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A c ta  Te ch n ics  Acad. S e i.  H u n g ., 106 (1 —2 ) ,  p p . 3 — 17 (199A)

APPLICATION OF THE DIFFERENCE METHOD TO THE 

GEOMETRICALLY NONLINEAR DIRECTOR THEORY OF BEAMS

CZIBERE, B.*

(Received: 20 May 1992)

A geom etrica lly  non linear theory is  presented fo r  the plane bending o f  s tra ig h t 
beams w ith  the f i n i t e  d iffe re n ce  energy method. According to  the s t ra ig h t  l in e  hy
pothesis the beam is  described w ith  two p o s itio n  vector components and two d irec to r 
components; the s tra in s  are formed by the dot products o f these vec to rs . The deter
m ination o f the d iffe re n ce  operators is  based on the le a s t square method. Using the 
p r in c ip le  o f minimum p o te n tia l energy, a system o f nonlinear a lgeb ra ic  equations is  
obtained which is  solved by the Newton—Raphson i te ra t iv e  method.

A large deflection analysis of e las tic , f le x ib le  frame structures is 
introduced by /1 / ,  /2 / .  The purpose of the present paper is  to demonstrate 
an energy method to analyze a beam undergoing f in ite  displacements and ro
ta tions. The f in ite  difference method is  suitable to solve lin e a r problems 
of continuum mechanics (see /3 / ) ,  but in the nonlinear case, the procedure 
does not prove to be convergent. On using the f in ite  d ifference energy 
method, unlike the f in i te  difference method, the difference operators are 
inserted in to the in tegra l equations; consequently the convergence becomes 
much quicker and convergence may be attained in  nonlinear problems too. 
During the analysis we re s tr ic t  ourselves to plane bending o f e las tic , 
s tra igh t beams with constant thickness in the undeformed configuration.

In accordance with the stra ight line  hypothesis (see /4 / ,  /5 / ,  / 6 /)  
the geometry of the beam is  described with the aid of the position vector of 
the middle line  and the so-called director assigned to every po in t of the 
middle lin e . The position vector is  kinematically independent of the direc-
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4 CZIBERE, В.

to r ,  so we have four degrees of freedom. The d irec to r in  the undeformed con
f ig u ra tio n  is  identica l to  the unit normal vector of the middle lin e , and 
the change of its  length represents the change in  the thickness of the beam 
under loading.

Let £ denote the pos ition  vector and ji the d irector. The reference 
and the actual position vectors of a point outside the middle lin e  of the 
beam ly in g  in the (£p  e^) plane (Fig. 1) are as follows:

R*(X, ri) = R(X) + nn,

r * (X ,  n )  = r_(X) + nd, -  n <  j ,  (1)

where X, л = Lagrangian coordinates, 
ri = unit normal vector, 
к = orig ina l thickness of the beam.

The above-mentioned d irec to r theory extends the Bernoulli theory to 
the follow ing features:

— the shear s tra in  is  under consideration,
— the thickness o f the beam can change under loading.

F ig .  1. The geometry o f the beam
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2 . S tra in s  and s tre s s  re s u lta n ts

The components of the Green s tra in  tensor (e) in accordance w ith the 
d irector theory (c f. /7 /)  are formed by dot products as follows:

1 1  := eD + л • К

eD = ¥ * - • L ' -  1 ) . ( 2 . 1 )

К - l ' • d’ , ( 2 . 2 )

1 2  :: h ' ’ d, (2.3)

2 2  :-- y (d • - 1 ), (2.4)

where e^, к, e-^ and e22 rePresen'*; the extension, the bending s tra in , the 
shear s tra in , and the thickness s tra in , г / and cf denote the derivatives of 
the vectors £  and £  with respect to X. We assume the contribution of the 2nd 
Piola—Kirchhoff  stresses, analogously to the strains in accordance with 
equations ( 2 . 1 —2.4):

ц (х , л) = an(x) + ло (X), и к

i 2 (x, л) - a-̂ 2 ^ )  »

n) = a2 2 (x ). (3)

The v ir tu a l in te rna l work is

6 A1 = j  J Q ij  • óe^dAdX. (4)
X=0 (A)

On substitu ting equations (2.1—2.4), (3) in to  (4), we obtain

( 5)
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where N, M, Q and T represent the stress resu ltan ts as normal force, bending 
moment, shear force, and transversal normal force, respectively. In the case 
of e las tic  m aterial, on employing Hooke's law in  the plane stress state 
version (c f. /8 /) ,

a = 2G V x r
I  + S • E2

we get the follow ing formulas fo r the stress resultants:

2GN = A 1 - V (eD + v ‘ e22) ’

M = IE к,

Q = 2AGe-̂ 2>

t л 2G f \
T = A l - v  v ' eG + e22 ’

where E = modulus of e la s tic ity  in tension
G = modulus of e la s tic ity  in shear,
V = Poisson's ra t io ,

=2 = un it tensor of 2 dimension,
X

e = =2 •• 1 = en  + e22’
A = area,
I = moment of in e rt ia .

( 6)

(7 )

3 . The f i n i t e  d iffe re n c e  re p re s e n ta tio n

In addition to i t s  quick convergence, a further advantage of the 
energy method is  tha t we need to substitute only firs t-o rd e r derivatives 
in to  our formulas. Thus the main problem now is  how to calculate the f i r s t  
derivative . Since we require i t s  square, the well-known central difference 
operators introduced in  /9 /  cannot be employed. In order to determine the 
dot products of the derivatives of the d irec to r and the position vector in  
equations (2.1—2.4), we employ the least square minimum method, as present
ed in  the following sections.

For our f in i te  difference d iscre tisa tion , le t  us consider an equi
d is tan t mesh with step width h. A ll derivative quantities are approximated
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F ig , 2. F in ite  d iffe rence  d is c re tis a tio n

by the application of three nodal points. Let us introduce a lo ca l co-or
dinate system with the co-ordinate x (Fig. 2). Assume that both components 
of the position vector and the d irector are quadratic in x:

r . ,  -  r . , r,-, -  2 r,0 + r . ,  «i3  i l  — i3  i2  i l  r .2 
r x  = г 2 + ------ 2------ x -------------- 2---------- x ’

di3 '  di l  -  di3 " 2di2 + di l  -2  
d^(x) = di2 + ------ 2------ x + -------------- 2----------  » ( 8)

where r^k , d^k ( i  = 1,2; к = 1,2,3) are the values of the position vector and 
the d irec to r in  the k-th nodal point.

The derivatives of formulas (8) with respect to X are

3 r i (x )
= r!(x ) 1 r i3  • r i l

r i3  - 2 r i2  + r i l lx
3 X h 2 Г

a d ^ x )
= d!(x) 1 di3  -  di l

di3  - 2di2  + di l ,ЭХ h 2

3.1, Approximation of the extensional, bending, and shear stra ins

We need to approximate the stra ins defined by (2.1—2.4) so tha t they 
sa tis fy  certain conditions follow ing from the beam theory (e.g. by pure 
bending the director remains perpendicular to the tangent of the deformed 
middle lin e , that is  = 0, e tc .) .
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ЗЛ JL _Agpr o_ximation_ _at_ jjlterj]^jresh_goJjTts_

In order to s a tis fy  the conditions mentioned above, we assume that in  
the neighborhood of an in te rna l point, EgC’x) and kCx) are linear functions 
and is  constant. According to the least square method we have to
minimize the three formulas as follows:

eD J1'C01 + cl l x
, ,  12

r 'Cx) ■ jr '(x )  dx,

c02 + c12x ”  — ' Й' ( х) dx,

e12 Í Cq3 -  £ '(x ) ' й(х) dx. ( 10)

Computing the in teg ra l expressions for the parameters cg^—cgj lis te d  below:

-01

J02

J03

’ ( X ) • j: '(x )d x , c ^  = |  J X * r_' ( x) • £ '(x)dx,
-1

= H  i  
-1

1

= J J  r_' ( x )  • cT (x )d x , 

-1

1
4  J £ ' ( x )  • cT (x )d x ,

Л2

±= j f X • r ' ( x )  • d ' (x)dx,
-1

-1

the following difference operators are obtained:

/ST1/ = —  
12h

7 1 CD 1

CO1 16

CO1

1

CO1 R

/S T 2 / = —  
h z

1—)1 1 1
1 0 1 I—1

0 -1 1

-3 4 1

-4 О 4

1 -4 3
/ST3/ = —  

12h
( 11)



GEOMETRICALLY NONLINEAR DIRECTOR THEORY OF BEAMS 9

Further, with the aid of these difference operators, handling them as 
matrices, the stra ins can be calculated as follows:

'D ~ 2 r . ,  • /ST1/., • r .  . + r . ,  • /ST2/.. • r .  . • X - 1 ik  jk  í j  ík jk  í j -  e Q + eQ • X,

« ■ r ik  • /ST1/jk  • + r ik  • /ST2/jk  ■ 1 ,j  • ~ - * k1 •

E12 = 7  r ik  ’ /ST3/jk  ' di j ,  Ci = 1,2; j , к = 1,2,3). ( 12)

2 -Jj_2_1 ̂ £Pîi><Àniaiion_ bou [ld jî^_ jT o in ts

In order to sa tis fy  the conditions mentioned in section 3.1, we assume 
that in  the neighborhood of a boundary point the extensional, bending, and 
shear stra ins are constant; consequently in th is  case the three functions to 
minimize are

u 2

peD = I [ c01 ■ d*>

■V =1 Cq2 - r_' (x) • d ‘ (x)
a

T12 = J „ 2Cq3 - r'(x) • d(x)
a

(13)

where we integrate from a = -1 to b = 0 at the left-hand side boundary point 
and from a = 0 to b = 1 at the right-hand side boundary point (see Fig. 2). 
We obtain the difference operators as in  section 3.1.1.:

— left-hand side boundary point:

/ST1/ = —  
12h

13 -14 1
-14 16 -2

1 -2 1
/ST3/

-6 7 -1
-7 6 1
1 -1 0

(14.1)
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— right-hand side boundary point:

/ST1/ = —  
1 2 h

1 - 2 1

- 2 16 -14
1 -14 13

/ST3/ = 1

1 2 h

0 1 - 1

- 1 - 6 7
1 -7 6

The stra ins are expressed by
(14.2)

e = 1  D 2 r ik  * ^ j k  • r ig -  1

* = r ik  • /ST1/gk • di j  = ‘

e 1 2  = 2 r ik  ' /ST3/jk  ' di j ’ ( i  = 1,2; j , k  = 1,2,3). (15)

3.2. Approximation of the thickness stra in

Assuming, that the jd • d_ dot product is  quadratic in x’, the follow ing 
formulas are obtained:

a) internal points:

(16.1)

b) left-hand side boundary point:

c) right-hand side boundary point:

(the o rig in  of the loca l co-ordinate system is  taken at the respective nodal 
p o in t; i  = 1 ,2 ).

rJ
We approximate e2 2 (x) in  the neighborhood of each point with a linea r 

function . The six new difference operators obtained analogously to the 
method employed in 3.1.1. and 3.1.2. are lis te d  below:
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a) in terna l points:

b) left-hand side boundary point:

c) right-hand side boundary point

Using these matrices, we get that the thickness s tra in  is

e 2 2  = 1  [ dik  • /ST4/jk  ‘ di j  + dik  • /ST5/jk  • di j  • * - 1 

( i  = 1 ,2 ; j , k  = 1,2,3).

0  1

e22 + e22

4 . A p p lic a tio n  o f  th e  p r in c ip le  o f minimum p o te n t ia l  energy

The s tra in  energy in the neighborhood of a nodal point can be
ed as:

2 J { A 1

2G , 0 ^  K 2  „  , 0 ~ 1ч/ 0 1 ч , 0 1 ч2
(бр + X6g) + 2v(eg + xeg)(e22 + ><£2 2 ' + ê 22 xe22'

+ E I(k° + XK1 ) 2 + 4AG(e1 2 ) 2  hd?;

here the in te rva l of the in teg ra l is
a) for in terna l mesh points: from a = - ^  to b = y;

(17.1)

(17.2)

(17.3)

■ X,

(18)

express-

( 19)
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in teg ra l in te rv a ls

d is tr ib u t io n  o f the  
nodal po in ts

F ig . 3. In te g ra l in te rv a ls  by computing the s tra in  energy

b) fo r left-hand side boundary points: from a = 0 to b = i ;
c) for right-hand side boundary points: from a = -  to b = 0 (see 

Fig. 3).
On substituting the formulas (12), (15) and (18) in to the in tegra l 

expression (19), and carrying out the in tegration, we obtain the stra in  
energy in  the following form:

WE ( 20)

where the vector £  has 7 discrete stra in  components:

e 0 1 0  1 O i l
eD eD K K e12 22 e 22 j  ’

and A denotes the work matrix independent of the stra ins.
The tangential s tiffne ss  matrix with reference to three nodal points is

/SE/ .
13

32WE 
ЭхЕ 3xE

Эе,

a*i »*1 kn
3_ fk

en + E
3xi

kn 3xE
3

Ci, j  = 1,2,3; k,n = 1 ,2 , . . . ,7 ) , ( 21)

where x = r l l  r 21 dl l  d21 r 12 r 22 d12 d22 r 13 r 23 d13 d23J*
The to ta l potentia l energy is  defined by

П = W - Aa, (22)

E awhere W = X(W ) denotes the s tra in  energy of the beam and A represents the
external work.

In accordance with the princip le  of minimum potentia l energy one can
w rite
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- „ I aw эA I n 
I 321 3x ] -  ’ (23)

r in ’ din , ( i  = 1,2; n = l ,2 , . . . ,n p ) ,  and np is  the number of thewhere = 
nodal points.

On applying the energy p rinc ip le , a following system of nonlinear 
equations is  obtained:

г»/ \ aw A r- Da n 
& &  = э7 - э7 = L  - £. = 0 . (24)

which we can easily solve by the Newton—Raphson ite ra tive  method:

n/ к , f к k+ l\ г /  к, Da§(x. ) • (x. -  * ) = F_(x. ) -  p ,

where § is  the global tangential s tiffness matrix 

S = - -  " , ( i , j  = 1,2).

(25)

3x^ 3X j

5 . Num erical re s u lts

The show the effectiveness of the procedure introduced above, some 
numerical examples are presented in  th is  section. We w il l  study a clamped 
beam, loaded at i t s  free end by a concentrated and step-by-step increasable 
load.

5.1. Determination of the Eulerian c r it ic a l buckling load

In th is  problem our calculation is  based on the fact that on gradually 
increasing the pressing load, the determinant of the system of equations 
changes signs at the c r i t ic a l load. By increasing the number of the nodal 
points, the procedure converges to the exact solution, as i t  is  shown in 
Table 1.

Table 1. C r i t ic a l buck ling  load: The e rro r  o f the ca lcu la tio n  
(The leng th -to -th ickness  r a t io  is  1/100)

Nodal po in ts 5 7 9 11 15

Error /V 3.8 1.72 0.96 0.61 0.31
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5.2. Determination of the curved shapes of a beam with a pressing load

Figure 4 shows a cantilever beam loaded by step-by-step increased 
pressing load. The procedure is  started by the Eulerian c r it ic a l load and, 
in  addition, a small transversal load (of magnitude 1 / 1 0 0 0  of the c r i t ic a l

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0

Table 2. C a n tile v e r beam w ith  a s tep-by-step increased pressing load (P ). 
Summary o f the  s o lu t io n s . The re su lts  correspond to  the d e flec tion  a t the 

end of the beam (w)

Load step p/ pc r i t
\n/£

Numeric, res .
w/e

A n a ly tic , res . E rror Л /

1 1.015 -0.2223 - 0.220 1.04

2 1.063 -0.4227 -0.420 0.64

3 1.152 -0.5948 -0.593 0.30

4 1.293 -0.7196 -0.719 0.08

5 1.518 -0.7917 -0.792 -0.04

6 1.884 -0.8032 -0.803 0.02

7 2.541 -0.7504 -0.750 0.05

8 4.029 -0.6245 -0.625 0.08

9 9.116 -0.4212 -0.421 0.05

F ig . 4. C a n tile v e r beam w ith step-by-step increased pressing load
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load) is  applied only at the f i r s t  step o f ite ra tio n . The leng th -to -th ick - 
ness ra tio  is  1/100 and 31 nodal points are employed. The numerical results 
and the ana ly tica l results presented in  /10 / are compared in Table 2.

3.3. Large deflection analysis of a cantilever beam

A cantilever beam loaded by step-by-step increased transversal load is  
analyzed. Figure 5 shows the deformed shapes of the beam by five  load steps. 
The numerical results presented in /11/ are compared in  Table 3.

-0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0
_______ I_______ :_______ I_______ I_______ I_______ I_______ I

Fig. 5. C an tile ve r beam w ith  a transve rsa l load

Table 3, C an tileve r beam w ith  a tra n sve rsa l load. Summary o f 
the so lu tion . The coordinates ( r j ,  Г2) correspond to  the end 

o f the beam

Load step
Numerical resu lts A n a ly tica l resu lts

Г ]/2 г  2/ l r j / f r 2/-f

1 0.87014 -0.44873 0.87155 -0.44561
2 0.79840 -0.54715 0.80028 -0.54367
3 0.71097 -0.63774 0.71318 -0.63401
4 0.60578 -0.72071 0.60818 -0.71669

5 0.47384 -0.79966 0.47639 -0.79483
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5.4. Bending to a f u l l  c irc le

The deformed shape o f a cantilever beam loaded by a moment at i t s  end 
is  a c ircu la r arc. On increasing the load in  10 increment steps to reach the 
bending moment required to form a fu l l  c irc le  and using 21 nodal points, the 
so lu tion  is  obtained with 10 itera tions in each load step. Figure 6 shows 
the deformed shapes of the beam at every second load increment.

-0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0
____________ i_____________ I____________ i_____________I_____________ i____________ I_____________I

5.5. Investigation of the e ffec t of the shear s tra in

As the las t example we re s tr ic t ourselves to the linear analysis of a 
ca n tileve r beam, loaded a t i t s  free end by a transversal load (P). In th is  
lin e a r  case, in consideration of the shear s tra in , the deflection at the end 
of the beam is  (see /12 /)

whole Kirchh shear w = w + w

where wKirchh P shear 6 PjC
3IE ’ w '  5 ' AG •

Fig. 6. Bending to  a f u l l  c ir c le :  the deformed shapes o f the beam
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Table 4 shows the ana lytica l and the numerical resu lts  in  case of d i f 
ferent lenpth-to-thickness ra tio .

Table 4. The e f fe c t  o f the shear s tra in  by a c a n tile ve r beam. The re s u lts  
correspond to  the d e fle c tio n  a t the end o f the beam (w ).

(„whole .  „K irchh + „shear)

Length-to-
th ickness

ra t io

A n a ly tica l re su lts Numerical re s u lts  
„w ho le /*wKirchh/^ wShear/ * „whole/*

1/100 0.16 0.0000128 0.1600128 0.1602106
5/100 0.16 0.00032 0.16032 0.1607520

10/100 0.16 0.00128 0.16128 0.1614289
15/100 0.16 0.00288 0.16288 0.1625419
20/100 0.16 0.00512 0.16512 0.1660984

These fiv e  examples show that our results obtained by the above numer
ic a l method are in good agreement with those obtained a na ly tica lly .
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The f i r s t  Hungarian network-level PMS r e l ie s  on Markov matrices. The system can 
be used fo r  the c a lc u la tio n  o f the funds needed a t various condition le v e ls ,  fo r  the 
reg iona l d is t r ib u t io n  o f given amounts o f f in a n c ia l means at the m in im ization o f  na
t io n a l economy costs and fo r  the determ ination o f  the economic and the te c h n ic a l con
sequences o f subsequent m odifications in  the funds d is tr ib u t io n .

1. Introduction

I t  can be observed a l l  over the world tha t the financial means a v a il
able for highway purposes are more and more behind the actual needs. A l
though a growing share of these funds is  used fo r maintenance and preser
vation tasks, even these financia l means decrease continually in  several 
countries — among others, in  Hungary —■ la te ly . This fact, na tu ra lly , in 
fluences the actual national roads policy, our aim can only be the de
celeration of the general condition deterioration.

That is  why the optimal d is tribu tion  and allocation of rather lim ited  
financia l means have become even more important than before. In the la te s t 
years, a s ig n ifican t development could be seen in  the actual method o f the 
allocation of highway funds between counties (highway d irectorates). The 
former simple procedure re ly ing upon normative values that were functions of 
road length, pavement type and, s lig h tly , o f t r a f f ic  size were gradually 
substituted by methods u t i l iz in g  information about the actual pavement con
d ition . Recently the need has emerged that th is  funds allocation should be 
made as objective and re lia b le  as possible. This intention was declared also
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by the professional managing authorities. As objective preconditions of th is  
development i t  can be mentioned the a v a ila b il ity  of the necessary data ( in 
s u ff ic ie n t  quantity and accuracy) as well as of the appropriate computer 
techn ica l background necessary for data re tr ie va l, processing and the 
elaboration of a llocation model.

Thus, the development of the f i r s t  Hungarian network-level PMS has 
been performed among the above circumstances.

2 . Scope o f  th e  ta s k ,  n e tw o rk -le v e l and p ro je c t - le v e l PMS

The research work presented here aimed at the compilation of the f i r s t  
version of the mathematical model of the Hungarian network-level PMS /1 /, 
more precisely i ts  f i r s t  version was to be established.

The model re lie s  upon the available information on the highway net
work, t r a f f ic ,  pavement structure, cost e tc. The main influencing technical- 
economic factors were re a lis t ic a lly  considered and, at the same time, the 
lim ita tio n s  of available information were also taken into account. Compared 
w ith  the preceding methods, the establishment of optimization system can be 
seemed as a s ign ifican t step forward although several necessary fu tu re  de
velopment directions can already be pointed out /2—4/.

The model had to have the following main functions: determination of 
the necessary amount of funds ensuring a given future pavement condition, as 
w e ll a re liab le  regional a llocation at given lim ita tio n  of available finan
c ia l means. When establishing the model, the sometimes controversary re
quirements of high s c ie n t if ic  level and of the easy practical a p p lic a b ility  
were also considered having a d irect e ffe c t on the complexity and the size 
o f the mathematical model, as well as on the approximations and negligences 
applied.

In 1988 an expert team under the supervision of the Highway Department 
o f M in istry  of Transport investigated the preconditions fo r the development 
o f the f i r s t  Hungarian PMS, i ts  possible time-table and the expected re
search expenditures. Relying on the actual s itua tion , i t  was concluded that 
the creation of the f i r s t  working version of the project-level PMS in  Hun
gary needed s t i l l  several-year intensive research a c tiv it ie s , while the 
elaboration of the f i r s t  Hungarian variant of network-level PMS appeared to 
be re a lis t ic  during 1989—1990 /11/.
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According to the investigations performed so fa r, fo r the pro ject- 
level variant the adaptation of the HDM-III model of World Bank seems to be 
the most suitable, however, i t  also needs s t i l l  great e ffo rts . Anyway, i t  
wodld be absolutely advantageous to apply the procedure of World Bank be
cause of the existing and the future financ ia l relationships with th is  
in s titu tio n .

The network-level system should be established p rio r to the other one 
not only because of the fact that the d is trib u tio n  of the financ ia l means 
between various regions (counties) preceeds even log ica lly  the optimal rank
ing of actual condition improving interventions from technical-economic 
point of view — that is ,  the elaboration of a pro ject-leve l PMS — but i t  
should be preferred as a consequence of follow ing reasons:

— the deficiencies and the eventual lim ited r e l ia b i l i t y  of the 
existing relevant do not hinder in  such extent the elaboration of the 
network-level PMS as that of the p ro ject-leve l PMS since in the former 
case mean values and even only pa rtly  homogeneous data sets can be 
used,
— for the creation of the network-level PMS there is  already an 
existing method that can serve as a s ta rting  point of the new system,
— even the f i r s t  version of the p ro ject-leve l PMS can only be proper
ly  be operated i f  major organisation changes of several in s titu tio n s  
(e.g. highway directorates, design and construction firms) are carried 
out; however, th is  rather time-consuming and complex series of mea
sures is  not needed for the network-level variant.
Thus, the In s titu te  fo r Transport Sciences (KTI) elaborated — on be

ha lf of National Highway Directorate the mathematical model of f i r s t  Hun
garian network-level PMS in  1989—1990.

The system developed deals only with the maintenance-operation funds 
excluding e.g. the in s titu tio n a l costs, the winter maintenance and t r a f f ic  
engineering expenditures.

Several prelim inary research reports have been made in the theme 
/2—6/. The f in a l report /7 / summarizes the whole system and the results 
obtained.

The model features and the application areas w il l  be dealt with sub
sequently. The computer and mathematical aspects — carried out by the 
mathematicians dr. András BAKÓ and dr. Tamás SZÁNTAI — are presented in 
another a rt ic le  /1 / .
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3 . S e le c t io n  o f  th e  model

3.1. Preliminary investigations

The development of the network-level model needed various prelim inary 
investiga tions.

The decision about the pavement types to be included in the system was
considered as one of the f i r s t  tasks. For th is  purpose the d is trib u tio n  of
the whole national highway network area according to pavement types was
analyzed. (Instead of the length, the area was preferred here because the in -

2tervention  costs in the model can be related only m ; thus, area ra tio s  were 
applied in  the system.)

The funds d is tribu tion  in  1990 considered several parameters that were 
usually conform with the engineering judgement. However, in the lack of an 
appropriate model, the ir coincidence could not have been investigated and 
the p o s s ib il ity  of the optim ization did not ex is t.

For the model only three main intervention alternatives (routine main
tenance, surface dressing and asphalt overlay) were chosen. I t  can be men
tioned here that the maximum number of parameters applied is  strongly l i 
mited by the need of manageability of the matrix which the model re lie s  on.

Among the t ra f f ic  parameters, AADT and N (number of 100 kN axle loads 
passing d a ily ) were taken in to  consideration. Although the actual heavy axle 
load has a direct connection with the bearing capacity loss of pavement 
s truc tu re  the parameter AADT was preferred pa rtly  because of i t s  being more 
widely known than the other one and pa rtly  because some other pavement de
te r io ra tio n  forms — not only the loss of bearing capacity — should be con
sidered in  th is  complex investigation.

3.2. Selected methodology

For the solution of the task outlined a methodology re a lis t ic a lly  
taking in to  account re a lis t ic a lly  both the p o s s ib ilit ie s  and the constraints 
had to  be chosen.

The following "existing p o s s ib ilit ie s " are highlighted here:
— the available road data sets,
— former Hungarian funds d is trib u tio n  experience,
— presentation of s im ila r foreign systems,
— set of mathematical means fo r the treatment of th is  problem,
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— the goal-oriented expert team including experienced highway en
gineers and mathematicians.

The following objective d if f ic u l t ie s  and constraints of the estab lish 
ment o f the model can be mentioned:

— the rather lim ited  time available fo r the elaboration o f model,
— only a part of the huge information mass of the country-wide 

s u ita b ility  ra ting in it ia te d  in  1979 is  available fo r the data 
processing p rio r to the compilation of model,

— a certain share of the data available has not s u ff ic ie n t accuracy 
because e.g. the existing data base does not contain the conse
quences of the recent changes in the kilométrage of highways,

— the use of the time series is  more or less disadvantageously in 
fluenced by the fact that the condition parameters were often 
evaluated in various time-points using d ifferent methods and, in 
some cases, the resu lts of these procedures have no co rre la tion  
between each other,

— no domestic re lationships are available between pavement condition 
and vehicle operating costs, although they would d e f in ite ly  help 
the determination of a well-founded optimum c r ite r ia ,

— there are s t i l l  no re liab le  methods fo r the determination o f the 
optimum ra tio  between development and maintenance funds, fo r the 
forecast of operation costs and fo r the well-established estimation 
of in s titu tio n a l costs, thus, the exact assumption of the funds 
l im it  for the model encounters d if f ic u lt ie s  even i f  the to ta l 
amount of Road Funds is  known.

Taking into account a l l  of these aspects, the Markov-type tra n s itio n  
p robab ility  matrix was chosen from among several methods published in  the 
lite ra tu re . One of the reasons was that i t  is  rather clear, besides i t  does 
not need long time series as a precondition. For the sake of the p rac tica l 
a p p lic a b ility  only lim ited numbers of condition variations, pavement types, 
t r a f f ic  volumes and intervention variants were taken for the compilation 
of the model.

4 . M arkov-type t r a n s it io n  p r o b a b i l i ty  m atrix

The Markov-type trans ition  p robab ility  matrix — in case o f a certain 
pavement type, t ra f f ic  size and intervention strategy — supplies in  the
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model the d is trib u tio n  o f the probabilities o f the transition of a given 
condition variant to  another one or of i t s  remaining in the same variant- 
during a certain period (e .g . 1 year).

Hereafter the choice of the variables of the matrix, the determination 
of various condition va rian ts , the establishment of matrix elements and, 
f in a l ly ,  the in te rp re ta tion  of matrix w il l  be dea lt with.

4.1. Matrix variables

The variables o f matrix are: pavement type, t ra f f ic  volume, interven
t io n  variants. Subsequently the background o f the selection of actual va
ria n ts  applied in the system w il l  be presented.

As pavement types, asphalt concrete and asphalt macadam pavements were 
chosen. (In the f i r s t  group a ll of the ro lle d  asphalt types, while in the 
other one the coated chippings, mixed and impregnated asphalt macadams are 
included.) I t  was also considered that the re s t of the highway network 
— r ig id  and unpaved sections — have dete rio ra tion  characteristics basical
ly  d iffe ren t from those o f the two selected f le x ib le  pavement groups.

The following procedure is  recommended fo r  the funds d is trib u tio n  in 
the case of roads w ith  non-asphalt pavements:

(a) The categories "surface dressing and oiled macadam pavement" 
— with a to ta l length of some 6000 km /8 / — are considered as 
asphalt macadam pavements. This decision can be explained by the 
fact that "surface dressing" means here a surface treatment on 
water-bound macadam pavements and the deterioration features of 
these pavements are not very unlike to  the asphalt macadam pave
ments because o f technological reasons.

(b) The s itua tion  is  sim ilar in the case o f water-bound macadam pave
ments ( to ta l length: only 116 km), so, fo r the sake of s im p lic ity , 
they can be classed among the asphalt macadams in the d is trib u tio n  
procedure o f funds.

(c) The cement concrete, stone and paving brick pavements as well as 
the unpaved (earth) roads have technological features and, con
sequently, a deterioration process bas ica lly  d iffe ren t from those 
of the asphalt pavements and so, they cannot be ranked to the same 
class. That is  why a separate share o f funds should be ensured 
for them.
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(d) As the f i r s t  step of funds d is tribu tion , a given amount o f money 
should be separated fo r the r ig id  (cement concrete, stone and 
paving brick pavements). I t  should be achieved that the funds 
ra tio  of these pavements should be sim ila r to that of the asphalt 
pavements.

As a consequence, the actual values of la s t year or of the 
2 last years but one should be used, that is  the amount of funds 
and the percentage used fo r the maintenance and operation of both 
road types. This percentage w il l  be considered when the separation 
of certain part of the to ta l national funds for these pavement 
types is  decided.

For the characterization of low, medium and high t r a f f ic ,  
following classes were chosen here: 0—3000 pcu/day, 3001—8000 
pcu/day and min. 8001 pcu/day.

The following three intervention variants were preferred: 
routine maintenance — surface dressing — asphalt overlay. ( I t  
should be noted that several foreign PMS apply also the variant 
"do nothing", as w e ll. I t  was decided, however, to apply in  our 
system only the variant "routine maintenance" even in  the case of 
s ligh test intervention variant when the necessary routine main
tenance a c tiv it ie s  have to be performed a fte r the in it ia t io n  of 
f i r s t  cracks and pot-holes. I t  cannot be accepted that the pave
ment would be " le f t  alone" without any maintenance.)

Taking in to  account the afore-mentioned facts, theo re tica lly  
2x3x3 = 18 matrices should be made; two of them (surface dressing 
above 8000 pcu/day both pavement types), however, were excluded 
because of technological reasons. So, the elaboration of 16 
matrices was aimed at. ( I t  should be emphasized that the asphalt 
macadam pavements above 8000 pcu/day t r a f f ic  are rather rare; so, 
in  a la te r development phase also these two matrices can be ex
cluded. In the f i r s t  version, however, they were s t i l l  included.)

4.2. Determination of the condition variants in the matrix

The rows and the columns of Markov trans ition  probability  matrices are 
formed by pavement condition variants. Of the condition notes supplied by 
the country-wide highway s u ita b il i ty  surveys, those are u tiliz e d  fo r th is  
calculation on one hand, of which su ffic ien t data were available w ith even-
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tu a i time series, on the other hand, which were considered of basic im
portance from the view-point of the deterioration process. So, the following 
pavement condition parameters were selected:

— pavement structure bearing capacity note,
— longitudinal unevenness note,
— pavement surface qua lity  note.
We are convinced tha t the ranking of these condition parameters in to 

5 qua lity  classes is  of s u ffic ie n t accuracy fo r the intervention decisions. 
( I t  can be noted that in  the United Kingdom only 3-grade and in  the former 
GDR 4-grade evaluation has been used recently .)

The quality levels o f various parameters are:

— Bearing capacity
1 good
2 s u ffic ie n t
3 fa ir
4 at the end of planned l i f e
5 a fte r the end of planned l i f e

— Longitudinal unevenness
using Bump Integrator by visual evaluation
1 good 1 good
2 s u ffic ie n t
3 fa ir  3 fa i r
4 in s u ff ic ie n t
5 unbearable 3 poor
— surface qua lity

1 good
2 s u ff ic ie n t
3 fa ir
4 in s u ff ic ie n t
5 unbearable

For the sake of the uniform ity, a 3-grade evaluation was selected fo r 
the pavement long itud ina l unevenness. So, theo re tica lly  5x5x3 = 75 condition 
variants would be availab le . For the mathematical so lva b ility  of the problem 
and fo r the approximation to the practical conditions, however, the number of 
condition variants had to  be by a ll means reduced.

That is  why the condition data of the national highway network in 
5 counties were evaluated. As a resu lt, the actual condition variants not
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Table I .  Condition v a ria n t groups o f Markov-type 
t ra n s it io n  matrices

Nurrtoer C ondition varian ts

I . TIT
2. 112
3. TT3 + T14
4. T3T + T32
5. 133 + 152
6. 134 + 135
7. 153 + 154
B. 2TT
9. 2T2

TO. 2T3
TT. 23T + 251
T2. 232 + 252
T3. 233 + 214
T4. 234 + 215
T5. 3TT
T6. 3T2 + 331
T7. 3T3 + 314
18. 332 + 351
19. 333 + 352
20. 334 + 315
2T. 355 + 354
22. 4TI
23. 4T2
24. 4T3 + 414
25. 432 + 431
26. 433
27. 434 + 415
28. 452 + 451
29. 453
30. 454
3T. 455
32. 5TT
33. 512
34. 513
35. 514 + 515
36. 532 + 531
37. 533 + 552
38. 534 + 535
39. 553
40. 554
4T. 555

1T5
15T

155

235 + 253 + 254 + 255

353
335

435

55T

Legend: T35 co nd ition  va rian t o f a pavement w ith  
bearing capac ity  note T + pavement un
evenness note 3 + surface q u a lity  note 5
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exceeding 2.5 km in  the sample selected, tha t is  not exceeding approximately 
10.0 km in the whole national highway network were determined. (An example 
fo r  the condition va rian ts : 135 means the simultaneous occurrence of bearing 
capacity note 1, long itud ina l unevenness note 3 and surface qua lity  note 5.) 
This re la tive ly  rare condition variant was not considered as a separate one 
but i t  was united w ith  a sim ilar (s u ff ic ie n t ly  frequent) condition variant. 
A fte r this ca lcu la tion , the 41 condition variants presented in  Table 1 were 
considered in the model.

4.3. Calculation o f matrix elements

Each element o f the matrix — that is  the decimal p robab ility  of the 
trans ition  of a ce rta in  condition variant to another one in  one year, in 
case of a given pavement type, t ra f f ic  volume size and intervention stra te
gy — is  calculated on the basis of the resu lts  gained by the processing of 
actual domestic data o r, in  lack of them, by interpolation.

The available highway network and pavement structura l data set was 
processed using the follow ing method. F irs t  the changings o f the condition 
variants in 1984 and in  1989 were determined fo r some 2500 road sections 
w ith  various length where no overlay or surface dressing was made during the 
investigation period. This processing tha t was performed taking in to  consi
deration the pavement and t ra f f ic  categories already mentioned, supplied the 
d is tribu tion  of condition variants a fte r 5 years in  percentage. (E.g. in the 
case of asphalt concrete pavements with an AADT of 3000—8000 pcu/day and 
w ith  condition va rian t 111: 894 remains in  the same category, 6\  deterio
rates to the category 112 and b\ to 211 a fte r 5 years.) These percentage 
changings were divided by 5 in order to re la te  them to 1 year. The calcula
t io n  was made in  each variant i f  min. 5 km to ta l length was available. These 
percentage d is tr ib u tio n s  — after d iv id ing  by 100 and rounding o ff  — became 
the matrix elements. Where no actual data were available in terpo la tion  (or 
sometimes extrapolation) was done. In case of surface dressing and asphalt 
overlay the condition notes before and a fte r the intervention were compared 
in  order to obtain information about the typ ica l condition changing.

A row-vector s ituated under the matrix is  connected with i t .  Every
2

element of th is  vector means the un it cost fo r 1 m at the given interven
t io n  type performed on the section tha t has a condition variant specified 
above the appropriate column of the m atrix. This unit cost is  identic  in the 
whole country.
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4.4. The in terpreta tion of the matrix

Any of the 16 matrices has a size of 41x41. According to the condition 
variants presented in  Table 2, using the ir numbering, the matrix has the 
following structure. (Horizontally the condition variants of f i r s t  year 
— the basic s itua tion  —, while v e rtica lly  the expected condition d is tr ib u 
tion  of second year can be found.)

E.g. the symbol a^  in the matrix means the probab ility  of the tran
s it io n  of a pavement with condition variant 2 to condition variant 3 in  the 
next year (at the pavement type, the t ra f f ic  volume and the intervention 
strategy of the matrix in question). I f  the p robab ility  is  20%, the value of 

is  0.20.
The sum of each column is  1.0 because a l l  (100%) of the sections char

acterized by any condition variant w il l get in to  one of the condition va
rian ts  next year.

Obviously, a fte r only routine maintenance the matrix elements can be 
found on the diagonal or under i t ,  according to the general deterio ra tion. 
At the same time, surface dressing especially asphalt overlay pushes the

Table 2, The struc tu re  o f  a Markov t ra n s it io n  p ro b a b ility  m atrix

1 2 3 4 5 1

1 au  a21

2 a12 a22

3 a23

4 a14

5 a25

41

41 a41,41

1 1 1 1 1



1 ? 3 A 5 6 7 fl9 10 11 12 13 19 15 h 17 10 19 20 21 22 23 29 25 26 27 JS. 2? 30 31 l i i l л 36 37 3fi 39 AC Al

2 0.55—
3 010 OA 5
1♦ 0.70

065
6 0.70
7 &60
8 O.AOt 0.75
9 0.35 0.6C
10 0.20 0.55
11 Ö2Ö1 0.80
12 0.10 0.10 0.75
13 0.35 0.35 0.55
ia 0 300A0 to.8o
15 0.25 050
16 0.АС 0.10 0.75
17 0A5 0.55
18 0.70
19 0.250.A5 0.55
20 0-70 П-9П
21 0.85
22 0.50 0.50
23 0.15035
2U< 0.A5 0.15 0.80
25 — — 0.25 0.30 0.80
26 095
27 0.10 0.05 0.90
28 0.90
29 0.A5 0.05 0.100.85
30 0.15 0.70
31 0.75
32 - 0.20 0.80
33 “ ü li oie. asa
ЗА 0.20 0.100.90
35 0.10 0.90|
36 0.15 0.1C0 90|
37 010 0.65
38 0.10 0.90
39 0.15 090
АО Q3q 0.350.100.10 0,85
A1 0.25 0.151.00

Unit
cost,HUF/m^ 0.0 3.0 6 0 2.0 3.0 I 8.0 J 8.0 1.0 3.5 5.0 1.5 3.0 6.0 7.5 2.0 2.5 A. 5 2.5 3.5 12.0 9.5 1.5 30 60 2.5 5.0 12.0 2.5 A.5 s 15.0 2.0 3.0 5.5 135 2.5 A.O13.0 6.011.515.0

F ig . 1. Markov-type t ra n s it io n  p ro b a b ility  m atrix o f asphalt concrete pavements w ith  min 8001 pcu/day t r a f f i c  volume,
in  the case o f ro u tin e  maintenance only
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elements that are d iffe ren t from 0 in to the upper part of the matrix as a 
consequence of the general condition improvement. (Naturally, some elements 
can be found on the diagonal in  th is  case, too.)

Figure 1 presents, as an example, a matrix used fo r asphalt concrete 
pavements.

4.5. Intervention unit costs

The un it costs of various intervention types (only routine main
tenance, surface dressing, asphalt overlay) that can be found as row-vectors 
under the matrices, constitute an important part of the model.

Related to th is  problem, two questions arise: the actual series value 
of intervention costs belonging to a given matrix and its  41 s ta rting  con
d itio n  variants, as well as the decision about the use of country-wide 
un ified  or regional costs.

For the f i r s t  question, i t  is  evident that the interventions needed to 
repair the various condition variants have d iffe re n t prices:

— in the case of routine maintenance a c tiv it ie s  ( i t  includes pot- 
holing, crack f i l l i n g ,  fine  patching and repair on a large area) i t  
can gradually increase from 0 t/km to 10 t/km,
— in the case of surface dressing a double dressing is  considered i f  
the o rig ina l condition is  re la tive ly  poor (between about the condition 
variants 25 and 41).
— the thickness of new overlay increases from the minimum 3 cm up to 
10 cm together with the condition deterioration.

The decision about the country-wide un ified  unit costs was preceded 
by a detailed preliminary investigation. F irs t the important u n it costs 
(s ing le  and double surface dressing, 3 cm asphalt overlay) were collected 
— by the help of a phone inquiry — in various Highway Directorates with 
the follow ing results.

(a) Single surface dressing
2

un it costs: min. 20 HUF/m
max. 35 HUF/m̂

2
mean value: 27 HUF/m 
standard

2
deviation: 5 HUF/m
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(b) Double surface dressing
2unit costs: min. 34 HUF/m

max. 60 HUF/m2 
2

mean value: 43 HUF/m 
standard
deviation: 8 HUF/m2

(c) 3 cm new asphalt overlay
2

unit costs: min. 160 HUF/m
max. 275 HUF/m2 

mean value: 202 HUF/m2 
standard
deviation: 27 HUF/m2.

Although the va ria tion  coeffic ient of the un it costs is  between 0.13 
and 0.18 (that is  ra ther high), the order of the un it costs in  various High
way Directorates is  not comform at a l l  w ith the regional geological con
d itio n s . No regu la rity  can be observed according to which the regions with 
some quarries and/or s u ff ic ie n t local aggregates would have the lowest in 
tervention unit costs.

Three main reasons explained our decision about the application of 
country-wide unified average un it costs:

— the regional u n it costs are influenced by several parameters that 
should not be included in  the system,
— the re a lis t ic  regional unit costs would be disadvantageous in  the 
funds d is tr ib u tio n  fo r the Highway Directorates that maintain the ir 
network economically,
— the use of several unit costs would complicate considerably the 
"funds need determination" part of the model.

4.6. Intervention shares on asphalt concrete and asphalt macadam pavements

The shares of in terventions (here only surface dressing and asphalt 
overlay) on both pavement types should also be included into the model as a 
constra in t.

Before deciding about th is  constraint, the shares of these pavement 
types in  various t r a f f ic  classes were investigated, with the following 
re su lts :
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A-C D-E
t r a f f ic  classes

asphalt concrete pavement 11% 38%
asphalt macadam pavement 33% —

The percentage values re late to the to ta l area of national highway 
network.

