
computer
and

automation
institute

liung’arian
academy

oî sciences

!

ERRATA
to CL&CL Vol.X.

Page Line False Correct

6 9 "Each command is expended "Each command is expanded
6 21 sense if trying all sense of trying all
9 29 These rules are t These rules are

11 24 must occupy exetly must occupy exactly
21-22 Swap the two programmes

concerned
30 10 in an active rol in an active role

118 "Table II /continued/"
instead of "Table IV"

133 IO eliminated on by eliminated only by
134 Turn the figure by 90°

clockwise

>

Computer and Automation
Hungarian Academy of Sciences

COMPUTATIONAL LINGUISTICS

AND

COMPUTER LANGUAGES

X.

Budapest, 1975.

Editor board: Dr DOMÖLa I Bálint
FARKAS Ernő (editor)

Dr KIEFER Ferenc (editor)
Dr LEGENDI Tamás (editor)
Dr MA KAI Árpád
Dr PAPP Ferenc
Dr SZÉPÉ György
Dr VARGA Dénes

Chairman of the editorial board:

Prof Dr FREY Tamás

Technical editori

HAL ASZ Zsuzsa

Distributor for:

Albania, Bulgaria, China, Cuba, Czechoslovakia, German Democratic Republic,
Korean People’s Rebublic, Mongolia, Poland, Roumania, U.S.S.R., People’s
Republic of Viet-Nam, Yugoslavia

К U L T U R A

Hungarian Trading Co. for Books and Newspapers
1389 Budapest,
P.O.B. 149, Hungary

For all other countries:
JOHN BENJAMINS B.V.
Periodical Trade
Amsteldijk 44
AMSTERDAM (Holland)

Responsible Publisher:

Prof Dr VÁMOS Tibor
director of the Computer and Automation
Institute, Hungarian Academy of Sciences

ISBN 963 311 018 1
Országos Műszaki Könyvtár és Dokumentációs Központ házi

sokszorosítója, F.v.: Janoch Gyula

- 3 -

C O N T E N T S

J.FABÓK: BACKTRACK FORTRAN IMPLEMENTED WITH THE
HELP OF THE MACRO PROCESSOR MP/O 5

E.FARKAS: A COMPILER ORIENTED SYNTAX DEFINITION.. 25

Mrs M.LUGOSI PAP: ONE MODEL OF THE HUNGARIAN
VERB SYNTHESIS 39

G.FAY : AN ALGORITHM FOR FINITE GALOIS-CONNECTIONS 99

G.HELL : MECHANICAL ANALYSIS OF HUNGARIAN WORD
FORMS .. 125

G.FAY, Mrs D.V.TAKÄCS: FINITE GEOMETRICAL DATA
BANK BY GALOIS ALGORITHM 135

5

BACKTRACK FORTRAN IMPLEMENTED WITH THE HELP

OF THE MACRO PROCESSOR МР/ О

Julianna FABÓK
Computer and Automation Institute,

Hungarian Academy of Sciences Budapest, Hungary

INTRODUCTION

Backtrack programming is a technique useful in writing programs
"for solving problems expressible as a set of possible
alternatives, called a goal tree, where not all of the
alternatives will lead to the desired goal. At each branching
point in the tree, a decision must be made as to which
alternative to try next". /D.C.Smith and H.J.Enea/ If a wrong
branch is tried, the forward searching fails, and the program
returns to the previous decision point and selects another
alternative.

The first exact theoretical formulation of backtrack prog
ramming was made by Golomb,S.W. and Baumert, L.D. in 1965.
Since then a lot of languages with backtrack features has been
implemented. Some of them are created by adding some backtrack
instructions to the existing languages, others are totally new
ones.

There are two different aspects of backtrack programming. They
are different from each other in the method of realization of
the return to the previous decision point. One of them is the
"sequential backtracking". In this case returning is made
step by step, statement by statement, by undoing all the
effects of the actual statement. Reaching the previous
decision point, everything will be reset to its original

6

condition. The other aspect of backtrack programming is "state
backtracking".

It means that in every decision point the state of the machine
is saved /the current values of all variables including the
system variables/. When a failure occurs, the state of the
machine in the previous decision point is restored.

Our work is in close connection with the sequential aspect of
backtracking. The fundamental work of Floyd,R. was presented
in 1967. He says: "Each command is expended into one or more
commands, some of which carry out the effect of the original
command in the nondeterministic algorithm, and which also
stack information required to reserve the effect of the
command when backtracking is needed, while others carry out
backtracking by undoing all the effects of the first set". He
also presented the transformation rules, how to convert a
flowchart describing a backtrack algorithm into a conventional
one.

We propose to use the phrase "backtrack algorithm" instead of
the phrase "nondeterministic algorithm", since the backtracking
algorithms are nondeterministic in the sense of having "free
will", but they are deterministic in the sense if trying all
the possible alternatives.

Cohen, J. and Carton,E. extended the FORTRAN language by
adding some backtrack instructions to it. They made a
syntax-directed translator, which converts a program written
in backtrack FORTRAN into another one, written in standard
FORTRAN. They presented the exact description of the syntax of
this extension in BNF.

The same backtrack instructions are used by us, but instead of
writing a translator, a macro processor was used to implement
the backtrack FORTRAN. The macro processor MP/O has been

7

developed in our Institute.

In this paper we survey the transformation rules by Floyd and
the exact specification of the adopted backtrack instructions.

The most important characteristics of the macro processor MP/O
and some problems of the implementation will be discussed, too.

Finally an example will be presented, how to use the backtrack
FORTRAN to solve problems in the field of artificial
intelligence.

1. FLOYD'S TRANSFORMATION RULES

Backtrack languages are means "to simplify the design of a
backtracking algorithm by allowing considerations of program
book-keeping required for backtracking to be ignored" /Floyd/
To do this we use stacks and flags. More exactly we use one
flag T and three stacks: M /memory/, W /write/, R /read/. The
stack M is used to store the values of the variables as the
process of the execution is going on. The stack W contains the
components of the result. It is printed only if a successful
termination is reached. The stack R serves to preserve the
input data. Two pointers "max" and "min" are introduced. The
"max" pointer keeps track of the last element actually read,
the "min" pointer points to the element that should be
considered when the next backtrack read command is activated.
The flag T is used to make the paths of execution different in
case of fork.

Fig.l shows the transformation rules.

Only a few of them need explanations, the others are self-
evident.

8

Fig. 1.

9

In the case of standard instructions /assignment (a),
conditional branch (b), fork (c), start (d)/ we need tools to
preserve and to reset the former values of the variables and
to keep track the path of the execution. The new backtrack
command units are CHOICE, SUCCESS and FAILURE as well as
backtrack read and backtrack write. The X=CHOICE (f) command
(e) means that after the previous value of X has been stacked,
the forward part is executed with value X=f. If backtracking
is needed it is repeated with a decreased value of X (x=X-l)
until it reaches the value 0. In the latter case, after the
original value of X has been restored, backtracking continues
to the command which precedes the CHOICE command. The CHOICE
command is the most important backtrack command. With its help
you can try all the possible alternatives at a decision point,
if X is the serial number /or index/ of the alternatives.

The SUCCESS command (f) results the contents of the stack W
to be printed. The programmer has two possibilities: his
program either stops or proceeds in its backtracking.

The FAILURE command (g) shows that backtracking is necessary.
In the case of backtrack write (h) the value of an output
variable is stacked in W in the forward part and unstacked in
the backtracking one.

The most complicated command is the backtrack read (i). We have
mentioned before the function of the pointers "max" and "min".
If they coincide with each other, a real read operation is
needed.

Otherwise we can get the desirable value from the stack R
/"min" pointer/. When backtracking occurs the previously read
value will be restored from the stack R. These rules are t
totally mechanical, so it is very easy to add them to an
existing programming language.

10

2. THE SYNTAX OF THE ADOPTED BACKTRACK INSTRUCTION

In this part, the exact syntax of the instructions allowed in
backtrack FORTRAN is described in BNF. This specification was
published by Cohen and Carton in 1974. It is as follows:

cbacktrack program>: : =
<sequence of normal instructions>
START
<sequence of standard or backtrack instructions>
END

cbacktrack instructions>: :=<choice>|<success>|<failure> |
Icbacktrack write>|cbacktrack read>

<choice>::= cvariable>=CHOICE(carithm.expri)
csuccess>::= SUCCESS|SUCCESS QUIT
<failure>: := FAILURE
cbacktrack write>::= 0UT<variable>|OUT<constant>
cbacktrack read>::= INcvariable> | INcconstant>
cstandard instruction>: :=cassignment>|cgo-to>|<if>
cassignment>: :=<variable>=<arithm.expr.>cinverse>
<inverse>::= INV<arithm.expr.>|INV NIL|empty
<go-to>::= G0T0<label>
cif>::= lF(<boolean expr.>) <simple statement>
csimple statement>::=<go-to>|<success>|<failure>

Any cstandard instruction> or cbacktrack instruction> may be
preceded by a FORTRAN numeric clabel>. A cvariable> can be a
subscripted or simple variable.

The undefined concepts are used with their usual meanings
/arithm. expr., boolean expr., variable, constant, label,
etc./.

All the variables are assumed to be INTEGER.

The instruction SUCCESS QUIT must be used if we are intrested
in finding only one solution. Using the instruction SUCCESS,

11

we shall find all the existing solutions.

In this implementation we have means to forbid stacking if it
is not necessary. We may write INV NIL after an assignment
command to order the value of the variable not to be stacked
and unstacked at all. Writing an arithmetic expression after
INV, the value of the variable will not be stacked in the
forward part of execution, but the value of the arithm.
expression will be assigned to the variable in the backtracking
direction.

3. THE MOST IMPORTANT CHARACTERISTICS OF THE
MACRO PROCESSOR MP/O

Sequential backtrack is specially suitable to be implemented
with the help of a macro processor, for it can be defined
exactly how a backtrack command expands to one or more
instructions. The macro processor MP/O has been developed by
our colleague, FARKAS,E. with the aim of language extension
and language translation.

Here we want to survey its most important features which are
particularly suitable for our purposes.

3.1 The MP/O is a text macro processor. It means that outside
of macro calls no syntactic analysis of the source text is
performed.

3.2 It works on larger text units. A unit is one line.
Patterns and macro calls must occupy exetly one line of
the text. One line in the source text is replaced by one
or more lines.

3.3 The method of identifying the macros to be expanded is

12

pattern matching. That is, each macro has been associated
with a pattern which consists of a sequence of fixed
strings, so-called "keywords", interspersed with arbitrary
strings, i.e. parameters. A macro is identified by the
occurrence of its pattern. This feature is very useful
for us for the recognition of the backtrack FORTRAN
commands is totally automatic. We must only specify the
macro bodies.

3.4 Macro variables can be used. A variable with the value of
type INTEGER belongs to every letter of the alphabet. We
have also facilities to perform certain restricted
macro-time arithmetic with these variables. They are
useful for generating constants, for example FORTRAN
numeric labels and other references and as flags for
switches.

3.5 Nested macros can be used. Both macro definitions and macro
calls can be included in a macro definition. These are
evaluated only at the call of the outer macro.

3.6 Every macro has a macro number and a successor. It means
that macro definitions form one or more chains, which are
ordered sets of macro definitions. These chains may be
linked to one an other, that is one or more macros can
have the same successor.

Fig 2

13

A macro call being evaluated, it will be compared only
with the patterns belonging to the chain which is actually
assigned. It is a tool to make the process of evaluating
more efficient.

3.7 The macro processor MP/O has macro-time facilities, too.
They serve for giving instructions to the macro processor
itself. As a result of their effects, the inner state of
the macro processor will be changed. The macro-time
facilities of the MP/O are:

3.7.1 Macro-time variables. We have mentioned them before.
The restricted arithmetic operations are:

+ addition
substraction

X multiplacation
/ integer division
: remaindering

An arithmetic expression may consist of at most two
variables with an operator between them. Of course,
a constant may stand instead of any variable

3.7.2 Macro definitions. They have four important parts.
The macro head contains the macro number and the
number of the successor. /first line/

The pattern consists of the keywords and the formal
parameters. /second line/

The body is the text to be copied.

Macro tail: END OF MACRO. /last line/
It is only the body that may contain macro calls or
macro-time statements.

3.7.3 Statements for control of matching. They are tools

14

to assign the chain of macro definitions which takes
part in the process of matching. /see 3.6/

There are two types of them. A chain may be assigned
permanently by the command BEGIN AT.
The command MATCH WITH results a temporary assignment
which is valid during the evaluation of only one
line.

3.7.4 Statements to transfer control. They give possibi
lities to skip one or more lines. There are
conditional and unconditional SKIP commands. The
condition is the value of the given macro variable
being positive, zero or negative.

3.7.5 Statements to assign the input device

4. SOME REMARKS ON THE IMPLEMENTATION

This part deals with the most interesting problems of how to
use this macro processor to implement backtrack FORTRAN. We
shall discuss three important problems, which are:

the question of memorization
the generation of reference numbers
the use of the chains of macro definitions.

4.1 The macro processor "remembers"
We can formulate the problem of the implementation as
follows :
A backtrack instruction has to be replaced by a forward
and a backward part, but they are not next to each other.
The structure of the generated new program can be seen in
Fig.3.

- 15 -

backtrack program the generated program
K1
K2
КЗ

K1 +
K2 +
K3+
K3-
K2-
Kl-

Where K l , K 2 , КЗ are backtrack commands
K1+, K2+, K3+ are their forward parts in order
K l - , K 2 - , КЗ- are their backward parts in

order

Fig. 3
The macro processor can directly generate the forward
parts. Our task is to provide for the memorization of
backward parts by the macro processor. We do this with the
help of macro definitions. On processing every backtrack
instruction, we define a back macro containing the
backward part of this command and the macro call of the
back macro defined on processing the previous backtrack
instruction. The first phase of the work of the macro
processor is to evaluate the lines of the source text line
by line, to generate their forward parts and to define the
corresponding back macros if it is necessary. The lines
which are not backtrack commands will only be copied
without any modification. The macro calls of the back
macros defined in the first phase will take place only
after the processing of the last line of the backtrack
program /END/. This is the second phase of the work of the
macro processor. In this phase the nested back macro calls
are evaluated.

The number of the levels is equal to the number of the
backtrack commands in the program.

For example we present the macro corresponding to the
backtrack instruction <variable>=<arithm.expr.> INV

16

<arithm.expr.> . The question-marks in the pattern mark the
places of the parameters. These parameters are referred in
the body by their serial number after an upward arrow. The
macro variables are referred similarly. The macro-time
statements begin with the "warning" mark:&. The pattern of
every back macro is the same /()/, but their macro numbers
are different and they are linked to the same chain of
macro definitions. The macro variable Q contains the
serial number of the actual back macro. It increases in
the first phase of processing and decreases during the
second one.

macro definition explanations

&MACRO NO 7 NEXT 10

?=?INV?
& MATCH WITH 1 ,
11=12 1

P=1Q+1
MACRO NO IP NEXT IQ

?()
& MATCH WITH 1 -,
11=13 1

macro head; macro number: 7,
the macro number of the
successor: 10;
pattern;
forward part without modi
fication;
P is an auxiliary variable;
generating a new back macro
definition with increased macro
number;
common pattern for back macros;
backward part of this command;

&Q=1Q-1
& MATCH WITH IQ

()
&END OF MACRO
&Q=fQ+l
&END OF MACRO

the value of Q decreases;
it calls the previous back
macro;
back macro ends;
the value of Q increases;
the whole macro ends;

17

4.2 The generation of reference numbers

Sometimes we must set up connections between the forward and
backward parts of an instruction which are far away from
each other. Macro variables are used to do this. There are
two important ways of using them. We will call them bound and
unbound usage.

4.2.1 The unbound usage is when both, the referred label
and the reference are generated by the macro
processor. In this case:

- the label may be an arbitrary number
- it must not occur so far.

To satisfy these conditions we use a macro variable
/Y/ pointing to the value of the actual numeric
label. It decreases from a fixed value X during the
first phase of processing and decreases in the
second one.
For example we present the macro corresponding to
the command FAILURE;

fenacro definition explanations

MACRO NO 10 NEXT 5 macro head; macro number: 10,
macro number of the successor: 5;
pattern ;? FAILURE

&MATCH WITH 1
GOTO!Y

&P=tQ+l
&MACR0 NO tp NEXT tQ
?()

auxiliary variable;
back macro definition begins;
common pattern for back macros;

forward part

8tY=t Y + l 4Q=tQ-l macro variables are modified;

18

¯o definition explanations
&MATCH WITH 1
+Y CONTINUE
&MATCH WITH +Q

()
&END OF MACRO
&Y=+Y-1
&Q=+Q+1
&END OF MACRO

backward part;

call of the previous back macro;
back macro ends ;
macro variables are modified
the whole macro ends;

4.2.2 The bound usage is when either the reference or
the referred label are fixed by the source text.
The simplest example is the GOTO statement.

backtrack program generated program

GOTO N STACK 1 ON M
GOTO N

- forward part

N CONTINUE STACK О ON M
N CONTINUE

UNSTACK M TO T
IF T.EQ.l GOTO X+N

backward part
«

X+N CONTINUE

19

In this situation the backward part of the command N
CONTINUE refers to the backpart of the command GOTO N.
But we do not know where the statement GOTO N and its
backpart are. For this reason we mark the backpart of
the command GOTO N with a label with value X+N. X is
a fixed value, especially it may be the same as in the
previous part.

It results that you must not jump twice or more times
to the same label, because in this case a label would
occur twice or more times in the generated program.
It is a disadvantage of our work, but it can be
eliminated by inserting a new line in the backtrack
program: new label CONTINUE;

4.3 The use of the chains of macro definitions

The chains of macro definitions are to make the work of the
macro processor more efficient. We use the following chains in
this work: /see Fig.4/

type of
backtrack stack

instructions back macrosSTART commands

STADT
types of
backtrack
com m ands stack

back macros

Fig.A

20

- before reaching the command START we look only for this
instruction,

~ after this, the patterns of the backtrack commands are
scanned,

- if the processing of a backtrack instruction uses stacks,
the stack and unstack macros are a different chain,

- after the processing of the command END, the chain of back
macro definitions will be activated.

Finally we want to present the restrictions connected with the
specifications of the macro processor MP/0.

1. It is not allowed to jump twice or more times to the same
label. /We have mentioned this before./

2. The programmer may not use the total scope of the FORTRAN
numeric labels, because the macro processor reserves an
interval of possible labels as its own.

3. Spaces are significant inside the backtrack commands.

4. Three array-names and four variable-names are reserves.
These are :

array variable
stack M
stack W
stack R

pointer for M
pointer for W
pointer for R
flag T

5. EXAMPLE: THE PROBLEM OF THE EIGHT QUEENS

The classical example for backtrack algorithm is the eight
queens' problem. This problem consists of placing eight queens
on a chessboard so that no two attack, i.e. there is only one
queen in each row, column, or diagonal of the board. In the
program we take advantage of the fact that the sum and

21

difference of the row number and column number of an element in
a diagonal is constant. In this part a backtrack FORTRAN program
for solving this problem and the generated normal FORTRAN one
are presented.

The generated normal FORTRAN program

1 1 MAIN
2 DIMENSION IA(8), IB(19), I
3 DO 1 1=1,8
1+ 1 IA(I) =0
5 DO 2 1=1,15
6 IB (I) =0
7 2 IС (I)=0
8 IROW=0
9 IC0L=1

10 IRPC=0
11 IRMC=0
12 DIMENSION IZM (500)
13 IZPTM=1
lb IZPTW = 1+01
15 IZM(IZPTM)=0
l6 IZPTM=IZPTM+1
17 3 CONTINUE
18 IZM(IZPTM)= i r o w
19 IZPTM=IZPTM+1
20 i r o w =8+ i
21 999 IR0W= IR0W-1
22 IF (IROW-0) 2000, 998, 2 0 0’0
23 2000 CONTINUE
2k IZM(IZPTM)= IRPC
25 IZPTM=IZPTM+1
26 IRPC=IR0W+IC0L-1
27 IZM(IZPTM)= IRMC
28 IZPTM=IZPTM+1
29 i r m c = i r o w - i c o l +8
30 IF ((IA(IROW)+IB(IRPC)+IC(i:
31 2001 CONTINUE
32 IA(I R O W)=1
33 IB(I R P C)=1
3k IC(IRMC)=1
35 IZM(IZPRW) = IROW
36 IZPTW=IZPTW+1
37 IF(lC0L-8) 2002, 996, 2002
38 2002 CONTINUE
39 GOTO 995
1+0 996 IZPTW=IZPTW-1
1+1 WRITE(10 ,99k) (IZM(I) , i = i+0:
1+2 99k FORMAT(1 H X ,8l3)
1+3 IZPTW=IZPTW+1
1+1+ GOTO 993

IC(15)

IRMC))-l)2001, 997, 997

IZPTW)

22

 ̂5 995 CONTINUE
1*6 ' ICOL=ICOL+l
1*7 IZM(IZPTM)=1
1*8 IZPTM=IZPTM+1
b9 GOTO 3
50 1003 CONTINUE
51 ICOL=ICOL-1
52 CONTINUE
53 IZPTW=IZPTW-1
5U IROW=IZM(IZPTW)
55 IC(IRMC)=0
56 IB(IRPC)=0
57 I A (IROW)=0
58 997 CONTINUE
59 IZPTM=IZPTM-1
60 IRMC=IZM(IZPTM
6 l IZPTM=IZPTM-1
62 IRPC=IZM(IZPTM)
63 GOTO 999
61* 998 IZPTM=IZPTM-1
65 IR0W=IZM IZPTM
6 6 IZPTM=IZPTM-1
67 IF LAG=IZM(IZP T M)
68 IF(lFLAG-l) 2003, 1003, 2003
69 2003 CONTINUE
70 STOP
71 E N D
72 F I N I S H
Backtrack FORTRAN program for the eight queens problem

1
2
31+ 1
56
T 2
8
9

10
11
12
13 3lU
15
16
17
18
19
20
21
22
23
2h

MAIN
DIMENSION IA(8), IB(15), IC(l5)
DO 1 1=1,8
IA(I)=0
DO 2 1=1,15 IB (I)=0
IC(I)=0
I ROW=0
I C0L=1
IRPC=0
IRMC=0

START
IROW=CHOICE(8)
IRPC=IR0W+IC0L-1
IRMC=IR0W-IC0L+8
IF((IA(IR0W)+IB(IRPC)+IC(IRMC)).GE.1)FAILURE
IA(IROW)=1 INV 0
IВ (IRPC) =1 INV- 0
I С(IRMC)=1 INV 0
OUT IROW
IF(ICOL.EQ.8)SUCCESS
ICOL = ICOL+1 INV I COL-1
GOTO 3
END

23

To understand the program we note that we represent the
chessboard by three one-dimensional arrays IA(8), IB(15),
IC(15). A "one" in IA(I), IB(J),IC(k) indicates that row I,
left diagonal J and right diagonal К are occupied. To place a
queen in the row I and column К means :

IA (I) = 1
IB(I+K-l)=l
IC(I-K+8)=1

To remove this queen means to change this values into zero.
The result is represented by an eight dimensional vector. The
value of the component I shows that which row in the column I
a queen has been placed in.

The algorithm is as follows:

1. we consider the first column;
2. a row is chosen form 8 to 1;
3. test is executed if a queen can be placed in the current

column and row.
If so, go to step 4,
otherwise backtrack /removing the queen go back to step 2/;

4. the queen is placed in the current row and column position
and the row number is stored for the result;

5. test takes place if all queens have been placed.
If so, the result is printed and the program stops,
otherwise the next column is chosen and go to step 2.

24

REFERENCES

EID Baumert,L.D. and Golomb,S.W.: Backtrack programming
J.ACM Vol 12, No 4, /Oct.,1965/ 516-524.

C2D Floyd,R.W.: Nondeterministic Algorithms
J.ACM Vol 14, No 4 /Oct., 1967/ 636-644

Il 3D Cohen, J. and Carton,E.: Non-deterministic FORTRAN
The Computer Journal Vol 17, No 1 /Febr.,
1974/ 44-51.

C4D Smith,D.C. and Enea,H.J.: Backtracking in MLISP2.
Third International Joint Conference on
Artificial Intelligence 1973, 677-685.

C5D Farkas,E.: Az MP/O makroprocesszor.
MTA SzTAKI"Tanulmányok" /"Reports" of the
Computer and Automation Institute, Hung.Ac.
Sei., Budapest, 12/1973., 21-48.

25

Л COMPILER ORIENTED SYNTAX DEFINITION

E m o FARKAS
Computer and Automation Institute,

Hungarian Academy of Sciences Budapest, Hungary

It is well-known that the meta-language was a very important
discovery on the way of the more precise description of prog
ramming languages, and of the development of common
translation technics. However, it is well-known too, that the
meta-language is not suitable for each language and even in
the languages described well by the meta-language there are
parts of the syntax which are out of the definition, for
example: if there is an array in the program declared as two
dimensional and we use it with three indexes then most of the
compilers send an error message, however, this fact may not be
established on the basis of the meta-language.

Here in after we want to give a syntax definition based on the
meta-language, although the definitional rules are also taken
into consideration. Here the "definitional" attribute is used
in a very wide sense. The scheme written below makes it
possible to examine such properties of the program which were
earlier considered as a part of the semantics or a tool of the
program debugging. For example, we may check whether an index
variable of a cycle is modified inside the cycle, or the fact
that in a part of the program which variable can get a value
and so on. So we have the possibility to send one error
message for one error, in that point where the mistake is most
striking. This type of the definition does not mean a new
type translation technic but this step allows to get a higher
compatibility between the different implementations of the
language :

26

1. We have the possibility to decide more precisely, which
kind of program is correct formally and which is
erroneous.

2. What kind of errors are required to be detected in the
level of translation /and what kind of error in the
running/.

3. It is possible to create a uniform error diagnostic
system for a language.

THE SYNTAX DEFINITION

Let be "A" the set of the permitted symbols of the language,
and we will denote with "AX" the set of the finite strings
from the elements of A.

"A language is a set of such strings from A which are
corresponded to prototypes" derived by a meta language.

a.Lc:A will be a language if it fulfils the definition below:

Let be the triplet <B,s,7> a meta-language, where B=TuN and
TOn=0 . T is the set of the terminal symbols and N is the set
of the nonterminal symbols.
SSN is the beginning symbol.
7 is a finite set of substituting rules, in the form n+x, where
neN and xe(TuN)x.
Let be further T=AuE and Ап е=0, where A is the set of permit
ted symbols, as above; and E is the set of so-called elementary
objects. Hence

ACTCB .

Let be given in addition an infinite enumerable set, V /the
set of the states of the vocabulary/ and v q its special
element the beginning state. Let be Fcv the set of the legal
final states.

27

At the end, let be ge{ (AxVxE)->-V} a partial function the
so-called vocabulary function.

Let fceLCA , if and only if there exists a partition of

t = X . (х,вАХ)1 2 ' n ' l '

so that there exsists such a t£TX which can be derived from £
by the rules of the meta-language, /in the usual way/, and

t = у х /У2»••-yn (У±вТх)

and "6" match to "t" in the sense:

if y.£AK J l then xl“*i
else y .SE D and 9(Xji,vo ,yjl) = Vjl

gtx.j.v.^y.j)- vj2

9<xjk'vjk-l'yjk)= vjk

for all у .£E, and v.,£F .

This means informally:

By means of the meta-language we are forming a tree structure
aOn the leaves of the tree, there are either strings from A

/key words/ or elementary objects /labels, variables, etc./.
It must be an one-one correspondence between the key words in
the tree and the key words in the object language. If there is
an elementary object on the leaf of the tree, we have to
decide by the function "g" whether the corresponding string
"a" is compatible with the elementary object "e" and with the
present state "v" of the vocabulary. If it is so, then we can
go on, and the vocabulary gets a new state. If they are not

28

compatible, we have several ways for sending error messages
and it is advisible to define also these ways at the forming
of the syntax. Finally, the vocabulary must have a state in
which all the references are satisfied, i.e. in the program
there may not occur any object or attribute of an object which
was referred but not established.

The vocabulary function is shown in the Appendix in a rather
tedious example.

APPENDIX

Let us suppose that we have a language, which is very close
to the FORTRAN II. /The FORMAT, EQUIVALENCE, COMMON
instructions are not involved into the example, but they may
be realized without any difficulties. The only restriction is
that the label at the end of a cycle must be the label of a
CONTINUE instruction./ It is important for the fact that no
elementary objects of the body of the cycle may appear in the
program after that point where the label indicates the end of
the cycle.

Let us have a small program:
DIMENSION X(50)
READ К
DO 110 I=1,K
READ X(I)

110 CONTINUE
Y=0
Z=0
DO 120 1=1,К
IF(X (I))lll,120,112

111 Y=Y+X(I)
GO TO 120

112 Z=Z+X(l)
120 CONTINUE

WRITE Y ,Z
STOP
END

29

And let us suppose that we are able to derive by the meta
language the string:

DIMENSION e (e2)
READ e
DO

8
e ̂ =e ̂3 5 6

READ e15(e10)
CONTINUE
ei3 eio
ei3-eio
IF(e15<e10)> ■h ,eu

e 7 e13=ell4+el5(e
GOTO e ц

e7 e13“ell.+e15(e
e7 CONTINUE

WRITE e12’ei2

10

10

STOP
END

Where the elementary objects mean:

e^ array in declaration
e^ integer number
e^ reference for a label in a DO instruction
64 reference for a label in a jump instruction
e^ index variable of a DO cycle
e6 parameter of a DO cycle
e-j label
eg integer variable
eg integer variable which get value
e10 integer value /variable or number/

integer array
e^2 real variable
e^g real variable which get value
e 4̂ real value /variable or number/

real array

30

The vocabulary V is formed as a pairlist, i.e. a list of sub
lists where the head /CAR/ of the sublists is an element and
the tail /CDR/ is its attributes.

The attributes are:

xVARIx variable
xNUMBx number
xINTx integer
xREALx real
xARRAYx array
xCLOSEDx may not use it in an active rol
xDOx the label of a non complete DO cycle
xEXISTx existing label

The vocabulary has a final state if all the labels in it are
xisting.

igure 1 shows the TRANS function which is the vocabulary
function defined in pure Lisp. Figure 2swhows the states of
the vocabulary during the checking of the current program.

The program, has been executed by the RIO minicomputer in a
16K byte version of the Lisp interpreter.

31

Figure 1.

(DEFINE(QUOTE((TRANS (LAMBDA(E,X,V)
(COND
((EQ Q El)(COND
((FIND X V) ERROR)
(I (CONS (LIST X (INT X),»ARRAY*) V))))
((EQ E E 2)(COND
((AND (IN -»INT *(GET X,V))(lN *NUMB *(GET X , V)))(UPDATE (GET X,V)V))
(T ERROR)))
((EQ E E 3)(COND
((FIND X V) (COND
((IN »DO*(FIND X V))(CONS(LIST X,*DO*)V))
(T ERROR)))
(T (CONS(LIST X*DO *) V))))
((EQ E El*) (COND
((NOT (FIND X V))(CONS(LIST X) V))
((IN »CLOSED* (FIND X V)) ERROR)
(T V)))
((EQ E E 5)(COND
((A N D (A N D (IN »VARI* (GET X,V))(lN *INT*(GET X,V)))

(NOT (IN »CLOSED* (GET X,V))))
(CONS(TAIL (CAR V)X)(UPDATE
(TAIL (GET X V) »CLOSED*)(CDR V))))
(T ERROR)))
((EQ E E 6)(COND
((IN »INT* (GET X V)) (COND
((IN »VARI* (GET X V))(CONS (TAIL(CAR V) X)(UPDATE(TAIL

(GET X V)»CLOSED*)(CDR V))))
((IN »NUMB* (GET X V))(CONS(CAR V)(UPDATE(GET X,V)(CDR V))))
(T ERROR)))
(T ERROR)))
((EQ E E 7)(COND
((NOT (FIND X ,V))(CONS (LIST X ,»EXIST*)V))
((IN »DO* (FIND X ,V))(CLOSE X,V))
((IN *EXIST*(FIND X,V)) ERROR)
(T (CHEK X , V))))
((EQ E E8)(COND
((AND (IN »INT* (GET X V))(IN *VARI*(GET X V)))(UPDATE

(GET X V)V))
(T ERROR)))
((EQ E E9) (COND
((A N D (A N D (IN *INT* (GET X,V))(IN *VARI*(GET X,V)))

(NOT(IN »CLOSED*(GET X , V))))(UPDATE (GET X V)V))
(T ERROR)))
((EQ E E 10) (COND
((AND (IN *TNT* (GET X , V))(NOT (IN »ARRAY* (GET X ,V))))(UPDATE

(GET X V)V))
(T ERROR)))

32

((EQ E Eil)(COND
((AND (IN «NT» (FIND X V))(lN »ARRAY * (FIND X V))) V)
(T ERROR)))
((EQ E E12)(COND
((AND (IN »REAL* (GET X V)) (IN *VARI*- (GET X V))) (UPDATE

(GET X V)V))(T ERROR)))
((EQ E E13)(COND
((AND (AND (IN »REAL* (GET X , V)) (IN »VARI* (GET X,V)))

(N0T(IN*CLOSED*(GET X,V)))) (UPDATE (GET X V)V))
(T ERROR)))
((EQ E Elk) (COND
((AND(IN »REAL*(GET X,V))(NOT(lN *ARRAY*(GET X ,V)))) (UPDATE

(GET X V)V))
(T ERROR)))
((EQ E E15) (COND
((AND (IN »REAL* (FIND X V))(IN »ARRAY*(FIND X V))) V)
(T ERROR)))
(T ERROR2)
))))))(d e f i n e (q u o t e (
(CLOSE (LAMBDA (X,V)(COND
((NOT (FIND X,V))V)
((EQ X(CAR(CAR V)))(OPEN(CDR(CDR(FIND X,V)))(CONS

(LIST X,»EXIST*,»CLOSED*)(CLOSE X (CDR V)))))
((IN»EXIST*(CAR V)) (CONS(TAIL (CAR V),»CLOSED»)

(CLOSE X (CDR V))))
(T(CONS(CAR V)(CLOSE X (CDR V)))))))
(CHEK(LAMBDA (X,V)(COND
((IN *DO*(CAR V)) ERROR)
((EQ X (CAR(CAR V)))(CONS(LIST X ,»EXIST*)(CDR V)))
(T(CONS(CAR V)(CHEK X,(CDR V)))))))
(CURTAIL (LAMBDA (X) (COND
((EQ(CDR Y)NIL)NIL)
(T(CONS(CAR Y)(CURTAIL(CDR Y)))))))
(OPEN(LAMBDA(Y,V)(COND
((NULL Y) V)(T(OPEN(CDR Y) (UPDATE(CURTAIL(FIND(CAR Y) V)) V))))))
(TAIL (LAMBDA (S,Y)(COND
((NULL S) (LIST Y))
(T (CONS (CA.R S)(TAIL(CDR S)Y))))))
(GET (LAMDA (X,V)(COND
((FIND X V) (FIND X V))
(T (LIST X (INT X*) (VARI X))))))
(IN(LAMBDA (P,L) (COND
((NULL L) NIL)
((EQ (CAR L) P) T)
(T(IN P (CDR L))))))

33

(UPDATE (LAMBDA (L V)(COND
((N O T (F I N D (CAR L) V)) (C O N S L V))
(T (COND

((EQ(CAR L) (CAR(CAR V))) (CONS L (CDR V)))
(T (CONS(CAR V) (UPDATE L (CDR V))))

)))))
)))

- 34 -

Figure 2.
V0 NIL
Vl-TRANSCEljX;V0]=
((X »REAL» »ARRAY*))
V2-TRANSLE2,50>V1I =
((50 »INT* »NUMB*) (X »REAL* »ARRAY*))
V3=TRANSCE9 , K ,V2 D =
((K »INT* »VARI*) (50 *INT * »NUMB*) (X »REAL* »ARRAY*))
v U= t r a n s :e 3;1i 0 l >v 33=

((110L »D0*) (K *INT**VARI») (50 *INT* *NUMB*) (X »REAL* »ARRAY*))
V5=TRANSCE5;I ;VU] =
((110L »DO» I) (I »INT» »VARL* »CLOSED*) (K *INT» »VARY*)
(5$ *INT»*NUMB») (X »REAL * »ARRAY*))
V6 = TRANS CE6 j, Л)V5 3 =
((110L *DO* I) (1 »INT» NUMB) (I »INT* *VARI* »CLOSED») (K »INT*
*VARI») (50 »INT * »NUMB*) (X »REAL* »ARRAY»))
v t = t r a n s c e 6-;K; v 6: =

((110L »DO* I K) (1 #-INT* *NUMB*)(l »INT* *VARI* »CLOSED*) (K »INT*
»VARI* »CLOSED *) (50 »INT# *NUMB*)(X »REAL» »ARRAY»))
V8 ̂ TRANS C El 5 ; X ;VT 3 =
((110L »DO* I K)(l »INT* »NUMB*) (I »INT* »VARI* »CLOSED *) (К »INT*
»VARI* »CLOSED») (50 *INT* »NUMB*) (X »REAL* »ARRAY*))
V 9 = TRANS C El0 ,1 ,V 8 3 =
((110L »DO* I K)(l *INT**NUMB^ (I »INT* »VARI* »CLOSED *)(К »INT*
»VARI* »CLOSED*)(50 »INT* »NUMBĵ (X »REAL * »ARRAY*-))
V10 =TRANSCE7) 110LiV93 =•
((110L »EXIST» »CLOSED») (1 *INT* »NUMB#) (i »INT» *VARI*)(K »INT*
»VARI»)(50 *INT* »NUMB*) (X »REAL* »ARRAY*))
VI1 »-TRANSCEl3 jY •JV10C’=
((Y »REAL» »VARI»-) (110L »EXSIST* »CLOSED») (l »INT* »NUMB *) (I *INT*
*V A R I *) (K »INT* *VARI*)(50 »INT* »NUMB *)(X »REAL* »ARRAY»))

35

V12-TRANSCE10;0 ;V113=
((0 «INT* « NUMB*) (Y «REAL* * V ARY*) (110L »EXSIST* «-CLOSED#) (1 *INT*
* NUMB *) (I KINT * * V AR I *) (К * INT * »VARI*) (50 »INT* »NUMB *) (X »REAL* ■»ARRAY *))
V13 = TRANSCE13;Z ;V123 =
((Z »REAL* »VARI*)(0 »INT H *NUMB#)(Y »REAL» *VARI*)(ll0L »EXSIST*
-»CLOSED*) (1 »INT* »NUMB#) (I »INT# *VARI-*)(K »INT# »VARI*) (50 »INT*
»NUMB#)(X »REAL* »ARRAY»))

VIH = TRANS IE10 } 0jV133 =
((Z »REAL* *VARI*)(0 «INT * *NUMB*)(Y »REAL# *VARI*)(ll0L »EXSIST#
»CLOSED») (1 *INT**NUMB*) (I »INT* *VARI*)(K »INT* «VARI*)(50 »INT** NUMB X) (X * REAL» »ARRAY*))
V15-TRANSCE3)120L ;VlU3-
((120L «DO») (Z »REAL* *VARI»)(0 *INT#-*NUMB *) (Y »REAL * »VARI*) (
110L »EXSIST# »CLOSED-*) (1 #INT* * NUMB»)(I »INT* *VARI*)(K »INT*
XV ARI#) (50 »INT# XNUMB #) (X »REAL» »ARRAY»))
Vl6-TRANSIE5 >I;V15 3 =
((120L »DO» I) (z »REAL* *VARI*)(0 »INT* *NUMB*)(Y »REAL* -*VARI*-) (
110L »EXSIST# »CLOSED*) (1 »INT» #NUMB *■) (I »INT» »VARI#) (K »INT#
»VARI#
V17~TRANSCE6j1 ;Vl63 =
((120L »DO* I) (Z »REAL* »VARW) (0 »INT* »NUMB*) (Y »REAL* *VARI*)(
110L »EXSIST* »CLÖSED*) (1 *INT* *NUMB*-) (I »INT#- »VARI* »CLOSED*)(К
INT »VARI») (50 »INT* *NUMB^(X »REAL* »ARRAY*))
V18=TRANS:e6)K;V173=
((120L »DO* I K)(Z »REAL* *VARI*)(0 »INT* »NUMB*) (Y *REAL**VARI-*)
(110L »EXSIST* »CLOSED»)(1 *INT**NUMB*)(I *INT**VARI* »CLOSED*) (К
«INT* »VARI» »-CLOSED*)(50 *INT**NUMB*)(X *REAL**ARRAY*))
V19=TRANSCE15;X^V18:=
((120L »DO* I K)(Z »REAL* #VARI*) (0 »INT* XNUMB*)(Y »REAL » »VARI#)
(110L »EXSIST# XCLOSED»)(l »INT* »NUMB»)(I * INT# *VARI**CLOSED) (К
»INT* *VARI» »CLOSED») (50 »INT* *NUMB *) (X »-REAL ** ARRAY*))
V20=TRANSCE10)I yV.193 =
((120L »DO * I K)(Z * REAL* * VARI*) (0 *INT**NUMB«)(Y * REAL* »VARI*)
(110L » EXSIST# »CLOSED *)(1 »INT* »NUMB*)(I »INT * *VARI* »CLOSED*)(К
»INT* »VARI* »CLOSED *) (5 0 »INT* * NUMB *) (X »REAL* »ARRAY»))

36

V21= TRANS C EU) 1 1 I L , V 2 0 3 ^

((1 1 1 L) (1 2 0 L * DO* I K) (Z * REAL*- *-VARI*) (0 « N T * *NUMB*)(Y *REAL*
* V A R I *) (l l 0 L *EXSI ST* ^CLOSED*) (1 * I NT * * N U M B *) (l * I N T * - * V A R I *
^CLOSED*) (K « N T * »VARI-* »CLOSED*) (5 0 « N T * * NUMB*)(X »REAL*

ARRAY))

V22 »TRANSEEU; 1 2 0 L)V213 »

((1 1 1 L) (1 2 0 L * DO* I K)(Z *-REAL* *VARI*)(0 *INT* *NUMB*)(Y * REAL*
»VARI*) (110L *EXSIST* *CLOSED*)(l *INT**NUMB*) (I *INT**VARI.*
XCLOSED*)(K *INT* *VARI* * CLOSED*) (50 «NT**NUMB:*) (X * REAL*1 »ARRAY*))
V23=TRANSCEU ; 1 1 2 L ' V 2 2 3 =

((112L)(11IL)(120L *DO* I K)(Z »REAL* *VARI*)(0 *INT* * NUMB *) (Y
»REAL* »VARI*)(110L *EXSIST* *CLOSED*)(l * INT* *NUMB*)(l *INT*
»VARI* »CLOSED») (K -»INT* »VARI* »C LOSED *) (50 «NT* * NUMB*) (X
»REAL* »ARRAY»))
V 2 U = TRANS С E7) 1 1 1 L ;V 2 3 3 =

((1 1 2 L) (1 1 1 L » E X I S T ») (1 2 0 L *DO* I K) (Z »REAL* * V A R I *) (0 » I NT *
NUMB A) (Y »REAL *VARI*)(ll0L AEXSIST* *CLOSED*)(l « N T * ANUMB*) (I
* INT * * VARI* » C L O S E D ») (К * INT* »VARI * »CLOSEDЛ) (5 0 »INT* *NUMB^(X
* REAL* * ARRAY*-))

V2 5=TRANSCE13 ,Y ; V2U3 --

((1 1 2 L) (1 1 1 L * E X I S T +) (l 2 0 L »DO* I K) (Z »REAL* * V A R I *) (0 * I N T *
NUMB *) (Y »REAL* »VARI*) (1 1 0 L »EXSI ST * * - CLOSED *) (1 * I N T * » N U M B »)
(i »I NT* » V A R I * »CLOSED*) (К » I NT * »VARI* »CLOSED*) (50 4 I N T -»»NUMB*)
(X »REAL* * ARRAY*))

V26=TRANSCElU -, Y ̂V 2 5 3 =

((1 1 2 L) (1 1 1 L * EXISTA) (1 2 0 1 \DO* I K) (Z »REAL * * VARI *) (0 » I N T *
NUMB) (Y »REAL* » V A R I *) (1.10L »EX SI ST »»CLOSED *) (.1 «NT*»NUMB ,*) (I
» I N T * »VARI * * CLOSED*) (К »INT* »VARI* -* CLOSED-*) (5 0 «NT-**NUMB-*) (X
»REAL* * ARRAY*))

V 2 7 - TRANSCEI 5 ,X -V263 =

((11 2L) (1 1 1L » EXIST*) (1 2 0 L » D O * I K) (Z »REAL * » V A R I *) (0 *INT*-
NUMB)(Y »REAL* * V A R I *) (1 1 0 L * E X S I S T * * C L O S E D *) (1 * INT**NUMB *) (I
X INT X X VARI * »CLOSED») (К « N T * »VARI* »CLOSED») (5 0 *TNT**NUMBt) (X
»REAL* * ARRAY*))

V 2 8 « R A N S C E 1 0) I ;V27 3 =

((112L (111L »EXIST*) (120L »DO* I К) (Z *REAL* * VARI*) (0 « N T *
NUMB)(Y »REAL* *VARI*r) (110L »EXSIST* »CLOSED *) (1 »INT* »NUMB*) (I
»INT» »VARI* »CLOSED»)(К *TNT* »VARI* »CLOSED»)(50 « N T * »NUMB*)(X
»REAL* * ARRAY-*))

37

V29“TRANSC -,120L ,V28l =
(112L)(111L »EXIST*)(120L *D0* I K)(Z «REAL* *VARI*)(0 * INT*
NUMB)(Y *REAL* * VAR I .*) (110L * EXSIST* * CLOSED *)(1 «INT* * NUMB*) (I
INT¥VARI* «-CLOSED*-) (К * INT * * VARI * * CLOSED*) (50 *TNT*XNUMB*) (X «REAL* 9Ï ARRAY «))
V 30* TRANS С E7) 112L ;V293 =.
((112L «-EXIST*) (111L «EXIST*)(120L *D0* I К) (Z «REAL* *VARI*)(0
«INT* X NUMB*) (Y -«REAL* * VARI*) (110L XEXSIST««CLOSED X) (1 XŒNT*
* NUMB *) (I «INT* * VARI* * CLOSED*) (К * INT * * VARI* «CLOSEDX)(50 *INT^
К NUMB *)(X «REAL* ИARRAY*))
V 31=̂ TRAN S С El 3 ; Z yV303 =
(112L «EXIST*) (111L «EXIST*)(120L «DO* I K) (Z *REAL* *r VARI-*) (0
«TNT * XNUMBX-) (Y «REAL* «VARI*) (110L «EXSIST* * CLOSED *-) (1 *INT*
NUMB) (I «INT* «VARI* * CLOSED«)(K *INT Ж «VARI Ж «CLOSED«)(50 * INT*
YNUMBXf)(X «REAL*: « ARRAYS))
V32*TRANSCElU',Z 'V313-
((112L *EX IST*) (111L «EXIST *) (120L *DO*-I K)(Z «REAL* *VARI*)(0
«INT* «NUMB*)(Y «REAL* *VARI«)(110L XEXSISTX «CLOSED*)(l «-INTY
*NUMB«) (I «INT**VARI*«CLOSED*)(К *INT* *VARI* Ж CLOSED *) (50 *INT*- XNUMB *)(X «REAL* *ARRAY *))
V33=-TRANSCE15)X ;V323 =
((112L «EXIST*)(111L «EXIST*)(120L «DO * I K)(Z «REAL * «VARI*)(0
«INT* « NUMB*) (Y «REAL* «VARI*) (110L -*EXSIST * «CLOSED *) (1 *INT*
«NUMB *) (I *INT* XV ARI * «CLOSED *) (К XINT* «VARI* «CLOSED*) (50 *INT
«.NUMB X) (X «REAL * «ARRAY*))
V31t-TRANSCE10 ;I -V333 -
((112L *EXIST*)(lllL «EXIST*) (120L *D0* I K)(Z Ж REAL* * VARI-*) (0
X-INT* *NUMB*)(Y «REAL* *VARI*-) (110L «EXOST Ж «CLOSED *) (1 «INT*-
«NUMB *) (I «INT* *VARI Ж X CLOSED *)(К «INT* *VARI* «CLOSED*)(50Ъ INT *
«NUMB *) (X «REAL*- -X ARRAY-*))
V35--TRANSCE7)120L| V3bl -
((112L «EXIST* »CLOSED* И 111L «EXIST*- «CLOSED«)(120L «EXIST*
«CLOSED «) (Z *REAL*- XVARI*)(0 *INT*-*rNUMB*-) (Y «REAL *- *tVARI*-) (110L
«EXIST*- «-CLOSED *) (l XINT« «NUMB *) (I XINT-*- «VARI*) (К XINT *- «VAR I #)
(50 «INT* «NUMB*-) (X «REAL« «ARRAY*))
V36--TRANSCE12-,Y /V35 3 -
((112L «EXIST*- «CLOSED *)(111L «EXIST ««CLOSED*) (I20L -XEXIST*-
CLOSED)(Z «REAL* *VARI*)(0 *INT*- Л-NUMB*-) (Y * REAL * V-VARI *) (110L
XEXSIST * ^CLOSED «) (1 XINT* *NUMB*) (I -3KINT*- «VARI*) (К X-INT* - XVARI*)
(50 *INT* XNUMB*) (X*REAL* «ARRAY*))
V37-TRANSCEl2 ;Z>V36D -
((112L * EXIST* * CLOSED*) (111L *EXISTx*-CLOSED#)(l20L*-EXIST*-
XCLOSED*) (Z Ж REAL *- -5WARI*) (0 * INT * * NUMB *) (Y XREALX XVARIX)(110L'
XEXSIST* *CLOS ED *) (1 «INT* XNUMB*)(I X-INT* *VARI*0 (K «INT* *VARI-*)
(50 «INT* «NUMB*)(X -«REAL* «ARRAYX))

39
Revised separatum to CL&CL Vol.X.

ONE MODEL OF THE HUNGARIAN VERB SYNTHESIS

Mrs M.LUGOSI PAP

1. INTRODUCTION

The aim of the present paper is to give a model of the
automatic synthesis of the Hungarian verbs on the basis of the
work entitled "Grammatical form system of Hungarian
word-stock" C23 and to demonstrate some possible applications
of the model. It was my aim to formalize the verbal system in
a most suitable and a most precise way and to handle several
problems in a uniform method. The formation of the simplest
verbal forms has been worked out as a program but I
constructed the program /the program-details/ in a way which
facilitates to complete it to a whole system /derivation of
formal varieties, compound and recursive forms/.

The program is constructed for a System 4-70 machine, in
Usercode Language, the particular command-set of which made
programming easier /e.g. with one command word-elements of
arbitrary length can be compared/.

The following method can be applied for the synthesis of
Hungarian nominale in an analogous way; since the paper which
served as a base C23 deals with nominal forms too and in a
similar manner.

The method is not restricted to the Hungarian grammatical form

40

system. In a language with a developed influctional system
/e.g. French, German, Russian/ there is a possibility to
construct a suffixal system by arranging the verbs according
to the formation of their several verbal forms. And in such a
system numbering of the suffixes, recursion, comparing of the
suffixal types can be applied in the same way as in Hungarian.

2. IT IS NECESSARY TO CLARIFY SOME IDEAS BEFORE DISCUSSING
THE PROBLEM

The notion of the verb stem and that of the suffix must be given,
since they differ from the traditional definition. The part
of the verb which is invariable during conjugation is called
the ' v e r b s t e m' - in case of the machine processing
the 'termination' is the variable part of the verb - but this
is often not equal with the personal suffix connected with
tense suffix and modal suffix /see C 6 □ /. I have used an even
wider notion of termination in order to give the possibility
to store the change of stem and certain stylistic comments
concerning the verb automatically with help of the suffix.
/See further 3.4.2.4, 3.5.3, 3.5.4./

I understand ' t e r m i n a t i o n ' /'suffix'/ as an
/alphanumeric/ character sequence which contains the suffix
with a certain comment and with information concerning the
verb stem /generalized idea of suffix or termination/.

The EBCDID code which is used to punch the cards of Usercode
programs does not contain the special vowels of Hungarian
/ö, ü and the long vowels/. But it is by all means necessary
to mark them somehow. If we do not want to mark these vowels
with an arbitrary letter or a non-letter character not being
used in Hungarian, it is only possible to mark these vowels
not with one, but with more characters /letters/. The
transcription used in telegraphy cannot be applied here

41-

because is would result misunderstandings (e.g. "leegyen" might
mean: "leegyen" /'eat messily' in subjunctive mood/ and
"légyen" /'let it be'/). So we must choose characters which
differ from the letters of the alphabet. A solution for this
problem can be found in but the characters used there are
not found in the EBCDIC code. Thus I have selected the
following solution: the length of the vowel is marked by a
colon after the vowel /co-ordinates with the designation
structure of APhI/ and the two dots of ö, ü are denoted by
quotation-marks. /In the case of the long 6 the quotation-mark
precedes the length-mark/./e. g. : Á=a, ö=o" , o=o ":/

The number of characters necessary to denote a verb /suffix,
verbal form/ for the computer is called the ' l e n g t h o f
t h e v e r b ' . I will not necessarily be equal with the
length of the verb taken in the usual sense because of the
special vowels. E.g. the length of the verb "vörösük"
/'appear red'/ covers 8 characters in the traditional way and
10 characters for the computer.

If one code number /see 3.2/ has more verbal forms, we get
' s u f f i x s e r i e s ' /'paradigm seris'/ where the
different suffixes are written side by side and are separated
by commas /or parentheses/. E.g. the imperative form of second
person in singular, in the present tense /code number: 42/ has
two verbal forms: "várj", "várjál" /'wait'/, so the suffix
series is: ~j /~jál/.

All characters of the EBCDIC code have a hexadecimal number.
Sorting the hexadecimal numbers in order of size and making the
parallel characters in the same order, we get the
' m a c h i n e a l p h a b e t i c o r d e r ' of characters.
This is not equal to the ordinary alphabetic order because in
the second case there is no difference between the short and
the long vowels (e.g. the order of the vowels is ó, 5 , ö, о ;
i.e. in the machine alphabetic order the verb "hólyagzik"
/'blister'/ stands before the verb "hokizik" /'play hockey'/,

42

although normally they are in reverse order).

The verbal form constituted from two words spelt aside, is
called ' c o m p o u n d v e r b a l f o r m ' , e . g . "ettem
volna" /'I should have eaten'/; the verbal form conjugated on
from an already constructed verbal form of which the base is
a stem from the dictionary, is called a ' r e c u r s i v e
v e r b a l f o r m ' , e . g . "ad- adhat - adhattam" /'give' -
'may give' - 'I might give'/.

3. LET US NOW TURN OUR ATTENTION TO THE CONJUGATION SYSTEM
OF THE VERB AND TO THE PROGRAM BASED ON IT

3.1 INTRODUCTION

3.1.1 The project called "Grammatical form system of Hungarian
word-stock" is elaborated by László Elekfy at the
Institute of Linguistics of the Hungarian Academy of
Sciences, therefore I will call it EL's system for the
sake of brevity. He worked out in details the list of
words in the Concise Dictionary of Hungarian 151.

Two variants of the system were finished during the years
which differ from each other in details. The simpler
system /the so-called ' c o n t r a c t e d s y s t e m ' /
was published in 1972 in the periodical 'Hungarian
Language' ClD. It contains only 153 conjugational types
and denote only the most important differences. "Among
the words which have extremely special terminations,
only those are represented in the table of types which
in certain points of view are more compatible with the
system, especially if they show proper complicacy and
are not usually dealt with in the grammatical
descriptions" /i.e.: the table does not contain the most

43

part of the special conjugational types*/. The numbering
of the conjugational types also differs from that one
shown in para. 3.3.1 .

The detailed system /i.e. 'the f u l l v a r i a n t ' /
will be discussed below. This full variant is to be found
in a hand-written version. "It may be called complete
within a certain scope" /see C12/.

3.1.2 We must decide which of the two systems will be
transformed into a /machine/ program. We use the detailed
system for this purpose because the contracted system
takes no notice of lesser differences between the
conjugational types and therefore it may produce incorrect
or non-existent forms.

The question may arise whether it is worth programming
the system in a way to produce all the forms which belong
to one code number. For example, if we want to employ the
system as a subroutine of a machine translating program
from a foreign language into Hungarian, it will be
enough to produce one /namely the most frequent/ form.
Nevertheless I tried to program the system which includes
all the verbal forms because of the possibilities to
solve additional problems emerging in the course of
programming.

3.2 ON THE VERBAL FORMS INCLUDED IN THE SYSTEM

All the simple verbal forms /with the exception of the
imperfect tense/ and all the participles used today and all
X Those conjugational types are called ’s p e c i a l

c o n j u g a t i o n a l t y p e s ’ which contain only one
verb. /Among the 515 conjugational types in the detailed
system there are 233 special conjugational types - 102 types
ending and 131 types not ending in -ik in the third person
singular of the present tense./

44

the derivations of grammatical character /paradigmatic/ are
included in the system; each of them was given a ' f o r m
n u m b e r ' / ' c o d e n u m b e r ' , as being called in the
program/.

In EL's system more verbal forms are denoted by the same form
number if they are always changing in the same way. This
simplies the description. But a program would be more
complicated by such a numbering system, therefore in the
program every verbal form will have its own number. /This is
called ' d e t a i l e d n u m b e r i n g s y s t e m'/.
Code numbers in the program run from 1 to 63.

The project called "Grammatical form system of Hungarian
word-stock" deals with other verbal forms too. But these are
already recursive forms. Among the derivations the participles
marked 54, 55, 56, 60 and the noun-type marked 61 can be
conjugated according to one model of declension; and in the
same way, the verb-type marked 62 according to the
conjugational type 5a and 5b, the verb-type marked 59
according to the conjugational type 5a8 and 5b2, the
infinitive marked 40 according to the declensional type 36D
and 36B.

Since the further-declined forms of the infinitive with
personal suffix /e.g. "adnom", 'give' in the structure:
I ought to give/ occur in verbal structures /e.g. "adnom
kellene" - 'I should give'/, derivations of these were
included in the system. Code numbers from 65 to 70 were given
to these verbal forms.

Remark: These forms, however, are conjugated by recursion,
otherwise there would appear too many suffixes in the
system.

X In the course of the following discussion if it is necessary
to make a distinction between E L ’s system and the machine
system transformed according to the above and other points,
the latter will be called ’m a c h i n e s y s t e m ’.

45

Table 1: contains the forms of the system with their code
number.

Furthermore the detailed numbering system is used.
A difference from this is only by the quotations from
the original conjugational system.

Table 1

Form
num
ber

Code
num
ber

Mood Tense Num
ber

Person Type of conjugation
Example

Hungarian English
1 1

Q>

>

•H

4-)

u

<d

H

о
<D

present sin
gu
lar l . subjective várok I wait

2 2

present singu
lar

2 . subjective vársz you wait

3 3
present singu

lar
3. subjective vár he/she waits

4 4 present olu-
ral 1 . subjective várunk we wait

5 5 present plu
ral 2 . subjective vártok you wait

6 6
pre
sent plural 3. subjective várnak they wait

7 7
present singu

lar 1 .

objective conjugation relating to
object of
2 .person

várlak I wait for you

8 8

present singular 1 .

objective conjugation relating to
object of 3.person

várom
I wait for
him/her

9
pre
sent sin

gu
lar

2 .
__ II _ várod You wait for him/her

9 1 0

pre
sent singu

lar
3. _ II _ várja

he/she wait for him/her

46

Table 1. suit
Form Code !Tense Number Per- Type of conjugation Example
ber ber Hungarian English
10 11 present plural 1 .

objective conjugation relating to object of
3.person

várjuk we wait for him/her

11 12 pre
sent

plu
ral 2. várjátok you wait for him/her

12 13 present plural 3. _ II _ várják they wait for him/her
13 14

a>

past singu
lar

1 subjective vártam I waited

15
>

past singu
lar

2. subjective vártál you waited

14 16
past singular 3. subjective várt he waited

15 17 past plural 1 . subjective vártunk we waited
18 ■P past plural 2. subjective vártatok you waited

16 19 past plural 3. subjective vártak they waited

17 20 u

past sin
gular 1 .

objective
conjugation relating to object of
2. person

vártalak I waited for you

21 1— 1
past sin

gular 1 .

objective conjugation relating to object of 3.person
vártam I waited for him/her

22 и past sin
gu
lar

2. _ _ II __ vártad you waited for
him/her

18 23 a > past singu
lar 3. _ _ II _ várta he/she waited for him/her

19 24 T J past plural 1 .
_ _ II _ vártuk we waited for

him/her
25 past plural 2. _ II _ vártátok you waited for

him/her
20 26 past plu

ral 3. _ II _ várták they waited for
him/her

21 27
r H

a J

pre
sent

sin
gu
lar 1 . subjective várnék I'd wait

22 28 0

• H

present singu
lar

2. subjective várnál you'd wait

23 29
4J

• H

present
sin
gu
lar

3. subjective várna he/shewould/should wait

24 30 c present plu
ral 1 . subjective várnánk we would/should

wait
31 u

pre
sent plural 2. subjective várnátok you'd wait

47

Table 1. suit
Form
num
ber

Code
num
ber

Mood Tense
Num
ber

Per
son

Type of
conjugation Example

Hungarian English
25 32 <D

>

-H

4J

<d

и

fű

1—1

о

Q>

ТУ

pre
sent

plu
ral 3. subjective várnának they

would/should wait

26 33
pre
sent

sin
gu
lar 1.

objective
conjugation
relating to
object of
2.person

várnálak I'd wait for you

34
pre
sent

sin
gu
lar

1.
objective conjugation relating to object of 3.person

várnám I'd wait for
him/her

26 35
pre
sent

sin
gu
lar

2 .
objective
conjugation
relating to
object of
3.person

várnád you'd wait for
him/her

27 36
pre
sent

sin
gu
lar

3. _ и _ várná
he/she would/
should wait for
him/her

28

29

37 pre
sent

pu-
lar 1. várnók,

várnánk
we would/should
for him/her

38 pre
sent

pu-
lar 2. _ II_ várnátok you'd wait for

him/her
39

pre
sent

pu-
lar 3. _ II_ várnák they would/

should wait for
him/her

30 40 i n í i n i t i v e várni to wait
31 41

<D

>

-H

■P

ü

C

О

•Г"»
Л

О

Ui

pre
sent

sin
gu
lar

1. subjective várjak /'that I wait'/

32 42
pre
sent

sin
gu
lar

2. subjective várj ,
várjál

/'that you
wait'/

33 43
pre
sent

sin
gu
lar

3. subjective várjon /'that he/she
wait'/

34 44 pre
sent

plu
ral 1. subjective várjunk /'that we wait'/

45 pre
sent

plu
ral 2. subjective várjatok /'that you wait'/

35 46 pre
sent

plu
ral 3. subjective várjanak /'that they

wait'/
36 47

pre
sent

sin
gu
lar

1.
objective
conjugation
relating to
object of
2.person

várjalak /'that I wait
for you'/

48
pre
sent

sin
gu
lar

1 .

objectiv e
conjugation
relating to
object of
3.person

várjam /'that I wait
for him/her'/

37 49
pre
sent

sin
gu
lar

2. _ II _
várd,
várjad

/'that you wait
for him/her'/

38 50
pre
sent

sin
gu
lar

3. várja
/'that he wait
for him/her'/

Table 1. suit
Formnum
ber

Code
number

Mood Tense
Num
ber

Per
son

Type of
conjugation Example

Hungarian English
39 51 0)>

• H

Üc

present plural l.
objective
conjugation relating to
object of 3.person

várjuk /'that we wait'/

52 0•r->
a

pre
sent

plu
ral

2. várjátok /'that you wait'/
53 i / i present plu

ral 3 __ II _ várják /'that they
wait'/

40 54 continuous /present tense, 1./ participle váró waiting
41 55 perfect /past tense, 2./ participle várt waited
42 56 future /future tense,3./ participle várandó /to be waited for/
43 57 simultaneous presented mood /1/

adverbial participle várva waiting
44 58 antecedent presented cause /2./ adverbial participle várván
45 59 Hungarian verb formed with the

suffix '-hat' or '-het' várhat may wait
46 60 Hungarian participle formed with

the suffix '-ható' or '-het5' várható may be waited
47 61 verbal noun várás waiting as a

noun
48 62 causative verb várat make sy wait
49 63 passive verb váratik 1 is waited for/

65 gerund with
personal suffix

sin
gular

1. várnom for me to wait

66 gerund with personal suffix
sin
gular 2. várnod for you to wait

67
gerund with personal suf
fix

sin
gu
lar

3. várnia
for him/her
to wait

68
gerund with personal suffix

plu
ral 1 . várnunk

for us to
wait

69 gerund with personal suf
fix

plural 2. várnotok
for you to
wait

70
gerund with
personal suffix

plu
ral 3.

várniuk,várniok
for them to
wait

49

3.3 SYSTEMATIZATION AND CLASSIFICATION OF THE VERBS

3.3.1 In EL's system

According to the conjugational system the verbs are devided
into groups of conjugational types, each of them has a
' c o n j u g a t i o n a l - t y p e - n u m b e r '
consisting of 5 alphanumeric characters:

ala2a3a4a5

a/ The verbs may be classified into 20 groups, according to
the following features:

i/ If the verb does not end in 'ik' in the 3 person
singular of the present tense, a-^a^lO; if the verb
ending '-ik' in the 3r<̂ person singular of present
tense, a^a^^ll.
Let us mark now the verbs without 'ik' by: a =0 and the
verb with 'ik' by a =10.
Remark: the first character of a two-digit number is
denoted by a-̂ , the second by a2; and the complete
two-digit number by /a4a^ will be interpreted
similarly/.

ii/ According to the way of joining the suffixes to the
stem the following variations are possible /variation
is denoted by a'/

- the verb is conjugated only by a simple suffix; in
this case: a'=l.о
/е.g. "ír" = 'write' , "múlik" = 'pass'/

- the suffix of the past tense is written to the stem
with the help of a vowel; in this case a^=2.
/e.g. "tud" 'know' - "tud-o-tt" = 'he knew',
"uralkodik" = 'govern' - "uralkod-o-tt" = 'he
governed'/

50

the suffix of the infinitive and the conditional is
written to the stem with the help of a vowel; in this
case a ' =3. о
le.g. "hall" = 'hear' - "hall-a-nék" = 'I'd hear',
"mosdik" = 'wash' - "mosd-a-nék" = 'l'd wash'/
the imperative is not formed with the usual 'j';
in this case a'=4.о
Je.g. "olvas" = 'read' - "olvas-s" = 'that you read',
"zongorázik" = 'play the piano' - "zongorázz" = 'that
you play piano'/
the imperative is formed from a modification of the
lexical stem; in this case a'=5.о
le.g. "fut" = 'run' - "fu-ss" = 'that you run' ,
"mászik" = 'climb' - "má-ssz" = 'that you climb'/
the stem ends in an '1' and there is an elision; in
this case a'=6.о
/e.g. "gyalogol" = 'go on foot' - "gyalog-lok" =
'I go on foot' , "fuldoklik" = 'choke' -
"fuldok-lanak" = 'they choke'/
there is an elision in the verb and the stem does not
end in a 'z' or an '1'; in this case a'=7.о
/e.g. "seper" = "sweep' - "sep-rünk" = 'we sweep' ,
"ugrik" = 'jump' - "ug-o-rtok" = 'you jump'/
the verb has an elision and the stem ends in a 'z';
in this case a'=8.о
/e.g. "szoroz" = 'multiply' - "szor-z-ott" = 'he
multiplied', "hiányzik" = 'be absent' -
"hiány-o-ztam" = 'I was absent'/
the verb is irregular; in this case a^=9 .
/e.g. "van" = 'be', "alszik" = 'sleep'/

51

- the verb is a conjugational type of double
conjugation , without a mixed vowel system or the
verb is very defective; in this case a^=lO.
/e.g. "siig-biiig" = 'susurrate' , "ázik-fázik" = 'be
rain-soaked', "gyere" = 'come'/

The type-numbers of the 20 groups may be obtained from
the union /sum/ of a and a'; the group number is theо о
a^a^ character in the number of conjugational type.

Remark: If a =10 and a'=7, some of the members of these о ~
are also defectivel
E.g. a.a0=a +a'=0+8=8 : ̂ 1 2 о о

a,a =a +a'=10+8=18: 1 2 о о

the group of verbs where the
stem ends in 'z' with elision
and without 'ik' conjugation.

the group of verbs where the
stem ends in 'z', and
conjugated with 'ik'.

b / The verbs may be classified further inside each group,
according to the vowel system:

a^=a if the verb is of a velar vowel system
a^=b if the verb is of a palatal, unrounded vowel system
a^=c if the verb is of a palatal, lip-rounded vowel system
a^=d if the verb is of a double conjugational type of the

mixed vowel system.

с/ The classes a,b,c of vowel system, found inside each of the

X A verb constructed from two verbs connected with a hyphen
is called a ’d o u b l e c o n j u g a t i o n a l ’ verb,
independently of the fact whether the verb is a doublet or
it has a co-ordinate structure. Both verbs in a double
conjugation, are conjugated seperately and also after
conjugation they are connected with a hyphen.

их The double conjugational verb in which the 2 verbs belong
to different classes of the vowel system, is a verb of
’m i x e d v o w e l s y s t e m *.

52

20 groups; the class d occurs only in some of the groups.
Within the main types /altogether 66/ obtained in this way
we can differenciate several subtypes /maximum 15/. The
number of subtypes within a main type is denoted by a4a5
characters. This number of the subtypes shows how many
sub-groups have to be differentiated within the main type
in order to give a correct description of the forms of each
verb, belonging to the main type. At the end we obtain
altogether 515 conjugational types.

Remark: It results clearly what is said above that there
are no exceptions in this conjugational system. I stress
this fact because like this, the system is more homogeneous
and well arranged /and therefore it may be better programmed
/ see C 6 I/.

3.3.2 In the machine system

In the machine system the conjugational type-number consists
of 6 characters: â contains the systematic remarks concerning
the verb /see 3.5.4.2/.

The system is broadened by an URES /='EMPTY'/ conjugational
type in order to describe the very defective conjugational type
in a simple way: /see 3.5.1.2/. This is a fictive conjugational
type, a verb belonging here to has no single verbal form.

53

3.4 DESCRIPTION OF THE VERBAL FORMS

3.4.1 In EL's system

3.4.1.1 Marking_the_suffixes

With the verb type it is after the verbal form that stands the
suffix. Signs used at the description of the suffix are the
following :

- The suffix after ̂ means that the suffix is written to an
unmodified lexical stem.
E.g. "ápol"= 'cure' belongs to the la type, the suffix of the
form 30 in this type is '~nánk'; so the whole verbal form is:
"ápolnánk" / = 'we would cure'/.

- If the suffix is connected to the stem in such a way that the
stem is changed then the last unvariable letter of the stem
together with the suffix is put after 2 dots /../.
E.g. "avat" /='dedicate'/ belongs to the conjugational type
5a, the suffix of code number 41 is ..assak, so the verbal
form 41 is "avassak".

3.4.1.2 Missing_verbal_forms

Not each verb has all the 63 verbal forms. The missing verbal
forms must be denoted too. A horizontal line after the code
number of the verbal form indicates its absence. The absences
in the systematic remark /see 3.5.4.1/ are not denoted.

3.4.1.3 Usage of particular verbal forms

It may happen that a code number has more verbal forms as form
variants. E.g. the imperative form of the second person
singular int the present tense /"várd", "várjad" - 'let you
wait for him/her'/ or in the conditional type 3a the
conditional forms may be conjugated with a linking vowel or

54

without it /е.g. "körülrajong-a-nék", "körülrajong-nék" -
'I'd admire' / .

yThe system contains all the possible verbal forms and gives
an information automatically for the usage of forms: the
suffix included before is more frequent and the suffix
following it in the description may be less frequent

E.g. The type 3a, code number 27: ~anék, vagy ~nék.

The "infrequency" of a form is denoted in such a way that the
suffix is in parantheses independently of whether it has a
more frequent variant or not.

E.g. the type 3b, code number 62: /-tet/
the type 3al, code number 14: / - tarn, -obtain/

However the participle marked 58 which is rare today for all
the verbs and the passive voice marked 63 which is very rare
and archaistic in the up-to-date standard language are not put
into parantheses.

Other stylistic remarks are to be found in 3.5.4 .

X But the forms which are very unusual or are to he avoided in
the everyday language are not indicated.

** Here we must interpret the word ’l e s s f r e q u e n t ’
in a wider sense: it may have the meaning that the form is
less desirable, a little rustic, archaic or high-brow
differing from usual everyday language but is not ungramma
tical.

55

3.4.2 In the machine system

3.4.2.1 The_suffixes_connected_to_the_stem

In the course of programming the suffixes connected to the
stem do not give rise to difficulties: the information
corresponding to the suffix is attached directly to the stem.

3.4.2.2 The_suffixes_not_directlY_çonnected_to_the_stem

If during the conjugation the stem is changed, the solution
described in 3.4.1.1 /with the 2 dots/ is unsuitable because
it is based on the linguistic instinct of the native speaker
and such a linguistic instinct is not to be expected from a
machine /cf.C73/. Thus the change of stem must be marked
formally.

The system of forms conjugated with a changed stem may be
divided into two groups :

1. the difference may be specified according to some system
Je.g. elision/,

2. there is no a system like this /e.g. irregular verbs/.

To except the program for examination of how the suffixes are
connected to the stem, would not be saving; therefore the
change of the stem is denoted by the first character of the
generalized suffix. Since we must differenciate between the
generalized suffix and the real one, the first character of the
generalized suffix may not be such a letter that may occur as
the first letter of a real suffix.

The change of the stem often manifests itself as a growing
shorter of the stem. It is from this fact that derives the
inspiration that the first character of the generalized suffix
be the number of characters with which the changed stem
becomes shorter. From the second character the real suffix is

56

to be found /not taking into account occasional remarks,
see 3.5.4/.
E.g. This means in the case 3.4.1.1, that the suffix of "avat"
of the form marked 41 is lssak, thus "avat+lssak" "ava+ssak=
avassak".

3.4.2.3 Markir}2_of_elision

a/ In the case of verbs without ' ik' the notion of elision
means that the last vowel of stem is not present in the
conjugated form, e.g.

(i) "csicsereg" /'he chirps'/, but "csicsergek" /and not:
"csicseregek"/ /I'chirp'/.

(ii) "kevesell" /'he finds sg. too little'/ but "keveslem"
/'I find sg.too little'/

If we apply the solution described in 3.4.2.1, we must
include a proper suffix to each possible final consonant
of the stems.
E.g. csicsereg + 2gek csicsergek

kicsinyei + 21ek kicsinylek
Thus we find about 350 suffixes and 280 suffix series.

But it is characteristic of all the different final
consonants of the stems that it is set in place of the last
but one letter /=the vowel/ and after it comes the suffix.
Thus these may be elaborated on the basis of the same
principle: Let the first character of generalized suffix
be 'X', this indicates that the last letter must be put in
place of the last but one and the characters after 'X'
denote the real suffix /not taking into account occasional
remarks, see 3.5.4/.

E.g. csicsereg + Хек -*■ csicserg + ek = csicsergek
kicsinyei + Хек -*■ kicsinyl + ek = kicsinylek

57

In this way only about 160 suffixes are necessary to the
description of these forms.

The elision of type (ii) can be found only in two
conjugational types /7Ь1, 7b6/, so it is not worth to
assign a separate letter for them and to write a separate
program because it would not decrease the number of
suffixes - therefore this types are handled in the way
described in 3.4.2.2.

b/ In the case of verbs with 'ik' .' 1-ne notion of elision means
that a vowel is inserted in the stem inside the lexical
form.

E.g. "romlik" /'spoil'/ but "romoltok" /'you spoil'/. It is
characteristic for this type of elision that a vowel
corresponding to the vowel system is interpolated between
the last letter of the verb and the last but one: in the
case verbs containing velar vowels: "o", in the case of
verbs with palatal unrounding vowel: "e" and in the case
of verbs with palatal lip-rounded vowel: "ö".

Let "Y" be the first character of the generalized suffix,
it marks the epentheses and the characters following "Y"
will mark the real suffix.

E.g. "ugrik" /'jump'/, /17а/, code number 5:
ug I rik + Ytok -*■ ugor + tok = ugortok

"vérzik" /'bleed'/, /18Ь/, code number 6:
vérz I ik + Ynek vérez + nek = véreznek

"ömlik" /'flow'/, /16с/, code number 59:
öml ik + Yhet ömöl + het = ömölhet

This solution has the advantage of shortening all the
suffixes by 2 or 3 characters.

58

3.4.2.4 Shortenin2_and_lengthenin2_of_vowels

The shortening and lengthening of vowels may be treated simply
and similarly on the basis of the designation of "special"
vowel, the principle described in 3.4.2.2. Namely the
shortening of vowels may be considered such a change of the
root where the length of verb decreases with 1 /viz. with the
character ' : ' which denotes the length of the vowel/. The
uniform way of dealing with the problem means that the
shortening may be denoted independently from the shortened
vowel /this is impossible in the case of the usual designation
of vowel-length in Hungarian/.

E.g. "nyű" /'wess out'/ but "ny'úvés" /'wessing out'/;
"sz5" /'weave'/ but "szövés" /'weaving'/,

but we obtain both forms with the same suffix:

nyu": +lve:s — »nyu" + ve:s = nyüvés
szó"; +-lve:s — >szo" + ve:s = szövés

The lengthening of vowels is denoted by a suffix which has a
colon as first character.

E.g. "lesz" /'will be'/, code number 58:
lesz + 2:ve:n — »-le:ve:n = lévén

3.4.2.5 For the designation of the infrequency of verbs see
para 3.6.4.

59

3.5 THE DESCRIPTION AND PROGRAMMING OF THE
CONJUGATIONAL TYPES

3.5.1.1 In_EL^s_system

It would be redundant to describe all the forms in each
conjugational type, because not all the forms differ from each
other. Conjugational types la and lb are considered as
' s t a n d a r d t y p e s ' ; all the other types are
described in EL's system as compared to these.
Namely: in general, in the case of a3=a we refer to the type
la, in the same way in the case of a^=b,c to the type lb, in
the case of a^=d to the type la, lb.

In such a case we list only those forms which differ from the
forms of the types to which they are referred.

E.g. C4a ^otgzD As la, but: 2~ol; 9-12:~za etc.;
14,41 ~ott ! 31-39~zak etc.
/"botoz" = 'flog' /

3.5.1.2 In_the_machine_system

In the original description the conjugational system is
unfitted for programming: it gives exactly the conjugational
types but there is no possibility to sum up the types easily
and formally. Moreover in the case of verbal forms which
change in the same way it gives only the first forms.
Therefore I have put the system into a tabular form /see
I.Appendix/.

In the machine system each conjugational type has a record of
a length of 64 bits /these records are placed into a disk file
called DISELT/, to each code number a bit is accorded with an
appropriate ordinal number. The value of the bit is 1 or 0
according to whether the suffix differs from the respective

60

code number of an other conjugational type or not. The value
of the remaining 64^ bit determines whether the type was
related to a standard type / in this case the value of the bit
is О/ or to another type /in this case the value of the bit is
1/. A suffix number was given to all the possible suffixes
/suffix series/.

Each conjugational type has an other record with a maximal
length of 194 bytes /these records are also placed into a disk
file called DISMIN/. This record contains the different forms
/without the code numbers/, in increasing order according to
the code numbers; and the conjugational type too, if the
conjugational type is not related to a standard type.

The algorithm of the search of the suffix number is following:
We examine the value of the bit corresponding to the code
number in the record which belongs to the conjugational type
of verb on the DISELT file. If the value is 0, we must examine
to which conjugational type it was related and then we examine
the value of the bit of this conjugational type, etc.

If the value of the bit is 1, we must count the bits, the
value of which is one from the first bit upto this one and the
suffix number of the required form will be a suffix number on
the DISMIN file, the serial number of which agrees with the
number we have obtained.

E.g. Let us look for the form 55 of the verb "tud" /'know'/
which belongs to the type 2a6.
The record related to this type on the DISELT file is:
2a6 : 00.............. О.............. 0111
and on the DISMIN file:
2a6: 021 240 2a ■hViThe value of the 55c bit in the record of DISELT file is 0,
the value of the 64^ bit is 1. The 64t 1̂ bit is the third bit
in this record that is equal to 1, and the third data in the
record of DISMIN file is: 2a.

61

Hence we must examine data of the type 2a.
The record in the DISELT file related to this type \s:

yi_6/
2a: О......... 010......... 010......... О

Here the value of the 55 bit is 1 and this is the second bit
that is equal to 1, therefore we examine to tie second suffix
number of the record 2a on the DISMIN file an 1 this is: 120.
/The suffix number 120 corresponds to the suffix "~ott", thus
the form 55 of the verb "tud" is "tudott" /'kiown'/.

3.5.2 Recursion

3.5.2.1 In_El/s_system

a/ It may happen that two conjugational types following each
other, differ in only some verbal forms but \ hey differ very
much from the standard type: in this case we refer to the
group which has the smaller type number. This is called
'/simple/ r e c u r s i o n '.

E.g. Cici do^D As lc, but intransitive: 42 /~endo/1 46,48:—
/"dol"='fall'/

b/ There is no reference to a former or standard type in the
case where the subtype is too defective: then only the
existing forms are described.

E.g. C10a3 sza^|^ 3~, 14/~ott/, 23~na, 33~jon
/"szabad"='allowed'/

In the machine system this type may be described only as
related to the standard type, e.g. on the DISELT file:

vii/ O «üy
ЮаЗ : 11011.......1....... 101........... 101........ 10

and the length of the record I0b2 would be 180 bytes on the
DISMIN file.

62

In order to the conjugational type, 'URES' was initiated for
simpler administration, thus the description of type I0a3 is:
on the DISELT file: v£J/

OOIOOO....010........ 010........ 010...... 01;
on the DISMIN file:

OOl, 620, 035, 104, URES

3.5.2.2 I_n __the _machi_ne system

Programming provides an opportunity to include not only simple
but repeated recursion. A repeated recursion is not adequate
to "the human utilization" e.g. in a conjugational dictionnary
because this indicates too much searching about. On the other
hand it gives no problem for the computer. Thus the particular
conjugational types were described related to the conjugational
types "nearest to" them. /"Nearest to" means, that the distance
of two conjugational types is the smallest; "the distance of
two conjugational types" is defined as the number of verbal
forms differing from each other./ E.g. the type 3c2 may be
described related to the type 3cl, the type 3cl to the type
3b8 and the type 3b8 to the type lb: this is a 'd o u b l e
r e c u r s i о n'.

To 70% of the conjugational types, simple to six times
recursion may be applied and so the number of differences can
be decreased to half; this means that we need half space on
the DISMIN file.

3.5.3 References
3.5.3.1 In_EL/s_system

It may occur in case of some conjugational types that formal
variants are used instead of certain verbal forms /references
°f "p r e f e r a b l e t y p e " or the verb has only some

63

forms and the other forms are expressed by the corresponding
forms of a formal variant /of the same verb/ /references of
"i n s t e a d o f t y p e " X.

See I.Appendix Cl2a4 mosakodik!) and 1119a furakszik3
/"mosakodik"='wash',"furakszik"= 'push' J

3.5.3.2 In_the_machine_SY§tern

Considering for small number of "preferably type" references
they are transformed according to 3.4.2.2 and in the same way
the "instead of type" references in the main type 17.

E.g. the forms 1-4 of the verb "mosakodik" /12а4/ in the
machine system:
1. .kszom/~om/ 2 . .kszol/ ~ol v. ~sz/ , 3. . kszik / ~ik/,
4..kszunk у.~unk

In the case of "instead of type" references in the main type
19 this solution would give about 300 further suffixes,
therefore I selected an other solution.

For the forms which are conjugated from changed stems, the
first character of the generalized suffix is P and the next
characters depend on the change of the stem and on the number
of the new conjugational type. /There is no real suffix
beginning with the character P./ To be more exact: the second
character of the suffix denotes the number of the charactersito be cut off the end of the verb; and the following
characters must be set after the stem derived in such a way.
/If these are less then 4, the other characters are replaced

theach with a space./ The 7 character of the suffix denotes
the conjugational type of the stem variant. Hence, we need
only 11 new suffixes.

л In the following only these will be called
" r e f e r e n c e s "

64

3.5.4 Remarks

3.5.4.1 In_EI/s_SY§tem

In order to give an exact and simple description of Hungarian
verbs certain remarks are by all means necessary which may be
divided into three large groups:

- Remarks type I : these are so-called "s y s t e m a t i c a l
r e m a r k s " concern well-defined forms of certain
conjugational types. They are denoted in the course of the
description of the conjugational system.
E.g. "intransitive"='tn' and a corresponding conjugational
type : e.g.: 2a8.
The systematical remarks apply to all the verbs belonging
to the given conjugational type, as in the former case:
e.g. "fagy" /'it freezes'/, "fogy" /'grow less'/.

- Remarks type II: These are similar remarks as those in
remarks type I plus the remark: "without subject", but these
are not concerning the conjugational type but only certain
verbs. These are denoted only in the dictionnary.
E.g. "lapul intransitive" /'become flat'/. This verb
belongs to the type la./
/These remarks are also called systematical remarks./
The verbs with the remark "only intransitive" lack the
forms 7-13,20-26,33-39,47-53,63 and the forms 56,60 are rare
with them.
The verbs with the remark "only in 3r person" have only
the following forms: 3,6,10,13,16,19,23,26,29,32,36,39,43,
46,50, 53-63.
The verbs with the remark "only transitive" have no forms
1-6, 14-19, 27-29, 41-46, 55,60,63.

- Remarks type III: These concern certain forms of certain
verbs and they are to be found in the foot notes. They may
be divided into two large groups:

65

a/ so-called "c o m m o n r e m a r k s " which concern all
the forms with the code number "certain" of certain
conjugational types.
E.g. "without 'ik' specially in transitive usage".

b/ so-called "s p e c i a l r e m a r k s " which concern
only certain forms of certain verbs in a certain conju-
gational type.
E.g. 3 / ik/ in the verbs "retten" /'recoil'//

"rezzen" /'rustle'/, "csökken" /'decrease'/.
/This special remark concerns the conjugational type lb./

3.5.4.2 In_the_machine_system

th.- The remarks type I, II are contained by the 6 character of
the conjugational type number. /If there is not such a
remark for a conjugational type, â is a "space" character./

- The remarks type III. are denoted in the generalized suffix
by a special character after the last letter of the real
suffix which may be well seperated from the last letter of
all the real suffixes. The program must direct that only the
real suffix be connected to the stem. Of course, the suffixes
with a remarks have other suffix numbers than the suffixes
without remarks.

66

3.6 NUMBERING AND STORING OF THE SUFFIXES

3.6.1 General principle

On the base of all the /generalized/ suffixes and suffix
series that are possible in the conjugational system, a suffix
table was made. Its details may be found in Table 2.

The firs part of the suffix table contains the rare and the
frequent suffixes in the machine alphabetic order in the way
that the longer suffixes have greater suffix numbers - i.e.
the length of the suffix may be determined depending on the
value of the suffix number - and in this way the program will
be simpler.

In order to occupy less place in counting the suffixes, the
suffix number contains only 3 characters in spite of the fact
that there exist about 3000 suffixes /and suffix series/. The
second and third character of the suffix number go from 00 to
99, the first /alphanumeric/ character of the suffix gives
the value of the hundreds.

The second part of the suffix table contains the suffix
numbers with respect to the suffix series together with the
suffix number of the forms in the above discussed order. A
suffix series has 2, 3 or 4 suffix numbers depending on the
number of the verbal forms, they are the suffix numbers of
these forms.

3.6.2 Storing of the suffixes

The suffixes and suffix series without their suffix number
may be found on the DISRAG file in an increasing order.
/This file is also an indexed sequential file on the disk./

_ 67

Table 2
DETAIL OF THE FIRST PART OF THE SUFFIX TABLE

Machine
descrip
tion of
the
suffix

Re
mark

Length
of the suffix

Frequent suffix Non-frequent suffix
Type in
which
it can
be found
first

Suffix
number

Codenum
ber

Type in
which
it can
be founc
first

Suffix
number

Code
num
ber

space - 1 la 001 3 7b6 F01 3
space 8 yes 2 lal 014 3
space 9 yes 2 lb5 015 3
: К - 2 5a7 013 13
: TOK - 4 5a7 235 12
0 - 1 lal 000 60
00 yes 2 3al 016 56
0H yes 2 13a 017 62
0P yes 2 19al 018 60

19al 62
A : L - 3 075 14a6 F75 42
A : N - 3 9a8 076 58
A : S 3 la 077 61

Examples for suffixes of Table 2:

ápol +u= ápol I'hejshe nursey'/
meggyón +u= meggyón, meggyón + ik = meggyónik /'he confesses'/

in the transitive usage rather without '-ik'
aszongya + :K = aszongyák /'they say'/
aszongya + :TOK = aszongyátok /'you say'/
elbúsul + 0 - the verb "elbúsul" /'he abandons himself to

sorrow'/ has no the form 60
the verbs with the suffix number 00: the verbs belonging to

the type 3al have no forms 56, except for the
verb "mond" /'say'/: "mondandó" /'saying'/ szív + A:N = szíván /'smoking'/

ápol + A:S = ápolás /'nursing'/

68 -

3.6.3 Advantage of the numbering of the suffixes

1/ It_claims_less_glace_in_the_data_storage. Namely there are
about 5600 differences in the conjugational system; in
order to mark the differences 5600 x 3 «16K bytes are
necessary in the case of counting of the suffixes; the
data storage of the DISRAG file is about 15K; this is
altogether about 31K bytes.

But if we do not count the suffixes, since the average
length of the suffixes is 5,4 bytes, in order to mark the
difference it is necessary to have 5,4 x 5600 ̂ 30K bytes.
/The real data storage, however, needs more place because
we have counted suffixes instead of suffix series./ But to
find a given suffix it is necessary to give each suffix a
seperated data length and thus data storage is more than
50K bytes.

2/ because each data is 3 bytes long
in each record of the DISMIN file.

3/ If we do not mark the suffixes with a number, it will be
necessary to examine whether a code number has one or more
forms; and in the former case this follows automatically.

4/ If we want to write a program that makes more or less /i.e.
not all/ forms, then we must rewrite_only the suffix
numbers on the DISMIN file - while if we do not number the
suffixes, it would be rewriting the complete file.

5/ Also from the point of making linguistic statistics or an
occasional §nalysing_program it is better to number the
suffixes. E.g. in the former case it is simpler to examine
items with the same length /e.g. to count the frequency of
certain suffixes/.

69

3.6.4 The suffixes of the "rare" forms

The "rare" forms are denoted also by the suffix. If we want to
mark the rarity of the forms with a character of the suffix
we would get about twice as much suffixes and it would not be
economical. Therefore the "rare" suffixes were also given a
suffix number which differs from the suffix number of the
suffixes of the frequent form, but the suffix number of the
frequent suffix can be decided from the first character of
the suffix number of the rare form.

70

3.7 DICTIONARY OF THE CONJUGATIONAL SYSTEM

3.7.1 Dictionary that belongs to EL's system

All the verbs taken into account belong to one type of the
515 conjugational types. However it can not always be
determined formally, to which one. Since it is necessary to
make a dictionary which contains the verbs in their lexical
forms /present tense, 3 person singular/, together with
their conjugational types and accidental remarks. This
dictionary is necessary for the usage of the conjugational
system.

The verbs may be divided into three groups :

I. The verbs which may be conjugated according to their second
part and the second part is a lexical entry - it is not
necessary to indicate the conjugational type of these
verbs in the dictionary.

II. The verbs with a typical termination which obtain the
paradigmes in accordance with the termination. These verbs
are called 'V e r b s w i t h a t y p i c a l
t e r m i n a t i o n '. A so-called ' T a b l e o f
t y p i c a l t e r m i n a t i o n s ' belongs to the
conjugational system. /See II.Appendix./ It contains the
the typical terminations together with their conjugational
types.

III.All the other verbs are so-called 'v e r b s w i t h
t h e i r o w n p á r á d i g m '. Their conjugational
type must be given by all means in the dictionary.

71

3.7.2 The dictionary belonging to the machine system

1/ The dictionary made according to the machine synthesis
contains only the verbs which must be included in order to
find their conjugational type, i.e. it does not give a full
verb-listing. This dictionary contains only the verbs ofrCJthe III group as well as the verbs with prefix belonging
to the base verb with the remark "only intransitive".

It is possible for a verb to represent more /homonymus/
lexemes and the different lexemes belong to several
conjugational types.

E.g. the verb "kiötlik^" /familiar or coloquial - 'stick
2out'/ belongs to the type 16c4 and the verb "kiötlik "

/'think out'/ belongs to the type 16c2.

I In this case the verb must be included in both conjugational
types in a way to be differenciated, since the key of a
record of the DISTAR file is the verb itself, such verbs
have two keys, e.g. "kiötlikl" and "kiötlik2".

2/ The dictionary is on the DISTAR file which is an indexed
sequential file on the disk and the key of the verbs is the
verb itself.

3.7.3 Number of verbs in the dictionary

The conjugational dictionary contains about 16000 verbs, half
of them belonging to group I. According to the contracted
system there are about 6100 verbs with the characteristic
termination belonging to group II, thus the type of only 1900
verbs must be given.

72

However, several types of the detailed system may belong to
certain types of the contracted system /e.g. types la, lal,...
...,la9 of the detailed system belong to the type ClD of the
contracted system/, but among the frequent terminations only
one can be regarded as characteristic, the one that contains
the greates number of verbs, thus to a characteristic
termination less verbs belong in the detailed system. Therefore
the DISRAG file contains not 1900, but about 3600 verbs.

\

73

3.8 DOUBLE CONJUGATIONAL VERBS

1/ There are 45 double conjugational types containing 60 verbs.

2/ Both verbs of a double conjugational type have a separated
record in the DISELT file as well as in the DISMIN file.
The 64th bit of the former record is always 1, because it
may not often be decided formally /or would be complicated/
to which standard type it was related by the last number of
the recursional change.

The key belonging to the first verb of the double
conjugational type on the DISELT file and on the DISMIN
file corresponds to the number of the conjugational type
and the key belong to the second verb is equal to the key
belonging to the first verb, except for the a^ character;
e.g. in the case a-^d, the new a^ is "f".

If a form is rare it is denoted in both verbs. The special
remark is indicated in the first verb and the common remark
is indicated in the second one. If any of the verbal forms
are lacking it is denoted only in the record, belonging to
the first verb.

'0

74

3.9 THE DESCRIPTION OF THE PROGRAM

3.9.1 Input data

The program was made in a way that by a relatively simple
extension it may formulate the compounds forms /conditional,
future tense/. So any forms may be required /i.e. declarative,
conditional and imperative, all 3 tenses; the verb ending in
"-hat" - e.g. "talál-hat"="találhat"- 'he may find' -,
causative forms, reflexive forms/.

It is the task of the program to decide whether the required
form is existing at all in Hungarian and if it does, whether
it exists for the given verb.

The verb to be conjugated and the required form may be read
in from a punch card. On the card the following must be
punched :

the verb: by characters 1-35;
the required form: by characters 37-52; this may be

given as a code number /its value may be 1-63 or
65-70; in this case only a simple form and an
infinitive with a personal suffix may be required/
or a code formed of 16 characters:

ala2*a4a5a6a7a8a9■all'a13'a15a16 where

a^a2 may be: cs = active voice
mu = causative voice
sz = passive voice
ha = the verb with "-hat"
two spaces
os = all the forms of the verb are

demanded
and a^-a^g contain all the informations concerning
the type of conjugation, number, person, participle
and other forms crained from the verbs

%

75

3.9.2 Result

The program gives the required form /or the answer that it
does not exist/ on the line printer. The first 55 characters
of the result are the input data, the other characters depend
on the result.

a/ If we have demanded an intransitive verb or a transitive
verbal form relating to an object of 2nĉ or 3n<̂ person, in
the case when the required form of the verb exists, the
program prints: "A kért igealak: "

/'The required form: '/
/If there exist several forms they are printed one under
the other./
If the verb is a rare one, it prints "ritka" /'rare'/ at
the end of the line: if there exists any common remark it
is printed in the next line.

b / If we have required a transitive verbal form and we have
not specified the type of the object /2n<̂ or 3r<̂ person/
then the program decides whether both forms exist or not:

1. If the verb is intransitive, the printed text is:
"Az igének ilyen alakja nincs" /'the verb has not this
form'/

2. If the transitive form relating to an object of 2n<̂
person does not exist, it conjugates only the form
relating to an object of 3r<̂ person and the printed
text is:
"3.személyü tárgyra utaló alak: "
/'the form relating to an object of 3 a person'/.

3. If both transitive forms exist, the program will
ridconjugate the form relating to an object of 2n person

in the same way as described in para. 2 and the formrdrelating to an object of 3 person.

76

с/ If we require a compound or a recursive form, then the
program indicates the understanding of the task but does
not conjugate this form yet.

3.9.3 Storage of the program

1/ The storage of the DISELT file is about 7K bytes, that of
the DISMIN file is 27K X, that of the DISRAG file is 17K X,
and that of the DISTAR file is 115K /counting the key area
with 25 characters/. This is altogether 166K bytes. If the
full DISTAR file becomes ready with about 3600 verbs and
the number of characters that define the verb unambiguously,
can be decided, it might happen that the key length of a
verb covers e.g. only 10 characters. In that way only 63K
bytes would be necessary for the DISTAR file.

2/ The storage required for the program conjugating the
recursive and the compound forms is about 20K.

3.9.4 Flow-chart of the program

к The data given here do not correspond with the data given
in para. 3.6.3, since in para. 3.6.3 the useful data
storage was counted, only, hut the data storage which is
still necessary for filehandling was not taken into account.

77

9
Decide the code number
of »he demanded form

<

Can the dem
exist?

anded form

yes

Search the verb in
the dictionary

> no Prim: "SUCH
Л FORM DOFS
NOT EXIST”

Is it found?

0

>
no Has the verb

a verbal
suffix?

yes

yes Search the verb
without its
verbal suffix
in the
dictionary

yes < Is it found?

Has the verb
a characte-

' ristic
termination?

Store its
conjugational
type

<c Is it a
lexeme?

yes

>
yes

Search its
type in the
table of
the charac
teristic
terminations

no

Conjugate
the deman
ded forms
of the le
xemes one
after the

Print: ’THE
VERB MAY NOT
BE FOUND
IN THE
DICTIONARY"

Ô

Print the
obtained
verbal
forms

78

S
ri

Was 1 person sin
gular о! a
transitive verb
demanded and do
both forms
exist?

Make and
print the

L yes form rela-
y- ting to an
/ obipct of

2 person

no

Was an infini
tive with per
sonal suffix
demanded?

no

Is there a sys
tematical remark,“6 "■’9i.e. a. ■ U :

Is the verb a
double conjuga-
tional one?

yes

0 . no

Is the verb
only used as
a transitive?

yes

Has the verb
the ending
’-ik’

yes

Make and
print the
form rela
ting to an
object of
3fd person

STOP

Make the Add the
к yes infinitive appropriate
r of the personal

verb suffix

W Does the
demanded
verbal
form exist?

yes

Print :”THE
4 n° VERB LACKS
f THIS VER-

BAL FORM”

Is the de
manded form
rare?

Conjugate
the approp
riate form
of the ls‘
verb

Cut the
last letter
of the verb

Conjugate Print
the approp- the
riate form result
of the 2nd
verb and
write it after
the 1st
verb

Cut the two last
letters of
the verb

STOP

79

Search the record
appropriate to the
conjugational type
of the verb on the
DISELT file

Take note of the
new conjugational
type

80

<
О

Is the verbal
form "rare”? > yes Calculate the suffix

number the corres
ponding frequent
suffix

Print:
'’RARE”

Search the suffix on
the DISRAG file
corresponding to the
suffix number

(
Is the first charac
ter of the suffix
not 0,i.e. may the
verbal form exist?

no

©K
yes

Is the first cha
racter of the
suffix a number?

<

(

Is there any
remark
denoted in
the suffix?

no

yes

Does it concern
the demanded

form?

Print :’THE
VERB LACKS
THE DEMAN
DED FORM”

yes

Cut off the characters
(corresponding to the
number) from the end of
the verb

,■

1У Cut off the first
character o f the
suffix

STOP

yes

GK Is there any remark
denoted in the
suffix?

Does the remark
concern the de
manded form of
the demanded
verb?

yes

Join the stem of
the verb with
the suffix

Print the obtained
form

Cut off the last
character from
the end of the
suffix

Form
the new
suffix
number

Ó

(Is there any remark
concerning the
demanded form? > yes Print the remark

under the verb

no

STOP

81

£
Does the first
character of ttie
suffix equal
"P"?

yes Cut off as
many cha
racters
front the
eml of the
verb that
equals the
value of
the 2»il
character
of the
suffix

Does the first
character of
the suffix
equal ”X”?

no
Does the first
character of
the suffix
equal ”Y”?

Join the
ne X1 Make up
charac- the con-
ters ot jugational
the suffix type ol
to the the new
obtained stem in the
”ver b- base of the
part” and 71 h cha-
sc you racier
obtain a ol the
new stem suffix

\ no f Д

yes yes

Is the vowel
system of the
verb ”c”?

yes

Put the last Put the
letter in the last let-
place of the ter in
last but se- the place
cond and cut of the
olf the last but
surplus one

V

Is the
systen
verb ”

vowel
of the

a”?

no

Is the vowel
system of the
verb ”b”?

no

Put the cha
racters "0””
between the
last and
the last but
one letter
of the verb

. уея.

yes

Put the
letter
”0 ” bet
ween the
last and
the last
but one
letter
of the
verb

Put the
letter
’^"bet
ween the
last and
the last
but one
letter
of the verb

0

82

4. ADVANTAGES OF EL'S SYSTEM AND THE MACHINE SYSTEM

4.1 COMPARISON OF EL'S SYSTEM AND THE "EXPLANATORY
DICTIONARY"

If we give the paradigmatic features of the entries of the
Concise Explanatory Dictionary of Hungarian, in an analogous
way to those of the Explanatory Dictionary [33 then for the
description of the conjugational system twice as much place
would be necessary than for the description of the full variant
and 17 times more place than for the description of the
contracted system as shown in Table 3. /The data of Table 3
must be considered approximate being set up in 1971, and since
that time the system has slightly been modified. This modifi
cation, however, is not more than 1-2%./

Table 3

Size The groups of the
verbs without '-ik'

The groups of the
verbs with '-ik' Together

n-size
using the
notation of
the Explanatory
Dictionary /1/

104810 97975 202785

full
variant

numbe r
of
entries
/2/

5 600 2354 7954

n-size
JAL______

13600 +
30409

8379 +
32765

21979+
63174n-size

of the
contracted
system /1,2,5/

~ 22000 =10000 =32000

con
tracted
system

number
of
entries
/3/

1514 392 1906
n-size
/5/ ~ 8000 ~ 4000 =12000

83

The number of letters, necessary to write a word /text/ is
called 't h e n - s i z e o f a w o r d /t e x t/.

/1/ In this variant the number of the entries equals the number
of the entries of the full variant.

/2/ Verbs with a typical termination are not taken into
consideration here.

/3/ Verbs with a typical termination described by the
contracted system are taken into consideration.

/4/ The first number is the sum of the paradigmatic marks to
be indicated in the dictionary and the second one is the
n-size in the description of the conjugational types.

/5/ Here the n-size is only the sum of the paradigmatic marks
to be indicated in the dictionary; the size of the des
cription of the conjugational types /about 3/4 printed
sheet/ is to be added C1□/.

EL's system gives a more exact description of the conjugational
system than the "Explanatory Dictionary". Namely, the latest
gives only 2-3 characteristic verbal forms and the forms that
differ from the forms which can be concluded from the
indicated forms. At the end of the entries only the most
frequent derivations may be found and the forms 56,59,63 of
the verb are usually not published, and neither is their lack
indicated.

4.2 COMPARISON OF EL'S SYSTEM AND THE MACHINE SYSTEM

There was a possibility to set up several solutions for the
recursion between certain conjugational types.

1. If we described the conjugational types in an analogous way
to EL's system then 7909 forms without '-ik' and 5341 forms
with '-ik', altogether 13258 forms would differ from the
standard types.

x The Explf atory Dictionary, however, does not aim to give an
exact conjugational system.

84

2. If we use recursion as often as possible, then

(i) denoting the elision as in para. 3.4.2.2, the number
of divergences is 3252+2468=5720;

(ii) denoting the elision as in para. 3.4.2.2, the number
of divergences is 3179+2468=5467; while

(iii) not considering the rareness and the order of the
forms and denoting the elision as in para. 3.4.2.3,
the number of the divergences is 2912+2186=5098.

3. If we only allow simple recursion, in the case (i) the
number of the divergences is 4194+3704=7898, in the case
(ii) it is 4150+3704=7854 and in the case (iii) it is
3888+3530=7418.

Considering all the solutions, only that one described in
2(ii) was used in the program.

Thus, using the recursions only half as much divergences must
be denoted than in EL's system. The conjugational types may be
looked over easily in the tabular form, but this description
/on paper/ occupies twice as much place than EL's system.

85

5. APPLICATION OF THE PROGRAM AND THE DATA FOR

5.1 ANALYSIS

If we wish to solve the automatic analysis of verbs /e.g. in a
translation program from Hungarian into another language/, we
must use the detailed system and the program in order to
recognize all the possible verbal forms. However, we need not
take into account the rareness and order of the verbal forms
and other stylistic remarks.

5.2 MACHINE TRANSLATION

In a program which translates into Hungarian from another
language, it is enough to use the less detailed system i.e.
for one code number it is enough to formulate one /namely the
most frequent/ form. This saves 8K bytes.

If the machine translater program translates a given /special/
text, the DISTAR-file contains less verbs depending on the
character of the text and then it is not necessary to insert
the data of the conjugational types containing only 1 verb.

5.3 SOLVING LINGUISTIC PROBLEMS

There are several problems proposed by linguists which might
be solved on the basis of the system /with the help of further
programs/.

A / In which conjugational types /verbs/ does the first person
plural present tense in the indicative form of a transitive
verb /code number 11/ differ from the imperative form
/code number 51/?
/This is the well-known "suk-sük" problem which is important
from the point of language-culture./
E.g. "olvassuk" /'we read'/: Is*" person plural present tense

in the indicative form of a transitive

86

verb; and
s t"olvassuk" /'let us read'/: 1 person plural present

tense in the imperative form of a transitive
verb; BUT

s t"avatjuk" /'we initiate'/: 1 person plural present
tense in the indicative form of a transitive
verb; and

s t"avassuk" /'let us initiate'/: 1 person plural
present tense in the imperative form of a
transitive verb.

This would be a plan of a program that solves this problem:

87

In this way we may get known in how many conjugational types
there is a difference between the 2 forms. If we want to
know the number of such verbs then we have to make the
program remember the conjugational types in the case of
equal suffix number. After this we examine the number of the
verbs belonging to such a conjugational type with the help
of the DISTAR file. The number of the verbs belonging to
group III /see para. 3.8.1/ is given by the following
formula: Г 1

A = /___, number of verbs belonging
conjuga- to the conjugational type
tional
types

The number of the verbs belonging to group II and for which
the 2 suffix numbers are equal, is given by the following
formula: V ’

В = /___, number of verbs with a
typical certain typical terminations
termination

If we take into account that the number of the verbs
belonging to group I /about/ equal to the number of the
verbs belonging to group II and III, then the "suk-siik"
problem refers to about 2/А+В/ verbs.

В/ In the case of the verbs with '-ik' how many of them do
necessarily take 'ik' and which may also be used without
'-ik'?

C/ Is the form variant of the stem a morphological variant or
an orthographical one and which is the more frequent one?

E.g. Morphological stem variant:
"avat" - "avassak" /'he initiates' - 'let me

initiate'/;
Orthographical variant:

"fogódzik" - "fogóddzam" /'he clings' - 'let me
cling'/

D/ In how many conjugational types /verbs/ does a suffix
occur? A flow-chart to solve this problem may be the
following :

88

no

<sSTART)
i : =1
Z 3 =

X . :=0 X
y. : =0
J X

Search the suffix /R. /
from the DISMIN file
note to which verbal forms
it may be connected_______

Itake the following
conjugational type

Does the suffix R^ occur
in the case of this
conjugational type?

yes
x^:=x^+l

Z= count the number of
verbs belonging to
this conjugational
type
y .:=y.+ZX J X

Is there still any con
jugational type left

no________ik______
print Ri,xi,yi

yes

Have we examined all
the suffixes?

no ъ i:=i+l
yes

(stop)

Legend: i = suffix number th suffix numberX
x^= the itJl suffix occurs in xi conjugational types
y^= the ith suffix occurs in yi verbs
Z = auxiliary variable

89

Е/ The system may be used to solve certain designation
problems.
E.g. we wish to determine which is the more typical one
of the 2 suffixes /A and В/ of the same verbal form, then
we should examine, how often the suffixes occur in the
conjugational types /X ,X /. If the suffix A occurs moreA D
often than B, i.e. XA^ X ß, A is called typical and this is
denoted by the sign If X^Xg, the productivity of the
suffixes A and В should be examined, namely number of
verbs taking suffix A and the number of verbs taking suffix
В and the problem should be solved on this basis.

E.g. We should like to decide which is the typical suffix
of those of the form 62 of the verbs belonging to the vowel
system "a". We found that suffix "-al" occurs once, suffix
"-aszt" occurs 6 times, suffix "-at" occurs 34 times,
suffix "-it" occurs 4 times, suffix "-lal" occurs once,
suffix "-kat" occurs once, suffix "-t" occurs 2 times,
suffix "-tat" occurs 78 times, suffix "-vat" occurs twice
and all the 64 conjugational types lack the form 62. Thus
suffix "-tat" is considered to be the typical one and this
is the suffix of the standard types la too /i.e. if this
suffix occurs in a conjugational type, we do not give the
form 62/.

I. APPENDIX

А/ Original variation /with EL's numbering/

£ 1a ago^D /'nurse'/ l~ok, 2~sz, 3~, 4~unk, 5-tok, 6~nak, 7~lak;
e-om^od, 9~ja, 10~juk, ll~játok, 12~ják;
13~tam,~tál, 14-t, 15-tunk,-tatok, 16~tak;
17~talak,-tarn,~tad, 18~ta, 19~tuk,-tátok, 20~ták;
21-nék, 22~nál, 23~na, 24~nánk,-nátok, 25~nának;
26~nálak,-nám,-nád, 27~ná, 28-nánk v .~nák,-nátok, 29-nák!
30~ni! 31~jak, 32~j/~jál/, 33~jon, 34~junk,~jatok, 35-janak,
36-jalak,-jam, 37-d/~jad/, 38~ja, 39~juk,~játok,~ják!
40~ó, 41~t, 42~andó! 43~va, 44-ván! 45-hat, 46-ható!
47~ás! 48~tat, 49~tatik

3гla5 /'explode'/ As la but only intransitive :
42,46: — í 48~t

3[1а8 /'rise'/ As la but only 3.person intransitive :
42,46:— ! 4 8~ t

Clb emeli /'lift'/ 1-екСёЗ, 3-, 4-ünk, 5~tekCëI, 6~nek;
7~lek, 8-emLëD,~edtë3, 9~i, 10-jük, ll-itekCel, 12~ik;
13-tem,~tél, 14~t, 15-tünk »-tetekCe-ël , 16~tek;
17~telek,-tem,-ted, 18-te, 19-tük,-tétekCël, 20~ték!
21-nék, 22~nél, 23-ne, 24-nénk,-nétekCel, 25~nének;
26~nélek,~ném,-néd, 27-né, 28-nénk v.-nők,-nétekcë3, 29~nékl
30~ni! 31~jek, 32~j/~jél/, 33~jentëI, 34~jünk,~jetekte-ël
35~jenek, 36-jelek.-jem, 37-d/-jed/, 38~je, 39~jük,

-jétekcëD,-jék!
40~5, 41~t, 42~endő! 43-ve, 44~vén! 45-het, 46~heto!
47~és, 48~tet, 49~tetik

Taking into account the dialectical variant of the following
verbs: "bukkan" / ’strike u p o n ’/, "csattan" / ’clap’/, "durran"
/ ’explode’/, "kibuggyan" / ’spout’/ "koppan" / ’sound’/,
"lobban" / ’flare u p ’/, "nyikkan" / ’squeak’/, "pattan"
/ ’crack’/, "pottyan" / ’p l u m p ’/, "villan" / ’flash’/, "torpan"
/ ’stop dead’/ : 3~/~ik/

91

C3al c§iklandJ /'tickle'/ As la, but 2^asz/^sz/, 5~tok v.~otok,
6~anak, 7~alak /~1ак/, 13, 15-20.~tam /-ottaxn/ etc.,
14, 41«~ott! 21-30:~anék etc. 1 4 2 — i 48-49:~oztat etc.^

СЗЫ kérdJ /'ask'/ As lb, but: 2~esz, /~sz/, 5~etekCë-ëD
6~enek, 7~elek, /~1ек/, 13,15-20 :~ettem v.~tem etc.,
14-41~ettCëD, 21-30wenék etc.1 48-49:/~eztetCë-ëD

[4b3 égp] /'perceive'/ As lb, but: 2~esz / ~sz/, 5~etek Ce-ëD,
6~enek, 7~elek, v./~lek/, 13-20:~ettemCe-ëDetc. 1 21-30.~enék
etc.] 31-39:~sek etc.l 41~ett:ëD,l 48-49:~et etc.

C5b2 téveszti /'miss the target'/ As lb, but: 2~esz,
5 etekcë-ë:, 6~enek, 7~elek, v.~lek, 13-20 nettem Cë-ëH
etc.! 21-30:~enék etc.i

:5c2 fürglz^D /'bathe sy'/ As lb, but: l~ök, 2~esz, 5~ötök,
6~enek, 7~elek v.~lek, 8~öm,~öd, 13-20:~öttem etc.
21-30:~enék etc.! 31-32 , 34-39:~sszek etc., 33~sszônJ
41~ôtt! 48-49:~et etc.

C5c3 / 'paint' / As 5c2, but: 31-39:~ssek etc.

C6al ^дтр^] /'resolve into'/ As la, but only intransitive:
1,4:.mlok etc. 2~sz/. .mlasz/,; 14~t /..mlott/1 21-30:~nék
/..mlanék/ etc. 40,42,47:..ló etc., 41..mlott v.~t

c7al tipor] /'trample'/ As la, but: l,4,8:..prok etc.,
2~sz/..prasz/, 6~nak/..pranak/, 14,41:~t/..prott/!
21-30 :~nék/..pranék/ etc.l 40,42,47 :..pró etc.!
48-49:~tat v. ...prat etc.

[9a elvan] /'be away'/ As la, but only intransitive: 1..agyok,
2.. agy, 4.. agyunk, 5..agytok, 13-16:. . voltam etc.!
21-25... volnék etc.l 41/..volt/, 42:-!! 30-35, 40,
43-48: instead of tese: ellesz 9 Ы --- ■

' the different forms of the verb "mond" / ’s a y ’/: l+2~andó ,
h8— U9 :~at etc.

92

only 3~ V. ~en, 6~enek:10b2ninc|3 /'there is no'/

Cila /'confess'/ As
49 / ~atik/

Г12а4 'wash'/ As
2/-ol V . ~sz/, 3/~ik/,
23~na/~nék/I 31~jam v.
48/-tat/!! /instead of
19a/

la, but: 3~ik/~'/^, 48-tat/-at/^,

la, but only intransitive: l/~om/,
14,41:~ott! 21~nék v.-nám,
-jak, 33~jék v. -~jon! 46: -!
the forms 1-4 preferably .̂ kszijs

Cl9a furak|siki /'push'/ 1-om, 2~ol, 3-ik, 4-unk, 5/~otok,
V. ..kosztok/, 6~anak/..kosznak/! 7-48:- /instead of
these: ^^kodik 12a4/

i:i9a4 nyug|zi^3 /'take a rest'/ As la, but only intransitive:
l~om, 2-ol, 3~ik, 5..gosztok v. -otok /..godtok/, 6~anak
v. -gosznak /..godnak/, 13..godtam etc., 14..godott,
15-16:..godtunk etc. 21..godnék v. ..godnám, 22..gondnál,
23.. godna v. ..godnék, 24-25, 30: ..godnánk etc.!
31.. godjam v. ..godjak, 32..godjál v. ..godj, 33..godjék
v. ..godjon, 34-35: ..godjunk etc.! 40..gvó, 41-godott
/..godt/! 43-44:..godva etc.! 45..godhat /..ghat v.
..ghatik/! 47..gvás! 48..gtat! 42-46: -

with a difference of meaning
2 without *-ik* especially in transitive usage

93

В/ The transformed, variant

Conjugational
type la la5

Example ÁPOL DURRAN
To which type
it was related la
in EL's system
form code recursi- suf- recursi- suf-

number number/ suffix onal dif- fix suffix onal dif- fix
ference num. ference num.

1 1 ~ok 1 0402 2 sz 1 0513 3 1 001 ~8 1 0144 4 unk 1 1495 5 ~tok 1 1446 6 nak 1 1117 7 ~lak 1 1068 8 om 1 0429 od 1 0399 10 ja 1 03110 11 juk 1 10511 12 ~játok 1 80912 13 ják 1 25113 14 tam 1 53815 tál 1 29914 16 t 1 00915 17 tunk 1 31518 tatok 1 55416 19 tak 1 13717 20 tál 1 55218 21 tam 1 13822 tad 1 13623 t 1 15319 24 tűk 1 14725 tátok 1 84420 26 ták 1 29821 27 ~ná 1 26922 28 -nál 1 26623 29 -na 1 03524 30 -nánk 1 52031 -nátok 1 81625 32 -nának 1 81526 33 -nálak 1 81434 ~nám 1 26535 -nád 1 26427 36 -nál 1 11028 37 -nánk/'-nók/ 1 52038 -nátok 1 81629 39 -nák 1 26530 40 -ni 1 037 j ,

94

Conj ugational
type la la5

Example ÄPOL DURRAN
To which type
it was related la
in EL's system
form code recursi- suf- recursi- suf-

number number suffix onal dif- fix suffix onal dif- fix
ference num. ference num.

31 41 "jak 1 097
32 42 -j/~jál/ 1 006
33 43 ~ jon 1 104
34 44 -junk 1 262
34 45 -j atok 1 512
35 46 - janak 1 511
36 47 -jalak 1 510

48 -jam 1 098
37 49 -d/-jad/ 1 003
38 50 - ja 1 031
39 51 - j uk 1 105

52 -játok 1 809
53 - ják 1 251

40 54 ~ó 1 038
41 55 ~t 1 009
42 56 -andó 1 494 - 1 000
43 57 -va 1 05 7
44 58 - ván 1 317
45 59 -hat 1 091
46 60 -ható 1 507 - 1 000
47 61 ~ás 1 077
48 62 -tat 1 139 -1 1 009
49 63 - tátik 1 553

recurs:L- 64 0 1onal
conju-
gational
type
systematical only intransitive
remark

95

■Pмcaа
о•H-Pw•H-P(0-Pw

Number of verbs
regular termination

other termination

-ál-al
-ol
-an

75350
475
32 15

Total amount 1310 15
Regular conjugation,
omissible paradigme
number -al 50

-ál 753
-an 2 15
-ol 474
-ül 14

Total amount 1273 15
the paradigme numbers
which must be
indicated 17 0

Remark type III. 8/ taging into account the dialectical
variant of the following verbs
"bukkan" /'strike upon'/, "csattan"
/'clap'/, "durran" /'explode'/,
"kibuggyan" /'spout'/, "koppan"
/'sound'/, "lobban" /'flare up'/,
"nyikkan" /squeak'/, "pattan"
/ 'crack'/, "pottyan" /'plump'/,
"villan" /'flash'/, "torpan"
/'stop dead'/: 3^/^ik/

96

I I . APPENDIX

THE TABLE OF THE TYPICAL TERMINATIONS

Termination Conjugational
type

Number of
verbs

Number of
exceptions

-ad lal 59 43*-al la 50 5-ál la 753 25-all 3a3 10 6-an lal 25 35*-ant 4a6 27 11-ász 4a4 23 —
-ászik 15a4 26 1-ászt 5a3 62 4-at 5a 229 108-az 4a 56 1-áz 4a 146 28-ázik 14al 125 38-dös 4c3 7 —
-edik 12b 234 133-eg 2b 41 53*-el lb 226 49-él lb 49 13-en lb5 23 25*-eng 3b 11 7-ent 4b6 20 9-es 4b3 7 2-ész 4b 4 10 —
-észik 15b4 7 4-észt 5b3 45 1-et 5b 177 77-ez 4b 175 45-éz 4b 28 2-ezik 14b 24 17-od 2a 6 —

-odik 12a 380 132-ódzik 15a 14 18*-og 2a 86 94*-ol la 474 56-ong 3a 21 —
-OS 4a3 16 1-oz 4a 276 43-óz 4a 43 5-ozik 14al 105 95-ózik 14al 30 48*-öd 2c 6 —
-ödik 12c 45 40-odik 12c 65 54-ódzik 15c 8 1-ög 2c 29 26

X The exceptions are from several conjugational types

97

Termination Conjugational
type

Number of
verbs

Number of
exceptions

-Ö1 lc 76 14-öz 4c 30 9-ôz 4c 12 3-özik 14c5 4 11*-6zik 14c 14 19*-ul lal 123 31-ül lcl 135 15

X The exceptions are from several conjugational types

98

BIBLIOGRAPHY

Cl: Elekfy, L. : A magyar szóvégek és toldalékok rendszere.
/The System of the Hungarian Word Endings and
the Suffixes./
/in: Magyar Nyelv, LXVIII.1972. 303-309 and
412-429 pp. /

C2: Elekfy, L.: Szókincsünk nyelvtani alakrendszere.
/Grammatical Form System of Hungarian
Word-Stock/; /Typescript/

C3: Értelmező Szótár: I.-VII.kötet
/Explanatory Dictionary, Vol.i.-VII./

C4 : Kelemen, J. : Beszámoló a gépi nyelvstatisztikai kérdések
ről Ja debreceni nyelvészkongresszus előadá
sai /.
/Report on Some Questions of the Computer
Linguistic Statistics - Proceedings of the
Debrecen Linguistic Congress./
Ed.by S.Imre and I.Szatmári.
Budapest, Akadémiai Kiadó, 1966.p. 480-485./

C5 : Magyar Értelmező Szótár. /Concise Explanatory Dictionary
of Hungarian/
Budapest, Akadémiai Kiadó, 1972.

C6 : Máthé, J. - Kovács-Bölöni, E. /Mrs/ - Schweiger, P. -
Székely, E.: A magyar igeragozás független analízisének

egy modelljéről /a debreceni nyelvészkong
resszus előadásai/.
/About one Model of the Independent Analysis
of the Hungarian Conjugational System -
Proceedings of the Debrecen Linguistic Cong
ress. /
Ed. by S.Imre and I.Szatmári.
Budapest, Akadémiai Kiadó, 1966. p. 499-502.

C7 : Papp, F.: Algoritmus. /Algorithm/
/in: Magyar Nyelvőr 89., 1965. p.87-93./

99

AN ALGORITHM ГОК FINITE GALOIS-CONNECTIONS

G. FAY
Institute for Economy Organisation and

Computational of Metallurgy and Engineering Industry
Budapest, Hungary

1. INTRODUCTION

The many-to-many relationships between things in practice
/rather than one-to-ones as usually considered in applications
dealing with e.g. numerical functions/ give rise to the
question how to, so to speak, "represent" a many-to-many
correspondence in possibly as convenient a form as is customary
in everyday applications concerning ordinary functions.

A possible algorithm is given here for reducing many-to-many
mappings of finite sets to one-to-ones.

This is a practical way to produce Galois-connection between
two finite sets and also to determine all the substructures of
a certain algebraic structure. The lattice theoretical
preliminaries can be found in Szász /1963/, where further
references concerning Galois connections are available. In our
paper, however, an effort is made to be fairly self-contained.

From linguistical points of view this paper is motivated by an
observation of N. Chomsky and M.P.Schützenberger /1961/ who
wrote, "... it is possible that general questions concerning the
formal properties of context free systems and formal relations
between them may have a concrete interpretation in the study of
data processing systems as well as in the study of natural

100

language."

Now it is clear that no natural language can dispense with
notions. Intuitively a notion is not simply a feature or a
property which is possessed by a set of things. It is, rather
a set of properties whose each member is possessed by every
member of a set of things. The notion of "dog" must contain all
the features which are possessed by all the dogs. So, in other
words, the concept of notion should be richer than the concept
of a set. It is not a set, but rather a pair of sets.

Where do we get notions from? How do they get into our
language? It seems that is does, through a procedure described
by J.E.L. Farradane /1966 / which, in turn, from mathematical
point of view, looks like leading to the form of a closure
operation. Gathering observations from the nature man /or rather
child/ step by step builds up the sets of objects and the sets
of "features" with a relation such that all the objects
/"things"/ of the set possess all the features /"properties"/ of
the latter set.

On the other hand, confronted with the "artificial nature"
/or with artifacts/ - and this is what we are concerned with in
data processing - one cannot dispense with the notions
abstracted from the data unless one, wants to be lost in the
chaos of informations.

How to aid the procedure of "conceptualization" of the bare
sets of data in order to incorporate the artifactual notions in
our artificial language to be developed?

No doubt, first, the characteristics of the concept of concept
is needed, second, an algorithm to produce them is highly
desirable.

The author is completely aware of the problem of notion concept
belonging to the fields of Symbolic Logic, and that R.Carnap

- 101 -

/1942/ and Y.Bar-Hillel /1964/ extensively dealt with these
kind of problems, To my knowledge, however, there is no
theoretical approach which tacles the question of
"conceptualization" applying techniques based on the theory
of Galois-connections. This paper tries to do this.

A couple of years ago a somewhat similar approach has been
made for "conceptualizing observations". In 1970 /Fay, 1970/
I called this procedure "essentialization". This effort was
motivated by quantum logic whose study is highly recommendable
to those longing for refreshing ways of thinking in mathema
tical linguistics.

It seems to me, that in computer science, characteristically,
only logical inferences are attempted to be implemented in
machines. What we really need, however, is to extend-aided-
by computers our ability to make factual inferences. We are
not short of rules like "All men are mortal, Socrates is man
so Socrates is mortal". We rather badly need rules of infe
rence like "if an animal is mammal, then is has no wings."

2. GALOIS CONNECTIONS AND CLOSURE OPERATIONS

Let U and V be any two sets and 4* is a relation defined on the
product set UxV. If for a pair u,v(ueu, veV) Ф holds, we write
/as usual/ u(j>v or v4>fu. Define for any u£U, veV

Ф (u)—{ V I и фу} (SV)
and /dually/

ф+(V) = (u I V<j>fu) (su)
Further, for any Xsu, YSV we have by definition

Ф(Х) = Л ф(х), 4>+(Y) = Л ф+ (у)
хеХ y£Y

and

102

f(x) = Ф+ ((Мх)) feu) ;
Ф+(Y) = Ф(<t>+(Y)) fev) .

Now the following facts are well-known /see e.g. Szász /1963/
p. 70-71/.

1. Mappings

<p : SbU SbU , SbV SbV

/SbU=set of all the subsets of U/ are closure operations of the
class of all the subsets of U and V, respectively. We say that
closures ф , y+ are induced by the relations ф , Ф+ /or simply ф
induces Ф/.

+ +2. Let L, L be the sets of all the ^-closed, ф -closed sets
of U, V, respectively. One can introduce lattice operations on
L and L+ with repsect to the ordering £ as

a Ub = inf (a,b) _ . ., V T , _ T +for either a,bfcL, or a,b£L
a t/b = sup {a,b)

Both, the structures L=<L,n,U> and L+=<L+,n,U> are /complete/
lattices. /Clearly LSSbU, L+ÇSbV./

3. If XÇU, Y&V, X and Y is closed i.e.

X = Ф(Х) and Y = f+(Y)

then the mappings Y = Ф(х) , Х = Ф +(у)

: L L+ , and Ф+ : L+ -► L

are both dual isomorphisms with respect to the set theoretical
inclusion. This pair of dual isomorphisms is said to be the

103

Galois connection /between the sets U,V with respect to the
relation Ф/, Given lattices L, L+ one can form the set 01 all
the pairs

<а,ф(а)> , a£L, ф(а)еь+

Now a, as a closed set of things /records, rows of a table etc./
tpgether with ф(а) can be interpreted as a notion or a
"conceptualized representative of a collection of data". As for
Ф(а) as a set of y's they can play the role of a collection of
properties or attributes all of which all the things belonging
to a /a is a set!/ possess. The dual lattice theoretic structure
of the set {a,Ф(a)|a£L} enables as to develop a kind of a
"data logic". Take e.g.

a = iu1,u3,u4} , b ={u ,u3,u4,u7) ,

Ф(a)={ v14 , v15 ,v17 , v18> , ф(Ь)=и14,У15^ 18}

Being acb, we say: "every a is b", Ф(а) being a common feature
of the a's ф(ь) of b's, we can infer from feature in the
following way:

If a thing /record, entity, row, object/ possesses any of the
attributes of the class ф(а) then it must possess all the
attributes of ф(ь). /Dont be misled by ф(а)=>ф(а)./ This
inference yields some factual new /c.f. Bar-Hillel 1952./ if
we chose for a feature v ^ and observe that in this /rather
restricted/ world of data {u^,u3,u4,u^),

Vдj factually implies v14'v15 and V18

Of course, the question of putting together restricted
/worlds of data/ files arises. By our algorithm, to present
here, all these kinds of factual implications will easily be
available. It seems that factual implications tell deeper
features about the contant of data sets than the feeble

104

manconceived queries. The relevance of semantic information
theory has been very thoroughly dealt with by Bar-Hillel /1952/.

3. THE FINITE CASE

From now on let us suppose that both U and V are finite. In
applications it is interesting how to actually construct
lattices L, L+ by the sets U, V and by the relation ф. By Szász
/1963/ a few interesting applications can be found /p.72/, e.g.
using these dual isomorphisms and the closure operation if one
can produce the basic theorem of Galois theory, some projective
geometrical, group theoretical and number theoretical results.

The relevance of finiteness of the basic sets U and V is shown
at the first place in the theory of data banks and information
retrieval. /E.g. to a supplier there belongs many supplies and
vice-versa; or projects and parts are usually in many-to-many
relationships./

In the relational approach to data banks "conceptual" processing
of data is quite at hand. The formal candidate of a concept is
nothing else than a if-closed set with respect to the relation
Ф in question.

Relational data base management systems are extensively studied
at IBM San Jose /California/ centering around Codd /1969/.

Let we are given now the /finite/ sets U,V and the relation Ф
between their elements. In order to produce the lattice L of
all the ^-closed sets of U one have to decide on whether a given
subset X of U is closed or not. This of course cannot be done by
a brute straitforward approach. For if U contains n elements
then 2n cases would have to be examined. And even in each case
a couple of fairly complicated operations would be to carry out

105

Viz., firstly one would form the sets Ф(х) for all xCX.
Secondly to form the meets

Ф (X) = П Ф (X)
x6X

Thirdly the sets Ф+(у) satisfying the condition, уеФ(х)
Fourthly one have to meet these sets together yielding

Ф+(Ф(х))
Lastly one have to decide which of the relations

X с ф+(Ф(X)) or X = Ф+(Ф(x))

holds.

Altogether these five steps would lead to at least five
elementary operations, on principle one had to carry them out
on all the subsets X of U and Y of V which would mean finally
/in general/

(5 + 5) 2n
instructions. /In case n=20 it is over ten million and in
n=60 over 1 0 ^ . /

4. U, V GENERATORS AND ф-CLOSED SETS

Consider two finite sets U and V with cardinality m and n
respectively. Let

U = {uĵ , u 2 r ••• / } ,

V = Í v , v2 ' • • • 'vn ̂ '

Let
Иф= {<u.,vj>|u^vj, iei, j£J}

I = {1,2 ,...,m)

J ” {1,2 ,...,n)

106

Clearly
R ф = С UxV

being the set theoretical representation of the relation. It
can also be given in a tabular /matrix/ form. Arrange the
elements of R ф in an m-row n-column matrix and put a digit 1
/or a cross/ into fahe meet of the i-th row and j-th column
whenever u^v^ is the case and put a О /or blank/ otherwise.
To the description of the algorithm for determining lattices
L and L+ and mappings Ч5 and Ч3* there will be attached an
example whose data have been selected at random. See Table I.

Firstly consider row-vectors u. = U.{u..,u._------L -l -l il i2
where

1 of u . <j>v . ,1 1
0 otherwise.

in}

Similarly introduce column-vectors as

}

with

Clearly

1 if Vj ф"̂ и±
0 otherwise

V . . .Di
We refer to u . . and v. „ ID к i as

u . .ID <V

V kg e

107

Secondly introduce a

DEFINITION

A set xcu /Y<~V/ is called a U-qenerator /UG/
V generator, /VG/ iff there exists an element

V £V u„eu X Y
such that

X = ф+ (vx) , (Y = ф(uy)) .

The subsets of U and V are stipulated to be called simply
generators■ We introduce the empty set O as U- or V-generators,
too. Moreover for uniformity we speak of the noughtelement
0^ and 0V of U and V, respectively, formally defined by

хфОт V never holds

0 ф и у never holds .

We have now

ф+(Ф(ov)) - О, ф(ф+(0и)) 0

THEOREM 1

Every U-generator /V-generator/ is ф-closed /̂ pf-closed/.

Proof ; By symmetry reasons it is enough to consider the case
of U-generator. If X is a UG then the element v /with
Х=ф (v̂)/ clearly has the property that for each x€X

(vx) £ {у Iхф у} = ф(X)

108

Therefore

{v } fl (f) (x) = <j>(X)
xex

By this we have

ф (Ф (X)) _ П ПФ (y) G 11 Ф (y)у€Ф(х) y€{vx)

= Ф+(у^) = X .

THEOREM 2

If X is a ф-closed set /QU/ then it is a meet of U-generators.

Proof : X = ф+(ф(х)) =
у£ф (X)

and, of course, every Ф+(у) is a U-generator.

THEOREM 3

The set theoretical intersection of two ^-closed sets is
tp-closed.

Proof ; By the closure property monotonity we have for any

Xj, x2 с и x± =^(x1) , x2 =ф(х2)

X1^X2 — xi • x2 implies Ÿ(Xinx2) G vp (xi) , ф(Х2)

i. e.
^(ххПх2) ф(х1)П̂ (х2) = ххПх2

while the opposite inclusion fulfils by the definition of the
closure.

109

Combining Theorems 2 and 3 we have

THEOREM 4

A subset X of U is ф-closed if and only if Y is a meet of
U-generators.

DEFINITION

The structures <UG,A>, <VG,A> /closed under the set
theoretical operation Л meet/ are called U-generator semigroup,
UGS, and V-generator semigroup VGS, respectively. Clearly, the
set of all the elements of UGS is lP(u) and dually the set of
all the elements of VGS is î+ (V) .

We stipulate that every element of U is called UGS-generator,
similarly v€V is VGS-generator. In VGS /VGS/ the algebraic
operation "meet" is defined by the

DEFINITION

By a product / or lattice theoretic "meet"/ in symbol h of two
elements of UGS u^ and û we mean the set of all v-s which are
in relation ф with both û and u^. This set of v-s are sometimes
written as û. but with k>m:

u.nu. = uk whenever ф(и.)А ф(и.) = Ф(ик) •

So, symbol r\ means that the operands /a and b in anb/ are
considered as sets defined above.

In general, however, this û. does not belong to the original U.
Theorem 4 gives the basis for our algorithm. All we have to do
is to generate the semigroups UGS and VGS using the UG-s and
VG-s generators. For meet idempotency both UGS and VGS are
finite.

110

5. THE ALGORITHMS

ALGORITHM 1

Meet forming ;
First step

Select row 1
Form

in the Иф table, i.e. consider the element u-̂ .

pоm■Hp-©•JZ<—1 p
-e- all i>l, iei .

Second step

Decide whether there is a row being equal to one of the meets
have already been formed, i.e. decide whether there exists a
u, eu such that for some U.G.U к X

ф(и1)Оф(и^) = ф(ик)

If not, introduce um+ ̂ for the first /smallest/ is such that
Ф(ux) Л Ф(u±) is not occuring in the Иф table as a row. Make up
a table with u,̂ , u2f...fUß ... as both row - and column -
headings and fill in the result of second step. In the other
case, into the meet of the u^ row and the u^-th column put k.
This table will be called U-Meet table /UM-table/.

Example :

According to Table I /which is an Иф-ЬаЫе/ we have
m = 18, n = 7 .

Here for instance:
ф(их) = {v^

and
Ф(u 2) = {v1,v5,v7> .

Ill

In this case

ф(и)̂ ^ = =

Third step

Repeat the procedure in step two for u9 , u9 . .., u , ..., uj m n
until meeting yields no new element.

Extend the Нф-table in "U-direction", i.e. if for both u^,
and u . 9 3 ̂

and

Фv. j. < m , i < ni - -

Фv . j ̂ < ml J 2 —
then stipulate that

u „ív. m+k l

Example: See Table I. We have

ф(и7) A фСи^) = ̂̂u27 ̂ = ̂̂ui8 + 9 ̂ •

For both u7 and u ^ we have u-^Vg and u ̂ д Фv^, therefore we
stipulate that u27^v6*

Accordingly, a cross is put into the cell belonging to the
2 7^ row and 6t}l column in our U-extended Нф-table. See
Table II.

In our Иф-table /Table I/ m=18, and /II/ contains 32 nonzero
elements /m=33/. Zero element /Ug/ is a V-generator. Our
UM-table can be seen in Table III.

112

Fourth step
Carry the procedure, described in step two and three, for
generators .,vn out, but take into consideration that
sets Ф (vj), in general, may contain u^ with ihn. In other
words forming the VGS semigroup use the и-extended R^-table.
This way one gets the V-extended R^-table.

Fifth step

Form the V meet table /VM-table/.

ALGORITHM 2

Establishing dual isomorphism between the
semigroups factorization

Let u^ /i£m/ be an arbitrary element of UGS. Using iiM-labJe
one can "factor" it, .i . e. producing in a form of meet
/or product/ of generator' elements i.e. with index i m. The
algorithm goes as follows:

First step

Check whether all the U-generators are independent, i.e.
whether they are not meets of each other. In other words
factorise even the generators, too. Select an arbitrary
element u^ / ivm/. Enter the i-th column of the UM-kable.
Select all the rows /with index not greater than m/ having i
in column i. The headings of these rows will be the factors
of u . .l
Example /see Table IV/
Consider uig. Entering the 19-th column of the UM-table
/Table III/ we find that

113

row No. 6 , * À * ’row No. 7,
row No. 9,
row No. 15,

an<̂ row No. 18

has 19 in the 19-the column. So the factors of u^g are just
и^, u^, Ug, u ^ and Ujy and there is no other factor. So we
have

ф(и19) = <J>(ug) Л ф(и7) Л ф(ид) П Ф (u15) Л ф(и18) .

In this case all the factors are prime /having no factor
different from itself and the unity i.e. g/. In general,
however, not every V-generator is prime. E.g. u^2 is a V-
generator /being 12<18/, but not prime for,

ф(и) = Ф (U~) Ф (u,) fl Ф (u) fl Ф (u 7) .12 2 6 14 17

So, if necessary, u^2 could have been omitted at the outset.

Second step

Matching the UF-table and the U-extended -table make up the
dual isomorphism-table /ф-table/. Matching is carried out on
the basis that for each ui£ UGS /i<_m/ and for each Vj_ £ VGS
/ к < т / we can establish the following 'equalities simultaneously

ф(и±) = Vj Vj 2 U . . . = ф (u ^) П ф(и^2)Л... =

— u ̂ ^ u ̂ 2 ГЛ ... ,

ф+ ^,,) = u, , U u, , U . . . = ф+ (̂ /|) П Ф+ (^ 0)П11 12 12

= vk2

- 114 -

Here, according to the theory, lattice theoretic join opera
tion, \J is meant by

u.uu, = 1Р(Ф(и.) U Ф (u,))l к l к
i, j , к , C. Cm

V. uv„ = *Р+(Ф+ ^ .) U Ф + (м))I t j 0
Now, on the other
u^L/ u 2̂ U • • • are

hand, expressions
easily recognized

V . . U V . „ \j ... and l2for

V. tJ V . „U ... = 'P((v.1}kl{v.0 }U. ..) = Ф (V . , , V . „,...) =
ЗЛ J2 • Dl 12 Jl J2'

/being a closed set/ = { 2 > • • • ̂

Now, this set is immediately given by the U-V extended
table. Matching itself consists of pairing sets with

{jl, j 2 , . . . } = (61, 6 2 , . . . }

Example
Consider ^20’ First

u20

from the UF-table

u~ Au.il u, , П u fl uZ D 14 1/

/Table IV/ we see that

18 ‘

Secondly, on the other hand, u2Q as a set contains two
elements viz. v-̂ and v^ i.e.

ф(«2о) = iva ,v5) = {v^} VJ {V^} .

Thirdly, from the VF-table /not shown lierе/, we have:

vin v 5 = V.11

,ф(и2 0 } = V11
so we infere:

- 115 -

or equivalently
<t'+(vll) = V20

Finally, from the U-V-extended F^-table, /not shown here/
however, we have

V11 = ' u2' u6' u14' u17' u18} '
This way we have made up our ф-and tp^-tables. See Table V.

As a byproduct we have established all the subalgebras of UGS
and VGS /moreover even that of the lattices L, L*/. The
reason is simply that an element of UGS /VGS/ as a set is a
subalgebra of UGS /VGS/. E.g. the element v ^ as the set

fu2' U6' U14' U17' U18*

means a set which is closed under the semigroup operation П .

In possession of all the tables we have produced the diagrams
of both, the lattices L and Lf can be drawn. Actually a
telescopized version of the diagrams of L and L+ is on
Figure 1, but it should be noted that for drawing we have
given no algorithm. By the way using ip and ф+ tables, it is

•I*quite immediate to construct lattices L and L .

116

Нф-table for a binary relation with m=18, n=7

TABLE I

117

TABLE II

U-extended R -table with m=18, ш^ЗЗФ

118

Table IV

ui
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

119

TABLE III

UM-table /и-meet table/ /just par of it/

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 24...33

12

12 19
19

19

12
19

12
12- 19

120

TABLE IV
UF-table /U-factor table/ /just a fragment/

121

TABLE V
/fragment/

(p-table /(^-closed sets Xcи/
/image of X/ Ф(X)

S ' u2} (v6, v7, v9, VJ5, V

1U1 ' u2 ' u3' U4 ' u6' U7} fv15>
iul' u2' U -, , U4 ' V V u7} (v18J
iul' U2 ' ll3' U6} {Vy}
1 Uj , u2 ' u5} < v
ÍUĵ , U2' U6J {v9}
(11L , u3 } lv7' v14' v15' V17'
tul ' u3' u4} (v14' V15' v17' v18
iu L, U3' U4 ' ur }5 {v17)
Í , u3, U4 ' U5' u 7 } (vl4}
(Uj , U3 ' U4 ' u7} {vX4' V15' v181
{их, u4 1
fUj , U5} {vl' v6, v14, v17.
{uL , U5 ' u7} (v2)
f ux, u7} (vl' V14' V15' v18>

122

/23+667

Figure 1. Lattices L and L in a telescooized version
(u's, v's denoted by
K's>F's respectively)

123

REFERENCES

Cil Bar-Hillel, Y. /1952/, An Outline of a Theory of Semantic
Information. In Bar-Hillel /1964/ pp. 221-274

123 Bar-Hillel, Y. /1964/, Language and Information. Addison
Wesley 1964.

133 Carnap, R. /1942/, Introduction to semantics, Harvard
University press.

143 Chomsky, N. and M.P. Schützenberger :/1961/, The algebraic
theory of context-free languages. In: Computer
programming and formal systems. Studies in logic and the
foundations of mathematics. /Р.Bradford and D.Hirschberg
eds./ North Holland, Amsterdam, 1963.

153 Codd, E.F. /1970/, A Relational Model of Data for Large
Shared Data Banks. Comm. ACM 13^ 377-384.

163 Farradane, J.E.L. /1966/, Report on Information Research
Centre for Information Science, The City University,
London.

C73 Fay, G. /1970/, Phenomenological foundation of quantum
logic. Acta Physica Hungarica, 2_9 , 27-33.

125

MECHANICAL ANALYSIS OF HUNGARIAN WORD FORMS

György HELLTechnical University, Budapest
Institute of Languages
Budapest, Hungary

1. PRELIMINARY NOTES

Work on mechanical analysis of natural languages began in
Hungary in the early sixties with the aim of obtaining an
algorithm-for machine translation. This activity resulted in a
number of papers on ways of formal analysis in the field of
Russian morphology and syntax and on synthesis of Hungarian
word forms.

With the end of the "translation era" formal analysis has been
extended to statistical investigations /datas on vowel and
consonant frequency, frequency of consonant clusters, syllable
structures, word length etc./, mechanical syllabification and
vocabulary studies. /А characteristic result of this period
was the edition of the Hungarian a-tergo vocabulary./

In the last years interest has turned towards the possibility
of analysis in Hungarian with the principal aim of syntactic
parsing. The first step towards this goal was the
construction of a working word form analyser. Some details of
this work are given in the following chapters.

126

2. FINITE STATE GRAMMAR FOR WORD FORM GENERATION

We may have enough assurance for the feasibility of a
morphological analysis of Hungarian word forms if we succeed
in building an algorithm which is capable to generate
Hungarian word forms and to check them in a sense, that
uncorrect words are identified as such and not accepted for
analysis.

According to the grammatical description, Hungarian word forms
are composed of stems t , word forming suffixes к , case
endings r , verbal prefixes and plural endings. Charac
teristically for an agglutinative language, all these
elements can occur in different combinations, e.g.:

nyelv + tan + oktat + ás + ban
t + t + t + k + r

/= in grammar teaching/

nyelv + tan + könyv + ei + nk + ben
t + t + t + Г + Г + Г

/= in our grammar books/

távol + ba + lát + ás
t + г + t + к

/= television/

То make the generation and control process easier, we reduced
the five components to three, by taking the plural endings
equal to case endings and the verbal prefixes as belonging
to the verb stems. Such a simplification brings no
significant differences into the accepted classification.
Another presumption requires that some endings should be
taken to the word stems and forms as nekem /to me/, tőled
/from you/, hozzátok /towards you/ should be considered as
consisting of stem + ending. /Such a presumption is not
absolutely necessary because the words nekem, tőled etc.

127

can be accepted as elliptic forms out of énnekem, tetôled,
tihozzátok in which case we have the structure: /stem/ endinq,
ending./

With the restrictions given above, Hungarian word forms can
be generated by a finite state grammar:

t

Here Sq/ S^, S2, S^, S4 and Sv give the states of the grammar
/or automaton/ with S as the initial and S the final state.о v
The arrows between the states give the possibilities of
transition from one state to the other, the letters on the
arrows signify the morpheme-types obtained by transition.

In this system several paths go from one state to the next
and so the grammar belongs to the indefinite finite state
grammar type.

The transcription rules for generating Hungarian word forms
can be obtained from the diagram.

Nos.of
rules

1. S t s.о 1
2. S -* t Sо V
3. S1 -* t S1
4. S-, -* t S1 V
5. S1 -* к S1

128

Nos.of
rules

6. S1 -У к Sv
7. S1 -У r S2
8. S1 r Sv
9. S2 -*■ t S2

10. S2 -У t S3
11. *2 -У t SV12. S2 -У r S4
13. *2 -y r Sv
14. S3 -y к S3
15. S3 -У r *4
16. S3 ~y к Sv

•
Г-I—

1 S3 -y r Sv

H 00 • S4 -y r S4
19. *4 -У r Sv

This system of rules where capital letters represent catégorial
symbols and lower case letters stand for terminal symbols /in
our case: morpheme types/, allows to produce all the Hungarian
word forms, even such as igénybevétel /utilization, making
use of/, karbantartás /maintenance/ etc., i.e. words having
two stems with a case ending between them. Words as nagybani
/as on a large scale, in gross/ containing a word building
suffix after a case ending could be produced by the finite
state grammar if state is connected with state Sv. /In our
diagram this is shown by a dotted line./

For producing the word end we complete our rule system with a
20th rule:

20. Sv — ► #

129

Let us see some examples, how word forms are produced.

ház /= house/
#ház-am-ban /= in my house/

/house/my/in/

к (19)
(20)

vas-ut-vonal-terv-ez-és-sei
/iron-road-line-plan-ing - by/

Ф/= by planning a rail road
line /

apró-pénz-re-vált-ás-á-ról /sma11-coin-to-change-ing-it-about/
/=about changing

it to small coins/

130

There is, however, no restriction in the rules, which would
define how many word stems, word building suffixes or case
endings can follow each other in a correct Hungarian word form,
but no Hungarian grammar gives an exact definition of this
problem.

If we want to use the grammar for checking a given word whether
it is built according to the Hungarian word constructi g rules,
our generating rules have to be transformed: the automaton must
be given the "input signals" representing the components of
the given word, furthermore the states which accept the input,
and as an output a new state for receiving the next component.

The new rules are obtained by transformation out of rules II.

Nos. input states
I t -> So S1
II t -h SO S

V

III t -* S1 S1
IV t -> S1 S

V

V к -> S1 S1
VI к -*■ S1 s

V

VII г -> S1 S2
VIII г ->• S1 Sv

IX t -> S2 S2
X t -*• S2 S3

XI t -> S2 Sv
XII r -> S2 S4

XIII r -> S2 SV

XIV к S3 S3
XV r -> S3 S4

131

Nos. input states
XVI к -*■ S3 S

XVII r -* S3 s
XVIII r -*■ S4 s
XIX r S4 s,
XX * -*■ SV s<

The demonstrate how these rules work, let us take two morpheme
conbinations. One of them corresponds to a Hungarian word
form, the other does not.

t,t,k,k,r,r,# = érdekházasságokról
/about marriages of
convenience/

*t,r,r,t,#

The automaton checks the forms in the following way

I /t, So' V t, к, к, Г, Г,*
III t, /t, S1' V к, к, Г, Г,*
V t, t, /к, s1' Sll к, Г, Г,*
V t, t, к, /к, s.L' íV Г, r,*

VII t, t, к, к, /г,, S]L ' £V r, *
XIII t, t, к, к, r, /г,r s:) ' sv'
XIX t, t, к, к, Г, r, /*,’ Sv/ sO

On the left side the rule numbers are given, the exact form of
the rule is in parenthesis inside the word form after the
morpheme type scanned by the rule. If the rules can proceed
through the sequence of morphemes, the combination is accepted
as a genuine Hungarian word form.

132

Sequence 2.

I /1,' So' Sl/ r' r' t, *

VII t, /Г, Sx, s2/ r, t, #
XII t, ^/ / ̂ , S 2' S4/ t,

t, r, r, It, - -/ #

The process stops at the fourth step, even if rule XIII is
taken instead of rule XII.

PRACTICAL ANALYSIS OF WORD FORMS

A segmentation of Hungarian word forms on a computer differs
in some respects by a theoretical analysis. In the
elaboration of the rules of analysis we took it for granted
that word forms are given as morpheme constructions and the
analysis was carried out on a string of morphemes. In real
analysis word forms are given as concatenations of letters
and nothing is known about the structure of the word. The
morpheme structure of a word can be obtained only if we can
identify some successive parts of it as elements of different
morpheme lists representing stems, case endings, word
building suffixes, and the sequence of the different morpheme
types in the word form corresponding to a possible Hungarian
word structure.

In the identification process following difficulties may
arise: some words contain letter sequences identical with
stems or endings but what they are not in the given word. E.g.
víg / =merry/ and asztal /=desk/ in vígasztal /to console/,
other words can be analyzed as compounds or suffixated forms:
karóra /=wrist watch/onto a post/ and still other morphemes
or morpheme combinations represent different morpheme types:
ének /=to his or her sthg/song/, ikre /=onto their sthg/one

133

of his or her twins/, okkal /=with your sthg/with reason/ etc.
All such cases occur in Hungarian more often than in other
European languages because of its agglutinative character.

In a word analysis we can only partially overcome such
difficulties. We can, however, require that in identifying
possible morpheme components in the word form our algorithm
should always accept only the longest identified sequence of
letters, but this strategy does not solve all cases of
possible ambiguity. In some cases it leads moreover to
uncorrect results which can be eliminated on by a following
syntactical or semantic analysis.

There is also a second point, why a practical analysis
differs from a theoretical one. Analysing Hungarian texts we
can soundly suppose that all the words have a correct
construction and so a checking on correctness is not
necessary. Hence our analysing algorithm becomes much simpler
than in its theoretical form:

134

The block diagram for obtaining the longest possible
morpheme component in the word has the following form:

LITERATURE

C13 Dömölki,B.: An Algorithm for Syntactic Analysis.
CL and CL III. 29-46 pp.,1964.

t 2 3 Kelemen,J.: über die Experimente an einem sprachsta-
tistischen Automaten, CL and CL V.
149-157 pp.,1966.

С3з Klauszer,J.: Some Problems of Synthesis of the Hungarian
Noun Forms, CL and CL II. 111-126 pp.,1964.

C4j Sipoczy,Gy.: Some Semantic Aspects of the Machine
Translation from Russian into Hungarian,
CL and CL II. 159-178 pp., 1964.

C 5 3 Reverse-Alphabetized Dictionary of the Hungarian
Language, compiled by Papp Ferenc, Akadémiai
Kiadó, Budapest, 1969.

L63 Ботош, И.: Опыт автоматического анализа текстов на
языке эсперанто, СЛ и СЛ V. 19-40, 1966-.

С 7 з Хелл, Д ь . : Определение номинальных групп в МП с русского
на венгерский, СЛ и СЛ I. 5-107, 1963.

(

135

FINITE GEOMETRICAL DATA BANK BY GALOIS ALGORITHM*

G. FAY and Mrs D.V. TAKÁCS
Institute for Economy Organisation and

Computational of Metallurgy and Engineering Industry

INTRODUCTION

Bose et al /1967/ have shown how finite geometries can be
applied in constructing data banks. /File Organization
Schemes./ Actually their constructions need solutions of
equation systems in Galois fields which seems to be quite
difficult to implement. Sets being candidates for the elements
/i.e. lines, planes, hyperplanes, etc./ of a finite
/projective/ geometry turn, however, ought to be the closed
sets of a suitably defined binary relationship between the
points of this geometry. It is true, on the other hand that
this class of geometries is rather narrow viz. those above
GF /2n/. Fay /1973/ has developed a technique yielding an
algorithmic production of a Galois-connection between two
given finite sets U and V with respect to a relation ф /CUxV/.
We shall call this algorithm "Galois-algorithm", while a
"Galois-connection" /which is not generally defined as such/
is meant the one-one correspondence between the closed
subsets of U and V. "Closed" here means closed with respect to
a closure operation "induced" by <p. For preliminaries see
Szász /1963/ and Fay /1973/. Galois algorithm, by the way,
involves no need for solution of equations whatsoever.
Notwithstanding, it will not be used here in a straightforward
X This work has been supported by the Hungarian Ministry for

Metallurgy and Machine Industry under Contract No Y-12.172
/68 Cp.68.9/1.

136

manner, rather, upon its formal characteristics a still
simpler form of algorithm is developed for producing /certain/
finite geometries. This algorithm is immediate using the
technique to find out all the closed "boolean subspaces" of a
set. "Closed" here, in turn, means closeness under a boolean
ringsum operation.

Needless to say that data banks are in the strongest inter
actions with artificial languages. In a sense Boses' approach
to data banks can - in our opinion - be considered as a sort
of a geometrical language approach in which all the places for
the data to come are selected out apriori. This selection is
highly algorithmic and can indeed be very effective with
respect to data handling.

Also, it can be considered as a "coordinatization" of the data
space. The "buckets", as the selected boxes for data are
called, are, on the other hand, the conveyors of certain
relations /as collections of attributes/. Therefore the finite
geometrical approach of data banks has something to do with
the relational data bank systems. This latter branch of
investigations into data bases has seemingly been developed
quite independently at IBM San Jose by a group from 1967
centering around E.F.Codd /1967/.

In both aspects certain algebraic operations can be performed
upon relations representing collections of data. In the finite
geometrical management /as we have shown in this paper/ these
operations are lattice theoretical ones /finite geometries
being lattices/, whereas in the relational file organization
systems these are other algebraic but probably again lattice
theoretical operations /such as projection or join of
relations/.

It is felt that some light can be thrown to the connection
between these two ways of file organization /or data bank
construction/ by observing that in both ways the problem of

137

the so-called "conceptual processing of data" is of vital
importance. The user is not satisfied by possessing all the
records pertaining to a query. He wants naturally more than
this. He wants to get an overview of the data, to discover
their factual structure, to uderstand data rather than barely
having them.

But how to "conceptualize" data? In the literature there cannot
be found anything like "conceptual data processing" although
it takes place every minute within our brains.

We suggest /and tried to support in another article of Fay
(1973)/ that a set of objects /records etc./ can be considered
as a representative of a concept with respect to a given
system - frame - of attributes, properties, features if /and
only if/ the set is closed under a Galois connection /between
objects ond attributes/. We show here actually that the
buckets in Bose's finite geometrical data bank are indeed
closed subspaces under a suitable closure therefore from a
"conceptual" point of view they can be considered as
representing notions. As for the relational data banks we will
try to show, in a next paper, how it is embeddable into a bit
more general technique by which both, the operations /between
relations/ and the "notionlike" sets can /algorithmically/ be
produced. This "more general technique" will turn out to be
the good old edge notched card technique in a somewhat
obstruse form so as to be implementable in a suitable
electronical medium.

/As for the medium - by the way - we envisage a cellular
automaton.

138

1. BASIC CONCEPTS

Throughout this paper the following concepts and notations are
accepted. As for the details see Fay /1973/ and Szász /1963/.
The binary relation фп between the elements of a set

U = {u , u, ..., u }, n о 2n *1
the R^-table that relation /denoted by R Фп/; the closure
operation *Pn

p (X) = $ (Ф (X)) , XCU , $ (X) = n Ф (x) n *n n n *n ' ’ ' *n 'xeX
§ (X) = {у Ix ф y} . xn J 1 n J

A set XCU is called ^-closed iff (э (X) = (X) n 1 ------ ' n
Closure p is said to be induced by the relation ф .n ------- x *n
U-generators are just sets of form фп(и), u€.Un, the table of
the relation $ /or similarly of а ф / is denoted by R Фп /or
R ФJ .

2. U-GEMERATORS AND BOOLEAN SPACES

Beginning with the set

= {Ug< U-̂ » Uj ; • ■ • / ̂ 2n_ / n—1,2,...

let us define a relation Фп C. Un x Un between the elements of
U . The definition is recursive, and in this concise form is
due to G.T.Herman /1973/.

139

DEFINITION /of R$n/

where
with R

Figure 1. shows the R $n table for n-4.

There is an easy consequence of this definition:

LEMMA 1.

Let

Let

к G {O, 1, 2, ..., 2n+1}

к if k< 2n
k-2n if k> 2n

and u^, u. G U 3 n+1 '

Then
ui* n uj* lf£ ui 4n+l uj

Proof: Inunediate.

Having defined relation фп (C UR x Un) we can speak of the
set ФП(Х) f°r anY set xcun especially of U-generators. Owing
to the special features of Фп a deeper insight into the
algebraic structure of the U-generators may be obtained.

140

DEFINITION
Let u,. u. 6. U and resolute i and j into binary digits: 1 j n

(i,je{0,l,...,2n-1})

i
n
I

k=l
n 2n t

3 = * h ' 4 ' jfcei0'i}
U — 1

Meaning ring sum in {0,1} as usual /i.e. О Ф 0
О Ф 1

we define:

1 © 1
1 ® 0

O,
1 /

i © j
nE

k=l V 2
n-k

u . Ui©jFinally let, by definition, u^
The /unique/ zero element of this operation will be denoted
by 0 or uQ alternatively /as convenient/. Sometimes we write
i instead of u^ /especially in table headings/ unless
misunderstanding occurs. Similarly, u.£u. means i<_j , or e.g.
u^-2n means и^_2П. Properties of ring sum are well-known. See
e.g. Szász /1963/ pages 126-130. Out of them we mention only
these :

LEMMA 2.
For any u-̂ , u .3 u, eu the following equations are equivalent: .К n
Uj © Uj ® uk = 0, Uj © Uj = uk , Uj © uk = ui, uk © Uj = Uj

The following concept of "boolean space" intends to overcome
the difficulties arising in finite vector spaces.

DEFINITION
A set SCU^ is called a boolean space if

u^ , u , £ S implies u^ © u . €. S,

141

Boolean spaces have a number of simple properties out of which
a few /needed below/ are listed in lemmas 3.-5.

LEMMA 3.
Every boolean space contains /the/ zero element.
Proof: Let S={sQ,s^,...,s^}. If zero were not contained in S
then for any s^&S 0=Sj Ф s^ CS would be a contradiction.

LEMMA 4.
The intersection of two boolean spaces is a boolean space
again.
Proof: Let S, T be BS's /boolean spaces/ and let u^,Uj6S,T.
Then u.GS, u.£S, and u.GT, u.£T. But S, T being BS's it i j j i 3follows u^ Ф Uj£S, T implying u. 9 u . é SOT.

LEMMA 5.
Every U-generator is a boolean space.
Proof: Suppose, inductively, that for any u£Un with a fixed
n the U-generator

$ (u) = {v| u $ v}*n 1 ^n
is a boolean space. Furthermore, suppose that for some
ui' uj' uk £ U n+l we have

ui *n+l uk and uj *„♦! Uk < X>
Making use of Lemma 2, without loss of generality, we may
assume that

u . < u . < u. © u. i — 3 — i к

Of
If

course, if u^ Uj
, in turn i,j,k>2n

u^ G ип с и п+1 there is nothing to prove,
then on one hand:
, X ,x X ni , j , к < 2

142

On the other hand, by Lemma 1,

u . § , . i *n+l Uk implies ui* $

u . ф i ^n -i-l Uk implies U-jX 1

So, by the inductive assumption from
we infer to

<ui . Ф и .) Í a jx' *n Ukx

Now it is easy to see that i* Ф иК•n ■ N*
u..x) $n ukX implies /actually means/

Ui*0j* ^n Ukx implies
%

U(i®j)x ukx implies /by Lemma 1./

Ui®j *n+l uk implies /means/

ui ® Uj *n+l uk

The remaining cases between

i, j, k< 2n and i, j, к >_ 2n

can be handled in a similar fashion, especially taking into
account the symmetry properties and Lemma 2 of the ring sum
operation.

Having finished with the preparations we state the following
THEOREM. For an arbitrary set SC U R the following conditions
are mutually equivalent:

(i) S is t>n-closed
(ii) S is an intersection of Un~generators
(iii) S is a boolean space .

143

Proof :

(i) implies (ii). See Fay /1973/ Theorem.
(ii) implies (iii). Every U-generator is BS by Lemma 5.
The intersection of two BS ' s is a BS again by Lemma 4. So if
S is a U-generator, then it is a boolean space.
(iii) implies (i). Let S be a boolean space. All we have to
show is /for a fixed but arbitrary n/

bn(s) - §n (1)
for the opposite inclusion is well-known. /Szász, 1963.p.68/

Let correspondingly
X £ (p (S) .

It is to be shown that x €. S.
(2)• means , by. (1) , that for any z £ $ (S).

Let

and consider

X $ z *n

sk} , k<2n

Let

First, we state,

y^= x Ф ŝ for i=l,2,

Y = {yr У 2 t Ук}

that

. , к

Pn (S) C Y -

(2)

(3)

(4)

(5)

(6)

Indeed, S being a boolean space /according to Lemma 3/, one of
its elements must be zero, therefore x£<pn(S) implies /by (5)
and by Lemma 2/:

y.̂ ® Sj^IPj^S). But if Sj^O, than x=y.£Y. i.e. x€<pn(S)
implies x £ Y .

144

Secondly/ we state that Y is a boolean space indeed for any

s . £ Sl
s^ §n z with z £ $n(S). ^

Now (3) and (7) implies, by Lemma 5 that
X ® s, z for any z 6 |n (S) and si £ S. (8)

In other words, taking (5) for any г £ ф п (5) and for any

£ Y , we get

y . Ф z л i *n (9)

Applying Lemma 5 to (9) we get that for any y^, ŷ £ Y and for
any z e cj>n(S)

У± ® Yj e ín(z) ,
• /V , r \ I у ® У- £ СЛ /c\ fn(z)~lPn(S) ̂'i.e. /by (6)/ yi t z e y S) n

у . Фу. £ Y .
This means that Y is a boolean space.

Now, by Lemma 3, we know that one of the y^ values must be
zero :

0 = y ^ = y ® s ^ for any i £ {1,2,...,k}.

This implies by Lemma 3 that

X = s . £ S .X
By this theorem it is quite easy to obtain all the p^-closed
subsets of a given set U with a relation ф (CU„ x U).

All we have to do is just to find out all the sums yielding
zero, methodically. The method is quite straightforward so it
is enough to illustrate it by an example. Let us, by way of an

145

example, produce all the p^-closed subsets of the set

U 4 = {uQ , u.^, ^2 # •••, u ^ }

Uq / u ,̂ ... u7 are trivially closed.

In addition to the trivially closed U. every closed subset
4-2 ^4-1must obviously contain 2 = 4 or 2 = 8 elements. These

are generated by pairs or triples of elements from
{u q , u^, ..., û ,-}. Omitting uq and working only with the
indices the main part of the algorithm goes as follows.

Selecting pairs

Eiï§Î_steg:
Write equation

1 Ф 2 = 3

infer that S-̂ = {1, 2, 3} is closed,

t-s t_step :

If Sl-1 {4-l' jfc-l' ^&-l^ is cl°sed

with 16-1 - j6-l - ke-i “ 4-1 * jt-i
take the next /lexicographically/ pair (ig,ĵ) to (ig_^,g^_^)
such that

H < П < k6 = H ® ÎI (ie-i < ^e-1^ '
Infer that

S = {ц , jg, ty} is closed.
Table I shows the actual steps for selecting pairs in case
n = 4.

Selecting triples can be worked out in a quite similar
fashion. Table II shows data for n=4. These are the same as in
Abraham et al /1968/.

146

It is true, that our relation family фп represents only a
narrow family' of finite geometries /namely those above GF (q)
with q=2n/ we do not know how to get a relation for GF (q)
with q=pm, p prime, in general, such that finite projective
geometry above GF (q) will consist of all the <p̂ _closed
subsets of a set U^* 1 where closure is induced by the
relation /С Up x U^/.;m m m

REFERENCES

fil Abraham, G.T., Ghosh, S.P. and Ray-Chaudhuri D.K.: File
Organization Schemes Based on Finite
Geometries, Information and Control 1_2, 1968.
pp. 143-163.

C2I Bose, R.C .,Abraham, C.T., Ghosh, S.P.: File Organization
of Records with Multiple-Valued Attributes
for Multi-Attribute Queries. /Chapter 16 of
Combinatorial Mathematics and Its Applications,
Proceedings of the Conference, held at the
University of North Carolina at Chapel Hill,
April 10-14, 1967. /R.C.Bose and T.A.Dowling,
eds/. The University of North Carolina Press
Chapel Hill N.C.

I 3 J Fay,G.: An Algorithm for Finite Galois Connections,
Technical Report, KGM ISZSZI, Hungary, 1973.
VIII.15.

14-1 Szász, G.: Introduction to Lattice Theory. The Publishing
House of the Hungarian Academy of Sciences
Budapest, and Academic Press New York and
London, 1963.

[5] Herman, G.T.: Oral Communication, 1973.

1
2
3
4
56
78
9
10
11
12
1314
1516
1718
1920
21
22
23
24
25
26
2728
2930
31
32
33
34
35

147

T A B L E I.

Determination of all the closed subsets, having
3 nonzero elements, of the set

(о, 1, 2... 15}

Equation Closed set

192 = 3 1, 2, 3
194 5 1. 4-, 5
196 = 7 1, 6, 7
198 = 9 1, 8, 9
1910 11 1. 10, 11
1912 = 13 1, 12, 13
1914 15 1, 14, 15
29 4 = 6 2, 4, 6
29 5 — 7 2, 5, 7
29 8 — 10 2, 8, 10
29 9 - 11 2, 9, 11
2912 14 2, 12, 14
2913 ~ 15 2, 13, 15
39 4 — 7 3, 4, 7
39 5 — 6 3, 5, 6
39 8 ~ 11 3, 8, 11
39 9 = 10 3, 9, 10
3912 = 15 3, 12, 15
3913 - 14 3, 13, 14
49 8 - 12 4, 8, 12
49 9 = 13 4, 9, 13
4910 14 4, 10, 14
4911 15 4, 11, 15
59 8 = 13 5, 8, 13
59 9 - 12 5, 9, 12
5910 = 15 5, 10, 15
5911 = 14 5, 11, 14
69 8 = 15 6, 8, 15
69 9 —14 6, 9, 14
6910 z: 12 6, 10, 12
6911 - 13 6, 11, 13
79 8 - 15 7, 8, 15
79 9 = 14 7, 9, 14
7910 - 13 7, 10, 13
7911 = 12 7, 11, 12

148

Closed

Basis
1, 2, 4
1, 2 , 8
1, 2 , 12
1, A, 8
1, 4, 10
1 , 6 , 8

1, 6, 10
2, 4, 8
2, 4, 9
2, 5, 8
2, 5, 9
3, 4, 8
3, 4, 9
3, 5, 0
3, 5, 9

TABLE II.

subsets of (O, 1, . 1 5 J containing
seven nonzero elements

Closed set
i . 2, 3, 5, 6, 7
■ » 2, 3, 8, 9, 10, 11

2, 3, 12, 13, 14, 15
1, 4, 5, 8, 9, 12, 13
1, 'b 5, 10, 11, 14, 15
1. 6, 7, 8, 9, 14, 15
1, 6. 7, 10, 11. 12, 13
2, 6, 8, 10, 12, 14
2 , 4, 6, 9, 11, 13, 15
2, 5, 7, 8, 10, 13, 15
2 , 5, 7, 9, 11, 12, 14
3, 4, 7, 8, 11, 12, 15
3, 4, 7, 9, 10, 13, 14
3, 5, 6, 8, 11, 13, 14
3, 5, 6, 9, 10, 12, 15

Subscription price: Hfl 82, — /Volume

	J. Fabók: Backtrack fortran implemented with the help of the macro processor MP/O
	E. Farkas: A compiler oriented syntax definition���
	Mrs M. Lugosi Pap: One model of the Hungarian verb synthesis���
	G. Fay: An algorithm for finite galois-connections���
	G. Hell: Mechanical analysis of Hungarian word forms���
	G. Fay–Mrs D. V. Takács: Finite geometrical data bank by galois algorithm��
	Oldalszámok������������������
	_1���������
	_2���������
	_3���������
	_4���������
	1��������
	2��������
	3��������
	4��������
	5��������
	6��������
	7��������
	8��������
	9��������
	10���������
	11���������
	12���������
	13���������
	14���������
	15���������
	16���������
	17���������
	18���������
	19���������
	20���������
	21���������
	22���������
	23���������
	24���������
	25���������
	26���������
	27���������
	28���������
	29���������
	30���������
	31���������
	32���������
	33���������
	34���������
	35���������
	36���������
	37���������
	38���������
	39���������
	40���������
	41���������
	42���������
	43���������
	44���������
	45���������
	46���������
	47���������
	48���������
	49���������
	50���������
	51���������
	52���������
	53���������
	54���������
	55���������
	56���������
	57���������
	58���������
	59���������
	60���������
	61���������
	62���������
	63���������
	64���������
	65���������
	66���������
	67���������
	68���������
	69���������
	70���������
	71���������
	72���������
	73���������
	74���������
	75���������
	76���������
	77���������
	78���������
	79���������
	80���������
	81���������
	82���������
	83���������
	84���������
	85���������
	86���������
	87���������
	88���������
	89���������
	90���������
	91���������
	92���������
	93���������
	94���������
	95���������
	96���������
	97���������
	98���������
	99���������
	100����������
	101����������
	102����������
	103����������
	104����������
	105����������
	106����������
	107����������
	108����������
	109����������
	110����������
	111����������
	112����������
	113����������
	114����������
	115����������
	116����������
	117����������
	118����������
	119����������
	120����������
	121����������
	122����������
	123����������
	124����������
	125����������
	126����������
	127����������
	128����������
	129����������
	130����������
	131����������
	132����������
	133����������
	134����������
	135����������
	136����������
	137����������
	138����������
	139����������
	140����������
	141����������
	142����������
	143����������
	144����������
	145����������
	146����������
	147����������
	148����������
	149����������
	150����������

