidentally selected tor uns meaning.
Information from the lexicon indicating defectiveness serves precisely for the purpose of stop
ping the generation of non-existent forms of this kind, putting another stem with the same
meaning but having a full paradigm into the input of the automaton.

Finally, there is a small group of nouns with a defective paradigm, which is hard to
place. The reason for this can be understood on the basis of Fig. 3.: here a path rather than
a point of the graph describing the automaton is missing (marked by a white arrow in the
figure). That is to say, these lexemes either figure

a) in the plural and may have forms with or without personal endings or
b) in the singular having only forms with personal endings.

Such are:

a) léptek 'steps', léptei 'his/her steps’,
b) lépte 'his/her step' (’step in general’: lépés, with a full paradigm);
a) párthivek 'adherents of a party’, páthivei ’his/her/its adherents’.
b) párthive 'his/her/its adherent'. It is interresting that, perhaps, an international term also

behaves like this: the lexeme homonirna ’homonym' occurs either in the plural (homonimak
'homonyms') or with a personal ending (homonimája its homonym') '(one word is) the homonym
of another'. However, this is a typical case when it is not the linguistic phenomenon (lexeme)
that is defective', but reality itself: in the nature of things a 'homonym' implies more things
than one. or a word can be said to be the homonym of another, therefore, for i! to express
the meaning o f it is put in the form of 3 PERS. That is why the Hungarian wo_rd_ homonym',
for example, may figure in bare singular too, namely in the language use of linguists, who may
talk of a homonym in the abstract.

Synthesis proper can start only after this point has been controlled, i.e. if it has been
established that the lexeme in question has a full paradigm according to the information
supplied by the lexicon (or at least its form appearing at the input exists).

- 96 -

3.2. TYPES OF STEM

If our synthetizing automaton contained a rule stating that "a stem is the maximum
(longest) identical (unchanging) segment of word forms realizing lexemes” , then, in written
form, the stem of the English word lady would be lad-, as the latter y is to change. Similarly,
the stem of the verb write would be only w r- (since there is at least one such paradigmatic
form in which the subsequent -i- is replaced by something else: wrote), etc. A grammar
containing such a rule would also give correct results, i.e. it would meet the requirements of
the principle of explanatory adequacy. Only considerations extending beyond the scope of
grammar, i.e. considerations concerning economy, the simplicity and elegance of the description,
make one vote rather for a grammar containig the rule: ”a stem is the maximum similar segment
of word forms realizing lexemes” and the similar’ would cover automatic changes like
y - - ie (lady - - ladies) easil operating on stems.

By relying partly on Hungarian grammatical tradition. Hungarian substantive stems could
be divided into 12 groups. In addition, there were a few hundred su bstantive lexemes
either unbalanced between two pure types of stem or which behaved rather individually. In
81% of the 35 000 nouns mentioned earlier, no modification what ever had to be effected
on the stems, while in 13% of them an easily definable modification had to be carried out
(long á, e, etc. appear before some endings in their short forms: almát ’apple acc.' -
alma ’apple - - nom.’). The remaining 6% of substantives was divided among representatives
of rare stem types as well as unbalanced substantives. The automaton operating without
information from the lexicon presented under item 2, worked with a precision of 94% : it was
able to carry out ’zero modification’ as well as ’long-short stem final vowel modification'.
New words like szputnyik or beatles mentioned under item 1, all belong to the unchanged stem
type (various rare changes in stems are naturally historical relics, and new lexemes are highly
unlikely to get into any o f these groups). Therefore, the memory of native speakers of
Hungarian is burdened only by these relics (about two thousand in number), and this number
will hardly increase, in fact the opposite can be anticipated.

3.3. A VOWEL BETWEEN THE STEM AND CERTAIN ENDINGS

Certain endings with initial consonants cannot directly be linked to the stem, so a vowel
(a stem-final short vowel at an earlier stage of the history of Hungarian) is wedged between
them, for instance, kalap-o-m 'my hat’, ház-a-m my house', könyv-e-m ’my book’ . . . ; the
coresponding plural forms are kalap-o-k, ház-a-k, könyv-e-k; the corresponding accusative
forms being kalap-o-t, ház-a-t, könyv-e-t, etc. Special information concerning this vowel is
also fixed by every single lexeme in the lexicon.

3.4. CERTAIN FORMS WITH PERSONAL ENDINGS

It is a peculiar problem for synthesis if the stem is followed by one of the following two
input information series:

- 9 7 -

(1) SG 3PERS J (.1 = SG or PL)

(2) PL 1PERS J (I = 1 or 2 or

(after this e element of POSS may or may not figure, and any CAS ending may follow).
The problem is caused by the fact that in such cases a phoneme l/l either appears between the
stem and the appropriate string of endings or does not — in a distribution that seems to be
random:

a) it either appears before the same group of stem-final vowels or consonants or does
not: türelm-e 'his/her patience' without a l/l, but film-j-e ’his/her film with a l/l;

b) occasionally it does not present itself after a single stem-final consonant, on the other
hand it does turn up following an overloaded stem-final consonant cluster, further extending
it: ablak-a "his/her window' (cf. the final single (£)), but barack-j-a 'his/her apricot’ (cf. the
cluster -ck j obtained as a result!):

c) there are many cases of fluctuation between forms with a l/l and forms without one.

In the course of a manysided machine processing of the material, it was established that
the phoneme l/l appeared if — precisely because of rare and complicated, etc. stem-final
clusters — this stem-final position was necessary to be indicated separately. Fluctuations could
be anticipated at places where the cluster was neither too typical not too rare. In the case of
an identical stem-final consonant (cluster) (cf. a) above) l/l presents itselt in new loan-words
(film), but does not appear in old words, where a rare (changing) stem type marks stem-final
position anyway (türelem 'patience' nom. - - the stem is modified: türelm-). That is to say.
native speakers of Hungarian also strive to operate a minimum-size lexicon, and l/l promotes
a non-lexicon-bound automatic analysis in marking stem-final position in these forms.

3.5. VOWEL HARMONY

It is a well-known fact that the principle of vowel harmony in Hungarian has changed,
virtually it is the vowel of the last syllable that decides whether the stem is velar or palatal
(cf. 16]). In the course of the machine ordering of the material of [1], exceptions as well
as substantives showing fluctuation as to vowel harmony were sifted out. then a cvch.- rule
for the bulk of the nouns (and obviously for most new words to come) was successfully
established, which, on the basis of the vowels constituting a lexeme, automatically determined
its pattern of vowel harmony. The automaton presented under item 2, solved this task too
with a precision of 90%. The velar or palatal quality of all endings containing a vowel depends
on VH. Individual PERS, CAS, etc. endings have allomorphs depending on this principle:
Inessive - - ban/ben; Allative - - hoz/hez/höz, 1 PERS SG om/em/öm, etc.

4. F I N A L R E M A R K S

Hitherto machines and Hungarian substantives have been brought into contact in two
respects

- 98 -

a) the numerous (perhaps infinitely great) number of Hungarian substantive forms could
be represented in a way that an automaton generated them;

b) the information from the lexicon necessary for this was advisable to be obtained through
a machine processing of the data in the lexicon. One cannot, however, be silent about a
further potential connection between the Hungarian substantive and automata (perhaps logical
languages?) either. The well-organized substantive forms of Hungarian or other agglunative langu
ages built on an agglutinative basis may serve as a model for constructing certain elements of
a logical language.

REFERENCES

[1] A magyar nyelv értelmező szótára (An Explanatory Dictionary of the Hungarian
Language) Vols. I-VII. Budapest, 1959-1962.

[2] Antal László, A magyar esetrendszer (The Hungarian Case System) Budapest. 1961.

[3] Papp Ferenc, A magyar főnévragozás három modellje (Three Models of Hungarian
Declension) In: Magyar Nyelv 62.2. 194-206 (1966)

[4] Papp Ferenc, A magyar főnév paradigmatikus rendszere (leírás és automatikus szinté
zis) (The Paradigmatic System of the Hungarian Substantive. Description and Automatic
Syntesis), Budapest, 1975.

15] Stein Mária, Synthese des ungarischen Hauptwortes mit einer elektronischen Rechenma
schine. In: Computational Linguistics 5. 169-176 (1966)

[6] Szépe György, Vegyes magánhangzóiéi szavainak illeszkedésének kérdéséhez. (On Some
Questions of Vowel Harmony in Hungarian Words Containing Mixed Front and
Back Wovels) In: Nyelvtudományi Értekezések 17. 105-129(1958).

SG PERS SG é SG NOM

Fig. I .

- 100 -

Fig.2.

PL1PERS PL
STEM NUM1 PERS NUM2 CAS

Fig. 3.

C. SOFTWARE METHODOLOGY

,

C. SOFTWARE METHODOLOGY

V

Compuialionul l.iiixtiislics ami (oinpiiicr l.anxtiaucs Го/. XIII. 1479.

INDUCTIVE GENERALIZATION AND PROOFS OF FUNCTION PROPERTIES

P. Degano and F. Sirovich

Instituto di Seienze dell In forma/ione.

Universita' degli Studidi Pisa.

Italy

Institute di Elaborazione dell Informazione.

Consiglio Nazionalc delle Ricerche. Pisa

Italy

Abstract

The paper presents a formal system and an inductive method for proving function
properties and investigates the relationships between inductive and deductive proofs. Induction
is performed by stepwise generalizing specific given elements of the function domains which
are known to satisfy the property itself. The method is based on symbolic computation,
reflexivity lemmas and function behaviour estimate, and is proven sound when functions
and predicates belong to a constructively defined class. Finally, an example is completely
worked out.

primitive recursive functions, inductive reasoning, generalization, symbolic computation,
program properties, function behaviour estimate.

I. Introduction

Inductive reasoning has been a popular task in Artificial Intelligence since the very early
beginnings, and it has been attempted in such domains as (just to mention a few) series
completion, grammar inference, automatic programming, and theory formation |5. 6, 8, 9,

In deductive sciences inductive reasoning plays a peculiar role in the process of
knowledge development. In fact, the correctness of an induction can be confirmed by a
rigorous proof, even though a semi—decision procedure only might be available, depending
on the formal system complexity. Moreover, the rejection of an inductive hypothesis may
bring forth explanations about the failure which help refining the hypothesis. Finally, the
aptness of the inductive method itself can be precisely stated and confirmed by a formal
proof.

Keywords

12. 15. 17. 18. 21].

It goes far beyond the scope of this paper to give a complete account of all the work
on inductive reasoning in formal systems. We might mention just a few references. Meitzer

- ю : -

[13], Michalski [14], Plotkin [16] and Vere [19] tackle various forms of inductive reasoning
tasks in the predicate calculus. Brown and Tärnlund [4] are concerned with finding a close
form solution to difference equations. They discuss a taxonomy of inductive methods and
propose a temporal method based on proofs, where the proof of the (non) correctness of a
solution is used to formulate a new inductive hypothesis. In the context of program
verification, Boyer and Moore [2], Brotz [3], and Aubin [1] need to generalize theorems to
be then proven by application of a suitable induction principle. The problem domain we have
chosen is akin to the latter .

The inductive generalization method we present here induces properties of (recursive)
functions. The properties themselves are defined as (boolean valued) recursive functions. The
method depends on the fact that a given property holds for given points in the domains of
the involved functions (g r o u n d p r o p e r t y), and on the corresponding ground property
computation. We can prove that the method is s o u n d , i.e. it induces formulae which are
actually theorems if the involved functions and properties belong to a constructively defined
class.

The evidence the method starts from is that a very trivial (with no quantified variables)
theorem holds, because indeed the actual computation is a proof. Yet more information could
be exploited. The definitions of properties and functions are available and must be taken into
account, because no relevant inductive reasoning can be made irrespectively of their nature.
Secondly, induction can depend on the details about the flow of computation, i.e. which
function, when and where, was applied during the computation.

We will first present the formal calculus environment for the inductive method and
define the class of functions and properties for which the method can be proven sound. The
inductive generalization method is presented, and the proof of its soundness is given in
Section 7. In Section 8 related research work is discussed, and the Appendix provides an
example completely worked out.

2. A formal calculus environment

We use a simple recursive function formalism, TEL (Term Equation Language) which
was introduced [11] for proving theorems by symbolic computation (see for example [2])
and is similar to other independently developed formalisms [1 ,7]. For the present application
we add types to TEL so that the resulting language is so similar to Aubin’s that the formal
treatment and all results of his carry over Typed TEL. We now briefly overview TTEL,
borrowing some nomenclature from Aubin’s.

Every term, i.e. every variable and function application, has a type. Each type is
introduced by a set of type equations which also define type constructors. All the types and
constructors occuring in the equation (apart from the type and constructor being defined)
must have been previously introduced. The language is quantifier free, because every variable
occurring in an equation is implicitly universally quantified over its type. Examples are

103 -

j TYPE(TRUEO) = BOOL;
TYPE(FALSEO) = BOOL

i TYPE(NILO) = LIST;

i TYPE(ZEROO) = NAT;
TYPE(SíNAT)) = NAT

TYPE(LNILO) = LL1ST;
TYPE(CONS(LIST, LIST)) = LIST TYPE(LCONS(LIST, LLIST)) = LUST 1

The constructor TYPE is used only to denote type equations. In the sequel we will omit the
argument list of 0-adic constructors. We say that a type is r e f le x iv e if it is defined in terms
of itself (e.g. NAT, LIST and LLIST). Analogously, we say that constructors like S and
CONS are reflexive and the argument position where the type they construct occurs is called
the r e f le c t io n a r g u m e n t p o s i t io n . Non reflexive constructors will also be called t e rm in a to r s of
the type. Given a term c (f j , . . . , t n) where c is a constructor, t x, . . . , t fi are terms,
then t . (1 < i < n) is an i m m e d ia t e p r e d e c e s s o r of c (/ j , . . . , f) if f. occurs in a
reflection argument position.

Defined functions are introduced by stages. A function definition is a pair, whose first
component is a type equation which defines the types of the arguments and the type of the
result. For example TYPE(EQN(NAT, NAT)) = BOOL. The second component consists in a
set of equations (r e w r i t e e q u a t io n s) , which allows a definition by cases [7, 10]. Rewrite
equations obey the schema f (a x, . . . , a n) = (rewriting term) where / is the function being
defined, and a { , . . . , a n are terms (f o r m a l a rg u m e n ts) which may consist either in a
variable, or in a constructor applied to variables only (r e c u r s io n a r g u m e n t) . The only variables
which may occur in the (rewriting term) are the formal argument variables. If / occurs in the
(rewriting term) (recursive equation), its recursion arguments must be immediate predecessors
of the formal recursion arguments.

The definition by cases is restricted as follows. If an argument position is recursive in
one equation, then it must be a recursive argument position for all the equations, and for
each constructor of the required type there must be exactly one rewrite equation1. Thus,
total functions only can be defined in TTEL. This is a concrete example.

I EQN(ZERO, ZERO) = TRUE;
EQN(ZERO,S(y))= FALSE;
EQN(S(x), ZERO) = FALSE;
EQN(S(x),S(y))= EQN(x,y)i

(ENbl)
(ENb2)
(ENb3)
(ENr)

The definition of computation of a TTEL term follows.

1 I f th e fu n c tio n sim ultaneously recurs on tw o o r m ore a rgum ents , the ex ac tly o n e rew rite e q u a tio n m u s t be given fo r

each tu p le o f co n stru c to rs o f the requ ired ty p es (an exam ple follow s).

- 104 -

i) Specialize a rewrite equation so that its left-hand side becomes identical to a (sub)term
of the evaluating term;

ii) Substitute in the evaluating term the specialized equation right-hand side for the
(sub)term;

iii) Repeat from Step (i) until no equation left-hand side can be made identical to a
(sub)term of the evaluating term.

The interpreter adopts the call—by—need computation rule which is known to be
optimal for recursion equations [20].

Let us now extend the TTEL term definition by introducing free (typed) variables.
A symbolic term is a term which free variables occur in, otherwise the term is ground.
A free variable can be instantiated to any term of its type, possibly introducing new free
variables. We can extend the definition of computation to handle symbolic evaluating terms.
Step (i) only needs to be extended so that the involved test for identity can cause evaluating
(sub) term free variables to be instantiated. The computation of a symbolic term may be
non—deterministic, due to the inherent non—determinism of free variable instantiation. Thus
symbolic computations are (possibly infinite) trees. A concrete example is the following. The
term1 EON (Sfx), S(S(y_))) is reduced to EQN(x, S(y_)) by (EN2) and then either to
FALSE if X is instantiated to ZERO by (ENb2), or to EQN(Xj) if x ̂ is instantiated to
5 (X j) by (ENr). From this point on, all EQN equation can be applied.

We might provide the same inference rules available in Aubin’s system, we instead omit
here since we are interested on inductive proof methods. It is only important to notice that
computations yielding TRUE are proofs because the interpreter itself implements the tactics
Aubin calls simplification. Moreover, a theorem with universally quantified variables is proven
by straight computation if free variables are substituted for quantified variables and the
obtained symbolic term computation yields TRUE without instantiating the introduced free
variables. Even if the metalinguistic constraints on function definition keep function
definitions very simple, yet all primitive recursive functions over type NAT can be defined in
TTEL. It is well known that only a semi—decision procedure can be given for the primitive
recursive function theory. In order to be able to give a decision procedure, we add the
following metalinguistic constraints. The non boolean functions must belong to the class be
defined according to the following schemata.

U—schema
f i x l , . . . , x n) = x j 1 < i < n

N-schema
n(T,v2, . . . ,Уп) = Viy2>- ■ ■ >T„) (Nb)
n{c(x J , X2 , . . . , Xm , .Vi) , y 2 , . . . , y n) = c (S i (Xj , . . . , Xm) , . . . , 8 ̂(Xj , . . . , Xm),

n i y 1 , . V 2 , . . . , y n)) (Nr)

1 F ree variables will be u n d e rlin ed .

_ 105

R—schema
(Rh)

(Rr)

S—schema

where:

— 0, ф, and фн either are constructors or must be defined according to N - or R -
schema only (linear functions);

— y , f . h. either are constructors or belong to the class;

— c , c ' , c" are reflexive constructors, and T, T' are terminators.

Note that n R definition obeys a restricted N—schema. The boolean functions must be
defined according to the schema

where BCONSTi are boolean constants (note that BCONST4 b BCONST6), and Ы is a
symmetric transitive boolean function belonging to the class. In the sequel boolean functions
such as b and Ы will be called p re d ic a te s . Note that functions defined on type BOOL
(such as £1) are allowed only as auxiliary functions in predicate definitions. Then, the form
ot the theorems is where b is a predicate, and t]t are terms built on functions
from reflexive types to reflexive types only.

3. In d u c tiv e g en era liza tio n in T T E L

We can now describe a method to induce function properties from examples. Suppose
that TTEL type and function definitions are given, and a ground property is computed by
means of the TTEL interpreter. Thus, the resulting property value is available together with
a computation trace consisting of a sequence of pairs (rewritten subterm, applied rewrite
equation). We have chosen a very simple formal calculus in order to be able to describe in a
compact way the flow of computation, and to provide a detailed explanation of why a given
function property holds for specific actual arguments. 1

b (T , Г) = BCONSTI

b(T, c ' (z , w)) = BCONST3

b 1 (BCONST4, y) = BCONST5

b (c (x , y) , T ') = BCONST2

b (c (x , y), c ' (z , w)) = b \ (b 2 (x , z) , b (z , y))

61(BCONST6,y)= г

1 Definition by composition is actually allowed as a short-hand for S - and l)-dcfinition.

— 106 -

In other words a theorem and its proof are given, and the goal is to induce from this
evidence a formula which subsumes the ground property, and hopefully is a theorem itself.
This inductive generalization task is accomplished in three steps. First, the most general
theorem is found whose proof consists in the given computation trace. This is a proper
generalization which can actually be checked. Secondly, properties of predicates such as
equality are exploited to further generalize the theorem. A proof of the new theorem is
not given, but it could easily be obtained by simplification and induction. Thirdly, a final
generalization is obtained on the grounds of few rules which we will prove that do yield
valid results.

4 . G en era liza tio n b a se d o n p r o o f

The first clue to start from is the given computation trace. In fact, the very same
computation trace may prove a theorem stronger than the given one. In first place, if a
function application term is never evaluated during the computation, the term can safely be
substituted by a universally quantified variable and the given computation will still be a
proof of the obtained theorem. A typical example is provided by the following ground
property

EQLENGTHi APP(CONS(PLUS(S(ZERO), ZERO), NIL), (1)
CONS(S(ZERO), CONS(ZERO, NIL))),

APP(CONS(S(ZERO), CONS(ZERO, NIL)),
CONS(PLUS(S(ZERO), ZERO), NIL)))

where the involved functions are defined as follows.

(TYPE(EQLENGTH(LIST, LIST)) = BOOL; |EQLENGTH(NIL, NIL) = TRUE;
EQLENGTH(CONS(x, y), NIL) = FALSE; EQLENGTEKNIL. CONStz, w)) = EALSE;
EQLENGTH(CONS(X, y), CONS(z, w)) = EQLENGTH(y, w) j)

(TYPE(APP(LIST, LIST)) = LIST;
! APPtNIL. z) = z; APP(C'ONS(x, y), z) = CONS(x, APP(y, z)) j)

(TYPE)PLUSiNAT. NAT)) = NAT;
! PLUS)ZERO, y) = y; PLUSlSlx), y) = S(PLUS(x. y)) |)

Since the test for list length equality obviously ignores the nature of the list elements, the
terms PLUS(S(ZERO), ZERO) are never evaluated, and can be substituted by universally
quantified variables. The following theorem is obtained

EQ LENGTEK APP(CON S(x. NIL).
CONS(S(ZERO), C’ONSlZERO, NIL)).

APP(CONS(S(ZERO). CONSiZERO. NIL)).
CONS(y. NIL))).

- 107 -

The same generalization can be done on those data terms (i.e. terms built on constructors
only) whose structure is irrelevant to the computation. In the example, one would like to
induce

EQLENGTH(APP(CONS(x, NIL)
CONS(Zi ,CONS(z2,N1L)))

APP(CONS(w, , CONS(w2 , NIL)),
CONS(y, NIL))).

The relevant part of the occurring data terms can be singled out by resorting to the function
rewrite equations, whose formal argument terms describe exactly the most general data term
the rewrite equation can be applied to. Since the symbolic computation can instantiate free
variables in order to apply a rewrite equation, the required generalization is obtained by firstly
substituting free variables for the maximal data terms in the theorem, and then by evaluating
the resulting symbolic term, forcing the computation to exactly follow the given computation
trace. The original free variables will turn out to be instantiated only as far as needed to
obtain the given computation. Let us work out the above example to clarify the matter.

Suppose the maximal data terms are replaced as follows

EQLENGTH(APP(v,, v 2), (2)

APP(v3, v4))

Since the computation trace reports that the recursive APP equation was applied to the
APP terms, the variables Vj and y 3 need to be instantiated to CONS(v^ t , y p) and
CONS(_y3] , y 31) respectively. Analogously, y 12 is subsequently instantiated to NIL and
у 3т to CONS(y 33, NIL). All instantiations are finally collected, and the still remaining free
variables are substituted by universally quantified variables, thus obtaining the following
theorem

EQLENGTH(APP(CONS(v,, , NIL),
CONS(v21,CONS(v23,NIL))),

APP(CONS(v31 , CONS(v33, NIL)),
CONS(v41 , NIL))).

Although this is actually the most general theorem whose proof consists in the given
computation, the result is not satisfactory. Since there is no relationship between the
EQLENGTH argument terms, the theorem cannot be further generalized, for example to
induce the commutativity of APP with respect to EQLENGTH. A weaker generalization
which would retain the links between EQLENGTH argument terms would instead admit
further generalization. On the other hand, the forced computation will never be able to
reconstruct frorh a term such as (2) the identities of y , to v , and of v_2 to y 4 . In
other words, if forced symbolic computation allows for some variables to remain free in the
input data terms, it cannot at the same time bind some of them together. Consequently, the
substitution of free variables for input data terms must be done carefully. In order to obtain
interesting theorems, the variables occurring in one actual argument term of simultaneously

— 108 -

recurring predicates, such as EQLENGTH, should occur in the other argument term as well.
Thus, different free variables are substituted for identical data terms in one argument term,
and the introduced variables are carried over the other argument term. For example, if the
ground property is

EQLENGTH(APP(CONS(ZERO, NIL),
CONS(ZERO, NIL)),

APP(CONS(ZERO, NIL),
CONS(ZERO, NIL)))

then free variables are introduced as follows

EQLENGTHIAPPfv,, v ,) ,

APP(v2 , V l))

and forced computation yields the theorem

EQLENGTH(APP(CONS(vn , NIL),
CONS(v21, NIL)),

APP(CONS(v21 , NIL),
CONS(vn , NIL))).

Actually, Vj and _7 in the second APP term could also be introduced the other way
around, thus yielding

EQLENGTH(APP(v x, v 2),
APP(Vj , v2))

which is a trivial theorem. All possible free variables introductions must be done, and the
resulting hypotheses are tested and possibly rejected by a triviality checker or by subsumption.

The limitation of the proof based generalization method stems from its extravagant
dependence on the involved functions. For example, consider the following ground property.

EQL(APP(CONS(ZERO, NIL), (3)
APP(CONS(ZERO, NIL), REV(NIL))),

APP(APP(CONS(ZERO, NIL),
CONStZERO, NIL)),

REV(NIL)))

where EQL is defined as

(TYPE(EQL(LIST, LIST)) = BOOL; ! EQL(NIL, NIL) = TRUE;
LQL(CONS(x, y), NIL) = FALSE; EQL(NIL, CONS(z, w)) = LALSE;
EQL(CONS(x, y), CONStz, w)) = AND(EQN(x, z), EQL(y, w))j)

(TYPE(AND(BOOL, BOOL)) = BOOL;
! AND(TRUE, TRUE) = TRUE; AND(TRUE, FALSE) = FALSE;
ANDCFALSE. FALSE) = FALSE; ANDÍFALSE, TRUE) = FALSE |)

l()l>

(TYPEtREVtL IST)) = LIST;
iREV(NIL) = NIL; REV(CONS(x, у)) = APP(REV(y),C ONS(x, NIL)),1)

No free variable introduction helps, because the forced computation will anyway yield back
the ground property. A careful analysis of the EQL definition points out that EQL is a
much more demanding equivalence relation than EQLENGTH, because EQN accurately
checks the list elements by means of the function EQN.

On the other side, equivalence relations are of such a paramount importance that it is
reasonable to let the inductive generalization be sensitive to them. The next Section presents
a generalization method which exploits the presence of equivalence predicates in the theorem,
as a first start on generalizing the proof.

5. Generalization based on reflexivity

Let us describe the role of reflexivity by means of example (3). The forced computation
starts with the following term

LQL(APP(y, ,
APP< V , , REV(v3))),

ЛРР(АРР(X] , _v-Д
REV(_v 3)))

The computation trace forces the instantiation of v t to let the outermost APP terms
produce (through the recursive APP equation) two C ONS terms. Thus the symbolic term is
rewritten as follows

EQL(C'ONS(v ,, , APP(Vp.
APPt v , . REV(v ,)))).

(ONS(v ,, . APP(APP(v ,, , v ,).
REV< v J)))).

Now the EQL recursive equation is applied yielding

ANDtEQNt v n , v n).
EQL(APPt v

APP(v , . RLV(v ,))).
APP(APP(v , , , v ,).

REV(v3)))).

This is the first place where reflexivity can help generalizing. Since EQN is an equivalence
relation the reflexivity lemma EQNtx. x) can easily be proven by means of a suitable
induction principle. The lemma can be used to evaluate LQN(v п . у) in place of the EQN
rewrite equations, and that part of the computation trace describing the evaluation of EQN
can be bv passed. 1 he advantage of using the lemma, and of turning aside trom (a part of)
the computation trace, is that the variable v n is left free.

- по -

More precisely, whenever a term such as e (t x , t 2) is found during the forced
computation, and e is a reflexive predicate, the reflexivity lemma e (x , x) is used in place
of the corresponding (sub)computation trace, provided that tj and t1 are identical, and that
they are sub-terms o f the given input symbolic term. In such a case, a new free variable is
introduced for both t } and .

In the given example, the forced computation proceeds with the evaluation of the EQL
term. By instantiation o f у n to NIL, the evaluating term becomes the following 1

EQL(APP(v2,R E V (y 3)),
APP(y2,R E V (y 3))).

The reflexivity lemma is not applied because the second APP term is not part of the input
symbolic term but it comes from the computation of the term APP(_Vj ,v_2). On the
contrary, after a few steps the variable y 2 ripples out and the evaluating term becomes

EQL(REV(y3),
REV(y3)).

Both REV(y3) terms satisfy the conditions above, and can be generalized. Finally,
collecting all instantiations, the induced theorem is the following

EQL(APP(CONS(vn , NIL), (4)
APP(CONS(v21, NIL),

v4)),
APP(APP(CONS(Vj j , NIL),

CONS(vn ,NIL)),

v4)>-

The given computation trace is no more a proof of the induced theorem. Yet, a proof
can easily be obtained by a simplification inference rule, and by use of reflexivity lemmas.
Hence, the induced formula is actually a theorem, even if a complete proof of it is not
carried out.

Although the formula induced at this point is valid, it is a poor generalization, because
the structure of the given data terms may still over—specialize the theorem. We would like
for example generalize the CONS terms in (4), and obtain the following associativity
theorem for APP

EQL(APP(X, APP(y, z)),
APP(APP(x, y), z))).

l
For brevity sake, we forget about the outermost AND application.

6 . Generalization based on stretching the computation length

The data structures still present in the theorem mirror (part of) the structure of the given
data terms and only those parts of the computation trace which are concerned with reflexive
function evaluations have been generalized. A further generalization is now possible.

The first task is to select in the theorem data terms which are so general that they appear
as ’’skeletons” for their type in the assumption that such skeletons could be further
generalized. A s k e l e to n of type T is a data term which satisfies the following conditions (pi):

— All constructors of type T occur in it;

In each argument positions of type T' Ф T a variable of type T' must occur.

Examples of skeletons are S(ZERO) and CONS(Vj , CONSlv,, NIL)), while the following
data terms do not classify as skeletons: TRUE, because it does not contain the constructor
FALSE, and CONS(S(ZERO), CONS(v, , NIL)), because S(ZERO) is not a variable of
type NAT.

The focussing on skeletons embodies a peculiar notion of computation. In fact, the
’’structure” of data terms and the ’’structure” of computations are strongly interrelated, and
in so far as skeletons are representatives of type structures, the given computation trace is
a representative of all the possible computation traces. The hierarchical definition of types is
believed to induce a corresponding nesting in the computation, hence to require hierarchical
generalizations, as we will see later.

However, two different skeletons may be related to each other in such a way that their
generalization to two different variables would not be valid. Discovering relevant relationships
is a very difficult task, and we adopt just a naive notion of relationship, i.e. two skeletons
are related if and only if they share a universally quantified variable.

After the above check (condition (p2)), good candidates for generalization are defined
to be the maximal unrelated skeletons. But this alone is certainly a weak basis for
generalizing the candidate. In fact, the given theorem may hold only if the actual data terms
obey exactly the structure described by the corresponding skeletons. A classical example is
the following

EQN(PLUS(S(ZERO), S(S(ZERO))),
TRIPLE(S(ZERO))).

where TRIPLE is defined as

(TYPEiTRIPLE(NAT)) = NAT;
iTRIPLE(x) = PLUS(TWICE(x), x) !)

(TYPE(TWICE(NAT)) = NAT;
jTWICE(x) = PLUS(x, x)i).

Further generalization should then be based on a careful analysis of the given theorem and
of the involved functions definitions. These can help understanding which are the effects of
skeleton modifications, and a candidate skeleton can be generalized on the grounds that
candidate skeleton modifications do not appear to bring about radical computation structure
changes.

The starting point for such an analysis are predicates whose actual terms contain the
candidate skeleton. Predicates implicitly define a measure on the argument values, and the
difference between the argument measures determines which base equation is applied to
terminate the computation. We say that a term depends on a skeleton if and only if it
consists either in the skeleton itself, or in a function application term one argument of which
depends on the skeleton. If the actual argument measures depend at different degree on the
measure of the candidate skeleton, a skeleton modification may cause a different base equation
to be used to terminate the (modified) computation. To be on the safe side, the candidate is
discarded.

For each function, an arithmetical expression (called the n o r m of the function) is
computed which, roughly speaking, expresses the measure of the function value in terms of the
measure of its arguments 1 .

Since we want to capture the effect of the modification of a specific skeleton, the
partial derivatives o f the auxiliary function norms w.r.t. the argument position under
generalization are computed, and the generalization is accepted only if the derivatives can be
simplified to the same expression. Let us consider the candidate S(ZERO) in the example
above. The norm of PLUS is computed as p x + p 2 2 , and the norm of TRIPLE is 3 * />x ■

The partial derivative o f p x + p 1 w.r.t. p x is 1, while the derivative of 3 * p x w.r.t. p x

is 3, thus the candidate S(ZERO) is not generalized.

The algorithm to associate a norm to a TTEL function is the following

i) The norm of a constructor is 1 + p x if the constructor is reflexive;

0 otherwise;

ii) The norm of a U—function is Norm(/) = p . \

iii) The norm of a S—function is
Norm(s) [Normt/? x)........ Norm(/?w) l p x , . . . , p m];

iv) The norm of a N —function is
Normt«) = p x + NormtФ) \ р 2 , • • • • P ,J P \ >•••>/?„_ 1 1;

1 Function composition in the actual argument terms of the predicates can be accounted by introducing two suitable
auxiliary functions (defined by composition) such that the predicate argument terms can be rewritten as applications of the
auxiliary functions to data terms only.

2 The variable simboi occurring in norm expressions stands for the measure of the i-th argument term.

v) The norm of a R—function is
Norm(r) = Norm (<//) [p 2, . . . , p n / p , , p n _ ,] +

p l * Norm(ip R) [p 2 , . . . , p n I p x, -----p n j].

Norm expressions are then reduced to a sum -of—products normal form.

Besides the conditions on the derivatives of the actual predicate argument terms, the
predicate computation trace is tested for the following conditions. The first condition (s i)
requires the forced computation to terminate using a base equation of the predicate. The
second condition (s2) requires that, when a base equation is eventually applied, the whole
skeleton does no more appear in the actual predicate argument terms. The third condition
(s3) requires the candidate skeleton be substituted by a skeleton with a different measure,
and the predicate term be re—evaluated yielding the same result.

In the next Section we will prove that, under the conditions p l, p2 and s 1 —s3, the
generalizations performed are safe and the induced formula is actually a theorem.

7. Proof of the inductive method correctness

In order to let the proof be more readable, we will prove, without loss of generality,
the correctness of the inductive method in the assumption that the arity of the involved
functions is at most 2 .

Let us introduce a different notation which uses the notion of sequence.
A s e q u e n c e X is denoted as

Let d and T be the reflexive and non reflexive constructors of a given type. The d

g e n e r a te d data structure

d (x j , d (x 1d (x n , T) . . .)

will be also denoted as

i/I tX j.x ,.........X >] and

T = d \ (>]

We define an operation from d—generated data structure
elements

Î d[<x,, x 2 , . . . , x n >] 1 = <x,, x 2 , . . . , x n)

Let be X = (x , , x 2, . . . , x n), Y = <>’j , y , , . . . ,v >

- X' = X,.

- х;. e X \ < i < n

- \X\ = n

to the sequence of its component

then let:

(i - th c o m p o n e n t) :

(c o m p o n e n t o f relation);

(len g th of X) \

— X = (xn , X j , . . . , JCj > (in v e rse of Л");

— X ; Y = (Xj . x 2 x n , y x ,v > {c o n c a te n a tio n of X , Y) .

The component—wise application of a function 7 is defined as

y ° X = (y x l , 7 * 2> . . . , 7 Хл>

Note that we omit parenthesis around monadic terms whenever there is no ambiguity.
Let 0 be a linear map over a data structure, i.e.

ф d [X \ is either

d ' [p ° X] or d ' \ p ° X] ,

then the linear application of ф to X is defined as

ф О Х = р ° Х or

ф П Х = p ° X

The notation above allows us to compactly express the evaluation of an N— or R—function.

Lemma N. The te rm

N { d x[X] , d 2 [Y]) (LN.l)

w h e r e N o b e y s th e N —sc h e m a can b e r e w r i t te n as

d 3 [y ° X - ^ a Y] (LN.2)

Proof. Let X = <jCj , x 2 , ■ ■ ■ >x „)> by the application of the Nr recursive equation we obtain
from (LN.l)

d 3 (y x 1, N (d l [<x2*„>], с(2[П))

By (n — 1) applications of the Nr equation

d 3 l y ° X ; { N i T ^ d ^ Y])]]

By Nb equation

d 3 l y ° X- \ 4 * d 2 [Y)) ! J

Since 0 is a linear map we obtain

d 3 [у ° Х - ф П \ d 2 [Y] \]

and finally we get (LN.2).
Q.E.D.

Lemma R. The te rm

/?(űfj[T],c/2 [y]) (LR.l)

w h e r e R o b e y s th e R — sc h e m a can b e r e w r it te n as

£/3 [0 DT; (p R S) ° X]

- 114 -

(LR.2)

1 1 5 -

Proof. Let |Л"1 = n. By n applications of the Rr recursive equation (LR. l) can be
rewritten as (superscripts keep track of the function applications)

л £ (. . . (N ”R ~ 1 (N ”r W 2 [Y) , d 4 (8 x n , T 4)), d 4 (b x n _ J, T 4)) , . . . , d 4 { . r 4))

Since ф is a linear map we have

N lR (. . . (N nR- 1 (N"r (d 3 [ф □ Y) , d 4 (5 x n , T4)) , d 4 (6 x H_ l t

Let IEI=A\ By k * n application of Nr equation

d 3[ФП Y- j (. . . (N r] (N nR (T ^ d 4 (8 x n , T4)), d 4 (5 x

Applying Nb equation

d 3 № V Y - , \ N lR (. . . (N r ~ 1 (фя (d 4 (8 x n , T4)), d 4 (b x n _ ,

Since <pR is a linear map

T4)), . . . , d 4 (b x j , T4))

„_r T]*)).......... ű?4 (5x p Г4)) i]

) T4))d 4 (b X] . T 4)) \ 1

d 3 [ф О Y-\N'r (. . . (A'" 1 (i/ 3 (PÄ X n , T 3) , d 4 (b x n _ l , T4)) , . . . , d 4 (b x] , T4)) \]

By evaluating the (n — 1) N R function applications

d 3 U > U Y \ \ d 3 (p R b x n , N xR (. . A N nR - ' (T 3 , d 4 (b x n _ l , T 4)) , . . . , d 4 (b x ^ T ,))) \]

By repetition of the three steps above (n - 1) times we have

d 3 [ФО Y\ \ d 3[<pR b x n , p R b x n l , . . . , p R b x j>] j]

According to the notation introduced above, we obtain (LR.2).
Q.E.D.

Lemma E. The term

E (d x[X] , d 2 [П)

w h e r e E o b e y s an S —sc h e m a , i.e.

E (x . y) = F (P (x , y), Q (x , y))

can b e r e w r i t t e n as

d [H x □ X\ H 2 ; ф2 □ X \ . . . ; фп П Х , Я^ +]] (E.l)

w h e r e

— ф.П X , 1 < / < n, d e n o te l in ea r m a p p in g s o f X\

H r 1 < /' < n, d e n o t e (p o s s ib l y e m p t y) s e q u e n c e s w h ic h d o n o t c o n ta in linear

m a p p in g s o f X.

1 1 6 -

P r o o f . Let us first assume that F , F , and Q are not defined according an S-schema. Then
eight cases may occur depending on the definition schema the three involved functions obey.
Let us consider only one of them, because the remaining ones are analogous. Suppose

P (d x[X] , d 2 [Y]) = d 3 [у ° Х : ф а Y] ,

Q (d] [X] , d 2 [Y]) = d 4 l t n Y - (p R S) eX] ,

and F be an N—function.
Then, by Lemma N on F we have

Ш 3 { у ° Х; ф П Y] . d 4 [\J/n У; (p R 5)°T]) = d [y , , ° (y ° X : ф/, П { ф П Y : (p R 5) ° X)] .

By “—distributing y f . we obtain

d [(l y y) ° X \ y h. ° ф П У; фн П (ф □ У; (p R 8) ° Х)]

By □ —distributing ф{ . , two cases may occur depending on whether ф

sequence. If ф does not invert its argument, we obtain

d[(y Fy) ° X \ y F ° ф □ У; ° ф а Y \ (p rt>̂ p R 5) °T)]

and (E. l) is proven.
Conversely, if фи inverts the argument, we have

d [(y F y) ° X : y h. ° 0 П У ; (р 0/ p R Ь) ° X \ Р ф / ° Ф □ У]

and again (E.l) is proven.

The reader can see that (E. l) is proven because y F can be “—distributed and ф/:

can be □ —distributed, so that if a linear mapping of X occurs in the argument sequences
of function E, a linear mapping of X occurs in the resulting sequence too. In other words,
the number of linear mappings of X is preserved, and the same is true for the remaining
seven cases, as we mentioned above.

The number of linear mappings of X occurring in the sequence (E.3) is exactly
2 because F. P and Q were, by hypothesis, defined by N— or R—schema only and the
formal argument x occurred twice in the right-hand side of the definition of E If P

and Q are allowed to be defined by a U -schema the number of linear mappings of X

occurring in the resulting sequence may decrease but (E. l) remains (possibly vacuously) true.
If F , P and Ç are defined by composition, we can simply substitute them by their
definitions, until only functions defined by N -, R - or U—schema appear in the definition of
E. Still, the resulting sequence will obey a schema like (E. l) because of the distribution
property of component—wise and linear applications.

Q.E.D.

Let E T (d x \ X] , c/j [Tj].........d y \ > (1) denote any term built on the function symbols
F j E r and the data structures d (A']. d] \ Tj 1...........d y \ Y y }. Then by Lemma E the

inverts its argument

(E.2)

(E.3)

117 —

term can be rewritten as

с1[Н1 -,ф] а г , н 2 - . . . - ф п а х - н п + 1)

where

- H . , К i < n + 1, are (possibly empty) F { ^.-m appings of sequences
Y l , . . . , Yy , but not of X;

- ф. □ X , \ < i < n, denote the /-'^.-linear mappings of X .

Now assume that symbolic execution has proven

B (E T \ (d x [X] , d n [Y n] , . . . , d l y i [Y l y ̂]),

E T 2 (d x [X] , d 2 i [Y 2 l] , . . . , d 2 y [Y 2 y V » = BCONST1 (T.l)

and the algorithm surmises

B { E T \ { x , d n [Y n \ , . . . , d X y [Y l y \) ,

E T 2 { x , d 2X[Y 2X] , . . . , d 2 y [Y 2 y J)) = BCONST1 (T.2)

where x is a universally quantified variable of the type generated by d x . Before attempting
to prove that (T.2) holds we need a few definitions and a preparatory Lemma. In fact, by
Lemma E (T .l) can be rewritten as

B (d x[V] , d 2 [Z]) = BCONST1

where

V = Н х - ф 1 П Х - . . . - ф п а Х - Н п+1 and

z= к х-фха х ; . . . - ф па х - к п +] .

Note that V and Z contain the same number of mapped X ’s because the partial t

derivatives of the norms of the predicate argument terms are equal.

Problems will arise in the proof depending on th e ’’relative position” of L ’s and Z’s
subsequences. Let us make precise such notions. Consider the following sequences of indexes

(non—negative integers)

L y = <0, IЯ, I, 1Я,1+ \ фхО Х \ , . .
n

2 ’ (1Я.1+ i0 .z i + 1я . i)>
i = \ i 1 n +1

= < o ,^ j I, Iя , I + m , . . . , n

and
П

L 7 = <0, \кх\, \кх\+ \ X \ , . . . , n • IZI+ 2 \K' I + I K n+X l>

Let us define c u t in d e x any index c such that

— 1 1 8 -

i) с = L pv = L qz ;

ii) (p — 2) -r 2 = (q — 2) -r 2, i.e. the sequences (К1.........Lc> and < Z X, . . . , Z C)

contain the same number of mapped Z ’s.

If / cut indexes exist for two given sequences V and Z, the following 2 * 1 sub
sequences called in te r v a l s can be defined

+

II . . , KC/+1> 1 < i < / - 1

+

II у min (1 V 1. \Z 1

_N II 4
+

, . , Z Cf + 1> ! < / < / - 1

II .—V N
о + y m m (IF 1, 1Z 1)̂

Let us define s in g u la r in d e x any index s such that

i) 5 = U\, = L 4Z ;

ii) (p — 2) -r 2 Ф (q — 2) -=■ 2 , i.e. the sequences
(Г 1,. . . , L*) and (Z1......... Z s) contain a different number of mapped X 's .

An interval V. is s in g u la r iff at least one singular index s exists such that

C . + 1 < 5 < c . + I V.\I I i

i.e. a singular index falls in the interval.
Note that if V. is singular Z;. is singular too.
If V. and Z i are singular intervals where k. singular indexes occur, the following
2 * (k . + 1) singular sub-intervals o f V ., Z; can be defined

V.. = < V1____ v S] c,'>/1 / ’ ’ 1

II ■ <
*> 1 1 + s , - c .

V > »> 2 < / < к1 l

■V - ci +1 IF .1
V = (V. 1 • ■. Vi ’ >i(kJ + 1) /

z.. = <z.'........z s' <,f>il / 1
S: . - C. + 1 st. - c.1NIIN

z * 1> 2 < / < Л.4 1 /
sk . - c/ + 1 IZ.I

+ II .,Z (>

We can now prove the following.

- 1 19 —

Lemma S. L e t

— V = Н 1 ; ф у О Х \ . . . ■,Нп \ф п П Х - ,Н п+ , a n d

г = к г Ф]п х - , . . . : к п-,фп а х - к 11+1
b e t w o singu lar in te rv a ls ;

— 1*1 = n \

— s sk b e th e s in gu lar in d e x e s o f V a n d Z;

— V Z . 1 < / < k + 1 b e th e s in gu lar s u b - i n t e r v a l s o f V a n d Z;

— V'.yZ'. b e t he s e q u e n c e s o b t a i n e d b y s u b s t i tu t in g X ' f o r X,

\X ' \ = m , m 4 n , m 4 0. in V. a n d Z . r e sp e c t iv e ly .

Then
i i

Z \ v \ 4 Z i z : \ l < / < k (S.i)
I = 1 ' / = 1 '

i.e. V. and Z'. are no more singular sub—intervals.

Proof. (S .I) can be rewritten as

i i
Z (v , * m + h) 4 Z (z * m + h)

i l ' ' » -- l ' '
(S.2)

where v(. and z . denote the number of occurrences of (mapped) X ' in V and Z'.

respectively, and h j and h ’ denote the total length of those subsequences of V. and Z'.

which do not involve X ' . Note that by definition of singular index we have
/ i

Z v.4 Z Z: \ < j < k (S.3)
i -- l ' i -- 1 '

Vj * n + Л. = Zj * n + h. 1 < / < k + 1 (S .4)

Let m - n + m ' (S.2) can be rewritten as
/ f f f

Z (v. * n + h .) + V:m 4 Z (Zi * n + /?,!) + 2 z ,m '
i 1 ' ' / 1 7 / l ' ' / 1 '

and by (S.4) as
i i

' V / > "Vm * ^2 V ; 4 m * z ■
i 1 ' i = 1 '

which is proven by (S.3) and m' 0. Q.E.D.

Note that if Г (Z) is obtained from V(Z) by substituting X ' for X (and \ X’ \ 4 12(1) V

and Z' may still be singular intervals. Roughly speaking, Lemma S states that the new
singular indexes, if any, define different singular sub—intervals.

/

— 120 —

We now have the tools to prove the main theorem.

T h e o r e m . A s s u m e s y m b o l i c e x e c u t io n h a s p r o v e n

B { E m d x [X] , d u [Y n].........d Xv i [T)v i]),

E T 2 (d x [X] , d 2 l [Y 2l] , . . . , d l y [Y 2 y \)) = BCONST1 (T .l)

a n d c o n d i t i o n s (p i), (p2), (sl)-(s3) h o ld . A s s u m e th e a lg o r i th m s u rm ise s

B (E T M x , d n [Y n] , . . . , d X y [Y X y V ,

E T 2 (x , d 2 l [Y 2 l], . . . , d 2 y [Y 2 y V) = BCONST1 (T.2)

w h e r e x is a u n iv e r sa l ly q u a n t i f i e d v a r ia b le o f th e t y p e g e n e r a te d b y d x , th e n (T . 2) h o lds .

P ro o f. By Lemma E, (T .l) can be rewritten as

B (d x[V] , d 2 [Z]) = BCONST1 (T.3)

where

V = H. ;</>.□ X \ . . . ; H -,ф □ X \ H . , andI ’ M 5 ’ n ’ w? ’ n +1

Because of conditions (p i) and (p2), all the components of X are distinct universally
quantified variables. Thus, in order to prove that (T.2) holds, it suffices to prove that (T.3)
does not depend on the length of X . The proof is achieved by showing that

i) condition (si), which holds for the computation of (T.3), holds for any length of
X , and

ii) the same base equation for В is finally applied, for any length of X .

The proof of (ii) is very simple. In fact, if condition (si) holds, the base equation for В

which is finally applied is determined by the difference between IFI and IZI. The value of
the difference is

n +1 n + 1 n + 1 n + 1

d = \V\— IZI = Z \ H . \ + n * \ X \ - Z \ K . \ ~ n * \ X \ = z \ H . \ - Z \K. \
i = 1 ' i \ 1 i --1 ' 1=1 '

which obviously does not depend on \ X\ .

We now prove (i), i.e. that for any Ш holds

B 2 (V i ii), Z ') = BCONST2 1 < / < min (IFI, IZI) (T.4)

Let V . , Z . , 1 < / < / , be the intervals of V and Z. By the definition of interval, if we
substitute any X ' for X in V, Z, V. and Z., thus obtaining the sequences F ',Z ', V'.,Z'r

then V. and Z'. are intervals of F ' and Z '. This property of intervals allows to confine
ourselves to prove (T.4) on intervals only, i.e. to prove that for any X holds

- 121

Я2((У. ÿ , (Zj) ') = BC0NST2 1 < j < IF. I = IZ. I (T.5)

Note that such an interval—wise reduction of the proof is valid also for the intervals V{ and
Z j wnich are not bounded on the right by a cut index. However, by condition (s2) they still
contain the same number of occurrences of mapped X ' s (even if one occurrence may be not
complete).
For the sake of brevity, let us forget the subscript /' in the sequel, and denote by V and
Z any V. and Z. intervals. Two cases may arise, depending on whether V and Z are
singular intervals.

Case 1. The intervals V and Z are not singular. By the definition of interval we know that
neither cut indexes nor singular indexes may occur in the intervals. We will make use of this
property only in the proof which follows (and thereby we will exploit the same argument
also in Case 2).

Let us single out the sub—sequences, i.e.

V = V, ; F, ; . . . ; F and1 2 ’ p

Z = Z \ :Z 2; . . . \ Z p

where V. (Z.) is either a mapped X , or some H (K.)i l r r / j

Let us consider the sequences of indexes

M y = <0, IF, I, \ VX\ K2 I , . . . , IKI>

M y = <0, IZj I, IZj ;Z 2 I ,___ IZI>

We denote by M the sequence obtained by merging M y and M y , keeping indexes in
ascending order and eliminating the duplicate 0’s and IFI and IZI. We can now define

i) sub—intervals of V and Z, as follows

V* = (V m ' 1+1.........Vm ') 2 < / < 2p - 1

Z * = CZm ' ~ 1+1____ Z"1')

The sequence of indexes M is defined in such a way that the following property holds for
the induced sub-intervals. For any 1 < i < 2p — 2, then either one, but not both of the
following cases occur

* b'+l
(у ;) • + I) ‘ G V.

/
and

and
h+i

) l € i %(F . +) ' G f / / andii)

- 1 2 2 -

and

< /+)L' ' ' (z ; + ,) ' e z , (T.6)

Now let us consider the sub-intervals F p I'* + (. Zp ZA + (. 1 < A < 2/; — 2. By (T.5) we
know that

B 2((V * y , (Z p ‘) = BCONST2 1 < / < I V *I (T.7)

B 2 ((V \ + j)', (Z ; + j)') = BCONST2 1 < i < IFJ + ,|

By conditions (pi) and (p2) we can extend (T.7) to

B 2 ((V * V , (Z p ') = BCONST2 1 < i j < IFp (T.8)

B 2 ((v ; + ,) ', (z+ + , У) = BCONST2 1 < I. / < if; + , i

Since property (T.6) holds let us suppose, without loss of generality, that (F p , (F ; + 1)J e F̂
(Case (ii) is just symmetric) then by (pi) and (p2) we have

52« F p F ; + 1) '. (Z p ') = BCONST2
i < / < if; ; f ; + 1 i

1 < / < \V \\

В 2((F p V* + ,)', (z; + ,)') = BCONST2

Then we can conclude

i < (< if; ; f ; +1i

! < / • < ih; +1 i

52((c ; ; F^ + 1) ' , (Z p Z ^ + 1) 0 = BCONST2 > 1 < i, j < I I / + - r / + IK*’ K Л +1 (T.9)

We have just shown that the sequences (F p FJ + 1) and (Z p z ; +]) can be considered
as sub—intervals, because (T.9) corresponds to (T.8) and property (T.6) holds. By repetition
of the same argument (2p — 1) times we can conclude that

52(1 F)' . (Z) ') - BCONST2 l < / . / < I F I (T.10)

By (pi) and (p2), (T.10) holds for any X . and since (T.5) is a specialization of (T.10), Case
1 is proven.

Case 2. The intervals F and Z are singular, i.e.

F = F , ; V 2 ; . . . ; Гд and

Z = Z, : Z2 ; . . . : ZA

where V. and Z are the singular sub—intervals induced by the (A - 1) singular indexes.
Since neither cut indexes nor singular indexes may occur in the sub-intervals, by the same
argument used for proving (T.8), we know

(T.l 1)

In order to prove the theorem, we need to show that it is possible to “merge" the singular
sub-intervals. We resort to condition (s3) and exploit the fact that the sub—intervals are
bounded by singular indexes.

Let us denote by V , Z ', V'. ,Z'. the sequences obtained by substituting X' for
A”(0 Ф \Х'\ф LYI) in V, Z, V -, Z . respectively. Then, by condition (s3) we have

B 2 ((V ' Y , (Z ') ‘) = BCONST2 l < / < IF'I.

Let us now consider the sequences F j .Z j , F , . Z , . By Lemma S we have !7 ',

Assume r = IF' I > LZ',l=,s (the case IF' I < IZ'X I is just analogous). Since V\ and Z \

are skeletons we have IF'? 1^ 0 and IZ', I 4- 0. Thus, by symbolic evaluation we know

B2 ((V \ V, (Z'2 y ~s) = BCONST2 5 + К / < r

and by conditions (p i) and (p2)

, ,• 1 < / < r
B2 ((F j) , Z'2) ') = BCONST2

1 < / < IZ',1

which by condition (p i) is not affected by X ' . Therefore

/= 1 , . . . , IF, I
Z?2((F,)', (Z2) 7) = BCONST2 1 (T.12)

/ = 1------ LZ, I

By (T.l 1) and (T.12) we have

Ő2((F, ; F2) í ,(Z i :Z 2)/)= BCONST2 1 < / , / < IF,; F, I

We have thus proven that the two pairs of singular sub—intervals can be merged and B2
I

relation extended to the merge. By repeating the same merging (к — 1) times we extend
B2 relation to the whole singular interval and the proof of Case 2 is complete.

Q.E.D.

The main theorem shows that the performed skeleton generalizations preserve the values
of the predicates involved in the given theorem. Thus the induced formula is actually a
theorem.

B2((V.) ' , (Z.)h) = bconst: i < /, и < if .i

— 124. —

8 . Comparison with related work

The inductive method we have presented has been influenced in many respects by
previous research on induction. First of all, the generalization based on proof can be classified
as a successive refinement method. We do not need to literate the process of guessing and
refining, because the formal calculus environment provides for a powerful technique (forced
symbolic computation) to exactly adjust the initial guessing. Analogously, the idea of using
the given computation trace as a proof to strengthen the theorem, relates to Brown’s and
Tarnlund’ temporal method based on proofs [4]. By the way, let us note that the problem of
estimating function behaviour is exactly the problem of solving (restricted) difference equations
(over the naturals) tackled by Brown and Tarnlund.

Moreover, we have had the advantage of being able to draw on the ideas of Boyer and
Moore [2] and of Aubin [1], which tackle the problem of generalizing the theorem to be
proven by induction. Such a generalization is necessary when a backward search strategy is
adopted. One basic problem is that of distinguishing different occurrences of a variable. Boyer
and Moore generalize terms which the involved functions recur on. thus relating generalization
to function definition. In their footsteps, Aubin points out the close relationship among
generalization, proof by induction and symbolic computation. His method generalizes
precisely those variables which an interpreter would first instantiate during symbolic
computation. Thus, only the first and fourth occurrences of x are generalized in the theorem
EQL(APP(x, APP(x, x)), APP(APP(x, x), x)). Along the same line, we bring the whole
computation structure to bear on the problem, and we can capture rather complex
relationship, as shown in the worked example in the Appendix. Because of the peculiar
role played by the LREV function, Aubin’s method would incorrectly generalize the first
and third occurence of x in the theorem
EQSTRUCT(LREV(LAPP(x, x)),LAPP(LREV(x), LREV(x))).

As final remark, we might mention that a heuristic inductive system based on the method
presented here has been actually developed as a tool to assist the user to debug his TTEL
functions, when they are used as formal program specifications. Running formal specifications
is of little help to understand whether they do express the user intents. Instead, surmising
function properties from testing computation, may effectively assist the user in matching
intentions to specifications.

9. Concluding remarks

We have tackled the problem of proving function properties by inductive generalization
from examples. The method presented here is proven sound for a constructively defined class
of recursive functions and properties. In spite of the limitations, significant functions,
properties and theorems fall into the class. It is certainly not possible to express significance
by a figure, but it may be interesting to note that about 35% of the theorems listed in [1]
and involving single reflexive data types are induced by the present method and belong to the

— 1 2 5 -

above class. Classical examples are EQL(APP(x, APP(y, z)), APP(APP(x, y), z)).
EQL(REV(REV(x)), x), and EQL(REV(APP(x, y)), APP(REV(y). REV(x))). The reflexivity
theorem for EQN, EQL, EQLENGTH, and EQSTRUCT fall into the class and are induced
applying the method.

At the present, the application of such inductive method to theorem proving has one
advantage but suffers from a few limitations. The advantage is that no combinatorial
explosion arises in the proof. Free variable introduction is indeed a non—deterministic process,
but no nesting of non—deterministic choices is involved. On the contrary, the major limitation
of the proposed method is that it is not proven complete. Thus, it can be used only as an
auxiliary tool, which may result in a failure, but requires at least a bounded amount of
resource. Moreover, the method can prove only function properties whose restrictions have
been described above. This is a heavy limitation for a general purpose theorem prover.

In the framework of program verification where generally the goal is that of proving
properties of functions, it is more likely that the inductive method can help, provided that
the theorem to be proven (or a subgoal generated during the proof) is within its reach. We
believe that function property induction can in the future play a role in program verification
systems.

126 -

Appendix

Let us consider the following ground property

EQSTRUCT(LREV(LAPP(LCONS(CONS(PLUS(S(ZERO).ZERO). (EX 1)
CONS(S(ZERO), NIL)),

LNIL),
LCONS(CONS(PLUS(S(ZERO), ZERO),

CONS(S(ZERO), NIL)),
LNIL))),

LAPP(LREV(LCONS(CONS(PLUS(S(ZERO), ZERO).
CONSiS(ZERO), NIL)),

LNIL)),
LREV(LCONS(CONS(PLUS(S(ZERO), ZERO),

CONS(S(ZERO), NIL)),
LNIL)))).

where EQSTRÜCT, LAPP, and LREV are defined as follows

(TYPE(EQSTRUCT(LLIST,LLIST))= BOOL; J EQSTRUCT(LNIL, LNIL)= TRUE;
EQSTRUCT(LCONS(x, y), LNIL) = FALSE; EQSTRUCT(LNIL, LCONS(z, w)) = FALSE;
EQSTRUCT(LCONS(x. y), LCONS(z, w)) = AND(EQLENGTH(x, z). EQSTRUCT(y, w)) \)

(TYPE(LAPP(LLIST, LLIST))= LLIST;
|LAPP(LNIL, z) = z; LAPP(LCONS(x, y), z) = LCONS(x, LAPP(y, z)) j)

(TYPE(LREV(LLIST)) = LLIST;
LREV(LNIL) = LNIL; LREV(LCONS(x, y)) = LAPP(LREV(y). LCONS(x. LNIL)) !

First of all, the term PLUS(S(ZERO), ZERO) is never evaluated, and a free variable nx is
substituted for it, thus obtaining

EQSTRUCT(LREV(LAPP(LCONS(CONS(nx, CONS(S(ZERO), NIL)), (EX 2)
LNIL),

LCONS(CONS(nx, CONStS(ZERO), NIL)),
LNIL))),

LAPP(LREV(LCONS(CONS(nx, CONS(S(ZERO), NIL)),
LNIL)),

LREV(LCONS(CONS(nx, CONS(S(ZERO), NIL)),
LNIL)))).

Secondly, free variables nllx and nlly are introduced to perform forced computation.
Free variable introduction yields two symbolic terms, i.e.

— 127 -

EQSTRUCT(LREV(LAPP(nllx, nlly)). (EX 3)
LAPP(LREV(nIly),

LREV(nllx))) and

EQSTRUCT(LREV(LAPP(nllx, nlly)), (EX 4)
LAPP(LREV(nllx),

LREV(nlly))).

Symbolic computation is forced on both terms. Let us consider the forced computation of
(EX 3), which yields (collecting all free variable instantiations)

EQSTRUCT(LREV(LAPP(LCONS(CONS(nx, , CONS(nx2, NIL)), (EX 5)
LNIL),

LCONS(CONS(ny,, CONS(ny2, NIL)),
LNIL))),

LAPP(LREV(LCONS(CONS(nyj, CONS(ny,, NIL)),
LNIL)),

LREVtLCONSiCONStnx, , CONS(nx2, NIL)),
LNIL))))

The type LLIST terms are due to the applications of LAPP equations, while the type
LIST terms come from the applications of EQLENGTH equations. Note that NAT
variables appear because EQLENGTH checks for LIST length equality only. Analogously,
from (EX 4) we obtain

EQSTRUCT(LREV(LAPP(LCONS(CONS(nx,, CONS(nx2, NIL)), (EX 6)
LNIL),

LCONS(CONS(ny, , CONS(ny2, NIL)),
LNIL))),

' LAPP(LREV(LCONS(CONS(nx, , CONS(nx2, NIL)),
LNIL)),

LREV(LCONS(CONS(ny1, CONSfny,, NIL)),
LNIL))))

Now, consider the generalization method based on equivalence applied to (EX 5). The
predicate EQLENGTH used in the computation is reflexive, and the computation trace shows
that the term

EQLENGTH(CONS(ny, , CONS(ny2, NIL)),
CONS(ny, , CONSiny,, NIL)))

was evaluated, yielding TRUE (note the role of LREV). Since the EQLENGTH argument
terms are identical and do occur in (EX 5), they are generalized to a new variable rdy. The
same situation occurs for the data term CONS(nXj, CONStnx^, NIL)) which is

- 128 —

generalized to nix. The following theorem is thus induced

EQSTRUCT(LREV(LAPP(LCONS(n]x, LNIL), (EX 7)
LCONStnly, LNIL))),

LAPP(LREV(LCONS(nly, LNIL)),
LREV(LCONS(nlx, LNIL))))).

Instead, when the computation trace of (EX 6) is analyzed, the following EQLENGTH
computation is found

EQLENGTHiCONSiny! , CONS(nx2 , NIL)), (EX 6.1)
CONSinxj, CONS(nx2, NIL)))

Since the argument terms are not identical, the method does not apply, and (EX 6) is
(correctly) no more generalized.

Finally, let us consider the application to (EX 7) of the generalization method based on
estimated function behaviour. The only skeletons are LCONS(nlx, LNIL) and
LCONS(n]y, LNIL), and EQSTRUCT is the only s.r. function which applies to terms
containing them. Since the partial derivative of LREV(LAPP(pj, p2)) w.r.t. pj is 1, and
the partial derivative o f LAPPILREVIpj), LREV(p,)) w.r.t. pt is again 1, the skeleton
LCONS(nlx, LNIL) is generalized to nllx. The other skeleton is analogously generalized to
nlly, and the method induces the following theorem

EQSTRUCT(LREV(LAPP(nllx, nlly)), (EX 8)
LAPP(LREV(nlIy),

LREV(nllx))).

Conversely, when (EX 6) is considered, the skeletons CONS(nXj, CONS(nx2, NIL)) and
CONS(nyj ,CONS(ny, , NIL)) are not generalized. In fact, the predicate EQLENGTH is
directly applied to them (see (EX 6.1)), i.e. we have a term of the form EQLENGTH(pj, p-,).
The partial derivative of pj w.r.t. p2 is 1, while the partial derivative of.p ,, w.r.t. Pj
is 0, thus the skeleton CONS(n^1, CONS(ny2, NIL)) is not generalized. The same happens
for CONS(nx, . CONS(nx,, NIL)). Again (EX 6) is no more generalized, and actually further
generalization would not be correct.

Let us suppose to skip the generalization by equivalence, in order to describe the
stepwise application of the generalization method based on estimated function behaviour
without introducing a more complex example. The application of this method to (EX 5)
allows to generalize the skeletons CONS(nXj, CONS(nx,, NIL)) and
CONStnyj, CONS(ny-,, NIL)) thus obtaining (EX 7). Note that the generalization method
based on equivalence cannot be removed, although in this case the same generalization is
produced, since it can generalize data terms which are not skeletons, while the last
generalization method cannot.

»

129 -

References

I I) Aubin. R.: Mechanizing structural induction. Ph.D.Th., Univ. of Edinburgh, Dept,
of Artif. Intel. (1976).

[2] Boyer, R. S., and Moore, J. S.: Proving theorems about LISP functions.
J. ACM 22 (1975), 129-144.

[3] Brotz, D. K.: Embedding heuristic problem solving methods in a mechanical theorem
prover. STAN—CS—74-446. Computer Science Dept.. Stanford Univ. 1974

[4] Brown, F. M., and Tärnlund, S.. Inductive reasoning in mathematics. Proc. Internat.
Joint Conf. on Artif. Intell.. Cambridge (1977), 844-850.

[5] Buchanan, B. G.: Logic of scientific discovery. Stanford Artificial Memo. No. 47.
Dept, of Comp. Science, Stanford Univ., 1966.

[6] Buchanan, B. G., Feigenbaum. E. A., and Lederberg. J.: A heuristic programming
study of theory formation in science. Proc. Internat. Joint Conf. on Artif. Intell.,
London (1971), 40—48.

[7] Burstall, R. M.: Proving properties of programs by structural induction.
Comp. J. 112, 1 (1969). 41-48 .

[8] Evans, T. G.: A program for the solution of geometric—analogy intelligence test.
Semantic Information Processing, M. Minsky Ed., MIT Press, 1968, pp. 271-656.

[9] Feldman, J., Gips, J.. Horning, J. J., and Reder, S.: Grammatical complexity and
inference. CS 125. Stanford Artificial Intelligence Project. Stanford. 1°^°

I 101 Hoare, C. A. R.: Recursive data structures. Int. T Comp, and Jrif. Sc. 4, 2 (1975),
105-162.

[11] Levi, G.. and Sirovich, F.: Proving properties, symbolic evaluation and logical
procedural semantics. Lecture Notes in Computer Science. Vol. 62. Mathematical
Foundations of Computer Science, Springer. Berlin. 1975, pp. 569—574.

[12] Me Carthy, J., and Hayes, P.: Some philosophical problems from the standpoint of
artificial intelligence. In Machine Intelligence 4, B. Meitzer, and D. Michie Eds.,
Edinburgh Univ. Press, 1969. pp. 466-502.

I 13] Meitzer, В.: Power amplification for theorem-provers. in Machine Intelligence 5,
B. Meitzer, and D. Michie Eds., Edinburgh Univ. Press, 1969, pp. 165-179.

I 14] Michalski. R. S.: A system of programs for computer-aided induction: a summary.
Proc. Internat. Joint Conf. on Artif. Intell., Cambridge (1977). 619—620.

— 130 —

[15] Newell. A.: Heuristic programming: ill-structured problems. In Progress in
Operational Research. 111. Aronofsky J. S. Ed.. Wiley and Sons. 1969. pp. 662—415.

[16] Plotkin, G. D.: A further note on inductive generalization. In Machine Intelligence 6,
B. Meitzer, and D. Michie Eds., Edinburgh Univ. Press, 1971, pp. 101-124.

[17] Popplestone, R. J.: An experiment in automatic induction. In Machine Intelligence 5,
B. Meitzer, and D. Michie Eds., Edinburgh Univ. Press, 1969, pp. 206-215.

[18] Simon, H. A., and Kotovsky, K.: Human acquisition of concepts for sequential
patterns. Psychol. Rev., 70 (1966), 546-564.

[19] Vere. S. A.: Induction of concepts in the predicate calculus. Proc. Internat. Joint
Conf. on Artif. Intell.. Tbilisi (1975), 281—287.

[20] Vuillemin, J. E.: Proof techniques for recursive programs. Memo
AIM -218/STAN-CS-76—696, Dept, of Comp. Science, Stanford Univ., 1976.

[21] Waldinger, R. J., and Lee, R. C. T.: ’’PROW: a step toward automatic program
writing.” Proc. Internat. Joint Conf. on Artif. Intell.. Walker, D. E., and Norton,
L. N. Eds., Washington (1969), 241-252.

Computational limtuíslicx and Computer l.anxuaxes I ol. \ l l l . IV74.

R E L A T I O N A L P R O G R A M M I N G I L L U S T R A T E D BY A P R O G R A M F O R

TH E G A M E O F M A S T E R M I N D

M. H. van Emden

Department of Computer Science University of Waterloo

1. In tr od u ct io n

Many difficulties in programming are caused by the use of im p e ra t i v e languages (those which
are based on commands) such as Fortran, Algol, or Pascal. These difficulties can be avoided by
using a d e f in i t io n a l language as Lisp or Prolog. Lisp is based on the lambda-calculus and is typically
used for the definition of functions. Prolog is based on firstorder predicate logic and is typically
used for the definition of relations.

This paper aims to show an advantage of specifying a relation instead of a function: the
same relation can specify several different functions, depending on which arguments are given.
As a result, the Prolog interpreter can use the relational specification to compute several of the
different functions implied in the relation. Several examples of this phenomenon are exhibited
and discussed in this paper.

Prolog programs are an essential part of this paper. Between different implementations of
Prolog there are minor variations in syntax and in the effect of system-defined predicates. The
original Marseille implementation [GDM] is the common ancestor of the systems developed in
Budapest [PPL], Edinburgh [CLP], and Waterloo [ЮР]. The programs in this paper have been
run on the latter system. A more advanced version is IC-Prolog [ICP], which is being developed
in Imperial College, London, by K.L. Clark, R. A. Kowalski, and F. G. McCabe. Another recent
development is by J. A. Robinson and E. Sióért in the University of Syracuse, where an imple
mentation of logic programming is embedded in Lisp.

Prolog is based on Kowalski's proposal [PLPL]for using logic as a programming language,
which, in.turn, is based on J. A. Robinson’s resolution principle [MOL], Although not
conceptually related, Prolog has similarities to several earlier systems, such as [ABSYS],
[PLANNER], and [ABSET],

2. T h e Principle

The principle of relational programming is explained by means of the following binary
relation between natural numbers:

R = ((1 , 1) , (2 , 4) , (3 , 9) , (4 . 1 6) 1

Depending on which argument is given, the relation specifies a subset of the squaring functi
on, or a subset of the square-root function.

- 132 -

In logic the relation can be specified by the conjunction of the following atomic formulas:

Ä (U) .

R(2,4).

R(3 ,9) .

R(4 ,1 6) .

The atomic formulas are special cases of clauses, the components of a Prolog program. Not
only in this example, but in general also, Prolog programs are regarded as specifying relations.

The Prolog interpreter can be instructed to find a y such that R (3 y) is provable from
the specification. It will respond with y - 9 , thus computing a value of the squaring function.
Or the Prolog interpreter may be instructed to find an x such that R (x , 16) is provable from
the specification. It will respond with x = 4, thus computing a value of the square-root
function.

Both of these computations are, of course, nothing but table look-ups. The remainder
of this paper is devoted to less trivial applications, which can, however, be viewed as look-up
in virtual tables implicit in specifications consisting of clauses which have a less restricted form
than those of the present example. This point of view is elaborated in fCDI],

3. A simple example of relational programming

In logic programs, as in first-order logic, terms denote objects. The syntax requires that
a term is either a constant (in Prolog an identifier or a decimal number), or a variable (in
Prolog a constant preceded by an asterisk), or f (t l , . . . , t) where / is an m -place functor
and t y , . . . , t m are terms.

For example,

. (c , . (b,nil))

is a term, where is a 2-place functor and b,c,nil are constants. Prolog allows infix
notation for 2-place functors so that we can also write

c.(b.nil)

As a further convenience, we are allowed to write

4rn

and to specify whether it means

t y . (t 2 .(. . . • t n) . . .)

or

(• • • (í j •t 2) . t ,) . t
П - 1 П

- 133

Throughout this paper we assume that the former option is in force.

In this section we discuss a specification of the relation, called append, between three lists
which holds if the last list is the result of appending the first two. In this example the objects
to be denoted by terms are lists. A nonempty list is a composite object: it consists of a head,
which is the first element, and a tail, which is the list of the remaining elements. A non-empty
list is denoted by a term of the form 11 . t, where the term t x is the head and the term is
the tail. An empty list has no components and is therefore denoted by a constant (in this paper,
as is usual, by nil).

The logic p r o g r a m specifying the append relation is the conjunction of the tollowing two
clauses:

append(n/7, * y , *y) .

(3.1)

append! * u . *x, * y , * u . * z) *- append(* x, * y , *z) .

In general we are concerned with clauses of the form

A <- B. & . . . & В , n > 0

where A , B] , . . . , В n are atomic formulas containing the variables x x, . . . , x p , where
p > 0. The clause should be read as

for all x . , . . . , x , A if (В , and . . . and В)

In case n - 0 we drop the left arrow. In that case the clauses should be read as an uncondi
tional assertion. It should now be clear that the clauses (3.1) are true of the append relation
between lists.

A program, which consists of clauses, is activated by a g o a l s t a t e m e n t , which has the form

*- A] & . . . & A к > 0

where A (, . . . , A k are atomic formulas, called goals. One of the goals in a non-empty goal
statement is distinguished and is called the s e l e c t e d goal.

From a goal statement

(3.2) <- Aj & . . . & A k

with selected goal A f there may be derived the goal statement

(3.3) - (A] & . . . & A._ , & 5 , & . . . & B n & A j+] & . . . & A k)t0

if the program contains a clause

— 134 —

A *- В В , w > О,

which matches the goal A. . This is said to be the case if A t = A A for some substitution t

of terms for variables. If such a 1 exists, then there also exists a 'most general' one, here
called which is such that A t can be obtained by substitution (possibly null) from A t ();

tQ is the s u b s t i t u t i o n p r o d u c e d by the derivation of (3.3) from (3.2).

A p r o o f is a sequence of goal statements, ending in an empty goal statement, and such
that each successive goal statement is derived from the preceding one. Suppose now that a
proof exists with ■*- A ̂ & . . . & A k as initial goal statement and with t/д, as
substitutions. What is now proved by the proof is that

for all jCj , . . . , (Aj & . . . & A k) t 0 . . . t N

follows from the conjucnction of the clauses in the program, where x x , . . . , x (q > 0)
are the variables in (A t <£ . . . & A k)/Q

Let us look at an example, using the logic program (3.1), where we require the result of
appending the three lists c.nil, a.nil, and b.nil. This requirement is specified by the initial
goal statement

append (a . n i f b . n i l , * x) & append (c.nil , *jc, *y)

If a proof is found, then the composition of all substitutions in the proof substitutes for *y

the required result.

For the Prolog interpreter the selected goal is always the leftmost. Hence the interpreter
will attempt initially to match the leftmost goal in the above goal statement with the first
clause of (3.1), which is not possible. The second clause does match, deriving the goal
statement

<- append (n i l ,b .n i l , *xl) & append(c.«/7,a. * x l , *y)

Now the first clause matches the leftmost goal, deriving

«- a p p e n d i c . n i l . a . b j i i l . *i)

The next goal statement is

<- a p p e n d i n i l , a . b. nil, *y l)

with a substitution replacing * у by c. * y J) The selected goal now matches the first clause,
so that the next goal statement is empty. A proof has been found. The variable * y in the
initial goal statement is replaced by c .a .b .n i l .

So much for the basic mechanism of Prolog. Here we are concerned with relational
programming: that is, we want to make use of the fact that (3.1) specifies a relation between
the three arguments o f append, rather than a function from the first two to the third. Take

- 135 —

for example the goal statement

appendtű.m'/, * y , a b c .nil)

In finding a proof, Prolog will substitute b .c .n i l for *y, thus performing list subtrac
tion. Below (3.4, 3.5. 3.6) we list several other examples of goal statements causing Prolog
to compute functions other than the append function, all by means of the same relational
specification (3.1).

(3.4) •*- append) * x .c .n i l .a .b . cn i l)

substitution:

* X : = a.b.nil

(3.5) — append) * u.c. * v ,a .b .c .n i l)

substitution:

* и := a .b .ni l

* v := nil

(3.6) «- append) * u ,b . c .ni l , *v) & append) *v, * w .a .b . c .d .n i l)

substitution:

* u := a. nil

*v := a .b .c .ni l

* vv := d. ni l

The goal statement (3.4) causes another form of list subtraction. The goal statement (3.5)
has the effect of checking whether c occurs in a .b.c .ni l ; this suggests the following definition
of list membership:

I

append (nil, * y , *.v).
append) *u. *x, *y, *u. * z) «- append) *x , * y , *z).
member(* c, *w) ■*- append(* u, * c. *v, * w).

The goal statement (3.6) has the effect of checking whether b .c .n i l is a sublist of
a .b .c .d .n i l ; this suggests the following definition of the sublist relation:

appendix//, * y , *y).
append) * u. *x, *y, *u. *z) *- append) * x, *y, *z).
sublist(* x, *z) *- append) * u, *x , *v) á append) *v, *w, * z) .

This definition of sublist is not restricted to completely specified list as first argument.
For example,

sublist) * X. *y . * x .ni l , m . a . d . a . m . n i l)

- 136 -

will result in

*x := a
* y := d

In other words, sublist can be used to search for incompletely specified sublists: things that
may well be called ’’patterns”.

We have shown that a single specification can be used to compute a variety of functions,
each of which would require a different program in a conventional language. We call relational
programming the technique of using this phenomenon. Another advantage is that the more
general relational specification may be easier to find than the particular function required.

Prolog is far from perfect as a vehicle for relational programming. Finding a proof depends
on having in each goal statement the correct choice of selected goal or, given the selected goal,
using the correct choice of clause in case more than one matches. Prolog often fails to find a
proof because it always selects the leftmost goal and because it always tries to match the
clauses in the order in which they occur in the program. IC-Prolog [ICP] will find proofs in
cases where Prolog does not because it is more flexible in determining the selected goal.

4. The game of Mastermind

In the abstract game of Mastermind the following types of object exist:

CODE = PROBE = the set of ordered 4-tuples with elements in a set of colours
SCORE = the set of ordered pairs with elements in the set of numbers

0 through 4

/ : PROBE X CODE ->■ SCORE; we call / the ’scoring function".

The elements of the ordered 4-tuples correspond to the ’code pegs’ of the concrete game,
and they may be black,blue, green, red, white, or yellow. In the abstract game we take the
set of colours to be

{ BLACK, BLUE, GREEN, RED, WHITE, YELLOW }

The first (second) component of an element of SCORE corresponds to the number of ’black
(white) key pegs’ of the concrete game. We will find it convenient to represent in the
abstract game these numbers in successor notation, because then the relation between prede
cessor and successor can be specified succinctly, without explicitly referring to the sum relation.
The successor function is denoted by + so that + (.x) is the successor of x in functional
notation. However, suffix notation is more concise and traditional; therefore we represent the
set of numbers 0 through 4 as

{ 0, 0+, 0+ + , 0+ + +, 0+ + + + j

- 137 —

The scoring function has the property that the higher the score, the greater the similarity
between its arguments. This statement is only intended to help the intuition, as it is formally
meaningless without a definition of order among scores or of similarity between codes and
probes. The value j \ p ,О of the scoring function contains a black key peg for every position
where p and C have the same colour. Such an occurrence is called a 'strong match". For
every one of the remaining positions, /(/7 ,0 contains a white key peg for every element of
p with the same colour as an element of C. Such an occurrence is called a ’weak match’

The game is played as follows. There are two players, the Codemaker and the Codebreaker.
The Codemaker selects a code C which is concealed from the Codebreaker. The Codebreaker

can obtain information about C by selecting a probe p in response to which the Codemaker
reveals the result s = f \ p , 0 of the scoring function.

This is repeated until the Codebreaker has selected a probe equal to C. In other words,
the Codebreaker constructs a sequence p x, . . . , p n of probes with p t Ф C for i Ф n

and p n = C. The Codemaker constructs a sequence S j, . . . , s n such that s. = /(/7;..C).
The selection of p j by the C'odebreaker may depend on (p x), . . . , (p . t , s. j). It is
the Codebreaker’s objective to make n as small as possible.

5. A logic program for the scoring function

Logic programs compute relations. Therefore, if one wants to compute a function, it has
to be expressed as a relation. The logic program for the scoring function defines a relation
M M such that

M M (p , c , s) iff f { p , c) = s,

where / is the scoring function discussed before. The relation M M is defined by the clause

MM (*P, *C. *5 1 . *52) ~ BLACKS< V , * C, > 1 . *C1, *51)
& WHITESi * P \ . *C1, *52).

The first component of the score is s i , the number of black key pegs. BLACKS is true if si
is the number of strong matches between p and c and if p 1 and cl are the results of
removing the strongly matching elements from p and c respectively. WHITES is true if
s2 is the number of weak matches between p 1 and c l . This clause reflects the informal
description of / given in the previous section.

The following statements in logic, which are true of M M and of the auxiliary relations,
have been run as a Prolog program for computing the scoring function. Note that we represent
an ordered я-tuple consisting of the colours c , , c>; by the term C j.............. c/;. nil;

that is. just as we represented lists in section 3.

- 138 -

0 P (+ , S U F F I X , 1 5 0) .
OP (= , R L , 1 5 0) .

M K (* P , * C , * S 1 . * 5 2) < - B LACKS (* P , * C , * P 1 , * C 1 , * S 1) & W H I T E S (* P 1 , * C l , * S 2) .

BLACKS (N I L , i l l L , MI L , N I L , 0) .
B L A C K S (* U . * P , * U . * C , * P 1 , * C 1 , * S +) < - B L A C K S (* P , * C , * P 1 , * C 1 , * S) .
В LACKS (*U . * P , * V . x C , * U . * P 1 , * V . * С 1 , A S) < - N O T (* U = *V)

& B L A C K S (* P , * C , * P 1 , * C 1 , * S) .

WH I T E S (N I L , * C , 0) .
W H I T E S (* U . * P , * C , * S +) < - DE L (* U , * C , * C l) & W H I T E S (* P , * С 1 , * S) .
W H I T E S (* U . * P , * C , * S) < - NONMEM(* U , * C) & W H I T E S (* P , * C , * S) .

D E L (* U , * U . * Y , * Y) .
D E L (* U , * V . * Y , * V . * Y 1) < - N O T (* U = * V) & D E L (* U , * Y , * Y 1) .

NONMEM (*U , N I L) .
N O N M E M (* U , * V 1 . * V) < - N O T (* U = * V 1) & NONMEM(* U , * V) .

* X = * X .

F i g . 1: P r o l o g p r o g r a m f o r t h e s c o r i n g f u n c t i o n

6. A codebreaker obtained by relational programming

Suppose we want to obtain a program playing the part of the Codebreaker. Then we have
to devise a playing strategy, that is, some function with the sequence (p1, Sj), . . . , (p { y,
5 . j) as argument and with a value which can be used as value for p r the next probe.
We will use a strategy reported in [EFP] which is to take any p ;. such that
A P j P j) ~ sj f°r j — 1» — 1, if i > 2. The first probe is arbitrary. In the first place,
such a p i always exists, because, for example, the unknown code has this property. In the
second place, such a p { can be expected to be, in some sense, close to the unknown code,
the more so the larger i is.

This last observation can be made more precise if we consider the first component of the
score, namely the number s’ of black key pegs. Note that 4-s’ is the so-called Hamming
distance, which is a metric, between fourtuples of colours. The set of p ;. such that for
/ = 1, 1, f { p . , p t) = s. is therefore contained in the set of codes having given
distances to the points p , . . . , p (_ j in a metric space. This set contains the unknown code
and it can be expected to be smaller for large i.

The strategy therefore requires the following equation to be solved for x: f (p , x) = s.

We already wrote a program for solving for x: f (p , c) = x. Apparently, the relation M M .

introduced for a logic program to compute the scoring function, also specifies the computation
needed by a Codebreaker.

It should now be clear why we have chosen the game of Mastermind as a case study in
relational programming: we aim to obtain a program for the more difficult Codebreaker’s

— 139 —

part by specifying in relational form the easily programmed scoring function and then to use
this relation with the probe and score as given arguments to obtain a guess at the unknown
code.

However, it would be a mistake to believe that the program in section 5 can be used as
a code-breaking program. The reason is that we have inadvertently specified a relation different
from the one intended. We need a relation which is a subset of the Cartesian product .
PROBE X CODE X SCORE. PROBE and CODE contain only fourtuples of colours. It is
apparent that the relation specified in section 5 can have in its first two argument places
tuples containing arbitrary elements, not necessarily colours. The relation is usable for computing
the scoring function because then the first two arguments are given, and can be given (as
required in this particular application) as tuples of colours.

The relation specified in section 5 is too large, but a goal specifying that the scoring
function is to be computed happens to restrict the relation in the desired way. However, if
we want to use a goal «- M M (p , x , s) to solve for x the equation f (p , x) = s, with p and
s given, then we cannot expect the desired result, because according to the specification in
section 5, X can be a tuple containing arbitrary elements. However, if we would extend the
specification so that indeed x is forced to consist of colours only, then would be able to
use the modified specification to solve for x both f (p , c) = x and Др,х) = 5 . That is,
we could then use the relation M M to play both sides of Mastermind.

Let us see how we can correct this deficiency in our previous specification of MM . The
condition

not(* и - * v)

with и equal to a colour is satisfied by values for v which are arbitrary objects which are
not necessarily colours. Hence we change occurrences of this condition, say, difftu.v) and
we add the clause

diff(* u, *v) •*- colour) * u) & colourt * v) & not) * u = * v)

and specify also explicitly which colours exist by adding the clauses

colour)black), colour(blue). colour(green).
colour(red). colourfwhite). colour(yellow).

A specification of the relation M M , which is suitable for playing both the Codemaker’s
and the Codebreaker’s parts, can be found as part of the complete Prolog program for Mastermind
listed in the next section.

— 140 —

7. The complete program

We now have a Prolog program which can solve for x f (p , c) = x by the goal statement

MM{ * p , * c , *x)

and also can solve for x f { p , x) = s by the goal statement

*- MM(* p , * x, * s)

We continue towards a complete program for Mastermind. As a first step we define the
relation between a sequence of (probe, score)-pairs

(p, , ip. j .)

and a candid a te c o d e p having the property that

f lpxp) = « j . • • • » Лр ,,р) = si

The desired relation is defined by

candcode(m7,).
candcode((* p 1. *sl). * p s , * p) < - m m (* p 1, *p , * s i) & candcode(* ps , * p) .

Let us call a c a n d i d a t e s o l u t i o n a sequence

(pp 5,), . . . , (p ,,s)

of (probe, score)-pairs such that

f (P v P k) = 5, , . . . , A p k _ 1 , P k) = sk X , for к = 2, 1.

That is, each probe is a candidate code with respect to the preceding sequence of (probe, score)-
-pairs. A candidate solution is a s o l u t i o n if the last score has at least four black pegs, that is
if the last probe is equal to the code.

For us it is important that a candidate solution be e x t e n d a b l e to a solution. Of the
property of being extendable we can say that

extendable((* . (* + + + + *)) . *) .
extendable(* cs) •*- candcode(* cs, *cc) & score(* cc, * s)

& extendable((* cc . *s) . * cs).
score! *p, * s) «- code(* c) & rami * p, *c, * s).

A note on notation: Because each clause is, separately from the other clauses, universally
quantified, a variable name is only meaningful within a clause. It follows that the name of a
variable which occurs only once in a clause, is immaterial, and hence can be ommitted. Only the
asterisk is written; the variable is anonymous. Conversely, each occurrence of an anonymous

141 -

variable in a clause stands for a variable different from any other variable in the clause, ano
nymous or not.

With respect to a given candidate solution there are typically several possible candidate
codes. The above simple definition of 'extendable' has the disadvantage that it does not extend
with a best, but rather with any. candidate code. There is hence no guarantee that only rea
sonably short solutions are specified by ’extendable'. Our experience shows that with most
codes ’extendable’ gives a solution of length five. An exception was found with a code consis
ting of equal colours. D.E. Knuth was quoted [EE?] as having found that a solution of length
five is always possible. In order to guarantee that our solutions do not exceed a given bound,
we have restricted the above definition of 'extendable' to mean: extendable within the number
of steps determined by an additional third argument.

The complete program is listed below in two parts. Only the part needed for the defini
tion of 'extendable' is of interest from the point of view of relational programming. Yet a
fairly large additional part if required for a program that interface with a client not familiar
with its inner mechanisms. This part, labelled 'interactive manager' is also done in Prolog, though
it is hardly an example of definitional programming. It has also been listed in full in order to
show that for this kind of programming task Prolog is at least serviceable, although usually
not particularly inspiring.

An exception is the way in which the backtracking of Prolog allows one to program a
check on the correctness of input. For example, in PLAY it is desirable to check whether
the *X produced by READ is correct. If not, CHECKSEED causes a complaint to appear
and fails, so that backtracking causes READ to be reactivated, giving the user another
opportunity for entering something.

In order to able to understand the interactive manager one has to know some of the
built-in predicates of the Waterloo Prolog interpreter; see Appendix 1 for the relevant
excerpts from [ЮР]. See Appendix 2 for the control flow of the interactive manager.

- 142 -

/ * + D E F I N E D AS S U F F I X OPERATOR * /
/ * = D E F I N E D AS I N F I X OPERATOR A S S O C I A T I N G

FROM RI GHT TO LEFT * /

E XT E N D A B L E ((* P . (* + + + + . *)) . * , * +)
< - W R I T E C H (' THE CODE MUST BE: ') & CHECKCODE(* P 0 , * P) & W R I T E (* P 0) .

E XT E N D A B L E (* C S , *N +) < - CANDCODE (* C S , * CC) & WR I T E C H (' MY NEXT PROBE I S : ')
& CH E C K C O D E (* C , * C C) & WR I T E C H (* C) & WR I T E C H (' ; SCORE: ')
& S C O R E (* C C , * S) & W R I T E S C O R E (* S)
& *M+=*N & I S (* M , * MD) & WRI TECH(* MD)
& W R I T E f T R I E S TO GO')
& EXT E NDAB L E ((* C C . * S) . * C S , * N) .

CANDC ODE (N I L , *) .
C A N D C O D E ((* P 1 . * S 1) . * P S , * P) < - MM(* P 1 , * P , * S 1) & CANDCODE(* P S , * P) .

S C O R E (* P , * S) < - CODE (* C) & MM(* P , * C , * S) .

O P (+ , S U F F I X , 1 5 0) .
O P (= , R L , 1 5 0) .

/ * BEGINNING OF DEFINITI ON OF SCORING RELATION * /

MM(* P , * C , * S 1 . * S 2) < - B L A C K S (* P , * C , * P 1 , * C 1 , * S 1) & W H I T E S (* P 1 , * C l , * 3 2) .

BLACKS (NI L, NI L , N I L , N I L , 0) .
BLACKS (*U . * P , *U . * C , * P 1 , * C l , *S +) < - BLACKS(* P , * C , * P 1 , * C l , * S) .
BLACKS (* U . * P , * V . * C , * U . * P 1 , * V . * C 1 , * S) <- D I F F (* y , * V)

& B L A C K S (* P , * C , * P 1 , * C 1 , * S) .

WHI TES (N I L , * C , 0) .
WHI TES (* U . * P , * C , * S +) < - D E L (* U , * C , * C 1) & W H I T E S (* P , * C l , * S) .
WHI TES (* U , * P , * C , * S) < - NONMEM(* U , * C) & WH I T E S (* P , * C , * S) .

/ * DEL (U , Y , Y 1) I F Y 1 I S THE RES ULT OF DELETING U FROM L I S T Y * /
D E L (* U , * U . * Y , * Y) .
DEL (* U , * V . * Y , * V . * Y 1) < - D I F F (* U , * V) & D E L (* U , * Y , * Y 1) .

/ * N ONMEM (U , V) I F U I S NOT A MEMBER OF L I S T Y * /
NONMEM (*U , NI L) .
NONM EM(*U , * V 1 . * V) < - D I F F (* U , * V 1) & NONMEM(* U , * V) .

D I F F (* U , * V) < - COLOUR (* U) & C O L O U R (* V) & NOT (* U = * V) .

COLOUR(BLACK) , COLOUR (B L UE) . COLOUR (GREEN) .
COLOUR (R E D) . COLOUR(WHI Т Е) . COLOUR(YELLOW) .

*x - *x.

/ * END OF D E F I N I T I O N OF SCORING R E L AT I ON * /

Fig. 2: Main part of Mastermind program

143 -

/ * INTERACTIVE MANAGER*/

PLAY <- W R IT E ('MASTERMIND AT YOUR S E R V IC E ')
& WRITECENTER AN ARBITRARY NUMBER BETWEEN 0 AND 1 6 3 8 3 ')
& READ(*X) & CHECKSEED(* X) & AODAX(SEED(* X))
& WRITECH(' EXAMPLE FORMAT FOR ENTERING CODE: ')
& WRITE('YELLOW.BLUE.WHITE.BLACK')
& PLAY1.

PLAY1 <- WRITECH(' DO YOU WANT TO MAKE OR BREAK CODES? ')
& WRITE('ANSWER MAKE. OR ANSWER BREAK')
& READ(*X) & CHECKMB(*X) & S T A R T (* X) .

START (MAKE) < - / & WRITECENTER CODE; I PROMISE NOT TO LOOK') & READ(*C0)
& CHECKCODE(*C0,*C) & ADDAX(CODE(*C)) & GENCODE(*P) & SCORE(*
& WRITECH(' MY F IR S T PROBE I S : ') & СНЕСКСODE(*P0 , * P) & WRITECH(
& WRITECH(' ; SCORE: ') & WRITESCORE (* S)
& EXTENDABLE((* P . * S) . N I L , 0 + + + + +) & DELAX(CODE(*)) & AS” .

START(BREAK) < - GENCODE(*C) & ADDAX(CODE(* C))
& W R I T E C E N T E R F I R S T P R O B E ') & R E A D (* P 0) & C H E C K P R S T (*P 0 , * P)
& S C O R E (* P , * S) & C O N T B R (* S) .

C0NT3R (*+ + + + . *) < - / & WRITECYOU GOT I T ') & DE LAX (CODE (*)) & ASK.
CONTBR (* S) < - WRITECH('YOUR SCORE: ') & WRITESCORE(* S)

& WRITECENTER NEXT PROBE OR TYPE S T O P ') & READ(*X0)
& CHECKPRST(*X0 , * X) & RESPONDTO(* X) .

RESPONDTO(STOP) < - / & WRITECH(' I ASSUME YOU GIVE UP; THE CODE I S : ')
& DELAX(CODE(*C)) & CHECKCODE(* CO, * C) & W R IT E (* C0) & ASK.

RESPONDTO(YES) < - / & PLAY1.
RESPONDTO (NO) < - DELAX (S EED (*))

& WRITE('MASTERMIND WAS PLEASED TO SERVE YOU')
& WRITECYOU ARE NOW RETURNED TO PROLOG') & E X IT .

RESPONDTO(* P) < - S C O R E (* P , * S) & CONTBR(*S) .

ASK <- WRITE ('DO YOU WANT ANOTHER GAME? ANSWER YES. OR ANSWER N O ')
& READ(*X) & CHECKYN(*X) & RESPONDTO (* X) .

/ * CODE GENERATOR * /
G E N C O D E (* U .* V .* W .* X . N I L) <- RANDOMCOLOUR(* U) & RANDOMCOLOUR(* V)

& RANDOMCOLOUR(*W) & RANDOMCOLOUR(* X) .

RANDOMCOLOUR(*X) <- RANDNUM(* R) & REM(* R , 6 , * N) & SUM(*N, 1 , * N 1)
& AX(COLOUR(*) , COLOUR(*X) ,* N 1) .

/ * R IS PREVIOUS, S IS NEXT RANDOM NUMBER * /
RANDNUM(*S) < - D E L A X (SE E D (* R)) & PROD(* R , 1 2 5 , * X) & S U M (* X ,1 , * Y)

& R E M (* Y ,16384,* S) & ADDAX(SEED(* S)) .

Fig. 3: First part of Interactive Manager

CL, *

- 144 -

/ * CHECK WHETHER ARGUMENT IS CORRECT SEED FOR RANDOM-NUMBER
GENERATOR

V
CHECKSEED(* X) < - INT(*X) & G E (* X , 0) & L E (* X , 1 6 3 8 3) & / .
CHECKSEED (*) < - COMPLAINT.

/ * CHECK FOR ’MAKE' OF ’BREAK' * /
CHECKMB(MAKE) < - / .
CHECKMB(BREAK) < - / .
CHECKMB(*) < - COMPLAINT.

/ * CHECK FOR 'Y ES ' OR 'NO' * /
CHECKYN (YES) < - / .
CHECKYN(NO) < - / .
CHECKYN (*) < - COMPLAINT.

/ * CHECK FOR CODE OR PROBE AND CONVERSION TO OR FROM INTERNAL
FORMAT, WHICH CONTAINS 'N I L '

V
CHECKPRST(STOP,STOP) <- / .
CHECKPRST(*X, * Y) < - CHECKCODE (* X , * Y) .

СНЕСКСODE (* U . * V . * W. * X , * U . * V . * W. * X . N I L)
<- COLOUR (*U) & COLOUR(*V) & COLOUR (*W) & COLOUR(*X) & / .

CHECKCODE(* , *) < - COMPLAINT.

COMPLAINT <- WRITE (' ERROR; TRY AGAIN') & FAIL.

WRITESCORE(*BLACKS.*WHITES) < - I S (*BLACKS,*X) & WRITECH(*X)
& WRITECH(' BLACK AND ') & I S (* WHITES, * Y)
& WRITECH (*Y) & WRITEC W HI TE ') .

/ * CONVERSION FROM SUCCESSOR NOTATION TO DECIMAL NOTATION * /
IS (0 , 0) .
I S (*S + , * N 1) < - I S (* S , * N) & SUM(* N , 1 , * N 1) .

Fig. 4: Second part of Interactive Manager

8. Related work

Sickel has investigated [INV] how to predict in general whether it is possible to compute
a particular function from a relational definition with a given rule for selecting a goal.

A striking application of relational programming has been found by Colmerauer [GDM],
In his example of a compiler written in Prolog, the analyzer takes as input the source code and
outputs a parse tree decorated with semantic information. The code generator takes such a
tree as input and outputs object code. Both parts are written by Colmerauer as relations
between strings and parse trees. The clauses defining the relation are rewrite rules in the tra
ditional sense. For the analyzer the first argument is given; for the code generator the second
argument is given. In this way it was possible to write the code generator as a set of rewrite
rules, just as the analyzer was.

In [PRL] we showed that a logic program for quicksort could be inverted to a
permutation generator by writing it as a relation between a possibly unsorted list and its
sorted version.

9. Concluding remarks

It is widely accepted that definitional programming is more reliable and more productive
in terms of human effort than imperative programming. It is also generally true that imperative
programs are more productive in terms of processor time and memory space. Definitional
programming has a promising future because computer processors and memories are expected
to become considerably cheaper than are at present; also, it should be kept in mind that not
nearly as much effort has been spent on efficient compilation of definitional languages as
has been the case with imperative languages.

Of two approaches to definitional programming — functional and relational — the first
has been explored much more intensively than the second. Lisp has been in use since about
I960 and was backed by massive and uninterrupted support from implementers and users,
initially mainly at the Artificial Intelligence Laboratory of the Massachusetts Institute of
Technology. Prolog arrived on the scene much later. Outside of Hungary, Prolog has been, at
best, tolerated rather than supported. In addition to that, an entire category of applications,
namely symbolic computation, has become Lisp territory; not because of an inherent superi
ority of functional over relational programming, but simply because Lisp was there first.

Because of the growing importance of definitional programming, it is now time to under
stand the relative merits of the functional and relational approaches. Far from presenting a
comprehensive comparison, this paper has only attempted to contribute a small part which
we expect to be relevant in such a comparison.

- 146 -

10. Acknowledgements

We owe a great debt of gratitude to Grant Roberts who made logic programming feasible
in Waterloo. Roberts also suggested improvements to an earlier version of the Mastermind
program. The suggestion of writing a program for Mastermind came from David Warren.

The Canadian National Science and Engineering Research Council has provided partial
financial support.

11. References

[ABSET] E.W. Elcock, J.M. Foster, P.D.M. Gray, J.J.M. McGregor, and A.M. Murray:
ABSET: A programming language based on sets. Machine Intelligence 6, B.
Meitzer and D. Michie (eds.), Edinburgh University Press, 1971.

[ABSYS] J.M. Foster and E.W. Elcock: Absys 1: an incremental compiler for assertions,
Machine Intelligence 4, B. Meitzer and D. Michie (eds.), 423^-29. Edinburgh
University Press, 1969.

[CDI] M.H. van Emden: Computation and Deductive Information Retrieval.
E. Neuhold (ed.): Formal Description of Programming Concepts,
North Holland, Amsterdam, 1978.

[CLP] D.H.D. Warren: Implementing Prolog-compiling predicate logic programs. DAI
Research Reports 39 and 40. Dept, of Artificial Intelligence, University of
Edinburgh, 1977.

[EFP] C. Wetherell: Etudes for programmers. Prentice-Hall, 1978.

[GDM] A. Colmerauer: Les grammaires de metamorphose; in L. Bole (ed.): Natural
Language Communication with Computers, Springer Lecture Notes in
Computer Science, 1977.

[ICP] F.G. McCabe: Programmer’s Guide to IC-Prolog. Dept, of Computation and
Control, Imperial College, 1978.

[INV] S. Sickel: Invertibility of logic programs. Fourth Workshop on Automated
Deduction. University of Texas at Austin, Feb. 1979.

[IOP] G.M. Roberts: An implementation of PROLOG; M.Sc. Thesis, Dept, of
Computer Science, University of Waterloo, 1977.

[MOL] J.A. Robinson: A machine-oriented logic based on the resolution principle.
J. ACM _12 (1965), 23-44.

[PLANNER] C. Hewitt: Planner: a language for manipulating models and proving theorems
in a robot, Proc. First Int. Joint Conf. in Artificial Intelligence, pp. 295-301.

- 147 -

[PLPL] R.A. Kowalski: Predicate Logic as a programming language; Proc. IFIP 74,
North Holland, 1974, 556-574.

[PPL] P. Szeredi: Prolog- a very high level language based on predicate logic. Proc.
S e c o n d H ungarian C o m p u ter S c ie n c e C o n fe r e n c e , B u d a p est, J u ly 1977 .

[PRL] M.H. van Emden: Programming in resolution logic. Machine Intelligence 8

(eds. E.W. Elcock and D. Michie) by Ellis Horwood Ltd. and John
Wylie, 1977.

12. Appendix 1: Some information on the built-in predicates of the Waterloo Prolog interpreter
quoted from [ЮР].

READ is a predicate with one or two arguments. The second argument is the optional
file identifier. A term is read from the indicated file and unified with the first argument. The
term must be delimited with the end of term character. If the end of the input file has been
reached the predicate fails. If backtracking returns to the read then a read of the next term
will be attempted. If the term read cannot be unified with the first argument or the format
of the term is invalid then backtracking will cause a read of the next term to be attempted.

WRITE is a predicate with one or two arguments. The second argument is the optional
file identifier. The term specified by the first argument is written on the indicated file. The term
is delimited by the end of term character. The term is written using prefix, infix and suffix
notation where appropriate, as indicated by the operator declarations at the time of writing.

WRITECH is a predicate with one or two arguments. The second argument is the optional
file identifier. The first argument specifies a term which is formatted using the operator dec
larations (as for WRITE) and placed in the output buffer for the given file. If the buffer is
filled then it is written to the given file (and emptied). If the buffer is partially filled then it
is not written out.

There are several predicates which are included to provide the basic operations of integer
arithmetic. Each of these predicates has three arguments. The first two are the input parame
ters and the last is the result parameter. The first two arguments must be integers. The
appropriate integer function of the first arguments is unified with the third argument.

t

The arithmetic predicates are:

DIFF — difference (subtraction)
PROD — product
QUOT - quotient
REM — remainder
SUM — sum

The database built-in predicates provide the facility for updating the database (i.e. the
set of axioms in the active work space).

- 148 -

The ADDAX predicate is used to add an axiom to the database. It has one or two argu
ments. The first argument must be a valid axiom. It may be:

(a) a unit axiom. In this case it is a skeleton or an atom.

(b) a non-unit axiom. In this case it is of the form <head> <body>.
<head> must be a skeleton or atom.

The axiom specified by the first argument is added to the database. If a single argument is
specified then the axiom is added after all other axioms with the same predicate name and
number of arguments.

The DELAX predicate is used to delete an axiom from the database. It may be called
with one or two arguments. The first argument is a term representing an axiom. The first
argument may be:

(a) a unit axiom. In this case it is a skeleton or an atom.

(b) a non-unit axiom. In this case it is of the form <head> <- <body>
<head> must be a skeleton or an atom.

Thus the first argument specifies the name and number of arguments for the axiom to
be deleted. If only one argument is specified then an attempt is made to unify the argument
with each of the relevant axioms in the database. The axioms are selected in the order in
which they appear in the database. If no axiom is found which is unifiable with the first argu
ment then the predicate fails. If the unification succeeds for an axiom then the axiom is deleted
and the predicate succeeds. If backtracking subsequently returns to this point then the pre
dicate will fail, thus preventing accidental deletion of further axioms.

The AX predicate has two basic formats:

AX(< head> ,< axiom>).
A X « head> ,< axiom> ,< index>).

The AX predicate is used to retrieve axioms from the database. <head> is a model axiom
head and maybe a skeleton, an atom or a variable. If <head> is not a variable then it
specifies a predicate name and number of arguments implicitly. The axioms for this name and
number of arguments are retrieved. If an <index> is specified, then the /-th axiom that
matches the <head> is unified with <axiom>, where i is the value of <index>.

149

!3. Appendix 2: Control flow in the interactive manager

I HLAY

- 150 -

14. Appendix 3: An interactive session with the Mastermind Program.

WELCOME TO PROLOG 0 . 0
LOAD(MMIND)<-
< - p l a y .
MASTERMIND AT YOUR SERVICE.
ENTER AN ARBITRARY NUMBER BETWEEN 0 AND 1 6 3 8 3 .
1 2 3 4 5 .
EXAMPLE FORMAT FOR ENTERING CODE: YELLOW.BLUE. WHITE.BLACK.
DO YOU WANT TO MAKE OR BREAK CODES? ANSWER MAKE. OR ANSWER BREAK,
b r e a k .
ENTER FIR ST PROBE,
b l a c k . b l u e . g r e e n . r e d .
YOUR SCORE: 1 BLACK AND 0 WHITE.
ENTER NEXT PROBE OR TYPE STOP,
b l a c k . b l a c k . b l a c k . b l a c k .
YOUR SCORE: 2 BLACK AND 0 WHITE.
ENTER NEXT PROBE OR TYPE STOP,
b l a c k . b l a c k . w h i t e . w h i t e .
YOUR SCORE: 1 BLACK AND 1 WHITE.
ENTER NEXT PROBE OR TYPE STOP,
b l a c k . y e l l o w . b l a c k . y e l l o w .
YOU GOT I T .
DO YOU WANT ANOTHER GAME? ANSWER YES. OR ANSWER NO.
y e s .
DO YOU WANT TO MAKE OR BREAK CODES? ANSWER MAKE. OR ANSWER BREAK,
make .
ENTER CODE; I PROMISE NOT TO LOOK,
r e d . w h i t e . b l e u . y e l l o w .
ERROR; TRY AGAIN.
s o . y o u . h a v e . b e e n . l o o k i n g .
ERROR; TRY AGAIN,
r ed . wh i t e . Ы ue . y e l 1 ow.
MY F I R S T PROBE I S : WHITE. YELLOW. BLACK. RED; SCORE:
MY NEXT PROBE I S : BLACK.BLACK. RED. WHITE; SCORE: 0
3 T R I E S TO GO.
MY NEXT PROBE I S : BLUE. RED.WHITE. YELLOW; SCORE: 1
2 T R I E S TO GO.
MY NEXT PROBE I S : RED.WHITE. BLUE. YELLOW; SCOPE: 4
1 TR IE S TO GO.
THE CODE MUST BE: RED.WHITE. BLUE. YELLOW.
DO YOU WANT ANOTHER GAME? ANSWER YES. OR ANSWER NO

0 BLACK AND 3 WHITE.
BLACK AND 2 WHITE.

BLACK AND 3 WHITE.

BLACK AND 0 WHITE.

n o .
MASTERMIND WAS PLEASED TO SERVE YOU.
YOU ARE NOW RETURNED TO PROLOG.
PLAY<-
< - S t o p .

Computational Linguistics and Computer Languages VoL XIII. 1979.

EFFICIENT RESOLUTION THEOREM PROVING IN THE PROPOSITIONAL LOGIC

R.Fiby, J.Sokol and M.Sudolskÿ

Institute of Technical Cybernetics, Slovak Academy of Sciences,
Dúbravská cesta 5, 809 31 Bratislava, Czechoslovakia

ABSTRACT

Given a clause set C, it is shown here how to resolve upon any set P of atoms at
once, using minimal unsatisfiable clause sets. Further, the satisfiability- decision strategy
’’resolve upon P . , . . . , P n one after the other” is described. The efficiency of this very simple
complete strategy is demonstrated by an example. In conclusion, remarks on a connection
with the lock strategy and on a computer implementation are done. The strategy which de
scribed here for the propositional logic only, can be uplifted immediately to the first-order
logic.

1. Introduction

The type ” 1” used as an index means ’’one”.

Automatic theorem proving is a traditional field of Artificial Intelligence [22] which is
applicable in automatic programming and question answering [10]. The first efforts in this
field were embodied in [13, 23, 36] for instance. A great progress has been made after dis
covering the resolution rule [27]. To obtain efficient algorithms for theorem proving several
resolution strategies were invented: semantic [5, 21, 26, 28-29, 31-32, 34, 38], merging
[2-3, 25], lock [4], linear [2, 16, 17—20, 25, 33] and others [8 -9 , 12, 37, 39-40]. Ne
vertheless, their efficiency is not wholly satisfactory. The present resolution strategy seems to
be more hopeful.
Strictly speaking, it is described here for unsatisfiability-decision because theorem proving
and unsatisfiability-decision are equivalent [1 0].

The present strategy is based on the following observation: If P is a set of atoms
appearing in a clause set C then the set C((P)) of all the clauses obtained from C by re
solving upon all the elements of P at once is unsatisfiable iff C is unsatisfiable. To resolve
upon at once, minimal unsatisfiable sets are considered. Such sets were encountered previously
in another connection [2 , 15].

The stategy which is outlined here implicitly, can be characterized by the statement
’’resolve upon P , , . . . , P n one after the other” . The efficiency of this very simple complete
strategy is demonstrated by an example. In conclusion, remarks on a connection with the
lock strategy and on a computer implementation are done.

The strategy was implemented in PDP—11/40 for the case when P . t . . . , P are
one—element sets. In this case, the strategy is very suitable also for hand computation. The
computational complexity of the strategy was not investigated. Remark that the computational

- 152 -

complexity in the propositional logic was discussed in [6—7, 1 1. 24]. for instance.

The strategy which is described here for the propositional logic only, can be uplifted
immediately to the first-order logic, using for instance the Shostak theorem] 30] which states:
a clause set C is unsatisfiable (in the sense of the first-order logic) iff there is an unsatisfiab
le (in the sense of the propositional logic) general instance of C. Remark that automatic theo
rem proving in the propositional logic especially was investigated in a few papers only [1 ,
14. 35].

For the sake of greater clarity, literals and clauses (disjunctions of literals) are treated
here more elementary than usually. The following preliminaries are done from the same reason.

Agreement. Throughout the paper:

1. A denotes a finite alphabet.

2 . + and — denote two different letters from A .

3. W denotes a finite set of finite words over A ; elements of W are called atoms.

4. P denotes the complement of a subset P of W.

' 5. LSI denotes the number of all the elements of a set S.

6 . n denotes the empty clause.

D e fin it io n 1.

1. L is said to be a literal iff L = + W or L = — W for some atom W.

2. C is said to be a clause iff C is a set of literals.

3. A set / of literals is said to be an interpretation iff:

1. + W or — W is from / for each atom IV.

2. There is no atom W such that + W and — W are from /.

4. An interpretation I is said to be a model of a clause set C iff each cluse from C

contains a literal from /.

5. A clause set C is said to be satisfiable iff there is a model of C.

6 . A clause set C is said to be a consequence of a clause set C iff each model of C

is a model of C .

7. An unsatisfiable set C is said to be minimal iff C — { C J
from C.

is satisfiable for each C

Lemma 1.

A clause set (is unsatisfiable itt C contains a minimal unsatisfiable sunset.

Proof.

1. Let C be unsatisfiable.
Suppose that each subset of C is not a minimal unsatisfiable set. Denote by m the number
ICI. Evidently, m > 2. There are clauses C’, , . . . , C m such that:

l .C , is from C and C — ! C, ! is unsatisfiable.

2. С’., is from C — ! C { ! and C — [C (.C,) is unsatisfiable.

m . C is from C — [C ,C .) and C — [C . , . . . , C !

is unsatisfiable.

The first parts of these assertions imply the emptiness of C — {C (, C) . However, the
empty set of clauses is satisfiable. Contradiction.

2. Let C contain a minimal unsatisfiable subset. The unsatisfiability of C is evident.

Lemma 2.

Let W - ! W\ . Then Г is a minimal unsatisfiable set iff
C = i - i or C = +

Proof.

In the list of all the clause sets delete each satisfiable set. In the new list delete each clause
set which contains another clause set as a proper subset. The remaining list consists of the clauses
I l I / » \k) \ I li) I ̂

\ \ + W f , I — W S \ .

Definition 2.

Let P be a subset of W

1. L is said to be a / ’-literal iff L = + W or L - — W for some W from P.

2. C is said to be a / ’-clause iff C is a set of / ’-literals.

3. The /’-segment of a clause Ç is the set C \ P \ consisting of all the / ’-literals from C .

4. The /’-segment of a clause set C is the set C[/>1 consisting of all C \ P \ . where C
runs all the elements of C.

- 154 -

Definition 3.

1. A clause C is said to be a tautology iff + W and — W are from C for some atom
W .

2. A clause C from a clause set C is said to be a redundant of C iff there is a clause
C * from C such that C * is a proper subset of C.

3. (C . K) is said to be a quasi—clause iff C is a clause and К is a clause set.

4. The quasi-clause closure of a clause set C is the quasi—clause set C consisting of
all the pairs (С, { C), where C runs C.

2. P — resolvents

To resolve upon any set atoms at once, .P-resolvents are introduced here. Theorem 1
points out the representativity of P-resolvents as regards consequences. At / ’-resolving, both
satisfiability and unsatisfiability are preserved; it is stated in Theorem 2. The strategy "resolve
upon P l , . . . , Pn one after the other” is outlined implicitly in Theorem 3. Together with
Lemma 1 and Lemma 2, Theorem 4 provides a powerful tool for finding all the minimal unsatis-
fiable subsets of a given clause set. Theorem 5 concerns ’’succesive resolving versus mass resol
ving” .

Definition 4.

Let P be a subset o f W. The P-resolvent of a clause set C is the P -clause set
C ((P)) defined, as follows: C is from C i (P)) iff there are C l , . . . , C m from C such that:

\ . C r [P] * C s \P] for г ф s.

2. (С, I/]С [P] I is a minimal unsatisfiable set.

3. C = C 1[f] u . . . u C ffl[i) .

Theorem 1.

Let P be a subset of W. A P -clause set C is a consequence of a clause set C iff
C is a consequence of C{(P)) .

Proof.

1. Let C be a consequence of C.
Let M be an arbitrary model of C((/>)). Denote by C*the clause set defined as follows:
C is from C * iff C is from C and C does not contain any literal from ‘M [P] . Evidently,
if C is from С* ((P)) , then:

- 155 -

1. C does not contain any literal from M\ P] ,

2. C does not contain any literal from M \ P] .

It means that C does not contain any literal from M. Since M is also a model of C * ((P))

it means further that C * ((P)) is empty. Therefore, according to Definition 4. the set C*[/>]
does not contain any minimal unsatisfiable subset. Therefore, according to Lemma 1, the set
C * \ P \ is satisfiable. Thus, there is a model M * of C * [P] , Evidently, M * [P] и M \ P] is
a model of C. Therefore, M * [P] u M [P] is a model of C . Therefore, M is a model of C

2. Let C be a consequence of C((P)) .

Let M be an arbitrary model of C. The conditions 2 -3 of Definition 4 imply that each
clause from C((P)) contains a literal from M. Thus, M is a model of C((P)) . Therefore,
M is a model of C .

Theorem 2.

Let P be a subset of W Then a clause set C is satisfiable iff C ((P)) is satisfiable.

Proof.

1. Let C be satisfiable.

According to Theorem 1, the set С((Л) is a consequence of C. Therefore. C ((P)) is statis-
fiable.

2. Let C((P)) be satisfiable.

Thus, there is a model M of C((P)) . Define the clause set C * as in the foregoing proof.
As above, the following assertion can be proved: There is a model M * of such that
M * \ P] и M [P] is a model of C. Thus, C is satisfiable.

Theorem 3.

. Let P y U . . . U Pn = W Then:

1. A clause set C is satisfiable iff some of the sets

c, c((Py)) , . . . , a< /v) — л(Р„))

is empty.

2. A clause set C is unsatisfiable iff some of the sets

C, <?((/>,)) ,----- C((/>,)) . . . ((/»„))
contains о as an element.

156 -

Proof.

At beginning, note that C((P])) . . . ((F;;)) is empty or consists of .

1. According to Theorem 1, the set C is satisfiable iff CitP, ((P n)) is satisfiable.
The set C ((P])) . . . ((F^)) is satisfiable iff C ((P X)) . . . ((F,)) is empty. However, C ((P X)>

((F)) is empty iff some of the sets C, C « ^)) , . . - , C((Fj)) . . . ((/»„)) are empty.

2. According to Theorem 1, the set C is unsatisfiable iff Ci/*! ((F)) is unsatis-
fiable. The set C ((P X ((Pn)) is unsatisfiable iff C((Ff((F^)) consists of □.
However, C((PX)) , ((P n)) consists o f □ iff some of the sets C. C (P })).........C((Fj)).......... ((F/;))
contain о as an element.

Definition 5.

Let P be a subset o f Ri. The F— quasi—resolvent of a quasi—clause set C is the
quasi—clause set C ((P)) defined as follows: (C , K) is from C((P)) iff there are
(C , , K .) (C JC) from C such that:1 1 m m

1. C r\P] Ф C [P] for г Ф s.

2. { C x [P]------ C m [P]) is a minimal unsatisfiable set.

3. C = Cj[F] иu C j ?] and К = K x ии Km .

Theorem 4.

Let C be a clause set and P, U , . . . , и P = W.

Then:

1. If U is a minimal unsatisfiable subset of C then

(□,(/) is from C ((Fj)) , . . . , ((P n)).

2. If (C , K) is from C ((Pj) , . . . , ((P n)) then C = □ and contains a minimal unsatisfiable
subset of C.

P ro o f.

1. Let U be a minimal statisfiable subset of C. Using induction, one can show easily:
If 1 < / < ». then:

1. C is from V ((P X)).........((F)) iff there is F such that (C.F) is from
V ((P X))((F)).

2. If (C . K) is from U ((P X))((F;.)) then C is from K ((P X ((F)).

157 —

According to Theorem 3, the set Í/(<A*,))...........((/^1) contains as an element. Therefore.
there is A' suchthat (.A) is from Г((А>,))((/*/?)). It implies that is from
K ((P . ((Pn)). According to Theorem 3. the set К is unsatisfiable. Since A is a
subset of U, it implies К = L:. Thus. (■■•,£') is from CK/’j))......... ((/M).

2. Let (C . K) be from ~ { (P])).......... ((/>„)).

Using induction as above, one can show easily that C is from A'((/’]))...........U P)). There
fore, C = □ . Further, according to Theorem 3 and Lemma 1. the set A' contains a minimal
unsatisfiable subset of C.

Theorem 5.

Let P\ , P be subset of W Then:

1. C((/,1)) UP-,)) contains G (/>| u f ,)) as a subset.

2. Each clause from О (/>1)) ((/%)) contains a clause from C n P] и P. м as a subclause.

Proof.

1. Let C be an arbitrary clause from C((/>, и P 1)).

According to Definition 4, there are C ,C m from C such that:

1. C r [P x и />,] Ф C s\ P x и P 2] for гФ s.

2. jC, \ P X и P ,]С I/*, и /%] j is a minimal unsatisfiable set.

3. C = C, [Àj n p ,] uu C J ? , П Р 2].

Denote by C*the set consisting of the clauses C , C (| . According to Theorem 2. the
set C * \ P X и />, |((/ , |)) is unsatisfiable. According to Lemma 1. the set C * [P X и /\, (((/ ̂))
contains a minimal unsatisfiable subset. One can show easily that C * \ P X и /%]« V) =
= C ’ ((Pj))[/’,]. Thus, there are clauses C * , C fl from C * U P X)) suchthat:

\ . С ' [Р 2) Ф C * [P 2] for г Ф s.

2 . J C * \ P ^] , C*[P- , 1 ! is a minimal unsatisfiable set.

Denote by C * the clause C,*[£,] U U <?*[/%] from C * ((P]) H(P ,)) .

Let / be an arbitrary index from 1.......... m . The set (С * — \ C . \)[/->] и / 1,] is
satisfiable because C * \ P и Я , ! is a minimal unsatisfiable set. Therefore, according to Theorem
2, the set (C * — jC j) [/'j и /*,]((/,[)) is satisfiable. One can show easily that

« г - j с ! му», и /»,]«/»,)) = (C * - !c . i)«/>,)) «/>,)).

- 1 5 8 -

Therefore, according to Definition 4, the set (C* — j C }) ((P,)) ((P,)) is empty. It
implies that C* contains C [P ,] [P^] as a subclause. Because C .[P J [P 2 \ = С7ДT5! n P ,],
we have obtained that Ç* contains СДР , H P ,]Cm [P , п P ,] as subclauses.
Therefore, C contains C as a subclause. Because C is a subclause of C, we obtain
С* = C. Thus, C is from C* (CPj)) ((P-,)), which is a subset of C((P,)) ((P,)).

According to Definition 4, there are C * . . . , C * from C((P,)) such that:

1. C*[P2] Ф C*[P’2] for г Ф s.

2 . j С*[P,], C *[P ,] | is a minimal unsatisfiable set.

3. C = C\ [P,] и , . . . , u c*n [P2],

Denote by C* the clause set defined, as follows:

C* is from C* iff there are СД.......... Cm from C suchthat:

1 . С Г[РХ) Ф СДР,] for Г Ф s.

2. JC, [P,], . . . , C m [P,] j is a minimal unsatisfiable set.

3. C, [P] u , . . . , C m [P,] is some of the clauses C * , . . . , C * .

4. C is some of the clauses C , , . . . , C m .

Evidently, C*((P,)) contains C*, . . . , C* as elements. Thus, according to Definition 4,
the set C * { (P])) |P ,] is unsatisfiable. One can show easily that C*((P,)) |P 2] is a subset
of C*[P, и P2] ((P,)). Thus, C*[P, u P ,] ((P,)) is unsatisfiable. Therefore, according to
Theorem 2, the set C*[P, и P ,] is unsatisfiable. According to Definition 4, the set
C*((P, и P,)) is not empty. Since each clause from C*((P, и P7)) is contained in C,
it means that C contains a subclause from C * ((P, и PO), which is a subset of C((P, и P))

3. Reduced P-resolvents

Following the previous exposition, we describe here some important properties of
reduced P-resolvents, which are obtained from P-resolvents by deleting tautologies and re
dondants. Using them, we improve the strategy "resolve upon P , P one after the
other".

Definition 6.

Let P be a subset of The reduced P-resolvent of a clause set C is the P-clause
se C'(P) defined as follows:

- 154 -

C is from C(P) iff:

\ . C is from CUP)) .

2. C is not a tautology.

3. C is not a redundant of CUP)) .

Theorem 6.

Let P be a subset of W. A P -clause set C is a consequence of a clause set C iff
C is a consequence of O P) .

Proof.

It follows immediately from Theorem 1 and the observation that C(P) is a consequence
of O (P)) and CUP)) is a consequence of O P) .

Theorem 7.

Let f bea subset of W. Then a clause set C is satisfiable iff C(P) is satisfiable.

Proof.

It follows immediately from Theorem 2 and the observation that M is a model of
C(P) iff M is a model of C U P)) .

Theorem 8.

Let P. и и P = W Then:1 a

1. A.clause set C is satisfiable iff some of the sets C, O P j C (P] (P n)
is empty.

2. A clause set C is unsatisfiable iff some of the sets C, C (P }).......... C (P { (/J)
contains as an element.

Proof.

It follows the proof of Theorem 3.

Definition 7.

Let / ’ be a subset of W. The reduced /’-quasi-resolvent of a quasi-clause set C is the
quasi-clause set O P) defined as follows:
<(,A) is from O P) iff:

— 160 —

1. (C £) is from C((P)) .

2. C is not a tautology.

3. If (C * , K *) is from Ct(P)) and С* = C, then К does not contain K * as a
proper subset.

T h e o r e m 9.

Let f be a clause set and P] и , и P n = W.

Then:

1. If U is a minimal unsatisfiable subset of C then 0 \ U) is from С (P j) , . . . , (P).

2. If (CAT is from OP,)...........(P) then C = о and К is a minimal unsatisfiable
subset of C.

P r o o f.

1. In the proof o f Theorem 4, replace all the P-resolvents by P-resolvents without
tautologies.

2. Let (C,K) be from C (P]), . . . , {Pn).

According to Theorem 4, С = о and К contains a minimal unsatisfiable subset U of C.

According to the same theorem, (n ,C) is from Cii-Pj)), . . . , ((P)). Therefore, К = U.

T h e o r e m 10.

Let P] . P-, be subsets of W Then C (P]) i f ,) = C (P] и f ,).

P r o o f.

In both C ((P])) ((f ,)) and C ((fj и f ,)) delete all the tautologies and redundants.
Theorem 5 implies that the remaining sets coincide, i.e. C((fj)) (P,) = C (P] и P ,); but
C ((P])) (P2) = C (P X) (P2).

4 . E x a m p les

The improved strategy "resolve upon P X, . . . , P one after the other" is now
demonstrated by Example 1. Finding all the minimal unsatisfiable subsets of a given clause
set is demonstrated by Example 2. In Example 3 it is shown that in general
C ((f,)) ((/»,)) Ф C ((Pl и />,)).

To handle clauses more easily, we represent here clauses by vectors over the set
J + , 0. — ! • This is possible because tautologies are ignored here. For instance, if

W = I W xW j ! then clause ! + W }, W ,, + -WA, - W, | is represented by vector

- 1 6 1

[+ — 0 + — 0 0]. Similarly, we represent clauses sets by matrices over j + , 0, — } .
In this representation clauses and rows are in the o n e -to -o n e correspondence determined by
their enumerations. Note that our representation of clauses differs a somewhat from that of
Yelowitz and Kandel [40].

Example 1.

Let W = j W ,, . . . , Wb j . We are given the clause set C, represented by the matrix

г + + о о о o ;
I + 0 + 0 0 0

! + 0 0 + 0 0

; - 0 0 0 - 0
— o o o o — !
0 + + о о 0 '
0 + 0 + 0 0

0 - 0 0 - 0

0 - 0 0 0 -
‘ о о + + о о ;

0 0 - 0 - 0

! о о - о о - :
I I

i о 0 0 - + 0
0 0 0 - 0 + I
0 0 0 0 + +

to decide whether or not C is satisfiable.

Set Pj = ! ИЛ ! for / = 1, . . . , 6 . Applying Definition 6 and Lemma 2, we obtain
that C (P]).......... C (P l (Pb) are represented by the matrices

- 162 -

0 + + 0 0 Ő"1 0 0 + + 0 ^ fÖ 0 0 0 + + 1

0 + 0 + 0 0 0 0 0 - + 0 ! о о о о - о

01оо1о

0 0 0 - 0 + [о 0 0 0 0 -
0 - 0 0 0 - 0 0 0 0 + +
0 0 + + 0 0 0 0 0 0 - 0 0 0 0 0 0 ^
0 0 - 0 - 0 0 0 0 0 0 - 0 0 0 0 0 +
0 0 - 0 0 -
0 0 0 - + 0 0 0 0 - + 0 0 0 0 0 0 o']
0 0 0 - 0 + 0 0 0 - 0 +
0 0 0 0 + + 0 0 0 0 + +
0 + 0 0 - 0 0 0 0 0 - 0

0 + 0 0 0 - 0 0 0 0 0 -
0 0 + 0 - 0

0 0 + 0 0 -
0 0 0 + - 0

0 0 0 + 0 -

Thus, according to Theorem 8 , the set C is unsatisfiable.

E x a m p le 2.

Let Щ IT j, IV-, I . We are given the clause set C represented by the matrix

+ +
+ 0

+ -
0 +
о 0

0 -

Й
to find all the minimal unsatisfiable subsets.

Set P. = J W. j for / = 1.2. The clause set C is represented by the matrix

163 -

+ +1 И ! !

+ 0 ! 2* f
+ - ! з! :+о

,'4! 1оо

| 5 1

0 -1 !б,'
- + М
- 0 ! 8 j

— 1 9 !

where the number / is written instead of the /-th row of matrix of C. Applying Definition
7 and Lemma 2, we obtain C (P X), C { P X) (/ \) represented by the matrices

—
0 +•

н
I4!

Г"
! 0 0 í 1

\ э 1
1 j

0 0 {5| 0 0 {2 , 8 ! Í
0 - (б! 0 0 {4,6}
0 + ! 1, 7| 0 0 *2 4 9 }
0 + {1 , 8 Í 0 0 {3, 4, 8 }
0 +1 {2, 7Í 0 0 {3,4. 9}

! о о {2 , 8 Î 0 0 {1 , 6 , 7}1
0 - |2 ,9)

оо

{1 , 6 , 8 }
0 - {3,8} 0 0 {2 , 6 , 7 !
0 - {3 , 91

оо

{1 ,3 , 7, 9 !
1 ■— —

0 0 {1,3, 8 }
; 0 0 {2 , 7 . 9 !
L _ J

Thus, according to Theorem 9, the right-most column of the last matrix represents all the
minimal unsatisfiable subsets of C.

Example 3.

Let 1L = j W„ ! . Let C be the clause set represented by the matrix

+ - 0 +
- 0 + 0
+ 0 + 0
- + 0 +

and P x = J W x J , /% = { If, j . One can show easily that

COP,)) ((/»,)) Ф C ({ P X и P 2)).

- 164 -

5. Concluding remarks

We compare here the present strategy with the lock one [4]. Further, we describe such
a clause representation which allows us to handle clauses efficiently by parallel computers. At
last, computer / ’-resolving large clause sets is submitted.

Remark 1.

Denote by W , , . . . , W all the elements of W .

1. Let / be an arbitrary index from 1..........n. Assign to clauses {+ W) u K x and
! - Vi и K1 the clause К x и K-, iff:

1 . / is the index of V;

2. If / j and / 7 are indices of any two atoms appearing in K . and A7

correspondingly, then / < i x and / < /,

Call K x и A7 the /-resolvent of j + W j и K x and j — W \ и K 2 .

2. Enumerate + V , , - V , , . . . , + W n , - W n by the integers 1 , 1 , n, n,

correspondingly. With respect to this enumeration of literals, each /-resolvent is a lock resolvent
and each lock resolvent is an /-resolvent for some /.

3. Let C be a clause set. A clause C is from C((j V (})) iff: (1) C is from C

and V (does not appear in C, or (2) C is the /-resolvent of some clauses C { and C -,
from C. Thus, the non-improved strategy ’’resolve upon { V ,) , . . . , { W nj one
after the other" is substantially the exhaustive and successive application of the lock resolution
rule.
Remark 2.

Denote by W x , . . . , W n all the elements of W . Further, denote by В the Boolean
algebra over { 0, 1} .A t last, denote by В the Cartesian product of n exemplars of
В X В. Assign to each clause C the element C of В n defined as follows:

If 1 < / < il. then:

1. C = 00 iff: 1. + W is not from C ,I I
2. — W is not from C.

I

2. Ç = 01 iff: 1. + W is not from C;
I I

2 . - W is from C.I

3. C = 10 iff 1. + W is from C;
I l

2 . — W is not from C./

4. C. = 11 iff 1. + V is from C ;

2 . — W is from C.I

- 165

This assignement is an isomorphism from the Boolean algebra of all the clauses onto the
Boolean algebra B n . Under this assignment, clauses can be handled efficiently by 2// paral
lel elementary Boolean processors.

R em ark 3 .

We submit to produce the /’-resolvent of a large clause set C as follows:

1. Represent C as the set S of all the pairs (C /О, where C is from Q /5] and К

consists of all the clauses К from ("[/*] such that С и К is from C.

2. Find all the minimal unsatisfiable subsets of C |/’]. using Theorem 9.

3. For each minimal unsatisfiable subset {C, , . . . , C m } of ("[Р] such that
С Ф C for г Ф s:r s

1. Find all À ',.......... K m suchthat (С, ,A',)............ (C m JCm) are from S.

2. Include in C((/')) all the clauses К , и и K m where runs
К , : : К runs К .1 ж ni

Remember that C 's can be stored in the core memory. /Os on the disks; the correspondence
between C s and /Os can be expressed by pointers from C 's onto A's.

Acknowledgement
V

Wc acknowledge our colleagues E. Kostolansky, J. Miklosko, D. Ondrus, J. Sajda and
1. Weigl for their kind encouragement and help during the preparation of this paper.

R e f e r e n c e s

I 1) Amarel. S.: An approach to heuristic problem solving and theorem proving in the
propositional calculus.
Proc. C oni. Systems and Computer Science (London. Ont.. 1965).

[2] Anderson, R.. and Bledsoe. W.W.: A linear format for resolution with merging and a
new technique for establishing completeness. J. ACM 17 (1970), 525-534.

131 Andrews. P.B.: Resolution with merging. J. ACM 15 (1968), 367-381.

14] Boyer. R.S.: "Locking: A restriction of resolution." University of Texas at Austin Ph.D.
Thesis (1971).

I 5 J Cantaralla. R.D.: Efficient semantic resolution proofs based upon binary semantic
trees. Syracuse University Ph.D. Thesis (1969).

— 166 —

16] Ccitin, G. S.: The complexity of a deduction in the propositional calculus. (Russian)
Zap. Nauen. Sem. Leningrad. Otdel. Mat. Inst. Steklov. 8 (1968). 234-259.

V

]7] Ceitin. G.S.. and Cubarjan, A.A.: Certain estimates of the lenghts of logical deduction
in classical propositional calculus. (Russian) Doki. Akad. Nauk Armjan. SSR 55
(1972). 10-12.

[8] Chang, C.L.: The unit proof and input proof in theorem proving. J. ACM 17 (1970),
698-707.

[9] Chang, C.L.: Theorem proving with variable constrained resolution. Information Scien
ces 4 (1972), 217-231.

[10] Chang, C.L., and Lee, R.C.T.: Symbolic logic and mechanical theorem proving. Acade
mic Press, New York and London (1973).

[11] Chapin, E. W., Jr.: Measures of centrality and complexity for partial propositional
calculi. Arch. Math. Logik Grundlagenforsch. 15 (1972), 7-18.

(12] Davis, M.: Eliminating the irrelevant from mechanical proofs. Proc. Symp. Appl. Mathem.
18 (1963).

[13] Davis, M. and Putnam, H.: A computing procedure for quantification theory. J. ACM
7 (1960), 201-215.

114] Ehrenfreucht, A., and Orlowska, E.: Mechanical proof procedure for propositional
calculus. Bull. Acad. Polon. Sei. Sér. Sei. Math. Astronom. Phys. 15 (1967), 25-30.

115] Henschen, L., and Wos, L.: Unit refutation and Horn sets. J. ACM 21 (1974), 590-605.

[16] Kowalski, R., and Kuehner, D.: Linear resolution with selection function. Artificial
Intelligence 2 (1971). 227-260.

[17] Loveland, D. W.: "’Some linear Herbrand proof procedures: An analysis.” Dept. Computer
Sciences. Carnegie—Mellon University (1970).

[18] Loveland, D. W.: A linear format for resolution. Proc. IRIA Symp. on Automatic
Demonstration (Versailles. 1970).

I 19] Loveland, D. W.: A unifying view of some linear Herbrand proof procedures. J. ACM
19 (1972), 366-384.

[20] Luekham, D.: Refinement theorems in resolution theory. Proc. IRIA Symp. on
Automatic Demonstration (Versailles, 1970).

I 21] Meitzer, В.: "Theorem proving for computers: Some results on resolution and renaming.”
Computer J. 8 (1966). 341-343.

- 167 -

[22] Nilsson, N.J.:Artificial intelligence. Proc. 1F1P Cong. (1974).

[23] Prawitz, D.: An improved proof procedure. Theoria 26 (1960), 102-139.

[24] Rabin, M.O.: Theoretical impediments to artifical intelligence. Proc. IFIP Cong. (1974).

[25] Reiter, R.: Two results on,ordering for resolution with merging and linear format.
J. ACM 18 (1971), 630-646.

[26] Reiter, R.: A semantically guided deductive system for automatic theorem proving.
Proc. 3IJCAI (1973).

[27] Robinson, J.A.: A machine-oriented logic based on the resolution principle. J. ACM
12 (1965), 23-41.

[28] Robinson, J.A.: Automatic deduction with hyper-resolution. Internat. J. Computer
Math. 1 (1965), 227-234.

[29] Robinson, J.A.: The generalized resolution principle. Machine Intelligence 3, Michie
(ed.), Edinburgh University Press, Edinburgh (1968).

[30] Shostak, R.E.: On the role of unification in mechanical theorem proving. Acta Infor-
matica 7 (1977), 319-323.

[31] Slagle, J.R.: Automatic theorem proving with renamable and semantic resolution.
J. ACM 14 (1967), 687-697.

[32] Slagle, J.R., Chang, C.L., and Lee, R.C.T.: Completeness theorems for semantic
resolution in consequence finding. Proc. 1IJCAI (1969).

[33] Slagle, J.R., and Norton, L.: Experiments with an automated theorem proving, having
partial ordering rules. Division of Computer Research and Tech., National Inst, of
Health, Bethesda, Maryland (197!).

[34] Szczerba, S.W.: Semantic method of proving theorems. Bull. Acad. Polon. Sei. Sér.
Sei. Math. Astronom. Phys. 18 (1970), 507-512.

[35] Van Westrhenen, S.C.: Two programmes for the calculus of propositional logic.
Automation in Language Translation and Theorem Proving, Commission of the
European Communities, Brussels (1968).

[36] Wang, H.: Toward mechanical mathematics. IBM Journal 4 (1960), 2-22.

[37] Wos, L.T., Carson, D.G., and Robinson, G.A.: The unit preference strategy in theorem
proving. Proc. AFIPS, Vol. 26 (1964).

[38] Wos, L.T., Robinson, G.A. and Carson, D. G.: Efficiency and completeness in the
set of support strategy in theorem proving. J. ACM 12 (1965), 536-541.

— 168 —

[39) Yates, R., Raphael, В., and Hart, T.: Resolution graphs. Artificial Intelligence 1 (1970),
224-239.

[40] Yelowitz, L., and Kandel, A.: New results and techniques in resolution theory. IEEE
Trans. Comp. C-25 (1976), 673-677.

Computational Linguistics and Computer Languages Vol. XIII. 1979.

A 2D TRANSITION FUNCTION DEFINITION LANGUAGE FOR A SUBSYSTEM
OF THE CELLÁS CELLULAR PROCESSOR SIMULATION LANGUAGE

T. Legendi
Research Group on Automata Theory Hungarian Academy of Sciences

Szeged, Hungary

Abstract

C ellu la r p r o c e s s o r s are based on a homogeneous set of p a ra lle l — working, locally inter
connected and lo c a lly c o n tr o l le d base ce lls . For realization tw o d im e n s io n a l sets from m icro

ce lls (2-16 state automata, 20-100 gates of logic) are proposed. The design of cellprocessors
and preparation of their software systems need simulation tools. A very important simulation
subsystem ensures the definition, the minimization and the (virtual) execution of local control,
(the local transition functions define the behaviour of the whole set of cells; as their execution
is sequentialized, they may be interpreted as cellular microprograms).

A specialized adequate definition language is proposed, where topological, geometrical,
data-flow features of a transition function are expressed in 2-dimensional microconfigurations,
while the operations on the moving data are defined by expressions (referencing variables of
the microconfigurations). The evaluation of this (sub) language is shown, too.

The main objectives of the whole research project for the design, implementation and
programming of cellular procesors are outlined in the reference (Legendi 1977a).

The motivations to define a new family of cellular processor simulation languages - rather
than using the existing ones (Brender 1970; Baker - Herman 1970; Wu-Hung Lin 1972,
Vollmar 1979) — and the structure of the proposed new languages are explained in detail in
the references (Legendi 1975, 1977b, 1978b; Legendi - Molnár — Székely 1979).

This paper deals with the core of simulation systems — the local transition function
(microprogram) definition sublanguage and mechanism.

There exist different approaches to the local function definition and execution system.
It may consist of an external source language for function definition, a processor that trans
forms the source program into an internal representation which is used by a transition-executer
program.

In extreme cases some components may be missing, or changing their function. For
example for specific purpose it might be advantageous to define functions in algorithmic langu
ages. In CELIA (Baker — Herman, 1970; Wu-Hung Liu 1972) FORTRAN rutines define and
execute the local transition functions at the same time (with no internal function represen
tation). For general purpose we find this method unsatisfactory — the cellular programmer is
forced to think in some traditional sequential language being complicated and what is more,

170 -

dangerous and in many cases ineffective to link user-written rutines to a system for common
use.

So let us remain at the genera! scheme:

f — local function

DL- definition language

IR— internal representation

1L — implementation language

! f

L D L J DL -> IR

"Lil-T j
j
IR

IL

In our oppinion DL should be a highly problem-oriented, specialized and if possible, a
flight er (-level language: this gives the opportunity for the cellular programmer to concentrate
on his very topic and to write short, transparent, easy to read/debug/ modify programs.

The processor (DL -* IR) should be intelligent — ensuring for the programmer a high-level
input language while for the execution phase

IR

it should generate a compressed, minimized size representation that executes fast at the same
time. (The minimazation may be automatic, half-automatic, or programmed - e.g. user-directed.)
These requirements are somewhat contradictory, it is not an easy task to find a good
compromise to satisfy them.

The internal represantation of the local transition function is executed for each cell by the

I----------1
; IR

IL

program.

Thus the execution-phase needs minimal sized functions (especially, due to the inhomoge
neous programming concept several dozens of functions should reside in the main core) and
fast execution. In our oppinion. having fixed internal representation, fixed system rutines
should do the job (for system safety and optimal execution time).

In summary, we propose, as a principle, a high-level function description language, an
optimizing processor for it. standard internal representation and standard system rutines for
the execution of the transitions.

How to evaluate these principles in practice'-

As it will be shown, it was not a direct line, but a very logical way of evolution of a conti
nuously expanding concrete language/system. that was developing during use. highly influenced
by the advancing cellular programming experience and knowledge.

In the course of experimental work, different simple (see: Legendi. 1977b) and more
complex definition languages were developed. (For the latter type, the TRANSŒLL language
serves as a good example it is a very specialized definition and user-directed minimization system:
it has been developed as cross-software for a concrete 16 state specialized cell (see: Legendi
1978a, 1980a).)

The basis for the present system was the eldest, simplest term form. E.g. a function
consists of a set of terms, one term contains the old state, the states of the neighbours (as
conditions) and the new state is associated with the conditions. In the first implementation,
the input language contained only terms, the internal representation was quite a big table
containing only the new states, filled and searched in a fast way forming directly an address
from the conditions and storing/retrieving there the corresponding new value.

4 1234 5 = 4 1234 5
old neigh new
state bours state

7777

It was very easy to implement, fast in execution, but the input language was primitive,
the table was enormous. Transition fimotons might be interpreted in a natural way as trees:
the above table farm is an internal representation of the whole tree. As in practice, we define
only a relatively small part of the whole transition tunction, a logical decision was taken to
use smaller tables: we should represent the (partial) tree of the transition function (in a two-
-dimensional table, for fast execution). This approach ensures the use of partial function tables
(the original table was of fixed size, for complete functions). So the length of the table depends
now on the concrete size of the function.

This representation gave a possibility for automatic minimization: if in some node we
realize that all the leaves under it (new states) are identical, we can erase the lower level and
write the new state into the node itself, thus making the tree and the table smaller and the
execution faster.

172 -

the whole tree the minimized tree

The disadvantage of this method is that in this case an ’’overdefinition” feature is obtained
— originally undefined terms are made defined in this way. (So the system cannot alarm the
programmer in case of using undefined terms during simulation time. It is uneffective to use
the traditional function structure: state S turns into if C 1, S 2 if C, . . . otherwise
S remains). In our earlier (and also in the advanced) cellular programming practice, however,
it did not disturb the principle of using only explicitly defined terms/subfunctions. This system,
including automatic minimization, had easily been implemented (see: Bolla, 1975), it was fast
and memory saving, but with very low-level input (terms).

Everyday practice showed that in a lot of cases we had groups of terms which differed
only in one (or more) states in the condition part; e.g. these groups could have been shortened
using the ’OR-operation:

0 1 2 3 3 4 0 (1 2 3) 2 3 3 4

0 2 2 3 3 4 (*)

0 3 2 3 3 4 1 OR 2 OR 3

old neighbours new
state state

0 1 2 3 1 4 0 (12) 2 3 (13) 4

0 1 2 3 3 4
(*)

0 2 2 3 1 4

2 2 3 30 4

— 173 —

At the same time the internal representation influenced us to express the tree structure
of the functions in the input language, too.

So, the following format had been used for the description of the local transition function
(see: Siimeghy, 1977)

N 0 = 0 N0 = 0
N1 = 1, 2, 3 N1 = 1,2
N2 = 2 N2 =2
N3 = 3 N3 = 3

3*4 1 * 4
3 * 4

N2 = 3

о

(the whole tree)

о

(the whole tree)

(In the case of backtrack, the upper part of the tree might have been omitted in the
source c o d e) . Hence, this description form was more uniform with the internal representation
and m o re co m p ressed , too. Our first real cellular programs have been (and could have success
fully been) co d ed in this system. (A relatively short program might correspond to some
thousands of terms.)

To develop this system, small changes were introduced — to shorten the programs, a
one-line form (as in *) was allowed, variables were used for storing the OR-ed groups of
states, thus ensuring a shorter mode of writing in terms and the minimization of the table
had been extended.

The first bigger and basic change was made after realizing that the description method,
introduced in the reference (Legendi, 1977c) might be implemented as a computer input
language (with relatively small modifications).

V

It is an open and in itself an interesting question in general how cellular algorithms could be
described in the best way. It is very hard making them comprehensible and transparent since
for different types of cellular algorithms very different description methods have been used
(see: Vollmar 1976, Fáy 1978, Hermann 1973).
First, for the description of the и-step sorter (see: Appendix) the m ic ro c o n fig u ra tio n c o n c e p t

has been introduced. The basic idea is natural and simple: when doing cellular programming,
our task is to evaluate some global transition function:

- 174 -

> * • >

through finding the local function (system) which induces it. So our work is parallel decompo
sition in one step, from the whole space to individual cells.

It would be easier to descend only to the level of a group of cells (instead of individual
cells).

23
21

This description has a lot of advantages. In its appearance it expresses the geometric
behaviour of the cells much better than any linearized form. It means much more, than the
traditional

geometric term form, because it unites more terms showing the common behaviour, m u tu a l

effect (on each other) o f a group of cells. So it is not only a shorter form for more terms, but
it is a much more adequate description tool.
(The sorter had originally been coded in more than 200 lines, here seven rules - microconfi
gurations — are enough, explicitly expressing the essence of the algorithm). Here, the concept
of using variables becomes vital to preserve the transparency of the form.
So, at this level one microconfiguration may replace hundreds of terms and may express
’’microglobal” behaviour.

- 175 -

Still we have a very important problem: the sorter was a relatively simple case, in the
sense that there is a need only for the continuous data-flow, no other operations are perfor
med on the moving data.

Introducing the concept of d e p e n d in g variab les and using expressions to describe the
connection between them — e. g. making e x p r e s s io n -d e f in e d o p e r a tio n s possible during the
moving of the data, we could solve the problem.

Earlier, in the new-value-part of a term or microconfiguration the use of variables (or
sets of states for individual cells) had no meaning; one fixed state should have been defined.
Now we may write:

A 5 5 C

В 6 6 D

(here C depends on A, C A + 2 for example,
here D depends on B) D = 2 X A

This complex definition form is very adequate in the sense that geometrical/topological
properties of the cellular program are defined by a geometrical tool (microconfigurations)
while data transformations by expressions.

The Appendix shows the importance of these possibilities; in this way one microconfi
guration with the corresponding expressions may replacehundredsof generalized or thousands
of simple terms.

Our concrete practice with this new version of the processor showed that the write/debug
cycle became nearly 10 times faster and the programs are much better self-documented.

The internal form remained as a two-dimensional table, containing the minimized tree
structure of the (partial) transition function. New internal minimization algorithms were
developed and implemented. (Average local transition functions need arrays with 200-600
elements.)

The details of the language are described in its User’s Manual (see: Legendi, Molnár,
Székely 1979), the series of new cellular algorithms, defined in this 2D language, will soon
be published regularly.

- 176

Conclusion

The evolution of a special purpose (sub) language for the definition of cellular programs
had been presented.

Different versions of the language processor were implemented (in FORTRAN-IV and
PDP-8 assembly languages) and they were used for cellular programming.
Later versions proved to be more compact and adequate than the earlier ones.

Development of the sublanguage is in progress. Nowadays in cellprogramming, the bit-
-channel style becomes more important. (In this case the cells are treated as product-cells
of two-state cells, for example an 8-state cell might be interpreted as

S8 = S, X S? X S2.)

In the case of the bit-channel style new tools, namely boolean variables and expressions
should be incorporated into the (sub) language.

R e f e r e n c e s

Baker - Hermann, 1970 CELIA — a cellular linear iterative array simulator.
Proceedings of the Forth Conference on Application of Simulation, 1970, pp. 64-73.

Bolla, 1975 Minimized tree representation of cellular transition functions. Thesis.
(in Hungarian) JATE, Szeged, 1975.

Brender, 1970. A Programming system for the simulation of cellular spaces.
Ph. D. Thesis, The University of Michigan, Ann Arbor, 1970.

