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CONE SHELL CALCULATIONS
Computerizable method for calculation of complex shells of revolution

CSÁKÁNY, A .*, HEGEDŰS, I . * * ,  KOLLÁR, L.P.***

(Received: 22 February 1990)

A practicab le  method w idely used today, su ited  fo r manual ca lcu la tion  o f ro ta t io n a l-  
ly  symmetric s tructu res, had been developed by

Dr. Gyula Márkus, deceased in  1989.

The present work, an e a r lie r  version of which had been read by Dr. Márkus h im se lf, has 
been devoted to  h is memory.

Described in  th is  work is  the algorithm fo r  general use in  ca lcu la tion  o f the stress 
acting upon structures subject to  ro ta t io n a lly  symmetric load, b u i l t  together o f she lls  
o f revo lu tion  and c irc u la r  p la tes . The a lgorithm  is  based on the p r in c ip le  adopted in  
the displacement method o f s ta t ic a lly  m u ltip ly  indeterminate structures and thus i t  can 
be considered to be a v a r ia tio n  of the most w idely used f in i te  elements method using 
large elements in  the present case.

1. Introduction

Typical examples of complex rotation shell structure subject to ro
ta tiona lly  symmetric load are underground or surface liqu id  tanks, gas 
tanks, s ilos , watertowers (Fig. 1).

The method of Márkus, analogous with the Cross moment d is trib u tio n  
method, is used in general for manual calculation of complex rotation 
shells. This method requires that tables, diagrams and complicated fo r
mulae of a wide variety be used. On the basis of the same algorithm, com
puterization of the manual calculation is  p ractica lly  impossible.

For calculation of complex rotation shell structures, any process 
available for calculation of s ta tica lly  indeterminate structures (such os 
force method, displacement method,etc.) can be used. In our work, we show 
the application of the displacement method where the number of unknowns is

^Csákány, Anikö, H-1121 Budapest, Rácz Aladár u. 119, Hungary

**Hegedüs, Is tván, H-2083 Solymár, Váci Mihály u. 10, Hungary

** *K o llá r, László, P ., H-1122 Budapest, Karap u. 9, Hungary

Akadémiai Kiadó, Budapest
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I

F ig . 1. Complex ro ta tio n  s h e lls

less in general. This displacement method can also be considered as a finite 
elements method where the f in ite  elements are the structural elements like  
cone, cylinder, c ircu la r plate and annular elements themselves while the 
basic functions are the mathematically exact solutions of the d iffe ren t 
structura l elements.

To write the condition equation system of the displacement method, i t  
is  necessary that the r ig id ity  matrices and load vectors associated with 
the elements of the primary structure be determined. Discussed below is the 
calculation of cone shells of arbitrary apex angle that is , cone shells be
coming a cylinder of v e rtic a l generatrix in the extreme case, permitting 
the calculation to be d irec tly  computerized. We also show how to take the 
ve rtica l compressions of cone shells into consideration as th is is  not 
discussed in the lite ra tu re  /1., 2/.

2. Assumptions

To describe the cone she ll, ue adoped the assumptions of classic en
gineering shell theory in  th is  work. That is , ue assume that

- rotationally symmetric load is acting upon the ro tationally sym
metric structure,
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- the structure is e las tic  and its  material is  homogeneous and iso
tropic,

- the thickness of the elements is invariable and small as compared 
with the other dimensions,

- the displacement of points on the middle surface is small as com
pared with the wall thickness of the elements,

- deformations resulting from stresses normal to the middle surface 
are negligible,

- points along the normal of the surface remain along the normal of 
the surface also after deformation (Kirchhoff-Love hypothesis).

The elements are connected to each other or to a fixed support (foun
dation) along so-called nodal lines, these lines being circu lar in te r 
section lines of the middle surfaces of connected elements.

Displacements within the tangent plane of the surface are not neglect
ed v.'hen the conditions of connection of the elements are written that is  
also changes in length of the cones and cylinders in the direction of the 
generatrix are taken into consideration.

Also, i t  is taken into consideration that displacement of the edges of 
the elements as compared with each other may be permitted or prevented by 
the construction of connections that is , the support may be ro lle r-type  or 
fixed against connection forces while hinged or clamp-type against moments.

Within the elements, two types of load d istributed over the surface 
are taken into consideration, such as

- dead load (g), weight of unit shell or plate surface,
- liqu id  load, load applied to the surface at r igh t angles by liq u id  

of bulk density Y.
Acting upon the structure are horizontal (P^) or vertical (P ) forces 

uniformly distributed along the nodal lines that is  along a c ircu la r lin e  
each as well as uniformly d istributed moments (M).

As a resu lt of the loads, the following stresses arise in the struc
tura l elements:

- normal force in the direction of the generatrix or radius N.
- annular normal force N
- radial moments ormoments acting in the d irection of the

generatrix M
- annular moments M(
- shear forces Q
Indicated in Fig. 2 are stresses of positive sign.

г ’ 
Ф ’

г ’



6 CSÁKÁNY, A.-HEGEDŰS, I.-K O L LÁ R , L .P .

F ig . 2, Stresses o f the s h e ll element

3. Calculation method

Thu assumptions specified above permit the calculation of complex ro
ta tion  shell structures to be traced back to the calculation of s ta tic a lly  
m u ltip ly  indeterminate structures using a discrete model.

Primary structure is  the structure obtained in such a way that the 
nodal lines of the structure investigated are prevented from being dis
placed.

Unknowns are the displacement components of the nodal lines, that is , 
the horizontal, and ve rtica l sh ifts and angular displacements.

Let the co-ordinate system be plotted in such a way that axis y, 
pointing up, w il l coincide with the axis of symmetry while axis x w il l 
point outwards at rig h t angles to th is (Fig. 1), the origin being fixed at 
any arb itrary point along the axis of symmetry. Illustra ted  in  Rig. 3 are 
positive  displacements of a nodal line on the le f t  of the axis of rotation 
of the structure.

The sign of loads along the nodal lin e  (Fig. 3) is  defined in a 
s im ila r way, that is , load components resu lting in positive work with the 
appropriate positive displacement components are considered positive. 
From among loads d istributed over the surface of the elements, acting 
w ith in  the elements, the dead load is always positive. The liq u id  load 
w i l l  be positive i f  i t  forces the shell element outwards as compared with 
the axis of rotation. For bulk density Y of the liqu id  applying load to 
the structure, also negative sign can be assumed.
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F in . 3. Displacements and loads o f a nodal lin e

In the calculation, f i r s t  thing to do is  to set up the condition equa
tion system of displacement method

£ . u. = £ , ( 1)

where the elements of д are the displacement components of the nodal lines 
of the structure, д is  the vector of loads reduced to the nodal lines of 
the primary structure while К is  the global r ig id ity  matrix of the struc
ture.

Equation system (1) describes the balance of external and internal 
forces and moments acting along nodal lines, each row being an equilibrium 
equation. With the sequence of elements in displacement vector jj followed 
in writing of these equations, regularities are found in the coe ffic ien t 
matrix К of the equation system, which can be used to simplify the equa
tion system when written and, possibly, solved. A typical regularity  is 
the block structure of the coeffic ient matrix.

The block of the coeffic ien t matrix, usually of size 3x3, contains
essentially the horizontal and vertica l forces and moments (P1, P1, M1) forx’ у ’
unit periphery, arising along the i- th  nodal line  as a result of motion 
components = 1, = 1, ф1 = 1 of unit size, inserted along the j- th
nodal line.

Nonzero elements are contained by block ( i ,  j )  i f  the i- th  and j- th  
nodal lines are interconnected hy some she ll nr plate element of the 
structure. The block structure of coeffic ien t matrix К is determined by 
the structure of vector д of the displacements. This permits the blocks of 
the coeffic ient matrix to be superimposed from the blocks of the r ig id ity  
matrices of the elements.
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F ig . 4. A s tru c tu ra l element's own r ig id i t y  matrix

The f i r s t  column of r ig id ity  matrix y of size 6x6 of the s tructura l
element interconnecting the i- th  and j- th  nodal lines (Fig. 4) contains
reactions P1, P1, M1 taking place on the kinematically defin ite  primary 

X y ^
structure associated with the element as a resu lt of e = 1 inserted there

i к x ialong the i- th  nodal line  as well as reactions P^, P , MJ taking placex у
along the j- th  nodal lin e . The second, th ird  and the following columns
contain reactions resu lting from displacements e1 = 1, ф1 = 1 and = 1,У x
e  ̂ = 1, Ф“1 = 1, respectively (Figs 4 and 5).

F ig . 5. Displacements of cone s h e ll along noda] lin e
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Note that the elements of r ig id ity  matrix M are quantities related to 
unit periphery and thus, because of the d iffe ren t edge ra d ii, matrix ^ is 
not symmetric, the ra tio  of symmetrically arranged elements being identic
al with the ra tio  of edge rad ii. As a resu lt, 'g lobal' r ig id ity  matrix ^is 
not symmetric either but i t  can be made symmetric by multiplying i t s  rows 
by appropriate numbers.

In the course of compilation, the appropriate blocks of the elemen
tary r ig id ity  matrices are added. I t  can be seen that diagonal block ( i ,  i)  
of matrix К w il l certa in ly  contain nonzero element (at least in the p rin 
cipal diagonal). However, block ( i ,  j )  w il l contain nonzero element only 
i f  nodal lines i  and j  are interconnected by some shell or plate element.

With the displacement components corresponding to motions prevented 
by supports considered to be fixed unknowns (of zero value), an equation 
system is  obtained where the number of equations exceeds the number of un
known motion components. The unknowns associated with 'excess' equations 
are the components of support reactions. The equilibrium equations re la t
ing to these components can be separated. Thus fo r unknown motion com
ponents, an equation system of reduced size, having a s im ila rly  square co
e ffic ie n t matrix, is  obtained. Hence, a fter compilation, the appropriate 
rows and columns of the matrix shall be omitted to compress the matrix.

The load vector can be produced by reducing the loads to nodal lines.
On the basis of loads acting upon the elements, reactions along nodal 

lines are calculated on the primary structure. The elements of the load 
vector of the structura l element interconnecting the i- th  and j- th  nodal 
lines are the opposite of the reactions transmitted from the element of 
the primary structure interconnecting nodal lines i  and j  to the nodal
lines, P*, P*, M*, P^, P--1, in due order.’ x’ y’ ’ x ’ y ’

The elements of load vector д of the entire structure shall be pro
duced by adding the appropriate elements of six-element or three-element 
vectors t  and loads P^, ÏÏ, M d irec tly  along the nodal lines.

The sign of the elements of the load vector shall be defined in com
pliance with the sign of the elements of the r ig id ity  matrix. The horizon
ta l or vertica l load transmitted to the nodal line  w il l  be positive i f  i t  
points inwards or downwards while the moment w il l  be positive i f  i t  re
sults in clockwise ro tation when illu s tra ted  on the le f t  of the axis of ro
tation in that part of the cross section that is  i f ,  with positive dual 
displacements, i t  results in positive work.
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Hereinafter we deal with calculation of truncated conical shell ele
ments in detail.

4. R ig id ity  matrix of one cone element

The r ig id ity  matrix of the cone, denoted by y, , shall be produced, as 
follows:

Fig, 6. R ig id ity  m atrix  o f a truncated conical s h e ll clamped a t both edges

To be produced f i r s t  is  r ig id ity  matrix M of the shell clamped at 
both edges (Fig. 6).

(4)In doing so, a matrix M containing 4x4 elements shall be f i l le d  
f i r s t  (Fig. 6) in which the horizontal edge forces and moments resulting 
from horizontal edge displacements and angular displacements are collected 
These forces and moments are calculated, independently of the actual sup
port conditions, for a structure where the ve rtica l edge displacement can 
take place without any re s tr ic tio n  (Fig. 7). The relationships used can be 
found in /1 /.

Since the edge forces and moments according to the physical de fi
n it io n  of the matrix elements are associated with other than exactly unit 
edge displacements (since the upper edge is  not prevented from being dis
placed in vertical d irec tion ), the elements of matrix are not iden
t ic a l  with the appropriate elements of the elementary r ig id ity  matrix of 
the cone.

Matrix M enlarged by rows and columns corresponding to ve rtica l edge
(4)displacement can then be produced on the basis of elements of M already 

available and f in a lly , matrix 0 shall be modified in accordance with the 
actual support conditions.
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Fin. 7. Support perm itting the upper edge to  be displaced v e r t ic a lly

4,1 R igidity matrix of a cone element clamped at both edges 
4 Л Л  Production_of y ^

Let the following notation be introduced: 
x̂  - radius of top edge, 
x  ̂ - radius of bottom edge,

x k

X

“ O

Ar
h
E

P

К

X

X1 + x„
__ i_

2
radius parameter,
half summit angle of the cone,
angular displacement of the shell surface,
change of horizontal radius of middle surface,
shell thickness,
modulus of e la s tic ity ,
Poisson number,

so-called damping factor.

As a result of load, stresses defined according to Fig. 2 may arise 
on the shell.

With variables
U = X . Q and &

introduced, the following inhomogeneous d iffe re n tia l equations can be used 
to describe the states of the structure:
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a ) b)
U n -  B. Conical she ll element

LL( 0) + \  ű ms ’

LL(U) + Á4(| = Lh . tg ^  a . a (  # ) а о m
where L is the Meissner operator,

( 2)

L (. . .  ) cK •••) d ( . . . )  _ 1
2dx dx X

(3)

while 0 indicates angular displacement on the structure supported in a 
way that deformations due to membrane forces can develop.

Bends on the shell supported in that way are assumed to be negligible 
as compared with the bending stresses resulting from boundary disturbances 
That means that the membrane solution can be used as a particu lar solution 
of inhomogeneous equation (2 ). Thus the stresses and deformations of cone 
she lls  can be calculated by superposition of the membrane state and bound
ary disturbances. Since the action of membrane forces and the membrane de
formations are known fo r the possible loads /1, 2/, i t  is  enough to deal 
w ith the solution of homogeneous equations

LL( 0 ) + X' 0 =0
( 4)

LL(U) + Л U = 0
describing the behaviour of a shell under load at the edges only.

These homogeneous fourth-order d iffe re n tia l equations can be trans
formed into simultaneous Bessel-type d iffe re n tia l equations /1 /:

, 2L( 0 ) + i X tf=0
(5a)

L(  0 ) 0 = 0
and
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L(U) + i  x2U = 0 

L ( U ) i  X2U = 0
(5b)

with relationship U = К . L( О ) (£)
existing between the unknowns.

Let variable
a = 2 A \Tx (7)

and functions

Gr (a) = -  bei' (a) - ber(ct) , у a

2
G10(a ) = ^ ber'(a) + bei(a) ,

G,,(a) = — .2—.ker'(a) + —. kei(a) , 
i l  a  it Tt

G,9(a) = - — . — . ke i'(a ) + — . ker(a) 1Z a it и

( 8 )

introduced by Натре /1 / be used, where ber(ct), bei (a ) , ke r(a ), ke i(a ) 
are zero-order Thomson functions obtained as a solution of d iffe re n tia l 
equations (5) (fo r details see Appendix) while ( . . . ) '  indicates d iffe ren 
tia tio n  with respect to a.

Functions of stresses and displacements of the shell /1 /:

ctg aQ

X

X ctg a

C^.G^(a) + C2 .G10(oO + + 8д.С^2(с1) , (9а)

C^.Ggía) + C2.Gjg (a) + L\G i,(a) + Сл.Gi9(a) | , (9b)3 11 12

г X2. x j / х  G^(a) +yUG1Q(a) j _C2 [X | x Gj(a) +/oGç)(a)

C - j j x j / x  G ;2 ( a )  +yuG12 ( a )  -Сд j^X^x G ^ ( a )  + / и6 ц ( а )
(9c)

X2x V f  G104“"  T “ 10

+ c. X | T x  G^(a) + G12(a)

(a) + Gin (a) 

-C,,

-[^Ix^u jГ < G^(a) + Gg(a) 

X ^ u j/x  G ^ j( a )  + G ^ ( a )

(9d)
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(9e)

( 9 f )

(9g)

Here C, , C2 Cj are in tegration constants.
Assume that the top edge of the conical shell investigated is  connect

ed to the i- th  while the bottom edge to the j- th  nodal line . Let the follow
ing vectors be introduced:

(10)

On the basis of relationships (9), the reactions and edge displace
ments of the shell can be calculated, as follows:

X = B . c

£ = A ■ £ >
where, using notation

on = 2X Vxt ,

( 11)

( 12)

m = 9, 10, 11, 12 
n = 1, 2

m = 9, 10, 11, 12
n = 1, 2

m = 9, 10, 11, 12
n = 1, 2

m = 9, 10, 11, 12
n = 1, 2
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miatrix A and matrix G are:

A = F9,1 ~n о 1—* FH,1 F12,1

H10,l "H9 ,l H12,l - Hl l , l

F 9,2 F10,2 F11,2 F12,2

H10,2 ‘ Ho , H12,2 _H11,2

В = Bq i J10,l Jl l , l J12,l

“ K10,l K9 ,l _K12,1 Kl l , l

J9,2 J10,2 Jl l ,2 "*12,2

~K10,2 K9,2 "K12,2 K11,2

With these matrices,

X = В A-1 • £ = M(4) . e ,

(4)that is  matrix M wanted can be obtained by means of the following fo r
mula :

M(4) = В . A"1 . (16)

Thus,we have obtained r ig id ity  matrix of the shell element i l 
lustrated in Fig. 7. I t  is  important to emphasize that th is  matrix is  not 
the minor matrix of elementary r ig id ity  matrix A wanted, because also a 
ve rtica l compression Ay belongs to displacement system e_ the magnitude of 
which is  unknown for the time being.

(4)4.1.2 Calculation of r ig id ity  matrix M by completion of M
(4) =To complete matrix M with a second and f i f t h  column and row we 

need the ve rtica l compression resulting from load of direction y.
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Fig. 9. Load system acting in  the d ire c tio n  o f the generatrix

To calculate th is , le t  f i r s t  the equilibrium force system according 
to Fig. 9 act upon the unsupported shell in the direction of the gener
a tr ix . As a resu lt, a purely membrane type action of forces w il l develop. 
Associated with th is  action are edge displacements

Ф 1

Дг-̂

arise.

(17)

Elements of vector e^ are as follows / 2 / :

Дг = - /I/ '  2 и Eh sin a Q ’

cos a
Ф = - 2 -nEh sin a0

ЛгЛ = / '  7 ту EhTTEh sin a ’

. _ p c °s a 0
\ 0  OXI I Q2 uo

(13)

Ду is the P
consisting

re la tive  ve rtica l 
of two terms:

displacement of the upper and lower edge,

ДУр = Ay'  + Ay" . (19)
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The f i r s t  part results from compression in the direction of the gener
a tr ix . Normal force in the d irection of the generatrix, resulting from sys
tem of vectors of ve rtica l resultant P acting along the edges:

Nг
P

2 TTx sin aQ ( 20)

The vertica l component of compression in the direction of the generatrix 
resulting from this is  given by expression

( 21)

using the notation of Fig. 8. Making use of equality

r 2 NrAy' = s in a 0 j  ^  da

X = a cos a , о ( 22)

we obtain from expression (21) that 
a,.

=
sin a ,2 

—Eh ■>
da =

2 тта sin a cos a о о

2 it Eh cos a о

(1па2 - 1пз^) . (23)

In case of steep cy linder-like  cones, formula (23) may resu lt in nu
merical error while in case of cylinders, i t  becomes meaningless. Let 
therefore parameter 'a ' be replaced by parameter 's ' according to Fig. 8 
that the algorithm for calculation of the cone and cylinder can be lumped. 
Thus, using relationships x. = (x,+x„) and x = xL/ + s cos a and in tro -К Z 1 с. К о
ducing variable

cos s o o

2 *k
the following relationship can be obtained:

(24)

2ir£h cosa_ In (1+z) - In (1-z) (25)

Since in case of cylinders, also th is  expression is meaningless, a further
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transformation is necessary. With series

2
In (1+z) = z -

ln (1-z)
(26)

of functions In (1+z) and In (1-z), the f i r s t  part of the vertica l com
pression is

P fo 
2 TT Eh xk (27)

according to (25).
With the f i r s t  feu terms of the power series taken into consideration, 

a formula applying to cones and cylinders a like , also numerically stable, 
w i l l  be obtained.

The second part of Ay^ is  brought about as a result of deformation 
of the generatrix. As a re su lt of the d iffe re n t displacement of the top 
and bottom edge, the second part of the ve rtica l compression w il l  be

Ay" = (Дг1 - Дг'-1) ctg a0 • (28)

In the present case, A r1 = Ar^ according to (18). Therefore, Ay" - 0, 
tha t is ,

P s
Ay = Ay1 = v;-----=7- —

y p  ’ 2 ír Eh X
(29)

Thus, a ll the elements of displacement system according to (17) 
have been calculated.

Consider now system of forces

X = M( 4) (30)

where the elements of ê are some of those of e according to (17):

Ф .1
Ar"1
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Vert.icnl compression Ay associated with th is  system of forces is deter
mined on the basis of Maxwell's interchangeability theorem. Accordingly, 
the contribution of the system of forces of equilibrium illus tra ted  in 
Fig. 9 to displacements associated with force system x_ complies with the 
contribution of system x_ to displacement system e . Hence, with the e le
mentary works added,

2  их. 2  t t x „

Ay P + -------  P ctq a A r1 ----------ctg а Дг'-' =
2 rx j 0 2 ttx2

(31)
= J Ar* Xj + ф* x2 J 2 ír x^ + ! Ar'"1 x-j + ф-"1 x^ I 2 тт x2

where x  ̂ and x2 are edge rad ii while . . . ,  x;, elements nf forces sys
tem X .

As a resultant of the opposite of the equilibrium system according to 
Fig. 9 and force system x_ according to (30), a load system can be produced, 
with which only vertica l compression of a magnitude of

Ay = Ayp - Ay

is  associated. Let parameter P of the equilibrium force system be selected 
so as to result in

Sin rvuo

Then the elements of the second column of r ig id ity  matrix ^ can be ob
tained by dividing each element of the resultant force system by Ду, that

m.2 = 1 , 
ДУ '1

cos ac 
2 тт X,

sin a _____ о
2 7T x ^

cos aA О
X , ----- T----------3 2 тт x2
sin a _____ о

2 it x 2

(3 2 )
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The opposite of f i f t h  column ггц:
L.

™s = ” -2  • ' (33)

The missing elements of the second and f i f t h  column are obtained on 
the basis of the structura l spec ia lities  of the elementary r ig id ity  
matrices:

m2,1 ml ,2

m2,3 ” m3,2

*  _  A 2
m2,4 m4,2 X,

л a 2
m2,6 " m6,2 X,

» а Л1m- , = m, r- — 5,1 1,5 X,

x,
A A L(TV 1 - ПЦ c ---5,3 3,5 X,

m5,4 = m4,5

m5,6 - m6,5

The missing 4x4 elements of r ig id ity  matrix M are the appropriate ele-
A( 4 )  ( 4 )ments of matrix M obtained by modification of matrix M , the elements
~ A ( 4 )of the k-th column of matrix M being calculated by means of formula

A

(34)

A

Now r ig id ity  matrix M of the truncated conical shell clamped at both 
edges is  available.

A
4.2 Modification of r ig id ity  matrix M in accordance with the real support, 

conditions
Should the support permit some of the displacement components to 

develop at one of the edges of the shell element, i t  vá ll be necessary
A

tha t matrix M be modified accordingly.
Assume that free displacement of the edge in the direction of the sup-

A
port corresponding to the k-th column of У is  possible. To produce matrix



A

M modified according to th is  assumption, le t  matrix

C(k) ■ 5 - T -  ï ( k )  <” >
mk , к

of size 6x6 be introduced, where E is a sixth-order unit matrix, m. . are
A K>K

elements (k,k) of matrix M, В/.л is a six order unit vector the k-th ele-
ÄX Ament of which is 1 while m, is the k-th row of matrix M. Now matrix M canк = —

be determined from relationship

CONE SHELL CALCULATIONS

у = 5 • G(k) • (36)

I f  displacement of the edge is possible also in the direction of the sup
port corresponding to the £-th column in addition to the k-th column, 
then matrix M shall be modified as required again.

5. Calculation of the elements of the load vector

The elements of the load vector of the shell element interconnection 
the i- th  and j- th  nodal lines are the opposite of the reactions trans
mitted from the shell element to the nodal lines. To produce the elements 
of the load vector, the force action of the membrane shell shall be taken 
as a starting point instead of solution of the inhomogeneous d iffe re n tia l 
equation.

The elements of load vector t  shall be produced, as follows:
a) Consider a shell supported in the d irection of the generatrix at 

the bottom edge while free at the top one (Fig. 10). Assume that membrane 
force action develops as a result of these loads, with edge displacement 
system e and reaction system x :1 —П —П

" д г 1 " , X = " о

Д у 1
’ - о

0

Ф 1 0

Д г ^ p-i

Л у З р *

м

1

У

(37)
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Fin. 10- Shell supported in  accordance w ith membrane force action

Let the elements of and be produced. In doing so, the membrane 
stresses shall be determined f i r s t :

Nг
G______

2 ír X sin a о
(30)

N a = cos ао
Pz ctg (39)

where G is  the resultant of loads action upon the shell section above the 
point investigated and p_, is  the component of normal direction of surface 
load.

The horizontal displacement is  obtained by

Л г  вТ  (N ф V (40)

angular displacement by

& =
ctg ctc 
— Eh (Nr - Мф)(1 +/u) 3 Ж  ( м ф ' / ^ Nr } (4 1 )

In the formula for also the e ffect of compression in the d irection of 
the generatrix has been taken into consideration. For calculation of (41), 
we need formulae
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X = Xj + t  cos a Q ) ( 42)

dx
dt cos (43)

In case of dead load,
Gp = g it t  ( X 1 + X ) ,

where g is  the weight of shell element of un it surface.

t(x+x,) cos n.. g 1 uo
r,g 2sin a x Ф,д sin a

(44)

(43)

dN g x.
. r >g = ____ ____  (1 + -1)

dt 2sin а У x ;LX n

2cos a0
sin „

u o
(46)

By means of these relationships, displacements Arn and  ̂ can be obtain
ed from formulae (40) and (41).

In case of liq u id  load, le t the height of the liqu id  column above the 
top edge denoted by H, the height of the truncated cone by HQ while the 
length of the generatrix by sn (Fig. 11). Now

= s sin a. (47)

I

F ig , I I .
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Let specific gravity Y of the liq u id  be positive i f  the shell is 
pressed outwards while negative i f  the shell is pressed inwards by the 
liq u id . Now the formulae corresponding to (44)—(46) w il l be:

GY H(x 2s о / „  2 X,) + — (2x (40)

N Y
г , y 2xsin I./ 2 2s о / „ 2  2 s'H(x - x^) + -y- (2x - x  ̂ - xx^)

Г (49)

Ф, Y -Y (H + ts in  a )□ sin a

dN
r , Y

Y cos a о
/ .s in  a H(1

X, H
1 \  О /  Г) 

-ö ) + T -  (2 ]•

>(50)

dN
dt

Ф, Y Y
sin a. Hcos an + xsin aQ + ts in  a n cos a )

S h ift A г y and angular displacement 0’Y resulting from water pressure are 
obtained by substituting formulae (48—50) in to relationships (40-41), 
respectively.

The stresses acting upon the structure can be obtained by adding the 
stresses resulting from the two d iffe ren t loads:

Nг г , g
+ Nг, Y

(51)
NФ N4>,Y

Edge displacements are obtained as a resu lt of the following additions:
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Д r 1 =
A r g

+ ДГу ,

= + .
►

(52)

и<

A r g
+ A ,

j . „ j j
&■ - l’  g

+ 0 Y ' «

The principle of calculation of ve rtica l compression Ду^ = Ay^ - Ay1 
agrees with what has been said in par 4.1.2 AyQ can be calculated by 
means of relationship AyQ = Ay^ + Ay  ̂ according to (19).

A y^ resulting from compression in the d irection of the generatrix can 
be determined by relationship

Ay' = sin a 1 о о J
о

Concerning variable s according to Fig. 8,

Nr - /^ ф  
Eh dt (54)

sin a 2
Ay' = —ftr  'o  Eh 2 Í (Nr , g  г , Y

N_ - /UN - uN )ds / ф>9 Г  Ф,Л (55)

The integration required here shall be performed for each term inde
pendently, one a fte r the other. With variable z according to (24) in tro 
duced and the expensions in a series according to (26) used, the f i r s t  
term w il l be

sin a
Eh 2 Í N nds =r,g (56)

___ 2____
Eh cos a Q xkso (1
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This formula is  numerically stable, 
cones and cylinders.

Sim ilarly, the second term is

i t  can be used also fo r steep

Eh N ds
r ,Y

_Y
2Eh. 1 (Hxk 3 X1 3 xk)So

(57)

„ H s  2
2 / i i  0 \  О / z

-  x l  (H + i t  (1  + Ук
+ . . . )

The third and the fourth term can be calculated in a simpler way:

h  -
sin a 2 

о )ds =
^gcos

X. s к Q (58)

sin ac 
Ëh I  ( - / jN $ ,Y )d s  = ' eíT  [  HV о cos a о 

о
s sin a + 

о

(59)

3cos a s sin a
+ -----^ s i n  a - x,x, ----------  s3 0  o i k  cos a о

Using relationships (56 - ’59), the ve rtica l compression according to 
(55) can be obtained by summation

Луо = l l  + h  + h  + 1ii ■ (60)

The second part of AyQ can be obtained according to formula (8), 
taking the horizontal displacements according to (52), calculated e a rlie r, 
in to  consideration. With the summation according to (19):

Ayo = Ayj  - Ay1 .
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Considering that, because of support of the bottom edge in the d i
rection of the generatrix, the magnitude of vertica l s h ift of the bottom 
edge is

Ayj
sin a

the ve rtica l s h ift of the top edge w i l l  be

(61)

Ay1
cos a0

L sin а Луо 
о

(62)

on the basis of relationships (53) and (61).
Now a ll the elements of vector e  ̂ are available. To produce the ele

ments of X , consider resultant—n 7

G = Gg + Gy (63)

of the to ta l load acting upon the shell. In the knowledge of th is , com
ponents of the reaction taking place at the bottom edge w il l  be

and

pj
У

G
2 тт x2

G sinaPJ = - тт—— ----------  .X 2 тт Xr, cos a 2 о

(64)

(65)

The top edge of the membrane primary structure is unloaded. Thus vector _x 
of the membrane reactions resulting from the load is :

x
—о 0

0

0

2 тт x tg

n x 0

0

( 66)

b) The next step is  to make the edge displacements equal to zero. For 
th is  purpose, i t  is necessary that the boundary vector system,
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X = - M ^  , (67)

resu lting in edge displacements opposite to edge displacements e  ̂ of the 
membrane primary structure , be actuated.

c) Vector _i of loads reduced to the nodal lines is  obtained by sum
mation of the boundary vector system compensating fo r membrane displace
ments and the membrane reactions:

t  = Kq + it  ■ (68)

In general, the support of the bottom edge is  capable of taking up 
both horizontal and v e rtic a l force components tha t is  the membrane reac
tio n . In this case, load vector t. of the shell element is obtained by 
means of formula (68).

Further calculations w il l  be required i f  the bottom support is  in 
capable of taking up membrane reactions. For deta ils see Appendix F2.

6. Calculation of stresses w ith in  the elements

Vector u_ of displacements of the entire structure along nodal lines 
is  available as a solution of equation system (1) of the displacement sys
tem. Below we show how to obtain the in terna l stresses of the conical 
she ll by means of boundary displacements in  u_.

a) Let vector
e = 
—о

(69)

set up of selected elements of vector of displacements of the entire 
structure along nodal lines  be denoted by ê ,  essentia lly the vector of 
displacements of the upper and lower edge of the shell element intercon
necting the i- th  and j - th  nodal lines. Boundary force system
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Fin. 12. Boundary force system o f a sh e ll element

x = M e (70)

belongs to th is vector at the same place (Fig. 12).
b) Let th is force system be decomposed into the sum of membrane force 

system X and boundary force system

A
X X X

—о (71)

Nov/ elements x„ and x, of vector £ form a system of equilibrium. Let x „
^ A i  A iand Xj be decomposed into components P , PJ of generatrix d irection  and

A i  Л  П
horizontal components H , HJ (Fig. 13):

sin a. fij = x5 . tg ac

a  i  л ?P1 = ... .sin a H1 = x„ . tg a 2 м о

(72)

F ig, 13. Decomposition o f ho rizon ta l force system



On the basis of the above decomposition, le t  a ll the boundary reac
tions taking place on the shell be decomposed in to  the sum of the follow
ing three force systems (Fig. 14):
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- membrane force system x ,
A

- equilibrium force system (P
- force system =

+

/
( P 1, P')

F in- 14. Decomposition o f the boundary reactions o f a s h e ll element in to  the sum o f three
force systems

c) The stresses associated with the three force systems shall be ca l
culated separately fo r each system:

- membrane stresses N and Нф associated with membrane reactions con 
be obtained by means of formulae (45, 49),

- N resulting from equilibrium vector system (P , PJ) can be ca l
culated on the basis of formula (20),

-  on the basis of relationship (11), vector

c = В . z

of the integration constants is associated with force system z. With the 
elements of this vector substituted into formulae (9c, d, e), we obtain 
functions M , Мф and Q.

As a sum of the three stress systems, a l l  the stresses of the trun
cated conical shell have been obtained.
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Appendix

F .l. Calculation of Thomson functions
Power series for determination of zero-order Thomson functions /9 / 

are as follows

(73a)

(73b)

(73c)

(73d)

where In У = 0.577215 is the so-called Eulerian constant. 
Derivatives of these functions are:
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(74c)

(74d)

In case of high values of x, the convergence of these series is 
rather poor. In th is  case, the following asymptotic expressions shall 
reasonably be used / 9 / :

a ( x )

ber(x)= —-------  cos 3(x) ,
VTTx

bei(x) =

ker(x) cos 3 ( - x ) ,

(75)

kei(x)

where
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a (x ) X

FT
__25_________13

384x3 Г Г  П й х '

B (x )  = - è _ -FT 8 Ox FI
__1________25

16xz 384x3 | / T

(76)

Asymptotic expressions of the f i r s t  derivatives are:

ber'(x ) = - Д- ber(x) + a '(x) ber(x) -  ß '(x) bei(x) ,LY.

b e i'(x ) = - Д- bei(x) + a '(x ) bei(x) + £5'(x) ber(x) , (77)z.x

ke r'(x ) = - 7̂ - ker(x) - a '(x ) ker(x) + ß '(x) kei(x) , 

k e i'(x )  = - 2 -̂ kei(x) - a '(x) ke i(x) + 3 '(x) ker(x) .

In case of high values of x, functions ber(x), bei(x)may assume very high 
absolute values while functions ker(x), ke i(x) assume almost zero absolute 
values. In case of very low values of x,

lim ber(x) = 1 , 
x-»0

2
lim bei(x) = lim —— ,
x->0 x+0 (70)

Y xlim ker(x) = - lim  In —j -  , 
x-»0 x-*0

,  ч 11lim kei(x) = -  -r . 
x->0

Since the coeffic ien t matrix may include Thomson functional values associ
ated with very high or very low values of x in  the equation system w ritten 
for determination of the integration constants present in the solution of 
the d iffe re n tia l equation, the difference in the order of magnitude b&-- 
tween the elements of the coeffic ient matrix may be s ign ifican t. I t  is  
therefore necessary that the matrix be prevented from becoming i l l  con
ditioned and that the s ta b ility  of the solution of the equation system be 
ensured.
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In case of high values of x we proceed, as follows. Instead of the ac
tual functional values, we use functional values multiplied by constants 
being here the values of a properly selected normalization function. In 
order to make higher values of very low values and lower values of very 
high values, a normalization function s im ila r to the f i r s t  factors in (75) 
that is  an exponential normalization function shell be selected in such a 
way that the exponent w il l  be the opposite of the f i r s t  term of the appro
p ria te  expressions (76). Thus we use the following functions instead of 
the orig ina l ones:

x0
и

2
ber(x) -------> ber(x) e ,

XoLО
bei(x) -------> bei(x) ел ,

2
ker(x) -------> ker(x) e ,

^1
2

kei(x) -------> ke i(x) e

where x^ anc* are the (re la tive ) co-ordinate of the external and in 
ternal edge of the shell, respectively. Ih is  normalization permits the 
values of functions bei(x) and ber(x) tending to +_ oo and the values of 
functions ker(x) and kei(x) tending to zero to be transformed so as to be 
treated in combination in case of high values of x. Another advantage of 
normalization is  that in case of a considerable distance between the edges, 
the e ffect of normalization with respect to the one edge is not appreci
able at the other one (and vice versa). The process is analogous with 
that used for investigation of so-called high bent cylindrica l shells /2 /.

This normalization results in change of the values of the wanted in 
tegration constants only, the function w ritten  in th is way remains the 
solution of the d iffe re n tia l equation.

F.2. Aid for calculation of the load vector of the shell element
I f  membrane reaction components according to (66) can not be trans

mitted to the bottom support, also the opposite of the calculated reaction 
components shall be applied to the structure.
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a) Horizontally unsupported shell

Fig. 15. Horizontal e qu ilib rium  vector system

Let the opposite of the horizontal reaction component of magnitude

pJ , C Ы °o
X „2 ttx2

at the bottom edge be applied to the unsupported shell (Fig. 15). I f  the 
edge is  unsupported in direction x only, then boundary displacement system 
ер"* resulting from boundary force -P^ sha ll be calculated according to 
relationship

/ч( 5 )Неге matrix N1 is  obtained by omitting the second row and column, re-
A

suiting in s ingu la rity , of r ig id ity  matrix M of size 6x6 of the support 
fixed at both ends /see (33)/. I f  the bottom edge is unsupported also in 
d irection y, then vector £ of the boundary displacements w ill be obtained 
by means of the following relationship:

( 0 0 )
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Here matrix can be obtained by omitting the f i f t h  row and column of
matrix $.

Let vector be completed with the missing edge s h if t  of zero
value and direction у to be inserted as a second or f i f th  element in  the 
appropriate place so that the vector w i l l  be a six-element vector. Let 
th is  six-element vector be called e_ .

Boundary displacements e_x shall be eliminated according to what has 
been said in par 5. For th is  purpose, i t  is  necessary that vector system

X = M . e (01)—X — —X

be actuated. Then vector _t of loads reduced to the nodal lines can be ob
tained by summation of the vector systems according to (66, 67) and (81):

t  = X + X + x . (82)— —о — —X

b) Shell unsupported in d irection у
The lower edge is  incapable of taking up vertica l forces. Thus the 

upper edge must be supported in direction y. Hence, le t the opposite of 
the ve rtica l component of magnitude

of the membrane reaction be actuated on the structure according to Fig. 16a.

F ig . 16, V e rtica l component o f membrane reaction
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Let of rce -Pa decomposed into component 
and horizontal component Hr (Fig. 16b):

of generatrix d irection

(83)

Appropriate components P1, hP of reaction P1 taking place at the
upper edge:

sin а ж о
H-j i 2PJ tg a — .у a о

X1
(84)

Boundary displacements e  ̂ resulting from horizontal components H1, Pp 
are calculated in a way sim ilar to (80):

The elements of displacement system e^,

ep A ri

ArJ

АУС

L ' i j

(85)

( 86)

resulting from the action of equilibrium vector system (P1, P^) in  the d i
rection of the generatrix are calculated by means of relationships (18) 
and (29) on the basis of what has been said in  par 4.
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Hence, we have boundary displacement system e ^  resulting from bound- 
i Уary force - P“ compensating for the ve rtica l component of the membrane re

action :

CSÁKÁNY, A.-HEGEDŰS, I.-KOLLÁR, L.P.

ep (07)

Let five-order vector д*'5'1 be completed with zero boundary displace- 
i ^ment yJ , inserted as a f i f t h  element, so as to be a six-element vector. 

To eliminate displacement system e , vector system

X
- y ( 00 )

must be actuated s im ila rly  to the case according to (67). Load vector д of 
the shell element can be calculated by summation of the vector systems ac
cording to (66, 67) and (88):

д = x  ̂ + X + X . (09)

Now the elements of the load vector - in case of optional conditions 
of support - are available.
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STRENGTH CALCULATION OF THE THIN-WALLED BUXGIRDER

DESEÜ, Z.*

(Rüceived: 14 August 1990)

For the strength ca lcu la tion  of the th in -w a lle d  boxgirder with complicated cross- 
section (sh ips, f lo a tin g  cranes) the f in i te  element method uses equations w ith  a large 
number o f unknowns. This paper describes a method fo r the strength c a lcu la tio n  o f the 
midpart o f the g irde r (where the stresses are the greatest) which uses on ly  a small 
number o f unknowns.

Introduction

The paper describes an alternative method for the calculation of the 
bending and torsion of box girders. The results of the examined examples 
show a s ign ifican t deviation from the resu lts of the classical torsion 
theory. Its  reason is  that the classical theory assumes that the form of 
the cross section remains undeformed, though i t  in fact does not. For 
closed thin-walled tubes, the results of the classical torsion theory and 
the undeformability of the cross section are ab in it io  incompatible.

The cross section is approximated by a number of f la t  plates with 
constant thicknesses which are joined to each other at the ir edges.

Two d iffe ren t coordinate systems are used: global coordinates for 
box-girders X, Y, Z, and local coordinates x, y for the plates, see Fig. 1

1. External forces

External forces (a distributed load) are applied in the planes of the 
plates, at the ir edges, see Fig. la and lb (bending and tors ion). The

Deseö, Zoltán, H-1141 Budapest, Ternóc u. 15, Hungary

Akadémiai Kiadó, Budapest
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b)

F ig ,  l a .  D is t r ib u te d  e x te rn a l lo a d  f o r  th e  bending

F ig ,  l b .  D is t r ib u te d  e x te rn a l lo a d  f o r  th e  to rs io n
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bonding moment caused by the external loads (in  plates 1 and 2) in  the v i
c in ity  of the origo x=0, may be w ritten as follows:

M(x) = MQ + Nqx + (qQ/2)x“ , (1)
where

0
= J j  q(x)dx dx the bending moment at x=0

-1 

0
= J q(x)dx the shear force at x=0

-1

q the load at x=0 .4o

Function M(x) is  a quadratic Taylor's polynomial. The results are 
satisfactory, of course, only for section x=0. However, origo x=(j can be 
always chosen at the examined section.

2. Theoretical ground of the calculation

The stresses are expressed by A iry 's  stress function F(x,y). The 
boundary conditions for the plates are expressed by the external forces, 
and we can couple the plates by comparing the common edges.

Stress function F(x,y) sa tis fies  the d iffe re n tia l equation:

94F .  94F 34f n
â 4 + 2 a 2 a 2 + à * ’3 X Зх Ру О у

or its  abbreviated formMF=D.
The stresses derived from F(x,y) are:

a X x y
3 2f

Э х 3 y

The stress function can be expressed by the polynomial as follows:
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The stresses corresponding to (2) are:

( 2 )

(3)

(4)

(5)

3. Conditional equations

3.1 The equilibrium condition of the individual plate

Figure 2 shows the equilibrium of an element of the plate. Equi
lib rium  of the moment is :

2bs sr(b)dx + ■~j~dx + Ndx = 0 . (6)

Equilibrium of the shear forces is :

t(a y(b) - a y(-b))dx + ™dx = 0 . (7)

Substituting (7) in (6) we obtain
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о

j  3Т СЬ)Л + ( 2^  )W -  ( ^  ) Çu(+b) - /uC -b)) = 0 (8)
-1
where s t(b) is the symmetrical component of shear stress at y=b.

+b
M = I  oxydy = 4b3s a3Q + 0b5s a5[) + 4b3s a ^ x  + 4b3s a ^ x 2 , (9)

-b
0  X

ytj(+b) = s J J  0y(+b)dx dx = F(x,+b) (10)
-1

s is  the thickness of the plate.

3.2 Boundary conditions
Figure 3 shows the cross section of the three coupled plates. The con

d itions are in the common edge:

t .  + t„ t 3 =

E xl = e x2 ' e x3 ’

F ig . 2, The equ ilib rium  o f the element
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F ig . 3. Gross-section of the three coupled plates

St1 °y l s3 °y3 q(x) , (13)

^ 2  Oyo  P j ( x )  , (14)

w1" = v3" (15)
where

t  is the shear flow,
e is the s tra in  in  x direction,
q(x) is the external load,
s is the thickness,
V is  the d isp lacem ent in  y d i r e c t io n ,  due to  the normal s tre s s .

Considering that о <,< о , we may write  instead of (12):
У x

оxl Jx2 x3 (12a)

Moreover

Э a ,
+  (2 + v )

9 О.

9 у 9 y J

where v is the Poisson's ra tio .
Substituting (3) and (4) into (16), we find :

(16)

where n = 2 + v .
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3.3 Equation for the calculation of coefficients g ^.
By substituting F(x,y) into equilibrium and boundary conditions, nnd 

by comparing the terms involving x and y with identical exponents, we ob
ta in the equations fo r coeffic ients a ■̂  separated:

for a 

for a 
for a

11 a 2i «31 ,

12 a 22 «32 a40 a50
10 01 20 a 30 •

Eliminating coeffic ien ts a^k from the equations, we find  for

a2i  a31;

/\ = m̂ . (17)

(IB)

(19)

( 20)

l l , ( 21)

For coefficients ^22 ^22 ^32 cx/̂ q ot̂ Q

Ä  2 -  = 2 -  '

For coefficients

A T = m + а .— о— о— —

Matrix A is  identical in the in eqs (17), (18), (19)
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where В = 2b, 
n = V +2, 
p  = 3 V +2.

We obtain the values of the shear flows from Eq. (17), and 
of the normal stresses, the v" and the in the nodes from Eqs 
We can express the values, of coeffic ient by the boundary
r iv in g  from Eqs (17), (18), (19) as follows:

, ox(b) - , tJx(-b) t(b ) + t(-b )
С/ - -h —_ _ _ _ _ _ _ __ _ _ _ _ _  - - - - - - - -- - - -11 “ ° 4 2s

, ox(b) - , ax(-b) , ox(b) -  1 ox(-b)
-21 = - b l ---------- --------------- a 31 = -b i -----------И -----------

a 12 ” b
2 о x(b) + 2 °x(-b) 1t(b ) + ^ ( -b )

2 o.x(b) + 2 ax(-b) 
<40 = Î2

0 x(b) + ox(-b) о о

- 0 a.x(b) + 0 ax(-b)
a 50 = Л — I f -----1— — -60b

' 20~ 12 6b a40
ax(b) - ax(-b) 10о

l 30 12b 3 h2 “ 50 '

F ina lly, we can w rite  down the stresses fo r x = 0:

0 = 2  ô 2q +  ̂ «здУ + ^  + ^  «50^ ’

7
T = t/s = - a - 2 a 21y - 3 a ^ y '  .

(23)

( 22 )

the values 
(18), (19). 
values de-

(24)

(25)

(26)
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I f  a panel has d iffe ren t thicknesses, or i t  is  stiffened by long i
tudinal flanges, which subdivide the panel in to  plates, see Fig. 4, we can 
write matrix A and vector X from Eqs (17), (18), (19) in partitioned form:

(Ap  B) , Л_= Л
A

So can be written Eqs (17), (10), (19) in the form as follows:

By premultiplying v/ith B, we find

now we can express from Eqs (27), (28), (29) the X2 

il2 = Ç iX1 + B"1 .m (+Ef1 a) , 

where С = B"1 A .

(27)

(28)

(29)

(30)
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" 1 Bs+f -Bs/2 0 '
0 1 -B 0
0 0 1 0

. -B -Bs/2-Bf Bs/6 1 _

" s/2 -s/2 Bs/2 0 ~
0 0 1 0
0 0 -1/B 1/B

-Bs/3 Bs/6 -Bs/6 0

where f  is the cross-sectional area of the flange on the fore node of the 
f ie ld .

By Eq. (30) we can immediately express the boundary values of edge 2 
from the boundary values of edge 1, see Fig. 4. So we can avoid the in 
crease in the number of unknowns.

4, f^ -a rea  of the cross-section o f flange i

4. Numerical examples

The classical theory assumes that the shape of the cross-section 
doesn't become deformed, that is  the cross-section is  absolute r ig id  in 
i t s  own plane. This method cannot regard the r ig id ity  of the cross-struc
tu re , so the values and the flow of the calculated stresses depend from 
the input of the external load. The role of the cross-stiffness to transmit 
the load applied to one plate, to the neighbouring plates. Thus by an appro
p ria te  input of the external loads we can ensure the undeformity. To find the
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necessary input external forces, we prescribe the re la tive displacements 
of properly chosen nodals re la ting to a given basic nodal (edge), and in
stead of the prescribed displacements, internal forces yu can be regarded 
as unknown output external loads. To ensure the equilibrium of the output 
external loads, we can complete the equations by three equilibrium equ
ations. (Forces in d irection Y and Z, and moment.)

To illu s tra te  the application of the foregoing analysis, we determine 
the normal stress and the shearflow d is tribu tion , and the deformation for 
three cross sections. The cross sections and theirs loading are i l lu s t r a t 
ed in  Figs 5, 6. The cross sections are of one axis of symmetry. For the 
preparation of input data only one half of the cross sections considered. 
For the nodals of symmetry we must prescribe the conditions as follows:

7 4
F in . 5. Cross-section 1 ( fo r  bonding: M = 2.10 daNcm; N = 16.10 daN; q -  -50 daN/cm; — J------- - o  o4 о

fo r to rs io n : M = 1.10 daNcm; N = 8.10 daN; q = 0) 
о о

bending t  = v" = 0 , 
torsion оx = yU = 0 .

I f  there is plate in axis of symmetry, we must take fo r th is  plate 
h a lf thickness, and from condition given above, we must prescribe only
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bending v" = 0 ,
torsion th is plate hasn't any role, and i t  

can be neglected.
The results are il lu s tra te d  in Figs 7-14. The arrows show the output 

external loads, which must be added to the input external load, to ensure 
the undeformability of the cross section. The numerical results see in the 
appendix.

Figures 7 and 10 show the bending and torsion for cross section 1, 
without r ig id ity , and w ith f u l l  rig id  construction. Ensured the fu l l -  
r ig id i t y  of the cross section we find for the open tube, that the results 
are identical with the resu lts  of the classical theory.

Figures 11-14 show the results of the bending and torsion of cross 
section 2. Figures 11 and 13 show the results derived without the cross- 
r ig id i t y  for the bending and torsion. Figures 12 and 14 show the results 
fo r the fu lly  rig id  cross section.

F ig , 6, Cross-section 2



j  0.0663 q

2
F ig . В. Bending o f cross section 1 (-----  : normal s tress, 1 c u t  daN/cm ;

—  t :  shear flow , 1 cm -r 500 daN/cm)

STRENGTH CALCULATION OF THE THIN-W
ALLED 30XGIRDER

F ig. 7, Bending o£ cross section 1 (-----  : normal s tress,
1 cm T  500 daN/cm ; —  t :  shear flow , 1 cm -r 500 daN/cm)
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Fin. 9. Torsion o f cross-section 1 (—  3: normal s tress , 1 cm-r 400 daN/ci/';
( -----t :  shear flow, 1 cm -f 400 daN/cm)

2
F ig . 10, (-----3 : normal s tre s s , 1 cm -f 200 daN/cm ; ----- t :  shear flow , 1 cm-г 200 daN/cm)
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F ig ,  11. Bending c r o s s - s e c t io n  2
( —  э  : norm al s t r e s s ,  1 cm т  250 daN/cm ; —  t :  s h e a r f lo w , 1 cm -f- 250 daN/cm)
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О.ЗОвв q

F ig .  1 2 . Bending o f  c ro s s -s e c t io n  2
( ------9 :  normal s t r e s s ,  1 c m - r  250 d a N /c m ^ ;------ t :  sh ea r f lo w , 1 cm-F 250 daN/cm )
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F ig ,  13, T o rs io n  o f  c ro s s -s e c t io n  2
( — 3 :  norm al s t r e s s ,  1 cm т  250 daN/cm^; —  t :  sh ea r f lo w ,  1 cm т  250 daN/cm)
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F ig .  1 4 . T o rs io n  o f  n ro s s -s e c t io n  2
( 9  = 0 : ----- t :  shear f lo w , 1 cm -rd a N /cm )
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Appendix

Bending for cross-section without c ross-rig id ity  to Figure 11

No. *1 *2 °1 °2 EVÏ Ev£

1-2 0 -25 167 -335 2.510e + 001 2.510е + 001
2-3 -25 -218 -335 -226 -1.294e +

ооо
-1.313е + 000

3-4 89 -41 -226 12 -1.894e + о о о -1.904е + 000
3-5 -307 -486 -226 37 -1.313e + 000 -1 .ЗЗЗе + 000
4-6 -41 72 12 90 -2.274e - 001 -2.142е -  001
5-7 -398 -371 37 106 -1.333e + 000 -1.330е + 000
6-7 72 145 90 106 -3.417e - 002 -2.563е -  002
7-9 -227 -8 106 71 -2.563e - 002 0.000e + 000
9-8 -8 5 71 26 6.464e - 001 6.495е -  001
8-5 5 88 26 37 0.000e + 000 7.724е -  003

No. Mi М2 N1 N2 ql q?

1 0 .000e + 000 0.000e + 000 0.000e + 000 0.000e + 000 0.000e + 000 0.000e + 000
2 0 .000e + 000 -1.849e + 007 0.000e + 000 -1.486e + 005 0.000e + 000 4.645e + 001
3 0.000e + 000 0.000e + 000 0.000e + 000 0.000e + 000 0.000e + 000 0.000e + 000
4 -1.849e + 007 -3.246e + 006 -1.486e + 005 -2.708e + 004 4.645e + 001 8.463e + 000
5 0.000e + 000 0.000e + 000 0.000e + 000 0.000e + 000 0.000e + 000 0.000e + 000
6 -3.246e + 006 0.000e + 000 -2.708e + 004 0.000e + 000 8.463e + 000 0.000e + 000
7 0.000e + 000 -1.664e + 006 0.000e + 000 -1.353e + 004 0.000e + 000 4.227e + 000
8 -1.664e + 006 2.984e + 006 -1.353e + 004 3.042e + 004 4.227e + 000 -9.505e + 000
9 0.000e + 000 0.000e + 000 0.000e + 000 0.000e + 000 0.000e + 000 0.000e + 000

10 2.177e + 006 0.000e + 000 1.749e + 004 0.000e + 000 -5.467e + 000 0.000e + 000

Coefficient of the polynomial fo r the normal stresses

No.
ao al a2 аз

1 -8.3668e + 001 2.5101e + 001 -1.9315e - 004 1.9315e -  005
2 -2.7877e + 002 -1 .2117e + 000 -6.7030e - 004 -7.5791e -  007
3 -1.0566e + 002 -1.8947e + 000 -2.7154e - 004 -1.5810e -  006
4 -8.9397e + 001 -9.2254e -  001 -2.4966e - 004 -7.5791e -  007
5 4.7161e + 001 -2.1665e -  001 1.2636e - 004 -1.9327e -  007
6 7.1226e + 001 -9.8372e -  001 1.4824e - 004 -7.5791e -  007
7 9.7035e + 001 -1.2712e -  001 2.2782e - 004 -6.5052e -  022
8 8.0523e + 001 9.2468e -  002 2.2782e - 004 9.6374e -  023
9 4.8326e + 001 6.4729e -  001 1.4824e - 004 7.5791e -  007

10 2.8969e + 001 -2.9667e -  002 6.8661e - 005 1.8070e -  022

E is the Young's modulus
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Coeffic ient of the polynomial fo r the shear stresses

No. ao al a2

1 3.0905e + О О о 6.1809e - 001 -9.2714e - 002
2 -1.2861e + 002 2.1450e + 000 3.6380e - 003
3 -9.8812e + 000 8.6894e - 001 7.5888e - 003
4 -5.6647e + 002 7.9891e - 001 3.6380e - 003
5 -9.4700e + 000 -4.0434e - 001 9.2768e - 004
6 -4.8506e + 002 -4.7437e - 001 3.6380e - 003
1 1.3526e + 002 -7.2903e - 001 3.9968e - 018
8 -1.4648e + 002 -7.2903e - 001 -7.4015e - 019
9 1.4855e + 000 -4.7437e - 001 -3.6380e - 003

10 4 ,6649e + 001 -2.1972e - 001 1.4803e - 019

Bending for rig id  cross section to Figure 12

No.
T1 T2 °1 CT2 Ev"

= 0
4

 
> 

LU

1-2 0 -59 -200 -200 -2.154s -  002 -2.430e -  002
2-3 -59 -172 -200 -127 -8.869e -  001 -8.975e -  001
3-4 77 -77 -127 -129 2.430e -  002 1.223e -  002
3-5 -249 -325 -127 48 -8.975e -  001 -9.065e -  001
4-6 -77 -125 -129 107 -7.932e -  001 -7.988e -  001
5-7 -189 -160 48 100 -9.065e -  001 -9.031e -  001
6-7 -125 -56 107 100 -3.240e -  002 -2.430e -  002
7-9 -215 -8 100 67 -2.430e -  002 0.000e + 000
9-8 -8 6 67 31 5.149e -  001 5.183e -  001
8-5 6 137 31 48 0.000e + 000 1.220e -  002

No.
M1

M,> N1 N,1 ql q5

1 0.000e + 000 7.988e + 004 0.000e + 000 5.8920 + 002 0.000e + 000 -1.841e _ 001
2 5.756e + 006 -1.282e + 007 4.942e + 004 -9.991e + 004 -1.544e + 001 3.122e + 001
3 0.000e + 000 0.000e + 000 0.000e + 000 0.000e + 000 0.000e + 000 0.000e + 000
4 -1.282e + 007 -1.714e + 006 -9.991e + 004 -1.232e + 004 3.122e + 001 3.849e + 000
5 -5.756e + 006 0.000e + 000 -4.942e + 004 0.000e + 000 1.544e + 001 0.000e + 000
6 -1.714e + 006 0.000e + 000 -1.232e + 004 0.000e + 000 3.849e + 000 0.000e + 000
7 0.000e + 000 9.029e + 005 0.000e + 000 1.128e + 004 0.000e + 000 -3.524e + 000
8 9.029e + 005 5.294e + 006 1.128e + 004 5.318e + 004 -3.524e + 000 -1.662e + 001
9 0.000e + 000 0.000e + 000 0.000e + 000 0.000e + 000 0.000e + 000 0.000e + 000

10 2.610e + 006 0.000e + 000 2.681e + 004 0.000e + 000 1 CD CD O CD + 000 0.000e + 000

E i s  th e  Young's m odulus
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Coefficient, of the polynomial for the normal stresses

No. !o al a2 аз

1 -1.9964e + 002 -1.2332e -  002 -4.6034e - 004 -1.0029e -  019
2 -1.6244e + 002 -8.0628e -  001 -3.9117e - 004 -5.1238e -  007
3 -1.2679e + 002 1 .8263e -  002 -3.2200e - 004 -1.0119e -  021
4 -3.7460e + 001 -6.1389e -  001 -1 .0680e - 004 -5.1238e -  007
5 -9.6368e - 000 -6.5810e -  001 -5.2995e - 005 -5.1238e -  007
6 7.3741e 4- 001 -7.4627e -  001 1.6220e - 004 -5.1238e -  007
7 1.0253e + 002 5.2690e -  002 2.1600e - 004 1.4456e -  022
0 7.5940e + 001 8.8252e -  002 2.1600e - 004 2.1684e -  022
9 4 .8700e + 001 5.1615e -  001 1.6220e - 004 5.1230e -  007

10 3.5494e + 001 -4.5297e -  002 1.0840e - 004 1.9275e -  022

Coefficient of the polynomial for the shear stresses

No. *0 al '2

1 -1.4731e + 001 1.4731e + 000 9.5479e -  016
2 -1.2023e + 002 1.2517e + 000 2.4594e -  003
3 -1.3332e - 013 1.0304e + 000 5.3291e -  013
4 -4.0712e + 002 3.4175e - 001 2.4594e -  0C3
5 -2.0160e + 002 1.6959e - 001 2.4594e -  003
6 -2.2092e + 002 -5.1906e - 001 2.4594e -  003
7 -1.1275e + 002 -6.9122e - 001 4.4409e -  019
8 -1.3965e + 002 -6.9122e - 001 -1.3323e -  018
9 1.0043e + 000 -5.1906e - 001 -2.4594e -  003

10 7.1506e + 001 -3.4690e - 001 7.4015e -  020

T o rs io n  f o r  c r o s s - s e c t io n  w ith o u t  c ro s s  r i g i d i t y  to  F ig .  13

No. *2 °1 °2 EVÏ Ev£

1-2 0 -13 78 -157 1.175e + 001 1.175e + 001
2-3 -13 -109 -157 -112 -4.918e - 001 -4.910e - 001
3-4 46 -25 -112 -6 -8.407e - 001 -8.4873 - 001
4-5 -156 -234 -112 25 -4.918e - 001 -4.918e - 001
4-6 -25 57 -6 80 -2.455e - O O -2.455e - 001
5-7 -208 -109 25 60 -4.918e - 001 -4.918e - 001
6-7 57 113 00 60 1.592e - 001 1.592e -

OO

7-0 -77 -5 60 0 1.592e - 001 1.592e - 001
0-5 -13 25 0 25 -6.744e - 002 -6.744e - 002

E is  the Young's modulus
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No. Mi Mj» N1 N,* ql »

1 0.000e + 000 O.OOOe + 000 O.OOOe + 000 O.OOOe + 000 O.OOOe + 000 O.OOOe + 000
2 O.DOOe + 000 -9.284e + 006 O.OOOe + 000 -7.427e + 004 O.OOOe + 000 O.OOOe + 000
3 O.OOOe + 000 O.OOOe + 000 O.OOOe + 000 O.OOOe + 000 O.OOOe + 000 O.OOOe + 000
4 -9.284e + 006 -1.751e + 006 -7.427e + 004 -1.401e + 004 O.OOOe + 000 O.OOOe + 000
5 O.OOOe + 000 O.OOOe + 000 O.OOOe + 000 O.OOOe + 000 O.OOOe + 000 O.OOOe + 000
6 - 1 ,751e + 006 O.OOOe + 000 -1.401e + 004 O.OOOe + 000 O.OOOe + 000 O.OOOe + 000
7 O.OOOe + 000 -1.348e + 006 O.OOOe + 000 -1.079e + 004 O.OOOe + 000 O.OOOe + 000
0 -1.340G + 006 O.OOOe + 000 -1.079e + 004 O.OOOe + 000 O.OOOe + 000 O.OOOe + 000
9 O.OOOe + 000 O.OOOe + 000 O.OOOe + 000 O.OOOe + 000 O.OOOe + 000 O.OOOe + 000

Coeffic ient of the polynomial fo r the normal stresses

No.
ao al 32 a3

1 -3.9168e + 001 1.1750e + 001 O.OOOOe + 000 O.OOOOe + 000
2 -1.3454e + 002 -4.9178e -  001 O.OOOOe + 000 O.OOOOe + 000
3 -5.9363e + 001 -8.4875e -  001 O.OOOOe + 000 O.OOOOe + 000
4 -4.3560e + 001 -4.9178e -  001 O.OOOOe + 000 O.OOOOe + 000
5 3.6652e + 001 -2.4553e -  001 O.OOOOe + 000 O.OOOOe + 000
6 4.2502e + 001 -4.9178e -  001 O.OOOOe + 000 O.OOOOe + 000
7 6.9667e + 001 1.5924e -  001 O.OOOOe + 000 O.OOOOe + 000
0 2.9857e + 001 1.5924e -  001 O.OOOOe + 000 O.OOOOe + 000
9 1 ,2645e + 001 -6.7440e -  002 O.OOOOe + 000 O.OOOOe + 000

Coefficients of the polynomial for the shear stresses

No.
ao al a2

1 1.5667e + 000 3 ,1334e -  001 -4.7001e - 002
2 -6.4952e + 001 1.0763e + 000 1.9671e - 003
3 -4.4206e + 000 4.7490e -  001 3.3950e - 003
4 -2.8188e + 002 3.4840e -  001 1.9671e - 003
5 -1.0026e + 001 -2.9321e -  001 9.8213e - 004
6 -2.5101e + 002 -3.4002e -  001 1.9671e - 003
7 1.0869e + 002 -5.5734e -  001 -6.3696e - 004
8 -2.8488e + 001 -2.3886e -  001 -6.3696e - 004
9 -3.1612e + 000 -1.0116e -  001 2.6976e - 004
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Torsion for rig id  cross section to Fig. 14

No.
l l *2 °1 a 2 Evï Ev2

1-2 0 0 0 0 6.147e - 010 6 ,147e -  010
2-3 0 0 0 0 2 ,099e - 014 -1.821e -  015
3-4 -343 -343 0 0 -6.147e - 010 -6.147e -  010
3-5 343 343 0 0 -1.821e - 015 -1.821e -  015
4-6 -343 -343 0 0 -1.438e - 015 -1.487e -  015
5-7 343 343 0 0 -1.821e - 015 -1.115e -  015
6-7 -343 -343 0 0 6 ,147e - 010 6.147e -  010
7-0 0 0 0 0 6.147e - 010 6.147e -  010
0-5 -0 0 0 0 -6 ,147e - 010 -6.147e -  010

No. M1 M,1 N1 N,> ql q;>

1 0.000e + 000 -9.549e _ 005 O.OOOe + 000 -7.6393 _ 007 O.OOOe + 000 O.OOOe + 000
2 2 .500e + 007 1.500e + 007 2.000e + 005 1.200e + 005 O.OOOe + 000 O.OOOe + 000
3 0.000e + 000 5.357e + 006 O.OOOe + 000 4.286e + 004 O.OOOe + 000 O.OOOe + 000
4 1.500e + 007 3.000e + 006 1 ,200e + 005 2.400e + 004 O.OOOe + 000 O.OOOe + 000
5 -1.500e + 007 0.000e + 000 -1.200e + 005 O.OOOe + 000 O.OOOe + 000 O.OOOe + 000
6 3.000e + 006 O.OOOe + 000 2.400e + 004 O.OOOe + 000 O.OOOe + 000 O.OOOe + 000
7 -5.357e + 006 1.125e - 001 -4.286e + 004 8.998e - 004 O.OOOe + 000 O.OOOe + 000
0 1.125e - 001 O.OOOe + 000 8 .998e - 004 O.OOOe + 000 O.OOOe + 000 O.OOOe + 000
9 0.000e + 000 O.OOOe + 000 O.OOOe + 000 O.OOOe + 000 O.OOOe + 000 O.OOOe + 000

Coefficient of the polynomial for the normal stresses

No.
'o 31 a2 a3

1 2.3667e _ 007 6.1523e -  010 O.OOOOe + 000 O.OOOOe + 000
2 2.3052e - 007 6.0099e -  015 O.OOOOe + 000 O.OOOOe + 000
3 2.68943 - 007 -6.1471e -  010 O.OOOOe + 000 O.OOOOe + 000
4 2.3052e - 007 -9.1324e -  016 O.OOOOe + 000 O.OOOOe + 000
5 3 ,0736e - 007 -8.8998e -  016 O.OOOOe + 000 O.OOOOe + 000
6 2.3052e - 007 -1.0795e -  015 O.OOOOe + 000 O.OOOOe + 000
7 2.6G94e - 007 6-1471e -  010 O.OOOOe + 000 O.OOOOe + 000
8 1.1526e - 007 6.1471e -  010 O.OOOOe + 000 O.OOOOe + 000
9 1.152Se - 007 -6.1471e -  010 O.OOOOe + 000 O.OOOOe + 000

E is  the  Young's modulus
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Coeffic ient of the polynomial fo r the shear stresses

No. 3,0 1 2

1 1.9179e -  000 -1.8934e - 009 -2.4606e -  012
2 1.5872e -  007 -1.8441e - 009 -7.2180e -  017
3 -2.8571e + 002 -2 .1 5 1 5 g - 009 2.4589e -  012
4 4.2B57e + 002 -1 .8441e - 009 5.9061e -  018
5 -4.2857e + 002 -2.4588e - 009 1.0989e -  018
6 4.2857e + 002 -1.8441e - 009 3.6156e -  019
7 -4.2857e + 002 -2.1515e - 009 -2.4588e -  012
0 3.0380e -  006 -9.2207e - 010 -2.4588e -  012
9 -2.8815e -  008 -9.2207e - 010 2.4588e -  012
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BUCKLING OF A CORD UNDER TENSION

DOMOKOS, G.*

(Received: 11 July 1989)

I t  is  shown that a cord may buckle under pure tension i f  i t s  shear s t if fn e s s  is  
sm aller than i t s  tens ile  s t if fn e s s . The inves tiga tion  is  based on the m atrix d if fe re n 
t i a l  equation derived in  /4 /  describ ing the la rge de flections o f one-dimensional 
e la s t ic  continua. I f  the bending s tif fn e s s  is  zero, but there are f in i t e  shear and 
te n s ile  s tiffnesses, the so lu tions o f the mentioned d if fe re n t ia l equation w i l l  not 
depend uniquely on the i n i t i a l  cond itions, i .e .  there e x is t m ultip le  eq u ilib riu m  po
sitions and the b ifu rca tio n  belongs to  the standard cusp catastrophe type. Small bending 
s t if fn e s s  is  introduced as an imperfection parameter in  the cusp catastrophe.

1. Introduction

In the theory of e la s tic ity , i f  strains are assumed to be small, then 
an in fin ites im a l square w il l  be transformed by pure shear into a rhombus, 
and th is  transformation preserves both the area and the side length. The 
theory of small strains v á ll be capable of describing geometrically non
linear problems i f  the displacements of the structure are due to bending 
only. However, i f  the geometric non-linearity is  due to shear (and/or 
ax ia l) deformations, then the theory of small strains can not be applied.

I f  the strain is s ign ifican t, then one of the previous statements 
about shear deformation (preservation of side length and preservation of 
area) shall be abandoned. By describing the e ffect of shear force on the 
c r i t ic a l  load of a compressed cantilever, Timoshenko /1 / im p lic ity  sug
gests to abandon the last one. His point of view is  illus tra ted  in Fig. 1.

According to th is theory, a cantilever with in f in ite  bending s t i f f 
ness and f in ite  shear stiffness can buckle due to a compressive force, 
since shear deformations of the bar imply a change in the potential energy
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X
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F ig . 1. C antileve r and lin e  element described by Timoshenko

(Pdh) of load P. The arch length does not change under shear deformations. 
The main aim of th is  theory is  not to comply with the mathematical theory 
of large strains, but to provide a continuous bar model capable of de
scribing the behaviour of a wiede range of structures under shear.

By describing the in-plane deformation of a bar coss section due to 
shearing, Love /2 / displays a different point of view. In his opinion, the 
area of the cross section is  preserved, but the side lengths change. I t  
seems to be worth investigating what is the consequence of th is viewpoint 
in  the elementary bar theory, i.e . to require the invariance of area in 
case of shear deformations of a planar lin e  element between two rig id  
cross sections. This paper a contribution to the solution of th is problem. 
The deformation of a lin e  element is illu s tra te d  in Fig. 2.

F ig . 2. Line element corresponding to  the theory o f Love

Let us compare the behaviour of the compressed cantilever consisting 
of the above type of lin e  elements with the previously described one (Fig.
1). In this case, the arch length would change under shear deformation, 
but shear deformation does not imply change in  the potential energy, i.e . 
the cantilever w i l l  not buckle under compressive force. To illu s tra te  the



BUCKLING OF A CORD UNDER TENSION 65

mechanical behaviour of a line element illu s tra te d  in Fig. 2 a f in ite  
mechanical model is  presented in Fig. 3. The ve rtica l spring in Fig. 3a 
can be associated with the tensile s tiffness, the horizontal springs with 
the shear stiffness of the bar.

Figure 3a illu s tra te s  the t r iv ia l state of equilibrium of the model 
under pure tension (P). Figure 3b demonstrates that (under certain con
d itions for the ra tio  of the stiffnesses to be discussed la te r) n n n -tr iv ia l 
equilibrium positions are existing (the symmetric pair of Fig. 3b is  not 
illu s tra te d ). In the forthcoming figures, th is  type of line element is 
symbolized by the contours of the f in ite  model, i.e .  by "T".

The d iffe re n tia l equation system describing a rb itra r ily  large de
flec tions of one-dimensional elastic continua subjected to d is tributed, 
conservative loads, based on the usual assumptions of elementary strength 
of materials, was f i r s t  derived by Clebsch in 1862 /3 /. During the recent
127 years, several authors have dealt with the problem and generalized the 
equation system of Clebsch in many respects. The author of the present 
paper derived th is  equation system in /4 / based on the investigations of 
Gáspár /7 /, as an e x p lic it,  second order matrix equation, allowing bars 
with large in i t ia l  curvature and arb itra ry in i t ia l  state of stress to be 
analyzed. Numerical application of th is equation to the analysis of guyed 
masts can be found in /5 /. I t  is remarkable that the equations of Clebsch

F ig . 3. F in ite  model fo r the l in e  element in  F ig. 2



(and therefore the equation in /4 /) are consistent with the large shear 
s tra in  theory of Love /2 /, therefore the e ffect of shearing in th is  in te r
pretation on the s ta b il ity  of line  continua can be studied by the d i f 
fe re n tia l equation in /4 /.

I f  the stiffness parameters of the bar are non-zero, then the Unique
ness Theorem of Peano (see /8 /) can be applied to th is d iffe re n tia l equa
tio n . This Theorem states that the solutions are uniquely determined by 
the Cauchy-type in i t ia l  conditions. Based on th is  Theorem, the author intro
duced in  /6 / the global description of the equilibrium path in f in ite  d i
mensional space.

The present paper is devoted to the case when the bending stiffness 
is  zero.
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2. The d iffe re n tia l equation

The matrix d iffe re n tia l equation presented in /4 / is  defined fo r 
planar bars in the' co-ordinate systems illu s tra te d  in Fig. 4.

The system (xy) is  global, the system (xy) isthe local one, attached 
to each cross section. I f  the cross section is  orthogonal to the bar axis, 
then a = (3, but in general the tangent of the bar axis and the normal of 
the cross section do not coincide. The unstressed (orig ina l) arch length 
is  denoted by s, the arch length of the deformed bar by S. The d iffe ren 
t ia l  operator —gg is denoted by ( ) ’ (dot).

The d iffe re n tia l equation can be derived from the equation expressing 
the s ta tic  equilibrium of line  element ds illu s tra te d  in Fig. 5.

x(0) x(s)

F ig . 4. The co-ordinate systems
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By introducing vector D(s) of the in terna l forces, vector q(s) of the 
load in tensities and the transfer matrix B(s):

the condition of s ta tic  equilibrium can be formulated as

D = BD - q . (1)

The deformed shape of the bar w i l l  be described by vector z(s):

”x(s)

z(s) = y(s) ,

_«(s)

The co-ordinates of z(s) are defined in  Fig. 4. The co-ordinates of 
derivative s) are the strains. The in i t ia l  deformation (the deformation 
where the stresses are zero) of the bar is  given by a vector 2g(s) (not de
scribing the rigid-body position of the bar). In case of an o rig in a lly  
s tra ight bar with cross sections perpendicular to the bar axis we have

F ig . 5. The lin e  element, the loads and the in te rna l forces
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a

О
where

a = s in (a (s)), b = cos(a(s)) .

This paper treats the above case only since the in i t ia l  curvature of 
a cord without bending stiffness does not imply strains, i.e . does not 
a ffe c t the solution curve. A more detailed explanation of can be found 
in  /6 /.

By introducing the f le x ib i l i t y  matrix of line  element F(s) expressed 
in  the (xy) global system, Hooke's Law can be formulated as

The connection between the global and the local system is expressed 
by the common rotation; matrix T(s):

The well-known d e fin ition  of the f le x ib i l i t y  matrix in the loca l (xy) 
system is denoted by F and i t  is assumed to be diagonal and constant (not 
depending on s):

T, S, В denoting tensile , shear and bending stiffness, respectively.
On the basis of the transformation rules for tensor representations F 

is  expressed as

(z - zQ) = FD . ( 2)

'  b a 0"

T(s) = -a b Ü

0 0 1

F I  I
T S В
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F = T_1FT ( 3 )

where

Substitution of the material law (2) into the s ta tic  equilibrium equation
(1) yields the d iffe re n tia l equation of the e las tic  bar:

z = (FB + F)D + zu - F . (4)

The in i t ia l  condition expresses that s tra in  vector t  at in i t ia l  point 
s = 0 is  a function of the concentrated end-loads.

Equation (4) is  equivalent to the follow ing system of scalar equa
tions:

3. Clord with zero bending stiffness

In case of zero bending stiffness В = 0, equations (3 ) /1 and /2 do 
not change, but in order to avoid in f in ite  changes of curvature, Eq. (5)/3 
is transformed into the condition

The exact form of functions f^ and f ^ can be derived from (4) and (3), 
respectively, but i t  does not affect our further investigations.
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Xÿ - Y* = О , (6)
i .e .  the th ird  scalar d iffe re n tia l equation turned into an algebraic one. 
The unknown vector describing the deformed shape of the bar has now only 
two co-ordinates (x ,y ), but the d iffe re n tia l equation system formed by 
(5 /1) and (5/2) has an additional parameter a which has to be determined 
from condition (6 ) . (Note that i f  y  = у- = 0, then (6) w il l express vanish
ing of the shear force.) The number of independent scalar in i t ia l  con
d itions  is reduced from the orig inal 6 (x (0 ),ÿ (0 ), â ( 0 ) ,x(0) ,y(0)a(0)) to 4 
(x (0 ),y (0 ),x (0 ),y (0 )). The Uniquness Theorem w il l  hold i f  by f ix in g  the 
ju s t mentioned 4 in i t ia l  values, the solution curve of the d iffe re n tia l 
equation is uniquely iden tified . This w i l l  be the case only i f  condition 
(6) yields an unique value for parameter a , else the theorem can not be 
applied. Therefore the possible mumber of solutions of (6) w il l be in ve s ti
gated now.

By using the material law (2) assuming that у  /  0, у  /  0, forces X and 
Y can be expressed as functions of stra ins x and ÿ. Substitution of these 
expressions into (6) yie lds

2 2v(x - y ) + xÿ (w - u) + y(va - wb) + x(ua - vb) = 0 . (7)

In order to s im plify  the above equation, variables t  and ß defined in 
Fig. 4 w il l be introduced. The old variables can be expressed with the new 
ones:

x = tcos(ß) ,
(В)

ÿ = ts in(ß) .

Substitution of (G) in to  (7) yields

ts in ( a - ß ) | t ( y  - i ) c o s (  a - ß ) + 0 (9)

By excluding the degenerate case t  = 0, condition (9) can be sa tis 
fie d  either by

sin(a - ß) = 0 (10)
or by 1

cos(a - ß) = -----§—■— ( 11)

The solution of (10) is
i ( I  -  I )u s T;

a = ß+_ ктт (k=0,2 ,4 ,.. .) ( 12)
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(The odd values (1 ,3 ,5 ,.. . )  of к have been omitted, because we re s tr ic t 
ourselves to cords under tension with positive axial s tra in .) Equation 
(12) defines the t r iv ia l  solution, when the line  elements ds are always 
tangent to the curve in the (xy) plane. This solution is  illus tra ted  in 
Fig. 6.

Equation (11) can be solved only i f

1 .

Since only the cord under tension with positive axial stra in is  in 
vestigated, the negative values for coá(a - 3 ) arid " fo r t  can be excluded to 
yields

S _ I  (13)
T "

t

F ig. 6. The t r i v ia l  so lu tion
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□г by expressing t
t  >  (S с  T) . (14)

I f  condition (14) is  sa tis fied , then, in addition to the already in 
vestigated t r iv ia l solution (12), a new solution w il l appear. From (14) we 
learn that th is can not happen in the case of tension and positive axial 
s tra in , i f  S > I .  This new solution w il l  coincide with the t r iv ia l  one i f

t  = i c r = r b  ( 5 < T )  (15)

Since in case of the t r iv ia l  solution a = (5, t  . = 1 + N/T, (N de
notes the normal force). Substituting th is  expressioninto (15), the c r i t i 
cal normal force N corresponding to t.  . is found to be cr r  J tn v

N c r ^ T ^ S  ( S < T )  (16)

with
lim N = S . (17)

Т-Ч-00

I f  t  t  then the. new solution bifurcates, and two secondary solu
tions emerge at the sides of the t r iv ia l  one. This could be illu s tra te d  
in  a two-dimensional diagram (Fig. 7):

F'H. 7, The e qu ilib rium  pos itions o f the lin e  element
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Since the unique solution for t  <  t  is the well-known t r iv ia l  solu
tion , this equilibrium position is stable. On the basis of the elementary 
catastrophe theory, the t r iv ia l  solution loses i t s  s ta b il ity  at the 
c r i t ic a l point and the secondary solutions are stable. (We have a standard 
cusp catastrophe.) The bifurcation parameter is  in our case not the load, 
but the deformation of the arch length, therefore both states of equi
librium  ( t r iv ia l and buckled) can be illu s tra te d  on the same structure 
with constant loading.

The structure investigated is a cord under constant dead load, fixed 
by hinges at both ends, with horizontal tangent at the le f t  end (Fig. 8). 
Since the axial s tra in  is minimum in case of a horizontal tangent of the 
cord, the dead load can be chosen in such a way that at the le f t  end 
(Fig. 8) the t r iv ia l  equilibrium is  s t i l l  stable ( t  t  ) but at a certain 
point, t  reaches the c r i t ic a l value, and a ll additional line  elements (or 
cross sections) may buckle. In Fig. 8 the buckled state of equilibrium is 
illu s tra te d  for these line  elements.

Note that in case of a cord with only end loads, the normal force 
and stra in  of the arch length are constant. In th is  case, the cord is 
s tra igh t. Either the t r iv ia l  state of equilibrium is  stable for a ll line 
elements, or, by increasing the end load, the t r iv ia l  state of equilibrium 
becomes unstable for a l l  line elements simultaneously, i.e . the b ifu r
cation parameter is  now the load parameter.

4. The effect of bending s tiffness

Real cords have a small bending s tiffness. In this case, the solution 
of (4) remains unique, i.e . no bifurcation or buckling is possible in the 
sense of the previous section. (Naturally, the "trad itio na l" , global type 
of buckling, i.e . buckling due to increasing external load is not excluded 
at a l l .  E.g. the ju s t described stra ight cord can buckle in the "tra 
d itio na l" way even in the case of non-zero bending s tiffne ss .) A ll the 
same, from the catastrophe theory we learn that the observed phenomena are 
typ ica lly  s tructura lly  stable, i.e . the small change of a parameter can 
not result in the abrupt change of the solution curve. In our case the 
"observed phenomenon" is  a boundary value problem. We are looking for 
solutions of the equation system (5) for very small values of bending 
stiffness В in the v ic in ity  of the solutions for В = 0 investigated in the
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F ig . 8, The n o n - tr iv ia l so lu tion

previous section. Variables corresponding to the solution with zero bend
ing s tiffness w il l have index 0, variables in the solution fo r small 
В = e «с 1) bending s tiffness index e . Our aim is  to verify whether these 
la t te r  solutions (selected from the in f in ite ly  many possible ones) have 
the structure predicted by the elementary catastrophe theory or not. The 
"v ic in ity "  of a point w i l l  be selected on condition that the in i t ia l  con
d it io n  satisfy

aQ(0) = ae(0) ,

“ 0 ( 0 )  = à £( o )  ,
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XQ(O) = xE(Ű) ,

ÿ0(o) =ÿe(o) ,

хц(0) - xc(0) , 

y0(Ü) = ye(0) .

Condition (18) implies on the basis of (5)/3 that

(18)

(X(0)ÿE(0) - Y(ü)x£(0 )) =eä0(0) . (I?)

The solutions of th is  equation are illu s tra te d  in Fig. 9a. I t  can be 
realized that th is  solutions display exactly the structure predicted by

a) So lu tions fo r a small bending s t if fn e s s , 
b) Im perfection due to a small bending s tif fn e s s
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the elementary catastrophe theory for the unfolding of the standard cusp 
catastrophe /9 /.

According to th is , the (su ffic ie n tly ) small bending stiffness can be 
regarded as an imperfection parameter necessary to the unfolding of the 
cusp catastrophe point ju s t mentioned. In mechanics, th is can be easily 
interpreted, since in the case of non-zero bending stiffness, the internal 
force vector of the cord is  not exactly tangent to the cord, i.e . 
a - ß ^ 0. The solution curve for th is case is  illus tra ted  in Fig. 9b.

5. Summary

A new type of buckling has been introduced in  th is paper. I t  proved 
to be - like  the classic Euler problem of compressed members - a stable- 
symmetric bifurcation. The main difference between the two types of buck
lin g  is  that in our case i t  is  not the entire beam (cord), but the in 
d iv idua l line elements (cross sections) that buckle(s). Mathematically, 
th is; means that in the c lassic case the boundary value problem has a b ifu r
cation point while in  our case, the in i t ia l  value problem shows a point of 
b ifu rca tion  (the Uniquness Theorem can not be applied). This type of buck
lin g  is  not displayed by common structures, a l l  the same a discrete model 
has been demonstrated fo r mechanical evidence.
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DISCRETE FOURIER INTEGRALS AS SINGULARITY-BEARING SOLUTIONS 
OF PARTIAL DIFFERENCE EQUATIONS

HEGEDŰS, I . *

(R ece ived: 10 May 1990)

Discrete Fourier integrals are analogues of common Fourier 

integrals in case of functions with discrete variables. They 

can be produced and used analogously to common Fourier inte

grals of functions with continuous variables. The paper intro

duces these integrals and presents a method for producing dis

crete Fourier integrals which are singularity-bearing solutions 

of partial linear difference equations of constant coeffi

cients. Also discrete Fourier integrals of some singularlty- 

-bearing solutions of second and fourth order partial d iffe r

ence equations of important applications in the analysis of 

la ttice  structures are presented.

1. Fourier series and Fourier integral of functions with integer
variables

L e t f ( J )  a p e r io d ic  fu n c tio n  o f in te g e r  v a r ia b le  j  w ith  a 

p e r io d  2n.  The v a lu e s  o f  f ( J )  a re  d e te rm in e d  f o r  any -ra < j  s oo 

v a lu e s  by ta k in g  a s e r ie s  o f 2n independent v a lu e s

f l - n ) ,  f ( - n + 1 ) ,  . . . .  f ( J ) ,  . . . .  f ( n - l ) ,  f ( n ) ,

and a p p ly in g  th e  e q u a tio n

f l j - n ) = f ( j + n ) . (1 )

E q n .1 d e f in e s  th e  2n p e r io d ic i t y .

An a l t e r n a t iv e  way o f  d e f in in g  f ( j )  i s  u s in g  a com po sitio n  o f  

fo r m e r ly  d e f in e d  2n l in e a r ly  independent s e ts  o f  va lu es  

0, ( j ) ,  j . k  = 1, 2 .............2nк
as fo l lo w s :

f ( j )  = с ф ( j )  + . . .  + с ф ( j )  + . . .  + с ф ( j ) ,  ( 2 )
11  к к 2n 2n

Is tv á n  HEGEDŰS, H-2083 Solym ár, V áci M ih á ly  u . 10., Hungary

Akadémiai Kiadó, Budapest
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and e x te n d in g  th e  in t e r p r e t a t io n  o f E q n .2 . by E q n . l .

L in e a r  independence o f  s e ts  ф (J )  means th a t  t h e i r

C a s o r a t i  d e te rm in a n t must n o t equal to  z e ro  (S p ie g e l 1970):

d e t [d ] = d e t [ф ( j ) ]  * 0. к j к (3 )

Component s e ts  ф can e a s i ly  be found as t r ig o n o m e tr ic  fu n c -  к
t io n s  o f  in te g e r  v a r ia b le s  (K orn - Korn 1968, B le ic h -  M elan 1 9 2 7 ). 

V a lu e s  produced by in tro d u c in g  e lem ents  o f  a 2n success ive  

sequence o f in te g e r s  j  in t o  tr ig o n o m e tr ic  e x p re s s io n s

c o s - -11— , к  = 0 , 1 .............n , and s in —— , к  = 1, 2 , . . . .  n -1n n

fo rm  l in e a r  ind epen den t s e ts  which a re  o rth o g o n a l and normed in

th e  sense as fo l lo w s :

2 n

E
j = i

COS
k n j

n cos n

2 n

E
j = i

s in k n j
n s in l n j

n

2n  i f  к  = 1 = 0 o r n 

n i f  к  = J *  0 o r n; 

0 e ls e

n i f  к  = I  *  0 o r n 

0 e ls e

(3 . a )

( 3 .b  )

2n

E
j = i

cos k n j
n s in I n j

n = 0. (3 . c )

These r e la t io n s  a re  d is c r e te  analogues o f  th e  o r th o g o n a lity  

r e la t io n s  o f  s in e s , and cosines used in  F o u r ie r  expansions. 

L in e a r  independence o f  se ts

cos—— , к = 0 , 1 .............л, and s in  ^ j . к  = 1, 2 , . . . ,  n -1n  n

p e r m its  us to  e x p re ss  an a r b i t r a r y  p e r io d ic  fu n c t io n  f ( j )  w ith  2n

p e r io d  in  a form  w hich  can be assumed as th e  d is c r e te  F o u r ie r

e x p a n s io n  o f  f ( j ) :

- ,  о l i r j  2njf ( j )  = =  + a cos — -  + a cos — -J 2 1 n  2 n
nrcj + 

n

1 n j b s in  
2

2 n j ( n - l ) n j  b s in  ------------ - •
n-1 П

(4 )

C o e f f ic ie n ts  a , and b in  Eqn.4 can a ls o  be expressed a n a -  к к
lo g o u s ly  to  tho se  o f  F o u r ie r  expansions u s in g  o r th o g o n a lity



SOLUTIONS OF PARTIAL DIFFERENCE EQUATIONS 79

r e l a t i o n s  З . а - c  :

T h is  e x p r e s s io n  is  the  base o f  d e r i v i n g  d is c r e t e  F o u r i e r  

i n t e g r a l s  o f  n o t  p e r io d ic  fu n c t io n s  o f  in t e g e r  v a r ia b le  J  i n  a way 

as f o l lo w s .

L e t  p e r io d  2n  be increased in  a way t h a t  elements i n s i d e  i t s  

o r i g i n a l  le n g th  2 keep t h e i r  o r i g i n a l  p la c e s ,  and v a lu e s ,  w h i l e  

a t  th e  ex ten ded  reg ion s  o f  the p e r io d  l e t  f ( j ) = 0 .  In  t h i s  case  

E q n .6  changes o n ly  in  the upper l i m i t  o f  th e  second summa, becau se  

z e ro s  in  th e  ex ten ded  reg io n  need n o t  be summed.

f ( j )  =—  Y. Е ° П Л  cos —  . (7)n u u n n
к = 1 1=1

T ending  to  th e  i n f i n i t y  w i th  n , th e  summation by к i n  E q n .7  

can be r e p la c e d  f o r  an i n t e g r a t i o n  by th e  v a r ia b le

as fo l lo w s :

f ( j )  = l im  —  £  E Я Л  cos -------- i ---------- —  =TT n n
П - *  СО к = 1 1 = 1

П  2 n

= ------ J" [  ° f ( J )  cos ( J  - l ) a  da =
a=o 1=1

2 n  П

= — -  E ° X f U ) cos ( j  - 1 )a da . ( 8 )
i = i  a=o

E x p re s s io n  (8 )  is  c a l l e d  the  d i s c r e t e  F o u r ie r  i n t e g r a l  o f  

f u n c t i o n  f ( J ) .  I t  i s  the analogue o f  common F o u r ie r  i n t e g r a l s  o f  

f u n c t io n s  w i t h  continuous v a r i a b l e s  (K o r n -  Korn 1968).

The r e s u l t  o f  the d e r i v a t i o n  can e a s i l y  be checked by

By in t r o d u c in g  E q s .5 .a ,  and 5 . b  i n t o  Eqn.4, i t  can a l s o  be 

w r i t t e n  in  an a l t e r n a t i v e  form
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p e r fo rm in g  the  in t e g r a t io n  in  E q n .(8 )  as fo l lo w s :

f ( j )  = —  E ° f U ) sln(/ _ ' / )Tt = E 0 n i )  « = f ( j ) .

A b a s ic  d i f f e r e n c e  between common F o u r ie r  in te g r a ls  and d is 

c r e t e  F o u r ie r  in t e g r a ls  i s  th a t  Eqn.8 o n ly  c o n ta in s  in te g r a t io n  

on th e  in t e r v a l  0 s a  s  n and not on 0 s a  s oo . T h is  d if fe r e n c e  

can  make e a s ie r  th e  e v a lu a t io n  o f d is c r e te  F o u r ie r  in te g r a ls  u s in g  

n u m e ric  in t e g r a t io n .

2 . Singularity- bearing solutions of difference equations
L e t a fu n c t io n  which takes  z e ro  v a lu e s  a t  j  * j Q,

w h i le  p (J  ; j  ) = 1. T h is  fu n c t io n  can be p h y s ic a l ly  in te rp re te d  as 

t h a t  o f  a s in g le  u n i t  lo a d  a c tin g  a t  th e  p o in t  j  = J . I t s  d is 

c r e t e  F o u r ie r  in t e g r a l  produced by E q n .8 . is  a ls o  a s in g le  term

1 71
p (J Q; j )  = - j j -  S cos [ ( j  - j Q) a ] da , (9 )

a=o

b ecau se  th e  summation by 1 o n ly  extends to  1 = j  . Eqn. 9. s h a l l  be 

u sed  in  th e  subsequent s e c tio n s  fo r  d e r iv in g  s in g u la r it y -b e a r in g  

s o lu t io n s  o f  p a r t i a l  d if f e r e n c e  e q u a tio n s .

L e t  F ( i , j )  a fu n c t io n  o f in te g e r  v a r ia b le s  i ,  and j ,  and l e t  

T> a l i n e a r  p a r t i a l  d i f f e r e n c e  o p e ra to r o f  c o n s ta n t c o e f f ic ie n ts  

w h ic h  can be expressed  as an a lg e b ra ic  e x p re s s io n  o f e le m e n ta ry  

s h i f t i n g  o p e ra to rs  E^, and E2 o r as a p o ly n o m ia l o f  f i r s t  o rd e r  

c e n t r a l  d if f e r e n c e  and averag e  o p e ra to rs  <5̂ , S , and in

v a r ia b le s  i ,  and j ,  r e s p e c t iv e ly .

F u n c tio n  F is  c a l le d  a s in g u la r i t y - b e a r in g  s o lu t io n  o f th e  

homogeneous d if f e r e n c e  e q u a tio n

D  [F ( i , j ) ]  = 0 ( 1 0 )

i f  i t  meets E q n .10 a t  each p o in ts  { l , j }  in s id e  the domain o f  

i n t e r p r e t a t io n ,  e x c e p t in g  i = i Q, j  = j  , w here th e  r ig h t  s id e  o f  

th e  e q u a tio n  ta k e s  1 in s te a d  o f 0. Thus, t h i s  s o lu t io n  meets th e  

e q u a t io n

V [F (i , j ) ] = p(iQ,jo;i,j), (1 1 )
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in s te a d  o f  E q n .10 , where

p U o, j o, i . j )  = p U o. n  p(J0;J).

Though s in g u la r i t y  a t  the  p o in t  ( I  ,J  ) does n ot emerge w ith  

i n f i n i t e l y  la r g e  a b s o lu te  v a lu e s , i t  i s  a d is c r e te  an a lo g u e  o f  

those o f  s in g u la r  s o lu tio n s  o f p a r t i a l  d i f f e r e n t i a l  e q u a tio n s .

S o lu t io n s  o f  t h is  k in d  may have a g re a t  p r a c t ic a l  im p o rtan c e  

in  th e  s t a t i c  and dynamic a n a ly s is  o f  la r g e  la t t ic e s  w ith  r e g u la r  

n e tw o rk s .

In  th e  subsequent s e c tio n s  s in g u la r  s o lu tio n s  o f d i f f e r e n t  

p a r t i a l  d i f f e r e n c e  e q u a tio n s  a re  d e a l t  w ith .

In  most p r a c t ic a l  cases d i f f e r e n c e  o p e ra to r  V  has a s p e c i f ic  

b u i l t - u p ,  nam ely, i t  is  a s e l f - a d j o i n t  d if fe r e n c e  o p e r a to r .  

(Rózsa 1 9 7 1 ., K o llá r-H e g e d ű s  1 9 8 5 .)  T h a t means, i t  is  in v a r ia n t  

a g a in s t  th e  changes in  s ign  o f d i f f e r e n c e  o p e ra to rs  Ő o r 5^. T h is  

p ro p e r ty  o f  D  w i l l  a ls o  be assumed h e re , E  is  a s e l f  a d jo in t  

p a r t i a l  d i f f e r e n c e  o p e ra to r  o f c o n s ta n t c o e f f ic ie n ts  and o f  th e  

o rd e r 2N.

2.1 Direct algebraic solution for limited domain of
interpretation
C o rre c t  s e t t in g  o f a problem  o f  producing s o lu t io n s  f o r  

E q n .11 needs a d e f in i t io n  fo r  th e  dom ain o f  in t e r p r e t a t io n  and a ls o  

needs p r o p e r ly  s ta te d  boundary c o n d it io n s .

I f  th e  problem  concerns a dom ain o f  in te r p r e ta t io n  l im i t e d  

e .g .  by th e  c o n d it io n  th a t  v a lu e s  o f  F ( i , j )  can o n ly  d i f f e r  fro m  

ze ro  i f

then  E q n .11 can be re p la c e d  fo r  a s e t  o f  l in e a r  a lg e b r a ic  equa

t io n s  o f  m*n unknowns. D enoting  th e  v e c to r  o f the unknown v a lu e s  

o f  F ( i , j )  by f, and th a t  o f  v a lu e s  o f  p ( i  , j  ; 1 , j )  by p, a lg e b r a ic  

s o lu t io n  fo r m a l ly  needs in v e r t in g  th e  v e c to r ia l  e q u a tio n

mо + 1 s i  < m + m. and n + 1 < / < n + n,

Af = p, ( 1 2 . a)

as

( 1 2 . b)
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M a th em a tic a l d e te rm in a c y  o f the  problem  appears  in  the re g u 

l a r i t y  o f  A and s e l f  a d jo in tn e s s  o f  o p e ra to r  D does so in  th e  

sym m etry  o f A.

S in c e  elem ents o f  p a re  ze ro s , e x c e p tin g  a s in g le  1, E q n . l2 .b

y i e l d s  a column v e c to r  o f  A 1 fo r  f, th a t  is ,  A 1 can be

c o n s id e re d  as c o n s is te d  o f  column v e c to rs  f o f  s in g u la r it y -b e a r in g

s o lu t io n s  a s s o c ia te d  w ith  d i f f e r e n t  fu n c tio n s  p ( i  , j  ; i , j ).  T h iso o
p r o p e r t y  o f in v e rs e  m a tr ix  A is  analogous to  th a t  o f  the  Green  

f u n c t io n s  o f  boundary v a lu e  problem s o f  o rd in a ry  and p a r t i a l  

d i f f e r e n t i a l  e q u a tio n s  o f  s e l f - a d jo in t  d i f f e r e n t i a l  o p e ra to r ;  

a c t u a l l y ,  A 1 works as th e  d is c r e te  analogue o f  a Green fu n c t io n  

(F ra n k -M is e s  1927, Rózsa 1 9 7 1 ).

Boundary c o n d it io n s  o f  o th e r  k ind  f o r  F ( i , j )  can a ls o  be 

t a k e n  in to  account in  c o e f f i c ie n t  m a tr ix  A.

3 . Solution for not limited domain of interpretation

D ir e c t  a lg e b ra ic  s o lu t io n  o f E q n . l l  f a i l s  i f  the domain o f  

i n t e r p r e t a t io n  is  n o t l im i t e d .  However, d is c r e t e  F o u r ie r  in te g r a ls  

ca n  be used to  produce s o lu t io n s  o f E q n . l l .  a ls o  in  th is  case.

M is s in g  boundary c o n d it io n s  a re  re p la c e d  as a r u le  by 

sym m etry c o n d it io n s  and re q u ire m e n ts  th a t  h ig h e r  d if fe re n c e s  o f  

F ( f , j )  have to  show a d e c a y in g  c h a ra c te r  a t  la r g e  a b s o lu te  v a lu e s  

o f  i  - i  , and j  -  j  ■

F i r s t ,  d is c r e te  f i e l d  s o lu tio n s  o f  E q n .10 a re  a n a ly t i c a l l y

p ro d u ce d  fo r  -oo s i  < oo and - »  i  j  i  oo. F o r th e  sake o f s im p l ic i t y

i  = J  = 0 is  assumed, о Jo
S e l f  a d jo in tn e s s  o f  d if f e r e n c e  o p e ra to r  Ю p e rm its  us to  

assum e d is c r e te  f i e l d  s o lu t io n s  as p ro d u c ts  o f 2n p e r io d ic  

fu n c t io n s  o f e i t h e r  v a r ia b le  and p r o p e r ly  chosen a lg e b ra ic  

fu n c t io n s  o f the o th e r  one, e .g .  in  the  fo rm  as fo llo w s :

F U j f  = [У ]к
j  COS ) Í ikn (1 3 )1 s in 1 [ - J'

w h e re  n  > 1 and 0 s к  s n  a re  in te g e rs and Ук o n ly  depends on

d is c r e t e  v a r ia b le  j .

In tro d u c in g  e x p re s s io n (1 3 ) in to E q n .10, an o rd in a ry d i f -
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fe re n c e  e q u a tio n  can be d e r iv e d  f o r  У^ as

D  [ У ( j )  ] = 0..к к
(1 4 )

A ccord ing  to  th e  s e l f  a d jo in tn e s s  o f  p a r t i a l  d if fe r e n c e  o p e ra to r  

Z>, a ls o  d i f f e r e n c e  o p e ra to r  T) is  s e l f  a d jo in t  and s o lu t io n s  o f
к

common l in e a r  d if f e r e n c e  e q u a tio n  E q n .14 can be assumed by p a ir s  

in  th e  form

Ук = J

г'
к
-J

(1 5 )

where z  is  a r e a l  o r complex number and m is  a n o t n e g a tiv e  
к

in te g e r .  Assuming f i r s t  th a t  m = 0 and in tro d u c in g  e x p re s s io n  (1 5 )  

in to  E q n .14, an a lg e b r a ic  equ a tio n  o f  r e a l  c o e f f ic ie n ts  can be 

d e r iv e d  f o r  z^. The o rd e r o f th is  e q u a tio n  is  the  same as th a t  o f  

d if f e r e n c e  o p e ra to r  and the s e l f  a d jo in tn e s s  g u a ra n te e s  th a t  i t s  

ro o ts  a re  r e c ip r o c a ls  by p a irs .

I f  th e  ro o ts  a re  complex numbers, th e y  a re  c o n jo in t  by p a ir s ,  

th a t  is ,  powers o f  complex numbers z^ and z^ can be re p la c e d  by 

p ro d u cts  o f  r e a l  powers and t r ig o n o m e tr ic  fu n c tio n s  o f  J in  

e x p re ss io n  (1 5 ) .

I f  th e  a lg e b r a ic  e q u a tio n  has m u lt ip le  ro o ts

к ( l ) к (2) к (m+1)*
then  fu n c tio n s

J
J z,

.2 JJ Z , 
J  к (1 )

.m 1
J ZJ  к (1 )к < 1 ) J к ( 1 )

a re  l i n e a r ly  ind epen den t s o lu tio n s  o f  E q n .14, thu s , 2N, th e  t o t a l

number o f in d ep en d en t s o lu tio n s  o f  E q n .14 is  the same in  a l l  cases

as th e  o rd e r o f  D .
к

L et У ............... У
к (1 ) k(l>)

t io n s  o f  E q n .14 w ith

У l i n e a r l y  independent

ab s (z  ) s 1. 
k(i>)

solu-

A g e n e ra l 2n p e r io d ic  d is c r e te  f i e l d  s o lu t io n  w ith  d ec a y in g  

c h a ra c te r  in  p o s i t iv e  j  d ir e c t io n  can be s e t in  th e  fo rm  as 

fo llo w s :

F ( i ,  j ) °  = Y. a f  У ß Y , Л  cos - kTU- + b í  Y ß У , Д  s in  кП1 »
J  ь  L* 1 k v  k ( i> ) (  n k |  °  ' kV к ( íz) f  nk = l  vy= i J V = i  J

(1 6 )
where a , b , ß , and ß a re  a r b i t r a r y  numbers.

к к kV kV
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L e t  th is  s o lu t io n  o f  E q n .10 be m o d ifie d  in  a way as fo l lo w s .

k n i

(1 7 )

E x p re s s io n  (17 ) is  an even  fu n c t io n  o f j  and a u to m a t ic a l ly  m eets  

Eqn. 10 a t  a b s ( j )  ^ N.  H ow ever, a t  va lu e s  a b s ( j )  < N the  d is c o n 

t i n u i t y  in  the d i f f e r e n c e s  o f  a b s (J ) y ie ld s  a d is c o n t in u i ty  a ls o  

i n  V I F U J ) ] .

C o e f f ic ie n ts  ß , and в  can be chosen in  a way th a t  E q n .10 
k V  k V

a ls o  becomes met a t  0 < a b s ( j ')  < N and e x p re s s io n s  in  th e  b ra c e s  

{ > ta k e  1 va lu es  a t  J  = 0 . By so d o ing , th e  d is c o n t in u i ty  in  

£ > [ F ( i , j ) ]  reduces to  th e  l i n e  J = 0:

V l F i i J ) ]  = pi  0; k n i  1

“ Г
(1 8 )

A t th is  p o in t th e  c o n n e c tio n  w ith  d is c r e te  F o u r ie r  in t e g r a ls  

becom es obvious: te n d in g  w i th  n to  the i n f i n i t y ,  Eqn. 17 , and  

Eqn. 18 can be re p la c e d  f o r  a d is c r e te  F o u r ie r  in t e g r a l .  The 

i n t e g r a l  o f  F takes  th e  fo rm  as fo llo w s :

F U . j )  = - L .
I  n (  N )
— S / ( a ) j  Y. ß  (<*) y [ a , a b s ( J ) ]  >■ cos ( a i )  da, 

a=o '•^>=1 >
(1 9 )

w h e re  Л ( а ) ,  ß ^ (a ) ,  and y [ a , a b s ( j ) ] a re  p r o p e r ly  chosen fu n c t io n s .  

In te r c h a n g e a b i l i t y  o f  d i f f e r e n c e  and in t e g r a l  o p e ra tio n s  p e rm its  

us to  a p p ly  T) upon Eqn. 19 and to  express th e  d is c r e t e  F o u r ie r  i n 

t e g r a l  o f  E [ F ( i , J ) ]  in  a s im i la r  form:

1H F i i . j ) ]  = —5— J" Ai  a ) /  Y У (а)  Е (У (а ,  abs ( j  ) ] >1 c o s (a i)  da,
л 1 v  v  V  I ,a=o 1 ^ = 1  > (2 0 )

w h e re  fu n c tio n s  y ( a ) ,  and d if f e r e n c e  o p e ra to rs  5D a re  d e te rm in e d  v v
by  fu n c t io n s  ß ^ (a ) and by d i f f e r e n c e  o p e ra to r  E .

F u n c tio n s  y [ a , a b s ( j ) ]  have to  be assumed in  a form  analogous  

to  E q n .15:

У [a ,a b s ( j  ) ] = a b s ( j  ) z  (a )к (V)
a b s ( j  Ï

F u n ctio n s  z ( a )  can  be determ ined  from  th e  c o n d it io n  th a t  k (r )
th e  in te g ra n d  o f E q n .20 m ust v a n is h  in d e p e n d e n tly  o f  Ж а ) ,  and
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y^(ot) fo r  any v a lu e s  o f  J  when a b s ( j )  £ N h o ld s . F o r o b ta in in g  

s in g u la r  s o lu t io n s  o f  decay ing  c h a ra c te r  a t  la r g e  v a lu e s  o f  

a b s ( j ) ,  a b s lz ^ ^  ( a ) ] s 1 a ls o  must h o ld .

For v a lu e s  0 < a b s ( j )  < N, the  in te g ra n d  o f  D [ F ( i , j ) ]  must 

a ls o  va n is h  in d e p e n d e n tly  o f A (a ) . Using t h is  c o n d it io n , fu n c t io n s  

у  (a )  can be d e te rm in e d . Then, con nection s  between ß ( a ) ,  and
V  V

у  (a )  makes p o s s ib le  to  d e te rm in e  fu n c tio n s  ß ( а ) .
V  V

F in a l l y ,  i4 (a ) can be determ ined  from  the  c o n d it io n  t h a t  Eqn. 

11 must h o ld , th u s , th e  d is c r e te  F o u r ie r  in te g r a l  o f  E [ F ( i , j ) ]  

has to  ta k e  th e  fo rm  o f  th a t  o f  p ( 0 , 0 ; i , j ) :

1 П£ > [ F ( i ,J ) ]  = ------ J" p ( 0 ; J ) cos ( i a )  d a . (2 1 )
a= о

T h is  c o n d it io n  can alw ays be met, hence, a s in g u la r i t y - b e a r in g  

s o lu t io n  can a lw ays  be produced.

I t  may e a s i l y  happen th a t  the o u t l in e d  p ro ced ure  o b ta in s  a 

d iv e rg e n t d is c r e t e  F o u r ie r  in t e g r a l  o f  F ( i , J ) .  N e v e r th e le s s , fu n c 

t io n s  d e r iv e d  fro m  th e  s o lu t io n  which have p h y s ic a l m ean ings, and 

a p p lic a t io n s  a r e ,  as a r u le ,  convergent in te g r a ls .

3.1 Discrete harmonic singularity-bearing function 
(square network)

As th e  f i r s t  exam ple o f  a p p l ic a t io n ,  l e t  th e  s i n g u l a r i t y -  

-b e a r in g  s o lu t io n  F ( 0 , 0 ; I , J)  o f  the  d is c r e te  harm onic d i f f e r e n c e  

e q u a tio n

(Ő2 + SZ)F = 0 ,1 2
th u s , the  s o lu t io n  F ( i , j )  = F ( 0 , 0 ; i , j )  o f  the  e q u a tio n

(ő2 + ő2)F = p ( 0 , 0 ; J , j ) (2 2 )

be a n a ly ze d . V a lu e s  o f  fu n c tio n  F ( i , j )  can be p h y s ic a l ly  i n t e r 

p re te d  as s m a ll d e f le c t io n s  o f  an i n f i n i t e l y  la rg e  n e t c o n s is ts  o f  

two s e ts  o f  u n ifo r m ly  s tre s s e d  chords norm al to  each o th e r  and 

loaded p e r p e n d ic u la r ly  to  the  p lan e  o f  th e  n e t a t  th e  n e t  p o in t

i  = J = 0 by a u n i t  fo r c e  (B le ic h -M e la n  1 9 2 7 ). o o
D if fe r e n c e  o p e ra to r  T) o f  Eqn. 22 is  a second o rd e r  o p e ra to r ,  

th u s , N = 1 and th e  s in g u la r  s o lu t io n  can be assumed in  th e  s im p le  

f  orm
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il eus» viz . ,_ _  , î k nF = l i m  V A z cos ----------  =u к к Пn-*oo к = 1
U a b s ( j )

= -----  J Л (а )  z ( a )  cos ( a i )  da. (23 )n a-о
In t r o d u c in g  e x p r e s s io n  (2 3 )  in to  Eqn.22 y i e l d s  th e  e x p re s s io n  

as  fo l lo w s :

П abs(j) ,
VÍ F]  = —  J Л (а )  z ( a )  - I z t a )  + + 2 c o s (a )

a=o '

F o r  v a n is h in g  X> [ F ] a t  abs ( J )  > 0 ,  equation

4J- c o s ( a i )  d a .  

(24 )

z ( a )  + —,—r + 2 cos(a)  z  (a )

m ust h o ld .  Hence,

4 = 0

z ( a )  = [2 -  c o s ( a ) ]  -J [2 -  cos (a )  ] 2 -  1 =

= 1 + 2 s i n 2 (~ )  -  /  [ 1 + 2  s i n 2 ( | ) ] 2-  1 . (25 )

In t r o d u c in g  e x p r e s s io n  ( 2 5 ) ,  and j  = 0 i n t o  e x p r e s s io n  (24 )  

and  t a k in g  Eqn.21 i n t o  a c c o u n t ,  the f o l lo w in g  c o n d i t i o n  can be 

s t a t e d  :

-  X АЫ) (na=o
- 2 ) / [1 -> • 2 . a .  , 22 s i n  (^ )J  - 1 c o s t a l ) da -  X cos ( a i ) da.  na=o

H e n c e ,

Л (а )  = —  

2
and th e  d is c r e t e  F o u r i e r  

s o l u t i o n  is  o bta in ed  as

—  (26 )  

/  [1 + 2 s in 2 ( | ) ] Z-  1

i n t e g r a l  o f  the  s i n g u l a r i t y - b e a r i n g

T h is  in t e g r a l  cann ot be d i r e c t l y  e v a lu a te d  because i t  y i e l d s  

i n f i n i t e l y  la rg e  v a lu e s  f o r  any f i n i t e  p a i r s  o f  i ,  and j .  However,
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d i s c r e t e  F o u r ie r  i n t e g r a l  o f  f u n c t io n

F ( i , j )  = F ( i  , j  ) -  F ( 0 , 0 ) ,  (2 8 )

which b ears  the same s i n g u l a r i t y  as F ( i , J )  b ears , can be e a s i l y  

produced as

F=- da,

(2 9 )

and t h i s  i n t e g r a l  can be e v a lu a te d  f o r  any not too l a r g e  p a i r s  o f  

i ,  and j  by u s in g  n u m er ic a l  i n t e g r a t i o n .  Values o f  T ab le  1. have  

been computed on IBM p ers o n a l  computer by using a s ta n d a rd  r o u t i n e  

f o r  n u m er ica l  i n t e g r a t i o n  o f  a m athem atica l subprogram. The 

r e s u l t s  p r e c i s e l y  show th e  m athem atica l  symmetry o f  F d e s p i t e  o f  

th e  fo rm a l  unsymmetry o f  v a r i a b l e s  i ,  and j  in  th e  d i s c r e t e  

F o u r ie r  i n t e g r a l .  The v a lu e s  have a ls o  been n u m e r ic a l ly  checked by 

a comparison w i t h  the  analogue r e s u l t s  o b ta in ed  by a d i r e c t  a lg e b 

r a i c  s o lu t io n  o f  Eqn.22  w i th  z e r o -v a lu e  boundary c o n d i t io n s  a t  th e  

l i n e s  a b s ( i )  = C, a b s ( j ' )  = C,  w i th  C = 10, 20, 50, and 100. The 

f i r s t  two se ts  o f  r e s u l t s  gave poor agreements a t  l a r g e  v a lu e s  o f  

i  and j ,  the  o th e r s  have shown e x c e l l e n t  agreements.

T ab le  1

J
0

i 0 1 2 3 4 5 6 7 8

.0000 .2500 .3634 . 4303 . 4770 .5129 .5421 .5668 . 5881

1 .2500 .3183 . 3866 . 4404 . 4822 . 5162 .5444 . 5684 . 5893

2 .3634 .3866 .4244 .4622 .4960 . 5253 .5508 .5732 .5 9 30

3 .4303 . 4484 .4622 . 4880 .5139 . 5382 .5604 .5805 .5987

4 . 4770 .4822 .4960 .5139 .5355 .5532 .5720 . 5896 .6 0 62

5 .5129 .5162 .5253 .5382 .5532 .5689 .5847 .6 0 00 .6146

6 .5421 .5444 . 5508 . 5604 .5720 .5847 .5978 .6 1 10 .6 2 39

7 .5668 .5684 .5732 .5805 . 5896 .6000 .6110 .6 2 23 .6337

8 . 5881 .5893 .5930 . 5987 .6062 .6146 .6239 .6337 .6436

Eqn.20  i s  a d i s c r e t e  analogue o f  the  d i f f e r e n t i a l  e q u a t io n  o f  

a s in g u la r  harmonic f u n c t i o n ,  the  f u n c t io n  o f  a s u r fa c e  o f  

r e v o l u t i o n  h av in g  a lo g a r i t h m ic  m e r id ia n .
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3 .2  Discrete harmonic singularity-bearing function 
(triangular network)
As an o th e r exam ple , s in g u la r it y -b e a r in g  s o lu t io n  F ( i , j )  = 

= F ( 0 , 0 ; i , j )  o f  th e  d i f f e r e n c e  eq u a tio n

c m { £  [ £ + 0 ' S +  £ ' ° ' S ]  +  f - 1  [ £ * ° - s +
2  l  2 i

£~0'5] + £  + £ 6 } F U , j )  =

= p ( 0 ,0 ,  i  , J  ) (3 0 )

is  shown, where sym bols , and £^ stand f o r  e le m e n ta ry  s h i f t in g  

o p e ra t io n s  in  th e  d i r e c t io n s  o f i ,  and j ,  r e s p e c t iv e ly .  The p o in ts  

o f  in t e r p r e t a t io n  o f  F ( i , J )  a re  a t  the in te g e r  v a lu e s  v a lu e s  o f  i  

when j  is  an even number and a t  the  b is e c t in g  p o in ts  when j  is  

odd. These p o in ts  fo rm  a system  o f nodes o f  a r e g u la r  t r ia n g u la r  

mesh. E qn.30  m u l t ip l ie d  by 2 /3  again  is  a d is c r e t e  analogue o f  th e  

d i f f e r e n t i a l  e q u a tio n  o f  a s in g u la r  harm onic fu n c t io n .

U sing  the  assum ption  shown in  E q n .22  and fo l lo w in g  th e  

p ro c e d u re  shown in  c o n n e c tio n  o f E q s .2 2 -2 5 , a d iv e r g e n t  d is c r e te  

F o u r ie r  in t e g r a l  can be o b ta in e d  as fo llo w s :

3 -  cosa

F  = -
2 c °s j

sa _ /  Г 3 -  cosa "|2_  ̂ _ j  I

£  *  L 2cos £  -I J

abs Í j )

71 У  7 8 cos a + cos a

c o s ( ia )  da. 

(3 1 )

The t ra n s fo rm a tio n  o f  F to  F used in  E q n .2 8  a g a in  y ie ld s  a 

d is c r e t e  F o u r ie r  in t e g r a l  w hich  can be e v a lu a te d  by num eric in te g 

r a t io n :

2cos

/  Г 3 -  cosa "I 2_ 

*  L 2cos ? J
1 - 1

abs( j )

c o s ( ia )  -  1

F  = - d a .

rt У  7 - 8 cos a + cos a (3 2 )

V a lu e s  o f  T a b le  2 have been c a lc u la te d  u s in g  th e  same sub

p ro gram  f o r  e v a lu a t in g  in t e g r a l  (32 ) as used in  th e  case o f  T a b le  

1 f o r  in t e g r a l  ( 2 9 ) .  The r e s u lts  c le a r ly  show th e  hexagonal 

c y c l i c  symmetry o f  fu n c t io n  F.
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T ab le  2

. i  0 0 .5  1 1 .5  2 2 .5  3 3 .5  4 4 .5  5 5 .5  6 6 .5
J
0 .0000  .1 6 6 7  .2381 .2681 .2 9 46  .3151 .3318

1 .1 6 6 7  .2180  .2566 .2 8 5 0  .3071 .3250 .3 4 0 0

2 .2180  .2 3 0 7  .2566 .2 8 1 4  .3 0 25  .3203  .3355

3 .2 5 6 6  .2681 .2850 .3 0 2 5  .3186 .3331 .3 4 6 0

4 .2814  .2 8 5 0  .2946  .3071  .3 2 0 3  .3331 .3451

5 .3 0 2 5  .3071 .3151 .3 2 5 0  .3355 .3460 .3 5 61

6 .3186  .3 2 0 3  .3250 .3 3 1 8  .3 4 00  .3486 .3576

7 .3 3 31  .3355  .3400 .3 4 6 0  .3530  .3604 .3 6 8 0

F u n c tio n  F a ls o  has a d ir e c t  p h y s ic a l in t e r p r e t a t io n .  I t  can  

be assumed as th e  fu n c tio n  o f s m a ll d e f le c t io n s  o f an i n f i n i t e l y  

la rg e  t r ia n g u la r  n e t c o n s is ts  o f  th r e e  s e ts  o f u n ifo rm ly  s tre s s e d  

chords and lo a d e d  p e rp e n d ic u la r ly  to  th e  p lan e  o f the n e t a t  th e  

n e t p o in t  i Q= j  = 0 by a u n it  fo r c e ,  p ro v id e d  the o r ig in  o f  the  

c o -o rd in a te  system  is  f ix e d  a t  th e  same n e t p o in t . T h is  s in g u la r 

i t y - b e a r in g  fu n c t io n  is  ano ther d is c r e t e  analogue o f th e  s in g u la r 

i t y - b e a r in g  fu n c t io n  o f the s u r fa c e  o f  re v o lu t io n  w ith  lo g a r i th m ic  

m e rid ia n .

3 .3  Singular solutions for grillages of regular network
D is c r e te  F o u r ie r  in te g r a ls  can a ls o  be used in  the  a n a ly s is  

o f  la rg e  p la n e  fram es w ith  r ig id  j o i n t s .

The d i f f e r e n c e  e q u a tio n  o f  th e  r o t a t io n  o f  jo in t s  o f  a square  

g r i l l a g e  o f  b a rs  w ith  equal b end ing  s t i f fn e s s e s  is

MU,  j )  = s U 1 2  + 6^ + Ő*] 4>U, j )>, (3 3 )

where M, and ф s tand  f o r  the fu n c t io n  o f  nodal moments and o f  th e  

r o ta t io n s ,  r e s p e c t iv e ly  and s i s  a c o n s ta n t m u l t ip l ie r  w h ich  r e 

p re s e n ts  th e  re s is ta n c e  a g a in s t r o t a t io n  o f one c o n s is tin g  b a r .

S in g u la r i t y - b e a r in g  s o lu t io n  j )  o f  the  d if f e r e n c e

e q u a tio n

4 2  + <  + * l ] = P U 0 . J 0 U . J ) (3 4 )
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can  be in te r p r e te d  as th e  fu n c t io n  o f r o t a t io n s  o f the  j o in t s

cau sed  by a s in g le  moment o f  the  s iz e  s a c t in g  a t  the j o i n t

(1 , J  ) .  The d is c r e te  F o u r ie r  in te g r a l  d f  t h is  fu n c tio n  can be 
o o

o b ta in e d  in  th e  same way as in  Sec. 3 .1 .  by assuming i t  in  the  

fo rm

П a b s ( j )  i  + a b s ( J )

ф ( 0 , 0 ;  i , j )  = ------ S 4 (a )  z ( a )  ( - 1 )  c o s ( a i )  da. (3 5 )
a=o

The o u t l in e d  procedure  y ie ld s  the  d is c r e te  F o u r ie r  in te g r a l  as 

f  o llo w s  :

0 ( 0 , 0 ;  i ,  j)--
cos( a ) - 4 +  V cos (a )  -  8 cos (a )  + 1

4 n У cos2 (a )  -  8 cos (a )  + 15

a b s ( j )

-  c o s f a i ) d a .

(3 6 )

T h is  in t e g r a l  is  con v e rg en t fo r  any d is c r e t e  va lu e s  o f 1, and 

j .  V a lu e s  o b ta in e d  by a n um eric  in te g r a t io n  o f  Eqn.36 can be 

e a s i l y  checked by us in g  a H ardy-C ross r e la x a t io n  o f moments f o r  a 

s u f f i c i e n t l y  la rg e  fram e o f  square netw ork and o f  b ars  w ith  equal 

b e n d in g  s t i f f n e s s .

An analogous s o lu t io n  f o r  the  d if fe r e n c e  e q u a tio n

[1 2  + E Ei 1+ 2*V E2< )] * ( io’ Jo: i ’ J) p (i (37 )

o f  g r i l l a g e s  h av in g  r e g u la r  t r ia n g u la r  n etw ork  y ie ld s  a d is c r e te  

F o u r ie r  in t e g r a l  as fo l lo w s :

ф (  0 , 0  ;  i  ,  j  )

n ( y~ 6 + c o s (a )

f t 2 c o s (a /2 )
2 6 + c o s (a ) )

2 c o s (a /2 )J

я / cos (a )  -  10 cos (a )  + 15

a b s ( j )

- c o s t a l ) da 

(3 8 )

T h is  in t e g r a l  is  a ls o  convergen t and th e  v a lu e s  produced a t  

th e  p o in t s  o f  in t e r p r e t a t io n  show the same c y c l ic  symmetry as the  

v a lu e s  in  T ab le  2.

3.4 Discrete biharmonic singularity-bearing solution 
(square network)
As th e  la s t  exam ple, l e t  th e  d is c r e te  F o u r ie r  in te g r a l  o f  the  

s in g u la r i t y - b e a r in g  s o lu t io n  F ( i , j )  = F ( 0 , 0 ; l , j )  o f  the  d if fe r e n c e
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e q u a tio n

(ő 2 + Ő2 ) 2 F = (б4 + 2 ö V  + б4 ) F = p ( О, О ; i  , j  ) (3 9 )
1 2  1 1 2  2

be a n a ly ze d .

The d is c r e te  F o u r ie r  in te g r a l  o f  F can be assumed in  th e  form  

as fo llo w s :

. 7 1  p abs ( J )

F = ------ S Ж а )  1 + 0 (a )  a b s ( j )  z ( a )  cos ( a i )  d a . (4 0 )71 a=o L

F u n c tio n  z ( a )  is  th e  same as in  the  f i r s t  exam ple,

z ( a )  = 1 + 2  s in 2 (^ )  -  /  [ 1 + 2  s in 2 ( | ) ] 2-  1 ,

fu n c t io n s  0 ( a ) ,  and Ж а )  can be d eterm ined  u s in g  th e  p ro ce d u re  

o u t l in e d  in  S e c t io n  3 .1 .

1 -  z ( a ) 2 / [ 1 + 2  s in 2 ( ~ ) ) 2— 1
0 ( a )  = ------------------  = ----------------------------------- --------------------  , (4 1 )

1 -  z ( a ) 2 1 + 2  s in 2 (^ )

and

Ж а )  = { 2 ( l + 2 0 ) z Z-  8 [2 -c o s a ] ( l+ 0 )z  + 14 -8co sa  + 4 [ l - c o s a ) 2 ) !

(4 2 )

In t r o d u c t io n  o f  th e  above fu n c tio n s  in to  E q n .40  y ie ld s  a 

d is c r e te  F o u r ie r  in t e g r a l  which is  d iv e rg e n t  f o r  any ( in t e g e r )  

v a lu e s  o f i ,  and j .  However, d is c r e te  F o u r ie r  in t e g r a ls  o f  i t s  

d if fe r e n c e s  h a v in g  r e a l  p h y s ic a l in te r p r e ta t io n s  a re  c o n v e rg e n t. 

F o r in s ta n c e , second p a r t i a l  d if fe r e n c e

F ( i , J )  = F U - l . J )  -  2 F U , j )  + F ( i  +1, j  )

—  S Ж а )  [  я а=о L
1 + 0 (a )  a b s ( j )

abs(J)

z ( a )  [1 -  cosa] cos ( a i ) da

is  co n verg en t.

In  T a b le  3 v a lu e s  o f

F ^ i . J )  = F ^ i . j )  -  F j (0 ,0 )

a re  g iv e n . These v a lu e s  have been d i r e c t l y  computed by a n u m e ric a l
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in t e g r a t io n  o f th e  d is c r e t e  F o u rie r  in t e g r a l

p  71 r  -I a b s  { j  )

——— J- A(a)  1 + ß ( a )  a b s ( j ' )  z (a )  [1 -  c o s a H l  -  cos ( a i ) ]  da. 
a=o -I

Tab le  3

J
0

2 0 1 2 3 4 5 6 7 8

.0 0 0 0 . 1704 .2 2 6 8 . 2577 .2798 .2972 .3 1 1 5 .3236 .3342

1 .0 7 9 6 . 1592 .2 1 62 .2 5 2 1 .2768 .2 9 53 .3 1 0 2 .3227 .3335

2 . 1366 . 1704 .2 1 2 2 . 2460 .2716 .2914 .3 0 7 2 .3205 .3318

3 . 1725 . 1883 .2 1 62 . 2440 .2679 .2877 . 3040 .3177 .3294

4 . 1972 .2056 .2 2 4 3 . 2460 .2668 .2852 .3 0 1 2 .3149 .3269

5 .2 1 5 7 .2209 .2 3 3 9 .2 5 0 5 .2679 .2845 .2 9 9 5 .3128 .3247

6 .2 3 0 7 .2342 .2 4 3 5 .2 5 6 4 .2708 .2852 .2 9 8 8 .3116 .3231

7 .2 4 3 2 .2457 .2 5 27 . 2628 .2747 .2872 .2 9 9 5 .3 1 13 .3221

8 . 2539 .2558 .2 6 1 3 .2 6 9 4 .2792 .2899 .3 0 0 9 .3116 .3218

I t  can be checked t h a t  va lu e s  o f F ^ { i , j )  meet th e  d if f e r e n c e  

e q u a t io n

(Ő4 + 2 a V  + <54) F = p  ( - 1 , 0  ; i  , / ) - 2  p ( 0 ,0  ; i , j )  + p ( 1 ,0  ; i  , J  ) .
1 1 2 2 1

4. Conclusions
Examples ( l i k e  d is c r e t e  harmonic and b ih a rm o n ic  fu n c t io n s )  in  

C h a p te r  3 show th a t  d is c r e t e  F o u rie r  in te g r a ls  can be used f o r  

c o n s tr u c t in g  s in g u la r i t y - b e a r in g  a n a ly t ic a l  s o lu t io n s  o f  p a r t i a l  

l i n e a r  d if fe r e n c e  e q u a t io n s . That means, th e  a n a lo g y  between  

a n a l y t i c a l  s o lu tio n s  o f  p a r t i a l  l in e a r  d i f f e r e n t i a l  and d if f e r e n c e  

e q u a t io n s  can be ex ten ded  to  t h e i r  s in g u la r  s o lu t io n s  as w e l l .

T h is  p e rc e p tio n  may have a g re a t p r a c t ic a l  im p o rtan ce , 

b e c a u s e  the  analogy p e r m its  us to  app ly in  th e  a n a ly s is  o f  l a t t i c e  

s t r u c t u r e s  the  d is c r e te  a n a lo g u e s  o f e f f i c i e n t  methods based on 

th e  use o f  s in g u la r  s o lu t io n s  o f  p a r t ia l  d i f f e r e n t i a l  e q u a tio n s .
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STRESS CHANGES IN SOIL AFTER RILE PENETRATION
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State o f stress in  s o il a fte r the penetration o f a p ile  well above the t i p  was de
scribed by a jo ined model consisting o f a one-dimensional coupled conso lidation p a rt-  
model, a phenomenological-type re laxation part-model and a self-weight part-model which 
were connected by the p rin c ip le  o f superposition.

The consolidation part-model deviates from i t s  antecedents in  the fa c t th a t 
kinematic type (constant rad ia l displacement) boundary condition was applied to  the 
s h a ft-s o il in te rface  instead o f the s ta t ic  type one (constant rad ia l to ta l s tress) 
which is  used in  the ex is tin g  theories. Relaxation was described at the s h a ft-s o il  
in te rface  only.

Experiences -  which are in  con trad ic tion  w ith  the resu lts  of the ex is tin g  theo ries  -  
were explained w ith the help of the re su lts  from the joined model suggested here in .
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f  loca l side f r ic t io n  o f  cone penetrometer
s

f  loca l side f r ic t io n  a t the end of penetration
su

G shear modulus o f s o i l

Ip  p la s t ic ity  index

к perm eability

К bulk modulus, 2G(1 + v ) / l  -  2 v )

Kp c o e ffic ie n t a t re s t

m 2G ( l - * ) / ( l - 2  v)

q flu x  (water volume/area/time)

q cone resistance o f cone penetrometer
c

q ^  cone resistance a t the end o f penetration 

г  ra d ia l distance

Гд radius o f p ile

radius o f the outer boundary of the domain 

t  time, elapsed time from the end o f penetration
X

tg  parameter fo r  an em p irica l re laxation model

t  elapsed time from the beginning of re laxa tion
2

T time fa c to r, c t / r
V n

u Ди + Ug, pore water pressure

un zYО V

Д и excess pore water pressure

V ra d ia l displacement

Vg boundary cond ition  a t r Q

w v e rtic a l displacement

z v e rt ic a l distance

Y^ u n it weight o f the saturated s o il

Y t  Y t  -  Y v
Y u n it weight o f water

e . . s tra in  tensor

e volumetric s tra in

V Poisson ra t io  in  terms o f e ffec tive  stress

anc' ef f ect iv e  s tress  tensors

0 , 0 ' f i r s t  in va ria n t o f the to ta l and e ffe c tive  stresses

SUPERSCRIPTS

c to ta l so lu tion  o f the consolidation part-model
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r  re laxation part-model

s steady-state component o f the consolidation part-model

t  trans ien t component o f the consolidation part-model

w se lf-w eight part-model

' e ffe c tive  stress component

normalized by Ли(о,Гд)

SUBSCRIPTS

m mean normal

nig mean normal p r io r  to  penetration

г  ra d ia l normal

vo v e rt ic a l normal p r io r  to  penetration

z v e rt ic a l normal

ф circum feren tia l normal

I .  Introduction

Displacement p iles and penetrometers are placed in the ground by 
driv ing, jacking or vibration. Their placement causes changes in the to ta l 
stress state, induces some excess pore water pressure and results in 
various rheological processes in the so il afterwards, such as consoli
dation, creep, relaxation and thixotropy (see Appendix 1).

Theoretical models describing penetration effects are applicable fo r 
the evaluation of rheological type cone penetrometer tests (see Appendix 
1) and for the modelling of the bearing capacity of the displacement 
p iles.

Existing theories can not be verified  by the experimental results 
available. Consolidation theories apply the assumption that the radial 
to ta l stress is constant at the shaft-so il interface (coupled theories use 
th is  assumption as a boundary condition, uncoupled theories consider that 
the to ta l stress state of the whole displacement domain is constant). 
However, data measured by the piezo-lateral stress ce ll in Boston Blue 
Clay show that the rad ia l to ta l stress decreases by 73% of its  in i t ia l  
value after penetration (Baligh et a l. ,  1985; Fig. 1).

This contradiction was resolved by applying kinematic type (constant
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Time in minutes 
10 100 1000 10000

1000 10000 
Time in seconds

100000 1000000

F ig . 1. Stress changes a fte r  penetration measured by the p iezo -la te ra l stress c e l l  in  Boston
Blue Clay (Baligh e t a l . ,  1985)

ra d ia l displacement) boundary condition at the shaft-so il interface and, 
furthermore, by modelling the relaxation at the same boundary.

A joined model was elaborated consisting of a self-weight part-model, 
a one-dimensional coupled consolidation part-model and a phenomenological- 
type relaxation part-model connected by the principle of superposition.

The objective of th is  paper is to present the mathematical descrip
tio n  of the joined model and, to show the results which well agree with 
the experiences. The results presented in ea rlie r papers are recapitu
la ted , expanded and discussed (Imre, 1990a, 1990b).

2. The joined model

Assumptions and equations describing the self-weight, consolidation 
and the relaxation part-models are presented in  this section.

2.1 The self-weight part-model
The self-weight part-model comprises the stress and stra in  states 

va lid  p rio r to penetration which was described by using the following as
sumptions .

(1) The so il is  lin e a rly  e lastic , iso trop ic, homogeneous, saturated.
(2) Linear stra in state holds in horizontal direction.
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(3) The surface of the half-space is  unloaded (the excess pore water 
pressure is  zero), the phreatic line  is situated on the surface.

The following equations were written fo r the self-weight stress state 
(see Appendix 2):

° “ (z) = c ;w(z) + u0(z) = Y j z + Yv z , ( 1)

° r (z) « ° ? < z )  + V z) = TTy- Ö ' z (z )  + Yy z = Kg Y|. z + Y v z . (2)

2,2 The consolidation part-model
The consolidation part-model comprises the stress and stra in states 

of the weightless so il a fte r penetration which change during the pore 
water pressure dissipation.

_2._2.J_ Assumptions
(4) Soil is saturated.
(5) Water and so il grains are incompressible.
(6) The Darcy's law holds.
(7) Soil is linea rly  e lastic , isotropic, homogeneous and weightless.
(8) The pore water pressure is  not influenced by the to ta l stress 

variation during consolidation.
(9) Plane stra in  condition is  assumed in  ve rtica l d irection. Stream 

lines are radial. The stress and stra in states possess axial symmetry. 
The rad ia l, vertica l and circumferential directions are the principal ones. 
The displacements are small.

(10) The radial displacement of the so il at the p ile -s o il interface is  
constant.

(11) The radial displacement is  negligible at a radial distance of r^.
(12) The p ile  material is  impermeable (no water flow takes place 

through th is boundary).
(13) The pore water pressure is  negligible at a radial distance of r^. 
Assumptions (4)-(9) are generally applied in coupled theories.

This assumption is  reasonable i f  the p ile  displacement has no rad ia l component a fte r 
penetration orig inated e ith e r from e la s tic  deformation or from r ig id  body motion. This con
d it io n  holds i f  the p ile  is  in f in i t e ly  r ig id  and i f  both the p ile  shaft and the p ile  load 
are v e r t ic a l.
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2_. 2.2 Th£ rnajth£m£tic§l_m£d£l
The axisymmetrical one-dimensional coupled consolidation can be de

scribed by the following system of d iffe re n tia l equations (see Appendix 3):

о 2

According to assumptions (10)—(13), the boundary conditions can be 
w ritten  as follows:

(5)

(6)

(7)

( 8 )

2_.2_.3_ S^ol^Lrtimja^ the consolidation £artj^model
Solution of the coupled consolidation part-model consists of a steady- 

state part and a transient part. In terms of stress tensors:

(9a)

(9b)

The steady-state part of the consolidation part-model is  the to ta l 
so lu tion of the homogeneous part of Eq. (3) with non-homogeneous boundary 
conditions (5), and boundary condition (6). I ts  solutions in  terms of the 
to ta l and effective stresses are equal, since excess pore water pressure 
us( t , r ) i s  zero. The ana lytica l solution fo r in f in ite  domain (r^ = oo) is 
the following (Baguelin et a l. ,  1978):

°  r  ( r )  = c 'r (r )  = 2G — 2~ ; аф(г) = а ' (г )  = -2G —у - . (10a,b)
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I f  function u ( t , r )  is  assumed to be known, the transient part of the 
consolidation part-model can be considered as the set of p a rticu la r 
solutions of non-homogeneous Eq. (3) with the homogeneous forms of (5), 
and (б)- (7) (each solution is associated with a possible time value).
Function u ( t ,r )  being unknown, these particu la r solutions can be deter
mined by solving Eq. (4) with the homogeneous forms of (5) , and (6 )-(7 ). 
Then f i r s t  order d iffe re n tia l Eq. (3) fo r unknown function u ( t , r )  can be 
solved by integration using (6) and (G).

Equation (4) was solved by the use of a f in ite  difference im p lic ite
2

scheme with the homogeneous forms of (5), and (6)-(7).
The to ta l stress and stra in variables are not prescribed at the outer 

boundary. The f i r s t  invariant of to ta l stress tensor (cj ) was found posi
tive , the f i r s t  invariant of stra in tensor Те) was found negative at 
r^ (r^  <  oo, tcoo ), with the use of some exp lic ite  expressions given in 
Appendix 3.

Assuming that u(oo,r) = 0 holds, i t  can be stated that the solution 
of the transient part is  zero for every stress and strain component with 
in f in ite  time. This follows from the fac t, that the non-homogeneous Eq. 
(3) is  reduced to its  homogeneous part, and i ts  solution with homogeneous 
boundary conditions (5) and (6) is id e n tica lly  equal to zero.

2.3 The relaxation part-model
According to the de fin ition  given in  Appendix 1, relaxation takes 

place on the boundary i f  kinematic type boundary condition is  prescribed.
Let us consider the displacement domain of the joined model, which 

comprises a hollow so il cylinder with inner radius r^ and outer radius r^ 
cut by two horizontal planes situated at some arbitrary depths z^ , z^ along 
the length of the p ile . Both the consolidation and self-weight part-models 
yie lds kinematic condition for the cy lin d rica l boundaries. At the horizon
ta l boundaries, the consolidation part-model entails kinematic condition, 
the self-weight part-model s ta tic  condition. Because of th is  difference, 
relaxation was taken into account at the sha ft-so il interface o n ly .“*

A na ly tica l so lu tion  to  in f in i te  domain ( r  = m) was given. However, no proper comp
lementary condition was found (due to the in f in i t e  nature o f the domain), and i n i t i a l  con
d it io n  could not be taken in to  account.

^ I f  the re laxation part-model is  extended in to  the inside of the body, the extended 
s tress  f ie ld  is  s ta t ic a lly  admissible in  the case o f weightless s o il on ly (Im re , 1991).
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Not too many experiences are available regarding the measurement of 
relaxation around p ile s . Due to this fact, the relaxation part-model was 
constructed on the basis of laboratory ‘test resu lts. The 'immediate 
re laxation'^ and the case of 'pa rtia l unloading' were disregarded, and the 
phenomenological equation of the 'time-dependent relaxation' was used in  a 
modified form (see Appendix 1).

On the basis of the considerations mentioned above the following as
sumption was made.

(14) Relaxation at. the shaft-soil interface can be written in terms 
of radial to ta l stress decrease as follows:

A a ^ (t^ rQ) = s o r ( tg ,r0) lo g ( t* /tg )  , t*  > t*  Ш )

Equation (11) is  va lid  for a time period of a feu weeks.

2,4 Assumptions made to .join the part-models
(15) Consolidation begins at the end of the penetration process, and 

the previous stress h is to ry  can be neglected. The relationship between the 
in i t ia l  time of consolidation and relaxation:

■ X , , Xt  = t  + tg . ( 12)

(16) The consolidation, self-weight and relaxation part-models can 
simply be superimposed.

For radial stresses on the shaft:

or ( t , r 0,z) = o j ( t , r 0) -  o^(r0) - Ä oJ(t + t * , r 0) + 0»(Z) . (13)

For any other case:

No describing model is  a va ila b le  fo r the immediate re la x a tio n .
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3. In i t ia l  condition and f in a l state

The in i t ia l  condition for every stress and strain component can be 
expressed by Eqs (14)-(16) i f  variable t  is  set to zero (since according 
to Eq. (11), value of the term A a£(t+ t*,rg ) is  zero at t=0).

As the fin a l value of the transient component is zero, the fin a l 
state was written as follows by using Eqs (14)—(16):

No precise solution to the whole in i t ia l  condition is available.^ A 
set of in i t ia l  conditions was constructed by using the following quan
t i t ie s  in the function of Kg (see Appendix 4): ( i )  the in i t ia l  rad ia l e f
fective  stress measured by the piezo-lateral stress ce ll at the sh a ft-so il 
interface (Baligh et a l. ,  1985; Fig. 1); ( i i )  the in i t ia l  transient stress 
and stra in  states calculated with the use of excess pore water pressure 
resu lts obtained by the stra in  path method (Baligh, 1986, p. 494; Fig. 4).

The calculated in i t ia l  and f in a l stress states are shown in Fig. 2 as 
a function of Kg. According to the results, in the case of Kg=l, the in 
i t i a l  radial and circumferential stresses were about equal and the f i r s t  
p rinc ipa l stress was ve rtica l at the sha ft-so il interface in accordance 
with the stra in path prediction (Baligh, 1986). In the case of Kg <  0.9, 
the in i t ia l  circumferential stress was negative in the v ic in ity  of the 
p ile . This result indicates that i f  small variation in the in i t ia l  con
d itio n  is made, the joined model may resu lt in hydraulic fracturing 
around the p ile . This resu lt supports the hypothesis that hydraulic frac
turing  can be caused by penetration in so ft clay (Massarch and Broms, 
1977).

Solutions of penetration theories (c a v ity  expansion theories (Baguelin e t a l . ,  1978), 
s tra in  path method (Baligh, 1985)) may serve as i n i t i a l  condition. According to  some com
pa ra tive  studies, penetration is  advisable to  be simulated by the s tra in  path method (Ba ligh , 
1986). However, published resu lts  o f the s tra in  path method have some l im ita t io n s :  ( i )  they 
concern the pore water pressure d is tr ib u t io n  fo r small permeability s o ils  ( i . e .  undrained 
pene tra tion ) only, ( i i )  no inform ation on the in i t i a l  to ta l stress is  a va ilab le .
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а ) К  ■ 1.0

b ) К  ■ 0 .8

TANGENTIAL STRESS / К , 0

1.6 j

0 0.1 0.2 0.3 0.4 0.6 O.e 0.7

RADIAL DISTANCE, г [ml

TOTAL AT T -0 .4  -  EFFECTIVE AT T-0.4

------  FINAL

F ig . 2. I n i t ia l  (T=0.4) and f in a l  (T=oo) state fo r the coupled consolidation part-model in  the 
case o f two d iffe re n t values o f
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4. Results

The results of the joined model are compared to the results of the 
consolidation theories available. The axisymmetrical, one-dimensional, un
coupled theory represents the solution of every known theory, i f  consoli
dation is  considered well above the t ip .

Spatial d is tribu tion  of the pore water pressure and the volumetric 
s tra in  increment:

Time variation of the pore water pressure showed steadily decreasing 
tendency at every point (Fig. 3). Solution of the uncoupled theory can be 
characterized by a monotonous decrease in  the v ic in ity  of the p ile , and a 
temporary increase at a greater distance (Fig. 4).

The transient volumetric stra in showed compression in the v ic in ity  of 
the shaft, and swelling at greater distances during dissipation in a way 
that the volume of the domain remained constant (Fig. 5).

( i )  one-dimensional, axisymmetrical coupled theory is  reduced to the uncoupled case i f  
constant rad ia l to ta l stress boundary condition a t the s h a ft-s o il in terface is  applied ( S i l ls ,  
1975); ( i i )  so lu tions o f the one- and two-dimensional uncoupled theories do not d if fé ré  s ig 
n if ic a n t ly  (Levadoux -  Baligh, 1986).

F ig . 3. Pore water pressure function determined w ith  the coupled consolidation part-model
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F in , fr. Pore water pressure function determined w ith  uncoupled theory o f Soderberg (1962) 
under the same i n i t i a l  condition as in  the case o f F ig. 3

TRANSIENT VOLUMETRIC STRAIN, 6 [%]

F ig . 5. Transient volum etric s tra in  function determined w ith  the coupled consolidation p a rt-
model
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Solution of the uncoupled theory can be characterized by temporary 
swelling at greater distances, and by compression otherwise. (This follows 
from the pore water pressure solution since the to ta l stress state is  con
stant. )

Radial stresses at the shaft-so il interface for small permeability 
so ils :

Time variation of the radial normal stress functions at the shaft- 
so il interface was' determined by the joined model in a special case. In
i t i a l  condition was determined according to Section 3. The radius of the
standard CPT was substituted for r n. The coe ffic ien t of relaxation (s) was

u -6 20.06 and the coeffic ien t of consolidation (c^) was 5.1 . 10 m /s  (in  
th is  case, the time factor was equal to the elapsed time in minutes). 
Results are shown in Figs 6, 7 and 8.

The dissipation curve showed a lower rate of stress decrease in the 
in i t ia l  period, and showed a higher rate afterwards resulting in  lower 
dissipation time t^g than the solution of the uncoupled theory by about 
one order (Fig. 6).

The joined model resulted in a rad ia l to ta l stress decrease of 73% in 
terms of its  in i t ia l  value u n til the end of the dissipation; 20% was 
originated from relaxation, 53% was originated from consolidation.

Excess pore water pressure, Ди/б1*0

Time factor, T

F ig . 6. D issipation curve determined with the coupled consolidation part-model and theory of
Soderberg (1962) (from  Imre, 1989)



108 IMRE, E .

-----  TOTAL RADIAL EFFECTIVE RADIAL

F in- 7. The tran s ie n t component o f the rad ia l stresses v a lid  fo r the p ile -s o i l in te rfa ce  de
termined by the coupled conso lida tion  part-model

----- joined model -------consolidation p.m.

F ig . 8. Radial stresses acting on the p ile -s o i l in te rfa c e  determined by the jo ined model
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Time variation of the radial effective stress at the sha ft-so il in 
terface showed a decreasing tendency in the in i t ia l  period of d issipation, 
while an increasing tendency up to the moment when the pore water pressure 
became neglig ib le, and a monotonous decrease afterwards. In increase of 
39%̂  was caused by consolidation and a decrease of 20% was caused by re
laxation u n til the end of dissipation (Figs 7, 8).

Radial stresses at the shaft-so il interface for various so ils : 
Time variation of the radial to ta l and e ffective stresses acting on 

the sha ft-so il interface was calculated by the use of the joined model fo r 
various so ils . In the lack of proper data, in i t ia l  condition shown in  Sec
tion 3 was applied in every case. I t  was assumed that the constant in i t ia l  
condition did not impose a qualitative e ffec t on the solution of the 
joined model. The radius of the standard CPT was substituted fo r r^.

There are some stochastic relationships between so il type and perme
a b ility  (which determine the order of the coeffic ient of consolidation) 
and, between p la s tic ity  index and coeffic ien t of relaxation (Figs 9, 10). 
On the basis of these relationships, ranges (10 ^-10 ^  rn^/s); (0.0-10 ^) 
were used in the frame work of a parametric analysis for the coe ffic ien t 
of consolidation and coeffic ient of relaxation, respectively.

k - cm /s

10 10 1, 10 10 ip  10 10 1Q 1Ç 10

■ *------Gravels San

Homogeneous
Clays

JS
Fissured .Weathered Clays

OC:Overconsolidated

Fractured/OC Clays T ills

Fractured Heavily Lightly Jointed/ 
Jointed Rock Sound Rock

F ig . 9. Approximate range o f permeability (k ) in  s o i l  and rock (from M illig a n , 1975)

The i n i t i a l  value o f the rad ia l e ffe c tiv e  s tress  was about 8% on ly, i t s  i n i t i a l  
tran s ie n t component was o f -39% and i t s  time-independent part was of 47% in  terms o f the 
in i t i a l  ra d ia l to ta l stress a t the s h a ft-s o il in te rfa c e .

0
Any change in  the i n i t i a l  condition can be roughly simulated by changing the normal

iza tio n  u n it fo r the pore water pressure ( и ( 0 , Г д ) )  and the time-independent pa rt (sum o f the 
steady-state and the se lf-w e igh t parts) of the s o lu tio n . As a re s u lt, the so lu tions (and also 
th e ir  f i r s t  time d e riva tives) to  both the conso lidation and the relaxation part-models change 
lin e a r ly  (see App. 3, Eq. (1 1 )) , consequently the time v a ria tio n  tendencies o f the so lu tio n  of 
the jo ined model may not change.
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0 10 20 30
P la s lic iy  in d e x , Ip 07°)

F in . 10. Empirical re la tio n s h ip  o f Lacerda (1972) between the coe ffic ien t of re laxa tio n s  and
p la s t ic ity  index I

According to the resu lts , the radial to ta l stress showed monotonie 
decreasing tendency fo r every value of the time irrespective of the value 
of the coefficients of consolidation and relaxation (Fig. 11), since both 
part-models resulted in  a decreasing tendency.

Regarding the rad ia l effective stress, the above-mentioned behaviour
concerning a small permeability so il (Fig. 8) could be observed in  the

-1G 2 - 5 2  - 4 2case of 1Ü m /s < c < 10 m/s only. In the range of 10 m /s  <  c <
-1 2 v V <10 m /s, the e ffective  stress increased up to the moment when the pore

water pressure became neglig ib le, then i t  decreased (Fig. 12). These 
resu lts  can be a ttribu ted to the fact tha t the consolidation part-model 
resulted in an increase, while the relaxation part-model resulted in  a de
crease (Fig. 7, Eq. (13)). In addition, the time derivative of the con
so lidation  part-model solution varied w ith in a considerably greater range 
than that of the relaxation part-model, and may have vanished in a re la 
t iv e ly  short time period.

By comparison, i t  should be noted that the consolidation theories 
available assume a constant to ta l stress state , and result in a rad ia l



a ) SH O R T TE R M  BEHAVIOUR
c„ ■ 10 3 m 2/ s  c v ■ 1 0 6 m 2 / s

STRESS CHANGES IN SOIL AFTER PILE PENETRATION

b) LONG TE R M  BEHAVIOUR
c v - 1 0 3 m ?/ s  c v - 1 0 6m 2 / s

Fin. 11. Total ra d ia l stress on the sha ft: re s u lts  o f a parametric analysis

effective stress at the same place with monotonous increasing tendency i r 
respective of the so il type.
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a ) SH O R T TER M  BEHAVIOUR
c v -  1Cf3 m 2 / s c v -  10 6 m 2/ s

b) LONG TER M  BEHAVIOUR
cv  * 10 ~3m 2/ s c v -  10 6m 2/ s

F ig . 12. E ffec tive  ra d ia l stress on the sha ft: re su lts  o f a parametric analysis
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5. Discussion

(1) The steady-state part of the coupled consolidation part-model is  
iden tica l to the linear e lastic  cy lind rica l cavity expansion problem, thus 
i t  can be interpreted as the stress and stra in states arisen from a drained 
cavity expansion. Since th is  part of the solution is  time-independent, i t  
arises exclusively from penetration. I t  follows, that only the transient 
part of the consolidation part-model is  influenced by the consolidation 
process. Since this part is  iden tica lly  equal to zero at in f in ite  time, 
i t  can be stated that consolidation has no e ffect on the fin a l stress and 
s tra in  states.

(2) In case of so ft clays with small permeability, very l i t t l e  volu
metric change takes place during penetration. I f  a rough estimation is  ap-

9
plied that the steady-state part is  negligible in Eq (17)—(19), the 
stress and stra in states at the time when the pore water pressure vanishes 
are about equal to the ones before penetration:

I t  follows that in case of so ft clays, the skin fr ic tio n  can not be 
increased considerably by the application of displacement p iles, since the 
compactness of the so il p ractica lly  can not be changed either by pene
tra tio n  or by the subsequent consolidation.

(3) The consolidation part-model prescribes constant displacement in 
the surface normal d irection across the whole boundary of the displacement 
domain. I t  follows that i t s  volume is constant during consolidation. By 
comparison, i t  can be mentioned that the existing theories resu lt in  a 
volumetric decrease of the displacement domain. This follows from the fact 
that in  the case of the uncoupled theory, the fin a l effective stresses are 
higher than in case of the consolidation part-model presented herein by

9
In  the case of the so lu tion  presented in  Section 4 .2 , the time-independent p a rt was of 

474, i t s  steady state part was o f 5.7-18.2% (increasing w ith  a decreasing value o f К ) ,  the 
re la xa tio n  part was of 20%. Every percentage was ment in  terms o f the i n i t i a l  ra d ia l to ta l 
s tress  a t the s h a ft-s o il in te rfa ce .

Oi j ( 0O ,r ,z )  = a l̂ ( z )  

j(0O , r  ,z) ^  0 'J'j(z)

ei j ( o o , r , z )  =  c”j ( z )

( 20)

( 22)

(21)
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F ia . 13- Evaluation o f lin e a r  2D uncoupled p red ictions in  Boston Blue Clay (from Baligh and
Levadoux, 1986)

the value of the in i t ia l  transient to ta l stress (o j\ (0 ,r ) )  at every point 
since the tota l stress state  is assumed to be constant.

(4) Solutions to the joined model presented in Figs 6, 8 can be com
pared with dissipation te s t records (Fig. 13, Baligh and Levadoux, 1986) 
and with the results of the piezo-lateral stress ce ll measurement (Baligh 
et a l. ,  1985; Fig. 1). The calculated and the measured curves show a 
very similar character.

In situ undrained strength measurements around piles driven into soft 
clay (Roy-Lemieux, 1986) imply that the e ffec tive  stress state in  the 
v ic in ity  of the p ile  at the end of the pore water pressure dissipation is  
about equal to the one va lid  prior to penetration. This result agrees with 
the corrollary of the jo ined model mentioned in  Section 5(2) (and with the 
piezo-lateral stress c e ll measurement made in  Boston Blue Clay (Fig. 1)).

Resuls of the rheological test made by Sz832 type CPT^ imply that 
the radial effective stress at the shaft-so il interface increases in sand,

The pore water pressure a t the sh a ft-so il in te rfa c e  resulted from the s tra in  path 
method and measured by the p ie z o -la te ra l stress c e l l  are about equal, consequently not only 
the in i t i a l  rad ia l e f fe c tiv e ,  but also the to ta l s tress was equal fo r the ca lcu la tign  ^nd 
measurement. The c o e ff ic ie n t o f consolidation (c ^a p p lie d  fo r  the^ca lcu la tion (5.1 • 10 m /s )  
is  close to the range v a lid  fo r  the Boston Blue Clay ((2 -4 -10  m /s )  Baligh and Levadoux, 
1986). In  the lack of data zero fo r  the pore water pressure p r io r  penetration, and 0.06 fo r 
the co e ffic ie n t of re laxa tio n  (s )  were assumed probably s l ig h t ly  underpredicting the so lu tion  
to  the relaxation part-model.

11The considerable decrease in  the to ta l s tress p red ic ted by the joined model is  in  
agreement with the to ta l s tre ss  decrease experienced during the rheological te s t o f the
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a) b)

MO ------ FINE SAND

F ig . 14. Typical rheo log ica l type CPT te s t re s u lts  fo r  various s o ils  from Szeged and Debrecen 
a) The time va ria tio n  o f cone resistance; b) The time va ria tio n  of loca l side f r ic t io n

decreases in clay during the f i r s t  minutes a fte r the end of penetration 
(Fig. 14). Difference between driving resistances measured at the end of 
the f i r s t  driving and at the beginning of the re-driving (Yang, 1956) 
imply that the radial effective stress at the shaft-so il interface de
creases in sand and increases in clay between a period of some minutes and 
some days. These results agree with the time variation tendencies of the 
rad ia l effective stress determined by the joined model (Fig. 12).

6. Conclusions

The joined model is supported by the observations verifying the ap
p lica tion  of the kinematic type boundary condition at the sha ft-so il in te r 
face.

I t  can be concluded that ( i )  theories assuming constant rad ia l to ta l 
stress fo r the shaft-so il interface can he applied to the consolidation 
modelling in the so il around expanding deep foundations where the radial 
to ta l stress is  actually controlled as constant; ( i i )  i t  is very probable,

Sz832 CPT (F ig . U a , F ig. 14a) ( i t  is  reasonable to  be assumed that the re su lts  o f the one
dimensional and two-dimensional versions o f the jo ined  model are q u a lita tiv e ly  s im ila r  to  each 
o th e r ) .
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that the joined model can be used to describe the rheological processes in 
the so il which take place around rig id  p iles (and cone penetrometers) with 
ve rtica l wall and axia l load well above the t ip  a fte r penetration; ( i i i )  the 
joined model may contribute both to the solution of bearing capacity 
problems and to the evaluation of rheological type CPT tests.
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Appendix 1: Defin itions

Consolidation is  a time-dependent seepage process which takes place 
unless the d is tribu tion  of the to ta l hydraulic head is identica lly equal 
to the solution of the Laplace equation with the given hydrodynamic bound
ary conditions.

Consolidation is  treated as an uncoupled or a coupled problem. Un
coupled theories (Terzaghi, 1948) are based on continuity condition, de
scribing pore water pressure variation assuming constant to ta l stress 
state. Coupled theories -  which couple stresses and displacements - (B iot, 
1941) f u l f i l  continuity, equilibrium and com patib ility conditions. Not too 
many attempts are known verify ing coupled theories (Cryer, 1963).

Burgers and S cott-B la ir (1948) define thixotropy as a "process of 
softening caused by remolding, followed by a time-dependent return to the 
o rig ina l harder state". The process is completely reversible.

Creep and relaxation are observed in the boundaries of a so il body as 
follows: i f  one state parameter ( i.e . either the to ta l stress or the d is
placement) is kept constant in a part of the boundary, then its  dual 
counterpart w il l vary with time.

Immediate relaxation is  experienced a fte r fast monotonie increasing 
(p a rtly ) drained loading. I t  comprises a fast to ta l stress decrease which 
terminates within a de fin ite  (re la tive ly short) time period depending on 
the loading rate (Whitman, 1957; Konder-Stallknecht, 1961; Imre et a l. ,  
1989; Imre, 199üc).
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Time dependent relaxation is experienced after monotonie increasing 
loading. Its  phenomenological equation determined on the basis of t r ia x ia l 
relaxation tests results is  as follows (Lacerda, 1972):

The phenomenological equation of the time-dependent relaxation is  
changed i f  pa rtia l unloading occurs before the relaxation test (Lacerda, 
1977).

Rheological CPT tests are performed a fte r stopping the continuous 
penetration. The measured quantities are: ( i )  dissipation test -  pore 
water pressure (Jamiolkowski et a l. ,  1985); ( i i )  test made with the piezo- 
la te ra l stress ce ll -  radial to ta l stress and pore water pressure (Baligh 
et a l. ,  1985); ( i i i )  test made with the Sz832 penetrometer -  local side 
f r ic t io n  and cone resistance (Imre et a l . ,  1989). The dissipation test is  
performed to assess the in s itu  permeability/or coefficient of consoli
dation of so ils . The two other tests are used fo r research purposes only in 
the lack of a proper evaluation theory.

The following equation can be w ritten fo r a so il element character
ized by assumptions (1), (2), (3):

Equilibrium equation:

D (t)/D (tQ) = 1 - s log(#t?0) 1х > t* ( 1 )

Appendix 2: The self-weight part-model

( 1)

Geometrical equation:

ez ( 2 )
3 z

Effective stress equality:

(3)



118 IMRE, E.

Constitutive equations:

ö ' = - 2G г

2G

V 3 w (4a)1-2 V 9 Z

1 
1 0  Vi

a z (4b)

Compiling Eqs ( l) - (4 ) ,  and taking into account that 3 и /3z = Y |:

.22G izJL l w  = . _
a_2 t  g —  = Y ’

Z t  ■1-2  V 3 Z

The boundary conditions can be written as follows:

a ;(0) = - 2G 2—-  8w(:o:> = 0 ,

(5)

( 6 )
1-2 v 9 z

w(z ,) = 0 . о

Solution to d iffe re n tia l equation (5) with (6), (7):

1- V
w(z) = 2G

1-7 V

t  / 7
—  - V  •

(7)

(D)

Appendix 3: The coupled consolidation part-model

System of equations
The following equations can be w ritten fo r a so il element assuming 

that assumptions (4)—(9) hold.
Equilibrium equation:

3 ön о - о (
= О

Continuity equation:

9 q ЗЕГ ЭСф
— 1 + — —- + ---------  = 0
9r 3 t  3t

( 1)

(2 )
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Geometrical equations:

Generalized Darcy's law:

9C

d T
к , d u  

Y г э гV

92u . 
9 r2 '

(За)

(3b)

(3c)

(4)

Effective stress equality:

о = o  + и , О л = о 1 +  u,  a = o г r  ’ Ф Ф ’ z z

Constitutive equations:

(5)

(6а)

(6b)

(6с)

(6d)

Equation (1) can be written in the following form using Eqs (5) and (6):

9 2 v 
m(-----;

1 a v  1 3 U
4- —

Г а г  г 2 а г

(7)

12Compression stress is  taken as p os itive .
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Equation (2) combined with Eqs (3) and (4):

к Г 1 Эи
L? I T

3 2.

9r Z.

1 Э

3 r 31 3 t = 0

Compiling Eqs (7) and (8):

1
2г

v) = 0

(B)

(9)

E ffect of the in i t ia l  condition
Being Eqs (7) and (9) linear, various in i t ia l  conditions fo r the pore 

water pressure with the same normalized d is tribu tion  result in the same 
normalized solution fo r the pore water pressure and the radial displace
ment. This statement holds for every component of the transient stress and 
s tra in  tensors since according to Eqs (3), (5 ), (6), (7) they are the sum

-t-  __ 4-

of terms which are proportional to e ither v ^ t ^ )  or э / э г  v ( t , r )  and 
derivation is  a linear operator.

Expressions for the stress and stra in tensor invariants
The following expressions can be w ritten using Eqs (3), (5), (6 ), (7) 

and the boundary conditions:

fr i  -3 ru (t,r) dr , (10)

r 0
dr 2 , (11)

—■t ra dr ( 12)

Appendix 4: The calculation of the in i t ia l  condition

(a) Transient part
The transient part of the in i t ia l  condition, normalized by o ' was’ mo

calculated on the basis of the excess pore water pressure results of the 
s tra in  path method (Baligh, 1986, p. 494, Fig. 4) associated with an a rb i
tra ry  depth along the shaft.
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(b) Steady-state part
The steady-state part of the in i t ia l  condition, normalized by was 

determined as follows. The normalized in i t ia l  condition for the rad ia l e f
fective stress at the shaft-so il interface:

\ o (z> О (z) mo 0 (z)vo °vo(z)

( 1)

where

° v o (z )  = ° ; (z )  = Y t  z > (2)

°mo(z )  = <1+2Ko) /3  ° z W(z) • (3)

In Eq. (1), the e ffect of variableyori the steady-state part and the 
transient part of the in i t ia l  condition was neglected since the consoli
dation part-model solutions did not depend on z.

The known terms in Eq. (1) were as follows:
( i )  Left-hand side of Eq. (1) was considered to be equal to the in 

i t i a l  radial e ffective stress measured by the piezo-lateral stress c e ll at 
the sha ft-so il interface in an unknown depth (Baligh et a l. ,  1985, Fig. 1)

( i i )  Term (1+2Kq) / 3 was assumed to be equal to 1.
( i i i )  The value mentioned in (a) was substituted for the transient 

component on the right-hand side of Eq. (1) normalized by o^0.
At f i r s t ,  the sum of the unknown terms of Eq. (1) (the steady-state 

and the self-weight parts of the solution) was calculated. The non-homo- 
geneous boundary condition Vg of the steady-state part was calculated with 
the use of Eq. (4) and assuming various Kg values:

2Gvra « w Is, s
Г °r (V  “"О+ —  Kg +

avO °v0 L0
since V oo^S(r)=  2G 2

° ; w(z) = Kg Y ' z

(4)

(5)

(6)

Fina lly, the spatial d is tribution  of the steady-state part of the 
solution was determined with the use of the analytical solution, as a func
tion  Of Kg,
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(c) The joined model
By adding up the d iffe re n t components, the in i t ia l  and fin a l stress 

states of the joined model normalized by were calculated assuming 
tha t term (l+2Kg)/3 is  equal to 1. Zero for Ug was substituted.

I t  can be noted that th is  set of in i t ia l  conditions is veritable in 
one point (at the sha ft-so il interface) and fo r the radial normal stress 
components only. In any other cases, the e ffec t of inconsistencies should 
be taken into account, that ( i )  the stra in path prediction assumes Kg = 1 
condition and the measurement concerns Kg< 1 case; ( i i )  Kg = 1 was assumed 
fo r the calculation of the m u ltip lie r in the right-hand side of Eq. (1) 
(the normalization units of the calculated and the measured data became 
equal), and d ifferent Kg values were assumed fo r Eq. (4); ( i i i )  the e ffe c t 
of the depth variation in the in i t ia l  condition was neglected.
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BUCKLING OF BARS ON ELASTIC FOUNDATION, SUBJECTED TO UNIFORMLY 

DISTRIBUTED AXIAL LOADS

JANKÓ, L.*

(Received: 14 August 1990)

Equilibrium  method has been used to  solve the simple branching problem o f two- 
hinged bars, can tilevers and bars fixed  a t both ends o f lin e a rly  e la s tic  m a te r ia l, con
sidered to be geometrically pe rfec t, supported by W inkler's lin e a r tra n s la t io n a l type 
foundation (bed). By means o f the a n a ly tic a l process described in  th is  paper, a system 
o f diagrams ideal fo r use also in  p ractice  has been set up. Investiga tion  o f the e ffe c t 
o f d iffe re n t boundary conditions has been in s tru c tiv e  also from a th e o re tic a l po in t o f 
view. E.g. the c r i t ic a l  load fo r  the two-hinged bar was found to l ie  below th a t fo r  the 
can tile ve r (except fo r two-hinged bars on s o ft foundation).

1. Introduction, assumptions

The abundant lite ra tu re  on s ta b il ity  is rich in problems of bars on 
e la s tic  foundation /1, 4, 6, 7-8, 10/ but no solution is  found to the 
problems outlined below.

The plane two-hinged bar, cantilever and bar fixed at both ends i l 
lustrated in Fig. 1 are considered to be geometrically perfect. Equilibrium 
method is used to solve the simple branching problem of bars of linea rly  
e la s tic  material, supported by a foundation of linearly  e lastic  spring law 
(W inkler's translational foundation) to secure i t  against translation .

Although our analytical process designed a p rio ri fo r computer is 
voluminous as compared with the importance of the problem, the resu lts ob
tained can be treated simply and they are an important aid in  investi
gation of important structures used in practice. Such a structure is  e.g. 
the plate or shell edge beam upon which the plate or the shell has an in 
teractive  effect.

Analysis of the d iffe ren t buckling modes permitted the branching 
phenomenon to be investigated thoroughly.

*Jankó, László, H-1091 Budapest, O lló i ú t 117, Hungary

Akadémiai Kiadó, Budapest
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F ig . 1. General arrangement

From a theoretical po in t of view, the special e ffect of the d iffe ren t 
boundary conditions, rather unusual also in the f ie ld  of the s ta b il ity  of 
bars, is  peculiar: in the present case, the eigenvalues of the two-hinged 
bar are smaller than those of the cantilever (except fo r a small range).

2. Solution using equilibrium method

2.1 The d iffe ren tia l equation and its  solution
After d iffe ren tia tion  of equation b) on page 101 of /10/ and addition 

of term cy for the e la s tic  foundation, the d iffe re n tia l equation of the 
problem can be written as follows (where c is  the foundation coeffic ien t):

EIyIV + p [(  t -  x)y" - y ' ]  cy = 0 . (2.1)

Let the following notation be introduced:

X = U , ( 2 . 2 )
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, 1 .
У - v

X = о

IV
г 4

v

El

X =

D c - "crE

2 c

P i

u

crE

2 El
12

t 4
El

(2.3 a-d)

(2.4)

(2.5)

( 2 . 6)

(2.7)

The problem becomes an eigenvalue problem with the boundary conditions 
according to par 2.2.

By use of quantities (2.2 thru 2.7) equation (2.1) can be w ritten in 
parametric form as follows (the dot denoting derivation with respectto Ç):

У • ' X0 [ d  -C)y' ‘ - y' }  + u2y = 0 . (2.B)

To find the general solution of d iffe re n tia l equation (2.8) we use 
the following power series:

oo

у = 2  ck —  • <2-5>
k = 0 k!

For calculation of unknown coeffic ients c^, the following recursive 
formula has been obtained using the method of indefin ite  coeffic ien ts:

ck = ~k o [ ck-2 " (' к ' 3;)ск -з ]  "u ck-4 ’ (2.10)

к > 4 .
Then, with relationship (2.10) substituted into (2.9), an expression 

is  obtained for у where each term is  written as a function of max four 
coeffic ients unknown for the time being (Cg, с ,, C2 , c , ) :

y = cn + C + i
c2 ,2  C3 3

1! 2! 3! Ao t c2 “ lc l ]  + u c0 4!
( 2 . 11)

X o C c 3 ‘ 2c 23 + u c i - ... - y(cg,c1 ,c2 ,c3 ) .



12В 3ANKÚ, L.

In this way, each one of coefficients Cg, Cp C2 , c^ can be picked 
out independently and put before a subseries (and its  magnitude can be as
sumed optionally in accordance with the boundary conditions).

The functions (subseries) associated with these coefficients are 
ce rta in ly  linearly independent as a result of the existence and uniqueness 
theorem. Hence, the general solution of d iffe re n tia l equation (2.0) has 
been produced:

2  cj f j  - V o cl f l  + c2f 2 + C3f 3 ' (2.12)
j=0

The corresponding lin e a rly  independent particu la r solutions: 
0 0

f , У  cJ —  , j  = 0,1,2,3 . (2.13)
k=0 k!

With the "starting" values given below, the recursive formula accord
ing to (2.10) unambiguously gives coefficients ĉ j of the series according 
to (2.13):

. (2.14)

These coefficients are not arbitrary but unique values determined on 
the basis of written subseries mentioned when discussing equation (2.11).

2.2 Boundary conditions, eigenvalue equations
Hereinafter we are looking for the least positive eigenvalue Acr from 

among the discrete values of parameter A, determined by the boundary con
d itions  (the c r it ic a l state being indicated by subscript cr).

Let f i r s t  the derivatives of functions (2.13) with respect to Ç (c f.
(2 .2 ))be written:
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k-1

t r  = y c

X  2
к

j  = 0,1,2,3
L-2.-Í Ху°_й1Д9£^_ьаг

Boundary condition relationships:

(k-3)!

k-4
J _ _ _ _
(k-4)!

j  = 0,1,2,3 (3.1)

(3.2)

(3.3)

(3.4)

y(o) = у ' ' (0) = 0 , (3.5 a-b)

y ( l)  = y ’ 41) = 0 . (3.6 a-b)

I t  follows from conditions (3.5 a-b) that

Cg = c2 = 0 . (3.7 a-b)

Complying with conditions (3.6 a-b) are the following eigenvalue equa
tions (boundary condition equations):

c1f 1( l )  + c3f 3( l )  = 0 , 

c ^ ’ 41) + c3f 34 l )  = 0 .

ï_.2.2_ £a£tXl£V£r_
Boundary condition relationships:

y(0) = y (0 )  = 0 ,

(3.8 a-b)

(3.9 a-b)

y " ( l )  = y ~ ( l )  = 0 • (3 .10 a-b)
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2 . 2 . 4_ j)e te m iji£ tó tm  £ f_ e i1ge^n£al_u£s_a£cl_ej^g£n^u£c1:im£

C ritica l load parameters (eigenvalues) Xcr have been obtained from 
the zero-valuedness of the determinants of the coeffic ien t matrices cor
responding to equations (3.8 a-b), (3.12 a-b) and (3.16 a-b) by means of a 
numerical method. Our program written for IBM computer produces also eigen 
function (2.12) and its  d iffe re n tia l functions (3.1) thru (3.4). To test 
the process, i t  has been determined in any case whether equation (2.0) is 
sa tis fied .

Note that, for the sake of the required accuracy, series of more than 
hundred terms were needed in  case of Figs 2 thru 6 (u < 200). For the high 
values of parameter и according to Fig. 7, series of several hundred terms 
were required to ensure convergence.

Because of the numerical d if f ic u lt ie s  encountered, double-point 
arithm etic has been adopted and some "tricks" ensuring the numerical

Eigenvalue equations according to conditions (3.10 a-b):

2_._2.3_ 2aH fixec[ ift_both. ends
In a way sim ilar to what has been said above, we obtain:
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s ta b il ity  of the process were used (e.g. c^j/k has been stored in vectors 
instead of coefficients cĵ  of functions (2.13), e tc .).

I t  has been numerically proved that series (2.13) and (3.1) thru 
(3.4) are absolute and uniformly convergent in the range of Ç < 1 /11/.

3. Results

Readers are reminded that parameter = (2.5) is the parameter of
to ta l c r it ic a l load.

3.1 Diagrams of c r it ic a l load parameters
C ritica l load parameter X of the two-hinged bar in Fig. la changes 

according to diagram a in Fig. 2.
I t  can also be seen that the characteristic of the eigenfunction d i f 

fers fundamentally for the in i t ia l  quasi-sinusoidal function (u = 0) as 
the values of foundation parameter u ("characteristic length" parameter) 
increase. Otherwise the approximate curve presented in par 4 and i l lu s 
trated by broken line (4.7) in Figs 2 arid 6 could be obtained on the basis 
of a one-term sinusoidal basic function (upper l im it) .  The tendency can be 
observed according to which the deflections are much less in the upper 
region of the bar than in the lower region as the value of u increases. 
The eigenfunctions are discussed in de ta il in par 3.2 in re la tion  to 
Fig. B.

The thin continuous line  down in Fig. 2 is  the solution fo r concen
trated force /7 /.

The "garland" curve of the cantilever according to Fig. lb is  i l 
lustrated as curve b in Fig. 3.

The upper thin broken line  denoted by (4.13) shows the approximate 
solution based on the one-term basic function in par 4 (upper l im it ) .  See 
also Fig. 6.

In Fig. 3, also the solution for the concentrated force on top ac
cording to /5 / has been illus tra ted  by the th in line down in the Figure.

As follows from the nature of the phenomenon, increasingly dominant 
cantilever end deflections are associated with the concentrated load on 
top increasing simultaneously with the increase of parameter u. However, 
in case of distributed load, the e ffect of the cantilever end diminishes



Fig. 2, C r it ic a l load parameters o f a two-hinged bar



F ig . 3. C r it ic a l load parameters o f a can tilever



F ig. 4. C r it ic a l load parameters of a bar fixed  at both ends



Fig. 5, Comparison o f d iffe re n t boundary condition cases
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increasingly with the e ffec t of buckling deflection developing in  the 
lower region of the bar predominating (see also Fig. 8).

Ihe results obtained for the bar fixed at both ends according to 
Fig. lc  are illus tra ted  by curve c in Fig. 4.

Ihe solution in re la tion  to concentrated force on top has been taken 
from /7 /.

Concerning the character of the eigenfunctions, i t  can be seen again 
tha t the ordinates of the buckling mode, occurring in the lower region of 
the bar, are predominant again as the value of foundation parameter u in 
creases (see also Fig. 8).

I t  can also be seen that as compared with the cantilever and bar 
fixed  at both ends, the value of to ta l c r i t ic a l load of a two-hinged bar 
l ie s  much nearer to the c r i t ic a l value of concentrated load.

Interesting conclusions can be drawn from Fig. 5 where the curves of 
Figs 2, 3 and 4 are illu s tra te d  next to each other.

An appreciable difference between the c r it ic a l load parameters of 
the cantilever (b) and the bar fixed at both ends (c) is found in  the 
range of about u< 40 only. For higher values of foundation parameter u, 
the two curves are almost coincident, indicating that the effect of the 
upper edge is fading away. Obviously, th is  behaviour is  sim ilar to that of 
a "high-walled" cy lind rica l shell.

Ihe same behaviour has been observed in investigation of cantilever 
on e las tic  foundation under concentrated load /5 /.

However, the position of curves a and b as compared with each other 
is  rather unusual: in the present case, the c r it ic a l load parameters of 
the two-hinged bar l ie  below those of the cantilever! An exception is  only 
the in i t ia l  u ^  5 range. Comments on the character of eigenfunctions imply 
explanation of the phenomenon: the load bearing capacity of the structure 
is  fundamentally determined by the type of the lower edge with the e ffect 
of the upper edge fading away as the values of parameter u increase. Ih is 
phenomenon is  discussed in de ta il in par 3.2.

Also, we point out that the Southwell's theorem (principle of p a rtia l 
s t iffe n in g ) applies also to our case in that the effect of e las tic  foun
dation (u) appears as an additive term as compared with the c r i t ic a l load 
of Euler in case of bars without foundation with, however, th is  la tte r  
term being very small in the present case. Of course,the c r it ic a l load 
parameters of the bar without foundation (u = 0) have been determined 
s im ila r ly  by means of the process described to obtain the well-known values 
according to lite ra tu re .
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Fig. 6. Soft e la s tic  foundation and/or short bar
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F ig. 7. Hard e la s tic  foundation and/or long bar
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Figure 6 has been plotted for re la tive ly  low values of foundation 
parameter u (soft e lastic  foundation or short bar or high bending r ig id ity )  
to fa c ilita te  practical application.

Figure 7 is important f i r s t  of a ll from a theoretical point of view. 
Our intention was to show that in case of very high values of foundation 
parameter u ( u —»oo), the curves approximated the solution fo r the 
Zimmermann bar free at the ends, under concentrated load /4, 8, 10/. The 
physical explanation of th is  phenomenon is that in case of a bar of in 
f in i te  length ( t —>oo i.e .  u —* oo), the lower section of the bar can be 
considered as a Zimmermann bar of in f in ite  length, free at the ends, under 
load corresponding to the concentrated resultant of d istributed loads (see 
also par 4).

3.2 Eigenfunctions
The shape of eigenfunctions fo r buckling presented in Fig. 8 is  in 

agreement with what has been said so far about c r it ic a l parameters Xc r .

Fig. 8, Typical buckling modes (u = 50 ■; и = 150 )
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This s im ila rity  of the eigenfunctions fo r buckling of the cantilever 
(b) and the bar fixed at both ends (c) obviously complies with the almost 
perfect coincidence of curves b and c for и ?  40 in Fig. 5. In th is  domain, 
the nature of the buckling phenomenon is  determined by the lower boundary 
conditions, the e ffect of the upper boundaries being negligible ("long" 
b a r).

The buckling mode develops predominantly in the portion of the bar 
near the lower boundary, a statement applying to the two-hinged bar (a) as 
w e ll. The characteristic of the eigenfunction of case a is  sim ilar to that 
associated with cases b and c but, considering the hinge at the bottom, 
the load bearing capacity of the bar is less than that of the cantilever 
(a in  Fig. 5).

Although im perfection-sensitivity and/or p o s t-c r it ica l behaviour are 
not dealt with in th is  study, the readers' attention is  directed to 
possible problems nonlinear studies at a la te r data.

Curves found in the lite ra tu re  for two-hinged bar and bar fixed at 
both ends under concentrated load, illus tra ted  on the basis of /7 / in Figs 
2 and 4, respectively, have a common feature in that symmetric and anti- 
metric eigenfunctions follow  by turn.

The eigenvalues associated with two d iffe ren t buckling modes at the 
intersections of "garland" curves are identica l and thus also a combi
nation of two d iffe ren t buckling modes is  possible (compound branching). 
This is  important in investigation of the im perfection-sensitivity accord
ing to /2 /, /9 / because the coincidence, or near-coincidence of two c r i t i 
ca l loads belonging to a stable-symmetric point of bifurcation eàch, the 
structure is very sensitive to structural imperfections. Moreover, the 
( c r i t ic a l)  point of b ifu rca tion  of a two-hinged bar on e lastic foundation 
under concentrated load is  stable-symmetric in a rather narrow range of 
parameters u; i t  is unstable-symmetric in general /3 /,  /9 / or two symmetric 
(stable or unstable) branchings occur simultaneously at the intersections 
of "garland" curves /3 /.

The case of cantilever under concentrated load /5 / seems to be more 
favourable according to Fig. 3. Namely, a "garland" character of the curve 
can be observed only in  the in i t ia l  domain of parameters и in th is  case 
and thus investigation of the poss ib ility  of simultaneous branchings seems 
to be less important.

The imperfection and p o s tc r itic a lity  investigation w il l certa in ly be 
much more labour-intensive and require more caution in the cases discussed



BUCKLING OF BARS ON ELASTIC FOUNDATION 141

in th is  work and illu s tra te d  in Fig. 1 than e.g. the case of the two- 
hinged bar on e lastic foundation under concentrated load /3 / as suggested 
also by the much more complicated eigenfunction (2.12) associated with the 
cases illus tra ted  in Fig. 1 as compared with the one-term sinusoidal func
tions, the exact eigenfunction of the two-hinged bar under concentrated 
load according to Fig. 2. This difference in d if f ic u lty  w ill certa in ly  in 
crease in case of nonlinear problems (imperfection, p o s tc r itic a lity ) and 
i t  seems to be expedient therefore to find  some numerical solution (e.g. 
f in ite  element method).

Note that, on the basis of considerations according to par 4, an 
analytica l nonlinear approach may also be successful in the range of u <10

Presented in th is  Chapter are some simple approximate relationships 
by means of the Ritz-method to prove that there exists a small domain of 
foundation parameter и (u <  10) where the accuracy of simple relationships
(4.7) and (4.13) is  su ffic ie n tly  high fo r p ractica l application (Fig. 6) 
on the one hand while on the contrary, to show that d issim ilarly to bar 
s ta b il ity  problems of quite a number, no practicable result can be obtain
ed by means of a one-term basic function (energy method) in the range of 
u 10 on the other hand. I t  is unnecessary to assume two or more trigono
metric terms because of the a va ila b ility  of the exact solution and a fo r
mula easy to treat in practice can not be obtained in this way e ither.

Let the one-term basic function given below be approximate eigenfunc
tion  of the two-hinged bar:

The second variation of potential energy per term (b: bending, c: 
e las tic  foundation, p: load):

l

4. Approximate methods

У = y i sin - j r  X . i 1 ,2 ,3 ,... (4.1)

0
(4.2)

t
2 . 1 . 2  у dx = j  c Cyi  , (4.3)

0
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(4.4)

(4.5)

Variation problem
SM.. =0  и (4.6)

shall usually be solved to find the c r it ic a l equilibrium state (branching). 
This is  simple in our case, the result being

2 1
(4.7)

upc r e 2
Acr

crE
i  = 1 ,2 ,3 ,...

(see Figs 2 and 6). Note that the value of the m u ltip lie r in formula (4.7) 
is  actually 2 instead of 1.881 because the process is an approximation. 
A m u ltip lie r of 1.881 has been used as a correction to provide continuous 
trans ition  for the accurate solution of case u = 0.

Sim ilarly, the follow ing relationships are obtained for can tileve r:

(4.8)

(4.9)

(4.12)

i  = 1 ,3 ,5 ,...

(4.13)

(See Figs 3, 6.)
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Here also, the actual m ultip lie r in formula (4.13) is 0.5 instead of
0.4722. Correction has been used again to provide continuous trans ition  to 
case u = 0.

The following simple curves can be used to approximate curves a and b 
in Fig. 2 and 3, respectively:
For two-hinged bar (a in Fig. 2):

2
Хсг t: 1.881 + 0.05410 u2 , (4.14a)

0$  и <  20

A «  6.72 + 0.2444 (u - 20) . (4.14b)cr

2 0 c u <  200
For cantilever (b in Fig. 3):

A «  0.794 + 0.0535 u2 , (4.15a)cr

0 «  u e. 10

Ac r »  6.14 + 0.4327(u - 10) , (4.15b)

10 sLU ^ 4 0

Acl, «  19.12 + 0.2985 (u - 40) . (4.15c)

40j< u S. 200

Fina lly, note that the solution associated with u —» oo fo r the Zim
mermann bar free at the end mentioned in par 3.1 can be obtained also by 
means of the model illu s tra ted  in Fig. 9. Since th is  model follows from what 
has been said in pars 3.1 and 3.2, our resu lt can be considered as a 
marginal case associated with u —> oo, and/or a lower lim it, of the solu
tions of problems given in Figs la thru c (Fig. 7).

The details can be neglected here since a l l  what we have to do is  to 
apply the method, defined by formulae (4.1) thru (4.7) , to the model in 
Fig. 9 accordingly. Length -tj is  included in  the solution and thus the 
extreme value shall be found with respect to length as well:
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3 P,

H ,
о . (4.16)

With the calculation of lim it value u —> oo applied to the formula
obtained for p we obtain Kcr

Xcr
uо

7T
(4.17)

which is , in fact, the solution of the Zimmermann bar for и —> on /7 /,  
(Figs 5 and 7).

Fir). 9. Approximate method fo r  the case u —> oo
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BUCKLING UF A CANTILEVER UN ELASTIC EUUNDAIIUN LUAUED 

UN TOP BY CUNCENTRATED FDRCE

JANKÓ, L.*

(Received: 14 August 1950)

Equilibrium  method was used to solve the simple branching problem o f a ca n tile ve r of 
lin e a r ly  e la s tic  m ateria l on W inkler's lin e a r tra n s la tio n a l type foundation (bed), con
sidered to be geom etrica lly perfec t. The a n a ly tica l process presented provided ra ther 
simple resu lts  idea l fo r  use in  p rac tica l work as w e ll.

1. Introduction, basic assumptions

The ample lite ra tu re  on s ta b ility  is  rich  in  solutions to problems in 
re la tion  to bars on e las tic  foundation /1, 4-7, 9/ but no solution to the 
problem illus tra ted  schematically in Fig. 1 is  found there.

The bar is considered to be geometrically perfect. Equilibrium method 
is  used to solve the simple planar branching problem of a cantilever of 
lin e a rly  e lastic material, supported against translation by a foundation
o. linearly  e lastic behaviour (Winkler's e las tic  foundation).

Although the analytica l process presented is  re la tive ly  tiresome as 
compared with the importance of the problem, i t  provides results easy to 
handle and ideal fo r use in practical work.

The analysis of buckling modes permitted the nature of the branching 
phenomenon to be studied thoroughly.

We also studied the behaviour of the cantilever in question as com
pared with a beam on e las tic  foundation, free at both ends.

*3ankó, László, H-1091 Budapest, Ü llő i ú t 117, Hungary

Akadémiai Kiadó, Budapest
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V

F ig . 1. General arrangement

2. Solution using equilibrium method

2.1 D iffe rentia l equation and its  solution
The d iffe re n tia l equation of the problem can be written with some 

modification (substitu tion of -cy in place of q, where c is the foundation 
coe ffic ien t) of equation (1-5) on page 2 of /9 /, as follows (Fig. 1):

EIyIV + Py" + cy = 0 . (2.1)

Let notation
( 2 . 2 )

X =

P -  ^ E I

crE ^ 2 ’

(2.3)

(2.4)

(2.5)
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(2.6)
be introduced to obtain the following formula from (2.1):

(2.7)

Quantities XQ, d0 in equation (2.7) are real numbers.
According to page 182 of /10/, the solution of d iffe re n tia l equation

(2.7) depends on the sign of discriminant

Discriminant D is  obtained in the course of solution of the characteristic 
equation.

Parameter X is  unknown for the time being. Let the p oss ib ilit ie s  of 
solution for the d iffe ren t values of AQ and G be investigated.

Detailed investigations showed that in case of the present problem, 
case D < 0 (two pairs of complex conjugate roots) was associated with the 
least value of Aq over almost the entire domain of foundation parameter u 
('characteris tic  length' parameter, see (2 .6)).

Therefore, the solutions obtained for the case D = 0 (two coincident 
imaginary roots for each) and case D > 0 (four d iffe ren t imaginary roots) 
are not presented here (but they are included in the computer process).

Solution for D< 0 on the basis of /10/:

□ = A if -  4q . о о ( 2 . В)

у = C^a^Ç) + C2a2(Ç) + C^a^Ç) + СдЭ4( ) ( 2 . 9 )

where
a, (Ç) = cos a i  shß i  . 

a2(Ç) = sin aç ch 3 ç > 

a^(Ç) = sin a i  sh 3Ç> 

a^(Ç) = cos aÇch 3ç» (2.13)

( 2. 10)

( 2 . 11)

( 2 . 12)

(2.14)

(2.15)
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ß= Vi (u - " r x)- (2.16)

According to condition D <  0, the above relationships w il l  apply i f

A<c 2— (2. 17)
it  z

(as shown also by (2.16)). The solution applying in a very narrow domain 
(u <c 1.4) corresponding to D >  0 is discussed in  par 3.

2.2 Boundary conditions. Eigenvalue equation
To be found from among the discrete values of parameter X, determined 

by the boundary conditions, is  now the least positive eigenvalue xcr where 
subscript cr indicates the c r i t ic a l state.

The well-known boundary conditions are:

y(0) = Ü , (2.18)

у 40) = 0 , (2.19)

y"(€) = 0 , (2.20)

E Iy"U ) + Pcry '( t )  = 0 . (2.21)

Theoretically, dimensionless eigenvalue Xcr (see (2.3)) is  supplied by 
the singularity condition of matrix У of size 4x4.

Since, however,
C4 = 0 (2.22)

according to equation (2.18) and

C = - в g z a L1 ’ (2.23)

according to condition (2.19), we are looking fo r the eigenvalues of a 
matrix U of size 2x2 corresponding to a coeffic ien t vector consisting of 
constants Cp Cj. Written in  de ta il:
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(2.24-25)

where
(2.26)

(2.27)

(2.28)

(2.29)

(2.30)
I t  seems more practicable to determine the roots of transcendent equation

that is  the eigenvalues of numerically by means of a computer since the 
computer method is  a general method (that can be used for other cases as 
well) and, on the other hand, i t  resulted not only in a numerical solution 
but also in a very simple closed formula as w il l  be seen la te r in  par 3. 3

3.1 C ritica l load parameters
Ihe least positive solutions of equation (2.31) are given in  Fig. 2. 

From about и > 20 on, function xcr can be considerred s tra igh t lin e .
Some 'garland' curve character is  s t i l l  perceivable in domain u < 20 

but the s ligh t deviation of the curve from stra ight line can be hardly 
perceived in Fig. 2.

As has been mentioned, only the solution complying with condition 
(2.17) is  written in  par 2 because i t  is  valid for almost the entire 
domain of parameter u. Ihe vertical broken line  plotted for small values of 
parameter u (u = 1.4) corresponds to the zero valuedness of discriminant
(2.8). By means of the computer program, we determined the so lu tion also

(2.31)

3. Results
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Fin. 2. C r it ic a l load parameters
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in the very narrow domain complying with condition D >  U. This went con
tinuously into the solution for minimum c r it ic a l load parameter Acr = 0.25 
of the cantilever without foundation.

On the basis of what has been said above, use of the following re
lationship (where Y = 1) is  recommended in calculation for c r i t ic a l loads:

Of th is , the formula of c r it ic a l force can be calculated by means of 
relationships (2.2) thru (2.6):

Pcr = Y ]/ c El . (3.2)

These relationships are su ffic ien tly  accurate in the domain of about 
u >  20. In domain 0 :> u 5» 20, linear interpolation between the values of 
Acr = 0.25 ? 2.094 is  permissible (Fig. 2).

3.2 On the eipenfunctions
Indicated in Figure 2 are also the geometrically true eigenfunctions 

fo r some special cases. As seen, the buckling made for small values of u 
s im ila r to the f i r s t  buckling mode of the cantilever becomes an exponen
t ia l ly  declining curve of strongly variable curvature as foundation par
ameter u ('characteris tic  length' parameter) increases. A sim ila r curve is 
shown also in Fig. 3.

Note that, to control the process, also the f i r s t  four derivatives of 
the eigenfunction have been determined by computer to make sure that the 
obtained eigenfunction meets the boundary conditions and sa tis fie s  the 
d iffe re n tia l equation (2.7) alike.

As is well known, the c r it ic a l load of a bar without foundation can 
be determined in an exact way also by means of an energy method on the 
basis of one single basic function 1-cos x (see page 87 of /9 /) .  Since the 
buckling mode of the bar on foundation is  a rather complicated geometry 
according to Fig. 3, a satisfactory solution to the present case could be 
obtained by energy method using trigonometric basic functions only at the 
expense of a very large number of terms (especially i f  we want to meet a ll 
the four boundary conditions).

This is confirmed also by the curve illus tra ted  by broken line  in 
Fig. 2, starting from c r it ic a l load parameter A = 0.25 of the bar with-
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out foundation. A one-term buckling mode 1-cos x (basic function) has been 
used to obtain th is curve.

4. Comparison

Like in case of other e lastic  foundation problems, the parameter de
scrib ing  the essentials of the phenomenon ( xcr in the present case) de
pends on the geometrical length 4 multiplied by the fourth root of r ig id 
i t y  ra tio  c/EI (u (2 .6)).

Figure 4 where also the Engesser solution of a two-hinged bar on 
e la s tic  foundation and the Zimmerman solution of the bar free at both ends 
have been indicated on the basis of /4 ,6,7,9/ explains why the shape of 
formulae (3.1) thru (3.3) is  found so fam ilia r. As is  well known, the

F ig . 3, Typical buckling mode
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Engesser 'garland' curve is  usually replaced with the enveloping stra ight 
lin e  of parameter Y = 2 (c f .  (3.2)).

Hence, parameter Y = 1 of the cantilever on e lastic  foundation is 
ju s t  half as compared with the previous value. Note that a stra ight line 
o f parameter Y = 1 can be used also in place of the 'garland' curves of 
Zimmerman's bar according to  the approximate recommendation given in /6 /. 
As c learly  shown in Fig. 4, th is approximation considerably reduces the 
safety here and there in  domain u < 12.

The difference between Zimmermann's 'garland' curve and the stra ight 
lin e  of the cantilever w ith parameter Y = 1 is  small also for low values 
of u. Accordingly, the behaviour of the cantilever in a s ign ificant part 
o f domain и is sim ilar to that of a 'high-walled' cy lindrica l shell in 
tha t the edge disturbance type effect does not a ffec t the other edge. At 
the same time, the cantilever acts as a ' low-walled ' cy lindrica l shell in 
domain u < 12 that is  the two edges affect each other considerably. In 
th is  domain, the bar free a t both ends should by no means be investigated 
by use of a straight lin e  of parameter Y = 1 and vice versa, use of Zim
mermann's bar also in domain u 12 on the basis of knowledge acquired so 
fa r  to investigate the cantilever is  a rough approximation to the benefit 
of safety.

We also point out tha t in  the sense of Southwell's theorem (princip le  
of p a rtia l s tiffen ing), i t  is  true also in the present case that the ef
fe c t of elastic foundation appears as an additive term that is , the formula 
of c r i t ic a l load is

P = PE + f (c ) , cr cr ’

where P̂  - Euler's c r i t ic a l  force of the bar without foundation and cr
c - foundation coe ffic ien t

w ith , however, term P^  ̂ being very small in  the present case and not ap
pearing therefore in equation (3.2). Although analysis of imperfection-sen
s i t i v i t y  and/or p o s tc r itica l behaviour are not dealt with in th is work, 
possible problems occurring in  nonlinear investigations la ter should s t i l l  
be mentioned here.

The most important common characteristic of the curves of the two- 
hinged bar and the bar free at the ends is  that symmetric and antimetric 
eigenfunctions alternate w ith each other. The two eigenvalues associated 
w ith  a different buckling mode each at the intersections of 'garland' 
curves are identical and thus a combination of both buckling modes (simul-
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taneous branching/compound branching) is  also possible.This might be im
portant in analysis of im perfection-sensitivity according to /2, 0/ because 
in case of coincidence or near-coincidence of two c r it ic a l loads belonging 
to a stable-symmetric point of b ifurcation each, the structure is  very 
sensitive to imperfections. Moreover, the ( c r i t ic a l)  point of b ifurcation  
of a two-hinged bar on e lastic foundation is  usually unstable symmetric 
while i t  is  stable symmetric in a certain narrow domain of parameter и only 
/3, 8/ or two symmetric (stable or unstable) branchings occur about at the 
intersections of 'garland' curves simultaneously /3 /.

Considering that the exact eigenfunction of a two-hinged bar on 
e las tic  foundation consists of one-term simple sine functions (of variable 
shape in domain u) while in the present case, the eigenfunction is  de
scribed by a much more complicated expression (2.9), i t  is quite obvious 
that much caution and work are required in nonlinear (imperfection-sen
s i t iv i t y  and p o s tc ritica l) investigations. I t  seems somewhat favourable in 
th is  respect that a 'garland' character is  perceivable only at the in i t ia l  
section of the curve according to Fig. 2 and thus investigation of the 
p o ss ib ility  of simultaneous branchings seems to be less important.

In the last analysis, use of some numerical method (e.g. f in i te  ele
ment method) seems to be most reasonable in  future nonlinear in ve s ti
gations. According to our preliminary research, the re la tive ly simply en
ergy method (using trigonometric basic functions of 1-2 term(s)) promises 
practicable results in the domain u < (5-10) only.
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BUCKLING OF THE EDGE BEAMS OF A HYPERBOLIC PARABOLOID SHELL 

SUPPORTED ALONG THE GENERATRICES

JANKÓ, L.*

(Received: 14 August 1990)

The purpose o f th is  work has been to inves tiga te  to  what an extent are buckling 
hyperbolic paraboloid she ll edge beams s tiffe n ed  by the she ll in te racting  w ith  them. As 
compared with the li te ra tu re ,  a much more accurate so lu tion  is  given fo r the two-hinged 
edge beam. A process is  described in th is  work, which is  essen tia lly  a stopgap in  case 
o f can tilever edge beam structures.

Although the method used is  somewhat c ircu m s ta n tia l, i t  has yielded in  the la s t  ana
ly s is  resu lts  which are simply applicable and easy to  handle.

1. Introduction

Investigation of the classic (simple) branching problem of a geo
metrically perfect, f la t ,  rectangular or oblique, isotropic (or ortho- 
tropic) hyperbolic paraboloid shell (hypar) supported along the generatrices 
of linearly  e lastic material under load uniformly distributed over the 
horizontal plan can be considered as a f ie ld  that has been closed /2-5, 7, 
11-14/.

However, buckling of edge beams is a problem that needs further in 
vestigation.

As is  well known, a combination of hyperbolic paraboloid shells per
mits aesthetically a ttractive  roofs of various types to be constructed. 
Two typical structures of th is type are shown in Fig. 1.

Buckling of the hinged edge beam shown in Fig. la has been inves ti
gated by Dayaratnam and Gerstle /1 /. These authors obtained approximate 
results only and to make the solution for the two-hinged edge beam much 
more accurate in th is  work was therefore most desirable.

Cantilever edge beams are often used in practice (Fig. lb ). The re-

*Jankó, László, H-1091 Budapest, U lló i ú t 117, Hungary

Akadémiai Kiadó, Budanest
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su its  obtained in investigation of buckling of such structures are pre
sented in this work.

Note that we produced the exact solution of buckling of two-hinged 
and cantilever beams on Winkler's translational type e lastic foundation in 
our earlie r works /9, 1U/.

The cardinal idea of the present process is  to determine, on the 
basis of /9, 10/, the r ig id i t y  of the e lastic foundation brought about by 
the shell interacting with the buckling edge beam to relieve the edge beam

Finally, our resu lts are compared with the experimental results of 
Leet /12/ to illu s tra te  the fe a s ib ility  of our process.

2. Basic assumptions

üur work is based on the usual assumptions in  majority. S t i l l ,  i t  
seems reasonable to l i s t  the assumptions taken as a basis for the investi
gation.

The f la t  shell bears a to ta l surface load of in tensity q and d i
rection z, distributed uniformly over the horizontal plan.

Right angle is included by the generatrices of the hypar. The shell 
and the edge beam are geometrically perfect.

The structures are made of homogeneous, isotropic, linearly  e lastic 
m aterial. The trans la tiona l foundation is  s im ila rly  e lastic , a Winkler 
type foundation.

The edge beam on a foundation (stiffened by the shell) is considered 
to be a common two-hinged beam or cantilever. No jo in t forces are taken 
in to  account at jo in ts  of common deflection at the edge of the cantilever.

We take into account only bending r ig id ity  El of the edge beams ap
p ly ing to the horizontal principal axis of ine rtia  (the bar being treated 
as a prismatic bar). As shown also by Leet's /12/ experiments, i t  is  the 
moment of inertia I  acting upon the horizontal principal axis that af
fects  the phenomenon decisively.

Discussed below in  d e ta il are the simple planar buckling of the edge 
beams (and the simple branching phenomenon of the shell) within the frame
work of the usual small-displacement second-order theory (linear buckling 
theory).

At the same time, we point out that our process is suited also for 
investigation of the p o s s ib ility  of a simultaneous loss of s ta b il ity  of 
the shell and edge beam (see also par A.2).
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The transverse contraction factor p is  neglected (see also par 4.2).
The effect of deformations before loss of s ta b ility  (subscript o, 

prebuckling) upon the present structures is  negligible (wQ = 0).
Let the Bleich-Salvadori hypothesis be adopted, according to which 

tangential translations u’ v taking place in the course of buckling of the 
hypothesis be proved at the same time /1 /, see par 4.2.

For the sake of s im p lic ity , le t the geometry of the so-called f i r s t -  
type hyperbolic paraboloid shell shown in Figs 2a, b be taken in to con
sideration. In th is  case, dimensions a, b, f  referred to the hypar centre 
C of horizontal tangential plane are the f u l l  side lengths and rise  of the 
hypar (d issim ilarly to the so-called second-type hyperbolic paraboloid 
shell shown in Fig. lb ).

3. Buckling of two-hinged edge beam

Investigated are the beams schematically illus tra ted  in Figs la 
and 2a.

3.1 Basic equations
Dayaratnam and Gerstle /1 / assumed the following functions fo r va ri

ations of deflections in normal direction of the buckling shell, w ^ and 
buckling edge beams, w :

w = w + w , (3.1) 0

W = W , = w : о osh oe = o , (3.2)

w = w , + w sh e 9 (3.3)
OÜ 00

»sh = 2 У Ь . .  s i n í ^  X
^  i j  a sin ^  У , (3.4)

i j

C_
i- II h—
*

4̂1

00 00
w = 7 b .e l

i  IT NT1 n sin —— X + >  C. a —< J
i n

s ln  * v  y • (3.5)
i j

i , j  ~  k , t
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Note that, in the process described in par 4, we make a d is tinc tion  
between buckling half-wave numbers k, t  of the buckling edge beams and 
buckling half-wave numbers i ,  j  of the buckling she ll. Since the case is 
d iffe re n t in /1 /, we used sym bolhafter formula (3.5).

Ihe well-known formula of tangential shearing force N Q resulting 
from surface load q, uniformly distributed over the horizontal plane, of 
the shell of membrane behaviour before buckling (subscript o), expressed 
by radius of curvature R (Fig. 1):

Rxy
ab 
f  ’ (3.6)

Nxy Nxyo A qR2 xy (3.7)

In case of a square ground plan (a = b and (3.11), (3.12)):

Nxyo (3.8)

Dayaratnam and Gerstle /1 /, using the Ritz method and taking one term 
of formula (3.5) in to consideration, obtained the following expression for 
c r i t ic a l  surface load resu lting  in buckling of the edge beam ( i  = j  = к ) 
in  case of square ground plan (a = b) and symmetrical edge beam con
figura tion  ( I x = Iy = I ) :

qСГ
E

ТГ

~ ( 1+2 a )\C (3.9)

where
El
Ba

121 

'  h3a

■ 4

(3.1Ü)

(3.11)

В =
12

(3.12)

(3.13)

Minimization according to к resulted in the following relationships
in  / 1 / : 2 2 'fSк =

/ Ï  + 2a
(3 .14 )
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qcr «  2 P2СГ _ /* /. M Г ,-------7 Г -
—  - v2 ~ p . 4 Z1 + 2a

/3  w
(3.15)

3,2 Buckling of the shell
The process described in /1 / can not be used to investigate th is  

phenomenon. The classic solution of the buckling of shell is given by 
Reissner /14/ and Ralston /13/:

/ з ( 1 -  p2) R̂ y / 3 d -  p2) ш4

A detailed analysis of the problem is  found in  the book of Kollár and 
üulácska /11/. We refer to the above well-known relationship repeatedly 
la te r in th is work.

3.3 C ritica l remarks
This analysis is  necessary because, on the one hand, the de fin ition  

of the results according to par 3.1 is not always correct in the lite ra tu re  
and because, on the other hand, the process fo r investigation of buckling 
of two-hinged edge beams has to be improved so as tobe more accurate (see 
par 3.4).

Above a ll,  we don't believe that incase of a = 0, relationship (3.15) 
has to go into relationship (3.16) d issim ilarly to what is  believed some
times in the lite ra tu re , certa in ly because in /1 /,  the isolated she ll- 
buckling (here: par 3.2) is  not investigated but, instead, the eigenvalue 
of the structure of buckling mode wg according to Fig. 2a, consisting of 
the sum of two cylinders of sinusoidal d ire c tr ix  (Eq. (3.5)) is  determined. 
Since the effective buckling modeofthe shell is  not described by (3.5) but 
i t  is  given by (3.4), see /13/, Eq. (3.15) can not go in to (3.16) e ither.

Accordingly, the simultaneous loss of s ta b il ity  of the shell and edge 
beam is  not investigated in  /1 / either.

The Bleich-Salvadori hypothesis mentioned in  par 1 has been r ig h tly  
adopted as w il l be explained in par 4.2.

The case of d iffe ren t side lengths (a /  b) is  taken into consider
ation in the process w ith in certain lim its  only; th is  case is  not contain
ed in the fin a l results. Remember that the same applies to the classic 
solution of the buckling of shell according to par 3.2 (except for the 
lower enveloping stra igh t line  according to (3 .6 )).
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The actual error in the solution of Gayaratnam and Gerstle /1 / lies  
not in  what has been said above but rather in  that the results obtained by 
one-term expression (3.5) are only a rough approximation of most of the 
values of r ig id ity  of the foundation brought about by the shell (u (3.26)) 
to re lieve the structure, moreover, to the detriment of safety.

3,4 Solution of the edge beam-buckling problem
Remember: the exact solution of buckling of common two-hinged beam on 

W inkler's translational type e lastic  foundation has been produced in /10/.
Relying upon th is  so lu tion, the cardinal idea in our process is  to 

determine the r ig id ity  of e las tic  foundation (u (3.26)) brought about by 
the shell interacting with the edge beam to relieve the edge beam.

The exact solution according to /10/ is  illus tra ted  by th ick con
tinuous "garland" curve a in Fig. 3. This solution has been obtained 
numerically by means of an equilibrium method, using the method of inde
f in i te  coefficients. Figure 3 shows also the character of eigenfunctions. 

Approximate one-term basic function

к ff .w =ŵ  sin —j — X, к = 1, 2, 3, . . . (3.17)

has been used to produce also an approximate relationship fo r c r it ic a l 
load parameter Xcr a two-hinged beam of length t  under uniformly distrib
uted load p(p ):

where

Pc r  t 2(k^
u2 1

) ,
crE 17 к

к = 1, 2, 3, . . .

i l !
EI

(3.18)

(3.19)

crE
?

тг EI
t 2

(3.20)

In the common beam problem, c is  the e lastic  foundation coeffic ien t.
Extreme value calculation according to buckling half-wave number к 

resu lts  in

k = ^ , (3 .21)



F ig. 3. C r it ic a l load parameters o f two-hinged bar
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4 (3.22)

Note that in Figure 3, relationship (3.18) is  illus tra ted  by broken 
lin e  with 1.881 w ritten in  place of 2 as a m u ltip lie r (for the sake of 
trans ition  to the exact solution of case u = 0).

In the edge beam problem investigated, the c r it ic a l value of specific 
tangential shearing force N (3.7) corresponds to specific c r it ic a l dis
tribu ted load p . S im ila rly , i  a i f  the structure is  su ffic ien tly  f la t ,  
otherwise the length t  is  the actual length of the edge beam.

Let equality

p = X P c r  = N (3.23)Kcr cr crE t  xycr

be written f i r s t  on the basis of what has been said above ( l  = a), where, 
according to (3.22),

p = i  Ea Л * . u , (3.24)
С Г )

and, on the basis of (3.15) and (3.7),

V e t  ■ e * w h  'r n r s  ■ ° - 25>

On the basis of (3.23) thru (3.25), the foundation parameter u ('charac
te r is t ic  length' parameter) can be calculated from shell parameters 
(3.11), (3.12):

u = / П  —  . (3.26)
Jar

Note that the same resu lt w i l l  be obtained i f  the coefficients of buckling 
half-wave number к of expression according to (3.9) and (3.7) are
compared with the appropriate coefficients of expression (3.18).

By means of formulae (3.11), (3.12), (3.26) as well as Fig. 3, de
termination of c r it ic a l load Nxycr of the buckling edge beam is a rather 
simple job.

C ritica l load parameter ^  = X(u) according to Fig. 3 supplies the 
specific  c r it ic a l load pcr in accordance with the le f t  side of re la tion 
ship (3.23). The c r i t ic a l  value of N according to (3.7) is equal to thisxy
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(3.27)N = p xycr Kcr

Surface load qcr shall be calculated by means of (3.7).
Note that in certain cases, the following formulae, an approximation 

of function £ in Fig. 3, can be successfully used?
I

} cr ~  1.881 + 0.05410 .u2 , (3.28 a)
0 u < 20

Xcr ~  6.72 + 0.2444(u - 20) . (3.28 b)

20« u £ 200

I t  is  necessary to mention that the th in  broken curve in Fig. 3 (Eq. 
(3.18)) is  to thick curve a giving the exact solution of the simple bar 
problem as the approximate solution according to Dayaratnam and Gerstle /1 /
(3.9) is  to the exact solution of the shell edge beam problem. Thus Fig. 3 
shows at the same time that our solution (Eq. (3.27)) yields values even 
30—50% (or even more) lower for higher values of parameter u than Eq.
(3.15) being in error to the detriment of safety.

A ttention: Recommended are for use in practice essentially the re
lationships according to par 5.

4. Buckling of cantilever edge beam

Investigated are the beams illus tra ted  in  Fig. 2b.

4.1 Basic equations
Relationships (3.1), (3.2) apply also in th is  case.
The following functions have been assumed for deflections w ^ of the 

shell and we of the edge beams, respectively, in normal direction:

к , t  = 1, 3, 5, . . .
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w sh (4.3)

4_Л. 2_ Boundary_conditions
4.1.2.1 Shell _II

Well-known geometrical (w ^) and physical (wgh, w ^) boundary condi

tions  of the shell:

^'h‘(y = Û, b) = 0 .

(4.4. a-d)

(4.5 a-d)

The stress function derivative, P ' =Nxy0, in prebuckling state is  the 
value according to equation (3.7).

As shown below, no special boundary conditions are required fo r stress 
function variation F associated with the buckling process since we have 
adopted the Bleich-Salvadori hypothesis /1 /  mentioned in par 2. Namely, as 
fo llows from assumption u = v = 0 (and also from (3.2)),

e = u - wz" = 0 ,
X

e = v' - wz'‘ = 0 , 
У

_I _ *1 _
Y = u '+ v  - 2 wz = -2 wxy

f
ab

(4.6 a-c)

Here the following equation of the middle surface is  included in  the 
formula (to be simple, in  the co-ordinate system according to Fig. lb ):

z (4.7)

I t  follows from what has been said above that

F' xy
= i  0 Y 2 xy (4 .8 )
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where D is  the extensional r ig id ity :

D = Eh . (4.9)

Equation (4.8) shows that no special boundary conditions can be stipulated 
fo r stress function F. I t  is also remarkable that compatibility equation 
/7, 16/

AAF - 2 D w 'z "  = 0  (4.10)

is  now t r iv ia l ly  (id e n tica lly ) satisfied.
Ihe correctness of the Qleich-Salvadori hypothesis is backed up not 

only by the lite ra tu re  /1 / but also by our investigations, see par 4.2.

4.1.2.2 Edge beams
According to our basic assumptions (par 2), the edge beams are con

sidered to be common cantilevers independent of each other. I t  seems 
reasonable to omit to give the long l i s t  of well-known boundary conditions 
relevant to the problem here in this work.

4_.1_.3, En£r£y_exp£essjLons
The following equations of the second varia tion  of potential energy 

have been written here for application of the Ritz method. Deflection 
variation w of normal direction appearing in these equations is shown in 
Eq. (4.3).

Sum of energy:

v = ysh + ySh + ve ve
b s b s q (4.11)

Second variation of the bending (b) potentia l energy of the shell :
a b

C = 1 B } J [»"••"2 ' w- ' 2 + 2w' ' 2 I  dxdy . (4.12)
0 0

Here bending r ig id ity  В is  defined by equation (3.13). Second variation of 
the extensional (s) potential energy of the she ll:

a b
V
sh

dxdy . (4 .13 )
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Extensional r ig id ity  □ can be obtained according to (4.9), specific  tan- 
gen ita l shearing force is  defined by equation (3.7) while F- ' is  given 
in  formula (4.8).

Second variation of the bending (b) potential energy of the edge beams
(2 in  each direction) of width b and b :X y

e E Ix f  f x - " 2 Í Í Y  ?V Ь 2
Vb = “ b“  J J W (У=0) dXCjy + by J I 

x 0 0 0 0
Appropriate part fo r extensional energy:

a b . „ by b

w''(x=0) dxdy (4.14)

Vg = - H Î  Î  NyxQ x w'(y=0) dxdy - i  Ç  f N)<yoy w'(x=0)dxdy. (4.15)
0 0 0 0

Second variation of the potential enegy of the external load q is

v °  •
(4.16)

The following variation problem shall be solved to find the c r i t ic a l equi- 
lib rium  position (branching):

6V = 0 , (4.17)
with magnification factor

3
C = —  (4.18)

В b

introduced, the expression fo r the bending potential energy of the shell
can be written in a more detailed form,

where

(4.21)

(4 .22)
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a.I = 4 ]/ - k4" , lk ’

a .. = 4 i 
JÍ

(4.23)

(4.24)

(4.25)

In quantity b̂ , , t  and к change places as compared with b^g. After the re
quired operations have been performed, the second variation of the exten- 
sional potential energy of the shell (see 4.13)) takes the following shape:

CVsh > 2 2  A2 . Y2 P2 + В2 cIJ
V  V

k t L1 " -------Ai j  Bk* c2
1 J

, Д w
‘ 6 E T  C3

where

(4.26)

(4.27)

(4.2B)

(4.29)

a
h •

(4.30)

(4.31)

Second variation of the bending potentia l energy of the edge beams 
a fte r the operations according to (4.14) have been performed:

C VC = Dkt ~ l2  t “ Yk4 + ßY^ 4 3 . (4.32)
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where

Later also the following expression w il l  be used:

6 1d. = C \l? - ± -  .1 b r 2
Bkt

(4.33)

(4.34)

(4.35)

Second variation of the extensional potential energy of the edge 
beams written in de ta il:

J 4 E P

Hereinafter we refer to the following expression:

p  I . e  1_
el  = C Vs n2 

ui<e

(4.36)

(4.37)

4.2 Bucklinn of the shell
In this actual case, condition (4.17) takes the following shape:

3V = 0 .
ЗА.

(4.38)
i j

The equation below follows from (4.38):

(4.39)

i  ± P = 3 ,5 ,. ..  j  + q = 3 ,5 ,. ..  i , j  = 1 ,2 ,3 ,...

The linear equation system according to (4.39) can be divided in  two 
groups, i  + j  is  even number in the f i r s t  group while odd number in  the 
other group.

I t  is easy to recognize that equation system (4.39) is exactly ident
ic a l with Ralston's /13/ equation system /15/ set up by use of the Galerkin 
method. Accordingly, with the eigenvalues of equation system (4.39) de-
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termined, then the lower enveloping s tra ight line  of the appropriate 
"garland" curve taken, relationship (3.16) would be obtained (with û = 0).

The Bleich-Salvadori hypothesis (par 2, Eq. (4.6 a-c)) is  true in 
th is  case as has been proved again by what has been said above since the 
process ignoring th is  hypothesis /13/ also leads to results identica l with 
(4.39).

I t  can also be seen that negligence of the transverse contraction 
factor (yii = 0) results in a negligible error that can be corrected sub
sequently as follows from (3.16) accordingly.

Of course, Eq. (4.39) is not solved here since the solution is  known.
Also, we omit to investigate the e ffect of deformations of the edge 

beam modifying the c r it ic a l branching load(Eq. (3.16)) of the shell by use 
of the process according to par 4.13. We can do so a ll the more because 
/2, 3 and 11/ showed that the linear c r it ic a l buckling load of the shell 
was only s lig h tly  affected by the boundary condition. This can be a t t r i 
buted to the fact that the buckling mode of the hypar is , according to 
/11/, page 112, s im ilar to that seen in the middle of Fig. 2 (w ^ ).

The results according to pars 4.3 and 5 (that is  (4.51) and (5 .4)), 

respectively,can not be taken over to (3.16) fo r reasons sim ilar to what 
has been said in par 3.3.

4,3 Buckling of edge beam 
R itz 's  equation

complying with variation 
follows:

3V
6B,

(4.40)
k i

conditions (4.17) can be b rie fly  w ritten , as

322 =  2^ 2  +  ^1 +  ^1 +  ^ 1 ^  =  ^  *
(4.41)

The quantities included in the formula are given in relationships (4.20), 
(4.27), (4.35), (4.37). After substitution and reduction, the function of 
the c r it ic a l load of the edge beam is defined by the following expression:

'cr
E

it _1
24 f

ft  Y к4 + ß Y4 t 43
kt

32 (u 
tt4 (bl Cl } (4.42)
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where

= ï  (k î * * г > - - b  ■ ( 4 - « >

Equation (4.42) is  va lid  fo r к, í  = 1, 5, 9, . . .  (while some modification 
is  required for k, 0 = 3, 7, . . . ) .

For a hypar over a square ground plan ( Y = a/b =1) with symmetrical 
edge beam configuration (1^ = I = I ) ,  the following equation has been ob
tained for к = 4  = 1 :

d p r  P 2
—  = — T- [1 .3830a + 0.2914e • (4.44)

E ш4

Using equation (3 .7), the c r it ic a l tangential shearing force corres
ponding to surface load Цс г -

N r  = \  E а -Ц - [ l .3830 a + 0 . 2 9 1 4 e 2 • (4 .45)
x y c i Z ojJ

In the present case, i t  was practicable to determine N cr associated 
with к = 1 (see par 3.4), then to produce foundation r ig id ity  u (4.50) as
sociated with i t .  The reason for th is is that the error of the approximate 
one-term solution (broken lin e ) of the accurate 'garland' curve (b in Fig. 
4) of the simple cantilever on e lastic foundation is  minimum in domain и 
associated with к = 1. Accordingly, the value so calculated for foundation 
parameter u associated with the accurate curve u w il l be best suited.

Like in par 3.4, approximate method is  used to determine foundation 
r ig id i t y  parameter u expressing the stiffen ing  e ffec t of the shell fo r ac
curate solutions taken from /10/ (see Figs 3, 4). This is considered to 
be ju s t if ie d  considering the ample work required for what has been dis
cussed so far.

Hereinafter we re ly  upon the results produced in /10/ and illu s tra te d  
in  Fig. 4 (cf. par 3.4). These results give c r i t ic a l  load parameter Acr 
or specific c r it ic a l d is tribu ted  load pcr of the simple cantilever of 
length ■ton Winkler's trans la tiona l foundation (u (3 .9)). Pcr  ̂ is  Euler's 
c r i t ic a l  force (buckling load) of the two-hinged bar (Eq. (3.20)).

Also an approximate method has been produced by means of the Ritz 
method in /10/ with the one-term buckling mode taken as a basis (broken 
lin e  in  Fig. 4).

One-term approximate basic function:
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w (1 -  COS
к ti 
21 x) .

к 1,3,5,. ..

Parameter of the to ta l c r it ic a l load:

Xcr
Pcr l

crE

32 (3
tt4 2̂

k"

(4.46)

(4.47)

к = 1 ,3 ,5 ,...
H -1 i f  к = 1 ,5 ,9 ,...

1 i f  к = 3 ,7 ,11 ,...

u and Pcr|̂  are defined by Eq. (3.19) and (3.20), respectively.
Broken line has been used in Fig. 4 to illu s tra te  equation (4.47) in 

such a way that 0.4722 is  used in place of у  as a m u ltip lie r (fo r the sake 
of transition  to the accurate solution of case u = 0).

In the above relationships, the c r it ic a l value of specific tangential 
shearing force N (3.7) corresponds to specific c r it ic a l d istributed load 

Pc r . S im ilarly, t  » a  in case of a su ffic ie n tly  f la t  structure, otherwise 
the length V is the actual length of the edge beam.

On the basis of what has been said above, le t  f i r s t  equality

Pcr A P c T cr crE l Nxycr (4.48)

be w ritten. On the basis of (4.47), we obtain

p = 0.6915 Ea Д  (1 t  0.07449 u2) (4.49)cr

for к = 1.
With relationships (4.45) and (4.49) substituted into (4.48), the 

wanted foundation r ig id ity  parameter, u, is obtained fo r use:

P
u = 1.682 ------ . (4.50)

VcT

With th is compared with (3.26), the cantilever edge beam was found to 
be much less stiffened by the shell than the two-hinged edge beam.



Fig. 4. C r it ic a l load parameters o f can tileve r
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The c r it ic a l load of the buckling edge beam, Nxycr, can be determined 
very simply using formulae (3.11), (3.12), (4.50) as well as Fig. 4.

C ritica l eigenvalue parameter Xcr = X(u) supplies specific  c r it ic a l 
load pcr according to the le fts ide  of Eq. (4.48). Thus the c r i t ic a l  value 
^xycr ^pression (3.7) is  equal to pcr,:

N = pxycr r cr (4.51)

Surface load qcr shell be calculated according to (3.7). Note that, 
in certain cases, the approximate formula fo r function b of Fig. 4 can be 
successfully used:

X X  0.794 + 0.0535 u2 , (4.52a)cr ’

0 u^.10

Acr ясб.14 + 0.4327 (u-10) , (4.52b)

10 $  u ^.40

Xcr a  19.12 + 0.2905 (u-40) . (4.52c)

40 < u *5 200

Figure 5 has been produced for small values of foundation parameter u 
(short r ig id  bar or/and so ft foundation).

.The comparative Figure 6 has been taken from /10/. In that work, we 
explained in detail that the load bearing capacity of bars of d iffe ren t 
boundary condition (a, b, c) was essentially determined by the conditions 
of support of the lower edge (ly ing in the direction of load).

This explains the higher c r it ic a l load of the cantilever in domain 
u >  5 as compared with the two-hinged bar according to Fig. 6. Of course, 
th is  true only in case of identica l values of u. As a matter of fac t, one 
can not say that, in  case of a hypar, the cantilever edge beam is  stronger 
According to our engineering view, the contrary is  true as c lea rly  shown 
by (3.26) and (4.50) according to which the cantilever is less stiffened by 
the shell than the two-hinged bar. This can be clearly seen also in  Fig. 7 
indicating our fin a l relationships recommended for use in  practice.
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Use of the following, rather simple relationships is recommended in 
practice  (Fig. 7).

5.1 Two-hinged bar
Curve a in Figure 3, p lo tted as a function of P /  \TcT , has been trans

formed using formula (3.26). Then, with the lower enveloping stra ight line  
of the curve (which is  almost a straight, line determined, the following 
expression has been obtained fo r calculation of the c r it ic a l load parameter:

A = 1.801 + 0.846 ——  . (5.1)
JcT

Equation of the c r it ic a l surface load (by means of (3.23) and (3.7)

= ——г- (3.094 a + 1.391 P У0Г ) . (5.2)
11

Here a, P, to are parameters according to (3.10) thru (3.12).

5.2 Cantilever
With curve b in  F ig . 4 transformed in the way outlined in par 5.1 

transformed using re la tionsh ip  (4.50), the equation of the lower envelop
ing stra igh t line has been obtained as

P
A = 0.794 + 0.629 ------  . (5.3)

Formula of the c r it ic a l surface load (by means of (4.40) and (3.7): 

qr r  P' = -----X (1.306 a + 1.035 PvS1) . (5.4)t CO 4

6. Numerical results

Leet /12/ used p la s tic  specimens to determine the c r it ic a l load of 
tuo-hinged and cantilever edge heam experimentally. Specimen No. 5 used by 
Leet is  suited to simulate our case. Specifications:



' 
P

cr
E

. 5. Soft e la s tic  foundationFig
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Fig. 6. C r it ic a l load parameters o f beams o f d iffe re n t boundary conditions



F ig. 7, Recommended design diagrams
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a = b = 16 inch = 406.4 mm, 
f = 4 inch = 101.6 mm, 
h = 0.0305 inch = 0.7747 mm,

I = I = I = 1.33 10'3 inch4 = 553.6 mm4 .
X y

As can be read from Figs 19 and 20 of /12 /, the ra tio  of c r i t ic a l  
loads of the cantilever and two-hinged edge beam is 95/146 = 0.65.

Of course, the experimental results contain effects which have not 
been taken into consideration in our calculations, such as geometrical im
perfection, re la tive ly  large deformations, r ig id it ie s  of the bar le f t  out 
of consideration,etc. Note that at points A and D in Fig. 2, the support 
of the specimens was somewhat stronger in case of the hinged bar.

Leet used essentia lly an edge beam supported at point В of Fig. 2 
("supported") and one with free end at point В ("cantilever").

On the basis of what has been said above, i t  seems reasonable to com
pare the ra tio  of c r i t ic a l loads instead of the actual values in our case.

Parameters used in our work:
(3.10) ct = 35.157,
(3.11) P = 131.148,
(3.12) ш = 524.59.

C ritica l load parameter of the two-hinged edge beam:
(5.1) Xcr = 20.59.

C ritica l load parameter of the cantilever :
(5.3) X cr = 14.71.

Ratio of c r it ic a l loads: 14.71/20.59 = 0.71.
Considering that experimental value 0.65 contains also the d is to rting  

e ffects  mentioned (e.g. geometrical im perfection,etc.), the ra tio ,i between 
the theoretical and experimental value (0.71 and 0.65, respectively) is  
considered to be satisfactory.
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CALCULAI ION OF PLANE FRAMES BRACED BY SHEAR WALLS 
FOR SEISMIC LOAD

KOLLÁR, L.P.*

(Received: 25 July 1990)

The paper investiga tes the v ib ra tion  o f the continuum model of plane frames braced by 
shear w alls . I t  presents charts and tables w ith  the aid of which the seismic load and 
the in i t ia l  stresses o f frames and shear w a lls  due to  earthquakes can be ca lcu la te d .

1. Introduction

The determination of seismic loads is  even in case of simple struc
tures very complicated. Using a continuum model of frames and braced 
frames, re la tive ly  simple results can be derived. The aim of th is  ipaper is  
to determine some charts and numerical tables with the aid of which the 
continuum model of braced frames can be analyzed.

2. The investigated model

A replacement continuum for braced frames could be a sandwich column 
with thick faces /В, 9, 11/, nevertheless in many cases simpler models can 
be accurate enough. For example /1 /, introduces the following four bar 
models for the investigation of multi storey buildings:

1) Simple bar having flexural deformation only (Fig. la ). This can be 
the model of a (high and solid) shear wall.

2) Simple bar having shearing deformation only (Fig. lb ). This can be 
the model of a multi storey plane frame.

3) Bar having shearing and flexura l deformation as well (F ig. 1c). 
This can be the model of coupled shear walls.

*K o llá r, László, H-1122 Budapest, Кагар u. 9, Hungary

Akadémiai Kiadó, Budapest
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F ig . 1. Ваг models used in  the ana lys is  o f buildings

4) Bar consists of a bar having shearing, and another having flexu ra l 
deformation only (Fig. Id ). This can be the model of frames braced by shear 
w a lls .

A ll these models can be derived from the general three-layer sandwich 
bar with thick faces /9 / .

In this paper the fourth model w il l he treated. This .model was f i r s t  
introduced by P. Csonka /6 / for the analysis of multi storey frames, hence 
i t  is  called 'Csonka-type bar'.

The determination of the r ig id it ie s  of the replacement bar can be 
found e.g. in /1, 7, 10/.

The bending r ig id ity  (El) in th is paper w i l l  be denoted by B, the 
shearing r ig id ity  (AG/n) by S. The bars having flexural deformation only 
w i l l  be called В-bars, and those having shearing deformation only w i l l  be 
called S-bars. The Csonka-type bar consists of a B-, and an S-bar connect
ed to each other in a way that the displacements of the two bars are 
the same.

3. Basic expressions for calculation of seismic load

A widespread approximate method for the investigation of seismic load 
the 'Response Modal Analysis' /1, 5/, which is  used in many standards 
(e.g. in DIN 4149 /1 / ,  or in the Hungarian d irec tive  /4 /) . The Response 
Modal Analysis s p lits  the calculation into two steps: f ir s t  the 'Response- 
Spectrum' is analyzed with the simplest haunting model, which is  a single 
mass on a cantilever beam, then this result is  applied for the model of 
the building, which is  - as a rule - a discrete model with multi degree 
of freedom.
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F ig . 2. Discrete model and the i - t h  mode 
o f v ib ra tion  o f a frame

Fig. 3. Continuum model and the i - t h  mode 
o f v ib ra tio n  o f a frame

The build-up of the expression for the horizontal loads on th is  d is
crete model of a structure due to the i- th  normal mode of vibration is the 
following /1 / (Fig. 2):

V  m, ф

H. . = К m. p ф . .  ̂ ^

у

k=l

k , i

mk * k , i

(3.1)

where
Fh  ̂ -  is the force acting on the j- th  mass point,
К -  is a m u ltip lica to r depends on the geographic area, on the so il, 

on the d u c tility  of the structure, etc., 
пь - is themass of the j- th  point,
p - is the acceleration of gravity,
ф. . - is the horizontal displacement of the j- th  point due to the J » i

i - th  mode of vibration,
n - is the number of mass points,
3^ - is  the value of the normed response spectrum, which depends on

the natural period of v ibration T..
In the case of a continuum model (Fig. 3), with uniform d is tribu tion  

of mass Eg. (3.1) becomes the following expression:

H.(x)

j  W i ( x )

K m p w,(x) -q-

5 "i

6. '
(x)

(3.2)
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where
hh(x) - is  a d is tributed horizontal load due to the i- th  mode of vib

ra tio n ,
m - is the mass of the unit length of the building,
w^(x) - is  the i- th  mode of vibration.
Expression (3.2) does not depend on the magnitude of the mode of vib

ra tio n  .
In the following normed modes of vibration denoted by w^(x) are used, 

tha t is ,  the top displacements are considered the un it. Also introducing 
the following notation

1

Í “i« >

0

where C = jj , we obtain from (3.2):

Hi (Ç) = K m P ф. g. w ^Ü  . (3.4)

In the following sections we w ill determine w^(x), ф ,̂ (the last 
one fo r calculating 3^), and some other parameters fo r the determination 
of bending moment and shearing force diagrams of the replacement bar of 
braced frames.

4. The basic d if fe re n tia l equation and i ts  solution

The equilibrium equation of horizontal forces acting on a 'Csonka- 
type ' bar is /8 /

Bw""(x) - S w"(x) - w(x) = 0 , (4.1)

which is  a homogeneous d if fe re n t ia l equation of the forth  order. The last 
term contains the D'Alembert force,

2 Tr (4.2)



PLANE FRAMES FOR SEISMIC LOAD 191

th is  is the c ircu lar frequency. ( ) ' denotes the derivation with respect 
to X.

The bending moment, and the shearing force on the component B-bar
(bar having flexural deformation only):

M0(x) = -B w"(x) , (4.3)

QB(x) = -B w "'(x) (4.4)

and those on the S-bar (bar having shearing deformation only) / 0 / :

Mg(x) = MQ + S w(x) , (4.3)

Qg(x) = S w1(x) , (4.6)

The boundary conditions are as follows:

w(H) = 0 , (4.7a)
w'(H) = 0 , (4.7b)

MB(0) = 0 , i.e . w"(0) = 0 , (4.7c)
Qd(0) + Qc(0) = 0 , i.e . -B w"'(0 ) + S w'(0) = 0 . (4.7d)□ О

Mg(0) = 0 , i.e . Mq + S w(0) = 0 . (4.B)

The general solution of Eq. (4.1) is  the sum of two trigonometrical 
arid hyperbolic functions, however, to obtain a numerically stable solution 
the following form is  more usable:

- x , ç  - * , ( 1 - 0
w(Ç) = С̂ е + C2e + CjCos( Л + C^sin(A2 Ü  , (4.9)

where X̂  and X2 can be calculated from the roots of the characteristic 
equation

_B
H4

X2 . = 0

as follows:
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Fig. 4a.

Fig. 4b.
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Fig. 4c.

x/H

F ig . 4d.

F ig . 4, Modes of v ib ra tio n  \*c(Ç) (These functions are necessary fo r the ca lcu la tio n  o f the 
load in  expression (3 .4 ) . a) i  = 1; b) i  = 2; c) i  = 3; d) i  = 4)
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Л 1
f —

2
]/ a 2 m ш 2 H4' 
' 4 + В (4.10)

z (4.11)

In these expressions

(4.12)

Mg сап be determined from Eq. (4.8), and (4.7a-d) constitute a homo
geneous linear equation system for Cp C2, C^, and C .̂ The condition for 
non -triv ia l solution is  the singularity of the coeffic ient matrix, which 
means a non-linear equation for ы . After the determination of to (or T), 
the ra tio  of С, , C^, and can be calculated and, assuming that the 
displacement at x = 0 equals to the unity, also the ir absolute values. We 
made th is calculation fo r 8 different values of to, for the f i r s t  four 
modes of vibration. The modes of vibration are plotted in Figs 4a-d, the 
period of vibration can be calculated from the following expression:

T =
2 7T H fn? 2 71 H </oT  fm

( 4 . 1 3 )c » B c V S *

с and с/»/б1 can be fo u n d  in Table 1.

Table 1
Values o f с fo r  the calculation o f T in  expression (4.13)

со1оÖ 1 5 15 30 100 1000 i o 9

1 3.316 4.110 5.768 8.250 10.688 17.611 51.354 49.670
2 22.035 22.757 25.406 30.839 37.157 56.499 155.479 149.020
3 61.697 62.321 64.751 70.432 78.071 105.501 263.774 248.370
4 120.902 121.491 123.821 129.453 137.433 169.149 378.787 347.720

Values o f с / Set fo r the ca lcu la tion o f T in  expression (4.13)

l / а  i o  8 1 5 15 30 100 1000 i o 9

1 111.200 4.110 2.580 2.130 1.951 1.761 1.624 1.571
2 696.800 22.757 11.362 7.963 6.784 5.650 4.917 4.713
3 1.951.000 62.321 28.958 18.185 14.254 10.550 8.341 7.854
4 3.823.300 121.491 55.374 33.425 25.092 16.915 11.978 10.996
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I f  a <r 10  ̂ then the bar can be considered as i f  i t  were a В-bar (bar 
having flexural r ig id ity  only) and i f  a >  10J then the bar can be con
sidered as i f  i t  were an S-bar (bar having shearing deformation only). In 
the second case the modes of vibration are

w ^O  = cos I j . (4Л4)

5. The internal forces

For the analysis of the internal forces the values of should be 
calculated. These are given in Table 2. The loads are carried pa rtly  by 
the B-, and partly by the S-bar . The loads carried by the S-bar w i l l  be 
given by expression (5.6). I t  has to be mentioned, that a concentrated 
force acts on the top between the S- and В-bar, the value of which is 
equal to the shearing force on the top of the B-bar.

Table 2
Values o f ф fo r the ca lcu la tion  o f the load in  the expression (3.4)

i / а О
1 CD

1 5 15 30 100 1000 109

1 1.566 1.552 1.506 1.434 1.381 1.315 1.278 1.273
2 0.868 0.853 0.801 0.716 0.644 0.530 0.438 0.425
3 0.509 0.507 0.501 0.483 0.459 0.386 0.277 0.255
4 0.364 0.363 0.362 0.357 0.348 0.312 0.211 0.182

Table 3
The values of M in  the expression (5.1) b i

l /а io '8 1 5 15 30 100 1000 io9

1 0.2844 0.2306 0.1567 0.1124 0.0893 0.0560 0.0194 0.0000
2 0.0454 0.0430 0.0363 0.0283 0.0233 0.0162 0.0064 0.0000
3 0.0162 0.0159 0.0149 0.0131 0.0113 0.0083 0.0037 0.0000
4 0.0083 0.0002 0.0079 0.0073 0.0067 0.0051 0.0025 0.0000
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Table 3 (con t.)
The values of M /cP in  the expression (5.1)

D l

i / a i o '8 1 5 15 30 100 1000 io 9

1 0.0000 0.2306 0.3505 0.4353 0.4893 0.5597 0.6150 0.6366
2 0.0000 0.0430 0.0812 0.1096 0.1278 0.1621 0.2011 0.2122
3 0.0000 0.0159 0.0333 0.0506 0.0621 0.0828 0.1164 0.1273
4 0.0000 0.0082 0.0177 0.0284 0.0366 0.0513 0.0792 0.0909

F irs t the in terna l forces on the В-bar are determined. The bending 
moment (taking the expression of the load in Eq. (4.1) and in Eq. (3.4) 
in to  consideration) is  as follows:

w;‘ Cç)
Mgf(ç) = -B wV (x) = ---- 2 = -K m p ф  ̂ 0 ± j

H ~

-K m p ßj[ H MQi mBi(ç) =

= -K m P H J  ï  MBi Уо1 )inBi(Ü (5.1)

where ( ) denotes the derivation with respect to %.

The values of Mĝ  and Mĝ  fa  are given in  Table 3, the diagrams of 
nig^(Ç) are seen in Figs 5a-d. The function of the shearing force on the B- 
bar is :

QB i( 0  = -B wV"(x) = - 3  w:” (Ç) = -К m P Ф1 &i  H —
w :■■(£)

= -K m p Ф1 H Qßi qQi(C) . (5.2)

The values of Qĝ  and are given in Table 4, the diagrams of qB̂ (Ç) are 
shown in Figs 6a-d.

The internal forces on the S-bar are as follows. The bending moment:

Mq.(C) = -S w.(0) + S w.(x) = K m p ф. ß, 
ol 1 1 1 В с

The diagrams of w^(Ç) are presented in Figs 4a-d.
1

i  ) 1 (5.3)
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О 0 1 0.2 0.3 0 . 4  0 . 5  0 6 0.7 0 8 0.9 1.0
x/H

Fi3-. 5а.

О 0.1 0 . 2  0 3 0 . 4  0 5 0 .6  0 7 0 8 0 .9  1.0
х/Н

Fig. 5Ь.
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О 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10
x/H

Fig. 5c.

0 0.1 0.2 0.3 0.4 0.5 0.6 0 7 0.6 0.9 1.0
x/H

Fig. 5d.

F ig .  5 . m ( Q  f o r  th e  d e te rm in a tio n  o f  th e  b en d ing  moment M (Ç) (5 .1 )  on th e  B -b a r
1 (a )  i  = 1 ;  b )  i  = 2 ; c )  i  = 3 ;  d )  i  = V)
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Qb

F ia . 6b.
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Fig. 6d.

F ig .  6 ,  g . ( £ )  f o r  th e  d e te rm in a t io n  o f  th e  sh ea rin g  fo r c e  C L .(Ç ) (g iv e n  by Eq. ( 5 .2 ) )  on th e
1 В- b a r ,  a )  i  = 1 ; b ) i  = 2 ; c )  i  = 3 ;  d )  i  = 4)
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The shearing force on the S-bar is as follows:

QS i( 0  = S wl(x) = K m P >1 Bi H
3 S 1

w: (O (5.4)

The to ta l shearing force is  the sum of Q^(Ç) and Qg^(Ç):

Q^CO = QBi(G  + QS i(C) = -K m p ф1 H — J wV‘ (£) - aw -(()
c .l

-K m P Ф. e. H QB iqi (Ç) . (5.5)

Table 4
The values o f Q in  the expression (5.2)

Dl

i / a io '8 1 5 15 30 100 1000 io9

1 0.3913 0.4011 0.4322 0.4793 0.5153 0.5681 0.6158 0.6366
2 0.2170 0.2108 0.1941 0.1779 0.1733 0.1815 0.2034 0.2122
3 0.1272 0.1261 0.1222 0.1155 0.1102 0.1067 0.1201 0.1273
4 0.0909 0.0905 0.0890 0.0860 0.0827 0.0772 0.0841 0.0909

The values of QD. are given in Table 4, the diagrams of q.(£) are seen in 
Figs 7a-d. After the determination of Q^(x) the shearing force Cx) on
the S-bar can be determined as the difference of Q.(x) and Qn.(x ).1 D l

The load carried by the S-bar is the f i r s t  derivative of shearing 
force (5.4) as follows:

HQi (O = S wV(x) = K m p ф. g . a — w( ' (5) = 
Ы  1 1 M1 Z 1

C • 1

K m P ф± ß hSi(£) . (5.6)

The curves of hg^(Ç) are given in Figs 8a-d.

6. Paradox of the calculations due to some standards

Let us consider a shear wall the model of which is a bar without 
shearing deformation. In an interval ß^
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0

Fig. 7a.

x/H

Fig. 7b.
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0
1

0 5

0

- 0 . 5

-1
0 0.1 0 . 2  0 3 O.A 0 5 0 . 6  0 . 7  0 8 0  9 10

x/H

F ig. 7c.

Q

Fig. 7d.

F ig .  7 . q .(F ) fo r  th e  d e te rm in a tio n  o f  th e  t o t a l  s h e a r in g  fo rc e  Q .(Ç) (g iv e n  by Eq. ( 5 . 4 ) ) ,
1 (a) i  = 1; b) i  = 2; c) i  = 3; d) i  = 4}
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Fin. 8a.

x/H

Fin. 8b.
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Fig, Be.

F ig. 8d.

F ig .  8 . h ,_ (Ç ) f o r  th e  d e te rm in a tio n  o f  th e  lo a d  Hs i (Ç ) (5 .6 )  on th e  S -b a r
(a )  i  = 1 ; b ) i  = 2 ; c )  i  = 3 ;  cl) i  = A)
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- due to the Hungarian directive - is  proportional to T ^,
- due to the DIM 4149 - is  proportional to
The natural period of vibration depends on Hz (4.13), hence the in -_2

tens ity  of the load, which depends on 3. (3 .4), is  proportional to H ,
-1 6  1and H ' , respectively. The maximum value of the shearing force on the 

bottom depends on H and H respectively, which means that there is  an 
in te rva l, where the higher the building the greater the safety of the 
building against shear, or with other words i f  the safety of the building 
is  not great enough, then i t  should be enhanced with some storeys.

7. Numerical example

The building the plan of which is  given in  Fig. 9 consists four 
plane frames and i t  is  braced by four solid shear walls in the x d irection. 
Let us determine the seismic load and the bending moments of the walls
in  the x direction on the basis of /4 /, taking only the f ir s t  mode of vib
ra tion  into account. The height of the building is  H = 82.3 m, the mass 
is  m = 2.65 x 1СГ kg/m. Let the factor К = .01. (This can be calculated 
from tables of /4 / . )  The expression of 8  ̂ is  the following:

3 . = T.  ̂ , but 6 < 8 • c  3 .l  l  ’ - l

F ig . 9, Plan of the investigated bu ild in g
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i )  Let us assume that the connection of frames are not r ig id ,  hence,
only the walls resist the seismic load. In th is  case a = 0.

4
The in e rtia  of a shear wall I = 7.64 m , and its  Young's modulus

9 2E = 19.5 X 10 N/m . From Table 1 we obtain c = 3.516, hence the period of 
vibration (4.13)

T1
2 -n 82.3^ A .66 X 105 

3.516 * 4x19.5xl09
B.068 sec .

From the previous expression we obtain = 0.6, and from Table 2 Ф̂ =1.566. 
The function of the seismic load (3.4) is  the following:

H(X ) = 0.01 X 1.66 X 105 X 9.81 X 1.566 x 0.6 w(x) = 24520 w^x) N/m .

The bending moment (5.1) taking = 0.2844 from Table 3a into account is 
the following:

MB1(x) = 0.01 2-66 * 10----x 9-S1 1.566 x 0.6 x 02.32 x 2844 m01(x) =

= 11.800 x 106 mD1(x) Nm

The functions m^(x) and w^(x) can be found in Figs 4a and 5a, respectively.
i i )  We assume that the frames take part in load bearing. The height

of the floors is h = 2.97 m, the length of the beams is  1 = 3.70 m, the
-3 4ine rtia  of the beams and columns are I. = 0.579 x 10 m , and I =

-3 4 D c= 2.133 x 10 m , respectively. The Young s modulus of the frame is  Ef  =
9 2 1= 23 x 10 N/m . The number of beams and columns are the same n = 44,

m = 44. The replacement shearing r ig id ity  of the frame is the following
/ 1, 10/ :

s = ( Э” 1 + S“ 1 ) = ( 2.936'1 + 0.640"1 ) x 109 = 0.525 x 109 N ,

where

Sc

Sb

12 I q 12 x 2.133 x 10
m E - ---- = 44 x 23 x ltT  ------------------~ -

-9

-f  h2 2.97

n E
12 I. q 12 x 0.579 x 10

= 44 x 23 x 10 --------
-3

f  1 h

= 2.936 x 109 

= 0.640 x 109

N , 

N.3.7 x 2.97
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From expression (4.12) we obtain:

a
4 X / .64 X 19.5 X iu

and from the f i r s t  three tables the following values can be calculated: 
c^ =6.08, = 1.50, = 0.150, hence the period of vibration (4.13)

and 8 = 0.6. The function of the seismic load 83.49 is  the following:

H(x) = 0.01 X 2.66 X 10 X 9.81 x 1.50 x 0.6 w(x) = 23480 w^x) N/ml .

(This load is less than in  case i )  in spite of the fact that the structure 
is  more rig id  than in  the previous esse, which is  a paradox as well. This 
occurred because of the sim plified calculation of (3.) The bending moment 
is  the following:

which is the half of the previous one. The functions w- (̂x) and m ^(x) are 
very close to those given in Figs 4a and 5a at a = 5, respectively.

1. M ü lle r, F .P .-K e in tze l, E .: Erdbebensicherung von Hochbauten. W. Ernst & Sohn, B e r lin , e tc . 
1978

2. Dowrick, 0 .1 .: Earth re s is ta n t design, lohn Wiley & Sons, London, etc. 1977

3. Green, N.B.: Earth quake re s is ta n t building deisgn and construction . Van Nostrand Reinhold 
Company, New York, e tc . 1981

4. D irectives of analysis fo r  earthquakes. (In  Hungarian.) MI-04.133-81. Építésügyi Tájékozta
tá s i Központ, Budapest, 1981

5. Hunyadi, F .: Analysis o f b u ild ings  for earthquake in  Hungary. (In  Hungarian.) Mélyépítés
tudományi szemle. 21 (1971), 279-282

6. Csonka, P. : Beitrag zur Berechnung waagrecht b e la s te te r Stockwerkrahmen. Die Bautechnik. 39, 
(1962), 237-240

MB1(x) = 0.01 2.66 x 105 x 9.81 
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ESTIMATION ОТ IORSIONAI RIGIDITY HY MEANS 01 IDE 

FINITE ELEMENT METHOD

PÁCZELT, I . *  - SZABÓ, T.**

(Received: 15 November 1991)

The upper and lower l im it  o f the to rs iona l r ig id i t y  o f a compound bar cross section 
o f anisotropic m ateria l w ith , however, homogeneous subdomains is  determined by means of 
the f in i t e  element method, making use of the extremal p rin c ip le s  of complementary energy 
and po ten tia l energy. Stress function U and warping function  ф are used as approximation 
f ie ld s .  Formally, the c o e ff ic ie n t matrices of the equation systems obtained as a re s u lt 
o f d isc re tiza tio n  of the functiona ls to  be minimized are id e n tica l in respect o f d i f 
ference o f the matrices o f the material constants w hile  s l ig h t ly  d iffe re n t as fa r as the 
loading sides are concerned. The boundary condition can be simply provided fo r U in  case 
o f a m u ltip ly  connected domain by means of 'fo llo w in g ' po in t techniques along the holes.

Isoparametric elements are used as a f in i t e  element. According to the resu lts  of 
ca lcu la tions, a very small value is  obtained fo r the d iffe rence  between the upper and 
lower l im it  o f to rs io n a l r ig id i t y  provided elements o f a s u ff ic ie n t number are assumed.

Introduction

Since St. Venant, researchers have paid, and are s t i l l  paying, sig
n ifica n t attention to investigation of the problem of torsion of prismatic 
bars /1, 2/ and /3, 4, 7/, respectively.

Use of variation princip les of the theory of e la s tic ity  /5 / offers a 
reasonable way to estimate the torsional r ig id ity  of the cross section 
through the upper and lower lim its .

This work uses the f in ite  element method / 6/  to analyze the torsion 
problem of prismatic bars of anisotropic material by means of variation 
princip les. The mechanical boundary value problem is  formulated for stress 
function U and warping function Ф /2 /, then, by means of variation p rin 
ciples based on to ta l complementary energy and potential energy minimum

*P áce lt, Is tván, H-3529 M iskolc, Perczel Mór u. 30, Hungary 

Szabd, Tamás, H-3529 M iskolc, Aulich u. 26, Hungary

Akadémiai Kiadd, Budapest
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princ ip les, the boundary and f i t t in g  conditions for the approximation 
f ie ld s  to be 'a p r io r i ' sa tis fied  are cleared.

The f in ite  element method is  taken as a basis for approximation of 
the fie ld s , giving the relationships to produce the matrices and vectors 
in  the equations to be solved as well as the method to calculate torsional 
r ig id ity .

From the relationships applying to the cross section composed of d i f 
ferent materials, also the formulae applying to the cross section of homo
geneous isotropic material are derived simply. The f in ite  elements present
ed can be easily b u ilt  in to  the usual f in ite  element program systems.

The mechanical problem resulting from the S t.Venant torsion of a 
prismatic bar of axis z, consisting of d iffe ren t materials (e = 1, . . . ,  E) 
sticked together, unloaded over the external surfaces but loaded at both 
ends, can be discussed on the basis of stress function U = U(x,y) on the 
one hand while warping function <j> = Ф(х,у) on the other hand.

The stressed state of the body is  described by stress vector _t = 
= Txz_i + fy Z j  while i t s  displacement f ie ld  by displacement vector jj = 
= u + V j + wk = z (к X R) + wk, where 0 is the angle of tw is t per unit 
length and _R = xi_ + yj_ is  position vector.

The shear stress arisen, t_, can be calculated as

Basic relationships

t =9 (VU X к ) , jr = Q . (уф+ к X R) & , ( 1 )

where
D = Q' 1 - second-order tensor of material constants.

Assuming e lastic material shear stra in  vector Y = Y x_, _i + j  com
posed of specific shear stra ins Yxz, YyZ is :

Y = Ç . T Y = Vw +(k X R) & ; w = 0ф (2)

T = D . Y .

With no mass forces existing, equilibrium equation
V. T = 0 (3)
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is automatically sa tis fied  by U while equation

y . D . (УФ+ к X R) = О Д € A (4a)

applies to Ф.
According to the Beltrami-Michel compatibility equation, the basic 

equation for U is

( V . g . (V U)) = -2 R 6A . (4b)

With external normal д introduced because the external surfaces are 
unloaded,

T. . д = 0 , (5)
where U = const, 
boundary condition

д . 0 .  v < t > - ; t . Q. R . =  0 Д e A

applies to the boundary of the cross section.
Here

t  = к X n
is a tangential unit vector.

The following dynamic f i t t in g  condition applies to the boundary of 
the prismatic bodies of d iffe rent material properties constitu ting the bar 
(see Fig. 1):

R . r  e j— c

that is

vue . t e + VlP . t^ = 0 ne . Qe . v<t> 6 + n  ̂ . Qe . Уф ̂  -

- ( t e . De + . DJ) . R = 0 , (6)

while the continuity (equivalence) of the displacement is  ensured by the 
existence of conditions

ne . ge . vue + n  ̂ . ç j . VlP = 0 , фе = R íT  . (7)



214 PÁCZELT, I.-SZABÚ , T.

F ig . 1. Cross section co ns is ting  o f homogeneous an iso trop ic  subdomains o f number N
( Г -  boundary, p. -  boundary o f hole, r eJ -  jo in t  between elements e and j )  

n c

In case a hole is  present, the following in tegra l relationship is 
ex isting:

j>n • C . VU ds = 2AU (S)

where A. is the surface of the hole, h
In the knowledge of tors ional moment My acting upon the cross sec

tio n , torsional r ig id ity  Iy can be defined, as follows:

which is
= Ji • J" Я x !  dA = 01-]-, (9)

= 2(JU dA + 2 'Ah Uh) , ( 10)
(A) h

on the one hand, where is  the value of function U arising on the boundary 
of the hole and, using function

U = S Л  X 0 . (УФ + к X R) dA . 
' (A)

on the other hand.

( 11)

Use of variation princip les

For the approximate solution of the above boundary value problem, the 
to ta l complementary energy minimum principle is  used on the basis of U 
while the tota l potential energy minimum princip le on the basis of Ф /5 /. 

Suppose sideplate z = 0 of the bar is r ig id ly  clamped while endplate
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z = L is displaced angularly like  a r ig id  body. Thus the complementary 
energy :

TTc = j  f>2 \ dz 2  j  ( VU X к) . g . ( VU ж к) dA 
О e (Ae)

- 9 2 L 2S ! (к X R) . (VU x k )  dA 
e (Ae)

= -j O2 L ( V  I VU . g . VU dA + 2 £  ) VU . R dA) ( 12)
e (Ae) 6 (Ae)

The Gauss-Ostrogradski integral transformation theorem can be used to 
prove that, in case of U satisfying the boundary value problem,

J (13)

and, on the other hand, in stationary position, 6 -n̂  = 0 , of functional 
( 12), the relationships given in (4) thru (8) are existing in  case of a 
continuous U and compliance with the boundary condition according to (5) 
(see Appendix A .l) .

Total potential energy associated with the problem:

TT
P

1
2 f  dz 2 '  J I

0 6 (Ae)
Q . Y dA =

= о2 L \  у  I (УФ 
e (Ae)

+ к X R) . Q ( V  ф + к X R) dA = L
I T
T

Accordingly, T
X  = Z e  = X  .

Л  2
(14)

For variation equation б tt̂  = 0, i t  can be shown (see Appendix A.2) 
tha t, with the continuity of Ф 'a p r io r i ' sa tis fied , the equations as well 
as the boundary and f i t t in g  conditions of the boundary value problem for 
Ф are existing /3 / thru / 6/ .
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Due to inequality

- ír c (U*) 4 - t t c ( U )  = 'КрСФ) С 1Тр ( ф Х )  ,

votiere IIх , Ф* are approximation fie lds , inequality

I T(U *)é  I T ^  1Т(ФХ) (15)

applies to torsional r ig id i ty .

Use of the f in i te  element method fo r minimization of 3

The functional defined under /12, 13/ shall be minimized by f ie ld  U 
which is  continuous and re su lting  in a continuous value at the boundaries.

With approximation functions NL(x,y) (e.g. isoparametric elements) 
selected as is usual in  the f in ite  element method and approximation

U* = 2  Ni (x,y) Ui = Ц у 
i

used, where Lh is the nodal stress function, the gradient w il l be

VU* = J£ (P *(x ,y ) u. i  + P.(x,y) Ui  j)=£? 
i

v u * o

y = В у ,

(16)

(17)

while the vector containing the tangential stresses

where PXT = [P* . . .  P* . . .  PX]  X ^  Y

( 1 0 )
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vector of nodal stress function. Then, using the above relationships,

0 I T , .  T , y  y b y -  y I (19)

where the r ig id ity  matrixis

and the loading vector:

( 20)

( 21)

According to the minimum condition,

( 22 )

and

On the basis of (9), (13), (15),

I T(U*) = yT £

(23)

(24)

Accordingly, using (17), the tangential stress resulting from torsional 
moment My acting upon the axis:

t = - г 1— В и . (25)
и f
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Use of the f in i t e  element method fo r minimization of ^

After simple reduction, func tiona l^  according to (14) takes the fo l
lowing shape:

^  I уф • D . УФ dA + J (j< x £) . D . Уф dA) +
e 42 (Ae) (A6 )

2 ' H  £  ■ Í  • R dA . (26)
6 (A6)

Using the approximation according to (16) fo r the warping function,

2?Ni (x,y) ф1 = Ц Ф , (27)!>* = 2 : 
i

where N - approximation, matrix,
Ф - vector of nodal warpings.

7Ф

а Ф
Э X

э Ф

_ V
i

p - ( x , y )

P - ( x , y )

Ф1 = I (28)

Thus

<£. = \  t T Й  - Î J a + 2 (29)

where, with the matrix of material constants of dimension D(2x2) introduced,

,TК = j  B1 D В dA
(A)

(30)

g = f
(A)

]11 У + °12 x

°21 y 0^2 x

dA (31)
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j  RT 0 R dA ;
X

В =
(A) - У -

Due to the minimum condition,

К Ф =

and thus

\  ФТ g +
I *  1 Т (Ф )Г

tha t is the upper l im it  of torsional r ig id ity  is :

1Т(Ф*) = Ip - л  mt* 9  = T  •

(32)

(33)

(34)

(35)

The shear stresses (1) taking into consideration of (2B) can be expressed 
as

MT Q (§ Ф +

î - ï ï ‘  "

The position co-ordinates of the centre of gravity of the cross sec
tio n , the value of 'po lar' second-order moment I*  according to (32) are 
determined by numerical integration, using isoparametric elements.

y

(36)

The case of a homogeneous cross section of isotropic m aterial

In this case, stress t_ according to (1) shall most reasonably be cal
culated by introducing shear e la s tic ity  factor G:

T = G 0( VÜ X k), or T = G 0(V Ф + к X Ю , (37)

that is
U = GU ; g = G I  ; Q = i  I (38)

as follows from a comparison of (37) and (1), 
where I - identity tensor.
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Now, according to (4a, b),

V2U = -2, У2 Ф = 0 R t  А (39)

while at the boundary,

U = const, Уф. Ц = R. • t. ReT (40)

Assuming the cross section to be of identica l material,

MT = G Ö I T (41)

can be written in place of (9), 
where

applies.
Now the r ig id ity  matrices according to (20) and (30) are identica l,

§ = j  §T I B dA = Ç , (45)
(A)

loading vector f  is  id e n tica l with that according to (21), while

У =
(A)

pY DX X -  P:  у

p Y DX
P . X -  P . у  

1 . 1 7

dA (46)

With (3G) taken into consideration,

or

tha t is ,
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IX

P

and

dA being polar second-order moment,
(A)

I T(U*) = yT f
M_T 
G О

(47)

(40)

I T( Ф

Stress T is  calculated according to (25), (36) invariably.

(49)

Examples

Example 1
To illu s tra te  what has been said above, le t  torsional r ig id ity  Iy of 

the cross section schematically illu s tra te d  in Fig. 2 be determined by 
means of a process based on functions U and Ф . Limits

1,3860 . 10° < I T i 1,3861 . 108

have been obtained for torsional r ig id ity  with the f in ite  element mesh ac
cording to Fig. 3a. In calculations taking U as a basis, boundary con
d ition  U = 0 is  assumed for boundary 1 while the condition U |r  = const is 
met by subordinating the nodal points to point x at boundary 2 .

F ig . 2. Cross section w ith  a hole in  i t
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F ig . За. Mesh of cross section

F in . 3b. Stress d is tr ib u tio n  along y = 0
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F iq . 3c. D is tr ib u tion  o f stress fi 
— 0--------  red

In calculations based on Ф, i t  is  enough to assume Ф = 0 at one 
point. In th is  case, deplanation w of the cross section appears in re
la tion  to th is  point (w = 0ф (x,y).

The shear stress arising along axis x in case of moment. NL = 106 and 
stress <5recj at the boundary and axis x of the cross section are i l lu s 
trated in Figs 3b and 3c, respectively.

Example 2
The second example is  the St. Venant torsion problem for a square 

cross section of sides of a length of a = 100 mm illu s tra te d  in Fig. 4. 
The values of torsional r ig id ity  obtained for a f in ite  element mesh ac
cording to Figs 4a-d as well as the maximum values of shear stress arising 
at the midpoint of the sides in  case of a torsional r ig id ity  of Mj = 10̂
Nmm are tabulated in Table 1.

6 4Polar second-order moment of the cross section: I = 16,666 .1 0  mm . 
I t  can be clearly seen that inequality (12) and conditions L  i  I are 
sa tis fied . The mesh according to 4d supplies p rac tica lly  the exact solu
tion.

With the same cross section divided in two along axis y, assumed to
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Table 1

F in ite  element 
mesh

I T/106 (mm4) T (MPa) max

U Ф Ü Ф

4a _ 16.666 _ 3.00
4b 13.971 14.167 5.579 5.294
4c 14.049 14.063 4.810 4.847
4d 14.057 14.058 4.806 4.806

1

a) 1

2

b) 2

F ig . 4, Torsion o f a square cross section in  case o f d iffe re n t f in i t e  element meshes

consist of two d iffe ren t materials with material constants G=Gp3G461.538 
MPa, G2=2Gp inequality

I T(U*) = 7,5752 . 1011 S I T < 1Т=Ф*) = 7,5750 . 1011

is  obtained in case of mesh according to 4d. By moans of relaxation method, 
Ely, I.F . and Zienkiewicz, U.C. /7 / obtained a value of 0,1941 GL4 =
= 7,4654 . 10^ for I у while Ecsedi, I .  /3 / estimated Iy(U*) = 0,1515 GL4 = 
= 5,8269 . 1Ü11, 1у(ф*) = 0,25 GL4 = 9,615 . 1011. Here L is  the length of 
the side of the square. I t  can be seen that p ractica lly  exact solution has 
been supplied by the f in ite  element method also in th is case.
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Example 3
The beam schematically illus tra ted  in Fig. 5 is  reinforced by a com

pact cylinder of radius and/or a pipe of radius R ,̂ R2 in such a way 
that the e lastic coeffic ien t of E2 w il l considerably exceed that of the 
orig inal cross section that is

Ex = 2,14 . 105 MPa, E2 = 5,0 . 105 MPa, * = 0 , 3  .

R2/R  =0.7
a) b) c)

Fig. 5, Torsion o f sp indle (a) Homogeneous cross section ; b) Reinforcement by c y lin d r ic ,  
compact, h igh-strength  core; c) Reinforcement w ith No. 2 high-strength pipe)

Table 2

Structure 5a 5b 5c

I T(U*) /Nmm2/ 0.99336 . 1013 1.1357 . i o 13 1.3150 .. i o 13

1т(фК) /Nmm2/ 0.99364 . 10'3 1.1360 , i o 13 1.3153 ., i o 13

P 1.697 (1.698 U) 1.446 1(1.4457 U) 1.1765

P1 0.9479 0.7334 0.9553

°red  /MPa/ P2
0.9485 1.986 2.5906

Q 1.336 1.185 1.0252

0.5966 0.5749 0.6821

°2
0.5966 1.558 1.8485

The values of torsional r ig id ity  according to (24) and (35) in case 
of R = 100 mm together with the values of stress obtained at some points 
for a torsional r ig id ity  of My = 10° Nmm are tabulated in Table 2.

The values determined by calculaton on the basis of U and ф d iffe r  
from each other in the fourth d ig it. The values of stress according to 5a
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F ig . 6a. F in ite  element mesh o f spindle

and 5b have been determined on the basis of U while those according to 5c
on the basis of ф. The upper and lower lim its  obtained for torsional
r ig id i t y  are practica lly id e n tica l. The area of the cross section is  A = 

u  ?= 2.8146 . 10 mm while the values of in te rtia  calculated for axes x and 
у are I x = 5,3084 . 107 mm4 and I  = 7.6124 . 107 mm\ respectively. In
the case denoted by 5a, there exists inequality Iy < I  = I x + I  .

The f in ite  element mesh associated with structures 5a and 5b is i l 
lustra ted  in Fig. 6a while stress a ^ arising along the typical lines of 
s truc tu ra l elements 1 and 2 in case 5b is  given in  Figs 6b and 6c, respec
t iv e ly .  Higher stresses arise in the internal cylinder of higher r ig id ity ,  
Eg >  Ep than in the external body.

In case of cross section 5c, Fig. 7a shows the mesh while Figs 7b, c 
ind icate stress o rg(j. The values of stress are higher in the internal 
pipe than in the external body also in th is  case, moreover, the maximum of 
°red *п internal Pipe is  higher than the value in case of 5b. The
stresses at point P, Q of the external body reduced as compared with the 
state  according to 5a while those at points P^, Q0 increased considerably 
(approximately threefold).
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F in . 6b. Stress a a ris ing  in  s truc tu re  shown in Fig. 5b 

along ty p ic a l lin e s  o f the exte rna l body

Conclusions

Solution of the St. Venant torsion problem permits the torsional 
r ig id ity  of any arb itrary cross section to be determined. Using the 
classic variation principles of the theory of e la s tic ity , local approxi
mation ( f in ite  element approximation) provides satisfactory lim ites  for 
torsional r ig id ity .

The numerical examples presented above given, in fact, a proof of 
what has been said above. For the calculations, the 'to rs iona l' f in i te  
elements can be simply b u ilt  into the usual f in ite  element program systems.

The elements b u ilt  into FEM-3D program system are isoparametric 
elements of ß or 6 nodes. To illu s tra te  the stressed state graphically, the
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erld;  1 986 MPa

Fiq. 6c. S tress rí . a ris inq in  s tru c tu re  shown in Fiq 5b — --------  гео
along ty p ic a l lines of the in te rn a l body

cross section is divided in  subdomains of a d iffe ren t material each. In 
th is  way, the gap in  stressed state at the boundary of subdomains of d i f 
ferent material can be illu s tra te d  in a convenient way.

Appendix

A .l S tationarity1 of to ta l complementary energy
Complementary energy of a prismatic bar made of d ifferent materials, 

unloaded over the external surfaces, with given displacement at endplate 
z =L :

L

J dz 2 ?  j  X  ■ X  dA dz -

6 (A6)
Í  !  • u dA
(A®)

1
" c  '  2 e

(A .l)
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Fin. 7a. F in ite  element mesh o f sp ind le  according to F ig. 5c

where - summation of subdomains of number N constituting the cross 
section.

With stress function U, stress _x and shear strain vectors _Y:

T = T i  + г j  = 0 ( VU X k) , — xz — l yz ^  —

Y = у i  + y j = C . x ,— xz — yz ^  ’

where Ç -  fourth-order tensor of material constants,
V -  Hamilton's d iffe re n tia l operator. 

Displacement taking place in the bar:

j j = u _í  + V j  + w к  ,

jj = wjk + & z (J< X R) ,

(A.2)

(A. 3)

where the f i r s t  term results from warping of the cross section while the



230 PÂCZELT, I.-SZABÚ , T .

6rfd = 1.176 MPa

F ig . 7b. Stress О a r is in g  in  the external body o f s tru c tu re  shown in  F ig. 5c — --------  red

second term stands fo r the rigid-body type angular displacement of the 
cross section,

& - angle of tw is t per un it length,
R=x_i+yj - position vector in  the cross section,

z - co-ordinate of the bar along the longitud ina l axis.
Using the displacement fie ld ,

Y = V w + ( к X R ) 0 . (A. A)

With (A.2), (A.3) taken into consideration,

o 2 l ( 2  1 V и . Ç . V U dA + 2 £  j V U . R dA j1 e (Ae) 6 (Ae) j

and with the f i r s t  va ria tion  of irc taken,

(A.5)
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F ig . 7c. Stress g ar i si ng in the in te rn a l body o f structure  shown in  F ig . 5c

ŐTT = d 1 L 2 ' 1 ( 6 VU . Ç . VU + 6 VU . R) dA ,
6 (A6)

then, with also iden tities

6 v u  . g . v u  = ( v o u )  . ç . v u  = ( v 6 u  . g . v u )  -  s u ( v .  g . v u )

<$VU.R = ( V Ó U ) . R = ( V ó U . R ) -  6 U ( V . R) = ( Vő U . R) - 6 U . 2 ,

and/or the Gauss integral transformation theorem

I V ■ ( ) UA = j д . ( ) ds 
. ne
AB Г

taken into consideration, we can write :

á j = бтт с
0 L е ре

— {  ) ( д  • Ç • V U ) ó U d s +  ( n . R ó U d s -

ŐU
(Ав)

( VU . CVU) + 2 dA > •
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Fig. А Л . Geometrical cha racte ris tics  o f a compound cross section 
(N -  number o f subdomain; boundaries: Г -  e x te rn a l, Г = P,+ П -  hole;

e e l ° e ' eN 1 2
p in t  between subdomains: P 6= Г 6 + . . .  + Г e^+ . . .  + Г  6 , e = 1, . . . , n )  

c c c c

Considering that Г е can be divided in boundary sections Г  ̂ (external), 
V l  (jo in ing) and (hole) (see Fig. A .l)

and
P

т_ . д = Q<> U const 
at the free boundaries (P1̂ , P^)>

6 j = jv / ] ( n . C . V U  + n . R )  6 U ds +
IT ^ e

c

+ ) (д . Ç . V U + д . R) 6 U d s -
e 
h

(A6)
<5U ( V VU) dA

)  = °

(A.6)

With the 'continuity of U ensured, dynamic f i t t in g  condition



ESTIMATION OF TORSIONAL RIGIDITY 233

Te О

is automatically existing at the boundary of the elements since, in  the 
knowledge of (A.2),

(VU X ke) . пе + ( V U X k ) j . nd

V lf . t  - VUJ . t  = 0 ,

that means that the directional derivatives along the boundary are identica l

ЭЦ _ Э и 

Э s 3 s
e j

a condition always satisfied in case of continuity IIе =lP.
The integrals according to (A.6) disappear as a result of the a rb it

rary variation of fie ld  U. As a resu lt, the basic equation fo r U is  ob
tained with the last term while additional considerations are necessary to 
clear the physical content of the f i r s t  two integrals.

Let the jo in t effect of elements e and j  be denoted by Г  ^  . Now,
considering only continuity U instead of the f i r s t  integral, we can write

the in tegra l disappearing, since 6U is  a rb itra ry , in such a way tha t the 
expression in parentheses under the integrand is  zero. The equation obtain
ed expresses the equivalence of the displacement. Actually, taking the re
lationships according to (A.4), (A.2) as a s tarting  point,

C .T  = ÍC  . ( V U x k ) =  V w + S (к X R)

6 iwhiclj a fte r m ultip lication by tangentional un it vector jt or jtJ leads to 
expressions

- & ( V U . C)E . пе = V we . t e + nR . R Q and

- 0 ( V U . сЯ . nd = V vjj . t d + . £  0
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with respect to
ns = t s xj< = -l<x_ts (s = e , j)  .

With the equations obtained added, we a rrive  at the equation ex
pressing equivalence of the displacement,

( V U . Q n )e + ( V U . Ç . n r  = 0 R e Г ®j

with respect to the continu ity  of deplanation w as well as to the op
posite orientation of the normals (де = - гг' ).

The second in tegra l according to (A.6), assumed at the boundary of 
the holes,

I (д . Ç . V u + д  . R) 6 U ds = 
e e

h

= 2  6 U ( (n . Ç . V U) ds - 2Ah = 0 ,
h Г  1 h

supplies, except for constant 0, the c ircu la tion  theorem:

X I • dR = 2 0Ah ,

r h

since along the hole, the variation of U is  arbitrary but everywhere 
identica l.

To sum up, to be ' a p r io r i' ensured is  the constancy at boundaries 
PQ, p^, while the continu ity  at the boundary of the subdomains, of stress 
function U in the ca lcu lation based on it . The fie lds satisfying va ri
ation equation 6ттс = 0 correspond to actual f ie ld  since they provide the 
basic equation according to (4b) as well as the continuity and compatibil
i t y  of displacement f ie ld  w. Continuity U, i f  'a p rio ri' assumed, w il l  
automatically sa tis fy  the dynamic f i t t in g  condition automatically.

A.2 Stationarity of to ta l potential energy 
I f  the deplanation,

W = 0 Ф
is  expressed through warping function Ф , the vector of specific shear 
stra ins Y w ill be
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X = ^ ( V Ф + k x R )  (A.7)

while that of the shear stresses

T = 0 Y (D = Ç '1) . (A.G)

Considering that the external surfaces are unloaded while endplate 
z + L corresponds to a surface of given displacement, the potentia l energy 
for the bar under torsion is

*p  = \  {dz 2 í I ■ В • I dA •
0 e (Ae)

After substitution and reduction:

1  JLE
*  .,2,

1_ОL 2 ( v Ф
6 (A6)

g . v Ф + 2(к X R) . g . î  ф dA + const
(A.9)

With the rule concerning derivation of products and the Gauss integral 
transformation theorem used repeatedly, the f i r s t  variation of <£■ is

б X  = ^  6 Ф(п . Q . V ф + д . Q . (к X Ю ds -
e -7

r e

- 2 I 6 Ф ( V . D . V ф ) + ( V . g . (к X R) ) dA = 0 .
6 ç-де  ̂ basic equation)

In place of the second term of the f i r s t  in tegra l, also

- бф (_t . 0 . Ю ds
pe

can be w ritten and thus, with the continuity of ф ensured in case of an 
a rb itra ry value of 6 Ф, the disappearance of the integral results in 
dynamic f i t t in g  condition

(n . Q . 7ф)е +(n . Q . 7ФЯ - ( t e . Qe + . 0^) . R = 0

at boundary Г e^, dynamic boundary condition
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2 • n = 0 с=С>

д . 0 . \ 7 ф - ^ . р . Д = О

at boundaries Pq and P ^ while the disappearance of the integral over sub- 
domain Ae yields the basic equation expressing the value of the quantity 
in  brackets.

I t  follows from what has been said above is  that, in addition to
d e riva b ility , the only requirement to be 'a p r io r i ' met by ф is continuity
while in calculation based on U, Ф is also expected to be constant at
boundaries P , p. .о 1 h
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TRICKLE LATERAL MAXIMUM LENGTH FOR SELECTED 
FLOW UNIFORMITY

SHARAF, G.A.*
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The purpose o f th is  paper is  to  present an a n a ly tica l expression fo r  the physical 
variab les in  la te ra l lin e  design based on p rin c ip le s  o f f lu id  mechanics and dependent on 
hydraulic ch a ra c te r is tic s  o f em itter and la te ra l l in e ,  in  addition to  demonstrate a 
re la tionsh ip  can help in  l im it in g  la te ra l length fo r  a selected flow  u n ifo rm ity . The 
f in a l resulted formula while complex in  form inc lud ing  a l l  variables involved in  the 
design process which are, la te ra l diameter, em itte r cha racte ris tics  and operating 
pressure, spacing requirement, tube f r ic t io n ,  em itte r connection losses, e m itte r con
nection type, discharge u n ifo rm ity , and landslope. To demonstrate the e ffe c t o f some of 
these variab les, graphic so lutions w i l l  be presented based on computer so lu tio n .

NOTATION

Symbols Explanation Units

b Emitter barb diameter mm
d Inside la te ra l diameter mm
D Inside la te ra l diameter m
f Pipe f r ic t io n  facto r -
fe Emitter connection loss as an equiva lent length m
F Reduction c o e ff ic ie n t fo r f r ic t io n  loss in  m u ltip le  o u tle t pipe ~ о
g Acceleration o f g ra v ity m/s
h f Latera l f r ic t io n  loss m
H Pressure head at the em itter m
HE Elevation d iffe rences between in le t  and fa r  end o f the la te ra l m
HF Total pressure loss m
hfe Emitter connection pressure loss m
НМДХ Maximum operating pressure fo r an em itte r m
HMIN Minimum operating pressure fo r an e m itte r m
HN Pressure head at in le t  o f la te ra l m
HO Pressure head at fa r end o f la te ra l m
i Subscript id e n tify in g  a p a rticu la r length ra t io 1/L
1 Given length measured from head end o f the lin e m
L Total L a te ra l lin e  length m
L' Equivalent length o f la te ra l w ith  em itte rs m
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Reclamation, U n ivers ity  o f A g ricu ltu ra l Sciences, H-2100 Gödöllö, Nyisztor té r  1, Hungary
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Symbols Explanation Units

m Flow ra te  exponent -
N Number o f em itte rs  on la te ra l -

P Emitter flow  v a ria tio n %

q Emitter flow  ra te 1/h
Q Latera l flow  ra te 1/h
Re Reynolds number -
s Land slope -
se Emitter spacing on la te ra l lin e m
V Flow ve lo c ity m/s
V C oe ffic ien t o f manufacturing va ria tion -
vm C oeffic ien t o f v a r ia tio n  o f em itter flow  due to  hydraulics -

Total c o e ff ic ie n t o f va ria tio n  o f em itte r flow -
X Emitter discharge exponent -

Introduction

Trickle irr ig a tio n  uses small diameter p las tic  pipes or tubes with 
water emission devices at necessary spacing to deliver water to so il sur
face near the plants. The sizing of tubes fo r a tr ic k le  irr ig a tio n  la te ra l 
is  a decision-making process based on numerous factors. They are crop 
water neads, climate, s o il properties, hydraulic principles, emitter flow 
characteristics, f ie ld  size and topography, irr ig a tio n  and tube economics, 
and c r ite r ia  of water application uniform ity. The relationship among a ll 
the factors is complex. Current la tera l design practice has evolved from 
relationships that were developed for design of other types of irr ig a tio n  
systems. Recent research on several aspects of small tube hydraulics has 
provided new information that can improve the energy, water, material and 
giving system designers better information on which to base decision.

The design of single drip irr ig a tio n  la te ra l lines considering hy
draulic variation has been presented by various researchers. Meyers and 
Bucks, 1975, and Wu and G it lin , 1974 derived the hydraulic energy gradient 
lin e  fo r determining the emitter flow varia tion  and uniformity along a 
la te ra l line. Howell and H iler, 1974, and Warrick and Yitayew, 19B8 devel
oped la te ra l line design equations based upon specific uniformity c r ite r ia  
Watters and Keller, 1979 developed a general f r ic t io n  curve can be used 
fo r graphical solutions associated with la te ra ls  and manifolds. Keller and 
Radrigo, 1979 used th is  princip le to develop numerical solutions for both 
single and pairs of nontaperd la terals on uniforme slopes. Paco, 1985 de
veloped a procedure to determine the length of sections in the case of 
la te ra l lines with two diameters. Benami and Ofen, 1984, and Wu, I .  P.,
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19G5 referred to use polyplot for solving tr ic k le  la te ra l optimum diameters 
and corresponding length for f la t  or sloping surfaces.

Emitter characteristics

The emitter is a most important part of a tr ic k le  ir r ig a tio n  system. 
In la te ra l design i t  is  not possible to discuss la te ra l sizing separate 
from emitter characteristics. Many emitters are sensitive to pressure 
varia tion . As the pressure along the la te ra l line  varies due to pipe 
f r ic t io n , elevation, or accidental restric tions, so does the discharge 
from the emitter. This casues a non-uniform application of water. The sen
s i t iv i t y  to pressure can impose serious lim itations on la te ra l line  length 
for a specified uniformity of irr ig a tio n , especially on sloping land.

The mitter discharge rate is  a function of operating pressure related 
by the equation

q = к  IIх , ( 1)

in which q - emitter flow rate
H - operating pressure
к - proportionality factor dependant on the emitter and units of 

q and H
X - exponent in emitter discharge relationship.

The magnitude of (x) characterizes the discharge versus pressure 
relationship. I t  is  the measure of how sensitive the discharge is  to pres
sure. The value of (x) w il l  typ ica lly  f a l l  between 1 and 0 depending on 
the design of the emission device. For an emitter with laminar flow con
d itions, (x) w il l theoretica lly equal 1. I f  flow is fu lly  turbulant, the 
value of (x) should be 0.5, a perfect pressure compensating emitter w ill 
have a value of (x) equal to 0.

Emitter flow variation

The variation or nonuniformity of emitter discharge in tr ic k le  la tera l 
is the result of a number of factors. Themost important of these factors 
is the hydraulic variation and emitter discharge variation. The hydraulic
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varia tion  along the la te ra l lin e  is  a function of land slope, length and 
diameter of the pipe and em itter discharge relationship. Emitter va ri
ation at a given operating pressure is caused by manufacturing v a ria b ility , 
em itter plugging, water temperature changes, number of emitters per plant, 
and emitter wear. I f  the hydraulic pressure at each emitter can be deter
mined, i t  is possible to determine, the flow variation due to hydraulics 
along the la tera l. The co e ffic ie n t of hydraulic varia tion Vq can be found 
from the following (B ra lts , Wu and G itlin , 1981):

Vd ( 2 )

in  which Sq - standard deviation of emitter flow rates due to hydraulics 
1/h

qm - mean emitter discharge 1/h.
Since no two emitter devices can be id e n tica lly  manufactured some 

va ria tion  w ill exist from emitter to emitter.Solomon, 1977 recommended 
adopting a measure of th is  variation called the coeffic ien t of manufactur
ing variation Vm, given by the following relationship

Vm ( 3)

in  which Sffl - standard deviation of the flow rates due to manufacturing 
1/h.

The values of Vm range from .02 to .2 for the various types of emitters 
(Solomon, 1977). The to ta l em itter flow variation which is  affected by 
both hydraulics and manufacturing was determined s ta t is t ic a lly  (Bralts, et 
a l. 1981) and verified by a computer simulation (Wu, et a l. ,  1985) as 
fo llows:

Vt (4)

The coefficient of flow variation V+ w i l l  also be affected by the 
cases that several emitters are irr iga ting  a tree, or fo r row crops. This 
is  called grouping effects which is generally expressed as follows (Wu, et 
a l . ,  1988):

Vtg V и5 ’ (5)
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in which V. - coeffic ien t of variation of emitter flow when n emitters tg
are grouped together as an un it per plant.

The effect of temperature on emitter flow variation is  not only due 
to en tire ly  viscosity changes in the water, but also due to dimensional 
changes in the emitter with temperature. Benjamin and Tol, 1980 studied 
the e ffect of temperature on emitter discharge. The discharge se ns itiv ity  
to temperature was found to be positive for helical long path emitter 
(x >.5), not s ign ifican t fo r the labyrinth emitter (x = .5), and negative 
for the vortex emitter (x c .5 ). The same results were confirmed by Decroix, 
19B5.

Lateral pressure relations

Emitters may have a designated operating pressure range fo r proper 
discharge, flushing action and safety from rupture. I t  should be recog
nized as pressure lim its  not to be exceeded in  the fie ld  as shown in Fig.
1. A wide range of operating pressure CHMAX - HMINÜ is a desirable quality 
in an emitter. These lim its  should be stated by the manufacturers. Emitter 
operating pressure lim its  imply that HN HMAX and H0> HMIN.

Howell and H ille r , 1974 modified Eq. (1) for the in le t pressure, (HN) 
and pressure head at the far end of la te ra l (HO) as follows:

(q /k (1 + (p/100))) 1/x (6)

(q/k (l - (p/100))) 1/X , (7)

in which p - emitter flow variation allowed in a la tera l line  expressed as 
a percentage, for example +_ 10% from (q) equals a (p) of 10. Equations (6) 
and (7) can be combined to obtain

HMIN HO I 1 -  (p/100) I 1/x rns
HMAX ^  HN '  I 1 + (p/100) I ’

The above relationship relates emitter pressure ra tio , la te ra l pres
sure l im it ,  emitter flow variation and the emitter discharge exponent. A 
graphic solution to Eq. (8) introduced by Braud and Soon, 1979 in Fig. 2 
shows that the selection of emission uniform ity coefficient P and emitter 
discharge exponent x places a f ix  on the pressure ratio  HO/HN allowable in 
the la te ra l. The lim its  of HO/HN must also l ie  within the maximum and mini-
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T

HMAX

T
HF

HO HMIN

Fig. 1. Pressure head re lationsh ips shows la te ra l u p h ill 
HMAX >HN; HMIN <  HO; HE; HF

mum pressure heads required by the emitter for proper operation, HMIN < HO 
and HN <  HMAX.

The pressure drop and elevation differences are what cause the d i f 
ference in HÜ and HN. As diagramed in Fig. 1, pressure head relationships 
in  a la te ra l then, can be described as follow:

HN = HF + HO + HE , (9)

in  which HE = pressure loss or gain due to elevation differences. ( + ) 
means that the la tera l runs upslope and (- ) downslope.

Dividing Eq. (9) by HN yields

HO 1 _ I HF HE I 
HN " 1 I HN -  HN I ( 10)

Introducing the above Equation into Eq. (8) and solving for HF yields

HF = HN 1 ( 1 -  (p /1 0 0 )
I 1 + (p(100)

1/x HE I 
HN ) ' ( 1 1 )
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F ig. 2. Graphic so lu tion  to  equation 8. Relation of HO/HN, P and x

The system pressure here is  characterized by the la te ra l in le t  pres
sure HN, the emitter flow variation (p), the emitter discharge exponent (x), 
and the elevation head HE, a l l  of which impose a lim it on the allowable 
la te ra l pressure loss HF.

Lateral pressure loss

Most tr ic k le  irr ig a tio n  hydraulic analyses ignore any differences in 
pipe fr ic t io n  head loss computations fo r the laminar flow range. The tu r
bulent flow formulas are generally used even in laminar flow range because 
ve locities are so low that head losses are almost neglig ib le. Hence, 
even large re la tive  errors of 30% to 50% in computing the very small head 
losses occurring of the laminar flow portions of the system are neglig ib le



(Watters and Keller, 1970). Many investigators have shown that for the 
small diameter smooth pipes usedin tr ic k le  la te ra ls  the Darcy Weisbach 
Equation combined with the Blasius Equation fo r f  gives accurate predic
tions of la teral f r ic t io n  head loss. The Darcy Wiesbach equation is
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h, f L f  
hf '  f D 2g ( 12)

in  which hf - pipe f r ic t io n  head loss (m)
f  - f r ic t io n  facto r
L - pipe length (m)
D - inside diameter of pipe (m)
V - flow ve loc ity  in  the pipe (m/s) 
g - acceleration of gravity (m/s ) . 

According to the Blasius Equation

f  = Ü.23 Re"25 (13)

in  which Re = Reynolds number expressed as (D V/ u ) , for 2xl0^< Rec 10  ̂ j j  = 

= kinematic viscosity (m2/s ) ,  for water 1.033 x 10  ̂ at 20 °C.
Combining Eqs (12) and (13) yields

hf = 32 (2 g )'1 /U'25 V1-75 D '1-75 L . (14)

Considering V = Q/A, where Q is  the pipe flow rate (m'Vs), and A is  the
2

cross-sectional area of the pipe (m )

hf =.32 (2g) 1 /и ’25(4/3.14)1' 75 D 4’ 75 Q1' 75 L . (15)

Rearranging Eq. (15) becomes

hf = K D'4-75 O1' 75 L , (16)

in  which К = constant, (7.87 x 10 4) for water at 20 °C.
Head losses estimation in pipes with-evenly spaced outlets each with 

uniform discharge must include a reduction coe ffic ien t F necessary to com
pensate for discharge decrease along the lin e . F values can be obtained 
from tables based on number of outlets or can be estimated by using 
Christiansen's Equation which is  mainly used in  sprinkler irr ig a tio n
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F = + — + (m +„ 1)5 , (17)
m + 1 2N 6N^

in which N - number of emitters on the la te ra l
m - the exponent of the flow rate in the fr ic t io n  equation (1.75).

Considering Q = N q and N = L/se, then, Eq. (17) can be modified to 
be as follows:

hf =.4716 d '4' 75 F (q/se)1-75 L2' 75 , (18)

in which hf - head loss due to fr ic t io n  (m) 
d - la te ra l inside dimater (mm)
F - flow reduction coefficient 
q - emitter flow rate (1/h) 
se - emitter spacing (m)
L - la te ra l length (m).

Emitter connection losses in  la te ra ls

The emitter connector barb projects in to  the flow in la te ra l hose 
causes additional turbulance over and above normal pipe fr ic t io n  turbu- 
lance. Early studies on tr ic k le  irr ig a tio n  la te ra ls  tended to confuse the 
emitter connection losses with the pipe fr ic t io n  loss. Howell and Barinas, 
1978, Watters and Keller, 1979, Meshket and Warner, 1985, and P itts  et a l. ,  
1986, suggested that the energy losses across emitter connections should 
be considered in the la te ra l line design. Two methods for calculating 
emitter fr ic t io n  losse were proposed, one being the determination of 
equivalent additional la te ra l length and the other being an equivalent in 
crease in the pipe roughness.

The method chosen to represent the additional minor losses contri
buted by the barbs is  the equivalent pipe method. The head loss contri
buted by the barb is  equivalenttothehead loss due to pipe fr ic t io n  in a 
length (fe) of the la te ra l hose. The spacing between emitters can then be 
increased by (fe) and the fr ic t io n  losses can be computed neglecting barbs 
but including the greater equivalent length. I f  the spacing of the emitters 
is (se), then for purpose of computing head loss, the length of the lateral 
(L) should be increased ot (L1) where
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L' = L se + fe 
se (19)

in  which L' - the equivalent length of the la te ra l with emitters (m) 
se - spacing between emitter connection along the la te ra l (m) 
fe -  emitter connection loss as an equivalent length of la tera l, 

(m).

Watters and Keller, 1978 presented a graphic data on emitter barb 
losses for various pipe diameters and barb dimensions as shown in Fig. 3. 
The following Eq. (with a corre lation coeffic ient of R = 0.99) was based 
on th e ir  results (formed by P itts  and Ferguson, 1986).

fe = 0.25 b (19 d"1-9) , (20)

in  which fe - equivalent length of pipe (m) 
b - emitter barb diameter (mm) 
d - diameter of la te ra l (mm).

Equation (20) can be used to estimate the equivalent length of pipe 
only in  case of on-line emitter connection with the same dimensions in 
dicated in Fig. 3, while fe = 0.23 m in case of in - lin e  type.

By introducing Eqs (19) and (20) to Eq. (18), the la te ra l to ta l pres
sure loss (HF) then, can-be estimated including both fr ic t io n  and minor

7 8 9 10 15 TO 25 30 40

Inside diameter o f the lateral D(mm)

On -  line Em itters
Dimensions (mm) 

Size a _b
1-  Large 5.0 7.6
2 -  Standard 5.0 5.0
3 -  Small 5.0 3.8

Д-In line Emitter

"On - l in e "

" In - lin e *

-L a te ra l line

F ia . 3. Equivalent length of pipe
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Г/. DOWN SLOPE 

Lateral length (L) in meters

Fig. 4, Solution o f equation (23)

losses as follows
HF = .4716 d '4' 75 FCq/se)1' 75 L1’ 75 L 

or
HF =.4716 d 4-73 p (q/se)3-73 L2' 73 ( ( se+j e) / se) .

The la tera l maximum possible length, then can be obtained by combin
ing Eqs (11) and (21) and solving for L

L = 1.314 d1-727(se/q>636 [(F a)-1 HN (1 - c1/x + (HE/HN)J -363 , (23)

in which L - la te ra l maximum possible length (m)
F - (l=m+l) + (1/2N) + ((m+l)3/6 N2) 
a - se/(se + fe) 
c - (1 - P /100)/(l + P/100)

( 21)

( 22)
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1°/. UPSLOPE
Lateral le ng th  (L) in meters

D=10,x=.3-+- D=1Qx = .7 -4 -d =15,x =.3 - a -  D=15,xr5 
D=15x =.7 D z20.x= .3 -û -D =20 .x= .5-o- D=20,x-7

F ig . 5. Solution of equation (23)

HE- L.s
s - la tera l slope (decimal).

Equation (23) includes a l l  the variables involved in the design pro
cess. They are length, diameter, in le t pressure, emitter flow character
is t ic s ,  lateral f r ic t io n ,  emitter connection losses, emitter flow va ri
a tion , spacing requirement, and land slope.

To indicate the e ffe c t of P, d, x, and s on lim iting  the la te ra l 
length, graphic solutions are presented fo r the la tera l maximum length 
versus flow variation fo r three sizes of tubes 10, 15, and 20 mm, under 
three values of x (0.3, 0.5, and 0.7) in case of 1% downslope, 1% upslope, 
and leveled land as shown in  Figs 4, 5 and 6, respectively.

Data were collected from lite ra tu re  fo r comparison and ve rifica tion  
from Howell and H ille r , 1974, Jensen, 1980, and Warrick and Yitayew, 1988, 
respectively.The resu lts are summarized in Table 1.
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LEVELED LAND

Lateral length (L) in meters

D z I S . x ^ - * -  D=15, X;.6 — D=15 X = .7 -o -  0=10, x -1  
- X -  D=20.x= 5 D=20,x =.7-a-  D=20.x =3 - o - D=10,x =.3

F ig . 6, Solution of equation (23)

To demonstrate the e ffect of spacing between emitters on la tera l 
pressure loss, local loss caused by emitters as re la tive  to la te ra l f r ic 
tion is  illus tra ted  versus spacing between emitter as shown in Fig. 7. The 
calculation of th is  curve based on the standard emitter dimensions for 
three tube sizes 10, 15, and 20 mm diameter.

Emitter flow p ro file  along the la te ra l

As shown in Equation (1), the emitter flow is  determined by the hyd
ros ta tic  pressure at the emitter. This means whenever there is  a pressure 
variation in the drip irr ig a tio n  line there w ils l be an emitter flow va ri
ation along the irr ig a tio n  line . I f  the length of the line  is  known, the 
pressure head gain or drop can be determined. I f  an input pressure is
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Table 1
Input and output data fo r comparison

Design Procedure
parameter____________________________ _________________________________re su lts

Howel and H ile r , 1974

Input
P = 9% 17% 9% 17%
q = 3.8 1/h 
X = 0.7 
se= 6.1 m 
d = 16 mm 
H = 3.1 m 
s = 0

Output
L = 347 m 434 m 337 m 425 m
HN = 5.02 m 6.4 m 5.77 m 6.4 m
HO = 4.46 m 3.91 m 4.43 m 3.85 m
HF = 1.3 m 2.24 m 1.31 m 2.48 m
hfe = - - 0.03 m 0.05 m

Jensen, 1980
Input

P = 9% 9%
q = 16 1/h 
X = 0.8 
se= 10 
d = 16 mm 
H = 10.1 m 
s = -1%

Output
L = 260 m 254 m
HN = 12.2 m 11.25 m
HO = 9.7 m 8.9 m
HF = 5.1 m 4.86 m
hfe = - 0.07 m

Input
Warrick and Yitayew, 1988

P = 9% 17% 9% 17%
q = 4 16h 
X = 0.5 
se= 1 m 
H = 9.63 m 
d = 14 mm 
s = 0

Output
L = 126 m 172 m 112 m 141 m
HN = 10.6 m 11.7 m 11.4 m 13.1 m
HO = - - 7.89 m 6.3 m
HF = - - 3.07 m 5.8 m
hfe = - - 0.48 m 0.91 m



OPTIMUM LENGTH OF TRICKLE LATERAL 251

STANDARD EMITTER 

Local loss to fric tion  loss ratio hfe/hf

1 2 3 A 5 6 7 8 9  10
Spacing between emitters (m)

Dr10 mm D = 15 mm D=20 mm

F ig. 7. E ffe c t o f spacing between em itte rs on la te ra l loss

given, the pressure d is tribu tion  along a drip la te ra l can be expressed 
mathematically as follows (Jensen, 1960, and Nakayama and Bucks, 1965):

H. = HN - HF. + HE. , (24)

in which - pressure expressed as hydrostatic head (m) at a given
length ra tio  i ,

HF̂  - to ta l pressure drop (m) at a given length ra tio  i ,
HÊ  - pressure head gain or loss (m) at a given length ra tio  i .  

The emitter flow can be calculated by substituting the above Equation 
into the emitter flow Eq. (1)

q. = к (HN - HF. + HE. ) * . (25)' 1 — 1 '

Removing к by dividing by the emitter flow at HN yields



252 SHARAF, G.A.

DIMENSIONLESS FLOW CURVE

Flow ra tio  q; /q

Length ra tio  l/L

- * - S  = 0 - +— S = r / o  —+ - S r 1 » / o

Fig. 8. E ffe c t o f slope on em itte r flow  p ro f ile

HFi  HEi  J X ,

qi  = ql HN HN
(26)

in  which - emitter flow rate (1/h) at a length ra tio  i ,
- emitter flow rate (1/h) at a pressure HN ( f i r s t  em itter).

The shape of the dimensionless emitter flow p ro file  can be plotted 
from an emitter by emitter analyses. Figure 0 indicate the dimensionless 
em itter flow pro file  fo r em itter have function (q = 1.21 H )̂ fo r 1% down- 
slope, leveled land, and 1% upslope. Figure 9 shows the dimensionless 
em itter flow pro file  fo r the same emitter along leveled la te ra l for 
selected emitter flow va ria tion  5%, 10%, and 15%. Figure 10 indicate the 
e ffe c t of emitter discharge exponent x at constant emitter flow variation 
(10%) where s = 0 for three emitters have the same discharge with x = Ü.2,
0.5, and 0.9.

A basic computer program was written to accomplish the design process. 
The program is able to estimate beside la te ra l maximum possible length for
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DIMENSIONLESS FLOW CURVE

F ig . 9. E ffe c t o f flow  va ria tio n  on em itte r flow  p ro f ile

a given la tera l design, overall pressure loss, pressure loss due to 
la te ra l fr ic t io n , pressure loss due to emitter connections in case of on
line  emitter connection or in -line  emitter connection, la te ra l in le t  pres
sure, pressure head at the far end of the la te ra l. In addition to pres
sure d is tribu tion  and emitter flow p ro file  along the la te ra l, i f  the 
following parameters are given: emitter operating presssure, la te ra l size, 
emitter flow variation, spacing of'emitters along the la te ra l, emitter flow 
characteristics, emitter type connection emitter barb diameter, and land 
slope.

The design procedure is as follows:
1. Estimating of la te ra l in le t pressure (HN) and pressure head at the 

far end of the la te ra l (HO) based on the design c rite rion  (p) and emitter 
flow function (x), (k) using Eqs (6) and (7), respectively.

2. Based on emitter type connection, emitter connection loss as an 
equivalent length (fe ) w il l  be estimated.
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DIMENSIONLESS FLOW CURVE

О 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Length ra tio  l/L

—•“  x=0.2 — x=0.5 —■*-—x=0.9

Fig, 10, E ffe c t o f discharge exponent on e m itte r flow  p ro f ile

3. Assuming an in i t ia l  la tera l length fo r the selected la te ra l.
4. According to th is  guess, number of emitters (N), discharge re

duction coefficient (F), and elevation difference (HE), w il l  be calculated, 
consequently, the la te ra l length.

5. Comparing the calculated la tera l length with the assumed value. 
Ihe design is accepted when the difference is  too small, otherwise, the 
length is  rejected.

6. I f  the design is  rejected, the calculated value w il l be assumed as
an in i t ia l  value to the la te ra l length and step 4, 5 w il be repeated u n til
a proper length is  found.

7. Once an approximate la te ra l length has been determined, the to ta l 
pressure drop (HF) can be found using Eq. (22), pressure head loss due to 
f r ic t io n  (hf) using Eqs (18), and pressure loss due to emitter connection 
(h fe) as a difference between Eqs (22) and (18).

8. The last sequence of the design process is  a loop that calculate
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the pressure d is tribu tion  along the la te ra l using Eq. (24), and emitter 
flow p ro file  using Eq. (26).

Conclusions

Lateral size appears as a separate parameter in Equation (23). The 
la te ra l length is  proportional to d power 1.727. This means the larger the 
diameter size the longer the length, i f  the rest of variables are constant

In a ll cases the reduction in (x) value allows longer length in a 
given size for a given value of other variables. The advantage of using a 
pressure compensating emitters here is apparent.

I t  is seen that at high (p) values, the increase in la te ra l length 
tends to be ins ign ifican t such the effects of (x) and (d), especially in 
small diameter.

Local losses due to emitter connections in small distance between 
emitters (continuous wet s tr ip  of so il or row cu ltiva tion) have to be 
taken in consideration, especially in small la te ra l diameter while neg
lecting i t ,  is possible in  wide-spaced crops lik e  orchards without sig
n ifican t effect on to ta l la te ra l loss.

The effect of land slope, emitter flow variation, and emitter dis
charge exponent on dimensionless emitter flow p ro file  have been studied. 
The e ffect of (x) seemed to be not s ign ifican t from 0.2 to 0.9.
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FINAL SETTLER BIOLOGICAL ACTIVITY 

IN ACTIVATED SLUDGE PROCESS
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The main ob jec tive  o f th is  study was to develop a matheiratical model fo r the ac
tiva te d  sludge process, which can pred ic t the b io lo g ic a l a c t iv ity  o f the f in a l  s e t t le r .  
The in i t ia l  models were taken from the l i te ra tu re  and modified where necessary. Simu
la tio n  resu lts  were shown in  comparison w ith experimental data fo r the same p lan t.

Introduction

Activated sludge wastewater treatment plants can be described as a 
large complex system with inputs which are not always predictable, and 
with strong interactions among process units. Most activated sludge plant 
operate in a dynamically changing environment, i t  is  common to observe 
large variations in wastewater flow rate, concentration, and composition. 
Experimental evidence has established that the dynamic response of f in a l 
se ttle rs  to sudden changes in flow rate is  nonlinear /1, 2, 3, 4/. Sudden 
increases in flow rate results in rapid increases in the concentration of 
e ffluent solids, but not necessary in the concentration of soluble sub
strate. Such findings support the hypothesis that the fin a l se ttle r serves 
as a bioreactor when the plant receives sudden increase in flow rate.

Mathematical modeling of wastewater treatment processes can serve 
many purposes. For the researcher, modeling serves as a conceptual frame
work upon which to build and test hypotheses, thereby extending knowledge. 
Because there is  no consensus in the lite ra tu re  concerning the bio logical 
a c tiv ity  of the f in a l se ttle r, a study was undertaken to develop a model, 
which can predict the soluble organics removal in the fin a l se ttle r. For 
the purpose of th is  study, the scheme included only the biological reactor

Sorour, Mohamed Tarek, C iv i l  Eng. Dept. Faculty o f Eng., Tanta U n ive rs ity , Egypt

Akadémiai Kiadd, Budapest
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and the fin a l se ttle r. The models for individual process units were taken 
from the lite ra ture  and modified where necessary.

A review of the environmental engineering lite ra tu re  revealed no com
prehensive mathematical models that postdate the one developed by the In
ternational Association of Water Pollution Research and Control (IAWPRC) 
group /5 /. Consequently, i t  v á ll be used as a base for developing the pro
posed model.

The orig inal models

IAWPRC task group model
The activated sludge model employed is  a reduced version of that pro

posed by the IAWPRC group. The reduced version incorporates only those 
features which relate to the u tiliza tio n  of ' carbonaceous material in 
an aerobic activated sludge system. I t  is  presented in matrix format ac
cording to Pettersen /6 / in  Table 1. The components modeled are (according 
to the notation proposed by Grau et al. /7 /) :  

active biomass (Xg);
particulate products of biomass decay (X ) ; 
slowly biodegradable substrate (Xg); 
ine rt particulate (X-j- ) ; 

readily biodegradable substrate (S ); and 
dissolved oxygen (S )

a l l  expressed as chemical oxygen demand (COD). In the following the slowly 
biodegradable substrate w i l l  be referred as particulate substrate and the 
read ily  biodegradable substrate as soluble substrate.

The processes modeled are:
1. Aerobic growth of biomass. Soluble substrate (S ) is  used for 

growth by the active biomass (Xg). There is  an associated use of oxygen

< V -
The process is  modeled by the Monod expression together with a switch

ing function which reduces the rate to zero in the absence of oxygen.
2. Death of active biomass: Organism decay is  modeled according to 

the (Death-regeneration) hypothesis. The organism dies at a certain rate; 
a portion ( f)  of the material from death is  non-degradable and adds to the 
particu la te  products of biomass decay (Xp) which the remainder (1 -f) adds 
to the pool of biodegradable particulate COD (Xg).



Table 1

The reduced IAWPRC model fo r  u t i l iz a t io n  o f carbonaceous m ateria l in  an aerobic activated sludge system

Component i Rate expression

j  Process

1 Growth

2 Decay

3 Hydrolysis

Stoichiom etric 
parameters :

True growth 
y ie ld : Y

Fraction o f biomass 
leading to  pa rticu la te

Products: f

(1 - f)

-1

s
1̂_
У

S
0

- l ( l - y )

В

H Kv+(X_/Xn) к  +s 
X S В o o

K ine tic  parameters:

Maximum sp e c ific  growth ra te : p  

Half sa tura tion constants:

К , К , К 
s o x

S pecific  decay ra te : b

Ю
ЧЯ
40

BIO
LO

G
ICAL AC

TIVITY IN
 ACTIVATED SLUDGE PROCESS

A
ct

iv
e 

Bi
om

as
s

P
a

rt
ic

u
la

te
 P

ro
du

ct
s 

o
f 

Bi
om

as
s 

De
ca

y

S
lo

w
ly

 B
io

de
gr

ad


ab
le

 S
ub

st
ra

te

In
e

rt
 P

a
rt

ic
u

la
te

s

R
ea

di
ly

 B
io

de
gr

ad
ab

le
 

S
ub

st
ra

te

D
is

so
lv

ed
 O

xy
ge

n 

C
on

ce
nt

ra
tio

n



26Ü SOROUR, M.T.

3. Hydrolysis of particu la te  COD: Biodegradable particulate COD in 
the in flu en t is assumed to be enmeshed in the sludge mass within the sys
tem. The enmeshed material is  broken down e x tra ce llu la rly , with the pro
ducts of breakdown adding to the pool of readily biodegradable substrate 
(S ) available to the organisms fo r synthesis purposes. This (hydrolysis/ 
so lub ilisa tion ) process is  modeled on the basis of Levenspiel's surface 
reaction kinetics /8 /.

The fundamental equation fo r a mass balance w ith in any defined system 
boundary is :

Rate Rate Rate Rate of
of = of - of +_ production

accumulation input output by reaction
The system reaction term usually denoted by r .  fo r compound i  (r . is 

the production of compound i  per unit time per u n it volume /NT (L T )_/
must often account for the combined effect of a number of processes.

For example from Table 1, the rate of reaction fo r the compound bio
mass (Xg) at a point in the system would be:

г Xn / U K_ + S ( - 1) bH XB (2)

Sim ilarly for the component soluble substate (Ss):

г S = -P -
Y К + S s s К + S о о К +(X /Х„) К + S 

X s В о о
( 3)

Typical values of the stoichiometric and k ine tic  parameters are given 
in  Table 2 according to Henze et a l. /5 /.

However, i t  should be noted that the model of IAWPRC considers only 
the bio logical reactions in  the treatment system and treats the se ttle r as 
a separation point with no hold-up. For the purpose of th is study i t  was 
necessary to link the IAWPRC to a se ttle r model. The layered se ttle r model 
of Vitasovic /9 / was chosen fo r this purpose.

The layered s e ttle r  model of Vitasovic

This model is based on the flux theory and can be considered as the 
re s u lt of several years continuous development /3 , 10, 11/.
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Table 2
Typical parameter values a t neutra l Ph and 20 °C fo r  domestic wastewater 

(Henzet e t a l . ,  1987)

Parameter Symbol Units Value

S to ich iom etric  parameter
True growth y ie ld У g c e ll COD^formed, (g COD 

oxidized)
0.46 -  0.69

Fraction o f biomass f dimensionless 0.08
leading to  par
t ic u la te  products

K in e tic  parameters
- 1

Maximum biomass 
s p e c ific  grow rate r day 3-13.2

Hydrolysis h a lf-  
sa tu ra tion  CO-

K *
X B .1 

C0D.(g COD) 0.15
e f f ic ie n t

-3
Biomass h a lf - к g COD.m 10-180
sa tu ra tion  co
e f f ic ie n t

Oxygen h a lf к CD О
О

3
1 «W
/J

0.01-0.15
sa tu ra tion  co
e f f ic ie n t

day 1Biomass decay 
c o e ff ic ie n t

b 0.09-0.15

slowly biodegradable

As shown in Fig. 1 the influent flow enters the se ttle r in the feed 
layer ( f )  and is  assumed to be instantly and completely d istributed in the 
layer. The model considers at th is  time one compound only: suspended 
solids. To handle the solids concentration of a l l  the layers a vector of 
(n) element (X  ̂ where i  = l . . . f . . . n )  is  set up. The concentration in the 
bottom layer provides the under-flow (recycle) concentration.

The solids are moving in the se ttle r due to two effects: bulk flu id  
movement (upward and downward flow) and se ttling .

Solids fluxes due to bulk f lu id  movement are calculated by:

Jup i ( 4 )

where i  - 1 to f
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(Q fe e d  * Q r > X reactor e t i l u e n t

J . - upward solids flu x  due to bulk f lu id  movement in layer ( i )up 1 О
(M/LVT),

QF - effluent flow rate (L'Vt),
 ̂ 2 Ac - surface area of c la r if ie r  (L )

and

dn i
qR • Xi  

Ac
(5)

where i f  to  n

J^n downward so lids flu x  due to bulk fluidmovement in a layer 
( i )  (M/L2/T ),

Qp - recycle and waste flow rate (Y?/ 1 ) .
S e ttlin g  solids fluxes can be calculated by:

J  . = V . . X. , s i  s i  l  ’ ( 6)

where i  - 1 to n,
2

Js;l - solids flux  due to se ttling  in layer ( i )  (M/L /Т ), 
v  ̂ - settling ve loc ity  in  layer ( i )  (L/T).

S e ttling  velocity can be calculated using the empirical relationship of

F ig . 1. Layered s e tt le r  model
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Vesilind /12/:

si = V - 0 .
-b X. e l (7)

vq -  Stokes se ttling  velocity for a single discrete pa rtic le  (L/T), 
b - empirical parameter.
The material balance fo r the possible groups of layers w ith in  the 

se ttle r are presented in the Appendix.
However, i t  should be indicated that Vesilind's se ttling  velocity 

equation applies only to hindered se ttling  conditions. As the solids con
centration in the upper layers of the c la r if ie r  decreases below the 
hindered se ttling  concentration, se ttling  ve locities predicted by Vesi
lin d 's  equation w il l exceed the actual se ttling  velocity of the floe  par
tic le s  as predicted by Li and Ganczarczyk /13 /. For the mathematical 
representation of th is  phenomenon Takács and Patry /14/ proposed the 
following double exponential equation instead of Eq. (7)

Г - г  floc(X -X . ) - г  coll(X  V • = V l e  о min -  es i о
-X . Л  о min J , (8)

vq -  Stokes se ttling  velocity (L/T),
X. Suspended solids concentration, in layer ( i )  (ML ),

Xmin - f ns • Xo (ML >•
ns non-settleable fraction of X. ,in ’ -ЗчXQ - inflowing suspended solids to the se ttle r (ML ), 

r f lo x _ se ttling  parameter for floes,
г , set t l i ng parameter for the slowly settleable material equation.
Cüi-L (X _x )

The f i r s t  term[vQ.e floe i  min ]  in Eq. (8) re flects the se ttling
velocity of the large, well flocculating partic les.

On the other hand the second term [vQ.e r c o ll^Xi -Xmin^J of Eq. (8) 
is  a velocity correction factor to account fo r the slowly se ttlin g  col
lo ida l partic les.

The equation of Takács and Patry was used in th is  study.

The proposed model
At th is  point the linked model (IAWPRC + Vitasovic) is  however s t i l l  

not capable of incorporating the biological reaction in the fin a l se ttle r. 
Both models assume that the process which occurs in  the se ttling  tank is 
merely one of physical character i.e . no reaction takes place.

The linked model was modified and extended by assuming that each
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layer acts as a complete mix reactor and also was modeled according to the 
IAWPRC model.

The model to be used in th is  study was based on 3 continuous s tirred - 
tank reactors (CSTR) in series with step feed capability to create a range 
of contacting patterns, followed by a fin a l se ttle r with 10 layers as 
suggested by Vitasovic /9 /.

The system information flow diagram" is  shown in Fig. 2. The material 
balance for soluble substrate in the five possible groups of layers in the 
se ttle r are as follows (Fig. 3):
Feed layer ( f)

dSsf
dt

= (Qr V  Ss3 '  QE Ss f" QR Ssf rS „ Vf sf (9)

- volume of feed layer (L )

rSsf
-JL
V к +s

sf W of
Bf

sf к  +(X ,/X Df)  К +S „ 
X sf В о of

( 10)

sf soluble substrate concentration in feed layer (M.L ^)

Xr
sf : — у = 0 lx f  1 ( 11)

<Bf ^  • xf  02 • xf

- solids concentration in feed layer (M.L j

£X = XB3 + XS3 + X3 + Xp3 = MLSS3

0 - mixed-liquor suspended solids from the las reactor (M.L ^). 
Layers below the feed layer

dS .
Vi  ------  = V Ssi-1 " QR ' Ss i + rSs i 7 Vidt

- volume of layer i  (L^), 
i  - f  + 1 through n-1
S soluble substrate concentration in layer i  (M.L ^). s i

( 12 )

(13)

(15)
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F ig. 3. Soluble substance balance across s e t t le r  layers

II S . K,, (X _ J  S_
/ s i X
Y K +Ss i

(16)

Top
layer

Feed
layer

Layer below 
feed layer 1 '

Bottom
layer

Layers above
i ;

feed layer

xs i ' 0 1 - х ,

XBi -  02 • Xi .3
-  solids concentration in  layer i  (M.L ).

Bottom layer i  = n
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dSsn 
1 dt

=Qd . S  , - Q d S + r S  . V  R s п- l  R sn sn n

Ssn - soluble substrate concentration in las t layer (M.L ^). 
Layers above feed layer

dS .
V ----= Q Si  .. T  ■ Ds l+ l dt

Qr . S . + г S . .V . L s i si 1

(17)

(18)

i  -  2 through f-1.
F irs t layer - e ffluent layer i  = 1

dSsi qe . ss2 qe • ss l  + г  ss l . vE (19)

SgE - effluent soluble substrate concentration (M.L ^).
The overall proposed model (reactor + se ttle r) can be described by 55 

mass balance equations, 15 equations for the reactors; 10 equations fo r the 
solids in the s e ttle r; and 30 equations fo r soluble substrate, particulate 
substrate and oxygen in the fin a l s e ttle r. There was no need to create mass 
balances for the other compounds in the se ttle r.

The model was w ritten in Simmon /15/ which is a continuous simulation 
language program ased on the MS.DOS operating system for the personal com
puters.

Experimental procedure

In order to examine the v a lid ity  of the model laboratory experiments 
were performed. The experimental work was conducted on a laboratory p ilo t 
plant consisted of three 15 t  complete mix aeration tanks in-series 
followed by a 0.18 m diameter, 1.0 m deep se ttle r. Figure 4 shows its  
general layout. Raw sewage from the Southern Budapest Treatment Plant was 
continuously pumped to the feed tank. The wastewater was screened to remove 
in fluen t solids, including course material which would have clogged pumps 
and valves, the screen removed about 15% of the influent suspended solids. 
In fluent to ta l COD varied within a rage of 288 to 450 mg/i. To reduce the 
e ffect of th is wide range, influent COD concentration of 350 mg/ 1  +_ 10% 
range was used for data analysis. Any data obtained with in fluen t COD con
centration outside th is  range was excluded from the analysis. The solids 
retention time (SRT) was maintained at 5 days to minimize n it r i f ic a t io n .
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F ig . 4, Lay-out of activated sludge p i lo t  p lan t

Wastewater was fed to the f i r s t  reactor (A) at rate of 150 t /d .  Return ac
tiva ted sludge was always directed to reactor A at a constant flow rate of 
100 t /d .  The system was operated for three weeks to reach steady-state, 
reaching the steady-state was indicated by the improvement and s ta b il iz 
ation of the effluent q u a lity .

The dissolved oxygen (DO) in the reactors varied but never f e l l  below 
3.0 mg/6. The se ttle r had a lower DO, ranging between 2.0 and 4.0 mg/'t, 
and was measured at 10 cm from the water surface. A detailed description 
of the p ilo t plant and measurement techniques is  available /16/.

Three sets of dynamic experiments were carried out:
1. Step feed to reactor C at normal flow rate of 150 t / d .  The data of 

th is  set was used fo r model calibration.
2. Step feed to reactor В at peak flow rate of 250 i/d .
3. Step feed to reactor C at peak flow rate of 250 t / d .
The length of the dynamic action was about 24 h, at the end in fluen t

was returned to reactor A at the normal flow ra te. Return activated sludge 
and a ir  flow rates were maintained at constant levels for a minimum of 
16 h before the experiment u n til the end of the experiment. Each set of ex-



periments was repeated 5 times to reduce the uncertainty associated with 
test results.
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Simulation studies

Model calibration
Calibration of the model requires that the stoichiometric, k inetic 

and se ttling  parameters be quantified. However, dealing with a model de
scribing biological a c tiv it ie s , and therefore being confronted with the 
problem of lim ited and uncertain data, confidence in sophisticated numeri
cal calibration techniques may not be too well placed. The model was c a li
brated by varying some of the parameters to give the best f i t  with the 
data oi the f i r s t  set of experiments which has been selected fo r th is  pur
pose. Default stoichiometric, k inetic and se ttling  parameters available in

Time (days)

F ia . 5. Normal flow  rate  with step feed to reactor C
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Table 3
Calibrated parameter values o f the proposed model

Parameter Value

Stoichiom etric
У
f

K ine tic
A

i f

kh

Ks0
b

F ina l s e tt le r  
Number of Layers n

xt
Vmax
r flo c
jC O l l
ns

0.65 g c e ll COD formed (g COD oxidized) 
0.08

4.0 day *
0.05 g slowly biodegradable COD (g COD) 
2.9 day"1 
5.8 g COD . m3 
0.2 g 0 . m

-1
0.66 day

3000 g.m 
70 m.d"1 
0.0008 
0.01.5
0.005 g.m"'5

the lite ra tu re  were incorporated. Table 3 presents a summary of the values 
selected for model parameters. After having iden tified  the parameters a ll 
simulations were performed without changing any of them. Figure 5 shows 
the actual data points with the calibrated simulation.

Model verifica tion
The acceptability of the model is promoted i f ,  on applying i t  to a 

range of situations, one can find  consistency between observation and pre
d ic tio n .

The model was ve rified  against two sets of experiments: 1) peak flow 
rate with step feed to reactor B; and 2) peak flow rate with step feed to 
reactor C. The analysis focused on solids concentration and soluble COD.

Peak flow rate with step feed to reactor В
Results of the simulation under step feed to reactor В are shown in 

Fig. 6 and compared with the recorded observations. Peak flow conditions 
was simulated by an abrupt change in flow rate from 150 to 250 t / d ,  while 
the recycle flow rate was kept constant. An increase in the mixed liquor 
suspended solids concentration in reactor A and reduction in both В and C 
was observed in the model. This is  in agreement with the experimental data 
and with the results of Thompson /17/.
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Peak flow rate with step feed to reactor C
Simulated and measured results are shown in Fig. 7. Step feed to re

actor C caused an increase in mixed liquor concentration in reactor A and 
B, while solids from the th ird  reactor were washed out from the system, 
decreasing the solids loading to the s e tt le r . A s ligh t improvement in  e f
fluent suspended solids was also observed comparing with step feed to re
actor В (Fig. 6b and 7b).

Original and modified models
Concerning the e ffluent soluble COD concentration a d is tinc tion  must 

be made between the o rig ina l and modified models.

F ig . 6. Peak flow rate w ith step feed to reactor В
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•  Measured

Figure 8 shows the measured and predicted values of soluble sub
s tra te  in  the fin a l e ffluent of the two studied cases. Comparing the ob
served and predicted responses i t  is  evident fo r both cases that the pro
posed model gave a better agreement with the experimental results than the 
o rig in a l model did. The closeness with which the proposed model conforms 
to the observations constitues evidence fo r the acceptability of the model 

Simulations also show that the highest soluble COD removal in  the 
f in a l se ttle r obtained by directing the peak flow to reactor C, Fig. 9. 
The short hydraulic retention time in the la s t reactor results in  poor 
soluble COD removal, as a consequence the f in a l se ttle r functions as a 
bioreactor when i f  receives the biodegradable substrate.

The closer the feed point to the s e tt le r , the highest soluble COD 
removal in i t  for the same flow rate.

F ig. 7, Peak flow  rate with step feed to  reactor C
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•  Measured
Case 2 Predicted

Eig. 8, Measured and predicted soluble COD concentrations in  the f in a l e ff lu e n t

F ig , 9, Soluble COD removal in  the f in a l s e ttle r



Conclusions

A dynamic model fo r activated sludge process was presented. The 
o rig in a l models for the process were taken from the lite ra ture  and modi
fie d  to predict the soluble substrate u ti l iz a t io n  in the fina l s e ttle r. 
The model was applied to laboratory experimental data with good resu lts. 
The differences between the observed and simulated results fa l l  with the 
expected range of accuracy of such complex models.
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Appendix

The material balances fo r the possible fiv e  group of layers w ith in 
the se ttle r are: 
layer (1):

layers 2 through ( f—1):

Z (i) = height of layer; (L) 
i  = 2 through f-1
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Jg( i )  = min £Vg(i) • X (i), Vs(i+1) . X (i+ l)3 if X (i+1) Xt

Js( i )  = Vg( i)  . X (i) i f  X(i+1) Xt

feed layer ( f ) :

dX(f) Qf +Q
Z(f) -------  = 11 MLSS U-J ( f )  -  J . ( f )  + JQ( f - l )  - JQ( f )

dt Ac p

Jg( f ) = min Vg( f)  . X(f) , Vs(f+1) . X(f+1)

MLSS = Xg + X̂  + Xg + Xj from the las t reactor.

layers (f+1) through (n-1):

z ( i )  M i )  = 3 ( i-D  - 3 (1 ) + Js( i-1 ) - 3B( i)
dt

i  =f+l through n-1

la s t (bottom)layer (n):

z(n) М Ю  = 3 (H.D .  Jdn(n) + 3g(n-1) 
dt

Js(n-1) = min £Vs(n -l) • X (n -l), Vg(n) . X(n)]
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ON D ER IVATIO N OF STRESS FUNCTIONS IN  M ICRO PO LAR  
THEORY OF ELA STIC ITY

Sz e id l , G y .

[R ece ived : 26 M a y  1989]

T h e  m a in  re s u lt  o f  th e  p re se n t w o rk  has been th e  p ro o f  o f  th e  p o s s ib il ity  th a t  fo r  m ic ro p o la r  bod ies  

th e  g e n e ra l a n d  c o m p le te  s o lu t io n  o f  e q u il ib r iu m  e q u a tio n s  in  te rm s  o f s tress  fu n c t io n s  can be d e r iv e d  fro m  

th e  ge n e ra l p r im a l fo rm  o f  p r in c ip le  o f  v ir t u a l  w o rk . T h e  m o s t im p o r ta n t  fu n c tio n a ls  o f  L a g ra n g e ’s ty p e  

have a lso been p resen ted  a ssu m in g  th a t  th e  m ic ro p o la r  b o d y  u n d e r c o n s id e ra tio n  is l in e a r ly  e la s tic .  T h e  

v a n is h in g  o f  v a r ia t io n s  w i th  re sp e c t to  th e  s t ra in  f ie ld s  o f  th e  fu n c t io n a ls  as a v a r ia t io n a l p r in c ip le  ensures, 

th ro u g h  s tre ss  fu n c tio n s ,  th e  fu l f i l lm e n t  o f  e q u ilib r iu m  e q u a tio n s  and  stress  b o u n d a ry  c o n d it io n s .

1. Introduction, Preliminaries
1.1. Representation for equilibrated stress fields in terms of stress functions is one 

of the problems which has been solved in micropolar theory of elasticity. Stress func
tion solution of simple structure for the equilibrium equations of micropolar theory 
was obtained by M. Günther in 1958 [4]. However he did not notice that the solution 
is complete only for such regions whose boundary consists of a single closed surface. If 
the region is bordered by more than one closed surface (multibordered region) which 
are assumed to be not intersecting then the solution is totally self-equilibrated on each 
surface therefore it can not be complete. By supplementing Gunther’s solution, but 
independently from each other, H.Schaefer and D. Carlson found formally different 
and complete solutions, however, they are equivalent [9,2].

1.2. Paper [11] by M.Stippes is devoted to the problem how to find equilibrated 
and compatible stress fields in classical theory of elasticity. Since he seeks the solution 
with the aid of stress functions chosen suitably, he regards the derivation of the general 
solution for the equilibrium equations of classical elasticity from a variational principle 
as a first step.

The paper [11], however,
— pays no attention to the analysis of surface integrals obtained by mathemat

ical transformations; the author entirely leaves them out of consideration;
— does not investigate the role of body forces;
—- includes no reference to the fact that for a region bordered by a single closed 

surface three stress functions are sufficient to the solution; perception of 
this requires the thorough investigation of the compatibility conditions as 
subsidiary conditions which was carried out by I.Kozák [5],[6].

Published in 1978 the book [1] written by N.P.Abovski., N.P.Andreev and 
A.P.Deruga provides a detailed representation of variational principles in classical 
elastostatics including those variational principles where the solutions of the equilib
rium equations in terms of stress functions appear as Euler equations. In comparison *

*S ze id l, György, H-3529 M iskolc, Derkovits u. 34, Hungary

Akadémiai Kiadó, Budapest
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with paper [4] there is a step ahead in the treatment of the boundary surface but 
all the terms needed to have a complete solution for multibordered regions are miss
ing. The reason for this comes from the assumption that the particular solutions of 
equilibrium equations are assumed to be known therefore difference between homo
geneous and particular solutions i.e. self-equilibrated stresses are given by the above 
mentioned Euler equations.

1.3. In micropolar theory of elasticity, to the best of the author’s knowledge, no 
attempt has been made to derive complete solutions to equilibrium equations resulted 
from a variational principle or an equivalent form of principle of virtual work.

l.J,. In view of the foregoing the present paper aims at
( a )  deriving the complete solution of equilibrium equations in micropolar theory 

of elasticity from the general primal form of principle of virtual work striving, 
at the same time, for accuracy in handling volume integrals and body forces 
as well as the number of necessary stress functions;

(b) the presentation of the corresponding variational principles and their func
tionals.

1.5. The variational principle which has a functional obtained from the Lagrange 
functional by applying the method of the Lagrange multipliers is regarded as a primal 
one. As regards details in connection with primal systems we refer to E. Tonti’s work 
[ 12] .

2. Complete Solution of Equilibrium Equations and 
Principle of Virtual Work

2.1. The region occupied by the body and the surface of the body are denoted 
respectively by V and 5. For the sake of simplicity we assume that the region V is 
simple-connected. The surface S may, however, consist of not only one but more

Fin- i-
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closed surfaces multiply-bordered region — as well. The surface S is divided into
parts Su and St whose common bounding curve is denoted by g. The body represented 
in Fig. 1 is bordered by a single closed surface.

If the body is bordered by N closed regular surfaces (N > 2) and each surface is 
divided into two parts Su \  separated from each other by a bounding curve 
(i = 1 ,..., N) then Su, St and g are the unions of the subsurfaces Su 1 and S ^  and 
the bounding curves respectively.

Any of the surfaces [5U] {S'!1'} or [5<] {Sj1̂ } may be an empty set.
2.2. Indicial notations and three coordinate systems,
— the (y1y2y3) Cartesian
— the (xxx2x3) curvilinear and
— the (£3£2£3) curvilinear, defined on the surface 5,

are applied throughout this paper.
Scalars and tensors, unless the opposite is stated, are denoted independently of 

the coordinate system by the same letter. Distinction is helped by the indication of 
the arguments y, x and £ used to denote the totality of the corresponding coordinates.

Volume integrals — except the formulas (2.10) — and surface integrals are con
sidered, respectively, in the coordinate systems (xl x2x3) and (£'£2£3), consequently, 
in the case of integrals, arguments are omitted.

£3

In accordance with the general rules of indicial notations summation over re
peated indices is implied and subscripts preceded by a semicolon denote covariant 
differentiation with respect to the corresponding subscripts. Latin and Greek indices 
range over the integers 1, 2, 3 and 1, 2 respectively.

t klm and tpqr stand for the permutation tensors; is the Kronecker delta.
2 . S .  In Cartesian system ( y l y 2 y 3 )  ej, e2 and e3 are the base vectors, besides 

covariant and contravariant components of tensors are coinciding.
2.4. In the system of material coordinates (x1x2x3) gj. and g( are the covariant 

and contravariant base vectors. The corresponding metric tensors are denoted by g î 
and gP9.

2 . 5 .  By assumption there exists a one-to-one relationship y k =  y k ( x l , x2, x3) 
between the Cartesian coordinate yk and the curvilinear coordinates x1, x2 and x3
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where yk is differentiable with respect to xl as many times as required. Consequently

I dyk '
dxl Ф  0-

Contravariant and covariant vector fields B1 and Сь are transformed in accordance 
with the rules

<ЭД =  С „ (у )|£  B k(x) = B p(y) | £ .  (2.1)

2.6. Equations and calculations can be better understood by introducing a suit
able surface oriented coordinate system. Let xk = xk{£l ,£2) be the equation of the 
surface 5 where and £2 are the surface coordinates. Let £3 be the perpendicular 
distance measured on the outward unit normal n to the surface S. On S f 3 = 0. 
[Base vectors] {Metric tensors} on S are denoted by [afc and a*} {a*; and akl}. In the 
coordinate system (£'£2£3)

n = аз =  a3 , n3 = 1 and n4 =  0.

The relationship xk = xk(£l , £2, £3) is assumed to be a one-to-one. Consequently the 
functional determinant is not vanishing:

J —
I dxk I

Ф0-

Upon change of coordinates ( r 1, x2,x 3) and (Ç1, £2, £3) a tensor Dpq(x) of second order 
follows the transformation rules

( 2.2) ,

where

(2-2)2

(2.2)3

We shall assume that the vector and tensor fields involved in the investigations are 
sufficiently smooth.

2.7. Let Ufc be the displacement field and y>b be the rotation field (и* and ipb 
together are referred to as displacement fields or briefly, displacements). Furthermore 
let 7 if be the asymmetric strain tensor and Kab be the curvature twist tensor (together 
strain fields or briefly, strains).

By t kl and we denote, respectively, the asymmetric stress tensor and couple- 
stress tensor (together stress fields or briefly, stresses).

Displacements and strains will be assumed to be small.
Boundary conditions — inasmuch as there are some boundary conditions pre
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scribed — have the following forms:
Displacement boundary conditions:

u k = û k , <РЬ =  ф Ь x  6 Su (2.3)

Stress boundary conditions:

nktkl = i l , nab = фь X £ St (2.4)

where û k and ф ь are respectively prescribed displacement and rotation; t l and f it , are 
prescribed tractions.

2.8. By generalizing the results of I.Kozák [7] valid for classical case paper 
[10] systematize [the general primal forms] {the primal form ordered to prescribed 
boundary conditions} of principle of virtual work, the corresponding assertions and, 
in addition to this, it gives the missing [general dual forms] {dual forms ordered to 
prescribed boundary conditions} and dual assertions together with their proofs.

The line of thought of the present section is based on a well known assertion 
related to the general primal form of principle of virtual work and on a proper choice 
of the corresponding subsidiary conditions.

2.9. Strains 7ы(х) and Ka(x) are said to be [compatible] {kinematically ad
missible} if the differential equations

7/fc i(x) = ui]k + k,V3 X  e V  (2.5)i
Kab(X) = ¥>‘;a I  6 V (2 .5)2

have a single-valued solution for the displacements u,(x) and ifi°(x) x £ V and the 
solution [does not satisfy other conditions] {satisfies the displacement boundary con
ditions (2.3) }.

By applying the above term sufficiently smooth — differentiable at least twice 
— displacements u/(x) and ipb(x) will also be referred to as compatible.

2.10. Let b1 and c\, be the body forces and body couples. By definition the 
stresses t kl(x) and /га6(х) x £ V are said to be [equilibrated] {statically admissible} 
if they satisfy the equilibrium equations

< "*(* )  +  b' = 0 xev (2.6)!
Л .а(Х) + ebkltkl + C6 = 0 X  6 V (2.6)2

and [do not meet other conditions]{the stress boundary conditions (2.4)}.
2.11. For a linearly elastic body the boundary conditions (2.3), (2.4) and field 

equations (2.5) (2.6) should be supplemented by the stress-strain relations. By as
suming a centrosymmetric material the stress strain relations have the form

t u = Ак,” Ъч x £ V (2.7),
flab =  в аЬРЯки  X £ V (2.7)2

where Ak,pq and B abpq are the tensors of elastic coefficients.
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2.12. The equation

( 2.8)

is the general primal form of principle of virtual work.
To the above equation the following direct assertion can be ordered:
Suppose that 'fki(x) and /саь(х) as compatible strain fields are obtained from 

(2.5 )1,2 - df the equation (2.8) holds for any compatible displacement fields U k { x ) ,  

ipb(x) then the stress fielde t k\x ) ,  pab(x) are equilibrated.
By substituting the kinematic equations (2.6 )1,2 as subsidiary conditions and 

performing partial integrations the assertion can easily be proved. Really, upon sub
stitution of the integral

+ tlksV3) +

into (2.8) and subsequent rearrangement it follows the fulfillment of the equilibrium 
equations if we take into consideration that the coefficients Uk and ifb in the resulting 
equation

/  (tk,k +  b‘ )u,dV +  /  (pab.a + ebk,tkl + Cb)vbd V  =  0 
Jv  J v

are arbitrary in V .
2 .13. It can be expected that the above assertion will remain valid when the 

subsidiary conditions (2.5) are replaced by such side conditions which have a different 
mathematical form but otherwise are equivalent to (2.5).

2. 14 .According to a fundamental result of potential theory [3] the body forces 
bl and body couples cb always admit the representation

bl = —AB1 = -g pqB \pq x e V  (2.9)i
cb = - A  Cb = —gP4Cb-pq x e V  (2 .9)2

where B \x )  and Cb(x), provided that the integrals

have been determined first, are obtained from the transformation formulas (2.1). With 
reference to the above result we shall assume that the vector fields B \x )  and Cb(x) 
are known.
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2.15. After substituting the formulas (2.9) and using then Gauss' integral theo
rem the volume integral

I $ c  =  [  (b‘u, +  CbVb)dV  (2.11),
Jv

is changed to

Upon substitution of the integral (2 .11)2 into (2.8) and with regard to the kinematic 
equations (2 .5 ),,2  we obtain the equation

j ' [(**' -  9k'B 1.,)7« + + ( Л  -  да,(е,ЬаВ ’ + Cw))«.*]dV =

n3(t31 — B'.3)ui + n3 (p36 — (e3b<TB rT + Cj,;3) ) j dA (2-12)

which is a transformation of the general primal form of principle of virtual work. It 
is noteworthy that in the above equation the kinematic variables appear

— either on the boundary S only as it is the case for и/ and 9 4
— or on the volume V as it is the case for 7 ki and каь.

The paragraphs 2.16., 2.17. and 2.18 are devoted to the problem of how to find a 
proper form of the subsidiary conditions to the equation (2.18).

2.16. With reference to that what has been said in paragraph 2.13. we have to 
raise the following two questions:

(a) Under what conditions are the strains

7  * 1, X e V

compatible?
(b) What further conditions are needed if we want the displacements

uk, 4>v X e V

to be obtained from the above mentioned compatible strains to coincide with 
those being in the surface integral in the right hand side of (2.12).

2.17. Solution to problem (a) is presented here on the basis of paper [11]. To 
begin with, we have to introduce some new notations.

The index pairs that range over a subset of the nine possible values will be 
capitalized.

Let ßk and ааЬ be arbitrary tensor fields on V. Furthermore let r l (x) and 
w b(x )  X e V be  two unknown vector fields.

By £  and ab we denote those subsets of the possible values of index pairs k 
and ab for which the differential equations

Л и  = ß l i x )

u>B-,A + tBAPr p - aAB(x)
(2.13),
(213)2

xev
x e v
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have a solution for the vector fields r \x )  and wt(x).
It is obvious that the index pairs ^  and AB may have only three-three different 

values.
Let ( x Y } [s t ] be the supplementary subsets o f index pairs the union o f which 

with { j f  } [a b \ is the set of index pairs {t(} [аь].
It is clear, that the index pairs x  and st та У have only six-six different values. 
Tensors of incompatibility emb and dml are defined by the equations

emb(x) =  етрак ь.р X £ V (2.14)!

=  + *,"*«/ -  «Г  • (2 .14)2

Returning to question (a) the independent necessary and sufficient conditions for the 
strains 7 fci and n b to be compatible [8] in a simple-connected region V are the fulfill
ment of differential equations of compatibility

We note, that (2.15)i and (2.15)2 are equivalent to six-six scalar equations.
2.18. Referring again to [8] solution for problem (b) is provided by the following 

assertion:
Suppose that the strains 7 ju(£) and ка6(£) fulfil the kinematic boundary condi

tions

*„ * -? * ; ,  = 0 , U S  (2.17)!

7xi — u/;x -  €(X6<̂ 6 =  0 . U S  (2.17)2

Then
(1) the boundary conditions of compatibility (2 .16)1,2 are identically satisfied 

and
(2) the displacements Mjt(f), <̂6(£) £ 6  S can be determined in terms of strains

7*f(£). ««.(0-
In paper [8] proof of part (1) of the assertion is not complete and that of part (2) 

is missing.
2.19. For the sake of completeness we shall overview the missing proofs. The 

main difficulty is inherent in the circumstance that the derivatives of displacements 
uk{£), LP°(S) £ £ S taken with respect to the normal will also appear in the formal 
transformations. As they cannot be calculated it is worth changing to symbolic no
tations mentioning that the normal derivatives are needed only apparently as it can

and that of boundary conditions of compatibility
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be shown analytically too by a sophisticated analysis of the rules that apply to the 
calculations of derivatives taken on a surface. In the present case the symbolic writing 
leads to the desired results more quickly. Using symbolic notations and marking dot 
products to be carried out after the derivations from equations (2.16)i 2 we obtain:

e--ab = a„ • e~"' — ( к ьа’'аь) = 0

d3,  =  a„ ■ е3- _ ( 7х,а^а') + -  « а '  =  0.

N  a^aь =  a "— (v? а&) •

Substituting the above equation into (2.18)i and utilizing then the definition

—  = Г" am nm

for the Christoffel symbol we arrive at

which is nothing but the identical fulfillment of boundary condition of compatibility
(2.16)!.

Fulfillment of boundary condition of compatibility (2.16)2 can be proved in an 
analogous way. For this reason a brief outline of the proof will only be presented 
herein. To begin with, substitute the following equation, which is equivalent to
(2.17)2, into (2 .18)2:

7x,a*a' = ax— (u,al ) + e,xbtpbaxa‘. (  € S (2.20)

Then, by making use of the equation

a.e3*1' ■ ^ [ £,xtV> W ]  = ^ xelxb^ na, =

=  +  a' í e s

and repeating the steps of the formal transformations which follow equation (2 .10) 
we can readily show the validity of (2.18)2.

As regards the left hand side of the second equation definition (2.14)2 has also been 
taken into account. It follows from the fulfillment of condition (2.17)j that
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2.20. On the basis of Fig.3. it follows from equation (2.17)i that

fP
(pb(P)ab = ipb(P0)ab + J т’1 к ьab ds (2.21)!

is the rotation at the point P of the surface S. From equation (2.17)2 — referring 
again to Fig.3 — we obtain for the displacement at P:

rP
u,(P)a' = ui(P0)a' + / r x(yxi +  e;x(,y>b)a' ds =

Jp.
= ui(P0)al + <рь(Ра)аь X (rp -  rp.)

+ J [тх< + £Ык*к ■ (r -  гр)кхЬ]а' ds. (2.21)2

2.21. All that has been said in paragraphs 2.19. and 2.20. proves the assertion given 
in paragraph 2.18. Returning to the general primal form of principle of virtual work 
we should notice that equations (2.15)i >2 and (2.17) i >2 are the missing subsidiary con

ditions. Since they cannot be substituted directly into the form (2.12) of principle 
of virtual work Lagrange ’s method of undetermined multipliers should be employed. 
Let

h st , F x y  xev
H r , F „  i e s

be the undetermined Lagrange ’s multipliers. Suppose that the side conditions (2.15)il2 
and (2.17)i i2 hold. Then both the volume integral 7,v and the surface integral I, are 
identically vanishing:

= Jv [eSpqb<T;P +  egTb^.)HsT + ex ' k K YnFXY]dV = 0, (2.22)!
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tSk~1
12 (2.24)з

and moreover a form with no side conditions of principle of virtual work can be 
established by subtracting i f  and i f  from the left and right hand side of (2.12). To 
attain a more suitable form it is expedient to transform both i f  and I f  by performing 
partial integrations before the subtraction. When transforming i f

-  we replace HSL and F\ y by Hp[ and Fyb bearing in mind, however, that 
Hif" and Fxu are obviously zero and moreover

-  we shall assume, in conformity with paragraph 2.6. — see (2 .1 2 )1,2 —, that 
there exists a one-to-one relationship between Lagrange multipliers

Without detailing the transformation by partial integrations and suitable renaming 
dummy indices we obtain:

Surface integral i f  can be transformed with the aid of Stokes’ theorem employed 
here in such a form - see (A.l) in Appendix — which is valid in a coordinate system 
defined on surface S. If, in addition to that (A.2) i ,2 is also taken into consideration 
we find that

Subtraction of (2.23)i and (2.23)2 from the left and right hand side of (2.12) and a 
subsequent rearrangement lead to the result

I f  + i f + l f u* =  0 (2.24),
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and
r S iup
i 2 J n3(t3‘ -  e3x^ 4 ' ;x -  a3aB,.s)u,dA+

Jsn3 [ A  -  ^ ( F vb;n +  е ^ Я , ' )  -  a3,(elbsB* +  C M ) ] 4>'dA .

(2.24)4

Since in (2.24) no conditions for

7  kl(x), KaXx ) x e V

7  «/(£)> a x o U S

w ;(í)> A O U S

are set down jk l, ■ ■ ■, <pb are arbitrary. Consequently, it follows from the disappearance 
of (2.24) the fulfillment of the field equations

If we now substitute (2.26) i ,2 into (2.27)1,2 and then compare (2.27)i ,2 with (2.25) i ,2 
we get the result that the stresses t kI and )iab can be calculated in the same way both 
in V and on 5 i.e. by using formulas (2.25)x,2-

2.22. Equations (2.25) i ,2 provide equilibrated stresses as it can readily be shown 
by substituting them into the equilibrium equations (2.6) i i2 and also by taking into 
account (2.9)i ,2' In addition to this they coincide with the representation found by 
H.Schaeffer [3]. For this reason multipliers Hy[ and Fyt will be referred to as stress 
functions.

2.23. It is worthy of special mention -  with reference to paragraph 2.17. -  that 
Hy and Fyb involve six-six scalar functions since Н £  =  Fab = 0. Inasmuch as Hyl 
and Fyb are of nine-nine components fulfillment of the mentioned condition can always 
be ensured, by a proper choice of the vector components r l and ujj, essentially, by the 
solution of the differential equations 1

H kL — r L;L — 0 , X € V
Fab -  (WB-.A +  евАтг”1) = 0. x eV

1 The stresses that are obtained from the stress functions

H y' r l.„ Fyb  — "Wb\y “I“ ^ b y s ^

are identically zero [8].

and boundary conditions
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These equations serve as a basis for the explanation why a proper choice of indices 
obey the rules presented in paragraph 2.17. [11].

3. Variational Principles of Lagrange’s Type
3.1. In connection with the equation (2.24) obtained from the general primal 

form of principle of virtual work the question arises whether it is possible or not to 
establish such free variational problem where

-  vanishing of variations with respect to the strain fields 7 *;, каь of the cor
responding functional ensures the fulfillment of the field equations (2.25)i,2 
on the volume V of body and that of boundary conditions (2.26), 2 on part 
St of boundary

-  furthermore vanishing of variations with respect to the displacements ujt, tpb 
yields the fulfillment of the boundary conditions (2.27)1,2 consequently the 
fulfillment of stress boundary conditions on S,.

The sought functional can be derived from the functional of the total potential energy 
by applying the method of Lagrange’s multipliers. The domain of the functional 
involves the strain fields

7 kl к .6 X 6 V

the displacement fields
u s

and the stress functions

HST, F x y x e v

F „ . U  St

In the latter case, as we have assumed so far, H KL and F a b  are regarded to be zero.
3.2. Equations of micropolar elasticity in terms of the above mentioned variables 

consist of the field equations

the boundary conditions
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and the continuity condition

Really, simultaneous fulfillment of equations (3.2) i ]2, (3.4 )1,2 , (3.5)i ,2 and (3.7)i ,2 
ensures that the strain fields 71tj, Kab are kinematically admissible. We note that 
— in accordance with paragraph 2.20. and with regard to the continuity conditions 
(3.7)i,2 -  integration of equations (3.4)i ,2 yields the actual displacement fields ti*(£), 
V?6(f) £ £ St- If furthermore field equations ( 3 .1 ) 1,2 are satisfied then the equilibrium 
on V  is maintained while the simultaneous fulfillment of ( 3 . 6 ) i , 2 is equivalent to that 
of stress boundary conditions.

3.3. Now let

be the sought functional where
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and

C f“ = /  [n3a3mB'.mû, + пза3'(е1ЬтВт +  СЬ;,)^Ь]dA = const. (3.8)7Jsu
8-4- Vanishing of variation

Í I I 2 =  <57|КП2 +  6и„П2 +  «^н.^Пг — О (3.9)

as a variational principle ensures the fulfillment of the field equations (3.1), (3.2),
(3.3) and (3.4), the boundary conditions (3.5) and (3.6) furthermore the continuity 
condition (3.7).

In the following we briefly outline the proof of the above assert ion. Because of the 
independence of variations with respect to the distinct variables of functional (3.8) 
stationary condition (3.9) is equivalent to the equations

and

Equation (3.10)i can be transformed by substituting (2.22)i and (2.23)i provided 
that in the latter equations strain fields are replaced by their variations. From the 
resulting equation, taking into account that the variations are arbitrary, we obtain 
the field equations (3.1)1,2 and (3.3)i>2 -

Using transformation rules (A.2 )1,2 from equation (3.10) we can readily derive 
the boundary conditions (3.6)i]2.

Fulfillment of equation (3.10)3 is equivalent to all the conditions i.e. to equations 
(3.2 )1,2, (3.4)i j2, (3.5)i,2 and (3.7)i,2 kinematically admissible strain fields should 
meet.

3.5. If the strain fields are kinematically admissible and stress functions Hv , Frß 
satisfying the conditions (3.6)i,2 are known then functional (3.8) reduces to functional

П 1 =  11(7*,,, * a‘ ) =  П Г +  П ? ‘ +  C f “ +  C ?  (3.11)l

where
n f  =  n f 1 , (3.11)2

n f ‘ =  \  (п 3е3̂ 7 х,Я ч' + n 3e3̂ ^ F r , b)dS , (3.11),
Jst

C fu = =  const (3 .11)4

and
C f  =  -  i f  T ^ H ' û j d s  -  f  т " Р „ ъ ф Ь(45 . (3 .11)5

J  g J  g

During the transformations leading to (3.11) it had to be taken into account that due 
to their definition the kinematically admissible strain fields meet the preconditions
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(3.2), (3.4), (3.5) and (3.7). In addition to this integral (A3) should also be substi
tuted by a suitable renaming of dummy indices and performing simultaneously some 
rearrangements.

S.6. Functional (3.11) is subjected to subsidiary conditions which should ensure 
that the strain fields are kinematically admissible. In contrast to the foregoing it 
is worthwhile to choose such subsidiary conditions on St which do not contain the 
displacement fields.

In accordance with all that has been said about the requirements the subsidiary 
conditions should meet when seeking the equations which follow from the stationarity 
of functional IIi(7fc;, Ka) one should supplement П, by a sum of integrals

Lagrange ’s multipliers in the above integrals are denoted by

Because of the same meaning the letters we used earlier are deliberately utilized again 
to designate unknown Lagrange ’s multipliers.

3.7. By varying the sum II , + П2 with respect to the strain fields and utilizing 
appropriately the relations (A .l) and (A 4),|2 we obtain

í«l7n , +  i K,7n s = 4 4  i p  + i§ u + J f (3.13),
where

= Jv [Ak,” 7pq -  (ekypHpl .y + gk’ B \,)\S 7kl dV+

J  + еЬт,Н {<) -  да\е 1ЬтВт + См)]Лсв‘ dV,

(3.13)2

I s * = /  ri3e3l” '[F rib -  Fvb -  + еьт1тГт)]бкр dV+
Jst

/  пзб3х,(Я,,' _  H i  -  r l )6yx,dA,
Jst (3.13)з

which vanishes if the subsidiary conditions are satisfied. Here
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/1 “ =  /  [n ^ 'Ç F r'b  -  F ^ S kI  + п3е3п” (Н1 -  Н„[)6Ъ ,] dA (3.13)4
J S u

and
I s = j  [r4 ( ь -  +  Tx ( r  ' -  r ' ) Í 7 xj] ds. ( 3 .1 3 )5

3.8. Equation
<̂ «,7̂ 1 + ^K. r̂is =  0 (3-14)

as a variational principle ensures that the stress fields obtained from (2.7) are statically 
admissible. Really, if we compare the above equation and equation (3.13) we get the 
followings:

1. Vanishing of integral /).’ yields the equilibrated representation (3.1)ii2 for 
strain fields in V.

2. Vanishing of integral I§u leads to the validity of the representation on Su.
3. From the vanishing of I§* -  taking into account, that the stress functions

H i  = r'„ Ses,  (3.15),

Fvb = wb-v + ebVn,rm S e St (3.15)2

result in identically zero stresses and utilizing furthermore that the stress 
functions Fnb and Hr* satisfy (3.6)ii2 -  it follows the fulfillment of the stress 
boundary conditions imposed on St.

4. Vanishing of integral I<j yields the fulfillment of continuity condition con
cerning Lagrange’s multipliers.

3.9. It is worthy of special mention that to the fulfillment of stress boundary 
conditions there is no need to satisfy the boundary conditions

H i - H i  = 0 , F ,b -F ,b =  0 .

Instead fulfillment of the weaker forms

H l  -  H l  = H l , F,b -  Fr,b =  F,b £ £ 5,

is also sufficient. Although this result has been known [8], it appears here as a 
consequence of a variational principle.

4. Concluding Remarks
^.1. The main result of the present work has been the proof of the possibility, 

that for micropolar bodies the general and complete solution of equilibrium equations 
in terms of stress functions -  valid therefore not only for a self-equilibrated case -  can 
be derived from the general primal form of principle of virtual work. The proof is 
grounded on two circumstances. As well known, the general primal form of principle 
of virtual work ensures the fulfillment of equilibrium equations provided that the 
strain fields axe kinematically admissible. Therefore an appropriate choice of the side 
conditions -  and this is the second circumstance -  leads to the desired final result as 
it has turned out. Since the side conditions involve six-six field equations any state
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of stress can be given in terms of six-six stress functions. Consequently three-three 
components of the corresponding stress function tensors H j  and Fyi> can be set to 
zero. In addition to this special care should be taken to the calculations carried out 
on the boundary surface S. We note that the line of thought presented herein is of 
methodological significance and can be applied to other cases including the classical 
one. This work is now in progress.

4-2. A further question arises concerning the formulation of the corresponding 
variational principles. The most important functionals of Lagrange’s type have also 
been presented assuming that the micropolar body under consideration is linearly 
elastic. The vanishing of variations with respect to the strain fields of the functionals 
as a variational principle ensures, through stress functions, the fulfillment of equilib
rium equations and stress boundary conditions. Representation of stresses obtained 
in terms of stress functions from the stationarity condition coincide with the general 
and complete solution of equilibrium equations.

5. Appendix
5.1. Let dq(£) be sufficiently smooth vector field defined on St. According to 

Stokes ’ theorem
I  n363* % ;x dA = <p ds. 

JS t  ' Jq' S i  J g

If St is closed then the integral in the right hand side is vanishing.

( A . l )

5.2. Integral appearing in equation (2.22) can be transformed with the aid 
of (.4.1):

If St is again closed i.e. St =  S then the line integrals in the right hand side can be 
omitted.
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5. S. Transformation of integral

r  = f  ( t l u i + /Wb) d A  
J s t

appearing in (3.8 )1/2 requires the application of Stokes ’ theorem, the kinematic equa
tions (3.4) i i2 and the continuity condition (3.7) i >2:

5.4- Transformation of variation of integral (3.12)з can be carried out by the 
substitution of integrals

and

obtained by partial integrations and a renaming of dummy indices.

A c k n o w l e d g m e n t .  I am  g ra te fu l to  P r o f .D r . Im r e  K o z á k  ~ U n iv e rs ity  o f M is k o lc , D e p a r tm e n t  o f 

M e ch a n ics  -  fo r  v a lu a b le  co m m e n ts  and  h e lp fu l su g g e s tio n s  c o n c e rn in g  th is  a rtic le .
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BOOK REVIEWS

Krasnosel'skij, M .A.-Lifshits, Je.A.-Sobolev, A.V.: Positive linear sys
tems, The method of positive operators. (Sigma Series in Applied Mathe- 
matics 5). Heldermann Verlag, Berlin, 1989, 354 p.

In system theory, an important subcase is  characterized by the monoton
ic ity  of the inputs and outputs, by the positiveness of some mappings. 
Let us consider for example a system where increase of the output follows 
from the increase of the input. Such systems can be described in certain 
cases by operator equations defined in spaces p a rtia lly  ordered by some 
cone.

This book collects facts, notions, theorems from monographs which 
cannot be found easily. Proofs are complete or almost complete. The prob
lems dealt with are mainly linear. Experts in system theory, mechanics, 
electromechanics, e le c tr ica l c irc u it  theory w il l  find th is book useful and 
interesting. Among the four chapters, the f i r s t  one studies the basic 
notions, such as cones, orderings, positive linear functionals and oper
ators, smoothness points of cones, normal cones, regular cones, supreme 
and infima, cones of rank k.(Note that the theory of cones and p a r tia lly  
ordered spaces goes back among others to F. Riesz.too.)

The second chapter concerns applications to spectral properties 
(spectral radius, eigenvectors, focussing operators, the spectral margin, 
e tc .). The th ird  chapter gives applications to ite ra tion  procedures (e.g. 
estimates for the spectral radius, ite ra tion  with proportional correc
tions, a posteriori error estimates for positive eigenvectors, e tc .) . 
Especially interesting can be fo r practicants the fourth chapter; in  th is  
we find studies on absolutely positive system, the impulse - frequency 
characteristic of a linear lin k , frequency-positive linear links , general 
theorems on positive in v e r t ib i l i ty ,  forced periodic oscilla tions in  non
linear systems, the harmonic balance method, positive solutions of non
linear problems, problems with parameters, c r ite r ia  for s ta b ility  and ab
solute s ta b ility .

A large number of exercises of various grades of d if f ic u lty  can be 
found in numerous sections. Some exercises are in themselves in teresting.

The book can be highly recommended for systems theorists.

Bosznay, Ä.

Akadémiai Kiadó, Budapest
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Góschy, В.: Design of build ings to withstand abnormal loading, Butter- 
worth and Co. Ltd., London, 1990

The book is designed and shaped very w e ll, and contains 197 pages, 98 
figu res , 37 tables and 179 references altogether.

As far as its  content is  concerned, the book is an amplified and re
vised edition of author's former work "Építmények tervezése rendkívüli 
terhekre és hatásokra" (Design of buildings fo r abnormal loads and ef
fe c t, Műszaki Könyvkiadó Budapest, 1904), which was brought up-to-date 
w ith  respect to the p rinc ip les  and recommendations of the foreign technic
a l lite ra tu re , guide-lines,etc. published in the meantime. There are two 
basic conditions of taking into consideration even the effect of the ab
normal random loads by the design engineer already in the state of de
sign. On the one hand, he has to obtain re lia b le  data on the character of 
the physically available abnormal loads (e ffec ts ), on the ir expected mag
nitude, the probability of the ir occurrence, and the measure of the safety 
requirements. On the other hand, since these loads generally are of dynamic 
character, he designer is  required to have such computing methods used in 
dynamics the labour-in tensity of which is  s t i l l  acceptable fo r a practis
ing designer. The author, Béla Goschy was going to provide a re liab le  
theoretical basis for-meeting those requirements.

In this book, s im ila r ly  to the method of manuals, author recapitalizes 
a l l  the problems emerging in  the course of dimensioning and developing the 
s truc tu ra l layout of the buildings subject to a l l  kinds of abnormal loads 
and effects, and provides the possible ways to the ir solution. A ll the ef
fec ts  which are brought about by inner or outer explosion, impact caused 
by either the inner or outside environment, earthquake, wind load, unex
pected ground flow and other unusual phenomena of natural orig in  or due to 
human activ ity acting on the building and structures are discussed in 
d e ta ils  by the author.

In Chapter 1, the problems on interaction between the environmental 
events like abnormal random loads and the system of supporting structures 
are dealt with b r ie f ly . I t  is  theoretically confirmed i t  is  possible to 
extend the app licab ility  of the dimensioning methods based on probability 
or semi-probability considerations used presently fo r the design of sup
porting  structures to the abnormal loads (e ffec ts ) of rarely occurrence 
provided that the characteris tics of the change of state are considered as 
random variables.

In Chapter 2, from among the abnormal loads,, the following are dealt 
w ith in detail: inner explosion (gas, powder, explosives, e tc .), the burst 
e ffe c t of outer explosion (on-surface or underground explosions, a ir ex
p losion), the impact (o f a vehicle, an object fa llin g  down, a bomb or a 
rocket), and the seismic e ffects (earthquake, e a rth -fa ll) . Each of those 
are characterized by random occurrence, th e ir e ffect shows a re la tive ly  
short-time duration, rapid change and a dynamic character. In the book, 
the possible ways of model simulation of the effects mentioned above are 
dea lt with in deta il.

In Chapter 3, the sphere of problems concerning the dynamic model 
simulation of supporting structures are described. The structura l ma
te r ia ls  behave d iffe re n tly  under static and dynamic loads. With structural 
models, which are dynamic ones, in addition to the usual characteristics 
of structural materials, th e ir  energy-consumption property should also be 
taken into consideration, as well as the character of the state of stress 
in  the structure, and the chronology of load (e ffec t). This la tte r  one can 
be single, or an impulsive load, or impact load, respectively, or perhaps 
a ra re ly repeated, low cycle-number load, and an often repeated, high 
cycle-number one.
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In Chapter 4, the dynamic characteristics of supporting structures 
are discussed. In i t ,  a good description and clear recapitulation is  pro
vided about the d iffe re n tia l equations and the ir solutions describing the 
state of undamped vibrations of the bars and beams, plates, cantilever
like  beams, plane multiple-storey frames and composite structures con
taining wall-beams and frames. There are formulae in  i t  for the appro
ximate determination of the free vibration period of multi-storey bu ild 
ings, as well as the computation method of the reduced mass of d iffe re n t 
beams and girders is given in i t  fo r the use in dynamic calculations. 
There can be found numerous tables providing assistance to the designer so 
as he can apply the information contained in th is  valuable chapter in  fin d 
ing solutions to his problems in practice.

The subject of Chapter 5 concerns the expected dynamic behaviour of 
the structures under abnormal impulsive load. The problems discussed here 
can also be worded as the problems of "what answer is  given" by the sup
porting structure to the dynamic effects acting upon i t .  Author discusses 
the general examination of systems of one and more degree of freedom, then 
he gives fu l l  particulars of the e ffect of earthquake, the la tte r being con
sidered both as a deterministic and a stochastic e ffect.

In the f i r s t  part of Chapter 6, the system of d iffe re n tia l equations 
describing the stable state of equilibrium of spatial structures and the 
general way of i ts  solution are described, and la ter nn, the detailed 
analysis of the dynamic s ta b il ity  conditions of plane supporting struc
tures is given on the basis of physical or geometric non-linearity , re
spectively. In th is  chapter, i t  is  also discussed what is  the c r ite r io n  
fo r the s ta b il ity  of structures in  case of earthquake.

In the re la tive ly  b rie f Chapter 7, recommendations are offered for 
the general aspects and the de ta il solutions of the structural layout with 
the buildings of expectedly dynamic load. These recommendations should be 
taken into consideration, f i r s t  of a l l ,  in case of imminent earthquake.

As i t  can be seen, the content of the book covers a wide range of 
special lines and i t  shows a theoretical character. With proper mathemat
ica l knowledge in the ir possession, both the practising designers, struc
tu ra l engineers and the students of continuing professional tra in ing  can 
make a good use of th is  book in the ir work. However, the presentation of 
some properly chosen particular numerical examples could have contributed 
to the easier application of the calculation methods described above.

Csellár, Ö.
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