
ACTA
TEC H M C A

ACADEMIAE SCIENTIARUM HUNGARICAE

EDITOR: P. MICHELBERGER

VOLUME 99 

NUMBERS 1—2

AKADÉMIAI KIADÓ, BUDAPEST 1986 ACTA TECHN. HUNG.



ACTA TECHNICA
A JOURNAL OF THE HUNGARIAN ACADEMY OF SCIENCES

EDITORIAL BOARD

K. GÉHER, O. HALÁSZ, J. PROHÁSZKA, T. VÁMOS

MANAGING EDITORS 

P. CSONKA, GY. CZEGLÉDI

Ada Technica publishes original papers, preliminary reports and reviews in English, which contribute to 
the advancement of engineering sciences.
Ada Technica is published by

AKADÉMIAI KIADÓ
Publishing House of the Hungarian Academy of Sciences 

H-1450 Budapest, Alkotmány u. 21.

Subscription information

Orders should be addressed to

KULTURA Foreign Trading Company 
H-1389 Budapest P.O. Box 149

or to its representatives abroad

Acta Technica is indexed in Current Contents

Ada Technica is abstracted/indexed in Applied Mechanics Reviews, Current Contents-Engineering, 
Technology and Applied Sciences, GeoRef Information System, Science Abstracts.

©  Akadémiai Kiadó. Budapest



ACTA TECHNICA 
Volume 99 Nos 1—4

CONTENTS

Barta, J . : On the minimum of s tra in  energy in  elastostatics .................. 3
Chhangani, O.P.-Lenkei, P .: Graphical presentation of compressive

membrane action in one-way slabs ..........................................................  221
Chhangani, O.P.-Lenkei, P .: Short-time deflections of two-way slabs .. 233
van Dae,Tran : On the dynamics of a man-machine system ............................. 249
Dulácska, E .: The safety facto r to be applied in shell buckling

analysis .......................................................................................................  9
Ecsedi, I . : Some comments on the tw is t problem of shells of c irc u la r-

arc centreline ............................................................................................  31
Ecsedi, I . : Torsion of a thin-walled, anisotropic, bent rod of c irc u la r- 

arc centreline ......................    63
Ecsedi, I . : Bounds of the numerical value of rotational f le x ib i l i t y  .. 273
Fiizy, 3 . : Simulation of the timber la t t ic e  shell without "in-plane"

shear capacity by double-layer cosserat surface ..............................  287
Gáspár, L . : State conservation of highways ................................................. 77
Györgyi, J . : Calculation fo r the v ib ra tion  of structures: a p a r tia l

eigenvector problem solution .................................................................. 103
Hankó, Z .: Q ualification of interdependence or independence w ith in  any

pair of variables involved in  m ultip le  linear regression .............  125
Kaliszky, S.-Knébel, I . : Optimum design of p lastic  bar structures fo r

shakedown and dynamic loading ................................................................  297
Kämpfe, B .-Michel, В .: A new approach to X-ray d iffrac tion  analysis of

stress states in surface layers ................................................   313
Kollár, L .P .: Buckling analysis of coupled shear walls by the m u lti-

layer sandwich model ................................................................................. 317
Matsikoudi-Iliopoulou, M.: E lastic membranes reinforced by cords: non-

linear äxisymmetricdeformation with tw is t .......................................  147



Paláncz, B .: Analysis of a closed c irc u it cryogenic wind-tunnel .........  163
Reményi, К .: Use of low-grade coal as fuel of power plans ....................  193
R is te sk i, Ice B. : Mathematical’ method for determination of thermal

contact resistance between so lid ify ing  metal and mold ..................  333
Szidarovszky, 3 .: The analysis of s ing le-ce ll box beams by the hinged

model ..........................................................................................................  349
Szidarovszky, 3 .: Cross sectional characteristics of s ing le-cell box

beams with a cross section of rectangular elements ........................ 383
Szidarovszky, 3 .: Relationship between Saint-Venant' s principle and

Biernoulli-Navier ' s theorem as well as Bredt's formulae and warping 397
Vásárhelyi, A .-Lógó, 3 . : Design of steel frames by m u ltic rite rion

optimization ...............................................................................................  413

BOOK REVIEWS

Franz, G. (ed itor): Beton-Kalender 1986 ......................................................  215
Horváth, K.Z .: The selection of load-bearing structures for buildings 419
Негру, M.-Berka, J.C .: Active RC f i l t e r  design .........................................  217
Joan, A .: Cavitatia I I ........................................................................................ 216
Márkus, Gy.: Kreis- und Kreisringplatten unter periodischer Belastung 420 
R e ine lt, G.: 'The Linear Ordering Problem: Algorithms and Applications' 421
Vértes, Gy.: Structural Dynamics ..................................................................  422
Wischers, B. (ed itor): Reports on concrete technics 1984/95 ................  218



CONTENTS

Barta, J . : On the minimum of s tra in  energy in  elastostatics .................  3
Dulácska, E.: The safety factor to be applied in  shell buckling

analysis ...................................    9
Ecsedi, I . :  Some comments on the tw ist problem of shells of c irc u la r-

arc centreline ............................................................................................  31
Ecsedi, I . :  Torsion of a thin-walled, anisotrop ic, bent rod of c irc u la r-

arc centreline ............................................................................................  65
Gáspár, L .: State conservation of highways .................................................  77
Györgyi, J .:  Calculation fo r the vib ra tion  of structures: a p a rtia l

eigenvector problem soldtion ..................................................................  103
Hankó, Z .: Q ualification of interdependence or independence w ith in  any

pair o f variables involved in  m ultip le lin e a r regression .............. 125
Matsikoudi-Iliopoulou, M.: E lastic membranes reinforced by cords: non-

lin e a r axisymmetric deformation with tw is t .......................................  147
Paláncz, В.: Analysis of a closed c irc u it  cryogenic wind-tunnel .......... 163
Reményi, К .: Use of low-grade coal as fue l of power plants.....................  193

BOOK REVIEWS

Franz, G. (e d ito r): Beton-Kalender 1986 (P. Csonka) ................................  215
Joan, A. : Cavitatia I I .  (J .J . Varga) ............................................................. 216
Негру, M.—Berka, J.C.: Active RC f i l t e r  design (K. Géher) .....................  217
Wischers, В. (ed ito r): Betontechnische Berichte 1984/85 (T. Gyengő) .. 218



PRINTED IN HUNGARY 
Akadémiai Kiadó és Nyomda, Budapest



ACTA
TECHNICA
ACADEMIAE SCIENTIARUM HUNGARICAE

EDITOR: P. MICHELBERGER

VOLUME 99

AKADÉMIAI KIADÓ, BUDAPEST 1986





A c ta  T e c h n ic a  A c a d .S e i .H u n g . ,9 9 (1 —2 ) , p p . 3 -8  (1 9 8 6 )

ON THE MINIMUM OF STRAIN ENERGY IN ELASTOSTATICS 

J. Barta*

(Received 28 May 1985)

This paper deals with the equilibrium of a body in case the stress- 
strain state is caused by active forces applied at given points. I t  is 
proved that, considering statically equivalent active forces, minimum 
strain energy is associated with the values of active forces which result 
in displacement of the application points as i f  the motion taking place 
were that of a rigid body.

Discussed in the paper are two theorems, theorem I of I .  Ecsedi £ lj,  
and theorem I I  which is  a generalisation of theorem I .  The purpose of the 
present paper is  to prove theorem I I .

The usual assumptions of e lastostatics are accepted. I t  is  assumed 
that only s ta tica l e ffects arise, that is , neither dynamical nor thermal e f
fects take place. The structure assumed to be is  free from in i t i a l  stresses 
(supposition a ). Assumed are also linear e la s tic ity , and the v a lid ity  of 
the p rinc ip le  of superposition.

Let us consider an e las tic  bar (Fig. 1) of a c ircu la r cross-section 
of variable diameter. The material of the bar is  homogeneous and iso trop ic.
The bar has a b u i lt - in  lower end preventing the cross-section of the lower 
end from displacing in any d irection , while the upper end is  free , and is  
subjected to d istributed axisymmetric active forces of in tens ity  т (г )  in 
the upper end cross-section. We stipulate  that these active forces be s ta t i
ca lly  equivalent to a given troque M. Now, according to

Theorem I :  The minimum stra in  energy of the bar (Fig 1) is  associ
ated with active forces x ( r )  which resu lt in  ro tation of the upper end 
cross-section as a r ig id  body. (As a resu lt of axisymmetry, th is  rotation 
takes place around the bar axis).

Now, le t  us consider an e lastic  body (Fig. 2) fo r ex. bar, plate, 
truss, frame, continuous body. F riction less jo in ts  and r ig id  supports prevent 
the body from moving. The supporting forces do not work. The body and its  sup
port are s ta tic a lly  determinate or s ta t ic a lly  indeterminate. The material of

*J. Barta, H-1085 Budapest, József körút 35, Hungary

Akadémiai Kiadó, Budapest



BARTA, J .

Fig,2. Application points and action lines of 
the active forces

the body i s  homogeneous or heterogeneous, and iso trop ic  or anisotropic. A,B, 
are given points of the body and are the application points of the active  
fo r ces . The magnitude of the active forces is  denoted by F p . . . ,F n . As to 
the d irection s of active fo r ces , we distinguish the cases
(a) the action line of the active  force is  determined, for ex. in point A 

of Fig. 2, or
(b) the action plane of the active  force is  determined by two d irections, 

fo r  ex. in point В of F ig . 2, or
(c ) the direction of the a c tiv e  force is  not determined and three non-com- 

planar directions are therefore used, for ex. in point C of Fig. 2.
We stipulate that the active forces be s ta t ic a lly  equivalent to the 

combination of a given force R and a given torque M (stipu lation  ß ) .  I t  is  
assumed that stipulation 3 can be fu lfille d * . Then the following theorem 
h o ld s.

Theorem II: The minimum strain energy of the body (Fig 2 ). i s  asso
cia ted  with values F p . . . , F ^  of active forces for which the displacements 
of p o in ts A,B, . . .  are such as i f  points A, B, . . .  were points of a rig id  body.

*It is easy to examine for given R, M, A, B, . . .  whether or not stipu
lation 3 can be fu lfilled. Description of such an examination seems to be super
fluous in this paper.

4

Fig. 1 . Torsion of the bar



Proof of theorem I I . From among cases a,b,ç case a w i l l  be consid
ered fo r the time being. In the proof, F F  are written instead of A,B,

П
. . .  . The body is  characterized by influence numbers

STRAIN ENERGY IN  ELASTOSTATICS

al l ’ ‘ ' ' ’ alm’

anl> > ann'

( 1)

Explanation: cF is  the displacement vector of application point P .̂ 
d  ̂ is  the component of _cF in  d irec tion  i ,  (F ig. 3). a ^  is  the value of d̂  
fo r Fj = 1. Directions l , . . . , n  determine un it vectors и ^ , . . . ,и р . Therefore, 
products u ^ , . .. ,unFn are equal to the vectors of active forces. Equation

a.,F , + . . .  + a . F =d. i l  1 in n 1 ( 2)

expresses a fundamental property of influence numbers. Instead o f (2)

a . , F. + . . .  + a . F = d .Lil i  1 in  n - i ai (3)

can be w ritten. We denote the s tra in  energy of the body by U. Formula

U = k  Fl (al l Fl  + ••• + alnFn)

F (a ,F, + . . .  + a F ) n n l 1 nn n

( 4 )

is  well known. Stipulation ß y ie lds equations

= R 1
1C I—
* T

| 
t—*

1

-  UnFn = D,-n n
(5)

<t>2 £ M - E1 * Ü] F1 - . . .  -  г X u F = D. -n -n n

Magnitudes F ^ ,...,F n have to be chosen in  such a way that the s tra in  energy 
expression (4) w i l l  be minimum. At the same time, equation (5) has to be 
sa tis fied . Thus the problem is  to find  a re la tive  minimum.

According to the rule of find ing a re la tive  minimum we use function

Ф = y + _x_2 $2 (6 )

5



BARTA, J .

Fig. 3. The displacement vector and its  component in given direction

Vectors A_̂ and JЦ  are Lagrange's m u ltip lica to rs . Equations

6 Ф
6 F. = 0 ( i= l ,  —  ,n) (7)

read in  detail

ai l Fl . . .  + a.in Fp - A 1ü 1 -  ( i= l» ... ,n)(8)

Taking into account re la tio n  (3) and the ru le  of mixed product of vectors, 
we obtain from (8) equations

d . u .—l —i - x - i ^ - i  = ( i= l , . . . ,n)(9)

tha t is

(d i -  - A 2 x Xi)j=Li = °-

Equations (10) are f u l f i l l e d  i f

d.—l
A + А у г 
-1  - 2  x - i :

( i= l ........n)(10)

( i= l , . . . , n ) ( l l )

or

(d i - A i À2 x X i) d i, ( i = 1 , . . . ,n)(12)

Let us follow now the calculation process of re la tive  minimum. Equa
tions  (8) and (5) serve fo r  calculating unknowns F p . . .F  , Ap Ap Thus we 
have n scalar equations and two vector equations. Therefore, equations (8) 
and (5) include n+6 scalar equations with n+6 scalar unknowns. After calcu
la t in g  unknowns F p . . .  Fn , 2 p  , we consider equations (11) and (12).
Figs 4 and 5 il lu s tra te  re la tion s  (11) and (12). 3_ is  the plane passing

6



STRAIN ENERGY IN ELASTOSTATICS
through p o in t P ., perpend icu la r to  d ire c t io n  i .  As shown in  F igs 4 and 5 

(11) a llo w  only one re la t iv e  minimum w h ile  (12) a llow s more re la t iv e  minima. 

Since F ig . 5 comprises F ig . 4, and since the u n ic ity  o f s o lu tio n  F p . . . , F  ,

*  ̂ , ^ 2  ^as a re s u lt  o f suppos ition  °0  is  v a lid ,  i t  is  poss ib le  to  use 
only (11) from among both equations (11) and (12 ).

According to  the ru le  known from l i t e r a tu r e ,  "the necessary and su f

f ic ie n t  co n d itio n  th a t displacements d ^ , . . . , d n o f po in ts  P ^ , . . . ,P  be such 

as i f  p o in ts  P , , . . . ,P n were p o in ts  o f a r ig id - body, is  the ex is tence o f two 

vectors dg and ш by means o f which

d^ = dg + ш X Г р  ( i = l , . . . , n )  (13)

can be w r it te n " .  Comparing (13) w ith  (11) i t  can be seen th a t dg = X^ and 

ш = ^ 2  are much two vec to rs . Thus, we have a re la t iv e  extreme in  c ïse  a. 

This r e la t iv e  extreme is  a r e la t iv e  minimum since (4) is  a p o s it iv e  quadrat

ic  form . With th is ,  theorem I I  is  proved fo r  case _a. Cases |)_and ç. need not 

be proved since _b and c, are comprised in  a_.
Example. Let us consider the to rs io n  problem o f a bar w ith  square 

c ro ss -se c tio n . For the sake o f comparison two rigorous so lu tio n s  o f to rs io n  

problem (F igs 6 and 7) are presented.
A .rigorous s o lu tio n  (F ig . 6) is  the c la s s ic  s o lu tio n  [2 ] . Here on

ly  shear stresses e x is t  in  each cross se c tion  w ith  the cross se c tion s  warp

in g , and the d is t r ib u t io n  o f M is  un ifo rm  in  each cross se c tio n .

Another rigo rous  s o lu tio n  (F ig . 7) comes from theorem I I .  In  th is  

case, the c ross-sec tion  o f the lower end is  clamped, a l l  the p o in ts  o f the 

c ro ss -se c tio n  o f the upper end are considered as given p o in ts  o f a p p lic a -

7
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BARTA, J .

F ig . 6. The lower end cross-section 
can warp unimpededLy

Fig. 7. The lower end cross-section is 
cla m ped

tio n  of active forces, and R = 0 is  stipulated. Here the upper end cross- 
section experiences no deformation. Although R = 0, normal stresses ex is t in 
the upper end cross-section.

REFERENCES

1. Ecsedi, I. :  A comment on the torsion of bars having a circular cross-section 
of variable diameter. Acta Techn. Hung. 95 (1982), 13-19.

2. See fo r ex.: Sokolnikoff, I.S . Mathematical Theory of Elasticity, First Ed., 
McGraw-НШ, New York, London 1946, 149.
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A c ta  T e ch n ica  A c a d .  S e i.  H u n g . ,99(1—2 ), p p . 9—30 (19 8 6 )

THE SAFETY FACTOR TO BE APPLIED IN SHELL BUCKLING ANALYSIS

E. Dúl ácska*

(Received 3 September 1985)

The paper deals with the necessary safety factor against buckling 
of shell structures. Using probability theory in an approximate way we 
propose safety factors for both elastic buckling and failure, and, provide 
a simplified method of analysis, suggesting a unique safety factor, we 
also evaluate the values of the safety factors according to the princi
ples of various building codes.

1. INTRODUCTION

In our previous paper /1 /  we b r ie f ly  dealt with the safety fac to r 
to be used in  buckling analysis of reinforced concrete shells. As we have 
promised there, we investigate now the problem of the safety factor in  she ll 
buckling in  general.

The necessary safety of a structure can be achieved in several ways: 
we can use a unique or a s p l i t  safety fac to r. In addition, the level of 
safety can also be d iffe re n t. The codes of practice of the d iffe ren t coun
tr ie s  regulate the required safety in various ways.

In the present paper we recommend a safety factor which is  d i f fe r 
ent fo r e las tic  buckling and fo r fa ilu re  without buckling, but which can be 
reduced in to  a unique safety fac to r. We investigate the values of the safety 
factors on the basis of the Hungarian (MSz) and German (DIN) codes, and on 
the basis of the recommendations of CEB and ACI. F ina lly , we compare the 
safety of several erected she ll domes with the safety factors proposed in  
the present paper.

2. PRINCIPLES OF DETERMINATION OF THE SAFETY FACTOR

The safety factor

*Dr.Dulácska Endre, H-1022 Budapest, Kitaibel Pál u. 12, Hungary

Akadémiai Kiadó, Budapest



DULÁCSKA, E.
determining the safety with respect to c r i t ic a l  load, depends

— on the accuracy of the theory used in  computing the c r i t ic a l  load;
— on sudden or gradual character of buckling (decreasing, increasing 

or constant p o s t-c r it ic a l load bearing capacity);
— on deviations between theoretica l model and actual she ll in

material q u a lity , 
material characteristics, 
load values, 
dimensions and 
shape;

— on the standard deviation of these e ffects and on the sim ultaneity 
and coincidence of these effects and standard deviations; and, f in a l ly ,

— on the r is k  that we are w illin g  to take with respect to fa ilu re .
A ll these e ffects manifest themselves in  d iffe rent ways in  the de

term ination of e las tic  c r i t ic a l  load p„r and in  the determination of 
p la s tic  fa ilu re  load p ^ .  On the one hand, the variation of the radius of 
curvature R due to in i t ia l  geometric imperfections influences e la s tic  c r i t i -  
cal load pcr  ̂ according to law 1/R , since th is  expression appears in  the 
formula fo r the c r i t ic a l  load of a perfect sphere, while i t  influences the 
p la s tic  fa ilu re  load according to 1/R, since p  ̂ = 2 n ^/R. On "the other 
hand, we have shown in  our paper /2 / that the p las tic  fa ilu re  load always 
has a decreasing character as a function of displacement w, while the elas
t ic  p o s tc r it ic a l load bearing capacity can have an increasing character, as 
well as is  the case with hypar shells supported along the ir s tra igh t genera
tr ic e s  /3 / .

Due to these circumstances, we obtain two d iffe rent safety factors, 
Ye^ and Y p  fo r the e la s tic  c r it ic a l load and fo r the p las tic  fa ilu re  

load respectively. With the aid of these we can write the c r i t ic a l  l im it  
load, pc r |_|, using e.g. the "e llipse  of Dunkerley" as suggested in  /2 / ,  as 
fo llow s:

Expressing pcr ^ we obtain:

10



THE SAFETY FACTOR TO BE APPLIED IN  SHELL BUCKLING ANALYSIS

upper 
Mc r,e l 1

Jcr>H = Y Di 1/ / Y pupper\2
P -L С Г j 61

Y el Ppl

Using the "parabole of Dunkerley" we arrive at

( 3 )

pcr,H '  ̂ el 
upper 

l c r,e l
( 4 )

from which

where

cr ,H

upper
3c r,e l

Y el ÍT .  A2 -  2 A2

A = el

Pi
Pi

upper 
Hc r,e l

(5)

In the above formulas P ^ Pg  ̂ denotes the upper, i.e . "snapping" 
c r it ic a l load of the shell considered as e la s tic  in  the case of given (or 
assumed) in i t ia l  imperfection wq , which has to be determined, in  case of re
inforced concrete shells , taking cracks and reinforcement into considera
tion , and w q  is  the mean value of the imperfection amplitudes / 1 / .

I t  is  possible, fo r the sake of s im p lic ity , to use a unique safety 
factor Ye  ̂ pp  but th is  w il l  provide a tra n s itio n  to the fa ilu re  without 
buckling with some approximations only.

The safety of a shell against buckling can be kept on an appropri
ate level in  the simplest way i f  we take the most onerous, extreme value of 
every e ffe c t, determine the c r it ic a l load w ith the aid of these values, and 
reduce i t  by the safety factor. This method, which may be called the m u lti
p lica tion  of p a rtia l safeties, is  certa in ly  safe but uneconomical, because 
i t  does not take in to consideration tha t, as a ru le , the most onerous values 
of the various effects do not appear simultaneously.

Another p o s s ib ility  is  to exactly or approximately apply the rules 
of p robab ility  theory /4 / ,  /5 /,  /6 /. We choose th is  method in the present 
paper. However, we have to check the evaluations of the probability  theory

11



DULÄCSKA, E.
by the safety value to be computed from p rac tica l data. That is ,  the methods 
of the p robab ility  theory y ie ld  appropriate resu lts in  case of a great num
ber of events, but fa ilu re  of shells by buckling cannot, by any standard, be 
considered as a mass event, because every ind iv idua l shell has to have a 
s u ff ic ie n t degree of safety. Hence, in addition to the evaluation of materi
a l q u a lit ie s  and model tests , we are compelled to make certain estimates 
when assuming the various parameters. The correctness of these estimated 
values can be checked by comparing our computed safety factor to tha t de
rived from the data of erected structures which show no sign of fa ilu re .

In applying the p robab ility  theory, we assume that the ind iv idua l 
random variables are independent of each other, so that we have to deal with 
one-dimensional d is tr ib u tio n s , and can use the rule of addition of the var
iances (the variance law). I t  follows from th is  princip le  that the resu ltan t 
standard deviation is  smaller than that obtained by leaving out the standard 
deviation of one variable of the computation of the resultant standard devi
a tion and adding i t  separately to the la t te r  one. So, for example, i f  we de
note the resultant co e ffic ie n t of varia tion  by we have

We follow th is  ru le  in determining the material characteris tics. 
That is ,  we determined the characteris tic  or nominal values by the national 
codes, as lower f ra c t i le  from the mean values with the aid of the standard 
deviation, taking a certain frequency in to  account. In s ta b il ity  analysis 
we use these nominal values of the material characteristics. In our in v e s ti
gations we use the random deviations with respect to these values, which are 
c e rta in ly  independent of each other.

We assume that the d is trib u tio n  of every random variable has one 
peak and that th e ir skewness can be neglected. Consequently, they can be re
placed by the normal d is tr ib u tio n . This represents the roughest approxima
tio n  in  case of meteorological loads (snow, wind). However, th e ir most oner
ous values are set by the various codes, and by so doing they more or less 
consider the ir skewness as w ell. We only use these determined values here.

Let us check by a rough comparison how the normal d is tr ib u tio n  ap
proximates a skew one. Let the frequency function be a triangle  with v a ri
able angles, as shown in  Fig. 1, and le t  us determine the 2.5 % and 97.5 % 
f r a c t i le  from the tra ingu la r and from the normal d is tribu tion .

12



THE SAFETY FACTOR TO BE APPLIED IN  SHELL BUCKLING ANALYSIS

Type of 
frequency A

Fig. 1. Error caused by the skewness of distribution

We have p lo tted  the results in Fig. 1. I t  can be seen that the error 
in the upper fra c t ile s  (loads) is  neglig ib ly  small. In the lower fra c t ile s  
(resistances) the e rror is  greater, but always lie s  on the safe side. More
over, the central l im it  theorem of the p robab ility  theory states that the 
d is tr ib u tio n  of the sum of several non-normal d is tribu tions rap id ly  ap
proaches the normal d is tr ib u tio n . Consequently, we can safely use the normal 
d is tr ib u tio n .

Summing up, we can compute the characte ris tic  value of c r i t ic a l  
load, to be used in  design, by subtracting the resultant standard deviation 
m ultip lied  by ot from the mean value of experimental results, or from the 
c r i t ic a l  load computed from the mean values of the resistances.

Here a is  a numerical value depending on the quantile belonging to 
the r is k  taken. I f  we accepted a quantile of order 2.5 %, we can take 

a =2 .0  provided we had a s u ff ic ie n tly  large number of samples.
The safety facto r can thus be computed from expression

Y = b
1 ~ 01 v R

( 6 )

Here Yq denotes the level of safety which has to account fo r accessory e f
fects not taken in to  consideration, fo r small errors in computation, and,

13
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moreover, fo r the fact tha t the required leve l of safery is  higher than that 
of the leve l of the nominal value and, consequently, the upper and lower 
ch a rac te ris tic  values of loads and resistances, respectively, have to be 
s h ifte d  apart from each other. Adding these p a r tia l safeties together as 
vectors, we obtain in the Hungarian code of practice Y = 1.1, in  ACI and 
in  CEB Recommendation 1.12 and 1.16 respectively, and in DIN 1.25, as we 
s h a ll see la te r. I f  we use an approximate computation model or an approxi
mate way of analysis, we s h a ll increase the value of Y .

In case of e la s tic  buckling the resu ltant coeffic ien t of va ria tion , 
V p s h a ll be computed from the sum of squares of coeffic ien t of variations 
as fo llow s:

V el
R Í load +  V

СГ
( 7)

Here ^^oad *s соеШ с1еп1 ° f  varia tion of average load;
V is  the coe ffic ien t of variation of c r i t ic a l  load of concrete or 

p lastic shells, taking the dispersion of modulus of e la s t ic ity  E 
beyond the l im it  o f nominal strength. Since the c r i t ic a l load is  
linearly  proportional to E , v p is ,  in  fa c t, the coe ffic ien t of va ri
ation of E;

Уф is  the coe ffic ien t of variation of c r i t ic a l  load due to the co e ffi
cient of va ria tion  of modulus of creep ф of the shell m ateria l;

v cr is  the coe ffic ie n t of variation of c r i t ic a l  load due to the change 
in  the radius of curvature R caused by the coeffic ien t of varia tion  
of imperfection amplitude w .

3. ESTIMATE OF THE COEFFICIENTS OF VARIATION

Estimate of the coe ffic ien ts  of va ria tion  of load and of. p las tic  
fa i lu re  load of the s tructure , v and v pp  respectively

In case of fa ilu re  without buckling the resultant coe ffic ien t of var
ia t io n  becomes:

v Pi _ 
R “

2
load (8)

Let us determine the component coe ffic ien ts  of variation using the

14
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princ ip les of the Hungarian building code /7 /.
The safety facto r of the dead load of th in  concrete structures is

1 dead 
take Y

= 1.2, that of the service load is  Y = 1.3. On the average we canserv
load = 1.25. Since we can write

load ~ 1-2 Vload
= 1.25,

from th is  re la tion  we can compute the co e ffic ie n t of variation of the aver
age load:

vload = 0Л (9)

The safety facto r ( i.e .  the ra t io  of mean strength to nominal or 
characteris tic  strength) of steel material is  Y  ̂ = 1.2, tha t of con
crete is  1.4. Since fa ilu re  mainly depends on reinforcement, we may take the 
average safety factor of reinforced concrete material as Yma-|-er,^aj  = 1-25,
i.e .  closer to that of steel. 

From the formula

Y
1

material 1 - 2 v = 1.25
Pi

we can determine the coe ffic ien t of va ria tion  of the material, i .e .  of plas
t ic  fa ilu re  as

v . = 0.1 . (10)
Pi

Applying Eq./б / to the fa ilu re  without buckling we can w rite

4 q________
Y p i ~ , 9 772 ^material ^load ~

\  load + p i

from which we obtain

7o = 1Л • ( I D

15
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Estimate of the excess coeffic ien t of variation of the modulus of 

e la s t ic ity ,

The results of several thousand measurements of EMPA /11/ are very 
su itab le  fo r assessing the coeffic ien t of va ria tion  of since the formu
las fo r computing the modulus of e la s tic ity  are also based on these data.
The l im i t  curves and the data to be used can be seen in Fig. 2.

According to the Hungarian building code /7 /,  the nominal strength 
of concrete, f  . , is  70 % of the mean strength, f '

We thus can w rite

7 1
concrete 1-2 v concrete 0.7 1-4’

from which v concrete 0.15 is  obtained.
Hence the ra tio  of the nominal cy linder strength, f  to the3 a ’ c,min

mean strength, f^  is  also 0.7, i .e . : f  = 0.7 Г .  c,min c

^o,min.~0-®5E-o(f'c,min.) Eo(f'c,min.)=6750 7f c,min.
V£ -0.10

16
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Thus from formulas fo r Ед, given in  Fig. 2, the curve of E ^^ , 

can be determined and p lo tted  as shown in  the figure.
Reading the data of the figure we have

from which
V,- = 0.07 .

E ) a

We can also read o ff the figure that

This yie lds for the excess coeffic ien t of va ria tion  the value

( 12)

Estimate of the coe ffic ien t of va ria tion  of creep,У ф

Vandepitte et a l.  performed a great number of experiments to explore 
the influence of the creep of concrete on the c r i t ic a l  load of sh e ll domes 
/12 /. From the creeping models they obtained a coeffic ien t of va ria tion  
V ф g = 0.20, while from the quick loading experiments, where creep 

played no ro le , they found

as an average co e ffic ie n t of variation. 
Since we can w rite

we have

V

V
ф ,exp

V 2
Ф

(13)

17
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Estimate of the coe ffic ie n t of va ria tion  of the e lastic  c r i t ic a l
load, V ------- 2---- vcr

S tab ility  investiga tions for c y lin d ric a l and spherical shells with 
snap-through character have been made by several researches on metal models. 
We evaluated the ir resu lts  several years ago /13 / and obtained a coe ffic ien t 
of va ria tion  of v exp = 0.30. We now revised th is  resu lt and found that i t  
was ir r e a lis t ic a lly  high. The reason for th is  is  that we also took in to  ac
count the c r it ic a l loads o f shells that had such a high R/h-ration (radius 
of curvature to shell thickness) which ce rta in ly  would not occur in  practice, 
and, moreover, we computed the coeffic ient of va ria tion  without regression, 
so th a t the decreasing trend of the c r it ic a l load with an incerasing ra tio  
R/h also appeared as co e ffic ie n t of varia tion.

We think that she lls  with R/h >1300 do not occur in practice. On 
the other hand, p la s tic ity  reduces the c r i t ic a l  load i f  R/t<300. We could 
not evaluate th is la t te r  e ffe c t due to incomplete experimental data so that 
th is  regular (systematic) deviation of the experimental results also ap
peared as a coeffic ien t of varia tion . We thus proceeded in  the new evalua
t io n  in  the following way:

We evaluated the experiments in the range of 300 < R/h < 1300.
Here we divided the experimental results by the values of the regression 
curve,

fo r a l l  the experiments. (Неге is the "c lass ica l" c r it ic a l load of 
s h e lls , determined by the lin e a r buckling theory.)

We then computed the coeffic ient of va ria tion  of the values thus ob
ta ined, separately fo r every researcher's model tes ts . (These values lay a- 
round 1 .0 .) We only evaluated test series on more than 10 models. From among 
the coe ffic ien ts  of va ria tion  obtained in th is  way we considered the highest 
one to  be relevant. We compiled the results in  Table I .  So, f in a l ly ,  we took 
value

V = 0.23 cr (14)

18
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fo r the coe ffic ien t of va ria tion  of the e las tic  c r i t ic a l  load.

Table 1. Standard deviations of shell model tests

Kind of 
shell R eference Researcher No.of 

models R/h Relative stand
ard deviation

Lundquist 29 650- 900 0.172
W eingarten- M organ 
Seide 24 500-1000 0.226

C ylindrical 
shells /13/ Kanemitsu-Nojima 19 760-1250 0.210

H arris-Sver-Skene 
-Benjamin 20 400- 800 0.192

Litle 23 500- 800 0.113

Domes /13/ Sea man 20 500-1200 0.203
Klöppel-Jungbluth 35 300-1300 0.234

Explanation of the comparatively high value of the coeffic ien t of 
variation of the e la s tic  c r i t ic a l  load of she lls , v cr

In model tests , the c r it ic a l load computed form wall thickness h, 
modulus of e la s tic ity  E, and the actual strength are compared with the ex
perimental c r i t ic a l  load. Since a l l  these data are actually measured values, 
th e ir  coeffic ien ts of va ria tion  are small, and do not account fo r the great 
coe ffic ien t of va ria tion  of the c r it ic a l load. Indeed, we neglected these 
coeffic ien ts of va ria tion  in  our investigation. On the other hand, in i t ia l  
imperfections influence the radius of curvature, R, according to re la tion

«
8/fo 4 /

Неге 4/ is  the buckling length, f  is  the rise  of the shell on 
о 0 0length <>o, computed from planned radius of curvature Rq, and wQ is  the maxi

mum amplitude of the in i t ia l  imperfection.
Evaluation of the various theoretical investigations shows tha t f^  

is  in fe r io r to the wall thickness. Consequently, wQ = h can already mean a 
plane point on the sh e ll. According to theore tica l investigations, the c r i 
t ic a l load hardly depends on the buckling length of imperfection, but de-
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pends essentia lly on w . Hence we sha ll investigate the influence of w on

ly  -

Fiq. 3. How the scatter of imperfection causes scatter of the critical 
load

We plotted in  Fig. 3a a curve Р^от> which approximated the theo
re t ic a l results. I f .  wa deviated from the calculated value, we s h if t  to the 
r ig h t  or to the le f t  along the curve by value Awq. Thus a smaller or 
greater wq and, correspondingly, a greater or smaller c r it ic a l load becomes 
possible. I f  we re fer these values to the o rig ina l wq , and pro ject them to 
the v e rtic a l lin e  corresponding to w , they appear as coe ffic ien t of varia
t io n  o f the c r i t ic a l load.

20
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The situation w i l l  be s im ila r when evaluating test resu lts , i f  we 
p lo t the c r i t ic a l  load as a function of R/h. Here wq causes R to change by 
AR, which changes also the c r i t ic a l load. Referring these changes to  the 
o rig ina l R , i .e .  projecting them into the v e rtic a l line  passing through Rq, 
results in  the coe ffic ien t of variation of the c r i t ic a l load.

4. THE SAFETY FACTORS OF SHELLS WITH SNAP-THROUGH CHARACTER

The proposed values of the safety factors

The data to be used fo r calculating the safety factor have been ob- 

o ’ ’ load pitained previously as Yn = 1.1; a= 2.0; ^  ^ = 0.1: v_, = 0.1; v A= 0.16:

v cr = ° - 25-
The safety factor of fa ilu re  without buckling w il l  be fo r re in 

forced concrete and metal shells, taking Eqs/б / and /8 / into consideration:

'p l

- 2 f

= 1.55 (15)
2 2

V ,  , + V  -,load pl

We obtain fo r the safety factor of e la s tic  buckling, in  case of 
reinforced concrete shells, from Eqs/б / and /7 /:

concrete = 2.955 «  3.0 (16)

(17)
1 load cr

I f  we do not want to separate the p la s tic  and the e las tic  safety
factors, but we want to introduce a unique safety factor instead, the values 

2 2
V p l anc* v c r a'*'so 113ve aPPear ur|der the ro o t s ign , but d im in ished  to

such an e x te n t as corresponds to  the ro le  played by them in  e la s t ic - p la s t ic  

buck ling .

I f  we write values and v e^ in to  the equation of the

21
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Dunkerley-ellipse applied to  p lastic c r i t ic a l  load, and equate
in to  which we wrote У , , we can determine :e l , p i ’

^ e l,p l ^ e l

th is  to  another

(18)

I f  we assume that p , 
p l

fa c to r the expression

^e l,p lis *  Yel

/Рc r ,e l
„  /„H n
pp ^cr ’ we w i l l  obtain fo r the unique safety

(19)

Some values for
fa i lu re  load p -, 

Pl

Y -, -, are found in Table I I .
e l.p l

va lid  in  case w = 0.о

Here p 
HP

denotes the p la s tic

Table 2. The unique safety factor Yê  р̂  for buckling and plastic failure

M ateria l of
Proposal According to p r in 

ciples of DIN/СЕВ/
According to p r in 
ciples of ACI

the sh e ll Concrete Metal Concrete Metal Concrete Metal

£p = 0
= 0.5 
= 1.0 
= 2.0 
= 00

1.50
1.90
2.35
2.75
3.00

1.50
1.70
1.90
1.97
2.20

1.75
2.18
2.70
3.14
3.40

1.75
1.92
2.16
2.37
2.50

2.10
2.23
2.98
3.40
3.65

2.10
2.10
2.42
2.59
2.70

The safety facto r sh a ll be increased i f
— the theory applied is  approximative,
— the computation model deviates from the actual structure ,
— the m ateria l characteristics are not re liab le .

The values of the safety factor established according to the p rin 
c ip les of DIN

DIN gives a fac to r o f safety Yp-̂ = 1.75 fo r structures not exposed 
to buckling /8 /. I t  determines the fa ilu re  load from the nominal strength.
22
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With values v  ̂ = 0.1 and v ]̂ oacj = 0-1 we have

Pi
1.75

load + V pi
( 20)

from which we obtain Y = 1.25. The safety fac to r of e lastic buckling be
comes in  the case of reinforced concrete she lls :

y concrete 
el

1.25

1 -  2 \Jo.l2 + 0 . 12 + 0 .162 + 0.232
= 3.357 &  3.4

( 21)

The IASS-Recommendations /14/ accepted th is  level of safety fo r 
buckling analysis of reinforced concrete she lls , because i t  gave Y  ̂ = 1.75 
and Y  ̂ = 3.5.

For metal shells we obtain with = 0:

ymetal
el

1.25
T2 ^ 0.1

2.508 «2.50
0.23

The values of unique e la s tic -p la s tic  safety factor 
puted from Eq.(19), are tabulated in Table I I .

(17)

Te l,p l> com-

dation
Safety facto r according to the princip les of the CEB Recommen

According to the CEB Recommendations /9 /  Y ^ 1.15;
Y =1.50;  and we can assume Y 1.25. From these we obtainconcr ’ material

the value v  ̂ = 0.1. The Recommendations specify fo r the loads Y ^ ^  =1.35
and = 1-5. These y ie ld  an average value of Y ^ ^  1.4, which results
in Yn . = 0.15. We thus have load

Pi = Ymaterial load = 1.25(1.4) = 1.75 ( 2 2 )

We can write
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1

IIГ-НQ
.

>-

■ V ?  +

\ load pi

1.75

which yie lds Yq = 1.12. The safety facto r of e las tic  buckling is ,  in  case 
of reinforced concrete shells :

Y concrete 
el

Yо
,,2 2 :— 2----- 21 -  2 « 4oad + v E + v <t> + V

СГ

1 .12_______

1 -  2\| 0.152 + 0.12 + 0.16^ + 0.232
3.36;rf3.4 (23)

and in  case of metal she lls  (assuming \)ф = = 0):

Y metal 
el

1.12
0.15^ + 0.23T 2.48 (24)

That is , the safety factors computed according to the p rinc ip les  of 
CEB essentia lly  coincide with those yielded by the DIN.

Safety factors according to the p rinc ip les  of American Code ACI

According to ACI /10 / Y ^ ^  = 1.4; Y^. = 1.7. We thus can assume
^load y ie lds a coeffic ien t of varia tion  ^ loacf = 0.167. In

case o f eccentric compression Ymat;er ia l = ^rom wh:*-ch ^m ateria l = ^
can be computed.

The safety facto r of p lastic  fa ilu re  becomes

Ypl = 1.5 (1.4) = 2.1

We can write

*pl ■Í1 - 2  \| V 2 + v 2material load
= 2 . 1 ,

(25)

from which y q = 1.16 can be computed.
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Hence we obtain fo r the safety factor of e las tic  buckling of re in 

forced concrete shells:

concrete
el

-  V load +
2, , 2., 2

cr

1.16
1 - 2\] 0.167^ + 0.12 + 0.16Z + 0.23^

and of metal shells, taking v (j) = = 0:

v metal _ 1.16

= 3.65 (26)

el 1 - 2 0.1672 + 0.23T 2.688 ^  2.7 (27)

We present the values of unified e la s tic -p la s tic  safety facto r 
Yei pp  computed from Eq./19/, in  Table I I .

5. SAFETY FACTORS OF SHELLS WITH INCREASING OR CONSTANT 
POST-BUCKLING LOAD BEARING CAPACITY

I f  we require the same level of safety against buckling fa ilu re  of 
shells in  every case, we sha ll apply safety factors of d iffe re n t magnitude 
in case of decreasing and increasing post-buckling load bearing capacities. 
This is  essentially due to the circumstance that in  case of increasing load 
bearing capacity i t  is  p la s tic  fa ilu re  load rather than c r i t ic a l  load which 
characterizes fa ilu re . This phenomen is  schematically illu s tra te d  in  F ig .4, 
where we represented the decreasing and increasing load bearing capacities 
by inc lined, broken s tra igh t lines , disregarding the difference in  c o e ff i
c ient of variation between both cases.

We obtain, as shown in  the figure, fo r a structure with decreasing 
load bearing capacity

Pi

with Yĵ  as the safety facto r determined in  case of decreasing load bearing 
capacity. Since increasing load bearing capacity is  characterised by re la 
tion  Pcr./Pp^ < 1, in th is  case we shall have Y2< Y^. Following the pro
posed way of analysis we have
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Yо 1. 1; <x= 2.0; V load 0.1; V Pl
0.1; v E = 0.1; %>ф= 0.16.

and the evaluation of tests  made on bars with constant post-buckling load 
bearing capacity yields

V СГ v exp 0.18.

We thus obtain the resultant va ria tion -coe ffic ien t = 0.28 for 
re in forced concrete she lls  and = 0.23 fo r metal shells, and the follow
ing safety factors can be computed (omitting subscript e l) :

ГС 1* о  1 .1
constant 1 -  2 Vpj 1 - 2(0.28) ~ ^-5, (28)

Y metal 
constant

1.1
1 -  2(0.23) ^  2.03. (2 9 )

In case of investigations according to the princip les of DIN:

metalY re
constant '2.85, Yconstant 2.30.

26
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In case of investigations according to the princip les of CEB:

Y . . = 2.80.constant ’
•Y metal 

constant 2 . 10 .

In case of investigations according to the princip les of ACI:

у re
constant = 3.05, V metal _ « 

constant

In case of shells which have a snap-through character, but the slope 
of the fa llin g  curve is  less than in  cases of ax ia lly  compressed cylinder 
and ra d ia lly  compressed sphere, i t  seems reasonable to use an intermediate 
safety factor Yinterme(j, which lie s  between Ydecreasing and Yconstant- 
The value of th is  safety facto r can be approximated by the following in te r
polation formula, using Phom(0.5), the value of the ra tio  PhQm = р^ррег/  
p ^ n assumed at wQ/h = 0.5, characteristic of the slope of the curve of de
creasing load bearing capacity

Yintermed = Yconstant (Y decreasing Y V-' constant
phom(0 -5)

0.75
(30)

Note that in  cases of a x ia lly  compressed cy lin d rica l and ra d ia lly  
compressed spherical shells Р^О[1)(0.5) = 0.25, while in  case of a ra d ia lly  
compressed very long cylinder Pdom(° -5) = 1-00. Introducing the values into 
formula (30) for various Phom(0.5), we obtain the values of Table 3. ac
cording to the d iffe re n t build ing codes.

Also, note that the safety factor fo r e las tic  buckling of shells 
with decreasing post-buckling load bearing capacity is  twice the safety fac
to r va lid  in  the case of fa ilu re  without buckling.
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Table 3. Values of the intermediate safety factors

y y
el, intermed. ' pl

p. (0.5) = horn 0.25 0.50 0.75 1.00

proposal 3.00 2.83 2.67 2.50 1.55
according to DIN 3.40 3.22 3.03 2.85 1.75
according to CEB 3.40 3.20 3.00 2.80 1.75
according to A Cl 3.65 3.45 3.25 3.05 2.10

proposal 2.20 2.15 2.10 2.05 1.55
according to DIN 2.50 2.43 2.37 2.30 1.75
according to CEB 2.48 2.36 2.23 2.10 1.75
according to A Cl 2.70 2.56 2.42 2.28 2.10

6. COMPARISON WITH ERECTED DOMES OF LARGE SPAN

We computed the c r i t ic a l  load of several erected reinforced concrete 
domes w ith the aid of the method outlined in  /1 / ,  and compared them with 
th e ir  actual loads in  F ig .5. On the basis of th is  comparison we think that 
computation of the c r i t ic a l  load with the method outlined in  /1 /,  assuming 
the value of the safety fa c to r at about = 3.0, which gives ^я*2.4
at R/h = 500, yields a safety leve l corresponding to the practice followed 
u n t i l  now. Only three erected shells with a safety factor less than two were 
found. One of these actua lly  buckled, and the other two were extremely slen
der. The figure also suggests that e l l ip t ic  she lls  ( i.e .  those with positive 
Gaussian curvature) having a slenderness ra tio  R/h < 500 w il l  most l ik e ly  
e x h ib it a su ffic ien t degree of safety against buckling. However, fo r hyper
b o lic  surfaces (those with negative Gaussian curvature) prone to develop 
inextensional deformation, th is  l im it  value may l ie  considerably lower, e.g. 
the collapsed cooling towers of Ferrybridge had a slenderness ra tio  of 
about R/h sá200.
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Domain of failure of 
model tests

ilure 
upper,pi 

Pcr,rc

Proposed Yel, pi, 
in the case of
tfpl=1-5,Yel=3.0

Domain of shells 
applied in practice

001 4
1 1 

7
L_l_l 1 R

10 102' h
1. Jena .Germany 11. Belgrade,Yugoslavia
2. Jena, Germany 12. Algeciras, Spain
3. Matsuyuma .Japan 13. Novosibirsk, SU
4. Ingoviscosa Works,Germany 14. Rome, Italy
5. Hilling, USA 15. Gödöllő, Hungary
6. Hamburg, Germany 16 Thessaloniki, Greece
7 Windward , USA 17. Puerto Rico, USA
8 Wales , Great Britan 18 Cleadon,Great Britain
9. Albuquerque, USA 19 Lyon, France
10. Belgrade, Yugoslavia 20. Massachusetts, USA

Comparison of actual safety of erected domes with our proposal

7. SUMMARY

The paper dealt with the necessary safety factor against buckling 
of she ll structures. Using probability theory in  an approximate way we pro
posed safety factors fo r both e lastic  buckling and fa ilu re , and, to  provide 
s im p lified  method of analysis, we suggested a unique safety fac to r. We also 
evaluated the values of the safety factors according to the p rinc ip les  of 
various building codes. We proposed a unique safety factor Y , = 1.5 fo r

СОПСГ ^fa ilu re  without buckling while Y , = 3 .0  fo r pure elastic buckling of
mp + gl

concrete and reinforced concrete shells, and Yg  ̂ = 2.2 in case of metal 
shells.
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SOME COMMENTS ON THE TWIST PROBLEM OF SHELLS 
OF CIRCULAR-ARC CENTRELINE
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SUMMARY

This study discusses the uniform torsion of thin-wailed shells of 
circular arc centreline, made of homogeneous, isotropic, linearly elastic 
material. The meridian section of the shell of circular arc centreline is 
a multiply connected planar domain. The proof of the three unequality 
relations concerning torsional rigidity is fundamentally based on consider
ations of J. Barta, exposed in 1955.

NOTATION

cylindrical coordinates 
unit vectors
orthogonal non-straight coordinates
tangent to curve у or its normal unit vector
wall thickness
shear modulus of elasticity
shear stresses
shear stress resultants
shear stress resultant
shear stress resultant force couples
planar curve, meridian section of the central 
surface of the shell
main radius of curvature of central surface
main curvatures of central surface
force
mom entu m
equation of curve у

Hamilton's differential operator in plane rz 

displacement vector
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specific elongation 
specific angular change 
auxiliary function 
torsional rigidity 
symbol of field i  
boundary curve of field i  
tangential unit vector of curve y^ 
normal unit vector of curve y  ̂
constants
tangential stress resultant
section of curve y^ separating field and
'free' boundary section of curve y^
area of field cc
symbol of scalar product of two vectors 
symbol of vectorial product of two vectors,

ECSEDI, I .

other quantities and variables being defined in the text.

1. INTRODUCTION

Problems lik e  "determine the system of in te rna l forces and the 
s tra in  of a rod upon which given forces and force couples applying tw is t to 
the rod are acting" have often been discussed in  the mathematical theory of 
e la s t ic ity .  A rigorous so lu tion  to th is  problem has been derived by P.Blaise 
/8 /  fo r  a thin-walled hollow rod while an upper and a lower bound to the 
rigorous solution by J. Barta /7 /.

PI. Blaise's and J. Barta's argumentations apply to a rod a s tra igh t 
cen tre line . A ll these considerations are generalized for the case of a rod 
of c irc u la r arc centre line on the basis of P. B la ise 's argumentation in  
Chapter 2 and 3 and in  accordance with J. Barta 's  argumentation in  Chapter 4 
of th is  work.

2. FUNDAMENTAL RELATIONSHIPS

2.1 Figure 1 shows a thin-walled sh e ll of c ircu la r arc centre line , 
made o f e lastic  m ateria l. Central surface H of the thin-walled shell of c i r 
cu la r arc centreline is  brought about by ro ta tin g  meridian curve у fa l l in g
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w ith in  plane rz around axis z, the magnitude of ro tation being 0 (0 < 0<2tt) 
while la te ra l surfaces H-̂  and Hj of the she ll are obtained by ro ta ting  
curvesy  ̂ and fa ll in g  w ith in  meridian plane rz around axis z, the magni
tude of rotation being now 0 (0<  0 < 2 it). Equation of closed curve y non- 
in tersecting axis of ro ta tion  z_:

P] s/=R/s/^r +Z/s/£z . (2.1)

Equations of curves y^ and Ï 2> s im ila rly  closed and nonintersect
ing axis of rotation z:

£,=P/s/+0.5 heç. (2.2)

j^P /sA -O -5 he^. (2.3)

THE TWIST PROBLEM OF SHELLS

Fig. 1. Shell of circular arc centreline 

In the formulas given above,

s arc co-ordinates measured along curve у
h=h /s / wall thickness of the shell
e ^ normal un it vector of curve y.

S ta tic a lly , the stress resultants and stress resultant force couples acting
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upon any central curve fa l l in g  w ith in the meridian section are equivalent 
to a force the line of action of which is  axis z. The movement of the rims 
of the she ll having a closed meridian curve is  not hindered by any external 
cons tra in t. The problem outlined above is  called the problem of uniform 
tw is t o f a shell of c irc u la r arc centreline with closed meridian curve /2 /,  
/3 / .

Figure 2 shows the meridian section of the she ll, fa l lin g  w ith in  an
a rb itra ry  meridian plane. The meridian curve of the central section of the
sh e ll is  designated y. In the calculations, the ro le  of orthogonal non-
s tra ig h t co-ordinate system j3, ф,£ is  predominant. The position of point P
is  given by polar angle ф o f the meridian plane including point P, by arc
co-ordinate £  of point 0y associated with point P, as well as by signed
distance (co-ordinate) 5=P^f.e^ (Fig. 2). Here Py designates a point of
curve V fo r  which P P.e =0.' =y= —s

О

e.

F = Fe.

■2

'Z

Fig. 2. Meridian section

34



A ll scalar co-ordinates of stress tensor I  of rods of c irc u la r arc 
centreline experiencing uniform tw is t, w ritten  in  co-ordinate system s,<t>,E 
are iden tica lly  zero except fo r tangential stresses

^ ф (5^ )= т ф5(5- ° ’
and

^ Ç ф(s » ^ )= ф ^(s > £ )
( Л / , /2 / , /3 / ) .

Accordingly only the following stress resultants and force couples 
from among those characteris tic  of the in te rna l system of forces of the 
she ll w i l l  iden tica lly  d if fe r  from zero:

h/2

v /  тФз(1+9Ф ç)ds>
-h/2 
h/2

Ns< tf/ Ts<j>(l+g sOds,
-h/2 

h/2

% = /  ТЕф (1+9S ^ )ds’
-h/2 
h/2

Мф3= / ^ ТФЗ(1+9Ф * )d *
-h/2

h/2

%  =/ CTзФ(1+9 3 
-h/2

Using the usual approximations of the theory of shells,

THE TWIST PROBLEM OF SHELLS

(2.4)

(2.5)

( 2 . 6)

(2.7)

( 2 . 8 )

we obtain that
h 2

(2.9)

( 2 . 10)
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h 2

<bd £ ( 2 . 11)

The поп-id e n tic a lly  f u l f i l le d  equations of equilibrium concerning 
s tress  resultants and stress resultant force couples are, as follows /4 /,  
/5 / :

(2.12)

Ш " s f  “ ♦ =  0  ' (2.13)

s f  -  R F  - (Ns* -  V  = 0 •

(2.14)

With
face

the value of tangentia l stress т ^ ф , perpendicular to 
o f the shell neglected we obtain

the central sur-

Q ф = 0 . (2.15)

(2 .9 )
As a result of s'uch an approximation, i t  follows 

, (2.10), (2.11), (2 .12 ), (2.13), (2.14) that
from equations

N =N = CN ,
cj)S 5ф  —« ’

Rz
(2.16)

M, =M ,= CM .
ф5 S(|) — 

rc

(2.17)

Stress resultants and stress force couples of positive sign are 
shown in  Fig. 3.
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THE TWIST PROBLEM OF SHELLS

The value of constants CM and C.. can be defined on condition of ex-=N =M
istence of equations (2.18) and (2.19) resu lting  from the conditions of 
mechanical equilibrium:

(2.18)

(2.19)

Using the well known relationships of vector analysis, we obtain 
equation (2.20), (Fig. 2):

f  % э ^ з = е фх ^ ф̂ 3=еф* ^  çds=e<»x Í  p? ^ dA=

Y У  У  A

= -  2e, ,xe_ ( 2 .20)

In the above equation, A designates the domain in plane rz , defined 
w ith in  closed curve y . The combination of equations (2.18) and (2.20) 
y ie lds formula

( 2 . 21)
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Note that formula (2.21) can be rew ritten  as 

FC.,=

У

by the use of re lationship 

2 ds

On the basis of re lationship 

1 , e + MЭф—S Эф—

( 2 . 22)

(2.23)

(2.24)
У *' У

i t  can be understood tha t equation of equilibrium  (2.19) fo r momentum can 
be f u l f i l le d  only i f

cM = °  • (2.25)

Notation

г = re + z e — —г —z

was used in  w riting re la tionsh ip  (2.24).
I t  follows from equation (2.25) that

фэ

(2.26)

(2.27)
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THE TWIST PROBLEM OF SHELLS 

while from the la t te r  equation and equations

N .  = N . sd> <t>s ( 2 .2 8 )

that also equation of equilibrium (2.14) is  f u l f i l le d  in case of fu lfilm e n t 
of condition Q ф = 0.

In the present case, condition Q<j> = 0 results in a stressed state 
of the shell membrane.
The value of is  determined by the magnitude of load E:

n F . (2.29)
N I P S

J Rz ds
Y

2.2 The use of Hooke's law in the theory of shell membranes leads to 
equations (2.30), (2.31), (2.32):

и  - и  ■ о .

^ ■ l H < Hf - v "=) '  0 •

N Cm = _s4> = _N_
S<P Gh GhR2

On the basis of /4 / ,  /5 /,  we can w rite

(2.30)

(2.31)

(2.32)

dw dZ | du dR 
ds ds ds ds s

ICu + dV) = eф 
R̂ u d f ; Y ’

dv 1 
ds + R

dw dZ xju _  л dR 
d<ö ds + в <j> = Ys«j>(s) •

(2.33)

(2.34) 

(2.33)

A combination of equations (2.30), (2.31), (2.32), (2.33), (2.34), 
(2.35) yields

u = 0 , (2.36)
w = k<|> (2.37)
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and tha t function = v(s) sa tis fie s  ordinary d iffe re n tia l equation

dv b .d Z  dRs _ CN 
ds + R^Kds vds' „ j d2 ( 2 . 3 8 )

In w riting  formulas (2.36) and (2.37), the terms re la ting  to r ig id -  
body motion uninteresting in  the present case has been disregarded.

Let v(s ) = R (s)ijj(s) . (2.39)
A combination of equations (2.38) and (2.39) leads to equation

(2.40):
d^ __k_ dZ CN
ds r 2 ds GhR3 (2.40)

Due to the univalence of the displacement f ie ld ,  also ф= ф(s) is  
univalent that is  equation

e x is ts .

1 dZ . (2.41)

On the basis of the above re la tionsh ip , constant к can be calculated
as a function of constant CM or load F.=N =

Mechanically, constant к can be obviously defined as the displace
ment of a meridian section, fa l l in g  w ith in two meridian sections including 
u n it angle, in the d irection  of the axis of ro ta tion . The quantity defined 
by ru le

S = £  (2.42)

is  ca lled  the torsional r ig id i ty  of the she ll of c ircu la r arc centre line, 
tw isted uniformly. A combination of formulas (2.22) and (2.23), (2.41), 
(2.42) y ie lds

( 1 ;

Y

ds
GhR3

(2.43)

Using .relationship (2.22), formula (2.43) can also be w ritten  as

2

Í
ds

GhR3

( 2 . 4 4 )
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The points of the shell surface, fa l l in g  w ithin a meridian section, 
are sh ifted at a uniform rate in the d irec tion  of axis z in the meridian 
section, and they also displace at r ig h t angles to the meridian plane. This 
la t te r  displacement is  a function of co-ordinate s. By integration of equa
tio n  (2.40) we obtain

s 1 dZ n л ds4-(s) = ф (0) -  к f  -  ш  ds + C f -----J
о R о Gi™

(2.45)

Transformation of equation (2.45) can be continued by the use of 
formulas (2.29), (2.31):

\p( s) =ф(0) г 1 dZ 
Ï  r 2 ds ds

_  X

ds
GhR3

L. y R

o K о

ds
GhR3

(2.46)

For displacement at righ t angles to the meridian plane, the fo llow 
ing resu lt can be w ritten :

v(s) .  R(s) 
" R(s) v(0)

Г X ds
FR(s) yJ GhR3
r l  dZ.

Y

r 1 dZ . 
/  r 2 ds ds

L Y

f h & ' f
ds

GhR3
(2.47)

The mechanical meaning of quantity :jj= ip(s) is  obvious. The motion 
of points along the pa ra lle l c irc le  of centra l surface Ц determined by arc 
co-ordinate js can be divided into two parts. On the one hand, these points 
move at a variable rate in  the d irection of axis _z while on the other hand, 
the points of the pa ra lle l c irc le  displace l ik e  a r ig id  body around axis z 
through an angle of \p= ÿ (s ) (Fig. 4).

Since in  general ф= ip(ŝ ) i  constant, the shape of curve у fa llin g  
w ith in  a de fin ite  meridian section w i l l  experience d istortion  (warpage, 
swell) due to angular displacements of d iffe re n t values lik e  a r ig id  body,
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associated with the d iffe re n t points of curve y.

Fig. 4. Definition of ф

2.3 No d is to rtion  of the curve occurs along that section of meridian 
curve у where

d Ф
ds = 0 (2.48)

in  the points of the curve.
On the basis of equation (2.40), i t  is  understandable that equation 

(2.48) w i l l  exist only i f

GhR = constant . ds (2.49)

I t  can be gathered from equation (2.49) that ф = constant along constant 
curve section Z.

Let
dZ
ds /  0 . (2.50)

The section of curve у sa tis fy ing  condition (2.49), (2.50) in  case 
jn = constant can be defined by the use of equations

R ^  = D = c o n s ta n t  , ( 2 .5 1 )
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Somewhat tiresome but elementary calculations result in 

R = ^  s2 + D2 ,

( 2 .5 2 )

(2.53)

Z = Darsh . (2.54)

(2.53), (2.54) are the parametric equation of curve section У that 
displaces angularly lik e  a r ig id  body. By elim inating parameter ŝ we arrive 
from equations (2.53), (2.54) to equation

R = D ch ^  . (2.55)

On the 
the shell of a 
illu s tra te d  by

basis of what has been said so fa r , the meridian curve of 
central surface not being d istorted  in> case h = constant is 
curve f  given in  Fig. 5.

Fig. 5. Non-warping meridian section

2.4 Tangential stress i s(^ can be defined on the basis formula 
(2.56) derived by combination of equations (2.16), (2.21):

M  = 2R2h fd A

A r

( 2 .5 6 )
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Formula (2.56) can also be written as

Ts<̂>
F

dZ,
d ^ s

У

( 2 .5 7 )

ï s(p w i l l  be constant i f  the wall thickness of the shell changes according 
to re la tionsh ip

h(s) (2.58)

where D: positive constant.

3. CIRCULAR-ARC CENTRELINE SHELL OF MULTIPLY CONNECTED MERIDIAN SECTION

The meridian section of the central surface of the thin-walled shell 
of c ircu la r-a rc  centreline, fa l l in g  w ith in a meridian plane of a rb itra ry  po
s it io n ,  is  shown in Fig. 6. The meridian section is  set up of f ie ld s  (ce lls ) 
of number n. Field a. is  confined by closed curve y . .  Curve y. is  consid-
ered to be a union of curves y. , y . , ,  . . . ,  y . . Counterclockwise d irec-' io ’ ' l l ’ ’ ' in
tio n  is  considered to be pos itive  fo r each curve. The tangential un it vector 
of curve y^ is  designated e^ while i ts  normal un it vector д^, д^ pointing 
always away from the area enclosed by curve y^ .

On the basis of Fig. 6, one can w rite

H o fP )’ p €  П о  ■ (3.1)

- i j (p>’ P 6 т у  , (3.2)

with у the free boundary section of f ie ld  a^, and у ^^ the common bound
ary lin e  of fie lds  or and or. Considering that the sense of positive  d i
rec tion  is  identical fo r each f ie ld ,  equation

e. . + e .. = 0 
- i j  - J i  =

(3.3)

e x is ts . In the points of curve y^ , tangential stress resultant NS(j. is  de
signated b rie fly  N^j, the sign of NL̂  being related to the position of vec-
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to r e ^ j. Accordingly, w i l l  be positive  i f  the direction of the vector of
tanqentia l stress resultant F .. = N.. e . . complies with the d irec tion  of a = ij =1J - i j
vector e^..

Fig. 6 . Multiply connected meridian section

Tangential stress resultant N^ is  derived in  the following way:

A constant ц  _ l , 2 , . . . , n )  is  assigned to each f ie ld  (c e ll)  ct̂  
( i  = 1 ,2 , . . . ,д ) .  Using constants Ç., the value of tangential stress resul
tan t N.. is  obtained on the basis of formula 

= ij
0 -  C,

N.i(P  ) = --- -----^

]J Ri j
while the value of tangential stress 
means of formula

P € ( 3.4)

resu ltan t N. can be calculated by = io 3

10
A .

Ri j 2
p e 10

(3.5)

Evidently, tangential stress resu ltants Ns<j> = = <̂s defined on the 
basis of formulas (3 .4), (3.5) sa tis fy  equation of equilibrium (2.12), pro
vided Q<|> = 0 .
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The tangential stress resultants defined on the basis of formulas
(3 .4 ), (3.5) automatically sa tis fy  also the conditions of equilibrium apply
ing to  the points of ' f i t '  o f the d iffe rent sh e lls . On the basis of analysis 
of the moment equation w ritte n  fo r axis z, expressing the equilibrium of the 
she ll section associated w ith 'node' P^24> i t  is  possible to demonstrate 
tha t the above statement is  correct.

Part of 'she ll elements' У42> У14 interconnected in  node 
is  shown in  Fig. 7.

One of the necessary conditions fo r the equilibrium of configuration 
^124 ° t)tained by cutting sh e ll elements H ^ , H42, Ĥ 4 is  expressed by equa
tion

mz = 0 (3.6)

where m — moment of a l l  the forces and force couples acting upon configu
ra tion  Í2^24> calculated fo r axis z. Developed in  d e ta il, moment equation
(3.6) y ie lds the follow ing relationship:

ФR2 N21 + <5>R2 N42 + Ф R2 N14 = 0 , (3.7)
that is

(C2 -  C j) + (C4 -  C2) + (Cj -  C4) = 0 . (3.8)

Actually, th is  la t te r  equation exists in  any case independently of 
the value of constants .
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z

Fig. 7. Schematic illustration to write the equilibrium equation

Let us define now resultant vector F of tangential stress resultants 
associated with the section fa llin g  w ith in  an a rb itra ry  meridian plane as 
well as moment vector calculated fo r point 0 .

£ ■ E Kjïij * =£ s =
i , j  J i= i  R 1
i / j  T i j

= £(j> X
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(3.9)

Equations (3 .9 ), (3.10) suggest tha t s ta t ic a lly ,  the tangentia l 
stress resultants acting upon the central curve (meridian section of the 
cen tra l surface) fa l l in g  w ith in  any meridian section of the shell are equiv
a len t to a force the lin e  of action of which being axis z. The re lá tio n  be
tween force F loading the meridian section and constants Qp •••> Cn is 
given by formula (3.11) from equation (3 .9):

48



THE TWIST PROBLEM OF SHELLS

Relationship (3.11) can also be w ritten  as

V2- Г , dZ-
ds

using iden tity
1=1 Yi"1

2 f Щ  - l  4 - ^  ds . 
F  J R dsA.l ï i  X

(3.11)

(3.12)

(3.13)

The value of constants CL ( i  = l , 2 , . . . , n )  can be determined on con
d itio n  that displacement v_ = v,(s) of the centra l surface of the shell be a 
univalent function. Function v_ = v(s) w i l l  be univalent i f  function \p=̂ V(s) 
defined by rule ф(э) = v(s)/R(s) is  univalent while function ф=ф(э) w i l l  
be univalent i f  fo r any possible closed curve g

<j> d Ф
g d s ds = 0 . (3.14)

This la t te r  condition w il l  be ce rta in ly  fu l f i l le d  in the present 
case i f  equation

Ф d ф 
Y i ”d s ds = 0 (3.15)

exists fo r a ll closed curves 
I t  follows from shape

u = 0 , V = R(s) ф (s) , (3.16)
(3.17)

w = к <J> (k = constant) (3.18)
of the displacement f ie ld  that

d ф ____ k_ dZ ^sft
ds ~ R2 ds + GhR (3.19)

By combination of equations (3 .4), (3 .5 ), (3.15), (3.19), the l in 
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ear equation system serving to define constants CL is  obtained:

aio  Ci  + ai l  (Ci  C1:> + ai2  (Ci  C2)

+ ai3  (C± -  C3) + . . .  = к f . ,  ( i= l,2 ........n ). (3.20)

In the above equation,

ds
« ■ /

У

w

Gh.R? 
ï i j  i l

1_ f i
R2 ds

, Ci ^ j ;  i , j  = 0 ,1 ,2 ,...,n );(3 .2 1 )

ds = 2 Í 4 -
Y i 1 A.1l

Let
CL = G к D. , ( i  = 1 ,2 ,— ,n) .

Changes [L introduced by formula (3.23) resu lt in 

n n dz

F = 2 k G X  ° i  5 = kG X D i  $ -à- з г  *

(3.22)

(3.23)

(3.24)
i= l -, у  - R.1=1 ' l  l

The torsional r ig id i t y ,  §, of the she ll experiencing uniform tw ist 
is  defined by the follow ing formula:

S = I  s к •

A combination of formulas (3.24) and (3.25) yields

S = G Ï V i -

(3.25)

(3.26)
i= l

Constants D^(i_=l,2 , . .  .n) are defined by the use of a system of equa
tions  (3.20). On the basis o f equations (3.20) and (3.23), one can w rite
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I t  follows from formulas (3.4), (3.3) as well as from equation 
(3.23) that

Ni j  = G 5 7 “ ^
i j

(3.28)

N. = G £  D‘io  S p2 
Rio

(3.29)

4. SOME INEQUALITIES CONCERNING TORSIONAL RIGIDITY

4.1 On the basis of equation system (3.27), i t  can be w ritten  that

f l Dl  + f 2°2 + f 3D3 + ••• a10Dl  +

+ a^2(D  ̂ — D2) + (D-̂  — 0^)^" + . . .

a20°2 + a23('D2 D3') +

+ • 3 D no П (4.1)

I t  follows from th is  relationship that

S = G ja^gD  ̂ + ai 2 ^ i  — ^2  ̂ + a13^1 ~ ^2) +

a20D2 + . . . + a D no í] (4.2)

while from formula (4.2) one can read that S can never be negative. We have 
used when w riting  re la tionship  (4.1) that

ai j  = ai j  ’ ( i ^ >  i ,J  = 1>2’ " - > n) • (4 -3^

4.2 Theorem: 
Let
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. 2 . 2  . .2 / nbi  + O2 + . . .  + f- 0 .

There exists the fo llow ing inequality re la tion :
.2

S Si G (bl f l  + b2f 2 + - - ' + b n V  
U(b1,b2, bn)

where
2 2U(b^, b2, • • • > bn) = a 1 pj Ь̂  + a79(b1 b^) +Jn ' " a10 U1 1 2 1  u2'

+ а]_з(Ьд_ -  b3) + . . . 2 2 bn + > > < a b «2U 2 по n

( 4 . 4 )

(4.5)

(4.6)

Proof :
On the basis of the Schwarz inequality re la tion  we can w rite  that

where

ь* уь gxyg >:(b*yD)2

b* = [bp  b2, . . . ,  b j  ,

S* = [°P  °2’ •••’ Dn] ’

al l

csj
r-H

CD1

- a13

~a21 a22 _a23

~a31 - a32 CD
V-

rJ

(4.7)

(4.8)

(4.9)

(4.10)

ai i  = a. + a.,10 i l ai2  + in (4.11)

( i  = 1 ,2 , . . . ,  n) .
"x" in  formulas (4 .8), (4.9) designates transposition.

Matrix U defined by (4.10) is  a positive  defin ite  symmetric matrix, 
i t s  symmetry being obvious while i ts  positive de fin ite  nature follows from 
formula

b*Ub = U(b1,b2, . . . ,  bn) (4.12)
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applying to a rb itra ry  vector

that

where

b* = (bp  b2, . . . ,  bn) .

On the basis of equations (3.26), (4 .9 ), (4.10) i t  can be w ritten

U 0 = f  , (4.13)

f  = ( f p  f 2, . . . ,  f n)* . (4.14)

By combination of inequality (4.7) and equation (4.13), we obtain 
the formula resulting from formula (4 .2):

S = GU /Dp  D2, . . . ,  Dn) = G У О , (4.15)

that is  the inequality re la tion  (4.5) to be proved.

4.3 Theorem:

34’ 3n’

У У *10’ *12’ . . .  X

1’ Xn2’ •• • Xno’

X10 + X12 + X13

X21 + X20 + X23

X31 + X32 + X30

X12 + X21

In ’ X21’ X20’ X2n’ ХЗГ X32’ X30’ 
sa tis fy ing  condition

— •• = 1
'. . . =  f .

.= t .

X13 + X31 

X23 + X32

= 0 ,

= 0 ,

= 0 ,

but otherwise a rb itra ry  real numbers, inequa lity  re lation

S ^G 10

i_aio 9
Y z 
*20
a20

12

312 2 
X23
a23

13
313

In 
3 In

2n
a2n no

(4.16)

(4.17)

(4.18)

w i l l  ex is t.
Proof: Considering real numbers Xjq, X12, Xp , . . .  sa tis fy ing  (4.16),

(4 .17), w ritten in  the following form:
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IIоpH
X

ОH03

D l  + x10

X12 " a12 (D1-

«NI
□1

+ x12

X13 = a13 (°1 -- ° 3) + x13

^22 ~ ^2i (^2 D^) + x2i

X20 =  a20 D2 +  x20 ’

X23 ~ a23 ^ 2  D^) "*" x23 (4.19)

X = a D + X no no n no

i t  is  easy to very tha t numbers

provided numbers

s a tis fy  conditions

X10:’ X12 ’ x13, . . .  ;

X21 •
Y» л20’ X2 3

w il l automatically satisfy conditions (4.16), (4.17),

x10;’ x12’ X 1 3 , . . .  ;

Х2Г1 x20> x 23> ••• ;

x10 + x12 + x13 + . . .  + xln  = 0 ,

X21 + x20 + x23 + . . .  + x2n = 0 , (4.20)

X31 + x32 + x30 + 3n = 0 ,

'12 '21
x13 + X31 
x23 + x32

0 , 
0 , 
0 ,

(4.21)
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After short calculation we obtain that
2 2 2 X X̂  X 

*10 _12 + _12 + ..
2 2 X X л20 | 23

a10 a12 a13 a20 a23
c 2 2 2
S i x10 x12 ( X13
G + a10 + a12 + a13

2 2 2
^20 ^23 ~54
a20 a23 a34

+ 2 [ x10 D1 T x12^°l ~  °2^ + X13('D1 _ + •

x20 G2 + x23^G2 G3^ + X24^G2 G4^ + • ••

X D no n (4.22)

With the f i r s t  equation of system of equations (4.20) m u ltip lied  
w ith Dp the second equation with D2, and the th ird  equation with and 
w ith the equations so obtained added, re la tionsh ip  (4.23) is  obtained:

x10 ° !  + x!2 D1 + *13 D + ••• +

x„. D + xon 0o + x0,  0 + __'21 20 2 23

X31 G + x32 G + ^ 0  D3+ ••• +

X D = 0 no n

that

(4.23)

By combination of equations (4.21) and (4.23), i t  may be w ritten

x10 D1 + x12('D1 °2^ + x13 D1 D3 + •••

+ x20 D2 + x23(D2 -  Dj) + ..

+ x30 D3 + x34(D3 -  °4} +

. . .  +  X D = 0  no n
I t  follows from equations (4.22), (4.24) that

(4.24)

55



ECSEDI, I .

/ X2 y2 X2
G I _ i£  12 | X13

\ 1 2  + a13 + a13

X2 X2 _20 + _23
a20 a23

X2*24 - 1 
X

k/J
 N

3 
CD X2*34

a24 a30 a34

= S + Б
r 2 2
x10 | x12

, a10 a12

2 2 2 2 2 2 2
x13 _2£ _22 x24 x30 | x34 x35
ai 3 + • a20 a23 + a24 + " a30 a34 a35

+ (4.25)
по/

I t  can be read in  formula (4.25) that the theorem to be ve rifie d  is
correct.

4.4 Solution Q to linea r equation system

U D = f (4.26)

of matrix of coeffic ien ts У, symmetric and pos itive  defin ite , is  formed on 
the basis of rule

Я П /^ + 1/ - я п /1 / 4-Я П /1 / 4- , f
И  °1 12 °2 13 °3 • • ‘ f l  ’

aon D0/l+ 1 / = a01 D/ 1+1/ + а„, D . . .  + f „  ,22 2 21 1

a D /i+ 1 / = a D /i+ 1 / + а 0 а33 U3 a31 U1 а32 U2

23 3

Л + 1 /

2

. . .  + f . (4.27)

when the Gauss-Seidel ite ra tio n  process is  used.
I t  has been proved /6 /  that, in case of a positive de fin ite , sym

metric matrix of coe ffic ien ts , U, elements D ^ ^  of sequence of ite ra tio n  
(4.27) w i l l  converge to so lu tion D̂  of system of equations (3.26) fo r a rb i
tra ry  s ta rting  values D .̂ Using th is  theorem, i t  can be seen that unknowns 
Dp Dp . . . ,  Dn of system of equations (3.27) are non-negative in  any case, 
tha t is

Dk S=0, (k = 1, 2, . . . ,  n ). (4.28)

The correctness of relationship (4.28) follows from the fact tha t
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the terms of sequences of ite ra tion  with s ta rtin g  value Dk^O//=0(k= l,2 ,. .  .n) 
defined by (4.27) are non-negative, and because non-negative numbers have 
been m ultip lied and added, non-negative numbers D^(k=l,2,. . .  ,n) w i l l  ob
viously be obtained necessarily also as l im it  values. With equation (3.27) 
and inequality (4.20) combined, i t  may be w ritte n  that

THE TWIST PROBLEM OF SHELLS

0. >  —  l  — a . . l i

I « ,

D. < . i ^ -  l  —  a.
10

(4.29)

(4.30)

( i  = 1 ,2 , . . . ,  n) .
Using the above inequa lities, the fo llow ing upper and lower bounds 

can be derived fo r the numerical value of to rs iona l r ig id ity  S:
n j  2

s 2 c l f
i =l  i i

(4.31)

S Í G f V  —
П

и
i =l 10

4.5 Theorem: 
Let

(4.32)

K = GГ L A  .
i= l

(4.33)

ei  = f ~  [ ai l (Li  -  L1} + ai2 (Li  ~ l 2> + + aioLi  + •••

ain (Li  -  4 ? }

There ex is t the following inequality relationships:
bS  < K  ,
В S >  К .

(4.34)

b = min 
i

* i  > ( i  = 1 ,2 ,.. -, n) , (4.35)

В = max 
i

В ( i  = 1 ,2 ,.. ., n) . (4.36)

(4.37)
(4.3B)
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Proof :
Essentially, the ve rif ica tio n  complies with the proof of J. Barta 

/7 /  where an analogous re su lt has been proved fo r the torsional r ig id i t y  of 
th in -w a lled  m u lti- f ie ld  prismatic rod of s tra ig h t centreline, definable on 
the basis of the Saint-Venant theory. I t  follows from the symmetry o f matrix 
Ц tha t the following re la tionsh ip  is  correct:

L* f_ = L* У Q = Q* U l  =

Ll f l  + L2f 2 + ••• + Lnf n = D1 a10Ll  + a12(Ll  L2)

+ aln (Ll  -  Ln} [■

D
+ D2 a2 i^ 2  _  Lp  + a20L2 + a23<-L2 ~ L3̂  + - ]

D„ |a n l(Ln -  Ц ) + an2(Ln -  L0) + a_L „ | = + В 0f 0D0 + . . .no ■"] !  !  !  2 2 2

! f  D 
n  П П

(4.39)
On the basis of re la tionship  (4.39), considering that quantities  

are non-negative and the d e fin it io n  of b, B, i t  may be written that

G(f1L1 + f 2L2 + . . . . . .  *  f nL„> <BS , (4.40)

G(fl Ll  + f 2L2 + ••• *  f nLn) à b s  • (4.41)

I t  can be d ire c tly  read from inequa lities  (4.40) and (4.41) tha t the 
theorem to be ve rified  is  correct.

5. COMMENTS ON INEQUALITY RELATIONS

5.1 A short discussion concerning inequa lity  (4.5) is  enough to 
show tha t the sign of equality in  the formula applies only in case

bi  = XDi  ’
( i  = 1 ,2 , . . . ,  n) ,

where X is  a rb itrary but non-zero real constant.

(5.1)

5.2 In the special case when there is  (there are) a quantity (or 
more quantities) of zero value among quantities a^Q (lik e  in the case shown
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in  Fig. 8), upper bound
S < 00

of no in terest resu lts from re la tion  (4.32).
( 5 . 2 )

a2o = 0 z

Fig. 8. A special case

5.3 I t  can be read from equations (4.18) and (4.25) that in  re la tion
(4.18), the sign of equality w i l l  apply only i f

X . . = a..(D. -  D.) , 
i j  i j  1 J ’

(5.3)

( i  t  j ;  i , j  = 0 ,1 ,2 ,. . . ,  n,DQ = 0) .

5.4 A short discussion as a completion of the derivation of inequal
it ie s  (4.37) and (4.38) helps to show that in  these formulas the sign of 
equality w i l l  apply only i f

b = В (5.4)
that is  i f

6,  = e2.  . . .  .  en . (5.5)

Considering the d e fin itio n  of quantities (L, the sequence of ine
qua lities  given in  (5.5) can be fu l f i l le d  only i f

La = X Da , (5.6)
( i  = 1 ,2 , . . . ,  n) ,

where A a rb itra ry  but non-zero real constant.
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6. EXAMPLES

6.1 By selection of
bi = b 2 = . . .  = bn = 1

from inequality re la tion  (4 .5 ), lower bound

can be derived for the numerical value of to rs iona l r ig id ity  S. 

6.2 From inequa lity  re la tion  (4.18), by substitu ting

X12 = X21 X13 X31 X23 X32 ■•• = 0 ,

lower bound n j  2
; 5 gJ "  —

f r  aioi= l
can be obtained for to rs iona l r ig id ity  S.

( 6 . 1)

(6 .2)

(6.3)

(6.4)

6.3 With

4  =  L2 = L3 = ........................ = Ln = 1
in  inequa lity  re la tion (4.37) and (4.38),

(6.5)

. ( 6 .6)

( i  = 1 ,2 , . . . ,  n) .
Obviously

В = max 
i

8. = l
1 0  Amax j —  = A , 

i  1
(6.7)

b = min 4  =■j

a.
1 0min j —  = a . (6.8)

i J. i  1
On the basis of re la tion s (4.37), (4.38), i t  is  possible to write

tha t
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G(f1 + f 2 + .................. + f n) ^ AS , (6.9)

G(f1 + f 2 + .................. + f n) ^ a S  . ( 6 . 10)

In the special case when some a^Q is  equal to zero, a = b = 0, re

follows from re la tion  (6.10), which is  of no in te res t in  the present case.

6.4 Figure 9 il lu s tra te s  the meridian section of the central sur
face of a shell of c ircu la r arc centreline, the wall thickness of which is  
constant, range A being set up of three elementary fie ld s  (ce lls ).

In the present problem, de fin ition  of unknowns Dp 0£, requires 
that lin e a r equation system

su it
+ .  .  . .  f „ > = 0 (6.11)

э2 1 (D2  G^) a20^2 a23^2  G-j) — "̂ 2 ’ ( 6 . 12)

a31<'D3 ~ Dp  + a32^°3 "  °2^ + a30D3 = f 3

be solved, where

(6.13)

(6.14)

(6.15)

(6.16)

(6.17)
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R22 -  R32
f 2 ‘  f 3 " c n 2 p 2 

R2 F3
( 6 .1 8 )

Fig. 9. Example for calculation of torsional rigidity 

Calculating with values

we w i l l  obtain
= 4c, R2 = 3c, R3 = 2c (6.19)

D1 = 0.970712 ch , (6.20)

°2 = 0.39763 ch , (6.21)

D3 = 0.39763 ch (6.22)
from lin e a r equation system (6 .5).

Using the values given in  (6.19) in  calculation resu lt

S = 0.167328 Gh (6.23)

can be derived from formula (3.26) fo r the numerical value of to rs iona l 
r ig id i t y .

6.5 Figure 10 shows the meridian section of the central surface of 
a sh e ll o f c ircu la r arc centre line , set up of congruent quadratic c e lls ,
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the wall thickness of the shell being constant.
Using the data of Fig. 9 in  ca lcu la tion , i t  may be w ritten  that

ain = a 10 no
=

V2 R,

2 -  R2 2 с  c  ^  1 

22 R22 R, 3 R23/  h
(6.24)

a ,n = ani = a0,  = a.

a20 = a30

f l  '  f 2

1 R 2 -  R 2 1
l e ’ ' =

1 z
2 2 9 2 R: z R2z h

(6.25)

c c "

V  + R23>)h  ’
(6.26)

- Л 2 - R22 (6.27)c 2 2
1 2

Of course
c = Rx -  R2 . (6.28)

Fig. 10. Meridian section set up of quadratic cells

Let
R̂  = ( A + l)c  , R2 = A c . (6.29)
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(6.30)
Using inequality re la tions  (6.9) and (6.10) in th is  example, the 

fo llow ing  lower and upper bounds are obtained fo r the numerical value of 
to rs io n a l r ig id ity  S:

where

m( A )

M( A )

S >Ghnm( A ) ,

S <  GhnM( A ) ,

1 1 1 1 ’ 
A2 ( A +1)2 ( X + l)3

1____ 1
(A +1)3 ^3

(6.31)

(6.32)

(6.33)

(6.34)
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TORSION OF A THIN-WALLED, ANISOTROPIC, BENT ROD OF 
CIRCULAR-tARC CENTRELINE
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SYMBOLS

Г, (f> ,z cylindrical co-ordinates

í-joiL íp >£z unit vectors

g closed curve in plane rz
A single-connected domain in plane rz confined 

by curve g

> 92 closed curves in plane rz
T double-connected domain in plane rz confined 

by curves g^ and g2
s arc co-ordinate defined over curve g
£  = £(s) equation of curve g
£ tangential unit vector of curve g
n normal unit vector of curve g
"x" vectorial product of two vectors
Il II scalar product of two vectors

„  Э Э
ő r + Э z —z Hamiltonian differential operator

h = h(s) waH thickness
F force
M moment

£ p  5 Î ^ 2 specific elongation

Yr(|> Y ф г ’ ^ф г ” ^ г ф

Y  = у r z  ' z r

specific angular changes

V  Оф ’ 0 Z normal stresses

т гф  т ф г ’ т ф г  т гф

Trz Tzr shearing stresses,

*Dr. István Ecsedi, H-3526 Miskolc, Klapka Gy.u.36., Hungary

Akadémiai Kiadó, Budapest

This work deals with the problem of uniform torsion of a 
thin-wailed, anisotropic, linearly elastic, rod of circular-arc centreline 
and homogeneous material, generalizing the relationships derived by 
E. Reissner for an isotropic, linearly elastic rod of homogeneous mate- 
n i l .
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8 ц , a12 = a21
a13 = a31

a15 = a51
a22’ a23 = a32

a25 = a52
a33’ a35 = a53
®44’ a46 = a64
a66

Ф = Ф (r,z)
Pn = £  • n,u,v,w

к

elasticity constants of anisotropic material

auxiliary function 
displace m ents
relative rigid-body displacement in the direction 
of the z-axis

§ torsional rigidity
Other quantities and variables are defined in  the text accordingly.

L̂. Figure 1 i l lu s tra te s  a closed curve g in  plane rz. The z-axis is  
not intersected by curve g. Equation of curve g in  the rz co-ordinate sys
tem of o rig in  0:

P_(s) = R(s) er + Z(s) £z . (1)

With distance h |2 measured in both d irections along normal n in  
point P of curve g we obtain points and P2 fo r  curves g  ̂ and g2 running 
p a ra lle l with curve g, respectively (Fig. 1).

Fig. 1, Meridian section
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Let the centre of gravity of annular domain T confined by closed 
curves and g£ fa l l in g  w ith in  plane rz be denoted Q. By displacing do
main T angularly through angle a ( 0 < a  < 2 it ) around the z-axis we obtain 
the thin-walled rod of c ircu la r-a rc  centreline. The centreline of the rod 
is  the arc of a c irc le  of radius Rg,determined by central angle a (Fig. 2).

Fig. 2. Bent rod of circular-arc centreline

The wall thickness of the rod is  essen tia lly  the width of domain T, 
h=h(s), measurable in  meridian plane rz. Acting upon marginal cross sec
tions  A and В of the thin-walled rod are forces

Ea = -  Fez and EB = Fez ,
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respective ly, the line  of action of forces Fд and Fß being the z-axis. The 
stress acting upon any cross section of the rod is  a force of magnitude F 
fa l l in g  w ith in the cross sectional plane with the z-axis being i t s  lin e  of 
action . In the lite ra tu re , the problem outlined above is  called the uniform 
to rs ion  of incomplete tores /2 / ,  /3 / ,  /4 /.

A solution to the problem of uniform torsion of th in-w alled, iso
tro p ic  rods of closed cross section was given by E. Reissner /1 / .

This work is  designed to generalize the results of E. Reissner fo r 
the case of an anisotropic rod.

ECSEOI, I .

2. In the case investigated, the anisotropy of a th in-w alled, closed 
cross section rod of c ircu la r-a rc  centreline in  uniform torsion is  described 
in  the Гф z co-ordinate system schematically illu s tra te d  in  F ig .2 by Hook's 
law /4 / ,  /5 /:

Er  " al l  ° г  + а12аф+ a13 az + a15 Trz ’

r-<f = a12 аг + a22аф + a23 az + a25Trz ’

Ez = a13 ° r + a2 3 ° t+ a3 3 az + a35Trz ’ (2)

Yrz = a15 ° r  + a25°ф+ a35 az + a55T rz ’

^ zdf a44 T z zj> + a46 Tr<p ’

Yr _ a64 T r<f> + a6n Tr<̂>

From the lite ra tu re , i t  is  well known tha t, independently of whether 
the rod of c ircu la r-arc centreline is  iso trop ic  or anisotropic, the stressed 
state  p f the rod displays the follow ing properties /6 /:

a) The stressed state is  independent of polar angle <j>.
b) In each point of the rod, normal stresses o r ,ô <jJ , o z and

shearinq stress т = t  are zero i.e .a rz zr

° r  = ö (̂  = ° z = Trz = 0 . (3)
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Accordingly, i t  can be w ritten that

Tz<|> = Tz^»( t >z )> Tr<j> = T r4 ( r ’ z ) -

Assume that
т а  =x , e + X ж e — T гФ —г za> —z ( 4)

For a thin-walled rod of closed cross section, assume tha t tangen
t ia l  stress X ̂  is  not changing along the cross sectional thickness of the 
rod and that x^ is  p a ra lle l with tangential un it vector e of curve g that 
is

1(f) = I<f> (s) = T S£j> ( s ) e . (5)

On the basis of a comparison of equations (1), (3), (4 ), i t  may be 
w ritten  that

since
dR dZ e = —]— e + -j— e — ds —г ds —z

(6) (7)

( 8 )

By testing the mechanical equilibrium of rod section AA'BB'CC'DD', 
we obtain on the basis of the equation of moment written fo r the z-axis 
the following re la tionsh ip :

X , Rzh = t  . (0) R„(0) h(0) = C = constant . (9)s® s® z

Using th is  re la tionship , i t  may be w ritten  that 

l  = / x ^ d T  = / т  . ehds = e yx  f  xs -  hnds = e^x  f ~ 2 nds =

= ^ X[ / ( ? )  VdA= (2C/ ^ z  • ( 10)

In the derivation of re lationship (10), also the in teg ra l theorem 
of Gauss has been used. Using iden tity
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formula (9) can be fu rthe r transformed and w ritte n  in  the following shape:

( 12)
H i

In the derivation o f relationship (11).

dZ dRn = n e  + n e  = — j — e + -j— e — г—г z—z ds —r ds —z

has been taken into consideration. 
Formula (12) reads tha t

C =

/
dZ
n2

(13)

The moment of shearing stresses тф = т e acting upon a cross- 
section in  any a rb itra ry meridian plane 0 ^  :S. a can be determined fo r
s ta r t in g  point 0, the o rig in  of the coordinate system on the basis of fo r 
mula

** \ I  Ts ^ h Pn dy  Ц  (14)
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Fig. 4. Calculation of the moment of shearing stresses

where
Pn = £  • И . (15)

Considering that
M = Me . -  Ф (16)

and
p ds = С f ds 

n « RZ

ЖLTV
II . VdA = 0 , (17)

g g A
since X = Г£г + Z£z (18)
and

(i* ) - 5 = 3 r 4 г '  Э z V г / ■ * VГ

ОII

(19)

Relationships (9) (12), (17) read that shearing stresses
determined on the basis of formula

/  § ds

1
R2h

(2 0 )
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d is trib u te d  in the plane o f the cross-section, are equivalent to a force of 
magnitude F, the lin e  o f action  of which being the z-axis.
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2- A combination o f equations (2), (3 ), (5 ), (6) permits w riting

me t r y

er  = = e;
Y _ 
rz 0 ,

'Ф

Yz <j> ( r ’ z) ’

^ r< j,( r >z) •

( 21)

( 22)

(23)

I t  has been proved in  /3 /,  /7 / that a displacement f ie ld  of a geo-

u = 0 ,
V = Г Ф  ( r ,z )  ,
w = к <̂> , (k = constant)

(24)
(25)
(26)

is  associated with the above deformation (sp e c ific  elongations and angular 
d is to rtio n s ) in the г d> z cy lin d rica l co-ordinate system.

Kinematically, the implication of quantity к in  formula (26) is  
qu ite  obvious: к is  the displacement of two cross sections fa llin g  w ith in 
the meridian plane, inc lud ing  unit angle, as compared with each other in  
the d irection  of the z -ax is .

Using the geometric equations, we obtain on the bais of equations 
(24 ) ,  (25), (26) the fo llow ing  formulae:

4

Yzt

3 ip

3 z г

(27)

(28)

Specific angular change y s(l in the points of curve g can be de
termined on the basis o f formula

Yэф Y Л —  + Y  ÉL r<̂  ds Yz<j> ds R i l  dR R Э Ф dZ к dZ _
Э r ds g z ds + R ds

к dZ 
+ R ds '

A combination of formulae (1), (5), (6) y ie lds

( 2 9 )
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:(j> ” a66 l rd>

zty ~ a46 Tr<|>

a,., T

44

Formulae (32), (33) can be derived by the use of formulae (29), 
(30), (31):

Considering that the displacement f ie ld  is  unique, there ex is ts  re
la tionsh ip

( - )'■ds/
ds

as a resu lt of equation

r  I ±
J  as ds = 0 .

g

(34)

(35)

In w riting  the above re la tionship , also equation (8) has been used.

4_. The torsional r ig id ity  of a th in-w alled rod of c ircu la r-a rc  
centre line and of closed cross section in  uniform torsion is  defined by 
formula

S = -  (36)
/1 /,  /4 / ,  /7 /. k

Using formula (13), (34), /36), we obtain relationship

S = (37)
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fo r the numerical value of torsional r ig id i t y  S. Relationship (37) can be 
transformed by means of formula (10) to obtain formula

ECSEDI, I .

9

The formula derived by E. Reissner /1 /  fo r the torsional r ig id i t y  of 
an iso trop ic  rod follows d ire c tly  from formula (37) with the follow ing sub
s t itu t io n s :

4 6 = a64 = 0 44 = a66 = 1/G

_5. F ina lly , the displacement of curve g, the mid curve of the merid
ian plane, at rig h t angles to the meridian plane is  determined. The vector 
coordinate of the displacement in  question in  d irection  e, i.e . function 
V = v (s ), is  obtained on the basis of a re la tionsh ip  written as a combina
tio n  o f formulae (36), (37):

1_ Él
2Rz ds

ds

v(s) v(0)
RTÏÏT R(s)

„ dR dZ /dZ\
2 a46 . . + ' a44 ( .  Jds ds 4ds/

dR dZ _ /dZ \ 2
ds ds ^ds'2 a46 ~  i :  + a44 (

ds

ds

7 JR3h
dR\ 2

366 Ĥds '

(39)

Constant v(0) in  formula (39) is  a quantity in re lation with the 
r ig id  body displacement around the z-axis.
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The change in the state of highways is  affected by several para
meters. Owing to recent re s tric tio n s  in  the finances, the conservation 
of the current state of roads above an acceptable standard has become 
a task which can be fu l f i l le d  only with d if f ic u lty  and only to the 
detriment of the e a rlie r larger-scale evolution. Knowing the current 
state of highways in  Hungary, the author makes a suggestion concerning 
the selection of the most convenient intervention types availab le for 
maintenance. The basic princip les are outlined together w ith the f i r s t  
steps of a comprehensive work the main objective of which is  to devel
op an economical system fo r the conservation of the state of the road. 
The sequence of future interventions is  given, which might be applied 
considering the ir p ra c tic a b ility  as well as a system of index numbers 
to characterize the state of pavements and a method fo r the technico- 
economic comparison of the d iffe re n t road maintenance techniques.

1. INTRODUCTION

In satisfying the ever increasing demand of the country's economy on 
transport — a tendency manifesting i t s e l f  throughout the world — road trans
port takes an increasing share, wherefore, as a matter of course undisturbed 
road t r a f f ic  has a great significance from the point of view of the economy. 
However, fo r an undistrubed road t r a f f ic ,  a pavement of appropriate qua lity  
is  needed. The s ign ifican t reduction of the financ ia l means availab le fo r 
road engineering which has taken place la te ly , makes i t  p a rticu la rly  timely 
to find  an economical way of the conservation of the road network having a 
value of several thousand m illion  fo r in ts , a considerable sum in  Hungarian 
economy. In the follow ing, some research a c tiv it ie s  undertaken in  Hungary in 
th is  f ie ld  w il l  be reported.

2. CHANGE IN THE STATE OF THE HIGHWAY NETWORK

Let us b rie fly  survey the process in  the course of which the condition 
of a road undergoes changes.

After having completed a new road construction or immediately a fte r 
the completion of the pavement structure, both the pavement and the drainage *
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system are in a very good condition. This " i n i t i a l  condition" is  p rim arily 
influenced by the leve l of design for the contract, the properties of the 
bu ild ing  material used and by the standard of the construction work /1 / .

The quality estimation of the completed p ro ject is  part of the proce
dure of acceptance. (In  general, quality estimation is  aided by qua lity  con
t r o l  during construction.) The quality grading, in  the acceptance record has 
also to establish the degree of the approximation of the high qua lity  speci
f ie d  in  advance. Although th is  c la ss ifica tion  fo llows universal rules based 
on professional knowledge, because certain parameters can be estimated only 
by inspection, also the sub jec tiv ity  of the persons carrying out the c lass i
f ic a tio n  may a ffect the value of the estimation.

Consequently, the decision on the qua lity  grade might be considered 
as a jo in t  result of — fo r  the most part objective measurements and to a les
ser part subjective fac to rs . However, i t  seems necessary to emphasize that 
the terms "objective" and "subjective" are by no means equivalent with values 
of judgement or with the terms "re liab le" and "unre liab le". Namely, the keen 
observation of spec ifica tions, engineering d ire c tive s , standards, e tc ., might 
be considered objective a c tiv it ie s , while the decisions made by the represen
ta tive s  of the investor on the basis of the consideration of other f ie ld  c i r 
cumstances of the ir expert's  knowledge and experiences can be considered sub
je c tiv e  ones.

In the course of the engineering acceptance examinations, the guaran
tee period, which at present is  a minimum of one year, may be extended. This 
might occur in the fo llow ing  cases: (a) severe damage can develop a fte r a 
few years in itia te d  by minor defects of the pavement; (b) hidden damages may 
a rise  on the surface (or may be activated w ith in  a short time; (c) in  cases 
when one of the qua lity  parameters approaches the acceptance l im it ,  the con
tra c to r agrees to a guarantee period of 2 or 3, inc iden ta lly  5 years in  hope 
of an advantageous evaluation during the acceptance procedure. The extension 
of the guarantee period can have the following advantageous economic e ffects:

— the damages occurring within th is  period w i l l  be repaired at a pro
fessional level and without legal dispute;

— the contractor is  motivated to do a good job;
— voluntary acceptance of a lengthened guarantee period can serve, in 

the ever increasing market competition, as a means to ju s t ify  i t s  r e l ia b i l i 
ty .
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Although roads are meant for l i f e ,  so to say to be everlasting, the 
state of the pavement, deteriorates mainly under t r a f f ic  and atmospheric in 
fluences. This process can be slowed down s ig n if ic a n tly  by appropriate main
tenance, while incidenta l non-proper use can cause rapid deterioration. The 
deterioration process can produce several types of defect, in some instances 
a series of defects, of which the most s ig n ifica n t ones are as follows:

— linear cracks,
— hair cracks, mosaic cracking, pavement d is in tegration,
— rave lling , peeling, potholing,
— ru tting ,
— bleeding, development of a slippery surface,
— wear of chipping grains, development of slippery surface,
— longitudinal waves.
Some of these defects deteriorate approximately linea rly  with time, 

others have a progressive or degressive character. I t  may also occur that a 
defect, e.g. ru ttin g , due to the causes responsible fo r the damages may de
velop in  several d iffe re n t ways depending on the predominant accelerating or 
decelerating factor (deformation and wear or postcompaction, respectively).

The state of the road showing gradual deterio ra tion  is  subjected to 
systematic investigation. The expert s ta ff responsible fo r the maintenance 
and operation obtain visual information during the periodic highway state 
surveys. (In th e ir a c tiv it ie s  the persons responsible are aided by a l i s t  of 
defects with photo il lu s tra t io n s .)  /2 / In addition, countries with a higher 
standard of highway management, mainly on highways with heavy t r a f f ic  also 
carry out state surveys using d iffe ren t measuring instruments of high per
formance and rapid operation. (The parameters measured most frequently are: 
load bearing capacity, r id ing  comfort, f r ic t io n  co e ffic ie n t, ru t depth, sur
face soundness.) The time fo r performing measurements is  of great s ig n if i
cance in  the case of parameters the actual value of which is  s ig n ifican tly  
affected by the season or weather. The time series obtained from the data on 
the state of the road sections give information about the process of de te ri
oration. From the re g u la ritie s  of deterioration characteristic of the given 
type of road (performance models) and from the extrapolation of condition 
data the residual service l i f e  can be predicted. However, generally th is  
a c tiv ity  is  of lim ited  exactness due to the facts lis te d  below:

— the performance models taken as a basis can only be approximate 
and generalized,

79



GÄSPÄR, L .

— the deterioration process can be changed by unexpected conditions 
(e .g . extreme weather),

— the extrapolation can be carried out only based on a single state 
parameter, but the value of th is  may be strongly influenced by other para
meters owing to th e ir mutual in teraction ,

— the future t r a f f ic  volume can only be estimated with a rather un
ce rta in  approximation.

I f  one of the state parameters, namely the c r it ic a l one, deteriorates 
to an extent approaching the threshold value, intervention is  needed in 
order to  carry out repair work. (This a c tiv ity  otherwise exerts a more or 
less strong influence on parameters which have not yet reached the c r i t ic a l  
le v e l. )

The optimal moment of an intervention of higher significance (e.g. 
strengthening the pavement structure) is  not always determined by the change 
of a s ing le  parameter to the threshold value but also by the comparatively 
low value of several condition parameters. I t  often occurs that due to some 
constra in ts (lack of financ ia l means, mechanical equipment, or manpower, 
e tc .)  repa ir works cannot be carried out at the optimal time. This-unfavour
able circumstance usually causes s ig n ifican t losses.

I t  is  to be noted tha t the establishment of the threshold values 
c a llin g  fo r intervention is  a complex technico-economic task. Obviously in 
case of very lim ited fin an c ia l resources even the standard of state s t i l l  
to le rab le  w il l  be fu rther reduced. I t  sometimes occurs that warning lim its  
are given which no tify  in  advance of the approach of the term of interven
t io n , i . e .  the need fo r planning condition improving a c tiv it ie s .

I t  may occur that the d iffe re n t parameters (load capacity, surface 
soundness, need of maintenance work, e tc .) on a road section are not in  
agreement with one another. In such cases before a decision is  made on the 
in te rven tion  each value has to be revised and, i f  i t  is  found tha t the f i r s t  
data have been correct, and the "contradiction" s t i l l  exists, d iffe re n t 
compromise-based solutions can be applied.

3. THE CONDITION OF THE PAVEMENT AND THE TYPE OF INTERVENTION NEEDED

The s u ita b ility  survey carried out in 1979 p rac tica lly  extended to 
the e n tire  road network of the country furnished re liab le  information on the 
actual state  of the roads /3 / .  The continuous updating of the information
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mentioned above as well as the repe tition  in  1984 of the comprehensive sur
vey already permitted the determination of several time series. On the other 
hand, a comparatively large number of condition improving (maintenance) 
techniques are available several of which might be considered energy saving 
and environment protecting.

The compilation of a design guideline became necessary containing in 
formation fo r the selection of the most appropriate intervention technique 
fo r a given pavement condition. Namely, i t  is  evident, that among several 
varia tions there is  to be found one which, i f  applied at the appropriate 
time, can be considered more e ffective  than the others. This guideline has 
been published on behalf of the Road Transport Department of the M in istry of 
Transport by the In s titu te  fo r Transport Sciences at the beginning of the 
year 1985 /4 /.

The purpose of th is  publication can be summarized as follows. I t  con
ta ins information on the types and number of interventions to be carried out 
on the pavement based on the ra ting notes connected d ire c tly  or in d ire c tly  
with the condition of the pavement and obtained mainly from the s u ita b il i ty  
survey. The s u ita b ili ty  surveys performed on the highway network are based 
as i t  is  known, on the separate evaluation of several parameters. However, 
the actual values of these parameters together determine a single "road con
d itio n " and, correspondingly, a single most su itable method of in tervention. 
The design guideline worked out illu s tra te s  th is  kind of in te rre la tio n .

The design guideline is  intended mainly to assist the experts of the 
highway directorates. I t  helps to determine the extent of the improvement 
interventions to be performed on a network in  a given condition based on the 
consideration of the technical and economic information available. The 
choice of the work to be carried out is  helped by the simultaneous consider
ation of the techniques described in  the design guideline and the road 
t r a f f ic  volume. However, the road engineers, in  possession of loca l know
ledge and practica l experience, take other factors into account (e.g. hyd
ro log ic or so il conditions, the d iffe re n t maintenance p rinc ip les, financ ia l 
p o s s ib ilit ie s ) and came to the f in a l decision re la ting  the condition im
proving intervention and to the kind of the work to be carried out on a 
"subjective basis". Prior to  the actual measure economic calculations should 
be made.

I t  is  worth while to note that the design guideline can be e ffe c tive 
ly  u ti l iz e d , in  addition to the purposes mentioned above, also to work out
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nation-wide examination programs (e.g. to support the ra tios and quantities 
of the interventions, to  help the d is trib u tio n  of the financia l means, 
e tc . ).

The publication of the design guideline might be considered the f i r s t  
step towards the complex state evaluation and towards an economical highway 
management.

When compiling the design guideline parameters have been considered 
which are associated with the actual or fu ture condition of the pavement.
On the basis of the above considerations the follow ing parameters have been 
selected fo r use:

(a) load bearing capacity of the pavement (measured by the Lacroix 
deflectograph or the Benkelman beam),

(b) soundness of the pavement surface (by unified visual state clas
s if ic a t io n  or with the aid of the state surveying guide-book),

(c) drainage of the pavement (by un ified  visual state c la ss ifica 
t io n , w ith the aid of the state surveying guide-book),

(d) unevenness of the pavement (measured with the Bump Integrator or, 
where such measurement resu lts  are not availab le , by visual estimation).

To make the manual work easier, the number of the (mathematically 
possible) variations have been strongly reduced to

— 3 groups of load bearing capacity
— 3 groups of surface soundness, and to
— 2 groups of surface unevenness; but there are no special groups 

fo r drainage. The measures to be undertaken in  case of inadequate drainage 
should only be mentioned on the d iffe ren t u n it sheets ( i t  should be noted 
tha t fo r  the evaluation of the load bearing capacity, the soundness and 
evenness of the surface 5 scores for each and 3 scores fo r the drainage are 
ava ilab le , but on grounds of experience the reduction carried out seems to 
be ju s t if ie d ) ;

— the number of varia tions could be decreased by the "condition var
ia tio n s " which require no intervention w ith in  5 years;

— in  the selection of de fin ite  v a lid ity ,  the state variants to be 
assigned as individual a lternatives, also the actual occurrence frequency 
observed in  the course of the la test country-wide survey, i.e . the to ta l of 
the km-lengths have been taken in to account and the variants of less fre 
quent occurrence which did not reach the length of 50 to 100 km, have been 
omitted;

GÁSPÁR, L .
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— the asphalt concrete and macadam-type pavements (of void content 
decreasing under e ffect of the t r a f f ic  load) ought to be c lass ified  (due to 
the fa c t that the type of the wearing course affects the type of the in te r 
vention techniques to be applied) in to  a special group, but the techniques 
to be used have not been separated according to the load applied on the road 
and to  the category of the road with the im p lic it  assumption that the asphalt 
concrete pavement has been constructed on main roads or on secondary roads 
with dense t r a f f ic  while the macadam-like pavement has been applied on sec
ondary roads with lig h t t r a f f ic .  The u n it sheets should be used in  cases 
d iffe r in g  from those assumed.

The design guideline does not apply to repairs of defects due to 
thawing damages.

Drafting of the design guideline consisting of 22 sheets, is  demon
strated in  Fig. 1. The technological variants suggested by th is  paper take 
in to  account to a certain extent also the combined effects of the d iffe re n t 
defects. Under the t i t le  "Realization" the most s ign ifican t rules o f the 
planning, the implementation and the qua lity  control of condition improving 
interventions are given, fo r b re v ity 's  sake, only in the form of re ferations. 
The design guideline ca lls  attention to the p o s s ib ility  of the application 
of hydraulic binders i f  th is  can come in to  question at a ll.

For sections of asphalt concrete pavement only asphalt concrete 
layers, in  extreme cases partly  with hydrau lica lly  bound ones, while fo r 
sections with macadam-like pavements e ither macadam-like layers or those of 
asphalt concrete character are suggested fo r strengthening. (This la t te r  
so lu tion comes only in to the foreground in  case of heavy t r a f f ic . )

As to the case of intervention urgency, three grades are suggested 
depending on the condition improvement needed w ith in  one, three or f iv e  
years. In some instances p rio r to the f in a l decision control measurements 
are suggested to permit the consideration or the elimination of eventual 
changes in  the meantime.

Later when s u ffic ie n t empirical knowledge w il l  be available, the 
design guideline can be further developed and in  the distant fu tu re , i t s  
v a lid ity  can be extended to the road network managed by local a u tho ritie s .

In Table 1 the types of intervention intended fo r certain combina
tions having sufficiency notes or of state images as well as the urgency of 
the implementation are indicated. The symbols in  Table 1 denote the condi
tion  parameters as follows: T = load bearing capacity, F = soundness of sur
face, E = surface evenness.
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VARIANT OF CONDITION IMPROVING TECHNIQUE No. 14.

FUNDAMENTALS ROAO SECTION STATE NOTES OF SUITABILITY SURVEY

ty p e ,tra ff ic wearing
course

load
capacity

surface
soundness

drain
age

surface
unevenness

macadam
type
pavement

T 1-3 F 4-5 V 1-3 E 1-3

CHARACTERISTIC FEATURES

TYPE Surface dressing

PRIMARY
OBOECTIVE(S) Repair o f surface soundness

NEED OF 
URGENCY Within one year

REALIZATION I t  is  recommended to repair w ith in  one year the impermeability 
and skid resistance of the hard cover surface by application 
of bitumen emulsion surface dressing. To determine the qua lity  
and quan tity  of the material to  be used to th is end, the engi
neering recommendations No. MI-07 3403/5-85 are decisive. The 
inc iden ta l pothole elim ination should be realized two months 
p rio r to the surface dressing. A fte r fin ish ing the seal coat 
t r a f f ic  is  not permissible to use fo r three hours. On macadam
lik e  asphalt pavements the surface of which is  rich  in  binder, 
the cutback surface dressing is  to  be preferred (according to 
the recommendations No. MI-07 3403/5-85). On a strongly 
cracked pavement surface dressing must not be applied. In case 
where th is  condition is not f u l f i l le d ,  within one year a lev
e llin g  course is  to be constructed. In th is case penetration 
macadam le v e llin g  course can be applied (technical recommenda
tions No. MI-07 3403/5-85). For such a purpose also asphalt 
emulsion can be used i f  the necessary materials and machinery 
are ava ilab le  (technical recommendations MI-07 3215/2 J). 
Within one year shoulder and drainage ditch repairs have to be 
carried out in  case where the s u ita b i l i ty  note is  V2-3.

NOTE The se lection  of the binder of the surface dressing is  also 
influenced by the longitudinal and cross fa l l  of the highway 
section.
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Table 1. Types of interventions to be applied in case of d iffe ren t "condition patterns

Intervention types

No. S u ita b ility  notes

Strengthening over 
10 equivalent cm

Strengthening under 
10 equivalent cm Surface interventions

Asphalt Hydr.bound 
concrete with th in

(AC) AC

Asphalt Penetration 
concrete macadam or 

emulsion 
asphalt

Levelling Surface
course dressing

Drainage 3

Pavement of asphalt 
concrete types

1.T3 Fl-2 E4-5 I I I / I I I /
2.T1-3 F3 E4-5 I I I / I I I /
3.T1-3 F4-5 El-3 I 5 / I /
4.T1-3 F4-3 E4-5 I / I /
5.T4 Fl-2 El-3 I I I / I /
6.T4 Fl-3 E4-5 I I I / I /
7.T4 F3 El-3 V / I /
8.T4 F3 E4-5 I I I / I /
9.T4 F4-3 El-3 I I I / I /

10. T4 F4-5 E4-5 I / I /
11.T5 Fl-2 El-5 I / I /

12.T5 F3-5 El-5 I 4’ 1 I 4’ 1 I 4 / I /
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CDOs
Table 1. Types of interventions to be applied in case of d iffe ren t "condition patterns"(cont.)

Intervention types

No. S u ita b ility  notes

Strengthening over 
10 equivalent cm

Strengthening under 
10 equivalent cm Surface interventions

Asphalt Hydr.bound 
concrete with th in

(AC) AC

'Asphalt Penetration 
concrete macadam or 

emulsion 
asphalt

Levelling
course

Surface
dressing

Drainage3

Macadam-type pavements
13. Tl-3 F3 E4-5 I I I 111
14. Tl-3 F4-5 El-3 I 5 / I /
15. Tl-3 F4-5 E4-5 I 111
16. T4 FI—2 E4-5 V I I I 111
17. T4 F3 E4-5 V I I I /1 /
18. T4 F3 El-5 I I I / I I I /
19. T4 F4-5 El-5 V2 V2 111

ОC
sl T5 Fl-2 El-5

I I I 4’ 1
I I I 2 I I I 2 / I I I /

21. T5 F3-5 El-3 I I I 4’ 1 I I I 2 I I I 2 111

Legends: I  = to be carried out within one year; Ш = to be carried out within three years; V = to be carried out within 
five years; 1 = in case of a strengthening need over 30 equivalent cm the construction of a hydraulically bound 
(conveniently fly-ash concrete) pavement with a thin AC wearing course should be investigated; 2 = over the 
value of Fjqq =500 000 an asphalt concrete type pavement should be constructed; 3 = the values between paran-
theses are valid only in case where the suitability note of the drainage is V3 or V2 and i t  occurs together with 
T4-5 and/or with F4-5; 4 = the fact whether a thin or a thick strengthening is to be applied, depends on the 
extent in lack of bearing capacity (see also note 1.); 5 = surface dressing can be applied in case where the 
pavement surface is not strongly cracked or deformed

GÁSPÁR,
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4. ECONOMIC CONSERVATION OF HIGHWAYS

Demands on road t r a f f ic  are growing but, at the same time, the finan
c ia l means available fo r road construction and fo r the ir state conservation 
are decreasing. The ever increasing gap between demands and financ ia l possi
b i l i t ie s  imperatively requires the endeavour to  greatly increase the economy 
of the condition conservation a c tiv it ie s . In the following, a method fo r t ry 
ing to rea lize the above objective w i l l  be summarized.

In optimizing the a c tiv it ie s  fo r conservation of the road network, in 
connection with the interventions to be realized on certain road sections, in 
the f i r s t  line  the questions "where", "when" and "what" should be answered. 
The strategy of road maintenance can be based on several kinds of p rincip les; 
the p o s s ib ility  of the grouping of these p rinc ip les is  furnished by the ex
tent of th e ir theore tica l or empirical character. The method of approach de
scribed in  the fo llow ing, uses empirical data almost exclusively. A method 
has been worked out fo r co llecting and processing accessible data concerning 
actual condition improving interventions carried out on the domestic network 
and has led to conclusions and p lo tting  graphs which could serve as a basis 
fo r the actual planning of conservation a c tiv it ie s .  The main parts of the 
system under development are as follows: data co llection , planning the ser
vice l i f e  of the condition improving in terventions, comparison of a lternative 
in terventions, determination of the scale of intervention which may come in 
to question as could be applicable.

4.1 Data co llec tion

Considering that the procedure is  based on the actual domestic situa
tio n , a prelim inary, detailed and largely extended data co llec tion  has a de
c is ive  significance. This is  an essential condition because, in  general, at 
present no data base is  available fo r co-ordinated nation-wide information.

From among the a c tiv it ie s  related to th is  subject, the following 
groups of information might be u tilize d :

— a study made by the Hungarian In s t itu te  fo r Transport Sciences 
(KTI) in  connection with the data re la ting  to  the quality of pavement struc
ture strengthenings carried out on the Hungarian road network from 1976 to 
1983;
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— a KTI study co-ordinated by the so-called "Serv ice-life  Commission" 
on roads concerning th e ir service l i f e ,  commenced in  country Fejér, and ex
tended thereafter to the whole country;

— data collection in  the UTORG related to the condition of the road 
network of the country, w ith  the results of the s u ita b il i ty  surveys, and the 
processing of these data;

— the design guideline worked out by KTI, dealing with the condition 
improving interventions which can conveniently be u tiliz e d  in case of d i f 
fe re n t combinations of the s ta te  notes established by the s u ita b ili ty  survey 
of na tiona l highway network;

— the theoretical and p ractica l results obtained so far in  connection 
w ith  the s u ita b ility  survey o f national and loca l road networks;

— the results, i .e .  evaluations contained by the KTI study obtained 
in  the course of following the deterioration process of 30 road sections se
lected  fo r  th is purpose between 1973 and 1979;

— publications of KTI ( i .e .  of i t s  legal predecessor, Road Research 
In s t itu te )  containing the data of the condition improving interventions car
rie d  out in  the past on the road network;

— the results obtained by the "rapid" condition evaluation procedure 
worked out by KTI in 1975;

— experiences obtained by the application o f the Dimensioning Code 
fo r F lex ib le  Road Pavement Structures (HUMU) published in  1971 and p re lim i
nary examinations for i t s  rev is ion ;

— results of recent t r a f f ic  counts on the road networks;
— country-wide or county s o il conditions and other information in  

connection with the s o il of earthworks and the hydrologic conditions;
— d iffe rent regulations fo r the acceptance of highway construction 

type p ro jects (ÉKSZ-70 Vol. V I, M inistry of Transport and Communication: Ten
ta t iv e  Technical Directives 63/75, M.T.C. (K.P.M.) Tentative Technical Direc
tive s  63/77, MSZ-07 3210/83. Sectoral Standard);

— publications of the Central S ta tis t ic a l O ffice in connection with 
p rice s , changes of prices and price indices;

— development of the main characteristics of highway accidents.
For the elaboration o f the engineering d irectives there should be

ava ilab le , in  addition to the information sources mentioned above, data as
sociated with the interventions and the ir spec ific  costs to be found at the 
D is t r ic t  Highway Directorates. This a c tiv ity  may run in to  d if f ic u lt ie s  due
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to several reasons:
(a) Registrations of data of the d iffe re n t D is tr ic t Directorates d i f 

fe r from each other to a certain extent.
(b) Some of the information sources o rig ina ting  from e a rlie r periods 

have got lo s t due to reorganizations carried out in  the meantime or in  con
sequence of s ta ff changes.

(c) The changes in  numbering and in k ilom e tric  marking of roads re 
duce the r e l ia b i l i t y  of old data;

(d) In some instances the lack of a uniform nomenclature (technical 
terms) causes d if f ic u l t ie s ,  mainly in cases where interventions carried out 
e a rlie r are to be evaluated.

Due to these disadvantageous circumstances only part of the engineer
ing and financ ia l data needed are available. There are sections on which ab
so lute ly no information is  to be found. Accurate information is  available 
only on roads b u ilt  comparatively recently or in  connection with roads which 
had been handled e a r lie r as high p r io r ity  roads, mostly main highways desig
nated with a single figu re .

Besides, i f  the data collection is  extended to data on t r a f f ic ,  re
su lts  are obtained at provisional or stationary t r a f f ic  survey stations. For 
our examinations the values of the average d a ily  t r a f f ic ,  taking a l l  vehicle 
types in to account, expressed in  the measurement un it of unit-vehicle per 
day are of in te res t, but the value F™  related only to the heavy vehicles 
and expressed conveniently in  a daily average number of converted 100 kN axle 
load is  of greater significance.

Informative data should also be collected on the characteristics of 
the earthworks of the road sections in question. To achieve th is  goal beside 
the so il mechanical and hydrologic maps accessible, so il mechanical expert 
opinions ( i f  they can be found) as well as fu rth e r data related to the sub
je c t in  question to be found in  the possession of the Highway Directorates 
(e.g. ind iv idual sampling, data co llection in it ia te d  by them) might be used. 
Information is  fu rthe r needed on the qua lity  o f the project (new construc
tion  or strengthening of the pavement). Beside establishing the qua lity  
grade, f u l l  information is  needed on whether during the acceptance procedure 
a l l  of the determined qua lity  parameters'data had been obtained. For in 
stance, i t  is  not in d iffe re n t whether the q u a lity  grad I I  established had 
based on the u n su ita b ility  of density or of the pavement p ro file .

A ll in  a l l ,  at each road section the main objective is  to co lle c t a
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Table 2 Data collected about a highway section

Location of highway section Type of so il Hydrologic condition T ra ffic  data

Approach road to Kismarót 
0 + 000 -  5 + 700

s i l t No danger of humidification 1970 522/day ; 18 heavy axle/day 
1975 1217/day; 39 heavy axle/day 
1980 1501/day; 74 heavy axle/day

1st intervention 2nd intervention 3rd intervention 4th intervention

T• T Width of n .... Time Type . Quality pavement 3
T. T Width of Time Type .pavement Quality T. T Width of n x . T Width of 

Time Type pavement Quallty Time Type pavement Quality

1968 20 cm 4.5 m 1st c l 1975 5 cm 6.0 m 2nd c l 1980 single 6.0 m 1984 single 6.0 m 1st c l
cem. AB-20 (th ick - emulsion emulsion
4 cm ness) surface surface
AB 10 dressing dressing
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series of data as indicated in  Table 2.

4.2 Planning of the service l i f e  of condition improving in terven
tions

The term service l i f e  of a road means the period during which i t s  be
haviour sa tis fies  the demands. I t  is  a d i f f i c u l t  task to predict a fte r f in 
ishing some construction or maintenance work on i t .  The service l i f e  of a 
road is  predicted. Wanting to approach the problem in a theoretical way, even 
in the most advantageous case only a few of the actual in flu e n tia l factors 
can be taken in to  account, not to mention tha t in  most cases th e ir fu ture  de
velopment is  known only to a lim ited extent, or is  absolutely unknown. An
other choice (of p rac tica l background) might be to approach the problem on 
the basis of co llec ting  and evaluating e a r lie r  experiences. Although, in  the 
la t te r  case, no doubt, a l l  factors are taken in to  consideration, however, a 
number of d if f ic u l t ie s  are to be reckoned w ith ; e.g. a collection of a great 
many data extending to vast areas and long periods must be carried out and, 
i t  is  always hazardous to draw conclusions as to future development from past 
experiences. Further, the designation of classes considered as being homo
geneous is  a rather d i f f ic u l t  problem.

The procedure mentioned in the second place is  selected to  be dealt 
w ith, with the objective of try ing to reduce the d if f ic u lt ie s  involved. The 
objective assumed could b r ie f ly  be summarized as follows: by generalizing 
the actual practices followed in Hungary in  the past, a design guideline w il l  
be drafted re la ting  to the service l i f e  expectancy of the condition improv
ing interventions by selecting variables lik e  the whole pavement structure , 
the t r a f f ic  predictable, the probability  of the earthwork getting humid, the 
width of the pavement, and the quality of each of the interventions.

A fundamental requirement is  that the design aid should be easily  
treated and c learly  surveyed. This objective can be attained obviously by 
graphic representation or by the application of graphs. In th is  case, anyhow, 
i t  is  considered necessary, with the view of assuring the p o s s ib ility  of two- 
dimensional drawings and an acceptable number of diagrams, to strongly re
s t r ic t  the number of the variables actually exhibited (entering on one of the 
axles of the diagram or as a parameter) and the steps of the variables are to 
be selected with great care.

As parameters to be depicted, on the basis of the foregoing the fo l
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lowing had been selected:
— pavement structure ,
— modified t r a f f ic  volume (modified by the number of a ll vehicles, 

by the width of the pavement and by the qua lity  grade of the work carried 
o u t) ,

— expected service l i f e  of the in tervention.
a) To characterize the pavement structure the expression in  terms of 

equivalent thickness seems to be the most advantageous. However, th is  simple 
and widely used method has not been selected fo r the above-mentioned purpose 
a fte r a l l ,  due to the fo llow ing reasons:

— in case of a pavement of a given type the assumption of a constant 
c o e ff ic ie n t of equivalence is  but a rough approximation (in  given instances 
i t  depends on the depth of the layer in question, on its  age, on the qua lity  
of the construction, on the strength conditions of the support layer and 
weather conditions);

— s t i l l  greater is  the uncertainty of the above coeffic ients in  the 
case i f  the pavement has deteriorated to a ce rta in  extent and in the over
whelming majority of cases th is  is  the case;

— during the service l i f e  of the m ajority of road sections the pave
ment has been widened at least once, wherefore the cross section of the 
pavement structure is , in  general, not uniform, not even concerning the e- 
quiva len t thickness.

The development of the so-called typ ica l pavement has been estimated 
more advantageous where from the ex traord inarily  rich  varieties of "sand
wich" structures of the present highway network the characteristic groupings 
are selected, and th e ir behaviour is  considered taking into account the av
erage domestic construction technique, the in te raction  of the layers and the 
changes taking place during the use of several years. After the evaluation 
of a great number of samples a comparatively re a lis t ic  picture might be 
obtained in  this way.

The determination of a series of typ ica l pavement structures w i l l  
take place after completion of the data co lle c tion  currently going on, how
ever, some preliminary fundamental princip les have already been elaborated. 
These are as follows:

— the number of types should be 10 to 15;
— in  case of layers without any binder (unbound) and with hydraulic 

binders differences in  thickness of 5 to 7 cm (e.g. lim its  of 15 to 20 cm)
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might be possible;
— in  case of asphalt layers (excluding layers of asphalt-concrete 

character) 2 to 3 cm differences in  thickness (e.g. lim its  of 8 to 11 cm) 
might occur;

— the d iffe re n t unbound base courses may be considered as other types 
only on the basis of th e ir  thickness;

— i f  the pavement has been widened, the part of the structure with 
the shortest life -tim e  expectancy is  to be considered c r it ic a l;

— some special and, therefore, p a rticu la rly  infrequent variants of 
pavement structure should not be grouped to e ithe r types, they have to be e- 
valuated separately.

b) Taking the t r a f f ic  in to  account is  perhaps the most in tr ic a te  
problem partly because the t r a f f ic  load is  also to be predicted (other fac
to rs , lik e  pavement, s o il and the p robab ility  of humidification are at the 
time of the examination known or can at least, be reconstructed), p a rtly  be
cause the damaging e ffects  of the d iffe re n t vehicle types are bas ica lly  d i f 
ferent.

The f i r s t  problem can be solved with the aid of the ra tio s  of the 
nation-wide traffic-development the exactitude of which meets the require
ments of the examination in  most cases.

However, the diverse effects exerted on the pavement structure by 
the d iffe re n t types of vehicles are a fa r more d i f f ic u l t  problem. Namely, 
the load capacity is  not the only condition evaluation parameter considered 
in  th is  study. As a matter of course, i f  only the loss in load bearing capac
i t y  o f the hard cover were considered as a motive fo r upgrading i t ,  as was 
prescribed by the Code fo r Dimensioning Flexib le Road-Pavement Structures 
/3 / published in  1971, the influence exerted by the d iffe ren t types of vehi
cles on th is  type of defect could be comparatively easily determined with 
the aid of the commonly known re la tionship  obtained in  the American AASHO 
Road Test /6 /. However, an intervention may become necessary not only as a 
consequence of the deficiency of the load bearing capacity, but also due to 
the deformation of the pavement or because the surface has become slippery.
In these two la t te r  cases the ro le  of limousines with low axle load in  the 
development of the deficiency cannot be neglected. Consequently, a l l  vehi
cles passing through the road section in  question should be taken in to  ac
count. The width of the pavement surface, used by the vehicles passing the 
road examined should also be known, overtakings excluded. This width depends
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— beside the d iffe ren t wheel gauges of the vehicles and the s ligh t d if fe r 
ences in  driving s ty le  — essentia lly on the width of the pavement. There
fo re , i t  is  obvious tha t the load (specific pressure) on the pavement con
nected with its  width should be known because assuming a transversally homo
geneous load capacity, the f i r s t  damages are to  be expected here and the 
state  repairing techniques adopted in Hungary, even in  case of the deteriora
tio n  of th is  comparatively narrow s tr ip , involve the condition improvement of 
the whole width of the pavement. (The only exceptions are the pavement 
repairs on a small surface (e.g. patching) which, however, should be applied 
but only to a lim ited  ex ten t.)

In any form of destruction the t r a f f ic  volume has a decisive ro le .
But i t  is  absolutely not in d iffe re n t in what q ua lity  the d iffe ren t pavement 
layers had been produced, and th is  fact influences th e ir damage resistance 
considerably. In p red icting  the duration expectation, therefore, also the 
q u a lity  parameter is  to be calculated with. As a f i r s t  approximation, the 
q u a lity  c lass ifica tion  given during the acceptance procedure seems to be the 
most convenient. In applying th is  the fo llow ing problems arise.

— In the reference period of the data co llec tion  several q ua lifica 
tio n  systems were in  force with the aid of which the quality class of the 
p ro ject (or its  d iffe re n t layers) had been established;

— the d iffe re n t q u a lity  parameters (e .g. bitumen content of the wear
ing course, layer thickness, cross fa l l )  have d iffe re n t roles in a ffecting 
the deterioration process;

— establishment of the quality class had in  certain cases been in 
fluenced, beside the actual values of the q u a lity  parameters, also by other 
fac to rs .

On the basis of what has been mentioned above, i t  seems to be con
venient to take in to  account fo r the service l i f e  prediction the level of 
p r io r ity  of certain parameters with a disadvantageous e ffect on the deterio
ra tio n  process. Although the selection of such parameters needs fu rther in 
vestigations, p re lim ina rily  the following should be considered: composition 
of the material of the wearing course (in  the f i r s t  line  its  binder content), 
the density of the surface course, and layer thickness.

In order to reduce the number of the parameters in the diagrams, the 
heavy t r a f f ic  load of the road section (the d a ily  average number of the unit 
axles of 100 kN passing through) is  modified in  such a way that the number 
of vehicles c ircu la ting  on the road section in  question, the width of the
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pavement, and the qua lity  grade of the la s t intervention are also involved.
The modified t r a f f ic  volume may be established accordingly with the 

aid of the re lationship as follows:

F' = m. . m . m Flnn(un it axle/day) 100 J sz m 100v y'

wherein
F ' _
r 100

F100

Establishment of the series of the modifying factors can take place subse
quently, to the evaluating process carried out a fte r ending the data co llec
tion in  the near future.

c) The kind of s o il and i t s  actual water content strongly affects 
the load capacity of the pavement structure and consequently the loss of 
load capacity. For th is  purpose the u tiliz a t io n  of the CBR-value is  adopted 
a l l  over the world. However, fo r the examination dealt with in th is  study we 
do not follow th is  practice fo r the following reasons:

— determination of the CBR-value in  laboratory and mainly in  the 
f ie ld  often runs in to  d if f ic u l t ie s ;

— the CBR-value in  case of a given s o il varies between rather wide 
lim its  in  a year; taking in to  account a single value considered c r i t ic a l  
theo re tica lly , one cannot re ly  upon i t ,  and i t s  determination in practice 
also raises d i f f ic u l t  problems;

— in  the planning phase the effic iency of drainage is  not yet known 
and is  in close connection with the variation c f the CBR-value.

Therefore, another solution has been selected according to which the 
main kinds of so ils  have been considered in a special group but, fo r cases 
where the load bearing capacity of the so il strongly depends on i t s  humidity, 
two groups have been established:

— granular s o ils ,
— trans ition  so ils  (of medium cohesiveness) with no serious danger

modified heavy t r a f f ic  per day,
modifying factor related to the number of a l l  vehicles pas
sing through,
modifying factor related to pavement width, 
facto r related to quality of la s t1state improvement in te r
vention,
heavy t r a f f ic  volume per day (expressed in number of axles 
of 100 kN).
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of hum idification,
— cohesive (bound) s o ils  with no serious danger of hum idification,
— cohesive (bound) s o ils  with serious danger of hum idification.
One should reckon w ith a serious danger of hum idification in  case

where the earthwork is , according to the experiences of the past, periodical
ly  threatened by flood or in te rn a l waters, i .e .  by a high average ground wa
te r tab le . (Their quantity w i l l  be worked out in  the near fu tu re .)

The earthwork can be c lass ified  in to  d iffe re n t groups in  possession 
of data collected from maps and expert opinions.

d) The anticipated service l i f e  of the condition improving in te r
ventions represents the dependent variable in th is  study. In th is  connection 
the service l i f e  means the period between the end of the repairing interven
tio n  and the moment where the necessity of a new condition improvement pre
sents i t s e l f .

♦ 20 -  22 cm asphalt

Typical pavement structures (perform ance increasing order of series)

Fig, 2 Principle diagram for the prediction of the service life  of the intervention

In the diagrams, as is  shown in Fig. 2, the parameter of the set of 
curves is  the service l i f e  estimated. Since in  the case of pavement struc
tures, on the horizontal ax is, only discrete values are defined, the curves 
are, s t r ic t ly  speaking, equalized polynomials, a point of which may be ob
tained as follows. The pairs of values constitu ting  associated ones in  the
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course of data co llection  (pavement structure, s o il drainage, modified t r a f 
f ic  volume, service l i f e  of interventions) should be c lassified  in to  such 
"homogeneous groups" in  which the f i r s t  three variables are common. For these 
variables the most probable value of the service l i f e  should be determined 
from the subsets to be considered s ta t is t ic a lly  large samples obtained from 
a great many, inc iden ta lly  several thousand data surveys, and th is  is  what 
should be plotted in  the diagrams. (With the aid of th is  procedure the more 
advantageous and more disadvantageous cases than the average can be omitted 
because, as a matter of course, a good many factors have not been taken into 
account at th is  examination, such as fo r example, weather influences, level 
of maintenance, and these factors can bring fo rth  better or worse situations 
than the country-wide average.)

I t  is  noteworthy that the d iffe re n t variants of pavement structures 
come in to  consideration, commonly in  res tric ted  t r a f f ic  regions, and th is  
circumstance, which is  readily seen in  Fig. 3, reduces the number of varia
tions which are theore tica lly  possible. According to a preliminary calcula
tion , assuming 5 types of s o il,  12 varie ties of hard cover pavement struc
tures and 4 t r a f f ic  categories about 240 combinations may occur.

5. DETERMINATION OF THE INTERVENTION SCALE ACTUALLY REALIZABLE 
IN A SPECIFIC CASE

Starting from the objectives of road maintenance, such as preserva
tion of the state of the road network, which can be attained by techniques 
of planned preventive maintenance and reconstruction works as well as main
tenance and repair works necessitated due to t r a f f ic  safety, the means serv
ing th is  objective should b r ie fly  be investigated.

In the foregoing such a procedure was presented which, in  the case 
of given inputs hard cover pavement structure, s o il,  t r a f f ic  determines the 
service l i f e  of the la tes t state condition improving intervention. A fter 
th is  period, the structure or at least the pavement surface gets in to  a 
state which makes a new, urgent intervention necessary. This state may ensue 
at d iffe re n t combinations of values of several qua lity  parameters. From th is  
i t  follows that the most convenient, i.e .  the technically and economically 
most reasonable type of intervention is  the function of th is  state leve l as 
well as of the t r a f f ic  volume (the significance) of the road. This optimal 
intervention type has a duration (and costs) which comes closest to the in 
terests of the country's economy in  respect of travel comfort, low demand on
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maintenance, low operation costs, etc. ( I t  is  to be noted that, mentioning 
two extreme types of in tervention, the cost of the modernization of a road 
section of 1 km comes up to about 20 m illio n  fo r in ts  while 1 km surface 
dressing costs approximately 120 thousand fo r in ts  or so.)

However, in practice the s itua tion  is  — and th is  tendency has recent
ly  become ever more prevalent — that the money available fo r road maintenance 
is  less than would be necessary to carry out the optimal condition improve
ment on a l l  sections of the highway network. In th is  exigence the maintenance 
u n its  are constrained to make the best of the unfavourable s ituation  (to  com
promise). One solution is  tha t with the aid of some p r io r ity  ranking some of 
the road sections w il l  be selected and on these only some state improving 
in terventions w il l be carried out, only the current maintenance, while on 
other damaged parts of the roads works w i l l  be done u n t il a new plan period 
comes in to  operation when also th e ir turn w i l l  come. However, th is  strategy 
could hardly be considered acceptable because the road sections " le f t  to 
th e ir  fa te " further deterio ra te, and soon get in to  such a neglected state 
tha t the cost of the ir reconstruction w i l l  be much higher. Therefore, i t  is  
more practicable to select the solution according to which on a l l  or nearly 
a l l  o f the sections which need condition improving intervention only some re
p a ir work should be performed. By applying such a method, due to lim ited  f i 
nancia l means, in general, one cannot a tta in  the required technical leve l, 
however, in  most cases i t  is  su ffic ie n t to stop fu rther deterioration, i.e . 
i t  permits the postponement of subsequent interventions. In case of a given 
s ta te  and t ra f f ic  density there are among the possible interventions such 
which are not acceptable due to one or more simultaneously occurring circum
stances:

— the service l i f e  to  be expected seems to be too short (a few weeks 
or months),

— i t  does not improve the c r i t ic a l state parameter,
— the operation costs remain at an unacceptable level even a fte r in 

te rven tion ,
— the t ra f f ic  safety remains at an unacceptable level.
The purpose of the examination to be undertaken is  to select the con

d it io n  improving variant of the minimal technical qua lity  s t i l l  to lerable 
fo r  the type of the road, requiring the lowest cost at the same time. The 
problem can be formulated in  such a way that the boundary has to be defined 
under which a more moderate variant of intervention can already be considered

GÁSPÁR, L .
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as money los t.
I t  is sure that the effects of the d iffe re n t condition improving in 

terventions are rather well-known, however, the estimation to what an extent 
the actual conditions (such as the characteris tic  values of the t r a f f ic ,  the 
leve l, i.e .  the combination of the state defin ing parameters, the construc
tion  and the "antecedents" of the pavement s tructure , e tc .) affect the e f f i 
ciency of the d iffe re n t types of interventions, is  s t i l l  missing.

