

CLECL

ERRATA

to CL\&CL Vol.X.

Page	Line	Calserect		
6	9	"Each command is expended		
6	21	sense if trying all		"Each command is expanded
:---				
9				

Computer and Automation
 Hungarian Academy of Sciences

COMPUTATIONAL LINGUISTICS

AND

COMPUTER LANGUAGES
X.

```
Editor board: Dr DÖMÖLКI Bálint
    FARKAS Ernő (editor)
    Dr KIEFER Ferenc (editor)
    Dr LEGENDI Tamás (editor)
    Dr MAKAI Árpád
    Dr PAPP Ferenc
    Dr SZÉPE György
    Dr VARGA Dénes
```

Chairman of the editorial board:
Prof Dr FREY Tamás

Technical editor:
HALÁSZ Zsuzsa
Distributor for:
Albania, Bulgaria, China, Cuba, Czechoslovakia, German Democratic Republic, Korean People's Rebublic, Mongolia, Poland, Roumania, U.S.S.R., People's
Republic of Viet-Nam, Yugoslavia

K ULTURA
Hungarian Trading Co. for Books and Newspapers
1389 Budapest,
P.O.B. 149, Hungary

For all other countries:
JOHN BENJAMINS B.V.
Periodical Trade
Amsteldijk 44
AMSTERDAM (Holland)

Responsible Publisher:

Prof Dr VÁMOS Tibor
director of the Computer and Automation
Institute, Hungarian Academy of Sciences

ISBN 9633110181
Országos Müszaki Könyvtár és Dokumentációs Központ házi sokszorositója, F.v.: Janoch Gyula

CONTENTS

J.FABOK: BACKTRACK FORTRAN IMPLEMENTED WITH THE HELP OF THE MACRO PROCESSOR MP/O 5
E.FARKAS: A COMPILER ORIENTED SYNTAX DEFINITION.. 25
Mrs M.LUGOSI PAP: ONE MODEL OF THE HUNGARIAN VERB SYNTHESIS 39
G.FAY: AN ALGORITHM FOR FINITE G̣ALOIS-CONNECTIONS 99
G.HELL: MECHANICAL ANALYSIS OF HUNGARIAN WORD FORMS 125
G.FAY, Mrs D.V.TAKACS: FINITE GEOMETRICAL DATA BANK BY GALOIS ALGORITHM 135
\square

BACKTRACK FORTRAN IMPLEMENTED WITH THE HELP OF THE MACRO PROCESSOR MP/O

Julianna FABOK
Computer and Automation Institute, Hungarian Academy of Sciences Budapest, Hungary

INTRODUCTION

Backtrack programming is a technique useful in writing programs "for solving problems expressible as a set of possible alternatives, called a goal tree, where not all of the alternatives will lead to the desired goal. At each branching point in the tree, a decision must be made as to which alternative to try next". /D.C.Smith and H.J.Enea/ If a wrong branch is tried, the forward searching fails, and the program returns to the previous decision point and selects another alternative.

The first exact theoretical formulation of backtrack programming was made by Golomb,S.W. and Baumert, L.D. in 1965. Since then a lot of languages with backtrack features has been implemented. Some of them are created by adding some backtrack instructions to the existing languages, others are totally new ones.

There are two different aspects of backtrack programming. They are different from each other in the method of realization of the return to the previous decision point. One of them is the "sequential backtracking". In this case returning is made step by step, statement by statement, by undoing all the effects of the actual statement. Reaching the previous decision point, everything will be reset to its original
condition. The other aspect of backtrack programming is "state backtracking".

It means that in every decision point the state of the machine is saved /the current values of all variables including the system variables/. When a failure occurs, the state of the machine in the previous decision point is restored.

Our work is in close connection with the sequential aspect of backtracking. The fundamental work of Floyd,R. was presented in 1967. He says: "Each command is expended into one or more commands, some of which carry out the effect of the original command in the nondeterministic algorithm, and which also stack information required to reserve the effect of the command when backtracking is needed, while others carry out backtracking by undoing all the effects of the first set". He also presented the transformation rules, how to convert a flowchart describing a backtrack algorithm into a conventional one.

We propose to use the phrase "backtrack algorithm" instead of the phrase "nondeterministic algorithm", since the backtracking algorithms are nondeterministic in the sense of having "free will", but they are deterministic in the sense if trying all the possible alternatives.

Cohen, J. and Carton,E. extended the FORTRAN language by adding some backtrack instructions to it. They made a syntax-directed translator, which converts a program written in backtrack FORTRAN into another one, written in standard FORTRAN. They presented the exact description of the syntax of this extension in BNF.

The same backtrack instructions are used by us, but instead of writing a translator, a macro processor was used to implement the backtrack FORTRAN. The macro processor MP/O has been
developed in our Institute.

In this paper we survey the transformation rules by Floyd and the exact specification of the adopted backtrack instructions.

The most important characteristics of the macro processor MP/O and some problems of the implementation will be discussed, too.

Finally an example will be presented, how to use the backtrack FORTRAN to solve problems in the field of artificial intelligence.

1. FLOYD'S TRANSFORMATION RULES

Backtrack languages are means "to simplify the design of a backtracking algorithm by allowing considerations of program book-keeping required for backtracking to be ignored" /Floyd/ To do this we use stacks and flags. More exactly we use one flag T and three stacks: M /memory/, W/write/, R /read/. The stack M is used to store the values of the variables as the process of the execution is going on. The stack W contains the components of the result. It is printed only if a successful termination is reached. The stack R serves to preserve the input data. Two pointers "max" and "min" are introduced. The "max" pointer keeps track of the last element actually read, the "min" pointer points to the element that should be considered when the next backtrack read command is activated. The flag T is used to make the paths of execution different in case of fork.

Fig.l shows the transformation rules.

Only a few of them need explanations, the others are selfevident.

Fig. 1.

In the case of standard instructions /assignment (a), conditional branch (b), fork (c), start (d)/ we need tools to preserve and to reset the former values of the variables and to keep track the path of the execution. The new backtrack command units are CHOICE, SUCCESS and FAILURE as well as backtrack read and backtrack write. The $X=C H O I C E$ (f) command (e) means that after the previous value of X has been stacked, the forward part is executed with value $X=f$. If backtracking is needed it is repeated with a decreased value of $X(X=X-1)$ until it reaches the value O. In the latter case, after the original value of X has been restored, backtracking continues to the command which precedes the CHOICE command. The CHOICE command is the most important backtrack command. With its help you can try all the possible alternatives at a decision point, if X is the serial number /or index/ of the alternatives.

The SUCCESS command (f) results the contents of the stack W to be printed. The programmer has two possibilities: his program either stops or proceeds in its backtracking.

The FAILURE command (g) shows that backtracking is necessary. In the case of backtrack write (h) the value of an output variable is stacked in W in the forward part and unstacked in the backtracking one.

The most complicated command is the backtrack read (i). We have mentioned before the function of the pointers "max" and "min". If they coincide with each other, a real read operation is needed.

Otherwise we can get the desirable value from the stack R /"min" pointer/. When backtracking occurs the previously read value will be restored from the stack R. These rules are t totally mechanical, so it is very easy to add them to an existing programming language.

2. THE SYNTAX OF THE ADOPTED BACKTRACK INSTRUCTION

In this part, the exact syntax of the instructions allowed in backtrack FORTRAN is described in BNF. This specification was published by Cohen and Carton in 1974. It is as follows:

```
<backtrack program>::=
    <sequence of normal instructions>
    START
    <sequence of standard or backtrack instructions>
    END
<backtrack instructions>::=<choice>|<success>|<failure>|
    |<backtrack write>|<backtrack read>
<choice>::= <variable>=CHOICE(<arithm.exprz)
<success>::= SUCCESS|SUCCESS QUIT
<failure>::= FAILURE
<backtrack write>::= OUT<variable>|OUT<constant>
<backtrack read>::= IN<variable>|IN<constant>
<standard instruction>::=<assignment>| <go-to>|<if>
<assignment>::=<variable>=<arithm.expr.><inverse>
<inverse>::= INV<arithm.expr.>|INV NIL|empty
<go-to>::= GOTO<label>
<if>::= IF(<boolean expr.>)<simple statement>
<simple statement>::=<go-to>|<success>|<failure>
```

Any <standard instruction> or <backtrack instruction> may be preceded by a FORTRAN numeric <label>. A <variable> can be a subscripted or simple variable.

The undefined concepts are used with their usual meanings /arithm. expr., boolean expr., variable, constant, label, etc./.

All the variables are assumed to be INTEGER.

The instruction SUCCESS QUIT must be used if we are intrested in finding only one solution. Using the instruction SUCCESS,
we shall find all the existing solutions.

In this implementation we have means to forbid stacking if it is not necessary. We may write INV NIL after an assignment command to order the value of the variable not to be stacked and unstacked at all. Writing an arithmetic expression after INV, the value of the variable will not be stacked in the forward part of execution, but the value of the arithm. expression will be assigned to the variable in the backtracking direction.

3. THE MOST IMPORTANT CHARACTERISTICS OF THE MACRO PROCESSOR MP / O

Sequential backtrack is specially suitable to be implemented with the help of a macro processor, for it can be defined exactly how a backtrack command expands to one or more instructions. The macro processor MP/O has been developed by our colleague, FARKAS,E. with the aim of language extension and language translation.

Here we want to survey its most important features which are particularly suitable for our purposes.
3.1 The MP/O is a text macro processor. It means that outside of macro calls no syntactic analysis of the source text is performed.
3.2 It works on larger text units. A unit is one line. Patterns and macro calls must occupy exetly one line of the text. One line in the source text is replaced by one or more lines.
3.3 The method of identifying the macros to be expanded is
pattern matching. That is, each macro has been associated with a pattern which consists of a sequence of fixed strings, so-called "keywords", interspersed with arbitrary strings, i.e. parameters. A macro is identified by the occurrence of its pattern. This feature is very useful for us for the recognition of the backtrack FORTRAN commands is totally automatic. We must only specify the macro bodies.
3.4 Macro variables can be used. A variable with the value of type INTEGER belongs to every letter of the alphabet. We have also facilities to perform certain restricted macro-time arithmetic with these variables. They are useful for generating constants, for example FORTRAN numeric labels and other references and as flags for switches.
3.5 Nested macros can be used. Both macro definitions and macro calls can be included in a macro definition. These are evaluated only at the call of the outer macro.
3.6 Every macro has a macro number and a successor. It means that macro definitions form one or more chains, which are ordered sets of macro definitions. These chains may be linked to one an other, that is one or more macros can have the same successor.

A macro call being evaluated, it will be compared only with the patterns belonging to the chain which is actually assigned. It is a tool to make the process of evaluating more efficient.
3.7 The macro processor MP/O has macro-time facilities, too. They serve for giving instructions to the macro processor itself. As a result of their effects, the inner state of the macro processor will be changed. The macro-time facilities of the MP/O are:
3.7.1 Macro-time variables. We have mentioned them before. The restricted arithmetic operations are:

+ addition
- substraction
* multiplacation
/ integer division
: remaindering

An arithmetic expression may consist of at most two variables with an operator between them. Of course, a constant may stand instead of any variable
3.7.2 Macro definitions. They have four important parts. The macro head contains the macro number and the number of the successor. /first line/

The pattern consists of the keywords and the formal parameters. /second line/

The body is the text to be copied.

Macro tail: END OF MACRO. /last line/
It is only the body that midy contain macro calls or macro-time statements.
3.7.3 Statements for control of matching. They are tools
to assign the chain of macro definitions which takes part in the process of matching. /see 3.6/

There are two types of them. A chain may be assigned permanently by the command BEGIN AT. The command MATCH WITH results a temporary assignment which is valid during the evaluation of only one line.
3.7.4 Statements to transfer control. They give possibilities to skip one or more lines. There are conditional and unconditional SKIP commands. The condition is the value of the given macro variable being positive, zero or negative.

3.7.5 Statements to assign the input device

4. SOME REMARKS ON THE IMPLEMENTATION

This part deals with the most interesting problems of how to use this macro processor to implement backtrack FORTRAN. We shall discuss three important problems, which are:
the question of memorization
the generation of reference numbers
the use of the chains of macro definitions.

4.1 The macro processor "remembers"

We can formulate the problem of the implementation as follows:
A backtrack instruction has to be replaced by a forward and a backward part, but they are not next to each other. The structure of the generated new program can be seen in Fig. 3.
backtrack program
$K 1$
$K 2$
the generated program

$$
\begin{aligned}
& \mathrm{Kl}+ \\
& \mathrm{K} 2+ \\
& \mathrm{K} 3+ \\
& \mathrm{K} 3- \\
& \mathrm{K} 2- \\
& \mathrm{Kl}-
\end{aligned}
$$

```
Where Kl, K2, K3 are backtrack commands
    Kl+, K2+, K3+ are their forward parts in order
    Kl-, K2-, K3- are their backward parts in
        order
```


Fig. 3

The macro processor can directly generate the forward parts. Our task is to provide for the memorization of backward parts by the macro processor. We do this with the help of macro definitions. On processing every backtrack instruction, we define a back macro containing the backward part of this command and the macro call of the back macro defined on processing the previous backtrack instruction. The first phase of the work of the macro processor is to evaluate the lines of the source text line by line, to generate their forward parts and to define the corresponding back macros if it is necessary. The lines which are not backtrack commands will only be copied without any modification. The macro calls of the back macros defined in the first phase will take place only after the processing of the last line of the backtrack program /END/. This is the second phase of the work of the macro processor. In this phase the nested back macro calls are evaluated.

The number of the levels is equal to the number of the backtrack commands in the program.

For example we present the macro corresponding to the backtrack instruction <variable>=<arithm.expr.> INV
<arithm.expr.>. The question-marks in the pattern mark the places of the parameters. These parameters are referred in the body by their serial number after an upward arrow. The macro variables are referred similarly. The macro-time statements begin with the "warning" mark: \&. The pattern of every back macro is the same /()/, but their macro numbers are different and they are linked to the same chain of macro definitions. The macro variable Q contains the serial number of the actual back macro. It increases in the first phase of processing and decreases during the second one.
macro definition

\&MACRO NO 7 NEXT 10	macro head; macro number: 7, the macro number of the successor: 10;
? = ? INV?	pattern;
$\begin{aligned} & \text { \&MATCH WITH } 1\} \\ & \uparrow l=\uparrow 2 \end{aligned}$	forward part without modification;
$\mathrm{P}=\uparrow \mathrm{Q}+1$	P is an auxiliary variable;
MACRO NO $\uparrow P$ NEXT $\uparrow Q$	generating a new back macro definition with increased macro number;
? ()	common pattern for back macros;
	backward part of this command;
\&Q=个Q-1	the value of Q decreases;
```&MATCH WITH 个Q ()```	it calls the previous back macro;
\&END OF MACRO	back macro ends;
$\& Q=\uparrow Q+1$	the value of Q increases;
\&END OF MACRO	the whole macro ends;

### 4.2 The generation of reference numbers

Sometimes we must set up connections between the forward and backward parts of an instruction which are far away from each other. Macro variables are used to do this. There are two important ways of using them. We will call them bound and unbound usage.
4.2.1 The unbound usage is when both, the referred label and the reference are generated by the macro processor. In this case:

- the label may be an arbitrary number
- it must not occur so far.

To satisfy these conditions we use a macro variable /Y/ pointing to the value of the actual numeric label. It decreases from a fixed value $X$ during the first phase of processing and decreases in the second one.

For example we present the macro corresponding to the command FAILURE;
\&macro definition

MACRO NO 10 NEXT 5
?FAILURE
\&MATCH WITH 1
GOTO $\uparrow$ Y
$\& \mathrm{P}=\uparrow \mathrm{Q}+1$
\&MACRO NO $\uparrow \mathrm{P}$ NEXT $\uparrow \mathrm{Q}$
?()
$\& Y=\uparrow Y+1$
$\& Q=\uparrow Q-1$
explanations
macro head; macro number: 10, macro number of the successor: 5;
pattern;
forward part;
auxiliary variable;
back macro definition begins;
common pattern for back macros;
macro variables are modified;
\&macro definition
\&MATCH WITH 1
†Y CONTINUE
\&MATCH WITH $\uparrow Q$
()
\&END OF MACRO
$\& Y=\uparrow Y-1$
$\& Q=\uparrow Q+1$
\& END OF MACRO
explanations
backward part;
call of the previous back macro:
back macro ends;
macro variables are modified
the whole macro ends;
4.2.2 The bound usage is when either the reference or the referred label are fixed by the source text. The simplest example is the GOTO statement.
backtrack program


In this situation the backward part of the command $N$ CONTINUE refers to the backpart of the command GOTO N. But we do not know where the statement GOTO N and its backpart are. For this reason we mark the backpart of the command GOTO N with a label with value $\mathrm{X}+\mathrm{N}$. X is a fixed value, especially it may be the same as in the previous part.

It results that you must not jump twice or more times to the same label, because in this case a label would occur twice or more times in the generated program. It is a disadvantage of our work, but it can be eliminated by inserting a new line in the backtrack program: new label CONTINUE;

### 4.3 The use of the chains of macro definitions

The chains of macro definitions are to make the work of the macro processor more efficient. We use the following chains in this work: /see Fig. $4 /$
type of
backtrack stack commands
START
instructions back macros


- before reaching the command START we look only for this instruction,
- after this, the patterns of the backtrack commands are scanned,
- if the processing of a backtrack instruction uses stacks, the stack and unstack macros are a different chain,
- after the processing of the command END, the chain of back macro definitions will be activated.

Finally we want to present the restrictions connected with the specifications of the macro processor MP/O.

1. It is not allowed to jump twice or more times to the same label. /We have mentioned this before./
2. The programmer may not use the total scope of the FORTRAN numeric labels, because the macro processor reserves an interval of possible labels as its own.
3. Spaces are significant inside the backtrack commands.
4. Three array-names and four variable-names are reserves. These are:

\[

\]

## 5. EXAMPLE: THE PROBLEM OF THE EIGHT QUEENS

The classical example for backtrack algorithm is the eight queens' problem. This problem consists of placing eight queens on a chessboard so that no two attack, i.e. there is only one queen in each row, column, or diagonal of the board. In the program we take advantage of the fact that the sum and
difference of the row number and column number of an element in a diagonal is constant. In this part a backtrack FORTRAN program for solving this problem and the generated normal FORTRAN one are presented.

The generated normal FORTRAN program

1 MAIN
DIMENSION IA(8), IB(15), IC(15)
DO $1 \quad \mathrm{I}=1,8$
$1 \quad I A(I)=\varnothing$
DO 2 I=1,15
$I B(I)=\varnothing$
2
$I C(I)=\varnothing$
IROW= $\varnothing$
ICOL=1
IRPC= $\varnothing$
IRMC $=\varnothing$
DIMENSION IZM ( $5 \varnothing \varnothing$ )
IZPTM=1
$I Z P T W=4 \varnothing 1$
IZM (IZPTM $)=\varnothing$
IZPTM=IZPTM +1
3 CONTINUE
IZM (IZPTM) $=\quad$ IROW
IZPTM=IZPTM+1
IROW $=8+1$
999 IROW = IROW-I
IF(IROW- $\varnothing$ ) $2 \phi \varnothing \varnothing$, 998 , $2 \varnothing \varnothing \varnothing$
CONTINUE
IZM (IZPTM) $=\quad$ IRPC
IZPTM=IZPTM+1
IRPC=IROW+ICOL-I
IZM (IZPTM) $=\quad$ IRMC
IZPTM=IZPTM+1
$I R M C=I R O W-I C O L+8$
$\operatorname{IF}((\operatorname{IA}(\operatorname{IROW})+\mathrm{IB}(\operatorname{IRPC})+I C(\operatorname{IRMC}))-1) 2 \emptyset \varnothing 1,997$, 997
2申ø1 CONTINUE
IA $($ IROW $)=1$
$\operatorname{IB}(\operatorname{IRPC})=1$
IC $(\operatorname{IRMC})=1$
$\operatorname{IZM}($ IZPRW $)=\quad$ IDOW
IZPTW=IZPTW+1
IF(ICOL-8) $2 \phi \varnothing 2,996,2 \phi \varnothing 2$
$2 \emptyset \emptyset 2 \quad$ CONTINUE
GOTO 995
996 IZPTW=IZPTW-I
WRITE(I申,994)(IZM(I), I=4 $\quad$ I, IZPTW)
994 FORMAT (1HX,8I3)
IZPTW=IZPTW+1
GOTO 993

```
45 995 CONTINUE
46 I ICOL=ICOL+1
47 IZM(IZPTM)=1
4 8
4 9
5\emptyset
1\emptyset\emptyset3 CONTINUE
 ICOL=ICOL-I
 CONTINUE
 IZPTW=IZPTW-I
 IROW=IZM(IZPTW)
 IC(IRMC)= \varnothing
 IB(IRPC)=\varnothing
 IA(IROW)=\varnothing
 CONTINUE
 IZPTM=IZPTM-1
 IRMC=IZM(IZPTM
 IZPTM=IZPTM-I
 IRPC=IZM(IZPTM)
 GOTO 999
 IZPTM=IZPTM-I
 IROW=IZM IZPTM
 IZPTM=IZPTM-I
 IFLAG=IZM(IZPTM)
 IF(IFLAG-1) 2\emptyset\emptyset3, 1ф\emptyset3, 2ф\emptyset3
 2\emptyset\emptyset3 CONTINUE
 STOP
 E N D
 F I N I S H
```

Backtrack FORTRAN program for the eight queens problem