I f  a re la tive ly  high weighing factor were contributed to asphalt con
crete pavements, some important asphalt macadam pavement would get in to  a 
disadvantageous situation. A sim ilar resu lt would be obtained i f  a strong 
weighing were done as a function of t r a f f ic  s ize. Instead, i t  was decided 
that the t r a f f ic ,  the pavement type and condition were simultaneously con
sidered at the weighing procedure.

Thus, in  the in i t ia l  phase the to ta l areas of "poor qua lity" asphalt 
concrete and asphalt macadam pavements were calculated separately and the 
shares o f them were considered as prescribed shares of interventions. How
ever, i t  is  important to  emphasize that the "poor quality" was in terpreted 
d iffe re n tly  fo r asphalt concretes as fo r asphalt macadams.

In the case of asphalt concrete pavements:

— 0—3000 pcu/day: sections with a condition variant containing
at least a note 5,

— 3001—8000 pcu/day: sections with a condition variant containing
also a note 3 or 4,

— min. 8001 pcu/day: sections with a condition variant containing
also a note 5 or 4

were taken into account in the ca lcu la tion .

In the case of asphalt macadam pavements:

— 0—3000 pcu/day: sections with a condition variant containing
at least a note 5,

— 3001—8000 pcu/day: sections with a condition variant containing
at least a note 5,

— min. 8001 pcu/day: sections with a condition variant containing
also a note 5 or 4

were taken in to  account in the ca lcu la tion .

The shares of these two areas became the prescribed area shares of 
major condition improving interventions.
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5 . A p p lic a tio n  a rea s

The network-level PMS-model can be used prim arily for the so lu tion of 
three tasks:

— determination of the necessary funds need for ensuring a given con
d ition  le ve l, at a certain optimum c r ite r ia ,

—  regional and functional d is trib u tio n  o f a certain amount of money, 
under constraints and a given optimum c r ite r ia ,

— evaluation of the technical and the economic effect o f subsequent 
funds d is tr ib u tio n  modification.

6 .  D eterm inatio n  o f  n ecessary funds

6.1. Basic principles

Also the maintenance funds need can be determined by the help of 16 
Markov-type trans ition  probab ility  matrices and of the connected in te r
vention un it costs.

Evidently, the actual funds need re la tes to a desired condition leve l. 
In the practice, i t  means usually one of the follow ing:

— minimisation of the shares of some "good" condition variants and/or
— maximisation of the shares of some "poor" condition variants or
— the former condition d is tribu tion  is  required also in  the future,
— various constraints are selected fo r certain pavement types and 

t r a f f ic  a lte rna tives.
In a general case, the shares of various condition variants can be 

maximised, minimised, fixed  or not regulated at a l l .

6.2. Some t r ia l  run experiences

The practical a p p lic a b ility  of the mentioned principles was inves
tigated by several t r i a l  runs and the evaluation o f the ir results.

In a t r ia l  run, the following constraints were assumed as future  con
d itio n s : the area shares of the sections of condition variants 6, 14, 20, 
21, 27—41 (see Table 1) should not decrease a fte r the intervention. The 
shares o f the other condition variants were not lim ited  at a l l .  Because of 
the re la tiv e ly  few condition constraints the to ta l funds need is  only
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2.08-10^ HUF (610 m illion  HUF for routine maintenance, 646 m illion  HUF for 
surface dressing and 826 m illio n  HUF for asphalt overlay). I f  the shares of 
areas undergoing an in tervention are considered, the following resu lts  can 
be obtained: new asphalt overlay on 1.2%, surface dressing on 11.0%, routine 
maintenance (mainly patching) on 87.8%.

Then another t r ia l  run was performed when the influence of the in 
crease o f constraints on the funds need and the actual shares w ith in  the 
need was investigated. In  th is  case, besides the constraints mentioned be
fore (upper lim ita tion  o f "poor" condition variants), i t  was also specified 
that the area shares o f the "good" condition variants — variants 1, 2, 4 
and 8 according to Table 1 — should not decrease.

The following areea shares resulted:2
111.7 m illio n  m (73.0%) routine maintenance 

2
8.2 m illio n  m (5.4%) surface dressing 

32.8 m illio n  m̂ (21.6%) asphalt overlay
Total: 152.7 m illio n

The cost shares resulted:
422 m illio n  HUF (2.8%) routine maintenance 
264 m illio n  HUF (1.7%) surface dressing 

14410 m illio n  HUF (95.5%) asphalt overlay
Total: 15096 m illio n  HUF

When evaluating the above results, i t  is  s tr ik in g  that the attempt to 
preserve the shares o f the sections of almost perfect condition needs a 
rather high extra cost. The former 2000 m illio n  HUF increased here by 650%. 
I t  is  interesting to observe that the share of asphalt overlay considerably 
grows. In the f i r s t  version, only 1.2% of the to ta l area needed an overlay, 
while i t  grew to 21.6% a fte r the increase of constraints. (This change can 
be taken as the transformation of the former 90-year strengthening l i f e  
cycle in to  one under 5 years according to the new a lternative. I t  should be 
emphasized, however, here that nowadays an extremely deteriorated general 
condition prevails and so, i f  following th is  strategy, a fte r few years i t  
w il l not be necessary to intervene on o n e -fifth  of the network.)
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7 . Funds d is t r ib u t io n

7.1 . Basic principles

In practice i t  occurs frequently that certain financia l means should 
be divided for various purposes and regions.

In th is case, the minimisation of a value proportional to the vehicle 
operating costs is  considered as object function while the t r a f f ic  and the 
pavement type constraints are also taken in to  account. I t  is  a good question 
why not the sum of the vehicle operating costs and the intervention costs 
— that is approximately the national economy expenditures — shall be 
maximised. At present th is  aim cannot be attained because we have no in fo r
mation on the actual vehicle operating costs and these absolute data would 
be needed for accomplishing the summation with the absolute values of in 
tervention costs. As long as only re la tive  values connected with the vehicle 
operating costs /10/ are used in  the lack of more accurate data, only the 
minimization of one of these parameters can be selected as an object func
t io n .  For th is purpose, the vehicle operating costs, as the more s ig n if
ican t one on national economy leve l, are chosen.

Before the optim isation the calculation already mentioned should be 
done according to which the shares of necessary interventions on asphalt 
concrete and asphalt macadam pavements — separately fo r surface dressings 
and asphalt overlays are given as a preliminary constraint.

The f i r s t  step of the d is tribu tion  of funds is  the country-wide d is
t r ib u t io n  of available fin a n c ia l means according to intervention categories, 
pavement types, condition variants and t r a f f ic  sizes.

A fte r having done th is  optimisation from the point of view of t r a f f ic  
operating costs, the regional d is tribu tion  follows. This time no more 
weighing is  needed, the d is tr ib u tio n  is  made simply according to the area 
shares of sections with given characteristics (AADT, pavement type, condi
tio n  variant) in various counties.

The selected object function is  the minimisation of follow ing sum: 

41
2 ,  Â  • AADT^a • FF, where 
i= l

Â  — specific vehicle operating cost parameter as a function of i- th  
condition variant and the re la tive  share of heavy t r a f f ic  (F ig. 2),
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Pavement condition  and type 0.10
In  case o f "n11 
0.15 0.20 0.25

very
good

good fa ir poor
very
poor

fu e l cost fa c to r

AB 1.00 1.00 1.00 1.00

AM AB 1.05 1.04 1.04 1.04

AM AB 1.08 1.06 1.06 1.04

AM AB 1.21 1.19 1.16 1.14

AM AB 1.26 1.24 1.21 1.19

AM 1.40 1.37 1.35 1.32

Legend: n — the r a t io  o f the heavy (min. 30 kN) ax le  load vehic les and a l l  ve h ic le s  on 
the section 

AB — asphalt concrete 
AM — asphalt macadam

F ig . 2. Extra fu e l cost fac to rs  o f  roads w ith  various pavement types and heavy t r a f f i c
ra tio s

AADT̂ a — annual average da ily  t r a f f ic  weighed by the road area of i- th  
condition variant (pcu/day),

Eh — to ta l length of sections in i - th  condition variant.
This sum of products can be calculated, naturally, also before the 

intervention and so, the e ffe c t of various condition improving intervention 
strategies on the vehicle operating costs can be evaluated. (Increase? De
crease? To what extent?)

For the use of Fig. 2, the c la ss ifica tion  of 41 condition variants 
into five  groups shown in  the figure is  needed. The three condition note 
variations were put into classes as follows:

— "very good condition": i f  the sum of three condition notes is  
maximum 6,

— "good condition": i f  the sum of three condition notes is  between 7 
and 9, and none of them is  note 5,

-- "medium condition": i f  the sum of three condition notes is  between 
10 and 12 as well as none of them is  note 5,

— "poor condition": only one of the condition notes is  5,
— "very poor condition": two or three of the condition notes are 5. 
The value "a", the ra tio  of vehicles with heavy axle loads and a l l

motor vehicles, is  to be calculated by putting in to  the numerator the sum of 
camions, t ra ile rs ,  busses and heavy trucks.



38 GÁSPÁR, L .  З г .

Taking in to account the afore-mentioned facts , the product А^-АА0Т^а>Ц  
is  calculated fo r each condition-pavement typ e -tra ffic  variant. These 
products are summarized fo r every variant in  order to obtain the parameter 

o f the in i t ia l  condition of the network that is  proportional to the 
vehicle operating costs.

The areas of the various condition-pavement typ e -tra ffic  variants 
change a fte r the d is trib u tio n  of the available funds because a s lig h t per
centage of the network receives an overlay, a higher share a surface dressing 
while only routine maintenance is  carried out on the majority of the to ta l 
area.

For a new condition d is tribu tion , na tu ra lly , the parameter pro
portiona l to the actual vehicle operating costs can be calculated follow ing 
the same princip les. (The f i r s t  element of the product is  unchanged, the 
second one can be considered constant while the th ird  one, usually, changes. 
As a consequence, the to ta l sum of products w i l l  also be d iffe re n t.)

As a part of th is  computerised model, the optimal variant with lowest 
value /1 / can be determined using linear programming.

The value of optimal variant can exceed the former value, 
proving that the available financia l means are not su ffic ien t fo r the pre
servation of the o rig in a l condition leve l. While i f  is  below K^, then, 
fo rtuna te ly , a more favourable situation than the former one can be a t
tained.

Afterwards the regional (county) funds a llocation means only a simple 
proportioning where the funds shares of various condition-pavement type- 
t r a f f ic  variants are divided among the counties according to the shares of 
the to ta l area of th e ir  highway sections with given parameters in the entire  
national area.

7.2. Experience of some t r ia l  runs

g
Owing to the fact that the value of the funds (7.0-10 HUF) assumed in  

the f i r s t  t r ia l  run is  above the presently re a lis t ic  leve l, for the fu rthe r
9

variants the funds assumed were gradually reduced, that is  6-10 HUF, then 
5•10'* HUF, then 4-10"* HUF and, f in a lly ,  3-10^ HUF were distributed.

Our main d irection  of investigation was how the actual funds leve l 
influences the shares of three intervention types. Figure 3 informs about 
the changing of the shares used fo r routine maintenance, surface dressing
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F ig . 3. R e la tionsh ip  between the q u a n tity  o f funds and the shares o f in te rve n tio n  types

and new asphalt overlay in the a llocation according to th is  model as a func
tion  of available funds.

The follow ing main resu lts  were obtained:
g

— in case of the a llocation  of 3.0-10 HUF funds only one-third of 
the financia l means was used fo r asphalt overlays, the highest 
share is  spent fo r surface dressings,

— increasing of funds, the financia l means allocated to asphalt over
lay considerably grow while the shares of other two intervention 
types, evidently, decrease;

— among the areas of various intervention types not so high percent
age changes can be observed since the u n it costs of routine main
tenance and surface dressing gradually decrease accordingly, as 
— together with the increase of to ta l funds — asphalt overlay is  
applied on the worst sections that obtained ea rlie r only patching 
or surface dressing.

9
Figure 4 analyses how the funds increased by 1.0-10 HUF steps in 

fluence the vehicle operating costs (or the parameter proportionate to 
them). There is  a de fin ite  tendency that the "savings" (reduced fue l costs) 
are smaller and smaller as the to ta l funds grow. This statement is ,  natural
ly ,  not surprising at a l l ,  because the extra funds permit to repair not only 
the very poor but also the less bad sections. In the la t te r  case, evidently, 
a lower fue l costs reduction can be attained by the interventions.
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Savings in the parameter proportional 
to fuel costs as a consequence of addi
tional 109HUF funds (109HUF)

6.0

5.0-

4.0-

3.0-

2.0 -

1.0 -

3.0 40 5.0 6.0 7.0

Initial
funds
(109 HUF)

F ig . 4, The savings in  the parameter p ropo rtiona l to  fu e l costs re s u lt in g  from 
a d d itio n a l 10^ HUF funds, a t various i n i t i a l  funds le ve ls

8 . E va lua tio n  o f  th e  consequences o f subsequent m o d ific a tio n  

in  th e  funds d is t r ib u t io n

I t  was a frequent case (and presumably i t  w i l l  be also in  the future) 
tha t not the optimum funds d is tr ib u tio n  is  implemented. (The reasons can be, 
among others, the consideration of local aspects, the need of the concentra
t io n  o f financia l means, the necessity of an in terna l regrouping of money.) 
I t  is  a ju s t claim to evaluate the technical and the economic consequences 
of such modification.

The technical consequence is  the resu lting condition d is tr ib u tio n  of 
the network concerned. I t  can be easily obtained using the appropriate Mar
kov tra n s itio n  probability  matrices and forecasting the conditions in  the 
fo llow ing  year according to the changed intervention spectrum.

The economic consequence can be evaluated by the calculation of to ta l 
vehicle operating costs (or the parameter proportional to them). The deter
mination of th is  sum of products, a fte r the changed intervention a lte r
na tive , makes i t  possible to estimate the losses in  national economy costs
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caused by the new decisions. (An improvement cannot be attained because the 
optimum variant was o rig in a lly  developed.)

9. The significance of the model

The significance of the f i r s t  Hungarian network-level PMS-model can be 
summarized as follows:

— the determination and the d is tribu tion  of maintenance-operation 
funds are carried out here considering several influencing factors,

— at the optim ization not only the poor but a l l  condition data of 
network are taken in to  account,

— the d is tribu tion  of funds is  done excluding the local subjective 
parameters,

— as the las t step, some other aspects can be applied in  the system,
— the system can readily be developed further.

Table 3. O rganizational ind ices in  various counties

County

Patching
Surface
dressing

(cut-back)

Surface
dressing

(emulsion)

Asphalt concrete 
type AB-12 (3 cm)

r e g io n a l p a ra m e te rs

Pest 1.00 1.00 1.00 1.00

Nógrád 0.95 0.91 0.97 0.9A

Győr-Sopron 0.90 1.03 1.03 0.99

Komárom 0.99 1.03 1.03 0.97

Borsod-Abaúj-Zemplén 0.99 0.91 0.97 1.00

Heves 0.97 0.91 0.92 0.95

SzaboTcs-Szatmár-Bereg 0.98 0.97 1.00 0.97

Hajdú-Bihar 0.99 1.00 1.00 0.99

Baranya 0.97 0.91 0.97 0.95

Somogy 1.00 1.06 1.00 1.00

Tolna 0.99 0.97 1.00 0.97

Csongrád 1.00 1.06 1.05 0.99

Bács-Kiskun 0.99 1.03 1.00 0.98

Jász-Nagykun-Szolnok 0.99 1.03 1.00 0.98

Békés 0.99 1.03 1.03 0.99

Vas 0.97 0.91 0.97 0.95

Zala 0.97 0.89 0.95 0.95

Veszprém 0.97 0.91 0.97 0.95

Fejér 0.98 1.00 1.00 0.95
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The regional u n it costs cannot be d ire c tly  used partly  because of the 
lack of accurate post-ca lcu la ting data, p a rtly  as a consequence of the ne
cess ity  for the lim ita t io n  of the computer model size to ensure i t s  manage
a b i l i t y .  Since the experts of Highway Directorates have already emphasized 
repeatedly the advantages o f the use of regional un it costs, the following 
intermediate solution can be suggested. The primary regional d is trib u tio n  of 
funds should be performed using country-wide unified cost values, then the 
ac tua l county in tervention  area shares are determined, by the help of the 
p r ic in g  (organisational) parameters /9 / shown in  Table 3. This modification 
can be carried out by norming preserving, evidently, the sum of the country
wide funds to be d is tr ib u te d .
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DESCRIBING THE STABILITY BEHAVIOUR OF VISCOELASTIC STRUCTURES OF ONE DEGREE
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As fo llo w s  from the na tu re  o f the phenomenon, the determ ination o f the behaviour 
o f v is c o e la s tic  s truc tu res in  the  environment o f  the loss o f s ta b i l i t y  invo lves nu
merical problems such as th e  multivaluedness o f  the so lu tio n , the i n f i n i t y  o f the 
d e riv a tiv e  and case o f the in te rn a l parameter, the s in g u la r ity  o f the s o lu t io n . Numer
ic a l methods to  e lim inate  these problems are presented in  th is  paper.

In tro d u c tio n

The s ta b il ity  problems o f viscoelastic structures can be divided into 
two major groups.

One of them includes the cases where the in e rtia  of the structure is  
taken into consideration. The other includes the cases where the in e rtia  of 
the mass of the structure is  neglected.

The cases fa llin g  w ith in  the f i r s t  group are hardly discussed in the 
lite ra tu re  and the present work is  not intended either to discuss the cases 
where the in e rtia  of the structure is  taken in to  consideration. However, 
presentation of a simple structure of in e r t ia l mass seems to be s t i l l  rea
sonable to make the investigation neglecting the ine rtia  of the mass more 
understandable.

A three-hinged structure consisting of two rods made of Maxwellian 
f lu id  with the mass of the structure concentrated at the upper hinge is  i l 
lustrated in  Fig. 1. In Fig. 2 a continuous lin e  shows the v e rtic a l d is-

* I j j a s ,  György, H-1147 Budapest, öv u. 165, Hungary

Akadémiai Kiadó, Budapest
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placement of the upper point of the structure as a function of time. As fa r 
as is  known today, no d istinctions can be made between the stable and un
stable states of motion of the structure, unless the ine rtia  of the mass of 
the structure is  neglected.

However, i f  the inertia  o f the mass of the structure is  neglected, 
then a viscoelastic structure w i l l  loose i t s  s ta b il ity ,  by the d e fin it io n , 
when the f i r s t  time derivative of the co-ordinates of motion of the s truc
ture tends towards in f in ite .  I t  was discovered by Huit (1962). The connec
tion  of th is  d e fin itio n  and the potentia l energy has been discovered / I j ja s  
(1982)/. In th is  case the structure shown in  Fig. la can be replaced by the 
structure shown in  Fig. lb . However, the curve describing the behaviour of 
the structure s p lits  into two parts (shown by the broken lines in  Fig. 2). 
The curve in the upper part o f the figure "bends back" as a function of 
time, the point associated with the ve rtica l tangent being the displacement 
point corresponding to the c r i t ic a l  time (where the structure looses i t s  
s ta b il i ty ) .  The broken line in  the lower part of the figure describes the 
behaviour of the structure a fte r snapdown. The section of the upper curve 
before c r it ic a l time and the section of the lower curve after c r i t ic a l  time 
can only be interpreted physically. The ve rtica l stra ight line  between the 
two curve sections, which is  the tangent of the upper curve was constructed.

I t  follows from the previous part that problems would obviously devel
oped in  the process of solution of the d if fe re n tia l equations describing the 
behaviour of the viscoelastic structures in  the environment of the loss of 
s ta b il ity  i f  the ine rtia  of the mass of the structures was neglected. Name
ly ,  a method using derivatives in  the course of solution cannot be used to 
solve d iffe re n tia l equation i f  the derivatives getting to be in f in i te .  This 
paper is  intended to present an algorithm by means of which th is  numerical 
problem can be avoided.

To sim plify the problem, the d if fe re n tia l equation describing the be
haviour of the investigated structure can be solved in a closed form. The 
behaviour of the structure shown in  Fig. lb  has also been investigated by 
Huang (1967) and Szalai (1989).

D e s c rip tio n  o f  the beh av io ur o f  M ises ' v is c o e la s tic  s t r u c tu r e

The equation describing the behaviour of the structure shown in  Fig. 
lb  w il l  be derived in deta il fo r clear understanding. The s tra in  o f one of 
the rods as a function of the rise  of the structure is :
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Д = (1)

provided that hg < L. Namely, in th is  case the following approximations can 
be assumed:

s = |/ L2 + h2 »  L , 1 / h 1 1 
+ 2 (Г  1

. 2
S g  = )/ L2 + h2 « L I 1 Í h° 1II + 2-1—1

( 2)

(3)

Based on the above approximations, the force acting in a rod is

F PL 
2h • (4)

In equations (1 )—(4 ), h is  the rise of the structure that is  the function 
of time. I f  the rods are made of Maxwellian f lu id ,  the ir constitu tive  equa
tio n  w il l  be:

kb Д = kF + bF , (5)

where к is  the co e ffic ie n t of the spring and b is  the viscosity coe ffic ien t 
of the dashpot. (The dot is  the symbol of derivation with respect to time.)

Taking in to  account equations (1) and (4 ), the derivatives with re
spect to time of the compressive stra in and compressive force working in  the 
rod (P = constant!) are

A = -̂  h ; (6)

and

F = h , (7)
21-1

respectively.
I f  equations (4 ), (6) and (7) are substituted in to equation (5), the 

following re lationship w i l l  be obtained a fte r suitable arrangement:

1
h

2kh2
h

b
к

( 8)
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This is  a d iffe re n tia l equation with separable variables, and can be in 
tegrated in  closed form.

Taking into account that after e lastic  deformation the height of the 
middle of the structure is  h = hQ at time t Q = 0, the result of the in tegra
tion w i l l  be:

The value of h , tha t is  the height of the middle of the structure a fte r the 
e las tic  ("creepless") deformation just a fte r the application of the load, is  
obtained from the fo llow ing equation:

tion of the load.
The h—t  re la tion  that can be obtained from equation (9) has been 

plotted in  Fig. 3, but i t s  parameters are d iffe re n t from those in  Fig. 2.
The parameters of the function can be seen in the figure. I f  a nu

merical method including derivatives was used to solve the d if fe re n t ia l 
equation describing the behaviour of the s tructure , th is  process would cer
ta in ly  f a i l  near the point where the structure looses i ts  s ta b il ity .  There
fore, use of the process describing below is  recommended.

An algorithm, preferably a fourth-order Runge—Kutta method sh a ll be 
used to s ta rt with the solution of the d if fe re n t ia l equation. (For descrip
tion  of the Runge—Kutta method see any textbook dealing with numerical 
methods, e.g. the book of S tie fe l (1970).) P rac tica lly , we have to begin by 
t r ia l  and error to presume the length of the in tervals of the independent 
variable. Those are the f i r s t  steps of the Runge—Kutta method, unless some 
preliminary estimate of the loss of s ta b il i ty  is  available. Checking pro
cedures have been b u i l t  in to  the process o f solution. Thus we investigated 
the ra tio  of the values of the solution belonging to the subsequent in te r 
vals, and the length of the steps of the so lu tion was corrected accordingly. 
The variation of the derivative was investigated too. This protection served 
on the one hand to  control the running o f the program and, on the other 
hand, to get the best approximation of the c r i t ic a l  time. Then the solution 
was developed in to  Taylor series, using the arc length as the independent

(9)

( 10)



48 I33AS, GY.

variab le . This was a very useful method, because in th is  case, no calcula
t io n  of the mixed derivatives is  necessary even in  case of more variables 
/Bronstein and Semendiaev (1987)/.

The arc length, on which the Taylor series was developed, was chosen 
so tha t the ra tio  of the independent co-ordinates (the time) of the f i r s t  
and la s t basic point was w ith in 2%.

A numerical derivation formula was used to  generate the co e ffic ie n t of 
the Taylor series.

The numerical derivatives can be determined only on the basis o f non- 
equid istant points in th is  case. Although the derivation of the appropriate 
formulae is  theore tica lly  not d if f ic u l t ,  i t  is  a time-consuming job. For
mulae of derivatives based on equidistant points are available in  the l i 
te ra tu re  and these were employed to check the derivation. Although formulae 
fo r numerical derivatives based on six equidistant points is  found in  the 
lite ra tu re  /Bickley (1941)/, i t s  accuracy is  bette r only in the case o f the 
f i r s t  and th ird  derivative as compared with the numerical derivation fo r 
mulae based on five  equidistant points. These formulae would deprive us of a
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solution of closed form serving for the determination of the c r i t ic a l  
time too.

Namely, a closed form solution can be obtained for the determination 
of the extreme value of the arch length-time (tha t is  the c r it ic a l tim e). In 
th is  case the c r it ic a l time is  the root of the cubic equation tha t has to 
be found.

This process has been applied to investigate not only the structure 
presented above but in case of some sim ilar structures discussed elsewhere 
/ I j ja s  (1991)/. The ana ly tica l solution describing the behaviour of these 
structures is  known too.

The structure investigated is  illu s tra te d  schematically in  Fig. 4. The 
structure consists of two parts. The rod denoted by AB, was made o f Max- 
w e llia n -flu id  in one case while being a Dischinger model in the other case. 
Both models consist of a linear spring and a dashpot connected in  series. In 
case of the Maxwellian f lu id ,  the dashpot is  a Newtonian f lu id ,  while in 
case of the Dischinger model i t  was an ageing material. The rod denoted by 
BC was in f in ite ly  r ig id  in  both cases.

In case of Maxwellian-fluid, the analytica l solution describing the 
behaviour of the structure / I j ja s  (1991)/ is :

Tr cos 9 In tan 2 In tan 8 = t ,ta
к ( I D
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where b and к are m ateria l constants, t  is  the time while the meaning of P 
and L can be understood from the figure.

In case of Dischinger model, the equation describing the behaviour of 
the structure is

In 1 - / I У г  cos 0 + In tan -Ш-1 - In tan 0
 ̂max LI ' z ! J = t , ( 12)

where \  and Ф are additional material constants, max
Our experience gained in the course of the investigations is  summed 

up below.
The accuracy of the c r it ic a l time obtained by means of the numerical 

method described above lay within 2% in  every case, certa in ly because the 
Taylor series was s tarted  "near" the c r i t ic a l  time. However, a practica l 
c r ite r io n  cannot be specified for th is  "nearness". In can only be recom
mended to work by t r i a l  and error.

The investigations showed too that the deformation that belonged to 
the c r it ic a l time and was given as a function of the arc length deviated 
from the correct value by a large amount using th is  method. In some cases 
the accuracy lay w ith in  1% but e.g. in case o f Mieses' structure discussed 
e a r lie r , the expansion resulted in a d ifference of almost 50% in the value 
o f the height of the middle of the structure tha t belonged to the c r i t ic a l 
time as compared with the analytical value.

E.g. the ana ly tica l solution for the structure presented at the be
ginning of th is  work resulted in a value of 0.562942548 s fo r the c r i t ic a l 
time and in a value of 0.069336127 m for the height of the structure while 
in  case of Taylor series, the value of the c r i t ic a l  time lay at 0.570701265 s 
(w ith in  2%) and the value o f the height of the structure associated with the 
c r i t ic a l  time 0.047418857 m (a difference of approximately 50%). The con
siderable deviation can be attributed to the fac t that at the time of the 
loss of s ta b ility , the f i r s t  derivative w ith respect to time is  in f in ite .

So we s tart the Runge—Kutta process in  the knowledge of c r i t ic a l  time 
again. That process was stopped near the c r i t ic a l  time where the accuracy of 
nearness was determined in  advance. The values of deformation so obtained 
was accepted as the values of deformation tha t belongs to the c r i t ic a l  time. 
In every case, the so lu tions so obtained lay always near the values obtained 
fo r the deformation tha t belongs to the c r i t ic a l  time in the analytica l 
so lu tion , the deviation ly in g  within 5%.
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In case of the structure presented at the beginning of th is  paper, a 
value of 0.072579485 m was obtained in th is  way fo r the height of the middle 
of the structure that belongs to the c r i t ic a l  time. The difference as com
pared with the ana lytica l value lying w ith in 5%.

Generalization o f the process fo r the multivariable case

I f  the behaviour of the structure is  described by a d if fe re n t ia l 
equation system, each of the d iffe ren t independent variables w i l l  describe 
the motion of a point of the system of f in i te  degree of freedom. Obviously, 
the displacement-time relationships giving the behaviour of every single 
point can be handled independently and the Taylor expansion as a function 
of the arc length can be developed fo r each relationship of th is  type in 
dependently whereas the c r i t ic a l time can be estimated in a way s im ila r to 
that described above. Namely, in case of expansion according to the arc 
length, the Taylor series contains no mixed derivatives.

Otherwise, in case of one independent variable, the solution can be 
carried out d ire c tly  by means of the Runge—Kutta method or some other 
method a fte r changing the variables that is ,  no use of the Taylor series is  
necessary. In the example presented, we used the Taylor series only because 
of generalization at a la te r date.

Determination of the change in  the in terna l parameter

The deformation characteristics of v iscoe lastic  structures consist of 
two components such as e lastic  (instantaneous) deformation and viscous 
(slow) deformation. Structures consisting of springs and dashpots have been 
used to model the viscoelastic materials, where the springs simulated the 
e la s tic  component while the dashpots the viscous component.

In the course of the investigation of viscoelastic structures, e.g. 
i f  we want to determine the potential energy of the structure, determination 
of the change in the in terna l parameter(s) as a function of time may be ne
cessary. In our example, the movement of the dashpot can be determined in 
the follow ing way:

On the basis of B io t's  work /B io t (1955)/, the "quasi" equilibrium  
equation of the structure shown in Fig. 1 is
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-  ^  -  к (Л -  Ad) = 0 , (13)

where is  the parameter describing the movement of the dashpot of the 
Maxwellian model. The d if fe re n t ia l equation giving the re lationship between 
the to ta l deformation belonging to equation (13) and the movement of the 
dashpot is

dA.
b_gd = k (Д _ A d) .  (14)

The Ai_| can be expressed from equation (14) while A. can be given as a func
t io n  o f h (see equation (1 )) . Thus, the fo llow ing equation is  obtained fo r 
A , as a function of h:

Ad
1
2 (15)

Since the re la tionship  between h and t  is  known (see formula (9 )), 
the re la tionship  between A  ̂ and t  becomes known too as was illu s tra te d  in 
F ig . 5. There is  an in te rva l of t  where two values of dependent variables 
belong to one independent variable as seen in  the Figure. The function is  
s ingu la r at the time of the loss of s ta b il ity  (denoted by C in the fig u re ).

However, the method outlined above, suited to provide useful informa
t io n  about the change in  in te rna l parameter as a function of time, can be 
used only i f  the number o f the external and in terna l parameters is  iden
t ic a l .  Namely, in  th is  case, there exists a unique solution of the system 
o f equations sim ilar to equation (13), as a function of A or of the ap
p ropria te  external parameters. I f  i t  is  needed to produce th is  function as 
a so lu tion  of equation (14), i t  is  quite obvious what kind of numerical 
problems should be solved.

Since we have proved / I j ja s  (1991)/ tha t d A^/dh = 0 holds at the in 
s tan t o f the loss of s ta b il i ty ,  the follow ing process can be recommended. 
Let both sides of equation (14) be m u ltip lied  by dt/dh. Thus h w i l l  be the 
independent variable of th is  equation. D iffe re n tia l quotient dt/dh can be 
determined from equation (8 ), while Â  can be obtained as a function of h by 
means o f the usual numerical methods.

Accordingly, taking equation (1) or (8) in to consideration, equation
(14) can be written as
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F in . 5

dh (16)

The d iffe re n tia l equation so obtained can be solved without any d if f ic u l ty  
and the relationship between and t  can be determined by means of the ca l
culated values i f  necessary. In Fig. 6, the solution of equation (14), that 
belongs to the in i t ia l  values h = 0.191078609 and д^ = 0, is  illu s tra te d . I f  
i t  is  needed to determine the relationship between д^ and t ,  the change of 
the height of the middle of the structure (h) as a function of time ( t )  can 
be obtained from the solution of equation (8) while the relationship between 

and h can be obtained from the solution of equation (16). I f  these re
lationships are known, the relationship between t  and д^, can be given 
which is  of course identica l with that presented in  Fig. 3, obtained by 
means of equations (16) and (9).

G e n e ra liz a tio n  o f  th e  process

For the purpose of generalization, le t  the equation describing the be
haviour of the v iscoelastic structure /B io t (1953)/ be written as:
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F ig . 6

—  + - ^ -  = 0. (17)
8qi 3q.

where V — is  the potentia l energy of the loaded structure,
D — is  the d issipation function,
q  ̂ — is  the parameter describing the behaviour of the system.

The quadratic form D is  a function of the time derivatives of the in te rna l 
parameters. Since a quadratic form can be transformed into a sum of squares 
by su itab le  co-ordinate transformation, the system of equations (17) can be 
w ritte n  so that the time derivative of only one internal parameter appears 
in  one equation. In th is  case, any equation containing the time derivative 
of the internal parameter can be m ultip lied by the reciprocal o f the time 
deriva tive  of the appropriate external parameter. Now the in te rna l pa
rameters appears in the d iffe re n tia l equation(s) as the derivative with 
respect to the appropriate external parameter. D iffe ren tia l expressions 
l ik e  e.g. the righ t side o f equation (8) can be written in  place of the re
cip rocals of the derivatives of the external parameters appearing in  the 
equation(s) elsewhere because of the m u ltip lica tion . That means tha t the 
d iffe re n t derivatives with respect to time are expressed from the linear 
d if fe re n t ia l equations describing the change in  the external parameters and 
substitu ted into the equation(s) in the way described above. In th is  way, a
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d iffe re n tia l equation system corresponding to equation (16), depending on 
the internal parameters exclusively, is  obtained.

Summary

As follows from the nature of the phenomenon, numerical problems arise 
in  the way of solving the d iffe re n tia l equation describing the behaviour of 
viscoelastic structures in  the environment of the loss of s ta b i l i ty .  Such 
problems are the multivaluedness of the so lu tion, the in f in ity  o f the de
r iv a tiv e  and, in  case of in terna l parameters, the s ingularity o f the so
lu tio n . In th is  paper, methods to eliminate these problems are recommended. 
Expansion according to the arc length has been used to eliminate the m u lti
valuedness of the solution in  the environment of the loss of s ta b i l i t y  in 
the course of determination of the re la tion  determining the displacement of 
the structure. Also, a process to improve the accuracy has been recommended 
because, d iss im ila rly  to the acceptable accuracy of the c r i t ic a l  time ob
tained by means of the process, the deviation of the value of the deforma
tio n  that belongs to the c r i t ic a l time is  considerable compared w ith  the 
exact value.

The s ingu la rity  of the re la tion  describing the internal parameter as a 
function of time can be eliminated by determining f i r s t  the in te rna l param
eter as a function of the appropriate displacement (external parameter) of 
the structure. I f  the re lationship between the internal and external param
eter is  known then the relationship between the internal parameter and the 
time can be easily determined according to the method presented e a r lie r .  The 
problem of s ingu la rity  is  avoided using that ind irec t way of so lu tion .
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APPENDIX

The following formulae can be used to determine the derivatives of a 
function, based on f iv e  non-equidistant points:

= + ds N1 X 1
B 1 t
N2  t 2  +

C 1 D 1 E 1 

N3 t 3 + N4 Xi\ + N5 t 5; (A .l)

d2t  A 2 . 
ds2 '  N 1 1

B 2  . 
N2  X2

^ 2

*■ Щ  b  + ^ t  
N4  4

E 2  

+ N5
(A.2)

d3t  A3 . 
ds3 " N 1 1

B3 .
+ N2  t 2 '

C3 .
f N3 t 3 + i tN4 4

E3 .
+ N5 x5; (A.3)

d4t  A4 
ds4  = N 1 1

8 4  ++ N2  t 2

C4 +
+ N3 E3 + ^ i tN4 4

E4 .
+ N5  X5; (A.4)

N 1 = (so - 3 l ) ( s o " 1s2 )(so -  !33)(so - s4); (A.5)

N2 = (Sl -  so) ( s l  -  :s2 )(s 1 - :
33)(s l -  s4); (A.6 )

N3 = (s2 -  s
0 ) ( S 2  - s-L)(s2 - :33 )(s 2 -  s4); (A.7)

N4 = (s3  -  So) ( s 3 - s1 )(s 3 -  :32) ( s 3 -  s4); (A.8 )

N5 = (s4  -  So) ( s 4 - s! ) ( s4 -  ;32 )(s 4 “  ^3) ; (A.9)

Â  = (s2 -  s1 ) (s 2 -  s3 )(s2 -  s4) ;) (A .10)

= (s2 -  s0 ) (s 2 - s3 )(s 2 -  s4) ;> (A .11)

C 1 = ( s 2
-  s1 ) (s 2 -  s3 )(s2 -  s4 ) +

(s2 -  s0 ) ( s 2
-  s3 )(s2 - s4} +

(s2 -  s0 ) (s 2 -  s ,)(s 2 -  s4) +

(s2 -  s0 ) (s 2 -  Sj^)(s2 -  s3) 5 (A .12)

D 1 = ( s 2 -  s0 ) ( s 2
-  s1 )(s2 -  s4):5 (A .13)

E 1 = ^ 2 -  so) ( s 2
-  s1 )(s2 - s3) 5 (A .14)

A2 = 2 / ( s>2 -  s1)( s2 -  S3) + (s2  ■- s1 )(s 2 -  s4) +

( s 2 -  s 5 ) ( s 2 -  s 4 ) / ; ( A .15)
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The above formulae can be produced by derivation of the Lagrangian in 
terpolation polynomial /S tie fe l (1970)/. To determine the derivatives based 
on non-equidistant points, an algorithm can be worked out on the basis of 
Holnapy's method /Holnapy (1974)/ as well. The formulae for the time de
riva tives  according to arc length can be applied accordingly to the de
riva tives  of other variables according to arc length.
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ON THE USE OF A RANKINE HALF BODY SHAPE AS 

A SHARP CRESTED LINEAR WEIR OR RANKINE WEIR

KESHAVA MURTHY, K .* -  RAMAKRISHNA RAO, A.4

(Received: 16 A p ril 1991)

In  th is  paper, i t  is  shown th a t i f  the two-dimensional Rankine h a lf  body o f  fo c a l 
length  я  (d is tance between the l in e  source and the  stagnation point) obtained by super
posing a uniform  flow  over a l in e  source, is  kep t in  a rectangular channel o f  w id th  
equal to  the maximum w idth o f the h a lf  body (2Пя a t in f in i t y ) ,  the ra te  o f  f lo w  in  the 
in te rven ing  space acting  as a sharp crested notch is  very nearly a lin e a r fu n c t io n  o f 
the head above the channel bed, fo r  flows above a miniiaim base height and is  v a l id  fo r  
a sho rt d istance o f 5 я  above the bed. The range o f  lin e a r  re la tionsh ip  between d is 
charge and the head can be considerably improved by increasing the width o f  th e  channel 
(equal to  increasing the w idth o f the weir u n ifo rm ly  throughout) by 0.4 я  ( f o r  sym
m e trica l w e irs ), so th a t fo r  a l l  flows above a depth o f 2 я  above the c re s t ,  the  d is 
charge is  p ropo rtiona l to  the head measured above a reference plane or datum, s itu a te d  
a t 0.47 я above the c re s t, in  the range 2 <  h/p <  40 w ith in  a maxinum e rro r  o f  +_ 0.5%. 
The s ig n if ic a n t fea ture  o f the w eir is  th a t i t  i s  no t a compound w eir, and th e  e n t ire  
w e ir is  defined by one equation (u n like  Sutro and o the r lin e a r weirs) a p o r t io n  o f  i t  
above the c re s t ac ting  as i t s  own base. Experiments w ith  3 ve irs  having 2П^1 = 10, 30, 
40 cm /base w idth o f the w eir = (2Н я + 0.4 я ) /c o n firm s  the theory by g iv in g  a con
s ta n t average c o e ff ic ie n t  o f discharge o f 0 .61, 0.64 and 0.66 respec tive ly  fo r  the 3 
w eirs.

1 . In tro d u c tio n

The study of proportional weirs or notches (used synonymously) is  not 
only of in te rest in the study of fundamental hydraulics, but also because of 
i t s  relevance to several engineering problems. The recent in te rest in  pro
portional weirs is  stimulated by the concept of reference plane or datum in 
the design of weirs /6 /. I t  has been well established that weirs which pass 
a discharge Q a Hn, where H = head causing flow, fo r n <  3/2, can be de
signed only with bases /8 /.  They are c la ss ifie d  under 'Compensating w e irs '.

*Keshava Murthy, K. and Ramakrishna Rao, A ., Dep. o f  C iv i l  Engineering In d ia n  In s t i tu te  
o f Science, Bangalore 560 012, INDIA

Akadémiai K iadó, Budapest
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The lin e a r proportional weirs for which n = 1 is  one such case. The ea rlie s t 
attempt to th is  problem was made by Stout /1 5 / and la ter modified by Sutro 
/3 , 2 /. Recent works on linear proportional weirs include those o f Keshava 
Murthy and P il la i /8 / ,  Rao and Bhukari /1 1 /, Sreenivasulu and Raghavendran 
/1 4 /, Fonck /5 /. The lin e a r proportional weirs are of considerable applica
tio n s  in  several f ie ld s . As simple discharge measuring devices in  Hydraulic 
Engineering and ir r ig a t io n ;  as dosing devices in Chemical Engineering; as 
o u tle t weirs in  g r i t  chambers (sedimentation tanks) to maintain constant 
average velocity irrespective  of flow fluc tua tions in discharge /1 , 9, 4/. 
The several designs and th e ir  applications have been highlighted and d is
cussed in  earlie r publications. However, in  a l l  the previous so lu tions, the 
weir consisted of a base over which a designed complimentary weir is  f i t te d ,  
the two being defined by d iffe rent equations. In th is paper, we discuss a 
novel weir using the Rankine half body, the s ign ifican t feature o f which is  
th a t the entire weir is  defined by one s ing le  equation, a portion o f the 
weir above the crest acting as the base. This accidentally serves as an 
example of a se lf basing weir /10/. The ra te  o f flow in th is  weir fo r  flows 
above a depth, is  proportional to the head measured above a reference plane, 
w ith in  an allowable e rro r of +_ 0.5%. We tre a t th is  problem as a theore tica l 
problem in  hydraulics, leaving aside the deta iled  experimental work required 
fo r standardization and subsequent f ie ld  use to  another study. The experi
ments conducted have the lim ited  objective of ju s t checking the theory.

2 . Rankine h a l f  body — q u a d ra t ix  o f H ippias

A uniform flow defined by w = UZ superposed on a line source defined 
by w = mlnZ results in  the flow, whose ve lo c ity  potential is  given by /13 /.

Ф = URCosB + mlnR. (1)

The streamline Ф = 0 is  given by

or

m 0 
u SinO

q0
SinO (say)

У = p0- (2 )
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sé £

F ig . 1. Rankine h a lf  body w eir

The ve rtica l distance, y, of any point, P, on th is  curve, from the x-axis is 
proportional to the angle, 9, made by the rad ia l lin e  through the source and 
the point P with the x-axis. This curve is  well known in ana ly tica l geometry 
as the 'Quadratrix of the Hippias' /12 /, known commonly to Engineers as the 
Rankine h a lf body. The curve is  shown in Fig. 1 and the co-ordinates (x, y) 
of the points on the curve are given in Table 1 (columns 2 and 3). The 
distance between the stagnation point and the source, called the focal 
length is  p. The thickness of the body at the point of source is  n̂ u and the 
maximum thickness (at «0 is  twice th is  thickness. The curve is  eas ily  drawn 
by the Rankine's graphical method /13/.

3 . M o d ified  Rankine h a l f  body w e ir —  d ischarge eq u ation

I f  the Rankine h a lf body of focal length p is  placed in a channel of 
width equal to the maximum width of the ha lf body = 2np (Fig. la ) ,  we get a 
weir shape as shown in Fig. lb . The co-ordinates of the point on the weir are 
given in Table 1 (columns 2 and 4). The discharge through th is  weir is  equal 
to
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= 2Cd \[2g J Jivx (lyj-y) dx (3 )

where у is  defined by Eq. (2 ), is the co e ffic ie n t of discharge (approxi
mately equal to 0.6) assumed to be constant which is  va lid  fo r sharp crested 
weirs and streamlined flow s. Equation (3) can be written as

q = 2Cd J2g J JÎhx (iyj)dx - 2Cd |2g J Jh-x у dx = 1  ̂ -  I ^ , (4)

where

X1 = K J  J h - x ( n p ) dx (4a)

I 2 = К J ^ ydx (4b)

and
Kg = 2Cd

I t  can be easily evaluated (as for a rectangular weir) and is  found
to be

^  = f  cd J 5  |S |V 2  ^ 5/2 ■ f  K 3/2 ^ 5 /2 - (5 )

As у = pB, X = p (l -  ^ang) and dy = pdB, substitu ting  in Eq. (4b),

2 „  f ä ( В ß 1 3/2 5/2
3 K J ( tanB tan I Я d0' (6)

О
Hence

q = ! f  -  ! 2 = Ki  p
5/2 i - ^ 1 3 / 2 n -  j W i ] 3 / 2 d Btan tanB tanß (7)

Ki = I  К = I  C. J2g.41 3 14 " 3 ud

where
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4 .  Num erical in te g r a t io n

As the d irect in tegration of Eq. (7) is  not possible, numerical in teg
ra tion  is  resorted to, to get discharge values fo r the head h. Numerical in 
tegration has been performed using 'Simpson's ru le '.  The Horizon 3 computer 
is  employed. The step size taken in  numerical integration is  1/1000 of a 
radian which is  found to y ie ld  results with su ffic ie n t accuracy.

5. Addition of ve rtica l s lo t

5/2A graph of non-dimensional discharge Q (= q/k^ ) versus the non- 
dimensional head H (= h /jj) for the modified weir (Fig. lb) is  shown in 
Fig. 2. I t  is  seen that fo r flows H> 2, the rate of flow is  nearly a linear

F ig . 2. Theoretica l discharge vs. head curve
(1 — whithout a d d itio na l s lo t  /Eq. 7 /,  2 — w ith  a d d itio n  o f 0.2 v e r t ic a l s lo t  /E q . 8 /,
3 — w ith  a d d itio n  o f 0.4 v e r t ic a l s lo t  /Eq. 8 / ,  4 — w ith  add ition  o f 0.6 v e r t ic a l s lo t

/Eq. 8 /)
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F ig . 3 . Modified Rankine h a lf  body weir

func tion  of the head fo r a depth of flow up to 5, i .e .  for the lim ited  range 
2 <  h/u < 5. However, an addition of a small ve rtica l s lo t to the weir, 
amounting to increasing the width of the weir throughout (or increasing the 
w idth of the channel in  F ig . la) by 0.2 ju, 0.4 ^u, 0.6 ju (fo r symmetrical 
w eirs) improves the lin e a r relationship between Q and H considerably. The 
the o re tica l discharge in  the modified Rankine weir with the addition of a 
v e r t ic a l s lo t of width np (symmetrical) is  given by

q = j  (np)Cd ^2g h3^ 2 + 2Cd j2g jj Jh-x (n^J-y)dx

О

Qt  = j  К (ryj) h3/2 + j  (n/j)K h3/2 -  I 2 ( 8)



F ig . 4. Percentage v a ria tio n  o f th e o re tic a l discharges w ith  H
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Table
(F ig .

1.
1)

Co-ordinates o f the p o in ts  on the  Rankine h a lf body 
, m odified Rankine h a lf  body (F ig . 3) and K-R weir 

(F ig . 4)

SI X *1 y2 *3
No p ju ß

1 2 3 4 5

1 0 0.000 3.142 3.342
2 0.1 0.542 2.599 2.799
3 0.2 0.759 2.382 2.582
4 0.3 0.921 2.221 2.421
5 0.4 1.053 2.089 2.289
6 0.5 1.166 1.976 2.176
7 0.6 1.264 1.877 2.077
8 0.7 1.353 1.789 1.989
9 0.8 1.432 1.710 1.910

10 0.9 1.504 1.637 1.837
11 1.0 1.571 1.571 1.771
12 1.5 1.837 1.305 1.505
13 2.0 2.029 1.113 1.313
14 2.5 2.175 0.967 1.167
15 3.0 2.289 1.053 0.253
l é 3.5 2.381 0.761 0.961
17 4.0 2.456 0.686 0.886
18 4.5 2.518 0.624 0.824
19 5.0 2.570 0.571 0.771
20 6.0 2.654 0.488 0.688
21 7.0 2.716 0.425 0.625
22 8.0 2.765 0.376 0.576
23 9.0 2.804 0.337 0.537
24 10.0 2.836 0.305 0.505
25 11.0 2.863 0.279 0.479
26 12.0 2.885 0.257 0.457
27 13.0 2.904 0.237 0.437
28 14.0 2.921 0.221 0.421
29 15.0 2.935 0.207 0.407
30 16.0 2.948 0.194 0.394
31 17.0 2.959 0.183 0.383
32 18.0 2.969 0.173 0.373
33 19.0 2.978 0.164 0.364
34 20.0 2.986 0.156 0.356
35 21.0 2.993 0.149 0.349
36 22.0 3.000 0.142 0.342
37 23.0 3.006 0.136 0.336
38 24.0 3.011 0.130 0.330
39 25.0 3.017 0.125 0.325
40 26.0 3.021 0.120 0.320
41 27.0 3.026 0.116 0.316
42 28.0 3.032 0.112 0.312
43 29.0 3.034 0.108 0.308
44 30.0 3.037 0.104 0.304
45 31.0 3.041 0.101 0.301
46 32.0 3.044 0.098 0.298
47 33.0 3.047 0.095 0.295
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Table 1 (c o n t.)

1 2 3 4 5

48 34.0 3.049 0.092 0.292
49 35.0 3.052 0.090 0.290
50 36.0 3.055 0.087 0.287
51 37.0 3.057 0.085 0.285
52 38.0 3.059 0.082 0.282
53 39.0 3.061 0.080 3.261
54 40.0 3.063 0.078 3.263

Yy = h a lf  breadth o f the Rankine h a lf  body (F ig . 1)
Ï 2 = h a lf  breadth o f the modified Rankine h a lf  body (F ig . 3) 
Y j = h a lf  breadth o f the K-R weir (F ig . 4)

Y1 + Y2 = - p .  Y3 = y2 + °-2 Я

which is  seen as Eq. (4) with an additional term, due to the discharge in 
the ve rtica l s lo t. Figure 2 shows the p lo t of the theoretical discharge vs. 
head fo r 3 values of n, v iz . ,  n = 0.2, 0.4 and 0.6.

I t  is  seen tha t the addition of the ve rtica l s lo t helps in  extending 
the linear re lationship of Q and H beyond H = 2. The addition of 0.4 p s lo t 
( fo r symmetrical weirs) results in an optimum design giving the linear re
lationship va lid  to a depth of H = 40. The corre lation coe ffic ien t fo r the 
s tra igh t line  f i t  ( fo r  the range 2 < H < 40) is  found to be maximum fo r an 
addition of 0.4 p s tr ip  (symmetrical weir). In th is  range, the discharge is  
proportional to the head measured above a reference plane situated at 0.47 p 
above the crest. The weir is  shown in Fig. 4 and the co-ordinates of the 
points on the curve are given in  Table 1 (columns 2 and 5). The linear re
lationship between Q and H fo r n = 0.4 is  given by.

Qs = 4.97 Cd p5/2 (J  -  О.4 7 ), 2 ^ j j< i4 0 .  (9)

The values of Qy with n = 0.4 obtained form Eq. (B) and Qg form Eq. 
(9) are compared as percentage difference, i.e .  ( Q y  -  Q g ) / Q y %  with H is  
shown in Fig. 4. I t  can be seen that fo r the range 2 < H< 40, the maximum 
percentage deviation is  only +_ 0.5%.

Thus i t  is  confirmed form the above theoretical considerations that 
Modified Rankine ha lf body weir can be used e ffec tive ly  as a linear pro
portional weir fo r a s u ffic ie n tly  high range of heads, ie . 2 <  H <  40 with 
an accuracy of theore tica l discharge of 100 +_ 0.5%.
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F ig . 6. Side view o f flow through m odified Rankine h a lf  body w e ir, showing nappe

6 .  Experim ents

Experiments were conducted on 3 weirs shown in Fig. 4 having 2n̂ u = 10, 
30, and 40 cm (width of the weir = / ( 2 П + 0.4)р/. The experimental deta ils  
are shown in  Figs 3 and 6. The weirs were cut in 1/4" (6 mm) mild steel
plates. The boundary of the weir was ca re fu lly  marked on the p la te  by a
scratch awl. The opening was then cut roughly by a band saw machine and then 
accurately f i le d  to the required shape. The weir had a sharp edge of 1/6" 
(1.5 mm) with a 45° chamfer. The weir was fixed at the end of a rectangular 
channel 63 f t .  long (19.2 mm), 3'11 1/4" wide (1.2 m) and 3’ 7 1/4" (1.1 mm) 
deep with i t s  crest 1' (0.3 m) above the channel bed. The water was fed
through a head tank measuring 7.4 1/2" x 7'4 1/2" x 5'10 7/8" (2.25 m x 2.25
m X 1.8 m) to which water was supplied by two pumps, having combined maximum 
capacity of 200 l.p .s  (7 cusecs). The head over the weir was measured in a
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Discharge q l i t / s  ----- *■

F ig . 7, Experimental v e r i f ic a t io n  o f  modified rankine h a lf  body as a lin e a r p ropo rtiona l weir

s t i l l i n g  well situated 6 m from the weir with an electronic point gauge hav
ing a least count of 1/1000' (0.3 mm). The volume of water collected was 
measured in a tank measuring 14'10" x 14'10" x 4'11" (4.52 m x 4.52 m x 1.5 
m) through readings in  a perspex tube of 3/4" (20 mm) ID connected to the 
tank a t the bottom at one end. The rate of flow was determined by finding 
the time taken for the water level to rise  from one indicator fixed in  the 
perspex tube to another fixe d  exactly at a distance of 50 cm. The indicators 
were connected to the leads o f an electronic tim er through a s ta rt and stop 
mechanism. The time to c o lle c t the fixed volume of water was recorded to an
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accuracy of 0.001 sec fo r each discharge. Each experiment was repeated twice 
to ensure accuracy. At least 30 min were allowed between two experiments to
allow water level to s ta b iliz e . The experimental resu lts of the non-dimen-

5/2siónál discharge q/Kp against the non-dimensional head h/,u are shown in  
Fig. 7 fo r the 3 weirs.

7 . E xp erim en ta l re s u lts  and d iscu ss io n

I t  is  evident from Fig. 7, for the 3 weirs tha t fo r flows b/p  > 2, the 
discharge has a linear re la tionsh ip  with the head measured above the datum 
or reference plane situated at 0.47 p  above the crest, which re la tionship  
exists to a depth of up to 40 p ,  within an e rror o f _+ 0.3% beyond which the 
discharge-head re la tionsh ip  deviates from the linear re lationship. From 
Fig. 8, i t  is  seen tha t is  constant fo r each weir w ithin the lim its  of 
experimental errors. However, the average value of varies from 0.61 to
0.66 fo r the 3 weirs tested. I t  is  not possible to  generalize the nature of 
va ria tion  of with the dimensions of the weir w ith the lim ited experiments 
conducted.

8 . Conclusions

I t  is  shown that the Rankine half body shape (Quadratrix of Hippias) 
obtained by superposing a uniform flow over a lin e  source can be e ffe c tive ly  
used as a measuring notch. The flow in the intervening shape obtained by 
placing a Rankine ha lf body of focal length p  in  a channel having i t s  width 
equal to the maximum width o f the half body, i .e .  2Ци (at ») produces a flow
having a linear re la tionsh ip  with the head, fo r flows above a minimum head,
to a small of depth of up to 5 p .  The addition o f a small ve rtica l s lo t of 
width varying from 0.2 p  to 0.6 g (equivalent to increasing the width of the 
weir uniformly throughout) is  found to have a benefic ia l e ffect on the l i 
nearity  of the discharge — head relationship. Further i t  is  found that the 
addition of 0.4 g s lo t ( fo r  symmetrical weirs) has the optimum e ffe c t, in  
tha t the discharge is  proportional to the head measured above a reference 
plane situated at 0.47 p  above the crest, fo r a l l  flows above a depth of 
flow 2 p  and is  va lid  up to 40 p ,  i.e . in the range 2 < b/p < 40, w ith in an
error of +_ 0.5%. The experiments conducted on weirs te s t ify  the theory by
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giving a constant average coeffic ient of discharge for each weir. The 
weir should prove useful as a simple discharge measuring device, which can 
be designed as a high discharge coeffic ient weir, and also as an ou tle t weir 
fo r g r i t  chambers (sedimentation tanks) of rectangular sections to maintain 
constant average ve locity  fo r d iffe ren t flows.
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DETERMINATION OF THE SHEAR CENTER AND SHEAR FACTORS OF 

BEAM CROSS SECTIONS USING THE F IN ITE  ELEMENT METHOD

PÄCZELT, I . *

(Received: 4 September 1992)

This work dea ls  w ith  the determ ination o f  the shear center and shear fa c to rs  o f 
a cross section co n s is tin g  o f a homogeneous is o tro p ic  m ateria l in  each subdomain. 
B e rn o u lli 's  hypothesis has been adopted to  c a lc u la te  the bending stress w h ile  a s tress  
fu n c tio n  determined by means o f the f in i t e  element method, using v a r ia t io n  p r in c ip le s ,  
has been introduced to  ca lcu la te  the s tre ss  re s u lt in g  from shear. Numerical examples 
are presented to i l lu s t r a te  the e ff ic ie n c y  o f  the method recommended.

1.1. Bending stress

Let a prismatic beam be investigated. Let the longitudinal axis of the
beam passing through the center of gravity of the cross section be denoted
by z while the axes o f the cross section, perpendicular to each other, by x
and y. Assume axes x and y are of a rb itra ry  orientation and axes x, y, z
constitu te a righ t-tw isted  system. Let the u n it vectors pointing towards the
mentioned axes be denoted by e , e , e .

x  У z
Let the tensor o f second order moments in  the center of g rav ity  be de

noted by . Now, w ith the neutral lin e  o f the cross section denoted by a 
(see Fig. 1), the bending moment vector is

1. Fundamental r e la t io n s h ip s , s tre s s  s ta tes

( 1)
A

that is
( 2 )

*P á cze lt, István, H-3529 M iskolc, Perczel M. u . 30, Hungary

Akadémiai K iadó, Budapest
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where

|=,

F ig . 1. Axes x , y in  the center o f g rav ity  o f  the cross section, pos ition  vecto r 
Л  = x ёх + У Sy> vector a id e n t ify in g  the  neu tra l lin e

(3a,b)

F ig . 2. P r in c ip a l axes 1 and 2 o f the cross s e c tio n , a -ang le  to  p r in c ip a l axes
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F ig . 4. Shear stresses in  the x , y system: Txz, T yz; 
shear stresses in  the 1 , 2 system: T^2 , т 2Z

I x> I the second order moment calculated fo r axes x and y, respec
tiv e ly ,

I  the second order moment calculated fo r the pair of axes,xy K ’

I 1« = J V  di. \  -  I * '  " .  I , y = J»»
A A A

The p rinc ipa l axes of the cross section being set by vectors e^ and ^  

(Fig. 2).

F ig . 3. Shear forces Vx , Vy and/or F^, F2
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Normal bending s tress:

о 2 - (ax  R) • ez = - e • (R x I   ̂ • M). (4)

Let forces V^, pointing towards axes x and y act upon the beam at 
po in t z = ^ (Fig. 3). Now bending moment

M = M e + M e (5)- x -x  y -y 4 '

a rises in  section z, where

M = - ( t  -  z) V , M = ( t  -  z) V . x y ’ y X

From (4), by use of (5 )—(6):

ffz = -  (£ -  z) (cx • X + c • y ),

where

c = x
*x Vx Xxy Vy

L  L  -  i ,

C =
I  V -  I  Vy y xy X

I  I  - I 2x y xy

(6a,b)

(7)

(8a)

(8b)

1.2. Shear stress

As a result of shear forces and V , also a shear stress vector
T = x e + T e arises in  addition to bending stress a (Fig. 4). Since x z x y z y z
the beam is  prismatic, т is  independent of z tha t is

x = i(x ,y )  (9)

Scalar equation

Этxz 36̂
Эх Эу

+ —  = О 
3z

( 10)

obtainable from equilibrium  equation T • V = 0 can be satisfied in  case of a 
homogeneous isotropic m ateria l by introducing stress function Ф = ф(х,у) 
provided we try to find  the stress function co-ordinates in the form
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T = G r -  - ö n —”— T (с X2 + c 2v xy) = G 7  ̂ -  A(x,y) (11a)1 xz Эх 2(1 + v )  X у ’ Эх
and

t  = G 4̂ - -  757-,—-— t- (c 2v xy + c y2) = G " B(x,y) yz 3y 2(1 + у.) X ’ У Эу ( lib )

where G — shear e la s tic ity  modulus, 
V — Poisson's number.

Introducing the tensor of material constants

G 0
D = ( 12)

0 G

the shear stress w il l be

I  = 0 ' УУ - [Ä(x,y) ex + B(x,y) ey ]  = Q • Уф - c(x,y). (13)

Note that K. S. Surana uses the potentia l energy minimum p rin c ip le  by 
introducing warping function У(х,у) in his work /4 /,  making use o f the work 
of Mason and Hermann /3 / .  The functional used is  incomparably more compli
cated than that used by us.

1.3. Basic equation, boundary conditions, f i t t in g  conditions 

Basic equation

applying to Ф follows from equation (13) fo r т according to equilibrium  
equation (10). Stress

(V • D • УФ) = 0 (14)

т п = е2 ’ 1 , п = т * п  = п -  0 , У ф - п * с (15)

arises on the boundary o f normal n. 
Dynamic f i t t in g  conditions

(16)

and
(17)
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can be written for boundaries Г and Г. of the cross section and fo r the in -o h
te rn a l boundary between the domains, e.g. fo r boundary of domains e and 
j ,  respectively (Fig. 5).

I t  is  quite easy to  make sure that the stresses according to (7) and 
(11a,b) satisfy the com pa tib ility  equations /2 , 3 /. (From among the six 
equations, i t  is only the two non -triv ia lly  sa tis fie d  equations given below 
th a t need to be investiga ted ):

2

2

ex _ _3_ ! 3~FyZ ^ 3YXZ I
Эу 3z Эх I Эх Эу )

э2 е у = _Э_ I _ a_2zx + ^ y z  I
3z Эх Эу ' Эу Эх I

Since

and = ÏX L
yz zx

zx
G

the above statement is  tru e  also in th is case. That means that the displace
ment f ie ld  associated w ith  the stress tensor f ie ld  is  compatible, i t  sa tis 
f ie s  the continuity cond itions. Therefore, the kinematic f i t t in g  condition 
w i l l  be automatically s a tis f ie d  provided f ie ld s  Ф along the boundary of the 
subdomains are continuous. Thus th is  condition need not be prescribed.

F ig . 5 . The case o f m u ltip ly  connected domain
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1.4. Formulation of variation princip les

_P_rincijple_l_

The solution to the above boundary condition problem comes from the 
s ta tionarity  condition of functional

Ll = j  УФ* Q -V^dA - 2  /  фс ■ n d r. (18)
e ле е е

'о

That is ,  a l l  the fie ld s  sa tisfying varia tion  equation

6L1 = 0 (19a)

correspond to actual f ie ld s . And indeed, considering the varia tion of Ц  ac
cording to f ie ld s  фе independent fo r each element (making use of the Gauss— 
Ostrogradski theorem and requiring that the f ie ld s  be continuous according 
to class along in terna l boundaries Гс), we obtain that

6 L1 6ф (V • D • Vi|j)dA + бф (n • Q • Уф - n • c)dr

(19b)

,  I бф f e nt(n • D УФе - ne • ce) + (n--' • [P • Уф--' n  ̂ • c^
rej ] >]

dr + ... = 0

where the vanishing of the d iffe re n t in tegra ls  results in basic equation 
(14), boundary condition (16) and dynamic f i t t in g  condition (17).

1_._4 _P£incÍ£le_2

Suppose function Ф used fo r approximation sa tis fies basic equation 
(14). Now the f i r s t  surface in tegra l of functional (18) can be transformed 
into lin e  in teg ra l:

| уФ • Q • уф dA Уф^А - |ф (У О • Уф^А =

J (n • Q • УФ)фdГ.
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The continuity of ф at the boundary of the elements can be contro lled 
by means of m u ltip lica to r ,u defined for the boundary of the element.

The functional resu lting  in  the solution is

= \  2  [ K n  • g • ViiOdr
e •'e

2  I /U(n • Q • v^)dr + 2 j p  ç • n d r.
e „e

(20a)

By means of the s ta tio n a rity  condition,

6I_2 = 0 = (Ф jj) n • 0 • d r  

(the continuity o f ф)

2 J 6/j(n • D • V\|i n)dr
/-С 6\
( r o>r h} (20b)

. . . -  J 6 îj^(ne • Qe • Vipe _ ge • ne) + (ng • - cg • ng)J dr -  . . .
rej ■ '
c

tha t is ,  also the dynamic boundary conditions and f i t t in g  conditions have 
been obtained. In case of a homogeneous iso tro p ic  material, D = Gl, I  being 
idemtensor.

1.5. Shear center

The resultant of stresses т resulting from shear goes through the 
shear center /3 /. The moment fo r the center of gravity can be calculated in 
two d iffe re n t ways tha t is ,  on the basis of stresses т or on the basis of 
the shear forces acting upon the cross section:

Mg = J R X T dA = Rcx (Vx ex + Vy ey) = R, x (F1 + F2 e2) (21)
A

= 5x -1 + nc -2 (F ig - 6-) -

w here  th e  p o s i t io n  v e c to r  o f  th e  shear c e n te r  i s R = x e + y e  =
- c  c - x  yc - y
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F ig . 6. Co-ordinates o f shear center C: xc , yc and/or Çc , Лс

From the above equation, scalar equation

(x г -  у г )dA = x V -  у V = Ç F„ -  n F. J yz y xz c y ’ c x c 2 c l
A

is  obtained.
Let the shear force defined as load V = 1, V = 0 ) (or F, = 1, F~ = 0)

( 1 ) Q )  Q )  У 1 Lbe denoted by t v -  т e + '  e while tha t defined as load V = 0,
XZ ” X f9VZ ” У X

Vy = 1 (or Fx = 0, F2 = 1) by t u / .
Thus

:i -j<*
. ( 2) .(2)>T '  ' -  у t '" ')d A  yz ’  xz

0. % = 1 

0, f2 = 1 (22a)

X T « )  - y T(1>)dA yz 7 xz

1, V = 0 
’ У

1, f2 = 0 (22b)

where

X = £ cos a  -  n sin ac c c

= £ sin a + n cos a .7c C c (22c)
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1.6. Shear factors

In the Timoshenko beam model, the cross section remains f la t ,  i t s  an
gu lar displacement being affected also by the shear stra in  /6 / .  To be f la t  
means in  th is  case that the value of the shear stress is  constant which is , 
o f course, not true in practice because the mantle of the beam is  unloaded. 
A shear factor may be introduced so that the shear energies associated with 
the constant shear stress and the actual stress w il l  be iden tica l.

Let the case of the rectangle under shear, known from the theory of 
strength, be investigated as an example. We can write tha t, from force F 
acting  in  the d irection of x (Fig. 7), the average value of the shear stress 
varies according to re lationship

3 F /, x ч
T '  Txz ‘  2 A {1 2a

where A = 2ab is  the surface of the rectangle, the shear stress o f an ap
proximately constant value being

T

Writing the id e n tity  of the s tra in  energies, we obtain that

1
2 J ту dV 1

2

Assuming a beam element of u n it length in the direction of the axis, 
the in tegra ls  in  question w i l l  be

J jo
G

re su ltin g  in a shear factor of к = 6/5.
Using a method of the theory of e la s tic ity  /6 /, re la tionsh ip  ’к = 

= (12 + 11 v)/(10 (1 + v)) can be used fo r calculation.
In the general case, the shear factors are defined in the d irec tion  of 

the p rinc ipa l axes of the cross section. Stress f ie ld  x ^  or x ^ '1 w il l
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F ig , 7, Shear o f the cross section  o f a rectangle

resu lt from the shear force pointing in  the d irection of un it p r in c ip a l axis 
Fj = 1 or Fj = 1, respectively.

The id e n tity  of the s tra in  energies is  expressed by the fo llow ing re
lationships where the stra in  energy associated with the shear boundary value 
problem is  given on the rig h t side while the value of energy associated with 
the approximate average stress, m u ltip lied  with shear factor к , on the le f t  
side:

(т (1 ))2 + (t(1 ))2XZ1 f  V ^ _  >  +  ^ W - 7  '  1 f

by F1 = 1, F2 = 0 Y ) —^ ------ 3— ^ — dA = 7^1  ) dA
A2G

by F1 = 0, F2 = 1 \  j
( т ( 2 ) ) 2 + ( т ( 2 ) ) 2XZ *'■*XZ___ dA = I  -  1 Ж

art 2 K2 J Д2С

(23a,b)

When w riting  the boundary value problem, values

V = cos a, V = sin a (23c)X ’ y

shall be substituted fo r constants c^ and cy (8a,b), respectively from force 
F̂  = 1 acting in the d irection of p rinc ipa l axis 1 while in case o f force 
F2 = 1 acting in  the d irection of p rinc ipa l axis 2,
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Vx = - sin ci, V = cos a. (23d)

In case of a composite cross section where G is  assumed to vary fo r
each subdomain, the values can be simply determined by numerical in tegration
of the integrals on the le f t  side while summation of the integrals on the
r ig h t side according to I/A ^JS aV g. (where A. , G. — area and shear modulus

i  1 1 1
of e la s tic ity  of the surface of the subdomain). The shear factors defined in  
the x,y system can be calculated on the basis o f formula (A.12) given in the 
Appendix, taking re la tionsh ip  = 1/ic in to  consideration.

2. Use o f the f in ite  element method

2.1. Field approximation

The f in ite  element method is  used to approximate the fie ld s  that is ,  

6 6 6Ф = N у in  case of principle 1 while

6 6 6| i = N q in  case of principle 2, (25)

where N , | e — approximation matrices,
0 —

У — vector of the nodal values of function Ф, 
0

a — vector of constants,
0

q — vector of the nodal values o f ;j .

Approximating the gradient in functional (18) in the form

vyc
в 1

V

e
Wx "A yS _ ge ^  y^e _

. В . - W .
1 .в e W a (2 5 )

where

3N

Эх
Be =

3N ЭУС
we = - f -=x Эх

we =
=y

ЭУ"

the functional to be minimized w il l  be
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ц = i  2'ФвТ f leT Qe Iе dA f  - Í !fT(9 ' p)dr =
о *  Q о *"e де e re

k  2  ^eT f  -  2  f e) = }  J  - Л (26a)

on the one hand, while

L2 = 7  j  I eT neT Qe \ f  dr ae - 2 g eT f  yeT(neT Qe d r ae
e r e e “ e

V  eT Г ..eT, s 1 V  eT се е 'S1 еТ ,,еТ e V  еТ „£/Уд I У (с • n) dr = 2 jS ja  § а -  У а + f

(26b)

e ге

on the other hand.
Here ^ — stiffness matrix of element e (K being the s tiffne ss  matrix of 

the system),
f e — load vector of element e ( f  being the load vector of the system), 

tha t is
e

Kc f BeT De Be dA, Be =
'G о

Ae -0 G

§e = у  j" ( | eT neT Qe \ f  + WeT Qe ne | e) d f, VeT = J

(27)

NeT neT De We dr

eT [n , n I e L X ’ yJ

f  = Í  2(1 l  v )  ^  ( c x x2 + cy 2v хУ} §х -  d r
re

+ Í m~l v) ( c x 2v x y + cy y2)  ®y • о d r  • (28)

In case of isoparametric elements, normal n in (28) can be determined 
in  the usual way.
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7

F ig . 8. Isoparametric element

Consider the isoparametric element w ith 8 nodes, illu s tra te d  sche
m a tica lly  in Fig. 8. Let the local co-ordinate system be denoted by Ç, n. 

Now the tangent vector of boundary n' = 1 is

Эг Эг Эх Эг Эу Эх Эу
- " " a i ” ^ x 3 ^ ' + 3ÿ'"3ç’ -x'3Ç + - y ' â ç '

Since relationship

X = 2  N.(C, n) x4 (x <— > y)

( x^, y^ being nodal co-ordinates, shape function) applies to mapping be
tween systems (x, y) and (Ç, n).

Along boundary 3 in  question,

n Êzx
V âNi

Sx T F  yi Ü T *
(29a)

Then, in a s im ila r way, the normals along the other boundaries can be 
simply produced:
Side 1:

~  ln= -l " .
(29b)



SHEAR CENTER AND SHEAR FACTORS OF BEAM CROSS SECTIONS 89

Side 2:

n = e..
b |  - X  ^  3 n

3N.

Ун - §
i  3n U=1 1 ~y i  3ri k = i

X.

Side 3:

n = - i r r  I -  e 2 ^
- X  ■“  3 i]lèri i  1 |ç = - l

V 3Ni
' i + ?y i  0T> Ç=-1 xi

(29c)

(29d)

where b stands fo r the absolute value of the vector in parantheses in  ex
pression n, e.g.

|b| =\
i  3ti 1)

on side 2.

2.2. The equation system to be solved 

2̂ _2 _I r í_case_of_L^ , equation system

3L1—г  = 0 = К 1|> - f  ÿ f  _ = г _

is  obtained, whence nodal vector <|> can be determined.

2.2.2. In case of L,.

‘ Ч  -  2 ‘ seT *  2 59e T — | -  ».e 3aK e 3g

3L„L n r»B 6 WB 6----- = 0 = S a - V q ,. e = -  = У ’3q

§e _ (ge^ 1 ye ^e 5 ^e ge

(30)

(31)

(32)

(33)

Q
follows from a which is  independent fo r each element, because l_ 2  is  a func
tio n  of l_ 2  (ae, ge) .
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Substituting (33) in to  (26b),

l 2 = 2 2  geT veT( s e ) -1  y e qe -  2 ч еТ veT( | e ) _1 Ve ge + 2 a eT f

6 " e - e
th a t is

1 "V eT ne e eT „e 1 T n T „ ■,
L 2 = -  2 2 j  9 Q 9 + 2 j 4  !  = -  2  I  Q g  + g I  (34)

e e

where

ge = f  (se) _1 ye ,

Q — stiffness m atrix of the system,
g — nodal vector o f the m ultip lica tor f ie ld  of the system.

Equation system

Qg = f

is  obtained from the maximum of l^ ,  from which q, then nodal m u ltip lica tor 
vector qe of element e and, on the basis of (33), the vector of constants ae

g
can be determined. This la t te r  being available, f ie ld  ^ and then, by means 
of (13), tangential s tress т can be calculated.

3. Use o f FEM-3D finite-element program system

On the basis of va ria tio n  principle 1, e ight or six nodal isoparamet
r ic  f in ite  elements have been b u ilt  into the FEM-3D f in ite  element program 
system /7 /.

The program sh a ll be run twice to solve the problems. F irs t the to r 
s iona l r ig id ity  and other characteristics of the cross section are determin
ed on the basis of /8 / .

In the knowledge o f the directions of the princ ipa l axes, the second 
running can take place. Because of determination of the shear factor, loads 
F^ = 1 and ^2 = 1 s h a ll be adjusted to determine the co-ordinates of the 
shear center. When the program runs fo r the second time, nodal vector f  

s h a ll be determined f i r s t  from the equation system (30) assigned to the 
shear boundary value problem, using the load vector of the element ca lcu la t
ed according to (28) where constants c and c are obtained from (8a,b) by

X у
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X

( c )

F ig- 9 - Beam cross sec tion , coarse and fin e  d iv is io n  in  f i n i t e  elements /a ) Geometrical dimen
sions; b) Coarse: NUMNP = 80, NUMEL = 19; c) F ine : NUMNP = 330, NUMEL = 94/
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Table 1
Task 1

Authors

Cross section SURANA coarse “ ne 
re so lu tio n

ch a ra c te r is tic NUMNP = 80 NUMNP = 80 NUMNP = 333
NUMEL = 19 NUMEL = 19 NUMEL = 94

Surface 39

Center o f  g ra v ity  co-ordinates

xs 2.51282

ys 3.8744

Second-order moments

I x 215.09

ly 91.2436
-6.94822

P o la r angle o f p rin c ip a l ax is  a 
(degrees)

3.20134

I I 215.478

I 2 90.8544

Shear center

xc 1.75122 1.178 1.736

yc 3.8784 3.B76 3.876

Shear fa c to rs

S i - 1.257 1.257

K2 — 1.492 1.500

Ex 1.19959 1.258 1.258

Kw 1.48019 1.491 1.499

Kxy -0.00577 -0.1303 -0.013

I c ( to rs io n a l r ig id i t y ) 146.45 146.11 145.03

1ш (s e c to r ia l moment o f in e r t ia ) — 317.3 306.8

means of (23c,d), then, from (22a,b), co-ordinates ?c , nc of the shear 
centre, from (23a,b), the value of the shear factors associated with p rin 
c ip a l axes <1 and ~2 and f in a l ly ,  on the basis of formula (A .12) in the 
Appendix, the values (к = l /к )  <xy, < shall be calculated.

Of course, the program is  also capable of displaying graphica lly the 
values txz, xyz, ored of the stressed state resu lting  from shear.
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Task 2
Table 2

Cross section 
ch a ra c te r is tic s

SURANA
coarse

NUMNP = 69 
NUMEL = 14

Author' s 
fin e

reso lu tion  
NUMNP = 221 
NUMEL = 56

fin e

NUMNP = 603 
NUMEL = 168

Surface 7.0

Center o f g ra v ity  co-ord inates

xs 2.7143

ys 0.75

Second-order moments

lx 1.6458

iy 21.762

*xy 0

Polar angle o f p rin c ip a l ax is  a o
(degrees)

I I 1.6458

I 2 21.762

Shear center

xc -0.03638 -0.05678 -0.06637 0.03589

Ус 0.75 0.75 0.75 0.75

Shear fa c to rs

*1 1.269 1.297 1.303 1.304

K2 19.385 19.48 19.58 19.52

* x 1.269 1.297 1.303 1.304

By 19.385 19.48 29.58 19.52

Kxy 0 0 0 0

I c ( to rs io n a l r ig id i t y ) 1.6643 1.6166 1.606 1.6031
1ш (s e c to r ia l moment o f in e r t ia ) — 5.223 5.258 5.278

4. Numerical examples

Presented below are some numerical examples to il lu s tra te  what has 
been said above.

4.1. Example 1

The cross section taken from /4 / is  illu s tra te d , together w ith the 
d is tr ib u tio n  of the f in i te  elements, in  Fig. 9. NUMEL is  the number of 
elements while NUMNP the number of nodal points.

Material characteristics: E = 29 • 104 lb /inch , v = 0.22.
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Table 3
Task 3

Cross section 
ch a ra c te r is tic s

Thin section  

/Ponomariov, V o l. 2 /

Author's re s o lu tio n  
NUMNP = 437 
NUMEL =108

Surface 780 780

Center o f g ra v ity  co-o rd ina tes

xs 22.65
0

Second-order moments

7x 0.1234-107 0.1235-107

ly 0.3520-106

7xy
P o la r angle o f p r in c ip a l ax is  a 0
(degrees)

I I 0.1235-107

l 2 0.3520-106

Shear center

xc -31.2 -29.65

Ус 0 0

Shear fac to rs

Hi 3.50

K2 3.828

3.50
3.828

„ у
0xy

I c ( to rs io n a l r ig id i t y ) 2340 2353
I w (s e c to r ia l moment o f in e r t ia ) 0.1355-1010 0.1355-1010

Table 4

xc <x

0.25 -0.06637 1.303 19.58

0.30 -0.08292 1.303 19.62

V 0.35 -0.09824 1.303 19.66

0.40 -0.1125 1.303 19.70

0.45 -0.1257 1.303 19.75

F ig . 10. Example 2: Beam cross section , d iv is io n  in  f i n i t e  elements /a ) Geometrical dimensions; 
b) Coarse: NUMNP = 69, NUMEL = 14; c) Author's f in e  1: NUMNP = 221, NUMEL = 56; d) A u thor's

f in e  2: NUMNP = 603, NUMEL = 168/
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d

F ig. 10

4.2. Example 2

The values determined by Surana /4 / fo r the characteristics o f the
cross section of a beam, illu s tra te d  in Fig. 10, are tabulated in  Table 2.

4 2Material characteristics: E = 30.50 lb /inch , v = 0.25.
Table 4 permits the e ffec t of Poisson's number v to be studied.
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F ig .  11. Thin-walled open se c tio n  /a )  Geometry in  case o f the Vlasov theory ; b) D is to r tio n  
fu n c tio n  Ш, c) Geometry in  case o f the f in i t e  element model, d) F in ite  element mesh/
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32 • Example 3: Stresses t x z  and t y z along the boundary, a ris in g  as a re s u lt  o f  load Vx = 1 

o f d ire c tio n  X /a )  min./max. values: -6.064-10-5 /3 .692Ъ 10-3 N/rrni2 , b) m in./max. values:

-2.745-10 '3/2.7453.10-3 N/irni2/

F ig . 13. Example 3: Stresses Txz , TyZ and/or crrec| along the boundary, a r is in g  as a re s u lt  o f 

load Vy = 1 o f d ire c tio n  у /a )  min./max. values: -2 .688 '10_3/2.6889-10-3 N/mm2 ; b) min./max. 

va lues: -6 .3 3 2 -К Г 4/3.8945-10_3 N/mm2 ; c) min./max. va lues: 9.7068-10~6/6.7455.10“ 3 N/rmi2/
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4.3. Example 3

A thin-walled beam cross section is  il lu s tra te d  in Fig. 11. M aterial 
cha rac te ris tics : E = 2*105 MPa, v = 0.3. Table 3 also shows the resu lts  of 
ca lcu la tio n  fo r the cross section shown in  Fig. 11, based on the Vlasov 
theory.

Figure 12 shows tangentia l stresses xxz and x , resulting from un it 
load o f d irection x, along the boundary of the cross section. As c lea rly  
seen, the value of stress xxz lie s  by two orders of magnitude below the 
maximum value, that is ,  the stress arising in  the corners is  p ra c tic a lly  
zero.

The same stresses but in  association with the shear force of d irec tion  
y are illu s tra te d  in Fig. 13.

Figure 13c shows stress cr The value of the reduced stress a ris ing  
in  the corners lie s  by three orders of magnitude below the maximum value, a 
good approximation indeed.

4.4, Example 4

Consider the shear fac to r of a square cross section as a function of 
Poisson number v.

Cowper /6 / determined a value of

 ̂ _ 10(1 + v) I
12 + l l v  к

in  h is  work.
The values we have obtained on the basis of energetic considerations 

fo r a square with 8 nodal points (8x8 elements) are tabulated in  Table 5. 
As seen, the difference l ie s  below 4%.

4.5. Example 3

8x16 elements have been assumed in the rectangle shown in  Table 6. 
The Table includes shear factors depending on v. According to Cowper,

^x = Ky = 1/,cC0WPER

w hile , according to the d e fin it io n  of x^ we used,
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Table 5. Shear fa c to r o f the square

V

KCowper /6 /

10(1 + v ) 
COWPER - 12 + n v

8x8 elements 
NUMNP = 225 
NUMEL = 64

к  = l/ îc

К
----------  1004
COWPER

0 .2 0.845094 0.83056 98.28

0.25 0.847457 0.82919 94.84

0.3 0.84968 0.82850 97.50

0.35 0.85172 0.82713 97.11

0.4 0.85368 0.82576 96.73

0.45 0.85546 0.82410 96.33

Table 6

E = 2-105 Mpa 

A = 2-104 mm2 

I x = 0.666-108 irm4 

I y = 0.166-108 mm4 

I c = 0.4574-108 mm4 

1Ш = 0.2033-1011 mm6

NUMNP = 433 к х Ky
NUMEL = 128

0.20 1.239 1.200

0.25 1.256 1.200

0.30 1.275 1.201

0.35 1.294 1.201

0.40 1.315 1.201

0.45 1.335 1.201

S  * Ky

In the range of 0.2 •£ . £  0.45 assumed in  the example,

1
iT  KCOWPER

& = —---------------
KCOWPER

varies between 0.124 and 0.198
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R ^ R - O . S  H / R = 0.8

R 2 I R =0-7 R = 100mm

F ig . 14, Geometry o f a composite cross section

F ig . 15. Geometry o f  a composite cross section d iv id e d  in  f in i t e  elements

4.6, Example 6

F ina lly , le t the values o f the shear factors of a composite cross sec 
t io n  be determined.

Material characte ris tics  of the cross section illu s tra te d  in  Fig. 14 
Domain 1: E = 2.14-105 MPa, \> = 0.3.
Domain 2: E = 5.8- 105 MPa, v = 0.3.

MAGYAR
TyíiOMÁNYOS AKADÉMIA 

K Ö N Y V T A R A
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With the d ivision of f in ite  elements according to Fig. 15:

к = 1.243 к = 1.241ж у

Other geometrical characteristics of the cross section:

A = 0.20292-105 mm2
I = 0.48175-108 mm4
x 8 4I = 0.71215-100 mm4

I = 0.13153-1014 * N-mm2
c 15 41Ш = 0.9295-1013 N-mm4

In case of an iden tica l material (E = 2.14-1033) ,

< = 1.853, 7  = 1.697,x * у ’

furthermore,

I = 0.90237-1013 N-mm2,
1Ш = 0.1927-1016 N-mm4,

or 5 9 4I /G = I  /0.8231-103 = 0.10939-10* mm4,C C ’
I M/E = V 2 .14 -105 = 0.9006-1010 * m *m6,

where
G = E/2 (1 + v ).

5 . Conclusions

The f in ite  element model presented is  a rather e ffic ie n t method to
clear the geometrical characteristics of the beam cross section in  two
steps. In the f i r s t  step, the conventional geometrical characteristics such
as surface, most important moments of in e r t ia , St. Venant's to rs iona l r i 
g id ity  I c and/or the second-order moment associated with warping are de
termined while in the second step — in  the knowledge of the p rinc ipa l
axes of the cross section — the co-ordinates of the shear center and/or
shear factor are calculated by means of the variation princip le  described
in  th is  work. Presented in  Appendix are the varia tion  princip le based on the
to ta l potentia l energy associated with the Timoshenko beam model which takes 
the shear stra in  in to consideration, as well as the calculations to  obtain
the equilibrium equations and dynamic boundary conditions.
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The calculation based on the f i r s t  va ria tion  principle seems to be 
more expedient than tha t based on the second va ria tion  princip le because in 
the f i r s t  case, the s tif fn e s s  matrix and the load vector can be produced in 
a simpler way.

APPENDIX

Total potential energy of the beam

Let X and y be the axes fa llin g  w ith in the cross section going through 
the center of gravity o f the cross section while z the centreline of the 
beam. Material cha racte ris tics  of the beam: Young modulus E and/or shear mo
dulus of e la s tic ity  G. Displacements of the points of the beam re su lt from 
angular displacements <J>x and of the beam cross section around axes x and 
y. Assume the cross section remains f la t  also a fte r deformation tha t is ,

w = Ф„у -  Ф x = Ф_ n -  Ф ç . (A .l)x У A n

Let the displacement of the point of the beam in directions x and у be
denoted by u and v, respectively. The p rin c ip a l axes of the cross section
are straights 1 and 2, the displacements in  these directions are u and v
while the angular displacements of the cross section Ф and Ф , respectively

5 n
(F ig . A .l) .

F ig . A . l.  Co-ordinate systems, displacement co -o rd ina tes , anguiar displacement co-o rd ina tes
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The specific  elongation in  the d irection  of axis z is

_ dw ,
£ = — -  Wz dz t> ' y  -  Ф 'x  y.’ Ty

while the angular d is to rtion

3u 3w -,
Yiz  = э7 + Т Г  u '  фп

Y2z = "az + "эй = v + V

(A .2)

(A.3) 

(A .4)

Acting along axis z of the beam are loads px and p  ̂ and/or moment mx
and rriy d istributed among lines  x and y, respectively.

The concentrated moments and forces are M , M and F , F in  the d i-x y X у
rection of x and y, respectively.

The following transformation relationships apply:

u = u c o s  a + V s in  a

V = -  u s in a + V co s  a

Ф = Ф c o s a + Ф„ S in  aç X У
Ф5 = - Фх S in a + Фу co s

Total potential energy:

n = u. + и . -  w,p bending shear ’ 

where the stra in  energy resu lting  from bending is

^bending 2 JJ 
L

= H

E(w')2dA dz =
LA

E(I Ф'2 + I  Ф'2 - 2 I  Ф ' Ф’ ) dz X X у у xy x Yy

(A .5)

(A .6)

(A .7)

(A.8)

that resu lting  from shear

shear = 2 Í  GÂ 1 Y l z  + K2 y 2 z } dz
(A .9)
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where = l / к р  = 1/ « 2  being shear shape factors in  directions
respectively ( fo r  d e fin it io n  of Kp ^  see /23a,b/),
A is the surface o f the cross section while I  , I , I  arex ’ y’ xy
order moments.

Work of the system o f external forces:

W S ( Px u + Py v □. N + \ (m Ф + m J X X y
L L

Гм Ф + F ul |L + | M Ф + F v]L x x x J lo  1. У У У J 1

Thus, considering the variation of f ie ld s  u, v, Фр in Пр 
dently of each other, we use the product in teg ra tion  rule to obtain

F
6П = 0

where

Í K 6\ l
L

Í [tu

К  6%](

[<5u 6v]| GA

I - I гФ" 1X xy x
-

-I I Ф"xy y y
K K -, ■u" - Ф ’

X xy y
. K K .v" + Ф ’ •yx y x

I - I Ф 1 Г
X xy y

. - I I . Ф1 .yx y У

K u1 - Ф gX xy y

Kxy Ky J - v ’ + ФX

-F m
dz

dz

M
У

rF x

,2

. _2
- к2 cos cx + K2 sin a. 2■■ n

2sin a + i< 2  cos a

к = к xy yx (к^ - к^ ) /2  sin2 a

Introducing tensors

I  = =s

г I - I Г к к
X xy

> = =
x xy

- I I . K  Kyx y yx y

1 and 2, 

second-

(A.10)

indepen-

( A. 11 )

(A .12)
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and vectors

Г Ф 1 Tx mX ■px' "U" г MX Г f7X
= , m = иQJ , U = , M = IILi_

- Ф Tv . mV ■Pv- .V . . M .V - FV

re lationships

and

F = GA к
L V +

(A .13)

M = El • Ф' ; Ф' = 1/E I -1 M (A .14)

or, as a resu lt of the vanishing of the in teg ra ls , equilibrium equations

Eis  ♦" +

Г-F
У 

L F
= -  Ш; (M1 + çz X F + m = 0) (A .15)

and

GA к
V +

= - g; (F'+ g = 0) (A .16)

are obtained from the varia tion equation according to (A. 11) fo r the in 
terna l forces and moments, respectively while from (A.16),

GA < • u" = -  p -  GA к -  p -  GA к • (e X Ф')

that is

У "  = -  Ш  i  1 ■ P -  (j; ( § z  x  i s b  • УGA 

1 .-1
u" " GA = - F (5z x is ' )  • (A .17)

where the f i r s t  term of the rig h t side carries the effects of shear s tra in .
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BOOK REVI EW

Dulácska, E. (ed.): Soil settlement effects on build ings. Akadémiai Kiadó, 
Budapest, 1992

The book contains 447 pages, 211 figures, 72 tables, 24 examples, 3 PC 
programs and 304 references altogether. I t  is  recommended f i r s t  of a l l  fo r 
c iv i l  engineers and architects.

The book w ritten  by a team of five  expert engineers aims to fa c il ita te  
the s trik in g  of a balance between safety and economy. I t  presents the most 
up-to-date results and p o s s ib ilit ie s , and hence we can u t i l iz e  i t  success
fu l ly .

We must design the building so that
— i t  should not f a i l ,
— not too many cracks should develop,
— i t  should cost no more than necessary.
This book deals essentia lly with computer calculation methods and 

programs concerning the foundation, the building and the ground as a whole. 
By means of these methods the stresses and deformations of the structure and 
the s o il can be calculated with great accuracy.

The book is  divided in to  seven Sections.
In Section 1 the importance of in teraction between subsoil and con

struction, together with relevant theories, is  reviewed, accompanied with a 
long l i s t  of pertinent lite ra tu re .

Section 2 reminds the reader about s o il mechanics and introduces in 
formation about the determination of ground surface movements occurring in 
nature without the e ffec t of a superimposed structure.

Section 3 deals with the r ig id ity  of build ings, th e ir adaptive capaci
ty to deformations and peruses questions about the safety of buildings.

In Section 4 computerized calculation methods are presented under the 
t i t l e  of mathematical procedures. In computations fo r composite structures 
the s tiffness of the s o il must be modelled. The possible systems fo r mo
delling  is  suggested in  th is  Section. During the la s t decade the f in ite  
element method has been used extensively to solve various foundation 
problems.

In Section 3 approximative calculation methods are recommended for 
practice. These approximative methods are also used fo r the determination of 
basic data fo r the more sophisticated computer analyses. This Section there
fore deals with d iffe re n t approximative methods which can be e ff ic ie n t ly  
used fo r the analysis of e ither the whole structure or ind iv idual s tructura l 
elements. Accuracy is  of secondary importance when we establish an ap
proximate procedure.

Case h is tories are described in Section 6 and various guiding tables 
and three computer programs are presented in Section 7.

The reader may u t i l iz e  each Section in  i t s e l f ,  since fo r someone who 
wants to perform a quick approximative ca lcu lation, there is  no need to 
study basic mathematical approaches, or to delve in to  computer techniques.

J. Farkas

Akadémiai Kiadó, Budapest
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MODIFIED DOGDALE MODEL FOR TWO COLLINEAR CRACKS 

WITH A UNIFIED PLASTIC ZONE

R. R. BHARGAVA*—S. C. AGRAWAL**

(Received: 2 May 1995)

Crack opening displacement and p la s tic  zone s ize  are determined or two c o llin e a r, 
equal, symmetrical cracks contained in  an in f in i t e  homogeneous and e la s t ic -p la s t ic  
m atrix. The matrix is  subjected to  remotely applied Mode I  type loading. The cracks 
faces thus open forming p la s t ic  zones ahead o f crack t ip s .  The cohesive lin e a r ly  vary
ing stress d is tr ib u tio n  is  then applied to  a rres t the p la s tic  zones developed. Closed 
form so lu tion , based on Dugdale model so lu tio n , is  obtained using p r in c ip a l o f super
pos ition  and complex va riab le  technique. Results obtained are used to  study re la tio n  
between load required fo r  crack closure, y ie ld  s tress , p la s tic  zone s ize , crack opening 
displacement and crack length.

1. In tro d u c tio n

The elastic analysis of stress d is tribu tion  in v ic in ity  of a crack 
using complex variable was given by Muskhelishvili /1 /. Using Muskhelishvili 
technique Dugdale /2 / proposed a 's tr ip  yield model' giving e las tic -p las tic  
analysis for determining p lastic zone size ahead of crack tips . The effect 
of pa rtia l closure on stress intensity factor of a G riff ith  crack opened by 
a parabolic d istribution was investigated by Burniston and Gurley /3 /. 
A photo-elastic studies for determination of p lastic zone size ahead of a 
crack t ip  contained in a th in sheet under uniaxial loading has been carried 
out by Mishra and Parida /4 /.

Harrop /5 / extended the Dugdale model for the case when p las tic  zones 
are subjected to cohesive parabolic stress d istribu tion .

*R. R. Bhargava, Department o f Mathematics, U n ive rs ity  o f Roorkee, Roorkee-247 667,
Ind ia

**S. c. Agrawal, Department of Mathematics, U n ive rs ity  o f Roorkee, Roorkee-247 667,
Ind ia

0864-8085/94/2 4.00 © 1994 Akadémiai Kiadó, Budapest
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Stress fie ld  in  an in fin ite  plate, containing two collinear cracks, 
loaded at an arb itrary location was studied by Vialaton et a l. /6 / .  Theo- 
ca ris  /7 / applied Dugdale model to determine p lastic  zone size developed in 
the case of two co llinear and unequal cracks under opening mode conditions 

The problem investigated in present paper is  of an in f in ite ,  homo
geneous, isotropic, e lastic-perfectly  p lastic  matrix containing two equal, 
co llinear and symmetrically situated cracks. The matrix is  subjected to 
Mode I  type tension at in f in ity  causing opening of crack faces forming 
p la s tic  zones ahead of crack tips. Plastic zones develop at the in te rio r 
crack tips  get unified. A linearly varying cohesive stress d is tribu tion  is 
applied over p lastic zones to effect the cracks closure. Complex variable 
theory of e la s tic ity  has been used to obtain closed form expressions for 
p la s tic  zone size and crack opening displacement.

2. Basic formula

For two-dimensional theory of e la s tic ity  using complex variable 
method /1 / Cartesian components of stresses ( i , j= x , y )  and displacement 
components û  ( i  = x,y) may be expressed in terms of two complex potential 
functions <t>(z) and ß(z) as

pyy -  iPxy = *(z) + n ( i)  - (z -z H '(z ) , (1)

2u(u + iu  ) = кф(г) - n(z) - (z -z )ф' (z ) . (2)
Л , Л у , Л

A bar indicates the complex conjugate operation. The dash s ign ifies
d iffe ren tia tion  with respect to the argument while comma after function
stands for partia l d iffe ren tia tion  with respect to subscript following i t .
Shear modulus is denoted by ц. For plane stra in  к = 3-4v and for generalised
plane stress к = (3 -v ) /( l+ v ) , v being Possion's ra tio .

Dual problems of linear relationship are obtained using equation (1)
when the rims of crack (s) are acted upon by stresses P— , P— asr ’ yy’ xy

<t>+( t )  + n '( t )  = P+ - iP+ , (3)
r  yy x y ’

on crack(s)
4>_( t )  + fl+( t)  = P“ - iP" ,T yy xy’

under the assumption y'''1̂  q уФ' ( t+iy) = 0.

( 4 )
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Supercripts + and - indicate the lim iting  values from positive y-plane 
and negative у-plane, respectively. Any point on crack, other then end 
points, is  denoted by t .

The stresses intensity factor, Kj, at crack t ip  z = may be calcu
lated from

An in f in ite , homogeneous, isotropic and e lastic-perfectly p lastic 
matrix is  subjected to remotely applied uniaxial tension in y-direction. 
The matrix contains two collinear equal cracks and occupying intervals 
/-b , -a/ and /a, b /, respectively (Fig. 1). The cracks and L2  open on ac
count of prescribed tension developing p lastic zones ahead of cracks tips. 
I t  is  assumed that p lastic zones developed at the in te rio r t ip s  of cracks 
are unified. In te rio r p lastic zone lie s  in /-a , a/ and exterior plastic 
zones Г2 : / —c, -b/ and Г^: /с , b /, develop at exterior tips  of the cracks Ц 
and l_2 . These p lastic  zones are, in turn, subjected to linearly  varying co
hesive stress d is tribu tion , ter , where t  is  any point on the p las tic  zones
and a is  yield point stress, ye

K j  = 2V2ÏÏ lim ( ( z - Z j ) 1̂ 2 ф( z ) } . (5)

3. The problem

Y

L,

t(3Çe I tôÿe

F ig. 1. Configuration
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The problem is  solved using superimposition of two component problems 
termed as (a) e lastic problem and (b) p lastic  problem.

(a) Elastic problem

An in fin ite , homogeneous, isotropic and e lastic-perfectly plastic 
matrix contains a stress free straight crack L: /-с , с /. The matrix is  sub
jected to remotely applied uniform uniaxial tension in y-direction. The 
complex potential Фе(г )  fo r th is  may be written as in /1 /

Opening mode stress intensity factor Kje is  calculated using equation 
(5) substituting value of Фе(г) from equation (6) and may be written as

(b) Plastic problem

A stress free in f in ite ,  homogeneous, isotropic and e lastic-perfectly 
p la s tic  matrix contains two symmetrically situated cracks Ц : /-b , -a/ and 
\~2 ‘- /а , b/. Inte rio r p la s tic  zone occupies /-a , a/ and exterior p lastic 
zones and Tj occupy / -c ,  -b/ and /Ь, с/ ligaments ahead of crack tip s  -b 
and b, respectively. Boundary conditions of problem are (i)

( i )  No stress are acting at in fin ite  boundary.
( i i )  Cohesive stress d is trib u tio n , taye, acting on rims of each of the 

p lastic zones Г-̂ , Г 2  and Г^, respectively. Any point on p lastic  zones 
is  denoted by t .

And

( i i i )  Rims of the cracks and l_2 are stress free.

Dual Hilbert problems obtained using boundary conditions ( i i )  and 
( i i i )  applied on extended crack (= the actual crack и relevant p lastic zone) 
may be written as follows:

<t>e(z) = 0.5 aœz(z2 - c2) 1//2 ( 6)

Kle = ° '5 '^ /2 - (7)

on 1̂  и Г2 U Г-j. ( 8)
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The subscript p refers that potentials refer to plastic problem. Using 
Muskhelishvili /1 / complex variable technique the complex potential Фр(г) of 
interest may be given by

1
x(z)

ir/2 +sin ^a/c -s in_1b/c-b/c cos sin_1b/c 
-13-K-l + a/c cos sin a/c

*(z) = 2 -1 -1 -z  (тг/2-sin b/c + sin a/c)

b -1 4Ц - 1 - - 1 1V.2 h2C -  b

2 2z - c

(9)

Stress intensity factor Kj at the t ip  z = c may be w ritten  using 
equations (9) and (5) as

О yp _1 _
KT = -4— c\lc/2 (tr/2 + sin a/c - sin b/c + b/c cos sin b/c - 

Ip  2lr (10) 
- a/c cos sin a/c).

4. P lastic zone and crack opening displacement

Plastic zone size at the t ip  z = c of crack L2 determined from con
d ition

Ie KT = 0.Ip ( 11)

Substituting values from equations (7) and (10) a non-linear relation 
fo r determining p lastic  zone is  obtained in terms of a, b, c, cr^/Oyg.

Crack opening displacement at the crack tip  z = c is  obtained from

uc ( 12)

where function ф(г) = Ф (z) + ф (z) is  obtained after the singular parts ofe p
Ф (z) and ф (z) have balanced each other. Young's modulus is  denoted by E e p
and Im / /  is imaginary part of the quantity in bracker. For present case 
i t  may be given by

u = — ^  c(ir/2 + s in  ^a/c -  s in  W c )  (b /c  \/c^ -  b2 + c s in  ^ b /c ) .  (13)C TT t



114 BHARGAVA, R. R.-AGRAWAL, S . С.

5. Example of applications

An illu s tra tiv e  numerical example is  considered to study effect of 
crack length, in te r crack distance, p lastic  zone size on the load ra tio  
(load applied at in f in ity /y ie ld  stress) required for crack closure.

Figure 2 depicts variation of required load ratio  as in ter crack 
distance is increased. Crack length is taken un ity . I t  is  observed as cracks 
are moved apart, less load is  required for p las tic  zone arrest. Studies also 
show that larger is  p las tic  zone size more load is  required for closure.

Required load ra tio  is  plotted against increasing crack lengths in 
Fig. 3. As expected, fo r larger crack lengths less load ra tio  is  required 
fo r closing exterior p las tic  zones. Increase in p lastic  zone size does re
quire more load fo r p la s tic  zone arrest.

Crack opening displacement (COD) at exterior crack t ip  as in te r io r 
distance between cracks increases is shown in Fig. 4. For the load ra tio  
calculated above, varia tion  of COD shows that bigger the size of p lastic 
zone, crack opens more.

Fig. 2. V a ria tio n  o f  load ra tio  versus in te r  crack distance
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F ig . 3. Normalised load ra t io  versus crack length
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F ig . 4. Normalised crack opening displacement va ria tion  
against in te r  crack distance
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F ig . 5. Normalised COD versus crack length

Behaviour of COD as crack length increase is depicted in Fig. 5. 
Crack opens more as the crack length increases, as expected.
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FINITE MECHANISMS HAVE N0 HIGHER-ORDER RIGIDITY*

GÄSPÄR, ZS.**—TARIiAI, T .* **

(Received: 25 November 1994)

In  a paper, R. Connelly and H. Servatius showed an example of a n o n -rig id  ba r- 
a n d -jo in t assembly which was th ird -o rd e r r ig id  by th e ir  d e f in it io n .  Seeing th is  obvious 
con trad ic tion  they concluded th a t the whole notion o f higher-order r ig id i t y  is  ques
tionab le . In  th is  paper, using a d e fin it io n  o f h igher-o rder in fin ite s im a l mechanism we 
w i l l  show a method by which th is  contradiction could be avoided.

1. Introduction

Connelly and Servatius /1 / have examined the f in ite  mechanism shown in 
Fig. 1, and they have found i t  to be third-order r ig id  by their d e fin ition . 
We think i t  is  a contradiction that a structure is  f in ite  mechanism and at 
the same time any-order r ig id . So, one of the definitions ought to be 
changed. Tárnái /6 / has given a defin ition for rrth-order in fin ites im al 
mechanisms, and we know that an rrth-order in fin itesim al mechanism is  
n+lst-order r ig id  /2 /. Unfortunately, Tarnai's de fin ition  is not a construc
tive one. But i f  a structure is  shown to be minimum nth-order in fin ites im al 
mechanism then i t  is sure that the structure cannot be nth-order r ig id .

In Section 2 a method w il l be shown which is  suitable to determine a 
one-parameter system of in fin itesim al displacements of the jo in ts fo r th is  
structure where the elongations of the bars have no nth- or lower-order 
terms. We apply the method for д = 6, so the structure cannot be third-order 
rig id  (nor even sixth-order rig id ) according to Tarnai's defin ition.

*Th is paper was read a t  the MSI Subworkshop on R ig id ity  and Higher Order R ig id ity ,  
Cornell U n ive rs ity , October 10, 1992

**Gáspár, Zso lt, H-1025 Budapest, Кару u. 40/b, Hungary

***T a rna i, T ibor, H-1037 Budapest, Kolostor u. 17, Hungary

0864-8085/94/8 4.00 © 1994 Akadémiai Kiadó, Budapest
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2. Minimum 6 th-order mechanism

F irs t we reca ll the defin ition of jrth-order mechanism form / 6 / .  Con
sider a bar-and-joint assembly which contains jo bars and consider a system 
Y of in fin itesim al displacements of the jo in ts . Let us denote an in f in ite 
simal displacement component of a characteristic jo in t — as a scalar 
parameter of motions — by 6 and the elongation of the bar к due to 6 by 

. Let e£^(0) denote the _ith one-sided derivative of ( 6 ) at point 
6 = 0.  Y

д = max min 
Y к

DEFINITION. An assembly is an nth-order infin itesim al mechanism i f
(h + 1 )

4 * <0) = 0 for i  = 1 ,2 , blit ( 0 ) i  0—

к e. { 1 ,2 , . . . ,b }̂, y e  r  where Г is a set of a l l  the possible systems of in 
fin ites im a l motions.

Let us consider a 4-parameter change of the nodes where 4 bars have no 
elongation and the inc line bars (the double triangles in Fig. 1 are replaced 
with incline bars r ig id  fo r bending but capable for elongation) remain 
s tra ig h t (Fig. 2):

To show that the structure is  minimum nth-order mechanism i t  is  allowed to 
substitu te  the terms in form V l - by th e ir д- je t (truncation of the

F ia . 1. The framework o f Connelly and Servatius
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Fig. 2. S im p lifie d  model o f the framework; displacements o f the jo in ts

MacLaurin series at degree n) because the elongation of four bars even in 
th is  way w ill not have ßth- or lower-order terms.

We want to determine vertica l displacement functions b(a), д (д ), d(a) 
such that the f i r s t  д derivatives of the elongation functions

efCa) = |p2 -  px I -  v/2,

е2(э )  = |p 4 -  P3 | -  (2)

e-j(a) = j  I p3 + p4 - px - p2 I -  3

at the point д = 0 must be zero. Function ]з(д) is  supposed to have the form

n
b(a) = 2  c .a ^  (3)

i= l 1

and the coefficients can be determined one by one from the conditions 

eJ^CO) =0  ( i  = 1,2,. . . .n )

where the superscript denotes derivation with respect to a. I f  д = 6 then 

Ь = а + а2 + аЗ + П а4 + 2^а5 + Ш Л  (4)

Because of symmetry of the structure, the relationship

d = c + c2 + c3 + U c4 + ^ c5 + !3 1 c6 (5)

also holds. Function д(д) is  supposed to have the form

2n-5
c(a) = a + 2  C.a 

i= l 1
l + i / 2

( 6 )
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Equations (4—6) are substituted into the function

(P3 + P4 -  Pi -  Р2)Т(Рз + P4 -  Pi -  P2)>

and the coefficients C. can be determined one by one from the conditions
1 i/2tha t a ll the coefficients of terms aJ (j<_2n), must be zero. I f  n = 6 then

c ^ a 3/2 9 2 9b\Í6 5/2
+ 2 a - ~ T T a

93 3 
2 a

35647 Vő 7/2
+

, 5079 4 248616611/6 9/2
8 a -  24576 a

(7)

Depending on which sign is  chosen for the terms with fractional exponent bar 
3 w i l l  incline to the rig h t or to the le f t .

In this way we have found a system of displacements of the jo in ts 
where the f ir s t  six derivatives of the elongation function of each of the 
bars, in the original position, are equal to zero. I t  means that the assemb-̂  
ly  in  Fig. 1 is at least sixth-order in fin itesim al mechanism, that is , i t  is 
at least seventh-order r ig id , in contrast with Connelly and Servatius's 
find ings. Using th is technique one can continue the series expansion so that 
the f i r s t  seven or more derivatives of the elongation functions vanish, that 
is ,  can show that the assembly is at least seventh- or higher-order in f i 
nitesimal mechanism.

3 . F in i te  mechanism

We can go further and neglecting the visual way we can show also theo
re t ic a lly  that the assembly is  a fin ite  mechanism. In th is  section we w il l 
use notation different from that in Section 2 (e .g., numbering the bars in 
Fig. 3 w il l  be d ifferent from that in Fig. 2).

Let us consider bar к of an assembly joining jo in ts  _i and j_ (Fig. 3a), 
and denote its  elongation by e  ̂ such that

e k  =  / < * i  -  * j > 2  -  ( * i  -  У / / ' 7 2  -  l k

where x^, y^, x^, y  ̂ are the Cartesian co-ordinates of jo in ts  i  and j_, and 
l k is  the length of bar k; and le t  denote force in bar к,-
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(a )

( W i  >

B"
(b)

&

У

Ш

ж
ж

m  I

2

A'

Ш

Fig. 3. Notation (a) fo r  a bar, (b) fo r the whole framework

Due to the classical theory of kinematics /4 / a bar-and-joint assem
bly, which can have at most one state of self-stress, is a f in ite  mechanism 
i f  function ф such that

has no extremum at the investigated position of the assembly. (Following 
Levi-Civita /5 /, Kuznetsov uses the theory of v irtua l displacements fo r such 
a problem /3 / . )  In  fac t, e  ̂ and Хц. are constraint functions and Lagrange 
multiplayers, respectively, with the member constraint: e  ̂= 0 (|< = l ,2 , . . . , b ) ;  
and Ф is  a potential energy function.

The framework of Connelly and Servatius can be in a state of se lf
stress in the basic position with forces in bars:

b

X j  -  x ^ , = 1Í2 ,

^4  = X4> =

X5 = X5 ! = i  )

x6 = x6’ = °* 
\-J - \-J, = -1,

X8 = 2 -
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F ig . 4. Motion o f rentiers o f the framework

Here the subscripts re fer to the labels denoting the bars in Fig. 3b.
In the basic position e  ̂ =0  (k = 1 ,2 , . . . ,b ), consequently Ф = 0. 

Let us displace jo in t B_ para lle l with axis _y to point B" (Fig. 3b), but 
preserve a ll the other jo in ts  at their o rig ina l place. In th is case the 
length of bars 5, 6 and 7 w i l l  increase, the length of the other bars w il l 
not change. (An increase in the length of bar 6, however, does not play any 
ro le  since this bar is  inactive .) Let us denote, the common elongation of 
bars 5 and 7 by j3. Since £  >  0 and X̂  = Xy = -1 we have

b
Ф = -2  \ .e .  = Lt-e + X7e = -2e <  0,k=l  к к 5 /

tha t is ,  for any e the value of function ф is  negative.
Let us rotate the triangles composed of bars 2, 3, 4 and 2 ', 3 ', 4' 

about points A and A ', respectively, by angle a in  opposite direction. (In 
Fig. 4 we have shown only the rotation of triang le  2, 3, 4.) In th is  case 
bars 5, 7 and 5 ', 7' remain at the ir orig inal place, the lengths of bars 2, 
3, 4 and 2 ', 3 ', 4' do not change, bar 8 displaces, elongates but remains 
horizonta l. Elongations of bars are as follows:

e  ̂ = e-p = (3 + 2sina - 2cosa)'*'//  ̂ - 1,

6q - 1 — cosa - sina.

So we have
1 /о

Ф = X ^  + X , , e , ,  +  4 д в д  = 2 [ ( 3  + 2s ina  -  2 с о з а )х / -  cosa -  s i n a j .
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For small value of a we obtain

?
Ф a  о  > 0 ,

that is , for small a the value of the function Ф is  positive. Consequently, 
function ф cannot have an extremum at the basic position of the assembly, 
therefore the assembly in Fig. 1 is a f in ite  mechanism, that is , not r ig id .

4. Conclusions

In spite of the fact that the assembly in the example has a cusp in 
the configuration space, i t  seems that the defin ition  of nth-order in f in i 
tesimal mechanism in /6 / works, and we conjecture that the truncation tech
nique with fractional exponents presented in th is  paper can be applied for 
any value of д. I f  th is  conjecture is true then i t  follows that the assembly 
in Fig. 1 is  at least an infin itesim al mechanism of in fin ite  order. In th is  
way the contradiction caused by Connelly and Servatius's de fin itio n  of 
higher-order r ig id ity  could be dissolved.
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ON THE STABILITY OF VISCOELASTIC SYSTEMS 

WITH VISCOSITY COEFFICIENTS VARYING IN TIME

USAS, GY.*

(Received: 1 March 1994)

Some kind o f s truc tu res show collapse in  the presence o f creep. This is  ca lled  
in  the lite ra tu re  creep buckling. From the beginning o f the s ix t ie s  i t  is  known tha t 
the creep buckling is  e sse n tia lly  an e la s tic  one. In  the beginning o f the e igh ties  the 
author showed th a t the phenomenon o f collapse in  the course o f creep corresponds to  
the s in g u la rity  o f the Hessian o f the e la s tic  p o te n tia l function  o f the s truc tu re  where 
the d if fe re n t ia t io n  was made only w ith respect to  the externa l parameters. The m ateria l 
investigated was lin e a r  v iscoe las tic  w ith constant c o e ff ic ie n ts . This study extends 
th is  proof to  the case o f lin e a r v iscoe las tic  m ateria l w ith  varying v isc o s ity  c o e f f i
c ien ts, analyse the in fluence o f temperature.

1. Introduction

The s ta b ility  of viscoelastic structures was probably f i r s t ly  analysed 
by Freudenthal /1946/ who examined the s ta b il ity  of an Euler column made of 
viscoeolastic material. His result was improved by Kempner and Pohle /1953/. 
Hoff /1954/ examined an Euler column. The constitu tive equation of the ma
te r ia l of the column corresponded to the constitu tive equation of a non
linear dashpot. He obtained that the deformation co-ordinates (deflection) 
of the column tended to in f in ity  during a f in ite  time. He called that pheno
menon creep buckling. Later Huit /1962/ analysed, among other structures, 
a simple von Mises truss and he showed that the rate of the deformation of 
the structure became in f in ite  during f in ite  time, but the deformation co
ordinates remained f in ite .  This von Mises truss was made of Maxwell flu id . 
That means, he did not neglect the e lastic behaviour of the material, as 
Hoff did, and concluded: "the sudden f in ite  jump (of the structure) is  . . .  
the results of the simultaneous occurrence of e lastic  and creep deformation".

* I j ja s ,  György, H-TT47 Budapest, Öv u. 165, Hungary
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His example later was refined by Huang /1966/ who e xp lic it ly  declared: "The 
buckling process is  instantaneous and the response during buckling is 
e la s tic ."  However, he did not explain th is declaration. Several authors 
examined the buckling behaviour of d ifferent structures in the s ix ties  and 
seventies, taking into account or neglecting the e la s tic ity  of the mate
r ia ls .  Some of them gave d iffe ren t c rite ria  for the buckling of the struc
tures in the course of creep, e.g. Samuelson /1969/ and Leipholtz /1975/, 
but perhaps the most important studies were published by Hayman /1978, 
1980/. He was the f i r s t  who was looking for the connection between the 
e la s tic  equilibrium paths and the buckling of simple structures made of 
viscoelastic materials. He essentially supposed in his study that the 
buckling of structures showing creep behaviour is  e lastic buckling. The 
creep of the material produces only the deformation and stress state of the 
structure where buckling occurs.

Before continuing our discussion on the problem we should c la r ify  the 
expression "s ta b il ity " . We can speak about the s ta b ility  of motion or equi
lib rium . I t  is evident that a structure moves during creep. However i f  the 
in e rt mass of the structure is  neglected, as usual, than the k ine tic  energy 
and the inertia  of the structure is  zero, as.in the case of equilibrium. On 
the other hand, the system cannot be considered to be in equilibrium, be
cause in the course of creep the entropy of the system is  changing. So its  
entropy cannot be maximum and, consequently, its  potential energy cannot be 
minimum, which is the condition of stable equilibrium. (The de fin ition  of 
the potential energy can be found e.g. in the book of Brush and Almroth 
/1975/.) However, le t us consider that the deformation parameters belong to 
two groups, external and in terna l. Their defin ition w il l be given la te r. The 
author has shown / I j ja s ,  1982/ that i f  in the course of creep the rate of 
the external parameters become in f in ite ,  the Hessian of the potential func
tion  w i l l  be singular. The Hessian of the potential function contains de
riva tive s  with respect to the external parameters only. So we can speak 
about the s ta b ility  of the structure in the sense that its  potentia l is  
minimum in the space of the external parameters. The author presented its  
derivation in the case of viscoelastic materials with constant coeffic ients. 
In th is  study these results w il l be extended to the case of viscosity coef
fic ie n ts  varying in time. The derivation w il l be based on the studies of 
Biot /1954/ and Schapery /1964/.

The fundamental equation of linear viscoelastic materials was set up 
by B iot who used the theorems of irreversible thermodynamics. Some details
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of his derivation can be read in Schapery's study. Schapery pointed out that 
B io t's  results are va lid  i f  the viscosity coefficients are not constants.

For the sake of uniform treatment the derivation of the constitutive 
law of linear viscoelastic materials from the thermodinamics w il l  be given 
at the beginning.

Let us consider a closed thermodynamic system whose volume is  unity in 
a reference state and which has a prescribed constant temperature. We de
compose the system into two subsystems: System I  where the irreversib le  
processes take place and System I I  constituted by a large heat reservoir at 
a constant temperature T (see Fig. 1). The whole system is  insulated. System 
I is  immersed into System I I .  The whole system is  defined by n state va ri
ables and either by temperature or by internal energy. Th n state variables 
q  ̂ (degrees of freedom, generalized co-ordinates) are of a quite general 
nature. In our case they represent mechanical strains or deformation co
ordinates. Correlatively we assume that the system is under the action of 
generalised external forces denoted by (conjugate to the variable q^) 
such that Q̂ dq̂  represents the energy furnished to the system. These forces 
in our case are externally applied stresses or forces. No external forces 
are associated with the temperature variables. In th is paper q̂  means both 
internal (hidden) and external co-ordinates. The hidden co-ordinates are de
fined by the condition that the ir conjugate (externally applied) forces are 
always zero (see e.g. the Eqs (28) of the structure in Fig. 3).

2. The determination of entropy production

Fig. 1
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The basic relationships of the thermodinamics are:

dU = dH + dW, (la)

(lb )

where T is  the absolute temperature, S is the entropy and U is  the internal 
energy of the system. W is  the work done on the system, H is  the beat sup
p lied  to the system. The k ine tic  energy is  neglected. The repeated indexes 
mean summation.

Equations (1) show that the entropy is  a function of the internal 
energy and of the co-ordinates of mechanical motion. So the linear increment 
of the change of entropy is

where q, denotes a ll co-ordinates q i , . . . , q „  exepting q. . The indices U and 
q or q^ mean that these co-ordinates are kept constant in the course of d if 
fe ren tia tion . (Here the bold q means the vector of the q  ̂ co-ordinates.) 
Equation (2) is the linear member of a Taylor series of the entropy, where U 
and q^ are considered being independent co-ordinates, as defined above.

I f  the processes are very slow, the state is  very near to equilibrium, 
so i t  is  sufficient to take into account the linear part of entropy change. 
The structure behaves as i f  i t  were in equilibrium during the coursed creep, 
because the creep is a very slow motion and the ine rtia  forces are neglig i
b le . The assumption of lin e a r entropy changes is  acceptable for engineering 
p ra c tice .

Let us examine the change of heat of Systems I and I I .  At f i r s t  we 
should define the coeffic ien ts  of Eq. (2). The coeffic ient of the f i r s t  mem
ber of Eq. (2) is the p a r tia l derivative of the entropy with respect to the 
in te rna l energy. In th is  case, a ll the other co-ordinates are kept constant 
because of the defin ition  of the partia l derivative. From the F irs t Law of 
Thermodynamics the change of heat, dH, is

I f  dq^ = 0, which is the case of the earlier mentioned partia l derivative, 
there is  only heat transfer. Since we are examining processes very near to 
equilibrium , the temperature difference in every increment has to be in f i 
n itesim al. So the incremental process is defined to be reversible, and

dS = (3S/3U) dU + (3S/3q.).. n dq. , 4 1 u,q^ l ( 2)

dH = dU - Qi dqi . ( 3)
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the Second Law of Thermodynamics has the form TdS = dH. Thus from Eq. (3) we 
have

dH = TdS = dU. (4)

In the case of dq  ̂ = 0 the form of Eq. (2) becomes

dS = (3S/3U)qdU, (5)

Multiplying both sides of Eq. (5) by T, the result is

TdS = T(3S/3U)qdU. (6)

Comparing Eq. (6) and Eq. (4 ), i t  is  evident that

, 1 = (3S/3U)qT. (7)

Multiplying Eq. (2) by T and taking into account Eq. (7), Eq. (2) assumes 
the form

TdS = dU + T(3S/3q. ).. n dq.. (8)1 u j 4k 1

The form of Eq. (8) is  the same as Eq. (3), so i t  is  convenient to define
(R)the state function Q) '  as

Q-R) 5 -TOS/3q i)U)qk, (9)

ÍR')and ca ll Q) ; a reversible force.
While the entropy change of the reservoir, which is  reversible, is  

^Reservoir = ~ ^ /T  ’ ŵ ere the ne9 ative sign stands for the entropy de
crease (the heat loss) of the reservoir, the incremental entropy change dS1 
of the to ta l system is

dS ’ = dS + dSReservoir = dS - dH/T, ( 10)

which is the entropy change due to ir re v e rs ib ility . This entropy change is 
readily evaluated for the system under consideration by subtracting Eq. (3) 
from Eq. (7):

dS' = (l/T )(Q i  - Q ^ ) )dqi . (11)

Dividing Eq. (11) by the time increment yields the expression fo r the rate 
at which the entropy of the whole system is produced
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where
S' = (1/T) Xi qi , 

X. £ Q. -  Q «),l  l  l  ’ (13)

(12)

and the dot denotes d iffe ren tia tion  with respect to time. S' is  termed the 
entropy production per u n it volume and X̂  is  the irreversible component of 
force applied to the co-ordinate q^.

3. The constitu tive  law of linear viscoelastic materials

The important p rinc ip le  of Thermodynamics of Irreversib le Processes, 
namely the Onsager's p rinc ip le  is now introduced, which can be stated as 
fo llow s: I f  the entropy production is written in the form

S' = X!qi ;  (14)

then the Xj are forces proportional to the "fluxes" q̂  (q^ mean the creep 
ra te  or the rate of s tra in  in mechanics), that is ,

Xi  = Ь1 Л ’
(15)

and the matrix of coeffic ien ts  b ^  is symmetric. Equation (15) is , in fact, 
the constitutive law of the dashpot, e.g. the Newton liqu id . However, bj^ is  
not necessarily a cons,tan t in order to apply Onsager's princip le , i t  is 
only required that th is  matrix be a continuous function of state variables 
fo r the range of a p p lica b ility  of Eq. (15). Equation (15) can be written in 
the notations (12) and (13) by setting

X! = (1/T)X. ; b.' ■ = (1/T)b. .,l  l ’ l j  l j ’

so we obtain the set of equations

b. .q. 
i r j

(16)

(17)

A more useful form of these relations is obtained by using defin ition  (9) to/'R\
express as a function of q̂  and T. To do so, we introduce the Helmholtz 
free energy F which is  defined as

F £ U - TS. (18)
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The Helmholtz free energy can be defined as the "useful work" that can be 
done by the system. ( I t  is  d ifferent from the Gibbs free energy. The Gibbs 
free energy can be defined as the the " to ta l work" that can be done by the 
system. See Ramsay /1971/.) We have to note the natural variables of the 
Helmholtz free energy are among others the temperature and the deformation 
co-ordinates (see Callen /I960/).

Substitution of F into Eq. (8) yields

which implies

dF = - S dT + Q^R)dqi(

-S = (3F/3T) ,

Q<R) .  O F /> 4 l ) T , qk

(19)

(20a)

(20b)

because dF is  a to ta l d iffe re n tia l. Using the identity (20b) permits to 
write Eq. (17) as

(3 F /3 q i ) T ,qk + b i j q j  = Qi ’
( 21)

which is  a set of n equations of motion fo r q  ̂ under the action of prescrib
ed forces and temperature. This system of equations can be called as the 
constitu tiv  equations of the linear viscoelastic materials.

Equation (21) is  general in the sense that we did not make any re
s tr ic tio n  on the free energy. I f  the system is  in the neighbourhood of a 
reference state, the free energy can be expanded in a Taylor series, and 
powers higher than second order can be neglected. So we obtain

f 3F) о + ( 3F 1 0 1 Í 32f 1 _
?

Э- F 1 э2ч1 эт)г® + 13cy r qj 2 \ 3qi 3qj)r qj qi 1эд^эт )r ° qj  + 2 1 3T2 1,
( 22)

The expansion here was made according to the natural co-ordinates of the free 
energy. (The "natural co-ordinates" expression is  used by Callen /I96 0 /.)

Here г means the reference state and 0 = T-T . I f  the temperature of 
the system is constant, i.e . T=Tr , and the reference state represents 
thermodynamic equilibrium, then we obtain

.2
F = 1 (  ,Г Г_ 

2 ( Bq.aq. qi qj -
(23)
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Fig. 2

I f  we introduce the de fin ition

0 2 F/3q i3q j) s a.. = 3 j i , (24)

then the expression of the free energy becomes

F = T ai j qj qi  * (25)
So Eq. (21) can be w ritten as

ai j V bi A  = v  (26)

B iot /1954/ called th is  equation "the fundamental equation of relaxation 
phenomena", while Schapery /1964/ called i t  "thermodynamic equation of mo
t io n " . Let us employ Eq. (26) in the case of a very simple system, which 
consists of a spring and a dashpot connected in  paralle l (see Fig. 2). This 
is  the so-called Kelvin model. In th is case i= l and j= l. a ^  means the 
spring constant, while b ^  is  the viscosity of the dashpot /Flügge, 1975/. 
I f  is  equal to zero, then the model becomes a dashpot, while i f  b-^ is
equal to zero, the model becomes a spring. Let us examine a more complicated 
model (Fig. 3). Ihe constitu tive eguations of th is  system are



STABILITY OF VISCOELASTIC SYSTEMS 1J5

k l ql  + v l q l  + k2('ql " q2’) + k 3(q l  ” Ч3 ) = Ql> 

к2 (^  ̂ ~ ^2) + ^2q2 = (27)

-k2(q1 - q3) + v3q3 = 0.

These equations express the equivalence of the external force and the re
sistance of the springs and the resistance of the springs and the corre
sponding dashpots. I f  Eqs (27) are rearranged, we obtain

( k 1 + k 2 + k 3 )q 1 -  k2q2 -  k 3q3 + ,

-k2q1 + k2q2 = 0, (28)

- k3q3 + v3q3 = 0.

Taking in to account the symbols of (26):

a l l
= k^+k2+k3 a12 ~k2

1IIf—1
CD

b l l = V1

a12 = -k2 022 “ l<2 a23 = 0 b22 = v2

a13 II 1 7Г a23 = 0

IIГЛ
CD CJ V/-J

>II

The parameter q̂  is an external parameter, while q2 and q3 are in terna l 
parameters (hidden co-ordinates). The system in Fig. 3 has not an e lastic  
response, due to the dashpot v^.

4. A necessary condition fo r the s ta b ility  of linear 
viscoelastic materials

Now we make the res tric tion  that we shall examine only structures made 
of materials having e lastic  response. That means that the external par
ameters (more precisely the rate of external parameters, i.e . the stra in 
rates) cannot have viscous coefficient d iffe re n t from zero. In th is  case the 
system of Eqs (21) can be written as

. ,q . = Q. 
i r j  1 i  = 1.. .k (29a)

. .q. + b. -q. = 0 
1J4J 1J4J i  = k+1 , . . .  ,n (29b)

where к is  the number of external parameters. Now the viscosity parameters 
are the function of time.
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The external forces usually are not conjugate to the external par
ameters. So we have to employ a transformation i f  we calculate the work of 
the external forces. I f  we res tric t ourselves to conservative external 
forces, i.e . i f  the forces can be derived from the external work by d i f 
fe ren tia ting  with respect to conjugate co-ordinates, and the work of ex
te rna l forces is W=ÍP^df(q^), the (29a) can be written as

_3F3q. (30)

taking into account that a^j4 j = aF/aq^.
I f  we use the notation V = F-W then Eq. (30) becomes

ЭУ
3q. = 0. i  = l . . . k . (31)

Let us examine the s ta b il ity  of a structure made of viscoelastic materials 
w ith  viscosity coeffic ien t varying in time. In th is  case we have to deter
mine the time when the rate of external parameters tends to in f in ity  ( c r i 
t ic a l  time). That is  when the structure collapses. To obtain the rate of ex
te rna l parameters is  le t  us differentiate Eq. (31) with respect to time. 
That means

_ d _  _ 3 V _
dt [ 3qi = 0. (32)

Where i t  was taken in to account that

and

d a w d d f(q .)
P 1d t

L  3 q i J
d t 1 dqf

Г d f(q .)
= J h  d q ~  d4i

. d f(q .) d2f(q .)  df(q.)
p --------L_ + p ---------- L -  = p _____L_

1 dqt  1 dqi dq^] 1 dqt

(33a)

93ZW
Bq^q- (33b)

Let us separate the rate of the internal and external parameters in  Eq. 
(32). So we have

32V • 32V • a df<̂ qi ' )--------  Qi + ---------  q • + r ,—-j-----  =aq^qj^ 41 aq^q j 4J 1 dqi (3 4 )

where q-̂  means the rate of external parameters.

( i  = 1 , . . ,k)
(1 = 1 , . . ,k)
( j  = k+1,. . ,n)
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Equation (34) is  a system of linear equations for q-̂ . The coeffic ient 
matrix of the system is  the Hessian matrix of the potential energy. So i f  we 
wish to express q̂  as a solution of the system (34), then the determinant of 
the system is

?3
aqi aq1 (35)

One can obtain in f in ite  value for q  ̂ i f  th is  determinant is  zero.
I f  th is determinant becomes zero, that is  the coefficient matrix of the 

system for qp Eqs (34), becomes singular, that means that the Hessian of the 
system is singular or the minimum of the potential energy of the structure 
disappears in the space of external parameters. So one can conclude that the 
structure made of viscoelastic material loses i ts  s ta b ility  i f  the Hessian of 
the potential of the structure is  singular. This crite rion  is  very sim ilar to 
the so called energy crite rion  of the equilibrium of e lastic structures.

Let us take an example. We shall examine the structure in Fig. 4. The 
bar AB of the structure is  made of Dischinger material. The Dischinger model 
is  a spring and a dashpot connected in line . The dashpot has a viscosity co
e ffic ie n t varying with time. (This is  the so-called ageing.) The constitu
tive  equation of bar AB is

= I  dQ Q d£
dt к dt к d t ’

where q is  the elongation, t  is the time, Q is  the component of the external 
force in  the direction of AB, к is  the spring constant and

* = *max(1 " e' Xt)> W

where Фтах and X are material constants.
The equation of equilibrium of the structure is

-QL cosß + PL sinß = 0, (38)

where P is the external force, ß is  the angle between the ve rtica l and the 
BC lin e , and from geometrical consideration

q = qD + q0g = L sine, (39)

where qQ is the elongation of the Dischinger model,
q0g is the distance of the points A and В just before loading (geo

metric imperfection).
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F ig , 4

Using (37), (38) and (39), we obtain from (36)

-Vt
de
d t

Хфmax sinßcosß e
kL 3£ -p- cos t 1

Let us calculate the potentia l energy of the system:

i k ( q - q d - q 0 g ) 2  -  PL J 1 -  ( ^ )  -

Here q^ is  the elongation of the dashpot (in ternal parameter).
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Differentiating (41) with respect to q the resu lt is

!ïï = k(q V  - p q/J- (42)

This expression w il l  be used la te r.
D ifferentia ting (41) two times with respect to q and taking into ac

count Eq. (39), we obtain

kLcos p -  P 
Lcos3ß

cos^ß - 1 

jr cos5ß

(43)

Comparing the numerator of (43) and the denominator of (40), i t  can be seen 
that dß/dt tends to in f in ity  when the potential energy loses i t s  minimum. 
This result is  naturally, the consequence of the earlier proof.

I t  is  worth to examine the behaviour the structure in Fig. 4 in more 
deta il. Let us determine the rotation-time function in the case of the 
structure in Fig. 4. The variables in the Eq. (40) can be separated and 
after integration we obtain

t  = - X 1" * 1 rmax
kL— cosß + In

L  ßjtan 2 
tanß

kL
Pn

(44)

In Eq. (44), Bg means the in i t ia l  value of ß. Two ß(t) functions are plotted 
in Fig. 5 for two d iffe rent * values. I f  ф = 13, then the ß(t) func- 
tion tends to a horizontal asymptote, while i f  Фтдх = 14 then the ß(t) 
function has a vertica l tangent, which gives the c r it ic a l time. I t  is  seen 
that the curve belonging to ф = 14 "bends back". That means that the ß(t) 
curve has no physical meaning above (5 which is  the point of loss of 
s ta b ility .
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To be come more fa m ilia r with the phenomenon, le t us consider Eq. 
(42). This equation can be d ire c tly  established by taking into account the 
equilibrium  equation of the structure and the physical equation of the 
spring. The right-hand side of th is  equation is  equal to zero which is  the 
conclusion of Eq. (21) or (26) of the derivation sketched. Expressing the 
load P from this equation, a function of two variables is obtained. This 
function can be seen in Fig. 6 in the case of two d ifferent load levels. 
This figure shows that the phenomenon can be interpreted in the following 
way. I f  in the course of the process the creep stops before the load bearing 
capacity decreases below the load, the structure w il l  not loose its  s ta b il i
ty  (see Fig. 6b). On the other hand, i f  the creep continues beyond th is  
po in t the structure w il l  lose i ts  s ta b ility  (see Fig. 6a).

5. The effect of temperature

In th is part we shall examine the case when T-T^ is  not equal to zero. 
Let us change Eqs (30). I f  we take into consideration that FeU-TS and d if 
fe ren tia te  i t  with respect to T, we shall get

(SF/sT)q = (3U/3T)q - S - T(3S/ST)q . (45)
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Introducing (20a) into (45) the resu lt is

(3U/3T)q = T(3S/3T)q = -T(32F/3T2)q. (46)

Now i t  w il l be proven that (3U/3T) = Cq, where Cq is  the heat capacity at
constant volume. (Ihe generalized co-ordinates are constant.)

Let us start with Eq. (3). In the case of constant volume

dH = dU. (47)
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Because of the de fin ition  Cq = ЭН/Э1, consequently

C = ЭН/ЭТ = 3U/3T. (48)

Taking into account (46) we shall get

Cq = -Tr (32F/3T2)r (49)

where the subscript г  means the reference state at which the heat capacity 
is  given. I f  we take in to  account the defin ition

(32F/3qi 3T)r = -6 i  (50)

and Eg. (24), then Eq. (22) w i l l  have the form

= - V
1ту a. .q.q. - 2 iJ 4i 4J (Cq/2Tr )6z (51)

I f  we repeat the derivation that has been shown in  the fourth part, and take 
in to  consideration Eq. (51) for F, then Eqs (33) w i l l  have the form

a2v
3qi 3q1

Л  •
3q,3q- 4j + P

df(qi )
1 dq. 0. ( i  = l . . . k )

(1 = 1...Ю
( j  = k+1. . .n)

(52)

I f  we want to solve (52) fo r q. then the determinant of the system, as was 
in  the case of Eqs (34), w i l l  be again |3 V/(3qi 3q1) | .  w il l tend to in f i 
n ity  i f  the determinant of the system is equal to zero, or the Hessian of 
the potential energy of the system is singular.

6. Summary

Ihe s tab ility  of viscoelastic structures was analysed by several 
authors. Because of the neglection of the ine rt mass this phenomenon cannot 
be treated as the s ta b il i ty  of motion. On the other hand, because of the in 
creasing entropy in the course of creep, th is  is  not identical to the prob
lem of the s tab ility  of equilibrium. In the s ix tie s  i t  was recognized that 
the buckling phenomenon is  actually an e lastic one, but the connection of 
th is  phenomenon with the property of the points of the elastic potential
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could not be found. I j ja s  /1982/ showed the connection between the in fin ite  
rate of deformation and the c r it ic a l point of the potential energy of the 
analysed system in the case of linear viscoelastic materials with constant 
material coefficients. In th is  paper th is  result is generalized fo r material 
coefficients varying with time. The influence of the temperature are exam
ined too.

REFERENCES

B io t, M. A. (1954): Theory o f stress s tra in  re la tio n s  in  an isotropic v is c o e la s t ic ity  and re
laxa tion  phenomena. J. o f Applied Physics, Vol. 25, No. 11, 1385—1391

Brush, don 0 ,—Almroth, bo 0. (1975): Buckling o f Bars, P lates and Shells. M cG raw -H ill

Callen, H. B. (1960): Ihermodynamics. John Wiley

Flügge, W. (1975): V is c o e la s tic ity . Springer Verlag

Freudenthal, A. M. (1946): Some time e ffec ts  in  s tru c tu ra l analysis. Report 6th  In te rn a tio n a l 
Congress fo r Applied Mechanics, (unpublished) see also

Freudenthal, A. M. (1950): The In e la s tic  Behaviour o f Engineering M ateria ls and S tructures. 
John Wiley and Sons, New York

Hayman, B. (1978): Aspects o f creep buckling. Proc. R. Soc. Lond. A. 364, 393—414, 415—

Hayman, B. (1980): Creep buckling-A general view o f the phenomena. In : Creep in  S tructures, 
eds: A. R. S. Ponter, D. R. Hayhurst. IUTAM Symposium, Leicester, 289—307

H uit, J. (1962): O il canning problem in  creep. In : Creep in  S tructures, e d .: N. J. Hoff. 
Academic Press, 161—173

Huang, N. C. (1966): Nonlinear creep buckling o f some simple s truc tu res . IRPA 66—80, 
A p r il,  1966

I j ja s ,  Gy. (1982): Buckling o f v iscoe lastic  s truc tu res . Acta Technics Acad. S e i. Hung., 
Vol. 95, No. 1 -4 , 55-61

Kempner, J .—Pohle, F. V. (1953): On the nonexistence o f a f in i t e  c r i t i c a l  tim e fo r  linea r 
v isco e la s tic  columns. J . o f the Aeronautical Sciences, 572—573

Leipholtz , H. H. E. (1975): An attempt to  re fin e  ce rta in  s ta b i l i ty  concepts. Proc. o f the F ifth  
Canadian Congress o f Appl. Mech. F redericton, May 26—30, 1975, G61—G74

Ramsay, J. R. (1971): A Guide to  Thermodynamics. Chapman and H a ll Ltd.

Samuelson, L. A. (1969): Creep buckling o f a c irc u la r  c y lin d r ic a l s h e ll.  AIAA Journa l, Vol. 7, 
No. 1, 42-49

Schapery, R. A. (1964): A pp lica tion  of thermodynamics to thermomechanical fra c tu re , and 
b iré fr in g e n t phenomena in  v iscoe lastic  media. J. o f Applied Mechanics, V o l. 35, No. 5, 
1451-1465





A cta  Techn ica  Acad. S e i.  H un g ., 106 (3 —4 ) ,  p p . 145— 174 (1994)

EXPERIMENT TG INVESTIGATE THE COPMUN LOSS 

GF STABILITY OF EGGE BEAMS IN COMBINATION WITH HYPERBOLIC 

PARABOLOID SHELL SUPPORTED ALONG THE GENERATRICES

JANKŰ, L .*—SZITTNER, A .**

(Received: 29 September 1994)

A fte r pre lim inary th e o re tic a l studies, experiments have been run to  investiga te  
the buckling o f edge beams o f the hyperbolic paraboloid she ll supported along the ge
ne ra trices , w ith a view to  make c lear how does the edge beam loose i t s  s ta b i l i t y ,  
taking the s t if fe n in g  e ffe c t o f the sh e ll in to  consideration.

By changing the thickness o f the edge beams gradually, the e f fe c t  o f  fle xu ra l 
r ig id i t y  on the loss o f s ta b i l i t y  of the s h e ll in te ra c tin g  w ith the edge beam could be 
investigated.

I t  was found tha t in  the geometrical domain investigated ( i .e .  in  case o f a she ll 
r e la t iv e ly  r ig id  as compared w ith  the edge beam), ne ither she ll buckling nor edge beam 
buckling (b ifu rca tio n ) had taken place. Instead, a loss o f s ta b i l i ty  by equ ilib rium  
lim ita t io n  (divergence o f equ ilib rium ; snap-buckling) has occurred.

An em pirica l re la tionsh ip  has been set up to  ca lcu la te  the c r i t i c a l  load .

1. In tro d u c tio n

In shell construction, the hyperbolic paraboloid (hypar) she ll sup
ported along the generatices is  one of the structures most frequently used.

Studies of the simple buckling phenomenon of a hyperbolic paraboloid 
shell of linearly  elastic material supported along the generatrices (hypar 
lim ited by stra ight generatrices), geometrically perfect, f la t ,  isotropic 
(or orthotropic), rectangular or oblique, under uniformly d is tribu ted  load 
in the ground plan, are considered to be a known fie ld  /1—4, 9—10, 12—13/.

However, the buckling of edge beams is  a different question. The 
buckling of two-hinged edge beam has been studied theoretically by Daya- 
ratnam and Gerstle /1 / and our accurate calculations based on th e ir ap
proximate results as well as a method we have developed for the buckling of

"Jankó, László, H-1091 Budapest, U lló l ú t 117, Hungary 

**S z ittn e r, Anta l, H-1026 Budapest, Gárdonyi u . 32, Hungary
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the cantilever edge beam are presented in /7 /. According to this method, the 
s tif fe n in g  effect, acting as an "elastic foundation", of the shell in te r
acting  with the buckling edge beam to be re lieved, was determined on the 
basis of /5 /.

Note that our so lu tion  in /5/ applies to a conservative system of 
forces while the shear force acting upon the edge beam is non-conservative 
because i t  follows the shape of the buckling edge beam ( i.e . i t  is  direc
t io n a lly  not stable). At the same time, the d irectiona l s ta b ility  of the 
shear force is re la tive ly  insignificant because of the flatness.

Leet /10/ was the f i r s t  to run experiments to thoroughly investigate 
the buckling of the edge beams of the hyperbolic paraboloid shell supported 
along the generatrices. An evaluation of his resu lts  was also published by 
Gioncu /4 /. In order to make clear the phenomena not investigated by Leet 
and as a continuation of our theoretical solution given in /7 /, we have run 
experiments. By changing the thickness of the edge beam gradually, we have 
got suitable information about the effect of fle xu ra l r ig id ity  El (re la ting  
to  the horizontal axis, c f .  Fig. 20) of the edge beam on the loss of sta
b i l i t y  as well as on the extent of interaction between the shell and the 
edge beam.

I t  was investigated whether buckling (b ifu rca tion) of the edge beam 
had taken place indeed at a l l .  In the geometrical domain investigated ( i.e .  
in  case of a shell re la t iv e ly  rig id  as compared with the edge beam), the 
loss of s tab ility  was found to result rather from equilibrium lim ita tion  
than from bifurcation (divergence of equilibrium; snap-buckling) .

Presented in th is  work are the experimental results obtained by 
S z ittne r, Kálid, Kaltenbach, Köröndi and K ris tó f, described in de ta il in 
/1 4 /, together with the evaluation thereof as well as the conclusions drawn 
by us.

The reader's a tten tion  is  directed to Section 4 describing the c ir 
cumstances under which the experiments could have come about.
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2. Description of the experiments

2.1. Experimental program

2.1.1. _Sup£0 rt_c£n cü. _ti on£

The models are presented in Fig. 1, the dimensions being given in mm 
in Figs 1 and 8. The edge beams of models 1-5 are cantilever edge beams 
supported at the low corners continuously along a length of about 45 mm in 
both directions by means of 2 M6 bolts and washers at each point, by clamp
ing through the ribs (Fig. 2). In models 1 and 5, steel spacers were placed 
to transfer and/or d is tribute  the clamping force of the bolts.

One of the two supports was a fixed support while the other support 
was diagonally s lig h tly  adjustable so that the adjustment of the geometry of 
the shell model would best simulate the geometry according to the plan.

The edge beams of model 6 were supported by means of pendulum props 
at the high corners (Fig. 3) while they were clamped in the way described 
above at the low corners.

2 A . 2_._Geometг ical_dat£

Theoretical thickness of the plexiglass shell plate: h = 1.5 mm. In 
the ground plan, the hyperbolic paraboloid shell supported along the gene
ratrices is a square with a side length of 2a = 2b = 560 mm (F ig. 1), the 
theoretical rise of the hypar shell being f  = 70 mm.

In the ground plan, the outline dimension is  2A = 2B = 580 mm in case 
of each model.

The thickness of the rectangular edge beams is bQ = 10 mm in case of 
each model, the height varying as follows: = 15 mm, m2 = 12 mm, m-j = 8 mm,

= 4.5 mm, m̂ = h = 1.5 mm, m̂ = m2 = 12 mm. In model 5, the edge is  not 
stiffened at a ll.

In th is work, w is used for the vertica l displacements of the surface 
points (Figs 8 and 15—19). The geometrical imperfections wo of the above 
structure considered to be geometrically perfect are specified in /14/ (for 
the most important values see Figs 15, 16).



Fig. 1. General arrangement. The models studied
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F in . 2. Clamping f ix tu re  (Models 1—6)

2_.1_.2-_CÜ°ÍcíL £f_t]re_mat&r_ia_l £f_t]iejTiodelj3

In planning for the program of the model experiments, f i r s t  thing to do 
was to choose the appropriate material for the required geometrical para
meters (thickness-span re lation) to be used in the model experiments, taking 
the distorted surface geometry of the shell in to consideration. Ihe thinnest 
(1.5 mm) plexiglass (monomethyl metacrylate) plate commercially available in 
Hungary fo r the time being was found to be suited for the purpose, among 
others because the plexiglass could be sticked with its  own material re la
tive ly  successfully and i t  can be formed at certain temperatures.

Ihe elastic characteristics of the material were determined by means 
of tensile tests using tensile test bars cut away from the edge of the heat- 
treated models. Two tensile test bars were used to determine the material 
characteristics, with 1 longitudinal and 1 transversal resistance stra in 
gage (Kyowa, type KFC-5-C1-11) sticked on either surface of each specimen.

The average values of the results obtained for the modulus of e la s ti
c ity  (E) and transverse contraction factor (p) on the basis of 16 data for 
each are tabulated in Table I .
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F in . 3. Pendulum prop (Model 6)

Table I .  Material ch a ra c te r is tic s

a/Nmm 2 / E /Nnrn 2/ У / - /

Stress domain
Modulus of Transverse
e la s t ic ity con traction  facto r

0-20 3200 0.365

2. • i  • iL • _M£d el_m ak

The plexiglass plate of a thickness of 1.5 mm was cut into six about 
650 X 650 mm squares. This pieces of plexiglass plate were used to produce 
the hyperbolic paraboloid shells of distorted surface. For th is purpose that 
is ,  to form the surfaces, the heat-treating furnace used for optical stress
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measurements by the Department of Mechanics, Faculty of Mechanical Engi
neering, Technical University of Budapest, was put at our disposal.

The template was made of pieces of a 630 mm long steel s tr ip  of a 
cross section of 0.8 x 19 mm in accordance with the straight surface genera
trice s . A baseframe was made of fu l l  steel sections, with a frame of an in 
clina tion  of 1:4, made of pieces cut out of a 10 mm thick steel plate, 
welded on i t .  Between the two pairs of opposite edges of the frame, there 
was a difference of 19 mm in height in compliance with the height of the 
steel s trip . The 750 steel strips were arranged edgeways, side by side, on 
one of the two pairs of opposite edges of the approx. 600 x 600 mm frame. The 
steel s trips, properly pressed together and arranged, were welded together 
and then to the frame from below. The surface so obtained was smoothed to 
eliminate the 0.2 mm steps by means of a manual corner grinder: Fig. 4.

The template so produced was used to mould the plexiglass plate of a 
thickness of 1.5 mm. In doing so, the plexiglass plate was la id  onto the 
template. Six layers of rubber plates of a thickness of 3 mm each were la id  
onto the plexiglass plate lying on the template, which, due to th e ir own 
weight, were expected to help the plexiglass plate to take the shape of the 
template. The plexiglass plate which had experienced thus e lastic defor-

F ig. 4, The template used
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mation was then placed, together with the template and the rubber plates, in 
the heat-treating furnace heated to a temperature of 180 °C. This re la tive ly  
high moulding temperature was required because at lower temperatures, a 
"freezing" of the correct shape could not have been achieved. The heat- 
treatment took a time of 1 hour and the furnace, s t i l l  closed, was allowed 
to cool for about 24 hours.

The shells so obtained were cut f i r s t  to the orig ina lly  planned size 
o f 600 mm. However, i t  was found that because of deformation of the over
hanging parts, more correct models could be obtained i f  10 mm or 15 mm were 
cut away from the shells on every side. Since imperfections in geometry were 
s t i l l  detectable after the edges had been cut away, the finished shells were 
heat-treated again, one by one, in the way described above.

The ground plan dimensions of the shells of models 1, 2, 3 and 6 are, 
in  the last analysis, 570 x 570 mm because these models have grooved edge 
beams. The edge beams of these models were made of plexiglass plate of a 
thickness of 10 mm with a groove of a width of 2 mm and a depth of 5 mm cut 
in to  the centre of one of the higher sides of the edge beam, designed to 
receive the shell. The shell plate f i t s  in to  the groove of a width of 5 mm 
which corresponds to half of the edge beam width of bQ = 10 mm. The shell so 
assembled and the edge beams have been sticked together by waste plexiglass 
dissolved in chloroform.

The ground plan dimensions of the shell of models 4 and 5 are 580 x 580 
mm because the edge beam of model 4 has been produced by sticking plexiglass 
s tr ip s  of a width of 10 mm and a thickness of 1.5 mm on the top and bottom 
surfaces while for model 5, no edge beam has been provided at a l l .

The finished model located on the steel baseframe is  shown in Fig. 5.

2 . 1 - l-J -o a d

For the sake of an (approximately) uniform distribution of the load 
acting upon the models, the load was transferred to the shells at 8 x 8 = 64 
points located at a uniform spacing in both directions in the ground plan 
network. Holes of a diameter of 2 mm were bored at the loading points (net
work nodes) at righ t angles to the surface, through which as well as through 
the М2 washers located there the pair of cords connected to the f i r s t  rocker 
element was led and then fixed by means of a mandrel.

Two-support d is tribu ting  rockers were used for load d is tribu tion  
(F ig . 6). Altogether five rows of rockers were used, arranged one under the 
other and interconnected by cords; with a rocker element connected to the
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F ig . 5. Model on the baseframe (Models 1—5)

Fig. 6. Rocker system
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Fin. 7a. Load tra n s fe r  to  the rocker system (Models 1, 2, 3, 6)

loading fixture arranged among the elements of the sixth row. The f i r s t  row 
of rockers included 32 while the second 16 elements, consisting of small 
aluminium beams of a cross section of 2 x 12 mm and 2 x 15 mm, respectively, 
w ith a span length of 72.5 mm. The rocker elements with a span length of 
145 mm of the th ird  row of rockers were made of steel plate in  case of 
models 1, 2, 3 and 6 while of aluminium plate in care of models 4 and 5 of 
reduced load. The fourth  and f i f th  row of rockers as well as the sixth 
rocker element were made of steel in case of models 1, 2, 3 and 6 while, 
w ith a view to reduce the base load, of wood in case of models 4 and 5.

The length of the cords interconnecting the shell and the f i r s t  row 
of rockers was determined so that a rearrangement of the network due to de
formations would p ra c tica lly  not be hindered.

In case of models 1, 2 ,3  and 6, the load acting upon the upper steel 
p la te  was transferred to the rocker element in the sixth row through a 
pressure load ce ll (F ig. 7a). A 10 kN load ce ll was used, permitting the 
values of the weight to be recorded e lectron ica lly with an accuracy of 
0.2-0.5% (20-50 N). The loading weights were placed on a r ig id  steel bar 
(F ig . 7b).



In case of models 4 and 5, load was applied to the rocker element in 
the sixth row simply by suspension, using a loading tray (Fig. 7c). Ihe 
loading weights weighed in advance were placed in the tray.

In recording the values of load applied to the model, the weights 
used as well as the dead weight of the rocker system and of the model were 
taken into consideration.

When load was applied to the model, the f i r s t  step was to apply a load 
corresponding to the sum of the dead weight of the model and the weight of 
the f i r s t  four rows of the rocker system, called load 0 (zero), in  every 
case. The next step was to add the sum of the weight of the f i f t h  and sixth 
row of rockers, the loading tray and the load ce ll to load 0. This load is  
called load 1. In the subsequent steps, load 1 was considered to be the 
unloaded condition that is , the basis for comparison. For loading and/or 
re lieving of the model, a hydraulic l i f t e r  was placed under the loading tray
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F ig . 7b. Load trans fe r to  the rocker system 
(Models 1, 2, 3 , 6)
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Fíh . 7c . Load trans fe r to  the rocker system 
(Models 4, 5)

(F ig. 7b), permitting not only the model to be loaded and relieved but also 
a complete destruction of the model to be avoided in case of a possible 
loss of s ta b ility  of the model (with the distance between the top of the 
l i f t e r  and the bottom of the loading tray kept within 1-2 mm upon loading).

Between the d iffe ren t load steps, we have always returned to load 1. 
As a resu lt of th is r e l ie f , also the effect of creep has become neglig ib ly  
sm all.

2.2. Model measurements

Deflection and stress measurements were made under every load and 
whenever the model was unloaded.
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2 _ .2 _ .1 _ .ect km measurements

Deflections of the model were measured by levelling by means of 21 
leve lling gages (Fig. 8) sticked on the upper surface of the model and on 
the outer edges of the edge beams. Two leve lling stations were provided for 
every model experiment, using MOM Ni A-31 superior-quality le ve llin g  instru
ments for measurement. In accordance with the spacing of the le ve llin g  gages 
(5 mm), the sens itiv ity  of the measurements (minimum unit of measurements) 
was 0.05 mm. Because of the thickness of the line  indicating the points as 
well as of the inc lina tion  of the leve lling gages under load, the measuring 
error was somewhat higher but i t  s t i l l  lay below 0.1 mm. To in te rre la te  the 
two measuring instruments and/or the results of measurements, the saddle 
point (18) was measured by both instruments. The deflection (ve rtica l dis
placement) was measured as the difference in height as compared with the 
in i t ia l  load ( load 0 according to 2.1.5.).

6 7 8

levelling p o in ts  : 1 - 2 1

strain gages — X

F ig , 8. Levelling points fo r  de flec tion  
measurements. Arrangement o f measuring s tra in  

gages (Models 2—6)
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2_. 2̂  2_._Stress  ̂measurements

In order to d istinguish the normal stresses and bending stresses, a 
measuring rheostat was located on both the top and bottom surfaces of the 
she lls  and edge beams (F ig. 8).

Considering the state of uniaxial stress prevailing there, simple 
KFC-5-C1-11 measuring rheostats with a measuring base of 5 mm were used for 
the edge beams and free edges (model 5).

At points arranged coincidently with the axis of symmetry (which could 
therefore be characterized by known principal stress d irections), two ro
se tte  type measuring elements (KFC-2-D2-11, measuring base: 2 mm) were ar
ranged at right angles to each other, the ir d irection coinciding with the
p rin c ip a l stress direction (w ith  the axis of symmetry). Stresses a , a were

X y
calculated on the basis of extensional strains ex , measured, using the 
well-known relationships of the state of plane stress.

For Model 1, so-called three-dimensional rosettes (KFC-2-D4-11) ar
ranged at angles of 3 x 120° at points of general position were used. These 
three-directional rosettes were used for Model 1 only. Namely, sign ificant 
stresses had not been measured on the shell points but only on the edge 
beams of Model 1 and therefore, in case of Models 2—6, measuring elements 
have been located on a ll the four edge beams with a view to detect a possi
ble asymmetric behaviour o f the edge beams more accurately and thus three- 
d irec tiona l rosettes have not been used here.

A CMP 16 measurement center with d ig ita l display, produced by Hottin- 
ger, was used for extension measurements in application with an MG 32 
measuring amplifier of a c a rrie r frequency of 225 Hz, with DATCON measuring 
point transformers interposed. An AT 286 PC was used fo r data collection and 
processing.

To document the resu lts  of measurements, the extensional strains 
measured in the lower and upper extreme fibres, the extreme fib re  stresses 
calculatable on the basis thereof as well as the normal and bending stress 
components determined on the basis of the extreme fibre  stresses were 
tabulated /14/ for each point of measurement.
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2.3. Results of the model experiments

2.3.1. _Model_!

Some seconds after the last load step had been applied, the model 
collapsed and i t  broke into pieces (Fig. 9). The relationship between sur
face load q and deflection ŵ g of the shell center, determined in  the 
course of the experiment, is diagrammatically illus tra ted  in Figs 15—16.

2.3.2. _Model_2

20-30 seconds after the last load step had been applied, the model 
sunk down and the load got up onto the hydraulic working cylinder. An ab
solutely e lastic  loss of s ta b ility  has taken place, permitting Model 2 
to be used la te r for construction of Model 6. See also Figs 15—16.

F in .  9 , Loss o f  s t a b i l i t y  o f  Model 1
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F ig . 10. Loss o f s ta b i l i t y  o f Model 2

2.3.3. Model 3

A loss of s ta b il ity  s im ilar to that in case of Model 2 has taken place 
as shown in Fig. 11. See also Fig. 16.

2_.2.ib_Model_4

The loss of s ta b il ity  took place shortly after the load had been ap
p lied  and the model got up onto the hydraulic working cylinder. The state 
before destruction is  shown in Fig. 12. S ignificant permanent deformations 
were measured after re lie f ,  suggesting that the model had experienced plas
t ic  deformation. See also Fig. 16.
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F ig . 11. Loss o f s ta b i l i t y  o f Model 3

F ig ,  12. Loss o f  s t a b i l i t y  o f  Model 4
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F ig . 14. Loss o f s ta b i l i t y  o f  Model 6

F ig . 13. Loss o f s ta b i l i t y  o f  Model 5



2.3.5. Model 5

The perfectly unstiffened shell has los t s tab ility  after the s ig n if
icant deformation illus tra ted  in Fig. 13 and the model got up onto the 
hydraulic unit. See also Fig. 16.

2.3.6. _Model_6

Figure 14 shows the model, also supported by pendulum props, at the 
instant before buckling. The model has got up onto the hydraulic press about 
5 minutes after the last load step had been applied. A slight permanent de
formation has been recorded after re lie f subsequent to the loss of s ta b i l i 
ty . See also Fig. 15.
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F ig . 15. Experimental e q u ilib riu m  paths 
(Models 1, 2 , 6)
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F ig . 16, Experimental e q u ilib riu m  paths 
(Models 1—5)

2_. 3_. 7_._0е^£]^е^Ъзпз_е>ф£г^епсес1_Ьх the edge beams

Illus tra ted  in Fig. 17 are the deflections of the edge beams experi
enced immediately before the loss of s ta b il ity .  Note that buckling of the 
edge beams has taken place antimetrically ( l ik e  a frame) as compared with
high corners 5 or 13 (Fig. 1) as also shown in  Figs 10—14.
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3. Evaluation, conclusions

On the basis of Figs 15—16, the experimental equilibrium paths ob
tained can be described by characteristic curve Ы in Fig. 18.

3.1. On shell buckling

The classic linear c r i t ic a l , so-called Reissner—Ralston-load (b i
furcation) of the shell can be calculated by means of the following well- 
known relationship /9, 12, 13/.

q
l in
cr,sh kE

2 2 h f (3.1)

F in . 17. Edge beam d e fle c tion  curves
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Fig. 18. Type o f th e o re tica l and experimental 
equ ilib rium  paths

(a l:  lo ad -de flec tion  diagram o f a geom etrica lly perfect 
s truc tu re ;

a2: same as a l but fo r Lee t's  s tructu res;
Ы : experimental load -de flec tion  diagrams; 
b2: same as Ы but fo r  Lee t's  s tructures)

where

V3(l - u2) ’

u being the transverse contraction factor.
Parameters p and ш have been defined in Fig. 21. The subscript sh 

re fers  to shell buckling load. With the data of Fig. 1 and Table 1,

q
l in
cr,sh 7,11 kNm

has been obtained.
Since th is theoretical c r it ic a l load is  s ign ificant, a shell buckling 

(b ifu rca tion ) has not been expectable and, according to the experiments, i t  
has not taken place either. In Fig. 18, section P of curve b2 corresponds to 
the buckling of the geometrically imperfect shell. No buckling of th is  type 
was shown by curve Ы.
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Remember that in the experiments of Leet /10/, the shell experienced 
buckling at about 51—71% of the load calculatable by means of equation (3.1) 
because of the imperfection ( in i t ia l  waviness) wQ. Also th is  value is  rather 
high in our case.

As is  known, buckling of the shell takes place inextensional (ex = 
= = 0; / 0 ) ,  in a p la te-like way, with a stable symmetric point of 
b ifurcation, that is  the postbuckling diagram is  r is in g . The physical ex
planation of th is  phenomenon is  that in case of properly r ig id  edge beams, 
the fibres convex from above (compressed), buckling in small local waves of 
a large number, are so to say suspended by the fibres concave from above, 
like  by a suspended roof /4 , 9/. And th is was shown indeed by the Leet 
models (Fig. 18, curve b2).

Using the data of the Leet shells (a = 406.4 mm, f  = 101.6 mm, h = 
= 0.7747 mm, E = 3,297-10^ kNrrf^, I = 5.549-10 ^  rrA), a re la tive ly  small 
c r it ic a l load,

q
l in  
cr ,sh = 0,927 kNm

can be calculated for the shell and a shell buckling has taken place indeed 
in the course of the experiments.

Note that in the investigations of Leet, the load at which shell 
buckling has taken place decreased continuously as the r ig id ity  of the edge 
beam decreased. Accordingly, also equation (3.1) remains less and less valid 
as the edge beam looses its  r ig id ity . Hence, the assumption that the c r i
t ic a l load of the shell buckling in small local waves of a large number (in  
the direction of the arch under pressure) is  independent of the boundary con
ditions (that is , the edges can be considered to be in f in ite ly  fa r from the

Fig. 19. I llu s tra t io n  to  explain 
the reduction in  load capacity 

(1 — th e o re tica l foundation c o e ff ic ie n t, 
2 — actual foundation c o e ff ic ie n t)
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Fiq. 20. Change in  the upper c r i t ic a l  load as a 
function o f the  rad ius o f in e rt ia  o f the edge beam

buckling wave) remains, below a certain value of edge beam r ig id ity ,  no 
longer va lid . Of course, th is  is  the more true the more we advance towards 
the she ll of free edge.

3.2. Edge beam buckling

In /7 /, the following approximate formula (where subscript e indicates 
the edge beam) has been introduced to investigate the buckling of edge beams 
(b ifu rca tion  phenomenon) :

ql i nMcr,e - E (k,a + коpV̂T)
г л4- ^

(3.2)

where, in case of two-hinged edge beams, k^ = 3.094 and k2 = 1.391 
while in  case of cantilever edge beams, k  ̂ = 1.306 and k2  = 1.035.

For parameters a, p and ш see Fig. 21.
In the above re lationship, the term proportional to k^ stands for the 

c r i t ic a l  load (Euler load) of the bar while the term proportional to k2 ex
presses the supporting e ffe c t, acting as an e lastic foundation, of the shell 
in te racting  with the edge beam (fo r buckling of the bar on e lastic founda
tio n  see /5 /) .
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In the present case, the c r it ic a l load of the edge beam according to 
(3.2) of models 1—3 and 6 is  about 2-6 times as much as the c r it ic a l load 
of the shell according to (3.1). Thus an edge beam buckling (b ifu rca tion) 
has not been expectable. This expectation has been confirmed by our experi
ments.

Note that an edge beam buckling has not been expected, among others, 
because the shear force acting upon the edge beam is d irectiona lly  not 
stable, instead, i t  follows the geometry of the buckling edge beam that is , 
i t  is  non-conservative and thus a static b ifurcational c r it ic a l load (Euler 
load) is  not always acting upon the edge beam either. We think that while 
a s ta tic  c r it ic a l load always exists for the two-hinged bar (without elas
t ic  foundation) upon which non-conservative forces are acting, no s ta tic  
c r it ic a l load but only dynamic c r it ic a l load exists for the correspond-

Чсг « 0 .0 9 Е

F ig . 21. Approximate formula o f the upper c r i t ic a l  load
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ing cantilever /11/. This means that i t  is  not the frequency but the ampli
tude that starts to increase beyond every l im it .  However, th is  would come 
about only i f  energy were fed which is not possible in case of a she ll. On 
the other hand, according to the tables given in /11/, the dynamic bifurca
tio n  c r it ic a l load of the unbedded cantilever under load, resulting from non- 
conservative forces, is  about 5.2-fold as compared with the s ta tic  c r it ic a l 
load of the cantilever upon which conservative forces are acting. The ten
dency outlined w il l most lik e ly  prevail also in case of elastic foundation 
and thus a bifurcation buckling of the edge beam is not expectable. At the 
same time, the effect resulting from the change in direction of the shear 
forces is  considerably reduced by the fla tness.

Of course, either here or in the case according to para 3.1, i t  is 
not the theoretical ideal buckling (b ifurcation) a p rio ri excluded because 
of the presence of imperfection wq but the reduction in r ig id ity  a fte r curve 
section P of the Leet diagram in Fig. 18 that fa i ls  to come about.

In the geometrical domain investigated, no buckling (b ifurcation) of 
the edge beams /7/ was observed, certainly because of the re la tive ly  s ig n if
icant r ig id ity  of the shell stiffen ing the edge beam. Values of the pa
rameters in formula (3 .2): a = 0.0357 - 35.7, p = 46.7, w = 186.6 (with 
R/h = 746.7), see Fig. 21.

The theoretical load-deflection diagram of the appropriate, geomet
r ic a l ly  perfect structure ( wq = 0) is shown in Fig. 18 (curve a l) . To plot 
the diagram, d ifferent dash lines were used to indicate that th is  diagram 
has not been determined so fa r. The solution of the classic shell buckling 
(b ifu rca tion ) according to /1 , 2, 12, 13/, based on the equilibrium path, is 
well-known (see expression (3.1) and there exist approximate methods /1 , 7/ 
developed to investigate the buckling (b ifurcation) of the edge beam in te r
acting with the shell (see expression (3 .2)).

A loss of s ta b il ity  by equilibrium lim ita tio n  has taken place that is , 
the structure has got fa iled  (divergence of equilibrium; snap-buckling) 
under the upper c r i t ic a l load corresponding to apex u of the q-w diagram.

The load capacity tends to decrease a fte r apex u. In our view, the 
reason for th is is  that a fter a certain time, foundation coeffic ien t c of 
the edge beam supported e las tica lly  by the shell starts decreasing as de
fle c tio n  w increases. The reduction in s tiffness of the springs is  i l lu s 
tra ted  by characteristic 2 in Fig. 19.

Leet /10/ has investigated models (with re la tive ly soft shells as 
compared with the edge beam) where the f la t te r  section of load-deflection
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diagram P after shell buckling corresponds to the fact that a fte r shell 
buckling, the edge beam is  much less stiffened by the shell. Values of the 
parameters (see Fig. 21) given in formula (3.2): a = 18.4 - 110.0, p = 
= 131.2 - 151.0, ш = 524.6 - 608.9 (with R/h = 1098 - 2433). A fter a l l ,  the 
Leet edge beams have got failed either as a result of loss of s ta b il ity  by 
equilibrium lim ita tion  or they have broken before the lim it point (ho ri
zontal tangent) was reached. Edge beam buckling (bifurcation) has not taken 
place at a ll.

3.3. Recommendations

On the basis of Figs 20 and 21, an empirical approximate formula (see 
Fig. 21) was set up to calculate upper c r it ic a l loads q^r (exponent u). The 
relationship corresponds to formula (3.2) (and also to formula (3 .1 )) set up 
in a sim ilar way (using the same shell parameters but now in the form shown 
below):

q
u
cr кu (3.3)

where, for the cantilever edge beam,

к = 0.09.u

Only experimental data are available for two-hinged edge beams (Model 
6). On the basis thereof, ku = 0.105. Hence, the two-hinged edge beam is  not 
much stronger than the cantilever edge beam, the difference being about 17%. 
Concerning buckling (b ifu rca tion ), the buckling two-hinged edge beam was 
found to be by about 35-50% stronger than the cantilever edge beam in  the 
geometrical domain ivestigated. As is  well-known, this ra tio  w il l  be 
1.881/0.784 = 2.40 without e lastic foundation.

As seen, zero c r it ic a l load is  associated with the beam without shell 
(unbedded beam) in formula (3.3). In the last analysis, to eliminate th is  de
fic iency, we recommend that Fig. 22 and/or formula (3.4) be used fo r design 
purposes. The equation of the two straights in Fig. 22 was produced by 
equating the measured values of upper c r it ic a l loads q^r that can be read 
from Fig. 21 (or Figs 15 and 16) with the values of linear c r i t ic a l  load 
calculatable on the basis of relationship (3.2) (reduction proportionally to 
the loads). The measured values of loads q“ r amounted to about 7-14% of the
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values of linear c r i t ic a l loads according to equation (3.2) and also the 
coeffic ients of equation (3.2) were reduced accordingly.

After a ll,  the formula of c r it ic a l load that can be used for design 
purposes can be w ritten, as follows:

4 c r * ° - 20xcr (3 -4)

where, for two-hinged edge beams,

X cr = 1.881 + 0.40— , 
V“

while for cantilever edge beams,

X „  = 0.784 + 0.36 —”  .
cr VT

For the sake of a continuous transition to constants 1.881 and 0.784
of the unbedded edge beam, the reduction indicated in Fig. 22 (two zero

F ig . 22. Approximate design diagrams
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points along the same vertica l line) was used for Models 1 and 2_ (and a sim
ila r  reduction was also used in p lo tting  the straight in Fig. 21). That is 
why the values of c r it ic a l load calculatable by means of formula (3.4) are 
in general by about 15% lower than those obtained with (3.3). At the same 
time, formula (3.4) is advantageous in that i t  provides a continuous tran
s ition  to the case of the unbedded bar.

Of course, the formula of the upper c r it ic a l load should be in 
princip le  a function of geometrical imperfection wq as well. What we can say 
here is  that in the present case, imperfection ( in i t ia l  waviness) wq cor
responding to the load capacity diagrams was smaller than 15% of shell 
thickness h (Figs 15—16). The values actually measured can be found in  /14/.

When using the process described in /9 /, i t  is recommended that the 
properties of reinforced concrete (cracking, creep, p la s tic ity , e tc .) be 
taken in to  consideration.

One of our main objects has been to determine the change in  c r it ic a l 
load in  case of a gradual reduction of flexural r ig id ity  El of the edge beam 
(Fig. 21) u n til the case of a shell with completely free edges is  reached. 
In fac t, relationship (3.4) complies with th is  object.
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The ob jective  o f th is  work is  to  estimate the p ro b a b ility  o f a possib le destruc
t io n  o f rod-type supporting s truc tu res. Used fo r  estimation are not the d is tr ib u t io n  
density functions but the ca lcu la table  p ro b a b ility  cha racte ris tics  (expectable value, 
variance, o b liq u ity ) .  The stress re s u ltin g  from load and the p ro b a b ility  character
is t ic s  are assumed to  be independent o f each other and they are easy to  c a lcu la te .

1 . NOTATION
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°B
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T
t
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V
к = v/v0
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q
X, г  ox
в
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V
o ( t)
v ( t )
w (t)
o ( t )

load bearing capacity 
stress re su ltin g  from load 
load capacity reserve 
bending or tw is tin g  moment 
re su lta n t force 
permanent load 
e ffe c tiv e  load 
normal frac tu re  stress 
shear frac tu re  stress 
design l i f e  
time co-ordinate 
cross-sectional quantity  
cross-sectiona l area 
cubage o f the support
increase in  cubage associated w ith the standard beam
length o f beam
p ro b a b ility
parameters o f the p ro b a b ility  d is tr ib u tio n  function 
fa c to r expressing p ro b a b ility
parameters o f the cen tra l moments o f W eibull d is tr ib u tio n
ith -o rd e r cen tra l moment
variance
re la t iv e  variance 
o b liq u ity
safe ty fac to r associated w ith the e ffe c tiv e  load 
reduction in  normal stress 
reduction in  geometrical dimensions 
reduction in  cross-sectiona l quantity 
reduction re su ltin g  from permanent strength
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2. Introduction

The objective of th is  work is to estimate the probability of a pos
sib le destruction of rod-type supporting structures. Used for estimation are 
not the d istribution  density functions but the calculatable probability 
characteristics (expectable value, variance, ob liqu ity ). The stress resu lt
ing from load and the probability characteristics are assumed to be indepen
dent of each other and they are easy to calculate.

The probability of destruction of one single cross-section can be 
calculated by expression

p{[R(t) - S(t)J <  0 

0 < t  < T

( 1)

In expression (1), R(t ) is  the load capacity, S(t) the stress resulting from 
loads, T the design l i f e  and q the probability of destruction. From expres
sion (1), the load capacity and/or the cross-sectional quantity can be ca l
culated at time t  = 0 /6 / .

W (R) = B(T) W (S) о о
where

B(T) =
+ В v / [v R( T ) ]2 + [v5(T)_12 -  e {[v R(T)J [vs(T )Jp  

{ l  -  e2 [ v R(T)J2}  faCT)] [ a ( T)J [w(T)]

S(T)

( 2)

(S)

Bo

(O) ( o\
In expression (2 ), Wqv '  is  the load capacity at time t  = 0, W4 '(T ) 

the cross-sectional quantity associated with stress Bo from the stress cal
culated with regard to the design l i fe ,  v^CT) and Vg(T) are the re la tive  
variance of the load capacity and the stress resulting from load at the end 
of the design l i fe ,  respectively, T is  a numerical value depending on the 
d is tribu tion  and expressing the possible destruction (e.g. = 3.09 for 1% in 
case of normal d is tr ib u tio n ), Bo is the expectable value of the fracture 
stress of the beam at t  = 0, (T) is the fracture stress, w(T) the cross-sec
tiona l quantity, (T) being the reduction in strength with time.
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3. Probability of destruction of la ttice  girders

The above calculations apply to one single cross-section only. The 
question is  how the probability of destruction of a beam can be determined. 
Before giving an answer of general va lid ity  to the question, le t  f i r s t  an 
example be investigated.

Consider a la ttic e  girder with every chord of i t  subjected to to ta l 
load (Fig. 1). For the time being, le t the la ttic in g  network be le f t  out of 
consideration. In th is  case, i f  q1 is the probability of destruction of one 
single chord of the la ttic e  girder and m is  the number of chords, the pro
bab ility  of destruction of the la ttice  girder w il l be

P = 1 - (1 - q ')m ~  mq' (3)

i f
mq' <  0.15.

I f  the probability of destruction is  not equal for every rod and i f  
also the la ttic in g  network is  taken into consideration, then we can say that 
under a certain load, destruction of the la ttic e  girder w il l  take place i f  
one of the elements of the la ttic in g  network or one of the upper chords or 
one of the lower chords becomes destroyed. This means that there is  a dis
junctive relation between the la ttice  girder elements and thus, i f  the num
ber of la ttic e  elements in the la ttice  girder is N, the probab ility  of de
struction of the la ttic e  girder w il l be

N N
qk = 1 -  TT (1 -  qi )~ '  2  qi (4)
k i= l 1 i= l 1

1 2’ 3 A’ 5

F ig .  1 . L a t t ic e  g ir d e r
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Now pk can be calculated for every one of the d iffe ren t loads (of num
ber t ) and the probability o f destruction of the la tt ic e  girder, denoted by 
q, w i l l  be given by the maximum value from among the values of pk calculated 
fo r every one of the loads o f number:

The above calculation is  correct. What remains to be answered is  how 
the probability of destruction of the beam can be calculated in case of com
pact bent beams.

4. Probability o f destruction of a beam of p lastic 
material under normal stress condition

Consider a beam of a standard cross-section of A and a standard
length of as illu s tra ted  in Fig. 2, with permanent moment M acting upon 
both ends. As a result of moment M, an extreme-fibre stress of a magnitude 
of о = M/Jx ymax arises along length L of the beam. To be determined is  the 
p ro ba b ility  of destruction of the beam. In case of beams of p lastic mate
r ia l ,  the distribution of the fracture stress is  a Pearson I I I  d is tribu tion , 
the density function being /4 /

q = max pk£. (5)

о

i f  0 B > ( 6 )

f l(°B ')  " 0 i f  Og <; Oj,

M

F ig .  2 .  S tandard s iz e  beam
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P r o b a b il i t y  c h a r a c te r is t ic s :

Expectable value: V = v{ = «  ̂ + r-j/Xj^

Mean square deviation: 4 = u 2  = ^
X 1

= 2 /Vi“  >  0

(7)

Obliquity: aB '

On the basis of expression (7), an arbitrary probab ility value
of the fracture stress can be written as

t a B^q '  a B ’ ”  8 s B'

В = 6(ag, q ) .
( 8)

A table is available / 6 /  where the values of В in expression ( 8 ) are 
tabulated as a function of a^, and q.

I f  the cross-section of the beam under the above load is  "A" and its  
length is  Lq, then the density function of the fracture stress w i l l  be

Probability characteristics: 

Expectable value:

Mean square devitation:

°B"

=B"
о
A u2 A

aB"

a2 )

(9)

( 10)

Obliquity:
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□n the basis of expression ( 1 ), an a rb itra ty  probability value (og) 
of the fracture stress can be written as

= Ogn ß VAq/A Sß„

ß = ß (a, q)

According to expression (11), (agM) >  (°в ' ) q *

( 11)

The next question is  how the probability of destruction of a beam of 
an arb itra ry cross-section A but of a length of L = n Lq can be calculated. 
The subsequent sections o f length Lq are assumed to be independent of each 
other; the length of sections Lq has to be determined experimentally /1 /. 
According to the experiments, fo r round steels, length that is  the length 
of the independent sections is  70 to 80 times as much as the diameter. In 
th is  case

q[Lb np[Lo]_ Ü2)

According to expression (12), the probability  of destruction of a beam 
n times as long is  n times as much.

5. P robability  of destruction of a beam of b r it t le  
material under normal stress conditions

Consider a beam of standard size, Vq = Aq L , according to Fig. 2 but 
now the beam is assumed to  be of b r it t le  material (a < 0 ) .  The d istribution  
of the fracture stress is  a Weibull / 8 /  ( I I  lower extremal) d is tribu tion . 
The d istribution function is

F3 (a0.„ ) = 1 -  exp (aBMl

O gm >  О
F-j(c[ß„, ) = 0 i f

О gm <  о  ^

( 13)
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P r o b a b i l i t y  c h a r a c te r is t ic s :

where

Expectable value:
— Ul
(Jßiu — cĵ  + cx̂ /X-j —

Mean square deviation: (sB , „ ) 2 = uJJ' = «2 / х з (14)

Obliquity: aB„, = < 0

“ 1 ‘  "(1 7 )

“ 2  ■ " ( ^ )  -  "2̂ 1 (15)

»3 ■ " £ )  -  3 • % )  ♦ *

and n(Z) = Z! is  the Gauss function.
The values of expression (15) are found in Tables / 6 / .  
On the basis of expression (14), i f

q = ( 1 0 0  - 1 0 0 /n) %,

an arb itrary value (адш)^ of the fracture stress w il l be

(aB,")q = o3 + 1/X3 l \Jn -  Д (16)

where lim A = 1/2. 
n -» “

I f  the size of the beam is  V = AL and V/V = k, then the d is tribu tionо
function w il l be

F4(a0iv)  = 1 -  exp k [ x 3(oBlv - о3) ] Гз] 

i f  a B l v  2  ° з >

F 4 ( a B l v )  = 0  i f  ° BIV * =  a 3 .

Probability characteristics:

Expectable value: ägiv = c>3 + ----- - — <  őg„,

b  3$
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Mean square deviation:
2

v 2 = (Sßiv)
a 2

■ 4  rv?
Obliquity: “ 3

ЗВИ '  a ,3/2 aB'"

(Sgi't ) (s0  hi)

(17)

On the basis of expression (17), i f  q = (100-100/n) %, an arb itra ry 
p robab ility  value (ogiv)q of the fracture stress can be written as

where lim  A = 1/2. 
n -* <»

(aBI v )q
1 (18)

6 . Probability of destruction of a rod of constant cross- 
section under shear stress conditions

A twisting moment M is  acting upon either end of the rod of tubular
cross-section and of a length of Lq illu s tra ted  in Fig. 3, the two moments
being of opposite sense as compared with each other. As a result of load,
shear stress т = M/J^ r mgx is  prevailing at every point of the periphery of
the tube. To be determined is  the probability of destruction of the beam or
the value of t „  associated with a certain probability. Assume that rods of □
p la s tic  or b r it t le  material can be investigated from the point of view of 
shear stress as well. In th is  case, the ir d is tribution  and/or density func
tio n  w il l  comply with what has been said about normal stress conditions in 
Sections 4 and 5 accordingly. In case of rods of plastic material with 
cross-section A and length L , the Pearson I I I  density function of the frac
ture stress w ill be, provided the rod has a standard cross-section, the fo l
lowing:

F ig . 3. Standard size tu b u la r beam
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f 5(T0) -  О i f  t b < xr
(19)

Probability characteristics: 

Expectable value: TB' " U1 '  r 5//X5 + T1

r 5 AoMean square deviation: s^g, = u2 = —j  -£■ - u2

X5

Obliquity: j j E .  я v_o
B1 ^  ï  A " aB V A

( 20)

On the basis of expression (20), an a rb itra ry  probability value (^g)c 
of the shear fracture stress can be written as

( t b ) = TB, -  ß V Ä / Ä  s

ß = ß (aß, q)

( 21)

I f  the length of the rod is  L = n Lq , the probability of destruction 
w il l be n times as much.

Consider now the case of b r it t le  material (a <  0) and assume that a ll
what has been said in Section 5 also applies to shear stress. Then, i f  the
volume of the rod is  V = AL and the standard volume V/V = к and V = A L ,о о о o’
the Weibull d is tribu tion  function of the fracture stress w il l be

F6 ( t B) = 1 - exp { -  к[Х6 (тв - t6)] b}

i f  т В — T 6

F6 (V  = 0

(22 )

i f  t b < t2
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P r o b a b i l i t y  c h a r a c te r is t ic s :

Expectable value:

2Mean square deviation: (s^n ) (2 3 )

Obliquity: a.В
u

i f
(q = ( 1 0 0  -  1 0 0 /n) %,

an a rb itra ry  probability value of the shear fracture stress can be written 
as

where lim  Д = 1/2
П ->  00 .

The values of ( i  = 1, 2, 3) can be calculated s im ila rly  to the 
values of cu is Section 5. Since no Hungarian experimental data fo r shear 
are available, the experimental results obtained for normal stress can be 
used in numerical calculations but the normal stress values must be m u lti
p lied  with 1/IÍ3 = 0.577. This factor is  based on the Huber—Mises fracture 
theory.

The probability of destruction as a result of load varies from cross- 
section to cross-section in  case of the beam of variable cross-section i l 
lustra ted  in Fig. 4. To be determined is  the probability of destruction of 
the beam.

In case of a beam of p lastic  material and variable cross-section, the 
beam shall be divided in sections corresponding to 10 to 15 times the height 
of the beam (a rapid change in cross-section always being a section boundary)

1 (24)

7. Probability of destruction of s ta tica lly  defined 
beams of p lastic material
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F ig . A. Bean o f variab le  cross-section

and the probability of destruction shall be determined for each section in 
dependently. This means that the probability characteristic of the fracture 
stress shall be determined for the material and dimensions of the beam ac
cording to expression (10). Of course, the expectable value and the value of 
mean square deviation are to be understood at the end of the design l i f e .  
With these values, expression (10) w il l become for the ith  section

®Bi)(T ) = аво1} a(T) a(T)

sBi)(T ) = s(a)(T) s( i)
3B0

2 A_

A( i)

а (T) - a( i ) l / A
aBu ;  aB0  V A,.( i )

(25)

To be calculated now are the cross-sectional quantity and the proba
b i l i t y  characteristics at the end of the design l i f e  for the ith  section:

W( l ) (T) = w(T)

s(W)(T) l  s( i ) U ; ,(W)
3° ( i ) l

s(u )(T)

(26)

At the end of the design l i fe ,  the load capacity and its  probab ility  
characteristics are
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Expressions a(T), а(Т), w(T), s ^ ( T ) ,  s ^ ( T ) ,  and s ^ ( T )  are found 
in  /7 / .

The stress resulting from load along the ith  section and i t s  proba
b i l i t y  characteristics are

S( i ) (T), SQ)(T) > a ^ ](T ) .

Accordingly, the strength calculation reserve of the ith  section and 
i t s  probability characteristics w il l be

V( l ) (T) = R( l ) (T) -  S( l ) (T)

From expression (28), the probability of destruction can be ca lculat
ed, as follows:

q'
( i )

Y( l ) (T)

(29)

The probability of destruction calculated on the basis of expression 
(29), denoted by q, must be the optimum probability . I f  the probability  of 
destruction along the jth  section of the beam divided in sections can be 
calculated on the basis of shear stress т K(T), then i t  is  q associated with 
th is  value of shear stress that has to be included among the addable sums of 
expression (29).

Sim ilarly, i f  the probability of destruction is attributed to some 
other strength characteristic (identation), then the value of q  ̂ associated
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with that characteristic shall be included among the addable sums of ex
pression (29).

B. P ro b a b ility  o f d es tru c tio n  o f s t a t ic a l ly  defined  

beams o f b r i t t l e  m a te r ia l

I f  the beam of variable cross-section shown in Fig. 4 is  made of 
b r i t t le  material, the fracture stress probability characteristics of the 
beam shall be determined on the basis of formula (17). In th is  case, the 
volume of the beam is  obtained as the sum of the volumes of the sections of 
variable cross-section:

V = 2  A.L.
( i )  1 1

and (30)

к  = V /V о

Otherwise expressions (17) and (18) w il l  apply invariably.

9 . S ta t ic a l ly  undetermined beam

The e lastic hinges of a s ta tica lly  undetermined beam are arranged on 
the beam in such a way that the probability of destruction of the beam w ill 
be maximum / 2 , 6 / .

Consider an n times undetermined beam of plastic material (Fig. 5) 
upon which a multiparameter effective load of exptent p is  acting in addi
tion  to permanent load g. A certain extent vcP of the effective load can be 
repeated without l im it .  The beam has standard cross-sections of number 
N >  n. Standard cross-sections are those where the stress due to load has a 
re la tive  extreme value or where the cross-section changes rap id ly . A load 
capacity reserve

1 2 i J m m +1 N

u J L J U  -1 i_ J L - i

N » n > m

F ig . 5. "n" times undetermined beam
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Y.l -  S,Pl

can be calculated for each cross-section. In expression (31), Fh denotes the 
probab ility  characteristics of the load capacity of the cross-section: R̂  
stands for the expectable value, s ^  for variance and a ^  for obliqu ity. The 
probab ility  vector variable _R is

V SR1 aRl
r2 = R SR2 = !r and aR2

Л . . SRN . . aRN .

(31)

S . is
gi

value, e the 
able S is

the internal force due to the own weight, S  ̂ the expectable 
variance and a is the obliqu ity. The probability vector va ri

---
---

1
1 

C
D
 1
 

(Q __
__

__
_

I

sgi agi

Sg2

«ni
II

?g2
= s and

_a ?g2

.SgN. , sgN . . agN.

ba (32)

Spi is  the in terna l force due to the e ffective  load applied to the 
cross-section in a standard way: being the expectable value, s  ̂ the
variance and a  ̂ the obliqu ity. The probability  vector variable Sp is

S 1 pi spl apl
s 0P2

II

? p 2
= s and

3p2

S .. pN _ . SPN. apN

S . and S .gi g j ( i  = j  = 1 , 2 , ... N) are

" !e. (33)

Stresses
they are internal forces subject to the condition of equilibrium. The same
applies to the stresses due to effective loads S . and S ..

Pi PJ
Probability characteristics of the load capacity reserve:
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(34)

A safety factor resulting in zero load capacity reserve can be de
termined for each standard cross-section:

v‘ i  = (R± - V / S pi (33)

The minimum value of v^:

min V. = v_ ( i  = 1, 2, . . .  N) (36)
1 Э

where is  the value of the load capacity characteristic of the beam. In 
case of a beam of b r i t t le  material, th is  e ffective load vgp means the ex
pectable value of the lim it load capacity of the beam. The p robab ility  of 
destruction of beams of b r it t le  material can be calculated on the basis of 
expressions (17), (18) and (30).

Of course, beams of plastic material can be loaded add itionally. As
sociated with standard cross-sections of number N are d ifferent load posi
tions of number L < N. In case of each load position, after p las tic  hinges 
of number m < n have occurred as a result of the effective load, when also 
yield of the material takes place in the m+lst cross-section, the beam be
comes instable either fu lly  (m=n) or p a rtia lly  (m < n) and its  entire  load 
capacity reserve gets exhausted.

At point m in the Lth load position, re la tive  rotation к / ' - "' ( j  = 1, 
2 , . . . ,  m) occurs and thus the conditional equation w ill be
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(37 )

m+l gm+ 1

Of course, with the exception of z ^ -k ,  every expression in equation 
system (37) is  a probability variable and therefore the equation system 
sha ll be solved for the expectable values of Sg^, Sp^, Fh. The value of z ^  
can be calculated from the geometrical dimensions and from the ra tio  of the 
moduli of e la s tic ity . The relative variance of the geometrical dimensions 
lie s  below 1%; the variation of the modulus of e la s tic ity  along the beam is  
neg lig ib le  and thus also its  effect is  minimum / 2 /  and therefore, because 
of th e ir re lative variance of about 1%, quantities can be assumed to be 
determined.

V
(L) =

2
( i )

R 7(L)
Ri  h i )

.  2  s  z ( L)  
7  sgi h i )

2
( i )

c(L) Z(L) 
Spi U i )

(38)



RELIABILITY OF ROD-TYPE SUPPORTING STRUCTURES 191

Sim ilarly to expression (31), the load capacity reserve of the m+lst 
cross-section of the Lth load position w il l be

where

y(L) _ pX
m+l - m+l

C i  = C i

ĝm+ 1  " p̂m+ 1

2  7 (L)
j f i  m+1J Kj

(39)

In expression (39), к) '  is  the re lative rotation taking place on the 
plastic hinges of number m while zm+̂   ̂ is  the internal force in the m+lst 
cross-section resulting from relative rotation к ■ = 1 at the jth  point of 
the undetermined beam.

The surplus load capacity term can be calculated from expression (38)
and/or (39). Namely, submatrices can be considered determined and also
the ratio of probability characteristics Fh is  determined because the load
capacity in question is  that of a beam of the same material but in d iffe ren t
cross-sections and also the ra tio  of expectable values S moreover, also

“ (L) 9 1that of the values of are determined and therefore the re la tive  va
riance of the second term in expression (41) is  approximately identica l in 
dependently of the cross-sections and thus the probability of destruction is 
reduced by the surplus load capacity. However, the question w i l l  require 
extra consideration i f  w ithin the cross-section, the partia l in terna l forces 
are taken up by beam sections of a different material each.

In general, using the values of z ^ ,  the following matrix can be 
written:

(40)
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Matrix Z is  a symmetric quadratic matrix. Also submatrices associated 
w ith every load position of number L, quadratic and symmetric, can be pro
duced of matrix Z_('L'>. On the basis thereof, the following matrix equation 
can be written from re la tionship  (39):

Z(L) k(L) = Y(L) (L = I ,  I I ,  . . .  X . . . ) .  (41)

The probability characteristics of the denominator of expression (38),
a lin e a r sum S . + . . .  + Z ^  S , can be simply calculated be-p = 1  p i =fn pm’ ■'
cause they are not independent but there exists the above linear sum rela
tio n  between them. Iherefore, the probability characteristics of the deno
minator of expression (38) are perfectly identica l with those of the effec
t iv e  load:

+ Z(L) 
=2 p2

= V S<L)P P (42)

The probability characteristics of in terna l forces due to dead weight 
in  the numerator of expression (38) are, s im ila rly  to expression (42),

s0-) = Z(L) s + Z(L) s + z(L) S
g = 1  g l = 2  g2 =m gm

s(L) = V S(L)g g g (43)

a<L> = a .g g

A safety factor v(‘L'> (where L is the se ria l number of the load posi
t io n ) is  associated with every load position. The minimum value of is

. "(L)min V = V, (L = I ,  I I ,  . . .  X . . . ) . (44)

This effective load v^p means the fracture load capacity of the beam, 
taking the plastic properties of the beam into consideration. Should' the 
value of load v^p be continuously repeated, a kinematic destruction of the 
beam w il l  take place tha t is ,  after each loading cycle from among those of
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number L, re lative rotations w ill increase continuously. However, there
exists a value of load v p for whichc

va s v c < v b (45)

and which can be repeated continuously. Thus i t  w il l result in a rotation
vector к of a defin ite  value.**c

On the basis of safety factor \> the order of "cross-sections of 
minimum load capacity" can be determined. In th is  less stable cross-sections 
of number m, a rotation load kc w il l occur which discontinues increasing in
dependently of how many times the loading has been repeated.

An equation system similar to (37) can be written which d iffe rs  from 
(37) in that in may apply to d ifferent load positions of number m+1 while
(37) applies to one single load position only. The sign of safety factor v

(c) Cso calculated and the sign of each element к) '  ( j  = 1 , 2 , . . . ,  m+1 ) of re
la tive  displacement (ro ta tion , sh ift etc.) vector kc associated with i t  must
be identical with the sign of the restra int force arising at the jth  place

(x)as a result of the load. A safety factor vv (x = А, В, C . . . )  is  associat
ed with each group of cross-sections of minimum load capacity of number m+ 1  

satisfying the condition given below, from among which the minimum safety 
factor is

min \>(x) = vc (X = А, В, C . . . )  (46)

Where А, В, C, . . .  are the different groups of cross-sections of minimum 
load capacity with the loads associated with them.

vc from expression (46) satisfies expression (45) while for each ele
ment of rotation vector a matrix equation similar to (41) can be
written :

Z(x) k( x) = Ÿ(x) (X = А, В, C . . . ) .  (47)

I f  equation (47) is  solved for safety factor v c , we w il l  arrive at 
re la tive  rotation vector which discontinues increasing as a result of
repeated loads because matrix equation (47) does not apply to one single 
load position like  equation (41) but to d iffe ren t load positions associated 
with cross-sections of minimum load capacity. The cross-sections of minimum 
s ta b il ity  of number (m+1) cannot be determined immediately. Therefore, more 
equations associated with the order of cross-sections of minimum s ta b ility  
(А, В, C, . . . )  must be solved.
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A possible value of the three lim it load capacity conditions has a l
ready been determined by Kossalka /5 / to a good approximation.

I f  the strength of every standard cross-section that is  = V j = ... =
= vM = V were calculated so as to result in identical safety, then v = v N a J c a
and к = 0 . Also beams where v. = v can be designed. The above condition is  —c b a
sa tis fie d  by every la ttic e  girder.

The economically most favourable dimensions of s ta tica lly  undetermined 
beams suited to carry loads can be determined under rather general condi
tions  by means of e la s tic ity  calculations. I f  the beam is  u tilized  in some 
priv ileged cross-sections only and i t  is  made of some material of p lastic  
behaviour, then th is p la s tic  reserve w il l increase the load capacity

4  > v c} -
Under operating conditions, the load capacity shall be calculated on 

the basis of safety factor vc . The extraordinary value of load can be cal
culated by means of factor

The correct p robab ility  is  given by the probability of possible de
s truc tion  calculatable on the basis of expression (39).

Beams of plastic material w il l be economically most favourable i f  the 
safety is  identical in every cross-section. In th is  case, \> = = v = \>.

The probability of destruction of the beam can be calculated in the 
way already discussed as the sum of probabilities of destruction of the in
dependent sections.

10. Numerical example

The steel taken as a basis for the numerical example has been made by 
the Hungarian Millworks. The probability characteristics of the yie ld lim it ,  
calculated on the basis of several thousands of data, of grade 37B-5 p lastic 
stee l of Pearson I I I  d is trib u tio n  are given below:

2
Expectable value: <jp0 = 288.3 N/mm

2
Variance: SpQ = 30.73 N/mm

Obliquity: apQ = 0.679

On the basis of processed data, the re la tive  variance of the dead
(s)weight of the steel is  v^ = 0.04, the obliqu ity of the load of lognormal 

d is tr ib u tio n , applied to the beam by its  own weigth, being 0.40237. The



J1 -  16 513.70667- 106 mm4 
25 802 667 mm3 

= 6.90048318Í»-10~12 

0^= 0.60055924-10~3 Nmm

J2 = 8175 438453 mm4 

W, = 13143 792 mm3 

= 144 917 388.2-103
*11

W10 = 27 616 000 mm3 Wt- = 14 334 440 mm3AJ

F ig . 6 . Cross-sectional data fo r the numerical example 

(the values in  brackets applying to cross-section 2) VOvn
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F ig . 7, In te rna l forces o f loads
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re la tive  variance of the effective load of twice exponential (Gumbel) d is
tribu tion  is , on the basis of measurements, 0.1608, and as is  well-known, 
the ob liqu ity  is 1.13955.

The main girder, a steel construction illus tra ted  in Figs 6  and 7,
carries the floor of a lecture-room. A permanent load of g = 25.0 kN/m is

2
acting upon the main girder, the effective load being 3 kN/m that is 
p = 25.2 kN/m. Standard moment of the floor of a strength calculated accord- 
in t to Hungarian Standard MSZ 15024:

At place 1: MM1 = 1.1 • 2194.022 + 1.3 • 2211.574 -
- (391.418 • 1.1 + 394.549 -1.3) • 0.1 =
= 5194.123 kNm

At place 2: M̂ 2 = 1.1 • 873.721 + 1.3 • 1300.051 =
= 2651.159 kNm

Standard stress:

At place 1: aM1 = 5194.123 • 106/25 802 667 = 201.3 N/mrn2 

At place 2: oM 2  = 2651.159 • 106/13 143 792 = 201.7 N/mm2

Shear test result at place 1:

Qx = 1.1 • 344.893 + 1.3 • 347.652 = 831.330 kN

Static moment of the half-section: Ŝ  = 13 952 000 mm3.

T... = 831 330 • 13 952 000/16 513 706 670 • 10.0 = 70.24 N/mm2 Ml

For further studies, the p lastic properties of the girder were u tiliz e d  (fo r 
starting data see the rig h t side of Fig. 6 ).

Cross-sectional and strength data and the ir probability character
is tic s :

Cross section 1 :

Cross-sectional modulus: 
W1 0  = 27 616 000 mm3

Variance:
s^Q = 519 643 mm3

Cross section 2:

W2g = 14 334 440 mm3

s2Q = 237 385 mm3
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Cross section 1:

Relative variance: 
v^ 0  = 0.018817

1 Í  50 1 1 f  50 T2 1 500 J ‘  2 L 500 J
= 0.94500

Reduction in cross-sectional modulus: 

10(1 - 0.945)wx( 50) '  1 27 616 000

= 0.97946

1 031 520

Cross section 2: 

V^g = 0.016560

w2(50) , 10(1 - 0.945)
1 " 14 334 440

• 882180 = 0.96615

Endurance: = 1 - 0 1C ( 2154.88 + 0.2 • 2172.119V 
l  2154.880 + 2172.119 )

Variance: s (50) = 0.03 a

Design l i fe :  T = 50 year

Reduction in strength: o(50) = 1 - -j - y  =

(a) t Г 50.)Increase in strength variance: sva'(50) = 1 + 2  ^jqqJ

= 0.98077

0.99450

1.2

Load capacity:

R,(50) = 288.3 • 27 616 000 • 0.99450 • 0.97946 • 0.98077 = 7606.136 kNm 
R2(50) = 288.3 • 14 334 440 • 0.99450 • 0.96615 • 0.98077 = 3894.412 kNm

= 0.51200925 
R,

Variance:

.(R) (50) = 7606.136 f e
10659 I ‘ 
994501 1.2 I 0.010817 | 2 

I 0.97946 ] 1.2 + 0.032 = 935.519 kNm

(50) = 3894.412 1/ f0.10659 I2 
f ! 0.99450 J 1.2 Í 0.01656 l 2 

lo .96615) 1.2 + 0.032 = 477.562 kNm
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Obliquity:

a^R)(50) О.(>19 ( l l i l s i l )3 = 0-59062

a^R)(50) = 0.679 (!ту з !§ 1  = 0.59595

Sg l(50)

Stress due to load:
Permanent load:

S ?
-2154.880 kNm ^  = 0.40542156 S ,(50) = 873.721 kNm 

gl 9

sgi ( 50)

sg2( 50)

Variance:

0.04 • 2154.880 = 86.195 kNm 

0.04 • 873.721 = 34.949 kNm

Obliquity:

ag l( 5°) = 0.40237 ag2(50) = 0.40237

Effective load:

S o
Sp l(50) = -2172.119 kNm ^  = -0.59851739 Sp2(50) = 1300.051 kNm

SpiCSO)

sp2(50)

Variance:

0.1608 • 2172.119 = 349.277 kNm

0.1608 • 1300.051 = 209.048 kNm

Obliquity:

api (50) = 1.13955 ap2(50) = 1.13955

5^50) = 

S2(50) =

Total load:

-2154.880 - 2172.119 = -4326.999 kNm 

873.721 + 1300.051 = 2173.772 kNm
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Variance:

ss l (50) = >J 86.1952 + 349.2772 = 359.755 kNm

Ss2(50) = \/з4.9492 + 209.048z = 211.949 kNm

Obliquity:

aSi(5G) = 0.40237 ( 359.ill * 1-13955 1Í 349.277 1 
359.755j|3 = :

aS2(50) = 0.40237 Ilii.’“) + 1.13955 1f 209.048’ 
; 211.949,

Strength calculation reserve:

Ÿ1(50) = 7606.136 - 4326.999 = 3279.137 kNm

Ÿ2(50) = 3894.412 - 2173.772 = 1720.640 kNm

Variance:

sy 1 ( 5 0 ) = ^935.519 2 + 359.7552  = 1002.307 kNm

sy 2 ( 5 0 ) = V477.5622 + 211.9492 = 522.482 kNm

Obliquity:

ay l (50) = 0.59062 [ S f  - 1-°™1 359.755 I3 

11002.307J

ау2(50) = 0.59595 ( H J t H i ) 3 - 1.095200 1 211.949i3 
1522.482 )

Вх(50) 3279.137 
‘  1002.307 = 3.2716

ß2(50) 1720.640 
“ 522.482 = 3.2932

Px ~  1 -81 • 1 0 ' 6 q2 ~ 5.71 -10

1 2 
Fracture shear stress: x c = 288.3 = 166.45 N/mm

F V5

Variance : s.tF  - V51 30.79 = 17.777 N/m2

MAGYAR
TUDOMÁNYOS AKADÉMIA 

KÖNYVTÁRA

.04387

.095200

0.43198

0.38197
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Obliquity: aTp = 0.679

Shear load capacity of the cross-section above the central support:

Load capacity: Rpg(50) = 166.45 • 16 513 706 670 • 10

0.99450 • 0.98077 • 0.97946 
13 952 000 = 1882.134 kN

Variance: siqr(50) = 1882.134

231.494 kN

Obliquity: apg^(50) = 0.59062

l/l 0.10659 l2 , „  . (0.018817 1'
V 1 0.99450 ) b 2  + 1 0.97946 ) 1 . 2  + 0.03 =

Maximum resultant and its  probability characteristics:

Permanent load: Qlg(50) = 344.893 kN

Variance: Slg(5°) = 0.04 • 344.893 = 13.796 kN

Obliquity: aig (5°} = 0.40237

Effective load: V 50) = 347.652 kN

Variance: V 50) = 0.1608 • 347.652 = 55.902 kN

Obliquity: alp(50) = 1.13955

Total load: QpCSO) == 344.893 + 347.652 = 692.545 kN

Variance: S1Q(50) = Vl3.796 2 + 55.9022 = 57.579 kN

Obliquity: al Q( 50) = 0.40237 113.796 ] 3 
157.579) + 1.13955 • (55.

57. = 1.04839

Shear strength calculation reserve:

YQ(50) = 1882.134 - 692.545 = 1189.589 kN

sYq(50) = V231.4942 + 57.5792 = 238.547 kN 

avn(50) = 0.59062 - 1.04839 = 0.YQ 1238.547J 52502

byq(50) = 4 ‘ 9 8 6 8

qQ( 50) < 1 0
- 6
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The shear load capacity is  not a governing characteristic. Probability 
of destruction of the g irde r:

q = (4 • 5.71 + 1.81) 1 0 '6 = 24.65 • 10'6 2.47 • 10~5

Safety factors:

7606.136 - 2154.880 _ „  cnn,
Val = 2172.119 = 2 - 5 0 9 6

3894.412 - 873.721 _ 0  

a2 1300.051

'Ы

■'ьг

= 2.9787; 

= 3.1940;

< 1 = 7.0307 • 10' 

<2 = -18.3795 -10-3

From equations

Calculation of the value of v„

Pi + Z11 1

Sp2  vc + Z2 1 K 1

= : R 1 -_sgi

= R 2  " Sg2

R 1 ( z 2 1  + - 2 zl l ) + Sg l ( z 2 1  '  r3- zl l ) 
________ __________________ gl

* Spl ( z 2 1  -  f 1  zl l } 
p i

= 2.3967

+ ^ 2  Л

Spl + R 1
g i

! e 2 + f g 2

I e í ____ ! s L 1.6930 • 10

z - z 
Z 2 1  - Z 1 1

Pi

On the basis thereof, the increase in load capacity is

R* = 3894.412 + 1.6930 • 10~ 3 • ^ p jj-  • 144 917.39 = 3989.544 kNm
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increasing the variance of the fracture load capacity:

<8 к1 >‘

4 l >
(-0.59851739 + 0.51200925) 477.562 
(0.38775 + 0.59851739) 144917.39 +

(-0.59851739 - 0.40546156) • 34.989 
(0.38775 + 0.59851739) 144917.39 14.381757 • 10

Variance of surplus load capacity:

sKl = 3.79233 • 10 4

Sp = 3.79233 • IO" 4  1 144 917.39 = 21.310 kNm

= >/477. c' n2 01 ’ in2562 + 21.310 = 478.037 kNm

Y(5 q) = 3989.544 - 2173.772 = 1815.772 kNm

DY(50)

3Y(50)

= \/478.0372 + 211.9492 = 522.917 kNm

= 0.59595 (478.037/522.917)3 - 1.0952 (211.949/522.917)3 = 0.38237

B2 = 1815.772/522.917 = 3.4724

q2 0.998 • 10"

On the basis thereof, the probability of destruction of the girder decreases 
to (4 • 0.998 + 1.81) • 10" 6  = q' = 5.80 • 10"6, that is , to a quarter of the 
o rig ina l value.
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11. Summary

Presented in th is  work is  a method to determine the re lia b il i ty  of a 
rod-type supporting structure.

a) The re lia b ility  of la ttic e  girders is  given by the sum of probabi
l i t ie s  calculated for the rods under identical load.

b) The probability of destruction of compact-walled supporting struc
tures is  given by the sum of probabilities of destruction of cross-sections 
independent of each other, lying at a distance of 10-15 times the height of 
the beam from each other.

c) A possible destruction of s ta tica lly  undetermined beams w i l l  take 
place at that of the possible plastic hinges for which the probability  of 
destruction is highest.
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GEOMETRICALLY SINPLE EXPONENTIAL WEIR
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This paper presents a p rac tica l exponentia l weir o f simple geometric p ro f i le  
formed by quadrants o f a c irc le  o f radius 'R '.  The flow  through th is  w eir o f c res t 
w idth 12 t ' ,  top w idth 2(R+t) and a lt itu d e  R, is  p roportiona l to  the exponential power 
o f head ' h ' fo r  flows above a threshold depth, in  the range o f 0.55 R < h < R  w ith in  a 
maxinum devia tion  o f +_ 2% from the exact th e o re tic a l discharge.

The exponentia l re la tionsh ip  between the discharge and head is  determined based 
on a numerical op tim iza tion  procedure developed fo r  the purpose. Nearly 45% o f the 
height o f the w eir can be used e ffe c tiv e ly  as the measuring range. Experiments w ith  
the two weirs show exce llen t agreement w ith theory by g iv ing a constant average coe f
f ic ie n t  o f discharge equal to  0.62. The use o f the weir in  measurement o f la rge 
discharges in  canals during floods is  h igh ligh ted . Another unique feature o f th is  weir 
is  th a t i t  i s  a double purpose weir as i t  can a lte rn a t iv e ly  be used as a lin e a r  pro
po rtio n a l weir when inverted.

NOTATION

a, b constant o f the replaced exponential re la tio n sh ip
e deviation o f Qç from Op
g acceleration due to  g rav ity
h head above the weir crest
m slope constant
n exponent in  the term Hn
q discharge
qp proposed re la tio n s h ip  in  exact exponential form
t  h a lf c res t w idth o f the poebing weir
X v e r t ic a l co-ord inate
y horizon ta l co-ord inate
A, В nondimensional counterpart o f a, b
C in te rcep t constant
Cj c o e ff ic ie n t o f discharge
E prefixed maximum percentage o f e rro r
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H

Hd
К

Pr
qe

°м ах> Qm in

QT
R

Sl> S2 
T 
X 
Y

У1 > У2 

a
$

h/R
H measured from a datum such tha t В = 1 in  the replaced exponential re la tio n s h ip  
20^ V2g a dimensional constant 
p ropo rtiona lity  range
nondimensional replaced exponential discharge

nondimensional discharges a t the upper and lower l im it  o f the p ro p o rtio n a lity  range
respectively
q/KR5/2
radius of the quadrant
curves defin ing the perm issib le region fo r  QE to  l ie  in  Q vs. H p lo t
t/R
x/R
y/R
counterparts o f S j,  S2 in  ln(Q) vs. H p lo t  respective ly  
base flow depth or lower l im i t  o f p ro p o rtio n a lity  range 
upper l im it  o f the p ro p o rtio n a lity  range

Introduction

Weirs have been c lassified  /4 / in to two categories as non-base 
weirs and base weirs, depending on the value of the exponent ' n' in  the 
discharge-head relationship of the weir, "Q a Hn". When n >  3/2 the weirs 
can be designed without a base, they are called as 'non-base weirs' . Ihe 
conventional rectangular weir, V-notch and parabolic weirs are examples of 
th is  kind. When n < 3/2 the weirs invariably require a base and are called 
'base weirs'. Ihe linear (Sutro 1908, /9 / ,  Keshava Murthy 1968 and 1978, 
/1 0 /) ,  quadratic /3 / and logarithmic weirs /2 / belong to the base weir 
category.

Exact linear weirs have applications in irr iga tion , hydraulic, chem
ic a l and environmental engineering. Ihe complementary pro file  of these weirs 
is  complex (as is  generally the case with a ll base wier profiles) requiring 
sophisticated equipment and sk illed  manpower for the ir fabrications which 
are scarce in fie ld  conditions.

Troskolanski /11/ in his well-known book on hydrometry mentions about 
two geometrically simple plate weirs that give near linear head-discharge 
characteristics. He mentions that the flow through the intervening space 
obtained by keeping a semicircular cylinder in a rectangular channel pro
duces a near linear characteristic. Iroskolanski / 1 1 /  also mentions that a 
closed trapezoidal weir with a vertex angle approximately equal to 50°, 
gives almost a linear head-discharge relationship. Surprisingly these weirs
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were never investigated for about three decades. These weirs, called the 
be ll mouth weir and the inverted V-notch (IVN), were theoretically inves
tigated and experimentally verified by Keshava Murthy and Giridhar ( / 6 /  and 
/ 8 / ) . The IVN and the be ll mouth weir have been further improved with re
gards to their range in the chimney weir and the extended bell mouth weir, 
respectively (/7 / and / 8 / ) .

Exponential weir (referred to as the logarithmic weir by Banks, Burch 
and Shaw /1 /) gives a discharge proportional to the exponential power of 
head, q a e .  I t  could find an application in flood discharge measurement 
since i t  is  a quick discharging weir. This weir fa lls  under the base weir 
category since the term e*"1 in the discharge-head relationship, q = bea , 
contains a term h. The weir pro file  obtained using Abel's Integral equations 
is  complex.

The present inquiry into the Poebing weir is  motivated by a casual 
reference made by Troskolanski in his aforementioned book on Hydrometry in 
which be states that the 'Poebing weir' formed by inserting a semicircular 
disc of diameter (2R) in a rectangular channel also of width (2R) with the 
stra ight portion resting on the channel bed, would result in an approximate 
exponential weir. This has not been ana ly tica lly  studied. Neither i ts  ex
p l ic i t  exponential discharge-head relationship has been determined nor the 
range of va lid ity  of the same has been established. Troskolanski also sug
gests that a small gap has to be provided between the quadrants of the weir 
to avoid the surface tension effects. This gap which necessarily has to be 
provided should also be optimized. The exponential wier (henceforth referred 
to as 'E-weir') gives the smallest value of re la tive  error so that among the 
weirs of c ircu lar shapes i t  is  perfect from the metrological point of view 
/11/. In the paper /11/ we relook into th is  Poebing weir and analyse the 
characteristics as an E-weir in the framework of the general theory of pro
portional weirs underlining the existence of a unique reference plane for 
every weir /3, 4/.

Formulation of the problem

Exponential weirs are those weirs which give an exponential discharge- 
head relationship in the form

q a eah

ahq = be

. . . ( la )

. . . ( lb )
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The discharge through any symmetrical sharp-crested weir, whose p ro file  is 
defined by у = f (x) (where x and у are the ve rtica l and horizontal co-or
dinate axes, respectively), neglecting the velocity of approach is

fh _____
q = 2CHV2g V(h - x)f(x)dx,a j Q

where, q = discharge, h = head above the crest, g = acceleration due 
to g ravity , = coeffic ien t of discharge and f(x ) = equation of the p ro file . 

The equation of the p ro file  of the Poebing weir is  shown in Fig. 1

f(x )  = t  + R - -  x ^ ),

where, t  = half crest width, R = radius of the quadrants.
The discharge through i t  is  given by

q = 2C, \[2g f  \](h  -  x ) / t  + R - J(R 2 - x2)/dx 0 < h
G J  n

< R . . . ( 2 )

F ig . 1, Poebing weir
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The coefficient of discharge is  assumed to be constant, fo r sharp 
crested weirs and streamlined flows. The coefficient of discharge is  gene
ra lly  a function of several parameters including the head causing flow, 
dimensions of the weir in relation to the channel and the crest height. 
The value of has to be ascertained from experiments as in conventional 
weirs and the variation in w il l normally be within +_ 1\ of the average

for any weir and hence can be considered as practically invariable with 
respect to head.

Equation (2) can be expressed for convenience in the nondimensional 
from as

Q = 1(1 + T)H3 / 2  -  \  V(H - X) yj( 1 -  X2)dX 0 < H < 1 . . .(3 )
1 3 J 0

where, QT = q/KR5/2; H = h/R; X = x/R; T = t/R and K = 2Cd V2g.

The integration of Eq. (3) is  done by Simpson's one-third ru le . The 
discharge Q vs. head H graph for various values of T is  shown in  Fig. 2. 
The same are plotted in Fig. 3 to a semi-log graph (log0Q vs. H) where i t  is 
seen that the plot is  nearly linear for a wide range of head. This implies 
the existence of a near exponential relationship in the Q versus H graph 
over a certain range of head.

I ----------— = т -------------------1---------------------1------------------- 1
0 .0 0  0 .2 0  0 .4 0  0 .6 0  0 .8 0  1 .00  1 .2 0

HEAD ( Nondimensional ) ,  H

F ig . 2. Theoretical discharge (Q-|0 vs. head (H)
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F ig . 3. V a ria tion  of theo re tica l discharge w .r . t .  
head on a semi-log graph ( to  the base e)

Analysis

We exploit the near exponential nature of curves in Fig. 2 by propos
ing a formal exponential relationship

QE = BeAH .. .(4 )

where A and В are constants; such that QE gives almost the same discharge 
characteristic within a certain range and w ith in a prefixed percentage of 
error E. Suppose e, is  the deviation of QE from Qj then

e
|QT - Qe| 

QT X 100 <  E (5a)

In most discharge measurements in practice, involving weirs and 
notches, a maximum weir indication error (E) of _+ 2% is normally allowed 
/11 /. This results in a reasonably high degree of accuracy under f ie ld  con
d itions . This value of E is  adopted in the analysis.

I t  is  seen that the curve QE has to l ie  w ith in the prescribed bounds 
of Eq. (5a). This leads to the plotting of the permissible region. Fixing 
th is  region beforehand makes the problem amenable to theoretical treatment. 
From Eq. (5a),
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Qe = QT(1 + e/100) (5b)

The appropriate sign, positive i f  Qy < QR and negative i f  Qy > Qg, is 
considered in Eq. (5b). In the lim its  Eq. (5b) defines the pair of curves Sy 
and S2 when e attains the value of E. Curves Sy and S2 form the lower and 
upper bound of the permissible region for QR.

Sy = Qy(l -  E/100) . . . ( 6 a)

S2  = QT(1 + E/100) . . . ( 6 b)

The sketch in Fig. 4 shows the region formed by the two curves Sy and 
S2 and the curve QR with a part of i t  embedded in i t .  The projection on the 
H-axis (shown as the length between a and g in Fig. 4) of that part of the 
curve Qy. which lies  en tire ly  between the curves Sy and S2, defines the pro
portiona lity range (PR). Hence the "Proportionality range", PR, is

PR = В - a ...(7 )

The region bounded by Eqs (6 a) and ( 6 b) and Eq. (4) is  transferred 
to the semi-log graph. The resulting pair of curves are given by

y2 = In S2 . . . (8 a)

Уу = In Sy . . . ( 8 b)

F ig . 4. Typica l diagram showing the exact exponential 
discharge curve w ith in  the perm issible region
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Fig. 5а. The exact exponential discharge curve w ith in  a 
pe rm iss ib le  region on a semi-log graph

These curves, with the relevant portion in  which the curves are nearly 
lin e a r, are shown expanded in Fig. 5a. Since the precise exponential curve 
given by Eq. (4) appears as an exact straight line  in the semi-log graph 
(In  Q vs. H), given by

In QE = In В + AH ...(9 )

already a rough estimate of the maximum proportionality range possible with 
i t s  starting and ending points can be obtained as shown in Fig. 5a by moving 
a s tra ight edge within the region manually. This would prove useful as a 
check and in deciding about the fea s ib ility  of the problem in the early 
stages.

Optimization procedure

The original problem of stimulating the near exponential character-
gh

is t ic  of the Poebing weir using = Be within the bounds of error and 
w ith the proportionality range maximum, is  s im plified in the semi-log plane 
in to  finding, by process of optimization, a stra ight line ,

у = mH + С . . . ( 1 0 )
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whose horizontal projection is maximum, subject to the constraint that the 
entire straight line  be in the region bounded by and y^. Comparing Eqs 
(9) and (10), we obtain

In QE = y .. .(Ha)

A = m . . . ( l ib )

В = ec ...(11c)

Expressing the same in dimensional form Eqs (11a) and ( l ib ) ,  we get

b = 2Cd V2iecR5 7 2  ...(12a)

a = m/R ...(12b)

A systematic numerical optimization procedure was developed to find 
the line  with the greatest horizontal projection in the region formed by the 
curves У2 and y  ̂ (Fig. 5b) which are monotonically increasing.

A point P̂  is  chosen on the extreme righ t of the y  ̂ curve and joined 
to a point P2 on the extreme le f t  of the у 2 curve. The entire lin e  P j^  таУ 
not be in the region. Point P2 is  moved successively on the у 2 curve u n til 
the entire line is  in the region. The horizontal projection of th is  line

F ig . 5b. Optimization procedure to  f in d  the lin e  with 
the maximum horizon ta l p ro jec tion
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with any possible extension within the region formed by and УЕ is  then 
determined.

The procedure is  repeated for a ll possible points on the y  ̂ curve 
such that each time, that s tra ight line inclusive fo r any extension, which 
is  en tire ly  in the region, is  obtained. The line  which has the maximum ho
r iz o n ta l projection is  selected. A computer software was developed fo r the 
method on the VAX- 8 8  mainframe computer.

Optimization of the weir parameters

The optimization procedure developed in the previous section is  fo l
lowed to obtain the proportionality range (Pp) fo r numerous values of t/R, 
the geometric parameter of the weir. In the lig h t of the fact that Trosko- 
lanski /11/ recommends a gap of 3-5 mm between the quadrants, in the actual 
construction of the Poebing weir to satisfy the practical requirement of 
avoidance of surface tension effects, i t  is log ical that this geometric 
parameter of the weir be optimized. The proportionality range (P^) plotted 
against the half width t/R is  shown in Fig. 6 a.

The same is expanded in the range 0 < t/R <  0.2 in Fig. 6 b. Figure 6 b 
reveals that the p roportiona lity  range (P^) is  almost constant in 0 . 1  <  
<  t/R  <0 . 2 .  A convenient value of t/R = 0.1 is  chosen for our experiments.

Analysis of results

From the above optim ization procedure we obtain the values A and В 
( fo r  t/R  = 0.1) and the follow ing exponential relationship is  proposed.

Qe = 6.396 X 10"3 e3-2280H 0.552 <  H <  1.00 ...(1 3 a )
or,

or,

n _ 3.22(H-1.5651) Ы £ — 6 ...(13b)

Qe = e3 ' 2 2 (Hd> ...(13c)

where, H . is  the nondimensional head measured from a datum situated at d
1.5651R above the crest.
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F ig . 6a. V aria tion  o f the p ro p o rtio n a lity  range Pr  
w ith  h a lf crest width ra t io  t/R

F ig . 6b. V a ria tion  o f the p ro p o rtio n a lity  range w ith the 
h a lf  c res t w idth ra t io  expanded in  the region 0 <  t/R  < 0 .2

Dimensionally i t  can be expressed as

5/2qE = q£KR ...(13d)
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Table 1

t/R A В Discharge equation

0.12 3.09914 7 .8 X10~3 Q = 7 .8 x l0 ~ 3e3-09914H o r, 
g -  e(3.09914H-4.85363)

0.14 2.997197 9.39742 x lO "3 Q = 9.3979X10-3e2-9972H o r, 
q _ e(2.9972H-4.66727)

0.16 2.91476154 10.9515 x lO -3 Q = 10.9515x10"3e2 -91476H o r, 
q = e(2.91476H-4.51428)

0.18 2.84562612 12.537 x lO -3 Q = 12.537x l0 ~ 3e2-84562H o r, 
q = e(2 .84562H-4.37907)

Fin. 7, V a ria tio n  o f the ra t io  o f the discharge at the top 
and bottom o f the measuring range w ith h a lf crest width ra t io

The details of the exponential relationship for various other values 
of t/R  are given in Table 1. The lim its  of the proportionality range remains 
constant for 0.1 < t/R < 0.18. Figure 7 shows the plot of the ra tio  of the 
discharge at the end points Q^-^) of the measurement range versus the
ra t io  t/R .

I t  is  significant to note that th is  weir when inverted is  the bell 
mouth weir / 8 / ,  a linear proportional weir. At t/R = 0.18 a design close to
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the optimum design of the bell-mouth weir is  obtaihed and th is  value of t/R 
is  w ithin the optimum range of t/R of the Poebing weir. At the value of 
t/R = 0.1 used in our experiment, 53% of the to ta l height of the bell-mouth 
weir can be used for the linear measurement. The linear discharge-head re
lationship is  given by

Q = 0.2815CH - 0.0437), fo r 0 .16< H < 0 .69  ...(14)

where, Q = q/KR"^; H = h/R; X = x/R; T = t/R ; К = 2C^\/2g.

Experiments

Experiments were conducted on two geometrically simple E-weirs of 
R = 0.25 m and R = 0.30 m with t/R = 0.1. The weirs were cut from 6.5 mm 
thick mild steel plates according to standards. The weirs had a sharp edge 
of 1.5 mm with a 45° chamfer. Figure 8 shows a schematic arrangement of the 
laboratory set up used. The weirs are fixed at the end of a rectangular 
channel 19.5 m long, 1.2 m wide and 1.1m deep, with crests set 20 cm above 
the channel bed. The channel had adequate s t i l l in g  arrangements. The head 
over the weir was measured using a point gauge, which was fixed 4 m upstream 
of the weir section, with accuracy of measurements to the th ird  decimal 
place, 0.001 in (0.1254 mm).

|-*------4 .5 2  m-----

Fig. 8. Experimental set-up
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Flq. 9a

Fig. 9b
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The discharges were measured volumetrically in a measuring tank 
4.52 X 4.52 in x 1.5 m through readings in a perspex tube of 20 mm internal 
diameter, connected to the bottom of the tank at one end. The discharges 
were determined by finding the time taken fo r the water level to  rise  from 
one indicator, fixed in the perspex tube, to another, which was exactly at a 
height of 50 cm above the f i r s t  indicator. The indicators were connected to 
the leads of an electronic timer through a s ta rt and stop mechanism. Figures 
9a, 9b shows the photograph of the weir discharging.

Figure 10 shows the variation of measured discharge versus head on a 
semi-log graph (In q vs. h). I t  is  seen that the experiments are in  very good 
agreement the theory by giving a constant average C .̂ Figure 11 shows the 
variation of with head for two weirs with R = 0.24 m and R = 0.3 m and 
t/R = 0.1. The is  obtained as the ra tio  of the experimental discharge to 
the discharge obtained from the proposed exponential re la tionship . I t  is 
seen that the C ,̂ does not vary by more than _+ 1 % from the average for 
any head which adequately supports the assumption of a constant coeffic ien t 
of discharge in analysis.

F ig . 10. Semi-log p lo t o f actual discharge versus head
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Concluding remarks

1. I t  is  shown that the weir formed by two quadrants of a c irc le  of radius 
R with a gap of 2t between them can be used to  give a exponential d is
charge-head re la tionship  within a maximum percentage deviation of +_ 2 

from the theoretical discharge in a range of head determined by the value 
of t/R.

2. This weir is a unique weir where the reference plane could be adjusted.
3. When t/R lies between 0.1 and 0.18 maximum range of measurable head is 

obtained. For the above range of t/R nearly 45% of the effective depth of 
the weir can be used in  the range of head 0.55R <  h < R.

4. Experiments on two weirs give a constant average coefficient of d is
charge, equal to 0.62. The variation of is  within +_ 1% of the mean 
value.

5. The geometrically simple E-weir can also be used as a linear weir (b e ll 
mouth weir) when inverted. For t/R = 0.1 i t  has the linear relationship 
in  the range 0.16R < h <  0.69R.

6 . On account of i ts  geometric simplicity and i t s  quick discharging charac
te r is t ic  i t  should prove useful in practice as a quick discharge measur
ing device during floods.
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USE OF A HYPERBOLIC FUNCTION 

TO DESIGN A SELF-BASING LINEAR WEIR

KESHAVA MURTHV, K .*—RANGARAJ, C .**—RAMESH, H. S .***

(Received: 10 January 1995)

This paper is  concerned w ith the theory and design o f a new improved se lf-basing 
lin e a r weir o f small base flow  depth and constant ind ica tion  accuracy. The design is  
achieved by u t i l is in g  the cha racte ris tics  o f a simple hyperbolic fu n c tio n . I t  is  seen 
th a t the 're ference plane' or the 'datum' o f the weir l ie s  w ith the c re s t, so th a t the 
discharge through th is  w eir, fo r  a l l  flows above a threshold depth, is  p ro p o rtio na l to 
the head measured above the crest w ith in  a pre fixed  maxinum percentage dev ia tion  of 

1% of the th e o re tic a l discharge. Experiments w ith  two typ ica l weirs con firm  the theory 
by g iv ing a constant c o -e ff ic ie n t o f discharge o f 0.64. I t s  app lica tion  in  ir r ig a t io n  
and environmental engineering is  h igh ligh ted .

NOTATIONS

a
b

e

emax
О
h
m
n

q
a
X

<0

У
ф(Н)

a constant
a constant, here equal to  the c o -e ff ic ie n t o f the term h-5/ 2 in  ф(Н)Н

re la tiv e  e rro r =
Q - Ql 

Q
maximum perm issible 'e ' adopted in  the design
acceleration due to  g ra v ity
head above the weir c rest
slope constant
exponent
discharge
a parameter c o n tro llin g  the shape of the generating function and the base depth 
v e r t ic a l co-ordinate
the value o f x a t which the function becomes nearly  constant/linear 
horizon ta l co-ordinate
tanh(aVÖH)), a function  which becomes ra p id ly  constant beyond an i n i t i a l  non -linea r 
portion
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Г the well-known gamma fu n c tio n
Cd c o e ff ic ie n t of discharge
E absolute error
H h/W
Hc h/Hc
Q q/KW5/2
Qc q/KW^/2
Q|_ lin e a r  discharge re la tio n s h ip  replacing the th e o re tica l discharge Q
X x/W

xc x/wc
Y y/W

^c y/wc
W a dimensional length constant
Wc h a lf  crest width o f the w e ir depending on a

1. Introduction

Linear proportional weir has attracted in terest in recent years /1—4/ 
owing to its  simplicity in  head-discharge relationship as well as i ts  prac
t ic a l  applications in varied fie lds like chemical, environmental and i r 
r ig a tio n  engineering /5 /.

Exact linear proportional weirs are invariably compound weirs con
s is tin g  of a base weir and a complementary weir / 6 /  f it te d  over i t  and 
achieve a discharge d ire c t ly  proportional to the linear power of the head 
measured above a datum, generally non-coincident with the crest. As compared 
w ith the exact linear proportional weirs, geometrically simple weirs /7—9/ 
have a profile consisting only of straight lines and segments of c irc les 
and are thus easy to fab rica te . However geometrically simple linear weirs 
produce a discharge proportional to the linear power of the head in  a 
lim ite d  range controlled by the choice of the maximum permissible error de
v ia tio n  from the theoretica l discharge.

Self-basing linear weirs (henceforth referred to as 'SBL weirs') /10, 
1 1 / ,  are a new class of weirs consisting of a single p ro file  with a portion 
of the weir above the creast acting as the base weir. In comparison, with 
the geometrically simple lin e a r weirs, the self-basing linear weirs have a 
marked advantage in having unlimited lin e a rity  range. Self-basing linear 
weirs are also free of the criticism  directed against the conventional 
lin e a r weirs questioning the ra tiona lity of choosing a common value of the 
co e ffic ie n t of discharge C^, for the flow, in the base weir as well as the 
complementary weir above.
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A problem common to most of the physically feasible exact linear weirs 
is  that the reference plane does not l ie  with the crest. This makes the in
dication accuracy (error caused in the discharge computation fo r a +_ 1 % er
ror in the head) to vary with the head which is  undesirable / 1 2 / .

The two main disadvantages of the self-basing linear weir designed 
e a rlie r by Keshava Murthy and Giridhar, are

( i )  the reference plane of the weir does not l ie  with the crest so that the 
indication accuracy is  not a constant but varies with the head,

( i i )  the base depth is  su ffic ien tly  large so that a large amount of water 
flows before the lin e a rity  law of the weir starts.

The above two lim itations are overcome in the present design.

2. Choice of the generating function

A self-basing linear weir can be obtained in any one of the following
ways:

( i )  Using a discharge function q = f(h) (generating function) which is  non
linear in the range 0 <  h < d but becomes near linear in d < h < » 
(SBL-1 type) (Fig. la ).

do( i i )  Using a function, = f(h ) which is non-linear in the range 0 < h < d 
but is  nearly constant in d < h < » (SBL-2 type) (Fig. lb ) .

Consider the function

ф(х) = tanh(a ^x) . . . ( 1 )

F ig , 1. Forms o f primary generating function
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F ig . 2. P lots of tanh(aVx) —*

where a is a constant. I t  is  seen from Fig. 2 that ф is  non-linear in 
0 <  x <  x 0  snd is nearly constant for x > Xg. The value of Xg decreases as a 
increases. However i t  is  advantageous to use the function of the form, хф(х) 
which is  non-linear in the range 0 < x < Xg and nearly linear in x > Xg as 
SBL-1 type as w ill be clear in  the foregoing sections. Hence we take

Q = tanh(a^H)H) = ф(Н)Н ...(2 )

as the generating function in  non-dimensional form (re f. Eq. ( 6 )) to derive 
the weir profile. I t  is  seen that Q(0) = 0, Q(°°) = », Q(H) is  monotonically 
increasing and ^  = 0 at H = 0, which are the conditions to be satisfied by 
any discharge-head function.

A weir with a zero crest width at the o rig in  w i l l  increase in width 
and reach a maximum and once again decrease which w il l  lead to sharp kinks 
which are d if f ic u lt  to fabricate  and are undesirable in a weir. Whereas a 
weir with a f in ite  crest width at the origin w i l l  give rise to a p ro file  
which is  continuously decreasing. Hence we look forward for an additional
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requirement of a p ro file  with f in ite  crest width at the orig in . I t  is  clear
from the works of Cowgill /13/ and Banks /14/ that a weir w il l have a f in ite

3/2crest width i f  and only i f  Q(H) has H as the lowest term. Expanding Q in 
terms of power series we have,

Q = (aH3 / 2  -  ( l/3 )a 3 H5 / 2  + . . . )  . . .(3 )

i t  is  seen that the least power of head is 3/2, assuring that the weir w il l 
have non-zero, f in ite  crest width /13, 14/. Hence Q = ф(Н)Н is  choses as the 
primary H-Q function to achieve a constant accuracy self-basing linear weir.

The crest width fo r the weir can be derived as below. For a weir pro
ducing a discharge q = bhm the weir p ro file  is  given by /13, 14/:

f(x) r(m + 1) m-3/2
Cd i/2 gir r(m - 1 / 2 ) '

Substituting b = 2Cd V2ga.W and m = y  in the above equation,

or,

y( 0 ) 2aW Г(3/2 + 1) 3Wa 
/тт r(3/2 - 1/2) " 2

Y(0) = Ц -. . . .(4 )

3. Mathematical analysis

f(x )  is 

...(5 )

where, q = discharge or rate of flow,
h = depth of flow measured above the weir crest, 
g = acceleration due to gravity,

= coefficient of discharge.

The discharge through a sharp crested weir defined by y = 
given by

_ fh
q(h) = 2C . \/2g V(h - x)f(x)dx□ Jg

The coefficient of discharge is  assumed to be constant, for sharp 
creasted weirs and streamlined flows. Coefficient of discharge is  generally 
a function of several parameters including surface tension, v iscosity , head
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causing flow, dimensions of the weir in re la tion  to the channel and the 
crest height. The value of has to be ascertained from experiments as in 
a l l  sharp crested weirs. The variation in w il l  normally be within _+ 1% 
of the average for any weir.

Non-dimensionalising Eq. (5)

r H ,_____
Q(H) = V(H - X)F(X)dX . . . ( 6 )

J 0

where, H = h/W,
X = x/W,
Q = q/(2Cd ^2ÍW5/2) ,
W = a dimensional length constant.

F ig . 3. P ro file  o f the weir
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F ig. 3a. Shows the weir p ro file s  (y/Wc) fo r  various values o f a

D ifferentia ting Eq. (5) with respect to h using Leibnitz's ru le

I F(X)
•o V(H - X)

dX = 2Q'(H) ...(7 )

The left-hand side of Eq. (7) is  in the form of Abel's integral equation and 
the solution of Eq. (7) is  /14, 15/

F (X) 2 f X Q"(H)
11 J 0 V(X - H)

. . . ( 8 )

The integration in the above equation was performed on the UNIX system using 
the 'Mathematics' package to get the weir p ro file . The p ro file  of the weir 
for a = 3 is  shown in Fig. 3. For the purpose of comparison the h a lf p ro file  
of the weirs for d iffe ren t values of a are shown in Fig. 3a.
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4. Linear discharge characteristic o f the weir

Let
= mH + C

represent the asymptote, o f the theoretical head-discharge curve.

. . . ( 9 )

m lim 
H - *  00

dQ(H) . 
dH " 1

. . . ( 1 0 )

C = lim  (Q(H) - mH) = 0 
H —* OO

. . . ( 1 1 )

The equation of the asymptote, which i f  the lin e a r relationship replacing 
the actual discharge-head curve (for H > H„) is

Ql = H ...(12 )

By tak in t q = kh tann(a ^h) , where к is a constant, inclination of the q-h 
curve could be varied, to get a weir of the desired sens itiv ity .

5. Analysis of e rror

I f  E(H) is the absolute deviation of Q from

E(H) = |q - Ql | ...(13 )

i t  is  seen that E(0) = 0, E(°°) = 0.
The relative error as defined by

Q -  Qi~ L f Л /, \

is  continuously decreasing with H in the range 0 <  H < » and rapidly ap
proaches zero. I t  is  seen from Fig. 4, that the error is equal to + 1% at 
H = 0.781 (for a = 3), beyond which for a ll p rac tica l purposes, the designed 
weir is  almost as accurate as any exact linear weir. In most discharge 
measurements in practice, involving weirs and notches, a maximum re la tive  
e rro r of +_24 is normally allowed /15/. This resu lts  in a reasonably high 
degree of accuracy under f ie ld  conditions. Taking the maximum permissible
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F ig . 4. D is tr ib u tio n  o f percentage re la t iv e  e rro r

error as +_ 1 % for our design, the depth of flow at which th is  error occurs 
can be considered as the threshold depth, which is  analogous to the base 
weir in conventional weirs.

From Eq. (2 ), Eq. (12) and Eq. (14) the base depth for a given value
of e is max

C 1D = - j  ...(15)
a

1 2where, c, = (ArcTAnh( 1 -----ГГпп^ >
1 1 emax/iuu

D = nondimensional base flow depth, d/W.

From Eq. (15) the value of a giving the same base depth of 0.4 ob
tained from the ea rlie r designed SBL weir /10, 11/ is  2.271, corresponding 
for a re la tive error in discharge.
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Table 1

x/Wc
Co-ordinates o f y/W<_ fo r values o f a =

6 5 7 10

0.00 1.0000 1.0000 1.0000 1.0000

0.05 0.7170 0.4664 0.3088 0.1958

0.10 0.5515 0.3047 0.1982 0.1334

0.15 0.4467 0.2341 0.1570 0.1088

0.20 0.3761 0.1958 0.1348 0.0944

0.25 0.3263 0.1719 0.1204 0.0846

0.30 0.2898 0.1553 0.1099 0.0773

0.35 0.2620 0.1430 0.1019 0.0716

0.40 0.2403 0.1334 0.0954 0.0670

0.45 0.2230 0.1257 0.0900 0.0632

0.50 0.2088 0.1192 0.0854 0.0599

0.55 0.1970 0.1136 0.0815 0.0571

0.60 0.1870 0.1088 0.0781 0.0547

0.65 0.1785 0.1046 0.0750 0.0526

0.70 0.1711 0.1009 0.0723 0.0507

0.75 0.1646 0.0975 0.0699 0.0489

0.80 0.1588 0.0944 0.0677 0.0474

0.85 0.1536 0.0916 0.0657 0.0460

0.90 0.1490 0.0891 0.0638 0.0447

0.95 0.1448 0.0867 0.0621 0.0435

1.00 0.1409 0.0846 0.0605 0.0424

3.00 0.0814 0.0489 0.0350 0.0245

5.00 0.0632 0.0379 0.0271 0.0189

7.00 0.0534 0.0320 0.0229 0.0160

9.00 0.0471 0.0282 0.0202 0.0141

11.0 0.0426 0.0255 0.0182 0.0127

13.00 0.0392 0.0235 0.0168 0.0117

15.00 0.0365 0.0219 0.0156 0.0109

17.00 0.0343 0.0205 0.0147 0.0102

19.00 0.0324 0.0194 0.0139 0.0097

21.00 0.0308 0.0185 0.0132 0.0092
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5. Universalisation of the weir parameters

The primary discharge-head function is  non-dimensionalised with re
spect to a dimensional length parameter W. However i t  is  desirable to non- 
dimensionalise the p ro file  equation of the designed weir with respect to its
own dimension namely, the ha lf crest width W . I t  is  apparent from th is  non-

c W
dimensionalisation that = 1 and from Eq. (4) = Щ -.

"c
The corresponding threshold depth is

0 c
_d_ 2D
W '  3ac

From Eqs (4), (12) and (19),

...(16 )

Qc =aHc ...(17 )

where a = [|- a) For the designed weir with a = 3, y(0) = Wc = 4.5,
Dc = 0.1736 and Qc = 0.10476 Hc . Table 1 gives the co-ordinates of the weir 
for a = 3, 5, 7 and 10.

F ig . 5, Experimental setup
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Fin, fia. Front view
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F in . 6b. Side view showing the nappe
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6 . Experiments

The experimental setup is shown in Fig. 5. The profile  of the weir is  
cut on a nibbing machine using 914.4 mm x 609.6 mm x 6.5 mm thick M.S. Sheets. 
The depth of flow over the crest was measured with an electronic point gauge 
having a least count of 0.01 mm located 4 m upstream of the weir section in 
a s t i l l in g  well. The surface waves were dampened by using graded boulders on 
the upstream of the channel section. The time required to collect a fixed 
volume of water in a measuring tank (4.52 m x 4.52 m x 1.5 m) was recorded 
w ith the help of an e lectronic timer triggered by impulse signals attached 
to  the level indicators. Figure 6 (Photo) shows the view of the discharging 
weir. Figure 7 shows the p lo t of actual discharge versus head measured above 
the crest of the weir. The graph is a s tra igh t line  passing through the 
o r ig in , confirming the theoretical analysis. The plot of coeffic ient of 
discharge versus head is  shown in Fig. 8 and the average coeffic ient of 
discharge for the weir is  0.63. The coefficient of discharge for any head is

Fi g ■- 7. Experimental head-discharge p lo t
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well within +_ 14 of the average which ju s tif ie s  the assumption of con
stant coeffic ien t of discharge in the analysis. 7

7. Conclusions

1. A hyperbolic function is  used as a generating function to design a con
stant accuracy linear weir.

2. The weir has a non-zero f in ite  crest width.
3. The base flow depth or the threshold depth (depth at which +_ 14 error oc

curs) varies with the parameter a .
4. For a > 2.271, the base flow depth of the designed weir is smaller than 

the base depth of the earlier designed SBL weir using quadratic weir 
p ro file .

5. The reference plane of the weir s ig n ifica n tly , lies with the crest ren
dering i t  as a constant accuracy weir.

6 . Experiments with two typical weirs are in good agreement with the theory 
by giving a constant co-efficient of discharge of 0.64.
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A SIMPLIFIED DERIVATION OF THE EQUATIONS 

OF SHALLOW-SHELL THEORY IN CURVILINEAR CO-ORDINATES
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The d if fe re n t ia l equations describing the behaviour o f a shallow s h e ll w ith in  the 
broad framework o f cu rv ilin e a r co-ordinates corresponding to the im tu a lly  orthogonal 
lin e s  o f curvature o f the sh e ll middle surface are derived on the basis o f  the two- 
surface she ll theory. This approach to  the de riva tion  o f the she ll equations is ,  in  
essence, a genera liza tion o f an e a r lie r  fo rm u la tion , due to Calladine /1 / ,  in  terms o f 
plane Cartesian. co-ord inates. S pecific  examples o f the present form ulation are then 
given w ith reference to  more complex frames o f reference such as spherica l, c y l in d r ic a l , 
po lar and quasi-polar co-ordinate systems. As w i l l  be seen, the proposed d e riva tio n  
scheme — which may also be extended so as to  encompass completely general, oblique 
frames o f reference — is ,  in  the s p i r i t  o f the two-surface idea liza tio n  o f  sh e lls , 
more d ire c t, simpler and, above a l l ,  more in s tru c tiv e  than conventional treatm ents.

Introduction

The complex interaction between bending and stretching actions, which 
generally combine to sustain loads applied to shell structures, can be e f
fective ly studied by means of a two-surface theory of shells proposed by 
Calladine /1 /. In th is  theory the interaction between bending and stretching 
actions is  brought out in physical terms by the conceptual s p lit t in g  of the 
actual surface of a shell into two d is tin c t, but coincident, surfaces, de
signated В and S, each of which is endowed with a different part of the 
stiffness of an element of the shell. The S- (or stretching) surface pos
sesses in-plane stiffness only, and thus carries membrane ( i.e .  in-plane) 
forces but is physically incapable of transmitting bending (and tw isting)

*F. C. Mbakogu, A ll ie d  T ropical Consultants L td .,  5 Akinola Cole Crescent, Ik e ja , 
Lagos, N igeria

**M. N. Pavlovió, Department o f C iv i l  Engineering, Im peria l College o f Science, Tech
nology and Medicine, London SW7 2BU, U.K.
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moments and transverse shear forces. On the other hand, the B- (or bending) 
surface is provided with flexural stiffness only, and hence sustains bending 
(and twisting) moments and transverse shear forces but offers no resistance 
whatsoever to in-plane forces. The device of s p lit t in g  the action of a shell 
in to two d istinct parts affords the poss ib ility  of thinking separately about 
the two aspects of behaviour, and the in teraction between them. Thus, for 
example, the load-sharing between the two surfaces provides ready insight 
in to the regime of behaviour into which a given problem fa lls  /2—4/.

In /5—8/, the didactic potential of the two-surface model was i l lu s 
trated by means of a numerical model. Here, the teaching potential of the 
method is demonstrated by reference to analytica l derivations. Specifica lly, 
the d iffe ren tia l equations describing the behaviour of a shallow shell with
in the broad framework of curvilinear co-ordinates corresponding to the 
lines of curvature of the shell middle surface are derived on the basis of 
the two-surface theory. This approach to the derivation of the shell equa
tions is essentially a generalization of an earlie r formulations, due to 
Calladine /1 /, in terms of plane Cartesian co-ordinates. Special cases of 
the present treatment — corresponding to cy lin d rica l, spherical, polar and 
quasi-polar co-ordinate systems — are then used to illu s tra te  the inherent 
advantages of the approach. Apart from its  elegance, when compared to ex is t
ing derivations /9 —14/, the present approach also has clear didactic ad
vantages, notably, the elucidation of the meahings of the various quantities 
in  the fie ld  equations in simple, physical terms. These advantages stem from 
the use, in the present scheme, of the two-surface notion of separable bend
ing and stretching effects, and of the Gaussian curvature change as the 
prime kinematic variable.

General derivation

Figure 1 shows the various stress resultants and couples acting on a 
d iffe re n tia l element of a shell, as well as the surface tractions to which 
the element is subjected. The orthogonal curvilinear co-ordinates and « 2  

coincide with the lines of principal curvatures of the middle surface of the 
she ll. The applied loading consists of a normal pressure p and a pair of 
tangential surface tractions q̂  and q2 aligned with the directions of prin
c ipal curvature. The diagram defines the positive senses of the in-plane 
d irect and shearing stress resultants N-̂ , N2 , N-^C1̂ ^ ) ,  out-of-plane (or
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F ig . 1. In f in ite s t im a l sh e ll element under in-plane and bending 
actions (on ly  actions on sides AB and BC are shown)

transverse) shear stress resultants and bending and tw is ting  stress
resultants (or couples) M ,̂ М2 , (= ^2 1 ^'

Let the principal curvatures of the middle surface of the she ll be de
noted by (= 1/R^), t<2 (= I/R 2 ) while the associated Lamé parameters be de
noted by Â  = (exp 0 2 ), = * 2  âl ’ a2 ^' ^  w-*-H recaH ec*, from the
theory of surfaces, that these geometric parameters are related thus:

( 1)

( 2 )

( 3)

The above relations are the well-known Gauss—Codazzi equations (the f ir s t  
is  Gauss's equation, while the other two are due to Codazzi), the s ig n if i
cance of which rests on the fact that the quantities Ap and l< 2  can
not be expressed a rb itra r ily  as function of the co-ordinates (a^, a ^) of a 
point on the surface /15, 16/.

Now consider the equilibrium of the d iffe ren tia l shell element. In
stead of formulating the equilibrium equations for the actual sh e ll element
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I  normal

Fig. 2. M athematical model fo r the in f in ite s t im a l s h e ll element 
of Fig. 1 obtained by s p li t t in g  the she ll in to  two separate surfaces 

a) S-surface ( "s tre tc h in g ") ; b) В-surface  ("bending")

d ire c tly , as in conventional treatments, we sha ll, in keeping with the two- 
surface idealization, set up the corresponding equations for each of the 
d is t in c t conceptual surfaces used in modelling the shell. As shown in 
Fig. 2(a) and Fig. 2(b), the S-surface element carries only the membrane 
stress resultants while the В-surface element sustains the flexural actions 
exclusively. The diagrams also show that the В-surface element is  subjected 
to a normal pressure Pg and two tangential surface tractions q^g, q2 ß while 
i t s  S-surface counterpart is ,  in turn, subjected to a normal pressure Pg and 
a pa ir of tangential loadings and q2g. I t  is  obvious that, since the ac
tua l applied loading is  generally carried partly by the S-surface and partly  
by the В-surface, the fo llow ing interaction conditions of overall equ ilib 
rium linking the carrying capacities of the two surfaces hold true:

PS + pB = P (4)

q lS + qlB = ql ( 5 )
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q2S + q2B = q2 (6)

I t  may readily be shown that the equilibrium equations for the two 
surfaces are as follows:

K1N1 + K2 N2

A A 
1 2

(7)

( 8)

(9)

( 10)

( 11)

( 12)

(13)

(14)

Equations (7)—-(9) re late to the S-surface while expressions (10)—(14) are 
associated with the В-surface. For the former, equation (7) expresses the 
condition of force equilibrium in the normal direction while equations ( 8 ) 
and (9) are the corresponding equations fo r the tangential directions. For 
the В-surface, equation (10) represents the condition of force equilibrium 
in the normal d irection while equations ( 1 1 ) and ( 1 2 ) are the corresponding 
equations for the tangential directions; in addition, equations (13) and 
(14) represent the conditions of moment equilibrium about the and a 2 

axes.
Clearly, the S-surface equilibrium equations (7)—(9) are of the same 

form as the corresponding equations of a membrane shell (see, fo r example, 
Gol'denveizer /17 /). In the present case, however, the load components acting
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dr the S-surface element represent only some portion of the actual ( i.e .  
to ta l)  applied load components.

By combining equations (10), (13) and (14), one may express the B- 
surface pressure loading Pg in  terms of the bending and twisting moments as 
follows:

a 1 a i A ^ ) Э(А1М12)
+ M12 - М 2

ЭА2

<—1
Öcr>

Ai Эа^ о̂̂ 2 3&2 Эс^

a 1 3(AxM2) Э(А2М12)
+ М12

ЭА2
- M l

3AX

Э(*2 A2 _ Э& 2 Эа-ji Эа-̂ Эа2

(15)

In view of the mechanical characteristics of the В-surface, one would expect 
that the above expression (15) represents the equation of equilibrium of an 
element of a f la t  plate which is  locally tangential to the curved surface of 
the she ll. However, unlike a fla t-p la te  element, which is  incapable of car
rying any tangential loading, the curved В-surface element demands some tan
gentia l loading in order to secure its  equilibrium in the tangential d irec
tio n . This is confirmed by equations (11) and (12), which reveal that the 
required В-surface loadings q^g, q^g depend on the disposition of the trans
verse shear forces Qp Q2 w ithin the В-surface. By reason of the smallness 
of the В-surface tangential loadings in the present context of shallow 
shells , i t  is  obvious that they can provide but very feeble coupling between 
the bending and stretching effects, which coupling disappears in the l im it 
ing case of a f la t  plate. Thus, i t  seems reasonable to ignore the terms q^g 
and q2g in equations (5 ), ( 6 ) , (11) and (12), thereby transferring the en
t i r e  applied tangential loadings to the S-surface. Evidently, the neglect of 
the tangential force in teraction between the S- and В-surfaces is  consistent 
with the Donnell—Mushtari—Vlasov sim plifications of the shell equations; 
and, also, with Gol’denveizer's approximation fo r shells with 'large indices 
of varia tion ' /17/. Moreover, such a move implies that the interaction con
d itions  of overall equilibrium are expressed solely in terms of normal load
ing components /3, 18/.

The constitutive and compatibility relations for the two imaginary 
surfaces may also be formulated separately. In the following, these re la 
tions , together with the equilibrium equations, are collected together in 
separate columns for the two surfaces. (For present purposes, tangential 
surface tractions are neglected — th is point w il l  be taken up again la te r .)
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S-surface B-surface

N, NJ l
R,

_ 2  n 
R„ '  pS (16S) 2 Л - П  

Rx R2 '  9B (16B)

3(A2 N,) 3A2 3(A1 N12)
- No -г—  + ------------ +Soil 2 Зои 3an

э(а2 к2) эа2 э(а1 к12)
- к.3 oc-i ' I  За, 3ctg

+ N
ЭА1

1 2  Зад = О
ЗА,

(17S) - < 1 2  ~  = ОЭа2
(17В)

3CA.No) ЗА 3(A„N19) 
1 г N, —  +

Э СХо 1 За- За-.

Э(А^к^) ЭА̂  Э( А2 к^2) 
Эао 2 Эа2 Эо̂

ЗА,
N. g Т “  = О

1 2  Эа-̂
ЭАо

(IBS) к 12 Зад = 0

1 3 Í>
А2 Зос2 {

1 эа2 Bw
д2д

1 2
■ Эа^ Эа̂

1 3 Í
А1 3«! 1

1 ЪЬ1 3w
А А2 1м2

Ъо̂ 2 Э et 2

(18В)

1
N = — —  (—  — 1 

^2 ®а2 1А2 <*“ 2 /

1 ЭА2 Эф

д2 д2 э«! 3«!

N = - L f X
2 Эа̂  J

1 ЗА,1 __1 ЭФ
Ai A 2 За2 Эсс2

(19S)

(20S)

1 3w

(19В)

(20В)

12 7TÂ-1М2
Э̂ Ф

3 e t3 ос 2

1 З А 2 ЭФ 1 ЗА1 ЭФ I
^ 2  ^ а 1 Эа2 А В с̂2 В et ̂  J (21S)

1
С о2

'12 А. До
Э w

1 а 2 V^al ^ a 2

_ J_ ^ 2  _3w__ 1_ ЭА1 3w 1
^2 ^а1 Эа2 ^1 ^а2 /

(21В)

л  = Д  (Ni -  V N2) (22S) м2  = D ( < 2 + v к ,) (22B)

е 2  = Ë i ( N 2 '  v Nx) (23S) M! = o (< i + \> к 2 ) (23B)

* 1 2
= 2 ( 1  + v) N 

Et 12 (24S)
2 M 1 2

= 2D (1 -  \>)k1 2 (24B)
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1 Э 1
3(А2 е2)

1 3 Г  1 3 (-А2М]
s s  ~ A A M1 M2 Эа-̂ LA1 Э а 1

рВ А ^ Эа̂  L Al

e ̂  SAj ï 1 2  ЭА1 М2 ЭА2 2М1 2  »Aĵ 1
^ 1

Â  За2 - ^ 1 А̂  Эо2 J

3 Э(А1 е1) е2 ЗА̂
3 Г  1 э('А1М2 ') М1

ЭА̂

Ъ&2 - A 2 Эа2 ^ 2  Э сх2 Эа2 1_^2 Э 0-2 А2 Ъо.2

T 1 2
э а 2 * эЧ 2 (25S)

2 Mi2 ЭА2 "1 Э2М
+ 2

A 2 Эа̂ Эа̂ Эа2 ^ 2  J За̂ Эа2
(25В)

The behaviour of the S-surface is  described by the set of equations 
(16S)—(25S). Expressions (16S)—(18S) represent the equations of equilib 
rium of the S-surface for the present case of vanishing tangential surface 
tra c tio n s ; as is well known, equations of th is  type may be conveniently 
dealt with by introducing an Airy-type stress function Ф /19/, and th is  is  
defined by relations (19S)—(21S). Equations (22S) — ( 24S) are the consti
tu t iv e  relations for the S-surface while equation (25S) represents the 
com patib ility  equation re la ting  the S-surface Gaussian curvature change g  ̂
to the in-plane strain components /3, 2 0 / .

The set of equations ( 16B) — (25B) describes the behaviour of the B- 
surface. Expressions (16B)—(18B) are the compatibility equations relating 
the В-surface Gaussian curvature change gg to the ordinary curvature-change 
components Kp k2 and Kp. Expressions (19B)—(19B) are the sim plified geo
metric relations which define the curvature-change components solely in 
terms of the normal displacement component w. Equations (22B)—(24B) are 
the constitu tive relations fo r the В-surface while expression (25B), which 
may be obtained from equation (15) by means of simple transformations, 
represents the В-surface equilibrium equation re la ting the loading pg to the 
bending and twisting moments Mp М2 and Mp.

The formal s im ila rity  between the corresponding expressions for the 
two surfaces, as indicated by the common numbering, is  evident. I t  is , of 
course, a consequence of the extended static-geometric analogy of Calladine 
/ 1 /  and clearly indicates tha t the set of equations describing the behaviour 
of the S-surface can be transformed into the corresponding set of equations 
fo r the В-surface, and vice versa, by merely interchanging analogous va
ria b le s  and material constants (N  ̂ ++ <2j N2 * *  Kp Np *■* -  * p ,  «-» M2,
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e2 * *  Mx, y12 ♦♦ -  2M12, Ф + +  -  w, «-*• -  ^  +* □, Pg 9B,
gs ~ pb) .

A fu l l  description of each of the two conceptual surfaces has been 
presented. In order to ensure that the surfaces do not behave independently 
of one another, i t  is  necessary to impose interaction conditions of overall 
equilibrium and compatibility. As noted e a rlie r, overall equilibrium is  as
sured by equating the to ta l applied (normal) load p to the sum of the se
parate (normal) loadings carried by the S- and В-surfaces, as expressed by 
equation (4). Overall compatibility, on the other hand, is assured by equat
ing the В-surface Gaussian curvature change to its  S-surface counterpart, 
that is , by the condition

gs -  9B (26)

Since the above interaction conditions are, in fact, statements of the 
sought governing equations, i t  is  evident that the la tte r may be obtained by 
determining the variables Pg, Pg, g  ̂ and gg separately and then combining 
them by means of equations (4) and (26).

Consider, f i r s t ,  the equations of the S-surface. By substitu ting ex
pressions (19S) and (20S) into the equilibrium equation (16S) and taking ac
count of the Codazzi equations (2) and (3 ), the S-surface loading Pg can be 
expressed in terms of the stress function Ф as follows:

PS = Vk *  (27)

2where the symbol denotes the second-order mixed d iffe ren tia l operator de
fined by

Now, in special cases (such as, fo r example, Cartesian, polar and 
quasi-polar co-ordinates) the two tangential equilibrium equations become 
iden tica lly  sa tis fied  once they are expressed in terms of the stress func
tion Ф. In the present, general case, th is  does not happen, but these equa
tions take the following forms. By substituting the stress-function d e fin i
tions (19S)—(21S) into the tangential equilibrium equation (17S), one ob
tains, after some manipulations (amongst which, account is taken of Gauss's 
equation ( 1 )) , the relation
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a(A2 N1) ЭА2  3(A1N12) ЭАх А2 эф

Эа-̂  ^2 Эа-̂  За2 ^12 Эа2 ^1^2 3а1
(2 9 )

S im ila rly , the second tangential equilibrium equation (18S) may be expressed 
in the following form:

3(ai n2) 3A1 3(A2 N12) 3A2   ̂ A: йф
Г  — N - |  +  N i n  _ -  n  n  ГЧ C - ^ U y
Эо̂ 2 ^а2 ^ 1^2 ^^2

Evidently, the right-hand side terms in equations (29) and (30) vanish fo r 
shells with zero Gaussian curvature (as they do in  the case of f la t  p lates). 
However, for a shell of non-vanishing Gaussian curvature the terms may, as 
an approximation, be assumed to be equal to zero i f  the middle surface is  
shallow, by reason of the smallness of the curvatures of the shell; such an 
approximation can also be used i f  the state of stress in the shell exhibits 
rapid variation by v irtue  of the negligible magnitude of the f i r s t  deriva
tives  of Ф in comparison with its  higher derivatives.

The S-surface Gaussian curvature change can also be expressed in terms 
of the stress function Ф. This can be achieved by substituting the constitu
t iv e  relations (22S)—(24S) into expression (25S) and taking account of the 
tangential equilibrium equations (17S) and (18S) as well as the stress-func
tion  defin itions. In th is  way, one obtains:

- S 1 2 2 c = f r  V V Ф S Et g g (31)

where the symbol V2
g

denotes the generalized Laplace operator defined by

1 3 f A2 » ] + 3 ' А1 3 1 I
A A1 Z - Й“ Х ЧА1 Э<*2_ J Эа2 1А2 Эа2 J (32)

Now consider the set of equations describing the behaviour of the 13- 
surface. By substituting expressions (19B) and (20B) into the compatibility 
equation (16B) and taking account of the Codazzi equations (2) and (3), the 
В-surface Gaussian curvature change gg may be expressed in terms of the 
transverse displacement function w in the follow ing form:

9B = w (33)
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As for the tangential equilibrium of the S-surface, the remaining two 
compatibility equations of the В-surface are not identica lly sa tis fied  when 
w is inserted into them for the present, general case, but they take the 
following forms. By substituting the curvature-change defin itions С19B)— 
( 21B) into the compatibility equation (17B) one obtains, a fte r some mani
pulations (amongst which, account is  taken of Gauss's equation (1 )), the 
following re la tion:

30 2̂*2') 3 (Al K1 2  ̂ 3 A 1 A 2 3w
Эа-̂  1 Эсс̂  3ос2 12 З0С2  ^1^2

(34)

S im ilarly, the second compatibility equation (18B) may be expressed as 
follows:

a iA jK j) 3AX 3 (a2 Ki 2) a? 3>
1*0

A, - 1 Э w
81*2 K2 Эа2 3ot^ 12 3aL R1R2

(35)

For shells of zero Gaussian curvature, the right-hand side terms in the 
above equations vanish; they may also be assumed to vanish in non-zero Gaus
sian curvature shells which are shallow and/or exhibit rapidly-varying 
states of stress, for reasons stated earlie r.

We now turn our attention to the В-surface loading Pg, which can be 
expressed in terms of the displacement function w. This may be achieved by 
substituting the constitutive relations (22B)—(24B) into expression (25B) 
and taking account of the compatibility relations (17B) and (18B) as well as 
the curvature-change defin itions. In th is manner, one obtains the following 
expression

p0 = D vV w  (36)

Finally, by combining the overall equilibrium and com patibility condi
tions ((4) and (26), respectively) with expressions (27), (31), (33) and 
(36) one obtains the sought governing equations:

1 ? 
D v V w  

g g
Ф = p (37)

Et
2 2 V V 4 
g g

w = 0 (38)
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I t  is  interesting to  note that the e ffo rt required for the derivation 
of the above equations may be considerably reduced i f  one invokes the sta
tic-geometric analogy. This important feature of the present method is 
c le a rly  absent in conventional derivations: i t  stems from the fact that the 
static-geometric analogy enables the various expressions for the parameters 
associated with one surface to be written down by inspection once the ex
pressions for the corresponding parameters of the other surface have been 
obtained. In particu lar, one could readily have established expressions (33) 
and (36), for the В-surface parameters gg and Pg, from the expressions (27) 
and (31), for the S-surface quantities Pg and gg, and vice versa, by in
voking the appropriate interchanges consistent with the extended s ta tic - 
geometric analogy.

Specific examples

I t  was noted e a rlie r that the present formulation is  a generalization 
of Calladine's derivation in  terms of Cartesian co-ordinates. Indeed, th is  
may readily be verified  — and serves as a useful introductory exercise — 
by making the following substitutions (which re late the Cartesian (x,y) co
ordinate system to the more general orthogonal curvilinear system presently 
employed) in the foregoing expressions: a-̂  = x, = y, = 1, A2  = 1. Si
m ila r ly , the present formulation may be specialized to other co-ordinate 
systems. Four cases are considered in what follows.

Example I :  Cylindrical co-ordinate system

This co-ordinate system may be used fo r the description of shells the 
reference surfaces of which are surfaces of revolution. I t  w il l be recalled 
tha t a surface of revolution is  formed by ro tating  a plane curve, as a r ig id  
body, about an axis (the axis of revolution) in the plane of the curve. The 
plane containing the axis of revolution is  called the meridional plane, and 
the intersection of th is  plane with the surface is  called a meridian. Fur
thermore, the intersection of the surface with a plane which is  perpendic
u la r to the axis of revolution is a c irc le  known as a latitude c irc le  or 
p a ra lle l; and i t  may be shown that the meridians and parallels are the lines 
of principal curvature of the surface of revolution / 2 1 / .
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In the present co-ordinate system the position of a point on the sur
face is  defined by the angle 0 and the distance x; the co-ordinate 0 repre
sents the angle between the meridional plane passing through the point and a 
fixed meridional plane, while the other co-ordinate, x, defines the dis
tance, measured along the axis of revolution, of the associated latitude 
c irc le  from a suitable datum (see Fig. 3). The parameters a^, c^, and A£ 
can be shown to be given by / 2 1 /

Г o"jl/2
<*! = x, “ 2  = 9’ Al  = L1 + (RÓ} J ’ A 2 = Ro

where Rq is  the radius of the latitude c irc le  at position x and a prime de
notes d iffe ren tia tion  with respect to x. In addition, the principal rad ii of 
curvature of the middle surface are given by

R
1 TF"о

1/2
r 2 '  Ro [ l  *  ‘ W 2 ] (40)
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where represents the radius of curvature of the meridian curve Rq( x) 
while R2 is the distance along the normal to the curve Rq( x) drawn from a 
point on the curve to the axis of revolution of the surface /2 1 /.

On the basis of the above relations (39) and (40), which can readily 
be shown to identically sa tis fy  the Gauss—Codazzi equations (1)—(3), one 
can easily transform the S- and В-surface equations into the present co
ordinate system, and these are lis ted below. (The subscripts have been sub
s titu te d  thus: 1 -* X ;  2 -»• 8 ; 12 ->x0.)

S-surface B-surface

N N.x 8
R:  + R2 = ps (41S) ■ +Ko
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e 0 = I t  ( N 0 - vNx} Mx = D 4  + VKe}(48S) (48B)
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Further, i t  can readily be shown tha t, for the present co-ordinate
2

system, expressions (28) and (32), defining the d iffe ren tia l operators V.
2  ̂and Vg (which appear in expression (27), (31), (33) and (36), defining the

S- and В-surface normal loadings and Gaussian curvature changes, as well as 
in the coupled d iffe re n tia l equations (37) and (38)), reduce to the follow
ing forms:

(51)

(52)

To our knowledge, no similar expressions exist in the lite ra tu re  fo r th is  
co-ordinate system in its  general form.

In the special case when the generating curve ( i.e . meridian) is  
straight and para lle l to the axis of revolution, the radius Rq of the la t i 
tude c irc le  becomes constant ( i.e . independent of the co-ordinate x), so 
that a ll derivatives of Rq with respect to x vanish. Thus, the following re
lations hold true:

Ax = 1 , Rx = », R2  = R0  (53)

and the middle surface corresponds to a c ircu lar cylinder of radius Rq

(= R9). In this case the formulation is considerably simplified. In pa rtic - 
z 2 2

ular, the d iffe re n tia l operators V,. and V reduce to the following forms:
K 9
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V 1 V_
R „ 2о Эх

( 54)

,2  _ . i l  + _ L _ â i
9 Эх2 R2  Э02  о

(55)

The re la tive  sim plic ity of the governing equations for circular cy lind rica l 
she lls  is  evident; for conventional derivations of these equations, see, for 
example, B illington /22/ and Soedel /14/.

Example I I :  Spherical co-ordinate system

This co-ordinate system may also be used fo r the description of shells 
of revolution, in analogy with the cy lindrica l co-ordinate system discussed 
above. In this case the position of a point on a surface of revolution is 
defined by the angular co-ordinates 9 and ф; as shown in Fig. 3, the co-or
dinate ф is  the angle between the axis of revolution of the surface and a 
normal to the surface at the point in question (note that, as in the preced
ing co-ordinate system, 9 represents the angle between the meridional plane 
passing through the point and a fixed meridional datum plane). The para
meters oip (*2 , and A2  are defined thus /14, 21/:

= Ф> a 2 = Ai = Ri, 1̂ 2 -  Rq (56)

where Rq is  the radius of the latitude c irc le  at position ф. The principal 
ra d ii of curvature of the middle surface depend only on the co-ordinate ф, 
and the following relations hold true /14, 21/:

dRo
Rq = ^2 s^n Ф’ "Эф" = Rx cos Ф (52)

On the basis of the above relations (56) and (57), which can readily be 
shown to identically sa tis fy  the Gauss—Codazzi equations (1)—(3), one can 
eas ily  transform the S- and В-surface equations in to the present co-ordinate 
system, and these are lis te d  below. (The subcripts have been substituted 
thus: 1 -► Ф; 2 -»9 ; 12 -» ф0 .)
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S-surface B-surface

N, N
0

R [ + = ps (58S) + = gB

3 ( N - R  )

•э » " ~  -  N0 ‘ Rl  C0S ф +
® < V R0>--------г---------------K . ’ K,  COS

Эф Ф 1

3NФ0
1 39 = 0 (59S)

Эк,
R

1 30 = 0

S(W
----- ^ -----  + N*0-Rl  cos ♦ +

Э(''<Ф0 ‘ КО̂ n
------- Эф-----------% e ‘ Rl  co s  *  +

3N
+ Ri  I T  = 0

(60S)
ЭКф

+ Rl T T = °

N 1 Э2ф j ЭФ 1 32w 1
N* ' R2 Э02

+ R R COS ф 
0 1 Э ф 9 R2 Э92 R R, о 1u 0

N9 =
1

4
i - |ЭФ 1

г 1 Эф]
, R! ЭФ J (62S)

Кф =
1

- * г
цЭф (

' j _  3w)
. R̂  эф J

N 1 Э2Ф 1 ~ 2 d W
% R R 0 1 ЭФЭ0 1 КФ9 R

1Л  ;ЭфЭ0

l
R1

COS ф :ЭФ
39 (63S) COS ( 3w 

ф 30
0 0

еф =
1

Et (мф
-vN 0) (64S) "М = 0 D(Ke + vV

e 0

1
Et ( N 0 - Ф (65S) М А =Ф « кф + VKe)

V :
. 2(1 + 

Et V) N* fl Ф0 (6 6 S) 2Мф0 = 2D(1 - v)k , „ Ф0

cos Э w 
ЭФ

(58B)

(59B)

(60B)

(61B)

(62B)

(63B)

(64B)

(65B)

(66B)
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1 3 1 * V Ro> 1 3 1
Э(Мф■Ro>

R R, 
0  1 ЭФLRi Эф РВ R R. о 1 1 ЭФLR1 ЭФ

-
R 1 3 Г Эеф м 1 R 1 э Гам9COS ф + R 36 эе - Mg cos ф 1+ R эЧ"L 30

+
0 С

2 Л л
COS ф

3 7ф0 (67S) + 2 М,_ cos ,"| +
э

2 —МФ9
сЭфаи фб эфэе (67В)

2In addition, one can easily show that the d iffe ren tia l operators V,
2 K  and V now becomeg

V2
к

V2
g

1 ’  1 9 f  1 9 1 Э 1 э2 1
R 1 R2 эф l Rl  эФ J + R R, 

0 1 c o s  Ф Зф R20 Э0 2 .

1 з f  1 a ) 1 a 1 Э2
= Rx Эф (R x Эф J + R ^  C0S ЭФ + r 2 302

0

( 68)

(69)

Again, to our knowledge, no similar expression exist in the lite ra tu re  fo r 
th is  co-ordinate system in  its  general form.

In the case of spherical shells (fo r which R̂  = R2 = R) the formula
tion  is  somewhat s im p lified . In particular, i t  is  a straightforward matter

2to show that the operator reduces to the well-known Laplace operator re
ferred to the spherical co-ordinate system, that is ,

1 f  Э2

R2 l  Эф2

cos _3_
Эф . 2 2 sin ф Э0

while i ts  counterpart becomes

К

(70)

(71)

Example I I I :  Polar co-ordinate system

In the polar co-ordinate system the parameters ctp «2 , and A2  given 
by:

a
1 0-2 = 9, Â  = 1, ^2 =Г, г (72)
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F ig. 4. Co-ordinate systems: 
Examples I I I  and IV

where г and e denote the polar distance and polar angle, respectively (see 
Fig. 4). The S- and В-surface equations referred to the polar co-ordinate 

system are lis ted  below. (The subscripts have been substituted thus: 1 -*■ r; 
2  -> 9; 12 -► re .)

S-surface B-surface

N N
Г 9 _

R2 '  PS

3(rN ) 3N
-  N„ + -rr^- = 0Эг 9 3 9

(73S)

(74S)

SB

Э(гк9}
ЭГ

Эк

КГ -
Г9

39

3 ( r N e) »N
—Т гЭ + — + N =0  Эг Э9 Г9

Э(гк . )  Эк
<75S> + ü íP ” кг9 = 0

(73В)

(74В)

(75В)
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Nr  = 1 Э* 2Ф 1 ЭФ
г 2 э e2 + г зг

(76S) Ke =
1 a2w 1 9w

" Г2  эе2 " r эг
(76B)

Ne =
Э2Ф
эг2

(77S) Kr =
a2w
ЭГ2

(77B)

Nre
1 ЭФ 1 Э2 ф
2 ае г эгэе г

(78S) Kre
1 3W l  a2w 

r 2 Э9 г эгэе (78B)

er = à  -  » V (79S) M = 
0 D( K 0 + vk£) (79B)

e9 = à  ( N 6 - * V (80S) M = г D(Kr + vk0) (80B)

ire = 2(1f ;  v) n йEt r9 (81S) 2M . re = 2D(1 - v)icr 0 (81B)

2 Эе9 1 Эег , э 2мг 2 ЭМг 1
эме

9
9S " ЗГ2

' г эг г эг ' р в Эг2  ' Г ЭГ Г ЭГ

1 b ? e r 1 Э̂ гЭ 1 э 2т ге 1
Э2 М0

2 ЭМг0 2
3ZM л Г0

2 2 г эе 2 эе г г эгэе + г 2 эе2  г 2 3 6
Г эгэе (82В)

2 2The d iffe ren tia l operators V. and v corresponding to the presentP' 9
frame of reference can be expressed thus:

)+ —  —
Rl  г 2 эе2 г Зг >J R2 Эг2

2 2 ,2 _ JT_ 1 _Э_ 1
9 ‘  Эг2 + Г 3r + r 2 Э92

(83)

(84)

I t  can easily be ve rifie d  tha t, on setting the S-surface Gaussian curvature 
change ĝ  to zero in the appropriate expression re la ting the la tte r to the 
stress function ф, the well-known biharmonic equation for plane stress in 
terms of polar co-ordinates /23/ is obtained. Also, i t  can readily be seen 
tha t the expression re la ting  the В-surface loading Pg to the transverse 
displacement function w represents the governing equation (referred to polar 
co-ordinates) for a f la t  plate which is lo ca lly  tangential to the curved
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surface of the shell /24/. Finally, i t  is worth noting that, when = R2 = 
= R, the reduced set of equations describing the behaviour of shallow 
spherical shells within the framework of plane polar co-ordinates is  obtain
ed, the present simple derivation should be compared to the more involved 
trad itiona l derivation (e.g. Reissner /12 /).

Example IV: Quasi-polar co-ordinate system

In this co-ordinate system the position of a point on a reference 
plane is determined by the polar angle 9 and a non-dimensional parameter a 
which is connected to the polar radius г through the following relation

in which r Q is  a constant having the dimensions of length. This co-ordinate 
system is also described by Fig. 4, with the (rad ia l) non-dimensional co
ordinate о corresponding to a given point on the surface defined in terms of 
the associated polar distance г through the above equation (85) (as noted in 
/ 1 0 / ,  the constant rQ may be regarded as a "conversion" factor for trans
forming the absolute co-ordinate г into its  non-dimensional counterpart a ). 
Thus, the parameters cip a2, and A2 take the following values /10, 25/:

The S- and В-surface equations in the present co-ordinate system may be de
rived from the more general relations in terms of orthogonal curvilinear co
ordinates, and these are lis ted below. (The subscripts have been substituted 
thus: 1 -* a ; 2 -*• 9 ; 1 2  -► a0 . )

(85)

( 86)

S-surface B-surface

(87S) (87B)

3 (a-No)
= 0 = 0 ( 8 8 B)Э9 a

(89S) (89B)
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S-surface В-surface

Г Q

\  ЭФ + 1 Э2Ф
а Эа ч а2 эе2

(90S) к =
e

J_|f l 3w 1 32w
г 2 ’

0
i “ Эа + а 2 эе2

2
_L i _ i  

2 2 г За о
(91S)

2
1 3 w 

о

а9
1 f l ~ 2 , 

0 Ф 1 ЭФ '
2 а ЭаЭ 9 ? эе

Г
0 к а У

(92S) а9
1 f l 32w 1 3w
2 а Заэе 2 эеГ
0

а

e t ( n 0
-vN 0) (93S) M = 

e D(Ke + vica}

è (Ns - vN ) а (94S) M = а D(Kqi + VKg)

2 ( 1  + 
Et V) Na0 (95S) 2M „ а0

= 2D(1 - v)< 0 аб
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1 3 ее 2 Эее

-  Рв =
1 3 Ма 2

ЭМа

2г
0
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0
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0  0
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1 Эеа 1
э2еа 1

э м 0 1 э 2м е
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0
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0
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1 Зуа6 1 3 Та6

Г2 а2  3 0  г2а Эа Э0  
г 0  0

(96S)
ЭМа0

2 2 30г0а
2 3Ч б

г 2а Э а Э 9

The d iffe ren tia l operators 72
к and V

g
now become

1 j i ' L  1 э2
R. а За + 2 2 Ro „ 2

1 а эе 2 Эа

l i + I 3 1

За2
а За + « 2 эе2

(90В)

(91В)

(92В)

(93В)

(94В)

(95В)

(96В)

(97)

(98)
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Specialised versions of the above — but not previously derived by the 
present simple and d irect formulation — have been used to advantage in the 
analytical treatment of shallow spherical shells and parabolic domes with 
c ircu la r plan /10, 25, 26/. (An alternative approach to the analytica l in
vestigations of the response of such shells, based on the two-surface model, 
has recently been proposed /27 /; the la tte r possesses several advantages 
over the conventional presentations, notably, the c la r if ic a tio n  of the 
structural response of a loaded shell by reference to the portion of the 
to ta l applied load sustained by each of the two imaginary ( i .e .  S- and B-) 
surfaces used in modelling the actual she ll.)

Conclusions

The analytical two-surface theory approach to the formulation of the 
shallow-shell equations has been generalized so as to encompass curvilinear 
co-ordinates corresponding to the (mutually orthogonal) lines of curvature 
of the middle surface of a shell. Apart from its  elegance, when compared to 
existing derivations, the present method also has clear d idactic advantages, 
notably, the elucidation of the meanings of the various terms in the fie ld  
equations in a simple and "physical" manner. From this general form of the 
shallow-shell equations, i t  is a simple and useful exercise to specialize 
them to the various specific co-ordinate systems of interest. These include 
Cartesian, cy lind rica l, spherical, polar and quasi-polar frames of re
ference, a ll of which have presently been lis ted . I t  is  worth pointing out 
that the expressions corresponding to at least two of these co-ordinate 
systems do not appear to exist in the available lite ra ture.

The governing equations outlined here, with reference to the lines-of- 
curvature co-ordinates, apply to transversely-loaded shells endowed with 
isotropic material properties. However, extensions of the formulation to 
cater for more general conditions are not d if f ic u lt  to envisage. For a 
s ta rt, tangential surface tractions can easily be incorporated into the 
scheme: in this connection, i t  should be noted that, in keeping with the 
two-surface idealization of a shell, the tangential loads must be applied 
exclusively to the S-surface, since, by de fin ition , the В-surface cannot re
s is t loads lying in i t s  plane — a move which is  tantamount to a neglect of 
the feeble tangential-force interaction between the S- and В-surfaces, in 
accordance with conventional shallow-shell theory /18, 28/. Secondly, the
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method can readily be applied to anisotropic shells, with the proviso that 
there be no coupling, at the constitutive-relations leve l, between bending 
and stretching actions re la ting  to the reference surface. A detailed discus
sion of the bending stretching coupling phenomenon exhibited by cetain an
iso tro p ic  shells, and i ts  implications for the two-surface model for a 
s h e ll, can be found in /2 8 /. In fact, the didactic advantages of the two- 
surface theory in the ana ly tica l derivation of shallow-shell equations for 
a rb itra ry  loading and material anisotropy are presented elsewhere /29, 30/. 
F in a lly , i t  should be clear that an extension of the present scheme of de
r iv a tio n  to encompass general, oblique frames of reference poses no concep
tua l d if f ic u lt ie s ; however, such extensions l ie  beyond the curricula of most 
ex is ting  engineering courses (including postgraduate ones).
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DIAGONAL BRACING OF SPECIAL CUBE GRIDS

NAGY, GY.*
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Consider a cube g r id  in  the space as a rod and jo in t  framework supposing th a t 
each cube is  a rhontraid during the motion o f the jo in ts .  The paper describes the 
economical placing o f diagonal braces fo r making th is  special cube g rid  r ig id .

1. Introduction

One of the simplest structures in s ta tics  are the frameworks.
Definition 1: A framework consists of r ig id  rods connected by rotatable 

jo in ts .
Definition 2: A framework is r ig id  i f  any continuous motion of the 

jo in ts  that keeps the length of every rod fixed, also keeps fixed the dis
tance between every pair of vertices in the framework.

Let us consider an n x m square grid  in the plane. The corresponding 
rod and jo in t framework is  a mechanism in the plane. Let the length of the 
rods be unit. An n x m square grid framework consists of n(m+l) pieces of 
horizontal and (n+l)m pieces of vertica l rods connected by (n+l)(m+l) pieces 
of rotatable jo in ts . There is a 3 x 4  square grid on the left-hand side of 
Fig. 1 (disregard the six diagonals). We want to make the o rig ina l square 
grid rig id  using braces in the diagonals of some squares. Thus some squares 
w il l  become rhombi, others remain squares during any motion of the vertices 
(Fig. 1). Hence the horizontal rods of the i- th  column are pa ra lle l with 
each other during any motion of the jo in ts  so they can be denoted by vector 

. S im ilarly, the vertica l rods of the j- th  row are parallel with each

*Nagy, Gyula, H-1131 Budapest, Béke u. 118/A, 7. em. 2, Hungary
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F ig .  1

other during any motion of the vertices so they can be denoted by vector 
(F ig. 1). Thus we can describe the move of the nxm square grid framework 
with n+m vectors, disregarding the translation of the framework only.

According to D efin ition  2, i f  every square remains square for any mo
tio n  of the vertices then the square grid is  r ig id  in the plane. How to 
brace the square grid i f  i t  must be rig id? How many diagonal braces are ne
cessary? This problem have been solved by Bolker and Crapo /3 /. In th is  note 
we give a new proof of Bolker—Crapo ' s theorem and extend the ir theorem to 
the space, namely to the 1 x m x n special cube grid. Recski / 6 /  gave a 
simpler proof to the theorem of Bolker and Crapo. We use other tools which 
are also useful in case of the special cube grids below. We are going to use 
elementary geometry, graph theory and continuity only.

Define the graph c of the framework F as follows: the Vertices of the 
graph c correspond to the jo in ts  of the framework F and there is  an edge 
between two points of c i f  there is  a rod between the corresponding two 
jo in ts  of the framework.

Consider a rod and jo in t framework in one dimension (line  or arc).
Lemma : A framework is  r ig id  in one dimension i f  and only i f  i t s  graph 

c is  connected.
Proof: The connectivity of c means we can get from every point to 

every point along edges of the graph, that means, the jo ints of the frame
work can move together to the same direction with the same velocity. I f  c is  
not connected then the frameworks corresponding to its  components can move 
independently of each other.
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2. Square grid

At the beginning every vector X̂  is perpendicular to every vector Y ,̂ 
where X̂  and Ŷ  are the horizontal and vertica l vectors of the g rid , respec
tiv e ly  (Fig. 2).

We want to make the grid r ig id  by inserting diagonal braces. I f  the 
square in the intersection of the f i r s t  column and the second row has a 
diagonal brace then vector X̂  is  perpendicular to vector Y2 during any mo
tion . Thus the diagonal bracing is  described by a b ipartite  graph (Fig. 3): 
the X^'s are in the f i r s t  vertex class, the Y^'s are in the second vertex 
class, and an edge X^Y  ̂ exists i f  and only i f  there is a diagonal brace in 
the square determined by the i- th  column and the j- th  row. We c a ll th is  b i
pa rtite  graph the bracing graph.

We denote the vector, its  end points and the corresponding point of 
the bracing graph with the same le tte r because i t  w ill not cause any con
fusion.

Bolker—Crapo ' s theorem : An n x m square grid with some diagonal braces 
is  r ig id  i f  and only i f  i ts  bracing graph is  connected.

Proof: The end points of the vectors are on a unit c irc le  and some of 
them are of half tt distance from each other (Fig. 5). These vectors are 
perpendicular in the grid. Let a framework be on the c irc le . I ts  jo in ts  are 
the end points of the vectors and its  rods exist i f  there is  a diagonal 
brace in  the corresponding square, that means these two vectors must be per
pendicular to each other. The grid is  r ig id  in the plane i f  and only i f  the 
former framework is  r ig id  on the c irc le . This framework lie s  on a one d i
mensional circular arc. Using the lemma; th is  framework is  r ig id  i f  and only 
i f  i t s  graph c is  connected. But c is  isomorphic to the bracing graph, be
cause the ir points correspond to the columns and the rows of the square grid 
framework, and the ir edges correspond to the diagonal bracing.

x1 x2 x3
F ig . 2 Fig. 3
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Y

Y

Y

Y, X

X,

>s

2

Fig, 4 F ig . 5

I f  the bracing graph of the square grid framework is  not connected 
then the square grid framework is  not r ig id , see the graph in Fig. 4, which 
is  the bracing graph of the square grid framework on the left-hand side of 
F ig. 1. We can see a possible motion of the vectors on Fig. 5 since Ŷ  
is  an independent component of the bracing graph, the corresponding motion 
of the jo in ts and the rods is  shown on the right-hand side of Fig. 1.

Consider a 1 x m x n cube grid in the space as a rod and jo in t frame
work supposing each cube is  a rhomboid during any motion of the vertices 
(thus we disregard those motions of the cube where the vertices of any 
"square" face do not remain coplanar). th is  is  the special assumption. 
(Throughout, quotation marks w il l  refer to the orig ina l s ituation.) Natu
r a l ly  the special assumption is not satisfied in the space but I think 
th is  condition is realizable, and is useful in the general case.

We want to make the special cube grid r ig id  using some diagonals 
along the square faces of the unit cubes as diagonal bracing. The conse
quence of our special assumption is that the "ve rtica l" rods of the f i r s t  
f lo o r  are parallel with the vector , those of the second are paralle l 
w ith Zy and so on. The "p a ra lle l tube" indicated by heavy line in Fig. 6 

w i l l  be denoted by / X Z ^ / .  A ll the rhombi "perpendicular" to the heavy 
lin e s  are parallel; applying a diagonal brace fo r any of them w ill f ix  the 
others as well.

The special cube g rid  is  rig id  i f  and only i f  a ll the rhombi remain
square during any motion. We have three point classes X., Y., Z, s im ila rlyF ! F
to the planar case. Thus we have a tr ip a r t ite  graph T (Fig. 7). We indicate 
the diagonal braces as edges in the tr ip a r t ite  graph. I f  T is  complete,

3. Special cube grid
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that is , i f  there exists an edge between every pair of points i f  they are in 
d ifferent point classes then the cube grid is  r ig id , because each rhomboid 
is  a cube in the g rid . However, less diagonal bracing may also be s u f f i
cient. Consider the three b ipartite  subgraphs of the bracing t r ip a r t ite  
graph T.

Necessity

Theorem 1: I f  the special cube grid is  r ig id  then the b ip a rtite  sub
graphs of the bracing t r ip a r t ite  graph are connected.

Proof: I f  the subgraph X X  is  disconnected then there exists a move 
whose direction is  perpendicular to Z^, as a consequence of Bolker—Crapo's 
theorem (Fig. 8 ).
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The necessary condition is  su ffic ien t, that is :
Theorem 2: The special cube grid as a bar and jo in t framework is  r ig id  

i f  and only i f  the b ip a rtite  graphs of the bracing tr ip a r t ite  graph are con
nected.

Motivation

Xj., ^ j  ’ are enc* Points the respective grid vectors on the 
u n it sphere. The special cube grid is r ig id  i f  and only i f  every is  per
pendicular to Y. and Z, , and Y. are perpendicular to Z. during any motion.

J к  J к
I f  there is a diagonal brace in the para lle l tube / X t h e n  the vector
X2  is  perpendicular to Yj. We denoted i t  by a rod on the unit sphere between 
the points Xj, Y2 . Thus a framework s arises on the sphere (Fig. 9). I f  th is 
framework s is  r ig id  on the sphere then the special cube grid is  r ig id  in 
the space. We have a framework on the sphere and its  graph c is  t r ip a r t ite  
and i t s  3 b ipartite  subgraph are connected. This type of framework is  ge
neric r ig id  as a consequence of the following theorem /5 /.

Lovász—Yemini's theorem: Let G denote a graph c of a planar frame
work F with V jo in ts and e = 2 v - 3 rods. Then F is  generic r ig id  i f  and only 
i f  the edge set of Ge, obtained from G by doubling any edge e of G, can be 
recovered by two edge d is jo in t spanning trees.

We say that a given framework F is  generic i f  a ll frameworks s u ff i
c ie n tly  near to F have the same r ig id ity  properties as F does.

Lovász—Yemini' s theorem is  true in tu it iv e ly  on an open ha lf sphere. 
Пиг graph c has 1+m+n points and 1+m-l + m+n-1 + n+1-1 = 2(l+m+n)-3 edges
since the bipartites are connected, where the dimensions of the grid  are
1 X m X n. I t  is clear from the defin itions of the graph c of the framework
s and the bracing graph T that the graph c of s and the tr ip a r t ite  bracing



DIAGONAL BRACING DF SPECIAL CUBE GRIDS 271

graph T are isomorphic. Thus we can apply the Lovász—Yemini' s theorem for
either one of them, say for T. Tg is  obtained from the t r ip a r t ite  bracing
graph T by doubling an edge e of T. Tg can be covered by two edge disjoing
spanning trees. Let B/X^,Y^/ denote the b ipa rtite  graph between X^, Y j. Let
the doubling edge from B/X^Y^/ be, say,XjY^. B/X^.Y^/ has two subgraphs so
that we can get from some X̂  to each Ŷ  in the f ir s t  subgraph along edges,
and we can get from some Y. to each X̂  in the second subgraph along edges.
They are denoted by S/X,Y/ and S/Y,X/, respectively. Thus we have two
spanning trees: B/X.,Z./ U S/X,Y/ and B/Y.,Z./ U S/Y,X/.I K  j  к

Sufficiency

I f  we can prove that the framework s is  r ig id  on the sphere then Theo
rem 2 is  true. In th is  case we need the co-ordinates of the points X^, Ŷ , 
Z^. Let us introduce a new system of co-ordinates, where the o rig in  of the 
co-ordinate system is  s t i l l  at the unit sphere's centre and le t  the plane
determined by the points X., Y., Z. be para lle l to the new X ', Y' axes. TheI J к
rank of the r ig id ity  matrix / 6 /  depends on the new X' and Y' co-ordinates of
the points X., Y-, Z. and on the graph c only, since these points form an * J ■'
equilateral triangle which is  para lle l to the new X', Y' plane. Thus we can 
sim plify the orig inal problem.

Consider a special cube grid bracing with some diagonal braces along 
square faces; i t  is  r ig id  i f  and only i f  framework p is rig id  on the plane. 
The jo in ts  of p are the same as those of framework s and there is  a rod be
tween two jo in ts  i f  there is  rod in framework s. Since jo in ts of s are on a 
plane at the beginning of the motion, i t  suffices to consider the r ig id ity  
of the framework p in the plane.
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Choose the jo in t X-̂  among the jo ints Xp There are some jo in ts among 
the jo in ts  Y. and that are adjacent with jo in t  Xp These jo ints are on a 
c irc le . The center of the c irc le  is Xp the radius of the c irc le  is  \l2. 

Choosing every jo in t from jo in ts X-̂  we get some congruent circles. These 
c irc le s  are denoted by X. as well.

Assuming that framework p is not r ig id , there are at least two X̂
c irc les  or two Y. c irc les  or two Z. circles with a continuous motion re la - 

J K
tiv e  to each other. Let us suppose at f i r s t  that they are X̂  c ircles.

Since the moving is  continuous we can choose three circles with radius
e around the vertices of the original equilateral triangle. Every point Xp
Y. and Z. are in these three different c irc les with radius e.

3 к
The circles X̂  in tersect each other in points Ŷ  and Ẑ  or are iden

t ic a l .  There are at least two circles that are not identical.
Every c irc le  has two intersection points, one among the points Ŷ  and 

the other among the points since the three b ip a rtite  subgraphs of the 
bracing graph are connected.

I f  e is less than 0.1 then the distances of the intersections of the
Xi  c irc les are more than 2 \l2-e2 ^2.8213 (Fig. 10) but the distances between
points Y. and points Z. are less than \/2 + 2e »  1.643. I t  is  obvious that 

3 K
the X^'s are not d iffe re n t i.e . they do not move. A sim ilar argument can be
applied i f  two Y. c irc les  or two Z. circles have a continuous motion re la - 

J K
tiv e  to each other. This completes the proof of the theorem.

In the proof we show a new framework (framework p) in a plane that is  
r ig id  in its  plane i f  and only i f  the special cube grid is rig id  in the 
space and the graph c of the framework p is  isomorphic to the bracing graph 
of the special cube g rid .

This result shows tha t l xn i xn  special cube grids consisting of ideal 
fr ic tio n less  rods connected by joints are r ig id  i f  and only i f  the three
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edge direction projections of the grid with face diagonal braces are rig id  
in the plane.

Thus we need 2(l+m+n)-3 face diagonal braces for the r ig id ity  of an 
1 X m X n special cube grid. This result could probably be generalized for 
higher dimensions.
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PACKING OF 5 REGULAR PENTAGONS ON A SPHERE

TÁRNÁI, T . * - GÁSPÁR, ZS.**

(Received: 16 January 1995)

How nust n equal non-overlapping regu lar spherical pentagons be packed on a 
sphere so th a t the angular radius o f the c ircum -c irc les  o f the pentagons w i l l  be as 
great as possible? In  the paper, the conjectured so lu tion  o f th is  problem fo r  n = 5 is  
presented.

1. Introduction

The arrangement of pentamer structural units composed of protein mo
lecules in the capsids of certain spherical viruses has inspired the fo l
lowing mathematical problem /3 / : To determine the largest angular circum- 
radius rn of n equal regular spherical pentagons which can be packed on the 
surface of a sphere without overlapping.

Conjectured solutions to this problem are known for n = 6 , 8  /5 / and, 
under symmetry constraints, for n = 24, 72 / 6 / .  For n -* » a packing in the 
plane is obtained. The conjectured best arrangement of equal regular penta
gons in the plane is  published in / 2 / .

Density Dn of a pentagon packing is defined as the ra tio  of the tota l 
area of the surface of the spherical pentagons to the surface area of the 
sphere :

where a is  an angle of the pentagons measured in radians.
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The aim of th is  paper is  to present a conjecture for the densest 
packing of 5 pentagons on a sphere. The best arrangement w il l be selected 
from packing constructions resulting in local maxima of the circum-radius 
of the pentagons and so loca l maxima of the density of packing.

2. Packing constructions

This pentagon packing problem is sim ilar to the Tammes problem of 
packing of equal c irc les on a sphere. However, because a c irc le  is  s tr ic t ly  
convex but a pentagon is  not, there are d iss im ila ritie s  between the two 
problems. The most important one is that to a packing of circles there can 
be associated a graph / 1 / ,  but to a packing of pentagons there exist no 
graph of the same sort. In a c irc le  packing, two c irc les can touch only in 
one way, but in a pentagon packing, two pentagons can touch in three d iffe 
rent ways: with (a) edge-to-edge, (b) vertex-to-edge, (c) vertex-to-vertex 
contact.

The pentagon packing problem w ill be investigated by a method sim ilar 
to the "heating technique" developed for spherical c irc le  packings /4 /, re
su lting  in a local optimum. The principle of th is  method /5 / is  that the 
pentagons are considered as r ig id  bodies lying on the surface of the sphere 
such that their size can be changed simultaneously and in the same propor
tio n . Change in size is  attributed to a change in "temperature". Due to a 
change in temperature the pentagons move on the surface of the sphere, and 
the boundaries of pentagons in contact can slide on each other. The tempe
rature of the pentagons and so the size of the pentagons is  increased uni
formly while the system of pentagons remains free of stress. The circum- 
radius is looked for, for which the pentagons jus t s ta rt to press each other 
and the system of pentagons gets to a stable state of self-stress. In th is 
state the size of the pentagons cannot be increased any further with con
tinuous increase of the temperature. Appearance of a stable state of se lf
stress with no contacts in  tension indicates a local optimum.

We have applied the method for packing of 5 equal regular pentagons on 
a sphere. We have worked out a computer program for finding the best con
figu ra tion , but here we omit the details of the calculation and present only 
the main points and the resu lts .

Consider f ir s t  the best packing of six pentagons on a sphere where the 
radius of the circum-circle of a pentagon with six-decimal accuracy is  equal
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to 48.719106° /5 /. Let us take two pentagons of th is packing and jo in  them 
in such a way that they have a vertex in common, then pack them on the 
sphere so that the common vertex and the centres of the pentagons l ie  on 
the equator. Then le t us consider a copy of th is  pair of pentagons, ob
tained from the orig inal by a rotation of 90° about the common vertex, and 
translate the two rotated pentagons in the opposite direction perpendicular 
to the equator u n til they contact the orig ina l pentagons. (The compound of 
the four pentagons has two planes of symmetry.) Between the two rotated- 
translated pentagons, antipodally to the common vertex, there is  space for 
the f i f t h  pentagon. This arrangement is considered as the starting confi
guration for the heating process. The temperature, that is , the size of the 
pentagons can be increased u n til the f i f t h  pentagon contacts the two ro- 
tated-translated ones. However, i f  the two-fold mirror symmetry of the com
pound of the four pentagons and the common vertex is preserved, the system 
of forces arising at a ll the contacts of the pentagons can be in equilibrium 
only in two cases:

(1) The f i f t h  pentagon and one of the rotated-translated pentagons 
have a side in common and the vertex of the f i f t h  pentagon, opposite to th is 
common side, is lying on a side of the other rotated-translated pentagon as 
is  shown in Fig. 1. (Considering its  position, the f i f th  pentagon w il l  be 
called a standing pentagon at the rear.) The radius of the circum-circles 
of the pentagons in th is  arrangement with seven-decimal accuracy is  
r 5 = 49.5338118°.

F ig . 1, Packing w ith 4 pentagons in  D2 symmetry in  fro n t  and a standing pentagon a t the rea r, 
where 2 pentagons have a vertex in  common, (a) fron t-v iew , (b) view from above
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F ig . 2, Packing w ith 4 pentagons in  D2 symmetry in  fro n t and a ly in g  pentagon a t the re a r, 
where 2 pentagons have a vertex in  common, (a) fron t-v iew , (h) view from above

(2) The f i f t h  pentagon and each of the rotated-translated pentagons 
have a side segment in common as is shown in Fig. 2. (Considering its  po
s it io n , the f i f th  pentagon w ill be called a lying pentagon at the rear.) 
The radius of the circum-circles of the pentagons in th is arrangement is 
r 5 = 49.5683744°.

In both cases a state of self-stress can be detected, however, none of 
the two configurations results in a local maximum of the density, since in 
both cases, at the common vertex a tensional contact force appears while a ll 
the other contacts are in compression. Appearance of a tensional force means 
that one of two pentagons, between which the tensional force acts, wants 
to depart from the other. We must not prevent th is  departure, so the contact 
of the two pentagons must be removed. Repeating the heating process fo r the 
modified assembly of pentagons we can improve the packing. We can do i t ,  for 
instance, i f  we rotate the two orig inal pentagons lying on the equator 
equally and in the same direction (say clockwise), then join them with edge 
overlapping. Doing so we can increase the size of the pentagons, and depend
ing on the position of the f i f th  pentagon we obtain two additional equ ilib 
rium configurations where the compound of the four front pentagons has a 
two-fold rotational symmetry:

(3) In the case where there is a standing pentagon at the rear, by an 
increase in the size of the pentagons we arrive at the configuration in 
Fig. 3. Here the radius of the circum-circles of the pentagons is  obtained
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Ю) (bl
F ig . 3. Packing with 4 pentagons in  C2 symmetry in  fro n t and a standing pentagon a t the re a r, 

where 2 pentagons have an edge segment in  common a t the ax is  o f symmetry, (a) fron t-v ie w ,
(b) view from above

at an edge-overlap of 7.1542381° of the two pentagons lying on the equator, 
and its  value is  r^ = 49.5564016°

(4) In the case where there is a lying pentagon at the rear, by an in 
crease in the size of the pentagons we arrive at the configuration in 
Fig. 4. Here the radius of the circum-circles of the pentagons is  obtained

F ig . 4. Packing w ith  4 pentagons in  C2 symmetry in  fro n t and a ly in g  pentagon a t the rea r, 
where 2 pentagons have an edge segment in  common a t the ax is  o f symmetry, (a) fron t-v ie w ,

(b) view from above
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(a) |b)

F ig . 5. Locally optimal packing w ith 4 pentagons in  D2 symmetry in  fro n t and a standing 
pentagon a t the rea r, (a) fron t-v ie w , (b) view from above

at an edge-overlap of 6.9989408° of the two pentagons lying on the equator, 
and i t s  value is r^ = 49.5903228°.

In both cases a state of self-stress can be detected, however, none of 
the two configurations in Figs 3, 4 results in a local maximum of the den
s ity ,  since in both cases at the edge-to-edge contact of the pentagons lying 
on the equator a tensional force appears again. This shows that-the packing 
is  improvable further a fte r removing th is  edge-to-edge contact. Indeed, we 
can make the pentagons larger i f  f i r s t  we arrange the four front pentagons 
so that the two pentagons lying on the equator have edge-to-edge contacts 
w ith the rotated-translated pentagons. In th is  case the compound of these 
four pentagons has two planes of symmetry. Preserving this symmetry and con
ta c t properties of the four front pentagons we increase the size of the pen
tagons u n til the f i f t h  pentagon blocks the motion of the system. Depending 
again on the orientation of the f i f t h  pentagon we get to two new equilibrium 
configurations:

(5) In the case where there is  a standing pentagon at the rear, we 
obtain the arrangement in Fig. 5 in which the radius of the circum-circles 
of the pentagons is r^ = 49.5794094°.

( 6 ) In the case where there is  a ly ing pentagon at the rear, we obtain 
the arrangement in Fig. 6 in  which the radius of the circum-circles of the 
pentagons is r^ = 49.6138224°.
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F ig . 6 . Loca lly  optimal (the  conjectured best) packing w ith 4 pentagons in  D2 symmetry in  fro n t 
and a ly in g  pentagon a t the rear, (a) fron t-v iew , (b) view from above

In both cases a stable state of self-stress can be shown, and each 
contact is  in compression. Ih is  means that in both cases we have a locally 
extremal arrangement.

3 . Conclusions

We have collected the results of a l l the investigated equilibrium 
configurations of pentagons in Table 1 where the packing densities and the 
crystallographic symmetry groups are also given.

Table 1. Packing o f 5 equal regu lar pentagons on the sphere

Figure
Circumradius Г5

( ° )
Density D5 Symmetry Remark

1 49.5338118 0.7468699 cs
2 49.5683744 0.7479557 cs
3 49.5564816 0.7475820 Cl
4 49.5903228 0.7486456 Cl
5 49.5794094 0.7483025 Cs loca l optimum

6 49.6138224 0.7493847 cs lo ca l optimum
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We could not find more than two local optima, so we think that one of
them is  the solution of the problem, that is , we have the following Con-

\  ---------------

.lecture. The densest packing of five equal regular spherical pentagons on a 
sphere is  the packing in Fig. 6 where a pentagon is  packed at the north 
pole, another one at the south pole and the remaining three pentagons on the 
equator with consecutive distances 108°, 144°, 108° between the ir centres, 
and where the circum-radius of the pentagons is  r^ = 49.6138224...°.

The density of the conjectured best packing is  = 0.7493847. The 
plane of the equator is  a plane of symmetry of th is  packing configuration. 
The centres of the pentagons form a trigonal bipyramid in which the edge 
lengths of the base triang le  are 108°, 144°, 108° and the length of the in 
c line  edges is 90°. We note that, for the densest packing of 5 c irc les on 
the sphere /1 /, the radius of the circles is  45° and the density is  
0.7322330, and because the c irc le  packing is not r ig id  (the solution is  not 
unique) the centres of the c irc les can form also a trigonal bipyramid, in 
particu la r, with the same edge lengths as the conjectured best packing of 
5 pentagons.
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