Fig. 3 Conceptual diagram of a convenient intervention-scale to be realized on a 
road section for a given tra ffic  volume

Note: 1. On the vertical axis the different variants of state improvement 
interventions entering for engineering claims (and specific cost) 
increasing upwards; 2. The values of the average daily tra ffic  
(horizontal axis) can incidentally be modified by a coefficient de
pending on the road type

Figure 3 shows the expected issues of the examination concerning i t s  
princ ip les. In practice, among others, two s ig n ifica n t problems are to be 
dealt with which are as follows:

— in  case of a given t r a f f ic  volume a great number of "state pat
terns" are developed which need reparation, accordingly the optimal and m in i
mal intervention types are also d iffe re n t, perhaps a complex state character
iz ing  index could help in  solving th is  problem;

— the type of road (motorway, main road, secondary road), and inciden
ta l ly  the urban or ru ra l character can also a ffec t the type of intervention.

The actual suggestion w il l  be preceded by data collection concerning 
the actual service l i f e  of certain types of interventions carried out in  the
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past, consultation held with experts as w ell as economic calculations.

6. TECHNICO-ECONOMIC COMPARISON OF THE DIFFERENT TYPES OF INTERVENTIONS

Deterioration of a road does not necessarily occur but, the marks of 
at leas t three deterioration chains, only being in loose connection with each 
other, present themselves with d iffe re n t in ten s itie s . The necessity of the 
s ta te  improving intervention arises in  case when intolerable parameters can 
be measured on any of the deterioration branches. I t  may, however, also occur 
tha t the simultaneous e ffects of the three kinds of deterioration make imme
d ia te  intervention necessary. Also the fa c t mentioned above emphasizes the 
s ign ificance  of working out some kind of a complex condition evaluating para
meter. In possession of such a parameter the technico-economic comparison of 
the d iffe re n t state improving interventions can be carried out. The s ig n if i
cance of th is  examination is  supported by the fact that i t s  issues could 
help in  selecting from two state improving va rie ties , the costs of which are 
o f s im ila r magnitude, fo r a given t r a f f ic  and road state.

By a methodical consideration the approach w il l  be selected in  the 
framework of which the follow ing circumstances w il l  be examined:

— the influence exerted on the overa ll qua lity (and separately on 
each of the d iffe ren t qua lity  parameters) by the d iffe ren t types of interven
tions  ,

— the service l i f e  of the d iffe re n t kinds of interventions (and with
in  th is  the shape of the deterioration curve),

— the preconditions concerning the construction m aterial, machines 
and weather conditions necessary to implement the interventions in  an ade
quate qua lity .

The knowledge of the effects of the d iffe ren t condition improving 
a lte rna tives  (variants of techniques) based on detailed and objective data 
w i l l  permit the ir application at the most convenient moment. (Here the finan
c ia l re s tr ic tio n s  are temporarily not considered.)

The timeliness of th is  examination is  also ju s tif ie d  by the domestic 
p ractice  based mainly on the financ ia l re s tr ic tio n s  by which the surface 
dressing made recently by using bitumen emulsion, binder is  considered a gen
e ra l highway conservation a c tiv ity .  However, i t  occurs frequently that the 
s ta te  o f the road section (e.g. strongly deformed, incidenta lly cracked, sur
face) or the t r a f f ic  volume does not ju s t i f y  the economical application of 
th is  technique.
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7. CONCLUDING REMARKS

The state preservation of the road network in  Hungary is  one of the 
most tim ely and most s ig n ifican t problems. The a c tiv it ie s  of evolutional 
character have been strongly pushed into the background because of res tric ted  
financ ia l means. The question what kind of state improvement should be under
taken and at what time, in  order to make the optimal u ti liz a tio n  of the f i 
nancial means possible has become a central problem. To realize th is  assumed 
objective the present paper wants to contribute by reporting on the ground 
princ ip les of such a planning method of the state conservation of highways 
which is  based on the estimation of e a rlie r practices and on the generaliza
tion of collected informative data. This a c tiv ity  is  s t i l l  at an early stage, 
however, i t  is  obvious that i t  can become useful not only in  a tta in ing  the 
main objective but also in  the rea liza tion  of the others mentioned in  th is  
paper (e.g. determination of the scale of interventions which could be con
sidered re a lis t ic ,  elaboration of a complex parameter characterizing the 
state of the pavement, technico-economic comparison of the d iffe re n t varie
tie s  of maintenance techniques.
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CALCULATION FOR THE VIBRATION OF STRUCTURES: 
A PARTIAL EIGENVECTOR PROBLEM SOLUTION

3. Györgyi4

(Received 11 A pril 1985)

Solutions to v ibration problems where the so lu tion can be 
w ritten in  accordance with the components corresponding to  the 
eigenvector have been studied in  th is  work, and determination of 
the physical implication of errors resulting from neglect of 
eigenvectors associated with higher frequencies has been recommended 
fo r the case of free v ib ra tion , and excitation by period ica l forces. 
To ju s t ify  th is  recommendation, numerical examples and experiments 
have been presented, pointing out that on the basis of data of the 
numerical experiments, the lim its  required fo r p rac tica l applica
tion , compatible with the errors of s tarting  parameters of the 
technical problem, can be formulated.

1. INTRODUCTION

Investigation of the v ibration of structures by means of the f in ite  
element method requires dynamic calculations fo r systems of a rather high 
degree of freedom. In vib ra tion  calculations, second-degree d if fe re n t ia l 
equation systems depending on the description of mass forces and damping 
conditions, as well as of exciting e ffects. The f i r s t  step is  to calculate 
eigenvalues and eigenvectors, and the calculated values are then used to 
w rite  the general solution. In th is  work, the general solutions fo r the 
d iffe re n t cases are presented in  a form where the components associated 
with the d iffe re n t eigenvectors appear each separately.

In case of large systems, i t  is  not possible to calculate a l l  the 
eigenvalues and eigenvectors but fo r a solution of an accuracy required for 
practica l application, i t  is  not necessary e ither to have a l l  the com
ponents. In th is  work, we investigate what c r ite r ia  should be taken as a 
basis fo r deciding the number of eigenvectors to be used in  the calcula
tions, specifying the characteristics of errors the use of which is  p rac ti
cable in  engineering calculations fo r free vibration and exc ita tion  by peri
odical forces. *

*Dr. J. Györgyi, H-1221 Budapest, Arany János u. 96/b., Hungary
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2. SOLUTIONS TO DIFFERENTIAL EQUATION SYSTEMS IN VIBRATION PROBLEMS

Undamped free v ib ra tio n
I f  the usual displacement functions fo r s ta t ic  calculations are used 

to  ca lcu late  mass forces, we w i l l  face the problem of solution of a con
s tan t-co e ffic ien t d if fe re n t ia l equation system:

У ]j ( t )  + £ u ( t )  = 0 , (1)

where £ stiffness m atrix, ^ mass matrix of the structure.
In the knowledge o f the eigenvectors associated with eigenvalue 

problem K v̂ = ÀM v, provided the eigenvectors were normed for M (V*MV=E), 
the so lu tion  /1 /:

n
u (t) vr  V* cos 0)r t  + Д  sin wr t  j ,  (2)

r= l L J
where д^, д  are in i t ia l  displacements and ve lo c itie s  (associated with t=0), 
respective ly , ш - Í K  and _v radian eigenfrequency r ,  and eigenvector г
(v ib ra tio n a l mode), respective ly .

Undamped v ib ra tion  excited by periodical force 
In th is case, the r ig h t  side of the matrix d iffe re n tia l equation 

(1) can be written as
m

£ (t) = So + ^  Bck cos <V + % k s in a к* O )
k=l

The pa rticu la r solution associated with harmonic oomponents of frequency 
од o f an amplitude of д  and £ck, £ /1 /:

n /  m

^ q ( t )  - г  T 2  So + ^  ':,2 1_  ~ 2 (^ck  C0S V  + ^ s k ^ W
г=1 V k=l г к

A general solution to  the inhomogeneous d if fe re n t ia l equation sys
tem can be obtained as the sum of solutions (3) and (4).
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Frequency dependent mass matrix
The e ffect of mass forces on the d iffe re n t elements can be taken 

in to  consideration more accurately i f  displacement functions w ritten  as the 
power function of to are used /2 /.  In th is  case, the radian eigenfrequencies 
and the associated v ib ra tiona l modes can be obtained in  the solution of ho
mogeneous equation system

( £  -  to 2  -  w 4  y 2 -  ш6 M4  . . .  -  w s  Ms _ 2 ) v  = Q . ( 5 )

The function describing the displacements of the structure can be 
w ritten as

n
j j ( t )  Xr (ar cos wr t  + br sin u r t )  (6)

r= l
also in  th is  case but, as has been shown in /3 / ,  w riting  the solution in  a 
form s im ila r to (2) is  not possible. Integration constants ar , br can be 
calculated from the in i t ia l  conditions in  the knowledge of a ll the eigen
vectors only. I f  only a few eigenvectors are taken as a basis to define the 
solution, the method of least squares shall be used fo r calculation of con
stants a^, bf . At the same time, again expression (4) is  obtained fo r the 
description of excita tion  by periodical forces (w ith the values of v̂ and 
о) r  calculated on the basis of equation (5 )).

External damping proportional to ve loc ity
The m a tr ix -d iffe re n tia l equation describing free vibrations of the 

structure is  now

M ‘Û ( t )  + Ç u ( t )  + К u ( t )  = 0 , (7)

which can be a ttribu ted  to firs t-o rd e r d if fe re n t ia l equation system (4).

Ô Í  ( t )  + В У ( t )  = Q , (8)

where

A  = g  m 1  =

1 
o

il

J
L * ( t )  = u ( t )

M Ç

I n
o u ( t )

(9)
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The so lu tion  of equation (8) requires tha t eigenvalue problem

AA w = - В w

be solved, where in  case of low damping, X^ are eigenvalues and

* r  = X vr 

^ r

complex eigenvectors while in  case of a high damping, both X^ and are 
re a l.

I t  was shown in  /3 /  tha t, in  the knowledge of eigenvalues and eigen
vectors

A . = — p. + i  со •J J jc
~ V . 1V. = V. + IV.
-J -J -J

and
"'л = — Pj, ar|d v^, respectively, the solution could be w ritten  as the

sum of solutions associated with the d iffe re n t solutions. Accordingly, 
n

J j(t) =У ~  2e P j1 « %  * %i-  »3 ÍJÖ -  “ з с б з в Ц

cos (jo . t  — jc

-  [e jfc o  * 'B jS -  Pj BjS *

2n

- i - l
r+1

Ml̂  + (— p£ M + COû  [ e ^

Sin 0l)jc t

P„ t
( 10)

where
A. VK 1 

V .  — V .
I K

V . ,
=J -J -3 -J “ J ’

B. = V1 < ■ <
 ж + < • < Í K

V . ,
=J -3 -л -J -o

while n is  the number of complex pairs of eigenvalues.
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Note that the case where ^  is  a m u ltip le  eigenvalue which is  at 
the same time a m ultip le  root of the minimal polynomial is  not included in 
formula (10). For the sake of completeness, also the solution fo r a harmonic 
excita tion  force of radian frequency a, and amplitude £ is  given below, 
broken down in  accordance with the eigenvector:

Frequency dependent internal damping
In the lite ra tu re , the damping matrix in  the form
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i s  o ften  used to take the damping e ffec t of internal fr ic tion  into consid

era tio n .
With a damping matrix proportional to matrices M, К assumed, i t  i s  

p o ss ib le  to  write the so lu tion  by means of eigenvectors associated with the 
undamped case.

Low or high damping may be associated with the different vibrational 
modes depending on whether the value

Л . = 
J

+  l

With the values of substituted again into the expression given 
in (15) we obtain that both low and high damping may be associated with 
given damping ch aracteristic , depending on the magnitude of radian eigen- 
frequency for given eigenvector.

The solution for the case of free vibration:

1 p p —°  P p. "“Cl 
■̂1 &2 1̂ ^2 

Here пг is  the length of low-damping component^ while P  ̂ and P

( 1 9 )
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can be calculated from relationship

fo r components of high damping.
In case of the proportional damping given in  (12) through (15), the 

solution fo r harmonic excita tion  can s im ila r ly  be calculated on the basis of 
components according to real eigenvectors, e.g. i f  д  = д cos « t 

п
u (t) = ^ _  Xr  V*

r= l
4

2 2s2 r 2 „
■ ш r  “  “  ) + Çr a

ç  д  cos ( a t V

where
V г

C r a
arctan -----^ j  •

О) -  et
г

( 20)

Frequency independent internal damping
As seen in  /5 / ,  the damping matrix can be w ritten in th is  case as

C =

1 +

where y = — — , while 9 logarithmic decrement characteristic of the 
structure.

In th is  case, low damping is  associated with every v ib ra tiona l mode, 
and the displacements can be written as the sum of terms associated with 
the d iffe re n t v ib ra tiona l modes:

I I
u (t) = _v X 11V M•г—г = e — 2 U > tre

г=1
cos и) ГС t  +

where w гс

u ) sin со t  —о гс ( 21)

radian eigenfrequency of undamped vibra

tion  while the p a rticu la r solution for a harmonic force:
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u (t)
■ 1*4

г=1 2\2
1 - а 2 4 Y2

Д cos С а. ^ — V ) ,

2 2 o r 4+у  ̂г
where

Y Ü3rr Ct
V = arctan a . (22)

-  а

I f  the structure consists of elements of d iffe ren t damping charac
te r is t ic s  (e.g. superstructure in teracting  with the ground, structure con
ta in in g  both steel and reinforced concrete elements), the damped v ib ra tion  
can be taken into consideration by using the complex stiffness m atrix, the 
d if fe re n t ia l equation system of vib ra tion  in  case of free v ib ra tion  being

У û ( t )+ K д ^ )  = Q • (23)

Displacements of the structure can be calculated as a rea l part of 
complex displacements /6 /.

The complex solution can be w ritten in  accordance with (2) in  the 
knowledge of complex eigenvectors and complex radian eigenfrequencies ob
tained as a result of a complex eigenvalue problem. Also the complex in i t ia l  
conditions are required fo r w riting  the so lu tion. As has been shown in  /3 / ,  
the imaginary part of the i n i t i a l  conditions can be produced only a fte r the 
in teg ra tio n  constants that can be calculated in  the knowledge of a l l  the 
eigenvectors having been determined. I f  we want to obtain the so lu tion with 
the use of eigenvectors of a certain number only, e ither the in i t ia l  condi
tions  sh a ll be specified fo r places of a reduced number or the in tegra tion  
constants shall be calculated using the method of least squares.

To avoid the above d if f ic u l t ie s ,  production of a damping matrix 
p roportiona l to the ve loc ity  which is  equivalent to complex damping has been 
recommended in /7 /. Accordingly, in  case of complex stiffness

g =
n

I
T* =  1

К = К + i  к = =u =v

_1__
шгс

M V V = —г —г К=v

(24)

(25)

where ш and can be obtained from the solution of real eigenvalue 
problem
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Çu V = Ц у . (26)

I t  can be seen that calculation of a damping matrix corresponding 
to eigenvectors of a de fin ite  number is  possible because the damping matrix 
is  set up of components according to the eigenvectors.

In the knowledge of th is  damping m atrix, d iffe re n tia l equation sys
tem

У ü ( t)  + Ç u (t)  + u (t)  = u (27)

shall be solved where the solution w i l l  be obtained according to (10) and, 
in case of excitation by periodical forces, to (11).

As has been proved in  /7 / also by numerical experiments, the devia
tion  between the values calculated fo r damping characteristics fo r eigen
vectors included in  the calculation and the results obtained in  ca lcu la tion  
with the complex s tiffne ss  matrix is  neg lig ib le . To set up a matrix Ç equiv
alent to complex s tiffne ss  w il l be especially practicable i f  there is  also a 
damping proportional to external ve loc ity . Namely, in th is  case, the m atri
ces containing the two lim its  can be simply added.

As seen above, the solutions fo r the d iffe ren t vibration problems 
can be w ritten  as the sum of solutions corresponding to the eigenvectors. 
Investigations concerning number of eigenvectors to be included in  ca lcula
tions are given in  the next Chapter.

3. ERRORS IN A PARTIAL EIGENVALUE PROBLEM SOLUTION

Free vibration
The solution obtained fo r the undamped case in  (2) can be w ritten  

also in  the following form: 
n

u (t)  = cos sin (28)

Here
z = V M u г — г = -о zr

K M
V M u—г = —о (29)

In the so lu tion, the weight of the eigenvectors is  d iffe re n t. E.g. 
i f  jĵ  and some eigenvector coincide, zr  = 1 and the other m u ltip lie rs  z^ 
w il l  be zero. More and more complicated v ib ra tiona l modes belong to increas-
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in g ly  high frequencies. I f  the components of the vector of in it ia lc o n d it io n , 
found in  the basis of the eigenvectors, are determined by means of coordi
nates zr , i t  w i l l  be found in  the majority of p rac tica l cases that the v ib ra
t io n a l modes associated with higher frequencies are neglig ib le, the algo
rithm s suited fo r the ca lcu lation of some of the least eigenvalues and eigen
vectors can thus be practicably applied (although the order of the matrices 
may be very high but they are band matrices).

To decide whether the number of the calculated eigenvectors i f  suf
f ic ie n t ,  the vectors of in i t ia l  conditions, obtained by the approximate solu
t io n , can be compared with the orig inal vectors: 

m m
u’ = > V v * M u  = > z v - * u  , 

г=1 г=1
m

и* = У z ’ V -* и . (30)—О Z._ г —г —о
Г = 1

I t  is  d i f f ic u l t  to set out any c r ite r io n  fo r the accuracy of d is 
placements since i t  is  rather the re la tive  displacements that predominate in  
ca lcu la tion  for stresses.

Vectors

So = к U 5 —0

s = M u , S ’ = M u’—o = -o  ’ —0 - —0
( 3 1 )

can be calculated on the basis of in i t ia l  conditions, and thus the e rror in 
approximate calculation can be determined by comparison of the loads in  the 
nodes. Stresses arise in  the structure tha t can be calculated re lia b ly  only 
i f  the displacements are very accurate. According to calculational experi
ences, an accuracy of re la tive  axial displacements of the nodes, required 
fo r  calculation of normal forces in case of a set of beams consisting of 
coaxial rods, can be achieved only by ca lcu la tion  of almost a ll the eigen
vectors. The number of eigenvectors required fo r  the calculation can be con
siderably reduced in  th is  case i f  the l im it  of error is  specified fo r the 
sum of forces acting in  the direction of the set of beams. (At the same 
tim e , normal forces can be calculated by means of the shear forces of the 
columns.) The lim it  of e rro r can be specified also fo r other combinations 
of forces (e.g. sum of moments for some p o in t). Thus the error w i l l  be

112



VIBRATION OF STRUCTURES

I f í ^ )  -  f ( ^ ) |

Eq üäÖ>
^  (32)

I í CSq) -  f(s ^ ) |
еч = --------------------  •

«So)
The physical contents of the two errors are hardly compatible. 

Therefore, a comparison of energies associated with accurate and approximate 
in i t ia l  conditions is  recommended:

E -  E’ (33)

where
E = i  /и * К u + и* M Û t  , 2 (j-o = -o  -o  = -o  J ’

while E’ , using the relationships given in  7.7, 
m

4 1E> = *  > z* v j К vr  + ,2 X .. 1 V  2 ,, 2 ,2z ’ v„ H V  :  л > U _ + z ’ г —r = —г 2 /.__ г г г
г=1 r=l

(34)

can be calculated by means of the constants associated with the general 
solution. In energy calculations, the energy of forces acting upon absolute 
motions in  the nodes is  calculated and thus a s lig h t inaccuracy of re la tive  
displacement has l i t t l e  e ffec t on the sum of energies. A l im it  fo r the mag
nitude of error, applicable to every structure,cannot be specified as i t  
depends on the inaccuracy required in  д. However, for given type of struc
tures, the lim its  can be determined on the basis of numerical experiments 
but in th is  case the stresses arising a fte r the lim its  have been fu l f i l le d  
must by a l l  means be checked.

In the solutions fo r d iffe ren t damping models, one may proceed in 
accordance with what has been said, that is  the components of i n i t i a l  velo
c ity  and displacement vectors per eigenvector (including approximate mechan
ic a l energy) can be calculated fo r time t  -  0 and the error analysis can be 
carried out.

Excitation by periodical forces
The re la tionship  given in  (4) can be written in case o f a harmonic 

component (e.g. д  = д ^  cos m^t) in  the following way:
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и 11

UqCt) -ц- 2 ^ - -а 2 Зек cos V  = Z - 4 * ^ r  4 C0S < у  . (35)
r= l
Here

г к г=1

гк
1 -

г
The place of the d if fe re n t eigenvectors in  the solution depends on 

the place of the force vector in  the basis of the eigenvectors as well as on 
m agnification factor мгк  determined by the re la tionsh ip  between the radian 
eigenfrequency and the e xc ita tio n  frequency. Should these coincide, urk may 
be in f in i te ly  large. This means that in case of the excitation force given 
in  (3 ) , a l l  the radian eigeiifrequencies (and the eigenvector associated with 
them) not exceeding the maximum value of must be calculated. Considering 
th a t to  make the Fourier se ries accurate requires tha t terms of increasingly 
high frequencies be included, p ractica lly  the ca lcu la tion  of a ll the eigen
vectors would be necessary. However, the s itua tion  w i l l  change i f  the damp
ing always present in  the structure  is  taken in to  consideration. E.g. in  
case o f a homogeneous s tru c tu ra l damping, the so lu tion  w i l l  be, according со
(22):

where

V t ) = 2 I  Mrkvr  Л - cos ( *kt -  v rk>
r=l

I f  the highest e xc ita tio n  frequency lie s  below the calculated high
est eigenfrequency, ш , the value of u . can be calculated fo r every value m гк
г and k. I f  any a k >  wm, a t most resonance w i l l  occur and thus Mrk< b max>
where u because of 1. (37)max Y

I f  a ll the eigenvectors are not taken in to  consideration, the error 
in  vector u (t) w il l be 
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il

U q(t) = Psk ^  Зек cos ( V  -  v sk} '
s=m+l s

In the knowledge of = V У* ,
r

L r= l r

( 3 9 )

A3q( t )  = ^sk cos ( a kt  -  v sk)

Force can be assigned to the error in displacement:

The error vector can be compared with "s ta t ic "  force vector д ^ ( д ^ ) . 
In so doing,the length (spherical norm) of the s ta t ic  force vector and the 
length of force vector Ад can be compared. With the length of the eigen
vectors included in  the calculation increased, force vector

m

3^t = ^r ^2  £  3st
Г=1 г

w ritten as a combination of the eigenvectors w i l l  more and more approach 
vector д ^  and thus the length or error vector

n

A3st = = s 5 I ^ s  ~^2 £  3s t 
m+1 s

w il l  reduce monotonously with also the length of vector Дд(0 reducing 
accordingly:

лд A3sk

that means to given e , the number of eigenvectors where the error w i l l  l ie  
below the specified value i.e .

e ( 4 0 )
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can be assigned.
The "re la tive " e rror of dynamic calculation can 

taking the load vector that has already been calculated 
parison. The load vector: 

m

•9dyn
r= l r

be estimated by 
as a basis fo r com-

(41)

t J U J L
dy"  ||Sdyn 1 '

(42)

In case of more harmonic components, vectors £ ( t ) ,  д ^ ,  д^ can be 
obtained by appropriate summation and the errors can be defined fo r the so
lu t io n  vectors.

Note that i f  the exc ita tion  frequency lie s  below or at the highest 
radian eigenfrequency that has been calculated that fa r, the expression 
given in  (37) w il l  take the follow ing shape:

yrk (43)

Derivations fo r the case of external damping proportional to velo
c ity  are given in  /3 /. Here only the relationships required fo r calculation 
of the e rro r vectors are given.

I f  vector g is  a vector of double size with amplitude д  of the ac-
j_ ot "ttua l load vector, д  e , in  the lower part, then, with the symbols used 

in  (9 ),

g -  в
m

1_
Л

— Xw—г g

w i l l  be obtained, where

(44)

_______ 1______
Ш

-min(ps) -  i  штс

(4 5 )
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Values ps associated with the omitted eigenvectors shold be substi
tuted in to  expression c. Considering that no conditions have been imposed 
upon the matrix of damping proportional to ve lo c ity , th is  value could be e- 
ven zero. At the same time,the structura l damping is  always present and 
thus

min( P ) = - ^ - wmc ’

In the knowledge of vectorAg*A£ can be obtained in  its  lower part 
and thus the error analysis can be carried out in  accordance with what has 
been said above.

Note that the rules set out in  (40) and (42) are very s t r ic t  and 
require sometimes that almost the entire  eigenvector basis be calculated. 
E.g. in  case of rods where axia l forces are acting in  the so called ampli
tude d irec tion , the sum of axia l forces can be calculated with eigenvectors 
of a re la tiv e ly  small number taken in to  consideration but the ir d is tr ib u 
tion  between the d iffe ren t nodes cannot be calculated in th is  way. In 
p ractica l calculations, i t  is  reasonable to proceed in  the way described 
fo r the case of free v ib ra tion , calculating vectorAg and the expectable 
error fo r vectorAg including the sums of forces calculated in certa in  se
lected d irections. Examples fo r th is  are given in  the description of numer
ic a l resu lts .

4. NUMERICAL EXPERIENCES

In the foregoing,the solution of the problem of free v ib ra tion  as a 
p a rtia l eigenvalue problem has been dealt w ith . I t  has been recommended to 
determine the number of the required eigenvectors on the basis of a compar
ison of the mechanical energies associated with the in i t ia l  s ta rting  condi
tions and with the s ta rting  conditions that can be derived from the approx
imate so lu tion, as well as on the basis of testing  the k ine tic  equilibrium  
in  the nodes. The rod shown in  Fig. 1 has been investigated under s ta rting  
conditions brought about by force configurations a), b), c), d).

The radian frequencies associated w ith the d iffe ren t v ib ra tiona l 
modes, weight numbers zacco rd ing  to (29), and the values fo r energy ra tio  
(E’ /E) are tabulated in  Table 1. Considering the weight numbers, the use of 
the f i r s t  three eigenvectors seems to be necessary in  case of s ta rting  con
d itions  a), b) and c) while the use of the f i r s t  nine eigenvectors in  case
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of s ta rting  condition b) fo r  a solution o f appropriate accuracy. I f  a corre
spondence of 1 % of the energies is  required, then 1, 2, 3 or 15 e igen
vector (s) shall be included in  the ca lcu la tion .

GYÖRGYI, J .

Table 1

“ r a b c d

M zr Er /E zr Er /E zr Er /E zr Er /E

1 11.68 3.3517 0.9944 1.6164 0.9194 0.4064 0.2185 - -

2 39.43 0.0505 0.0026 0.1320 0.0699 0.1953 0.5754 - -

3 73.25 0.0253 0.0022 0.0258 0.0092 0.0618 0.1980 - -

4 121.1 0.0002 - 0.0001 - 0.0001 - 0.0239 0.7046

5 151.9 0.0002 - 0.0002 - 0.0004 - 0.0051 0.0500

6 173.0 0.0004 - 0.0001 - 0.0003 - 0.0061 0.0941

7 209.5 0.0001 - - - - - - -

8 244.4 0.0008 - 0.0017 0.0004 0.0017 0.0017 - -

9 310.3 0.0003 - - - 0.0001 - 0.0039 0.1247

10 350.4 0.0012 0.0001 0.0006 0.0001 0.0001 - - -

11 535.7 0.0004 - 0.0001 - 0.0001 - - -

12 547.2 0.0016 0.0005 0.0002 - 0.0006 0.0009 0.0001 0.0004

13 610.6 0.0002 - 0.0002 - 0.0001 - 0.0003 0.0029

14 680.5 0.0002 - 0.0001 - - - - -

15 707.1 0.0001 - 0.0002 - 0.0001 0.0020 0.0005 0.0091

16 802.9 0.0006 0.0001 0.0006 0.0006 0.0001 0.0029 0.0003 0.0042

17 1078 0.0001 - 0.0002 0.0001 0.0001 0.0002 0.0002 0.0033

18 1081 0.0001 - 0.0001 _ 0.0001 0.0002 0.0002 0.0048

Indicated in  Table 2 are the errors obtained in the displacement of 
node 7 in  direction x, taking in to  consideration d iffe ren t eigenvectors,
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then the error in  re la tive  displacement of nodes 7 and 5 in  d irection  y as 
well as that in  re la tive  displacement of nodes 7 and 8 in  d irection  x, de
fined in  (33). I t  can be seen that there is  a close relationship between the 
energy ra tio  and e rror of displacement fo r absolute displacement as well as 
fo r re la tive  displacement of d irection 7—5 while at the same time a resu lt 
of appropriate accuracy w i l l  now be obtained fo r the re la tive  displacement 
of d irection 7—8 only i f  a l l  the eigenvectors are included in  the calcula
tion .

Table 2

a b c

c7 e7-5 e7-8 e7 E7-5 E7-8 e7 g7-5 e 7-8

1 0.008 0.039 1.000 0.081 0.354 1.000 0.354 0.781 1.000

1-3 0.001 0.001 1.000 0.001 0.004 1.000 0.004 0.008 1.000

1-6 0.001 1.000 0.001 0.004 0.997 0.004 0.008 0.997

1-10 - 1.000 0.001 0.002 0.995 0.002 0.006 0.997

1-15 _ 0.780 _ 0.002 0.860 0.002 0.003 0.955

A ll th is  is  a confirmation of what has been said e a rlie r. Thus in  respect 
of calculation of the stresses, sa tis faction  o f given l im it  of e rror is  nec
essary but not s u ff ic ie n t. In given case, with the f i r s t  three eigenvectors 
taken in to  consideration, the normal force aris ing  in  rods of amplitude d i
rection can be calculated to the required accuracy only i f  the equilibrium 
in  the node is  taken as a basis fo r ca lcu lation instead of the re la tive  
displacements.

In case of harmonic excitation, the s ta tic  and dynamic error vectors 
have been defined in  (40) and (42), respectively. Accordingly, a fte r calcu
la tio n  of .eigenvectors of a certain number, force vector Acj(t) can be ca l
culated as the upper bound of a force vector associated with fu rthe r eigen
vectors, depending on the excitation frequency and damping. The ra tio  of 
these vector elements (a certain combination thereof) and the s ta tic , or 
the dynamic force calculated that fa r is  considered to be the l im it  of er
ro r. In the case shown in  Fig. 1, the e rror calculated fo r load configura
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t io n  a ), b), c), d) and e xc ita tion  frequency a= Ю, 100, 1000 1/s has been 
defined fo r the sum of forces acting in  the d irection  of the beam (decisive 
in  respect of moments a ris in g  in  the columns). A value of y= 0.1 has been 
taken in to  consideration fo r  in te rna l damping. In case of a higher excita
t io n  frequency, the add itiona l dynamic load is  small and thus the dynamic 
e rro r is  greater than the s ta t ic  error decisive in  respect of calcu lation 
fo r the dimensions. At the same time, the dynamic error may be smaller in  
case o f lower excitation frequencies.

The values of s ta t ic  e rror are tabulated in  Table 3.

GYÖRGYI, J .

Table 3

а b C d

/  a
10 100 1000 10 100 1000 10 100 1000 10 100 1000

1 0.35 1.00 1.00 0.46 2.99 2.99 3.42 9.74 9.74 CO CO oo

1-2 0.05 0.47 0.47 0.13 1.27 1.27 0.17 1.70 1.70 CO CO CO

1-3 - 0.03 0.03 0.01 0.10 0.10 0.01 0.06 0.06 CO CO CO

\-K - - 0.03 0.01 0.02 0.10 0.01 0.01 0.06 0.21 0.30 2.13

1-10 - - 0.01 - - 0.01 - - 0.03 0.03 0.03 0.27

1-15 _ - - _ _ _ _ _ _ 0.01 0.01 0.07

As seen the number of variables to be included in  the calculation can be 
determined depending on e xc ita tion  frequency and configuration of excita
tio n  forces.

A network plotted fo r  the longitudinal wall of a tenstoreyed 
bu ild ing  made of prefabricated building elements is  shown in  Fig. 2 (the 
nodes being plotted as the actual nodes). The f i r s t  ten radian eigenfre- 
quencies of the system of a degree of freedom of 462 vary in the range of 
11.64 to  145.3 1/s. A force is  associated with e ithe r of load displacements 
a) and b ), the excitation frequency of which being a= 5, 50, 500 1/s. The 
s ta t ic  and dynamic errors have been defined fo r the displacement of the 
po in t o f application of the force in  the d irection  of the force, th e ir 
magnitude being given in  Table 4 and 5, respectively. In case a), the er
ro r due to  pa rtia l eigenvector ca lculation could be id e n tified  with 3, 6,
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Q
—►

A=0.3m3 IrO.Olm4 

E=2«107kN/m2 Gv=25kN/m3
c)

T7 7 r, 7̂ 7 . 7 7 7 ?  V 7 7 .

a) b)

s,*?/. 777. 777?
d)

Fig- 1.

Fig. 2. Network for the longitudinal wall of a 10-storeyed building in Kelenföld

10 eigenvectors having been taken in to  consideration, depending on the ex
c ita tio n  freguency. In calculating the f i r s t  ten eigenvectors fo r a frequen- 
cy of a= 500 1/s in  case b), an error facto r of 2.19 should be taken in to  
consideration which, in  given case, would re s u lt in  the construction of an 
economically unacceptable structure. For higher excitation frequencies, the
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dynamic errors l ie  above the s ta tic  errors, a fac t indicating tha t the dy
namic displacement calculated by means o f eigenvectors of a certain number 
is  small and i t  is  by fa r not comparable with the accurate value of dynamic 
displacements. I t  can be seen on the basis of what has been said tha t the 
e rro rs  due to pa rtia l eigenvalue problem so lu tion can be id e n tifie d , per^ 
m itt in g  correct and contro lled dynamic calculations to be carried out.

Table 4 £st

-PСЛ
о\о<3II

Г a b

/  a 5 50 500 5 50 500

1 0.11 0.90 0.90 1.22 10.00 10.00

1-2 0.08 0.79 0.79 0.81 7.78 7.78

1-3 0.06 0.61 0.61 0.79 7.78 7.78

1-6 0.03 0.04 0.32 0.49 0.68 4.88

1-10 0.03 0.03 0.30 0.22 0.25 2.19

Table 5 edin = Ae/edin

Г a b

a 5 50 500 5 50 500

1 0.10 14.38 CO 36.71 CO CO

1-2 0.07 12.69 CO 3.49 CO oo

1-3 0.05 8.21 CO 3.43 112.1 oo

1-6 0.03 0.20 CO 0.94 0.72 CO

1-10 0.03 0.15 154.1 0.28 0.19 67.79

As has been reported also in  /8 / ,  the convergence can be detected also fo r 
the stresses.
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QUALIFICATION OF INTERDEPENDENCE OR INDEPENDENCE WITHIN ANY PAIR OF 
VARIABLES INVOLVED IN MULTIPLE LINEAR REGRESSION

A generalized stochastic approach

Z. Hankó*

(Received 21 June 1985)

Supposing jo int normal distribution of the sample representing the 
variables involved in the multiple linear regression relation a stochastic 
interdependence/independence qualification method within any pair of 
variables is suggested. The lim it significance level of qualification (based 
on which acceptance decision can be made) may be adopted according to 
the subject of investigation.

1. INTRODUCTION

In investigating natural /technological/ social phenomena, an ever 
increasing need can be recognized concerning the determination of the numer
ic a l re la tion  of the variables involved. As is  well known, the value of 
readings (measurement resu lts  or data) regarding the variables are in f lu 
enced by not only measurement errors but also random fluctuations, and the 
variables, therefore, show a stochastic character. The numerical re la tion  
between stochastic variables can only be determined by regression analysis.

Fortunately, most of the phenomena and the samples regarding th e ir 
variables show normal d is tr ib u tio n  (at least as a good approximation), and 
even the jo in t  d is trib u tio n  of the samples shows a normal one. The only re
gression re la tion  between variables of jo in t  normal d is tribu tion  is  the l in 
ear one and that is  the reason why exceptional attention is  paid to m ultip le 
linea r regression analysis.

Sometimes in  practice the regression re la tion  between the dependent 
variable and one of the independent variables shows a curv ilinear feature, 
ind icating that the jo in t  d is trib u tio n  of the variables involved is  not a 
normal one. In s im ila r cases the adoption of a polynomial (power series) of 
the relevant independent variable often proves to be a reasonable approxi
mation. This solution brings even the bivariable curv ilinear regression re-

*Dr.Z. Hankó, H-1122 Budapest, Csaba u. 16/A, Hungary
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la t io n  to  a multiple lin e a r regression re la tion .
Taking into consideration also the above thoughts, the questions re

garding qua lifica tion  can be summarized, as fo llow s:
— whether the interdependence between the dependent variable and any 

of the independent variables is  close enough or not ( in  the presence of the 
remaining variables involved in  the multiple lin e a r regression re la tio n );

— whether the independence within any pa ir of the independent va ri
ables is  close enough or not ( in  the presence of the remaining variables in 
volved in  the multiple lin e a r regression re la tio n ).

I f  the interdependence between the dependent variable and any of the 
independent variables is  not close enough, then th is  independent variable is  
superfluous in the m u ltip le  linea r regression re la tion  because i t  does not 
w o rth ily  decrease the sca tte r (unbiassed standard deviation of residuals), 
and increase the closeness, o f the re la tion . I f  any pair of the independent 
variables does not show a reasonable independence, then one of them is  also 
superfluous in the re la tio n  because they exert th e ir  e ffect on the dependent 
vd riab le  via each other ( in  s im ila r cases tha t variable of the pair shall be 
discarded the interdependence of which is  looser with the dependent v a ri
ab le ). These questions can be answered by the application of the method dis
cussed below.

2. SUBJECT OF QUALIFICATION

The general form o f a multiple linea r regression re la tion , based on 
a sample of size "n" (always discrete and f in i te )  originated from a popula
t io n  o f size "N" (e ithe r continuous or discrete and either f in ite  or i n f i 
n ite ) ,  is

V

V r T * ^  V (x y3 - V .  (1

where Yqj = conditional expected value (designated j )  of the dependent va ri
able; Y = empirical expected value (sample mean) of the dependent variable;
b = b , „ ,, , , , = em pirical regression coe ffic ien t-УЧ -y y  .1 ,2 ,.. . ,  Y - l ,  y + 1 , . . . ,  v - l , v
o f the independent variable  y where the terms in  the subscript follow ing the 
dot indicate those independent variables which also belong to the re la tion  
beyond those indicated before the dot; = the value designated j  of in 
dependent variable y ; &Y = empirical expected value (sample mean) of inde-
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pendent variable y .
Actually, independent variable y can denote d iffe ren t independent 

variables, each being in  a linear re lationship with the dependent variable 
according to preliminary assumption, but i t  can also denote the d iffe re n t

О

degrees (powers) of a polynomial "Z". For example Xv . = Z, XY = Z and3 - - »
X Y+1 = Z i f  a polynomial of th ird  degree is  applied; and i t  is  fo r  the 
q ua lifica tion  procedure to decide whether these assumptions are appropriate 
or not.

The regression coeffic ien ts  of a m ultip le linear regression re la tion 
are usually determined by the least squares method which results in  the most 
probable re la tion  between the dependent variable and the independent va ri
able (s) with the possible minimum scatter. For determination of the regres
sion coeffic ien ts i t  is  necessary to solve a linear equation system which 
consists of V linear equations and contains v unknown variables. For solving 
the linear equation system, the Cramer-rule is  most often used, e.g. the 
corre lation matrix in  the form of matrix equation. Here another solution is  
proposed (which is  neither more time-consumptive nor more d i f f ic u l t  than the 
preceding one), creating at the same time the conditions fo r qua lifica tio n  
w ith in  each pair of the variables involved in  the multip le linea r regression 
re la tion .

The empirical regression coeffic ien t and i t s  corrected (unbiassed) 
standard deviation, of independent variable у in  the multip le lin e a r regres
sion re la tion  are /1 /

УУ УУ

V /£>
ж ж . and

V.УУфуу
( 2 )

by у
Ж у
v ® 7 .

УУ in  which

D„
-  1 < R.._ = — . _ l <+ 1, furthermore

^oLZ y y ^ Y YУУ

( 3)

(4 )

and

[< V T>2]
yy

-1 < r

yy
[(V T )( \ i - V ]  K - v 2].  -  ; VYY= -

y y  1 <+  !»

( 3)

( 6)
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where Ry^ = Вуу.1>2, . . .  , |-+1, . . . ,  v - i , v> = emPir ic a l  m ultip le p a rtia l cor
re la tio n  coefficient between variables Y and Xy; Vyy and Vyy = empirical 
variances of variables Y and Xy, respectively; Çyy = empirical covariance 
between variables Y and Xy; r ^  = empirical to ta l corre lation coe ffic ien t 
between variables Y and Xy; £ yy,<Ö y^and ^Dyy = algebraic subdeterminant 
of the extended corre la tion matrix (formed by the empirical to ta l correla
t io n  c o e ff ic ie n ts ) ,^ , while the subscripts denote the positions of the sub- 
determinants; m = n — V — 1 = number of excess data-groups in  the sample 
(degrees of freedom); n = number of data-groups in  the sample; v = number of 
independent variables (equals the number of the unknown regression c o e ffi
c ien ts  to  be determined).

Table 1. Multiple extended correlation matrix
Г , = Гг— у 6 —о у

The extended co rre la tion  matrix, , is  shown in  Table 1. This 
m atrix is  of (v+l)th order, quadratic, real, symmetric and positive d e fi
n ite ;  i t  is  of (v+ l)th  order, quadratic and re a l, symmetric because the num-
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ber of i t s  rows and columns is  iden tica l: (v+1); and r  , r_ , that means that
—yy - fy

i ts  real elements are symmetrical to the main diagonal of the matrix; posi
tive  de fin ite  because the value of i ts  determinant exceeds zero (p  > 0).

As is  known, the inverse (reciprocal) matrix, ®  \  of the correla
tion  matrix,®» , is  again of ( v + l) th  order and symmetric; thus in  the posi
tion  denoted by the subscript the ra tio  of the corresponding algebraic sub- 
determinant and the determinant of the corre la tion matrix occurs. To calcu
la te  the empirical regression coe ffic ien t (Eq.2), and i ts  empirical standard 
deviation (Eq.3), only the inverse matrix has to be determined in  addition 
to the fundamental stochastic parameters (empirical variances and covari
ances, Eq.5, and empirical to ta l corre lation coe ffic ien ts , Eq.6).

Many numerical procedures are known fo r calculating the inverse of 
a matrix. From among these the Gauss' e lim ination procedure is  very advan
tageous for inverting  the corre lation matrix /2 /.  The resu lt of the calcu
la tio n  is  a matrix the structure of which is  s im ila r to the structure of the 
corre lation matrix shown in  Table 1, and the elements of which are V P  ;

JDy„ ф  ; Д  /£  e tc. In proving the correctness of the inversion procedure: 
the matrix product of the correlation matrix and the inverted subdeterminant 
matrix must resu lt in  the positive un it matrix.

Knowing the inverse subdeterminant matrix, both the empirical m ulti
ple correlation co e ffic ie n t, R ,̂ and the empirical corrected (unbiassed) re
sidual scatter, o 0y> of the multiple regression re la tion  can be calculated.

FL is  the measure of closeness of the regression re la tion :

while a Qy is the measure of goodness, by which the various confidence in 
tervals of the conditional expected value of the dependent variable can be 
estimated:

Joy -  V (1-Rr.) = - m yy M \ 3  V, D
yyJD,УУ

( 8)

Two more remarks are worth remembering.
a) I f  v=  1, then the m ultiple regression re la tion  w i l l  be reduced 

to a bivariable one. In th is  case the algebraic subdeterminants of the cor-
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re la tio n  matrix are, as fo llow s:

1 and r
У X -xy

This means that

and th is  brings everything to the well known bivariable re la tion .
b) The empirical p a r t ia l corre lation coe ffic ien t (Eq.4) can be ca l

culated not only between the dependent variable and one of the independent 
variables but also w ith in  any pair of the independent variables. While the 
former one is  serving fo r q u a lifica tio n  of interdependence, the la t te r  one 
can be used for q ua lifica tio n  of independence.

Each element of the sample consisting of д(у +1) elements incorpo
rates the resultant of those (generally unknown) random effects which are 
re fle c ted  in  the relevant numerical value. The fundamental s ta t is t ic a l para
meters (empirical variances and covariances) sum up and average those random 
e ffe c ts  which have affected the variables of the sample. This summed up and 
averaged e ffec t, weighted by the derived s ta t is t ic a l parameters (empirical 
to ta l corre la tion c o e ffic ie n t, corre lation matrix, i t s  subdeterminants and 
determinant, p a rtia l co rre la tion  coe ffic ien ts ), w i l l  appear in  the empirical 
regression coe ffic ien t. The empirical regression coe ffic ien t i s , therefore, 
the most characteristic parameter of the m ultip le linear regression re la 
t io n , and i t  also is  — in  consequence of its  derivation — a normally d is 
tr ib u te d  stochastic variable. This is  the very fac t why the degree of in te r
dependence and/or independence w ith in  any pair of variables of a m ultiple 
lin e a r regression re la tion  can be estimated by the empirical regression co
e f f ic ie n t  (and its  standard deviation) using appropriate s ta t is t ic a l hypo- 
thesis.

3. MtTHGD OF QUALIFICATION

The square root in  Eq.(2) of the empirical regression coe ffic ien t 
is  always positive. I ts  m u lt ip lie r , the empirical pa rtia l corre lation coef
f ic ie n t ,  can vary between —1 to +1. Value - 1 indicates functional re la tion  
(w ith  100 per cent p ro ba b ility ) w ith in the pair of variables involved,
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while the zero value indicates that there is  no-correlation between the var
iables (in  case of re a lly  jo in t  normal d is tr ib u tio n , i t  indicates also inde
pendence). The intermediate values are approximately linear measures of l i n 
ear dependence between the variables.

Since the empirical regression co e ffic ie n t is  a normally d is tribu ted  
stochastic variable, therefore the p robab ility  of risk  can be estimated us
ing a hypothesis tes t; that is  the risk  that the actual value ranges between 
no-correlation (independence) and functional re la tion  (interdependence) as 
extremes.

S tarting from Eqs (2) and (3) at the l im it  of no-correlation:

(V o  = lim

I V i

(<V o  =,J im

УУ
0

= 0

yy|-
ibyY

and

V Ф  , 
УУ УУ I

V y y / j D y y  rn

(2/a)

(3/a)

while supposing functional re la tio n :

(b ). 
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IR II УУ1
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The standard abscissas of the normal p robab ility  d is tribu tion  func
tion  fo r estimating the p robab ility  of r isk  can be formulated as the d i f fe r 
ence between the actual and the relevant l im it  value of the empirical re
gression c o e ffic ie n t, respectively.

The standard abscissa fo r estimating no-correlation:

XN0
4

lb - ( b  )
1 & c о
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^ b y y 5! + °byY \

1 R
while the standard abscissa for estimating functional re la tion : 
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Subscript N denotes normal d is trib u tio n , while 0 and 1 indicate no-correla- 
t io n  and functional re la tio n , respectively, as lim its .

The p robab ility  of r is k  can be calculated, using the standard ab
scissa, as follows:

( 11)
(2k+l)

where = p robab ility  of r isk  that the actual empirical resgression coef
f ic ie n t  is  not equal to zero, and thus th is  is  the significance leve l of no- 
c o rre la tio n ; = p robab ility  of r isk  tha t the actual value of the empiri
ca l regression coe ffic ien t is  not equal to the value of the functional re la 
t io n ,  and thus th is  is  the significance leve l of functional re la tio n . Here 
again subscript N denotes normal d is tr ib u tio n , £  indicates r is k -p ro b a b ility , 
and 0 and 1 re fer to the lim its  of no-correlation and functional re la tio n , 
respective ly.

According to the actual results of the hypothesis tests occurring in 
p ra c tice , a q ua lifica tion  by empirical frequency of occurrence can be added 
to the value of the r isk -p ro b a b ility  (s ign ificance leve l), and that serves 
as a basis fo r decision. From among the resu lts  only those are to be men
tioned that permit unambiguous decisions, namely: 
w ith

—0.05 ( = ) 5 % the re a liza tio n  of the hypothesis is
r  p ra c tica lly  certain;

w ith
<0.001(=) 0.1 % the re a liza tio n  of the hypothesis is  

p ra c tica lly  impossible;
w ith in  these two lim its , the rea lization of the hypothesis is  doubtful.

I t  follows from what has been said above that, i f  £^г д = ^ q(2<̂ q) —5%, 
i t  can be taken fo r granted that the actual empirical regression coe ffic ien t 
d if fe rs  from zero only at random and thus there is  no-correlation between 
the variables involved (the variables are independent in case of normal d is
t r ib u t io n ) .  S im ilarly , i f  = jq (Хщ) < 0.1 then a functional re la tion 
ship between the variables involved w i l l  be p ra c tica lly  impossible (the re
la t io n  being rather non-correlated and thus the variables independent). 
Contrary to the previous case, i f  £^r g = 1д(2^д) < 0-1 then no-correla
t io n  is  p rac tica lly  impossible (as in th is  case there exists rather a func
t io n a l re lationship and thus the variables are interdependent), while i f
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(-Хщ) 2l 5 %, i t  can be p ra c tica lly  taken fo r granted tha t the nu
merical value of the actual empirical regression coeffic ient d if fe rs  from 
the l im it  value, indicating functional re la tionsh ip , only at random, so that 
the variables involved are linea rly  interdependent.

Both in  the d e fin ition  of r is k -p ro b a b ility  and in the previous in 
terpreta tions, the random character has been mentioned repeatedly. In th is  
respect the fact that the parameters involved in  the hypothesis te s t are em
p ir ic a l variables derived from the sample and the sample is  only more-or- 
less tru ly  representing the population from which i t  is  o rig ina ting  sha ll be 
taken in to  consideration. This uncertainty is  reflected in the context of 
the empirical occurrence-qualifications (p ra c tica lly  certain or p ra c tica lly  
impossible) and th is  is  taken in to  account when the number of excess data- 
groups, m, is  used in Eqs (3), (9) and (10) instead of the number of data- 
groups, n.

In case of normal d is tribu tion  the standard abscissas of the various 
r is k -p ro b a b ilit ie s  (significance levels) are known, e.g. i f  = 5 %, then 
X|j = 1.96, and i f  = 0.1 %, then x^ = 3.291, etc. Thus Eqs (9) and (10) 
can be rearranged:

0 <
2 X,N0

2 -  
*N0

<  1 (9/a)

and
0£ 'N1

m+xN1
< 1. (10/a)

R0 = 0 and Rj = 1 can only be reached i f  m = + °° ( i f  Xjg d iffe rs  from zero),
but m = n -  V -  1 is  always f in ite ;  and m . = x?, ( i f  x., . exceeds zero).— — ’  ’ -min -N -Nmin
■̂ Nmin = cannot be assumed because i t  represents a determ inistic func
tiona l re la tionship  and th is  disagrees w ith the assumption that the varia
bles are stochastic variables affected by random effects.

I f  decision is  made concerning the l im it  r isk -p robab ility  ( l im it  
significance le ve l), the value of the corresponding standard abscissa is  
known; and f  the number of the excess data-groups is  also known, then the 
l im it  value of the p a rtia l corre lation co e ffic ie n t (Eqs 9/a and 10/a) can be 
calculated. Comparing the actual p a r tia l corre la tion coeffic ien t with the 
previous l im it  value, independence/interdependence between the variables in 
volved w ith special regard to the m ultip le  re la tion  can be q u a lifie d .
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shows

and

To illu s tra te  the methodological resu lts  summarized above Fig. 
three-variable re lationships

1

(9/b)

(10/b)

the application of which w i l l  be discussed below.

Number of excess d a ta -g ro u p s  in the 
sam p le  (degrees of freed om ) j m

Fig. 1. The partial correlation coefficient as a function of the degrees of free
dom; the parameters are: significance level of no-correlation and func
tional relation; serving for qualification of interdependence (upper t r i
angle; tip downward) and independence (lower triangle; tip upward), res
pectively, between the variables involved
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4. QUALIFICATION OF INTERDEPENDENCE

The graphs of Eqs (9/a,b) and (10/a,b) applying = 5 % (x^=1.96) 
as the characte ris tic  th ird  parameter— lik e  diagonals — divide the O^JrJ^I 
and 0í*m<+ <» rectangular f ie ld  of Fig. 1 in  four subfields resembling 
triangles. The upper triang le  (with t ip  downwards) serves for q u a lifica tio n  
of interdependence (between the dependent variable and any of the independ
ent variables).

The triangu lar subfield fo r interdependence qua lifica tion  is  bounded 
from the le f t  by no-correlation re lations of various significance levels 
and from the r ig h t by functional re lations again of various significance 
leve ls. The highest significance level of no-correlation indicated here is  
jDfjro = 5 %, because — as i t  has been mentioned previously — no-correlation 
w i l l  be p ra c tica lly  certain i f  the significance level exceeds 5 %; and th is  
is  irre levan t in  the case of interdependence qua lifica tion . S im ila rly , the 
lowest significance level of functional re la tion  is  also 5 %, because func
tiona l re la tion  w i l l  be at least doubtful i f  the significance leve l is  lower 
than 5 %. I f  the l im it  significance level of no-correlation decreases and/or 
that of functional re la tion  increases, the triangu la r subfield of in terde
pendence q ua lifica tio n  w i l l  s h if t  to the r ig h t and upwards, ind icating a 
closer stochastic linear interdependence between the variables involved.

For p rac tica l application of interdependence q ua lifica tion , the 
following steps shall be considered:

— decision shall be made in advance concerning lim it  significance
level of

= no-correlation: maximum 5 %, and the lower the value, the 
closer the interdependence; and simultaneously

= functional re la tion : minimum 5 %, and the higher the value, the 
closer the interdependence;

— using the actual empirical m ultip le  p a rtia l correlation c o e ff i
c ien t, Rŷ , , between the dependent variable and any of the independent var
iables

= the actual standard abscissa (x^gj Eq.9) and the relevant actu-> 
al significance level (£^r g; E q .ll)  of no-correlation shall be calculated; 
and i f

^NrO actual ^  ^NrO lim it
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the condition fo r no-correlation of interdependence w il l  be fu l f i l le d ;  and 
simultaneously

= the actual standard abscissa ( x ^ ;  Eq.10) and the relevant ac
tua l significance level (£^r l ; E q .ll)  of functiona l re la tion shall be calcu
la ted ; and i f

PNrl actual >  pNrO l im it

the condition fo r functional re la tion  of interdependence w il l  be fu l f i l le d .
As can be seen from the foregoing, i f  the actual significance leve l 

of no-correlation re la tion  tends to zero, and simultaneously, that of func
tio n a l re la tion  to un ity , the stochastic lin e a r interdependence of the var
iab les involved w il l  tend to determ inistic interdependence; and as a re su lt, 
the necessary number of the excess data-groups w i l l  tend to in f in ite .

5. QUALIFICATION OF INDEPENDENCE

The lower triang le  (w ith t ip  upwards) in  Fig. 1 serves fo r q u a l i f i 
ca tion  o f independence ( fo r  any pair of the independent variables).

The triangular subfie ld  fo r independence qua lifica tion  is  bounded 
from the le f t  by functional re la tions of various significance levels and 
from the r ig h t by no-correlation re lations again of various significance 
le ve ls . Here the highest significance level of functional re la tion is  
= 5 %, because functional re la tion  w il l  be p ra c tic a lly  certain i f  the sig
n ificance  level exceeds 5 %; land th is  is  irre leva n t in case of independence 
q u a lif ic a tio n . S im ilarly , the lowest significance level of no-correlation 
is  5 %, because no-correlation re la tion  w i l l  be at least doubtful i f  the 
s ign ificance  level is  lower than 5 X. I f  the l im it  significance level of 
func tiona l re la tion decreases and/or that of no-correlation re la tion  in 
creases, the triangular subfie ld  of independence qua lifica tion  w il l  s h ift,  
to the r ig h t and downwards, ind icating a closer stochastic linear indepen
dence between the variables involved.

For practical application of independence qua lifica tion , the f o l 
lowing steps shall be considered:

— decision sha ll be made in  advance concerning lim it  significance
leve l of

HANKÚ, Z .
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= functional re la tion : maximum 5 %, and the lower the value, the 

closer the independence; and simultaneously
= no-correlation: minimum 5 %, and the higher the value, the 

closer the independence;
— using the actual empirical m u ltip le  p a rtia l correlation c o e ff i

c ien t, R , fo r any pair of the independent variables
= the actual standard abscissa (Хщ! Eq. 10) and the re levant ac

tua l significance leve l (£^г р  Eq- П ) of functiona l relation sha ll be calcu
lated; and i f

■^Nrl actual ^  ^Nrl l im it
the condition fo r functional re la tion  of independence w ill be f u l f i l le d ;  and 
simultaneously

= the actual standard abscissa ( x̂ q; Eq. 9) and the re levant ac
tua l significance leve l Eq. 11) of no-correlation re la tion  sh a ll be
calculated; and i f

^NrO actual ^NrO lim it
the condition fo r no-correlation re la tion  of independence w il l  be f u l f i l le d .

As can be seen from the foregoing, i f  the actual s ignificance level 
of functional re la tion  tends to zero, and simultaneously, that of no-corre
la tio n  re la tion  to un ity, then the stochastic linea r independence o f the 
variables involved w i l l  tend to determ inistic independence; and as a resu lt, 
the necessary number of the excess data-groups w i l l  tend to in f in i te .

6. CONTRADICTORY QUALIFICATION

As illu s tra te d  in  Fig. 1, the upper and lower triangular subfie lds 
serving fo r interdependence and independence qua lifica tion , respective ly, 
are only a small part of the to ta l rectangular j R̂J 4- m fie ld . The two remain
ing triangu lar subfields on the le f t  and r ig h t (the tips of which pointing 
in  opposite d irection  and touching each other horizontally) are contrad ic
tory subfields.

The le f t  subfie ld is  bounded from above by no-correlation re la tion  
the significance leve l of which exceeds 5 %, and from below by functiona l 
re la tion  the significance level of which also exceeds 5 %. As i t  has been 
mentioned e a rlie r, i f  the significance leve l exceeds 5 % then the re a liza 
tion  of the hypothesis w il l  be p ra c tica lly  ce rta in . The re la tion between the 
pa ir of variables, characterized byJRJ-4- m coordinates, fa llin g  w ith in  th is
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sub fie ld , is  contradictory because from above s ig n ifican t no-correlation 
(independence) and from below sign ificant functiona l relation (interdepen

dence) are indicated.
S im ilarly, the r ig h t subfield is  also contradictory. From above i t  

is  bounded by functional re la tion  the s ign ificance level of which is  lower 
than 5 %, and from below by no-correlation re la tio n  the significance leve l 
of which is  also lower than 5 %. As is  known, i f  the significance leve l of 
the hypothesis test is  lower than 5 %, then the rea lization of the hypo
thesis w i l l  be doubtful and i f  i t  is  lower than 0.1 %, the rea liza tion  w i l l  
be p ra c tica lly  impossible. The relation between the variables of any p a ir, 
characterized byj RJ-̂ - m coordinates, fa llin g  w ith in  th is  subfield is ,  there
fore, contradictory, because from above a doubtful/impossible functional re
la tio n  (which is re a lly  independence) and from below a doubtful/impossible 
no-correlation re la tion  (which is rea lly  interdependence) are indicated.

The contradictory qua lifica tion  can be attribu ted to three main
causes :

— the mathematical form of the m ultip le  linea r regression re la tion  
is  a very rough numerical approximation to the cause-and-effect chain which 
is  intended to be described by i t  (the jo in t  d is tr ib u tio n  of the sample d i f 
fe ring  roughly from normal d is tribu tion );

— the sample of one or both of the two variables involved is  s ta t is 
t ic a l ly  inadequate because e.g.

= the elements of the relevant sample are not independent, or ho
mogeneous, or neither,

= the elements of the sample carry systematic error (trend -like  
or period ic), etc.

— the number of the excess data-groups is  very far from optimum.
To avoid contradictory qua lifica tion , d iffe re n t methods can be ap

p lie d , depending on the cause of the disadvantageous result.
To avoid an inadequate mathematical form, i t  is  advisable to derive 

the form of the regression re la tion  so as to s ta r t  from the mathematical de
sc rip tio n  of the phenomenon, and i f  there is  no linea r relation between (any 
o f) the variables, then some transformation or power series can be adopted.

The independence and homogeneity of the sample elements must always 
be checked in advance. Adequate s ta tis t ic a l methods are available fo r th is  
purpose, and for removal o f systematic errors from the sample.

As can also be seen in  Fig. 1, the optimum number of excess data- 
groups can be found at the cross-point of no-correlation and functional re -
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la tio n  the significance levels of which have been adopted as lim its . E.g. in 
case of interdependence qua lifica tio n : i f  £^r g ^^mit; = 0.1 % and  ̂ i im it= 
= 5 % are adopted, then Я!0р̂ :^тит = 27 -j- 28; or in case of independence qua
l if ic a t io n :  i f  £^г1 = 0.1 % and £^r0 
= 3 0 -3 1 .

5 % are applied, then m’ —optimum

Thus, because the lim its  adopted above are most advisable in  prac
t ic e , i t  can be said that the optimum number of the excess data-groups is 
about 29. I t  follows from the foregoing that the minimum number of the ex
cess data-groups equals 11 (the corresponding p a rtia l corre la tion c o e ff i
cient equals unity in  case of interdependence while zero in  case of inde
pendence). In case the above boundary conditions are adopted, the triangular 
subfields of interdependence and independence qua lifica tio n , respectively, 
are not touching each other with the ir tips  but there is  a "white gap" be
tween these two subfields the magnitude of which is  aboutAjßj = 0.753-0.474= 
= 0.279, and Am = (30—27) — (31—28) = 3; thus the contradictory subfield is 
extended.

7. EXAMPLE

An example is  given below to i l lu s tra te  the application of the qua
l i f ic a t io n  method introduced. Vágás I .  /3 / has elaborated m ultip le linear 
regression relations fo r flood forecasting purposes for various cross-sec
tions of the Tisza River and her tribu ta ries  in Hungary. Among these there 
is  a quadruple linear regression relation fo r estimating the expected value 
of flood level in the Szeged cross-section of the Tisza River. In his paper 
he has also published the quadruple data-groups of 31 floods observed be
tween 1876 and 1979. These data w il l  be used here fo r i l lu s tra t in g  the qua
l i f ic a t io n  method.

The general form of the quadruple linear regression re la tion  adopted 
is :

Y . 
°J

Y + V (xTj -  V b M(XM. yM Mj V  + byS<‘XSj XS') ’

where Y ^ = expected flood level (gage reading) fo r Tisza River at Szeged, 
Y = sample mean of the observed reading peaks fo r Tisza River at Szeged, 
Xjj = reading peak at Tokaj (up-stream) cross-section of Tisza River, X-j- = 
sample mean of the observed reading peaks at Tokaj fo r Tisza River, =

139



reading at Makó cross-section fo r the Maros River ( tr ib u ta ry  of the Tisza 
R iver) , made simultaneously w ith the Tokaj reading, = sample mean of the 
observed readings at Makó fo r  Maros River, = the lowest reading which 
preceded the actual flood a t Szeged fo r Tisza R iver, Xg = sample mean of 
the observed lowest readings preceding the floods at Szeged fo r Tisza River.

Using the sample consisting of n (v + l)  = 31(3+1) = 124 elements, the 
s ix  d iffe re n t empirical to ta l corre lation coe ffic ien ts , _r, have been calcu
la ted  fo r use in  formulating the guadruple extended corre lation matrix, 
(Table 2). The sample mean and variance of each variable have also been in 
corporated in th is  table.

Table 2. Quadruple extended correlation matrix

ly ő  = L 6 y

HANKÚ, Z .

Y Y * T *M - s
6 0 1 2 С il

Y 0 1 0.456 322 0.659 804 0.539 480

-T 1 0.456 322 1 -0.221 989 0.099 780

-M 2 0.659 804 -0.221 989 1 0.273 517
СЛ

X
I V = 3 0.539 480 0.099 780 0.273 517 1

sample
mean
/cm/

822.5806 768.8065 400.8710 660.6452

variance
/cm2/ 3354.39 4763.34 9712.41 11380.23

Table 3 illu s tra te s  the re s u lt of the inversion procedure of the correla
tio n  m atrix, the inverse subdeterminant m a trix ,(й~^; and the matrix product 
of the two previous matrices, the un it matrix, which shows that the 
inversion procedure is  correct w ith in an acceptable l im it  of calculation er
ro r.
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Table 3. Quadruple inverse matrix and unit matrix 

f i y  Б

£  " £
Y I —T —M IX СЛ

<s \ 0 1 2 V = 3

Y 0 9.19287 -5.38408 -6.54047 -2.63322

—T 1 -5.38408 4.26391 4.12258 1.35425

-  M 2 -6.54047 4.12258 5.81289 1.52718

- s v=3 -2.63322 1.35425 1.52718 1.86773

Y 0 1 -4 .76xl0 '7 5.96x10”® -1.19xl0-7

^T 1 3 .87xl0~7 0.999999 -3.58X10”7 -2.23X10” 7

— M 2 -2 .98xl0~7 -3.87xl0~7 1 0

-s v=3 -7.15X10"7 0 1 .19xl0”7 1

The results of the q ua lifica tion  calculations are summarized in  Tables 4 
and 5. Table 4 il lu s tra te s  the results fo r interdependence qua lifica tio ns , 
and Table 5 can be used fo r independence q ua lifica tions ; and both tables 
contain the results of both bivariable and fouar-variable re la tions.

F irs t the bivariable results should be discussed. With the various 
bivariable actual significance levels in  Table 4 checked, i t  can be seen 
that none of the Y—Xy bivariable re la tions shows acceptable interdepen
dence (each £^r Q exceeds 0.1 % and each is  less than 5 %). With the
various bivariable actual significance leve ls in  Table 5 checked, i t  can be 
seen that each Ху — Х<$ bivariable re la tion  shows s ign ifican t independence 
(each is  less than 0.1 % and each s ig n ifican tly  exceeds 5 %).

Using the quadruple linear regression re la tion , the significance 
level w ith in each pa ir of the variables shows a characteristic m odification.
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Table 4. Qualification of interdependence

Conditions fo r acceptable interdependence ( l im it  significance leve ls) 

Емг0 < 0 ‘ 1 % and P^rl 2:5 %

Pairs o f variables v - x T - — -M

CD
X

I1>-l

b i- £ 0.456 322 0.659 804 0.539 480
v a r i- ■̂N0 1.835 816 2.840 561 2.222 328
able ^MrO 6.64 % 0.45 % 2.63 %
ti=29 ^N1 3.290 343 2.438 008 2.945 345

^Nrl 0.10 X 1.48 % 0.32 %

fou r- R 0.862 703 0.894 720 0.635 484
v a r i- •̂ NQ 4.000 301 4.244 956 2.613 655
able £flr0 0.01 % 0.00 % 0.90 %
ti=27

*N1
1.410 719 1.224 848 2.453 110

^N rl 15.83 % 22.06 % 1.42 %

Table 5. Qualification of independence

Conditions fo r acceptable independence ( l im it  significance leve ls): 

fî|\lr0 - 5 % and £Nri <  O-1 %

Pairs o f variables * т - * м -T -s ^m - * s

b i- г -0.221 989 0.099 780 0.273 517
v a r i- ^N0 0.855 919 0.380 900 1.061 565
able £мго 39.20 % 70.33 % 28.84 %
m=29 ^N1 4.296 929 4.872 147 4.067 329

•^Nrl 0.00 % 0.00 % 0.00 %
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Table 5. (continued)

Pairs of variables * т - * ч -T -s

fou r- R -0.830 708 -0.481 412 -0.463 486
v a ri- ^N0 3.771 440 1.881 169 1.802 509
able ^NrO 0.02 % 5.99 % 7.15 %
m=27 4 l l 1.580 122 3.074 363 3.146 141

^Nrl 11.41 % 0.21 % 0.17 %

The interdependence (Table 4) w ith in the pairs of Y-Xy and Y-X^ is  s ig n if
icant (£jgr Q is  less than 0.1 % and £yjr y s ig n ifica n tly  exceeds 5 %), while 
the interdependence of the Y-Xg pair is  doubtful (0.1 %< ^   ̂<  1 % and 
5 % ^» l %). The independence (Table 5) w ithin the pairs o f Xy—Xg and
X|̂ —Xg is  more or less acceptable (p ^g  exceeds 5 % and jp^y is  s lig h t ly  
more than 0.1 % instead of being less), while the independence o f Xy—X  ̂ is 
completely unacceptable because th is  re la tion  shows a s ig n ifican t interde
pendence (£y|r g is  less then 0.1 % and £yjr g exceeds s ig n ifican tly  5 %).

In spite of the unsuccessful qua lifica tio n  results, the closeness 
of the quadruple re la tion  and the goodness of the expected dependent va ri
able is  also shown as an il lu s tra t io n .

The empirical quadruple corre la tion coeffic ien t (Eq.7), R̂  | =
= 0.944 0445 indicates a very close stochastic linear interdependence be
tween the dependent variable and the independent variables; and th is  is  a l
so proved by the significance levels of no-correlation, £y|r g, and function
al re la tion , Pyjr y, respectively (£y|r g is  p rac tica lly  zero and £yjr y = 37.80%, 
and these indicate s ig n ifican t interdependence).

The empirical corrected (unbiassed) residual scatter of the re la 
tio n  (Eq.8) serves fo r calculation of the confidence in te rva l(s) of pa rtic 
u la r r isk -p robab ility , ind icating the goodness of the conditional expected 
value of the dependent variable. Thus the residual scatter, aoy = -  20.5cm, 
and the calculated confidence in te rva l of 5 % risk-p robab ility , 1.96 oQy =
= -  40 cm, shall be applied. This uncertainty indicates not only large re
sidual scatter but also (in  consequence of the foregoing) an unacceptable

143



HANKÓ, Z .

re s u lt in  forecasting flood  level.
For correct reference i t  shall be mentioned that according to Vágás 

and Simády /4 /, th is  quadruple linear regression re la tion  is  only a rough ap
proximation to the physical phenomenon, and they do not advise to use i t  fo r 
p rac tica l forecasting purposes. In consequence o f th is  statement, the cause- 
e ffe c t chain has not been mathematically checked; and because the number of 
excess data-groups is  almost optimum, only the s ta t is t ic a l adequacy of the 
sample had to be checked. The result of th is  investigation showed that the 
homogeneity of the sample was also questionable.

8. CONCLUSION AND RECOMMENDATION

In case the use of a multiple linear regression relation fo r numer
ic a l interpretation of a phenomenon is intended, the following recommenda
tions  shall be taken in to  consideration:

(a) I t  is  advisable to try  to derive the mathematical form (a t least 
approximately) from the phenomenon its e lf  to fin d  the type of re lationship 
between the variables involved. I f  the re la tionsh ip  between the variables
is  other than linear, the use of transformation or power series, etc. can 
help in  linearizing the o rig in a l relationship.

(b) The sample elements shall be checked s ta t is t ic a lly  fo r independ
ence and homogeneity, and the systematic errors sha ll be removed from them.

(c) I t  shall be checked whether the jo in t  d is tribu tion  of the sam
ple be re liab ly approximated by normal d is tr ib u tio n  (at least the marginal 
d is tribu tions should be checked).

(d) The l im it  s ignificance levels of no-correlation and functional 
re la tio n , respectively, both fo r qua lifica tion  of interdependence between 
the dependent variable and any of the independent variables, and fo r qua li
f ic a tio n  of independence w ith in  any pair of the independent variables, shall 
be decided in advance. I t  is  advisable to use 0.1 % as lim it  significance 
le ve l for

— no-correlation, £^r Q) in case of interdependence qua lifica tion  and
— functional re la t io n , ß^r p  in case o f independence q ua lifica tion .
The lim it  s ign ificance  level of functiona l re la tion , £^r p  in  case

of interdependence q u a lif ic a tio n  and that of no-correlation, £^r Qj in  case 
of independence q u a lif ic a tio n  must equal or exceed 5 %. The actual value to
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be selected as l im it  depends on the subject of investigation (F ig. 1).
(e) The sample consisting of n (v + l)  elements (д = number of data- 

groups, v= number of independent variables) involves v( v + l) /2  empirical 
to ta l corre la tion coe ffic ien ts . These serve fo r formulation of the multiple 
extended corre la tion matrix (Table 1) the inverse of which is  the subdeter
minant matrix; and of which the empirical p a r t ia l corre lation coeffic ien ts  
w ith in any pair of the variables (Eq.4) can be calculated. Using Eqs(9),
(10) and (11), the actual significance leve l of no-correlation and that of 
functional re la tion  can be calculated in case of both interdependence (be
tween the dependent variable and any of the independent variables) and in 
dependence (w ith in any pair of independent variables) q u a lifica tio n . I t  can 
be decided whether the variables are interdependent/independent by compari
son of the actual and l im it  significance levels.

( f )  I f  the q ua lifica tio n  of both interdependence and independence 
proves to be acceptable, then the closeness of the re la tion  can be checked 
by the m ultip le corre la tion coe ffic ien t, JR^j, using Eq.(7 ); the residual 
scatter of the expected value of the dependent variable can be estimated on 
the basis of Eq.(8), and th is  can serve fo r estimating the confidence in te r
val of the expected value of the dependent variable. For ca lculating the em
p ir ic a l regression coe ffic ien ts , b , Eq.(2) can be used and thus the nu
merical m ultip le linear regression re la tion  (E q .l) can be formulated.
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ELASTIC MEMBRANES REINFORCED BY CORDS: 
NONLINEAR AXISYMMETRIC DEFORMATION WITH TWIST

Maria Matsikoudi-Iliopoulou*

(Received 25 September 1985)

In th is  paper we develop the equations of axisymmetric defor
mation of an in i t ia l ly  cy lin d rica l membrane composed of an e lastic  
homogeneous, iso trop ic  and incompressible material possessing a 
s tra in  energy function of Mooney-Rivlin type. The membrane is  re in
forced by perfectly  fle x ib le  and inextensible helico ida l cords. 
Application to a specific  boundary-value problem is  also given.

NOTATION

underformed surface metric tensor
deformed surface metric tensor
second fundamental form
surface coordinates
Cristoffel symbols
underformed radius
deformed radius
underformed polar angle
deformed polar angle
arc length of the underformed meridian
arc length of the deformed meridian
axial coordinate of the underformed state
axial coordinate of the deformed state
angular displacement
constant angle subtended by the cords with the 
generators of the underformed membrane
element of length of the underformed membrane
element of length of the deformed membrane
angle subtended by ds with the generator of 
the underformed membrane
angle subtended by ds with the generator of the 
deformed membrane
angle subtended by the cords with the meridian 
of the deformed membrane
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Mechanics, Aristotle University of Thessaloniki, GR-540 06 Thessaloniki, Greece
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angle subtended by the cords with the merid
ian of the deformed membrane expressed in 
degrees
components of stress tensor 
the tension in  the cords 
stra in  energy function 
stra in  invariants 
physical stress-resultants 
non-dimensional stress-resultant 
normal pressure
distance between adjacent cords in the under- 
formed membrane
height of the underformed membrane
height of the deformed membrane
angle between the tangent to the meridian 
and the axis of symmetry

1. INTRODUCTION

The theory of large e la s tic  deformations of reinforced membranes 
was developed by J.E. Adkins and R.S. R iv lin  /1 /  and /2 / who also obtained 
the solutions to a number o f boundary-value problems. Most of these solu
tio n s  are outlined by A.E. Green and J.E. Adkins /3 /  who give references to
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o rig in a l sources. Many other authors have given solutions to a number of 
spec ific  problems of reinforced e lastic  so lids. Apart from the ir theoretical 
in te res t, the deformation of reinforced solids has a technological in te rest 
as w e ll, since reinforcement by inextensible cords form a common feature of 
such manufactured a rt ic le s , as pneumatic tyres and hose-pipes.

In th is  paper we considered the axisymmetric deformations of c ircu 
la r  cy lind rica l membranes reinforced by a fam ily of f le x ib le  and inextensi
ble helicoidal cords. We assume that the cords form a constant angle with 
the generators of the underformed cylinder. We also assume that no two cords 
are brought into contact as a resu lt of the deformation. In section 2 we 
define "axisymmetric deformation with tw is t" and study the geometry of the 
deformation. In section 3 we derive the equations of motion and the consti
tu tiv e  equations fo r an e la s tic , isotropic body, made of Mooney-Rivlin mate
r ia l  and reinforced by one fam ily of perfectly f le x ib le  and inextensible 
cords. Subsequently, we derive the solution of a c ircu la r cy lind rica l mem
brane sealed at each end by r ig id  plugs. In section 4 we develop a numeri
ca l method fo r the so lu tion of the equations of section 3 and discuss a 
number of numerical examples.

2. FINITE AXISYMMETRIC DEFORMATIONS WITH TWIST OF ELASTIC MEMBRANES

We define as "Axisymmetric deformation with tw is t" the deformations 
in  which i )  bôth the deformed and underformed membranes are surfaces of re
vo lu tion, i i )  points of constant la titude re ta in  th is  property but change 
th e ir  angular position and i i i )  the stretch along and in  the d irection  of a 
la titud e  c irc le  remains constant. I t  is  assumed tha t the meridian C gener
a ting the deformed membrane does not intersect the axis of symmetry.

In th is  paper we consider a membrane as a two dimensional body.
The deformation is  described with respect to a fixed cy lin d rica l 

coordinate system. We denote (R, 0 ,Y) the coordinates in  the underformed 
configuration of a point which has coordinates ( г ,ф ,у )  in  the deformed 
sta te . The у-axis coincides with the axis of symmetry of the membrane. I f  
we denote by n and Ç the arc length of the underformed and deformed merid
ians respectively, we can easily prove tha t, in  the kind of deformation 
treated here we have the re la tions:
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г = r(  Ç ),

y = y( ç ) ,  (2 . 1)

■9'= 0+g( £ )

where g is  the angular displacement due to the presence of the cords and 
possib ly an external torque.

We w il l assume tha t the curv ilinear surface coordinates u  ̂ coincide 
w ith the orthogonal system 0, Ç, in the deformed membrane so tha t u1 = 
and u = C . The position vector of a p a rtic le  of the deformed membrane, 
is  given by (Fig. 1).

MATSIKOUDI—ILIOPOULOU, M.

Fig. 1. Surface of revolution defining deformed membrane

r tu ^ u 2) = y( Ç )T2 + r (  ç )T3( -O') . (2.2)

Introducing the notation

we f in d  the deformed surface metric tensor

'r2 0 " г '2 0
a Bp 0 1

a
_  _ .0 l

(2.3)

( 2 . 4 )
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and the second fundamental form

N
t \ J T ^ 0

0 r ” / ^ " r > ‘

The only non zero C hris to ffe l symbols are given by

( 2 . 5 )

12 = r ’ / r  , Г* = —г г ’ ‘ l l  ГГ • ( 2 . 6)

Using capita l le tte rs  fo r the underformed state , the position vector of the 
corresponding p a rtic le  of the underformed membrane is  given by

iT ( u V )  = Y( Ç )T_ + R( Ç ) î , ( £ , ç  ) (2.7)

For th is  coordinate system we find  that the surface metric tensor of the 
underformed state is

R2 -R2g’

- R 2g ’ (R2g’ 2 + Y ’ 2 + R’ 2)
?

( l / R 2 ) + g ’ 2/ ( R ’ 2 + Y 2) g ’ / ( R ’ 2 + Y’ 2 )

_  g ’ / ( R 2 + Y ’ 2 ) 1 / ( R ’ 2 + Y ’ 2

A r 2 ( Y > 2 + R>2 )

3. GENERAL EQUATIONS

( 2 . 8)

(2.9)

We consider the axisymmetric deformation with tw is t, of an in i t ia l ly  
c irc u la r cy lin d rica l membrane, composed of an e las tic  Mooney-Rivlin materi
a l,  reinforced by one fam ily of inextensible cords. We assume tha t the 
cords form a constant angle with the generators of the underformed membrane.

We observe that in  the coordinate system considered, R = const., 
since the underformed state is  c y lin d rica l.

Let the elements of length in  the underformed and deformed configu
ra tion  be denoted by dsQ and ds respectively. Let y and 6 be the angle sub
tended by dsQ and ds respectively, with the generator of the underformed 
and deformed membrane. I f  dn and d£ are the elements of length of the
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underformed and deformed meridians respectively, we can easily obtain

whence
✓ ds v2 02 2 2/ . Ddg ч2) = *• cos Y+ X (sin у +Rq^ cos У )

where we have used Eqs (2.1)-j and the notation

Л = d £/dn , x = r/R

(3.2)

(3.3)

Let be the angle subtended by the cords with the meridian of the de
formed state . Then, since ds and ds are elements of an inextensible cord ’ о
fo r у = a and & = b, we have ds = ds^. Eq. (3 .2) reduces to

(3.4)i  2cos2 a + X2 (sin a + R cos a ) 2 = 1 .

From the above equation and because
cosb = H cos a

we fin d  that
sinb = x(sin a  + R ^3. c o s  a  ) .

(3.5)

(3.6)

The components of stress tensor of a reinforced membrane can be re
solved in to  two parts

nßp = n,ßp + n” ßp (3.7)

where n ’ ßp is  due to the tension in the cords and n’ ’ ßp is  due to the 
deformation of the e la s tic  materials and can be expressed in terms of the 
s tra in  energy function W.

The n’ Sp components were found by A.D. Kydoniefs /4 / and the n” ßP 
components fo r a Mooney-Rivlin membrane with s tra in  energy function 
W = C^G-j—ЗЭчТ^^- 3) were found by M. Iliopoulou /5 /.

The physical stress-resultants per u n it length of the deformed 
membrane are

Пц^ = г n , n^2) = n , n ^  = rn . (3.8)
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Using Eqs (3.3) and introducing the notation

z = (,/R , dg/dz = w (z) , (3.9)

the above non-dimensional stress-resultants take the form

where

2 2 A xz

and д denotes the distances between adjacent cords in  the underformed mem
brane. The f i r s t  term of each of Eqs (3.10) are the components due to the 
tension in  the cords, while the rest of them are due to the deformation of 
the e las tic  material.

The equations of equilibrium due to surface forces p, per un it de
formed area normal to the deformed membrane are

3Bp

0 ,
(3.12)

Using Eqs (2 .5), (2 .6), (3 .3), (3.11) and the equation of Mainardi- 
Codazzi, introducing the non-dimensional notation

X = pR/2C1 , (3.13)

and taking in to account the fact that n^P is  independent of , equations 
(3.12)^ fo r ß= 2 and (3.12)2 y ie ld

d(xn2)
Эх = n. (3.14)
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nl cos a d(cos a) ,
-----—  + П2 ' dx '  = X •

Неге о denotes the angle subtended by the tangent to  the meridian of the 
deformed membrane and the axis of symmetry.

From Eqs (3.12)^ fo r  В = 1 by integration we derive

n-j = 2 (3.15)

where D is  a non-dimensional integration constant.
The resultant torque tha t should be applied as an external load to 

balance the d is tribu tion  o f n^ and the end sections is  equal to (see Ref. 
/5 / ) .

12
2̂ -  = 2 ft г ^ (о )П2(--̂ 0'> - 2 ïï R2x2(o)n3(o) . (3.16)

In th is  paper we w il l  examine the problem in the absence of external torque. 
Thus, from (3.16) and (3.15) we find  that

D = 0 , n-j(x) = 0 . (3.17)

Let us now consider the deformation under uniform in terna l pressure 
p. Then from Eqs (3.10)^ we fin d

ш X £
T = 1 /2  d  + 2 2 ^h '  cos a £ X

(3.18)

where
T = 2С^Г (3.19)

is  the non-dimensional tension in  the cords and

V 5, cos a . (3.20)

From Eqs (3.4) using Eqs (3.3)^ , (3.9)-^ and (3 .9)2 we find

2 2 2 2 I  cos a  + X (s ina  +u)lcosa) = 1 . ( 3 .2 1 )
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From the above equation and (3.20) we obtain

h1/2 tana
xilcos a (3.22)

Substituting (3.18) and (3.22) in to  (3.10)  ̂ and (3.10)2 we find

D iffe ren tia ting  Eqs (3.23) and substitu ting th is  result together with n  ̂
from (3.24) in to Eqs (3.14)^ a fte r some lengthy algebra we find

sin a. 3 ж „ /^-2Ä2cos2a)sin a . „ 3 -,
--------T7?---- T ~ -----T~T + ------ 7— + 1 X— t~TT77----7-------- x  1 0 ------^— ) ■

^h1' cos a x x £cosz a x^S rlr ' cos « x x cosza
(3.25)

Thus, we have reduced the constitu tive  equations, together with the 
d if fe re n tia l equations of equilibrium to a f i r s t  order d iffe re n tia l equa
tion .

Let us now consider the following problem. A cy lind rica l membrane 
with in i t ia l  length 2Lq and in i t ia l  radius R sealed at both ends by r ig id  
plugs of radius R, is  subjected to an axisymmetric deformation with tw is t 
due to uniform in terna l pressure p. Since the deformed membrane is  symmetric 
about the plane of y2 = 0 we consider only the upper half of the membrane

(Fig. ij.
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locus of § =0

Fig. 2. Forces in y ̂ direction subjected to the upper half of the 
deformed membrane

From the conditions of equilibrium  of the forces in  y2~direction we obtain 
fo r z = 0 that

n2(0) X x(0) 
2

The boundary conditions fo r th is  problem at z = 0 are

(3.26)

sin a (0) = 0 ,

n2(0) X x(0) 
2 (3.27)

while a t z = s/R we have

x(s/R) = 1 . (3.28)

From the two equations (3.14) we can derive

d(xn2cos cr ) 
dx = X X (3.29)

In teg ra ting  the above equation, fo r constant pressure A , we find
X x̂ +B 

cos & = ~2xiïT~ ( 3 . 3 0 )
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where В is  an in tegration constant. Because fo r z = 0, a = 0, taking in to 
account (3.27)2 we conclude that В = 0. Substituting П2 from Eqs (3.23) in 
(3.30) we find

From th is  equation with the boundary conditions z = 0, cos a = 1, we can 
derive

X O, Ä .(o )sina  1 . Гг  л 1
2(------- Т Т ’)---------- 3-------3-----  + • ( S- ( о ) ----- т-------щ-----------*-------  +

х(о)ЬХ/^ (о )  х ч о Н ч о )  х4( о ) я / (o )cos^a

_  1_____  + 2 s ina_____ _____  s in  а ^
x^(o)S.^(o)cos^a x^ (o )h^^(o )8 -^(o )cos^  a х ^ (о )8 .(о )Ь ^^ (о )

(3.32)
From Fig. (3.1) and Eqs (3 .3), (3.9) i t  follows that the non-dimen

sional underformed and deformed length of the membrane and the angular d is
placement due to tw is t are respectively

x(o)

a) dx 
sino

(3.33)

(3.34)

(■3.35)

Negative sign is  chosen because x is  a decreasing function of z.

4. NUMERICAL EXAMPLES

We solve the d if fe re n tia l Eqs (3.25) with the associated boundary 
conditions (3.27) and (3.28) numerically. The heights of the underformed
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and deformed membrane and the angular displacement g are given by Eqs (3.33),
(3.34) and (3.35). The tension in  the cords is  given by Eqs (3.18) and the 
stress-resultants by Eqs (3 .10).

We consider tha t the constant angle subtended by the cords with the 
generators of the underformed membrane is  a = it /3 . The angle b that the 
cords make with the meridian of the deformed membrane using (3.5) and (3.6) 
is  given by Eq. (3.20) as

MATSIKOUDI—ILIOPOULOU, M.

sinb 1/2 2 21-Я cos a1 (4.1)

From the above equation i t  is  obvious that the value of A should not exceed 
2 fo r  the given angle a = 11 /3 , because in tha t case the cords would become 
p a ra lle l to the axis o f ro ta tio n .

The following data were considered in  our computer program:

( i )  Г = 0.2, a = it /3 , A= 2.0, 2.2, 2.4, 2.6, 2.8, 3.0.

The results fo r these data are shown in  Figs 3 and 4.

Fig, 3. Deformed radius, x(0), at z = 0 u s . underformed height 
of the membrane, L /R, for Г = 0.2 and a = ъ /3

Fig. 4. Maximum tension in the cords us. underformed height 
of the membrane, L /R, for T = g .2 and a=ir/3
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Figure 3 has been produced from Fig. 11 by reassigning the 
two axis ( A , x(0)) and using the underformed height as a parameter. The 
maximum tension in  the cords develops at z = 0.

( i i )  Г = 0.2, a = -n /3, L0/R = 3, X= 2.6.
The results of these data are shown in  Figs 5., 6., 7 ., 8. and 9.

Fig. 5. Distance from the surface z = 0, Y/R, us. stress resultant n, for 
Г= 0.2, a = ir/3 , Lo/R = 3 and A = 2.6

Fip. 6. Distance from the surface z = 0, Y/R, us. stress resultant n„ for 
Г = 0.2, а  = тт/3, L /R = 3 and A=  2.6

Fig. 7. Distance from the surface z = 0, Y/R, us. tension in the cords, T,
for Г = 0.2, a = it /3 , Lo/R = 3 and \=  2.6

Fig. 8. Distance from surface z = 0, Y/R, us. angular displacement, g, for
Г = 0.2, a = it /3, Lq/R = 3 and X = 2.6
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b°

Fig. 9. Distance from surface z = 0, Y/R, us. the angle subtended by the 
cords with the meridian cf the deformed membrane expressed in 
degrees, b°, for Г= 0.2, а = тт/3, Lq/R = 3 and X= 2.6

( i i i ) Г= 0.2, a= -n /3 , Lo/R = 3, x(o) = 1.5, 2, 3, 5.
The results of these data are shown in  Fig 10.

Fig. 10. Upper right quarter of the deformed meridians for Г = 0.2, a = ir/3
L0/R = 3

The so lu tion  of the problem is  subjected to the following constraints:
(1) The stress-resultants n^, and the tension T in  the cords must be 

pos itive .
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2 2(2) The value of h = 1-& cos a must be positive  in  order to y ie ld  real
values of the quantities considered here. This constrain l im its  the ex
tend of the curves shown in  Fig. 11.

Fig. 11. Deformed radius, x(0), at z = 0, us. pressure, A , for L /R = 1,
1, 5, 2, 3, 4, 5

For instance, fo r the value of the underformed length Lq/R = 2, the pressure 
facto r A cannot exceed 9.652 and fo r Lq/R = 4 i t  cannot exceed 5.868. At 
these lim itin g  values of the pressure facto r A, the value of & tends to 2 
and from Eqs (4.1) the value of the angle b that the cords subtend with the 
meridian of the deformed membrane, is  almost zero.
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ANALYSIS OF A CLOSED CIRCUIT CRYOGENIC WIND-TUNNEL 

B. Paláncz*

(Received 24 May 1985)

An analysis focusing on heat and mass transfer processes of 
the steady-state and transient performance of a closed c irc u it  cry
ogenic wind-tunnel, in  which the recycled tunnel gas is  cooled down 
by liq u id  nitrogen in jec tion , is  presented. A s im p lified  mathemati
cal model is  developed in  order to determine the re la tion  between 
LN„ in jection  rate and the d is trib u tio n  of gas temperature as well 
aszLN„ concentration along the tunnel c irc u it .  Optimal steady-state 
characterized by the tunnel wall temperature, at which the to ta l 
cost of the process is  minimum can be defined. S ta b ility  condition 
developed from linear dynamical analysis indicates the poss ib ility  
of in s ta b ili ty  caused by recycling flow. The findings of th is  anal
ysis can be applied to other types of cryogenic closed cooling 
c irc u its , too.

SYMBOLS

cost coefficient ($ kg *s)
2

cross-sectional area (m )
2

evaporation surface of droplets (m ) 
cost coefficient (i)
LN2 concentration (kg m- '5)
specific heat capacity of G N 2 at constant
pressure (kJ kg *j 
droplet diameter (m)
in itia l droplet diameter at x = 0 (m) 
surface of droplets in a control volume A dx 
(m2)
number of droplets in the control volume Acdx
diameter of the tunnel (m)
dissipation coefficient (dimensionless)
total cost ($)
liquid flow rate (kg s-1)
injection rate (kg s'*')
length of the tunnel circuit (m)

-2 -1droplet evaporation rate (kg m s )

*B. Paláncz, H-lo85 Budapest, Salétrom u. 9 ., Hungary
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n in le t  ra te ,o f droplets fo r a un it of time 
(number s х)

Q dissipation heat (W)

r e evaporation heat of LN2 (kJ kg~L
s variable of the Laplace-transformation
t time (s)
t c c irc u it  time of the recycling flow in  the 

tunnel c irc u it  (s)
T temperature (K)
Te saturation temperature of N„ at the opera

tio n  pressure i(K)
Two
V

optimal wall temperature
volumetric flow rate of gas phase (m̂  s Ъ

w linear gas ve locity (m s- i )
X length coordinate (m)
Y solution vector of system (48-49)

Greek Letters

“ с heat transfer coefficient, between liquid 
and gas phases (Wm К х)

«w heat transfer coefficient between gas phase 
and tunnel wall (Wm- K_ i)

6 thickness (m) or U irac-delta

n dimensionless length variables
X heat,conduction coe ffic ie n t of gas phase 

(Wm 1 К L)
U

V

dynamic viscosity of gas phase (kg m~L Ъ 
2 -1kinematic viscosity (ms )

fi resolvent matrix
P density (kg m

Indices

a ambient
i insulation
L liq u id  phase
G gas phase
w wall
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INTRODUCTION

In the last years a worldwide e ffo rt of developing high Reynolds 
number fa c i l i t ie s  using closed c irc u it cryogenic wind tunnels can be noted. 
This concept proved to be the most promising amongst many techniques /1 /.

Operational experiences with these fa c i l i t ie s  have shown, that cry
ogenic operation of th e ir  tunnel gases is  a p ra c tica l method fo r obtaining 
high Reynolds number flows without any dynamical pressure penalty and with 
savings in  fan power.

A cryogenic wind tunnel is  an endless pressure duct of varying 
cross sectional area, which has in  addition to the regular components of a 
closed c irc u it  tunnel, a liq u id  nitrogen in je c tion  section and a gas bleed 
section. In order to get the necessary low temperature in  the tunnel, LN£ 
is  in jected into the tunnel c irc u it .  The evaporating LN2 compensates the 
fan power as well as the heat flow through the insulated wall of the tunnel. 
This insu lation of the cold test gas from the ambient presents heat gains 
and associated energy waste, and improves the c o n tro lla b ility  of the pro
cess. To maintain the tunnel resident gas — to keep the s ta tic  pressure 
constant in  the tunnel — i t  is  necessary to remove gaseous nitrogen (GN?) 
from the c irc u it. A typ ica l cryogenic closed c irc u it  wind tunnel can be seen 
in  Fig. 1. LN2 is  in jected through the nozzles located downstream of the 
fan. This arrangement u t i l iz e s  the high turbulence of the flow existing  be
hind the fan and ensures a long distance fo r LN2 droplet evaporation before 
the tes t section, where one phase flow and uniform ve locity , temperature 
and s ta t ic  pressure p ro file s  are expected.

Test
section

LN2
Injection

Fig. 1. Simplified sketch of a cryogenic closed circuit wind-tunnel
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Over the past years, some very comprehensive models describing cry
ogenic wind tunnel performance have been developed fo r design and control 
purposes /2 -4 /. These models employed fo r process simulation embody compli
ca ting  features and s p e c ia litie s , and consequently they suffer from ele
phantias is. Their d irect numerical rea liza tion  is  especially cumbersome 
because of the frequently a ris ing  in s ta b ility  in  the solution of the model 
equations. Sometimes, i t  is  d i f f ic u l t  to find  out whether these in s ta b i l i 
t ie s  are caused by an unstable integration schema or the model equations 
themselves represent an unstable process.

Therefore, in  real applications these models have to be considerab
ly  s im p lifie d ; lumping /2 / ,  lineariza tion  /4 ,5 ,14 /, or other so-called "ad 
hoc" models based on the observations of physical and numerical experiments 
are used /6 /.

In th is paper the investigation focuses on the heat and mass trans
fe r  processes taking place in  a closed c irc u it  tunnel and many special fea
tures are neglected in  order to  get general information about the steady- 
s ta te  and transient performances. Corrections may resu lt from adding to the 
problem such factors as va ria tions  in ve loc ity , heat capacities, heat trans 
fe r coe ffic ien ts , pressure drop, and rad ia l and longitudinal mixing can be 
marignal.

MODELLING

The physical hypotheses employed to formulate the mathematical mod
e l are the following:

— there is no s lip  between the liq u id  droplets and the gas flow, 
l iq u id  and gas phases have the same velocity;

— the temperature o f the droplets is  constant during th e ir  l i f e 
time, and equal to the saturation temperature belonging to the c ir c u it  pres 
sure ;

— the droplets are supposed to have spherical form and th e ir  diam
eters are the same in a cross-section of the tunnel;

— the number of droplets is  constant and they evaporate with the 
same ra te  in  a cross-section;

— the droplet evaporation is  completed during one turn-round of the 
gas flow , namely the droplet evaporation length is  always smaller than the
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length of the tunnel;
— volumetrical gas glow rate is  considered to be constant along the 

length of the tunnel c ir c u it ,  droplet evaporation does not cause s ig n ifican t 
change in gas mass or volume;

— the e ffect of the temperature change on gas properties, as densi
ty ,  specific  heat, evaporation heat e tc ., is  neglected;

— pressure drop is  neglected, pressure is  supposed to be constant 
and the same everywhere in  the c irc u it ;

— the cross section area of the tunnel does not vary;
— the wall temperature is  constant and the same everywhere along the 

length of the tunnel;
— the heat transfer coeffic ien t between gas and liq u id  phase is  con

s tan t, i t  does not change with the droplet Reynolds number;
— the heat transfer coeffic ien t between gas phase and tunnel wall is  

constant;
— in  rad ia l d irection  the flow is  perfectly  mixed, while in  long itu 

d ina l d irection there is  no mixing at a l l .
Considering these assumptions the model equations can be developed 

on the basis of the mass and heat balances.
The mass balance fo r liq u id  phase resu lts

. , Э cA dx — г- с Э* -  V —  dx -  N dA
Э X e

( 1)

Heat transport from gas phase to the droplets provides heat fo r LN̂  
evaporation at saturation temperature and fo r the warm-up to the bulk tem
perature of the gas flow, namely

a (T -  T ) = N г + с r (T (2)

therefore the evaporation rate can be expressed as

N = “ c( T - Te) 
r e + cpG(T -  Te)

( 3)

The in jec tion  rate of LN2 can be expressed by the number of droplets 
entering in to the tunnel through the nozzles during a time u n it:

Lo = n P L do 11 ( 4)
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The LN2 flow ra te  decreases in  the d irec tion  of the flow because of 
the evaporation of the d rop le ts. At a given cross-section th is flow rate 
can be calculated as a function  of the diameter of the droplets

L = у c = P L (5)

Eliminating n from Eqs (4) and (5), one may get fo r the diameter of 
the droplet at an a rb it r a r i ly  chosen x coordinate of length

d » < f ) 1/3 o123 d0 
0

( 6)

where dQ is  the droplet diameter at x = 0, in  the in jec tion  section. On the 
other hand, the liq u id  mass in  a control volume Ac dx is

cA dx c
d3 it P  ̂ dn (7)

where dn is  the number of droplets in the elementary control volume Ac dx. 
The surface of the droplets in  th is  volume can be expressed as

6A„
dA = d2 it dn = —— § dx . e Pl d

Employing Eq.(6), we obtain 

dA_ = i î s -  ( Y ) 1/3 с2/3 d , .
P Lao V

( 8)

(9)

Now, the mass balance can be written in  the following form

6 L.Зс V Э c a c(T V  ° , Lo a /3  2/3
Э t  + А Э x + г + с „(Т — T ) d P.  ̂ /0 c e pG e 0 L V

0 .

Let us introduce the follow ing independent variables 

t0 = and n =

( 10)

( 11)

where t  is  the period time o f the c irc u it flow

and w = ( 12)
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then the balance equation is

«c(T -  V

3 0 3 "  ' e * V ( , - V W  °

6Ah  Ll /3  c2/3 ,  „  _
( 1 3 )

From a computational point of view, i t  is  preferable to use the flow 
rate L, as independent variable instead of the liq u id  concentration c. 

Considering, that

L = V c (14)

the f in a l form of the mass balance is

Э L Э L C/T . ч n
-ТТГ + —  + F(T>L) = 0 .ЭО Эр (15)

where

ac(T -  T ) 
F(T,L) = c e

6t

r e + cpG( T - Te) PLdo

c Ll/3  l2/3
О

(16)

The heat balance fo r the tunnel gas is

V 1* '-gV Æ  = -  V PccpG"K

«C<T -  Te)dAe . dx . (17)

Considering the expression of dAg, eqs (9) and (14), we obtain

ЭТ + T F  +
5T “ c(T -  V

Ac 5X PGcpG PLdoV

6___ Ll/3  L2/3 _
о

a D it w____
Pnc pA G pG c

(T, -  T) -
Q

= 0 (18)
L A  PpC pc c r  G pG 

Applying dimensionless variables
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Э Т + JTT + а с(Т V  6AcLc 1/3 l2/3
Э0 эп w . _ о _ 1 1 /0

V pGcpG PLdoV

а D тт L w c
V p„c

(T,, -  T) - •
G pG V PGcpG

( 1 9 )

or
Э T Э T n,T . v n —7; + ----- + G(T,L) = O ( 20 )

where

G(T,L) =
h ’ i G < T - V ]  F(T" D -  « wO , L c (Tw - T ) - 0

V p GcpG
(21)

The boundary conditions are

L(O,0 ) = L0( 0 ) ,

T(O,0) = T (1 ,0 )  .

( 22)

(23)

The heat transfer coeffic ients can be computed from the follow ing
formulas

heat transfer between tunnel wall and gas flow /7 /

Nu = 0.023 Re0-8 Pr0-4 w (24)

where a, ,D
Nu =

w Ar
Re w D Pr = CPG (25)

i f  L < 50 D, then c

■ f ,  ,D nO.7 1a» L1 * t 1 J (26)

otherwise
a  = a  w u w (27)
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— heat transfer coe ffic ien t between gas phase and droplets /8 /

Nud = 2 , (28)

where

Nu a cdo
I T (29)

The dissipation heat of the fan power can be expressed in  the fo l 
lowing form

Q = К p Gw3 Ac . (30)

STEADY-STATE ANALYSIS

In th is  case the model can be reduced to the following ordinary d if 
fe re n tia l equation system

щ  + F(T,L) = 0 , (31)

Í  + G(T,L) = 0 . (32)

The boundary conditions are

L(0) = Lo , (33)

T(0) = T (l)  . (34)

Concerning these conditions, there are two p o ss ib ilit ie s :

■ Lq is  prespecified, then T(0) and therefore T (l) is  determined 
by the model equations,

■ T(0) is  given and Lq is  determined by the model.
One has to have in  mind, that under normal operation conditions, 

the evaporation length is  short, h ev «  1, therefore the numerical in te -
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g ra tion  of the coupled equations, (31), (32) must be carried out only up to 
Л = n , where n can be calculated from L( л ) = 0, and in  practice

r 6V 6V cv
L < 10” Lq is  a suitable condition. Thus the L = 0 condition applies fo r 
^ = h , and the heat balance can be s im p lified

". „ pC r  —  + a D H T  = a D ïï L T + Q , V P G p G .  w c w c w ’K dp
(35)

which has the solution

T( n ) = T( П еУ} -  Ti exp - (  n - T1ev) + T*

fo r n ev< n < 1

(36)

and where
T" = T + w w a D it L w c

(37)

Computations were carried out for three prespecified operational 
temperature, temperature in  the in jection cross-section, TQ = T(0) = 100,
150 and 200 К at d iffe re n t w a ll temperatures. Data used fo r the calculations 
are shown in Table 1.

Table 1. Data used for steady-state analysis

To
(K)

CpG
(kJ/kg,K)

PG
(kg/m3)

a c
(W/m 2,K)

a w
(W/m2,K)

T -  T
W 0

(K)

100 1.060 3.48 184.7 71.5 5
150 1.047 2.30 273.7 55.4 10
200 1.035 1.71 358.6 46.5 15

Te = 77 K, r e = 193 kJ/kg, D = 3. m, l_c = 100. m 
V = 50 m3/s , dQ = 10~4 m, PL = 809 kg/m3, К = 0.

The numerical procedure was the following:
(a) guess Lq = L(0),
(b) integrate the system, Eqs (31), (32) w ith the in i t ia l  conditions 

l_o and TQ up to n = n ev, using Runge-Kutta-Merson method with step size 
co n tro l,
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(c) employing eq. (36) compute T ( l) ,
(d) check the difference between TQ and T (l),
(e) i f  the difference is  not small enough, s ta rt again with a modi

fied  Lq value.

For a numerical integration the use of a scheme with a changing 
step-size is  advised because of the rapid change of L( q ).

Figures 2 and 3 show the gas temperature and liq u id  flow rate d is
tr ib u tio n s  along the length of the tunnel at two d iffe ren t operational tem
peratures, TQ = 100 and 200 K, in  case of d iffe re n t tunnel wall tempera
tures. These figures indicate that at lower operational temperature, the 
necessary in jec tion  rate is  higher, the evaporation length is  longer, the 
maximal temperature difference in  gas phase is  smaller at the same Tw — Tq 
value. The increase of the value of Тш — T has the same effect as the in - 
crease of the operational temperature T , except that the droplet evapora
tion  length does not change s ig n ifica n tly . This fact is  demonstrated c lear
ly  in  Fig. 4.

100 *

'S 
98 K

96

94

92

10*3 5 10‘ 2 5 10~1 5 1
4

Fig. 2, Gas temperature and liquid flow rate distributions along the tunnel
length at T = 100 К operation temperature in case of different wall
te m peratures

CLOSED CIRCUIT CRYOGENIC WIND-TUNNEL
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Fig. 3. Gas temperature and liquid flew rate distributions along the tunnel
length at T = 200 К operation temperature in case of different wall 
te m peratures

Fig■ 4. Liquid droplets evaporation length as function of the operation tempera
ture at different values of T — T

V. о
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OPTIMAL WALL TEMPERATURE

The LN2 in jec tion  rate and therefore the operation cost increases 
w ith increasing Tw — T , while the thickness of the insulation layer and 
thus the investment cost decreases. Assuming tha t the heat conduction coef
f ic ie n t  of the insu la tion  is  constant and the ra tio  of the insulation th ick 
ness and the tunnel diameter small, the fo llow ing heat balance can be 
w ritten  fo r the tunnel wall

r c
a Du (T -  T(x)) dx = —A (T -  T )D if L„ . (38)w J w 6- a w c

0 1
Here, i t  is  also supposed, that the outside surface of the insu la

tio n  is  nearly at the ambient temperature, T . Eq. (38) can be w ritten  in  
dimensionless form:

1
Nu. Г (T — T( n ))d n = T — T , (39)1 J  w a w

0
or

where

NUi(Tw) = — B- r - ^

Tw -J T( n )d,

Nua = a w 6i
X.1

(40)

(41)

In Fig. 5. we can see Lq versus Tw, and Nû  versus Tw functions in  case of 
TQ = 100 К operational temperature and at Tg = 300 К ambient temperature. 
Considering, that the to ta l cost of the process is

W  = aLo < V  + bNui < V  » (42)

one may find an optimal wall temperature, at which has its  minimum.
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Fig. 5, Determination of the optimal wall temperature, T and the optimal 
Nusselt number of the tunnel insulation, Nu-

Fig. 6. Optimal Nusselt number of the tunnel insulation versus operation temper
ature

Figure 6 shows how the optimal insu lation Nusselt-number, Nu^o depends on 
the operation temperature in  case of b/a = 0.2 kg/s. This figure reveals 
the fa c t, that under TQ = 150 К the cost of the process increases rap id ly  
w ith  decreasing T . On the other hand, considerable Reynolds-number increase 
can be expected in  th is  low temperature range only. The process, however is  
s t i l l  cheaper than a conventional wind-tunnel yie ld ing a s im ilar Reynolds- 
number /13 /.

TRANSIENT ANALYSIS

Suffic ient tunnel operation can be carried out only under tempera
tu re  contro l in the tes t section located fa r enough from the in je c tio n  sec
t io n  to  get uniform, one phase flow. Consequently, there is  a s ig n ific a n t 
time delay between LN2 in je c tion  and i t s  e ffe c t on the temperature in  the 
te s t section depending on the gas ve locity  and the evaporation process. The 
other d if f ic u l ty  arises from the gas flow recycling because of the closed
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tunnel c irc u it .  The recycled gas may cause positive  feedback in  the tempera
tu re , therefore in it ia te  in s ta b ility .

As a f i r s t  approach, linear s ta b il i ty  condition can be given by l in 
earization of the balance equations and solving them ana ly tica lly .

Let us introduce a new state variable

L' = L1/3 . (43)

Then the balance equations have the form

4 k -  + + F'CT.L ) = 0э s э n 0 (44)

and

^ Xe * - f / G4T-L , ' Lo> - "  • (45)

where

F'(T,L ? = ° c°  Te> ^ 2 ,  LJ/3 _
ге * срС<Т - Те> W

G'(T ,L ',L 0) •  [ з  [r„  *  CpG«  -  V ]  F ' ( L ’ ) 2 -

-  a 0 IT L (T u w c w - T ) - a J / VcpG P G

(46)

(47)

The linearized form of Eqs (44) and (45) around a steady-state 
so lu tion is

T1 r L о о

JLL uT‘ uL ‘-о о

(48)

(49)

where L and T stand fo r the deviation from the steady-state p ro file  and the 
p a r tia l derivatives are evaluated along these steady-state solutions. That 
is  why they depend on П, too.
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Applying Laplace-transformation, we obtain

d
ï ïT

— —
Л A
L(s, n ) — — S F|( n ) L(s, n )

T(s, n ) — — G’ ( n ) G|( Л ) + s T(s,n  )_

F' ( n. )
О

( n )
о

L0(s) .
(50)

The solution of the system is :

L (s, n ) = n n
r

L(s,0)
n

-  f  (si Ç r l
— —

( К ) L (s )d ç j

T(s, n ) " 1 _ T(s ,0)_

J0 0 0

Л  c ? ). 
0 (51;

which can be written in  the form

Y(s, n ) = exp CM( n ) + n s l ) j  Y(s,0) -  d(s, n )Lq(s) , (52)

where

M( П )=

nr r
0 J Fi( ç )dç 1 0

n °n and I  =
|G '(  Ç )dÇ J  G-j-C E, )dC 0 1

_0 0 _

(53)

Let us express

exp -  M (n ) J ■ « ц ( n ) a i2 (

> ( л ) a 22(

Considering that

exp = e-sn I  ,

the resolvent matrix can be expressed

(54)

( 5 5 )
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= exp £ -М С л )  + ( n s l ) j = e sn

л ) л )

a 2 i(  Л ) a 22^ 0 )
(5 6 )

where ou . can be d ire c tly  evaluated from the elements of M (rj).
Namely /10/

-M( n )Jexp - e V 2" A

A C4
th A 2 

C , _A_ + ^4_ 
thA 2

where

(57)

A= -  (C2 + 4C2C3) 1/2 2̂ ~ J Рт̂  C )d £ >

c3 = — j* gl ( ^ )d ^ C4 = - J  Gÿ(  ç )d  Ç . 
оJ Gi

(58)

To find  vector d(s, л ), le t  us express the inverse of the resolvent 
matrix as

( ft

then

л
Г ( fi

V 1 = esf:

o^^( C ) a i2 ( (> )

a21  ̂ ^  ̂ a22̂  ^ ^

-1

sE
Вц( E ) ß12( E )

i ^ (  E ) ß22( Ç }

(59)

5 Г 1 ( E )
1

dc =
0

GL ( E )
0

nJ ( ßn ( O F
0
n
J ( e2i ( ç ) p

(61)

Considering tha t, i.e .

/  ß n ( ç )F^ ( ç )es^ d ç * e n ( n ) 1 + sm( у n ( л ))
m=l

(61)

179



PALÁNCZ, В.

where

e n ( n ) = f  f»n U )F £  ( ç ) d ç  and ( у п ( п 4
" n

f  0n (Ç)F^ (Ç)Ç mdç
J 0

m! e^C n )
(62)

the elements of vector d are 

2
d j(s , n ) = Z _  a ^ U )  e ik ( n )  
J i,k = l J ü+Íísm(Yik(ri))J e-Sn

= d*(s, n ) e' -sn j  = 1,2 (63)

The solution fo r the temperature is

T ( s , n ) =  a 22( n )?(s,0)e“ sri + [  a2i (  П ) + d2(s , n ) ]  LQCs) e sn . (64)

The temperature in  the in jection section can be determined by the 
boundary condition

therefore

T(s,0) = T (s , l)  = TQ(s) ,

a a (1) +d* (s , l)  A _
To(s> ■ — г --------- Lo(s) e

(65)

( 66)
1 -  a22( l)e ‘

Then the transfe r function between temperature and LN2 in jec tion
rate  is

^ ( s , n ) T(s,n ) _

Lo(s)
d2(s ,n  ) +

a91(1) + d2(s , l)
+--------------------------- =

1 -  a 22 (1) e b
(67)

This transfer function can be calculated as a function of n numeri-
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ca lly  on the basis of the steady-state so lu tion .
Keep in  mind, that because

П
lim ü = I  and lim  = 0 ,
n—-0 0 n — 0 lk

therefore

( 6 8 )

lim  a 7. ( П ) = 0 ; lim  d7(s, n ) = 0 
n— »0 n ——0

and (69)
lim  a79( П ) = 1 . 

n——0

In Eq. (67) the f i r s t  term represents the direct effect of the 
liq u id  flow rate change and arises from the homogeneous solution. The second 
term arises from the inhomogeneous so lu tion, and shows the e ffect o f the in 
jec tion  rate change, involving cross-effects between temperature and liq u id  
flow ra te . The th ird  term stands fo r the e ffe c t of the gas flow recycling , 
and the m u ltip lie r e_sn represents the tim e-lag between in jection  rate and 
the change in the gas temperature at the location q.

To give s ta b il ity  condition fo r the linearized system, le t  us con
sider eq. (66), in  case no disturbances in  the in jection  rate occur. Then

TQ(s) pL -  a 22( l)e "s j  = 0 (70)

which means that

TQ( 0 ) = a22( l )  f o( 0 -  1) , (71)

or le t  us consider 0— 1 the time point, when the n-th lap of the gas flow 
c ircu la tio n  has been completed, then

Г  ■ “ 22«) ■ (72)

I f Ia22(1) <  1, the disturbance in  temperature at n= 0, T
decreases a fte r every turn-round and consequently the process is  s ta b ile .
I f a22( l ) >  1 the process is  unstable, because the deviation from the
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steady-state increases a fte r every turn-round.
In our numerical example the system proved to be stable in  every 

considered steady-state according to th is  condition, 0.5< a Q ) 0.7. 
For lower operational temperautre a22( l )  is  bigger than for higher tempera
tures. Therefore at higher temperatures the convergency of the temperature 
to the steady-state a fte r a perturbation is  fa s te r, which agrees with the 
experience obtained from experiments i.e .  tha t the increase of heat insu la 
tio n  improves the c o n tro lla b ility  of the process /3 / .  In order to analyse 
the re la tion  given by Eq. (67), le t  us fin d  the temperature response fo r 
step-function input in  the in jection  rate. I f  we consider the linea r approx
imation of the exponential term in  Eq. (61), m=l, we obtain fo r d *(s ,n  )

(73)

where

2
(74)

2
(75)

Then, the temperature response is

Л  p

T(s, n ) = a21( n ) + а20( л ) + sa21( n ) + 

a21( l )  + a2g ( l)  + sa21( l )
( n )e SJ —  e 'sn , (76)+ a 22

1 -  a 22( l)e ‘ s s

where is  the change in  LQ( 0 ) at 0= 0. I t  is  useful to consider T(s,n  ) 
as a sum of four terms

(77)

where

s
( 7 8 )
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T2(s ,n  ) = a21(n )Li e sn (7 9 )

? f } - a 21(1) + a20(1) , V. -snT-7Cs 9 n / ~ a99( Л )L. e
s(es -  a22( l ) )

^  ̂ a21d )  a 22( n \  „-snV s > П ) = -Z------------------  L.e
4 es -  a22( l )  1

(80)

(81)

Transforming back into the time domain, we obtain

Тд_( 0 , П ) = [a 2i (  П ) + a2g( П ) J L̂  1 (0— П ) (82)

T2( 0 ,n  ) = a21( n ^  ő( 0 -  n ) , (83)

T3( 0 ,n  ) = [ a 2i (  П ) + a2Q( n ) ]  a 22( n ) Lĵ  ф ( 0 — n ) (84)

where

<j>( 0 -  n ) =

i f 0 < 0 -  n < 1
(85)

n-1
22 ( 1 )  i f  n  <  0  -  П < n + l ,  n = l , 2 , .

Employing linear approximation fo r the exponential term in  Eq. (81), 
one may get

T4( 0 , n )  = a21( l )  a22( n ) L i exp £-(1 -  a 22(1))(0 -  П ) 1 . (86)

I t  can be seen, that a fte r a f in i t e  step change in the in je c tion  
ra te, L ( 0 )  = L  ̂ 1 ( 0 ) ,  the temperature p ro file  converges to a new steady- 
state d is trib u tio n

old/T' ( n ) = lim  T( 0 , n )  = T“ ±u( n ) + lim  T( 0 , n ) =
О “► a> 0 -+■ OO
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= T°ld ( Л ) + ( ot 21( n ) + a2Q( n ) ) ( l
a 22
1 -  a 22( l )

•) Li .(87)

The condition fo r the convergency of the temperature p ro file  is  also 
a 22( 1 ) <  1- The qua lita tive  form of the temperature response is  shown in  
Fig. 7 fo r  the case i f  n = const.

[ [cc2,(q)+a20(n)] o t^ îO U cxÿa )

Fig. 7. Gas temperature response predicted by the linearized model in case of 
L. i»0l

NUMERICAL STUDY OF THE NON-LINEAR MOOEL

The dynamical behavior of the non-linear system can be studied by 
numerical simulation. To solve the transient equations, eqs (15) and (20) 
the method of characteristics may be used (Fig. 8).

The characteristics are defined by

—  = 1 . (88) 
d n

Along these characteris tics the model equations are:

(— )r  = -  F(T,L) , (89)
dn C

(— )n = -  G(T,L) . (90)
dn C
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Fig. 8. The lines of characteristics

The boundary conditions are:

T( 0,0)  = T( 0 ,1 ) , (91)

L (0  ,0) = Li (0  ) . (92)

The in i t ia l  conditions are

T(0,n ) = T. (n ) , (93)

L(0, n ) = LA( n ) . (96)

Computations were carried out at TQ = 100 К operational temperature
when T -  T = 5 K. w о

Figure 9 shows how the gas temperature in  the in jec tion  section 
T ( 0 )  converges to the steady-state a fte r a perturbation of 5 K, indicating 
that а ^ Ц )  - 0.69 ^ l .
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Fig. 9. Response of the non-linear model in case of disturbance in the gas tem
perature at the injection section

Figure 10 demonstrates the temperature transients in  d iffe ren t cross-sec
tio ns  o f the tunnel. The steady-state value of the in jec tion  rate was 
doubled at 0= 0. I t  can be seen that these functions are very s im ila r to 
tha t predicted by the linearized  model.

Fig. 10. Gas temperature response predicted by the non-linear model at different 
locations of the tunnel circuit in case of doubled injection rate

In F ig . 11 the temperature d is tribu tions along the tunnel length are shown 
at d if fe re n t time points. The temperature wave going around in  the tunnel 
c i r c u i t  is  apparent.
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Fig. I I .  Gas temperature distribution along the tunnel length at different time 
points in case of doubled injection rate
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Figures 12-15 show the temperature as function of time at the in jec 
tio n  section in the case of sinusoidal input in  the in jection  rate. The sir 
nusoidal temperature response reaches its  steady state in  d iffe re n t ways ac
cording to  the relationship between the c irc u it  frequency and the input 
s ignal (in je c tio n  rate) frequency. When the period time of the input signal 
is  not greater than that of the c irc u it ,  t  — t^  , then two cases can be 
considered:

(a) t  mod t^ = 0; the amplitude of the temperature response monot
onously increases (Fig. 12).

0

Fig. 12. Gas temperature response for sinusoidal injection rate input in case of
t  mod t. = 0 c in

(b) t c mod t^ n t  0; the amplitude of the temperature response de
creases in  an oscilla tory way (F ig. 13)

I f  t^ n > t  , the p o s s ib il it ie s  are again
(c ) t^n mod t  = 0; the maximum as well as the minimum values of the 

temperature response increase, and the in i t ia l ly  asymmetrical response func
tio n  becomes symmetrical (F ig . 14)

(d) t^ n mod t  Ф 0; we get a sim ilar response function to the one 
in  the case of (b) (Fig. 15).
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Fig. 13. Gas temperature response for sinusoidal injection rate input in case of
t  mod t. ^ 0 c in

Fig. 14. Gas temperature response for sinusoidal injection rate input in case of
t. mod t  = 0  in c

Fig. 15, Gas temperature response for sinusoidal injection rate input in case of 
mod t c /* 0
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CONCLUSION

Steady-state and transient analysis o f a cryogenic closed c irc u it  
were presented. These analyses were based on a s im plified mathematical model 
focusing on the heat and mass transfer processes taking place in the tunnel.

Steady-state analysis led to a trade -o ff between implementation cost 
( in s u la tio n  thickness) and operation cost (LN2 consumption). Numerical com
putations indicate, that s ta b i l i ty  condition evaluated from the linear 
tra ns ien t analysis, provides re lia b le  information fo r the non-linear system 
in  the v ic in ity  of a steady-state.

The model's v a lid ity  can be extended to  more general s ituations in  
many ways. For example, in  setting-up of model equations, constant wall 
temperature was assumed, although one may consider a more general case, 
namely

“ c<Tw -  T) = W TA -  T) - <57>

where к ^  is  the overall heat transfer co e ffic ie n t between the tunnel gas 
and the ambient.

One of the most important extensions can be to take the heat capac
i t ie s  o f the tunnel wall and insulation in to  account. I f  the dynamical model 
is  used fo r  control design purposes around a steady-state, then these capac
i t y  terms can be neglected /3 / .  However, when the state of the tunnel gas is  
fa r from a steady-state, i .e .  during cool-down operation, the heat capac
i t ie s  are important factors in  the ca lculation of the cool-down time and 
the necessary LN2 consumption. Then transient heat balance equations can be 
added to  the model in  order to calculate the transient wall temperature. 
Orthogonal collocation technique resulting ordinary d iffe re n tia l equations 
is  preferable /11/.

Although the physical model used fo r the analysis is  very simple, 
i t  proved to be fa i r ly  adequate to describe the essentials of the heat and 
mass transfe r in the c irc u it  /12 /. As i l lu s t ra t io n ,  in Table 2 one can find  
the experimental values of the gas temperature versus time measured in  a 
p i lo t  cryogenic low-speed TLT wind-tunnel during cool-down operation at the 
German Aerospace Centre (DFVLR), Köln-Porz. The predicted values provided 
by the model give good approximation.
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Table 2. Cool-down operation in a low-speed wind-tunnel /12/

Time

(s)

Gas temperature at the 
(°C)

test section

measured predicted

0.0 22.0 22.0
194.0 10.0 11.6
271.0 6.0 7.8
376.0 2.0 3.1
541.0 -5.0 -3.6
661.0 -9.0 -7.9
842.0 -13.0 -13.7
975.0 -16.0 -17.5

1118.0 -20.0 -21.1
1275.0 -23.0 -24.6
1491.0 -26.0 -28.8
2247.0 -39.0 -39.0
2674.0 -43.0 -42.6
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USE OF LOW-GRADE COAL AS FUEL OF POWER PLANTS 

K. Reményi*

(Received 24 May 1985)

A ll over the world in power-station practice, low-grade 
fuels are being u t i l iz e d . In  Hungary our coals fuelled  in  power- 
station p ractice  have large ash- and moisture-content, while with 
our lig n ite s  the x y li to l of wooden structure is  p reva iling . On the 
basis of grinding and f ir in g  investigations a hammer/fan m ill with 
excellent operational parameters and new types of burners providing 
sound combustion have been developed.

Industry and energy policy for the period t i l l  2000 suggests that 
the national energy c a rr ie r  resources be increasingly u tiliz e d .

The reducing a v a ila b il ity  of o i l  products fo r energetic uses can be 

compensated f i r s t  of a l l  by increasing use of coal and nuclear energy. De
velopment already decided in  the f ie ld  of coal mining necessitates tha t, 
w ithin  the power p lant capacity to be constructed in the 1990s, c o a l-fired  

power plants be constructed. In  addition to Eocene mines, the u t i l iz a t io n  of 
strippable l ig n ite  resources permits additional c o a l-fire d  power plants to 

be developed, a r e a l is t ic  version being enlargement of the Gagarin Thermal 
Power Plant and construction of a new power p lant in  the area of Bükkábrány. 
Another way to reduce hydrocarbon consumption is  to substitute coal for hyd
rocarbon in heat supply, f i r s t  of a l l  by coupled e le c tr ic ity  generation and 

heat supply in back-pressure or pass-out condensation power p lants.
The rise  in  prices of hydrocarbons resulted in changes also in the 

operation of the e le c tr ic  power system. The hydrocarbon fire d  power plants 

are operated to supply heat and to comply with the schedule while the u t i l i 
zation of existing coal f i r e  power plants has been s ig n ifica n tly  increasing. 
The coal fired  power plants with old equipment in  majority need moderniza
tion  and reconstruction to meet the increasing requirements.

The national energy development program is  based in part on u t i l iz a 
tion  of coal resources. Therefore, new high-capacity coal f ire d  power plants 

are expected to enter the system although the time at which th e ir  capacity 

adds to the present capacity is  unknown fo r the time being.
A ll the world over, low-grade fuels  and/or the ta ilin g s  of grading

* 0 r .К . Reményi, H-1014 Budapest, Úri u. 38, Hungary

Akadémiai Kiadó, Budapest



of high-grade fuels are used to fue l power plants. A fundamental condition 
fo r  economic u tiliz a tio n  are a plant design and operating process developed 
on the basis of highest theo re tica l knowledge in  the f ie ld  of fue l engineer
ing . Recurrent and s ig n ific a n t changes in  the fue l qua lity  make the control 
of the operating process o f power plants especially d i f f ic u l t .  Like a l l  o- 
ver the world, the ra tio  o f hydrocarbons among the fuels fo r power plants 
was predominant also in  Hungary before the early 1970s. After the rapid rise 
of o i l  prices, the reduction of the share of o i l  products in  energetic de
velopment has become a fundamental point, a fac t involving grave conse
quences with respect to both o i l  fired  and coal f ire d  power plants.

Table 1. Total heat demand (consumption) per fuel

REMÉNYI, К .

Coal O il Hydrocarbon Nuclear TO

1955 = 72.857
1965 127907 + 19728 + 8704 = 156.339
1975 152104 + 63885 + 52551 = 268.540
1983 159500 + 39239 + 108143 + 28715 335.597

147382

1983: Coal 45.6 %
Hydrocarbon 44.3 %
O il 9.5 %
Nuclear 8.1 %

Table 1 shows the change of to ta l heat demand of the power plants of 
MVMT (Trust of Hungarian E le c tr ic ity  Suppliers) as well as the d is trib u tio n  
of heat consumption per fu e l type in 1983. The ra tio  of coal based heat is 
highest in  the Table 1.

Table 2 shows the d is tr ib u tio n  of basic energy carriers used fo r e- 
le c t r ic i t y  generation per type. As shown in  the Table, the ra tio  of coal has 
reduced s lig h tly  in the recent ten years, f i r s t  of a l l  due to reduction of 
use o f brown coal fo r energetic purposes, but most s ign ifican t is  the reduc
tio n  in  the u tiliz a tio n  of o i l  in  th is  period while the ra tio  of natural gas 
has increased rapidly, a trend not welcome in  the long run. Also nuclear en
ergy, f i r s t  of a l l to substitu te  fo r o i l ,  entered the picture in  1983.
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Table 2. Electricity production of MVMT power plants per type of basic energy 
carrier

1973 1983

GWh % GWh %

Brown coal fo r energetic 
uses 5.677 32.2 5.419 22.0
L ign ite 4.352 24.7 3.779 15.4
Black coal semi-finished 
product 1.351 7.6 1.199 4.9
1 Total coal 11.380 64.5 10.397 42.3
2 Fuel o i l 3.988 22.1 2.985 12.1
3 Natural gas 2.231 12.7 8.584 34.9

Total hydrocarbon 6.140 34.8 11.569 47.0
Water power 124 0.7 155 0.6

4 Nuclear energy - - 2.473 10.1

Total production: 17.644 100.0 24.594 100.0

Table 3 is  a summary of the changes in  d is tr ib u tio n  of coal used fo r elec
t r i c i t y  generation and heat supply per type. L ignite and brown coal are pre
dominant while the ra tio  of black coal amounts almost invariably to 12.3 % 
w ith in  the to ta l coal based heat fo r the year 1983.

In the recent years, the qua lity  of coal fo r power plants has gone 
from bad to worse. This change in  qua lity  fo r the larger power plants in  the 
country is  illu s tra te d  in  Table 4 while fo r e le c tr ic  power industry as a 
whole in Fig. 1. Responsibility fo r th is  degradation fa lls  upon increasing 
ash content. Fuel fo r power plants consists of low-grade products and t a i l 
ings which cannot be u tiliz e d  fo r other purposes, containing, in  addition 
two combustible components, large amounts of impurity and moisture.

From among the components of fue ls  used in power plants, the ash 
content is  the most crucia l problem. Ash of d iffe ren t kinds, w ith rather un
favourable consequences, is  present in a high percentage in coal available 
in  Hungary, the ash content of the d iffe re n t coal types varying in  the range 
of 20 to 65 % depending on the conditions of mining and coal preparation 
process.
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Table 3. Distribution of fuels within total electricity production and heat supply *
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Year 103t TJ

1955 2.370 19.326
1965 21871 22.038

L ign ite 1975 6.230 41.758
1983 7.533 50.344

1955 4.038 47.772
1965 8.247 92.204

Brown coal fo r energetic uses 1975 7.916 90.969
1983 8.520 89.200

1955 244 4.110
1965 1.258 13.605

Black coal sem i-finished  
product 1975 1.797 19.314

1983 1.830 19.700

Tota l coal 1983 17.958 159.500
/

1955 42 1.649
1965 491 19.590

O il 1975 1.579 63.859
1983 971 39.240

1955 - -

1965 254 8.692
Natural gas 1975 1.471 52.526

1983 3.266 108.143х

Total hydrocarbon 1983 147.382

Nuclear 1983 27.300

*0 f  this high-inert gas: 315 million m3 (5260 TJ)
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Table 4. Change of heat value in major coal fired power plants in the country

Heat value, 

1970

k0/kg

1983

Lignite f ir in g
Gagarin 6.553 6.662
November 7 9.761 9.535

Brown coal f ir in g
Ajka 11.006 10.847
Borsod 10.221 9.370
Oroszlány 11.198 10.674
Tatabánya 12.667 11.775
Tisza I 10.980 10.521

Black coal f ir in g
Pécs 10.487 10.563

-------  Average heat value of
coal plus lignite

------- Average heat value of
coal without lignite from 
Visonta

------- Ratio of coal based
heat within total fuel 
based heat

Fig. 1.
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F i 9 -  3 -
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Fig. 5.
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The ash content of coal results in  considerable troubles in  both 
preparation and combustion o f the fue l, as well as in  the operation of the 
furnace. Serious d i f f ic u l t ie s  arise also in transport, comminution, ig n itio n  
of fu e l,  in  control of the b o ile r , slagging, as w e ll as in  connection with 
abrasion of the pulverized coal pipes and d iffe re n t b o ile r elements, and in  
the system of slag removal. However, while facing a l l  these d if f ic u lt ie s ,  i t  
is  not only the unfavourable e ffects of ash content that have to be taken 
in to  consideration in  evaluating the problems encountered in f ir in g  of the 
fue l but, instead, the equipment shall be developed so as to take combusti
b i l i t y ,  the effect of x y lite  in  case of lig n ite ,  the properties of ash, and 
the harmful effect of moisture in to  account in  combination to create favour
able conditions for use of low-grade coal in  the fu e llin g  process.

Fine-ground im purities , entering the furnace, a ffect the conditions 
of ig n it io n  unfavourably, and resu lt also in  slag formation. At high temper
atures prevailing especially in  the v ic in ity  of the burners, the fine fra c 
tions reach sticking temperature and adhere to the non-cooled surfaces of 
the w a ll.

Recently, less a tten tion  has been paid to problems resulting from 
the moisture content of fu e l although the d if f ic u l t ie s  in  the u tiliz a t io n  of 
fue l a rise as a combined e ffe c t of high ash content and moisture content. 
Moisture results in problems in  transport and ig n it io n . Residual moisture in  
pulverized coal entering the furnace contributes to abrasion in general, as 
well as to the corrosion of the afterheater surfaces. X y lite  of d iffe ren t 
degree of decay in younger coals and in lig n ite ,  in  addition to ash and 
moisture, results in troubles in  both grinding and f ir in g .  On the basis of 
the macroscopic and microscopic character resu lting  from the degree of decay 
and/or carbonization, four typ ica l x y lite  types can be distinguished, such 
as

— fibrous x y lite  (F ig . 2),
— "benignant" or b rig h t xy lite  (Fig. 3),
— "intermediate" or dark xy lite  (Fig. 4),
— metaxylite (Fig. 5).
Apart from fibrous x y lite  occurring in  reduced amounts, a common 

feature of the d iffe ren t types of xy lite  is  the low cellulose and high l i g 
n ite  content, the ir properties indicating b io log ica l decay.

Although the ta il in g s  of the separation process contain s t i l l  a

200



LOW-GRADE COAL AS FUEL

high percentage of components unfavourable in  respect of f ir in g  a fte r high- 
grade coal has been sorted out, th is  material is  an important and valuable 
basic material fo r energetic uses. Thorough theoretical investigations and 
high-class constructional development help to overcome d if f ic u l t ie s  re su lt
ing from the increasingly in fe r io r fue l q u a lity . Research and development 
are necessary in  both preparation of the fu e l, and the f ir in g  process i t 
s e lf. Hungary, a country in  rather unfavourable situation concerning ava il
a b i l i ty  of high-grade fue l, ranges among the top countries on a world scale 
in  respect of research and development in  th is  f ie ld . A plant ensuring coal 
preparation in  accordance with the requirements of the f ir in g  process, or 
stable combustion in  a possibly wide range of load, can be developed on the 
basis of thorough theoretical knowledge of diminution and combustion, re
spectively.

Both the preparation, and combustion i t s e lf ,  of coal are fundamen
ta l ly  determined by the behaviour of coal when burned. Accordingly, experi
ments are run on a wide scale, from laboratory size to indus tria l scale.
Most up-to-date methods are used to study the combustion process. Pulsed 
holography permits information to be obtained during combustion o f fue ls on 
processes which have not been detectable e a r lie r by the usual high-speed 
film ing  or Schlieren process etc. The studies included observation of phenom
ena taking place in  the immediate v ic in ity  of burning coal p a rtic le s , and 
of changes in pa rtic le  size. The holograms show sharp-cut interference rings 
around the burning p a rtic le , which lead to the conclusion that spherical 
wave phenomena may take place around the p a rtic le . Experiments to  determine 
changes in  the size of powderized coal p a rtic les  revealed s ig n ifica n t d i f 
ferences in  the rate of dimensional changes depending on the degree of car
bonization of the coal. Numerical re la tionships can be determined under 
given circumstances between grain size, oxygen concentration, and ambient 
temperature.

Hungarian coals of d iffe re n t degree of carbonization have been in 
cluded in  the experiments. The coal types tested were lig n ite , Eocene brown 
coal, and black coal, of an average p a rtic le  diameter of 70yum and 140 лт.
The furnace temperature was adjusted at 850 °C and 1000 °C, the oxygen con
tent of gas to feed combustion was 5 % and 10 %, respectively. A g iant pulse 
was used fo r holographic exposure. The image applied in the course of resto
ra tion  permitted the size of a l l  pa rtic les  present in  the space to  be stud-
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ied simultaneously. Presented in  Fig. 6 are the holograms obtained fo r the 
combustion of 140 yum diameter black coal p a rtic le s  at 1000 °C and with of 
5 % from among holograms of a large number produced in  the course of the ex
periments.

6 ^  hole

Combustion in flue gas 
at 107e O2 concentration 
and 1000°C

Initial particle diameter 
125 -160 fj

5^* hole

Coal feeding from 

3— hole
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As an example fo r numerical evaluation, the dimensional change of d iffe ren t 
coal partic les with an oxygen concentration of 10 % and at a temperature of 
1000 °C is  diagrammatically illu s tra te d  as a function of the distance cov
ered in  Fig. 7.

Lign ite ...... —
Eocene brown c o a l -------------
Black coal -------------

Combustion in flu e  gas 
at 5°/o O2 concentration and 
850 *C tem pera tu re

In it ia l p a rtic le  d iam eter 
125-160

4
\

j__ £i_
3 A 5 6
Feeding ho le No.

L
0.005 0.059 0.134 0.200 0.267 0.335 

Combustion tim e , s

Fig. 7.

The coal preparation process, in pa rticu la r the fineness of grind
ing in  case of pulverized-coal f ir in g ,  can be determined in  the knowledge of 
the behaviour of coal in  combustion. Preparation of coal fo r pulverized-coal 
f ire d  boilers takes place at coal grinding plants.

The Hungarian power plants use b a ll m ills , ro lle r  m ills , hammer 
m ills , and fan-type m ills . Richest experience is  available in operation of 
fan-type m ills  although the special local problems of any m ill type are en
countered. Fan-type m ills  are most widely used fo r grinding of the Hungarian 
brown coal and lig n ite .

The grinding m ill is  designed to grind, dry, and transport coal, 
the most complex process being required fo r grinding lig n ite  of high ash, 
moisture, and xy lite  content.

For lig n ite  from Gyöngyös, the incompatible g rin da b ility  of both
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components i.e . ash and l ig n ite  can be determined in  addition to moisture in 
grind ing  under actual operating conditions. Ash of re la tive ly  high grind- 
a b i l i t y  becomes undesirably overground when ground together with tough, f i 
brous and woody x y lite . With the ash content increasing, the drying gas de
mand o f the m ill decreases while the concentration of drying gas and pulver
ized coal increases, and as a re su lt, the output of the m ill reduces.

Favourable conditions fo r grinding coals mined in the country can be 
ensured only in a grinder spec ia lly  developed fo r these purposes in  the 
country. A combined hammer and beater m ill of type NN6 developed in  Hungary, 
of a grinding output of 32 t /h ,  has been successfully operating at the Bán- 
hida Power Plant fo r years. Also, the prototype of a m ill of s im ila r design, 
of a capacity of 50 t /h ,  has been constructed f i r s t  of a l l  to meet the de
mand fo  the Bicske Power Plant but suited fo r grinding Hungarian brown coals 
of any type after minor m odification. Ihe layout, the ro tor, and the a ir  
separator gates of the m il l developed by VEIKI (Research In s titu te  of Elec
t r i c  Power Industry) and constructed by the Disintegrating M ill Factory are 
shown in  Figs 8, 9, 10, respective ly. Patented units developed by VEIKI are 
the rough-grinding stages and the a ir  separator of the m il l,  decisive units 
in  respect of operation.

After the d iffe re n t factors affecting combustion of the fue l had 
been studied in d e ta il, development of a burner fo r d iffe ren t applications 
under d iffe re n t conditions prevailing in the furnace in a wide load range 
was s tarted  at the In s t itu te . As a resu lt, a new pulverized coal burner 
ca lled  separator-type sw ir l burner was developed at VEIKI, fo r use as a 
s ta r t in g  burner fo r the s tartup  of pulverized-coal fire d  boilers by pulver
ized coal, as a back-up burner in  case of troubles in  ign ition  or s ta b il ity ,  
and as a vapour burner in  case of open-cycle f ir in g .  Ihe spec ia lity  and 
v e rs a t i l i ty  of the burner l ie s  in  that the lim ita tions  due to d irec t f ir in g  
are p a rtly  offset by the f i r in g  system. Ihe adjustable amount of h ighly in 
e r t gas transporting the pulverized coal, ground and dried in the grinding 
m i l l ,  to  the burners can be separated from the pulverized coal in  the burneç 
and primary a ir of almost a rb itra ry  amount and temperature can be admixed to 
the fu e l before being blown in to  the furnace. Ihe burner prevents in e rt 
gases from entering the furnace or ign ition  zone, the combustion temperature 
being high and the ig n itio n  stable. In case of variable fuel qua lity , the 
optimum combustion temperature is  adjustable. The f ir in g  system equipped
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Fig- 8.

with the separator-type sw irl burner is  safe and simple. As is  well known, 
the formation of a stable flame is  s ig n ific a n tly  affected by the physical- 
chemical characteristics and reagency of the fue l, temperature, concentra
tio n  of fuel and oxid izer in  the combustible mixture, and by the mixing pro
cesses.

Coals of d iffe re n t type in general, and high-moisture lig n ite s  in 
pa rticu la r, are blown d ire c tly  in to  the furnace by means of the drying gas 
drawn from the furnace, to be burned there a fte r having been ground and 
dried in the grinding m il l.  A considerable amount of in e rt gas enters the 
furnace, reducing there the oxygen concentration, pulverized coal concentra-
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t io n , and combustion temperature. Ignition can not even take place below an 
oxygen concentration depending on the fuel only. The e ffec t of drying gas 
blown in  is  shown in Fig. 11. The curves in the Figure il lu s tra te  the change 
in  ad iaba tic  combustion temperature of lig n ites  of d iffe re n t heat value fo r 
the combustion of raw coal in  oxygen, ambient a ir ,  or by removal of 0 %,
50 %, or 100 % of the drying f lu e  gas by some method. The average qua lity  
charac te ris tics  of given coal are, as follows:

Heat value 6.060 kO/kg
Moisture 44 %
Ash 25 %

Removal of only 50 % of the drying gas resu lts  in  a considerable 
temperature rise. This is  espec ia lly  important fo r the s ta b il ity  of f ir in g  
when pulverized coal f ir in g  has to  be brought about w ith in  a short time in  a 
cold furnace in the phase o f b o ile r startup. The s ig n ifica n t difference be
tween f i r in g  with combustion a ir  and that with removal of 100 % of the dry
ing gas is  that while in  the former case the combustion temperature is  re
duced by the moisture present in  the coal, a considerable part of the mois
ture is  removed together w ith  the drying gas in  the la t te r  case.
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Fig. 10.
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In the combustion process, an important parameter is  the concen
tra t io n  of combustibles, which can be varied w ith in  wide lim its  by suitable 

separation of the drying gas or by admixture of primary a ir . The e ffe c t of 
concentration is  evaluated on the basis of the rate of pressure changes in 
case the mixture of pulverized coal and a ir  is  burned in an 'explosion bomb'. 
The bomb is  a sealed vessel of a volume of 70 dm"5 in  which ig n ition  takes 
place pyrotechnically. The value of pressure change, APmgx, and the average 
and maximum rate of pressure change, ДР /  A t and (dP/dt) , respective-
ly ,  are illu s tra te d  in  Figs 12 and 13. I t  can be seen that, in the range of 
concentration studied, the rate of pressure changes that is  the speed of 
combustion reduces considerably fo r low concentrations. E.g. in case of l ig 
n ite  from Bükkábrány, the speed of combustion is  very low for a concentra
t io n  of 300 g/m'5 that is  the combustion is  prolongated.

Based on the above considerations, a pulverized coal ig n itio n  sys
tem to  s ta rt a lig n ite  f ire d  steam bo ile r of a steam output of 620 t /h  has 
been designed, and b u i lt  in . Pulverized coal comes from the grinder of an
other b o ile r operating next to that to be started so that no intermediate 
pulverized coal storage is  necessary. The ig n itio n  system is  schematically 
il lu s tra te d  in Fig. 14.
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Boiler to be started Operating boiler

Fig .15,
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The photograph in  Fig. 15 shows the d iffe ren t elements of the pul
verized coal ig n itio n  system operated at the Gagarin Thermal Power Plant, 
and the pulverized coal outlets on the adjacent boiler serving as the source 
of pulverized coal. Fig. 16 shows the two 30 MŴ separator-type s w ir l burn
ers.

Tabulated in  Table 5 are the most important characteristics of the
system.

Table 5. Starting burner for 620 t/h boiler of Gagarin Thermal Power Plant

Specifications

Boiler output 590 MW
Flow rate of gas transporting pu l
verized coal to burners 120.000 m3/h
Dust concentration 177 g/m3
Heat value of coal 12.040 KJ/kg
Ultimate moisture in coal 12 %
Heat output per burner 30 MW
Primary a ir  at s tarting  burner 50 %

of calculated combustion
a ir demand

Primary a ir  temperature 150 °C
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In the development in  the f ie ld  of l ig n ite  f ir in g ,  the next step was 
to ra ise  the vapour burner, followed by re a liza tio n  of 'open-cycle' f i r in g .  
Raise of the vapour burner resulted in removal o f in e rt gas, separated by 
the vapour separator, from the active zone of the furnace only, while in  o- 
pen-cycle f ir in g ,  the to ta l amount of ine rt gas would by-pass the heating 
surfaces of the boiler to re turn  at a point of su itab le  temperature a fte r 
the a ir  heater. Thus not only the conditions of ig n itio n  and combustion in  
the furnace are improved but also abrasion in  flu e  I I  of the boiler reduces 
considerably due to the reduced rate of flow of f lu e  gases.

A separator-type s w ir l burner has been designed for use as a vapour 
burner to  separate, and feed with preheated a ir  in to  the furnace, the pu l
verized coal that remained in  the vapour lin e . The use of such a burner re 
su lts  in  a system considerably simpler as compared with the usual practices.

The block diagram of the open cycle fo r  a pulverized coal burner is  
shown in  Fig. 17. Two separator-type sw irl burners of a heat output of 2.5 
MW each have been used as vapour burner.

Fig. 17.

Taking into consideration a ven tila tion  rate fo 240.10^ m'Vh and a 
maximum grinding output of 50 t/h  fo r the grinding m ill as well as a gas 
separation of 60/40 and a pulverized coal separation of 95/5, the s p e c if i
cations fo r the burner are as follows:

Heat output 2.5 MW
Gas flow rate 48.10"5 m'Vh
Combustion a ir flow ra te  4.5.10'5 m"Vh (120 °C) 
(m = 1.25 a ir factor)
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An important advantage of the open cycle is  that purified  gas leav

ing the separator-type sw irl burner bypasses flue  I I  of the bo ile r and 
therefore the abrasion, f i r s t  of a l l  that of the economizer, reduces there 
considerably due to the reduced rate of flow. The abrasion reduces exponen
t ia l ly  according to exponent 2.5 of the flow rate fo r identica l material 
grade (flyash and material of economizer pipe).

Preliminary approximative calculations have been made fo r the exten
sion of open cycle over the entire 320 t/h  b o ile r (a l l  the four pulverized 
coal burners operating in  open-cycle system). The change in  flue gas temper
ature is  diagrammatically illu s tra te d  in  Fig. 18.

and Schott

Fig. 18.

The use of low-grade coal and operation of the boilers at p a rtia l 
load resu lt in  instable f ir e .  To operate the bo ile rs  without back-up f ir in g  
that is  without an increase in  the use of hydrocarbons is  an increasingly 
d i f f ic u l t  job.

A f ir in g  system increasing the s ta b il i ty  of f ir in g  without any sig 
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n if ic a n t expenditure has been developed, and successfully used at Tatabánya 
I  Thermal Power Plant, and Dorog Thermal Power Plant. No extinction of the 
flame is  experienced in  sp ite  of the continuous decline in coal qua lity  
since the separator-type s w ir l burner developed by VEIKI has been b u i lt  in , 
and the minimum load (w ithout o i l  back-up) has reduced considerably. The 
modified f ir in g  system has f u l f i l le d  expectations also under operating con
d it io n s .

The heat flu x  of a burner may change in  the range of 1.8 to 2.2 MW, 
depending on the output of the grinding m il l ,  see photograph in  Fig. 19.

REMÉNYI, К .
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Fig- 19.

As compared with the e a rlie r practice, the separator-type sw irl 
burner o ffe rs the follow ing advantages:

— Inert gases serving fo r drying (transport of pulverized coal) are 
separated and thus th e ir  unfavourable e ffect on the conditions of 
ign ition  and combustion can be avoided.

— The to ta l amount of combustion a ir  ( i f  necessary) and the pulver
ized coal can be thoroughly mixed before entering the furnace.

— The temperature o f combustion a ir  can reach even the ig n itio n  
point, bringing about favourable conditions fo r ig n itio n .

— No hazards of coal dust explosion are impending under favourable 
conditions of ig n it io n  and combustion.

— The burner permits a simple f ir in g  system to be brought about.
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BOOK REVIEWS

G. Franz (e d ito r): Beton-Kalender 1986. Taschenbuch fü r Beton-, Stahlbeton- 
und Spannbetonbau, sowie die verwandten Fächer
Ernst und Sohn, Verlag fü r Architektur und technische Wissenschaften, Berlin  
1986

The present volume 75 of the manual has been published in  conformity 
with the old tra d itio n  in  two parts, however, contrary to the previous vol
umes, in  the format A5 instead of A6. This a lte ra tion  permitted to use 
larger le t te r  types and to present the figures and tables in a larger form.

The f i r s t  part of the manual contains, in accordance with the long 
practice of many years, the fundamental knowledge necessary to the calcula
tion  of r .c .  structures. I t  treats in d e ta il of the material, properties 
and making of concrete (J. Bonzel), the kinds and products of steel (D. 
Bertram), the wood as building material and s truc tu ra l element (K. Möhler).
A chapter elaborated in  d e ta il in a comprehensive framework deals with the 
calculation of the stresses induced in  slabs of d iffe ren t forms, d iffe re n t
ly  loaded and supported (K. S tiglat-H . Wippel). The paragraph treating  of 
the dimensioning and checking the r .c . elements (E. Grasser), as well as 
designing calculation and the problems of buckling of slender r .c . elements 
(K. Kordina-U. Quast) c a ll the reader's a tten tion  to the rich diagram ma
te r ia l.  In a special chapter are the problems of the stressed structures 
dealt with involving also those of the p a r t ia lly  stressed constructions 
(H. Kupfer).

Ihe second part of the manual admits plenty of space for publishing 
the norms in  constructing r .c . structures (H. G offin). A special chapter is  
devoted to the problems concerning the construction of the r .c . projects 
(G. Kühn), as well as the impermeable concrete structures (R. Linder); th is  
la t te r  treated in  th is  form is  published fo r the f i r s t  time by the Beton- 
Kalender.

The chapter treating  of the bridge bu ild ing , disregarding the 
changes which took place in  the meantime, has been dealt with also in  ear
l ie r  volumes (H. Bechert). In turn, a completely new and comprehensive 
chapter deals with the problems of the construction of reservoirs which in 
volves a l l  of the questions of reservoir construction and offers a particu
la r ly  valuable information to the designer (E. Hampe); the publishing of

Akadémiai Kiadó, Budapest



BOOK REVIEWS

th is  subject matter serves the public in te res t.
The authors of the d iffe re n t chapters of the Beton-Kalender are 

prominent persons of the respective profession who fu l f i l le d  th e ir tasks 
with great care and an excellent pedagogic g i f t  under the leading of the 
famous e d ito r Prof. G. Franz. The rich  subject matter of the manual is  ac
companied by numerous ins truc tive  figures and many tables which upgrade to 
a great extent the usefulness of the work.

A fte r a l l ,  i t  can be la id  down as a fac t that the 75th volume of the 
Beton-Kalender tru ly  mirrors the current s itua tion  of the science and prac
tic e  on r . c . ;  i t  is  an indispensable aid to the practitioners in  r .c .  con
s truc tion  which, owing to the richness of i t s  content and up-to-dateness, 
might lay claim to a wide range in te res t not only in  the own country of the 
ed ito r but also in the in ternational professional f ie ld .

Anton Joan: Cavitatia
Vol. I I .  Editura Akademiei Bucureçti 1985. 720 pages

A fte r the publication of the f i r s t  Volume, th is  voluminous second 
one followed with surprising promptness.

The contents of Volume I I  are: 1. Functioning of a ir fo i l  (e ithe r 
single or cascade) in  the cav ita tion  or supercavitation regime. 2. Cavita
tion  of liq u id  flow past non a i r f o i l  obstacles. 3. Cavitation in  pipes and 
flow measuring devices. 4. Cavitation in  closing and control units and l i q 
uid d is tr ib u to rs . 5. Cavitation in  hydraulic turbines. 6. Cavitation in  
pumps. 7. Cavitation in  reversible and ra d ia l-a x ia l machines. 8. Cavitation 
on marine propellers. 9. Cavitation in  bearings. 10. Cavitation in  hydro- 
technical constructions. 11. Ultrasonic cavita tion  employed in various do
mains. 12. Cavitation in  unconventional technological operation of material 
processing. 13. Cavitation in  the blood c ircu la to ry  system. 14. Contents in 
English and in  Russian.

The extent of the d iffe re n t chapters are in  good agreement with the 
importance of the subjects, e.g. the cav ita tion  in  hydraulic turbines and 
the ca v ita tion  in  pumps are the longest chapters (202 and 148 pages, respec
t iv e ly ) .  A good addendum to these chapters is  the following one dealing 
with the cavitation in  reversible and ra d ia l-a x ia l machines. These chapters 
constitu te  excellent comprehensive treatment of the subjects.
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The good theoretical basis, the c lear treatment of the problems, 
the numerous figu res, diagrams and illu s tra t io n s ,  the carefu lly selected 
p le n tifu l bibliography are the good points o f the book.

Further merit of the book is  tha t the peripheral questions of the 
cavitation research, i.e .  cavitation in  chemistry and biology, cav ita tion  
in  cryogenic liq u id s , abrasive cav ita tiona l processing, cavitation in  the 
blood c ircu la to ry  system etc. are methodically elaborated.

After close examination of the book i t  can be ascertained with 
pleasure that th is  large scale work of professor Anton is  the f i r s t  compre
hensive trea tise  of cavitation research a c tiv ity .

To promote the cavitation research a c tiv ity , i t  is  desirable to 
publish th is  excellent work in English, completed with author and subject 
indexes specifying the orig in  of the figu res , diagrams and illu s tra t io n s  as 
w ell.

J.J. Varga

M. Негру — J.C. Berka: Active RC F ilte r  Design 
Akadémiai Kiadó, Budapest 1986, 306 pages

The German edition of th is  book has already been reviewed in  Acta 
Technica. The review is  republished now because the English trans la tion  of 
the successful book has been issued together with Elsevier Science 
Publishers B.V.

Dr.—Ing. M. Негру, author of the successful book "Analog Integrated 
C ircu its" has undertaken to sum up the design of active f i l t e r  networks 
with a co-author. Using the ir ten year in d u s tr ia l and educational experi
ences they had w ritten  a book that is  useful fo r both the students in  high
er education and practica l experts.

The book begins with a summary of network theory (1. In troduction,
2. Description o f filte r-ne tw orks). I t  is  followed by a survey o f the ap
proximation of amplitude characteristics and group-delay characteris tics 
(3. Approximation). The Active RC f i l t e r  networks are discussed comprehen
s ive ly  in  the 4th chapter (4. Synthesis o f active RC f i l te r s ) .  The 5th 
chapter discusses se n s itiv ity  and tolerances in  de ta il. The most useful c i r 
cu its  of the vast fam ily of biquadratic sections are evaluated on a common 
basis in  the 6th chapter. A summary of the steps of the design procedure, 
with a view on the most important p ra c tica l issues, such as dynamic range,
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measurements and tuning, fo llow s. Actual f i l t e r  design is  demonstrated by 6 
c a re fu lly  worked out examples. Design formulas fo r 16 d iffe rent second order 
sections and 2 d iffe ren t th ird  order sections are discussed in a separate 
chapter. Diagrams and tables o ffe r easy access to the most important cata
logue data of f i l t e r  design. Ihe book ends with a rich  bibliography and sub
je c t index.

Ihe present ed ition  is  a revised version o f a book o rig in a lly  pub
lished in  Hungarian, in  1981. th is  explains some strong references to re 
su lts  obtained in Hungary.

In short, the book "Active RC F ilte r  Design" discusses the cascade 
synthesis of RC f i l t e r s  in  a remarkably concise and systematic way. I t  can 
warmly be recommended as a very good reference book to a wide c irc le  of re 
search, design and production specialists.

K. Geher

BOOK REVIEWS

Wischers, В. (Editor): Betontechnische Berichte 1984/85.
Beton-Verlag GmbH, Düsseldorf 1986

Ihe Betontechnische Berichte is  a series of books, which contain 
papers published in the German periodical "beton" dealing with the actual 
problems and s c ie n tif ic  resu lts  in the f ie ld  of concrete techniques achieved 
in  the Forschungsinstitut der Zementindustrie in  Düsseldorf (Research In s t i 
tu te  o f the Cement-Industry in  Düsseldorf) concerning the problems and pro
fessional work of the Verein Deutscher Zementwerke (VDZ) (Association of 
German Cement-Works). Ih is  volume contains the papers published in the 
years 1984 and 1985, and is  the 24th book of the series. I t  contains s ix  
papers.

Ihe general subject of th is  volume are the rheological properties of 
fresh concrete.

Ihe f i r s t  paper, w ritten  by J. Bonzel and J. K re ll, discusses the 
assessment of the consistency in  fresh concrete. Many d ifferent procedures 
have been developed to determine the consistency of fresh concrete, each 
procedure evaluating the various aspects of the workability in a d iffe re n t 
way. Ihe paper deals with four kinds of procedures. Recommendations on the 
s u ita b i l i ty  and the po ten tia l application range of the various consistency 
te s t methods are given fo r construction practice.

Ihe theme of the paper worked out by F.W. Locher, W. Rechenberg and
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S. Sprung is  concrete a fte r a 20-year action of lime-dissolving carbonic a- 
c id . Water with a content of more than 60 mg is  very strongly aggres
sive according to DIN 4030, but fo r the determination of the l im it  values 
according to which the corrosive action is  to be appreciated there were on
ly  a few older experiences available. Authors carried out a long-time test 
in  which the tes t pieces were stored in  a very strongly aggressive water.
The conclusion of the research work was tha t dense concrete with an aggre
gate, which is  insoluble in  acids, may re s is t the attack of water w ith a 
content of up to 100 mg of lim e-dissolving carbonic acid per l i t e r  without 
any protection.

Test-related influences on concrete flow determination is  the theme 
of the paper of H. Grube and J. K re ll. The spreading method of consistency 
tests is  well su itable fo r the high-flow and wet concretes generally used 
on building s ites . The research work carried out by authors evaluated the 
apparatus-dependent and test-dependent influence factors of the f in a l test 
resu lts. This led to recommendations fo r the avoidance of mistakes and the 
improvement of the uniform ity of th is  consistency test method.

The paper of J. Bonzel and M. Schmidt treats the influence of d is 
tr ib u tio n  and orientation of steel fib res  on the qua lity  of steel f ib re  
concrete. I f  stee l fib res are not d is tribu ted  proportionally in  concrete 
and they are not orientated in  a ll d irections, the bearing behaviour of 
concrete w i l l  not be improved d e fin ite ly . Authors made extensive in v e s ti
gations in  which the e ffec t of d is tr ib u tio n , the orientation of fib re s  on 
properties of steel fib re  concrete of d iffe re n t compositions have been stud
ied. The test results showed that the stee l fib res  are mainly oriented 
v e rtic a lly  to the d irection of concreting and that the properties of hard
ened concrete can only be improved essen tia lly  at th is  level by the addi
tion  of steel fib res .

The next paper is  a report of the committee for fresh concrete of 
VDZ on the development of s tiffen ing  of concrete. This is  an important 
problem, when placing of concrete happens a fte r a longer period, using 
ready-mixed concrete. The paper informs on the investigation performed on 
the influence of cement on the rheological properties of cement paste. The 
investigation, and especially practice, have shown that composition and 
treatment of concrete as well as other factors have an influence on the de
velopment of s tiffe n in g  of concrete with a given cement. The investigations
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achieved many resu lts , but a systematic description of the problem is  s t i l l  
lack ing .

The s ixth  paper, w ritten  by J. K re ll, discusses the influence of 
chemical and mineral reactions of cement on the development of cement paste 
and concrete s tiffe n in g . Ihe subject of the paper is  a part-problem of that 
of the previous one and handles the influencing of the consistency of the con
crete mixture by chemical and mineral reactions of cement with the mixing 
water and by adding calcium sulphate as se tting  and hardening control agent. 
This paper also concludes tha t no exact statements can be deduced from the 
experiment.

Though each paper o f th is  and the former volumes contain independ
ent conclusions, the series of the volumes of Betontechnische Berichte also 
serves as a useful, general book of reference.

T. Gyengő
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GRAPHICAL PRESENTATION OF COMPRESSIVE MEMBRANE ACTION IN ONE-WAY SLABS
V V V

Chhangani, O.P. and Lenkei, P.

(Received: 25 A pril 1986)

A graphical procedure is  presented fo r the r ig id  p la s tic  slab 
with linear e lastic  horizontal re s tra in t. The flow theory approach 
was used to develop an equation to determine the compressive membrane 
force fo r small deflections. Thus the effect of linear e la s tic  hori
zontal boundary res tra in t upon the load carrying capacity of the 
one-way slab has been demonstrated. The equation developed shows 
that the parameters a ffecting the membrane action are those a ffec t
ing the yie ld  c rite rio n  and boundary res tra in t. The graphical 
presentation shows the load-enhancement to be expected from the 
compressive membrane action fo r one-way slab in the range of small 
deflections.

1. INTRODUCTION

I t  is  a well known fact that the load carrying capacity o f reinforced 
concrete slab with a horizontal re s tra in t at the boundaries may be greater 
than the capacity of a s im ilar unrestrained slab.

This behaviour can be a ttribu ted  to the fact that in  pure bending of 
reinforced concrete,with small steel proportions, the neutral axes at f a i l 
ure are very close to the surface and bending is  accompanied by la te ra l dis
placement at e ither of the supports. I f  these deformations are incompatible 
w ith the support conditions, no bending collapse w il l  occur. As the slab de
f le c ts ,  changes of the geometry cause the slab edges to tend to move outward 
and to react against the boundary elements. This action w i l l  induce compres
sive membrane forces in the range of small deflections which w i l l  enhance 
the fle xu ra l strength of the slab sections. This w il l  cause the ultimate 
load of the slab to be greater than the ultimate load calculated using 
Johansen's y ie ld  line  theory.

* Chhangani, O.P., Research scholar on leave from India

Prof. Dr. P. Lenkei, D ivision D irector, Hungarian In s t itu te  fo r 
Building Science, Budapest, Hungary

Akadémiai Kiadó, Budapest



CHHANGANI, 0 . P .-L E N K E I, P.

Fig. 1, Typical load deflection diagram

Figure 1 shows a typ ica l load parameter p against a typical deflec
tio n  parameter, wq . At the maximum load, crushing o f the concrete in compres
sion zone w il l occur and immediately the load carried by the slab decreases 
ra p id ly . This is  sometimes referred to as the "snap through" phase. At the 
fa ilu re  as the slab snaps through, the load drops as the neutral axis moves 
toward the surfaces and the compressive membrane force decreases. At th is  
stage of minimum load the slab may be cracked r ig h t through its  thickness in  
the middle and tensile membrane forces s ta rt to form in  the central region.
In case the reinforcement is  s u ffic ie n tly  d uc tile , the load may then again 
s ta r t  r is in g . The maximum load is  precisely due to compressive membrane ac
tio n . This behaviour or phenomenon is  termed sometimes as "arching action" 
or "dome e ffect".

Recently two very in teresting  lite ra tu re  reviews have been published 
by Desayi and Kulkarni /2 /  and another h is to r ica l review by Braestrup /1 /.
In h is  h is to r ica l review, he has classified the en tire  work under two cate
gories:

( i )  deformation theory and
( i i )  flow theory.

The difference in  these theories lie s  in  the de fin itio n  of stra ins.
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MEMBRANE ACTION IN  ONE-WAY SLABS

In the deformation theory, the to ta l s tra ins in  the material are used where
as in  the flow theory, the stra in  increments are considered.

The concept is  here further generalized on the basis of flow theory 
considerations. Further, the axia l s tiffne ss  of slab and i t s  boundary re
s tra in ts  have been modelled by horizontal e la s tic  springs. The complete be
haviour of a r ig id -p e rfe c tly -p la s tic  one-way spanning p a rtia lly  restrained 
slab is  analyzed by flow theory.

Recently Eyre and Kemp /3 / have presented a graphical so lution fo r 
predicting membrane action fo r one-way spanning restrained slab.

DESCRIPTIVE MODEL

A uniformly loaded one-way spanning continuous slab and i t s  ends 
modelled by horizontal linear e lastic  springs are shown in Fig. 2.

± * 4
X y

Fig. 2. Continuous slab and a model of a continuous one-way
spanning slab

Fig. 3. Deformation of ha lf s tr ip

223



CHHANGANI, 0 . P .-L E N K E I, P.

To be more general, we consider that the reinforcements at the mid
span and at the supports are d iffe re n t. Figure 3 shows the fa ilu re  mode of 
the slab i f  i t  fa iled  when fle x u ra l p las tic  hinges would form at the mid
span and supports, and the collapse load would be equal to Johansen load, 
i .e .  , y ie ld  line  theory value p^.

The e ffect of the p a r tia l res tra in t at the supports w il l  delay the 
increase in  the collapse load u n t i l  the slabs s ta rts  jamming against the 
surroundings. Then the load w i l l  increase to some value p which w i l l  be 
higher than the Johanson load p .

3. YIELD CRITERION OF ONE-WAY SPANNING SLAB

The yie ld c rite rio n , assuming the reinforcement and concrete both as 
r ig id -p e rfe c tly -p la s tic , fo r a single reinforced concrete section was f i r s t  
given by Wood /5 / in the non dimensional parabolic form

Fig. 4. S tress-stra in  diagram of the section

m n n 2
fo r Ô < 0 ; f(m,n) = - —  — 1 — ° t „  (^—) + C ^) á 0

mu nо n

m. n. n. 2
ô > 0 ; f(m,n) = + —  - 1 -  a ,  (— ) + 3 , (— )

m n nu 0 0
where

7 - ho T *  2

1 -
f cu

( 1 )

( 2)

( 3 )
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and 1 • 1 f syg
□

2z_
cu

1 • 1 f
( 4 )

1 - ZXL
CU

a and j£> can be calculated fo r the d iffe re n t percentage of s tee l at sup
port and mid-span using Eqs /3 / and /4 /.

The yie ld force of tension steel ïïQ at support and nQ at mid-span 
can be calculated from the following equations i f  the e ffec tive  cover and 
y ie ld  stress of the steel is  same at both of these places:

and

n = о d f  , о ya sy ’

n = о , d f  о y b sy

(5a)

(5b)

I t  must be kept in  mind that th is  type of yie ld  c r ite r io n  is  valid 
fo r moments and axia l forces acting in  any d irection re la tive  to the rein
forcement directions and is  independent of the moments and ax ia l forces act
ing transversely to the slab section; in  other words th is  c r ite r io n  is  of 
square y ie ld  type.

4. KINEMATICAL EQUATION

I f  the e las tic  deformations had to be taken in to  consideration, then 
the physical gap at the boundaries or possible e lastic  deformations must be 
overcome before the slab reaches the unrestrained collapse load. This means 
tha t the membrane action w i l l  s ta rt at some nonzero in i t ia l  deflection of 
the slab. This can be achieved by replacing the la te ra l support by a bound
ary linear e lastic  spring, the f le x ib i l i t y  of which includes the contribu
tio n  by the in-plane f le x ib i l i t y  of the slab. However, lumping of boundary 
f le x ib i l i t ie s  in to a single parameter of linear e lastic  spring s tiffness  is 
a crude approximation of the real behaviour. Furthermore, th is  theory is  be
ing developed on yie ld  lin e  collapse mechanism and w i l l  not be suitable for 
the slab that assumes to ta lly  d iffe ren t deflected shape in the e la s tic  range 

Figure 5 shows ha lf of the slab s tr ip  of length £  fa i l in g  p la s tica l
ly  under a load £  with central deflection wq , the geometrical equation of
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©  ©

th is  pattern of deflection being:

(a + Ç a + + e)2 = a2 + , (6)

neglecting higher order terms, th is  w il l reduce to

^ a ( 7)

For flow theory approach, the compressive s tra in  remains compressive 
as long as the compressive s tra in  is  increasing in  magnitude.

This means that we are looking for the axis of instantaneous ro tation  
of the section. To obtain th is ,  we d iffe ren tia te  the geometrical equation 
/7 /  w ith  respect to time:

£ Ç b + è
w wо 0 ( 8)

other kinematic equations are

where q and q , are r ig id -p la s t ic  rotations, э и

( 9 )

2 2 6

Fig. 5. Modelled h a lf s tr ip
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5. GENERAL EQOATION FOR MEMBRANE ACTION

I f  the yield c r ite r io n  is
f  (m,n) = 0 , (10)

then the p lastic  flow of the section w i l l  s ta r t. The flow ru le  (the normali
ty law) applied to the y ie ld  condition gives:

к = 0 = X Э f(m,n) 
Э m

= curvature s tra in  , (11)

ê = i  =
X Э f(m,n) 

3 n
= extension s tra in (12)

where X is  an a rb itra ry  non-negative scalar factor.
Using yield conditions defined in  Eqs (11) and (12) we obtain

. , Э f  ,0 я = X (------  ) =
a Э m

-  X (zr~ ) , (13)

Ç. « x ( -Ü )  = X t-----+ 2 ß
Эп n_ 2 Ï Ï 2о

(14)

Combining these two equations, we get

^a = - mu é a f -
a 2

2 ^2 -  2 J 'n0
(15)

S im ilarly we obtain th is  re lationship fo r mid-span

m о
I I ü0 h f-

a 1
u 0 b 2 В

i n 2о
(16)

Here we introduce the constitu tive  equation fo r the linea r spring 
and further modify i t  to obtain instantaneous elongation,

e = or è = (17)
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F ina lly , two s ta tic  equations are developed fo r horizontal force and 
moment equilibrium respective ly. For horizontal force equilibrium we obtain

n = n. , a b ’ (18)

For moment at the support, we obtain another moment equilibrium equa
tio n :

P • a m + m, — n, w a b b o (19)

With Eqs (1), (2 ), (8) and (13) through (19), the whole problem can 
be described. For the so lu tion  of these equations, Eqs (15) to (18) are 
substitu ted  into Eq. (8). Applying Eqs (9) and (18), th is  results in a f i r s t  
order d iffe re n tia l equation fo r  the membrane action:

u" г a 2 „ „ na  ̂ muwo r oil—  [ -  + 2 3 2 ; r j ]  + —
m w u
a

n w w a o o

о
t W i  0  n  U  -I d

------- + 2 ß 1 —  ] + “
n n S aо

( 20)

Applying Eq. (18) we obtain:

m 8 „ m ß , a 0m
(—-----2 + —---- -) 2 n -  (-----2-Üаnо nо n

a а п1 Un а-------) + ---- = w .
n Sw 0O O

( 21)

Using а/s = Ф ; and replacing derivation with respect to time by 
de riva tion  with respect to the deflection as done by Janas (4), we get:

d na2 в n -  A + Ф —  = w 
dwо

where

( 22 )

dn
Ф__ a

mn В ? m ß 1 u p 1
-  2 + 2П П0 0

a 2mu a l mu+
n n0 0

= w + A -  2 B n0 а

(23)

(24)

( 2 5 )

228



MEMBRANE ACTION IN  ONE-WAY SLABS

Replacing wq  + A -  2B ng = t  and d iffe re n tia tin g  th is  with respect 
to t  we obtain:

d n d t
1 -  2 В ---- = -------- , (26 a)

d w d wо о
or

1 - 2 B t
Ф

d t  
d w

(26 b)

As a resu lt of integrating a fte r rearrangement of terms, we get an
equation fo r ng as shown below:

2Bw_
n = C exp (— a -) - •

4B 2B 2B
(27)

Applying the boundary condition w = 0; n = 0 we obtain,o a

Eq. (27) can be rewritten as

(28)

(29)

Once the values of normal forces ng and n^ are known, we can calculate 
the moments mg and m̂  from yie ld  condition Eqs (1) and (2) respectively. I f  
these values are substituted again in  the equilibrium  equation, we w i l l  get 
the re lationship between load p and deflection wq .

GRAPHICAL SOLUTION

We use the same slab example as used by Eyre and Kemp /3 /.  This un it
width of a one-way spanning slab, p a rtia lly  b u i l t  in  at the ends, is  re-

2
quired to carry a to ta l d istributed load of 10.6 kN/m on the slab over a 
span of 4 m. The following data are taken from the same example:

f cu = 35 N/mm2, f  = 250 N/mm2, sy 9 = 0.004

h = 150 mm and d = 120 mm.
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For the sake of s im p lic ity , assume tha t the reinforcement and the e f
fe c t iv e  concrete cover are the same at the centre and at the supports.

For positive bending, the y ie ld c r ite r io n  of Eq. (2) can be w ritten  
in  the following form:

m , , n V / n s2—  = 1 + cx (— ) -  fj (— ) ,
U 0  0

(30)

and the normal force is  calculated from Eq. (29).
In the case of the former example slab we get from Eqs (23) and (24),

2m
В = (31)

A = 2mu “ (32)

Furthermore, assume tha t the value of the spring s tiffness is :

S = 5 . 10 kN/m

I f  the slab is  designed in  accordance with the yield, lin e  theory,

2 mu (33)

From a ll these parameters, we can calculate normal force д fo r  the
d if fe re n t values of w .о

The equilibrium equation fo r th is  h a lf s tr ip  can be w ritten as fo l
lows :

2m — n wо

and, from Eqs (33) and (34),

2 m.

(34)

(3 5 )
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Theoretical curve S tiffn e s s  of spring
. —-  — - 5x105kN/m2
-------------2xl06kN/m 2
------------- P erfectty -p las tic  w ith  rigid supports (m/muratici
-------------P erfectly -p las tic  w ith  rig id  sup p o rts (p /p y ratio)

Fig. 6. Graphical p lo tting  of the solution

The load-enhancement-deflection curve (or in teraction  diagram between p/p 
and wQ/h ) can be plotted by means of Eqs (29), (30) and (35).
The resu lts are illu s tra te d  in  Fig. 6.

У
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SHORT-TIME DEFLECTIONS OF TWO-WAY SLABS 
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A method to  c a lcu la te  sh o rt-tim e  d e fle c tio n  o f two-way slabs 
o f d if fe re n t boundary cond itions  is  presented. The e f fe c t iv e  moment 
o f in e r t ia  fu n c t io n  developed by Branson is  examined and a m o d if i
ca tion  o f the equation proposed in  ACI approach is  suggested. The 
method presented here in  considers the in flu en ce  o f re in fo rcem ent, 
m ate ria l p ro p e rt ie s  o f both concrete and s te e l,  and p h ys ica l dimen
sions o f the s la b . Thus the d e fle c tio n s  corresponding to  cracking  
and se rv ice  loads can e a s ily  be ca lcu la te d  fo llo w in g  the equations 
developed fo r  the  slabs o f d if fe re n t  boundary co n d itio n s . Comparison 
o f the method is  made w ith  the experim enta l s tud ies o f Hung and Nawy 
and the re s u lts  are found to  agree s a t is fa c to r i ly  w ith  the  e xp e ri
mental va lues.

NOTATION

C l, C2 constants
Ec modulus o f e la s t ic i t y  o f concrete
I

: dr
moment o f in e r t ia  o f cracked section
gross moment o f in e r t ia

l9
. mefjf m odified e f fe c t iv e  moment o f in e r t ia  ( fu n c tio n )

length  o f slab specimen in  x and y d ire c t io n s
Mx y 
Mcr

cracking  moment
bending 'moment

X dimensionless parameter
э , b , c , d power c o e ff ic ie n ts
f v y ie ld  s tress o f s te e l

f c c y l in d r ic a l s treng th  o f concrete
hc th ickness of slab
m power c o e ff ic ie n t in  Branson's equations
q in te n s ity  o f load ing
□4cr in te n s ity  o f c rack ing  load

Johansen's load
qJHw

£

s e rv ic e a b il i ty  load or working load 
d e fle c tio n  o f s lab0

6 exp, ő ca l experimental d e f le c t io n  and th e o re tic a l d e fle c tio n

ç c o e ff ic ie n t used as a m u lt ip l ie r  in  e la s t ic  theory
_ to  ca lcu la te  d e fle c tio n s

X X fa c to rs
P x ’ Py percentage o f re in forcem ent in  x and y d ire c t io n s
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INTRODUCTION

Ultimate strength is  usually taken as a basis fo r the design of 
up-to-date concrete structures. The application of th is  procedure along 
with the higher strength of the construction materials permits more slender 
s tructures to be used. I f  a slab is  designed on the basis of the strength 
c r ite r io n  alone, the degree of safety against collapse may be adequate but 
at the same' time the performance of the structure at the service load un
sa tis fa c to ry . For th is  reason, the excessive deflection  of s tructura l mem
bers and systems must be included in  the compliance c r ite r ia ,  the most im
portant. ones being strength a t ultimate loads, deflection  at service loads, 
and crack widths at service loads. Since the strength consideration alone 
generally results in  se lection of a slab depth, th is  leads to in-service 
problems, in  particu la r, to excessive deflections in  slabs.

There are some works based on empirical or semiempirical approach. 
Empirical approach was used by Shukla and M itta l /12 / whereas Rangan, and 
McMuller /11 /, and G ilbert /8 /  developed suitable span-depth ra tion  fo r 
mulae. The semiempirical approach presented by Desayi and Kulkarni /4 , 5/ 
p red ic t the load-deflection curve in  the form of piecewise stra ight lines 
upto Johansen's load fo r restra ined and simply supported slabs.

Desayi and Muthu /6 , 7/ presented a method fo r determining load de
f le c t io n  curves fo r simply supported and restrained slabs using a decreasing 
moment of ine rtia  function. Deflection is  calculated in  two steps. F irs t,  in  
the range of zero to cracking load, e lastic  plate theory is  used while in  
the second step the e ffec t o f cracking is  modelled by selecting a decreasing 
mbment o f ine rtia  function.

In th is  work Branson's method /2, 3/ fo r calculating deflections has 
been examined and a procedure is  suggested to calculate the load-deflection 
behaviour of two-way slabs beyond cracking.

1. DEVELOPMENT OF BRANSON'S EQUATION

In th is  proposed method we calculated deflections in two steps. In 
the f i r s t  step, deflection is  calculated from zero load to cracking load. In 
the second step, an e ffe c tive  moment of in e rtia  concept is  used to model the 
reduction in  flexura l r ig id i t y  of the slab along w ith a factor X , to ca l
cu late deflection of the slab beyond cracking.
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In the f i r s t  step, in  the range of zero to cracking load, deflection 
is  determined on the basis of the e las tic  p la te  theory /13/ and formulae are 
determined for d iffe re n t boundary conditions of slabs as:

6
ç q к

Ec *g
( l)

where q < q' “ ^cr

Central deflection

Fig. 1. Load deflection curve of two-way slabs

After the onset of cracking, the flexure r ig id ity  decreases. To model 
th is  behaviour, the e ffec tive  moment of in e rt ia  of the slab section as re
commended by Branson is  used in  a modified form. Hence the formula fo r de
fle c tio n  fo r q. > q > q w i l l  be H x r

6 t  q к

^ Ec ^meff
( 2 )

where

^meff ^
лсг

■> ( I g -  V  * 'o r (5)

The difference between th is  equation and that of Branson's as recom
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mended by ACI 318 /1 / l ie s  in  the use of power coe ffic ien t m. I t  was found
tha t the recommended power coe ffic ien t, 3, was not suited fo r use in  slabs
due to  the higher ra tio  o f q /a. Furthermore, the difference between I  andcr ? g
I  fo r  slabs is considerably larger than fo r beams and i f  the s tiffness  is  
not modelled properly th is  may result in h ighly underestimated deflections.

To verify these observations, deflections fo r the three sets of d i f 
fe ren t boundary conditions o f Hung and Nawy /10 / slabs were calculated. The 
power coeffic ien t of Branson's equation was varied from 1.0 to 4.0 with an 
increment of 0.1 and de flections were calculated at working load and at 
Johansen's load. The calculated deflections were compared with the experi
mental deflections taken from the experimental curves of Hung and Nawy. I t  
was found that the experimental values were always higher than the computed 
ones even fo r a power c o e ffic ie n t by 4 in Branson's formula. As has been 
pointed out by Branson /3 /  and observed during these calculations, Eq. (3) 
is  not very sensitive to i t s  power coeffic ien t. Hence i t  was decided to use 
a power coeffic ient 4 in  fu rth e r calculations.

In addition to th is  a factor X was introduced in the denominator of 
de fle c tio n  formula as done in  Eq. (2). The value of X was determined using 
the experimental value of deflection  at working load. The values of X ob
tained fo r d ifferent slabs o f d iffe rent boundary conditions are shown in  
Tables 1, 2 and 3. This non-dimensional parameter was further related to the 
sectiona l and strength properties of the slab as follows:

CHHANGANI, 0 . P .-L E N K E I, P.

where
X = Cl . X + C2

( 9

(4)

(5)

The power co e ffic ie n ts  in  th is equation are worked out by an ite ra 
t iv e  procedure suggested by Holman /9 /. During the computations, the best 
possible power coeffic ien ts were selected which at the same time resulted in 
a h igher coefficient of co rre la tion  with equation (4 ). The procedure of ca l
cu la tions  outlined above is  shown in the flow chart in  Fig. 2.

Now formulae fo r three d iffe ren t sets o f slabs of d iffe ren t boundary 
conditions are developed. Their results are compared with the experimental 
values. The theoretical curves obtained are superimposed on the experimental 
curves fo r  comparison.
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Fig. 2. Flow chart
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2. EXAMPLE: SLABS, WITH ALL THE FOUR SUPPORTS BUILT IN

For CT and C4 o f se rie s  o f s labs o f Hung and Nawy, /1 0 / the fo llo w in g  
equa tions  were obtained a f te r  a na lys is  o f th e ir  data on the basis o f the 

p r in c ip le  explained in  the preceding p a r t:

X = I . 2031 . TO 3 X + 0,0997 ,

o r approxim ate ly

where

o r approxim ate ly

( 6)

( 6  a) 

(7)

(7 a)

F igure  3 shows the v a r ia t io n  o f X w ith  X, the c o e f f ic ie n t  o f c o rre la 

t io n  o f Eq. ( 6 ) being 0.84.

Using equations (21, (3 ) ,  ( 6 ) and (7 ) ,  the d e fle c tio n  a t an in te n s ity  

o f q . > q > q „„  can be c a lc u la te d . The d e fle c tio n  a t q = q „  was a lso  c a l-  
c u la te d  using fa c to r  X .

F ig . 3, V a r ia tio n  o f X w ith  x
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The ca lcu la ted  d e fle c tio n s  have been compared w ith  the experim ental 

values and the re s u lts  are tabu la ted  in  Table 1 as the r a t io  o f experim ental 

values to  the computed va lues. The mean value and the c o e f f ic ie n t  o f v a r ia 

t io n  a t working load are 1.026 and 16.5 % re s p e c tiv e ly . At Johansen's load, 

these values are 1.193 and 25.77 % re s p e c tiv e ly . I t  can be seen th a t the 

proposed method g ives good re s u lts  a t working load but the c o e f f ic ie n t  o f 

v a r ia t io n  is  somewhat h ighe r a t Johansen's load.

I t  was observed during  the c a lc u la tio n  th a t near Johansen's load, 

the e f fe c t iv e  moment o f in e r t ia  was almost equal to  the cracked moment o f 

in e r t ia  due to  the very sm all r a t io  o f qc r /q  in  Eq. (3 ) . However, i f  we want 

to  improve the re s u lts  a t th is  stage, we can fo rm ula te  another fa c to r  A and 

the value o f th is  can be ca lcu la ted  using the experimental value o f d e fle c 

t io n  a t Johansen's load . The proposed equations (4 ) and (5) can be developed

fo r  d e fle c tio n  a t load in te n s ity  q. > q > q . However, in  p ra c t ic e , the
J w

s itu a t io n  a t working load is  more im portant than a t Johansen's load . Hence 

i t  was decided to  use the  proposed formulae o n ly .
F igures 4 and 5 show the comparison o f curves developed on the basis 

o f the proposed method and experim en ta lly . The proposed curve is  shown in
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Table 1. Comparison of deflections for the sets Cl and C4 of slabs

Slab Properties
X X

Ratio of experiment to 
computed deflection

At working load At

Cl-1 0.304 291.22 0.910 1.80
Cl-2 0.413 264.72 1.011 1.020
Cl-3 Square 0.372 252.76 1.082 1.091
Cl-4 (Isotrop ic) 0.345 244.10 1.153 1.033
Cl-5 0.387 265.56 1.086 1.025
Cl-6 0.524 268.38 0.807 1.176
Cl-7 0.404 287.02 1.101 1.753

C4-1 0.234 141.31 1.137 1.353
C4-2 Rectangular 0.253 123.22 0.979 0.292
C4-3 (Isotrop ic) 0.192 142.52 1.414 1.4076
C4-4 0.320 130.10 0.799 0.841
C4-5 0.308 130.07 0.832 0.888

Mean 1.026 1.193

C oe ffic ien t of varia tion 16.5 % 25.77 %

the modified form at cracking load where the influence of factor X is  also 
considered.

3. EXAMPLE: SLABS WITH THE ADJACENT SUPPORTS BUILT-IN, 
AND TWO SUPPORTS SIMPLY SUPPORTED

The slabs of series C3 and C6 of Hung and Nawy /10/ were used to  de
velop the formula-as explained e a rlie r. The fo llow ing equations were obtained

X = 3.39274 • 10~7 ■ X + 0.3705 , (8)

or approximately

x = 3.39 • 10 1 ■ X + 0,37 (8 a)

where

2 4 0
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X = ( s r1-8147 / f sy \-0 .28253

or approximately

X = ( 9 y)
-1 .8 /f sy\ -0.28

lfc

(9)

(9 a)

The variation of X with X is  shown in  Fig. 6, the co e ffic ie n t of 
corre la tion of Eq. (8) being 0.886.

Following Eqs (2 ), (3), (8) and (9 ), the deflection at an in tens ity  
of q. > q > q can be calculated. Deflection at q = q was also modified- i j  - I - ic r  1  мс г

using factor X . Comparison of the computed and experimental values is  
shown in  Table 2. The mean value and the coe ffic ien t of varia tion  at working 
load are 1.012 and 8.64 %, respectively. At Johansen's load, these values are 
1.294 and 11.67 % respectively.

Table 2. Comparison of deflections fo r series C3 and C4 of slabs

Slab Properties
\ V

Ratio of experiment to 
computed deflection

At working load At Johansen's 
load

C3-1 0.464 2.7693X105 1.000 1.375
C3-2 0.381 2.4073X105 1.183 1.475
C3-3 Square 0.645 9.6526x10'* 1.073 1.233
C3-4 (Iso trop ic) 0.682 5.5154X105 0.957 1.201
C3-5 0.629 5.9594xlOS 0.913 1.465

C6-1 Rectangular 0.529 3.1418xl0S 0.906 1.191
C6-2 (Iso trop ic) 0.410 1.9858x10"* 1.073 1.398
C6-3 0.437 1.8746xlOS 0.994 1.011

Mean 1.012 1.294

Coefficient of varia tion 8.64 % 11.67 %
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Fig. 6. Variation of A with x

F ig .  7 .  L o a d  d e f le c t i o n  c u rv e  o f  s la b  C 3-4
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Fig. 8. Load deflection curve of slab C6-3

Figures 7 and 8 show the comparison of curves developed on the basis 
of the proposed method and experimentally. The proposed curve is  shown in 
modified form at cracking load where the influence of factor A is  also con
sidered. I t  can be seen that the proposed method is  in close ayreement with 
the experimental resu lts .

4. EXAMPLE: SLABS WITH THREE SUPPORTS BUILT IN AND ONE SUPPORT
SIMPLY SUPPORTED

According to the p rinc ip le  as explained e a rlie r, the 9 slabs of series 
C2 and C5 of Hung and Nawy's /10/ experiments were examined. The following 
equations were found to best comply with equation (10), the co e ffic ie n t of 
corre lation being 0.76:

A = 2.1495 . 10'8 . X + 0.2957 , (10)
or approximately,
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where

X - 2.15 . 10" X + 0.30 
2

X = ( о + о ) у х у у
-2.304/f sy \-0 .3 l/Lx\ /Ц<'

IЧ

(10 а)

( 12)

Figure 9 shows the va ria tion  o f A with X.
With the use of Eqs (2 ), (3), (10) and (12), the deflection at an

in te n s ity  of q. > q > q can be calculated. A comparison of the computed 
J СГ

and experimental values is  shown in Table 3 as the ra tio  of experimental 
values to  computed values. The mean value and the co e ffic ie n t of varia tion 
at working load are 1.018 and 13.16 % respectively. At Johansen's load, 
these values are 1.123 and 14.02 % respectively.

Table 3, Comparison of de flections for slabs sets C2 and C5

Slab Properties
\ Y

Ratio of experiment to 
computed deflection

At working load At Johansen's 
load

C2-1 0.376 1.54437xl06 0.892 1.131
C2-2 0.379 8.27125xl06 1.241 1.045
C2-3 Square 0.565 8.12909X106 0.832 1.023
C2-4 (Isotrop ic) 0.364 4.18912X106 1.051 0.994
C2-5 0.313 1.80907X106 1.069 1.192

C5-1 Rectangular 0.360 1.42088xl06 0.913 1.072
C5-2 (Isotrop ic) 0.371 2.54250xl06

s
0.944 0.929

C5-3 0.252 s.ioosoxio5 1.221 1.488
C5-4 0.305 5.95167X105 1.003 1.233

Mean 1.018 1.123

Coefficient of va ria tion 13.16 % 14.02 %

Figures 10 and 11 show the comparison of the theoretical curves de
veloped on the basis of the proposed method, superimposed on the experimen
ta l curves. The proposed curves are modified at cracking load where the in 
fluence of factor X is  also taken in to  account.
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Fig- 9. Variation of X with x

Fig. 10. Load deflection curve of slab C2-4
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Fig. 11. Load deflection curve of slab C5-4

CONCLUSION

A method using Branson's equation to calculate deflections in two- 
way slabs is  presented. Three d iffe re n t sets of formulae applicable to the 
slabs o f varying boundary conditions are developed. The deflection computed 
using th is  procedure at working load is  compared with the experimental re
su lts  of Hung and Nawy's /10 / tests ;
a/ For slabs with a l l  the four supports b u i lt - in ,  the average value of the

<5 A  -, ra tio  is  1.026 and the coeffic ien t of variations 16.5 %. exp' uca]

b/ For slabs with two adjacent supports b u i lt - in  and two other supports
simply supported, the average value of the б / 5  n ra tio  is  1.012,бхр cal
and the coeffic ient of va ria tions 8.64 %.

с / For slabs with three supports b u ilt  in  and one simply supported, the
average value of 5 e /  g is  1.018, and the coe ffic ien t of variations 
13.16 %.
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I t  can be seen that the suggested method predicts s a tis fa c to r ily  the 
deflections fo r these three type of slabes. I f  more data w i l l  be available, 
the empirical coeffic ien ts of the equations can certa in ly  be improved.
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ON THE DYNAMICS OF A MAN-MACHINE SYSTEM 

Tran van Dae

(Received: 14 Danuary 1986)

In th is  work, the dynamics of a man-machine system is  dealt 
w ith, where the mechanical part consists of a hydraulic servomecha
nism and a load acting as in e rtia . On the basis of the resu lts , the 
s ta b il ity  of special cases, and the p o ss ib ility  of a l im it  cycle are 
analyzed, where also the hysteretic backlash is  taken in to  considera
tion .

INTRODUCTION

Man-machine systems where the mechanical part consists of a con
tro lle d  process and a servomechanism controlled by an operator are often en
countered in  the d iffe ren t f ie ld s  of engineering. From the point of view of 
contro l engineering, th is  part of the system can be modelled as a control 
system of negative feedback. A more in teresting , rather sophisticated, 
problem is  to model the operator in  respect of control engineering. Several 
authors have considered the operator to be a proportional phase lead-lag 
element with time delay / 2/  while others recommend a model with compensated 
in teg ra l transfer function of phase-lead character /3 /,  or a sampled-data 
model. No doubt, an element with time delay is  found in every model. The 
theory of retarded d if fe re n tia l difference equation shall be applied to find 
an asymptotic solution to the suitably selected state variable.

For given model, necessary and s u ffic ie n t conditions have been proven 
fo r the s ta b il ity  of such a system / 1/  to derive the s ta b il ity  maps in 
planes of d iffe ren t coe ffic ien t and technical parameters. Also, by means of 
a simple method /5 /,  we get to know transient characteristics of quite a 
number, and a special, asymptotic, Nyquist p lo t has been obtained (a case 
lik e  th is  has never been encountered in the lite ra tu re  so fa r ) . Here the 
question arises as how to apply the Nyquist s ta b il ity  c rite rio n  to determi
nation of the system s ta b ility ?  W ill a l im it  cycle occur in  the system i f  
there exists a hysteretic backlash between the servomechanism and the con
tro lle d  process (e.g. in  case of vehicles with power-assisted steering un it) *

*Dr. Prof. Tran van Dac,Truong DHBK Hanoi (Hanoi In s titu te  of 
Technology), Department of Precision Mechanics and Applied Optics Technical 
University of Budapest

Akadémiai Kiadó, Budapest
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and i f  so, lim it cyc le /s / o f what features, and how many, w il l  occur?
Investigated below are these questions, and some simple il lu s tra t iv e  

examples are given. For the sake of a better understanding, f i r s t  the h is to 
ry o f the method is  dealt w ith  and then the d iffe re n t questions w i l l  be d is
cussed in  deta il.

1. STRUCTURE, STABILITY CRITERIA AND STABILITY MAPS OF THE SYSTEM

1.1 Structure

Using a human operator model /2 /

H(s) = K0( l  + Tgs)e THS , 

a servomechanism with tra ns fe r function

Y^(s) = K1 /s(T1s + 1)

and a controlled process w ith  transfer function

Y2(s) = 1/Js2 ,

where

s
X
X
X

a
s
e

— human operator's gain
— human operator's time constant
— human time delay (or dead time)
— servomechanism gain
— servomechanism time constant
— load or in e r t ia
— Laplace transform variable
— input signal and
— output signal as well as
— error signal o f the complex system,

the block diagram shown in  Fig. 1 can be p lo tted.
For sake of s im p lic ity , x = xg w i l l  be used.

Now the complex system can be described by retarded d iffe re n tia l d i f 
ference equation (RDDE)

— + .Ax + B x (t- l)  = JQ_ (1.1)
where

X = [xl f  x2, x3, x j  T and 0 = JjD, 0,0,0J T 

are the column vectors,
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ON A MAN-MACHINE SYSTEM

and

constant m a trices , w h ile

al  = 2 ç о T

bl  =
У н те

Л 2

2

1.2 S ta b i l i t y  c r i t e r ia

For the system w ith  the tra n s fe r fu n c t io n  given in  F ig. 1, the s ta 

b i l i t y  c r i t e r ia  can be derived from the fo llo w in g  theorem / 1 / :

F ig. 1.

Theorem: For c h a ra c te r is t ic  equation

0 ( iy )  = M(y) + iS (y ) = 0

o f RDOE (1 .1 ) ,  where
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4 2М(у) = ReD(iy) = у — a0y + b^y sin у + bQ cos y,

S(y) = ImD(iy) = —a^y"5 + cos у + b sin y,

and i f  yk , the zeros of M(y), у £  R+ are arranged so as to 
result in  yk > Ук+р  (k = l,2 ,3 ,. . . ,m; b r ie fly : k=l,m), then the 
system w i l l  be stable provided

i )  S(yk) i  0 (1.2a)
and

m k+li i )  X ( - 1 Г  1 sign S(y. ) = -2  . (1.2b)
k=l k

Here the proof of the theorem is  disregarded beacuse you may read i t  
in  d e ta il in  /1 /. A fter a l l ,  the re lationships given in (1.2) are the sta
b i l i t y  conditions fo r the complex system in  question.

1.3 S ta b ility  maps

Now the s ta b il ity  conditions set out in  (1.2) are given a positive  
form. For the s ta b il ity  maps plotted in  the planes of parameters a^, a^, 
b^ and bg, the following equations are availab le as equations of the bounda
ry lin e s  of the s ta b il ity  regions:

-a l yj  + bl yj  cos yj  ~  b0 Sln yj  = 0 ( l-3 a )

Vj  ~ 0yj  + bl yj  yj  + b0 cos yj  = 0 1 ' 3b)

where y^ ( j  = 1, «> ) zeros of function S(y), у £R +.
On the basis of the general s ta b il ity  c r ite r io n  and arrangement of 

zeros y^, the location of the s ta b il ity  range that is  whether i t  l ie s  to 
the r ig h t  or to the le f t  from the boundary lin e s  can be determined. The 
re su lts  are shown in  Figs 2 and 3.

Apparently, the use of the s ta b il ity  maps would be more convenient 
i f  they were plotted in  the planes of the technical parameters, e.g. in  
planes (TH,Te), (?0,J ), or Then, fo r plane (TH.Te),
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the s ta b il ity  map being shown in Fig. 4.
S im ilarly, in plane (Tg,J), equations

give the boundary lines  fo r  the s ta b il ity  region where

VAN DAC, TRAN

Fig. 2b (a^ = 0.3)
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Fig 3b (bQ = 5, a1 = 0.5, 0.0)

255
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40  b

Fig- 4a (An = 100, P = 0.1)

Fig. 4b (Aq = 100)
256
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^Pe THtan У/y) T^cos у

(see Fig. 5).

F ina lly , in  plane (TQ, 
s ta b il i ty  range are equations of the boundary lines of the

(1.6a)

.  PTe V cos У -  PTuSin

2T„ (1.6b)

(see Fig. 6).

The above resu lts  can be used ( in  the form of d iffe ren t s ta b il i ty  
maps) to investigate the system that is  fo r  analysis or, in  a sense, fo r
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T, s

Fig. 5 (Te = 2 [sec] , Тн = D.15 [sec] , Kg = 0.6)

synthesis of the system (concerning, as a matter of fac t, the structure 
shown in  Fig. 1).

The examples given la te r  in  th is  work show demonstratively how to use 
the s ta b i l i ty  maps.

2. THE LIMIT CYCLE PROBLEM

I f ,  as shown in Fig. 7, there exists a hysteretic backlash between 
the servomechanism and the contro lled object at the d iffe ren t connections of 
the mechanical transmission lin e , a lim it  cycle may take place in  the com
plex system. A block diagram equivalent to the appropriate block diagram 
algebra can be obtained in  th is  case (Fig. 8).
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Fig. 6 (P = 0.1, T|_| = 2.2 [sec] , Te = 4 [sec] )

Fig. 7

Actually, the complex system has become nonlinear as a resu lt of 
hysteretic backlash, and there exists a closed loop containing a nonlinear 
feedforward element and a variable (or non-rigid) feedback element.

As there is  only one nonlinearity in  the system, the describing 
function method is  used to detect the l im it  cycle taking place in  the com
plex system. Iherefore, a l im it  cycle w i l l  occur i f ,  and only i f ,  equation
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Fig. В

К H(i ш )
1 + N(B) ---------- . — — —  ------ô----------------------- = 0 (2 .1а)

J ( i ш ) JT^ ( i  ш у  + i  ш + « Л

-1  Ке(1 + i  ш Те) е 1 ш ТН

N ( В ) J ( i о) )2 Гг2 ( iw  )2 + 2 ç QT0( i  ш ) + Г
(2 .lb )

where В — amplitude of the sinusoidal input signal of nonlinearity N,
N(B) — describing function of hysteretic backlash 

is  s a tis fie d  /6 /.
I t  is  easy to see tha t the right-hand side of (2.1b) fu l ly  agrees 

w ith the transfer function o f the linear open-loop system i f  s = i  to . This 
fa c t suggests that the loop transfer function of the system free of feedback 
is  d ire c t ly  applicable independently of the location of the nonlinearity 
tha t is  of whether i t  is  found in  the feedforward lin e  or in the feedback 
lin e . Actually, the physical implication, of how a l im it  cycle is  taking place 
in  the complex system can be bette r understood on the basis of Fig. 8.

Figure 11 shows that more l im it  cycles may take place in the man- 
machine system, both convergent and divergent ones.

By means of a su itab le  computer program, the parameters of the lim it  
cycle tha t is ’ the amplitude and frequency of the input signal of the non
l in e a r ity  (see Figs 7 and 8) can be obtained. At the same time, also the 
type o f the lim it cycle can be determined on the basis of the type of in te r
section.
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Fig. 9a
J = 6 [kg ] , A0 = 0, TQ = 0.15 [sec] ;
Te = 4 [sec] , T̂ | = 2.2 [sec] , Kg = 0.6 

(Nyquist chart having asymptote fo r s ta b il ity  case)

3. SOME COMMENTS ON THE USE OF THE NYQUIST CRITERION

The system can be s t i l l  stable even i f  the damping ra tio  of the man- 
machine system in  question is  zero (or negative). However, in  th is  case, the 
shape of the Nyquist p lo t d iffe rs  from the shape usually obtained. Namely, 
the curve has an asymptote in th is  case so that d if f ic u lt ie s  are encountered 
in  application of the Nyquist c r ite r io n . The problem lie s  in  tha t whether or 
not point —1 + iO of extended complex plane Y(i u ) is  enclosed by the 
closed curve containing the in f in ite ly  d is tan t point. Our e a r lie r  investiga
tions ju s tif ie d  and generalized the a p p lica b ility  of the Nyquist c rite rio n  
/1 / .  Namely, in the d irection  of frequency increase, near the o rig in , the 
curve continues running clockwisely. Therefore, the conditions under which 
the system is  stable can be determined. Accordingly, the follow ing practical 
ru le  applies:
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Fig. 9b
3 = 6 [kg] , ç 0 = 0, TQ = 0.1 [sec] ;

Te = 3.5 [sec] , T|_| = 2.05 [sec] , K0 = 0.6 
(Nyquist chart having asymptote fo r in s ta b il i ty  case)

I f  there exists an asymptote for the Nyquist curve, th is w il l  b ifu r
cate extended complex plane Y (i ы ), and the system w il l  be stable i f ,  and 
only i f ,  p o in t—1 + iO and the orig in  l ie  in  the opposite semi-plane (F ig .9), 
moreover, also the Nyquist p lo t do not encircle the c r i t ic a l  point —1 + iO.

Essentially, th is  ru le  allows of a generalization of the Nyquist 
c r ite r io n  in engineering practice .

4. EXAMPLES

Given below are some simple examples to i l lu s t ra te  the above resu lts .
Reader can follow these examples without any d if f ic u lty .  Note that 

any d e ta il can be found e a r lie r  and la ter in  th is  work so that no detailed 
explanations are given here.

Three typical cases are presented f i r s t :  the stable case, the unstable 
case, and the c r it ic a l case (where point —1 + iO is  intersected by the 
Nyquist curve). Then, the problem of the l im it  cycle w i l l  be discussed on
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Fig. 10a
J = 6 [kg] , Tg = 0.1 [sec] , = 0.01;
T|_l = 0.1 [sec] , Te = 2 [sec] , Kg = 0.6 

(stable case; overshooting with М «2)

the basis of the describing function method, using i t  as a function of d i
mensionless variable h/B. The las t point to be discussed is  a p p lic a b ility  of 
the Nyquist c rite rio n , especially fo r two cases where there ex is t an asymp
to te  fo r the curve, one being stable while the other unstable.

Note that the necessary informations are given in each Figure. There
fore, any misunderstanding can be avoided, and the correctness and accuracy 
of the d iffe ren t s ta b il ity  maps and the v a lid ity  of what has been said above 
can be checked on the basis of the Figures (Figs 10 through 12).

5. CONCLUSIONS, ANALYSIS

As has been seen, mathematical tools not very complicated indeed can 
be used to answer questions arising in  re la tion  with s ta b il ity  and transient 
phenomena of a rather complicated system lik e  that discussed here, although
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Fig. 10b
3 = 6 [kg] , Tg = 0.15 [sec] , г; Q = 0.01;

T|_| = 2 [sec] , Te = 4 [sec] , K0 = 0.6 
(case of in s ta b il i ty )

no time function has been given for the system response. However, no d i f 
f ic u lt ie s  are encountered theore tica lly  because i f  the input signal of the 
system is  a Dirac (de lta ) function, then the output signal of the system 
can be determined by means of formula

oo

2 (x ( t )  = — Re W ( iu  ) cos ш td  u
S TT J

0

/6 /  where W(s) is  the trans fe r function of the closed system. Integration 
can be simply carried out by means of a computer, and then also error s ig 
nal x ( t )  can be determined. In practice, i f  the complex system is  stable, 
the integrand function w i l l  be very small in  case of high frequencies. Thus 
in teg ra tion  can be stopped at a certain frequency value.
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Fig. 10c
0 = 6 [kg] , TQ = 0.1 [sec] , = 0.01;

T|_l = 2.02 [sec] , Te = 3.75 [sec] , «e = 0.6 
(c r i t ic a l case; sinusoidal o s c illa t io n  occurs in the system)

The s ta b il ity  maps consist of more d is junct parts of f in i te  or in 
f in i t e  number in  the planes of d iffe re n t parameters because a perfect cor
respondence is  not always existing between the planes. However, the number 
of the s ta b il ity  domains in these parameter planes reduces as damping in 
creases u n t il ,  f in a l ly ,  they run in to each other.

The human influence (as a compensating element) makes the technical 
part stable when damping is  zero. In other words, without human influence, 
the system would ce rta in ly  be unstable i f  there were no energy d issipation 
in  the technical part in  a dynamic state .

5.2 S ta b ility  maps

5.2/a S ta b ility  maps in  the planes of coe ffic ien ts

I f  there is  no damping (a^ = 0), then, below a certain l im it  ao in  
co e ffic ie n t plane (bg, b^), the s ta b il i ty  region w il l  be extended by the
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Fig. Па
J = 6 [kg] , TQ = 0.1 [sec] , = 0.1;
T|_| = 2.2 [sec] , Te = 4 [sec] , Kg = 0.6 

(convergent l im it  cycle occurs in the system with h/B = 0.05 and
u> 0.35/sec)

(The backlash free system is  tab le)

higher value of a^. However, above th is  l im it ,  the situation is reversed, 
moreover, th is  s ta b il ity  region may even vanish.

I t  can be seen in  plane (a^, b^) that the s ta b il ity  range consists 
of d is junct domains (Fig. 3).

In case â  í  0, the e ffec t of damping is  unfavourable for lower 
values of a  ̂ and b  ̂ as several parts of the s ta b i l i t y  region reduce (Fig. 
3b). However, the same parts of the s ta b il ity  region w il l  increase as the 
values of a  ̂ and b  ̂ increase and f in a lly , beyond a certain lim it ,  the sys
tem becomes stable provided

M(yJ> < 0  , y* £  (0, -n /2 )

as a single condition.
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Fig, l ib
J = 6 [kg] , ç Q = O.Ol, TQ = 0.1 [sec] ;
Te = 5 [sec] , TH = 1.9 [sec] , Kß = 0.6 

(Case of the unstable backlash free system; C denotes a convergent l im it  
cycle and D denotes a divergent l im it  cycle. The nonlinear system may be 
stable with the convergent lim it  cycle beside a frequency и Ä?0.6/sec 

backlash-amplitude ra tio i h/B 0.25)

5.2/b S ta b ility  maps in  the planes of technical parameters

In plane (T  ̂, Te), the s ta b il ity  region consists s im ila rly  of more 
disjunct parts in  case of a negligible damping ra tio ,, with, however, the 
number of these parts not being in f in ite .  The number of these parts and the 
parts themselves increase as P and Tg reduce but, in  th is  case, in  accord
ance with a d iffe re n t law (Fig. 4). I f  damping is  prevailing in  the system, 
the parts of the s ta b il ity  range w i l l  increase and, beyond a certain l im it  
of damping, they run in to  each other. I t  can be seen in the map that there 
exists an extremum fo r both T  ̂ and Tg, a fa c t suggesting that there ex is t
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Fig. 11c
3 = 6 [kg] , Tg = 0.1 [sec] , ç Q = 0;

= 2.05 [sec] , Tg = 4 [sec] , Kg = 0.6 
(Case of Nyquist chart having unstable asymptote. Point C denotes the con
vergent lim it  cycle and point D denotes the divergent case. Parameters of 

point C: h/B Ä* 0.13, u ÄfO.45 sec)

optimum states in a sense. For instance, the optimum value of T  ̂ can be 
found by the operator only a fte r a long p ractice, and a prompt response of 
the operator is  required to reach the optimum state where T0 is maximum. 
In te re s tin g ly  enough, i f  the operator's re fle x  is  'too good' (T^ 4- 0 ), in 
s ta b i l i t y  may take place again as a resu lt of 'human flu s te r '.  In case of 
Tg ^  Tg .j., the response of a well experienced operator may be slow and 
T|_| may assume quite a high value. Thus, there exists a hyperbolic re la tio n 
ship between the operator's experience and a tten tion . On the other hand, we 
might be rig h t in saying tha t in s ta b ility  resu lts  from excessively long 
dead time. Accordingly, the c r it ic a l values must be greater than the aver
age human lag phase.
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Fig. 12a
3 = 6 [kg] , TQ = 0.016 [sec] , ç Q = 0;
TH = 0.15 [sec] , Te = 2 [sec] , K0 = 0.6 

(S ta b ility  case)

Curve 3(Tq) permits the effect of the technical parameters to  be in 
vestigated. I t  is  a matter of fact that the in e rtia  affects the system 
s ta b il i ty  favourably (Fig. 5). Considering time constant Tg, an optimum in 
te rva l can be determined on the basis of the asymptotic lines even in  case 
of s lig h t damping.

Sometimes parameters Tg and ç g are of in terest as parameters charac
te r is t ic  of o sc illa tio n  and transients of the mechanical part of the system. 
As shown also in  Fig. 6, there are notches of an in f in ite ly  large number in 
the s ta b il ity  region, reducing and becoming more and densely arranged as 
they approach the o rig in . At the same time, a hyperbolic re la tions ip  can be 
detected also between these two quantities. I t  can be shown that lower 
values of T̂  and P increase the s ta b il ity  region, and fo r given values of
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Fin. 12b
J = 6 [kg] , ç Q = 0, TQ = 0.1 [sec] ;

Tg = 4 [sec] , TH = 2.05 [sec] , Kg = 0.6 
(The Nyquist chart having an asymptote fo r the in s ta b ility  case)

TH, Tg, there is  an in te rva l of ç g which ensures s ta b il ity  fo r the complex 
system. Values fa llin g  outside of th is in te rva l make the system unstable 
(F ig . 6 ), and, f in a lly ,  th is  in te rva l increases with reducing P and Tg in 
f u l l  agreement with the fa c t tha t the system's aptitude to in s ta b il i ty  in 
creases as a result of a higher loop gain.

5 .2 /c  Features of the l im it  cycle

In a man-machine system of a structure described, hysteretic backlash 
always results in one or more l im it  cycle(s). Considering the nature of 
these l im it  cycles, there ex is ts  a convergent l im it  cycle in a re la tive ly  
low frequency range in  case the system, free of backlash, is  stable (as can 
be stated on the basis of in tersection of the Nyquist curve and the curve of 
negative reciprocal describing function —1/N(B) while both convergent and 
divergent lim it  cycles may take place i f  the system is  unstable, the 
convergent lim it cycle being of lower frequency.

Surprisingly enough, th is  fact suggests tha t an a p r io r i unstable 
system may become stable (but never asymptotically!) in  a state correspond-
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ing to the convergent l im it  cycle i f  we, in  one way or other, could operate 
the system in th is  state. Therefore, non linearity affects the system favour
ably in  respect of operab ility  in th is  case.

5.2/d Again a comment on use of the Nyquist c rite rion :

In the man-machine system, the non-regular case where there exists an 
asymptote for the Nyquist p lo t may be encountered. In th is case, the Nyquist 
c r ite r io n  applies invariab ly, and the system w il l  be stable i f ,  and only i f ,  
point —1+iO and the o rig in  of the extended complex plane, Y(i u ) ,  are sep
arated by the asymptote, morevoer, also the Nyquist p lot do not encircle  the 
c r i t ic a l  point —1+iO. However, e ffo rts  are usually made in  p ractice  to avoid 
such situations i f  possible, and simpler system structures con tro llab le  by 
simpler system structure and tools are preferred.
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BOUNDS OF THE NUMERICAL VALUE OF ROTATIONAL FLEXIBILITY

I .  Ecsedi*

(Received: 5 September 1986)

The proof of lower and upper bounds of ro ta tiona l f le x ib i l i t y  
of a homogeneous, iso trop ic , ro ta tiona lly  symmetric disk of variable 
thickness, made of lin e a rly  e lastic  m aterial, is  based fundamentally 
on two minimum theorems of the e la s tic ity  theory.

NOTATION

г,ф
P
u
a
b
E
V
u

o>> a ,

Nr , N ,
U
H
V
J
n , n ,

a r > cc ф >
a
R
V

polar co-ordinates 
density
angular ve loc ity
radial co-ordinate of 'inner' mantle surface of the disk
radial co-ordinate of 'outer' mantle surface of the disk
Young modulus
Poisson number
rad ia l displacement
normal stresses
spec ific  elongation
stress resultants (N/m)
stra in  energy
ro ta tiona l f le x ib i l i t y
volume
moment of second order 

l  aux ilia ry  values

natural angular frequency 
ring centre radius 
ring width,

the other quantities and variables being defined in  the tex t.

1. INTRODUCTION

Figure 1 il lu s tra te s  a homogeneous, iso trop ic , ro ta tiona lly  sym
metric disk of variable thicKness, made of lin e a r ly  e las tic  material.

The state of stress, s tra in , displacement of the disk ro tating at 
constant angular ve loc ity  ш can be brought about by solution of the bounda
ry value problem described by the following equations:

*Dr. I. Ecsedi, H-3524, Miskolc, Klapka Gy. u. 36. IX /2., Hungary

Akadémiai Kiadó, Budapest



ECSEOI, I .

Ioo
h = h ( r )

Fig- 1. Rotationally symmetric 
d isk of variable thickness

Fig. 2. Thin ring

dN'r  Nr - N«> u 2 n---- + ---------------  + p hr ш = 0 ,
dr г

Nr (a) = 0 , Nr (b) = 0 ,

Eh

(1.1),

Nr = ( e + V e ,
1 -  V

2 г

(1.1)2,3

(1.2),

Мф =
Eh ( 
1 2 ''

V  e + e . г  Ф (1 .2)2
1 -  V

£r, = du 
dr 9

E = H ф Г  ’ (1 -3)1,2
where h = h (r) thickness of the disk'

Nr  = h a r ,  Иф = Ьюф stress resultants.
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Equilibrium equations (1.1), „ -, show tnat a rotating disk is  inves-19 Z j j
tigated where no load is  acting upon the inner and outer mantle surface, the 
disk being loaded only by the force system d istributed over the volume of 
density

q„ = prw (1.4)

Strain energy U of the disk can be determined by means of formula 
b 
Г

u = i  [ n2 
h Lr

+ N * - 2 V Nr N4>] rdr . (1.5)

The quantity defined as

( 1 . 6 )

is  called ro tational f le x ib i l i t y  of the disk.
Rotational f le x ib i l i t y  H is  a function of the shape of the disk, 

material constants E, v , and density p . I t  can be seen that th is  state
ment is  correct in  the follow ing way:

Consider new variables nr , п ф > a r > a ф > t  defined by ru le

2 2 u) nr j N ф - и) п ф , U .7 )l,2

2 2
(а) (X j е ф ~ ^  > (1-8)1,2

?
U = O) t  . (1.9)

A combination of equations (1 .1), (1 .2 ), (1 .3), (1.7), (1 .8 ), (1,9) 
shows that n , n^ , a г > аф , t  are a solution to the boundary value 
problem described by the following equations:

dnr
dr phr = 0 , (i.io)1

nr (a) = 0, nr (b) = 0 , <1Л0>2,3
Eh

n = ,- ( а + v а ф ) ,
r  1 -  V  L L

(1.11)1
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Eh
1 -  V

(  V (1.11)2

dt
a г dr ’ ( 1 . 12) 1,2

I t  can be seen on the basis of the above formulae that functions 
nr  = nr ( r ) ,  Пф = Пф ( г )  are determined by constants a, b, function 
h = h ( r ) ,  density p , and material constants E, v

A combination of formulae (1.5), (1 .6 ), (1.7) give 
b

H = 4 ^ J "  ïï (nr  + п2ф ~ 2 у п г п ф ) rd r • (1.13)
a

I t  comes from the comment on equations (1.10), (1.11), (1.12) as well 
as from formula (1.13) tha t the statement to be proved is  correct. Also, i t  
fo llow s from the d e fin it io n  o f H that i t  is  pos itive  in  any case.

Using the re la tionsh ips found on pages 96 — 97 of /1 /,  i t  is  easy to 
show th a t, in case h = constant, the value of H can be determined on the 
basis o f the following formula:

H = P2 jr  |(b6 — a6)(7 -  6 v v 2) +

+ (b4a2 -  b2a4)(27 + 18 v + 32 v 2)J . (1.14)

Figure 2 illu s tra te s  a ring of thickness h and width v . Using the 
usual approximations, one can w rite  that

a r = 0 , о ф = p a) 2 R2 . (1 Л 5 )1,2

Formulae (1.5)^ 2 anc) relationship

U = 2^ 7 f  ° ф 2 0 У = - | а ф 2у = ~  R5 v h p 2 w 4 (1.16)
v

suggest that the value of ro ta tio n a l f le x ib i l i t y  of a th in ring, H, is  given 
by formula

H = —F— R5 v h p 2 . (1.17)
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The accurate value of the ro ta tio n a l f le x ib i l i t y  of a ro ta tio n a lly  
symmetric disk of variable thickness can be determined only in  some special 
cases, lik e  in  case h = h ( r )  is  a function of the following shape /1 ,2 /:

BOUNDS OF ROTATIONAL F LE X IB IL IT Y

h ( r )  = ho ( f ) n , (1.18)
n = constant.

In the general case, no accurate ( s t r ic t )  solution to the boundary 
value problem described by equations (1 .10), (1.11), (1.12) is  known and 
thus production of the accurate ( s t r ic t )  value of rotational f le x ib i l i t y  H 
is  not possible e ither. In cases lik e  th is ,  e ffo rts  are made to set lim its  
to the value of H. This paper has been intended f i r s t  of a l l  to derive in 
equality re lations by means of which lower and upper bounds can be set to 
the accurate ( s t r ic t )  value of ro ta tiona l f le x ib i l i t y  without the knowledge 
of the accurate ( s t r ic t )  solution to the boundary value problem described 
by equations (1.11), (1.12), (1.10).

2. LOWER BOUND

2.1 Theorem

There exists 
b
f

H £ 2 it

a

inequality re la tion

? 7Г Fh p г f d r -----------
l - ' O

/df ч2 
(dr) +

Ф 2 * 2 V
df f 
dr г rdr ( 2 . 1)

where f  = f ( r )  denotes a univariable function, continuous over closed in 
te rva l a ^  г ^  b and continuously d iffe re n tia b le  at least twice per section, 
otherwise a rb itra ry .
Proof :

The proof of re la tion  (2.1) can be d ire c tly  obtained from the mini
mum theorem for potentia l energy functiona l applied to the kinem atically 
possible displacement f ie ld  w ritten  in  the following form:

ű = f  ( r )  w 2 _ ( 2 . 2 )
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2 .2  Theorem

There exists in e qu a lity  relation

1 -  V h r 2 F d r)2
H > л

f i  f r < f ) 2 * F * 2 v F
a L

(2.3)
dr

where F = F (r) is  a not equally zero function over closed interval 
a ^  r  -  b, the continuity properties of which complying with those of func
tio n  f  = f  (r) given in  theorem 2.1.
Proof :

Let relation (2.1) be applied to function

f  ( r )  = X F (г) (2.4)

being an a rb itra ry re a l constant. From re la tionsh ip

H à- 2 Tr X h p r 2 Fdr -  ——
1 -  V J

. I /dFs2 ,F,2
h I (d?) +

„ dF F
+  2 V - г -  —dr г rd r (2.5)

so obtained, existing fo r any possible value — «> < X < » of
va riab le  X , re la tion (2 .3 ) can be obtained by a simple extremum calcula-

2
t io n  provided the c o e ffic ie n t of A is  non-zero tha t is

F (r )  j  0 , a -  г  L b 

3. UPPER BOUND
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3.1 Theorem

There exists in e qu a lity  relation 
b

ïï f  f  1
2

Гc „ /des 
[ -  + r (dr}

2 _ dc
E j h 2

°aF.J 1 b
a 7

2 V ) p r 2c 1 dr + —j=— h P 2r^d r

( 2 .6)

(3.1)
1
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where c = c ( r )  denotes a univariable function, continuous over closed in te r
val a — г — b and continuously d iffe ren tiab le  at least once per section, 
otherwise a rb itra ry , which sa tis fies  the homogeneous boundary conditions 
given below:

c (a) = 0 , c (b) = 0 . (3.1>2 3

Proof:
The proof of the inequality re la tion  (3 .1) is  based on the minimum 

theorem fo r complementary energy from which i t  can be obtained by applica
tion of the s ta t ic a lly  possible stress f ie ld  o f the following form:

Nr  = f  <*> 2 , (3 .2 )1

ns dc
dr

?p г  n (3 .2 )2

3.2 Theorem

Assume С = C ( r )  to be a univariable function continuous over closed 
in terva l a — г — b and at least once continuously d iffe rentiab le , which is  
non-equally zero in  closed in terval a — г — b. Assume furthermore tha t func
tion  С = C ( r )  sa tis fie s  boundary conditions

C(a) = 0 , C(b)■= 0

There exists inequality re la tion

where
- f  p 2 « o “ 4 }

5CQ = Г h r  dr ,

C, = (3 + V ) r zCdr ,

C2 = 1 ïï f § 2 + r i f ) ' - *  * C § I  dr

(3.3) 1,2

(3.4)

(3 .5 ) 1

(3 .5 )2

(3 .5 )3
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Proof :
Let the inequality re la tion  (3.1) be applied to function

c ( r )  = X C ( r )  , (3.6)

where A arb itra ry rea l constant. From re la tionsh ip

H —î -  p 2 ( A 2 C2 -  2 A C1 + Co ) (3.7)

so obtained, re la tion  (3 .4) can be calculated by means of simple extremum 
ca lcu la tions .

4. COMMENTS ON UPPER AND LOWER BOUNDS

4.1 Relation

The b rie f discussion in  connection w ith re la tion  (2.1) suggests that 
a sign of equality in  re la tio n  (2.1) w i l l  apply only i f

f  ( r )  = t  ( r )  a — г — b . (4.1)

By means of another b rie f discussion concerning relation (2 .3 ), i t  
is  possible to show tha t a sign of equality in  re la tion  (2.3) w i l l  apply 
only i f

F ( г )  = к t  (г) a — г — b ,  (4.2)

where к is  a non-zero, otherwise a rb itra ry , rea l constant.

4.2 Relation

The discussions associated with re la tions  (3.1), (3.4) suggest that 
a sign of equality in  re la tio n  (3.1) w i l l  apply only i f

c (r)  = — ---- =- ( r  + v t )  , (4.3)
1 -  V z U1

w hile  in  re la tion (3.4) only i f
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C (r )  = к — -----*  ( r  —  + V t )  , (4.4)
1 — V dr

where к is  a non-zero, otherwise a rb itra ry , rea l constant.

5. AN INEQUALITY RELATION

5.1 Theorem

Let the least natural angular frequency associated with the ro ta - 
t io n a lly  symmetric rad ia l free v ibration of a ro ta tiona lly  symmetric disk of 
variable thickness and of density p on the inner and outer mantle surface 
be denoted with a , the momentum of second order of the ro ta tio n a lly  sym
metric disk of variable thickness and of density p , calculated fo r the 
axis of ro ta tion , with J while the ro ta tiona l f le x ib i l i t y  of the disk in  
question with H.

There exists inequality re la tion

2 H a 2 -  J . (5.1)
Proof :

2
I t  is  well known that a can be obtained as a solution to the 

minimum problem given below: ^

2 min 1 — V a
j  rh f (d£)2 +

~ajc+ 2 v * f i ]
a - dr г dr r  J

dr

p=p(r) (5.2)

/  ГН
p2 dr

Function p = p ( r )  in  formula (5.2) in  closed in terva l a — r  — b is  
a поп-equally zero function which is  continuous over closed in te rva l 
a — г ^  b and at least twice continuously d iffe ren tiab le  per section in  th is  
in te rva l.

Assume -that p ( r )  = t  ( r )  (5.3)
in  re la tion  (5.2).

I t  follows from equations (4 .2), (4.3) that
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a 2

dt jt " 
dr г -

dr
( 5 . 4 )

On the basis of the Schwarz inequa lity , i t  can be written that

b bГ* r
( p r h t  г  d r)2 ^ pr h t 2 dr

J J Ja a a

(5.5)

The inequa lity  re la tion  (5.1) to be ve rified  is  d ire c tly  obtained by combin
ing re la tionships (2 .3), (2 .4 ), (5.4), (5.5) and formula

b
J = 2 тг p r ^ h d r  (5.6)

a

5.2 Relation

I t  is  quite easy to show that the sign of equality in  re la tion  (5.1) 
applies in  case of a ring of width v and thickness h as illu s tra te d  in  
Fig. 2. Natural angular frequency a of the ra d ia l ro ta tiona lly  symmetric 
free v ib ra tion  of the ring can be determined on the basis of formula

« 2 = {f , (5.7)
where

U = — ■ j V  d V = — V = \  E ( | ) 2 2 it R v h =
V

= e2 I  v h IT , (5.8)

L = ^  J pe2d V = I  pe2 V = |  pe22R i r vH = e2 p R v H i t  (5.9)
V
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In w riting  re la tionship  (5.8),

Оф = E I  (5.10)

has been u tiliz e d , where e is  the amplitude o f rad ia l displacement. I t  f o l
lows form the above formulae that

P R2

On the other hand,
J = 2 it R p h v

(5.11)

(5.12)
in  the present case.

By the use of formulae (1.17), (5.11), (5.12), i t  is  possible to 
show that what we have said, namely that the sign of equality in  re la tio n  
(5.1) applies in  case of a th in  r in g , a statement to be proved, is  correct.

6. EXAMPLE FOR BRINGING ABOUT BOUNDS

6.1 Relation

On the basis of formula (2.3),

F = 1 , a -  r  -  b

sha ll be selected to arrive at lower bound

1 - V 2 2 ( / WH >  P 2 ----- Ц - --------------

J r  dr

6.2 Relation

From re la tion  (3 .1), the upper bound given below, 
b

FI ^  P 2 J '  h r^ dr ,
a

can be obtained via substitu tion

c ( r )  = 0 a — r  — b .

(6 .1)

( 6 . 2 )

(6.3)

(6.4)
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6.3 Relation

Assume that
in  re la tio n  (3.1), where

c ( r )  = m ( r ) ( 6 . 5 )

m (r )  = Eh / h t  I \
~2 (r  dF + v • ( 6 .6 )

1 -  V

In th is  case, the sign of equality applies in  re la tion  (3.1) that is  

H = -
b

;  h
a

' < #
f dm \

+ r ( dF} -
n dm \-2  V  m -

b

+ V )  p A] dr + —jj—
I h °2 r (6.7)

I t  is  easy to accept that
b b

H >  ( V I m2 ^  ф  dr -  2 (3 + V ) I pr 2 mdr

h p 2 r 5 dr) . ( 6 .8 )

In re la tio n  (6.8), we have w ritten  that
b b

2J_ dm 
h dr

m2 1 Ь m
h

mdr = — d /Гп \ 1

dF <TT> dr m2 ^ ) d r  =

(6.9),

m (a) = 0 , m (b) = 0 . 

Now the investigation is  lim ited  to the case where

(6.9) 2,3

^  <  0 , a ^ - r ^ b .dr ’ ( 6 . 10)

I t  can be shown by elementary calculation tha t in  th is  case
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min
k(r) k 2 ( h  K d r  V dr — 2 (3 + V )

b
p к r 2 dr .

(3 + у )2
V d_ Л )

d r  V

dr . ( 6 . 11)

With relationships (6.8) and (6.11) combined, the following theorem is  
obtained:

6.4 Theorem

Assume that

Inequality re la tion

H > P 2

dh
dr <  0

b

j
r  h

uJ
a

^  _  z_

(3 + V У
ä r k drJdr V  J

( 6 .12)

(6.13)

exists in  th is  case.

6.5 Relation 

Assume that
h ( r )  = A r _n , n > 0 . (6.14)

Using inequality re lations (6.4) and (6.13), the following bounds 
can be brought about in  th is  case:

0 6-n K6-n
H < - I — p 2 A ?■..-  -  b .E n — 6 (6.15)

where

H * - 5 -  P A ----  6 (n) ,

2
6(n) - 1 - ( у + 3)

n V
( n i  6 )

(6.16)

(6.17)
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For the case n = 6, we obtain by use of the Bernoulli — L'Hospital ru le  that

ECSEDI, I .

~Y~ P2 A Ш ( | )  > H > P2 A In ( | )  6 (6) . (6.18)
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SIMULATION OF THE TIMBER LATTICE SHELL WITHOUT "IN-PLANE" SHEAR CAPACITY 
BY DOUBLE-LAYER COSSERAT SURFACE

J. FLizy*

(Received: 5 September 1986)

Lattice  shell as a term is  used to describe doubly curved sur
face formed from a la t t ic e  of timber laths bolted together at uniform 
spacing. The laths are able to rotate around the bolts free ly  so a 
substitu ting surface have been found in  the f ie ld  of Cosserat theory.

NOTATION

Tensor notation is  used, the Einstein summation convention is  regard
ed as va lid , Greek indices can take the values 1 and 2 only.

N ct ß
Jap
0 a 
Ma3
naß

membrane forces in  the la t t ic e  shell 
"out-of-plane" moments in  the laths 
shear forces corresponding to M aß 
"in-plane" moments in  the laths

ma g , corresponding stresses, moments and forces in  the substituting 
continuum shell
displacement vector of the continuum shell 

deformation tensor of the continuum shell 

ro ta tion  vector of the laths (double-layer Cosserat-surface) 

curvature tensor

covariant and contravariant derivations 

p a rtia l derivations 

e la s tic  moduli of the timber
"out-of-p lane", "in-plane" and torsion in e rtia  of the laths

1 a > no а-i
]a > из
*aR >J °3 a ’
;a 3 f  (1) 1a > 
, (2) 
,3
laß

5 j

' »B3
i a ß3 ' , 1
O l a  

D a

a l l “

G
: > I • , I*op ’ ip ’ t
’Г Ь2=b

X  □

spacing of the la ttic e  

d if fe re n tia l operator (Pucher)

INTRODUCTION

Lattice shells consisting of timber laths running in  two d irection , 
such as timber la t t ic e  roof of the "Mannheim Bundesgartenschau" (1) can be

*0. Füzy, Hungarian Institute for Building Science (ÉTD 1113 Budapest, 
Dávid F. u. 6., Hungary

Akadémiai Kiadó, Budapest



used advantageously to cover large areas. The term la t t ic e  shell is  used in  
th is  paper to describe a doubly curved surface formed from a la t t ic e  of tim
ber la th s  bolted together a t uniform spacing in  two directions. When f la t ,  
the la t t ic e  is a mechanism w ith  one degree of freedom. A fter erection, an 
element o f a la ttice  shell consists of a parallelogram of four la ths.

The method of erection was developed by Professor Otto. The f i r s t  
s truc tu re  of th is type was erected fo r the German Building Exhibition, Essen, 
1962, (2) .  In 1965, in  co llabora tion  with Professor Rolf Gutbord of S tu tt
g a rt, he won the design competition of the German Federal Pavilion fo r 
Montreal Expo' 67 (4). The main structure was a large continuous cable net 
roo f, w ith in  the roof there was a timber la tt ic e  dom covering an auditorium.

BASIC RELATIONS

FÜZY, J .

General Statements

Due to the method of erection (1), the la t t ic e  shell can be consid
ered s u ff ic ie n tly  shallow fo r  a l l  the approximations used in the shallow-shell 
theory to  be accepted. The la ths  are set closely enough to substitute the 
s truc tu re  by a surface. The conditions of such an approximation were c la r i
f ie d  in  (3 ).

There occur several problems in the course of the computations so we 
attempt to set up d if fe re n t ia l equations suitable fo r calculating the in 
te rna l forces and deformations of la ttic e  shells of such kind by using a 
continuous surface. The special structure considered here cannot take mem
brane shear forces in  the c la ss ica l sense, but the shear forces acting on 
the la ths  can be connected w ith  the couple-stresses of the micro-polar sur
face which, in that case, correspond to the "in-plane" moments r is ing  in 
the la th s . The rotation f - ^ 1  ̂ and f - ^ 2'* of the la ths about the intersection 
po in t are independent. (See Fig. 1 .)

The corresponding forces and stresses acting on the la tt ic e  and the 
surface she ll element are shown on Fig. 2.

The general equations of a Cosserat-surface can be w ritten as 
fo llow s (5 ):
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Fig. 1. Notation 

3  л
d a g  = u a l l g  u3b a g g 3 f

d, „ = u ,, a - U v b ^ - £ , R Y f Y

d g 3 = - u Y byf> - e e 3 y f  Y

geometrical re la tions

n a 8 II a + q a b  ̂ a = 0

n 01B b

,«e j .

a 3

В a = Pi

— m a 3 кВb S a -  q & • = 0

m l |a -  ma ß b aß -  n « e e aß = О

stress equilibrium  (1)

couple-stress e q u ilib 
rium

Because in  our case we assumed the sh e ll to be shallow and the co
ordinate system to be rectangular, the d ifference between the covariant and 
contravariant dérivâtes vanishes and only p a r t ia l dérivâtes exist, the equi
lib rium  equations take the form as follows:

nl l  ,1 + n21,2 + ql bl l  + q2b12 = 0

n12,l + n22,2 + ql b21 + q2b22 = 0 .

nl l bl l  + n12b21 + n21b12 + h22b22 + ql , l  + q2,2 = p3

( 2)

( 3 )
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Fig. 2. Corresponding forces and stresses

ml l , ,1 + m21,2 “- m13b11 - m23b12 _ ql

m12,,1 + m22,2 ' - m13b21 - m23b22 “ q2

m13 ,1 ~~ ml l bl l -  m12b12 -  n12e12 = 0

m23,,2 - m22b22 _m21b21 ~ n21e21 = 0
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I t  is  worth mentioning that in  th is  theory = -m^  are the torsion 
moments and and are the bending moments. Taking in to account that 

the value of the permutation tensor is  e ^  = ^ 2 1  ~ *> tbe f ° rm ° f  ecls
(5) w i l l  be:

m1 3 ,l “  ml l bl l  “  m12b12 = n12 I
(5,

m23,2 m22b22 m21b21 ~ n2 1 j

According to  th is  shell theory the bending moments w il l  be obtained 
from the derivative of the independent variable, rotation function f  ,
i.e .  from the re la tiv e  ro tation.

Constitutive equations

The theory discussed above d iffe rs  from the normal bending theory of 
shells in  that the couple-stresses m^ and it̂ -j ex is t, so i t  is  ju s t if ie d  to 
formulate the ro ta tion  vector based on the follow ing assumption:

f  a e3 Y a  and f 3=  f 3(1 ) , f 3(2) (6)

which means that the ro ta tion  vector of the surface point is  defined by the 
kinematic constraint above and only f 3^  and f 3^  components are indepen
dent variables. In components:

f l  = U3,2

f 2 = ~u3,2

f  (1) f  (2)

(7)

Based .on that 
tions are proposed:

m12 = kl u3 , l l

m21 = kl u3 ,22

assumption the follow ing sim plified constitu tive  equa-

where kx = EIop/b
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m ^ = -m22 = 12 where k2 = (G l^ /b ( 8 )

ql  = kl u3 ,l

q2 '  k2u3,2

and

m13 = ¥ з д } 

m23 = k3f 3^2) _
where k-, = El. /b 3 íp

(9)

n12 k4d12 " k4f 3(
( 2 )

12EI.
where = JLE

n2i k4f 3

As f ^ ^  and represent the r ig id  ro ta tion  of surface point con
nected with one of the la ths , the re la tion between d ^  and n ^  can be de
duced in  the following way (see Fig. 3):

f  (1) = n I 3 12 12 El.
IP

f  (2) = n i 3 n21
12 El. 

IP

By setting up these s im p lified  constitu tive  equations further as
sumptions were adopted, namely:

— the la ttic e  structure has no contraction, so the corresponding 
surface must have zero Poisson ra tio ,

— in  the deformation re la tions in eqs (1) the members m ultip lied  
with several components of tensor b a g are neglected reasonable the shell 
is  assumed to be shallow,

— the dimension of the la ths are supposed to be sim ilar in  the two 
d irec tions .

Governing equations of the problem

Substituting the co ns titu tive  equations defined above in the equi
lib riu m  equations (2), (3), (4) and (5) and substitu ting  qa from (4) in to
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eqs (3) and taking in to  account that = b23 we obtain the follow ing set 
of equations:

nl l , l  + n21,2 ci^b-Q + ^2^12 ~ ^
.

n12,l + n22,2 ql b21 + q2b22 = 0 .

nl l bl l  + n22b22 + ^  u3 -(m 13b11-m23b12) )1- *>

—(m13b21-ffl23b12) , 2+

+b12(n12+n21) = = P

к f  (1) *3*3,11 ml  1Ь11 rn12b12 = ■2kA (
к f  (2) 3*3,22 m22b22 m21b21 = - 2кЛ ‘

( 1 0 . a)

(10.b)

( 1)

( 2 )
( 11)

where the d iffe re n tia l operator is :

x D  □ , l l l l +k2J----- 1,1122+kJ------1, 2222 ( 12)

Comparing these equations with the resu lts  of Kollar's (9) a r t ic le  
we have found that i f  we neglect the members m ultip lied by several compo
nents of the curvature tensor b a g (middle column), based on the assump
tion  that the shell is  shallow, the eqs (10) are essentially the same, but 
eqs (11) is  new in  th is  form. The o rig ina l form of (5) can be found 
in (9) also.

In th is  paper we supposed the la ths have the same dimensions and 
spacing, but in  the same way i t  is  possible to derive more general equations 
fo r d iffe ren t la ths.

I f  we accept the same approximations as in  (9), the middle column 
can be neglected in  (10) and (11) and we obtain:

nl l , l  + n21,2 '  

п12,1 + n 22,2 =

( 1 3 )
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1 1 + n22^22 u3 — P3 (14)

(1) _ k f  u> ]
,11 - V 3

-
(2) - к f  (2)

(15)
,22 " V 3

We can eliminate n^  and n^2 in  eqs (13) by using eqs (9). Eqs (11) 
can be w ritten  in a simpler form i f  we elim inate the common members in  
and in  eqs (15). F ina lly , we get the fo llow ing set of equations:

n ~ - k f (1) 11,1 4r 3,2
(16)

n - к f (2) 22,2 4 3,1 (17)

n -^b ^  + n22^22 — (18)

b2 f  (1) f  (1) 
24 x3 , l l  x3 (19)

b2 f  (2) f  (2) 
24 x3,22 *3 (20)

We
( 1 )

have five  equations containing fiv e  unknown functions n ^ ,  n22,
and f

\ I
V»

n,j(b/2)3

Fig. 3. Constitutive re la tion  between ro ta tion  and shear force
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TIMBER LATTICE SHELL

CONCLUSION

Timber la t t ic e  shells such as the "Bundesgartenschau" in  Mannheim 
have been discussed in  the paper. The timber la ths running in  two d irec
tions were positioned o rig in a lly  in plane, the planned shell surface has 
been realized by the l i f t in g  method while the la ths at the edge of the shell 
structure s t i l l  remain in  plane. Applying th is  l i f t in g  method the structure 
would be charged with "eigenstresses" as bending moment in  plane, the shear 
forces corresponding to these moments and, when the forces of l i f t in g  act no 
longer and the la ths are fixed along the edges, normal (arch) forces in  the 
la ths also. In th is  paper we do not intend to deal with the l i f t in g  method 
and the eigenstresses caused by i t .

This paper is  focused mainly on the computing method of the forces 
due to the outer load. The results should be superposed on the eigenstresses, 
to be defined by another computing method.

A substitu ting continuum is  proposed which must f u l f i l  the governing 
equations (16), (17), (18), (19) and (20). Examining eqs (19) and (20) i t  
can be stated that the ro ta tion  f ^ ^  and f w h i c h  are characteris tic  of 
the "in-plane" bending moments, depends only on the boundary conditions, in 
the main f ie ld  of the surface they vanish, eqs (19) and (20) being a damped 
wave equations. The width of the boundary layer where f ^ ^ '1 and exist
depends on the la t t ic e  spacing.

From eqs (16) and (17) i t  is  plausible that the normal (arch) forces 
in  the laths depend on one variable only (because1 the shell cannot take 
shear stresses) and so the outer load p  ̂ can be balanced by them only in 
part, a further part of the load must be balanced by the "out-of-plane" mo
ments and shear stresses according to eqs (18).

I t  is  worth mentioning that the boundary layer where f ^ ^  and f ^ ^  
d if fe r  from zero must not necessarily connected with the edge of the she ll.
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OPTIMUM DESIGN OF PLASTIC BAR STRUCTURES FOR SHAKEDOWN 
AND DYNAMIC LOADING

S. Kaliszky* and I .  Knébel**

(Received: 28 January 1986)

In th is  paper, two d iffe ren t problems of optimum design are 
presented. The f i r s t  problem is  the optimum design of e las tic -pe r- 
fe c tly  p las tic  bar structures (frames and trusses) under variable 
(shakedown) loading while the second one is  the optimum design of 
r ig id -p e rfec tly  p la s tic  bar structures under dynamic pressure with 
specified displacement constraints. In both cases, nonlinear objec
tiv e  functions are used. The proposed two methods can be formulated 
as a nonlinear programming problem and th e ir solutions are based on 
the same ite ra tiv e  procedure. The applications are illu s tra te d  by 
numerical examples.

INTRODUCTION

The optimum design of e lasto-p lastic frames under variable repeated 
(shakedown) loading with linear objective function was studied among others 
by Heyman /14 /, Cohn and Parimi /15/. This can be formulated as a linear 
programming problem. A few other papers deal with the optimum design of r ig 
id -p la s tic  structures under short-time dynamic pressure or impulsive loading 
(e.g. /11, 12, 16/). In th is  case, the problem is  more complicated and leads 
to nonlinear programming.

The f i r s t  part of th is  paper deals with the generalization of the 
optimum design methods described in /14/ and /15 / using nonlinear objective 
functions and extending the solution to any kind of bar structures (frames, 
trusses e tc .) . In the second part, the general approximate method given in  
/11, 12/ w i l l  be applied to bar structures under dynamic pressure using 
again non-linear objective function. The solution of both problems is  based 
on the same ite ra tive  ‘procedure which was already successfully applied to 
the optimum design of e la s tic  structures with displacement constraints and/or 
specified in terna l forces /6 , 7, 10/.

* Prof. S. Kaliszky, Technical University, H - l l l l  Budapest, Műegyetem 
rkp. 3 ., H ungary

m I. Knébel, Research Fellow, Technical University, H - l l l l  Budapest, 
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2. GEOMETRICAL RELATIONSHIPS

In the fundamental equations of bar structures, among others three 
geometrical variables play important ro le : area A, moment of in e rt ia  I  and 
p la s tic  bearing capacity (p la s tic  moment or yie ld  force N^) of the 
cross-sections. Assume tha t the re lationships between these variables can be 
expressed by formulae

Q = В AX/ “  or A = B Q ap о p

I  = C A о
i/e a = c I

(1)

(2)

For example in  case of frames with rectangular cross-sections and 
w ith given ration b = 2a, one can obtain (Fig. 1/a):

Л
M ^  дЗ/2

2 xJ 2
or A = /2 J 2 2/3

M,2/3

I  = I  A2 
1 6 й

\  у /

or A = Л  I 1/2 .

(3)

( 4 )

Here Gy is  the y ie ld  stress of the material.
In case of I  beams w ith fixed height b and web thickness v, formulae 

(1) and (2) can be approximated by linear relationships (Fig. 1/b):

M
ö b

A , or A ä *
h 2

I  A ,
4

a b

or A «

(5)

( 6)

For trusses the relationships are also linear

Np = ° yA , or A = ^  Np . (7)

3. OPIIMUM DESIGN OF STRUCIURES SUBJECT TO SHAKEDOWN

Consider a linear e la s tic -pe rfe c tly  p la s tic  s ta tic a lly  г times in 
determinate bar structure w ith given geometry and constructed of 
i  = l , 2 , , . . , n  prismatic members with cross-sectional areas A^, moments of

2 9 8



OPTIMUM DESIGN OF BAR STRUCTURES

a) b)
Fig- 1.

in e rtia  L , p lastic bearing capacities Qpi and given lengths ^ ^ . The struc
ture is  subjected to variable repeated (shakedown) loading. Let us denote 
the extremal values of the in terna l forces calculated from a l l  the possible 
combinations of the variable loads and aris ing  in c r it ic a l cross-sections 
j  = l,2 , . . . ,m  with Qjmax and Q̂ min,respective ly. Besides, QR̂  denote the un
known se lf-e qu ilib ra tin g  residual in te rna l forces of the c r i t ic a l  cross- 
sections. Then, the shakedown of the structure can be expressed in  the fo l
lowing manner /13/:

Q. + Q„. -  Q . ,jmax Rj p i ’

Q. . + Qd . -  -Q .jmin Rj pi

( j  = 1 ,2 , . . . ,m) ( 8)

The c rite rio n  of optim ality (minimum volume) is  of the form:

V = H .  A. = min! ( i  = 1 ,2 ,....n ) (9)

Besides, the minimum values of the cross-sectional areas or tha t of the 
bearing capacities might be specified

A. il or Q • -  Pi P° ( 10)

where A and Q are given constants, о po a
Qjmax anc* ^jmin aPPeari n9 i n the inequalities (8) are in  nonlinear 

re la tionship  with Â  and 1̂  and with Qp^, respectively:
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Qim3* = Qimay(Ai ) = Q. (Q .) , jmax jmax l  1 jmax pi ’
( i d

Qjmin Qjmin<:Ai , I i ' ) ~ ^ jm in^pP

w hile  Qpj can be expressed in  lin e a r form in terms o f unknown s ta tic a lly  in 
determinate forces Xk (k = l , 2 , . . . , r ) :  

г

QRj = kï x ak j Xk • (12)

Here a ^  denote constants.
Substituting formulae (1 ), (2), (11) and (12) in  Eqs (8) -  (10), our 

optimum design problem can be formulated as fo llows:

minimize

V = l  I  . B. Q “  ,1 1 m  ’
i= l 1 1 p i (13)

subject to
Q. (Q .) + E a. . X. — Q . , jmax 4pi k=1 k j  к ypi ’

Г
Q. . (Q .) + £ a. • X, -  -Q . , k j к pi ’jmin pi k=l

( i  = l ,2 , . . . ,m ) (14)

Q . -  Q . 
Pi P°

This is  a nonlinear mathematical programming problem, from which 
s ta t ic a l ly  indeterminate forces X^, (k = l , 2 , . . . , r )  and design variables 
Qpp ( i  = l,2 , . . . ,n )  can be determined. The d irec t so lu tion of th is  problem 
is ,  however, fa ir ly  complicated and therefore generalizing the idea of 
/10 , 13/, an ite ra tive  so lu tion  described below might be applied.

In the f i r s t  step, le t  us choose proper i n i t i a l  values fo r the cross- 
sec tiona l areas and denote them with A^°. Using Eqs (1) and (2), I . °  and

о
'P i 1
(denoted with Q. and Q.Jjmax jm in
the e la s t ic  solution of the structure . Substituting these values in Eqs (13) 
and (14 ), we obtain the problem:

jmax ’ jmin 
) respectively, can also be determined by
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OPTIMUM DESIGN OF BAR STRUCTURES

minimize
u(D п Г (1)1 a

= [ v j  ’

subject to

Jmax k=1
Z a x (1) 1  Q(1)b ak j xk upi

Q^P + Z a.. X. (1) > n ( l)jmin k=1 кЛ к - - Q pi

С)Ф
PI P°

(1 5 )

(16)

This mathematical programming problem is  much simpler than the former 
one defined by Eqs (13) and (14), since now qP;^ and Q^P denote constants

JIT laX  J i l l i n

and therefore the inequa lities  (16) are linea r and only the objective func
tio n  (15) is  nonlinear. The solution of th is  problem provides X. Q^P

( 1 )  ( 1 ) K and A . 4 , '  respectively. Then the corrected values of 0. and Q. .
1 1 jmax jrn i11

can be calculated and the procedure described above should be repeated u n til 
the differences between the results of two subsequent steps are s u f f i 
c ie n tly  small.

The mathematical programming problem with nonlinear objective func
tio n  and linear constraints can be solved by the use of the reduced gradient 
method elaborated by Wolfe /9 / .  For the so lu tion, computer programs are 
availab le /8 /. According to experience with the solution of d iffe re n t numer
ic a l examples, the convergency of the ite ra tio n  is  good and a fte r a few 
steps, s u ffic ie n tly  correct results can be obtained.

4. OPTIMUM DESIGN OF STRUCTURES SUBJECTED TO DYNAMIC PRESSURE

Consider a r ig id -p e rfe c tly  p lastic  bar structure (frame or truss) 
w ith given geometry constructed of i  = l v2 , . . . ,n  prismatic members with 
cross-sectional areas.A^, p lastic bearing capacities Qpi and given lengths 

% ^ . The structure is  subjected to h igh-in tensity , short-time dynamic pres
sure which is  normal to the axis of the structure and is  expressed in  
the form

T (s ,t) = p (t)  TQ(s) , (17)

Неге T (s) defines the d is tr ib u tio n  of the loads along axis s of the struc
ture and loading parameter function p (t)  describes the time varia tion  of the 
pressure.
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F irs t le t us consider the equivalent quas i-s ta tic  problem. To ca l
cu la te  a kinematically admissible load m u lt ip lie r  pc fo r quasi-static load 
T (s ) ,  we have to consider a y ie ld  mechanism which is  defined by displace
ment function w(s) and deformations q  ̂ of p la s tic  parts j  = l,2 , . . . ,m  
(hinges or bars) of the s tructure . Then, according to the kinematical 
theorem of lim it analysis /1 3 /, pc can be obtained from formula

m

Pc

0

(18)

where
L =

n
£ l  

i= l

In case of dynamic pressure, the positions of the p lastic  parts 
(hinges or bars) are generally not fixed during the action because of the 
in e r t ia  forces i.e . the structure undergoes unstationary motion described 
by a function w (s,t). A fte r time t * ,  the structure stops moving and permanent 
displacements ŵ  = w (s ,t j)  remain in the structure . The goal of the dynamic 
analysis is  to calculate the permanent displacements which should not exceed 
given allowable values.

The analysis of the unstationary motion even in  case of simple struc
tures is  fa ir ly  complicated. Therefore, to s im p lify  the solution, we might 
apply a kinematical approximation /11, 12/. According to th is  method, a 
kinem atica lly admissible displacement f ie ld  has to be superimposed on the 
s truc tu re  and then i t s  motion can be described by a function in a separated- 
va riab le  form

w (s,t) = W(t)wQ(s) . (19)

Here wq ( s ) is  any postulated kinematically admissible displacement f ie ld  
(y ie ld  mechanism) and W(t) an unknown displacement parameter function. Using 
th is  approximation, the problem is  reduced to the investigation of an equiv
a len t one-degree-of-freedom system the solution of which can be expressed in 
close form. Assuming e.g. a square loading parameter function shown in  
Fig. 2 9 the maximum value of W(t) can be obtained as follows /11, 12/:
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(2 0 )

Having Wj, the permanent displacements of the structure can be approximated 
by function

wf  = ^ f wo<s> ' (21)

In Eq. (20), p is  the kinematically admissible load m u ltip lie r fo r  load 
TQ(s) and associated with assumed displacement f ie ld  wq ( s ) ,  and К is  a con
stant: L

\  T0(s)wQ(s) ds
К = ?------------------------------ (22)

l
n A  „

P £ A. w^(s)ds
i= l J 0

Here p is  the density of the material of the structure. The r e l ia b i l i t y  of 
the approximation might be improved by using more kinematically admissible 
displacement functions woh(s ), h = 1 ,2 , . . . , г  and calculating the correspond
ing permanent displacements w ^ = W^woj( s ) .  Then, the ir maximum values are 
competent in  the design.

Having the results given above and using the square loading param
eter function of Fig. 2, the optimum design problem can be formulated as 
below:

P

minimize
V = Z A. 

i= l 1

Fig. 2.

( 2 3 )
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subject to

Wfh = — K. p t  fh 2 h 'о  о
2 /  Ho

oh
-  1 i  Woh ( 2 4 )

Here

A. -  A . 1 о

Л  Qpjh 4jh  1 m

P c h = ^--------------------  C j-1
To(s)woh(s)ds

2 4jh  Qpjh ’ (25)

To(s)woh(s)ds

Kh = n 4

■ iî .  "  í
woh(s)ds Dih  A.

(26)

WQp denotes the specified permissible values of displacement parameter func
tions Wp(t) and

Г H
= J To(s)woh(s )ds ’ Dih = J  woh(s)ds (27)

are constants.
With (1), (25) and (26) substituted in to  Eqs (23) and (24) we can

w rite :
minimize

n
V = l  

i= l
4  Qp^; ( i  = 1 ,2 ,.. . .n )

subject to

(28)
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o hch
Kh + 2

N Ioh

Z  D. . B  .Q°i  ih 01 pi

Jh

p°*° £  “ i A n V

+ 2 "oh

P t 2 po о

, ( 2 9 )

( j  = 1 ,2 , . ..,m ; h = 1 ,2 , . . . . r )  ,

Q . >V  - po

As i t  is  seen, both the objective function and the design con
s tra in ts  are nonlinear functions of design parameters Qp .̂ To solve the 
problem, one can use the same ite ra tive  procedure that was described in Sec
tion  3. F irs t we assume proper in i t ia l  values fo r Qp̂  (say Q ^ ) ,  calculate 
the r ig h t side of Eqs (29), and solve the mathematical programming problem 
with linear constraints and nonlinear objective function. Obtaining design 
variables QpP, we repeat th is  procedure u n t il the differences between the 
resu lts  of two subsequent steps are s u ffic ie n tly  small.

5. EXAMPLES

The application of the methods described above w i l l  be illu s tra te d  
fo r the structure shown in  Fig. 3. The cross-section of the frame is  rectan
gular with ra tio  b = 2a (see Fig. l /а ). Cross-sectional areas A. or p lastic

3/2 1moments Mp̂  = BqA./ of the three bars ( i  = 1,2,3) are the design variables.
The c r i t ic a l  cross-sections are at the corners and at the points of applica
tion  of loads ( j  = 1 ,2 , . . .  m = 6). Using Eq. (13), the optim ality condition 
is , as follows:

V = 6M2( 3 + 10Mp2  ̂ + 6M2/ 3 = min! (30)

a) F irs t suppose that the e lasto-p lastic structure is  subjected to 
s ta tic  variable forces O á  F1 á 5 kN and 0 < F? < 15 kN which can
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Fig. 3.

act separately or in combination, and consider the problem of optimum design 
subject to  shakedown.

S ta tica lly  indeterminate forces and X2 of the e las tic  structure 
ca lcu lated form F̂  = 5 kN and F2 = 15 kN, respectively are

112.5/1. + 1350/I„ + 360/1,
X. = ---------- --------------- ------------- -  and

1 72/1. + 360/I9 + 72/1,
1 (31)

-  1125/I2

72/Ix + 360/I2 + 72/I-j

The corresponding bending moments, and М̂ 2 of the c r i t ic a l cross-sec
tions  and residual bending moments Mp̂  calculated from unknown force Xp are 
shown in  Table 1. Following Eqs (8 ), the condition of shakedown has the form

+ MD. < M . ,jmax Rj -  pi ’

jm in Rj -  pi

(3 2 )
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For the minimum values o f the areas and p la s t ic  moments no r e s t r ic 

tio n s  are s p e c ifie d , i . e .  Aq = MpQ = 0 .

Table 1

j MJ1 Mj2 MRj

1 2X1 зх2 3XR

2 -15+ÓXj^ 6X2 6Xr

3 -15+6X1 6X2 6Xr

4 -22.5+6X1 37.5+6X2 6Xr

5 -30+6X1 6X2 6Xr

6 -30+éXj^ 6X2 6Xr

F ir s t  le t  us assume th a t 1  ̂ = = const and M  ̂ = const

and so lve th is  simple problem. Using Eqs (31) and Table 1, mP P  and mP*?
0 J 'J

can be obtained and the co n d itio n  (30) can be replaced by = m in! This to 

gether w ith  Eqs (32) is  equ iva len t to  the usual shakedown problem where, 

however, instead o f the common shakedown parameter o f the loads, i t  is  con

s ta n t p la s t ic  moment Mp0  ̂ th a t has to  be determined. The s o lu tio n  is  shown 

in  the f i r s t  row o f Table 2.

Assuming now th a t 1^ = = const but M  ̂ ( i  = 1 ,2 ,3 )  are

unknown, le t  us so lve the problem again. The s o lu tio n  o f the l in e a r  in e q u a li

t ie s  (32) w ith  the non linea r o p tim a lity  c o n d it io n  y ie ld s  the re s u lts  shown 

in  the second row o f Table 2.

Using Eqs (3 ) and (4 ) ,  from these p la s t ic  moments the new values of

moments o f in e r t ia  can be obtained and then M^P and N lP P  can also •1  jmax jm in
be determ ined. This makes poss ib le  the s o lu tio n  o f the next mathematical

( 2)programming problem which y ie ld s  p la s t ic  moments .

Repeating the procedure, a f te r  a few steps s u f f ic ie n t ly  good re s u lts  

can be obta ined.

As seen in  Table 2, the optimum p la s t ic  moments devia te  s ig n i f ic a n t 

ly  from the s o lu tio n  o f the frame w ith  constant p la s t ic  moment and savings 

o f 15 % in  volume o f the frame are obta ined. Note th a t steps 1—5 y ie ld  less
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Table 2

steps M , Pi Mp2 M , 
Pi

V

0 25.8 25.8 25.8 192.0
"1 11.7 25.8 20.0 162.4

2 9.89 27.6 20.3 163.7
3 9.21 28.3 20.6 164.2
4 8.91 22.6 20.7 164.5
5 8.78 28.7 20.8 164.6
6 8.72 28.8 20.8 164.7
7 8.69 28.8 20.8 164.7
8 8.67 28.8 20.8 164.7

volume than the last two ones but the corresponding p las tic  moments and 
moments of inertia  are not compatible since they do not f u l f i l  the inequali
t ie s  (32).

b) Consider now the dynamic problem when dynamic forces = pQ 5 kN
and F2 = P0 15 kN are acting simultaneously and are characterized by the
square loading parameter function of Fig. 2 with values p = 1 and

0 3t  = 0.05 s. The density o f the material is  p = 8000 kg/m and the per
m issib le permanent displacements in  vertica l and in  horizontal directions 

V Hare WQ = 0.25 m and = 0.30 m respectively. The minimum value of the ap
p lica b le  p lastic  moment is  M = 5 kNm.

The possible y ie ld  mechanisms of the structure are shown in  Table 3. 
These 4 mechanisms, however, depending on whether the p las tic  hinges are at 
the r ig h t or the le f t  hand side of the corners, lead to 12 d iffe ren t load 
m u lt ip lie rs  (h = 1 ,2 ,. . . r  = 12). Using Eqs (18) and (22), the corresponding 
values of and pch are given in  Table 3. Then, considering Eqs (29), in 
equ a litie s

pch Kh
—  * ------------ D----------ö (h = 1 ,2 ,. . . r  = 12) (33)

p„ K. + 2 w . /p  t  r o h oh к о о

can be constructed which together with the objective function (30) and with 
re s tr ic t io n
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Pi > M = 5 kNm po ( 3 4 )

define the mathematical programming problem.
Since the le f t  sides of Eqs (33) are linear functions of design

variables M ., the same ite ra tive  procedure can be used as in the former 
P1 (n)

example. F irs t, we assume A. = A: = constant and we solve the lin e a r in -
1 1 ( 1)equa lities (33) with the nonlinear objective function fo r M , .
(1) pi Then, using values M^ , we repeat th is  procedure. The resu lts  of

ite ra tio n  are shown in  Table 4.

Table 4

steps M , 
Pi Mp 2

M ,
р з

V

0 19.1 19.1 19.1 157.2
1 5.0 26.3 11.8 137.2
2 5.0 24.0 15.3 137.7
3 5.0 24.5 14.7 137.9
4 5.0 24.4 14.8 137.8
5 5.0 24.4 14.8 137.8

Using d iffe re n t values fo r the duration of pressure denoted with t Q, 
one can obtain d iffe re n t optimum solutions. These are given in Table 5. I t  
can be seen that with the duration of pressure increased, the so lu tion  tends 
to the resu lts of the optimum design of the corresponding quasistatic problem.

Table 3

V s) M . Pi

CMC
L MP3 V

0.05 5.0 24.4 14.8 137.8
0.2 4.99 25.0 19.6 146.6
1 5.0 25.0 20.1 147.3

5.0 25.0 20.0 147.3

311



KALISZKY, S .-K N É B E L, I .

REFERENCES

1. Gallagher, R.H., Zienkiewicz, O.C.: Optimum Structural Design. John 
Wiley. New York 1973.

2. Brandt, A.M.: Kryteria i  metody optymalizacjr Konstrukcji. Panstwowe Wyd. 
Naukowe. Warszawa 1977.

3. Fox, R.L.: Optimization methods for engineering design. Addison-Wesley 
Reading — London 1971.

4. Rozvany, G.I. N.: Optimal design of flexural systems. Beams, grillages, 
slabs, plates and shells. Pergamon Press. Oxford, New York 1976.

5. Farkas, J.: Optimum design of metal structures., Akadémiai Kiadó, Budapest 
1984.

6 . Khot, N.S., Berke, L ., Venkayya, V.B.: Minimum weight design of struc
tures by the optimality criterion and projection method. Proc. Structures and 
Structural Dynamics Conference. St. Louis, 1979.

7. Khot, N.S., Berke, L ., Venkayya, V.B.: Comparison of optimaiity criteria 
algorithms for minimum weight. Design of Structures, AIAA Journal, Vol.
17, Number 2, February 1979, p. 182—190.

8 . Best, M.J.: FCDPAK, A Fortran-IV subroutine to solve differentiable mathe
matical programmes. Department of Combinatorics and Optimization., Re
search Report, University of Waterloo, Canada 1973.

9. Künzi, H.P., Krelle, N ., Randow, R.: Nichtlineare Programmierung. 
Springer-Verlag, Berlin 1979.

10. Berke, L ., Kaliszky, S., Knébel, I.: Optimal design of elastic bar stru'c- 
tures subject to displacement constraints and prescribed internal and reaction 
forces (to be published).

11. Kaliszky, S.: Kinematical method for the analysis of inelastic structures 
under dynamic loading. Advances in Mechanics, Vol. 4. No.l. (1981),
29-47.

12. Heinloo, M., Kaliszky, S.: Optimal Design of Dynamically Loaded Rigid- 
Plastic Structures. Application: Thick-Walled Concrete Tube. J. Struct. Mech. 
9 /3 /, (1981), 235-251.

13. Kaliszky, S.: Plastizitätslehre. VDT-Verlag, Düsseldorf 1984.
14. Heyman, J.: Minimum design of frames under shakedown loading. J. Eng. 

Mech. Div.Proc. ASCE EM4. 1958. Paper 1790.
15. Cohn, M.Z., Parimi, S.R.: Optimal design of plastic structures for fixed 

and shakedownloading. J. Applied Mechanics. June (1973), 595—599.
16. Lepik, Li., Mróz, Z.: Optimal design of plastic structures under impulsive 

and dynamic pressure loading. In t.J.Solids Struct. 13/7. (1977), 657-674.

312



A c ta  T e c h n ic s  A c a d .S e i . H u n g . , 9 9 ( 3 - 4 ) ,  p p . 313—315 (1 9 8 6 )

A NEW APPROACH TO X-RAY DIFFRACTION ANALYSIS OF STRESS STATES 
IN SURFACE LAYERS

B. Kämpfe and B. Michel*

(Received: 24 June 1986)

Presented in  th is  work are the possible applications of X—ray 
stress analysis. Problems arise fo r d i f f i c u l t  stress states with 
gradients of residual stresses a ris ing  deep in the sample, gradients 
of so lid  so lu tion, strong textures and shear components of stress 
pa ra lle l to the surface. For the la t te r  problem a re la tive ly  simple 
method of investigation is  presented which eliminates the other in 
fluencing factors almost completely.

X—ray stress analysis has found increasing use in  the recent ten 
years / 1/ ,  / 2/  in  connection with the p o s s ib il ity  of nondestructive determi
nation of residual stresses in surface layers of materials. Today X-ray 
stress analysis is  considered an independent f ie ld  of X-ray d iffra c tio n  
analysis. The improvement of measuring techniques resulted in a reduced use 
of the sin ф-method /3 / which had been the most widely used method in  X—ray 
stress investigations e a r lie r. Gradients of residual stresses and so lid  
solution concentration deep in the sample, shear stresses pa ra lle l to the 
surface and textures are the "d is to rtion  parameters". On the other hand, 
these d if f ic u lt ie s  led to a continuous methodical improvement of X-ray 
stress investigations. In the following, a new method of X-ray stress anal
ysis is  presented. The basis for a l l  d iffra c tio n  techniques is  the measure
ment of residual s tra ins, using the la t t ic e  spacing of selected hkl planes 
as in terna l s tra in  gauges and determining the stra ins in particu la r d irec
tions in  the sample. In X—ray measurements, a d irection is  defined by two 
angles, ip and ф , cp defining the o rien ta tion  of the scattering plane 
re la tive  to two directions in  the sample surface while ф the t i l t  of the 
chosen d irection in the scattering plane re la tiv e  to the normal of the sur
face (see Fig. 1). I f  the stra in  in  the specimen coordinates is  e^j> 
s tra in  £ ip ф measured in  the d irection defined by ф and p w i l l  be 
given by a simple tensor ro tation, where x^ is  in  the direction of the sur
face normal.

Dr.sc.techn. Bernd Kämpfe—Prof. Dr.sc. nat Bernd Michel, Institut für 
Mechanik der Akademie der Wissenschaften der DDR, 9010 Karl-Marx-Stadt, PSF 
408, DDR
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;f ,Y  = [en “ s2' f +£12sin2? +e22sin2H>- e33]s in 2T + £ 3 3 f 13Co s f +e23sin ,f ] s in 2 f l

The t ra d it io n a l X—ray technique is  to  choose a s p e c ific  (h k l)  d i f -
2

f r a c t io n  l in e  and to  determ ine i t s  s h i f t  ( A ^  ) as a func tion  o f s in  ф fo r  

c o n s ta n t p

£ const = —c o t ■d'A-d'

2
where ■& is  the bragg-angle. The e <p ф vs s in  ф p lo ts  give simple 

l in e a r  expressions and good re s u lts  provided the components o f s tress  normal 

to  th e  fre e  surface o ^ >  а 23  anc* 0  3 3  ■'■n "the sPeci men domain (near 
the  s u rfa c e ) inves tiga ted  are nea rly  zero. D i f f ic u l t ie s  w i l l  a rise  i f  th is  

assum ption f a i ls  as the in v e s t ig a t io n  is  o fte n  made a fte r  wear, g rin d in g  

and o th e r  mechanical loads / 4 / .  The problem o f ana lys is  l ie s  then in  th a t 

fo r  d i f f e r e n t  angles ф , a lso  the d i f f r a c t io n  lin e s  are generated in  d i f 

fe re n t  depths o f m a te ria l below the free  su rface  /5 / .  Thus the r e s u lt  is  

based on po in ts  o f measurement o f d if fe re n t  s tre s s  s ta tes as these must be 

o th e r  than zero a t depths below the free  su rfa ce . A measurement o f the d i f 

f r a c t io n  peaks as a fu n c tio n  o f ip fo r  constant ф solves the problem 

(F ig .  1) because the p e n e tra tio n  depth o f X -rays is  independent o f ip / 6 / .  

ф can be varied by ro ta t in g  the speciman around i t s  surface normal. This
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is  easy with most X-ray diffractom eter types, and leads only to minor sys
tem atical errors in  the measurement. Another remarkable advantage of these 
investiga tion  techniques is  that the symmetry of residual stress state is  
d ire c t ly  reflected in  the e ip ф vs. if p lo ts /7 /. In th is  way, the direc
tions  of main stresses and maximum shear stresses as related to the surface 
can be easily determined / 8/ .  The investigations, including a large number 
of d iffe re n t materials and stress states /9 / ,  showed that both ф and u> 
diffractometers could be successfully used fo r the (j> -method. In applica
tio n  with u-diffractometers, the ф -method yielded better resu lts  than the 

2 1
sin ф method, especially with the use of a focussing s l i t .  The stresses 
and stress states obtained in  th is  way showed a good agreement with the ex
pected values, especially fo r shear stresses and position of p rinc ipa l 
stress axis.

REFERENCES

1. E. Macherauch: Stand und Perspektiven der röntgenographischen Spannungsmes
sung. MetalL 34 (1980), 443, 1087.

2. B. Kämpfe: Röntgenographische Spannungsmessung. FMC-Series des Instituts 
fü r Mechanik der DDR 1 (1982), No. 3,8.

2
3. E. Macherauch and P. Müller: Das sin ф -Verfahren der röntgenographischen 

Spannungsmessung. Zeitschrift angew. Physik 13 (1961), 303.
4. B. Kämpfe and P. Zimmer mann: Röntgenographische Spannungsmessung an 

spannend bearbeiteten Stahloberflächen. FMC-Series 3 (1984), No. 8.11.
5. B. Kämpfe: Dissertationsschrift zur Promotion B, TH Karl-Marx-Stadt, (1983).
6 . B. Kämpfe and B. Michel: Neue Wege in der röntgenographischen Spannungs

messung. FMC-Series 4, No. 14.48.
7. W. Lode and A. Peiter: Prinzip-Analyse von zwei Röntgenverformungsmess- 

verfahren. Arch. Eisenhüttenwesen 53 (1982), 77.
8 . B. Kämpfe et alL WP G01 N /  268 031 1.
9. B. Kämpfe and E. Auerswald: Röntgenographische Spannungsmessung mit dem

P-Umlauf-Verfahren. FMC-Series 5 (1986), in print.

315





BUCKLING ANALYSIS OF COUPLED SHEAR WALLS BY THE MULTI-LAYER SANDWICH MODEL
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I t  is  well known that the continuum model of a shear wall is  a 
sandwich beam which consists of ' s t i f f '  and 's o ft ' layers. The paper 
presents the d iffe re n tia l equation system of the m u lti-laye r sand
wich beam, and gives a method and closed formulas to determine the 
c r i t ic a l load in  case of a concentrated force acting on the top of 
the beam. The paper also shows tha t the c r it ic a l load of a m u lti
layer sandwich cantilever is  — to a close approximation — equal to 
the c r i t ic a l load of a tr ip le - la y e r sandwich beam, i.e .  a sandwich 
with thick faces.

1. INTRODUCTION

Shear walls are often analysed with the aid of the continuum method 
/5 ,7 ,8 ,9 /. The replacement continuum of a shear wall is  a sandwich construc
tio n  consisting of ' s t i f f '  and 's o f t ' layers.

In th is  paper we deal with sandwich constructions having n+1 s t i f f  
layers which are separated by n so ft layers. We suppose that both the so ft 
and the s t i f f  layers are incompressible in  transverse d irection. The so ft 
layers have only shearing r ig id it ie s ,  they are so ft ( i.e . they e xh ib it no 
resistance at a l l)  in bending and in  compression in  the ve rtica l d irection . 
The shear r ig id it ie s  of the s t i f f  layers are in f in ite ,  the ir bending and 
ve rtica l tensile  stiffnesses are f in ite .  We assume that the distance between 
the axes of two consecutive s t i f f  layers is  equal to the width of the so ft 
layer. In case of n=l (when only one so ft layer separates the two s t i f f  
layers), the structure is  identica l with the 'sandwich with th ick  faces'
/1 / .  The sandwich with th ick faces has three d iffe ren t r ig id it ie s  (Fig. 1): 
the global bending r ig id ity  (BQ) which comes from the tensile stiffnesses of 
the faces, the shear r ig id ity  (S) of the core, and the local bending r ig id i
ty  (B^) of the s t i f f  faces with respect to th e ir  own centroidal axes.

Pomázi has dealt with the s ta b il i ty  analysis of m u lti-layer sandwich 
plates in /4 / ,  taking the transverse com pressibility of the so ft layers into 
account, so his model is  more general than ours. In the case of Navier-type 
boundary conditions, he presented ana lytica l solutions.

*L ászló P. Kollár, H—1122 Budapest, К агар u. 9, Hungary
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Fig- l .

Our sandwich model (which is  equal to the model of shear walls devel
oped by Rosman /5 /)  is  su ited, because of i t s  s im p lic ity , not only to obtain 
numerical results but also to  draw qua lita tive  conclusions.

The basic idea of approximately replacing a m ulti-layer sandwich beam 
w ith a sandwich with th ick  faces has been suggested by István Hegedűs.

The paper presents the d iffe re n tia l equation system of a m u lti-layer 
sandwich construction under arb itra ry  d is tr ib u tio n  of the normal load along 
the beam axis, and gives an exact solution fo r the case of a concentrated 
force acting on top of the sandwich cantilever. I t  is  also shown that the re
placement sandwich with th ick  faces gives in  fa c t a very good approximation 
fo r ca lculating the c r i t ic a l  load of the m u lti-laye r sandwich column.

2. THE BUCKLING DIFFERENTIAL EQUATION SYSTEM OF THE 
MULTI-LAYER SANDWICH BEAM

The sandwich construction in Fig. 2 consists of n+1 s t i f f  and n so ft 
layers. Let the overall height of the beam be H. The local bending r ig id it ie s  
of the s t i f f  layers are El , . . .E I j , . . .E In.
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We sha ll denote the s t i f f  layers with 'in tege r' indices, and the so ft layers 
with 'h a lf ' indices (Fig. 2). In order to obtain qualita tive conclusions we 
w i l l  show the derivation fo r a regular sandwich construction, where the d is
tances of the centroidal axes of the adjoining s t i f f  layers are equal to 
each other, and are denoted with a; the shear r ig id it ie s  of the so ft layers 
are equal to each other (denoted with S^), and the tensile stiffnesses of 
the s t i f f  layers are also equal (denoted with EA).

Further notations are: E is  the modulus of e la s tic ity , 1  ̂ is  the 
moment of ine rtia  of the i- th  s t i f f  layer, A is  the cross-sectional area of 
one s t i f f  layer. The shear r ig id ity  of one so ft layer is  defined by (13).

Let the ve rtica l loads act on every s t i f f  layer with the same d is t r i 
bution p(x) along the x axis. This causes normal forces N(x)=Na(x), where 
N is  the parameter and a (x) defines the d is trib u tio n  of the normal force.

Since every layer is  incompressible in  transverse d ire c tion , the 
horizonta l displacements of the s t i f f  layers are equal to each other. Let us 
denote the horizontal displacement function with w(x), and the v e rtic a l d is
placement function with u (x ,z ). The shearing stra in  of the ( i+ 0 .5 )-th  so ft 
layer is

Y i+0.5 (x) = w'(x) 3u(x,z) 
Э z

We denote with dash the derivative with respect to x. Assume that 
due to the negligible bending r ig id it ie s  of the cores, the shearing stra in  
is  invariable along the horizontal d irection  between two consecutive 
s t i f f  layers.

Let us denote the ve rtica l displacement function of the i - t h  s t i f f  
layer w ith u^, and le t  us introduce a function

’ i+0.5 (x) = -
U- . (x) — u.(x) 

1+1 1 ( 1)

We can write the previous expression fo r y ^+q ^(x) w ith the aid of 
(1) in  the following way, well known in  sandwich theory (Fig. 3):

w '(x) = ф1+0 5(x) + Y i+Q 5(x) ( i= l ,2 , . . .n )  . (2)

Let us write the equation fo r equilibrium of the moments at a height 
x, w ith respect to the geometrical center lin e  of the cross-section of the
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beam. The moment of the external forces is  
X

ME(x) = j~  Р±( e ) [wCx) — w ( Ç ) ] d Í

0
We also need i t s  deriva tive :

X

M'(x) = Z w'(x )  ( n. ( ç ) d Ç = (n+1) N a (x) w'(x) .
11 i=0 J  1

0

( 3 )

The moment of the external forces has to be equal to the moment of 
in te rn a l forces, which consists of two parts:

MjCx) = M^(x) + Mg(x) . (4)

M £,(x) is due to the bending of the s t i f f  layers, Mg(x) is  due to 
th e ir  compression. From the bending-curvature re la tionsh ip  we obtain:

M *(x) = -  В % w"(x) , (5)
where n

ß a = Ï  EL .
Ä i=0 1

Let us determine the value of Mg from the deformations. With uq and 
<(k _q 5 ( i= l ,2 , . . .  ,n) we can determine u :̂.

i
иЛх) = и (x) -  a Z ф • g 5(x) . (6)

j= l  J

The vertica l force in  the i- th  layer is

F.(x) = u .'(x )  EA , (7)

and the equation of the v e r t ic a l equilibrium becomes 

n
Z F.(x) = (n+l)N a (x) . (8)

i=0 1

Let us denote with П(х) the common v e rtic a l displacement of the 
layers p rio r to buckling. We thus have u '(x ) = N a (x)/(EA). Using expres
sions (6-8) we obtain

3 2 0
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Uq( x) - u' (x)  + — £ (n - i+ 1 ) ф ! _Q 5(x) .
i= l

The expression fo r global bending moment — at height x, w ith respect 
to the geometrical center lin e  of the cross-section — can be w ritten  as

Mq( x) = -  EA a2 i  5(x ) (n + l- i) i  . (9)

This expression becomes much simpler in  case of 
Ф (x)= фд j(x )= ...... = ф n_g 5(x). Denoting with

Ig = А а2 у  £ (n+1—i ) i  = A a2 | y  n (n+l)(n+2)

the moment of in e rtia  of the s t i f f  layers without the ir own loca l moments of 
in e r t ia ,  and using notation

BQ = EI0 = EA a2 -jY n (n+l)(n+2) , ( 10)

we obtain expression

M0 = -  B0 ф ' (x) ,

which is  analogous to the well-known moment-curvature re lationship of 
bent bars.

Let us d iffe re n tia te  with respect to x the expressions of (5) and 
(9 ), and introduce them in to  equations = Mj . Using equations (3 ,4 ,5 ,9 ), 
we obtain

1 о  П и
(n+l)N a (x)w '(x) í - B j w ' "  ( x J - E A i a ^  £ ф. ,- (x ) (n + l- i) iz i=1 i -и.э

Now we have to derive the re la tionship  between Ф and Y . Let us 
consider the i- th  s t i f f  layer, and cut v e r t ic a lly  the connecting so ft layers 
along th e ir middle lin e . The d istributed forces ( t  and x ) are illu s tra te d  
in  Fig. 4 with positive sign. Between forces x and displacement u" the fo l 
lowing re la tion  holds:
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Y  1-0.5

Fig. 3. Fig. 4.

\ T i-0 .5 (x) Ti+0.5(x) \u .(x) = ----------------------------------+ u (x)
1 EA

( 12)

and according to the d e fin it io n  of S » ,

T i+0.5(x) = a Y i+0.5(x) ' (13)

With (12) and (13) we elim inate in (x) from (1) and obtain

Ф1-0.5(х) = 2a EA Y i - 1 . 5 ^  + 2 Y i - 0 . 5 ^  Y i+0.5^x^

( i= l,2 ....... n) (14)

where — because of (13) —

Y -0.5(x) =Y n+0 .5 (x) = 0 •

Introducing the follow ing notations:

( 1 5 )
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C = ~ 2 -1 II

-е-н -e-
O

X w __
»

Y =
Y 0 . 5 ^

-1 2 -1 Ф2 5^*) Y l _ 5(x)

-1 2 > Фп-0.5(х) 9 Y n-0.5(x  ̂— -1

(16)

we can w rite

Ф (x) = -
a2EA

C Y (x) .

In th is  equation Ç is  a trid iagonal m atrix, whose inverse is  the fo l-
(

lowing one-pair matrix / 6/  ( i  and j  are the indices of the rows and columns
respective ly):

i(n + l- j)

C =
Г n+1

.1 1  1 -  3

j (n+1 i  ) 
L ----- !------ , i f  i  s j  .

(17)

n+1
Hence we obtain

Y(x) = -  S -!*  Q-l Ф " ( x) 
b l  '

(18)

Let us express w '(x) with the aid of (2) and (18):

W' ( X) = I  (x) - (x) (19)

(11) and (19) constitu te the d iffe re n tia l equation system of our problem. 
With the aid of (19) we can express the function w in (11) by ф , so we 
obtain a d iffe re n tia l equation system of the fourth order 1

1 i  " а" -1 ."" ? a"
(n+1 )N а (х)(Ф -  Ç 1 Ф ) = -  В, (Ф -  g )-azEAA Ф

L  -  b { , ' _ ■ ~

where A is  ап (пхп) matrix (a dyad):
1

i *  ; §* = j  (n+1_j ) j

( 20)

( 21)
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In  case of n=l ( i .e .  fo r  a sandwich beam w ith thick faces) we have

g“ 1 = [0 . 5]  and Ô =[0 .5 ] (22)

so tha t the equation system (20) degenerates in to  equation (7) of /2 /.
In  case of a cantilever b u ilt - in  at the bottom and free at the top, 

the boundary conditions of the d iffe re n tia l equation system (20) are the 
fo llow ing : At the bottom (x=H) because of the b u i l t - in  end u^=0, and 
from (1 ):

Ф(Н) = 0 . (23.a)

The rotations of the s t i f f  layers are equal to zero (w1 =0 ) ,  so us
ing also (23.a):

Ф " (H) = g . (23.b)

The conditions at the top (x=0) are: In tegrating (12) we obtain 
uj (0) = u '(0), so that

Ф ' (0) = 0 , (23.c)-  sr

(and also Mq=0); furthermore there is  no bending a t the top (M^=0), so 
that from w"=0:

Ф " '(0 ) = 0 . (23.d)

3. SANDWICH CANTILEVER UNDER A CONCENTRATED FORCE ACTING ON THE TOP

In case of a (x )= l, i .e .  i f  there are only concentrated forces acting 
on the top of the s t i f f  layers, we can easily solve the d iffe re n tia l equa
tio n  system (20). The so lu tion which also meets the boundary conditions 
(23) is :

Ф k (x )  = Фк cos x (k = l,2 , . . . )  .

Let us substitute th is  in to  (20), and d iv ide i t  by cos(2k-l) nx/(2H ). 
The lowest eigenvalue belongs to k=l, so we obtain

2

P(E + -Д Д  Ç '1) Ф =
4HZ S„ '

Bl V r r  * 2 a2EA r -U  EAa2 w2 , 
----- (E + —“  ------------  Ç ) + -------0-----  A

4H 4H Si 4H
( 2 4 )
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where |  is  the u n it matrix, and the elements of <f> do not depend on x; 
furthermore

P = (n+1) N

is  the parameter of the load, of which the c r i t ic a l  value is  P .
(24) is  a homogeneous linear equation system of Ф , which has a 

n o n triv ia l solution only i f  the determinant of the matrix of the equation 
system (24) is  equal to zero. Using notations

and

Ti В I

4H

* 2a2EA
4H2

th is  condition assumes the following form:

det Г(Р -L cr h c - b - o 6] .

(25) is  an equation of the n-th degree fo r Pcr P =P<, cr l

(25)

is  the root of (25) 
with m u lt ip lic ity  (n-1), A being a dyad. Consequently, with the (п- l )  root 
factors of equation (25) dropped out we obtain a linear equation fo r the 
n-th root.

Let us f i r s t  examine root Pcr = P̂  . I n  th is  special case, equation 
(25) does not contain equation (11). In fac t i f  we take into consideration 
that the horizontal displacements of the s t i f f  layers are equal to each 
other, i.e .

w0 = wi  = •••• = wn , (26)

we obtain t r iv ia l  solution £ = Q. Therefore P̂  is  not a c r i t ic a l  
load of the structure.

3.1 C r it ic a l loads in  case of n=l, 2 and 3

In case of n=l, i.e .  i f  one soft layer separates the two s t i f f  
layers, we w i l l  obtain from equation (10):

n . a2EA . (27)
B0 -  ~ 2

Let us denote the c r it ic a l load of a cantilever with r ig id ity  Bg by
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( 2 8 )

Considering (2 2 ), we ob ta in  the same c r i t i c a l  load as in  / 1 ,2 / :

- n - i
c r •  f ö 1 * s - 1] + P„ (29)

where S = .

In  case o f n=2, we ob ta in  from equations (17) and (21):

(p c r - pt  >

The value o f determ inant (25) is  

2 = 0 .

Using the fo llo w in g  no ta tions

and from  ( 1 0 ) : 

and

S = 2 S,

B0 = 2 a‘  EA (30)

P0

TT2 Br

4H
= 2 D ,

we o b ta in  expression (29) fo r  c a lc u la tin g  the  c r i t i c a l  load o f the s tru c tu re . 

The elements o f Ф are Фц 5 = Ф1 5 •
We thus have the re s u lt  th a t the c r i t i c a l  load o f a t h r e e - s t i f f -  

la y e r  c a n tile v e r  is  equal to  the c r i t ic a l  load  o f a c a n tile v e r w ith  th ic k  

faces ( tw o - s t i f f - la y e r  sandwich), where the lo c a l bending r ig id i t y  is  equal 

to  th e  sum o f bending r ig id i t i e s  o f the s t i f f  la ye rs  the shear r ig id i t y  to  

the sum o f r ig id i t ie s  o f the s o ft  laye rs  w h ile  the g loba l r ig id i t y  is  de

f in e d  by (30 ).

In  case o f n=3 we o b ta in  from equation (17) and (21)
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From equation (25) we can derive  the expression fo r  Pc r :

The elements o f z are (F ig . 5a):

'0 .5  = 1 - 7 0 7  Ф1.5 ’ 2.5

( 3 1 )

The exact value (31) o f the c r i t ic a l  load is  c lo s e ly  approximated by the 

fo llo w in g  approximate form ula :

where

P0

= P* + 

2r
it BQ

4H

(32)

and from ( 1 0 )

BQ = 5 a2 EA (33)

I t  can be shown by s im ple  a lgebra ic  tra s fo rm a tio n s  th a t (32) always y ie ld s  a 

g re a te r value fo r  the  c r i t i c a l  load than (3 1 ). The d iffe ren ce  becomes maxi

mum i f  =0, and D/Sjj = \ f l .  In  th is  case:

c r V T  + 1

59 1/2+1
= 1.009859

c r 6ÏÏ

so th a t the e rro r  is  always less than 1 %.
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Fig. 5.

We could also obtain the same approximate value F fo r Pcr assuming tha t 
(F ig . 5b):

ф0.5 '  ф1.5 = ф2.5 •

In this case, the d if fe re n t ia l equation system becomes a single 
equation of which the eigenvalue is  Pc r . With th is  assumption we rendered 
our model somewhat more r ig id  than the real one; on the other hand, instead 
of a sandwich beam with four s t i f f  layers we can examine a replacement sand
wich w ith only two s t i f f  layers.

Note that the previous assumption is  only va lid  fo r the v e rtic a l 
displacements (u^) of the s t i f f  layers: the points at the same height on the 
axis of the s t i f f  layers remain on one s tra igh t lin e  a fte r deformation. The
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rotations of the layers may be d iffe ren t. The approximation is  rather 
poor in  describing loca l behaviour ( Ф q 5 ^ 1-707 ^), but very good fo r
the global behaviour (s ta b i l i ty ,  horizontal displacements) of the beam.

3.2 C ritic a l load in  case of an a rb itra ry  n

Let us m ultip ly  equation (2A) from the le f t  by Ç. After rearranging, 
and introducing notation

we obtain

(C + § -  £ )
• 4 СдГ t  ) / x ' 

0 
0

(34)

(35)

0

(£* * ) /  X
у

where a is  a row of matrix ^ (21). The co e ffic ie n t matrix of equation (35) 
is  trid iagonal. Let us introduce a new variable 0 defined by equation

2 + = 2 ch 0 (36)

The inverse of (35) becomes a one-pair matrix / 6/  as follows!

'sinh i  0 s inh(n+l-.j) 0 
sinh© sinh(n+l) 0

sinh 0 s in h (n + l- i)0
4. sinh 0 sinh(n+l) 0

i  S j  

i   ̂ j
(37)

On the r ig h t side of equation (35), only the f i r s t  and the la s t 
terms are d iffe ren t from zero, so that

П - 0 . 5 SJ^ T ± ~ sinh(n+l)0  [s inh (n+l - i )  0 + sinh i  0 j  . (38)

M ultip ly ing equation (38) by (a^ X ), we obtain

A = ^  i n + l - i )  i  sinhl ^ i ) e , [s in h ( fH l- i)  0 +sinhi 0]  . ( 39)
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The c r i t ic a l  load is

pc r =  •

We w i l l  obtain the approximate value of the c r i t ic a l  load i f  we replace the 
m u lti- la ye r sandwich construction with a simple sandwich with th ick  faces, 
whose replacement r ig id it ie s  are the fo llow ing:

n
= E 

i=0 EIi S = nS, Bo =
EAâ  n(n+l)(n+2) 

12 (41)

In the next table we calculated the maximum values of ra tio  "Pcr/Pcr f ° r 
various n values as a function of D/S ^ .

n D/S, P /Р
• СГ  СГ

1 arb itra ry 1.0000
2 a rb itra ry 1.0000
3 1.414 1.0099
4 1.000 1.0204
5 0.750 1.0299
6 0.585 1.0381
7 0.469 1.0451
8 0.387 1.0512
9 0.324 1.0564

10 0.276 1.0610
11 0.237 1.0650
12 0.206 1.0685
20 0.089 1.0866
30 0.043 1.0974

The results show that the approximation is  good enough also in  case 
of great n values. (We could obtain the c r i t ic a l  values (39) also by means of 
the method of f in ite  d ifference equations. For example, Pomázi /4 /  used th is  
method to calculate the c r i t ic a l  loads of sandwich-plates with regular b u i lt -  
up of the layers.)

4. CONCLUSIONS. THE REPLACEMENT SANDWICH BEAM

I t  was shown in  Section 3 that the c r i t ic a l  load of a m u lti-laye r 
sandwich beam under concentrated forces acting on the top was always very 
close to  the c r it ic a l load of an appropriately chosen sandwich beam with 
th ic k  faces. So the la t te r  can serve as the replacement model of the pre
vious one.
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We may also use the method of replacement in  more general cases. In 
ca lculating for c r i t ic a l load (also for loading cases other than concentrat
ed forces) we can replace the m ulti-layer sandwich beam with a sandwich with 
th ick  faces (consisting of two s t i f f  layers and one soft layer). Ihe r ig id i
t ie s  of the replacement sandwich beam are the follow ing: the shear r ig id ity  
is  equal to the sum of the r ig id it ie s  of the so ft layers; the loca l bending 
r ig id i t y  is  equal to the sum of the bending r ig id it ie s  of the s t i f f  layers, 
and the global bending r ig id ity  consists of the 'Steiner terms' of the s t i f f  
layers:

n
BQ = E 
u i=0

EA.l

where the number of the s t i f f  layers is  n+1, Â  is  the area of the cross- 
section of the i- th  s t i f f  layer, and s  ̂ is  i t s  distance from the centroid of 
the entire  cross-section. Ih is  approximation is  equivalent to the assump

tio n : <t>Q5 = ^ 1 5  = ........  = Ф n-0 5 ‘ This a33umP ti°n as verY f ar f rom
re a lity ,  because the values of ф are d iffe re n t in  general cases, neverthe
less, the overall behaviour of the beam is  not s ig n ifican tly  affected by i t ,  
and the approximation based on th is  s im p lifica tion  yields rea lly  
good results.

Based on these princ ip les, we can also substitute a sandwich can ti
lever with thick faces fo r a m ultip ly coupled shear wall, and we can ca l
culate i ts  c r it ic a l load also in case of a rb itra ry  load d is tribu tions .
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(Stability analysiŝ  of coupled shear-walls by the continuum method. In Hun
garian), Építés- Építészettudomány, 1982. 143—154.

KOLLÁR, L .P .

332



Acta Technics Acad.Sei.Hung., 99(5-4), pp. 333—348 (1986)
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BETWEEN SOLIDIFYING METAL AND MOLD
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In the c lassica l solution to one dimensional so lid if ica tio n s  
Schwarz showed that in  case of perfect thermal contact the interface 
temperature between the mold and s o lid ify in g  material was constant. 
Adams hypothesized that in actual casting problems with imperfect 
thermal contact, one could s t i l l  use the interface temperature com
puted by Schwarz's solution but now acting through a film  resistance 
upon mold and another film  resistance upon so lid ify ing  metal. The 
problem of so lid ify in g  a metal by a constant-temperature source act
ing through a film  resistance is  solved using the method of succes
sive approximations. Taking experimental data for depth s o lid if ie d  
vs time, the f i r s t  problem is  solved inversely to determine the film  
resistance between the constant-temperature source and the s o lid ify 
ing metal. Osing experimental curves fo r temperature vs depth at 
various times, the second problem is  also solved inversely in  order 
to determine the film  resistance between the mold and the constant- 
temperature source. The overall f ilm  resistance between the mold and 
so lid ify in g  metal is  the sum of the two resistances. Experiments in 
dicate that the two resistances cannot be assumed equal.

NOTATION

Dimensional Quantities
c — specific heat
h — f ilm  conductance
к - conductivity
L — la ten t heat of fusion
e - arb itra ry reference length
t — time
T - temperature
Tf — fusion temperature
X — position
z — position of freezing front
K=k/ p c — d if fu s iv ity
P — density
Nondimensional Quantities
H — f ilm  conductance
L' — la ten t heat of fusion
Г - temperature
X — position
Y — position of freezing front
т — time

*Smederevo Iron and Steel Works, 11300 Smederevo, Yugoslavia

Akadémiai Kiadó, Budapest
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1. INTRODUCTION

The most general mathematical solution available for a liq u id  freez
ing on a mold is  the one-dimensional solution according to Schwarz /1 / .  The 
Schwarz solution is  fo r the case of a se m i-in fin ite  liqu id  at a uniform tem
perature coming in to perfect thermal contact (no in te rfa c ia l resistance) 
w ith a sem iin fin ite  c h i l l  at a uniform temperature below the fusion tempera
ture of the liq u id . One of the important resu lts  of the Schwarz solution is  
that i t  predicts an interface temperature that is  constant. In the real 
world perfect thermal contact is  not attainable fo r d ifferent reasons; sur
face contamination, bridging of surface roughness by the liqu id  causing 
voids, shrinkage of the casting, and so fo rth .

One way to model th is  resistance to heat flow at the interface is  to 
assume tha t there is  a film  between the mold and the casting that has no 
heat capacity but has resistance to the flow of heat and therefore a f in i te  
conductance. In general one would expect the value of the film  resistance to 
be temperature dependent and possibly dependent on the rate of heat f lu x . 
P rac tica lly  speaking, the quantification of th is  film  resistance through ex
perimentation is  very d i f f ic u l t .  I t  is  d i f f ic u l t  because the precise measure
ment of temperature in  the melt and locating the freezing front at various 
times are very d i f f ic u l t  to do. Also, the correct method of in terpreting  ex
perimental results is  not always clear. Instrumentation of large castings is  
d i f f i c u l t  enough; fo r th in  film s instrumentation is  v irtu a lly  impossible.
For certa in  experiments i t  is  possible to a na ly tica lly  determine the in te r 
face resistance i f  the resistance is  assumed constant.

Adams /2 / has hypothesized that in  case of real casting problems the 
in terface temperature predicted by the Schwarz solution could be used but 
now would be acting through a film  resistance upon the mold and another film  
resistance upon the casting. Figure 1 shows the model of a mold and casting 
system with in te rfa c ia l conductance h. What Adams /2 / proposed is  shown in  
Fig. 2, where T  ̂ is  the interface temperature predicted by the Schwarz solu
tio n . Mathematically, th is  has broken the problem in to  two separate parts; a 
mold heated by a temperature source 1 i  acting through a film  of conductance 
hp  and a casting cooled by a temperature sink T^ acting through a film  of 
conductance

Adams took h  ̂ and h2 to be d iffe ren t. Results presented la te r in  
th is  paper indicate that in  general they are d iffe re n t. An exact solution
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- oo

-V----- \ -----

Liquid oo

-A----- <\----

Fig. 1. Idealized mold-casting Fig. 2. The mold-casting system
system decomposed into two separate problems

fo r a sem iin fin ite  body, in i t ia l ly  at some uniform temperature and heated or 
cooled by a constant temperature source acting through a film  of constant 
conductance is  available /1 /.  The problem of a so lid ify ing  lig u id  ch ille d  by 
a constant temperature sink acting through a film  of constant conductance 
cannot be solved exactly. However, fo r the case when the liq u id  is  at the 
saturation temperature, an analytica l solution may be formulated by the 
method of successive approximations. This method has been applied by Savino 
and Siegel /3 / to the problem of a warm moving lig u id  so lid ify in g  on an iso
thermal wall. In the ir problem there was perfect thermal contact between the 
lig u id  and the wall but there was convective heat transfer from the liq u id  
to the so lid -liq u id  in terface.

In th is  paper the method of successive approximations is  applied to 
the previously described problem. The solution is  f in a lly  expressed in  such 
a way that knowing the thickness s o lid ifie d  vs time, film  conductance h  ̂ be
tween T| and the casting can be found by finding the f i r s t  zero of a trans
cendental function. A s im ila r procedure is  used to determine f ilm  conduc
tance hj between T-̂  and the mold. The technique is  applied to some experi
mental results.

2. FORMULATION OF THE PROBLEM

For the case when the liq u id  metal is  at the fusion temperature, the 
problem is  governed by the following equations.

In the so lid if ie d  portion

Э2 Т
Эх2

Q £ X £
Э t
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The boundary cond itions

- к  - ЭТ - -  

and

X = О

X = Z .

The i n i t i a l  cond ition  in  th e  l iq u id  is

T = T , , t  = 0

D e fin e  the fo llow ing  nondim ensional parameters 

T -  T
T' = ---------—  ,

X = x/e ,

Y = z/e ,

where e is  an a rb it ra ry  re fe re n ce  length, 

т = k l / e 2 ,

c(T f  -  Tx )

The govern ing equations fo r  the  problem then become

and

( 1)

( 2 )
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Э T' = dY
Э х  d  T

T' = O
I n i t ia l ly

T ' = O , T = O . ( * )

F irs t Eq.(l) is  integrated from an a rb itra ry  position in so lid  X to 
s o lid - liq u id  interface Y to obtain

Э T '
9 X

- i l l
Э E E =Y

- J I f (5)

The f i r s t  interface condition (3) is  now used to find
Y

9— =L' -  - j -fr-^ ’T •Э X d t i  3 T
( 6 )

This resu lt is  now integrated from surface X = 0 to an a rb itra ry point X:

T'(X, T ) -  T' (0,  t ) = L'X—
d  t - 5

0
Í 9 T'

9 T ( Í  ) T )d Ç d n • (7)

Using the boundary condition (2) and Eq. (6) evaluated at X = 0 gives

T'CO, t ) = i  - H l  
H 9 X

-  1 =
x=o
Y

= -  Ü Ï - I  \  -H ^ E -1
H d t  H X 3T0

Substitution of (8) in to  (7) gives

( 8)

t  '(X, J  ) = L' (X + 1) — -  1 
H dT - H

9 T '
9t

dç -

л r

- 5  S ^ f d E d n ( 9 )
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F ig . 3. Region o f in te g ra t io n  
o f Eq. (9)

With reference to  F ig . 3, the order o f in te g r a t io n  is  now changed 

acco rd ing  to  the fo llo w in g  procedure. The slashed reg ion  is  the domain o f 
in te r g r a t io n ,  thus

( 10)

The order o f d i f fe r e n t ia t io n  and in te g ra t io n  is  now changed to  f in d

Y

— \  T ' ( Ç j i  ) d £  +
h J

(1 1 )
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Since i t  is  the time to s o lid ify  a given thickness that is  of in 
te res t, write

V = F( T ) .
I t  is  now helpful to transform variables. Although the so lu tion  is  

unknown at th is  juncture, i f  i t  is  unique then there w il l be an inverse to 
the above re la tion  such that

Noting that

T = F(Y) .

_3_ = dY _3_
3T dx 3 Y

Eq. (11) may now be w ritten in  terms of X and Y:

T ' ( X , y ) . - l , L 4 X . i ) Î Ï - - Î Ï --------U Í M 1
H d t  d t  3Y

where
I(X,Y) = ± 

H

+ X

5
0
Y

5

T' ( £) ,Y)dç 

T' (  Ç >Y)d E,

( 12)

(13)

In order to prove the v a lid ity  of changing the order of in tegra tion  
and d iffe re n tia tio n  to obtain expression (11) from (10) i t  is  only necessary 
to form 3I ( X, Y) /  Эх and apply Le ibn itz 's  ru le in d iffe re n tia tio n  of 
in tegra ls  with variable lim its . Then use the fac t that T'(Y,Y)=0 and invert 
the transformation from Y to x 

Rewriting Eq. (12)

At X

dY = ______ T' (X,Y) + 1

dT L' (x + i ) - - i H M )  
H 3 Y

Y, T' :  0 so that

dY
d x r ( y +

(14)

( 1 5 )

X=Y
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Define Y
G(Y) = ICY,Y) = \  ( -  + E )T' ( Ç ,Y)dÇ

J H 
0 M

I t  can be demonstrated tha t

dG(Y)
dY

ЭI ( X, Y ) 
Э Y X=Y

Equation (15) thus becomes

dY 
d T

_______ 1

L ' (Y + —) — —  
H dY

which can be integrated to give

♦ - )  -  G(Y) . 
H

Substitu ting Eq. (18) in to  Eq. (12) gives

T'(X,Y) 1
I 1 ( Y + —) — — L u  H; dY

(16)

(17)

(18)

(19)

( 20)

Up to th is point no approximations'have been made. The d iffe re n tia l 
equation has been integrated as fa r as possible, making use of the boundary 
conditions in order to obtain a form to which the method of successive ap
proximations can be applied.

3. SOLUTION

1st Approximation

The f i r s t  approximation is  found by taking G=0 and 1=0 in Eqs (19) 
and (20) to obtain

and

->

< Y * H >

( 21)

( 2 2 )
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The f i r s t  approximation is  physically meaningful. I t  is none other than the 
London-Seban solution /4 / fo r  the s o lid if ic a tio n  of a liqu id  at the fusion 
temperature, cooled by a temperature sink acting through a film  conductance 
H and where the heat capacity e ffects of the s o lid ifie d  portion have been 
ignored. This means that the temperature varies linearly  in  the so lid  as can 
be seen in  Eq. (22).

2nd Approximation

The second approximation is  determined by using and T  ̂ to de
termine values fo r G and I  from Eqs (13) and (16). Thus

Y

0 "  
Yand X

I 2(X,Y) = h 5 Tl ( K ,Y)dÇ +
0 0

€ T{( ç ,Y)dç +

Y
+ X J T^( £ ,Y)dç

X
Performing these in teg ra tio ns  yields

1
3H3(Y + - )  

H

1

3H3(Y + - )  
H

1

1 «  *
6 (Y + J)

The follow ing derivatives are then found

(23)

and
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d I2 1 1—  = -  -  (X + i )
dV 2 H

(X .  i ) 3

3HV
/(Y  + - ) 2 (24)

Equations (23) and (24) are now substituted in to  Eqs (19) and (20) to find  
the second approximation

t , +  — ( Y + —)2 
1 6 H 2H 3H3 (Y + ÿ

(25)

T' = -  1 + A/B , (26)

where
Л  + ±  (x + * ) 3

A = L '(X + —) + —(X + —) ---- 3H___6--------- H_ f
H 2 H (Y + —)2

H

B = L' (Y + —) + — (Y + —) ---------------Y-x .
H 3 H 3HJ>(Y +

3rd Approximation

The th ird  and la s t approximation is  determined in the same fashion 
that the second approximation was determined. Since only the approximation 
fo r time vs depth is  required i t  w il l  only be necessary to determine G3 . 
Substitu ting Eq. (26) in to  Eq. (16) yields upon in te g ra tio n

G-j = - (1 /2  + 1/6DH3)(Y  + 1/H)2 + 1/3D(L ' + 2 /5 )(Y  + 1/H)5 +

+ 1/2H2 -  1/3DH3( L ’ + 1/2)(Y  + 1 /H )2 + 1/5DH5 (27)

where
D = (Y + 1/H)3( L 1 + 1 /3 ) -  1/3H3 . (28)

The th ird  approximation fo r the time vs depth is

t 3 = t x -  G3 . (29)

In order to check th is  so lu tion a comparison was made with Neumann's solu
tion  / 1/  fo r the case of in f in ite  surface conductance (zero surface resis
tance). Neumann's solution is  an exact solution fo r  the case of a semiin-
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f in i te  saturated liq u id  whose surface temperature is  held fixed at some tem
perature below the fusion temperature. I t  is ,  thus , a special case of the 
Schwarz solution. The th ird  approximation and Neumann's solution agreed 
exactly, fo r a l l  intents and purposes, fo r a variety of problems. The f o l 
lowing example shows that when there is  a f in i te  film  conductance between 
the temperature sink and the so lid ify in g  liq u id  there is  a s ig n ifican t d i f 
ference between Neumann's solution and the solution developed here as would 
be expected.

Example

As an example, consider the problem of liq u id  t in  ch illed  by a 96°C 
sink acting through a film  of conductance h=6.02 kW/m2 °C. Table I  gives the 
pertinent physical properties.

Table I  Properties of Tin

к c L Tf

60.2 W/M°C 7300 Kg/m3 0.26 KJ/Kg°C 58.3 KJ/Kg 232°C

Table I I  shows the time to s o lid ify various depths as predicted by the
Neumann solution and the three approximate solutions x ^ T 3'
Table I I  Depth s o lid if ie d vs time by the Neumann and approximate solutions

when there is  a f in ite  film conductance

IT II ON .02 KW/m2 °C

z 10 2 m t  s neu t^ s t 2 s t j  s t f in  d if

0.2 0.121 1.15 1.21 1.21 1.21
0.4 0.491 2.52 2.74 2.74 2.74
0.6 1.104 4.15 4.58 4.55 4.55
0.8 1.971 5.97 6.66 6.61 6.61
1.0 3.090 7.90 9.08 8.99 8.99
1.2 4.360 10.20 11.50 11.40 11.40
1.4 6.400 12.60 14.50 14.30 14.30
1.6 7.886 15.60 17.80 17.60 17.60
1.8 9.980 18.40 21.20 20.70 20.70
2.0 12.340 21.30 24.70 24.50 ~

Recall that x^ corresponds to the London-Seban solution. The resu lts  are 
presented in  dimensional form.
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Notice that the Neumann solution predicts a much shorter time to 
s o lid ify  a given depth than any of the approximations. This is  because there 
is  no resistance to heat flow on the surface in  the Neumann solution. Also 
notice the f i r s t  approximation t p  which is  the London-Seban solution, which 
p red icts a shorter time to s o lid ify  a given depth than the other two approx
imations. This is  because in  the London-Seban solution the so lid if ie d  part 
cannot store heat but acts merely lik e  a resistance. As can be seen, the ap
proximate analytical solution agrees well with the f in ite  difference solu
tio n . I t  was found that the approximate so lu tion was very sensitive to 
roundoff error in the computation process and that i t  was necessary to use 
double precision in  performing the calculations on an IBM 1130.

4. DETERMINATION OF h FROM EXPERIMENTAL DATA

Experimentally measured values of depth vs time can be used to de
termine the in te rfa c ia l f ilm  conductance between the mold and casting using 
the previously described solution provided tha t the mold and casting behave 
as i f  they were sem iin fin ite  fo r the range of measurements to be analyzed 
and provided that the melt was in i t ia l ly  at or near the saturation tempera
ture while the mold was in i t ia l ly  at some uniform temperature. The procedure 
is  as follows: F irs t, knowing the in i t ia l  temperature of the mold and the 
thermal properties of the mold and casting, the interface temperature that 
would be expected in the case of perfect thermal contact is  computed from 
the Schwarz solution /1 / which is

T1 = Tf + Ï L ( V 2 T e rf ( X ) 
k2 K1

! Л  (V 2 . e rf ( X ) 
k2 K1

(30)

where
K,,K -  
T1 z —
Tm

fk p k „  -
e rf —
X -

thermal d if fu s iv it ie s  of the mold and casting, 
in i t ia l  mold temperature at t=0 , 
fusion temperature,
thermal conductiv ities of the mold and casting,
error function, and
root of transcendental equation

X e X ^2

L kl  K2
e rf( X ) C2Tf = 0

w ith being the specific  heat of the casting.

(31)

344



THERMAL CONTACT RESISTANCE

Knowing Tj from the above equations and the depth s o lid if ie d  in  a 
given time from experimental data, the value of T  ̂ necessary fo r Eq. (29) 
to be sa tis fied  can be found as follows. Equation (29) is  rewritten as

f  (h) = t 3 — r x + G3 ( 3 2 )

The correct value of is  the f i r s t  root o f f(h )  that is , the value of h 
that causes f(h ) to vanish. This can be accomplished by well known 
techniques /5 /.

The value of h^ between T̂ and the mold is  sim ilary determined. 
Knowing T  ̂ and the temperature at a point in  the mold as a function of time 
the solution fo r a sem iin fin ite  body heated by convection can be solved in 
versely to find h^. The solution of th is  problem is  /1 /

Tx(x ,t)  = J 1 erfc
_2(Kl t ) T72

exp
l  p l cl

. erfc
_2(K1t ) 1/2 kx

(33)

Thus, the value of h  ̂ can be determined by find ing  the value of h that 
sa tis fie s  Eq. (33) fo r given values of T, x, and t .

The to ta l f ilm  conductance is  then found from

(ЗА)

5. APPLICATION TO RESULTS OF AN EXPERIMENT

Molten t in  was s o lid if ie d  on both a copper c h il l  and a steel c h i l l .  
The apparatus and the d iffe re n tia l thermometry technique used to determine 
depth so lid if ie d  at various times is  described in  an a rtic le  by Prates et al 
/6 / .  The temperature of the molten t in  was kept as close to the fusion tem
perature as possible in  order to eliminate the e ffec t of superheat. The 
ambient temperature was 21°C. One problem tha t could not be eliminated was 
s t ir r in g  of the liq u id  during the pouring operation. S tirring  revealed i t 
se lf as e rra tic  output on the recorder s im ila r to that reported by Prates et 
al /6 / .  This tended to retard the onset of s o lid if ic a tio n .
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Fig. 5. Comparison of ana ly tica l with 
experimental resu lts  of depth 
so lid ifie d  time fo r t in  on a 
copper c h il l

F ig . 7. Comparison of ana ly tica l 
with experimental results 
of depth s o lid if ie d  time 
fo r t in  on a cold ro lled  
steel c h il l

Fig. 6. Comparison of a n a ly ti
cal with experimental re
sults of temperature posi
tion  in the c h i l l  fo r  
various times fo r t in  on a 
copper c h il l

. 8. Comparison of ana ly tica l with 
experimental results of tem
perature position in  the c h i l l  
fo r various times fo r t in  on a 
cold ro lled steel c h i l l
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Figure 4 shows the data for the two experiments for depth s o lid if ie d
vs the square root of time, presented in  th is  way because of perfect thermal
contact depth s o lid if ie d  is  proportional to the square root of time. Passing

1/2stra igh t lines through the data shows that they intersect the t  axis at 
t=3.05 s. This value is  used as an estimate o f the deadtime p rio r to the on
set of s o lid if ic a tio n . Table I I I  details the data pertinent to the experi
ment and the data.

Table I I I  Thermal Properties

k,W/M°C p,Kg/m3 c:,KJ/Kg°C Lf ,K3/Kg Tf ,°C To , °C

Tin 60.2 7300 0.26 58.3 232 234.0
Copper 394.0 7960 0.386 21
C.R.S 67.1 7860 0.628 21

In using Eq. (32) to determine h„, the deadtime of 3.05 s is  sub-
tracted from the time fo r a given depth to s o lid ify .  In determining the
values of h, fo r the c h i l l  blocks, no deadtime is  used since they commence
warming up immediately. The computed resu lts  are given in Table IV.

Table IV Results of Analysis

T °c p’ hl h2 h=(l/h1+l/h 2)(KW/M2 °C)

Srv-Cu 96.5 15.5 5.54 4.08
Sn-Fe 140.7 5.25 3.41 2.075

Note that h  ̂ and h2 are unequal in  both cases. Figure 5 shows a p lo t 
of the depth s o lid if ie d  vs time as predicted by Eq. (29) compared with the 
experimental data where the deadtime has been subtracted for the use of t in  
so lid ify in g  on a copper c h i l l .  Figure 8 shows p lo ts  of temperature vs depth 
in to  the c h i l l  fo r various times as computed by Eq. (33) compared with ex
perimental data. Figure 7 and 8 show the same type of results fo r t in  on the 
cold ro lled  steel c h i l l .
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6. DISCUSSION

The method of successive approximations used here provides an ana
ly t ic a l  solution for the s o lid if ic a tio n  of a sem iin fin ite  saturated liq u id  
whose surface is cooled by a temperature sink acting through a film  re s is 
tance. The method is  accurate and was easily programmed along with the 
Schwartz solution to determine the film  conductance between a mold and a 
casting from the results of an experiment. I t  has several advantages over 
the f in i t e  difference technique fo r these problems where i t  applies. In 
order to  determine a film  conductance from an experiment using a f in i t e  d i f 
ference technique, a t r ia l  and error procedure tha t is  slow and costly  is  
required whereas the ana ly tica l approach can be used with a root find ing  
procedure, as outlined in  the tex t, to determine the film  conductance auto
m a tica lly  and very rap id ly .
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By resolving the eccentric load of a s ing le -ce ll box beam into 
a symmetric and an antisymmetric part, we arrive at the solution by 
superimposition. The symmetric problem can be easily solved by the 
wellknown formulas of the elementary theory of structures. The an ti
symmetric problem, however, is  quite complicated and the aim of th is  
paper is  to present a procedure fo r th is  problem. The s ing le -ce ll 
box beam consists of perpendicular walls which are connected by 
r ig id  jo in ts . We assume the beam is  intersected at the jo in ts  and 
there hinges are b u ilt - in .  This "hinged beam" is  braced by densely 
placed "supporting frames". The procedure presented applies the equa
tions of elementary theory of strength of materials to the physical 
model of th is  hinged beam and the supporting frames. The beam is  
divided in to  sections and the stresses are determined with the help 
of matrix equations.

NOTATION

spring constant at a support,
fram e-rig id ity  (the la te ra l s tiffness of the supporting frame), 
length of section i ,  
modulus of e la s tic ity , 
cross sectional area,
distance between the stress axes of the two horizontal walls (flange 
p la tes),
perpendicular distance between the upper stress axis and the neutral 
axis,
perpendicular distance between the lower stress axis and the neutral 
axis,
moment of in e rtia  (second moment of area of the cross sectional 
area) about the axis perpendicular to the plane of bending, 
nodal po in t, boundary of a section or reference to a section, 
substitute moment of in e rtia  of the ve rtica l wall with the two 
horizontal walls,
substitute moment of in e rtia  of the upper horizontal flange plate, 
substitute moment of in e rtia  of the lower horizontal flange plate,
Î
horizontal component of the frame reactive force,
distance between the stress-axes of the ve rtica l walls (webs),
length of the beam,
external ve rtica l concentrated force,
resultatnt/shearing force,
shearing force,
vertica l co-ordinate perpendicular to the axis of the beam, 
horizontal co-ordinate perpendicular to the axis of the beam,

*Dr. J. Szidarovszky, H—1089 Budapest, Bíró Lajos u. 42., Hungary

Akadémiai Kiadó, Budapest



z co-ordinate along the axis of the beam,
a angular displacement,
3 change in angle of the supporting frame,
n displacement,
к b u i lt  in change in  angular displacement
a normal stress,
T shearing stress,
Ç abscissa.
£ u n it matrix.

Subscripts

0 refers to place z=0 or n=0 ,
z refers to place z,
1 refers to place z= Z
i  refers to a section or to the boundary of a section,
n refers to the la s t section or to the end of the beam or to the

boundary of the la s t section,
к refers to the cause o f the b u ilt  in angular displacement,
a refers to normal stress,
X refers to shearing stress,
V refers to ve rtica l d irec tion , force or wall,
a refers to lower horizonta l wall (flange p la te ),
f  refers to upper horizontal wall (flange p la te ),
h refers to horizon ta l-d irection, -force or -w a ll,
p refers to external v e rt ic a l force,
q refers to frame-reaction

1. INTRODUCTION

Demand for constructing bridges and other types of construction 
emerged early in the h istory of mankind. Materials and structura l size were 
decided on good or bad experiences at that time. I t  was only la te r on, when 
economic structural arrangements and calculation methods were developed. A 
good example for th is is  the box-beam bridge. The simplest and widely used 
version of box-beam bridges is  the s ing le -ce ll box-beam bridge, shown in  F ig .l.

The aim of th is  paper is  to analyze the s ing le -ce ll box-beam bridge 
of r ig h t  angled cross section, subjected to s ta tic , v e rtica l, antisymmetric 
load w ith the aid of the theory of strength of materials. We present a uni
fie d  method which makes i t  possible to determine the normal and shearing 
stresses of the beam of deformable cross section as accurately as with the 
beams subjected to a symmetric load. The e ffect of the diaphragms and the ir 
stresses are also examined.

SZIDAROVSZKY, 3 .
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b)

Fig- 1.

This paper establishes the mathematical and physical models and 
works out the mathematical procedures. P ractica l application /6 / ,  the e ffect 
of warping and restrained warping /7 / and certa in  generalizations as well as 
the demonstration of the v a lid ity  of our assumptions /8 / are given in  f o l 
lowing papers.

We do not intend to analyze non-elastic behaviour, dynamic response, 
the e ffec t of the degree of non-linearity in  e la s tic ity , the e ffe c t o f tem
perature, creep and shrinkage, local stresses, buckling and the phenomenon 
of shear-lag.

1.1 S ingle-ce ll box beam

When examining the behaviour of the s ing le -ce ll box beam subjected 
to v e rtic a l, eccentrical load, we resolve the external load px in to  a sym
metric and an antisymmetric part in the planes of the vertica l w a lls  of the 
box beam. The symmetric part consists of forces px/2 acting downwards in  the 
planes of the ve rtica l walls and the antisymmetric part is made up from 
forces p/2: one acting downwards in the w all and the other acting upwards in 
the other wall. The re la tion  between p and p assumes the form as seen in 
Figure 2

p = px s2 ^ l  . (1.1.1)

F ig .  2 .
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In the case of the above resolution, ne ithe r the torque nor the 
bending moment change and the resolution y ie lds exact cross sectional stress 
components in the hinged beam. However, because o f the pa rtia lly  b u i lt - in  
po in ts , the resolution cannot be considered exact fo r the actual beam.

The symmetric stress components resu lting  from the symmetric load 
can be determined accurately enough for c iv i l  engineering calculations with 
the equations of the theory of strength of m ateria ls, only the e ffec t of 
shear-lag modifying the normal stresses should be taken into account in  
ce rta in  cases.

The analysis of the antisymmetric problem, however, is  somewhat more 
d i f f i c u l t .  Due to the antisymmetric ve rtica l load, the vertica l walls of the 
box beam develop bending moments and one part o f torsion resulting from the 
antisymmetric load is  accounted for by bending o f the vertica l walls and the 
other part is  taken by to rs ion  of the box beam as a whole. I t  follows there
fore that

1. Due to the v e r t ic a l antisymmetrical load, both the horizontal and 
the v e rtic a l walls are in  bending in the ir planes, i.e .

a) normal stresses and consequently bending deformations develop 
in the w alls,

b) shearing forces causing shearing deformations also develop in  
the walls.

2. The torsion of the whole cross section results in shearing forces 
and shearing deformations in  both the ve rtica l and the horizontal walls.

3. The shearing deformation causes incompatible deformations in  
ce rta in  cross sections which develop redundants, i .e .  warping developed from 
shearing caused by tors ion  is  restricted.

1.2 The analysis of simply supported beam by the matrix method

Let us divide the simply supported beam of length & shown in  Fig. 3 
in to  n sections. Section i  subjected to force at point i ,  lie s  between 
nodal points ( i—1) and i .  The equation

Mi  = Mi-1 + Ri  ai  (1-2.1)

holds, where FT is  the bending moment at nodal po in t i  and FT is  the shear
ing force along the section i  and â  denotes the length of section i .  With 
P^_^ acting at nodal po in t i-1 ,  we have

SZIDAROVSZKY, Л .
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О 1 2

l

i -1 i i ♦ 1 n -1 n

k=-l
o, q2 a j a,., an

■J
Fig. 3.

R. = R. . -  P. . l  l - l  l - l ( 1 .2 .2)

and on the basis of Eqs (1.2.1) and (1.2.2) we can establish the three-mo
ment equation

- ai - l Mi - l (a. a. , )  M. — a. l - l  l  l M.i+1 = a. a. , P. l  l+ l l (1.2.3a)

where i = l , . . . , (n - l) .
Since the condition M=0 at z=0 and z= l  holds, the system of equa

tions (1.2.3a) can be w ritten  as

g M = (1.2.3b)

where we have

(a1+a2) -a^
- a - j  ( a 2 + a j )  * - 3 2

(n-l)x(n-l) • -ai+l (ai+ai+ l} -ai

• -an-l (an-2+an-l} ~an-2

Л  (arvl+an}

( 1 . 2 . 4 )
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M = 
( п—1 )

М.1

п-1

P = Pi
(п -1)

г
К=1 =

а1а2 '
• а2а3 •

п-1

• ai ai +l  •

. а  „а п-2 п-1(n - l) x (n - l)

Equation (1.2.3b) yields the bending moments as

a . a n-1 n

M =

and the shearing forces are obtained from Eq. (1.2.1) as

R. = 2^(м. -  M. , ) , l  аЛ l  l - l  ’

or, in  matrix form, also making use of Eq. (1 .2 .8 ), as

R = = Ç3P .

( 1 . 2 . 5 )

( 1 . 2 .6 )

(1.2.7)

(1 .2 .8)

(1.2.9)

( 1 . 2 . 1 0 )
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where we have

=2
(n )x (n -l)

and

1
al  '
1 1
a2 a2

R
(n)

R.l

1_ 1 
ai  ai

n-1 dn-l 
1

k3 = k2 C 1

nx(n-l)

( 1 . 2 . 1 0 a )

( 1 . 2 . 11)

( 1 . 2 . 12)

Fig. 4.

On the basis of Figures 4 and 5 we can establish the displacement equations

a?
4 .1 =  °  i  -  Т Е Г  <Mi - l  *  2Mi > - c r - Ri  • O '2 ' 1»

and

"1.1 ■ “ 1 - 6 E 3 — ' <Mi . l  * 2Mi> * tT T 1 Rl . l  . Ч . 2 . Ш
1+ 1  1+1
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w ith  which the three-moment equation assumes the form

si  '  6e:l

i  * GF,

(1 .2 .1 5 )

(1 .2 .1 6 )

(1 .2 .1 7 )

and a is  the angular displacement o f the plane perpendicular to  the n e u tra l 

a x is  (F ig . 5 ). With n 0 = n n = 0 as boundary cond itions , we have n-1 equa

t io n s  fo r  r i p . . . ,  Пп_1 which, in  m a tr ix  form , assume the form

(1 .2 .1 8 )

'1

Ç д  = M + Ç5 R = M + M ,

h.
where

П

(n - 1 )

П . l (1 .2 .1 9 )

*4 :
(n -l)x (n -l)

^6 = =5 =2
( n - l ) x ( n - l )

2^ i a2+<̂ 2al^ 6 2ai

?2a3 2 ( 6 2 a3 + 6 3 a2) 6 3 a2

( 1 . 2 . 20)

6 n -2 an - l  2( n -2 an - l+ n - lan -2 ) 

6 n - lan

^ n - l an- 2  

2 ( 6 n - l an+Snan - l }

(1.2.2Г)
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and

=5
(n -l)xn

’ l a2 -ф 2а1
Ф 2аз

( 1 . 2 . 2 2 )
?3a2

)n-2an-l ~ фп-1ап-2

n - lan ’ nan-l

Substitu ting Eq. (1.2.8) in to  Eq. (1.2.18), we obtain 

n = Ç '1 K4 M + g_1 M = k7 P + P ,

where

^7 = g ' 1 g ' 1 ^  ,
(n - l) x (n - l)

and

k8 = g * 1 g6 g '1 h  •
(n - l)x (n - l)

(1.2.23)

(1.2.24)

(1.2.25)

I f  the fram e-rig id ity of the diaphragms at the supports of the box beam is  
of f in i te  magnitude, the upper wall as a beam is  on e lastic  supports. Only 
the reactive forces of the diaphragms act at the supports so they are the 
reactions of the beam. In the case of e las tic  supports, with spring con
stants Ag and An, the displacement of section i  is  obtained from

n i  = V
Sti

where 1
V
L .
>1

(1.2.26)

(1.2.27)

or, w ith the help of the shearing forces

Л
( «■ -  Л .)  Rx

z Ar

Z. R1 П
V, A A0 n

which assumes the matrix form

H =  Ç9 R = K1 0  £ .

(1.2.28)

( 1 . 2 . 2 9 )
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where we have

=10 = =9 =3 ’
(n - l)x (n - l)
and

л - a 1 *1
A0 * ‘ c

c1

i ~ l 2 * 2

=9 -
AQ A V

(n-l)xn

Я -  Z n-1 n -l

Ao *

о<

( 1 . 2 . 3 0 )

(1.2.31)

Combining formulas (1.2.23) and (1.2.29), the formula for the displacement 
now emerges as

5 4 7 p + ( ^  £10) p -  K7 p + Kn  p , (1.2.32)

where

= 11 = =8 + Ï0 ' (1.2.33)
(n - l)x (n - l)

We point out that terms and re fe r to quantities originated from 
stresses and shearing forces, respectively.

I f  the lengths of the sections are the same and the cross section is  
constant, the above equations and formulas assume much simpler forms: 2

Ç = a 
(n - l)x (n - l)

2 -1
-1 2 -1

. -1 2 - 1

?K, = az|

(n - l)x (n - l)

-1 2

aÇ,
(1.2.4/a)

( 1 . 2 . 7 / a )
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=2 £ 
n x (n -l)

1
-1 1

-1

-1 1 
-1

h  = ï  =2 ¥  s -1 a2 I  = ^2 Ç _1
nx(n-l)

I k
a =2 ( 1 .2

( 1.2

к -  ®__
=4“ 6EJ 

(n - l) x (n - l)

K - Z
=5" GF 

(n -l)xn

1 -1
1 -1

1 4 1

1 -1

1 -1

( 1.2

3a_
6EJ

1 4 1
. 1 4

- 3 - F  1-2GF =5 !

*6
(n - l)x (n - l)

GF =5 a =2 " GF =5 =2 ( 1.2

K- . 1 f - 1 a V  1 F -1 „ 2 c .  a^ tt - I tt ö  -1
= 7 é Ô ^ 4 ¥ Ë  a I  = m  S *4 S > (1-2

(n - l) x (n - l)

(n - l) x (n - l)

I f

-8 ~ a = GF =5 =2 a = 1 ^  I  - GF = ^ 5  =2 = 1= ÜF £

( 1 . 2 ,

A = A о n

. 12/a)

•21/a) 

Ï4  >

• 22/a)

•20/a)

•24/a)

L

. 23/a)

. 1 1 /a )
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n-1
n-2

n -i

1

1
2

i

n-1
(n -l)xn

, (1 .2 .31/a)

=  10
(n - l)x (n - l)

4  fa 6 _1 (1.2.30/a)

i n
(n - l)x (n - l)

nAQ =9 =2 = (1.2.33/a)

Let us now introduce re la tive  angular displacements denoted by 
( j = l , . . . ,n - l)  at the nodal points. According to Fig 6, we have
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' i+ 1 ( 1 . 2 . 3 4 )

and

n i  = i-1 a. 1 4-1 (1.2.35)

where denotes the angular displacement along the length of section i .  
A derivation , sim ilar to the one which resulted in  Eg. (1.2.3), now yie lds

~ ai  Hi+1 + (ai  + ai +1) n i - ai +l  л 1-1

from which, in a s im ila r way as in the case of Eq. 
m atrix equation

= -  ai  ai+ i Ki> Ü-2.36) 

(1 .2 .8 ), we obtain the

J1 = — g 1 ^  к , (1.2.37)

(1.2.38)

1.3 Basic assumptions

In th is paper we use the following assumptions.
1. The box beam is  a simply supported beam (F ig. 7).
2. The longitud ina l axis of the box beam is  perpendicular to the 

axes of the two supports (F ig . 7).

к
(n-1)

n—1

1----------------
1 ---------------

1

The axis of the bridge

L z

t 1

Fig. 7.
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3. The box beam has a s ing le-ce ll cross section (Fig. 8).

Fig. 8.

4. The cross section has a ve rtica l symmetry axis (Fig. 8).
5. The walls meet at r ig id  jo in ts .
6. The antisymmetric ve rtica l forces of s ta tic  nature act along the 

stress axes of the ve rtica l walls (Fig. 8). (The notion of the stress axis 
is  defined in  /6 / )

7. The stress axes of the walls in  the cross section are perpendicu
la r to each other (Fig. 8).

8. The analysis is  carried out according to the f i r s t  order theory 
of the strength of materials and the material of the beam is lin e a r ly  elas
t ic ,  homogeneous and iso trop ic . Only Bernoulli-Navier's assumption is  re 
placed by formula (2 .3 .1 ).

9. The torsional r ig id ity  of the ind iv idua l walls is  neg lig ib le .
Of the above assumptions, No 1 to No 8 are generally accepted assump

tions frequently used in  papers /1 / ,  /2 /,  /3 / ,  /4 / ,  /5 /, but there are also 
some a lte ra tions:

1. In the ninth assumption we do not assume, as i t  is  normally as
sumed, tha t the walls are thinwalled members, we only assume that the to r 
sional r ig id ity  of the individual walls is  neg lig ib le .

2. We do not s tipu la te  that the cross section of the beam is  constant.
3. We do not s tipu la te  that the end-diaphragms are in f in ite ly  r ig id .
4. We do not s tipu la te  that the r ig id i t ie s  of the diaphragms are the

same.
The cases when the cross section is  a symmetrical trapezoid or the 

beam is  subjected to horizontal forces or to  couples are analysed in  an
other paper /8 /.
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2. THE ANALYSIS OF THE HINGED BEAM

2.1 The model for the analysis

The model of the box beam bridge subjected to antisymmetric load 
(F ig . 8) is  considered to be a compound structure  building of ind iv idua l 
planar walls. We cut the box beam into these ind iv idua l walls (Fig. 9/b) 
and replace the in terna l forces along the jo in ts  by external forces re s u lt
ing in  3 forces and 3 couples (Fig. 10).

Fig- 9.

Fig- 10-
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By connecting the w a lls  by hinged jo in ts  along the s tress  axes we a r

r iv e  a t the hinged beam (F ig . 11). We assume th a t the to rs io n a l r ig id i t ie s  

o f the in d iv id u a l w a lls  are n e g lig ib le  so th a t the hinged beam cannot re 

s is t  e ith e r  moments Mz or fo rces Px - These moments and fo rces , however, 

have to  be accounted fo r ,  so th a t we in troduce  the supporting frames by 

b u ild in g  the hinged beam in to  closed, r ig id ,  densely placed frameworks 

whose r ig id i t y  eguals the r ig id i t y  per u n it  leng th  o f the box beam (F ig .12).

F ig. 11.

Supporting frame

Fig. 1 2 .

2.2 The basic system

In  response to  the e x te rna l load, the angles between the s tra ig h t 

l in e s  connecting the jo in ts  o f the hinged beam undergo a lte ra t io n  (F ig . 

13 /a ). The hinges o f the hinged beam and the corner po in ts  o f the support

ing frame tra n s la te  toge ther so th a t the supporting  frame undergoes d e fo r

mation. The deform ation o f the supporting frame is  caused by the v e r t ic a l 

and h o r iz o n ta l fo rces (~Qv and -Q) which are transm itted  from the hinged
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Fig. 13.

beam to  the supporting frame (13/b). Forces -Q and -Q develop Mz in te rna l 
bending moment at the corners of the supporting frame. I t  follows from the 
equ ilib rium  of the frame tha t forces -Qv and -Q are equivalent to the force 
Qc - Qc and -Q act at the opposite corners of the frame and they have a 
common action line, the diagonal of the frame (Fig. 14), so they constitu te 
a couple of zero value.

Fig. 14.

The formula

QV = { ± Q (2.2.1)

fo llow s from the princip le  o f s im ila r triangles and shows that the external 
forces acting on the frame can be characterized by one unknown vector, 
vector Q. I t  follows from Newton's th ird  law that the supporting frame also 
transm its forces Qv and Q to the hinged beam (Fig. 13/a). The deformation 
of the hinged beam is  caused by the ve rtica l external forces P/2 and the 
v e r t ic a l and horizontal reactive forces Q and Q.

V
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We choose the system consisting of the hinged beam and the supporting 
frames as the basic system of the s ta tic a lly  indeterminate box beam. We 
shall determine the unknown reaction Q on the condition that the hinged beam 
and the supporting frames develop the same deformation.

2.3 Stresses in the box beam subjected to antisymmetric load

2.3.1 Stresses in  the box beam of thin-walled cross section, subjected to 
antisymmetric load

I f  the box beam of thin-walled cross section is  subjected to ve rtica l 
or horizontal antisymmetric load, the d is tr ib u tio n  of the stresses in  the 
walls, according to Bernoulli-Navier's theorem, is  linear. I f  the beam has 
a v e rtic a l axis of symmetry and the planes of the walls are perpendicular 
to each other, the normal stresses are expressed by the formula

a  =  9  X y  ( 2 . 3 . 1 )

as shown in  Fig. 15 where the orig in of the co-ordinate system is  the zero 
point of the stresses.

Fig. 16.

2.3.2 Stresses in  the box beam of thick walled cross section, subjected to 
antisymmetric load

Let us build  in  some box beams of th in  walled cross section of d i f 
ferent size but with the same centroids in to  each other (Fig. 16). Formula
(2.3.1) is  valid to each of these boxes, but with d iffe ren t values of 0 . 
I f ,  however, the s truc tu ra l arrangement prevents the neighbouring walls to



SZIDAROVSZKY, J .

s lid e  on each other, even the values of 0 are the same for the box beams.
I f ,  due to the s truc tu ra l arrangement, there is  no re la tive  s lide  

along the neighbouring walls, the system of thin-walled box beams b u i l t  in 
to each other can be replaced by a single thick-walled box beam. I t  follows 
tha t form ula.(2.3.1) derived fo r antisymmetric load is  also valid  to th is  
th ick-w a lled  box beam. In the fo llow ing, we sha ll analyse the stresses and 
s tra in s  on the basis of (2 .3 .1 ).

2.3.3 Relations fo r the normal stresses

The d is tribu tion  of the normal stresses corresponding to formula
(2 .3 .1 ) is  shown in Fig. 17/a. This stress diagram can also be obtained by

superimposing the diagrams in  Figs 17/b. and 17/c.
The resultants of the tens ile  and compressive stresses in  Fig. 17/b 

and in  Fig. 17/c are forces +N-̂  and -N^ and forces +N2 and -N2, respectively. 
The figures also y ie ld

where j j  ̂ and are constants which only depend on the size of the
cross section.

Forces +N̂  and -N  ̂ form the couple N^k  ̂ and forces -N2 and +N2 form 
the couple -N2k2* Since the load is  antisymmetric, the moment of the normal 
stresses о acting on the cross section equals zero, i.e . we have

Fig. 17.

(2.3.2)

N2 - M- 2 ^2

N.l kl  _  N2 k2 = 0 > (2.3.3)
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from which, by making use of (2.3.2), we obtain

N1 k2 -^1 °1

N2 kl M 2 0 2
( 2 . 3 . 3 / a )

Constants anc* }x 2 оп^  depend on the size of the cross sec
tion  of the box beam, so the ra tio

a 1 _ ><-2 k2 _ hl

a 2 ki  ^2
(2.3.4)

also depends only on the size of the cross section. I t  follows tha t, know
ing stress O p  stress a  ̂ can be determined.

Based on the foregoing, we can make some important statements on the 
normal stresses in  the hinged box beam subjected to antisymmetric load.

1. The p rinc ip le  of superimposition holds. This follows from basic 
assumption No 8 in  section 1.3.

2. Because of the symmetrical cross section and the antisymmetrical 
load, the ve rtica l axis of symmetry coincides with the neutral axis of the 
normal stresses о .

3. The position of the neutral axis of the horizontal stresses only 
depends on the geometrical characteristics of the cross section. Formula 
(2.3.4) clearly shows the va lid ity  of th is  statement.

4. The neutral axes belonging to the v e rtic a l and the horizontal 
antisymmetric loads coincide since, according to (2.3.4), the ra tio  a a  ̂
does not depend on the load but only on the symmetrical characteristics.

5. I f  we know the value of the normal stress at an a rb itra ry  point 
of the cross section (except at a point on the neutral axis), the stress 
diagram can be obtained.

6. The moment of the normal stresses on one side of the symmetry axis 
around the symmetry axis is  equal to zero. This statement can be proved by 
divid ing Eq. (2.3.3) by two:

kl  k2
N1 ~  N2 T  = 0 ’ (2.3.5)

7. The horizontal neutral axis is  the centroidal axis of the parts of
2

the half of the cross section weighted by (x /k ) . This statement can be 
proved as follows.
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According to Eq. (2 .3 .5 ), the moment of the normal stresses around the sym
metry axis is  zero, i.e .

SZIDAROVSZKY, 3 .

JxdF = 0 .
F

Making use of formula (2.3.1) and denoting the compression area by 1 and 
the ten s ile  area by 2, we obtain

9 /  X2 у
dF - 9 J X2 y dF

F, F_1 2
(2.3.6) by 6 k2, we arrive at

(2.3.6)

I У ф2 dF = J у ф2 dF . (2 .3 .6 /а)
F1 F2

With regard to the analogy with the following formulae, we shall take 
quantity  к as equal to the distance between the stress axes of the v e rtic a l 
w a lls .

2.4 Analogy between the hinged beam and the bent beam

We shall determine the stresses and deformations in the hinged beam 
subjected to antisymmetric ve rtica l and horizontal loads using formulae 
s im ila r to those of the simply supported beam. F irs t, however, we sha ll 
show tha t the relationship

l  Я.

f  g"2 dz = /  gIV g dz (2.4.1)
О О

holds fo r  any function g=g(z) i f  the boundary conditions

g = g" = o (2.4.2)

are sa tis fied  at z=0 and z= Z . 
By applying Eq. (2.4.2)

Я Я z
J  g " 2 dz = f  g" g" dz =

г  -» £
[ gl S']o "- / g'  g"'dz =

0 0 0z „ * я
= -  J g'  g " '  dz = -  (g  g"'] gIV dz = j  g g

0 0 0

(2 .4 .1 /a) 

dz .
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which shows that Eq. (2.4.1) holds.

2.4.1 Formulae fo r the hinged beam subjected to antisymmetric v e rt ic a l load

Let the simply supported hinged beam with constant cross section be 
subjected to the antisymmetric ve rtica l load g ^  and -g ^ .  The cross sec
tion  is  shown in  Fig. 18.

Fig. 18.

As with the bent beam, le t  us express the normal stresses о at 
point K=1 of the cross section by the formula

a 1 (2.4.3)

where I. is  the substitute moment of in e r t ia  of the vertica l w all w ith the b
adjoining horizontal walls and h  ̂ is  the distance between the neutra l axis 
and the point marked with 1 in  the case of ve rtica l load. Both 1^ and h  ̂
are yet unknown. In the follow ing, we sha ll not take into consideration the 
negative sign in formula (2.4.3).

Formula (2.3.1) also yields the normal stress at point 1 as

a 1 9 2 hl (2.4.4)

from which, making use of (2 .4.3), we obtain

Substituting th is  in to  formula (2.3.1) we a rrive  at

(2.4.5)
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kl. g X y ( 2 . 4 . 6 )

or, making use of (2.4.3) once again,

kh1
X y  о (2 .4 .7)

which can also be obtained d ire c tly  from (2 .3 .1 ).
The vertica l tra ns la tio n  caused by normal stresses a is obtained

from
z
if °1

z
ff

0 E h l Ehl Jl
0

dz dz

By making use of (2 .4 .3 ), th is  formula can be w ritten  as 
Z

^  j j  g "  Cz dz ■ j ä -
и о D

(2.4.8)

(2 .4.9)

again a sim ilar formula to the one belonging to the bent beam.
Taking into consideration the translation caused by the normal s tres

ses and making use of Eq. (2 .4 .9 ), the external work of the antisymmetric 
v e r t ic a l forces g ^ and -g^'; acting on the two v e rtic a l walls can be given
as

L = 2 e J
0

л a dz - ITT 9 sIV dz ’ 
b 0

(2.4.10)

Eq. (2.3.1) yields the in te rn a l work as

Л

4 *  /
0

which, making use of formula (2.4.5) leads us to

r Ö 2
d F

l

- 4  I
Г 2 2 2 . .  J 6 X y d FJ E

F 0 F
_ L -J

dz

L. = 1  
1 E k2 ! 2

,„2

0
I '

2y2 dF d z 2 2 . й 
X y d F g" dz

о

(2.4.12)
Formulae (2.4.10) and (2.4.12) must be equal to each other and, making use 
of (2 .4 .1 ) and taking in to  consideration the fac t tha t condition (2.4.2) is
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sa tis fie d , we arrive at the substitute moment of ine rtia  as

I b
f 2 2 . . -I X y d F ( 2 . 4 . 1 3 )

2.4.2 Formulae fo r the hinged beam subjected to horizontal antisymmetric 
forces

In the case of the antisymmetric load system and -gE\  the normal 
stresses at points 1 and 2 (Fig. 18) can be expressed by the formulae

and

Mk _ g"k 5 (2.4.14)
2 If  " 2 I f

_ Mk_ - (2.4.15)
21, 21,

The above formulae are s im ila r to formula (2 .4 .3 ), where 1  ̂ and I g are the 
substitu te  moments of in e rtia  of the upper and lower walls in  the case of 
horizonta l, antisymmetric forces. By combining formulae (2.4.14) and 
(2 .4.15), we obtain

G1
a

2

(2.4.16)

The horizontal translation of the hinged beam subjected to the hori
zontal antisymmetrical load system g*V and -g^V can easily be derived. A 
derivation , s im ilar to the one carried out in  the case of the v e rtic a l 
antisymmetric load system, results in  the formulae

and
'o f _S_

EIf

oa
- _a_

EIa

The above formulae are identica l to formula (2.4.9). 
Figure 17 shows that the ra tion

h
ïï

1
2

(2.4.17)

(2.4.18)

(2.4.19)
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holds which, introducing (2 .4 .16), yields

I  h.a 1
i f  h2

( 2 . 4 . 2 0 )

fo r  the ra tio  of the substitu te  moments of in e r t ia  of the horizontal walls. 
Combining formulae (2 .4 .4 ) and (2.4.14) we a rrive  at

6
hl  Tf

(2.4.21)

Taking in to  consideration the translation caused by the normal stresses 
developed by the external forces, the formula of the esternal work assumes 
the form

H l

1
IV/ ng ( о о a о dz Л  g gIV( - i -  + l ) d z  

К El Eb
(2.4.22/a)

which, making use of ra tio n  (2.4.20) and h=hf+h2, can be rewritten as
Z . I

- L  f a *  —
El* J h,

■) g gIV d z = h

EIf hl

IVg g dz (2.4.22)

I f  we use formula (2 .4.21), we can obtain the in te rn a l work of the normal 
stresses as

Z

' i  = E S
0 Г 2 2 . r rj X y d F dz - 2 2

Z

Í
C 2 2 . cX y d F

J
F

Eh2 I 2 J
0

J
F

g"' dz

(2.4.23)
This formula is s im ilar to formulae (2.4.11) and (2.4.12).

The external work must be equal to the in te rn a l work so formulae 
(2 .4.22) and (2.4.23) y ie ld  the substitute moment of ine rtia  of the upper 
horizon ta l wall as

^  f
h hf J

X2 y2 d F

Combining (2.4.13) and (2 .4.24) we arrive at

(2.4.24)

374



ANALYSIS OF SINGLE-CELL BOX BEAMS

h  = 2 h h,
( 2 . 4 . 2 5 )

and

I a * 2 h h. b ' (2.4.26)

We shall prove the general v a lid ity  of the above formulae in Section 2.6.

2.5 Displacements and stresses in  the walls of the hinged beam

2.5.1 Deformation caused by the normal stresses developed by the ve rtica l 
load

The stresses in  the outer fib res of the hinged beam subjected to 
ve rtica l forces are given by (2.4.3) as

(2.5.1)

and, on the basis of formulae (2.4.8) and (2 .4 .9 ), the ve rtica l displace
ment of the ve rtica l walls is  given as

Zíif °dz dz _g_
EL

(2.5.2)

The re la tive  displacement of the ve rtica l walls is  determined by the formula

rvv
= _a_

El
(2.5.3)

where we have
I = — 

V 2
(2.5.4)

In making use of (2.4.3) and (2.4.19), we a rrive  at the horizontal d is 
placement of the upper and lower horizontal walls as 

Z

vf kE ÍÍ °1 dz dz =
2hx g

к EL
(2.5.5)

and
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va
2 h„

kE h,
a dz dz

2h2 g

к E IU
( 2 . 5 . 6 )

2.5.2 Deformation caused by the normal stresses developed by horizontal load

Stresses and a 2 in  the outer fib re s  caused by horizontal
forces can be determined by making use of formulae (2.4.14), (2.4.25) and 
(2 .4 .15), (2.4.26) as

and

hhj g"

к h

hh2 g"

к Tb

(2.5.7)

(2.5.8)

Formula (2.4.8) yie lds the ve rtica l displacement of the vertica l walls as 
Z

HV 1 a . dz dz = -  -9 -  
Ehl  JJ k E I b

(2 .5.9)

The re la tive  displacement of the ve rtica l walls assumes the form

^ rHV = 2 nHV= ^ "
HV

where
I  = —
HV 2h b

(2.5.10)

(2.5.11)

In a s im ila r way, we obtain the horizontal displacement of the upper and 
lower walls as

1 Hf kE
0

and

2hh, g
о dz dz = —=- ----

к Elu
(2.5.12)

2hh2 g 

Ha = ^
(2.5.13)
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Formulae (2 .5 .5 ), (2.5.6) and (2.5.10) show tha t the re lative v e r t ic a l d is 
placement of the ve rtica l walls caused by horizontal forces and the re la tive  
horizontal displacement of the horizontal w alls caused by ve rtica l forces 
are the same. In other words, i f  we denote the re la tive  horizontal displace
ment caused by ve rtica l forces by n „ „  and the re la tive ve rtica l d isplace
ment caused by horizontal forces by n then the relationship

л VH = л VH = ~  (2.5.14)
b

holds. The re la tive  displacement of the horizonta l walls is  given by

л H = л Ha + л Hf = 7?" ’ (2.5.15)

where, on the basis of formulae (2.4.25), (2.4.26), (2.4.17) and (2 .4.18),
we have

к2 I.
L, = ----- % . (2.5.16)
H 2 h2

2.5.3 Deformation caused by shearing forces in  the cross section

In the case of a ve rtica l antisymmetric load system, the v e rtic a l 
walls cannot transfer horizontal forces to the unloaded horizontal walls 
because the walls are assumed to have no to rs iona l resistance. Thus the 
horizontal walls are not subjected to horizonta l forces and therefore no 
shearing force component develops in  the cross section of the horizonta l 
walls (shearing stresses do develop but th e ir  resultant vanishes). In  a 
s im ila r way, in  the case of a horizontal load system, the shearing force 
component also vanishes in  the cross section of the vertica l w alls.

Let us now cut out a section of thickness dz of the hinged beam. 
Figure 19 shows that shearing stresses т and normal stresses a develop on 
the adjacent sections. The difference of the normal stresses acting on the 
sections is

d a = ----- —  dz . (2.5.17)
6 z

Neglecting the in i t ia l  angular displacement, the displacement of the v e r t i
cal wall caused by the shearing forces developed by the ve rtica l antisym
metric load system assumes the form
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к

П V T

Z

GF.
dz (2.5.18)

where Fv represents the substitu te  cross sectional area of the ve rtica l 
w a ll and Rv stands fo r the cross sectional resu ltan t of the vertica l forces.

The horizontal wall develops no trans la tion  due to the shearing 
stresses since R=0 holds in  the horizontal w a ll so we have

Л VHT = 0 (2.5.19)

In a sim ilar way, we obtain the horizonta l translations caused by
the shearing forces developed by the horizontal antisymmetric forces as

z
R,

' f  T
'H dz

GF.
(2.4.20)

and

a t dz
GF_ (2.5.21)

where F  ̂ and Fg represent the substitute cross sectional area of the upper 
and lower horizontal w alls. In the case of horizon ta l antisymmetric forces, 
the ve rtic a l translation  of the vertica l walls caused by the shearing 
stresses vanishes, i.e .
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ПHV T = О ( 2 . 5 . 2 2 )

holds.
We point out here that during the above derivation we have not re

s tric ted  analysis to s ing le -ce ll box beams so the formulae obtained are also 
va lid  fo r m u lti-c e ll box beams provided the d is tribu tion  of the normal 
stresses defined by (2.3.1) is  acceptable.

2.6 Generalization of the analogy

The above derivation demonstrates that an analogy exists between the 
formulae fo r the deformations and stresses of the hinged beam and those of 
the bent beam.

When deriving formulae (2.4.13), (2.4.24) and (2.4.25) fo r the sub
s t itu te  moment of ine rtia  we assumed that the cross section of the beam was 
constant and that the boundary conditions were those of the simply support
ed beam.

In the following, we shall present the generalization of the analogy.
Let us consider a hinged beam and only assume that i t s  section of 

thickness d z is  of constant cross section. The upper flange of the h a lf
section transfers shearing force t^dz to the ve rtica l wall along th e ir  line  
of in tersection (Fig. 20). S im ila rly , the lower flange transfers shearing

Fig. 20.

force t gdz. Making use of (2 .4 .7 ), the equilibrium of the normal stresses 
and the shearing forces on the upper flange (Fig. 21) yields
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Fig. 21.

tjkdz Г ő о 6 а 1 ^ 2  f  2 Jr
J -------Г Г  dz  x dF = ------- Г Г  dz kh^ J X У dF .

upper flange upper flange

S im ila r ly , the equilibrium of the lower flange yie lds
(2 .6 . 1)

t  kdz a
6 0-̂  
~6 z J  x2 y d F

lower flange
(2 .6 .2)

The external moment —-— dz acting on the half-section is  equal to
о z б о

the sum of the moments of the normal stresses -—  dz and the shearing
forces t -  and t  on the v e rtic a l wall to axis x: f  a

6 M
6 z dz dz y dF + t f  h, dz + t  h„ dz J § z 1 f l  a 2

ve rtica l wall
(2.6.2/a)

Making use of equations (2 .4 .7 ), (2.6.1) and (2 .6 .2 ), the above equation 
takes on the form

6 M
6 Z

dz
S Oj

dz * 2 fx2 dF , 2h2 J  x2 у dF + 2 p y i f j
őz kM  y A j k2

v e rtic a l lower upper
wall flange flange

(2.6.3)
The term in  braces in the right-hand side of th is  equation only depends on 
the cross section and therefore the relationship between the moment and the 
normal stress is  independent of the other cross sectional characteristics 
and the boundary conditions of the beam. I t  fo llows that the formulae 
derived fo r the special case are of general v a lid ity .
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2.7 Supporting frames

When analyzing the basic system of the s ta tica lly  indeterminate box 
beam, we assumed that the hinged beam was supported at i t s  four corner 
points by densely placed supporting frames of un it thickness (F ig. 12).

Let us define fram e-rig id ity  as the horizontal force A^. The couple 
of zero-value of the two forces

acting at the opposite corner points of the supporting frame causes the

change in  the angle of the s tra igh t lin e s  connecting the corner points of 
the supporting frames as in Fig. 22.

In the case of a horizontal force £, the change in the angle of the frame 
is  determined by

(2.7.1)

(2.7.2)

Fig. 22.

ß t  = ~  x hAq
(2.7.3)

Making use of the formulae presented in  Sections 2.5.1 — 2.5.3 and of Fig. 
22, the change in the angle i.e .  the deformation of the cross section of 
the hinged beam is  determined by
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x _ rvv + ^ h VT ^ rHV h vf

(2.7.4)
The deformation of the hinged beam (2.7.4) and the supporting frame (2.7.3) 
must be the same, i.e .  we have

0 t
(2.7.5)

Equality (2.7.5) and formulae (2.7.3) and (2.7.4) make i t  possible to obtain 
the reactive forces of the frame. Details of th is  calculation w il l be pub
lished  in  our following papers /6 /,  /7 /.
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CROSS SECTIONAL CHARACTERISTICS OF SINGLE-CELL BOX BEAMS WITH A 

CROSS SECTION OF RECTANGULAR ELEMENTS

J. Szidarovszky*

(Received: 25 June 1985)

For the ana lys is  o f s in g le - c e l l  box beams formulae o f general 
v a l id i t y  fo r  the cross s e c tio n a l c h a ra c te r is t ic s  were g iven  in  our 
previous paper. This paper presents closed formulae fo r  the  cross 
se c tion a l c h a ra c te r is t ic s  o f s in g le - c e l l  box beams w ith  a c ross sec
t io n  made up from rec tangu la r elements.

NOTATION

spring  constant a t a support,
f ra m e - r ig id ity  (the  la te ra l  s t i f fn e s s  o f the supporting fram e ), 
length  o f sec tion  i ,
w idth o f the upper flange o f the beam s u b s titu tin g  the v e r t ic a l  w a ll,
w idth o f the lower flange  o f the beam s u b s titu tin g  the v e r t ic a l  w a ll,
modulus o f e la s t ic i t y ,
s u b s titu te  cross s e c tio n a l area,
th ickness o f the upper h o r iz o n ta l fla ng e  p la te ,
th ickness o f the lower h o r iz o n ta l flange  p la te ,
th ickness o f the v e r t ic a l  web p la te ,
d istance between the s tress  axes o f the two ho rizo n ta l w a lls  (flan ge  
p la te s ) (F ig . 5 ),
perpend icu la r d is tance between the  upper stress axis and the  n e u tra l 
ax is  (F ig . 5 ),
perpend icu la r d istance between the lower stress axis and the  n e u tra l 
ax is  (F ig . 5 ),
moment o f in e r t ia  (second moment o f area o f the cross s e c t io n a l area) 
about the a x is  perpend icu la r to  the plane o f bending, 
nodal p o in t ,  boundary o f a se c tio n  or reference to  a s e c tio n , 
s u b s titu te  moment o f in e r t ia  o f the v e r t ic a l w a ll w ith  the  h o r iz o n ta l 
w a lls ,
s u b s titu te  moment o f in e r t ia  o f the upper h o rizon ta l fla n g e  p la te , 
s u b s titu te  moment o f in e r t ia  o f the lower ho rizo n ta l fla n g e  p la te ,

h o riz o n ta l component o f the frame re a c tiv e  fo rce ,
d istance between the stress-axes o f the v e r t ic a l w a lls  (webs) (F ig .5 ),
length  o f the beam,
e x te rna l v e r t ic a l d is t r ib u te d  loa d ,
ex te rna l v e r t ic a l concentrated fo rc e ,
h o riz o n ta l component o f the d is t r ib u te d  frame reac tive  fo rc e ,
re s u lta n t/s h e a rin g  fo rce ,
w idth o f the upper h o r iz o n ta l fla ng e  p la te ,
w idth  o f the lower h o r iz o n ta l fla ng e  p la te ,
shearing fo rc e ,
v e r t ic a l co -o rd ina te  perpend icu la r to  the axis o f the beam,

*D r. J. Szidarovszky, H-1089 Budapest, Bíró Lajos u. 42, Hungary

Akadémiai K iadó, Budapest
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y horizontal co-ordinate perpendicular to the axis of the beam,
z co-ordinate along the axis of the beam, 
w warping,
a angular displacement,
3 ^ change in angle of the supporting frame, 
q displacement,
к b u ilt  in change in  angular displacement,
a normal stress,
T shearing stress,
g abscissa,
E un it matrix.

Subscripts

0 refers to place z=0 or n=0
z refers to place z,
1 refers to place z= £ ,
i  refers to a section or to the boundary of a section,
n refers to the la s t section or to the end o f the beam or to the bound

ary of the la s t section,
к refers to the cause o f the b u ilt in angular displacement
r  refers to an e la s tic  support,
a refers to normal s tress,
T refers to shearing stress,
V refers to v e rtic a l d ire c tion , force or w a ll,
a refers to lower horizon ta l wall (flange p la te ),
f  refers to upper horizon ta l wall (flange p la te ),
h refers to horizonta l d irection , force or w a ll,
p refers to external v e rt ic a l force,
q refers to frame-reaction.

1. INTRODUCTION

This paper is  to present practical formulae fo r the calculation of 
the cross sectional characte ris tics  of s in g le -ce ll box beams with a cross 
section consisting of rectangular elements.

We shall analyse simply supported s in g le -c e ll box beams subjected to 
antisymmetric load with a cross section consisting of perpendicular walls 
and having a ve rtica l symmetry axis. Apart from the assumptions given in 
d e ta il in  Section 1.3 in  / 1 / ,  we shall also assume as Assumption No 10 that 
the walls of the cross section are of rectangular cross section (Fig. 1).

The physical model and the mathematical methods fo r the analysis are 
given in  detail in /1 / .

The stresses and deformations developing in  the individual walls can 
be determined by the formulae of general v a lid ity  presented in Section 2.5
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Fig. 1.

in  /1 /. The cross sectional characteristics fo r the rectangular cross sec
tion  needed fo r the analysis shown in  Fig. 1, however, can also be ca lcu la t
ed in a simpler, more expressive way. I t  goes without saying that the two 
procedures lead us to the same resu lt.

2. THE FRAME RIGIDITY

I

Figure 2 shows the geometrical characteristics of the supporting 
frame per un it length. I f  the closed frame supported below i t s  columns is  
subjected to a horizontal force in  the axis of i t s  upper horizontal beam, 
the upper horizontal beam undergoes transla tion . By neglecting only ins ig 
n ifican t terms, we obtain the frame r ig id ity  /2 / as
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qA = -  » 
rt T

( 2 . 1)

where
S = 2 d

h ( к -  d \2 к -  d /  1 1 \  10

■ ? +
V V + \

к 1 6 id? d3 /V f a /  J

and

T = h h0 ( (h0 ài / 2  ̂ ^h0 da/2
h2d3 + d3f  + d3 IV ' f  a /

(X -  d/ dv

3k4d3d3 f  a

X — dv| 2k 

к I 3h2

3. THE EFFECT OF VERTICAL ANTISYMMETRIC LOAD ON THE HINGED BEAM

In th is  section we sh a ll determine the size of two ve rtica l I-beams 
which, subjected to antisymmetric load, develop the same stresses and 
v e r t ic a l displacements as the hinged beam subjected to the same antisym
m etric load. The upper flange, the lower flange and the thickness of th is  
I-beam are denoted by b-, b and f  , respectively as in  Fig. 8 and the 
depth and the thickness of the flanges of the I-beam coincide with the 
depth and the thickness of the horizontal plates of the hinged beam.

S im ila rly , we can substitu te  the hinged beam subjected to horizontal 
antisymmetric load fo r two horizonta l beams (Fig. 11).

The moment of in e rtia  of the substitute beam introduced according to 
the foregoing coincides, as a special case, with the moment of ine rtia  
derived in  Section 2.4 in /1 / .

3.1 Equivalent flange-width of the ve rtica l wall

We assume that the torsiional r ig id ity  of the ind iv idual walls is  
n e g lig ib le  and therefore the v e rtic a l walls cannot transfer horizontal 
forces Px to the horizontal walls at the hinges (Figs 3 and 4). I t  follows 
tha t the upper horizontal w a ll of the hinged beam subjected to ve rtica l 
load is  not subjected to horizon ta l load and the sum of stress differences 
Д о transmitted to the horizon ta l wall of un it thickness is  balanced by 

the shearing forces at the jo in t  of the ve rtica l wall (Figs 3 and 6).
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Fig. 3.

Fig. A.

F i9- 5-
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s f

Fig. 6 .

Moment equ ilib rium  on th e  upper h o rizo n ta l p la te  o f u n it th ickness 

r e s u lt s  in  (F ig . 6 )

tk
S~ S/J 2  s . 1 Si

2 (-Î-  Д а .  -  Д о
2 1 к 2 2 2 6 k

from w hich we obtain

(3 .1 )

where fa c to r  к is  yet unknown and the other fa c to rs  are explained in  F ig . 5. 

The same fo rce  t  is  tra n s m itte d  from the two sym m etrica lly  placed p la te s  o f 

w id th  subjected to  the s tre s s  d iffe ren ce  A o ^ ,  i . e .  we have

t  b j  i o j (3 .2 )

from where, making use o f Eq. ( 3 .1 ) ,  we obta in the e qu iva len t flange-w id th
as

b f -

6 k
2

(3 .3 )
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According to the foregoing, in  regard to stresses, the flange of width s^ 
can be substituted fo r a flange of width b^. The same holds fo r the lower 
horizonta l plate (Fig. 7), i.e .  we have

ba (3.4)

3.2 Stress axis of the ve rtica l walls

Factor k, yet unknown, can be determined according to the follow ing.
Shearing force t  acts in  the ve rtica l plane of the resultant of 

stresses A a developing in  the ve rtica l w a ll. Figure 7 shows that the resul
tan t of stresses A a acting in  the left-hand wall of un it thickness assumes 
the form

1 s
A R = -----

2 к
a 1

2 к
A a 2 '

(3.5)
The moment of stresses A о about the symmetry axis of the cross section 
assumes the value

2 1
M = ----

3 4
A a , 2 1 <sa -  2dv)3

3 4 к

(s -  d T d  +d /3 a V V V A a . (3.6)
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The moment of forces A R

M = Д R к A a 2 (3.7)

is  equal to the moment of stresses Д а , so we obtain

d2
к = s — d + ---------------

v 3(s -  d ) a v
(3.8)

3.3 The equivalent web thickness of the ve rtica l wall

Eq. (3.5) d ire c tly  shows that, as regard to stresses, the ve rtica l
w a ll can be substituted fo r  a wall of constant stress with thickness

s — d
f  = d Ü .

V V ,
(3.9)

3.4 Shearing forces

The neutral axis of stresses о developed by the bending moments of 
v e r t ic a l plane coincides w ith the horizontal centroidal axis of the equiva
le n t beam. Stresses a and т resulting from the ve rtica l load (p/2—h/k)q 
can be obtained on the equivalent beam.

Stresses t  in  the (unloaded) horizontal wall can also be determined. 
On the basis of Eq. (3.1) and making use of Newton's th ird  law (law of ac
tio n  and reaction), we obtain the shearing force transmitted from the ver
t ic a l  w a ll to the horizontal wall as

t  = df  Да, • (3.10)
6  k  1 1

The same shearing force is  also given by

(3.11)

where S represents the s ta t ic  moment of the upper flange of the equivalent 
beam about the centroidal axis. Equating formulae (3.1Ű) and (3.11) we ar
r iv e  at

6k2 S
Л°1  = 7 У ~  T RSj d j b

( 3 . 1 2 )
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The sum of stresses A ö  ̂ on the ha lf of the wall (Fig. 6) is

2
.  « S r .  S o  S o  d o

t l  = A a l —  —  df = - Í —- йо 
к 4 4k 1

(3.13)

The difference between t  and t^ represents the shearing force per length dz 
in  the middle of the horizontal wall. Making use of Eq. (3.12) we obtain

2 3So do So do
' k  = T d f  - - h 1  A a i  — h r  A ° l4k 6k

sj, (3k -  2s.) 3k -  2s. S
------------2— ~  df  A ö l =  ----------- - - R12 k^ 1 1 2 sf  I b

(3.14)

Fig. B.

A s im ila r procedure gives the shearing force at the outer jo in t  of the ver
t ic a l w all. The shearing force assumes the form

2 2s. s. s s s . s
t  = T d. = A о (—  — -----  — ) d. = —--------  d.

1 1 к 4 к 4 1 4k 1
Д 0 . (3.15)

(Fig. 6) or, making use of Eq. (3.12), we obtain

3k s2 — s2 S 
t  = --------Í - 2 - * -  R .

2sf  sf  h
(3.16)

The diagram of the shearing forces is  given in  Fig. 9/a.
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Since the ve rtica l w a lls  do not transmit horizontal forces to the un
loaded horizontal walls, the resultant has no shearing component in the sec
t io n  perpendicular to the longitud ina l axis of the horizontal wall. This 
fa c t is  also shown in  Fig. 9/a. The area of the diagram of shearing forces 

T d^ in  the horizontal w a lls  equals zero.
Sim ilar reasoning shows that in the case of horizontal antisymmetric 

load the shearing component o f the resultant equals zero in the ve rtica l 
w a lls  (F ig. 9/b).

4. THE EFFECT OF HORIZONTAL ANTISYMMETRIC LOAD ON THE HINGED BEAM

In the case of horizon ta l antisymmetric load, regarding normal s tres
ses a , the hinged beam can be substituted fo r two beams with horizontal 
ax is .

4.1 Equivalent beams to the horizontal walls

The size of the equivalent beam belonging to the horizontal load w i l l  
now be determined, in  a s im ila r way to the procedure used for the ve rtica l 
load.

The horizontal load o f the beam is  represented by force q transm it
ted from the supporting frame (Fig. 10). With regard to stresses and de
fle c tio n s  developed by force q, the upper flange can be substituted fo r a 
beam w ith web-thickness f^  and flange-width c^. In a sim ilar way, the lower 
flange can be substituted fo r  a beam with web-thickness f  and flange-width 
ca (F ig . 11).
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F iO- 1 0 -

12 ( т х -  df / 2) 

d2_______ a______

12  (m2 -  dg / 2)

Formulae

hl  = mi  -------i  l  2

and
. aПл -  ni«
z z 2

Fid- 11-

( 4 . 1 )

(4 .2 )

s im ila r  to  formula (3 .8 ) ,  determine the s tress  axis  o f the h o r iz o n ta l w a lls .

F ig . 12.
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4 .3  E qu iva len t flange-w id th  o f the  h o rizo n ta l w a lls

Proceeding as in  s e c tio n  3 .1 , moment e q u ilib r iu m  o f the v e r t ic a l w a ll 
o f u n i t  th ickness (F ig . 12) re s u lts  in

t p  = A о ^
m 1 m, r\ rru ni« «

h^ 2“  ( h 2  + 3 V  + h^ T  ( h 2  _  I  V (4 .3 )

from  which we obtain the shea ring  fo rce  transm itted  to  the upper flange as

2А о 1
t i  = t f e ;

2 2 2 i.
m ^ t^  m^) + ^2^^2 ^  m2) (4 .4 )

S im i la r ly ,  the formula fo r  th e  shearing fo rce  tra n sm itte d  to  the lower 

fla n g e  assumes the form

До 1 
2 2 hh„

S ince now we have

2 2 2 2 
m  ̂ (h-^ "3" ^^^ m2 (h^ m2) (4 .5 )

The thickness o f the web o f the two e qu iva len t beams are determined
from

f f  -  df ml  — df  ^ (4 .10)

and nu — d / 2  £ 2  aI = u ----- r --------a a h0 (4 .11)

The above formulae are s im i la r  to  formula (3 .9 ) .

3 9 4

the  fo rm ulae  fo r the e q u iva le n t flange -w id th  assume the form

4.4  E q u iva len t web-thickness o f the  h o rizo n ta l w a lls
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RELATIONSHIP BETWEEN SAINT-VENANT' S PRINCIPLE AND BERNOULLI-NAVIER ' S 
THEOREM AS WELL AS BREDT'S FORMULAE AND WARPING

0. Szidarovszky*

(Received: 5 September 1985)

Saint-Venant's princ ip le  of pure torsion and Bernoulli-Navier's 
theorem of pure bending are based on d iffe ren t assumptions and seem 
to be independent of each other. Nowever, each is  a special case of 
the theory of E la s tic ity . The analysis of the s ing le -ce ll box beam 
based on Bernoulli-Navier's theorem also produces Bredt's two formu
lae and the formula fo r warping (which were derived from Saint- 
Venant 's p rin c ip le ), demonstrating that the two theories are not in 
dependent of each other.

NOTATION

Notation is  to be found in  / 4 / , except I  which is  the equivalent 
secondary moment of a ve rtica l wall.

1. INTRODUCTION

The physical model of the s ing le -ce ll box beam with perpendicular 
walls is  obtained by connecting the walls by hinges at the jo in ts  — th is  
la b ile  structure called the "hinged beam", and the hinged beam is  then sup
ported by densely placed frameworks — the "supporting frames". Applying 
Bernoulli-Navier's theorem fo r the ind iv idua l wall elements, the mathemati
cal procedure necessary fo r the determination of the state of stress is  
presented in /1 /.  Formulae fo r the reactive forces transmitted from the 
supporting frames to the hinged beam are given in /3 /.

According to Bernoulli-Navier's theorem, cross-sections which were 
plane and perpendicular to the axis of the beam before pure bending remain 
plane a fte r pure bending since there are no shearing stresses. In the case 
of pure torsion, on the basis of Saint-Venant' s princip le  assuming constant 
specific  tw ist caused by the shearing stresses, the warping of the o rig in a l
ly  plane cross-sections can be derived. Both theories can be considered as 
special cases of the theory of E la s tic ity .

Making use of the results obtained in  /1 / and /3 / based on Bernoulli- 
Navier's theorems, the aim of th is  paper is  to derive Bredt's two formulae

*Dr. 0. Szidarovszky, H—1089 Budapest, Bíró Lajos u. 42., Hungary



and the equation of warping which is  prooved on the basis of Saint-Venant1s 
p r in c ip le  fo r pure torsion and, so demonstrate that although the two theo
r ie s  are based on e n tire ly  d iffe re n t assumptions they are not independent 
of each other.
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1.1 D iffe re n tia l equation fo r  the frame-reaction

Formula (1.2. 2/b) in  /3 /  sim plifies i f  the e ffec t of the shearing 
forces is  neglected, and so the horizontal component of the reactive force 
of the supporting frame is  obtained from the d if fe re n t ia l equation

IV о h 4A q +8  —  q
к El

(1.1.1)

w ith four fu lf i l le d  boundary conditions.
For a simply supported beam with a constant cross-section we have 

q=0 and M=0 at z=0 and z= £ , so i t  is expedient to solve Eq. (1.1.1) by us
ing sinus Fourier series. Let us expand the load and the frame reaction in  
the Fourier series

P = 1 s in  - --- -  (1.1.2)
i= l х

and
q = £. q. sin  * у  -  . (1.1.3)

i= l 1

S ubstitu ting  formulae (1 .1 .2) and (1.1.3) and the fourth derivative of the 
la t te r  with respect to z in to  Eq. (1.1.1), a fte r some rearrangement and the 
usual application of sinus orthogonality, we a rrive  at

1 +
•A 4 . 2 CT . . Hi  i  Tr k El 4 h

(1.1.4)

£4 8h q«

1.2 Deformation and state of stress for constant cross-sections

1.2.1 Deformation of the hinged beam

I f  the frame is  in f in i te ly  flex ib le , i .e .  qft=0, then we have q=0. I t  
means tha t the two ve rtic a l w a lls , together w ith the upper and lower 
flanges, take the ve rtica l antisymmetric load p/2 as is  presented in Sec
tio n  2.5 in  /1 /. On the basis of formulae (2 .5 .2 ), (2.5.5) and (2.5.6) in
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/1 / ,  the re la tive  ve rtica l displacement of the vertica l walls and the re la 
t iv e  horizontal displacement of the horizonta l walls are obtained from

z

n vv= JJff Ê^dzdzdzdz 
0

and

n vh = n vf + nva = ïï JJ[f ETdzdzdzdz '
0

The rotation of the walls takes on the form

ß = _ H v f-------Iv a  _ _  ГГГГ dzdzdzdz (1 .2 .1)
v h к El

or 1 z

g h ~ -  m  e t dzdzdzdz (i-2-2)К К 0

showing that the ro ta tion  of the horizontal walls and that of the ve rtica l 
walls are of the same magnitude but of opposite direction (Fig. 1). I t  fo l
lows that the whole hinged beam subjected to antisymmetric v e rt ic a l loads 
does not tw ist (only the single walls) but i t s  cross-section undergoes a 
deformation.

к p
h 4

1.2.2 Normal stresses in the box beam w ith an undeformable cross-section

I f  the cross-section does not change its  shape (undeformable cross-
section, Fig. 2), i .e .  q = =*> holds, then we have ß.=0 and Eq. (1.1.1)

A x
s im p lifies  to
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к р
q = -  -

h 4
(1.2.3)

Formula (2.2j.4/b) in /3 /  proves the va lid ity  of (1 .2 .3 ) also for the case 
when the effect of shearing forces are taken in to  account and the warping 
is  re s tr ic te d .

The normal stresses a t point K=1 caused by the vertica l antisymmetric 
forces — (p/2—(h/k)q) (Fig. 5) can be determined from formula (2.4.3) in  /1 /  
as

1a ! = -  —  ( M ------ M )
v l 21 p L- q

2h

к

h. M
- ( M p - ^ )  = 
21 p 2

h. M 
1 P
41

(1.2.4)

Making use of formulae (2 .4.14) and (2.4.25) in  /1 / ,  we obtain the normal 
stresses caused by the horizon ta l antisymmetric loads as

о h i
hh. kM
_ i  _ £
k l 4h

h. M 
1 P
41

(1.2.5)

By producing the sum of the horizontal and v e rtic a l stresses, i.e . formulae
(1 .2 .4 ) and (1.2.5), we a rr iv e  at the actual normal stresses in the hinged 
beam:

’ vl 'h i
h. M h. M 

1 P + ...L. P = 0
41 41

(1 .2 .6 )

The normal stresses assume zero value, showing the fa c t that no normal 
stresses develop from the antisymmetric loads i f  the cross-section is  unde- 
formable.

1.2.3 Interna l forces and moments in the box beam w ith  an undeformable 
cross-section

I f  the cross-section does not change i t s  shape, then, on the basis 
of formula (1.2.3), we obtain the vertica l antisymmetric load (Fig. 3)

jn i l  Js £ _ £ 
k q ~ k h 4 ~ 4

and the horizontal antisymmetric load

(1.2.7)

( 1 . 2 . 8 )
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J i £

P
A

▼

h A

_P
A

JL _B
h A

Fig. 3.

acting on the supporting frame. The resultant load acts diagonally and the 
ra tio  of the ve rtica l and horizontal forces is

к
h

£
4

£
4

h

к
(1.2.9)

The hinged beam (Fig. 2) is  subjected to the ve rtica l antisymmetrical load

p h p h к p p

2 k 4 2 к h 4 4

and to horizontal antisymmetric load

( 1 .2 .10)

( 1 . 2 . 11)

The ra tio  of the ve rtica l and horizontal forces is  again

P
4 h

к £h 4 к
( 1 . 2 . 12)

showing that the resultant acts along the other diagonal (Fig. 2).
In the case of an undeformable cross-section, the d istributed torques 

caused by the ve rtica l and horizontal loads on the hinged beam, i .e .

(1.2.13)
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and

"th = -  q h = _ k £ h = _ £ k
h 4 (1.2.14)

are equal. In other words, the distributed torque caused by the external 
loads is  taken in  an equal ra tio  by the horizonta l and vertica l walls:

m. = m, t  tv mth 4 k 4 k ~ 2 k ' (1.2.15)

1.2.4 Bredt's f i r s t  law

Since no normal stresses develop in  undeformable cross-sections — see
(1 .2.6) — the specific  shearing forces-do not vary in  vertica l walls, i . e .  
th e ir  d is tribu tion  along the walls is  constant.

Resultants R^/4 and (k/h)Rp/4 caused by the ve rtica l forces p/4 and 
by the horizontal forces (k/h)p/4 are d is tribu ted  between the walls of 
height h and k. Consequently, the shearing force per unit length, i .e .  the 
shear flow assumes the form

>  R
t  = — —  = (1.2.16)

h 4h

in  the ve rtica l w all, and 
1 к

*h =
r r  R 4 h p

4h
(1.2.17)

in  the horizontal w a ll. The two formulae coincide, i.e .  the shear flow is  
constant, as is  stated in  the theory of pure to rs ion .

The torque acting on the cross-section is  obtained by integrating 
the d istribu ted  torque:

z
(1.2.18)

(1.2.19)

from which we obtain R . Substituting R̂  in to  formula (1.2.17), we obtain

Z Z

Mt = J mt  dz = - 1 | p d z
0 0

tant, we have
z R

Mt  = — к J  dz = 

0
к 2̂ - ,

R„ M + 
t  = —& = ^n 4h 2hk (1 .2 .20)
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fo r the shear flow. Since the shear flow is  constant, the angle of tw is t of 
a rectangular wall element is  constant along the wall.

Introducing the formula

At  = к h (1.2.21)

fo r the area lim ited by the stress axes of the walls, the formula fo r the 
average shearing stress

T
t

d

(1.2.22)

assumes the form
Mt (1.2.23)2 At  d

which, in  fac t, is  
the area lim ited by

Bredt's f i r s t  law. 
the centre-lines

In th is  formula, however, 
of the walls but the area

A  ̂ is  not 
lim ited  by

the stress axes. This difference is  due to the fact that the membrane 
trans la tion  perpendicular to the cross-section is  assumed to be lin e a r along 
the thickness of walls through Bredt's derivation, while our derivation  as
sumes i t  to be a parabola of the second order.

We shall demonstrate Bredt's second law in  Section 2.

1.2.5 Resolution of the loads acting on the hinged beam

The fact that the resultant of the forces transmitted from the sup
porting frame to the hinged beam is  p a ra lle l to the other diagonal and that 
the cros's-section of the hinged beam is  undeformable suggests tha t the 
loads on the hinged beam should be resolved in to  the following two parts: 
one part only causing angular displacements and the other part only causing 
tw is t (F ig. 1 and Fig. 2). However, i t  is  expedient to resolve the external 
loads in  another way.

The hinged beam is  subjected to two antisymmetric loads: the ve rtica l 
load -(p /2—(h/k)q) and the horizontal load -q. This load can also be pro
duced as the sum of two antisymmetric loads: the one is  the v e rtic a l load 
-(p/2—(2h/k)q (Fig. 4) and the other is  the ve rtica l load i(h /k )q  and the 
horizontal antisymmetric load iq .

403



SZIDAROVSZKY, 3.

Fig. 4.

The f i r s t  pa rt causes the  torque

M1 = _ ( 2 ~ Í T  q) k = 2 h 4  } > (1 .2 .2 4 )

the second pa rt develops

M2 = — q h — | q  к  = -  2 h q . (1 .2 .2 5 )

and the  sum o f the two p a rts  represents the whole torque

M =  +  M 2  =  —  ^  . ( 1 . 2 . 2 6 )

Due to  the f i r s t  loa d , the cross-section  on ly  develops deformation 

and the  second load causes o n ly  tw is t .  I t  fo llo w s  th a t  a box-beam bridge 

balances one pa rt o f the e x te rn a l torque as a hinged beam by tra n s la tio n  

and the  o the r part as undeformable box beam by tw is t .  In  th is  d is t r ib u t io n  

o f the  to rque , apart from the  s ize  o f the c ro s s -s e c tio n , the d ire c t io n  o f 

an tisym m etric  load causing the  torque plays an im portan t ro le . I f  the 

d ire c t io n  o f the ex te rna l fo rce s  acting at the oppos ite  corners is  p a ra l le l 

w ith  the  diagonal connecting the  other two corners (F ig . 2 ), the box beam 

balances the whole torque by tw is t .

By analysing the e f fe c t  o f to rs io n , the procedure presented above 

shows what p roportion  o f the  e x te rna l torque is  balanced by the box beam 

re s is t in g  as an undeformable tw is te d  beam and what p ropo rtion  is  taken by 

the box beam responding as a hinged beam. I t  fo llo w s  th a t the procedure is
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a lso app lica b le  to  the approximate a na lys is  o f skew bridges.

Acting  as an undeformable tw is ted  beam (F ig . 4 /c) the box beam takes 

the torque

M2 = £ q h + q h = 2 q h  (1 .2 .2 7 )

and perform ing as a hinged beam (F ig . 4 /b ) i t  balances the torque

Ml  = ( 2 ~ ' T q ) k = 2 k ~ 2 h q  (1 .2 .2 9 )

a r is in g  from the antisym m etric v e r t ic a l load

Í  ( f q )  • ( 1 . 2 . 2 8 )

2.  TAKING INTO ACCOUNT WARPING AND THE EFFECT OF THE DEFORMATION CAUSED BY
THE SHEARING FORCES

The c ross-sec tion  o f the box beam which is  plane and perpend icu la r 

to  the a x is  o f the beam before loading does no t remain plane a f te r  the a n t i

symmetric loading  and the po in ts  o f the c ro ss -se c tio n  develop d i f fe r e n t  

a x ia l tra n s la tio n s  i . e .  the cross-sec tion  undergoes warping.

2.1 Warping -  B re d t's  second law

Let the tu b e - lik e  cross-section  be subjected  to the v e r t ic a l  antisym 

m etric  load -(P /2—(h/k)Q ) and the h o r iz o n ta l antisymmetric load -Q (F ig . 5 ).

F ig. 5.

In  making use o f form ula (1 .2 .2 3 ), the angu lar displacement o f the  h o rizon 

ta l  and v e r t ic a l w a lls  caused by the shearing  forces (Figs 6 and 7) is  

g iven by the formulae
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and

and

Fig. 7.

R
_9_
Ff G

ï a = —  - - 3 -G FaG
R h 
- Л  -  T- R

y - 2 k q
V F G

( 2 . 1 . l /а )

(2 Л  Л /b )

( 2 . 1 . 1 / c )

Le t us c u t through the box beam by two planes. The planes are perpend icu la r 

to  the  a x is  o f the beam and the distance between them is  dz. The angular 

d isp lacem ent o f the h o r iz o n ta l and v e r t ic a l w a lls  in  the in f in ite s im a l e le 
ment (F ig s  6 and 7) is

a
f  ' ( 2 . 1 . 2 /a )
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and

2 w„

W1 + w2

( 2 . 1 . 2 /b )

( 2 . 1 . 2 /c )

The re la t iv e  h o r iz o n ta l tra n s la tio n s  o f the p o in ts  marked w ith  "1 " and "2" 

on the two v e r t ic a l sections (F ig . 7) are

and

yU-ĵ  = ( Y f -  a f ) dz
FfG

М2 = ( Y а ~  a a } dz 

V = (  Y  V + a v )dz

R 2 w7
(-9-----------h  dz

кFaG
R h

R
-a +

w, + w„
-) dz

F G
V

(2 .1 .3 /a )

(2 .1 .3 /b )

(2 .1 .3 /c )

The tw is t  per u n it  leng th  o f the h o r iz o n ta l and v e r t ic a l elements, on the 

basis o f formulae (2 .1 .3 /a )  — (2 .1 .3 /c ) ,  assumes the form

1 Mi  + M2 Ro 1 1 2
3 = ---------- -------—  = - 9  (—  + —  ) ---------(w. + w„) (2 .1 .4 )

v dz h hG F. F hk 1 if  a

and
p _ 2 h n

1 2 v Кр к q 2
3 . = —  —  = -------------------+ —  (w. + w7) . (2 .1 .5 )

n dz к k G F v hk 1 z

I f  we have an undeformable c ro ss -se c tio n , the tw is t  o f the c ro ss -se c tio n  

and the tw is t  o f the elements are the same and, making use o f form ulae 

(1 .2 .1 1 ) and (1 .2 .1 5 ) as w e ll as the form ulae

3 = 3

4h
R = —  R 

P к c

Mt
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and

w = + W2

we o b ta in  the tw is t per u n i t  length  as

8 =
1

-( —  +
4h G F,

2 h

k2F

M. к к 2h
О 9 (—  + —  + — ) ( 2 . 1 . 6 )

4hzkzG d . d dv
I a

which is  id e n tic a l to  B re d t's  second law. I f  the  cross-sec tion  does not 

keep i t s  shape, i . e .  we have a deformable c ro s s -s e c tio n , then the deforma

t io n  per u n it length o f the  cross-section  is

l l
dz

3 k -

o r ,  making use o f form ulae (2 .1 .4 )  and (2 .1 .5 ) ,

± t  = +
dz kFG Gh F F V a V

2 h z 4
- 5— ) + —  w 
kzF hk

V

from  which we obta in warping as

hk d ß t  

4 dz

Ff  + Fa

F.F k2F f a  V

h
-------  R
4F G P

V

(2 .1 .7 )

(2 . 1 . 8 )

I f  the upper h o r iz o n ta l flange extends beyond the v e r t ic a l w a lls , 

then , in  the case o f pure to rs io n , no normal s tresse s  develop in  the over

hanging sections so the e f fe c t  o f the shearing s tresses  is  n eg lig ib le '. I t  

fo llo w s  th a t there must be a break p o in t in  the  diagram o f warping (F ig . 8 ) .  

The angle a t the break p o in t  is

G d^G к d j G
(2 .1 .9 )
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Fig. 8.

The warping developing on the hinged beam supported by the support
ing frames (Eq. 2 .1 .8 ) can also be interpreted as the sum of two parts: 
warping on the hinged beam and warping on the undeformable cross-section .

According to Section 1 .2 .5 , the v er tica l antisymmetric load 
-(P /2— (h/k)Q) and the horizontal antisymmetric load -Q acting on the hinged 
beam are equivalent with the vertica l load —(P/2—(2h/k)Q) on the hinged beam 
and the sum of the vertica l load -(h/k)Q and the horizontal load -Q acting 
on the beam of undeformable cross-section .

If the hinged beam is  subjected to the antisymmetric v er tica l load 
P/2—(2h/k)Q (Fig. 4 /b ), then, due to the shearing forces, the v er tica l wall 
on the left-hand side translates downwards, the one on the right-hand side 
translates upwards and the horizontal w alls do not undergo angular d is 
placement, thely only tw ist. It  follow s that no warping occurs. This fact 
i s  descriptively  shown i f  we develop the walls into a plane. This load only 
develops bending of the vertica l walls and so also warping of bending na
ture ("bending" warping from now on).

If the beam i s  subjected to the antisymmetric vertica l load -(h/k)Q 
and the antisymmetric horizontal load -Q (Fig. 4 /c ), then, because of the 
constant nature of the shear flow, a l l  four walls, as plane structures, 
develop distortion  in such a way that the distortion of the opposite walls 
i s  of opposite direction. That i s  why generally warping develops, which is  
shown in Fig. 6 and in Fig. 7 where the four walls are developed into the 
same plane.

Due to the vertica l antisymmetric load -(P/2—(2h/k)Q), only "bending" 
warping wg develops and the vertica l antisymmetric load -(h/k)Q and the 
horizontal antisymmetric load -Q only cause "shearing" warping ŵ  (warping
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of shearing nature). As opposed to "shearing" warping, in the case of 
"bending" warping, there i s  no sudden change in the warping diagram at 
concentrated forces or at p laces where the cross-section  changes. It fo l
lows th a t, at concentrated fo rces  and at changes in the cross-section, the
diagram of warping w. presents sudden changes but that of warping w и a
does not.

I f  the hinged beam i s  subjected to the v er tica l antisymmetric load 
-(P /2—(2h/k)Q) (Fig. 4 /b ), we obtain warping from formula (2 .1 .8) as

hk о . h 4h h
w = ---------- —------------- R + ---------- R

a 4 dz 4F G p 4F G к q
V V

( 2 . 1 . 10)

According to formulae (1 .2 .3 ) ,  the vertica l antisymmetric load 
P=(4h/k)Q acting on the beam with an undeformable cross-section  develops 
force Q in  the horizontal w a lls of the hinged beam and force

I  P -  ï ï  Q = ïï Q (2 .1 .11 )

in the vertica l walls.
The non-restricted warping caused by the v er tica l antisymmetric load 

-(h/k)Q  and horizontal antisymmetric load -Q acting on the undeformable 
beam (F ig . 4/c) is  given by formula (2.1 .8) as

wb 24 y ~kzF J  4G
V

Rq
h 4h /F f + F 2h2 \  к

Rq =( ^  Rq

2 . 1 . 12)

sin ce  we have g .̂=0 in th is  case (undeformable cro ss-sectio n ). The sum of 
formulae (2.1.11) and (2 .1 .1 2 ) g ives the whole warping represented by 
formula (2 .1 .8 ) .

The fact that warping can be presented in two parts makes i t  possible  
to introduce the equivalent areas F , F̂  and F .

Due to the vertical antisymmetric load - (P /l—(2h/k)Q), no shearing 
forces develop in the horizontal walls and the sum of the shearing stresses  
i s  zero . At the vertical w a lls , as with I-beams, we have
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Fv = dv h (2 .1 .13)

as a good approximation for the equivalent area.
The vertical shearing force caused by the vertical antisymmetric load 

- (h/k)Q and the horizontal antisymmetric load -Q is  balanced on the area

F = d h . (2 .1 .14)
V V

and the horizontal shearing force caused by the same load i s  balanced on 
the area

Ff = df к (2 .1 .15)

and on

because of the constant nature of the shear flow.
F = d к , a a ’ (2 .1 .16)

In the case of an undeformable cross-section , we have 8^=0 and, 
making use of formulae (1 .2 .3 ) and (2 .1 .8 ) we obtain

.2к
w = —  (• 

4G
Ff + Fa 

Ff Fa

2 h
2 T } Rq (2 .1 .17)

к F

which is  identical to the formula presented in /2 / .
In applying Bernoulli-Navier's theorem we arrived at the fa c t that 

the shear flow is  of constant nature. We also obtained Bredt's f i r s t  
(1 .2 .23) and second formula (2 .1 .6 ) as well as the formula for warping for 
pure torsion (2 .1 .1 3 ). These formulae were derived from Saint-Venant's  
p rincip le. It  follows that Navier's theorem and Saint-Venant's  principle  
are not independent of each other.

REFERENCES

1. Szidarovszky, J.: The analysis of single-cell box beams by the hinged model. 
Acta Technica Hung. 99 (1985)

2. Timoshenko, S.P. ,  Goodier, J.N.:  Theory of Elasticity, McGraw-Hill,
New York, 1951

3. Szidarovszky, J.: Exact analysis of single-cell box beams. Acta Technica 
Hung. 100 (1986)

4. Szidarovszky, J.: Cross sectional characteristics of single-cell box beams with 
a schematic cross-section. Acta Technica Hung.. 99 (1985)

411





A c ta  T e c h n ic a  A c a d .S e i . H u n g . , 9 9 (3 —4 ) ,  p p . 413—418 (1 9 8 6 )

DESIGN OF STEEL FRAMES BY MULTICRITERION OPTIMIZATION 

A. Vásárhelyi* — J. Lógó**

(Received: 5 September 1986)

The scalar optimization method of m ulticriterion optimization 
i s  presented for the design of s te e l  frames. The stress  and buckling 
conditions are sa tis fie d  according to the Hungarian Standards (which 
are similar to DIN). The e ffec t of using d ifferent objective func
tions was considered. Numerical examples show that form the point of 
view design i t  i s  not successful i f  a l l  the boundary conditions are 
taken into consideration as objective functions at the same time.

1. INTRODUCTION

The basic idea of m ulticriterion optimization is  very- c lose to the 
process of structural design.' In th is  paper the connection between these 
professional domains i s  presented. The cross-sectional dimensions of stee l 
frames are designed by m ulticriterion optimization taking into considera
tion the s tress , buckling and la tera l buckling cr iter ia . Numerical examples 
i l lu s tr a te  how the dimensions of the cross-sections are influenced by d i f 
ferent objective functions.

The problem is  solved by an interactive program system which contains 
different mathematical methods (weighting objective methods, Guddat's 
method and scalarization  with parametrical le v e ls ) .

2 . APPLIED MATHEMATICAL METHODS

Only there are several methods in our interactive program system.
From among the available methods, scalarization  with parametric lev e ls  is  
presented here because other methods (weighted objectives / 3 / ,  / 5 / ,  goal 
programming /6 /  and scalarization  of Guddet /3 /  àre known from the l ite r a 
ture, and because o f, th is  method i s  best suited to solve our problem.

For linear vector optimization problems Brosowski /2 /  investigated a 
scalarization  which led to the following scalar problem:

* A. Vásárhelyi, Dept. Mathematics, Techrical University, Budapest, 
Hungary

** 0. Lógó, Dept. Mechanics, Technical University, Budapest, Hungary

Akadémiai Kiadó, Budapest
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min  ̂ t J t £ R, д±(2<) S 0, i  = hj(x) = 0,

j  = !>• • • )  Ä , Pk(ü) -  t  < yk ,

к = 1 , . . . ,m| (2.1)

w h e re :

tX
д , ( х )  and 
n, l  , m

- a scalar,
- vector of unknown, 

h.(x) - functions,
J - number of in e q u a lit ie s , eq u alities and objective functions 

respectively,
- the k-th ob jective  function,
-  is  the demanded lev e l of the k-th objective function.

By minimizing t  in (2 . 1)  such a feasib le point x i s  looked for which 
these le v e ls  can be chosen as "minimum". A s lig h t generalization of the 
problem (2.1)  is  the following scalar problem:

min t  [ t (  R, gi (><) á 0, i = 1 , . . .  ,n, h j(x) = 0,

j  = 1, — , Ä , Рк(х) t z ^

к = 1 , . . .  ,m j- (2.2)

where:
£  Rm and z  £  Rm (Rm is  the space of objective functions) 

z_ > 0 , and z  are chosen by the user.
The program system produces the vectors ^ and z_ automatically /1 / .
A feasib le point i s  se lec ted  from the calculated feasib le points for 

each ob jective function in which the value of the objective function is  
minimum among the feasib le so lu tio n s.

Let these points be S p  . . . ,  s^.
Choose y_ and z  vectors automatically as follows:

1 kyi  = P i ( s i ) ,  i  = i , . . . , K ,  z i  = k 2 ^  Pi ( s i ) -  Ур i  = 1 , . . . ,  к (2.3)

This choice has two advantages:
— the scalarization can be used easily ,
— y_ and z  are independent of the scale of the objective functions. 
The Powell-algorithm was used to solve the above scalarization

problem / 7 / .
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3. OESIGN OF STEEL FRAMES

At our University a series of experiments were run for s te e l  frames. 
Data on structure and loads can be seen on Fig. 1. According to the experi
ments the load carrying capacity of the frame is  8x33 kN /4 / .  The balks and 
p illa r s  are supported by purlins.

According to the above method th is  structure has been computed with 
different choices of objective functions.

Assuming that — the material is  homogeneous, isotropic and linear  
e la s t ic ,  ideal p la stic ; — the s ta tic  loads are acting on the nodes; — the 
frame is  a planar structure. The structure was divided into 12 members.

The internal forces are determined according to the force method. 
The unknowns are:

x̂  — redundant force
x̂  . . .  x^g — the dimensions of cross-sections (Fig. 1 .)
Each section  of the members s a t is f ie s  the equilibrium equations the 

com patibility and the linear p lastic  y ield  conditions:
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6* s + д = 0 (3.1)

+ F s = 0 (3.2)

N* s — к < 0 (3.3)
w h e re  :

G — geometric matrix, 
s — vector of internal fo r c e s ,
£  — load vector,
jj — displacement vector,
F — f le x ib i li ty  matrix,
N — matrix of yield con d ition s,
£  — p la s t ic  limit s tr e ss .

The following conditions of sta b ility  have to be sa tisfied :

Ni
"l

s ФX

N.l J
г M. b X 1

nl 1,1 ML

N.l + Ÿ
P M.by 1

nl У 1,1 M,

S 1

i = 1, • • • ,  12

i = 1, . . . ,  12

i = 1, . . . ,  12

( 3 . 4 )

(3.5)

(3.6)

where: 
N. , M.l ’ l
N ML’ L
f x ’ f y

t X ’ E y

Ф X’ Ф y

normal force and bending moment at the i- th  member, respectively, 
lim it normal force and lim it bending moment respectively,
functions of second order effects in the plane of structure and 
in normal d irection  to the structure respectively ,
proportional fa c to rs  depending on the in ternal forces,
buckling functions.

Y x , У , e x , e y , * x , <j>y are presented in the Hungarian Standards 
which are similar to DIN. Conditions (3.1),  ( 3 . 2) ,  (3.3)  were substituted  
in to  conditions (3.4),  ( 3 . 5 ) ,  (3 .6) .  The geometrical dimensions of the 
cross sections were lim ited by minimal values. In the majority of the cases, 
there are two objective functions: the volume of the structure (Cl) and the 
minimum shear forces at the supports (C2).
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Cl:
1=1

min (3.7)

2 ? 
C2 : 5 1  TÍ 

i=l  1 y  min (3.8)

w h e re :

T.l

length and cross-section  of the i- th  member respectively, 
shear force.

In Table 1 one can see which functions were taken into consideration 
as an objective function. In every case the constraints are (3.1) ,  (3.2) ,
(3.3) ,  (3.4) ,  (3.5) ,  (3.6) and the geometrical lim it.

The choice of the objective functions influences substantially  the 
dimensions of cross-section s. Taking the s ta b ility  conditions as objective  
functions the dimensions were close to the experimental ones. If the struc
ture was designed for minimal volume, the same load carrying capacity was 
assigned by le ss  volume than at the experimental structure. It is  not a 
good practice to take too many objective functions into consideration at 
the same time.

1. Bernau, H.: Interactive Methods for Vector Optimization. Proceedings of the 
Conference "Methoden und Verfahren der mathematischen Physik". Oberwol- 
fach 1985.

2. Borosowski, B.: A Criterion of Efficiency and some Applications. Preprint.
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Berlin 1985.
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5. Jahn, 0.: Scalarization in Vector Optimization. Math. Progr. 19 (1984), 
203-218.
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Programs. Ellis Florward Lim. Publ. Chichester 1984.
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Table 1

obj.
funct. un

knowns
Cl Cl, C2 Cl, C2 

3.4
Cl,
3.5

C2, Cl, C2, 
3.6

Cl, C2, 
3.5 3.6

3.4 3.5 
3.6

Exp. data

x2 (mm) 354 354 345 330 347 344 355 340

Xj (mm) 6 6 8 6 8 8 9 8

x4 (mm) 181 175 173 189 173 178 182 170

Xj (mm) 10 10 10 10 10 10 10 10

x̂  (mm) 281 300 283 288 288 288 270 28Q

x-j (mm) 5 5 5 6 6 6 6 6

Xg (mm) 140 155 152 152 153 154 140 150

x9 (mm) 10 9 9 10 10 10 9 10

x10 (mm) 340 330 340 338 338 338 345 335

Cl (cm3) 105932 108022 114168 116588 122132 122045 116948 118714

VÁSÁRHELYI, A. 
- LÓGÚ,
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BOOK REVIEWS

Kálmán Z. Horváth: The selection  of load-bearing structures for buildings. 
Akadémiai Kiadó Budapest — Elsevier Science Publishers B.V. Amsterdam 1986, 
380 pages, 196 figu res, 20 tables, subject index.

This book i s  the English version of the Hungarian book on the same 
subject published in 1982 by the Műszaki Könyvkiadó. Its  aim i s  to present 
the creating process of structure design in d e ta il and to represent the con
siderations that have to be taken into account in selecting the most appro
priate load-bearing structure for the purpose of the building.

The introductory part of the book presents the d ifferent types of 
load-bearing structures, sometimes denoting the individual structures by 
novel names d iffer in g  from the ones used by the technical litera tu re . It de
scribes in d eta il the equilibrium of forces in the d ifferent structure types, 
and also the structural and technological problems in connection with their 
realization . After systematizing the various types of load-bearing struc
tures i t  deals with the executional and operational requirements taking into 
consideration the aesth etic , tectonic, s ta t ic  and physical demands.

The next part analyses the designing problem of the load-bearing 
structure. The standpoints of the expedient se lec tion  of the structure are 
shown in a separate chapter for three d ifferen t tasks, namely for a hall for 
industrial or agricultural purposes, for a s in g le -lev e l one-family house, 
and for a factory building. The next chapter represents the whole designing 
process of the project plan step by step in ten concrete examples and then 
continues with the various tasks to be solved when completing the technical 
plan and the working drawings in the cases of the same buildings. The la s t  
chapter deals with the structural solution  of eleven special buildings in 
d eta il. One part of them has been realized as a result of the author's orig
inal architectural work, the second one has been accomplished on the basis 
of the author's structural design a c t iv ity . Among the examples discussed in 
d eta il the presentation of the design and construction problem of the load- 
bearing structures of the indoor swimming pool in Szombathely, the c ity  of
f ic e  building in Budapest, Roosevelt square, the educational block of the 
Technical College of Traffic and Telecommunication at Győr and the hotel 
MALÉV-HYATT in Budapest is  worthy of sp ecia l in terest. The Wine Museum in 
Budapest i s  also an interesting task.

Akadémiai Kiadó, Budapest
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Throughout the book i t  i s  emphasized that a good building can only 
be created by an e ffec tiv e  cooperation of a l l  partners involved. Besides the 
many other related questions the author deals in d eta il with the advantage 
resu ltin g  from the application of mushroom floors and with the p o s s ib il it ie s  
a ris in g  from the u tiliz a tio n  of structures having larger span than the usual 
ones. Beside the main structure the complementary and junction structures 
are a lso  examined. The problems of reinforcement of buildings, the question  
of d ila ta tio n  gaps, the problem of hinges and conçois and also the expert 
so lu tio n  of isolation  tasks are dealt with thoroughly. The various tasks of 
building engineering, the d iv ersified  problems of the construction i t s e l f  
have got a high significance through the discussion.

The author's experiences collected  during h is  long professional ac
t iv i t y  of three decades are summarized succesfully  in th is work. He presents 
h is observations in an exc itin g  and convincing way demonstrating them with 
valuable illu stra tio n s , colouring the discussion several times by witty  
q uotations.

The wealthy treasury of h is experiences is  valuable not only for the 
s p e c ia l is t s  dealing with the design of load-bearing structures, but a lso  for 
those working in other f ie ld s  of architectural engineering.

P. Csonka

Gy. Márkus: Kreis- und K reisringplatten unter periodischer Belastung. 
(P eriod ica lly  loaded circular and annular.) Akadémiai Kiadó Budapest — Wer
ner-Verlag Düsseldrof 1986. 415 pages, 224 Figures, 115 Tables

In structural building, problems are often encountered where determi
nation of the strain and the cross-sectional forces of circular of annular 
p la tes  i s  required. These problems are usually rather complex problems, and 
no d irect aid to solve them, or i f  indeed at a l l ,  then only in the simplest 
cases, i s  found in the lite r a tu r e . In engineering practice, technical books 
presenting data in the form of a repertory or tab les for use by the design
ing engineer are therefore rather valuable. The author's two earlier books 
have been designed for th is  very purpose, one t i t le d  'Theorie und Berechnung 
rotations-symmetrischer Bauwerke' 1967, 1976, 1978 (Theory and calculation  
for rota tion a lly  symmetric structures) dealing with loads of d ifferent types 
acting upon circular and annular p lates while another work t it le d  'K reis- 
und Kreisringplatten unter antimetrischer Belastung' 1973 (Antimetrically 
loaded circular and annular p la tes) discussing antim etrically loaded circu
lar and annular plates. A recently issued monograph of large format 
(21x23 cm) of the author i s  a valuable aid in solving problems concerning 
p erio d ica lly  loaded circular and annular p lates.

In th is  book, discussion i s  based on the well-known Kirchhoff theory 
of p la te s . The Kirchhoff formulae as well as the solution of problems d is 
cussed in the book are presented in a dimensionless polar co-ordinate system 
by the author. Included in the discussion are the d ifferent types of load 
and support important from a practical point of view, among them the prob
lems where the loads are acting only upon some parts of the surface, or some 
lin e  sec tio n s , or only upon some points, of the p la te.

Elescribed in the book after preface and introduction are the d if fe r 
ent symmetric, antimetric, and simple trigonometric load systems taken into  
consideration , and then the periodical load systems that can be described by 
in f in ite  trigonometric s e r ie s . The author gives a particular solution of the 
d if fe r e n t ia l equation of the circular plate for these load systems, corn-
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pleted with appropriate independent solutions of the homogeneous d ifferen 
t ia l  equation to produce a general solution of the inhomogeneous d ifferen 
t ia l  equation. The solutions presented contain the formulae for strain  and 
cross-section a l forces of the circular p late.

U tilizing  a l l  these resu lts , the author gives actual examples for 
circu lar and annular p lates which are important from a practical point of 
view. From among the rotationally  symmetric problems, he deals only with the 
force uniformly distributed in the central area and/or with the case of 
p la tes loaded by concentrated force while concerning other types of load, 
reference i s  made to the author's earlier works, sim ilarly to the case of 
antim etric load where only the case of concentrated couple acting upon the 
central area is  discussed. A detailed analysis of the periodically loaded 
circular plate case i s  given for types of load that can be described by a 
trigonometric function, and the accurate and/or approximate solution for the 
d ifferen t types of load i s  presented in the form of in f in ite  and/or f in ite  
Fourier ser ie s . The same method i s  applied also  to the case of circular and 
annular p lates as well circular sector shaped and annular sector shaped 
p la tes periodically loaded along the periphery. The problem of circular and 
annular p lates periodically  loaded along the periphery including, among 
others, p lates upon which a concentrated force or couple is  acting in an ar
bitrary point i s  discussed separately. The discussion is  extended to the 
problem of circular p lates combined with the supports in a cantilever-type  
structure upon which a concentrated force or couple i s  acting in an arbi
trary point. Also the dynamic behaviour of the circular plate supported in 
three points is  thoroughly studied for the d ifferen t types of load.

In simpler cases, strain  and cross-section a l force formulae ready 
for use in the discussed problem are presented while in other cases, the in 
tegration constants required to determine them and in more complicated 
cases, equations that can be used to determine the constants are given in 
the book. The discussion i s  backed up by curves indicating the changes of 
cross-section al forces as well as with Figures illu stra tin g  the stra in s. In 
case of complex problems, Figures showing the superposition of the d ifferen t 
steps of calculation picture the calculation procedure demonstratively.

In the book, the Tables containing ready solutions worked out for the 
d ifferen t problems are rather practicable. Tabulated in them are data of 
stra in , and values of moments, of the plate in radial and arc d irection in 
four subsequent rows each. The layout of the Tables i s  identica l, permitting 
the complex problems to be discussed as a combination of the d ifferen t par
t i a l  problems.

The book with i t s  rich content, c lear-cut treatment of the problems, 
and valuable Tables is  a fundamental work for engineering practice. To write 
i t ,  and to work out the rather involved formulae and the Tables (the la tte r s  
containing more than 60 000 numerical data), the author had to take an ardu
ous work in hand, to make rather sophisticated calculations and to work out 
d ifferen t computer programs. Success attended a l l  these efforts: the book 
was a sign ifican t contribution to international literature on p la tes.

Edition of the book also in English would be desirable.

P. Csonka

G. Reinelt: 'The Linear Ordering Problem: Algorithms and A pplications', vol
ume 8 within ser ies 'Research and Exposition in Mathematics', 160 pages, has 
been issued by Heldermann, Berlin, in English language.

421

I



BOOK REVIEWS

In optimization theory, one of the most d if f ic u lt  problems i s  to find  
some integer solution and within th is , a solution  of value 0-1. Combinatorial 
optim ization with linear ordering i s  a method suited to solve problems lik e  
th is .

Using the graph theory, the linear ordering problem of combinatorial 
optim ization can be formulated, as follows: for given directed complete 
graph of weighted edge, a non-circu ital spanning 'tournament' has 
to be defined.

A number of p ractica l problems can be treated as a linear ordering 
problem. Such a problem is  scheduling a machine with restriction s concerning 
p r io r ity  in a c tiv it ie s  organisation, investigation  of individual in terests  
in  market research, triangulation of input-output matrices in economics, 
ranging combined comparisons on sociology, evaluation of results of s ing le  
combats in sports.

In G. R einelt's monography, f ir s t  a brief mathematical introduction 
i s  given (graph, polyeder, and complexity theory), and then the use of a 
polyedric combinatorial method to solve the linear ordering problem is  re
commended. On the basis of recent resu lts of investigation  of polytope plane 
structure assigned to the problem, after introduction of the notion of hyper
plane defined by the system of in eq u a lities  of the linear ordering polytope, 
the algorithm of the in tersectin g  planes can be produced. With th is  embedded 
in a ram ification and separation process tree , a computer-aided solution ap
p lic a b le  to the actual triangular problem d issim ilarly  to earlier approaches 
can be given.

Also different examples are given in the book, among others, for 
beer popularity investigation s, for evaluation of the results of a football 
championship with a higher accuracy than usually.

The book has been designed for use in d ifferen t fie ld s  of sciences 
where the apparatus of applied mathematics i s  used, f ir s t  of a l l  for 
econom ists.

I . Vágó

Gy. Vértes: Structural Dynamics. Akadémiai Kiadó, Budapest, 1986

The author wrote a book consisting of an introductory chapter and two 
ad dition al chapter^ worked out in d eta il.

In Chapter 1, the d ifferen t dynamic loads and impacts are defined, 
and then the effect of dynamic load on the physical properties of s te e l ,  
concrete, and reinforced concrete i s  b riefly  analyzed.

In Chapter 2, f i r s t  the one-degree-of-freedom system is  studied. Dis
cussed in  th is relation are the free and excited vibrations, both damped and 
undamped. In the discussion of excited vibration, the author deals with ex
c ita t io n  by harmonic forces, vibration due to pulse, and excitation by 
fo rces of arbitrary time function. Included in the discussion of damping are 
viscou s damping (damping proportionally to ve loc ity ) and the method of tak
ing in to  consideration frequency-independent internal fr ic tion . Also an ex
ample for the vibration of the one-degree-of-freedom system of nonlinear 
r ig id ity  and nonlinear damping (non-proportional to ve locity ), and another 
example for calculation of the e la s to -p la stic  one-degree-of-freedom system 
for impulsive load are given in the book.

After the one-degree-of-freedom system, the two-degree-of-freedom 
system i s  studied and formulae are found for calculation of the natural angu

422



BOOK REVIEWS

lar frequencies and vibrational modes. Also exc ited , undamped vibration of 
the system of two degrees of freedom is  discussed by the author.

Multimass systems are studied in the same Chapter. For a system with 
discrete mass points (diagonal matrix), free vibration is  investigated , with 
also the orthogonal properties of eigenvectors included in the investigation  
to show how the system can be decomposed into one-degree-of-freedom subsys
tems in the knowledge of the eigenvectors. Excitation by harmonic forces is  
discussed, then d irections to take into consideration viscous damping are 
given. Also the e ffec t of internal fraction i s  studied.

Vibrations stud ies of a beam of constant cross section, considered 
to be a continuum, and the use of energy methods for vibrations studies are 
then presented. Example i s  given for the use of the Rayleigh and Rayleigh- 
Ritz method. From among methods available for the investigation of dynamic 
systems, the method of transfer matrices and i t s  application to both free 
vibration and excitation  by harmonic forces i s  discussed, then the author 
chanoes over to bar structure studies, d iscussing the use of the matrix- 
displacement method for calculation . The consisten t mass matrix of bar 
structures, derived with the bending inertia  taken into consideration, is  
presented.

Chapter 3 of the book deals with dynamic calculations for structures. 
Calculation models are shown to calculate the natural frequencies associated  
with horizontal vibrations for tower houses with frame and reinforcement 
wall as well as with a mixed supporting structure.

The problem of testin g  of structures for aerodynamical e f fe c ts  is  
b riefly  treated. The author deals with aerodynamical in sta b ility  and speaks 
of what has to be known on Kármán's vortices.

In the book, the reader can read of vibrations dangerous to the 
building as well as on the e ffec t of vibrations on human organism.

In the d ifferen t chapters, the author gives f ir s t  the fundamental 
relationships and elements before going into detailed  discussion. Thus the 
book i s  a practicable aid in university stud ies and for engineers involved 
in dynamic problems. At the same time, the book offers aid also in practical 
problems. References to literatu re contribute to a thorough study of the 
differen t problems.

J. Györgyi
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