Fáy, 1978. Cellular design principles: a case study of maximum selection in CODD-ICRA
cellular space, (detailed design) Computational Linguistics and Computer Languages,
XII. pp. 165-231.

Hegedüs — Legendi — Pálvölgyi, 1978. INTERCELLAS User’s Manual. Research
Group on Automata Theory, Hungarian Academy of Sciences, 1978.

Herman — Liu, 1973. The daughter of CELIA, the French flag, and the firing squad.
Simulation 21 (1973) 33-41.

Legendi, 1975. Simulation of cellular automata, the simulation language CELLÁS.
Conference on Simulation in medical, technical and economy sciences, Pécs 1975.
pp. 100-106 (in Hungarian)

Legendi, 1977a. Cellprocessors in computer architecture. Computational Languistics
and Computer Languages XI. pp. 147-167.

- 1 7 1 -

Legendi, 1977b. INTERCELLAS - an interactive cellular space simulation language.
Acta Cybernetica, Tom. 3., Fase. 3, pp. 261-267.

Legendi, 1977c Programming p f cellular processors. ’’Cellular meeting” Braunshweig,
June, 1977. Informatik-Berichte Nr. 7703 Technische Universität Braunschweig
pp 53-56.

Legendi, 1978a. TRANSCELL — a cellular automata transition function and minimiza
tion language for cellular microprogramming. Computational Linguistics and Computer
Languages, XII., 55-62.

Legendi. 1979. Cellular programs. A collection of implemented cellular algorithms. To
appear in: ’’Parallel Processing” 1979/4 a periodical of the von Neumann Computer
Science Society (in Hungarian).

Legendi, 1980a. TRANSCELL II - an advanced cellular processor microprogram defi
nition and minimization language for a universal base cell. To appear in: Computational
Linguistics and Computer Languages, XIV.

Legendi — Molnár — Székely, 1979. CELLÁS User’s Manual Research Group on
Automata Theory, Hungarian Academy of Sciences, 1979.

Nishio, 1975. Real time sorting of binary numbers by one-dimensional cellular automata.
Proceedings of the International Symposium on Uniformly Structured Automata and
Logic.Tokyo, 1975.

Nishio, 1977 (ed.) Studies on Polyautomata, March 1977., Kyoto. (Reports on the
results of the 1976 Research Group on ’’Polyautomata, their Structures and functions)

Sümeghy, 1977. Cellular transition function tree description language and its implemen
tation. Thesis (in Hungarian), JATE, Szeged, 1977.

Vollmar, 1977. On two modified problems of synchronization in cellular automata.
Acta Cybernetica, Tom. 3.. Fasc. 4. pp. 293-300.

Vollmar, 1979. Algorithmen in Zellularautomaten. Teubner Studienbücher, Informatik,
Stuttgart 1979.

Wu-Hung Liu. 1972. CELIA User’s Manual. Dept, of Computer Science, State
University of New York at Buffalo, Oct. 1972.

— 178 —
APPENDIX
Sorting binary numbers (Legendi, 1977c)

The task is to sort ,V binary integer numbers in growing order, (the solution may be
used for more general similar problems, too). For the simplicity of the discussion an eight
state homogeneous cellular space is supposed.

The algorithm to be implemented is parallel pairwise comparison and change (if it is
needed) for having the pairs in valid order. Maximum N steps of (alternating) pairwise

comparison/change are needed.

One pairwise comparison/change for two numbers is executed as explained in the
following: the numbers are represented in the space in a natural way, one bit per one cell,
using the states 0 and 1 , each number is in consecutive cells of a raw, the numbers to be
sorted are in consecutive raws, as indicated below:

.1 0 0 0 0 0 I 0 1 0 . . . O N 0,1 J J ,'K.L.M.N
,J 0 0 I 0 0 J 0 0 0 . ., . 1 N represent
.1 0 0 J 0 0 I 0 1 0 . 1 N the states
,J 0 0 I 0 0 J 1 1 1 . 1 N

0 0 J 0 0 I 1 1 0 . 0 N
0 0 I 0 0 J 0 1 0 . 0 N

.1 0 0 J 0 0 I 0 0 1 . 0 N
J 0 0 0 0 0 J 1 0 0 . . . 1 N

An j pair of states ("operators”) indicates that the leftmost investigated bit(s) of both

numbers are equal.

1 0 : -

о"
t I I I '1 1 1

— >
J 0 1 0 J i j 1 1 J
__ U i______ [1______ 1 l--------

When the two numbers are in valid order (the first nonequal pair is), no change will take
place.

I 0 ! 0 M 1 ! m X 1 Í X E ! 1 M
---- Г Г.........-~l
F ! N 0

.1 1
— > i !

: 1 M
i
■ M Y

- > !
: Y Mi 1 M

- >
N ' N 0

1---------j 1— ---- L 1___ .— 1 i----------1

x,y = 0,1 The state M memorizes the situation.

- 179 - ,

When the two numbers are not in valid order, the change is forced.

ГГП
J 0

■----------------

1 К X К V
' ------------------------ j г -----------

у V K K N N ü j
ч

0 L y L w t X w L| I L N u_N °J
к

x,y,v,w = 0,1 The pair of states ^ memorizes the situation.

Notice that the detection of the non-valid order and the first change cannot be executed
in one step because of the restricted neighborhood condition.

It is remarkable that n(n = 1,2, . . . , N) columns of operators can work in parallel,
indepedently. Really, there is no need of waiting for the end of a pairwise comparison/change
— the bit column on the left side of an operator is already in its right order (as to the last
investigation) and can be compared/changed again, independently of the changes on its right
side. At most, after N + к steps (k is the number of bits of a number) the process will be
complete.

Naturally it is not too practical that the numbers to be sorted and the operators are
moving and that the needed area in the space is relatively large.

In a 16 state 4 neighbour homogeneous space the algorithm can be coded into a static
area where an inside flow of operators is implemented in horizontal bit channels of the
states whilst change in the vertical ones. The operator columns need not be prepared in a
static way, they may be generated dynamically from an initial one.

- 180 -

Dividing decimal numbers by two

In many cases we use binary representation of numbers in a cellular space, (as in the
above example, too).

It is in no way obligatory, however other representations (unary, decimal hexadecimal,
residue number system, etc.) are frequently used, too (demonstrating the flexibility of cellular
spaces).

The last example is one single operation on decimal numbers (one decimal digit per one
cell) that may be used in many bigger processing elements.

The operations to be performed are m u ltip lic a tio n a n d d iv iso n b y special constants, by
tw o o r f iv e . It is obvious but surprising that these operations might be executed in a very
fast manner: in o n e tra n s itio n s te p , independently of the length of the numbers. The reason
is simple — these operations are lo c a l . For example in the case of multiplication by two, the
new value of each digit depends only on itself and on the right neighbour digit. In the example,
shown in detail (the division by two) the situation is similar - only, here the left neighbour
digit determines the new value (together with the own value).

This small processing element (decimal/2) is used in converting from decimal to binary
in decimal multiplication (together with multiplication by two), in muitiplication/division by
other special constants (sum and/or product of 2 and 5 etc.

181

fr Sí fr f r f r f r f r f r f r О f r fr f r fr f r f r >.• > ' fr fr f r О Ч,- fr fr V f r f r f r * -К- fr V- fr fr fr О fr fr f r * fr •..• fr f r v f r -U- fr fr -K* fr * О f r f r fr fr H.- fr fr fr fr fr fr О fr

S S S S S S S S b b S

-S
sss
sss
S S S ^ S S S S

S S b ' S S S S b b - S

s s s s s s - s
s ss
b^S

S S S b S S S S S b - S

S S S ^ S b a b b j ;

Z Z a z Z Z Z Z Z Z Z Z

Z l Z Z
L L L Z

Z d Z Z
L L H

L 'L L 'l
I t - l L

I L L l
Z Z Z Z Z Z Z / Z Z Z Z

Z Z Z Z Z Z / Z Z Z Z Z

/ /
/ /

/ /
/ /

/ /
/ /

/ /
/ /

/ /
/ /

/ /

р г ^ / г / с г /
d Z d d ' d d d <e i 'd d d
г г г г??

г г г г
2 :с 2

2 2 2 ^
2 ? Z 2

2 2 2 2
222
dzzdZ'dddcd г?
d Z Z d d d d c c d d d

Х Л Х Х Х Х А Х Х Х Х Х Х л Х Х л А Х Х Х Х л Х Л л / Х Х Х Х Х

X X

X X

X C t i L L A b P - ’ U C F S S u R X

X X

X X

Х Х Х Х Х Х Л Х Х Л Х Л Л л Х Х у X X X X X X X X X X X X X X X

X
X ÜAI L =
X T ^ L =
X C O K t =

X DISC =
X
ХХАХХХХХХАХАЛ-.

X

‘. 7 / 1 1 / / 9 X

1 З / Ь О / 2 9 X

9 ? X

5 И 0 X

A

Л Х Х Х Х Х Л Х Х x X X X X X X

У «.-> = ,Nil j
r 1 F » Z Z

n o

I . » F U N C T I O N / -<4X : 10 5 /

M 4 X : lût S 7 S y : s , u f c L S : о . П Ы : 3 * * *

d • V A L T 0 Z 0 K • * ü î X (U f l # 2 $ 7 * £* t b * 6 i 7 • b * 9) 1 1 (1 » 1 « 2 * 3 » А * Ь * ' ' * 7 * в * 9) 1

J . V A L T O Z J K t * 0 : w (b * x - x / b * 1 0 * r / 2) i

a. THEi i_ : 0 î

b . M I C R O : 1 < - 2 î

b . X » r * $ * w « /

7. fcfc’NOI

* a * S Y n T : о « О Р Т a ' : o < I n T : m i , - . S Z T : - 1 * s Z - m : i o * S t ^ v : yc

F E L I « : 1, I R p l L : -1 -1

- 182 -

183

184

L f - ' P'ES = b 9 - 4 V' 2 ^ - • CSUChuK [/ " » 2) (

0 G 0 0 0 0 0 0 0 n Ü с О О и О и О О о о G О
0 0 0 0 0 0 0 0 3 6 0 О О G 0 0 О О о О О о 0

u 0 0 0 0 0 n u 0 и и 0 О О Ü 0 U О О О 3 Ü О 0

0 0 0 0 0 0 0 0 0 0 и 0 О и и О О и и О 0 G О Ü

0 c 0 0 0 0 0 0 0 •J О 0 О n 0 Ű О О 1 3 о О 0 О
0 0 0 0 0 0 и 0 0 0 О О о О и О и О G О •J О О О

0 0 0 0 0 n 0 0 0 0 О О О О Ü 0 и о и ù и 0 G О

0 c 0 0 0 0 0 0 г ъ О О и о О о и О 1 и J О О О

0 0 0 0 0 0 0 0 0 0 О О О 0 О О О О и О ‘J О О О

L E P E S = 9 , M F P E T 9 е 2 4 , С S U С Ь O K = (d ? 2) (1 G

О о О О 0 О О О О О Ü 0 0 0 0 0 0 О G 0 г О о О

О 0 о О О О Ù О 1 в О Ü О о G о G О 1 ь и О с Ü

О Û О О 0 о О О О О О О G (J О О О О О и с О 0 Ü

О О и О О О О О 0 и О о О J и U О О и О О о о

О G о Ü О О О О о ч О 0 О О Û 0 О О и э ■J О G О
и О О О О п О О О О О О и О G О о О Ü О !} О О О
0 О и О О n О О О Ü О О U О (1 G и 0 G <1 ь О j G

с G и О Û О О 0 1 3 0 О О О G О 0 О U * Г) 1? о О О

О О Ü О О О Ű О О О О О Ü G и О и О 0 G с О G О

г гл P F S = 1 0 , К Е
Г)

F T 9 « 2 4 , C S Ú C S i O f ' = 1(d , 2) (

и G О 0 0 Û 0 G 0 0 Ü 0 U 0 ü 0 U 0 Ü 0 J 0 G 0
с G О 0 0 0 0 0 0 9 U 0 0 G 0 0 0 0 U 7 u c 0 0
О О G о 0 0 0 0 0 0 0 0 0 0 G 0 0 0 0 0 0 0 0 0
0 G и 0 0 0 0 0 û 0 U 0 0 0 0 0 U 0 ü G ü 0 0 c
0 G G 0 0 0 0 0 и 2 0 ü G 0 i ; U U G lJ j 0 U 0
О О О О 0 0 G 0 G G G G 0 fj (; 0 G 0 l> 0 G 0 0
О О с О с 0 0 0 G G G 1) Ü 0 G 0 0 0 Ü U •J Ü ü 0
с О и О 0 0 Ü 0 0 6 U 0 ' J 0 0 G U G Ü 2 U ü 0
О G О О 0 0 0 0 и G U G 0 c U 0 G 0 ü 0 U c U 0

S T O P

185

cSSS bb SS Sbb U t Z Z l Z l l l U 0 0 0 0 Цк'чкрири^рр I TT IT T U T T I ■
S^SbSSSSSSbb U l Z U l l Z U Z OOOOOC '■(K'^KRPR^kRkk 1 Т Т Т Т Т П Т Т Т Т
s«-.s L l LL 0 0 0 000 r ,, n I l i i
S mS 1 1 7 Z 0 0 0 0 0 0 RPR PRK u n

SbSSbS t i l l 0 0 0 0 0 0 RRh kkk TT 1 1
S f-,bbSbbbbbbb l / Z l RÜO 000 RR«kPkPPppRk TI TI

SSbSSSSb l u i 0 0 0 0 0 0 kRkpRPkk><RR TT r i
SSb i l l ’ 0 0 0 0 0 0 kRR Rk R T T TT
Sbb o u 0 0 0 '000 kRk RPQ T T T T

b s b S S S b SS S bS l U l l / l l l l L l 0 0 0 0 0 0 kkk KRR TT IT
Sc SS SS S SS SS U I Z Z / Z I Z I U 0 0 0 0 RRR RRk T T T T

1 . S-FUK'CT 1 0 ‘i / TAASM; /

мДл!! 8 ♦ SZS/ : b f Sr_l r : u s i : 3 “ **

2 . v a LTü?0»<-:«o: l < 2) . J < 3) » * (4 > , L (b » . 4 < M . . (7) ;

3 . yALTOXOK. : * 0 : л (о , 1) . y (0* 1) * V (0 . i) •*> ('1. 1) ;

a. vai_T070KS*0:R(u.l»7) :
5 . V^l TOZU* - 0 ! 0 í Z 13 »4 % ц» b) ?

6 . IftÇLL tCS

7. R.SXii-*R,
b. MICRO!1*?S
9.

I D . M . X * X » *

1 1 .
1 ? . 0 • N * *J * r *

17.
] A. Mi cs o : <? e 2 !

1 5 .

1 A. I * 0 . 0 . ' *

1 7 . J . 1. 1 » * T

î e .

1 9 . I . 1. 1 • И” T

2 0 . J * 0 , 0* l . t

2 1 .

2 2 . I . X. X . T •

2 7 . J « X, X. J*

2 4 .

2 5 . MICRO;! 2 * 3 !

•(V

2 7 . X* K. V. y •

2 P . Y. L* W, < *
3 4 .

2 9 .

/

7<’ « • E V I

186 -

(1 1 2 3 4 b rj
1 6 4 11 11 1 1 11 11
<5 1 2 1 2 12 1 2 25 32 j 2
9 1 4 1 4 1 4 1 4 3 0 4U 1 4

1 5 1 6 1 6 1 о 1 6 1 о 1 6 16
1 1 0 1 - 1 - 1 - 1 - 1 - 1
1 2 2 3 1 6 1 3 1 3 1 3 1 3 , 3
1 3 0 C 0 2 2 0 4 5 6
1 4 2 1 2 4 1 5 1 5 l b l b l b
IS 1 1 1 20 1 4 6 6
1 6 1 7 1 7 1 7 1 7 1 7 1 7 1 7
1 7 7 7 0 0 u и 0
1 8 0 0 1 9 2 2 4 4 b 6
1 9 6 6 6 6 4 о b
2 0 6 3 1 1 1 1 1
2 1 1 1 4 2 0 3 1 4t> 6
2 2 3 5 0 0 0 0 0
2 3 0 0 2 2 2 4 4 b 6
2 4 1 1 2 20 4 4 6 6
2 " 2 6 2 7 1 3 1 3 1 3 I d J 3
c b 2 Й 2 8 2 8 2 6 4 4 b 0
2 7 2 9 2 9 2 9 29 4 4гэ 1
2 8 0 0 0 0 0 0 0
2 9 1 1 1 1 1 1 ' 1
3 C 2 6 c l I S 1 5 1 5 l b 1 5
3 1 4 4 4 4 4 4 4
3 ? 3 3 3 4 3 5 35 3 5 3 b 3 5

3 3 3 6 3 6 3 7 3 6 3 8 4 b л 9
3 4 3 6 3 6 3 9 3b 3 8 4 b 3 9
3 5 3 6 3 6 3 6 5 6 3 6 4 b j 9
3 6 0 1 0 0 0 Ü 0
3 7 0 1 2 2 2 2
3 8 0 1 4 4 4 4 4
3 9 0 1 о 6 t> D r>

4 C 4 1 4 2 4 3 4 3 4 3 4 3 ^ 3
4 1 4 4 4 4 36 Ч-4 3 b 4 6 39
4 2 4 4 4 4 3 7 ^+4 36 4 b j 9
4 3 4 4 4 4 4 4 4 4 4 4 4 6 3 9
4 4 0 1 1 1 1 1 1
4 9 b 5 0 0 U 0 0
•4b q 5 1 1 1 1 1

The table form of the tree of the function,
(partially minimized table)

7
i 0
1 2
1ч
16

7
13

0
1 5

1
1 7

7
0
b
1
]
Ü
0
1

13
28
24

0
1

1 5
4

3b
3 b
36
36

ù
2
4
b

43
44
4 4
4 4

1
0
1

- 188

L E P E S 2 M F P E T = 1[l u , » •3 2) C S U C S P O N 1 O K == (r » à) 1> (1 1 * 3 3) У L T O L A S S

0 0 0 0 ü 0 0 и 0 U U U 0 0 0 0 U 0 U U ü Ü Ü U i) U ü 0 0 0 0
0 0 м 0 0 I 0 0 N 0 0 I (1 0 M U 0 I G U M U 1 I 0 1 1 c 1 1 - - o r i —
0 0 I 0 0 J 0 0 I U 0 J n 0 1 0 0 J 0 ü 1 0 i J 0 U 1 1 0 1 1 (4
п 0 J 0 и I 0 0 J 0 ü I 0 0 J U Ü I 0 G J 0 о I 1 i U 1 0 0 1 h
0 и I 0 0 J 0 и I Ü ü J 0 Ü I 0 0 J 0 Ü I U fl J U U 1 0 1 l U N
о Ü J (1 0 I 0 0 J 0 0 I n ü J û ü 1 Ü 0 J ü 1 K 1 U 1 1 1 0 1 U
0 0 I 0 0 J 0 ü I 0 0 J 0 0 I 0 0 J 0 0 I 0 \J L 1 1 0 1 0 0 i r.j

0 0 J 0 0 I Ü 0 J 0 U I о Ü J 0 0 1 0 0 J 0 0 4 1 1 G 1 1 1 0 N
0 Ü -1 Ü 0 J и 0 A 0 ü J 0 0 M 0 U J 0 0 M 0 1 M 1 1 0 G 1 0 0 K

1 0 0 0 0 Ü 0 0 0 0 ü U 0 ü 0 ü ü 0 0 U 0 0 ü 0 ü U 0 U 0 G 0 0 0 0

L F . P E S 3 M E P E T = 1[1 0 » 3 2) C S Ú C S P O N T O K : : (2 . 2) « (1 1 * 3 3) E L T O L A S =

0 ü 0 0 0 0 0 0 G G G Û fl 0 G 0 0 0 0 0 ü 0 0 G U Ü 0 0 P 0 0
0 ü 0 .•i 0 0 I 0 0 M G G T G 0 M G 0 I G 0 M 1 ü I 1 1 0 1 1 P N
0 0 0 I 0 0 J 0 G I G 0 .1 0 0 I 0 Ö J 0 0 1 1 0 J 0 1 1 0 1 1 Í4
0 0 c J 0 0 I 0 0 J 0 0 I 0 0 J ü 0 I 0 0 J (» 1 K 1 0 1 0 0 1 N
û 0 G I 0 0 J 0 G 1 ü 0 J 0 0 I 0 b J 0 0 I 0 0 L G 1 0 1] 0 N
(1 0 0 J 0 0 I 0 0 J 0 0 T 0 0 J 0 U I 0 0 J i) i K ü 1 1 1 0 1 N
0 0 G 1 0 0 J 0 U I G 0 J 0 0 I 0 0 J 0 Ü I I 1 L 1 0 1 0 0 1 M
0 0 0 J ü 0 I 0 0 J 0 0 I Ü 0 J 0 (j 1 0 Ü J c» 1 M 1 G 1 1 1 0 N
0 0 5 4 0 0 J 0 0 M ü 0 J 0 0 M 0 0 J 0 0 M 1 1 M 1 0 0 1 0 0 N

1 0 0 0 c 0 0 0 0 G G G G 0 0 0 0 0 0 0 0 0 Ü Ű 0 ü ü 0 0 Ü 0 0 0 0

L E P E S P M E P E T — 1! 1 0 » 3 2) C S Ú C S P O N T O K : »< 2 * 2) • (1 1 » 3 3) E L

U Ü 0 0 0 0 P 0 0 0 U 0 0 0 G G U U 0 G Ü 0 G ü U U ü 0 0 0 ü
0 0 0 0 M 0 0 I 0 û M 0 ü I 0 0 M 0 ü I 0 1 ! ' 0 1 K i 0 1 1 0 N
P 0 0 0 I 0 0 J G G I 0 0 J U Ü I U 0 J U 1 N 0 G L i 1 0 1 1 N
0 0 0 n J 0 0 I 0 0 J 0 r I 0 G J 0 0 I 0 0 l 0 1 K 0 1 0 0 1 N
G 0 0 0 I 0 n J G ü I 0 n J G G 1 0 0 J G 0 I 1 U L 1 0 1 1 0 N
0 0 G 0 J U û I ü 0 J 0 lî I 0 G J 0 0 I ü 0 . 1 1 U K 1 1 1 0 1 N

0 0 P G I 0 P J 0 0 I G 0 J 0 0 I 0 0 J U 1 r . 1 1 L 0 1 0 0 1 N
ü 0 G G J G 0 1 0 G J 0 r . I 0 0 J 0 0 I 0 0 L 1 1 M 0 1 1 1 0 N
0 0 rV 0 », Ü 0 J 0 0 M 0 0 J 0 0 M U U J 0 1 1 1 M 0 0 1 P n N

l G 0 0 G û G 0 0 0 0 0 ü G 0 U 0 U G (I ü 0 0 0 0 G G Ö 0 û 0 0 0 0

E L Г O L A S = (

О . О >

О » и)

О* 0)

189

L É P É S 5 M E R f T [1 0 « . 1 2) C S U C S P Û U l O K : = (2) * (1 1 « 3 3) e l t o l * s =

0 0 a 0 0 0 0 0 0 0 0 0 0 r 0 0 0 0 0 0 b 0 0 0 0 b 0 0 0 Ü 0 0
0 0 0 b 0 4 0 0 1 0 0 Pt о Ű I 0 0 M 0 0 I 1 r. 4 0 1 K 0 1 1 0 N
0 0 c 0 0 I 0 0 J 0 0 I 0 0 J ü 0 i ü 0 J û (N 1 1 L 1 0 1 1 N
0 0 0 0 0 J 0 0 I 0 0 J fl 0 I 0 0 J 0 0 I 1 (1 L 0 0 K 1 0 0 1 N
0 0 a 0 0 I 0 0 J 0 U I 0 0 J 0 Ü I 0 0 J 0 1 I 1 1 L c 1 1 ü N
0 0 0 0 0 J 0 0 I 0 0 J n 0 I ü 0 J ü b I 0 1 J 1 1 K 1 1 b 1 N
0 0 0 0 0 I 0 û J 0 0 I 0 0 J 0 ü I U 0 J 0 i K 0 b L 1 n 0 1 N
0 0 0 0 0 J 0 0 I 0 ü J fi 0 I 0 0 J Ü Ü I 1 1 L 1 b M l 1 1 0 N
0 0 c 0 0 Ni 0 0 J 0 0 K* 0 0 J 0 b M 0 1) J 1 1 м 1 b P* U 1 0 rt N

1 0 0 U a 0 0 0 0 ü c Ü ü 0 0 0 0 0 0 L 0 b 0 0 ') 0 à 0 Ú Cl 0 0 0 0

L E P F S 6 M E P f T (1 0 * 3 2) C S U C S P O n I û N * : (2 « 2) « (1 1 » 3 3) e l t o l a s =

0 0 c 0 ü 0 0 0 b b 0 0 r. b ü 0 0 Э 0 0 0 0 v“l 0 0 c b 0 0 0 0 0
0 0 0 0 0 0 P 0 0 I 0 0 y 0 0 I ü 0 b 0 1 K 1} 0 M 1 ü K 1 1 b N

0 0 0 0 0 0 I 0 b J 0 0 T 0 0 J 0 0 I 0 b L 'yj 1 K 1 1 L 0 1 1 N
0 0 b 0 0 0 J n ü I ü b] 0 0 I 0 0 J 0 1 K r . 0 L 1 1 K 0 г 1 ! \

0 0 a ü 0 U 1 0 b J 0 0 T 0 0 J 0 0 I J 0 L 1 1 1 b J L 1 1 n
0 0 0 0 0 0 J 0 0 I 0 b J 0 0 I b U J 0 Ü 1 1 1 J U 1 K 1 0 1 N

b 0 c 0 0 0 1 0 0 J b 0 T 0 0 J 0 0 I 0 0 J 1 0 K 1 1 L 0 0 1 N

0 0 0 0 0 0 J 0 0 I û 0 1 0 0 I b 0 J 0 1 I 1 1 L U 1 M 1 1 0 •\
0 0 0 0 0 0 M 0 0 J 0 0 V ü 0 J 0 0 M c 1 J 1 1 h 0 0 M 1 ü 0 N

1 0 0 0 0 0 0 0 0 0 0 0 0 b n 0 0 0 b fl 0 U U 0 V 0 b 0 0 0 0 0 0 ü

о* к

L F P E S 1 = 7 М Е Р E T [lbt 3 2) CSUCSPUimIOK*: (dt 2) «(11» 33) E L T u L =
b t) 0 0 0 0 0 0 0 0 b b 0 0 0 0 0 0 0 0 0 0 ü 0 0 ü b 0 0 0 0 0
0 0 0 0 b 0 0 M 0 0 I ü 0 M n 0 1 V 0 Mb 0 K b 1 M 1 1 K 1 0 N
0 b 0 b 0 0 0 I 0 0 J 0 n 1 0 ü J 0 0 1 1 0 L b 1 K 0 0 L 1 1 \
0 0 a 0 0 0 0 J 0 0 l b n J 0 0 I 0 0 J b 0 K 1 1 L 0 b K 0 1 N
0 0 c 0 b b 0 I U b J 0 n I 0 0 J ü 0 I 1 1 L 1 0 I 1 1 L 1 0 N
0 b 0 0 b 0 0 J 0 0 I 0 /'■ J 0 0 I 0 0 J 0 1 I 1 b J 1 1 K 0 1
0 0 b 0 0 0 0 I 0 0 J 0 n I 0 0 J 0 0 I b 1 J 1 1 K 1 b L 0 1 N
0 0 c 0 0 0 0 J b b 1 0 n J 0 ü I U 0 J 1 1 i 0 b L 1 1 M 1 0 N
0 0 0 0 0 0 b M 0 0 J 0 0 H 0 b J U 0 M 1 1 J 1 0 ?• b 1 M 0 0 N

O O 0 a 0 a 0 0 0 0 0 0 0 n •J c 0 ü 0 0 0 0 i) 6 0 ü 0 n 0 0 0 0

LEPES= я M E ° E T [1 0 3 2) C S Ú C S P O N T O N * : (c. « 2) « (1 1 t 3 3) ELTOLÁS*

0 0 0 0 0 n 0 0 0 0 0 ü n ü 0 0 0 0 0 0 0 0 0 U 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 M 0 0 I 0 0 M 0 b 1 0 b 0 0 K 1 1 M b 1 K 0 N
0 0 0 0 0 0 0 0 I b 0 J fl c I 0 0 J 0 1 * 0 L 1 0 N 1 1 L 1 r«

0 0 0 0 0 n 0 0 J b b 1 c 0 J 0 0 1 0 b L 1 1 K 1 0 L 1 0 K 1 OJ
0 0 0 0 0 0 0 0 I 0 0 J r Ü I 0 0 J 0 1 K 0 1 L 0 1 1 0 1 L 0 N
0 0 0 0 0 0 0 0 J c 0 I Г) 0 J 0 0 I 0 Ó L 1 1 I 0 1 J 0 0 K 1 N
0 0 0 0 0 b 0 0 I 0 0 J r» 0 I 0 0 J 0 0 M 1 1 J 0 1 K 1 0 L 1 N
0 0 0 0 0 0 0 0 J 0- 0 I 0 0 J 0 0 I 0 1 1 Л M 1 i L 1 1 M 0 N
0 b b b 0 0 0 0 M 0 0 J r о M 0 0 J 0 1 4 1 1 M 0 0 h 1 0 M 0 N

1C 0 0 0 b 0 0 а 0 0 0 0 0 n 0 0 0 0 b 0 0 0 0 4 0 0 0 0 b 0 0 0 1;

190

1 У1

192

L É P É S 1 7 4 E R E T (1 0 ' г з г > C S Ú C S P O N T O K : : (2 t 2) • (1 1 » 3 3) E L T O L a S =

0 0 0 0 0 0 0 0 0 0 0 0 Г. 0 0 0 0 и 0 р 0 0 11 0 0 и 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 и 0 0 л 0 0 0 0 м 0 1 м 0 1 ч 1 0 м N 0 0 0 0
0 0 c 0 0 0 0 0 0 0 и 0 г и 0 0 1 I 1 0 ч 1 0 I 0 1 А N 0 0 0 ü
0 0 0 0 0 0 0 0 и 0 0 0 о и и 0 1 J 1 0 Í 1 .4 J и 1 к N 0 и 0 ü
0 0 0 0 0 0 0 0 0 0 0 0 л (1 0 0 1 ч 1 0 J 1 ; i к 1 1 L N 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 Л 0 0 1 0 м 0 1 ч 1 1 L 1 0 к N 0 J 0 U
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 м 1 1 ч 0 1 ч 1 0 L N 0 р 0 0
0 0 Л n 0 0 0 0 0 0 0 0 Л 0 0 1 1 м 0 1 ч 1 1 ч 0 X м N 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 м 1 0 ч 0 1 ч 0 0 м N 0 0 0 0

1 0 0 и 0 0 0 0 0 0 0 0 0 0 n 0 0 0 0 и 0 и 0 0 и Ü 0 0 0 0 0 0 0 c

L É P É S 1 A М Е Р Е T [l ü l 1 3 2) C S U C S P O N l O K : : < £ « 2) !1 (1 1 » 3 3) E L T O L A S =

0 0 0 0 0 0 Û 0 0 0 0 0 Г; 0 0 0 0 0 0 0 и 0 £ 0 0 0 0 0 0 0 0 ü
0 0 0 0 0 0 0 0 0 и 0 0 г. 0 0 и V 0 м 1 0 м 1 1 м 0 *ч 0 0 0 0)
0 0 0 0 0 0 0 0 0 0 0 0 0 0 и 0 1 1 I 0 i м 0 Ó I 1 N 0 0 0 0 J
0 0 c 0 0 0 и 0 0 0 0 0 0 и 0 0 1 1 J 2 1 1 0 и J 1 N 0 0 0 0 ü
0 0 0 0 0 0 0 0 0 Ú 0 0 0 и 0 Ü 1 1 м о 1 J 1 1 к 1 N 0 0 Ö 0 0
0 0 0 0 0 0 0 0 0 0 0 0 Г; 0 0 1 0 0 h 1 1 м 0 1 L 0 N Ü 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 м 1 0 и 1 1 м 0 N 0 0 0 0 0

- 0 0 0 0 0 0 0 0 0 0 с 0 Л 0 0 1 1 0 м 1 1 м 1 и м 1 N 0 0 0 0 U
0 0 0 0 0 0 0 0 ü 0 0 0 Г 0 0 1 1 1 и 0 Ö м 1 Ü м Ü N 1) 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0 и 0 .*1 и 0 0 0 и 0 0 0 0 0 Ü 0 и 0 0 0 0 0 0

L É P É S 1 9 « E P E T = 1(1 0 ! 1 3 2) C S Ú C S P O N T O K : : (12 . 2) !! (1 1 * 3 3) E L T O L A S =

0 о 0 0 0 0 и 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 и и Г, 0 0 0 0 0 1 л! 0 1 и 1 0 iч N 0 0 2 P 0
0 0 0 0 0 0 0 0 0 и 0 с Г о 0 0 1 1 0 1 1 0 ■' 0 1 I •N 0 0 0 0 0
0 0 c 0 ü 0 0 0 и 0 0 0 о 0 0 0 1 1 0 J 1 0 м и 1 J N 0 0 0 0 Ü
0 n 0 0 0 0 0 0 0 и 0 0 л 0 0 0 1 1 0 ч 1 1 .V 1 1 * N 0 0 0 0 0
0 0 0 0 0 0 0 0 0 и 0 0 л 0 0 1 0 и 1 V* 1 0 1 1 0 L N 0 0 с 0 ü
0 0 0 и 0 0 0 0 с 0 0 0 Л 0 0 1 и 1 1 VI 0 1 1 0 .4 N 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 л с 0 1 1 0 1 ч 1 1 -1 о 1 м N и 0 0 0 U
0 и 0 0 0 0 0 0 0 0 0 0 n 0 0 1 1 1 0 v! 0 1 V 0 и м N 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0 Û 0 0 и 0 0 0 и с 0 U Ú и 0 0 0 0 0 0 0 0 0

L E P E S 2 0 M E R E T = 1I 1 0 « 3 2) C S Ú C S P O N T O K : : (г: • d) * (1 1 * 3 3) E L T O L A S =

n 0 0 0 0 0 0 0 0 0 0 0 n 0 0 0 0 0 0 0 ü 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 c 0 0 0 a 0 r, 0 0 0 U G- 1 0 M 1 1 M 0 (>4 0 0 0 0 - p 0 -,
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 I 0 n M 1 N 0 U 0 0 n 0
0 0 c 0 0 0 G 0 0 0 U 0 0 0 0 0 1 1 0 1 J 0 A 1 N ü 1) 0 0 û 0
0 0 0 û 0 0 0 0 0 0 0 0 f) 0 0 0 1 1 0 1 V* 1 1 H G N ü 0 0 0 0 G
0 0 0 0 0 0 0 0 0 0 0 G 0 0 0 1 0 0 1 1 4 0 1 A 1 N 0 0 0 ü 0 0
0 c 0 0 0 P n 0 0 0 0 0 0 0 0 1 0 1 1 0 A 1 1 M 0 N 0 0 0 G 0 0

- 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 M ! о h 1 N 0 0 0 0 0 0
0 0 0 0 0 c 0 0 ' j 0 ' l 0 J 0 0 1 1 1 0 0 A 1 0 M 0 fi 0 0 0 G 0 0

1 0 0 0 0 0 0 0 0 ü 0 0 0 0 n 0 0 0 ü G 0 0 ü 0 'o 0 U 0 0 0 0 0 - 0 c

193

L É P É S 2 1 M F R F T X (1 0 * 3 2) C S Ú C S P O N T O K = (г) * (1 1 * 3 3) e l t o l a s =

0 и и 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 n и 0 0 0 0 1 0 1 м 1 0 и N 0 0 0 0 0 n
0 0 0 0 0 0 0 0 0 0 0 0 п 0 0 0 1 J 0 1 0 I и 1 м N 0 0 0 0 0 0
0 n 0 0 0 Ü 0 0 0 0 0 и л Ü и 0 1 1 и 1 0 J ?. 1 и N 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 ч 1 0 м ы 0 0 0 0 0 0
n 0 0 0 n 0 0 0 0 0 0 0 0 0 0 1 г ч 1 1 0 м 1 1 к N о 0 0 0 0 и
0 0 0 0 0 0 0 0 0 0 0 0 о 0 0 1 0 1 1 0 1 м 1 0 м N 0 0 0 0 0 0
0 0 Э 0 ü 0 0 c 0 0 и 0 с и 0 1) J 1 1 1 м х) 1 м N 0 0 0 и 0 0
0 0 0 0 0 0 0 0 и и и 0 0 Ü 0] 1 1 0 0 1 и 0 0 м N 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 ü 0 0 0 и 0 0 0 0 0 0 и 0 г, 0 0 0 0 0 0 0 0 0

L E P E S 2 2 M E R E T (1 0 * 3 2) C S Ú C S P O N T O K = < <L% 2) * (1 1 * 3 3) e l t o l a s =

0 0 0 0 0 0 0 0 0 0 0 0 0 (1 0 0 0 0 и 0 0 0 с 0 0 0 0 0 0 0 0 0
0 0 0 0 и 0 0 0 0 0 0 0 Г) 0 0 0 0 и 1 0 1 1 л 0 N о 0 0 0 0 0 0
0 0 0 0 0 с 0 0 0 0 0 0 с Ù 0 0 1 1 Ű 1 0 Ű \ 1 N 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 и 0 1 1 0 1 0 0 J 1 14 и 0 0 0 0 0 0
0 р 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 ■У и N 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 о 0 0 0 0 0 1 0 \) 1 1 0 1 ч 1 14 0 0 0 0 0 0 1)
0 0 0 0 0 0 0 0 0 0 0 0 п 0 0 1 1) 1 1 0 1 1 0 N 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 г» 0 0 1 1 0 1 1 1 0 1 N и 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 1 0 !•] и N 0 0 и 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 и 0 0 и 0 о и 0 и 0 0 0 0 0 0

L E P E S = 2 3 M E R E T = (1 0 * 3 2) C S U C S P O N Г O K = (2 * 2)*(11* 33) E L T O L A S = < 0 * П)

0 и 0 0 и 0 и 0 и 0 0 0 и
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 м N 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 n 0 0 0 1 1 0 1 0 0 1 I N и 0 0 0 0 0 и
0 0 0 0 0 0 0 0 и 0 0 0 0 0 0 0 1 г и 1 0 0 1 J N и 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 и .4 N и 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 и 0 0 0 0 1 0 с 1 1 0 1 1 м N о 0 и 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 и Г) 0 0 1 и 1 1 0 1 1 0 ч N 0 0 и 0 и 0 0
0 0 0 0 0 0 0 0 0 и 0 0 п и 0 1 1 и 1 1 1 0 1 ч N 0 0 0 0 0 0 и
0 0 0 0 0 0 0 0 0 0 0 0 0 и 0 1 1 1 0 0 1 0 (> м N и 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 и и 0 0 0 0 0 и и и 0 0 0 о и и и 0 0 0 и 0 1)

- 194 -

D. MATHEMATICAL SEMANTICS

Computational ! imtuialics am! Computer Lattguauvs Го/. MII IV4.

THERE ARE GENERAL RULES FOR SPECIFYING SEMANTICS:
Observations of Abstract Model Theory

1. Sain
Theoretical Laboratory, Institute for Co-ordination o f Computer

Techniques, Budapest, Hungary

Introduction

One of the central themes of ’’General Semantics” and ’’Theory of Languages with
Semantics" is called A b s tr a c t M o d e l T h e o ry (AMS classification code: 03695). Here the central
problem is to define the notion of a lan gu age w ith s e m a n tic s (sometimes it is called a logic”
or ”a language” or ”a model theoretic system”). Concrete examples of such languages are:
Classical first order logic, Higher order logic, Modal logic, Intensional logic, Logic of Actions,
Programming Languages, Languages for reasoning about programs etc. For early works on
Abstract Model Theory see: "Universal Grammar by R. Montague 1969” Andréka-Gergely-
-Németi 72, §IV of 73a, 74a, 77, 78, Dahn 73, Gergely 74, 77, Lindström 74, Makowsky 73,
Németi 76, Gergely-Szabolcsi 79, Andréka—Németi 76, Németi—Sain 78 etc. Cf. also Barwise 77.
Motivations for Abstrtact Model Theory can be found in Pask 76, Gergely 73 — 77, Szabol
csi 78, Sain 78, Andréka—Gergely-Németi 72,74. Problem 9 of Makowsky 65, Dahn 79.

и
A central problem in all the quoted works is: ”H o w to d e f in e th e g e n e ra l n o tio n o f a

language w ith sem a n tics'? ” If the notion is too broad then our results will be ir re le v a n t to
languages, if it is too narrow then in our investigations we shall ig n o re many important langu
ages. The second choice was taken by M a k o w s k y and B a rw ise who postulated in their defini
tion of a language that the models (i.e. interpretations or ’’possible Worlds”) of a language

ji
are always classical first order structures. By this decision languages with Kripkestyle seman
tics or Intensional semantics are excluded, cf. Dahn 73, 78, Andréka—Dahn—Németi 76,
Montague 73 etc.. The Andréka-Gergely—Németi team (in the following AGN team) tr ie d

to a v o id su ch re s tr ic tio n s . They were motivated by Dahn 73, 78, Montague 73, Pask 76 etc..

Def. IV. 1. in AGN 73a as well as the definition of a language (sometimes called "a
logic) in AGN 73a. 74a. 77. 78. Andréka-Németi 75, 76, 77, 79. Németi 76 are general
enough The results obtained are applicable to an impressively broad spectrum of Lncuagc.s
and logics indeed (including the ones in Dahn 73. 78. Montague 73. Parikh 78, Pratt 78.
Hayes 71. Banachowski et al 77, Andréka-Németi-Sain 79, 79a etc.).

All these works nicely illustrate the observation: "In our age C o n c e p t F o rm a tio n is the
most difficult task in science" (cf. Gergely-Németi 71). Namely throughout all these works
there is a struggle for finding an adequate concept of a "language with semantics” . Since 1972
on the works of the AGN team are dominated with this problem. Many ideas were intuitively
explained, illustrated by examples, approximated by implicite definitions, the explicite defi
nitions and rigorous expositions ot which, however, were stated as a task of the luture.

- 196 -

The present work proposes a possible solution for this task. While trying to solve this
task, we found that by using a l i t t le Set Theory, we can formalise ideas explicitely the impli-
citeness of which was a central problem in the above quoted works. § 1 of the present work
sums up the notions of set theory we are going to use.

The backbone of the present work is §2.1. (However, to understand, interpret and
apply §2.1 adequately, it is necessary to read the rest of the paper.) In §2.1 the notion of a
language with semantics is rigorously defined, and then restricting conditions are gradually
introduced, each of which serves to e x c lu d e irre leva n t ’’situations”. In each step it is carefully
investigated that only irrelevant situations be excluded. At the end we arrive at a fairly general
notion of a language (Def. 2.6) for which meaningful abstract model theoretic theorems can be
proved, e.g. Thm. 2.1. As a byproduct, a kind of methodology for defining languages with
semantics is obtained. (By using this methodology, one can foresee the consequences of the
decisions one is making during defining a new language.) Also methodolgy is proposed for:
S p e c if y in g s e m a n tic s o f languages. A specification of the semantics of a language L is a
’’definition” i.e. it is a text written in some m eta la n g u a g e . This text (serving to present the
semantics of our language L in question) is called here the p r e s e n ta t io n o f L and is denoted
by < o , р ,к > cf. Def. 2.3. Before and after Def. 2.3. several different existing presentations
of languages are surveyed, compared, and some consequences (pleasant and unpleasant) of the
decisions made in the presentations are observed. Finally in Def. 2.6. some general rules are
proposed which could and should be followed in specifying the semantics of any language. (At
least the results of this paper seem to suggest so.) Theorem 2.1. shows some consequences of
following or breaking these rules.

The reason for our using a little set theory here might be the fact that the presentation
of a language is written in some m e ta la n g u a g e . Metalanguage might lead to metamathematics
and a possible version of matemathematics is Set Theory.

The results of §2.1. are applied among others to languages used in Computer Science and
Programming theory. Such are e.g. Classical first order logic. Higher order logic, Languages for
reasoning about programs and program schemes, Dynamic Logic, Logic of Actions etc. .

We shall arrive at the conclusion that in the case of more complex languages (Higher order
ones. Languages for reasonong about programs. Logic of Actions etc.) the incompleteness re
sults have been misinterpreted. They do n o t prove that these languages are incomplete. Instead
they prove that certain mathematical models of these languages i.e. certain presentations of these
languages are anomalous! This simply means that the mathematical modelling of certain pheno
mena is more difficult than that of others. I.e.: the mathematical modelling of certain more
complex languages needs more time, more carefulness, deaper considerations, and more ’’re
visions”. Ad-hoc very natural looking common-sense definitions might imply hidden paradoxes,
vicious circles, and other nonwanted nonsensical consequences. The reason for this is nothing
special: it is simply the increase in comlexity which prevents our common-sense reasoning from
seeing the consequences of some decisions. In short: the mathematical theory of the more complex

197 -

languages (some mentioned above) is still in th e p h a se o f c o n c e p t fo r m a tio n . All this shows
that today common-sense reasoning should give way to scientific reasoning also in the phase
of concept formation.

As an example, the field of semantics of languages for reasoning about programs will be
investigated which is full of contraversies. Applying our criteria to this field, two main appro
aches will be distinguished here: the standard and the nonstandard ones. The nonstandard

/
approach was initiated in Andréka—Németi 78, Andréka 78, Gergely—Ury 78, Andréka—Németi —
Sain 78, 79, 79a. Applying our results to the relationship between the standard and nonstan
dard semantics, we shall find that nonstandard semantics is the result of a deeper, more careful
analysis of the phenomenon under consideration, and accordingly, it is a more faithful model of
the real situation we want to understand.

In the methodolgy or rules proposed here the main theme is expliciteness. By the quota
tion on the front page of ALGOL 60 report: ”If something can be said at all then it can be
said explicitely too, and if something cannot be said then we must consider its nonstandard
models as well.”

1. Basic definitions, notations, conventions

In this paragraph we shall recall some definitions, notations, and conventions commonly
used in s e t th e o r y and m o d e l th e o ry .

0 denotes the e m p ty se t.

CO denotes the set of n a tu ra l n u m b ers.

A B
denotes the set of all functions from A into B,

i.e. A В - i f : F maps A into В \ , see Monk 76 p. 7 line 12.

U/l df ! a . 3 b ia e b e A) !

A 'JB == Li \A .B ! .

S b (A) denotes the set of all subsets of the set A .

< v • • • 1 an > denotes the sequence of sets a l ’ • • . , an (n < со) in this order
(cf. Notation following Def. 1.4).

A X В g J (a ,b) : a eA , b eB ‘ .

D o ff) and R g (f) denote the d o m a in and the ran ge of the function f. I.e.

D o f f) g ! X : (x , y) e f i and

R g W
g ! Г : (x,y)ef ! .

d denotes a s im ila r ity t y p e) see Def. 1.4).

- 198 -

Fd denotes the s e t of f i r s t o r d e r fo rm u la s o f t y p e d (see Def. 1.5). Note that
F is a set (as opposed to proper class).

M d denotes the class o f c la ss ic a l m o d e ls (relational structures) o f t y p e d , see
Def. 1.6 . Note that since M d is a class, its elements are sets by definition.

A c la ss ic a l m o d e l (an element of M d for some type d) is denoted by an
underlined capital like

A , T, or D

and its u n iverse is denoted by the same capital without underlining. E.g.:

A is the universe of A ,

T is the universe of T ,

D is that of D .

If A e M d for some type d and < R , m > e d i.e. d (R) = m then the
d e n o ta t io n o f R in A is denoted by

A r (cf. Monk 76 p. 194).

ca denotes <co, +, • , 0 ,1 > , the s ta n d a rd m o d e l o f a r i th m e tic .

By a va lu a tio n o f th e va ria b le s in to a m o d e l A a function

q : ca -*• A is understood, see e.g. Monk 76 p. 195.
Let A e M d , g>{xx , . . . , x n)eFd . Let further q : со ->■ A be an arbitrary
valuation of the variables into A and let q (x .) = a , , , q (x) = a

Г 1 ’ ’ п ' П

(űj , . . . , a)te A) . Then

A 1= <p(x. x) [q] is understood in the usual sense (see Def. 1.8).
and it is abbreviated by

A 1= ^[a, a], cf. Chang — Keisler p. 27-28.
1 / 7 i

(3 ! x) 1p (x) = [(3 xV(x) A (V X Vr) ([^(x) A ip(.v)] -* x = v)]

where x and у are variables and y e F for some similarity type d.

If d is the similarity type of the f i r s t o r d e r lan gu age o f Z F C se t th e o r y

(see Def. 1.7) then we shall use a modified notation for F . and M .. Thea и
first order language of ZFC set theory contains only one binary relation e.

I.e., its similarity type is | (e,2) ! . For convenience, we shall write:

F instead of F i , , , ande I * C *" ' I
M instead of M « ̂ .

c ! t e - —) I

Note that F is a set and so are the elements of M .

_ 199 -

Z F C denotes the set of axioms of Zermelo-Frankel Set Theory with the Axiom of
Choice f o r m u l a t e d in th e language F , see e.g. Chang — Keisler 73 p.
507-508. Thus Z F C C F , and Z F C is a s e t (as opposed to proper class).
Cf. Def. 1.7 and Remark 1.4.

Throught this work we shall work in Z e r m e lo — F ra n k e l S e t T h e o r y w i th the A x i o m

o f C h o ic e (cf. e.g. Chang — Keisler 73 p. 507, Devlin 73 p. 2-3, Takeuti - Zaring 71). We
shall call this simply " S e t T h e o r y " for brevity.

Recall the notion of a real w o r l d (V ,e) of Set Theory from Chang — Keisler 73 bottom
of p.476, Devlin 73 bottom of p. 3. It consists of a class V and a ’’binary relation” e defined
on this class V such that the axioms of Set Theory (cf. above) are true in (K,e) in the usual
sense. V is called the class of all sets and e is called ’’element of” .

We shall work in a f i x e d b u t a r b i t r a r y real world (V ,e) . By a s e t we shall automatically
understand an element of V. T h r o u g h o u t this work we shall assume that there is a f i x e d

(V ,e) . All our statements will refer to this fixed (but otherwise unknown) real world (K,e).

We shall often refer to the ”L a n g u a g e o f S e t T h e o r y " cf. Takeuti — Zaring 71 p. 4. Set
Theory itself is a collection of formulas of this ’’language”, and by a f o r m u l a «/> of Set Theory
we shall understand a formula of this Language of Set Theory as defined in Takeuti - Zaring
71 p. 4. If is a formula of Set Theory then it is meaningful to say that ” «p is true in the
world (F ,e)”. This will be abbreviated by ”(K,e) 1= «/>”.

Recall that every statement of mathematics can be formulated in the language of Set
Theory. If ip(Xj, . . . , x n) is a formula of Set Theory and a , , . . . , an are sets, i.e. elements
of V, then

*pia} an) is said to be true

iff

(K,e) 1= «Да, , . . • , an).

(See Chang — Keisler 73 p. 476-477.)

DEFINITION 1.1.

Let S ç V be an arbitrary class.

S is called d e f in a b le in S e t T h e o ry

iff

there exists a formula «Дх........... x) of Set Theory such that

S = i < a , an > e V : «Да,............an) \

- 2 0 0 -

or in more detail:

S = ! < a x, . . . , an > e V : (V ,e) 1= <p[a{ , . . . , a n] } .

To stress ’’certain points” we shall refer to the above property by saying "S is e x p l ic i te ly

definable in Set Theory”.

DEFINITION 1.2. (Devlin 73, Sacks 72, Takeuti Zaring 71 etc.)

A class W с V is called tran sit ive

iff

for every y e W and for every x e y also x e W holds.

DEFINITION 1.3. (Chang - Keisler 73 p. 475, Devlin 73, Hinman 78 p. 215)

L { со) ç V is defined to be the class of all h e re d i ta r i ly f i n i t e e l e m e n t s of V :

beL(u>) iff the smallest transitive class W С V containing b is finite.

Note that L (œ) e V .

DEFINITION 1.4. (Sacks 72 § 2 p. 11)

By a s im i la r i ty t y p e we understand a function

d . £1 ca such that Í2 ç jL (c j). I.e.:

A function (set of pairs) d is called a similarity type

iff

R g (d) c cc and D o (d) ç L (со).

NOTATION

Whenever aQ, , a n are sets (i.e. aQ, , a ^ e V) , the symbol < ű0, . . . , an>

denotes the function s : (n + 1) -» j a Q, . . . , an J such that s(0) = a Q, , s (n) = an .

I.e. D o (< a 0 , . . . , a n >) = n + 1 and
< aQ, . . . , a n > (/) = ö. for every i < n.

< a 0 , . . . , a > is said to be a se q u e n c e of lenght n + 1 .

To distinguish between < a , b > and (a , b), we recall that the latter is (a . b) = | a J a.b

while the former is

201

<a,b> = ! (0,я), (1,6) | = I i 0 . i 0 . a i i . i l . i l . 6 l i i

DEFINITION 1.5. (Chang - Keisler 73 p. 22)
Let d : FI -* cj be a finite similarity type. I.e. let F l e L (u) .

Let Л, П, Н be different and fixed elements of H u i) . It is always supposed that
A , П, 3 n FI = 0.

The se i o f f i r s t o r d e r f o r m u la s Fd of type d is defined as the smallest set for which
the following (i) and (ii) hold.

(i) F o r ev ery R eF l,

< R , v x , , vn>eFj w h en ever d (R) = n and V j, . . . , i^ e c c .

(ii) If p,\l/eFd where Do(<p) = n + 1 and Do(i//) = m + 1
and = < s n , s > and ф = < t n , . . . , t > then also

< A , sQ, . . . , sn ,tQ, . . . , tm >eFd ,
< ~ l , Sq, . . . , sn>eFd , and fo r every ieиз
< 3 ,i,sQ, . . . , s > e F d .

N o t e th a t F . ç L(u>) because clearly

Fd ç j "(Í2 U i A , П, 3 ju eu) : n e со J

Thus F . eV .a

NOTATION

Whenever <р ,ф e /• ., the shorthand А ф) refers to the formula
< A-s0 , . . . , sn , t Q, . . . , tm > e Fd where = < s Q, . . . , sn > and ф - < t (

Similarly for ~\^ and 3 v ^ .

REMARK 1.1.

It is easy to see that the elements of Fd are the first order formulas of similarity type
d in the usual s e n s e (cf. Monk 76, Chang - Keisler 73, Andréka - Gergely — Németi 75 etc.)
A formula is a finite sequence or s tr in g o f s y m b o l s from the alphabet (П и i A ,1 , 3 и eu).
A sequence or string of lenght n e to is a function ip : n -* (П и [А . п , 3 [и cu)etc.

REMARK 1.2.

Observe that, for every finite similarity type d. by definition deL(u>)eV further
Fj ç L ((j j)e V . Thus Fd e V . Further there exists a formula a,(.v) of set theory such that
F d = ^ e f : (F,e) 1= ad [p] \ i.e.: Fd is defined by o d . Cf. Chang - Keisler 73 bottom
of p. 28. This latter statement w il l be proved in Thm. 2.3.

- 2 0 2 -

DEFINITION 1.6. (Chang - Keisler 73 p. 20. Monk 76 Def. 1 1.1 p. 194)

Let d : i l — со be a similarity type. Recail that Fl Ç L(u>)ei . Then the dass Ai . o f

a ll m o d e ls o f t y p e d is defined as:

M - I (A , F) e \ F is a function D o (F) - FI, and for every (R .n) e d ,

F(R) ç ”A I

REMARK 1.3.

Observe that for every similarity type d e L (c o) e V we have Md ç V ,

further there is a set theoretic formula p d (x) such that

M d = Í é e V : (V '€) h J •

This latter statement about the existence of an explicite definition p f x) will be proved
in Thm. 2.3. Thus A4 . is a definable class in V. The elements of M , i.e. the so calleda a
m o d e l s o f t y p e d are s e t s i.e. they are elements of V.

DEFINITION 1.7.

Throughout we suppose that there is a fixed element e' of L {c o)e V . E.g. e = [! ! 0 ! ! Î .
Further we suppose that e is distinct from ’’everything else” i.e. eV(] А Д , 3 ! и со).
The similarity type [(e ', 2)j will be called the t y p e o f Z F C s e t th e o ry . Throughout F

denotes F , , « , . | and M denotes - ...i .j (e , 2) j e j (6 ,2)|

Observe that F C L (c o) e V and M с V. Thus F is a set and so are the elements ofç — e — 6
M . In other words, F and the elements of M c are elements of V. Z F C denotes a special
subset of Fc tcf. Chang — Keisler 73 p. 507). namely the set of all axioms of Z F C Set

heory fo r m u la te d in t h e la n g u a g e F f . Therefore Z F C C F and Z F C ei ' Thus Z F C is a se t.

REMARK 4

in пн ..cnathematical investigations the set /
: a ramage • ■ > Tiv-orv " inside of the world ■ T

..; fifn & x'O’.ss •'*' ç
; . ; • :• %\ 4 >П li, c\;*i !' tilC icâll̂ Udg

e v e r y w ere "e ' instead 01 Y ".

DEFINITION 1.8 (Chang Keisler 73 p. 27-29. Mons 76 Def. 11.5 p. 19&)

Let d e L (mt be a similarity ;■ no

(1) The validity relation !- ç (M , x / i of class’ -at first order language defi- !
usual way. see Chang - Keisler “3 p 29. Monk 76 Del. 1 i .5.

Let .4eA/. and <peF. be arbitrary. (Recall that A e V automatical)' holds.! Ttv st'Ue-
гч .- а и

is often said to be
S i......... • 1

Theory ' inside of <
Z F C ' . Further. V

- 203 -

ment A H= g> is pronaunced as ’V is valid in the model A ”

Sometimes 1= will also be used as a ternary relation h ç (Md X Fd X w V) (cf. Monk 76
Def. 11.5 p. 196): Let qe ш A be arbitrary. Then A if[q] denotes that ’V is true in
A under the valuation q of the variables”.

(2) Let further Th C Fd be arbitrary. (Recall from Remark 1.2 that Th eV.)
Md(Th) denotes the class of all models of Th, i.e.

Md(Th) = { AeMd : A 1= Th) .

Observe that Md(Th) ç V always holds.

REMARK 1.5.

We shall see in Thm. 2.3. that there exists a set theoretic formula Kd (x ,y) such that

h = { (A,<p)eV : (V,e) N Kd [Ajp]) ,

i.e., for any A ,ipeV we have:

A 1= </> iff (V,e) \= Kd[A#].

We shall often use Md(ZFC). Clearly Md(ZFC) ç ç V. I.e., the modes of the
theory ZFC(Ç Fe) are sets (elements of v 10-

REMARK 1.6.

Note that every element b of L(uj) has a name FeFe ^ th a t Ъ d e n o te s b in

(F,e). E.g., the ordinal 2eZ,(co) has the name 2 = { 0, { 0 }} e F , see Takeuti — Zaring 71
p. 10 Defs 4.1, 4.2, 5.1. To check this, it is enough to see that for every neuj there is a
”ZFC -name” n eF suchthat n denotes n in the world (F,e). It is well known that

Peano’s Arithmetic (PA) is a subtheory of ZFC. Thus everything that is expressible in PA
is also expressible in ZFC. All natural numbers have names (called numerals) in PA. Thus
they also have names in ZFC i.e. in F . The reason for this is that the elements of F« e
were defined by recursion along со.

REMARK 1.7.

Throughout this work we shall tacitly assume that the set of axioms ZFC is consistent
i.e. the real world (V,e) is such that there exists a model of ZFC inside of (V,e). (For
models of ZFC cf. e.g. Chang — Keisler 73 p. 83, Devlin 73 p. 14 line 6, p. 16 line 8, Hinman
78 p. 214.)

- 204

NOTATION

L e t \p be so m e m a th e m a tic a l t e x t , e .g . ’’th e C o n tin u u m H y p o th e s is is tr u e ” or ”x

d e n o te s th e sm allest in f in i t e card in a l” . T h e n o b v io u s ly th e r e e x is ts a fo rm u la o f F w h ich

ex p resses \p i.e . w h ic h is th e r igorou s tra n sla tio n o f i//. T h is form u la w ill b e d e n o te d b y

’i/Л (C f. D ev lin 7 3 p . 3 l in e 7 b o tto m u p .) S in ce F Q F (c o) e F , ’\p’eL(c o)e F .

Examples:

1 .) C on sid er th e m a th e m a tic a l s ta te m e n t x = 1. N o w , it s tra n sla tio n ’x = Г is th e

fo llo w in g form ula:

Vy(yex Vz(z£y)).

C learly ’x = Г is a t y p ic a l e le m e n t o f F .

2 .) L et p b e a n a rb itrary first o rd er fo rm u la , i.e . ipeFd fo r so m e f ix e d deV. T h en

’ N ip’ is a fo rm u la in F ex p ressin g th e c la im th a t th e fo r m u la p is valid in every re la tio n a l

stru ctu re AeMd i .e . in e v e r y m o d e l o f Fd . T h u s ipeFd fo r so m e s im ila r ity ty p e d b u t

’ I= ip’ eFe. T o see th is in m o r e d eta il: S u p p o se th a t 'yeFd is od(y) fu r th er su p p o se th a t

’xeMd is Pd(x) an d ’x I= y ' is (x ,y). (O f cou rse th e n c>d(y), Md (x) , Kd(x,y)eFe. A lso

fo r th e ZFC - n am e ip o f peL(oj) w e h ave peFe b y R em a rk 1 .6 .) N o w , th e fo rm u la

V x [^ d (x) -*■ Kd(x,ip)\ is a n e le m e n t o f F . F u rth er o b se r v e th a t ’ 1= <p' is th e se t th e o r e t ic

form u la:

Vx[Md (x) -> Kd (x,p)].

TERMINOLOGY about COMPUTABILITY

We shall use th e w o r d ’’recu rsiv e” as a sy n o n im fo r ’’c o m p u ta b le ” o r ’’e f f e c t iv e ” . I .e .

th e ad jective ’’recu rsiv e” w ill b e ap p lied n o t o n ly to su b se ts o f cc b u t a lso to su b se ts o f

F (cj) (se e D ef. 1 .З .) . (T o stress th e p o in t: th ere is a n o n e m p ty recursive se t R c L{cj) such

th a t R n = 0 .) T h is ’’a b u s e ” o f w o rs is based o n w e ll e sta b ilish ed resu lts and h a b its o f th e

T h e o r y o f C o m p u ta b ility . T h e r e is o n ly o n e p la ce in th is w o r k in w h ich w e sh a ll s tr ic t ly avoid

th is s lo p p in ess . N a m e ly , inside o f th e p r o o f o f T h m . 2 . 1 . o n ly subsets o f со are ca lled

recu rsive w h ile su b se ts o f F (c o) are ca lled ’T u r in g -d e c id a b le ” . B u t th is is o n ly in s id e th a t o n e

p r o o f . Anywhere else in t h e t e x t T u r in g -co m p u ta b le fu n c t io n s are ca lled recu rsive ev en i f

th e y are o u ts id e o f со.

- 205 -

2. The concept o f a language with semantics

2 .1 . F u n d a m e n ta l co n sid era tio n s

F irst o f all w e sh a ll give a ra th er gen era l c o n c e p t o f a language w ith sem antics. O ur

d e f in it io n b e lo w o r ig in a te s from A b str a c t M od el T h e o r y , c f . M a k o w sk y 7 3 , L indström 7 4

p. 1 3 3 (’’A b stra c L o g ic ”), N é m e ti — S a in "*8 D ef. 1., S a in 7 8 §2 p. 1 0 -1 4 , G ergely 7 7 , N é m e t i

7 6 . B raw ise 7 7 p. 4 5 § 5 .6 ., M on k 7 6 D e f.2 6 .1 9 . p. 417 (w e a k G eneral L o g ic) , D ahn 7 9 .

DEFINITION 2.1 (T h e n o tio n o f a la n g u e)

L is d e fin e d to be a language (w ith sem an tics)

i f f

L is a triple
L = < S ,M ,k> such that:

— S is a set,
— M is a class, and

— к is a fu n c t io n w ith d o m a in S X M , i.e . th ere e x is t s a class R su c h th at

к : S X M -+ R .

CONVENTIONS, REMARKS about D ef. 2 .1 .

N o t e th a t b y D e f . 2 .1 . every tr ip le co n sistin g o f a s e t , a c lass, and a fu n c t io n d efin ed

o n th e ir C artesian p r o d u c t is a lan gu age.

If L = < S ,M ,k> is a language then we use the following names for its parts S,
and к:

— S is ca lled th e syn tactic language, in short th e sy n ta x o f l]_ • (I t s m em b ers are o f t e n

ca lled e x p r e ss io n s , se n te n c e s , or fo r m u la s .)

— M is ca lled th e class o f m o d els (o r p o ssib le w o r ld s or p o ss ib le in terp re ta tio n s) o f l]_

— к is ca lled th e m eaning fu n c tio n o f lj_ , i.e .

к : S X M -*• "M eanings” ,

and fo r every ^peS and © eM w e sa y th a t k(<p, ©) is the m eaning o f y? in the m o d e l

© . I .e . k(*p, ©) is th e m ean in g o f th e sy n ta c tic e x p r e ss io n or s e n te n c e o r w hatever in

th e w o r ld or in te r p re ta tio n or m o d e l © . O th er o u th o r s o f te n use th e w o r d ”d en o ta tio n ”

in stead o f m ean in g fo r k(y, ©).

- 206 -

F irst w e g ive e x a m p le s that are n o t in tu itiv e , th e y o n ly illu stra te w h a t th e ab ove D e f . 2 .1 .

sa y s w o r d b y w o rd .

O rd d en o te s t h e c la ss o f all o r d in a ls .

1 .) < O rd , O rd , + > is n o t a la n g u a g e .

It is tr u e that + : O rd X Ord -» O rd is a fu n c tio n s in ce th e a d d itio n is d e f in e d o n ord in a l

n u m b e r s but th e f ir s t m em b er o f th e tr ip le is not a se t .

2 .) <ui, O rd , + > is a language:

ш is th e set o f a ll f in i t e ord in als, O rd is a class and + : u> X Ord -*■ O rd is a fu n c tio n . S o

it d o e s sa tisfy ou r D e f . 2 .1 .

3 .) <co,oo, + > is a language s in c e s e ts are also c la sses .

4 .) < (0 ,1 } , I 2 ,3 ,4 j , + > is a language.

5 .) L et t b e t h e sim ilar ity t y p e o f ar ith m etic

< + , • , 0 , 1 > .

L et E q be th e se t o f a ll eq u a tio n s o f t y p e t. L et A L G b e th e c lass o f a ll algebras o f ty p e

t. E .g . < w , + , • , 0 , 1 > e A L G . I f <5 is an algebra a n d eeEq is an eq u a tio n th en let

k (e , ©) be th e se t o f a ll so lu tio n s o f t h e eq u ation e in th e algebra © . N o w clearly

< E q , A L G , k> is a la n g u a g e in th e s e n s e o f D ef. 2 .1 .

6 .) L et t b e as a b o v e . L et T e r m s b e th e set o f a ll t e r m s o f ty p e t w ith o u t variable

s y m b o ls . L e. (1 + 1 + 1) e T erm s b u t (x + 1) ̂ T erm s.

F o r any term r e T e r m s and a lg eb ra © let q (r , ©) be th e e le m e n t o f th e u n iverse

o f © d en o ted b y r . E .g. ^ ((1 + 1) , < c o , + , - , 0 ,1 >) = 2eco . (R e c a ll th a t i f th ere are n o

v a riab le sym b o ls in a te r m r th en it d e n o t e s an e le m e n t o f th e u n iverse o f th e algebra © .)

N o w < T e rm s, A L G , q> is a la n g u a g e .

T h e a b o v e ex a m p les w e r e rather n a ive a n d ad-hoc. W e o n ly w a n te d to illu stra te w h at is said

an d w h a t is not sa id in D e f . 2 .1 . T h e fo llo w in g e x a m p le s are m o re in tu itiv e -

Exam ple 2.2.

1 .) D efin e th e f i r s t order language o f type d as

L = < F . , M , , \ = >
d d d

Examples 2.1.

where

- 207 -

— Fd is th e set o f first ord er fo rm u la s o f ty p e d , c f . D e f . 1 .5 . ;

— M d is th e c lass o f c lassica l m o d e ls o f ty p e d, c f . D e f . 1 .6 .;

— 1= is th e v a lid ity rea ltio n d e fin e d in D ef. 1 .8 .

I_ d is a language in th e sen se o f D e f . 2 .1 . T o see th is , reca ll that

— Fd e V is a se t,

— M , С V is a class, anda —

— t= is a tern ary r e la t io n b e tw e e n classical m o d e ls o f ty p e d , fir st o rd er fo rm u la s o f ty p e

d, an d v a lu a tio n s o f th e variables.

E very ternary r e la t io n can b e c o n c e iv e d o f as a b in a r y fu n c tio n . T h u s , N can be c o n

ce ived o f as a fu n c tio n d e f in e d o n F d X M d as fo llo w s :

F o r every fo rm u la ipeFd and m o d e l AeMd th e m e a n in g o f ^ in Л is d e

fin ed t o b e th e set o f all v a lu a tio n s sa tis fy in g $ in A i .e .:

4) = { qe U A : A \= q] } ,

cf. M on k 7 6 D ef. 1 1 .5 . p . 1 9 6 . T h u s

N : Fd X Md -*■ ’’M ea n in g s”

is a m ea n in g fu n c tio n as it w a s req u ired in D e f. 2 .1 .

2 .) F irst order M odal language o f typ e d is d e f in e d as:

M Ld = < M F d , KMd , m e a n in g o f>

w h ere:

— M F d is the set o f all first order m odal formulas o f type d (one new unary sentential
connective 0 is added to Fd);

KM d is the class of first order K ripke models o f type d. (Note that for every simi
larity type t we have K M d ф M { i.e. Kripke models are d ifferen t from classical models.)

— For every <peMFd and ftbeKM d we define meaningof (v>, Я5) to be the set of all
valuations into fli making ^ true. (Note that a valuation into fli contains also the
choice of a possible world in Я* among others: Roughly speaking, is a partial order
<M, < > where M ç M d . The elements of M are called possible worlds in ЭД .)

Now clearly

meaningof : (M Fd X KM d) -»• V

and M L d satisfies Def. 2.1. of a language.

- 208 -

O b serve that M L d d o e s n o t sa tis fy t h e d e f in it io n g iv e n in M ak ow sk y 7 3 , B arw ise 7 7 ,

b ec a u se th e e lem en ts o f K M d are n o t c la ss ic a l stru ctu res (n e ith e r are th e y a lg eb ra s, a lgebraic

s y s te m s , m an y-sorted c la s s ic a l m od els, o r a n y th in g th e lik e) .

F o r further e x a m p le s o f languages < S ,M ,k> w h ich d o n o t sa tisfy a n y d e f in it io n p o s tu

la tin g th a t M be a c la s s o f classical s tru c tu res see D ah n 7 3 , 7 8 , 7 9 G allin 7 5 , M on tagu e 73 e tc .

Exam ple 2 .3 . (D e f . 4 o f G erg e ly - S z ő t s 7 8)

IPj % < Program s c h e m e s o f ty p e dJU d , tr a c e o f>

w h ere tr a c e o f(p,A) is t h e s e t o f all traces o f th e program sc h e m e p in th e m o d e l A eM d ,

is a lan gu age in th e s e n s e o f D ef. 2 .1 .

In m o r e detail:

Pd d en o tes th e s e t o f program sch em es o f typ e d . Pd is d efin ed as in M an n a 7 4 ,

A n d r é k a — N ém eti 7 8 , A n d r é k a — N é m e t i 7 8 a , G ergely — Ú r y 7 8 p .7 2 D e f . 5 .2 .

E .g . le t t be th e s im ila r ity ty p e o f a r ith m e tic . T h en th e fo llo w in g se q u en ce is in P(i.e .

it is a program sc h e m e o f t y p e t.

<(0 : y0 0) ,

(1 : IF = y x T H E N 4) ,

(2 :.y0 — У0 + 1),
(3 : I F = у г T H E N 1),

(4 : H A L T) > .

N o w w e shall q u o t e th e d e fin itio n o f a n cо-trace o f a program sch em e peP d

in a m o d e l A e M , f r o m A n d rék a 7 8 , A n d r é k a — N ém eti 7 8 , A n d r é k a - N é m e t i - S a in 7 9 ,

G e rg e ly - S ző ts 7 8 . S a in 7 9 , G ergely - S z ő t s 7 8 .

D e f in it io n (of an co-trace)

N o te : Intu itive e x p la n a t io n o f th e d e f in it io n c o m e s im m e d ia te ly a fter th e d e f in it io n . C f. also

’’D e f in it io n s ” in § 3 .

L e t pePd be an a rb itra ry program s c h e m e o f ty p e d . W e shall d e n o te th e parts o f

p as

p = < (z0 : u Q), , (in : u n), (in+1 : H A L T)> .

L et { y l t ■ ■ ■ , У т J c o n ta in all th e v a r ia b le s occu rrin g in p. L et A eM d b e arbitrary.

T h e n b y an co-trace o f p in A w e u n d erstan d a se q u e n c e

s = <s0 , . . . , sm > such th a t sQ, . . . , sm e ы A and

- 209 -

(i) , (i i) b e lo w are sa tis fied :

(i) V0)# V
(ii) S u p p o se zeu) and sQ(z) = ik .

I f к = n + 1 th e n V . (Sj(z) = s. (z + 1)),

e lse (1) and (2) b e lo w h o ld :

(1) I f uk = ”yw t ” th e n s0 (z + 1) = ik+l and

fo r ev ery 0 < j < m,

Sjiz + 1) =

T f S j i z) , . . . , sm (z)\A i f i = w

Sj(z) o th e r w ise

(2) I f u . = ” IF X T H E N v ” th en

Sj(z + 1) = s.(z) fo r ev ery 0 < j < m, a n d

s n(z + 1) = ‘

v if A \= xtSjOO, • • • , sm(z)]

ik+l o th e r w ise

L et s , . . . , s e wA . W e d e fin e A (= p [s , . . . , s] t o h o ld
U rfl U TTl

i f f

s = < sQ, . . . , s m > is an co-trace o f p in A . A t= p [s] d e n o te s th e sa m e.

A lso i f se “ (œA) th e n :

^ 1= p [s] i f f (3 meu>) A 1= p [s (0) , . . . , s (/rz)].

E N D o f D e fin itio n

R em ark

A n cu-trace o f p in A is a se q u e n c e <sQ, . . . , s > such th a t fo r ev ery j < m,
s. is a fu n c tio n s. : cu -+ A from ’’t im e ” со in to ’’d a ta v a lu e s” A. I f zeco and

0 < j < m, th en s.(z) is th e value o f th e variable у . at tim e p o in t z . W e use y 0 as

” th e co n tro l variable” o f p . I .e . s0 (z) is con sid ered t o b e th e ’’value o f th e c o n tr o l or

e x e c u t io n ” at tim e p o in t zeco . T h u s s Q(z) is su p p o se d t o b e a ”label” in th e program p .

N o te th a t th e l.abels o f p = < (iQ : u Q), . . . , (in : u n), (1и+1 : H A L T)> are iQ, , /'n + 1 .

- 210 -

The sequence < s Q, . . . , s m > is the h i s t o r y o f an e x e c u t i o n of p in A along the ’’time
axis” o j — < c j , + , •, 0 , 1> .

End o f Remark

Now, œ-traceof is defined to be a function:

cu-traceof : P d X M d -*• "Meanings”

such that for every program scheme p e P d and model A e M d , the meaning of p in A is
defined to be:

cj-traceof(p,^4) - | se(m+1 \ ° 3A) : A I= p[s] }

Then

IP̂ = <Pd , M d , co-trace of>

is a language in the sense of Def. 2.1.

Example 2.4.

Let Th ç Fd be a fixed theory.

Notation: x = < x Q, . . . , x m > where lx I = m + 1 (meсо).

Define

P>d = i t f x , ÿ) e F d : 1x1= l ÿ l e c o , Th 1= (Vx 3 \ У М ~ х , У) } ■

Let A e M d , <çÇxfÿ)ePj, and 1x1= m + 1. Now < s Q, . . . , sm > e (m + l \ <A}A) is called an

cо- tra c e o f in A iff

(V/eco) A N ^ [j 0 (i), . . • , sm (/), s0(i + 1), . . . , s m (/ +1)] ,

and the function ca-traceof’ with domain Pd X Md is defined as:
r t f

co-traceof’(i ^ (x , y) ^ 4) = [se(m+1)(wA) : s is an co-trace of y? in A j .

Now,

<PJ,Md(Th), co-traceof>

is a language.

Note that this language is practically the same as the language IP̂ in Example 2.3.
(More precisely, IPd is ”recursively reducible” to a language of this kind. Cf.
Andréka — Gergely — Németi 77 § 2.1. p. 13.)
What is more unusual, the following is also a language:

<P'd,Md , co-traceof>

— 2 1 1 —

b u t as o p p o sed to th e fir st o n e , th is se c o n d language is m o re sim ilar to n o n d e te r m in is t ic

languages.

T h e fo lo w in g is a s im p lified version o f D ef. 2 .1 . (C f . M ak ow sk y 7 3 , N é m e t i 7 6 , G erg e ly

7 7 , and u n it 1 .1 . o f G e r g e ly — V ersh in in 7 8 .)

D E F IN IT IO N 2 .2 .

L is d efin ed t o b e a language w ith sem a n tics (in th e s im p lified sen se)

i f f

L is a triple

L = < S,M , N > such that:

— S is a set,

— M is a class, an d

— N is a binary relation b e tw e e n e le m e n ts o f S an d M i.e . N ç M X S.

I f L = <S,M, N > is a language in th e sen se o f D e f . 2 .2 . th e n . N is ca lled th e

validity relation o f JL . F o r an y ipeS and eM, i f ® th en w e say th a t у is v a lid

in © .

REMARK 2.1.

T h e language as d e f in e d in D e f . 2 .2 . is a sp ecia l c a se o f th e o n e as d e ff in e d in D e f. 2 .1 .

T o see th is ob serve th a t N can be co n ce iv ed o f as a m ea n in g fu n c tio n N : S X Ai -*• { 0 ,1 } .

C O N V E N T IO N

U n less o th e r w ise sp e c if ie d , b y a language w e sh all u n d ersta n d o n e o f th e s im p lified v e r s io n

in th e sen se o f D ef. 2 .2 .

R E M A R K 2 .2 .

/
L anguages in th is sen se w ere in v estig a ted in G e rg e ly — U ry 7 8 C h . 4 p. 5 9 -7 0 . C f a lso

p . 2 6 . o f G ergely — Ú ry 7 8 , G ergely — V ersh in in 7 8 u n it 1 .1 ., N é m e ti 7 6 , an d N é m e ti -

S a in 7 7 .

- 2 1 2 -

T h e first o rd er la n g u a g e L d = < Fd , Md , h= > o f ty p e if is a la n g u a g e in th e sen se

o f D e f . 2 .2 . as w e ll . N a m e ly , th e (u su a l fir st ord er) v a lid ity re la tio n 1= c a n b e co n ce iv ed o f

as a b in ary re la tio n b e tw e e n first o r d er fo rm u la s and c la ssica l m o d e ls o f t y p e d as fo llo w s

(s e e a lso D ef. 1 .8 .):

F o r a n y IpeFd an d AeMd ,

A \ = v i f f h A) = œ A

(s e e th e d e fin it io n o f t h e m eaning f u n c t io n

(= : Fd X Md - Sb(u A)

in E x a m p le 2 .2 .) .

C f. a lso G ergely — V e r sh in in 78 u n it 3 .2 . p . 5 2 7 .

Example 2.5.

Exam ple 2.6.

A s further e x a m p le s fo r D ef. 2 .2 . a b o v e , reca ll th a t in th e case o f c la ss ic a l h igher ord er

lan gu ages o f a f ix e d s im ila r ity ty p e d th e m o d e ls are th e u su a l first ord er m o d e ls i.e . e le m e n ts

o f Md w h ile th e fo r m u la s are a llo w e d t o c o n ta in n e w ’’h igh er o rd er” v a r ia b le sy m b o ls to o .

F o r every песо a n d sim ilarity t y p e d, th e classical n-th order language _nd o f

type d (w ith th e c la ss ic a l sem an tics, se e e .g . M on k 7 6 p . 4 9 1 , p . 4 9 3 , A n d r é k a — G ergely —

N é m e t i 7 3 ,7 5) is a n e x a m p le fo r a la n g u a g e as d e f in e d in D e f . 2 .2 .

N O T A T IO N S

L et песо. I f _nd is th e c la ssica l n-th order language o f type d, th e n w ill be

d e n o te d b y th e tr ip le

L- = < К , м и,ё >.

? 2.
E .g . , M , , 1= > d d e n o t e s t h e c la s ica l se c o n d ord er lan gu age o f ty p e d.

In th e case o f c la ss ic a l first ord er lan gu age w e shall o m it th e in d ices 1 (a s w e did a lready

in th e case o f th e f ir s t o rd er language o f se t th e o r y in § 1). I .e .:

<Fd\ M d , £ > = L d = < F d , M d , ± > .

Exam ple 2.7.

F u rth er e x a m p le s fo r languages in th e sen se o f D e f . 2 .2 .: (1) , (2) , and (3) b e lo w are

languages for reasoning about programs (c f . § 2 .3 . and § 3) .

- 213 -

О) Ю, - <Pd X Fa .M á , N >
as d e fin e d in A n d rék a — N é m e ti 7 8 , 7 8 a , and G ergely — t ír y 7 8 D ef. 9.6. p. 1 2 5 .

(2) TID = <[(Pd X Fd) U TFd), TMd , 1= >

as d e fin e d in § 3 o f th e p resen t w o rk . T h e d e f in it io n o f T IDd can a lso b e fo u n d in

A n d rék a — N é m e ti — S a in 7 8 , 7 9 , 7 9 a . C f. also § 2 .3 . h ere .

(3) IDd = <Pd X Fd , Md , £ >

as d e fin e d in M anna 7 4 C h . 4 , A n d rék a — N é m e ti 7 8 , 7 8 b , A n d rék a — N é m e t i — Sain 7 9 ,

G erg e ly — S z ő ts 7 8 , G e r g e ly — Ú ry 7 8 .

(4) F irst order lan gu age with valuations'.

D e fin e
/

Md ~ ' (d ' r t - â ^ d and Ve “ A ! •

L e t IpeFd.

N o w w e d efin e (A,q) M= ^ to h o ld i f f A 1= q>[q],
c f . E x a m p le 2 .2 .

C learly <Fd , M j, M= > is a language in th e sense o f D e f . 2 .2 . , since N= ç (Fd X MJ).

(5) The language o f program schemes o f type d:

L et Ma 2f I :AeMd and q e w (“ A) } .

F irst recall from E x a m p le 2 .3 . th at fo r ev ery program sc h e m e pePd , an d qe“ (ША),

A 1= p[q] i f f q is an cu-trace o f p in A.

T h e n w e d efin e

CA,q) fc±p i f f [q e ^ A) and q is an co-trace o f p in А].

N o w :

<Pd , M'd , P > is a language in the sense of Def. 2.2.

(6) M odal language w ith K ripke sem a n tics:

M L'd # < M F d ,K M d , \=>

where M Fd and KM d are as in Example 2.2(2). (M F d is the set of first order modal
formulas and KMd is the class of Kripke models of type d .)

1= is a binary relation 1= Ç KMd X M Fd defined as Kripke did, see Dahn 73, 78.

- 2 1 4 -

(7) Intuitionistic language o f type d:

lLd - <F„, KMd, h >

w h e r e 1= ç (Fd X KMd) is d e fin e d as in A n d rék a — D a h n — N é m e ti 7 6 in terp retin g ” И ”

o f Fd as in tu it io n is t ic n egation .

(8) Intensional language o f type d :

INLd = <IFd , IMd , (= > as d e fin e d in G a llin 7 5 , M on tagu e 7 3 , again sa tisfies

D e f . 2 .2 .

N o te that fo r a n y sim ilarity ty p e t w e have:

KMd M f , IMd £ Mf , th e r e fo r e an y d e f in it io n o f a language p o s tu la t in g th a t th e

in terp reta tio n s b e c la s s ic a l stru ctu res excludes th e la st th r e e exam p les (e v e n i f m an y-sorted

stru ctu res are a l lo w e d !) .

MOTIVATIONS 2.1.

W e w ant to m a k e restr ic tio n s o n th e gen era l n o t io n o f a language g iv e n in D e f .2 .1 . to

m a k e t h e ’’m a th e m a tic a l m o d e l” <S,M,k> o f a lan gu age m o r e d efin ed i .e . w e w a n t to f it it

c lo se r to our in tu it io n a b o u t lan gu ages an d th eir m a th e m a tic a l m o d e llin g . A s a first s tep , w e

w a n t to ex c lu d e s i tu a t io n s that are n o t re lev a n t to o u r in tu it io n based o n o u r k n o w led g e o f

so m e k in d s o f la n g u a g e s , e.g. c lassical f ir s t order lan gu ages, p rogram m ing la n g u a g es, natural

lan gu ages etc .

O n e can im a g in e several m a th e m a tic a l to o ls fo r th is p u rp o se . E .g . in N é m e t i 7 6 ,

A n d r é k a — N é m e ti 7 6 , A n d rék a — G e r g e ly — N é m e ti 7 8 th is to o l w as c a te g o r y th eo ry . In

A n d rék a — G erg e ly — N é m e ti 7 3 , 7 7 , N é m e t i — S a in 7 8 , A n d rék a — N é m e t i 7 5 , 7 9 th is to o l

w a s U niversal A lg e b r a (U niversa l A lg e b r a ic L o g ic) . T h e fea tu res o f th e n o t io n o f a language

w ith sem an tics w e a re try in g to c o n c e n tr a te o n now req u ire a certain a m o u n t o f Set Theory.
T h ere are cartain a s p e c t s o f th e n o t io n o f a language w ith sem an tics w h ic h can be fo rm u la ted

i f w e use som e S e t T h e o r y . (We are n o t ab le to m ak e th e se ’’a sp ec ts” or ’’fe a tu r e s ” e x p lic ite

and p recise w ith o u t it b u t th is d o e s n o t m ea n th a t th e y c a n n o t .) T h e a m o u n t o f S e t T h eo ry

n e e d e d is n ot m u c h e .g . th e n o tio n o f a fo rm u la and a m o d e l o f S et T h e o r y . T h e n o tio n s

n e e d e d w ill be r e c a lle d during th e t e x t .

T h e idea o f th e p r e se n t ap p roach o r ig in a tes from S a c k s 7 2 . There (c f . S a c k s 7 2 e.g . p . 2 .

an d p . 2 2) it is s tr e sse d th a t the b a sic n o t io n s o f c la ssica l first order m o d e l th e o r y are

absolute in th e se t t h e o r e t ic sense: lin e 7 o f p .2 . in S a c k s 7 2 reads as: ’’T h e cen tra l n o t io n s

o f m o d e l th eory are a b so lu te , and a b so lu te n e s s , u n lik e ca rd in a lity , is a lo g ic a l c o n c e p t. T h a t

is w h y m od el th e o r y d o e s n o t fo u n d e r o n th a t rock o f u n d e c id a b ility , th e G en era lized

C o n tin u u m H y p o t h e s is .” It is also m e n t io n e d in S a ck s 7 2 th a t ’’real lo g ica l n o t io n s d o n o t

d e p e n d o n set th e o r e t ic a l h y p o th e se s” . T h is su ggested o u r p resen t n o t io n s o f a lan gu age’s

b e in g ’’a b so lu te ” a n d b e in g ”stable” (s e e D e f . 2 .6 . la te r .) A b so lu te n e ss o f a lan gu age w ill b e

- 215

d e fin e d in a su b seq u en t paper.

E N D o f M otivations.

O ur first req u irem en t fo r a lan gu age l]_ = < S,M ,k> w ill be to b e a b le to define S,M ,

and к in S e t T h e o r y . S u ch a ’’d e f in a b le ” language w ill be ca lled a w ell p resen ted language.

T h e reason fo r requ iring th is is n o t o n ly th e o b v io u s o n e (a m a th e m a tic a l m o d e l o f a la n g u a g e

has to be d e fin ed so m e w a y) b u t th ere are a lso d eap er c o n s id e r a tio n s a b o u t M and к b e in g

rea so n a b ly c o h eren t sem a n tics to S o r n o t.

DEFINITION 2 .3 . (N é m e ti - Sa in 7 8 D ef. 2 .)

A language l]_ = < S,M ,k> is well p resen ted i f (1) — (3) b e lo w h o ld .

1 .) S ç T (co), S is d e fin a b le in S e t T h e o r y , and S' is recu rsive ly en u m era b le .

M ore p r e c ise ly , w e require th e fo llo w in g (a) - (c):

a .) S Ç L {со) and S eV .

b.) T h ere e x is ts a set th e o r e t ic form u la o (x)e F su ch th at S = J a eV : a(a) j .

(c) (V x e S) Z F C i= ’ x e S

H ere w e n o te th a t 'x eS ’ eF e x is ts sin ce S is d e fin a b le an d x is also d e f in a b le

b ecau se x e L (to) : B y x e L (cu), th ere e x is ts a n a m e x e F e o f x in (V,e),

cf. R em ark 1 .6 , and th e n a(3c) is th e fo r m u la in Fe d e n o te d b y ’x e S '

(a cco rd in g to th e n o ta t io n a l c o n v e n tio n at th e en d o f § 1). #)

2 .) M is a class d efin a b le in se t th e o r y . I.e .: th ere is a set th e o r e t ic form u la p(x)eFe
su ch th a t M is th e c o lle c t io n o f all such se ts aeV fo r w ic h p(a) is tru e:

M = j a eV : p(a)] .

3 .) к is a fu n c tio n (c la ss o f pa irs) d e fin a b le in set th e o r y . I .e ., th e r e is a set th e o r e t ic

fo rm u la K(x,v,z)eFe such th at k(ç 10 is th e c lass o f th o se tr ip les <ax , a2 , a 3> o f s e ts

fo r w ich k(Uj , a 2 , a 3) is tru e, a {eS, a 1eM, and a 3 is an arbitrary set:

к = j < ű j , ű 2 , a 3>eK : к.(а] , a 2 , a 3), a ^eS , a 2 eM ,a3e v) .

I f L = < S,M ,k> is w ell p r e sen ted th en w e shall use th e fo llo w in g term in o lo g ies:

L is w ell p resen ted (o r p resen ted) b y < о ,р 'л > " ,

" < о ,р ,к> p resen ts IJ_ ">

"S is p resen ted b y a " ,

"M is p resen ted b y p " ,

"k is p resen ted b y к".

* By m eans o f resu lts given in e.g. M onk 7 6 , o n e can prove th a t 5 Ç Z .(to) and S { g e t . <r(ű)} im ply th a t

(V jteS) ZFC f= xeS ' is really equivalent to th e fac t th a t S is recursively enum erab le . Cf. C o r. 14 .13 in Monk 76.

- 216 -

Let / : a; -*• ej be a function u n d e f in a b le • in ZFC set theory. Suppose / is not even
parametrically definable. Such a function exists since there are only countably many definable
functions. Then

<C U ,C J ,f>

is a language in the sense of Def. 2.2. but it is n o t w e l l p r e s e n te d .

Example. 2.9.

The following languages are w e ll p re se n te d '.

1.) For any similarity type d , the f i r s t o rd e r la n g u a g e ILrf o f t y p e d is w e ll p r e s e n te d .

This is claimed in Chang — Keisler 73 as well, see p. 28. line 5 bottom up there. We shall
prove it in Thm. 2.3. In the proof of Thm. 2.3. we shall construct formulas od , p d , Kd e

such that L d is well presented by < o d , p d , Kd > . In Hinman 78. p. 217. a set theoretic for
mula definiting the first order validity relation (corresponding to our Kd) is denoted by ’’Mod”.

2.) Let d be an arbitrary similarity type and let n e со. Then the c la ss ica l n -th o rd e r

la n gu age

L" = < F " M . , £ >
d d d

is w e l l p r e s e n te d .

References on these languages:

— second order language of type d : Monk 76. p. 491, Andréka — Gergely — Németi 75,
Gergely — Vershinin 78 unit 3.1;

— n-th order language of type d : Monk 76 p. 493, Andréka - Gergely - Németi 73.

3.) <Modal formulas, Kripke models, 1= >.

See Andréka — Dahn — Németi 76.

4.) <Algorithmic logic formulas, Models, 1= >.

See Banachowski at al 77.

5.) <Program schemes, Models, ”Traces”>.
See Andréka 78, Andréka — Németi — Sain 78, 79, Gergely — Szőts 78,
Gergely — Úry 78.

6 .) <Program schemes, Models, ’’Computed functions’̂ .
See Gergely — Úry 78, Manna 74.

Example 2.8.

- 217 -

7.) < Program schemes, 41 , , ’’Least fixed points”>.Algebras
See Courcelle — Guessarian 77, Goguen at al 77.

D E F IN IT IO N 2 .4

We define the set of ta u to lo g ie s of a well presented language IJ_ = < S , M , N > as fol
lows:

T A ^ = J p e S : M N p } .

More precisely, if l]_ is presented by < о , р , к > , then

T A _ - i ■ (V ,e) 1= V x [p (x) -*• k (x , Ip)] |

where p eF e is the name of p eS .

D E F IN IT IO N 2.5. (Gergely - Úry 78 p. 60)

A well presented language IJ_ = <S,M,3= > is called c o m p l e t e

iff

TA y is recursively enumerable. * *

R em ark 2 .3 .

Our notion of completeness is called ’’weak completeness” in Monk 76 p.204.

N O T IV A T IO N S 2.2.

We shall recall later from textbooks on Set Theory that L denotes a subclass of V

i.e. L ç V such that (I , e) is also a ’’model of Set Theory” i.e. (L ,e) is a possible world of
Set Theory if (K, e) is one. L is usually called the constructible universe. (See Def. 2.7.)
CH abbreviates the Continuum Hypothesis.

Suppose (V ,e) CH i.e. V Ф L . Let

A e L c V be infinite. (A e M , and L4 I 3* со.) We shall see the existence of a (fairly simple)
formula p e F V3 such that the meaning of p in A does not depend on p and A but it
depends on their set theoretical ’’surrounding”. I.e. if we change the set theoretical world
arround A then the meaning of p in A changes. E.g.:

r v / ^

(V,e) 1= ’ A p ' but

(L,e) h ’ A ^ p \

M ore p recise ly , ТА ц is T uring-enum erab le , cf. th e p ro o f o f T hm . 2.1.

- 218 -

(I f we started with (V ,e) 1= C H then we can re v e r se the procedure by considering
(L , e) 1= ’А \Ф ip’ to be our starting point and ’’build a sufficiently large V around” L

such that (V ,e) 1=’ A 1= p ’ .)

All these will be proved later about higher order languages. The proof will be especially
transparent for IJ_̂ = <ЕД M d , Д > . The above quoted existence of p e F d such that
for every infinite A e M d (V,e) 1=’ A 1= p but (L , e) I= ’ А \Ф p ’ means that p c F d does
not speak about its models A e M d but is speaks about s o m e th in g e lse namely their set
theoretic surrounding (V ,e). We shall argue that this means that there was a m is ta k e somehow
in the definition of L 3d since a language should speak about its models and not about
something else. Of course such a language l]_̂ can not be complete or anything if it speaks
about (V,e) or other fancy metaobjects instead of speaking about its own models. We shall
argue that the ’’linguistic and logical intuition” about a language ll_ = < S ,M , N > requires
the syntax ipeS to speak about its interpretations or models ® eM and not to speak about
anything else.

(We shall also argue that with sufficient care and time in all intuitively reasonable cases
the definition of L can be modified and elaborated as to meet the above requirements.)

D E F IN IT IO N 2 .6 .

Let the language IJ_ = < S ,M , N > be well presented. Then we define:

1.) L is s t a b l e

iff

for every p e S , if N ^ is true then it is also true in every model IVeM of Z F C .

(Recall that M ç V and thus W e V .)

M o r e p rec ise ly :

JL is stable

iff

for every ipeS such that N у it is also true that in every model W e M d (Z F C) we have
W 1= ’ W v ' .

2.) In o th e r w o r d s :

L is s ta b le

iff

(Vi/jcS)! N $ implies Z F C 1=’ Ni^’].

- 2 1 9 -

3.) I.e. for every valid formula ip of L it should be a ’’m a th e m a t i c a l t ru th " that is

valid.

4.) Now we give a more detailed and m o r e p r e c i s e formulation of the above defined
notion of s ta b i l i t y o f languages.

To this end reca l l our convention that ” N 1/7 is true” means ”(V , e) 1=’ N g f ” . (See
§1 before Def. 1.1.) R e c a l l that the language i_ = < S ,M , N > is well presented by

s e t th e o r e t i c f o r m u la s o (y) , p (x) , and к (х , у) iff

S = ' y e V : o (y) j = j y e V : (V ,e) 1= o [y \ j , etc, see Def. 2.3.

Let 0 O) denote the set theoretic formula

Vx[m(x) - к (х , у)] .

Clearly ® (y) is a set theoretic formula in one free variable y . Therefore, for any
b e V , the statement (V , e) 1= 0[è] is meaningful. (It says that the set b has the property
0 . It is either true or not.)

R e c a l l that S Ç L(u>) and therefore for every ip e S there exists a " Z F C -name”
~f>eFe which singles out from (V,e)-. Le. Z F C I— 3 ! x(x = ÿ>), etc. See Remark 1.6.
Observe that for every tp e S we have 0(tp)eF. Now

L is s ta b le

iff

th e re e x is t s a presentation < о , р , к > of JL such that for every ^peS (/) implies

(ii) below.

(i) (V ,e) I= 0[(^].
(ii) Z F C 1= 0 (^).

The more precise formulation of (ii) reads as:

(ii)' (V ,e) h ’ Z F C 1= 0 (ÿ) \

An equivalent formulation of (ii) is the following:
(ii)'' (V , e) h ’ For every W e M d {Z F C) W !=

Or equivalently:

For every VJeM if (V,e) N ’ W 1= ZFC’ then also (V,e) \= ' W 1= 0 (^) ’.
r̂ y * л / ~ '

- 220 -

The following two languages are n o t s tab le .

1.) Denote by Eq the set of D i o p h a n t i n e e q u a t io n s (automatic formulas of the language
of со).
Let the language D be defined as follows:

D = < E q , ш со, N>

where for every e e E q and h e ш со we define

h N e iff со e [h] .

1. e. A is a D-model of e if h is not a solution of e in со.

Clearly N e iff e has no solution in со.

I.e.:

e is a tautology of the language D

iff

со N 3 у e (y).

Now we claim that D is n o t s tab le .

Proof:

By Davis 73, H ilbert’s tenth problem is unsolvable. This implies the existence of a
Diophantine equation e (ÿ) such that

(V ,e) M= ’со 1= 3 у e (J Y ,

but for some model W e M d (Z F C) (inside of (F,e)) we have
А/

W \= ’со 1= 3 ÿ e (ÿ) ’ .

I.e. N e is true in (F,e) but the same N e is false in some model W of Z F C

(inside of (V,e)). By the definition of N, this means that the language D is not stable.

O E D

2.) Define the language L as follows:

L = < F , со, N >
i

where

— F is the set o f all first order formulas of the language of со in one free variable x

Example 2.10.

- 2 2 1 -

— For every n e ou and <p { x) e F we define

n W y iff cu 1= tp [и].

We clain that L is n o t s tab le .

The proof is left to the reader.

3.) Note that the languages ID̂ and T ID̂ are stable while ID̂ 1 is not stable
(see Example 2.7.).

T H E O R E M 2 .1 .

Let JL = < S ,M , N > be well presented. Then:

L is copmlete iff l]_ is stable.

PR O O F

First we recall some notions about computability in L { cu):
The followings are definable in L(u>):

1.) a function / : L(ou) -*• L(ou) is T u r in g -c o m p u ta b le ,

2.) a set H ç L (cu) is T u rin g -en u m era b le ,

3.) a set H C L (cj) is T u r in g -d e c id a b le .

(Recall that the above notions restricted to eu Ç L (cu) are:

1 .) recursive function

2 .) recursively enumerable set

3.) recursive (decidable) set.)

In this proof we strictly distinguish between ’’recursive” and ’’Turing-computable” etc.
Cf. the ’’Terminology about computability” in §1.

We shall prove the theorem in two steps:

1.) We prove that if l]_ is complete then it is stable.
2.) We suppose that l]_ is stable and we give a calculus for 1 .

P A R T (1) o f th e p r o o f

In the first part of theproofwe shall use the following lemmas:

- 222 -

Let the language L = < S ,M , 1= > be well presented by the set theoretic formulas
o (y) , ц (х) , к(х,у).

Define:

@(y) - V x [n (x) -*• к(х,у)] Л o (y) .

Then

L is complete iff

I a e L (со) : ©(a) j is Turing-enumerable.

PROOF of Lemma 2.1.

By Def. 2.5.,

L_ is complete iff

] Ip e S : (V , e) 1 = V x [p (x) -* к (х , < р)] J is Turing-enumerable.

Now observe that

J Ip e S : (V , e) 1= Vx]/i(x) -*■ k (x , ip)] J = { a e L (o j) : 0(a))

since S C L(cj) and S is presented by o(y).

LEMMA 2.1.

QED Lemma 2.1.

Recall from Monk 76 that a set R ç L (œ) is called s y n ta c t i c a l l y d e f in a b le iff there
exists a \jjeF(such that both (i) and (ii) below hold:

(i) For every
x e R

x e L (c j) ,

iff Z F C I- ф (х)

(ii) For every
x e R

x e L (u)),
iff (K,e) 1= ф[х] .

Note that the present notion is strictly stronger than the one introduced in Def. 1.1.
Namely, if a set R ç L (со) is ’’syntactically definable” then it is also ’’definable” in the
sense of Def. 1.1. . But there are definable subsets of L(co) which are not syntactically
definable. (The same applies to having a name: a set has a name iff it is definable in the sense
of Def. 1.1., cf. Remark 1.6.)

- 223 -

R ç T(co) is Turing-enumerable

iff

R is syntactically definable.

Proof: is at the end of this part (1) of the proof.

Now suppose that l]_ = <S,M, N > is complete. We prove that L is stable.
Since L is well presented, there are set theoretic formulas o(y), p(x), K(x,y)eFe such that
L is presented by < о , р , к > .

Define 0fy)eF as follows:

0(y) = Vx[ju(x) -*■ k(x,>>)] A cr(y).

By Lemma 2.1. the completeness of 1 implies that

{ aeL(cj j) : 0(a) } is Turing-enumerable.

By Lemma 2.2., this implies that J aeL(со) : 0(a) ! is syntactically definable i.e. there
exists a formula such that:

(*) (ye j àeL(u>) : 0(a) | iff ZFC I— ф(у) iff (K,e) 1= i//[_y]).

Now we introduce a new set theoretic formula к’(х,.у) such that < о , р , к ' > presents the
language |L .

к'(х,у) = (к(х,у)У[ф(у) Л д(х)]).

Clearly N = { (x,y)eV : (E,e) 1= к.'[х,у] J by (*).
This can be seen as follows:

Suppose X N y . Then к (х , у) and therefore к ' (х , у) У [ф (у) А м (*)Ь

Suppose /c'(x,y). Then к (х , у) or ip (y) A p (x) . Now either ip (y) A p (x) or not. Suppose
(ip (y) A p (x)) i.e. (F,e) 1= (il / [y] A p [x]) . By (*) this implies 0(v). Since p (x) ,

this implies к (х , у) i.e. x Ё y . Thus < o , i u ,k ’> presents l|_ •
Let 0 ’(y) = Vx[ju(x) -*■ к ’(х,у)]. Since < o,ju,k> is a presentation of ll_ to prove that L is
stable, it is enough to :.how that for every <peS, if then ZFC 1= ©’(<£) by Def. 2.6.
Let N 1p. Then obviously 0(<^) is true in (E,e). By (*), Z F C I— фСр) . Therefore by
Gödel’s Completeness Theorem and the definition of 0 ' we have Z F C 1= ©'(<£). This
clearly implies that for every model WeMe of Z F C , & (l p) is true in W i.e. ’ is true
in W. Remains to prove Lemma 2.2. (During the above proof we had to use only ’’one
direction” of Lemma 2.2.)

LEMMA 2.2.

- 224 -

Here we prove only one direction which was needed in the proof (1): We prove that if
R C L(co) is Turing-enumerable tfze« there exists a i//eF such that for every x e L (c o) ,

(xeR iff Z F C h- ф (х) iff (V , e) h \p[x]) .

The following lemma is known:

Lemma 2.3.

A relation R С ” со (песо) is recursively enumerable

iff

there exists a formula </?eF such that: for every и-tuple < x Q, . . . , x n X> e n co,

[(<x0> . . . , x n X> e R iff P A 1— <p(x0 , . . . , j)) and

(< x 0 , . . . , x n l > e R iff

(PA abbreviates the set of axioms of Peano Arithmetic.) I.e., R is recursively enumerable
iff there exists a formula tpeF such that R is both syntactically and semantically definable
by ifi in Peano Arithmetic.

Proof

To see that Lemma 2.3. is true, see Monk 76 Cor. 14.13 p.251. and the proof of Prop.
14.8. there.

QED Lemma 2.3

A staightforward consequence of Lemma 2.3. is the following:

Lemma 2.4.

A relation R С n со (песо) is recursively enumerable

iff

there exists a formula ipeF such that for every и-tuple < x Q, . . . , x n X> e n со,

[<x0, . . . , x n _ ,> eF iff Z F C \ - < p (x 0 , . . . , x n l) iff
(K,£) k ^ 0 - _ ;)1

PROOF of Lemma 2.2.

- 225 -

Proof

To see that Lemma 2.4. is a consequence of Lemma 2.3 , observe that PA is a subtheory
of Z F C .

QED Lemma 2.4.

Now we quote a lemma from the Theory of Algorithms.

Lemma 2.5.

Let G ç со be a recursive (decidable) set. Let the function g be such that both

g : L (cj) >—■+-*• G С со

and its inverse

g~ 1 : >— Z-(cj)

are bijective and Turing-computable.
Let further R C L (cj) be arbitrary.

Denote g * (R) = { g (r) e L (cu) : reR ! .

Then:

R is Turing-enumerable

iff

g * (R) is recursively enumerable.

Proof: For a proof cf. e.g. Monk 76 Thm 3.39 p. 56.

OED Lemma 2.5.

The following lemma is also well known:

Lemma 2.6.

a.) There exists a set G С со (called Gödel numbers) and a function
g : L(co) -*• G (called Gödel numbering function) such that G and g satisfy the condi
tions of Lemma 2.5. Le.:

G Ç ш is recursive, and

g and g~ 1 are bijective and Turing-computable.

- 226 -

b.) Further well known properties of the Gödel numbering function g are:

(i) g is syntactically definable, i.e. there is a 7 eFe such that for every х , у е Ь (и з)

(g(x) = y iff Z F C I- 7 (x , y) iff (V , e) 1= 7 [xj']).

(ii) Z F C I g is a function’ i.e.
Z F C I— (Vx 3 ! y) y (x y).

QED Lemma 2.6.

For Gödel numbers see e.g. Monk 76 p. 52, 72.

Now we prove Lemma 2.2. using Lemmas 2.3. — 2.6. above. Let R ç L (из) be
Turing-enumerable. Denote the Gödel numbering function by g . g . : L (из)>—>->• G с из.

By Lemmas 2.5. and 2.6., the set

g* (R) = f g (x) : x e R j ç G

is recursively enumerable.

Then by Lemma 2.4. there exists a formula ipeF such that

0 .) (z e g * (R) iff Z F C l - * (F) iff (V , e) 1= ^ z]) .

Let x e R be arbitrary. Then g (x) e g * (R) . Thus by (0):

1.) Z F C \ - <p(g(x)) and (V , e) 1=

where gO) is the Z F C -name of g(x)eg*(7^).

Define

ф(х) = (3 yeco)[7 (x,y) A ^O)]

where 7 defines g . \ } j (x)eFe .

We prove that

(xeR iff Z F C I- ф (х) iff (F,e)l= ф[х]) .

a.) S u p p o se that x e R . Then by Lemma 2.6. (b) (i),

2 .) Z F C I- 7(3c,gW) and (V , e) 1= т[*.в(*)]-

1.) and 2.) above imply Z F C I— ф (х) and (V , e) 1=

b.) S u p p o se that

3.) Z F C I- ф (х) = (3 y e u >) [y (x y) A ^>0’)]-

- 229 -

5. Recall that 0 (6)eF . To the classical first order language < F e , M g , 1= > there is
enclosed an algorithm Alge that decides whether any element тгеДсо) is a proof of 0(6)
from Z F C or not since Z F C is a Turing-decidable subset of F . Let Alg contain this
Alg(. Thus finally Alg decides whether c is a proof of 0(F) from Z F C or not, it
prints out ”YES” if c is a proof of 0(6) from Z F C and it prints out ”NO” otherwise.

Then Alg stops.

The above algorithm Alg satisfies the conditions (***): For every input (ipp)eL(u>)

it stops in finitely many steps, it prints out ”YES” if p is а (о , р , к)-proof of and it
prints out ”NO” otherwise. Thus the above Alg is a Turing-machine that d e c i d e s the set of
(o ,p,K.)-proofs as a subset of L (cu). Further, by (**) above (which is a straightforward
consequence of stableness of l]_), for every ipeS , there exists a (а ,р ,к) - рт о о{ of ^ iff
N V.

I.e., Alg is a c o m p l e t e a n d s o u n d ca lcu lus (cf. Gergely — tíry 78 Ch. 4) for the language
1 _

So far we gave a proof concept to the language L using the hypothesis that L is
stable and that we are given the stable presentation <o,p,ic> of l]_ and we constructed
a decision algorithm for the set of proofs. By Monk 76 this implies that Т А ц is Turing-
-enumerable. Therefore l]_ is c o m p l e t e in the sense of Def. 2.5.

QED of PART (2) of the proof.

QED Thm. 2.1.

2.2. Languages well known in logic

THEOREM 2.2.

Let d be a similarity type. Then the first order language

L - < F d M d , 1= > of type d is stable.

Proof

Thm. 2.2. is a consequence of completeness of L d , Thm . 2.1., and the following
Thm. 2.3.

QED Thm. 2.2.

THEOREM 2.3.

Let d be a similarity type. Then the first order language

ILrf = < F d ,Md , 1= > of type d is well presented.

- 230 -

(Cf. Remarks 1.2, 1.3, and 1.5)

Proof

We shall give a proof for a finite similarity type d . The proof for the case \ d \ = u>

is quite similar. We shall give two formulas: od (y) , Kd (x , y) e F £by which Fd and 1= can be
presented. The presentation of Md is left to the reader.

1.) Presentation o f Fd :

Recall that F d ç F(co) and Fd e V . It is well known that Fd is recursively enumerable,
moreover, it is recursive, cf. Monk 76 Prop. 10.15 p. 168, and Remark 1.1. To satisfy condition
1.) of Def. 2.3., remains to give a formula a d (y) e F e which defines Fd , i.e., for which:

®

(V ,e) 1= (F d = [y : o d { y) }).

First we define:

5(7) = [J Q L (w) A / = { (v? Л ф), C M , (3 x Ф), R (x , . . . , x f):
1 m

(R , m) e d , < i l , . . . , im > e m oj, «ecu, y , \ p e J }].

5 (/)eF , since L (cu) can be explicitely defined in Z F C set theory, i.e. L (cu) can be defined
by a formula of F £ .

Now let od (y) = (y j) [5 (J) -* y e J] , od (y) e F £ . To see that od (y) defines Fd , one can easily
show that:

ZFC I- (3 \ J) 6(F)

by using the facts that the elements o f F(cu) are finite, F(co) is transitive, moreover,
every element of C(co) is contained in a finite transitive set.

Z F C h (3!F) 5(F) and the definitions of 5(F) and od (y) imply that

(K,e) 1= {Fd = { y : ad (y) })

which was to be proved.

2.) Presentation o f 1= :

Suppose that M d is presented by jud(x)eF, i.e.

M d = [A e V : (V , e) t= nd [A] } .

Recall the following notations:

If A e M d then its universe is denoted by A . If (R , m) e d then the denotation of R

in A is denoted by A R . Note that A and A R can be explicitely defined. Now we shall

- 2 2 9 -

5. Recall that 0 (è)eF . To the classical first order language <Fe,M e, \= > there is
enclosed an algorithm Alge that decides whether any element 7reL(co) is a proof of 0(6)
from ZFC or not since ZFC is a Turing-decidable subset of F . Let Alg contain this
Alge. Thus finally Alg decides whether c is a proof of & (b) from ZFC or not, it
prints out ”YES” if c is a proof of S(b) from ZFC and it prints out ”NO” otherwise.

Then Alg stops.

The above algorithm Alg satisfies the conditions (***): For every input со)
it stops in finitely many steps, it prints out ”YES” if p is a (a,p , к) - proof of p and it
prints out ”NO” otherwise. Thus the above Alg is a Turing-machine that decides the set of
(a,|i,K)-proofs as a subset of L (a>). Further, by (**) above (which is a straightforward
consequence of stableness of l]_), for every ^peS, there exists a (o,/r,K)-proof of p iff
N

I.e., Alg is a complete and sound calculus (cf. Gergely — dry 78 Ch. 4) for the language
1

So far we gave a proof concept to the language IJ_ using the hypothesis that L is

stable and that we are given the stable presentation < а , р , к > of L and we constructed
a decision algorithm for the set of proofs. By Monk 76 this implies that ТА ц is Turing-
-enumerable. Therefore l]_ is complete in the sense of Def. 2.5.

QED of PART (2) of the proof.

QED Thm. 2.1.

2.2. Languages well known in logic

THEOREM 2.2.

Let d b ea similarity type. Then the first order language

L = < F d M d , 1= > of type d is stable.

Proof

Thm. 2.2. is a consequence of completeness of L d , Thm. 2.1., and the following
Thm. 2.3.

QED Thm. 2.2.

THEOREM 2.3.

Let d be a similarity type. Then the first order language

ILrf = <Fd ,Md , l=> of type d is well presented.

- 230 -

(Cf. Remarks 1.2, 1.3, and 1.5)

Proof

We shall give a proof for a finite similarity type d. The proof for the case \d\ = со
is quite similar. We shall give two formulas: od(y), Kd(x,y)eF(by which Fd and 1= can be
presented. The presentation of Md is left to the reader.

1.) Presentation of Fd :

Recall that Fd ç L (со) and Fd eV. It is well known that Fd is recursively enumerable,
moreover, it is recursive, cf. Monk 76 Prop. 10.15 p. 168, and Remark 1.1. To satisfy condition
1.) ofJDef. 2.3., remains to give a formula od(y)eFe which defines Fd , i.e., for which:

(F ,e) 1= (Fd = { у : ad(y) }).

First we define:

5 (J)= [J Ç L (u) A / = { (*> Л Ф), C M , (3 V), R(x. , . . . , x f):
1 m

(R , m) ed ,< i l , . . . , im> e m со, ne eu, v,\peJ }].

5 (/)eF , since L (со) can be explicitely defined in ZFC set theory, i.e. L (u) can be defined
by a formula of F£.
Now let od(y)= (YJ)[5(J) -*■ yeJ]. od(y)eF£. To see that od(y) defines Fd , one can easily
show that:

ZFC I - (3 U) 8(J)

by using the facts that the elements of L(a>) are finite, L(u>) is transitive, moreover,
every element of L (c j) is contained in a finite transitive set.

ZFC I— (Я !«/) 8(F) and the definitions of 8(F) and od(y) imply that

(V , e) 1= (Fd = { y :ad(y) })

which was to be proved.

2.) Presentation of 1= :

Suppose that Md is presented by nd(x)eFe, i.e.

M d = [A e V : (V , e) h nd [A] } .

Recall the following notations:

If A e M d then its universe is denoted by A . If (R , m) e d then the denotation of R

in A is denoted by A R . Note that A and A R can be explicitely defined. Now we shall

- 231 -

give a formula Kd(x,y)eF(which defines !=, i.e. for which:

1= = { (v?, A) : (V,e) 1= Kd[A,v\, ^eFJ ,AeMd } .

Recall that for any se t A the corresponding set U { n A : n < со } is explicitely definable
in set theory. So is "A for any neсо. Now we shall define a formula 7 (x,y)eF .

Intuitively. 7 (A,T) will express that T is the set of all ’’valuated formulas” true in A.
I.e. the elements of T will be formula-valuation pairs (<pp) instead of only formulas tp.

More precisely. For any model AeMd and any set T, we want 7 {A,T) to hold iff
T = { { p p) ; A \= Ip [a] and a e nA for some ne eu.}

The definition of the formula 7 (x,y):

1 ÍA.T) = [T C (FdX U { " A : n < со }) A

A T = { < (ф A x) , a > , < ~ \ p A > ,<(3 x r<pl) , a > ,
< R (x . X)Д> :»1

'l',X,'PfPl eFd , (3 n < oj) <TenA,
(< iр,й>еТ A <xf l> eT) , < p p > f T ,
(Я beA) (ipl (aQ, . . . , a r i , bpr+l, , an))eT,
[Off < tn)i. < n A <a^ , . . . , a. >eAR] J].

Now let:

кЛА,р) = VT[(y(A,T) -*• (Я песо) (Va e пА К у д > е Т) A ß(A)].

It is easy to show that

ZFC I- CfA)[n(A) - (Я \T)y(A,T)].

This implies that 1= is defined by Kd (x , y) .

QED Thm. 2.3.

Recall the definition of a constructive universe:

DEFINITION 2.7. (Chang-Keisler 73 p. 475, Devlin 73, Hinman 78 p. 215.)

For all ordinals a ,

1.) If a = 0 then L (a) = 0.

2.) If a > 0 is a limit ordinal then

Ц а) = U Щ) .
ß < a

- 232 -

3 .) I f a = ß + 1, th en

Д а) = { x C U f f) : X is definable in Д 0) } .

(Д а) has been defined already for the special case а = cc, cf. Def. 1.3.)
A set x is said to be constructible iff there exists an a such that хеД а).
The set of all constructible sets is called the constructible universe and is denoted by L.

L = U Д а),
а

Note that LC V is a class.

REMARK 2.6.

Recall that (L , e) is a ’’model of Z F C ” , i.e. (Де) 1= Z F C .

Also recall that (Д е) 1= C H (C H denotes the Continuum Hypothesis), cf. Chang — Keisler
73 p. 477.

On the basis of the proofs of the following Thm. 2.4. and Thm. 2.5. we would like to
argue that higher order logics are incomplete because they are not stable. (Cf. also
Motivations 2.2.)

By Thm. 2.1. and the incompleteness of higher order languages we know that the third
and second order languages are not stable. In the following Thm.2.4. and Thm. 2.5. we shall
prove these facts directly by constructing a third order formula \p and a second order formula

such that the set theoretic statements ’ h i / / ’ and ’ h will be true in the real world
(K,e) but they will be false in some W e M d (Z F C) . In the proof of Thm. 2.4. we shall
e x p l i c i t ely s h o w that the meaning of ф in A does not depend on ф and A (but instead
on something else). See the comments inside of the proof of Thm. 2.5. and Motivations 2.2.

THEOREM 2.4.

Let d be a similarity type. Then the third order language < F d 3 , M d , h > is not
stable.

Proof

Let the formula у be defined as follows:

We shall use in the following symbols:

P isa third order variable symbol standing for unary relations of unary relations;

F is a third order variable symbol standing for unary functions defined on unary relati
ons;

X and Y are second order variables standing for unary relations;

x and y are first order variables.

- 233 -

Now let

^ - |(3 F V F { Я YVX(P(X) -* F(X) Ф Y) A

Я У [Д Г) Л WX(Я xVy(X(y) *+ X = у) -

- F W * У)] }).

Clearly i^eFj for every type d.

Basic O b s e r v a t i o n : The following observation reveals the intuitive reason responsible for the
incompleteness of higher order languages.

Let W e M d (Z F C) . Let A e W b esu ch tha t A e M . and L41 = со holds in W as well
r* r* r-f a

as in (F,e). Now clearly

W \ = ’ A 1= ф> iff W \= C H

3
for 'PcFd defined above.

Suppose that W \= C H and (F,e) C H or the other way round. (It is known that
both are possible.) Then either W 1= ’ A 1= y?’ and (F,e) 1= ’A £ 1 <p’ or the other way
round.

Now on the basis of the above observation we shall prove the theorem. The reader is
invited to do this himself before reading what follows.

i SIt is easy to write a formula ip eF d by using such that Md 1= ф iff CH. Le.:

(V , e) \= ’ £ ф ’ iff (V , e) 1= CH.

Intuitively: ’A \= ф ’ should say (HI = w =* A 1= tp).
In more detaiLIt is easy to construct a such that A 1= x iff H I = cu.

d j' ^ ^
Now we define ф = (x p)-

Similarly, there exists а i/z’eFj* such that

Md £ ф ’ iff I C H .

Namely, ф ’ = (x -*■ "V)-

Recall from §1. Remark 1.7. that throughout this work we tacitly assume that Z F C is
consistent i.e. there exists a model W e M d (Z F C) .

Recall that (K,e) is arbitrary but fixed. We distinguish two cases:

either (V,e) 1= C H or (K,e) 1= I C H .

1.) Suppose (V,e) \= CH.

By Cohen’s result, cf. e.g. in Chang - Keisler 73 p. 44 line 11, there exists a model
W e M d (Z F C) such that W 1= ~l CH. Then (F,e) 1= ’ Д ф ’ and W Ф ’ Д ф ’.

- 234 -

2.) Suppose (V , e) 1= 1 CH.

Since Z F C is consistent, there exists W e M d (Z F C) . We can suppose that W 1= 1 C H i.e.
W 1= \p’. Recall the notion of a constructive universe (Def. 2.7.). Let L w denote the
constructive universe in s i d e o f W. Denote ’’element o f” in W by E. Recall that
(L w £) \= Z F C . By Thru. 7.4.4. of Chang - Keisler 73.p. 477, (L w ß) 1= CH. Observe

that L w e V (though it is a class in W). Thus (L w ß) e M £ . This completes the proof of
the fact that \p’ is not stable.

QED Thm. 2.4.

THEOREM 2.5.

Let d be a similarity type. Then the second order language < F ^ 1= > of type
d is not stable.

Proof

Let p be a number theoretic formula i.e. a first order formula in the language of со.

Let P,T, and S be three second order variable symbols, P and T denoting binary
functions and S denoting unary ones. I.e., P , T , and S are function variable symbols.
Let z be a first order variable symbol.

Let v ’ = v { + / P , -IT, succIS, 0/z) be the second order formula obtained from v by
replacing every occurence of + by P , " • " by T, the isucessor by S , and the zero by
z. I.e. v ’ is a number theoretic formula in which addition is denoted by P (plus), multip
lication is denoted by 7\times) etc.

Denote P A ’ the Peano Axioms without the induction scheme. Observe that P A ’ is
finite. Let n a ’ be the single formula obtained from P A ’ by conjunction. I.e. тих’ = A (P A ’).

Let

ira = i r a ’(+ / P , - IT , succ/S , 0/z).

I.e. i ra (P,T,S, z) is a formula expressing the Peano Axioms without induction such that P

denotes addition, T denotes multiplication, etc.
Note that 7ra begins by saying:

Ух[5(х) Ф z] A VxVylS'lx) = S (y) -* x = у] .

This implies that z, 5(z), S (S (z)) etc. are all distinct. Let U be a second order variable symbol
denoting unary relations. Let n a u be the relativised version of n<x to U. (Cf.
Chang — Keisler 73.). I.e. the first order qualifiers Vx and Эх are replaced by (Vxet/)
and (3 xe U) . Similarly v v denotes the relativised version of v' to LI.

- 235 -

Let p denote the following formula:

(V U,P,7’,5Vz)[(U(z) A V*[£ / (*) - U(S(x))] Л irau (P,T,S,z)) -*■ vu (P,T,S,z)\.

p is a second order formula, p e F d moreover p e F j 2 . I.e. p is contained in every second order
language. Let A e M d be arbitrary but infinite. (Le. L4l>co.) Now clearly A b p iff
со 1= V. More precisely, A b p iff (V , e) t=’ co 1= v \
/ \ У ^

л

Clearly for every number theoretic formula v the corresponding p ^ F ^ can be produced
such that A 1= p iff со 1= v. This means that when speaking about an infinite model
A e M . in its second order language F } then we can define full Number Theory inside of A
f \ j и Cl

and p r e t e n d that we are speaking about A . But we are not speaking about A at all instead
we are speaking about со which is completely independent of A . Such a language c a n n o t be
complete since its formulas p e F d are n o t speaking about its models A e M d but they are
speaking about something else. Validity of p v in A depends on the validity of v in со.
Thus M . 1= p iff со 1= v.

Now let v be a number theoretic closed formula such that ы h r and Z F C Ь ’ со 1= v'.

I.e. there exists a model W eM С V of Z F C such that W & ’со 1= v ’. (Such a v

exists, e.g. let e (y) be a Diophantine equation without solution and let v be
Vy ~ \ e (y) . Etc.) Let p = p v. p is a*tautology (I= p) iff (Г,е) 1= ’ ^o 1= v ’. We chose
v such that £o 1= v. Thus £ p . I.e. (F,e) 1= ’ t= ^’. But there exist W e M d (Z F C) с V

such that W b ’ со 1= v ’. Therefore W Ь ’ M . £ p ' i.e. W t# ’ b p ’ i.e. p is not a
~ ~ ~ d i %

second order tautology inside of W. Therefore < F d , M d , b > is n o t stable (for every
choice of the type d) .

All this was straightforward since the formulas 4>v ^Fd do not speak about their models
AeM d but they speak about something else namely со. pv is valid in A iff v is valid

in jo. Now if we change the set theoretic world (V ,e) such that the validity of v in со changes

then the validity of p in A changes too! The validity of p in A changes without changing
A ' or p v but only changing the set theoretic world around them!

Q E D T h m . 2 .5 .

Denote by IH ” = < F d , M d , 1= H > the Henkin-type и-th order language. Note

that the syntax of II— coincides with that of |_^ , the semantics, however, is different.
(Cf. Henkin 50, Monk 76 p. 493.)

T H E O R E M 2 .6 .

For every similarity type d and n < со, the language IH^ is stable.

- 236 -

THEOREM 2.7

(i) The Honking-type intensional model theory, as defined in Gallin 75, is stable.

(ii) The non Henkin-type intensional model theory, as defined in Gallin 75 and in
papers of R. Montague, is not stable.

2.3. Languages for reasoning about programs

D e s c r ip tiv e P r o g r a m m in g L an gu ages in th e sen se o f G e rg e ly — Ő ry 78. p . 79:

In the followings let d be an arbitrary similarity type. Recall from Gergely - Szőts
78 Def.2, Gergely — Úry 78. p. 81. Def. 5.12, Andréka — Németi 78, Andréka — Németi —
— Sain 79 p. 2, Manna 74 Chap. 4.1., or Andréka — Németi — Sain 78 § 1 the definition
of the C lassical L a n g u a g e

IDrf1 = < >̂d x ^ > o f P ro g ra m V e r if ic a tio n of type d . Recall that:

— Pd denotes the set of program schemes of type d (cf. Example 2.3.).

— If D eM d and (p ,\p)e P d X Fd then D ¥ (р , ф) iff the program scheme p is
partically correct w.r.t. \p in the model D for standard traces.

ID^ is called Classical D e s c r ip t iv e P ro g ra m m in g L a n g u a g e on p. 79. of Gergely — Úry 78.

THEOREM 2.8

The Classical Language of Program Verification

ID^ = < P d X Fd , M d , > is n o t s ta b le .

More precisely:

There exist a finite similarity type d , a model W eM d (Z F C) of Z F C and a statement
(p ,\l/)eP d X F d such that:

(K,e) 1= ’1= (p , <//)’ while W 1= ’1# (р , ф) ’ .

P ro o f

This is a special case of Thm. 4.2.

Q E D T h m . 2 .8 .

T H E O R E M 2 .9 .

1.) For every similarity type d and Th ç Fd satisfying the conditions of Thm. 4.1. ,
the language

- 237 -

w ID™ = <Pd X Fd , M d (T h) , 1= > is not stable.

2.) Even reasonable restrictions* of the language

w ID™ = < / ^ X M d (T h) , > are not stable.

P ro o f.

Thm. 2.9. is a special case of Thm. 2. of Andréka — Németi — Sain 79. Cf. also Sain 79.
§4 Thm. 4.2. and Thm. 2.9. there.

Q E D T h m . 2 .9 .

R E M A R K

The Classical Language of Program Verification ID£ just happens to be an co-logic in
the sense of Barwise 77. p. 42.

Now recall the notion of a nonclassical D e s c r ip tiv e P ro g ra m m in g L a n g u a g e from Def. 9.6.
in Gergely - tíry 78. p. 125. and from the beginning of the following §3.

In §3 a (nonclassical) Descriptive Programming Language TID^ of type d will be
defined in detail. Here we use that definition, therefore the reader is kindly asked to have
a look at §3. The parts of that Descriptive Programming Language T IDrf are denoted the
following way:

TIDd =' < [T F d U (Pd X F d) \ , M d (T h) , 1= >

where:

— TFd is the syntax of the classical three sorted first order language
7ГB_ d = < T F d , T M j , \= > of a certain similarity type t d to be defined in §3;

— Pd and Fd are as above:

— Th ç TFd is an a rb itra ry theory on the syntax TFd . Thus M d (T h) ç TMd ;

— 1= in the language TID^ denotes an extension of the validity relation of the
language TL d '■ The definition of ” 9H 1= (p, <//)” can also be found in §3.

* R easonable re s tr ic tio n s” are u n d e rsto o d in th e sence o f D ef. 3 .1 . an d G ergely - Ú ry 78 D ef. 4 .4 .L .4 .5 , and

p. 9 7 -100 D efs 7 .5 ., 7 .8 , e tc . . F u rth e r 4 .4 , 4 .5 . e tc . o f G ergely - Ù ry 78 ex p la in how and why w e use restric tions o f

languages i.e. com pleteness is investigated w j . t . a reasonable subset E o f th e syn tax .

- 238 -

” 05 1= (р , ф) ” is pronaunced as: ’’the program p is partially correct w.r.t. ф in the
model 06 ” .

The letter ” T ” in TIID, TF, TM and t d serves to express that we are trying to treat
tim e explicitely in this language. Cf. p. 118. of Gergely — Úry 78.

T H E O R E M 2 .1 0 .

a.) The Descriptive Programming Language

T lD d = <[TFd и (Pd X Fd)], TMd , N >

is stable.

b.) Moreover, for every recursively enumerable subset T h of TFd , the language

TID™ = < [T F d U (Pd X Fd)j, M d (T h) , 1= >

is stable.

Proof

Thm. 2.1. and Thm. 3.2. imply both (a) and (b).

R e m a r k : By using the proof of Thms 2.2., 2.3, and 3.2. one can construct a direct proof
of the present Thm. 2.10.

Q E D T h m . 2 .1 0 .

T H E O R E M 2 .1 1 .
N . .

The Descriptive Programming Language IDA ‘ , as defined in Def. 9.6. of Gergely - Ury
78 p. 125. is stable, whenever A x ’ is recursively enumerable.

Proof

Thm. 2.11. can be proved by using p. 133. of Gergely — Ùry 78 or equivalently using

Thm. 3.4. here. The latter says that ID ̂ is strongly equivalent with the language ir\D §ax,

more precisely, with < P d X F , , M d (P a x '),N > . (P a x 1 is defined above Thm. 3.4.) Therefore
Thm. 2,4. (b) completes the proof. A detailed proof will be supplied later.

O E D T h m . 2 .1 1 .

Expressive Programming Languages in the sense of Gergely — S vy 78:

In Gergely - Úry 78 the language = < [F d и (Pd X Frf) и Pd], M d , £ >

- 239 -

is called standard E x p re ss iv e P ro g ra m m in g L anguage. Note that here for Р £Р(Г >
and q e ^ D the statement

D 1= p [q] holds iff

q is a tra c e of p in D . I.e. is essentially a 3-ary relation for Pd .

THEOREM 2.12.

(i) The standard Expressive Programming Language is n o t s ta b le , and for any Th ç Fd

satisfying the conditions of Thm. 4.1., the Expressive Programming Language

< [F d и (Pd X Fd) u Pd], M d (T h) , & >

is n o t s ta b le .

(ii) For every Turing-enumerable Th ç TF d the Expressive Programming Language

TIE™ = < [T F d и (Pd X Fd) и Pd] , M d (T h) , 1= >

is s ta b le .

Proof of (i) is in Andréka — Németi —Sain 79.

Proof of (ii) is in Andréka — Németi — Sain 79a, 79b, Sain 79.

QED Thm. 2.12.

2.4. Logic of Actions (Processlogic, Dynamic Logic etc.)

The above summarised results on Languages for Reasoning about Programs
D d , TIDrf, IErf, TIEd together with the concepts of § 3, Andréka-Németi-Sain 78, 79, 79a,
79b, Gergely — Óry 78, Sain 79 may help us to continue the program outlined in
Andréka - Gergely — Németi 74, Hayes 70, 71, McCarthy — Hayes 69, Gergely 73, 74,
Pask 76, Ecsedi — Tóth 78 to develop a really applicable L o g ic o f A c t io n s for A.I.
purposes and for the theory of Problem Solving Systems, cf. also ^tepánková - Havel 76.
A careful reading of Andréka — Gergely — Németi 74 and related works reveal that the
requirements postulated there were n o t satisfied until now (in the literature) but they
can be satisfied now on the base e.g. of Thm. 3.2. and related results and constructions.
Cf. also Pratt 78, 79 and Parikh 78.

- 240

3. Nonstandard model theory for program schemes

O n languages f o r r e a so n in g a b o u t p r o g r a m s

Here we try to develop a natural semantic framework for programs and statements about
programs. The need for such a framework was explained in the introduction of Gergely — Ury
78. (It was called Expressive Programming Language there.) In trying to understand the
’’Programming Situation” , its languages, their meanings etc., the first question is how an
interpretation or model o f a program or program scheme p should look like. The classical
approach (Manna 74, Ianov 60) says that an interpretation or model of a program scheme is
a relational structure D consisting of all the possible d a ta va lu es. The program p containes
variables, say, ”y ” . The more ambitious version of existing programming theory calls y

an ”id e n tif ie r " . Anyway, the classical approach says that y denotes elements of D just as
variables in classical first order logic do. Now we argue that the identifier y does n o t denote
elements of D but rather y denotes some ds of ’’locations” or ’’addresses” which may
c o n ta in different data values (i.e. elements of D) at different points z of time T . (For
detailed accounts of this idea of locations and their contents in programming see Andréka —
—Németi—Sain 78,79b.) Thus there is a set / of locations, a set T of time points, and a function
ext : /X T -*■ D which tells for every location s e i and time point z e T what the content
e x t (s , z) e D of location s is at time point z . Of course, this content is a data value i.e. it
is an element of D . Time has a structure too (’’later than” etc.) and data values have
structure too, thus we have structures T and D over the sets T and D of time points
and possible data values respectively. Therefore a model or interpretation for programs p

is a four-tuple Я5 = < T ,D ,I , e x t> where T and D are the time structure and data struc-
Г * * л . ~

ture resp., / is the set o f location and e x t : I X T -*■ D is the ’’content of . . . at time . . . ”
function.

Consider e.g. the statement ”y = у + 1 ” which frequently occurs in programs. If у

denotes elements of D then the interpretation of ”y = у + 1 ” is not very natural. However,
if у denotes a location s e i then ”y = у + 1” means that the content of the location

s changes during time T . Now, it is easy to imagine that when reasoning about really complex
control structures of new programming languages, this difference in expliciteness and naturalness
might have practical importance.

Of course when specifying the semantics of a programming language P we may have
ideas about how an interpretation flfc of P may look like and how it may not look.
These ideas may be expressed in the form of axioms about fïS . E.g. we may postulate that
T of OS has to satisfy the Peano Axioms of arithmetic.

These axioms are easy to express since a closer investigation of ЯИ as defined above,
reveals that it is a model of classical 3-sorted logic (the sorts being T, D, and I). Thus the
axioms can be formed in calssical 3-sorted logic in a convenient manner to express all our
ideas or postulates about the semantics of the programming language P under consideration.
A detailed exposition of this framework for reasoning about programs can be found in this

- 241

paragraph. Cf. also Gergely — l5ry 78 Part 111.

The semantics of programming TID given in §3 here is a result of a careful analysis
of the Programming Situation in which efforts were made to make the mathematical model
TID of the Programming Situation to be as ’’faithful” and ’’explicite” or ’’natural” as possible.
We have the impression that in formation of the classical semantics IDW of programming
(Manna 74, Ianov 60 etc.) this point of explicitness or faithfulness was neglected. The results
of § 2 and § 3 seem to reveal certain practical consequences of this difference in
explicitness between ID“ and TID. It turned out in §2 that certain mathematical
language concepts including ID“ are a n o m a lo u s . It does not mean, however, that the
original language would be anomalous at all. Only the mathematical model of the original
language is such and a careful study of the situation might lead to a new healthier mathema
tical model. (I.e. real understanding of the situation in question might help to avoid the
anomalies.) In the preceding §2 we tried to provide some tools for such ’’careful investiga
tions”. (Of course , the real methodology for such investigations is nonexistent yet, the
present § 2 is only a trial in this direction.)

D E F IN IT IO N S

Now to every classical (one-sorted) similarity type d (see Def. 1.4.) we define an
associated 3 - s o r te d s im i la r i ty t y p e t d . About many-sorted logic and its model theory see
Monk 76 p. 483 and Barwise 77 p. 42.

As before, d is an arbitrary similarity type. Let t denote the similarity type of
P ea n o A r i t h m e t i c and let t be disjoint from d . The type t d is defined as follows:
There are 3 s o r t s o f t d : t , d , i called ’’time”, ’’data”, and ’’intensions” respectively.

The o p e r a t io n s y m b o l s o f t d are the following:

the operation symbols of d , -*
the operation symbols of t , and
an additional operation symbol ”ext” .

The s o r t s (o r a r i t ie s) o f th e o p e r a t io n s y m b o l s o f td : ThiToperation symbols of t go from sort
t to sort t. The operation symbols of d go from sort d to sort d . The operation symbol ”ex t”
goes from sort (i , t) to sort d . I.e., ”ext” has two arguments, the first is of sort T, the second is
of sort T and the result or value of ”ext” is of sort d.

Now the definition of the 3-sorted type t d is completed.

TIL = < T F d , TMd , \ = >

- 242 -

denotes the 3-sorted language o f t y p e td , see* Monk 76. p. 483.
In more detail:

(i) TMd is the class of all m o d e l s o f t y p e td , see Monk 76. Def. 29. 27. I.e. a model
at eT M d has

1. th ree universes throughout denoted by T ,D and I of sorts T, 3, and i respecti
vely,

2. operations ” T n -*■ 7” ’ originating from the type t , operations ”D n -*• D ”

originating from d , and an operation ext: I X T -*• D .

Roughly speaking, we could say that at consist of structures T e M t , D e M d , and an
additional operation ext : /X T -* Ű. Therefore we** shall use the sloppy notation:

at = < T , D , I, e x t > for elements of 771/,.
r S u

(ii) TFd is the set of first order (3-sorted) formulas of type t d . Roughly speaking, we
can say that F(and Fd are contained in TFd , and there are additional terms of the
form ”ех/(у,т)” where r is a term of type t and у is a variab le o f s o r t i. Further,
”e x t (y , T) ” is defined to be a term of sort d .

(iii) 1= ç (T M d X TFd) is the usual, see Monk 76. p. 484.

Now we the m e a n in g o f p r o g r a m s c h e m e s peP d in the 3-sorted models i \ l e T M d . Let
p eP d be a fixed program scheme. Let y 1, . . . , у be all the variables accurring in p .

Let at eT M d be fixed. Recall that I is the universe of sort i of at .

A trace o f p in at is a sequence < sQ, sm > e (m + l) I of elements of /
satifying (*) below. (I.e. a trace of p in at is a sequence of /-sorted elements of at).
To formulate (*), observe that if s e i then ”e x t (s , —)” is a function < e x t (s , z) : z e T >
♦

from T into D . We shall use y Q as ” th e c o n tr o l l v a r ia b le ” of p . I.e. e x t { s Q?) is
considered to be the ’’value of the controll or execution” at time point z. Thus ”ex/(s0 ,z)”
is supposed to be a ”la b e l ’’ in the program scheme p .

By a little abuse of notations we could writeiTH j — L. ,, TF. — F , ,
— a ta d td and 4

™ d = Mtd•
* * T his abuse o f n o ta t io n is taken from B arw ise 7 7 . p . 4 2 .

- 243 -

* The sequence < e x t (s Q, — c x t (s m , —)> of functions should be a h is to r y o f an

e x e c u t io n of p in D along the ’’time axis” T.

The only difference from the classical definition (see the definition of an co-trace in Example
2.3., in Manna 74, Andréka — Németi — Sain 78, Def. 2 in Gergely - Szőts 78, Gergely —
— Úry 78) of a trace of p in D is that now the ’’time axis” of execution is not necessarily
<co, s , 4 , • , 0, 1> but, instead, it is T.

Condition (*) above can be made precise by replacing со with T in the classical
definition, see Andréka — Németi 78, Andréka — Németi — Sain 78, Gergely — Úry 78.

The trace <sQ) . . . , sm > of p in UH t e r m in a te s if e x t (s Qé) is the label of the
HALT statement, for some z e T . If the trace < s n terminates at time z e T

then its o u t p u t is < e x t (s { , e x t (s m)>.
Now we define for \peFd :

9W 1= (р ,ф) to hold iff for every te rm in a t in g trace of p in the output satisfies ф

in D . Cf. Def. 8 of Gergely - Szőts 78, Andréka — Németi 78, Andréka — Németi — Sain 78.
Л /

For an arbitrary theory Th C T F d the consequence relation Th 1= (р . ф) is defined
in the usual way.

T H E O R E M 3 .1 .

Let Th C TF d be an arbitrary recursively enumerable set of formulas. Then the set

{ (p ,\p)eP d X F d : Th 1= (р , ф) }

is recursively enumerable.

Proof

This Thm. 3.1. is a consequence of Thm. 3.2.

Q E D T h m . 3 .1 .

The following theorem solves Problems 1, 2, and 3 of Andréka - Németi — Sain 78
and generalises Thm. 11.4. of Gergely — Úry 78 (cf. the restriction P A ç A x ' at the
beginning of §9 there and Thm. 1. of Andréka — Németi — Sain 78. We define the
D e s c r ip t i v e P ro g ra m m in g L an gu age TID(/ as follows:

n \D d = < [T F d U (Pd X Fd)] , TMd , 1= >.

T H E O R E M 3 .2 .

Denote TSd — (Pd X Fd) и TF d . The Descriptive Programming Language

- 244 -

T ID, = < T S d , TMd , 1= > is s t r o n g ly c o m p l e t e , i.e. for every recursively enumerable
set Th C Sd , the set { p e S d : Th \= p } of its consequences is recursively enumerable.
Specially: \ (p,\l/)ePd X Fd : Th \= (p, ф) | is recursively enumerable. Further, the language
TID, is c o m p a c t . Moreover, in the proof of the present theorem we gave a s t r o n g ly

c o m p l e t e calculus (inference system) for the Descriptive Programming Language TlD,.

Proof

The idea of the proof is: to reduce or translate the language < T S d ,T M d , l=> to the
c o m p l e t e language < T F d ,TM d 1= > by a computable function © : T S d -+ 7 F , such that:

for every peS, and every SR e T M d :

I= p iff SR 1= 0(p) and 0(p) = p if p eT F d

The proof goes similarity to Dahn 73, 78, and Andréka — Gergely — Németi 77 p. 13
§ 2 .1 . , see def. of ” L l is recursively reducible to L 2 ” there. A detailed proof can be found

in Andréka - Németi — Sain 79b and in Sain 79.

Q E D T h m . 3 .2 .

The execute programs in arbitrary elements of T M d might look counter-intuitive. However,
we may require the theory Th C T F d to contain a certain fixed set A x ç T F d of axioms
expressing all the intuitive requirements about t im e and about p r o c e s se s ’’happening in time” .
After having done so, there is nothing wrong with executing programs in models эд eT M d

of Th since SR N= A x and A x does contain all our intuitive ideas about time, processes
etc. (Basically the same was done by Henkin when he defined the new semantics for higher
order logic and, at least in Computer Science, everybody is satisfied with his system, see e.g.
Robinson 69, 69a, Pietrzykowski 73.)

To illustrate this here, we define a set A x c T F , of axioms of the above kind.

D E F IN IT IO N OF T H E T H E O R Y A x:

Roughly speaking, A x is nothing but the Peano Axioms for the sort t . However, in our
present syntax TFd , variables of sort t may occure in formulas which contain symbols of
sort d and i as well. Well, the in d u c t io n a x io m s must be stated for these formulas ”of
mixed sort”, too. Namely:
Let <p(z)eTFd such that z is a variable of sort t . Then we define p* to be the induction
formula:

([<p(0) A VzOp(z) - «p(z + 1))] Vzp(z)).

Now the induction axioms are:

IA = I p * : <p(z)eTF , and z is of sort t } .

- 245 -

Clearly IA C TFd , since if y (z) e T F d and z is a variable of sort t then </>(0), <p(z +
because 0 and z + 1 are terms of sort t.

Let PA denote the Peano axioms for the sort 7 (recall that t is the similarity type
of arithmetic).
Now we define:

A x = PA V I A .

Denote by A x e the set A x together with the axiom of extensionality. I.e.

A x e = i x u { V y 1 y 2 [V x (e x t { y x jc) = e x t (y 2 jc)) -* y x = y 2] } .

THEOREM 3.3. (Uniquness of traces)

Let p e P d and 1= A x e (да eT M d) be arbitrary. Then for a fixed input q e ы D ,

p has a t m o s t o n e trace in AW with input q .

Proof: can be found in Andréka — Németi — Sain 79a, 79b and in Sain 79.

QED Thm. 3.3.

- 246 -

R e f e r e n c e s

Andréka, H. 78: A characterisation of Floyd provable programs. To appear in Proc. Coll.
Logic in Programming, Salgótarján, 1978, Collog. Math. Soc. J. Bolyai - North - Holland.

Andréka, H. — Dahn, B. — Németi, I. 76: On a proof of Shelah. Bull, de l’Academie Polonaise
des Sciences, Vol. XXIV, N o.l, 1976. pp.1-7.

Andréka, H. — Gergely, T. — Németi, I. 72: Problem oriented hierarchy of Languages and
hierarchy oriented Logic. KFKI-72-46, Budapest, 1972 (in Hungarian).

Andréka, H. — Gergely, T. — Németi, I. 73: On some problems of n-th order languages.
(in Hungarian). Matematikai Lapok, Vol. XXIV, No. 1-2, 1973. pp. 63-94.

Andréka, H. Gergely, T. — Németi, I. 73a: Purely algebraic construction of first order logics.
Publ. Central Res. Inst.for Physics H.A.S., KFKI-73-71, 1973.

Andréka, H. — Gergely, T. — Németi, I. 74: On the theory of problem solving systems, (in
Hungarian: Magasszintű mesterséges intelligencia tudásreprezentációjának eszközei).
Preprint, 1974.

Andréka, H. - Gergely, T. — Németi, I. 74a: On Universal Algebraic Construction of Logics.
Publ. Central Res. Inst, for Physics H.A.S., KFKI-74-41, 1974.

Andréka, H. — Gergely, T. — Németi, I. 75: Easily Comprehensible Mathematical Logic and
its Model Theory. Publ. Central Res. Inst, for Physics H.A.S., KFKI-75-24, 1975.

Andréka, H. — Gergely, T. — Németi, I. 77: On Universal Algebraic Construction of Logics.
Studia Logica, XXXVI, 1-2. Wroclaw, 1977, pp. 9-47.

Andréka, H. — Gergely, T. — Németi, L 78: An approach to Abstract Model Theory. J. Symb.
Logic, 1978.

Andréka, H. - Németi, I. 75: A simple, purely algebraic proof of the completeness of some
first order logics. Algebra Universalis Vol. 5, 1975, p. 8-15.

Andréka, H. - Németi, I. 76: Generalisation of variety and quasivariety concept to partial
algebras through category theory. Preprint No. 5/1976, Math. Inst. H.A.S. 1976. To
appear in Dissertationes Mathematicae (Rozprawy).

Andréka, H. - Németi, I. 77: On Universal Algebraic Logic. Preprint, Math. Inst. H.A.S., 1977.

Andréka, H. — Németi, I. 78: Completeness of Floyd Logic. Bull. Sec. Logic Vol. 7 No.3,
pp. 115-127. Polish Acad. Sei., 1978.

Andréka, H. - Németi, I. 79: On systems of varieties definable by schemes of equations.
Preprint, Math. Inst. H.A.S., 30/1978. To appear in Algebra Universalis.

- 247 -

Andréka, H. — Németi, I- 79a: Solutions of Problems 2.3 and 2.11. of Henkin—Monk-Tarski 71.
Math. Inst. H.A.S. Preprint, 1979.

Andréka, H. - Németi, I. 79b: UfUpDca = UfUpLfa in Cylindric Algebra Theory. Math. Inst.
H.A.S. Preprint, 1979.

Andréka, H. — Németi, I. — Sain, 1. 78: Classical manysorted model theory to turn negative
results on program schemes to positive. Preprint, 1978.

Andréka, H. — Németi, I. — Sain, I. 79: Completeness Problems in Verification of
Programs and Program Schemes. Proc. Coll. Math. Foundations of Comp. Sei. 1979.
Olomouc, Springer-Verlag, Lecture Notes in Comp. Sei. 74, pp. 208-218.

Andréka,H.. — Németi, I. — Sain, I. 79a: Henkin-type semantics for programs and program
schemes to turn negative results to positive. In L. Budach (ed): Fundamentals of Computation
Theory FCT’79, Akademie-Verlag Berlin 1979, pp. 18-24.

Andréka, H. — Németi, I. — Sain, I. 79b: A Complete Logic for Reasoning about Programs via
Nonstandard Model Theory. Math. Inst. H.A.S. Preprint, 1979.

Banachowski, L. — Kreczmar, A. — Mirkowska, G. — Rasiowa, H. — Salwicki, A. 77:
An introduction to algorithmic logic. Banach Center Publications Vol. 2, 1977.

Barwise, J. 77: Handbook of Mathematical Logic. North-Holland, 1977.

Chang, C.C. — Keisler, H.J. 73: Model Theory. North-Holland, 1973.

Courcelle, B. — Guessarian, I. 77: On some classes of interpretations. IRIA, Repport de Racherce
No. 253, 1977.

Dahn, B.I. 73: Generalized Kripke-Models. Bui. de l’Aadémie Polonaise des Sciences, Série
des Sciences math., astr. et phys., Vol. XXI, No. 12, 1973, pp 1073-1077.

Dahn, B.I. 78: Contributions to the Model Theory for Nonclassical Logics.
Zeitschrift für Math. Logic und Grundlagen d. Math. 20 (1074), pp. 473-479.

Dahn, B.I. 79: Pradikatenkalküle der ersten Stufe für Kripkemodelle und Metrische Strukturen.
Dr. sc. nat. Dissertation, Berlin, 1979.

Davis, M. 73: Hilbert’s tenth problem is unsolvable. Amer. Math. Monthly 80, 1973,
pp. 233-269.

Devlin, K.J. 73: Ascepts of Constructibility. Lecture Notes in Math. 354, Springer-Verlag, 1973.

Ecsedi — Tóth, P. 78: Intensional Logic of Actions. CL and CL, XII, 1978. pp. 31-44.

- 248 -

Frege, G. 92: Uber Sinn und Bedeutung. Zeitschrift für Philosophie und philosophische
Kritik 100: 25-50, 1892.

Gallin, D. 75: Intensional and higher order modal logic, with applications to Montague semantics.
North-Holland, Elsevier, 1975.

Gergely, T. 73: Mathematical Foundations of General System Theory. Proc. Conf. on System
Theory 1973. Sopron, J. Neumann Comp. Sei. Society. Also: A mesterséges intelligencia

kutatás logikai eszközeiről. Rendszerelméleti Konferencia’7 3 , Problémamegoldási szekció,
Sopron, 1973. 34-42.

Gergely, T. 74: Lectures held at General Systems Research LTD, London, 1974.

Gergely, T. 77: Role of a General Language Concept in the Construction of an Abstract
Cognition Theory. In J. Rose and C. Bilcin (Eds.) Modern Trends in Cybernetics and
Systems 2 (Springer-Verlag, N.Y. 1977) pp. 131-152.

Gergely, T. 78: May the theory of programming be first order? In the collection of abstracts
of the Conference ’’Logic in Programming” Salgótarján, 1978.

Gergely, T 79: On the unity between Cybernetics and General System Theory. Kibernetes,
1979, Vol. 8, pp. 45-49.

Gergely, T. - Németi, I. 71: Az általános rendszerelmélet formalizálásának és alkalmazásának
logikai alapjai. Rendszer Kutatás, Közgazdasági és Jogi Könyvkiadó, 1973.

Gergely, T. - Szabolcsi, A. 79: On the backfround of model theoretic semantics. To appear
in CL and CL, XIII, 1979.

Gergely, T. - Szőts, M. 78: On the incompleteness of proving partial correctness. Acta Cyber-
netica, Tom. 4, Fasc. 1, Szeged, 1978.

Gergely, T. - Ury, L. 78: Mathematical Programming Theories. SZÁMKI Preprint.

Gergely, T. - Vershinin, K.P. 78: Model theoretical investigations of theorem proving methods.
Notre Dame J. of Forjnal Logic, Vol. XIX, No. 4, 1978, pp. 523-542.

Goguen, J.A. — Thatcher, J.W. — Wagner, E.G. — Wright, J.B. 77: Initial Algebra Semantics
and continuous Algebras. J. Association Comp. Mach., Vol. 24, N o.l, 1977, pp. 68-95.

Hayes, P.J. 70: Robotologic. Machine Intelligence 5, Edinburgh Univ. Press, 1970, pp. 534-554.

Hayes, P.J. 71: A logic of actions. Machine Intelligence 6, Edinburgh Univ. Press, 1971,
pp. 495-520.

Henkin, L. 50: Completeness in the theory of types. J. of Symbolic Logic, Vol. 15 (1950),
pp. 81-91.

Hinman, P.G. 78: Recursion—Theoretic Hierarchies. Springer-Verlag, 1973.

- 249 -

Ianov, Y.I. 60: The Logical Schemes of Algorithms. In Problems of Cybernetics, Vol. 1,
pp. 82-140, Pergamon Press, N.Y. (English translation).

Kutschera, F. von 76: Einführung in die intensionale Semantik. De Gruyter Studienbuch, 1976.

Lindström, P. 74: On characterizing elemntary logic. Logical Theory and Semantics Analysis
pp. 129-146, D. Reidel Publ. Co., Dortrecht-Holland, 1974.

Makowsky,J.A.73: On the axiomatic theory of model theoretic languages. Loge Semester’73,
Warsaw.

Makowsky, J.A.75: Model Theory and Applications. Centro Internazionale Matematico
Estivo, Edizioni Cremonese, Roma, 1975, pp. 122-150.

Manna, Z. 74: Mathematical Theory of Computation. McGraw Hill, 1974.

McCarthy, J. — Hayes, P.J. 69: Some Philosophical Problems from the Standpoint of Articial
Intelligence. Machine Intelligence 4, Edinburgh Univ. Press, 1969, pp. 463-502.

Monk, J.D. 76: Mathematical Logic. Springer-Verlag, 1976,

Montague, R. 73: The proper treatment of quantification in ordinary English. Approaches to
natural languages, Dortrecht, 1973, pp. 221-242.

Németi, I. 76: From hereditary classes to varieties in abstract model theory and partial algebra.
Beiträge zur Algebra und Geometrie 7 (1978), pp. 69-78.

Németi, I. — Sain, I. 77: Cone injectivity and some Birkhoff-type theorems in categories. To
appear in Proc. Coll. Univ. Alg. Esztergom 1977, Colloq. Math. Soc. J. Bolyai - North-
- Holland

Németi, I. — Sain, 1.78: Connections between Algebraic Logic and Initial Algebra Semantics of
CF languages. To appear in Proc. Coll. Logic in Programming, Salgótaiján, 1978,
Collog. Math. Soc. J. Bolyai — North-Holland.

Parikh, R. 78: A completeness result for a propositional dynamic logic. M.I.T. /LCS/TM-106,
1978.

Pask, G. 76: Conversation Theory: Applications in Education and Epistemology. Elsevier, N.Y.,
1976.

Pratt, V.R. 78: A Practical Decision Method for Propositional Dynamic Logic. Proc. 10th
ACM Symp. on Theory of Computing, 1978, pp. 326-337.

Pratt, V.R. 79: Dynamic Algebras. MIT Preprint, 1979. To appear in the volume of
invited papers of 6th Inti. Conf. Logic.

- 250 -

Pietrzykowski, T. 73: A complete mechanisation of second-order type theory. JACM 1973,
Vol. 20, No.3.

Robinson, J.A. 69: Mechanizing Higher-Order Logic. Machine Intelligence 4, 1969.

Robinson, J.A. 69a: A note on mechanizing higher order logic. Machnie Intelligence 5, 1969.

Sacks, G.E. 72: Saturated Model Theory. Math. Lecture Notes Series, W.A. Benjamin, Inc.,
Massachusetts, 1972.

Sain, I. 78: Model Theoretic and Universal Algebraic methods in Sementics. (in Hungarian).
Preprint, 1978.

Sain, I. 79: Abstract Model Theory and Completeness of Languages. Part II of SZKI
Preprint, March 1979. '

Sántháné, T.E. — Szőts, M. 79: Report on Conference on Logic in Programming, Salgótarján,
1978. Preprint, 1979. Appeared in Hungarian translation: Számitástechnika, Vol. X,
No. 2-3, 1979.

Szabolcsi, A. 78: A természetes nyelv szemantikájának modellelméleti kezelése. Dissertation,
1978. Budapest.

V

Stepánková, O. — Havel, I.M. 76: A logical theory of robot problem solving. Artificial Intelli
gence 7, 1976, pp. 129-161.

Takeuti, G. — Zaring, W.M. 71: Introduction to Axiomatic Set Theory. Springer—Verlag, 1971.

Computational Linguistics and Computer Languages Vol. XIII. 1979.

APPLICATIONS OF UNIVERSAL ALGEBRA, MODEL THEORY, AND
CATEGORIES IN COMPUTER SCIENCE

(Survey and Bibliography)

A.Hajnal and I. Németi
Mathematical Institute Hungarian Academy of Sciences

Budapest, Hungary

In the last eight years universal algebra and model theory together with its categorical
versions received an ever increasing application in the field of computer science, more precisely
in the study of semantics of programming languages and in the methodology of proving
properties of programs. Real progress in these applications of universal algebra was started by
Burstall — Landin [69], Thatcher [67], [70], Montague [70a], Thatcher — Wright [68]. The
concepts and tools of universal algebra turned out to be flexible enough to be adapted to the
new and rather complex situations arising from (at least a kind of) computer programming.
In 1972 Robin Milner proved the correctness of a compiler by using results of universal
algebra, cf. Milner — Weyrauch [72а]. By today applications of universal algebra and its cate
gorical version went so far that e.g. in the recent volume:

— ’’Fundamentals of Computer Science” (/LNCS 56/, Springer Verlag, 1977) section В
is nearly entirely based on universal algebra and categories; in 1975 Springer Verlag published
a volume with title ’’Category Theory Applied to Computation and Control” /LNCS 25/; at
the recent conference on ’’semantics of programming” in Sophia Antipolis (France) universal
algebra and lattice theory were generally accepted tools, etc.

Some of the main directions of research are surveyed briefly below. A deeper survey is
Goguen [79].

1. The theory of tree automata is almost entirely based on universal algebra, cf. Thatcher
[67], [70], [73], Thatcher - Wright [68], Alagic [75], Baker [73], Brainerd [67], [68], [69],
Doner [70], Elienberg - Wright [67], Engelfriet [75], Ferenci [76], Gécseg [77], Gécseg — Hor
váth [76], Gécseg — Tóth [77], Karpinski [73], Levi — Joshi [73], Magidor — Moran [69],
Mezei — Wright [67], Shepard [69], Steinby [77], Yeh [71].

2. Universal algebric theory of the denotational semantics of context free languages was
started by Goguen et al [75a] (p. 75), Montague [70a], Andréka — Gergely — Németi [74],
[77] independently, and was generalised to context sensitive languages by Kaphengst — Reichel
[77]. Syntax is treated as a free algebra (if there are several syntactical categories then hetero
geneous) and interpretations are special homomorphisms from this free algebra into a pres
pecified class of algebras. The algebraic properties of this class of algebras determine the
semantic properties of the language, cf. Goguen [74b], Goguen et al [74b], [75a], Kaphengst —
Reichel [71], [77], Montague [70], Andréka - Gergely — Németi [77], Wagner et al [76],

- 252 -

Letitschewski [68], Glushkov — Zeitlin — Letitschewski [75]. Németi — Sain [78] is a
detailed introduction. For a related work cf. Bloom [76], Rattray — Rus [77].

3. The theory of quasivarieties and universal Horn classes serve as foundations for new
non-procedural programming languages, cf. Andréka — Németi [76a], [76b], Battoni — Melloni
[73], Colmerauer [75], van Emden [74], [75a], [75b], [77],van Emden — Kowalski [74],
Kowalski [73], [74], [76], Roussel [75], E. Tóth [76], Warren [77], Bruynooghe [76].
Kaphengst — Reichel [71] (equoids), Reichel [78] treat quasivarieties applied to computer
science.

4. Universal algebra together with model theory are used in the ’’most denotational”
semantics and also in investigating such widely used program proving methods as Floyd’s one,
cf. Manna [69], [74], Manna - McCarthy [70], Montague [70b], Rasiowa [73], [77], Scala
[71], Burstall [69], van Emden - Kowalski [74], Floyd [67], Hayes [71], [77], Janseen -van
Emde Boas [77], Andréka — Németi [77], [78], Gergely — Szőts [78], Abrahamson [78],
Bowen [78], DeMillo [75], Harel [77], [78], Pratt [77], Harel — Pratt [77], Harel — Meyer —
Pratt [77], Fisher — Ladner [77], Andréka — Németi — Sain [78], [79], Gergely — Ury [78],
[78a], [79], [79a], Terminology: algebraic systems in the sense of Malcev, i.e. models in the
sense of Tarski, Chang — Keisler etc. are called interpretations in computer science, especially
in the theory of interpreted program schemes, cf. Brand [76] p. 205, Manna [74] p. 244,
Courcelle — Guessarian [77] p. 2, Scala [71], Abramson [78], etc.

5. Categorical versions of universal algebra are used in the fixed point approaches to
semantics (originating from Dana Scott), cf. Lehmann [76], Lehmann — Smyth [77], Adamek —
Koubek [77a], Advanced seminar on semantics [77], Arbib [76], [77], Day [75], Goguen et
al [76b], Meseguer [77], Obtutowicz [77], Smyth [76a], [76b], Tiuryn [77a], [77b], [78], f79],
[79a], Wagner et al [76], Wand [75a], Plotkin — Smyth [77]. About model theoretic treatment

✓
of fixed point semantics see Section 3 o f Gergely - Ury [78].

6. Categorical versions of universal algebra (triplets, algebraic theories etc.) are the foun
dations of the so-called ’’unified automation theory” which deals with systems, fuzzy automata,
deterministic automata etc. in a unified frame (and solves important engineering problems
e.g. realisation problems). Chap. IV of Manes [76] is a good (but not too fresh) survey.
Other references are Adamek [74], [75], [76], [76b], Adamek - Koubek [77b], [78],
Adamek — Trnková [77a], [77b], Alagic [75], Anderson et al [76], Arbib — Manes [72], [74a]
[75a] — [75g], [77], Bainbridge [72], Beckman [70], Budach [75], Budach — Hoehnke [75],

Ehrig [72] - [74], Ehrig et al [75] - [77], Elgot [71], [75] [77], [78], Elgot et al [76], Ginali
[76] , Give’on [70], Goguen [71] — [77], Goguen et al [73] — [77], Hoehnke [77], Koubek —
Reiterman [75], [78], Manes [76], Rine [71], [74], Trnková [74] - [77], Trnková - Adamek
[77] , [78], Trnková et al [75], [79], Wand [72], [75b], Wiweger [73], Buslenko — Simonov
[76], [77], Skornjakov [74], Vainstein - Osetinskij [77].

- 253 -

7. The universal algebraic theory of abstract data types originates from the recognition that:
a specification of abstract data types is nothing but a definition of a class of (heterogeneous)
algebras. Further an implementation of this specification is correct if it is a free algebra of this
class. The problem of the existence of free algebras belongs to universal algebra (and is not
completely solved). Methodology of proving correctness is obtained from the universal algebraic
methodology of proving freeness of algebras in a class. Since quasivarieties always have free
algebras, they are a central tool in data type theory cf. Thatcer - Wagner — Wright [76],
[78]. Why and how data types are universal algebras and why existing universal algebra theory
is relevant to their study is explained in more detail in Goguen — Thatcher — Wagner [76],
also cf. Zilles [75], Guttag [75], [76], Goguen et al [75d], Andréka — Németi [75].
Kaphengst - Reichel developed a refined notion of free algebra while working on the funda
mentals of a universal algebra of partial algebras. Many authors consider the latter to be more
adequate to data type theory and computer science in general, cf. e.g. Kaphengst —
Reichel [71], [77], Reichel [78b], Hoehnke [77], [78], Andréka — Németi [76с]. The
literature of universal algebraic theory of abstract data types is too broad to be
covered here; but some further randomly chosen examples are: Goguen [75a], [77],
[77a], [79], Zilles [74], Plotkin — Smyth [77], Burstall - Goguen [77], [79], Rosenberg
[76], Guttag — Horowitz — Musser [76]. A deeper survey is Goguen [79].

8. The free magma approach to semantics of programming languages originating
from France is also based on universal algebra.

Here F is a similarity type in the universal algebraic sense and a class of
"F — magma” - s is a class of universal algebras of type F cf. Courcelle —
Guessarian [77] p. 8-9, Guessarian [76]p. 192. Def. 2. [78], Berry — Courcelle [76]
p. 170, Nivát [75], Berry — Lévy [77] p. 15. Trees play a central role where
treesare ’’terms” or ’’polynomial symbols” of universal algebra, i.e. the elements of

the free algebra of a similarity class are called trees cf. Berry [77] p. 15. Infinite
trees are kinds of infinitely long polynomial symbols, cf. e.g. Tiuryn [77a]. The free
magma approach is strongly related to the works listed in 2. and 7. cf. e.g.
Goguen et al [75a] and Tiuryn [77b], [79a]r A whole branch of semantics associates
infinite trees i.e. infinite terms to programs (and associates finite trees i.e. terms to
program specifications cf. Burstall — Goguen [77], [78]), Nivát [72], [75], [78],
Tiuryn [77], [79], Goguen et al [75a], Berry — Courcelle [76] p. 171 etc.
The free complete F -magma is the free algebra (in the universal algebraic sense) of
a class of complete partially ordered universal algebras (called sometimes interpretati
ons), cf. e.g. Arnold [77], Bloom [76a], Arnold — Nivát [77], Berra - Courcelle
[76], Berry — Lévy [77], Courcelle — Guessarian [77], Courcelle — Nivát [76],
Nivát [72], [75], [78].

- 254 -

9. We note that beyond the scope of this survey there are many other interesting
applications of universal algebra and categories, e.g. an application in General Systems
Theory is outlined in Goguen — Varela [78].

The following bibliography is not intended to be complete. In order to keep size
manageable we only take samples from each main ’’direction” known to us. Throughout,
LNCS abbreviates volume of the series ’’Lecture Notes in Computer Science” published
by Springer Verlag (Berlin — Heidelberg — New York).

- 255 -

Abramson, F. G. [78]: Interpolation Theorems for Program Schemata. In fo rm a tio n a n d

C o n tr o l 3 6 , 1978, 217-233.

Abstract Software Specifications (Advanced course on . . .) Jan. 1979. Dept. Comp.
Sei. Techn. Univ. Denmark, Copenhagen.

Adámek, J. [74]: Free algebras and automata realizations in the language of categories.
C o m m u n . M ath . U niv. C aro lin ae 15 , 1974, 589-602.

Adámek, J. [75]: Automata and categories: Finiteness contra minimality, in: M a th e m a tic a l

F u n d a tio n s o f C o m p u te r S c ien ce , LNCS 32, 1975, 160-166.

Adámek, J. [76a]: Cogeneration of algebras in regular categories. B u ll. A u s t. M a th . S o c .

15 , 1976, 355-370.

Adámek, J. [76b]: Cogeneration and minimal realization. C o m m u n . M a th . Univ. C a ro lin a e

17, 3, 1976, 609-614.

Adámek, J. [77]: Realization theory for automata in categories. J. P u re A p p l. A lg e b r a 9,

1977, 281-296.

Adámek, J. — Koubek, V. [77a]: Remarks on Fixed Points of Functors, in: F u n d a m e n ta ls

o f C o m p u te r S c ie n c e , ed. by G. Goos, J. Hartmanis, LNCS 56, Springer Veri.,
1977, 199-206.

Adámek, J. — Koubek, V. [77b]: Functorial Algebras and Automata. K y b e r n e t ik a 13, 4, 1977,
245-260.

Adámek, J. — Koubek, V. [app]: Algebras and Automata over a Functor. To appear in
K y b e r n e tik a .

Adámek, J. - Trnková, V. [77a]: On languages accepted by machines in the category of sets,
in: M a th e m a tic a l F o u n d a tio n s o f C o m p u te r S c ie n c e , LNCS 53, 1977, 523-531.

Adámek, J. — Trnková, V. [77b]: Recognizable and Regular Languages in a Category, in:
F u n d a m e n ta ls o n C o m p u te r S c ien ce , LNCS 56, 1977, 206-212.

Adámek, J. - Trinková, V. [78]: Varietors and machines. A survey paper. C O IN S Tech. R e p .

U n iv o f M a ssa ch u se tts . (Submitted to A lg e b r a U n iversa lis .)

Advanced Seminar on Semantics. Sophia-Antipolis, France, Sept. 1977. (Notes xeroxed on
the spot).

Aiello, L. — Attardi, G. — Prini, G. [77]: Towards a more declarative programming style. In
W ork in g c o n f o n F o rm a l d e s c r ip tio n o f P ro g ra m m in g C o n c e p ts , IFIP, 1977,
5.1- 5.16.

- 256 -

Alagid, S [73]: Algebraic aspects of ALGOL 68. C O IN S T ec h n ic a l R e p o r t 73B -5 , Computer
and Information Science, Univ. of Mass. Nov. 1973.

Alagic, S. [75]: Categorical theory of tree processing, in: C a te g o ry th e o r y a p p lie d to C o m p u ta

t io n a n d C o n tro l LNCS 25, 1975, 65-73.

Alagic, S. - Arbib, M.A. [78]: The design of well-structured and correct programs, Springer
Veri. 1978.

Algebraische Methoden u. ihre Anwendungen in der Automaten Theorie. Proc. Semin., April,
1976. in Weissig. (Available from N. J. Lehman, Techn. Univ. Dresden.)

Anderson, B. D. O. — Arbib, M. A. — Manes, E. G. [76]: Foundations of System Theory:
Finitary and Infinitary Conditions, ed. Beckmann — Künzi, Lecture Notes
in Economics and Mathematical Sciences 115, Springer Verl. 1976.

Anderson, E. R. — Beiz, F. C. — Blum, E. [76]: SEMINOL 73. A c ta In fo r m a tic a 6, 109-131.

Andréka, H. — van Emden, M. H. — Németi, I. [79]: Greates fixed point semantics for the
programming language PROLOG, (manuscript.)

Andréka, H. — Gergely, T. — Németi, I. [74], [77]: On Universal Algebraic Construction of
Logics. S tu d ia L o g ic a X X X V I , 1-2, 1977, 9-47.

Andréka, H. — Németi, I. [75]: On applications of universal algebra in computer science. S zá

m o ló g é p K is k ö n y v tá r 7 5 , 1975, 145-153. (In Hungarian)

Andréka, H. — Németi, I. [76a]: The generalized completeness of Horn predicate-logic as a
programming language. D .A .I . R esea rch R e p o r t N o . 2 1 , Department of Artificial
Intelligence, Univ. of Edingburgh, March. 1976. Also in: A c ta C y b e rn e tic a 4 ,

1, 1978, 3-10.

Andréka, H. — Németi, I. [76b]: On the adequateness of predicate-logic programming. A IS B

European N e w s le tte r , 23, July 1976, 30-32.

Andréka, H. — Németi, I. [76c]: Generalisation of variety and quasivarietyconcept to partial
algebras through category theory. Preprint of M ath . In st. H u n g . A c a d . Sei. 5,
March 1976, 1-85.

Anréka, H. — Németi, I. [77]: On completeness of systems for program proving. M ath . In st.

H u n g . A c a d . Sei. 1977. 1-110 (In Hungarian)

Andréka, H. — Németi, I. [78]: A characterisation of Floyd provable programs. Preprint of
M a th . In s t. H ung. A c a d . S ei. Febr. 1978.

Anréka, H. — Németi, I. [78a]: Completeness of Floyd Logic. (Abstract). B u lle tin o f th e

S e c t io n o f log ic , Wroclaw, 1 , 3 , 115-121.

- 257 -

Andréka, H. - Németi, I. - Sain, I. [78]: To verify programs within or without logic? To
appear in: M F C S ’79, Olomuc.

Andréka, H .— Németi, I. — Sain, I. [79]: Classical many-sorted model theory to turn negative
results on program schemes to positive. Preprint, Budapest, 1979.

Apt, K. R. [78]: Equivalence of operational and denotational semantics for a fragment ot
PASCAL. In: F o rm a l D e s c r ip tio n o f P ro g ra m m in g C o n c e p ts , ed. E.J. Neuhold,
1978, 139-163.

C i

Apt, K. R. [78a]: A sound and complete Hoare-like system for a fragment of PASCAL. Preprint
of the M a th e m a tic a l C e n tre ,IW 96178, Amsterdam, 1978, 1-59.

Arbib, M. A. [76]: Categorical Notes on Scott’s theory of computation. P roc . o f a m e e t in g a t

D o r tm u n d U n iv e rs ity , Bericht Nr. 37, Dortmund, 1976. 5-8.

Arbib, M. A. [77]: Free Dynamics and Algebraic Semantics, in: F u n d a m e n ta ls o n C o m p u te r

S c ie n c , LNCS 56, 1977, 212-228.

Arbib, M. A. — Manes, E. G. [72]: Decomposable machines and simple recursion. C o m p u te r

a n d In fo rm a tio n S c ie n c e s T ech n ica l R e p o r t 72B -2, Univ. of Mass., 1972.

Arbib, M. A. — Manes, E. G. [74a]: Foundations of systems theory: Decomposable machines.
A u to m a tic a 10, 1974, 285-302.

Arbib, M. A. — Manes, E. G. [74b]: Machines in a category: An expository introduction.
S IA M R e v ie w 16 , 1974 , 163-192.

Arbib, M. A. - Manes, E. G. [75a]: Adjoint machines, state behaviour machines and duality.
J. P u re A p p l. A lg e b ra 6, 1975, 313-344.

Arbib, M. A. — Manes, E. G. [75b]: Arrows, Structures and Functors, Acad. Press, 1975.

Arbib, M. A. — Manes, E. G. [75c]: Fuzzy machines in a category. B u ll. A u s tr a l M ath . S o c . 1 3 ,

1975, 169-210.

Arbib, M. A. — Manes, E. G. [75d]: Basic concepts of category theory applicable to computation
and control, in: C a te g o r y T h e o ry A p p l ie d to C o m p u ta t io n a n d C o n tro l, LNCS
25, 1975, 1-35.

Arbib, M. A. — Manes, E. G. [75e]: A cetegorist’s view of automata and systems, ibid. 51-65.

Arbib, M. A. — Manes, E. G. [75f]: Fuzzy morphisms in automata theory, ibid. 80-87.

Arbib. M. A. — Manes, E. G. [75g]: Time-Varying Systems, ibid. 87-92.

Arbib, M. A. - Manes, E. G. [77]: Intertwined recursion, tree manipulations and linear
systems. C O IN S T ech n . R e p . 7 7 -1 3 , Univ. of Mass. 1977.

- 258 -

Arbib, M. A. - Manes, E. G. [78]: Partially additive categories and computer semantics. C O IN S

T e c h n ic a l R e p o r t 7 8 -1 2 , Unif. of Mass. Amherst, June 1978, 1-39.

Arnold, A. [77]: Systèmes d ’équations dans le magmoide. Ensembles rationnels et algébriques
d’arbres. These d’Etat, Lille, 1977.

Arnold, A. - Dauchet, M. [76]: Bi-transductions de forets, in: A u to m a ta , L an gu ages a n d

P ro g ra m m in g . T h ird I n te r n a tio n a l C o llo q u iu m a t th e Univ. o f E d in b u rg h , ed.
S. Michaelson, R. Milner. Edinburgh Univ. Press, 1976, 74-87.

г»
Arnold, A. - Dauchet, M. [77]: Theorie des magmoides. P u b l. d u L a b o r a to r ie d e C alcul,

Lille, 1977.

Arnold, A. - Nivát, M. [77]: Non-Deterministic Recursive Program Scemes, in: F u n d a m e n ta ls

o n C o m p u te r S c ien ce , LNCS 56, 1977, 12-22.

Arnold, A. - Nivát, M. [78]: Algebraic Sementics of Non-Deterministic Recursive Program
Schemes. L a b . I n fo r m a tiq u e T h e o re tiq u e e t P ro g ra m m a tio n R e p . N o 78-4.

1978.

Arnold, A. - Nivát, M. [78a]: The metric space of infinite trees: Algebraic and topological
properties. IR IA R es. R e p . N o 3 2 3 .

Bachus, I. [78]: Can programming be liberated from the von Neumann Style? A functional
style and its algebra of programs. C A C M 2 1 , 8, 1978,613-641.

Bainbridge, E. S. [72]: A Unified Minimal Realization Theory with Duality for Machines in a
Hyperdoctrine. Diss., Univ. of Michigan, 1972.

Baker, B. S. [73]: Tree transductions and families of tree languages. H a rd v a rd U n iv ., C e n te r

f o r R e s e a r c h in C o m p u tin g T e c h n o lo g y , T R 9 -7 3 , 1973.

de Bakker, J. W. [76]: Semantics and termination of nondeterministic recursive programs, in:
A u to m a ta L an gu ages a n d P rogram m in g . T h ird In te rn a tio n a l C o llo q u iu m a t

th e U n iv . o f E d in b u rg h , ed. S. Michaelson, R. Milner, Edinburgh Univ. Press, 1976,
435-478.

de Bakker, J. W. — Meertens, L. G. L. [72]: On the completeness of the inductive assertion
method. M a th e m a tic a l C e n tr e R e p o r t IW 1 2 , 1972, Amsterdam.

Bértől, W. [74]: Algebraic complexity of machines. B u ll. A c a d . Pol. Sei. 8. 1974, 851-856.

Battani, G. - Meloni, H. [73]: Interpréteur du langage de programmation PROLOG. Groupe
d’intelligence Artificielle, Marseille, Luminy, 1973.

Beckman, F. S. [70]: Categorical notions and duality in automata theory. IB M T h o m a s J. W a tso n

R e se a rc h C e n te r R e se a rc h R e p o r t R C 2 9 7 7 , Yorktown Heights, July 1970.

- 2 5 9 -

Beleih, H. [71]: Definable operations in general algebra and the theory of automata and flowchatrts.
R e p o r t o f IB M L a b o r a to r y , Vienna, 1971.

Benson, D. B. [70]: Syntax and Semantics: A categorical view. In fo r m a tio n a n d C o n tr o l 17 , 1970,
145-160.

Benson, D. B. [74]: An Abstract machine theory for formal language parsers. A c ta In fo rm a tic a 3 ,

1974, 187-202.

Benson, D. B. [75]: The Basic algebraic structures in categories of derivations. In fo r m a tio n a n d

C o n tr o l 2 8 , 1975, 1-29.

Berry, G. — Courcelle, B. [76]: Program equivalence and canonical forms in stable discrete
interpretations, in: A u to m a ta L a n g u a g e ? a n d P ro g ra m m in g . T h ird In te rn a tio n a l

C o llo q u iu m a t th e U niv. o f E d in b u rg h , ed. S. Michaelson, R. Milner, Edinburgh
Univ. Press, 1976. 168-189.

Berry, G. — Lévy, J. [77]: Minimal and optimal computations of recursive programs. IR IA

p r e p r in t N o 2 3 3 , 1974, 1-54. To appear in: JA C M .

Bertoni, A. — Mauri, G. — Torelli, M. [77]: An algebraic approach to problem solution and
problem semantics. In: MFCS 1977, LNCS 53, 253.

Birkhoff, G. — Lippson, J. D. [74] : Universal Algebra and Automata, in: A M S S y m p . P ure

M ath. 2 5 , 1974,41-51.

Blikle, A. [72]: Equational Languages. In fo r m a tio n a n d C o n tr o l 1972, 134-147.

Blikle, A. [73]: An algebraic approach to programs and their computations, in: P roc. S y m p .

a n d S u m m e r S c h o o l o n th e M a th e m a tic a l F o u n d a tio n s o f C o m p u te r S c ien ce ,

High Tatras, Czechoslovakia, 1973.

Blikle, A. [77]: An analysis of program by algebraic means. MFCS, Warsaw, 1974, Banach
Center Publications Vol. 2, 1977.

Blikle, A. [78]: Specified programming. To appear in: P roc. o f th e In t. C o n f. o n M a th e m a tic a l

S tu d ie s o f I n fo rm a tio n P ro cess in g , Kyoto, Aug. 24-26, 1978.

Bloom, S. L. [76]: Projective and Inductive Generation of Abstract Logics. S tu d ia L o g ica

X X X V , 3 , 1976. 249-255.

Bloom, S. L. [76a]: Varieties of ordered algebras. J. C o m p u t. a n d S y s t . Sei. 13 , 1976,
200- 212 .

Bloom, S. L. [prep.]: Algebraic and graph theoretic characterizations of structured flowchart
schemes. (In preparation.)

260 -

Bloom, S. L. — Elgot, C. C. [74]: The existence and construction of free iterative theories.
IB M T h o m a s J. W a tso n C en ter , Research Report R C 4 9 3 7 , 1974; also in:
J. C o m p u t . a n d S y s t . S e i. 12, 3, 1976, 305-318.

Bloom, S. L. — Elgot, C. C. — Wright, J. B. [78]: Solution of the iteration equation and
extensions of the scalar iteration operation. IB M R es. R e p . R C 7 0 2 9 , 1978.
1-37.

Bloom, S. L. — Ginali, S. — Rutledge, J.D. [77]: Scalar and vector iteration. J. C o m p u t. a n d

S y s t . S e i. 14 , 1977, 251-256.

Blum, E. K. [69]: Towards a Theory of Semantics and Compilers for Programming Languages.
J. C o m p u t. a n d S y s t . S e i. 3 , 1969, 248-274.

Blum, E. K. [71]: Semantics of Programming Languages. IFIP W. G. 3.2, Bulletin, April 1971.

Blum, E. K. [73]: Formalization of Semantics of Programming Languages, in: T h e o r ie d e s

A lg o r i th m e s , d e s L a n g u a g es e t da la P r o g ra m m a tio n , Seminaries IRIA, 1973.

Blum, E. K. - Estes D. R. [77]: A generalisation of the homomorphism concept. A lg e b ra

U n iv e rsa lis 7, 1977, 143-161.

Bobrow, L. S. — Arbib, M. A. [74]: Discrete Mathematics, in A p p l ie d A lg e b ra f o r C o m p u te r

a n d I n fo r m a tio n S c ie n c e , Washington, Hemisphere Publ., 1974.

Boudol, G. [75]: Langages polyadiques algébriques. Théorie des schémas de programme:
sémantique de l’appel par valeur. These 3° cycle, Paris, 1975.

Brainerd, W. S. [67]: Tree generating systems and tree automata. Ph. Diss., Purdue Univ.,
1967.

Brainerd, W. S. [68]: The minimization of tree automata. I n fo r m a tio n a n d C o n tr o l 13 , 1968,
484-491.

Brainerd, W. S. [69]: Tree generation regular systems. I n fo r m a tio n a n d C o n tr o l 14 , 1969,
217-231.

Brand, D. [76]: Proving Programs Incorrect. In: A u to m a ta , L an gu ages, a n d P ro g ra m m in g ,

Edinburgh Univ. Press, 1976. 201-227.

Brown, F. M. [78]: A semantic theory of logic programming. D . A . I. R es. R e p . N o 5 1 ,

Univ. of Edinburgh, 1978.

Brynooghe, M. [76]: An interpreter for predicate logic programs. P. 1. R e p o r t C W 10 ,

A p p l i e d M a th e m a tic s a n d P ro g ra m m in g D iv is io n , K a th o lie k e U niv, Leuven,
Oct. 1976.

- 261 -

Budach, L. [75]: Automata in additive categories with applications to stochastic linear automa
ta, in: C a te g o ry T h e o ry a p p l ie d to C o m p u ta tio n a n d C o n tr o l , LNCS 25,
1975, 119-136.

Budach, L. — Hoehnke, H. J. [75]: Automaten und Funktionen, Berlin, 1975.

Burstall, R. M. [69]: Formai description of program structure and semantics in first order
logic, in: M ach in e I n te ll ig e n c e 5 , ed. B. Meitzer, D. Michie, Edinburgh Univ.
Press, 1969, 79-98.

Burstall, R. M. [72a]: An algebraic description of programs with assertions, verification and
simulation, in: Proc. Â C M C on f. on P ro v in g A s s e r tio n s a b o u t P rogram s,

Las Cruces, New Mexico, 1972, 7-14.

Burstall, R. M. [72b]: Some techniques for proving correctness of programs which alter data
structures, in: M a ch in e In te llig e n c e 7, ed. B. Meitzer, D. Michie, Edinburgh
Univ. Press, 1972, 23-50.

Burstall, R. M. [77]: Design considerations for a functional programming language. Proc. o f

I n fo te c h S ta te o f th e A r t C o n f , Copenhagen, 1977.

Burstall, R. M. — Goguen, J. A. [77]: Putting theories together to так е specifications, in:
Proc. o f F ifth In t. J o in t C o n f. o n A r tif ic a l In te llig e n c e , MIT, Cambridge,
Mass., 1977, 1045-1058.

Burstall, R. M. — Landin P. J. [69]: Programs and their proofs: An algebraic approach, in:
M a ch in e In te llig e n c e 4 , ed. M. Meitzer, D. Michie, Edinburgh Univ. Press,
1969. 17-43.

Burstall, R. M. — Thatcher, J. W. [75]: The algebraic theory of recursive program schemes,
in: P roc. A A A S S y m p . o n C a te g o ry T h e o ry A p p l ie d to C o m p u ta tio n a n d

C o n tro l, LNCS 25, 1975, 126-131.

Buslenko, N. P. — Simonov, V. M. [76]: On the categorical representation of dynamic systems.
P ro g ra m iro va n ie 5, 1976. (In Russian).

Buslenko, N. P. [77]: On the categorical desription of complex systems. P ro g ra m iro va n ie 1,
1977, 82-94. (In Russian).

Categorical and Algebraic Methods in Computer Science and System Theory. 2nd Workshop,
Dortmund, 1978. (In preparation)

Category Theory Applied to Computation and Control. LNCS 25, ed. E. G. Manes, Springer
Veri., 1975.

Chirica, L. [78]: Proof of correctness of a compiler by algebraic semantics. Theses. U C LA

R e p o r t , U C L A -E M G - 76 9 7 .

- 262 -

Chirica, L. - Martin, D. F. [76]: An algebraic formulation of Knuthian semantics, in:
P ro c . 1 7 th A n n u a l IE E E S y m p . F o u n d . C o m p . S e i . , Houston, Texas,
1976. 127-136.

Clark, K. - Sickel, S. [77]: Predicate logic: a calculus for the formal derivation of programs.
P ro c . IJ C A I-7 7 . Conference, 1977.

Colloquium on Mathematical Logic in Programming. Sept. 10-15 1978, Hungary. Proceedings
of Colloquia Mathematica Societatis János Bolyai, (in preparation)

Colmerauer, A. [75]: Les grammaires de metamorphose. Group d’intelligence Artificielle,
Marseille-Luminy, Nov. 1975.

Constable, R. L. [77]: On the theory of Programming logics, in: P roc. A C M S T O C 9, 1977,
269-285.

Cook, S. A. [78]: Soundness and completeness of an axiom system for program verification.
S I A M J. o n C o m p u tin g , 7, 1. 1978. 70-91.

Courcelle, B. [78]: Equational theories and equivalences of programs. IRIA, 1978.

Courcelle, B. — Guessarian, I. [77]: On some classes of interpretations. R a p p o r t d e R e c h e r c e

* N o 2 5 3 , IR IA , 1977.

Courcelle, B. — Nivát, M. [76]: Algebraic families of interpretations. 1 7 th S y m p . F o u n d . C o m p .

S e i., Houston 1976. Also in: IR IA R a p p . R e c h . N o 1 8 9 , 1976.

Courcelle, B. - Nivát, M. [78]: The algebraic semantics of recursive program schemes./Voc. 7th

M F C S , Zakopane, LNCS 64, Springer Veri. 1978.

Courcelle, B. - Raoult, J. C. [78]: Completions of Ordered Magmas. IRIA, 1978.

Cousot, P. — Cousot R. [77]: Static determination of dynamic properties. In: W ork in g C on f.

o n F o r m a l D e s c r ip t io n o f Progr. C o n c e p ts . IFIP, 1977, 12.1-12.40.

Damm, W. [77]: Higher type program schemes and their tree languages, in: Proc. 3 r d G I

C o n f. T h e o re tic a l C o m p u te r S c ien ce , LNCS 48, Springer Veri. 1977, 51-72.

Damm, W. - Fehr, E. [78]: On the power of self application and higher type recursion, in:
P ro c . 5 th IC A L P , LNCS 62, Springer Veri. 1978, 177-191.

Damm, W. - Fehr, E. — Indermark, К [78]: Higher type recursion and self application as
control structures, in: F o rm a l D e s c r ip tio n o f Progr. C o n c e p ts , P roc. IF IP ,

1977.

Davidson, D. - Hartman, G. [72]: Semantics of natural language. Rediel Publ., 1972, 769.

Davis, R. [69]: Universal coalgebra and categories of transition systems. M ath . S y s t. T h e o ry 4 ,

1969, 91-95.

- 263 -

Day, A. [75]: Filter monads, continuous lattices and closure systems. Can. J. M a th . X X V II .

1975. 50-59.

DeMillo, R. [75]: Non-definability of certain semantic properties of programs. N o tr e D a m e J.

F o rm a l L o g ic 1 6 , 1975, 583-590.

van Dijk, T. A. [77]: Action description. Paper for the C oll, le d isc o u rs d e s c r ip t i f , Urbino,
Italy, 1977.

Doner, J. E. [70]: Tree acceptors and some of their applications. J. C o m p u t. a n d S y s t . Sei. 4 ,

1970, 406-451.

Dubinsky, A. [75]: Computation on arbitrary algebras. Queen LNCS 37, 1975. 319-341.

Eder, G. [76]: A PROLOG-like interpreter for non-Horn clauses. Dept, of A. I., Univ. of
Edinburgh, Sept. 1976.

Ehrich, H. D. [77]: Algebraic semantics of Type Definitions and Structured Variables, in:
F u n d a m e n ta ls o n C o m p u te r S c ie n c e , LNCS 56, 1977, 84-98.

Ehrich, H. D. [77a]: Algebraische Spezifikation von Datenstrukturen. P roc . W o rk sh o p " G ra

p h e n th e o r e t is c h e K o n z e p te in d e r In fo rm a tik ? ’ , ed. J. Mühlbacher, Hansen-
-Verl. München, 1977.

Ehrich, H. D. [78]: Extensions and implementations of abstract data type specifications. Abt.
Informatik, Univ. Dortmund, Germany.

Ehrich, H. D. - Lohberger, V. G. [78]: Parametric Specification of Abstract Data Types,
Parameter Substitution, and Graph Replacements. In: P ro c . W o rk sh o p

" G ra p h e n th e o re tis c h e K o n z e p te in d e r I n fo r m a tik ” , Hanser-Verl.
München, 1978.

Ehrigh, H. [72]: Automata theory in monoidal categories, in: P roc. T agu n g ü b e r K a te g o r ie n ,

Mathematisches Forschungsinstitut, Oberwolfach, 1972, 12-15.

Ehrigh, H. [73]: Axiomatic theory of systems and systematics. R e p o r t 7 3 -0 5 , T ech n isch e

U n iv e rs itä t B erlin , 1973.

Ehrigh, H. [74]: Universal Theory of Automata: A categorical approach. Teubner Studien
bücher Informatik, 1974.

Ehrig, H. — Kreowski, H. J. [75]: Power and initial automata in pseudoclosed categories,
in: C a te g o ry T h e o ry A p p l ie d to C o m p u ta t io n a n d C o n tro l, LNCS 35,
1975, 144-150.

Ehrig, H. — Kreowski, H. J. - Padawitz, P. [77]: Some remarks concerning correct specifica
tion and implementation of abstract data types. T e c h n isc h e U n iv e rs itä t

B erlin , B e r ic h t N r. 77 -13 , 1977.

- 264 -

Ehrig, H. - Kreowski, H. J. - Padawitz, P. [78]: Stepwise Specification and Implementation
of Abstract Data Types. P roc . 5 th In t. C o ll. A u to m a ta L ang, a n d ., P rogr., Udine,
Italy.

Ehring, H. - Kühnei, W. — Pfenderl, M. [75]: Diagram characterization of recursion, in:
C a te g o r y T h e o ry A p p l ie d to C o m p u ta t io n a n d C o n tro l, LNCS 35, 1975,
137-144.

Eilenberg, S. — Wright, J. [67]: Automata in General Algebras. In fo rm a tio n a n d C o n tr o l 11 ,

1967, 452-470.

Elgot, C. C. [71]: Algebraic theories and program schemes, in: S y m p o s iu m o n S e m a n tic s o f

A lg o r i th m ic L an gu ages, ed. E. Engeler, Springer Veri., 1971, 71-88.

Elgot, C. C. [75]: Monadic computations and iterative algebraic theories. IB M R e se a rc h R e p o r t

R C 4 5 6 4 , Oct. 1973. Also in: P roc. o f L o g ic C o llo q u iu m ’ 73 North-Hollandi
1975, 230.

Elgot, C. C. [77]: Some ’’geometrical” categories associated with flowchart schemes. IB M R es.

R e p . R C - 6 5 3 4 , 1977, 1-8.

Elgot, C. C. [78]: A representative strong equivalence class for accessible flowchart schemes.
Prepared Tor In t. C on f. o n M a th . S tu d ie s o f In fo rm a tio n P ro cessin g , 1978,
Kyoto, Japan.

Elgot, C. C. — Bloom, S. L. — Tindell, R. [76]: On the algebraic structure of rooted trees.
IB M R C 6 3 2 0 , 1976. Also in: I. C o m p u t. a n d S y s t. Sei. 1 6 , 3, 362-396.

van Emde Boas, P. [78]: The connection between model logic and algorithmic logics. D e p t,

o f M a th . U niv. o f A m s te r d a m , R 7 8 -0 2 , May 1978, 1-15.

van Emde Boas, P. — Janssen, T. M. V. [78]: Montague Grammar and Programming Languages.
IT W \V P W , University of Amsterdam, 1978.

van Emden, M.H. [74]: First-order predicate logic as a high-level program language. M IP -R -1 0 6 ,

S c o o l o f A r t i f ic a l In te llig e n c e , Univ. o f E d in b u rg h , May, 1974.

van Emden, M. H. [75a]: Programming with resolution logic. R esea rch R e p o r t C S -7 5 -3 0 , D e p t,

o f C o m p u te r S c ie n c e , U niv. o f W a terlo o , Ontario, Canada, Nov. 1975.

van Emden, M. H. [75b]rA representation of flowgraphs in first order predicate logic.
D e p t, o f C o m p u te r S c ie n c e , U niv. o f W a te r lo o , Waterloo, Ontario, Canada
Febr. 1975.

van Emden, M. H. [77]: Relational equations, grammars and programs. R e se a rc h R e p o r t

C S -7 7 -1 7, D e p t, o f C o m p u te r S c ien ce , U n iv . o f W aterloo , Ontario, Canada
June 1977.

- 265 -

van Emden, M. H. - Kowalski, R. A. [74]: The semantics of predicate logic as a programming
language. M e m o N o 73, S c h o o l o f A r t i f ic ia l In te llig en ce , U niv. o f E d in b u rg h ,

Feb. 1974. Also in: M IP -R -1 0 3 , D e p t, o f M a ch in e In te llig e n c e , U niv. o f

E d in b u rg h .

Engeier, E. [74]: Algorithmic Logic. F o u n d a tio n s o f C o m p u te r S c ien ce , ed. J. W. de Bakker,
Mathematical Centre Tract, MCT 63, Amsterdam, 1974.

Engelffiet, J. [75]: Bottom-up and top-down tree transformations: a comparison. M a th e m a tic a l

S y s te m s T h e o ry 9, 1975, 198-231.

Engelfriet, J. [75a]: Tree automata and tree grammars. D A IM I R e p o r t F N -1 0 , U niv. o f A a rh u s,

Aarhus, Denmark, 1975.

Engelfriet, J. — Schmidt, E. M. [78]: 10 and 01. J. C o m p u t. a n d S y s t. S e i. 1 5 , 3, and 16 , 1,
67-99.

Ferenci, F. [76]: A new representation of context-free languages by tree automata.
F o u n d a tio n s o f C o n tro l E n g in e e r in g 1, 1976,217-222.

Floyd, R. W. [67]: Assigning meaning to programs. P roc. S y m p o s iu m o n A p p l ie d M a th e m a tic s .

X IX . ed. J. T. Schwartz, Am.Math. Soc., Providence, R. 1., 1967.

Fischer, M. J. — Ladner, R. E. [77]: Propositional modal logic of programs. T R -7 7 -0 2 -0 2 ,

U niv. o f W ash in g ton , Febr. 1977.

Fried, J. [77] Simulations of Pawlak machines and fuzzy morphisms of partial algebras.
C o m m u n . M ath . Univ. C a ro lin a e 18 , 2, 1977, 343-351.

Fundamentals on Computer Science. Ed. G. Goos, J. Hartmanis, LNCS 56, Springer Veri., 1977.

Gallin, D. [75]: Intensional and Higher-Order Modal Logic, North-Holland — American
Elsevier, N. Y. 1975.

Gécseg, F. [77]: Universal Algebras and Tree Automata, in: F u n d a m e n ta ls o n C o m p u te r S c ie n c e ,

LNCS 56, 1977, 98-1 13.

Gécseg, F. - Horváth, G. [76]: On representation of tree and context-free languages by tree
automata. F o u n d a tio n s o f C o n tr o l E n g in eerin g , 1976, 161-168.

Gécseg, F. — Steinby, M. [77]: Algebraic Theory of Tree-Automata. JATE, Szeged, Hungary
(In Hungarian).

Gécseg, F. — Tóth, E. P. [77]: Algebra and logic in theoretical computer scence. In: MFCS
1977, SLNCS 53. 78-93.

Gergely, T. — Szabolcsi, A, [78]: How to do things with model theory. 1978. (manuscript).

Gergely, T. — Szőts, M. [78]: On the incompleteness of proving partial correctness. A c ta

C y b e r n e tic a 4 , 1, 1978,45-57.

- 266 -

Gergely, T. — Ury, L. [78]: Mathematical Theories of Programming 1978, (manuscript).

Gergely, T. — Ury, L. [78a]: On the notions of completeness in programming theory. P ro c e e d in g s

o f th e C o llo q u iu m o n L o g ic in P ro g ra m m in g , 1978. (to b e a p p e a re d).

Gergely, T. - Ury, L. [79]: On the non-deterministic programming (submitted to M F C S ’ 79).

Gergely, T. - Ury, L. [79]: Operational semantics of parallelism, (submitted to the S y m p o s iu m

o n s e m a n t ic s o f c o n c u r r e n t c o m p u ta t io n) .

Gergely, T. - Vershinin, K. P. [75]: Proof by analoghy. K F K I -7 5 -7 9 , Budapest, Hungary,
1975. (in Russian)

Gergely, T. - Vershinin, K. P. [78]: Model theoretical investigation of theorem proving
methods. N o tr e D a m e J. F o rm . L og . 19 , 1978, 523-542.

Ginali, S. [76]: Iterative algebraic theories, infinite trees and program schemata. Diss., Dept,
of Mathematics University of Chicago, 1976.

Give’on, Y. - Arbib, M. A. [68]: Algebra Automata II.: The Categorical Framework for
Dynamic Analysis. I n fo r m a tio n a n d C o n tr o l 1 2 , 1968. 346-370.

Give’on, Y. [70]: A categorical review of algebra, automata and system theories. S y m p o s ia

M a th e m a tic a 4 , Instituto Nazionale di Alta Matematica, Academic Press, 1970.

Glushkov, V. M. — Letichevskij, A. B. [73]: Theory of discrete transformers. Selected questions
of algebra and logic. Novosibirsk, 1973. (In Russian)

Glushkov, V. M. — Tseytlin, G. E. — Yushchenko, E. L. [74]: Algebras, Languages, Automata.
Kiev, Naukova Dumka, 1974.

Goguen, J. A. [71]: Discrete-time machines in closed monoidal categories I. I n s t i tu te f o r

C o m p u te r R e se a rc h , Q u a r te r ly R e p o r t N o . 3 0 , Aug. 1971, The Univ. of
Chicago. Also in :/. C o m p u t. a n d S y s t. S e i. 1 0 , 1975. 1-43.

Goguen, J. A. [72a]: Minimal realization of machines in closed categories. B ull. A m . M a th . S oc .

1972, 777-783.

Goguen, J. A. [72b]: On homomorphisms, simulations, correctness, subroutines and termination
for programs and program schemes, in P roc . 1 3 th IE E E S y m p . o n S w itc h in g

a n d A u to m a ta T h e o r y 1972, 52-60. (See also Goguen [74a] for a revised ver
sion of this paper.)

Goguen, J. A. [72c]: On mathematics in computer science education. IBM T h o m a s W atson

R e se a rc h C e n te r , R e se a rc h R e p o r t N o R C 3 8 9 9 , 1972.

Goguen, J. A. [73]: Realization in universal. M ath . S y s t . T h e o r y 6, 1973, 359-374.

с - 267 -

Goguen, J. A. [74a]: On homomorphisms, correctness, termination, unfoldments and equi
valence of flow diagram programs. J. C o m p u t. a n d S y s t . S e i. 8 , 1974, 333-365.

Goguen, J. A. [74b]: Semantics of computation, in: C a te g o ry T h e o ry A p p l i e d to C o m p u ta t io n

a n d C o n tro l, ed. M. A. Arbib, E. G. Manes, Univ. of Mass. Press, Amherst,
1974, 234-239. Also in: LNCS 25, 1975, 151-163.

Goguen, J. A. [74c]: Set-theoretic correctness proofs. U C L A R e p o r ts o n se m a n tic s a n d

th e o r y o f c o m p u ta tio n , R e p o r t N o . 1, 1974.

Goguen, J. A. [75a]: Correctness and equivalence of data types, in: P ro c . C on f. on A lg . S. T h .,

Udine, Italy, 1975. Springer Veri., 1976, 352-358.

Goguen, J. A. [75b]: Some remarks on Data Structures, UCLA, Los Angeles, Calif. 1975.
(Manuscript)

Goguen, J. A. [75c]: On fuzzy robot planning. P roc. U .S. - Japan J o i n t C on f. on F u z z y s e t s

a n d A p p l . , 1975.

Goguen, J. A. [75d]: Objects. In t. J. G e n e ra l S y s te m s I , 1975, 237-243.

Goguen, J. A. [77]: Abstract errors for abstract data types, in: P roc. o f IF IP W orking C o n f.

o n F o rm a l D e sc r ip tio n o f P ro g ra m m in g C o n c e p ts , ed. J Dennis, MIT, 1977.
21.1-21.32.

Goguen, J. A. [77a]: Algebraic Specification. To appear in: R esearch D ir e c t io n s in S o f tw a r e

T e c h n o lo g y , ed. P. Wagner, MIT Press, 1977.

Goguen, J. A. [78]: Some design principles and theory for OBJ-O a language for expressing and
executing algebraic specifications of programs, in: Proc. In t. C o n f. M ath. S tu d ie s

o f In f. P rocessin g , Kyoto, Japan, 429-475.

Goguen, J. A. [79]: Some ideas in algebraic semantics. Dept. Comp. Sei., UCLA, 1979.
(Preprint.)

Goguen, J. A. — Burstall, R. M. [78]: Some fundamental properties of algebraic theories: A
tool for semantics of computation. Preprint, 1978. Submitted to Theor. C o m p u t .

Sei.

Goguen, J. A. [79]: Semantics of CLEAR. Preprint, 1979, 1-60.

Goguen, J. A. — Meseguer, J. [77]: Correctness of recursive flow diagram program, in: MFCS,
LNCS 53, 580-595.

Goguen, J. A. — Thatcher, J. W. — Wagner, E. G. [76]: An initial algebra approach to the
specification, correctness and implementation of abstract data types. IBM T h o m a s

J. W atson R esearch C e n te r , Yorktown Heights, NY., R e se a rc h R e p o r t R C 6 4 8 7 ,

1976. To appear in: C u rre n t T ren d s in P ro g ra m m in g m e th o d o lo g y 3, Data
Structuring, ed. R. T. Yeh, Prentice Hall, 1977.

- 268 -

Goguen, J. A. - Thatcher, J. W. - Wagner, E. G. - Wright, J. B. [73]: A junction between
computer science and category theory: I. Basic Definitions and Examples, P. 1.
IBM R e s e a r c h R e p o r t R C 4 5 2 6 , Sept. 1973.

Goguen, J. A. — Thatcher, J. W. — Wagner, E. G. - Wright, J. B. [74]: Factorisation, con
gruences and the decomposition of automata and systems. IB M R e sea rch R e p o r t

R C 4 9 3 4 , July 1974. Also in: Proc. S e c o n d A n n u a l S y m p . o n M a th e m a tic a l

F o u n d a t io n s o f C o m p u te r S c ie n c e , Warsaw, Poland LNCS 28, 1975. 33-45.

Goguen, J. A. — Thatcher, J. W. — Wagner, E. G. - Wright, J. B. [74b]: Initial algebra semantics.
Extended abstract. IB M R e se a rc h R e p o r t R C 4 8 6 5 , May 1974. Also in: P roc.

1 5 th I E E E S y m p . o n S w itc h in g an d A u to m a ta T h e o ry , 1974, 64-77. Full paper:
IB M R e s e a r c h R e p o r t R C 5 2 4 3 , Jan. 1975.

Goguen, J. A. — Thatcher, J. W. — Wagner, E. G. — Wright, J. B. [75a]: Initial algebra semantics
and continuos algebras. Ext. version of Goguen et al [74b]: IB M R esea rch R e p o r t

R C 5 7 0 1 , Now. 1975. Also in : J A C M 2 4 , 1, 1977, 68-95.

Goguen, J. A. - Thatcher, J. W. — Wagner, E. G. - Wright, J. B. [75b]: Parallel realization
of systems, using factorizations and quotients in categories. IB M R esearch R e p o r t

R C 5 6 6 8 , Oct. 1975, Also to appear in :/. F ra n k lin Inst.

Goguen, J. A. — Thatcher, J. W. — Wagner, E. G. — Wright, J. B. [75c]: Introduction to cate
gories, algebraic theories and algebras. IB M R e se a rc h R e p o r t R C 5 3 6 9 , April 1975.

Goguen, J. A. — Thatcher, J. W. — Wagner, E. G. — Wright, J. B. [75d] : Abstract data types as
initial algebras and the corectness of data representations, in: P roc. C o n fe re n c e

on C o m p u te r G raphics, P a t te r n R e c o g n itio n a n d D a ta S tru c tu re s , Beverly Hills,
CA, 1975, 89-93.

Goguen, J. A. — Thatcher, J. W. — Wagner, E. G. — Wright, J. B. [76a]: A junction between
computer science and category theory, I.: Basic concepts and examples P. 2.
IBM T h o m a s J. W atson R e s e a r c h C en ter, R e s e a r c h R e p o r t R C 6 9 0 8 , 1976.

Goguen, J. A. — Varela, F. [78]: Systems and distinctions: duality and complementarity. Sub
mitted to In t. J. G en era l S y s te m s .

Gordon, M. J. C. [75]: Towards a semantic theory of dynamic binding. A I M e m o 2 6 5 ,

S ta n f o r d U n iv ., Stanford, Calif., 1975.

Grabowski, M. [78]: Full Weak Second-Order Logic versus Algorithmic Logic. Proc. M ath .

L og ic , in P ro g ra m m in g , Hungary, 1978.

Guessarian, I. [76]: Semantics equivalence of program schemes and its syntactic characterizati
on. A u t o m a t a L anguages a n d P rogram m in g , T h ir d In t. C oll, a t th e Univ. o f

E d in b u rg h , 1976,189-201.

- 269 -

Guessarian, I. [77]: Tests and their syntactic characterisation.T h e o re tic a l C o m p u te r S c ie n c e

11, 2, 1977, 133-156. (In French).

Guessarian, I. [78]: Some applications of algebraic semantics. MFCS, ed. Winkowski, Springer
Veri., 1978. 257-266.

Guttag, J. V. [75]: The specification and application to programming of abstract data types.
U niv. o f T o r o r n to , C o m p u te r S y s te m s R e s . G ro u p T R -C S R G -5 9 , Sept. 1975.

Guttag, J. V. [76]: Abstract data types and the development of data stuctures. Suppl, to
Proc. Conf. on Data Abstraction, Definition, and Structure. S IG P L A N N o t ic e s 8 ,

March 1976.

Guttag, J.V. - Horowitz, E. - Musser, D. R. [76]: Abstract data types and software validation.
R e p o r t I S I /R R -7 6 -4 8 . In fo rm a tio n S c ie n c e s In s t., Marina de Rey, CA, 1976.

Hájek, P. — Havránek, T. [78]: Mechanising hypothesis formation. Springer Veri., 1978.

Harel, D. [78]: Arithmetical completeness in logics of programs. P roc. IC A L P , Udine 1978.
To appear in: LNCS, Springer Veri.

Harel, D. - Meyer, A. R. — Pratt, V. R. [77]: Computability and Completeness in Logics of
Programs, in: P roc. A C M S T O C 9, 1977, 261-268.

Harel, D. — Pratt, V. R. [77]: Nondeterminism in Logics of Programs, in: P roc. A C M S T O C 9,

1977, 203-213.

Hatcher, W. S. — Rus, T. [76]: Context-free algebra. J. C y b e rn e tic s 6 , 1976, 65-77.

Hayes, P. J. [71]: A logic of action. M a ch in e I n te ll ig e n c e 6, Edinburgh Univ. Press, 1971.

Hayes, P. J. [77]: In defence of logic. Essex Univ., Colchester, U. K. 1977. A . 1. C o n fe re n c e

a t U niv. o f M a ssa c h u se tts 1977.

Henessy, M. - Ashcroft, E. A. [76]: The semantics o f nondeterminism, in: A u to m a ta L a n g u a g es

a n d P ro g ra m m in g . T h ird In te rn a tio n a l C o llo q u iu m a t th e U n iv e r s ity o f E d in b u rg h ,

1976, 478-494.

Hoare, C. A. R. — Lauer, P. [74]: Consistent and complementary formal theories of the
semantics of programming languages. A c t a In fo rm a tic a 3 , 1974, 135-153.

Hobbs, J. R. — Rosenschein, S. J. [78]: Making Computational Sense of Montague’s Intensional
Logic. A r tif ic ia l In te llig e n c e 9, 1978, 287-306.

Hoehnke, H. J. [75]: Synthesis and complexity of logical systems, in: C a te g o ry T h e o ry

A p p l ie d to C o m p u ta t io n a n d C o n tro l, LNCS 25, 1975, 170-174.

Hoehnke, H. J. [76a]On partial algebras. Preprint. Berlin, 1976. (To be published)

- 270 -

Hoehnke, H. J. [76b]: On partial recursive definitions. Preprint. Berlin, 1976.

Hoehnke, H. J. [77]: On partial recursive definitions and programs, in: F u n d a m e n ta ls on C o m

p u te r S c ie n c e , LNCS 56, 1977, 260-275.

Hoehnke, H. J. [78]: On partial algebras. To appear in P roc . Coll. Univ. A lg . , Esztergom,
Hungary.

Hyland, J. M. E. [app]: A syntactic characterization of the equality in some models for the
lambda calculus. To appear in: J. L o n d o n M a th . Soc.

Igarashi, S. [72]: Admissibility of fixed point induction in first order logic of typed theories.
M e m o A I M -1 6 8 , C o m p u te r S c ie n c e D e p t. S ta n f o r d Univ., Stanford, Calif., 1972.

Janicki, R. [app]:An algebraic characterization of concurrency relations. To appear in:
I n f o r m a t io n P rocessin g l .e tie r s .

Janssen, T.M.V. [76]: A computer program for Montague grammar, in: P ro c . A m s te r d a m Coll.

C oll. M o n ta g u e g ra m m a r a n d r e la te d to p ic s , 1976, 154-176.

Janssen, T. M. V. [78]: Logical investigations of PTQ arising from programming requirements.
M ath. C e n tr . Z W 117178, Amsterdam.

Janssen, T. M. V. — van Emde Boas, P. [77a]: On the proper treatment of referencing,
dereferencing, and assigment, in: P roc. 4 th I C A L P C o n f , Turku, 1977. LNCS
52., 282-300.

Janssen, T. M. V. — van Emde Boas, P. [77b]: The expressive power of intensional logic in the
semantics o f programming languages, in: P roc. 6 th M F C S S y m p . , LNCS 53,
ed. J. Gruska, Springer Veri., 1977, 303-311.

Kaphengst, H. - Reichel, H. [71]: Algebraische Algorithmentheorie. IV/ss. In f. u n d B e r ic h te ,

Nr. 1, R e i h e A , VEB Kombinat ROBOTRON, 1971.

Kaphengst, H. — Reichel, H. [72]: Operative Theorien und Kategorien von operativen Systemen.
S tu d ie n z u r A lg e b ra u n d ih ren A n w e n d u n g e n , Berlin, Akademie Verl., 1972.

Kaphengst, H. — Reichel, H. [77]: Initial Algebraic Semantics for Non Context-free
Languages, in: F u n d a m e n ta ls o n C o m p u te r S c ie n c e , LNCS 56, 1977, 120-127.

Karpinski, M. [73]: Free structure tree automata I. Equivalence. Bull. A c a d . P o lon . Sei.,

Ser. Sei. M a th . A s tro n o m . P h y s . 21, 1973. 441-446.

Kekeliya, G. M. — Kissanov, G. E. — Tseytlin, G. E. [74]: Realization of Algorithmic
algebraical means in homogeneous systems. K y b e r n a tic a 5, 1974, 29-35.
(In Russian).

Kfoury, D. J. [72]: Comparing algebraic structures up to algorithmic equivalence, in:
A u to m a ta L an gu ages a n d P ro g ra m m in g , ed. M. Nivát, North-Holland,
Amsterdam, 1972, 253-263.

- 271 -

Kfoury, D. J. - Park, D. M. R. [75]: On the termination of Program schemas. I n fo r m a tio n

a n d C o n tr o l 2 9 , 1975, 243-251.

Kotov, V. E. [78]: An algebra for parallelism based on Petri nets. Ed. J. Winkowski, MFCS
1978, Springer Veri., 39-55.

Koubek, V. - Reiterman, J. [75]: Automata and Categories — Input processes, in: M a th e m a tic a l

F o u n d a tio n s o f C o m p u te r S c ie n c e , LNCS 32, 1975, 280-286.

Koubek, V. — Reiterman, J. [78]: Catégorial constructs of free algebras, colomits, and
completions of partial algebras. Preprint. Prague, 1978.

Kowalski, R. [73]: Predicate logic as programming language. M e m o N o 70, D e p t, o f C o m p u ta

tio n a l L o g ic , S c h o o l o f A r t i f ic a l In te llig e n c e , U niv. o f E d in b u rg h , Nov. 1973.

Kowalski, R. [74]: Logic for problem solving. M e m o N o 75, D e p t, o f C o m p u ta t io n a l L o g ic ,

S c h o o l o f A r t i f ic ia l In te llig e n c e , Univ. o f E d in b u rg h , March, 1974.

Kowalski, R. [76]: Algorithm = Logic + Control. Dept, of Computing and Control, Imperial
College. London, Nov. 1976.

Kupka, I. [77]: Partial algebras for representing semantics of information processing. Theses.
Univ.Hamburg, 1977.

von Kutshera, F. [74]: Intensional semantics of natural language, in: L o g ic C o n f Kiel, 1974.
Lecture Notes in iathematics 499. 445-459.

von Kutschera, F. [76]: Einführung in die instensionale Semantik (Grundlagen der Kommuni
kation) W. de Gruyter, Berlin, 1976.

Kühnei, W. — Meseguer, J. — Pfender, M. — Sols, I. [77]: Primitive recursive algebraic
theories and program schemes. Bull. A u s tra l. M a th . S o c . 1 7 , 1977, 207-233.

Landin, P. J. [69]: A Program Machine Symmetric Automata Theory, in: M a ch in e I n te llig e n c e

5, Edinburgh Univ. Press, 1969, 99-120.

Lehmann, D. J. [76]: Categories for fixpoint semantics. T h e o r y o f C o m p u ta t io n R e p o r t N o

1 5 , D e p t, o f C o m p u te r S c ie n c e , Univ. o f W a rw ick . Also in: P ro c . 1 7 th A n n u a l

S y m p . F o u n d a tio n s o f C o m p u te r S c ien ce , IEEE, 1976.

Lehmann, D. J. — Smyth, B. M. [77]: Data types. Preprint. Dept, of Computer Science, Univ.
of Warwick, Coventry, Great Britain.

Les arbres en algèbre et en programmation. Troisième Colloque, Lille, Febr. 1978. Org.:
Arnold, A., Dauchet, M. Jacob, G.

Letichevskij, A. A. [68]: Syntax and Semantics of Formal Languages. K y b e r n e t ic a 4, 1968.
(In Russian).

- 272 -

Letichevskij, A. A. [73]: Pratical methods of recognition of equivalence of discrete transformers
and program schemes. K y b e r n e t ic a , Kiev, 4, 1973.

Levi, L. S. — Joshi, A. K. [73]: Some results in tree automata. M ath . S y s t . T h e o ry 6, 1973.
334-342.

Levy, M. R. [78]: Data Types with Sharing and Circularity. Ph. D. Thesis. R e p o r t . C S -7 8 -2 6 ,

Faculty of Math. Univ. of Waterloo, Ontario, CA, 1978.

Lipski, W. J. [76]: Informational systems with incomplete information, in: A u to m a ta L an gu ages

a n d P ro g ra m m in g . T h ird I n te r n a tio n a l C o llo q u iu m a t th e U n iv . o f E d in b u rg h ,

1976, 120-131.

Lipski, W. J. [77]: Informational systems: semantics issues related to incomplete information.
P. 1. P R A C E C O P A N . C C P A S R e p o r ts 2 7 5 , Warszawa, 1977.

Lipski, W. J. [77a]: On the logic of incomplete information. IC S P A S R e p o r t s 3 0 0 .

Liskov, B. H. - Berzins, V. [77]: An appraisal of program specifications. To appear in:
N e w D ir e c t io n s in S o f tw a r e T ech n . M IT M e m o 1 4 1 -1 , MIT Press.

Liskov, B. H. — Zilles, S. N. [74]: Programming with abstract data types. Proc. of ACM Symp.
on Very High Level Languages, S IG P L A N N o t ic e s 9, 1974, 50-59.

Littrich, G. — Merzenich, W. [77]: Nets over manysorted operator domains and their semantics,
in: F u n d a m e n ta ls o n C o m p u te r S c ien ce , LNCS 56, 1977, 240-245.

Litvintchouk, S. D. — Pratt, V. R. [77]: A proof-checker for dynamic logic. R es. R e p . M ass.

In st, o f T e c h n ., Camridge, June 1977.

Lloyd, C, [72]: Some concepts of universal algebra and their application to computer science.
C S W P -1 , C o m p u tin g C e n tr e , U niv. o f E ssex , 1972.

Magidor, M. — Moran, G. [69]: Finite automata over finite trees. T e c h n ic a l R e p o r t 3 0 , H e b re w

U n iv ., Jerusalem, Israel, 1969.

Manes, E. G. [76]: Algebraic theories. Chap. IV. GTM 26, Springer Veri., 1976.

Manna, Z. [69]: The correctness of programs. J. C o m p u t. a n d S y s t . S ei. 3 , 1969, 119-127.

Manna, Z. [74]: Introduction to Mathematical Theory of Computation. McGraw-Hill, New
York, 1974.

Manna, Z. — McCarthy, J. [70]: Properties of programs and partial function logic, in:
M a c h in e In te llig e n c e 5 , Edinburgh Univ. Press, 1970, 27-37.

Manna, Z. — Pnueli, A. [70]: Formalization of properties of functional programs. JACM
1 7 , 1970, 555-569.

- 273

Manna, Z. - Shamir, A. [78]: The convergence of functions to fixed points of recursive defini
tions. T h e o re tic a l C o m p u te r S c ie n c e 6, 2, 1978, 109-142.

Manna, Z. - Vuillemin, J. [72]: Fixpoint approach to the theory of computation. C A C M 1 5 ,

1972, 528-536.

Markowsky, G. [76]: Chain-complete posets and directed sets with applications. A lg e b ra

U n iversa lis 6, 1976, 53-68.

Markowsky, G. [77]: Categories of chain-complete posets. T h e o re tic a l C o m p u te r S c ie n c e 4 ,

1977, 125-235.

Markowsky, G. - Rosen, B. K. [76]: Bases for chain-complete posets. IB M J. R es. D e v e lo p m e n t

2 0 , 2, 1976.

Márkusz, Zs. — Szőts, M. [78]: On Semantics of Programming Languages Defined by Universal
Algebraic Tools. P roc . M a th . L o g ic in P ro g ra m m in g , Hungary, 1978.

Mathematical Foundations of Computer Science. Ed: J. Winkowski, LNCS 64, 1978.

Mazurkiewicz, A. [77]: Concurrent Program Schemes and their Interpretations. D A IM I-P B -7 8 ,

A a rh u s U niv., 1977.

Meitus, V. J. [74]: Abstract prescription of formal language syntax. D o k i. A . N . S S S R , 2 1 6 ,

2, 1974, 261-263.

Meitus, V. J. [78]: Transforming categories and finite transformers. I-II. K y b e r n e t ic a 2, 1978,
15-18.

Meitus, V. J. — Vershinin, K. P. [74]: Computable categories and functors. D o k i. A . N . S S S R ,

2 1 6 , 1, 1974.

Meseguer, J. [77]: On Order-Complete Universal Algebra and Enriched Functorial Semantics,
in: F u n d a m e n ta ls o n C o m p u te r S c ien ce , LNCS 56, Springer Veri., 1977, 294-302.

Meseguer, J. [78]: Completions, factorizations, and colimits for co-posets. S e m a n tic s a n d

T h e o ry o f C o m p u ta tio n R e p . N o 1 3 UCLA 1978.

Mezei, J. - Wright. J. B. [67]: Algebraic automata and context free sets. In fo rm a tio n a n d

C o n tr o l 11 , 1967, 3-29.

Milne, R. E. [74]: The formal semantics of computer languages and their implementations.
Ph. D. Theses, Cambridge, Univ., Cambridge, England, 1974. Also in: T e c h n ic a l

M o n o g ra p h P R G -1 3 , O x f o r d U niv, C o m p u tin g L a b ., P ro g ra m m in g R esea rch G ro u p .

Milner, R. [70]: Algebraic theory of computable polyadic functions. C o m p u te r Sei. M e m o .

1 2 , U n iv e rs ity C o lleg e , Swansea, 1970.

- 274 -

Milner, R. [71]: An algebraic definition of simulation between programs. S ta n fo r d A r t if ic a l

In te ll ig e n c e P ro je c t, M e m o A IM -1 4 2 , C o m p u te r S c ie n c e D e p t . R e p o r t N o C S -2 0 5 ,

S ta n fo r d U n iv ., Febr. 1971.

Milner, R. [73]: Processes: A mathematical model of computing agents. P ro c . C o llo q . In M ath .

L og ic . Bristol, England, 1973.

Milner, R. [77]: Fully abstract models of typed lambda calculi. T h e o r e tic a l C o m p u te r S c ie n c e

4, 1977, 1-23.

Milner, R. [77a]: Flowgraphs and Flow Algebras. D e p t, o f C o m p . Sei. R e p o r t C S R -5 -7 7 ,

Edinburgh.

Milner, R. [78]: Synthesis of communicating behaviour. University of Edinburgh, 1978.
(manuscript)

Milner, R. [78a]: Algebras for Communicating Systems. U n iv e r s ity o f E d in b u rg h , D e p t, o f

C o m p . S e i. In te rn a l R e p o r t C S R -2 5 -7 8 , 1978, 1-18.

Milner, R. — Weyrauch, R. [72a]: Proving Compiler Correctness in a Mechanised Logic, in:
M a ch in e I n te llig e n c e 7, 1972,51-72.

Milner, R. — Weyrauch, R. [72b]: Program semantics and correctness in a mechanised logic.
F irs t U S A -J a p a n C o m p u te r C o n fe re n c e , 1972, 384-392.

Mirkowska, G. [77]: Algorithmic logic and its applications in the theory of programs I-II.
F u n d a m e n ta In fo rm a tic a e , 1 , 1, 1977, 1-7; 147-167.

Mirkowska, G. [78]: Model existence theorem in algorithmic logic with nondeterministic
programs. Preprint. Univ. Warsaw, 1978.

Montague, R. [70a]: Universal grammar. T h e o r ie 36, 1970, 373-398.

Montague, R. [70b]: Pragmatics and intensional logic. S y n th e s e 22, 1970, 68-94.

Morris, F. L. [72]: Correctness of translations of programming languages- an algebraic
approach. S ta n f o r d A r t i f ic ia l In te llig e n c e P r o je c t M e m o A IM -1 74, 1972.

Mosses, P. [77]: Making denotational semantics less concrete. D e p t, o f C o m p u te r S c ien ce ,

A a rh u s U n iv ., Denmark. Extended Abstract of a presentation at the W o rk sh o p

on S e m a n tic s o f P ro g ra m m in g L anguages, Bad Honnef, Germany, 1977. To
appear in U niv. o f D o r tm u n d T ech n ica l R e p o r t .

Németi, I. - Sain, I. [78]: Connections between algebraic logic and initial algebra semantics
of CF languages. P roc. C o ll. M a th . L o g ic in P ro g ra m m in g , Hungary, 1978.

Nivát, M. [72]: Languages algebrigue sur le magma libre et sémantique des schémas de
programme, in: A u to m a ta L a n g u a g es a n d P ro g ra m m in g , ed. M. Nivát, North Holland,
1972, 293-308.

- 275 -

Nivát, M. [75 J : On the interpretations of polyadic recursive program schemes. S y m p o s ia

M a th e m a tic a X V , Instituto Nationale di Alta Matematica, Italy, 1975, 225-281.

Nivát, M. [78]: Infinite words, infinite trees and infinite computations of recursive programs.
A lg e b ra a n d A p p lic a t io n s 1 1 th S e m e s te r o f th e S te fa n B an ach In te rn a tio n a l

M a th e m a tic a l C en ter , Warsaw 1978.

Obtutowicz, A. [77]: Functorial Semantics of the Type Calculus,in: F u n d a m e n ta ls o n C o m p u te r

S c ie n c e , LNCS 56, 1977, 302-308.

Obtutowicz, A. — Wiweger, A. [78]: Functional interpretation of X-terms. P ro c . M ath . L o g ic

in P rogr., Hungary, 1978. ,

Ono, H. [76]: On the representability of the termination and the partial correctness of program
schemes. J. o f T su da C o lle g e 8 , 1976, 37-52.

Ono, H. — Nakahara, H. [77]: On the termination of program schemes. J. o f T su d a C o llege 9,

1977, 43-48.

Oppen, D. C. [75]: On logic and program verification. T ech . R e p . 8 2 , D e p t, o f C o m p u te r

S c ien ce , U niv. o f T o r o n to , 1975.

Pask, G. [76]: Conversation Theory. Elsevier Press, Amsterdam-New York, 1976.

Pásztor, A. [79]: Surjections in the category of chain complete posets, continuos universal
algebras and related structures used in algebraic semantics of programming.
Submitted to F C T 79, Berlin.

Patrikh, R. [78]: Completeness result for a propositional dynamic logic. L ab . C o m p u t. Sei.,

MIT, M IT /L C S lT M -1 0 6 .

Plotkin, G. D. [76]: A Powerdomain Construction. S IA M J. o n C o m p u tin g 5 , 3, 1976,
452-188.

Plotkin, G. D. [78]: as a universal domain. J. C o m p u t. a n d S y s t . Sei. 1 7 , 1978, 209-236.

Plotkin, G. D. — Smyth, M. [77]: The category theoretic solution of recursive domain equations,
in: F o u n d a tio n s o f C o m p u te r S c ie n c e , 1977. Extended version: U niv. E d in b u rg h ,

D . A . I. R e p . N o 6 0 , 1978.

Pnuelli, A. [77]: The temporal logic of programs. Proc. IE E E F O C S 1 8 , 1977, 46-57.

Popplestone, R. J. [78]: Relational Programming, in:M a ch in e In te llig e n c e 9. Ellis Horwood, -
-Chichester, Sussex.

Pratt, V. R. [77]: Semantic Considerations on Floyd-Hoare Logic. P roc. A C M S T O C 9,

MIT, Cambridge, 1977, 109-121.

- 276 -

Proc, of the Int. Workshop on Semantics of Programming Languages. Bad Honnef, 1977,
ed. V. Claus, К. Indermark etc. Univesrität Dortmund.

Pultr, A. [75]: Closed categories of fuzzy sets. Proc. C o n f. A u to m a te n и. A lg o r ith m e n th e o r ie ,

Weissig, 1975.

Rasiowa, H. [73]: On cu+ -valued algorithmic logic and related problems. Supplement to
Proc. S y m p . a n d S u m m e r S c h o o l on M F C S , High Tatras, Czehoslovakia, 1973.
Also in: c c P A S R e p . 1 5 0 , 1974.

Rasiowa, H. [77]: Algorithmic logic. P R A C E IP ! P A N . IC S P A S R e p 2 8 1 , Warsaw 1977.

Rattray, С. M. I. [75]: Structure Algébrique, Compilation et Programmes. U niv. Sei. G re n o b le .

Lab. I n fo r m a tiq u e . Parts I and II. Part II appeared in: P roc . E u ro c o m p . C on f.

S o ftw . E ng. ONLINE, London, 1976.

Rattray, C. M. I. - Rus, T. [77]: Hash-hierarchy, a matehematical device for computer
system modelling. Proc. 1 s t I n t . S y m p . o n M a th . M o d e llin g , Missouri, 1977, 1-15.

Redyko, V. N. [73]: Definitorial algebras and algebra of languages. K y b e r n e t ic a 4 , 1973.
(In Russian)

Redyko, V. N. [76]: Theoretic definitorial aspects of languages. In: P r o b le m s o f C y b e rn e tic s

31, Nauka, 1976. (In Russian).

Reichel, H. [78]: Fundamentals of an algebraic theory of computation (summary). Preprint.
Banach C e n te r o f M a th ., Warsaw, 1978.

Reichel, H. [78a]: Limit-colimit doctrines in computer science. Algebra and Applications,
Banach Center semester, 1978. To appear in B an ach C e n te r P u b lica tio n s .

Reichel, H. [78b]: Algebraic specifications of abstract data types. Algebra and Applications
Banach Center Semester, 1978. To appear in B an ach C e n te r P u b lic a tio n s .

Reiterman, J. [77]: A more categorical model of universal algebra, in: F u n d a m e n ta ls on

C o m p u te r S c ie n c e , LNCS 56, 1977, 308-314.

Reynolds, J. [72]: Notes on a lattice-theoretic approach to the theory of computation.
S y s te m s a n d I n fo r m a tio n S c ie n c e D e p t., S y r a c u s e U n iv ., Syracuse, New York, 1972.

Reynolds, J. [77]: Semantics of Domain of Flow Diagrams. J A C M 2 4 , 3, 1977,
484-503.

Ricci, G. [73]: Cascades o f tree automata and computations in universal algebras. M ath . S y s t .

T h eory 7, 1973, 201-218.

Rine, D. C. [71]: A Categorical Charachterization of General Automata. I n fo r m a tio n a n d

C o n tro l 1 9 , 1971,30^10.

- 277 -

Rine, D. C. [74]: A category theory for programming languages. M a th e m a tic a l S y s te m s

T h e o ry 7, 4, 1974, 304-317.

de Roever, W. P. [74]: Operational mathematical and axiomatized semantics for recursive
procedures and data structures. M a th e m a tic a l C e n tr e R e p o r t ID Ц 7 4 , 1974.

Rosenberg, A. L. [76]: Universal data objects are trees. IB M R e s . R ep . R C -5 8 7 2 , Febr. 1976.

Roussel, P. [75]: PROLOG: Manual de reference et d’utilisation. Groupe d’intelligence
Artificielle, Marsseille-Luminy, Sept. 1975.

Rus, T. [76]: Context-free algebra: A Mathematical device for compiler specification. LNCS
45, Springer Veri., 1976.

Sain, I. [78]: On model theoretic and universal algebraic methods in semantics of computation.
Preprint. Budapest, 1978. (In Hungarian).

Salwicki, A. : On the equivalence of FS-expressions and programs. B u ll. A c a d . P o lon .

Sei. S er. M a th . A s tr o n o m . P h ys. 18 , 275-278.

Scala, H. J. [71]: Graphschemata und ihre Eigenschaften eine Anwendung der Modelltheorie.
A n g e w a n d te I n fo r m a tik , 1, 1971.

Schönfeld, W. [78]: Application of relation algebras in computer science. Univ. Stuttgart.
Also in: Equations in finite relation algebras. N o t. A m e r . M a th . S o c . 2 4 ,

1977. A-254.

Scott, D. [71]: The lattice of flow diagrams. S y m p . o n S e m a n tic s o f A lg o r i th m ic L anguages,

ed. E. Engeler. LNCS 188, New York, Springer Veri., 1971,31 1-366.

Scott, D. [72]: Mathematical concepts in programming language semantics, A F I P S C on f. P roc.

4 0 , 1972, 225-234.

Scott, D. [75]: Combinatorics and classes, lambdacalculusand computer science theory. P roc.

R o m e S y m p . LNCS 37, Berlin, Springer Veri., 1975, 1-26.

Scott, D. [76]: Data types as lattices. S IA M J. o n C o m p u ta b i l i ty , 1976.

Scott, D. [77]: Logic and programming languages. C A C M 2 0 , 9, 1977, 634-641.

Scott, D. [app]: Lattice-theoretic models for the lambda-calculus. (To appear).

Scott, D. — Strachey, C. [71]: Toward a mathematical semantic for computer languages.
P roc. S y m p . o n C o m p u te r s a n d A u to m a ta , Polytechnic Inst, of Brooklyn, 27,
1971, 19-46.

Segerberg, K. [77]: Completeness Theorem in Modal Logic of Programs. N o t. A m e r . M ath .

S o c . 1977. A-552.

- 278 -

Shapard, C. D. [69]: Languages in general algebras. P roc . A C M S y m p . o n T h e o r y o f C o m p u tin g ,

1969, 155-163.

Sheperdson, J. C. [75]: Computation over abstract structures: Serial and parallel procedures and
Friedman’s effective definitional schemes. L o g ic C oll. ’ 73, ed. H. E. Rose, J. C.
Sheperdson, Amsterdam, North-Holland, 1975, 445-513.

Skornyakov, L. A. [74]: On Algebraic Automata. K y b e r n e t ic a 2 , 1974, No 31-34.

Smyth, M. B. [76a]: Category-Theoretic Solution of Recursive Domain Equations. T h e o ry o f

C o m p u ta t io n R e p . N o 1 4 , D e p t , o f C o m p u te r S c ie n c e , Univ. o f W arw ick , 1976.
Also in: J. o f C o m p . S y s te m s Sei. 16 , 1, 1978.

Smyth, M. B. [76b]: Powerdomains. T h e o r y o f C o m p u ta t io n R e p o r t N o 1 2 , D e p t , o f C o m p u te r

S c ien ce , U n iv . o f W arw ick , 1976. Also in: M a th e m a tic a l F o u n d a tio n s o f C o m p u te r

S c ien ce , LNCS 45, 1976, 537-543.

Steinby, M [77]: On algebras as tree automata. U n iversa l a lg eb ra s , C o llo q u ia M a th e m a tic a

Ján os B o ly a i S o c ie ta tis , North-Holland, 1977. (To appear.)

Steinby, M. [77a]: On the structure and realizations of tree automata. S e c o n d C oll, su r le s

A rb re s en A lg è b r e e t en P r o g ra m m a tio n , Lille, 1977.

Strachey, C. [72]: Varieties of programming Languages. P ro c . In te rn a tio n a l C o m p u tin g S y m p .,

Venice, 1972, 222-233.

Szabolcsi, A. [78]: Modeltheoretic treatement of the semantics of natural languages. Theses.
Budapest, 1978. (In Hungarian).

Thatcher, J. W. [67]: Characterizing derivation trees of context-free grammars through a genera
lization of finite automata theory. J. C o m p u t a n d S y s t. Sei. 1, 1967, 317-322.

Thatcher, J. W. [70]: Generalized2 sequential machine maps. J. C o m p u t a n d S y s t . Sei. 4 ,

1970. 339-367.

Thatcher, J. W. [73]: Tree automata — an informal survey. C u rre n ts in C o m p u tin g , ed. A. V.
Aho, New Jersey, Prentice Hall, 1973.

Thatcher, J. W. — Wagner, E. G. — Wright, J. B. [76]: Specification of abstract data types using
conditional axioms. IB M R e s . R e p . R C -6 2 1 4 , 1976, 1-17.

Thatcher, J. W. - Wagner, E.G. - Wright, J. B. [78]: Data type specification: parametrization
and the power of specification techniques. P ro c . o f 1 0 th S I G A C T A n n u a l S y m p .

on T h e o ry o f C o m p u tin g , 1978.

Thatcher, J. W. - Wright, J. B. [68]: Generalized finite automata with an application on a
decision problem of second-order logic .M a th . S y s t . Th. 2 , 1968, 57-81.

- 2 7 9 -

Theoretical Computer Science. Darmstadt, March 1977. Ed. H. Tzschach, H. Waldschmidt,
H. K. G. Walter. LNCS 48, 1977.

Thomason, R. H. [74]: oed/Formal philosophy. Selected papers of Richard Montague, Yale
Univ. Press, 1974.

Tiuryn, J. [77a]: Fixed-points and algebras with infinitely long expressions. P. 1. Regular
algebras. P R A C E IP I P A N . IC S P A S R E P O R T S 2 8 4 , Warsawa, 1977. Also in:
SLNCS 53, 513-523.

Tiuryn, J. [77b]: Fixed Points and Algebras with Infinitely Long Expressions, II, in:
F u n d a m e n ta ls C o m p u te r S c ie n c e , LNCS 56, 1977, 332-340. Also in:
IC S P A S R e p o r t s 3 1 1 , Warsawa, 1978.

Tiuryn, J. [app]: Ordered regular algebras and rational algebraic theories (To appear.)

Tiuryn, J. [78]: Unique fixed points as least fixed points. In: S c h r if te r z . I n fo r m a tic u.

A n g e w . M ath . R h e in isc h -W e s tfa lisc h e Techn . H o c h sc h u le , A a c h e n , Bericht No 49.

Tiuryn, J. [79]: Continuity problems in the power-set algebra of finite trees. 4 th W o rk sh o p o n

T rees in A lg e b r a a n d P rogr., Lille, 1979.

Tiuryn, J. [79a]: Connection between regular algebras and rational algebraic theories. P roc.

2 n d W o rk sh o p c a te g o r ic a l a n d a lgebra ic m e th o d s in c o m p . sei. a n d s y s te m

th e o ry , Dortmund.

E. Tóth, P. [76]: Horn logic and its applications in computer science. Master thesis.
Eötvös L. Univ., Budapest, 1976. (In Hungarian).

E. Tóth, P. [78]: Intensional Logic of Actions. CL & C L X II , 1978. 31-45.

Trees in Algebra and Programming. Conf. in Lille. Febr. 1979. (Proc. to appear.)

Trnková, V. [74]: On minimal realizations of behaviour maps in catégorial automata theory.
C o m m u n . M a th . Univ. C a ro lin a e 1 5 , 1975, 555-566.

Trnková, V. [75a]: Minimal realizations for finite sets in categorical automata theory. C o m m u n .

M ath . Univ. C a ro lin a e 16 , 1975, 21-35.

Trnková, V. [75b]: Automata and categories, in: M a th e m a tic a l F o u n d a tio n s o f C o m p u te r

S c ien ce , LNCS 32, 1975, 138-152.

Trnková, V. [77]: Relational Automata in a Category and their Languages, in: F u n d a m e n ta ls

o n C o m p u te r S c ie n c e , LNCS 56, 1977, 340-358.

Trnková, V. [app]: General theory of relational automata. To appear in: F u n d a m e n ta

In fo rm a tic a e .

- 2 8 0 -

Trnková, A. - Adámek, J. [77]: Minimal realizations is not universal. Technische Univ.
Dresden, Sektion Math. V o r trä g e z u r A u to m a te n th e o r ie 21/1977. (To appear.)

%

Trnková, V. - Adámek, J. [78]: Analyses of languages acepted by varietor machines in category.
Univ. Carol.

Trnková, V. - Adámek, J. - Koubek, V. — Reiterman, J. [75]: Free algebras, input processes
and free monads. C o m m u n . M a th . U niv. C a ro lin a e 16 , 1975, 339-351.

Trnková, V. et al [79]: On languages recognisable in varieties of universal algebras and tree-
-group functors. Charles Univ. Prague. (Manuscript.)

Tseytlin, G. E. [74]: On Criteria of Infinite Generation in Universal Algebras, K y b e r n e t ic a 3,

1 9 7 4 , 46-51.

Tseytlin, G. E. [74a]: Homogeneous structures and modified Post Systems. P ro c . In t. S y m p .

9 on D is c r e te S y s te m s I F A C -7 4 , Riga, 1974, 239-247.

Tseytlin, G. E. [75]: The theory of the modified Post Algebras and multidimensional automata
structures. MFCS, Springer Veri., 1975.

Tucker, J. V. [78]: Computing in algebraic systems. Math. Inst. Univ. Oslo. 1978. Preprint.

Turner, R. [75]: An algebraic theory of formal languages. MFCS, ed. I. Becvar, Springer
Veri., 1975.

Turner, R. [78]: An algebraic theory of formal languages. Extended version. Preprint.
Dept. Comp. Sei. Univ. Essex, Colchester, England. 1978.

Vainstein, F. S. — Osentinskij, N. I. [77]: On the theory of complex systems. P ro g ra m iro va n ie

2, 1977, 76-84.

Vershinin, K. P. [73]: On the connection between formal languages to describe mathematical
theories and axiomatic systems of the set theory. K y b e r n e t ic a , (Kiev) 4, 1973.
(In Russian)

Vershinin, K. P. [75]: On the notion o f text correctness in the language TL, in: M a th e m a tic a l

a s p e c ts o f th e th e o ry o f in te l l ig e n t m a ch in es . Kiev, 1975. 61-70. (In Russian)

Wagner, E. G. [71a]: Languages for defining sets in arbitrary algebras. P ro c . 1 2 th IE E E S y m p .

on S w i tc h in g a n d A u to m a ta T h e o ry , East Lansing, Mich., 1971.

Wagner, E. G. [71b]: An algebraic theory of recursive definitions and Thoery of Computing.
Shaker Heights, Ohio, 1971.

Wagner, E. G. [73]: From algebras to programming languages. P roc. 5 th A C M S y m p . on

T h e o ry o f C o m p u tin g , Austin, Texas, 1973.

- 281 -

Wagner, E. G. [74]: Notes on categories, algebras and programming languages. From a course
of lectures given at Queen Mary College, 1974.

Wagner, E. G. - Thatcher, J. W. - Wright, J. B. [77]: Free continuous theories. IB M Th.

W atson R e sea rch C e n te r R C -6 9 0 6 , 1 9 7 7 .

Wagner, E. G. - Thatcher, J. W. - Wright, J. B. [78]: Programming Languages as Mathematical
Objects. To appear in P roc. M F C S , 1978, 1-25.

Wagner, E. G. - Wright, J. B. — Goguen, J. A. - Thatcher, J. W. [76]: Some fundamentals
of order-algebraic semantics. IB M R esea rch R e p o r t R C 6 0 2 0 , June 1976. Also in:
P roc. o f F if th In t. S y m p . o n M a th .F o u n d .o f C o m p . S e i., Gdansk, Poland LNCS 45,
153-168.

Wand, M. [72]: Closure under program schemes and reflective subcategories. MIT, Artificial
Intelligence Lab. Memo, 1972.

Wand, M. [75a]: Fixed-point constructions in orderenriched categories. T ech n . R e p . 2 3 ,

C o m p u te r S c ie n c e D e p t . , In d ia n a U n iv ., Apr. 1975. To appear in T h eor. C o m p u t.

Sei. 1 9 7 9 .

Wand, M. [75b]: An algebraic formulation of the Chomsky hierarchy, in: C a te g o r y T h eo ry

A p p l ie d to C o m p u ta tio n a n d C o n tro l, LNCS 25, 1975, 209-214.

Wand, M. [77]: Final Algebra Semantics and Data Type Extensions. TR 6 5 , C o m p u te r Sei.

D e p t. In d ia n a U niv., 1977.

Warren, D. H. D. [77]: Logic Programming and Compiler Writing. R e p o r t N o 4 4 . D e p t, o f

A r tif ic ia l In te llig e n c e , U niv. o f E d in b u rg h , 1977.

Weyrauch, R. W. - Milner, R. [72]: Program correctness in a mechanized logic. P roc. o f th e

f i r s t U S A -J A P A N C o m p u te r C o n fe re n c e , 1972, 384-390.

Winkowski, J. [78]: An algebraic approach to non-sequential computations. IC S P A S R e p o r t

3 1 2 , Warsaw, 1978.

Wiweger, A. [73]: On coproducts of automata. B ull. A ca d . P o lo n . Sei. 2 1 , 1973, 753-758.

Wojdylo, B. [77]: Many-sorted algebras and their application in computer science. Institute of
Mathematics, Nicholas Copernicus Univ., Torun, Poland.

Working Conference on Formal Description of Programming Concepts. Preprints of technical
papers. IFIP, 1977, Saint Andrews, New Brunswick.

Wright, J. B. — Thatcher, J. W. - Wagner, E. G. - Goguen, J. A. [76]: Rational algebraic
theories and fixed-point solutions, in: P roc. IE E E 1 7 th S y m p . o n F ou n d , o f

C o m p . S e i., Houston, Texas, 1976, 147-158.

- 282 -

Wright, J. B. — Wagner, E. G. — Thatcher, J. W. [77]: A uniform approach to inductive
posets and inductive closure. IB M R es. R e p . R C -6 8 1 7 , 1977, 1-20.

Zhuravlev, Y.J. [77] [78]: Correct algebras on the sets of non-correct heuristic algorithms.
I. II. III. K y b e r n e t ic a (Kiev) No 4, 6, 1977; 1978, 2, (In Russian).

Zilles, S. N. [74]: Algebraic Specifications of Data Types. C o m p u ta t io n S tr u c tu r e s G ro u p

M e m o 1 1 9 , M IT , Cambridge, Mass., 1974.

Zilles , S. N. [75]: An introduction to data algebras. Working draft paper. IBM Research, San
Jose, Sept. 1975.

Yeh, R.T. [71]: Some structural properties of generalized automata and algebras. M a th e m a tic a l

S y s te m s T h e o r y 5 , 1971, 306-318.

^ 'Л

	A. FORMAL LANGUAGES��������������������������
	1. E. Farkas: Comparison of some methods for the definition of static semantics��
	2. W. Hesse: A correspondence between W-grammars and formal language description
	3. E. Knuth–Gy. Győri: Paths and traces��

	B. LINGUISTICS���������������������
	4. T. Gergely–A. Szabolcsi: How to do things with model theoretic semantics��
	5. I. Kenesei: Transformations of generative grammar: the rise of trace theory���
	6. F. Papp: Machines in the service of the hungarian substantive as a machine

	C. SOFTWARE METHODOLOGY������������������������������
	7. P. Degario–F. Sirovich: Inductive generalization and proofs of function properties��
	8. M. H. van Emden: Relational programming illustrated by a program for the game of mastermind���
	9. R. Fiby–J. Sokol–M. Sudolsky: Efficient resolution theorem proving in the propositional logic���
	10. T. Legendi: A 2d transition function definition language for a subsystem of the cellas cellular processor simulation language

	D. MATHEMATICAL SEMANTICS��������������������������������
	11. I. Sain: There are general rules for specifying semantics: Observations of Abstract Model Theory
	12. A. Hajnal–I. Németi: Applications of universal algebra, model theory, and categories in computer science (Survey and Bibliography)���

	Oldalszámok������������������
	_1���������
	_2���������
	_3���������
	_4���������
	1��������
	2��������
	3��������
	4��������
	5��������
	6��������
	6_1����������
	6_2����������
	7��������
	8��������
	9��������
	10���������
	11���������
	12���������
	13���������
	14���������
	15���������
	16���������
	17���������
	18���������
	19���������
	20���������
	21���������
	22���������
	23���������
	24���������
	25���������
	26���������
	27���������
	28���������
	29���������
	30���������
	31���������
	32���������
	33���������
	34���������
	35���������
	36���������
	39���������
	40���������
	41���������
	42���������
	42_1�����������
	42_2�����������
	43���������
	44���������
	45���������
	46���������
	47���������
	48���������
	49���������
	50���������
	51���������
	52���������
	53���������
	54���������
	55���������
	56���������
	57���������
	58���������
	59���������
	60���������
	61���������
	62���������
	63���������
	64���������
	65���������
	66���������
	67���������
	68���������
	69���������
	70���������
	71���������
	72���������
	73���������
	74���������
	75���������
	76���������
	77���������
	78���������
	79���������
	80���������
	81���������
	82���������
	83���������
	84���������
	85���������
	86���������
	87���������
	88���������
	89���������
	90���������
	91���������
	92���������
	93���������
	94���������
	95���������
	96���������
	97���������
	98���������
	99���������
	100����������
	100_1������������
	100_2������������
	100_3������������
	100_4������������
	101����������
	102����������
	103����������
	104����������
	105����������
	106����������
	107����������
	108����������
	109����������
	110����������
	111����������
	112����������
	113����������
	114����������
	115����������
	116����������
	117����������
	118����������
	119����������
	120����������
	121����������
	122����������
	123����������
	124����������
	125����������
	126����������
	127����������
	128����������
	129����������
	130����������
	131����������
	132����������
	133����������
	134����������
	135����������
	136����������
	137����������
	138����������
	139����������
	140����������
	141����������
	142����������
	143����������
	144����������
	145����������
	146����������
	147����������
	148����������
	149����������
	150����������
	151����������
	152����������
	153����������
	154����������
	155����������
	156����������
	157����������
	158����������
	159����������
	160����������
	161����������
	162����������
	163����������
	164����������
	165����������
	166����������
	167����������
	168����������
	169����������
	170����������
	171����������
	172����������
	173����������
	174����������
	175����������
	176����������
	177����������
	178����������
	179����������
	180����������
	181����������
	182����������
	183����������
	184����������
	185����������
	186����������
	187����������
	188����������
	189����������
	190����������
	191����������
	192����������
	193����������
	194����������
	194_1������������
	194_2������������
	195����������
	196����������
	197����������
	198����������
	199����������
	200����������
	201����������
	202����������
	203����������
	204����������
	205����������
	206����������
	207����������
	208����������
	209����������
	210����������
	211����������
	212����������
	213����������
	214����������
	215����������
	216����������
	217����������
	218����������
	219����������
	220����������
	221����������
	222����������
	223����������
	224����������
	225����������
	226����������
	227����������
	228����������
	229����������
	230����������
	231����������
	232����������
	233����������
	234����������
	235����������
	236����������
	237����������
	238����������
	239����������
	240����������
	241����������
	242����������
	243����������
	244����������
	245����������
	246����������
	247����������
	248����������
	249����������
	250����������
	251����������
	252����������
	253����������
	254����������
	255����������
	256����������
	257����������
	258����������
	259����������
	260����������
	261����������
	262����������
	263����������
	264����������
	265����������
	266����������
	267����������
	268����������
	269����������
	270����������
	271����������
	272����������
	273����������
	274����������
	275����������
	276����������
	277����������
	278����������
	279����������
	280����������
	281����������
	282����������
	283����������
	284����������

