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APPLICATION OF THE DIFFERENCE METHOD TO THE
GEOMETRICALLY NONLINEAR DIRECTOR THEORY OF BEAMS

CZIBERE, B.*

(Received: 20 May 1992)

A geometrically nonlinear theory is presented for the plane bending of straight
beams with the finite difference energy method. According to the straight line hy-
pothesis the beam is described with two position vector components and two director
components; the strains are formed by the dot products of these vectors. The deter-
mination of the difference operators is based on the least square method. Using the
principle of minimum potential energy, a system of nonlinear algebraic equations is
obtained which is solved by the Newton—Raphson iterative method.

1. Introduction

A large deflection analysis of elastic, flexible frame structures is
introduced by /1/, /2/. The purpose of the present paper is to demonstrate
an energy method to analyze a beam undergoing finite displacements and ro-
tations. The finite difference method is suitable to solve linear problems
of continuum mechanics (see /3/), but in the nonlinear case, the procedure
does not prove to be convergent. On using the finite difference energy
method, unlike the finite difference method, the difference operators are
inserted into the integral equations; consequently the convergence becomes
much quicker and convergence may be attained in nonlinear problems too.
During the analysis we restrict ourselves to plane bending of elastic,
straight beams with constant thickness in the undeformed configuration.

In accordance with the straight line hypothesis (see /4/, I5/, [sl)
the geometry of the beam is described with the aid of the position vector of
the middle line and the so-called director assigned to every point of the
middle line. The position vector is kinematically independent of the direc-
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Akadémiai Kiadd, Budapest



4 CZIBERE, B.

Fig. 1. The geometry of the beam

tor, so we have four degrees of freedom. The director in the undeformed con-
figuration is identical to the unit normal vector of the middle line, and
the change of its length represents the change in the thickness of the beam
under loading.

Let £ denote the position vector and ji the director. The reference
and the actual position vectors of a point outside the middle line of the
beam lying in the (Ep e”) plane (Fig. 1) are as follows:

R*(X, i)

R(X) +nn,

r*(X, n) =r_(X) +nd, - n<j, (1)

where X, n
ri

Lagrangian coordinates,
unit normal vector,

K original thickness of the beam.

The above-mentioned director theory extends the Bernoulli theory to
the following features:

— the shear strain is under consideration,

— the thickness of the beam can change under loading.
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2. Strains and stress resultants

The components of the Green strain tensor (e) in accordance with the
director theory (cf. /7/) are formed by dot products as follows:

1w =eD+ 1K
D zye. L' - ). (2 .1)
K -y od, (2 .2)
2 th (2:3)
,, ~y(d = - 1), (2.4)

where e”, Kk, e- and e22 rePresen* the extension, the bending strain, the
shear strain, and the thickness strain, r/ and cf denote the derivatives of
the vectors £ and £ with respect to X. W assume the contribution of the 2nd
Piola—Kirchhoff stresses, analogously to the strains in accordance with
equations (2 .1—2.4):

u(x, M) =apx) +noy(X),
i2(x, N) - a%) »
n) =az2(x). (3)
The virtual internal work is
6AL = j J Qij « 6erdAdX. (4)
X=0 (A)

O substituting equations (2.1—2.4), (3) into (4), we obtain

(5
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where N, M Qand T represent the stress resultants as normal force, bending
moment, shear force, and transversal normal force, respectively. In the case
of elastic material, on employing Hooke's law in the plane stress state
version (cf. /8/),

\%

a=2G | , S .o (6)

we get the following formulas for the stress resultants:

N:AI’%GV(eD+v‘e22)’

M= IEK,

Q = 2AGe"2>

t n G f \

T=Al-v v'eG+e22"’ ()

where E = modulus of elasticity in tension
G = modulus of elasticity in shear,
Poisson's ratio,

<
1

unit tensor of 2 dimension,

2 e 1 =en + e22
area,

moment of inertia.

3. The finite difference representation

In addition to its quick convergence, a further advantage of the
energy method is that we need to substitute only first-order derivatives
into our formulas. Thus the main problem now is how to calculate the first
derivative. Since we require its square, the well-known central difference
operators introduced in /9/ cannot be employed. In order to determine the
dot products of the derivatives of the director and the position vector in
equations (2.1—2.4), we employ the least square minimum method, as present-
ed in the following sections.

For our finite difference discretisation, let us consider an equi-
distant mesh with step width h. All derivative quantities are approximated
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Fig, 2. Finite difference discretisation

by the application of three nodal points. Let us introduce a local co-or-
dinate system with the co-ordinate x (Fig. 2). Assume that both components
of the position vector and the director are quadratic in x:

fia " Tir — Tig =2 0y 08
rx =r 2+ 2 X 2 X’
drx) = di2 + di3 . dil <4 di3 2d|§ + dil -2 N (8)

where r*k, d*k (i =1,2; k =1,2,3) are the values of the position vector and
the director in the k-th nodal point.
The derivatives of formulas (8) with respect to X are

3ri(x) . .
_ 1 ri3 e« ril

3X =ri(x) h 2 ri3 - 2ri2 + ril |rX
ad”x) . .
_ 1 di3 - dil

x -4 2 di3 - 2di2 + dil,

3.1, Approximation of the extensional, bending, and shear strains

We need to approximate the strains defined by (2.1—2.4) so that they
satisfy certain conditions following from the beam theory (e.g. by pure
bending the director remains perpendicular to the tangent of the deformed
middle line, that is =0, etc.).
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371 JL _Agpro_ximation__at_jjlterj]*jresh_goJjTts_

In order to satisfy the conditions mentioned above, we assume that in

the neighborhood of an internal point, EgCx) and kG<) are linear functions
and is constant. According to the least square method we have to

minimize the three formulas as follows:

., 12
o0 ‘]lm e ellx T mr(x) dx,

co2 +cIlx” — W(x) &

Vg

o12 I Co3 - £'(x) '"H(x) dx. (10)
Computing the integral expressions for the parameters cg®——cgj listed below:

01 =H i’(X) oj'(x)dx, chr = | J X *r'(x) «£'(x)dx,
-1 -1

Jo2

1 T
:JJ r'(x) ecT(x)dx, n2 q f Xor'(x) «d (x)dx,
-1 -1

4 jE'(x) e cT (x)dx,

-1

Jo3

the following difference operators are obtained:

7 8 1 o |
/ST =— -8 16 .8 IST2/ = — 1 o <t
12h 1 @ m hz 0 -1 1
3 4
IST3/ = — 4 O 4 (11)
12n 1 -4 3
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Further, with the aid of these difference operators, handling them as
matrices, the strains can be calculated as follows:

D ~2 Tik -/STl/J-k °r1j. * Ty -/STka °r1j. eX -1 -eQ+ eQ- X,

«mrik «/ST1/jk «  +rik «/ST2/jk m1,j o~ -  * Kkl

E12 =7 rik ' /ST3/jk ' dij, Ci=12; j,k=1,2,3). (12)

2 -Jj_217£Pfi><Aniaiion_ bou[ldji*_jToints

In order to satisfy the conditions mentioned in section 3.1, we assume
that in the neighborhood of a boundary point the extensional, bending, and
shear strains are constant; consequently in this case the three functions to
minimize are

2

I ¢
=1 Griedd
) G B?

where we integrate from a=-1 to b =0 at the left-hand side boundary point
and from a=0 to b =1 at the right-hand side boundary point (see Fig. 2).
W obtain the difference operators as in section 3.1.1.:

— left-hand side boundary point:

13 -14 1 6 7 -1

/STl =— 14 16 -2 /ST3/ 7 6 1
12h

1 -2 1 -1 0O

(14.1)
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— right-hand side boundary point:

1 -2 1 0 1 -1
/ST1/ =— -2 16 -14 /ST3/ = Y 1 & 7
12h 12h
1 -14 13 1 -7 s
(14.2)
The strains are expressed by
D% rik *A jKk erig - 1
* =rik «/ST1l/gk  dij ="
(i =12; jk =1,2,3). (15)

e12 =2 rik ' /ST3/k ' dij’

3.2. Approximation of the thickness strain

Assuming, that the jd » d dot product is quadratic in X, the following
formulas are obtained:
a) internal points:

(16.1)

b) left-hand side boundary point:

c) right-hand side boundary point:

(the origin of the local co-ordinate system is taken at the respective nodal
point; i =1,2). 3

We approximate ez2(x) in the neighborhood of each point with a linear
function. The six new difference operators obtained analogously to the
method employed in 3.1.1. and 3.1.2. are listed below:



GEOMETRICALLY NONLINEAR DIRECTOR THEORY OF BEAMS 11

a) internal points:

(17.1)

b) left-hand side boundary point:
(17.2)

c) right-hand side boundary point
(17.3)

Using these matrices, we get that the thickness strain is

0 1

e22 =1 [dik */ST4ljk * dij +dik +/ST5/jk «dij «*-1 e22 +e22 "%

(i =1,2; j.k =1,2,3). (18)

4. Application of the principle of minimum potential energy

The strain energy in the neighborhood of a nodal point can be express-
ed as:

2G 0 N K2 | 0 ~ 14 0 14y ,0 1 42
, . ®p + x6g) + Buleg + xeg)(e22 + <2' 4+ 22 xe22’

+ EI(K + XKi)2 + 4AG(e12)2 hd?; (19)

here the interval of the integral is
a) for internal mesh points: from a=- »~ to b =y;
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integral intervals

distribution of the

nodal points

Fig. 3. Integral intervals by computing the strain energy

b) for left-hand side boundary points: from a=0 to b =i;
c) for right-hand side boundary points: from a = - to b =0 (see

Fig. 3).
O substituting the formulas (12), (15) and (18) into the integral

expression (19), and carrying out the integration, we obtain the strain

energy in the following form:
W (20)

where the vector £ has 7 discrete strain components:

e 0 10 1 o il
eDeDK K e12 2e22j"

and A denotes the work matrix independent of the strains.
The tangential stiffness matrix with reference to three nodal points is

ic:}
/SEIIB 3)(?52\/:& ﬂ_ kn en +3‘ﬂi5 kn
ari 3xi X%
Ci,j =1,2,3; k,n =1,2,...,7), (21)

Where X = || 121 dil d21 r12 r22 d12 d22 ri3 r23 di3 d23r
The total potential energy is defined by

M=W- Aa, (22)

where W:X(WE) denotes the strain energy of the beam and IS represents the

external work.
In accordance with the principle of minimum potential energy one can

write
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-, lawv 3A | n
121 3x ] - ' (23)

where , (i =1,2; n=12,...,np), and np is the number of the

rin’ din
nodal points.
O applying the energy principle, a following system of nonlinear

equations is obtained:

o\ aw A - Da n
&& =a7-97=L-£ =0. (24)
which we can easily solve by the Newton—Raphson iterative method:
By « X - K 2 Fedy - B (25)

where 8 is the global tangential stiffness matrix

S= ) , (i,j =1,2).

5. Numerical results

The show the effectiveness of the procedure introduced above, some
numerical examples are presented in this section. W will study a clamped
beam, loaded at its free end by a concentrated and step-by-step increasable
load.

5.1. Determination of the Eulerian critical buckling load

In this problem our calculation is based on the fact that on gradually
increasing the pressing load, the determinant of the system of equations
changes signs at the critical load. By increasing the number of the nodal
points, the procedure converges to the exact solution, as it is shown in
Table 1.

Table 1. Critical buckling load: The error of the calculation
(The length-to-thickness ratio is 1/100)

Nodal points 5 7 9 n 15

Error [V 3.8 1.72 0.96 0.61 0.31
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5.2. Determination of the curved shapes of a beam with a pressing load

Figure 4 shows a cantilever beam loaded by step-by-step increased
pressing load. The procedure is started by the Eulerian critical load and,
in addition, a small transversal load (of magnitude 1/1000 of the critical

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 10

Fig. 4. Cantilever beam with step-by-step increased pressing load

Table 2. Cantilever beam with a step-by-step increased pressing load (P).
Summary of the solutions. The results correspond to the deflection at the
end of the beam (w)

\n/£ wle
Load step p/pcrit Numeric, res. Analytic, res. Error N1/
1 1.015 -0.2223 -0.220 1.04
2 1.063 -0.4227 -0.420 0.64
3 1.152 -0.5948 -0.593 0.30
4 1.293 -0.7196 -0.719 0.08
5 1.518 -0.7917 -0.792 -0.04
6 1.884 -0.8032 -0.803 0.02
7 2.541 -0.7504 -0.750 0.05
8 4.029 -0.6245 -0.625 0.08
9 9.116 -0.4212 -0.421 0.05
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load) is applied only at the first step of iteration. The length-to-thick-
ness ratio is 1/100 and 31 nodal points are employed. The numerical results
and the analytical results presented in /10/ are compared in Table 2.

3.3. Large deflection analysis of a cantilever beam

A cantilever beam loaded by step-by-step increased transversal load is
analyzed. Figure 5 shows the deformed shapes of the beam by five load steps.
The numerical results presented in /11/ are compared in Table 3.

-0.4 -0.|2 0.0 O.|2 O.|4 O.|6 O.|8 l|0

Fig. 5. Cantilever beam with a transversal load

Table 3, Cantilever beam with a transversal load. Summary of
the solution. The coordinates (rj, I2) correspond to the end
of the beam

Numerical results Analytical results
Load step

ryz r2/ 1| rjlf r2/-f
1 0.87014 -0.44873 0.87155 -0.44561
2 0.79840 -0.54715 0.80028 -0.54367
3 0.71097 -0.63774 0.71318 -0.63401
4 0.60578 -0.72071 0.60818 -0.71669
5 0.47384 -0.79966 0.47639 -0.79483
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5.4. Bending to a full circle

The deformed shape of a cantilever beam loaded by a moment at its end
is a circular arc. On increasing the load in 10 increment steps to reach the
bending moment required to form a full circle and using 21 nodal points, the
solution is obtained with 10 iterations in each load step. Figure 6 shows
the deformed shapes of the beam at every second load increment.

-0.4 -0.2 0.0 02 0.4 06 08 10

Fig. 6. Bending to a full circle: the deformed shapes of the beam

5.5. Investigation of the effect of the shear strain

As the last example we restrict ourselves to the linear analysis of a
cantilever beam loaded at its free end by a transversal load (P). In this
linear case, in consideration of the shear strain, the deflection at the end
of the beam is (see /12/)

v\yvhole - v\)(irchh + v\;;hear

irchh P shear 6 HC
where w/ 3E T w "5 G
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Table 4 shows the analytical and the numerical results in case of dif-

ferent lenpth-to-thickness ratio.

Table 4. The effect of the shear strain by a cantilever beam. The results
correspond to the deflection at the end of the beam (w).
(,whole . ,Kirchh + ,shear)

Le.ngth—to— Analytical results Numerical results
thickness i .
) wKirchh/? wShear/ * whole/* ~whole/
ratio ”
1/100 0.16 0.0000128 0.1600128 0.1602106
5/100 0.16 0.00032 0.16032 0.1607520
10/100 0.16 0.00128 0.16128 0.1614289
15/100 0.16 0.00288 0.16288 0.1625419
20/100 0.16 0.00512 0.16512 0.1660984

These five examples show that our results obtained by the above numer-

ical method are in good agreement with those obtained analytically.

10.

11.

12.
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COMPILATION OF THE FIRST HUNGARIAN NETMIRK-LEVEL
PAVEMENT MANAGEMENT SYSTEM (PMS)

GASPAR, L. Or.*

(Received: 4 February 1991)

The first Hungarian network-level PVS relies on Markov matrices. The system can
be used for the calculation of the funds needed at various condition levels, for the
regional distribution of given amounts of financial means at the minimization of na-
tional economy costs and for the determination of the economic and the technical con-
sequences of subsequent modifications in the funds distribution.

1. Introduction

It can be observed all over the world that the financial means avail-
able for highway purposes are more and more behind the actual needs. Al-
though a growing share of these funds is used for maintenance and preser-
vation tasks, even these financial means decrease continually in several
countries — anong others, in Hungary —mlately. This fact, naturally, in-
fluences the actual national roads policy, our am can only be the de-
celeration of the general condition deterioration.

That is why the optimal distribution and allocation of rather limited
financial means have become even more important than before. In the latest
years, a significant development could be seen in the actual method of the
allocation of highway funds between counties (highway directorates). The
former simple procedure relying upon normative values that were functions of
road length, pavement type and, slightly, of traffic size were gradually
substituted by methods utilizing information about the actual pavement con-
dition. Recently the need has emerged that this funds allocation should be
mede as objective and reliable as possible. This intention was declared also

*Gaspar, Laszlo ifj., H-1158 Budapest, Szfics I. u. 2, Hungary

Akadémiai Kiadd, Budapest
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by the professional managing authorities. As objective preconditions of this
development it can be mentioned the availability of the necessary data (in-
sufficient quantity and accuracy) as well as of the appropriate computer
technical background necessary for data retrieval, processing and the
elaboration of allocation model.

Thus, the development of the first Hungarian network-level PVS has
been performed among the above circumstances.

2. Scope of the task, network-level and project-level PMS

The research work presented here aimed at the compilation of the first
version of the mathematical model of the Hungarian network-level BVB /1/,
more precisely its first version was to be established.

The model relies upon the available information on the highway net-
work, traffic, pavement structure, cost etc. The main influencing technical-
economic factors were realistically considered and, at the same time, the
limitations of available information were also taken into account. Compared
with the preceding methods, the establishment of optimization system can be
seemed as a significant step forward although several necessary future de-
velopment directions can already be pointed out /2—4/.

The model had to have the following main functions: determination of
the necessary amount of funds ensuring a given future pavement condition, as
well a reliable regional allocation at given limitation of available finan-
cial means. When establishing the model, the sometimes controversary re-
quirements of high scientific level and of the easy practical applicability
were also considered having a direct effect on the complexity and the size
of the mathematical model, as well as on the approximations and negligences
applied.

In 1988 an expert team under the supervision of the Highway Department
of Ministry of Transport investigated the preconditions for the development
of the first Hungarian PMS, its possible time-table and the expected re-
search expenditures. Relying on the actual situation, it was concluded that
the creation of the first working version of the project-level PVB in Hun-
gary needed still several-year intensive research activities, while the
elaboration of the first Hungarian variant of network-level RVS appeared to
be realistic during 1989—1990 /11/.
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According to the investigations performed so far, for the project-
level variant the adaptation of the HDM-III model of World Bank seems to be
the most suitable, however, it also needs still great efforts. Anyway, it
wodld be absolutely advantageous to apply the procedure of World Bank be-
cause of the existing and the future financial relationships with this
institution.

The network-level system should be established prior to the other one
not only because of the fact that the distribution of the financial means
between various regions (counties) preceeds even logically the optimal rank-
ing of actual condition improving interventions from technical-economic
point of view — that is, the elaboration of a project-level PVB — but it
should be preferred as a consequence of following reasons:

— the deficiencies and the eventual limited reliability of the

existing relevant do not hinder in such extent the elaboration of the

network-level A5 as that of the project-level PVB since in the former
case mean values and even only partly homogeneous data sets can be
used,

— for the creation of the network-level RVB there is already an

existing method that can serve as a starting point of the new system,

— even the first version of the project-level BV5 can only be proper-

ly be operated if major organisation changes of several institutions

(e.g. highway directorates, design and construction firms) are carried

out; however, this rather time-consuming and complex series of mea

sures is not needed for the network-level variant.

Thus, the Institute for Transport Sciences (KTI) elaborated — on be-
half of National Highway Directorate the mathematical model of first Hun-
garian network-level BVB in 1989—1990.

The system developed deals only with the maintenance-operation funds
excluding e.g. the institutional costs, the winter maintenance and traffic
engineering expenditures.

Several preliminary research reports have been mede in the theme
/[2—6/. The final report /7/ summarizes the whole system and the results
obtained.

The model features and the application areas will be dealt with sub-
sequently. The computer and mathematical aspects — carried out by the
mathematicians dr. Andras BM&O and dr. Tamés SZANTAI — are presented in
another article /1/.
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3. Selection of the model

3.1. Preliminary investigations

The development of the network-level model needed various preliminary
investigations.

The decision about the pavement types to be included in the system was
considered as one of the first tasks. For this purpose the distribution of
the whole national highway network area according to pavement types was
analyzed. (Instead of the length, the area was preferred here because the in-
tervention costs in the model can be related only m; thus, area ratios were
applied in the system.)

The funds distribution in 1990 considered several parameters that were
usually conform with the engineering judgement. However, in the lack of an
appropriate model, their coincidence could not have been investigated and
the possibility of the optimization did not exist.

For the model only three main intervention alternatives (routine main-
tenance, surface dressing and asphalt overlay) were chosen. It can be men
tioned here that the maximum number of parameters applied is strongly Ii-
mited by the need of manageability of the matrix which the model relies on.

Among the traffic parameters, AADT and N (number of 100 kN axle loads
passing daily) were taken into consideration. Although the actual heavy axle
load has a direct connection with the bearing capacity loss of pavement
structure the parameter AADT was preferred partly because of its being more
widely known than the other one and partly because some other pavement de-
terioration forms — not only the loss of bearing capacity — should be con-
sidered in this complex investigation.

3.2. Selected methodology

For the solution of the task outlined a methodology realistically
taking into account realistically both the possibilities and the constraints
had to be chosen.

The following "existing possibilities" are highlighted here:

— the available road data sets,

— former Hungarian funds distribution experience,

— presentation of similar foreign systems,

— set of mathematical means for the treatment of this problem,
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— the goal-oriented expert team including experienced highway en-
gineers and mathematicians.

The following objective difficulties and constraints of the establish-

ment of the model can be mentioned:

— the rather limited time available for the elaboration of model,

— only a part of the huge information mess of the country-wide
suitability rating initiated in 1979 is available for the data
processing prior to the compilation of model,

— a certain share of the data available has not sufficient accuracy
because e.g. the existing data base does not contain the conse-
guences of the recent changes in the kilométrage of highways,

— the use of the time series is more or less disadvantageously in-
fluenced by the fact that the condition parameters were often
evaluated in various time-points using different methods and, in
some cases, the results of these procedures have no correlation
between each other,

— no domestic relationships are available between pavement condition
and vehicle operating costs, although they would definitely help
the determination of a well-founded optimum criteria,

— there are still no reliable methods for the determination of the
optimum ratio between development and maintenance funds, for the
forecast of operation costs and for the well-established estimation
of institutional costs, thus, the exact assumption of the funds
limit for the model encounters difficulties even if the total
amount of Road Funds is known.

Taking into account all of these aspects, the Markov-type transition
probability matrix was chosen from among several methods published in the
literature. Oe of the reasons was that it is rather clear, besides it does
not need long time series as a precondition. For the sake of the practical
applicability only limited numbers of condition variations, pavement types,
traffic wvolumes and intervention variants were taken for the compilation
of the model.

4. Markov-type transition probability matrix

The Markov-type transition probability matrix — in case of a certain
pavement type, traffic size and intervention strategy — supplies in the
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model the distribution of the probabilities of the transition of a given
condition variant to another one or of its remaining in the same variant-
during a certain period (e.g. 1 year).

Hereafter the choice of the variables of the matrix, the determination
of various condition variants, the establishment of matrix elements and,
finally, the interpretation of matrix will be dealt with.

4.1. Matrix variables

The variables of matrix are: pavement type, traffic volume, interven-
tion variants. Subsequently the background of the selection of actual va-
riants applied in the system will be presented.

As pavement types, asphalt concrete and asphalt macadam pavements were
chosen. (In the first group all of the rolled asphalt types, while in the
other one the coated chippings, mixed and impregnated asphalt macadanms are
included.) It was also considered that the rest of the highway network
— rigid and unpaved sections — have deterioration characteristics basical-
ly different from those of the two selected flexible pavement groups.

The following procedure is recommended for the funds distribution in
the case of roads with non-asphalt pavements:

(a) The categories “"surface dressing and oiled necadam pavement"

— with a total length of some 6000 km /8/ — are considered as
asphalt macadam pavements. This decision can be explained by the
fact that "surface dressing" means here a surface treatment on
water-bound macadam pavements and the deterioration features of
these pavements are not very unlike to the asphalt macadam pave-
ments because of technological reasons.

(b) The situation is similar in the case of water-bound macadam pave-
ments (total length: only 116 km), so, for the sake of simplicity,
they can be classed anmong the asphalt macadams in the distribution
procedure of funds.

(c) The cement concrete, stone and paving brick pavements as well as
the unpaved (earth) roads have technological features and, con-
sequently, a deterioration process basically different from those
of the asphalt pavements and so, they cannot be ranked to the same
class. That is why a separate share of funds should be ensured
for them.
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(d) As the first step of funds distribution, a given amount of money
should be separated for the rigid (cement concrete, stone and
paving brick pavements). It should be achieved that the funds
ratio of these pavements should be similar to that of the asphalt
pavements.

As a consequence, the actual values of last year or of the
2 last years but one should be used, that is the amount of funds
and the percentage used for the maintenance and operation of both
road types. This percentage will be considered when the separation
of certain part of the total national funds for these pavement
types is decided.

For the characterization of low, medium and high traffic,
following classes were chosen here: 0—3000 pcu/day, 3001—8000
pcu/day and min. 8001 pcu/day.

The following three intervention variants were preferred:

routine maintenance — surface dressing — asphalt overlay. (It
should be noted that several foreign RVS apply also the variant
"do nothing", as well. It was decided, however, to apply in our

system only the variant "routine maintenance" even in the case of
slightest intervention variant when the necessary routine main-
tenance activities have to be performed after the initiation of
first cracks and pot-holes. It cannot be accepted that the pave-
ment would be "left alone" without any maintenance.)

Taking into account the afore-mentioned facts, theoretically
2x3x3 = 18 matrices should be made; two of them (surface dressing
above 8000 pcu/day both pavement types), however, were excluded
because of technological reasons. So, the elaboration of 16
matrices was aimed at. (It should be emphasized that the asphalt
mecadam pavements above 8000 pcu/day traffic are rather rare; so,
in a later development phase also these two matrices can be ex-
cluded. In the first version, however, they were s till included.)

4.2. Determination of the condition variants in the matrix

The rows and the columns of Markov transition probability matrices are
formed by pavement condition variants. Of the condition notes supplied by
the country-wide highway suitability surveys, those are utilized for this
calculation on one hand, of which sufficient data were available with even-
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tuai time series, on the other hand, which were considered of basic im-
portance from the view-point of the deterioration process. So, the following
pavement condition parameters were selected:

— pavement structure bearing capacity note,

— longitudinal unevenness note,

— pavement surface quality note.

We are convinced that the ranking of these condition parameters into
5 quality classes is of sufficient accuracy for the intervention decisions.
(It can be noted that in the United Kingdom only 3-grade and in the former
@R 4-grade evaluation has been used recently.)

The quality levels of various parameters are:

— Bearing capacity
1 good
sufficient
fair
at the endof planned life

a b~ WODN

after the end of planned life
— Longitudinal unevenness

using Burp Integrator by visual evaluation
good 1 good
sufficient
fair 3 fair
insufficient
unbearable 3 poor
— surface quality

1 good
sufficient

ga b~ WO DN P

fair
insufficient

a b~ wODN

unbearable

For the sake of the uniformity, a 3-grade evaluation was selected for
the pavement longitudinal unevenness. So, theoretically 5x5x3 =75 condition
variants would be available. For the mathematical solvability of the problem
and for the approximation to the practical conditions, however, the number of
condition variants had to be by all means reduced.

That is why the condition data of the national highway network in
5 counties were evaluated. As a result, the actual condition variants not
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Table 1.

Nurrtoer

©W N R ®NT

33

T2.
T3.
T4.
T5.
T6.
T7.
18.
19.
20.
2T.
22.
23.
24,
25.
26.
27.
28.
29.
30.
3T.
32.
33.
34.
35.
36.
37.
38.
39.
40.
4T.

Condition variant groups of Markov-type
transition matrices

Condition variants

TIT
112
TT3
T3T
133
134
153
21T
212
273
23T
232
233
234
31T
312
3713
332
333
334
355
4TI
472
4T3
432
433
434
452
453
454
455
5TT
512
513
514
532
533
534
553
554
555

+ o+ o+ 4+

+ 4+ o+ o+

o+ o+ o+ 4+

+ o+ o+ o+

T14
T32
152
135
154

251
252
214
215

331
314
351
352
315
354

414
431

415
451

515
531
552
535

175

155

235 + 253 + 254 + 255

353
335

435

Legend: T35 condition variant of a pavement with
bearing capacity note T + pavement un-
evenness note 3 + surface quality note 5
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exceeding 2.5 km in the sample selected, that is not exceeding approximately
10.0 km in the whole national highway network were determined. (An example
for the condition variants: 135 means the simultaneous occurrence of bearing
capacity note 1, longitudinal unevenness note 3 and surface quality note 5.)
This relatively rare condition variant was not considered as a separate one
but it wes united with a similar (sufficiently frequent) condition variant.
After this calculation, the 41 condition variants presented in Table 1 were
considered in the model.

4.3. Calculation of matrix elements

Each element of the matrix — that is the decimal probability of the
transition of a certain condition variant to another one in one year, in
case of a given pavement type, traffic volume size and intervention strate-
gy — is calculated on the basis of the results gained by the processing of
actual domestic data or, in lack of them, by interpolation.

The available highway network and pavement structural data set wes
processed using the following method. First the changings of the condition
variants in 1984 and in 1989 were determined for some 2500 road sections
with various length where no overlay or surface dressing was made during the
investigation period. This processing that was performed taking into consi-
deration the pavement and traffic categories already mentioned, supplied the
distribution of condition variants after 5 years in percentage. (E.g. in the
case of asphalt concrete pavements with an AADT of 3000—8000 pcu/day and
with condition variant 111: 894 remains in the sare category, 6\ deterio-
rates to the category 112 and b\ to 211 after 5 years.) These percentage
changings were divided by 5 in order to relate them to 1 year. The calcula-
tion wes mede in each variant if min. 5 km total length was available. These
percentage distributions — after dividing by 100 and rounding off — became
the matrix elements. Where no actual data were available interpolation (or
sometimes extrapolation) was done. In case of surface dressing and asphalt
overlay the condition notes before and after the intervention were compared
in order to obtain information about the typical condition changing.

A row-vector situated under the matrix is connected with it. Every
element of this vector means the unit cost for 1 m2 at the given interven-
tion type performed on the section that has a condition variant specified
above the appropriate column of the matrix. This unit cost is identic in the
whole country.
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4.4. The interpretation of the matrix

Any of the 16 matrices has a size of 41x41. According to the condition
variants presented in Table 2, using their numbering, the matrix has the
following structure. (Horizontally the condition variants of first year
— the basic situation —, while vertically the expected condition distribu-
tion of second year can be found.)

E.g. the symbol a¢ in the matrix means the probability of the tran-
sition of a pavement with condition variant 2 to condition variant 3 in the
next year (at the pavement type, the traffic volume and the intervention
strategy of the matrix in question). If the probability is 209% the value of

is 0.20.

The sum of each column is 1.0 because all (100%) of the sections char-
acterized by any condition variant will get into one of the condition va-
riants next year.

Obviously, after only routine maintenance the matrix elements can be
found on the diagonal or under it, according to the general deterioration.
At the same time, surface dressing especially asphalt overlay pushes the

Table 2, The structure of a Markov transition probability matrix

1 2 3 4 51 a
1 au a2l
2 aw a2
3 a23
4 als
5 a2s
a a41,41
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Fig. 1. Markov-type transition probability matrix of asphalt concrete pavements with min 8001 pcu/day traffic volume,
in the case of routine maintenance only
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elements that are different from 0 into the upper part of the matrix as a
consequence of the general condition improvement. (Naturally, some elements
can be found on the diagonal in this case, too.)

Figure 1 presents, as an example, a matrix used for asphalt concrete
pavements.

4.5. Intervention unit costs

The unit costs of various intervention types (only routine main-
tenance, surface dressing, asphalt overlay) that can be found as row-vectors
under the matrices, constitute an important part of the model.

Related to this problem, two questions arise: the actual series value
of intervention costs belonging to a given matrix and its 41 starting con-
dition variants, as well as the decision about the use of country-wide
unified or regional costs.

For the first question, it is evident that the interventions needed to
repair the various condition variants have different prices:

— in the case of routine maintenance activities (it includes pot-
holing, crack filling, fine patching and repair on a large area) it
can gradually increase from O t/km to 10 t/km,

— in the case of surface dressing a double dressing is considered if
the original condition is relatively poor (between about the condition
variants 25 and 41).

— the thickness of new overlay increases from the minimum 3 cn up to
10 an together with the condition deterioration.

The decision about the country-wide unified unit costs was preceded
by a detailed preliminary investigation. First the important unit costs
(single and double surface dressing, 3 an asphalt overlay) were collected
— by the help of a phone inquiry — in various Highway Directorates with
the following results.

(a) Single surface dressing
unit costs: min. 20 HUHm
max. 35 HUFm
mean value: 27 HUFm
standard
deviation: 5I—l.F/m2
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(b) Double surface dressing
unit costs: min. 34 HUFm
max. 60 HUFn2
mean value: 43 HUFm

2

standard
deviation: 8 HUFM2

(c) 3 am new asphalt overlay
unit costs: min. 160 HUF/m2
max. 275 HUFm2
mean value: 202 HUFm2
standard
deviation: 27 HUFm2.

Although the variation coefficient of the unit costs is between 0.13
and 0.18 (that is rather high), the order of the unit costs in various High-
way Directorates is not comform at all with the regional geological con-
ditions. No regularity can be observed according to which the regions with
some quarries and/or sufficient local aggregates would have the lowest in-
tervention unit costs.

Three main reasons explained our decision about the application of
country-wide unified average unit costs:

— the regional unit costs are influenced by several parameters that

should not be included in the system,

— the realistic regional unit costs would be disadvantageous in the

funds distribution for the Highway Directorates that maintain their

network economically,

— the use of several unit costs would complicate considerably the

"funds need determination" part of the model.

4.6. Intervention shares on asphalt concrete and asphalt mecadam pavements

The shares of interventions (here only surface dressing and asphalt
overlay) on both pavement types should also be included into the model as a
constraint.

Before deciding about this constraint, the shares of these pavement
types in various traffic classes were investigated, with the following
results:
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A-C D-E

traffic classes
asphalt concrete pavement 11% 30)
asphalt macadam pavement KLYi) —

The percentage values relate to the total area of national highway
network.

If a relatively high weighing factor were contributed to asphalt con-
crete pavements, sone important asphalt macadam pavement would get into a
disadvantageous situation. A similar result would be obtained if a strong
weighing were done as a function of traffic size. Instead, it was decided
that the traffic, the pavement type and condition were simultaneously con-
sidered at the weighing procedure.

Thus, in the initial phase the total areas of "poor quality" asphalt
concrete and asphalt macadam pavements were calculated separately and the
shares of them were considered as prescribed shares of interventions. How
ever, it is important to emphasize that the "poor quality" was interpreted
differently for asphalt concretes as for asphalt macadams.

In the case of asphalt concrete pavements:

— 0—3000 pcu/day: sections with a condition variant containing
at least a note 5,

— 3001—8000 pcu/day: sections with a condition variant containing
also a note 3 or 4,

— min. 8001 pcu/day: sections with a condition variant containing
also a note 5 or 4

were taken into account in the calculation.

In the case of asphalt macadam pavements:

— 0—3000 pcu/day: sections with a condition variant containing
at least a note 5,

— 3001—8000 pcu/day: sections with a condition variant containing
at least a note 5,

— min. 8001 pcu/day: sections with a condition variant containing
also a note 5 or 4

were taken into account in the calculation.

The shares of these two areas became the prescribed area shares of
major condition improving interventions.
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5. Application areas

The network-level PMS-model can be used primarily for the solution of
three tasks:

— determination of the necessary funds need for ensuring a given con-
dition level, at a certain optimum criteria,

— regional and functional distribution of a certain amount of money,
under constraints and a given optimum criteria,

— evaluation of the technical and the economic effect of subsequent
funds distribution modification.

6. Determination of necessary funds

6.1. Basic principles

Also the maintenance funds need can be determined by the help of 16
Markov-type transition probability matrices and of the connected inter-
vention unit costs.

Evidently, the actual funds need relates to a desired condition level.
In the practice, it means usually one of the following:

— minimisation of the shares of some "good" condition variants and/or

— maximisation of the shares of some "poor" condition variants or

— the former condition distribution is required also in the future,

— various constraints are selected for certain pavement types and

traffic alternatives.

In a general case, the shares of various condition variants can be
maximised, minimised, fixed or not regulated at all.

6.2. Sonme trial run experiences

The practical applicability of the mentioned principles was inves-
tigated by several trial runs and the evaluation of their results.

In a trial run, the following constraints were assumed as future con-
ditions: the area shares of the sections of condition variants 6, 14, 20,
21, 27—41 (see Table 1) should not decrease after the intervention. The
shares of the other condition variants were not limited at all. Because of
the relatively few condition constraints the total funds need is only
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2.08-10 HF (610 million HJF for routine maintenance, 646 million HJ for
surface dressing and 826 million HF for asphalt overlay). If the shares of
areas undergoing an intervention are considered, the following results can
be obtained: new asphalt overlay on 1.2%, surface dressing on 11.0%, routine
maintenance (mainly patching) on 87.8%.

Then another trial run was performed when the influence of the in-
crease of constraints on the funds need and the actual shares within the
need was investigated. In this case, besides the constraints mentioned be-
fore (upper limitation of "poor" condition variants), it was also specified
that the area shares of the "good" condition variants — variants 1, 2, 4
and 8 according to Table 1 — should not decrease.

The following areea shares resulted:

111.7 million m (73.0%) routine maintenance
8.2 million m (5.4%) surface dressing
32.8 million m' (21.6%) asphalt overlay
Total: 152.7 million

The cost shares resulted:
422 million HJF (2.8%) routine maintenance
264 million HF (1.7%) surface dressing
14410 million HJF (95.5%) asphalt overlay
Total: 15096 million HJF

When evaluating the above results, it is striking that the attempt to
preserve the shares of the sections of almost perfect condition needs a
rather high extra cost. The former 2000 million HJF increased here by 650%
It is interesting to observe that the share of asphalt overlay considerably
grows. In the first version, only 1.2% of the total area needed an overlay,
while it grew to 21.6% after the increase of constraints. (This change can
be taken as the transformation of the former 90-year strengthening life
cycle into one under 5 years according to the new alternative. It should be
emphasized, however, here that nowadays an extremely deteriorated general
condition prevails and so, if following this strategy, after few years it
will not be necessary to intervene on one-fifth of the network.)
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7. Funds distribution
7.1. Basic principles

In practice it occurs frequently that certain financial means should
be divided for various purposes and regions.

In this case, the minimisation of a value proportional to the vehicle
operating costs is considered as object function while the traffic and the
pavement type constraints are also taken into account. It is a good question
why not the sum of the vehicle operating costs and the intervention costs
— that is approximately the national economy expenditures — shall be
maximised. At present this aim cannot be attained because we have no infor-
mation on the actual vehicle operating costs and these absolute data would
be needed for accomplishing the summation with the absolute values of in-
tervention costs. As long as only relative values connected with the vehicle
operating costs /10/ are used in the lack of more accurate data, only the
minimization of one of these parameters can be selected as an object func-
tion. For this purpose, the vehicle operating costs, as the more signif-
icant one on national economy level, are chosen.

Before the optimisation the calculation already mentioned should be
done according to which the shares of necessary interventions on asphalt
concrete and asphalt macadam pavements — separately for surface dressings
and asphalt overlays are given as a preliminary constraint.

The first step of the distribution of funds is the country-wide dis-
tribution of available financial means according to intervention categories,
pavement types, condition variants and traffic sizes.

After having done this optimisation from the point of view of traffic
operating costs, the regional distribution follows. This time no more
weighing is needed, the distribution is nmade simply according to the area
shares of sections with given characteristics (AADT, pavement type, condi-
tion variant) in various counties.

The selected object function is the minimisation of following sum:

4
2, AN+ AADT™a « FF, where
i=1

A — specific vehicle operating cost parameter as a function of i-th
condition variant and the relative share of heavy traffic (Fig. 2),
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. In case of "nl
Pavement condition and type

0.10 0.15 0.20 0.25
ver,
very good fair poor Y fuel cost factor
good poor
AB 1.00 1.00 1.00 1.00
AV AB 1.05 1.04 1.04 1.04
AV AB 1.08 1.06 1.06 1.04
A AB 121 1.19 1.16 1.14
AM AB 1.26 1.24 121 1.19
AV 1.40 1.37 1.35 1.32

Legend: n — the ratio of the heavy (min. 30 kN) axle load vehicles and all vehicles on
the section
AB — asphalt concrete
AVl — asphalt macadam

Fig. 2. Extra fuel cost factors of roads with various pavement types and heavy tra ffic
ratios

AADT"a — annual average daily traffic weighed by the road area of i-th
condition variant (pcu/day),
Eh — total length of sections in i-th condition variant.
This sum of products can be calculated, naturally, also before the
intervention and so, the effect of various condition improving intervention
strategies on the vehicle operating costs can be evaluated. (Increase? De
crease? To what extent?)
For the use of Fig. 2, the classification of 41 condition variants
into five groups shown in the figure is needed. The three condition note
variations were put into classes as follows:
— "very good condition": if the sum of three condition notes is
maximum 6,

— "good condition": if the sum of three condition notes is between 7
and 9, and none of them is note 5,

-- "medium condition": if the sum of three condition notes is between
10 and 12 as well as none of them is note 5,

— "poor condition": only one of the condition notes is 5,

— "very poor condition": two or three of the condition notes are 5.

The value "a", the ratio of vehicles with heavy axle loads and all
motor vehicles, is to be calculated by putting into the numerator the sum of
camions, trailers, busses and heavy trucks.
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Taking into account the afore-mentioned facts, the product AMAAOT a>L,
is calculated for each -condition-pavement type-traffic variant. These
products are summarized for every variant in order to obtain the parameter

of the initial condition of the network that is proportional to the
vehicle operating costs.

The areas of the various condition-pavement type-traffic variants
change after the distribution of the available funds because a slight per-
centage of the network receives an overlay, a higher share a surface dressing
while only routine maintenance is carried out on the majority of the total
area.

For a new condition distribution, naturally, the parameter pro-
portional to the actual vehicle operating costs can be calculated following
the same principles. (The first element of the product is unchanged, the
second one can be considered constant while the third one, usually, changes.
As a consequence, the total sum of products will also be different.)

As a part of this computerised model, the optimal variant with lowest

value /1/ can be determined using linear programming.

The value of optimal variant can exceed the former value,
proving that the available financial means are not sufficient for the pre-
servation of the original condition level. While if is below K#, then,

fortunately, a more favourable situation than the former one can be at-
tained.

Afterwards the regional (county) funds allocation means only a simple
proportioning where the funds shares of various condition-pavement type-
traffic variants are divided among the counties according to the shares of
the total area of their highway sections with given parameters in the entire
national area.

7.2. Experience of some trial runs

Owing to the fact that the value of the funds (7.0-10g HUF) assumed in
the first trial run is above the presently realistic level, for the further
variants the funds assumed were gradually reduced, that is 6-10 HUF, then
5¢10"* HUF, then 4-10™ HJF and, finally, 3-10° HJ were distributed.

Our main direction of investigation was how the actual funds level
influences the shares of three intervention types. Figure 3 informs about
the changing of the shares used for routine maintenance, surface dressing
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Fig. 3. Relationship between the quantity of funds and the shares of intervention types

and new asphalt overlay in the allocation according to this model as a func-
tion of available funds.

The following main results were obtained:

— in case of the allocation of 3.0-10g HJF funds only one-third of
the financial means was used for asphalt overlays, the highest
share is spent for surface dressings,

— increasing of funds, the financial means allocated to asphalt over-
lay considerably grow while the shares of other two intervention
types, evidently, decrease;

— among the areas of various intervention types not so high percent-
age changes can be observed since the unit costs of routine main-
tenance and surface dressing gradually decrease accordingly, as
— together with the increase of total funds — asphalt overlay is
applied on the worst sections that obtained earlier only patching
or surface dressing.

Figure 4 analyses how the funds increased by 1.0-109 HJF steps in-
fluence the vehicle operating costs (or the parameter proportionate to
them). There is a definite tendency that the "savings" (reduced fuel costs)
are smaller and smaller as the total funds grow. This statement is, natural-
ly, not surprising at all, because the extra funds permit to repair not only
the very poor but also the less bad sections. In the latter case, evidently,
a lower fuel costs reduction can be attained by the interventions.
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Savin?s in the parameter proportional
to fuel costs as a consequence of addi-

tional 109HUF funds (109HUF)
6.0

5.0-

4.0-

3.0-
20.

10-

Initial
funds
30 40 5.0 6.0 70 (109 HUF)

Fig. 4, The savings in the parameter proportional to fuel costs resulting from
additional 10 HUF funds, at various initial funds levels

8. Evaluation of the consequences of subsequent modification

in the funds distribution

It was a frequent case (and presumably it will be also in the future)
that not the optimum funds distribution is implemented. (The reasons can be,
among others, the consideration of local aspects, the need of the concentra-
tion of financial means, the necessity of an internal regrouping of money.)
It is a just claim to evaluate the technical and the economic consequences
of such modification.

The technical consequence is the resulting condition distribution of
the network concerned. It can be easily obtained using the appropriate Mar-
kov transition probability matrices and forecasting the conditions in the
following year according to the changed intervention spectrum.

The economic consequence can be evaluated by the calculation of total
vehicle operating costs (or the parameter proportional to them). The deter-
mination of this sum of products, after the changed intervention alter-
native, makes it possible to estimate the losses in national economy costs
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AT

caused by the new decisions. (An improvement cannot be attained because the

optimum variant was originally developed.)

9. The significance of the model

The significance of the first Hungarian network-level PMS-model can be
summarized as follows:

— the determination and the distribution of maintenance-operation

funds are carried out here considering several influencing factors,

— at the optimization not only the poor but all condition data of
network are taken into account,
— the distribution of funds is done excluding the local subjective
parameters,

— as the last step, some other aspects can be applied in the system,
— the system can readily be developed further.

County

Pest

Négrad

Gydr-Sopron

Koméarom
Borsod-Abauj-Zemplén

Heves

SzaboTcs-Szatmar-Bereg

Hajda-Bihar
Baranya
Somogy
Tolna
Csongrad
Bacs-Kiskun
Jasz-Nagykun-Szolnok
Békés

Vas

Zala
Veszprém

Fejér

Table 3. Organizational indices in various counties

Patching

1.00
0.95
0.90
0.99
0.99
0.97
0.98
0.99
0.97
1.00
0.99
1.00
0.99
0.99
0.99
0.97
0.97
0.97
0.98

Surface
dressing
(cut-back)

regional

1.00
0.91
1.03
1.03
0.91
0.91
0.97
1.00
0.91
1.06
0.97
1.06
1.03
1.03
1.03
0.91
0.89
0.91
1.00

Surface
dressing
(emulsion)

parameters

1.00
0.97
1.03
1.03
0.97
0.92
1.00
1.00
0.97
1.00
1.00
1.05
1.00
1.00
1.03
0.97
0.95
0.97
1.00

1.00
0.9A
0.99
0.97
1.00
0.95
0.97
0.99
0.95
1.00
0.97
0.99
0.98
0.98
0.99
0.95
0.95
0.95
0.95

Asphalt concrete
type AB-12 (3 cm)
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The regional unit costs cannot be directly used partly because of the
lack of accurate post-calculating data, partly as a consequence of the ne-
cessity for the limitation of the computer model size to ensure its manage-
ability. Since the experts of Highway Directorates have already emphasized
repeatedly the advantages of the use of regional unit costs, the following
intermediate solution can be suggested. The primary regional distribution of
funds should be performed using country-wide unified cost values, then the
actual county intervention area shares are determined, by the help of the
pricing (organisational) parameters /9/ shown in Table 3. This modification
can be carried out by norming preserving, evidently, the sum of the country-
wide funds to be distributed.
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NUMERICAL ATHOD FOR THE SOLUTION OF THE DIFFERENTIAL EQUATIONS
DESCRIBING THE STABILITY BEHAVIOUR OF VISCOELASTIC STRUCTURES OF ONE DEGREE
OF FREEDOM

IOJAS, GY.*

(Received: 10 December 1991)

As follows from the nature of the phenomenon, the determination of the behaviour
of viscoelastic structures in the environment of the loss of stability involves nu-
merical problems such as the multivaluedness of the solution, the infinity of the
derivative and case of the internal parameter, the singularity of the solution. Numer-
ical methods to eliminate these problems are presented in this paper.

Introduction

The stability problems of viscoelastic structures can be divided into
two major groups.

Oe of them includes the cases where the inertia of the structure is
taken into consideration. The other includes the cases where the inertia of
the mass of the structure is neglected.

The cases falling within the first group are hardly discussed in the
literature and the present work is not intended either to discuss the cases
where the inertia of the structure is taken into consideration. However,
presentation of a simple structure of inertial mass seems to be still rea-
sonable to meke the investigation neglecting the inertia of the mass more
understandable.

A three-hinged structure consisting of two rods mede of Maxwellian
fluid with the mass of the structure concentrated at the upper hinge is il-
lustrated in Fig. 1. In Fig. 2 a continuous line shows the vertical dis-

*ljjas, Gyorgy, H-1147 Budapest, 6v u. 165, Hungary
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placement of the upper point of the structure as a function of time. As far
as is known today, no distinctions can be made between the stable and un-
stable states of motion of the structure, unless the inertia of the mass of
the structure is neglected.

However, if the inertia of the mass of the structure is neglected,
then a viscoelastic structure will loose its stability, by the definition,
when the first time derivative of the co-ordinates of motion of the struc-
ture tends towards infinite. It was discovered by Huit (1962). The connec-
tion of this definition and the potential energy has been discovered /ljjas
(1982)/. In this case the structure shown in Fig. la can be replaced by the
structure shown in Fig. Ib. However, the curve describing the behaviour of
the structure splits into two parts (shown by the broken lines in Fig. 2).
The curve in the upper part of the figure "bends back" as a function of
time, the point associated with the vertical tangent being the displacement
point corresponding to the critical time (where the structure looses its
stability). The broken line in the lower part of the figure describes the
behaviour of the structure after snapdown. The section of the upper curve
before critical time and the section of the lower curve after critical time
can only be interpreted physically. The vertical straight line between the
two curve sections, which is the tangent of the upper curve was constructed.

It follows from the previous part that problems would obviously devel-
oped in the process of solution of the differential equations describing the
behaviour of the viscoelastic structures in the environment of the loss of
stability if the inertia of the mass of the structures wes neglected. Name-
ly, a method using derivatives in the course of solution cannot be used to
solve differential equation if the derivatives getting to be infinite. This
paper is intended to present an algorithm by means of which this numerical
problem can be avoided.

To simplify the problem, the differential equation describing the be-
haviour of the investigated structure can be solved in a closed form. The
behaviour of the structure shown in Fig. |b has also been investigated by
Huang (1967) and Szalai (1989).

Description of the behaviour of Mises' viscoelastic structure

The equation describing the behaviour of the structure shown in Fig.
Ib will be derived in detail for clear understanding. The strain of one of
the rods as a function of the rise of the structure is:
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= (1)

provided that hg < L. Namely, in this case the following approximations can
be assumed:

hi 1

s=|/L2+h2» L ri (2)

1/
+ 2

)
W=Wu+m«L”+i@q (3)

Based on the above approximations, the force acting in a rod is

F . (4)

In equations (1)—(4), h is the rise of the structure that is the function
of time. If the rods are mede of Maxwellian fluid, their constitutive equa-
tion will be:

kKb [l =KF + bF, (5)

where kK is the coefficient of the spring and b is the viscosity coefficient
of the dashpot. (The dot is the symbol of derivation with respect to time.)

Taking into account equations (1) and (4), the derivatives with re-
spect to time of the compressive strain and compressive force working in the
rod (P = constant!) are

A=Ah; (6)

and
F= h, 7)

respectively.
If equations (4), (6) and (7) are substituted into equation (5), the
following relationship will be obtained after suitable arrangement:

h (8)
2kh2

< T
o
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This is a differential equation with separable variables, and can be in-
tegrated in closed form.

Taking into account that after elastic deformation the height of the
middle of the structure is h = hQat time tQ = 0, the result of the integra-
tion will be:

(9)

The value of h , that is the height of the middle of the structure after the
elastic ("creepless") deformation just after the application of the load, is
obtained from the following equation:

(10)

tion of the load.

The h—t relation that can be obtained from equation (9) has been
plotted in Fig. 3, but its parameters are different from those in Fig. 2.

The parameters of the function can be seen in the figure. If a nu-
merical method including derivatives was used to solve the differential
equation describing the behaviour of the structure, this process would cer-
tainly fail near the point where the structure looses its stability. There-
fore, use of the process describing below is recommended.

An algorithm, preferably a fourth-order Runge—Kutta method shall be
used to start with the solution of the differential equation. (For descrip-
tion of the Runge—Kutta method see any textbook dealing with numerical
methods, e.g. the book of Stiefel (1970).) Practically, we have to begin by
trial and error to presume the length of the intervals of the independent
variable. Those are the first steps of the Runge—Kutta method, unless some
preliminary estimate of the loss of stability is available. Checking pro-
cedures have been built into the process of solution. Thus we investigated
the ratio of the values of the solution belonging to the subsequent inter-
vals, and the length of the steps of the solution was corrected accordingly.
The variation of the derivative was investigated too. This protection served
on the one hand to control the running of the program and, on the other
hand, to get the best approximation of the critical time. Then the solution
was developed into Taylor series, using the arc length as the independent
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variable. This was a very useful method, because in this case, no calcula-
tion of the mixed derivatives is necessary even in case of more variables
/Bronstein and Semendiaev (1987)/.

The arc length, on which the Taylor series was developed, was chosen
so that the ratio of the independent co-ordinates (the time) of the first
and last basic point was within 24

A numerical derivation formula was used to generate the coefficient of
the Taylor series.

The numerical derivatives can be determined only on the basis of non-
equidistant points in this case. Although the derivation of the appropriate
formulae is theoretically not difficult, it is a time-consuming job. For-
mulae of derivatives based on equidistant points are available in the 1li-
terature and these were employed to check the derivation. Although formulae
for numerical derivatives based on six equidistant points is found in the
literature /Bickley (1941)/, its accuracy is better only in the case of the
first and third derivative as compared with the numerical derivation for-
mulae based on five equidistant points. These formulae would deprive us of a
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solution of closed form serving for the determination of the critical
time too.

Namely, a closed form solution can be obtained for the determination
of the extreme value of the arch length-time (that is the critical time). In
this case the critical time is the root of the cubic equation that has to
be found.

This process has been applied to investigate not only the structure
presented above but in case of some similar structures discussed elsewhere
/ljjas (1991)/. The analytical solution describing the behaviour of these
structures is known too.

The structure investigated is illustrated schematically in Fig. 4. The
structure consists of two parts. The rod denoted by AB, was made of Max-
wellian-fluid in one case while being a Dischinger model in the other case.
Both models consist of a linear spring and a dashpot connected in series. In
case of the Maxwellian fluid, the dashpot is a Newtonian fluid, while in
case of the Dischinger model it was an ageing material. The rod denoted by
BC was infinitely rigid in both cases.

In case of Maxwellian-fluid, the analytical solution describing the
behaviour of the structure /ljjas (1991)/ is:

:? Tr cos 9 In tan 2 In tan 8 = t, (1D
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where b and k are material constants, t is the time while the meaning of P
and L can be understood from the figure.

In case of Dischinger model, the equation describing the behaviour of
the structure is

In |, -y [Yr cos O + In tan 4181- In tan O =, (12)
/\r'raxuI z! J

where \ and Qo are additional material constants,

Our experience gained in the course of the investigations is summed
up below.

The accuracy of the critical time obtained by means of the numerical
method described above lay within 26 in every case, certainly because the
Taylor series was started "near" the critical time. However, a practical
criterion cannot be specified for this "nearness". In can only be recom-
mended to work by trial and error.

The investigations showed too that the deformation that belonged to
the critical time and was given as a function of the arc length deviated
from the correct value by a large amount using this method. In some cases
the accuracy lay within 1% but e.g. in case of Mieses' structure discussed
earlier, the expansion resulted in a difference of almost 5% in the value
of the height of the middle of the structure that belonged to the critical
time as compared with the analytical value.

E.g. the analytical solution for the structure presented at the be-
ginning of this work resulted in a value of 0.562942548 s for the critical
time and in a value of 0.069336127 mfor the height of the structure while
in case of Taylor series, the value of the critical time lay at 0.570701265 s
(within 29 and the value of the height of the structure associated with the
critical time 0.047418857 m (a difference of approximately 50%). The con-
siderable deviation can be attributed to the fact that at the time of the
loss of stability, the first derivative with respect to time is infinite.

So we start the Runge—Kutta process in the knowledge of critical time
again. That process was stopped near the critical time where the accuracy of
nearness wes determined in advance. The values of deformation so obtained
was accepted as the values of deformation that belongs to the critical time.
In every case, the solutions so obtained lay always near the values obtained
for the deformation that belongs to the critical time in the analytical
solution, the deviation lying within %
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In case of the structure presented at the beginning of this paper, a
value of 0.072579485 mwas obtained in this way for the height of the middle
of the structure that belongs to the critical time. The difference as com
pared with the analytical value lying within 5%

Generalization of the process for the multivariable case

If the behaviour of the structure is described by a differential
equation system, each of the different independent variables will describe
the motion of a point of the system of finite degree of freedom. Obviously,
the displacement-time relationships giving the behaviour of every single
point can be handled independently and the Taylor expansion as a function
of the arc length can be developed for each relationship of this type in-
dependently whereas the critical time can be estimated in a way similar to
that described above. Namely, in case of expansion according to the arc
length, the Taylor series contains no mixed derivatives.

Otherwise, in case of one independent variable, the solution can be
carried out directly by means of the Runge—Kutta method or some other
method after changing the variables that is, no use of the Taylor series is
necessary. In the example presented, we used the Taylor series only because
of generalization at a later date.

Determination of the change in the internal parameter

The deformation characteristics of viscoelastic structures consist of
two components such as elastic (instantaneous) deformation and viscous
(slow) deformation. Structures consisting of springs and dashpots have been
used to model the viscoelastic materials, where the springs simulated the
elastic component while the dashpots the viscous component.

In the course of the investigation of viscoelastic structures, e.g.
if we want to determine the potential energy of the structure, determination
of the change in the internal parameter(s) as a function of time may be ne-
cessary. In our example, the movement of the dashpot can be determined in
the following way:

O the basis of Biot's work /Biot (1955)/, the "quasi" equilibrium
equation of the structure shown in Fig. 1 is
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-A -k (1-Ad) =0, (13)

where is the parameter describing the movement of the dashpot of the
Maxwellian model. The differential equation giving the relationship between
the total deformation belonging to equation (13) and the movement of the
dashpot is

dA.
b _gd =k (4 _Ad). (14)

The A can be expressed from equation (14) while A can be given as a func-
tion of h (see equation (1)). Thus, the following equation is obtained for
A, as a function of h:

Ay 3 (15)

Since the relationship between h and t is known (see formula (9)),
the relationship between A* and t becomes known too as wes illustrated in
Fig. 5. There is an interval of t where two values of dependent variables
belong to one independent variable as seen in the Figure. The function is
singular at the time of the loss of stability (denoted by Cin the figure).

However, the method outlined above, suited to provide useful informa-
tion about the change in internal parameter as a function of time, can be
used only if the number of the external and internal parameters is iden-
tical. Namely, in this case, there exists a unique solution of the system
of equations similar to equation (13), as a function of A or of the ap-
propriate external parameters. If it is needed to produce this function as
a solution of equation (14), it is quite obvious what kind of numerical
problems should be solved.

Since we have proved /ljjas (1991)/ that d A%dh = 0 holds at the in-
stant of the loss of stability, the following process can be recommended.
Let both sides of equation (14) be multiplied by dt/dh. Thus h will be the
independent variable of this equation. Differential quotient dt/dh can be
determined from equation (8), while A* can be obtained as a function of h by
means of the usual numerical methods.

Accordingly, taking equation (1) or (8) into consideration, equation
(14) can be written as
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Fin. 5

dh (16)

The differential equation so obtained can be solved without any difficulty
and the relationship between and t can be determined by means of the cal-
culated values if necessary. In Fig. 6, the solution of equation (14), that
belongs to the initial values h = 0.191078609 and g = O, is illustrated. If
it is needed to determine the relationship between g* and t, the change of
the height of the middle of the structure (h) as a function of time (t) can
be obtained from the solution of equation (8) while the relationship between

and h can be obtained from the solution of equation (16). If these re-
lationships are known, the relationship between t and g", can be given
which is of course identical with that presented in Fig. 3, obtained by
means of equations (16) and (9).

Generalization of the process

For the purpose of generalization, let the equation describing the be-
haviour of the viscoelastic structure /Biot (1953)/ be written as:
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Fig. 6
— +-7- =0. a7)
8gi 3
where V. — is the potential energy of the loaded structure,
D — is the dissipation function,
g* — is the parameter describing the behaviour of the system.

The quadratic form D is a function of the time derivatives of the internal
parameters. Since a quadratic form can be transformed into a sum of squares
by suitable co-ordinate transformation, the system of equations (17) can be
written so that the time derivative of only one internal parameter appears
in one equation. In this case, any equation containing the time derivative
of the internal parameter can be multiplied by the reciprocal of the time
derivative of the appropriate external parameter. Now the internal pa-
rameters appears in the differential equation(s) as the derivative with
respect to the appropriate external parameter. Differential expressions
like e.g. the right side of equation (8) can be written in place of the re-
ciprocals of the derivatives of the external parameters appearing in the
equation(s) elsewhere because of the multiplication. That means that the
different derivatives with respect to time are expressed from the linear
differential equations describing the change in the external parameters and
substituted into the equation(s) in the way described above. In this way, a
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differential equation system corresponding to equation (16), depending on
the internal parameters exclusively, is obtained.

Summary

As follows from the nature of the phenomenon, numerical problems arise
in the way of solving the differential equation describing the behaviour of
viscoelastic structures in the environment of the loss of stability. Such
problems are the multivaluedness of the solution, the infinity of the de-
rivative and, in case of internal parameters, the singularity of the so-
lution. In this paper, methods to eliminate these problems are recommended.
Expansion according to the arc length has been used to eliminate the multi-
valuedness of the solution in the environment of the loss of stability in
the course of determination of the relation determining the displacement of
the structure. Also, a process to improve the accuracy has been recommended
because, dissimilarly to the acceptable accuracy of the critical time ob-
tained by means of the process, the deviation of the value of the deforma-
tion that belongs to the critical time is considerable compared with the
exact value.

The singularity of the relation describing the internal parameter as a
function of time can be eliminated by determining first the internal param-
eter as a function of the appropriate displacement (external parameter) of
the structure. If the relationship between the internal and external param-
eter is known then the relationship between the internal parameter and the
time can be easily determined according to the method presented earlier. The
problem of singularity is avoided using that indirect way of solution.
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APPENDIX

The following formulae can be used to determine the derivatives of a

function, based on five non-equidistant points:

t

— +Bl c1 D1 E1l
ds " N x1 N t2 +Nt3+N X\ + N5 t5;

d2t a2 B2 . 2 At E2
dse ' i 1 N X2 ml b +N 4+ DN
d3t A3 . B3 . G . . B3 .
dso " +N t2F N t3+N 4 + N x5
S3 N1 1
dat M A+ . E4 .
_ L BAaNG N
dss =n1 1
Nt = (SO - 31)(so " s2)(so - k3)(so - S4);
N= (S-S (st - 8281 - ig(s) - s4);
N = (s2 - So)(s2 - s(s2 - 3)(sz - s4);
N = (ss - SO)(S3 . St)(ss - 3R)(s3 - s4);
N5 = (54 - SO)(S4 _ S!)(S4 - ,&)(54 tr3);
A= (s2 - s1)(s2 - s3)(s2 - s4))
= (s2 - So)(s2 - s3)(s2 - s4) >
€1 = (s2 s1)(sz2 - s3)(s2 . s4) t
(s2 _ Soy(s2 s3)(s2 s4} +
(s2 - so)(sz2 - s,)(s2 - s4) *
(s2 - so)(s2 - SfM(s2 - s3)5
DI = (s2 - So)(s2 s1)(s2 - s4):5
E1 =722 - SO)(s2 si)(sz - s3)5
P =2/(S2 - s1)(s2 - S3) + (sz2 m s1)(s2 -
(s2 - s5)(s2 - s4)/;

(A.])

(A.2)

(A.3)

(A.4)

(A.5)
(As)
(A7)
(A.s)
(A.9)
(A.10)

(A.11)

(A.12)

(A.13)

(A.14)

(A.15)
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The above formulae can be produced by derivation of the Lagrangian in-
terpolation polynomial /Stiefel (1970)/. To determine the derivatives based
on non-equidistant points, an algorithm can be worked out on the basis of
Holnapy's method /Holnapy (1974)/ as well. The formulae for the time de-
rivatives according to arc length can be applied accordingly to the de-
rivatives of other variables according to arc length.
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ON THE USE OF A RANKINE HALF BODY SHAPE AS
A SHARP CRESTED LINEAR WEIR OR RANKINE WEIR
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(Received: 16 April 1991)

In this paper, it is shown that if the two-dimensional Rankine half body of focal
length 1 (distance between the line source and the stagnation point) obtained by super-
posing a uniform flow over a line source, is kept in a rectangular channel of width
equal to the maximum width of the half body (2Ma at infinity), the rate of flow in the
intervening space acting as a sharp crested notch is very nearly a linear function of
the head above the channel bed, for flows above a miniiaim base height and is valid for
a short distance of 5a above the bed. The range of linear relationship between dis-
charge and the head can be considerably improved by increasing the width of the channel
(equal to increasing the width of the weir uniformly throughout) by 0.4 a (for sym-
metrical weirs), so that for all flows above a depth of 2 a above the crest, the dis-
charge is proportional to the head measured above a reference plane or datum, situated
at 0.47 s above the crest, in the range 2 < h/p < 40 within a maxinum error of + 0.5%.
The significant feature of the weir is that it is not a compound weir, and the entire
weir is defined by one equation (unlike Sutro and other linear weirs) a portion of it
above the crest acting as its own base. Experiments with 3 veirs having 21 = 10, 30,
40 cm /base width of the weir = (2Ha + 0.4 sa)/confirms the theory by giving a con-
stant average coefficient of discharge of 0.61, 0.64 and 0.66 respectively for the 3
weirs.

1. Introduction

The study of proportional weirs or notches (used synonymously) is not
only of interest in the study of fundamental hydraulics, but also because of
its relevance to several engineering problems. The recent interest in pro-
portional weirs is stimulated by the concept of reference plane or datum in
the design of weirs /6/. It has been well established that weirs which pass
a discharge Q a Hi, where H = head causing flow, for n< 3/2, can be de-
signed only with bases /8/. They are classified under 'Compensating weirs"'.

*Keshava Murthy, K. and Ramakrishna Rao, A., Dep. of Civil Engineering Indian Institute
of Science, Bangalore 560 012, INDIA

Akadémiai Kiad6, Budapest
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The linear proportional weirs for which n = 1 is one such case. The earliest
attempt to this problem was mede by Stout /15/ and later modified by Sutro
/13, 2/. Recent works on linear proportional weirs include those of Keshava
Murthy and Pillai /8/, Rao and Bhukari /11/, Sreenivasulu and Raghavendran
/14/, Fonck /5/. The linear proportional weirs are of considerable applica-
tions in several fields. As simple discharge measuring devices in Hydraulic
Engineering and irrigation; as dosing devices in Chemical Engineering; as
outlet weirs in grit chambers (sedimentation tanks) to maintain constant
average velocity irrespective of flow fluctuations in discharge /1, 9, 4/.
The several designs and their applications have been highlighted and dis-
cussed in earlier publications. However, in all the previous solutions, the
weir consisted of a base over which a designed complimentary weir is fitted,
the two being defined by different equations. In this paper, we discuss a
novel weir using the Rankine half body, the significant feature of which is
that the entire weir is defined by one single equation, a portion of the
weir above the crest acting as the base. This accidentally serves as an
example of a self basing weir /10/. The rate of flow in this weir for flows
above a depth, is proportional to the head measured above a reference plane,
within an allowable error of + 05%. W treat this problem as a theoretical
problem in hydraulics, leaving aside the detailed experimental work required
for standardization and subsequent field use to another study. The experi-
ments conducted have the limited objective of just checking the theory.

2. Rankine half body — quadratix of Hippias

A uniform flow defined by w= W superposed on a line source defined
by w = minZ results in the flow, whose velocity potential is given by /13/.

®= URCesB + miInR. (1)
The streamline &= 0 is given by

m O g0
u SinO SN0 (say)

or

y = pO- (2)
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Fig. 1. Rankine half body weir

The vertical distance, y, of any point, P, on this curve, from the x-axis is
proportional to the angle, 9, made by the radial line through the source and
the point P with the x-axis. This curve is well knom in analytical geometry
as the 'Quadratrix of the Hippias' /12/, known commonly to Engineers as the
Rankine half body. The curve is shown in Fig. 1 and the co-ordinates (x, y)
of the points on the curve are given in Table 1 (columns 2 and 3). The
distance between the stagnation point and the source, called the focal
length is p. The thickness of the body at the point of source is mu and the
meximum thickness (at «0 is twice this thickness. The curve is easily drawn
by the Rankine's graphical method /13/.

3. Modified Rankine half body weir — discharge equation

If the Rankine half body of focal length p is placed in a channel of
width equal to the maximum width of the half body = 2np (Fig. la), we get a
weir shape as shown in Fig. |b. The co-ordinates of the point on the weir are
given in Table 1 (columns 2 and 4). The discharge through this weir is equal
to
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=2Cd \[2g J Jivx (lyj-y) dx (3)

where y is defined by Eq. (2), is the coefficient of discharge (approxi-
mately equal to 0.6) assumed to be constant which is valid for sharp crested
weirs and streamlined flows. Equation (3) can be written as

q=2d Jg \] Jihx (iyj)dx - 2ad |2g \] Jh-x y dx = 10 - 1A, (4)
where

X1 =k ! el dx (4a)

12 =K J/\ ydx (4b)
and

Kg = 2Cd

It can be easily evaluated (as for a rectangular weir) and is found
to be

Nozfed 5 |SV2 A 52 mf K 312 A 5[2- (5)
As y =pB, X=p(l - *ang) and dy =pdB, substituting in Eq. (4b),
2 af B R 132 @/2
3 Kja(tanB tan ][ ﬁ (ﬂ (@
0]

Hence
a=1-r2=xkp>% [ Ll I | s s VT @

where

=387k b 220
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4. Numerical integration

As the direct integration of Eq. (7) is not possible, numerical integ-
ration is resorted to, to get discharge values for the head h. Numerical in-
tegration has been performed using 'Simpson's rule'. The Horizon 3 computer
is employed. The step size taken in numerical integration is 1/1000 of a
radian which is found to yield results with sufficient accuracy.

5. Addition of vertical slot

A graph of non-dimensional discharge Q (= q/k"5/2) versus the non-
dimensional head H (= h/jj) for the modified weir (Fig. Ib) is shown in
Fig. 2. It is seen that for flows H> 2, the rate of flow is nearly a linear

Fig. 2. Theoretical discharge vs. head curve
(1 — whithout additional slot /Eq. 7/, 2 — with addition of 0.2 vertical slot /Eq. 8/,
3 — with addition of 0.4 vertical slot /Eq. 8/, 4 — with addition of 0.6 vertical slot
/Eq. 8/)
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Fig. 3. Modified Rankine half body weir

function of the head for a depth of flow up to 5, i.e. for the limited range
2 < h/u < 5. However, an addition of a small vertical slot to the weir,
amounting to increasing the width of the weir throughout (or increasing the
width of the channel in Fig. la) by 0.2 ju, 0.4 ~u, 0.6 ju (for symmetrical
weirs) improves the linear relationship between Q and H considerably. The
theoretical discharge in the modified Rankine weir with the addition of a
vertical slot of width np (symmetrical) is given by

g=j (np)Cd "2g h3~2 + 2ad j2g jj Jh-x (n"J-y)dx
o

Q =j K (ry) h3/2 +j (nf)K h32 - 12 (8)



Fig. 4. Percentage variation of theoretical discharges with H
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Table 1. Co-ordinates of the points on the Rankine half body
(Fig. 1), modified Rankine half body (Fig. 3) and K-R weir

(Fig. 4)
Si X *1 y2 *3
No p ju R
1 2 3 4 5
1 0 0.000 3.142 3.342
2 0.1 0.542 2.599 2.799
3 0.2 0.759 2.382 2.582
4 0.3 0.921 2.221 2.421
5 0.4 1.053 2.089 2.289
6 0.5 1.166 1.976 2.176
7 0.6 1.264 1.877 2.077
8 0.7 1.353 1.789 1.989
9 0.8 1.432 1.710 1.910
10 0.9 1.504 1.637 1.837
1 1.0 1.571 1.571 1.771
12 1.5 1.837 1.305 1.505
13 2.0 2.029 1.113 1.313
14 2.5 2.175 0.967 1.167
15 3.0 2.289 1.053 0.253
¢ 3.5 2.381 0.761 0.961
17 4.0 2.456 0.686 0.886
18 4.5 2.518 0.624 0.824
19 5.0 2.570 0.571 0.771
20 6.0 2.654 0.488 0.688
21 7.0 2.716 0.425 0.625
22 8.0 2.765 0.376 0.576
23 9.0 2.804 0.337 0.537
24 10.0 2.836 0.305 0.505
25 11.0 2.863 0.279 0.479
26 12.0 2.885 0.257 0.457
27 13.0 2.904 0.237 0.437
28 14.0 2.921 0.221 0.421
29 15.0 2.935 0.207 0.407
30 16.0 2.948 0.194 0.394
31 17.0 2.959 0.183 0.383
32 18.0 2.969 0.173 0.373
33 19.0 2.978 0.164 0.364
34 20.0 2.986 0.156 0.356
35 21.0 2.993 0.149 0.349
36 22.0 3.000 0.142 0.342
37 23.0 3.006 0.136 0.336
38 24.0 3.011 0.130 0.330
39 25.0 3.017 0.125 0.325
40 26.0 3.021 0.120 0.320
41 27.0 3.026 0.116 0.316
2 28.0 3.032 0.112 0.312
43 29.0 3.034 0.108 0.308
44 30.0 3.037 0.104 0.304
45 31.0 3.041 0.101 0.301
46 32.0 3.044 0.098 0.298

a7 33.0 3.047 0.095 0.295
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Table 1 (cont.)

1 2 3 4 5
48 34.0 3.049 0.092 0.292
49 35.0 3.052 0.090 0.290
50 36.0 3.055 0.087 0.287
51 37.0 3.057 0.085 0.285
52 38.0 3.059 0.082 0.282
53 39.0 3.061 0.080 3.261
54 40.0 3.063 0.078 3.263
Yy = half breadth of the Rankine half body (Fig. 1)

i2
Yj

half breadth of the modified Rankine half body (Fig. 3)
half breadth of the K-R weir (Fig. 4)

YL+Y2=-p. VB3=y2+°-24

which is seen as Eg. (4) with an additional term, due to the discharge in
the vertical slot. Figure 2 shows the plot of the theoretical discharge vs.
head for 3 values of n, viz., n =0.2, 0.4 and 0.6.

It is seen that the addition of the vertical slot helps in extending
the linear relationship of Q and H beyond H = 2. The addition of 0.4 p slot
(for symmetrical weirs) results in an optimum design giving the linear re-
lationship valid to a depth of H = 40. The correlation coefficient for the
straight line fit (for the range 2 < H< 40) is found to be maximum for an
addition of 0.4 p strip (symmetrical weir). In this range, the discharge is
proportional to the head measured above a reference plane situated at 0.47 p
above the crest. The weir is shown in Fig. 4 and the co-ordinates of the
points on the curve are given in Table 1 (columns 2 and 5). The linear re-
lationship between Q and H for n = 0.4 is given by.

G =497 a  p5/2 (J - 0a7), 27jj<id0. )

The values of Qy with n = 0.4 obtained form Eg. (B) and @@ form Eq.
(9) are compared as percentage difference, i.e. (Qy - Qg)/Qy% with H is
shown in Fig. 4. It can be seen that for the range 2 < H< 40, the maxinum
percentage deviation is only + 0.5%.

Thus it is confirmed form the above theoretical considerations that
Modified Rankine half body weir can be used effectively as a linear pro-
portional weir for a sufficiently high range of heads, ie. 2 < H< 40 with
an accuracy of theoretical discharge of 100 + 0.5%.
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Fig. 6. Side view of flow through modified Rankine half body weir, showing nappe

6. Experiments

Experiments were conducted on 3 weirs shown in Fig. 4 having 27u = 10,
30, and 40 om (width of the weir = /(21 + 0.4)p/. The experimental details
are shown in Figs 3 and 6. The weirs were cut in 1/4" (6 mm) mild steel
plates. The boundary of the weir was carefullymarked on the plate by a
scratch awl. The opening was then cut roughly by a band saw machine and then
accurately filed to the required shape. The weir had a sharp edge of 1/6"
(1.5 mm) with a 45° chamfer. The weir was fixed at the end of a rectangular
channel 63 ft. long (19.2 mm), 3'11 1/4" wide (1.2 n) and 3'7 1/4" (1.1 m)
deep with its crest 1' (0.3 m above the channel bed. The water was fed
through a head tank measuring 7.4 1/2" x 7'4 1/2" x5'10 7/8" (2.25 mx 2.25
m X 1.8 nm) to which water was supplied by two pumps, having combined mexinum
capacity of 200 l.p.s (7 cusecs). The head over the weir was measured in a
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Discharge q lit/s -——-"m

Fig. 7, Experimental verification of modified rankine half body as a linear proportional weir

stilling well situated 6 m from the weir with an electronic point gauge hav-
ing a least count of 1/1000' (0.3 nm). The volume of water collected was
measured in a tank measuring 14'10" x 14'10" x 4'11" (4.52 mx 4.52 mx 1.5
m) through readings in a perspex tube of 3/4" (20 mm) ID connected to the
tank at the bottom at one end. The rate of flow was determined by finding
the time taken for the water level to rise from one indicator fixed in the
perspex tube to another fixed exactly at a distance of 50 cm. The indicators
were connected to the leads of an electronic timer through a start and stop
mechanism. The time to collect the fixed volume of water was recorded to an
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accuracy of 0.001 sec for each discharge. Each experiment was repeated twice
to ensure accuracy. At least 30 min were allowed between two experiments to
allow water level to stabilize. The experimental results of the non-dimen-
siénal discharge q/KpS/2 against the non-dimensional head h/,u are shown in
Fig. 7 for the 3 weirs.

7. Experimental results and discussion

It is evident from Fig. 7, for the 3 weirs that for flows b/p > 2, the
discharge has a linear relationship with the head measured above the datum
or reference plane situated at 0.47 p above the crest, which relationship
exists to a depth of up to 40 p, within an error of + 0.3% beyond which the
discharge-head relationship deviates from the linear relationship. From
Fig. 8, it is seen that is constant for each weir within the limits of
experimental errors. However, the average value of varies from 0.61 to
0.66 for the 3 weirs tested. It is not possible to generalize the nature of
variation of with the dimensions of the weir with the limited experiments
conducted.

8. Conclusions

It is shown that the Rankine half body shape (Quadratrix of Hippias)
obtained by superposing a uniform flow over a line source can be effectively
used as a measuring notch. The flow in the intervening shape obtained by
placing a Rankine half body of focal length p in a channel having its width
equal to the meximum width of the halfbody,i.e. 2Lh (at ») produces a flow
having a linear relationship with the head, for flowsabove a minimum head,
to a small of depth of up to 5p. The addition of a small vertical slot of
width varying from 0.2 p to 0.6 g (equivalent to increasing the width of the
weir uniformly throughout) is found to have a beneficial effect on the Ili-
nearity of the discharge — head relationship. Further it is found that the
addition of 0.4 g slot (for symmetrical weirs) has the optimum effect, in
that the discharge is proportional to the head measured above a reference
plane situated at 0.47 p above the crest, for all flows above a depth of
flow 2p and is valid up to 40 p, i.e.in the range 2 < b/p < 40, within an
error of + 05%. The experiments conducted on weirs testify the theory by



RANKINE WEIR 73

giving a constant average coefficient of discharge for each weir. The
weir should prove useful as a simple discharge measuring device, which can
be designed as a high discharge coefficient weir, and also as an outlet weir
for grit chambers (sedimentation tanks) of rectangular sections to maintain
constant average velocity for different flows.
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DETERMINATION OF THE SHEAR CENTER AND SHEAR FACTORS OF
BEAM CROSS SECTIONS USING THE FINITE ELEMENT METHOD

PACZELT, 1.*

(Received: 4 September 1992)

This work deals with the determination of the shear center and shear factors of
a cross section consisting of a homogeneous isotropic material in each subdomain.
Bernoulli's hypothesis has been adopted to calculate the bending stress while a stress
function determined by means of the finite element method, using variation principles,
has been introduced to calculate the stress resulting from shear. Numerical examples
are presented to illustrate the efficiency of the method recommended.

1. Fundamental relationships, stress states

1.1. Bending stress

Let a prismatic beam be investigated. Let the longitudinal axis of the
beam passing through the center of gravity of the cross section be denoted
by z while the axes of the cross section, perpendicular to each other, by x
and y. Assume axes x and y are of arbitrary orientation and axes x, y, z
constitute a right-twisted system. Let the unit vectors pointing towards the
mentioned axes be denoted by ex, ey, eZ

Let the tensor of second order moments in the center of gravity be de-
noted by . Now, with the neutral line of the cross section denoted by a
(see Fig. 1), the bending noment vector is

(1)
that is

(2)

*Paczelt, Istvan, H-3529 Miskolc, Perczel M. u. 30, Hungary

Akadémiai Kiad6, Budapest
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Fig. 1. Axes x, y in the center of gravity of the cross section, position vector
N1 = x éx + ¥ Sy> vector a identifying the neutral line

Fig. 2. Principal axes 1 and 2 of the cross section, a-angle to principal axes

where

(3a,b)
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Fig. 3. Shear forces Vx, W and/or F*, F2

Fig. 4. Shear stresses in the x, y system: Txz, Tyz;
shear stresses in the 1, 2 system: T"2, 12Z

Ix> | the second order moment calculated for axes x and y, respec-
tively,

lxy the second order moment calculated for the Rair of axes,

[« =JV di. v - 1*" " 1,y =JI»»

A A A

The principal axes of the cross section being set by vectors e and »
(Fig. 2).
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Normal bending stress:

0 2-(ax R sez=-e «RxI| "~ <M. (4)

Let forces VA, pointing towards axes x and y act upon the beam at
point z =" (Fig. 3). Now bending moment

M=M & +Mg )

arises in section z, where

M

From (4), by use of (5)—(6):

- (t - 2) Vy' I\/)I/:(t - 2) VX. (6a,b)

ffz=- (E - z) (cxex +C sy), (7)
where
CX:*XVX xy W (8a)
L L -
V., -1V
c = Y Y Xy x (8b)
ety = 1%y

1.2. Shear stress

As a result of shear forces and V , also a shear stress vector

T =Xy, & +-§/z %’ arises in addition to bending stress a, (Fig. 4). Since

the beam is prismatic, T is independent of z that is
x =i(x,y) C))

Scalar equation
+— =0 (10)

obtainable from equilibrium equation Te+V = 0 can be satisfied in case of a
homogeneous isotropic material by introducing stress function ® = d(x,y)
provided we try to find the stress function co-ordinates in the form
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Iz = G By - Q&—l—V)T (CXXZ + Cy 2v xy) = Gva’(‘ - A(x,y) (11a)

“yz = G@’;; - ?—1—_'_—)/}- (cX 2v xy + Cy y2) = G3/ " B(x,y) (lib)

where G — shear elasticity modulus,
V — Poisson's number.

Introducing the tensor of material constants

G O
D= (12)
0 G
the shear stress will be
I =0"'YY - [A(xy) ex + B(x,y) ey] = Qe«Mp- c(x.y). (13)

Note that K. S. Surana uses the potential energy minimum principle by
introducing warping function Y(x,y) in his work /4/, making use of the work
of Mason and Hemmann /3/. The functional used is incomparably more compli-
cated than that used by us.

1.3. Basic equation, boundary conditions, fitting conditions
Basic equation

(V +D+Y®) =0 (14)

applying to @ follows from equation (13) for T according to equilibrium
equation (10). Stress

Tn=e2'l,n=71*n =n-0,Yd-n*c (15)

arises on the boundary of normal n.
Dynamic fitting conditions

(16)
and
a7
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Fig. 5. The case of multiply connected domain

can be written for boundaries FO and Fh of the cross section and for the in-
ternal boundary between the domains, e.g. for boundary of domains e and
i, respectively (Fig. 5).

It is quite easy to make sure that the stresses according to (7) and
(11a,b) satisfy the compatibility equations /2, 3/. (From among the six
equations, it is only the two non-trivially satisfied equations given below
that need to be investigated):

ex _ 3! :FZr 3YXZ|

3y 3 ;X )

32 ey = _3Il_ a2zx+ ~yz |

3z X ¥ Yy x|

Since

=i zx
and vz XL -

the above statement is true also in this case. That means that the displace-
ment field associated with the stress tensor field is compatible, it satis-
fies the continuity conditions. Therefore, the kinematic fitting condition
w ill be automatically satisfied provided fields ® along the boundary of the
subdomains are continuous. Thus this condition need not be prescribed.
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1.4. Formulation of variation principles

_P_rincijple_I_
The solution to the above boundary condition problem comes from the

stationarity condition of functional

L1 = j YO Q-VMA - 2 / dx mndr. (18)
e e e e
'0

That is, all the fields satisfying variation equation

6L1 =0 (19a)

correspond to actual fields. And indeed, considering the variation of L, ac-
cording to fields de independent for each element (making use of the Gauss—
Ostrogradski theorem and requiring that the fields be continuous according
to class along internal boundaries I'c), we obtain that

6Ll 6 (V » D+ Vi[)dA + 6hb(n *QMp- nec)dr

(19b)

| (0us] Ene-Bt Yoe - nesce) + (- [P «Mp n"-c">dr+...:0

" rej 17]

where the vanishing of the different integrals results in basic equation
(14), boundary condition (16) and dynamic fitting condition (17).

1.4 _P£incifle_2

Suppose function @ used for approximation satisfies basic equation
(14). Now the first surface integral of functional (18) can be transformed
into line integral:

| y®e Qeyh dA YPA - |p(Y O YA =

Jn + Qey®)par.
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The continuity of ¢ at the boundary of the elements can be controlled
by means of multiplicator ,u defined for the boundary of the element.
The functional resulting in the solution is

=\ 2 [ Kn g +ViOdr
e e
2 I /U(n « Qe+ vMN)dr + 2 Je p ¢endr. (20a)
e 5

By means of the stationarity condition,
6l2=0= (@ i) ne0- dr
(the continuity of )

2 J 6/j(n + D+ Wi n)dr
/-C 6\
(ro>rh} (20b)

.- J 6NjMnesQ «Vipe _geene) + (ng - - cgeng)ldr -
rej .
c

that is, also the dynamic boundary conditions and fitting conditions have
been obtained. In case of a homogeneous isotropic material, D= GI, | being
idemtensor.

1.5. Shear center

The resultant of stresses T resulting from shear goes through the
shear center /3/. The moment for the center of gravity can be calculated in
two different ways that is, on the basis of stresses T or on the basis of
the shear forces acting upon the cross section:

Ng:JRXTdA:Fbx(Vxex+Vyey):R,X(Fl + 2 e2) (21)
A
where the position vector of the shear center i s_é? = é 53X+ yyce_y =

=5x -1 +nc -2 (Fig- 6)-
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Fig. 6. Co-ordinates of shear center C: xc, yc and/or Cc, Jic

From the above equation, scalar equation

Vy-yCVX:

3 (x ryZ - yrxz)dA = Xg

A

is obtained.
Let the shear force defined as load V=1, V
be denoted by t‘v“ - TQ) Q) e while tha%

’(?X fovz "y
W=1(or Fx =0, FR2=1) by tu /.

Thus
2 ( 0.
i -j<* vz y A 0,
1,
XT§(2) -y T(1>)dA 1,
where
Xe :£C COS a Ne sin a

= sina + n
7c £c o COSa.

c;c F2

-nC IT

=0) (or F, =1, ~ =0
defined as1 load V)I(' =0,

% =1

f2 =1 (22a)

Vy =0

f2=0 (22b)
(22¢c)
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1.6. Shear factors

In the Timoshenko beam model, the cross section remains flat, its an-
gular displacement being affected also by the shear strain /6/. To be flat
means in this case that the value of the shear stress is constant which is,
of course, not true in practice because the mantle of the beam is unloaded.
A shear factor may be introduced so that the shear energies associated with
the constant shear stress and the actual stress will be identical.

Let the case of the rectangle under shear, known from the theory of
strength, be investigated as an example. W can write that, from force F
acting in the direction of x (Fig. 7), the average value of the shear stress
varies according to relationship

3 F I,
T' Txz ' 2A{ a2

where A = 2ab is the surface of the rectangle, the shear stress of an ap-
proximately constant value being

T

Writing the identity of the strain energies, we obtain that

Assuming a beam element of unit length in the direction of the axis,
the integrals in question will be

resulting in a shear factor of k = 6/5.

Using a method of the theory of elasticity /6/, relationship k =
= (12 + 11 v)/(10 (1 + v)) can be used for calculation.

In the general case, the shear factors are defined in the direction of
the principal axes of the cross section. Stress field x* or x"'1 will
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Fig, 7, Shear of the cross section of a rectangle

result from the shear force pointing in the direction of unit principal axis
Fj =1 or Fj = 1, respectively.

The identity of the strain energies is expressed by the following re-
lationships where the strain energy associated with the shear boundary value
problem is given on the right side while the value of energy associated with
the approximate average stress, multiplied with shear factor k , on the left

side:
CooTgnzE N2,
by F1=1, =0 Y) —"e s— N — dA =77 )
AG
(23a,b)
(T4@))2 + (T4g))2 _
by F1L=0, 2 =1 j é_dgrt_IZKZ]'J)ﬁzC
When writing the boundary value problem, values
VX = cos a, Vy =sin a (23c)

shall be substituted for constants ¢ and cy (8a,b), respectively from force
F = 1 acting in the direction of principal axis 1 while in case of force
F2 = 1 acting in the direction of principal axis 2,
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W = - sin q, V =cos a (23d)

In case of a composite cross section where G is assumed to vary for
each subdomain, the values can be simply determined by numerical integration
of the integrals on the left side while summation of the integrals on the
right side according to I/A"JiSaV g.1 (where Al, 1G — area and shear modulus

of elasticity of the surface of the subdomain). The shear factors defined in
the x,y system can be calculated on the basis of formula (A.12) given in the
Appendix, taking relationship = 1/ic into consideration.

2. Use of the finite element method

2.1. Field approximation

The finite element method is used to approximate the fields that is,

®® =N° y® in case of principle 1 while

li® =N° ¢® in case of principle 2, (25)

where NO, | e — approximation matrices,
yO — vector of the nodal values of function @
a — vector of constants,
0
q — vector of the nodal values of ;j.

Approximating the gradient in functional (18) in the form

e
B, 1 "
X 4
vyc yS _ge” y'e _ v a8 (25)
B . -W.
where
N N ayc Yy
Be = we = - we =
X = X =y

the functional to be minimized will be
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U =i 2é¢BT£@IeT(@IedAf T rIe HTO' pdr =

k 2 "eT f -2 fe)=}1J - N (26a)

on the one hand, while

L2 =7 j 1eT neT @ \f dr ae - 2 g el f yeT(nel @& dr ae
e re e ‘e
(26b)
)S,'qu \_YeT(c eny dr = zljgja €T § a® - SLET fT 2, V €T 4
e re
on the other hand.
Here ~ — stiffness matrix of element e (K being the stiffness matrix of
the system),
fe — load vector of element e (f being the load vector of the system),
that is
G o ©
Ke f BeT De BedA Be = 27)
Ae -0 G

8 =y | (|€T neT @ \f + VT @ ne |e) df, VeT =J NeT neT De V¢ dr

er
Ln X! nylJ e

f - 2(1 I v) A (cx X2 + cy 2v xY}8x - dr
re

+ I m"’l V) (cx 2vxy + cy y2) ®y <o dr (28)

In case of isoparametric elements, normal n in (28) can be determined
in the usual way.
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Fig. 8. Isoparametric element

Consider the isoparametric element with 8 nodes, illustrated sche-
matically in Fig. 8. Let the local co-ordinate system be denoted by C n.
Now the tangent vector of boundary n'= 1 is

I O X I Yy x 3y
St A AX3ATH 3Y'U3¢’ -x'3C + -y'ag!

Since relationship
X=2 N.(C, n) x4 (X <—>y)

( x™, y* being nodal co-ordinates, shape function) applies to mapping be-
tween systems (x, y) and (C, n).
Along boundary 3 in question,
V aN

=2 Sx  TFyi - (292)

Then, in a similar way, the normals along the other boundaries can be
simply produced:

Side 1:

(29b)
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Side 2:
3N.
T Sy g M §y | aik=i (290)
Side 3:
zlghl " % '2| /3\i]1| ., i+ 2y V 3;\: —1 X (29d)
G=-1 i O C=1

where b stands for the absolute value of the vector in parantheses in ex-
pression n, e.g.

bl =\
on side 2.
2.2. The equation system to be solved
222 _lIri_case_of L™, equation system
3L1 _ .~ _
JrEoskp-t 0
is obtained, whence nodal vector ¢ can be determined.

2.2.2. In case of L.

Y2 el 2 5%To] - > (31)
3L|l _ _ 6 6

SR S
8 _ (ge™ lye "e 5 e ge (33)

follows from aQ which is independent for each element, because |2 is a func-
tion of |2 (ae, ge).
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Substituting (33) into (26b),

12 =22 geT veT(se)-1 ye ge - 2 4y eT veT(|e)_1 Ve ge + 2 a €T «
6 " e - e

that is

n »
| Qg +g I (34)

where

ge =« (se)_1 ye,

Q — stiffness matrix of the system,
g — nodal vector of the multiplicator field of the system.

Equation system
Q=f

is obtained from the maximum of I*, from which q, then nodal multiplicator
vector ge of element e and, on the basis of (33), the vector of constants ae
can be determined. This latter being available, field A% and then, by means
of (13), tangential stress T can be calculated.

3. Use of FEM-3D finite-element program system

On the basis of variation principle 1, eight or six nodal isoparamet-
ric finite elements have been built into the FEM3D finite element program
system /7/.

The program shall be run twice to solve the problems. First the tor-
sional rigidity and other characteristics of the cross section are determin-
ed on the basis of /8/.

In the knowledge of the directions of the principal axes, the second
running can take place. Because of determination of the shear factor, loads
F~ = 1 and »2 = 1 shall be adjusted to determine the co-ordinates of the
shear center. When the program runs for the second time, nodal vector f
shall be determined first from the equation system (30) assigned to the
shear boundary value problem, using the load vector of the element calculat-
ed according to (28) where constants C, and c, are obtained from (8a,b) by
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(c)

Fig- 9- Beam cross section, coarse and fine division in finite elements /a) Geometrical dimen-
sions; b) Coarse: NUVNP = 80, NUMEL = 19; c) Fine: NUMNP = 330, NUVEL = 94/
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Table 1
Task 1
Authors
Cross section SURANA coarse . “ ne
haracteristic resolution
¢ NUMNP = 80 NUMNP = 80 NUMNP = 333
NUMVEL = 19 NUVEL = 19 NUMVEL = 94

Surface 39
Center of gravity co-ordinates

XS 2.51282

3.8744

ys
Second-order moments

I'x 215.09

ly 91.2436

-6.94822

Polar angle of principal axis a 320134
(degrees)

I 215.478

12 90.8544
Shear center

xe 1.75122 1.178 1.736

ye 3.8784 3.B76 3.876
Shear factors

Si - 1.257 1.257

K2 — 1.492 1.500

Ex 1.19959 1.258 1.258

Kw 1.48019 1.491 1.499

Kxy -0.00577 -0.1303 -0.013
Ic (torsional rigidity) 146.45 146.11 145.03
lw (sectorial moment of inertia) — 317.3 306.8

means of (23c,d), then, from (22a,b), co-ordinates ?c, nc of the shear
centre, from (23a,b), the value of the shear factors associated with prin-
cipal axes <1 and ~2 and finally, on the basis of formula (A.12) in the
Appendix, the values (k = 1/k) <xy, < shall be calculated.

Of course, the program is also capable of displaying graphically the
values txz, xyz, ored of the stressed state resulting from shear.
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Table 2
Task 2
Author's
Cross section coarse fine fine
characteristics resolution
NUMNP = 69 NUM\P = 221 NUMNP = 603
NUVEL = 14 NUVEL = 56 NUMEL = 168
Surface 7.0
Center of gravity co-ordinates
XS 2.7143
ys 0.75
Second-order moments
Ix 1.6458
iy 21.762
*xy 0
Polar angle of principal axis a 0
(degrees)
1 1.6458
12 21.762
Shear center
xc -0.03638 -0.05678 -0.06637 0.03589
Ve 0.75 0.75 0.75 0.75
Shear factors
*1 1.269 1.297 1.303 1.304
K2 19.385 19.48 19.58 19.52
*y 1.269 1.297 1.303 1.304
By 19.385 19.48 29.58 19.52
Kxy 0 0 0 0
Ic (torsional rigidity) 1.6643 1.6166 1.606 1.6031
lw (sectorial moment of inertia) — 5.223 5.258 5.278

4. Numerical examples

Presented below are some numerical examples to illustrate what has
been said above.

4.1. Example 1

The cross section taken from /4/ is illustrated, together with the
distribution of the finite elements, in Fig. 9. NJMVA is the number of
elements while NUM\P the number of nodal points.

Material characteristics: E =29 « 104 Ib/inch, v = 0.22.
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Task 3
Cross section
characteristics
Surface
Center of gravity co-ordinates
XS
Second-order moments
7x
ly
7=y
Polar angle of principal axis a
(degrees)
I
12
Shear center
XC
Yc
Shear factors
Hi
K2
nY
Xy
Ic (torsional rigidity)
Iw (sectorial moment of inertia)
0.25
0.30
\V 0.35
0.40
0.45
Fig.
b) Coarse: NUM\P = 69, NUVEL

= 14; c) Author's fine 1: NUWMNP = 221, NUVEL = 56; d) Author's

PACZELT, I.

Table 3

Thin section

/Ponomariov, Vol. 2/

780
0.1234-107
-31.2
0
2340
0.1355-1010
Table 4
XC <X
-0.06637 1.303
-0.08292 1.303
-0.09824 1.303
-0.1125 1.303
-0.1257 1.303

19.58
19.62
19.66
19.70
19.75

fine 2: NUM\P = 603, NUVEL = 168/

Author's resolution
NUMNP = 437
NUVEL =108

780

22.65
0

0.1235-107
0.3520-106

0

0.1235-107
0.3520-106

-29.65

3.50
3.828

3.50
3.828

2353
0.1355-1010
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Fig. 10

4.2. Example 2

The values determined by Surana /4/ for the characteristics of the
cross section of a beam, illustrated in Fig. 10, are tabulated in Table 2.
Material characteristics: E = 30.504 Ib/inchz, v = 0.25.

Table 4 permits the effect of Poisson's number v to be studied.
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51.5

51.5

Fig.

PACZELT, 1I.

11. Thin-walled open section /a) Geometry in case of the Vlasov theory; b) Distortion
function W, c) Geometry in case of the finite element model, d) Finite element mesh/
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32+ Example 3: Stresses txz and tyz along the boundary, arising as a result of load Wx =1
of direction X /a) min./max. values: -6.064-10-5/3.692b10-3 Nrmi2, b) min./max. values:
-2.745-10'3/2.7453.10-3 Nfirni2/

Fig. 13. Example 3: Stresses Txz, TyZ and/or crrec| along the boundary, arising as a result of
load W = 1 of direction y /a) min./max. values: -2.688'10_3/2.6889-10-3 N'mm2; b) min./max.
values: -6.332-KI4/3.8945-10_3 Nmm2; c¢) min./max. values: 9.7068-10~6/6.7455.10“3 N/rmi2/
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4.3. Example 3

A thin-walled beam cross section is illustrated in Fig. 11. Material
characteristics: E = 2*105 MPa, v = 0.3. Table 3 also shows the results of
calculation for the cross section shown in Fig. 11, based on the Vlasov
theory.

Figure 12 shows tangential stresses xxz and x , resulting from unit
load of direction x, along the boundary of the cross section. As clearly
seen, the value of stress xxz lies by two orders of magnitude below the
maximum value, that is, the stress arising in the corners is practically
zero.

The same stresses but in association with the shear force of direction
y are illustrated in Fig. 13.

Figure 13c shows stress «a The value of the reduced stress arising
in the corners lies by three orders of magnitude below the maximum value, a
good approximation indeed.

4.4, Example 4

Consider the shear factor of a square cross section as a function of
Poisson number v.
Cowper /6/ determined a value of

AN 101 +v)
12 + llv K

in his work.

The values we have obtained on the basis of energetic considerations
for a square with 8 nodal points (8x8 elements) are tabulated in Table 5.
As seen, the difference lies below 4%
4.5. Example 3

8x16 elements have been assumed in the rectangle shown in Table 6.
The Table includes shear factors depending on v. According to Cowper,

X = Ky = 1,cONAR

while, according to the definition of x* we used,
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Table 5. Shear factor of the square

KCowper /6/ 8x8 elements

\Y 101 +v) NUM\P = 225

COAPER - 12 + nv NMEL = 64
K = I/ic
0.2 0.845094 0.83056
0.25 0.847457 0.82919
0.3 0.84968 0.82850
0.35 0.85172 0.82713
0.4 0.85368 0.82576
0.45 0.85546 0.82410

Table 6

E = 2-105 Mpa
= 2-104 me

Ix = 0.666-108 im4
ly = 0.166-108 nmi
lc = 0.4574-108 mmi

1W= 0.2033-1011 n®

NUVNP = 433 KX Ky
NUVEL = 128

0.20 1.239

0.25 1.256

0.30 1.275

0.35 1.294

0.40 1.315

0.45 1.335

S * Ky

In the range of 0.2 «£ . £ 0.45 assumed in the example,

varies between 0.124 and 0.198

1.200
1.200
1.201
1.201
1.201
1.201

98.28
94.84
97.50
97.11
96.73
96.33

99
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RAR-0.S H/R=0.8

R21 R=0-7 R=100mm

Fig. 14, Geometry of a composite cross section

Fig. 15. Geometry of a composite cross section divided in finite elements

4.6, Example 6

Finally, let the values of the shear factors of a composite cross sec
tion be determined.

Material characteristics of the cross section illustrated in Fig. 14

Domain 1: E = 2.14-105 MPq, > = 0.3.
Domain 2: E = 5.8- 105 MPa, v = 0.3.
MAGYAR

TyiiOMANYOS AKADEMIA
KONYVTARA
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With the division of finite elements according to Fig. 15:

Ky = 1.243 K y= 1.241

Other geometrical characteristics of the cross section:

A = 0.20292-105m®
| =0.48175-108 rmd
1X = 0.71215-108 nff#
| = 0.13153-1014* Nrm2

1fi1 = 0.9295-1083Nn

In case of an identical material (E = 2.14-1033),

<, = 1.853, 7, = 1697,
furthermore,
| = 0.90237-1013 N2,
1= 0.1927-1016 N4,
or |G = 140.8231-103 = 0.10939-10% nmd,
IME =V2.14-105 = 0.9006-1010* nr®,
where

G=FE2 (1 +v).

5. Conclusions

The finite element model presented is a rather efficient method to
clear the geometrical characteristics of the beam cross section in two
steps. In the first step, the conventional geometrical characteristics such
as surface, most important moments of inertia, St. Venant's torsional ri-
gidity Ilc and/or the second-order moment associated with warping are de-
termined while in the second step — in the knowledge of the principal
axes of the cross section — the co-ordinates of the shear center and/or
shear factor are calculated by means of the variation principle described
in this work. Presented in Appendix are the variation principle based on the
total potential energy associated with the Timoshenko beam model which takes
the shear strain into consideration, as well as the calculations to obtain
the equilibrium equations and dynamic boundary conditions.
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The calculation based on the first variation principle seems to be
more expedient than that based on the second variation principle because in
the first case, the stiffness matrix and the load vector can be produced in
a simpler way.

APPENDIX

Total potential energy of the beam

Let x and y be the axes falling within the cross section going through
the center of gravity of the cross section while z the centreline of the
beam. Material characteristics of the beam: Young modulus E and/or shear no-
dulus of elasticity G. Displacements of the points of the beam result from
angular displacements < and of the beam cross section around axes x and
y. Assume the cross section remains flat also after deformation that is,

WERY S gXERN- e C (A-

Let the displacement of the point of the beam in directions x and y be
denoted by u and v, respectively. The principal axes of the cross section
are straights 1 and 2, the displacements in these directions are u and v
while the angular displacements of the cross section m5 and mn, respectively
(Fig. A.l.

Fig. A.l. Co-ordinate systems, displacement co-ordinates, anguiar displacement co-ordinates
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The specific elongation in the direction of axis z is

- dN Ll v l
2oz " A 1Y)
while the angular distortion

u 3w -,
Yiz =37 +TT u' dn

Y2z ="az + " = v +V
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(A.2)

(A.3)

(A.4)

Acting along axis z of the beam are loads px and p* and/or moment nx

and my distributed among lines x and y, respectively.

The concentrated moments and forces are I\/!( lv{/ and FX, Fy in the di-

rection of x and y, respectively.
The following transformation relationships apply:

u=ucos atvsina

V =- u sin a *+ V cos a

GJG:tD cos a + @ Sin a

X Y
®5= - dX Sin a + vy cos

Total potential energy:

"p = Ybending ¥ “shear = "

where the strain energy resulting from bending is

“bending 2JJ E(w)2dA dz =

LA
:I—l E(ly O2 + 1, ®2- 21, & g) dz
that resulting from shear

shear = 21 GAM1 Yiz + K2 y2z} dz

(A.5)

(A.6)

(A.7)

(A.8)

(A.9)
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where =1/kp = L«2 being shear shape factors in directions 1 and 2,
respectively (for definition of Kp ~ see /23a,b/),

A is the surface of the cross section while IX, ly' Ixy are second-

order moments.

Work of the system of external forces:

W og(pxu+pyyd=rym e+m
L L

(A.10)
[x qg( * I:X uj 'tlJ' * M/q’y* Fy\ql
Thus, considering the variation of fields u, v, ®p in Mp indepen-
dently of each other, we use the product integration rule to obtain
I 'Ixy rog 1 F
o =0 | K 6\ S @ F m “
L oy oy
Ky I&y uy (O}
| Ttu dz
[ ny Ky v + q;(
K G)/d( IX 'Ixy GJ)Z/L r
.- .M
Iyx Iy . dJ}:], y
Xy ul- chg rFy
[Gu 6V]] GA (A1)
Ky Ky g-¥ ot &
where

- K2 coszo<+Kz Fm’ a

sin? a + k> cos® a (A.12)

Ky, =K (k™ - kM)/2 sin2 a
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and vectors

F eyl nB( mpx' v r NB( 7y

= , m = Q = , U = y M= |':' =

23 - . v, M, Fy

relationships
F=CGKk (A.13)
LV +
and
-1

M=El «&®; ¢ = 1E | M (A.14)

or, as a result of the vanishing of the integrals, equilibrium equations

r-rF
Yy
L =- W Mi1+c¢czXF+m=0) (A.15)
Hs ¢ + | £
and
GA K =-9, (F+g=0 (A.16)
vV +

are obtained from the variation equation according to (A.11) for the in-
ternal forces and moments, respectively while from (A.16),

A< Uu" =-p- GRAk -p- Ak e (e XO)
that is
Y' = - i 1 wP - (5 (82 x ish ¢
1 .-1
wtGA = “F (52 xis’) - (A-17)

where the first term of the right side carries the effects of shear strain.
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BOOK REVIEW

Dulacska, E. (ed.): Soil settlement effects on buildings. Akadémiai Kiado,
Budapest, 1992

The book contains 447 pages, 211 figures, 72 tables, 24 examples, 3 RC
programs and 304 references altogether. It is recommended first of all for
civil engineers and architects.

The book written by a team of five expert engineers aims to facilitate
the striking of a balance between safety and economy. It presents the most
up-to-date results and possibilities, and hence we can utilize it success-
fully.

We must design the building so that

— it should not fail,

— not too many cracks should develop,

— it should cost no more than necessary.

This book deals essentially with computer calculation methods and
programs concerning the foundation, the building and the ground as a whole.
By means of these methods the stresses and deformations of the structure and
the soil can be calculated with great accuracy.

The book is divided into seven Sections.

In Section 1 the importance of interaction between subsoil and con-
struction, together with relevant theories, is reviewed, accompanied with a
long list of pertinent literature.

Section 2 reminds the reader about soil mechanics and introduces in-
formation about the determination of ground surface movements occurring in
nature without the effect of a superimposed structure.

Section 3 deals with the rigidity of buildings, their adaptive capaci-
ty to deformations and peruses questions about the safety of buildings.

In Section 4 computerized calculation methods are presented under the
title of mathematical procedures. In computations for composite structures
the stiffness of the soil must be modelled. The possible systems for no
delling is suggested in this Section. During the last decade the finite
element method has been used extensively to solve various foundation
problems.

In Section 3 approximative calculation methods are recommended for
practice. These approximative methods are also used for the determination of
basic data for the more sophisticated computer analyses. This Section there-
fore deals with different approximative methods which can be efficiently
used for the analysis of either the whole structure or individual structural
elements. Accuracy is of secondary importance when we establish an ap-
proximate procedure.

Case histories are described in Section 6 and various guiding tables
and three computer programs are presented in Section 7.

The reader may utilize each Section in itself, since for someone who
wants to perform a quick approximative calculation, there is no need to
study basic mathematical approaches, or to delve into computer techniques.

J. Farkas

Akadémiai Kiad6, Budapest
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MODIFIED DOGDALE MODEL FOR TWO COLLINEAR CRACKS
WITH A UNIFIED PLASTIC ZONE

R. R. BHARGAVA*—S. C. AGRAWAL*

(Received: 2 May 1995)

Crack opening displacement and plastic zone size are determined or two collinear,
equal, symmetrical cracks contained in an infinite homogeneous and elastic-plastic
matrix. The matrix is subjected to remotely applied Mode | type loading. The cracks
faces thus open forming plastic zones ahead of crack tips. The cohesive linearly vary-
ing stress distribution is then applied to arrest the plastic zones developed. Closed
form solution, based on Dugdale model solution, is obtained using principal of super-
position and complex variable technique. Results obtained are used to study relation

between load required for crack closure, yield stress, plastic zone size, crack opening
displacement and crack length.

1. Introduction

The elastic analysis of stress distribution in vicinity of a crack

using complex variable was given by Muskhelishvili /1/. Using Muskhelishvili
technique Dugdale /2/ proposed a 'strip yield model' giving elastic-plastic
analysis for determining plastic zone size ahead of crack tips. The effect
of partial closure on stress intensity factor of a Griffith crack opened by
a parabolic distribution was investigated by Burniston and Gurley /3/.
A photo-elastic studies for determination of plastic zone size ahead of a
crack tip contained in a thin sheet under uniaxial loading has been carried
out by Mishra and Parida /4/.

Harrop /5/ extended the Dugdale model for the case when plastic zones

are subjected to cohesive parabolic stress distribution.

India

India
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Stress field in an infinite plate, containing two collinear cracks,
loaded at an arbitrary location wes studied by Vialaton et al. /6/. Theo-
caris /7/ applied Dugdale model to determine plastic zone size developed in
the case of two collinear and unequal cracks under opening mode conditions

The problem investigated in present paper is of an infinite, homo-
geneous, isotropic, elastic-perfectly plastic matrix containing two equal,
collinear and symmetrically situated cracks. The matrix is subjected to
Mode | type tension at infinity causing opening of crack faces forming
plastic zones ahead of crack tips. Plastic zones develop at the interior
crack tips get unified. A linearly varying cohesive stress distribution is
applied over plastic zones to effect the cracks closure. Complex variable
theory of elasticity has been used to obtain closed form expressions for
plastic zone size and crack opening displacement.

2. Basic formula

For two-dimensional theory of elasticity using complex variable
method /1/ Cartesian components of stresses (i,j=x,y) and displacement
components U (i =x,y) may be expressed in terms of two complex potential
functions <2 and 3(z) as

pyy - IPxy =*(z) +n(i) - (z-zH'(2), (1)
2u(un’n + iuy’n) =kd(r) - n(z) - (z-2)P(z). (2)
A barindicates  thecomplexconjugateoperation. The dash signifies

differentiation withrespect tothe argument whilecorma after function
stands for partial differentiation with respect to subscript following it.
Shear modulus is denoted by u. For plane strain k =3-4v and for generalised
plane stress k =(3-v)/(I+v), v being Possion's ratio.

Dual problems of linear relationship are obtained using equation (1)

when the rims of crack (s) are acted upon by stresses Py_y' Px_y as
PHt) +n'(t) =P+ - iPt., 3)

on crack(s)
$ (1) +fiHt) =P VW 'ny (4)

under the assumption y"?* g y®'(t+iy) = 0.
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Supercripts + and - indicate the limiting values from positive y-plane
and negative y-plane, respectively. Any point on crack, other then end
points, is denoted by t.

The stresses intensity factor, Kj, at crack tip z = mey be calcu-
lated from
Ki = 2WIl  lim  ((z-2j) 12 ¢(z)}. (5)
3. The problem

An infinite, homogeneous, isotropic and elastic-perfectly plastic
matrix is subjected to remotely applied uniaxial tension in y-direction.
The matrix contains two collinear equal cracks and occupying intervals
/-b, -a/ and /a, b/, respectively (Fig. 1). The cracks and L» open on ac-
count of prescribed tension developing plastic zones ahead of cracks tips.
It is assumed that plastic zones developed at the interior tips of cracks
are unified. Interior plastic zone lies in /-a, al/ and exterior plastic
zones 2: /-, -b/ and ™ /c, b/, develop at exterior tips of the cracks L]
and |2. These plastic zones are, in turn, subjected to linearly varying co-
hesive stress distribution, ter , where t is any point on the plastic zones

and Aye is yield point stress,

Fig. 1. Configuration
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The problem is solved using superimposition of two component problems
termed as (a) elastic problem and (b) plastic problem.

(a) Elastic problem

An infinite, homogeneous, isotropic and elastic-perfectly plastic
matrix contains a stress free straight crack L: /-c, c/. The matrix is sub-
jected to remotely applied uniform uniaxial tension in y-direction. The
complex potential @e(r) for this ey be written as in /1/

¢e(z) =05 az(z2 - c2) 1R (6)

Opening mode stress intensity factor Kje is calculated using equation
(5) substituting value of de(r) from equation (6) and nmey be written as

Ke =°'5  'A/2- @)

(b) Plastic problem

A stress free infinite, homogeneous, isotropic and elastic-perfectly
plastic matrix contains two symmetrically situated cracks L,: /-b, -a/ and
\-2¢ /a, b/. Interior plastic zone occupies /-a, al/ and exterior plastic
zones and Tj occupy /-c, -b/ and /b, c/ ligaments ahead of crack tips -b
and b, respectively. Boundary conditions of problem aref

(i) No stress are acting at infinite boundary.
(ii) Cohesive stress distribution, taye, acting on rims of each of the
plastic zones 'Y, 'z and '™, respectively. Any point on plastic zones
is denoted by t.
And

(iii) Rims of the cracks and |2 are stress free.
Dual Hilbert problems obtained using boundary conditions (ii) and

(iii) applied on extended crack (=the actual crack un relevant plastic zone)
may be written as follows:

on 1nr2uUr+. (8)
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The subscript p refers that potentials refer to plastic problem. Using
Muskhelishvili /1/ complex variable technique the complex potential ®p(r) of
interest may be given by

ir/l2 +sin "a/c -sin_1b/c-b/c cos sin_1b/c
1 -1
x(2) 3-K-I + a/c cos sin ~alc

*(z) = 22(tr/2-sin"Tbic + sinLalc) 9)

b _1 4|_|| - 111\;@22

Stress intensity factor Kj at the tip z =c nmay be written using
equations (9) and (5) as

o) 1

KT :-4yp—c\lc/2 (tr/2 + sin™ alc - sin™ b/c + b/c cos sin b/c -

Ip 2Ir (10)
- alc cos sin alc).

4. Plastic zone and crack opening displacement

Plastic zone size at the tip z =c of crack Lo determined from con-
dition

e KL =0 (11)

Substituting values from equations (7) and (10) a non-linear relation
for determining plastic zone is obtained in terms of a, b, c, crYOyg.
Crack opening displacement at the crack tip z =c is obtained from

u (12)

where function d(r) = GJe(z) + qb(z) is obtained after the singular parts of
d)e(z) and d.(z) have balanced each other. Young's modulus is denoted by E
and Im // is imaginary part of the quantity in bracker. For present case
it may be given by

us :_TI{\ c(ir/2 + sin "alc - sin Wc) (b/c Vc* - b2 + ¢ sin ~b/c). (13)
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5. Example of applications

An illustrative numerical example is considered to study effect of
crack length, inter crack distance, plastic zone size on the load ratio
(load applied at infinity/yield stress) required for crack closure.

Figure 2 depicts variation of required load ratio as inter crack
distance is increased. Crack length is taken unity. It is observed as cracks
are noved apart, less load is required for plastic zone arrest. Studies also
show that larger is plastic zone size more load is required for closure.

Required load ratio is plotted against increasing crack lengths in
Fig. 3. As expected, for larger crack lengths less load ratio is required
for closing exterior plastic zones. Increase in plastic zone size does re-
quire more load for plastic zone arrest.

Crack opening displacement (QCD) at exterior crack tip as interior
distance between cracks increases is shown in Fig. 4. For the load ratio
calculated above, variation of QD shows that bigger the size of plastic
zone, crack opens more.

Fig. 2. Variation of load ratio versus inter crack distance
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Fig. 3. Normalised load ratio versus crack length

115
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Fig. 4. Normalised crack opening displacement variation
against inter crack distance
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Fig. 5. Normalised QD versus crack length

Behaviour of QD as crack length increase is depicted in Fig. 5.
Crack opens more as the crack length increases, as expected.
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FINITE MECHANSVS HAE N0 HGHERORDER RIGIDITY*

GASPAR, ZS.**—TARIiAl, T.***

(Received: 25 Novermber 1994)

In a paper, R Connelly and H. Servatius showed an example of a non-rigid bar-
and-joint assembly which was third-order rigid by their definition. Seeing this obvious
contradiction they concluded that the whole notion of higher-order rigidity is ques-
tionable. In this paper, using a definition of higher-order infinitesimal mechanism we
w ill show a method by which this contradiction could be avoided.

1. Introduction

Connelly and Servatius /1/ have examined the finite mechanism shown in
Fig. 1, and they have found it to be third-order rigid by their definition.
W think it is a contradiction that a structure is finite mechanism and at
the sare time any-order rigid. So, one of the definitions ought to be
changed. Tarnai /6/ has given a definition for rrth-order infinitesimal
mechanisms, and we know that an rrth-order infinitesimal mechanism is
n+Ist-order rigid /2/. Unfortunately, Tarnai's definition is not a construc-
tive one. But if a structure is shown to be minimum nth-order infinitesimal
mechanism then it is sure that the structure cannot be nth-order rigid.

In Section 2 a method will be shown which is suitable to determine a
one-parameter system of infinitesimal displacements of the joints for this
structure where the elongations of the bars have no nth- or lower-order
terms. W apply the method for g =6, so the structure cannot be third-order
rigid (nor even sixth-order rigid) according to Tarnai's definition.

*This paper was read at the MSI Subworkshop on Rigidity and Higher Order Rigidity,
Cornell University, October 10, 1992

*Gaspar, Zsolt, H-1025 Budapest, Kapy u. 40/b, Hungary
***Tarnai, Tibor, H-1037 Budapest, Kolostor u. 17, Hungary
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Fia. 1. The framework of Connelly and Servatius

2. Minimum sth-order mechanism

First we recall the definition of jrth-order mechanism form /e/. Con
sider a bar-and-joint assembly which contains jo bars and consider a system
Y of infinitesimal displacements of the joints. Let us denote an infinite-

simal displacement component of a characteristic joint — as a scalar
parameter of motions — by 6 and the elongation of the bar k due to s by

Let e£~(0) denote the _ith one-sided derivative of (s) at point
6 = 0. Y

DEFINITION. An assembly is an nth-order infinitesimal mechanism if

A= mBCmn . =g fOF 1 =e blit _ "1 (o) i o
ke {1,2,....,b, yer where I' is a set of all the possible systems of in-

finitesim al motions.

Let us consider a 4-parameter change of the nodes where 4 bars have no
elongation and the incline bars (the double triangles in Fig. 1 are replaced
with incline bars rigid for bending but capable for elongation) remain
straight (Fig. 2):

To show that the structure is ninimum nth-order mechanism it is allowed to
substitute the terms in form VI - by their pg-jet (truncation of the
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Fig. 2. Simplified model of the framework; displacements of the joints

MacLaurin series at degree n) because the elongation of four bars even in
this way will not have Bth- or lower-order terms.

We want to determine vertical displacement functions b(a), a(g), d(a)
such that the first g derivatives of the elongation functions

efCa) = |p2 - pxI| - w2
e2(3) = |p4 - P3| - (2)
e-j(d) =j I1p3 +ps4 - px - p2l - 3

at the point g = 0 must be zero. Function ]3(g) is supposed to have the form
n
b@ =2 c.a" 3)
i=l 1
and the coefficients can be determined one by one from the conditions

eJ*CO) =0 (i =1,2,....n)

where the superscript denotes derivation with respect to a. If g =6 then

b=a+a2+a3+0Mad+2%a5+ Wl J (4)

Because of symmetry of the structure, the relationship

d=c+c2+c3+Uc4+" c5+1!31cb

(5)
also holds. Function a(g) is supposed to have the form
2n-5
ca =a+ 2 ca*'? (6)

i=l 1
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Equations (4—6) are substituted into the function

(P3 + P4 - Pi - P2)T(P3 + P4 - Pi - P2)>

and the coefficients C. can be determined one by one from the conditions
that all the coefficients of terms ahlz (j<_2n), must be zero. If n=6 then

2 o9nie 52 93 3 36476 772

c a2 24 ~TTa 2 a +

9
+ 2

7
, 5079 4 248616611/6 9/2 %
8 a - 24576 a

Depending on which sign is chosen for the terms with fractional exponent bar
3 will incline to the right or to the left.

In this way we have found a system of displacements of the joints
where the first six derivatives of the elongation function of each of the
bars, in the original position, are equal to zero. It means that the assemb”
ly in Fig. 1is at least sixth-order infinitesimal mechanism, that is, it is
at least seventh-order rigid, in contrast with Connelly and Servatius's
findings. Using this technique one can continue the series expansion so that
the first seven or more derivatives of the elongation functions vanish, that
is, can show that the assembly is at least seventh- or higher-order infi-
nitesimal mechanism.

3. Finite mechanism

We can go further and neglecting the visual way we can show also theo-
retically that the assembly is a finite mechanism. In this section we will
use notation different from that in Section 2 (e.g., numbering the bars in
Fig. 3 will be different from that in Fig. 2).

Let us consider bar k of an assembly joining joints _i and j_ (Fig. 3a),
and denote its elongation by e" such that

TR I D I I R R

where x”, y*, x», y" are the Cartesian co-ordinates of joints i and j, and
Ik is the length of bar k; and let denote force in bar k-
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@)

(Wi >

(b)

X X

LLI LLI
&

Fig. 3. Notation (a) for a bar, (b) for the whole framework

Due to the classical theory of kinematics /4/ a bar-and-joint assem
bly, which can have at most one state of self-stress, is a finite mechanism
if function ¢ such that

has no extremum at the investigated position of the assembly. (Following
Levi-Civita /5/, Kuznetsov uses the theory of virtual displacements for such
a problem /3/.) In fact, e and Xy are constraint functions and Lagrange
multiplayers, respectively, with the member constraint: e*=0 (< =1,2,...,b);
and o is a potential energy function.

The framework of Connelly and Servatius can be in a state of self-
stress in the basic position with forces in bars:

Xj - x~, = 12,
A= X4> =

X! = i)

X
I

X6 =x6’ = °*
\-J -\, = -1,
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Fig. 4. Motion of rentiers of the framework

Here the subscripts refer to the labels denoting the bars in Fig. 3b.

In the basic position e =0 (k =1,2,...,b), consequently & = 0.
Let us displace joint B parallel with axis y to point B' (Fig. 3b), but
preserve all the other joints at their original place. In this case the
length of bars 5, 6 and 7 will increase, the length of the other bars wiill
not change. (An increase in the length of bar 6, however, does not play any
role since this bar is inactive.) Let us denote, the conmon elongation of
bars 5 and 7 by j3. Since £ > 0 and X* =Xy = -1 we have

b
®=p2 ey :Ltse +X7e =-2e < 0,

that is, for any e the value of function ¢ is negative.

Let us rotate the triangles composed of bars 2, 3, 4 and 2', 3', 4
about points A and A', respectively, by angle a in opposite direction. (In
Fig. 4 we have shown only the rotation of triangle 2, 3, 4.) In this case
bars 5, 7 and 5', 7' remain at their original place, the lengths of bars 2,
3, 4 and 2', 3', 4' do not change, bar 8 displaces, elongates but remains
horizontal. Elongations of bars are as follows:

et =ep = (3 + 2sina - 2cosa)*/" - 1,
6g - 1 —cosa - sina.
So we have

1 /o
® =X ~ +X,,e,, + 4a8n0 = 2 [(3 + 2sina - 2co3a)x/ - cosa - sinaj.
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For small value of a we obtain

that is, for small a the value of the function ®is positive. Consequently,
function ¢ cannot have an extremum at the basic position of the assembly,
therefore the assembly in Fig. 1 is a finite mechanism, that is, not rigid.

4. Conclusions

In spite of the fact that the assembly in the example has a cusp in
the configuration space, it seems that the definition of nth-order infini-
tesimal mechanism in /6/ works, and we conjecture that the truncation tech-
nigue with fractional exponents presented in this paper can be applied for
any value of g. If this conjecture is true then it follows that the assembly
in Fig. 1 is at least an infinitesimal mechanism of infinite order. In this
way the contradiction caused by Connelly and Servatius's definition of
higher-order rigidity could be dissolved.
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ON THE STABILITY OF VISCOELASTIC SYSTEMS
WITH VISCOSITY COEFFICIENTS VARYING IN TIME

USAS, GY.*

(Received: 1 March 1994)

Some kind of structures show collapse in the presence of creep. This is called
in the literature creep buckling. From the beginning of the sixties it is known that
the creep buckling is essentially an elastic one. In the beginning of the eighties the
author showed that the phenomenon of collapse in the course of creep corresponds to
the singularity of the Hessian of the elastic potential function of the structure where
the differentiation was made only with respect to the external parameters. The material
investigated was linear viscoelastic with constant coefficients. This study extends
this proof to the case of linear viscoelastic material with varying viscosity coeffi-
cients, analyse the influence of temperature.

1. Introduction

The stability of viscoelastic structures was probably firstly analysed
by Freudenthal /1946/ who examined the stability of an Euler column mede of
viscoeolastic material. His result was improved by Kempner and Pohle /1953/.
Hoff /1954/ examined an Euler column. The constitutive equation of the ma
terial of the column corresponded to the constitutive equation of a non-
linear dashpot. He obtained that the deformation co-ordinates (deflection)
of the column tended to infinity during a finite time. He called that pheno-
menon creep buckling. Later Huit /1962/ analysed, among other structures,
a simple von Mises truss and he shoned that the rate of the deformation of
the structure became infinite during finite time, but the deformation co-
ordinates remained finite. This von Mises truss wes made of Maxwell fluid.
That means, he did not neglect the elastic behaviour of the material, as
Hoff did, and concluded: "the sudden finite jump (of the structure) is
the results of the simultaneous occurrence of elastic and creep deformation”.

*ljjas, Gyorgy, H-TT47 Budapest, Ov u. 165, Hungary

0864-8085/94/2 4.00 © 1994 Akadémiai Kiadd, Budapest
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His example later was refined by Huang /1966/ who explicitly declared: "The
buckling process is instantaneous and the response during buckling is
elastic." However, he did not explain this declaration. Several authors
examined the buckling behaviour of different structures in the sixties and
seventies, taking into account or neglecting the elasticity of the mate-
rials. Sore of them gave different criteria for the buckling of the struc-
tures in the course of creep, e.g. Samuelson /1969/ and Leipholtz /1975/,
but perhaps the most important studies were published by Hayman /1978,
1980/. He wes the first who wes looking for the connection between the
elastic equilibrium paths and the buckling of simple structures mede of
viscoelastic materials. He essentially supposed in his study that the
buckling of structures showing creep behaviour is elastic buckling. The
creep of the material produces only the deformation and stress state of the
structure where buckling occurs.

Before continuing our discussion on the problem we should clarify the
expression "stability". We can speak about the stability of motion or equi-
librium. It is evident that a structure moves during creep. However if the
inert mass of the structure is neglected, as usual, than the kinetic energy
and the inertia of the structure is zero, as.in the case of equilibrium.
the other hand, the system cannot be considered to be in equilibrium, be-
cause in the course of creep the entropy of the system is changing. So its
entropy cannot be mexinum and, consequently, its potential energy cannot be
minimum, which is the condition of stable equilibrium. (The definition of
the potential energy can be found e.g. in the book of Brush and Almroth
/1975/.) However, let us consider that the deformation parameters belong to
two groups, external and internal. Their definition will be given later. The
author has shown /ljjas, 1982/ that if in the course of creep the rate of
the external parameters become infinite, the Hessian of the potential func-
tion will be singular. The Hessian of the potential function contains de-
rivatives with respect to the external parameters only. So we can speak
about the stability of the structure in the sense that its potential is
minimum in the space of the external parameters. The author presented its
derivation in the case of viscoelastic materials with constant coefficients.
In this study these results will be extended to the case of viscosity coef-
ficients varying in time. The derivation will be based on the studies of
Biot /1954/ and Schapery /1964/.

The fundamental equation of linear viscoelastic materials was set up
by Biot who used the theorems of irreversible thermodynamics. Sone details
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of his derivation can be read in Schapery's study. Schapery pointed out that
Biot's results are valid if the viscosity coefficients are not constants.

For the sake of uniform treatment the derivation of the constitutive
law of linear viscoelastic materials from the thermodinamics w ill be given
at the beginning.

2. The determination of entropy production

Let us consider a closed thermodynamic system whose volume is unity in
a reference state and which has a prescribed constant temperature. W de-
compose the system into two subsystems: System | where the irreversible
processes take place and System Il constituted by a large heat reservoir at
a constant temperature T (see Fig. 1). The whole system is insulated. System
| is immersed into System |l. The whole system is defined by n state vari-
ables and either by temperature or by internal energy. Th n state variables
g (degrees of freedom, generalized co-ordinates) are of a quite general
nature. In our case they represent mechanical strains or deformation co-
ordinates. Correlatively we assume that the system is under the action of
generalised external forces denoted by (conjugate to the variable gV
such that Q\dg* represents the energy furnished to the system. These forces
in our case are externally applied stresses or forces. No external forces
are associated with the temperature variables. In this paper q¢* means both
internal (hidden) and external co-ordinates. The hidden co-ordinates are de-
fined by the condition that their conjugate (externally applied) forces are
always zero (see e.g. the Egs (28) of the structure in Fig. 3).

Fig. 1
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The basic relationships of the thermodinamics are:
dJ=cH+ay (la)
(Ib)

where T is the absolute temperature, S is the entropy and Uis the internal
energy of the system. Wis the work done on the system, His the beat sup-
plied to the system. The kinetic energy is neglected. The repeated indexes
mean summation.

Equations (1) show that the entropy is a function of the internal
energy and of the co-ordinates of mechanical motion. So the linear increment
of the change of entropy is

as = (35/3U)4CU + (35/3q1)u,£|,\dql ; (2)

where g denotes all co-ordinates qi,...,q, exepting g.. The indices U and
g or g" nean that these co-ordinates are kept constant in the course of dif-
ferentiation. (Here the bold g means the vector of the " co-ordinates.)
Equation (2) is the linear member of a Taylor series of the entropy, where U
and g* are considered being independent co-ordinates, as defined above.

If the processes are very slow, the state is very near to equilibrium,
so it is sufficient to take into account the linear part of entropy change.
The structure behaves as if it were in equilibrium during the coursed creep,
because the creep is a very slow motion and the inertia forces are negligi-
ble. The assumption of linear entropy changes is acceptable for engineering
practice.

Let us examine the change of heat of Systems | and Il. At first we
should define the coefficients of Eq (2). The coefficient of the first nem
ber of Eq. (2) is the partial derivative of the entropy with respect to the
internal energy. In this case, all the other co-ordinates are kept constant
because of the definition of the partial derivative. Fom the First Law of
Thermodynamics the change of heat, dH, is

dH=dU- Qdgi. (3)

If dg® = 0, which is the case of the earlier mentioned partial derivative,
there is only heat transfer. Since we are examining processes very near to
equilibrium, the temperature difference in every increment has to be infi-
nitesimal. So the incremental process is defined to be reversible, and
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the Second Law of Thermodynamics has the form TdS = dH. Thus from Eq. (3) we
have

H = TdS = du. 4)
In the case of dg* = 0 the form of Eg. (2) becomes
dS = (3S/3U)qdy, (%)
Multiplying both sides of Eqg. (5) by T, the result is
TdS = T(3S/3U)qdU. (6)
Comparing Eq. (6) and Eq. (4), it is evident that
, 1 = (3S/3U)qT. (7)

Multiplying Eq. (2) by T and taking into account Eq. (7), Eq. (2) assumes
the form

TdS = dU + T(3S/3q'1)u ijdql' (8)

The form of Eq. (8) is the same as Eq (3), so it is convenient to define
the state function dR) as

QR 5 -TOS/3qi)U)gk, 9)

and call dR) a reversible force.

While the entropy change of the reservoir, which is reversible, is
"Reservoir = ~ AT ' were the nesative sign stands for the entropy de-
crease (the heat loss) of the reservoir, the incremental entropy change dS1
of the total system is

S =dS +dS = dS - dHIT, (10)

Reservoir

which is the entropy change due to irreversibility. This entropy change is
readily evaluated for the system under consideration by subtracting Eq. (3)

from Eq. (7):

ds' = (IT)(Qi - Q7))daqi . (1)

Dividing Eq. (11) by the time increment yields the expression for the rate
at which the entropy of the whole system is produced
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S =(T) Xq, (12)
where

X £9 - Q. 3

and the dot denotes differentiation with respect to time. S' is termed the
entropy production per unit volume and X* is the irreversible component of
force applied to the co-ordinate g

3. The constitutive law of linear viscoelastic materials

The important principle of Thermodynamics of Irreversible Processes,
namely the Onsager's principle is now introduced, which can be stated as
follows: If the entropy production is written in the form

S = Xlqi; 14)

then the Xj are forces proportional to the "fluxes" " (g* mean the creep
rate or the rate of strain in mechanics), that is,
15
Xi =bln’ (15)
and the matrix of coefficients b” is symmetric. Equation (15) is, in fact,
the constitutive law of the dashpot, e.g. the Newton liquid. However, bj® is
not necessarily a constant in order to apply Onsager's principle, it is
only required that this matrix be a continuous function of state variables
for the range of applicability of Eg (15). Equation (15) can be written in
the notations (12) and (13) by setting

o= (UTX 5 b.l'j-: (1/T)b1j.,, (16)
so we obtain the set of equations
bi'rﬂ' a7

A more USFF%” form of these relations is obtained by using definition (9) to
express as a function of ¢* and T. To do so, we introduce the Helmholtz
free energy F which is defined as

FEU- TS (18)
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The Helmholtz free energy can be defined as the "useful work" that can be
done by the system. (It is different from the Gibbs free energy. The Gibbs
free energy can be defined as the the "total work" that can be done by the
system. See Ransay /1971/.) W have to note the natural variables of the
Helmholtz free energy are among others the temperature and the deformation
co-ordinates (see Callen /1960/).

Substitution of F into Eq. (8) yields

= - SdT + QR)dqi( (29)

which implies
-S = (3F/3T) , (20a)
Q<R) . OF/>41)T,qgk (20b)

because dF is a total differential. Using the identity (20b) permits to
write Eq. (17) as

(3F/3qi)T.gk + bijgj = Qi"’ (21)
which is a set of n equations of motion for g" under the action of prescrib-
ed forces and temperature. This system of equations can be called as the
constitutiv equations of the linear viscoelastic materials.

Equation (21) is general in the sense that we did not meke any re-
striction on the free energy. If the system is in the neighbourhood of a
reference state, the free energy can be expanded in a Taylor series, and
powers higher than second order can be neglected. So we obtain

?
32F 1 _ 3 F 1924 (22)

f3F) o + (310 Li =
8_3(;, rgj 2\ 3qi 3qj)rqgjqi lapghst yoqj + 2 13121

13T)r® +

The expansion here was mede according to the natural co-ordinates of the free
energy. (The "natural co-ordinates" expression is used by Callen /1960/.)

Here r means the reference state and 0 = T-T . If the temperature of
the system is constant, i.e. T=Ir, and the reference state represents
thermodynamic equilibrium, then we obtain

2
F=1( T 23
2(Bg.ad. qigj- 23
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—M \[\—
- 4 b
Fig. 2
If we introduce the definition
0 2F/3qi3qj) s a.. = 3ji, (24)

then the expression of the free energy becomes

F=Tajqaqg* (25)
So Eg. (21) can be written as

aijV biA =v (26)

Biot /1954/ called this equation "the fundamental equation of relaxation
phenomena”, while Schapery /1964/ called it “"thermodynamic eguation of no-
tion". Let us employ Ej. (26) in the case of a very simple system, which
consists of a spring and a dashpot connected in parallel (see Fig. 2). This

is the so-called Kelvin model. In this case i=l and j=I. a™ means the
spring constant, while b” is the viscosity of the dashpot /Fligge, 1975/.
If is equal to zero, then the model becomes a dashpot, while if b-~ is

equal to zero, the model becomes a spring. Let us examine a nore complicated
model (Fig. 3). lhe constitutive eguations of this system are
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klgl + vigl + k2(gl " gq2) + k3(ql " Y4) =Q>

Ko (™M ~7"2) + 202 = 27)

-k2(g1 - g3) + v3g3 = 0.
These equations express the equivalence of the external force and the re-
sistance of the springs and the resistance of the springs and the corre-
sponding dashpots. If Egs (27) are rearranged, we obtain

(k1 + k2 + k3)gql - k292 - k3q3 +

-k2g1 + k2qg2 =0, (28)
- k3g3 + v3g3 =0.

Taking into account the symbols of (26):

all = k+k2+a3 al2 k2 % TR b1t =V1L
a1 = k2 022 * 12 azs =0 b2 = v2
a13 == a3 =0 g - & -v

The parameter ¢ is an external parameter, while g2 and g3 are internal
parameters (hidden co-ordinates). The system in Fig. 3 has not an elastic
response, due to the dashpot v~.

4. A necessary condition for the stability of linear
viscoelastic materials

Now we nmeke the restriction that we shall examine only structures mede
of materials having elastic response. That means that the external par-
ameters (more precisely the rate of external parameters, i.e. the strain
rates) cannot have viscous coefficient different from zero. In this case the
system of Egs (21) can be written as

=9

1323+b1jﬂ]:0 i =k+1,... n (29b)

I
H
=

(29a)

where Kk is the number of external parameters. Now the viscosity parameters
are the function of time.
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The external forces usually are not conjugate to the external par-
ameters. S0 we have to employ a transformation if we calculate the work of
the external forces. If we restrict ourselves to conservative external
forces, i.e. if the forces can be derived from the external work by dif-
ferentiating with respect to conjugate co-ordinates, and the work of ex-
ternal forces is W=IP~df(q"), the (29a) can be written as

3y 30)

taking into account that a”j4j =aF/ag".
If we use the notation V = FWthen Eq. (30) becomes

Yy

3q =0 i =l.k. (31)

Let us examine the stability of a structure made of viscoelastic materials
with viscosity coefficient varying in time. In this case we have to deter-
mine the time when the rate of external parameters tends to infinity (cri-
tical time). That is when the structure collapses. To obtain the rate of ex-
ternal parameters is let us differentiate Eq. (31) with respect to time.
That means

i 3 _
4 [-Séi- = 0. (32)

Where it wes taken into account that

r df(q.)
=Jh dq~ d4i (333)
and
i i i p df(a.) p df(qLZ +p d2f(q|_) =p df(qi_)_ (33b)
it ‘ i 1 dg 1 dqt 1 dqi dgM 1 dqt Bg™g-

Let us separate the rate of the internal and external parameters in Eq.
(32). <o we have

2V e 32V . adey') _

s S taear A g T (i =1,..k (34)
1=1,.K
(Jj =k+1,..,n)

where g means the rate of external parameters.
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Equation (34) is a system of linear equations for g\ The coefficient
matrix of the system is the Hessian matrix of the potential energy. So if we
wish to express q* as a solution of the system (34), then the determinant of

the system is
?

3
aqi aql (35)

Ore can obtain infinite value for g* if this determinant is zero.

If this determinant becomes zero, that is the coefficient matrix of the
system for qp Egs (34), becomes singular, that means that the Hessian of the
system is singular or the minimum of the potential energy of the structure
disappears in the space of external parameters. So one can conclude that the
structure mede of viscoelastic material loses its stability if the Hessian of
the potential of the structure is singular. This criterion is very similar to
the so called energy criterion of the equilibrium of elastic structures.

Let us take an example. W shall examine the structure in Fig. 4. The
bar AB of the structure is mede of Dischinger material. The Dischinger model
is a spring and a dashpot connected in line. The dashpot has a viscosity co-
efficient varying with time. (This is the so-called ageing.) The constitu-
tive equation of bar A is

| dE
dt K 8? Sdt’

where q is the elongation, t is the time, Qis the component of the external
force in the direction of AB, k is the spring constant and

* =*max(1 " e' Xt)> W

where ¢rax and X are material constants.
The equation of equilibrium of the structure is

-Q cosB + PL sin@ =0, (38)

where P is the external force, R is the angle between the vertical and the
BC line, and from geometrical consideration

g =gD+ g0g =L sine, (39)

where gqQ is the elongation of the Dischinger model,
g0g is the distance of the points A and B just before loading (geo-
metric imperfection).
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Fig, 4

Using (37), (38) and (39), we obtain from (36)

de  Xbygy SinBcosh eVt
¢ kpl)‘ cosF 1

Let us calculate the potential energy of the system:
i k(gq-qd-q0g)2 - PL J1- (")

Here g" is the elongation of the dashpot (internal parameter).
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Differentiating (41) with respect to g the result is

i V -p @ 42)

This expression will be used later.
Differentiating (41) two times with respect to q and taking into ac-

count Eg. (39), we obtain

KLcos p - P cos™3 - 1 (43)

Lcos3M3 jr cos5R

Comparing the numerator of (43) and the denominator of (40), it can be seen
that dR/dt tends to infinity when the potential energy loses its minimum.
This result is naturally, the consequence of the earlier proof.

It is worth to examine the behaviour the structure in Fig. 4 in nore
detail. Let us determine the rotation-time function in the case of the
structure in Fig. 4. The variables in the Eq. (40) can be separated and
after integration we obtain

_ kL
t =y qrwg e cosR +1In "o (44)

In Eq. (44), Bg means the initial value of B. Two R(t) functions are plotted
in Fig. 5 for two different * values. If & = 13, then the RB(t) func-
tion tends to a horizontal asymptote, while if drgx = 14 then the R(t)
function has a vertical tangent, which gives the critical time. It is seen
that the curve belonging to & = 14 "bends back". That means that the R(t)
curve has no physical meaning above 6 which is the point of loss of
stability.
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Fig, 5

To be ocone more familiar with the phenomenon, let us consider Eq.
(42). This equation can be directly established by taking into account the
equilibrium equation of the structure and the physical equation of the
spring. The right-hand side of this equation is equal to zero which is the
conclusion of Eq (21) or (26) of the derivation sketched. Expressing the
load P from this equation, a function of two variables is obtained. This
function can be seen in Fig. 6 in the case of two different load levels.
This figure shows that the phenomenon can be interpreted in the following
way. |f in the course of the process the creep stops before the load bearing
capacity decreases below the load, the structure will not loose its stabili-
ty (see Fig. 6b). On the other hand, if the creep continues beyond this
point the structure will lose its stability (see Fig. 6a).

5. The effect of temperature

In this part we shall examine the case when T-T” is not equal to zero.
Let us change Eos (30). If we take into consideration that FeU-TS and dif-
ferentiate it with respect to T, we shall get

(SF/sT)q = (3U/3T)q - S - T(3S/ST)q. (45)
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Fig. 6

Introducing (20a) into (45) the result is

(3U/3T)q =T(3S/3T)q = -T(32F/3T2)q. (46)

Now it will be proven that (3U/3T) = q, where (q is the heat capacity at
constant volume. (lhe generalized co-ordinates are constant.)
Let us start with Egq. (3). In the case of constant volume

dH = du. (47)
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Because of the definition Cg = 3H31, consequently

C = ZHJT = 3U/3T. (48)
Taking into account (46) we shall get

Qy = -Tr (32F/3T2)r (49)

where the subscript r means the reference state at which the heat capacity
is given. If we take into account the definition

(32F/3qi 3T)r = -6i (50)
and Eg. (24), then Eq. (22) will have the form
- .V a3%% - (Cq/2Tr )62 (51)

If we repeat the derivation that has been shown in the fourth part, and take
into consideration Eq. (51) for F, then Egs (33) will have the form

v n . df(qi) .
3qi &1L 30,30 4 + Pl . 0. (i =1...k) (52)
@=1..10
(j =k+1...n)

If we want to solve (52) for g. then the determinant of the system, as was
in the case of Egs (34), will be again |3 V/(3qi3ql)|. will tend to infi-
nity if the determinant of the system is equal to zero, or the Hessian of
the potential energy of the system is singular.

6. Summary

Ihe stability of viscoelastic structures was analysed by several
authors. Because of the neglection of the inert mass this phenomenon cannot
be treated as the stability of motion. n the other hand, because of the in-
creasing entropy in the course of creep, this is not identical to the prob-
lem of the stability of equilibrium. In the sixties it wes recognized that
the buckling phenomenon is actually an elastic one, but the connection of
this phenomenon with the property of the points of the elastic potential
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could not be found. ljjas /1982/ showed the connection between the infinite
rate of deformation and the critical point of the potential energy of the
analysed system in the case of linear viscoelastic materials with constant
material coefficients. In this paper this result is generalized for material
coefficients varying with time. The influence of the temperature are exam
ined too.
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EXPERIMENT TG INVESTIGATE THE COPMUN LOSS
GF STABILITY OF EGGE BEAMS IN COMBINATION WITH HYPERBOLIC
PARABOLOID SHELL SUPPORTED ALONG THE GENERATRICES

JANKU, L.*—SZITTNER, A.**

(Received: 29 September 1994)

After preliminary theoretical studies, experiments have been run to investigate
the buckling of edge beams of the hyperbolic paraboloid shell supported along the ge-
neratrices, with a view to make clear how does the edge beam loose its stability,
taking the stiffening effect of the shell into consideration.

By changing the thickness of the edge beams gradually, the effect of flexural
rigidity on the loss of stability of the shell interacting with the edge beam could be
investigated.

It was found that in the geometrical domain investigated (i.e. in case of a shell
relatively rigid as compared with the edge beam), neither shell buckling nor edge beam
buckling (bifurcation) had taken place. Instead, a loss of stability by equilibrium
limitation (divergence of equilibrium; snap-buckling) has occurred.

An empirical relationship has been set up to calculate the critical load.

1. Introduction

In shell construction, the hyperbolic paraboloid (hypar) shell sup-
ported along the generatices is one of the structures most frequently used.

Studies of the simple buckling phenomenon of a hyperbolic paraboloid
shell of linearly elastic material supported along the generatrices (hypar
limited by straight generatrices), geometrically perfect, flat, isotropic
(or orthotropic), rectangular or oblique, under uniformly distributed load
in the ground plan, are considered to be a knowmn field /1—4, 9—10, 12—13/.

However, the buckling of edge beanrs is a different question. The
buckling of two-hinged edge beam has been studied theoretically by Daya-
ratham and Gerstle /1/ and our accurate calculations based on their ap-
proximate results as well as a method we have developed for the buckling of

"Jank6, Laszl6, H-1091 Budapest, UIll61 Gt 117, Hungary
**Szittner, Antal, H-1026 Budapest, Gardonyi u. 32, Hungary
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the cantilever edge beam are presented in /7/. According to this method, the
stiffening effect, acting as an "elastic foundation", of the shell inter-
acting with the buckling edge beam to be relieved, wes determined on the
basis of /5/.

Note that our solution in /5/ applies to a conservative system of
forces while the shear force acting upon the edge beam is non-conservative
because it follows the shape of the buckling edge beam (i.e. it is direc-
tionally not stable). At the sare time, the directional stability of the
shear force is relatively insignificant because of the flatness.

Leet /10/ wes the first to run experiments to thoroughly investigate
the buckling of the edge beams of the hyperbolic paraboloid shell supported
along the generatrices. An evaluation of his results wes also published by
Gioncu /4/. In order to make clear the phenomena not investigated by Leet
and as a continuation of our theoretical solution given in /7/, we have run
experiments. By changing the thickness of the edge beam gradually, we have
got suitable information about the effect of flexural rigidity El (relating
to the horizontal axis, cf. Fig. 20) of the edge beam on the loss of sta-
bility as well as on the extent of interaction between the shell and the

edge beam.
It wes investigated whether buckling (bifurcation) of the edge beam
had taken place indeed at all. In the geometrical domain investigated (i.e.

in case of a shell relatively rigid as compared with the edge beam), the
loss of stability was found to result rather from equilibrium limitation
than from bifurcation (divergence of equilibrium; snap-buckling) .

Presented in this work are the experimental results obtained by
Szittner, Kalid, Kaltenbach, Korondi and Krist6f, described in detail in
114/, together with the evaluation thereof as well as the conclusions drawn
by us.

The reader's attention is directed to Section 4 describing the cir-
cumstances under which the experiments could have come about.
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2. Description of the experiments

2.1. Experimental program

2.1.1. Supfort_cEndi_tiont

The models are presented in Fig. 1, the dimensions being given in nm
in Figs 1 and 8. The edge beans of models 1-5 are cantilever edge bears
supported at the low corners continuously along a length of about 45 mmin
both directions by means of 2 M6 bolts and washers at each point, by clamp-
ing through the ribs (Fig. 2). In models 1 and 5, steel spacers were placed
to transfer and/or distribute the clamping force of the bolts.

Oe of the two supports was a fixed support while the other support
was diagonally slightly adjustable so that the adjustment of the geometry of
the shell model would best simulate the geometry according to the plan.

The edge beanms of model 6 were supported by means of pendulum props
at the high corners (Fig. 3) while they were clamped in the way described
above at the low corners.

2 A .2. Geomefrical_datf

Theoretical thickness of the plexiglass shell plate: h =15 mm In
the ground plan, the hyperbolic paraboloid shell supported along the gene-
ratrices is a square with a side length of 2a =2b =560 nm (Fig. 1), the
theoretical rise of the hypar shell being f =70 nm

In the ground plan, the outline dimension is 2A =2B =580 mmin case
of each model.

The thickness of the rectangular edge bears is bQ =10 nm in case of
each model, the height varying as follows: =15mMm m =12 nMm mj =8 nm

=45 mm mM=h=15 mM mM=n2 =12 nm In model 5, the edge is not
stiffened at all.

In this work, wis used for the vertical displacements of the surface
points (Figs 8 and 15—19). The geometrical imperfections wo of the above
structure considered to be geometrically perfect are specified in /14/ (for
the most important values see Figs 15, 16).



Fig. 1. General arrangement. The models studied
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Fin. 2. Clamping fixture (Models 1—6)

2.1.2- CU°iciL £f_tIre_mat&r_ia | £f tliejTiodelj3

In planning for the program of the model experiments, first thing to do
wes to choose the appropriate material for the required geometrical para-
meters (thickness-span relation) to be used in the model experiments, taking
the distorted surface geometry of the shell into consideration. lhe thinnest
(1.5 mm) plexiglass (monomethyl metacrylate) plate commercially available in
Hungary for the time being wes found to be suited for the purpose, anong
others because the plexiglass could be sticked with its oan material rela-
tively successfully and it can be formed at certain temperatures.

Ihe elastic characteristics of the material were determined by means
of tensile tests using tensile test bars cut away from the edge of the heat-
treated models. Two tensile test bars were used to determine the material
characteristics, with 1 longitudinal and 1 transversal resistance strain
gage (Kyowa, type KFC-5-C1-11) sticked on either surface of each specimen.

The average values of the results obtained for the modulus of elasti-
city (E) and transverse contraction factor (p) on the basis of 16 data for
each are tabulated in Table I.
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Fin. 3. Pendulum prop (Model 6)

Table I. Material characteristics

a/Nmm 2/ E /Nnm 2/ Y /-1
. Modulus of Transverse
Stress domain o .
elasticity contraction factor
0-20 3200 0.365

2 <ilLe MEdel_mak

The plexiglass plate of a thickness of 1.5 mmwas cut into six about
650 X 650 nm squares. This pieces of plexiglass plate were used to produce
the hyperbolic paraboloid shells of distorted surface. For this purpose that
is, to form the surfaces, the heat-treating furnace used for optical stress
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measurements by the Department of Mechanics, Faculty of Mechanical Engi-
neering, Technical University of Budapest, was put at our disposal.

The template was mede of pieces of a 630 mm long steel strip of a
cross section of 0.8 x 19 mmin accordance with the straight surface genera-
trices. A baseframe was made of full steel sections, with a frame of an in-
clination of 1:4, mede of pieces cut out of a 10 mm thick steel plate,
welded on it. Between the two pairs of opposite edges of the frame, there
was a difference of 19 mm in height in compliance with the height of the
steel strip. The 750 steel strips were arranged edgeways, side by side, on
one of the two pairs of opposite edges of the approx. 600 x 600 nm frame. The
steel strips, properly pressed together and arranged, were welded together
and then to the frame from below. The surface so obtained wes smoothed to
eliminate the 0.2 mm steps by means of a manual corner grinder: Fig. 4.

The template so produced wes used to mould the plexiglass plate of a
thickness of 1.5 mm In doing so, the plexiglass plate wes laid onto the
template. Six layers of rubber plates of a thickness of 3 nmeach were laid
onto the plexiglass plate lying on the template, which, due to their oan
weight, were expected to help the plexiglass plate to take the shape of the
template. The plexiglass plate which had experienced thus elastic defor-

Fig. 4, The template used
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mation was then placed, together with the template and the rubber plates, in
the heat-treating furnace heated to a temperature of 180 °C. This relatively
high moulding temperature was required because at lower temperatures, a
"freezing" of the correct shape could not have been achieved. The heat-
treatment took a time of 1 hour and the furnace, still closed, was allowed
to cool for about 24 hours.

The shells so obtained were cut first to the originally planned size
of 600 nm However, it was found that because of deformation of the over-
hanging parts, more correct models could be obtained if 10 nmor 15 mm were
cut away from the shells on every side. Since imperfections in geometry were
s till detectable after the edges had been cut away, the finished shells were
heat-treated again, one by one, in the way described above.

The ground plan dimensions of the shells of models 1, 2, 3 and 6 are,
in the last analysis, 570 x 570 nm because these models have grooved edge
beams. The edge bears of these models were nede of plexiglass plate of a
thickness of 10 nmwith a groove of a width of 2 mmand a depth of 5 mmcut
into the centre of one of the higher sides of the edge beam, designed to
receive the shell. The shell plate fits into the groove of a width of 5 nm
which corresponds to half of the edge beam width of bQ=10 mm The shell so
assembled and the edge beams have been sticked together by waste plexiglass
dissolved in chloroform.

The ground plan dimensions of the shell of models 4 and 5 are 580 x 580
mm because the edge beam of model 4 has been produced by sticking plexiglass
strips of a width of 10 nm and a thickness of 1.5 nmon the top and bottom
surfaces while for model 5, no edge beam has been provided at all.

The finished model located on the steel baseframe is shown in Fig. 5.

2.1-1-J-o0ad

For the sake of an (approximately) uniform distribution of the load
acting upon the models, the load wes transferred to the shells at 8 x 8=64
points located at a uniform spacing in both directions in the ground plan
network. Holes of a diameter of 2 nmwere bored at the loading points (net-
work nodes) at right angles to the surface, through which as well as through
the M2 washers located there the pair of cords connected to the first rocker
element wes led and then fixed by means of a mandrel.

Two-support distributing rockers were used for load distribution
(Fig. 6). Altogether five rows of rockers were used, arranged one under the
other and interconnected by cords; with a rocker element connected to the
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Fig. 5. Model on the baseframe (Models 1—5)

Fig. 6. Rocker system
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Fin. 7a. Load transfer to the rocker system (Models 1, 2, 3, 6)

loading fixture arranged among the elements of the sixth row. The first row
of rockers included 32 while the second 16 elements, consisting of small
aluminium bears of a cross section of 2x 12 mMmand 2 x 15 mm respectively,
with a span length of 725 mm The rocker elements with a span length of
145 mm of the third row of rockers were mede of steel plate in case of
models 1, 2, 3 and 6 while of aluminium plate in care of models 4 and 5 of
reduced load. The fourth and fifth row of rockers as well as the sixth
rocker element were made of steel in case of models 1, 2, 3 and 6 while,
with a view to reduce the base load, of wood in case of models 4 and 5.

The length of the cords interconnecting the shell and the first row
of rockers wes determined so that a rearrangement of the network due to de-
formations would practically not be hindered.

In case of models 1, 2,3 and 6, the load acting upon the upper steel
plate wes transferred to the rocker element in the sixth row through a
pressure load cell (Fig. 7a). A 10 kN load cell wes used, permitting the
values of the weight to be recorded electronically with an accuracy of
0.2-0.5% (20-50 N). The loading weights were placed on a rigid steel bar
(Fig. 7b).
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In case of models 4 and 5, load was applied to the rocker element in
the sixth row simply by suspension, using a loading tray (Fig. 7c). lhe
loading weights weighed in advance were placed in the tray.

In recording the values of load applied to the model, the weights
used as well as the dead weight of the rocker system and of the model were
taken into consideration.

When load was applied to the model, the first step was to apply a load
corresponding to the sum of the dead weight of the model and the weight of
the first four rows of the rocker system, called load O (zero), in every
case. The next step was to add the sum of the weight of the fifth and sixth
row of rockers, the loading tray and the load cell to load 0. This load is
called load 1. In the subsequent steps, load 1 wes considered to be the
unloaded condition that is, the basis for comparison. For loading and/or
relieving of the model, a hydraulic lifter was placed under the loading tray

Fig. 7b. Load transfer to the rocker system
(Models 1, 2, 3, 6)
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Fih. 7c. Load transfer to the rocker system
(Models 4, 5)

(Fig. 7b), permitting not only the model to be loaded and relieved but also
a complete destruction of the model to be avoided in case of a possible
loss of stability of the model (with the distance between the top of the
lifter and the bottom of the loading tray kept within 1-2 nmupon loading).

Between the different load steps, we have always returned to load 1.
As a result of this relief, also the effect of creep has become negligibly
small.

2.2. Model measurements

Deflection and stress measurements were mede under every load and
whenever the model was unloaded.
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2 _.2_.1_ .ectkm measurements

Deflections of the model were measured by levelling by means of 21
levelling gages (Fig. 8) sticked on the upper surface of the model and on
the outer edges of the edge beams. Two levelling stations were provided for
every model experiment, using MM Ni A-31 superior-quality levelling instru-
ments for measurement. In accordance with the spacing of the levelling gages
(5 mm), the sensitivity of the measurements (minimum unit of measurements)
was 0.05 mm Because of the thickness of the line indicating the points as
well as of the inclination of the levelling gages under load, the measuring
error was somewhat higher but it still lay below 0.1 mm To interrelate the
two measuring instruments and/or the results of measurements, the saddle
point (18) was measured by both instruments. The deflection (vertical dis-
placement) was measured as the difference in height as compared with the
initial load (load O according to 2.1.5.).

levelling points :  1-21
strain gages — X

Fig, 8. Levelling points for deflection
measurements. Arrangement of measuring strain
gages (Models 2—6)
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2.2)2 . Stress™ measurements

In order to distinguish the normal stresses and bending stresses, a
measuring rheostat wes located on both the top and bottom surfaces of the
shells and edge bears (Fig. 8).

Considering the state of uniaxial stress prevailing there, simple
KFC-5-C1-11 measuring rheostats with a measuring base of 5 nmwere used for
the edge bears and free edges (model 5).

At points arranged coincidently with the axis of symmetry (which could
therefore be characterized by knowmn principal stress directions), two ro-
sette type measuring elements (KFC-2-D2-11, measuring base: 2 nm) were ar-
ranged at right angles to each other, their direction coinciding with the
principal stress direction (with the axis of symmetry). Stresses a, a were
calculated on the basis of extensional strains ex, measured, using the
well-known relationships of the state of plane stress.

For Model 1, so-called three-dimensional rosettes (KFC-2-D4-11) ar-
ranged at angles of 3x 120° at points of general position were used. These
three-directional rosettes were used for Model 1 only. Namely, significant
stresses had not been measured on the shell points but only on the edge
beams of Model 1 and therefore, in case of Models 2—6, measuring elements
have been located on all the four edge beans with a view to detect a possi-
ble asymmetric behaviour of the edge bears more accurately and thus three-
directional rosettes have not been used here.

A QW 16 measurement center with digital display, produced by Hottin-
ger, was used for extension measurements in application with an Mz 32
measuring amplifier of a carrier frequency of 225 Hz, with DATGON measuring
point transformers interposed. An AT 286 RC was used for data collection and
processing.

To document the results of measurements, the extensional strains
measured in the lower and upper extreme fibres, the extreme fibre stresses
calculatable on the basis thereof as well as the normal and bending stress
components determined on the basis of the extreme fibre stresses were
tabulated /14/ for each point of measurement.
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2.3. Results of the model experiments

2.3.1. _Model !

Sore seconds after the last load step had been applied, the model
collapsed and it broke into pieces (Fig. 9). The relationship between sur-
face load q and deflection wYg of the shell center, determined in the
course of the experiment, is diagrammatically illustrated in Figs 15—16.

2.3.2. _Model 2

20-30 seconds after the last load step had been applied, the model
sunk doan and the load got up onto the hydraulic working cylinder. An ab-
solutely elastic loss of stability has taken place, permitting Model 2
to be used later for construction of Model 6. See also Figs 15—16.

Fin. 9, Loss of stability of Model 1
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Fig. 10. Loss of stability of Model 2

2.3.3. Model 3

A loss of stability similar to that in case of Model 2 has taken place
as shown in Fig. 11. See also Fig. 16.

2 .2.ilb_Model 4

The loss of stability took place shortly after the load had been ap-
plied and the model got up onto the hydraulic working cylinder. The state
before destruction is shown in Fig. 12. Significant permanent deformations
were measured after relief, suggesting that the model had experienced plas-
tic deformation. See also Fig. 16.
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Fig. 11. Loss of stability of Model 3

Fig, 12. Loss of stability of Model 4
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Fig. 13. Loss of stability of Model 5

Fig. 14. Loss of stability of Model 6
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2.3.5. Model 5

The perfectly unstiffened shell has lost stability after the signif-
icant deformation illustrated in Fig. 13 and the model got up onto the
hydraulic unit. See also Fig. 16.

2.3.6. _Model 6

Figure 14 shows the model, also supported by pendulum props, at the
instant before buckling. The model has got up onto the hydraulic press about
5 minutes after the last load step had been applied. A slight permanent de-
formation has been recorded after relief subsequent to the loss of stabili-

ty. See also Fig. 15.

Fig. 15. Experimental equilibrium paths
(Models 1, 2, 6)
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Fig. 16, Experimental equilibrium paths
(Models 1—5)

2.3.7_. OenfleNbana_e>tpErencecl bx the edge beams

llustrated in Fig. 17 are the deflections of the edge beans experi-
enced immediately before the loss of stability. Note that buckling of the
edge beams has taken place antimetrically (like a frame) as compared with
high corners 5 or 13 (Fig. 1) as also shown in Figs 10—14.
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3. Evaluation, conclusions

On the basis of Figs 15—16, the experimental equilibrium paths ob-
tained can be described by characteristic curve bl in Fig. 18.

3.1. O shell buckling

The classic linear critical, so-called Reissner—Ralston-load (bi-
furcation) of the shell can be calculated by means of the following well-
known relationship /9, 12, 13/.

. 2.2
lin h™f
Acr,sh KE 3.1)

Fin. 17. Edge beam deflection curves
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Fig. 18. Type of theoretical and experimental
equilibrium paths
(al: load-deflection diagram of a geometrically perfect
structure;
a2: same as al but for Leet's structures;
bl: experimental load-deflection diagrams;
b2: same as bl but for Leet's structures)

where

V3(l - u2)

u being the transverse contraction factor.
Parameters p and w have been defined in Fig. 21. The subscript sh
refers to shell buckling load. With the data of Fig. 1 and Table 1,

aorsp 711 K
has been obtained.

Since this theoretical critical load is significant, a shell buckling
(bifurcation) has not been expectable and, according to the experiments, it
has not taken place either. In Fig. 18, section P of curve b2 corresponds to
the buckling of the geometrically imperfect shell. No buckling of this type
was shown by curve bl.
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Remember that in the experiments of Leet /10/, the shell experienced
buckling at about 51-#1% of the load calculatable by means of equation (3.1)
because of the imperfection (initial waviness) wQ. Also this value is rather
high in our case.

As is known, buckling of the shell takes place inextensional (ex =
= =0 /0), in a plate-like way, with a stable symmetric point of
bifurcation, that is the postbuckling diagram is rising. The physical ex-
planation of this phenomenon is that in case of properly rigid edge beams,
the fibres convex from above (compressed), buckling in small local waves of
a large number, are so to say suspended by the fibres concave from above,
like by a suspended roof /4, 9/. A this was shown indeed by the Leet
models (Fig. 18, curve b2).

Using the data of the Leet shells (a = 4064 mm f = 101.6 nm h =
= 0.7747 mm E = 3,297-10" kNrrf?, | = 5.549-10 ~ rrA), a relatively small
critical load,

lin _
der.sh = 0,927 KNm

can be calculated for the shell and a shell buckling has taken place indeed
in the course of the experiments.

Note that in the investigations of Leet, the load at which shell
buckling has taken place decreased continuously as the rigidity of the edge
beam decreased. Accordingly, also equation (3.1) remains less and less valid
as the edge beam looses its rigidity. Hence, the assumption that the cri-
tical load of the shell buckling in small local waves of a large number (in
the direction of the arch under pressure) is independent of the boundary con-
ditions (that is, the edges can be considered to be infinitely far from the

Fig. 19. lllustration to explain
the reduction in load capacity
(1 — theoretical foundation coefficient,
2 — actual foundation coefficient)
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Fig. 20. Change in the upper critical load as a
function of the radius of inertia of the edge beam

buckling wave) remains, below a certain value of edge beam rigidity, no
longer valid. OF course, this is the nore true the more we advance towards
the shell of free edge.

3.2. Edge beam buckling

In /7/, the following approximate formula (where subscript e indicates
the edge beam) has been introduced to investigate the buckling of edge bears
(bifurcation phenomenon) :

e - E_, (k,a + KOpv™) (3.2)

where, in case of two-hinged edge beams, k» = 3.094 and k. = 1.391
while in case of cantilever edge beams, k* = 1.306 and k2 = 1.035.

For parameters a, p and w see Fig. 21.

In the above relationship, the term proportional to k* stands for the
critical load (Euler load) of the bar while the term proportional to k2 ex-
presses the supporting effect, acting as an elastic foundation, of the shell
interacting with the edge beam (for buckling of the bar on elastic founda-
tion see /5/).
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In the present case, the critical load of the edge beam according to
(3.2) of models 1—3 and 6 is about 2-6 times as much as the critical load
of the shell according to (3.1). Thus an edge beam buckling (bifurcation)
has not been expectable. This expectation has been confirmed by our experi-
ments.

Note that an edge beam buckling has not been expected, anong others,
because the shear force acting upon the edge beam is directionally not
stable, instead, it follows the geometry of the buckling edge beam that is,
it is non-conservative and thus a static bifurcational critical load (Euler
load) is not always acting upon the edge beam either. W think that while
a static critical load always exists for the two-hinged bar (without elas-
tic foundation) upon which non-conservative forces are acting, no static
critical load but only dynamic critical load exists for the correspond-

Yer «0.09E

Fig. 21. Approximate formula of the upper critical load
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ing cantilever /11/. This means that it is not the frequency but the ampli-
tude that starts to increase beyond every limit. However, this would core
about only if energy were fed which is not possible in case of a shell.
the other hand, according to the tables given in /11/, the dynamic bifurca-
tion critical load of the unbedded cantilever under load, resulting from non-
conservative forces, is about 5.2-fold as compared with the static critical
load of the cantilever upon which conservative forces are acting. The ten-
dency outlined will most likely prevail also in case of elastic foundation
and thus a bifurcation buckling of the edge beam is not expectable. At the
same time, the effect resulting from the change in direction of the shear
forces is considerably reduced by the flatness.

Of course, either here or in the case according to para 3.1, it is
not the theoretical ideal buckling (bifurcation) a priori excluded because
of the presence of imperfection wg but the reduction in rigidity after curve
section P of the Leet diagram in Fig. 18 that fails to come about.

In the geometrical domain investigated, no buckling (bifurcation) of
the edge bears /7/ was observed, certainly because of the relatively signif-
icant rigidity of the shell stiffening the edge beam Values of the pa-
rameters in formula (3.2): a = 0.0357 - 35.7, p = 46.7, w = 186.6 (with
R/h = 746.7), see Fig. 21.

The theoretical load-deflection diagram of the appropriate, geomet-
rically perfect structure (wgq = 0) is shown in Fig. 18 (curve al). To plot
the diagram, different dash lines were used to indicate that this diagram
has not been determined so far. The solution of the classic shell buckling
(bifurcation) according to /1, 2, 12, 13/, based on the equilibrium path, is
well-known (see expression (3.1) and there exist approximate methods /1, 7/
developed to investigate the buckling (bifurcation) of the edge beam inter-
acting with the shell (see expression (3.2)).

A loss of stability by equilibrium limitation has taken place that is,
the structure has got failed (divergence of equilibrium; snap-buckling)
under the upper critical load corresponding to apex u of the g-w diagram.

The load capacity tends to decrease after apex u. In our view, the
reason for this is that after a certain time, foundation coefficient ¢ of
the edge beam supported elastically by the shell starts decreasing as de-
flection w increases. The reduction in stiffness of the springs is illus-
trated by characteristic 2 in Fig. 19.

Leet /10/ has investigated models (with relatively soft shells as
compared with the edge beam) where the flatter section of load-deflection
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diagram P after shell buckling corresponds to the fact that after shell
buckling, the edge beam is much less stiffened by the shell. Values of the
parameters (see Fig. 21) given in formula (3.2); a = 184 - 110.0, p =
= 131.2 - 151.0, w=524.6 - 608.9 (with R/h = 1098 - 2433). After all, the
Leet edge beanrs have got failed either as a result of loss of stability by
equilibrium limitation or they have broken before the limit point (hori-
zontal tangent) wes reached. Edge beam buckling (bifurcation) has not taken
place at all.

3.3. Recommendations

O the basis of Figs 20 and 21, an empirical approximate formula (see
Fig. 21) wes set up to calculate upper critical loads g (exponent u). The
relationship corresponds to formula (3.2) (and also to formula (3.1)) set up
in a similar way (using the sare shell parameters but now in the form shown
below):

u
acr Xy (3.3)

where, for the cantilever edge beam,

Ky = 0.09.

Only experimental data are available for two-hinged edge beams (Model
6). On the basis thereof, ku = 0.105. Hence, the two-hinged edge beam is not
much stronger than the cantilever edge beam, the difference being about 1™4
Concerning buckling (bifurcation), the buckling two-hinged edge beam wes
found to be by about 3550% stronger than the cantilever edge beam in the
geometrical domain ivestigated. As is well-known, this ratio will be
1.881/0.784 = 2.40 without elastic foundation.

As seen, zero critical load is associated with the beam without shell
(unbedded beam) in formula (3.3). In the last analysis, to eliminate this de-
ficiency, we recommend that Fig. 22 and/or formula (3.4) be used for design
purposes. The equation of the two straights in Fig. 22 was produced by
equating the measured values of upper critical loads g that can be read
from Fig. 21 (or Figs 15 and 16) with the values of linear critical load
calculatable on the basis of relationship (3.2) (reduction proportionally to
the loads). The measured values of loads g‘r amounted to about 7-14% of the
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Fig. 22. Approximate design diagrams

El

values of linear critical loads according to equation (3.2) and also the

coefficients of equation (3.2) were reduced accordingly.

After all, the formula of critical load that can be used for design

purposes can be written, as follows:

4cr*°-20xcr

where, for two-hinged edge beans,

= 1881 + 0.40— ,

X
cr .
Vv

while for cantilever edge beams,
X, =078 + 0.36 =
cr VT

For the sake of a continuous transition to constants 1.881
of the unbedded edge beam, the reduction indicated in Fig. 22

(3-4)

and 0.784
(two zero
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points along the sare vertical line) was used for Models 1 and 2 (and a sim-
ilar reduction wes also used in plotting the straight in Fig. 21). That is
why the values of critical load calculatable by means of formula (3.4) are
in general by about 136 lower than those obtained with (3.3). At the sane
time, formula (3.4) is advantageous in that it provides a continuous tran-
sition to the case of the unbedded bar.

Of course, the formula of the upper critical load should be in
principle a function of geometrical imperfection wg as well. What we can say
here is that in the present case, imperfection (initial waviness) wg cor-
responding to the load capacity diagrams wes smaller than 13% of shell
thickness h (Figs 15—16). The values actually measured can be found in /14/.

When using the process described in /9/, it is recommended that the
properties of reinforced concrete (cracking, creep, plasticity, etc.) be
taken into consideration.

One of our main objects has been to determine the change in critical
load in case of a gradual reduction of flexural rigidity El of the edge beam
(Fig. 21) until the case of a shell with completely free edges is reached.
In fact, relationship (3.4) complies with this object.
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RELIABILITY OF ROD-TYPE SUPPORTING
STRUCTURES
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The objective of this work is to estimate the probability of a possible destruc-
tion of rod-type supporting structures. Used for estimation are not the distribution
density functions but the calculatable probability characteristics (expectable value,
variance, obliquity). The stress resulting from load and the probability character-
istics are assumed to be independent of each other and they are easy to calculate.

1. NOTATION

load bearing capacity

stress resulting from load

load capacity reserve

bending or twisting moment

resultant force

permanent load

effective load

normal fracture stress

shear fracture stress

design life

time co-ordinate

cross-sectional quantity

cross-sectional area

cubage of the support
vivO increase in cubage associated with the standard beam

length of beam

probability

r ox parameters of the probability distribution function

factor expressing probability

parameters of the central moments of Weibull distribution
ith-order central moment

variance

relative variance

obliquity

safety factor associated with the effective load
reduction in normal stress

reduction in geometrical dimensions

reduction in cross-sectional quantity

reduction resulting from permanent strength
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2. Introduction

The objective of this work is to estimate the probability of a pos-
sible destruction of rod-type supporting structures. Used for estimation are
not the distribution density functions but the calculatable probability
characteristics (expectable value, variance, obliquity). The stress result-
ing from load and the probability characteristics are assumed to be indepen-
dent of each other and they are easy to calculate.

The probability of destruction of one single cross-section can be
calculated by expression

p{[R(t) - S(h3 < O (1)
0<t<T

In expression (1), R(t) is the load capacity, S(t) the stress resulting from
loads, T the design life and q the probability of destruction. From expres-
sion (1), the load capacity and/or the cross-sectional quantity can be cal-
culated at time t = 0 /6/.

W(R) = B(T) W(S)

where

+ BV/[VR(T)]2 + [v5(T)_12 - e{[vR(T)J [vs(T)Jp S(M)
{I - e2 [VvR(T)J2} faCT)] [a(T)Jd [w(T)]

B(T) =
(2)
(©)
Bo
In ex i o i i = V\SLO\'
pression (2), Wyv ' is the load capacity at time t =0, (T)
the cross-sectional quantity associated with stress Bo from the stress cal-
culated with regard to the design life, v*CT) and Vg(T) are the relative
variance of the load capacity and the stress resulting from load at the end
of the design life, respectively, T is a numerical value depending on the
distribution and expressing the possible destruction (e.g. = 3.09 for 1% in
case of normal distribution), Bo is the expectable value of the fracture
stress of the beam at t =0, (T) is the fracture stress, w(T) the cross-sec-
tional quantity, (T) being the reduction in strength with time.
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3. Probability of destruction of lattice girders

The above calculations apply to one single cross-section only. The
guestion is how the probability of destruction of a beam can be determined.
Before giving an answer of general validity to the question, let first an
example be investigated.

Consider a lattice girder with every chord of it subjected to total
load (Fig. 1). For the time being, let the latticing network be le ft out of
consideration. In this case, if q: is the probability of destruction of one
single chord of the lattice girder and mis the number of chords, the pro-
bability of destruction of the lattice girder will be

P=1-(@1-q)m mq ©)
mg < 0.15.

If the probability of destruction is not equal for every rod and if
also the latticing network is taken into consideration, then we can say that
under a certain load, destruction of the lattice girder will take place if
one of the elements of the latticing network or one of the upper chords or
one of the lower chords becomes destroyed. This means that there is a dis-
junctive relation between the lattice girder elements and thus, if the num
ber of lattice elements in the lattice girder is N, the probability of de-
struction of the lattice girder will be

N N
ak=1- TT(L- gi)~" 2 qi (4)
k i=| O

Fig. 1. Lattice girder
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Now pk can be calculated for every one of the different loads (of num
ber t) and the probability of destruction of the lattice girder, denoted by
g, will be given by the maximum value from among the values of pk calculated
for every ore of the loads of number:

g = mex pkE. (5)

The above calculation is correct. What remains to be answered is how
the probability of destruction of the beam can be calculated in case of com
pact bent beans.

4. Probability of destruction of a beam of plastic
material under normal stress condition

Consider a beam of a standard cross-section of Ab and a standard
length of as illustrated in Fig. 2, with permanent moment M acting upon
both ends. As a result of moment M an extreme-fibre stress of a magnitude
of o0 = M/Jx ymex arises along length L of the beam. To be determined is the
probability of destruction of the beam In case of beams of plastic mate-
rial, the distribution of the fracture stress is a Pearson Ill distribution,
the density function being /4/

if oB> (6)

fl(°B") " 0 if @<Qq

Fig. 2. Standard size beam
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Probability characteristics:

Expectable value: v =V =@+ rHxp

Mean square deviation: 4 _  _. (7)
X1

Obliquity: B " 2/Vi* > o

Onh the basis of expression (7), an arbitrary probability value
of the fracture stress can be written as

taBrg ' aB’' ” 8sB'
(8)

B=6(ag, Q).

A table is available /s/ where the values of Bin expression (s) are
tabulated as a function of a® and q.

If the cross-section of the beam under the above load is "A" and its
length is Lq, then the density function of the fracture stress will be

a2)
9)
Probability characteristics:
Expectable value: og"
Mean square devitation: -g' X w2 A (10)

Obliquity: aB"
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[h the basis of expression (1), an arbitraty probability value (og)
of the fracture stress can be written as

=an RVAGA SR,
(11)
B =R, q

According to expression (11), (aghM) > (°B')Qg*

The next question is how the probability of destruction of a beam of
an arbitrary cross-section A but of a length of L =n Lg can be calculated.
The subsequent sections of length Lg are assumed to be independent of each
other; the length of sections Lqg has to be determined experimentally /1/.
According to the experiments, for round steels, length that is the length
of the independent sections is 70 to 80 times as much as the diameter. In
this case

q[Lb np[Lo]_ U2)

According to expression (12), the probability of destruction of a beam
n times as long is n times as much.

5. Probability of destruction of a beam of brittle
material under normal stress conditions

Consider a beam of standard size, Vg = Ag L , according to Fig. 2 but
now the beam is assumed to be of brittle material (a <0). The distribution
of the fracture stress is a Weibull /s/ (Il lower extremal) distribution.
The distribution function is

R(@0.,) =1 - exp (aBM

agn > O o

ogm < o”

Fi(ciB,) =0 if
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Probability characteristics:

— u
Expectable value: HRu —g* + oV —
Mean square deviation: (se..)2 =ull =«2/Xx3 (14)
Obliquity: aB, = <o
where
1 "(17)

IO A (15)

))3."£)-3 .%)‘*

and n(Z) =2 is the Gauss function.
The values of expression (15) are found in Tables /s/.
On the basis of expression (14), if

g = (100 - 100/N) %

an arbitrary value (agw)” of the fracture stress will be

(aB")g =o0s + 1/Xs 1\Jn - (16)
where lim A = 1/2.

n -» “

If the size of the beam is V = AL and VNo =k, then the distribution
function will be

F4(aliv) =1 - exp k[x3(oBlv - 03)]I3]
il 2 '
Fd(aBlv) =0 it °BIV*: ad,

Probability characteristics:

Expectable value: &giv =¢8 + —-— < 6g,,
b $
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a2

Mean square deviation: o = (SBiv)Z (Soit) (so hi)
w4 v? 17)
- “3
Obliquity:
Ay 3N a,32 B

O the basis of expression (17), if q = (100-100/n) % an arbitrary
probability value (ogiv)q of the fracture stress can be written as

(aBlv)q ' (18)

where |lim A= 1/2.
n-*<

6. Probability of destruction of a rod of constant cross-
section under shear stress conditions

A twisting noment M is acting upon either end of the rod of tubular
cross-section and of a length of Lqg illustrated in Fig. 3, the two moments
being of opposite sense as compared with each other. As a result of load,
shear stress 1 = M/J* rmgx is prevailing at every point of the periphery of
the tube. To be determined is the probability of destruction of the beam or
the value of te associated with a certain probability. Assure that rods of
plastic or brittle material can be investigated from the point of view of
shear stress as well. In this case, their distribution and/or density func-
tion will comply with what has been said about normal stress conditions in
Sections 4 and 5 accordingly. In case of rods of plastic material with
cross-section A and length L , the Pearson |11 density function of the frac-
ture stress will be, provided the rod has a standard cross-section, the fol-
lowing:

Fig. 3. Standard size tubular beam
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19)
f5(T0) - O if th< xr
Probability characteristics:

Expectable value: B " Ul r5/X5 + T1

Mean square deviation: s*g, =u: :Lfs @ - w2 (20)
X5
iquity: [JE . avo
Obliquity: B J\J " A" aBVA

On the basis of expression (20), an arbitrary probability value (“g)c
of the shear fracture stress can be written as

(tb) =TB, - RVA/A s (21)

B =R(@Rk, q

If the length of the rod is L =n Lg, the probability of destruction
will be n times as much.

Consider now the case of brittle material (a < 0) and assume that all
what has been said in Section 5 also applies to shear stress. Then, if the
volume of the rod is V = AL and the standard volume VNO =Kk and V0 = AoLo'
the Weibull distribution function of the fracture stress will be

Fe (tB) =1 - exp {- K[Xe(TB - t6)] b}
(22)
if TB—r1s

BV =o if th< t2
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Probability characteristics:

Expectable value:

Mean square deviation: (s"n)2 (23)

Obliquity: ag

(@ = (100 - 100/n) %

an arbitrary probability value of the shear fracture stress can be written
as

' (24)
where lim [ = 1/2
n -> .
The values of (i =1, 2, 3) can be calculated similarly to the

values of cu is Section 5. Since no Hungarian experimental data for shear
are available, the experimental results obtained for normal stress can be
used in numerical calculations but the normal stress values must be multi-
plied with 113 = 0.577. This factor is based on the Huber—Mises fracture
theory.

7. Probability of destruction of statically defined
beams of plastic material

The probability of destruction as a result of load varies from cross-
section to cross-section in case of the beam of variable cross-section il-
lustrated in Fig. 4. To be determined is the probability of destruction of
the beam.

In case of a beam of plastic material and variable cross-section, the
beam shall be divided in sections corresponding to 10 to 15 times the height
of the beam (a rapid change in cross-section always being a section boundary)
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Fig. A. Bean of variable cross-section

and the probability of destruction shall be determined for each section in-
dependently. This means that the probability characteristic of the fracture
stress shall be determined for the material and dimensions of the beam ac-
cording to expression (10). Of course, the expectable value and the value of
mean square deviation are to be understood at the end of the design life.
With these values, expression (10) will become for the ith section

®Bi)(T) =aBol} a(T) a(T)

2 A
sg)(T) = s@M AQ) (25)

20 - #UR,

To be calculated now are the cross-sectional quantity and the proba-
bility characteristics at the end of the design life for the ith section:

WhHmM = w
(26)
s(Wn)! W) s(u) (M)
(i)l

At the end of the design life, the load capacity and its probability
characteristics are
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Expressions a(T), a(T), w(T), s~(T), s”~(T), ad s”~(T) are found
in /7/.

The stress resulting from load along the ith section and its proba-
bility characteristics are

(i) (T),  SQ)T) > ar|(T).

Accordingly, the strength calculation reserve of the ith section and
its probability characteristics will be

V() M =RHM - s(1)(T)

From expression (28), the probability of destruction can be calculat-
ed, as follows:

Y(1) (T)

q( i) (29)

The probability of destruction calculated on the basis of expression
(29), denoted by g, must be the optimum probability. If the probability of
destruction along the jth section of the beam divided in sections can be
calculated on the basis of shear stress TK(T), then it is g associated with
this value of shear stress that has to be included arong the addable suns of
expression (29).

Similarly, if the probability of destruction is attributed to sore
other strength characteristic (identation), then the value of g associated
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with that characteristic shall be included among the addable sums of ex-
pression (29).

B. Probability of destruction of statically defined

beams of brittle material

If the beam of variable cross-section shown in Fig. 4 is made of
brittle material, the fracture stress probability characteristics of the
beam shall be determined on the basis of formula (17). In this case, the
volume of the beam is obtained as the sum of the volumes of the sections of
variable cross-section:

V=2 AL
(i) 11

and (30)
K = V/Vo

Otherwise expressions (17) and (18) will apply invariably.

9. Statically undetermined beam

The elastic hinges of a statically undetermined beam are arranged on
the beam in such a way that the probability of destruction of the beam will
be maximum /2, «/.

Consider an n times undetermined beam of plastic material (Fig. 5)
upon which a multiparameter effective load of exptent p is acting in addi-
tion to permanent load g. A certain extent vcP of the effective load can be
repeated without limit. The beam has standard cross-sections of number
N> n. Standard cross-sections are those where the stress due to load has a
relative extreme value or where the cross-section changes rapidly. A load
capacity reserve

N »n >m

Fig. 5. "n" times undetermined beam
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" " S

can be calculated for each cross-section. In expression (31), Fh denotes the
probability characteristics of the load capacity of the cross-section: R*
stands for the expectable value, s” for variance and a” for obliquity. The
probability vector variable Ris

V R aRrl

r2:R P :!r. and arR 31)

ﬂ_ RN .aRN.

Sgi is the internal force due to the omn weight, S~ the expectable
value, e the variance and a is the obliquity. The probability vector vari-

able S is
8@ sgi agi
= A =3 and
2 = A 2R ba (32)
.SON. , SON.. . agN.

Spi is the internal force due to the effective load applied to the
cross-section in a standard way: being the expectable value, s ~ the
variance and a ™ the obliquity. The probability vector variable S is

Spf spl apl
So = =s and .
P 2p2 32 le. (33)
SoN_ SN apN
Stresses S. and S. (i =j =1, 2, ... N) are

[
they are interna? forces ‘subject to the condition of equilibrium. The same

applies to the stresses due to effective loads SP’ and SP"

1
Probability characteristics of the load capacity reserve:
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(34)
A safety factor resulting in zero load capacity reserve can be de-
termined for each standard cross-section:
Vi = (Rt - V /S pi (33)
The minimum value of v/
min V. = Vg (i=1 2 ... N (36)
where is the value of the load capacity characteristic of the beam. In

case of a beam of brittle material, this effective load vgp means the ex-
pectable value of the limit load capacity of the beam The probability of
destruction of bears of brittle material can be calculated on the basis of
expressions (17), (18) and (30).

Of course, beams of plastic material can be loaded additionally. As-
sociated with standard cross-sections of number N are different load posi-
tions of number L < N. In case of each load position, after plastic hinges
of number m< n have occurred as a result of the effective load, when also
yield of the material takes place in the m+lIst cross-section, the beam be-
comes instable either fully (men) or partially (m< n) and its entire load
capacity reserve gets exhausted.

At point min the Lth load position, relative rotation k/'-" (j = 1,
2, ..., m occurs and thus the conditional equation will be
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(37)

mH ogn1

Of course, with the exception of z”~-k, every expression in equation
system (37) is a probability variable and therefore the equation system
shall be solved for the expectable values of Sg*, Sp®, Fh. The value of z7
can be calculated from the geometrical dimensions and from the ratio of the
moduli of elasticity. The relative variance of the geometrical dimensions
lies below 1% the variation of the modulus of elasticity along the beam is
negligible and thus also its effect is minimum /2/ and therefore, because
of their relative variance of about 1% quantities can be assumed to be
determined.

_ R hiy
WL = (i) D
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Similarly to expression (31), the load capacity reserve of the m+list
cross-section of the Lth load position will be

L
yr(r|+)l = pxml-l gna " pmes (39)
where
: . 7 L
Ci=cCi j%i m+1JKj()

In expression (39), k) ' is the relative rotation taking place on the
plastic hinges of number m while zm#* ~ is the internal force in the m+lst
cross-section resulting from relative rotation km = 1 at the jth point of
the undetermined beam

The surplus load capacity term can be calculated from expression (38)
and/or (39). Namely, submatrices can be considered determined and also
the ratio of probability characteristics Fh is determined because the load
capacity in question is that of a beam of the same material but in different
cross-sections and also the ratio of expectable values S moreover, also
that of the values of "L are determined and therefore’'the relative va-
riance of the second term in expression (41) is approximately identical in-
dependently of the cross-sections and thus the probability of destruction is
reduced by the surplus load capacity. However, the question will require
extra consideration if within the cross-section, the partial internal forces
are taken up by beam sections of a different material each.

In general, using the values of z”, the following matrix can be
written:

(40)
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Matrix Z is a symmetric quadratic matrix. Also submatrices associated
with every load position of number L, quadratic and symmetric, can be pro-
duced of matrix Z(L> On the basis thereof, the following matrix equation
can be written from relationship (39):

ZL) k(L) =YL) (@L=1, 0, ... X..). (41)

The probability characteristics of the denominator of expression (38),
a linear sum D o Sp]. + ..+ Z) n can be simply calculated be-
cause they are not independent but there exists the above linear sum rela-
tion between them. lherefore, the probability characteristics of the deno-
minator of expression (38) are perfectly identical with those of the effec-

tive load:

+:Z£L) e

=\, 53 (42)

The probability characteristics of internal forces due to dead weight
in the numerator of expression (38) are, similarly to expression (42),

sO-) =2Z(L) s +ZL) s +z(L) S
g =1 gl = am

o2 gn

sL) = v, S (43)
a<l>=a .
g g

A safety factor v(L'> (where L is the serial number of the load posi-
tion) is associated with every load position. The mnimum value of is

min A1) = v, =100, ... X..). (44)

This effective load v*p means the fracture load capacity of the beam,
taking the plastic properties of the beam into consideration. Should' the
value of load v*p be continuously repeated, a kinematic destruction of the
beam wiill take place that is, after each loading cycle from among those of
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number L, relative rotations will increase continuously. However, there
exists a value of load VP for which

vasvc<vb (45)

and which can be repeated continuously. Thus it will result in a rotation
vector K of a definite value.

O the basis of safety factor & the order of "cross-sections of
minimum load capacity" can be determined. In this less stable cross-sections
of number m a rotation load ke will occur which discontinues increasing in-
dependently of how many times the loading has been repeated.

An equation system similar to (37) can be written which differs from
(37) in that in may apply to different load positions of number m#l while
(37) applies to one single load position only. The sign of safety factor v
so calculated and the sign of each element Kfc) (j =1, 2, ..., mh) of re-C
lative displacement (rotation, shift etc.) vector kc associated with it must
be identical with the sign of the restraint force arising at the jth place
as a result of the load. A safety factor v()() (x =A B, C...) is associat-
ed with each group of cross-sections of minimum load capacity of number m:
satisfying the condition given below, from among which the minimum safety
factor is

min Xx) =vc¢ (X =A B, C...) (46)

Where A, B, C, ... are the different groups of cross-sections of minimum
load capacity with the loads associated with them.

vc from expression (46) satisfies expression (45) while for each ele-
ment of rotation vector a matrix equation similar to (41) can be
written :

Z(x) k() =Y(x) (X =A B, C..). (47)

If equation (47) is solved for safety factor vc, we will arrive at
relative rotation vector which discontinues increasing as a result of
repeated loads because matrix equation (47) does not apply to one single
load position like equation (41) but to different load positions associated
with cross-sections of minimum load capacity. The cross-sections of mnimum
stability of number (m+l) cannot be determined immediately. Therefore, more
equations associated with the order of cross-sections of minimum stability
(A, B, C, ...) must be solved.
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A possible value of the three limit load capacity conditions has al-
ready been determined by Kossalka /5/ to a good approximation.

If the strength of every standard cross-section that is =Vj=..=
= VNl = Va were calculated so as to result in identical safetx, then Ve = Vg
andﬁC =0. Also bears where Vi, =V, Can be designed. The above condition is
satisfied by every lattice girder.

The economically most favourable dimensions of statically undetermined
beams suited to carry loads can be determined under rather general condi-
tions by means of elasticity calculations. |f the beam is utilized in sore
privileged cross-sections only and it is nmede of some material of plastic
behaviour, then this plastic reserve will increase the load capacity
4 >vc}-

Under operating conditions, the load capacity shall be calculated on
the basis of safety factor vc. The extraordinary value of load can be cal-
culated by means of factor

The correct probability is given by the probability of possible de-
struction calculatable on the basis of expression (39).

Beans of plastic material will be economically most favourable if the
safety is identical in every cross-section. In this case, » = =v =W

The probability of destruction of the beam can be calculated in the
way already discussed as the sum of probabilities of destruction of the in-
dependent sections.

10. Numerical example

The steel taken as a basis for the numerical example has been made by
the Hungarian Millworks. The probability characteristics of the yield limit,
calculated on the basis of several thousands of data, of grade 37B-5 plastic
steel of Pearson Ill distribution are given below:

2
Expectable value: gmp = 288.3 NmMm

Variance: Q= 30.73 Nimm®
Obliquity: apQ = 0.679

On the basis of processed data, the relative variance of the dead
weight of the steel is v"(s) = 0.04, the obliquity of the load of lognormal
distribution, applied to the beam by its oan weigth, being 0.40237. The



J1-

0=

16 513.70667- 106 mm4
25 802 667 mm3
6.90048318i»-10~12

0.60055924-10~3 Nmm

J2 = 8175 438453 mmd
W, = 13143 792 mm3 W10 =27 616 000 mm3

a1 144 917 388.2-103

Fig. 6. Cross-sectional data for the numerical example
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relative variance of the effective load of twice exponential (Gumbel) dis-
tribution is, on the basis of measurements, 0.1608, and as is well-known,
the obliquity is 1.13955.

The main girder, a steel construction illustrated in Figs s and 7,
carries the floor of a lecture-room. A permanent load of g = 25.0 kN/m is
acting upon the main girder, the effective load being 3 KNm' that is
p = 25.2 kN/m. Standard moment of the floor of a strength calculated accord-
int to Hungarian Standard M 15024:

At place 1: Mu = 1.1 » 2194.022 + 1.3 » 2211574 -
- (391418 + 1.1 + 394549 -1.3) + 0.1 =
5194.123 K\m

At place 2: M:

1.1 - 873721 + 1.3 « 1300.051 =
2651.159 K\n

Standard stress:

At place 1. am: = 5194.123 « 106/25 802 667 = 201.3 Nnme
At place 2: owmz = 2651.159 « 106/13 143792 = 201.7 Nmm

Shear test result at place 1:

Q( =11 « 344893 + 1.3 « 347.652 = 831.330 kN

Static moment of the half-section: S = 13952 000 nm3B.

Tl\'/II = 831330 - 13952 000/16 513706 670 « 10.0 = 70.24 Nimm

For further studies, the plastic properties of the girder were utilized (for
starting data see the right side of Fig. s).

Cross-sectional and strength data and their probability character-
istics:

Cross section 1: Cross section 2:

Cross-sectional modulus:
Wo = 27616 000 nm Vg = 14334440 nm

Variance:
s"Q = 519 643 nm s = 237385 nm
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Cross section 1: Cross section 2:

Relative variance:
v~o = 0.018817 Vg = 0.016560

2 BT 5 1RF

= 0.94500

Reduction in cross-sectional modulus:

wx(50) .+ 4 10% 6-2160(5835) 1031 520 w2(50) 10%?:3404?135)
= 0.97946 » 882180 = 0.96615
Endurance: =1-0 I€ E 215241'248,.8;005 2'17221.7121'319)\/ = 0.98077
Variance: sa(SO) = 0.03
Design life: T =50 year
Reduction in strength: o(50) =1 - -j -y = 0.99450

Increase in strength variance: 3(139(“50) =1+2 Kj%%Zl 1.2

R,(50)
R(50)

Load capacity:

288.3 « 27616000  0.99450 « 0.97946 « 0.98077 = 7606.136 KN\mM
288.3 « 14334440 « 0.99450 + 0.96615 e« 0.98077 = 3894.412 KNm

= 0.51200925
R

Variance:

R) (50) = 7606.136 296331 15 10010871z 15 4+ 0,032 = 935,519 K

f e 994501 97946 |

f 10.99450 lo.96615) 1-2 *0.032 =477.562 K\n
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Obliquity:
a*R)(50)  0.>19 (Ilils il1)3 = 0-59062

a"R)(50) =0.679 (ITy3!8§1 = 0.59595

Stress due to load:
Permanent load:

S?
S1(50) -2154.880 K\m Agl = 0.40542156 Sg,(50) = 873.721 K\Nm

Variance:
sgi (50) 0.04 « 2154.880 = 86.195 K\m
sg2(50) 0.04 « 873.721 = 34.949 K\m

Obliquity:

agl(5°) = 0.40237 ag2(50) = 0.40237

Effective load:

So
$I(50) =-2172.119 KNm A =-0.59851739 F2(50) = 1300.051 kNm

Variance:

SPICSO)  0.1608 « 2172.119 = 349.277 K\m
sp2(50)  0.1608 « 1300.051 = 209.048 K\m

Obliquity:
api (50) = 1.13955 ap2(50) = 1.13955
Total load:

5450) = -2154.880 - 2172.119 = -4326.999 K\m
2(50)

873.721 + 1300.051 = 2173.772 K\m

199
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Variance:
ss [(50) =3J86.1952 + 349.2772 = 359.755 K\m
Ss2(50) =V34.949: + 209.048z = 211.949 K\m

Obliquity:

49.277
aSi(5G) = 0.40237 (350, III * 113955 9759- . .04387

aS2(50) = 0.40237 "|| 2.048'

) + 1.13955 1 949, .095200

Strength calculation reserve:

Y1(50) = 7606.136 - 4326.999 = 3279.137 K\n

Y2(50) = 3894.412 - 2173.772 = 1720.640 K\m
Variance:

sy1(50) =”935.519: + 359.755. = 1002.307 K\m

sy2(50) =VA477.562: + 211.949; = 522.482 K\mn

Obliquity:

ay 1(50) = 0.59062 [S f . PPTM3070 1 43108

ay2(50) =059595 (H JtH iys - 1.095200 %%%2;29')3 0.38197

3279.137 _
Bx(50) . 1002307 = 3.2716
1720.640 _
2(50) « 522482 © 3.2932
Px~ 1-8L * 106 g2~ 5.71 -10

Fracture shear stress: X(|3: = \;5 288.3 = 166.45 Nmm

Variance: SE - \B 30.79 = 17.777 Nme

MAGYAR
TUDOMANYOS AKADEMIA
KONYVTARA
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Obliquity: aTp = 0.679

201

Shear load capacity of the cross-section above the central support:

Load capacity: Rpg(50) = 166.45 < 16513706670 « 10

0.99450 -« 0.98077 < 0.97946

13'952 000 = 1882.134 KN

Variance: siqr(50) = 1882.134 1 01065912, , . (0.0188171 |

VI0.99450) b2 + 10.97946 )
231.494 KN

Obliquity: apg™(50) = 0.59062

Meximum resultant and its probability characteristics:

Permanent load:
Variance:
Obliquity:
Effective load:
Variance:
Obliquity:
Total load:

Variance:

Obliquity:

Qlg(50) = 344.893 kN

o = 0.04 « 344893 = 13.796 kN
Sg(5°)
aig (5°} = 0.40237

50) = 347.652 KN

=0. » 347.652 = 55.902 kN

vV 50) 0.1608
ap(50) = 1.13955
QuC0) =344.893 + 347.652 = 692.545 KN

S1Q50) =VI3.7962 + 55.902: = 57.579 KN

- 113.796 ;3 . (55
al q50) = 0.40237 157.579) + 1.13955 -« (g7

Shear strength calculation reserve:

YQ50) = 1882.134 - 692.545 = 1189.589 KN

sYq(50) = V231.4942 + 57.579, = 238547 KN

ayp(50)

byq(50) =
gQ50) < 10°°

0.59062

- 1.04839 = 0. 52502

1238.547J

4'9868

+ 0.03 =

= 1.04839
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The shear load capacity is not a governing characteristic.

of destruction of the girder:

g=1(4 571 +1.81) 10'6 = 24.65 » 10'6 2.47 - 10~-5

Safety factors:

7606.136 - 2154.880 _ , cnn,

Val = 2172.119 = 2-5096
3894.412 - 873.721 _ o
a2 1300.051
bl 2.9787; <1 = 7.0307 - 10'
_ . _ -3
aur 3.1940; <2 =-18.3795 -10

Calculation of the value of v,

From equations

Pi * 1 =.r1 -_sgQi

Sp2 ve +tz21 k1 =Rz " Sy

R1 (z21 +-2 zIl) + Sgl (z21 ' r3- zll)

gl = 2.3967
* Pl o(z21 - f 1 zll}
pi

+n2 J1 le2 + fg 2

gi

Spl + r1 lei_ IsL 1.6930 « 10
- Z

Z21 - Z11

Pi

On the basis thereof, the increase in load capacity is

R = 3894.412 + 1.6930  10-: « ~pjj- * 144917.39 = 3989.544 K\m

Probability
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increasing the variance of the fracture load capacity:

<8 K1>'

(-0.59851739 + 0.51200925) 477.562
41> (0.38775 + 0.59851739) 144917.39

(-0.59851739 - 0.40546156) < 34.989

(0.38775 + 0.59851739) 144917.39 14.381757 + 10

Variance of surplus load capacity:

sKl = 3.79233 « 10 4

S =379233 ¢ 104 1 144917.39 = 21.310 K\Nm

=>/477.8682 + R21.3I2 = 478.037 K\m

Y(sq) = 3989.544 - 2173.772 = 1815.772 K\m

DX (50) =V478.0372 + 211.949 = 522.917 K\m

ay(s0) = 059595 (478.037/522.917)3 - 10952 (211.949/522.917)3 = 0.38237

B = 1815.772/522.917 = 3.4724

g 0.998 . 10"

On the basis thereof, the probability of destruction of the girder decreases
to (4 « 0998 +1.81) « 106 =g =5.80 « 10"6, that is, to a quarter of the
original value.
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11. Summary

Presented in this work is a method to determine the reliability of a
rod-type supporting structure.

a) The reliability of lattice girders is given by the sum of probabi-
litie s calculated for the rods under identical load.

b) The probability of destruction of compact-walled supporting struc-
tures is given by the sum of probabilities of destruction of cross-sections
independent of each other, lying at a distance of 10-15 times the height of
the beam from each other.

c) A possible destruction of statically undetermined beams will take
place at that of the possible plastic hinges for which the probability of
destruction is highest.
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GEOMETRICALLY SINPLE EXPONENTIAL WEIR

KESHAVA MURTHY, K.*—RANGARAO, C.**

(Received: 10 February 1994)

This paper presents a practical exponential weir of simple geometric profile
formed by quadrants of a circle of radius 'R'. The flow through this weir of crest
width 2t', top width 2(R+t) and altitude R, is proportional to the exponential power
of head 'h' for flows above a threshold depth, in the range of 0.55 R<h<R within a
maxinum deviation of + 2%from the exact theoretical discharge.

The exponential relationship between the discharge and head is determined based
on a numerical optimization procedure developed for the purpose. Nearly 45% of the
height of the weir can be used effectively as the measuring range. Experiments with
the two weirs show excellent agreement with theory by giving a constant average coef-
ficient of discharge equal to 0.62. The use of the weir in measurement of large
discharges in canals during floods is highlighted. Another unique feature of this weir
is that it is a double purpose weir as it can alternatively be used as a linear pro-
portional weir when inverted.

NOTATION

constant of the replaced exponential relationship
deviation of Q¢ from

acceleration due to gravity

head above the weir crest

slope constant

exponent in the term Hh

discharge

proposed relationship in exact exponential form
half crest width of the poebing weir

vertical co-ordinate

horizontal co-ordinate

nondimensional counterpart of a, b

intercept constant

coefficient of discharge

prefixed maximum percentage of error

*Keshava Murthy, K., Indian Inst, of Sei., Bangalore — 560012, India
x*Rangaraj, C., Indian Inst, of Sei., Bangalore — 560012, India

0864-B085/94/2 4.00 © 1994 Akadémiai Kiad6, Budapest



206 KESHAVA MURTHY, K .—RANGARAJ, C.

H h/R

H H measured from a datum such that B = 1 in the replaced exponential relationship
K 20" V2g a dimensional constant

Pr proportionality range

qe nondimensional replaced exponential discharge

*max> Qnin nondimensional discharges at the upper and lower lim it of the proportionality range
respectively

qQr /KR5/2

R radius of the quadrant

[S P curves defining the permissible region for Q€ to lie in Qvs. Hplot
T t/R

X x/R

Y y/IR

Yi>¥ counterparts of Sj, S2 in In(Q) vs. Hplot respectively

a base flow depth or lower lim it of proportionality range

$ upper limit of the proportionality range

Introduction

Weirs have been classified /4/ into two categories as non-base
weirs and base weirs, depending on the value of the exponent 'n' in the
discharge-head relationship of the weir, "Q a H". When n > 3/2 the weirs
can be designed without a base, they are called as 'non-base weirs' . lhe

conventional rectangular weir, V-notch and parabolic weirs are examples of
this kind. When n < 3/2 the weirs invariably require a base and are called
'base weirs'. lhe linear (Sutro 1908, /9/, Keshava Murthy 1968 and 1978,
/10/), quadratic /3/ and logarithmic weirs /2/ belong to the base weir
category.

Exact linear weirs have applications in irrigation, hydraulic, chem
ical and environmental engineering. lhe complementary profile of these weirs
is complex (as is generally the case with all base wier profiles) requiring
sophisticated equipment and skilled manpower for their fabrications which
are scarce in field conditions.

Troskolanski /11/ in his well-known book on hydrometry mentions about
two geometrically simple plate weirs that give near linear head-discharge
characteristics. He mentions that the flow through the intervening space
obtained by keeping a semicircular cylinder in a rectangular channel pro-
duces a near linear characteristic. Iroskolanski /11/ also mentions that a
closed trapezoidal weir with a vertex angle approximately equal to 50°,
gives almost a linear head-discharge relationship. Surprisingly these weirs
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were never investigated for about three decades. These weirs, called the
bell mouth weir and the inverted V-notch (IVN), were theoretically inves-
tigated and experimentally verified by Keshava Murthy and Giridhar (/e¢/ and
/s/). The IWN and the bell mouth weir have been further improved with re-
gards to their range in the chimney weir and the extended bell mouth weir,
respectively (/7/ and /s/).

Exponential weir (referred to as the logarithmic weir by Banks, Burch
and Shaw /1/) gives a discharge proportional to the exponential power of
head, g a e. It could find an application in flood discharge measurement
since it is a quick discharging weir. This weir falls under the base weir
category since the term e« in the discharge-head relationship, q = bea ,
contains a term h. The weir profile obtained using Abel's Integral equations
is complex.

The present inquiry into the Poebing weir is motivated by a casual
reference mede by Troskolanski in his aforementioned book on Hydrometry in
which be states that the 'Poebing weir' formed by inserting a semicircular
disc of diameter (2R) in a rectangular channel also of width (2R) with the
straight portion resting on the channel bed, would result in an approximate
exponential weir. This has not been analytically studied. Neither its ex-
plicit exponential discharge-head relationship has been determined nor the
range of validity of the same has been established. Troskolanski also sug-
gests that a small gap has to be provided between the quadrants of the weir
to avoid the surface tension effects. This gap which necessarily has to be
provided should also be optimized. The exponential wier (henceforth referred
to as 'E-weir') gives the smallest value of relative error so that among the
weirs of circular shapes it is perfect from the metrological point of view
/11/. In the paper /11/ we relook into this Poebing weir and analyse the
characteristics as an E-weir in the framework of the general theory of pro-
portional weirs underlining the existence of a unique reference plane for
every weir /3, 4/.

Formulation of the problem
Exponential weirs are those weirs which give an exponential discharge-
head relationship in the form
gaed ...(1a)
q = bed ...(Ib)
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Fig. 1, Poebing weir

The discharge through any symmetrical sharp-crested weir, whose profile is
defined by y = f(x) (where x and y are the vertical and horizontal co-or-
dinate axes, respectively), neglecting the velocity of approach is

fh
q = 2C5|V29 J-QV(h - x)f(x)dx,

where, q = discharge, h = head above the crest, g = acceleration due
to gravity, = coefficient of discharge and f(x) =equation of the profile.
The equation of the profile of the Poebing weir is shomn in Fig. 1

f(x) =t +R- - X)),

where, t = half crest width, R = radius of the quadrants.
The discharge through it is given by

q :ZCG\[ZgJE \](h - x)/t +R-J(R2 - x2)/[dx 0<h<R .. (2)
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The coefficient of discharge is assumed to be constant, for sharp
crested weirs and streamlined flows. The coefficient of discharge is gene-
rally a function of several parameters including the head causing flow,
dimensions of the weir in relation to the channel and the crest height.
The value of has to be ascertained from experiments as in conventional
weirs and the variation in will normally be within + 1\ of the average

for any weir and hence can be considered as practically invariable with
respect to head.

Equation (2) can be expressed for convenience in the nondimensional
from as

Q =1(1 + MHs/2 - }] VH - X)yj(1 - X2)dX o< H< 1 ...(3)
3

1 0

where, QI = ¢/KR5/2; H=h/R; X =x/R; T =t/R and K=2d V2g.

The integration of Eq. (3) is done by Simpson's one-third rule. The
discharge Q vs. head H graph for various values of T is showmn in Fig. 2.
The same are plotted in Fig. 3 to a semi-log graph (log0OQvs. H) where it is
seen that the plot is nearly linear for a wide range of head. This implies
the existence of a near exponential relationship in the Q versus H graph
over a certain range of head.

| =7 1 1 1
0.00 0.20 0.40 0.60 0.80 1.00 1.20
HEAD ( Nondimensional ), H

Fig. 2. Theoretical discharge (Q-0 vs. head (H)
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Fig. 3. Variation of theoretical discharge w.r.t.
head on a semi-log graph (to the base e)

Analysis

We exploit the near exponential nature of curves in Fig. 2 by propos-
ing a formal exponential relationship

& = BeA (4)

where A and B are constants; such that (E gives almost the same discharge
characteristic within a certain range and within a prefixed percentage of
error E. Suppose e, is the deviation of (E from Qj then

QT - |

ar x 100 < E (5a)

In most discharge measurements in practice, involving weirs and
notches, a meximum weir indication error (E) of + 26 is normally allowed
/11/. This results in a reasonably high degree of accuracy under field con-
ditions. This value of E is adopted in the analysis.

It is seen that the curve (E has to lie within the prescribed bounds
of Eq. (5a). This leads to the plotting of the permissible region. Fixing
this region beforehand makes the problem amenable to theoretical treatment.
From Eg. (5a),
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Q = Qr(1 + e/100) (5b)

The appropriate sign, positive if < R and negative if Qy > @, is
considered in Eqg. (5b). In the limits Eg. (5b) defines the pair of curves S
and S when e attains the value of E. Curves Sy and & form the lower and
upper bound of the permissible region for @R

S =Qy(l - E/100) ...(s4)
S =Qrl + E/100) ...(sb)

The sketch in Fig. 4 shows the region formed by the two curves Sy and
S and the curve (R with a part of it embedded in it. The projection on the
H-axis (shown as the length between a and g in Fig. 4) of that part of the
curve Q which lies entirely between the curves Sy and &, defines the pro-
portionality range (PR). Hence the "Proportionality range", PR, is

FRR=B-a (7))

The region bounded by Egs (sa) and (sb) and Eq. (4) is transferred
to the semi-log graph. The resulting pair of curves are given by

Y =In & ...(sd)
W=In S ...(sh)

Fig. 4. Typical diagram showing the exact exponential
discharge curve within the permissible region
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Fig. 5a. The exact exponential discharge curve within a
permissible region on a semi-log graph

These curves, with the relevant portion in which the curves are nearly
linear, are shown expanded in Fig. 5a. Since the precise exponential curve
given by Egq (4) appears as an exact straight line in the semi-log graph
(In Qvs. H), given by

In E=In B+ A ...(9)

already a rough estimate of the meximum proportionality range possible with
its starting and ending points can be obtained as shown in Fig. 5a by moving
a straight edge within the region manually. This would prove useful as a
check and in deciding about the feasibility of the problem in the early
stages.

Optimization procedure

The original problem of stimulating the near exponential character-
istic of the Poebing weir using = Beg within the bounds of error and
with the proportionality range meximum, is simplified in the semi-log plane
into finding, by process of optimization, a straight line,

y=nmd+C ...(10)
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whose horizontal projection is meximum, subject to the constraint that the
entire straight line be in the region bounded by and y*. Comparing Ecs
(9) and (10), we obtain

In @:y ...(Ha)
A=m ...(lib)
B =ec ...(11c)

Expressing the same in dimensional form Egs (11a) and (lib), we get

b = 2ad V2iecR 72 ...(12a)
a=mR ...(12b)

A systematic numerical optimization procedure was developed to find
the line with the greatest horizontal projection in the region formed by the
curves ¥ and y* (Fig. 5b) which are monotonically increasing.

A point P* is chosen on the extreme right of the y* curve and joined
to a point P on the extreme left of the y2 curve. The entire line Pj* Tay
not be in the region. Point P is moved successively on the y2 curve until
the entire line is in the region. The horizontal projection of this line

Fig. 5b. Optimization procedure to find the line with
the maximum horizontal projection
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with any possible extension within the region formed by and YE is then
determined.

The procedure is repeated for all possible points on the y" curve
such that each time, that straight line inclusive for any extension, which
is entirely in the region, is obtained. The line which has the meximum ho-
rizontal projection is selected. A computer software wes developed for the
method on the VAXss mainframe computer.

Optimization of the weir parameters

The optimization procedure developed in the previous section is fol-
lowed to obtain the proportionality range (Pp) for numerous values of t/R,
the geometric parameter of the weir. In the light of the fact that Trosko-
lanski /11/ recommends a gap of 3-5 nmbetween the quadrants, in the actual
construction of the Poebing weir to satisfy the practical requirement of
avoidance of surface tension effects, it is logical that this geometric
parameter of the weir be optimized. The proportionality range (P") plotted
against the half width t/R is shown in Fig. sa.

The sare is expanded in the range 0 < t/R < 0.2 in Fig. ¢b. Figure &b
reveals that the proportionality range (P") is almost constant in o.1 <
< t/R <0.2. Aconvenient value of t/R =0.1 is chosen for our experiments.

Analysis of results

From the above optimization procedure we obtain the values A and B
(for t/R =0.1) and the following exponential relationship is proposed.

@ =6.396 X10":e3-2280H 0.552 < H< 1.00 ...(13a)
or,
Ne _ 3-22(H-1.5651) (13b)
or,
Q@ =& '22(Hdb ...(13c¢)

where, Hd is the nondimensional head measured from a datum situated at
1.5651R above the crest.
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Fig. 6b. Variation of the proportionality range with the
half crest width ratio expanded in the region 0 < t/R <0.2

Dimensionally it can be expressed as

OE = gekRP!? ..(13d)
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Table 1
t/IR A B Discharge equation
012 3.09914 7.8X10~3 Q = 7.8x10~3e3-09914H or,
g - €(3.09914H-4.85363)
0.14 2.997197 9.39742 x10"3 Q = 9.3979X10-3e2-9972H or,
q _ e(2.9972H-4.66727)
0.16 2.91476154 10.9515 x10 -3 Q = 10.9515x10"3e2-91476H or,
q = e(2.91476H-4.51428)
0.18 2.84562612 12.537 x10 -3 Q = 12.537x10~3e2-84562H or,
q = e(2.84562H-4.37907)

Fin. 7, Variation of the ratio of the discharge at the top
and bottom of the measuring range with half crest width ratio

The details of the exponential relationship for various other values
of t/R are given in Table 1. The limits of the proportionality range remains
constant for 0.1 < t/R < 0.18. Figure 7 shows the plot of the ratio of the
discharge at the end points Q™" of the measurement range versus the
ratio t/R.

It is significant to note that this weir when inverted is the bell
mouth weir /s/, a linear proportional weir. At t/R = 0.18 a design close to
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the optimum design of the bell-mouth weir is obtaihed and this value of t/R
is within the optimum range of t/R of the Poebing weir. At the value of
t/R = 0.1 used in our experiment, 53% of the total height of the bell-mouth
weir can be used for the linear measurement. The linear discharge-head re-
lationship is given by

Q= 0.2815CH - 0.0437), for 0.16<H<0.69 ..(14)

where, Q = q/KR""; H=h/R; X =x/R; T =t/R; K = 2CMN2g.

Experiments

Experiments were conducted on two geometrically simple E-weirs of
R =025 mand R = 0.30 mwith t/R = 0.1. The weirs were cut from 6.5 mm
thick mild steel plates according to standards. The weirs had a sharp edge
of 1.5 mmwith a 45° chamfer. Figure s shows a schematic arrangement of the
laboratory set up used. The weirs are fixed at the end of a rectangular
channel 19.5 mlong, 1.2 mwide and 1.1m deep, with crests set 20 om above
the channel bed. The channel had adequate stilling arrangements. The head
over the weir was measured using a point gauge, which wes fixed 4 m upstream
of the weir section, with accuracy of measurements to the third decimal
place, 0.001 in (0.1254 mm).

Fig. 8. Experimental set-up
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Flg. 9a
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Fig. 10. Semi-log plot of actual discharge versus head

The discharges were measured volumetrically in a measuring tank
452 X452 inx 1.5 m through readings in a perspex tube of 20 mm internal
diameter, connected to the bottom of the tank at one end. The discharges
were determined by finding the time taken for the water level to rise from
one indicator, fixed in the perspex tube, to another, which was exactly at a
height of 50 cm above the first indicator. The indicators were connected to
the leads of an electronic timer through a start and stop mechanism. Figures
9a, 9 shows the photograph of the weir discharging.

Figure 10 shows the variation of measured discharge versus head on a
semi-log graph (In gvs. h). It is seen that the experiments are in very good
agreement the theory by giving a constant average C Figure 11 shows the
variation of with head for two weirs with R =024 mand R = 0.3 mand

t/R =0.1. The is obtained as the ratio of the experimental discharge to
the discharge obtained from the proposed exponential relationship. It is
seen that the C» does not vary by more than +:%from the average for

any head which adequately supports the assumption of a constant coefficient
of discharge in analysis.
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Fig. 11. Variation of with depth of flow

Concluding remarks

It is shown that the weir formed by two quadrants of a circle of radius
R with a gap of 2t between them can be used to give a exponential dis-
charge-head relationship within a meximum percentage deviation of + 2
from the theoretical discharge in arange of head determined by the value
of t/R.

This weir is a unique weir where the reference plane could be adjusted.
When t/R lies between 0.1 and 0.18 meximum range of measurable head is
obtained. For the above range of t/R nearly 45% of the effective depth of
the weir can be used in the range of head 0.55R < h< R

Experiments on two weirs give a constant average coefficient of dis-
charge, equal to 0.62. The variation of is within + 1% of the mean
value.

The geometrically simple E-weir can also be used as a linear weir (bell
mouth weir) when inverted. For /R = 0.1 it has the linear relationship
in the range 0.16R < h < 0.69R.

. On account of its geometric simplicity and its quick discharging charac-

teristic it should prove useful in practice as a quick discharge measur-
ing device during floods.
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USE OF A HYPERBOLIC FUNCTION
TO DESIGN A SELF-BASING LINEAR WEIR

KESHAVA MURTHV, K.*—RANGARAJ, C.**—RAMESH H. S.***

(Received: 10 January 1995)

This paper is concerned with the theory and design of a new improved self-basing
linear weir of small base flow depth and constant indication accuracy. The design is
achieved by utilising the characteristics of a simple hyperbolic function. It is seen
that the 'reference plane' or the 'datum' of the weir lies with the crest, so that the
discharge through this weir, for all flows above a threshold depth, is proportional to
the head measured above the crest within a prefixed maxinum percentage deviation of

1% of the theoretical discharge. Experiments with two typical weirs confirm the theory
by giving a constant co-efficient of discharge of 0.64. Its application in irrigation
and environmental engineering is highlighted.

NOTATIONS

a constant

a constant, here equal to the co-efficient of the term h&2 in cp(HH
relative error = QQQ

maximum permissible 'e' adopted in the design

acceleration due to gravity

head above the weir crest

slope constant

exponent

discharge

a parameter controlling the shape of the generating function and the base depth
vertical co-ordinate

the value of x at which the function becomes nearly constant/linear
horizontal co-ordinate

tanh(aVOH)), a function which becomes rapidly constant beyond an initial non-linear
portion
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the well-known gamma function

coefficient ofdischarge

absolute error

hw

h/Hc

q/KW5/2

aq/KW»/2

linear discharge relationship replacing the theoretical discharge Q
x/W

xhe

yIwW

vive

a dimensional length constant

half crest width of the weir depending on a

S <53 *xEQEOoFImQ

1. Introduction

Linear proportional weir has attracted interest in recent years /1—4/
owing to its simplicity in head-discharge relationship as well as its prac-
tical applications in varied fields like chemical, environmental and ir-
rigation engineering /5/.

Exact linear proportional weirs are invariably compound weirs con-
sisting of a base weir and a complementary weir /e/ fitted over it and
achieve a discharge directly proportional to the linear power of the head
measured above a datum, generally non-coincident with the crest. As compared
with the exact linear proportional weirs, geometrically simple weirs /7—9/
have a profile consisting only of straight lines and segments of circles
and are thus easy to fabricate. However geometrically simple linear weirs
produce a discharge proportional to the linear power of the head in a
limited range controlled by the choice of the meximum permissible error de-
viation from the theoretical discharge.

Self-basing linear weirs (henceforth referred to as 'SBL weirs') /10,
11/, are a new class of weirs consisting of a single profile with a portion
of the weir above the creast acting as the base weir. In comparison, with
the geometrically simple linear weirs, the self-basing linear weirs have a
marked advantage in having unlimited linearity range. Self-basing linear
weirs are also free of the criticism directed against the conventional
linear weirs questioning the rationality of choosing a common value of the
coefficient of discharge C», for the flow, in the base weir as well as the
complementary weir above.
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A problem conmron to most of the physically feasible exact linear weirs
is that the reference plane does not lie with the crest. This makes the in-
dication accuracy (error caused in the discharge computation for a +i1%er-
ror in the head) to vary with the head which is undesirable /12/.

The two main disadvantages of the self-basing linear weir designed

earlier by Keshava Murthy and Giridhar, are

(i) the reference plane of the weir does not lie with the crest so that the
indication accuracy is not a constant but varies with the head,

(ii) the base depth is sufficiently large so that a large amount of water
flows before the linearity law of the weir starts.

The above two limitations are overcome in the present design.

2. Choice of the generating function

A self-basing linear weir can be obtained in any one of the following
ways:

(i) Using a discharge function q = f(h) (generating function) which is non-
linear in the range o < h < d but becomes near linear in d< h< »
(SBL-1 type) (Fig. la).

(ii) Using a function, do _ f(h) which is non-linear in the range 0 < h<d
but is nearly constant in d< h< » (SBL-2 type) (Fig. Ib).

Consider the function

d(x) = tanh(a ™x) ..(1)

Fig, 1. Forms of primary generating function
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Fig. 2. Plots of tanh(aVx) —*

where a is a constant. It is seen from Fig. 2 that & is non-linear in
0 < x < xo snd is nearly constant for x > Xg. The value of Xg decreases as a
increases. However it is advantageous to use the function of the form, xd(x)
which is non-linear in the range o < x < Xg and nearly linear in x> Xg as
SBL-1 type as will be clear in the foregoing sections. Hence we take

Q = tanh(@"H)H) = q(HH .(2)

as the generating function in non-dimensional form (ref. Eg. (s)) to derive
the weir profile. It is seen that Q0) =0, Q) =», QH) is monotonically
increasing and» =0 at H = 0, which are the conditions to be satisfied by
any discharge-head function.

A weir with a zero crest width at the origin will increase in width
and reach a mexinum and once again decrease which will lead to sharp kinks
which are difficult to fabricate and are undesirable in a weir. Whereas a
weir with a finite crest width at the origin will give rise to a profile
which is continuously decreasing. Hence we look forward for an additional



DESIGN A SELF-BASING LINEAR WEIR 227

requirement of a profile with finite crest width at the origin. It is clear
from the works of Cowgill /13/ and Banks /14/ that a weir will have a finite
crest width if and only if QH) has I—?/Z as the lowest term. Expanding Qin
terms of power series we have,

Q= (aHsi2 - (I/3)asHiz + ...) ...(3)

it is seen that the least power of head is 3/2, assuring that the weir will
have non-zero, finite crest width /13, 14/. Hence Q = dH)H is choses as the
primary HQ function to achieve a constant accuracy self-basing linear weir.

The crest width for the weir can be derived as below. For a weir pro-
ducing a discharge g = bhmthe weir profile is given by /13, 14/

f rm + 1) m3/2
X Qikagr rm - 12)

Substituting b = 2Cd VAgW and m=y in the above equation,

() 2W 2+ 3
ylo AT or(32 - 12) " 2

or,

Y(0) =U-. ...(4)

3. Mathematical analysis

The discharge through a sharp crested weir defined by y = f(x) is
given by

fh
q(h) =26V 5 Vth - 0f(x)dx ...(5)

where, q = discharge or rate of flow,

depth of flow measured above the weir crest,
acceleration due to gravity,

coefficient of discharge.

Q =
I

The coefficient of discharge is assumed to be constant, for sharp
creasted weirs and streamlined flows. Coefficient of discharge is generally
a function of several parameters including surface tension, viscosity, head
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Fig. 3. Profile of the weir

causing flow, dimensions of the weir in relation to the channel and the
crest height. The value of has to be ascertained from experiments as in
all sharp crested weirs. The variation in will normally be within +%
of the average for any weir.

Non-dimensionalising Eg. (5)

rH ,
Q(H) :J VH - X)F(X)dX ...(s)

where, H = hW,
x = XW,
Q = g/(2Cd ~2iWs/2) ,
W= a dimensional length constant.
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Fig. 3a. Shows the weir profiles (y/Wc) for various values of a

Differentiating Eq. (5) with respect to h using Leibnitz's rule

b FX) ax = 2Q(H) (7)
0 VH - X

The left-hand side of Eq. (7) is in the form of Abel's integral equation and
the solution of Eq. (7) is /14, 15/

F(X) 2fX Q'(H) ...(8)
1JO VX - H

The integration in the above equation was performed on the UNIX system using
the 'Mathematics' package to get the weir profile. The profile of the weir
for a = 3 is shown in Fig. 3. For the purpose of comparison the half profile
of the weirs for different values of a are shown in Fig. 3a.
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4. Linear discharge characteristic of the weir

Let
=mMi+ C . (9)

represent the asymptote, of the theoretical head-discharge curve.

m tim A . (10)

H-*® '

C=lim (@QH -m) =0 o (11)
H -+ @

The equation of the asymptote, which if the linear relationship replacing
the actual discharge-head curve (for H> H,) is

Q =H ..(12)

By takint g = kh tann(a ~h), where k is a constant, inclination of the g-h
curve could be varied, to get a weir of the desired sensitivity.

5. Analysis of error

If EH) is the absolute deviation of Q from

EH) =lq- Q] ---(13)

it is seen that E(O) =0, E(*°) =0.
The relative error as defined hy

~ -9 £ 71\

is continuously decreasing with Hin the range 0 < H< » and rapidly ap-
proaches zero. It is seen from Fig. 4, that the error is equal to + 1% at
H=0.781 (for a = 3), beyond which for all practical purposes, the designed
weir is almost as accurate as any exact linear weir. In most discharge
measurements in practice, involving weirs and notches, a mexinum relative
error of +24 is normally allowed /15/. This results in a reasonably high
degree of accuracy under field conditions. Taking the meximum permissible
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Fig. 4. Distribution of percentage relative error
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error as +1%for our design, the depth of flow at which this error occurs
can be considered as the threshold depth, which is analogous to the base

weir in conventional weirs.

Fom Eq. (2), Eq. (12) and Eq. (14) the base depth for a given value

of e IS
D= _C}
a
where, ¢, = (ArcTAnh(:  ->—ITnn~? >
1 1 emax/iuu
D = nondimensional base flow depth, dAW.

...(15)

Fom Eq. (15) the value of a giving the sare base depth of 0.4 ob-
tained from the earlier designed SBL weir /10, 11/ is 2.271, corresponding

for a relative error in discharge.
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0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00
3.00
5.00
7.00
9.00
11.0
13.00
15.00
17.00
19.00
21.00

Co-ordinates of yMW< for values of

6

1.0000
0.7170
0.5515
0.4467
0.3761
0.3263
0.2898
0.2620
0.2403
0.2230
0.2088
0.1970
0.1870
0.1785
0.1711
0.1646
0.1588
0.1536
0.1490
0.1448
0.1409
0.0814
0.0632
0.0534
0.0471
0.0426
0.0392
0.0365
0.0343
0.0324
0.0308

RANGARAJ, C.-RAMESH, H. S

Table 1

5

1.0000
0.4664
0.3047
0.2341
0.1958
0.1719
0.1553
0.1430
0.1334
0.1257
0.1192
0.1136
0.1088
0.1046
0.1009
0.0975
0.0944
0.0916
0.0891
0.0867
0.0846
0.0489
0.0379
0.0320
0.0282
0.0255
0.0235
0.0219
0.0205
0.0194
0.0185

7

1.0000
0.3088
0.1982
0.1570
0.1348
0.1204
0.1099
0.1019
0.0954
0.0900
0.0854
0.0815
0.0781
0.0750
0.0723
0.0699
0.0677
0.0657
0.0638
0.0621
0.0605
0.0350
0.0271
0.0229
0.0202
0.0182
0.0168
0.0156
0.0147
0.0139
0.0132

10

1.0000
0.1958
0.1334
0.1088
0.0944
0.0846
0.0773
0.0716
0.0670
0.0632
0.0599
0.0571
0.0547
0.0526
0.0507
0.0489
0.0474
0.0460
0.0447
0.0435
0.0424
0.0245
0.0189
0.0160
0.0141
0.0127
0.0117
0.0109
0.0102
0.0097
0.0092
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5. Universalisation of the weir parameters

The primary discharge-head function is non-dimensionalised with re-
spect to a dimensional length parameter W However it is desirable to non-
dimensionalise the profile equation of the designed weir with respect to its

oawn dimension namely, the half crest width W. It is apparent from this non-
c w

dimensionalisation that ) =1 and from Eq. (4) = -.
The corresponding thcreshold depth is
o, v\éd— D ..(16)
From Egs (4), (12) and (19),
@ =aHc ..(17)
where a = [|- a) For the designed weir with a = 3, y(0) =W = 4.5,

Do = 0.1736 and @ = 0.10476 Hc. Table 1 gives the co-ordinates of the weir
for a =3, 5 7 and 10.

Fig. 5, Experimental setup
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Fin, fia. Front view
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Fin. 6b. Side view showing the nappe
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Fig = 7. Experimental head-discharge plot

6 . Experiments

The experimental setup is shoan in Fig. 5. The profile of the weir is
cut on a nibbing machine using 914.4 nmx 609.6 mmx 6.5 mMmthick M.S. Sheets.
The depth of flow over the crest wes measured with an electronic point gauge
having a least count of 0.01 mm located 4 mupstream of the weir section in
a stilling well. The surface waves were dampened by using graded boulders on
the upstream of the channel section. The time required to collect a fixed
volume of water in a measuring tank (4.52 mx 4.52 mx 1.5 m) wes recorded
with the help of an electronic timer triggered by impulse signals attached
to the level indicators. Figure s (Photo) shows the view of the discharging
weir. Figure 7 showns the plot of actual discharge versus head measured above
the crest of the weir. The graph is a straight line passing through the
origin, confirming the theoretical analysis. The plot of coefficient of
discharge versus head is shown in Fig. s and the average coefficient of
discharge for the weir is 0.63. The coefficient of discharge for any head is
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Fig. 8. Plot of G4 vs. head

well within + 14 of the average which justifies the assumption of con-
stant coefficient of discharge in the analysis.7

7. Conclusions

A hyperbolic function is used as a generating function to design a con-
stant accuracy linear weir.

The weir has a non-zero finite crest width.

The base flow depth or the threshold depth (depth at which + 14 error oc-
curs) varies with the parameter a.

For a > 2.271, the base flow depth of the designed weir is smaller than
the base depth of the earlier designed SBL weir using quadratic weir
profile.

The reference plane of the weir significantly, lies with the crest ren-
dering it as a constant accuracy weir.

. Experiments with two typical weirs are in good agreement with the theory

by giving a constant co-efficient of discharge of 0.64.
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A SIMPLIFIED DERIVATION OF THE EQUATIONS
OF SHALLOW-SHELL THEORY IN CURVILINEAR CO-ORDINATES

MBAKOGU, F. C.*—PAVLOVIE, M. N.**

(Received: 15 September 1994)

The differential equations describing the behaviour of a shallow shell within the
broad framework of curvilinear co-ordinates corresponding to the imtually orthogonal
lines of curvature of the shell middle surface are derived on the basis of the two-
surface shell theory. This approach to the derivation of the shell equations is, in
essence, a generalization of an earlier formulation, due to Calladine /1/, in terms of
plane Cartesian.co-ordinates. Specific examples of the present formulation are then
given with reference to more complex frames of reference such as spherical, cylindrical,
polar and quasi-polar co-ordinate systems. As will be seen, the proposed derivation

scheme — which may also be extended so as to encompass completely general, oblique
frames of reference — is, in the spirit of the two-surface idealization of shells,
more direct, simpler and, above all, more instructive than conventional treatments.

Introduction

The complex interaction between bending and stretching actions, which
generally combine to sustain loads applied to shell structures, can be ef-
fectively studied by means of a two-surface theory of shells proposed by
Calladine /1/. In this theory the interaction between bending and stretching
actions is brought out in physical terms by the conceptual splitting of the
actual surface of a shell into two distinct, but coincident, surfaces, de-
signated B and S, each of which is endowed with a different part of the
stiffness of an element of the shell. The S- (or stretching) surface pos-
sesses in-plane stiffness only, and thus carries nmembrane (i.e. in-plane)
forces but is physically incapable of transmitting bending (and twisting)

*F. C. Mbakogu, Allied Tropical Consultants Ltd., 5 Akinola Cole Crescent, lkeja,
Lagos, Nigeria

*M. N. Pavlovié, Department of Civil Engineering, Imperial College of Science, Tech-
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moments and transverse shear forces. On the other hand, the B- (or bending)
surface is provided with flexural stiffness only, and hence sustains bending
(and twisting) moments and transverse shear forces but offers no resistance
whatsoever to in-plane forces. The device of splitting the action of a shell
into two distinct parts affords the possibility of thinking separately about
the two aspects of behaviour, and the interaction between them. Thus, for
example, the load-sharing between the two surfaces provides ready insight
into the regime of behaviour into which a given problem falls /2—4/.

In /5—8/, the didactic potential of the two-surface model was illus-
trated by means of a numerical model. Here, the teaching potential of the
method is demonstrated by reference to analytical derivations. Specifically,
the differential equations describing the behaviour of a shallow shell with-
in the broad framework of curvilinear co-ordinates corresponding to the
lines of curvature of the shell middle surface are derived on the basis of
the two-surface theory. This approach to the derivation of the shell equa-
tions is essentially a generalization of an earlier formulations, due to
Calladine /1/, in terms of plane Cartesian co-ordinates. Special cases of
the present treatment — corresponding to cylindrical, spherical, polar and
guasi-polar co-ordinate systems — are then used to illustrate the inherent
advantages of the approach. Apart from its elegance, when compared to exist-
ing derivations /9—14/, the present approach also has clear didactic ad-
vantages, notably, the elucidation of the meahings of the various quantities
in the field equations in simple, physical terms. These advantages stem from
the use, in the present scheme, of the two-surface notion of separable bend-
ing and stretching effects, and of the Gaussian curvature change as the
prime kinematic variable.

General derivation

Figure 1 shows the various stress resultants and couples acting on a
differential element of a shell, as well as the surface tractions to which
the element is subjected. The orthogonal curvilinear co-ordinates and «2
coincide with the lines of principal curvatures of the middle surface of the
shell. The applied loading consists of a normal pressure p and a pair of
tangential surface tractions " and @@ aligned with the directions of prin-
cipal curvature. The diagram defines the positive senses of the in-plane
direct and shearing stress resultants N N, N-CI**), out-of-plane (or
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Fig. 1. Infinitestimal shell element under in-plane and bending
actions (only actions on sides AB and BC are shown)

transverse) shear stress resultants and bending and twisting stress
resultants (or couples) MW, M, (= M2

Let the principal curvatures of the middle surface of the shell be de-
noted by (= 1/R"), k2 (= 1/Rz2) while the associated Lamé parameters be de-

noted by A* = (exp o2), =s2 fal’ a™ N w+H recaH ec*, from the
theory of surfaces, that these geometric parameters are related thus:

(1)

(2)

(3)

The above relations are the well-known Gauss—Codazzi equations (the first
is Gauss's equation, while the other two are due to Codazzi), the signifi-
cance of which rests on the fact that the quantities Ap and k2 can-
not be expressed arbitrarily as function of the co-ordinates (a”, a”) of a
point on the surface /15, 16/.

Now consider the equilibrium of the differential shell element. In-
stead of formulating the equilibrium equations for the actual shell element
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| normal

Fig. 2. Mathematical model for the infinitestim al shell element
of Fig. 1 obtained by splitting the shell into two separate surfaces
a) S-surface ("stretching"); b) B-surface ("bending")

directly, as in conventional treatments, we shall, in keeping with the two-
surface idealization, set up the corresponding equations for each of the
distinct conceptual surfaces used in modelling the shell. As shown in
Fig. 2(a) and Fig. 2(b), the S-surface element carries only the membrane
stress resultants while the B-surface element sustains the flexural actions
exclusively. The diagrams also show that the B-surface element is subjected
to a normal pressure Pg and two tangential surface tractions g‘g, @R while
its S-surface counterpart is, in turn, subjected to a normal pressure Pg and
a pair of tangential loadings and g. It is obvious that, since the ac-
tual applied loading is generally carried partly by the S-surface and partly
by the B-surface, the following interaction conditions of overall equilib-
rium linking the carrying capacities of the two surfaces hold true:

PS+pB=P (4)

qls + qlB = ql (5)
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= (6)
02S + gB =2

It mey readily be shown that the equilibrium equations for the two
surfaces are as follows:

KN+ KeNe @)

AA (8)
)

(10)

(11)

(12)

(13)

(14)

Equations (7)—(9) relate to the S-surface while expressions (10)—(14) are
associated with the B-surface. For the former, equation (7) expresses the
condition of force equilibrium in the normal direction while equations (s)
and (9) are the corresponding equations for the tangential directions. For
the B-surface, equation (10) represents the condition of force equilibrium
in the normal direction while equations (1:) and (12) are the corresponding
equations for the tangential directions; in addition, equations (13) and
(14) represent the conditions of moment equilibrium about the and a2
axes.

Clearly, the S-surface equilibrium equations (7)—9) are of the sare
form as the corresponding equations of a membrane shell (see, for example,
Gol'denveizer /17/). In the present case, however, the load components acting
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dr the S-surface element represent only some portion of the actual (i.e.
total) applied load components.

By combining equations (10), (13) and (14), one mey express the B-
surface pressure loading Pg in terms of the bending and twisting moments as
follows:

a g & [ 3(A1ML2) A2
. R + Mi2 -M 2 3cn
vom Al o o2 38&2
(15)
i 1 3(AxM2) J(A2ML2) A2 3AX
. + M12 -M
A2 a2 - X2 Jaj e 3a2

In view of the mechanical characteristics of the B-surface, one would expect
that the above expression (15) represents the equation of equilibrium of an
element of a flat plate which is locally tangential to the curved surface of
the shell. However, unlike a flat-plate element, which is incapable of car-
rying any tangential loading, the curved B-surface element demands some tan-
gential loading in order to secure its equilibrium in the tangential direc-
tion. This is confirmed by equations (11) and (12), which reveal that the
required B-surface loadings g"g, g“g depend on the disposition of the trans-
verse shear forces Qp Q within the Bsurface. By reason of the smallness
of the Bsurface tangential loadings in the present context of shallow
shells, it is obvious that they can provide but very feeble coupling between
the bending and stretching effects, which coupling disappears in the limit-
ing case of a flat plate. Thus, it seems reasonable to ignore the terms g
and ¢g2g in equations (5), (s), (11) and (12), thereby transferring the en-
tire applied tangential loadings to the S-surface. Evidently, the neglect of
the tangential force interaction between the S- and B-surfaces is consistent
with the Donnell—Mushtari—Vlasov simplifications of the shell equations;
and, also, with Gol’'denveizer's approximation for shells with 'large indices
of variation' /17/. Moreover, such a nove implies that the interaction con-
ditions of overall equilibrium are expressed solely in terms of normal load-
ing components /3, 18/.

The constitutive and compatibility relations for the two imaginary
surfaces nay also be formulated separately. In the following, these rela-
tions, together with the equilibrium equations, are collected together in
separate columns for the two surfaces. (For present purposes, tangential
surface tractions are neglected — this point will be taken up again later.)
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S-surface
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(16B)

(17B)

(18B)

(19B)

(20B)

(21B)

(22B)

(23B)

(24B)
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The behaviour of the S-surface is described by the set of equations
(16S)—(25S). Expressions (16S)—(18S) represent the equations of equilib-
rium of the S-surface for the present case of vanishing tangential surface
tractions; as is well known, equations of this type mmy be conveniently
dealt with by introducing an Airy-type stress function ®/19/, and this is
defined by relations (19S)—(21S). Equations (22S)—(24S) are the consti-
tutive relations for the S-surface while equation (25S) represents the
compatibility equation relating the S-surface Gaussian curvature change g*
to the in-plane strain components /3, z20/.

The set of equations (16B)—(25B) describes the behaviour of the B-
surface. Expressions (16B)—(18B) are the compatibility equations relating
the B-surface Gaussian curvature change gg to the ordinary curvature-change
components Kp k: and Kp. Expressions (19B)—19B) are the simplified geo-
metric relations which define the curvature-change components solely in
terms of the normal displacement component w. Equations (22B)—(24B) are
the constitutive relations for the Bsurface while expression (25B), which
may be obtained from equation (15) by means of simple transformations,
represents the B-surface equilibrium equation relating the loading pg to the
bending and twisting moments Mp M and Mp.

The formal similarity between the corresponding expressions for the
two surfaces, as indicated by the common numbering, is evident. It is, of
course, a consequence of the extended static-geometric analogy of Calladine
/1/ and clearly indicates that the set of equations describing the behaviour
of the S-surface can be transformed into the corresponding set of equations
for the B-surface, and vice versa, by merely interchanging analogous va-
riables and material constants (N ++ <2j N ** Kp Np *= - *p, @ M2,
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e2 ** Mx, yl2 ee¢ - 2M12, P+ - W, whe - N o+ O, Pg 9B,
gs ~ pb).

A full description of each of the two conceptual surfaces has been
presented. In order to ensure that the surfaces do not behave independently
of one another, it is necessary to impose interaction conditions of overall
equilibrium and compatibility. As noted earlier, overall equilibrium is as-
sured by equating the total applied (normal) load p to the sum of the se-
parate (normal) loadings carried by the S- and B-surfaces, as expressed by
equation (4). Overall compatibility, on the other hand, is assured by equat-
ing the B-surface Gaussian curvature change to its S-surface counterpart,
that is, by the condition

gs - 9B (26)

Since the above interaction conditions are, in fact, statements of the
sought governing equations, it is evident that the latter nmay be obtained by
determining the variables Pg, Pg, g" and gg separately and then combining
them by means of equations (4) and (26).

Consider, first, the equations of the S-surface. By substituting ex-
pressions (19S) and (20S) into the equilibrium equation (16S) and taking ac-
count of the Codazzi equations (2) and (3), the S-surface loading Pg can be
expressed in terms of the stress function ® as follows:

PS =Vk* (27)

where the symbol 2 denotes the second-order mixed differential operator de-
fined by

Now, in special cases (such as, for example, Cartesian, polar and
guasi-polar co-ordinates) the two tangential equilibrium equations become
identically satisfied once they are expressed in terms of the stress func-
tion @. In the present, general case, this does not happen, but these equa-
tions take the following forms. By substituting the stress-function defini-
tions (19S)—(21S) into the tangential equilibrium equation (17S), one ob-
tains, after some manipulations (amongst which, account is taken of Gauss's
equation (1)), the relation
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a(AzN1) A 3(ANLD) A A =

- A7NC 3a2 N2 2a2 M2 3al (29)
Similarly, the second tangential equilibrium equation (18S) may be expressed
in the following form:

3(ain2) 3 3(ANL2) M A A i
r — N + N in M c-"Uy

22 na2 T Ao

Evidently, the right-hand side terms in equations (29) and (30) vanish for
shells with zero Gaussian curvature (as they do in the case of flat plates).
However, for a shell of non-vanishing Gaussian curvature the terms may, as
an approximation, be assumed to be equal to zero if the middle surface is
shallow, by reason of the smallness of the curvatures of the shell; such an
approximation can also be used if the state of stress in the shell exhibits
rapid variation by virtue of the negligible magnitude of the first deriva-
tives of ®in comparison with its higher derivatives.

The S-surface Gaussian curvature change can also be expressed in terms
of the stress function @. This can be achieved by substituting the constitu-
tive relations (22S)—(24S) into expression (25S) and taking account of the
tangential equilibrium equations (17S) and (18S) as well as the stress-func-
tion definitions. In this way, one obtains:

_.1
- % = Bt Vé\/é 0] (31)
where the symbol V2 denotes the generalized Laplace operator defined by
g

1 3 fA2 4,1+ 3 '"Al 3 1
AMA7 -1 xum 32‘2_]J Ja2 1A2 3a2J (32)

Now consider the set of equations describing the behaviour of the 13
surface. By substituting expressions (19B) and (20B) into the compatibility
equation (16B) and taking account of the Codazzi equations (2) and (3), the
B-surface Gaussian curvature change gg mey be expressed in terms of the
transverse displacement function win the following form:

9B = w (33)
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As for the tangential equilibrium of the S-surface, the remaining two
compatibility equations of the B-surface are not identically satisfied when
w is inserted into them for the present, general case, but they take the
following forms. By substituting the curvature-change definitions Cl9B)—
(21B) into the compatibility equation (17B) one obtains, after some mani-
pulations (amongst which, account is taken of Gauss's equation (1)), the
following relation:

3072*%2)) 3(AKi2” 3A1 A2 3w

34
> 1o 3a2 12 3¢ M2 (34)

Similarly, the second compatibility equation (18B) may be expressed as
follows:

aiAjKj) 3AX  3(a2K 2) %&8 Al B (35)

81*2 K2 Sa2 3oth 12 3alL RIR
For shells of zero Gaussian curvature, the right-hand side terms in the
above equations vanish; they may also be assumed to vanish in non-zero Gaus-
sian curvature shells which are shallow and/or exhibit rapidly-varying
states of stress, for reasons stated earlier.

We now turn our attention to the B-surface loading Pg, which can be
expressed in terms of the displacement function w. This may be achieved by
substituting the constitutive relations (22B)—24B) into expression (25B)
and taking account of the compatibility relations (17B) and (18B) as well as
the curvature-change definitions. In this manner, one obtains the following
expression

p0 = DvVw (36)
Finally, by combining the overall equilibrium and compatibility condi-

tions ((4) and (26), respectively) with expressions (27), (31), (33) and
(36) one obtains the sought governing equations:

5
DVViv o= 37
A p (37)

2
Et ngs“ w=o (38)
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It is interesting to note that the effort required for the derivation
of the above equations may be considerably reduced if one invokes the sta-
tic-geometric analogy. This important feature of the present method is
clearly absent in conventional derivations: it stems from the fact that the
static-geometric analogy enables the various expressions for the parameters
associated with one surface to be written down by inspection once the ex-
pressions for the corresponding parameters of the other surface have been
obtained. In particular, one could readily have established expressions (33)
and (36), for the B-surface parameters gg and Pg, from the expressions (27)
and (31), for the S-surface quantities Pg and gg, and vice versa, by in-
voking the appropriate interchanges consistent with the extended static-
geometric analogy.

Specific examples

It wes noted earlier that the present formulation is a generalization
of Calladine's derivation in terms of Cartesian co-ordinates. Indeed, this
may readily be verified — and serves as a useful introductory exercise —
by making the following substitutions (which relate the Cartesian (x,y) co-
ordinate system to the more general orthogonal curvilinear system presently
employed) in the foregoing expressions: a® = X, =y, =1, A =1. Si-
milarly, the present formulation may be specialized to other co-ordinate
systems. Four cases are considered in what follows.

Example |: Cylindrical co-ordinate system

This co-ordinate system ney be used for the description of shells the
reference surfaces of which are surfaces of revolution. It will be recalled
that a surface of revolution is formed by rotating a plane curve, as a rigid
body, about an axis (the axis of revolution) in the plane of the curve. The
plane containing the axis of revolution is called the meridional plane, and
the intersection of this plane with the surface is called a meridian. Fur-
thermore, the intersection of the surface with a plane which is perpendic-
ular to the axis of revolution is a circle known as a latitude circle or
parallel; and it may be shown that the meridians and parallels are the lines
of principal curvature of the surface of revolution /21/.
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In the present co-ordinate system the position of a point on the sur-
face is defined by the angle o and the distance x; the co-ordinate o repre-
sents the angle between the meridional plane passing through the point and a
fixed meridional plane, while the other co-ordinate, x, defines the dis-
tance, measured along the axis of revolution, of the associated latitude
circle from a suitable datum (see Fig. 3). The parameters a*, c”, and AE
can be showmn to be given by /21/

<M =x, «2=9 A = [:I.'I- (Ronllz o2 =R

where Rg is the radius of the latitude circle at position x and a prime de-
notes differentiation with respect to x. In addition, the principal radii of
curvature of the middle surface are given by

1/2

1 L r2' Ro [l * ‘W 2] (40)
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where represents the

radius of curvature of the meridian curve Rg(x)

while R2 is the distance along the normal to the curve Rg(x) drawn from a

point on the curve to the axis of revolution of the surface /21/.

O the basis of the above relations (39) and (40), which can readily
be shown to identically satisfy the Gauss—Codazzi equations (1)—(3), one
can easily transform the S- and Bsurface equations into the present co-
ordinate system, and these are listed below. (The subscripts have been sub-

stituted thus: 1 -* x; 2 -» g; 12 ->x0.)

S-surface

3N R )

""" x— - R+
R2 3Nx9 n

+ 0

3(N -R)

----- B+ No°R
R2 3N

30 "0

NX - 1 R Ro or .g$
R2 202 r2 RO
R) f Ro 22
RAR x2 I &
1(n 031)1
xe .3x30 - B Ry
ex = ET (Nx -

eo =1t (no - VNX}

(415)

(425)

(43s)

(449)

459)

(469)

47S)

(489)

B-surface
Ko
R™ Rr - 9B (41B)
- K _R' -
X o
Roe = (428)
3(tc .-R )
. Bx 0 X9 Ro
R2 3kx n (438)

1"2W F\; pl  ~w  /»p\

Kn ) 9 —9 * Ro X (44aB)
Ro 3° RI
R .
) 2w R uss)
RY gx2 + Ry
(2w R
o f
xe [3x39 R T (46B)
Me = D(xs + VKX) (47B)
Mx =D 4 + VKe} (48B)
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» 2(1|J|r V) o (49S) Mo = 2D (1 - V)keo (49B)

11 » r% a(eO,R: 3(IVL<-R0)
R2 |3([_R2 X

Rl 1 3TR

- M
~va+THOLR
M,
R, I1 3 yx8 0
%) TR (509) +2M, 3X38 (508B)

Further, it can readily be shown that, for the present co-ordinate
system, expressions (28) and (32), defining the differential operators v
and V§ (which appear in expression (27), (31), (33) and (36), defining thé\
S- and B-surface normal loadings and Gaussian curvature changes, as well as
in the coupled differential equations (37) and (38)), reduce to the follow-
ing forms:

(51)

(52)

To our knowledge, no similar expressions exist in the literature for this
co-ordinate system in its general form.

In the special case when the generating curve (i.e. meridian) is
straight and parallel to the axis of revolution, the radius Rg of the lati-
tude circle becomes constant (i.e. independent of the co-ordinate x), so
that all derivatives of Rg with respect to x vanish. Thus, the following re-
lations hold true:

A =1, Rx=», R =R (53)

and the middle surface corresponds to a circular cylinder of radius Ry
(= RO). In this case the formulation is considerably simplified. In partic-

ular, the differential operators Vk' and V9 reduce to the following forms:
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v o2 Y- (54)

,2 _|| +_L_éi (55)
9 X R;ofi)z

The relative simplicity of the governing equations for circular cylindrical
shells is evident; for conventional derivations of these equations, see, for
example, Billington /22/ and Soedel /14/.

Example |1: Spherical co-ordinate system

This co-ordinate system ney also be used for the description of shells
of revolution, in analogy with the cylindrical co-ordinate system discussed
above. In this case the position of a point on a surface of revolution is
defined by the angular co-ordinates 9 and d5 as shown in Fig. 3, the co-or-
dinate ¢ is the angle between the axis of revolution of the surface and a
normal to the surface at the point in question (note that, as in the preced-
ing co-ordinate system, 9 represents the angle between the meridional plane
passing through the point and a fixed meridional datum plane). The para-
meters oip (&, and A are defined thus /14, 21/:

= . = A =Ri, 1. Ry (56)

where Rg is the radius of the latitude circle at position ¢ The principal
radii of curvature of the middle surface depend only on the co-ordinate o
and the following relations hold true /14, 21/:

dRo
Rg = 2 s*n ® "¢ = Rx cos & (52)

On the basis of the above relations (56) and (57), which can readily be
shown to identically satisfy the Gauss—Codazzi equations (1)—(3), one can
easily transform the S- and B-surface equations into the present co-ordinate
system, and these are listed below. (The subcripts have been substituted
thus: 1 -»d 2 -»9; 12 -» dv.)
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(58B)

(59B)

(60B)

(61B)

(62B)

(63B)

(64B)

(65B)

(66B)
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In addition, one can easily show that the differential operators V,2

andVSmNbecorre K
2 1 f 9 1 3 1 321
Vv Lo fa (68)
K qi R0 IR a0J* RRy cos @ 30 Rg 202
2 1 3 f 1 aj 1 a 1 2
Vo= R ap(Rx apJt R~ C0S  ap+ r2 3m (69)

0

Again, to our knowledge, no similar expression exist in the literature for
this co-ordinate system in its general form.

In the case of spherical shells (for which R* = R = R the formula-
tion is somewhat simplified. In particular, it is a straightforward matter
to show that the operator reduces to the well-known Laplace operator re-
ferred to the spherical co-ordinate system, that is,

1 f 2 3
= 70
R | 3p 3 sinZ¢p 32 (70)

while its counterpart becomes

K (71)

Example |11: Polar co-ordinate system

In the polar co-ordinate system the parameters ctp «2, and A given
by:

a I, o02=9 A =1 M2 =T (72)
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Fig. 4. Co-ordinate systems:
Examples 111 and IV

257

where r and e denote the polar distance and polar angle, respectively (see

Fig. 4). The S- and B-surface equations referred to the polar co-ordinate

system are listed below. (The subscripts have been substituted thus:

2 > 9; 12 -»re.)

S-surface
N N
r 9
R " PS
3(rN ) 3N
o N FoHg-=o
s3(rNe) »N

—LP tm Ny 70

B-surface
(73S) B
3(rk9} g
(74S) R KW - 39
(rk .) X

<755> +uiP” k9 =0

1 -mr;

(73B)

(74B)

(75B)
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The differential operators \/]23 and\é corresponding to the present
frame of reference can be expressed thus:

— — (83)
R rzsee 133 R

2
2 JP 19 1 (84)
9" Orz +IN3r +r2 2%

It can easily be verified that, on setting the S-surface Gaussian curvature
change g" to zero in the appropriate expression relating the latter to the
stress function ¢, the well-known biharmonic equation for plane stress in
terms of polar co-ordinates /23/ is obtained. Also, it can readily be seen
that the expression relating the Bsurface loading Pg to the transverse
displacement function w represents the governing equation (referred to polar
co-ordinates) for a flat plate which is locally tangential to the curved
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surface of the shell /24/. Finally, it is worth noting that, when =R =
= R the reduced set of equations describing the behaviour of shallow
spherical shells within the framework of plane polar co-ordinates is obtain-
ed, the present simple derivation should be compared to the more involved
traditional derivation (e.g. Reissner /12/).

Example 1IV: Quasi-polar co-ordinate system

In this co-ordinate system the position of a point on a reference
plane is determined by the polar angle 9 and a non-dimensional parameter a
which is connected to the polar radius r through the following relation

(85)

in which rQis a constant having the dimensions of length. This co-ordinate
system is also described by Fig. 4, with the (radial) non-dimensional co-
ordinate o corresponding to a given point on the surface defined in terms of
the associated polar distance r through the above equation (85) (as noted in
/10/, the constant rQ mey be regarded as a "conversion" factor for trans-
forming the absolute co-ordinate r into its non-dimensional counterpart a).
Thus, the parameters cip a2, and A take the following values /10, 25/:

(86)
The S- and B-surface equations in the present co-ordinate system nmey be de-
rived from the more general relations in terms of orthogonal curvilinear co-

ordinates, and these are listed below. (The subscripts have been substituted
thus: 1+ -*a; 2 * 9; 12 -» ao.)

S-surface B-surface

(87S) (87B)

3(a-No)
= =0 (ssB)

(89S) (89B)
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The differential operators 75 and V now become
g

(90B)

(91B)

(92B)

(93B)

(94B)

(95B)

(96B)

(97)

(98)
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Specialised versions of the above — but not previously derived by the
present simple and direct formulation — have been used to advantage in the
analytical treatment of shallow spherical shells and parabolic domes with
circular plan /10, 25, 26/. (An alternative approach to the analytical in-
vestigations of the response of such shells, based on the two-surface model,
has recently been proposed /27/; the latter possesses several advantages
over the conventional presentations, notably, the clarification of the
structural response of a loaded shell by reference to the portion of the
total applied load sustained by each of the two imaginary (i.e. S- and B-)
surfaces used in modelling the actual shell.)

Conclusions

The analytical two-surface theory approach to the formulation of the
shallow-shell equations has been generalized so as to encompass curvilinear
co-ordinates corresponding to the (mutually orthogonal) lines of curvature
of the middle surface of a shell. Apart from its elegance, when compared to
existing derivations, the present method also has clear didactic advantages,
notably, the elucidation of the meanings of the various terms in the field
equations in a simple and "physical" manner. From this general form of the
shallow-shell equations, it is a simple and useful exercise to specialize
them to the various specific co-ordinate systems of interest. These include
Cartesian, cylindrical, spherical, polar and quasi-polar frames of re-
ference, all of which have presently been listed. It is worth pointing out
that the expressions corresponding to at least two of these co-ordinate
systems do not appear to exist in the available literature.

The governing equations outlined here, with reference to the lines-of-
curvature co-ordinates, apply to transversely-loaded shells endowed with
isotropic material properties. However, extensions of the formulation to
cater for nore general conditions are not difficult to envisage. For a
start, tangential surface tractions can easily be incorporated into the
scheme: in this connection, it should be noted that, in keeping with the
two-surface idealization of a shell, the tangential loads must be applied
exclusively to the S-surface, since, by definition, the B-surface cannot re-
sist loads lying in its plane — a nowe which is tantamount to a neglect of
the feeble tangential-force interaction between the S- and B-surfaces, in
accordance with conventional shallow-shell theory /18, 28/. Secondly, the
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method can readily be applied to anisotropic shells, with the proviso that
there be no coupling, at the constitutive-relations level, between bending
and stretching actions relating to the reference surface. A detailed discus-
sion of the bending stretching coupling phenomenon exhibited by cetain an-
isotropic shells, and its implications for the two-surface model for a
shell, can be found in /28/. In fact, the didactic advantages of the two-
surface theory in the analytical derivation of shallow-shell equations for
arbitrary loading and material anisotropy are presented elsewhere /29, 30/.
Finally, it should be clear that an extension of the present scheme of de-
rivation to encompass general, oblique frames of reference poses no concep-
tual difficulties; however, such extensions lie beyond the curricula of most
existing engineering courses (including postgraduate ones).

REFERENCES

1. Calladine, C. R.: The static-geometric analogy in the equations of thin shell structures.
Math. Proc. Cant). Phil. Soc., 82 (1977), 335-351

2. Calladine, C. R.: The theory of shell structures: Aims and methods. Int. 1. Mech. Sei.,
24 (4) (1982), 219-230

3. Calladine, C. R.: Theory of Shell Structures. Cartridge University Press, Cartridge, 1983

4. Pavlovié, M. N.: Astatically determinate truss model for thin shells: Two-surface analysis
(bending theory). Int. 0. Numer. Meth. Engng., 20 (10) (1984), 1863—1884

5. Pavlovié, M. N.: A simple model for thin shell theory — Part 1: General concepts. Int. 0.
Mech. Engng. Educ., 13 (2) (1985), 97-111

6. Pavlovié, M N.: A simple model for thin shell theory — Part 2: Discretized surface,
bending theory, and mertrane hypothesis. Int. 0. Mech. Engng. Educ., 13 (3) (1985),
199—222

7. Pavlovié, M N.: A simple model for thin shell theory — Part 3: Static-geometric analogy
and the theorem of virtual work. Int. 3. Mech. Engng. Educ., 13 (4) (1985), 281—287

8. Pavlovié, M. N.: A simple model for thin shell theory — Part 4: Boundary conditions,
singularities and uncoupling of the shell equations. Int. 3. Mech. Engng. Educ. 14 (1)
(1986), 1-11

9. Vlasov, V. Z.: Osnovnye differentsialnye uravnenia obshche teorii uprugikh obolochek.
Prikl. Mat. Mekh, 8 (1944), 109—140. English translation. Basic Differential Equations
in General Iheory of Elastic Shells. NACA TM 1241, 1951

10. Vlasov, V. Z.: Obshchaya teoriya obolochek i yeye prilozheniya v tekhnike. Gosudarstvennoye
Izdatelstvo Tekhniko — Teoreticheskoy Literatury, Moscow—Leningrad, 1949. English trans-
lation: General Theory of Shells and its Applications in Engineering. NASA TT-F99, 1964

11. Novozhilov, V. V.: Teoriya tonkikh obolochek. Gosudarstvennoye lzdatelstvo Sudostroitelnoy
Literatury, Leningrad, 1951. English version of the 2nd Russian edn. (transi. P. G. Lowe,
ed. J. R. M. Radok): Thin Shell Theory. P. Noordhoff Ltd., Groningen, 1964

12. Reissner, E.: Stresses and small displacement of shallow spherical shells. 3. Math. Phys.,
25 (1946), 80—85, 279—300 (see also corrections to this paper in 27 (1948), 240)



13.

14.
15.

16.

17.

18.

19.

20.

21.
22.
23.
24,
25.

26.

27.

28.

29.

30.

EQUATIONS OF SHALLOW-SHELL THEORY IN CURVILINEAR CO-ORDINATES 263

Seide, P.: Small Elastic Deformation of Thin Shells. Noordhoff International Publishing,
Leyden, 1975

Soedel, W.: Vibrations of Shells and Plates. Marcel Dekker, Inc., New York, 1981

Forsyth, A. R.: Lectures on the Differential Geometry of Curves and Surfaces. Cantoridge
University Press, Cantoridge, 1912

Weatherburn, C. E.: Differential Geometry of Three Dimensions. Cantoridge at the University
Press, Vol. | (1927) and Vol. Il (1930)

Gol'denveizer, A. L.: Teoriia uprugykh tonkikh obolochek. Gostekhteoretizdat, Moscow, 1953.
English translation ed. by G. Herrmann: Theory of Elastic Thin Shells. Pergamon Press,
Oxford, 1961

Neakogu, F. C.—Pavlovit, M. N.: Shallow shells under arbitrary loading: Analysis by the
two-surface truss model. Comnun. Appl. Numer. Meth., 3 (3) (1987), 235—242

Novozhilov, V. V.: Theory of Elasticity. Pergamon Press, Oxford, 1961. (A translation, by
0. K. Lusher, of the original Russian volume: Teoriya uprugosti. Sudpromgiz, Leningrad,
1958)

Calladine, C. R.: Thin-walled elastic shells analysed by a Rayleigh method. Int. 3. Sol.
Struct., 13 (1977), 515-530

Kraus, H.: Thin Elastic Shells. 3ohn Wiley and Sons, inc., New York, 1967

Billington, 0. P.: Thin Shell Concrete Structures. McGraw-Hill Book Co., New York, 1982
Timoshenko, S. P.—Goodier, 3. N.: Theory of Elasticity. McGraw-Hill, New York, 1951
3aepger, L. G.: Elementary Theory of Elastic Plates. Pergamon Press, Oxford, 1964

Beles, A. A.—Soare, M. V.: Elliptic and Hyperbolic Paraboloidal Shells used in Construc-
tions. S. P. Christie & Partners, London—Editura Academiei, Bucuresti, 1976

Misonov, M.: Zur Theorie der flachen Kugelschalen in achsensymmetrischen Aufgaben. Comptes
rendus de I'Académie Bulgare des Sciences, 12 (6) (1959), 541—544

Msakoan, F. C.—Pavlovit, M. N.: Bending and stretching actions in shallow domes. Thin-
Walled Struct, (submitted for publication)

Fbakogu, F. C.: Analysis of elastic thin shells by the two-surface truss model. Ph.D.
thesis, University of London, 1989

Fbakogu, F. C.—Pavlovit, M. N.: Two-surface approach to the derivation of anisotropic
shallow-shell theory equations — Part 1. Transverse loading. Int. 3. Mech. Engng. Educ.
(in press)

Maakoan, F. C.—Pavlovit, M. N.: Two-surface approach to the derivation of anisotropic
shallow-shell theory equations — Part 2: Arbitrary loading. Int. 3. Mech. Engng. Educ.
(in press)






Acta Technica Acad. Sei. Hung., 106 (3—4), pp. 265—273 (1994)

DIAGONAL BRACING OF SPECIAL OBE GRIDS

NAGY, GY.*

(Received: 20 November 1994)

Consider a cube grid in the space as a rod and joint framework supposing that
each cube is a rhontraid during the motion of the joints. The paper describes the
economical placing of diagonal braces for making this special cube grid rigid.

1. Introduction

Oe of the simplest structures in statics are the frameworks.

Definition 1. A framework consists of rigid rods connected by rotatable
joints.

Definition 2: A framework is rigid if any continuous motion of the
joints that keeps the length of every rod fixed, also keeps fixed the dis-
tance between every pair of vertices in the framework.

Let us consider an nx msquare grid in the plane. The corresponding
rod and joint framework is a mechanism in the plane. Let the length of the
rods be unit. An n x m square grid framework consists of n(m+l) pieces of
horizontal and (n+l)m pieces of vertical rods connected by (n+l)(m+I) pieces
of rotatable joints. There is a 3x4 square grid on the left-hand side of
Fig. 1 (disregard the six diagonals). W& want to neke the original square
grid rigid using braces in the diagonals of sore squares. Thus some squares
w ill become rhombi, others remain squares during any motion of the vertices
(Fig. 1). Hence the horizontal rods of the i-th column are parallel with
each other during any motion of the joints so they can be denoted by vector

Similarly, the vertical rods of the j-th row are parallel with each
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other during any motion of the vertices so they can be denoted by vector
(Fig. 1). Thus we can describe the move of the nxm square grid framework
with ntm vectors, disregarding the translation of the framework only.

According to Definition 2, if every square remains square for any no-
tion of the vertices then the square grid is rigid in the plane. How to
brace the square grid if it must be rigid? How meny diagonal braces are ne-
cessary? This problem have been solved by Bolker and Crapo /3/. In this note
we give a new proof of Bolker—Crapo's theorem and extend their theorem to
the space, namely to the 1 x mx n special cube grid. Recski /s/ gave a
simpler proof to the theorem of Bolker and Crapo. W use other tools which
are also useful in case of the special cube grids below. W are going to use
elementary geometry, graph theory and continuity only.

Define the graph ¢ of the framework F as follows: the Vertices of the
graph c¢ correspond to the joints of the framework F and there is an edge
between two points of c if there is a rod between the corresponding two
joints of the framework.

Consider a rod and joint framework in one dimension (line or arc).

Lemma: A framework is rigid in one dimension if and only if its graph
c is connected.

Proof: The connectivity of ¢ means we can get from every point to
every point along edges of the graph, that means, the joints of the frame-
work can nowe together to the sare direction with the sare velocity. If c is
not connected then the frameworks corresponding to its components can nmove
independently of each other.
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2. Square grid

At the beginning every vector X* is perpendicular to every vector Y%,
where X* and Y* are the horizontal and vertical vectors of the grid, respec-
tively (Fig. 2).

We want to nmeke the grid rigid by inserting diagonal braces. If the
square in the intersection of the first column and the second row has a
diagonal brace then vector X* is perpendicular to vector Y2 during any no
tion. Thus the diagonal bracing is described by a bipartite graph (Fig. 3):
the X™'s are in the first vertex class, the Y~'s are in the second vertex
class, and an edge X"Y" exists if and only if there is a diagonal brace in
the square determined by the i-th column and the j-th row. We call this bi-
partite graph the bracing graph.

We denote the vector, its end points and the corresponding point of
the bracing graph with the sanme letter because it will not cause any con-
fusion.

Bolker—Crapo's theorem: An nx msquare grid with sore diagonal braces
is rigid if and only if its bracing graph is connected.

Proof: The end points of the vectors are on a unit circle and some of
them are of half « distance from each other (Fig. 5). These vectors are
perpendicular in the grid. Let a framework be on the circle. Its joints are
the end points of the vectors and its rods exist if there is a diagonal
brace in the corresponding square, that means these two vectors must be per-
pendicular to each other. The grid is rigid in the plane if and only if the
former framework is rigid on the circle. This framework lies on a one di-
mensional circular arc. Using the lemma; this framework is rigid if and only
if its graph c is connected. But c is isomorphic to the bracing graph, be-
cause their points correspond to the columns and the rows of the square grid
framework, and their edges correspond to the diagonal bracing.

x1 x2 x3

Fig. 2 Fig. 3
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Y >
Y
Y %
Y, X
Fig, 4 Fig. 5

If the bracing graph of the square grid framework is not connected
then the square grid framework is not rigid, see the graph in Fig. 4, which
is the bracing graph of the square grid framework on the left-hand side of
Fig. 1. W can see a possible motion of the vectors on Fig. 5 since e
is an independent component of the bracing graph, the corresponding motion
of the joints and the rods is shown on the right-hand side of Fig. 1.

3. Special cube grid

Consider a 1 x mx n cube grid in the space as a rod and joint frame-
work supposing each cube is a rhomboid during any motion of the vertices
(thus we disregard those motions of the cube where the vertices of any
"square" face do not remain coplanar). this is the special assumption.
(Throughout, quotation marks will refer to the original situation.) Natu-
rally the special assumption is not satisfied in the space but | think
this condition is realizable, and is useful in the general case.

We want to meke the special cube grid rigid using sore diagonals
along the square faces of the unit cubes as diagonal bracing. The conse-
guence of our special assumption is that the "vertical" rods of the first
floor are parallel with the vector , those of the second are parallel
with zy and so on. The "parallel tube" indicated by heawy line in Fig. s
will be denoted by /XZ~/. AIll the rhombi "perpendicular' to the heavy
lines are parallel; applying a diagonal brace for any of them will fix the
others as well.

The special cube grid is rigid if and only if all the rhombi remain
square during any motion. We have three point classes XF‘ Y!., ZF similarly
to the planar case. Thus we have a tripartite graph T (Fig. 7). W indicate
the diagonal braces as edges in the tripartite graph. If T is complete,
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that is, if there exists an edge between every pair of points if they are in
different point classes then the cube grid is rigid, because each rhomboid
is a cube in the grid. However, less diagonal bracing nmay also be suffi-
cient. Consider the three bipartite subgraphs of the bracing tripartite
graph T.

Necessity

Theorem 1. If the special cube grid is rigid then the bipartite sub-
graphs of the bracing tripartite graph are connected.

Proof: If the subgraph XX is disconnected then there exists a move
whose direction is perpendicular to Z*, as a consequence of Bolker—Crapo's
theorem (Fig. s).
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The necessary condition is sufficient, that is:

Theorem 2: The special cube grid as a bar and joint framework is rigid
if and only if the bipartite graphs of the bracing tripartite graph are con-
nected.

Motivation

Xj., N’ are enc* Points the respective grid vectors on the
unit sphere. The special cube grid is rigid if and only if every is per-
pendicular to YJ and ZK, and YJ. are perpendicular to ZK during any motion.
If there is a diagonal brace in the parallel tube /X t h e n the vector
X is perpendicular to Yj. We denoted it by a rod on the unit sphere between
the points Xj, Y. Thus a framework s arises on the sphere (Fig. 9). If this
framework s is rigid on the sphere then the special cube grid is rigid in
the space. W have a framework on the sphere and its graph c is tripartite
and its 3 bipartite subgraph are connected. This type of framework is ge-
neric rigid as a consequence of the following theorem /5/.

Lovasz—Yemini's theorem: Let G denote a graph ¢ of a planar frame-
work F with V joints and e =2v - 3 rods. Then F is generic rigid if and only
if the edge set of G, obtained from G by doubling any edge e of G, can be
recovered by two edge disjoint spanning trees.

We say that a given framework F is generic if all frameworks suffi-
ciently near to F have the sare rigidity properties as F does.

Lovasz—Yemini's theorem is true intuitively on an open half sphere.
Mur graph c¢ has 1#mn points and 1+m-l + mtn-1 + n+l-1 =2(I+m+n)-3 edges
since the bipartites are connected, where the dimensions of the grid are
1 XmXn. It is clear from the definitionsof the graph c of the framework
s and the bracing graph T that the graph cof s and thetripartite bracing
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graph T are isomorphic. Thus we can apply the Lovasz—Yemini's theorem for
either one of them, say for T. Tg is obtained from the tripartite bracing
graph T by doubling an edge e of T. Tg can be covered by two edge disjoing
spanning trees. Let B/X"Y”/ denote the bipartite graph between X”, Yj. Let
the doubling edge from B/X*Y" be, say,XjY”~. B/X*.Y?/ has two subgraphs so
that we can get from some X* to each Y* in the first subgraph along edges,
and we can get from some Y. to each X" in the second subgraph along edges.
They are denoted by S/X,)Y/ and S/Y,X/, respectively. Thus we have two
spanning trees: B/)ﬁ.l,g./ U S/X,Y/ and B/\](.,ZK/ U S/Y,X/.

Sufficiency

If we can prove that the framework s is rigid on the sphere then Theo-
rem 2 is true. In this case we need the co-ordinates of the points X#, Y?,
Z™. Let us introduce a new system of co-ordinates, where the origin of the
co-ordinate system is still at the unit sphere's centre and let the plane
determined by the points XI" YJ, ZK be parallel to the new X', Y' axes. The
rank of the rigidity matrix /s/ depends on the new X' and Y' co-ordinates of
the points X, YJ-, Z, and on the graph c only, since these points form an
equilateral triangle which is parallel to the new X', Y' plane. Thus we can
simplify the original problem.

Consider a special cube grid bracing with some diagonal braces along
square faces; it is rigid if and only if framework p is rigid on the plane.
The joints of p are the same as those of framework s and there is a rod be-
tween two joints if there is rod in framework s. Since joints of s are on a
plane at the beginning of the motion, it suffices to consider the rigidity
of the framework p in the plane.
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Choose the joint X* among the joints Xp There are sore joints among
the joints Y. and that are adjacent with joint Xp These joints are on a
circle. The center of the circle is Xp the radius of the circle is \i2.
Choosing every joint from joints X we get some congruent circles. These
circles are denoted by X. as well.

Assuming that framework p is not rigid, there are at least two Xt
circles or two Y, circles or two Z circles with a continuous motion rela-
tive to each other. Let us suppose at first that they are X* circles.

Since the moving is continuous we can choose three circles with radius
e around the vertices of the original equilateral triangle. Every point Xp
Y and Z are in these three different circles with radius e.

The circles X" intersect each other in points Y* and Z* or are iden-
tical. There are at least two circles that are not identical.

Every circle has two intersection points, one among the points Y* and
the other anong the points since the three bipartite subgraphs of the
bracing graph are connected.

If eis less than 0.1 then the distances of the intersections of the
Xi circles are more than 2\l2-e2 #2.8213 (Fig. 10) but the distances between
points Y, and points Z are less than V2 + 2e » 1.643. It is obvious that
the X™'s are not different i.e. they do not move. A similar argument can be
applied if o Y, circles or two Z circles have a continuous motion rela-
tive to each other. This completes the proof of the theorem.

In the proof we show a new framework (framework p) in a plane that is
rigid in its plane if and only if the special cube grid is rigid in the
space and the graph c of the framework p is isomorphic to the bracing graph
of the special cube grid.

This result shows that Ixnixn special cube grids consisting of ideal
frictionless rods connected by joints are rigid if and only if the three
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edge direction projections of the grid with face diagonal braces are rigid
in the plane.

Thus we need 2(I+m+n)-3 face diagonal braces for the rigidity of an
1 XmXn special cube grid. This result could probably be generalized for
higher dimensions.
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PACKING CF 5 REGUAR PENTAGONS ON A SFHERE

TARNAI, T .*-GASPAR ZS.**

(Received: 16 January 1995)

How nust n equal non-overlapping regular spherical pentagons be packed on a
sphere so that the angular radius of the circum-circles of the pentagons will be as
great as possible? In the paper, the conjectured solution of this problem for n=5is
presented.

1. Introduction

The arrangement of pentamer structural units composed of protein no
lecules in the capsids of certain spherical viruses has inspired the fol-
lowing mathematical problem /3/: To determine the largest angular circum-
radius rn of n equal regular spherical pentagons which can be packed on the
surface of a sphere without overlapping.

Conjectured solutions to this problem are known for n=s, s /5/ and,
under symmetry constraints, for n=24, 72 /¢/. For n -* » a packing in the
plane is obtained. The conjectured best arrangement of equal regular penta-
gons in the plane is published in /2/.

Density Dn of a pentagon packing is defined as the ratio of the total
area of the surface of the spherical pentagons to the surface area of the
sphere :

where a is an angle of the pentagons measured in radians.
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The am of this paper is to present a conjecture for the densest
packing of 5 pentagons on a sphere. The best arrangement will be selected
from packing constructions resulting in local maxima of the circum-radius
of the pentagons and so local mexima of the density of packing.

2. Packing constructions

This pentagon packing problem is similar to the Tames problem of
packing of equal circles on a sphere. However, because a circle is strictly
convex but a pentagon is not, there are dissimilarities between the two
problems. The most important one is that to a packing of circles there can
be associated a graph /:/, but to a packing of pentagons there exist no
graph of the sare sort. In a circle packing, two circles can touch only in
one way, but in a pentagon packing, two pentagons can touch in three diffe-
rent ways: with (a) edge-to-edge, (b) vertex-to-edge, (c) vertex-to-vertex
contact.

The pentagon packing problem will be investigated by a method similar
to the "heating technique" developed for spherical circle packings /4/, re-
sulting in a local optimum. The principle of this method /5/ is that the
pentagons are considered as rigid bodies lying on the surface of the sphere
such that their size can be changed simultaneously and in the same propor-
tion. Change in size is attributed to a change in "temperature". Due to a
change in temperature the pentagons nowe on the surface of the sphere, and
the boundaries of pentagons in contact can slide on each other. The tempe-
rature of the pentagons and so the size of the pentagons is increased uni-
formly while the system of pentagons remains free of stress. The circum-
radius is looked for, for which the pentagons just start to press each other
and the system of pentagons gets to a stable state of self-stress. In this
state the size of the pentagons cannot be increased any further with con-
tinuous increase of the temperature. Appearance of a stable state of self-
stress with no contacts in tension indicates a local optimum.

We have applied the method for packing of 5 equal regular pentagons on
a sphere. W have worked out a computer program for finding the best con-
figuration, but here we omit the details of the calculation and present only
the main points and the results.

Consider first the best packing of six pentagons on a sphere where the
radius of the circum-circle of a pentagon with six-decimal accuracy is equal
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to 48.719106° /5/. Let us take two pentagons of this packing and join them
in such a way that they have a vertex in conmon, then pack them on the
sphere so that the ocoomon vertex and the centres of the pentagons lie on
the equator. Then let us consider a copy of this pair of pentagons, ob-
tained from the original by a rotation of 90° about the conmon vertex, and
translate the two rotated pentagons in the opposite direction perpendicular
to the equator until they contact the original pentagons. (The compound of
the four pentagons has two planes of symmetry.) Between the two rotated-
translated pentagons, antipodally to the coomon vertex, there is space for
the fifth pentagon. This arrangement is considered as the starting confi-
guration for the heating process. The temperature, that is, the size of the
pentagons can be increased until the fifth pentagon contacts the two ro-
tated-translated ones. However, if the two-fold mirror symmetry of the com
pound of the four pentagons and the conmon vertex is preserved, the system
of forces arising at all the contacts of the pentagons can be in equilibrium
only in two cases:

(1) The fifth pentagon and one of the rotated-translated pentagons
have a side in common and the vertex of the fifth pentagon, opposite to this
common side, is lying on a side of the other rotated-translated pentagon as
is showmn in Fig. 1. (Considering its position, the fifth pentagon will be
called a standing pentagon at the rear.) The radius of the circum-circles
of the pentagons in this arrangement with seven-decimal accuracy is
rs = 49.5338118°.

Fig. 1, Packing with 4 pentagons in D2 symmetry in front and a standing pentagon at the rear,
where 2 pentagons have a vertex in common, (a) front-view, (b) view from above
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Fig. 2, Packing with 4 pentagons in D2 symmetry in front and a lying pentagon at the rear,
where 2 pentagons have a vertex in common, (a) front-view, (h) view from above

(2) The fifth pentagon and each of the rotated-translated pentagons
have a side segment in common as is showmn in Fig. 2. (Considering its po-
sition, the fifth pentagon will be called a lying pentagon at the rear.)
The radius of the circum-circles of the pentagons in this arrangement is
rs = 49.5683744°.

In both cases a state of self-stress can be detected, however, none of
the two configurations results in a local maxmum of the density, since in
both cases, at the conmon vertex a tensional contact force appears while all
the other contacts are in compression. Appearance of a tensional force means
that one of two pentagons, between which the tensional force acts, wants
to depart from the other. W must not prevent this departure, so the contact
of the two pentagons must be removed. Repeating the heating process for the
modified assembly of pentagons we can improve the packing. W can do it, for
instance, if we rotate the two original pentagons lying on the equator
equally and in the same direction (say clockwise), then join them with edge
overlapping. Doing so we can increase the size of the pentagons, and depend-
ing on the position of the fifth pentagon we obtain two additional equilib-
rium configurations where the compound of the four front pentagons has a
two-fold rotational symmetry:

(3) In the case where there is a standing pentagon at the rear, by an
increase in the size of the pentagons we arrive at the configuration in
Fig. 3. Here the radius of the circum-circles of the pentagons is obtained
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0 (bl

Fig. 3. Packing with 4 pentagons in C symmetry in front and a standing pentagon at the rear,
where 2 pentagons have an edge segment in common at the axis of symmetry, (a) front-view,
(b) view from above

at an edge-overlap of 7.1542381° of the two pentagons lying on the equator,
and its value is r* = 49.5564016°
4) In the case where there is a lying pentagon at the rear, by an in-
crease in the size of the pentagons we arrive at the configuration in
Fig. 4. Here the radius of the circum-circles of the pentagons is obtained

Fig. 4. Packing with 4 pentagons in @ symmetry in front and a lying pentagon at the rear,
where 2 pentagons have an edge segment in common at the axis of symmetry, (a) front-view,
(b) view from above
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Fig. 5. Locally optimal packing with 4 pentagons in D2 symmetry in front and a standing
pentagon at the rear, (a) front-view, (b) view from above

at an edge-overlap of 6.9989408° of the two pentagons lying on the equator,
and its value is r* = 49.5903228°.

In both cases a state of self-stress can be detected, however, none of
the two configurations in Figs 3, 4 results in a local meximum of the den-
sity, since in both cases at the edge-to-edge contact of the pentagons lying
on the equator a tensional force appears again. This shows that-the packing
is improvable further after removing this edge-to-edge contact. Indeed, we
can meke the pentagons larger if first we arrange the four front pentagons
so that the two pentagons lying on the equator have edge-to-edge contacts
with the rotated-translated pentagons. In this case the compound of these
four pentagons has two planes of symmetry. Preserving this symmetry and con-
tact properties of the four front pentagons we increase the size of the pen-
tagons until the fifth pentagon blocks the motion of the system. Depending
again on the orientation of the fifth pentagon we get to two new equilibrium
configurations:

(5) In the case where there is a standing pentagon at the rear, we
obtain the arrangement in Fig. 5 in which the radius of the circum-circles
of the pentagons is r* = 49.5794094°,

(s¢) In the case where there is a lying pentagon at the rear, we obtain
the arrangement in Fig. s in which the radius of the circum-circles of the
pentagons is r* = 49.6138224°.
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Fig. 6. Locally optimal (the conjectured best) packing with 4 pentagons in D2 symmetry in front
and a lying pentagon at the rear, (a) front-view, (b) view from above

In both cases a stable state of self-stress can be shown, and each
contact is in compression. lhis means that in both cases we have a locally
extremal arrangement.

3. Conclusions
We have collected the results of all the investigated equilibrium

configurations of pentagons in Table 1 where the packing densities and the
crystallographic symmetry groups are also given.

Table 1. Packing of 5 equal regular pentagons on the sphere

Circumradius 5

Figure ©) Density D5 Symmetry Remark
1 49.5338118 0.7468699 cs
2 49.5683744 0.7479557 cs
3 49.5564816 0.7475820 a
4 49.5903228 0.7486456 d
5 49.5794094 0.7483025 Cs local optimum
6 49.6138224 0.7493847 cs local optimum
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We could not find more than two local optima, so we think that one of
them is the solution of the problem, that is( we have the following Con-
decture. The densest packing of five equal regular spherical pentagons o a
sphere is the packing in Fig. 6 where a pentagon is packed at the north
pole, another one at the south pole and the remaining three pentagons on the
equator with consecutive distances 108°, 144°, 108° between their centres,
and where the circum-radius of the pentagons is r* = 49.6138224...°.

The density of the conjectured best packing is = 0.7493847. The
plane of the equator is a plane of symmetry of this packing configuration.
The centres of the pentagons form a trigonal bipyramid in which the edge
lengths of the base triangle are 108°, 144°, 108° and the length of the in-
cline edges is 90°. W note that, for the densest packing of 5 circles on
the sphere /1/, the radius of the circles is 45° and the density is
0.7322330, and because the circle packing is not rigid (the solution is not
unique) the centres of the circles can form also a trigonal bipyramid, in
particular, with the same edge lengths as the conjectured best packing of
5 pentagons.
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