ATO MKI Közlemények

23. kötet / 1. szám

INTERNATIONAL SEMINAR HIGH-ENERGY ION-ATOM COLLISION PROCESSES

05

3

MTA ATOMMAGKUTATÓ INTÉZETE, DEBRECEN / 1981

ATOMKI Közlemények

23.kötet / 1. szám

TARTALOMJEGYZÉK

539

HU ISSN 0004-7155

INTERNATIONAL SEMINAR ON HIGH-ENERGY ION-ATOM COLLISION PROCESSES

DEBRECEN, 17 - 19 MARCH 1981

Contributed Papers

The Seminar is organized by the Institute of Nuclear Research of the Hungarian Academy of Sciences (ATOMKI).

Organizing commitee:

D. Berényi chairman

- A. Kövér secretary
- G. Hock

Mrs. E. Kovách

Mrs. M. Halász

Sponsors:

Hungarian Academy of Sciences International Atomic Energy Agency, Vienna National Atomic Energy Commission of Hungary Roland Eötvös Physical Society, Local Commission; Debrecen

The matter is an offset reproduction of the authors' manuscripts. Collected by the organizing committee of the Seminar.

CONTENTS

Η.	<i>Paul:</i> A comparison between published K-shell ionization cross sections and theories	5
Τ.	Mukoyama and L. Sarkadi: On the electronic rela- tivistic corrections for K-shell Coulomb ioni- zations	8
D.	Davidovic: The comparison between the K-shell ionization of electrons by relativistic protons and alpha particles	11
J.	Pálinkás, B. Schlenk and A. Valek: Coulomb- deflection effect on the L ₃ -subshell alignment in low-velocity proton impact ionization	13
J.	F. Reading, A. L. Ford and R. L. Becker: Ion- atom collisions: the symmetric region (Invited)	15
D.	Berényi, E. Koltay, Á. Kövér, S. Ricz, Gy. Szabó, J. Végh, KO. Groeneveld and J. Schader: Spectra of electrons from the collision of simple systems	16
С.	Bauer, H. Richter, P. Gippner, R. Mann, W. Rudolph, KO Groeneveld and B. Eckhardt: Ag, Ta and Au L-shell vacancy production by 0.125-4 MeV/amu projectiles $Z_1 \le 10$	18
T.	Badica, C. Ciortea, A. Petrovici and I. Popescu: K-X-ray production cross sections by 1-2.5 MeV/amu ³² S ions	21
Α.	G. Artukh, A. V. Eryomin, V. A. Altynov, M. A. Blokhin, S. M. Blokhin and A. A. Polyakov: Study of the Ti, Fe and Ni K-X-ray spectra induced by about 1 MeV/nucl Xe ions	24
J.	M. Feagin and L. Kocbach: Nuclear scattering in ion-atom collisions	27
L.	Dubé and J. S. Briggs: Systematics of the 1st and 2nd Born cross sections for charge exchange	30
Α.	Berinde, D. Fluerasu and V. Zoran: The 1so vacancy production in superheavy quasi-molecules within the coherent Coulomb ionization model	32

E.	Arndt, G. Brunner and E. Hartmann: Radiative deexcitation of multiple-vacancy configuration	35
E.	Hartmann, E. Arndt and G. Brunner: On the electron rearrangement after inner-shell ionization	37
D.	Berényi: A research program for ion-atom col- lision at high-energy (Invited)	38
D.	Varga, J. Végh, Á. Kövér, S Ricz and A. Domonyi: A new electrostatic analyser for energy and angular distribution of electrons	40
I.	Kádár, B. Sulik, I. Cserny, T. Lakatos and J. Végh: Data acquisition and control system of an electrostatic spectrometer for energy and angular distribution measurements	42

A COMPARISON BETWEEN PUBLISHED K-SHELL IONIZATION CROSS SECTIONS AND THEORIES

H. Paul

Johannes-Kepler-Universität Linz, A-4040 Linz, Austria

We compare K-X-Ray and K-Auger cross section data, taken from Table I of the compilation by Gardner and Gray [1] and from some more recent publications in a consistent manner. Only data available in numerical form are used for which Z₁/Z₂ < 0.3, where Z₁ and Z₂ are the atomic numbers of projectile and target, respectively; this keeps electron capture to the projectile small. The data are converted to ionization cross sections σ_{ex} using a single table of fluorescence yields [2]. For the purpose of graphical comparisons [3], we plot

For the purpose of graphical comparisons [3], we plot $s = \sigma_{cPSSR}$ vs. projectile energy, where $\sigma_{cPSSR} = C_{K}(x)\sigma_{PSSR}$ is the theoretical cross section by Brandt and LapickI [4] which takes increased binding, polarization, relativistic and Coulomb deflection effects into account. In particular, the Coulomb deflection factor, taken from ref.[5], is

$$C_{K}(x) = \exp(-x)/(1 + x/9),$$
 (1)

where $x = \pi dq_0 \zeta$ and d is half the distance of closest approach (for a head-on collision), $\hbar q_0$ is the minimum momentum transfer for ionization, and ζ is the binding/polarization correction [5]. Such plots have been useful in discovering misprints [6] and establishing data trends. In order to compare several targets, we plot s versus the scaled velocity $\xi = (2/\theta) \times (v_1/v_{2K})$, where v_1 is the lab velocity of the projectile, v_{2K} the hydrogenic velocity of the target K-shell electron, and θ is the experimental ionization energy divided by $(Z_2-0.3)^2$ Ry, where Ry is the Rydberg energy.

These comparisons show that

- a) almost all the data lie between 60 % below and 60 % above the theory,
- b) the ratio s is systematically small for $\xi < 0.2$, presumably due to a deficiency of the Coulomb correction
- c) for B, C, N, O, and F projectiles the ratio s has a minimum around $\xi = 0.6$ which could possibly point to a deficiency of the binding correction.

To obtain a more quantitative comparison, we divide the entire ξ -range of available data into intervals of width $\Delta \xi = 0.2$. In every interval, we determine a weighted average $s = (\Sigma w_j s_j) / \Sigma w_j$, where $w_j = 1/\varepsilon_j^2$ and ε_j is the error of data point s_j , as given by the authors. To avoid averaging correlated data, we take one and only one data point from every reference, within every interval $\Delta\xi$.

- Taking all the proton data for 19 \leqslant Z₂ \leqslant 92 in the range 0.2 \leqslant ξ_{\leqslant} 2.8 we find that
- a) the average data (taken from 36 different references) agree with the Brandt-Lapicki-theory within 10-15 %;
- b) if one separately adds the values χ^2 and f (degrees of freedom) for the 13 averages $s_{\rm i}$, one obtains

$$\sqrt{\frac{\Sigma\chi^2}{\Sigma\Gamma}} = \sqrt{\frac{399}{152}} = 1.62,$$

i.e., agreement with the statistical expectation could be obtained by increasing all stated errors by only about 60 %,

- c) the theoretical cross section by Ford, Fitchard, and Reading, calculated in higher order Born approximation, lies about 10-15 % below σ_{CPSSR} and agrees about as well with the average data as the CPSSR theory.
- d) the averages for protons on lighter targets, and for alpha particle projectiles are rather similar.

Finally, to investigate the low velocity region ($\xi < 0.2$), we define an empirical Coulomb correction $C_e = \sigma_{ex}/\sigma_{PSSR}$ for every data point, and we plot log C_e versus $x = \pi dq_0 \zeta$. Ideally, these points should then lie on the theoretical curve eq. (1) which may be well approximated by $C_K = \exp(-\lambda Bx)$ with $\lambda g = 1.11$. In practice, the experimental points are found to lie below the curve $C_K(x)$, the deviation increasing with increasing Z₂. If we fit the experimental points by means of a curve $\exp(-\lambda x)$, we obtain the following results:

	Z ₂ -Range	λ
Protons	13-46	1.44±0.06
ann ann aite are ann ann ann an	~ ~ / <i>, , , , , , , , , , , , , , , , , , </i>	
Alphas	22-50 51-92	1.42±0.09 1.62±0.04

which should be compared to the theoretical $\lambda_B = 1.11$. Using the exact [7] rather than the approximate [8] limits of

integration in the PWBA theory reduces λ by about 0.1 and, hence, reduces the discrepancy. But additional improvements in the Coulomb correction are apparently needed.

- [1] R. K. Gardner and T. J. Gray, At. Data & Nucl. Data Tables 21, (1978) 515
- [2] M. O. Krause, J. Phys. Chem. Ref. Data 8, (1979) 307
- [3] H. Paul, At. Data & Nucl. Data Tables, in print
- [4] W. Brandt and G. Lapicki, Phys. Rev. A20, (1979) 465
- [5] G. Basbas, W. Brandt, and R. Laubert, Phys. Rev. <u>A17</u>, (1978) 1655
- [6] R. K. Gardner and T. J. Gray, At. Data & Nucl. Data Tables, in print
- [7] O. Benka and A. Kropf, At. Data & Nucl.Data Tables <u>22</u> (1978) 219
- [8] R. Rice, G. Basbas and F.D. McDaniel, At. Data & Nucl. Data Tables 20 (1977) 503

ON THE ELECTRONIC RELATIVISTIC CORRECTIONS FOR K-SHELL COULOMB IONIZATIONS

TAKESHI MUKOYAMA

Institute for Chemical Research, Kyoto University,

Kyoto, Japan

and

LÁSZLÓ SARKADI

Institute of Nuclear Research, Debrecen, Hungary

It is well known that the electronic relativistic effect in K-shell Coulomb ionization becomes important for two extreme cases; heavy target elements and low-energy projectiles. There have been developed several methods for the relativistic correction, but no systematic study has been made on comparison of these methods with each other and with the exact relativistic theory. In the present work, we have calculated K-shell ionization cross sections by proton impact in the plane-wave Born approximation with relativistic hydrogenic wave functions for target electrons (RPWBA) [1] and compared with the various correction methods.

The RPWBA calculations have been made in the similar manner to the method of Jamnik and Zupančič [2]. For the limits of momentum transfer, the exact values have been used [3] instead of approximate ones. The relativistic effect is expressed as the ratio to the nonrelativistic plane-wave Born-approximation (PWBA) cross section with the exact maximum and minimum momentum transfer [4].

In order to take into account the electronic relativistic effect, Merzbacher and Lewis [5] proposed to use a modified screening number in the nonrelativistic PWBA cross section formula. A similar approach was used by Caruso and Cesati [6]. They defined a different relativistic screening number. Hansen estimated the correction factor in the binary-encounter approximation (BEA) from the relativistic mass-velocity relation and presented it in the tabulated form [7]. Based on the semiclassical approximation (SCA), Amundsen et al. derived an approximate correction factor in the analytical form [8]. This result was modified by Anholt to be applicable for superheavy atoms [9]. Recently, Brandt and Lapicki [10] developed a new method and the effect was incorporated into the PWBA cross section formula.

In figs. 1-3, these correction methods are compared with the RPWBA. The ratios of the relativistic to nonrelativistic K-shell ionization cross sections by protons on Cu, Ag and Au are plotted as a function of the projectile energy and the energy-scaling parameter q_0^{-2} . This parameter is defined as $q_0^{-2} = 4 \eta_K / \theta_K^2$, where η_K is the scaled projectile velocity and θ_{K} is the screening number of the target K-shell electron.

It is clear from the figures that in comparison with the RPWBA (the solid curve), the correction methods of Merzbacher and Lewis [5] and of Caruso and Cesati [6] yield too samll values for low-energy projectiles. The curve for the BEA correction by Hansen is drawn only for the parameter range given in the table [7]. Within this range, the obtained values are in agreement with the RPWBA for targets with low atomic numbers, but the extrapolated values beyond this limit overestimate the relativistic effect considerably, as already pointed out by us [3]. On the other hand, fig. 3 shows that this method underpredicts the relativistic effect for heavy target elements.

The method of Brandt and Lapicki [10] is in good agreement with the RPWBA in the parameter range $q_0^{-2} > 0.04$, though it gives slightly smaller values. For lower projectile energies, this method overpredicts the relativistic effect. The SCA correction factor of Amundsen et al. [8] agrees well with the RPWBA for Au, but systematically overestimates the cross sections for low atomic numbers. The best overall agreement with the RPWBA is obtained by the method of Anholt [9]. However, his correction factor underpredicts the relativistic effect for Cu in some energy region.

The present results indicate that in application of these correction methods one should be careful about the range of parameters where the method used gives a proper correction.

- [1] T. Mukoyama and L. Sarkadi, Bull. Inst. Chem. Res., Kyoto Univ. 57 (1979) 33. [2] D. Jamnik and Č. Zupančič, K. Dansk. Viden. Selsk. Mat.-
- Fys. Medd. 31 (1957) No. 2.
- [3] T. Mukoyama and L. Sarkadi, Phys. Rev. A 22 (1980) in press.
- [4] T. Mukoyama and L. Sarkadi, Bull. Inst. Chem. Res., Kyoto Univ. 58 (1980) 60.
- [5] E. Merzbacher and H. W. Lewis, Handb. der Physik, vol. 34 (Berlin; Springer-Verlag) p. 166.
- [6] E. Caruo and A. Cesati, Phys. Rev. A 15 (1977) 432.
- [7] J. S. Hansen, Phys. Rev. A 8 (1973) 822.
- [8] P. A. Amundsen, L. Kocbach and J. M. Hansteen, J. Phys.
- B: Atom. Molec. Phys. 9 (1976) L203. [9] R. AnholtPhys. Rev. A 17 (1978) 976.

Fig. 3. Same as fig. 1, but for gold.

THE COMPARISON BETWEEN THE K-SHELL IONIZATION OF ELECTRONS BY RELATIVISTIC PROTONS AND ALPHA PARTICLES

D. Davidović

Institute "Boris Kidrič", Vinča, 11001 Beograd, Yugoslavia

At non relativistic energies, the ionization by protons and alpha paricles, when calculated in the first Born approximation, appart from the simple charge and mass dependence, is described by the same formulae. This allows one to establish simple scaling laws |1| and to compare various cross sections for collisions of different structurelles ions with a given target.

However, in the relativistic region, the situation is much more complicated. The aim of this work is to investigate the differences between cross sections for the electron K-shell ionization, when the incident particle is a proton or the alpha particle, which are due to relativistic effects.

For the wave function of the atomic electron the Darwin |2| semirelativistic four compnent function is used. Alpha particle, being a boson, in the relativistic region must be described by the second order Klein-Gordon equation. This equation may be linearized. At the velocities for which the wave function may still be interpreted to describe one particle, the incident proton, as fermion, is described by the free-particle four component Dirac wave function, while alpha particle being a boson, should be described by the two component wave function |3|, one of which is small.

For the interaction between the proton and the atomic electron Møller |4| current-current interaction is used. In the proton case, the currents of both fermions are described by the Dirac matrixes. When alpha particle is incident, the corresponding current must be changed because of the zero spin, and the two component wave function.

The cross section for the electron K-shell ionization is calculated in the first Born approximation, using the above described wave functions and interactions. The quantitative influence of the mentioned differences between proton and alpha particle, is analized by comparing the corresponding differential and total cross-section.

- |1| M.R.C. Mc Dowell and J.P. Coleman Introduction to the theory of ion-atom collisions North-Holland Amsterdam-London 1970
- 2 C.G. Darwin Pros.R.Soc. A 118 (1928) 654
- |3| J.D. Bjorken, S.D. Drell Relativistic Quantum Mechanics Mc Graw Hill
- 4 C. Møller Ann. Phys., Lpz. 14 (1932) 531

COULOMB-DEFLECTION EFFECT ON THE L₃-SUBSHELL ALIGNMENT IN LOW-VELOCITY PROTON IMPACT IONISATION

J. PÁLINKÁS, B. SCHLENK AND A. VALEK

Institute of Nuclear Research of the Hungarian Academy of Sciences (ATOMKI), Debrecen, H-4001 Hungary, Pf. 51.

The energy dependence of the L_3 -subshell alignment of elements of medium and high atomic number following heavy particle (p, He⁺...) impact ionisation is described fairly well by the PWBA calculations for projectile velocities $v \ge 0.2 v_{13}$, where v_{13} is the average velocity of the L₃-shell electrons [1].

In the lower projectile velocity region, however, significant deviation was found from the PWBA calculations. This deviation was especially marked in the case of the L₃-subshell alignment of gold following 0.8-4.4 MeV He⁺ ($v/v_{L_3} \approx 0.10-0.23$) impact ionisation, where the experimental data showed a minimum about E/M ~ 0.4 MeV/amu ($v/v_{L_3} \approx 0.14$) in contrast to the monotonic behaviour of the calculated PWBA values [2]. This deviation has been assigned to the Coulomb-deflection of the projectiles and the above minimum behaviour could be explained in a simple model taking into account the Coulomb deflection.

According to this model the alignment parameter as a function of the projectile velocity should have a similar behaviour also for proton impact. The existing experimental data, however, do not reveal clearly this minimum behaviour.

To clear up the existence of this minimum we have determined the L₃-subshell alignment in gold by measuring the angular distribution of the L_{ℓ}/L_{γ} intensity ratio for 0.25-0.6 MeV proton impact, using exactly the same experimental configuration and method as was used in our earlier work [2]. The only difference was that the proton beam from the Cockroft-Walton generator of our Institute has been used.

The experimental data are compared with the theoretical calculations on figure 1, where we give the experimental L₃-subshell alignment parameters A_2 (corrected for Coster-Kronig transitions) for proton impact on Au: o data of Jitschin et al [1]: • data of Pálinkás et al [2]: A present measurements.

Our experimental data deviate significantly from the PWBA calculation (solid curve) of Kabachnik [3] but give good agreement with our calculation (broken curve) taking into account the Coulomb-deflection [2]. The experimental data so confirm the existence of the minimum behaviour of the alignment parameter also in the case of proton impact. It must be noted that our experimental results are in good agreement also with the experimental data of Jitschin et al [1] except the critical point at 0.25 MeV.

- [1] Jitschin W., Kleinpoppen H., Hippler R. and Lutz H.O.: 1979 J. Phys. B: Atom. Molec. Phys. 12 4077
- [2] Pálinkás J., Sarkadi L. and Schlenk B.: 1980 J. Phys. B: Atom. Molec. Phys. 13 3829
- [3] Sizov V.V. and Kabachnik N.M.: 1980 J. Phys. B: Atom. Molec. Phys. 13 1601

ION-ATOM COLLISIONS: THE SYMMETRIC REGION

By

J. F. Reading, A. L. Ford, Texas A&M University, College Station, Texas 77843

and

R. L. Becker, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830

In the last decade the simple system of a light bare ion charge Z_p colliding vigorously with the inner shell electrons of a target atom nuclear charge Z_N has been the subject of a thorough experimental and theoretical investigation. Though it is always premature in physics to say that something is completely understood the progress made in this asymmetric region ($Z_p < Z_N$) is such that it is natural in looking to the future to guess that the next decade will be concerned more with the symmetric region. Many new questions immediately arise. How can charge transfer as a mechanism for ionization be conveniently incorporated in existing computer codes? What role will multi-electron events play as the coupling constant is increased? How can we understand multi ionization occuring in a single collision? What can we do practically to relax the frozen orbital approximation used in atomic orbital methods? Preliminary answers to these questions will be discussed and confronted where possible with experimental results.

Supported by the United States National Science Foundation at the Texas A&M Center for Energy and Mineral Resources. SPECTRA OF ELECTRONS FROM THE COLLISION OF SIMPLE SYSTEMS*

D. BERÉNYI, E. KOLTAY, A. KÖVÉR, S. RICZ, GY. SZABÓ, J. VÉGH

Institute of Nuclear Research, Debrecen, Hungary

K.-O. GROENEVELD AND J. SCHADER

Institut für Kernphysik der Universität Frankfurt am Main BRD

The investigation of the spectra of ejected electrons can give valuable informations on the collision process itself as well as on the properties of the projectile and the target. The study of relatively simple projectile (atomic and molecular ions) and similarly simple target (atomic and molecular) systems are especially interesting.

tems are especially interesting. We studied the Z² scaling (the screening effect), the projectile stripping (electron loss) and molecular effects in the case of relatively simple colliding systems.

The measurements were carried out on the 5 MV Van de Graaff in Debrecen and the 7.5 MV Van de Graaff in Frankfurt am Main. In both cases a simple cylindrical electron spectrometer and gas beam target were used. H_2 and He targets were bombarded by H⁺, H_2^+ , He⁺, He⁺⁺ projectiles. The velocity of the projectiles were equal. The electron spectra measured in the case of different projectiles were normalized to the electron spectra measured for H⁺.

.The theoretical calculations for comparison with the experimental results were carried out in Born approximation by taking the screening correction into consideration.

In the 0.8 MeV/nucl case the experimental and theoretical results are in rather good agreement [1],[2]. The results in the case of other velocities are under discussion.

Joint project supported in the frame of the German-Hungarian Cultural Agreement.

- [1] A. Kövér, S. Ricz, Gy. Szabó, D. Berényi, E. Koltay and J. Végh, Phys. Lett, 79A (1980) 305.
 [2] A. Kövér, S. Ricz, Gy. Szabó, D. Berényi, E. Koltay and J. Végh, Contr. Papers of X. Summer School and Symposium on the Phys. of Ionized Gases (SPIG-80), Dubrovnik, 1980. 160.

Ag, Ta AND Au L-SHELL VACANCY PRODUCTION BY 0.125 - 4 MeV/amu PROJECTILES $Z_1 \leq 10$

C.Bauer, H. Richter, P. Gippner, R. Mann, W. Rudolph Zentralinstitut für Kernforschung Rossendorf, DDR

K.O. Groeneveld, B. Eckhardt Institut für Kernphysik der Universität Frankfurt(Main),BRD

Total Ag, Ta and Au L X-ray cross sections were measured using 0.125-4MeV/amu protons and 'He ions as well as N²⁺ and Ne³⁺ projectiles in the energy range of 0.286-1MeV/amu.

The theoretical description of the experimental X-ray cross sections is generally limited by the uncertainties in the L-shell fluorescence yields and Coster-Kronig transition probabilities which are still up to 30% for the target atoms investigated. For proton and 'He bombardment $(Z_4/Z_2 < 0.1)$ where ionization via direct Coulomb interaction dominates our experimental results are found to be described within this limitations already by the PWBA(BC) theory [1] at generalized velocity parameters $0.02 \le \gamma_{L}/(\le 0)^2 \le 0.1$. At smaller parameters mainly relativistic effects cause larger ionization probabilities. Using the PWBA(BPCR) model [2] which takes into account as well relativistic target electrons as a reduced binding effect we observe an improved agreement between experiment and theory even at $\gamma_{L}^{W}(S \Theta_{L})^2 < 0.02$. Nevertheless a systematic increase of the cross section ratios $G_{L_{X}}^{ee/G}/G_{L_{X}}^{th}$ remains with decreasing projectile energy, e.g. with growing influence of additional binding and Coulomb deflection corrections. Maximum deviation $(G_{L_{X}}^{ee}/G_{L_{X}}^{th} = 2.5)$ was observed in the case of 0.25 MeV p bombardment of Ta.

Fig. 1 represents the typical situation using heavier projectiles, e.g. $Z_4/Z_2 > 0.1$, for instance Ne ions. Whereas the X-ray cross sections of Au $(Z_4/Z_2=0.13)$ show the same behaviour as already discussed for proton and 'He impact more significant differences appear in the Ag case $(Z_4/Z_2=0.21)$. With decreasing asymmetry of the collision system there is a rapid growth of charge exchange which results in an additional probability of target L-shell vacancy production [3].

In comparison to K-L exchange the L-L contribution may be neglected. Because we used projectiles without initial K-shell vacancy, corresponding to the arguments of Schiebel et al.[4] we assume a single collision two step process: K-vacancy production in the projectile followed by a vacancy transfer

Fig. 1

Total L X-ray cross sections of Ag and Au for incident Ne projectiles as a function of energy. The experimental data are compared with theoretical results using the corrected PWBA model.

Moreover the K-L exchange cross sections for Ne+Ag using both the atomic capture and the Nikitin model, respectively, are presented.

(For the strongest coupling 1s-2p_{3/2} and q=10+ the Nikitin model parameters are Rp=0.3au, c=6.1au, 0=53°, A£=73.1au The lower part shows the average K-shell vacancy production probability according to eq. 1.

to the L-shell of the target atom. In first approximation we suppose both processes occurring incoherently and therefore to be factorizable. With P as the average excitation and ionization probability for one K-shell electron the L-vacancy production cross section is given by [4]

 $G_{L} = G_{DI} + 2P(4-P)G_{EX}^{(4)} + P^{2}G_{EX}^{(2)}$ (1) where $G_{EX}^{(4)}$ and $G_{EX}^{(4)}$ are the K-L exchange cross sections for 1 and 2 vacancies in the K-shell, respectively, and G_{DI} is the cross section for the direct L-shell ionization. Calculating both G_{DI} and G_{EX} and replacing $G_{L} = G_{L}^{exp}$ the quantity P can be determined from eq. 1. For G_{DI} we used the PWBA(BPCR) theory.

With regard to the characteristic system parameters (asym-

metry, projectile velocity) we firstly calculated GEX according to the capture model of Lapicki and Losonsky [5]. In agreement with Schiebel et al. for F+Ag we receive above 1 MeV/amu a monotonous growth of P with increasing energy. On the contrary below 1 MeV/amu fig. 1 shows a strong increase of P with decreasing energy in the Ne+Ag case, also observed for N ions. This abnormal energy dependence of P we attribute to an increasing underprediction of Ger with decreasing energy by the capture model used.

At small projectile energies molecular effects get more and more influence and reduce the atomic transition energy $\Delta \epsilon$. For the molecular levels $3dG (\rightarrow K)$ and $2pG, 2sG (\rightarrow L)$ of our systems we expect a similar behaviour as in Ne+Kr and Ar+Xe, the K-L sharing ratios of which were investigated as well experimentally as theoretically [6,7,8,9].

Estimating the molecular effects in the K-L exchange we used the Nikitin theory [10]. The model parameters \propto and Θ were determined from the matrix elements of a 2-center Coulomb Hamiltonian (with screening) in the base of H-like functions. The distance of maximum coupling R_p we determined as the sum of the average K- and L-shell radii. For the application of the Nikitin model to the investigated collision system incidence energies of 0.1-1MeV/amu are relatively high. Therefore the main deficiency of our estimating calculation will be the neglect of dynamical coupling owing to translation effects.

As shown in fig. 1 using the Nikitin model we observe more physically comprehensible P-values which decrease with deoreasing energy.

Reference

- 111 W.Brandt, G. Lapicki
- Phys. Rev. A10, 474 (1974)
- [2] W.Brandt, G. Lapicki
- Phys. Rev. A20, 465 (1979) F.D.Mc Daniel, A. Toten, R.S. Peterson, J.L. Duggan, S.R. Wilson, J.D. Gresselt; Phys. Rev. A19, 1517 (1979) U. Schiebel, T.J. Gray, R.K. Gardner, P. Richard 31
- [4]

- J. Phys. B10, 2189 (1977)
 [5] G. Lapicki, W. Losonsky Phys. Rev. A15, 896 (1977)
 [6] W.E. Meyerhof, R. Anholt, J. Eichler, A. Salop Phys. Rev. A17, 108 (1978)
 [7] P.H. Woerlee, B.J. Fortner, S. Doorn, Th. P. H.

[7] P.H. Woerlee, R.J. Fortner, S. Doorn, Th. P. Hoogkamer,

- F.W. Saris; J. Phys. <u>B11</u>, L425 (1978)
 [8] W. Fritsch, U. Wille
 J. Phys. <u>B12</u>, L645 (1979)
 [9] N. Stolterfoht; Proc. of the IX Summer School (Dubrovnik 1978)
- [10] E.E. Nikitin; Advance in Quantum Chemistry Vol. 5, p 135 (1970)

K-X-RAY PRODUCTION CROSS SECTIONS BY 1 - 2.5 MeV/amu 32s IONS

T. Bădică, C. Ciortea, A. Petrovici and I. Popescu Institute for Nuclear Physics and Engineering, Bucharest, Romania

The K-x-ray production cross sections of 47^{Ag} , 50^{Sn} and 52^{Te} targets by 32, 48, 64 and 80 MeV $\frac{32}{16}$ S ions have been measured. The measurements covered the range of relative atomic numbers: $0.31 \leq Z_1/Z_2 \leq 0.34$ and of relative velocities: $0.13 \leq v_1/v_2 \leq 0.23$. $3^2 S$ ions with charge states from 6⁺ to 9⁺ were obtained

J²S ions with charge states from 6⁺ to 9⁺ were obtained from the 7.5 MV HVEC-FN Tandem accelerator in Bucharest. Absolute x-ray production cross sections were determined from the measured yields of x-rays and elastically scattered particles, for thin solid targets (50-100 μ g/cm² thick). The errors in cross sections were estimated to be \pm 11%. The experimental results are shown in Fig. 1. The curves represent the theoretical predictions. Theoretical K-shell ionization cross sections were multiplied by single hole fluorescence yields [1] to obtain x-ray production cross sections.

Direct ionization cross sections for the target atom Kshell were calculated using the plane wave Born approximation (FMBA) [2], the binary encounter approximation (BEA) [3] and the Coulomb perturbed stationary state model with a correction for relativistic effects (CPSSR) [4]. As it is seen, the PWBA and BEA theories overestimate the measured cross sections by more than an order of magnitude. Agreement with the CPSSR theory is seen to be fair, with the agreement improving for higher incident beam energies. The success of the direct

ionization theory to describe the experimental data might be taken as an a posteriori evidence that the influence of solid state effects [5] is not important.

A further process that might account for K-shell ionization of target atoms is the capture of K-electrons into bound states of the projectile. Contributions from electron capture (EC) to the observed target K-x-ray production cross sections were estimated using the Oppenheimer-Brinkman-Kramers approximation of Nikolaev [6], scaled by factors $\propto =0.1$ and 0.4, by summing up the contributions from all projectile charge states fractions, which were determined from the equilibrium charge state distribution. These calculations led to the result that the contribution of the projectile K-shell vacancies was negligible, and the contribution of the electron capture to the projectile L-shell was important. It is seen from figure that the CPSSR+EC theory predict resonably well the experimental data.

- W. Bambynek et al., Rev. Mod. Phys. <u>44</u>, 716 (1972).
 D. H. Madison and E. Merzbacher, in: Atomic Inner-Shell Processes. B. Crasemann (ed.). New York, Academic Press, 1975. p. 1.
- 3. J. D. Garcia et al., Rev. Mod. Phys. 45, 111 (1973).
- 4. W. Brandt and G. Lapicki, Phys. Rev. A20, 465 (1979).
- 5. T. J. Gray et al., Phys. Rev. A14, 1333 (1976).
- 6. V. S. Nikolaev, J. Eksp. Teor. Fiz. 51, 1263 (1966).

STUDY OF THE Ti, Fe AND Ni K ×-RAY SPECTRA INDUCED BY ABOUT 1 MeV/NUCLEON Xe IONS

A.G.ARTUKH AND A.V.ERYOMIN

Laboratory of Nuclear Reactions, Joint Institute for Nuclear Research, Dubna, USSR

V.A.ALTYNOV, M.A.BLOKHIN, S.M.BLOKHIN, AND A.A.POLYAKOV Rostov State University, Rostov-on-the Don, USSR

In ion-atom collisions the high degree of multiple inner-shell ionization of both partners takes place /l/. It has been shown /2/ that the degree of multiple inner-shell ionization considerably increases with the atomic number and energy of the projectile. The experimental investigations of x-ray spectra induced by heavy ions provide a probe for understanding many aspects of ion-atom collisions and can stimulate new theoretical developments.

The present work deals with a study of the high-resolution crystal spectrometer spectra of Ti, Fe and Ni K x-rays induced by the heavier Xe ion. A thick metallic target was bombarded at an angle of 45° to its normal in vertical and horizontal planes with microampere beams of 125 MeV $^{129}_{+8}$ Xe ions at the U-300 cyclotron of the Laboratory of Nuclear Reactions of JINR, Dubna. The K x-rays emitted by the target at 90° to the beam direction were energyanalyzed by means of a Bragg curved-crystal spectrometer using a quartz crystal I in 1010 reflection (Fig. 1 a).

Fig.l. a) A schematic drawing of a curvedcrystal spectrometer. For the details of designations, see text.

b) The Ti x-ray fluorescence spectrum.

The focusing spectrometer was of the Johann type with a 100 mm radius for a focal circle. The spectrometer was equipped with an entrance slit 3 having a horizontal of 60 µm and a vertical of 15 mm. The x-ray detector 2 was a gas-flow proportional counter with a 5 µm Mylar window and a gas mixture of 90% Ar +10% CH,. Spectra were obtained by step scanning over the desired angular region at angles separated by an increment in sin 0, where 0 is the angle between the incident x-ray and the Bragg-reflection plane of the crystal. The irradiation time for each angular setting of the spectrometer was controlled by an x-ray monitor detector 4 having the direct view of the target. This served to minimize the effects due to beam fluctuations and uniformitites of the detecting x-ray. The monitor detector was identical to detector 2. The spectrometer had a high-voltage x-ray tube oriented at 90° to the beam direction on the vertical. The x-ray fluorescence spectrum was used for the wavelength-calibration purposes and to serve as a reference for the maximum-energy-shift measurement of the satellite peaks. The Ti K x-ray fluorescence spectrum had a less than 2.5 eV FWHM at 4.510 KeV(Fig.1b). The obtained Ti, Fe and Ni K x-ray spectrum is shown in Fig. 2.

Fig. 2. X-ray spectra for Ti, Fe and Ni produced by 125 MeV 129 +8^{Xe} ions.

The energy maxima of the fluorescence lines for each spectrum are taken as reference points of the energy scale. The spectra of all elements show complicated structures. For example, the K x-rays of Ti are resolved into a series of satellite peaks, each of which is associated with K_ x-ray emission in the presence of a specific number of L-shell vacancies. A comparison of the Ti K x-ray spectra for light projectiles /2/ shows a richer structure for Xe ions. The number of the high-energy satellite peaks and their intensities increase appreciably. The maximum energies of lines are shifted and the peaks increasingly broaden. A quantitative analysis of the experimental results and multiple ionization calculations will be given in the next publication.

The present spectrometer for in-beam measurements provides a resolution of about a few eV in the energy range from 1.0 to 10 KeV in a modern version. The combination of the high-resolution spectrometer with the U-300 beams of ions up to Bi with an energy of about 1 MeV/n stimulates systematic investigations of the mechanism of the heavy ion-atom collisions, the structure of highly excited atomic states and the chemical effects of compounds.

The authors are pleased to express their thanks to Academician G.N.Flerov for his permanent interest in this work and for useful discussions.

References

/l/ P.Richard, Atomic inner-shell processes, ed. B.Crasemann (Academic Press, New York, 1975), v.l, p.73.

/2/ K.W.Hill et al., Phys. Rev., A13(1976)1334.

NUCLEAR SCATTERING IN ION-ATOM COLLISIONS

J.M. Feagin⁺ and L. Kocbach Fakultät für Physik, Universität Freiburg D - 7800 Freiburg i. Br., Germany

The interplay of atomic and nuclear processes has been treated in literature in several connections, with stress on either nuclear or atomic aspects. From the point of view of atomic collision physics, nuclear scattering contributes little to the total cross sections for inelastic processes. It becomes important e.g. for large angle scattering, when a relatively close encounter of the nuclei is necessary.

The simplest class of such processes, electron excitation induced by light nuclei scattered at large angles has been treated in various applications of the SCA-model [1], [2], [3].

A second class of processes may be characterized by the condition that the projectile energy is near to a nuclear resonance. The nuclei play here a more complicated role than being simple point particles. Theoretical investigations of such processes started by the works of Ciocchetti and Molinari [4]. A broad treatment of these problems has been presented by one of the present authors [5]. A first experimental demonstration of such type of processes is the work of Staub and coworkers [6] on the synthesis of short lived ⁸Be, which appears as a resonance in He- α scattering. More recent is the work of Blair et al [7] on proton-nickel scattering.

A third class of processes may be characterized by the presence of a nuclear reaction, i.e. the particle which is the end product of the ion atom collision differs from the bombarding ion. As an example one can mention the study of threshold for (p,n) reaction [8]. Processes of the second and third type may be of importance for extracting exact information on nuclear processes from experimental data.

Alexander von Humboldt Foundation Fellow

In all three types of processes a mechanism, usually called nuclear recoil, plays an important role. In various treatments of this contribution one can find a striking difference: it appears either as a dipole coupling [4], [9] or as a coupling of all multipolarities, [5], [6]. We consider a distored wave-type treatment, with a possibility of close coupling (coupled channels) calculations and show that the two above mentioned representations may be obtained as two limits of the general approach.

The final aim of this work is to include the nuclear recoil effect in the type of description proposed by Blair et al. [7]. A systematic study of simple model problems [10] (and more realistic ones) for the type of processes reported recently [7], [11], [12], [13], is in progress.

- J.U. Andersen, L. Kocbach, E. Laegsgaard, M. Lund and C.D. Moak,
 J. Phys. B: Atom. Molec. Phys. 9 (1976) 3247.
- [2] Reviews by L. Kocbach, J.M. Hansteen and R. Gundersen and by D. Trautmann and F. Rösel in Proceedings of Workshop on Theories of Inner Shell Ionization, Nucl. Instr. Math. 169 (1980) 249-318.
- [3] J.U. Andersen, L. Kocbach, E. Laegsgaard and M. Lund Abstracts of Papers, X. ICPEAC, Paris 1977 (Commisariat a l'Energie Atomique, Paris 1977), p. 40-43; and to be published; L. Kocbach, K-shell ionization in α-decay, in Notes from the Nordic Spring Symposium, Geilo 1980, J.M. Mansteen and R. Gundersen ed., University of Bergen, 1980.
- [4] G. Ciocchetti and A. Molinari, Nuovo Cimento 40B (1965) 69.
- [5] J.M. Feagin, Ph.D. dissertation, Univ. of N. Carolina Chappel Hill, 1979 (University Microfilms, 300 N. Zeeb Road, Ann Arbor, Michigan 48106).
- Synthesizing ⁸Be and Discovery of the Effect of Atomic Electrons on Nuclear Resonances, In Adventures in Experimental Physics (ed. B. Maglich), Gamma Volume, World Science Communications, Princeton 1973; results in J. Benn, E.B. Dally, H.H. Müller, R.E. Pixley, H.H. Staub and H. Winkler, Nucl. Phys. A106, (1968) 296.

- [7] J.S. Blair, P. Dyer, K.A. Snover and T.A. Traynor Phys. Rev. Lett. <u>41</u> (1978) 1712.
- [8] J.M. Feagin, E. Merzbacher and W.J. Thompson Phys. Lett. <u>81B</u> (1979) 107; I.S. Towner and J.C. Hardy, Phys. Lett. 73B (1978) 20.
- [9] P.A. Amundsen, J. Phys. B: Atom. Molec. Phys. <u>11</u> (1978) 3197;
 D.H. Jakubassa and P.A. Amundsen J. Phys. B: Atom. Molec. Phys. <u>12</u> (1979) L 725.
- [10] L. Kocbach, Nordic Summer School on Atomic Collision Processes, Sandbjerg, Denmark, August 1980 (uppublished notes); and to be published.
- [11] W. Duinker and J. van Eck, Proc. of the Int. Conf. of X-ray Processes and Inner shell Ionization, Stirling 1980, Plenum Press (N.Y.).
- [12] M. Dost, in ref. 2 ; J.F. Chemin, S. Adriamonje, J. Roturier, J.P. Thibaud, S. Joly and J. Uzureau, XI. ICPEAC, Kyoto 1979: Invited talks, (North Holland, Amsterdam 1980), page 313.
- [13] W.J. Thompson, J.F. Wilkerson, T.B. Clegg, J.M. Feagin, E.J. Ludwig and E. Merzbacher Phys. Rev. Lett. 45 (1980) No. 10.

Systematics of the 1st and 2nd Born Cross Sections for Charge Exchange

L. Dubé, 2.S. Briggs

Fakultät für Physik, Universität Freiburg 78 Freiburg, W. Germany

We have examined the general charge transfer reaction

 $P^{Z}P^{+} + T^{(Z_{T}-1)+}_{(n'\ell'm')} \rightarrow P^{(Z_{P}-1)+}_{(n\ell m)} + T^{Z_{T}+}$

whereby a fully stripped projectile (P) with charge Z_P incident at velocity, v, captures an electron bound to an hydrogenic target (T) of charge Z_T from an initial $n'\ell'm'$ to a final $n\ell m$ state.

Particular attention is paid to a discussion of:

- 1. the distribution of excitations, with respect to all quantum numbers, and
- 2. the symmetry and scaling properties of the diverse cross sections.

Since the physical processes described by the 1st and 2nd Born approximation are inherently of different nature (single scattering versus double scattering) and in view of the dominance of the 2nd Born term (velocity dependence $1/v^{11}$) over the 1st Born term (velocity dependence $1/v^{12+2\ell'+2\ell}$) at large velocities, we present results in the regions where these differences are more stricking. In particular, in cases where the initial state is an excited state (i.e. n' > 1), the features of the distribution functions show dissimilar behaviour in the two approximations. Whereas the excitation is predominantly to the 1s final state in the first Born approximation, the 2nd Born approximation favours those final states with maximal overlap with the initial state. The asymptotics of these cross sections is reviewed and previous work (1) is extended. The speed of couvergence with which these cross sections reach their asymprotic form is also discussed.

Reference

(1) 2.S. Briggs, L. Dulé : J. Phys. B<u>13</u>, 771-784 (1980)

THE 1so VACANCY PRODUCTION IN SUPERHEAVY QUASIMOLECULES WITHIN THE COHERENT COULOMB IONIZATION MODEL

A, BERINDE, DANIELA FLUERASU AND V, ZORAN

Institute for Physics and Nuclear Engineering, Bucharest MG-6, ROMANIA

During the last years, the description of the vacancy formation in the innermost molecular orbitals(MO) formed in very heavy ion collisions evolved from the first order time-dependent perturbation theory [1] to the full coupled - channel approach [2], including (approximatively) also the electron screening [3]. Simple analytical approximations have been derived too [4,5], which together with the empirical scaling of Armbruster et al [6], pave the way towards a spectroscopy of superheavy systems. Qualitative arguments in the favour of this scaling law have also been given [7] within an alternative approach starting from the adiabatic MO theory of Briggs [8].

In this contribution we apply the Coherent Coulomb Ionization (CCI) model [9], in fact an extension of the Briggs-semiclassical approximation (SCA) picture [10,11], to calculate the 1sg MO ionization cross sections for collisional systems with combined nuclear charge $Z_{UA} = Z_1 + Z_2 \gtrsim 136$. We used the observation that the main result, Eq.(12), of [5] can be reproduced when the phase factor in the ionization amplitude at a given impact parameter b is approximated by that corresponding to a straight-line (SL) trajectory R(b,0,v't) and to a momentum transfer $q'_0 = E_{1SO}(R_0)/hv'$, with $E_{1SO}(R_0)$ the electron binding energy [12] and $v'=v(1-2a/R_0)'^2$ the projectile velocity at the turning point $R_0 = a + \sqrt{a^2 + b^2}$ of the trajectory, a being the half-distance of closest approach in a head-on collision.Furthermore, the impact parameter dependence and especially the integrated cross sections are not much altered when the quasimolecular wavefunction is mimiked by an atomic 1s wavefunction centred in the centre of charge, having an effective nuclear charge which corresponds, via the binding energy tables of Fricke and Soff [13], to $E_{1,SG}(R_0)$. Accordingly, we used the cross section formula [9]:

$$\sigma_{1s\sigma}(Z_1, Z_2, v) = \{ \sqrt{\sigma_1(\langle q_0' \rangle / \alpha_1)} / \alpha_1 + \sqrt{\sigma_2(\langle q_0' \rangle / \alpha_2)} / \alpha_2 \}^2$$
(1)

where $\alpha_1=Z_2/(Z_1+Z_2)$, $\alpha_2=1-\alpha_1$, $\sigma_1(i=1,2)$ is the SL-SCA cross section for ionizing the quasimolecule by the collision partner Z_1 at its turning-point-velocity $\alpha_1 v'$ relative to the centre of charge, and $\langle q_0' \rangle$ the momentum transfer corresponding to the mean impact parameter $\langle b \rangle$ as defined in [5]. For all but the heaviest systems the product $\langle b \rangle \langle q_0 \rangle$ is very close to unity. The enormous $(10^4 \div 10^6)$ relativistic enhancement of σ_1 has been evaluated by means of the Anholt procedure [14]. Our results are compared to the available experimental data in Fig.1. Given the above mentioned approximations, the agree-

Fig.1. The theoretical 1so vacancy production cross sections versus Z_{UA} , compared to the experiment. Full line: present calculations for Xe(1), Pb(2) and U(3) as projectiles; dashed line: Eq.(17) of Ref.[5]; dash-dotted line : first order perturbation theory in the monopole approximation [1]. Data [15]: •, Xe; \blacktriangle , Pb; \heartsuit , U. ment is surprisingly good. It does not necessarily rule cut some additional contributions to the cross section, e.g. from multistep processes [2], since the relativistic enhancement is slightly overestimated in our calculations. On the other hand, the scaling in terms of ZUA predicted by the monopole approximation (MA)[1,12,16] is, to a large extent, retrieved in our approach too. Moreover, the contribution to the iomization cross section coming from the recoiling target practically coincides with that of the projectile, an equivalence which is embedded ab initio in MA. Indeed, the two terms of Eq.(1) differ in magnitude by less than 10% even for the most asymmetric cases shown in Fig.1. This comes mainly from the compensation, for the heavy partner, of its reduced velocity relative to the centre of charge by the higher density of electrons with large momenta in the interaction region as a result of the important relativistic

shrinkage of the wavefunction. The result represents a natural extension of a similar CCI model prediction for lighter systems [9], thus being more a property of the relativistic 1s type of wavefunctions by which we simulate the quasimolecule rather than the consequence of the use, in the present work, of MA binding energies [12] and considering only s-continuum states available to ionization.

Last but not least, we emphasize that in the CCI model the electron wavefunction is centred in the centre of charge rather than in the middle of the internuclear distance [1], and thus the ionization is described relative to an (almost) inertial reference frame. Although the effects of the latter choice in principle show up only at small impact parameters and are expected to be small, no quantitative estimate of them in asymmetric very heavy ion collisions exists at present.

One of the authors (VZ) acknowledges useful discussions with Berndt Müller and Paul Mokler, as well as the encouragement of William Singer.

- [1] W.Betz, G.Soff, B.Müller and W.Greiner, Phys.Rev.Lett. 37 (1976) 1046
- [2] J.Reinhardt, B.Müller, W.Greiner and G.Soff, Phys.Rev.Lett. 43 (1979) 1307
- T.de Reus, W.Greiner, J.Kirsch, B.Müller, J.Reinhardt and [3] G.Soff, Keynote paper, Int.Conf.X-80 on X-Ray Processes and Inner-Shell Ionization, 25-29 August 1980, Stirling, Scotland
- B.Müller, G.Soff, W.Greiner and V.Ceauşescu, Z.Physik [4] A 285 (1978) 27
- [5] F.Bosch, D.Llesen, P.Armbruster, D.Maor, P.H.Mokler, H.Schmidt-Böcking and R.Schuch, Z.Physik A 296 (1980) 11
- [6] P.Armbruster, H.H.Behnke, S.Hagmann, D.Liesen, F.Folkmann and P.H.Mokler, Z.Physik A 288 (1978) 277
- J.Bang and J.M.Hansteen, Phys.Letters 72A (1979) 218 J.S.Briggs, J.Phys. B 8 (1975) L485 [7]
- [8]
- V.Zoran, A.Berinde and Daniela Fluerasu, Int.Conf.X-80, [9]
- Stirling, Scotland, Book of Abstracts p.116
- [10] W.E.Meyerhof, Phys.Rev. A 18 (1978) 414
- [11] P.A.Amundsen, J.Phys. B 11 (1978) L 737
- [12] G.Soff, J.Reinhardt, W.Betz and J.Rafelski, Phys.Scr. 17 (1978) 417
- [13] B.Fricke and G.Soff, At.Data Nucl.Data Tables 19 (1977) 83
- [14] R.Anholt, Phys.Rev. A 17 (1978) 976
- [15] H.H.Behncke, P.Armbruster, F.Folkmann, S.Hagmann, J.R.Macdonald and P.H.Mokler, Z.Physik A 289 (1979) 333 R.Anholt, H.H.Behncke, S.Hagmann, P.Armbruster, F.Folkmann and P.H.Mokler, Z.Physik A 289 (1979) 349 P.H.Mokler, P.Armbruster, F.Bosch, D.Liesen, D.Maor, W.A.Schönfeldt, H.Schmidt-Böcking and R.Schuch, Keynote paper, Int.Conf. X-80, Stirling, Scotland
- [16] G.Soff, W.Greiner, W.Betz and B.Müller, Phys.Rev. A 20 (1979) 169
RADIATIVE DEEXCITATION OF MULTIPLE-VACANCY CONFIGURATION

E, ARNDT, G, BRUNNER AND E, HARTMANN

Central Institute for Isotope and Radiation Research, Leipzig, German Democratic Republic

A statistical scaling within the frozen-core model has been successfully applied in discussing the influence of multiple vacancies on the radiative deexcitation /1/. However, such a confined treatment can even result in misleading conclusions if emphasis is laid on the effects of d-subshell vacancies, since d electrons only weakly contribute to radiative deexcitation, and the atomic reorganisation caused by their removal is of major importance.

In order to include the general case into consideration we have written a computer code for explicitly calculating radiative-transition rates for the excited atomic state: The transition matrix element in the Scofield prescription was integrated using Dirac-Fock wave functions. In our treatment all multipole orders of the radiation field, the retardation and the finite nuclear size effects were accounted for. Since the aim of this paper is a systematic study of the relative x-ray intensities in dependence on the vacancy configuration separate calculations for the initial and final states have not been carried out so far.

In atoms of 3d elements 3d vacancies have a significant influence on the K β/K_{∞} intensity ratio. The reorganisation caused by the removal of the 3d electrons overcompensates the small primary effect of a deficiency of the weak K β_s transition

and in contrast to the tendency, which is predicted by a statistical scaling, the $K\beta/K\alpha$ ratio is increased. The $K\beta/K\alpha$ ratio after photoionisation is larger (by about 10 percent for titanium) than that after K-hole creation by EC /2,3/. Thus, one can attribute a higher degree of outer-shell ionisation to the photoionisation as compared with excitation by EC. This is proved by reproducing the remarkable deviations of the $K\beta/K\alpha$ ratio after photoionisation from that after EC excitation by assuming two 3d vacancies for the PI excitation mode (see fig.1). This result is in conformity with the idea that shake processes are not essentially involved in EC excitation: The change in the nuclear charge in the capture process compensates the hole created in the inner shell and the atomic central charge remains nearly unaffected in this excitation mode.

Fig.2

The prominent role of an atomic reorganisation, caused, by the dependence of the x-ray intensities on outer-shell ionisation (e.g. total radiative K transition rate T_c and $K\beta/K_{\alpha}$ ratio in fig.2). Especially highly stripped atoms with partly filled d subshells show appreciable discrepencies between statistical scaling and the more extended approach. Such investigations are of relevance to plasma diagnostics.

References

ON THE ELECTRON REARRANGEMENT AFTER INNER-SHELL IONIZATION

E. HARTMANN, E. ARNDT AND G. BRUNNER

Central Institute for Isotope and Radiation Research, Leipzig, German Democratic Republic

Under properly chosen velocities of heavy charged projectiles the K-ionizing collisions may efficiently produce additional vacancies in other core shells or in the valence states /1/. A nonradiative electron rearrangement occurs prior to x-ray emission, therefore the x-ray spectra do not give pure infor-mation on the initial vacancy distribution. In view of the similarity of the chemical effects, notwithstanding the rather different excitation conditions. and of the simultaneous occurence /2/ of a regularity in \mathbb{P} K, hypersatellite spectra and the strong chemical effects in the \mathbb{P} K, satellite spectra the electron rearrangement is most likely to account for the environmental influence on Kasatellite spectra. The interatomic relaxation via covalent bonds is the only rearrangement process which can occur in second-row atoms. This explains the distinct correlation between covalency and chemical effects in F compounds /3/. In third-row atoms LMM Auger processes transform the KL" vacancy configurations into lower ones (KL"⁻¹) and therefore shift the emission strength to the lower-order satellites. A d-type valence charge, compensating the charge of inner vacancies, effi-ciently enhances the LMM processes, but is not experienced by the x-ray energies. Therefore the contradictions between x-ray energies and emission strength do not necessarily furnish evidence for interatomic electron transitions /4/. Further, by explicitly simulating the interatomic relaxation in crystalline Si and SiO2 we hope to find a less artificial explanation for the different behaviour of the Kg/Kg ratio in these systems /5/.

References

/1/ R.L.Watson, B.L.Senobe, J.A.Demarest and A.Langenberg, Phys. Rev. A19 (1979) 1529.
/2/ C.F.Moore, D.L.Matthews and H.H.Welter, Phys. Lett. A54 (1975) 407.
/3/ M.Uda, H.Endo, K.Maeda, Y.Awaya, Y.Sasa, H.Kumagai and T.Tonuma, Phys. Rev. Lett. 42 (1979) 1257.
/4/ E.Hartmann, E.Arndt and G.Brunner, J. Phys. B 13 (1980) 2109.
/5/ O.Benka, J. Phys. B 13 (1980) 1425.

A RESEARCH PROGRAM FOR ION-ATOM COLLISIONS AT HIGH ENERGY

D. BERÉNYI

Institute of Nuclear Research of the Hungarian Academy of Sciences, Debrecen

In the last decade the collision processes and highly ionized states, in which the projectile was heavy ion of high energy (cca E>100 keV/amu), have been more and more intensively investigated.

The study of electrons from such processes seems to be especially interesting because of some advantages as e.g. direct information on the collision process by ejected electrons of continuum spectrum or the different selection rules for Auger transitions as for X-rays [1].

A project has been worked out and a special electron spectrometer for measuring the energy spectrum at thirteen different angles at the same time [2,3] has been constructed for the study of electrons from heavy ion-atom collisions by using the beam of the heavy ion cyclotrons of the Dubna Institute.

In the frame of the program the form and cross sections for the continuous spectrum and Auger lines at various emission angles of the electrons for different projectiles as a function of the bombarding energy and charge state is planned to be investigated. First of all the studies will be carried out as follows.

By the study of both the continuous and the Auger spectra the Z^2 rule can be checked, the role and importance of the nuclear and ion charge from this point of view can be clarified. E.g. if Ne target is bombarded by nitrogen and oxygen ions of different charges, taking into consideration the nuclear or the ion charges, different ratios will be predicted for the cross sections by the Z^2 rule.

 $\left(\frac{\sigma(0^{++} \rightarrow Ne)}{\sigma(N^{7+} \rightarrow Ne)}\right) = 1.31; \quad \left(\frac{\sigma(0^{++} \rightarrow Ne)}{\sigma(N^{7+} \rightarrow Ne)}\right) = 0.33$

Fig. 1. Ratio of Auger production cross sections. The continuous curves indicate the calculated values according to the Z^2 rule with the nuclear and ionic charges. The energy of the oxygen projectiles is 1.5 MeV/amu and that of the nitrogen 1.5 and 1.35, respectively. Experimental points are taken from ref. [4].

In Fig. 1 the cross section ratio is plotted as a function of the charged state of the oxygen projectile on the basis of the experimental data from ref. [4].

The features of the electron loss peak, that of the supersatellites and the continuous spectrum in the region above, the binary encounter peak as well as the capture ionization mechanism will be also investigated.

References

- [1] D. Berényi, Adv. in Electronics and Electron Phys., Vol.56, in course of publication
- [2] D. Varga and J. Végh, ATOMKI Közlemények, 22 (1980) 15.
- [3] D. Varga, J. Végh, A. Kövér, S. Ricz and A. Domonyi, in the present issue
- [4] C. W. Woods, R. L. Kauffman, K. A. Jamison, N. Stolterfoht and P. Richard, Phys. Rev. A13 (1976) 1358.

A NEW ELECTROSTATIC ANALYZER FOR ENERGY AND ANGULAR DISTRIBUTION OF ELECTRONS

D. VARGA, J. VÉGH, Á. KÖVÉR, S. RICZ, AND A. DOMONYI

Institute of Nuclear Research, Debrecen, Hungary

On the basis of earlier experiences [1] a new electrostatic electron spectrometer ESA-21 has been constructed for investigation of energy and angular distribution of electrons ejected from ion-atom collision. The energy range of the spectrometer extends from 20 eV to 14 keV. The resolution can be adjusted in the range of $1\div5\times10^{-3}$. The energy spectra of ejected electrons can be measured at 13 angles from 0° to 180°, at each 15°, simultaneously.

The electron spectrometer is a special combination of a spherical and a cylindrical mirror. The cylindrical mirror is the energy analyzer, it is a double pass, second order focusing, ring to ring type, where n≈3.1 and Θ_0 =44.5°. The spherical mirror transports the electrons, from the collision point to the entrance of the cylindrical mirror analyser. The energetically analyzed electrons detected simultaneously by 13 channeltrons, placed at different angles are counted by the data acquisition system [2]. The cross section of the spectrometer can be seen in Fig. 1.

The construction of the spectrometer and vacuum chamber enables one to join other detectors in order to carry out coincidence measurements (e.g. coincidence with X-ray, charged particles etc.).

Recently, the performance of the spectrometer is being tested.

The remanent earth magnetic field inside the spectrometer, which is covered by two mu-metal cylinders, is less than 1 mG.

The vacuum chamber made of stainless steel is evacuated by diffusion pump (pumping speed 2000 1/s). The best vacuum in the chamber without gas target is less than 10-5 Pa.

Fig. 2. Spectra of electrons from a cylindrical gun measured by ESA-21. (Without and with preretardation)

The resolution of the spectrometer is tested by the help of a cylindrical electron gun. Two spectra are shown in Fig. 2.

References

- [1] D. Varga, I. Kádár, A. Kövér, L. Kövér and Gy. Mórik Nucl. Instr. and Meth. 154 (1978) 477.
 [2] I. Kádár, B. Sulik, I. Cserny, T. Lakatos and J. Végh,
- ATOMKI Közlemények, 23 (1981) 42.

DATA ACQUISITION AND CONTROL SYSTEM OF AN ELECTROSTATIC ELECTRON SPECTROMETER FOR ENERGY AND ANGULAR DISTRIBUTION MEASUREMENTS

I. KÁDÁR, B. SULIK, I. CSERNY, T. LAKATOS, J. VÉGH

Institute of Nuclear Research, Debrecen, Hungary

The electronic system described in this contribution is destined to ensure the operating conditions of an electrostatic spectrometer [1] designed to measure the energy and angular distribution of electrons emitted from ion - atom collisions. The target of the accelerator beam is a gas or vapour beam. The block scheme of the whole system is shown on Fig. 1.

The electronic units may be divided into three different functional groups:

- a. units for controlling and protecting the functioning of the vacuum system and gas target,
- b. those providing informations on the position and intensity of the accelerator beam,
- c. and the units necessary for controlling the measurement.

The vacuum system consists of the main vacuum chamber, gas handling system, two diffusion and three rotation pumps. Information on the pressure in different parts of the system is supplied by three ionisation and six Pirani gauges. Valves and pumps are controlled via two identical control panels, one of them being located in the measurement control room, the other in the target room. In both of them a control and status register stores the information on the actual state of the system.

The functioning of the vacuum system is supervised by a safety circuit. The task of the safety circuit is to ensure the safe functioning of the spectrometer and vacuum system. Commands given via any of the vacuum control panels are fulfilled only when they are enabled by the safety circuit. High voltage supplies of the energy analyzer and detectors are switched off when the pressure in the chamber exceeds

Fig. 1. Block scheme of the electronic system

43

 1.3×10^{-2} Pa. Information on the pressure in the chamber is supplied for the safety circuit by its own measuring gauges.

Position of the accelerator beam is detected by two four segment beam sensor arrangements and the position as well as target current is displayed in the accelerator control room and in the measurement control room.

Measurement is controlled by a TPA 1140 small computer via a CAMAC crate. Two programmable precision power supplies: one fast 3 kV unit and a slow floating 8 kV supply determine the voltage on the electrodes of the energy analyzer. The precision power supplies are driven by two 14 bit digital - analogue converters. The information from the CAMAC units is sent to the converters via a measurement control unit, which itself can drive the measurement in case of computer break-down (in this latter case only one detector is working). Thirteen channel electron multipliers, mounted at different emission angles (0°-180°) detect the electrons. The charge pulses given by the detectors are amplified by charge sensitive preamplifiers and shaped by low threshold integral discriminators. These pulses as well as pulses from a Si(Li) detector detecting the X-rays emitted by the process are sent to a mixer and coincidence unit, making possible different single and coincidence measurements.

Recently the performance of the system is being tested.

Reference

[1] D. Varga, J. Végh, A. Kövér, S. Ricz and A. Domonyi ATOMKI Közlemények 23 (1981) 40. Az ATOMKI Közlemények negyedévenként jelenik meg. Terjeszti az ATOMKI Könyvtára (Debrecen, Postafiók 51, 4001). Tudományos intézetek és könyvtárak kiadványaikért cserébe vagy ellenszolgáltatás nélkül is megrendelhetik. Kérésre egy-egy számot vagy különlenyomatot magánszemélyek is ingyen kaphatnak.

Szerkesztő Bizottság: Szalay Sándor elnök, Lovas Rezső titkár, Berényi Dénes, Cseh József, Csikai Gyula, Gyarmati Borbála és Medveczky László.

Kiadja a Magyar Tudományos Akadémia Atommagkutató Intézete

A kiadásért és szerkesztésért felelős dr.Berényi Dénes, az intézet igazgatója

Készült az ATOMKI nyomdájában

Törzsszám: 11325 Debrecen, 1981/január Példányszám:540

ATONKI cooemehin

TOM 23 / №1

СОДЕРЖАНИЕ

Volume 23/ Number 1

CONTENTS

23. kötet / 2. szám

MTA ATOMMAGKUTATÓ INTÉZETE, DEBRECEN / 1981 11

ATOMKI Közlemények

2 3.kötet /2. szám

TARTALOMJEGYZÉK

TUDOMÁNYOS KÖZLEMÉNYEK	45
Raics P., Pászti F., Dáróczy S. és Nagy S.: A ⁵⁸ Ni(n,2n), ⁵⁸ Ni(n,p), ⁵⁸ Ni(n,d) és az ⁸⁹ Y(n,2n) reakciók hatáskeresztmetszetének mérése 14 MeV körül	45
Bódy Z. T.: (n,2n) reakciók gerjesztési függvényének leirása a Griffin-féle exciton modellel a kvázi- egyensulyi határesetben	59
Sailer K., V. K. Tartakovszkij: Nukleonkiütéssel járó diffrakciós protonszórás atommagokon	69
Szegedi S., Pázsit A. és Cs. Buczkó M.: Ásványolaj minták Cl és S tartalmának meghatározása neutron- aktivációs és röntgenfluoreszcencia módszerrel	81
T. Mukoyama: Atommaggerjesztés pozitron-szétsugár- zás által	89
Almási Gy., Somogyi Gy.: Hatótávolság és REL adatok könnyű és nehéz ionokra CR-39, CN-85 és PC nuk- leáris nyomdetektorokban	99
Gáspár A., Lakatos T., Sulik B. és Török I.: Az ATOMKI részvétele a G-2 nagypontosságu gamma- spektrometriai nemzetközi összehasonlitó mérésben	113
MŰHELYŰNKBŐL, LABORATÓRIUMUNKBÓL	127
Bohátka S., Kiss L.: Lyukkeresés kvadrupól tömeg- spektrométerrel	127
INTÉZETI HIREK	131

539

HU ISSN 0004-7155

ATOMKI Közlemények 23 (1981) 45-57 TUDOMÁNYOS KÖZLEMÉNYEK

MEASUREMENT OF THE CROSS SECTIONS FOR THE ⁵⁸Ni(n,2n), ⁵⁸Ni(n,p), ⁵⁸Ni(n,d) AND ⁸⁹Y(n,2n) REACTIONS AROUND 14 MeV*

P. RAICS, F. PÁSZTI^{**}, S. DARÓCZY, S. NAGY Institute of Experimental Physics, Kossuth L. University, Debrecen, Hungary

**Present address: Central Research Institute for Physics, Budapest, Hungary

Cross sections of the ⁵⁸Ni(n,2n), ⁵⁸Ni(n,p), ⁵⁸Ni(n,d) and ⁸⁹Y(n,2n) reactions relative to the ²⁷Al(n, α) excitation function have been determined by the activation technique for neutron energies from 13.52 to 14.80 MeV. Statistical model calculations were also performed and compared with the experimental results. For the ⁵⁸Ni(n,p)⁵⁸m⁺9Co reaction our cross section values are lower than data from recent compilations.

A ⁵⁸Ni(n,2n), ⁵⁸Ni(n,p), ⁵⁸Ni(n,d) ÉS AZ ⁸⁹Y(n,2n) REAKCIÓK HATÁSKERESZTMETSZETÉNEK MÉRÉSE 14 MeV KÖRÜL. Aktivációs módszerrel mértük a ⁵⁸Ni(n,2n), ⁵⁸Ni(n,p), ⁵⁸Ni(n,d) és az ⁸⁹Y(n,2n) magreakciók hatáskeresztmetszetét az ²⁷Al(n,α) folyamat gerjesztési függvényére vonatkoztatva a 13,52-14,80 MeV neutron energia tartományban. Statisztikus model! számitásokat végeztünk a gerjesztési függvényekre és az eredményeket összehasonlitottuk a kisérleti adatokkal. A ⁵⁸Ni(n,p)^{58m+9}Co folyamatra kapott mérési eredményeink alacsonyabbak mint az ujabb adatgyüjteményekben javasolt értékek.

ИЗМЕРЕНИЕ СЕЧЕНИЙ РЕАҢЦИЙ ⁵⁸Ni(n,2n), ⁵⁸Ni(n,p), ⁵⁸Ni(n,d) И ⁸⁹Y(n,2n) ПРИ ЭНЕРГИИ НЕЙТРОНОВ 14 МэВ. Активационным методом измерены сечения реакций ⁵⁸Ni(n,2n), ⁵⁸Ni(n,p), ⁵⁸Ni(n,d) и ⁸⁹Y(n,2n) относительно функции возбуждения реакции ²⁷Al(n,a) в интервале энергий нейтронов 13.52-14.80 МэВ. Проведены расчеты на основе статистической модели, и результаты расчетов сравниваются с экспериментальными данными. Полученные нами экспериментальные сечения по реакции ⁵⁸Ni(n,p)^{58m+9}Со имеют меньшее значение чем данные новейших номпиляций.

*Dedicated to Professor J. CSIKAI on the occasion of his fiftieth birthday.

1. Introduction

The nuclear data of the 14 MeV neutron induced reactions on structural materials of reactors are of technological as well as of theoretical interest. Energy spectra of the emitted neutrons are measured by the time-of-flight technique in many laboratories, e.g. in the Fiziko-Energeticheskij Institut (FEI) in Obninsk (USSR). The activation method can help in some cases in the more accurate absolutisation of the (n,2n) cross sections. This is the basis for a cooperation between FEI and our institute, e.g. making parallel measurements for Ni and Y. Reactions with the emission of charged particles are also important for the gas-production in materials under neutron bombardment.

The aim of the present experiment was to measure cross sections of the reactions on nickel and yttrium. Although there are many measured (and compilated) data for the (n,2n) reactions on ⁵⁸Ni and ⁸⁹Y and for the ⁵⁸Ni(n,p) around 14 MeV, the disagreement of the results needs their check. It seemed worthwhile to carry out the measurements in a wider neutron energy range, i.e. from 13.5 to 14.8 MeV to reduce the uncertainties.

A simple version of the statistical model, i.e. the continuum description of the nuclear reactions was applied to calculate the excitation functions of the processes investigated experimentally.

2. Experimental

Samples of metal Ni and Y of natural abundance with diameter of 19 mm and thicknesses of 0.2 and 0.5 mm, respectively, were activated. The yttrium discs have been fabricated in FEI. Both of the materials were of chemical grade, their γ -spectra did not show any other constituents after the irradiation.

The 14 MeV neutron irradiation was performed by a 175 kV accelerator via the T(d,n) reaction, using magnetically analysed deuteron beam. Thick TiT target with Mo backing was mounted on the end of a thin Al tube to reduce the effect of the scattered neutrons and cooled by pressed air. The target holder was wobbling during the 10 hour irradiation. The energy of the bombarding neutrons was varied through its angle dependence. Sandwiches from the samples above and Al foils were situated at 0°, 60°, 90°, 120° and 150° on an aluminium ring with a radius of 65 mm. The mean value and dispersion (in 68 % sense) of the neutron energy were calculated from the neutron spectrum based on the reaction kinematics taking into account the deuteron stopping in the TiT layer [1], the excitation function of the T-D reaction [2] and the source-to-sample geometry.

The variation of the neutron flux in time was monitored by a fission chamber and was taken into account in the activity calculations.

Since the reactions to be investigated may have Q-values different from that of the monitor, we performed experiments

on the effect of the scattered neutrons using the following reactions: $^{115}In(n,n')^{115m}In$, $^{27}AI(n,p)^{27}Mg$ and $^{27}AI(n,\alpha)^{25}Na$. The corresponding Q-values are: -0.336 MeV, -1.828 MeV and -3.132 MeV (for the last two cases an "effective threshold" of about 3 and 5 MeV, respectively, may be accepted). A water cooled, heavy, stainless steel target assembly as well as the light Al holder, mentioned above, were compared. Low energy neutrons were observed by the help of the differences in the fluxes measured by these reactions. Such measurements for the Al target holder did not show differences over the error limits which indicated the effect of the scattered neutrons to be negligible. Since the cross sections of the 27Al(n,a) process determined by Vonach et al. [3] have the highest reliability, the neutron flux densities have been finally calculated from the ²⁷Al(n, a) measurements, only. However, it is to be mentioned, that the reactions ⁶³Cu(n, 2n) and ⁶⁵Cu(n, 2n) of Q-values -10.851 and -9.906 MeV, respectively, would be well applicable to detect high energy neutrons. We got results strongly contradicting to the fluxes measured by the three reactions mentioned above [4]. It is perhaps due to the discrepancies in the excitation functions of the copper reactions around 14 MeV or our counting technique.

A $4\pi\beta$ -counter of flow-type was used to measure the activity of the 0.04 mm thick Al monitor foils. The selfabsorption and the efficiency have been determined experimentally. A Ge(Li) y-spectrometer based on a Multi-20 minicomputer measured several y-spectra of the irradiated Ni and Y samples. Its absolute full energy peak efficiency for extended samples has been cali-brated by standard as well as ²²⁶Ra sources [5]. The following corrections were applied: dead time, controlled by the analyser; random pile-up, measured with a pulser; cascade coincidence losses [6], based on the measured total efficiency of the detector and decay schemes (taken from the Nuclear Data Sheets); selfabsorption, calculated with data from [7]. The consistency of the activity determinations for the Al foils performed by the $4\pi\beta$ -counter and the γ -spectrometer was checked experimentally. A systematic difference of 1.7 % has been found and taken into account. Thus our measured cross sections are directly normalysed to the ²⁷Al(n, a) reaction.

Evaluation of the γ -spectra as well as the least-squares decay curve analyses were carried out with a minicomputer.

3. Calculations with the statistical model

The reproduction of the excitation functions of the neutron induced reactions was tried with the continuum statistical model in which the decays to discrete final states are not considered. Successive emission of maximum two particles has been taken into account for all the competing processes. Liskin's generalization [8] of the formulae derived by Blatt and Weisskopf [9] was used. The deexcitation from the continuum states by γ -rays was also considered. Preequilibrium or direct contributions were neglected.

The cross section for a two-step process is

$$\sigma_{a,xy} = \int \sigma_{a,x}(E) \times \frac{\Gamma_{y}(E)}{\sum \Gamma_{y}(E)} \times dE, \sigma_{a,x} = \sigma_{a}^{C} \times \frac{\Gamma_{x}}{\sum \Gamma_{x'}},$$

where E is the energy of the first outgoing particle, E_b is the bombarding energy, Q is the reaction energy, σ_a^c is the formation cross section of the compound nucleus (CN) and $\Gamma(E)$ is the channel width calculated from the spectrum function as

$$\Gamma(E) = \int S(E^{\dagger}) \times dE^{\dagger}$$
.

The general expression for the number of particles emitted with energy between E' and E'+dE' is given by

$$S(E) \times dE^{\dagger} = \frac{(2s+1) \times m}{\pi^2 \times \hbar^2} \times \frac{\sigma^{inv}(E^{\dagger})}{\rho_{CN}(E^{\ast}_{CN})} \times E^{\dagger} \times \rho(E^{\ast} - E^{\dagger}) \times dE^{\dagger}$$

with particle spin s and mass m. $\sigma^{inv}(E')$ is the cross section of the inverse reaction. ρ_{CN} and ρ are the level densities for the CN and final nucleus, respectively. E_{CN}^{*} and E^{*} denote the excitation energies with the appropriate pair corrections.

The choice of the γ -radiation width, Γ_{γ} , is not unambiguous in the literature. The Blatt-Weisskopf expression [9] for the most probable E1-transitions highly overestimates the experimental values, therefore measured data are frequently used. An other solution is to normalize that expression with an arbitrary constant to get realistic widths. The excitation energy dependence as well as the order of magnitude of the value of the widths given by the original formula [9] seemed reasonable if one takes the E2-M1 transitions only. We tried this expression, physically this choice is as arbitrary as other solutions mentioned in the literature:

$$S_{\gamma}(E_{\gamma}) \times dE_{\gamma} = \frac{0.06308}{D_{0}} \times \frac{\rho(E^{*}-E_{\gamma})}{\rho(E^{*})} \times E_{\gamma}^{3} \times (1+1.83 \cdot 10^{-6} \cdot R^{4} \cdot E_{\gamma}^{2})$$

where $R=1.5 \cdot 10^{-13} \cdot A^{\frac{1}{3}}$ cm. The best results were achieved with $D_0=2$ MeV for the mass number region A=50-90.

Level density expressions proposed by Gilbert and Cameron [10] have been used together with their shell and pair corrections modified by Cook [11]. Cross-sections for the formation of the CN and the inverse processes given by Dostrovsky et al. [12] were accepted. A decrease of about 15 % in their "k" parameters for charged particles was necessary to get better agreement with the measured excitation functions. The Qvalues were calculated on the basis of Kravtzov's tables [13].

4. Results and discussions

Nuclear data used for the calculations [35,36] are summarized in Table 1. Where it was possible, two γ -lines were used for the activity determinations and the weighted average of their results was then accepted.

Reaction	Isotope abun- dance	' T₁⁄₂ [35]	Έ γ keV [36]	Ί _γ [36]	(±∆I ₎ %
⁵⁸ ₂₆ Ni(n,2n) ²⁷ Ni	0.6776	36.0 h	$\frac{127.28}{511.00}$ 1377.62	0.161 0.930 0.802	(1)
⁵⁸ Ni(n,p) ^{58g} Co 58m _{Co}	· · · · · · · · · ·	71.3 d 9.1 h	511.00 810.79 863.84	0.292 0.995 0.00694	(1) (3)
⁵⁸ Ni(n,d) ⁵⁷ Co (n,np) (n,pn)		271.0 d	122.046 136.460	0.853 0.107	(2) (6)
⁸⁹ ₃₉ Y(n,2n) ⁸⁸ Y	1.00	106.6 d	898.02 1836.13	0.932 0.994	(2) (1)

Table 1. Nuclear data used for calculations

 γ -rays with energy underlined have been used for the activity determination.

Our measured cross sections (in 10⁻³¹ m² or mbarn) are listed in Table 2 where the last column contains data for the monitor reaction [3]. The quoted standard deviations (in the 68 % sense) of the cross sections represent the following components: efficiency of the Ge(Li)-detector (1.5-2.0 %); statistics of the measurements and the evaluation of the decay curves (0.5-1.5 %); uncertainties in the corrections for the cascade coincidence losses (0-1.5 %); monitor reaction cross section (0.5 %) and the effect of the finite energy width on its excitation function (0.6-2.7 %); errors of the branching intensities (1-2 %). The final uncertainties from a quadrative addition thus include the expected systematical errors too and range from 3 to 4.4 %. Table 3. summarizes the results of our experiments for the isomer-to-ground ratio of the ⁵⁸Ni(n,p) reaction. The graphical representation of our measurements and calculations compared to the literature data is given in Fig. 1-4.

It seemed worth-while to fit the results by a straight line or parabola (of second order) for interpolation or recommendation. The fit was performed by the least-squares method. Data in most cases have been weighted with the square of the inverse of their quoted error. Coefficients of these functions, chi-

E _n , MeV	^{\$8} Ni(n,2n)	⁵⁸ Ni(n,p) m+g	⁵⁸ Ni(n,d) +(n,np+pn)	⁸⁹ Y(n,2n)	²⁷ Al(n,α) [3]
13.52 ^{+0.13} -0.11	12.0±0.5	385±11	507±18		125.3
13.75±0.10	16.3±0.6	366±14	544±19	756±27	123.5
14.12±0.08	22.7±0.7	326±10	566±20	832 <u>+</u> 30	120.4
14.45±0.12	29.6±1.0	300± 9	611±22	930±34	116.5
14.80+0.16	35.3±1.4	268±10	630±27	975±43	110.3

Table 2. Measured activation cross sections, 10^{-31} m²

squares normalized to the number of freedom, N_f, and the standard deviation (δ) from the fitted curves are listed in Table 4.

4.1. 58Ni(n,2n) 57Ni, Q=-12.203 MeV

The most appropriate activity determination can be carried out with the 1377 keV γ -line after the decay of ⁵⁷Ni. The 127 keV radiation gives results in agreement with previous one but with lower statistics. These two lines decay in cascade, therefore a correction of 14 % should be applied. Complex decay curves must be analysed for the 511 keV annihilation peak with interference from ⁵⁸Ni(n,p) as well as for the 122 and 136 keV lines with mother-daughter relationship to ⁵⁷Co from ⁵⁸Ni(n,d),

Fig. 1. Excitation function of the 58 Ni(n,2n) reaction from 13 to 15 MeV. Compilations and evaluations are taken from refs. 15-18, for Hudson's data see ref. 14.

therefore their results have higher uncertainties. Weighted average of the activities of the first two lines was accepted. Our measured cross sections are depicted in Fig. 1. Recent measurements by Hudson et al. [14] were normalized to the nuclear data and to the monitor cross sections used by us, and they are shown for comparison. Results of earlier experiments have been compilated by Lapenas [15], Adamski et al. [16] and in the ENDF/B-V [17] and they also may be seen in this figure. Values in version 4 of the ENDF/B [21] seem to be the same as in the version 5. Our results are similar to all these, except for a faster drop in the lower neutron energies. However, if there would be any effect from the scattered neutrons, it can increase our data at 13.52 and 13.75 MeV by some percents. More recent data of Ngoc et al. [37] (not shown in the figure) are in good agreement with our measurements in this energy region. Excitation function calculated by us overestimates the experimental curve. Evaluation and calculation of Bychkov et al. [18] show a better agreement up to 14.5 MeV.

4.2. ⁵⁸Ni(n,p)^{58m+}gCo, Q=0.395 MeV

Decay curves of mother-daughter type have been analysed for the 810 keV γ -line for which a coincidence correction of 3.4 % was applied. Neither the 863 keV line nor the annihilation peak were used for the activity calculations. The former has low

Fig. 2. Results for the ⁵⁸Ni(n,p) reaction. a) (m+g) cross sections. Literature data: refs. 23, 14, 15, 21, 17 and 22. b) Data for the σ_m/σ_g ratio measured by us and Hudson et al. [14].

intensity, while the latter contains the interference of the ⁵Ni(n,2n) reaction, and the analysis of its decay curve gives uncertain results.

Our measured σ_{m+g} values (referred as "new") are drawn in Fig. 2a. Four compilations are also shown in the figure expressing the wide spread of the experimental data clearly. Haight [19] and Stewart and Arthur [20] also mentioned this problem in their reviews. According to Zolotarev et al. [21] data file UKNDL recommends smaller values than ENDF/B-TV [27]. Results of Hudson et al. [14] confirm ENDF/B-TV, while the recent results of Ngoc et al. [37] (not shown in the figure) are smaller by 5-6 % than the data of this file. Our data represents an even lower trend, supporting the cross sections of Paulsen and Widera [23] in the 13.5-14.8 MeV region. Since they have determined the neutron fluence by a recoil proton telescope counter, this excellent agreement can not be neglected when making recommendation for the excitation function.

The isomer-to-ground ratios for this reaction have been determined by us in three experiments. Table 3. lists the results as "new", "old 1" and "old 2". "New" refers to the experimental arrangement discussed in paragraph 2. A water cooled,

Experiment	E _n , MeV	σ _m /σ _g		
new	13.52 + 0.13 - 0.11	1.01 ± 0.14		
new	13.75 ± 0.10	1.12 ± 0.17		
new	14.12 ± 0.08	1.24 ± 0.12		
old l	14.22 ± 0.21	1.06 ± 0.04		
new	14.45 ± 0.12	0.96 ± 0.11		
old 1	14.52 ± 0.13	1.24 ± 0.09 1.25 ± 0.07		
old 2	14.65 ± 0.21	l.23 ± 0.03		
old 1	14.78 ± 0.20	0.99 ± 0.09		
new	14.80 + 0.16 - 0.18	1.20 0.11		

Table 3. Measured isomer ratios for the ⁵⁸Ni(n,p) reaction

stainless steel target assembly (mentioned earlier, too) was used in irradiations "old 1" and "old 2". In the irradiation "old 1" three measurements (plus a control one) have been carried out at different angles to the deuteron beam at a distance of 5 cm from the TiT target. The sample was close (0.5 cm) to the target at 0° in experiment "old 2". The "old" type data show the same fluctuations as the "new" ones which indicates the effect of the statistics on the analysis of the complex decay curves rather then that of the scattered neutrons. Therefore all of them may be taken into account. A weighted average of σ_m/σ_g =1.17±0.03 is given by our measurements while 0.94±0.05 is shown by the three points calculated from the data of Hudson et al. [14]. All these values have a weighted average of 1.15±0.03 in the 13.3-15.2 MeV interval. These result should be seen from the point of view of the metastable and ground level spins in ⁵⁸Co being 5+ and 2+, respectively. An interesting feature of the excitation curve of the σ_m/σ_g is clearly evident if one completes these points in Fig. 2b with two others from Hudson's experiment [14] at 16.0 and 17.1 MeV giving 0.96 and 0.76 (±10 %), respectively. A parabola fitted by the weighted least-squares method with coefficients in Table 4 shows a maximum at 15.0 MeV with σ_m/σ_g =1.18.

The continuum statistical model can give results only for the σ_{m+g} cross sections. Our calculations strongly overestimate the excitation curve down to 15 MeV.

4.3. ⁵⁸Ni(n,np+pn)⁵⁷Co, Q=-8.177 MeV, ⁵⁸Ni(n,d)⁵⁷Co, Q=-5.953 MeV

Activity measurements were performed with the 122 and 136 keV lines and their weighted average was accepted. Since the final nucleus, 57Co originates from the above reactions as well as through the β^+ -decay of 57Ni, complex decay curve analysis was carried out.

Recent data measured by Weigel et al. [24] and Grimes et al. [25] are plotted together with our ones in Fig. 3.

Fig. 3. Measured and calculated cross sections for the ⁵⁸Ni(n,d+np+pn) reactions. Citations: refs. 24, 25 and 18.

The activation cross section in [24] has been normalized to the ${}^{58}Ni(n,p)$ reaction data from the literature. We renormalized it to our measured value. Direct charged particle detection in [25] gave 1000 mbarn for the (n,p)+(n,np)+(n,pn) reactions and 14 mbarn for (n,d). Substracting the (n,p) cross section measured by us, a value of 746 mbarn was calculated which is shown

in Fig. 3. The agreement within the experimental errors may be seen for these data.

Our calculations for the sum of the cross sections of these reactions are acceptable above 14.5 MeV. Excitation function evaluated by Bychkov et al. [18] gives a more appropriate shape in this energy region.

4.4. 89Y(n,2n)88Y, Q=-11.468 MeV

Both of the lines were used for the cross section measurements. Cascade coincidence corrections of 15.5 and 13.8 % ought to be applied. The cross sections based on the 898 MeV line are systematically higher by 3.5 % than those calculated by the help of the 1836 keV line. It is perhaps due to the uncertainties in the relative efficiency of the spectrometer, coincidence corrections and intensity data. Their weighted averages are listed in Table 2.

The present results together with other recent measurements are shown in Fig. 4. If it was possible, literature values have been normalised to new nuclear data. Fréhaut and Mosinski [26] and Veeser et al. [27] applied the neutron multiplicity method using Gd-loaded scintillator. All the other experiments have been carried out with the activation technique of different types. The excitation function of all the authors agrees generally well within the quoted errors. Nethaway's data [28] are a bit higher, while Bormann's values [29] fall slightly down from the average. Our results are in good agreement with the data of Ghorai et al. [30], Mannhart and Vonach [31] and Bayhurst et al. [32]. A non-weighted least-squares fitting was performed to the data from which Abboud's point [33] at 14.61 MeV has been omitted. This curve may be used as a recommendation from 12.5 to 15.2 MeV. Our statistical model calculations resulted in a much lower excitation function than the measured cross sections.

Fig. 4. Results for the excitation function of the ⁸⁹Y(n,2n) reaction. Literature data are taken from refs. 33, 28, 26, 31, 32, 29, 30 and 27. Nethaway's results shown without errors were read from Fig. 4 of his paper [28].

5. Conclusions and remarks

Recent measurements and compilations for the ⁵ ⁸Ni(n,2n) do not deviate seriously but there are some uncertainties down to 14.0 MeV. The situation for the ⁵ ⁸Ni(n,p) reaction is much worse. The large spread in the data perhaps due to the effect of the scattered neutrons if the monitor reaction is of high threshold. Since the energy dependence of the σ_m/σ_g ratio is also an interesting question, new measurements are necessary for neutron energies other than 14 MeV.

Table 4. Coefficients of the functions, $f(E_n)$ fitted to our experimental results

$$f(E_n) = A_0 + A_1 \times E_n + A_2 \times E_n^2$$
, $\delta = \sqrt{\frac{\Sigma_i [f(E_i) - m_i]^2}{N_f}}$

(E_n: lab. neutron energy, MeV; m_i measured values, N_f: number of freedom; χ^2 : chi-square)

Reaction	f(E _n)	Ao	Al	A ₂	χ^2/N_{f}	δ
⁵⁸ Ni(n,2n)	σ	-236.44	18.375	ann Yn de fan de	0.17	0.37
⁵⁸ Ni(n,p)	σ _{m+σ}	1621.73	-91.519	-	0.06	2.6
	σ_m/σ_σ	-1.54	0.187	-	2.12	0.14
*	$\sigma_{\rm m}^{\rm m}/\sigma_{\rm g}^{\rm m}$	-23.07	3.234	-0.1078	2.23	0.13
⁵⁸ Ni(n,d) +(n,pn+np)	σ	-803.0	97.30	-	0.19	9.0
⁸⁹ Y(n,2n)	σ	-2297.80	222.10	-	0.22	17
S	σ	-17446.2	2321.49	-72.679	3.66	55

*together with data of Hudson et al. [14]

^Stogether with results of the experiments listed in Fig. 4.

There are only a few recent experiments for the (n,d) and (n,np+pn) reactions on ⁵⁸Ni. It would be interesting to determine their excitation functions from the thresholds. No serious problems seem to appear in the ⁸⁹Y(n,2n) process from 13.7 to 15.2 MeV.

Our model calculations with the continuum statistical description of the nuclear reactions can give only a general view about the competition of the different reaction channels. Generally, the shapes of the calculated excitation functions are similar to the measured ones but the absolute values strongly deviate. The excitation functions are often shifted to higher bombarding energies which claims for the consideration of the discrete levels in the final nucleus. The role of the y-deexcitation as a concurrence near the threshold of the particle emitting reactions - mentioned also by Decowski et al. [34] - may be seen from our results for the ⁵⁸Ni(n,2n) process, too.

References

- [1] J. D. Seagrave, E. R. Graves, S. J. Hipwood and C. J. McDole, Los Alamos Sci. Lab., LAMS-2162 (1958)
- 2] H. Liskien, A. Paulsen, Nucl. Data Tabl. All (1973) 569
- [3] H. Vonach, M. Hille, G. Stengl, W. Breunlich and E. Werner, Z. Phys. 237 (1970) 155
 [4] P. Raics, S. Nagy and S. Daróczy, in Proc. IX. Int. Symp. on the Interaction of Fast Neutrons with Nuclei (Nov. 26-30 1979, Gaussig), ed. D. Seeliger, S. Unholzer (ZfK-410, Dresden, 1980) p.72.
- [5] Nagy S., Sailer K., Daróczy S., Raics P., Nagy J., and Germán E., Magy. Fiz. Foly. 22 (1974) 323
- [6] P. Quittner, Gamma-Ray Spectroscopy (Akadémiai Kiadó, Budapest, 1972)
- 7] E. Storm, H. J. Israel, Nucl. Data Tabl. A7 (1970) 565
- [8] H. Liskien, Nucl. Phys. All8 (1968) 379
- [9] J. M. Blatt, V. F. Weisskopf, Theoretical Nuclear Physics (J. Wiley, New York; Chapmann, London, 1952)
- [10] A. Gilbert, A. G. W. Cameron, Can, J. Phys. 43 (1965) 1446
- [11] J. L. Cook, H. Ferguson and A. R. delMusgrove, Austr. J. Phys. 20 (1967) 477
- [12] I. Dostrovsky, Z. Fraenkel and G. Griedlander, Phys. Rev. **116** (1959) 683
- [13] V. A. Kravtzov, Massy atomov i energii svyazy yader (Atomizdat, Moskva, 1974)
- [14] C. G. Hudson, W. L. Alford and S. K. Ghorai, Ann. Nucl. En. 5 (1978) 589
- [15] A. A. Lapenas, Izmerenie spektrov neitronov aktivatzionnym metodom (Izd. Zinatne, Riga, 1975)
- [16] L. Adamski, M. Herman and A. Marcinkowski, INDC/POL/-8/L, 1977
- [17] M. Divadeeman, Evaluation of the ⁵⁸Ni(n,p) and ⁵⁸Ni(n,2n) reaction cross sections, ENDF/B-V, 1977 (file on magnetic tape from the Nuclear Data Section of IAEA, Vienna)
- [18] V. M. Bychkov, V. I. Popov, Yadernye Konstanty 25 (1977) 55
- [19] R. C. Haight, in Proc. Symp. on Neutron Cross Sections from 10 to 40 MeV (May 3-5 1977, BNL), ed. M. R. Bhat, S. Pearlstein, INDC/USA(-78)L, p.201.
- [20] L. Stewart, E. D. Arthur, INDC/USA(-78)L, p.435 (ref. 19)
- [21] K. I. Zolotarev, V. M. Bychkov, A. B. Pashchenko, V. I. Plyaskin, V. N. Manokhin and L. A. Tshernov, Yadernye Konstanty 32 (1979) 105

- [22] M. R. Bhat, Evaluation of the ⁵⁸Ni(n,2n) cross sections, p.108; R. E. Schenter, Evaluation of the ⁵⁸Ni(n,p) cross sections, p.114 in ENDF/B-IV Dosimetry File, ed. B. A.
- Magurno, BNL-NCS-50446, 1975 [23] A. Paulsen, R. Widera, in Proc. Int. Conf. on Chemical Nuclear Data (Sept. 20-22 1971, Univ. of Kent at Canterbury), ed. M. Wurrel, vol. "Measurements and Applications" p.129 (The Institution of Civil Engineers, London, 1972)
- [24] H. Weigel, R. Michel and W. Herr, Radiochem. Acta 22 (1975) 11
- [25] S. M. Grimes, R. C. Haight, K. R. Alvar, H. H. Barschall and R. R. Borchers, Phys. Rev. C19 (1979) 2127
- [26] J. Fréhaut, G. Mosinski, CEN-Saclay, Gif-sur-Yvette, CEA-R-4627 (1974)
- [27] L. R. Veeser, E. D. Arthur and P. G. Young, Phys. Rev. **C16** (1977) 1792
- [28] D. R. Nethaway, Nucl. Phys. A190 (1972) 635
- [29] M. Bormann, H.-K-Feddersen, H.-H. Hölscher, W. Scobel and H. Wagner, Z. Phys. A227 (1976) 203
- [30] S. K. Ghorai, C. G. Hudson and W. L. Alford, Nucl. Phys. A266 (1976) 53
- [31] W. Mannhart, H. Vonach, Z. Phys. A272 (1975) 279
 [32] B. P. Bayhurst, J. S. Gilmore, R. J. Prestwood, J. B. Wilhelmy, N. Jarmie, B. M. Eskkila and R. A. Hardekopf, Phys. Rev. C12 (1975) 451
- [33] A. Abboud, P. Decowsky, W. Grochulski, A. Marcinkowski, K. Siwak, I. Turkiewicz and Z. Wilhelmy, Acta Phys. Pol. B2 (1971) 527
- [34] P. Decowski, W. Grochulski and A. Marcinkowski, Nucl. Phys. A194 (1972) 380
- [35] Chart of the Nuclides, 9th ed., Knolls Power Lab., Naval Reactors. U.S. At. En. Com., 1972
- [36] R. Gunnink, Gamma-Library File, Lawrence Livermore Lab., Oct. 1. 1975 (private communication)
- [37] P. N. Gnoc, S. Gueth, F. Deák and A. Kiss, to be published in Mat. 5. Vsesoyuznoi Konf. po Neitronnoi Fizike, 15-19 Sept. 1980. Kiev.

Referee: I. Uray

ATOMKI KÖzlemények 23 (1981) 59-68 (n,2n) EXCITATION FUNCTIONS DESCRIBED BY THE GRIFFIN EXCITON MODEL IN THE QUASI EQUILIBRIUM LIMIT*

Z. T. BŐDY

Institute of Experimental Physics, Kossuth University Debrecen 1., Pf. 105 Hungary

The master equations for the Griffin exciton model have been solved analytically with a linear approximations for the transition rates. As an example (n,2n) excitation functions were calculated and compared - in the equilibrium limit with equilibrium statistical model results. The agreement is very good also without fitting. Generally (not restricted to the equilibrium limit) the transition matrix element should be fitted for the description of the experimental curve.

(n,2n) REAKCIÓK GERJESZTÉSI FÜGGVÉNYÉNEK LEIRÁSA A GRIFFIN-FÉLE EXCITON MODELLEL A KVÁZI-EGYENSÚLYI HATÁRESETBEN. A Griffin-féle exciton model! differencia-differenciál egyenleteit analitikusan megoldottuk az átmeneti valószinüségek linearizált értékeivel. Példaként az (n,2n) gerjesztési függvényeket határoztuk meg és hasonlitottuk össze az egyensúlyi statisztikus modellekből kapható eredményekkel. Az egyensúlyi határesetben az egyezés illesztés nélkül is igen jó. Nem szoritkozva az egyensúly esetére, a kisérletekkel való jó egyezés eléréséhez az átmeneti mátrixelem (azaz egy paraméter) illesztése szükséges.

ОПИСАНИЕ ФУННЦИЙ ВОЗБУЖДЕНИЯ РЕАНЦИЙ (n,2n) С ПОМОЩЬЭ ЭКСИТОННОЙ МОДЕЛИ ГРИФФИНА. В статье даны аналитические решения обобщенных кинематических уравнений предравновесной модели Гриффина при линейном приближении вероятностей переходов. В качестве примера определялись функции возбуждения реакций (n,2n) и сравнивались с результатами, полученными на основе равновесной статистической модели. В предельном случае равновесия совпадение результатов расчетов является очень хорошим и без подгонки параметров. Не ограничиваясь случаем равновесия, для получения совпадения необходимо подогнать матричный элемент перехода.

*Dedicated to Professor J. Csikai on the occasion of his fiftieth birthday.

Introduction

In calculating particle spectra the compound (equilibrium) statistical model of nuclear reactions [1,2] agrees with the experiments to some extent, depending on the energy range and reaction type considered. A generalization of this model is the pre-equilibrium statistical model [3] which considers the evolution of the composite system in time and allows it to decay before reaching equilibrium.

The pre-equilibrium model (PM) has a lot of formulations [3,4] differing from each other in bookkeeping different quantities during equilibration, and in the use of either configuration or phase space description.

A usual (let us say truncated) approximation for PM is to cut the whole process into two parts, $t \leq t_{equ}$ and $t > t_{equ}$; here t_{equ} is an arbitrarily chosen time necessary to reach the equilibrium in the composite system. For $t > t_{equ}$ the classical (equilibrium) statistical model, while for $t \leq t_{equ}$ the original PM, or rather an approximate form of it is used. This approximate form comes from considering transitions (steps) toward the equilibrium only when the instantaneous configuration is simpler than those belonging to the equilibrium; t_{equ} will be the average time necessary to reach equilibrium with this unidirectional stepping, where the equilibrium is characterized by having equal up and down transition probabilities.

A frequent approximation is to neglect first the transitions toward the continuum when calculating the occupation probabilities belonging to the different configurations [5]. Clearly, this approximation is closely coupled to the truncated treatment because in the original form it would lead to an infinite weight for the time interval t>teau.

finite weight for the time interval $++_{equ.}$. The most simple PM formalism is the Griffin exciton model [6,7] where the bookkeeping is extended only for the number of excitons (=particles+holes). If $P_n(+)$ denotes the probability that there are n excitons in the composite nucleus at time +, the following difference-differential equation system can be obtained:

 $\frac{dP_{n}(t)}{dt} = \lambda_{n-2}P_{n-2}(t) + \mu_{n+2}P_{n+2}(t) - [\lambda_{n}+\mu_{n}+L_{n}]P_{n}(t), \quad (1)$

where $\lambda_n \Delta t$ ($\mu_n \Delta t$) is the probability that during Δt a particlehole pair is created (destroyed); λ_n and μ_n are called transition rates or intensities. $L_n \Delta t$ is the total emission probability toward the continuum.

Eqs. (1) are the consequence of the simple fact that the event marked by a star in Fig. 1. may occure in three mutually excluding ways indicated by the arrows.

The transition rates λ_n and μ_n are slightly different in different approximations [8] but they have roughly the following forms [7,9]:

$$\lambda_n = K \frac{(gE)^2}{n+1}$$
, $\mu_n = K ph(n-2)$, $n = p+h$, (2)

Fig. 1. The possible ways of changing exciton number in time. The state having n at ++ Δ t (marked by a star) can be produced from the states at + in three mutually excluding ways (full lines), while the state having n at + can decay in four ways (dotted lines). From the normalisation of the probabilities we have $\zeta_n \Delta$ t=1-($\lambda_n + \mu_n + L_n$) Δ t.

where E is the excitation energy, g is the single-particle level density, p and h are the number of particles and holes, respectively, and $K = \frac{\pi}{h} |M|^2 g$ expressed by the average squared transition matrix element $|M|^2$. Furthermore,

$$L_{n} = \sum_{\nu} \int_{\nu} W_{\nu}(n, \varepsilon_{\nu}) d\varepsilon_{\nu}, \qquad (3)$$

where B_{ν} is the binding energy and $W_{\nu}(n, \epsilon_{\nu})$ is the probability of the emission of a particle ν with the energy ϵ_{ν} from an n-exciton state of the composite nucleus.

The set of equations similar to eqs. (1) is usually called in the theory of stochastic processes as the difference-differential equations of a birth-and-death process [10]. In physics eqs. (1) are called master equations.

A solution of eqs. (1) will be presented here by approximating all the transition probabilities by linear functions at the equilibrium. This solution retains the qualitative features of the exact one and in addition it gives quantitatively good results near the equilibrium. So, one can consider it as a quasi-equilibrium solution for PM. This analytical solution would be useful also from the point of view of the evaluation work where simple formulae containing free parameters are preferred. Furthermore, all the existing analytical solutions belong to the truncated class, so, it would be interesting once to see a solution without truncation.

2. The solution of the master equations

For obtaining the solution of eqs. (1) a generating function [10] will be introduced. Due to the linear approximations a first order partial differential equation can be derived. After solving this equation for the generating function, the $P_n(\dagger)$ occupation probabilities can be easily obtained. It will be shown that all the relevant information can be extracted directly from the generating function itself, thus the deter-

mination of the Pn(t) functions is, in fact, unnecessary. First eqs. (1) will be transformed to retain only one para-meter (p) instead of three (p,h,n). Thus we have

$$dQ_{D}(\tau)$$

 $\frac{p}{d\tau} = \lambda_{p-1}Q_{p-1}(\tau) + \mu_{p+1}Q_{p+1}(\tau) - [\lambda_{p}+\mu_{p}+\rho_{p}]Q_{p}(\tau)$ (4)with $\tau = K + \lambda_p = \frac{(gE)^2}{2p - p_0 + 1} \approx a - b p; \mu_p = p(p - p_0) \times (2p - p_0 - 2) \approx a p$ and $Q_p(\tau) = P_{2p-p_o}(t)$.

Here we assumed that initially p=p, and h=h,=0, furthermore that

$$\frac{L_n}{K} \approx \rho_p = \gamma + \delta_p.$$
 (5)

The definition of the G(z, t) generating function is [10]

$$G(z, t) = \Sigma Q_{p} z^{p}$$
(6)

with the complex variable z, |z| < 1. Using eqs. (4-6) we have

$$\frac{\partial G}{\partial \tau} - [\alpha + (b - \alpha - \delta)z - bz^2] \frac{\partial G}{\partial z} = [a(z - 1) - \gamma]G .$$
(7)

An initial condition $Q_{p_0}(0)=1$ and $Q_p(0)=0$ for $p \neq p_0$ is assumed from which the boundary condition for the generating function: $G(z,o)=z^{PO}$. Eq. (7) can be solved using standard technique and the result is

$$G(z,t) = \left[\frac{(1+q+h\theta)^2}{1-th^2\theta}\right]^{\frac{a}{2b}} \times \left[\frac{A+2b}{\frac{q+th\theta}{1+q+th\theta}}\right]^{P_0} \times \left[\frac{a}{2b}\left(1+\frac{Y}{a}-\frac{A}{2b}\right)\right]$$
(8)

 $A=(b-\alpha-\delta); \ \theta=b\tau \text{ and } q=\frac{2bz-A}{2b} \text{ provided that } 2b=\sqrt{A^2+4\alpha b}.$ (9)The particle emission probability for a single neutron [11] is

$$W_{\nu}(n,\epsilon_{\nu}) d\epsilon_{\nu} = \frac{2j+1}{\pi^{2}h^{3}} \mu_{\nu}\epsilon_{\nu}\sigma_{in\nu}(\epsilon_{\nu})\frac{N}{A} \frac{\omega(p-1,h,U)}{\omega(p,h,E)} d\epsilon_{\nu}$$
(10)

where U is the residual excitation energy, j is the spin of the emitted particle, ε_{V} and μ_{V} is its energy and reduced mass, respectively, $\sigma_{|nV|}(\varepsilon_{V})$ is the inverse reaction cross section; N is the neutron number and A is the mass number. The density of states can be taken from [13] if we neglect the Pauli exclusion principle

$$\omega(p,h,E) = g \frac{(gE)^{n-1}}{p!h!(n-1)!}$$
 (11)

From eqs. (10) and (11) we obtain

$$W_{v}(n,\epsilon_{v})d\epsilon_{v} = C \frac{\epsilon_{v}}{gE} p(n-1) \left[\frac{U}{E}\right]^{n-2} d\epsilon_{v}$$
 (12)

with the abbreviation

$$C = \frac{2j+1}{\pi^2 \hbar^3} \mu_{\nu} \sigma_{in\nu} (\varepsilon_{\nu}).$$
 (13)

The particle spectrum at time t is [11]

$$I(\varepsilon_{v}, t) = \sum_{n} P_{n}(t) W_{v}(n, \varepsilon_{v}) = \frac{C\varepsilon_{v}}{gE} \sum_{p} Q_{p} p(2p-p_{o}-1) \left[\frac{U}{E}\right]^{2p-p_{o}-2} = \frac{2C\varepsilon_{v}}{gE} \left[\frac{E}{U}\right]^{p_{o}} \left[z \frac{\partial^{2}G}{\partial z^{2}} + (1-p_{o}) \frac{\partial G}{\partial z}\right] z = \left[\frac{U}{E}\right]^{2} .$$
(14)

Here we see that we do not need the $P_n(t)$ or $Q_p(\tau)$ occupation probabilities, only the partial derivatives of the generating function.

If we suppose – for the sake of simplicity – $A=\delta=0$ and $p_{O}=1$,

$$I(\varepsilon_{v}, t) = \frac{2C\varepsilon_{v}}{gE} \times \frac{U}{E}(n+1) \left[\frac{1}{1+th\theta}\right]^{n+2} \left[\frac{1-th\theta}{1+th\theta}\right]^{\frac{S}{2}} \left[1+\left(\frac{U}{E}\right)^{2}th\theta\right]^{n-1}th\theta \times \left\{n th\theta \left[\left(\frac{U}{E}\right)^{2}+th\theta\right]+2\left[1+\left(\frac{U}{E}\right)^{2}th\theta\right]\right\},$$
(15)

where $\frac{a}{b} - 2 = n$ and $\frac{\gamma}{b} = s$. Furthermore, for integer values of n the time-integrated spectrum will be

$$I(\varepsilon_{v}) = \int_{0}^{\infty} I(\varepsilon_{v}, t) dt = \frac{2C\varepsilon_{v}}{gE2^{n-1}} \frac{U}{E}(n+1)(Kb)^{-1} \left\{ \sum_{r=0}^{n} {n \choose 2r+s+2} \frac{n+2r+s+2}{(2r+s)(2r+s+2)(2r+s+4)} \right\}$$

$$\times \left[1-\left(\frac{U}{E}\right)^{2}\right]^{r} \left[1+\left(\frac{U}{E}\right)^{2}\right]^{n-r} - (-1)^{n} \frac{n}{(2n+s)(2n+s+2)(2n+s+4)} \left[1-\left(\frac{U}{E}\right)^{2}\right]^{n}\}, \quad (16)$$

To be honest, eq. (16) should be divided by the time integral of $\Sigma P_n(+)$ or G(o,+) i.e. by $(Kbs)^{-1}$ to preserve normalisation.

If we want to describe (n, 2n) reactions by the most simple way we may follow [1] or [12] and neglect all the other concurrent reaction channels. This leads us to

$$\frac{\sigma_{n,2n}}{\sigma_{n,M}} = \frac{O}{E} = 1 - \frac{r = 0 \quad k = 0 \quad i = 0 \quad nrkis}{f \quad I(\varepsilon_v)d\varepsilon_v} = 1 - \frac{r = 0 \quad k = 0 \quad i = 0 \quad nrkis}{n \quad n = r \quad r}$$
(17)
$$\int_{\sigma} I(\varepsilon_v)d\varepsilon_v \quad \Sigma \quad \Sigma \quad \Sigma \quad D \quad nrkis} \\
\sigma = 0 \quad r = 0 \quad k = 0 \quad i = 0 \quad nrkis$$

where $\sigma_{n,\,M}$ is the cross section for neutron emission [12], Q is the "Q-value" of the (n,2n) reaction and

$$B_{nrkis}(y) = R_{rs} {n-r \choose k} {r \choose i} (-1)^{i} \frac{y^{2k+2i+2}}{2k+2i+2} \left[\frac{y}{2k+2i+3} + 1 - y \right]$$
(18)

with $y = \frac{|Q|}{E}$. The R_{rs} values are the cofactors of the

$$\left[1-\left(\frac{U}{E}\right)^{2}\right]^{r}\left[1+\left(\frac{U}{E}\right)^{2}\right]^{n-r} \text{ quantities in eq. (16).}$$

Considering the equilibrium limit of eq. (17) by taking $s \rightarrow 0$, one gets the formula

$$\sigma_{n,2n} = \sigma_{0} \left[1 - \frac{B(y)}{B(1)} \right] \text{ with } B(y) = \sum_{k=0}^{n} {n \choose k} \frac{y^{k+2}}{2k+2} \left[\frac{y}{2k+3} + 1 - y \right]$$
(19)

and $\sigma = \sigma_{n,M}$.

The parameters at the equilibrium can be obtained by taking $\lambda_{p} = \mu_{p}$. The result is

$$\frac{a}{b} - 2 = n \approx \sqrt{2gE} - \frac{3}{4} + \frac{3}{2} \frac{1}{\sqrt{2gE}}$$
(20)

that is, the upper limit in the sum of eq. (19) is approximately the average equilibrium exciton number. (However, the summation is not for the exciton number as in the time-independent solutions.) Practically, it is enough to retain the first term only, on the right hand side of eq. (20).

In Fig. 2.the $\sigma_{n,2n}/\sigma_0$ values are shown for n=6, 7 and 8. This will be compared to eq.(3) in [12] which is the (equilibrium) statistical model result using fermi-gas level density. The parameter p of Pearlstein is expressed by the level density parameter α as

$$p = 4 \alpha |Q|, \qquad (21)$$

where *a* is related to the single-particle level density by

$$\alpha = \frac{\pi^2}{6} g. \tag{22}$$

Fig. 2. Eq. (19), for n=6,7 and 8. P.: Pearlstein formula [12] for p=100. W.: Weisskopf formula [1] for T=2 MeV and |Q|=10 MeV (arbitrary). The value of n being the closest approach to $\sqrt{2}gE$ for that energy region is marked on the abscissa.

Fig. 3. $\lambda_p, \mu_p, \rho_p = \gamma$ and their linear approximations near the equilibrium valid for $(gE)^2 \approx 3200$. If in addition $\sigma_{ipv} = 1$ barn and N/A=0.55 then $\gamma \gtrsim 220$ follows from $A^3E|M|^2 = 400$ (MeV³) [14]. The parameter $s = \frac{\gamma}{b}$ would thus be reduced by a factor $\sim \frac{(gE)^2}{2a}$. (See also the text).

65

(The variable s in ref. [12] is just our y.) One can see in Fig. 2. that the result of Pearlstein agrees quite well with the present result. The outcome of the comparison with the constant temperature Weisskopf formula [1] is also acceptable with T*2 MeV and |Q|=10 MeV (arbitrarily chosen).

The formulae (15), (16) and (17) (with s≠o) contain the pre-equilibrium contribution in a qualitatively correct way but they overestimate this contribution if we use "experimentally determined" $|M|^2$ values e.g. from [14] or [15]. It is easy to find the reason of this overestimation from Fig. 3. Here it can be seen that the use of linear approximations results in a strong reduction of the (dominant) λ_p and its derivative in the "pure pre-equilibrium region". At the same time, the $\rho_p=\gamma$ (=constant) feature is not changed by the linearisation. Owing to the fact that in these formulae the pre-equilibrium contribution is determined by the ratio of γ to the (negative) derivative of λ_p , the linearisation yields an overestimation of the pre-equilibrium contribution.

Fig. 4. Weisskopf formula with fitted T (thin solid line) as well as eq. (17) with calculated n and fitted s values (dotted line). The experimental data of Paulsen (connected by a heavy solid line) taken from [17] after normalising them to 840 mb at 14.7 MeV [18]. The calculated curves were normalised too, so only their shapes are relevant. If we compare the results of eqs. (17) and (19) without normalisation, we see that the former (with the best fit s=0.56 and n=11) gives a smaller cross section (reduced by 26 % at 11.5 MeV and by 9 % at 18.8 MeV) due to pre-equilibrium processes. This is roughly in agreement with the investigations of Holub and Cindro [19] as well as with the calculations of Seidel [20]. One can compensate this increase by multiplying s by the ratio of the linearised to the original λ_p . This procedure suffixes the maximum possible compensation. (However, it should be noted that this "renormalisation" could change the time-scale in eq. (15) by the same factor.)

Let us see an example. In Fig 4 the experimental excitation function for the ${}^{55}Mn(n,2n){}^{54}Mn$ reaction can be seen. The Weisskopf formula with fitted T as well as equ. (17) with calculated n and fitted s are also shown here. This best fit s is roughly the half of the calculated and "renormalised" s value. So, it can be seen that eq. (17) gives good result only if one parameter, e.g. the squared transition matrix element

Fig. 5. An illustration of the neutron spectrum and its decomposition to equilibrium and pre-equilibrium parts. (See the text).

 $|M|^2$ is fitted. On the other hand, we can repeat here the statement of ref. [16] that the yield of the formula (19) can not be distinguished from that of the Weisskopf formula within the experimental errors; this is true both for calculated parameters and for fitted ones^{*}.

In Fig. 5. the results of eq. (16) for s=2 can be found for n=5. If we want to know the "pure preequilibrium" part of the spectrum we must subtract the former curve from the latter

*It should be remarked that there is an error in formula (19) as it is published in [16]. after a proper normalisation which ensures the coincidence of their derivatives at the ε =0 limit. In such a way we can decompose the total spectrum into an equilibrium and a preequilibrium part. This decomposition is in fact unnecessary but some people used to calculate first these separate spectra and then add them together.

I am intebted to S. Isza for his help in the numerical work.

References

[1]	J. M. Blatt and V. F. Weisskopf, Theoretical Nuclear
	Physics, (Wiley and Sons, New York, 1952)
[2]	H. Büttner, A. Lindnert and H. Meldner, Nucl. Phys. 63
F 37	M. Blann, Ann. Rev. Nucl. Sci. 25 (1975) 123
ГцТ	C. Kalbach, Acta Phys. Slov. 25 (1975) 100
1 51	F. J. Luiden Report FCN-17, Febr. 1977, the Netherlands
61	I I Criffin Phys Rev Lett 17 (1966) 478
	T Pibancký P Obložinský and F Běták Nucl Phys
L 'J	1. Albansky, $1.$ Oblozinsky and $L.$ betak, Nucl. Thys.
F 07	M Böhning Nucl Phys. A152 (1070) 520
	\mathbf{F} C Williams In Phys. ALSZ (1970) 525
L 9 J	A T Phanucha-Doid Floments of the Theory of Mankey
[TO]	A. I. Bharucha-Reid, Elements of the fleory of Markov
	Processes and Inelr Applications (Mc Graw-nill Inc.,
F2 2 3	New York, 1960)
[TT]	E. Betak, Comp. Phys. Comm. 9 (1975) 92 and 10 (1975) 71
[12]	S. Pearlstein, Nucl. Sci. Engng. 23 (1965) 238
[13]	T. Ericson, Advanc. Phys. 9 (1960) 425
[14]	C. Kalbach, Nucl. Phys. A210 (1973) 590
[15]	C. Kalbach, Z. Physik A287 (1978) 319
[16]	Z. T. Bődy, Report ZfK-382 (1979) 150 Dresden
[17]	A. Schett et al., Compilation of threshold reaction
	neutron cross sections, EANDC 95 "U" (1974) 191
[18]	Z. T. Bődy and J. Csikai, Atomic Energy Rev. 11 (1973) 153
[19]	E. Holub and N. Cindro, Phys. Lett. 56B (1975) 143
[20]	P. Obložinský, ATOMKI Közl. 18 (1976) 215

Referee: I. Angeli

АТОМКІ Közlemények 23 (1981) 69-79 ДИФРАНЦИОННОЕ РАССЕЯНИЕ ПРОТОНОВ ЯДРАМИ С ВЫБИВАНИЕМ НУКЛОНОВ*

К. Сайлер

Институт экспериментальной физики, Университет имени Л. Кошута H-4001 Дебрецен, Pf. 105, BHP.

В.Н. Тартаковский

Кафедра теории ядра и элементарных частиц, Киевский государственний университет имени Т.Г. Шевченко, Киев, СССР

Получены формулы для сечений дифракционного рассеяния протонов ядрами, сопровождающегося выбиванием нуклонов из ядер, которые описываются в рамках многочастичной оболочечной модели. На примере расчетов сечений реакций ¹²С(p,2p)¹¹В исследованы типичные распределения в рассматриваемом процессе. Ряд полученных результатов сравнивается с расчетами в другом высокоэнергетическом приближении.

NUKLEONKIÜTÉSSEL JÁRÓ DIFFRAKCIÓS PROTONSZÓRÁS ATOMMAGOKON. Kifejezéseket kaptunk protonok atommagokon történő, nukleonkiütéssel járó diffrakciós szóródásának hatáskeresztmetszeteire, az atommag leirására a sokrészecskés héjmodellt használva. A ¹²C(p,2p)¹¹B reakció példáján tanulmányoztuk a tipikus eloszlásokat a vizsgált folyamatban. A kapott eredmények egy részét összehasonlitottuk más nagyenergiáju közelitésben végzett számitásokkal.

DIFFRACTIVE PROTON-NUCLEUS SCATTERING FOLLOWED BY NUCLEON KNOCK-OUT. Formulae are given for the cross-sections of diffractive scattering of protons on nuclei, followed by the knock-out of nucleons using the many-particle shell-model for the discription of the nuclear states. As an illustration, distributions typical of the investigated process, are calculated for the ${}^{12}C(p,2p){}^{11}B$ reaction. Some of the results are compared with those of other high-energy approximations.

*Авторы посвящают работу профессору Й. Чикаи по случаю его 50-летия.

1. Введение

При облучении атомных ядер высокоэнергетическими протонами или другими адронами могут происходить с большой вероятностью процессы выбивания из ядер нуклонов, которые, как и рассеянные частицы, будут двигаться в основном в направлении падения первичных частиц, поскольку в этом случае будет велика продольная составляющая переданного импульса. Такие процессы можно описать используя различные высокоэнергетические приближения. В частности, с использованием одного из таких приближений в работе [1] изучался процесс ¹²С(p,2p)¹¹В.

В настоящей работе исследуются процессы выбивания нуклонов из многонуклонных ядер, когда переданный им импульс 🕏 перпендикулярен импульсу падающего протона Р₁ и к<<Р₁. Будем считать, что энергия падающего протона при этом такова, что его длина волны 🛪 мала по сравнению с радиусом d нуклон-нуклонного взаимодействия. В этом случае будет применимо дифракционное приближение [2-4]. Хотя вероятность процесса при таких условиях заметно меньше, чем в случае наличия большого продольного переданного импульса, теория дифракционного рассеяния адронов ядрами хорошо разработана [2-5], а из сравнения полученных в настоящей работе формул для сечений процессов с данными соответствующих экспериментов нетрудно извлекать информацию о свойствах ядер, поскольку формулы в рассматриваемом приближении имеют довольно простую структуру. Здесь мы для описания состояний ядер используем многочастичную оболочечную модель с LS-связью. Но в случае необходимости нетрудно получить выражения для сечений и для других ядерных моделей.

Энергии падающих протонов при X<<d будут порядка сотен Мэв и выше, так что их кинетическая энергия будет велика по сравнению с энергией связи нуклонов в ядре и взаимодействие падающей частицы с нуклонами ядра можно рассматривать независимо. В этом случае профилируюшую функцию, описывающую взаимодействие падающей частицы с ядром, можно выразить через профилирующие функции, характеризурующие взаимодействие падающей частицы с каждым нуклоном ядра.

В ранних работах [2,3,6-8], в которых условие $\star <<$ не достаточно хорошо выполнялось и считалось, что длина волны \star мала лишь по сравнению с размерами всего ядра, имели дело с профилирующими функциями для ядра как целого, без учета его микроструктуры. Однако такой подход не позволял последовательно рассматривать процессы выбивания частиц из ядра и изучать структуру ядер-мишени. В нашем же случае высоких энергий, когда можно ввести нуклон-нуклонные профилирующие функции, появилась возможность на основе микроскопического подхода описать различные процессы неупругого рассеяния, в том числе, ядерные реакции, сопровождающиеся выбиванием нуклонов и сложных частиц из ядер, а также возможность изучения различных деталей ядерной структуры и ядерного взаимодействия. В частности, при сравнении расчетов с экспериментом можно точнее определять границы применимости используемых ядерных моделей.

Реанции выбивания протонов протонами из легких ядер успешно описывались в импульсном приближении методом искаженных волн (DWIA) [10, 12] в условиях эксперимента, когда продольная (относительно импульса падающего протона) составляющая переданного импульса, q, не пренебрежима относительно его поперечной составляющей. В случае, когда q, <<к, применение дифракционного приближения приводит к более простым формулам для расчета и поэтому представляет собой интерес для рассмотрения. Поскольку в нашем распоряжении не имеются экспериментальных данных по дифференциальным сечениям реакций в условиях, когда дифракционный подход применим, то мы даем лишь для дифференциальных сечений качественную оценку, для простоты пренебрегая как искажением волн падающего и отлетающих протонов так и релятивистскими эффектами. Учет искажения волн может привести к понижению сечений примерно на порядок [1], тогда как релятивистские эффекты представляют собой несколько десятков процентов.

Ниже при изучении реанции ¹²C(p,2p)¹¹В предполагается, что ядро-мишень не деформировано в основном состоянии. В работах [11,12] была учтена деформация основного состояния ядер при анализе реакции выбивания протонов протонами из ядер ⁶Li и ¹²C. Был сделан вывод, что учет деформации ядер приводит к существенным изменениям как в истолковании так и в теоретических значениях дифференциальных сечений. На основе результатов, полученных в [11], можно ожидать, что учет деформации ядра ¹²C приводит к повышению теоретических дифференциальных сечений на процентов 20 в нашем случае.

Рис. 1. Угловые распределения рассеянных протонов в реанции ${}^{12}C(p,2p){}^{11}B$ при Θ_2 =90 и ε_2^{*} =5,10 и 20 Мэв (кривые 1,2 и 3). Угол ψ = $|\Theta_1+\Theta_2|$.

2. Амплитуда перехода и общее выражение для дифференциального сечения процесса

Матричный элемент перехода U_{i→f}, пропорциональный амплитуде перехода, при выбивании нуклонов из определенной nl-оболочки ядра в импульсном приближении представляется в таком же виде, как и в работе [1], но при этом в дифракционном приближении необходимо положить q_m=0. Используя общее выражение для дифференциального сечения в [1] и переходя к системе центра масс (СЦМ) падающего протона и ядра-мишени, получим общее выражение для сечения в нашем приближении в нерелятивистском случае (М/M_A<<1):

$$d^{5}\sigma_{n\ell} = \frac{\Sigma}{\overline{\gamma}} \frac{1}{2I+1} \sum_{M_{I}\overline{M}_{I}} \frac{\Sigma}{\overline{m}_{s}} \frac{1}{2\mu_{s}\mu_{s}} \left| U_{i \rightarrow f} \right|^{2} \frac{d^{2}\kappa d^{3}k_{2}}{(2\pi)^{5}}$$
(1)

где k₂ - импульс выбитого нуклона в СЦМ падающей частицы и первоначального ядра. Все обозначения настоящей работы аналогичны обозначениям [1], ү≡[λ]αβLSTI - совокупность квантовых чисел ядра-остатка. Величина U_{i→f} в используемой нами многочастичной оболочечной модели имеет следующий вид:

$$\begin{array}{c} U_{\mathbf{i} \rightarrow \mathbf{f}} = \sqrt{\nu_{\mathbf{n} \mathbf{l}}} \left(\mathcal{L}^{\nu-1} \left[\overline{\lambda} \right] \overline{\alpha} \overline{\beta} \overline{L} \overline{S} \overline{T}; \quad \mathbf{l} \mathbf{s} \mathbf{t} \right| \right\} \mathcal{L}^{\nu} [\lambda] \alpha \beta L ST \right) \langle \overline{T} \overline{M}_{\mathsf{T}} \mathsf{t} \mathsf{m}_{\mathsf{t}} | \mathsf{T} \mathsf{M}_{\mathsf{T}} \rangle \times \qquad (2) \\ \times \qquad \Sigma \qquad \sqrt{(2\overline{I} + 1)(2j + 1)(2L + 1)(2S + 1)} \left\{ \begin{array}{c} \overline{L} & \mathcal{L} \\ \overline{S} & \mathbf{s} & S \\ \overline{I} & \mathbf{j} & \mathbf{I} \end{array} \right\} \langle \overline{I} \overline{M}_{\mathsf{I}} \mathbf{j} \mathsf{m}_{\mathsf{j}} | \mathbf{I} \mathbf{M}_{\mathsf{I}} \rangle \langle \mathbf{l} \mathsf{m} \mathsf{s} \mathsf{m}_{\mathsf{s}} | \mathbf{j} \mathsf{m}_{\mathsf{j}} \rangle \times \\ \times \langle \overline{k}_{2}^{2} \overline{\mathfrak{m}}_{\mathsf{s}} \overline{\mathfrak{m}}_{\mathsf{t}} | \sum_{\sigma \tau} \zeta^{*} (\tau) \chi^{*} (\sigma) \int d^{2} \rho e^{-i \kappa \overline{\rho}} \omega_{\nu} (| \overline{\rho} - \overline{b}_{\mathsf{j}} |) \chi_{\mu_{\mathsf{s}}} (\sigma) \zeta_{\mu_{\mathsf{t}}} (\tau) | \mathbf{n} \ell \mathsf{m} \mathsf{m}_{\mathsf{s}} \mathfrak{m}_{\mathsf{t}} \rangle . \end{array}$$

Суммирования в (1) и (2) нетрудно выполнить, используя свойства коэффициентов векторного сложения. В результате получим:

$$\frac{d^{5}\sigma_{n\ell}}{d\Omega_{1}d\Omega_{2}d\varepsilon_{2}^{\dagger}} = v_{n\ell} \times_{v\ell} \left(\frac{k_{1}}{\overline{P}_{1}}\right)^{2} M k_{2}^{\dagger} G_{n\ell} \frac{d\sigma_{NN}}{d\Omega_{N}}, \qquad (3)$$

$$G_{n\ell}(\vec{\kappa}, \vec{k}_{2}) = \frac{1}{(2\pi)^{3}(2\ell+1)} \sum_{m} |\langle \vec{k}_{2}| \exp(i\vec{\kappa}\vec{r})|n\ellm\rangle|^{2}, \quad (4)$$

$$\frac{\mathrm{d}\sigma_{\mathrm{NN}}}{\mathrm{d}\Omega} = \frac{\overline{P}_{1}^{2}}{(2\pi)^{2}} \left| \int \mathrm{d}^{2}\rho e^{-i\vec{\kappa}\vec{\rho}}\omega(\rho) \right|^{2}, \tag{5}$$

где ε_2' - кинетическая энергия выбитого нуклона в СЦМ падающего протона и ядра-мишени. $d\sigma_{NN}/d\Omega$ имеет смысл дифференциального сечения упругого NN -рассеяния в СЦМ двух сталкивающихся нуклонов. Заметим, что при $< \tilde{r} | \, \vec{k}_2' > = e^{i \, \vec{k}_2' \, \vec{r}}$ выражение (4) становится функцией разности $\vec{k}_2 - \vec{k} = \vec{k}_2$, которая представляет собой импульс нуклона в ядре до выбивания, а $G_{n\,\ell}(k_2)$ будет при этом распределением по импульсам нуклонов в n ℓ - оболочке ядра.

При конкретных вычислениях будем брать нуклон-нуклонные профилирующие функции в виде следующих гауссовских зависимостей:

$$\omega(\rho) = \frac{\sigma_+}{2\pi} [a \exp(-a\rho^2) - i\alpha b \exp(-b\rho^2)], \quad (6)$$

численные эначения параметров которых для энергии падающих частиц в лабораторной системе отсчета T₁=185 Мэв брались из работы [9]. В качестве начальных связанных однонуклонных волновых функций брались осцилляторные функции с параметром r_o=1,65 Ф, что соответствует ядру ¹²С, а в качестве конечных волновых функций нуклонов используем плоские волны. В этом случае распределения нуклонов по импульсам в 1s- и 1p- оболочках ядра будут иметь следующий простой вид:

$$G_{10}(k_2) = \frac{r_0^3}{\pi^{3/2}} e^{-k_2^2 r_0^2}, \quad G_{11}(k_2) = \frac{2r_0^2}{3} k_2^2 G_{10}(k_2). \quad (7)$$

Учитывались еще конечные размеры нуклонов, а также поправка на движение центра масс ядра, которую необходимо вводить в оболочечной модели.

Рис. 3. Распределения выбитых протонов по энергии ε_2' при $\Theta_2=90^\circ$ и $|\Theta_1|=5^\circ$, 10° и 20° (кривые 1,2 и 3). Здесь штрихпунктирная кривая 3 при $\Theta_1<0$ изображает сечение, увеличенное в 10 раз.

Рис. 4. Те же распределения, что и на Рис. 1 при 02=90° и є2=10 Мэв без учета (кривые 1) и с учетом (кривые 2) продольной составляющей переданного импульса. 3. Исследование угловых и энергетических распределений в реакции ¹²C(p,2p)¹¹B

Изучение ядерных процессов на совпадение, когда в эксперименте одновременно детектируются как рассеянная частица, так и продукты ядерной реакции, представляет эначительный интерес, поскольку соответствующие сечения на совпадение содержат в себе наиболее полную информацию о рассматриваемом процессе, его механизме, взаимодействии участвующих в процессе частиц, структуре начального и конечного ядер мишени.

Рис. 5. Те же распределения, что и на Рис. 2 (Рис. 5а) для є =10 Мэв и Θ₁=10° и на Рис. 3 (Рис. 5б) для Θ₂=90° и |Θ₁|=10° без учета (кривые 1) и с учетом (кривые 2) продольной составляющей переданного импульса.

Заметим, что в нашем случае рассеянный в выбитый нуклоны сильно отличаются по энергии и направлению своих импульсов, поэтому эффектами, связанными с тождественностью нуклонов можно пренебречь и волновые функции всей системы по этим двум нуклонам поэтому не антисимметризовались.

Рассмотрим, прежде всего, процессы, описываемые дифференциальным сечением (3). Расчеты сечения (3) выполнены в компланарной геометрии, когда импульсы $\vec{k_1}$, $\vec{k_1}$ и $\vec{k_2}$ лежат в одной плоскости, причем знаки углов Θ_1 и Θ_2 считаем положительными при расположении импульсов $\vec{k_1}$ и $\vec{k_2}$ по разные стороны от импульса $\vec{k_1}$. (Сечение инвариантно при одновременной замене знаков у углов Θ_1 и Θ_2).

На всех рисунках нашей работы штрих-пунктирные относятся к случаю выбивания нуклонов из 1s - оболочки ядра (n=1, l=0), а сплошные кривые - из 1р - оболочки ядра (n=1, l=1). Распределения нуклонов по углам и энергиям, описываемые формулой (3),

Рис. 6. Угловая корреляция как функция угла рассеяния 0₁. Кривые 1 относятся к случаю перпендикулярных плоскостей рассеяния и выбивания. Кривые 2 соответствуют случаю 0₂=0₁. Кривые 3 изображают сумму сечений для 0₁ и -0₁ при 0₂=90° в компланарной геометрии.

сильно различаются при выбивании из различных оболочек (Рис. 1-5). Однако частично проинтегрированные сечения (Рис. 6-8) значительно слабее зависят от ядерных оболочек. Отметим наличие двух максимумов на рисунках 1 и 2 в случае выбивания нуклонов из 1р - оболочки, а также наличие симметрии зависимостей на Рис. 2 относительно замены Θ₂ на π-Θ₂ отдельно для области положительных и отрицательных значений Θ₂. При Θ₁→О все сечения на Рис. 2 становятся изотропными, а при єі́→О эти сечения зануляются. С уменьшением угла рассеяния Θ₁ ширины максимумов кривых на Рис. 3 уменьшаются, а сами максимумы сдвигаются в сторону значения єі́=О.

Рисунки 4 и 5 иллюстрируют степень отличия дифракционного приближения и одного из высокоэнергетических приближений (где учитывается q₁₁) использованного в [1]. Видно, что в ряде случаев отличия весьма существенные.

На рисунке 6 изображено проинтегрированное по є' сечение (3), то есть

$$\frac{d^{4}\sigma_{n\ell}}{d\Omega_{1}d\Omega_{2}} = v_{n\ell} \times_{v\ell} \left(\frac{k_{1}}{\bar{P}_{1}}\right)^{2} L_{n\ell} \frac{d\sigma_{NN}}{d\Omega} , \qquad (8)$$

$$L_{n\ell} = \int_{0}^{\infty} d\epsilon_{2}^{\prime} \sqrt{2M^{3}\epsilon_{2}^{\prime}} G_{n\ell}(|\bar{k}_{2}^{\prime}-\bar{k}|).$$
(9)

Рис. 7. Зависимости сечений $d^3\sigma_{n\ell}/(d\Omega_1 d\epsilon_2^{\dagger})$ от угла рассеяния (Рис. 7а) при $\epsilon_2^{\dagger}=6$, 12 и 18 Мэв (кривые 1,2 и 3) и от энергии выбитого нуклона ϵ_2^{\dagger} при $\Theta_1=10^\circ$, 15° и 20° (Рис. 76, 7в и 7г).

Для наших волновых функций, вводя безразмерные обозначения n=rok, x=sin 0₂ cos ф (ф - угол между плоскостью рассеяния (k₁, k₁) и плоскостью выбивания (k₁, k₂), для 1s - и 1p - оболочек получим

$$\begin{split} L_{10}(\eta,\chi) &= (2\pi)^{-1} e^{-\eta^2} \{ e^{\eta^2 \chi^2} [1 + erf(\eta\chi)](\eta^2 \chi^2 + \frac{1}{2}) + \eta\chi/\sqrt{\pi} \}, \\ L_{11}(\eta,\chi) &= (3\pi)^{-1} e^{-\eta^2} \{ e^{\eta^2 \chi^2} [1 + erf(\eta\chi)] \Big[(\eta^2 \chi^2 + \frac{1}{2})(\frac{1}{2} + \eta^2(1 - \chi^2)) + \frac{1}{2} \Big] + \\ &+ [\frac{1}{2} + \eta^2(1 - \chi^2)]\eta\chi/\sqrt{\pi} \} . \end{split}$$

В случае перпендикулярных плоскостей рассеяния и выбивания (φ=π/2) χ≖О и сечения не зависят от угла Θ₂. Положения максимумов кривых 3 на Рис. 6 довольно чувствительны к выбору значения структурного параметра г₀.

Рис. 8. Угловые и энергетические распределения выбитых нуклонов. Зависимости сечений $d^3\sigma_{\rm p}\ell/(d\Omega_2\,d\epsilon_2^i)$ от Θ_2 (Рис. 8а) при ϵ_2^i =10 и 20 Мэв (кривые 1 и 2) и от ϵ_2^i (Рис. 86) при Θ_2 =0°, 45° и 90° (кривые 1,2 и 3). Зависимости распределений $d^2\sigma_{\rm n}\ell/d\Omega_2$ от Θ_2 (Рис.8в) и $d\sigma_{\rm n}\ell/d\epsilon_2^i$ от ϵ_2^i (Рис.8г). Штрих-пунктирная кривая на Рис. 8в изображает увеличенное в 10 раз сечение.

Проинтегрировав (3) по направлениям импульса выбитого протона, получим сечение

$$\frac{d^{3}\sigma_{nl}}{d\Omega_{1}d\varepsilon_{2}^{\dagger}} = v_{nl} \times_{vl} \left(\frac{k_{1}r_{0}}{\overline{P}_{1}}\right)^{2} MJ_{nl} \frac{d\sigma_{NN}}{d\Omega}, \qquad (10)$$

$$J_{n\ell} = \frac{k_{2}^{2}}{r_{0}^{2}} \int d\Omega_{2} G_{n\ell}(|\vec{k}_{2} - \vec{\kappa}|), \qquad (11)$$

изображенное на Рис. 7. Вводя обозначение ζ=r_ok², для нашего конкретного случая имеем

$$J_{10}(\zeta,\eta) = \frac{1}{\eta\sqrt{\pi}} \left[e^{-(\zeta-\eta)^2} - e^{-(\zeta+\eta)^2} \right]$$

$$J_{11}(\zeta,\eta) = \frac{2}{3\eta\sqrt{\pi}} \left\{ J_{10}(\zeta,\eta) + \left[(\zeta-\eta)^2 e^{-(\zeta-\eta)^2} - (\zeta+\eta)^2 e^{-(\zeta+\eta)^2} \right] \right\}.$$

Функции J_{nl} и L_{nl}, как следует из их явного вида, в используемой нами модели являются универсальными функциями ζ, η и к и не зависят от конкретного ядра.

Распределения, показанные на Рис. 8, получаются интегрированием (3) по углам рассеяния протона и зависят только от переменных выбитого нуклона. Эти распределения как функции энергии є¹ и угла вылета Θ₂ могут существенно отличаться от соответствующих распределений рассеянной частицы, но они менее чувствительны к ядерной структуре, чем сечения на совпадения. Нроме того их трудно выделять экспериментально в рассматриваемом процессе.

Литература

1] Н. Сайлер, В.Н. Тартаковский, АТОМКІ Közl. 22 (1980) 131. 2] А. И. Ахиезер, А. Г. Ситенко, ЖЭТФ, 33 (1957) 1040.

- [3] А. Г. Ситенко, Препринт Института теоретической физики 71-105Р, Ниев, 1971.
- 4] Р. Глаубер, УФН 103 (1971) 641.
- 5] В. К. Тартаковский, К. Сайлер, Влияние деталей структуры малонуклонных ядер на процессы с участием быстрых частиц. Доклад на XII Всесоюзном Совешании по теории систем частиц с сильным взаимодействием (21-24 мая 1980 года. г. Вильнюс).
- [6] Ю. А. Бережной, А. П. Созник, Ядерная физика, 29 (1979) 350
- [7] В. Н. Тартаковский, К. Сайлер, А. П. Логинов, Межвузовский тематический сборник "Микроскопические расчеты легких ядер", г. Налинин, 1980 г., 4 стр. (в печати).
- 8] Е. И. Исматов, К. Сайлер, В. К. Тартаковский, В. И. Шульга, Вестник Киевского госуниверситета, №22, 1981 г., (в печати)
- 9] А. Г. Ситенко, ЭЧАЯ, 4 (1973) 556.
- [10] R. Bengtsson, T. Berggren, Ch. Gustafsson, Phys. Rep., **41C** (1978), 191
- [11] D. F. Jackson, Phys. Rev., 115 (1967) 1065.
- [12] H.-B. Hakansson, T. Berggren, R. Bengtsson, The single--nucleon formfactor for knock-out and pick-up reactions in deformed nuclei, Lund, April 1978.

Рецензент: Т. Вертше

ATOMKI Közlemények 23 (1981) 81-87

DETERMINATION OF CI AND S IN CRUDE OIL SAMPLES BY NEUTRON ACTIVATION ANALYSIS AND X-RAY FLUORESCENCE METHOD*

S. SZEGEDI, A. PÁZSIT

Institute of Experimental Physics Kossuth University, 4001-Debrecen, Hungary

CS. M. BUCZKÓ

Isotope Laboratory Kossuth University, 4010-Debrecen, Hungary

The applicability of X-ray fluorescence analysis (XRF) and thermal neutron activation analysis (NAA) for the determination of CI and S concentration in crude oil samples has been investigated. A ⁵⁵Fe exciting source and a Si(Li) detector for X-ray fluorescence analysis, furthermore a 250 μ g ²⁵²Cf neutron source in water moderator and a Ge(Li) detector for neutron activation analysis were used in the investigations. Sensitivity for CI and S by XRF method is 0.02 w% and for CI by NAA method 0.4 w%.

ASVÁNYOLAJ MINTÁK CI ÉS S TARTALMÁNAK MEGHATÁROZÁSA NEUTRON-AKTIVÁCIÓS ÉS RÖNTGENFLUORESZCENCIA MÓDSZERREL. Ásványolajok CI és S koncentrációjának meghatározását vizsgáltuk röntgenfluoreszcencia módszer és neutronaktivációs analizis felhasználásával. A röntgenfluoreszcencia módszer esetében ⁵⁵Fe gerjesztőforrást és Si(Li) spektrométert, a neutronaktivációs analizisnél pedig vizmoderátorban elhelyezett, kb. 250 μg ²⁵²Cf neutronforrást és Ge(Li) spektrométert használtunk. A CI és S meghatározásának érzékenysége röntgenfluoreszcencia módszer esetében 0.02 s%, mig a neutronaktivációs analizisnél a CI-meghatározás érzékenysége 0.1 s%.

ОПРЕДЕЛЕНИЕ КОНЦЕНТРАЦИИ ХЛОРА И СЕРЫ В НЕФТИ С ПОМОЩЫЭ НЕЙТРОНОАКТИВАЦИОННОГО И РЕНТГЕНОФЛУОРЕСЦЕНТНОГО АНАЛИЗА. Для определения концентрации хлора и серы в нефти были использованы рентгенофлуоресцентный и нейтроноактивационный анализы. В случае рентгенофлуоресцентного анализа возбуждающим источником служил кольцевое ⁵⁵ Fe и измерения были сделаны Si(Li) спектрометром, в нейтроноактивационном анализе использовался источник ²⁵² Cf весом 250 µг и спектры были сняты с помощью Ge(Li) спектрометра. Чувствительность определения хлора и серы составила 0,02 % для рентгенофлуоресцентного метода и 0,1 % для хлора в случае активационного метода.

*Dedicated to Professor J. Csikai on the occasion of his fiftieth birthday.

1. Introduction

The quality of crude oil samples depends on the C/H ratio as well as on the concentration of trace elements in them. Therefore, it is essentially necessary to know these parameters establishing the quality of crude oil samples and to choose the economical refining and processing procedures. Many times, these parameters should be continuously controlled because the quality of the crude oil samples collected in the pipe-lines from different wells, may change considerably.

The knowledge of the C/H ratio gives useful information on the calorific value, on the ratio of aromatic and nonaromatic components of oil samples and on the other hand, it helps to choose the optimal parameters of processing.

Among trace elements the knowledge of V, Cl and S concentration is especially important. Vanadium occurs in complex compounds, which cannot be cleared away even by distillation, and conduces to the corrosion of the equipment during the processing and utilizing procedure of this compound. A part of the S content can be washed out by water during the purification, but the other part, fixed to organic components remains in the product even after distillation. During the utilization SO₂ originates from this not eliminable part which also increases the corrosion. Cl occures usually in form of NaCl and it can be easily removed.

For the determination of hydrogen content and C/H ratio an analytical method based on neutron reflection has been worked out [1] and the disturbing effect of oxygen was examined. In Ref. 2 a report is given on the determination of V content in crude oil samples by on-stream neutron activation analysis.

The aim of the present work is to investigate the main characteristics of the XRF analysis in the measurement of S and Cl content and those of the NAA in the measurement of Cl content of crude oil samples.

2. Apparatus and measurement procedure

In the case of XRF method, we used a ⁵⁵Fe exciting source and a Si(Li) detector fed to a 1000-channel pulse-height analyser. A schematic layout can be seen in Fig. 1. The good resolution (210 eV at 6.4 keV) made it possible to separate the photo peaks in the XRF spectrum originating from the S and Cl content of oil and from the Ar content of air. Therefore, measurements could be carried out under atmospherical conditions avoiding an increased evaporation accompanying the vacuum procedure which would change the composition of crude oil samples. The bottom of the sample holder was a 2 µm thick polyethylene sheet.

In the case of Cl standard samples were prepared for calibration by dissolving CCl₄ in refined oil. Measuring time for each sample was 2000 s. The calibration curve can be seen in Fig. 2.

These standard samples were also used for the measuring of Cl content by neutron activation analysis. For irradiations a 250 μ g ²⁵²Cf neutron source was used which was placed into a water tank together with the samples. The activities of 1.64 and 2.17 MeV γ -lines from ³⁷Cl(n, γ)³⁸Cl reaction were measured by a Ge(Li) spectrometer. For this method the calibration curve can be seen in Fig. 3. The irradiation and measuring time was one hour.

Fig. 2. Calibration curve for Cl content determined by XRF method.

As it is very difficult to dissolve S in oil, we did not prepare standard samples. For measuring S content the calibration curve of Cl was used, taking into account the relative intensity ratio calculated for the excited radiation of S and Cl. This is a frequently used procedure in the XRF method. The fundamental principle of the calculation is that the measured intensity of the excited radiation of the elements depends unambiguously on the atomic number Z of the elements, the average atomic number \overline{Z} of the matrix and the geometry parameters of the experimental set up [3]. The equation for the counting

and two curves for the relative intensity vs. atomic number can be seen in Fig. 4. These curves and the calibration curve for Cl can be used to measure the concentration of the elements having the atomic numbers in the range of 16-23, by using ⁵⁵Fe exciting source at atmospherical conditions.

3. Results and discussion

The chlorine content of two Hungarian crude oil samples has been determined by XRF and NAA methods. The results can be seen in Table 1.

The sulphur concentrations of the various crude oil samples determined by XRF method and those got by chemical methods can be seen in Table 2. When using different methods, the average deviation of the results is approximately ±10 %.

The determination of Cl and S content can be falsified because of the inner exciting, caused by other elements in crude oil. So; before doing the quantitative analysis it is advisable to carry out a qualitative analysis to know all the elements in the oil and on the basis of that to make some corrections for the exact determination of the Cl and S contents.

Fig. 4. Relative intensity vs. atomic number (Z) in the case of two different matrixes (\overline{Z} =5.5 and 7.2), where μ_{iF} : photo-absorption cross section,

wir: fluorescent yield,

R_{iE}: relative intensity of i-line to that of all the lines, at the exciting energy E,

T: absorption of Be-window and air, and detector efficiency,

 $\mu_{\mbox{Mi}}$ mass absorption coefficient of matrix for characteristic radiation of component i

K_{iE}: ionization probability,

If we want to use a calibration curve for XRF method a special care must be taken that the average atomic number of standard oil samples should be equal to that of the examined crude oil samples. If this is not possible, we have to make a correction for the difference of the average atomic numbers by using the calculation in Fig. 4.

The average atomic number of an unknown sample can be determined from the XRF spectrum by using the intensity ratio of the elastic and inelastic scattering of the exciting radiation which is a monotonous function of the atomic number (Fig. 5) [4].

Table 1.

	Chlorine	content (w%)	
SAMPLE	XRF	NAA	
Kiskunhalas (0)	0.23 ± 0.01	0.21 ± 0.05	
Szank (0)	0.40 ± 0.03	0.37 ± 0.08	

Table 2.

SAMPLE	Sulphur cor	± Δ% relative	
	XRF	chemical method	
Soviet	1.09 ± 0.08	1.51	16.2
Kiskunhalas I.	0.79 ± 0.06	0.626	11.6
Szank I.	0.38 ± 0.03	0.392	1.6
Kiskunhalas II.	0.12 ± 0.02	0.147	10.4
Kiskunhalas III.	1.37 ± 0.09	1.25	4.6
Szank II.	0.46 ± 0.04	0.45	1.1
Szank III.	0.67 ± 0.05	0.52	12.5

As it can be seen in Fig. 4 the intensity of the excited radiation depends considerably on the average atomic number of the matrix. For example, using oil matrix of \overline{Z} =5.5 and water matrix of \overline{Z} =7.22 the ratio of the relative intensities from Cl is 2.53. This value was checked experimentally too, and the measured 2.15±0.02 intensity ratio is in good agreement with the calculated value. From these examinations it is evident that any matrix can be used for standard samples taken into account the relative intensity curves for different matrix values.

Sensitivity for Cl and S is 0.02 w% by XRF method and 0.1 w% for Cl by NAA method.

References

- [1] S. M. Al-Jobori, S. Szegedi, Cs. M. Buczkó, Radiochem. Radioanal. Letters 33 (1978) p. 133
- [2] S. M. Al-Jobori, S. Szegedi, J. Csikai, Radiochem. Radioanal. Letters 25 (1976) p. 87
- [3] T. Shiraiwa, N. Fujino, Japanese J. Appl. Phys. 5 (1966) p.886

[4] H. Kunzendorf, Nucl. Instrum. Meth. 99 (1972) p. 611.

Referee: M. Kis-Varga

ATOMKI Közlemények 23 (1981) 89-98

NUCLEAR EXCITATION BY POSITRON ANNIHILATION*

TAKESHI MUKOYAMA

Institute for Chemical Research, Kyoto University, Kyoto, Japan

The nuclear excitation process by positron annihilation has been reviewed. The existing theories and the experimental studies on this phenomenon are briefly described and discussed.

ATOMMAGGERJESZTÉS POZITRON-SZÉTSUGÁRZÁS ÁLTAL. Pozitronszétsugárzás által történő maggerjesztés folyamatát tekintjük át. Röviden ismertetjük és tárgyaljuk az e jelenségekre vonatkozó létező elméleteket és kisérleti munkákat.

ВОЗБУЖДЕНИЕ ЯДЕР АННИГИЛЯЦИЕЙ ПОЗИТРОНОВ. Обозревается возбуждения ядер аннигиляцией позитронов. Коротко описиваются и дискутируются существующиеся теории и экспериментальные работы, относящиеся к данному явлению.

1. Introduction

The brilliant success of the Dirac theory [1] in predicting the existence of the positive electron was confirmed by the experimental discovery of the positron among the secondary particles produced by cosmic rays [2]. According to the Dirac theory, this particle is represented as a hole in a sea of negative energy electrons. When an electron collides with a hole representing a positron, a radiative transition of the electron to an unoccupied negative energy state may take place. This transition, called positron annihilation, causes the disappearance of both particles and, in general, the appearance of electromagnetic radiations, the total energy of which is given

*Talk at the ATOMKI seminar on Sept. 11, 1980.

by $E=E_++E_-$, where E_+ and E_- are the total energies (including the electron rest mass) of the positron and electron, respectively [3].

From the conservation law of momentum, it follows that at least two quanta should be emitted in positron annihilation unless the electron is strongly bound to a nucleus. The most probable process is the case where the positron comes to rest before annihilation and which results in the emission of two photons in opposite directions in the laboratory system. In this case, each photon has an energy equal to m_0c^2 , where m_0 is the rest mass of the electron and c is the velocity of light in vacuum.

When an external field is strong enough to absorb the excess momentum, there are several special annihilation processes expected [4], though their probabilities are small. If the electron is strongly bound to a nucleus, such as in the case of K-shell electrons in heavy elements, the electromagnetic energy produced in annihilation can be emitted in the form of only a single photon, because the nucleus is available to take up the excess momentum. This sinlge-quantum annihilation (SQA) has been studied both theoretically and experimentally [5].

As a competitive process of SQA, another process can be considered by which a positron annihilates without the emission of radiation. This mode of annihilation, called radiationless or zero-quantum annihilation (ZQA), occurs when the SQA takes place with one of the K- or L-shell electrons and when simultaneously the excess energy liberated is used to eject another electron from the atom concerned, just like as the atomic Auger effect. The experimental evidence of this process was established by the present author [6].

There is an alternative mode of annihilation without the emission of radiation. When the energy released in annihilation process is of just the same amount as the excitation energy of the target nucleus, the nucleus can be excited by absorbing this energy, instead of being radiated as a photon, in a manner similar to nuclear photoexcitation. Thus the positron with insufficient energy to excite a nucleus by collision process can excite the nucleus through annihilation process with a strongly bound electron. In the present paper, this mode of annihilation is discussed in detail.

2. K-shell annihilation with nuclear excitation

In 1951, Present and Chen [7] proposed a new mode of annihilation, in which a positron annihilates with a K-shell electron and the excess energy liberated in the annihilation process is given to the nucleus with its subsequent excitation. In this way, the positron annihilates without emission radiation. This process may be called nuclear excitation by positron annihilation (NEPA). They have calculated the cross section for the excitation of the ¹¹⁵In nucleus to the principal activation level to be $\sim 10^{-26}$ cm² for an incident positron with total energy E₊=1.10 m₀c².

The NEPA process may be described as a transition of an electron from an orbital state into a vacant negative energy state in the continuum corresponding to the incident positron, accompanied by a nuclear transition from the ground state into an excited level. The diagram for this process is shown in Fig. 1(a). According to Pressent and Chen [7], the NEPA process can be considered as the reverse of internal conversion [Fig. 1(b)], if we neglect the fact that the energy states are negative. However, it is better to consider that the NEPA is the reverse of monoenergetic positron emission [Fig. 1(c)], which has been observed in the nuclear decay of radioisotopes [8].

Fig. 1. Diagrams for (a) nuclear excitation by positron annihilation, (b) internal conversion and (c) monoenergetic positron emission.

Neglecting the recoil energy of the nucleus, the energy liberated in annihilation and used to excite the nucleus can be expressed as

$$W = E_{p} + 2m_{o}c^{2} - B_{K}$$
, (1)

where E_p is the kinetic energy of an incident positron and B_K is the binding energy of the K-shell electron in the target atom. When W is just the energy difference between an excited level and the ground state of the nucleus, the NEPA process can take place. This resonance character is a distinct feature of the NEPA.

In usual experiments on positron annihilation, a monoenergetic beam of positrons is used to irradiate the target and annihilation process is identified by observing the radiations resulting from annihilation. However, in the case of the NEPA, the special experimental method should be used. In this

annihilation mode, the nucleus is only excited and no radiation is emitted. The excited nucleus may emit radiations in the course of de-excitation, but it is very difficult to detect these de-excitation radiations during positron irradiation because they are masked by the predominant radiations due to other annihilation modes. Therefore, it is advantageous to separate positron irradiation from detection of de-excitation radiations, i.e. the induced activity of the target due to the NEPA process is measured after the end of positron irradiation. This procedure imposes some restrictions for the target nuclides. The target nucleus should have the excited levels which de-excite via a meta-stable state and the life of this meta-stable state should be considerably long. There are several nuclides in which the (γ, γ) reaction has been observed by photon irradiation. For such nuclides, we can detect the NEPA process by observing an isomeric transition from the metastable state.

Furthermore, it should be noted that the NEPA process has a resonance character and the resonance width is very narrow, in the order of nuclear level width of the excited level. In this case, it is of no use to make the incident positron beam monoenergetic by the use of magnetic β -ray spectrometers, because the positrons have continuous energy distribution in the target in a consequence of energy-loss straggling and most of them are out of the resonance level width. Considering these facts, it is favorable to irradiate the target directly by the positron source and make the solid angle subtended by the source to the target as large as possible.

3. Theoretical estimation

The mechanism of the NEPA process is a complete retarded interaction between the electron and the nucleus. However, for simplicity, Present and Chen [7] assumed that the process occurs in two steps; a positron annihilates with a K-shell electron and the nucleus is excited by absorbing the excess energy liberated. Then the NEPA cross section can be factored into the product of a cross section for the annihilation process and a probability of nuclear excitation by the photon. The latter is the ratio of the nucleus to act as a black body, the maximum absorption cross section for a photon of 2^{ℓ} -pole radiation with the propagation number k is given by $(2\ell+1)\pi k^{-2}$. When the upward transition from the ground state to the excited level is 2^{ℓ} pole, the NEPA cross section is expressed as

$$\sigma = \sigma_{aq} \left[\sigma_{ph} / (2l+1)\pi k^{-2} \right], \qquad (2)$$

where σ_{aq} is the positron annihilation cross section with a K-shell electron with emission of a spherical wave converging on the nucleus and σ_{ph} is the photoexcitation cross section. In the absence of an adequate nuclear theory, σ_{ph} is usually taken from the measured value.

On the other hand, Present and Chen [7] derived an analytical expression for σ_{aq} in the Born approximation for $\alpha Z << 1$. Here α is the fine structure constant. Using Dirac wave functions and after some approximations, they found

$$\sigma_{aq} = \pi \alpha^2 Z^3 (e^2 / m_o c^2)^2 (\xi^2 + 2\xi + 3) (\xi + 1)^{-9/2} (\xi - 1)^{-1/2} , \qquad (3)$$

for electric dipole (El) transition, where $\xi = (E_0 + m_0 c^2)/m_0 c^2$. Following the method of Present and Chen, Watanabe et al. [9] obtained similar expressions for other multipole fields:

$$\sigma_{aq} = \frac{8}{9} \pi \alpha^2 Z^3 (e^2 / m_o c^2)^2 (\xi + 1)^{-1} \frac{1}{2} (\xi - 1)^{\frac{1}{2}} (\xi^2 + \xi + 3) , \qquad (4)$$

for electric quadrupole (E2) transition and

$$\sigma_{aq} = \pi \alpha^2 Z^3 (e^2 / m_o c^2)^2 (\xi + 1)^{-7/2} (\xi - 1)^{1/2} , \qquad (5)$$

for magnetic dipole (M1) transition.

Recently Grechukhin and Soldatov [10] calculated the NEPA cross sections for ¹¹⁵In and ²³⁵U, within the framework of the transition current and charge scheme. The wave functions of the K-shell electron and incident positron were obtained by solving Dirac equations for the relativistic Hartree-Fock-Slater central potentials. For the nuclear part, they used the single-particle Weisskopf nuclear transition matrix element. The calculations were made for E0, E1, E2 and M1 multipoles and the results were found to be much smaller than the two-step model of Present and Chen, Eq. [2].

4. Experimental studies

Experimental studies on the NEPA process have been reported for several nuclides and the partial level diagrams for these nuclides are shown in Fig. 2. The first experimental evidence of this process has been established by Mukoyama and Shimizu [11] for ¹¹⁵In in 1972. We irradiated a natural indium foil by positrons from a 7-mCi ²²Na source. The evidence of the NEPA process was confirmed by observing the conversion electrons from ^{115m}In after positron irradiation. The induced activity was measured with a coincidence-type low-background β -ray spectrometer. This consists of a large plastic scintillator and a small disc-shaped G-M counter which is mounted in a hollow cut at the lower surface of the scintillator. The indium foil was placed under the G-M counter and the pulses from the scintillation detector gated by the G-M pulses were recorded by a multichannel pulse-height analyzer. The spectrum of the conversion electrons due to the NEPA was observed as a difference of the counting rates of the indium foil before and after positron irradiation. We found a small but distinct peak at the expected energy in the electron spectrum.

The effective cross section was estimated from the observed peak. This cross section is defined as the cross section for the total number of positrons incident on the target irrespective of their energies. The effect of finite target thickness for conversion electrons was evaluated by solving an electron transport equation with a semi-infinite boundary condition.

Fig. 2. Partial level diagrams of the nuclides in which the NEPA process has been observed. The transitions relevant to the experiment are shown by the arrows. Data are taken from the corresponding references cited below (see the text).

"Cd

As it can be seen from Fig. 2, there are two excited levels in ¹¹⁵In which are known to cascade down to the 336-keV isomeric state. We neglected the contribution from the 1464-keV level and estimated the NEPA cross section for the 1078-keV level, because the number of positrons sufficient to excite the higher-energy level is supposed to be small. Then the cross section can be given by

$$\sigma = \sigma_{off} / n$$
 (6)

11510

where σ_{eff} is the effective cross section and n is the ratio of the fraction of positrons within the interval of the resonance level width of the excited level. Assuming the positron spectrum emitted from the thick ²²Na source to be the same as that from a thin source, the energy spectra of positrons inside the target were estimated from those after passing through thin foils of various thicknesses corresponding to distances from the target surface. The value of n was evaluated by using these energy spectra and σ was found to be of the order of 10^{-24} cm².

Watanabe [12] investigated the NEPA process by observing the 336-keV γ rays emitted from the isomeric state ^{115m}In. For this purpose, he used a high-resolution Ge(Li) detector. It is advantageous to detect γ rays, because the primary source of the background in the experiment of Mukoyama and Shimizu is due to the natural β radioactivity of the indium foil. Another advantage consists in the fact that the energy-loss and attenuation effects in the target are negligible for γ rays. The NEPA process was observed by the use of two positron sources; a 20-mCi ²²Na source and a 1-Ci ⁶⁴Cu source. In the case of the ⁶⁴Cu source, the energy spectrum of positrons emitted from the source was measured with a double-focusing β -ray spectrometer. Other experimental procedures are the same as those of Mukoyama and Shimizu [11]. The cross sections obtained with two sources are in agreement with each other within the experimental errors.

Watanabe et al. [9] improved their previous experiments [11,12], and obtained more accurate cross sections for the NEPA. A much stronger ⁶⁴Cu source of about 10 Ci was produced by nuclear reactor and used as a positron source. After positron irradiation, the 336-keV γ rays from ^{115m}In were measured by a Ge(Li) detector. Fig. 3(a) shows the γ -ray spectrum of a natural indium foil after irradiation in a 700-Ci ⁶⁰Co irradiation facility. In this case, the isomeric state is produced by the (γ,γ ,) reaction. In Fig. 3(b) the same γ -ray spectrum induced by the NEPA process is shown. The theoretical values of the NEPA cross sections for the 1078-keV (E2) level and for the 1464-keV (M1) level were calculated by the two step model described above and the ratio of the cross section for the former level to that for the latter was evaluated and found to be 0.028. Using this value and σ_{eff} , the NEPA cross sections for these two levels were obtained separately.

Similar measurements of the NEPA cross sections have been made by Vishnevskii et al. for ¹¹⁵In, ¹¹³In and ¹¹¹Cd [13], by Watanabe et al. for ¹¹¹Cd [14] and for ¹⁷⁶Lu [15]. In the experiment of Vishnevskii et al. [13], three foils of the target material were sandwiched between each pair of four ⁶⁴Cu sources and positron irradiation was made with high efficiency. They determined the cross sections for ¹¹⁵In and ¹¹³In, but for ¹¹¹Cd only the effective cross section was estimated because the excited level of this nuclide was not clear. On the other hand, Watanabe et al. [14] considered the excited level of ¹¹¹Cd to be 1330 keV. In the γ -ray spectrum they found a suggestion of a peak at the energy corresponding to the isomeric transition, but they did not accept it as a definite observation of the formation of the isomeric state because of the NEPA cross section for this nuclide.

Fig. 3. Observed spectra of γ rays from a natural indium foil. (a) After irradiation by γ rays in a 700-Ci ⁶⁰Co irradiation facility, by (γ, γ) reaction. (b) After irradiation by positrons from a ⁶⁴Cu source, by the NEPA process.

In the case of ¹⁷⁶Lu, Watanabe et al. [15] observed the 88.35-keV γ rays of the daughter nuclide ¹⁷⁶Hf (cf. Fig. 2). Since this γ ray is also emitted following the ground-state decay of ¹⁷⁶Lu, a special care was taken to estimate the area under the peak in the γ -ray spectrum. The induced activity due to the NEPA was obtained as the difference between the photopeak areas of the lutecium foil before and after positron irradiation. Although the excited level of the ¹⁷⁶Lu nucleus is not clear, we assumed that only the 1083-keV level can be excited by the NEPA and estimated the cross section for this level.

All the measured cross sections are listed in Table 1. The energy of the excited level, the positron source used and the employed experimental method are also shown in the table. It is clear from the table that all the values for the 1078-keV level in ¹¹⁵In agree well with each other within the experimental errors and that the value for ¹¹³In and the upper limit for ¹¹¹Cd are somewhat smaller than these values, but in orderof-magnitude agreement with them. The largeness of the value for the 1464-keV level in ¹¹⁵In can be ascribed to the fact that the multipolarity of the upward transition to this level from the ground state is M1. On the other hand, the high value for ¹⁷⁶Lu may be supported by the large photoexcitation cross section of this nuclide [16]. However, all the measured values

Nuclide	Level	Positron	Method	Cross section	Ref.
	(keV)	source		(cm^2)	
¹¹⁵ In	1078	²² Na	e-	∿ 10 ⁻²⁴	[11]
	1078	²² Na	γ	$(4.6\pm3.2) \times 10^{-24}$	[12]
	1078	⁶⁴ Cu	γ	$(8.7\pm4.2) \times 10^{-24}$	[12]
	1078	⁶⁴ Cu	γ	(3.9±1.4) × 10 ⁻²⁴	[9]
	1464	⁶⁴ Cu	γ	$(1.4\pm0.5) \times 10^{-22}$	[9]
	1078	⁶⁴ Cu	γ	$(4.8\pm2.1) \times 10^{-24}$	[13]
113 _{In}	1129	⁶ ⁴ Cu	°γ	$(1.9\pm1.0) \times 10^{-24}$	[13]
¹¹¹ Cd		⁶ ⁴ Cu	Υ	σ_{eff} only	[13]
	1330	⁶ ⁴ Cu	Υ	< 8.6×10 ⁻²⁵	[14]
176 _{Lu}	1083	⁶⁴ Cu	Υ	$(9.0\pm3.2) \times 10^{-22}$	[15]

Table 1. Measured values of the NEPA cross section.

in Table 1 are one or two order of magnitude higher than the calculated values in the two-step model.

The possible reasons for the large discrepancy between the measured and calculated values are considered to be the following: First, the theoretical values were calculated by the twostep model, which is based on many assumptions. Moreover, they were estimated by using the measured values of $\sigma_{\rm Dh}$. Second, the positron spectrum inside the target was estimated from the spectra of positrons passing through the thinner foils. This corresponds to the neglection of backscattering effect in the target. For thick targets, this assumption is not so good. Third, other excited levels also may exist which de-excite to the isomeric state. Finally, in order to estimate both theoretical and experimental cross sections, we used many nuclear parameters of the excited level as well as the photoexcitation cross section. The number of experiments for these values is not so large and the experimental errors are sometimes very large. The experimental values scatter each other.

There are many other nuclides in which the (γ,γ) reaction has been already observed ⁷⁷Se, ⁷⁹Br, ⁸⁷Sr, ¹⁰³Rh, ¹⁰⁷Ag, ¹⁰⁹Ag, ¹³⁵Ba, ¹⁸⁰Hf, ¹⁸¹Ta, ¹⁸¹Os, ¹⁹⁰Os, ¹⁹⁹Hg and ²⁰⁴Pb. It is hopeful to try to observe the NEPA process for these nuclides. For this purpose, experimental studied on the nuclear parameters of the excited levels in these nuclides, such as energy, spin, parity, multipolarity of the upward transition from the ground state and branching ratio to the isomeric state, should be performed with accuracy. It is also important to measure the photoexcitation cross section for these nuclides.

Acknowledgement

The author wishes to thank prof. D. Berényi and the members of the Nuclear Atomic Physics Group for their kind hospitality during his stay in ATOMKI. He is also grateful to the Yamada Science Foundation for the financial support.

References

- [1] P. A. M. Dirac, Proc. Camb. Phill. Soc. 26 (1930) 361; Proc. Roy. Soc. (London) A133 (1931) 60. 2] C. D. Anderson, Phys. Rev. 41 (1932) 405; 43 (1933) 491.
- [3] D. Berényi and S. A. H. Seif El-Nasr, ATOMKI Közlemények 13 (1971) 137.
- [4] D. Berényi, Proc. Intern. Conf. on Inner-Shell Ionization Phenomena and Future Applications, Atlanta, Georgia, 1972, ed. by R. W. Fink et al. (U. S. AEC, Oak Ridge, Tenn., 1973), p. 2175.
- [5] T. Mukoyama, H. Mazaki and S. Shimizu, Phys. Rev. A, 20 (1979) 82.
- [6] S. Shimizu, T. Mukoyama and Y. Nakayama, Phys. Rev. 173 (1968)405.
- [7] R. D. Present and S. C. Chen, Phys. Rev. 83 (1951) 238; * 85 (1952) 447.
- [8] For example, see S. Shimizu, Y. Nakayama, H. Hirata and H. Mazaki, Nucl. Phys. 54 (1964) 265.
- [9] Y. Watanabe, T. Mukoyama and S. Shimizu, Phys. Rev. C 19 (1979) 32.
- [10] D. P. Grechukhin and A. A. Soldatov, Zh. Eksp. Teor. Fiz. 74 (1978) 13 [Sov. Phys. JETP 47 (1978) 6].
- [11] T. Mukoyama and S. Shimizu, Phys. Rev. C 5 (1972) 95.
- [12] Y. Watanabe, Master Thesis, Dept. of Nuclear Engineering, Kyoto University, 1977, unpublished.
- [13] I. N. Vishnevskii, V. A. Zheltonozhekii, V. P. Svyato and V. V. Trishin, Izv. Akad. Nauk. CCCP, Ser. Fiz. 43 (1979) 2142.
- [14] Y. Watanabe, T. Mukoyama and S. Shimizu, Phys. Rev. C 21 (1980) 1753.
- [15] Y. Watanabe, T. Mukoyama and R. Katano, to be published.

[16] Y. Watanabe and T. Mukoyama, to be published.

Referees: G. Hock E. Vatai

ATOMKI Közlemények 23 (1981) 99-112 RANGE AND REL DATA FOR LIGHT AND HEAVY IONS IN CR-39, CN-85 AND PC NUCLEAR TRACK DETECTORS

GY. ALMÁSI AND G. SOMOGYI

Institute of Nuclear Research Debrecen, Pf. 51. Hungary

Range-energy and restricted energy loss (REL)-energy data are calculated for light and heavy ions over the energy interval 0.02-20 MeV/nucl in CR-39 (allyl diglycol polycarbonate), CN-85 (Kodak-Pathé cellulose nitrate) and PC (bisphenol-A polycarbonate) nuclear track detectors which are being extensively used in many applications. The method used to generate the range and REL data in any stopping material of known composition is briefly outlined. The calculations are based on one of the popular semiempirical formalism used for the analysis of nuclear tracks in solids, as described by Henke and Benton (1967). The calculated data are listed for some representative ions (¹H, ⁴He, ¹²C, ²⁰Ne, ⁵⁶Fe and ²³⁸U) which may be reasonably used in determining the response function of polymeric nuclear track detectors. The REL data are given when using various ω_0 values between 0.1 and 1 keV. These may promote to find the best response curve for the recently found track detector material of CR-39 of unique sensitivity.

HATÓTÁVOLSÁG ÉS REL ADATOK KÖNNYÜ ÉS NEHÉZ IONOKRA CR-39, CN-85 ÉS PC NUKLEÁRIS NYOMDETEKTOROKBAN. Hatótávolság-energia és korlátozott energiaveszteség (REL)-energia adatokat számitottunk ki a 0.02-20 MeV/ate energiatartományban, könnyü és nehéz ionokra, CR-39 (allil-diglikol-polikarbonát), CN-85 (Kodak-Pathé celluloz nitrát) és PC (biszfenol-A polikarbonát) nukleáris nyomdetektorokban, amelyeket az utóbbi időben széleskörben kezdenek használni. A számitási módszert, amelyet a hatótávolság és REL adatok tetszőleges, ismert összetételü anyagokban való meghatározására használtunk, röviden körvonalazzuk. A számitások a Henke és Benton (1967) által leirt félempirikus formalizmuson alapszanak, amelyet gyakran használnak szilárd anyagokban a nukleáris nyomok analizisére. Számitási eredményeinket néhány olyan tipikus ionra vonatkozóan adtuk meg, amelyek müanyag nyomdetektorokban lehetőséget nyujthatnak a válasz-függvény meghatározására. A REL adatokat a 0.1-1 keV tartományba eső különböző ω₀ értékekkel számolva adtuk meg. Ez elősegitheti a legjobb válaszfüggvény meghatározását a nemrég felfedezett, nagyérzékenységü CR-39 nyomdetektor esetében.

ДАННЫЕ ПРОБЕГА И "REL" ДЛЯ ЛЕГНЫХ И ТЯЖЕЛЫХ ИОНОВ В ЯДЕРНЫХ ТРЕНОВЫХ ДЕТЕНТОРАХ СR-39, CN-85 И РС. Данные для зависимости пробега и ограниченной удельной энергетической потери от энергии расчитаны для легкых и тяжелых ионов в интервале энергии 0,02-20 Мэв /нукл в случае ядерных трековых детекторов CR-39 (allyl diglycol polycarbonate), CN-85 (Kodak-Pathé cellulose nitrate) и РС (bisphenol-A polycarbonate), получивших в последнее время широкое применение. Кратко описан метод расчета данных пробега и "REL" в любом веществе с известным составом. Расчеты основываются на полуэмпирическом формализме Генке и Бентона (1967), который часто используется для анализа ядерных треков в твердых телах. Расчитанные данные табулированы для нескольних типичных ионов (¹H, ⁴He, ¹²C, ²⁰Ne, ⁵⁶Fe, ²³⁸U), которые можно использовать для определения функции характеристики полимерных ядерных трековых детекторов. Данные "REL" были расчитаны с рассмотрением разных ω_{O} в интервале 0.1 и 1 кэВ. Это дает возможность получения наилучшей функции характеристики недавно открытого, высокочувствительного трекового детектора CR-39.

1. Introduction

The knowledge of the energy loss responsible for the etchable nuclear tracks and of the range-energy relation of nuclear particles is an essential requirement in almost all the fields when using any nuclear track detector. To meet this need a computer programme has been developed which can be used for the calculation of range and energy loss data for any ion entering a given track detector of known chemical composition. In our calculations, as an energy loss responsible for the selective etchability of the damage zones produced along the particle trajectories in dielectric solids, the so-called restricted energy loss (REL) is considered (see the report by Benton, 1968).

In our present report computed range and REL data are given for some representative light and heavy ions over an energy interval 0.02-20 MeV/nucl., in which interval studies are frequently performed with using polymeric nuclear track detectors. The above data are computed for the chemical compositions related to the CR-39, CN-85 and PC track detectors. Request for such information have arisen in many recent works, especially for the case of the newly developed CR-39 and CN-85 (Kodak-Pathé product) detector materials. The urgent need of range-energy and REL data is particularly true in the case of CR-39 track detectors of unique sensitivity, which are being effectively utilized in more and more wide field of applications. The data computed for PC detector are listed only for the sake of comparison.

> IUDOMANYOS AKADEMIA KONYVTARA
2. Outline of the range calculations

Our range calculations are based on a semiempirical theoretical model presented by Barkas and Berger (1964) and modified and extended by Henke and Benton (1967). The uncertainty in the range data obtained by such a calculation formalism, according to the independent set of measurements performed in the energy interval 1-10 MeV/nucl is smaller than 2 %. When using this calculation method, the range of different ions at a given velocity $v=\beta c$, can be derived from the relationship

$$R(\beta) = \frac{M}{Z^2} \left[\lambda(\beta) + B_{Z}(\beta)\right]$$

where $\lambda(\beta)$ is the range of an "ideal" proton (i.e. a proton with no charge neutralization near the stopping end of the trajectory), $B_z(\beta)$ is the generalized range extension caused by charge neutralization as the ion comes to rest, M and z are the mass and charge of the ion in the units of the proton. The expressions $\lambda(\beta)$ and $B_z(\beta)$ can be computed from the equations (6.15) and (6.18) given in the report by Benton (1968).

3. The REL calculation

In polymeric nuclear track detectors the restricted energy loss or REL-model has proved to be sufficiently good to characterize the etching behaviour of the damaged zones produced along nuclear tracks. In this model it is assumed that only knock-on electrons with energy smaller than a given maximum value ω_0 can play dominant role in causing etchable radiation damages. In the model, ω_0 is considered as a fitting parameter. In our present report for the calculation of REL (ω_0) values we used the formulae (see the report by Somogyi et al. 1976) as follows

	REL1= $z^2(\lambda'(\beta)+$	$\frac{B_{z}^{'}(\beta)(1-\beta^{2})^{3/2}}{931.141\beta} - 1$	if	∆ ₁ ≤0
REL=	REL2=REL1- Δ_1 ,		if	∆ ₁ ≥0
	REL3=REL1-REL2+	× ^Δ 2	if	$\Delta_1 + \Delta_2 \leq \text{REL2}$

where

 $\frac{\lambda'(\beta)}{(6.20)}$ and $B'_{Z}(\beta)$ can be computed from the equations (6.16) and (6.20) given in the report by Benton (1968);

$$\Delta_1 = \operatorname{Kn} z_{eff}^2 \quad \beta^{-2} \quad \left(\frac{\ell_n}{\omega_0} - \beta^2 \right),$$

$$\Delta_2 = 2 \operatorname{Knz}_{\text{eff}}^2 \beta^{-2} \left(\underbrace{\&n}_{C} \frac{\omega_{O}}{I_{C}} - C(\beta) \right),$$

$$\begin{split} & \mathsf{K} = 2\pi e^{4} / m_{e} c^{2} = 2.55 \ 10^{-2.5} \ \text{MeV cm}^{2}, \\ & \mathsf{n} = \rho \mathsf{N}_{A} / \langle \mathsf{A} / \mathsf{Z} \rangle \quad \text{electron cm}^{-3}, \\ & \mathsf{z}_{eff} = \mathsf{z} [1 - \exp(-125\beta / \mathsf{z}^{2'3})] , \\ & \beta^{2} = 1 - [1 + (\mathsf{E} / 931.141 \ \mathsf{M})]^{-2}, \\ & \omega_{m} = 2\pi c^{2} \beta^{2} (1 - \beta^{2})^{-1} , \\ & \mathfrak{L}_{n} \quad \mathsf{I}_{c} = \langle \mathsf{A} / \mathsf{Z} \rangle \sum f_{1} \langle \mathsf{Z} / \mathsf{A} \rangle_{1} \ \mathfrak{L}_{n} \mathsf{I}_{1}, \\ & \mathsf{I}_{n} \quad \mathsf{I}_{c} = \langle \mathsf{A} / \mathsf{Z} \rangle \sum f_{1} \langle \mathsf{Z} / \mathsf{A} \rangle_{1} \ \mathfrak{L}_{n} \mathsf{I}_{1}, \\ & \mathsf{I}_{1} \quad \mathsf{I}_{c} = \langle \mathsf{A} / \mathsf{Z} \rangle \sum f_{1} \langle \mathsf{Z} / \mathsf{A} \rangle_{1} \ \mathfrak{L}_{n} \mathsf{I}_{1}, \\ & \mathsf{I}_{1} \quad \mathsf{I}_{c} = \langle \mathsf{A} / \mathsf{Z} \rangle \sum f_{1} \langle \mathsf{I}_{2} / \mathsf{A} \rangle_{1} \ \mathfrak{L}_{n} \mathsf{I}_{2} \\ & \mathsf{I}_{n} \quad \mathsf{I}_{n} \quad \mathsf{L}_{n} \mathsf{I}_{n} \\ & \mathsf{I}_{n} \quad \mathsf{L}_{n} \quad \mathsf{I}_{n} \ \mathfrak{L}_{n} \mathsf{I}_{n} \\ & \mathsf{I}_{n} \quad \mathsf{L}_{n} \quad \mathsf{I}_{n} \\ & \mathsf{I}_{n} \quad \mathsf{L}_{n} \quad \mathsf{L}_{n} \\ & \mathsf{I}_{n} \quad \mathsf{L}_{n} \\ & \mathsf{I}_{n} \quad \mathsf{L}_{n} \\ & \mathsf{L}_{n} \quad \mathsf{L}_{n} \\ & \mathsf{L}_{n} \quad \mathsf{L}_{n} \\ & \mathsf{L}_{n} \quad \mathsf{L}_{n} \quad \mathsf{L}_{n} \\ & \mathsf{L}_{n} \quad \mathsf{L}_{n} \quad \mathsf{L}_{n} \\ & \mathsf{L}_{n} \quad \mathsf{L}_{n} \\ & \mathsf{L}_{n} \quad \mathsf{L}_{n} \\ & \mathsf{L}_{n} \quad \mathsf{L}_{n} \quad \mathsf{L}_{n} \quad \mathsf{L}_{n} \\ & \mathsf{L}_{n} \quad \mathsf{L}_{n} \quad \mathsf{L}_{n} \\ & \mathsf{L}_{n} \quad \mathsf{L}_{n} \quad \mathsf{L}_{n} \\ &$$

material, : can be found in the report by Barkas and Berger (1964). amn

the ion,

the chemical formula of

: density of the stopping material. ρ

In order to determine the response function (V_T/V_B versus REL) of a given polymeric track detector, different authors have proposed the use of REL (ω_0) data computed with different ω_0 values within the energy interval 0.1-1 keV. To choose the most suitable REL(ω_0) data for fitting the experimental data for CR-39 track detectors we have listed below the REL data calculated at five representative values of the ω_0 parameter.

RANGE

IN Cl2-H18-O7 (CR-39) IN µm I=70.2, <A/Z>=1.877, p=1.31 g×cm⁻³

ENER /NUC			₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩	period (participation) and come 4 and graves the start graves are sur-	
(MEU/AMIL)	ы1	HE4	C12	NE20	FE54
0.0025 6.9	175-02	1_250E-01	1.621E-01	2.059E-01	3_670E-01
0.0050 9.9	84E-02	1-873E-01	2-399E-01	3-022E-01	5-407E-01
0.0075 1.2	77E-01	2-409E-01	3-048E-01	3-802E-01	6.769E-01
0.0100 1.5	39E01	2-897E-01	3-629E-01	4.487E-01	7-937E-01
0.0200 2.5	07E01	4.627E-01	5.635E-01	6.768E-01	1.167E+00
0.0300 3.4	18E-01	6.187E-01	7.393E-01	8.690E-01	1.465E+00
0.0400 4.3	04E-01	7.668E-01	8.962E-01	1.043E+00	1.725E+00
0.0500 5.1	82E-01	9.107E-01	1.042E+00	1.206E+00	1.961E+00
0.0600 6.0	56E-01	1.052E+00	1.180E+00	1.350E+00	2.179E+00
0.0700 6.9	332-01	1.192E+00	1.313E+00	1.509E+00	2.384E+00
0.0800 7.8	14E-01	1.331E+00	1.441E+00	1.654E+00	2.579E+00
0.0900 8.7	01E-01	1.4702+00	1.565E+00	1.795E+00	2.765E+00
0.1000 9.5	93E-01	1.609E+00	1.687E+00	1.924E+00	2.945E+00
0.2000 1.9	83E+00	3.037E+00	2.826E+00	3.113E+00	4.512E+00
0.3000 3.2	87E+00	4.5802+00	3.917E+00	4.182E+00	5.865E+00
0.4000 4.8	50E+00	6.259E+00	5.012E+00	5.208E+00	7.117E+00
0.5000 6.6	57E+00	8.092E+00	6.132E+00	6.218E+00	8.311F.+00
0.6000 8.6	95E+00	1.014E+01	7.285E+00	7.228E+00	9.468E+00
0.7000 1.0	96E+01	1.240E+01	8.476F+00	8.246E+00	1.054E+01
0.8000 1.3	43E+01	1.488E+01	9.708E+00	9.277E+00	1.160E+01
0.9000 1.6	12E+01	1.757E+01	1.078E+01	1.032E+01	1.264E+01
1.0000 1.9	01E+01	2.047E+01	1.231E+01	1.139E+01	1.356E+01
2.0000 5.8	65E+01	6.010E+01	2.813E+01	2.337E+01	2.359E+01
3.0000 1.1	51E+02	1.165E+02	4.834E+01	3.776E+01	3.371E+01
4.0000 1.8	82E+02	1.896E+02	7.321E+01	5.48/E+01	4.456E+01
5.0000 2.7	7/E+02	2.792E+02	1.032E+02	7.480E-01	5.6335.+01
6.0000 3.8	356+02	3.850E102	1.395E+02	9.760E+01	6.911E-01
7.0000 5.0	5/E+02	5.0/1E+02	1./92E+02	1.2335+02	8.29/E+01
8.0000 6.4	411-402	6.400E+02	2.204E102	1.5201402	9./96E+01
9.0000 7.9	88E+02	8.003E+02	2.767E+02	1.83/E+02	1.141E+02
10.0000 9.0	SOL+02	9.681E+02	3.3271402	2.1/8E+02	1.3121402
12 0000 1.1	4JE103	1.1406403	3.7235402	2.03/E+02	1.470E+02
17 0000 1.5	A7E+07	1 5445107	4.364E+02	2.72.0E+U2	1.07/5+02
	435+03	1.0446+03	5.200E+02	3.3335+02	1.8/66+02
15 0000 1.7	OSELAZ	1 00/5107	4 7575+00	4 240E+02	2.0000002
14 0000 2 2	A15107	2 2425107	7 5745102	4.2400102	2.3036402
17 0000 2.2	416103	2.2420103	0 4405.00	4./JZE+U2	2.031E-102
19 0000 2.5	725+07	2.3016103	0.440E102	5 7945-02	Z. 0195402
18 0000 3 0	545+07	3 058E+03	1 0295+07	6 3645102	3.0100102
20 0000 3 3	54E+03	3.355E+03	1-129E+03	6.959E+02	3.544E+02

	1000 100 0000 0000 0000 0000 0000 0000		galaamaa seesaan waxaa soo ahaa aan ahaa ahaa	general contractions and a second	
ENRG. /NUC.					
(MEV/AMU)	H1	HE4	C12	NE20	FE56
0.0025	5.828E+02	1.105E+03	2.548E+03	3.392E+03	5.164E+03
0.0050	6.586E+02	1.343E+03	3.287E+03	4.502E+03	7.120E+03
0.0075	7.094E+02	1.503E+03	3.757E+03	5.268E+03	8.556E+03
0.0100	7.450E+02	1.618E+03	4.105E+03	5.861E+03	9.726E+03
0.0200	8.207E+02	1.885E+03	4.957E+03	7.433E+03	1.311E+04
0.0300	8.526E+02	2.019E+03	5.433E+03	8.412E+03	1.549E+04
0.0400	8.670E+02	2.096E+03	6.070E+03	9.112E+03	1.737E+04
0.0500	8.723E+02	2.144E+03	6.467E+03	9.646E103	1.892E+04
0.0600	8.724E+02	2.173E+03	6.785E+03	1.007E+04	2.025E+04
0.0700	8.692E+02	2.189E+03	7.045E+03	1.042E+04	2.141E+04
0.0800	8.637E+02	2.197E+03	7.262E+03	1.071E+04	2.245E+04
0.0900	8.569E+02	2.198E+03	7.444E+03	1.095E+04	2.338E+04
0.1000	8.613E+02	2.1950+03	7.598E+03	1.165E+04	2.422E+04
0.2000	5.919E+02	1.878E+03	7.555E+03	1.245E+04	2.670E+04
0.3000	4.400E+02	1.600E+03	7.048E+03	1.223E+04	2.688E+04
0.4000	3.557E+02	1.434E+03	6.638E+03	1.201E+04	2.708E+04
0.5000	3.016E+02	1.237E+03	6.280E+03	1.1755+04	2.7202104
0.6000	2.634E+02	1.085E+03	5.961E+03	1.148E+04	2.726E+04
0.7000	2.348E+02	9.651E+02	5.674E+03	1.1202:04	2.899E+04
0.8000	2.125E+02	8.706E:02	5.412E+03	1.071E+04	2.952E+04
0.9000	1.946E+02	7.953E+02	5.174E+03	1.067E:04	2.993E+04
1.0000	1.797E+02	7.325E+02	4.956E+03	1.034E+04	3.024E+04
2.0000	1.083E+02	4.354E+02	3.578E+03	8.174E+03	3.062E+04
3.0000	7.853E+01	3.147E+02	2.785E+03	6.640E+03	2.866F+04
4.0000	6.165E+01	2.468E+02	2.263E+03	5.544E+03	2.623E+04
5.0000	5.066F+01	2.027E+02	1.858E+03	4.732E+03	2.385E+04
6.0000	4.311E+01	1.725E+02	1.575E+03	4.129E+03	2.176E+04
7.0000	3.793E+01	1.517E+02	1.380E+03	3.696E+03	2.000E+04
8.0000	3.390E+01	1.356E+02	1.229E+03	3.347E+03	1.852E+04
9.0000	3.068E+01	1.227E+02	1.111E+03	3.060E+03	1.733E+04
10.0000	2.805E+01	1.122E+02	1.015E+03	2.819E+03	1.620E:04
11.0000	2.585E+01	1.034E+02	9.340E+02	2.615E+03	1.521E+04
12.0000	2.398E+01	9.594E+01	8.6602+02	2.426E+03	1.433E+04
13.0000	2.239E+01	8.954E+01	8.077E+02	2.263E+03	1.354E+04
14.0000	2.100E+01	8.399E+01	7.573E+02	2.121E+03	1.284E+04
15.0000	1.978E+01	7.913E+01	7.132E+02	1.996E+03	1.221F+04
16.0000	1.871E+01	7.484E+01	6.743E+02	1.884E+03	1.163E+04
17.0000	1.775E+01	7.101E+01	6.397E+02	1.788E+03	1.112E+04
18.0000	1.690E+01	6.759E+01	6.088E+02	1.701E+03	1.064E+04
19.0000	1.612E+01	6.450E+01	5.809E102	1.622E+03	1.021E:04
1 20.0000	11.543E101	6.170E+01	5,556E102	1.550E+03	9-815E+03

RANGE

IN C6-H8-O8-N2 (CN-85) IN µm

I=80.2, <A/Z>=1.934, p=1.52 g×cm⁻³

ENDG /MUC					
(MEII/AMII)	L14	UE A	013	ALC: OA	FFF/
0.0025	4 9455-02	1 0205-01	1 4405-01	1 0005-01	7 49/5 01
0.0050	7 0745-02	1 4135-01	2 2015-01	2 007E-01	5.4205-01
0.0075	1 059E-01	2 1205-01	2.2010-01	Z-000E-01	4 771E-01
0.0100	1 309E-01	2 5815-01	7 7545-01	4 170E-01	7 4075-01
0.0200	2 235E-01	4 220E-01	5 2425-01	4 310E-01	1 0005100
0.0300	7 111E-01	5 704E-01	6 897E01	0.017E VI	1 7725100
0.0400	3 948E-01	7 1215-01	8 3745-01	0 7405-01	1 4145+00
0.0500	4-819E-01	8-497E-01	9.753E-01	1.1295+00	1.8375:00
0.0400	5-668E-01	9-852F-01	1.106E+00	1.2755+00	2.042E+00
0.0700	6-520E-01	1.119E+00	1.231E+00	1.415E+00	2.2345400
0.0800	7-376E-01	1.253E+00	1.352E+00	1.551E:00	2.417E+00
0.0900	8-238E-01	1.386E+00	1-470E+00	1.684E-100	2.592E100
0.1000	9.104E-01	1.519E+00	1.585E+00	1.805E+00	2.761E+00
0.2000	1.897E+00	2.885E+00	2.651E+00	2.925E+00	4.231E+00
0.3000	3.139E+00	4.350E+00	3.690E+00	3.931E+00	5.501E+00
0.4000	4.614E+00	5.933E+00	4.720E+00	4.894E+00	6.675E100
0.5000	6.307E+00	7.652E+00	5.769E+00	5.841E+00	7.7935+00
0.6000	8.208E+00	9.563E+00	6.846F+00	6.785E+00	8.877E+00
0.7000	1.031E+01	1.167E+01	7.954E+00	7.735E+00	9.883E+00
0.8000	1.261E+01	1.396E+01	9.103E+00	8.697E+00	1.008E+01
0.9000	1.509E+01	1.645E+01	1.029E+01	9.671E+00	1.185E+01
1.0000	1.776E+01	1.912E:01	1.151E+01	1.066E+01	1.280E+01
2.0000	5.424E+01	5.5600:01	2.612E+01	2.176E+01	2.204E+01
3.0000	1.063E+02	1.076E+02	4.478E+01	3.507E+01	3.1445+01
4.0000	1.733E+02	1.747E+02	6.759E+01	5.031E+01	4.1502+01
5.0000	2.553E+02	2.546E+02	9.502E+01	6.909E+01	5.237E+01
6.0000	3.521E+02	3.535E+02	1.2735+02	8.999E+01	6.415E+01
7.0000	4.6385+02	4.652E+02	1.646E+02	1.135E+02	7.692E+01
8.0000	5.904E+02	5.918E+02	2.068E102	1.398E+02	9.071E+01
9.0000	7.320E+02	7.334E+02	2.540E+02	1.688E+02	1.056E+02
10.0000	8.833E+02	8.847E+02	3.044E+02	1.996E+02	1.211E+02
11.0000	1.046E+03	1.047E+03	3.595F+02	2.322E+02	1.3732:02
12.0000	1.220E+03	1.222E+03	4.167E+02	2.673E+02	1.5450+02
13.0000	1.407E+03	1.409E+03	4.791E+02	3.048E+02	1.726E:02
14.0000	1.606E+03	1.6081+03	5.455E+02	3.447E:02	1.916E+02
15.0000	1.818E+03	1.819E+03	6.159E+02	3.870E+02	2.115E+02
16.0000	2.041E+03	2.042E+03	6.903E+02	4.317E+02	2.323E+02
17.0000	2.276E+03	2.277E+03	7.686E+02	4.787E+02	2.5402:02
18.0000	2.522E+03	2.524E+03	8.508E+02	5.280E+02	2.766E+02
19.0000	2.781E+03	2.782E103	9.349E+02	5.796E102	3.001E+02
20.0000	13.050E103	3.052E+03	1.027E+03	6.336E-102	3.244E+02

		alangeraken solonen erjenda alar en en gester en			
ENRG. / NUC.		11000	010	11	FFFF/
(MEV/AMU)	H1	HE4	0 7445107	7 1005107	FEJG
0.0025	5.051E+02	7.881E+02	2.344ETV3	3.107ET03	4.7402103
0.0050	5.93/E+02	1.223E-03	3.0100+03	4.1300103	0. J40E+UJ
0.00/5	6.423E+02	1.3/12+03	3.448E-03	4.8402+03	7.80/2403
0.0100	6.741E+02	1.4/5E-03	3./60-+03	0.354E-03	8.7425103
0.0200	7.359E+02	1.709E+03	4.541E+03	6.822E103	1.2005-04
0.0300	7.613E+02	1.824E403	4.970E+03	7./15E+03	1.4246+04
0.0400	7.716E+02	1.8902+03	5.547E+03	8.352E:03	1.596E-104
0.0500	7.748E+02	1.930E+03	5.905E+03	8.838E+03	1./38E+04
0.0600	7.7402+02	1.954E+03	6.192E+03	9.224E+03	1.860E+04
0.0700	7.708E+02	1.967E+03	6.426E+03	9.539E+03	1.967E+04
0.0300	7.660E+02	1.974E+03	6.622E:03	9.801E+03	2.061E+04
0.0900	7.601E+02	1.975E+03	6.786E+03	1.002E+04	2.14/E+04
0.1000	7.641E+02	1.973E+03	6.926E+03	1.065E+04	2.224E+04
0.2000	5.284E+02	1.685E+03	6.850E+03	1.133E+04	2.434E+04
0.3000	3.947E+02	1.440E+03	6.376E+03	1.109E+04	2.438E+04
0.4000	3.209E+02	1.297E+03	6.009E+03	1.087E+04	2.4485+04
0.5000	2.734E+02	1.124E+03	5.695E+03	1.065E+04	2.456E+04
0.6000	2.398E+02	9.898E-102	5.417E+03	1.042E+04	2.460E+04
0.7000	2.145E+02	8.838E:02	5.167E+03	1.017E+04	2.619E+04
0.8000	1.946E+02	7.982E+02	4.939E+03	9.922E+03	2.667E+04
0.9000	1.785E+02	7.304E+02	4.728E+03	9.673E+03	2.706E+04
1.0000	1.651E+02	6.736E+02	4.535E+03	9.426E+03	2.735E+04
2.0000	9.972E+01	4.010E+02	3.290E+03	7.485E+03	2.781E+04
3.0000	7.257E+01	2.908E-102	2.574E+03	6.109E+03	2.615E+04
4.0000	5.707E+01	2.284E+02	2.077E+03	5.115E+03	2.401E+04
5.0000	4.691E+01	1.877E+02	1.722E+03	4.3735103	2.188E+04
6.0000	4.008E+01	1.603E+02	1.4650+03	3.833E+03	2.004E+04
7.0000	3.531E+01	1.413E+02	1.285E+03	3.438E+03	1.854E+04
8.0000	3.160E+01	1.264E:02	1.146E+03	3.118E+03	1.7220+04
9.0000	2.863E+01	1.145E+02	1.037E+03	2.854E+03	1.605E+04
10.0000	2.619E+01	1.048E+02	9.476E+02	2.633E+03	1.503E+04
11.0000	2.416E+01	9.653E+01	8.730E:02	2.445E+03	1.412E+04
12.0000	2.243E+01	8.972E+01	8.0992+02	2.2/9E+03	1.332E+04
13.0000	2.095E+01	8.378E+01	7.558E+02	2.118E+03	1.2602+04
14.0000	1.966E+01	7.863E+01	7.090E+02	1.986E+03	1.196E+04
15.0000	1.8535+01	7.411E+01	6.680E+02	1.870E+03	1.139E+04
16.0000	1.753E101	7.011E+01	6.318E+02	1.760E+03	1.085E+04
17,0000	1-6645+01	6-655E+01	5-996F+02	1-677F+03	1-037E+04
18,0000	1.584E+01	6.337E+01	5.708E102	1.5955+03	9.939E+03
19,0000	1.512E+01	6.049E+01	5.448E+02	1.521E+03	9.541E+03
20.0000	1.447E+01	5.788E+01	5.213E+02	1.454E+03	9.175E+03

REL ($\omega_{\rm O}{=}300~{\rm eV})$ IN C6-H8-O8-N2 (CN-85) IN MeV ${\rm cm}^2{\times}{\rm g}^{-1}$

RANGE

IN Cl6-Hl4-O3 (PC) IN μm I=69.4, <A/Ζ>=1.895, ρ=1.2 g×cm⁻³

ENRG./NUC.					
(MEV/AMU)	H1	HE4	C12	NE20	FE56
0.0025	7.790E-02	1.392E-01	1.785E-01	2.263E-01	4.028E-01
0.0050	1.112E-01	2.072E-01	2.638E-01	3.319E-01	5.934E-01
0.0075	1.416E-01	2.658E-01	3.349E-01	4.174E-01	7.428E-01
0.0100	1.703E-01	3.193E-01	3.987E-01	4.926E-01	8.710E-01
0.0200	2.762E-01	5.088E-01	6.187E-01	7.429E-01	1.280E+00
0.0300	3.758E-01	6.797E-01	8.115E-01	9.537E-01	1.608E+00
0.0400	4.728E-01	8,420E-01	9.835E-01	1.145E+00	1.8935+00
0.0500	5.688E-01	9.995E-01	1.144E+00	1.323E+00	2.151E+00
0.0600	6.645E-01	1.154E+00	1.295E+00	1.493E+00	2.391E+00
0.0700	7.603E-01	1.308E+00	1.4402+00	1.656E+00	2.616E+00
0.0800	8.567E-01	1.460E+00	1.581E+00	1.815E+00	2.830E+00
0.0900	9.537E-01	1.612E+00	1.717E+00	1.969E+00	3.034E+00
0.1000	1.051E+00	1.764E+00	1.851E+00	2.111E+00	3.231E+00
0.2000	2.172E+00	3.329E+00	3.099E+00	3.415E+00	4.950E+00
0.3000	3.601E+00	5.019E+00	4.295E+00	4.587E+00	6.435E+00
0.4000	5.315E+00	6.8592+00	5.497E+00	5.713E+00	7.809E+00
0.5000	7.297E+00	8.872E+00	6.726E+00	6.821E+00	9.119E+00
0.6000	9.534E+00	1.112E+01	7.991E+00	7.930E+00	1.039E+01
0.7000	1.202E+01	1.3605+01	9.298E+00	9.047E+00	1.157E+01
0.8000	1.474E+01	1.633E+01	1.065E+01	1.018E+01	1.273E+01
0.9000	1.769E+01	1.928E+01	1.205E+01	1.133E+01	1.387E+01
1.0000	2.087E+01	2.2465+01	1.3502+01	1.250E+01	1.499E+01
2.0000	6.441E+01	6.600E+01	3.088E+01	2.565E+01	2.588E+01
3.0000	1.264E+02	1.280E+02	5.309E+01	4.146E+01	3.700E+01
4.0000	2.068E+02	2.084E+02	8.043E+01	6.027E+01	4.892E+01
5.0000	3.052E+02	3.068E+02	1.134E+02	8.217E+01	6.184E+01
6.0000	4.216E+02	4.232E+02	1.522E+02	1.072E+02	7.589E+01
7.0000	5.558E+02	5.574E+02	1.970E+02	1.355E+02	9.112E+01
8.0000	7.080E+02	7.096E+02	2.477E+02	1.671E+02	1.076E+02
9.0000	8.782E+02	8.798E+02	-3.044E+02	2.019E+02	1.254E+02
10.0000	1.063E+03	1.064E+03	3.660E+02	2.394E+02	1.441E+02
11.0000	1.259E+03	1.261E+03	4.314E+02	2.789E+02	1.637E+02
12.0000	1.470E+03	1.472E+03	5.019E+02	3.2135+02	1.844E+02
13.0000	1.697E+03	1.699E+03	5.773E+02	3.667E+02	2.032E+02
14.0000	1.938E+03	1.940E+03	6.578E+02	4.151E+02	2.291E+02
15.0000	2.194E+03	2.196E+03	7.431E+02	4.653E+02	2.531E+02
16.0000	2.465E+03	2.466E+03	8.3336402	5.204E+02	2.782E+02
17.0000	2.7502+03	2.751E+03	9.283E+02	5.774E+02	3.045E+02
18.0000	3.049E+03	3.0502+03	1.028E+03	6.373E+02	3.318E+02
19.0000	3.362E+03	3.354E+03	1.132E+03	6.999E+02	3.601E+02
20.0000	3.689E+03	3.691E+03	1.241E+03	7.654E+02	3.896E+02

	and the second se		r	r	
ENRG./NUC.					
(MEV/AMU)	H1	HE4	C12	NE20	FE56
0.0025	5.903E+02	1.109E+03	2.560E:03	3.378E+03	5.139E+03
0.0050	6.593E+02	1.340E+03	3.2732+03	4.481E+03	7.084E+03
0.0075	7.085E+02	1.498E+03	3.740E+03	5.243E+03	8.513E+03
0.0100	7.436E+02	1.612E+03	4.086E+03	5.833E+03	9.677E+03
0.0200	8.188E+02	1.878E+03	4.934E+03	7.397E+03	1.305E+04
0.0300	8.507E+02	2.012E+03	5.408E+03	8.372E+03	1.542E+04
0.0400	8.652E+02	2.090E+03	6.043E+03	9.0692+03	1.728E+04
0.0500	8.706E+02	2.137E+03	6.439E+03	9.601E+03	1.882E+04
0.0600	8.707E+02	2.166E+03	6.755E+03	1.002E+04	2.015E+04
0.0700	8.675E+02	2.182E+03	7.015E+03	1.037E+04	2.131E+04
0.0800	8.621E+02	2.1902+03	7.2302+03	1.066E+04	2.233E+04
0.0900	8.552E+02	2.192E+03	7.412E+03	1.0902+04	2.3265104
0.1000	8.596E+02	2.189E+03	7.566E+03	1.160E+04	2.410E+04
0.2000	5.905E+02	1.872E+03	7.525E+03	1.2402+04	2.659E+04
0.3000	4.387E+02	1.595E+03	7.022E+03	1.219E:04	2.678E+04
0.4000	3.545E+02	1.429E+03	6.613E+03	1.196E+04	2.698F+04
0.5000	3.004E+02	1.232E+03	6.256E+03	1.171E+04	2.711E+04
0.6000	2.623E+02	1.080E+03	5.937E+03	1.1430+04	2.717E+04
0.7000	2.338E+02	9.616E+02	5.649E+03	1.115E+04	2.889E+04
0.8000	2.115E+02	8.664E+02	5.389E+03	1.036E+04	2.941E+04
0.9000	1.936E+02	7.913E+02	5.150E+03	1.059E+04	2.982E+04
1.0000	1.788E+02	7.288E+02	4.932E+03	1.029E+04	3.013E+04
2.0000	1.077E+02	4.331E+02	3.560E+03	8.135F+03	3.050E+04
3.0000	7.809E+01	3.129E+02	2.770E+03	6.605E+03	2.853E+04
4.0000	6.1302+01	2.454E+02	2.250E+03	5.514E+03	2.6105+04
5.0000	5.037E+01	2.015E+02	1.847E+03	4.7062+03	2.373E+04
6.0000	4.285E+01	1.714E+02	1.565E+03	4.105E+03	2.165E+04
7.0000	3.769E+01	1.508E+02	1.372E+03	3.674E+03	1.997E+04
8.0000	3.369E+01	1.348E+02	1.221E+03	3.3265403	1.851E+04
9.0000	3.049E+01	1.220E+02	1.104E+03	3.040E+03	1.723F+04
10.0000	2.787E+01	1.115E+02	1.008E:03	2.801E+03	1.611E+04
11.0000	2.568E+01	1.027E+02	9.279E+02	2.598E+03	1.512E+04
12.0000	2.383E+01	9.532E+01	8.603E+02	2.410E+03	1.424E+04
13.0000	2.224E+01	8.896E+01	8.025E+02	2.248E+03	1.346E+04
14.0000	2.086E+01	8.344E+01	7.523E+02	2.107E+03	1.276E+04
15.0000	1.965E+01	7.861E+01	7.085E+02	1.983E+03	1.213E+04
16.0000	1.858E+01	7.434E+01	6.698E+02	1.874E+03	1.154E+04
17.0000	1.763E+01	7.054E+01	6.355E+02	1.777E+03	1.105E+04
18.0000	1.678E+01	6.713E+01	6.047E+02	1.689E+03	1.058E+04
19.0000	1.602E+01	6.40/E+01	5.770E+02	1.611E+03	1.015E+04
20.0000	1.532E+01	6.129E+01	5.519E+02	1.540E+03	9.752E+03

REL (ω_{o} =300 eV) IN Cl6-Hl4-O3 (PC) IN MeV cm²×g⁻¹

-		-		
- L	2	L	I.	
	ς.	r		
	~	~	 ٠	-

IN C12-H18-O7 (CR-39) FOR H1 AND HE4 IONS

	ω ₀ =1	00 eV	ω ₀ =200 eV		ω_=	ω ₀ =300 eV		500 eV	$\omega_0 = 1000 \text{ eV}$	
ENRG./NUC.							[
(HEV/AMU)	H1	HE4	H1	HE4	H1	HE4	H1	HE4	H1	HE4
0.0025	5.828E+02	1.105E+03	5.828E+02	1.105F+03	5.828E+02	1.105E+03	5.828E+02	1.105 +03	5.828E+02	1.105E+03
0.0050	6.586E+02	1.343E+03	6.586E+02	1.343E+03	6.586E+02	1.343E+03	6.586E+02	1.343F+03	6.584F+02	1.3435+03
0.0075	7.094E+02	1.503E+03	7.094E+02	1.503E+03	7.094E+02	1.503E+03	7.094E+02	1.503F.+03	7.094E+02	1.503E+03
0.0100	7.450E+02	1.618E+03	7.450F+02	1.6185:03	7.450E+02	1.618E+03	7.4502+02	1.618F+03	7.4502+02	1.618F+03
0.0200	8.207E+02	1.885E+03	8.207E+02	1.885E+03	8.207E+02	1.895E+03	8.207E+02	1.885E+03	8.207E+02	1.895E+03
0.0300	8.526E+02	2.019E+03	8.526E+02	2.019E+03	8.526E+02	2.019E+03	8.526E+02	2.019E+03	8.526E+02	2.019E+03
0.0400	8.670E+02	2.096E+03	8.670E+02	2.0962+03	8.670E+02	2.096E+03	8.670E+02	2.096E+03	8.670E+02	2.096E+03
0.0500	8.351E+02	2.0565+03	8.723E+02	2.144E+03	8.723E+02	2.144E+03	8.723E+02	2.144E+03	8.723E+02	2.144E+03
0.0600	7.723E+02	1.929E+03	8.724E+02	2-1730:03	8.724E+02	2.173E+03	8.724E+02	2.173E+03	8.724E+02	2.173E+03
0.0700	7.260E+02	1.832E+03	8.692E+02	2.189E+03	8.692E+02	2.189E+03	8.692E+02	2.189E+03	8.692E+02	2.189E+03
0.0800	6.903E+02	1.754E+03	8.637E+02	2.197E+03	8.637E+02	2.197E+03	8.637E+02	2.197E+03	8.637E+02	2.197E+03
0.0900	6.619E+02	1.690E+03	8.569E+02	2.1985+03	8.569E+02	2.198E+03	8.569E+02	2.198E+03	8.569E+02	2.198E+03
0.1000	6.508E+02	1.636E+03	8.364E+02	2.129E+03	8.613E+02	2.195E+03	8.613E+02	2.195E+03	8.613E+02	2.195E+03
0.2000	4.135E+02	1.339E+03	5.261E+02	1.678F+03	5.919E+02	1.878E+03	6.537E+02	2.064E+03	6.537E+02	2.064E+03
0.3000	3.123E+02	1.184E+03	3.929E+02	1.447E+03	4.400E+02	1.600E+03	4.993E+02	1.793E+03	5.313E+02	1.897E+03
0.4000	2.567E+02	1.096E+03	3.192E+02	1.310E+03	3.55/E+02	1.434E+03	4.018E+02	1.592E+03	4.525E+02	1.765E+03
0.5000	2.207E+02	9.517E+02	2.718E+02	1.132E+03	3.016E+02	1.237E+03	3.391E+02	1.369E+03	3.900E+02	1.549E+03
0.6000	1.954E+02	8.389E+02	2.3835+02	9.943E+02	2.634E+02	1.035E+03	2.950E+02	1.200E+03	3.379E+02	1.355E+03
0.7000	1.761E+02	7.495E+02	2.132E+02	8.862E+02	2.348E+02	9.661E+02	2.621E+02	1.067E+03	2.992E+02	1.203E+03
0.8000	1.609E+02	6.775E+02	1.935E+02	7.994E:02	2.125E+02	8.706E+02	2.365E+02	9.604E+02	2.691E+02	1.082E+03
0.9000	1.485E+02	6.212E+02	1.776E+02	7.310E+02	1.945E+02	7.953E+02	2.160E+02	8.762E+02	2.4502+02	9.861E+02
1.0000	1.382E+02	5.7402+02	1.644E+02	6.740E+02	1.797E+02	7.325E+02	1.990E+02	8.062E+02	2.252E+02	9.061E+02
2.0000	8.739E+01	3.527E+02	1.006E+02	4.049E+02	1.0832+02	4.354E+02	1.180E+02	4.739E+02	1.312E+02	5.261E+02
3.0000	6.456E+01	2.5905+02	7.338E+01	2.941E+02	7.853E+01	3.147E+02	8.502E+01	3.4062+02	9.384E+01	3.757E+02
4.0000	5.116E+01	2.049E+02	5.778E+01	2.313E+02	6.165E+01	2.468E+02	6.653E+01	2.663E+02	7.315E+01	2.927E+02
5.0000	4.225E+01	1.691E+02	4.755E+01	1.903E+02	5.066E+01	2.027E+02	5.457E+01	2.183E+02	5.987E+01	2.395E+02
6.0000	3.609E+01	1.44402	4.052E+01	1.621E+02	4.311E+01	1.725E+02	4.637E+01	1.855E+02	5.080E+01	2.032E+02
7.0000	3.1902+01	1.276E+02	3.570E+01	1.428E+02	3.793E+01	1.517E+02	4.073E101	1.629E+02	4.453E+01	1.781E+02
8.0000	2.852E+01	1.145E+02	3.195E+01	1.278E+02	3.390E+01	1.356E+02	3.634F+01	1.454E+02	3.969E+01	1.588E+02
9.0000	2.598E+01	1.039E+02	2.895E+01	1.158E+02	3.068E+01	1.227E+02	3.287E+01	1.315E+02	3.583E+01	1.433E+02
10.0000	2.381E+01	9.524E+01	2.648E+01	1.059E+02	2.805E+01	1.122E+02	3.002E+01	1.201E+02	3.269E+01	1.308E+02
11.0000	2.199E+01	8.796E+01	2.442E+01	9.770E+01	2.585E+01	1.034E+02	2.764E+01	1.106E+02	3.008E+01	1.203E+02
12.0000	2.044E+01	8.177E+01	2.268E+01	9.071E+01	2.398E+01	9.594E+01	2.563E+01	1.025E+02	2.787E+01	1.115E+02
13.0000	1.911E+01	7.644E+01	2.118E+01	8.471E+01	2.239E+01	8.954E+01	2.391E+01	9.563E+01	2.597E+01	1.039E+02
14.0000	1.795E+01	7.181E+01	1.987E+01	7.950E-101	2.100E+01	8.399E+01	2.241E+01	8.965E+01	2.434E+01	9.735E+01
15.0000	1.694E+01	6.774E+01	1.873E+01	7.493E+01	1.978E+01	7.913E+01	2.111E+01	8.443E+01	2.290E+01	9.161E+01
16.0000	1.604E+01	6.414E+01	1.772E+01	7.089E+01	1.871E+01	7.484E+01	1.995E+01	7.981E+01	2.164E+01	8.656E+01
17.0000	1.523E+01	6.073E+01	1.682E+01	6.729E+01	1.775E+01	7.101E+01	1.892E+01	7.570E+01	2.051E+01	8.2065101
18.0000	1.451E+01	5.805F+01	1.602E+01	6.407E+01	1.690E+01	6.759E+01	1.801E+01	7.202E+01	1.951E+01	7.804E+01
19.0000	1.384E+01	5.545E+01	1.529E+01	6.116E+01	1.612E+01	6.450E+01	1.718E+01	6.871E+01	1.860E+01	7.442E+01
20.0000	1.327E+01	5.309E+01	1.463E+01	5.853E+01	1.543E+01	6.170E+01	1.643E+01	6.571E+01	1.778E+01	7.114E+01

IN C12-H18-07 (CR-39) FOR C12 AND NE20 IONS

	$\omega_0 = 100 \text{ eV}$		ω ₀ =200 eV		ω_=	ω ₀ =300 eV		500 eV	ω ₀ =]	1000 eV
ENRG./NUC. (MEV/AMU)	C12	NE20	C12	NE20	C12	NE20	C12	NE20	C12	NE20
0.0025	2.568E+03	3.392E103	2.5/,8E+03	3.392E+03	2.568E+03	3.392E+03	2.568E+03	3.392E+03	2.568E+03	3.392E+03
0.0050	3.287E+03	4.502E+03	3.287E+03	4.502E103	3.287E+03	4.502E+03	3.287E+03	4.502E+03	3.287E+03	4.502E+03
0.0075	3.757E+03	5.269E+03	3.757E+03	5.248E103	3.757E+03	5.268E+03	3.757E+03	5.268E+03	3.757E+03	5.268E+03
0.0100	4.105E+03	5.861E+03	4.105E+03	5.851E+03	4.105E+03	5.861E+03	4.105E+03	5.861F+03	4.105E+03	5.851F+03
0.0200	4.957E+03	7.433E+03	4.957E103	7.433E+03	4.957E+03	7.433F+03	4.957E+03	7.433E+03	4.957E+03	7.433E+03
0.0300	5.433E+03	8.412E+03	5.433F+03	8.412E+03	5.433E+03	8.412E+03	5.4335+03	8.412E+03	5.433E+03	8.412E+03
0.0400	6.070E+03	9.112E+03	6.070E+03	9.112E+03	6.070E+03	9.112E+03	6.070E+03	9.112E+03	6.070E+03	9.112E+03
0.0500	6.200E+03	9.229E+03	6.467E-103	9.646E+03	6.467E+03	9.646E+03	6.467E103	9.646E+03	6.467E+03	9.646E+03
0.0600	6.020E+03	8.862E+03	6.785E+03	1.007E+04	6.785E+03	1.007E+04	6.785E+03	1.007E+04	6.785E+03	1.007E+04
0.0700	5.889E+03	8.575E+03	7.045E+03	1.042E+04	7.045E+03	1.042E+04	7.045E+03	1.042E+04	7.045E+03	1.042E+04
0.0800	5.7902103	8.342E+03	7.262E+03	1.071E+04	7.262E+03	1.071E+04	7.262E+03	1.071E+04	7.262E+03	1.071E+04
0.0900	5.713E+03	8.147E+03	7.444E+03	1.095F+04	7.444E+03	1.075E+04	7.444E+03	1.075E+04	7.444E+03	1.095E+04
0.1000	5.651E+03	8.476E+03	7.348E+03	1.127E+04	7.598E+03	1.165E+04	7.598E+03	1.165E+04	7.598E+03	1.165E+04
0.2000	5.336E+03	8.638E+03	6.736E103	1.104E+04	7.555E+03	1.245E+04	8.323E+03	1.377E+04	8.3232+03	1.377E+04
0.3000	5.140E+03	8.824E+03	6.344E+03	1.097E+04	7.048E+03	1.223E+04	7.936E+03	1.382E+04	8.413E+03	1.467E+04
0.4000	4.951E+03	8.900E+03	6.0155:03	1.085E+04	6.638E+03	1.201E+04	7.422E+03	1.345E+04	8.286E+03	1.504E+04
0.5000	4.763E+03	8.886E+03	5.7202103	1.0702+04	6.280E+03	1.175E+04	6.986E+03	1.309E+04	7.943E+03	1.490E+04
0.6000	4.579E+03	8.810E+03	5.451E+03	1.049E+04	5.961E+03	1.148E+04	6.604E+03	1.272E+04	7.476E+03	1.441E+04
0.7000	4.403E+03	8.693E+03	5.204E+03	1.027E+04	5.674E+03	1.1202104	6.265E+03	1.235E+04	7.066E+03	1.394E+04
0.8000	4.235E+03	8.549E+03	4.978E+03	1.004E+04	5.412E+03	1.091E+04	5.960E:03	1.200E+04	6.702E+03	1.349E+04
0.9000	4.077E+03	8.389E+03	4.769E:03	9.797E+03	5.174E+03	1.062E+04	5.684E+03	1.166E+04	6.376E+03	1.307E+04
1.0000	3.928E+03	8.219E+03	4.5765+03	9.557E+03	4.953E103	1.034E+04	5.4335+03	1.133E+04	6.082E+03	1.2652+04
2.0000	2.946E+03	6.739E+03	3.345E+03	7.645E+03	3.578E+03	8.174E+03	3.872E+03	8.842E+03	4.270E+03	9.747E+03
3.0000	2.330E+03	5.547E+03	2.617E+03	6.236E+03	2.785E+03	6.640E+03	2.997E+03	7.147E+03	3.284E+03	7.836E+03
4.0000	1.908E+03	4.652E+03	2.132E+03	5.218E+03	2.263E+03	5.544E+03	2.429E+03	5.954E+03	2.653E+03	6.510E+03
5.0000	1.567E+03	3.992E+03	1.750E+03	4.459E+03	1.858E+03	4.732E+03	1.993E+03	5.076E+03	2.176E+03	5.542E+03
6.0000	1.329E+03	3.493E+03	1.484E+03	3.894E+03	1.575E+03	4.129E+03	1.689E+03	4.425E+03	1.844E+03	4.826E+03
7.0000	1.1685+03	3.138E+03	1.302E:03	3.4902+03	1.380E+03	3.696E+03	1.479E+03	3.955E+03	1.613E+03	4.308E+03
8.0000	1.042E+03	2.850E+03	1.160E+03	3.163E+03	1.229E+03	3.347E+03	1.316E+03	3.578E+03	1.434E+03	3.891E+03
9.0000	9.441E+02	2.612E+03	1.050E+03	2.894E+03	1.111E+03	3.030E+03	1.189E+03	3.269E+03	1.295E+03	3.550E+03
10.0000	8.632E+02	2.412E+03	9.587E+02	2.659E+03	1.0155403	2.819E+03	1.085E+03	3.008E+03	1.1802+03	3.265E+03
11.0000	7.959E+02	2.242E+03	8,830E+02	2.477E+03	9.340E+02	2.615E+03	9.981E+02	2.788F+03	1.0855+03	3.024E+03
12.0000	7.391E+02	2.081E+03	8.191E+02	2.299E+03	8.660E+02	2.426E+03	9.250E+02	2.584E+03	1.005E+03	2.803E+03
13.0000	6.903E+02	1.9432+03	7.644E+02	2.145E+03	8.077E+02	2.263F+03	8.624E+02	2.411E+03	9.345E+02	2.6135+03
14.0000	6.480E+02	1.822E+03	7.170E+02	2.011E+03	7.5735+02	2.121E+03	8.082E+02	2.2605+03	8.771E+02	2.448E+03
15.0000	6.110E+02	1.716E+03	6.755E+02	1.8932+03	7.132E+02	1.996E+03	7.608E+02	2.127E+03	8.253E+02	2.303E+03
16.0000	5.783E+02	1.623E+03	6.389E+02	1.789E+03	6.743E+02	1.886E:03	7.190E+02	2.009E+03	7.796E+02	2.175E+03
17,0000	5.491E+02	1.5402+03	6.063E:02	1.697E+03	6.397E+02	1.789E+03	6.819E+02	1-9045+03	7.390E102	2-061E+03
18.0000	5.231E+02	1.465E+03	5.771E+02	1.614E+03	6.088E+02	1.701E+03	6.486E+02	1.810E+03	7.027E+02	1.959E+03
19.0000	4.995E+02	1.398E+03	5.509E+02	1.539E+03	5.809E+02	1.622E+03	6.187E+02	1.7265+03	6.700E+02	1.867E+03
20.0000	4.782E+02	1.337E+03	5.271E+02	1.471E+03	5.556E+02	1.5502+03	5.916E+02	1.649E+03	6.405E+02	1.784E+03

IN C12-H18-O7 (CR-39) FOR FE56 AND U238 IONS

	ω_=10	0 eV	ω ₀ =200 eV		ω ₀ =3	100 eV	ω ₀ =50	00 eV	ω ₀ =1	.000 eV
ENRG./NUC.										11070
(MEV/AMU)	FE56	U238	FE.56	U238	FE56	U238	FE56	0238	FESS	0238
0.0025	5.164E+03	8.232E+03	5.164E+03	8.232E+03	5.164E+03	8.232E+03	5.164E103	8.232E+03	5.164E+03	8.2321103
0.0050	7.120E+03	1.156E+04	7.120E+03	1.156E+04	7.120E+03	1.156E+04	7.120E+03	1.156E+04	7.120E+03	1.1562+04
0.0075	8.556E+03	1.408E+04	8.556E+03	1.408E-04	8.556E+03	1.408E+04	8.556E+03	1.408E+04	8.556E+03	1.4085.+04
0.0100	9.726E+03	1.618E+04	9.726E+03	1.418F+04	9.726E+03	1.618E+04	9.726E+03	1.618E+04	9.726E+03	1.618E+04
0.0200	1.311F+04	2.257E+04	1.311E+04	2.257E+04	1.311E+04	2.257E+04	1.3111.404	2-25/E+04	1.311E+04	2.75/E+04
0.0300	1.549E+04	2.734E+04	1.549E+04	2.734E+04	1.549E+04	2.734E+04	1.549E+04	2.734E+04	1.549E+04	2.734E+04
0.0400	1.737E+04	3.129E+04	1.7370+04	3.1290+04	1.737E+04	3.129E+04	1.737E+04	3.129E+04	1.737E+04	3.129E+04
0.0500	1.802E+04	3.244E+04	1.892E+04	3.470E+04	1.892E+04	3.470E+04	1.892E+04	3.470E+04	1.892E+04	3.470E+04
0.0600	1.762E+04	3.107E+04	2.025E+04	3.774E+04	2.025E+04	3.774E+04	2.025E+04	3.774E+04	2.025E+04	3.774E+04
0.0700	1.737E+04	3.015E+04	2.141E+04	4.050E+04	2.141E+04	4.050E+04	2.141E+04	4.050E+04	2.141E+04	4.050E+04
0.0800	1.721E+04	2.954E+04	2.245E+04	4.303E+04	2.245E+04	4.303E+04	2.245E+04	4.303E+04	2.245E+04	4.303E104
0.0900	1.711E+04	2.914E+04	2.338E+04	4.539E+04	2.338E+04	4.538E+04	2.338E+04	4.538E+04	2.338E+04	4.538E+04
0.1000	1.706E+04	2.890E+04	2.337E+04	4.536E+04	2.422E+04	4.757E+04	2.422E+04	4.75/E104	2.422E+04	4.757E+04
0.2000	1.749E+04	3.050E+04	2.3302104	4.637E+04	2.670E-104	5.545E+04	2.989E104	6.436F+04	2.989E+04	6.436E+04
0.3000	1.823E+04	3.422E+04	2.349E+04	4.966F+04	2.6888+04	5.868E+04	3.091E+04	7.006E+04	3.307E+04	7.618E+04
0.4000	1.807E+04	3.821E+04	2.405E+04	5.328E+04	2.708E+04	6.210E+04	3.089E+04	7.321E+04	3.510E+04	8.544E+04
0.5000	1.9368+04	4.206E+04	2.431E+04	5.683F.104	2.720E+04	6.547E+04	3.085E+04	7.635E+04	3.580C+04	9.112E+04
0.6000	1.973E+04	4.570E+04	2.448E+04	6.019E+04	2.7262+04	6.867E+04	3.076E+04	7.9368104	3.551E+04	9.386E+04
0.7000	2.174E+04	4.90%E+04	2.632E+04	6.334E+04	2.899E+04	7.168E+04	3.237E+04	8.219E+04	3.694E+04	9.644E+04
0.8000	2.251E+04	5.224E+04	2.693E+04	6.628E+04	2.957E+04	7.449E+04	3.278E+04	8.483E+04	3.720E+04	9.885E+04
0.9000	2.314E+04	5.518E+04	2.742E-104	6.901E+04	2.993E+04	7.710E+04	3.308E+04	8.729E+04	3.736E+04	1.011E+05
1.0000	2.365E+04	5.791E+04	2.781E+04	7.155E+04	3.024E+04	7.953E+04	3.330E+04	8.958E+04	3.746E+04	1.032E+05
2.0000	2.543E+04	7.743E+04	2.8705104	8.964E+04	3.062E+04	9.678E+04	3.304E+04	1.058E+05	3.632E+04	1.180E+05
3.0000	2.429E+04	8.794E+04	2.705E+04	9.917E+04	2.866F+04	1.05/E+05	3.0700404	1.140E+05	3.345E+04	1.253E+05
4.0000	2.243E+04	9.355E+04	2.482E+04	1.040E+05	2.623E+04	1.102E+05	2.799E+04	1.179E+05	3.039E+04	1.284E+05
5.0000	2.048E+04	9.621E+04	2.260E+04	1.061E+05	2.305E+04	1.119E+05	2.542E+04	1.191E+05	2.754E+04	1.290E+05
6.0000	1.8732+04	9.712E+04	2.064E+04	1.065E+05	2.176E+04	1.120E+05	2.317E+04	1.189E+05	2.509E+04	1.282E+05
7.0000	1.732E+04	9.723E+04	1.906F+04	1.032E+05	2.008E:04	1.114E+05	2.137E+04	1.179E+05	2.311F+04	1.269E+05
8.0000	1.608E+04	9.659E+04	1.768E+04	1.051E+05	1.862E+04	1.101E+05	1.980E+04	1.164E+05	2.140E+04	1.249E+05
9.0000	1.498E+04	1.010E+05	1.646E+04	1.091E+05	1.733E+04	1.139E+05	1.842E+04	1.200E+05	1.991E+04	1.282E+05
10.0000	1.401E+04	1.005E+05	1.539E+04	1.004E+05	1.620E+04	1.130E+05	1.722E+04	1.189E+05	1.840E+04	1.267E+05
11.0000	1.316E+04	9.958E+04	1.445E+04	1.072E+05	1.521E+04	1.116E+05	1.6165+04	1.172E+05	1.745E+04	1.2488+05
12.0000	1.240E+04	9.8360+04	1.3622404	1.057E+05	1.433E+04	1.100E+05	1.522E+04	1.154E+05	1.643E+04	1.227E+05
13.0000	1.173E+04	9.692E+04	1.287E+04	1.040E+05	1.354E+04	1.082E+05	1.430E+04	1.134E+05	1.553E+04	1.205E+05
14.0000	1.112E+04	9.532E+04	1.220E+04	1.022E+05	1.284E+04	1.062E+05	1.364E+04	1.113E+05	1.472E+04	1.182E+05
15.0000	1.058E+04	9.363E+04	1.160C+04	1.003F+05	1.221E+04	1.042E+05	1.296E+04	1.092E+05	1.399E+04	1.158E+05
16.0000	1.008E-104	9.189E+04	1.106E+04	9.8302+04	1.163E+04	1.022E+05	1.235E+04	1.0708+05	1.333E+04	1.135E+05
17.0000	9.636E+03	9.011E+04	1.0572+04	9.6432+04	1.112E+04	1.001E+05	1.180E+04	1.048E+05	1.274E+04	1.111E+05
18.0000	9.229E+03	8.832E+04	1.012E+04	9.448F+04	1.064E+04	9.808E+04	1.130E+04	1.026E+05	1.219E+04	1.089E+05
19.0000	8.857E+03	8.655E+04	9.711E+03	9.255E+04	1.021E+04	9-606E+04	1.084E+04	1.005E+05	1.170E+04	1.0651405
20.0000	8.515E+03	8.479E+04	9.335E+03	9.065E+04	9.815E+03	9.408E+04	1.042E+04	9.837E+04	1.124E+04	1.043E+05

References

- [1] S. P. Ahlen, Rev. Mod. Phys. 52 (1967) 121
- [2] W. H. Barkas, M. J. Berger, National Academic Sciences-National Research Council Publication-1133 (1964) 103
- [3] E. V. Benton, USNRDL-TR-86-14 (1968)
 [4] R. P. Henke, E. V. Benton, USNRDL-TR-122 (1967)
- [5] G. Somogyi, K. Grabisch, R. Scherzer and W. Enge, Nucl. Instr. Meth. 134 (1976) 129

Referee: L. Medveczky

ATOMKI KÖZLEMÉNYEK 23 (1981) 113-126 THE PARTICIPATION OF ATOMKI IN THE G-2 INTERNATIONAL INTERCOMPARISON OF HIGH PRECISION GAMMA-RAY SPECTROMETRY MEASUREMENTS

A. GÁSPÁR, T. LAKATOS, B. SULIK, I. TÖRÖK

Institute of Nuclear Research of the Hungarian Academy of Sciences, Debrecen, H-4001, Pf.51.

The task of participants was to measure the relative activities of sources sent and calibrated by the IAEA, at high count rates. The measurements have been carried out by using two independent methods: A) simple normalization to an additional radioactive source; B) by using a time variant pulse processor and random pulse generator for the correction of dead-time and pile-up losses. Our results agreed in most cases within ±1 % with the IAEA results.

AZ ATOMKI RÉSZVÉTELE A G-2 NAGYPONTOSSÁGU GAMMA-SPEKTROMET-RIAI NEMZETKÖZI ÖSSZEHASONLITÓ MÉRÉSBEN. A résztvevők feladata a NAÜ által készitett és bemért források relativ aktivitásának mérése volt, nagy impulzussürüségnél. Két független módszerrel végeztük a méréseket: A) egyszerü normálás egy további rádioaktiv forráshoz, B) idővariáns jelfeldolgozó rendszerrel, random generátorral korrigálva a holtidő és impulzus egymásra ülés okozta veszteségeket. Eredményeink az esetek többségében ±1 %-on belül egyeznek a NAÜ eredményeivel.

УЧАСТИЕ АТОМНІ В МЕЖДУНАРОДНОМ СРАВНИВАЮЩЕМ ГАММА-СПЕНТРО-МЕТРИЧЕСКОМ ИЗМЕРЕНИИ ВЫСОКОЙ ТОЧНОСТИ G-2. Аннотация: Задачей участников являлось измерение при высокой скорости счета относительной активности источников, сделанных и откалиброванных МАГАТЭ. Мы измерили двумя независимыми путями: А) нормируя к добавочному радиоактивному источнику, Б) используя времязавысящий процессор импульсов и генератор случайных импульсов для коррекции потери от мертвого времени и наложения. Наши результаты в большинстве случаев согласуются с результатами МАГАТЭ с точностью ±1 %.

In the summer of 1979 the IAEA organized the International Intercomparison of High Precision Gamma-Ray Spectrometry Results G-2 (Action S5/78 of the α - β - γ Working Group of the International Committee for Radionuclide Metrology /ICRM/). Several years ago another international intercomparison action was performed, code-named G-1 where the participants could test their gamma-ray spectrum evaluating computer codes, running them on the test spectra supplied by the IAEA. In the present G-2 intercomparison the IAEA made and calibrated five special mixed-isotope sources and sent them to the participants, to measure the relative gamma-emission rates at a high integral count rate (min. 1000+50 cps). Each source is a mixture of Co-57 (122 keV), Ba-133 (356 keV), Mn-54 (834 keV) and Zn-65 (1116 keV). The peak areas of the four gamma-rays, given in parentheses, were to be measured under the same conditions (including the same source to detector position!) and the quantities, to be reported to the IAEA, were the count rates of source no. i (i=1,2,3,4,5) corrected for dead-time and pile-up losses and for half life (values supplied by the IAEA) related to given reference data (79 07 01). The approximate activities in the sources at that reference time were

16	kBq	57CO									
24	kBq	133Ba	in	the	source	no.	1,	and	the	activities	
24	kBq	54Mn	of	sour	ces						
48	kBq	65Zn									

No. 2,3,4 and 5 are larger by factors 3, 6, 10 and 15 respectively.

A measurement like that does not depend on the uncertain efficiency curves (as it was the case in another former intercomparison, the measurement of Eu-152 sources, organized in 1977 by the Physikalisch-Technische Bundesanstalt, Braunschweig [1]), and the whole measuring method and procedure is tested: the source positioning, the detector, the electronics, the different corrections made by hardware or software, and the complete evaluation of the multichannel spectra.

2. Preparing for the measurements

We performed several preliminary test measurements in the range of the required count-rates and realized that the counting losses in our electronic system reached almost 60 percent near the maximum count-rate of the G-2 intercomparison. It turned out that the analogue current meter calibrated in percentage dead time is wrong in a factor of about 2.5 (showing less loss), because of the pile-up losses, at about 15000 cps. Similar, but a little less difference (in a factor of about 1.8-2.0) was obtained by using the live time clock of the MCA. We realized, that for high count rate work the bipolar signals with long shaping time constants (6.4 μ s) are the most suitable, (meth. A.), giving the least distortion and best resolution in the spectra.

3.1. Method A.

The aim of this measurement series was to test whether to what extent a simple detector-preamplifier-linear amplifier-MCA chain can be corrected against counting losses using a reference peak originated from a radioactive source or from a pulse generator. In the final measurement we used a radioactive source, because the signal of it "models" more precisely the signals from the radioactive source in question, than a periodic generator pulse fed into the system at the preamplifier only. Of course, on the other hand, this radioactive source will give an additional count-rate and its Compton-continuum makes the evaluation of lower energy peaks a little more uncertain. An about 320 kBq (cca. 9 μ Ci) ¹³⁷Cs standard preparatum was used as reference source. Its 30 years half-life is very suitable to use this isotope as a "constant" intensity source. The 662 keV gamma-line is situated at the center of the energy range of the measurements and no problematic interference was found with the other gamma lines in the spectra to be measured. Of course, generally it is not always easy to find a suitable source. The measurements, were performed at 0 degree with 80 mm source-to-detector distance for the sources to be measured, and 175 mm for the reference source. The detector with the sources was placed nearly in the geometrical center of a room, possibly far from scattering media.

The detector itself was a HARSHAW-made ACO-34 type coaxial Ge(Li) detector with one open end. It was mounted in horizontal arrangement. Its nominal efficiency was 12.4 %, relative to 3"×3" NaI(Tl) for 1.33 MeV.

The electronic amplifier chain consisted of a preamplifier: TENNELEC TC160/HARSHAW NB-21 mounted to the detector in the factory, and a linear amplifier: ATOMKI made, type NV-804.

The multichannel analyzer used, was a Nuclear Data 2020, equipped with a GEN II. 100 MHz ADC. We acquired 4095-channel spectra with 2.096 channels per keV. The dead time of the analyzer as a function of channel number (n) is cca. $(20+0.01\times n) \mu s$. The final measurement series was performed with the following measurement times:

Source no.	1	2	3	4	5
Clock time	40000s	20000s	10000s	10000s	10000s

For the long measurement time and high count rates, overflows occured in several channels (max. 5 in a spectrum). In these channels a correction of 1000000 or 2000000 counts (plus) had to be performed. The spectra were evaluated by the FORGAMMA code [2] (which is a SAMPO-like program). We run it on a PDP 11/40 computer in automatic peak search mode with 4 and 6 channel full width at half maximum values. The program made a fitting with a Gaussian and a low energy exponential tail plus a linear background. The peak area was calculated by the program by integrating the area between the fitting curve and the fitted background. After giving this area, a second area value was calculated as the area between the measured spectrum and the fitted background. If this second value had agreed with the first one, the result was accepted. The error limits calculated by the FORGAMMA to the area value from the Gaussian fitting were unacceptable low. In a former measurement we found, that many times the reproducibility of a peak area needs seven times larger error limits than these calculated by the FORGAMMA, but at least three fold of the calculated value is only a reasonable error. The results of the first and second measurement series were analyzed from the point of view of reproducibility and on the basis of this analysis the overall error (perhaps a little overestimated) was calculated using the formula

$\Delta(\%) = 5 \times \sqrt{[0.3 (\%)]^2 + [3 \times \sigma(\%)]^2}$

The first term under the square root (0.3 %) is the estimated systematic error, in the second term the σ is calculated from the statistical error of the given peak, and that of the 662 keV peak, got from the FORGAMMA print-outs.

The 1000±50 cps was set by changing the source-to-detector distance and evaluating the area under the whole measured spectrum divided by the clock time of the measurement and corrected against the counting losses.

The correction was performed in the following way. In the first attempt we estimated the counting losses, and so we set a higher value. After the measurement series we made a better correction in the following way. The sixth spectrum was measured, when only the ¹³⁷Cs source was involved; of course, in the same position as in the other measurements. The count rates in the 662 keV lines in all the six spectra (obtained by dividing the peak areas by the clock time of the measurements) were drawn in a diagram as the function of the approximate integral count rate (obtained by dividing the area under the whole spectrum by the clock time of the measurement). The points were situated approximately in a straight line. Fitting a calculated straight line on them, we got the value of the hypothetical count rate in the 662 keV line at zero integral count rate in the intersection of the line with the count rate axis. The ratio of the value of this fitted line at a given point to the above hypothetical count rate is a good approximation for a counting loss correction factor. A similar correction method is given in [3]. By using this factor we could control that we were really within the required range of counting rate.

The resulted peak areas were corrected for the dead-time and pile-up counting losses simply multiplied by the factors got from the division of the peak areas of 662 keV line in the given spectrum with the respective area in the spectrum of the first source. (As we needed only the ratios of count rates, we had not to make the correction for 0 integral count rate).

The corrected peak areas were divided by the clock time of the measurement, so we got the count rate in the given gamma line.

Another correction was made by the half-lives.

The result of method A

Several months after sending our results we got the activity values of the sources, used in our measurements, as measured by the IAEA. To evaluate the results we calculated the ratios of the activities in a given source relative to the activity in source No. 1. (AEIn/AEII=QIAEA) where Ei is the energy of the gamma ray in question, and n is the source number. Similarly we calculated the respective ratios of the count rates measured by us: $(I_{E_1n}/I_{E_1}, Q_A)$. The index A refers to the meth-hod A. The ratio of the two ratios is the measure of the accuracy of our measuring method. Fig. 1. is a diagram showing the ratios $Q_A/Q_{|AEA}$ in increasing order of source number, and within it, those of gamma ray energy, together with the percent errors given by us. In the case of the first source as this is the reference for the calculation of the Q ratios the value is always 1, by definition. The two different kinds of error given at them are the errors of the activity measurements in Vienna and the estimated error of our measurements for the No. 1. source. As it is seen, thanks for the little overestimated error limits, all of our results agree within these limits with the "official" results. What tells more, practically all of our results, except one, are in a ±1 % interval. What tells even more: only 5 out of the 16 measured points are not within the much more severe error limits given by the IAEA. Later the final report on G-2 [4] confirmed these results.

3.2. Method B.

Before performing the G-2 intercomparison measurements, a new analogue signal processor had been developed in our institute for Si-Li X-ray spectrometers. This system, built with time-variant filters, contains pile-up rejector and live-time corrector circuits so it can be used up to high input counting rates with high precision.

The live-time corrector unit provides BUSY-state signals for gating the live-time clock, during the dead-time intervals both of the signal processor and of the multichannel analyser.

In the case of a simple X-ray spectrum (⁵⁵Fe) this method assures 0.5 % accouracy of intensity measurement in the range of 0.5×10⁴ cps total input counting rate.

In spite of this, investigating gamma-ray spectra in the 0.1-2 MeV energy range, about 4 % distortion was found in γ -peak areas at 1.5×10° cps total input counting rate. This error was caused by low-energy pulses from the Compton region with amplitudes less than the recognition level of the processor. Such pulses generate neither processing cycles nor BUSY-state signals, but they may produce pile-up events with recognized pulses distorting their amplitudes, and consequently decreasing the photopeak-area. So an additional reference peak was to be used in the sake of higher accuracy.

In 'Method B' the reference peak was generated by a Random Tail Pulse Generator [5] which provides exponential time-interval density between output pulses. The 80 ns wide logical output pulses of the generator were used to trigger signal processing cycles of the processor, in 'OR' connection with the output pulses of the signal recognition circuit.

Fig. 1. The results of method A related to the IAEA activity data.

Without pile-up, the generator pulse yields a zero volt amplitude sampled signal at the output of the processor. In the case of recognised pile-up no sampling occures, while, when non-recognised pile-up occures the output amplitude will not be zero. In order to measure this 'zero-peak' with the analyser a DC bias was applied in front of the output linear gate. The total spectrum consisted of the 'zero-peak' (reference-peak) and of the measured spectrum, without any interference between them. However the reference peak is easy to evaluate since it is sitting on the zero background.

Fig. 2. shows our measuring arrangement.

Fig. 2. The block diagram of the correction electronics.

COUNTER-1 was used as a preset scaler, wich counted the logical pulses ordered to 'zero-peak' realizing a coarse live-time correction. COUNTER-2 measured the clock-time, COUNTER-3 measured the mean rate of the Random Tail Pulse Generator.

Measured spectra were evaluated (in 'Method B') by a special program for gamma-ray spectra developed in our institute [6]. The 'zero-peak' and the examined photopeaks were fitted by using the same analytical formula.

Physical arrangement and measuring times were almost identical in 'Method B' and 'Method A'.

The Results of Method B.

Similarly to 'Method A', the ratios $Q_B/Q_{|AEA}$ are represented in Fig. 3, together with the relative standard deviations of Q_B given by us.

Fig. 3. The result of method B related to the IAEA activity data.

We assumed three independent components of error (s.d.):

- The standard deviation of the peak-areas, given by the evaluation program: Sp rel
- The standard deviation of the geometrical reproducibility: Sg rel (independently determined by a measuring set).
- The standard deviation of all other error sources: So rel (independently determined by a measuring set)

Fig. 4. The energy dependence of overcorrections using different peak evaluation codes. a) EVAZOL, b) FORGAMMA.

So we get: $S_{\text{II}} = (S^2 \text{ prel}^+ S^2 \text{ rel}^+ S^2 \text{ orel})^{\frac{1}{2}}$

and: SQ rel^{*(S²}Ii rel^{+S²}I1 rel)^{$\frac{1}{2}$}.

One can observe, that the systematic error of measured Q_B ratios shows an upward tendency with higher gamma-energies compared to Q_{LAEA} ratios.

The energy dependence of these errors seems to be stronger at higher counting rates (see Fig. 4.) and the direction of deviations is always overcorrection-like.

The cause of this systematic error, as it was examined carefully later, was the tail effect on both sides of the photopeaks. The non-recognized pulses may slightly both decrease and increase the amplitudes of pulses, when non-recognised pile-up occures. This effect leads to a wrong background fitting, and the error is nearly proportional to the FWHM of photopeaks.

4. The Report G-2 [4]

The evaluation of the results sent to the IAEA and the preparation of the report took a little more than a year, as we got the Report G-2 in December 1980.

99 results were received by the IAEA from 69 laboratories. Laboratories of 24 countries sent their results from all the five inhabited continents, with many "big names" among the participants.

There was observed no significant dependence of the results from the detector size, from the method of peak processing or from the electronic equipment.

The received results were grouped in the following methods of counting-loss correction:

- live time correction, simply using the dead time gate of the MCA,
- 2) correction to a generator of known frequency,
- 3) correction to a radioactive source,
- 4) other methods.

For the evaluation of the results the following calculations were made:

Cik" Nik

where N_{ik} - the peak count rate, sent by the participant; m_i - mass of the source; d_{ik} dilution factors; index i=1,...5 number of the source; index k=1,...4 number of each nuclide. The product $m_i \cdot d_{ik}$ is proportional to the absolute activity of the given isotopes in the given source. If the measurements were carried out accurately, C_{ik} is a constant.

and the

SPH AN

 $\overline{C}_{k} = \frac{1}{5} \sum_{i=1}^{5} C_{ik}$

is the average of the above "constant" for a given nuclide.

 $\Delta_{ik} = 100 \frac{C_{ik} - \overline{C}_{k}}{\overline{C}_{k}}$

is the percent error of the C_{ik} relative to the above average. (Choosing this way of evaluation quasi "smoothed" the errors caused by the finite accuracy of the activity given by the IAEA). This Δ_{ik} value is the abscissa for the drawings given in the Report G-2 for each set of the results.

 $\delta_k = \frac{1}{5} \sum |\Delta ik|$ given in Table 6. "DELTA". The average of percent error for a given puclide. percent error for a given nuclide.

> given in Table 1-5, "DELTA". This is the average of percent error for each peak. This was regarded as quality parameter, the data were sorted by this value.

$$R_{k} = \frac{C_{5k}}{C_{1k}}$$
$$\bar{R} = \frac{1}{4} \sum_{k=1}^{4} R_{k}$$

 $\overline{\delta} = \frac{1}{4} \sum_{k=1}^{4} \delta_k$

given in Table 6, "RATIO".

given in Table 1-5, "AVERAGE RATIO". This parameter reflects the success of compensation in the case of most difficult, highest count rate.

5. Conclusion

First we give the conclusion for the overall intercomparison drawn by the organizer and then our own conclusions. "For precision γ -ray measurements in the life-time correction the multichannel analyzer is unreliable. If the system is very well adjusted and the dead-time correction circuit of the ADC is controlled by a well working pile-up rejector, the values are reasonably good (\bar{R} >0.95). It seems to be difficult to find this adjustment and that is why R values down to 0.75 are possible.

Method 2 (generator) gives much more comparable values. There is perhaps a tendency to overcompensate the high energy range if a pile-up rejector is used additionally, as R values higher than 1 are often occurring.

Method 3 seems to be comparable to method 2, but no participant in this group used a pile-up rejector or any additional electronic equipment.

Because of the very different methods used in group 4 it is not possible to find any significant trend."

The IAEA did not evaluate the error, given by the participants, as the material sent was too heterogeneous. There was a leak of defining the way of estimation, mainly for the systematic part of error. Even our own philosophies for the error estimation in the two methods were quite different.

As regards our own results, in Table 1. we are at places 12. (Method A) and 20. (Method B). See Fig. 5., which is the graphic representation of Table 1 of the Report G-2. As the activities given by the IAEA were of average error of 0.82 % (ranging from about 0.5 to 1.5 %), results below 1 % can be regarded as good values. Both of our results are less than 0.5 %. As all the first 12 results belong to different participants, our institute also ranked to the 12th place.

From Fig. 5. it can be seen, that about half of the number of participants (43) reached the δ =1 % value, and about a quarter of them (24) are within the very good 0.5 % limit. The worst results can be regarded as testing different types of MCA-s regarding their life-time correction. It is interesting to see the trends of the R values. Up to about the 70th place (δ =2 %) both positive and negative differences are present, their absolute values growing by a degree of about 3 times higher than the growth of the δ value. Above about δ values of 2 % the R becomes less than 1.0, showing the insufficient correction against the counting losses.

Fig. 5. The graphic representation of the average delta and average ratio ordered by growing average delta. (Table 1 of the G-2 report [4]).

In the list giving the results of participants, by whom the third method was used for correction (radioisotope, Table 4 [4]), our method A is the leader, and in the list of the users of the fourth correction method (others, Table 5 [4]) our method B is ranked to 4^{th} place (among,7 and 21 participants respectively). The drawings of our results in the Report G-2 are similar to Fig. 1. and 3. with the difference, that the errors are smoothed by the averaging done by the organizers. Our results for the different nuclides are the following from the Table 6 of [4]:

	Co-57		Ba-133		Mn-54		Zn-65	
	DELTA	RATIO	DELTA	RATIO	DELTA	RATIO	DELTA	RATIO
А	0.514	0.996	0.204	1.007	0.203	0.999	0.347	1.000
В	0.163	1.004	0.267	1.007	0.607	1.021	0.723	1.025

This represents the energy dependence of the results. It can be seen, that the isotope method (A) gave slightly better results at higher energies, because here the peaks were not disturbed by the Compton-continuum of the reference peak. The B method gave better values at lower energies, because the reference peak was placed at the zero energy.

Method A is almost at the limit of its performance at 15 kc/s, at much higher count rates, the peaks are so distorted, that precise evaluation is impossible or at least too difficult. On the other hand method B can be used up to about ' 100 kc/s.

It is noticeable, that such simple, almost primitive, relatively cheap techniques, like those used in our measurement with method A, can be successfully used, up to the count rate limits where accurate peak evaluation is still permitted by the peak shape distortion.

Our final conclusion is, that our results are satisfactory: up to about 20 kc/s corrections, by normalizing to an appropriate radioactive isotope or to a pulser of known frequency, can be used with about equal success, and the results of corrections by a pulse processor (like the one, used in method B) are comparable with those of the former methods. Above this frequency limit the pulse processor method gives the proper correction.

6. Acknowledgements

The authors would like to thank the people of the neutron generator laboratory, for providing place, detector and MCA for the measurements; for the help in the preparation and measurements; and for discussions, especially to I. Uray. We also thank Cs. Ujhelyi for the discussions, for handling the sources, and for doing the administrative work in connection with them. The users of method B are thanking J. Gál for the discussions and for providing the random pulse generator.

References

- [1] K. Debertin, Nucl. Instr. and Meth. 158 (1979) 479
- [2] G. Székely, ATOMKI Közl. 15 (1973) 259
- G. Székely, ATOMKI Közl. 16 (1974) 355

- [3] A. Wyttenbach, J. Radioanal, Chem. 8 (1971) 335
 [4] H. Houtermans, K. Schaerf, F. Reichel, and K. Debertin, Report G-2, IAEA (1980).
 [5] J. Gál, Gy. Bibok and J. Pálvölgyi, Nucl. Instr. and Meth. 171 (1980) 401
- [6]L. Zolnay, ATOMKI Közl. to be published.

Referee: T. Fényes

ATOMKI Közlemények 23 (1981) 127-130 MŰHELYÜNKBŐL, LABORATÓRIUMUNKBÓL

LYUKKERESÉS KVADRUPÓL TÖMEGSPEKTROMÉTERREL

BOHÁTKA SÁNDOR, KISS LÁSZLÓ

MTA Atommagkutató Intézete, Debrecen, Pf. 51.

Cikkünkben olyan módszert és eszközt ismertetünk, amely az intézetben készitett kvadrupól tömegspektrométerrel végzett lyukkeresést érzékenyebbé, illetve kényelmesebbé teszi. Az eszközt önálló egységként épitjük be a Q 60-U és Q 100-U jelü tömegspektrométereinkbe.

LEAK DETECTION WITH QUADRUPOLE MASS SPECTROMETER. A method and an electronic unit are described which make it possible to use a quadrupole mass spectrometer as a versatile and sensitive leak detector. The unit is built in our quadrupoles of Q 60-U and Q 100-U type.

ТЕЧЕПИКАНИЕ С ПОМОШЬЮ КВАДРУПОЛЬНОГО МАСС-СПЕКТРОМЕТРА. В статье описаны метод и аппаратура (блок электроники) для течеобнаружения на основе квадрупольного масс-спектрометра, обладающие большой чувствительностью и удобством. Блок электроники встроен в масс-спектрометры Q 60-U и Q 100-U.

A kvadrupól tömegspektrométer [1] igen előnyősen alkalmazható lyukkeresőként, mert keresőgázként nem csak He használható hozzá – mint a speciális célberendezésekhez – hanem szinte bármely gáz. Széles müködési tömegtartománya lehetővé teszi, hogy a 4 a.t.e.-nél mérhető He mellett H₂ (2), Ar (40), freon (85,87,50), alkohol (31); aceton (43), benzin (41,43 stb) vagy egyéb gáz, ill. folyadék legyen a kereső anyag. Ennek elsősorban az az előnye, hogy a He nehezen beszerezhető, (nem mindenki számára hozzáférhető gáz), a felsorolt anyagok pedig szokványos laboratóriumi kellékek, de nem lebecsülendő az az előny sem,hogy folyadék kereső anyagot használva a lyuk pontosabban lokalizálható.

Lyukkereséskor a vizsgálandó berendezést a kvadrupól tömegspektrométerhez csatlakoztatjuk, majd a kvadrupólt a keresőgáz legintenzivebb csucsának névleges tömegszámára állitjuk. A tömegszám pontos helyét akkor határozhatjuk meg, ha a gázból egy kis mennyiséget rövid ideig beengedünk a rendszerbe, és a tömegskálán – a névleges tömeg környezetében – megkeressük azt a pontot, ahol a kimeneten mért ionáram maximumot mutat. Ezt az ionáramot a kvadrupól kijelző müszerén olvashatjuk le. Ha a keresőgázzal a lyukra fujunk, a kvadrupólnak a müszeren is leolvasható kimenő jele megnő, majd a gázadagolás megszüntetése után lecsökken. A müszer kitérésétől függően az elektrométer méréshatár váltójával szabályozzuk az érzékenységet. A detektált jel nagysága egyenesen arányos a keresett lyuk méretével.

A vizsgálat során gyakran előfordul, hogy a beállitott tömegszámnál a háttér jelszint nem nulla, azaz a megadott helyen is van a tömegspektrumban csucs és lyukkeresésnél ennek a változását kell nyomon követni. Ilyenkor az érzékenységet nem lehet az elektrométer méréshatárával tetszőlegesen megnövelni, mert az 10 V felett telitésbe megy. Ezen segit a lyukkereső adapter, amely végeredményben negyvenszeres érzékenyitést tesz lehetővé. Az adapter az elektrométer szürt jelét használja bemenő jelként (l. ábra). Ezt a 0-10 V-os jelet tudja egy kétszeres erősitésü kompenzáló fokozat levágni oly módon, hogy a bemeneti jel változása az eredeti kétszerese lesz, csak egy alacsonyabb feszültségszintre ültetve jelenik meg. Ekkor már van értelme egy további utóerősitésnek (érzékenység), amely a vágott jelet esetünkben több, mint 20-szorosára növeli. A zajviszonyok miatt nagyobb mértékü erősités már nem indokolt.

1. ábra A lyukkereső elektronika tömbvázlata.

A lyukkeresés könnyebben elvégezhető, ha nem kell állandóan figyelni a müszert: ha például sikerül előállitani valamilyen hanghatást, amely a müszer jelével arányos. Ezt a feladatot valósitják meg az adapternek az l. ábrán látható további egységei.

Az akusztikus kijelzést a hallható hangok tartományában történő frekvenciaváltozás létrehozásával valósitottuk meg. Ez a frekvenciaváltozás lineáris kapcsolatban van a bejövő jel nagyságának változásával. A Fletcher-Munson-görbékből [2] kiolvasható, hogy az emberi fül a 200 Hz és 6 kHz frekvenciatartományba eső hangokra a legérzékenyebb. Következésképpen: e sávban már kis mérvü frekvenciaváltozást is jól érzékel. Ezt figyelembe véve, a feszültség-frekvencia konverter alsó és felső frekvenciahatárait 80 Hz és 7,5 kHz között határoztuk meg. Az elmondottak alapján a 80 Hz-es alsó frekvencia nem lenne indokolt. Különösen nem, ha tekintetbe vesszük, hogy a környezet (jelen esetben vákuumszivattyuk, ventillátorok stb.) zaja jócskán tartalmaz ilyen alacsonyfrekvenciás összetevőket. Ezek a hangok gyengén hallhatók, de éppen emiatt alkalmasak arra, hogy a lyukkeresés kezdetén mindaddig, amig a repedés, tömitetlenség közelébe jutunk, csak ezt a fülnek nem kellemetlen, un. lágy hangot halljuk.

Az akusztikával foglalkozó irodalom és saját méréseink alapján döntöttünk ugy, hogy a feszültség-frekvencia konverter jelét, mielőtt a végerősitőre vezetnénk szinuszositjuk. Ugyanis a lyukkeresés néha hosszu ideig tartó művelet és a fülnek sokkal kellemetlenebb, fárasztóbb egy felharmónikusokban gazdag jelet hallgatnia, mint ugyanazon frekvenciáju tiszta szinuszjelet. A végerősitő kimenetén 4 ohmos terhelésen $P_{ki}=2$ W teljesitménynél megjelenő 1250 Hz-es szinuszjel torzulása kisebb, mint 1,5 %.

Mint korábban emlitettük, az adapter lehetőséget nyujt kompenzálásra és a jelváltozás további erősitésére. A kompenzációt és érzékenységet szabályozó potencióméterek megfelelő beállitásával elérhető, hogy már kis mértékü csucsmagasság ingadozás jelentős frekvenciaváltozást eredményezzen.

A feszültség-frekvencia konverter ugyanakkor éri el a maximális frekvenciát, amikor a müszer végkitérést mutat, az U_V vezérlőfeszültség további növekedése már hatástalan lesz rá. Ekkor lép müködésbe a tulcsordulást jelző áramkör, amely a bemeneti erősitőre érkező jelet megszaggatja. Ezáltal a hangszóróban egy jellegzetes hangzás hallható, jelezve az érzékenységcsökkentés, illetve a kompenzálás szükségességét. A szaggatás frekvenciáját a jó érzékelhetőség érdekében néhány Hz-re választottuk, amit a passziv elemekkel felépitett késleltető hálózattal állitottunk a kivánt értékre.

A hangfrekvenciás erősitő átviteli tartománya jóval szélesebb az itt átvinni kivánt sávnál. A kvázikomplementer végfokozatot AB osztályban járatjuk a jelalaktorzitás alacsony szinten tartása végett. A kivehető maximális teljesitmény 3 W 4 óhmon.

A lyukkeresés érzékenysége alapvetően a kvadrupól tömegspektrométer érzékenységétől és az alkalmazott nagyvákuum szivattyu effektiv szivósebességétől függ. Intézeti kvadrupóljainkkal 5.10⁻⁴ A/mbar érzékenység elérhető. Lyukkereséskor a kimenőjelet a rendelkezésre álló legnagyobb időállandóval (100 ms) meg lehet szürni és igy 10^{-12} A méréshatárban a jel/zaj viszony 2,5. 10^{-15} A-nél még egységnyinél nagyobb. Ez 5. 10^{-12} mbar nyomásváltozás kimutatásához elegendő. A lyukkereső adapter erősitőjével és hangfrekvenciás generátorával ezt a jelet jól láthatóvá és hallhatóvá lehet tenni. A kimutatható legkisebb szivárgás (Q[mbar l/s]) a parciális nyomás érzékenység (p_{min} [mbar]) és a szivattyurendszernek a kvadrupólnál mérhető effektiv szivósebessége (S[l/s]) ismeretében a Q= p_{min} .S összefüggés alapján számolható ki. Ez 10 l/sec szivósebességnél 5. 10^{-11} mbar·l/s($\sim 5.10^{-11}$ atm.cm³/s)-nak adódik, ami a jó minőségü héliumos lyukkereső berendezések érzékenységi tartományába esik, de azoknál sokoldalubb, mert sokféle próbagázzal müködtethető. Az adapter kompenzáló és utóerősitő egységei lehetővé teszik, hogy ezt az érzékenységet nem csak a He, hanem más keresőgáz alkalmazásakor is megőrzi a készülék.

Hivatkozások

- [1] Berecz I., Bohátka S., Gál J., Paál A.: ATOMKI Közl. 19 (1977) 123
- [2] R. F. Graf: Elektronikus tervezési adatgyüjtemény, Müszaki Könyvkiadó Bp. 1979.

Lektor: Balogh Kadosa

INTÉZETI HIREK

1980. okt. 22-én Lázár György, a Magyar Szocialista Munkáspárt Politikai Bizottságának tagja, a Minisztertanács elnöke látogatást tett az ATOMKI-ben. A látogatás célja az intézet munkájával való ismerkedés volt. Lázár Györgyöt az intézetbe elkisérte több megyei vezető Sikula György, a Központi Bizottság tagja, a megyei pártbizottság első titkára vezetésével.

Az Intézet munkájáról dr. Berényi Dénes intézeti igazgató adott tájékoztatást, majd a tájékoztató után Lázár György és kisérete az intézet laboratóriumait tekintette meg. A látogatás végén Lázár György elismerését fejezte ki, értékelve azt a törekvést, hogy a magas szintű tudományos kutatás mellett az ATOMKI-ben gyakorlati, a népgazdaság számára hasznos tevékenység folyik.

Dr. Gonda György államtitkár, az Országos Környezet- és Természetvédelmi Hivatal elnöke 1980. szeptember 18-án látogatást tett az ATOMKI-ben.

1980. április 15-19. között az ATOMKI Nemzetközi ESCA Szemináriumot szervezett szocialista országok szakemberei részére összesen 15 külföldi vendég részvételével.

1980. november 3-án a Neumann János Számitógéptudományi Társaság távadatfeldolgozással foglalkozó kerekasztal megbeszélését az ATOMKI-ben tartotta. A megbeszélésen résztvevő szakemberek az intézetben müködő az UT200 távállomást és a PDP 11/40 számitógépet tekintették meg.

1980. november 10-15. között a Kölcsey Ferenc Müvelődési Központ, az Eötvös Loránd Fizikai Társulat debreceni Csoportja és a TIT szervezettel együttmüködésben az ATOMKI "Őszi Fizikus Napok"-at szervezett, elsősorban középiskolások és egyéb a fizika iránt érdeklődő közönség részére. A rendezvény keretében az intézet megszervezte "Az Ipar és fizika" cimü kiállitást, továbbá intézetlátogatásokat és rendhagyó fizika-órát az ATOM-KI-ben, valamint pályázatot középiskolás résztvevők számára. A pályázatok eredményhirdetésére 1981. február 20-án került sor.

A Debreceni Orvostudományi Egyetem és az MTA Atommagkutató Intézete 1980. november 21-én közös tudományos vitaülést rendezett. A vitaülés tárgya: Távlatok és lehetőségek a DOTE és az ATOMKI tudományos együttmüködésében. Vitainditó bevezetőt tartottak: dr. Koltay Ede (ATOMKI) és dr. Székely György (DOTE) professzorok.

A vitaülést megelőzően, ill. annak előkészitéseként 1980. november 19-én a DOTE érdeklődő munkatársai számára intézetlátogatást szerveztünk. Az ATOMKI-ben és az ATOMKI szervezésében rendeztük meg 1980. november 25-28. között a "Szocialista országok IUPAP (International Union of Pure and Applied Physics) Nemzeti Bizottságai titkárainak értekezletét. Az értekezletet dr. Kiss Dezső akadémikus, az IUPAP Magyar Bizottságának elnöke nyitotta meg. Az értekezleten két szovjet, két csehszlovák, két NDK, egy kubai, egy román, egy lengyel és három magyar szakember vett részt.

A DAB Matematikai-Fizikai Szakbizottsága december 5-én az ATOMKI-ben tartotta ülését, melynek programjában szerepelt "A humán és természettudományos kultura egysége" vitaülés, a humán tudományterületek képviselőinek részvételével. A Szakbizottság ülésén egyébként beszámolók hangzottak el a munkabizottságok tevékenységéről, továbbá megvitatásra került a munkabizottságok 1981. évi munkaprogramja, valamint a Szakbizottság tagjai egyéb aktuális kérdéseket tárgyaltak meg.

Az Intézet Igazgató Tanácsa az év folyamán két alkalommal ült össze. Kibővitett ülésein az intézet gazdálkodásával kapcsolatos kérdésekkel,(az ifjusági törvény helyi végrehajtásáról, a szabadalmi politika aktuális problémáiról), továbbá az intézet nemzetközi együttmüködési kapcsolataival foglalkozott.

Az ATOMKI Osztályvezetői Értekezlete 1980 folyamán is rendszeresen – általában havonta egy alkalommal – ülésezett. Az Osztályvezetői értekezlet megvitatta az egyes kutatási egységek beszámolóit, tevékenységét, továbbá az 1981. évi kutatási terveket valamint a kutatási tervek előkészitéséhez kapcsolódó kiegészitő javaslatokat (külföldi meghivások, külföldi kiküldetések, létszámigények stb.).

Az ATOMKI *Könyvtárbizottsága* két alkalommal ült össze, megvitatta az 1981. évi folyóiratrendelést valamint a könyvtári folyóiratok kölcsönzésének uj szabályozását.

1980. jan. 22-én a *Miskolci Nehézipari Müszaki Egyetem ve*zetői tettek látogatást az ATOMKI-ben. A látogatás célja a két intézmény közötti kapcsolatfelvétel és tapasztalatcsere volt.

1980. április 10-én a *Debreceni Orvostudományi Egyetem* (*DOTE*) vezetői látogatták meg az intézetet. A kölcsönös látogatásra – mint általában a korábbi években is – két évenként egyszer, a két intézmény közötti szocialista együttmüködési szerződés keretében került sor.

1980. folyamán az 1979. szeptemberében jóváhagyott *ciklotron* program előkészitése tovább folytatódott. Jelenleg az épitészeti részletterveken dolgozik a KELETTERV. Megfelelő ütemben haladt a *mühelycsarnok épitése*, amelynek 1981. I. negyedében történő átadása az intézet további fejlesztéséber jelentős lépést jelent, megoldja az intézeti mühely égleges elhelyezését. Hazánk felszabaditásának 35. évfordulója alkalmából a Magyar Népköztársaság Elnöki Tanácsa dr. Berényi Dénesnek az ATOMKI igazgatójának kimagasló munkája elismeréséül *a Munka Érdemrend arany fokozata* kitüntetést adományozta.

A Magyar Tudományos Akadémia Főtitkára sokéves kiemelkedő munkájuk elismeréseként *Bordi István* és *Turi Ferenc* munkatársakat *Kiváló Munkáért* kitüntetésben részesitette.

Az 1980 évi ATOMKI-dijak ugyancsak hazánk felszabadulásának évfordulója alkalmából kerültek kiosztásra. Az 1980 évi ATOMKI Intézeti Dij-at dr. Varga Dezső csoportvezető nyerte el az elektronspektrométerek kifejlesztése terén végzett közel egy évtizedes eredményes munkásságáért. Az 1980. évi ATOMKI Interdiszciplináris Dij-at dr. Somogyi György kapta a szilárdtest nyomdetektor-technika széleskörü interdiszciplináris alkalmazásáért. Az 1980. évi ATOMKI Közmüvelődési Dij-at dr. Hunyadi Ilona nyerte el az 1979 évi Őszi Fizikus Napok szervezéséért, és az intézeti TV filmmel kapcsolatos feladatok sikeres elvégzéséért.

A Magyar Tudományos Akadémia által kiirt Alkotó Ifjuság pályázaton a kutatók kategóriájában Pálinkás József pályadijat nyert és egyben elnyerte az Akadémia által alapitott Ifjusági Dijat.

Az Intézet által meghirdetett Alkotó Ifjuság pályázaton a fiatal kutatók kategóriájában az I. dijat Cseh József tud. munkatárs nyerte; a megosztott II. dijat pedig Nyakó Barna és Végh János tud. munkatársak kapták.

Az intézeti mérnök-technikusi kategóriában az I. dijat Sulik Béla nyerte el, a II. dijat pedig Gál István.

Intézeti Kiváló Dolgozó kitüntető cim adományozásának lehetőségéről döntött 1980. őszén az intézet vezetősége. Az intézetben az átlagon felüli teljesitményt nyujtó dolgozók munkájuk elismeréseként elnyerhetik az uj intézeti kitüntető cimet és jelvényt. A kitüntetéssel 2.000.-Ft pénzjutalom jár a dij odaitélésének feltétele tizéves megszakitás nélküli intézeti munkaviszony, kiemelkedő, lelkiismeretes munkavégzés, valamint aktiv részvétel az intézet közösségi-társadalmi életében. Adományozására általában évenként egyszer, április 4-én, hazánk felszabadulásának évfordulója alkalmából kerül sor, legközelebb 1981. ápr. 4-én.

Az ATOMKI pályázati felhivást adott ki a "Szakma Ifju Mestere" kitüntető cim megszerzésére az intézetben dolgozó szakmunkás fiatalok számára, esztergályos, marós és elektronikai müszerész kategóriákban. Távlati tudományos kutatás terén elért eredményekért az intézet alábbi munkatársai kaptak jutalmat 1980 decemberében:

Csongor Éva
Hock Gábor
Kiss Ildikó
Koltay Ede
Medveczky László
-

Pálinkás József Ricz Sándor Sarkadi László Schlenk Bálint Valek Aladár Végh János

az "Atomenergia kutatás" MTA tárcaszintü kutatási főirány területén elért kutatási eredményeikért;

Horkay György

"A számitástechnikai kutatások és alkalmazásaik" MTA tárcaszintű kutatási főirány területén elért eredményeiért; Balogh Kadosa Mórik Gyula Molnár József Paál András "Az ország természeti erőforrásainak kutatása és feltárása"

KFH tárcaszintű kutatási főirány területén elért eredményeikért.

Az 1979/80 tanévben az ATOMKI-ben szerződéses megbizással dolgozó *fizika-tanárok* kutatási eredményeinek elismeréseként az MTA Természettudományi I. Főosztály vezetője

Krassói Kornélia Száldobágyi Zsigmond és Vályi Attila

tanárokat pénzjutalomban részesitette.

Egyetemi doktori cimet az év folyamán az intézet kutatói és mérnökei közül 4 fő szerzett.

1980. folyamán az ATOMKI-ben 106 külföldi vendéget, illetve látogatócsoportot fogadtunk. Az idelátogató vendégek közül név szerint az alábbiakat emlitjük meg:

1980. I. 4-én aspiránsként kezdte meg munkáját az ATOMKIben Mahboub Abd El Hady arab fizikus az Elektrosztatikus Gyorsitó Osztályon, dr. Koltay Ede aspiránsvezető irányitása alatt.

1980. márciusában két napos látogatásra érkezett *Prof. K. Escola* finn fizikus professzor az Eötvös Loránd Fizikai Társulat vendégeként.

Dr. I.M. Band szovjet professzornő, a Leningrádi Magfizikai Intézet (Leningrád, Gatcsina) professzora MTA különmeghivott vendégként egy hetet töltött az ATOMKI-ben.

Dr. K. Turek csehszlovák fizikus, tud. munkatárs (Institute of Radiation Dosimetry, Prague) 1980. juniusában 4 hetes tanulmányuton volt az ATOMKI-ben.

Dr. S. Morita japán professzor (Tohoku University, Sendai, Japan) a Kulturális Kapcsolatok Intézetének vendégeként két hetet töltött az ATOMKI-ben. Az 1979-ben meghirdetett ATOMKI jubileumi pályázat két nyertese az NDK Dr. H. Reinhardt és a lengyel W.A. Kaminski egy-egy hetes intézeti tanulmányuton voltak az ATOMKI-ben 1980 juniusában.

Dr. T. Mukoyama japán fizikus (Laboratory of Nuclear Radiation, Institute for Chemical Research, Kyoto University, Kyoto, Japan) 1980 szeptemberében három hetet töltött vendégkutatóként az intézetben.

A.J. Barishnyikov tud. munkatárs és E.L. Jadrovszkij tud.s. munkatárs szovjet vendégek 1980. okt. 6-tól 21-ig voltak az ATOMKI-ben együttmüködési mérések, ill. kiértékelés végzésére az Obnyinszki Fizikai Energetikai Intézetből (Obnyinszk, SzU) OAB együttmüködés keretében.

V.V. Afroszimov szovjet professzor (A.F. IOFFE Fizikai Technikai Intézet, Leningrád) MTA különmeghivottként 5 napot töltött az ATOMKI-ben. Ugyanebből a leningrádi intézetből M.Ya. Amusja professzor ugyancsak 5 napos látogatásra érkezett az ATOMKI-be dec. 9-én. Mindkét szovjet professzorral tárgyalásokat folytatott az intézet igazgatója a két intézet közötti együttmüködés lehetőségeiről.

1980. folyamán az intézet kutatói és mérnökei összesen 126 alkalommal utaztak külföldre, konferenciákon, kongresszusokon vagy tudományos tanácsülésen való részvétel, illetve tanulmányut vagy tudományos együttmüködés keretében, hosszabb-rövidebb tanulmányok, kutatómunka folytatása vagy tapasztalatcsere céljából.

A Dubnai Egyesitett Atomkutató Intézetben hosszabb külföldi munkavállalással a Szovjetunióban dolgozik dr. Tárkányi Ferenc tud. munkatárs (1977. novemberétől) rövid felezési idejü neutronhiányos ritkaföld-elemek magspektroszkópiai vizsgálata témában. Dr. Végh László tud. munkatárs nagyenergiás magreakció kutatások és komplex magreakció észlelések elméleti feldolgozásával foglalkozik a dubnai Magproblémák Laboratóriumában 1978. januárjától 1982. jan. 30-ig.

Dr. Arvay Zoltán tud. segédmunkatárs ugyancsak a Magproblémák Laboratóriumában 1980. december elején kezdte meg munkáját magszerkezeti kutatások témában, két éves munkavállalás keretében.

A bielefeldi Egyetem Fizikai Tanszékén (Bielefeld, NSZK) dolgozik egyéves munkavállalással 1980. julius végétől dr. Sarkadi László tud. munkatárs, és ott belsőhéj-ion-atom ütközésekben történő gerjesztések problémáival foglalkozik.

Dr. Lovas Rezső tud. főmunkatárs a daresburyi Tudományos Kutatási Tanács Laboratóriumában 1980. augusztusától kezdődőleg egy évig dolgozik munkavállalással, ahol elméleti magfizikai kutatásokkal foglalkozik.

Dr. Szabó Gyula tud. főmunkatárs 4 hónapot töltött (ugyancsak munkavállalásként) a J.W. Goethe Egyetem Magfizikai Intézetében (Frankfurt/Main, NSZK) ahol nehézion kutatásokkal foglalkozott. E munkavállalásra a frankfurti intézet és a debreceni
ATOMKI között fennálló kutatási projekt keretében került sor.
Dr. Zolnai László tud. munkatárs a nigériai Ile-Ife-ben az
Ifei Egyetemen NAÜ szakértőként dolgozott 1980. februártól
6 hónapot.

Dr. Bibok György tud. munkatárs a Humboldt Alapitvány ösztöndijával a karlsruhei Alkalmazott Magfizikai Intézet II. Ciklotron Laboratóriumában (NSZK) dolgozik, ahol feladata a ciklotron elektronikájának, illetve mérőközpontjának kialakitásában való részvétel.

Akadémiai egyezményes tanulmányut keretében 4 hónapot töltött dr. Vertse Tamás tud. főmunkatárs Svédországban a Stockholmi Atomfizikai Intézetben 1980. februárjától juniusig.

Rövidebb kiküldetések között emlitjük meg, hogy külföldi nemzetközi konferencián az év folyamán összesen 18 fő vett részt összesen 20 alkalommal; egy hónapnál rövidebb tanulmányuton 55 fő volt összesen 74 alkalommal. Meghivásra 13 fő utazott külföldre.

Külföldi, nemzetközi bizottságok munkájában való részvétel céljából az alábbiak utaztak külföldre:

Dr. Berényi Dénes, Dubnában, az EAI Tudományos Tanácsülésére két alkalommal; dr. Fényes Tibor ugyancsak Dubnába, az EAI Magszerkezeti Bizottság ülésére, illetve az Alacsonyenergiáju Fizikai Biz. Tudományos ülésére három alkalommal; dr. Schlenk Bálint a dubnai EAI Nehézion Bizottságának ülésére két alkalommal, dr. Máté Zoltán a Magszerkezeti Biz. ülésére ugyancsak két alkalommal, dr. Mahunka Imre a Nehézion Bizottság és az Alacsonyenergiáju Tanács ülésére egy alkalommal utazott.

Az ATOMKI az alábbi külföldi intézményekkel áll szorosabb együttmüködésben:

- az Egyesitett Atommag Kutató Intézet, (Dubna) ahova rendszeresen utaznak az ATOMKI munkatársai, 1980 folyamán különös tekintettel az 1981 évi közös kutatási program előkészitésére az előző évekhez képest még szorosabbá vált ez a kapcsolat. Ezenkivül több munkavállaló munkatársunk dolgozik a dubnai EAI-ben, mint ezt már korábban emlitettük;
- a Központi Magfizikai Kutató Intézet, Rossendorf
- a Csehszlovák Tud. Akadémia Magkutató Intézete, Prága Rez
- J.W. Goethe Egyetem Magfizikai Intézete, Frankfurt/M.
- Laboratory of Nuclear Radiation, Institute for Chemical Research, Kyoto University, Kyoto, Japan.
A Szocialista Országok Tudományos Akadémiái Tudományos Müszerfejlesztési és kutatás-automatizálási Koordinációs Bizottságának "Vákuumtechnika, Tömegspektrometria és Elektronspektrometria Ideiglenes Munkacsoportja" III. ülését 1980. szept. 9-12. között tartotta Debrecenben az ATOMKI-ben. A munkacsoport ülésén 20 fő résztvevő közül 10 külföldi vendég volt (szocialista országokból).

Az intézeten belüli szakmai továbbképzés fontos fórumát jelentik az intézeti szemináriumok, amelyeket 1979-ben is rendszeresen – általában hetenként – megtartottunk, az Eötvös Loránd Fizikai Társulat Magfizikai Szakcsoportjával közös rendezésben. Az intézeti szemináriumokon elhangzott előadásokat az ATOMKI kutatóin kivül esetenként felkért belföldi vagy külföldi vendégelőadók tartották. Az előadásokat szakmai vita követte.

1980. év folyamán referáló délutánokon az alábbi előadások hangzottak el:

Január 17.	Bacsó József (ATOMKI), Dr. Horváth S. (DOTE): "A haj Ca-tartalmának REA vizsgálata" (össze- függés keresése a szivinfarktus rizikófaktorai és a haj Ca-tartalma között).
Január 24.	Kovács Zoltán: "Szinkrociklótronnal előállitott izotópelegyek szétválasztása gáztermokromatog- ráfiás módszerrel".
Január 31.	Török István: "Ciklotronnal létrehozott neutron termelő reakciók és alkalmazásaik áttekintése".
Február 8.	Schlenk Bálint: "Beszámoló az Egyesült Államok- ban tett tanulmányut tapasztalatairól".
Február 14.	Mórik Gyula: "Elektrosztatikus elektronspektro- méter fejlesztése" (Egyetemi doktori disszer- táció).
Február 21.	<i>Kádár Imre:</i> "Rozsdamentes acélok XPS (ESCA) vizsgálata".
Február 28.	Berényi Dénes: "Terveink az ion-atom ütközések kutatásában a következő években (NAP program)".
Március 6.	Arvay Zoltán: "Szupravezető szolenoid-transz- porteres Si(Li) elektronspektrométer on-line üzembehelyezése és a ¹⁰⁰ Tc izotóp magspektrosz- kópiai vizsgálata" (Egyetemi doktori disszer- táció).
Március 13.	Z <i>imányi József</i> (KFKI): "Nukl eáris tüzfelhők fejlődése".

- Március 20. Babrovszki Jenő főosztályvezető (Országos Találmányi Hivatal): "Szabadalmi eljárások időszerű hazai és nemzetközi kérdései".
- Március 27. Kövér Ákos, Ricz Sándor: "Ion-atom ütközésekből eredő elektronspektrumok vizsgálata".
- Aprilis 2. Fényes Tibor: 1. "Beszámoló az ATOMKI-Kentucky Egyetem együttmüködésben végzett kutatómunkáról", 2. "Intézetlátogatások az Amerikai Egyesült Államokban".
- Aprilis 10. Ceongor Éva, Borsy Zoltán (KLTE Földrajzi Intézet), Szabó Ilona: "Nyirségi futóhomok geomorfológiája szempontjából jelentős faszén minták kormeghatározása radiocarbon módszerrel".
- Aprilis 24. Dr. Horkay György: "Piráni és ionizációs vákuum mérő fejlesztések" Gál János: "Nukleáris elektronikus mérési összeállitások tesztelése".
- Május 8. Prof. I. Szöghy (Kanada, Quebec): "Kutatások és eredmények a Laval Egyetem Van de Graaff laboratóriumában".
- Majus 15. Prof. E. Hoffmann-Pinther (University of Ohio Columbus, USA): "Experiences on the operation of computer libraries".
- Május 22. Padl András, Sepsy Károly: "Az ATOMKI-ben létesitendő ciklotron laboratórium mérési adatgyüjtő és feldolgozó rendszere".
- Május 29. *Gulyás János:* "¹⁰⁰Tc atommag szerkezetének vizsgálata" (Egyetemi doktori disszertáció).
- Május 30. Szalay Sándor (ELTE Atomfizikai Tanszéke Budapest): "Neutrino nyugalmi tömege".
- Junius 5. Kalinka Gábor: "Si(Li) röntgenspektrométerek zajparamétereinek vizsgálata és energiafelbontó képességének javitása" (Egyetemi doktori disszertáció).
- Junius 12. Lakatos Tamás: "Jó feloldásu, nagy terhelhetőségű jelfeldolgozó rendszer Si-Li és Ge-Li spektrométerekhez".
- Inius 19. H. Reinhardt (ZfK Rossendorf) (ATOMKI jubileumi pályázat nyertese): "Semiclassical theory of large amplitude collective motion".

- S. Morita (Sendai, Japán): "Cyclotron Center Junius 26. in Sendai and Experiments on Continuous X-rays from proton impact". Szeptember 4. Valek Aladár, Paál András: "Beszámoló az NSZK-Holland tanulmányutról" és Vertse Tamás: "Beszámoló a svédországi tanulmányutról". Szeptember 11. T. Mukoyama (Kyoto University): "Nuclear Excitation by Positron Annihilation". Szeptember 18. Kruppa András: "A szeparálható potenciál módszere és alkalmazása egyrészecske-pályák meghatározására" (Egyetemi doktori disszertáció). Szeptember 22. Végh László: "Az A(p,Nd)B kváziszabad reakciók elméleti vizsgálata közepes energiákon". (Kandidátusi értekezés házi vitája). Szeptember 25. Prof. F. Fukuzawa (Kyoto University): "Chargechanging-collision experiments at Kyoto University". Október 9. Bujdosó Ernő (MTA Informatikai és Tudományelemzési Kutatási Főosztály): "Információ, kommunikáció és kutatás". Hertelendi Ede: "Légköri atomfegyver kisérletek Október 16. által termelt radiokarbon beépülése fák évgyürüibe". (Egyetemi doktori disszertáció). Harangozóné Varga Zsuzsanna: "Szilárdtest nyom-Október 23. detektorok felhasználása radiográfiai vizsgálatokban". (Egyetemi doktori disszertáció). Kibédi Tibor: "Miniorange spektrométerek" és Október 30. Zolnai László: "Beszámoló a Nigériában folytatott NAÜ szakértői tevékenységről". Borbélyné Kiss Ildikó, Koltay Ede, László November 20. Sándor, Szabó Gyula: "PIXE; külföldi tapasztalatok és saját eredmények". November 28. Prof. V.V. Afroszimov (IOFFE Inst. Leningrád): "Fundamental processes at atomic collision physics research and its application for diagnostics of hot plasma". Nagy Sándor (KLTE Kis. Fiz. Int.): "Az ²³⁸U(n,f) December 4.
- December 4. Nagy Sándor (KLTE Kis. Fiz. Int.): "Az 23°U(n,f) folyamat tömegeloszlásának vizsgálata az ° 1,5-15 MeV tartományban". (Kandidátusi disszertáció házi védése).

December 11. Kiss Károly: "Elektron bombázással létrehozott belső héj ionizációs vizsgálatok a 60-600 keV bombázó energia tartományban".(Egyetemi doktori disszertáció).

December 18. Kónya Albert akadémikus és Giber János egyetemi tanár (BME Fizikai Intézet): "Felületfizikai kutatások a BME Fizikai Intézetében a terület nemzetközi helyzetének tükrében".

1980. év folyamán az ATOMKI KISZ Szervezetének külső kapcsolatai tovább fejlődtek. A KISZ KB Értelmiségi Fiatalok Tanácsa Fiatal kutatók Munkabizottságában való részvételen tul szorosabbá vált a kapcsolat a DOTE és a KFKI KISZ szervezetével.

Az ATOMKI-be összesen 1400 nem kutató látogató érkezett az év folyamán. A látogató-csoportok programjának összeállitását és a csoportok vezetését az intézeti KISZ-tagok végezték.

Összeállitotta: Kovách Ádámné

Az ATOMKI Közlemények negyedévenként jelenik meg. Terjeszti az ATOMKI Könyvtára (Debrecen, Postafiók 51, 4001). Tudományos intézetek és könyvtárak kiadványaikért cserébe vagy ellenszolgáltatás nélkül is megrendelhetik. Kérésre egy-egy számot vagy különlenyomatot magánszemélyek is ingyen kaphatnak.

Szerkesztő Bizottság: Szalay Sándor elnök, Lovas Rezső titkár, Berényi Dénes, Cseh József, Csikai Gyula, Gyarmati Borbála és Medveczky László.

Kiadja a Magyar Tudományos Akadémia Atommagkutató Intézete

A kiadásért és szerkesztésért felelős dr.Berényi Dénes, az intézet igazgatója

Készült az ATOMKI nyomdájában

Törzsszám: 251 Debrecen, 1981/junius Példányszám: 440

ATONKI сообщения

TOM 23 / №2

СОДЕРЖАНИЕ

HAY	ИНЫЕ СООБЩЕНИЯ	45
п.	Раич, Ф. Пасти, Ш. Дароци и Ш. Надь: Измерение сечений реакций ⁵⁶ Ni(n,2n), ⁵⁸ Ni(n,p), ⁵⁸ Ni(n,d) и ⁶⁹ Y(n,2n) при энергии нейтронов 14 МэВ	4 5
з.	Беди: Описание функций возбуждения реакций (n,2n) с помощью экситонной модели Гриффина	59
н.	Сайлер: Дифракционное рассеяние протонов ядрами с выбиванием нуклонов	69
ш.	Сегеди, А. Пажит, Ч. М. Буцко: Определение концентрации хлора и серы в нефти с помощью нейтроноактивационного и рентгенофлуоресцентного анализа	81
т.	Мукояма: Возбуждение ядер аннигиляцией позитронов	89
Дь,	. Альмаши, Дь. Шомоди: Данные пробега и "REL" для легных и тяжелых ионов в ядерных трековых детек- торах CR-39, CN-85 и PC	99
Α.	Гашпар, Т. Лакатош, Б. Шулик и И. Терек: Участие АТОМКІ в международном сравнивающем гамма-спектро- метрическом измерении высокой точности G-2	113
по	МАСТЕРСКИМ И ЛАБОРАТОРИЯМ	127
Ш.	Бохатка, Л. Ниш: Течепикание с помошью квадрупольного масс-спектрометра	127
ИН	СТИТУТСКИЕ ИЗВЕСТИЯ	131

ATOMKI BULLETIN

Volume 23/ Number 2

CONTENTS

SCIENTIFIC PAPERS

Ρ.	Raics, F. Pdssti, S. Dardczy and S. Nagy: Measurement of the cross sections for the ⁵⁸ Ni(n,2n), ⁵⁸ Ni(n,p), ⁵⁶ Ni(n,d) and ⁶⁹ Y(n,2n) reactions around 14 MeV	45
Ζ.	T. Bődy: (n,2n) excitation functions described by the Griffin exciton model in the quasi equilibrium limit	59
к.	Sailer, V. K. Tartakovsky: Diffractive proton- nucleus scattering followed by nucleon knock-out	69
s.	Szegedi, A. Pdzsit: Determination of Cl and S in crude oil samples by neutron activation analysis and X-ray fluorescence method	81
т.	Mukoyama: Nuclear excitation by positron annihilation	89
Gy.	Almdsi, G. Somogyi: Range and REL data for light and heavy ions in CR-39, CN-85 and PC nuclear track detectors	99
Α.	Gdspdr, T. Lakatos, B. Sulik and I. Török: The participation of ATOMKI in the G-2 international intercomparison of high precision gamma-ray	113
		107
FRU	IM OUR WURKSHUP AND LABURATORY	221
s.	Bohdtka, L. Kiss: Leak detection with quadrupole mass spectrometer	127
NEW	NS OF THE INSTITUTE	131

45

23. kötet / 3. szám

MTA ATOMMAGKUTATÓ INTÉZETE, DEBRECEN / 1981

ATOMKI Közlemények

2 3.kötet /3.szám

TARTALOMJEGYZÉK

TUDOMANYOS KOZLEMENYEK	143
Angeli I., Tari T.: Magsugár meghatározása izotóp- keverékre vonatkozó mérési adatokból	143
T. Mukoyama, Hock G.: A béta-bomlást és elektron- befogást kisérő belső ionizáció egy lehetséges mechanizmusa	151
Fényes T.: γ-spektroszkópiai vizsgálatok lehető- ségei az U-103 ciklotron nyalábjaiban	165
Vatai E., Szabó Gy.: Kicserélődési korrekció szere- pe belső-konverziós folyamatokban	181
Csongor É., Hertelendi E.: Radiokarbon kormeghatá- rozásra alkalmas alacsony hátterü mérőrendszer	189
MŰHELYÜNKBŐL, LABORATÓRIUMUNKBÓL	205
Zolnai L.: Egy a PDP-8/I-n működő, RSX-11M terminált szimuláló program	205
Zolnai L.: Az ND-50/50 rendszer "C-ILDAP'80/3" mérő- és adatfeldolgozó programnyelve	211
TUDOMÁNYOS ÉS ISMERETTERJESZTŐ ELŐADÁSOK, ISMERETTERJESZTŐ KÖZLEMÉNYEK	221

539

HU ISSN 0004-7155

ATOMKI KÖzlemények 23 (1981) 143-149 TUDOMÁNYOS KÖZLEMÉNYEK

DETERMINATION OF NUCLEAR RADII FROM DATA MEASURED ON SAMPLES CONTAINING SEVERAL ISOTOPES*

I. ANGELI, T. TARI

Institute of Experimental Physics, Kossuth University, H-4001 Debrecen, Pf. 105, Hungary

The connection between the radius of a single nuclide and the "average radius" measured on a sample containing several isotopes, is given by a simple expression. For practical purposes a table is presented that renders possible to estimate the radius for the most abundant isotope of an element from the value measured on a sample with natural isotopic composition.

MAGSUGÁR MEGHATÁROZÁSA IZOTÓP-KEVERÉKRE VONATKOZÓ MÉRÉSI ADATOKBÓL. Egyszerű összefüggés adható meg az izotóp-keveréken mért "átlagos sugár" és egy meghatározott mag sugara között. A gyakorlati szempontból legfontosabb esetre (a természetes izotóp-összetételű mintában legnagyobb arányban jelenlevő izotópra) alkalmazandó korrekciókat táblázatban adjuk meg.

ОПРЕДЕЛЕНИЕ РАДИУСА ЯДРА ИЗ ДАННЫХ ИЗМЕРЕНИЙ, ВЫПОЛНЕННЫХ В СЛУЧАЕ СМЕСИ ИЗОТОПОВ. Простая связь имеется между "средним радиусом", измеренным на смеси изотопов и радиусом определенного нуклида. Используемые коррекции самого важного случая (изотоп наибольшей пропорции естественной смеси) приведены в таблице.

1. Introduction

The term "nuclear radius" is generally attributed to a given nuclide. Nevertheless, because of financial or technical difficulties, radius measurements are often performed also on elements with natural isotopic composition (see e.g. refs. [1-3]). Sometimes, nuclear radius is only a "by-product" of other investigations, e.g. [4]. The result in these cases is an "average radius" which either is published with the label "nat." attached to the symbol of the respective element, or it is attributed to the most abundant isotope of the element.

*Dedicated to Professor J. CSIKAI on the occasion of his fiftieth birthday.

IUDOMANYOS AKADEMIA KONYVIARA The first procedure is fair but physically meaningless, while the second may be misleading. In this paper the quantitative connection between the average radius of an element and the radius of a given isotope will be investigated. The values of the necessary corrections are presented in tabulated form.

2. Description of the correction procedure

Let us denote the measured average rms charge radius of an element by r_Z , the (unknown) radius of the i-th isotope by r_i , the abundance of this isotope by f_i (%). For a given element (Z), the mass number dependence of r_i follows the rule

$$r_{i} \propto A_{i}^{1/\nu}, \quad \frac{1}{\nu} = \frac{1}{3} + \bar{A}_{z}a_{z}$$
 (1)

where $\bar{A}_{Z}a_{Z}$ is a simple function of the atomic number Z [5]. Using these notations and rules, the average radius can be expressed as follows:

$$100 \ r_{Z} = f_{1}r_{1} + f_{2}r_{2} + \dots + f_{i}r_{i} + \dots + f_{n}r_{n} = r_{i}\left(f_{1} \frac{r_{1}}{r_{i}} + \dots + f_{i} + \dots + f_{n}\frac{r_{n}}{r_{i}}\right) = r_{i}\left[f_{1}\left(1 + \frac{A_{1} - A_{i}}{A_{i}}\right)^{1/\nu} + \dots + f_{i} + \dots + f_{n}\left(1 + \frac{A_{n} - A_{i}}{A_{i}}\right)^{1/\nu}\right].$$

Introducing the notation

$$\delta_{j} \equiv \frac{A_{j} - A_{i}}{A_{i}},$$

and assuming that $\delta_j <<1$, we get $(1+\delta_j)^{1/\nu} \approx 1+\frac{1}{\nu} \delta_j$. (2) With this approximation,

$$100 r_{Z} = r_{i} \left(f_{1} + \dots + f_{n} + \frac{1}{\nu} j_{\Xi}^{\Sigma} f_{j} \delta_{j} \right)$$
(3)
$$j \neq i$$

and the relative (per cent) difference between the measured average radius r_Z and the unknown r_i :

$$\Delta_{i}(\%) \equiv \frac{r_{Z}^{-r_{i}}}{r_{i}} 100 = \frac{1}{v} \sum_{j \neq i}^{v} f_{j} \delta_{j} .$$
(4)

It can be seen that in principle for any isotope the radius r_i can be estimated as

$$r_{i} = \frac{r_{Z}}{1+0.01\Delta_{i}}$$
 (5)

A few examples are displayed in Table I.; this contains also a comparison of calculated r; values with experimental ones.

Element					
rz	A.	f _i (%)	^r i, Calc.	r. i, exp.	Refs.
Zr 4.28(2)	90 91 92 94 96	51.5 11.2 17.1 17.4 2.8	4.26(2) 4.27(2) 4.29(2) 4.33(2) 4.36(3)	4.26(2) 4.31(3) 4.30(3) 4.33(3) 4.40(3)	[2], [3] [2], [3] [2], [3] [2], [3] [2], [3] [2], [3]
Cd 4.60(1)	106 108 110 111 112 113 114 116	1.3 0.89 12.5 12.8 24.11 12.2 28.7 7.5	4.54(2) 4.56(2) 4.59(1) 4.60(1) 4.60(1) 4.60(1) 4.61(1) 4.63(1)	4.58(2) 4.61(2) - 4.62(1) 4.64(2)	[2], [3] [2], [3] [2], [3] [2], [3] [2], [3]
Sn 4.64(1)	112 114 115 116 117 118 119 120 122 124	$ \begin{array}{r} 1.0 \\ 0.67 \\ 0.38 \\ 14.7 \\ 7.75 \\ 24.3 \\ 8.6 \\ 32.4 \\ 4.6 \\ 5.6 \\ \end{array} $	$\begin{array}{c} 4.59(2) \\ 4.60(2) \\ 4.61(2) \\ 4.62(2) \\ 4.63(2) \\ 4.63(1) \\ 4.64(1) \\ 4.65(1) \\ 4.66(2) \\ 4.68(2) \end{array}$	4.62(4) 4.60(2) 4.64(2) 4.64(2) 4.65(1) 4.64(3) 4.66(2) 4.68(2) 4.69(1)	[2], [3] [2], [3] [2], [3], [8] [2], [3] [2], [3] [2], [3] [2], [3] [2], [3] [2], [3] [2], [3] [2], [3]
Rb 5.49(1)	204 206 207 208	1.4 24.1 22.1 52.4	5.47(1) 5.48(1) 5.49(1) 5.49(1) 5.49(1)	5.480(5) 5.490(5) 5.497(5) 5.503(5)	[2], [3], [9] [2], [3], [9] [2], [3], [9] [2], [3], [9] [2], [3], [9]

Table 1.

It is practical, however, to choose an isotope for which the correction Δ_1 is small; in this case the uncertainty caused by the error of 1/v in eq. (4) will also be low. An inspection of the sum in the right hand side of eq. (4) shows that it will be small if

i) the f_j abundances ($j \neq i$) are low, i.e. f_j is high, ii) there are both positive and negative δ_j -s, i.e. the i-th isotope is near the centre of the isotopic sequence.

Table 2. shows the Δ_1 values calculated for the most abundant isotopes of elements; the columns contain:

- the chemical symbol of the element;
- the mass number of the isotope with the highest abundance;
- abundance (%) of this isotope, as listed in refs. [6];
 the sum on the right hand side of eq. (4); as \$\$_j-s\$ are pure numbers and the f_j-s\$ are generally known with a fairly small uncertainty; the value of this sum renders possible that having improved 1/v values the user of the table
- that having improved $1/\nu$ values the user of the table will be able to calculate new Δ_i corrections easily; - the correction Δ_i in per cent together with its uncer-
- tainty;
- the characters in the last column refer to a comment on the element in chapter III.

Element	Ai	f.(%)	Σ' f _j δ _j (%) j≠i	∆ _i (%)	Comments
H He Li Be B C N O F Ne Na Mg Al Si P S Cl Ar K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se	1 4 7 9 11 12 14 16 19 20 23 24 27 28 31 32 35 40 39 40 39 40 39 40 39 40 52 55 56 59 58 63 64 69 74 75 80	99.985 99.99986 92.5 100 80.2 98.89 99.634 99.758 100 90.51 100 92.23 100 92.23 100 95.02 75.77 99.60 93.258 96.94 100 73.7 99.750 83.79 100 91.75 100 68.27 69.2 48.6 60.1 36.5 100 49.8	$\begin{array}{c} - \\ - \\ 0.00004 \\ - \\ 1.0714 \\ 0 \\ - \\ 1.8000 \\ 0.0925 \\ 0.0261 \\ 0.0279 \\ 0 \\ 0.0279 \\ 0 \\ 0.0355 \\ 0 \\ 1.3342 \\ 0 \\ 0.3882 \\ 0 \\ 0.3882 \\ 0 \\ 0.3882 \\ 0 \\ 0.3889 \\ 1.3846 \\ - \\ 0.0368 \\ 0.3454 \\ 0.2896 \\ 0 \\ 0.3454 \\ 0.2896 \\ 0 \\ 0 \\ 0.1698 \\ - \\ 0.0049 \\ 0.1062 \\ 0 \\ 0 \\ - \\ 0.1588 \\ 0 \\ 1.3002 \\ 0.9778 \\ 2.2959 \\ 1.1565 \\ - \\ 1.7432 \\ 0 \\ - \\ 1.1592 \\ \end{array}$	$\begin{array}{c} 0.0209(4) \\ 0 \\ 0.16(6) \\ 0 \\ - 0.2(1) \\ 0.009(2) \\ 0.009(2) \\ 0.012(4) \\ 0 \\ - 0.11(4) \\ 0 \\ 0 \\ 0.01(2) \\ 0 \\ 0.01(2) \\ 0 \\ 0.05(1) \\ 0 \\ 0.05(1) \\ 0 \\ 0.05(3) \\ 0.01(1) \\ 0 \\ - 0.002(4) \\ 0.001(3) \\ 0.01(1) \\ 0 \\ - 0.002(4) \\ 0.0001(3) \\ 0.01(1) \\ 0 \\ - 0.05(1) \\ 0 \\ 0.36(4) \\ 0.24(2) \\ 0.5(1) \\ 0 \\ 0.21(4) \\ - 0.2(2) \\ 0 \\ - 0.12(4) \end{array}$	a b b

Table 2.

Element	Ai	f _i (%)	Σ' f. δ. (%) j≠i ^j j	∆ _i (%)	Comments
Br kr Rb Sr y Zr Nb M Tr Ru Rh Pd gd In Sh be J & Cs B La Cer Nd Ph Shu dd D y O Ar Th Yu Liff Ta w Re Sir Pt Au Hgrl Pb Bi	79 84 85 88 89 90 93 98 - 102 103 106 107 114 115 120 121 130 127 132 133 138 139 140 141 142 - 152 153 158 159 164 165 166 169 174 175 180 181 184 187 192 193 195 197 202 205 208 209	50.69 57.0 72.17 82.6 100 51.5 ~ 100 24.1 - 31.6 100 27.3 51.83 28.7 95.7 32.4 57.3 34.5 100 26.9 100 71.7 99.911 88.48 100 27.2 - 26.6 52.1 24.8 100 27.2 - 26.6 52.1 24.8 100 28.1 100 33.4 100 31.6 97.4 35.2 99.988 30.67 62.60 41.0 62.7 33.8 100 29.8 70.5 52.4 100	1.2484 - 0.1333 0.6548 - 0.3286 0 1.4644 ~ 0 - 2.0153 - - 0.8186 0 0.4943 0.9004 - 1.3119 - 0.0748 - 1.0131 0.7058 - 1.7542 0 - 0.4635 0 - 0.4635 0 - 0.4192 - 0.0006 0.1493 0 1.6373 - - 1.0316 - 0.6261 - 0.4260 0 - 0.8740 0 0.8013 0 - 0.8740 0 0.8013 0 - 0.5258 0.0149 - 0.8083 - 0.00007 - 0.8083 - 0.00007 - 0.8083 - 0.00007 - 0.8555 - 0.3865 0.0594 0 - 0.6785 - 0.2878 - 0.3649 0 - 0.3649 0 - 0.6549 - 0.3649 - 0.32878 - 0.3649 - 0.3649 - 0.32878 - 0.3649 - 0.3649 - 0.32878 - 0.3649 - 0.3645 - 0.3655 -	$\begin{array}{c} 0.09(4) \\ - 0.003(1) \\ 0.01(2) \\ 0.003(9) \\ 0 \\ 0 \\ 0.55(4) \\ \approx 0 \\ - 0.68(5) \\ - \\ - \\ 0.23(2) \\ 0 \\ 0.12(1) \\ 0.24(2) \\ - \\ 0.29(3) \\ - \\ 0.24(2) \\ - \\ 0.29(3) \\ - \\ 0.018(3) \\ - \\ 0.19(2) \\ 0.06(4) \\ - \\ 0.22(3) \\ 0 \\ - \\ 0.05(1) \\ 0 \\ - \\ 0.005(1) \\ 0 \\ - \\ 0.005(1) \\ 0 \\ - \\ 0.005(1) \\ 0 \\ - \\ 0.026(6) \\ - \\ 0.0001(1) \\ 0 \\ 0.76(6) \\ - \\ 0 \\ - \\ 0.52(3) \\ 0 \\ - \\ 0.0001(1) \\ 0 \\ - \\ 0.22(2) \\ 0 \\ 0 \\ - \\ 0.114(6) \\ 0.0032(4) \\ - \\ 0.114(6) \\ 0.0032(4) \\ - \\ 0.114(3) \\ 0 \\ - \\ 0.013(1) \\ - \\ 0.058(4) \\ - \\ 0.078(6) \\ 0 \\ 0 \\ \end{array}$	c b b b

Element	Ai	f _i (%)	Σ' f. δ. (%) j≠i	∆ _i (%)	Comments
Po		-		-	С
At	-	-	-	-	с
Rn		-	-	-	С
Fr			-		с
Ra		-	-	-	С
Ac	-	-	-	-	С
Th	232	100	0	0	
Pa	-	-	-	-	с
U	238	99.2746	- 0.0092	- 0.0040(5)	

A list of Δ_i values for v=3, 5 and 100 has also been calculated [7].

It is worth mentioning that these results remain valid also in the case of squared radii (actually, some experiments measure $\langle r^2 \rangle$ and not its square root). In this case the left side of eq. (4) has the form

$$\frac{r_{z}^{2}-r_{i}^{2}}{r_{i}^{2}} 100 = \frac{(r_{z}+r_{i})(r_{z}-r_{i})}{r_{i}^{2}} 100 \approx 2 \frac{r_{z}-r_{i}}{r_{i}} 100$$

Now in eqs. (2) and (3) we have instead of r_i/r_i

$$\frac{\binom{r}{j}}{\binom{r}{r}} = \frac{\binom{2}{\nu}}{\binom{A}{j}} = (1+\delta_j)^{2/\nu} \approx 1 + \frac{2}{\nu} \delta_j ,$$

and this results in $2/v\Sigma'$ on the right of eq. (4), i.e. the same factor 2 appears on both sides.

3. Comments

The are a few elements for which the simple procedure described in Chapter 2 is not valid. Here we discuss these special cases; the label in front of each paragraph is referred to in the last column of Table 2.

a.) In the case of hydrogen the assumption $\delta_j \ll 1$ does not hold and - as a consequence - eq. (4) can not be applied. Therefore, in this case the directly measured $r/_1^2H/$ value was used for the calculation of the average.

b.) Each of the isotopic sequences of 18Ar, 24Cr, 58Ce, 53Eu and 64Gd includes a member with magic neutron number. As a result, the mass number dependence of these sequences can be characterized by two exponents instead of a single one [5]. An elementary but somewhat lengthy calculation yields:

$$\Delta_{1}(\%) = \frac{1}{\nu} \left(\delta_{M}^{(1)} S_{1}^{+}S_{2} \right) + \frac{1}{\mu} S_{3}^{-} + \frac{1}{\mu} \frac{1}{\nu} \delta_{M}^{(1)}S_{3}^{-},$$

where

$$\delta_{k}^{(\ell)} \equiv \frac{A_{k} - A_{\ell}}{A_{\ell}}, \quad S_{1} \equiv \sum_{\substack{j=M \\ j=M}}^{n} f_{j}, \quad S_{2} \equiv \sum_{\substack{j=1 \\ j\neq i}}^{M-1} f_{j}\delta_{j}^{(i)},$$

$$S_{3} \equiv \sum_{\substack{j=M+1 \\ j=M+1}}^{n} f_{j}\delta_{j}^{(M)},$$

 $1/\nu$ and $1/\mu$ are the two exponents, and M stands for the index of the isotope with magic neutron number.

c.) These elements have no stable isotopes.

References

- H. R. Collard, L. R. B. Elton and R. Hofstadter, Nuclear Radii, in: Landolt-Börnstein, group I., vol. 2., ed. H. Schopper (Springer, Berlin, 1967).
- [2] C. W. de Jager, H. de Vries and C. de Vries, Atomic Data and Nuclear Data Tables, 14 (1974) 479.
- [3] R. Engfer, H. Schneuwly, J. L. Vuilleumier, H. K. Walter and A. Zehnder, Atomic Data and Nuclear Data Tables, 14 (1974) 509.
- [4] K. Kaeser, T. Dubler, B. Robert Tissot, L. A. Schaller, L. Schellenberg and H. Schneuwly, Helvetica Physica Acta, 52 (1979) 238.
- [5] I. Angeli and M. Csatlós, Nuclear Physics A288 (1977) 480
- [6] N. E. Holden, Isotopic composition of the elements and their variation in nature: a preliminary report. March (1977).
 BNL-NCS-50605.
 C. M. Lederer and V. S. Shirley, Table of Isotopes. 7th

edition, John Wiley and Sons. Inc., New York (1978) p.91. [7] T. Tari, unpublished paper presented at the Students'

- Scientific Association; Debrecen, 1980.
- [8] J. W. Lightbody Jr., S. Penner, S. P. Fivozinsky, P. L. Hallowell, H. Crannell, Phys. Rev. C14 (1976) 952.
- [9] H. Euteneuer, J. Friedrich, and N. Voegler, Nuclear Physics A298 (1978) 452.

Referee: B. Gyarmati

ATOMKI Közlemények 23 (1981) 151-163

ANOTHER POSSIBLE MECHANISM FOR INTERNAL IONIZATION IN BETA DECAY AND ELECTRON CAPTURE

TAKESHI MUKOYAMA

Institute for Chemical Research, Kyoto University, Kyoto, Japan

GÁBOR HOCK

ATOMKI H-4001 Debrecen, Pf. 51. Hungary

The internal conversion of the internal bremsstrahlung radiation is considered as a possible mechanism of internal ionization accompanying β^- decay and electron capture. The probable Feynmann diagrams indicate that in the case of β^- decay this process is equivalent to the direct collision, while in electron capture this corresponds to the initial-state correlation. Rough estimations of the probability for this process have been made and compared with the experimental data.

A BÉTA-BOMLÁST ÉS ELEKTRONBEFOGÁST KISÉRŐ BELSŐ IONIZÁCIÓ EGY LEHETSÉGES MECHANIZMUSA. A β -bomlást és elektronbefogást kisérő belső ionizáció egy lehetséges mechanizmusaként a belső fékezési sugárzás belső konverzióját tekinthetjük. A megfelelő Feynmann-gráfok szerint a β -bomlásban ez a folyamat ekvivalens a direkt ütközéssel, mig az elektronbefogásban ez megfelel a kezdeti állapot korrelációnak. A folyamat valószinüségének becslése alapján összehasonlitást tettünk a kisérlettel.

ВОЗМОЖНЫЙ МЕХАНИЗМ ВНУТРЕННЕЙ ИОНИЗАЦИИ, СОПРОВОЖДАЮЩЕЙ БЕТА-РАСПАД И ЗАХВАТ ЭЛЕНТРОНОВ. Внутренняя конверсия внутреннего тормозного излучения рассматривается как возможный механизм в внутренней ионизации, сопровождающей β⁻-распад и захват электронов. По соответствующим Фейнмановым диаграммам этот процесс эквивалентен прямому столкновению электронов при β⁻распаде, а при электронном захвате он соответствует корреляции начальных состояний. Результаты, полученные из оценки вероятности процесса, сравниваются с экспериментами.

1. Introduction

The atomic ionization accompanying β^- decay and electron capture has been extensively studied both theoretically and experimentally [1]. The principal mechanism contributing to ionization has been believed for a long time to be the shakeoff process due to the sudden change in central charge during nuclear decay. However, we have pointed out recently that in the case of β^- decay the theoretical predictions of K-electron shakeoff probability are systematically smaller than the recent experimental data [2,3]. This fact suggests the existence of other mechanisms in the internal ionization process during $\beta^$ decay.

In the pioneering work of the internal ionization in β^- decay, Feinberg [4] proposed another possible channel which is usually referred to the direct collision; the scattering of the atomic electron by the β^- particle through the Coulomb interaction between two electrons. He treated this process as two steps [4,5]. In the first step, the ordinary β^- decay takes place with the emission of an electron and an antineutrino from the nucleus, and then an atomic electron is ejected by the Coulomb scattering of this β^- particle.

jected by the Coulomb scattering of this β^- particle. According to the estimation of Feinberg, the ratio of the probability for the direct-collision (DC) process of the Kshell electron to that for the K-shell shakeoff (SO) process is given by

$$\frac{P_{K}(DC)}{P_{K}(SO)} \sim \frac{I_{K}}{E_{B}}, \qquad (1)$$

where I_K is the K-shell binding energy of the daughter atom and E_β is the kinetic energy of the β^- particle. This equation predicts very small DC probability for most nuclides, except for the case of extremely small transition energy.

On the other hand, Weiner [6] estimated the DC probabilities from the experimental cross sections by electron impact ionization. Following the method of Williams [7], he divided the ionization cross section of atom by external electron impact into two parts; the virtual photoelectric effect corresponding to the large impact parameter and the direct collision with the small impact parameter. A similar method also has been successfully used by Kolbendtvedt [8] to estimate the electron impact ionization cross sections of atoms.

Considering that the DC process in β^- decay is closely related to the close collision with small impact parameters, Weiner calculated the contribution of the close-collision part of the total K-shell ionization cross section by electron impact. He estimated the cross section of the virtual photoeffect by the Weizsäcker-Williams method [9] and subtracted this value from the measured value of the K-shell ionization cross section by external electron impact. The K-shell ionization probability due to the DC process is given by the following relation: where $\sigma_{d.i.}$ denotes the K-shell direct ionization cross section of the atom by the close collision and R is the K-shell radius. The calculations have been made by the use of the mean energy of the β^- particle of the corresponding nuclides. It was found that, on the contrary to the prediction of Feinberg, Eq. (2) gives a large DC probability in β^- decay. However, such a large value is not supported by the recent experimental data of K-shell ionization probability.

Here we present an alternative possible mechanism in the K-shell internal ionization accompanying β^- decay and electron capture. As a second-order process in β decay, it is well known that a continuous electromagnetic radiation is emitted accompanying a β particle and an antineutrino. This process, called internal bremsstrahlung, is due to the change in the electric dipole moment of the nucleus during β decay. If this radiation is emitted virtually and the energy is transferred to an atomic electron, the orbital electron is ejected accompanying β decay. This process is quite similar to the internal conversion of the internal Compton effect (ICICE) proposed by Listengarten [10], where two orbital electrons are emitted during the internal conversion process. Thus the new process proposed here may be called internal conversion of internal bremsstrahlung (ICIB).

In Fig. 1, the Feynmann-like diagrams for β^- decay are shown. The diagram (a) represents the ordinary β^- decay. The solid line denotes an electron and the dashed line is a neutrino. The diagram for internal bremsstrahlung is shown by (b) and the SO process is represented by the diagram (c). The diagram for the ICIB is given by Fig. 1(d). It can be seen that the diagram for the DC process is also given by the same diagram. This means that the ICIB process in β^- decay is equivalent to the DC.

The change in the nuclear electric moment can occur when an orbital electron is captured by the nucleus. Therefore, a bremsstrahlung radiation is also emitted accompanying electroncapture decay and there is a small probability that an orbital electron is ejected in electron capture. Fig. 2 shows the diagrams for electron capture; (a) the ordinary electron-capture decay, (b) internal bremsstrahlung in electron capture, (c) the SO process in electron capture and (d) the ICIB in electron capture. It is clear that the diagram (d) for the ICIB is the same as that for the process called initial-state correlation in double photoionization [11]. According to this point of view, the ICIB is described as follows: Because of the correlation effect between two electrons in the initial state, both electrons are excited virtually. When one electron is captured by the nucleus, the other electron leaves the atom. Thus, the ICIB process in electron capture can be considered to be equivalent to the initial-state correlation effect.

Fig. 1. The diagrams for β^- decay; (a) ordinary β^- decay, (b) internal bremsstrahlung in β^- decay, (c) shakeoff process in β^- decay, (d) internal conversion of internal bremsstrahlung.

Fig. 2. The diagrams for electron capture; (a) ordinary electron-capture decay, (b) internal bremsstrahlung in electron capture, (c) shakeoff process in electron capture, (d) internal conversion of internal bremsstrahlung.

In the present work, we adopt a simple model to estimate the probabilities of the ICIB process in β^- decay and electron capture. The calculated probabilities are added to the SO probabilities to yield the K-hole production probabilities per β^- decay and the double K-hole production probabilities per K capture. These probabilities are compared with the experimental values.

2. Theoretical model

2.1. Beta decay

According to the theory of internal bremsstrahlung, the probability per β decay that a photon with energy k is emitted is given by [12]

$$P(k)dk = \frac{\alpha}{\pi k} dk \frac{\int_{1+k}^{W_o} \phi_o(W_e^i, k) P_o(W_e^i) dW_e^i}{\int_{1}^{W_o} P_o(W_e^i) dW_e^i}, \quad (3)$$

where

$$P_{o}(W_{e}^{i}) = p_{e}^{i} W_{e}^{i} (W_{o} - W_{e}^{i})^{2} F(Z, W_{e}^{i}) , \qquad (4)$$

and

$$\phi_{o}(W_{e}^{'},k) = \frac{p_{e}}{p_{e}^{'}} \left\{ \frac{W_{e}^{'2} + W_{e}^{'2}}{p_{e}^{W_{e}^{'}}} \ln(W_{e} + p_{e}) - 2 \right\}.$$
(5)

Here W_0 is the transition energy of β decay, $P_0(W_e^{\dagger})$ represents the probability that an electron with total energy W_e^{\dagger} and the momentum p_{θ}^{\dagger} is emitted in β decay, and $\phi_0(W_{\theta}^{\dagger},k)$ corresponds to the probability that an electron with total energy W_e^{\dagger} will radiate a photon with energy k. The function $F(Z,W_e^{\dagger})$ is the Fermi function for atomic number Z and electron energy W_e^{\dagger} , $W_e = W_e^{\dagger} - k$, p_{θ} is the electron momentum corresponding to W_e , and α is the fine structure constant. Throughhout the present work, the relativistic units ($\hbar = m_{\theta} = c = 1$) are used. The multipolarity of the electromagnetic radiation emitted

The multipolarity of the electromagnetic radiation emitted in internal bremsstrahlung is considered to be electric dipole. Following the method of Listengarten for the ICICE [10], the probability per β decay that a K-shell electron is emitted with total energy W is given by

$$P_{K}(W)dW = P(k) \beta^{E1}(Z,k) dk , \qquad (6)$$

where $W=k-I_K+1$, I_K is the K-shell binding energy of the daughter atom, and $\beta E_1^K(Z,k)$ is the K-shell internal conversion coefficient for the atomic number Z and for the transition energy k in the case of E1 transition.

Oh and Pratt [13] pointed out the relation between the cross section for photoelectric effect and the internal conversion coefficient for E1 transition:

$$\beta^{E1}(Z,k) = \frac{3}{8\pi} \frac{1}{(Z\alpha)^2} \sigma_K , \qquad (7)$$

155

where σ_K is the K-shell photoelectric cross section for the incident photon of energy k. Substituting Eq. (7) into Eq. (6), the ICIB probability per β decay can be written as

$$P_{K}(W)dW = \frac{3\sigma_{K}}{8\pi^{2}Z^{2}k\alpha} dk \qquad \frac{\int_{1+k}^{W_{O}} \phi_{O}(W_{e}^{i}, k) P_{O}(W_{e}^{i}) dW_{e}^{i}}{\int_{1}^{W_{O}} P_{O}(W_{e}^{i}) dW_{e}^{i}} \qquad (8)$$

The total ICIB probability of K-electron ejection per β^- decay is obtained by integrating Eq. (8) with respect to W:

$$P_{K}^{*} \int_{1}^{W_{O}^{-I}K} P_{K}(W) dW . \qquad (9)$$

From Eqs. (8) and (9), it can be seen that the main contribution to the total probability comes from the photon energy k in the region near the threshold energy I_K for the photoelectric effect, because both P(k)dk and σ_K are rapidly decreasing functions with increasing k. This fact makes it possible to use an approximate formula for σ_K in Eq. (8).

The nonrelativistic formula of the K-shell photoelectric cross section in the hydrogenic model was first derived by Stobbe [14]. His result can be given in the following from [15]:

$$\sigma_{\rm K} = \frac{2^7 \pi}{\alpha^3 Z^2} \sigma_{\rm o} \exp(-4n \operatorname{arccot} n) / [1 - \exp(-2\pi n)] \left(\frac{I_{\rm o}}{k}\right)^4 , \qquad (10)$$

where $I_0 = \frac{1}{2}(\alpha Z)^2$ is the ideal K-shell ionization potential in the hydrogenic model, $\sigma_0 = 8\pi r_0^2/3$, r_0 is the classical electron radius, and

$$n = [(k/I_{0}) -1]^{-\frac{1}{2}}$$
(11)

Since the important region in the integral of Eq. (9) corresponds to the large values of n, a good approximation can be obtained by expanding Eq. (10) in terms of 1/n and neglecting the contributions from the higher-order terms. Kolbenstvedt [8] used such an approximation formula which contains terms up to $1/n^2$ [16]. Furthermore, he proposed to take into account the effect of the screening due to presence of other atomic electrons. This can be done by replacing the atomic number Z by Z_{eff} =Z-0.3 for K-shell electron and by introducing the so-called K-shell screening number, which is defined as the ratio of the measured K-shell binding energy I_K to the ideal value I_0 with Z_{eff} [17].

Recently Hock has modified the Kolbenstvedt model and obtained a better approximate formula to σ_K [18]. For large values of n the terms containing n in Eq. [10] can be expanded up to $1/n^4$:

$$\exp(-4n \operatorname{arccot} n) / [1 - \exp(-2\pi n)]$$

$$\simeq \frac{e^{-4}}{45} (45 + 60 / n^2 + 4 / n^4) . \qquad (12)$$

In addition, a new screening number is defined as

$$\theta = I_{K} / [\frac{1}{2} \alpha^{2} (Z-1)^{2}] .$$
 (13)

This corresponds to the replacing the ideal ionization potential for Z_{eff} by that for Z-1. Using Eqs. (12) and (13), Eq. (10) can be written as

$$\sigma_{\rm K} = \frac{2^7 \pi}{\alpha^3 z^2} \sigma_0 ({\rm K}\theta)^{-4} \frac{e^{-4}}{45} [4({\rm K}\theta)^2 + 52({\rm K}\theta) - 11], \qquad (14)$$

where K=k/I_K. This equation gives a very good approximation to the exact photoelectric cross sections calculated by Scofield using the relativistic Hartree-Fock wave functions [19].

In the present work, Eq. (14) is used for σ_K in Eq. (8) and the total ICIB probability is calculated according to Eq. (9). It is well known that in the case of internal bremsstrahlung Eq. (3) diverges for small values of k and the total probability cannot be obtained by such a simple model. However, in the case of the ICIB the lower limit of integral in Eq. (9) corresponds to $k=I_K$ and we can avoid the divergence in the total probability.

2.2. Electron capture

Assuming an allowed transition and neglecting the Coulomb effect, the energy spectrum of photons emitted in the internal bremsstrahlung per K-electron capture is given by [20]

$$S(k)dk = C(k) \frac{\alpha k}{\pi W_0^2} (W_0 - k)^2 dk$$
 (15)

Here C(k) is a function slowly varying with k. For simplicity, we set C(k)=1, i.e. we use the formula derived by Morrison and Schiff [21].

In internal bremsstrahlung, the electromagnetic radiation is considered to have E1 character. The ICIB probability with the emission of a K-shell electron is expressed in the similar manner to the case of β^- decay as

$$P_{KK}(W)dW = \frac{1}{2} S(k) \beta^{E1}(Z,k) dk$$
, (16)

where W is the total energy of the ejected electron and the factor $\frac{1}{2}$ accounts for the existence of only one K-shell electron in the daughter atom after K capture.

Substituting Eq. (15) into Eq. (16) and using Eq. (7), the ICIB probability per K capture can be written as

$$P_{KK}(W)dW = \frac{3}{16\pi^2} \frac{k}{Z^2 \alpha} \frac{\sigma_K}{W_0^2} (W_0 - k)^2 dk .$$
(17)

Considering the strong energy dependence of the photoelectric cross section, σ_K can be approximated by the low-energy formula, Eq. (14). The total ICIB probability per K-electron capture is obtained as

$$P_{KK}^{=} \int_{1}^{W} \kappa^{-I} \kappa P_{KK}^{(W)} dW . \qquad (18)$$

3. Results and discussion

We have calculated the ICIB probabilities in β^- decay and in K-electron capture for several nuclides in which the experimental data are available. The nuclear transition energy of these nuclides and the K-shell binding energy of the daughter atoms are taken from the tables prepared by Lederer and Shirley [22]. The numerical calculations in the present work have been performed on the PDP-11/40 computer of ATOMKI and on the FACOM M-200 computer in the Data Processing Center of Kyoto University.

The total K-shell ICIB probability per β^- decay was calculated using Eq. (9) with the σ_K value obtained by Eq. (14). The calculated results are shown in Table 1. The ratio of the K-shell binding energy to the end-point energy of the β decay, I_K/E_0 , is also listed in the table. In order to compare the present results with the experimental data, P_K (ICIB) should be added to the K-shell SO probability, P_K (SO). In the table the P_K (SO) values calculated by Isozumi et al. [2] are shown and the K-hole production probabilities per β^- decay are estimated as a sum of probabilities for these two processes, P_K (SO+ICIB). Experimentally these processes cannot be measured separately. In the table we list only the recent experimental values measured with high-energy-resolution detectors, because old experiments with poor-resolution detectors, such as NaI(T_{L}) or proportional counters might contain contributions from spurious x rays.

It can be seen from the table that for heavy nuclides the calculated K-hole production probabilities are in good agreement with the experimental values. The discrepancy between the experimental data and the P_K (SO) values can be explained by taking into account the existence of the ICIB process proposed in the present work.

Z	Nuclide	I _K /E _o	$P_{K}(SO)$ (a)	P _K (ICIB)	P _K (SO+ICIB)	Experimental	Ref.	ALC UNIT A REAL PROPERTY OF A DESCRIPTION OF A DESCRIPTIO
28	⁶³ Ni	0.134	-3.90	5.72	8.81	4.6±0.4	23	Company and the second
41	95ND	0.125	1.93	3.16	5.09	4.40±0.15 3.4±0.4	24 25	an and a second s
61	¹⁴⁷ Pm	0.451	0.451	Q.443	0.894	0.81±0.09 0.98±0.08 0.936±0.063	26 27 28	proportions are a red as the resolution relevances
62	¹⁵¹ Sm	0.638	0.0110	0.0150	0.0260	0.036±0.005 0.023±0.003 0.024±0.003	27 29 28	the street which the street state of the street state
80	²⁰³ Hg	0.401	0.077	0.0254	0.102	0.11±0.035 0.15±0.045	30 31	Manager of the Cash subscription
81	204Tl	0.115	0.663	0.917	1.58	1.0±0.1 1.02±0.03 1.12±0.11 1.22±0.16	32 33 23 28	AND IN ADVISION OF A DODAL AND A COMPARISON OF A DATA OF A DODAL AND A

Table 1. Comparison of the calculated probabilities of K-hole creation in β^- decay with the experimental data (x 10⁻⁴)

(a)_{Ref. 2}.

However, for ⁶³Ni and ⁹⁵Nb the theoretical values are larger than the experimental ones. This can be ascribed to the overestimation of the ICIB probability for these nuclides. As already described above, the formula for internal bremsstrahlung used in the present work, Eq. (3), diverges at small values of k. The lower limit of the integral in Eq. (9) is $k=I_K$. If this value is small, i.e. for low-Z elements, Eq. (9) gives too large values due to the divergent property of P(k). This fact means that the ICIB probabilities for low-Z elements in the present work are not reliable. It may be possible to avoid this difficulty by using a more realistic model for internal bremsstrahlung in β - decay, but calculations become tedious. Therefore, in the present work we shall confine our discussion only for heavy elements in which the present model is valid.

It is also clear from the table that the contribution of the ICIB process is large, it is comparable to or sometimes larger than the SO probability. As shown in Fig. 1(d), the ICIB is equivalent to the DC process. According to the prediction of Feinberg [4,5], the DC plays a minor role in the K-hole production in β - decay, as it can be seen from Eq. (1). However, it should be noted that he calculated the DC probability in a two-step model; first a real electron is ejected in β decay and this electron ejects a K-shell electron through Coulomb interaction. On the other hand, in the case of the ICIB the β particle is ejected as a virtual electron and the whole process is treated in one step. The summations for virtual intermediate states are made over all possible discrete and continuum states. This fact suggests that the Feinberg's treatment only partially accounts for the process shown in Fig. 1(d).

The total K-shell ICIB probability per K-electron capture was calculated using Eq. (18) for six nuclides. The σ_K value was obtained from the analytical formula, Eq. (14). The calculated values are listed in Table 2 together with the K-shell SO probabilities per K capture, $P_{KK}(SO)$, obtained by Mukoyama et al. [34] using the relativistic screened hydrogenic wave functions. The ratio of two times of the K-shell binding energy to the transition energy is also included in the table. Comparison of the two probabilities shows that the $P_{KK}(ICIB)$ is in the same order of magnitude as the $P_{KK}(SO)$. The double K-hole production probabilities per K capture were estimated as the sum of these two probabilities.

Table 2. Comparison of the calculated probabilities of double K-hole creation in K-electron capture with the experimental data (x 10^{-5})

Z	Nuclide	2IK/Eo	P _{KK} (SO) ^(a)	P _{KK} (ICIB)	P _{KK} (SO+ICIB)	Experimental	Ref.
26	⁵⁵ Fe	0.0565	8.81	1.54	10.35	12±4 10.1±2.7	35 36
32	71Ge	0.0880	4.56	1.39	5.95	13.3±1.4 7.8±0.7 ^(b) 13±8 ^(c)	37 37 38
46	103Pd	0.0893	1.85 ^(d)	1.39	3.24	3.13±0.31	39
48	109Cd	0.280	1.02 ^(d)	0.777	1.80	1.02±0.36	40
55	¹³¹ Cs	0.195	0.709	0.987	1.70	5.0±1.0 2.5±0.2 2.0±1.3 1.33±0.33	41 42 43 44
68	¹⁶⁵ Er	0,295	0.304	0.732	1.04	1.5±0.4 0.67±0.39	45 44

(a)_{Ref. 34}.

(b) K-electron ejection probability.

(c) This value is questionable. See the discussion in Ref. 39.

(d) New value calculated according to Ref. 34.

The experimental studies on the double K-hole production probabilities in K-electron capture are rather scarce. Some of the experimental values listed in Table 2 are old and less reliable. However, it is clear from the table that the $P_{KK}(SO+ICIB)$ values are in good agreement with the experimental values. In the case of electron capture, there is no problem of divergence in the formula for photon spectrum emitted in internal bremsstrahlung, Eq. (15). This is the reason that the agreement is good for all elements, in contrast to the case of $\beta^$ decay.

The experimental values for ⁷¹Ge are about twice as large as the calculated one. However, the experimental values of Langevin [37] was obtained with proportional counter. Nagy et al. [44] pointed out that the larger P_{KK} values in old experiments could have come from various contaminated peaks in the x-ray spectrum observed with poor-resolution detectors. On the other hand, van Eijk et al. [39] claimed that the reliability of the crystalspectrometer experiment on ⁷¹Ge by van Oertzen [38] is questionable due to the probable misinterpretation of the satellite line. These facts suggest that the reliability of all the experimental values for ⁷¹Ge is low.

For the same reason described above, the experiments of Daniel et al. [41], Lark and Perlman [42], and Smith [43] on ¹³¹Cs and of Ryde et al. [45] on ¹⁶⁵Er are considered to be less reliable. If we reject these experimental values, P_{KK}(SO+ICIB) agrees very well with all the recent reliable experimental data.

4. Conclusion

A new possible mechanism for internal ionization in β^- decay and electron capture has been proposed. This process is called internal conversion of internal bremsstrahlung. The possible Feymann diagrams indicate that this process is equivalent to the DC process in the case of β^- decay and to the initial-state correlation in the case of electron capture.

Rough estimations of the K-shell internal ionization probability in β^- decay and K-electron capture have been performed. The sum of the calculated ICIB probability and the SO probability is in good agreement with the recent experimental values for the K-shell ionization probability. This fact suggests that the ICIB process accounts for the quantitative disagreement between theory and experiment in the internal ionization process.

However, the present results are based on many assumptions and approximations. More rigorous theoretical calculations are necessary to estimate the contribution of the ICIB process in the internal ionization. It is also hoped to perform more elaborate experimental studies with high reliability, especially for K+electron ejection during K capture.

Acknowledgments

A part of the present work has been done when one of the authors (T. M.) stayed in ATOMKI. He would like to thank Prof. D. Berényi and the members of the Nuclear Atomic Physics Group for their kind hospitality. He is also grateful to the Hungarian Institute for Cultural Relations and the Japan Society for Promotion of Science for the research fellowship and to the Yamada Science Foundation, Japan, for the financial support.

References

I	1]	For a review, see M. S. Freedman, Ann. Rev. Nucl. Sci. 24 (1974) 209; R. J. Walen and Ch. Briancon, in Atomic Inner
		Shell Processes, Vol. 1, ed. by B. Crasemann (Academic
٢	27	Y. Isozumi, S. Shimizu and T. Mukovama, Nuovo Cimento A41
Re.	~ 2	(1977) 359.
Loud	3]	T. Mukoyama and S. Shimizu, J. Phys. G: Nucl. Phys. 4 (1978) 1509.
E	4]	E. Feinberg, J. Phys. (USSR) 4 (1941) 423.
Ľ	5]	E. Feinberg, Yad. Fiz. 1 (1965) 612 [Sov. J. Nucl. Phys. 1 (1965) 438].
5	6]	R. M. Weiner, Phys. Rev. 144 (1966) 127.
E	7]	E. J. Williams, Kgl. Dansk. Vidensk. Selsk., MatFys. Medd.
		13 (1935) No. 4.
L	8]	H. Kolbenstvedt, J. Appl. Phys. 38 (1967) 4785.
L	37	C. Weizsäcker, Z. Physik 88 (1934) 612; E. J. Williams,
r	107	MA Listonganton Vostnik Loningn Univ. Son Fiz. i
L	101	Khim. 16 (1962) 142.
Г	117	B. Talukdar and M. Chatterii, Phys. Rev. All (1975) 2214.
Ē	12]	H. F. Schopper, Weak Interactions and Nuclear Beta Decay
		(North-Holland, Amsterdam, 1966) p.77.
E	13]	S. D. Oh and R. H. Pratt, Phys. Rev. A13 (1976) 1463.
5	14]	M. Stobbe, Ann, Physik 7 (1930) 661.
L	15]	W. Heitler, The Quantum Theory of Radiation (Oxford
r	107	University Press, London, 1953) 3rd edition, p. 208.
L	10]	H. A. Bethe and E. E. Salpeter, Handbuch der Physik, Vol.
		XXXV, ed. by 5. riugge (springer-veriag, beriin, 1957)
5	177	H. Kolbenstvedt, J. Appl. Phys. 46 (1975) 2771.
1	181	G. Hock, to be published.
F	191	J. H. Scofield, UCRL-51326 (1973), unpublished.
F	20]	Ref. 12, p. 81.
L	21]	P. Morrison and L. I. Schiff, Phys. Rev. 58 (1940) 24.
E	22]	C. M. Lederer and V. S. Shirley, Table of Isotopes (John-
		Wiley & Sons, New York, 1978) 7th edition.
8	231	H. H. Hansen, Phys. Rev. C14 (1976) 281.

- [24] J. Legrand, M. Blondel and J. Brethon, Proc. Int. Conf. on Inner-Shell Ionization Phenomena and Future Applications, Atlanta, Georgia, 1972, ed. by R. W. Fink, S. T. Manson, J. M. Palms and R. V. Rao (U.S. AEC, Oak Ridge, Tenn., 1973) p.2167.
- [25] M. Jurcevic, A. Ljubicic, Z. Krecak and K. Ilakovac, Can. J. Phys. 54 (1976) 2024.
- [26] H. H. Hansen and K. Parthasaradhi, Phys. Rev. C9 (1974) 1143.
- [27] J. L. Campbell and J. Law, Can. J. Phys. 50 (1972) 2451.
- [28] C. E. Laird, P. C. Hummel and H.-C. Liu, Phys. Rev.C21 (1980) 723.
- [29] M. S. Freedman and D. A. Beery, Phys. Rev. Lett. 34 (1975) 406.
- [30] A. Bond, O. P. Gupta and A. Zide, Phys. Rev. C9 (1974) 1529.
- [31] J. P. Thibaud, Ch. Briancon and R. J. Walen, J. Physique 35 (1974) L-89.
- [32] J. M. Howard, E. J. Seykora and A. W. Waltner, Phys. Rev. A4 (1971) 1740.
- [33] A. J. Mord, Bull. Amer. Phys. Soc. 17 (1972) 89.
- [34] T. Mukoyama, Y. Isozumi, T. Kitahara and S. Shimizu, Phys. Rev. C8 (1973) 1308.
- [35] J. P. Briand, P. Chevallier, A. Johnson, J. P. Rozet, M. Tavernier and A. Touati, Phys. Lett. 49A (1974) 51.
 [36] T. Kitahara and S. Shimizu, Phys. Rev. Cll (1975) 920.
- [37] M. Langevin, C. R. Acad. Sci. B245 (1957) 664; J. Phys. Radium 19 (1958) 34.
- [38] W. von Oertzen, Z. Physik 182 (1964) 130.
- [39] C. W. E. van Eijk, J. Wijnhorst and M. A. Popelier, Phys. Rev. A20 (1979) 1749.
- [40] C. W. E. van Eijk, J. Wijnhorst and M. A. Popelier, Phys. Rev. C19 (1979) 1047.
- [41] H. Daniel, G. Schupp and E. N. Jensen, Phys. Rev. 117 (1960) 823.
- [42] N. L. Lark and M. L. Perlman, Phys. Rev. 120 (1960) 536.
- [43] K. M. Smith, University of Glasgow, unpublished.
- [44] H. J. Nagy, G. Schupp and R. R. Hurst, Phys. Rev. C6 (1972) 607.
- [45] H. Ryde, L. Persson and K. Oelsner-Ryde, Nucl. Phys. 47 (1963) 614.

Referee: E. Vatai

ATOMKI Közlemények 23 (1981) 165-180

Y-SPEKTROSZKÓPIAI VIZSGÁLATOK LEHETŐSÉGEI AZ U-103 CIKLOTRON NYALÁBJAIBAN

FÉNYES TIBOR

MTA Atommagkutató Intézete, Debrecen, Pf. 51.

A dolgozat rövid áttekintést ad az in-beam spektroszkópiai módszerrel végzett magszerkezet kutatás jellegzetességeiről, majd a rendelkezésre álló kisérleti reakcióenergia értékek alapján megadja a 11-72 rendszámu elemek U-103 kihozott nyalábokkal előállitható legkönnyebb izotópjait. Az elérhető legkönnyebb izotópok magfizikai adatainak áttekintése után uj magadatok szerzésének lehetőségeit vizsgálja. Felsorol néhány problémát, amelyekkel kapcsolatban uj magfizikai információ várható in-beam γ- és konverziós elektron spektroszkópiai mérésekből. A dolgozat utolsó fejezetében áttekintés található a legfontosabb kisérleti technikákról.

POSSIBILITIES OF γ -SPECTROSCOPIC INVESTIGATIONS IN U-103 CYCLOTRON BEAMS. The paper shortly surveys the characteristic features of the in-beam spectroscopic nuclear structure research. On the basis of the available experimental reaction energies the lightest isotopes of the $11 \le Z \le 72$ elements are given which may be produced by U-103 external beams. After surveying the nuclear data of the available lightest isotopes, the possibilities of obtaining new data are treated. Several problems are listed at which new nuclear information is expected from in-beam γ - and conversion electron spectroscopic measurements. The last chapter shortly summarizes the most important experimental technics.

ВОЗМОЖНОСТИ γ-СПЕКТРОСКОПИЧЕСКИХ ИССЛЕДОВАНИЙ В ПУЧНАХ У-103 ЦИКЛОТРОНА. В статье дается краткий обзор о характеристиках "in-beam" спектроскопического исследования структуры атомного ядра. На основе доступных экспериментальных энергий реакций даны легчайшие изотопы элементов 11≤ Z ≤ 72, которые еще можно получить с помощью выведенных пучков У-103. После обзора ядерно-физических данных легчайших доступных изотопов, изучаются возможности получения новых данных. Перечислены несколько проблем в связи с которыми новая ядерно-физическая информация ожидается из γ- и е⁻-спектроскопических измерений. В последней гдаве статьи рассматриваются важнейшие экспериментальные техники.

1. Bevezetés

1.1. Az in-beam spektroszkópiai módszerrel végzett magszerkezet kutatás jellegzetességei

Az in-beam spektroszkópiai módszerrel végzett magszerkezet kutatás viszonylag ujkeletű, de már az eddigi tapasztalatok is mutatják, hogy igen hatásos kutatási irány és kis gyorsitók mellett is sikerrel művelhető. Ennek főbb okai a következők:

a) Magreakciókban általában magasan fekvő nivók is előállithatók. β-bomlásból ez nem mindig teljesül, különösen nem a stabilitási sáv közelében, ahol a β-bomlásenergiák gyakran kicsik.

b) A β-bomlásban a leánymag közvetlenül gerjesztett állapotainak spinje csak legfeljebb néhány egységnyire tér el az anyamagétól. Ugyanakkor már ∿20 MeV-es bombázó nyalábokkal is többszörösen nagyobb impulzusnyomaték változást lehet elérni.

c) A bombázó részecske energiájának változtatásával a nivók fokozatosan állithatók elő [pl. (p,n) reakcióval], ami a nivóséma felépitését nagyon megkönnyiti. A β-bomlásban a nivók egyszerre gerjesztődnek.

d) A reakciótermékek általában orientáltak, igy a γ-szögeloszlás mérésből következtetés vonható le a sugárzás multipolaritására és a magnivók spinjére. Ugyanakkor a radioaktiv források orientálása igen alacsony hőmérsékleteket, erős mágneses tereket, speciális technikát kiván.

e) A módszer nagyfoku rugalmassága ellenére viszonylag egyszerű, nincs szükség a termékek radiokémiai vagy komplikált tömegszeparátoros elválasztására. Dusitott izotóp céltárgyak, félvezető detektoros spektrométerek és átfedő magreakciók használatával, gerjesztési függvények és γγ-koincidencia spektrumok felvételével az észlelt sugárzások általában azonosithatók.

1.2. Az U-103 ciklotron nyaldbok jellemzői

A leningrádi Elektrofizikai Berendezések Tudományos Kutató Intézete által tervezett és gyártott 103 cm pólusátmérőjü (U-103) izokrón ciklotron nyalábjainak főbb jellemzői az 1. táblázatban találhatók. A nyalábenergiák a feltüntetett határok között változtathatók.

Nyaláb	Energia	MeV	Kihozott
	Kihozott nyaláb	Belső nyaláb	nyalábáram (µA)
P d ³ He	5-18 3-10 8-24	2-20 1-11 4-27	\$ 50 \$ 50 \$ 25
CI.	6-20	2-22	\$ 25

1. táblázat. Az U-103 ciklotron nyalábjai

2. Az in-beam spektroszkópiai vizsgálatok számára elérhető magtartományok

Ismert tapasztalat, hogy az egyes atommagokra rendelkezésre álló ismeretanyag a stabilitási sáv mentén a leggazdagabb. Az erősen neutronhiányos vagy többletes izotópok irányába haladva az elérhető magadatok száma általában rohamosan csökken. Ugyanakkor a kisérleti technika ma már lehetővé teszi a stabilitási sávtól viszonylag távoleső atommagok előállitását és vizsgálatát is, igy várható, hogy a jövőben a legtöbb uj magfizikai adat ezeknél a magoknál születik. A következőkben azt vizsgáljuk, milyen messze lehet eljutni a stabilitási sávtól U-103 nyalábokkal létrehozott magreakciókkal.

Az U-103 ciklotron lehetőséget ad neutrontöbbletes izotópok előállítására nehéz elemek (pl. U) hasitásával. A rövid felezési idejü hasadási termékek szeparálásához és azonositásához azonban komplex és költséges on-line tömegszeparátorra, expressz kémiai elválasztásra stb. van szükség. Ezért figyelmünket elsősorban a neutronhiányos izotópokra forditjuk. Ezek jó hozammal és viszonylag tisztán nyerhetők (i,xn) reakciókkal.

2.1. Az (i, xn) reakciókkal előállitható legkönnyebb izotópok

Amikor azt a kérdést vizsgáljuk, melyek az egyes elemek U-103 nyalábokkal előállitható legkönnyebb izotópjai, elegendő a p, ill. ³He bombázó részecskék esetét tárgyalni. Ezek ugyanis eleve neutronhiányosabbak, mint a d, ill. ⁴He ionok és az elérhető energiájuk is lényegesen nagyobb az utóbbiakénál.

Céltárgyul a legkönnyebb stabil izotópokat célszerű választani. Mivel a páros rendszámu elemek legkönnyebb stabil izotópjai általában jóval messzebb esnek a stabilitási sávtól, mint a páratlan rendszámuaké, a következő tárgyalásban csak a páros Z-jű elemek legkönnyebb stabil izotópjai szerepelnek céltárgyként.

A (p,xn) [Ep max=18 MeV] és (³He,xn) [E_{3He} max=24 MeV] reakciókkal elérhető legkönnyebb izotópok határvonala könnyen kiszámitható, ha ismerjük a reakciók energiáit (Q értékeit). A kisérleti Q értékeket vehetjük Gove és Wapstra [1] munkájából. Amennyiben nem állt rendelkezésre kisérletileg mért reakcióenergia az (i,xn) reakcióra, értékét az (i,[x-1]n) reakció energiájából becsültük a Myers-Swiatecky félempirikus tömegformulából [2] nyert neutron kötési energia segitségével.

A számitásokhoz felhasználható Alexander és Simonoff azon észlelése [3] is, miszerint

$$\frac{\varepsilon}{x} = \frac{\langle E \rangle_{x} - i \sum_{i=1}^{\infty} B_{ni}}{x} \approx C,$$

ahol ε/x - (a kaszkádban elpárolgott neutronok plusz a γ-kvantumok által elvitt energia) osztva a neutronok számával, x-el,

1. ábra. Az U-103 nyalábokkal előállitható legkönnyebb izotópok a ll≤Z≤72 rendszám tartományban. A besatirozott négyzetek stabil izotópokat, a bekeretezett négyzetek ismert izotópokat jelentenek az [5] és a [6] munkák,valamint néhány ujabb dubnai eredmény alapján. A nyilak a legkönnyebb előállitható izotópokhoz vezető (p,xn), ill. (³He,xn) reakciókat jelölik.

168
- <E> az (i,xn) reakció átlagos gerjesztési energiája, közelitőleg a gerjesztési függvény maximumának megfelelő energia,
- B_{ni} az i-edik neutron kötési energiája,
- c az egyes magtartományokra jellemző állandó.
- C értékét Z=66-nál 5,5-nek, 78-nál 4,2-nek vehetjük [4].

A ll≤Z≤72 rendszám tartományra vonatkozó eredmények az l.ábrán láthatók. A nyilak vége azon izotópokat jelzi, amelyek a (p,xn) [Ep max=18 MeV), ill. (³He,xn) [E_{3He max}=24 MeV] reakciókkal még legalább 2 MeV-el a reakció energiája fölött előállithatók. Itt jegyzem meg, hogy 18 MeV energiáju protonok, ill. 24 MeV energiáju ³He-részecskék még az ²³⁵U-ba is lényegében potenciálfal felett hatolhatnak be.

Z > 72 esetben az előállitható legkönnyebb izotópok általában mélyen benn vannak az ismert izotópok tartományában. Ezen elemeknél (nehéz ion, xn) reakciókkal sokkal messzebb el lehet jutni a stabilitási sávtól, mint kis energiáju, könnyü bombázó részecskékkel.

2.2. Reakció hatáskeresztmetszetek

2. ábra. A (p,n), (p,2n) és (³He,3n) reakciók hatáskeresztmetszetei a céltárgy tömegszám (A_{CELT}) és bombázó részecske energia (E) függvényében. Az adatok forrásai: [7] és [8]. A (p,n), (p,2n) és (³He,3n) reakciók hatáskeresztmetszetei a céltárgy tömegszáma és a bombázó részecske energiája függvényében a 2. ábrán láthatók. Az adatok a stabilitási görbe közelében lévő céltárgy atommagokra vonatkoznak. A feltüntetett hatáskeresztmetszeteken kivül az U-103 p és ³He nyalábjaira jelentős lehet még a teljes rugalmatlanszórási, a (³He,n), (³He,2n), valamint kis céltárgy tömegszámoknál – a (p, α), (³He,pn) stb. reakció is.

- 3. Az U-103-al elérhető legkönnyebb atommagok gerjesztési nivóira rendelkezésre álló adatok és uj magadatok szerzésének lehetőségei
- 3.1. A rendelkezésre álló adatok. Milyen uj magadatok meghatározására nyilik lehetőség?

A 2. táblázatban rövid statisztikai kimutatás található az U-103 ciklotronnal előállitható legkönnyebb izotópok magnivó rendszerére rendelkezésre álló adatokról. A táblázatban az 56-nál nagyobb rendszámu elemek adatait nem szerepeltettük, mivel ezeknél az előállitható legkönnyebb izotópok nivórendszere általában elég jól ismert.

2. táblázat. Az U-103 ciklotronnal előállitható legkönnyebb izotópok (l. l. ábra) gerjesztési nivóira rendelkezésre álló adatok (44 atommagra vonatkozóan a Z=11-56 tartományban). A magadatok forrása: Lederer és mások [6] munkája

	Atommagok	szama
A vizsgált magok	111	≡ 100 %
Radioaktiv bomlásból nincsenek adatok	30	68 %
A nivók között <3 átmenet ismert	29	66 %
2 MeV gerjesztési energia alatt <3 magnivó ismert	21	48 %
A nivórendszerben <3 állapotra van ismert, egyértelmű spin- paritás adat	37	84 %
In-beam y-spektrum mérés nincs	26	59 %

Az 1. és 2. ábrák, a 2. táblázat, valamint az ismert magadatok [6] alapján számos következtetés vonható le arra vonatkozóan, hogy milyen lehetőséget ad az U-103 gyorsitó in-beam γ-spektroszkópiai kutatásokra. Az alábbiakban felsorolunk néhányat közülük.

a) Az U-103 nyalábok sok esetben lehetővé teszik az ismert izotópok határának elérését, néhány esetben uj izotópok előállitását is, különösen a könnyű elemek tartományában. Az ismert Az ismert izotópok határán fekvő atommagok gerjesztési nivórendszerére nagyon kevés kisérleti adat áll rendelkezésre, mivel ezeket általában még radioaktiv β-bomlásból sem vizsgálták.

b) Az előállitható legkönnyebb izotópok között számos olyan található, melyeknél az atommagok energianivói vagy egyáltalán nem, vagy csak igen kevéssé ismertek; az energianivók között vagy egyáltalán nincs, vagy csak kevés ismert γ -sugárzás van; továbbá amelyeknél igen kevés biztos nivóspin, ill. paritás adat áll rendelkezésre. Különösen kevés az in-beam γ -spektrosz-kópiai módszerrel nyert adat.

c) Az elérhető határizotópok a könnyebb elemeknél általában β +-bomlással, a nehezebbeknél e--befogással vagy β +-bomlással bomlanak. In-beam konverzióselektron spektrum vizsgálatoknál a mininarancs spektrométer igen hasznos szolgálatot tehet, mivel megakadályozza, hogy az erős hátteret adó pozitronok, továbbá szórt bombázó részecskék, röntgen-, γ - és δ -sugárzás stb. a detektorra jusson.

d) A könnyü elemeknél az elérhető határizotópok felezési ideje általában kicsi, igy az in-beam spektrummérést a termékek radioaktiv sugárzása zavarhatja. A nehezebb magok tartományában az elérhető határizotópok felezési ideje általában hosszabb.

e) Az (i,xn) reakció mellett a könnyü elemeknél az (i,pxn), ill. (i,αxn) reakció is felléphet elég nagy valószinüséggel. Több reakciótermék egyidejü jelenléte a mérést zavarhatja, bár hasznos információ nyerését nem zárja ki [9].

f) Az U-103 nyalábokkal elérhető legkönnyebb izotópok a nehéz elemeknél általában mélyen benn vannak az ismert magok tartományában és gerjesztési nivóikra már radioaktiv bomlásból is szereztek adatokat.

Itt jegyzendő meg, hogy az in-beam spektroszkópiában közvetlenül a végtermék gerjesztési nivóit vizsgálják. Ha ugyanezen mag nivóit radioaktiv β-bomlásból vizsgálnánk, sokkal inkább neutronhiányos magok előállitására volna szükség (és sokkal nagyobb gyorsitóra). Jórészt ez magyarázza, hogy in-beam spektroszkópiai módszerrel még viszonylag kis gyorsitó esetén is számos atommagnál remélhető uj magadatok szerzése.

3.2. Az in-beam spektroszkópiai vizsgálatok realitásairól

Az 1. ábrán feltöntetett céltárgy izotópok többsége a kereskedelemben dusitott alakban beszerezhető (ℓ. pl. [10]-et). Az elemek olvadás- és forráspontja, valamint más sajátságai olyanok, hogy a legtöbb céltárgyelem esetében a megkivánt ≈1 mg/cm² vastag céltárgyak a szokásos vákuumpárologtatási módszerrel elkészithetők [11].

Az l. ábrán feltüntetett magreakciók többségénél in-beam spektroszkópiai célokra elegendően nagy hozamok várhatók. Az elérhető maximális p, ill. ³He energiák általában számottevően felette vannak a reakcióküszöböknek, ahol a hatáskeresztmetszetek már jelentősek. Elegendően nagy a bombázó nyalábok intenzitása is.

Az in-beam γ- és konverzióselektron-spektroszkópiai vizsgálatoktól várható uj magfizikai információk

4.1. Az (i,xn) reakció mechanizmusa. Alap és oldalsávok gerjesztődése

Bombázzunk egy nehéz magot, pl. ¹⁹⁷Au-ot fokozatosan növekvő energiáju ³He nyalábbal. A reakció mért gerjesztési függvényei a 3. ábrán láthatók.

3. ábra. A ¹⁹⁷Au (³He,xnyp) reakciók kisérleti gerjesztési függvényei. Alderliesten és munkatársai [12] közleményéből.

A teljes hatáskeresztmetszet a bombázó energia növekedésével kezdetben nő, aminek fő oka, hogy a potenciálfal egyre "áteresztőbb" lesz. Megfigyelhető, hogy minden (³He,xn) reakcióban található egy olyan bombázó energia, ahol a hozam maximumot mutat. Távol a stabilitási sávtól a p (és α) kötési energiája erősen lecsökken, mig az n kötési energia nő; következésképpen ekkor a p, ill. α emisszió valószinübbé válik.

Ha egy középnehéz magot ~24 MeV-es ³He nyalábbal bombázunk, a közbenső atommag tekintélyes impulzusnyomatékot nyerhet (l. később a 3. táblázatot). Ezt az impulzusnyomatékot részben az elpárolgó neutronok, részben a γ-sugárzás viszi el.

Az elpárolgó neutronok energiaspektruma a kisérletek szerint Maxwell-eloszlásu, aminek 1 MeV körül van a maximuma. Ilyen kis energiáju neutronokra csak 2=0 vagy 1 impulzusnyomaték változás esetén jelentős a transzmisszió, igy a neutronok nem sok impulzusnyomatékot visznek el. Figyelembe veendő az is, hogy az egymás után kilépő neutronok által elvitt impulzusnyomaték vektoriálisan összegződik és igy közömbösitheti is egymást.

A legutolsó neutron emissziója után maradó gerjesztési energiát γ -kvantumok viszik el. A Weisskopf felezési idő - γ -energia görbék mutatják, hogy adott energiánál legvalószinübben alacsony multipolaritásu γ -sugárzás lép fel. Igy kezdetben (nagy magnivó sürüségeknél) a γ -sugárzás még a párolgási neutronoknál is hatástalanabb az impulzusnyomaték elvitelében. A γ -kaszkád erős tendenciát mutat arra, hogy először elérje az adott spinhez tartozó legalacsonyabb energiáju állapotot (yrast állapot, ami svédül fáradt, elnyütt, szédült-et jelent), majd onnan menjen át fokozatos γ -emisszióval az alapállapotba. Ha a mag erősen deformált, a γ -kaszkád utolsó része várhatóan az alapállapoti rotációs sáv lesz. Az alapsávhoz tartozó γ -k emissziójának valószinüsége olyan nagy, hogy az szinte a teljes geometriai hatáskeresztmetszetnek felel meg. A várható kaszkádot a 4. ábrán tüntettük fel.

4. ábra. Az (i,xn) reakcióból várható γ -sugárzások. Az ordinátán a végtermék gerjesztési energiája, az abszcisszán a spin értéke van feltüntetve. E_B – az utolsó neutron kötésenergiája a végtermékben. A felhőkre emlékeztető vonalak a végtermék egyenlő valószinüséggel képződő állapotait jellemzik. A nyilak γ -átmeneteket jeleznek.

A neutron befogási γ-sugarak 3-5 multiplicitást mutatnak. Az yrast sáv eléréséhez szükséges γ-kvantum emisszió száma ennék várhatóan kisebb. Az alapsáv elérése előtt a γ-spektrum erősen összetett, igy azt általában semmiféle detektorral nem lehet feloldani, csak folytonos hátteret ad.

Annak érdekében, hogy becslést kapjunk az alapsávhoz tartozó γ -átmenetek intenzitásviszonyairól, a következő gondolatmenetet végezhetjük.

Az ütközési paraméter (rg) a következőképpen fejezhető ki:

$$r_{\ell} = \ell \frac{\hbar}{P_{b}} = \ell \lambda ,$$

ahol

$$X = \frac{h}{(2A_bE_b)^2},$$

A_b,E_b,p_b a bombázó részecske tömegszáma, energiája és impulzusa, lň impulzusnyomaték. Az L impulzusnyomatékhoz tartozó közbenső mag képződési keresztmetszet klasszikus közelitésben

$$\sigma_{l} = \pi r_{l+1}^{2} - \pi r_{l}^{2} = \pi \tilde{\chi}^{2} (2l+1)$$

$$l \leq l_{max} - ra.$$
(1)

Az esetben, ha a csatornaspin (a céltárgy és a bombázó részecske spinjeinek vektor összege) elhanyagolható, ez a hatáskeresztmetszet adja a közbenső mag spineloszlását. Ha továbbá felteszszük, hogy elhanyagolható impulzusnyomaték változás lép fel a neutron párolgási folyamatban, ez a hatáskeresztmetszet adja a maradékmag spineloszlását is.

Kvantummechanikai tárgyalásnál a hatáskeresztmetszet kifejezésébe egy $T_{\ell}(E_{h})$ transzmissziós együttható is belép:

$$\sigma_{\ell} = \pi \chi^2 (2\ell+1) T_{\ell}(E_b).$$

A részletes, pontos számitások [13] mutatják, hogy az (1) klasszikus becslés jó közelitést ad a végmagra is. Az (1) egyenletet lényegében csak a nagy spinek határánál (1_{max} környékén) kell módositani.

Az alapsáv átmenetek intenzitása páros-páros deformált magok esetére a következőképpen becsülhető. Ha feltesszük, hogy az utolsó neutron emissziója közvetlenül az alapsávot táplálja, az I spinű nivóról a következő hozamot (H) kapjuk:

$$H(I) = \sum_{\substack{I = I}}^{I_{max}} \sigma(I^{\dagger}),$$

ahol a $\sigma(I')$ a végmag normalizált spineloszlás függvénye. Klasz-szikus esetben ez egy parabola lesz ℓ_{max} értékkel:

$$H(I) = \frac{l_{max}^2 - I^2}{l_{max}^2}, \quad I < l_{max}$$
 (2)

Néhány magra vonatkozó konkrét eredmény az 5. ábrán látható. A (2) parabola inkább maximumot ad, a kisérleti értékek ennél kisebbek. Ennek oka, hogy az atommagban sok nivó van az alapsávon kivül is. Ezek jelenléte csökkentheti az alapsávhoz tartozó γ-sugárzások intenzitását, sok γ-átmenet az oldalsávokon belül lép fel. A valóságban összetett folyamatok játszódnak le. Azt, hogy egy adott nivóról sávon belüli vagy sávok közötti átmenet lép fel, az átmeneti energiák, spin- és paritásváltozások, a sávra jellemző magtörzs deformációs viszonyai stb. szabják meg, mindezek tehát hatnak az alapsáv átmenetek intenzitásviszonyaira.

A protonok által létrehozott (p,n), (p,2n) reakciókat kis impulzusnyomaték átadás jellemzi. A reakcióban nemcsak az alapsáv, hanem az oldalsávok is erőteljesen gerjesztődnek. A γ-bomlás alacsony spinü, diszkrét nivótartományból indul ki. Az utolsó neutron kilépése után alacsonyan fekvő nivók közvetlenül gerjesztődnek.

5. ábra. A rotációs alapsávban fellépő relativ γ -átmeneti intenzitások az emittáló állapot impulzusnyomatékának függvényében. Az adatok három különböző céltárgyon, 40,5 MeV-es részecskékkel létrehozott (α ,3n) reakciókra vonatkoznak. Williamson és munkatársai [14] mérése alapján. A pontok a végmagokhoz tartoznak, amelyekben az átmenetek fellépnek. A "KEZDETI" görbe a spineloszlás integrálját adja a közbenső magra, optikai modell számitás alapján.

4.2. Atommagok orientálása magreakciókban. Az U-103 nyalábokkal elérhető maximális impulzusnyomatékok

Amikor a bombázó ion a céltárgymagba ütközik, ennek impulzusnyomatékot adhat át. Klasszikus közelitésben az átadott maximális impulzusnyomaték (ň egységekben):

$$L \approx 0,3 (A_b^{1/3} + A_{\dagger}^{1/3}) (A_b E_b^{1/2}),$$

ahol A_b a bombázó részecske, A_+ a céltárgy tömegszáma, E_b a bombázó részecske energiája MeV-ben. A képlet levezetésénél a magsugarat az 1,4×10⁻¹³ A¹/3 cm formulából számoltuk.

A 3. táblázatban feltüntettük, milyen maximális impulzusnyomatékot nyerhet a közbenső mag az U-103 p, ill. ³He nyalábjától. Látható, hogy ³He bombázás esetén a közbenső (és igy a vég-) mag impulzusnyomatéka elég nagy is lehet.

 táblázat. Az U-103 p, ill. ³He nyalábjaival elérhető maximális közbenső mag impulzusnyomatékok (klasszikus közelitésben végzett számitás alapján)

	A _t =20	100	170
p (18 MeV)	≈ 5	rs 7	≈ 8
3 He (24 MeV)	≈ll	≈15	≈18

A klasszikus közelitésben számitott impulzusnyomatékok csak első tájékozódásra szolgálhatnak. A pontosabb számitásoknál figyelembe kell venni pl. az atommagok között fellépő Coulomb kölcsönhatást is, ami - különösen nagy rendszámok esetén néhány egységnyi eltérést okozhat a 3. táblázatban megadott adatoktól.

Az U-103 ciklotronnal elérhető impulzusnyomaték értékek általában lényegesen kisebbek, mint amikkel az adott magok maximálisan rendelkezhetnek anélkül, hogy a centrifugális erő szétszakitaná őket (l. részletesebben a [26] munkát.)

A céltárgymagnak átadott impulzusnyomaték vektor a bombázó nyaláb irányára merőleges sikban fekszik. Ha a csatornaspin zéró (pl. páros-páros magot bombázunk α-részecskékkel) a közbenső magok szinte teljesen orientáltak lesznek. Ha a kezdetben átadott impulzus nyomaték nagy, a magorientáció tartósan megmarad, mivel a neutronok és a korai γ-k csak kis impulzusnyomatékot visznek el.

Az orientáció miatt az emittált γ-sugaraknak anizotróp szögeloszlása van, ami a következő formulával irható le:

$$W(\zeta) = 1 + A_2 P_2(\cos \zeta) + A_4 P_4(\cos \zeta) + \dots$$

ahol ζ a bombázó nyaláb és a megfigyelési irány között bezárt szög, P₂(cosζ) és P₄(cosζ) - Legendre-polinomok. Az anizotróp szögeloszlás tényét kisérletileg is kimutatták.

Diamond és munkatársai [15], valamint Newton és munkatársai [16] sok esetben kimérték a nehézion reakciók utolsó légcsőjében fellépő γ-sugárzások A₂ és A₄ szögeloszlási együtthatóit. A sugárzások rotációs vagy vibrációs nivókról eredtek. A tapasztalat szerint az összes kisérleti érték a 0,2<A₂<0,4, ill. 0,04<-A₄<0,15 tartományban csoportosul, kivéve a 2++0+ átmenetekre vonatkozókat. Mivel ez utóbbiak felezési ideje viszonylag nagy, a magon kivüli terek érezhető hatást gyakorolnak rájuk.

A végállapotok erős orientáltsága felhasználható a γ -sugárzás multipolaritásának mérésére és igy a magspin meghatározására. Ambár az orientációs fok nem számitható olyan pontosan, mint a szögkorrelációs módszerben, bizonyos hibahatárokon belül a kisérletileg meghatározott A₂ és A₄ együtthatók illesztése az elméletiekhez megadja a multipolaritást, ill. közvetve a nivóspint.

Ha a csatornaspin nem zéró, a közbenső mag orientációs foka kisebb lesz. A magon kivüli terek hatása is ronthatja az orientációt, ha a nivó életideje hosszu (≥1 ns).

A multipolaritáson kivül az átmenet elektromos, ill. mágneses jellegének tisztázására is lehetőség nyilik belső konverziós együttható vagy lineáris polarizáció mérésekkel.

4.3. Rotációs sávok páros-páros magokban

Ujabban nagyszámu adat gyült össze a páros-páros magok $I^{\pi}=0^+$, 2⁺, 4⁺, 6⁺... alapsávjaira; sok magnál és nagy spinekre is végeztek méréseket. Azt találták, hogy

az $R_{I} = \frac{E(I)}{E(2)}$ energiaarány sima függvénye $R_{4} = \frac{E(4^{+})}{E(2^{+})}$ -nak.

A tapasztalat szerint az egyszerű

$$E_{I} = \frac{\hbar^2}{2\Theta} I(I+1), \quad \Theta = \text{ all and } \delta$$

formula nem alkalmas a reális magok rotációs energiáinak leirására, mivel a θ tehetetlenségi nyomaték változik az I magspin függwényében.

Harris [17] a következő formulát javasolta a rotációs nivók energiájának leirására:

$$E_{I} \approx \frac{I(I+1)}{2\Theta_{O}} \{1 - C \frac{I(I+1)}{\Theta_{O}^{3}}\},$$

ahol C: paraméter, ami a tehetetlenségi nyomaték növekedését jellemzi a körfrekvencia növekedésével, Θ_0 : a tehetetlenségi nyomaték zérő körfrekvenciánál. A formula a 2,23 \leq R, \leq 3,33 tartományban érvényes. A formula jó leirását adja a kisérleti adatoknak kb. I=12-ig.

Johnson és munkatársai a 70-es évek elején [18] meglepő anomáliát fedeztek fel egyes ritkaföld-magok rotációs sávjainál. A Ø tehetetlenségi nyomaték bizonyos esetekben I∿12 felett hirtelen megnövekszik, majd I>18-nál növekedés megint lassu, fokozatos lesz. Ezt a jelenséget nevezzűk visszahajlásnak (backbending). Azóta sok más páros-páros magnál is találtak visszahajlást.

A jelenség magyarázatával kapcsolatos vita éveken át folyt a "Coriolis párfelhasadás" [19] és a "rotációs beállási modell" [20] hivei között. Faessler [21] javaslata szerint mind a két modellt figyelembe kell venni.

A Coriolis párfelhasadás a tehetetlenségi nyomaték lassu növekedését okozza az impulzusnyomatékkal (2. Harris formula). A rotációs beállási modell szerint a magrotáció bizonyos nukleonpályákat megváltoztathat: a nukleon impulzusnyomatékát saját irányába állithatja. Ez a mag tehetetlenségi nyomatékának gyors változását okozza az impulzusnyomaték függvényében (visszahajlási jelenség).

lási jelenség). A kérdéskörrel kapcsolatban L. részletesebben a [22] és [23] munkákat.

A páros-páros magok oldalsávjait még kevéssé vizsgálták, mivel a nivók viszonylag gyengén, kis intenzitással gerjesztődnek és a γ -spektrum meglehetősen összetett. A vibrációs sávok vizsgálata nagy feloldásu γ -spektrum méréseket, koincidencia technikát és konverzióselektron spektrum felvételt is megkiván. Mint korábban emlitettük, az oldalsávok vizsgálatára különösen a (p,n), (p,2n), (α ,n), (α ,2n) stb. reakciók alkalmasak.

4.4. Rotációs sávok páratlan tömegszámu magokban

A páratlan tömegszámu magokban nagyszámu alacsonyan fekvő nivó van és ezek rotációs sávok alapjául szolgálhatnak. A γ-sugárzások száma sokszorosan nagyobb, mint a páros-páros magokban. A rotációs sáv tagjai általában I, I+1, I+2... spinnel rendelkeznek, amelyek között M1+E2 (I-I-1) valamint átfedő E2 (I+I-2) átmenetek lépnek fel.

A nagyszámu és következésképpen általában gyenge γ-átmenetek azonositásához γγ-koincidencia mérések is szükségesek. A kisenergiáju átmeneteknél a belső konverzió jelentős, igy kivánatosak belső konverziós együttható meghatározások is.

A páratlan tömegszámu atommagok rotációs sávjainál nagyon fontos a csatolási séma kérdése. Tegyük fel, hogy egy deformált magtörzs körül egy $i_{13/2}$ neutron kering. A páratlan neutron J=13/2 impulzus nyomatékának vetülete a mag szimmetria tengelyére Ω =K. A mag teljes spinje J=I+J, ahol I a magtörzs rotációjából eredő spin. Ha az $i_{13/2}$ neutron erősen csatolódik a magtörzshöz, a rotációs energia $E_{j} = \frac{\hbar^{2}}{2\Theta} [J(J+1)-K^{2}]$ lesz. Ha a

Coriolis-kölcsönhatás az i 2 neutront lecsatolja a magtörzsről és a rotációs irányába állitja, a rotációs energiát az

kifejezés fogja leirni. Ez utóbbi esetben a rotációs sáv nagyon hasonló lesz a szomszédos páros-páros magokéhoz azzal a különbséggel, hogy a páros-páros magoknál a sávfej 0, a páratlannál 13/2 spinü. A Coriolis-kölcsönhatás erőssége a részecske impulzusnyomatékán kivül a teljes impulzusnyomatéktól és a tehetetlenségi nyomatéktól függ. Érdekes probléma, hogy a deformációs paraméter (tehetetlenségi nyomaték) függvényében hogyan alakul a csatolás módja.

Egy másik izgalmas kérdés: a "visszahajlási" effektus jelentkezése vagy hiánya páratlan magoknál. A páratlan Dy magokban nincs visszahajlás (a ¹⁵⁷Dy-ban mért legnagyobb 49/2 spinig), annak ellenére, hogy a páros izotópokban fellép. Az Er izotópoknál hasonló a helyzet [23]. A jelenség bizonyos fokig várható volt, mivel a páratlan nukleon jelenléte a "Coriolis párfelhasadás" effektust csökkenti (Hamamoto és Udagawa [24]).A rotációs beállási modell szerint hátrahajlási effektus páratlan magokban akkor nem lép fel, amikor a páratlan nukleon olyan pályán kering, amelyik legkedvezőbb a nukleon rotációs beállás szempontjából. Ekkor a páratlan nukleon jelenléte blokkolja a rotációs beállást. A jelenséget igen előnyösen lehet felhasználni pl. egyrészecske konfiguráció meghatározására.

 Információk az in-beam és radioaktiv bomlást követő γ-sugárzásból

Az l.l. pontban röviden összefoglaltuk, milyen előnyei vannak az in-beam γ-spektroszkópiai módszerekkel végzett magszerkezet vizsgálatoknak. Ugyanakkor világosan le kell szögezni, hogy a radioaktiv β-bomlást követő γ-spektroszkópiai vizsgálatoknak is megvan a maga jelentősége: a háttérsugárzás általában kisebb és igy jóval gyengébb γ -sugárzások is megfigyelhetők. Az irodalomban számos példa található arra, hogy a legerősebb γ -sugárzáshoz képest 3-4 nagyságrenddel kisebb intenzitásu γ -sugárzást is sikerült észlelni β -bomlás után. Hasonló in-beam γ -méréseknél ez az intenzitás különbség csak 2-3 nagyságrend. Igy a két módszer kölcsönösen kiegésziti egymást.

5. Kisérleti technika

Az in-beam γ-spektroszkópia alapvető méréstechnikai módszerei közé tartoznak a következők:

- Kemény és lágy γ-spektrumok felvétele félvezető detektoros spektrométerekkel,
- γ-gerjesztési függvény felvétele, köszöbenergiák meghatározása,
- yy-koincidencia,
- konverzióselektron spektrum és
- γ-szögeloszlás mérések.

Nagyon hasznos in-beam spektroszkópiai információ nyerhető továbbá

- töltött részecske spektrum és szögeloszlás mérésekből,
- nivó életidő meghatározásokból,
- a ciklotron nyalábcsomagok közötti időben végzett γ-bomlás (rövid felezési idejű izomer állapot) vizsgálatokból,
- magnyomatékok in-beam méréséből stb. is.

Az intenziv neutronsugárzás miatt fokozott figyelmet kell forditani a félvezető detektorok, különösen a Ge(Li) kristályok sugárvédelmére [25]. Amennyiben a mérőberendezés és a ciklotron terem között vastag beton árnyékolás van, a detektorok védelme főleg a nyalábszükitő blendéből (és Faraday-kamrából) eredő neutronok intenzitásának csökkentését jelenti.

A sugárzások megbizható azonositása érdekében célszerű dusitott izotóp céltárgyakat használni.

Köszönettel tartozom a [12] és [14] munkák szerzőinek, hogy hozzájárultak egy-egy ábra e dolgozatba történő átvételéhez, valamint dr. Vertse Tamásnak néhány kérdés megvitatásáért.

Hivatkozások

[1] N. B. Gove, A. H. Wapstra, Nucl. Data Tables 11 (1972) 127 [2] W. D. Myers, W. J. Swiatecki, University of California Rediation Laboratory, UCPL-11980 (1965)

- Radiation Laboratory, UCRL-11980 (1965) [3] J. M. Alexander, G. N. Simonoff, Phys. Rev. B133 (1964) 93
- [4] T. Fényes, Uj izotópok előállitása és magspektroszkópiai vizsgálata, MTA doktori értekezés (ATOMKI, Debrecen, 1970) 104. o.

[5] W. Seelmann-Eggebert, G. Pfennig és H. Münzel, Chart of the Nuclides (Gesellschaft für Kernforschung, Karlsruhe, 1974)

[6] C. M. Lederer, V. S. Shirley, (szerk.) Table of Isotopes, 7. Kiadás (J. Wiley and Sons, New York, 1978)

- [7] А. А. Кропин, Е. Схабе, Материалы рабочего совещания по изохронному циклотрону У-120 М, (ОИЯИ Р9-5498, Дубна, 1970 г.) стр. 12
- [8] K. A. Keller, J. Lange, H. Münzel és G. Pfennig, Landolt-Börnstein, Neue Series Q-Werte und Anregungsfunktionen von Kernreaktionen (Springer-Verlag Berlin, 1973) Band 5, Teil b.
- [9] H. Morinaga, T. Yamazaki, In-beam Gamma-ray Spectroscopy (North-Holland Publishing Co., Amsterdam, 1976) 338. o.
- [10] Stable Isotopes. Catalogue (Techsnabexport, USSR Moscow, 1977)
- [11] W. Eijk, W. Oldenhof, W. Zehner, Nucl. Instr. and Meth. 112 (1973) 343
- [12] C. Alderliesten, O. Bousshid, P. Jahn, H.-J. Probst, C. Mayer-Böricke, Annual Report 1976 (KFA, Jülich, 1977) 26. 0.
- [13] S. Jägare, Nucl. Phys. A95 (1967) 481, Nucl. Phys. A95 (1967) 491
- [14] C. F. Williamson, S. M. Ferguson, B. J. Shepherd és I. Halpern, Phys. Rev. 174 (1968) 1544
 [15] R. A. Diamond, E. Matthias, J. O. Newton és F. S. Stephens, Phys. Rev. Lett. 16 (1966) 1205
- [16] J. O. Newton, F. S. Stephens, R. M. Diamond, K. Kotajima
- és E. Matthias, Nucl. Phys. A95 (1967) 357
- [17] S. M. Harris, Phys. Rev. Lett. 13 (1964) 663; Phys. Rev. B138 (1965) 509
- [18] A. Johnson, H. Ryde és J. Sztarkier, Phys. Lett. 34B (1971) 605; A. Johnson, H. Ryde és S. A. Hjorth, Nucl. Phys. A179 (1972) 753
- [19] B. R. Mottelson, J. G. Valatin, Phys. Rev. Lett. 5 (1960) 511
- [20] F. S. Stephens, R. S. Simon, Nucl. Phys. A183 (1972) 257
- [21] A. Faessler, Proc. Int. Symp. on Nuclear Structure, szerk.: I. Fodor-Lovas, G. Pálla (KFKI kiad., Budapest, 1976), 1. kötet, 433. o.
- [22] H. Morinaga, T. Yamazaki, In-beam Gamma-ray Spectroscopy (North-Holland Publ. Co., Amsterdam, 1976) 346. o. [23] C. Mayer-Böricke, Proc. Int. Symposium on Nuclear
- Structure, szerk .: I. Fodor-Lovas és G. Pálla (KFKI kiad., Budapest, 1976) 1. kötet, 371. o.
- [24] I. Hamamoto, T. Udagawa, Nucl. Phys. A126 (1969) 241
- [25] H. W. Kraner, IEEE Trans. Nucl. Sci. NS-27, No. 1 (1980) 218; BNL 26850
- [26] R. M. Lieder, H. Ryde, Advances in Nuclear Physics, szerk .: M. Baranger, E. Vogt (Plenum kiad., New York, 1978), 101. o.

Lektor: Koltay Ede

ATOMKI Közlemények 23 (1981) 181-187

РОЛЬ ОБМЕННОЙ КОРРЕНЦИИ В ПРОЦЕССЕ ВНУТРЕННЕЙ КОНВЕРСИИ*

Э. Ватаи, Д. Сабо

ATOMKI H-4001 Debrecen, Pf. 51. Hungary

Исследовано возможное влияние неортогональности начального и конечного состояний атомных орбит на отношение K/L₁ коэффициентов внутренней конверсии. Были рассмотрены две модели: в адиабатической модели конечное состояние атомных электронов соответствует полной перестройке, вызванной удалением конверсионного электрона. Вторая модель вытекает из аналогии между электронным захватом и внутренней конверсией: учитывается, что в одиночном акте взаимодействия участвует реальный электрон, хотя полная вероятность конверсии определяется распределением электронов. Предпологая, что заряд электрона в момент взаимодействия концентрируется на радиусе взаимодействия, реальное распределение остальных электронов атомной оболочки будет различатся от среднего распределения. Это смещенное распределение замораживается как конечное при высоких энергиях конверсионных электронов.

Были рассчитаны корренции обмена и перекрытия, возникающие нак следствие неортогональности начальных и конечных волновых функций в адиабатической модели. Полученные результаты противоречат экспериментальным результатам. Расчеты по второй модели не проводились, но аналогия с электронным захватом позволяет сделать вывод, что эта модель может объяснить расхождения, найденные между экспериментальными и теоретическими результатами отношений K/L1 НВН для малых Z.

KICSERÉLŐDÉSI KORREKCIÓ SZEREPE BELSŐ-KONVERZIÓS FOLYAMATOK-BAN. Megvizsgáltuk a kezdeti és végállapotok hullámfüggvénye nem-orthogonális voltának a K/L₁ belső konverziós koefficiensekre gyakorolt hatásait. Két modellel foglalkoztunk: az adiabatikus modellben az atomi elektronok végállapotai teljes átrendeződést szenvednek az elektron kilépésének megfelelően; a másik modell pedig az elektronbefogás és belső konverzió közötti analógiából ered: az egyedi kölcsönhatási aktusban egy reális

Доклад на XXIX. Совещании по ядерной спектроскопии и структуре атомного ядра, Рига, 27-30 марта 1979 г. elektron vesz részt, bár a teljes átmeneti valószinüséget az eloszlás határozza meg. Feltételezve, hogy az elektron töltése a kölcsönhatás pillanatában a kölcsönhatásnak megfelelő sugárra koncentrálódik, az elektronburokban maradó többi elektron pillanatnyi eloszlása is eltérő lesz az átlagostól. Nagyenergiáju konverziónál ez az eltolódott állapot fagy be végállapotként.

A kezdeti és végállapotok nem-orthogonalitásából eredő kicserélődési és átfedési korrekciót kiszámitottuk az adiabatikus modellben. A kapott eredmények a kisérleti eredményekkel ellentmondásban vannak. A második modellben nem végeztünk számitásokat, azonban az elektronbefogással vonható analógia alapján arra a következtetésre jutottunk, hogy a kisérleti és elméleti K/L1 belső konverziós együtthatók kis rendszámoknál észlelt eltérése ezzel a modellel értelmezhető.

THE ROLE OF EXCHANGE CORRECTION IN INTERNAL CONVERSION. The possible effects of the non-orthogonality of initial and final atomic states on K/L_1 internal conversion ratios are investigated. Two models are considered: in the adiabatic model the final states of the atomic electrons are fully contracted in accord with the absence of the converted electron. The second model arises from the analogy with nuclear electron capture: in every individual act of interaction the real electron takes part, although the total transition probability is determined by the distribution. Supposing that the charge of the electrons of the electrons of the electron of interaction of the remaining electrons of the electrons of the electron of the second model distribution of the remaining electrons of the electrons of the electron of the electrons of the electron of the distribution freezes in as intermediate final state for conversion electrons of high energies.

Exchange and overlap corrections arising from the nonorthogonality of initial and final states were calculated for the adiabatic model. The results are in contradiction with the experimental results. No calculations have been made for the second model, but the analogy with electron capture allowed to conclude, that this model might explain the discrepancy found between the experimental and theoretical K/L_1 ICC ratios at low Z values.

1. Введение

Известно, что многочастичные эффекты играют важную роль в случае электронного захвата (ЭЗ): например,они увеличивают отношения захвата L/K на 10-20 % в области 15≤Z ≤ 25. Соответстаующая теория, т.н. коррекция обмена и перекрытия, в основном правильно описывает экспериментальные данные [1]. Экспериментальные отношения испускания рентгеновских лучей К_Q/К_B объясняются также этими коррекциями [2].

Представляет интерес исследование роли подобных коррекций во внутренней конверсии (ВК) ү-лучей. Выяснение этого вопроса важно не только для теории ВК, но оно способствует также полнее понять природу коррекций обмена и перекрытия. В теории этих норренций предпологается, что нроме электрона, участвующего в данном акте ЭЗ или ВК, все остальные электроны атома переходят с начального состояния в конечное, отличающееся от начального. Изменение волновых функций вызывается изменением потенциала атома в процессе ЭЗ или ВК. Волновые функции начального и конечного состояний перестают быть ортонормированными друг к другу, что приводит к появлению недиагональных матричных элементов. Теория таких переходов с использованием волновых функций атома в форме определителей Слейтера была разработана Ловдином [3]. Задавая волновые функции в эквивалентной форме антисиммет ричного произведения можно группировать члены по числу перестановок при решении любой задачи [4] и записать результат в виде коррекции к одноэлектронному приближению.

Антисимметричная волновая функция атома имеет вид:

$$\Psi = \frac{1}{\sqrt{Z!}} \sum_{\substack{p \in rm \\ \alpha, \beta, \dots, \zeta}} (-1)^{p} \psi_{\alpha}(1) \psi_{\beta}(2) \dots \psi_{\zeta}(Z),$$
(1)

где ψ_α(i) одноэлектронные функции. Используя волновую функцию конечного состояния в подобном виде получим матричный элемент (амплитуду) перехода в следующем виде:

$$\int \Psi^{\dagger} O_{p} \Psi d\tau = \frac{1}{Z!} \sum_{\substack{p \in rm \\ \alpha \alpha^{\dagger} \dots \alpha^{\dagger} \dots}} (-1)^{m+n} (f_{\alpha^{\dagger}}(1) O_{p} \psi_{\alpha}(1)) \times$$

$$\times (\psi_{R^{\dagger}}^{\dagger}(2) \psi_{R}(2)) \dots (\psi_{T^{\dagger}}^{\dagger}(z) \psi_{T}(z)),$$
(2)

где Ор оператор, например, ЭЗ или ВН.

Отметим, что необходимо антисимметризировать конечное состояние только по электронным состояниям, т.е. перестановки волновой функции нейтрино не надо учитывать при определении знака.

Учитывая, что совместная перестановна значков со штрихом и без штриха не изменяет результат и число этих перестановок равно Z!, можем опустить перестановки по одному из значков и множитель 1/Z!. Вынося матричный элемент одноэлектронного перехода и интегралы перекрытия остальных электронов, получим

$$M_{f\alpha} = (f' \circ_{p} \psi_{\alpha}) \begin{bmatrix} \Pi (\psi_{\beta}^{\dagger} \psi_{\beta}) \end{bmatrix} \left\{ \begin{bmatrix} 1 - \Sigma & \frac{(\psi_{\beta}^{\dagger} \psi_{\gamma})(\psi_{\gamma}^{\dagger} \psi_{\beta})}{(\psi_{\beta}^{\dagger} \psi_{\beta})(\psi_{\gamma}^{\dagger} \psi_{\gamma})} + \cdots \end{bmatrix} \right\}$$

$$- \sum_{\beta \neq \alpha} \frac{(f' \circ_{p} \psi_{\beta})(\psi_{\beta}^{\dagger} \psi_{\alpha})}{(f' \circ_{p} \psi_{\alpha})(\psi_{\beta}^{\dagger} \psi_{\beta})} \begin{bmatrix} 1 - \sum_{\gamma, \delta \neq \alpha} \frac{(\psi_{\gamma}^{\dagger} \psi_{\delta})(\psi_{\delta}^{\dagger} \psi_{\gamma})}{(\psi_{\gamma}^{\dagger} \psi_{\gamma})(\psi_{\delta}^{\dagger} \psi_{\delta})} + \cdots \end{bmatrix} \right\}.$$

$$(3)$$

Суммами в квадратных скобках обычно можно пренебрегать. Роль этих членов может быть важной для внешних подоболочек. Второй ряд описывает случаи, происходящие с участием другого электрона, но интересующий нас электрон перескакивает на его место. Для электронного захвата эти обменные члены являются существенными. В настоящей работе мы занимаемся только влиянием коррекции перекрытия и коррекции обмена на отношении КВК.

Рассматриваем две модели происхождения потенциала промежуточного состояния атомной оболочки. Отметим, что промежуточное состояние является конечным для ВК и исходным для дальнейших, энергетически независимых от ВК переходов атомных электронов.

В первой т.н. адиабатической модели средний промежуточный потенциал соотвествует конфигурации, учитывающей отсутствие конвертированного электрона.

Во второй модели учитывается, что в одиночном акте взаимодействия участвует реальный электрон, хотя вероятность конверсии определяется распределением плотности электронов.

Соответсвенно, среднее поле для остальных электронов в момент взаимодействия получается заменой распределения плотности $|\psi|^2$ конвертируемого электрона на $\delta(r)$ [6]. При высоких скоростях конверсионных электронов это состояние замораживается, как промежуточное. Ясно, что такое рассмотрение соответвует некоторому ограниченному учету корелляций: выделяется только один электрон, а остальные рассматриваются в приближении среднего поля.

2. Адиабатичесное приближение

Мы рассчитали норрекции перекрытия и обмена для Z=18,36 и 54, используя волновые функции Дирака-Фока-Слейтера [10,11]. При расчете конечного состояния атомной оболочки отсутствие вылетающего электрона было учтено, т.е. при неизменном заряде ядра Z число электронов на оболочке, с которой вылетал конверсионный электрон, было уменьшено на единицу. Это соотвествует полной адиабатической перестройке атомной оболочки. Амплитуды конверсии рассчитывались по программе Паули и Рафф [14]. При расчетах учитывались только однократные перестройки. Хорошее совпадение полной коррекции и коррекции перекрытия (таблица 1) показывает, что вклад однократных перестроек также пренебрежимо мал в этом приближении.

Атом	оболочка	Корренция	Bi
Optimized interview of the	(1)	перекрытия	полная
Ar	K	0.7788	0.7829
	L1	0.8586	0.8441
	M1	0.9559	0.9518
Kr	K	0.7944	0.7979
	Lı	0.8330	0.8357
	Mı	0.8801	0.8840
Хе	K	0.7917	0.7883
	L ₁	0.8119	0.8150
	M1	0.8513	0.8549

Габлица	1.	Норренции	(B_i)	при	полной	релансации	для
		отде	ЛЬНЫХ	< OG0	олочек		

Изучение отдельных интегралов перекрытия показывает, что самые внешние 2-3 подоболочки играют определяющую роль в коррекции перекрытия, потому что относительное изменение потенциала для них велико.

Результаты расчетов, приведенные в таблице 1, не подтверждаются экспериментальными КВК, т.к. КВК α_K для чистых E2 переходов хорошо согласуются с обычной теорией [5], в то время как результаты адиабатических расчетов коррекции приводили бы к ~ 20 %-ному понижению $\alpha_K = \alpha_K^{\circ} B_K$. Это показывает, что релаксация конечного состояния не имеет заметного влияния на КВК, или такая релаксация вообще не происходит при высоких энергиях. Учет частичной релаксации не меняет положения дел, так как влияние внутренних оболочек, которые могли бы частично перестроится, пренебрежимо мало даже при полной перестройке.

3. Аналогия с электронным захватом

Как показано выше, учет адиабатической релаксации не подтвержден экспериментальными КВК α_k . В неадиабатическом приближении взаимодействие вылетающего электрона с атомной оболочкой пренебрежимо мало, что напоминает ЭЗ, где нейтрино также не взаимодействует с электронной оболочкой. Кроме этого, можно привести следующие сходные черты этих процессов:

 а) Взаимодействие в случае ВК происходит главным образом во внутренней части атома [12], подобно ЭЗ, когда захват электрона происходит внутри ядра.

б) Отношения НВН подобны отношениям ЭЗ с различных оболочек при низких значениях Z и больших скоростях конверсионного электрона. Для примера приведем K/L₁(E2;200 н'эВ)=10,67 и L₁/M₁(E2;150 кэВ)=6,76; в то же время отношения плотностей электронов у ядра дают K/L₁=10,06 и L₁/M₁=6,96 для Z=30.

Из-за сходства этих двух процессов можно ожидать появления коррекции перекрытия и при ВК. Ниже мы покажем, что экспериментальные результаты подтверждают такое предположение.

Известно, что влияние обменной коррекции на вероятность Н захвата пренебрежимо мало [4]. Аналогия подтверждается экспериментальными эначениями НВК ак [5], согласующимися с обычной теорией. Вероятность L-захвата в зависимости от Z увеличивается на 5-20 % из-за коррекции на Фбмен, что подтверждено экспериментальными данными по ЭЗ [1,7]. Аналогия подсказывает подобное отклонение и для отношений НВН К/L, К/М, и т.д. в распадах ядер с низким значением Z. Сравнение экспериментальных данных с теорией в этой области проводили с использованием K/L и K/(L+M) отношений, опубликованных в Nuclear Data Sheets для области А < 100. Результаты были использованы только для тех переходов, для которых знание значений ак, независящих от коррекции обмена, позволяло рассчитать смешивание мультипольностей. Погрешность определения смешивания мало влияет на результат вследствие слабой зависимости отношения K/L от мультипольности переходов в исследуемой области Z и энергий. Использовались творетические отношения К/L или К/(L+M) Хагера и Зельтцера [8] при Z > 30 и Банд и др. [9] при Z ≤ 30. Во второй области, всли это требовалось, была введена коррекция на М конверсию по плотности электронов у ядра.

Рис. 1. Отношения (K/L)_{эксп.}/(K/L)_{теор.} в зависимости от атомного номера.

Отношение экспериментальных и теоретических эначений не показывает заметной зависимости от энергии, если энергия переходов заметно выше порога. Это позволяло использовать среднеевзвешенные значения отдельных данных для каждого Z.

Z	эксп./теор.	x ^{K/L1}
23	0.94±0.08	0.907
24	0.87±0.04	0.910
25	0.88±0.06	0.912
26	1.00±0.04	0.914
27	0.87±0.01	0.916
28	0.80±0.15	0.917
29	0.97±0.18	0.920
30	0.91±0.03	0.924
31	0.80±0.10	0.926
32	1,02±0.07	0.929
33	0.85±0.07	0.930
34	0.93±0.03	0.933
35	0.86±0.07	0.935
36	0.99±0.07	0.936
37	0.99±0.02	0.938
38	-	0.940
39	0.91±0.04	0.943
40	-	0.944
41	-	0.946
42	0.93±0.03	0.948
43	0.98±0.03	0.949

Таблица	2.	Сравнение	приведенных	экспериментальных	отношений
		HBI	К с обменной	корренцией	

Сравнения экспериментальных и теоретических отношений КВК с коррекциями на обмен даны в таблице 2 и на рисунке 1. Видно, что отношения согласуются с коррекцией $\chi^{K/L_1=1/\chi L_1/K}$, рассчитанной для ЭЗ. Согласие подтверждается и χ^2 пробой [13], которая дает $\chi^2/\chi^2_{0.05}$ =1.56 и 8.13 для согласия с χ^{K/L_1} и единицей соответственно.

Это подтверждает наше предположение, согласно которому динамические электронные корреляции оказывают на ВК и ЭЗ подобное влияние. Тот факт, что при более высоких Z не наблюдается отклонений от обычной теории [15] не противоречит нашему предположению, т.н. ХК/L1_1, если Z возрастает.

В заключение нам хотелось бы обратить внимание на важность повышения точности экспериментальных результатов. Это способствовало бы установлению различий между ЭЗ и ВК, обусловленных различиями областей взаимодействий. Теоретические исследования этих явлений продолжаются.

Авторы благодарны академику Д. Берени, директору института за его внимание к настоящей работе.

Литература

1] Э. Ватаи, Изв. АН СССР, сер. физ. 42 (1978) 826

2] J. H. Scofield, Phys. Rev. A9 (1974) 1041

3] P.-O. Löwdin, Phys. Rev. 97 (1955) 1474

4] E. Vatai, Nucl. Phys. A156, (1970) 541

5] М. Младженович, М. Жупанчич и Р. Вуканович, Изв. АН СССР сер. физ. 42 (1978) 773

6] E. Vatai, to be published

7] W. Bambynek, H. Behrens and M. H. Chen et al., Revs. Mod. Phys. 49 (1977) 77

[8] R. S. Hager, E. C. Seltzer, in Internal Conversion Coefficients for Multipolarities E1,...,E4; M1,...M4. Ed.

K. Way, Acad. Press. New York London, 1973

[9] I. M. Band, M. B. Trzhaskovskaya and M. A. Listengarten, Atomic and Nucl. Data Tables 18 (1976) 433

[10] D. A. Liberman, R. T. Cromer and I. T. Waber, Computer Phys. Commun. 2 (1971) 107

[11] B. Fricke, private communication (1977)

[12] I. M. Band, L. A. Sliv and M. B. Trzhaskovskaya, Nucl. Phys. A156 (1970) 170

[13] Б. С. Джелепов, Методы разработки сложных схем распада. Изв. "Наука" Ленинград, 1974

[14] H. C. Pauli, U. Raff, Comp. Phys. Comm. 9 (1975) 392

Рецензент: Г. Хок

ATOMKI Közlemények 23 (1981) 189-203

RADIOKARBON KORMEGHATÁROZÁSRA ALKALMAS ALACSONY HÁTTERŰ MÉRŐRENDSZER

CSONGOR EVA, HERTELENDI EDE

ATOMKI H-4001 Debrecen, Pf. 51. Hungary

A szerzők az ATOMKI-ben kifejlesztett radiokarbon mérőberendezésről számolnak be. A mérőrendszerben alkalmazott proporcionális számláló érzékeny térfogata 0,83 dm³, melyet metán gázzal 1026 mbar nyomásra töltenek. A mérőszámlálót proporcionális számlálókból álló antikoincidencia védőszámlálóval vették körül, amelynek alkalmazásával a nagy energiáju töltött részek által okozott háttér jelentékenyen csökkent. A fotonoktól származó háttér csökkentése érdekében a proporcionális számlálócső-rendszert ólomházban helyezték el. Az ólom és a védőszámláló közé bórparaffin réteget helyeztek, amely a kozmikus sugárzás által az ólomból kiváltott neutronokat abszorbeálja. Az alacsony hátterü mérőberendezés minden egysége; a proporcionális számlálók, az ólom árnyékolás és az elektronikus jelfeldolgozó rendszer az ATOMKI-ben került kifejlesztésre. A közlemény tartalmazza a számláló és az elektronikus mérőrendszer paramétereit. A mérőberendezés pontosságának és megbizhatóságának ellenőrzése archeológiailag ismert koru, ill. ismert radiokarbon koncentrációju minták mérésével, valamint más radiokarbon laboratórium által is mért minta kormeghatározásával történt (interkalibráció).

LOW BACKGROUND MEASURING SYSTEM FOR RADIOCARBON DATING. A radiocarbon dating system was developed in ATOMKI (Debrecen). The system contains a 0.83 dm³ volume gas proportional counter filled with methan at a pressure of 1026 mbar. The counter is surrounded by a ring anticoincidence guard counter to reduce the background caused by charged particles of high energy. This counter system is located in a lead shield to reduce the photon background. A boron loaded paraffin layer was used between the counters and the lead shield to absorb the neutrons produced by cosmic rays in the lead. Both the detector assembly, the shield and the electronic system were developed in the Institute. The parameters of the counters and the electronics are presented. The accuracy of the measuring system was checked by archaeologically dated samples and by the comparative measurement of the same sample in different radiocarbon laboratories. НИЗНОФОННАЯ СИСТЕМА ДЛЯ ОПРЕДЕЛЕНИЯ ВОЗРАЗСТА РАДИОУГЛЕРОД-НЫМ МЕТОДОМ. Была разработана система для определения возраста радиоуглеродным методом в АТОМКІ (Дебрецен). Система содержит газовой пропорциональный счетчик объемом 0,83 дм³, наполненный метаном до давления 1026 мбар. С целью уменшении фона счетчик окружен защитным кольцом, состоящим из пропорциональных счетчиков, уменьшающих прежде всего фон от заряженных частиц. Фон от фотонов уменьшается применением свинцового абсорбента. Между свинцом и защитными счетчиками расположен борпарафиновый слой для абсорбции нейтронов, образовавщихся в свинце из-за космических лучей.

Детектор, экранирование и электронная система были разработаны в Институте. Даны параметры счетчиков и электронной системы. Точность измерительной системы была проверена пробами, возраст которых известен по археологическим источникам, или по определениям других радиоуглеродных лабораторий.

Bevezetés

A kozmikus sugárzás a Föld légkörének felső rétegében jelentős mennyiségben hoz létre szabad neutronokat. Ezen neutronok többsége a levegő atomjaival való ütközések során termikus energiatartományba jut és 1,81x10⁻²⁴ cm²-es hatáskeresztmetszettel a

$$14_{N(n,p)} 14_{C} \xrightarrow{\beta^{-}} 14_{N} = 160 \text{ keV}$$

magreakció szerint radioaktiv szénizotópot (radiokarbont) termel, mely β^- bomlással T1=5730±40 év felezési idővel ¹⁴N-é bomlik [1-3]. Az eddigi számitások szerint 2-2,5 ¹⁴C atom keletkezik szekundumonként a Föld felületének egy négyzetcentiméterére vonatkoztatva [4-7].

A radiokarbon a légkörben gyorsan oxidálódik széndioxiddá. Ezt a széndioxidot a légköri széndioxid nagy mértékben higitja. A higitás eredményeként a légköri széndioxid szenének fajlagos aktivitása – értve ezen az időegység alatti bomlások számát egységnyi tömegű szénben – 14,1 dpm/gC [3,8]. A szárazföldi élőlények (növények, állatok, ember) "biológiai szenének" fajlagos radiokarbon aktivitása ennél valamivel kisebb 13,6 bomlás/min/gC [3,8].

Fontos megjegyezni, hogy az anyagcsere folyamatok során a radiokarbon folyamatosan beépül és távozik az élőlényekből. Ennek következtében a szárazföldi élőlények biológiai szenének fajlagos radioaktivitása folyamatosan követi az atmoszférikus szén fajlagos radiokarbon aktivitását.

Ismerve az anyagcsere folyamat alatt az élő anyag széntartalmának fajlagos radiokarbon aktivitását (kezdeti aktivitás), majd az anyagcsere megszünte után bizonyos idővel megmérve az akkori fajlagos aktivitást (jelenlegi fajlagos aktivitás), a felezési idő ismeretében a radioaktiv bomlástörvény alapján kiszámitható az anyagcsere megszűnésének időpontja, azaz a minta kora. Ez a radiokarbon kormeghatározás elve. A radiokarbon kormeghatározásnak Libby uttőrő munkássága következtében nagy jelentősége van a geológiában, az archeológiában és a hidrológiában [1].

A radiokarbon kormeghatározás egyik legnehezebb problémája a jelenlegi radiokarbon aktivitás meghatározása. A legelterjedtebb módszer az aktivitásnak gázfázisban proporcionális számláló segitségével történő mérése. A mérés pontosságát a mérendő aktivitás és a számláló hátterének aránya szabja meg. Ezen arány kielégitő mértékü növelése nélkülözhetetlenné teszi a számláló hátterének csökkentését. A háttércsökkentés bonyolult, nagy szakértelmet kivánó feladat, mely mindenekelőtt a háttér eredetének ismeretét teszi szükségessé.

A mérőszámláló háttere és a hátteret okozó sugárzás eredete

A mérőszámláló háttere alapvetően két részre osztható. A domináns rész a detektorral való kölcsönhatás révén számolt ionizáló sugárzás. Ez a komponens radikálisan csökkenthető, de meg nem szüntethető. A háttér másik részét az elektromos és földelési zavarok, az elektromágneses zavarok, a nagyfeszültségü szigetelőkön fellépő kisülések stb. adhatják. A háttér ezen része megszüntethető, sőt megszüntetése szükséges is, minden alacsony radioaktivitást mérő rendszernél.

Az ionizáló sugárzás okozta háttér négy részre osztható [9]:

- a.) A kozmikus sugárzás hatására keletkező μ mezonok a tengerszinten kb. l cpm cm⁻² járulékot adnak a számláló keresztmetszetének l cm² felületére vonatkoztatva.
- b.) A háttér egy jelentős része olyan γ sugárzástól származik, mely kölcsönhat a számláló falával, ill. a számlálógázzal. Ilyen γ sugárzás származhat a kozmikus sugárzás lágy komponensétől (elektron-γ kaszkádok), vagy a számláló, az ólomház, a laboratórium falaiban található radioaktiv szennyezőktől; müonok és elektronok fékezési sugárzásától, ütközés után gerjesztett állapotba került atomok legerjesztődéséből, neutron befogásból, stb.
- c.) A kozmikus sugárzás nukleon komponense szintén járulékot ad a mérőszámláló hátteréhez. Ezen komponens háttérjárulákát a számlálón áthaladó protonok, valamint a neutronok által meglökött atommagok által kiváltott impulzusok adják.
- d.) Végül számitásba kell vennünk a számlálócső falában, ill. a számlálógázban lévő α ill. β sugárzó elemek okozta hátteret.

2. A háttér csökkentésének módszerei

a) Müonok és nagy energiás töltött részek okozta háttér csökkentése. A kozmikus sugárzás hatására keletkező µ mezonok intenzitása abszorbens anyagok alkalmazásával csak nehezen csökkenthető. (5 m beton (1000 g cm⁻²) a müon intenzitást csak 1,4-es faktorral csökkenti). Lényeges csökkentés csak akkor érhető el, ha a laboratóriumot mélyen a föld alá telepitjük [10, 55. old., 9]. A müonok okozta háttér csökkentése antikoincidencia számláló alkalmazásával lehetséges. Az antikoincidencia védelem lényege a következő: A mérőszámlálót körülvesszük egy számlálórendszerrel (antikoincidencia számláló vagy védőszámláló). A müonok áthaladnak mindkét számlálón és bennük koincidenciában lévő impulzusokat hoznak létre. A mérőszámlálónak azon impulzusait, melyek a védőszámláló impulzusaival koincidenciában vannak, az elektronikus jelfeldolgozó rendszer elkülöniti a többi impulzustól. (Ez utóbbiakat antikoincidencia impulzusoknak nevezzük.) Az antikoincidencia technika csak akkor hatásos, ha olyan számlálót alkalmazunk védőszámlálóként, melynek számlálási hatásfoka a hátteret okozó részekre igen jó. Magas számlálási hatásfok műonok (dE/dx=2 keV mg $^{-1}$ cm 2) és más nagy energiáju töltött részek esetében ez proporcionális számláló segitségével érhető el a legegyszerübben.

b) A γ sugárzás okozta háttér csökkentése. A töltött részek ellen hatásos antikoincidencia védelem a védőszámlálók alacsony γ számlálási hatásfoka miatt nem alkalmazható olyan esetben, amikor a γ sugárzást nem kiséri töltött részecske sugárzás. A γ fotonok ellen a számlálókat magas rendszámu anyagokból (ólom, vas, higany) álló abszorbens anyaggal szükséges körülvenni. Altalában 10-20 cm falvastagságu ólomházat vagy 20-30 cm vastagságu vasköpenyt alkalmaznak. Ez a γ sugárzás intenzitását legalább 10³-os faktorral csökkenti [9].

c) A kozmikus sugárzás által létrehozott mezonok és nukleonok kölcsönhatásai az abszorbens anyagokban. A γ sugárzás csökkentésére bevezetett abszorbens anyagokban a nagy energiás protonok és műonok a kölcsönhatások sorozatát hozzák létre. A nagy energiás protonok kölcsönhatásuk során töltött és töltetlen részecskék záporát hozzák létre, melyben többek között néhány nagy energiás un. kaszkád neutron (E>100 MeV) és számos 10-20 MeV energiáju un. párolgási neutron található. Ezen neutronok lassitása magas hidrogéntartalmu anyagok (pl. paraffin) segitségével történik. Ezekben az anyagokban a neutronok az ütközések során elveszitik energiájukat és termikus energiatartományba kerülnek. Ha a paraffinba nagy neutron befogási hatáskeresztmetszettel rendelkező bórt keverünk akkor az ilyen "bórparaffinon" keresztül a neutron transzmisszió nagyon kicsi lesz. Előnyös továbbá, hogy a ¹⁰B(n, α)⁷Li magreakcióban a neutron befogás után kicsi a γ sugárzás valószinüsége.

A müonok közül a negativ töltésüek lassulás után beépülhetnek az abszorbens anyag héjaira, majd ezt követően a mag befogja őket. A müonbefogást röntgen fotonok, protonok, neutronok és γ fotonok kisérik, melyek további magreakciókat hozhatnak létre.

A pozitiv töltésű műonok T₁=2,2 µs felezési idővel elbomlanak és a keletkezett nagy energiáju pozitron a fékezési sugárzás révén elektron-foton kaszkád kialakulását hozhatja létre, melyből a keletkezés helyétől nagyobb távolságra már csak a foton komponenst észleljük.

d) A radioaktiv szennyezők hatásának csökkentése. Számos anyag tartalmaz természetes radioaktiv elemeket. Ezek közül az ⁴⁰K, és az U, Th, Ac bomlási sorok radioaktiv elemeinek γ sugárzása a legjelentősebb. Az α és β sugárzó elemek gyakorlatilag csak akkor adnak járulékot a háttérhez, ha a számlálócső falát vagy a töltőgázt szennyezik. Az alacsony radioaktivitást mérő rendszer felépitésénél nagyon lényeges szempont, hogy minden felhasznált anyag saját-radioaktivitása kicsi legyen. A passziv védelemként alkalmazott ólom tartalmazhat 210Pb-et, melynek felezési ideje T_k= 22 év. Ezért az ólom sajátradioaktivitását felhasználás előtt ellenőrizni kell. Altalában jó eredmények érhetők el, ha passziv védelemként lágyvasat alkalmazunk, különösen akkor, ha az öntés ideje 1945 előttre tehető. Ezen két anyagon kivül néhány laboratórium többszörösen desztillált higanyréteget is használ az alacsony radioaktivitást mérő rendszer kialakitásakor.

Különös gondot kell forditani a számlálót felépitő anyagok kiválasztására. A számlálók többsége OFHC vagy elektrolitikusan tiszta rézből készült. Egészen alacsony háttér érhető el kvarcüvegből készült számlálócsövek segitségével, de a lágyvas és bizonyos tipusu rozsdamentes acélok is alkalmasak számlálók készitésére. Nagyfeszültségű szigetelőként kvarcüveg, ill. teflon alkalmazása a leggyakoribb.

3. Az alacsony hátterű mérőhely leirása

A méréseinknél használt alacsony hátterü mérőhelyet az l. ábra mutatja. Passziv védelemként ólom árnyékolást alkalmaztunk.

01om

Bórparafin

 ábra Az alacsony hátterű mérőhely vázlata. Az ábrán két metszetben látható a mérőszámláló, az azt körülvevő védőszámláló, a bórparaffin réteg és az ólomház. A kereskedelemben kapható ólmok közül a legalacsonyabb sajátradioaktivitásu ólom kiválasztása mérés alapján történt. Az ólomház falvastagsága 10 cm, a fedőlap vastagsága 20 cm. Az ólomház tömege 5,1x10³ kg. Az ólomból kiváltott neutronokkal szemben bórparaffin téglákkal védekezünk. Az ólomház belsejében kb. 20 cm vastagságu réteget alakitottunk ki ezekből a téglákból. A téglák összetétele 55 % paraffin, 35 % polietilén, 10 % bórsav.

A védőszámláló és a mérőszámláló rajzát a 2. ábra mutatja.

2. ábra A mérőszámláló és a védőszámláló tengelyirányu metszete.

A mérőszámláló 60 mm belső átmérőjü 360 mm hosszuságu 0,83 cm³ érzékeny térfogatu elektrolitikusan tiszta rézből készült proporcionális számláló. Az anódszál polirozott 0,1 mm átmérőjü wolframszál. Szigetelőként nagyfeszültségü kerámia bevezetőket alkalmaztunk. A védőszámláló rézből készült, érzékeny térfogatának hossza 520 mm. Közös gáztérben 18 proporcionális számlálót tartalmaz. Az anódszálak 0,1 mm átmérőjü polirozott wolframszálak. A nagyfeszültségű szigetelők teflonból készültek. Az anódszálak egymással össze vannak kötve és közös feszültségről üzemeltethetők. Mind a védőszámláló, mind a mérőszámláló véglapjainak rögzitése ragasztással történt. (A használt ragasztó kétkomponensü araldit, gyártó cég: CIBA GEIGY.) A leszivócsonkok forrasztással csatlakoznak a számlálókhoz. A számláló csöveket metán gázzal 1026 mbar nyomásra töltjük. Mindkét számláló belsejében csak a vákuumtechnikában is használatos tiszta anyagok találhatók, melyek gázleadása a bennük lévő gázmennyiséghez viszonyitva elhanyagolható. Ez lehetővé teszi a számlálók stabil, hosszu ideig tartó működtetését ugyanazzal a gáztöltettel. A számláló hátterének alakulását az l. táblázat mutatja.

1.	táblázat.	A mérőszámláló	hátterének	csökkenése	különböző	tipusu
		árny	yékolás hatá	isára		

Háttér	árnyékolás nélkül cpm	ólomházban cpm	ólomházban anti- koincidencia vé- delemmel cpm
mérőszámláló	360	160	4,6 a)
védőszámláló	1800	600	

 a) A háttér energiaspektruma (5.b. ábra) alapján - melyben jellegzetes mezonoktól származó csucs jelentkezik - azt mondhatjuk, hogy a háttér domináns része mezonoktól származik. Látható, hogy az árnyékolás kb. felére csökkentette a mérőszámláló hátterét, mig az antikoincidencia védelem több mint harmincszoros csökkentést jelent.

A számláló háttere önmagában még nem nyujt elég információt a mérőberendezés érzékenységére vonatkozóan. A számlálók érzékenységének összehasonlitására az S/ \sqrt{B} hányadost használják (figure of merit, röviditve FOM), ahol S a radiokarbon laboratóriumok által standardként használt NBS oxálsavból készitett gáz mérésekor időegység alatt kapott impulzusszám 95 %-a, B az időegység alatt mért háttérimpulzusszám. A FOM mérőrendszerünkre vonatkozóan S/ \sqrt{B} =2,6, S=5,6 cpm és B=4,6 cmp értékekkel számolva. A radiokarbon mérőrendszerek másik fontos paramétere a maximálisan mérhető kor. Ez definició szerint azt a kort jelenti, melyhez tartozó radiokarbon aktivitás statisztikus hibája negyedrésze az aktivitás értékének. A FOM ismeretében ez a kritérium a következő képlettel adható meg:

$$T_{max} = \tau \ln \frac{1}{4} \sqrt{\frac{t}{2}} \times \frac{s}{\sqrt{B}}$$

ahol † a mérésidő, τ a radiokarbon átlagos élettartama. 48 órás (2880 min) mérésidőt figyelembe véve mérőrendszerünknél T_{max}= =26000 év.

A kormeghatározások hibája a minimálisan mérhető kortól 15000 évig 150-500 év között van. 15000 év felett a kor hibája nagyobb, mint 500 év és magasabb korok felé haladva gyorsan nő. Ez a magas hiba a radiokarbon korok interpretációját már kétségessé teszi, ezért berendezésünkön 15000 évesnél idősebb minták korára csak alsó korlátot adunk.

4. Az elektronikus jelfeldolgozó rendszer és annak optimális beállitása

Az elektronikus rendszer blokkvázlata a 3. ábrán látható. A 3. ábrán bemutatott rendszer összes egysége az ATOMKI-ben készült. Felépitésénél a nukleáris technikában széles körben alkalmazott egységeket használtuk fel. Az elektronikus rendszer feladata az, hogy a proporcionális számlálók számára a szükséges magasfeszültséget biztositsa és a számlálókból érkező jeleket feldolgozza (erősités, megfelelő energiatartomány kiválasztása, a mérőszámláló impulzusai közül a védőszámláló impulzusaival koincidenciában, ill. antikoincidenciában lévő jelek szétválasztása, impulzusok számlálása és periódikus időközönkénti automatikus kinyomtatása).

Az elektronikus rendszerrel szemben támasztott egyik legfontosabb követelmény annak hosszu távu stabilitása. Ezt a hosszu mérésidő (minimum három nap, maximum két hét), valamint az a tény indokolja, hogy a minta kiértékelésénél gyakran olyan háttér értékekkel számolunk, melyek a mintamérés előtt vagy után maximálisan három héttel történtek.

3. ábra Az elektronikus jelfeldolgozó rendszer blokkvázlata. HV: nagyfeszültségü tápegység, PA: előerősitő, LA: lineáris erősitő, DD: differenciál diszkriminátor, DU: késleltető, C: koincidencia egység, AC: antikoincidencia egység, SC: impulzusszámláló, TU: időzitő egység, amely a számlálók periódikus automatikus kiolvasását végzi, LP: nyomtató.

Az egész rendszer - beleértve a proporcionális számlálókat is - reprodukálható működésének előfeltétele, hogy a proporcionális számlálóknál a munkapont a karakterisztikák platóján legyen (4. ábra). Ekkor az esetleges instabilitások okozta hiba lényegesen csökken.

4. ábra A mérőszámláló és a védőszámláló karakterisztikái. A nyillal megjelölt pontok a munkapontok.

A jelfeldolgozó rendszer első egysége egy töltésérzékeny előerősitő. Mivel a számlálónk anódszála van nagyfeszültségen, az előerősitő számára a jelet le kell választani. Az előerősitő bemenetére a jel egy nagyfeszültségü kondenzátoron keresztül jut (C=1 nF). Nagyon lényeges, hogy ezen a kondenzátoron a kisülésnek semmilyen formája ne jöjjön létre. A kondenzátor felületére vizpára, por és egyéb szennyeződés rakódhat, mely a felületi vezetőképességet növeli. Ennek elkerülése céljából a leválasztó kondenzátort és a nagyfeszültségü szürőkört tartalmazó egységet szilikon bázisu kétkomponensü mügyantával (Tip.: WAKER-SILGEL 2000) öntöttük ki. Ez az anyag jó szigetelő tulajdonságán tul megakadályozza a mechanikus szennyeződést. Számos laboratóriumban ugy kerülik el a leválasztó kondenzátor problémáját, hogy negativ magasfeszültségen működtetik a számlálójuk katódját és az anód van földpotenciálon.

Az előerősitő töltésérzékeny fokozatában a visszacsatoló kondenzátor kapacitása C_{PA} =5 pF. Igy a töltés feszültség konverziós együttható értéke $1/C_{PA}$ =2×10¹¹ V/C. Az előerősitő tartalmaz még egy feszültségerősitő fokozatot is, ahol az erősités kétszeres. Mind a leválasztó blokk, mind az előerősitő a proporcionális számlálók mellett az ólomházban található. A töltésérzékeny előerősitő nagy előnye, hogy kimenő jelének amplitudója nem érzékeny a bemeneti kapacitásra, ezért ha a csatlakozók kapacitása változik, nem kell ujra kalibrálni a rendszert.

Az előerősitő jelei a lineáris erősitőbe kerülnek. A mérőszámláló analóg jelfeldolgozó rendszerében a lineáris erősitő névleges erősitése 8-szoros, mig a védőszámláló esetében 32szeres erősitést használunk. A tényleges mért feszültségerősités kb. harmada a névleges feszültségerősitésnek, mivel a lineáris erősitő olyan szürőt tartalmaz, melynél az egység ugrásra adott válasz maximum értéke 0,38 [11]. A lineáris erősitőn a differenciáló, ill. integráló időállandó azonos (ekkor kapjuk a legjobb jel/zaj viszonyt), értéke 1,6 µs.

A háttér csökkentése érdekében célszerű a proporcionális számláló által szolgáltatott energiaspektrum kis energiás E<2 keV, ill. nagyenergiás E>160 keV részének levágása. Az energiaspektrum a számlálócső geometriája miatt erősen torzult béta spektrum, melyre sokkal helyesebb az energiaveszteség spektrum kifejezést használni (5. ábra).

A mérőszámláló esetén a kis, ill. nagyenergiás rész levágására differenciál diszkriminátort használunk. A mérőszámlálónál az alsó vágási küszöb 50 mV a felső 4000 mV. Ez az alsó vágási küszöb kb. 2 keV energiának felel meg. (A radiokarbon béta spektrumból becsült érték.) Ezen adatból visszaszámolható a proporcionális számláló gázerősitése, feltételezve, hogy 20 eV szükséges egy ionpár keltéséhez. Az üzemi feszültségen (4050 V) gázerősitésre ~3000 adódik.

Az elektronikus rendszer digitális része a differenciál diszkriminátorok uniformizált kimenőjelei közül a koincidenciában lévő jeleket kizárja a további feldolgozásból. A koincidencia feloldási időt 500 µs-nak választottuk. Ez a magfizikai méréseknél szokatlanul hosszu idő a következőkkel magyarázható. A számlálókat körülvevő ólomban a nagy energiáju nukleonok, ill. müonok kölcsönhatásaik során töltött részecskéket és neutronokat termelnek. Az az idő amely alatt a neutronok termikus energiatartományba jutnak kb. 250 µs. Ha erre az időre nem tiltjuk le a mérőszámlálót, ezek a neutronok járulékot adhatnak a számláló hátteréhez. A hosszu tiltási idő (1 ms-ot használunk) a radiokarbon mérés esetében a kis beütésszám miatt holtidő problémát nem okoz.

5. ábra A mérőszámláló energiaspektrumai. Az (a) ábrán a radiokarbon spektrum és a háttér összege, a (b) ábrán a háttér, a (c) ábrán az (a) és (b) ábrák különbségeként nyert radiokarbon energiaspektrum látható.

A proporcionális számlálók impulzusait négycsatornás számláló számolja. (Tip: NC-803). A scaler az első csatornában a védőszámláló impulzusait, a másodikban a mérőszámláló impulzusait, a harmadikban a mérőszámláló antikoincidencia jeleit, a negyedikben a számlálási ciklusok sorszámát gyűjti. Hosszabb idejű mérés esetén célszerű a megfelelő impulzusszámokat óránként kinyomtatni, mivel ez lehetővé teszi az esetleges elektromos zavaroktól származó impulzusokat is tartalmazó ciklusok kizárását, feleslegessé téve az egész mérés megismétlését. Az óránként kinyomtatott értékekből következtetni lehet a számláló hátterének a barometrikus nyomástól való függésére, az értékek szórásából pedig a mérés megbizhatóságára, stb.

5. A mérőszámláló hátterének változása a légnyomás függvényében

A proporcionális számláló hátterének egy részét a kozmikus sugárzás által keltett részecskék, ill. fotonok adják. A kozmikus sugárzás által létrehozott részecskéknek a Föld felszinén mért intenzitásváltozását egyrészt az atmoszféra különböző paramétereinek (a földfelszinen mért légnyomásnak, az atmoszféra hőmérsékletének, stb.) a változása, másrészt magának a kozmikus sugárzásnak a gyors ingadozásai (pl. naptevékenység) okozzák. Pontos radiokarbon mérések esetén a statisztikus hiba kisebb, mint ezen sugárzás ingadozásából származó hiba. Sajnos az előbb felsorolt paraméterek közül csak a légnyomás mérhető egyszerüen. A légnyomás és a háttér között antikorreláció van. A háttér értékének a légnyomástól való függését barometrikus effektusnak nevezzük.

A barometrikus effektus nagyságának meghatározása céljából hosszabb idejü méréseket végeztünk a háttérgázzal töltött számlálóval olyan időszakokban, amikor jelentős légnyomásváltozás volt. A méréseket részekre osztottuk (esetünkben 12 órás részekre) és minden részméréshez meghatároztuk az átlaglégnyomást. Az átlaglégnyomás és a hozzá tartozó impulzusszámokból álló értékpárokat kétdimenziós diagramon ábrázoltuk (6. ábra).

6. ábra A proporcionális számláló hátterének (B) változása a légnyomás (p) függvényében (alsó ábrák). A mérés folyamán 12 óránként kiértékelt háttéradatok és a légnyomás közti antikorreláció szemléltetése (felső ábrák). Az (a) ábra a 02.11.-08.11. 1979, a (b) ábra a 21.12.-08.01. 1980 időszakban szemlélteti a légnyomás és a háttér közötti antikorrelációt. A mérési pontokra a legkisebb négyzetek módszerével egyenest illesztettünk. Az egyenes iránytangense segitségével a légnyomásváltozásra korrigált háttér (Bkorr) a következőképp fejezhető ki:

$$B_{korr} = B_0 + k(p - p_0)$$

ahol Bo a po nyomáson (po=1000 mbar) kapott háttér, k a regressziós egyenes iránytangense. Összesen 7 hosszabb idejű háttérmérést használtunk a barometrikus effektus nagyságának meg-határozása céljából. (Ezen mérések alatt a maximális légnyomás-változás nagyobb volt mint 15 mbar). Minden egyes mérést a korábban emlitett módon dolgoztunk fel. A mérések eredményeit a 2. táblázat tartalmazza.

2.	táblázat	A	háttér	légnyomásfüggésének	meghatározásához
			fe	elhasznált mérések	

mérés ideje	max. légnyomás változás a mé- rés alatt mbar	illesztett egyenes iránytan- gense (k) cpm/mbar	iránytangens hibája (σ _k) cpm/mbar
05.04-20.04. 1979	20	- 0,0057	0,003
04.10-08.10. 1979	17	- 0,0054	0,005
02.11-08.11. 1979	32	- 0,0058	0,002
21.12-08.01. 1980	38	- 0,0061	0,002
26.02-03.03. 1980	21	- 0,0101	0,004
10.07-21.07. 1980	17	- 0,0114	0,004
03.01-08.01. 1979	28	- 0,0063	0,002

Az átlagos k érték meghatározása ugy történt, hogy az egyes mérésekből kapott k értékek sulyozott átlagát képeztük az alábbi összefüggés szerint:

$$\bar{k} = \frac{1}{\sum(1/\sigma_{k_1}^2)} \frac{\sum \frac{k_1}{\sigma_{k_1}^2}}{i \sigma_{k_1}^2}$$

Az igy kapott iránytangens hibája:

$$\sigma_{\overline{k}}^{2} = \frac{1}{\Sigma(1/\sigma_{k_{1}}^{2})}$$

7 mérés kiértékeléséből k= -0,0068±0,0012 cpm/bmar értéknek adódott. Ez átlagos háttér esetén 0,14 %/mbar változásnak felel meg, ami valamivel kevesebb mint amit más szerzők hasonló számlálókra megadnak [12-15].

TUDOMANYOS AKADEMU

KONYVIARA

6. Az alacsony hátterü mérőberendezés hitelesitése és interkalibrációja

A mérőberendezés rutinszerű üzemeltetésével kapcsolatban négy éves tapasztalatunk van. Ezen időszak alatt mind a proporcionális számlálók, mind az elektronikus jelfeldolgozó rendszer stabilan, reprodukálhatóan müködött. A mérések relativ hibája 1-2 % a mérésidőtől függően. A hiba domináns részét a statisztikus hiba adja és jelentéktelen a szisztematikus hiba.

A mérőberendezés megbizható müködéséről először régészetileg meghatározott koru minta korának meghatározásával és ismert koru faévgyürük radiokarbon többletének mérésével győződtünk meg (3., 4. táblázatok).

3.	táblázat	A mérőberendezés hitelesítése régészetileg
		meghatározott koru csontmintával

minta száma	minta neve	ismert kor	mért kor	dendrokronológiailag korrigált kor
Deb-224	Bh 292 csont	i.e. 4 sz.	2400±140 B.P.	470±140 B.C.

4. táblázat A mérőberendezés hitelesítése ismert radiokarbon koncentrációju faévgyűrük segítségével

minta száma	mérés helye	vizsgált fafaj	évgyürü formáló- dás éve	radiokarbon többlet Δ ¹ ⁴ C(%o)
GrN-8060	Groningen	Quercus rubra L	1963	820,6±1,5
Deb-150	Debrecen	Quercus rubra L	1963	816,2±16
GrN-8062	Groningen	Quercus rubra L	1962	389,2±1,5
Deb-151	Debrecen	Quercus rubra L	1962	397,5±15

A későbbiekben interkalibrációs méréssel is ellenőriztük mérőberendezésünk pontosságát. A prágai Károly Egyetem Hidrogeológiai tanszékének Radiokarbon Laboratóriuma bocsátott rendelkezésünkre egy elszenesedett famintát, ami Pisek (Dél-Csehország) melletti folyami homokból került feltárásra és amelynek korát berendezésükkel (CO₂ töltésü proporcionális számlálóval) meghatározták (5. táblázat) [16].

5. táblázat A mérőberendezés interkalibrációja

minta száma	minta neve	konvencionális radiokarbon kor
CU-179	Pisek (Cseh) faszén	5394±128 B.P.
Deb-159	Pisek (Cseh) faszén	5340±160 B.P.

A 3., 4. és 5. táblázat eredményei igazolják mérőberendezésünk megbizhatóságát.

Köszönetnyilvánitás

A szerzők megköszönik Dr. Bibok György, Dr. Gál János és Gáspár András tudományos munkatársaknak az elektronikus jelfeldolgozó rendszer tervezése, bemérése és üzemeltetése során nyujtott segitségüket. Az egyik szerző (Cs. É.) köszöni Mogyorósi Magdolna technikusnak és Angeli Istvánné laboránsnak a proporcionális számlálók készitésénél, az alacsony hátterü mérőhely épitésénél, valamint a mérőrendszer bemérésénél nyujtott segitségüket.

Hivatkozások

- [1] W. F. Libby, Radiocarbon Dating (The University of Chicago Press, 1952)
- [2] W. F. Libby, Radioactive Dating and Methods of Low-level Counting (International Atomic Energy Agency, Vienna, 1967) 3. 0.
- [3] P. E. Damon, J. C. Lerman and A. Long, Ann. Rev. Earth Plan. Sci. 6 (1978) 457
- [4] R. E. Lingenfelter, Rev. Geophys. 1 (1963) 35 [5] R. E. Lingenfelter, R. Ramaty, Radiocarbon Variations and Absolute Chronology, Nobel Symp. 12. szerk.: Ingrid U.
- Olsson (Almquist and Wiksell, Stockholm, 1970) 513. o. [6] S. A. Korff, R. B. Mendel, M. Merker and W. Sandie, Canad.
- J. Phys. 46 (1968) 1023 [7] S. A. Korff, R. B. Mendel, M. Merker, and E. S. Light, 9th Ann. Western National Meeting (Am. Geophys. Union,
- San Francisco, 1969) [8] A. W. Fairhall, J. A. Young, Advances in Chemistry Series, No. 93, Radionuclides in the Environment (1970) 401
- [9] H. Oeschger, M. Wahlen, Ann. Rev. Nucl. Sci. 25 (1975) 423
- [10] D. E. Watt, D. Ramsden, High sensitivity counting techniques (Pergamon Press, London, 1964)
- [11] Gál J., Természettudományi egyetem doktori értekezés (Kossuth Lajos Tudományegyetem 1976) 56. o.

[12] M. Chudy, P. Povinec and M. Seliga, Fys. cas. SAV 22 (1972) 179

[13] J. Planinic, Can. J. Phys. 56 (1978) 45 [14] R. Nydal, Rev. Sci. Instr. 33 (1962) 1312 [15] R. Nydal, S. Gulliksen and K. Lövseth, Proceedings of the International Conference on Low Radioactivity Measurements and Applications, szerk.: P. Povinec és S. Usacev (Bratislava 1977) 77. o.

[16] J. Silar, személyes közlemény

Lektor: Balogh Kadosa

ATOMKI Közlemények 23 (1981) 205-209

MŰHELYÜNKBŐL, LABORATÓRIUMUNKBÓL

EGY A PDP-8/I-N MŰKÖDŐ, RSY-11M TERMINÁLT SZIMULÁLÓ PROGRAM

ZOLNAI LÁSZLÓ

ATOMKI, H-4001 Debrecen, Pf. 51. Hungary

Az alábbiakban egy az RSX-11M operációs rendszer terminálját szimuláló, egy PDP-8/I számitógépen futó, PAL-III nyelven irt kommunikációs programot ismertetünk az RSX-11M operációs rendszer termináljának szimulációjára. A program lehetővé teszi bináris adatok nagysebességű forgalmát is a PDP-8/I és a PDP-11/40 között.

A PDP-8/I PROGRAM FOR THE SIMULATION OF AN RSX-11M TERMINAL A PDP-8/I program simulating a terminal to the PDP-11/40 computer under RSX-11M operating system is described. The highspeed binary data transfer between the two computers is also possible using this program.

ПРОГРАММА НА ЭВМ PDP-8/I ДЛЯ СИМУЛЯЦИИ ТЕРМИНАЛА RSX-11/M. Описанная на языке PAL-III, для симуляции терминала RSX-11/M. Программа пригодна и для высокоскоростного обмена двоичных данных между машинами PDP-8/I и PDP-11/40

1. Bevezetés

Az ATOMKI 5 MeV-es elektrosztatikus gyorsitója ND-50/50 tipusu mérő- és adatfeldolgozó rendszere és az intézet PDP-11/40 számitógépén futó RT-11 operációs rendszer között (a KL8-JA [1] ill. a DL-11-W [2] illesztő egységeken keresztül) évek óta működik egy kommunikációs programkapcsolat, amely spektrumok átvitelét bonyolithatja le a két rendszer között [3-4].

A PDP-11/40-en az RSX-11M operációs rendszerre való áttéréssel a fentebb emlitett programok használata nehézkessé vált. Mivel az RSX-11M többfelhasználós operációs rendszer, a fenti kapcsolatot célszerünek tartottuk egy RSX-11M terminál üzemeltetésére is felhasználni. Ezen kivül célul tüztük ki a PDP-8/I-n futó programok bináris tárolásának megoldását a PDP-11/40 diszkjein, mivel az ND 50/50 rendszer nem rendelkezik gyors tömegtárolóval. A vázolt feladatot az ND-50/50 rendszer PDP-8/I számitógépén futó IT1HAND nevü program, ill. a PDP-11/40-en futó speciális (FORTRAN és MACRO nyelvü) programok megirásával valamint a PDP-8/I-n futó CILDAP'78/1 [5] programnyelv átalakitásával (CILDAP'80/3 [6]) oldottuk meg. Az alábbiakban a TT1HAND nevü programot ismertetjük.

2. A TT1HAND program müködési elvei

A bevezetésben emlitett feladatok egy része (spektrum- ill. bináris programok forgalmazása) a lehető legnagyobb sebességet igényelné, a megvalósitás során viszont a terminálüzemmód a rendelkezésünkre álló kis sebességü terminál (ASR-33) miatt csak 110 baud sebességet enged meg. Ezen követelménybeli ellentmondás feloldása jelentette az alapvető problémát a TT1HAND megirásánál mivel az illesztő egységek sebessége nem programozható, csak hardware-sen változtatható 50 és 9600 baud között.

Egy másik problémát jelentett az a tény, hogy az RSX-11M rendszer általában a többfelhasználós üzemmódból eredően nem mindig képes fogadni a beérkező információt; ennek biztositása az RSX-11M macro-inak felhasználását igényli.

Az elmondottaknak megfelelően a TT1HAND-on belül két részt különböztettünk meg.

A program az inditás után alaphelyzetbe állitja a megfelelő változókat majd az RSX-11M terminálját szimulálja mind az ASR-33 mind az RSX-11M felé közvetlenül csatlakozva az RSX-11M terminál kezelő vezérlőjéhez [7]. Ebben az üzemmódban az ASR-33-ról érkező karakterek, ill. a PDP-11/40-től érkező karakterek sort alkotnak egy 7 karakteres ciklikus pufferben; a sor hossza az érkezéskor nő, a kinyomtatáskor csökken. A TT1HAND a PDP-11/40-ről érkező karakterek pufferjának beteltekor egy (CTRL/S) karaktert küld az RSX-11M terminál vezérlőjének, amely ekkor felfüggeszti a terminálra való kivitelt; a puffer kiürülésekor egy (CTRL/Q) karaktert küld, ami ujra inditja az RSX-11M kivitelét. Ily módon az ASR-33 lassuságából eredő nehézségeket át tudjuk hidalni az illesztő egységek 9600 baud-os sebességen való üzemeltetése mellett.

Ebben az üzemmódban a PDP-11/40-en csak az RSX-11M-nek kell futni, a TT1HAND direkt kapcsolatban az RSX-11M terminálkezelő vezérlőjével van az MCR-en keresztül.

A nagy sebességű üzemmódban nem a fenti módszert követjük, mert a gazdaságos időkihasználás miatt szerettük volna a rendelkezésünkre álló 8 bitet felhasználni. A kontroll karakterek használata viszont ezt nem engedné meg. Ezért ebben az üzemmódban mindkét oldalon megfelelő programoknak kell futni.

A két üzemmód közti áttérést ugy oldottuk meg, hogy a TT1HANDot érzékennyé tettük az ASR-33-ről ill. a PDP-11/40ről érkező (CTRL/P) karakterekre. Az ASR-33-ról érkező (CTRL/P) után a program egy ötjegyű oktális cimet vár. Ez a cim annak a programnak a kezdőcime amelyre a vezérlésnek kell kerülni a következő (CTRL/P) karakter után. Az ASR-33-ról érkező (CTRL/P)-vel ezt a cimet bármikor beállithatjuk. Amennyiben az ötjegyű cim közben (RETURN) karaktert űtűnk le, ez az előzőleg beállitott cimre való ugratást eredményez. Ily módon ugorhatunk át egy a PDP-8/I memóriájában már meglevő programra. Ebből következik, hogy ha a két rendszeren együttmüködő programok futtatására van szükség, a PDP-11/40-en futó programnak egy (CTRL/P) küldésével kell a kapcsolatot kezdeményezni.

A TT1HAND tartalmaz két ilyen programot. Az egyik a PDP-8/I memóriájában levő programoknak a PDP-11/40 perifériáira való küldésére alkalmas (mivel bináris adatokról van szó, csak a diszkeket használjuk). Ekkor a fentebb emlitett kezdőcim 37000(8), a PDP-11/40-en futó program neve BUP. A felküldés az előzőleg kijelölt memóriatartományokból byteonként történik az RSX-11M operációs rendszer QIO\$ macrójának felhasználásával. Minden byte előtt a PDP-11/40-en futó program egy (CTRL/P) karaktert küld, jelezve, hogy kész a PDP-8/I oldaláról érkező karakter fogadására.

A TT1HAND-ban levő másik program a diszkeken tárolt, BUP-pal készitésére programok fogadására és tárolására szolgál [cim 37700(8), a PDP-11/40 program neve BDN]. Ekkor a PDP-8/I felé való küldés byteonként történik anélkül, hogy előzetesen karaktert küldenénk a PDP-8/I fogadókészségének megállapitására, ugyanis a PDP-8/I-en megoldható, hogy minden időben kész legyen a karakter fogadására 9600 baud-os sebesség mellett.

Mivel a bináris adatforgalom formátuma megegyezik a papirszalagon tárolt bináris programok formátumával, kis többletmunkával beépitettük a papirszalagos bináris beolvasó programot is a TT1HAND-be. Ennek cime 37701(8), és a lyukszalag gyorsolvasót használja.

Az alábbiakban konkrét példákon ismertetjük a fentebb leirt program müködtetését.

3. A TT1HAND müködtetése

A PDP-8/I-m müködő programnak a leirtak szerint négy fő feladata van. Ezek a következők:

- Szimulálni a PDP-11/40-n működő RSX-11M operációs rendszer terminálját.
- 2. Lehetővé tenni PDP-8/I programok eljuttatását a PDP-11/40-re.
- Lehetővé tenni a PDP-11/40-en tárolt PDP-8/I programok betöltését a PDP-8/I memóriájába.
- Bináris szalagon tárolt programok beolvasását a PDP-8/I memóriájába.

Az egyes feladatoknak megfelelő program-részek a következő területeket foglalják el a PDP-8/I memóriájában.

1.:37146-37677 2.:37000-37145 3.:37700-37755 4.:37701-37755

A fenti behatárolás durva, mert egyes szubrutinokat több programrész is használ, azonban a 2. rész nélkül a többi funkciók tudnak működni. Az 1. funkcióval kapcsolatos tudnivalók

A programot tartalmazó szalagot' (Jele:TT HANDF3.RIM) a RIM loaderrel lehet a memóriába olvasni. A program mindig a 3. modulba kell, hogy kerüljön. Ezutána 37777 cimről indul a program. Ha a PDP-11/40-en az operációs rendszer fut, a konzolirogépen (továbbiakban TTY-n), az RSX-11M promptja (>) jelenik meg. Ezitán a TTY mint az RSX-11M TT1: terminálja müködik néhány kisebb eltéréssel.

Ezek a következők:

- a) A <CTRL/0> karakter hatása maximum 7 karaktert késhet.
- b) Kijelentkezéskor néha a program nem helyesen ekhozik. Ez a hatás elkerülhető a következő utasitással: >SET /TERM=TT1:ASR33<RETURN>
- c) A program érzékeny a TTY-ról vagy a PDP-11/40-ről érkező <CTRL/P> karakterre. Ennek hatására elugrik a megfelelő tárolt cimére a PDP-8/I-nek.

Ha nincs ilyen cim tárolva, megáll; [az akkumulátor tartalma 7402(8)] ujrainditható 37777-ről.

A 2. és 3. funkcióval kapcsolatos tudnivalók

Ezeknél a funkcióknál a PDP-11/40 és a PDP-8/I oldalán egyegy, a 2.-ben emlitett programnak kell futni.

A 2. funkció működtetése

a) A terminál üzemmódban leütünk egy <CTRL/P> karaktert, mire

b) a következő karaktersorozat jelenik meg a TTY-n epp

a

- c) A @ karakter után beirjuk a PDP-8/I-n futó program cimét: @37000
- d) utána egy

karakter jelenik meg, ami után elinditjuk a BUP programot: >RUN BUP<RETURN> A TTY-n megjelenik:

BUP> ezután

- f) begépeljük a kivánt RSX-11M file nevét.
- g) ezután

4P @XXXXX@YYYYY

formában begépeljük a felvinni kivánt PDP-8/I memóriatartomány határait (A @ karakterek a TT HAND-tól származnak, az XXXXX és YYYYY 0 és 37777 közé kell hogy essenek és XXXXXnek kisebbnek vagy egyenlőnek kell lenni YYYYY-nal). A memóriatartományokat a kivánt sorrendben köldhetjük fel. Ha nincs több elküldendő tartomány, a következő @ után <RETURN>-t ütünk.

Az RSX-11M file lezárása után a > jelenik meg és a TT1HAND ismét terminálüzemmódba kerül.

A 3. funkció működtetése:

- a) A terminál üzemmódban leütünk egy <CTRL/P> karaktert, mire
- b) a következő karaktersorozat jelenik meg a TTY-n -P

c) A @ karakter után beirjuk a lenti program cimét: @37700. utána egy >

karakter jelenik meg, ami után elinditjuk a BDN programot: >RUN BDN<RETURN>

e) A TTY-n megjelenik: BDN>

ezután begépeljük a lehozni kivánt file nevét.

g) ezután a terminálon +P

> jelenik meg, majd a helyes lehozatal után a program terminál üzemmódba tér át és megjelenik a >. Ellenörző összeg hiba esetén a program megáll, 37777-ról ujra inditható.

- A 4. funkció működtetése
- a) A beolvasni kivánt bináris szalagot (amellyel szemben az egyetlen kikötés, hogy field információval kezdődjön) a be-kapcsolt gyorsolvasóba helyezzük.
- b) Beállitjuk a PDP-8/I-n működő program cimét az előbbi eljárással 37701-re
- c) majd ismét <CTRL/P>-t ütünk le amire
- d) @ karakter jelenik meg.
- e) ezután <RETURN>-t ütve a szalagot a gép beolvassa. Ellenőrző összeg hiba esetén a program megáll, 37777-ról ujra inditható.

Megjegyzések:

a) Helyes végrehajtás esetén a fenti funkciók "felhasználják" PDP-8/I-n müködő program cimét, tehát ismételt aktivizálás esetén ujra be kell állitani azokat.

b) A 4. funkciónál megismert müveletsor általános séma PDP-8/I programok LOAD & GO aktivizálására (eltekintve néhány flag állapotától interruptos program esetén).

c) Visszatérni a terminál programba egy PDP-8/I programból a 37777-re vagy a

a 37600-ra való ugratással lehet.

d) A filespecifikációkat az RSX-11M rendszernek megfelelően kell használni.

Hivatkozások

- [1] KL8-JA Terminal Control/Asyncronous Data Interface Maintenance Manual, Digital Equipment Corp., Maynard, Massachusetts, 1975.
- [2] DL-11-W Serial Line Unit/Real Time Clock Option Maintenance Manual, Digital Equipment Corp., Maynard, Massachusetts, 1975.
- [3] C. M. Prins, G. Székely, ATOMKI Közl. 19 (1977) 95.
- [4] Zolnai L., ATOMKI Közl. 20 (1978) 287.
- [5] Zolnai L., A CILDAP'78/1. leirása (Kézirat)
 [6] Zolnai L., A CILDAP'80/3. leirása (Kézirat)
- [7] RSX-11M/M-PLUS I/O Drivers Reference Manual Digital Equipment Corp., Maynard, Massachusetts 1979.

Lektor: Kis-Varga Miklós

ATOMKI Közlemények 23 (1981) 211-219

AZ ND-50/50 RENDSZER "C-ILDAP'80/3" MÉRŐ- ÉS ADATFELDOLGOZÓ PROGRAMNYELVE

ZOLNAI LÁSZLÓ

ATOMKI, H-4001 Debrecen, Pf. 51. Hungary

Egy a "FOKAL'71"-en alapuló programnyelvet ismertetünk, amely alkalmas egy PDP-8/I számitógépet használó mérő- és adatfeldolgozó rendszer programozására.

"C-ILDAP'80/3", A MEASURING AND DATA PROCESSING PROGRAMING LANGUAGE FOR AN ND-50/50 SYSTEM. A "FOKAL'71" based language for programming a ND-50/50 measuring and data processing system is described.

ПРОГРАММНЫЙ ЯЗЫК ИЗМЕРЕНИЯ И ОБРАБОТКИ "C-ILDAP'80/3" ДЛЯ СИСТЕМЫ ND-50/50. Описывается язык, основанный на "FOKAL'71", для программирования системы измерения и обработки.

1. Bevezetés

Az ATOMKI 5 MeV-es Van de Graaff tipusu gyorsitójának mérőközpontjában, a mérések automatizálása és a mérési adatok feldolgozása területén elért eredményeinket korábban közöltük a [1-8] cikkekben. Ezekben a cikkekben általában a mérőközpontban levő Nuclear Data 50/50 mérő- és adatfeldolgozó rendszer [9] számára irt programokat ismertettünk.

Az utóbbi években a mérőközpont hardverje bővült, a jelenlegi kiépitést az 1. ábrán mutatjuk be. A leglényegesebb hardvare bővitést három ujabb 4 k-s memóriamodul, egy SYKES COMPU/CORDER 120 tipusu digitális, kazettás adatrögzitő magnetofon [10], egy ICA'70 analizátor [16] beszerzése valamint a PDP-11/40 rendszerhez való kapcsolat [15] létrehozása [8,14] jelentette.

A mérőközpont bővitésével egyre inkább szükössé vált a rendszer számitógépének, a PDP-8/I-nek a memóriája. Ezen kivül, a régebbi programrendszerhez ("ZOLA'73-I&O/2." és a "NAPO2" - ld.: [3,4])-hoz való ragaszkodásból született "CON-ZOLA'77"-nel [5] a memóriakihasználás nem volt optimális. Többek között minden uj periféria installálásakor uj függvényeket kellett az alapprogramnyelvbe irni, és az eredetileg 4 k központi memóriára tervezett programrendszer szövegmezeje továbbra is a 4 k-nak megfelelően rövid (kb. 1000) karakteres maradt.

Ezek a tények inditottak arra bennünket, hogy részben uj

l. ábra. A "C-ILDAP'80/3"-mal programozható rendszer jelenlegi kiépitettségének sematikus vázlata alapokra helyezzük a rendszer programozását. A legnagyobb változtatás az volt, hogy a "FOKAL'71"-et [ll] választottuk alapprogramnyelvnek. Ennek oka az volt, hogy ennek a "FOCAL'69"-hez [l2] képest fejlettebb a perifériakezelési rendszere.

A fejlesztést két lépcsőben hajtottuk végre. Az első szakaszban a magnetofont, a kapcsolatot és az ICA'70 analizátort kezelő 8 k memóriát használó C-ILDAP'78/1-et [17]; a másodikban a számlálókat [18-19] valamint a terminál kapcsolatot [21] kezelő 16k-s C-ILDAP'80/3-at hoztuk létre.

A programnyelv létrehozása során figyelembe vettűk a hasonló programnyelvekkel szerzett tapasztalatainkat. Az utasitás és függvénykészlet összetétele többéves, a VdG-5-tel végzett magés atomfizikai mérésanyagra tekinthető optimalizáltnak. Az alábbiakban a "FOKAL'71" jellemzőit ismertnek tételezzük fel [11], igy a létrehozott programnyelvnek, a "C-ILDAP'80/3"-nak többnyire csak az attól való eltéréseit ismertetjük. Maga a "C-ILDAP'80/3" a "FOKAL'71"-ből és egy overlayból ("C-ILDAP'80/3-OY") áll. Az utasitás és függvénykészlet leirása a program listájával és egyéb tudnivalókkal együtt a [23]-ban található meg, mely az érdeklődők rendelkezésére áll.

2. A "C-ILDAP'80/3" jellemzői

A "C-ILDAP'80/3" az ND-50/50-rendszernek az 1. ábrán látható konfigurációját támogatja. A "FOKAL'71" szolgáltatásain tul az alábbi lényeges programozási segédeszközök állnak rendelkezésre.

A. Különböző perifériák támogatása

1. A rajzoló egység támogatása

A [17]-ben leirt DAC-ek, ill. a rajzoló egységet kiszolgáló kapcsoló programozása egy függvénnyel lehetséges, amely a DACek kimenetén az argumentumoknak megfelelő feszültséget szolgáltat a kapcsoló meghatározott állása mellett.

2. Számitógépvezérelt kapcsoló

A [19]-ben leirt egységben kapott helyet egy a számitógép által vezérelt kapcsoló, amelyet különböző egységek (pl.: TTY, beam-stop) vezérlésére használhatunk (ld. FP függvény [23]).

3. A routing regiszter programozása

Az elmult időszakban kifejlesztésre, és az ND-50/50 rendszerhez illesztésre került egy külső logikai jelek (pl. detektorról jövő jelek) azonositását lehetővé tevő nyolccsatornás routing egység [19]. Ezt az egységet gyors beam-stop egység állapotának ellenőrzésére is felhasználhatjuk. Az egység támogatására egy, a beérkező impulzus csatornaszámát szolgáltató függvény áll rendelkezésre.

4. A D-tipusu számlálók programozása

A [18]-ban leirt számlálók kijelzés nélküliek, egy közülük minden bejövő impulzusra megszakitást kér, a többi három megszakitás kérési gyakorisága kivülről állitható (1,16,256 vagy 4096-ra). A "C-ILDAP'80/3" egy utasitással (amely törli a számlálókat) és egy függvénnyel (amely a tartalmak, és az megszakitáskérések számának lekérdezésére szolgál) támogatja ezeket a számlálókat.

5. Az N-tipusu számlálók programozása

A [19]-ben leirt 4 kijelzéses számlálót a programnyelv a Dtipusnál leirt szinten tulmenően még két utasitással támogatja amelyek lehetővé teszik a számlálók GATE bemeneteire megengedő ill. tiltó jelek átvitelét.

6. Gyors magnetofon müveletek

A digitális kazettás magnetofonon végzett keresési műveletek meggyorsítására két utasítás áll rendelkezésre, amelyek lehetővé teszik a szalagnak az utasítások argumentumaival meghatározott blokkszámmal előre, ill. hátra irányba való mozgatását, valamint a szalag elejének, ill. végének gyors elérését (ld.: 0 F és 0 B utasítások [23]).

7. Assembler függveny

A "C-ILDAP'80/3" -hoz hasonló programnyelveknél általában kényelmetlenséget okozott, hogy egy-egy uj periféria illesztésekor nem állt megfelelő támogatás rendelkezésre, másrészt nagyon gyors műveletek programozására az interpreter jellegből kifolyólag nem volt lehetőség. Ezért a "C-ILDAP'80/3"-ba beépitettünk egy függvényt (FF) amellyel a maximális műveleti sebesség érhető el bizonyos korlátozott programrészen belül. Az uj függvény a következő módon működik:

A függvény maximálisan 16 argumentumu lehet. Ha több argumentum van, az utolsó a LINK*4096+AKKUMULÁTOR értéket jelenti a függvénybe való belépéskor. A többi argumentumot a programnyelv sorban (az időben előre sorrend a függvény argumentumainál hátulról előre sorrendet jelent) bemásolja egy memória mezőbe, majd végrehajtja az igy keletkező programrészt mintha egy leforditott PAL-III nyelvű program lenne ott. Az FF függvény végrehajtása utáni LINK*4096+AKKUMULÁTOR érték a függvény értéke lesz. Egy argumentum esetén az argumentumot mint PAL-III nyelvű utasitást hajtja végre, a függvény értéke 0 vagy 1 lesz attól függően, hogy az utasitás hatására az utasitásszámláló ugrott-e vagy sem.

Az FF függvény használata számos programozási lehetőséget nyujt, itt néhány példát emlitünk meg a lehetséges alkalmazásokra:

- a) A függvények és utasitások között nem szereplő, megszakitást nem kérő müveletsorok programozása,
- b) logikai müveletek gyors végrehajtása,
- c) bármely a "C-ILDAP'80/3"-ban meglevő szubrutin használata.
- d) A "C-ILDAP'80/3" belső változóinak, valamint a teljes memóriának használata,

- e) uj periféria programozásának megoldása,
- f) a "C-ILDAP'80/3" listájának ismeretében a programnyelv jellemzőinek megváltoztatása.

B. Összetett müveletek

1. Gyors analizátormüveletek

Néhány analizátormüvelet gyors végrehajtására a multbeli tapasztalatok nyomán külön utasitásokat, ill. függvényeket alakitottunk ki. Ezek a következők:

- a) Az FV függvény segitségével megkereshető az analizátor kivilágitott tartományainak csatornaszáma.
- b) a K utasitás az ND-50/50 analizátor memóriájának megadott csatornaszámig való törlését,
- c) a P utasitás az ICA'70 -ból való rajzolás elinditását,
- d) a Z utasitás az analizátorokban gyüjtési művelet elinditását,
- e) a V utasitás pedig az elindított műveletek befejezésére való várakozást programozza.
- f) az egyparaméteres FR és FW függvények használatával az ND-50/50 és az ICA'70 analizátorok között végezhetünk gyors adatátvitelt, és a két analizátor különböző adatábrázolási formája (tiszta bináris, ill. BCD.) miatt szükséges konverziót.

2. Spektrumforgalmazás

A [5] és [17]-beli spektrumforgalmazási módot kiterjesztettük a PDP-11/40-nel való kapcsolatra, valamint a lassu papirszalagos perifériákra is. Igy a spektrumforgalmazást két nyolcparaméteres függvény (az FR és az FW az analizátorba, ill. analizátorból való spektrumátvitel, &d.: [23]) alkalmazásával lehet megoldani. A függvények argumentumai az átvitel jellemzőinek az alábbi választási lehetőségeit nyujtják:

- a) a kezdőcsatorna cime
- b) átviendő csatornák száma (csak FW esetén)
- c) FR esetén a beolvasásra kerülő spektrum hozzáadása (kivonása) az analizátorbeli spektrumhoz(ból)
- d) magnetofon esetén a sáv kiválasztása
- e) spektrumazonositó (0-4095 közötti szám)
- f) a spektrum átugrásra kerül vagy sem
 (a PDP-11/40 kivételével, csak FW-re)
- g) az analizátor kiválasztását (ND-50/50 vagy az ICA'70 szektorai)
- h) a periféria kiválasztását (gyors/lassu papirszalagos, PDP-11/40 vagy magnetofon)

A "C-ILDAP'80/3" FR és FW függvényeinek egyik üzemmódjában a ki-, ill. beviteli periféria a PDP-11/40 lehet. A PDP-11/40-en eközben az SPD, ill. az SPA programoknak kell működniük. Ezek a programok biztositják a PDP-11/40 oldalán a megfelelő műveleteket. E programokat terminál üzemmódban indithatjuk el, majd a [21]-ben megismert eljárással a 30300(8) cimre ugrunk. A "C-ILDAP'80/3"-ban ezután szabadon alkalmazhatjuk az FR és FW függvényeket. A programok mindaddig működnek ameddig terminál üzemmódba vissza nem térünk. Az SPD és az SPA programok a spektrumok tárolási módjában különböznek. Az SPD a [22]-ben leirt program "D" tipusu kódját, az SPA az "A" ill. "I" tipusu kódot alkalmazza. Mivel a "D" kód alkalmazásánál a csatornatartalmak a PDP-11/40 kétszavas lebegőpontos változóinak pontosságára kerekitődnek, mindazon spektrumoknál, amelyeknél a csatornatartalom változatlan megőrzésére van szükség (pl. koincidencia mérések lista tupusu eredményei) az SPA alkalmazása ajánlott. A PDP-11/40 oldalán a spektrumfile-ok nevei SY0:ABxxxx.ABC szerkezetüek, ahol az ABC karaktereket az 0 L 'ABC' utasitással állithatjuk be; az xxxx szám az FW ill. FR függvény argumentumai között szereplő szám. Egy tipïkus 4k-s spektrum esetén a helyigények a különböző tárolási formáknál a következőek:

SPD:	~ 9	blokk
SPA:	∿33	blokk
Hollerit(10F7.0):	~54	blokk

3. Marker generálás

Mérés alatt hasonló programnyelvek nagyon sokszor várakozó ciklusban vannak a tapasztalatok szerint. Ezt az időt használtuk fel markerek generálására az ND-50/50 analizátorban. Maximum 128 marker generálható különböző cimeken.

4. Számértékek tárolása

Tekintettel a korlátozott számban használható változókra, érdemes megemliteni, hogy számos egyéb lehetőség van nagyszámu számérték tárolására. Fizikailag három helyen tárolhatunk változókat függvények felhasználásával.

- a) A PDP-8/I 2. moduljában max. 1365 lebegőpontos változót (FZ függvénnyel)
- b) az ND-50/50 memóriájában 4096 egészértékű vagy 2730 lebegőpontos változót (FN,FX,FY függvények segitségével)
- c) az ICA'70 memóriájában 4096 egészértékü változót (FM függvény segitségével),
- e) az FB függvénnyel egy egészértékü változót (amelyet célszerü az ND-50/50 analizátor mindenkori csoportszámbeállitásának megfelelően használni),
- f) az FK függvénnyel egy lebegőpontos változót.

5. Többindexes változók

A "C-ILDAP'80/3"-ban lehetőség van többindexes (2,3,4,6 vagy 12 indexes) változók használatára (azonban az összes használt változók száma nem lehet több mint kb.: 80). Az alapváltozatban egy és két indexes változókat használhatunk; magasabb indexszám az FF függvénnyel megvalósitott kis programokkal érhető el.

C. Egyéb szolgáltatások

1. Monitorokkal való együttmüködés

A programnyelvvel együtt két monitor lehet a memóriában. Ezekkel kapcsolatosan a következőket emlitjük meg:

- a) A TT1HAND [21] nevü monitor biztositja a PDP-11/40-en futó RSX-11M operációs rendszerrel való kapcsolatot. Az RSX-11M Monitor Consol Routinja a "C-ILDAP'80/3"-ból az 0 0 utasitással érhető el.
- b) Az O M utasitással a magnetofonos monitor [13] érhető el. Itt két üzemmód létezik: vagy a TTY-ról vagy a C-ILDAP'80/3" szövegmezejéből kapja az utasitásokat (O H, ill. O A utasitás).
- c) A magnetofonos monitor használata esetén a visszatérési cim megfelelő beállitásával lehetővé vált a rendelkezésre álló memóriánál nagyobb helyigényü programok un. "láncolt" futtatása.

2. Gyors programcsere

Az X és Y utasitásokkal megvalósitható, hogy a PDP-8/I memóriájának és az ND-50/50 analizátor 0, és 1. moduljának tartalmát felcseréljük. Igy a PDP-8/I memóriatartalmát mint spektrumot, a spektrumot mint programot tárolhatjuk el

3. Megszakitások kiszolgálása

A megszakitások kezelése listában történik. A listában a kiszolgálás sorrendje az alábbi:

- a) TTY bevitel
- b) TTY kivitel illetve gyors szalaglyukasztó kivitel
- c) Gyors szalagolvasó bevitel
- d) D tipusu számlálók

A többi periféria kezelésénél a műveletek végrehajtását kivárjuk, igy megszakitásokra nem kerül sor.

FÜGGELÉK

3. Betöltési eljárások

1. Papirszalagról

- a) A BIN loadert betöltjük a 2. modulba, vagy a terminál kezelő programot aktivizáljuk a 3. modulban.
- b) Beolvassuk a FOKAL'71 majd a C-ILDAP'80/3-0Y jelzésű bináris szalagokat.
- c) SR:000200(8);LOAD ADRESS;START amire a konzolon megjelenik: -C-ILDAP'80/3 V:07 30-DEC-80 L. ZOLNAI Ekkor a "C-ILDAP'80/3" be van töltve és várja a felhasználó utasitásait.

2. Magnetofonról

- a) A kapcsoló regiszterről bevisszük a PDP-8/I 1 moduljának megfelelő cimétől (17756(8)) a RIM LOADER-t [10].
- b) A gyorsolvasót bekapcsoljuk, és behelyezzük az EXEC-RIM loader szalagját, majd SR:=117756(8);LOAD ADDRESS;START A szalag kifutása után STOP
- c) A "C-ILDAP'80/3"-ot tartalmazó kazettát a bekapcsolt magnetofonba helyezzük, majd SR:=117777(8);LOAD ADDRESS;START A konzolon megjelenik a READY kiirás, amire a válasz: L,C830 a konzolon ismét megjelenik READY amire a válasz: L,C833 a konzolon ismét megjelenik READY amire a válasz: L,C831 amire a konzolon megjelenik: -C-ILDAP'80/3 V:07 30-DEC-80. L. ZOLNAI

Ekkor a "C- LDAP'80/3" be van töltve és várja a felhasználó utasitásait.

- 3. PDP-11/40-rol
 - a) Aktivizáljuk a PDP-8/I terminálszimuláló programját a [21]-ben leirt módon.
 - b) Bejelentkezünk az RSX-11M rendszerbe a >HEL 300/103/<RETURN> utasitással
 - c) Leütünk egy <CTRL/P> karaktert mire a TTY-n egy <@> karakter jelenik meg, ami után 37700-t gépelünk: @37700
 - d) Ezután a TTY-n megjelenik a prompt ami után a teendők: >RUN BDN<RETURN> BDN> CILDAP803.BN8<RETURN> #P
 - e) Ha a program átvitele helyesen történt, prompt jelenik meg; ha nem akkor megáll.
 - f) Most leütünk egy <CTRL/P> karaktert és a megjelenő <@> után a 00200-at visszük be; ismét leütve a <CTRL/P>-t és <RETURN>-et a "C-ILDAP'80/3" aktivizálódik a következő szöveggel. Tehát: ><CTRL/P> @00200 ><CTRL/P> @<RETURN>
 - -C-ILDAP'80/3-V:07 30-DEC-80 L. ZOLNAI

Hivatkozások

[1] [2] [3] [4]	Lőkös S., Zolnai L.: ATOMKI Közl. 15 (1973) 107 Zolnai L.: ATOMKI Közl. 15 (1973) 273 Zolnai L.: ATOMKI Közl. 16 (1974) 13 Zolnai L.: Természettudományi doktori disszertáció, Deb-
[5] [6] [7] [8] [9]	Zolnai L.: ATOMKI Közl. 20 (1978) 287 Zolnai L.: ATOMKI Közl. 21 (1979) 31 Zolnai L.: ATOMKI Közl. 21 (1979) 377 Zolnai L.: ATOMKI Közl. 21 (1979) 387 Series 50/50 system description and users manuals, (Nucl.
[10]	General Programming Manual for COMPU/CORDER Magnetic Tape Units, SYKES Datatronics Inc., Rocherster, New York, 1972.
[11]	FOKAL User Manual TPA-IY-10-MA,
[12]	Programming Languages for PDP-8 Family Computers, Vol. 2., Digital Equipment Corp., Maynard, Massachusetts, 1970.
[13]	Program Description and Operating Instruction - LIBRARY
[14] [15]	SYKES Datatronics Inc., Rochester, New York, 1972. C. M. Prins, G. Székely: ATOMKI Közl. 19 (1977) 229 KL-8-JA Terminal Control/Asyncronous Data Interface Maintenance Manual. Digital Equipment Corp., Maynard, Massachusetts, 1975
[16]	ICA'70 Multichannel Analyzer Users Manual, KFKI, Budapest,
[17] [18] [19] [20]	Lőkös S.: ATOMKI Közl. 15 (1973) 95 Lőkös S.: ATOMKI Közl. 21 (1979) 35 Lőkös S.: Routing interface (Kézirat) Zolnai L.: A C-ILDAP'78/1 leirása. (Kézirat, 1979)
[21]	Zolnai L.: A PDP-8/I terminálszimuláló programja (Kézirat. 1981)
[22]	Zolnai L.: A "REVAZOL" magfizikai adatfeldolgozó és kiér- tékelő programrendszer leirása (Kézirat, 1981)
[23]	Zolnai L.: A "C-ILDAP-80/3" leirása (Kézirat, 1980)

Lektor: Cserny István

ATOMKI Közlemények 23 (1981) 221-249

TUDOMÁNYOS ÉS ISMERETTERJESZTŐ ELŐADÁSOK, ISMERETTERJESZTŐ KÖZLEMÉNYEK

ATOMKI, 1980

TUDOMÁNYOS ELŐADÁSOK*

- 1. ABDEL-HADY, M. KISS Á. KOLTAY E. NYAKÓ B. SZABÓ Gy.
- 2. APAGYI B. VERTSE T.

Две модели анализа формы допплеровски уширенных гамма линий.

XXXI. Совещание по ядерной спектроскопии и структуре атомного ядра, Самарканд, 14-17 апреля 1981 г.

Configuration mixing effect in the ¹²C(⁶Li,d)¹⁶O reaction.

University of Lund, Division of Cosmic and Subatomic Physics. Lund, April 9, 1980.

Chalmers University of Technology, Department of Physics. Gothenburg, May 28, 1980.

3. BACSÓ J.

Nukleáris mérőmódszerek alkalmazása a mezőgazdasági analitikai kémiai vizsgálatoknál.

A DAB (Debreceni Akadémiai Bizottság) Mezőgazdasági Kémiai Munkabizottsági ülése, Debrecen, 1980. junius 11.

*A többszemélyes munkákról szóló előadásokat az tartotta, akinek a neve dőlt betüvel van irva.

Röntgen emissziós analitikai (REA) módszer alkalmazási lehetőségei a felületelemzésben.

"Spektroszkópiai módszerek felületi rétegek kémiai összetételének vizsgálatára" c. ankét a Gépipari Tudományos Egyesület, a Magyar Kémikusok Egyesülete és a Magyar Bányászati és Kohászati Egyesület közös Szinképelemző Szakbizottsága, valamint a Magyar Tudományos Akadémia Spektrokémiai Munkabizottsága rendezésében. Budapest, 1980. április 14.

5. BACSÓ J.

6. BACSÓ J.

7. BACSÓ J. KALINKA G. Testszövetek ásványi elem anyagcseréjének vizsgálata REA módszerrel.

V. Magyar Magfizikus Találkozó. Budapest, 1980. julius 7-11.

A haj Ca-szintjének kapcsolata a myocardiális infarktus rizikofaktoraival.

XXIII. Magyar Szinképelemző Vándorgyülés. Rendezték: a Gépipari Tudományos Egyesület Anyagvizsgáló Szakosztályának, a Magyar Kémikusok Egyesületének és az Országos Magyar Bányászati és Kohászati Egyesületnek közös Szinképelemző Szakbizottsága, a Gépipari Tudományos Egyesület Titkársága, a Gödöllői Agrártudományi Egyetem, a Magyar Tudományos Akadémia Spektrokémiai Munkabizottsága. Gödöllő, 1980. augusztus. 26-29.

K/Ca ratio in healthy and mildewy tobacco leaves.

XIth Annual Meeting of European Society of Nuclear Methods in Agriculture, Debrecen, August 25-30, 1980.

8.	BALOGH K.	Установки для масс-спектрометричес- кого определения блогородных газов.
		III. Заседание временной рабочей группы по вакуумной технике, масс- и электронной спектроскопии Ноор- динационного комитета по научному приборостроению и автоматизации научных исследований. Дебрецен, 11-12 сентября 1980 г.
9.	BERECZ I.	Az ATOMKI-ban kifejlesztett kvadru- pól tömegspektrométerek.
		Magyar Kémikusok Egyesülete Csepeli Szervezete. Budapest, 1980. októ- ber 29.
10.	BERECZ I.	Kvadrupól tömegspektrométerek al- kalmazásának további lehetőségei.
		V. Magyar Magfizikus Találkozó, Budapest, 1980. julius 7-11.
11.	BERECZ I. BOHATKA S. LANGER G.	Medical mass spectrometers. (Poster,) VIII th International Vacuum Con- gress. (A Triennal Meeting of the International Union for Vacuum Science, Technique and Applications, Cannes, September 22-26.
12.	BERÉNYI D.	Electrostatic electron spectroscopy in ATOMKI, Debrecen, Hungary.
		67th Session of Science Congress, X-Ray, ESCA, Auger-Spectroscopy Symposium, Calcutta, February 3, 1980.
13.	BERÉNYI D.	Elektronspektroszkópia. Eredmények és lehetőségek az uj fizikai mód- szerek biológiai és orvosi alkal-

Magyar Tudományos Akadémia Közgyülése, "Uj vonások a biofizikában" c. tudományos ülésszak. Budapest, 1980. május 8. 14. BERÉNYI D.

15. BERÉNYI D.

16. BERÉNYI D.

17. BERÉNYI D.

18. BERÉNYI D.

19. BERÉNYI D.

Inner-shell ionization by electron impact.

Université Pierre et Marie Curie, Laboratoire de Physique Atomique et Nucleaire, Paris, March 4 1980.

Kutatások az ATOMKI-ban a Ca-anyagcsere nyomonkövetésére a sulytalanság állapotában.

Az Interkozmosz Tanács kibővitett ülése. Budapest, 1980. május 6.

Recent results on "Inner shell ionization by charged particle impact at nuclear accelerators" in ATOMKI, Debrecen.

IAEA (International Atomic Energy Agency) Coordination Meeting, Garmisch-Partenkirchen, April 25, 1980.

Some new nuclear methods and their applications in agricultural research and practice.

XIth Annual Meeting of the European Society of Nuclear Methods in Agriculture. Plenar lecture. Debrecen, August 25-30, 1980.

The spectra of electrons from the target of accelerators.

Université Pierre et Marie Curie, Laboratoire de Physique Atomique et Nucleaire, Paris, March 7, 1980.

Trends and goals of electron spectroscopy world-wide and in ATOMKI.

ESCA (Electron Spectroscopy for Chemical Analysis) Seminar of Socialist Countries, Debrecen, April 15-18, 1980.

ber 19. 21. BERÉNYI D. 22. BIBOK Gy. PAÁL A. VALEK A. 1980. 23. BOHATKA S. 24. BOHATKA S. BERECZ I. (Poster.) LANGER G.

25. BORNEMISZA-PAUSPERTL P. PÁSZTOR K. SCHLENK B.

20. BERÉNYI D.

Az XPS módszer és helye a modern anyagvizsgálati módszerek között.

Hiradástechnikai Tudományos Egyesület Távközlési Kutató Intézeti Csoportja. Budapest, 1980. decem-

X-rays from heavy ion impact.

Université Pierre et Marie Curie, Laboratoire de Physique Atomique et Nucleaire, Paris, March 6, 1980.

Cyclotron Laboratory in the Institute of Nuclear Research of the Hungarian Academy of Sciences. (Project) (Poster.)

XVIIth European Cyclotron Progress Meeting, Karlsruhe, June 26-27,

Разработка квадрупольного массспектрометра в АТОМКІ.

III. Заседание временной Рабочей группы по вакуумной технике, масси электронной спектроскопии Ноординационного комитета по научному приборостроению и автоматизации научных исследований. Дебрецен, 11-12 сентября 1980 г.

Contamination measurements with quadrupole mass spectrometer.

VIIIth International Vacuum Congress. (A Triennal Meeting of the International Union for Vacuum Science, Technique and Applications,) Cannes, September 22-26, 1980.

Irradiation effect on maize pollen and on plant seeds.

XIth Annual Meeting of European Society of Nuclear Methods in Agriculture, Debrecen, August 25-30, 1980.

26.	BOZÓKY L. <i>Medveczky</i>	<i>L</i> .	Kis koncentrációju radonszennyezés meghatározása.
			Eötvös Loránd Fizikai Társulat, Sugárvédelmi Továbbképző Tanfolyam '80. Tihany, 1980. március 19-21.
27.	BOZÓKY L. <i>Medveczky</i>	L.	A radon és leányelemeinek dozimet- riája.
			A radon-therápia vitás kérdései, munkaértekezlet a Magyar Tudományos Akadémia és az Egészségügyi Minisz- térium közös rendezésében, Héviz, 1980. április 23-24.
28.	CSEH J.		Search for four-nucleon correlation in ²⁸ Si.
			XVIII th Winter School, Bielsko- Biala, February 11-21, 1980.
29.	CSEH J.		²⁸ Si nivók vizsgálata alfa-bombá- zással.
			V. Magyar Magfizikus Találkozó, Budapest, 1980. julius 7-11.
30.	<i>CSERNY I</i> . VARGA D.		Ion sputtering apparatus for XPS applications.
			ESCA (Electron Spectroscopy for Chemical Analysis) Seminar of Socialist Countries, Debrecen, April 15-18, 1980.
31.	CSONGOR E.		Environmental pollution by Kr-85 and C-14 due to nuclear industry.
			International Workshop on Environ- mental Monitoring around Nuclear Installations. Dobogókő, September, 9-11, 1980

32. CSONGOR E. HERTELENDI E.

33. *CSONGOR E.* SZABÓ I.

34. DIÓS Z.

35. *DOMBRÁDI ZS.* KRASZNAHORKAY A.

36. FÉNYES T.

37. FÉNYES T.

Fission products and radiocarbon as environmental pollutants due to atmospheric nuclear weapon tests measured in Debrecen.

XIth Annual Meeting of European Society of Nuclear Methods in Agriculture, Debrecen, August 25-30, 1980.

Az alföldi futóhomok kutatás szempontjából jelentős faszén minták kormeghatározása radiocarbon módszerrel.

Alföldi Ankét. A Magyar Földrajzi Társaság Debreceni Osztálya és a Tudományos Ismeretterjesztő Társulat Földrajzi Szakosztálya rendezésében, Debrecen, 1980. december 12.

A PS 500-as csúcskiválasztó készülék.

V. Országos Elektronikus Müszer és Méréstechnikai Konferencia, Budapest, 1980. március 18-20.

Гамма лучии из реанции ¹⁰²Ru(p,n)¹⁰²Rh.

XXXI. Совещание по ядерной спектроскопии и структуре атомного ядра, Самарканд, 14-17 апреля 1980 г.

Информация о выполнении решений XIV. сессии Комитета.

XV. Сессия Номитета по структуре ядра, ОИЯИ (Объединенный институт ядерных исследований), Дубна, 11 марта 1980 г.

Информация о выполнении решений XV. сессии Номитета.

XVI. Сессия Номитета по структуре ядра, ОИЯИ (Объединенный институт ядерных исследований), Дубна, 28 октября, 1980 г. 38. FÉNYES T.

Международный симпозиум "Будущие направления исследования ядер, удалённых от стабильности" (сентябрь 1979 г. Нешвилл, США).

XV. Сессия Номитета по структуре ядра Ученого совета по Физике низких энергий ОИЯИ (Объединенный институт ядерных исследований), Дубна, 13 марта, 1980 г.

39. FÉNYES T.

40. FÉNYES T.

41. FÉNYES T.

42. GYARMATI B. HODGSON, P. E. LOVAS R. G. VERTSE T.

43. GYARMATI B. .VERTSE T. ZOLNAI L. BARYSHNIKOV, A. I. TITARENKO, N. N. YADROVSKY, E. L. A ⁹⁶Nb atommag szerkezete.

V. Magyar Magfizikus Találkozó, Budapest, 1980. julius 7-11.

Проблемы исследования стуктуры атомного ядра в ОИЯИ (Объединенный институт ядерных исследований),

XXX. Сессия Ученного совета по Физике низких энергий, ОИЯИ (Объединенный институт ядерных исследований), Дубна, 28 мая, 1980 г.

A stabilitási sávtól távoleső atommagok vizsgálata.

Kossuth Lajos Tudományegyetem, a felsőéves tanárszakos hallgatók számára. Debrecen, 1980. március 21.

A proton optikai potenciáljának viselkedése a Coulomb-gát környékén.

V. Magyar Magfizikus Találkozó, Budapest, 1980. julius 7-11.

Low energy behaviour of the proton optical potential.

Seminar. Research Institute of Physics, Stockholm, March 20, 1980.

44.	HORKAY GY. Molnár J.	Data acquisition and processing system of X-ray spectrometer with microprocessor.
		VI th International Symposium MIMI-80. Mini- and microcomputers and their applications. Budapest, September 9-11, 1980.
45.	KALINKA G.	Elektron- és lyukcsapdázás vizsgá- lata Si(Li) röntgen detektorokban.
		"Szilárdtestek Kutatása" c. Ifjusá- gi Konferencia, Magyar Tudományos Akadémia Központi Fizikai Kutató Intézete. Budapest, 1980. novem- ber 14.
46.	KALINKA G.	Talaj-talajviz-növény multielemes vizsgálata REA módszerrel.
		A DAB (Debreceni Akadémiai Bizott- ság) Mezőgazdasági Kémiai Munka- bizottsági ülése. Debrecen, 1980. junius 11.
47.	KÁDÁR I. <i>Kövér L</i> .	XPS investigations of oxide layers formed on stainless steel surfaces.
	CSERNY I.	VI th Solid-Vacuum Interface Con- ference. Delft, (The Netherlands), May 7-9, 1980. Abstracts.
48.	KÁDÁR I. Kövér L.	XPS measurement of oxide layers on stainless steel surfaces.
	CSERNY I.	ESCA (Electron Spectroscopy for Chemical Analysis) Seminar of Socialist Countries. Debrecen, April 15-18. 1980.
49.	KIBÉDI T. <i>KRASZNAHORKAY A</i> .	Gamma és konverziós elektron- spektroszkópiai vizsgálatok az A 100 tartományban

V. Magyar Magfizikus Találkozó, Budapest, 1980. julius 7-11.

- 50. KISS Á. *KOLTAY E.* SZABÓ GY.
- 51. KISS I. KOLTAY E. SZABÓ GY. ZOLNAI L. GÖDENY S.
- 52. KISS L. *KOLTAY E.* SZABÓ GY. MÉSZÁROS Á. LÁSZLÓ S. GŐDÉNY S.
- 53. KIS-VARGA M.
- 54. KIS-VARGA M.

55. KIS-VARGA M. KOVÁCS P. BACSÓ J. KALINKA G.

56. KOLTAY E.

Ионно оптические свойства ускорительных трубок со спиральным полем.

VII. Всесоюзное совещание по ускорителям заряженных частиц. Дубна, 14 октябра 1980 г.

Pixe analysis on biological samples.

IInd Working Meeting on Radiation Interaction, Leipzig, September 22-26, 1980.

Proton induced X-Ray emission as a tool for analyzing biological and atmospherical samples.

XIth Annual Meeting of European Society of Nuclear Methods in Agriculture. Debrecen, August, 25-30, 1980.

Avarkori bronz leletek REA vizsgálata.

V. Magyar Magfizikus Találkozó, Budapest, 1980. julius 7-11.

Molibdén koncentráció meghatározás lucernában REA módszerrel.

A DAB (Debreceni Akadémiai Bizottság) Mezőgazdasági Kémiai Munkabizottsági ülése, Debrecen, 1980. junius 11.

The effect of motor vehicle traffic on the Pb content of plants.

XIth Annual Meeting of European Society of Nuclear Methods in Agriculture, Debrecen, August 25-30, 1980.

Basic physics and applied investigations on the Van de Graaff Beams at the ATOMKI.

Seminar Lecture. Jagellonian University, Institute of Physics. Krakow, 14 May 1980. 57. KOLTAY E.

58. KOLTAY E.

59. *KOLTAY E.* MÓRIK GY. SZABÓ GY.

60. KOVÁCH Á.

61. KOVÁCH Á.

62. KOVÁCH Á.

Kisérleti magfizikai munkák összefoglalása.

V. Magyar Magfizikus Találkozó. Budapest, 1980. julius 7-11.

Távlatok és lehetőségek a DOTE és az ATOMKI tudományos együttmüködésében.

Debreceni Orvostudományi Egyetem és az ATOMKI (Magyar Tudományos Akadémia Atommagkutató Intézete) vitaülése. Debrecen, 1980. november 21.

Design study on the acceleration tube and beam transport system of a high current neutron generator.

IAEA (International Atomic Energy Agency) Consultants Meeting on Neutron Source Properties. Debrecen, March 20, 1980.

Datierung voralpinischer Erscheinungen im Ostalpin-Karpathischen Bereich mit der Rb-Sr Methode.

University of Wien, Institute of Geology. Wien, April 23, 1980.

A fizika szerepe a földtudományokban.

Eötvös Loránd Fizikai Társulat Heves megyei Csoportja, Eger, 1980. október 9.

Nukleáris fütőerőmüvek alkalmazási lehetősége, különös tekintettel Debrecen város hőellátására.

MTESZ (Müszaki és Természettudományi Egyesületek Szövetsége) Hajdu-Bihar megyei Szervezete, Évi tudományos ülésszak. Debrecen, 1980. május 20.

63.	KOVÁCH Á.	Rb-Sr Alterbestimmungen der kristal- linen Schiefern des Ostspornes der Ostalpen in Ungarn.
		Geologische Bundesanstalt, Wien, April 22, 1980.
64.	KOVÁCH Á.	Szerződéses kutatások az ATOMKI- ban.
		V. Magyar Magfizikus Találkozó. Budapest, 1980. julius 7-11.
65.	KOVÁCH Á. BALOGH K.	Tömegspektrometria és földtani kor- meghatározás.
		V. Magyar Magfizikus Találkozó, Budapest, 1980. julius 7-11.
66.	<i>KOVÁCH Á</i> . SVINGOR É. GRECULA P.	A Szepes-Gömöri Érchegység granitoid kőzeteinek korviszonyai izotóp-kor- meghatározások alapján.
		A Magyarhoni Földtani Társulat Al- talános Földtani Szakosztályának előadóülése, Budapest, 1980. ápri- lis 2.
67.	KOVÁCS P.	Gépkocsi forgalom hatása a növények ólomtartalmára.
		A DAB (Debreceni Akadémiai Bizott- ság) Mezőgazdasági Kémiai Munka- bizottsági ülése. Debrecen, 1980. junius 11.
68.	KOVÁCS P.	Основы рентгенофлуоресцентного анали- за, методы квантитативного опреде- ления концентраций.
		Ленинградский Институт ядерной фи- эики им. Б. П. Константинова (ЛИЯФ), Ленинград, 14 октября 1980 г.
69.	KOVÁCS Z.	Szinkrociklotronnal előállitott radionuklidok kinyerése fémolvadékok- ból és elválasztásuk gáztermokroma-

II. Magkémiai Szimpózium, Debrecen, 1980. november 3-5.

tográfiás módszerrel.

- 70. *KÓNYA L.* CSABINA S. KOVÁCS T. LAKATOS T.
- 71. KÖLTŐ L. KIS-VARGA M.

72. KÖVÉR Á.

73. *KÖVÉR Á.* RICZ S. PARIPÁS B.

74. KÖVÉR Á. RICZ S. SZABÓ GY. BERÉNYI D. KOLTAY E. VÉGH J.

75. KÖVÉR L.

Analysis of coffein effect in muscle.

XXVIIIth International Congress of Physiology. Budapest, 1980. July 13-18.

Röntgenemissziós analizis későavarkori bronztárgyakon.

"Ipari régészet Magyarországon" c. munkaértekezlet. Sopron, 1980. julius 28-30.

Ion induced electrons from very light collision systems.

Johann Wolfgang Goethe Universität, Institut für Kernphysik, Frankfurt am Main, May 29, 1980.

Efficiency calibration of a cylindrical mirror electron spectrometer.

ESCA (Electron Spectroscopy for Chemical Analysis) Seminar of Socialist Countries, Debrecen, April 15-18, 1980.

Energy distribution of electrons ejected from H_2 , He by H^+ , H_2^+ , He (0,8 MeV/Nucl.).

Xth Summer School and Symposium on Physics of Ionized Gases (SPIG-80), Dubrovnik, August 28, 1980.

A fotoelektron-spektroszkópia (ESCA) módszer néhány ipari alkalmazása.

A GTE (Gépipari Tudományos Egyesület) és az ELFT (Eötvös Loránd Fizikai Társulat) Debreceni Csoportja rendezésében, Tudományos Ülésszak, Magyar Gördülőcsapágy Müvek, Debrecen, 1980. május 16.

76. KÖVÉR L. VARGA D. MÓRIK Gy. New X-ray source of ATOMKI ESA- spectrometer. ESCA (Electron Spectroscopy for Chemical Analysis) Seminar of	11
April 15-18, 1980.	
 77. KRUPPA A. Deformált magok nivószerkezetén vizsgálata a szeparált potenciá módszerével. V. Magyar Magfizikus Találkozó, Budapest, 1980. julius 7-11. 	ek l
 78. LAKATOS T. Nagy terhelhetőségü félvezető röntgen spektrométer 150 eV energiafeloldással. V. Magyar Magfizikus Találkozó, Budapest, 1980. julius 7-11. 	
 79. LAXATOS T. Спектрометр с полупроводниковым детектором для измерения рентге кого излучения в широком диапаз интенсивности. Х. Международный симпозиум по я ной электронике. Дрезден, 10-16 апреля 1980 г. 	новс- оне дер-
80. LAKATOS T. SULIK B. MATHÉ, G. (GY.) Nuclear spectroscopic measureme and instrumentation. Fakulta Jaderná a Fizikalná In- ženyrska Katedra Dozimetrie a A likace Ionizujiciho Zářeni, Pra May 26-30, 1980	nts P- ha,
81. LÁSZLÓ S. Biológiai, aerosol és fémminták PIXE analizise.	

V. Magyar Magfizikus Találkozó, Budapest, 1980. julius 7-11. 82. LOVAS R.

83. LOVAS R.

84. MÁTHÉ GY.

85. *MEDVE F.* SZEILI J. BACSÓ J. KIS-VARGA M.

86. MEDVECZKY L.

87. MEDVECZKY L.

88. MEDVECZKY L.

A neutron és protoneloszlás különbsége és a (p,n) töltéscserélő szórás.

V. Magyar Magfizikus Találkozó, Budapest, 1980. julius 7-11.

Neutron-proton density difference and (p,n) scattering.

Seminar. Nuclear Chat Club, Daresbury, September 18, 1980.

Szerződéses munkák a nukleáris elektronika területén.

V. Magyar Magfizikus Találkozó, Budapest, 1980. julius 7-11.

A levegő ólom szennyezettsége Debrecen közlekedési csomópontjain az 1979-80. években.

A Magyar Higiénikusok Társasága III. Nemzetközi Kongresszusa, Pécs, 1980. augusztus 26-29.

Nyomdetektorok alkalmazása a dozimetriában.

Geofizikus mérnökök bentlakásos továbbképző tanfolyama, Harkány, 1980. március 6.

Recent results on dosimetry and autoradiography with track detectors.

Jožef Stefan Institut. Ljubljana, June 26, 1980.

Személyi neutrondozimetria fejlesztésének helyzete.

V. Magyar Magfizikus Találkozó. Budapest, 1980. julius 7-11.

- 89. MÉSZÁROS Á. LÁSZLÓ S. KISS I. *KOLTAY E.* SZABÓ GY.
- 90. *MÉSZÁROS S*. VAD K. NOVÁK D.

91. MURÁNYINÉ- SZELECZKY A.

- 92. NAGY E. TAMÁSI P. JEZERNICZKY J. BACSŐ J.
- 93. NAGY I. URAY I.

94. NOVÁK D.

95. NYAKÓ В.

Preliminary results of atmospheric trace elements study by PIXE analysis in Hungary.

XIth Annual Meeting of European Society of Nuclear Methods in Agriculture. Debrecen, August 25-30, 1980.

Development of a toroidal type 200 MHZ SQUID and its application.

XXIInd Czechoslovakian Symposium on Weak Superconductivity, Bechyňe, September 15-18, 1980.

Gabonatermékek mikrotápelemtartalma.

A DAB (Debreceni Akadémiai Bizottság) Mezőgazdasági Kémiai Munkabizottsági ülése. Debrecen, 1980. junius 11.

Alopeciák cink kezelése.

A Magyar Dermatológiai Társulat Tiszántuli Szakcsoportjának Tudományos Ülése, Debrecen, 1980. április 25-26.

Effect of fast neutron irradiation of different kinds of Brassica oleracea.

XIth Annual Meeting of European Society of Nuclear Methods in Agriculture. Debrecen, August 25-30, 1980.

Maradék ellenállás mérés.

V. Magyar Magfizikus Találkozó. Budapest, 1980. julius 7-11.

¹⁴N nivók vizsgálata Doppler módszerrel.

V. Magyar Magfizikus Találkozó, Budapest, 1980. julius 7-11. 96. *PAAL A.* SEPSY K. SZALAI S.

97. PAL K.

98. PALINKAS J.

99. PALINKAS J. SARKADI L. SCHLENK B.

100. RICZ S.

101. SARKADI L. BERÉNYI D. MUKOYAMA, T. Microcomputer controlled multichannel analyser in CAMAC.

VIth International Symposium MIMI-80. Mini- and microcomputers and their applications, Budapest, September 9-11, 1980.

A ⁴⁰Ca és a ⁴⁴Ti alfa-csomószerkezete.

V. Magyar Magfizikus Találkozó, Budapest, 1980. julius 7-11.

Röntgen sugárzás anizotrópiájának vizsgálata p és He bombázással kiváltott belső héj ionizációnál.

V. Magyar Magfizikus Találkozó, Budapest, 1980. julius 7-11.

L₃-subshell vacancy alignment in gold following low velocity proton and He⁺ ion impact ionization. (Poster.)

International Conference on X-Ray Processes and Inner-Shell Ionization. Stirling, August 25-29, 1980.

H⁺, H⁺₂ és He⁺ bombázó részecskék által keltett folytonos elektronspektrum vizsgálata.

V. Magyar Magfizikus Találkozó. Budapest, 1980. julius 7-11.

L-shell ionization of gold by heavy-ion impact. (Poster)

International Conference on X-ray Processes and Inner-Shell Ionization. Stirling, August 25-29, 1980.

102.	SARKADI L. MUKOYAMA, T.		L-héj ionizációs vizsgálatok. V. Magyar Magfizikus Találkozó. Budapest, 1980. julius 7-11.
103.	SCHLENK B.		Atomfizikai vizsgálatok magfizikai módszerekkel.
			V. Magyar Magfizikus Találkozó. Budapest, 1980. julius 7-11.
104.	SOMOGYI, G. (G.	Y.)	Application of nuclear methods to interdisciplinary problems.
			National Autonomous University of Mexico, Institute of Physics. Mexico, Januar 28, 1980.
105.	SOMOGYI, G. (G	Y.)	Application of nuclear methods to interdisciplinary problems.
			Instituto Nacional de Investigaciones Nucleares (ININ), Mexico-City, Januar 29, 1980.
106.	SOMOGYI, G. (G	fy.)	Applications of nuclear track detection to radiation dosimetry.
			Instituto Nacional de Investigaciones Nucleares (ININ), Mexico-City, Januar 24, 1980.
107.	SOMOGYI, G. (G	SY.)	Development and application of nuclear track techniques in Deb- recen.
			Institut "Rudjer Bŏskovič", Zagreb, April 3, 1980.
108.	SOMOGYI, G. (G	Y.)	Developments in track revealing techniques.

Instituto Nacional de Investigaciones Nucleares (ININ). Mexico-City, Januar 23, 1980.

109.	SOMOGYI, G.	(GY.)	Elements micro-mapping in solids.
			Laboratoire de Physique Corpus- culaire CNRS (Centre National de la Recherche Scientifique). Clermont- Ferrand, March 24, 1980.
110.	SOMOGYI, G.	(GY.)	Environmental alpha activity.
			Laboratoire de Physique Corpus- culaire CNRS (Centre National de la Recherche Scientifique). Clermont- Ferrand, March 25, 1980.
111.	SOMOGYI, G.	(GY.)	Exercise of track etching.
			Institut "Rudjer Bőskovič", Zagreb, March 31, 1980.
112.	SOMOGYI GY.		Interdiszciplináris kutatások az ATOMKI-ban.
			V. Magyar Magfizikus Találkozó, Budapest, 1980. julius 7-11.
113.	SOMOGYI, G.	(<i>GY</i> .)	Measurements of radon emanation under different environmental conditions.
			Instituto Nacional de Investigaciones Nucleares (ININ), Mexico-City, Januar 22, 1980.
114.	SOMOGYI, G.	(GY.)	Nuclear track formation in solid dielectrics.
			Institut "Rudjer Bósković", Zagreb, March 25, 1980.
115.	SOMOGYI GY.		Nukleáris nyomdetektorok fejlesz- tése és alkalmazása kozmikus fizikai kutatásokra.
			Szeminárium. KFKI (Magyar Tudományos Akadémia Központi Fizikai Kutató Intézete), RMKI-NFF (Részecske- és Magfizikai Kutató Intézet, Nagyener- giáju Fizikai Főosztály). Budapest, 1980. február 27.

116. SOMOGYI GY. Nyomdetektorok alkalmazási lehetőségei a földtani kutatásban. Geofizikus mérnökök továbbképző tanfolyama, Bolgár Hadsereg Muzeuma. Harkány, 1980. március 6. Status and future of track detector 117. SOMOGYI, G. (GY.) developments. Seminar, Joint Institute for Nuclear Research, Laboratory of Nuclear Reactions. Dubna, November 27, 1980. 118. SOMOGYI, G. (GY.) Techniques and principles of micromapping different elements. Instituto Nacional de Investigaciones Nucleares (ININ), Mexico-City. Januar 25, 1980. 119. SOMOGYI, G. (GY.) Track formation in solids. Instituto Nacional de Investigaciones Nucleares (ININ), Mexico-City, Január 30, 1980. 120. SOMOGYI, G. (GY.) Track methods in interdisciplinary fields (geological, biological, environmental applications). Institut "Rudjer Bósković", Zagreb, March 28, 1980. 121. SOMOGYI, G. (GY.) Track methods in nuclear studies (dosimetry, spectrometry, identification). Institut "Rudjer Bósković", Zagreb, March 27, 1980. 122. SOMOGYI, G. (GY.) Track revealing and evaluation techniques. Institut "Rudjer Bóskovič", Zagreb, March 26, 1980.
- 123. *SOMOGYI GY*. GERZSON I. NÉMETH GY.
- 124. SZABÓ L. *SZALAI S.* TAKÁCS P. PAÁL A.

125. SZALAY S.

126. SZALAY S.

127. SZALAY S.

128. TÁRKÁNYI F.

Környezeti radon-mérések.

V. Magyar Magfizikus Találkozó. Budapest, 1980. julius 7-11.

Автоматизированная система в стандарте Камак для сбора спектрометрической информации.

Х. Международный симпозиум по ядерной электронике, Дрезден, 10-16 апреля 1980 г.

Frédéric Joliot Curie jelentősége a tudomány fejlődésében.

Országos Béketanács és az Országos Frédéric Joliot Curie Sugárbiológiai és Sugáregészségügyi Kutatóintézet emlékülése. Budapest, 1980. március 18.

Mn and Cu deficiency of plants grown on peat soils and its remedy by a foliage spray.

VIth International Peat Congress. Duluth, Minnesota, August 17-23, 1980.

Retention of Mn and Cu by peat humic acids and micronutrient deficiency of plants on peat soils.

XIth Annual Meeting of European Society of Nuclear Methods in Agriculture. Debrecen, August 25-30, 1980.

Rövid felezési idejü ritka föld izotópok magspekroszkópiája.

V. Magyar Magfizikus Találkozó. Budapest, 1980. julius 7-11. 129. TÖRÖK I. URAY I.

130. URAY I. TÖRÖK I.

131. VALEK A.

132. VARGA D.

133. VARGA D.

134. VARGA D. VÉGH J. Absolute activity measurement by using sum peaks. (Poster,)

IInd International Conference on Low Level Counting. High Tatras, Czechoslovakia, November 24-28, 1980.

Absolute activity determination from high-resolution single gammaray spectra, by using the sum peaks.

International Workshop on Environmental Monitoring around Nuclear Installations, Dobogókő, September 9-11, 1980.

Az ATOMKI ciklotronprogramja.

V. Magyar Magfizikus Találkozó. Budapest, 1980. julius 7-11.

Az ATOMKI uj elektron spektrométere.

V. Magyar Magfizikus Találkozó. Budapest, 1980. julius 7-11.

Az ESCA (XPS) módszer és alkalmazási lehetőségei a felületi analitikában.

"Spektroszkópiai módszerek felületi rétegek kémiai összetételének vizsgálatára" c. ankét a Gépipari Tudományos Egyesület, a Magyar Kémikusok Egyesülete és a Magyar Bányászati és Kohászati Egyesület közös Szinképelemző Szakbizottsága, valamint a Magyar Tudományos Akadémia Spektrokémiai Munkabizottsága rendezésében. Budapest, 1980. április 14.

Новый электростатический анализатор для измерения энергетического и углового распределения электронов.

ESCA (Electron Spectroscopy for Chemical Analysis) Seminar of Socialist Countries. Debrecen, April. 15-18, 1980. 135. *VARRÓ T*. SOMOGYI GY. MÁDI I.

136. VARRÓ T. *SOMOGYI, G.* (*GY.*) NAJZER M. MADI I.

137. VATAI E.

138. VÉGH J. KÖVÉR Á. CSERNY I. KADÁR I. Transzportfolyamatok vizsgálata növényekben sugárabszorpciós és kvantitativ mikroradiográfiás módszerekkel.

II. Magkémiai Szimpózium, KLTE (Kossuth Lajos Tudományegyetem). Debrecen, 1980. november 3-5.

Study of boron transport in plants with a quantitative microradiographic method.

XIth Annual Meeting of European Society of Nuclear Methods in Agriculture. Debrecen, August 25-30, 1980.

Inner-shell rearrangement (exchange correction) in internal conversion.

International Conference on X-ray Processes and Inner-Shell Ionization. Stirling, August 25-29, 1980.

Data acquisition and evaluation software at ATOMKI electron spectrometer.

ESCA (Electron Spectroscopy for Chemical Analysis) Seminar of Socialist Countries, Debrecen, April 15-18, 1980.

Beszámoló a Dubnában végzett munkáról.

V. Magyar Magfizikus Találkozó. Budapest, 1980. julius 7-11.

139. VÉGH L.

ISMERETTERJESZTŐ ÉS EGYÉB ELŐADÁSOK

140.	BERÉNYI	D.	Az atomenergia igérete és veszé- lyei.
			ELFT (Eötvös Loránd Fizikai Társu- lat) Szabolcs-Szatmár Megyei Cso- portja. Nyiregyháza, 1980. február 13.
141.	BERÉNYI	<i>D</i> .	Energiaforrások és környezetvéde- lem.
			TIT (Tudományos Ismeretterjesztő Társulat). Hajduszoboszló, 1980. május 16.
142.	BERÉNYI	D.	Energiatermelés és környezeti hatá- sai.
			Soproni Müszaki Hetek, az ELFT (Eötvös Loránd Fizikai Társulat) helyi csoportja rendezésében. Sop- ron, 1980. október 24.
143.	BERÉNYI	D.	Hogyan tapogatható le az atomnál kisebb részecskék világa.
			Bessenyei György Szabadegyetem. Nyiregyháza, 1980. november 24.
144.	BERÉNYI	D.	A humán és természettudományos kultura egysége. Vitabevezető elő- adás.
			DAB (Debreceni Akadémiai Bizottság) Matematika-Fizika Szakbizottsága és Müvelődéstudományi Szakbizott- sága, Debrecen, 1980. december 5.
145.	BERÉNYI	<i>D</i> .	Megnyitó.
			V. Magyar Magfizikus Találkozó. Budapest, 1980. julius 7.

146. BERÉNYI D. Tudomány - gyakorlat - művelődés. Megyei Szakszervezeti Oktatási Központ. Hajduszoboszló, 1980. október 16. 147. BERÉNYI D. A tudomány lehetséges hozzájárulása a csapágygyártás fejlesztéséhez. MGM (Magyar Gördülőcsapágy Müvek) Hét keretében Müszaki Tudományos Konferencia, Debrecen, 1980. április 11. 148. HORKAY GY. Az SI mértékegységrendszer. TIT (Tudományos Ismeretterjesztő Társulat) rendezésében: Debreceni Allami Épitőipari Vállalat, Medicor Művek Orvosi Műszergyára, Biogál Gyógyszergyár, Agrártudómányi Egyetem Tangazdasága, Debrecen Városi Tanács Beruházási Vállalata, Agrober (Mezőgazdasági Tervező- és Beruházási Vállalat). Debrecen, 1980. február 7, 8, 14, 15, 22, 25. 149. KOLTAY E. A nagyenergiáju fizika gyorsitó berendezései. Az Eötvös Loránd Fizikai Társulat Öszi Magfizikai Iskolája, Balatonföldvár, 1980. október 30. 150. KOLTAY E. Ujdonságok a nagyenergiáju gyorsitók vitájában. Kossuth Lajos Tudományegyetem Természettudományi Karának Fizikus Szakhete, Debrecen, 1980. április 22. 151. LAKATOS T. Erősités jelformálás a félvezető spektrométerekben. Tanfolyam a Paksi Atomerőmű Vállalat szakemberei számára, ATOMKI (Magyar Tudományos Akadémia Atommagkutató Intézete). Debrecen, 1980. november 3-14.

152. LAKATOS T.

Uj irányzatok a magfizikai spektrométerek fejlesztésében.

Tanfolyam a Paksi Atomerőmü Vállalat szakemberei számára, ATOMKI (Magyar Tudományos Akadémia Atommagkutató Intézete), Debrecen, 1980. november 3-14.

153. SCHLENK B.

Megnyitó.

A DAB (Debreceni Akadémiai Bizottság) Mezőgazdasági Kémiai Munkabizottsági ülése. Debrecen, 1980. junius 11.

ISMERETTERJESZTŐ ÉS EGYÉB KÖZLEMÉNYEK

154. BACSÓ J.

155. BALOGH K.

Ha kevés a kálcium. Vészjelző a hajban. Infarktus kialakulása előtt.

Magyarország, 17 (1980) 23 január 13. 2. szám.

"Fizika-77. Szerk. Abonyi Iván. Budapest, 1977, Gondolat Kiadó." Könyvismertetés.

Fizikai Szemle, 29 (1979) 436-437.

156. BERÉNYI D.

Együttmüködés a Kossuth Lajos Tudományegyetem és az Atommagkutató Intézete között.

Magyar Tudomány, 25 (1980) 679-680.

157. BERÉNYI D.

Megnyitó. "Gyorsitók Népgazdasági Alkalmazása" - Müszaki-Tudományos Tanácskozás.

ATOMKI Közlemények, 22 (1980) 4-6. 1. sz. Melléklet. 158. BERÉNYI D.

159. BERÉNYI D.

160. BERÉNYI D.

161. BERÉNYI D.

162. BERÉNYI D.

163. BERÉNYI D. BACSÓ J. HIDEG J. DUX L.

164. HUNYADI I.

165. HUNYADI I.

A nukleáris környezetvédelem problémái hazánkban.

Fizikai Szemle, 30 (1980) 34-36

A nukleáris környezetvédelem problémái hazánkban.

Magyar Tudomány, 25 (1980) 189-191.

Nukleáris módszerek a mezőgazdaságban. - A megszeliditett sugárzás.

Magyar Hirlap, 13 (1980) 11. Szeptember 7. 310. sz.

"A szilárdtestkutatás ujabb eredményei 6. Szilárdtestfelület-vizsgálatok uj módszerei. 2. Szerk. Gergely Gy. Budapest, 1979, Akadémiai Kiadó." Könyvismertetés.

Fizikai Szemle, 30 (1980) 156-157.

A szocialista országok Elektronspektroszkópiai Szemináriuma.

Magyar Tudomány, 25 (1980) 685-686.

A metabolizm-kisérlet. Miről árulkodik az ürhajósok szakálla?

Élet és Tudomány, 35 (1980) 808-809.

A fizika Debrecenben.

Hajdu-Bihar megyei NAPLÓ, 37 (1980) 11. január 6.

Fizika Debrecenben.

Természet Világa, 111 (1980) 272-274. 166. HUNYADI I. Őszi fizikusnapok Debrecenben. Fizikai Szemle, 30 (1980) 113-115. 167. KÁDÁR I. ESCA szeminárium Debrecenben. Fizikai Szemle, 30 (1980) 276. 168. KOVACH A. Felkészülés a debreceni U-103 ciklotron orvosi célu felhasználására. Magyar Tudomány, 25 (1980) 66-67. 169. KOVÁCH Á. A Magyar Tudományos Akadémia PAPP L. Atommagkutató Intézete és a Kossuth Lajos Tudományegyetem együttműködése. Felsőoktatási Szemle, 29 (1980) 710-713. "Kiss I., Vértes A.: Magkémia. Budapest, 1979, Akadémiai Kiadó." 170. KOVÁCS Z. Könyvismertetés. Fizikai Szemle, 30 (1980) 321. 171. KÖVÉR L. "A szilárdtestkutatás ujabb eredményei. 5. Szilárdtestfelület-vizsgálatok uj módszerei. 1. Szerk. Gergely Gy. Budapest, 1979, Akadémiai Kiadó". Könyvismertetés. Fizikai Szemle, 30 (1980) 156. Paritássértés az atommagoknál. 172. KRASZNAHORKAY A. Fizikai Szemle, 30 (1980) 153-154. "Jánossy L., Tasnádi P.: Vektor-173. LOVAS R. számitás. 1. Vektor- és tenzoralgebra. Budapest, 1980, Tankönyv-kiadó." Könyvismertetés. Fizikai Szemle, 30 (1980) 321.

174. LOVAS R.

175. MAHUNKA I.

176. MATÉ Z.

177. SZALAY S.

178. SZALAY S.

179. TAKÁCS S.

180. VAD K.

181. VERTSE T.

182. ZOLNAI L.

Sokrészecske-rendszer kollektiv koordinátái.

Fizikai Szemle, 30 (1980) 154-155.

Gyorsitók népgazdasági alkalmazása. Magyar Tudomány, 25 (1980) 223-224.

Atomenergetikai tudományos ülés.

Magyar Tudomány, 25 (1980) 191-192.

Hogyan épitsük ujjá a középiskolák fizikai szertárait?

Fizikai Szemle, 30 (1980) 120-121.

Tudományos kutatás az egyetemeken, valamint a kutatóintézetekben.

Magyar Tudomány, 25 (1980) 109-113.

Tanácskozás Debrecenben a gyorsitók népgazdasági alkalmazásáról.

Fizikai Szemle, 30 (1980) 113.

"A. G. Guy: Fémfizika. Budapest, 1978, Müszaki Könyvkiadó." Könyvismertetés.

Fizikai Szemle, 29 (1979) 437.

"Fizika 1978. Szerk. Abonyi I. Budapest, 1979, Gondolat Kiadó." Könyvismertetés.

Fizikai Szemle, 30 (1980) 117-118.

Az Magyar Tudományos Akadémia Atommagkutató Intézete jubileumi nemzetközi pályázatának eredménye.

Magyar Fizikai Folyóirat, 18 (1980) 325-326.

Összeállitotta: Darin Sándorné

Az ATOMKI Közlemények negyedévenként jelenik meg. Terjeszti az ATOMKI Könyvtára (Debrecen, Postafiók 51, 4001). Tudományos intézetek és könyvtárak kiadványaikért cserébe vagy ellenszolgáltatás nélkül is megrendelhetik. Kérésre egy-egy számot vagy különlenyomatot magánszemélyek is ingyen kaphatnak.

Szerkesztő Bizottság: Szalay Sándor elnök, Lovas Rezső titkár, Berényi Dénes, Cseh József, Csikai Gyula, Gyarmati Borbála és Medveczky László.

Kiadja a Magyar Tudományos Akadémia Atommagkutató Intézete

A kiadásért és szerkesztésért felelős dr.Berényi Dénes, az intézet igazgatója

Készült az ATOMKI nyomdájában

Törzsszám: 4 Debrecen, 1981/szeptember Példányszám: 440

TUDOMANYOS AKADEMIA

ATONKI coofiliehur

TOM 23 / M 3

СОДЕРЖАНИЕ

HA	УЧНЫЕ СООБЩЕНИЯ	143
И.	Ангели, Т. Тари: Опрэделение радиуса ядра из данных измерений, выполненных в случае смеси изоторов	143
Τ.	Мукояма, Г. Хок: Возможный механизм внутренней ионизации, сопровождающей бета-распад и захват электронов	151
Τ.	Фенеш: Возможности ү-спектроскопических исследо- ваний в пучках У-103 циклотрона	165
э.	Ватаи, Д. Сабо: Роль обменной коррекции в процес- се внутренней конверсии	181
Ε.	Чонгор, Э. Хертеленди: Низкофонная система для определения возраста радиоуглеродным методом	190
10	МАСТЕРСКИМ И ЛАБОРАТОРИЯМ	205
л.	Золнаи: Программа на ЭВМ PDP-8/I для симуляции терминала RSX-11M	105
л.	Золнаи: Программый язык измврения и обработки "C-ILDAP'80/3" для системы ND-50/50	211
HA	учные и научно-популярные доклады и научно-	
noi	ПУЛЯРНЫЕ СООБЩЕНИЯ, АТОМНІ, 1980	221

ATOMKI BULLETIN

Volume 23/ Number 3

CONTENTS

22	I EN	TICI	CD	AD	EDC
SC	I CIA	1111	CF	AF	EKS

I. Angeli, I. Tari: Determination of nuclear radii from data measured on samples containing several isotopes	143
T. Mukoyama, G. Hock: Another possible mechanism for internal ionization in beta decay and electron capture	151
T. Fényes: Possibilities of γ-spectroscopic investi- gations in U-103 cyclotron beams	165
E. Vatai, Gy. Szabo: The role of exchange correction in internal conversion	181
E. Csongor, E. Hertelendi: Low backround measuring system for radiocarbon dating	189
FROM OUR WORKSHOP AND LABORATORY	205
L. Zolnai: A PDP-8/I program for the simulation of an RSX-11M terminal	205
L. Zolnai: "C-ILDAP'80/3", a measuring and data processing programing language for an ND-50/50 system	211
SCIENTIFIC AND POPULAR LECTURES AND POPULAR	
PUBLICATIONS, ATOMKI, 1980	221

143

23. kötet / 4. szám

MTA ATOMMAGKUTATÓ INTÉZETE, DEBRECEN / 1981 11/

ATOMKI Közlemények

2 3.kötet /4 . szám

TARTALOMJEGYZÉK

MŰHELYÜNKBŐL, LABORATÓRIUMUNKBÓL

Kormány Z.: Diszperziómentes mágneses transzportrendszer tulajdonságainak vizsgálata numerikus trajektória-számitással

Molnár J.: "Self-refreshing" tipusu display vezérlő egységek moduláris µP-os rendszerekhez 251

251

261

539

HU ISSN 0004-7155

ATOMKI Közlemények 23 (1981) 251-259 MŰHELYÜNKBŐL, LABORATÓRIUMUNKBÓL

EXAMINATION OF THE CHARACTERISTICS OF A NONDISPERSIVE MAGNETIC TRANSPORT SYSTEM BY THE NUMERICAL CALCULATION OF TRAJECTORIES

Z. KORMÁNY

MTA Atommagkutató Intézete, Debrecen, Pf. 51.

Electron trajectories were calculated in a four-magnettransport-system by numerical integration, approximating the magnetic field of the system in the second order. It has been shown that the optical properties of the system can be improved by decreasing the induction in the two inside magnets. The conclusions were experimentally checked.

DISZPERZIÓMENTES MÁGNESES TRANSZPORTRENDSZER TULAJDONSÁGAI-NAK VIZSGÁLATA NUMERIKUS TRAJEKTÓRIA-SZÁMITÁSSAL. A négy mágnesből álló elektron transzportrendszer mágneses terét másodrendben közelitve, numerikus integrálással számoltuk a trajektóriákat. Kimutattuk, hogy a középső mágnesek gerjesztésének csökkentésével a rendszer optikai tulajdonságai javithatók. Következtetéseinket mérésekkel ellenőriztük.

ИССЛЕДОВАНИЕ СВОЙСТВ БЕЗДИСПЕРСНОЙ МАГНИТНОЙ СИСТЕМЫ ТРАНС-ПОРТИРОВКИ ЧИСЛЕННЫМ РАСЧЕТОМ ТРАЕКТОРИЙ. Рассчитаны траектории электронов в системе транспортировки четырех магнитов с помощью численного интегрирования и приближением магнитного поля во втором порядке. Было показано, что оптические свойства системы можно улучщить уменьшением индукции внутренних магнитов. Выводы были проверены экспериментально.

1. Introduction

The electron transport system under study has been developed for the Cockcroft-Walton generator of this institute. The function of the system is to send the electrons scattered inelastically on the target to the detector, while the elastically scattered electrons are absorbed. Fig. 1. shows the schematic drawing of the system [1].

The system consists of four identical rectangular magnets which are fed by the same current so that the two outside magnets are

magnetized in the opposite direction with respect to the two inside ones. In this way, the system performs the following functions:

- nondispersive transport of electrons from the entrance slit to the detector
- dispersive disintegration of the beam inside the system
- to select the particles out of the beam with a given energy by using collimators placed in the symmetry plane (i.e. in the place of the largest dispersion)

Fig. 1. The sketch of the transport system

The mechanical design of the system was based on calculations applying first-order approximation. It was supposed that the magnetic field was ideal, i.e. it was homogeneous inside the magnet and zero outside. To set the system correctly, it seemed to be necessary to perform calculations describing the real trajectories more exactly.

The SCOFF-model (sharp cutoff fringing field [2], [3]), is a first-order approximation too, but it gives more correct results than the previous one. According to this model, the homogeneous field is extended beyond the magnet to the socalled effective edge, and the central trajectory suffers exactly such an angular deflection as in the real megnetic field (see fig. 2.). Of course, the modelled path does not coincide with the real path point by point. There is a parallel shift of the calculated trajectory with respect to the real one and since this shift is small compared with the radius of curvature of the path ($\frac{A}{R}<<1$), it can be neglected in a firstorder calculation. In more precise studies it is usual to determine this displacement subsequently and to correct the calculated paths [3], [4].

Fig. 2. Comparison of different models

Because of the closeness of the magnets in our case it was impossible to separate the magnetic field of the system by effective edges to homogeneous and field free sections, thus this method is not applicable to estimate the realistic parameters of this transport system. The numerical integration proved to be the only possible way to determine the trajectories exactly.

2. Second-order description of the magnetic field

The following theoretical considerations concern the modelling of the field of a general magnet. The first task is to describe analitically the magnetic field with the required accuracy. The following relation is suitable for that in the median plane of the gap of a magnet [3]:

$$H(s) = \frac{B_{z,0}}{B_0} = \frac{1}{1+e^{W(s)}}; \quad W(s) = c_0 + c_1 s + c_2 s^2 + c_3 s^3$$
(1)

- $B_{z,o}$: the magnetic induction in the median plane (z=o) B_{c} : the magnetic induction well inside the air gap
- s : the position coordinate normalized to the width of the gap (G), the zero point being located at the effective edge and the axis is perpendicular to the edge (see fig. 3.)
- c. : parameters

In the median plane of the air gap the magnetic field has only a z component, which can be directly measured. Fitting the function (1) to the measured values, we can obtain the suitable $c_0...c_3$ parameters.

To describe the magnetic field off the median plane we express its components in the form of a Taylor series in z. In consequence of symmetry the series of B_z contains only terms with

even powers and the series of B_X and B_Y contain only odd ones. Neglecting the terms higher than second order, the field components can be calculated in the following way:

$$B_{z} = B_{z} |_{z=0} + \frac{1}{2} \left(\frac{\partial^{2} B_{z}}{\partial z^{2}} \right) |_{z=0} z^{2}$$

$$B_{x} = \left(\frac{\partial B_{x}}{\partial z} \right) |_{z=0} z$$

$$B_{y} = \left(\frac{\partial B_{y}}{\partial z} \right) |_{z=0} z$$
(2)

Using the relation between the variables $s=(x\cos\alpha+y \sin\alpha)/G$ and the equations $\Delta\Phi=0$, curl B=0 we get the field components in the neighbourhood of the median-plane in second-order approximation [3].

$$B_{z} = B_{z,0} - \frac{z^{2}}{2G} \frac{\partial^{2} B_{z,0}}{\partial s^{2}} = B_{0} \left(H - \frac{z^{2}}{2G} \frac{\partial^{2} H}{\partial s^{2}}\right)$$

$$B_{x} = B_{0} \frac{z}{G} \cos \alpha \frac{\partial H}{\partial s}$$

$$B_{y} = B_{0} \frac{z}{G} \sin \alpha \frac{\partial H}{\partial s}$$
(3)

Because of the uniform geometry of the four magnets in our system, it was supposed that the H(s) function was the same for every magnet. Measuring the magnetic field in the median plane of a magnet by Hall-probe and fitting the function H(s) to the measured values by the method of the weighted least squares, we have got the following values of the parameters: $c_0=0.4966$, $c_1=2.2951$, $c_2=-0.8784$ and $c_3=0.1480$. Using the equations (1) and (3) the field components of a magnet could be calculated everywhere in the system. The resulting magnetic field was obtained by the superposition of the individual fields of the four magnets. In our system the

Fig. 4. The resulting magnetic field

255

x axis is perpendicular to the edges of the magnets, i.e. it coincides with the s axis, so $B_y \equiv 0$ (supposing that the used regions of the magnets are far enough from the corners). The calculated components of the magnetic field are shown in fig. 4.

3. The numerical solution of the equation of motion

The motion of a charged particle in a stationary magnetic field is described by the well-known Lorentz-equation:

$$\vec{mr} = q(\vec{y}B_z - \vec{z}B_y)$$

$$\vec{mr} = q(\vec{z}B_x - \vec{x}B_z)$$

$$\vec{mz} = q(\vec{x}B_y - \vec{y}B_x)$$
(4)

Performing the following transformation of the variables: $x_1=\dot{x}, x_2=x, x_3=\dot{y}, x_4=y, x_5=\dot{z}, x_6=z$, the primary second-order vector differential equation is transformed into the system of first-order differential equations of six variables. Since in our system By is identically zero, the equations have the following forms:

$$\dot{x}_{1} = \frac{q}{m} \times_{3}B_{z}$$

$$\dot{x}_{2} = x_{1}$$

$$\dot{x}_{3} = \frac{q}{m} (\times_{5}B_{x} - \times_{1}B_{z})$$

$$\dot{x}_{4} = x_{3}$$

$$\dot{x}_{5} = -\frac{q}{m} \times_{3}B_{x}$$

$$\dot{x}_{6} = x_{5}$$

(5)

This system of equations can be solved without difficulties by numerical integration. To calculate and to draw the trajectories a computer program was written. The routine HPCG of the IBM Fortran Library-applying the Runge-Kutta method - was used to perform the numerical integration. The routine set the step-size in accordance with the prescribed accuracy. Considering a reasonable run-time and the errors of the field measurement, 1 per cent accuracy was required.

4. Results and conclusions

The results of the calculation differ from the results obtained by applying the first-order model in two respects:

1) In the bending plane the electrons leave the system shifted downwards with respect to the entrance direction and the

Fig. 5. Calculated trajectories

257

magnitude of this shift depends on energy (see fig. 5.).

 In the non-bending plane the fringing fields of the magnets have a good focusing effect, so fairly large angular divergence is allowed at the entrance in this plane (see Fig. 5-7.).

These conclusions have been justified in practice by photographing the beam profile in different points of the system. The photographs were taken by placing the film on the entrance and exit surface of the magnets. These photographs are shown in fig. 6. The measurements were carried out by electrons

accelerated by the Cockcroft-Walton generator to an energy of 600 keV and scattered on a thin carbon target at an angle of 15° . The lower circular spots were produced by the electrons passing through the system at zero induction, i.e. they mark the x axis. The upper spots were taken at an induction of 300 Gauss.

Energy Induction	200 keV	400 keV	600 keV
uniform (B _e = 300 Gauss) in every magnet			
reduced by 1.3 per cent in the inside magnets			

Fig. 6. The elimination of the shift.

l cm

The shift of the beam from the x axis at the detector is an unfavourable effect. Its reason is the superposition of

fringing fields of the two inside magnets (the magnetic induction hardly falls down to the 50 per cent of its maximum value between these magnets). So some calculations were made to examine whether the optical characteristics of the system can be improved. According to the calculations, this disadvantageous effect could be eliminated in a broad energy range by a proportional decrease of the induction of the inside magnets with respect to the induction of the outside magnets. The photographs in fig. 7. show, that there is no shift for electrons with energies 200, 400 and 600 keV if the induction of the inside magnets is reduced by 1.3 per cent.

References

- [1] K. G. Steffen, High Energy Beam Optics (Wiley, New York, 1965)
- [2] J. J. Livingood, The Optics of Dipole Magnets (Academic Press, New York, 1969)
- [3] H. A. Enge, Rev. Sci. Instr. 35 (1964) 278
- [4] H. Wollnik and H. Ewald, Nucl. Instr. Meth. 36 (1965) 93

Referee: Gy. Szabó

ATOMKI Közlemények 23 (1981) 261-277

"SELF-REFRESHING" TIPUSÚ DISPLAY VEZÉRLŐ EGYSÉGEK MODULÁRIS »P-OS RENDSZEREKHEZ

MOLNÁR JÓZSEF

MTA Atommagkutató Intézete, Debrecen, Pf. 51.

A cikk ismertetést ad intézetünkben fejlesztett, mikroprocesszoros célberendezésekhez illeszthető video display vezérlő modulokról. Összefoglalását adja a televiziós rendszertechnika idevonatkozó jellemzőinek, majd a digitális képmegjelenités három eljárását mutatja be. Végezetül grafikus, alfanumerikus és függvény megjelenitő display vezérlők egy-egy lehetséges áramköri megoldásának ismertetésére kerül sor.

DISPLAY CONTROL UNITS FOR MODULAR MICROPROCESSOR SYSTEMS. This article describes the video display control units for some microprocessor equipments developed in this institute. The most important characteristics of the television technique are summarized, and three methods of digital picture visualization are shown. Finally, some possible solutions of the circuitries of graphic, alphanumeric and graph display controllers are presented.

БЛОНИ УПРАВЛЕНИЯ ДИСПЛЕЕМ ДЛЯ МОДУЛЬНЫХ СИСТЕМ НА МИНРО-ПРОЦЕССОРАХ. В статье описываются модули управления видеодисплеем, разработанные в нашем институте для приборок на микропроцессорах. Дается обзор о самых важных характеристиках телевизионной техники, а потом представляются три процедуры цифрового изобрежения в заключение приводятся возможные схемы для осуществления блока управления графическим, альфавитно-цифровым и диаграммовым дисплеями. A számitástechnikai eszközök és a velük dolgozó ember információkapcsolatának egyik leglényegesebb módja a vizuális megjelenités. Számos területen, de különösen ott ahol gyors, áttekinthető információra van szükség, vizuális megjelenitők un. display-ek kerülnek alkalmazásra. Ezek az eszközök egyfajta ablakot nyitnak a láthatatlanra azáltal, hogy lehetővé teszik a kódolt üzenetek továbbitásának az emberi gondolkodáshoz, érzékeléshez legközelebb álló formáját. Ha biztositott az, hogy az ember és a gép közötti információcsatorna mindkét irányban magas müszaki szinvonalu, a display további segédeszközökkel együtt - fényceruza, pozicionáló gömb, érintéses képernyő a tervezés, a modellezés hajlékonyan alkalmazható eszközévé válhat.

Intézetünkben a mikroprocesszor-vezérelt célberendezések egy részénél szintén felmerül annak az igénye, hogy a mikroszámitógép oldaláról információt kell megjeleniteni display-en. Gondolunk itt alfanumerikus üzenetek közlésére, spektrummegjelenitésre, vagy éppen digitálisan rögzitett kép ábrázolására. A tervező feladatát akkor végezhetné el a legkönnyebben, ha választhatna a megjelenités igényéhez legjobban illeszkedő, készen kapható berendezések közül.

A valóságos helyzet nem ilyen egyszerü!

Igaz, hogy beszerezhetők a különböző display-ek, de jelenleg egy ilyen összeállításu célberendezés költségeinek nagyobbik hányadát ezen berendezések ára képezné. Önkéntelenül adódik egy másik lehetőség: a kereskedelemben kapható TV készülék mint videomonitor olcsón rendelkezésre áll. A mikroprocesszorhoz illesztés elkészitésére két lehetőség kinálkozik:

- Egy-egy processzorcsalád elemkészletében mindig találhatunk
- nagybonyolultságu display vezérlő áramköröket.
- Egyszerű elvi felépitésű digitális illesztő egységet készithetünk elemi áramkörökkel.

A TV készülék kiegészitve az illesztő egységgel a mikroprocesszor buszára csatlakoztatható, s igy a készen kapható display-ekkel funkcionálisan egyenrangu megoldást szolgáltathat. Moduláris felépitésü mikroprocesszoros rendszerben a különféle display vezérlő modulok előnye, hogy a mindenkori feladathoz jól illeszkedő konfiguráció alakitható ki.

A következő részekben rövid áttekintés formájában szeretnénk ismertetni a különböző display illesztő modulok célszerű elvi felépitését, s egy-egy konkrét, realizált megoldást adni alfanumerikus-, függvény-, grafikus display vezérlő egységre. Ezt megelőzően azonban a szabványos televiziós átviteltechnika kötelező erővel ható rendszerét mutatjuk be röviden.

2. Televiziós rendszertechnika

Látszólag indokolatlannak tünik egy ma már tradicionális rendszer technikai kérdéseivel foglalkozni, de még_{sem} lehet megkerülni. Abból a gyakorlati tényből kiindulva, hogy a gyártók többségének videomegjelenitésre előállitott készülékei, - a videomonitorok - tulajdonképpen a TV készülékgyártás mellett mint "melléktermékek" keletkeztek és keletkeznek, átörökitették az ide vonatkozó szabványokat.

Ha visszatekintünk a televiziózás alig 45 éves multjára, akkor egyértelmüen megállapitható, hogy bár minden fejlesztés, ujdonság bevezetése a maga idejében teljesen korszerű volt, mégis ma már másképpen dolgoznánk ki a teljes rendszertechnikát. Sajnos a TV felépitését illetően hozott döntések olyan erővel hatnak ki a mára, hogy nem lehet szó drasztikus rendszer-korszerüsitésről, s ez bizony gátjává válik a haladásnak. A továbbiakban – részletes magyarázat nélkül – felsoroljuk azokat a rendszertechnikai jellemzőket amelyeket a display vezérlő egységek (európai rendszer) tervezésénél figyelembe kell venni.

A televizió-kép megjelenitése céljára ezidőszerint rendelkezésre álló képcsövek közös jellemzője, hogy a villamos-optikai átalakitást vákuumcsőben felgyorsitott elektronok végzik, melyek a képernyő belső felületére felvitt foszforrétegbe ütközve megjelenitik a képet. A kép elegendően kicsi képelemekből, sorokból áll össze, amit időben egymás után továbbitanak videojelként a képcső számára.

A sorok letapogatásának technikája "váltott soros", ami azt jelenti, hogy egy teljes kép ábrázolása két félképben történik. Először a páratlan, majd a páros sorok videojele kerül megjelenitésre. Ahhoz, hogy a kép "összeálljon" a sorok kezdetét a sor-, a félképek kezdetét a félképszinkronjelek időzitik. Az elektronsugár kioltását – minden sor és minden teljes félkép megjelenitését követő "visszafutás" ideje alatt – a kioltójelek végzik. Az 1. ábrán követhetjük végig az ábrázolt két félkép illeszkedését. A videojelek és a szinkronjelek szétválasztása amplitudó-, mig a sor- és félképszinkronizáló jelek megkülönböztetése idődiszkriminációval történik.

1. ábra. Televiziós félképek illeszkedése.

A legfontosabb rendszertechnikai jellemzőket a következő pontokban foglaljuk össze:

- Az ábrázolt sorok száma: 625
- Soridő: 64 μs (15 625 Hz); megjelenitésre felhasználható "élő" idő: max. 52 μs
- Félképidő: 20 ms (50 Hz); 312.5 sor X 64 µs = 20 ms
 Az összetett videojel dinamikatartománya:

- 2. ábra. Az összetett videojel dinamikatartománya.
- Jellegzetes TV sor hullámforma a vizszinten szinkronozó és kioltójelekkel:

- 3. ábra. Horizontális időzités.
- Jellegzetes TV hullámforma a félképváltó, félképkioltó és kiegyenlitő jelekkel:

4. ábra. Vertikális időzités.

A kiegyenlitő jelek biztositják az egymást követő félképek illeszkedését, valamint védelmet jelentenek a félképváltáskor bekövetkező tranziens folyamatok idejére.

- A TV vevőkészülék alapsávi (video) sávszélessége: 6.5 MHz
- A nagyfrekvenciás moduláció tipusa: negativ amplitudó moduláció, azaz a modulált jel maximális amplitudója a moduláló jel minimum értékénél fordul elő.

3. Módszerek display képek előállitására

A videomonitorok számára az előző fejezetben áttekintett előirásokat kielégitő összetett videojelet kell előállitani. Visszatekintve a 2. ábrára megállapitható, hogy a videojel teljes dinamikatartománya jól elkülönülő "látható" és "láthatatlan" részre bontható. Csak a tervező számára lényeges "láthatatlan" tartományban található szinkron- és kioltójelek idő- és amplitudóviszonyainak szervezésénél a kidolgozott rendszertechnikát kell követni, realizálni. Sokkal lényegesebb - s ez már a felhasználó számára is fontos - a látható tartomány létrehozása, kialakitásának az aktuális igényt kielégitő lehetősége.

A televizió-kép elemeinek fényintenzitását az elektronsugarat vezérlő videojel amplitudója határozza meg.

Gondolatban állitsunk elő egy szabályos pl.: 256x512 pontból álló pontrasztert. Ezen pontmátrix sorai (256) legyenek az ábrázoló elektronsugár nyomvonalai, a televiziós sorok, amelyekben a pontok (512) azáltal keletkeznek, hogy a videoimpulzusok a képernyő adott helyén felvillanásokat hoznak létre. Az igy kialakult pontrendszer szabályos strukturáját a szinkronjelek biztositják. A felvillanó pontok további információt hordozhatnak, ha minden videoimpulzushoz annak amplitudóértékét, vagy szinét meghatározó további információt rendelünk.

Önkényesen definiáltunk tehát egy pontmátrixot, azaz munkaterületet, ahol az ábrázolandó információ által megkivánt grafikus, alfanumerikus, vagy függvénymegjelenitést végezhetünk. Itt utalunk az önkényes választás + 256x512 - néhány praktikus előnyére:

- 256 ábrázolt televiziós sor:

Maga a szám 2-nek egész kitevős hatványa (2⁸), egyszerüvé válik a sorszámlálás. Továbbá nem kell váltott soros letapogatást alkalmazni, ami nagymértékben egyszerüsiti a szinkronizáló rendszert.

- 512 soronkénti pontszám:
Szintén 2-egész kitevős hatványa. Ha az elemi pontidőt 100 nsra választjuk a széleskörben használt TTL áramkörkészlettel szemben nem támaszt irreális sebességigényt - 51.2 µs-ra adódik a sor ábrázolási ideje, ami az elvi 52 µs-nál kisebb. Másrészt gondolva az előző fejezetben emlitett alapsávi sávkorlátozásra (6.5 MHz) a videojel legkedvezőtlenebb előfordulásakor is - 5 MHz frekvenciáju négyszöghullám - még jó kontrasztu képet ad.

3.1. Grafikus megjelenités

Felhasználói oldalról közelitve a grafikus display olyan berendezés, amely az adott feladat által megkivánt felbontásu pontmátrix munkaterületen tetszőleges pontok felhasználásával "bármit" meg tud jeleniteni. Ez a pontmátrix a legkülönbözőbb léptékü, felbontásu lehet: 256x512 vagy akár 4096x4096. Ha a mátrix pontjai kétértéküek, a tárolásuk könnyen realizálható digitális memóriaelemek segitségével.

Az elvi megoldás kézenfekvő, tulajdonképpen a következő főbb szempontokra kell, hogy kiterjedjen:

- Létre kell hozni irható/olvasható digitális memóriaelemekből (RAM) egy olyan tárolót, amely annyi elemi egységet - bitet tartalmaz, mint ahány képelemből a pontmátrix áll. Ezt a memóriát nevezzük frissitő memóriának. Pl.: ez 256x256 pont esetén 2¹⁶bit= 8 kbyte.
- Biztositani kell egyértelmű megfeleltetést a bitek és a képelemek között.

Az 5. ábra mutatja be vázlatosan a képernyőn megjelenő raszterkép és a memória (képfrissitő memória) tartalma közötti logikai kapcsolatot.

5. ábra. Grafikus megjelenités vázlata

A kép tárolása ugy történik - s ez a grafikus display vezérlők alapvető ötlete - hogy az egyes televiziós sorokban az elemi képpontok videojele cimszerint egymást követő memóriarekeszek tartalmával van kapcsolatban. A megjelölt televiziós sorban az első 8 pont videojelét a frissitő memória 1981H cimü rekeszének tartalma határozza meg, a második 8 pont videjelét a memória 1982H cimén lévő tartalom adja ... stb. Igy igazodva a memória szervezéséhez a teljes kép 8 vagy 16 bites (képelem) darabokra tördelve előállitható.

3.2. Alfanumerikus megjelenités

Alfanumerikus információ megjelenitésekor egy előre definiált karakter vagy szimbólumkészletet használunk. (Pl.: ASCII). Egy-egy karakter képe általában 5x7-es vagy 8x8-as pontmátrix megfelelő pontjaiból áll össze.

Ezeket a kódokat egy csak olvasható memória az un. karaktergenerátor tartalmazza. Ezért a grafikus display pontonkénti hozzáférésével szemben az alfanumerikus display-en a felhasználó által elérhető legkisebb egység pl.: a 8x8-as pontmátrix melynek belső pontstrukturája, képelemtartalma mindenkor a karaktergenerátorban dől el. 6. ábra.

6. ábra. 8x8-as pontmátrix

Itt is meg lehet emliteni a realizálás legfontosabb szempontjaiként a következőket:

- Biztositani kell tárolóterületet, ahol elhelyezhető annyi karakterkód, általában ASCII, ahány karaktert a munkaterületen ábrázolni lehet.
- Pl.: ez 64 karakter/sor x 32 sor esetén 2¹¹byte = 2 kbyte
 2) Egyértelművé kell tenni a memóriában tárolt kódok, valamint a képernyőn megjelenő karakterkép logikai kapcsolatát.

Alfanumerikus üzenetek ábrázolásakor tehát a frissitő memőria az illető karakter kódját, azaz a karaktergenerátorban tárolt, a kérdéses karakter képét illusztráló 8x8 bites (8byte) blokk cimét tartalmazza. Egy karakter a képernyő 8 televiziós sorában kerül ábrázolásra, amint az a 7. ábrán látható.

1.karakter 1.tv sora 2.karakter 1.tv sora ...64.karakter 1.tv sora
1. " 2. " 2. " 2. " ...64. " 2. "
1.KAR.
SOR
1.karakter 8.tv sora 2.karakter 8.tv sora ...64.karakter 8.tv sora

32.KAR SOR

.......

ASCII kódok

7. ábra. Alfanumerikus megjelenités vázlata

Gyakran előfordul a kvázigrafikus display megnevezés. Ez rendszertechnikailag itt emlitendő meg, hisz tulajdonképpen az alfanumerikus karakterek 8x8-as mátrixához hasonlóan pl.: 8x8as strukturáju grafikus szimbólumok ábrázolását jelenti.

3.3. Függvény megjelenités

A méréstechnika számos területén, de különösen a nukleáris méréstechnikában gyakori feladat az idő, energia, hullámhossz mint paraméterek függvényében események gyakoriságának mérése. A mérés során keletkező spektrum elsősorban kvalitativ értékelésének legegyszerübb módja a spektrumnak mint egyértékü függvénynek az ábrázolása. Ez történhet papiron, oszcilloszkóp képernyőjén, de kényelmes lehetőséget nyujt ilyen célra az előzőekben már grafikus, alfanumerikus megjelenitőként ismertetett videomonitor is. A videomonitor 256x512 pontból álló munkaterületét ugy is tekinthetem, mint egy 512 oszlopból álló táblázatot, s minden oszlopon 256 függőleges beosztás van. Az 512 oszlop mindegyikéhez hozzárendelhetünk a mérési paraméter egy diszkrét értékét, mig az adott diszkrét értéknél a mérési eredmény az illető oszlop függőleges skáláján "bejelölhető". Azaz függvénymegjelenitéskor:

- Tárolni kell annyi digitális kódot, ahány oszlop alkotja a függvényt
- 2) Az egyes kódok hossza a függvény függőleges léptékéhez igazodva olyan, hogy mindegyik oszlop valamennyi függőleges beosztása kiválasztható, megjelölhető legyen. Példánkban, mivel a függvény függőleges léptéke 256, bármely érték 0-tól 255-ig 8 bitben kódolva kiválasztható. A szükséges tároló kapacitás 512x8bit.

 Meg kell szervezni a frissitő memóriában tárolt bináris kódok és a képernyőn megjelenitett kép logikai kapcsolatát.

A megjelenités folyamata ezek után a következő:

Az 512x8 bites szám minden televiziós sorban a megjelenitésre biztositott élőidő alatt (télő \leq 52 µs) kiolvasásra kerül, s egy un. döntő logikai hálózatra jut. Ehhez az egységhez jut továbbá a sorszámláló tartalma is mely jelzi, hogy az elektronsugár hányadik televiziós sorban fut. Ha a kiolvasott kód és a pillanatnyi tv sorszám megegyezik a logikai hálózat kimenetén keletkező videojel hatására az oszlopszám és a tárolt bináris kód által egyértelművé tett helyen fénypont villan fel. Ezt a folyamatot szemlélteti vázlatosan a 8. ábra.

8. ábra. Függvény megjelenités vázlata

3.4. A "self-refreshing" tipusu display vezérlő rendszer

Mielőtt rátérnénk a grafikus, az alfanumerikus és a függvény megjelenitő modulok ismertetésére a 9. ábra alapján röviden jellemezzük azok rendszertechnikai környezetét. Ha visszagondolunk a megjelenités elvi tárgyalásánál mondottakra, a következőket lehet megállapitani:

- valamennyi módszernél alapvető az információ tárolásához szükséges memóriakapacitás létrehozása, továbbá

- a képernyőn megjelenő információ és a tárolt kódok logikai kapcsolata.

Az előbbi követelmény egy megfelelő kapacitásu RAM memóriával kielégithető. Ez lehet a mikroprocesszor memóriájában programmal definiált terület, vagy egy önálló tartomány. Mindkét esetben biztositani kell a kettős hozzáférést egyrészt a µP, másrészt a képfrissitést végző áramkör oldaláról.

A képfrissitést biztositó eszköz realizálja a tárolt "digitális"- és a képernyőn megjelenő kép logikai kapcsolatát. A memóriához való hozzáférése és a μ P-vel történő együttmüködése rendszertechnikailag többféleképpen alakitható ki. Egyik módszer a "self-refreshing", egy másik pl.: a programozott DMA-t használó megoldás.

9. ábra. "Self-refreshing" tipusu rendszer

Ezen utóbbi elven müködnek a nagybonyolultságu display vezérlő IC-k, melyek integráltan tartalmazzák a különböző funkciókat ellátó egységeket. Képfrissitéskor – a µP futását megszakitva – DMA-n keresztül fordulnak a memóriához az ábrázolni kivánt információ kódjaiért.

"Self-refreshing" tipusu képfrissitésnél külön hardware egység végzi a memória végigcimzését, s ha a megjelenités megkivánja a különböző display vezérlők közös meghajtást kapnak. Ezzel a megoldással a képfrissités a µP müködésétől függetlenné válik, nem terheli annak gépidejét.

4. Display vezérlő modulok

Az előző fejezetben vázlatosan áttekinthettük a különböző lisplay képek előállitásának egy-egy célszerü módszerét.

Egy display vezérlő egység funkcionálisan több részre tagolható. Gyakorlati okok miatt két fő egységre bontjuk, s a továbbiakban ezek megvalósitását mutatjuk be az egyes ábrázolási módok esetében:

- 1) Szinkron generátor modul
- 2) Frissitő memória modul

4.1. Szinkron generátor modul

A display képek előállitásának módszere megegyező abban a jellemzőben, hogy egy megfelelő kapacitásu memória tartalmát kell a videojelet generáló áramkör – shift regiszter, karaktergeñerátor+shift regiszter, komparátor – rendelkezésére bocsájtani. Minden egyes félkép lefutásánál a memóriában tárolt adatokat legalább egyszer végig kell olvasni.

A szinkron generátor végzi a frissitő memória kiolvasásához a cimek, továbbá a videomonitor szinkronizálásához a szinkronés kioltójelek előállitását. Ebben a modulban történik a komplex videojel amplitudóhelyes keverése, valamint ha ez szükséges, a TV készülék közvetlen müködtetéséhez a nagyfrekvenciás jel keltése. A modul elvi vázlata a következő (10. ábra):

10. ábra. Szinkron generátor modul

Egy szinkron generátor modul a µP buszára egymással párhuzamosan csatlakozó több memória modul szinkron vezérlését is végezheti, ezáltal egyszerre 2,3... - intenzitásban megkülönböztethető - kép jelenithető meg a monitoron (9. ábra).

4.2. Grafikus display vezérlő

Az elkészitett grafikus vezérlő 256x256 független elemi pontból álló kép megjelenitését teszi lehetővé. A memória modul tartalmazza a 256x256 raszterpontból álló "digitális" kép tárolásához szükséges memóriát (8kbyte) és a további kiegészitő áramköröket. A tár félképenkénti ciklikus kiolvasását és ezzel a kép frissitését a szinkron generátor vezérli. A memória modul, melynek vázlata a 11. ábrán látható a következő funkcionális egységeket tartalmazza:

11. ábra. Grafikus display frissitő memória modulja

- RAM MEMÓRIA

A 256x256 pontos raszterkép tárolására szolgáló memória kettős hozzáférésü. Egyrészről biztositani kell, hogy a μ P busz felé normál memóriaként viselkedjen, másrészt lehetővé kell tenni a képfrissitést vezérlő szinkron generátor számára is a hozzáférést.

Amennyiben a processzor műveleteknek – olvasás, módositás – van prioritása egy editált kép áttöltése és megjelenitése a lehető legrövidebb idő alatt végbemegy.

Ugyanakkor zavarjelek keletkeznek a képernyőn, ami nem statikus információ (spektrum usztatás) megjelenitésekor kellemetlen lehet. Ha a frissitő memóriába történő irás/olvasás képkioltási időszakra esik a zavarjelek nem láthatók. Ez a fajta memória hozzáférés, az összetett kioltójel mint státuszjel figyelésével realizálható, ezzel együtt azonban csökken a kép átirásának sebessége.

Azáltal, hogy a memória a processzor felől irható és olvasható, lehetővé teszi a megjelenitendő információ editálását ugyanezen a tárolóterlületen.
- MUX (cimmultiplexer), ADAT BUSZ MEGHAJTÓ

Ezek az áramkörök biztositják a memória kettős hozzáférését. Egyrészt azzal, hogy processzor műveletekkor, a MEMR, MEMW vezérlő jelek hatására a vezérlő-, cim- és adatvezetékeket a µP busszal kötik össze. Másrészt a képfrissitésnek megfelelő ütemű memória olvasáskor a cimvezetékeket a frissitő buszon keresztűl a szinkron generátorral kapcsolják az adatvonalak µP buszról történő egyidejű leválasztásával.

- TÁROLÓ I.II., SHIFT REGISZTER

Képfrissitéskor a televiziós rendszertechnika által megkivánt videojelet kell formálni, azaz az egyes pontok fényesség-információját időben egymás után kell a letapogató elektronsugár vezérléséhez továbbitani. Szükséges a memória párhuzamosan kiolvasott 8 bitjének sorossá alakitása és a pontfrekvenciának megfelelő ütemü kiléptetése (f_{pont}= 5 MHz). Az éppen ábrázolt 8 képpont bitjeinek shiftelése elegendő időt enged (l.6 μ s) a következő 8 képpont kódjának eléréséhez, s a shift regiszterbe töltésig átmeneti tárolóba irásához. A két átmeneti tároló byte-onként szinkronizálást végez a memória olvasás és az adatok shift regiszterbe való töltése között.

- IDŐZITŐ és VEZÉRLŐ EGYSÉG

Vezérlik a memória tartalom módositását, olvasását, képfrissitéskor az adatok átmeneti tárolóba, s onnan shift regiszterbe való töltését, valamint a videojel formálását.

4.3. Alfanumerikus display vezérlő

Az alfanumerikus vezérlő - szinkron generátor és frissitő memória - 32 sorban, soronként 64 ASCII karaktert jelenithet meg. A karakterek formátuma 8x8-as pontmátrix. Kvázigrafikus megjelenitéshez néhány speciális szimbólumot is tartalmaz a karaktergenerátor. Markerezésre, szövegközi részletek villogtatással történő kiemelésére szolgál a 7 bites ASCII kódokat 8 bitre kiegészitő 1 bites információ. A memória modul elvi felépitését követhetjük végig a 12. ábra alapján.

- RAM MEMÓRIA

Ezen a 2 kbyte-os tároló területen kell már megszerkesztett formában elhelyezni a képernyőn megjelenitendő információ kódjait. Itt is meg kell oldani a memória kettős hozzáférésének lehetőségét, a processzor müveletek és a képfrissités időzitésének az összehangolását.

- MUX, ADAT BUSZ MEGHAJTÓ

Feladata és müködési elve a grafikus vezérlő azonos áramköri egységével megegyező.

12. ábra. Alfanumerikus display frissitő memória modulja

- TÁROLÓ, SHIFT REGISZTER, KARAKTER GENERÁTOR

Képfrissitéskor a memóriából kiolvasott karakter kódok az átmeneti tárolón keresztül a karakter generátorra jutnak. Ez az áramkör egy előre programozott, megfelelő kapacitásu ROM. Az ASCII kódtáblázat 128 db karakterből áll, s ha egy karakterkép 8x8-as pontmátrixban realizálódik, a szükséges ROM kapacitás 128x8byte = 1kbyte. A karakter generátorban 8 byte-os blokkokban foglalnak helyet a karakterképek, a blokkok kezdőcimei ØØ - 7FH-ig megegyeznek az illető karakter ASCII kódjával. Abrázoláskor a karakter generátor 7 cimvezetékén jelenik meg a karakter ASCII kódja, mig további 3 cimvezetéken kerül kiválasztásra az illető karakterkép kódját tartalmazó 8 byte-os blokk egy byte-ja, azaz a karakter éppen megjelenitett TV sorának kódja. Ez a 8 bit shift regiszterbe kerül, ahol párhuzamos/soros átalakitással, valamint a bitek pontfrekvenciával (10 MHz) történő kiléptetésével keletkezik a videojel.

- IDŐZITŐ és VEZÉRLŐ EGYSÉG

Láttuk, hogy az ASCII kódtáblázat egy karaktere 7 bittel kiválasztható. A 8. bit, melyet programozni lehet, hordozza azt az információt, hogy a megjelölt karakter villogjon-e. Ezt a feladatot, valamint további időzitési és vezérlési feladatot lát el ez az egység.

4.4. Függvény display vezérlő

A 13. ábrán látható annak az áramkörnek a blokkvázlata, mely az előző fejezetben ismertetett függvény megjelenités egy célszerű elvi eljárását realizálja.

^{13.} ábra. Függvény display frissitő memória modulja

A modul jellemző paramétereinek áttekintésekor emlitést érdemel az, hogy 512 diszkrét pontban adott egyértékü függvény megjelenitését vezérli. Ezt a tv technikai eszközökkel még biztositható felbontást (3. fejezet), 100 ns-nál kisebb hozzáférési idővel rendelkező memória áramkörök felhasználásával lehetett elérni. Az egység további, az ábrázolást szemléletessé tevő szolgáltatása kétféle markerezési lehetőség. A függvény oszlopok külön-külön villogtatással, vagy fénymodulációval jelölhetők meg. A spektrumok képernyőn folytatott kvalitativ értékelésének hasznos eszköze a 256 függőleges beosztás bármelyik pontjában "huzható" vizszintes alapvonal. A választott markerezési mód, valamint az alapvonal generálás programozottan végezhető.

A függvény display vezérlő - szinkron generátor, frissitő memória a modul - további, az alfanumerikus vezérlő frissitő memória moduljával együtt ad teljes értékü megoldást. Hiszen a spektrum feliratozása, az értékelési eredmények gyors közlése csak igy lehetséges.

A blokkvázlaton a grafikus, alfanumerikus display vezérlőknél jellemzett funkcionális egységeken tulmenően további elemeket találhatunk. A frissitő memória, cimmultiplexer, adatvonal meghajtó, átmeneti tárolók, időzitő és vezérlő logikai egységek feladata és működése alapvetően azonos az eddigiekkel. Uj elemként jelent meg azonban a SORSZÁMLÁLÓ, KOMPARATOR I. II., ALAPVONAL REGISZTER, VEZÉRLŐ REGISZTER.

- SORSZÁMLÁLÓ

A televiziós sorok számlálását végzi, félképenkénti periódicitással. A megjelenitett aktuális tv sor sorszámának bináris kódja a komparátorra jut.

- KOMPARATOR I.II.

A függvény megjelenités elvi ismertetésében emlitett döntő hálózatot a komparátor realizálja.

Ennek az áramkörnek a feladata a videojel képzés azáltal, hogy a frissitő memóriában tárolt 8 bites bináris számértékeket sorról-sorra összehasonlitja a sorszámláló aktuális tartalmával. A sorszámláló tartalma 64 µs-onként eggyel csökken, s ez alatt az idő alatt a pontfrekvenciával (10 MHz) müködő cimszámláló ciklikusan végigcimzi a teljes frissitő memóriát és az átmeneti tárolón keresztül a komparátorra juttatja a tárolt kódokat. A komparátor "=" kimenetén keletkező videoimpulzusok azt jelzik, hogy az adott oszlophoz tartozó érték azonos az éppen ábrázolt tv sor sorszámával. Amennyiben az "=" kimenet helyett a "≤" kimenetet használjuk, akkor mindaddig keletkezik videojel az adott oszlopban, ameddig a sorszámláló tartalma kisebb az oszlopban ábrázolt értéknél. Ez lehetőséget nyujt a pontozott megjelenités mellett a kitöltött területtel történő ábrázolásra is.

- ALAPVONAL REGISZTER

A µP buszról tölthető fel 8 bites kóddal, a kód által jelzett tv sorban a képernyőn vizszintes vonal jelenik meg.

- VEZÉRLŐ REGISZTER

MTA Könyvtár Periodika 193//4892 n.

Az üzemmód regiszterben tárolt kóddal kerül kiválasztásra a kivánt megjelenitési mód. Választhatunk pl.: vonalas vagy pontozott ábrázolást, megjelölhetünk függvény oszlopokat villogtatással vagy fénymodulációval, továbbá megoldható az alapvonal törlése.

MAGYAR

JUDOMANYOS AKADEMIA

KONYVIARA

276

5. Összefoglalás

Az ismertetett display vezérlő modulok a jelenleg fejlesztett µP-os célberendezésekben kerültek alkalmazásra. Müködtetésük, tesztelésük során szerzett kezdeti tapasztalatok alapján megállapitható, hogy a video megjelenités mikroprocesszoros célberendezésekben történő realizálása egyáltalán nem öncélu. Ellenkezőleg, felhasználásukkal az ember és gép információkapcsolatát teljesebbé tevő eszközt adhat a tervező a felhasználók kezébe.

Hivatkozások

- [1] Dr. Ferenczy Pál, Televizió vevőkészülékek (Tankönyvkiadó, 1977, Budapest)
- [2] Dr. Ferenczy Pál, Televizió technika (Tankönyvkiadó, 1977 Budapest)
- [3] Raster Graphics Handbook (Conrac Division, Conrac Corporation, 1980)
- [4] The TTL Data Book for Design Engineers (Texas Instruments, 1976)
- [5] Intel Data Catalog (Intel Corporation, 1977)
- [6] Intel Peripheral Design Handbook (Intel Corporation, 1979)
- [7] Mostek Memory Product Catalog (Mostek Corporation, 1977)
- [8] Fairchild Linear Integrated Circuits Data Book (Fairchild Camera and Instruments Corporation, 1976)

Lektor: Lőkös Sándor

Az ATOMKI Közlemények negyedévenként jelenik meg. Terjeszti az ATOMKI Könyvtára (Debrecen, Postafiók 51, 4001). Tudományos intézetek és könyvtárak kiadványaikért cserébe vagy ellenszolgáltatás nélkül is megrendelhetik. Kérésre egy-egy számot vagy különlenyomatot magánszemélyek is ingyen kaphatnak.

Szerkesztő Bizottság: Szalay Sándor elnök, Lovas Rezső titkár, Berényi Dénes, Cseh József, Csikai Gyula, Gyarmati Borbála és Medveczky László.

> Kiadja a Magyar Tudományos Akadémia Atommagkutató Intézete

A kiadásért és szerkesztésért felelős dr.Berényi Dénes, az intézet igazgatója

Készült az ATOMKI nyomdájában

Törzsszám: 6 Debrecen, 1981/december Példányszám: 440

ATONKI coofiliehur

TOM 23 / № 4

СОДЕРЖАНИЕ

ПО	МАСТЕРСНИМ И ЛАБОРАТОРИЯМ	251
з.	Нормань: Исследование свойств бездисперсной магнитной системы транспортировни численным расчетом траекторий	251
й.	Молнар: Блоки управления дисплеем для модульных систем на микропроцессорах	261

Volume 23/ Number 4

CONTENTS

FROM OUR WORKSHOP AND LABORATORY

251

•.

z.	Kormány: Examination of the characteristics of	
	a nondispersive magnetic transport system by the numerical calculation of trajectories	251

J. Molnár: Display control units for modular microprocessor systems

261