```
I
2
MAIN
DIMENSION IA(8), IB(15), IC(15)
DO l I=l,8
I IA(I)=\emptyset
DO 2 I=1,I5
IB(I)=\varnothing
IC(I)=\varnothing
IROW=\varnothing
ICOL=l
 IRPC=\varnothing
 I RMC=\varnothing
START
IROW=CHOICE(8)
IRPC=IROW+ICOL-I
IRMC=IROW - ICOL+8
IF((IA(IROW)+IB(IRPC)+IC(IRMC)).GE.I)FAILURE
IA(IROW)=I INV \varnothing
IB(IRPC)=I INV.
IC(IRMC)=I INV \varnothing
OUT IROW
IF(ICOL.EQ.8)SUCCESS
ICOL=ICOL+1 INV ICOL-1
GOTO 3
END
```

To understand the program we note that we represent the chessboard by three one-dimensional arrays IA(8), IB(15), IC(15). A "one" in IA(I), IB(J),IC(K) indicates that row $I$, left diagonal $J$ and right diagonal $K$ are occupied. To place a queen in the row $I$ and column $K$ means:

$$
\begin{aligned}
& \operatorname{IA}(I)=1 \\
& \operatorname{IB}(I+K-1)=1 \\
& \operatorname{IC}(I-K+8)=1
\end{aligned}
$$

To remove this queen means to change this values into zero. The result is represented by an eight dimensional vector. The value of the component I shows that which row in the column I a queen has been placed in.

The algorithm is as follows:
l. we consider the first column;
2. a row is chosen form 8 to 1 ;
3. test is executed if a queen can be placed in the current column and row.
If so, go to step 4,
otherwise backtrack /removing the queen go back to step 2/;
4. the queen is placed in the current row and column position and the row number is stored for the result;
5. test takes place if all queens have been placed. If so, the result is printed and the program stops, otherwise the next column is chosen and go to step 2.

## REFERENCES

[l] Baumert,L.D. and Golomb,S.W.: Backtrack programming J.ACM Vol 12, No 4, /Oct.,1965/ 516-524.
[2] Floyd,R.W.: Nondeterministic Algorithms J.ACM Vol 14, No 4 /Oct., 1967/ 636-644
[3] Cohen, J. and Carton,E.: Non-deterministic FORTRAN The Computer Journal Vol 17, No $1 / F \cdot e b r .$, 1974/44-51.
[4] Smith,D.C. and Enea,H.J.: Backtracking in MLISP2. Third International Joint Conference on Artificial Intelligence 1973, 677-685.
[5] Farkas,E.: Az MP/O makroprocesszor. MTA SzTAKI"Tanulmányok" /"Reports" of the Computer and Automation Institute, Hung.Ac. Sci., Budapest, 12/1973., 21-48.

# A COMPILER ORIENTED SYNTAX DEFINITION 

Ernô FARKAS<br>Computer and Automation Institute, Hungarian Academy of Sciences Budapest, Hungary

It is well-known that the meta-language was a very important discovery on the way of the more precise description of programming languages, and of the development of common translation technics. However, it is well-known too, that the meta-language is not suitable for each language and even in the languages described well by the meta-language there are parts of the syntax which are out of the definition, for example: if there is an array in the program declared as two dimensional and we use it with three indexes then most of the compilers send an error message, however, this fact may not be established on the basis of the meta-language.

Here in after we want to give a syntax definition based on the meta-language, although the definitional rules are also taken into consideration. Here the "definitional" attribute is used in a very wide sense. The scheme written below makes it possible to examine such properties of the program which were earlier considered as a part of the semantics or a tool of the program debugging. For example, we may check whether an index variable of a cycle is modified inside the cycle, or the fact that in a part of the program which variable can get a value and so on. So we have the possibility to send one error message for one error, in that point where the mistake is most striking. This type of the definition does not mean a new type translation technic but this step allows to get a higher compatibility between the different implementations of the language:

1. We have the possibility to decide more precisely, which kind of program is correct formally and which is erroneous.
2. What kind of errors are required to be detected in the level of translation /and what kind of error in the running/.
3. It is possible to create a uniform error diagnostic system for a language.

## THE SYNTAX DEFINITION

Let be "A" the set of the permitted symbols of the language, and we will denote with " $\mathrm{A}^{*}$ " the set of the finite strings from the elements of $A$.
"A language is a set of such strings from $A^{* *}$ which are corresponded to prototypes" derived by a meta language.

LCA ${ }^{*}$ will be a language if it fulfils the definition below:

Let be the triplet $\langle\mathrm{B}, \mathrm{s}, \gamma\rangle$ a meta-language, where $\mathrm{B}=\mathrm{T} \cup \mathrm{N}$ and $T \cap N=\varnothing$. $T$ is the set of the terminal symbols and $N$ is the set of the nonterminal symbols.
$\mathbf{s} \in \mathrm{N}$ is the beginning symbol.
$\gamma$ is a finite set of substituting rules, in the form $n+x$, where $n \in N$ and $x \in(T \cup N)^{*}$.
Let be further $T=A \cup E$ and $A \cap E=\phi$, where $A$ is the set of permitted symbols, as above; and E is the set of so-called elementary objects. Hence

$$
A \subset T \subset B .
$$

Let be given in addition an infinite enumerable set, V /the set of the states of the vocabularyl and $v_{0}$ its special element the beginning state. Let be FCV the set of the legal final states.

At the end, let be $g \in\{(A x V x E) \rightarrow V\}$ a partial function the so-called vocabulary function.

Let $\ell \in L \subset A^{*}$, if and only if there exists a partition of

$$
\ell=x_{1}, x_{2}, \ldots x_{n} \quad\left(x_{i} \in A^{*}\right)
$$

so that there exsists such a $t \in T^{x}$ which can be derived from $\underline{s}$ by the rules of the meta-language, /in the usual way/, and

$$
t=y_{1}, y_{2}, \cdots y_{n} \quad\left(y_{i} \in T^{*}\right)
$$

and " " match to " $t$ " in the sense:

$$
\begin{array}{ll}
\text { if } y_{i} \in A^{K} \\
\text { else } y_{j} \in E \text { and } & \\
& g\left(x_{j 1}, v_{i}, y_{j 1}\right)=v_{j l} \\
& g\left(x_{j 2}, v_{j 1}, y_{j 2}\right)=v_{j 2} \\
& \cdot \\
& \cdot \\
& g\left(x_{j k}, v_{j k-1}, y_{j k}\right)=v_{j k}
\end{array}
$$

for all $y_{j} \in E$, and $v_{j k} \in F$.

This means informally:

By means of the meta-language we are forming a tree structure On the leaves of the tree, there are either strings from $A^{*}$ /key words/ or elementary objects /labels, variables, etc./. It must be an one-one correspondence between the key words in the tree and the key words in the object language. If there is an elementary object on the leaf of the tree, we have to decide by the function " $g$ " whether the corresponding string "a" is compatible with the elementary object "e" and with the present state "v" of the vocabulary. If it is so, then we can go on, and the vocabulary gets a new state. If they are not
compatible, we have several ways for sending error messages and it is advisible to define also these ways at the forming of the syntax. Finally, the vocabulary must have a state in which all the references are satisfied, i.e. in the program there may not occur any object or attribute of an object which was referred but not established.

The vocabulary function is shown in the Appendix in a rather tedious example.

## APPENDIX

Let us suppose that we have a language, which is very close to the FORTRAN II. /The FORMAT, EQUIVALENCE, COMMON instructions are not involved into the example, but they may be realized without any difficulties. The only restriction is that the label at the end of a cycle must be the label of a CONTINUE instruction.l It is important for the fact that no elementary objects of the body of the cycle may appear in the program after that point where the label indicates the end of the cycle.

## Let us have a small program:

	DIMENSION X (50)
	READ K
	DO LlO $\mathrm{I}=1, \mathrm{~K}$
	READ X (I)
110	CONTINUE
	$\mathrm{Y}=0$
	$\mathrm{Z}=0$
	DO $120 \mathrm{I}=1, \mathrm{~K}$
	IF ( X ( I ) ) 111, 120,112
111	$Y=Y+X(I)$
	GO TO 120
112	$\mathrm{Z}=\mathrm{Z}+\mathrm{X}$ ( I )
120	CONTINUE
	WRITE Y, Z
	STOP
	END

And let us suppose that we are able to derive by the metalanguage the string:

	DIMENSION $\mathrm{e}_{1}\left(\mathrm{e}_{2}\right)$
	READ $\mathrm{e}_{8}$
	DO $e_{3} \quad e_{5}=e_{6}, e_{6}$
	READ $e_{15}\left(e_{10}\right)$ CONTINUE
	$e_{13}=e_{10}$
	$\mathrm{e}_{13} \mathrm{e}_{10}$
	$\operatorname{IF}\left(e_{15}\left(e_{10}\right)\right) e_{4}, e_{4}, e_{4}$
${ }^{e} 7$	$\mathrm{e}_{13}=\mathrm{e}_{14}+\mathrm{e}_{15}\left(\mathrm{e}_{10}\right)$
	GOTO e ${ }_{4}$
${ }^{\text {7 }} 7$	$\mathrm{e}_{13}=\mathrm{e}_{14}+\mathrm{e}_{15}\left(\mathrm{e}_{10}\right)$
$\mathrm{e}_{7}$	CONTINUE
	WRITE $\mathrm{e}_{12}, \mathrm{e}_{12}$
	STOP
	End

Where the elementary objects mean:

```
e}\mp@subsup{l}{1}{ array in declaration
e}\mp@subsup{e}{2}{}\mathrm{ integer number
e reference for a label in a DO instruction
e 4 reference for a label in a jump instruction
e
e}\mp@subsup{e}{6}{}\mathrm{ parameter of a DO cycle
e}7\mathrm{ label
e}8\mathrm{ integer variable
e}9\quadinteger variable which get valu
e (io integer value /variable or number/
e ll integer array
e l2 real variable
e }\mp@subsup{}{13}{}\mathrm{ real variable which get value
e 14 real value /variable or number/
e}\mp@subsup{}{15}{}\mathrm{ real array
```

The vocabulary $V$ is formed as a pairlist, i.e. a list of sublists where the head /CAR/ of the sublists is an element and the tail /CDR/ is its attributes.

The attributes are:

```
xVARIx variable
NUMB number
xINTm integer
xREALx real
*ARRAY% array
xCLOSEDx may not use it in an active rol
xDO% the label of a non complete DO cycle
*EXISTx existing label
```

The vocabulary has a final state if all the labels in it are xisting.

4 gure 1 shows the TRANS function which is the vocabulary function defined in pure Lisp. Figure 2 swhows the states of the vocabulary during the checking of the current program.

The program, has been executed by the Rlo minicomputer in a 16 K byte version of the Lisp interpreter.

Figure 1.

```
(DEFINE(QUOTE((TRANS (LAMBDA(E,X,V)
(COND
((EQ Q El)(COND
((FIND X V) ERROR)
(I (CONS (LIST X (INT X),*ARRAY*) V))))
((EQ E E2)(COND
((AND (IN *INT*(GET X,V))(IN *NUMB*(GET X,V)))(UPDATE(GET X,V)V))
(T ERROR)))
((EQ E E3)(COND
((FIND X V) (COND
((IN *DO*(FIND X V))(CONS(LIST X,*DO*)V))
(T ERROR)))
(T (CONS(LIST X*DO*) V))))
((EQ E E4)(COND
((NOT (FIND X V))(CONS(LIST X) V))
((IN *CLOSED*(FIND X V)) ERROR)
(T V))
((EQ E E5)(COND
((AND(AND(IN *VARI* (GET X,V))(IN *INT*(GET X,V)))
 (NOT (IN *CLOSED* (GET X,V))))
(CONS(TAIL (CAR V)X)(UPDATE
(TAIL (GET X V) *CLOSED*)(CDR V))))
(T ERROR)))
((EQ E E6)(COND
((IN *INT* (GET X V))(COND
((IN *VARI* (GET X V))(CONS (TAIL(CAR V) X)(UPDATE(TAIL
 (GET X V)*CLOSED*)(CDR V))))
((IN *NUMB* (GET X V))(CONS(CAR V)(UPDATE(GET X,V)(CDR V))))
(T ERROR)))
(T ERROR)))
((EQ E ET)(COND
((NOT (FIND X,V))(CONS (LIST X,*EXIST*)V))
((IN *DO* (FIND X,V))(CLOSE X,V))
((IN *EXIST*(FIND X,V)) ERROR)
(T (CHEK X,V))))
((EQ E E8)(COND
((AND (IN *INT* (GET X V))(IN *VARI*(GET X V)))(UPDATE
 (GET X V)V))
(T ERROR)))
((EQ E E9)(COND
((AND(AND(IN *INT* (GET X,V))(IN *VARI*(GET X,V)))
 (NOT(IN *CLOSED*(GET X,V))))(UPDATE (GET X V)V))
(T ERROR)))
((EQ E E I\varnothing)(COND
((AND(IN*INT*(GET X,V))(NOT(IN *ARRAY*(GET X,V))))(UPDATE
 (GET X V)V'))
(T ERROR)))
```

```
((EQ E Ell)(COND
((AND (IN*INT*(FIND X V))(IN *ARRAY*(FIND X V))) V)
(T ERROR)))
((EQ E El2)(COND
((AND (IN *REAL* (GET X V))(IN *VARI*(GET X V)))(UPDATE
 (GET X V)V))
(T ERROR)))
((EQ E El3)(COND
((AND (AND(IN*REAL*(GET X,V))(IN*VARI*(GET X,V)))
 (NOT(IN *CLOSED*(GET X,V))))(UPDATE (GET X V)V))
(T ERROR)))
((EQ E EI4)(COND
((AND(IN *REAL*(GET X,V))(NOT(IN *ARRAY*(GET X,V))))(UPDATE
 (GET X V)V))
(T ERROR)))
((EQ E El5)(COND
((AND (IN*REAL*(FIND X V))(IN *ARRAY*(FIND X V))) V)
(T ERROR)))
(T ERROR2)
))))))
(DEFINE(QUOTE(
(CLOSE (LAMBDA (X,V)(COND
((NOT (FIND X,V))V)
((EQ X(CAR(CAR V)))(OPEN(CDR(CDR(FIND X,V)))(CONS
 (LIST X,*EXIST*,*CLOSED*)(CLOSE X (CDR V)))))
((IN*EXIST*(CAR V)) (CONS(TAIL (CAR V), *CLOSED*)
 (CLOSE X (CDR V))))
(T(CONS(CAR V)(CLOSE X (CDR V)))))))
(CHEK(LAMBDA (X,V)(COND
((IN*DO*(CAR V)) ERROR)
((EQ X (CAR(CAR V)))(CONS(LIST X,*EXIST*)(CDR V)))
(T(CONS(CAR V)(CHEK X,(CDR V)))))))
(CURTAIL (LAMBDA (X) (COND
((EQ(CDR Y)NIL)NIL)
(T(CONS(CAR Y)(CURTAIL(CDR Y)))))))
(OPEN(LAMBDA(Y,V) (COND
((NULL Y) V)
(T(OPEN(CDR Y)(UPDATE(CURTAIL(FIND(CAR Y) V)) V))))))
(TAIL (LAMBDA (S,Y)(COND
((NULL S)(LIST Y))
(T(CONS(CAR S)(TAIL(CDR S)Y))))))
(GET (LAMDA (X,V)(COND
((FIND X V)(FIND X V))
(T (LIST X (INT X)(VARI X))))))
(IN(LAMBDA (P,L) (COND
((NULL L) NIL)
((EQ (CAR L)P)T)
(T(IN P (CDR L))))))
```

```
(UPDATE (LAMBDA (L V))(COND
((NOT(FIND (CAR L) V))(CONS L V))
(T (COND
 ((EQ(CAR L) (CAR(CAR V)))(CONS L (CDR V)))
 (T (CONS(CAR V)(UPDATE L (CDR V))))
)))))
)))
```

Figure 2.
V $\varnothing$ NIL
$\mathrm{VI}=\mathrm{TRANS[E1;} \mathrm{X} ; \mathrm{V} \emptyset]=$
（（X＊REAL＊＊ARRAY＊））
$V 2=\operatorname{TRANS}[E 2 ; 5 \emptyset ; \mathrm{VI}]=$
$((\underline{5 \emptyset * I N T * * N U B *})(X * R E A L * * A R R A Y *))$
$\mathrm{V} 3=\operatorname{TRANS[E9;} \mathrm{K} ; \mathrm{V} 2]=$
（（ $\underline{K}$＊INT＊＊VARI＊$)(5 \emptyset * I N T * * N U M *)(X * R E A L * * A R R A Y *))$
V4＝TRANS［E3；1I $\varnothing$ L；V3］＝
（（11фL＊DO＊）（K＊INT＊＊VARI＊）（5め＊INT＊＊NUMB＊）（X＊REAL＊＊ARRAY＊））
$\mathrm{V} 5=$ TRANS［E5；I ；V4］$=$
（（11фL＊DO＊I）（I＊INT＊＊VARI＊＊CLOSED＊）（K＊INT＊＊VARY＊）
（ $5 \bar{\varnothing}$＊INT＊＊NUMB＊）（X＊REAL＊＊ARRAY＊））
V6＝TRANS［E6；1；V5］＝
（（11øL＊DO＊I）（l＊INT＊NUMB ）（I＊INT＊＊VARI＊＊CLOSED＊）（K＊INT＊ ＊VARI＊）（5ø＊INT＊＊NUMB＊）（X＊REAL＊＊ARRAY＊））
$\mathrm{V} 7=$ TRANS［E6； $\mathrm{K} ; \mathrm{V} 6]=$
（（ $11 \emptyset \mathrm{~L}$＊DO＊I K）（I＊INT＊＊NUMB＊）（I＊INT＊＊VARI＊＊CLOSED＊）（K＊INT＊ ＊VARI＊＊CLOSED＊）$(5 \emptyset$＊INT＊＊NUMB＊）（X＊REAL＊＊ARRAY＊））
$\mathrm{V} 8=$ TRANS［E15； $\mathrm{X} ; \mathrm{V} 7]=$
（（ 1 IゆL＊DO＊I K）（I＊INT＊＊NUMB＊）（I＊INT＊＊VARI＊＊CLOSED＊）（K＊INT＊ ＊VARI＊＊CLOSED＊）（5 $\varnothing$＊INT＊＊NUMB＊）（X＊REAL＊＊ARRAY＊））

V9＝TRANS［EID；I ；V8］＝
（（ 1 甲 $\mathrm{L}_{\mathrm{L}}$＊DO＊I K）（I＊INT＊＊NUMB＊）（I＊INT＊＊VARI＊＊CLOSED＊）（K＊INT＊ ＊VARI＊＊CLOSED＊）（5 $\varnothing$＊INT＊＊NUMB＊（X＊REAL＊＊ARRAY＊））
$\mathrm{V} \perp \varnothing=$ TRANS［E7； $11 \varnothing \mathrm{~L} ; \mathrm{V} 9]=$
（（ $11 \not \subset$ L＊EXIST＊＊CLOSED＊）（1＊INT＊＊NUMB＊）（I＊INT＊＊VARI＊）（K＊INT＊ ＊VARI＊）（5申＊INT＊＊NUMB＊）（X＊REAL＊＊ARRAY＊））
Vll－TRANS［El3；$Y$ ；Vlø］＝
（（ $Y$＊REAL＊＊VARI＊）（II $\emptyset$ L＊EXSIST＊＊CLOSED＊）（I＊INT＊＊NUMB＊）（I＊INT＊ ＊VARI＊）（K＊INT＊＊VARI＊）（ $5 \varnothing$＊INT＊＊NUMB＊）（X＊REAL＊＊ARRAY＊））

Vl2＝TRANS［El $\varnothing ; \varnothing ;$ Vll］$=$
$((\emptyset$＊INT＊＊NUMB＊$)(Y$＊REAL＊＊VARY＊）（IIめL＊EXSIST＊＊CLOSED＊）（I＊INT＊ ＊NUMB＊）（I＊INT＊＊VARI＊）（K＊INT＊＊VARI＊）（5申＊INT＊＊NUMB＊）（X＊REAL＊ ＊ARRAY＊））

V13 $=$ TRANS［El3； Z ；VI2］$=$
（（ $\underline{Z}$＊REAL＊＊VARI＊$)(\varnothing$＊INT＊＊NUMB＊）（Y＊REAL＊＊VARI＊）（II $\varnothing$ L＊EXSIST＊ ＊CLOSED＊）（ 1 ＊INT＊＊NUMB＊）（I＊INT＊＊VARI＊）（K＊INT＊＊VARI＊）（5申＊INT＊ ＊NUMB＊）（X＊REAL＊＊ARRAY＊））

VI4＝TRANS［El $\varnothing$ ；$\varnothing$ ；VI3］＝
（（ Z ＊REAL＊＊VARI＊）（ $\varnothing$＊INT＊＊NUMB＊）（Y＊REAL＊＊VARI＊）（II L ＊EXSIST＊ ＊CLOSED＊）（I＊INT＊＊NUMB＊）（I＊INT＊＊VARI＊）（K＊INT＊＊VARI＊）（5 $\varnothing$＊INT＊ ＊NUMB＊）（ X ＊REAL＊＊ARRAY＊））

V15＝TRANS［E3；12めL；V14］＝
（（12фL＊D0＊）（Z＊REAL＊＊VARI＊）（ $\varnothing$＊INT＊＊NUMB＊）（Y＊REAL＊＊VARI＊）（ ll $\mathrm{LL}_{\mathrm{L}}$＊EXSIST＊＊CLOSED＊）（I＊INT＊＊NUMB＊）（I＊INT＊＊VARI＊）（K＊INT＊ ＊VARI＊）（5 $\varnothing$＊INT＊＊NUMB＊）（X＊REAL＊＊ARRAY＊））

V16＝TRANS［E5；I；V15］＝
（（I2øL＊DO＊I）（Z＊REAL＊＊VARI＊）（ $\varnothing$＊INT＊＊NUMB＊）（Y＊REAL＊＊VARI＊）（ $11 \overline{\text { L }}$＊EXSIST＊＊CLOSED＊）（1＊INT＊＊NUMB＊）（I＊INT＊＊VARI＊）（K＊INT＊ ＊VARI＊

VI7＝TRANS［E6；1；V16］＝
（（12øL＊DO＊I）（Z＊REAL＊＊VARI＊）（ $\varnothing$＊INT＊＊NUMB＊）（Y＊REAL＊＊VARI＊）（
11фL＊EXSIST＊＊CLOSED＊）（1＊INT＊＊NUMB＊）（I＊INT＊＊VARI＊＊CLOSED＊）（K ＊INT＊＊VARI＊）（ $5 \varnothing$＊INT＊＊NUMB＊）（X＊REAL＊＊ARRAY＊））

VI8＝TRANS［E6；K；VI7］＝
（（12 $\varnothing$ L＊DO＊I K）（Z＊REAL＊＊VARI＊）（ $\varnothing$＊INT＊＊NUMB＊）（Y＊REAL＊＊VARI＊） （11фL＊EXSIST＊＊CLOSED＊）（1＊INT＊＊NUMB＊）（I＊INT＊＊VARI＊＊CLOSED＊）（K ＊INT＊＊VARI＊＊CLOSED＊）（ $5 \varnothing$＊INT＊＊NUMB＊）（X＊REAL＊＊ARRAY＊））

V19＝TRANS［El5；X ；V18］＝
（（12øL＊DO＊I K）（Z＊REAL＊＊VARI＊）（ $\varnothing$＊INT＊＊NUMB＊）（Y＊REAL＊＊VARI＊） （II申L＊EXSIST＊＊CLOSED＊）（I＊INT＊＊NUMB＊）（I＊INT＊＊VARI＊＊CLOSED）（K ＊INT＊＊VARI＊＊CLOSED＊）（ $5 \emptyset$＊INT＊＊NUMB＊）（X＊REAL＊＊ARRAY＊））
$\mathrm{V} 2 \emptyset=$ TRANS［E1 $\varnothing$ ；$I ; \mathrm{V} 19]=$
（（12øL＊DO＊I K）（Z＊REAL＊＊VARI＊）（ $\varnothing$＊INT＊＊NUMB＊）（Y＊REAL＊＊VARI＊） （ $11 \varnothing$ L＊EXSIST＊＊CLOSED＊）（l＊INT＊＊NUMB＊）（I＊INT＊＊VARI＊＊CLOSED＊）（K


```
V2l=TRANS[E4;1llL;V2\emptyset]=
((lllL)(l2\emptysetL *DO* I K)(Z *REAL* *VARI*)(\emptyset *INT**NUMB*)(Y *REAL*
VARI)(11фL *EXSIST* *CLOSED*)(I *INT* *NUMB*)(I *INT* *VARI*
CLOSED)(K *INT* *VARI* *CLOSED*)(5\emptyset *INT**NUMB*)(X *REAL*
 ARRAY))
```

V22＝TRANS［E4；12øL；V2l］＝
（（lllL）（l2øL＊DO＊I K）（Z＊REAL＊＊VARI＊）（ $\varnothing$＊INT＊＊NUMB＊）（Y＊REAL＊ ＊VARI＊）（11фL＊EXSIST＊＊CLOSED＊）（1＊INT＊＊NUMB＊）（I＊INT＊＊VARI＊ ＊CLOSED＊）（K＊INT＊＊VARI＊＊CLOSED＊）（5申＊INT＊＊NUMB＊）（X＊REAL＊ ＊ARRAY＊））

V23＝TRANS［E4；12L；V22］＝
（（112L）（111L）（12фL＊DO＊I K）（Z＊REAL＊＊VARI＊）（ $\varnothing$＊INT＊＊NUMB＊）（Y ＊REAL＊＊VARI＊）（11申L＊EXSIST＊＊CLOSED＊）（1＊INT＊＊NUMB＊）（I＊INT＊ ＊VARI＊＊CLOSED＊）（K＊INT＊＊VARI＊＊CLOSED＊）（5 $\varnothing$＊INT＊＊NUMB＊）（X ＊REAL＊＊ARRAY＊））

V24＝TRANS［E7；11IL ；V23］＝
 ＊NUMB＊）（Y＊REAL＊＊VARI＊）（IIゆL＊EXSIST＊＊CLOSED＊）（1＊INT＊＊NUMB＊）（I ＊INT＊＊VARI＊＊CLOSED＊）（K＊INT＊＊VARI＊＊CLOSED＊）（5申＊INT＊＊NUMB＊）（X ＊REAL＊＊ARRAY＊））

V25＝TRANS［E13； $\mathrm{Y} ; \mathrm{V} 24]=$
（（112L）（111L＊EXIST＊）（12øL＊DO＊I K）（Z＊REAL＊＊VARI＊）（ 0 ＊INT＊ ＊NUMB＊）（Y＊REAL＊＊VARI＊）（II $\varnothing$ L＊EXSIST＊＊CLOSED＊）（ 1 ＊INT＊＊NUMB＊） （I＊INT＊＊VARI＊＊CLOSED＊）（K＊INT＊＊VARI＊＊CLOSED＊）（5申＊INT＊＊NUMB＊） （ $\mathrm{X} *$ REAL＊＊ARRAY＊））

V26＝TRANS［E14；Y；V25］＝
（（ll2L）（111L＊EXIST＊）（12めI＊DO＊I K）（Z＊REAL＊＊VARI＊）（め＊INT＊ ＊NUMB＊）（Y＊REAL＊＊VARI＊）（1．$\dagger \mathrm{L}$＊EXSIST＊＊CLOSED＊）（I＊INT＊＊NUMB＊）（I ＊INT＊＊VARI＊＊CLOSED＊）（K＊INT＊＊VARI＊＊CLOSED＊）（ $5 \varnothing$＊INT＊＊NUMB＊）（X ＊REAL＊＊ARRAY＊））

V27＝TRANS［E15；X V 26$]=$
（（ll2L）（lllL＊EXIST＊）（12øL＊DO＊I K）（Z＊REAL＊＊VARI＊）（ $\varnothing$＊INT＊ ＊NUMB＊）（Y＊REAL＊＊VARI＊）（II ゆL＊EXSIST＊＊CLOSED＊）（I＊INT＊＊NUMB＊）（I ＊INT＊＊VARI＊＊CLOSED＊）（K＊INT＊＊VARI＊＊CLOSED＊）（5申＊INT＊＊NUMB＊）（X ＊REAL＊＊ARRAY＊））

V28＝TRANS［E10；I ；V27］＝
（（112L（111L＊EXIST＊）（l2申L＊DO＊I K）（Z＊REAL＊＊VARI＊）（ $\varnothing$＊INT＊ ＊NUMB＊）（Y＊REAL＊＊VARI＊）（II申L＊EXSIST＊＊CLOSFD＊）（1＊INT＊＊NUMB＊）（I ＊INT＊＊VARI＊＊CLOSED＊）（K＊INT＊＊VARI＊＊CLOSED＊）（5ø＊INT＊＊NUMB＊）（X ＊REAL＊＊ARRAY＊））

V29＝TRANS［E4；12фL；V28］＝
（112L）（111L＊EXIST＊）（12 $\quad \mathrm{L} *$ DO＊I K）（Z＊REAL＊＊VARI＊）（ $\varnothing *$ INT＊ ＊NUMB＊）（Y＊REAL＊＊VARI＊）（11фL＊EXSIST＊＊CLOSED＊）（1＊INT＊＊NUMB＊）（I ＊INT＊＊VARI＊＊CLOSED＊）（K＊INT＊＊VARI＊＊CLOSED＊）（5申＊INT＊＊NUMB＊）（X ＊RIJAL＊＊ARRAY＊））

V3（ $=$ TRANS［E7；112L；V29］＝
（（112L＊FYIST＊）（111L＊EXIST＊）（12фL＊DO＊I K）（Z＊REAL＊＊VARI＊）（ $\varnothing$ ＊INT＊＊NUMB＊）（Y＊REAL＊＊VARI＊）（II申L＊EXSIST＊＊CLOSED＊）（I＊INT＊ ＊NUMB＊）（I＊INT＊＊VARI＊＊CLOSED＊）（K＊INT＊＊VARI＊＊CLOSED＊）（5 $\quad$＊INT＊ ＊NUMB＊）（X＊REAL＊＊ARRAY＊））

V3l $\neq$ TRANS［El3； $\mathrm{Z} ; \mathrm{V} 3 \varnothing]=$
（ll2L＊EXIST＊）（IllL＊EXIST＊）（12めL＊DO＊I K）（Z＊REAL＊＊VARI＊）（ $\varnothing$ ＊INT＊＊NUMB＊）（Y＊REAL＊＊VARI＊）（II申L＊EXSIST＊＊CLOSED＊）（I＊INT＊ ＊NUMB＊）（I＊INT＊＊VARI＊＊CLOSED＊）（K＊INT＊＊VARI＊＊CLOSED＊）（5 $\quad$＊INT＊ ＊NUMB＊）（X＊REAL＊＊ARRAY＊））

V32＝TRANS［EI4； Z ；V3I］＝
（（112L＊EXIST＊）（IIIL＊EXIST＊）（12めL＊DO＊I K）（Z＊REAL＊＊VARI＊）（ $\varnothing$ ＊INT＊＊NUMB＊）（Y＊REAL＊＊VARI＊）（II申L＊EXSIST＊＊CLOSED＊）（I＊INT＊ ＊NUMB＊）（I＊INT＊＊VARI＊＊CLOSED＊）（K＊INT＊＊VARI＊＊CLOSED＊）（ $5 \emptyset$＊INT＊ ＊NUMB＊）（X＊REAL＊＊ARRAY＊））
V33＝TRANS［E15； X ；V32］$=$
 ＊INT＊＊NUMB＊）（Y＊REAL＊＊VARI＊）（II申L＊RXSIST＊＊CLOSED＊）（I＊INT＊ ＊NUMB＊）（I＊INT＊＊VARI＊＊CLOSED＊）（K＊INT＊＊VARI＊＊CLOSED＊）（ $5 \emptyset$＊INT ＊NUMB＊）（X＊REAL＊＊ARRAY＊））
$\mathrm{V} 34=$ TRANS［EI $\varnothing$ ；$I ; \mathrm{V} 33]=$
（（ll2L＊EXIST＊）（IllL＊EXIST＊）（l2фL＊DO＊I K）（Z＊REAL＊＊VARI＊）（ $\varnothing$ ＊INT＊＊NUMB＊）（Y＊REAL＊＊VARI＊）（II申L＊EXOST＊＊CLOSED＊）（1＊INT＊ ＊NUMB＊）（I＊INT＊＊VARI＊＊CLOSED＊）（K＊INT＊＊VARI＊＊CLOSED＊）（5申＊INT＊ ＊NUMB＊）（X＊REAL＊＊ARRAY＊））
V35＝TRANS［E7，12 $\varnothing$ L；V34］＝
（（112L＊EXIST＊＊CLOSED＊）（I11L＊EXIST＊＊CLOSED＊）（12øL＊EXIST＊ ＊CLOSED＊）（Z＊REAL＊＊VARI＊）（ $\varnothing$＊INT＊＊NUMB＊）（Y＊REAL＊＊VARI＊）（11фL ＊EXIST＊＊CLOSED＊）（I＊INT＊＊NUMB＊）（I＊INT＊＊VARI＊）（K＊INT＊＊VARI＊） （ $5 \varnothing$＊INT＊＊NUMB＊）（X＊REAL＊＊ARRAY＊））
V36＝TRANS［El2；$Y$ ；V35］＝
（（ll2L＊EXIST＊＊CLOSED＊）（IllL＊EXIST＊＊CLOSED＊）（I2ゆL＊EXIST＊ ＊GLOSED＊）（Z＊REAL＊＊VARI＊）（ $\varnothing$＊INT＊＊NUMB＊）（Y＊REAL＊＊VARI＊）（ll $\mathrm{Z}_{\mathrm{L}}$ ＊EXSIST＊XCLOSED＊）（I＊INT＊＊NUMB＊）（I＊INT＊＊VARI＊）（K＊INT＊＊VARI＊） （ $5 \varnothing$＊INT＊＊NUMB＊）（ $\mathrm{X} *$ REAL＊＊ARRAY＊））
V37 $=$ TRANS［El2； $\mathrm{Z} \cdot \mathrm{V} 36]=$
（（112L＊EXIST＊＊CLOSED＊）（111L＊EXIST＊＊CLOSED＊）（12øL＊EXIST＊ ＊CLOSED＊）（Z＊REAL＊＊VARI＊）（ $\varnothing$＊INT＊＊NUMB＊）（Y＊REAL＊＊VARI＊）（ $11 \varnothing$ L／ ＊EXSIST＊＊CLOSED＊）（I＊INT＊＊NUMB＊）（I＊INT＊＊VARI＊）（K＊INT＊＊VARI＊） $(5 \varnothing$＊INT＊＊NUMB＊）（X＊REAL＊＊ARRAY＊））

Revised separatum to CL\&CL Vol.X.

# ONE MODEL OF THE HUNGARIAN VERB SYNTHESIS 

Mrs M.LUGOSI PAP

## 1. INTRODUCTION

The aim of the present paper is to give a model of the automatic synthesis of the Hungarian verbs on the basis of the work entitled "Grammatical form system of Hungarian word-stock" [2] and to demonstrate some possible applications of the model. It was my aim to formalize the verbal system in a most suitable and a most precise way and to handle several problems in a uniform method. The formation of the simplest verbal forms has been worked out as a program but I constructed the program /the program-details/ in a way which facilitates to complete it to a whole system /derivation of formal varieties, compound and recursive forms/.

The program is constructed for a System 4-70 machine, in Usercode Language, the particular command-set of which made programming easier /e.g. with one command word-elements of arbitrary length can be compared/.

The following method can be applied for the synthesis of Hungarian nominals in an analogous way; since the paper which served as a base [2] deals with nominal forms too and in a similar manner.

The method is not restricted to the Hungarian grammatical form
system. In a language with a developed influctional system /e.g. French, German, Russian/ there is a possibility to construct a suffixal system by arranging the verbs according to the formation of their several verbal forms. And in such a system numbering of the suffixes, recursion, comparing of the suffixal types can be applied in the same way as in Hungarian.

## 2. IT IS NECESSARY TO CLARIFY SOME IDEAS BEFORE DISCUSSING THE PROBLEM

The notion of the verb stem and that of the suffix must be given, since they differ from the traditional definition. The part of the verb which is invariable during conjugation is called the 'verbs t e $\mathrm{m}^{\prime}$ - in case of the machine processing -; the 'termination' is the variable part of the verb - but this is often not equal with the personal suffix connected with tense suffix and modal suffix /see [6]/. I have used an even wider notion of termination in order to give the possibility to store the change of stem and certain stylistic comments concerning the verb automatically with help of the suffix. /See further 3.4.2.4, 3.5.3, 3.5.4./

I understand 't e rmin a t i 0 n ' /'suffix'/ as an /alphanumeric/ character sequence which contains the suffix with a certain comment and with information concerning the verb stem /generalized idea of suffix or termination/.

The EBCDID code which is used to punch the cards of Usercode programs does not contain the special vowels of Hungarian /ö, $\mathfrak{u}$ and the long vowels/. But it is by all means necessary to mark them somehow. If we do not want to mark these vowels with an arbitrary letter or a non-letter character not being used in Hungarian, it is only possible to mark these vowels not with one, but with more characters /letters/. The transcription used in telegraphy cannot be applied here
because is would result misunderstandings (e.g. "leegyen" might mean: "leegyen" /'eat messily' in subjunctive mood/ and "légyen" /'let it be'/). So we must choose characters which differ from the letters of the alphabet. A solution for this problem can be found in [4], but the characters used there are not found in the EBCDIC code. Thus I have selected the following solution: the length of the vowel is marked by a colon after the vowel /co-ordinates with the designation structure of APhI/ and the two dots of ö, ü are denoted by quotation-marks. IIn the case of the long on the quotation-mark precedes the length-mark/./e.g.: $\AA=a, \delta=0 ", ~ \widehat{o}=0 ": /$

The number of characters necessary to denote a verb /suffix, verbal form/ for the computer is called the 'l engthof $t h e v e r b '$. I will not necessarily be equal with the length of the verb taken in the usual sense because of the special vowels. E.g. the length of the verb "vöröslik" /'appear red'/ covers 8 characters in the traditional way and 10 characters for the computer.

If one code number /see $3.2 /$ has more verbal forms, we get 's uffix serie s' /'paradigm seris'/ where the different suffixes are written side by side and are separated by commas /or parentheses/. E.g. the imperative form of second person in singular, in the present tense /code number: 42/ has two verbal forms: "várj", "várjál" /'wait'/, so the suffix series is: ~j /~jál/.

All characters of the EBCDIC code have a hexadecimal number. Sorting the hexadecimal numbers in order of size and making the parallel characters in the same order, we get the
'machine alphabeticorder'of characters. This is not equal to the ordinary alphabetic order because in the second case there is no difference between the short and the long vowels (e.g. the order of the vowels is ó, ő, ö, o ; i.e. in the machine alphabetic order the verb "hólyagzik" /'blister'/ stands before the verb "hokizik" /'play hockey'/,
although normally they are in reverse order).

The verbal form constituted from two words spelt aside, is called 'c o m p o un d $v e r b a l$ form', e.g. "ettem volna" /'I should have eaten'/; the verbal form conjugated on from an already constructed verbal form of which the base is a stem from the dictionary, is called a 'recursive v e r b a l f or m', e.g. "ad - adhat - adhattam" /'give' 'may give' - 'I might give'/.
3. LET US NOW TURN OUR ATTENTION TO THE CONJUGATION SYSTEM OF THE VERB AND TO THE PROGRAM BASED ON IT

### 3.1 INTRODUCTION

3.1.1 The project called "Grammatical form system of Hungarian word-stock" is elaborated by László Elekfy at the Institute of Linguistics of the Hungarian Academy of Sciences, therefore I will call it EL's system for the sake of brevity. He worked out in details the list of words in the Concise Dictionary of Hungarian [5].

Two variants of the system were finished during the years which differ from each other in details. The simpler system /the so-called 'c o n t r a c t e d s y s t e m'/ was published in 1972 in the periodical 'Hungarian Language' [l]. It contains only 153 conjugational types and denote only the most important differences. "Among the words which have extremely special terminations, only those are represented in the table of types which in certain points of view are more compatible with the system, especially if they show proper complicacy and are not usually dealt with in the grammatical descriptions" /i.e.: the table does not contain the most
part of the special conjugational types ${ }^{\mathrm{x}} /$. The numbering of the conjugational types also differs from that one shown in para. 3.3.1.

The detailed system /i.e. 'the $f u l l$ variant'/ will be discussed below. This full variant is to be found in a hand-written version. "It may be called complete within a certain scope" /see [lJ/.
3.1.2 We must decide which of the two systems will be transformed into a /machine/ program. We use the detailed system for this purpose because the contracted system takes no notice of lesser differences between the conjugational types and therefore it may produce incorrect or non-existent forms.

The question may arise whether it is worth programming the system in a way to produce all the forms which belong to one code number. For example, if we want to employ the system as a subroutine of a machine translating program from a foreign language into Hungarian, it will be enough to produce one /namely the most frequent/ form. Nevertheless I tried to program the system which includes all the verbal forms because of the possibilities to solve additional problems emerging in the course of programming.

### 3.2 ON THE VERBAL FORMS INCLUDED IN THE SYSTEM

All the simple verbal forms /with the exception of the imperfect tense/ and all the participles used today and all

```
* Those conjugational types are called 's p e c i a l
 c o n ju g a t i o n a l t y p e s, which contain only one
 verb. /Among the 5l5 conjugational types in the detailed
 system there are 233 special conjugational types - lo2 types
 ending and l3l types not ending in -ik in the third person
 singular of the present tense./
```

the derivations of grammatical character /paradigmatic/ are included in the system; each of them was given a 'form $\mathrm{n} u \mathrm{mb}$ e $\mathrm{r}^{\prime} \mathrm{l}^{\prime} \mathrm{c} \circ \mathrm{d}$ e $\mathrm{n} u \mathrm{mb}$ e $\mathrm{r}^{\prime}$, as being called in the program/.

In EL's system more verbal forms are denoted by the same form number if they are always changing in the same way. This simplies the description. But a program would be more complicated by such a numbering system, therefore in the program every verbal form will have its own number. /This is called 'de t a i led $n$ u m ering s y stem'/. Code numbers in the program run from 1 to 63.

The project called "Grammatical form system of Hungarian word-stock" deals with other verbal forms too. But these are already recursive forms. Among the derivations the participles marked 54, 55, 56, 60 and the noún-type marked 61 can be conjugated according to one model of declension; and in the same way, the verb-type marked 62 according to the conjugational type $5 a$ and $5 b$, the verb-type marked 59 according to the conjugational type 5 a 8 and 5 b 2 , the infinitive marked 40 according to the declensional type 36D and 36B.

Since the further-declined forms of the infinitive with personal suffix /e.g. "adnom", 'give' in the structure: I ought to give/ occur in verbal structures /e.g. "adnom kellene" - 'I should give'/, derivations of these were included in the system. * Code numbers from 65 to 70 were given to these verbal forms.

Remark: These forms, however, are conjugated by recursion, otherwise there would appear too many suffixes in the system.

[^0]Table l: contains the forms of the system with their code number.

Furthermore the detailed numbering system is used. A difference from this is only by the quotations from the original conjugational system.

Table 1


Table l. suit

$\begin{aligned} & \text { Gorm } \\ & \text { num- } \\ & \text { ber } \end{aligned}$	Code number	Mood	\|'	$\begin{aligned} & \text { Num- } \\ & \text { ber } \end{aligned}$	Per:-son	Type of conjugation	Example	
							Hungarian	English
10	11	*	$\begin{aligned} & \text { pre- } \\ & \text { sent } \end{aligned}$	$\begin{aligned} & \text { plu- } \\ & \text { ral } \end{aligned}$	1.	objective conjugation relating to object of   3.person	várjuk	we wait for him/her
11	12		$\begin{aligned} & \text { pre- } \\ & \text { sent } \end{aligned}$	$\begin{aligned} & \text { plu- } \\ & \text { ral } \\ & \hline \end{aligned}$	2.	-"-	várjátok	you wait for him/her
12	13		$\begin{aligned} & \text { pre- } \\ & \text { sent } \end{aligned}$	$\begin{aligned} & \text { plu- } \\ & \text { ral } \\ & \hline \end{aligned}$	3.	-"-	várják	they wait for him/her
13	14		past	sin-gular	1	subjective	vártam	I waited
	15		past	$\begin{aligned} & \text { sin- } \\ & \text { gu- } \\ & \text { lar } \end{aligned}$	2.	subjective	vártál	you waited
14	16	-	past	$\begin{aligned} & \text { sin- } \\ & \text { gu- } \\ & \text { lar } \end{aligned}$	3.	subjective	várt	he waited
15	17		past	$\begin{aligned} & \text { plu- } \\ & \text { ral } \\ & \hline \end{aligned}$	1.	subjective	vártunk	we waited
	18		past	$\begin{aligned} & \text { plu- } \\ & \text { ral } \end{aligned}$	2.	subjective	vártatok	you waited
16	19	$\sim$	past	$\begin{aligned} & \text { plu- } \\ & \text { ral } \end{aligned}$	3.	subjective	vártak	they waited
17	20	4	past	$\begin{aligned} & \text { sin- } \\ & \text { gu- } \\ & \text { lar } \end{aligned}$	1.	objective conjugation relating to object of 2. person	vártalak	I waited for you
	21	$\pi$ -1	past	$\begin{aligned} & \text { sin- } \\ & \text { gu- } \\ & \text { lar } \end{aligned}$	1.	objective conjugation relating to object of   3. person	vártam	I waited for. him/her
	22	0	past	$\begin{aligned} & \text { sin- } \\ & \text { gu- } \\ & \text { lar } \\ & \hline \end{aligned}$	2.	-"-	vártad	you waited for him/her
18	23	${ }^{*}$	past	$\begin{aligned} & \text { sin- } \\ & \text { gu- } \\ & \text { lar } \end{aligned}$	3.	-"-	várta	he/she waited for him/her
19	24	'0	past	$\begin{aligned} & \text { plu- } \\ & \text { ral } \end{aligned}$	1.	-"-	vártuk	we waited for him/her
	25		past	$\begin{aligned} & \text { plu- } \\ & \text { ral } \end{aligned}$	2.	-"-	vártátok	you waited for him/her
20	26		past	$\begin{aligned} & \text { plu- } \\ & \text { ral } \end{aligned}$	3.	-"-	várták	$\begin{aligned} & \text { they waited for } \\ & \text { him/her } \end{aligned}$
21	27	$\begin{aligned} & \mathrm{r} \\ & \pi \end{aligned}$	$\begin{aligned} & \text { pre- } \\ & \text { sent } \end{aligned}$	$\begin{aligned} & \text { sin- } \\ & \text { gu- } \\ & \text { lar } \end{aligned}$	1.	subjective	várnék	I'd wait
22	28	$\begin{gathered} 6 \\ 0 \\ -1 \end{gathered}$	$\begin{aligned} & \text { pre- } \\ & \text { sent } \end{aligned}$	$\begin{aligned} & \text { sin- } \\ & \text { gu- } \\ & \text { lar } \\ & \hline \end{aligned}$	2.	subjective	várnál	you'd wait
23	29	4 -4 0	$\begin{array}{\|l} \overline{\text { pre- }} \\ \text { sent } \end{array}$	$\begin{aligned} & \text { sin- } \\ & \text { gu- } \\ & \text { lar } \\ & \hline \end{aligned}$	3.	subjective	várna	he/she would/should wait
24	30	5	$\begin{aligned} & \text { pre- } \\ & \text { sent } \end{aligned}$	$\begin{aligned} & \text { plu- } \end{aligned}$	1.	subjective	várnánk	we would/should wait
	31	$\bigcirc$	$\begin{aligned} & \text { pre- } \\ & \text { sent } \end{aligned}$	$\begin{aligned} & \text { plu- } \\ & \text { ral } \end{aligned}$	2.	subjective	várnátok	you'd wait

Table 1. suit


Table l. suit

	$\begin{aligned} & \text { Code } \\ & \text { num- } \\ & \text { ber } \end{aligned}$	Mood	Tense	$\begin{aligned} & \text { Num- } \\ & \text { ber } \end{aligned}$	$\begin{aligned} & \text { Per- } \\ & \text { son } \end{aligned}$	Type of conjugation	Example		
							Hungarian	English	
39	51		$\begin{aligned} & \text { pre- } \\ & \text { sent } \end{aligned}$	$\begin{aligned} & \text { plu- } \\ & \text { ral } \end{aligned}$	1.	objective conjugation relating to object of   3.person	várjuk	/'that we wait'/	
	52		$\begin{aligned} & \text { pre- } \\ & \text { sent } \end{aligned}$	$\begin{aligned} & \text { plu- } \\ & \text { ral } \end{aligned}$	2.	-"-	várjátok	/'that you wait'/	
	53		present	$\begin{aligned} & \text { plu- } \\ & \text { ral } \end{aligned}$	3	-"-	várják	T'that they wait'/	
40	54	continuous /present tense,l./ participle					váró	waiting	
41	55	perfect /past tense, 2./ participle					várt	waited	
42	56	future /future tense,3.1 participle					várandó	Ito be waited forl	
43	57	simultaneous presented mood /l/ adverbial participle					várva	waiting	
44	58	antecedent presented cause $/ 2.1$ adverbial participle					várván		
45	59	Hungarian verb formed with the suffix '-hat' or '-het'					várhat	may wait	
46	60	Hungarian participle formed with the suffix '-hato' or '-heto'					várható	may be waited	
47	61	verbal noun					várás	waiting as a noun	
48	62	causative verb					várat	make sy wait	
49	63	passive verb					váratik	\|is waited for	
	65	gerund with personal suffix		$\begin{aligned} & \text { sin- } \\ & \text { gu- } \\ & \text { lar } \end{aligned}$	1.		várnom	for me to wait	
	66	gerund with personal suffix		$\begin{aligned} & \text { sin- } \\ & \text { gu- } \\ & \text { lar } \\ & \hline \end{aligned}$	2.		várnod	for you to wait	
	67	$\begin{aligned} & \text { gerund with } \\ & \text { personal suf- } \\ & \text { fix } \end{aligned}$		$\begin{aligned} & \text { sin- } \\ & \text { gu- } \\ & \text { lar } \\ & \hline \end{aligned}$	3.		várnia	for him/her to wait	
	68	```gerund with personal suf- fix```		$\begin{aligned} & \text { plu- } \\ & \text { ral } \end{aligned}$	1.		várnunk	$\begin{aligned} & \text { for us to } \\ & \text { wait } \end{aligned}$	
	69	$\begin{aligned} & \text { gerund with } \\ & \text { personal suf- } \\ & \text { fix } \end{aligned}$		$\begin{aligned} & \text { plu- } \\ & \text { ral } \end{aligned}$	2.		várnotok	$\begin{aligned} & \text { for you to } \\ & \text { wait } \end{aligned}$	
	70	gerund with personal suffix		$\begin{aligned} & \text { plu- } \\ & \text { ral } \end{aligned}$	3.		várniuk, várniok	for them to wait	

### 3.3 SYSTEMATIZATION AND CLASSIFICATION OF THE VERḂS

### 3.3.1 In EL's system

According to the conjugational system the verbs are devided into groups of conjugational types, each of them has a 'conjugational - type - n umber' consisting of 5 alphanumeric characters:

$$
a_{1} a_{2} a_{3} a_{4} a_{5}
$$

a/ The verbs may be classified into 20 groups, according to the following features:
i/ If the verb does not end in 'ik' in the $3^{\text {rd }}$ person singular of the present tense, $a_{1} a_{2} \leq 10$; if the verb ending '-ik' in the $3^{\text {rd }}$ person singular of present tense, $a_{1} a_{2} \geq 11$.
Let us mark now the verbs without 'ik' by: $a_{0}=0$ and the verb with 'ik' by $a_{0}=10$.
Remark: the first character of a two-digit number is denoted by $a_{1}$, the second by $a_{2}$; and the complete two-digit number by $a_{1} a_{2} / a_{4} a_{5}$ will be interpreted similarly/.
ii/ According to the way of joining the suffixes to the stem the following variations are possible /variation is denoted by $a_{o}^{\prime} /$

- the verb is conjugated only by a simple suffix; in this case: $a_{o}^{\prime}=1$.
/e.g. "ír" = 'write' , "múlik" = 'pass'/
- the suffix of the past tense is written to the stem with the help of a vowel; in this case $a_{o}^{\prime}=2$. le.g. "tud" 'know' - "tud-o-tt" = 'he knew', "uralkodik" = 'govern' - "uralkod-o-tt" = 'he governed'/
- the suffix of the infinitive and the conditional is written to the stem with the help of a vowel; in this case $a_{o}^{\prime}=3$.
/e.g. "hall" = 'hear' - "hall-a-nék" = 'I'd hear', "mosdik" = 'wash' - "mosd-a-nék" ='I'd wash'/
- the imperative is not formed with the usual 'j'; in this case $a_{0}^{\prime}=4$.
le.g. "olvas" = 'read' - "olvas-s" = 'that you read', "zongorázik" = 'play the piano' - "zongorázz" = 'that you play piano'/
- the imperative is formed from a modification of the lexical stem; in this case $a_{0}^{\prime}=5$.
le.g. "fut" = 'run' - "fu-ss" = 'that you run' , "mászik" = 'climb' - "má-ssz" = 'that you climb'/
- the stem ends in an '1' and there is an elision; in this case $a_{o}^{\prime}=6$.
le.g. "gyalogol" = 'go on foot' - "gyalog-lok" = 'I go on foot' , "fuldoklik" = 'choke' -"fuldok-lanak" = 'they choke'/
- there is an elision in the verb and the stem does not end in a ' $z$ ' or an 'l'; in this case $a_{0}^{\prime}=7$. le.g. "seper" = "sweep' - "sep-rünk" = 'we sweep' , "ugrik" = 'jump' - "ug-o-rtok" = 'you jump'/
- the verb has an elision and the stem ends in a 'z'; in this case $a_{o}^{\prime}=8$.
le.g. "szoroz" = 'multiply' - "szor-z-ott" = 'he multiplied', "hiányzik" = 'be absent' -
"hiány-o-ztam" = 'I was absent'/
- the verb is irregular; in this case $a_{0}^{\prime}=9$. /e.g. "van" = 'be', "alszik" = 'sleep'/
- the verb is a conjugational type of double conjugation ${ }^{*}$, without a mixed vowel system ${ }^{\text {xX }}$ or the verb is very defective; in this case $a_{o}^{\prime}=10$. le.g. "sứg-búg" = 'susurrate', "ázik-fázik" = 'be rain-soaked', "gyere" = 'come'/

The type-numbers of the 20 groups may be obtained from the union /sum/ of $a_{0}$ and $a_{o}^{\prime}$; the group number is the $a_{1} a_{2}$ character in the number of conjugational type.

Remark: If $a_{0}=10$ and $a_{0}^{\prime}=7$, some of the members of these are also defective!
E.g. $a_{1} a_{2}=a_{0}+a_{o}^{\prime}=0+8=8$ :

$$
a_{1} a_{2}=a_{0}+a_{0}^{\prime}=10+8=18:
$$

the group of verbs where the stem ends in 'z' with elision and without 'ik' conjugation.
the group of verbs where the stem ends in 'z', and conjugated with 'ik'.
b/ The verbs may be classified further inside each group, according to the vowel system:
$a_{3}=a$ if the verb is of a velar vowel system
$a_{3}=b$ if the verb is of a palatal, unrounded vowel system $a_{3}=c$ if the verb is of a palatal, lip-rounded vowel system $\mathrm{a}_{3}=\mathrm{d}$ if the verb is of a double conjugational type of the mixed vowel system.
c/ The classes $\mathrm{a}, \mathrm{b}, \mathrm{c}$ of vowel system, found inside each of the

* A verb constructed from two verbs connected with a hyphen is called a 'd o u b l e con $\quad \mathrm{j} u \mathrm{~g}$ a t i o n a l'verb, independently of the fact whether the verb is a doublet or it has a co-ordinate structure. Both verbs in a double conjugation, are conjugated seperately and also after conjugation they are connected with a hyphen.
\# The double conjugational verb in which the 2 verbs belong to different classes of the vowel system, is a verb of 'mixed vowel system'.

20 groups; the class $d$ occurs only in some of the groups. Within the main types /altogether $66 /$ obtained in this way we can differenciate several subtypes /maximum 15/. The number of subtypes within a main type is denoted by $a_{4} a_{5}$ characters. This number of the subtypes shows how many sub-groups have to be differentiated within the main type in order to give a correct description of the forms of each verb, belonging to the main type. At the end we obtain altogether 515 conjugational types.

Remark: It results clearly what is said above that there are no exceptions in this conjugational system. I stress this fact because like this, the system is more homogeneous and well arranged /and therefore it may be better programmed /see [6]/.

### 3.3.2 In the machine system

In the machine system the conjugational type-number consists of 6 characters: $a_{6}$ contains the systematic remarks concerning the verb /see 3.5.4.2/.

The system is broadened by an URES /='EMPTY'/ conjugational type in order to describe the very defective conjugational type in a simple way: /see 3.5.l.2/. This is a fictive conjugational type, a verb belonging here to has no single verbal form.

### 3.4 DESCRIPTION OF THE VERBAL FORMS

### 3.4.1 In EL's system

### 3.4.1.l Marking_the_suffixes

With the verb type it is after the verbal form that stands the suffix. Signs used at the description of the suffix are the following:

- The suffix after $\sim$ means that the suffix is written to an unmodified lexical stem.
E.g. "ápol"='cure' belongs to the la type, the suffix of the form 30 in this type is '~nánk'; so the whole verbal form is: "ápolnánk" /='we would cure'/.
- If the suffix is connected to the stem in such a way that the stem is changed then the last unvariable letter of the stem together with the suffix is put after 2 dots /../.
E.g. "avat" /='dedicate'/ belongs to the conjugational type 5a, the suffix of code number 41 is ..assak, so the verbal form 41 is "avassak".
3.4.1.2 Missing_verbal_forms

Not each verb has all the 63 verbal forms. The missing verbal forms must be denotea too. A horizontal line after the code number of the verbal form indicates its absence. The absences in the systematic remark /see 3.5.4.l/ are not denoted.

### 3.4.1.3 Usage of particular verbal forms

It may happen that a code number has more verbal forms as form variants. E.g. the imperative form of the second person singular int the present tense /"várd", "várjad" - 'let you wait for him/her'/ or in the conditional type 3a the conditional forms may be conjugated with a linking vowel or
without it le.g. "körülrajong-a-nék", "körülrajong-nék" 'I'd admire'/.

The system contains all the possible verbal forms* and gives an information automatically for the usage of forms: the suffix included before is more frequent and the suffix following it in the description may be less frequent ${ }^{* x}$.
E.g. The type 3a, code number 27: ~anék, vagy ~nék.

The "infrequency" of a form is denoted in such a way that the suffix is in parantheses independently of whether it has a more frequent variant or not.
E.g. the type 3b, code number 62: /~tet/ the type 3al, code number 14: / _tam, nottam/

However the participle marked 58 which is rare today for all the verbs and the passive voice marked 63 which is very rare and archaistic in the up-to-date standard language are not put into parantheses.

Other stylistic remarks are to be found in 3.5.4 .

[^1]
### 3.4.2 In the machine system

### 3.4.2.1 The_suffixes_connected_to_the_stem

In the course of programming the suffixes connected to the stem do not give rise to difficulties: the information corresponding to the suffix is attached directly to the stem.

### 3.4.2.2 The_suffixes_not_directly_connected_to_the_stem

If during the conjugation the stem is changed, the solution described in 3.4.l.l /with the 2 dots/ is unsuitable because it is based on the linguistic instinct of the native speaker and such a linguistic instinct is not to be expected from a machine /cf.[7]/. Thus the change of stem must be marked formally.

The system of forms conjugated with a changed stem may be divided into two groups:
l. the difference may be specified according to some system /e.g. elision/,
2. there is no a system like this /e.g. irregular verbs/.

To except the program for examination of how the suffixes are connected to the stem, would not be saving; therefore the change of the stem is denoted by the first character of the generalized suffix. Since we must differenciate between the generalized suffix and the real one, the first character of the generalized suffix may not be such a letter that may occur as the first letter of a real suffix.

The change of the stem often manifests itself as a growing shorter of the stem. It is from this fact that derives the inspiration that the first character of the generalized suffix be the number of characters with which the changed stem becomes shorter. From the second character the real suffix is
to be found /not taking into account occasional remarks, see $3.5 .4 /$.
E.g. This means in the case 3.4.1.1, that the suffix of "avat" of the form marked 41 is lssak, thus "avat+lssak" $\rightarrow$ "ava+ssak= avassak".

### 3.4.2.3 Marking_of_elision

a/ In the case of verbs without 'ik' the notion of elision means that the last vowel of stem is not present in the conjugated form, e.g.
(i) "csicsereg" /'he chirps'/, but "csicsergek" /and not: "csicseregek"/ /I'chirp'/.
(ii) "kevesell" /'he finds sg. too little'/ but "keveslem" |'I find sg.too little'|

If we apply the solution described in 3.4.2.1, we must include a proper suffix to each possible final consonant of the stems.

$$
\begin{aligned}
& \text { E.g. csicsereg }+2 \text { gek } \rightarrow \text { csicsergek } \\
& \text { kicsinyel }+2 l e k \rightarrow \text { kicsinylek }
\end{aligned}
$$

Thus we find about 350 suffixes and 280 suffix series.

But it is characteristic of all the different final consonants of the stems that it is set in place of the last but one letter /=the vowel/ and after it comes the suffix. Thus these may be elaborated on the basis of the same prirciple: Let the first character of generalized suffix be ' X ', this indicates that the last letter must be put in place of the last but one and the characters after 'x' denote the real suffix /not taking into account occasional remarks, see 3.5.4/.

$$
\begin{aligned}
\text { E.g. csicsereg }+ \text { Xek } & \rightarrow \text { csicserg }+\mathrm{ek}=\text { csicsergek } \\
\text { kicsinyel }+\mathrm{Xek} & \rightarrow \text { kicsinyl }+\mathrm{ek}=\text { kicsinylek }
\end{aligned}
$$

In this way only about 160 suffixes are necessary to the description of these forms.

The elision of type (ii) can be found only in two conjugational types /7bl, 7b6/, so it is not worth to assign a separate letter for them and to write a separate program because it would not decrease the number of suffixes - therefore this types are handled in the way described in 3.4.2.2.
b/ In the case of verbs with 'ik' the notion of elision means that a vowel is inserted in the stem inside the lexical form.
E.g. "romlik" /'spoil'/ but "romoltok" /'you spoil'/. It is characteristic for this type of elision that a vowel corresponding to the vowel system is interpolated between the last letter of the verb and the last but one: in the case verbs containing velar vowels: "o", in the case of verbs with palatal unrounding vowel: "e" and in the case of verbs with palatal lip-rounded vowel: "ö".

Let "Y" be the first character of the generalized suffix, it marks the epentheses and the characters following "Y" will mark the real suffix.
E.g. "ugrik" /'jump'/, /17a/, code number 5:
ug|rik + Ytok $\rightarrow$ ugor + tok $=$ ugortok
"vérzik" /'bleed'/, /l8b/, code number 6:
vérz|ik + Ynek $\rightarrow$ vérez + nek = véreznek
"ömlik" /'flow'/, /l6c/, code number 59:
öml|ik + Yhet $\rightarrow$ ömöl + het $=$ ömölhet .
This solution has the advantage of shortening all the suffixes by 2 or 3 characters.

### 3.4.2.4 Shortening_and_lengthening_of_vowels

The shortening and lengthening of vowels may be treated simply and similarly on the basis of the designation of "special" vowel, the principle described in 3.4.2.2. Namely the shortening of vowels may be considered such a change of the root where the length of verb decreases with 1 /viz. with the character ':' which denotes the length of the vowel/. The uniform way of dealing with the problem means that the shortening may be denoted independently from the shortened vowel /this is impossible in the case of the usual designation of vowel-length in Hungarian/.
E.g. "nyü" /'wess out'/ but "nyüvés" /'wessing out'/; "szõ" /'weave'/ but "szövés" /'weaving'/,
but we obtain both forms with the same suffix:

$$
\begin{aligned}
& \text { nyu": +lve:s } \longrightarrow \text { nyu" + ve:s = nyüvés } \\
& \text { szo" }: ~+l v e: s \longrightarrow \text { szo" + ve:s }=\text { szövés }
\end{aligned}
$$

The lengthening of vowels is denoted by a suffix which has a colon as first character.
E.g. "lesz" /'will be'/, code number 58:

$$
\text { lesz }+2: \text { ve:n } \longrightarrow \text { le:ve:n = lévén }
$$

3.4.2.5 For the designation of the infrequency of verbs see para 3.6.4.

### 3.5 THE DESCRIPTION AND PROGRAMMING OF THE CONJUGATIONAL TYPES

### 3.5.1.1 In_EL's_system

It would be redundant to describe all the forms in each conjugational type, because not all the forms differ from each other. Conjugational types la and 1 lb are considered as
 described in EL's system as compared to these. Namely: in general, in the case of $a_{3}=a$ we refer to the type la, in the same way in the case of $a_{3}=b, c$ to the type $l b$, in the case of $a_{3}=d$ to the type la, lb.

In such a case we list only those forms which differ from the forms of the types to which they are referred.
E.g. [4a botoz] As la, but: 2~ol; 9-12:~za etc.;

$$
\frac{14,41 \sim \text { ott }}{\text { /"botoz"='flog'/ }} \frac{31-39 \sim z a k}{\prime} \text { etc. }
$$

### 3.5.1.2 In_the_machine_system

In the original description the conjugational system is unfitted for programming: it gives exactly the conjugational types but there is no possibility to sum up the types easily and formally. Moreover in the case of verbal forms which change in the same way it gives only the first forms. Therefore I have put the system into a tabular form /see I.Appendix/.

In the machine system each conjugational type has a record of a length of 64 bits /these records are placed into a disk file called DISELT/, to each code number a bit is accorded with an appropriate ordinal number. The value of the bit is 1 or 0 according to whether the suffix differs from the respective
code number of an other conjugational type or not. The value of the remaining $64^{\text {th }}$ bit determines whether the type was related to a standard type / in this case the value of the bit is $0 /$ or to another type /in this case the value of the bit is l/. A suffix number was given to all the possible suffixes /suffix series/.

Each conjugational type has an other record with a maximal length of 194 bytes /these records are also placed into a disk file called DISMIN/. This record contains the different forms /without the code numbers/, in increasing order according to the code numbers; and the conjugational type too, if the conjugational type is not related to a standard type.

The algorithm of the search of the suffix number is following: We examine the value of the bit corresponding to the code number in the record which belongs to the conjugational type of verb on the DISELT file. If the value is 0 , we must examine to which conjugational type it was related and then we examine the value of the bit of this conjugational type, etc.

If the value of the bit is $l$, we must count the bits, the value of which is one from the first bit upto this one and the suffix number of the required form will be a suffix number on the DISMIN file, the serial number of which agrees with the number we have obtained.
E.g. Let us look for the form 55 of the verb "tud" /'know'/ which belongs to the type 2 a 6 .
The record related to this type on the DISELT file is:
2a6: 00.................O...................Olll
and on the DISMIN file:
2a6: O2l 240 2a
The value of the $55^{\text {th }}$ bit in the record of DISELT file is 0 , the value of the $64^{\text {th }}$ bit is 1 . The $64^{\text {th }}$ bit is the third bit in this record that is equal to 1 , and the third data in the record of DISMIN file is: 2a.

Hence we must examine data of the type $2 a$.
The record in the DISELT file related to this type is:
16
55
2a: O...........olo............. 0
Here the value of the $55^{\text {th }}$ bit is 1 and this is the second bit that is equal to 1 , therefore we examine to tie second suffix number of the record $2 a$ on the DISMIN file anl this is: 120. /The suffix number 120 corresponds to the suffix "~ott", thus the form 55 of the verb "tud" is "tudott" /'k rown'/.

### 3.5.2 Recursion

### 3.5.2.1 In_EL's_system

a/ It may happen that two conjugational types following each other, differ in only some verbal forms but they differ very much from the standard type: in this case we refer to the group which has the smaller type number. This is called '/simple/ recursion'.
E.g. [lcl dôll As lc, but intransitive: 42/~endő/! 46,48:/"dôl"='fall' /
b/ There is no reference to a former or standard type in the case where the subtype is too defective: then only the existing forms are described.
E.g. [lOa3 szabad] 3~, 14/~ott/, 23~na, 33~jon /"szabad"='allowed'/

In the machine system this type may be described only as related to the standard type, e.g. on the DISELT file:
and the length of the record lob2 would be 180 bytes on the DISMIN file.

In order to the conjugational type, 'URES' was initiated for simpler administration, thus the description of type loa3 is: on the DISELT file:

on the DISMIN file:
OOl, 620, O35, 104, URES

### 3.5.2.2 In the machine system

Programming provides an opportunity to include not only simple but repeated recursion. A repeated recursion is not adequate to "the human utilization" e.g. in a conjugational dictionnary because this indicates too much searching about. On the other hand it gives no problem for the computer. Thus the particular conjugational types were described related to the conjugational types "nearest to" them. /"Nearest to" means, that the distance of two conjugational types is the smallest; "the distance of two conjugational types" is defined as the number of verbal forms differing from each other./ E.g. the type $3 c 2$ may be described related to the type 3 cl , the type 3 cl to the type 3b8 and the type 3 b 8 to the type 1 b : this is $\mathrm{a}^{\prime} \mathrm{d} \circ \mathrm{u} \mathrm{b} 1 \mathrm{e}$ recursion'.

To $70 \%$ of the conjugational types, simple to six times recursion may be applied and so the number of differences can be decreased to half; this means that we need half space on the DISMIN file.

### 3.5.3 References

3.5.3.1 In_EL's_system

It may occur in case of some conjugational types that formal variants are used instead of certain verbal forms /references of "preferable $t y p e$ " or the verb has only some
forms and the other forms are expressed by the corresponding forms of a formal variant /of the same verb/ /references of "insteadoftype" ${ }^{x}$.

See I.Appendix [l2a4 mosakodik] and [19a furaks.ikik] /"mosakodik"='wash',"furakszik"='push'/

### 3.5.3.2 In_the_machine_system

Considering for small number of "preferably type" references they are transformed according to 3.4.2.2 and in the same way the "instead of type" references in the main type 17.
E.g. the forms l-4 of the verb "mosakodik" /l2a4/ in the machine system:
l..kszom/~omb 2..kszol/~ol v.~sz/, 3..kszik/~ik/, 4..kszunk v.~unk

In the case of "instead of type" references in the main type 19 this solution would give about 300 further suffixes, therefore I selected an other solution.

For the forms which are conjugated from changed stems, the first character of the generalized suffix is $P$ and the next characters depend on the change of the stem and on the number of the new conjugational type. /There is no real suffix beginning with the character $P$./ To be more exact: the second character of the suffix denotes the number of the characters to be cut off the end of the verb; and the following characters must be set after the stem derived in such a way. /If these are less then 4 , the other characters are replaced each with a space. / The $7^{\text {th }}$ character of the suffix denotes the conjugational type of the stem variant. Hence, we need only ll new suffixes.

[^2]
### 3.5.4 Remarks

### 3.5.4.1 In_EL's_system

In order to give an exact and simple description of Hungarian verbs certain remarks are by all means necessary which may be divided into three large groups:

- Remarks type I: these are so-called "systematical remarks" concern well-defined forms of certain conjugational types. They are denoted in the course of the description of the conjugational system. E.g. "intransitive"='tn' and a corresponding conjugational type: e.g.: 2a8.

The systematical remarks apply to all the verbs belonging to the given conjugational type, as in the former case: e.g. "fagy" /'it freezes'/, "fogy" /'grow less'/.

- Remarks type II: These are similar remarks as those in remarks type I plus the remark: "without subject", but these are not concerning the conjugational type but only certain verbs. These are denoted only in the dictionnary.
E.g. "lapul intransitive" /'become flat'/. This verb belongs to the type la./
iThese remarks are also called systematical remarks./ The verbs with the remark "only intransitive" lack the forms 7-13,20-26,33-39,47-53,63 and the forms 56,60 are rare with them.
The verbs with the remark "only in $3^{\text {rd }}$ person" have only the following forms: $3,6,10,13,16,19,23,26,29,32,36,39,43$, 46,50, 53-63.

The verbs with the remark "only transitive" have no forms 1-6, 14-19, 27-29, 41-46, 55,60,63.

- Remarks type III: These concern certain forms of certain verbs and they are to be found in the foot notes. They may be divided into two large groups:
a/ so-called "common remarks" which concern all the forms with the code number "certain" of certain conjugational types.
E.g. "without 'ik' specially in transitive usage".
b/ so-called "special remarks" which concern only certain forms of certain verbs in a certain conjugational type.
E.g. 3 | ik/ in the verbs "retten" /'recoil'/, "rezzen" /'rustle'/, "csökken" /'decrease'/. /This special remark concerns the conjugational type lb./


### 3.5.4.2 In_the machine_system

- The remarks type I, II are contained by the $6^{\text {th }}$ character of the conjugational type number. /If there is not such a remark for a conjugational type, $a_{6}$ is a "space" character./
- The remarks type III. are denoted in the generalized suffix by a special character after the last letter of the real suffix which may be well seperated from the last letter of all the real suffixes. The program must direct that only the real suffix be connected to the stem. Of course, the suffixes with a remarks have other suffix numbers than the suffixes without remarks.


### 3.6 NUMBERING AND STORING OF THE SUFFIXES

### 3.6.1 General principle

On the base of all the /generalized/ suffixes and suffix series that are possible in the conjugational system, a suffix table was made. Its details may be found in Table 2.

The firs part of the suffix table contains the rare and the frequent suffixes in the machine alphabetic order in the way that the longer suffixes have greater suffix numbers - i.e. the length of the suffix may be determined depending on the value of the suffix number - and in this way the program will be simpler.

In order to occupy less place in counting the suffixes, the suffix number contains only 3 characters in spite of the fact that there exist about 3000 suffixes /and suffix series/. The second and third character of the suffix number go from 00 to 99, the first /alphanumeric/ character of the suffix gives the value of the hundreds.

The second part of the suffix table contains the suffix numbers with respect to the suffix series together with the suffix number of the forms in the above discussed order. A suffix series has 2,3 or 4 suffix numbers depending on the number of the verbal forms, they are the suffix numbers of these forms.

### 3.6.2 Storing of the suffixes

The suffixes and suffix series without their suffix number may be found on the DISRAG file in an increasing order. /This file is also an indexed sequential file on the disk./

Table 2
DETAIL OF THE FIRST PART OF THE SUFFIX TABLE

Machine			Freque	nt suf	fix	Non-freq	quent s	uffix
description of the suffix	Remark	Length of the suffix	Type in which it can be found first	Suffix number	$\begin{aligned} & \text { Code } \\ & \text { num- } \\ & \text { ber } \end{aligned}$	Type in which it. can be found first	Suffix number	Code number
space	-	1	la	OOl	3	7b6	FOl	3
space 8	yes	2	lal	Ol4	3			
space 9	yes	2	lb5	015	3			
: K	-	2	5 a 7	013	13			
:TOK	-	4	5a7	235	12			
$\varnothing$	-	1	lal	000	60			
$\phi \varnothing$	yes	2	3 al	016	56			
¢H	yes	2	13 a	017	62			
$\phi \mathrm{P}$	yes	2	l9al	018	$\begin{aligned} & 60 \\ & 62 \end{aligned}$			
A $=\mathrm{L}$	-	3		075		14 a 6	F75	42
$A: N$	-	3	9 a 8	076	58			
$A=S$	-	3	la	077	61			

## Examples for suffixes of Table 2:

ápol +u= ápol /'he/she nursey'/
meggyón $+\mathrm{U}=\mathrm{meg}$ gyón, meggyón $+i k=$ meggyónik /'he confesses'/ in the transitive usage rather without '-ik'
aszongya $+: K=$ aszongyák /'they say'/
aszongya + :TOK = aszongyátok /'you say'/
elbúsul $+\varnothing$ - the verb "elbúsul" /'he abandons himself to sorrow' / has no the form 60
the verbs with the suffix number $\phi \phi$ : the verbs belonging to the type 3al have no forms 56, except for the verb "mond" /'say'/: "mondandó" /'saying'/
szív + A:N = szíván /'smoking'/
ápol $+\mathrm{A}: \mathrm{S}=$ ápolás /'nursing'/

### 3.6.3 Advantage of the numbering of the suffixes

l/ It_claims_less_place_in_the_data_storage. Namely there are about 5600 differences in the conjugational system; in order to mark the differences $5600 \times 3 \approx 16 \mathrm{~K}$ bytes are necessary in the case of counting of the suffixes; the data storage of the DISRAG file is about 15 K ; this is altogether about 3lk bytes.

But if we do not count the suffixes, since the average length of the suffixes is 5,4 bytes, in order to mark the difference it is necessary to have $5,4 \times 5600 \approx 30 \mathrm{~K}$ bytes. /The real data storage, however, needs more place because we have counted suffixes instead of suffix series./ But to find a given suffix it is necessary to give each suffix a seperated data length and thus data storage is more than 50K bytes.

2/ File-handling_is_simpler because each data is 3 bytes long in each record of the DISMIN file.

3/ If we do not mark the suffixes with a number, it will be necessary to examine whether a code number has one or more forms; and in the former case this follows automatically.

4/ If we want to write a program that makes more or less /i.e. not all/ forms, then we must rewrite_only the suffix numbers on the DISMIN file - while if we do not number the suffixes, it would be rewriting the complete file.

5/ Also from the point of making linguistic statistics or an occasional analysing_program it is better to number the suffixes. E.g. in the former case it is simpler to examine items with the same length le.g. to count the frequency of certain suffixes/.

### 3.6.4 The suffixes of the "rare" forms

The "rare" forms are denoted also by the suffix. If we want to mark the rarity of the forms with a character of the suffix we would get about twice as much suffixes and it would not be economical. Therefore the "rare" suffixes were also given a suffix number which differs from the suffix number of the suffixes of the frequent form, but the suffix number of the frequent suffix can be decided from the first character of the suffix number of the rare form.

### 3.7 DICTIONARY OF THE CONJUGATIONAL SYSTEM

### 3.7.1 Dictionary that belongs to EL's system

All the verbs taken into account belong to one type of the 515 conjugational types. However it can not always be determined formally, to which one. Since it is necessary to make a dictionary which contains the verbs in their lexical forms /present tense, $3^{\text {rd }}$ person singular/, together with their conjugational types and accidental remarks. This dictionary is necessary for the usage of the conjugational system.

The verbs may be divided into three groups:
I. The verbs which may be conjugated according to their second part and the second part is a lexical entry - it is not necessary to indicate the conjugational type of these verbs in the dictionary.
II. The verbs with a typical termination which obtain the paradigmes in accordance with the termination. These verbs are called 'Verbs with a typical termin ntion'. A so-called. 'T a ble of typical termination s' belongs to the conjugational system. /See II.Appendix./ It contains the the typical terminations together with their conjugational types.
III.All the other verbs are so-called 'verbs with their own par a dig m'. Their conjugational type must be given by all means in the dictionary.

### 3.7.2 The dictionary belonging to the machine system

1/ The dictionary made according to the machine synthesis contains only the verbs which must be included in order to find their conjugational type, i.e. it does not give a full verb-listing. This dictionary contains only the verbs of the III ${ }^{\text {rd }}$ group as well as the verbs with prefix belonging to the base verb with the remark "only intransitive".

It is possible for a verb to represent more /homonymus/ lexemes and the different lexemes belong to several conjugational types.
E.g. the verb "kiötlik ${ }^{1}$ " /familiar or coloquial - 'stick out'/ belongs to the type l6c4 and the verb "kiötlik ${ }^{2}$ " /'think out'/ belongs to the type 16 c 2 .

In this case the verb must be included in both conjugational types in a way to be differenciated, since the key of a record of the DISTAR file is the verb itself, such verbs have two keys, e.g. "kiötlikl" and "kiötlik2".

2/ The dictionary is on the DISTAR file which is an indexed sequential file on the disk and the key of the verbs is the verb itself.

### 3.7.3 Number of verbs in the dictionary

The conjugational dictionary contains about 16000 verbs, half of them belonging to group I. According to the contracted system there are about 6100 verbs with the characteristic termination belonging to group II, thus the type of only 1900 verbs must be given.

However, several types of the detailed system may belong to certain types of the contracted system /e.g. types la, lal,... ...,la9 of the detailed system belong to the type [l] of the contracted system/, but among the frequent terminations only one can be regarded as characteristic, the one that contains the greates number of verbs, thus to a characteristic termination less verbs belong in the detailed system. Therefore the DISRAG file contains not 1900, but about 3600 verbs.

### 3.8 DOUBLE CONJUGATIONAL VERBS

1/ There are 45 double conjugational types containing 60 verbs.
$2 /$ Both verbs of a double conjugational type have a separated record in the DISELT file as well as in the DISMIN file. The $64^{\text {th }}$ bit of the former record is always $l$, because it may not often be decided formally /or would be complicated/ to which standard type it was related by the last number of the recursional change.

The key belonging to the first verb of the double conjugational type on the DISELT file and on the DISMIN file corresponds to the number of the conjugational type and the key belong to the second verb is equal to the key belonging to the first verb, except for the $a_{3}$ character; $e . g$. in the case $a_{3}=d$, the new $a_{3}$ is " $f$ ".

If a form is rare it is denoted in both verbs. The special remark is indicated in the first verb and the common remark is indicated in the second one. If any of the verbal forms are lacking it is denoted only in the record, belonging to the first verb.

### 3.9 THE DESCRIPTION OF THE PROGRAM

### 3.9.1 Input data

The program was made in a way that by a relatively simple extension it may formulate the compounds forms /conditional, future tense/. So any forms may be required /i.e. declarative, conditional and imperative, all 3 tenses; the verb ending in "-hat" - e.g. "talál-hat"="találhat"- 'he may find' -, causative forms, reflexive forms/.

It is the task of the program to decide whether the required form is existing at all in Hungarian and if it does, whether it exists for the given verb.

The verb to be conjugated and the required form may be read in from a punch card. On the card the following must be punched:
the verb: by characters l-35;
the required form: by characters $37-52$; this may be given as a code number /its value may be l-63 or 65-70; in this case only a simple form and an infinitive with a personal suffix may be required/ or a code formed of 16 characters:
$a_{1} a_{2} \cdot a_{4} a_{5} a_{6} a_{7} a_{8} a_{9} \cdot a_{11} \cdot a_{13} \cdot a_{15} a_{16} \quad$ where
$a_{1} a_{2}$ may be: cs = active voice
mu = causative voice
sz $=$ passive voice
ha = the verb with "-hat"
two spaces
os $=$ all the forms of the verb are demanded
and $a_{4}-a_{16}$ contain all the informations concerning the type of conjugation, number, person, participle and other forms qained from the verbs.

### 3.9.2 Result

The program gives the required form lor the answer that it does not exist/ on the line printer. The first 55 characters of the result are the input data, the other characters depend on the result.
a/ If we have demanded an intransitive verb or a transitive verbal form relating to an object of $2^{\text {nd }}$ or $3^{\text {nd }}$ person, in the case when the required form of the verb exists, the program prints: "A kért igealak:.............."
/'The required form: .......'/
/If there exist several forms they are printed one under the other./
If the verb is a rare one, it prints "ritka" /'rare'/ at the end of the line: if there exists any common remark it is printed in the next line.
b/ If we have required a transitive verbal form and we have not specified the type of the object $/ 2^{\text {nd }}$ or $3^{\text {rd }}$ person/ then the program decides whether both forms exist or not:
l. If the verb is intransitive, the printed text is: "Az igének ilyen alakja nincs" /'the verb has not this form' $/$
2. If the transitive form relating to an object of $2^{\text {nd }}$ person does not exist, it conjugates only the form relating to an object of $3^{\text {rd }}$ person and the printed text is:
"3.személyü tárgyra utaló alak: $\qquad$ /'the form relating to an object of $3^{\text {rd }}$ person'/.
3. If both transitive forms exist, the program will conjugate the form relating to an object of $2^{\text {nd }}$ person in the same way as described in para. 2 and the form relating to an object of $3^{\text {rd }}$ person.
c/ If we require a compound or a recursive form, then the program indicates the understanding of the task but does not conjugate this form yet.

### 3.9.3 Storage of the program

1/ The storage of the DISELT file is about 7 K bytes, that of the DISMIN file is 27 K *, that of the DISRAG file is 17 K *, and that of the DISTAR file is ll5K /counting the key area with 25 characters/. This is altogether l66K bytes. If the full DISTAR file becomes ready with about 3600 verbs and the number of characters that define the verb unambiguously, can be decided, it might happen that the key length of $a$ verb covers e.g. only 10 characters. In that way only 63 K bytes would be necessary for the DISTAR file.

2/ The storage required for the program conjugating the recursive and the compound forms is about 20 K .

### 3.9.4 Flow-chart of the program



[^3]




4. ADVANTAGES OF EL'S SYSTEM AND THE MACHINE SYSTEM

### 4.1 COMPARISON OF EL'S SYSTEM AND THE "EXPLANATORY DICTIONARY"

If we give the paradigmatic features of the entries of the Concise Explanatory Dictionary of Hungarian, in an analogous way to those of the Explanatory Dictionary [3] then for the description of the conjugational system twice as much place would be necessary than for the description of the full variant and 17 times more place than for the description of the contracted system as shown in Table 3. /The data of Table 3 must be considered approximate being set up in 1971, and since that time the system has slightly been modified. This modification, however, is not more than $1-2 \%$./

Table 3

Size		The groups of the verbs without '-ik'	The groups of the verbs with '-ik'	Together
```n-size using the notation of the Explanatory Dictionary /l/```		104810	97975	202785
$\begin{aligned} & \text { full } \\ & \text { variant } \end{aligned}$	$\begin{aligned} & \text { numb } \in \text { } \\ & \text { of } \\ & \text { entries } \\ & \text { /2/ } \end{aligned}$	5600	2354	7954
	$\begin{aligned} & \text { n-size } \\ & \|4\| \end{aligned}$	$\begin{aligned} & 13600+ \\ & 30409 \end{aligned}$	$\begin{array}{r} 8379 \\ 32765 \\ \hline \end{array}$	$\begin{aligned} & 21979+ \\ & 63174 \\ & \hline \end{aligned}$
```n-size of the contracted system /1,2,5/```		$\approx 22000$	$\approx 10000$	$\approx 32000$
contracted system	$\begin{aligned} & \text { number } \\ & \text { of } \\ & \text { entries } \\ & / 3 / \end{aligned}$	1514	392	1906
	$\begin{aligned} & \text { n-size } \\ & \mid 5 / \end{aligned}$	$\approx 8000$	$\approx 4000$	$\approx 12000$

The number of letters, necessary to write a word /text/ is

/1/ In this variant the number of the entries equals the number of the entries of the full variant.
/2/ Verbs with a typical termination are not taken into consideration here.
/3/ Verbs with a typical termination described by the contracted system are taken into consideration.
/4/ The first number is the sum of the paradigmatic marks to be indicated in the dictionary and the second one is the n -size in the description of the conjugational types.
/5/ Here the n-size is only the sum of the paradigmatic marks to be indicated in the dictionary; the size of the description of the conjugational types /about 3/4 printed sheet/ is to be added [lJ/.

EL's system gives a more exact description of the conjugational system than the "Explanatory Dictionary". * Namely, the latest gives only 2-3 characteristic verbal forms and the forms that differ from the forms which can be concluded from the indicated forms. At the end of the entries only the most frequent derivations may be found and the forms 56,59,63 of the verb are usually not published, and neither is their lack indicated.

### 4.2 COMPARISON OF EL'S SYSTEM AND THE MACHINE SYSTEM

There was a possibility to set up several solutions for the recursion between certain conjugational types.
l. If we described the conjugational types in an analogous way to EL's system then 7909 forms without '-ik' and 5341 forms with '-ik', altogether 13258 forms would differ from the standard types.

[^4]2. If we use recursion as often as possible, then
(i) denoting the elision as in para. 3.4.2.2, the number of divergences is $3252+2468=5720$;
(ii) denoting the elision as in para. 3.4.2.2, the number of divergences is $3179+2468=5467$; while
(iii) not considering the rareness and the order of the forms and denoting the elision as in para. 3.4.2.3, the number of the divergences is $2912+2186=5098$.
3. If we only allow simple recursion, in the case (i) the number of the divergences is $4194+3704=7898$, in the case (ii) it is $4150+3704=7854$ and in the case (iii) it is $3888+3530=7418$.

Considering all the solutions, only that one described in $2(i i)$ was used in the program.

Thus, using the recursions only half as much divergences must be denoted than in EL's system. The conjugational types may be looked over easily in the tabular form, but this description /on paper/ occupies twice as much place than EL's system.

## 5. APPLICATION OF THE PROGRAM AND THE DATA FOR

### 5.1 ANALYSIS

If we wish to solve the automatic analysis of verbs le.g. in a translation program from Hungarian into another language/, we must use the detailed system and the program in order to recognize all the possible verbal forms. However, we need not take into account the rareness and order of the verbal forms and other stylistic remarks.

### 5.2 MACHINE TRANSLATION

In a program which translates into Hungarian from another language, it is enough to use the less detailed system i.e. for one code number it is enough to formulate one /namely the most frequent/ form. This saves 8 K bytes.

If the machine translater program translates a given /special/ text, the DISTAR-file contains less verbs depending on the character of the text and then it is not necessary to insert the data of the conjugational types containing only 1 verb.

### 5.3 SOLVING LINGUISTIC PROBLEMS

There are several problems proposed by linguists which might be solved on the basis of the system /with the help of further programs/.

A/ In which conjugational types /verbs/ does the first person plural present tense in the indicative form of a transitive verb /code number ll/ differ from the imperative form /code number 51/?
/This is the well-known "suk-sük" problem which is important from the point of language-culture./
E.g. "olvassuk" /'we read'/: $1^{\text {st }}$ person plural present tense in the indicative form of a transitive
verb; and
"olvassuk" /'let us read'/: $1^{\text {st }}$ person plural present tense in the imperative form of a transitive verb; BUT
"avatjuk" /'we initiate'/: $1^{\text {st }}$ person plural present tense in the indicative form of a transitive verb; and
"avassuk" /'let us initiate'/: $1^{\text {st }}$ person plural present tense in the imperative form of a transitive verb.

This would be a plan of a program that solves this problem:


In this way we may get known in how many conjugational types there is a difference between the 2 forms. If we want to know the number of such verbs then we have to make the program remember the conjugational types in the case of equal suffix number. After this we examine the number of the verbs belonging to such a conjugational type with the help of the DISTAR file. The number of the verbs belonging to group III /see para. 3.8.l/ is given by the following formula:

number of verbs belonging to the conjugational type

The number of the verbs belonging to group II and for which the 2 suffix numbers are equal, is given by the following formula:

number of verbs with a certain typical terminations

If we take into account that the number of the verbs belonging to group I /about/ equal to the number of the verbs belonging to group II and III, then the "suk-sük" problem refers to about $2 / A+B /$ verbs.

B/ In the case of the verbs with '-ik' how many of them do necessarily take 'ik' and which may also be used without '-ik'?

C/ Is the form variant of the stem a morphological variant or an orthographical one and which is the more frequent one?
E.g. Morphological stem variant:
"avat" - "avassak" /'he initiates' - 'let me initiate'/;
Orthographical variant:
"fogódzik" - "fogóddzam" /'he clings' - 'let me cling'/

D/ In how many conjugational types /verbs/ does a suffix occur? A flow-chart to solve this problem may be the following:


Legend: $i=$ suffix number
$R_{i}=$ the suffix which belongs to the ' $i^{\text {, th }}$ suffix number $x_{i}=$ the $i^{\text {th }}$ suffix occurs in $x_{i}$ conjugational types $y_{i}=$ the $i^{\text {th }}$ suffix occurs in $y_{i}$ verbs z = auxiliary variable

E/ The system may be used to solve certain designation problems.
E.g. we wish to determine which is the more typical one of the 2 suffixes /A and $B /$ of the same verbal form, then we should examine, how often the suffixes occur in the conjugational types $/ X_{A}, X_{B} /$. If the suffix $A$ occurs more often than $B$, i.e. $X_{A} \gg X_{B}, A$ is called typical and this is denoted by the sign "+". If $X_{A} \approx X_{B}$, the productivity of the suffixes A and B should be examined, namely number of verbs taking suffix $A$ and the number of verbs taking suffix $B$ and the problem should be solved on this basis.
E.g. We should like to decide which is the typical suffix of those of the form 62 of the verbs belonging to the vowel system "a". We found that suffix "-al" occurs once, suffix "-aszt" occurs 6 times, suffix "-at" occurs 34 times, suffix "-it" occurs 4 times, suffix "-lal" occurs once, suffix "-kat" occurs once, suffix "-t" occurs 2 times, suffix "-tat" occurs 78 times, suffix "-vat" occurs twice and all the 64 conjugational types lack the form 62. Thus suffix "-tat" is considered to be the typical one and this is the suffix of the standard types la too /i.e. if this suffix occurs in a conjugational type, we do not give the form 62/.

## I. APPENDIX

## A/ Original variation /with EL's numbering/

[la áppoly /'nurse'/ l~ok, 2~sz, 3~, 4~unk, 5~tok, 6~nak, 7~lak; 8~om,~od, 9~ja, 10~juk, ll~játok, l2~ják; 13~tam, ~tál, $14 \sim$ t, $15 \sim$ tunk, $\sim$ tatok, $16 \sim$ tak; 17~talak, ~tam, ~tad, 18~ta, 19~tuk, ~tátok, 20~ták; 2l~nék, 22~nál, 23~na, 24~nánk, ~nátok, 25~nának; 26~nálak, ~nám, ~nád, 27~ná, 28~nánk v.~nák, ~nátok, 29~nák! 30~ni! 3l~jak, 32~j/~jál/, 33~jon, 34~junk,~jatok, 35~janak, 36~jalak, ~jam, 37~d/~jad/, 38~ja, 39~juk, ~játok, ~ják! 40~ó, 41~t, 42~andó! 43~va, 44~ván! 45~hat, 46~ható! 47~ás! 48~tat, 49~tatik

「la5 durgranan /'explode'/ As la but only intransitive ${ }^{3}$ : 42,46:--! 48~t
[la8 bugqqyana /'rise'/ As la but only 3.person intransitive ${ }^{3}$ : 42,46:--! 48~t
[lb emely /'lift'/ l~ek[ë], 3~, 4~ünk, 5~tek[ë], 6~nek; 7~lek, 8~em[苍],~ed[ë], 9~i, 10~jük, ll~itek[ë], l2~ik; l3~tem, ~tél, l4~t, 15~tünk, ~tetek[e-ë], 16~tek; 17~telek, ~tem, ~ted, 18~te, 19~tük, ~tétek[ë], 20~ték! 2l~nék, $22 \sim$ nél, $23 \sim n e, 24 \sim n e ́ n k, \sim n e ́ t e k[e ̈], ~ 25 \sim n e ́ n e k ; ~$ 26~nélek, ~ném, ~néd, 27~né, 28~nénk v.~nők, ~nétek[ë], 29~nék! 30~ni! 31~jek, 32~j/~jél/, 33~jen[ë], 34~jünk,~jetek[e-ë] 35~jenek, 36~jelek,~jem, 37~d/~jed/, 38~je, 39~jük, ~jétek[ë], ~jék!
40~õ, 41~t, 42~endô! 43~ve, 44~vén! 45~het, 46~hetô! 47~és, 48~tet, 49~tetik

[^5] 6~anak, 7~alak /~lak/, 13, 15-20; tam /~ottam/ etc., 14, 41:~ott! 21-30:~anék etc.! 42:-! 48-49:~oztat etc. ${ }^{2}$
[3bl kéergd /'ask'/As lb, but: 2~esz, /~sz/, 5~etek[ë-ë] 6~enek, 7~elek, /~lek/, 13,15-20:~ettem v.~tem etc., 14-41~ett[ë], 2l-30:~enék etc.! 48-49:/~eztet[ë-ë]
 6~enek, 7~elek, v./~lek/, 13-20:~ettem[e-ë]etc.! 2l-30:~enék etc.! 3l-39:~sek etc.! 4l~ett[ë],! 48-49:~et etc.
[5b2 téveszt] /'miss the target'/ As lb, but: 2~esz, 5 etek[ë-ë], 6~enek, 7~elek, v.~lek, l3-20:~ettem [ë-ë] etc.! 2l-30:~enék etc.!
[5c2 fürrö으르른] /'bathe sy'/ As lb, but: l~ök, 2~esz, 5~ötök, 6~enek, 7~elek v.~lek, 8~öm, ~öd, 13-20:~öttem etc. 21-30:~enék etc.! 31-32, 34-39:~sszek etc., 33~sszön! 41~ött! 48-49:~et etc.
[5c3 figosstul'paint'/ As 5c2, but: 3l-39:~ssek etc.
[6al bomoly /'resolve into'/ As la, but only intransitive: 1,4:.mlok etc. 2~sz/..mlasz/; 14~t /..mlott/! 2l-30~nék /..mlanék/ etc. 40,42,47:..ló etc., 4l..mlott v.~t
[7al tiporgry /'trample'/ As la, but: 1,4,8:..prok etc., 2~sz/..prasz/, 6~nak/..pranak/, 14,4l:~t/..prott/! 21-30:~nék/..pranék/ etc.! 40,42,47:..pró etc.! 48-49: ~tat v. ...prat etc.
[9a elvañ /'be away'/ As la, but only intransitive: l..agyok, 2..agy, 4..agyunk, 5..agytok, 13-16:. .voltam etc.! 2l-25...volnék etc.! 41/..volt/, 42:-!! 30-35, 40, 43-48: instead of tese: ellesz 9bl
2) the different forms of the verb "mond" /'say'/: 42~andd, 48-49:~at etc.
[10b2ninges] /'there is no'/ only 3~ v. ~en, 6~enek
[lla gqyonikik /'confess'/ As la, but: $3 \sim i k / \sim /^{2}, 48 \sim$ tat/ $/ \sim a t /^{1}$, 49 / atik/

「l2a4 mossakodiku/'wash'/ As la, but only intransitive: l/~om/, 2/~ol v. ~sz/, 3/~ik/, 14,4l:~ott! 2l~nék v.~nám, 23~na/~nék/! 3l~jam v. ~jak, 33~jék v. -~jon! 46: -!
 19a/
[19a furarakszink] /'push'/ l~om, 2~ol, 3~ik, 4~unk, 5/~otok, v. ..kosztok/, 6~anak/..kosznak/! 7-48:- /instead of

[19a4 nyyugszik] /'take a rest'/ As la, but only intransitive: 1~om, 2~ol, 3~ik, 5..gosztok v. ~otok /..godtok/, 6~anak v. ~gosznak /..godnak/, l3..godtam etc., l4..godott, 15-16:..godtunk etc. 21..godnék v. ..godnám, 22..gondnál, 23..godna v. ..godnék, 24-25, 30: ..godnánk etc.! 31..godjam v. ..godjak, 32..godjál v. ..godj, 33..godjék v. ..godjon, 34-35: ..godjunk etc.! 40..gvó, 4l~godott /..godt/! 43-44:..godva etc.! 45..godhat /..ghat v. ..ghatik/! 47..gvás! 48..gtat! 42-46: -

1
with a difference of meaning
2 without '-ik' especially in transitive usage

B/ The transformed, variant



	Number of verbs regular termination   other termination	$\begin{aligned} & \text {-ál } \\ & \text {-al } \\ & \text {-ol } \\ & \text {-an } \end{aligned}$	$\begin{array}{r} 753 \\ 50 \\ 475 \\ 32 \end{array}$	15
	Total amount		1310	15
	Regular conjugation, omissible paradigme number	$\begin{aligned} & \text {-al } \\ & \text {-ál } \\ & \text {-an } \\ & \text {-ol } \\ & \text {-ül } \end{aligned}$	50 753 2 474 14	15
	Total amount		1273	15
	the paradigme number which must be indicated		17	0
	emark type III.	8/ taging into account the dialectical variant of the following verbs "bukkan" /'strike upon'/, "csattan" /'clap'/, "durran" /'explode'/, "kibuggyan" /'spout'/, "koppan" /'sound'/, "lobban" /'flare up'/, "nyikkan" /squeak'/, "pattan" /'crack'/, "pottyan" /'plump'/, "villan" /'flash'/, "torpan" /'stop dead'/: 3~/~ik/		

II. APPENDIX

THE TABLE OF THE TYPICAL TERMINATIONS

Termination	Conjugational type	Number of verbs	Number of exceptions
-ad	lal	39	43*
-al	la	50	5
-ál	la	753	25
-all	3 a 3	10	6
-an	lal	25	35*
-ant	4 a 6	27	11
-ász	4 a 4	23	-
-ászik	15a4	26	1
-aszt	5a3	62	4
-at	5 a	229	108
-az	4 a	56	1
-áz	4 a	146	28
-ázik	14a?	125	38
-dös	4 c 3	7	--
-edik	12b	234	133
-eg	2 b	41	$53^{*}$
-el	1 b	226	49
-él	1 b	49	13
-en	lb5	23	25*
-eng	3 b	11	7
-ent	4 b 6	20	9
-es	4b3	7	2
-ész	464	10	--
-észik	15 b 4	7	4
-eszt	5b3	45	1
-et	5 b	177	77
-ez	4b	175	45
-éz	4b	28	2
-ezik	14 b	24	17
-od	2a	6	--
-odik	12a	380	132
-ódzik	15a	14	$18^{*}$
-og	2a	86	$94^{*}$
-ol	la	474	56
-ong	3 a	21	--
-os	4 a 3	16	1
-oz	4 a	276	43
-óz	4 a	43	5
-ozik	14al	105	95
-ózik	14al	30	48*
-öd	2 c	6	--
-ödik	12 c	45	40
-ơdik	12 c	65	54
-ơdzik	15 c	8	1
-ög	2c	29	26

$x$ The exceptions are from several conjugational types

Termination	Conjugational type	Number of verbs	Number of exceptions
-81	1 c	76	14
-O゙z	40	30	9
-ơz	4 c	12	3
-OZzik	14 c 5	4	11**
-ôzik	14 C	14	19*
-ul	lal	123	31
-ul	lcl	135	15

## BIBLIOGRAPHY

[l] Elekfy, L.: A magyar szóvégek és toldalékok rendszere. /The System of the Hungarian Word Endings and the Suffixes./
/in: Magyar Nyelv, LXVIII.1972. 303-309 and 412-429 pp./
[2] Elekfy, L.: Szókincsünk nyelvtani alakrendszere.
/Grammatical Form System of Hungarian
Word-Stock/; /Typescript/
[3] Ertelmezõ Szótár: I.-VII.kötet
/Explanatory Dictionary, Vol.I.-VII./
[4] Kelemen, J.: Beszámoló a gépi nyelvstatisztikai kérdésekrôl /a debreceni nyelvészkongresszus elỗadásai/.
/Report on Some Questions of the Computer Linguistic Statistics - Proceedings of the Debrecen Linguistic Congress./
Ed.by S.Imre and I.Szatmári.
Budapest, Akadémiai Kiadó, l966.p. 480-485./
[5] Magyar Ertelmezơ Szótár. /Concise Explanatory Dictionary of Hungarian/

Budapest, Akadémiai Kiadó, 1972.
[6] Máthé, J. - Kovács-Bölöni, E. /Mrs/ - Schweiger, P. Székely, E.: A magyar igeragozás független analizisének egy modelljéről /a debreceni nyelvészkongresszus elôadásai/.
/About one Model of the Independent Analysis of the Hungarian Conjugational System Proceedings of the Debrecen Linguistic Congress./
Ed. by S.Imre and I.Szatmári.
Budapest, Akadémiai Kiadó, 1966. p. 499-502.
[7] Papp, F.: Algoritmus. /Algorithm/
/iñ: Magyar Nyelvôr 89., 1965. p.87-93./

# AN ALGORITHM FOR FINITE GALOIS-CONNECTIONS 

G.FAY

Institute for Economy Organisation and Computational of Metallurgy and Engineering Industry Budapest, Hungary

1. INTRODUCTION

The many-to-many relationships between things in practice /rather than one-to-ones as usually considered in applications dealing with e.g. numerical functions/ give rise to the question how to, so to speak, "represent" a many-to-many correspondence in possibly as convenient a form as is customary in everyday applications concerning ordinary functions.

A possible algorithm is given here for reducing many-to-many mappings of finite sets to one-to-ones.

This is a practical way to produce Galois-connection between two finite sets and also to determine all the substructures of a certain algebraic structure. The lattice theoretical preliminaries can be found in Szász /1963/, where further references concerning Galois connections are available. In our paper, however, an effort is made to be fairly self-contained.

From linguistical points of view this paper is motivated by an observation of N. Chomsky and M.P.Schützenberger /1961/ who wrote, "... it is possible that general questions concerning the formal properties of context free systems and formal relations between them may have a concrete interpretation in the study of data processing systems as well as in the study of natural

## language."

Now it is clear that no natural language can dispense with notions. Intuitively a notion is not simply a feature or a property which is possessed by a set of things. It is, rather a set of properties whose each member is possessed by every member of a set of things. The notion of "dog" must contain all the features which are possessed by all the dogs. So, in other words, the concept of notion should be richer than the concept of a set. It is not a set, but rather a pair of sets.

Where do we get notions from? How do they get into our language? It seems that is does, through a procedure described by J.E.L.Farradane /1966/ which, in turn, from mathematical point of view, looks like leading to the form of a closure operation. Gathering observations from the nature man /or rather child/ step by step builds up the sets of objects and the sets of "features" with a relation such that all the objects /"things"/ of the set possess all the features /"properties"/ of the latter set.

On the other hand, confronted with the "artificial nature" /or with artifacts/ - and this is what we are concerned with in data processing - one cannot dispense with the notions abstracted from the data unless one, wants to be lost in the chaos of informations.

How to aid the procedure of "conceptualization" of the bare sets of data in order to incorporate the artifactual notions in our artificial language to be developed?

No doubt, first, the characteristics of the concept of concept is needed, second, an algorithm to produce them is highly desirable.

The author is completely aware of the problem of notion concept belonging to the fields of Symbolic Logic, and that R.Carnap
/1942/ and Y.Bar-Hillel /1964/ extensively dealt with these kind of problems, To my knowledge, however, there is no theoretical approach which tacles the question of "conceptualization" applying techniques based on the theory of Galois-connections. This paper tries to do this.

A couple of years ago a somewhat similar approach has been made for "conceptualizing observations". In 1970 /Fay, 1970/ I called this procedure "essentialization". This effort was motivated by quantum logic whose study is highly recommendable to those longing for refreshing ways of thinking in mathematical linguistics.

It seems to me, that in computer science, characteristically, only logical inferences are attempted to be implemented in machines. What we really need, however, is to extend-aidedby computers our ability to make factual inferences. We are not short of rules like "All men are mortal, Socrates is man so Socrates is mortal". We rather badly need rules of inference like "if an animal is mammal, then is has no wings."

## 2. GALOIS CONNECTIONS AND CLOSURE OPERATIONS

Let $U$ and $V$ be any two sets and $\phi$ is a relation defined on the product set $U x V$. If for a pair $u, v(u \in U, V \in V) \Phi$ holds, we write /as usual/ $u \phi v$ or $v \phi^{+} u$. Define for any $u \in U, v \in V$

$$
\phi(u)=\{v \mid u \phi v\} \quad(\subseteq v)
$$

and /dually/

$$
\phi^{+}(v)=\left\{u \mid v \phi^{+} u\right\} \quad(\subseteq U)
$$

Further, for any $X \subseteq U, Y \subseteq V$ we have by definition

$$
\phi(X)=\bigcap_{x \in X} \phi(x), \phi^{+}(y)=\bigcap_{y \in Y} \phi^{+}(y)
$$

and

$$
\begin{aligned}
\varphi(X)=\phi^{+}(\phi(X)) & (\subseteq U) ; \\
\varphi^{+}(Y)=\phi\left(\phi^{+}(Y)\right) & (\subseteq V) .
\end{aligned}
$$

Now the following facts are well-known /see e.g. Szász /1963/ p. 70-71/.

1. Mappings

$$
\varphi: S b u \rightarrow \mathrm{SbU}, \quad \mathrm{SbV} \rightarrow \mathrm{SbV}
$$

/SbU=set of all the subsets of $U /$ are closure operations of the class of all the subsets of $U$ and $V$, respectively. We say that closures $\varphi, \varphi^{+}$are induced by the relations $\phi, \phi^{+}$/or simply $\phi$ induces $\varphi /$.
2. Let $L, L^{+}$be the sets of all the $\varphi$-closed, $\varphi^{+}$-closed sets of $U, V$, respectively. One can introduce lattice operations on L and $\mathrm{L}^{+}$with repsect to the ordering $\subseteq$ as

$$
\begin{aligned}
& a \cup b=\inf \{a, b\} \\
& a \cup b=\sup \{a, b\}
\end{aligned} \text { for either } a, b \in L, \text { or } a, b \in L^{+}
$$

Both, the structures $\underline{L}=\langle L, \cap, \cup\rangle$ and $\underline{L}^{+}=\left\langle L^{+}, \cap, U\right\rangle$ are /complete/ lattices. /Clearly LSSbU, $\mathrm{L}^{+} \subseteq S b V . /$
3. If $X \subseteq U, Y \subseteq V, X$ and $Y$ is closed i.e.

$$
X=\varphi(X) \quad \text { and } \quad Y=\varphi^{+}(Y)
$$

then the mappings $Y=\phi(X), X=\phi^{+}(Y)$

$$
\Phi: \underline{L}+\underline{L}^{+}, \text {and } \underline{\phi}^{+}: \underline{L}^{+} \rightarrow \underline{L}
$$

are both dual isomorphisms with respect to the set theoretical inclusion. This pair of dual isomorphisms is said to be the

Galois connection /between the sets $U, V$ with respect to the relation $\phi /$, Given lattices $\underline{L}, \underline{L}^{+}$one can form the set of all the pairs

$$
\langle a, \phi(a)\rangle, a \in L, \quad \phi(a) \in L^{+}
$$

Now a, as a closed set of things /records, rows of a table etc./ tpgether with $\phi(a)$ can be interpreted as a notion or a "conceptualized representative of a collection of data". As for $\phi(a)$ as a set of $y^{\prime}$ s they can play the role of a collection of properties or attributes all of which all the things belonging to a la is a set!/ possess. The dual lattice theoretic structure of the set $\{a, \phi(a) \mid a \in L\}$ enables as to develop a kind of $a$ "data logic". Take e.g.

$$
\begin{aligned}
a=\left\{u_{1}, u_{3}, u_{4}\right\}, & b=\left\{u_{1}, u_{3}, u_{4}, u_{7}\right\}, \\
\phi(a)=\left\{v_{14}, v_{15}, v_{17}, v_{18}\right\}, & \phi(b)=\left\{v_{14}, v_{15}, v_{18}\right\}
\end{aligned}
$$

Being $a c b$, we say: "every $a$ is $b ", \phi(a)$ being a common feature of the $a^{\prime} s \phi(b)$ of $b$ 's, we can infer from feature in the following way:

If a thing /record, entity, row, object/ possesses any of the attributes of the class $\phi(a)$ then it must possess all the attributes of $\phi(b)$. /Dont be misled by $\phi(a) \supset \phi(a) . /$ This inference yields some factual new /c.f. Bar-Hillel 1952./ if we chose for a feature $\mathrm{v}_{17}$ and observe that in this /rather restricted/ world of data $\left\{u_{1}, u_{3}, u_{4}, u_{7}\right\}$,
$\mathrm{v}_{17}$ factually implies $\mathrm{v}_{14}, \mathrm{v}_{15}$ and $\mathrm{v}_{18}$.

Of course, the question of putting together restricted /worlds of data/ files arises. By our algorithm, to present here, all these kinds of factual implications will easily be available. It seems that factual implications tell deeper features about the contant of data sets than the feeble
manconceived queries. The relevance of semantic information theory has been very thoroughly dealt with by Bar-Hillel /1952/.

## 3. THE FINITE CASE

From now on let us suppose that both $U$ and $V$ are finite. In applications it is interesting how to actually construct lattices $L, L^{+}$by the sets $U, V$ and by the relation $\phi$. By Szász /1963/ a few interesting applications can be found /p.72/.e.g. using these dual isomorphisms and the closure operation $\varphi$ one can produce the basic theorem of Galois theory, some projective geometrical, group theoretical and number theoretical results.

The relevance of finiteness of the basic sets $U$ and $V$ is shown at the first place in the theory of data banks and information retrieval. /E.g. to a supplier there belongs many supplies and vice-versa; or projects and parts are usually in many-to-many relationships./

In the relational approach to data banks "conceptual" processing of data is quite at hand. The formal candidate of a concept is nothing else than a $\varphi$-closed set with respect to the relation $\phi$ in question.

Relational data base management systems are extensively studied at IBM San Jose /California/ centering around Codd /1969/.

Let we are given now the /finite/ sets. U,V and the relation $\phi$ between their elements. In order to produce the lattice $L$ of all the $\varphi$-closed sets of $U$ one have to decide on whether a given subset $X$ of $U$ is closed or not. This of course cannot be done by a brute straitforward approach. For if $U$ contains $n$ elements then $2^{\text {n }}$ cases would have to be examined. And even in each case a couple of fairly complicated operations would be to carry out.

Viz., firstly one would form the sets $\phi(x)$ for all $x \in X$. Secondly to form the meets

$$
\phi(x)=\bigcap_{x \in X} \phi(x)
$$

Thirdly the sets $\phi^{+}(y)$ satisfying the condition, $y \in \phi(x)$ Fourthly one have to meet these sets together yielding

$$
\phi^{+}(\phi(x))
$$

Lastly one have to decide which of the relations

$$
X \subset \phi^{+}(\phi(X)) \quad \text { or } \quad X=\phi^{+}(\phi(X))
$$

holds.

Altogether these five steps would lead to at least five elementary operations, on principle one had to carry them out on all the subsets $X$ of $U$ and $Y$ of $V$ which would mean finally /in general/

$$
(5+5) 2^{n}
$$

instructions. / In case $n=20$ it is over ten million and in $n=60$ over $10^{19} \cdot 1$

## 4. $U, V$ GENERATORS AND $\varphi$-CLOSED SETS

Consider two finite sets $U$ and $V$ with cardinality $m$ and $n$ respectively. Let

$$
\begin{aligned}
& \mathrm{U}=\left\{\mathrm{u}_{1}, \mathrm{u}_{2}, \ldots, \mathrm{u}_{\mathrm{m}}\right\}, \quad \mathrm{I}=\{1,2, \ldots, \mathrm{~m}\} \\
& \mathrm{v}=\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{n}}\right\}, \quad \mathrm{J}=\{1,2, \ldots, \mathrm{n}\}
\end{aligned}
$$

Let

$$
R_{\phi}=\left\{\left\langle u_{i}, v_{j}>\right| u_{i} \phi v_{j}, i \in I, j \in J\right\}
$$

Clearly

$$
\mathrm{R}_{\phi}=\subseteq \mathrm{UxV}
$$

being the set theoretical representation of the relation. It can also be given in a tabular /matrix/ form. Arrange the elements of $\mathrm{R}_{\phi}$ in an m-row $n$-column matrix and put a digit 1 /or a cross/ into the meet of the i-th row and j-th column whenever $u_{i} \phi v_{j}$ is the case and put a 0 /or blank/ otherwise. To the description of the algorithm for determining lattices $\underline{L}$ and $\underline{L}^{+}$and mappings $\varphi$ and $\varphi^{+}$there will be attached an example whose data have been selected at random. See Table I.

Firstly consider row-vectors $\underline{u}_{i}=\underline{U}_{i}\left\{u_{i 1}, u_{i 2}, \ldots, u_{i j}, \ldots, u_{i n}\right\}$ where

$$
u_{i j}=\left|\begin{array}{l}
1 \text { of } u_{i} \phi v_{j}
\end{array}\right|
$$

Similarly introduce column-vectors as

$$
v_{j}^{+}=v_{j}^{+}\left\{v_{j 1}, v_{j 2}, \ldots, v_{j i}, \ldots, v_{j m}\right\}
$$

with

$$
v_{j i}=\left|\begin{array}{ll}
1 & \text { if } v_{j} \phi^{+} u_{i}
\end{array}\right| \begin{aligned}
& \text { otherwise }
\end{aligned}
$$

Clearly

$$
v_{i j}=v_{j i}
$$

We refer to $u_{i j}$ and $v_{k \ell}$ as

$$
\begin{aligned}
& u_{i j}=\left(u_{i}\right)_{j} \\
& v_{k \ell}=\left(v_{k}^{+}\right)_{\ell}
\end{aligned}
$$

## Secondly introduce a

## DEFINITION

A set $X \subseteq U / Y \subseteq V /$ is called a U-generator /UG/
V generator, /VG/ iff there exists an element

$$
v_{x} \in V \quad u_{y} \in U
$$

such that

$$
X=\phi^{+}\left(v_{X}\right), \quad\left(Y=\phi\left(u_{Y}\right)\right)
$$

The subsets of $U$ and $V$ are stipulated to be called simply generators. We introduce the empty set $O$ as $U$ - or V-generators, too. Moreover for uniformity we speak of the noughtelement $O_{U}$ and $O_{V}$ of $U$ and $V$, respectively, formally defined by

$$
\begin{array}{ll}
{\mathrm{x} \phi \mathrm{O}_{\mathrm{V}}} \quad \text { never holds } \\
\mathrm{O}_{\mathrm{u}} \phi_{\mathrm{Y}} & \text { never holds }
\end{array}
$$

We have now

$$
\phi^{+}\left(\phi\left(O_{\mathrm{v}}\right)\right)=0, \quad \phi\left(\phi^{+}\left(\mathrm{O}_{\mathrm{u}}\right)\right)=0
$$

## THEOREM 1

Every U-generator /V-generator/ is $\varphi$-closed $/ \varphi^{+}$-closed/.

Proof: By symmetry reasons it is enough to consider the case of $U$-generator. If $X$ is a $U G$ then the element $v_{X} /$ with $X=\phi^{+}\left(v_{X}\right) /$ clearly has the property that for each $x \in X$

$$
\left\{v_{X}\right\} \subseteq\{y \mid x \phi y\}=\phi(x)
$$

Therefore

$$
\left\{\mathrm{v}_{\mathrm{X}}\right\} \subseteq \bigcap_{\mathrm{x} \in \mathrm{X}} \phi(\mathrm{x})=\phi(\mathrm{x})
$$

By this we have

$$
\begin{aligned}
\phi^{+}(\phi(x)) & =\bigcap_{y \in \phi}(x) \\
& \phi^{+}(y) \subseteq \bigcap_{y \in\left\{v_{x}\right\}} \phi^{+}(y)= \\
& =\phi^{+}\left(v_{x}\right)=x \quad .
\end{aligned}
$$

## THEOREM 2

If $X$ is a $\varphi$-closed set $\mid \subseteq U /$ then it is a meet of $U$-generators.

Proof:

$$
x=\phi^{+}(\phi(x))=\bigcap_{y \in \phi(x)}
$$

and, of course, every $\phi^{+}(y)$ is a U-generator.

## THEOREM 3

The set theoretical intersection of two $\varphi$-closed sets is $\varphi$-closed.

Proof: By the closure property monotonity we have for any

$$
\begin{array}{r}
x_{1}, x_{2} \subseteq U \quad x_{1}=\varphi\left(x_{1}\right), x_{2}=\varphi\left(x_{2}\right) \\
x_{1} \cap x_{2} \subseteq x_{1}, x_{2} \text { implies } \varphi\left(x_{1} \cap x_{2}\right) \subseteq \varphi\left(x_{1}\right), \varphi\left(x_{2}\right)
\end{array}
$$

i.e.

$$
\varphi\left(x_{1} \cap x_{2}\right) \subseteq \varphi\left(x_{1}\right) \cap \varphi\left(x_{2}\right)=x_{1} \cap x_{2}
$$

while the opposite inclusion fulfils by the definition of the closure.

Combining Theorems 2 and 3 we have

## THEOREM 4

$A$ subset $X$ of $U$ is $\varphi$-closed if and only if $Y$ is a meet of U-generators.

## DEFINITION

The structures $\langle\underline{\mathrm{UG}}, \cap>,\langle\underline{\mathrm{VG}}, \cap>/ \mathrm{closed}$ under the set
theoretical operation $\cap$ meet/ are called U-generator semigroup, UGS, and V-generator semigroup VGS, respectively. Clearly, the set of all the elements of UGS is $\varphi(U)$ and dually the set of all the elements of VGS is $\varphi^{+}(V)$.

We stipulate that every element of $U$ is called UGS-generator, similarly $V \in V$ is VGS-generator. In VGS /VGS/ the algebraic operation "meet" is defined by the

## DEFINITION

By a product / or lattice theoretic "meet"/ in symbol $\cap$ of two elements of UGS $u_{i}$ and $u_{j}$ we mean the set of all $v-s$ which are in relation $\phi$ with both $u_{i}$ and $u_{j}$. This set of $v-s$ are sometimes written as $u_{k}$ but with $k>m$ :

$$
u_{i} \cap u_{j}=u_{k} \quad \text { whenever } \phi\left(u_{i}\right) \cap \phi\left(u_{j}\right)=\phi\left(u_{k}\right)
$$

So, symbol $\cap$ means that the operands $/ a$ and $b$ in $a n b /$ are considered as sets defined above.

In general, however, this $u_{k}$ does not belong to the original $u$. Theorem 4 gives the basis for our algorithm. All we have to do is to generate the semigroups UGS and VGS using the UG-s and VG-s generators. For meet idempotency both UGS and VGS are finite.

## 5. THE ALGORITHMS

## ALGORITHM 1

## Meet forming:

## First step

Select row 1 in the $R_{\phi}$ table, i.e. consider the element $u_{1}$. Form

$$
\phi\left(u_{1}\right) \cap \phi\left(u_{i}\right) \quad \text { for all } \quad i>1, i \in I .
$$

## Second step

Decide whether there is a row being equal to one of the meets have already been formed, i.e. decide whether there exists a $u_{k} \in U$ such that for some $u_{i} \in U$

$$
\phi\left(u_{1}\right) \cap \phi\left(u_{i}\right)=\phi\left(u_{k}\right)
$$

If not, introduce $u_{m+1}$ for the first /smallest/ is such that $\phi\left(u_{1}\right) \cap \phi\left(u_{i}\right)$ is not occuring in the $R_{\phi}$ table as a row. Make up a table with $u_{1}, u_{2}, \ldots, u_{e} \ldots$ as both row - and column headings and fill in the result of second step. In the other case, into the meet of the $u_{1}$ row and the $u_{i}-t h$ column put $k$. This table will be called U-Meet table /UM-table/.

## Example:

According to Table I /which is an $R_{\phi}$-table/ we have

$$
m=18, \quad n=7
$$

Here for instance:

$$
\phi\left(u_{1}\right)=\left\{v_{1}\right\}
$$

and

$$
\phi\left(u_{2}\right)=\left\{v_{1}, v_{5}, v_{7}\right\}
$$

In this case

$$
\phi\left(u_{1}\right) \cap \phi\left(u_{2}\right)=\left\{v_{1}\right\}=\phi\left(u_{1}\right)
$$

## Third step

Repeat the procedure in step two for $u_{2}, u_{3} \ldots, u_{m}, \ldots, u_{n}$ until meeting yields no new element.

Extend the $R_{\phi}$-table in "U-direction", i.e. if for both $u_{j 1}$, and $u_{j 2}$

$$
u_{j 1} \phi v_{i} \quad j_{1} \leq \bar{m}, i \leq n
$$

and

$$
\mathrm{u}_{\mathrm{j}}{ }^{\phi \mathrm{v}_{\mathrm{i}}} \quad \mathrm{j}_{2} \leq \mathrm{m}
$$

then stipulate that

$$
u_{m+k}{ }^{\phi v_{i}}
$$

Example: See Table I. We have

$$
\phi\left(u_{7}\right) \cap \phi\left(u_{11}\right)=\phi\left(u_{27}\right)=\phi\left(u_{18+9}\right) .
$$

For both $u_{7}$ and $u_{11}$ we have $u_{7} \phi v_{6}$ and $u_{11} \phi v_{6}$, therefore we stipulate that $u_{27}{ }^{\phi v_{6}}$.

Accordingly, a cross is put into the cell belonging to the $27^{\text {th }}$ row and $6^{\text {th }}$ column in our U-extended $R_{\phi}$-table. See Table II.

In our $R_{\phi}$-table /Table I/ $m=18$, and /II/ contains 32 nonzero elements $/ \bar{m}=33 /$. Zero element $/ u_{8} /$ is a $V$-generator. Our UM-table can be seen in Table III.

## Fourth step

Carry the procedure, described in sicep two and three, for generators $v_{1} v_{2}, \ldots, v_{n}$ out, but take into consideration that sets $\phi^{+}\left(v_{j}\right)$, in general, may contain $u_{i}$ with $i>m$. In other words forming the VGS semigroup use the U-extended $R_{\phi}$-table. This way one gets the $V$-extended $R_{\phi}$-table.

## Fifth step

Form the $V$ meet table /VM-table/.

## ALGORITHM 2

Establishing dual isomorphism between the semigroups factorization

Let $u_{i} / i \leq m /$ be an arbitrary element of UGS. Using um-lable one can "factor" it, i.e. producing in a form of meel /or product/ of generator elements i.e. with index i m. The algorithm goes as follows:

Eirst step

Check whether all the U-generators are independent, i.e. whether they are not meets of each other. In other words factorise even the generators, too. Select an arbitrary element $u_{i} / i \leq m /$. Enter the $i-t h$ column of the UM-table. Select all the rows /with index not greater than $m /$ having $\underset{\text { i }}{ }$ in column i. The headings of these rows will be the factors of $u_{i}$ 。

Example / see Table IV/
Consider $u_{19}$. Entering the $19-t h$ column of the UM-table /Table III/ we find that
and

> row No. 6, row No. 7, row No. 9, row No. 15, row No. 18
has 19 in the 19 -the column. So the factors of $u_{19}$ are just $u_{6}, u_{7}, u_{9}, u_{15}$ and $u_{18}$ and there is no other factor. So we have

$$
\phi\left(u_{19}\right)=\phi\left(u_{6}\right) \cap_{\phi}\left(u_{7}\right) \cap \phi\left(u_{9}\right) \cap \phi\left(u_{15}\right) \cap_{\phi}\left(u_{18}\right)
$$

In this case all the factors are prime /having no factor different from itself and the unity i.e. $u_{18} /$. In general, however, not every $V$-generator is prime. E.g. $u_{12}$ is a Vgenerator /being $12<18 /$, but not prime for,

$$
\phi\left(u_{12}\right)=\phi\left(u_{2}\right) \cap \phi\left(u_{6}\right) \cap \phi\left(u_{14}\right) \cap \phi\left(u_{17}\right) .
$$

So, if necessary, $u_{12}$ could have been omitted at the outset.

## Second step

Matching the UF-table and the U-extended $R_{\phi}$-table make up the dual isomorphism-table $/ \varphi$-table/. Matching is carried out on the basis that for each $u_{i} \in \underline{U G S} / i \leq \bar{m} /$ and for each $v_{k} \in \underline{V G S}$ $/ k \leq \bar{m} /$ we can establish the following 'equalities simultaneously

$$
\begin{aligned}
\phi\left(u_{i}\right)=v_{j 1} \cup v_{j 2} \cup \ldots & =\phi\left(u_{i 1}\right) \cap \phi\left(u_{i 2}\right) \cap \ldots= \\
& =u_{i 1} \cap u_{i 2} \cap \ldots, \\
\phi^{+}\left(v_{k}\right)=u_{11} \cup u_{12} \cup \ldots & =\phi^{+}\left(v_{\ell 1}\right) \cap \phi^{+}\left(v_{\ell \ell}\right) \cap \ldots= \\
& =v_{k 1} \cap v_{k 2} \cap \ldots
\end{aligned}
$$

Here, according to the theory, lattice theoretic join operation, $U$ is meant by

$$
\begin{aligned}
& u_{i} \cup u_{k}=\varphi\left(\Phi\left(u_{i}\right) \cup \Phi\left(u_{k}\right)\right) \\
& v_{j} \cup v_{l}=\varphi^{+}\left(\phi^{+}\left(v_{j}\right) \cup \phi^{+}\left(v_{l}\right)\right)
\end{aligned}
$$

Now, on the other hand, expressions $\mathrm{v}_{\mathrm{j} 1} \cup \mathrm{v}_{\mathrm{j} 2} \cup \ldots$ and $u_{i 1} \cup u_{i 2} \cup \ldots$ are easily recognized for

$$
\begin{gathered}
v_{j 1} \cup v_{j 2} \cup \ldots=\varphi\left(\left\{v_{j 1}\right\} \cup\left\{v_{j 2}\right\} \cup \ldots\right)=\varphi\left(v_{j 1}, v_{j 2}, \ldots\right)= \\
\text { /being a closed set } / \doteq\left\{v_{j 1}, v_{j 2}, \ldots\right\}
\end{gathered}
$$

Now, this set is immediately given by the $U-V$ extended $R_{\phi}{ }^{-}$ table. Matching itself consists of pairing sets with

$$
\{j 1, j 2, \ldots\}=\{\ell 1, \ell 2, \ldots\} .
$$

## Example

Consider $u_{20}$. First from the UF-table /Table IV/ we see that

$$
u_{20}=u_{2} \cap u_{6} \cap u_{14} \cap u_{17} \cap u_{18}
$$

Secondly, on the other hand, $u_{20}$ as a set contains two elements viz. $v_{1}$ and $v_{5}$ i.e.

$$
\phi\left(u_{20}\right)=\left\{v_{1}, v_{5}\right\}=\left\{v_{1}\right\} \cup\left\{v_{5}\right\} .
$$

Thirdly, from the VF-table /not shown here/, we have:

$$
v_{1} \cap v_{5}=v_{11}
$$

so we infare:

$$
\phi\left(u_{20}\right)=v_{11}
$$

or equivalently

$$
\phi^{+}\left(v_{11}\right)=v_{20}
$$

Finally, from the $U-V$-extended $R_{\phi}$-table, /not shown here/ however, we have

$$
v_{11}=\left\{u_{2}, u_{6}, u_{14}, u_{17}, u_{18}\right\}
$$

This way we have made up our $\varphi$-and $\varphi^{+}$-tables. See Table $V$.

As a byproduct we have established all the subalgebras of UGS and VGS /moreover even that of the lattices $L, L^{+} /$. The reason is simply that an element of UGS /VGS/ as a set is a subalgebra of UGS /VGS/. E.g. the element $V_{11}$ as the set

$$
\left\{u_{2}, u_{6}, u_{14}, u_{17}, u_{18}\right\}
$$

means a set which is closed under the semigroup operation $\cap$.

In possession of all the tables we have produced the diagrams of both, the lattices $\underline{L}$ and $\underline{L}^{+}$can be drawn. Actually a telescopized version of the diagrams of $L$ and $L^{+}$is on Figure 1 , but it should be noted that for drawing we have given no algorithm. By the way using $\varphi$ and $\varphi^{+}$tables, it is quite immediate to construct lattices $L$ and $L^{+}$.

TABLE I
$R_{\phi}$-table for a binary relation with $m=18, n=7$

	$\mathrm{v}_{\mathrm{O}}$	$\mathrm{v}_{1}$	$\mathrm{v}_{2}$	$\mathrm{v}_{3}$	$\mathrm{v}_{4}$	$\mathrm{v}_{5}$	${ }^{\text {b }} 6$	$\mathrm{v}_{7}$
${ }_{0}$								
$\mathrm{u}_{1}$		$+$						
$\mathrm{u}_{2}$		+				$+$		$+$
$\mathrm{u}_{3}$							+	$+$
$\mathrm{u}_{4}$								+
$\mathrm{u}_{5}$					+			
$\mathrm{u}_{6}$		$+$	$+$			+		
$\mathrm{u}_{7}$		+	$+$	+			+	
${ }^{4} 8$								
$\mathrm{u}_{9}$		$+$	$+$				$+$	
$\mathrm{u}_{10}$				$+$			$+$	+
${ }^{1} 11$			$+$	+	+		+	+
$\mathrm{u}_{12}$						$+$		
$\mathrm{u}_{13}$					$+$	+		
${ }^{1} 14$		$+$		$+$	$+$	+		+
$\mathrm{u}_{15}$		$+$	$+$	$+$	$+$		+	+
${ }^{1}{ }_{16}$		+			+			
$\mathrm{u}_{17}$		+		$+$	+	$+$		
$\mathrm{u}_{18}$		$+$	+	+	+	+	$+$	+

## TABLE II

U-extended $\mathrm{R}_{\phi}$-table with $\mathrm{m}=18, \overline{\mathrm{~m}}=33$

	$\mathrm{v}_{1}$	$\mathrm{v}_{2}$	$\mathrm{v}_{3}$	$\mathrm{v}_{4}$	$\mathrm{v}_{5}$	$\mathrm{v}_{6}$	$\mathrm{v}_{7}$
$\mathrm{u}_{1}$	$+$						
$\mathrm{u}_{2}$	+				+		
$\mathrm{u}_{3}$						+	+
$\mathrm{u}_{4}$							+
$\mathrm{u}_{5}$				+			
$\mathrm{u}_{6}$	$+$	+			+		
$\mathrm{u}_{7}$	+	+	$+$			+	
$\mathrm{u}_{8}$							
$\mathrm{u}_{9}$	+	+				+	
$u_{10}$			+			$+$	+
$\mathrm{u}_{\mathrm{J} 1}$		+	+	+		+	+
$\mathrm{u}_{12}$					+		
$\mathrm{u}_{13}$				+	+		
$\mathrm{u}_{14}$	+		$+$	+	+		$+$
$\mathrm{u}_{15}$	+	+	+	+		+	+
$\mathrm{u}_{16}$	+			+			
$\mathrm{u}_{17}$	+		+	$+$	$+$		
${ }^{1} 18$	+	+	+	+	+	+	$+$
${ }^{1} 19$	+	+					
$\mathrm{u}_{20}$	+				+		
$\mathrm{u}_{21}$			+	+			
$\mathrm{u}_{22}$			+				
$\mathrm{u}_{23}$						+	
$\mathrm{u}_{24}$		+				+	
$\mathrm{u}_{25}$	$+$		+				
$\mathrm{u}_{26}$	+						+
$\mathrm{u}_{27}$		$+$	+			+	
$\mathrm{u}_{28}$		+				+	

- 118 -

I'able IV

	$v_{1}$	$v_{2}$	$v_{3}$	$v_{4}$	$v_{5}$	$v_{6}$	$v_{7}$
$u_{29}$			+			+	
$u_{30}$			+				+
$u_{31}$			+	+			+
$u_{32}$	+		+	+			
$u_{33}$	+		+	+			+

TABLE III

UM-table /U-meet table//just par of it/


TABLE IV
UF-table /U-factor table/ /just a fragment/


TABLE V
/fragment/



## REFERENCES

[1] Bar-Hillel, Y. /1952/, An Outline of a Theory of Semantic Information. In Bar-Hillel /1964/ pp. 221-274
[2] Bar-Hillel, Y. /l964/, Language and Information. Addison Wesley 1964.
[3] Carnap, R. /1942/, Introduction to semantics, Harvard University press.
[4] Chomsky, N. and M.P. Schützenberger:/1961/, The algebraic theory of context-free languages. In: Computer programming and formal systems. Studies in logic and the foundations of mathematics. /P.Bradford and D.Hirschberg eds./ North Holland, Amsterdam, 1963.
[5] Codd, E.F. /l970/, A Relational Model of Data for Large Shared Data Banks. Comm. ACM 13, 377-384.
[6] Farradane, J.E.L. /1966/, Report on Information Research Centre for Information Science, The City University, London.
[7] Fay, G. /1970/, Phenomenological foundation of quantum logic. Acta Physica Hungarica, 29, 27-33.

## MECHANICAL ANALYSIS OF HUNGARIAN WORD FORMS

György HELL
Technical University, Budapest
Institute of Languages
Budapest, Hungary

## 1. PRELIMINARY NOTES

Work on mechanical analysis of natural languages began in Hungary in the early sixties with the aim of obtaining an algorithm for machine translation. This activity resulted in a number of papers on ways of formal analysis in the field of Russian morphology and syntax and on synthesis of Hungarian word forms.

With the end of the "translation era" formal analysis has been extended to statistical investigations /datas on vowel and consonant frequency, frequency of consonant clusters, syllable structures, word length etc./, mechanical syllabification and vocabulary studies. /A characteristic result of this period was the edition of the Hungarian a-tergo vocabulary./

In the last years interest has turned towards the possibility of analysis in Hungarian with the principal aim of syntactic parsing. The first step towards this goal was the construction of a working word form analyser. Some details of this work are given in the following chapters.
2. FINITE STATE GRAMMAR FOR WORD FORM GENERATION

We may have enough assurance for the feasibility of $a$ morphological analysis of Hungarian word forms if we succeed in building an algorithm which is capable to generate Hungarian word forms and to check them in a sense, that uncorrect words are identified as such and not accepted for analysis.

According to the grammatical description, Hungarian word forms are composed of stems $t$, word forming suffixes $\underline{k}$, case endings $\underline{r}$, verbal prefixes and plural endings. Characteristically for an agglutinative language, all these elements can occur in different combinations, e.g.:

$$
\begin{aligned}
& \text { nyelv + tan + oktat + ás + ban } \\
& t+t+t+k+r \\
& \text { /= in grammar teaching/ } \\
& \text { nyelv }+ \text { tan }+ \text { könyv }+e i+n k+b e n \\
& t+t+t+r+r+r \\
& \text { /= in our grammar books/ } \\
& \text { távol + ba + lát + ás } \\
& t+r+t+k \\
& \text { /= television/ }
\end{aligned}
$$

To make the generation and control process easier, we reduced the five components to three, by taking the plural endings equal to case endings and the verbal prefixes as belonging to the verb stems. Such a simplification brings no significant differences into the accepted classification. Another presumption requires that some endings should be taken to the word stems and forms as nekem /to me/, tôled /from you/, hozzátok /towards you/ should be considered as consisting of stem + ending. /Such a presumption is not absolutely necessary because the words nekem, tôled etc.
can be accepted as elliptic forms out of énnekem, tetôled, tihozzátok in which case we have the structure: /stem/ ending, ending./

With the restrictions given above, Hungarian word forms can be generated by a finite state grammar:


Here $S_{0}, S_{1}, S_{2}, S_{3}, S_{4}$ and $S_{V}$ give the states of the grammar lor automaton/ with $S_{O}$ as the initial and $S_{V}$ the final state. The arrows between the states give the possibilities of transition from one state to the other, the letters on the arrows signify the morpheme-types obtained by transition.

In this system several paths go from one state to the next and so the grammar belongs to the indefinite finite state grammar type.

The transcription rules for generating Hungarian word forms can be obtained from the diagram.

$$
\begin{array}{cc}
\begin{array}{c}
\text { Nos.of } \\
\text { rules }
\end{array} & \\
\text { 1. } & S_{0} \rightarrow t S_{1} \\
2 . & S_{0} \rightarrow t S_{V} \\
3 . & S_{1} \rightarrow t S_{1} \\
\text { 4. } & S_{1} \rightarrow t S_{V} \\
\text { 5. } & S_{1} \rightarrow k S_{1}
\end{array}
$$

Nos.of rules	
6.	$\mathrm{S}_{1} \rightarrow \mathrm{kS} \mathrm{V}$
7.	$\mathrm{S}_{1} \rightarrow \mathrm{r} \mathrm{S}_{2}$
8.	$S_{1} \rightarrow r S_{V}$
9.	$S_{2} \rightarrow t S_{2}$
10.	$S_{2} \rightarrow t S_{3}$
11.	$\mathrm{S}_{2} \rightarrow \mathrm{tS}_{V}$
12.	$\mathrm{S}_{2} \rightarrow \mathrm{rS} \mathrm{S}_{4}$
13.	$\mathrm{S}_{2} \rightarrow \mathrm{r} \mathrm{S} \mathrm{V}$
14.	$\mathrm{S}_{3} \rightarrow \mathrm{kS} \mathrm{S}_{3}$
15.	$\mathrm{S}_{3} \rightarrow \mathrm{rS}_{4}$
16.	$\mathrm{S}_{3} \rightarrow \mathrm{kS} \mathrm{V}$
17.	$S_{3}+r S_{V}$
18.	$S_{4} \rightarrow r S_{4}$
19.	$\mathrm{S}_{4} \rightarrow \mathrm{ra}_{\mathrm{V}}$

This system of rules where capital letters represent categorial symbols and lower case letters stand for terminal symbols /in our case: morpheme types/, allows to produce all the Hungarian word forms, even such as igénybevétel /utilization, making use of/, karbantartás /mainten $\overline{a n c e / ~ e t c ., ~ i . e . ~ w o r d s ~ h a v i n g ~}$ two stems with a case ending between them. Words as nagybani /as on a large scale, in gross/ containing a word building suffix after a case ending could be produced by the finite state grammar if state $S_{4}$ is connected with state $S_{v}$. IIn our diagram this is shown by a dotted line./

For producing the word end we complete our rule system with a 20th rule:

$$
\text { 20. } S_{v} \longrightarrow \text { \# }
$$

Let us see some examples, how word forms are produced.

ház /= house /


ház-am-ban $/=$ in my house / /house/my/in/

(1)
(3)
(10)
vas-ut-vonal-terv-ez-és-sel $/=$ by planning a rail road |iron-road-line-plan-ing - by/ line/

apró-pénz-re-vált-ás-á-ról /small-coin-to-change-ing-it-about/

There is, however, no restriction in the rules, which would define how many word stems, word building suffixes or case endings can follow each other in a correct Hungarian word form, but no Hungarian grammar gives an exact definition of this problem.

If we want to use the grammar for checking a given word whether it is built according to the Hungarian word constructi g rules, our generating rules have to be transformed: the automaton must be given the "input signals" representing the components of the given word, furthermore the states which accept the input, and as an output a new state for receiving the next component.

The new rules are obtained by transformation out of rules II.

Nos.	input	states
I	$t \rightarrow S_{0}$	$S_{1}$
II	$t \rightarrow S_{0}$	$S_{V}$
III	$t \rightarrow S_{1}$	$S_{1}$
IV	$t \rightarrow S_{1}$	$S_{V}$
V	$k \rightarrow S_{1}$	$S_{1}$
VI	$k \rightarrow S_{1}$	$S_{v}$
VII	$r \rightarrow S_{1}$	$S_{2}$
VIII	$r \rightarrow S_{1}$	$S_{v}$
IX	$t \rightarrow S_{2}$	$S_{2}$
X	$t \rightarrow S_{2}$	$S_{3}$
XI	$t \rightarrow S_{2}$	$S_{V}$
XII	$r \rightarrow S_{2}$	$S_{4}$
XIII	$r \rightarrow S_{2}$	$S_{V}$
XIV	$k \rightarrow S_{3}$	$S_{3}$
XV	$r \rightarrow S_{3}$	$S_{4}$


Nos.	input	states
XVI	$\mathrm{k} \rightarrow \mathrm{S}_{3}$	$\mathrm{~S}_{\mathrm{V}}$
XVII	$\mathrm{r} \rightarrow \mathrm{S}_{3}$	$\mathrm{~S}_{\mathrm{V}}$
XVIII	$\mathrm{r} \rightarrow \mathrm{S}_{4}$	$\mathrm{~S}_{4}$
XIX	$\mathrm{r} \rightarrow \mathrm{S}_{4}$	$\mathrm{~S}_{\mathrm{V}}$
XX	$\# \rightarrow \mathrm{~S}_{\mathrm{V}}$	$\mathrm{S}_{0}$

The demonstrate how these rules work, let us take two morpheme conbinations. One of them corresponds to a Hungarian word form, the other does not.

$$
\begin{aligned}
t, t, k, k, r, r, \# \quad= & \text { érdekházasságokról } \\
& \text { /about marriages of } \\
& \text { convenience/ }
\end{aligned}
$$

$$
x_{t, r}, r, t, \#
$$

The automaton checks the forms in the following way

$$
\begin{array}{rl}
\text { I } & / t, S_{0}, S_{1} / t, k, k, r, r, \# \\
\text { III } & t, / t, S_{1}, S_{1} / k, k, r, r, \# \\
V & t, t, / k, S_{1}, S_{1} / k, r, r, \# \\
V & t, t, k, / k, S_{1}, S_{1} / r, r, \# \\
\text { VII } & t, t, k, k, / r, S_{1}, S_{2} / r, \# \\
\text { XIII } & t, t, k, k, r, / r, S_{2}, S_{v} /, \# \\
\text { XIX } & t, t, k, k, r, r, / \#, S_{v}, S_{0} /
\end{array}
$$

On the left side the rule numbers are given, the exact form of the rule is in parenthesis inside the word form after the morpheme type scanned by the rule. If the rules can proceed through the sequence of morphemes, the combination is accepted as a genuine Hungarian word form.

Sequence 2.

$$
\begin{aligned}
\text { I } & / t, S_{0}, S_{1} / r, r, t, \# \\
\text { VII } & t, / r, S_{1}, S_{2} / r, t, \# \\
\text { XII } & t, r, / r, S_{2}, S_{4} / t, \# \\
& t, r, r, / t,--1 \#
\end{aligned}
$$

The process stops at the fourth step, even if rule XIII is taken instead of rule XII.

## PRACTICAL ANALYSIS OF WORD FORMS

A segmentation of Hungarian word forms on a computer differs in some respects by a theoretical analysis. In the laboration of the rules of analysis we took it for granted that word forms are given as morpheme constructions and the analysis was carried out on a string of morphemes. In real analysis word forms are given as concatenations of letters and nothing is known about the structure of the word. The morpheme structure of a word can be obtained only if we can identify some successive parts of it as elements of different morpheme lists representing stems, case endings, word building suffixes, and the sequence of the different morpheme types in the word form corresponding to a possible Hungarian word structure.

In the identification process following difficulties may arise: some words contain letter sequences identical with stems or endings but what they are not in the given word. E.g. víg /=merry/ and asztal /=desk/ in vígasztal /to console/, other words can be analyzed as compounds or suffixated forms: karóra /=wrist watch/onto a post/ and still other morphemes or morpheme combinations represent different morpheme types: ének /=to his or her sthg/song/, ikre /=onto their sthg/one
of his or her twins/, okkal /=with your sthg/with reason/ etc. All such cases cccur in Hungarian more often than in other European languages because of its agglutinative character.

In a word analysis we can only partially overcome such difficulties. We can, however, require that in identifying possible morpheme components in the word form our algorithm should always accept only the longest identified sequence of letters, but this strategy does not solve all cases of possible ambiguity. In some cases it leads moreover to uncorrect results which can be eliminated on by a following syntactical or semantic analysis.

There is also a second point, why a practical analysis differs from a theoretical one. Analysing Hungarian texts we can soundly suppose that all the words have a correct construction and so a checking on correctness is not necessary. Hence our analysing algorithm becomes much simpler than in its theoretical form:


The block diagram for obtaining the longest possible morpheme component in the word has the following form:


## LITERATURE

[1] Dömölki,B.: An Algorithm for Syntactic Analysis.
CL and CL III. 29-46 pp., 1964.
[2] Kelemen,J.: Uber die Experimente an einem sprachstatistischen Automaten, CL and CL V . 149-157 pp.,1966.
[3] Klauszer,J.: Some Problems of Synthesis of the Hungarian Noun Forms, CL and CL II. lll-126 pp.,1964.
[4] Sipõczy,Gy.: Some Semantic Aspects of the Machine Translation from Russian into Hungarian, CL and CL II. 159-178 pp., 1964.
[5] Reverse-Alphabetized Dictionary of the Hungarian Language, compiled by Papp Ferenc, Akadémiai Kiadó, Budapest, 1969.
[6] Ботош, И.: Опыт автоматического анализа текстов на языке эсперанто, сЛ и СЛ V. 19-40, 1966.
[7] Хелл, Дь.: Определение номинальных групп в МП с русского на венгерский, СЛ и СЛ I. 5-107, 1963.

# FINITE GEOMETRICAL DATA BANK BY GALOIS ALGORITHM ${ }^{\text {* }}$ 

G. FAY and Mrs D.V. TAKACS<br>Institute for Economy Organisation and Computational of Metallurgy and Engineering Industry

## INTRODUCTION

Bose et al /1967/ have shown how finite geometries can be applied in constructing data banks. /File Organization Schemes./ Actually their constructions need solutions of equation systems in Galois fields which seems to be quite difficult to implement. Sets being candidates for the elements /i.e. lines, planes, hyperplanes, etc./ of a finite /projective/ geometry turn, however, ought to be the closed sets of a suitably defined binary relationship between the points of this geometry. It is true, on the other hand that this class of geometries is rather narrow viz. those above GF / $2^{\text {n }} /$. Fay /1973/ has developed a technique yielding an algorithmic production of a Galois-connection between two given finite sets $U$ and $V$ with respect to a relation $\Phi / C U x V /$. We shall call this algorithm "Galois-algorithm", while a "Galois-connection" /which is not generally defined as such/ is meant the one-one correspondence between the closed subsets of $U$ and $V$. "Closed" here means closed with respect to a closure operation "induced" by $\Phi$. For preliminaries see Szász /1963/ and Fay /1973/. Galois algorithm, by the way, involves no need for solution of equations whatsoever. Notwithstanding, it will not be used here in a straightforward

[^6]manner, rather, upon its formal characteristics a still simpler form of algorithm is developed for producing /certain/ finite geometries. This algorithm is immediate using the technique to find out all the closed "boolean subspaces" of a set. "Closed" here, in turn, means closeness under a boolean ringsum operation.

Needless to say that data banks are in the strongest interactions with artificial languages. In a sense Boses' approach to data banks can - in our opinion - be considered as a sort of a geometrical language approach in which all the places for the data to come are selected out apriori. This selection is highly algorithmic and can indeed be very effective with respect to data handling.

Also, it can be considered as a "coordinatization" of the data space. The "buckets", as the selected boxes for data are called, are, on the other hand, the conveyors of certain relations /as collections of attributes/. Therefore the finite geometrical approach of data banks has something to do with the relational data bank systems. This latter branch of investigations into data bases has seemingly been developed quite independently at IBM San Jose by a group from 1967 centering around E.F.Codd /1967/.

In both aspects certain algebraic operations can be performed upon relations representing collections of data. In the finite geometrical management /as we have shown in this paper/ these operations are lattice theoretical ones /finite geometries being lattices/, whereas in the relational file organization systems these are other algebraic but probably again lattice theoretical operations /such as projection or join of relations/.

It is felt that some light can be thrown to the connection between these two ways of file organization /or data bank construction/ by observing that in both ways the problem of
the so-called "conceptual processing of data" is of vital importance. The user is not satisfied by possessing all the records pertaining to a query. He wants naturally more than this. He wants to get an overview of the data, to discover their factual structure, to uderstand data rather than barely having them.

But how to "conceptualize" data? In the literature there cannot be found anything like "conceptual data processing" although it takes place every minute within our brains.

We suggest /and tried to support in another article of Fay (1973)/ that a set of objects /records etc./ can be considered as a representative of a concept with respect to a given system - frame - of attributes, properties, features if /and only if/ the set is closed under a Galois connection /between objects ond attributes/. We show here actually that the buckets in Bose's finite geometrical data bank are indeed closed subspaces under a suitable closure therefore from a "conceptual" point of view they can be considered as representing notions. As for the relational data banks we will try to show, in a next paper, how it is embeddable into a bit more general technique by which both, the operations /between relations/ and the "notionlike" sets can /algorithmically/ be produced. This "more general technique" will turn out to be the good old edge notched card technique in a somewhat obstruse form so as to be implementable in a suitable electronical medium.
/As for the medium - by the way - we envisage a cellular automaton.

## 1. BASIC CONCEPTS

Throughout this paper the following concepts and notations are accepted. As for the details see Fay /1973/ and Szász /1963/. The binary relation $\Phi_{\mathrm{n}}$ between the elements of a set

$$
u_{n}=\left\{u_{0}, u, \ldots, u_{2 n \cdot 1}\right\},
$$

the $R_{\Phi}$-table that relation /denoted by $R \Phi_{n} /$; the closure operation $\varphi_{n}$

$$
\begin{aligned}
& \varphi_{n}(X)=\Phi_{n}\left(\Phi_{n}(x)\right), X \subset U_{n}, \Phi_{n}(X)=\bigcap_{x \in X} \Phi_{n}(X) \\
& \Phi_{n}(X)=\left\{y \mid x \Phi_{n} y\right\} .
\end{aligned}
$$

A set $X C U_{n}$ is called $p$-closed iff $p_{n}(X)=(X)$
closure $p_{n}$ is said to be induced by the relation $\Phi_{n}$.
U-generators are just sets of form $\Phi_{n}(u), u \in U_{n}$, the table of the relation $\Phi_{n}$ /or similarly of $a \psi_{n} /$ is denoted by $R \Phi_{n}$ /or $R \psi_{n} /$.
2. U-GENERATORS AND BOOLEAN SPACES

Beginning with the set

$$
u_{n}=\left\{u_{0}, u_{1}, u_{2}, \ldots, u_{2} n_{-1}\right\} \quad, \quad n=1,2, \ldots
$$

let us define a relation $\Phi_{n} \subset U_{n} x U_{n}$ between the elements of $\mathrm{U}_{\mathrm{n}}$. The definition is recursive, and in this concise form is due to G.T.Herman /1973/.

DEFINITION /of $R \Phi_{n} /$

$$
\mathrm{R} \Phi_{1}=\begin{array}{|l|l|}
+ & \\
\hline
\end{array}
$$

$$
R \Phi_{n}=\begin{array}{|l|ll|}
\hline R \Phi_{n-1} & R \Phi_{n-1} \\
\hline R \Phi_{n-1} & R \Psi_{n-1} \\
\hline
\end{array}
$$

where

$$
R \quad \psi_{n}=\begin{array}{|ll|ll|}
\hline R & \psi_{n-1} & R & \psi_{n-1} \\
\hline R & \psi_{n-1} & R & \Phi_{n-1} \\
\hline
\end{array}
$$



Figure 1. shows the $R \Phi_{n}$ table for $n=4$.

There is an easy consequence of this definition:

LEMMA 1.

Let $\quad k \in\left\{0,1,2, \ldots, 2^{n+1}\right\}$, and $u_{i}, u_{j} \in U_{n+1}$,

Let

$$
k^{\boldsymbol{x}}=\left\{\begin{array}{lll}
k & \text { if } & k<2^{n} \\
k-2^{n} & \text { if } & k \geq 2^{n}
\end{array}\right.
$$

Then

$$
u_{i x} x \Phi_{n} u_{j \times} \quad \text { iff } u_{i} \Phi_{n+1} u_{j}
$$

Proof: Immediate.

Having defined relation $\Phi_{n}\left(\subset U_{n} x U_{n}\right)$ we can speak of the set $\Phi_{n}(X)$ for any set $X C U_{n}$ especially of $U$-generators. Owing to the special features of $\Phi_{\mathrm{n}}$ a deeper insight into the algebraic structure of the U-generators may be obtained.

## DEFINITION

Let $u_{i}, u_{j} \in U_{n}$ and resolute $i$ and $j$ into binary digits:

$$
\left(i, j \in\left\{0,1, \ldots, 2^{n}-1\right\}\right)
$$

$$
i=\sum_{k=1}^{n} i_{k}^{2-k}, j=\sum_{l=1}^{n} j_{l}^{2^{n}-\ell}, i_{k}, j_{l} \in\{0, I\}
$$

Meaning ring sum in $\{0,1\}$ as usual /i.e. $O \oplus O=1 \oplus 1=0$, $O \oplus 1=1 \oplus O=1 /$
we define:

$$
i \oplus j=\sum_{k=1}^{n}\left(i_{k} \oplus j_{k}\right) 2^{n-k}
$$

Finally let, by definition, $u_{i} \oplus u_{j}=u_{i \oplus j}$.
The /unique/ zero element of this operation will be denoted by $o$ or $u_{o}$ alternatively /as convenient/. Sometimes we write $i$ instead of $u_{i}$ /especially in table headings/ unless misunderstanding occurs. Similarly, $u_{i} \leq u_{j}$ means $i \leq j$, or e.g. $u_{i}-2^{n}$ means $u_{i-2} n$. Properties of ring sum are well-known. See e.g. Szász /1963/ pages 126-130. Out of them we mention only these:

LEMMA 2.
For any $u_{1}, u_{j}, u_{k} \in U_{n}$ the following equations are equivalent:
$u_{j} \oplus u_{j} \oplus u_{k}=O, u_{j} \oplus u_{j}=u_{k}^{\prime} \quad u_{j} \oplus u_{k}=u_{i}^{\prime}, u_{k} \oplus u_{j}=u_{j}$.

The following concept of "boolean space" intends to overcome the difficulties arising in finite vector spaces.

DEFINITION
A set $S C U_{n}$ is called a boolean space if

$$
u_{i}, u_{j} \in S \text { implies } u_{i} \oplus u_{j} \in S
$$

Boolean spaces have a number of simple properties out of which a few /needed below/ are listed in lemmas 3.-5.

LEMMA 3.
Every boolean space contains /the/ zero element.
Proof: Let $S=\left\{s_{o}, s_{1}, \ldots, s_{k}\right\}$. If zero were not contained in $S$ then for any $s_{i} \in S \quad O=s_{j} \oplus s_{i} C S$ would be a contradiction.

LEMMA 4.
The intersection of two boolean spaces is a boolean space again.

Proof: Let $S, T$ be $B^{\prime}$ 's /boolean spaces/ and let $u_{i}, u_{j} \in S, T$. Then $u_{i} \in S, u_{j} \in S$, and $u_{j} \in T, u_{i} \in T$. But $S, T$ being BS's it follows $u_{i} \oplus u_{j} \in S, T$ implying $u_{i} \oplus u_{j} \in \operatorname{S} \cap T$.

LEMMA 5.
Every U-generator is a boolean space.
Proof: Suppose, inductively, that for any $u \in U_{n}$ with a fixed n the U -generator

$$
\Phi_{n}(u)=\left\{v \mid u \Phi_{n} v\right\}
$$

is a boolean space. Furthermore, suppose that for some $u_{i}, u_{j}, u_{k} \in U_{n+1}$ we have

$$
\begin{equation*}
u_{i} \Phi_{n+1} u_{k} \quad \text { and } \quad u_{j} \Phi_{n+1} u_{k} \tag{1}
\end{equation*}
$$

Making use of Lemma 2, without loss of generality, we may assume that

$$
u_{i} \leq u_{j} \leq u_{i} \oplus u_{k}
$$

Of course, if $u_{i} u_{j} u_{k} \in U_{n} \subset U_{n+1}$ there is nothing to prove. If, in turn $i, j, k \geq 2^{n}$ then on one hand:

$$
i^{x}, j^{x}, k^{x} \leq 2^{n}
$$

On the other hand, by Lemma 1 ,

$$
\begin{aligned}
& u_{i} \Phi_{n+1} u_{k} \text { implies } u_{i x} \Phi_{n} u_{k *}, \\
& u_{i} \Phi_{n+1} u_{k} \text { implies } u_{j *} \Phi_{n} u_{k^{*}},
\end{aligned}
$$

So, by the inductive assumption from $u_{i *} \Phi_{n} u_{k} x, u_{j^{*}} \Phi_{n} u_{k^{*}}$ we infer to

$$
\left(u_{i \nVdash} \oplus u_{j^{K}}\right) \Phi_{n} u_{k^{*}} .
$$

Now it is easy to see that $i^{x} \oplus j^{x}=(i \oplus j)^{x}$, so ( $u_{i x} \Phi_{n} u_{j x}$ ) $\Phi_{n} u_{k x}$ implies /actually means/

$$
\begin{array}{ll}
u_{i . x_{\oplus j} \times} \Phi_{n} u_{k x} & \text { implies } \\
u_{(i \oplus j) *} \Phi_{n} u_{k *} & \text { implies /by Lemma l./ } \\
u_{i \oplus j} \Phi_{n+1} u_{k} & \text { implies /means/ } \\
u_{i} \oplus u_{j} \Phi_{n+1} u_{k} &
\end{array}
$$

The remaining cases between

$$
i, j, k<2^{n} \text { and } i, j, k \geq 2^{n}
$$

can be handled in a similar fashion, especially taking into account the symmetry properties and Lemma 2 of the ring sum operation.

Having finished with the preparations we state the following THEOREM. For an arbitrary set $S \subset U_{n}$ the following conditions are mutually equivalent:
(i) $S$ is $\varphi_{n}$-closed
(ii) $S$ is an intersection of $U_{n}$-generators
(iii) $S$ is a boolean space .

## Proof:

(i) implies (ii). See Fay /1973/ Theorem.
(ii) implies (iii). Every U-generator is BS by Lemma 5.

The intersection of two $\mathrm{BS}^{\prime} \mathrm{s}$ is a BS again by Lemma 4. So if $S$ is a U-generator, then it is a boolean space. (iii) implies (i). Let $S$ be a boolean space. All we have to show is /for a fixed but arbitrary $\mathrm{n} /$

$$
\begin{equation*}
\varphi_{n}(s)=\Phi_{n}\left(\Phi_{n}(s)\right) \subseteq s \tag{1}
\end{equation*}
$$

for the opposite inclusion is well-known. /Szász, 1963.p.68/

Let correspondingly

$$
\begin{equation*}
x \in \varphi_{n}(s) \tag{2}
\end{equation*}
$$

It is to be shown that $x \in S$.
(2). means, by. (l), that for any $z \in \Phi_{r}$ (S).

$$
\begin{equation*}
\mathrm{x} \Phi_{\mathrm{n}} \mathrm{z} \tag{3}
\end{equation*}
$$

Let

$$
\begin{equation*}
s=\left\{s_{1}, s_{2}, \ldots, s_{k}\right\}, k<2^{n} \tag{4}
\end{equation*}
$$

and consider

$$
\begin{equation*}
y_{i}=x \oplus s_{i} \text { for } i=1,2, \ldots, k \tag{5}
\end{equation*}
$$

Let

$$
\mathrm{Y}=\left\{\mathrm{y}_{1}, \mathrm{Y}_{2}, \ldots, \mathrm{Y}_{\mathrm{k}}\right\}
$$

First, we state, that

$$
\begin{equation*}
p_{n}(S) \subset Y \tag{6}
\end{equation*}
$$

Indeed, $S$ being a boolean space /according to Lemma 3/, one of its elements must be zero, therefore $x \in \varphi_{n}(S)$ implies /by (5) and by Lemma 2/:
$y_{i} \oplus s_{i} \in \varphi_{n}(S)$. But if $s_{i}=0$, than $x=y_{i} \in Y$. i.e. $x \in \varphi_{n}(S)$ implies $x \in Y$.

Secondly, we state that $Y$ is a boolean space indeed for any

$$
\begin{gather*}
s_{i} \in S \\
s_{i} \Phi_{n} z \quad \text { with } z \in \Phi_{n}(S) . \tag{7}
\end{gather*}
$$

Now (3) and (7) implies, by Lemma 5 that

$$
\begin{equation*}
x \oplus s_{i} \Phi_{n} z \text { for any } z \in \Phi_{n}(S) \text { and } s_{i} \in S \tag{8}
\end{equation*}
$$

In other words, taking (5) for any $z \in \phi_{\mathrm{n}}(\mathrm{S})$ and for any

$$
\begin{align*}
& x_{i} \in Y, \text { we get } \\
& y_{i} \Phi_{n} z \tag{9}
\end{align*}
$$

Applying Lemma 5 to (9) we get that for any $y_{i}, y_{j} \in Y$ and for any $z \in \Phi_{n}(S)$

$$
y_{i} \oplus y_{j} \in \Phi_{n}(z)
$$

i.e. /by (6)/ $y_{i} \oplus y_{j} \in{ }_{z \in \Phi_{n}(S)} \Phi_{n}(z)=p_{n}(S) y$,

$$
y_{i} \oplus y_{j} \in Y
$$

This means that $Y$ is a boolean space.

Now, by Lemma 3, we know that one of the $y_{i}$ values must be zero:

$$
o=y_{i}=y \oplus s_{i} \text { for any } i \in\{1,2, \ldots, k\}
$$

This implies by Lemma 3 that

$$
x=s_{i} \in S
$$

By this theorem it is quite easy to obtain all the $\varphi_{n}$-closed subsets of a given set $U_{n}$ with a relation $\Phi_{n}\left(C U_{n} x U_{n}\right)$.

All we have to do is just to find out all the sums yielding zero, methodically. The method is quite straightforward so it is enough to illustrate it by an example. Let us, by way of an
example, produce all the $\varphi_{4}$-closed subsets of the set

$$
\mathrm{U}_{4}=\left\{u_{0}, u_{1}, u_{2}, \ldots, u_{15}\right\} .
$$

$u_{0}, u_{1}, \ldots u_{7}$ are trivially closed.

In addition to the trivially closed $U_{4}$ every closed subset must obviously contain $2^{4-2}=4$ or $2^{4-1}=8$ elements. These are generated by pairs or triples of elements from $\left\{u_{0}, u_{1}, \ldots, u_{15}\right\}$. Omitting $u_{0}$ and working only with the indices the main part of the algorithm goes as follows.

## Selecting pairs

## First_step:

Write equation

$$
1 \oplus 2=3
$$

infer that $S_{1}=\{1,2,3\}$ is closed.
l -st_step:

If

$$
S_{\ell-1}=\left\{i_{\ell-1}, j_{\ell-1}, k_{\ell-1}\right\} \text { is closed }
$$

with

$$
i_{\ell-1} \leq j_{\ell-1} \leq k_{\ell-1}=i_{\ell-1} \oplus j_{\ell-1}
$$

take the next /lexicographically/ pair ( $\left.i_{\ell}, j_{\ell}\right)$ to ( $\left.i_{\ell-1}, g_{\ell-1}\right)$
such that

$$
i_{\ell}<j_{\ell}<k_{\ell}=i_{\ell} \oplus j_{\ell}\left(i_{\ell-1}<j_{\ell-1}\right) .
$$

Infer that

$$
s=\left\{i_{l}, j_{l}, k_{l}\right\} \text { is closed. }
$$

Table I shows the actual steps for selecting pairs in case $\mathrm{n}=4$.

Selecting triples can be worked out in a quite similar fashion. Table II shows data for $n=4$. These are the same as in Abraham et al /1968/.

It is true, that our relation family $\Phi_{n}$ represents only a narrow family of finite geometries /namely those above GF (q) with $q=2^{n}$ / we do not know how to get a relation $\Phi_{m}^{p}$ for GF ( $q$ ) with $q=p^{m}$, $p$ prime, in general, such that finite projective geometry above GF (q) will consist of all the $\mathrm{p}_{\mathrm{m}}^{\mathrm{p}}$-closed subsets of a set $U_{m}^{p}$ where closure $\varphi_{m}^{p}$ is induced by the relation $\Phi_{\mathrm{m}}^{\mathrm{p}} / \subset \mathrm{U}_{\mathrm{m}}^{\mathrm{P}} \times \mathrm{U}_{\mathrm{m}}^{\mathrm{p}} /$.

## REFERENCES

[l] Abraham, G.T., Ghosh, S.P. and Ray-Chaudhuri D.K.: File Organization Schemes Based on Finite Geometries, Information and Control 12, 1968. pp. 143-163.
[2] Bose, R.C.,Abraham, C.T., Ghosh, S.P.: File Organization of Records with Multiple-Valued Attributes for Multi-Attribute Queries. /Chapter 16 of Combinatorial Mathematics and Its Applications, Proceedings of the Conference, held at the University of North Carolina at Chapel Hill, April lo-l4, 1967. /R.C.Bose and T.A.Dowling, eds/. The University of North Carolina Press Chapel Hill N.C.
[3] Fay, G.: An Algorithm for Finite Galois Connections, Technical Report, KGM ISZSZI, Hungary, 1973. VIII. 15.
[4] Szász, G.: Introduction to Lattice Theory. The Publishing House of the Hungarian Academy of Sciences Budapest, and Academic Press New York and London, 1963.
[5] Herman, G.T.: Oral Communication, 1973.

TABLE I.

Determination of all the closed subsets, having 3 nonzero elements, of the set

$$
\{0,1,2, \ldots, 15\}
$$

Step	Equation	Closed set
1	$1 \otimes 2=3$	1, 2, 3
2	$104=5$	1, 4, 5
3	$196=7$	1, 6, 7
4	$1 \oplus 8=9$	1, 8, 9
5	$1010=11$	1, 10, 11
6	$1012=13$	1, 12, 13
7	$1014=15$	1, 14, 15
8	$2 \otimes 4=6$	2, 4, 6
9	$2 \otimes 5=$ ?	2, 5, ?
10	$2 \oplus 8=10$	2, 8, 10
11	2 (1) $9=11$	2, 9, 11
12	$2 \oplus 12=14$	2, 12, 14
13	$2013=15$	2, 13, 15
14	$3 \oplus 4=$ ?	3, 4, 7
15	$3 \oplus 5=6$	3, 5, 6
16	$3 \oplus 8=11$	3, 8, 11
17	$309=10$	3, 9, 10
18	$3012=15$	3, 12, 15
19	$3013=14$	3, 13, 14
20	$4 \oplus 8=12$	4, 8, 12
21	$4 \oplus 9=13$	4, 9, 13
22	$4 \oplus 10=14$	4, 10, 14
23	$4 \oplus 11=15$	4, 11, 15
24	$508=13$	5, 8, 13
25	$509=12$	5, 9, 12
26	$5010=15$	5, 10, 15
27	$5011=14$	5, 11, 14
28	$6 \otimes 8=15$	6, 8, 15
29	$609=14$	6, 9, 14
30	$6010=12$	6, 10, 12
31	$6011=13$	6, 11, 13
32	$7 \oplus 8=15$	7, 8, 15
33	$7 \otimes 9=14$	7, 9, 14
34	$7010=13$	7, 10, 13
35	$7911=12$	7, 11, 12

TABLE II.

Closed subsets of $\{0,1, \ldots, 15\}$ containing seven nonzero elements

Basis	Closed set					
1, 2, 4	1.	2,	3,	4,	5,	6,
1, 2, 8	1.	2,	3,	8	9,	
1, 2, 12	1.	2,	3,	12,	13.	14.
1, 4, 8	1,	4,	5,	8,	9,	12,
1, 4, 10	1.	4,	5,	10	11,	14
1, 6, 8	1.	6,	7 ,	8,		14,
1, 6, 10	1.	6,	7 ,	10,	11,	12,
2, 4, 8	2.	4,	6,	8,		12,
2, 4, 9	2.	4,	6,	9,	11,	
2, 5, 8	2,	5,	7 7,	8,		13,
2, 5, 9	2 ,	5,	7 ,	9,	11,	12,
3, 4, 8	3 ,	4,	7 ,	8,	11,	12,
3, 4, 9	3.	4,	7 7,	9,	10,	13,
3, 5, 8	3.	5.	6,		11,	13,
3, 5, 9	3.	5.	6,		10,	12,

$1$

Subscription price: Hfl 82,-/Volume


[^0]:    x In the course of the following discussion if it is necessary to make a distinction between EL's system and the machine system transformed according to the above and other points, the latter will be called 'm a c h i $n$ e $s$ y $s t e m$ '.

[^1]:    $x$ But the forms which are very unusual or are to be avoided in the everyday language are not indicated.
    ** Here we must interpret the word ' l e s s frequent' in a wider sense: it may have the meaning that the form is less desirable, a little rustic, archaic or high-brow differing from usual everyday language but is not ungrammatical.

[^2]:    * In the following only these will be called
    

[^3]:    * The data given here do not correspond with the data given in para. 3.6.3, since in para. 3.6.3 the useful data storage was counted, only, but the data storage which is still necessary for filehandling was not taken into account.

[^4]:    * The Expl Qtory Dictionary, however, does not aim to give an exact conjugational system.

[^5]:    Taking into account the dialectical variant of the following verbs: "lukkan" /'strike upon'/, "csattan" /'clap'/, "durran" /'explode'/, "kibuggyan" /'spout'/ "koppan" /'sound'/, "lobban" /'flare up'/, "nyikkan" /'squeak'/, "pattan" /'crack'/, "pottyan" /'plump'/, "villan" /'flash'/, "torpan" /'stop dead'/ : 3~/~ik/

[^6]:    * This work has been supported by the Hungarian Ministry for Metallurgy and Machine Industry under Contract No Y-12.172 /68 Cp.68.9/1.

