ACTA
TECHMCA

ACADEMIAE SCIENTIARUM HUNGARICAE

EDITOR: P. MICHELBERGER

VOLUME 99
NUMBERS 12

AKADEMIAI KIADO, BUDAPEST 1986 ACTA TECHN. HUNG.



ACTA TECHNICA

A JOURNAL OF THE HUNGARIAN ACADEMY OF SCIENCES

EDITORIAL BOARD

K. GEHER, O. HALASZ, J. PROHASZKA, T. VAMOS

MANAGING EDITORS

P. CSONKA, GY. CZEGLEDI

Ada Technica publishes original papers, preliminary reports and reviews in English, which contribute to
the advancement of engineering sciences.
Ada Technica is published by

AKADEMIAI KIADO
Publishing House of the Hungarian Academy of Sciences
H-1450 Budapest, Alkotmany u. 21.

Subscription information

Orders should be addressed to

KULTURA Foreign Trading Company
H-1389 Budapest P.O. Box 149

or to its representatives abroad

Acta Technica is indexed in Current Contents

Ada Technica is abstracted/indexed in Applied Mechanics Reviews, Current Contents-Engineering,
Technology and Applied Sciences, GeoRef Information System, Science Abstracts.

© Akadémiai Kiadd. Budapest



ACTA TECHNICA
Volume 99 Nos 14

CONTENTS

Barta, J.: On the minimum of strain energy in elastostatics ................ 3
Chhangani, O.P.-Lenkei, P.: Graphical presentation of compressive

membrane action in one-way Slabs ........ccccociiiiiiii 221
Chhangani, O.P.-Lenkei, P.: Short-time deflections of two-way slabs .. 233
van Dae,Tran : On the dynamics of a man-machine system ...............cccccoovueee. 249
Dulacska, E.: The safety factor to be applied in shell buckling

ANAIYSIS oot e e 9
Ecsedi, |.: Sonme comments on the twist problem of shells of circular-

ArC CENIIEIINE ot e eaeeas 31
Ecsedi, |.: Torsion of a thin-walled, anisotropic, bent rod of circular-

arc centreline ..., 63
Ecsedi, |.: Bounds of the numerical value of rotational flexibility .. 273
Fiizy, 3.: Simulation of the timber lattice shell without "in-plane”

shear capacity by double-layer cosserat surface ........cccovviieennns 287
Géaspéar, L.: State conservation of highways ........cccccociiiiiiiiiiniiiiiiee i, 7
Gyorgyi, J.: Calculation for the vibration of structures: a partial

eigenvector problem SOIULION ...cccoiiiiii i 103
Hank6, Z.: Qualification of interdependence or independence within any

pair of variables involved in multiple linear regression ............. 125
Kaliszky, S.-Knébel, 1.: Optimum design of plastic bar structures for

shakedown and dynamic 10ading .......ccccoooiiiiiiiiii i 297
Kampfe, B.-Michel, B.: A new approach to X-ray diffraction analysis of

stress states in surface layers ....ccociieiiiiieeeccciiee e, 313
Kollar, L.P.: Buckling analysis of coupled shear walls by the multi-

layer sandwiCh mMOdEl ........ccoeiiiiiiie e 317

Matsikoudi-lliopoulou, M.: Elastic membranes reinforced by cords: non-
linear axisymmetricdeformation with twist .......cccccooiiiiiieiiiiiinenns 147



Palancz, B.: Analysis of a closed circuit cryogenic wind-tunnel ......... 163

Reményi, K.: Use of low-grade coal as fuel of power plans ................. 193
Risteski, lce B.: Mathematical’ method for determination of thermal

contact resistance between solidifying metal and mold .................. 333
Szidarovszky, 3.: The analysis of single-cell box beams by the hinged

10700 (= USRS 349
Szidarovszky, 3.: Cross sectional characteristics of single-cell box

beams with a cross section of rectangular elements .........ccccccueenn. 383

Szidarovszky, 3.: Relationship between Saint-Venant's principle and
Biernoulli-Navier's theorem as well as Bredt's formulae and warping 397

Véasarhelyi, A.-L6g0o, 3.: Design of steel frames by multicriterion

(o] 011110174 Y (o] o SRR 413
BOOK REVIBAS
Franz, G (editor): Beton-Kalender 1986 .........ccccccoomiiiiiieeoiiiieeeesiiieee s 215
Horvath, K.Z.: The selection of load-bearing structures for buildings 419
Herpy, M-Berka, J.C.: Active RCfilter design ......iiiinnnn. 217
N Lot 1 o TR AN OF - 1V 1 - 1 (= I TR 216

Mérkus, Gy.: Kreis- und Kreisringplatten unter periodischer Belastung 420
Reinelt, G.: 'The Linear Ordering Problem: Algorithms and Applications' 421
Vértes, Gy.: Structural DynamiCS .......cccccciiiiiiieiiiiiiee e errieee e 422
Wischers, B. (editor): Reports on concrete technics 1984/95 ................ 218



QONTENTS

Barta, J.: On the minimum of strain energy in elastostatics ................. 3
Dulacska, E.: The safety factor to be applied in shell buckling

analysis ....ccccccvviiiiieeiiieee e 9
Ecsedi, |.: Some comments on the twist problem of shells of circular-

AIC CENIIEHNE oot e e e e srnree s 31

Ecsedi, |I.: Torsion of a thin-walled, anisotropic, bent rod of circular-

AIC CENTIEIINE e s 65
Géaspér, L.: State conservation of highways .........ccccccciiiiiiiiiiiiiiceniiieeens 7
Gyorgyi, J.: Calculation for the vibration of structures: a partial

eigenvector problem soldtion .......cccccciviiiiiiie 103
Hankd, Z.: Qualification of interdependence or independence within any

pair of variables involved in multiple linear regression ............. 125
Matsikoudi-lliopoulou, M.: Elastic membranes reinforced by cords: non-

linear axisymmetric deformation with twist .......cccccooiiiiiieiiiiiinenns 147
Palancz, B.: Analysis of a closed circuit cryogenic wind-tunnel .......... 163
Reményi, K.: Use of low-grade coal as fuel of power plants.................... 193
BOK REVIBAS
Franz, G. (editor): Beton-Kalender 1986 (P. Csonka) ..........cccccoiiiirrennnns 215
Joan, A.: Cavitatia 1. (J.J. Varga) .....ccccecmmviiieeiiiiiereeesiieeeessiieeeeesinneenens 216
Herpy, M—Berka, J.C.: Active RCfilter design (K. Géher) .....cccooouuen... 217

Wischers, B. (editor): Betontechnische Berichte 1984/85 (T. Gyeng6) .. 218



PRINTED IN HUNGARY
Akadémiai Kiadd és Nyomda, Budapest



ACTA
TECHNICA

ACADEMIAE SCIENTIARUM HUNGARICAE

EDITOR: P. MICHELBERGER

VOLUME 99

AKADEMIAI KIADO, BUDAPEST 1986






Acta Technica Acad.Sei.Hung.,99(1—2),pp.3-8 (1986)

N THE MNIMUM CF STRAIN ENERGY IN ELASTOSTATICS
J. Barta*

(Received 28 May 1985)

This paper deals with the equilibrium of a body in case the stress-
strain state is caused by active forces applied at given points. It is
proved that, considering statically equivalent active forces, minimum
strain energy is associated with the values of active forces which result
in displacement of the application points as if the motion taking place
were that of a rigid body.

Discussed in the paper are two theorems, theorem | of |. Ecsedi £1j,
and theorem |1 which is a generalisation of theorem |. The purpose of the
present paper is to prove theorem II.

The usual assumptions of elastostatics are accepted. It is assumed
that only statical effects arise, that is, neither dynamical nor thermal ef-
fects take place. The structure assumed to be is free from initial stresses
(supposition a ). Assumed are also linear elasticity, and the validity of
the principle of superposition.

Let us consider an elastic bar (Fig. 1) of a circular cross-section
of variable diameter. The material of the bar is homogeneous and isotropic.
The bar has a built-in lower end preventing the cross-section of the lower
end from displacing in any direction, while the upper end is free, and is
subjected to distributed axisymmetric active forces of intensity T1(r) in
the upper end cross-section. W stipulate that these active forces be stati-
cally equivalent to a given troque M Now, according to

Theorem |: The minimum strain energy of the bar (Fig 1) is associ-
ated with active forces x(r) which result in rotation of the upper end
cross-section as a rigid body. (As a result of axisymmetry, this rotation
takes place around the bar axis).

Now, let us consider an elastic body (Fig. 2) for ex. bar, plate,
truss, frame, continuous body. Frictionless joints and rigid supports prevent
the body from moving. The supporting forces do not work. The body and its sup-
port are statically determinate or statically indeterminate. The material of

*J. Barta, H-1085 Budapest, Jozsef kérut 35, Hungary

Akadémiai Kiadd, Budapest



BARTA, J.

Fig. 1. Torsion of the bar Fig,2. Application points and action lines of
the active forces

the body is homogeneous or heterogeneous, and isotropic or anisotropic. AB,

are given points of the body and are the application points of the active

forces. The magnitude of the active forces is denoted by Fp...,Fn. As to

the directions of active forces, we distinguish the cases

(a) the action line of the active force is determined, for ex. in point A
of Fig. 2, or

(b) the action plane of the active force is determined by two directions,
for ex. in point B of Fig. 2, or

(c) the direction of the active force is not determined and three non-com-
planar directions are therefore used, for ex. in point Cof Fig. 2.

Weé stipulate that the active forces be statically equivalent to the
combination of a given force R and a given torque M (stipulation RB). It is
assumed that stipulation 3 can be fulfilled*. Then the following theorem
holds.

Theorem 11: The minimum strain energy of the body (Fig 2). is asso-
ciated with values Fp...,F~ of active forces for which the displacements
of points A,B,... are such as if points A,B,... were points of a rigid body.

*|t is easy to examine for given R, M, A, B, ... whether or not stipu-
lation 3can be fulfilled. Description of such an examination seems to be super-
fluous in this paper.

4



STRAIN ENERGY IN ELASTOSTATICS

Proof of theorem I1. From among cases a,b,¢ case a will be consid-
ered for the time being. In the proof, F F o are written instead of A,B,
. The body is characterized by influence numbers

all’” “ " ' " am
(1)

anl> > ann'

Explanation: & is the displacement vector of application point PA

d* is the component of d- in direction i, (Fig. 3). a” is the value of d"

for Fj = 1. Directions I,...,n determine unit vectors n”,...,up. Therefore,

products u ~, ... ,unfn are equal to the vectors of active forces. Equation
a“F1 + ... +ainFn :d1 (2)

expresses a fundamental property of influence numbers. Instead of (2)

AR P )

can be written. W denote the strain energy of the body by U. Formula

U=k Fl(allFl + eee + alnFn)
(4)
Fn(amF1 + ...+ annFn)

is well known. Stipulation R yields equations

=R™ R - - tpFn =D,
(5)
¥ EL£M- E1* UF1- ... - ™ xynFn:D.

Magnitudes F*,...,Fn have to be chosen in such a way that the strain energy
expression (4) will be minimum. At the same time, equation (5) has to be
satisfied. Thus the problem is to find a relative minimum.

According to the rule of finding a relative minimum we use function

b=y + x2$%$2 (6)



BARTA, J.

Fig. 3. The displacement vector and its component in given direction

Vectors A”and JU, are Lagrange's multiplicators. Equations

6o .
6 -0 (i=1, — ,n) (7)

read in detail

ailFl - Y- ALl - (i=1»...,n)(8)

Taking into account relation (3) and the rule of mixed product of vectors,
we obtain from (8) equations

deu, «inli = (i=1,...,n)(9)

that is

(di - -A2 xXij=Li = °- (i=1......n)(10)

Equations (10) are fulfilled if

gt -A]\. +.Aé }(/_Fi: (i=1,...,n)(IN

or
(di - Ai A2 xXi) di, (i=1,...,n)(12)

Let us follow now the calculation process of relative minimum. Equa-
tions (8) and (5) serve for calculating unknowns Fp...F , Ap Ap Thus we
have n scalar equations and two vector equations. Therefore, equations (8)
and (5) include n+6 scalar equations with n+6 scalar unknowns. After calcu-
lating unknowns Fp... Fn, 2p , We consider equations (11) and (12).

Figs 4 and 5 illustrate relations (11) and (12). 3 is the plane passing



STRAIN ENERGY IN ELASTOSTATICS
through point P., perpendicular to direction i. As shown in Figs 4 and 5
(11) allow only one relative minimum while (12) allows more relative minima.
Since Fig. 5 comprises Fig. 4, and since the unicity of solution Fp...,F ,
* N o ~2 Nas aresult of supposition °0 is valid, it is possible to use
only (11) from among both equations (11) and (12).

Fig. 4. Relation (11) Fig. 5. Relation (12)

According to the rule known from literature, "the necessary and suf-
ficient condition that displacements d”,...,dn of points P”,...,P  be such
as if points P,,...,Pn were points of a rigid-body, is the existence of two

vectors dg and w by means of which

dn - dg + w x rp (i=1,...,n) (13)

can be written". Comparing (13) with (11) it can be seen that dg = X~ and
w = ~2 are much two vectors. Thus, we have a relative extreme in cise a.
This relative extreme is a relative minimum since (4) is a positive quadrat-
ic form. With this, theorem Il is proved for case _a Cases |)_and ¢. need not

be proved since b and c, are comprised in a.
Example. Let us consider the torsion problem of a bar with square

cross-section. For the sake of comparison two rigorous solutions of torsion
problem (Figs 6 and 7) are presented.

A.rigorous solution (Fig. 6) is the classic solution [2]. Here on-
ly shear stresses exist in each cross section with the cross sections warp-
ing, and the distribution of Mis uniform in each cross section.

Another rigorous solution (Fig. 7) comes from theorem Il. In this
case, the cross-section of the lower end is clamped, all the points of the

cross-section of the upper end are considered as given points of applica-
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Fig.6. The lower end cross-section Fig. 7. The lower end cross-section is
can warp unimpededLy cla mped

tion of active forces, and R = 0 is stipulated. Here the upper end cross-
section experiences no deformation. Although R = 0, normal stresses exist in

the upper end cross-section.

REFERENCES

1. Ecsedi, I.. A comment on the torsion of bars having a circular cross-section
of variable diameter. Acta Techn. Hung. 95 (1982), 13-19.
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THE SAFETY FACTOR TO BE APPLIED IN SHELL BUCKLING ANALYSIS
E. Dulacska*

(Received 3 September 1985)

The paper deals with the necessary safety factor against buckling
of shell structures. Using probability theory in an approximate way we
propose safety factors for both elastic buckling and failure, and, provide
a simplified method of analysis, suggesting a unique safety factor, we
also evaluate the values of the safety factors according to the princi-
ples of various building codes.

1. INTRODUCTION

In our previous paper /1/ we briefly dealt with the safety factor
to be used in buckling analysis of reinforced concrete shells. As we have
promised there, we investigate now the problem of the safety factor in shell
buckling in general.

The necessary safety of a structure can be achieved in several ways:
We can use a unique or a split safety factor. In addition, the level of
safety can also be different. The codes of practice of the different coun-
tries regulate the required safety in various ways.

In the present paper we recommend a safety factor which is differ-
ent for elastic buckling and for failure without buckling, but which can be
reduced into a unique safety factor. W investigate the values of the safety
factors on the basis of the Hungarian (MSz) and German (DIN) codes, and on
the basis of the recommendations of (B and ACIl. Finally, we compare the
safety of several erected shell domes with the safety factors proposed in

the present paper.
2. PRINCIPLES OF DETERMINATION CF THE SAFETY FACTCR

The safety factor

*Dr.Dulacska Endre, H-1022 Budapest, Kitaibel Pal u. 12, Hungary

Akadémiai Kiado, Budapest



DULACSKA, E.
determining the safety with respect to critical load, depends
—on the accuracy of the theory used in computing the critical load;
—on sudden or gradual character of buckling (decreasing, increasing
or constant post-critical load bearing capacity);
—on deviations between theoretical model and actual shell in
material quality,
material characteristics,
load values,
dimensions and
shape;
—on the standard deviation of these effects and on the simultaneity
and coincidence of these effects and standard deviations; and, finally,
—on the risk that we are willing to take with respect to failure.
All these effects manifest themselves in different ways in the de-
termination of elastic critical load p,r and in the determination of
plastic failure load p”~. On the one hand, the variation of the radius of
curvature Rdue to initial geometric imperfections influences elastic criti-
cal load pcr ~ according to law 1/R , since this expression appears in the
formula for the critical load of a perfect sphere, while it influences the
plastic failure load according to 1/R, since p ~ =2 n ~/R. O "the other
hand, we have shown in our paper /2/ that the plastic failure load always
has a decreasing character as a function of displacement w, while the elas-
tic postcritical load bearing capacity can have an increasing character, as
well as is the case with hypar shells supported along their straight genera-
trices /3/.
Due to these circumstances, we obtain two different safety factors,
Ye® and Y p for the elastic critical load and for the plastic failure
load respectively. With the aid of these we can write the critical lim it
load, pcr ||, using e.g. the "ellipse of Dunkerley" as suggested in /2/, as
follows:

Expressing pcr * we obtain:

10



THE SAFETY FACTOR TO BE APPLIED IN SHELL BUCKLING ANALYSIS
upper
M, el 1

JersH= YD 1/ 'Y pupper\2

PL arjel

Yel Ppl

Using the "parabole of Dunkerley" we arrive at

(3)

pcr,H ' el
upper (4)
lcr,el
from which
upper -
Xr,el
! L. AR- 2R (5)
cr H vel
where
A = el Pi
. upper
Pi Hr,el

In the above formulas P "Pg" denotes the upper, i.e. "snapping"
critical load of the shell considered as elastic in the case of given (or
assumed) initial imperfection wg, which has to be determined, in case of re-
inforced concrete shells, taking cracks and reinforcement into considera-
tion, and wq is the mean value of the imperfection amplitudes /1 /.

It is possible, for the sake of simplicity, to use a unique safety
factor Ye”® pp but this will provide a transition to the failure without
buckling with some approximations only.

The safety of a shell against buckling can be kept on an appropri-
ate level in the simplest way if we take the most onerous, extreme value of
every effect, determine the critical load with the aid of these values, and
reduce it by the safety factor. This method, which may be called the multi-
plication of partial safeties, is certainly safe but uneconomical, because
it does not take into consideration that, as a rule, the most onerous values
of the various effects do not appear simultaneously.

Another possibility is to exactly or approximately apply the rules
of probability theory /4/, I5/, /6/. W choose this method in the present
paper. However, we have to check the evaluations of the probability theory

11
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by the safety value to be computed from practical data. That is, the methods
of the probability theory yield appropriate results in case of a great num
ber of events, but failure of shells by buckling cannot, by any standard, be
considered as a mass event, because every individual shell has to have a
sufficient degree of safety. Hence, in addition to the evaluation of materi-
al qualities and model tests, we are compelled to make certain estimates
when assuming the various parameters. The correctness of these estimated
values can be checked by comparing our computed safety factor to that de-
rived from the data of erected structures which show no sign of failure.

In applying the probability theory, we assume that the individual
random variables are independent of each other, so that we have to deal with
one-dimensional distributions, and can use the rule of addition of the var-
iances (the variance law). It follows from this principle that the resultant
standard deviation is smaller than that obtained by leaving out the standard
deviation of one variable of the computation of the resultant standard devi-
ation and adding it separately to the latter one. So, for example, if we de-
note the resultant coefficient of variation by we have

We follow this rule in determining the material characteristics.
That is, we determined the characteristic or nominal values by the national
codes, as lower fractile from the mean values with the aid of the standard
deviation, taking a certain frequency into account. In stability analysis
we use these nominal values of the material characteristics. In our investi-
gations we use the random deviations with respect to these values, which are
certainly independent of each other.

We assume that the distribution of every random variable has one
peak and that their skewness can be neglected. Consequently, they can be re-
placed by the normal distribution. This represents the roughest approxima-
tion in case of meteorological loads (snhow, wind). However, their most oner-
ous values are set by the various codes, and by so doing they more or less
consider their skewness as well. W only use these determined values here.

Let us check by a rough comparison how the normal distribution ap-
proximates a skew one. Let the frequency function be a triangle with vari-
able angles, as shown in Fig. 1, and let us determine the 2.5 %and 97.5 %
fractile from the traingular and from the normal distribution.

12



THE SAFETY FACTOR TO BE APPLIED IN SHELL BUCKLING ANALYSIS

Type of
frequency A

Fig. 1. Error caused by the skewness of distribution

We have plotted the results in Fig. 1. It can be seen that the error
in the upper fractiles (loads) is negligibly small. In the lower fractiles
(resistances) the error is greater, but always lies on the safe side. More-
over, the central lim it theorem of the probability theory states that the
distribution of the sum of several non-normal distributions rapidly ap-
proaches the normal distribution. Consequently, we can safely use the normal
distribution.

Summing up, we can compute the characteristic value of critical
load, to be used in design, by subtracting the resultant standard deviation
multiplied by a from the mean value of experimental results, or from the
critical load computed from the mean values of the resistances.

Here a is a numerical value depending on the quantile belonging to
the risk taken. If we accepted a quantile of order 2.5 % we can take

a =2.0 provided we had a sufficiently large number of samples.

The safety factor can thus be computed from expression

=P (6)
1~AvR

Here Yqg denotes the level of safety which has to account for accessory ef-
fects not taken into consideration, for small errors in computation, and,

13
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moreover, for the fact that the required level of safery is higher than that
of the level of the nominal value and, consequently, the upper and lower
characteristic values of loads and resistances, respectively, have to be
shifted apart from each other. Adding these partial safeties together as
vectors, we obtain in the Hungarian code of practice Y = 1.1, in ACI and
in CEB Recommendation 1.12 and 1.16 respectively, and in DIN 1.25, as we
shall see later. If we use an approximate computation model or an approxi-
mate way of analysis, we shall increase the value of Y

In case of elastic buckling the resultant coefficient of variation,
Vp shall be computed from the sum of squares of coefficient of variations

as follows:
I Vd
e
YR I load Vo (7)
Here ~oad *s coelll clenl °f variation of average load;

V is the coefficient of variation of critical load of concrete or
plastic shells, taking the dispersion of modulus of elasticity E
beyond the lim it of nominal strength. Since the critical load is
linearly proportional to E,vp is, in fact, the coefficient of vari-
ation of E

Yoo is the coefficient of variation of critical load due to the coeffi-
cient of variation of modulus of creep ¢ of the shell material;

v cr is the coefficient of variation of critical load due to the change
in the radius of curvature Rcaused by the coefficient of variation
of imperfection amplitude w .

3. ESTIMATE CF THE COEFFICIENTS CF VARIATION

Estimate of the coefficients of variation of load and of. plastic
failure load of the structure, v and v pp respectively

In case of failure without buckling the resultant coefficient of var-
iation becomes:
Pi 2
VR = load (8)

Let us determine the component coefficients of variation using the

14



THE SAFETY FACTOR TO BE APPLIED IN SHELL BUCKLING ANALYSIS
principles of the Hungarian building code /7/.

The safety factor of the dead load of thin concrete structures is

= 1.2, that of the service load is Y = 1.3. Oh the average we can

1 dead serv
take Yload = 1.25. Since we can write

load ~ 1-

from this relation we can compute the coefficient of variation of the aver-
age load:

vload = 0/1 ©)

The safety factor (i.e. the ratio of mean strength to nominal or
characteristic strength) of steel material is Y N =1.2, that of con-
crete is 1.4. Since failure mainly depends on reinforcement, we may take the
average safety factor of reinforced concrete material as Ynmefer,"aj = 1-25,
i.e. closer to that of steel.

From the formula

1

Ymaterial 1- 2VPi =12

we can determine the coefficient of variation of the material, i.e. of plas-

tic failure as

. = 0.1 . 10
VP| (10)

Applying Eq./6/ to the failure without buckling we can write

4q

Ypi ~, 9 772 “material ~load ~
\ load + pi

from which we obtain

70 = 111 » (1D

15
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Estimate of the excess coefficient of variation of the modulus of
elasticity,

The results of several thousand measurements of BVPA /11/ are very
suitable for assessing the coefficient of variation of since the formu-
las for computing the modulus of elasticity are also based on these data.
The lim it curves and the data to be used can be seen in Fig. 2.

According to the Hungarian building code /7/, the nominal strength
of concrete, f ., is 70 %of the mean strength, f'

W thus can write

1

7 )
concrete 1-2 Vconcrete 0.7 1-4

from which V concrete 0.15 is obtained.

Hence the ratio of the nominal cglinder strength, f
mean strength, f* is also 0.7, i.e.: f = 0.7 FC.

¢,min to the

c,min

"o,min.~0<BRBE-o(fc,min.) Eo(f'c,min.)=6750 7f cmin
VE-0.10

Fig. 2. Estimate of the excess coefficient of variation caused by the
coefficient of variation of the modulus of elasticity
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Thus from formulas for Ea, given in Fig. 2, the curve of E~%,
can be determined and plotted as shown in the figure.
Reading the data of the figure we have

from which
VE)a = 0.07 .

We can also read off the figure that

This yields for the excess coefficient of variation the value

(12)

Estimate of the coefficient of variation of creep,Y®

Vandepitte et al. performed a great number of experiments to explore
the influence of the creep of concrete on the critical load of shell domes
/12/. From the creeping models they obtained a coefficient of variation
V¢ g =0.20, while from the quick loading experiments, where creep
played no role, they found

as an average coefficient of variation.
Since we can write

2
\Y, \Y,
d.exp (0]

we have

v (13)

17
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Estimate of the coefficient of variation of the elastic critical

Stability investigations for cylindrical and spherical shells with
snap-through character have been mede by several researches on metal models.
We evaluated their results several years ago /13/ and obtained a coefficient
of variation of vexp = 0.30. W now revised this result and found that it
was irrealistically high. The reason for this is that we also took into ac-
count the critical loads of shells that had such a high R/h-ration (radius
of curvature to shell thickness) which certainly would not occur in practice,
and, moreover, we computed the coefficient of variation without regression,
so that the decreasing trend of the critical load with an incerasing ratio
R/h also appeared as coefficient of variation.

We think that shells with R/h >1300 do not occur in practice.
the other hand, plasticity reduces the critical load if R/t<300. W could
not evaluate this latter effect due to incomplete experimental data so that
this regular (systematic) deviation of the experimental results also ap-
peared as a coefficient of variation. W thus proceeded in the new evalua-
tion in the following way:

W evaluated the experiments in the range of 300 < R/h < 1300.
Here we divided the experimental results by the values of the regression
curve,

for all the experiments. (Here is the "classical" critical load of
shells, determined by the linear buckling theory.)

We then computed the coefficient of variation of the values thus ob-
tained, separately for every researcher's model tests. (These values lay a-
round 1.0.) W only evaluated test series on more than 10 models. From anong
the coefficients of variation obtained in this way we considered the highest
one to be relevant. We compiled the results in Table I. So, finally, we took
value

Vg, =023 (14)

18
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for the coefficient of variation of the elastic critical load.

Table 1. Standard deviations of shell model tests

Kind of No.of Relative stand-
shell Reference Researcher models R/h ard deviation
Lundquist 29  650- 900 0.172
Weingarten- Morgan
Seide 24 500-1000 0.226
Cylindrical
shells 113/ Kanemitsu-Nojima 19  760-1250 0.210
Harris-Sver-Skene
-Benjamin 20  400- 800 0.192
Litle 23 500- 800 0.113
Domes 113/ Seaman 20 500-1200 0.203
Kloppel-Jungbluth 35 300-1300 0.234

Explanation of the comparatively high value of the coefficient of
variation of the elastic critical load of shells, vecr

In model tests, the critical load computed form wall thickness h,
modulus of elasticity E, and the actual strength are compared with the ex-
perimental critical load. Since all these data are actually measured values,

their coefficients of variation are small, and do not account for the great

coefficient of variation of the critical load. Indeed, we neglected these

coefficients of variation in our investigation. On the other hand, initial
imperfections influence the radius of curvature, R, according to relation

«
8/fo4/

Here 4/ is the buckling length, f is the rise of the shell on
length <o, comButed from planned radius op curvature Ry, and wQ is the maxi-
mm amplitude of the initial imperfection.

Evaluation of the various theoretical investigations shows that f»
is inferior to the wall thickness. Consequently, wQ = h can already mean a
plane point on the shell. According to theoretical investigations, the cri-
tical load hardly depends on the buckling length of imperfection, but de-

19



DULACSKA, E.
pends essentially on w . Hence we shall investigate the influence of w on-

ly -

Fig. 3. How the scatter of imperfection causes scatter of the critical
load

We plotted in Fig. 3a a curve P”oT1> which approximated the theo-

retical results. If. wa deviated from the calculated value, we shift to the

right or to the left along the curve by value Awg. Thus a smaller or

greater wg and, correspondingly, a greater or smaller critical load becomes
possible. If we refer these values to the original wq, and project them to
the vertical line corresponding to w , they appear as coefficient of varia-

tion of the critical load.
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The situation will be similar when evaluating test results, if we
plot the critical load as a function of R/h. Here wg causes R to change by
AR, which changes also the critical load. Referring these changes to the
original R, i.e. projecting them into the vertical line passing through Ry,
results in the coefficient of variation of the critical load.

4. THE SAFETY FACTORS (F SHELLS WITH SNAP-THROUGH CHARACTER
The proposed values of the safety factors

The data to be used for calculating the safety factor have been ob-

tained previously as Yg =1.1; a= 2.0; N =0.1: =0.1; vA=0.16:

f\oad V13’i

ver = °-25-
The safety factor of failure without buckling will be for rein-

forced concrete and metal shells, taking Eqs/6/ and /8/ into consideration:

= 1.55 (15)
pl 2 2
VI d + VvV -I

. 2f loa p

We obtain for the safety factor of elastic buckling, in case of
reinforced concrete shells, from Eqs/6/ and /7/:

concrete =2955 « 3.0 (16)

For metal shells we can assume

(17)

load cr

If we do not want to separate the plastic and the elastic safety
factors, but we want to introduce a unique safety factor instead, the values
V[2)I anc* v gr a*so 13ve aPPear url[der the root sign, but diminished to
such an extent as corresponds to the role played by them in elastic-plastic
buckling.

If we write values and ve” into the equation of the
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Dunkerley-ellipse applied to plastic critical load, and equate this to another

into which we wrote ¥ we can determine:

el,pi’

rel,pl  “el (18)

. I,HN
If we assume that pp1/Pcr,eI bp Acr

factor the expression

, we w ill obtain for the unique safety

Nel,plis* Yel (19)
Some values for Ye_l p_f are found in Table Il. Here EP denotes the plastic
failure load p_- valid in case w. = 0.
Pl 0
Table 2. The unique safety factor Ye* p* for buckling and plastic failure
According to prin- According to prin-
Material of Proposal ciples of DIN/CEB/ ciples of ACI
the shell Concrete Metal Concrete Metal Concrete Metal
£p -0 1.50 1.50 1.75 1.75 2.10 2.10
=05 1.90 1.70 2.18 1.92 2.23 2.10
= 1.0 2.35 1.90 2.70 2.16 2.98 2.42
2.0 2.75 1.97 3.14 2.37 3.40 2.59
=00 3.00 2.20 3.40 2.50 3.65 2.70

The safety factor shall be increased if
—the theory applied is approximative,
—the computation model deviates from the actual structure,
—the material characteristics are not reliable.

The values of the safety factor established according to the prin-
ciples of DIN

DIN gives a factor of safety Yp# = 1.75 for structures not exposed
to buckling /8/. It determines the failure load from the nominal strength.
22
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With values v ~ =0.1 and v}oag = 0-1 we have

pi 1.75 (20)
load + Vpi

from which we obtain Y = 1.25. The safety factor of elastic buckling be-
comes in the case of reinforced concrete shells:

y concrete
el

(21)
1.25 - 3357 & 34

1- 2\Jo.I2 + 0.12 + 0.162 + 0.232

The IASS-Recommendations /14/ accepted this level of safety for
buckling analysis of reinforced concrete shells, because it gave Y ~ = 1.75
and Y " = 3.5.

For metal shells we obtain with =0

ymetal 1.25

2508 «2.50 (17)
el on 017 023

The values of unique elastic-plastic safety factor
puted from Eq.(19), are tabulated in Table II.

Tel,pl> com-

Safety factor according to the principles of the CEBB Recommen-
dation

According to the BB Recommendations /9/ Y ~ 1.15;
YConcr =1.50; and we can assume Ymaterial 1.25. Fom these we obtain
the value v ~ = 0.1. The Recommendations specify for the loads Y ** =135
and = 1-5. These yield an average value of Y ~~ 1.4, which results

in YR)ad' = 0.15. W thus have
=1.25(1.4) = 1.75 (22)

pi = Ymaterial load

We can write

23
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V. a2 = 1.75

of

=\ oad T pj

which yields Yqg = 1.12. The safety factor of elastic buckling is, in case
of reinforced concrete shells:

Y concrete Yo
el 1. 2« 2 2 — 2 2
doad + YE T yeo+ cr

1.12

S 3.36;rf3.4 (23)
1 - 2\| 0.152 + 0.12 + 0.16" + 0.232

and in case of metal shells (assuming \)¢b= = 0):
Ygetal 1.12 . 2 48 (24)
0.15" + 0.23

That is, the safety factors computed according to the principles of
(BB essentially coincide with those yielded by the DIN.

Safety factors according to the principles of American Code ACI

According to ACI /10/ Y "~ = 1.4; YN = 1.7. W thus can assume
“oad yields a coefficient of variation “loacf = 0.167. In
case of eccentric compression Ynaterial = Arom wh*ch “material =~

can be computed.
The safety factor of plastic failure becomes

Ypl =15 (1.4) =21 (25)
We can write

’ = 21
* | _ 1
P 1-2 Vrznaterial v Foad

from which yqg = 1.16 can be computed.
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Hence we obtain for the safety factor of elastic buckling of rein-
forced concrete shells:

concrete
el 2,,2,2
- Vload + cr
1.16 = 3.65 (26)
1-2\] 0167 + 0.12 + 0.16Z + 0.23"
and of metal shells, taking v {)= =0;
vmetal _ 1.16 2688 A 2.7 @7)

1-2  0.1672 + 023"

We present the values of unified elastic-plastic safety factor
Yei pp computed from EQ./19/, in Table II.

5. SAFETY FACTORS (F SHELLS WITH INCREASING CR GONSTANT
POST-BUCKLING LOAD BEARING CAPACITY

If we require the same level of safety against buckling failure of
shells in every case, we shall apply safety factors of different magnitude
in case of decreasing and increasing post-buckling load bearing capacities.
This is essentially due to the circumstance that in case of increasing load
bearing capacity it is plastic failure load rather than critical load which
characterizes failure. This phenomen is schematically illustrated in Fig.4,
where we represented the decreasing and increasing load bearing capacities
by inclined, broken straight lines, disregarding the difference in coeffi-
cient of variation between both cases.

We obtain, as shown in the figure, for a structure with decreasing
load bearing capacity

Pi

with Yj* as the safety factor determined in case of decreasing load bearing
capacity. Since increasing load bearing capacity is characterised by rela-
tion Pcr./Pp® < 1, in this case we shall have Y2< Y”. Following the pro-
posed way of analysis we have
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Fig. 4. Decreasing and increasing load bearing capacity

. _ . . . - . 0
Y0 11 «= 2.0; Vioad 0.1; VPI 0.1; VE=0.1; %= 0.16.
and the evaluation of tests made on bars with constant post-buckling load
bearing capacity yields
Ver  vexp 0.18.
W thus obtain the resultant variation-coefficient = 0.28 for
reinforced concrete shells and = 0.23 for metal shells, and the follow-

ing safety factors can be computed (omitting subscript el):

26

rc 1*o 1.1
constant 1- 2 Vp 1- 2(0.28) ~ -5, (28)
Y metal

11
constant 1 - 2(0.23) 2.03. (29)

In case of investigations according to the principles of DIN:

Yre . metal
constant  2-8% Yconstant  2-30-
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In case of investigations according to the principles of CEB:
sYmetal

= 2.80, 2.10.

YConstant constant

In case of investigations according to the principles of ACI:

yre = 3.05, Vmetal «

constant ~ constant

In case of shells which have a snap-through character, but the slope
of the falling curve is less than in cases of axially compressed cylinder
and radially compressed sphere, it seems reasonable to use an intermediate
safety factor Yinterme(j, which lies between Ydecreasing and Yconstant-
The value of this safety factor can be approximated by the following inter-
polation formula, using Phom(0.5), the value of the ratio PhQm = p”pper/
p~n assumed at wQh = 0.5, characteristic of the slope of the curve of de-
creasing load bearing capacity

phom(0 -5)

Y constantv 0.75

intermed = Yconstant (Y decreasing Y

(30)

Note that in cases of axially compressed cylindrical and radially
compressed spherical shells PAQ)0.5) = 0.25, while in case of a radially
compressed very long cylinder Pdom(°-5) = 1-00. Introducing the values into
formula (30) for various Phom(0.5), we obtain the values of Table 3. ac-
cording to the different building codes.

Also, note that the safety factor for elastic buckling of shells
with decreasing post-buckling load bearing capacity is twice the safety fac-
tor valid in the case of failure without buckling.
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Table 3. Values of the intermediate safety factors

yeI, intermed. ¥p|
phom(O.S) = 0.25 0.50 0.75 1.00

proposal 3.00 2.83 2.67 2.50 1.55
according to DIN 3.40 3.22 3.03 2.85 1.75
according to CEB 3.40 3.20 3.00 2.80 1.75
according to ACI 3.65 3.45 3.25 3.05 2.10
proposal 2.20 2.15 2.10 2.05 1.55
according to DIN 2.50 2.43 2.37 2.30 1.75
according to CEB 2.48 2.36 2.23 2.10 1.75
according to ACI 2.70 2.56 2.42 2.28 2.10

6. COVPARISON WITH BERECTED DOVES CF LARGE SPAN

We computed the critical load of several erected reinforced concrete
domes with the aid of the method outlined in /1/, and compared them with
their actual loads in Fig.5. On the basis of this comparison we think that
computation of the critical load with the method outlined in /1/, assuming
the value of the safety factor at about = 3.0, which gives "a*2.4
at R/h = 500, yields a safety level corresponding to the practice followed
until now. Only three erected shells with a safety factor less than two were
found. Ore of these actually buckled, and the other two were extremely slen-
der. The figure also suggests that elliptic shells (i.e. those with positive
Gaussian curvature) having a slenderness ratio R/h < 500 will most likely
exhibit a sufficient degree of safety against buckling. However, for hyper-
bolic surfaces (those with negative Gaussian curvature) prone to develop
inextensional deformation, this limit value may lie considerably lower, e.g.
the collapsed cooling towers of Ferrybridge had a slenderness ratio of
about R/h s4200.
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failure without buckling while Y,
concrete and reinforced concrete shells, and Y5R+gl = 2.2 in case of metal

THE SAFETY FACTOR TO BE APPLIED IN SHELL BUCKUNG ANALYSIS

Domain of failure of
model tests

001 4

1 Jena.Germany

2 Jena, Germany

3 Matsuyuma .Japan

4. Ingoviscosa Works,Germany
5. Hilling, USA

6. Hamburg, Germany

7 Windward , USA

8 Wales, Great Britan

9. Albuquerque, USA

10 Belgrade, Yugoslavia

ilure
upper,pi
C

Proposed Yd, g,
in the case of
tfpl=1-5,Yel=3.0

Domain of shells
applied in practice

11L11 1 R

1012 h
11 Belgrade, Yugoslavia
12 Algeciras, Spain
Novosibirsk, SU
Rome, Italy
G06dollé, Hungary
Thessaloniki, Greece
Puerto Rico, USA
Cleadon,Great Britain
Lyon, France
. Massachusetts, USA

BSBBRBERB

Comparison of actual safety of erected domes with our proposal

7. SUMVARY

The paper dealt with the necessary safety factor against buckling

concr

of shell structures. Using probability theory in an approximate way we pro-
posed safety factors for both elastic buckling and failure, and, to provide
simplified method of analysis, we suggested a unique safety factor. We also
evaluated the values of the safety factors according to the principles of
various building codes. W proposed a unique safety factor Y , = 1.5 for
=3.0 for pure elastic” buckling of
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SOVE COMVENTS N THE TWIST PROBLEM CF SHHLLS
CF CRCULAR-ARC CENTRELINE
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SUMVARY

This study discusses the uniform torsion of thin-wailed shells of
circular arc centreline, made of homogeneous, isotropic, linearly elastic
material. The meridian section of the shell of circular arc centreline is
a multiply connected planar domain. The proof of the three unequality
relations concerning torsional rigidity is fundamentally based on consider-
ations of J. Barta, exposed in 1955.

NOTATION

cylindrical coordinates

unit vectors

orthogonal non-straight coordinates

tangent to curve y or its normal unit vector
wall thickness

shear modulus of elasticity

shear stresses

shear stress resultants

shear stress resultant

shear stress resultant force couples

planar curve, meridian section of the central
surface of the shell

main radius of curvature of central surface
main curvatures of central surface

force

momentu m

equation of curve y

Hamilton's differential operator in plane rz

displacement vector

*Ecsedil., H-3524 Miskolc, Klapka Gy. u. 36, Hungary

Akadémiai Kiadd, Budapest
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specific elongation

e5,ed
so specific angular change
Y=4kis/ auxiliary function
§ torsional rigidity
ai symbol of field i
boundary curve of field i
& tangential unit vector of curve y*
n. normal unit vector of curve y*
g ,Qi/u=1,2,...,h) constants
ljjjali, iA=1,2,...,n;0) tangential stress resultant
vy section of curve y”" separating field and
110 'free' boundary section of curve y"
ﬂﬁ‘i" area of field cc

symbol of scalar product of two vectors

I symbol of vectorial product of two vectors,

other quantities and variables being defined in the text.
1. INTRODUCTION

Problems like "determine the system of internal forces and the
strain of a rod upon which given forces and force couples applying twist to
the rod are acting" have often been discussed in the mathematical theory of
elasticity. Arigorous solution to this problem has been derived by P.Blaise
/8/ for a thin-walled hollow rod while an upper and a lower bound to the
rigorous solution by J. Barta /7/.

Pl. Blaise's and J. Barta's argumentations apply to a rod a straight
centreline. All these considerations are generalized for the case of a rod
of circular arc centreline on the basis of P. Blaise's argumentation in
Chapter 2 and 3 and in accordance with J. Barta's argumentation in Chapter 4
of this work.

2. PUNDAVENTAL RELATIONSHIPS
2.1 Figure 1 shows a thin-walled shell of circular arc centreline,

made of elastic material. Central surface H of the thin-walled shell of cir-
cular arc centreline is brought about by rotating meridian curve y falling
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within plane rz around axis z, the magnitude of rotation being 0 (0 < 0<2w)
while lateral surfaces H* and Hj of the shell are obtained by rotating
curvesy® and falling within meridian plane rz around axis z, the magni-
tude of rotation being now 0 (0< 0 < 2it). Equation of closed curve y non-
intersecting axis of rotation z:

Pls/=R/s/"r+Z/slEz. (2.1)

Equations of curves y”* and 12> similarly closed and nonintersect-
ing axis of rotation z:

£,=P/s/+0.5 hec. (2.2)

j*"P/sA-O-5 he”". (2.3)

Fig. 1. Shell of circular arc centreline

In the formulas given above,

S arc co-ordinates measured along curve y
h=h/s/ wall thickness of the shell
en normal unit vector of curve .

Statically, the stress resultants and stress resultant force couples acting
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upon any central curve falling within the meridian section are equivalent
to a force the line of action of which is axis z. The movement of the rims
of the shell having a closed meridian curve is not hindered by any external
constraint. The problem outlined above is called the problem of uniform
twist of a shell of circular arc centreline with closed meridian curve /2/,
/31.

Figure 2 shows the meridian section of the shell, falling within an
arbitrary meridian plane. The meridian curve of the central section of the
shell is designated y. In the calculations, the role of orthogonal non-
straight co-ordinate system j3, £ is predominant. The position of point P
is given by polar angle dof the meridian plane including point P, by arc
co-ordinate £ of point Oy associated with point P, as well as by signed
distance (co-ordinate) 5=P~f.e® (Fig. 2). Here Py designates a point of
curve V for which EYE.QS:O.

Fig. 2. Meridian section
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All scalar co-ordinates of stress tensor | of rods of circular arc

centreline experiencing uniform twist, written in co-ordinate system s<tE
are identically zero except for tangential stresses

N (5% )=TAB(5- °
and

A G(s»™ )= dr(s>E )
nir,121,131).

Accordingly only the following stress resultants and force couples
from among those characteristic of the internal system of forces of the
shell will identically differ from zero:

h/2

v |/

TO3(1+9dc)ds> (2.4)
h/2

Ns<tf/ Ts<j>(l+g sOds, (2.5)
-h/2
h/2

% =/ TEh (1+9S7)ds’ (2.6)
/2
hi2

MiB=/ A TO3(1490 * )d* (2.7)
“hi2

hi2

% = Clzo+93 (2.8)
-h/2

Using the usual approximations of the theory of shells,

we obtain that

h 2

(2.9)

(2.10)
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h 2
4l £ (2.11)

The non-identically fulfilled equations of equilibrium concerning
stress resultants and stress resultant force couples are, as follows /4/,
/51/:

(2.12)

L. ..... (2.13)

(2.14)
st - RF - (Ns* - V -0.

With the value of tangential stress T ~¢ ,perpendicular to the central sur-
face of the shell neglected we obtain

Qs =0. (2.15)

As aresult of s'uch an approximation, it follows from equations
(2.9), (2.10), (2.11), (2.12), (2.13), (2.14) that

Nq_)S:N5dp =CN (2.16)
Rz
Md)s :Ms(|): oM . (2.17)

Stress resultants and stress force couples of positive sign are
shown in Fig. 3.
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Fig. 3. lllustration of stress resultants and stress resultant couples
The value of constants %Iand QM can be defined on condition of ex-
istence of equations (2.18) and (2.19) resulting from the conditions of
mechanical equilibrium:
(2.18)

(2.19)

Using the well known relationships of vector analysis, we obtain
equation (2.20), (Fig. 2):

f%s"szedx"dﬁ‘ 3=edf N cdsme<x | p? » dA=
Y y y A

=- 2 Xxe_ (2.20)

In the above equation, A designates the domain in plane rz, defined
within closed curve y. The combination of equations (2.18) and (2.20)
yields formula

(2.21)
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Note that formula (2.21) can be rewritten as
C= F (2.22)

y

by the use of relationship
2 ds (2.23)

On the basis of relationship

T T My

(2.24)
Yy * Yy
it can be understood that equation of equilibrium (2.19) for momentum can
be fulfilled only if

CcM=° (2.25)
Notation

I =re +zg (2.26)

was used in writing relationship (2.24).
It follows from equation (2.25) that

i (2.27)

38



THE TWIST PROBLEM CF SHELLS

while from the latter equation and equations

N = N g (2.28)

that also equation of equilibrium (2.14) is fulfilled in case of fulfilment
of condition Qd = 0.

In the present case, condition QG = 0 results in a stressed state
of the shell membrane.

The value of is determined by the magnitude of load E
n F . (2.29)
N IP
J Rz ds
Y
2.2 The use of Hooke's law in the theory of shell membranes leads to

equations (2.30), (2.31), (2.32):

hom .o (2.30)
"mlH<H-v"'=)" 0 (2.31)
=N = Ju (2.32)

SP GRrR2

On the basis of /4/, /5/, we can write

dw dZ | du R
ds ds ds ds S (2.33)
ICu +d = e
STMEN I (2.34)

dv 1 dwdZ xju_ ndR ,
ds + R dbds + B =Ys§>(s) ° (2.33)

A combination of equations (2.30), (2.31), (2.32), (2.33), (2.34),
(2.35) yields

u=0, (2.36)
w = k> (2.37)
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and that function = v(s) satisfies ordinary differential equation

dv b.dz dRs _ N
ds + R"Kds vds' .jd2 (2.38)

In writing formulas (2.36) and (2.37), the terms relating to rigid-
body motion uninteresting in the present case has been disregarded.

Let v(s) = R(s)ijj(s) . (2.39)

A combination of equations (2.38) and (2.39) leads to equation
(2.40):

d* k dZ CN
ds 12 ds OR3 (2.40)

Due to the univalence of the displacement field, also = d(s) is

univalent that is equation
1dz. (2.41)
exists.

On the basis of the above relationship, constant k can be calculated
as a function of constant Qflor load E.

Mechanically, constant k can be obviously defined as the displace-
ment of a meridian section, falling within two meridian sections including
unit angle, in the direction of the axis of rotation. The quantity defined
by rule

S=£ (2.42)

is called the torsional rigidity of the shell of circular arc centreline,
twisted uniformly. A combination of formulas (2.22) and (2.23), (2.41),
(2.42) yields

(1. (2.43)

v GhR3
Using .relationship (2.22), formula (2.43) can also be written as

2

_ ds (2.44)

| ore
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The points of the shell surface, falling within a meridian section,
are shifted at a uniform rate in the direction of axis z in the meridian
section, and they also displace at right angles to the meridian plane. This
latter displacement is a function of co-ordinate s. By integration of equa-
tion (2.40) we obtain

4s) = ) - kP L a5 + B 1.9 (2.45)
oR o @™

Transformation of equation (2.45) can be continued by the use of
formulas (2.29), (2.31):

ds
GR3
n(s) =0 [ g _X
T r2ds ds L R
'
ds (2.46)
o K o] GR3

For displacement at right angles to the meridian plane, the follow-
ing result can be written:

r X ds
. R(s FR(s a3
vs) i Rg VO S 1T
/| r2ds ds
Y LY

ds
fh & ' am (2.47)
The mechanical meaning of quantity :jj=ip(s) is obvious. The motion
of points along the parallel circle of central surface L] determined by arc
co-ordinate js can be divided into two parts. On the one hand, these points
move at a variable rate in the direction of axis z while on the other hand
the points of the parallel circle displace like a rigid body around axis z
through an angle of \p=y(s) (Fig. 4).
Since in general d=ips") i constant, the shape of curve y falling
within a definite meridian section will experience distortion (warpage,
swell) due to angular displacements of different values like a rigid body,
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associated with the different points of curve .

Fig. 4. Definition of &

2.3 No distortion of the curve occurs along that section of meridi
curve y where

do
G =0 (2.48)

in the points of the curve.
On the basis of equation (2.40), it is understandable that equation
(2.48) will exist only if

aRr ds = constant . (2.49)
It can be gathered from equation (2.49) that = constant along constant
curve section Z

Let

@z
Go. (2.50)

The section of curve y satisfying condition (2.49), (2.50) in case
jn = constant can be defined by the use of equations

R " = D = constant , (2.51)
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(2.52)

Somewhat tiresome but elementary calculations result in
R=ns2+D2, (2.53)
Z = Darsh . (2.54)

(2.53), (2.54) are the parametric equation of curve section Y that
displaces angularly like a rigid body. By eliminating parameter s*we arrive
from equations (2.53), (2.54) to equation

R=Dch" . (2.55)

On the basis of what has been said so far, the meridian curve of
the shell of a central surface not being distorted in>case h = constant is
illustrated by curve f given in Fig. 5.

Fig. 5. Non-warping meridian section

2.4 Tangential stress is(® can be defined on the basis formula
(2.56) derived by combination of equations (2.16), (2.21):

(2.56)
M = 2rRohfdA

Ar
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Formula (2.56) can also be written as

F
T dz (2.57)
d”s
Yy
Ts(pwill be constant if the wall thickness of the shell changes according

to relationship
h(s) (2.58)
where D: positive constant.
3. CRCULAR-ARC CENTRELINE SHELL F MULTIPLY CONNECTED MERIDIAN SECTION

The meridian section of the central surface of the thin-walled shell
of circular-arc centreline, falling within a meridian plane of arbitrary po-
sition, is shown in Fig. 6. The meridian section is set up of fields (cells)
of number n. Field a. is confined by closed curve y.. Curve y. is consid-
ered to be a union of curves Yior Yiir v VYin Counterclockwise direc-
tion is considered to be positive for each curve. The tangential unit vector
of curve y” is designated e while its normal unit vector g*, g* pointing
always away from the area enclosed by curve y~.

On the basis of Fig. 6, one can write

HofP)’ pe€ MNom 3.1

-ij (p> P6 Ty , (3.2)

with y the free boundary section of field a”, and y ™ the common bound-
ary line of fields or and or. Considering that the sense of positive di-
rection is identical for each field, equation

-eij' + _e‘].,I = (:) (3.3)

exists. In the points of curve y”, tangential stress resultant NS} is de-
signated briefly N#j, the sign of N being related to the position of vec-
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tor e”j. Accordingly, will be positive if the direction of the vector of
tangential stress resultant Eij’ = NIJ ei'j' complies with the direction of
vector e”..

Fig. 6. Multiply connected meridian section

Tangential stress resultant N~ is derived in the following way:

A constant u _1,2,...,n) is assigned to each field (cell) a®
(i =1,2,...,a). Using constants C., the value of tangential stress resul-
tant Eij is obtained on the basis of formula
0 - C,

N.i(P) = ——-~ P € (3.4

N Rj
while the value of tangential stress resultant N, can be calculated by
means of formula

A
10 pe 10 (3.5)
Rj2
Evidently, tangential stress resultants Ns§ = =<s defined on the

basis of formulas (3.4), (3.5) satisfy equation of equilibrium (2.12), pro-
vided G = 0.
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The tangential stress resultants defined on the basis of formulas
(3.4), (3.5) automatically satisfy also the conditions of equilibrium apply-
ing to the points of 'fit' of the different shells. (n the basis of analysis
of the moment equation written for axis z, expressing the equilibrium of the
shell section associated with 'node' P"24>it is possible to demonstrate
that the above statement is correct.

Part of 'shell elements’ Y42> Y14 interconnected in node
is shown in Fig. 7.

Ore of the necessary conditions for the equilibrium of configuration
N124 °trained by cutting shell elements H~, HA2, H4 is expressed by equa-
tion

nz =0 (3.6)
where m —moment of all the forces and force couples acting upon configu-

ration [2°24> calculated for axis z. Developed in detail, moment equation
(3.6) yields the following relationship:

PR N21 + SR N2 +OdR2 N14 =0 , (3.7)
that is

(C2- Cj) +(C4- @) + (Cj - C4) =0 . (3.8)

Actually, this latter equation exists in any case independently of
the value of constants
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Fig. 7. Schematic illustration to write the equilibrium equation

Let us define now resultant vector F of tangential stress resultants
associated with the section falling within an arbitrary meridian plane as
well as moment vector calculated for point 0.

£.I§JI<_|"J *:|:£|S R1 =

= £(4> X
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(3.9)

Equations (3.9), (3.10) suggest that statically, the tangential
stress resultants acting upon the central curve (meridian section of the
central surface) falling within any meridian section of the shell are equiv-
alent to a force the line of action of which being axis z. The relation be-
tween force F loading the meridian section and constants Qp eee> (M is
given by formula (3.11) from equation (3.9):
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(3.11)
Relationship (3.11) can also be written as
V2- r, dz-
ds (3.12)
=1 Yi"1
using identity
Zf LLI,-I 4=~ ds . (3.13)
F J. R ds
A i X
The value of constants @G (i =1,2,...,n) can be determined on con-

dition that displacement v_= v,(s) of the central surface of the shell be a
univalent function. Function v_=v(s) will be univalent if function \p="\(s)
defined by rule ¢(3) = v(s)/R(s) is univalent while function d=¢(3) will
be univalent if for any possible closed curve g

$ do

g ds ds =0 . (3.14)

This latter condition will be certainly fulfilled in the present
case if equation

® ddo _
v g hds=0 (3.15)

exists for all closed curves
It follows from shape

u=0, V=R(S) ¢ (s) , (3.16)
(3.17)
w =K< (k = constant) (3.18)

of the displacement field that

da k dz ~sft

ds ~ R2 ds + AR (3.19)

By combination of equations (3.4), (3.5), (3.15), (3.19), the lin-
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ear equation system serving to define constants . is obtained:

aio G +ail (Ci Cl>+ ai2 (Ci Q)

+a3 (Ct- @) + ... =«kf., (i=1,2......n).  (3.20)

In the above equation,

/ Gds , CiAj:i,j =0,1,2,...,n):(3.21)
« " Vij hTFTn
1 fi _
W 2 ds ds 2|4 i (3.22)
. 1
Yi o1 A
Let
=Gk D , (i=1,2,— ,n) . (3.23)

Changes [L introduced by formula (3.23) result in

n n dz

Y
F = 2kGX °i 5 = KGX Di $%a'3 - (3.24)

i=1 =1 I''l
The torsional rigidity, §, of the shell experiencing uniform twist
is defined by the following formula:

=k . (3.25)
A combination of formulas (3.24) and (3.25) yields
S=Gyy ;. (3.26)

Constants D/(i_=l,2,.. .n) are defined by the use of a system of equa-
tions (3.20). Onthe basis of equations (3.20) and (3.23), one can write
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It follows from formulas (3.4), (3.3) as well as from equation
(3.23) that

Nj =G5 7 * A (3.28)
i]

No = C% Y (3.29)
Ro

4. SOME INEQUALITIES CONCERNING TORSIONAL RIGIDITY

4.1 On the basis of equation system (3.27), it can be written that

flD + f2°2 + 308 + eee aloD +

+ an2(Dr —») + DN —0oO + ...

a20°2 + a23(l2  D3) +

+<3 0 (4.1)
It follows from this relationship that
S=Gja\gD" + ai2 Mi —"2™N + al3™ ~ "2) +
a0 + ... + anoDi] (4.2)

while from formula (4.2) one can read that S can never be negative. We have
used when writing relationship (4.1) that

aij =aij ’ (i*> i,J =12'"->n) o (4-3

4.2 Theorem:
Let
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bil+€e + ... - +2¢£8. (4.4)
There exists the following inequality relation:
2
.~ (blfl + b2f2+ --' +bnV
SSiG U(b1,b2, bn) (4.5)
where
. 2
U b2, o> ) = g B afat B ¢
2
+al3y - b3) + ... U bé + >>< anobn « (4.6)
Proof:
On the basis of the Schwarz inequality relation we can write that
b* yb gxyg >:(b*yD)2 4.7)
where
b* = [bp b2, ..., bj , (4.8)
S=pp 2 e [ (4.9)
all Foz3 -al3
~a2l ax _az
~a3l -a32 B¢
(4.10)
aii =20 7% & a2 + in (4.11)
(i=1,2,..., n .

"x" in formulas (4.8), (4.9) designates transposition.
Matrix U defined by (4.10) is a positive definite symmetric matrix,

its symmetry being obvious while its positive definite nature follows from
formula

b*Ub = U(b1,b2,..., bn) (4.12)
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applying to arbitrary vector
b* = (bp b2, ..., bn) .

On the basis of equations (3.26), (4.9), (4.10) it can be written
that
uo = f , (4.13)
where
f =(fp f2, ..., fn)* . (4.14)

By combination of inequality (4.7) and equation (4.13), we obtain
the formula resulting from formula (4.2):

S=@/Mp @ ..., ) =G YO, (4.15)

that is the inequality relation (4.5) to be proved.

4.3 Theorem:
Y0 Y120 0 Ant el 0 xen X3r X32 X30
34’ 3n’ 17 X12’ e X Satisfying condition

X0 + X12 + XI13— *~ 1

X1 + X0 +x3 o= T (4.16)
X3+ X32 + X30 =t
x12 +x1 = 0,
x13 + x31 = 0. (4.17)
x3 +x2 = 0

but otherwise arbitrary real numbers, inequality relation

SAG 10 12 13 In
igo9 312 3 3in
*20 xX23 2n (4.18)
a20 az3 azn no
will exist.
Proof: Considering real numbers Xjq, X12, Xp , ... satisfying (4.16),

(4.17), written in the following form:
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X12 - al2
X13 = al3
N2 ~ N2
X20 - a20
X23 ~ a3
%0 = %o

ECSEDI, 1.

(D1-- & + x12
(°1--°3) + x13

("2 DY + x2i

D2 . x20 -
A2 DY " x23

Bh * %o

it is easy to very that numbers

provided numbers

satisfy conditions

54

X10! X1z’
X21 » h20°

x13, ... ;

X23

(4.19)

w ill automatically satisfy conditions (4.16), (4.17),

x10! x12’
xX2rix2o>

10 + x12

x21+x20

X31 + x32

x23> eee

+x13 + ... + xIn
+Xx23 + ... + x2n
+ x30 + 3n
12 21 0,
x13 + X31 0,
X23 + x32 0,

(4.20)

(4.21)



THE TWIST PROBLEM OF SHELLS

After short calculation we obtain that

2 2 2 2 2
X XX
0 12+ 12+ .. 20 I %
al0 al2 al3 a20 az3
c 2 2 2 2 2 2
Six10 x12 ( XI3 "0 23 ~54
G+ al0 + al2 + al13 a20 a3 a3
* 20410 DL T x12/°l ~ °2° + XI3(DL_ +

x20 & + x23"& G + X24"&R AN + eee

1o Dn (4.22)

With the first equation of system of equations (4.20) multiplied
with Dp the second equation with D2, and the third equation with and

with the equations so obtained added, relationship (4.23) is obtained:

x10 °! + x12 DL + *13 D + eee +
%1 D *XB 03+ X3 0+

XL G +x32 G + "0 DB+ eee +

o D (4.23)

By combination of equations (4.21) and (4.23), it may be written
that

x10 DL + x12(D1  °2™ + x13 D1 DB + eee

+ X20 2 + x23(D2 - Dj) + ..

+ x30 8 + x34(D3 - °4} +

+ XI']O Dr,| =0

(4.24)
It follows from equations (4.22), (4.24) that
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6 1% % B %% B B B
al0 a4

\12 + al3 + al3 a20 ax3 a4
r2 2 2 2 2 2 2 2 2
-g+p X0 | x12 x13 28 _22 x24 x30 | x34  x35
,al0  al2 ai3 + o ax) a23 + a4 + " a’0 a3 a3xs
+ (4.25)
no/

It can be read in formula (4.25) that the theorem to be verified is
correct.

4.4 Solution Qto linear equation system

UD= f (4.26)

of matrix of coefficients ¥, symmetric and positive definite, is formed on
the basis of rule

n - a
A, 0/ - oA, /1 48 e
agy DQ/I+1/:a9}D{1+1/+a23D3 +f,2 ,
833 Bt/ = 8y By/it1/ + &g 82’”1/ .+ f (4.27)

when the Gauss-Seidel iteration process is used.

It has been proved /6/ that, in case of a positive definite, sym
metric matrix of coefficients, U, elements D " of sequence of iteration
(4.27) will converge to solution D* of system of equations (3.26) for arbi-
trary starting values D* Using this theorem, it can be seen that unknowns
Dp Dp ..., Dn of system of equations (3.27) are non-negative in any case,
that is

ksS=0, (k =1, 2, ..., n). (4.28)

The correctness of relationship (4.28) follows from the fact that
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the terms of sequences of iteration with starting value k*Q/=0(k=1,2,.. .n)
defined by (4.27) are non-negative, and because non-negative numbers have
been multiplied and added, non-negative numbers D”(k=l,2,... ,n) will ob-
viously be obtained necessarily also as lim it values. With equation (3.27)
and inequality (4.20) combined, it may be written that

OI > E”. (4.29)

I«

D<.it- (4.30)
1

0

(i=1,2,..., n)
Using the above inequalities, the following upper and lower bounds
can be derived for the numerical value of torsional rigidity S

n j2
s2c¢c | f (4.31)
i=l i
n
SiG fv — (4.32)
ivgl 10
4.5 Theorem:
Let
K:Grl_A . (4.33)

ei =f~ [al(Li- L1} +ai2(Li ~12> + + aioLi + eee
ain(Li - 472} (4.34)
b = min i > (i =1,2,..-, n , (4.35)
[
B=nmx B (i =1,2,..., n) . (4.36)
i
There exist the following inequality relationships:
bS <K , (4.37)
BS> K. (4.3B)
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Proof:

Essentially, the verification complies with the proof of J. Barta
/71 where an analogous result has been proved for the torsional rigidity of
thin-walled multi-field prismatic rod of straight centreline, definable on
the basis of the Saint-Venant theory. It follows from the symmetry of matrix
Ll that the following relationship is correct:

L*f =L*YQ=Q~UI =

LIfl + L2f2 + ese + Lnfn = DL E\)ou +al2(Ll  L2)

+ aln (LIl - Ln} + [IQ[‘aZi"Z _ Lp + a20L2 + a23<.2 ~ L3 + _]

D, |lanl(Ln- L) + an2(Ln - LO) + L, | = + B + ...
aﬁe_,.] L1 9193
' f.D (4.39)
On the basis of relationship (4.39), considering that quantities
are non-negative and the definition of b, B, it may be written that

G(flL1 + f2L2 + ... ... * fnL> <BS , (4.40)
(4.41)

G(flILI + f2L2 + eee * fnLn) abs -

It can be directly read from inequalities (4.40) and (4.41) that the
theorem to be verified is correct.

5. QOMVENTS AN INEQUALITY RELATIONS

5.1 A short discussion concerning inequality (4.5) is enough to
show that the sign of equality in the formula applies only in case

bi = XDi (5.1)
(i=1,2,..., n),
where X is arbitrary but non-zero real constant.
5.2 In the special case when there is (there are) a quantity (or

more quantities) of zero value among quantities a"Q (like in the case shown
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in Fig. 8), upper bound
S< ® (5.2)
of no interest results from relation (4.32).

a0 z

Fig. 8. A special case

5.3 It can be read from equations (4.18) and (4.25) that in relation
(4.18), the sign of equality will apply only if

X.. =a.(D., - D, .
i aij( .7 Py (5.3)
(itj; i,j =0,1,2,..., nDQ=0) .
5.4 A short discussion as a completion of the derivation of inequal-

ities (4.37) and (4.38) helps to show that in these formulas the sign of
equality will apply only if
b=B (5.4)
that is if
6, = €2 ... . en .

Considering the definition of quantities (L, the sequence of ine-
gualities given in (5.5) can be fulfilled only if

La = X Da , (5.6)
(i=1,2,..,n),

where A arbitrary but non-zero real constant.
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6. BEXAVALES

6.1 By selection of
bi=b2=... =bn =1 (6.1)
from inequality relation (4.5), lower bound

(6.2)
can be derived for the numerical value of torsional rigidity S.
6.2 Fom inequality relation (4.18), by substituting
X2 =)l X3 X3l XB  XR =0, (63
lower bound nj2
:5g)" — (6.4)
[4) a0
can be obtained for torsional rigidity S.
6.3 With
4 - L2 =13 = e =ln=1 (6.5)
in inequality relation (4.37) and (4.38),
(6.6)
(i =1,2,..., n)
Obviously
B=mx 8 =mxj= =A, (6.7)
i i 1
a,
b=min , _mnj= =a. (6.8)
i i 1

On the basis of relations (4.37), (4.38), it is possible to write
that
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Gl +f2+ e +fn) A AS, (6.9)
Gfl+f2+ i + fn) *"asS . (6.10)
In the special case when some a™Qis equal to zero, a =b =0, re-
suit
+ . f,>=0 (6.11)
follows from relation (6.10), which is of no interest in the present case.
6.4 Figure 9 illustrates the meridian section of the central sur-
face of a shell of circular arc centreline, the wall thickness of which is
constant, range A being set up of three elementary fields (cells).

In the present problem, definition of unknowns Dp Of, requires
that linear equation system

2:1(D. G  a20"2 a2372 G —"2° (6.12)

a3ldB ~ Dp + a327°3 " °2" + a30D8 = 3

be solved, where

(6.13)

(6.14)

(6.15)

(6.16)

(6.17)
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fa2* f3"cn2p (6.18)
R F3
Fig. 9. Example for calculation of torsional rigidity
Calculating with values
=4c, R = 3c, R3 = 2c (6.19)
we w ill obtain
pp = 0.970712 ch , (6.20)
op = 0.39763 ch , (6.21)
g = 0.39763 ch (6.22)
from linear equation system (6.5).
Using the values given in (6.19) in calculation result
S = 0.167328 & (6.23)

can be derived from formula (3.26) for the numerical value of torsional
rigidity.

6.5 Figure 10 shows the meridian section of the central surface of
a shell of circular arc centreline, set up of congruent quadratic cells,
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the wall thickness of the shell being constant.
Using the data of Fig. 9 in calculation, it may be written that

— 2 - R22 c c N~ 1

ai = a (624)
1 = %no V2 R2 R2 R3 R3/ h
1 2 - 2 1
a,n=ani =a0, =a. | e = Rlz sz 9 (6.25)
2 RZ RZ h
c c"
a20 = a3l , (6.26)
Vv o+ RN
R22
fl v f2 -dl2- 5 (6.27)
1 2
Of course
c=Rx- R . (6.28)

Fig. 10. Meridian section set up of quadratic cells

Let
RR=( A+1Ic , R = Ac. (6.29)
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(6.30)
Using inequality relations (6.9) and (6.10) in this example, the

following lower and upper bounds are obtained for the numerical value of
torsional rigidity S:

S>Ghnm( A) , (6.31)
S< GnM A) (6.32)
where
m( A) 1 1 1 1 (6.33)
A2 (A+1)2 ( X+D3
6.34
MA) . (634
(A +1)3 "3
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TORSION CF A THINWALLED, ANISOTROPIC, BENT RD (F

CIRCULAR-#ARC CENTRELINE

. Ecsedi*
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This work deals with the problem of uniform torsion of a
thin-wailed, anisotropic, linearly elastic, rod of circular-arc centreline
and homogeneous material, generalizing the relationships derived by
E. Reissner for an isotropic, linearly elastic rod of homogeneous mate-
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SYMBOLS

cylindrical co-ordinates
unit vectors
closed curve in plane rz

single-connected domain in plane rz confined
by curve g

closed curves in plane rz

double-connected domain in plane rz confined
by curves g* and g2

arc co-ordinate defined over curve g
equation of curve g

tangential unit vector of curve g
normal unit vector of curve g
vectorial product of two vectors
scalar product of two vectors

Hamiltonian differential operator

waH thickness

force

moment

specific elongation
specific angular changes

normal stresses

shearing stresses,
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8u,

* N,u,v,w

al2 = a2l
al3 = a3l
al5 = a5l
a22’ a23 ~ az2
a2s = ak2
a33’ a3 = a53
®44' ad6 = abd
ab6
o= P (r,2)
Pn =£
K
§
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elasticity constants of anisotropic material

auxiliary function
displace ments

relative rigid-body displacement in the direction
of the z-axis

torsional rigidity

Other quantities and variables are defined in the text accordingly.

tem of origin 0O:

. Figure 1 illustrates a closed curve g in plane rz. The z-axis is
not intersected by curve g. Equation of curve g in the rz co-ordinate sys-

P (s) =R(s) er + Z(s) £z . (8]

With distance h|2 measured in both directions along normal n in

point P of curve g we obtain points and P2 for curves g" and g2 running

parallel with curve g, respectively (Fig. 1).
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Fig. 1, Meridian section



TORSION OF A BENT ROD

Let the centre of gravity of annular domain T confined by closed
curves and ¢f falling within plane rz be denoted Q By displacing do-
main T angularly through angle a(0<a < 2it) around the z-axis we obtain
the thin-walled rod of circular-arc centreline. The centreline of the rod
is the arc of a circle of radius Rg,determined by central angle a (Fig. 2).

Fig. 2. Bent rod of circular-arc centreline
The wall thickness of the rod is essentially the width of domain T,
h=h(s), measurable in meridian plane rz. Acting upon marginal cross sec-

tions A and B of the thin-walled rod are forces

Ea =- Fez and B = Fez ,
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respectively, the line of action of forces Fg and F3 being the z-axis. The
stress acting upon any cross section of the rod is a force of magnitude F
falling within the cross sectional plane with the z-axis being its line of
action. In the literature, the problem outlined above is called the uniform
torsion of incomplete tores /2/, 13/, /4].

A solution to the problem of uniform torsion of thin-walled, iso-
tropic rods of closed cross section was given by E. Reissner /1/.

This work is designed to generalize the results of E. Reissner for
the case of an anisotropic rod.

2. In the case investigated, the anisotropy of a thin-walled, closed
cross section rod of circular-arc centreline in uniform torsion is described
in the T'th z co-ordinate system schematically illustrated in Fig.2 by Hook's
law /4/, /5/:

B " all °r+al2ad+ al3 az+al5Trz ’

r<f = al2 ar +a22adg+ a23 az+a25Trz '’

Ez = al3 °r+a23°t+ a33az +a35Trz '(2)
Yrz = al5 °r +a25°ch+ a35 az+ab5Trz '
Nzdf add Tzzp+ ad6 Tr<p '

Yr _ a4 Trb>+ abn Tre>

From the literature, it is well known that, independently of whether
the rod of circular-arc centreline is isotropic or anisotropic, the stressed
state pf the rod displays the following properties /6/:

a) The stressed state is independent of polar angle <>

b) In each point of the rod, normal stresses or,6§, o0z and
shearin%l stress Ty = tZr are zero i.e.

°r =6(r=°z2=Trz =0 . 3)
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Accordingly, it can be written that

T = Tz™»(t>xz)> Trg> = Trd (r'z)-

Assume that

F e & T OXA S @

For a thin-walled rod of closed cross section, assume that tangen-
tial stress X" is not changing along the cross sectional thickness of the
rod and that x” is parallel with tangential unit vector e of curve g that
is

1) =1 (s) = TSp(s) e . (5)

O the basis of a comparison of equations (1), (3), (4), it may be
written that

6) ()

since

e=Fe +ife (8)

By testing the mechanical equilibrium of rod section AA'BB'CC'DD',
we obtain on the basis of the equation of moment written for the z-axis
the following relationship:

X o Reh = ts® 0) Rz,(O) h(0) = C = constant . (9)

s®

Using this relationship, it may be written that

| =/x"dT =/17 . ehds =eyx f xs- hnds = e”x f~ 2 nds =

=~ X[/(?) WA= (@A~ z e (10)

In the derivation of relationship (10), also the integral theorem
of Gauss has been used. Using identity
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Fig. 3. Derivation of the equilibrium equation

formula (9) can be further transformed and written in the following shape:

(12)
H i
In the derivation of relationship (11).
_ _ R
n=ne +ne, =g +Fg
has been taken into consideration.
Formula (12) reads that
C= @ (13)

The noment of shearing stresses T =T e acting upon a cross-
section in any arbitrary meridian plane 0~ S a can be determined for

starting point 0, the origin of the coordinate system on the basis of for-
mula

*\ | Ts~hPndy L (14)
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Fig. 4. Calculation of the moment of shearing stresses

where
Pn=£ « U . (15)
Considering that
M= Me (16)
and
P, ds—Cf % LVdA =0 , (17)
5 3
since
X er + Z£z (18)
and
: * =0
(*)-5=3; 47 azvrs ™Y (19)

Relationships (9) (12), (17) read that shearing stresses
determined on the basis of formula

1
Reh

(20)

/ §ds
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distributed in the plane of the cross-section, are equivalent to a force of
magnitude F, the line of action of which being the z-axis.

2- Acombination of equations (2), (3), (5), (6) permits writing

Y
er = =e; rz =0, (21)
Yz$(r'z) '’ (22)
‘P Ar<j,(rsz) o (23)

It has been proved in /3/, /7/ that a displacement field of a geo-

metry
u=0, (24)
v=ro (r,z) , (25)
w=K< (k = constant) (26)

is associated with the above deformation (specific elongations and angular
distortions) in the r d&> z cylindrical co-ordinate system.

Kinematically, the implication of quantity k in formula (26) is
guite obvious: k is the displacement of two cross sections falling within
the meridian plane, including unit angle, as compared with each other in
the direction of the z-axis.

Using the geometric equations, we obtain on the bais of equations
(24), (25), (26) the following formulae:

3P 27)

(28)
Yzt 3z r
Specific angular change ys( in the points of curve g can be de-
termined on the basis of formula

L d

v v Fos Ril R RO®AZ Kk dZ _
adh AN Yz dr ds gz ds + Rds
K dZ
+ Rds ' (29)

A combination of formulae (1), (5), (6) yields
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zty ~ad6 Trd |

Formulae (32), (33) can be derived by the use of formulae (29),
(30), (31):

Considering that the displacement field is unique, there exists re-
lationship

ds 34
-y (34)

as a result of equation

rl=+ _
3 aSds—o. (35)

g
In writing the above relationship, also equation (8) has been used.

4. The torsional rigidity of a thin-walled rod of circular-arc
centreline and of closed cross section in uniform torsion is defined by
formula

S=- (36)
11l 141, I71. k
Using formula (13), (34), /36), we obtain relationship

S = (37)
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for the numerical value of torsional rigidity S. Relationship (37) can be
transformed by means of formula (10) to obtain formula

9

The formula derived by E. Reissner /1/ for the torsional rigidity of
an isotropic rod follows directly from formula (37) with the following sub-
stitutions:

46 = 4 =0 44 = B = UG

_5 Finally, the displacement of curve g, the mid curve of the merid-
ian plane, at right angles to the meridian plane is determined. The vector
coordinate of the displacement in question in direction e, i.e. function
v = v(s), is obtained on the basis of a relationship written as a combina-

tion of formulae (36), (37):
1H,

R ds

v(0)

v(s) RTIT R(s)

" dR dz /dZ\ ds 7 Fl dR\ 2
20846 o g5 ' a4l (e h 36 Ky

R@Z _ dZ\2 (39)

2 ad6 Ts id'S + ad4 (‘ds'

Constant v(0) in formula (39) is a quantity in relation with the
rigid body displacement around the z-axis.
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The change in the state of highways is affected by several para-
meters. Owing to recent restrictions in the finances, the conservation
of the current state of roads above an acceptable standard has become
a task which can be fulfilled only with difficulty and only to the
detriment of the earlier larger-scale evolution. Knowing the current
state of highways in Hungary, the author makes a suggestion concerning
the selection of the most convenient intervention types available for
maintenance. The basic principles are outlined together with the first
steps of a comprehensive work the main objective of which is to devel-
op an economical system for the conservation of the state of the road.
The sequence of future interventions is given, which might be applied
considering their practicability as well as a system of index numbers
to characterize the state of pavements and a method for the technico-
economic comparison of the different road maintenance techniques.

1. INTRODUCTION

In satisfying the ever increasing demand of the country's economy on
transport —a tendency manifesting itse If throughout the world —road trans-
port takes an increasing share, wherefore, as a matter of course undisturbed
road traffic has a great significance from the point of view of the economy.
However, for an undistrubed road traffic, a pavement of appropriate quality
is needed. The significant reduction of the financial means available for
road engineering which has taken place lately, makes it particularly timely
to find an economical way of the conservation of the road network having a
value of several thousand million forints, a considerable sum in Hungarian
economy. In the following, some research activities undertaken in Hungary in
this field will be reported.

2. GANCE IN THE STATE GF THE HGWAY NEWORK

Let us briefly survey the process in the course of which the condition
of a road undergoes changes.

After having completed a new road construction or immediately after
the completion of the pavement structure, both the pavement and the drainage*

*Dr. L. Gaspar, H-1158 Budapest, Doktor S. u. 2, Hungary
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system are in a very good condition. This "initial condition" is primarily
influenced by the level of design for the contract, the properties of the
building material used and by the standard of the construction work /1/.

The quality estimation of the completed project is part of the proce-
dure of acceptance. (In general, quality estimation is aided by quality con-
trol during construction.) The quality grading, in the acceptance record has
also to establish the degree of the approximation of the high quality speci-
fied in advance. Although this classification follows universal rules based
on professional knowledge, because certain parameters can be estimated only
by inspection, also the subjectivity of the persons carrying out the classi-
fication may affect the value of the estimation.

Consequently, the decision on the quality grade might be considered
as a joint result of —for the most part objective measurements and to a les-
ser part subjective factors. However, it seems necessary to emphasize that
the terms "objective" and "subjective" are by no means equivalent with values
of judgement or with the terms "reliable" and "unreliable". Namely, the keen
observation of specifications, engineering directives, standards, etc., might
be considered objective activities, while the decisions nmede by the represen-
tatives of the investor on the basis of the consideration of other field cir-
cumstances of their expert's knowledge and experiences can be considered sub-
jective ones.

In the course of the engineering acceptance examinations, the guaran-
tee period, which at present is a minimum of one year, nmey be extended. This
might occur in the following cases: (a) severe damage can develop after a
few years initiated by minor defects of the pavement; (b) hidden damages may
arise on the surface (or may be activated within a short time; (c) in cases
when one of the quality parameters approaches the acceptance limit, the con-
tractor agrees to a guarantee period of 2 or 3, incidentally 5 years in hope
of an advantageous evaluation during the acceptance procedure. The extension
of the guarantee period can have the following advantageous economic effects:

—the damages occurring within this period will be repaired at a pro-
fessional level and without legal dispute;

—the contractor is motivated to do a good job;

—voluntary acceptance of a lengthened guarantee period can serve, in
the ever increasing market competition, as a means to justify its reliabili-

ty.
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Although roads are meant for life, so to say to be everlasting, the
state of the pavement, deteriorates mainly under traffic and atmospheric in-
fluences. This process can be slowed down significantly by appropriate main-
tenance, while incidental non-proper use can cause rapid deterioration. The
deterioration process can produce several types of defect, in some instances
a series of defects, of which the most significant ones are as follows:

—Ilinear cracks,

—hair cracks, mosaic cracking, pavement disintegration,

—ravelling, peeling, potholing,

—rutting,

—bleeding, development of a slippery surface,

—wear of chipping grains, development of slippery surface,

—Ilongitudinal waves.

Sone of these defects deteriorate approximately linearly with time,
others have a progressive or degressive character. It may also occur that a
defect, e.g. rutting, due to the causes responsible for the damages may de-
velop in several different ways depending on the predominant accelerating or
decelerating factor (deformation and wear or postcompaction, respectively).

The state of the road showing gradual deterioration is subjected to
systematic investigation. The expert staff responsible for the maintenance
and operation obtain visual information during the periodic highway state
surveys. (In their activities the persons responsible are aided by a list of
defects with photo illustrations.) /2/ In addition, countries with a higher
standard of highway management, mainly on highways with heavy traffic also
carry out state surveys using different measuring instruments of high per-
formance and rapid operation. (The parameters measured most frequently are:
load bearing capacity, riding comfort, friction coefficient, rut depth, sur-
face soundness.) The time for performing measurements is of great signifi-
cance in the case of parameters the actual value of which is significantly
affected by the season or weather. The time series obtained from the data on
the state of the road sections give information about the process of deteri-
oration. From the regularities of deterioration characteristic of the given
type of road (performance models) and from the extrapolation of condition
data the residual service life can be predicted. However, generally this
activity is of limited exactness due to the facts listed below:

—the performance models taken as a basis can only be approximate
and generalized,
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—the deterioration process can be changed by unexpected conditions
(e.g. extreme weather),

—the extrapolation can be carried out only based on a single state
parameter, but the value of this may be strongly influenced by other para-
meters owing to their mutual interaction,

—the future traffic volume can only be estimated with a rather un-
certain approximation.

If one of the state parameters, namely the critical one, deteriorates
to an extent approaching the threshold value, intervention is needed in
order to carry out repair work. (This activity otherwise exerts a more or
less strong influence on parameters which have not yet reached the critical
level.)

The optimal moment of an intervention of higher significance (e.g.
strengthening the pavement structure) is not always determined by the change
of a single parameter to the threshold value but also by the comparatively
low value of several condition parameters. It often occurs that due to some
constraints (lack of financial means, mechanical equipment, or manpower,
etc.) repair works cannot be carried out at the optimal time. This-unfavour-
able circumstance usually causes significant losses.

It is to be noted that the establishment of the threshold values
calling for intervention is a complex technico-economic task. Obviously in
case of very limited financial resources even the standard of state s till
tolerable will be further reduced. It sometimes occurs that warning limits
are given which notify in advance of the approach of the term of interven-
tion, i.e. the need for planning condition improving activities.

It may occur that the different parameters (load capacity, surface
soundness, need of maintenance work, etc.) on a road section are not in
agreement with one another. In such cases before a decision is made on the
intervention each value has to be revised and, if it is found that the first
data have been correct, and the "contradiction" s till exists, different
compromise-based solutions can be applied.

3. THE CONDITION CF THE PAVEVENT AND THE TYPE CF INTERVENTION NEEDED

The suitability survey carried out in 1979 practically extended to
the entire road network of the country furnished reliable information on the
actual state of the roads /3/. The continuous updating of the information
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mentioned above as well as the repetition in 1984 of the comprehensive sur-
vey already permitted the determination of several time series. On the other
hand, a comparatively large number of condition improving (maintenance)
techniques are available several of which might be considered energy saving
and environment protecting.

The compilation of a design guideline became necessary containing in-
formation for the selection of the most appropriate intervention technique
for a given pavement condition. Namely, it is evident, that anong several
variations there is to be found one which, if applied at the appropriate
time, can be considered more effective than the others. This guideline has
been published on behalf of the Road Transport Department of the Ministry of
Transport by the Institute for Transport Sciences at the beginning of the
year 1985 /4/.

The purpose of this publication can be summarized as follows. It con-
tains information on the types and number of interventions to be carried out
on the pavement based on the rating notes connected directly or indirectly
with the condition of the pavement and obtained mainly from the suitability
survey. The suitability surveys performed on the highway network are based
as it is known, on the separate evaluation of several parameters. However,
the actual values of these parameters together determine a single "road con-
dition" and, correspondingly, a single most suitable method of intervention.
The design guideline worked out illustrates this kind of interrelation.

The design guideline is intended mainly to assist the experts of the
highway directorates. It helps to determine the extent of the improvement
interventions to be performed on a network in a given condition based on the
consideration of the technical and economic information available. The
choice of the work to be carried out is helped by the simultaneous consider-
ation of the techniques described in the design guideline and the road
traffic volume. However, the road engineers, in possession of local know-
ledge and practical experience, take other factors into account (e.g. hyd-
rologic or soil conditions, the different maintenance principles, financial
possibilities) and came to the final decision relating the condition im-
proving intervention and to the kind of the work to be carried out on a
"subjective basis". Prior to the actual measure economic calculations should
be made.

It is worth while to note that the design guideline can be effective-
ly utilized, in addition to the purposes mentioned above, also to work out
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nation-wide examination programs (e.g. to support the ratios and quantities
of the interventions, to help the distribution of the financial means,
etc.).

The publication of the design guideline might be considered the first
step towards the complex state evaluation and towards an economical highway
management.

When compiling the design guideline parameters have been considered
which are associated with the actual or future condition of the pavement.
On the basis of the above considerations the following parameters have been
selected for use:

(a) load bearing capacity of the pavement (measured by the Lacroix
deflectograph or the Benkelman beam),

(b) soundness of the pavement surface (by unified visual state clas-
sification or with the aid of the state surveying guide-book),

(c) drainage of the pavement (by unified visual state classifica-
tion, with the aid of the state surveying guide-book),

(d) unevenness of the pavement (measured with the Bunp Integrator or,
where such measurement results are not available, by visual estimation).

To meke the manual work easier, the number of the (mathematically
possible) variations have been strongly reduced to

— 3 groups of load bearing capacity

— 3 groups of surface soundness, and to

—2 groups of surface unevenness; but there are no special groups
for drainage. The measures to be undertaken in case of inadequate drainage
should only be mentioned on the different unit sheets (it should be noted
that for the evaluation of the load bearing capacity, the soundness and
evenness of the surface 5 scores for each and 3 scores for the drainage are
available, but on grounds of experience the reduction carried out seems to
be justified);

—the number of variations could be decreased by the "condition var-
iations" which require no intervention within 5 years;

—in the selection of definite validity, the state variants to be
assigned as individual alternatives, also the actual occurrence frequency
observed in the course of the latest country-wide survey, i.e. the total of
the km-lengths have been taken into account and the variants of less fre-
quent occurrence which did not reach the length of 50 to 100 km, have been
omitted,;
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—the asphalt concrete and macadam-type pavements (of void content
decreasing under effect of the traffic load) ought to be classified (due to
the fact that the type of the wearing course affects the type of the inter-
vention techniques to be applied) into a special group, but the techniques
to be used have not been separated according to the load applied on the road
and to the category of the road with the implicit assumption that the asphalt
concrete pavement has been constructed on main roads or on secondary roads
with dense traffic while the macadam-like pavement has been applied on sec-
ondary roads with light traffic. The unit sheets should be used in cases
differing from those assumed.

The design guideline does not apply to repairs of defects due to
thawing damages.

Drafting of the design guideline consisting of 22 sheets, is demon-
strated in Fig. 1. The technological variants suggested by this paper take
into account to a certain extent also the combined effects of the different
defects. Under the title "Realization" the most significant rules of the
planning, the implementation and the quality control of condition improving
interventions are given, for brevity's sake, only in the form of referations.
The design guideline calls attention to the possibility of the application
of hydraulic binders if this can come into question at all.

For sections of asphalt concrete pavement only asphalt concrete
layers, in extreme cases partly with hydraulically bound ones, while for
sections with macadam-like pavements either macadam-like layers or those of
asphalt concrete character are suggested for strengthening. (This latter
solution comes only into the foreground in case of heavy traffic.)

As to the case of intervention urgency, three grades are suggested
depending on the condition improvement needed within one, three or five
years. In some instances prior to the final decision control measurements
are suggested to permit the consideration or the elimination of eventual
changes in the meantime.

Later when sufficient empirical knowledge will be available, the
design guideline can be further developed and in the distant future, its
validity can be extended to the road network managed by local authorities.

In Table 1 the types of intervention intended for certain combina-
tions having sufficiency notes or of state images as well as the urgency of
the implementation are indicated. The symbols in Table 1 denote the condi-
tion parameters as follows: T = load bearing capacity, F = soundness of sur-

face, E = surface evenness.
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VARIANT CF CONDITION IMPROVING TECHNQLE No. 14.
FNDAVENTALS  ROAO SECTION STATE NOTES CF SUITABILITY SUREY
type,traffic wearing load surface  drain-  surface
course capacity soundness age  unevenness
mecadam T 1-3 F 4-5 V 1-3 E 1-3
type
pavement

TYPE

PRIMARY
OBOECTIVE(S)

NEED CF
URCENCY

REALIZATION

84

CHARACTERISTIC FEATURES

Surface dressing

Repair of surface soundness

Within one year

It is recommended to repair within one year the impermeability
and skid resistance of the hard cover surface by application
of bitumen emulsion surface dressing. To determine the quality
and quantity of the material to be used to this end, the engi-
neering recommendations No. MI-07 3403/5-85 are decisive. The
incidental pothole elimination should be realized two months
prior to the surface dressing. After finishing the seal coat
traffic is not permissible to use for three hours. On macadam-
like asphalt pavements the surface of which is rich in binder,
the cutback surface dressing is to be preferred (according to
the recommendations No. MI-07 3403/5-85). O a strongly
cracked pavement surface dressing must not be applied. In case
where this condition is not fulfilled, within one year a lev-
elling course is to be constructed. In this case penetration
macadam levelling course can be applied (technical recommenda-
tions No. MI-07 3403/5-85). For such a purpose also asphalt
emulsion can be used if the necessary materials and machinery
are available (technical recommendations MI-07 3215/2 J).
Within one year shoulder and drainage ditch repairs have to be
carried out in case where the suitability note is V2-3.

The selection of the binder of the surface dressing is also

influenced by the longitudinal and cross fall of the highway
section.

Fig. 1 Example to the Technique Unit Sheet



Table 1. Types of interventions to be applied in case of different "condition patterns

No. Suitability notes

Pavement of asphalt
concrete types

1.T3
2.T1-3
3.T1-3
4.T1-3
5T4
6.T4
7.T4
8.T4
9.T4
10. T4
11.15
12.15

CcD
Vil

Fl-2
=}

F4-5
F4-3
Fl-2
FI-3
=}

=}

F4-3
F4-5
Fl-2
F3-5

E4-5
E4-5
EI-3
E4-5
EI-3
E4-5
EI-3
E4-5
EI-3
E4-5
El-5
El-5

Strengthening over
10 equivalent an

Asphalt

Hydr.bound

concrete with thin

(AC)

14’1

AC

14’1

Strengthening under
10 equivalent an

Asphalt
concrete

14

Intervention types

Surface interventions

Penetration Levelling Surface
mecadam or course dressing
emulsion
asphalt
Il
[11
I5

Drainage

ARy
ARy
v
v
v
v
v
v
v
v
v
v

3
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Table 1. Types of interventions to be applied in case of different "condition patterns"(cont.)

Intervention types

Syenatenng over Sengtenno VXU Surtace interventions .
No. Suitability notes Drainage

Asphalt  Hydr.bound ‘'Asphalt Penetration Levelling Surface

concrete with thin concrete rracaldam or course dressing

w oo

Macadam-type pavements
13. TI-3 F3 E4-5 1 111
14. TI-3 F4-5 EI-3 15 v
15. TI-3 F45 E45 I 111
6. 4 FI-2 E45 v Il 11
17. T4 F3 E4-5 \% 1 11/
18. T4 F3 EI-5 1 ARV
19. T4 F4-5 EI-5 V2 2 111
g° T5 Fl-2 El-5 112 12 JARRY)
21. 15 F3-5 EI-3 141 141 12 12 111
Legends: | =to be carried out within one year; Ll =to be carried out within three years; V =to be carried out within

five years; 1 =in case of a strengthening need over 30 equivalent cm the construction of a hydraulically bound
(conveniently fly-ash concrete) pavement with a thin AC wearing course should be investigated; 2 = over the
value of Fjgg =500 000 an asphalt concrete type pavement should be constructed; 3 = the values between paran-

theses are valid only in case where the suitability note of the drainage is V3 or V2 and it occurs together with
T4-5 and/or with F4-5; 4 = the fact whether a thin or a thick strengthening is to be applied, depends on the
extent in lack of bearing capacity (see also note 1.); 5 = surface dressing can be applied in case where the
pavement surface is not strongly cracked or deformed
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4. ECONOMC CONSERVATION CF HGHAAYS

Demands on road traffic are growing but, at the sane time, the finan-
cial means available for road construction and for their state conservation
are decreasing. The ever increasing gap between demands and financial possi-
bilities imperatively requires the endeavour to greatly increase the economy
of the condition conservation activities. In the following, a method for try-
ing to realize the above objective will be summarized.

In optimizing the activities for conservation of the road network, in
connection with the interventions to be realized on certain road sections, in
the first line the questions "where", "when" and "what" should be answered.
The strategy of road maintenance can be based on several kinds of principles;
the possibility of the grouping of these principles is furnished by the ex-
tent of their theoretical or empirical character. The method of approach de-
scribed in the following, uses empirical data almost exclusively. A method
has been worked out for collecting and processing accessible data concerning
actual condition improving interventions carried out on the domestic network
and has led to conclusions and plotting graphs which could serve as a basis
for the actual planning of conservation activities. The main parts of the
system under development are as follows: data collection, planning the ser-
vice life of the condition improving interventions, comparison of alternative
interventions, determination of the scale of intervention which may come in-
to question as could be applicable.

4.1 Data collection

Considering that the procedure is based on the actual domestic situa-
tion, a preliminary, detailed and largely extended data collection has a de-
cisive significance. This is an essential condition because, in general, at
present no data base is available for co-ordinated nation-wide information.

From among the activities related to this subject, the following
groups of information might be utilized:

—a study made by the Hungarian Institute for Transport Sciences
(KTI) in connection with the data relating to the quality of pavement struc-
ture strengthenings carried out on the Hungarian road network from 1976 to
1983;
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—a KTl study co-ordinated by the so-called "Service-life Commission"
on roads concerning their service life, commenced in country Fejér, and ex-
tended thereafter to the whole country;

—data collection in the UIORG related to the condition of the road
network of the country, with the results of the suitability surveys, and the
processing of these data;

—the design guideline worked out by KTI, dealing with the condition
improving interventions which can conveniently be utilized in case of dif-
ferent combinations of the state notes established by the suitability survey
of national highway network;

—the theoretical and practical results obtained so far in connection
with the suitability survey of national and local road networks;

—the results, i.e. evaluations contained by the KTI study obtained
in the course of following the deterioration process of 30 road sections se-
lected for this purpose between 1973 and 1979;

— publications of KTI (i.e. of its legal predecessor, Road Research
Institute) containing the data of the condition improving interventions car-
ried out in the past on the road network;

—the results obtained by the "rapid" condition evaluation procedure
worked out by KTl in 1975;

— experiences obtained by the application of the Dimensioning Code
for Flexible Road Pavement Structures (HUMU) published in 1971 and prelimi-
nary examinations for its revision;

—results of recent traffic counts on the road networks;

— country-wide or county soil conditions and other information in
connection with the soil of earthworks and the hydrologic conditions;

—different regulations for the acceptance of highway construction
type projects (EKSZ-70 Vol. VI, Ministry of Transport and Communication: Ten-
tative Technical Directives 63/75, M.T.C. (K.P.M.) Tentative Technical Direc-
tives 63/77, MSZ07 3210/83. Sectoral Standard);

— publications of the Central Statistical Office in connection with
prices, changes of prices and price indices;

— development of the main characteristics of highway accidents.

For the elaboration of the engineering directives there should be
available, in addition to the information sources mentioned above, data as-
sociated with the interventions and their specific costs to be found at the
District Highway Directorates. This activity may run into difficulties due

88



STATE CONSERVATION OF HIGHWAYS

to several reasons:

(a) Registrations of data of the different District Directorates dif-
fer from each other to a certain extent.

(b) Sore of the information sources originating from earlier periods
have got lost due to reorganizations carried out in the meantime or in con-
sequence of staff changes.

(c) The changes in numbering and in kilometric marking of roads re-
duce the reliability of old data;

(d) In some instances the lack of a uniform nomenclature (technical
terms) causes difficulties, mainly in cases where interventions carried out
earlier are to be evaluated.

Due to these disadvantageous circumstances only part of the engineer-
ing and financial data needed are available. There are sections on which ab-
solutely no information is to be found. Accurate information is available
only on roads built comparatively recently or in connection with roads which
had been handled earlier as high priority roads, mostly main highways desig-
nated with a single figure.

Besides, if the data collection is extended to data on traffic, re-
sults are obtained at provisional or stationary traffic survey stations. For
our examinations the values of the average daily traffic, taking all vehicle
types into account, expressed in the measurement unit of unit-vehicle per
day are of interest, but the value F™ related only to the heavy vehicles
and expressed conveniently in a daily average number of converted 100 kN axle
load is of greater significance.

Informative data should also be collected on the characteristics of
the earthworks of the road sections in question. To achieve this goal beside
the soil mechanical and hydrologic maps accessible, soil mechanical expert
opinions (if they can be found) as well as further data related to the sub-
ject in question to be found in the possession of the Highway Directorates
(e.g. individual sampling, data collection initiated by them) might be used.
Information is further needed on the quality of the project (new construc-
tion or strengthening of the pavement). Beside establishing the quality
grade, full information is needed on whether during the acceptance procedure
all of the determined quality parameters'data had been obtained. For in-
stance, it is not indifferent whether the quality grad Il established had
based on the unsuitability of density or of the pavement profile.

All in all, at each road section the main objective is to collect a
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Table 2 Data collected about a highway section

Location of highway section

Approach road to Kismarot

0+ 000- 5+ 700

1st intervention

Width of

fiime :pre pavement

6 ua'rit)é :Flme :pre

1968 20 aon 45 m 1st ¢l 1975 5 an

cem.
4 am
AB 10

AB-20

Type of solil Hydrologic condition Traffic data

silt No danger of humidification 1970 522/day ; 18 heavy axle/day
1975 1217/day; 39 heavy axle/day
1980 1501/day; 74 heavy axle/day

2nd intervention 3rd intervention 4th intervention

Width of . T. T  Width of n x. T Width of .
pavement Quality  gjme Type pavement Quallty Time Type pavement Quality

6.0 m 2nd cl 1980 single 6.0 m 1984 single 6.0 m 1st cl
(thick- emulsion emulsion
ness) surface surface

dressing dressing
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series of data as indicated in Table 2.

4.2 Planning of the service life of condition improving interven-
tions

The term service life of a road means the period during which its be-
haviour satisfies the demands. It is a difficult task to predict after fin-
ishing some construction or maintenance work on it. The service life of a
road is predicted. Wanting to approach the problem in a theoretical way, even
in the most advantageous case only a few of the actual influential factors
can be taken into account, not to mention that in most cases their future de-
velopment is known only to a limited extent, or is absolutely unknown. An-
other choice (of practical background) might be to approach the problem on
the basis of collecting and evaluating earlier experiences. Although, in the
latter case, no doubt, all factors are taken into consideration, however, a
number of difficulties are to be reckoned with; e.g. a collection of a great
many data extending to vast areas and long periods must be carried out and,
it is always hazardous to draw conclusions as to future development from past
experiences. Further, the designation of classes considered as being homo-
geneous is a rather difficult problem.

The procedure mentioned in the second place is selected to be dealt
with, with the objective of trying to reduce the difficulties involved. The
objective assumed could briefly be summarized as follows: by generalizing
the actual practices followed in Hungary in the past, a design guideline will
be drafted relating to the service life expectancy of the condition improv-
ing interventions by selecting variables like the whole pavement structure,
the traffic predictable, the probability of the earthwork getting humid, the
width of the pavement, and the quality of each of the interventions.

A fundamental requirement is that the design aid should be easily
treated and clearly surveyed. This objective can be attained obviously by
graphic representation or by the application of graphs. In this case, anyhow,
it is considered necessary, with the view of assuring the possibility of two-
dimensional drawings and an acceptable number of diagrams, to strongly re-
strict the number of the variables actually exhibited (entering on one of the
axles of the diagram or as a parameter) and the steps of the variables are to
be selected with great care.

As parameters to be depicted, on the basis of the foregoing the fol-
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lowing had been selected:

— pavement structure,

— modified traffic volume (modified by the number of all vehicles,
by the width of the pavement and by the quality grade of the work carried
out),

—expected service life of the intervention.

a) To characterize the pavement structure the expression in terms of
equivalent thickness seems to be the most advantageous. However, this simple
and widely used method has not been selected for the above-mentioned purpose
after all, due to the following reasons:

—in case of a pavement of a given type the assumption of a constant
coefficient of equivalence is but a rough approximation (in given instances
it depends on the depth of the layer in question, on its age, on the quality
of the construction, on the strength conditions of the support layer and
weather conditions);

—s till greater is the uncertainty of the above coefficients in the
case if the pavement has deteriorated to a certain extent and in the over-
whelming majority of cases this is the case;

—during the service life of the majority of road sections the pave-
ment has been widened at least once, wherefore the cross section of the
pavement structure is, in general, not uniform, not even concerning the e-
quivalent thickness.

The development of the so-called typical pavement has been estimated
more advantageous where from the extraordinarily rich varieties of "sand-
wich" structures of the present highway network the characteristic groupings
are selected, and their behaviour is considered taking into account the av-
erage domestic construction technique, the interaction of the layers and the
changes taking place during the use of several years. After the evaluation
of a great number of samples a comparatively realistic picture might be
obtained in this way.

The determination of a series of typical pavement structures will
take place after completion of the data collection currently going on, how-
ever, some preliminary fundamental principles have already been elaborated.
These are as follows:

—the number of types should be 10 to 15;

—in case of layers without any binder (unbound) and with hydraulic
binders differences in thickness of 5to 7 an (e.g. limits of 15 to 20 cm)
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might be possible;

—in case of asphalt layers (excluding layers of asphalt-concrete
character) 2 to 3 an differences in thickness (e.g. limits of 8 to 11 cm)
might occur;

—the different unbound base courses may be considered as other types
only on the basis of their thickness;

—if the pavement has been widened, the part of the structure with
the shortest life-time expectancy is to be considered critical;

—some special and, therefore, particularly infrequent variants of
pavement structure should not be grouped to either types, they have to be e-
valuated separately.

b) Taking the traffic into account is perhaps the most intricate
problem partly because the traffic load is also to be predicted (other fac-
tors, like pavement, soil and the probability of humidification are at the
time of the examination known or can at least, be reconstructed), partly be-
cause the damaging effects of the different vehicle types are basically dif-
ferent.

The first problem can be solved with the aid of the ratios of the
nation-wide traffic-development the exactitude of which meets the require-
ments of the examination in most cases.

However, the diverse effects exerted on the pavement structure by
the different types of vehicles are a far more difficult problem. Namely,
the load capacity is not the only condition evaluation parameter considered
in this study. As a matter of course, if only the loss in load bearing capac-
ity of the hard cover were considered as a motive for upgrading it, as was
prescribed by the Code for Dimensioning Flexible Road-Pavement Structures
/3] published in 1971, the influence exerted by the different types of vehi-
cles on this type of defect could be comparatively easily determined with
the aid of the commonly known relationship obtained in the American AASHO
Road Test /6/. However, an intervention may become necessary not only as a
consequence of the deficiency of the load bearing capacity, but also due to
the deformation of the pavement or because the surface has become slippery.
In these two latter cases the role of limousines with low axle load in the
development of the deficiency cannot be neglected. Consequently, all vehi-
cles passing through the road section in question should be taken into ac-
count. The width of the pavement surface, used by the vehicles passing the
road examined should also be known, overtakings excluded. This width depends
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—beside the different wheel gauges of the vehicles and the slight differ-
ences in driving style —essentially on the width of the pavement. There-
fore, it is obvious that the load (specific pressure) on the pavement con-
nected with its width should be known because assuming a transversally homo-
geneous load capacity, the first damages are to be expected here and the
state repairing techniques adopted in Hungary, even in case of the deteriora-
tion of this comparatively narrow strip, involve the condition improvement of
the whole width of the pavement. (The only exceptions are the pavement
repairs on a small surface (e.g. patching) which, however, should be applied
but only to alimited extent.)

In any form of destruction the traffic volume has a decisive role.
But it is absolutely not indifferent in what quality the different pavement
layers had been produced, and this fact influences their damege resistance
considerably. In predicting the duration expectation, therefore, also the
guality parameter is to be calculated with. As a first approximation, the
guality classification given during the acceptance procedure seems to be the
most convenient. In applying this the following problems arise.

—In the reference period of the data collection several qualifica-
tion systems were in force with the aid of which the quality class of the
project (or its different layers) had been established,;

—the different quality parameters (e.g. bitumen content of the wear-
ing course, layer thickness, cross fall) have different roles in affecting
the deterioration process;

—establishment of the quality class had in certain cases been in-
fluenced, beside the actual values of the quality parameters, also by other
factors.

On the basis of what has been mentioned above, it seens to be con-
venient to take into account for the service life prediction the level of
priority of certain parameters with a disadvantageous effect on the deterio-
ration process. Although the selection of such parameters needs further in-
vestigations, preliminarily the following should be considered: composition
of the material of the wearing course (in the first line its binder content),
the density of the surface course, and layer thickness.

In order to reduce the number of the parameters in the diagrams, the
heavy traffic load of the road section (the daily average number of the unit
axles of 100 kN passing through) is modified in such a way that the number
of vehicles circulating on the road section in question, the width of the
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pavement, and the quality grade of the last intervention are also involved.
The modified traffic volume may be established accordingly with the
aid of the relationship as follows:

FIlOO = mJ ) mSZ ) mm F%ra\(lunlt axle/da;)

wherein

rFlloo _ modified heavy traffic per day,
modifying factor related to the number of all vehicles pas-
sing through,
modifying factor related to pavement width,
factor related to quality of lastlstate improvement inter-
vention,

F100 heavy traffic volume per day (expressed in number of axles
of 100 KkN).

Establishment of the series of the modifying factors can take place subse-
guently, to the evaluating process carried out after ending the data collec-
tion in the near future.

c) The kind of soil and its actual water content strongly affects
the load capacity of the pavement structure and consequently the loss of
load capacity. For this purpose the utilization of the CBR-value is adopted
all over the world. However, for the examination dealt with in this study we
do not follow this practice for the following reasons:

—determination of the CBR-value in laboratory and mainly in the
field often runs into difficulties;

—the CBR-value in case of a given soil varies between rather wide
limits in a year; taking into account a single value considered critical
theoretically, one cannot rely upon it, and its determination in practice
also raises difficult problems;

—in the planning phase the efficiency of drainage is not yet known
and is in close connection with the variation cf the CBR-value.

Therefore, another solution has been selected according to which the
main kinds of soils have been considered in a special group but, for cases
where the load bearing capacity of the soil strongly depends on its humidity,
two groups have been established:

—agranular soils,

—transition soils (of medium cohesiveness) with no serious danger
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of humidification,

— cohesive (bound) soils with no serious danger of humidification,

— cohesive (bound) soils with serious danger of humidification.

One should reckon with a serious danger of humidification in case
where the earthwork is, according to the experiences of the past, periodical-
ly threatened by flood or internal waters, i.e. by a high average ground wa-
ter table. (Their quantity will be worked out in the near future.)

The earthwork can be classified into different groups in possession
of data collected from maps and expert opinions.

d) The anticipated service life of the condition improving inter-
ventions represents the dependent variable in this study. In this connection
the service life means the period between the end of the repairing interven-
tion and the moment where the necessity of a new condition improvement pre-
sents itself.

420- 22cm asphalt

Typical pavement structures (performance increasing order of series)

Fig, 2 Principle diagram for the prediction of the service life of the intervention

In the diagrams, as is shown in Fig. 2, the parameter of the set of
curves is the service life estimated. Since in the case of pavement struc-
tures, on the horizontal axis, only discrete values are defined, the curves
are, strictly speaking, equalized polynomials, a point of which may be ob-
tained as follows. The pairs of values constituting associated ones in the
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course of data collection (pavement structure, soil drainage, modified traf-
fic volume, service life of interventions) should be classified into such
"homogeneous groups" in which the first three variables are common. For these
variables the most probable value of the service life should be determined
from the subsets to be considered statistically large samples obtained from
a great many, incidentally several thousand data surveys, and this is what
should be plotted in the diagrams. (With the aid of this procedure the more
advantageous and more disadvantageous cases than the average can be omitted
because, as a matter of course, a good many factors have not been taken into
account at this examination, such as for example, weather influences, level
of maintenance, and these factors can bring forth better or worse situations
than the country-wide average.)

It is noteworthy that the different variants of pavement structures
come into consideration, commonly in restricted traffic regions, and this
circumstance, which is readily seen in Fig. 3, reduces the number of varia-
tions which are theoretically possible. According to a preliminary calcula-
tion, assuming 5 types of soil, 12 varieties of hard cover pavement struc-
tures and 4 traffic categories about 240 combinations may occur.

5. DETERMINATION CF THE INTERVENTION SCALE ACTUALLY REALIZABLE
IN A SPECIFIC CASE

Starting from the objectives of road maintenance, such as preserva-
tion of the state of the road network, which can be attained by techniques
of planned preventive maintenance and reconstruction works as well as main-
tenance and repair works necessitated due to traffic safety, the means serv-
ing this objective should briefly be investigated.

In the foregoing such a procedure was presented which, in the case
of given inputs hard cover pavement structure, soil, traffic determines the
service life of the latest state condition improving intervention. After
this period, the structure or at least the pavement surface gets into a
state which makes a new, urgent intervention necessary. This state may ensue
at different combinations of values of several quality parameters. From this
it follows that the most convenient, i.e. the technically and economically
most reasonable type of intervention is the function of this state level as
well as of the traffic volume (the significance) of the road. This optimal
intervention type has a duration (and costs) which comes closest to the in-
terests of the country's economy in respect of travel comfort, low demand on

97



GASPAR, L.

maintenance, low operation costs, etc. (It is to be noted that, mentioning
two extreme types of intervention, the cost of the modernization of a road
section of 1 kmcomes up to about 20 million forints while 1 km surface
dressing costs approximately 120 thousand forints or so.)

However, in practice the situation is —and this tendency has recent-
ly become ever more prevalent —that the money available for road maintenance
is less than would be necessary to carry out the optimal condition improve-
ment on all sections of the highway network. In this exigence the maintenance
units are constrained to make the best of the unfavourable situation (to com
promise). Ore solution is that with the aid of some priority ranking some of
the road sections will be selected and on these only some state improving
interventions will be carried out, only the current maintenance, while on
other damaged parts of the roads works will be done until a new plan period
comes into operation when also their turn will come. However, this strategy
could hardly be considered acceptable because the road sections "left to
their fate" further deteriorate, and soon get into such a neglected state
that the cost of their reconstruction will be much higher. Therefore, it is
more practicable to select the solution according to which on all or nearly
all of the sections which need condition improving intervention only some re-
pair work should be performed. By applying such a method, due to limited fi-
nancial means, in general, one cannot attain the required technical level,
however, in most cases it is sufficient to stop further deterioration, i.e.
it permits the postponement of subsequent interventions. In case of a given
state and traffic density there are among the possible interventions such
which are not acceptable due to one or more simultaneously occurring circum-
stances:

—the service life to be expected seems to be too short (a few weeks
or months),

—it does not improve the critical state parameter,

—the operation costs remain at an unacceptable level even after in-
tervention,

—the traffic safety remains at an unacceptable level.

The purpose of the examination to be undertaken is to select the con-
dition improving variant of the minimal technical quality still tolerable
for the type of the road, requiring the lowest cost at the same time. The
problem can be formulated in such a way that the boundary has to be defined
under which a more moderate variant of intervention can already be considered
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as money lost.

It is sure that the effects of the different condition improving in-
terventions are rather well-known, however, the estimation to what an extent
the actual conditions (such as the characteristic values of the traffic, the
level, i.e. the combination of the state defining parameters, the construc-
tion and the "antecedents" of the pavement structure, etc.) affect the e ffi-
ciency of the different types of interventions, is still missing.

Fig. 3 Conceptual diagram of a convenient intervention-scale to be realized on a
road section for a given traffic volume

Note: 1. On the vertical axis the different variants of state improvement
interventions entering for engineering claims (and specific cost)
increasing upwards; 2. The values of the average daily traffic
(horizontal axis) can incidentally be modified by a coefficient de-
pending on the road type

Figure 3 shows the expected issues of the examination concerning its
principles. In practice, among others, two significant problems are to be
dealt with which are as follows:

—in case of a given traffic volume a great number of "state pat-
terns" are developed which need reparation, accordingly the optimal and mini-
mal intervention types are also different, perhaps a complex state character-
izing index could help in solving this problem;

—the type of road (motorway, main road, secondary road), and inciden-
tally the urban or rural character can also affect the type of intervention.

The actual suggestion will be preceded by data collection concerning
the actual service life of certain types of interventions carried out in the
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past, consultation held with experts as well as economic calculations.

6. TECHNICO-ECONOMC COVPARSON CF THE DIFFERENT TYPES CF INTERVENTIONS

Deterioration of a road does not necessarily occur but, the marks of
at least three deterioration chains, only being in loose connection with each
other, present themselves with different intensities. The necessity of the
state improving intervention arises in case when intolerable parameters can
be measured on any of the deterioration branches. It may, however, also occur
that the simultaneous effects of the three kinds of deterioration make imme-
diate intervention necessary. Also the fact mentioned above emphasizes the
significance of working out some kind of a complex condition evaluating para-
meter. In possession of such a parameter the technico-economic comparison of
the different state improving interventions can be carried out. The signifi-
cance of this examination is supported by the fact that its issues could
help in selecting from two state improving varieties, the costs of which are
of similar magnitude, for a given traffic and road state.

By a methodical consideration the approach will be selected in the
framework of which the following circumstances will be examined:

—the influence exerted on the overall quality (and separately on
each of the different quality parameters) by the different types of interven-
tions ,

—the service life of the different kinds of interventions (and with-
in this the shape of the deterioration curve),

—the preconditions concerning the construction material, machines
and weather conditions necessary to implement the interventions in an ade-
guate quality.

The knowledge of the effects of the different condition improving
alternatives (variants of techniques) based on detailed and objective data
w ill permit their application at the most convenient moment. (Here the finan-
cial restrictions are temporarily not considered.)

The timeliness of this examination is also justified by the domestic
practice based mainly on the financial restrictions by which the surface
dressing mede recently by using bitumen emulsion, binder is considered a gen-
eral highway conservation activity. However, it occurs frequently that the
state of the road section (e.g. strongly deformed, incidentally cracked, sur-
face) or the traffic volume does not justify the economical application of
this technique.
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7. CONCLUDING REVIARKS

The state preservation of the road network in Hungary is one of the
most timely and most significant problems. The activities of evolutional
character have been strongly pushed into the background because of restricted
financial means. The question what kind of state improvement should be under-
taken and at what time, in order to make the optimal utilization of the fi-
nancial means possible has become a central problem. To realize this assumed
objective the present paper wants to contribute by reporting on the ground
principles of such a planning method of the state conservation of highways
which is based on the estimation of earlier practices and on the generaliza-
tion of collected informative data. This activity is still at an early stage,
however, it is obvious that it can become useful not only in attaining the
main objective but also in the realization of the others mentioned in this
paper (e.g. determination of the scale of interventions which could be con-
sidered realistic, elaboration of a complex parameter characterizing the
state of the pavement, technico-economic comparison of the different varie-
ties of maintenance techniques.
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A PARTIAL BHGENVECTOR PROBLEM SOLUTION
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Solutions to vibration problems where the solution can be
written in accordance with the components corresponding to the
eigenvector have been studied in this work, and determination of
the physical implication of errors resulting from neglect of
eigenvectors associated with higher frequencies has been recommended
for the case of free vibration, and excitation by periodical forces.
To justify this recommendation, numerical examples and experiments
have been presented, pointing out that on the basis of data of the
numerical experiments, the limits required for practical applica-
tion, compatible with the errors of starting parameters of the
technical problem, can be formulated.

1. INTRODUCTION

Investigation of the vibration of structures by means of the finite
element method requires dynamic calculations for systems of a rather high
degree of freedom. In vibration calculations, second-degree differential
equation systems depending on the description of mass forces and damping
conditions, as well as of exciting effects. The first step is to calculate
eigenvalues and eigenvectors, and the calculated values are then used to
write the general solution. In this work, the general solutions for the
different cases are presented in a form where the components associated
with the different eigenvectors appear each separately.

In case of large systems, it is not possible to calculate all the
eigenvalues and eigenvectors but for a solution of an accuracy required for
practical application, it is not necessary either to have all the com
ponents. In this work, we investigate what criteria should be taken as a
basis for deciding the number of eigenvectors to be used in the calcula-
tions, specifying the characteristics of errors the use of which is practi-
cable in engineering calculations for free vibration and excitation by peri-
odical forces.*

*Dr. J. Gyorgyi, H-1221 Budapest, Arany Janos u. 96/b., Hungary

Akadémiai Kiadd, Budapest
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2. SOLUTIONS TO DIFFERENTIAL EQUATION SYSTEMS IN VIBRATION PRCBLEVE

Undanped free vibration

If the usual displacement functions for static calculations are used
to calculate mess forces, we will face the problem of solution of a con-
stant-coefficient differential equation system:

Y] (t) +£u(t) =0, (1)

where £ stiffness matrix, » mass matrix of the structure.

In the knowledge of the eigenvectors associated with eigenvalue
problem Kw= AM v, provided the eigenvectors were normed for M (V*MV=E),
the solution /1/:

u(t) vr V* cos Ort + O sin wtj, (2)
r=| L J
where g, o are initial displacements and velocities (associated with t=0),

respectively, w -iK and v radian eigenfrequency r, and eigenvector r
(vibrational mode), respectively.

Undanped vibration excited by periodical force
In this case, the right side of the matrix differential equation
(1) can be written as
m
£(t) =So +7 Bck cos <V + %k sin ak* 0)
k=1
The particular solution associated with harmonic oomponents of frequency
of of an amplitude of n and £ck, £ /1/:
n / m

N (t) -r T2 So +* ",21 ~2 (*ck COSV +~sk”" "W
r=1 \% k=l r K

A general solution to the inhomogeneous differential equation sys-
tem can be obtained as the sum of solutions (3) and (4).
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Frequency dependent mass matrix

The effect of mass forces on the different elements can be taken
into consideration more accurately if displacement functions written as the
power function of «© are used /2/. In this case, the radian eigenfrequencies
and the associated vibrational nodes can be obtained in the solution of ho-
mogeneous equation system

(£ - to2 - w4 y2 - Lﬁ/m e - ws Ms_2)v = Q . (5)

The function describing the displacements of the structure can be
written as

ji(t) Xr(ar cos wrt + br sin urt) (6)
r=|

also in this case but, as has been shown in /3/, writing the solution in a
form similar to (2) is not possible. Integration constants ar, br can be
calculated from the initial conditions in the knowledge of all the eigen-
vectors only. If only a few eigenvectors are taken as a basis to define the
solution, the method of least squares shall be used for calculation of con-
stants a®, bf. At the same time, again expression (4) is obtained for the
description of excitation by periodical forces (with the values of v and
or calculated on the basis of equation (5)).

External damping proportional to velocity
The matrix-differential equation describing free vibrations of the
structure is now

MO (t) + Qu (t) +Ku (t) =0, (7

which can be attributed to first-order differential equation system (4).

O (1) +BY (t) =Q, (8)
where
A= g m - 2 () = ou(n)
M (e} 2 u(t) (9)
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The solution of equation (8) requires that eigenvalue problem
AMw=- Bw
be solved, where in case of low damping, X" are eigenvalues and

xp = Xovr

Nr

complex eigenvectors while in case of a high damping, both X" and are
real.

It was shown in /3/ that, in the knowledge of eigenvalues and eigen-

vectors
=— p,+i @ Vo=V vt
Ay Py ™1 9% B I B
and
"n =—~Pm, arjd v*, respectively, the solution could be written as the
sum of solutions associated with the different solutions. Accordingly,
n
Ji() =¥~ 2 Pj1 « % * P »3130- “3c63BL
cos (bJ.C t —
- [ejfco * 'BjS - Pj BjS * Sin Qic t
2n Pt
il M+ (—pE M+ CON[ e ~ (10)
r+1
where
1 ik
A, MRV
Sy 33 Ty
B = ¥§+ \-/ i_K
57359 75 %

while n is the number of complex pairs of eigenvalues.
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Note that the case where ~ is a multiple eigenvalue which is at
the same time a multiple root of the minimal polynomial is not included in
formula (10). For the sake of completeness, also the solution for a harmonic
excitation force of radian frequency a and amplitude £ is given below,
broken down in accordance with the eigenvector:

Frequency dependent internal damping
In the literature, the damping matrix in the form
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is often used to take the damping effect of internal friction into consid-
eration.

With a damping matrix proportional to matrices M Kassumed, it is
possible to write the solution by means of eigenvectors associated with the
undamped case.

Low or high damping may be associated with the different vibrational
modes depending on whether the value

is complex or real.
Here wub is the radian eigenfrequency associated with the undamped
case while for the case given in (12),

With the values of substituted again into the expression given
in (15) we obtain that both low and high damping may be associated with
given damping characteristic, depending on the magnitude of radian eigen-
frequency for given eigenvector.

The solution for the case of free vibration:

1 p p = P p. ™d 9
M & N N2

Here nr is the length of low-damping component™ while P* and P
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can be calculated from relationship

for components of high damping.

In case of the proportional damping given in (12) through (15), the
solution for harmonic excitation can similarly be calculated on the basis of
components according to real eigenvectors, e.g. if 4 = cos «t

n
u(t) =" _ Xr W > 252 r2, GACOS (at
r=1 4 mur ) +Cra
where Cr a
Vi arctan ----- A e (20)

Frequency independent internal damping
As seen in /5/, the damping matrix can be written in this case as

1+

where y =—— , while 9 logarithmic decrement characteristic of the
structure.

In this case, low damping is associated with every vibrational mode,
and the displacements can be written as the sum of terms associated with
the different vibrational modes:

u(t) = vV e —, Uzt cos W)t +
r=1
Ug) sin oo .t (21)
where Woe radian eigenfrequency of undamped vibra-

tion while the particular solution for a harmonic force:
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u(t) _1*4 o2 O cos Ca»— V) ,
r=1 a24Y2
o? 4+y2
where ..
Yg3rr a

- a

V = arctan (22)
If the structure consists of elements of different damping charac-
teristics (e.g. superstructure interacting with the ground, structure con-
taining both steel and reinforced concrete elements), the damped vibration
can be taken into consideration by using the complex stiffness matrix, the
differential equation system of vibration in case of free vibration being

YO()+Kar)=Q » (23)

Displacements of the structure can be calculated as a real part of
complex displacements /6/.

The complex solution can be written in accordance with (2) in the
knowledge of complex eigenvectors and complex radian eigenfrequencies ob-
tained as a result of a complex eigenvalue problem. Also the complex initial
conditions are required for writing the solution. As has been shown in /3/,
the imaginary part of the initial conditions can be produced only after the
integration constants that can be calculated in the knowledge of all the
eigenvectors having been determined. If we want to obtain the solution with
the use of eigenvectors of a certain number only, either the initial condi-
tions shall be specified for places of a reduced number or the integration
constants shall be calculated using the method of least squares.

To avoid the above difficulties, production of a damping matrix
proportional to the velocity which is equivalent to complex damping has been
recommended in /7/. Accordingly, in case of complex stiffness

§:§u+ilév (24)
n

- 1
o= | vy vk 25)

=1 urc

where w and can be obtained from the solution of real eigenvalue
problem

110



VIBRATION OF STRUCTURES

uv= Uy (26)

It can be seen that calculation of a damping matrix corresponding
to eigenvectors of a definite number is possible because the damping matrix
is set up of components according to the eigenvectors.

In the knowledge of this damping matrix, differential equation sys-
tem

Yiu(t) + Cu(t) + u(t) = u (27)

shall be solved where the solution will be obtained according to (10) and,
in case of excitation by periodical forces, to (11).

As has been proved in /7/ also by numerical experiments, the devia-
tion between the values calculated for damping characteristics for eigen-
vectors included in the calculation and the results obtained in calculation
with the complex stiffness matrix is negligible. To set up a matrix C equiv-
alent to complex stiffness will be especially practicable if there is also a
damping proportional to external velocity. Namely, in this case, the matri-
ces containing the two limits can be simply added.

As seen above, the solutions for the different vibration problems
can be written as the sum of solutions corresponding to the eigenvectors.
Investigations concerning number of eigenvectors to be included in calcula-
tions are given in the next Chapter.

3. BRRCRS IN A PARTIAL HHGENVALUE PRCBLEMVI SOLUTION
Free vibration

The solution obtained for the undamped case in (2) can be written
also in the following form:

n
u(t) = Ccos sin (28)
Here
— K M
2 =V My zr Y Big (29)

In the solution, the weight of the eigenvectors is different. E.g.
if jji* and some eigenvector coincide, zr = 1 and the other multipliers z*
will be zero. More and more complicated vibrational modes belong to increas-
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ingly high frequencies. If the components of the vector of initialcondition,
found in the basis of the eigenvectors, are determined by means of coordi-
nates zr, it will be found in the majority of practical cases that the vibra-
tional modes associated with higher frequencies are negligible, the algo-
rithms suited for the calculation of some of the least eigenvalues and eigen-
vectors can thus be practicably applied (although the order of the matrices
may be very high but they are band matrices).

To decide whether the number of the calculated eigenvectors if suf-
ficient, the vectors of initial conditions, obtained by the approximate solu-
tion, can be compared with the original vectors:

m m
u => v VvV¥Mu => z v-*u ,
r=1 r=1
m
L ’ _*
Ho=Y %Y Yy (30

r=
It is difficult to set out any criterion for the accuracy of dis-
placements since it is rather the relative displacements that predominate in
calculation for stresses.
Vectors

So = K Ug
_ - ) (31)
S = M-Lb ! 5o ME&

can be calculated on the basis of initial conditions, and thus the error in
approximate calculation can be determined by comparison of the loads in the
nodes. Stresses arise in the structure that can be calculated reliably only
if the displacements are very accurate. According to calculational experi-
ences, an accuracy of relative axial displacements of the nodes, required
for calculation of normal forces in case of a set of beans consisting of
coaxial rods, can be achieved only by calculation of almost all the eigen-
vectors. The number of eigenvectors required for the calculation can be con-
siderably reduced in this case if the limit of error is specified for the
sum of forces acting in the direction of the set of beams. (At the same
time, normal forces can be calculated by means of the shear forces of the
columns.) The limit of error can be specified also for other combinations
of forces (e.g. sum of moments for some point). Thus the error will be
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F18) - (M)
- A (32)
1) - (s7)]

(21 D — o
«S0)

The physical contents of the two errors are hardly compatible.
Therefore, a comparison of energies associated with accurate and approximate
initial conditions is recommended:

(33)
where
E=ip i Kl 1 UG 5
while E', using the relationships given in 7.7,
m
. 2 X 1v, 2,72
Bz* 1> Z*VJKVI’+ZFXF|'_LV_FZ{I/.>_FU{_+ZI'_2 (34)
r=1 r=I

can be calculated by means of the constants associated with the general
solution. In energy calculations, the energy of forces acting upon absolute
motions in the nodes is calculated and thus a slight inaccuracy of relative
displacement has little effect on the sum of energies. Alimit for the meg
nitude of error, applicable to every structure,cannot be specified as it
depends on the inaccuracy required in g. However, for given type of struc-
tures, the limits can be determined on the basis of numerical experiments
but in this case the stresses arising after the limits have been fulfilled
must by all means be checked.

In the solutions for different damping models, one may proceed in
accordance with what has been said, that is the components of initial velo-
city and displacement vectors per eigenvector (including approximate mechan-
ical energy) can be calculated for time t - 0 and the error analysis can be
carried out.

Excitation by periodical forces
The relationship given in (4) can be written in case of a harmonic
component (e.g. g =4" cos m”t) in the following way:
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n 1
UqcCt) #2"--a2 3ekcos V =Z-4*~rr 4 AS<y . (35)
r= r K r=1
Here

rK

r
The place of the different eigenvectors in the solution depends on

the place of the force vector in the basis of the eigenvectors as well as on
magnification factor mrk determined by the relationship between the radian
eigenfrequency and the excitation frequency. Should these coincide, urk may
be infinitely large. This means that in case of the excitation force given
in (3), all the radian eigeiifrequencies (and the eigenvector associated with
them) not exceeding the maximum value of must be calculated. Considering
that to meke the Fourier series accurate requires that terms of increasingly
high frequencies be included, practically the calculation of all the eigen-
vectors would be necessary. However, the situation will change if the damp-
ing always present in the structure is taken into consideration. E.g. in
case of a homogeneous structural damping, the solution will be, according
(22):

V t)y=21 Mkvr N - cos (*kt- vrk>

where

If the highest excitation frequency lies below the calculated high-
est eigenfrequency, W the value of U, can be calculated for every value
r and k. If any ak > wm, at most resonance w ill occur and thus Mk<b max>

where U e Ybecause of 1. (37)
If all the eigenvectors are not taken into consideration, the error

in vector u(t) will be
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Ug(t) = Psk 7 3ek cos (V- vsk} ' (39)
s=m+l s
In the knowledge of =V y*
r
A3q(t) = sk cos (akt - vsk)
L r=| r

Force can be assigned to the error in displacement:

The error vector can be compared with "static" force vector g™ (4").

In so doing,the length (spherical norm) of the static force vector and the
length of force vector Ap can be compared. With the length of the eigen-
vectors included in the calculation increased, force vector

m

M = Arn2 £ 3st

r=1 r
written as a combination of the eigenvectors will more and more approach
vector o~ and thus the length or error vector

n
Ast = =s51rs ~A2 £ 3st
m+l S

w ill reduce monotonously with also the length of vector Aa(0 reducing
accordingly:
A A3sk

that means to given e, the number of eigenvectors where the error will lie
below the specified value i.e.

e (40)
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can be assigned.

The "relative" error of dynamic calculation can be estimated by
taking the load vector that has already been calculated as a basis for com-
parison. The load vector:

m
«9dyn (41)

r=| r

t JUJL (42)
dy" ||Sdyn1
In case of more harmonic components, vectors £(t), g~, A4 can be
obtained by appropriate summation and the errors can be defined for the so-
lution vectors.
Note that if the excitation frequency lies below or at the highest
radian eigenfrequency that has been calculated that far, the expression
given in (37) will take the following shape:

yrk (43)

Derivations for the case of external damping proportional to velo-
city are given in /3/. Here only the relationships required for calculation
of the error vectors are given.

If vector g is a vector of double size with amplitude g of the ac-
tual load vector, g eJ— d"t, in the lower part, then, with the symbols used
in (9),

@ g (44)

w ill be obtained, where

1 45
T (45)
-min(ps) - i urc
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Values ps associated with the omitted eigenvectors shold be substi-
tuted into expression c. Considering that no conditions have been imposed
upon the matrix of damping proportional to velocity, this value could be e-
ven zero. At the same time,the structural damping is always present and
thus

min( P ) =-~-wnt ’

In the knowledge of vectorAg*A£ can be obtained in its lower part
and thus the error analysis can be carried out in accordance with what has
been said above.

Note that the rules set out in (40) and (42) are very strict and
require sometimes that almost the entire eigenvector basis be calculated.
E.g. in case of rods where axial forces are acting in the so called ampli-
tude direction, the sum of axial forces can be calculated with eigenvectors
of a relatively small number taken into consideration but their distribu-
tion between the different nodes cannot be calculated in this way. In
practical calculations, it is reasonable to proceed in the way described
for the case of free vibration, calculating vectorAg and the expectable
error for vectorAg including the sums of forces calculated in certain se-
lected directions. Examples for this are given in the description of numer-
ical results.

4. NUVERICAL EXPERIENCES

In the foregoing,the solution of the problem of free vibration as a
partial eigenvalue problem has been dealt with. It has been recommended to
determine the number of the required eigenvectors on the basis of a compar-
ison of the mechanical energies associated with the initial starting condi-
tions and with the starting conditions that can be derived from the approx-
imate solution, as well as on the basis of testing the kinetic equilibrium
in the nodes. The rod shown in Fig. 1 has been investigated under starting
conditions brought about by force configurations a), b), c), d).

The radian frequencies associated with the different vibrational
modes, weight numbers zaccording to (29), and the values for energy ratio
(E'/E) are tabulated in Table 1. Considering the weight numbers, the use of
the first three eigenvectors seems to be necessary in case of starting con-
ditions a), b) and c) while the use of the first nine eigenvectors in case
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of starting condition b) for a solution of appropriate accuracy. If a corre-
spondence of 1 %of the energies is required, then 1, 2, 3 or 15 eigen-
vector (s) shall be included in the calculation.

Table 1

“ a b c d

M zr E/E zr E/E zr B/E zr E/E
1 11.68 3.3517 0.9944 16164 0.9194 0.4064 0.2185 - -
2 39.43 0.0505 0.0026 0.1320 0.0699 0.1953 0.5754 - -
3 73.25 0.0253 0.0022 0.0258 0.0092 0.0618 0.1980 - -
4 121.1  0.0002 - 0.0001 - 0.0001 - 0.0239 0.7046
5 151.9 0.0002 - 0.0002 - 0.0004 - 0.0051 0.0500
6 173.0 0.0004 - 0.0001 - 0.0003 - 0.0061 0.0941
7 209.5 0.0001 - - - - - - -
8 244.4  0.0008 - 0.0017 0.0004 0.0017 0.0017 - -
9 310.3 0.0003 - - - 0.0001 - 0.0039 0.1247
10 350.4 0.0012 0.0001 0.0006 0.0001 0.0001 - - -
11 535.7 0.0004 - 0.0001 - 0.0001 - - -
12 547.2  0.0016 0.0005 0.0002 - 0.0006 0.0009 0.0001 0.0004
13 610.6  0.0002 - 0.0002 - 0.0001 - 0.0003 0.0029
14 680.5 0.0002 - 0.0001 - - - - -
15 707.1 0.0001 - 0.0002 - 0.0001 0.0020 0.0005 0.0091

16 802.9 0.0006 0.0001 0.0006 0.0006 0.0001 0.0029 0.0003 0.0042
17 1078 0.0001 - 0.0002 0.0001 0.0001 0.0002 0.0002 0.0033
18 1081 0.0001 : 0.0001 - 0.0001 0.0002 0.0002 0.0048

Indicated in Table 2 are the errors obtained in the displacement of
node 7 in direction x, taking into consideration different eigenvectors,
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then the error in relative displacement of nodes 7 and 5 in direction y as
well as that in relative displacement of nodes 7 and 8 in direction x, de-
fined in (33). It can be seen that there is a close relationship between the
energy ratio and error of displacement for absolute displacement as well as
for relative displacement of direction 75 while at the same time a result
of appropriate accuracy will now be obtained for the relative displacement
of direction 78 only if all the eigenvectors are included in the calcula-
tion.

Table 2

c7 e7-5 e7-8 e7 E7-5 E7-8 e7 g7-5 e7-8
1 0.008 0.039 1.000 0.081 0354 1000 0.354 0.781 1.000
1-3 0.001 0.001 1.000 0.001 0.004 1.000 0.004 0.008 1.000

1-6 0.001 1.000 0.001 0.004 0.997 0.004 0.008 0.997
1-10 - 1.000 0.001 0.002 0995 0.002 0.006 0.997
1-15 — 0.780 — 0.002 0.860 0.002 0.003 0.955

All this is a confirmation of what has been said earlier. Thus in respect
of calculation of the stresses, satisfaction of given limit of error is nec-
essary but not sufficient. In given case, with the first three eigenvectors
taken into consideration, the normal force arising in rods of amplitude di-
rection can be calculated to the required accuracy only if the equilibrium
in the node is taken as a basis for calculation instead of the relative
displacements.

In case of harmonic excitation, the static and dynamic error vectors
have been defined in (40) and (42), respectively. Accordingly, after calcu-
lation of .eigenvectors of a certain number, force vector Acj(t) can be cal-
culated as the upper bound of a force vector associated with further eigen-
vectors, depending on the excitation frequency and damping. The ratio of
these vector elements (a certain combination thereof) and the static, or
the dynamic force calculated that far is considered to be the limit of er-
ror. In the case shown in Fig. 1, the error calculated for load configura-
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tion a), b), c), d) and excitation frequency a= O, 100, 1000 1/s has been
defined for the sum of forces acting in the direction of the beam (decisive
in respect of moments arising in the columns). A value of y= 0.1 has been
taken into consideration for internal damping. In case of a higher excita-
tion frequency, the additional dynamic load is small and thus the dynamic
error is greater than the static error decisive in respect of calculation
for the dimensions. At the same time, the dynamic error may be smaller in
case of lower excitation frequencies.
The values of static error are tabulated in Table 3.

Table 3

a b c d
10 100 1000 10 100 1000 10 100 1000 10 100 1000

1 0.35 1.00 1.00 0.46 299 299 342 974 974 © © «
1-2 0.05 047 047 0.3 127 127 017 170 170 o © o

1-3 - 0.03 0.03 0.01 0.0 0.10 001 0.06 0.06 ® ® ©
\-K - - 0.03 0.01 0.02 010 0.01 0.01 0.06 0.21 0.30 2.13
1-10 - - 0.01 - - 0.01 - - 0.03 0.03 0.03 0.27
1-15 - : : - - - - - - 0.01 0.01 0.07

As seen the number of variables to be included in the calculation can be
determined depending on excitation frequency and configuration of excita-
tion forces.

A network plotted for the longitudinal wall of a tenstoreyed
building made of prefabricated building elements is shown in Fig. 2 (the
nodes being plotted as the actual nodes). The first ten radian eigenfre-
quencies of the system of a degree of freedom of 462 vary in the range of
11.64 to 145.3 1l/s. A force is associated with either of load displacements
a) and b), the excitation frequency of which being a= 5, 50, 500 1/s. The
static and dynamic errors have been defined for the displacement of the
point of application of the force in the direction of the force, their
magnitude being given in Table 4 and 5, respectively. In case a), the er-
ror due to partial eigenvector calculation could be identified with 3, 6,

120



VIBRATION OF STRUCTURES

Ty ™ 111? vt

a) b)
—»
A=0.3m3 1rO.0lm4 s . Vit
C
E=2«107kN/m2 Gv=25kN/m3 ) J
Fig- 1.

Fig. 2. Network for the longitudinal wall of a 10-storeyed building in Kelenfdld

10 eigenvectors having been taken into consideration, depending on the ex-
citation freguency. In calculating the first ten eigenvectors for a frequen-
cy of a= 500 1/s in case b), an error factor of 2.19 should be taken into
consideration which, in given case, would result in the construction of an
economically unacceptable structure. For higher excitation frequencies, the
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dynamic errors lie above the static errors, a fact indicating that the dy-
namic displacement calculated by means of eigenvectors of a certain number
is small and it is by far not comparable with the accurate value of dynamic
displacements. It can be seen on the basis of what has been said that the
errors due to partial eigenvalue problem solution can be identified, per®
mitting correct and controlled dynamic calculations to be carried out.

Table 4 = oo,

£st Qo
r a b
/ a 5 50 500 5 50 500
1 0.11 0.90 0.90 1.22 10.00 10.00
1-2 0.08 0.79 0.79 0.81 7.78 7.78
1-3 0.06 0.61 0.61 0.79 7.78 7.78
1-6 0.03 0.04 0.32 0.49 0.68 4.88
1-10 0.03 0.03 0.30 0.22 0.25 2.19
Table 5 edin = Ae/edin
r a b
a 5 50 500 5 50 500
1 0.10 14.38 @ 36.71 © ©
1-2 0.07 12.69 © 3.49 o ®
1-3 0.05 8.21 © 3.43 1121 @
1-6 0.03 0.20 o 0.94 0.72 ©
1-10 0.03 0.15 154.1 0.28 0.19 67.79

As has been reported also in /8/, the convergence can be detected also for
the stresses.
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QUALIFICATION CF INTERDEPENDENCE (R INDEPENDENCE WITHIN ANY PAIR CF
VARIABLES INVOLVED IN MULTIPLE LINEAR REGRESSON

A generalized stochastic approach
Z. Hanko*

(Received 21 June 1985)

Supposing joint normal distribution of the sample representing the
variables involved in the multiple linear regression relation a stochastic
interdependence/independence qualification method within any pair of
variables is suggested. The limit significance level of qualification (based
on which acceptance decision can be made) may be adopted according to
the subject of investigation.

1. INTRODUCTICN

In investigating natural /technological/ social phenomena, an ever
increasing need can be recognized concerning the determination of the numer-
ical relation of the variables involved. As is well known, the value of
readings (measurement results or data) regarding the variables are influ-
enced by not only measurement errors but also random fluctuations, and the
variables, therefore, show a stochastic character. The numerical relation
between stochastic variables can only be determined by regression analysis.

Fortunately, most of the phenomena and the samples regarding their
variables show normal distribution (at least as a good approximation), and
even the joint distribution of the samples shows a normal one. The only re-
gression relation between variables of joint normal distribution is the lin-
ear one and that is the reason why exceptional attention is paid to multiple
linear regression analysis.

Sometimes in practice the regression relation between the dependent
variable and one of the independent variables shows a curvilinear feature,
indicating that the joint distribution of the variables involved is not a
normal one. In similar cases the adoption of a polynomial (power series) of
the relevant independent variable often proves to be a reasonable approxi-
mation. This solution brings even the bivariable curvilinear regression re-

*Dr.Z. Hanké, H-1122 Budapest, Csaba u. 16/A, Hungary

Akadémiai Kiadd, Budapest
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lation to a multiple linear regression relation.

Taking into consideration also the above thoughts, the questions re-
garding qualification can be summarized, as follows:

—whether the interdependence between the dependent variable and any
of the independent variables is close enough or not (in the presence of the
remaining variables involved in the multiple linear regression relation);

—whether the independence within any pair of the independent vari-
ables is close enough or not (in the presence of the remaining variables in-
volved in the multiple linear regression relation).

If the interdependence between the dependent variable and any of the
independent variables is not close enough, then this independent variable is
superfluous in the multiple linear regression relation because it does not
worthily decrease the scatter (unbiassed standard deviation of residuals),
and increase the closeness, of the relation. If any pair of the independent
variables does not show a reasonable independence, then one of them is also
superfluous in the relation because they exert their effect on the dependent
vdriable via each other (in similar cases that variable of the pair shall be
discarded the interdependence of which is looser with the dependent vari-
able). These questions can be answered by the application of the method dis-
cussed below.

2. SUBIECT CF QUALIFICATION

The general form of a multiple linear regression relation, based on
a sample of size "n" (always discrete and finite) originated from a popula-
tion of size "N" (either continuous or discrete and either finite or in fi-

nite), is

V rT* 2~ V (xy3-V. 1

where Ygj = conditional expected value (designated j) of the dependent vari-
able; Y = empirical expected value (sample mean) of the dependent variable;
R’H :-byy A2, YAy, el = empirical regression coefficient
of the independent variable y where the terms in the subscript following the
dot indicate those independent variables which also belong to the relation
beyond those indicated before the dot; = the value designated j of in-

dependent variable y ; &Y = empirical expected value (sample mean) of inde-
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pendent variable y.

Actually, independent variable y can denote different independent
variables, each being in a linear relationship with the dependent variable
according to preliminary assumption, but it can also denote the different
degrees (%owers) of a polynomial "Z". For example X . = Z, 2(\)(): z and
XY+l =Z if a polynomial of third degree is applied; and it is for the
gualification procedure to decide whether these assumptions are appropriate
or not.

The regression coefficients of a multiple linear regression relation
are usually determined by the least squares method which results in the most
probable relation between the dependent variable and the independent vari-
able (s) with the possible minimum scatter. For determination of the regres-
sion coefficients it is necessary to solve a linear equation system which
consists of Vlinear equations and contains v unknown variables. For solving
the linear equation system, the Cramer-rule is most often used, e.g. the
correlation matrix in the form of matrix equation. Here another solution is
proposed (which is neither more time-consumptive nor more difficult than the
preceding one), creating at the same time the conditions for qualification
within each pair of the variables involved in the multiple linear regression
relation.

The empirical regression coefficient and its corrected (unbiassed)
standard deviation, of independent variable y in the multiple linear regres-
sion relation are /1/

vV B>
X X . and (2)
Yy vy Vyyqoyy
Koy ¥Yin which (3)
byy ve 7
-1<R,, =—._ 7 <+ 1, furthermore 4
ng "NLZYyYyrY Y )
[<VvT>3 VDOV e K 2 g
Yy yy
ad -1 <r Wb (6)
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where Ry = Byy.1>2, ... J-+1,..., v -i,»= erPirical multiple partial cor-
relation coefficient between variables Y and Xy; Wy and Vyy = empirical
variances of variables Y and Xy, respectively; GQyy = empirical covariance
between variables Y and Xy; r~ = empirical total correlation coefficient
between variables Y and Xy; £yy,<Oy*and "Dyy = algebraic subdeterminant

of the extended correlation matrix (formed by the empirical total correla-
tion coefficients),”, while the subscripts denote the positions of the sub-
determinants; m=n—V —1 = number of excess data-groups in the sample
(degrees of freedom); n = number of data-groups in the sample; v = number of
independent variables (equals the number of the unknown regression coeffi-
cients to be determined).

Table 1. Multiple extended correlation matrix

y6 ~ Loy

The extended correlation matrix, , is shown in Table 1. This
matrix is of (v+l)th order, quadratic, real, symmetric and positive defi-
nite; it is of (v+I)th order, quadratic and real, symmetric because the num-
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ber of its rows and columns is identical: (v+1); and r , r_ , that means that
its real elements are symmetrical to the main diagonal” of the matrix; posi-
tive definite because the value of its determinant exceeds zero (p > 0).

As is known, the inverse (reciprocal) matrix, ® \ of the correla-
tion matrix,®» , is again of (v+I)th order and symmetric; thus in the posi-
tion denoted by the subscript the ratio of the corresponding algebraic sub-
determinant and the determinant of the correlation matrix occurs. To calcu-
late the empirical regression coefficient (Eq.2), and its empirical standard
deviation (Eq.3), only the inverse matrix has to be determined in addition
to the fundamental stochastic parameters (empirical variances and covari-
ances, Eqg.5, and empirical total correlation coefficients, EQ.6).

Many numerical procedures are known for calculating the inverse of
a matrix. From among these the Gauss' elimination procedure is very advan-
tageous for inverting the correlation matrix /2/. The result of the calcu-
lation is a matrix the structure of which is similar to the structure of the
correlation matrix shown in Table 1, and the elements of which areV P ;
Xy, @ ;4 /£ etc. In proving the correctness of the inversion procedure:
the matrix product of the correlation matrix and the inverted subdeterminant
matrix must result in the positive unit matrix.

Knowing the inverse subdeterminant matrix, both the empirical multi-
ple correlation coefficient, R* and the empirical corrected (unbiassed) re-
sidual scatter, o0y> of the multiple regression relation can be calculated.

FL is the measure of closeness of the regression relation:

while aQy is the measure of goodness, by which the various confidence in-
tervals of the conditional expected value of the dependent variable can be
estimated:

_ D
Joy mVyy(l Rfp = \3 VnyD,yy (8)

Two more remarks are worth remembering.
a) If v= 1, then the multiple regression relation will be reduced
to a bivariable one. In this case the algebraic subdeterminants of the cor-
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relation matrix are, as follows:

1 and r
¥X -Xy

This means that

and this brings everything to the well known bivariable relation.

b) The empirical partial correlation coefficient (Eq.4) can be cal-
culated not only between the dependent variable and one of the independent
variables but also within any pair of the independent variables. While the
former one is serving for qualification of interdependence, the latter one
can be used for qualification of independence.

Each element of the sample consisting of a(y +1) elements incorpo-
rates the resultant of those (generally unknown) random effects which are
reflected in the relevant numerical value. The fundamental statistical para-
meters (empirical variances and covariances) sum up and average those random
effects which have affected the variables of the sample. This summed up and
averaged effect, weighted by the derived statistical parameters (empirical
total correlation coefficient, correlation matrix, its subdeterminants and
determinant, partial correlation coefficients), will appear in the empirical
regression coefficient. The empirical regression coefficient is, therefore,
the most characteristic parameter of the multiple linear regression rela-
tion, and it also is —in consequence of its derivation —a normally dis-
tributed stochastic variable. This is the very fact why the degree of inter-
dependence and/or independence within any pair of variables of a multiple
linear regression relation can be estimated by the empirical regression co-
efficient (and its standard deviation) using appropriate statistical hypo-
thesis.

3. MTHGD CF QUALIFICATION

The square root in EqQ.(2) of the empirical regression coefficient
is always positive. Its multiplier, the empirical partial correlation coef-
ficient, can vary between —1 to +1. Value - 1 indicates functional relation
(with 100 per cent probability) within the pair of variables involved,
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while the zero value indicates that there is no-correlation between the var-
iables (in case of really joint normal distribution, it indicates also inde-
pendence). The intermediate values are approximately linear measures of lin -
ear dependence between the variables.

Since the empirical regression coefficient is a normally distributed
stochastic variable, therefore the probability of risk can be estimated us-
ing a hypothesis test; that is the risk that the actual value ranges between
no-correlation (independence) and functional relation (interdependence) as
extremes.

Starting from Egs (2) and (3) at the lim it of no-correlation:

(Vo =lm yy -0 ad (2/a)
Vi
Vyy¢w r
@ o =Jim ibyY TR (3/a)
yyl-
while supposing functional relation:
(b ) | b Vyyl’l‘%’y d
3 im an (2/b)
TR P
(aby>n = (3/b)

The standard abscissas of the normal probability distribution func-
tion for estimating the probability of risk can be formulated as the differ-
ence between the actual and the relevant lim it value of the empirical re-
gression coefficient, respectively.

The standard abscissa for estimating no-correlation:

e (P, s 9)

XN\D of. +(0f. )

4 Byy Byy o

while the standard abscissa for estimating functional relation:

fb.,v)i-|by 1 R
NL rTLIJHI (10)
AbyyS5l +pyy  \ Y
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Subscript N denotes normal distribution, while 0 and 1 indicate no-correla-
tion and functional relation, respectively, as limits.

The probability of risk can be calculated, using the standard ab-
scissa, as follows:

(11)
(2k-+1)

where = probability of risk that the actual empirical resgression coef-
ficient is not equal to zero, and thus this is the significance level of no-
correlation; = probability of risk that the actual value of the empiri-
cal regression coefficient is not equal to the value of the functional rela-
tion, and thus this is the significance level of functional relation. Here
again subscript N denotes normal distribution, £ indicates risk-probability,
and 0 and 1 refer to the limits of no-correlation and functional relation,
respectively.

According to the actual results of the hypothesis tests occurring in
practice, a qualification by empirical frequency of occurrence can be added
to the value of the risk-probability (significance level), and that serves
as a basis for decision. From among the results only those are to be men-
tioned that permit unambiguous decisions, namely:
with

—0.05 (=) 5% the realization of the hypothesis is
r practically certain;

with

<0.001(=) 0.1 % the realization of the hypothesis is
practically impossible;

within these two limits, the realization of the hypothesis is doubtful.

It follows from what has been said above that, if £°rg =" q(@<9)—5%
it can be taken for granted that the actual empirical regression coefficient
differs from zero only at random and thus there is no-correlation between
the variables involved (the variables are independent in case of normal dis-
tribution). Similarly, if =jqg (Xw) < 0.1 then a functional relation-
ship between the variables involved will be practically impossible (the re-
lation being rather non-correlated and thus the variables independent).
Contrary to the previous case, if £4rg = 1a(2"n) < 0-1 then no-correla-
tion is practically impossible (as in this case there exists rather a func-
tional relationship and thus the variables are interdependent), while if
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(-Xw) 215 % it can be practically taken for granted that the nu-
merical value of the actual empirical regression coefficient differs from
the lim it value, indicating functional relationship, only at random, so that
the variables involved are linearly interdependent.

Both in the definition of risk-probability and in the previous in-
terpretations, the random character has been mentioned repeatedly. In this
respect the fact that the parameters involved in the hypothesis test are em
pirical variables derived from the sample and the sample is only more-or-
less truly representing the population from which it is originating shall be
taken into consideration. This uncertainty is reflected in the context of
the empirical occurrence-qualifications (practically certain or practically
impossible) and this is taken into account when the number of excess data-
groups, m, is used in Egs (3), (9) and (10) instead of the number of data-
groups, n.

In case of normal distribution the standard abscissas of the various

risk-probabilities (significance levels) are known, e.g. if =5 % then
Xj =1.96, and if = 0.1 % then x* = 3.291, etc. Thus Egs (9) and (10)
can be rearranged:

0< ? xg‘) <1 (9/a)

*NO

and

0f N g (10/a)

Mg

R0 =0 and Rj = 1 can only be reached if m=+°% (if Xgdiffers from zero),
butm=n- V- 1is aways finite; and m .. =x3 (if X, exceeds zero).
®Nmin =  cannot be assumed because it represents a deterministic func-
tional relationship and this disagrees with the assumption that the varia-
bles are stochastic variables affected by random effects.

If decision is mede concerning the limit risk-probability (lim it
significance level), the value of the corresponding standard abscissa is
known; and f the number of the excess data-groups is also known, then the
limit value of the partial correlation coefficient (Egs 9/a and 10/a) can be
calculated. Comparing the actual partial correlation coefficient with the
previous lim it value, independence/interdependence between the variables in-
volved with special regard to the multiple relation can be qualified.
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To illustrate the methodological results summarized above Fig. 1
shows three-variable relationships

(9/b)
and
(10/b)

the application of which will be discussed below.

Number of excess data-groups in the
sample (degrees of freedom) j m

Fig. 1. The partial correlation coefficient as a function of the degrees of free-
dom; the parameters are: significance level of no-correlation and func-
tional relation; serving for qualification of interdependence (upper tri-
angle; tip downward) and independence (lower triangle; tip upward), res-
pectively, between the variables involved
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4. QUALIFICATION CF INTERDEPENDENCE

The graphs of Egs (9/a,b) and (10/a,b) applying =5 % (x*=1.96)
as the characteristic third parameter—Ilike diagonals —divide the O"JrJ"I
and 0i*m<+ < rectangular field of Fig. 1 in four subfields resembling
triangles. The upper triangle (with tip downwards) serves for qualification
of interdependence (between the dependent variable and any of the independ-
ent variables).

The triangular subfield for interdependence qualification is bounded
from the left by no-correlation relations of various significance levels
and from the right by functional relations again of various significance
levels. The highest significance level of no-correlation indicated here is
jDfiro = 5 % because —as it has been mentioned previously —no-correlation
will be practically certain if the significance level exceeds 5 % and this
is irrelevant in the case of interdependence qualification. Similarly, the
lowest significance level of functional relation is also 5 % because func-
tional relation will be at least doubtful if the significance level is lower
than 5 % If the limit significance level of no-correlation decreases and/or
that of functional relation increases, the triangular subfield of interde-
pendence qualification will shift to the right and upwards, indicating a
closer stochastic linear interdependence between the variables involved.

For practical application of interdependence qualification, the
following steps shall be considered:

—decision shall be mede in advance concerning limit significance
level of

= no-correlation: maximum 5 % and the lower the value, the
closer the interdependence; and simultaneously

= functional relation: minimum 5 % and the higher the value, the
closer the interdependence;

—using the actual empirical multiple partial correlation coeffi-
cient, Ry , between the dependent variable and any of the independent var-
iables

= the actual standard abscissa (x“gj EQ.9) and the relevant actu->
al significance level (£~rg; Eq.ll) of no-correlation shall be calculated;
and if

NrO actual » "NrO lim it

135



HANKU, Z.

the condition for no-correlation of interdependence will be fulfilled; and
simultaneously

= the actual standard abscissa (x”; EQ.10) and the relevant ac-
tual significance level (E~rl; Eq.ll) of functional relation shall be calcu-
lated; and if

PNrl actual > pNO lim it

the condition for functional relation of interdependence will be fulfilled.

As can be seen from the foregoing, if the actual significance level
of no-correlation relation tends to zero, and simultaneously, that of func-
tional relation to unity, the stochastic linear interdependence of the var-
iables involved will tend to deterministic interdependence; and as a result,
the necessary number of the excess data-groups will tend to infinite.

5. QUALIFICATION CF INDEPENDENCE

The lower triangle (with tip upwards) in Fig. 1 serves for qualifi-
cation of independence (for any pair of the independent variables).

The triangular subfield for independence qualification is bounded
from the left by functional relations of various significance levels and
from the right by no-correlation relations again of various significance
levels. Here the highest significance level of functional relation is
= 5 9% because functional relation will be practically certain if the sig-
nificance level exceeds 5 % land this is irrelevant in case of independence
gualification. Similarly, the lowest significance level of no-correlation
is 5 % because no-correlation relation will be at least doubtful if the
significance level is lower than 5 X If the lim it significance level of
functional relation decreases and/or that of no-correlation relation in-
creases, the triangular subfield of independence qualification will shift,
to the right and downwards, indicating a closer stochastic linear indepen-
dence between the variables involved.

For practical application of independence qualification, the fol-
lowing steps shall be considered:

—decision shall be made in advance concerning lim it significance
level of
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= functional relation: maxmum 5 % and the lower the value, the
closer the independence; and simultaneously

= no-correlation: minimum 5 % and the higher the value, the
closer the independence;

—using the actual empirical multiple partial correlation coeffi-

cient, R , for any pair of the independent variables

= the actual standard abscissa (Xw! Eg. 10) and the relevant ac-
tual significance level (E*rp Eg ) of functional relation shall be calcu-
lated; and if

Nl actual ~ ~Nrl limit
the condition for functional relation of independence will be fulfilled; and
simultaneously
= the actual standard abscissa (x“q; Eq. 9) and the relevant ac-
tual significance level Eqg. 11) of no-correlation relation shall be
calculated; and if

NrO actual ANrO lim it
the condition for no-correlation relation of independence will be fulfilled.
As can be seen from the foregoing, if the actual significance level
of functional relation tends to zero, and simultaneously, that of no-corre-
lation relation to unity, then the stochastic linear independence of the
variables involved will tend to deterministic independence; and as a result,
the necessary number of the excess data-groups will tend to infinite.

6. QONTRADICTCRY QUALIFICATION

As illustrated in Fig. 1, the upper and lower triangular subfields
serving for interdependence and independence qualification, respectively,
are only a small part of the total rectangular jRJ 4 mfield. The two remain-
ing triangular subfields on the left and right (the tips of which pointing
in opposite direction and touching each other horizontally) are contradic-
tory subfields.

The le ft subfield is bounded from above by no-correlation relation
the significance level of which exceeds 5 % and from below by functional
relation the significance level of which also exceeds 5% As it has been
mentioned earlier, if the significance level exceeds 5 %then the realiza-
tion of the hypothesis will be practically certain. The relation between the
pair of variables, characterized byJR}IM- m coordinates, falling within this
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subfield, is contradictory because from above significant no-correlation
(independence) and from below significant functional relation (interdepen-
dence) are indicated.

Similarly, the right subfield is also contradictory. From above it
is bounded by functional relation the significance level of which is lower
than 5 % and from below by no-correlation relation the significance level
of which is also lower than 5 % As is known, if the significance level of
the hypothesis test is lower than 5 % then the realization of the hypo-
thesis will be doubtful and if it is lower than 0.1 % the realization will
be practically impossible. The relation between the variables of any pair,
characterized byj R m coordinates, falling within this subfield is, there-
fore, contradictory, because from above a doubtful/impossible functional re-
lation (which is really independence) and from below a doubtful/impossible
no-correlation relation (which is really interdependence) are indicated.

The contradictory qualification can be attributed to three main
causes :

—the mathematical form of the multiple linear regression relation
is a very rough numerical approximation to the cause-and-effect chain which
is intended to be described by it (the joint distribution of the sample dif-
fering roughly from normal distribution);

—the sample of one or both of the two variables involved is statis-
tically inadequate because e.g.

=the elements of the relevant sample are not independent, or ho-
mogeneous, or neither,

=the elements of the sample carry systematic error (trend-like
or periodic), etc.

—the number of the excess data-groups is very far from optimum.

To avoid contradictory qualification, different methods can be ap-
plied, depending on the cause of the disadvantageous result.

To avoid an inadequate mathematical form, it is advisable to derive
the form of the regression relation so as to start from the mathematical de-
scription of the phenomenon, and if there is no linear relation between (any
of) the variables, then some transformation or power series can be adopted.

The independence and homogeneity of the sample elements must always
be checked in advance. Adequate statistical methods are available for this
purpose, and for removal of systematic errors from the sample.

As can also be seen in Fig. 1, the optimum number of excess data-
groups can be found at the cross-point of no-correlation and functional re-
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lation the significance levels of which have been adopted as limits. E.g. in
case of interdependence qualification: if £°rg ~mit; = 0.1 %and Aim it=
=5 %are adopted, then AOpx~TuT = 27 §- 28; or in case of independence qua-
lification: if £4r1 = 0.1 %and £4r0 5 %are applied, then ﬂéptimum
=30-31.

Thus, because the limits adopted above are most advisable in prac-
tice, it can be said that the optimum number of the excess data-groups is
about 29. It follows from the foregoing that the minimum number of the ex-
cess data-groups equals 11 (the corresponding partial correlation coeffi-
cient equals unity in case of interdependence while zero in case of inde-
pendence). In case the above boundary conditions are adopted, the triangular
subfields of interdependence and independence qualification, respectively,
are not touching each other with their tips but there is a "white gap" be-
tween these two subfields the magnitude of which is aboutAjRj = 0.753-0.474=
= 0.279, and Am = (3027) —(31-28) = 3; thus the contradictory subfield is
extended.

7. EXAVALE

An example is given below to illustrate the application of the qua-
lification method introduced. Vagas |. /3/ has elaborated multiple linear
regression relations for flood forecasting purposes for various cross-sec-
tions of the Tisza River and her tributaries in Hungary. Among these there
is a quadruple linear regression relation for estimating the expected value
of flood level in the Szeged cross-section of the Tisza River. In his paper
he has also published the quadruple data-groups of 31 floods observed be-
tween 1876 and 1979. These data will be used here for illustrating the qua-
lification method.

The general form of the quadruple linear regression relation adopted

Yoj YrvoxTi-vo WM v+ bysesi xsy
where Y~ = expected flood level (gage reading) for Tisza River at Szeged,
Y = sample mean of the observed reading peaks for Tisza River at Szeged,
Xjj = reading peak at Tokaj (up-stream) cross-section of Tisza River, X =
sample mean of the observed reading peaks at Tokaj for Tisza River, =
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reading at Mako cross-section for the Maros River (tributary of the Tisza
River), mede simultaneously with the Tokaj reading, = sample mean of the
observed readings at Maké for Maros River, = the lowest reading which
preceded the actual flood at Szeged for Tisza River, Xg = sample mean of
the observed lowest readings preceding the floods at Szeged for Tisza River.

Using the sample consisting of n(v+Il) = 31(3+1) = 124 elements, the
six different empirical total correlation coefficients, _r, have been calcu-
lated for use in formulating the guadruple extended correlation matrix,
(Table 2). The sample mean and variance of each variable have also been in-
corporated in this table.

Table 2. Quadruple extended correlation matrix

ly 6 =L6y
Y Y *T *M -S

6 0 1 2 O=
Y 0 1 0.456 322 0.659 84 0.539 480
T 1 0.456 322 1 -0.221 989 0.099 780
M 2 0.659 804 -0.221 989 1 0.273 517
59 V=3 0.539 480 0.099 780 0.273 517 1
sample

mean 822.5806 768.8065 400.8710 660.6452

lem/
variance

lcm2/ 3354.39 4763.34 9712.41 11380.23

Table 3 illustrates the result of the inversion procedure of the correla-
tion matrix, the inverse subdeterminant matrix,(i~"; and the matrix product
of the two previous matrices, the unit matrix, which shows that the
inversion procedure is correct within an acceptable limit of calculation er-
ror.
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Table 3. Quadruple inverse matrix and unit matrix

fiyb
£ £
v -7 —M 5

Y 0 9.19287 -5.38408 -6.54047 -2.63322
_T 1 -5.38408 4.26391 412258 1.35425
oM 2 -6.54047 4.12258 5.81289 1.52718
-s v=3 -2.63322 1.35425 1.52718 1.86773
Y 0 1 -4.76x10'7 5.96x10"® -1.19x10-7
AT 1 3.87xI0~7 0.999999 -3.58X10"7 -2.23X10"7
M 2 -2.98xl0~7 -3.87xl0~7 1 0
s V= -7.15X10"7 0 1.19xI0"7 1

The results of the qualification calculations are summarized in Tables 4
and 5. Table 4 illustrates the results for interdependence qualifications,
and Table 5 can be used for independence qualifications; and both tables
contain the results of both bivariable and fouar-variable relations.

First the bivariable results should be discussed. With the various
bivariable actual significance levels in Table 4 checked, it can be seen
that none of the ¥YXy bivariable relations shows acceptable interdepen-
dence (each £°rQ exceeds 0.1 %and each is less than 5 %). With the
various bivariable actual significance levels in Table 5 checked, it can be
seen that each Xy —X$ bivariable relation shows significant independence
(each is less than 0.1 %and each significantly exceeds 5 %).

Using the quadruple linear regression relation, the significance
level within each pair of the variables shows a characteristic modification.
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Table 4. Qualification of interdependence

Conditions for acceptable interdependence (lim it significance levels)

EMO <01 % and P~ rl 2.5 %

Pairs of variables v-xT Y Y Ze
bi- £ 0.456 322 0.659 804 0.539 480
vari- - np 1.835 816 2.840 561 2.222 328
able IO 6.64 % 0.45 % 2.63 %
=29 ANL 3.290 343 2.438 008 2.945 345

AN 0.10 X 1.48 % 0.32 %
four- R 0.862 703 0.894 720 0.635 484
vari- Yo 4.000 301 4.244 956 2.613 655
able £HIr0 0.01 % 0.00 % 0.90 %
=27 o 1.410 719 1.224 848 2.453 110

AN 15.83 % 22.06 % 142 %

Table 5. Qualification of independence

Conditions for acceptable independence (lim it significance levels):

fiNrO - 5% and £Nri < O-1 %

Pairs of variables x1_%m T -5 Am-* s
bi-

T -0.221 989 0.099 780 0.273 517
vari- ano 0.855 919 0.380 900 1.061 565
able o\ 39.20 % 70.33 % 28.84 %
M2 aNp 4.296 929 4.872 147 4.067 329

*Nrl 0.00 % 0.00 % 0.00 %
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Table 5. (continued)

Pairs of variables

*T-*y -T -S
four- R -0.830 708 -0.481 412 -0.463 486
vari- ANO 3.771 440 1.881 169 1.802 509
able ANIO 0.02 % 5.99 % 7.15 %
27 4l 1.580 122 3.074 363 3.146 141
AN 11.41 % 0.21 % 0.17 %

The interdependence (Table 4) within the pairs of Y-Xy and Y-X* is signif-
icant (EjgrQis less than 0.1 %and £yjry significantly exceeds 5 %), while
the interdependence of the Y-Xg pair is doubtful (0.1 %<”* "< 1 %and

5 % A»| 9%). The independence (Table 5) within the pairs of Xy—Xg and
XrXg is more or less acceptable (p~g exceeds 5 %and jpty is slightly
more than 0.1 %instead of being less), while the independence of Xy—X" is
completely unacceptable because this relation shows a significant interde-
pendence (Ey|rg is less then 0.1 %and £yjrg exceeds significantly 5 %).

In spite of the unsuccessful qualification results, the closeness
of the quadruple relation and the goodness of the expected dependent vari-
able is also showmn as an illustration.

The empirical quadruple correlation coefficient (Eq.7), RM| =
= 0.944 0445 indicates a very close stochastic linear interdependence be-
tween the dependent variable and the independent variables; and this is al-
so proved by the significance levels of no-correlation, £yrg, and function-
al relation, Pyjry, respectively (£ylrg is practically zero and £yjry = 37.80%,
and these indicate significant interdependence).

The empirical corrected (unbiassed) residual scatter of the rela-
tion (Eq.8) serves for calculation of the confidence interval(s) of partic-
ular risk-probability, indicating the goodness of the conditional expected
value of the dependent variable. Thus the residual scatter, aoy = - 20.5cm,
and the calculated confidence interval of 5 %risk-probability, 1.96 oQ =
= - 40 cm, shall be applied. This uncertainty indicates not only large re-
sidual scatter but also (in consequence of the foregoing) an unacceptable
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result in forecasting flood level.

For correct reference it shall be mentioned that according to Vagas
and Simady /4/, this quadruple linear regression relation is only a rough ap-
proximation to the physical phenomenon, and they do not advise to use it for
practical forecasting purposes. In consequence of this statement, the cause-
effect chain has not been mathematically checked; and because the number of
excess data-groups is almost optimum, only the statistical adequacy of the
sample had to be checked. The result of this investigation showed that the
homogeneity of the sample was also questionable.

8. CONCLUSION AND RECOMVENDATION

In case the use of a multiple linear regression relation for numer-
ical interpretation of a phenomenon is intended, the following recommenda-
tions shall be taken into consideration:

(@) It is advisable to try to derive the mathematical form (at least
approximately) from the phenomenon itself to find the type of relationship
between the variables involved. If the relationship between the variables
is other than linear, the use of transformation or power series, etc. can
help in linearizing the original relationship.

(b) The sample elements shall be checked statistically for independ-
ence and homogeneity, and the systematic errors shall be removed from them.

(c) It shall be checked whether the joint distribution of the sam
ple be reliably approximated by normal distribution (at least the marginal
distributions should be checked).

(d) The lim it significance levels of no-correlation and functional
relation, respectively, both for qualification of interdependence between
the dependent variable and any of the independent variables, and for quali-
fication of independence within any pair of the independent variables, shall
be decided in advance. It is advisable to use 0.1 %as limit significance
level for

—no-correlation, £2rQ in case of interdependence qualification and

—functional relation, B*rp in case of independence qualification.

The lim it significance level of functional relation, £rp in case
of interdependence qualification and that of no-correlation, £4rQ in case
of independence qualification must equal or exceed 5 % The actual value to
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be selected as limit depends on the subject of investigation (Fig. 1).

(e) The sample consisting of n(v+1) elements (g = number of data-
groups, v= number of independent variables) involves v( v +1)/2 empirical
total correlation coefficients. These serve for formulation of the multiple
extended correlation matrix (Table 1) the inverse of which is the subdeter-
minant matrix; and of which the empirical partial correlation coefficients
within any pair of the variables (Eq.4) can be calculated. Using Egs(9),
(10) and (11), the actual significance level of no-correlation and that of
functional relation can be calculated in case of both interdependence (be-
tween the dependent variable and any of the independent variables) and in-
dependence (within any pair of independent variables) qualification. It can
be decided whether the variables are interdependent/independent by compari-
son of the actual and lim it significance levels.

(f) If the qualification of both interdependence and independence
proves to be acceptable, then the closeness of the relation can be checked
by the multiple correlation coefficient, JR"j, using Eq.(7); the residual
scatter of the expected value of the dependent variable can be estimated on
the basis of EQ.(8), and this can serve for estimating the confidence inter-
val of the expected value of the dependent variable. For calculating the em
pirical regression coefficients, b , Eq.(2) can be used and thus the nu-
merical multiple linear regression relation (Eq.l) can be formulated.

REFERENCES

1. Korn, G.A. —Korn, T.M.: Mathematical Handbook for Scientists and Engi-
neers. 2nd ed., McGraw-Hill, New York, Toronto, London 1970.

2. Alcock, D.: lllustrating Basic. Syndicate of the Cambridge University Press;
Cambridge 1977.

3. Vagas, |.: Gage Relation Methods of Flood Forecasting (in Hungarian); Hidro-
l6giai Kozlony, Budapest 1980/11.

4. Vagas, |. —Simady, B.: The methods and results of flood forecasting devel-
oped at Szeged (in Hungarian). Vizlgyi Kodzlemények, Budapest 1983/3.

145






Acta Technica Acad.Sei.Hung.,99(1—2),pp.147—161 (1986)

ELASTIC MBVBRANES REINFORCED BY CORDS
NONLINEAR AXISYMVETRIC DEFORMATION WITH TWIST

Maria Matsikoudi-lliopoulou*

(Received 25 September 1985)

In this paper we develop the equations of axisymmetric defor-
mation of an initially cylindrical membrane composed of an elastic
homogeneous, isotropic and incompressible material possessing a
strain energy function of Mooney-Rivlin type. The membrane is rein-
forced by perfectly flexible and inextensible helicoidal cords.
Application to a specific boundary-value problem is also given.

NOTATION

underformed surface metric tensor
deformed surface metric tensor

second fundamental form

surface coordinates

Cristoffel symbols

underformed radius

deformed radius

underformed polar angle

deformed polar angle

arc length of the underformed meridian
arc length of the deformed meridian
axial coordinate of the underformed state
axial coordinate of the deformed state
angular displacement

constant angle subtended by the cords with the
generators of the underformed membrane

element of length of the underformed membrane
element of length of the deformed membrane

angle subtended by ds with the generator of
the underformed membrane

angle subtended by ds with the generator of the
deformed membrane

angle subtended by the cords with the meridian
of the deformed membrane

*M. Matsikoudi-lliopoulou, School of Technology, Division of Applied
Mechanics, Aristotle University of Thessaloniki, GR-540 06 Thessaloniki, Greece
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angle subtended by the cords with the merid-
ian of the deformed membrane expressed in
degrees

components of stress tensor

the tension in the cords

strain energy function

strain invariants

physical stress-resultants
non-dimensional stress-resultant
normal pressure

distance between adjacent cords in the under-
formed membrane

height of the underformed membrane
height of the deformed membrane

angle between the tangent to the meridian
and the axis of symmetry

1. INTRODUCTION

The theory of large elastic deformations of reinforced membranes
was developed by J.E. Adkins and R.S. Rivlin /1/ and /2/ who also obtained
the solutions to a number of boundary-value problems. Most of these solu-
tions are outlined by A.E. Green and J.E. Adkins /3/ who give references to
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original sources. Many other authors have given solutions to a number of
specific problems of reinforced elastic solids. Apart from their theoretical
interest, the deformation of reinforced solids has a technological interest
as well, since reinforcement by inextensible cords form a common feature of
such manufactured articles, as pneumatic tyres and hose-pipes.

In this paper we considered the axisymmetric deformations of circu-
lar cylindrical membranes reinforced by a family of flexible and inextensi-
ble helicoidal cords. We assume that the cords form a constant angle with
the generators of the underformed cylinder. We also assume that no two cords
are brought into contact as a result of the deformation. In section 2 we
define "axisymmetric deformation with twist" and study the geometry of the
deformation. In section 3 we derive the equations of motion and the consti-
tutive equations for an elastic, isotropic body, made of Mooney-Rivlin mate-
rial and reinforced by one family of perfectly flexible and inextensible
cords. Subsequently, we derive the solution of a circular cylindrical mem
brane sealed at each end by rigid plugs. In section 4 we develop a numeri-
cal method for the solution of the equations of section 3 and discuss a
number of numerical examples.

2. FINITE AXISYMVETRIC DEFCRVATIONS WTH TWIST CGF ELASTIC MEVBRANES

We define as "Axisymmetric deformation with twist" the deformations
in which i) b6th the deformed and underformed membranes are surfaces of re-
volution, ii) points of constant latitude retain this property but change
their angular position and iii) the stretch along and in the direction of a
latitude circle remains constant. It is assumed that the meridian C gener-
ating the deformed membrane does not intersect the axis of symmetry.

In this paper we consider a membrane as a two dimensional body.

The deformation is described with respect to a fixed cylindrical
coordinate system. We denote (R, 0,Y) the coordinates in the underformed
configuration of a point which has coordinates (r,¢,y) in the deformed
state. The y-axis coincides with the axis of symmetry of the membrane. If
we denote by n and Cthe arc length of the underformed and deformed merid-
ians respectively, we can easily prove that, in the kind of deformation
treated here we have the relations:
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r=r( ¢),
y =y(¢), (2.1)
wW=0+g( £ )

where g is the angular displacement due to the presence of the cords and
possibly an external torque.

We will assume that the curvilinear surface coordinates u” coincide
with the orthogonal system 0, G

in the deformed membrane so that ul =
and u =

C . The position vector of a particle of the deformed membrane,
is given by (Fig. 1).

Fig. 1. Surface of revolution defining deformed membrane

rturu2) =y( C)T2 + r( ¢ )T3( -0)

(2.2)
Introducing the notation
(2.3)
we find the deformed surface metric tensor
2 0 "r'2 0
a (2.4)
aBp o 1 0
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and the second fundamental form

t\N TN 0

(2.5)
0 LRI

The only non zero Christoffel symbols are given by

1 =T Tt (2.6)

Using capital letters for the underformed state, the position vector of the
corresponding particle of the underformed membrane is given by

iT(uV) =Y(C)T_+ R(C)T,(E,¢c ) (2.7)

For this coordinate system we find that the surface metric tensor of the
underformed state is

R -R2g’

? (2.8)
-R2g’ (Rg’'2+ Y'2 + R2)

(I/IR2) + g’2/(R’2 +Y 2) g'/[(R'2+Y'2)
(2.9)
g'/(R 2+ Y'2) 1/(R'2 + Y2
A r2(Y>2 + R>2)

3. GANERAL EQUATIONS

W consider the axisymmetric deformation with twist, of an initially
circular cylindrical membrane, composed of an elastic Mooney-Rivlin materi-
al, reinforced by one family of inextensible cords. W assume that the
cords form a constant angle with the generators of the underformed membrane.

W observe that in the coordinate system considered, R = const.,
since the underformed state is cylindrical.

Let the elements of length in the underformed and deformed configu-
ration be denoted by dsQ and ds respectively. Let y and 6 be the angle sub-
tended by dsQand ds respectively, with the generator of the underformed
and deformed membrane. If dn and df are the elements of length of the
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underformed and deformed meridians respectively, we can easily obtain

whence

ds )/Z - 02052 v+ xzfsi'n y +quq cos )’5'2 (3.2)

where we have used Egs (2.1)-j and the notation
N=d£/dn , x=1r1/R (3.3)

Let be the angle subtended by the cords with the meridian of the de-
formed state. Then, since dsO and ds are elements of an inextensible cord
for y=a and &=Db, we have ds =ds". Eq. (3.2) reduces to

i 2cos2a + X (sin a+R cos a)2=1. (3.4)

From the above equation and because
cosb =Hcos a (3.5)
we find that
sinb = x(sina + R"3. cosa) . (3.6)

The components of stress tensor of a reinforced membrane can be re-
solved into two parts

nBp  =n,Bp +n" Bp (3.7)

where n’Bp is due to the tension in the cords and n’'RBp is due to the
deformation of the elastic materials and can be expressed in terms of the
strain energy function W

The n’ Sp components were found by A.D. Kydoniefs /4/ and the n” [P
components for a Mooney-Rivlin membrane with strain energy function
W= Cr"G-j—33uT"- 3) were found by M lliopoulou /5/.

The physical stress-resultants per unit length of the deformed
membrane are

Mu»=rn , nN2)=n , n”™ =rm . (3.8)
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Using Egs (3.3) and introducing the notation
z= (/IR , dgdz =w (2) , (3.9)

the above non-dimensional stress-resultants take the form

Azxg

where

and g denotes the distances between adjacent cords in the underformed nem
brane. The first term of each of Egs (3.10) are the components due to the
tension in the cords, while the rest of them are due to the deformation of
the elastic material.

The equations of equilibrium due to surface forces p, per unit de-
formed area normal to the deformed membrane are

0,
(3.12)
3Bp

Using Egs (2.5), (2.6), (3.3), (3.11) and the equation of Mainardi-
Codazzi, introducing the non-dimensional notation

X= pRI2C1 , (3.13)

and taking into account the fact that P is independent of , equations
(3.12)~ for RB= 2 and (3.12)2 yield

d(xn2)

x =n. (3.14)
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nlcos a d(cos a) ,
_____ — + " dx ' = X e

Here o denotes the angle subtended by the tangent to the meridian of the
deformed membrane and the axis of symmetry.
From Egs (3.12)» for B =1 by integration we derive

= 2 (3.15)

where D is a non-dimensional integration constant.
The resultant torque that should be applied as an external load to
balance the distribution of n® and the end sections is equal to (see Ref.

/51).
12
2 - = 2ftr*(0)M2(~0>- 2i Rx2(o)n3(0) . (3.16)

In this paper we will examine the problem in the absence of external torque.
Thus, from (3.16) and (3.15) we find that

D=0, n-j(x) =0. (3.17)

Let us now consider the deformation under uniform internal pressure
p. Then from Egs (3.10)* we find

w X £

= A (3.18)
T hl/2 cosad +£2)<2

where

is the non-dimensional tension in the cords and

\/ Gcos a. (3.20)

From Egs (3.4) using Egs (3.3)", (3.9 and (3.9)2 we find

| 2cos?a + xz(sina +u)|cosa)2 =1. (3.21)
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From the above equation and (3.20) we obtain

h1/2 tana
xilcos a (3.22)

Substituting (3.18) and (3.22) into (3.10)" and (3.10)2 we find

Differentiating Egs (3.23) and substituting this result together with n*
from (3.24) into Egs (3.14)" after some lengthy algebra we find

sin a T % T X ,,14(";2A_2rcos72a)sin a ., R 3 -
-------- e T~ oo T~T + e 7— + A A ) m
"h1‘79005 a x'x  Ecosza xFSrTr? Cos « X 10T dosza

(3.25)

Thus, we have reduced the constitutive equations, together with the
differential equations of equilibrium to a first order differential equa-
tion.

Let us now consider the following problem. A cylindrical membrane
with initial length 2Lg and initial radius R sealed at both ends by rigid
plugs of radius R, is subjected to an axisymmetric deformation with twist
due to uniform internal pressure p. Since the deformed membrane is symmetric
about the plane of y2 = 0 we consider only the upper half of the membrane

(Fig. ii.
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locus of §=0

Fig. 2. Forces in y~direction subjected to the upper half of the

deformed membrane

From the conditions of equilibrium of the forces in y2~direction we obtain

for z = 0 that
20y *%0O
The boundary conditions for this problem at z = 0 are
sina(Q) =0,
n20) X%
while at z = s/R we have
X(s/R) =1 .

From the two equations (3.14) we can derive

d(xn2cos a)
dx = Xx

Integrating the above equation, for constant pressure A, we find

XxB
cos &= ~2xiiT~
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where B is an integration constant. Because for z =0, a = 0, taking into
account (3.27)2 we conclude that B = 0. Substituting 2 from Egs (3.23) in
(3.30) we find

From this equation with the boundary conditions z =0, cosa = 1, we can
derive

X g( A(Ql)ﬁJSIa 3 1 3o +.rr( g(o) _____ ; “l . .
x(0)bX/?"(0) x4yoHwuo0) X4(o);|L/?0)COSAa
- 1 + 2sina sin a A
X"(0)S.A(0)costa  x"(0)h""(0)8-(0)cos” a  x"(0)8.(0)b (o)
(3.32)

From Fig. (3.1) and Egs (3.3), (3.9) it follows that the non-dimen-
sional underformed and deformed length of the membrane and the angular dis-
placement due to twist are respectively

(3.33)
(3.34)

ox
a;ino (3.35)

x(0)

Negative sign is chosen because x is a decreasing function of z.
4. NUVERCAL BEXAVPLES

W solve the differential Egs (3.25) with the associated boundary
conditions (3.27) and (3.28) numerically. The heights of the underformed
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and deformed membrane and the angular displacement g are given by Egs (3.33),
(3.34) and (3.35). The tension in the cords is given by Egs (3.18) and the
stress-resultants by Egs (3.10).

W consider that the constant angle subtended by the cords with the
generators of the underformed menbrane is a=it/3. The angle b that the
cords make with the meridian of the deformed membrane using (3.5) and (3.6)
is given by Eq. (3.20) as

sinb 12 1-9%cos? al (4.1)
From the above equation it is obvious that the value of A should not exceed
2 for the given angle a =1/3, because in that case the cords would become
parallel to the axis of rotation.
The following data were considered in our computer program:

(i) r=0.2, a=it/3, A=20, 2.2, 2.4, 2.6, 2.8, 3.0.

The results for these data are shown in Figs 3 and 4.

Fig, 3. Deformed radius, x(0), at z = 0 us. underformed height
of the membrane, L /R, for T=0.2 and a= b/3

Fig. 4. Maximum tension in the cords us. underformed height
of the membrane, L /R, for T=g.2 and a=ir/3
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Figure 3 has been produced from Fig. 11 by reassigning the

two axis ( A, x(0)) and using the underformed height as a parameter. The
meximum tension in the cords develops at z = 0.
(i) r=0.2, a=n/3, LOR =3, X= 2.6.

The results of these data are shown in Figs 5., 6., 7., 8. and 9

Fig. 5. Distance from the surface z = 0, Y/R, us. stress resultant n, for
= 0.2, a=ir/3, LR =3 and A=26

Distance from the surface z = 0, Y/R,
r=0.2,

Fip. 6.

us. stress resultant n, for
a=11/3, L/R =3 and A= 2.6

Fig. 7. Distance fromthe surface z =0, Y/R, us. tension in the cords, T,
for T=0.2, a=w«/3,Lo/R =3 and \= 2.6
Fig. 8. Distance from surface z =0, Y/R, us.
r=0.2,

angular displacement, g, for
a=it/3, LR =3 and X=26
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bo
Fig. 9. Distance from surface z = 0, Y/R, us. the angle subtended by the

cords with the meridian cf the deformed membrane expressed in
degrees, b°, for I'= 0.2, a=11/3, Lg/R =3 and X= 2.6

(iii) r=10.2, a=-n/3, Lo/R =3, x(0) =15, 2, 3, 5.
The results of these data are shown in Fig 10.

Fig. 10. Upper right quarter of the deformed meridians for ' = 0.2, a=ir/3
LOR =3

The solution of the problem is subjected to the following constraints:

(1) The stress-resultants n*, and the tension T in the cords must be
positive.
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(2) The value of h = 1-&%cos®a must be positive in order to yield real

values of the quantities considered here. This constrain limits the ex-
tend of the curves shown in Fig. 11.

Fig. 11. Deformed radius, x(0), at z = 0, us. pressure, A, for L /R = 1,
1, 5 2, 3, 4, 5

For instance, for the value of the underformed length Lg/R = 2, the pressure
factor A cannot exceed 9.652 and for Lg/R = 4 it cannot exceed 5.868. At
these limiting values of the pressure factor A, the value of &tends to 2
and from Egs (4.1) the value of the angle b that the cords subtend with the
meridian of the deformed membrane, is almost zero.
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ANALYSIS CF A A.CSED CIRCUIT CRYOGENC WIND-TUNNEL
B. Palancz*

(Received 24 May 1985)

An analysis focusing on heat and mass transfer processes of
the steady-state and transient performance of a closed circuit cry-
ogenic wind-tunnel, in which the recycled tunnel gas is cooled down
by liguid nitrogen injection, is presented. A simplified mathemati-
cal model is developed in order to determine the relation between
LN, injection rate and the distribution of gas temperature as well
aszLN, concentration along the tunnel circuit. Optimal steady-state
characterized by the tunnel wall temperature, at which the total
cost of the process is minimum can be defined. Stability condition
developed from linear dynamical analysis indicates the possibility
of instability caused by recycling flow. The findings of this anal-
ysis can be applied to other types of cryogenic closed cooling
circuits, too.

SYWBOLS

cost coefficient ($ kg *s)
cross-sectional area (m )
evaporation surface of droplets (m )
cost coefficient (i)

LN2 concentration (kg m'§
specific heat capacity of GN2 at constant

pressure (kJ kg *j
droplet diameter (m)

initial droplet diameter at x = 0 (m)
surface of droplets in a control volume A dx

(m2)
number of droplets in the control volume Acdx

diameter of the tunnel (m)
dissipation coefficient (dimensionless)
total cost (%)

liquid flow rate (kg s-1)

injection rate (kg s"™)

length of the tunnel circuit (m)
droplet evaporation rate (kg m'zs'])

*B. Palancz, H-lo85 Budapest, Salétrom u. 9., Hungary
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inlet rate,of droplets for a unit of time
(number s x)

dissipation heat (W)

evaporation heat of LN2 (kJ kg~L
variable of the Laplace-transformation
time (s)

circuit time of the recycling flow in the
tunnel circuit (s)

temperature (K)

saturation temperature of N, at the opera-
tion pressure i(K)

optimal wall temperature

volumetric flow rate of gas phase ("™ s b
linear gas velocity (ms-i)

length coordinate (m)

solution vector of system (48-49)

heat transfer coefficient, between liquid
and gas phases \Wm K x)

heat transfer coefficient between gas phase
and tunnel wall (Wm- K_i)

thickness (m) or Uirac-delta
dimensionless length variables
heat,conduction coefficient of gas phase
Wn 1K L)

dynamic viscosity of gas phase (kg m~L b
kinematic viscosity (m?s' )

resolvent matrix

density (kg m

ambient
insulation
liguid phase
gas phase
wall



CLOSED CIRCUIT CRYOGENIC WIND-TUNNEL
INTRODUCTION

In the last years a worldwide effort of developing high Reynolds
number facilities using closed circuit cryogenic wind tunnels can be noted.
This concept proved to be the most promising amongst many techniques /1/.

Operational experiences with these facilities have shown, that cry-
ogenic operation of their tunnel gases is a practical method for obtaining
high Reynolds number flows without any dynamical pressure penalty and with
savings in fan power.

A cryogenic wind tunnel is an endless pressure duct of varying
cross sectional area, which has in addition to the regular components of a
closed circuit tunnel, a liquid nitrogen injection section and a gas bleed
section. In order to get the necessary low temperature in the tunnel, LNE
is injected into the tunnel circuit. The evaporating LN2 compensates the
fan power as well as the heat flow through the insulated wall of the tunnel.
This insulation of the cold test gas from the ambient presents heat gains
and associated energy waste, and improves the controllability of the pro-
cess. To maintain the tunnel resident gas —to keep the static pressure
constant in the tunnel —it is necessary to remove gaseous nitrogen (G\?)
from the circuit. A typical cryogenic closed circuit wind tunnel can be seen
in Fig. 1. LN2 is injected through the nozzles located downstream of the
fan. This arrangement utilizes the high turbulence of the flow existing be-
hind the fan and ensures a long distance for LN2 droplet evaporation before
the test section, where one phase flow and uniform velocity, temperature
and static pressure profiles are expected.

Test
section

LN2
Injection

Fig. 1. Simplified sketch of a cryogenic closed circuit wind-tunnel
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Over the past years, some very comprehensive models describing cry-
ogenic wind tunnel performance have been developed for design and control
purposes /2-4/. These models employed for process simulation embody compli-
cating features and specialities, and consequently they suffer from ele-
phantiasis. Their direct numerical realization is especially cumbersome
because of the frequently arising instability in the solution of the model
equations. Sometimes, it is difficult to find out whether these instabili-
ties are caused by an unstable integration schema or the model equations
themselves represent an unstable process.

Therefore, in real applications these models have to be considerab-
ly simplified; lumping /2/, linearization /4,5,14/, or other so-called "ad
hoc" models based on the observations of physical and numerical experiments
are used /6/.

In this paper the investigation focuses on the heat and mass trans-
fer processes taking place in a closed circuit tunnel and many special fea-
tures are neglected in order to get general information about the steady-
state and transient performances. Corrections may result from adding to the
problem such factors as variations in velocity, heat capacities, heat trans
fer coefficients, pressure drop, and radial and longitudinal mixing can be
marignal.

MODELLING

The physical hypotheses employed to formulate the mathematical mod-
el are the following:

—there is no slip between the liquid droplets and the gas flow,
liguid and gas phases have the same velocity;

—the temperature of the droplets is constant during their life -
time, and equal to the saturation temperature belonging to the circuit pres
sure ;

—the droplets are supposed to have spherical form and their diam-
eters are the sarme in a cross-section of the tunnel;

—the number of droplets is constant and they evaporate with the
same rate in a cross-section;

—the droplet evaporation is completed during one turn-round of the
gas flow, namely the droplet evaporation length is always smaller than the
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length of the tunnel,;

—volumetrical gas glow rate is considered to be constant along the
length of the tunnel circuit, droplet evaporation does not cause significant
change in gas mass or volume;

—the effect of the temperature change on gas properties, as densi-
ty, specific heat, evaporation heat etc., is neglected;

—pressure drop is neglected, pressure is supposed to be constant
and the same everywhere in the circuit;

—the cross section area of the tunnel does not vary;

—the wall temperature is constant and the sane everywhere along the
length of the tunnel,;

—the heat transfer coefficient between gas and liquid phase is con-
stant, it does not change with the droplet Reynolds number;

—the heat transfer coefficient between gas phase and tunnel wall is
constant;

—in radial direction the flow is perfectly mixed, while in longitu-
dinal direction there is no mixing at all.

Considering these assumptions the model equations can be developed
on the basis of the mass and heat balances.

The mass balance for liquid phase results

AC dx—gE- - VSde- NdAe (1)

Heat transport from gas phase to the droplets provides heat for LN\t
evaporation at saturation temperature and for the warmup to the bulk tem-
perature of the gas flow, namely

a(T-T)=N 1 +cr(T (2)

therefore the evaporation rate can be expressed as

“c(T- Te)
re + cpG(T - Te)

N = (3)

The injection rate of LN2 can be expressed by the number of droplets
entering into the tunnel through the nozzles during a time unit:

lo=n pLd 1 (4)
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The LN2 flow rate decreases in the direction of the flow because of
the evaporation of the droplets. At a given cross-section this flow rate
can be calculated as a function of the diameter of the droplets

L:ycsz (5)

Eliminating n from Egs (4) and (5), one may get for the diameter of
the droplet at an arbitrarily chosen x coordinate of length

d » < f)1/3 0123 doO (6)
0

where dQ is the droplet diameter at x = 0, in the injection section. On the
other hand, the liquid mass in a control volume Ac dx is

d3 it
cAC dx P~ dn (7

where dn is the number of droplets in the elementary control volume Ac dx.
The surface of the droplets in this volume can be expressed as

6A,
dAe:dZ itdn:ﬁ% dX. (8)

Employing Eq.(6), we obtain
dA = ifs- (Y )13 c2/3d,. 9)
PLao V

Now, the mass balance can be written in the following form

3c \Y/ 3c ac(T \Y/ 6 ,|:0a/3 2/3 0 10
pt +AC 3(+re+CmS(T_Te) dOPLA\é ) (10)

Let us introduce the following independent variables
-t -
0= and n= (11)
where t is the period time of the circuit flow

and w = (12)
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then the balance equation is

«c(T- V 6Ah /3 c2/3 , , _
(13)

30 3¢ 'e *V (,-V W °
From a computational point of view, it is preferable to use the flow
rate L, as independent variable instead of the liquid concentration c.
Considering, that

L=Vec (14)

the final form of the mass balance is

oL AL C/T.yu n
B +—p *F(TSL) = 0. (15)
where
ac(T- T) 6t
F(T.L) = o e c LL/S 12/3 (16)
re + cp(T- Te) PLdo
The heat balance for the tunnel gas is
VI '-gv £ =-V PccpG'K

«C<T - Te)dAe . dx . 17)

Considering the expression of dAg, egs (9) and (14), we obtain

5T  “c(T- V 6 L3 L2/3
L — % -
A 5X PGG PLdoV

av\Pit Q

(Tv - T)_

PRc LACPESE

Applying dimensionless variables

0 (18)
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QT +JTT + ac(T V 6Aclc 1/3 12/3

20 an w . o 11/0
V pGEpG PLdoV
a pmL
WP (T,,- 1) -e (19)
VP& G V PEG
or
oF + 2T pfy=6 (20)
where
h ' iG<T-V ] FT'D- «wO,Lc(Tw-T)-0
G(T,L) = (21)
V p GpG
The boundary conditions are
L(O,0 ) =LO(0) , (22)
T(O,0) =T(1,0) . (23)
The heat transfer coefficients can be computed from the following
formulas
heat transfer between tunnel wall and gas flow /7/
I\UW = 0.023 Re0-8 Pro-4 (24)
where
a, D
N = R WD Pr = GG (25)
w Ar

if LC < 50 D, then
1Lt 29)

(27)

otherwise
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—heat transfer coefficient between gas phase and droplets /8/

Nud = 2 , (28)
where
acdo
Nu LT (29)
The dissipation heat of the fan power can be expressed in the fol-
lowing form

Q=K pGB A . (30)
STEADY-STATE ANALYSIS

In this case the model can be reduced to the following ordinary dif-
ferential equation system

w + F(TL) =0, (31)

i +G(TL =0. (32
The boundary conditions are
L(O0) = Lo , (33)
TO) =T() . (34)
Concerning these conditions, there are two possibilities:
m Lgis prespecified, then T(0) and therefore T(l) is determined
by the model equations,
m T(0) is given and Lq is determined by the model.

Oe has to have in mind, that under normal operation conditions,
the evaporation length is short, hev« 1, therefore the numerical inte-
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gration of the coupled equations, (31), (32) must be carried out only up to

n = n ., where n., can be calculated from L( Nl CV) =0, and in practice
L < 10" Lgis a suitable condition. Thus the L = 0 condition applies for
N = h , and the heat balance can be simplified

Vpgh(bd_p + av\P HI = aV\PTT LCTW+ Q, (35)

which has the solution

Tn) =T Nevy - Tiep-(n- ey + T (36)
for nevgs n <1

and where
™ =T + (37)
aV\Pit LC
Computations were carried out for three prespecified operational
temperature, temperature in the injection cross-section, TQ = T(0) = 100,
150 and 200 K at different wall temperatures. Data used for the calculations
are shown in Table 1.

Table 1. Data used for steady-state analysis

To QG PG ac aw Tw To
(K) (kJ/kg,K) (kg/m3) (Wm 2,K) (Wm2,K) (K)
100 1.060 3.48 184.7 71.5 5
150 1.047 2.30 273.7 55.4 10
200 1.035 1.71 358.6 46.5 15
Te = 77 K, re =193 kJ/kg, D=3. m Ic = 100. m
V =50 nB/s, dQ=10~4 m PL =809 kg/m3, K = 0.

The numerical procedure was the following:

(a) guess Lg = L(0),

(b) integrate the system, Egs (31), (32) with the initial conditions
lo and TQup to n= n ev, using Runge-Kutta-Merson method with step size
control,
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(c) employing eq. (36) compute T(I),

(d) check the difference between TQ and T(l),

(e) if the difference is not small enough, start again with a modi-
fied Lg value.

For a numerical integration the use of a scheme with a changing
step-size is advised because of the rapid change of L( q ).

Figures 2 and 3 show the gas temperature and liquid flow rate dis-
tributions along the length of the tunnel at two different operational tem-
peratures, TQ = 100 and 200 K, in case of different tunnel wall tempera-
tures. These figures indicate that at lower operational temperature, the
necessary injection rate is higher, the evaporation length is longer, the
maximal temperature difference in gas phase is smaller at the same Tw—Tq
value. The increase of the value of Tiw—T has the same effect as the in-
crease of the operational temperature T , except that the droplet evapora-
tion length does not change significantly. This fact is demonstrated clear-
ly in Fig. 4.

100 -

10*3 5 102 5 101 5 1
4

Fig. 2, Gas temperature and liquid flow rate distributions along the tunnel
length at T = 100 K operation temperature in case of different wall
te mperatures
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Fig. 3. Gas temperature and liquid flew rate distributions along the tunnel
length at T = 200 K operation temperature in case of different wall
te mperatures

Figm 4. Liquid droplets evaporation length as function of the operation tempera-
ture at different values of Tv —T0
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OPTIMAL WAL TEVPERATURE

The LN2 injection rate and therefore the operation cost increases
with increasing Tw—T , while the thickness of the insulation layer and
thus the investment cost decreases. Assuming that the heat conduction coef-
ficient of the insulation is constant and the ratio of the insulation thick-
ness and the tunnel diameter small, the following heat balance can be
written for the tunnel wall

aWDu Jrc (TW- T(x)) dx :—6@\ (Ta— TW)D if LC . (38)
0 1
Here, it is also supposed, that the outside surface of the insula-
tion is nearly at the ambient temperature, T . Eq. (38) can be written in
dimensionless form:

1
Nu“F (TW—T( n)dn = Ta —TW . (39)
0
or
NUi(TW) =— B r -~ (40)
Tw “J T( n)d,
where .
Nyg = 2 W6 (41)

%

In Fig. 5. we can see Lg versus Tw, and Nu* versus Twfunctions in case of
TQ = 100 K operational temperature and at Tg = 300 K ambient temperature.
Considering, that the total cost of the process is

W =alo<V + b\Nli<V » (42)

one may find an optimal wall temperature, at which has its minimum.
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Fig. 5, Determination of the optimal wall temperature, T and the optimal
Nusselt number of the tunnel insulation, Nu-

Fig. 6. Optimal Nusselt number of the tunnel insulation versus operation temper-
ature

Figure 6 shows how the optimal insulation Nusselt-number, Nu*o depends on
the operation temperature in case of b/a = 0.2 kg/s. This figure reveals
the fact, that under TQ = 150 K the cost of the process increases rapidly
with decreasing T . On the other hand, considerable Reynolds-number increase
can be expected in this low temperature range only. The process, however is
s till cheaper than a conventional wind-tunnel yielding a similar Reynolds-
number /13/.

TRANSIENT ANALYSIS

Sufficient tunnel operation can be carried out only under tempera-
ture control in the test section located far enough from the injection sec-
tion to get uniform, one phase flow. Consequently, there is a significant
time delay between LN2 injection and its effect on the temperature in the
test section depending on the gas velocity and the evaporation process. The
other difficulty arises from the gas flow recycling because of the closed
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tunnel circuit. The recycled gas may cause positive feedback in the tempera-

therefore initiate instability.
As a first approach, linear stability condition can be given by lin -

earization of the balance equations and solving them analytically.

ture,

Let us introduce a new state variable

L' = L1/3 (43)
Then the balance equations have the form
- ' = 44
4f- + 5 *FCTly) =0 (44)
and
N *-f/] GAT-L,"Lo>-" (45)
where
F(TL?2= °c Te ~ 2, L3 _ (46)
re * cpC<T- Te> W
G(T,L',LO) » [3 [r, * CpG« - V ] F'(L")2-
g LTy T)-ad/ s po (47)
The linearized form of Egs (44) and (45) around a steady-state
solution is
(48)
T1 rLO o]
(49)

JLL  uT’ uLO‘-o

where L and T stand for the deviation from the steady-state profile and the
partial derivatives are evaluated along these steady-state solutions. That

is why they depend on T, too.
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Applying Laplace-transformation, we obtain

N A
d L(s,n) S s FI( n) L(s, n)
T
T(s, n) G(n) GI(Nn)+s T(s,n )_
F(n) LO(s) .
° (50)
(n)
o
The solution of the system is:
r n - -
L, n) = non LE0) - fsi T (k) L(s)dg
0
T(s, n) "q _T(s,0_ n c?).
0 (51;

which can be written in the form

Y(s, n) = exp M n) + nsl)j Y(s,0) - d(s, n)Lqg(s) , (52)

where
n r
0 J Fi d 1 0
M= A (53)
|G '( C)dC J GCE )dC 0 1
0 0

Let us express

ep - M) J E<u(n)  ain
(54)

> ( n ) 322(

Considering that

exp =esSn (55)

the resolvent matrix can be expressed
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n) n)
=exp £-MCn) + (nsl)j=-esn (56)

a2i( ) az22» 0)

where ou . can be directly evaluated from the elements of M(rj).

Namely /10/
A G
ep M(n)) sevz , MA 2 (57)
c A +M
’ thA 2
where
A= - (C2 + 4C23) 112 M~ Jercye >
= —j* A n C4 =-J Gy d . 58
c3 j* gl ( ~ )d gé(c)c (58)

To find vector d(s, n ), let us express the inverse of the resolvent
matrix as

or(C)  ai2( 6) T Bu( E) R12( E)
(ft V 1=esk sE
azih A AN @2on A A i"( E) R2(C}
(59)
then
n . i
(i 571 () do = b](Bn(OF
n
Gl E) Jeai(o)p
(61)
Considering that, i.e.
/| Bn (¢)F (¢clesdcg * en (n) 1+ sm(yn(n) (61)

m=l
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where
Jf On (C)F"O(C)C nu¢

en(n)=f bnU)FE (¢)d¢ ad (yn(n4

nm e*C n)
(62)
the elements of vector d are
ajts. ) = 7. uy ek [1H{ 3"
s, n) = an eik(n
oM = By 2 UH Ik e
=d*s, n) ™" i =12 (63)
The solution for the temperature is
T(s,n)= a22(n)?(s,0)e“sri +[az2( M) +d2(s,n)] LQXs) e sn . (64)

The temperature in the injection section can be determined by the
boundary condition

T(s,0) =T(s,l) =TQs) , (65)

therefore

a a (1) +d* (s,D) A

To(s> m —| ——5kR() © (66)

Then the transfer function between temperature and LN2 injection
rate is

A(s,n)y T(sn) _ d2(s,n ) +
Lo(s)

ag9l1(1) + d2(s,l 67)

1- a22(1) e b
This transfer function can be calculated as a function of n numeri-
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cally on the basis of the steady-state solution.
Keep in mind, that because

0
lim U =| and |lim =0, (68)
n—-0 0 n— 0 Ik
therefore
lim a7.(M) =0; Ilim d7(s,n) =0
n—»0 n—-~o
and (69)
lim aro(n) =1.
n—-~0

In Eq. (67) the first term represents the direct effect of the
liguid flow rate change and arises from the homogeneous solution. The second
term arises from the inhomogeneous solution, and shows the effect of the in-
jection rate change, involving cross-effects between temperature and liquid
flow rate. The third term stands for the effect of the gas flow recycling,
and the multiplier e_sn represents the time-lag between injection rate and
the change in the gas temperature at the location q.

To give stability condition for the linearized system, let us con-
sider eq. (66), in case no disturbances in the injection rate occur. Then

TQs) pL- a22()e"sj =0 (70)
which means that
TQ 0) = a22(l) fo( O - 1) , (71)

or let us consider 0—1 the time point, when the n-th lap of the gas flow
circulation has been completed, then

' m“22«) m (72)

I f laZ2X1) < 1, the disturbance in temperature at n=0, T
decreases after every turn-round and consequently the process is stabile.
If a22(l) > 1the process is unstable, because the deviation from the
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steady-state increases after every turn-round.

In our numerical example the system proved to be stable in every
considered steady-state according to this condition, 0.5< a Q) 0.7.
For lower operational temperautre a22(l) is bigger than for higher tempera-
tures. Therefore at higher temperatures the convergency of the temperature
to the steady-state after a perturbation is faster, which agrees with the
experience obtained from experiments i.e. that the increase of heat insula-
tion improves the controllability of the process /3/. In order to analyse
the relation given by Eq. (67), let us find the temperature response for
step-function input in the injection rate. If we consider the linear approx-
imation of the exponential term in Egq (61), m=l, we obtain for d*(s,n )

(73)
where
2
(74)
2
(75)
Then, the temperature response is
gl'(s, n) = a2l(n) + a20( n) +sa2l(n) +
a21(l) + a2g(l) + sa2i1(l) S]
a22(n)e — e'sn, (76)
1- a22(l)e's S
where is the change in LQY 0 ) at 0= 0. It is useful to consider T(s,n )

as a sum of four terms

(77)

where

(78)
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T2(s,n ) = a2l(n )Lie sn (79)

frson } = a2l(1) +a20(1) g9 fy YL SN (80)
s(es - a22(l))

V s>MN) = _aZ_]_.Ei__)____g__Z_gg_p_ \L_é'sn (81)
4 es - a22(l) 1

Transforming back into the time domain, we obtain

Ta(0,M) = [a2i( N) + azg(n)J L~ 1(0—1) (82)
T2(0,n ) =a2i(n™ &6(0- n) , (83)
T3(o,n ) = [a2i( N) + a2Q(n)] a22(n) Y~ dp(o—n) (84)
where
if 0< 0- n<1
940 - n) = (85)
n-1
22(1) if n< 0 - N<n+l, n=1,2,.

Employing linear approximation for the exponential term in Eq. (81),
one may get

T4(0, n) =a2l(l) a22(n)Li exp £-(1 - a2(1)(0- M)1. (86)
It can be seen, that after a finite step change in the injection
rate, L (0) =1L™ 1(0), the temperature profile converges to a new steady-

state distribution

=i = -Ld/ i =
T (n) =lim T(0,n) ™ n) + lim T(0,n)
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a2 .
=Teld(n a21(n 2 I 9 Li.(87)
(ny + ¢ (n) + a2Q(n))( 1- a22())

The condition for the convergency of the temperature profile is also
a22(1) < 1- The qualitative form of the temperature response is shown in
Fig. 7 for the case if n= const.

[ [cc2,(g)+a20(n)] ot*TOUcxya)

Fig. 7. Gas temperature response predicted by the linearized model in case of
L, i»0
t

NUVERICAL STUDY CF THE NON-LINEAR MOCH-
The dynamical behavior of the non-linear system can be studied by
numerical simulation. To solve the transient equations, egs (15) and (20)

the method of characteristics may be used (Fig. 8).
The characteristics are defined by

— =1, (88)

Along these characteristics the model equations are:

(_)r =- F(T!L) ’ (89)
dn C
(—)n =- G(TL) . (90)
dn C
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Fig. 8. The lines of characteristics
The boundary conditions are:
T(0,0)=T(0,1) , (91)
L(0 ,0) =Li(0) . (92)
The initial conditions are
T(O,n) =T.(n) , (93)
L(O,n) =LA(n) . (96)
Computations were carried out at TQ = 100 K operational temperature
when TW- To =5K
Figure 9 shows how the gas temperature in the injection section

T (0) converges to the steady-state after a perturbation of 5 K, indicating
that a~Ll) - 0.69 " 1I.
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Fig. 9. Response of the non-linear model in case of disturbance in the gas tem-
perature at the injection section

Figure 10 demonstrates the temperature transients in different cross-sec-
tions of the tunnel. The steady-state value of the injection rate was
doubled at 0= 0. It can be seen that these functions are very similar to

that predicted by the linearized model.

Fig. 10. Gas temperature response predicted by the non-linear model at different
locations of the tunnel circuit in case of doubled injection rate

In Fig. 11 the temperature distributions along the tunnel length are shown
at different time points. The temperature wave going around in the tunnel

circuit is apparent.
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Fig. Il. Gas temperature distribution along the tunnel length at different time
points in case of doubled injection rate
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Figures 12-15 show the temperature as function of time at the injec-
tion section in the case of sinusoidal input in the injection rate. The sir
nusoidal temperature response reaches its steady state in different ways ac-
cording to the relationship between the circuit frequency and the input
signal (injection rate) frequency. When the period time of the input signal

is not greater than that of the circuit, t —t* , then two cases can be
considered:
(a) t nmod t* = 0; the amplitude of the temperature response mono

onously increases (Fig. 12).

Fig. 12. Gas temperature response for sinusoidal injection rate input in case of
tC mod tln =0

(b) tc nod t*n t 0; the amplitude of the temperature response de-
creases in an oscillatory way (Fig. 13)

If t"n>1t , the possibilities are again

(c) t"\nnodt = 0; the maximnum as well as the minimum values of the
temperature response increase, and the initially asymmetrical response func-

tion becomes symmetrical (Fig. 14)
(d) t"nnodt ®O0; we get a similar response function to the one

in the case of (b) (Fig. 15).
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Fig. 13. Gas temperature response for sinusoidal injection rate input in case of
tC mod tin N0

Fig. 14. Gas temperature response for sinusoidal injection rate input in case of

tin mod tC =0

Fig. 15, Gas temperature response for sinusoidal injection rate input in case of
mod tc /0
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QONCLUSION

Steady-state and transient analysis of a cryogenic closed circuit
were presented. These analyses were based on a simplified mathematical model
focusing on the heat and mass transfer processes taking place in the tunnel.

Steady-state analysis led to a trade-off between implementation cost
(insulation thickness) and operation cost (LN2 consumption). Numerical com-
putations indicate, that stability condition evaluated from the linear
transient analysis, provides reliable information for the non-linear system
in the vicinity of a steady-state.

The model's validity can be extended to more general situations in
many ways. For example, in setting-up of model equations, constant wall
temperature was assumed, although one may consider a more general case,
namely

“e<w- T) =W TA-T) - <57>

where Kk ~ is the overall heat transfer coefficient between the tunnel gas
and the ambient.

Orne of the most important extensions can be to take the heat capac-
ities of the tunnel wall and insulation into account. If the dynamical model
is used for control design purposes around a steady-state, then these capac-
ity terms can be neglected /3/. However, when the state of the tunnel gas is
far from a steady-state, i.e. during cool-down operation, the heat capac-
ities are important factors in the calculation of the cool-down time and
the necessary LN2 consumption. Then transient heat balance equations can be
added to the model in order to calculate the transient wall temperature.
Orthogonal collocation technique resulting ordinary differential equations
is preferable /11/.

Although the physical model used for the analysis is very simple,
it proved to be fairly adequate to describe the essentials of the heat and
mass transfer in the circuit /12/. As illustration, in Table 2 one can find
the experimental values of the gas temperature versus time measured in a
pilot cryogenic low-speed TLT wind-tunnel during cool-down operation at the
German Aerospace Centre (DFVLR), Koln-Porz. The predicted values provided
by the model give good approximation.
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Table 2. Cool-down operation in a low-speed wind-tunnel /12/

Time Gas temperature at the test section
(°C)
(s)
measured predicted
0.0 22.0 22.0
194.0 10.0 11.6
271.0 6.0 7.8
376.0 2.0 3.1
541.0 -5.0 -3.6
661.0 -9.0 -7.9
842.0 -13.0 -13.7
975.0 -16.0 -17.5
1118.0 -20.0 -21.1
1275.0 -23.0 -24.6
1491.0 -26.0 -28.8
2247.0 -39.0 -39.0
2674.0 -43.0 -42.6
REFERENCES

1. Kilgore, R.A. and et. al.: "The Cryogenic Wind Tunnel Concept for High
Reynolds-number Testing”, NASA TN D-7762 (1974), Nov.

2. Balakrishna, S.i "Synthesis of a Control Model for a Liquid Nitrogen Cooled,
Closed Circuit, Cryogenic Nitrogen Wind Tunnel and Its Validation". Progress
Report, Od Dominion University, Norfolk, Virginia, (1979), Nov.

3. "Control System Study", SVERDRUP, ARO. Inc., Report 1980.

4. Palancz, B. and Kronen R.: "Mathematische Modellierung, Simulation und
Regelung Eines Kryogenen Wind-Kanals", DFVLR, WKT 21/82, KoLn-Porz 1982

5. Kraft, D.: "Optimale Steuerung eines Tieftemperatur—Windkanals" 18. Regel-
ungstechnisches Kolloquium, Boppard, West Germany, (1984), 17-18. Febr.

6. Stallings, R.L. and Lamb, M.: "A Simplified Method for Calculating Temper-
ature-Time Histories in Cryogenic Wind Tunnels"., NASA Tech. Memo.,
NASA TM X-73949, Langley R. Cent., Virginia, (1976), Dec.

7. Ciborowski, J.: "The Bases of Unit Operations" in Ch.3., Heat Transfer and
Convection, Wydawnictwa Naukowo-Techniczne, Warszawa 1969

8. Parti, M. and Palancz, B.: "Mathematical Model for Spray Drying' Chem.
Engng. Sei. 29, (1974), 355.



9.

10.

11.

12.

13.

14.

PALANCZ, B.

Palancz, B.: "Analysis of the Performance of a Liquid Nitrogen-Cooled,
Closed Circuit, Cryogenic Wind Tunnel and Its Application to the DFVLR's
3 m-Tunnel in Cologne, |., Steady-State Study" DFVLR WKT 8/80, KéIn-
Porz 1980

Bilous, 0. and Amundson, N.R.: "Chemical Reactor Stability and Sensitivity,
M., Effect of Parameters on Sensitivity of Empty Tubular Reactors", A.l.Ch.
E. Ooum. 1(1955), 513

Finlayson, B.A.: "Nonlinear Analysis in Chemical Engineering" McGraw-Hill,
New York 1980

Palancz, B., Distelrath, H.D. and Schneider, K.G.: "Determination of the
Temperature Distribution in a Cryogenic Wind-Tunnel" (Theoretical and Ex-
perimental Investigations), DFVLR, WKT 16/81, K&ln-Porz 1981

Viehweger, G.. "Kriogenisierung des Niedergeschwindigkeits-Windkanals"
KdlIn-Porz,- Spezifikationsphase-, DFVLR, WKT 11/80, KéIln-Porz 1980

Steinhauser, R.: "Reglerentwurf fiir einem Tieftemperatur-Windkanal mittels
Gutevektoroptimierung”, Dissertation, TU Karlsruhe 1984



Acta Technica Acad.Sei.Hung.,99(1—2),pp.193-214 (1986)

USE OF LOM-GRADE QDAL AS FUEL OF POAER PLANTS
K. Reményi*

(Received 24 May 1985)

All over the world in power-station practice, low-grade
fuels are being utilized. In Hungary our coals fuelled in power-
station practice have large ash- and moisture-content, while with
our lignites the xylitol of wooden structure is prevailing. On the
basis of grinding and firing investigations a hammer/fan mill with
excellent operational parameters and new types of burners providing
sound combustion have been developed.

Industry and energy policy for the period till 2000 suggests that
the national energy carrier resources be increasingly utilized.

The reducing availability of oil products for energetic uses can be
compensated first of all by increasing use of coal and nuclear energy. De-
velopment already decided in the field of coal mining necessitates that,
within the power plant capacity to be constructed in the 1990s, coal-fired
power plants be constructed. In addition to Eocene mines, the utilization of
strippable lignite resources permits additional coal-fired power plants to
be developed, a realistic version being enlargement of the Gagarin Thermal
Power Plant and construction of a new power plant in the area of Bukkabrany.
Another way to reduce hydrocarbon consumption is to substitute coal for hyd-
rocarbon in heat supply, first of all by coupled electricity generation and
heat supply in back-pressure or pass-out condensation power plants.

The rise in prices of hydrocarbons resulted in changes also in the
operation of the electric power system. The hydrocarbon fired power plants
are operated to supply heat and to comply with the schedule while the utili-
zation of existing coal fire power plants has been significantly increasing.
The coal fired power plants with old equipment in majority need moderniza-
tion and reconstruction to meet the increasing requirements.

The national energy development program is based in part on utiliza-
tion of coal resources. Therefore, new high-capacity coal fired power plants
are expected to enter the system although the time at which their capacity
adds to the present capacity is unknown for the time being.

All the world over, low-grade fuels and/or the tailings of grading

*0r.K.Reményi, H-1014 Budapest, Uri u. 38, Hungary

Akadémiai Kiad6, Budapest
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of high-grade fuels are used to fuel power plants. A fundamental condition
for economic utilization are a plant design and operating process developed
on the basis of highest theoretical knowledge in the field of fuel engineer-
ing. Recurrent and significant changes in the fuel quality make the control
of the operating process of power plants especially difficult. Like all o-
ver the world, the ratio of hydrocarbons among the fuels for power plants
was predominant also in Hungary before the early 1970s. After the rapid rise
of oil prices, the reduction of the share of oil products in energetic de-
velopment has become a fundamental point, a fact involving grave conse-
guences with respect to both oil fired and coal fired power plants.

Table 1. Total heat demand (consumption) per fuel

Coal oil Hydrocarbon Nuclear TO
1955 = 72.857
1965 127907 + 19728 + 8704 = 156.339
1975 152104 + 63885 + 52551 = 268.540
1983 159500 + 39239 + 108143 + 28715 335.597
147382
1983: Coal 456 %
Hydrocarbon 44.3 %
Oil 95 %
Nuclear 8.1 %

Table 1 shows the change of total heat demand of the power plants of
MW (Trust of Hungarian Electricity Suppliers) as well as the distribution
of heat consumption per fuel type in 1983. The ratio of coal based heat is
highest in the Table 1.

Table 2 shows the distribution of basic energy carriers used for e-
lectricity generation per type. As shown in the Table, the ratio of coal has
reduced slightly in the recent ten years, first of all due to reduction of
use of brown coal for energetic purposes, but most significant is the reduc-
tion in the utilization of oil in this period while the ratio of natural gas
has increased rapidly, a trend not welcome in the long run. Also nuclear en-
ergy, first of all to substitute for oil, entered the picture in 1983.
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Table 2. Electricity production of MVMT power plants per type of basic energy
carrier

1973 1983
GM % aM %
Brown coal for energetic
uses 5.677 32.2 5.419 22.0
Lignite 4.352 24.7 3.779 154
Black coal semi-finished
product 1.351 7.6 1.199 4.9
1 Total coal 11.380 64.5 10.397 42.3
2 Fuel oil 3.988 22.1 2.985 12.1
3 Natural gas 2.231 12.7 8.584 34.9
Total hydrocarbon 6.140 34.8 11.569 47.0
Water power 124 0.7 155 0.6
4 Nuclear energy - - 2473 10.1
Total production: 17.644 100.0 24.594 100.0

Table 3 is a summary of the changes in distribution of coal used for elec-

tricity generation and heat supply per type. Lignite and brown coal are pre-
dominant while the ratio of black coal amounts almost invariably to 12.3 %
within the total coal based heat for the year 1983.

In the recent years, the quality of coal for power plants has gone
from bad to worse. This change in quality for the larger power plants in the
country is illustrated in Table 4 while for electric power industry as a
whole in Fig. 1. Responsibility for this degradation falls upon increasing
ash content. Fuel for power plants consists of low-grade products and tail-
ings which cannot be utilized for other purposes, containing, in addition
two combustible components, large amounts of impurity and moisture.

From among the components of fuels used in power plants, the ash
content is the most crucial problem. Ash of different kinds, with rather un-
favourable consequences, is present in a high percentage in coal available
in Hungary, the ash content of the different coal types varying in the range
of 20 to 65 %depending on the conditions of mining and coal preparation
process.
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Table 3. Distribution of fuels within total electricity production and heat supply*

Year 103t TJ
1955 2.370 19.326
1965 21871 22.038
Lignite 1975 6.230 41.758
1983 7.533 50.344
1955 4.038 47.772
1965 8.247 92.204
Brown coal for energetic uses 1975 7916 90.969
1983 8.520 89.200
1955 244 4.110
1965 1.258 13.605
Black coal semi-finished 1975 1.797 19.314
product
1983 1.830 19.700
Total coal 1983 17.958 159.500
/
1955 42 1.649
1965 491 19.590
oil 1975 1.579 63.859
1983 971 39.240
1955
1965 254 8.692
Natural gas 1975 1.471 52.526
1983 3.266 108.143x
Total hydrocarbon 1983 147.382
Nuclear 1983 27.300

*0f this high-inert gas: 315 million m3 (5260 TJ)
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Table 4. Change of heat value in major coal fired power plants in the country

Lignite firing
Gagarin
November 7

Brown coal firing
Ajka
Borsod
Oroszlany
Tatabanya
Tisza |

Black coal firing
Pécs

Fig. 1.

Heat value, kO/kg

1970

6.553
9.761

11.006
10.221
11.198
12.667
10.980

10.487

1983

6.662
9.535

10.847

9.370
10.674
11.775
10.521

10.563

Average heat value of

coal plus lignite

Average heat value of

coal without lignite from
Visonta

Ratio of coal based
heat within total fuel

based heat
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Fig. 5.
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The ash content of coal results in considerable troubles in both
preparation and combustion of the fuel, as well as in the operation of the
furnace. Serious difficulties arise also in transport, comminution, ignition
of fuel, in control of the boiler, slagging, as well as in connection with
abrasion of the pulverized coal pipes and different boiler elements, and in
the system of slag removal. However, while facing all these difficulties, it
is not only the unfavourable effects of ash content that have to be taken
into consideration in evaluating the problems encountered in firing of the
fuel but, instead, the equipment shall be developed so as to take combusti-
bility, the effect of xylite in case of lignite, the properties of ash, and
the harmful effect of moisture into account in combination to create favour-
able conditions for use of low-grade coal in the fuelling process.

Fine-ground impurities, entering the furnace, affect the conditions
of ignition unfavourably, and result also in slag formation. At high temper-
atures prevailing especially in the vicinity of the burners, the fine frac-
tions reach sticking temperature and adhere to the non-cooled surfaces of
the wall.

Recently, less attention has been paid to problems resulting from
the moisture content of fuel although the difficulties in the utilization of
fuel arise as a combined effect of high ash content and moisture content.
Moisture results in problems in transport and ignition. Residual moisture in
pulverized coal entering the furnace contributes to abrasion in general, as
well as to the corrosion of the afterheater surfaces. Xylite of different
degree of decay in younger coals and in lignite, in addition to ash and
moisture, results in troubles in both grinding and firing. On the basis of
the macroscopic and microscopic character resulting from the degree of decay
and/or carbonization, four typical xylite types can be distinguished, such
as

—fibrous xylite (Fig. 2),

— "benignant" or bright xylite (Fig. 3),

—"intermediate" or dark xylite (Fig. 4),

—metaxylite (Fig. 5).

Apart from fibrous xylite occurring in reduced amounts, a common
feature of the different types of xylite is the low cellulose and high lig -
nite content, their properties indicating biological decay.

Although the tailings of the separation process contain s till a
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high percentage of components unfavourable in respect of firing after high-
grade coal has been sorted out, this material is an important and valuable
basic material for energetic uses. Thorough theoretical investigations and
high-class constructional development help to overcome difficulties result-
ing from the increasingly inferior fuel quality. Research and development
are necessary in both preparation of the fuel, and the firing process it-
self. Hungary, a country in rather unfavourable situation concerning avail-
ability of high-grade fuel, ranges among the top countries on a world scale
in respect of research and development in this field. A plant ensuring coal
preparation in accordance with the requirements of the firing process, or
stable combustion in a possibly wide range of load, can be developed on the
basis of thorough theoretical knowledge of diminution and combustion, re-
spectively.

Both the preparation, and combustion itself, of coal are fundamen-
tally determined by the behaviour of coal when burned. Accordingly, experi-
ments are run on a wide scale, from laboratory size to industrial scale.
Most up-to-date methods are used to study the combustion process. Pulsed
holography permits information to be obtained during combustion of fuels on
processes which have not been detectable earlier by the usual high-speed
filming or Schlieren process etc. The studies included observation of phenom
ena taking place in the immediate vicinity of burning coal particles, and
of changes in particle size. The holograms show sharp-cut interference rings
around the burning particle, which lead to the conclusion that spherical
wave phenomena may take place around the particle. Experiments to determine
changes in the size of powderized coal particles revealed significant dif-
ferences in the rate of dimensional changes depending on the degree of car-
bonization of the coal. Numerical relationships can be determined under
given circumstances between grain size, oxygen concentration, and ambient
temperature.

Hungarian coals of different degree of carbonization have been in-
cluded in the experiments. The coal types tested were lignite, Eocene brown
coal, and black coal, of an average particle diameter of 70yun and 140 nT.
The furnace temperature was adjusted at 850 °C and 1000 °C, the oxygen con-
tent of gas to feed combustion was 5 % and 10 % respectively. A giant pulse
was used for holographic exposure. The image applied in the course of resto-
ration permitted the size of all particles present in the space to be stud-
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ied simultaneously. Presented in Fig. 6 are the holograms obtained for the
combustion of 140yum diameter black coal particles at 1000 °C and with of
5 % from anong holograms of a large number produced in the course of the ex-
periments.

6™ hole

Combustion in flue gas

at 107e O2 concentration
and 1000°C

Initial particle diameter
125 -160 fj

5™ hole

Coal feeding from

3— hole

Fig. 6
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As an example for numerical evaluation, the dimensional change of different
coal particles with an oxygen concentration of 10 %and at a temperature of

1000 °C is diagrammatically illustrated as a function of the distance cov-
ered in Fig. 7.

Lignite ... —
Eocene brown c 0 a l---—------—-
Black coal = —eeeemeeeeee

Combustion in flue gas
at 570 02 concentration and
850 *C temperature

Initial particle diameter

125160

i Ei
3 A— 5— 6
Feeding hole No.

L
0.005 0.059 0134 0200 0.267 0.335

Combustion time , s

Fig. 7.

The coal preparation process, in particular the fineness of grind-
ing in case of pulverized-coal firing, can be determined in the knowledge of
the behaviour of coal in combustion. Preparation of coal for pulverized-coal
fired boilers takes place at coal grinding plants.

The Hungarian power plants use ball mills, roller mills, hammer
mills, and fan-type mills. Richest experience is available in operation of
fan-type mills although the special local problems of any mill type are en-
countered. Fan-type mills are most widely used for grinding of the Hungarian
brown coal and lignite.

The grinding mill is designed to grind, dry, and transport coal,
the most complex process being required for grinding lignite of high ash,
moisture, and xylite content.

For lignite from Gybdngyos, the incompatible grindability of both
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components i.e. ash and lignite can be determined in addition to moisture in
grinding under actual operating conditions. Ash of relatively high grind-
ability becomes undesirably overground when ground together with tough, fi-
brous and woody xylite. With the ash content increasing, the drying gas de-
mand of the mill decreases while the concentration of drying gas and pulver-
ized coal increases, and as a result, the output of the mill reduces.

Favourable conditions for grinding coals mined in the country can be
ensured only in a grinder specially developed for these purposes in the
country. A combined hammer and beater mill of type N\b developed in Hungary,
of a grinding output of 32 t/h, has been successfully operating at the Ban-
hida Power Plant for years. Also, the prototype of a mill of similar design,
of a capacity of 50 t/h, has been constructed first of all to meet the de-
mand fo the Bicske Power Plant but suited for grinding Hungarian brown coals
of any type after minor modification. lhe layout, the rotor, and the air
separator gates of the mill developed by VEIKI (Research Institute of Elec-
tric Power Industry) and constructed by the Disintegrating Mill Factory are
shown in Figs 8, 9, 10, respectively. Patented units developed by VEIKI are
the rough-grinding stages and the air separator of the mill, decisive units
in respect of operation.

After the different factors affecting combustion of the fuel had
been studied in detail, development of a burner for different applications
under different conditions prevailing in the furnace in a wide load range
was started at the Institute. As a result, a new pulverized coal burner
called separator-type swirl burner was developed at VEIKI, for use as a
starting burner for the startup of pulverized-coal fired boilers by pulver-
ized coal, as a back-up burner in case of troubles in ignition or stability,
and as a vapour burner in case of open-cycle firing. Ilhe speciality and
versatility of the burner lies in that the limitations due to direct firing
are partly offset by the firing system. lhe adjustable amount of highly in-
ert gas transporting the pulverized coal, ground and dried in the grinding
m ill, to the burners can be separated from the pulverized coal in the burneg
and primary air of almost arbitrary amount and temperature can be admixed to
the fuel before being blown into the furnace. lhe burner prevents inert
gases from entering the furnace or ignition zone, the combustion temperature
being high and the ignition stable. In case of variable fuel quality, the
optimum combustion temperature is adjustable. The firing system equipped
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Fig- 8.

with the separator-type swirl burner is safe and simple. As is well known,
the formation of a stable flame is significantly affected by the physical-
chemical characteristics and reagency of the fuel, temperature, concentra-
tion of fuel and oxidizer in the combustible mixture, and by the mixing pro-
cesses.

Coals of different type in general, and high-moisture lignites in
particular, are blown directly into the furnace by means of the drying gas
drawn from the furnace, to be burned there after having been ground and
dried in the grinding mill. A considerable amount of inert gas enters the
furnace, reducing there the oxygen concentration, pulverized coal concentra-
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tion, and combustion temperature. Ignition can not even take place below an
oxygen concentration depending on the fuel only. The effect of drying gas
blown in is shoawn in Fig. 11. The curves in the Figure illustrate the change
in adiabatic combustion temperature of lignites of different heat value for
the combustion of raw coal in oxygen, ambient air, or by removal of 0 %

50 % or 100 %of the drying flue gas by some method. The average quality
characteristics of given coal are, as follows:

Heat value 6.060 kO/kg
Moisture 44 %
Ash 25%

Removal of only 50 % of the drying gas results in a considerable
temperature rise. This is especially important for the stability of firing
when pulverized coal firing has to be brought about within a short time in a
cold furnace in the phase of boiler startup. The significant difference be-
tween firing with combustion air and that with removal of 100 %of the dry-
ing gas is that while in the former case the combustion temperature is re-
duced by the moisture present in the coal, a considerable part of the mois-
ture is removed together with the drying gas in the latter case.
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Fig. 10.
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In the combustion process, an important parameter is the concen-
tration of combustibles, which can be varied within wide limits by suitable
separation of the drying gas or by admixture of primary air. The effect of
concentration is evaluated on the basis of the rate of pressure changes in
case the mixture of pulverized coal and air is burned in an 'explosion bomb.
The bomb is a sealed vessel of a volume of 70 dr5in which ignition takes
place pyrotechnically. The value of pressure change, APmgx, and the average
and maximum rate of pressure change, AP / At and (dP/dt) , respective-
ly, are illustrated in Figs 12 and 13. It can be seen that, in the range of
concentration studied, the rate of pressure changes that is the speed of
combustion reduces considerably for low concentrations. E.g. in case of lig -
nite from Bikkabrany, the speed of combustion is very low for a concentra-
tion of 300 g/m5that is the combustion is prolongated.

Based on the above considerations, a pulverized coal ignition sys-
tem to start alignite fired steam boiler of a steam output of 620 t/h has
been designed, and built in. Pulverized coal comes from the grinder of an-
other boiler operating next to that to be started so that no intermediate
pulverized coal storage is necessary. The ignition system is schematically
illustrated in Fig. 14.
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The photograph in Fig. 15 shows the different elements of the pul-
verized coal ignition system operated at the Gagarin Thermal Power Plant,
and the pulverized coal outlets on the adjacent boiler serving as the source
of pulverized coal. Fig. 16 shows the two 30 MM separator-type swirl burn-
ers.

Tabulated in Table 5 are the most important characteristics of the
system.

Table 5. Starting burner for 620 t/h boiler of Gagarin Thermal Power Plant

Specifications

Boiler output 590 MV
Flow rate of gas transporting pul-
verized coal to burners 120.000 n8/h
Dust concentration 177 g/m3
Heat value of coal 12.040 KJ/kg
Ultimate moisture in coal 2 %
Heat output per burner 30 W
Primary air at starting burner 0 %
of calculated combustion
air demand
Primary air temperature 150 °C
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In the development in the field of lignite firing, the next step was
to raise the vapour burner, followed by realization of 'open-cycle' firing.
Raise of the vapour burner resulted in removal of inert gas, separated by
the vapour separator, from the active zone of the furnace only, while in o-
pen-cycle firing, the total amount of inert gas would by-pass the heating
surfaces of the boiler to return at a point of suitable temperature after
the air heater. Thus not only the conditions of ignition and combustion in
the furnace are improved but also abrasion in flue 1l of the boiler reduces
considerably due to the reduced rate of flow of flue gases.

A separator-type swirl burner has been designed for use as a vapour
burner to separate, and feed with preheated air into the furnace, the pul-
verized coal that remained in the vapour line. The use of such a burner re-
sults in a system considerably simpler as compared with the usual practices.

The block diagram of the open cycle for a pulverized coal burner is
shown in Fig. 17. Two separator-type swirl burners of a heat output of 2.5
MV each have been used as vapour burner.

Fig. 17.

Taking into consideration a ventilation rate fo 240.10" mVh and a
maximum grinding output of 50 t/h for the grinding mill as well as a gas
separation of 60/40 and a pulverized coal separation of 95/5, the specifi-
cations for the burner are as follows:

Heat output 25 MWV
Gas flow rate 48.10'5 mvh
Combustion air flow rate 4.5.10'5 m'vh (120 °C)

(m = 1.25 air factor)
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An important advantage of the open cycle is that purified gas leav-
ing the separator-type swirl burner bypasses flue |l of the boiler and
therefore the abrasion, first of all that of the economizer, reduces there
considerably due to the reduced rate of flow. The abrasion reduces exponen-
tially according to exponent 2.5 of the flow rate for identical material
grade (flyash and material of economizer pipe).

Preliminary approximative calculations have been made for the exten-
sion of open cycle over the entire 320 t/h boiler (all the four pulverized
coal burners operating in open-cycle system). The change in flue gas temper-
ature is diagrammatically illustrated in Fig. 18.

and Schott

Fig. 18.

The use of low-grade coal and operation of the boilers at partial
load result in instable fire. To operate the boilers without back-up firing
that is without an increase in the use of hydrocarbons is an increasingly
difficult job.

A firing system increasing the stability of firing without any sig-
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nificant expenditure has been developed, and successfully used at Tatabanya
| Thermal Power Plant, and Dorog Thermal Power Plant. No extinction of the

flame is experienced in spite of the continuous decline in coal quality
since the separator-type swirl burner developed by VEIKI has been built in,

and the minimum load (without oil back-up) has reduced considerably. The
modified firing system has fulfilled expectations also under operating con-
ditions.

The heat flux of a burner may change in the range of 1.8 to 2.2 MN
depending on the output of the grinding mill, see photograph in Fig. 19.

~0

Fig- 19.

As compared with the earlier practice, the separator-type swirl

burner offers the following advantages:

— Inert gases serving for drying (transport of pulverized coal) are
separated and thus their unfavourable effect on the conditions of
ignition and combustion can be avoided.

— The total amount of combustion air (if necessary) and the pulver-
ized coal can be thoroughly mixed before entering the furnace.

— The temperature of combustion air can reach even the ignition
point, bringing about favourable conditions for ignition.

—No hazards of coal dust explosion are impending under favourable
conditions of ignition and combustion.

—The burner permits a simple firing system to be brought about.
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BOXK REVIBAS

G. Franz (editor): Beton-Kalender 1986. Taschenbuch fiir Beton-, Stahlbeton-
und Spannbetonbau, sowie die verwandten Facher

Ernst und Sohn, Verlag fir Architektur und technische Wissenschaften, Berlin
1986

The present volume 75 of the manual has been published in conformity
with the old tradition in two parts, however, contrary to the previous vol-
umes, in the format A5 instead of A6. This alteration permitted to use
larger letter types and to present the figures and tables in a larger form.

The first part of the manual contains, in accordance with the long
practice of many years, the fundamental knowledge necessary to the calcula-
tion of r.c. structures. It treats in detail of the material, properties
and making of concrete (J. Bonzel), the kinds and products of steel (D.
Bertram), the wood as building material and structural element (K. M&hler).
A chapter elaborated in detail in a comprehensive framework deals with the
calculation of the stresses induced in slabs of different forms, different-
ly loaded and supported (K. Stiglat-H. Wippel). The paragraph treating of
the dimensioning and checking the r.c. elements (E. Grasser), as well as
designing calculation and the problems of buckling of slender r.c. elements
(K. Kordina-U. Quast) call the reader's attention to the rich diagram ne
terial. In a special chapter are the problems of the stressed structures
dealt with involving also those of the partially stressed constructions
(H. Kupfer).

Ihe second part of the manual admits plenty of space for publishing
the norms in constructing r.c. structures (H. Goffin). A special chapter is
devoted to the problems concerning the construction of the r.c. projects
(G. Kuhn), as well as the impermeable concrete structures (R. Linder); this
latter treated in this form is published for the first time by the Beton-
Kalender.

The chapter treating of the bridge building, disregarding the
changes which took place in the meantime, has been dealt with also in ear-
lier volumes (H. Bechert). In turn, a completely new and comprehensive
chapter deals with the problems of the construction of reservoirs which in-
volves all of the questions of reservoir construction and offers a particu-
larly valuable information to the designer (E. Hampe); the publishing of
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this subject matter serves the public interest.

The authors of the different chapters of the Beton-Kalender are
prominent persons of the respective profession who fulfilled their tasks
with great care and an excellent pedagogic gift under the leading of the
famous editor Prof. G Franz. The rich subject matter of the manual is ac-
companied by numerous instructive figures and many tables which upgrade to
a great extent the usefulness of the work.

After all, it can be laid dowmn as a fact that the 75th volume of the
Beton-Kalender truly mirrors the current situation of the science and prac-
tice on r.c.; it is an indispensable aid to the practitioners in r.c. con-
struction which, owing to the richness of its content and up-to-dateness,
might lay claim to a wide range interest not only in the own country of the
editor but also in the international professional field.

Anton Joan: Cavitatia
Vol. Il. Editura Akademiei Bucurecti 1985. 720 pages

After the publication of the first Volume, this voluminous second
one followed with surprising promptness.

The contents of Volume Il are: 1. Functioning of airfoil (either
single or cascade) in the cavitation or supercavitation regime. 2. Cauvita-
tion of liquid flow past non airfoil obstacles. 3. Cavitation in pipes and
flow measuring devices. 4. Cavitation in closing and control units and liq -
uid distributors. 5. Cavitation in hydraulic turbines. 6. Cavitation in
pumps. 7. Cavitation in reversible and radial-axial machines. 8. Cavitation
on marine propellers. 9. Cavitation in bearings. 10. Cavitation in hydro-
technical constructions. 11. Ultrasonic cavitation employed in various do-
mains. 12. Cavitation in unconventional technological operation of material
processing. 13. Cavitation in the blood circulatory system. 14. Contents in
English and in Russian.

The extent of the different chapters are in good agreement with the
importance of the subjects, e.g. the cavitation in hydraulic turbines and
the cavitation in pumps are the longest chapters (202 and 148 pages, respec-
tively). A good addendum to these chapters is the following one dealing
with the cavitation in reversible and radial-axial machines. These chapters
constitute excellent comprehensive treatment of the subjects.
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The good theoretical basis, the clear treatment of the problems,
the numerous figures, diagrams and illustrations, the carefully selected
plentiful bibliography are the good points of the book.

Further merit of the book is that the peripheral questions of the
cavitation research, i.e. cavitation in chemistry and biology, cavitation
in cryogenic liqguids, abrasive cavitational processing, cavitation in the
blood circulatory system etc. are methodically elaborated.

After close examination of the book it can be ascertained with
pleasure that this large scale work of professor Anton is the first compre-
hensive treatise of cavitation research activity.

To promote the cavitation research activity, it is desirable to
publish this excellent work in English, completed with author and subject
indexes specifying the origin of the figures, diagrams and illustrations as
well.

J.J. Varga

M Herpy —J.C. Berka: Active RC Filter Design
Akadémiai Kiadd, Budapest 1986, 306 pages

The German edition of this book has already been reviewed in Acta
Technica. The review is republished now because the English translation of
the successful book has been issued together with Elsevier Science
Publishers B.V.

Dr.—ng. M Herpy, author of the successful book "Analog Integrated
Circuits" has undertaken to sum up the design of active filter networks
with a co-author. Using their ten year industrial and educational experi-
ences they had written a book that is useful for both the students in high-
er education and practical experts.

The book begins with a summary of network theory (1. Introduction,
2. Description of filter-networks). It is followed by a survey of the ap-
proximation of amplitude characteristics and group-delay characteristics
(3. Approximation). The Active RC filte r networks are discussed comprehen-
sively in the 4th chapter (4. Synthesis of active RCfilters). The 5th
chapter discusses sensitivity and tolerances in detail. The most useful cir-
cuits of the vast family of biquadratic sections are evaluated on a comnon
basis in the 6th chapter. A summary of the steps of the design procedure,
with a view on the most important practical issues, such as dynamic range,
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measurements and tuning, follows. Actual filte r design is demonstrated by 6
carefully worked out examples. Design formulas for 16 different second order
sections and 2 different third order sections are discussed in a separate
chapter. Diagrams and tables offer easy access to the most important cata-
logue data of filter design. lhe book ends with a rich bibliography and sub-
ject index.

Ihe present edition is a revised version of a book originally pub-
lished in Hungarian, in 1981. this explains some strong references to re-
sults obtained in Hungary.

In short, the book "Active RC Filter Design" discusses the cascade
synthesis of RCfilters in a remarkably concise and systematic way. It can
warmly be recommended as a very good reference book to a wide circle of re-
search, design and production specialists.

K. Geher

Wischers, B. (Editor): Betontechnische Berichte 1984/85.
Beton-Verlag GvbH Dusseldorf 1986

lhe Betontechnische Berichte is a series of books, which contain
papers published in the German periodical "beton" dealing with the actual
problems and scientific results in the field of concrete techniques achieved
in the Forschungsinstitut der Zementindustrie in Duisseldorf (Research Insti-
tute of the Cement-Industry in Dusseldorf) concerning the problems and pro-
fessional work of the Verein Deutscher Zementwerke (VDZ) (Association of
German Cement-Works). lhis volume contains the papers published in the
years 1984 and 1985, and is the 24th book of the series. It contains six
papers.

Ihe general subject of this volume are the rheological properties of
fresh concrete.

Ihe first paper, written by J. Bonzel and J. Krell, discusses the
assessment of the consistency in fresh concrete. Many different procedures
have been developed to determine the consistency of fresh concrete, each
procedure evaluating the various aspects of the workability in a different
way. |he paper deals with four kinds of procedures. Recommendations on the
suitability and the potential application range of the various consistency
test methods are given for construction practice.

Ihe theme of the paper worked out by F.W. Locher, W Rechenberg and
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S. Sprung is concrete after a 20-year action of lime-dissolving carbonic a-
cid. Water with a content of more than 60 ng is very strongly aggres-
sive according to DIN 4030, but for the determination of the lim it values
according to which the corrosive action is to be appreciated there were on-
ly a few older experiences available. Authors carried out a long-time test
in which the test pieces were stored in a very strongly aggressive water.
The conclusion of the research work was that dense concrete with an aggre-
gate, which is insoluble in acids, may resist the attack of water with a
content of up to 100 ng of lime-dissolving carbonic acid per liter without
any protection.

Test-related influences on concrete flow determination is the theme
of the paper of H. Grube and J. Krell. The spreading method of consistency
tests is well suitable for the high-flow and wet concretes generally used
on building sites. The research work carried out by authors evaluated the
apparatus-dependent and test-dependent influence factors of the final test
results. This led to recommendations for the avoidance of mistakes and the
improvement of the uniformity of this consistency test method.

The paper of J. Bonzel and M Schmidt treats the influence of dis-
tribution and orientation of steel fibres on the quality of steel fibre
concrete. If steel fibres are not distributed proportionally in concrete
and they are not orientated in all directions, the bearing behaviour of
concrete will not be improved definitely. Authors mede extensive investi-
gations in which the effect of distribution, the orientation of fibres on
properties of steel fibre concrete of different compositions have been stud-
ied. The test results showed that the steel fibres are mainly oriented
vertically to the direction of concreting and that the properties of hard-
ened concrete can only be improved essentially at this level by the addi-
tion of steel fibres.

The next paper is a report of the committee for fresh concrete of
VIZ on the development of stiffening of concrete. This is an important
problem, when placing of concrete happens after a longer period, using
ready-mixed concrete. The paper informs on the investigation performed on
the influence of cement on the rheological properties of cement paste. The
investigation, and especially practice, have shown that composition and
treatment of concrete as well as other factors have an influence on the de-
velopment of stiffening of concrete with a given cement. The investigations
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achieved many results, but a systematic description of the problem is s till
lacking.

The sixth paper, written by J. Krell, discusses the influence of
chemical and mineral reactions of cement on the development of cement paste
and concrete stiffening. Ihe subject of the paper is a part-problem of that
of the previous one and handles the influencing of the consistency of the con-
crete mixture by chemical and mineral reactions of cement with the mixing
water and by adding calcium sulphate as setting and hardening control agent.
This paper also concludes that no exact statements can be deduced from the
experiment.

Though each paper of this and the former volumes contain independ-
ent conclusions, the series of the volumes of Betontechnische Berichte also
serves as a useful, general book of reference.

T. Gyengd
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GRAPHICAL PRESENTATION CF COVPRESSIVE MEVERANE ACTION IN ONEWAY SLABS
\Y W
Chhangani, O.P. and Lenkei, P.
(Received: 25 April 1986)

A graphical procedure is presented for the rigid plastic slab
with linear elastic horizontal restraint. The flow theory approach
was used to develop an equation to determine the compressive membrane
force for small deflections. Thus the effect of linear elastic hori-
zontal boundary restraint upon the load carrying capacity of the
one-way slab has been demonstrated. The equation developed shows
that the parameters affecting the membrane action are those affect-
ing the yield criterion and boundary restraint. The graphical
presentation shows the load-enhancement to be expected from the
compressive membrane action for one-way slab in the range of small
deflections.

1. INTRODUCTION

It is a well knom fact that the load carrying capacity of reinforced
concrete slab with a horizontal restraint at the boundaries may be greater
than the capacity of a similar unrestrained slab.

This behaviour can be attributed to the fact thatin pure bending of
reinforced concrete,with small steel proportions, the neutral axes at fail-
ure are very close to the surface and bending is accompanied by lateral dis-
placement at either of the supports. If these deformations are incompatible
with the support conditions, no bending collapse will occur. As the slab de-
flects, changes of the geometry cause the slab edges to tend to move outward
and to react against the boundary elements. This action will induce compres-
sive membrane forces in the range of small deflections which will enhance
the flexural strength of the slab sections. This will cause the ultimate
load of the slab to be greater than the ultimate load calculated using
Johansen's yield line theory.

*

Chhangani, O.P., Research scholar on leave from India

Prof. Dr. P. Lenkei, Division Director, Hungarian Institute for
Building Science, Budapest, Hungary
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Fig. 1, Typical load deflection diagram

Figure 1 shows a typical load parameter p against a typical deflec-
tion parameter, wq. At the maximum load, crushing of the concrete in compres-
sion zone will occur and immediately the load carried by the slab decreases
rapidly. This is sometimes referred to as the "snap through" phase. At the
failure as the slab snaps through, the load drops as the neutral axis moves
toward the surfaces and the compressive membrane force decreases. At this
stage of minimum load the slab nay be cracked right through its thickness in
the middle and tensile membrane forces start to form in the central region.
In case the reinforcement is sufficiently ductile, the load may then again
start rising. The maximum load is precisely due to compressive membrane ac-
tion. This behaviour or phenomenon is termed sometimes as "arching action"
or "dome effect".

Recently two very interesting literature reviews have been published
by Desayi and Kulkarni /2/ and another historical review by Braestrup /1/.
In his historical review, he has classified the entire work under two cate-
gories:

(i) deformation theory and
(ii) flow theory.

The difference in these theories lies in the definition of strains.
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In the deformation theory, the total strains in the material are used where-
as in the flow theory, the strain increments are considered.

The concept is here further generalized on the basis of flow theory
considerations. Further, the axial stiffness of slab and its boundary re-
straints have been modelled by horizontal elastic springs. The complete be-
haviour of a rigid-perfectly-plastic one-way spanning partially restrained
slab is analyzed by flow theory.

Recently Eyre and Kenp /3/ have presented a graphical solution for
predicting membrane action for one-way spanning restrained slab.

DESCRIPTIVE MODHE.

A uniformly loaded one-way spanning continuous slab and its ends
modelled by horizontal linear elastic springs are shown in Fig. 2.

I+
*
D

Fig. 2. Continuous slab and a model of a continuous one-way
spanning slab

Fig. 3. Deformation of half strip
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To be more general, we consider that the reinforcements at the mid-
span and at the supports are different. Figure 3 shows the failure mode of
the slab if it failed when flexural plastic hinges would form at the mid-
span and supports, and the collapse load would be equal to Johansen load,
i.e., yield line theory value p”.

The effect of the partial restraint at the supports will delay the
increase in the collapse load until the slabs starts jamming against the
surroundings. Then the load will increase to some value p which will be
higher than the Johanson load p .

3. YIELD CRITERION CF ONEWAY SPANNING S.AB
The yield criterion, assuming the reinforcement and concrete both as

rigid-perfectly-plastic, for a single reinforced concrete section was first
given by Wood /5/ in the non dimensional parabolic form

Fig. 4. Stress-strain diagram of the section

~ m n n 2
for O<O0; fmn) =-— —1—"°t, ("> + cCr) 4o (1)
& "o n
m n n 2
6>0; f(mn) =+— -1 - a, (—)+ 3, (—) (2)
0 0
where
7 -ho T* 2
(3)
1 -
fcu
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and
1.1f¢
Sygd
] Cu (4)
2z le1f
1- ZXL

Cu
a and £ can be calculated for the different percentage of steel at sup-
port and mid-span using Egs /3/ and /4/.
The yield force of tension steel TiQ at support and nQ at mid-span
can be calculated from the following equations if the effective cover and
yield stress of the steel is same at both of these places:

Ny = 9a d fSy , (5a)
and
no:9bdfsy (5b)

It must be kept in mind that this type of yield criterion is valid
for moments and axial forces acting in any direction relative to the rein-
forcement directions and is independent of the moments and axial forces act-
ing transversely to the slab section; in other words this criterion is of
square yield type.

4. KINEMATICAL EQUATION

If the elastic deformations had to be taken into consideration, then
the physical gap at the boundaries or possible elastic deformations must be
overcome before the slab reaches the unrestrained collapse load. This means
that the membrane action will start at some nonzero initial deflection of
the slab. This can be achieved by replacing the lateral support by a bound-
ary linear elastic spring, the flexibility of which includes the contribu-
tion by the in-plane flexibility of the slab. However, lumping of boundary
flexibilities into a single parameter of linear elastic spring stiffness is
a crude approximation of the real behaviour. Furthermore, this theory is be-
ing developed on yield line collapse mechanism and will not be suitable for
the slab that assumes totally different deflected shape in the elastic range

Figure 5 shows half of the slab strip of length £ failing plastical-
ly under a load £ with central deflection wq, the geometrical equation of
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Fig. 5. Modelled half strip
this pattern of deflection being:
(a + Ca+ +e)2=a2+ , (6)

neglecting higher order terms, this will reduce to

~Na (7)

For flow theory approach, the compressive strain remains compressive
as long as the compressive strain is increasing in magnitude.

This nmeans that we are looking for the axis of instantaneous rotation
of the section. To obtain this, we differentiate the geometrical equation
/7] with respect to time:

W
£ Cb+e ' (8)

other kinematic equations are

(9)

where a, and are rigid-plastic rotations,

an
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5. CENERAL EQOATION FCR MEVBRANE ACTION

If the yield criterion is
f (mn) =0, (10)
then the plastic flow of the section will start. The flow rule (the normali-
ty law) applied to the yield condition gives:

K =0 X3f(m.n) curvature strain (11)
am

e =i = X3f(m.n) extension strain (12)
3n

where X is an arbitrary non-negative scalar factor.
Using yield conditions defined in Egs (11) and (12) we obtain

of
08 = X(-——- =- X(zr~) , (13)
2 (Sm ) (zr~)
C. « x (:U) = Xt——+ 2R (14)
an n 21 52
Combining these two equations, we get
az2
"a = -nmu éaf- 2 "2 -2 (15)
n
0
Similarly we obtain this relationship for mid-span
al
M Bk f- 2B (16)
in 02

Here we introduce the constitutive equation for the linear spring
and further modify it to obtain instantaneous elongation,

e = or e = a7
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Finally, two static equations are developed for horizontal force and
moment equilibrium respectively. For horizontal force equilibrium we obtain

Ny =Ny (18)

For moment at the support, we obtain another moment equilibrium equa-
tion:

P+ a m, + My —nw (19)

With Egs (1), (2), (8) and (13) through (19), the whole problem can
be described. For the solution of these equations, Eqs (15) to (18) are
substituted into Eg. (8). Applying Egs (9) and (18), this results in a first
order differential equation for the menbrane action:

W n w
nb_ [ az +23 2 ;nra']l\ + mwo f____?_‘!+ ZOBH 1_u]. L a 09 (20)
a o] No S a
Applying Eq. (18) we obtain:
m 8, m B, aom a;y an
(—--- 2+———-) 2 n, - (-----2-U —- '+ -Z=w . (21)
Ny n, n o SNO 0

Using a/s = ® ; and replacing derivation with respect to time by
derivation with respect to the deflection as done by Janas (4), we get:

ZBn-A+<JJd—na =w (22)
ow
o}
where
5
m I;S +”h261 23)
T mn
0 0
a2w , alm (24)
Mo Mo
q)dn
—a =wy +A- 2Bny (25)
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Replacing wa + A- 2B ng =t and differentiating this with respect
to t we obtain:

dn dt
1 - 2B-—- =mv : (26 a)
dwO dwO
or
1. 2Bt dt (26 b)
® dw

As a result of integrating after rearrangement of terms, we get an
equation for ng as shown below:

BN
n,=Cexp (— ) -» (27)
8B 2B B
Applying the boundary condition w = 0; n, = 0 we obtain,
(28)
Eg. (27) can be rewritten as
(29)

Once the values of normal forces ng and n® are known, we can calculate
the moments ng and m* from yield condition Egs (1) and (2) respectively. If
these values are substituted again in the equilibrium equation, we will get
the relationship between load p and deflection wg .

GRAPHCAL SOLUTION

We use the same slab example as used by Eyre and Kenp /3/. This unit
width of a one-way spanning slab, partially built in at the ends, is re-
quired to carry a total distributed load of 10.6 kN/m2 on the slab over a
span of 4 m The following data are taken from the same example:

fCu 35 Nme, fSy

250 Nmm2, 9 = 0.004

>
1

150 nmand d =120 mm
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For the sake of simplicity, assume that the reinforcement and the ef-
fective concrete cover are the sare at the centre and at the supports.

For positive bending, the yield criterion of Eg. (2) can be written
in the following form:

_m:1+o((_”}/-ﬁf_”f2' (30)

U 0 0

and the normal force is calculated from Eqg. (29).
In the case of the former example slab we get from Egs (23) and (24),

B= (31)

A= (32)
Furthermore, assume that the value of the spring stiffness is:

S=5.10 kNm

If the slab is designed in accordance with the yield, line theory,

2m, (33)
From all these parameters, we can calculate normal force g for the

different values of w-
The equilibrium equation for this half strip can be written as fol-

lows :

n—nw (34)

and, from Egs (33) and (34),

2 m (35)
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Theoretical curve Stiffness of spring
.— — - 5x105kN/m2

............. 2xI06kN/m2
_____________ Perfectty-plastic with rigid supports (m/muratici

------------- Perfectly-plastic  withrigid supports(p/py ratio)

Fig. 6. Graphical plotting of the solution

The load-enhancement-deflection curve (or interaction diagram between p/py
and wQh) can be plotted by means of Egs (29), (30) and (35).
The results are illustrated in Fig. 6.

=
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SHORT-TIME DEFLECTIONS OF TWOWAY SLABS
Chhangani, O.P.* and Lenkei, P.**

(Received: 3 November 1986)

A method to calculate short-time deflection of two-way slabs
of different boundary conditions is presented. The effective moment
of inertia function developed by Branson is examined and a m odifi-
cation of the equation proposed in ACI approach is suggested. The
method presented herein considers the influence of reinforcement,
material properties of both concrete and steel, and physical dimen-
sions of the slab. Thus the deflections corresponding to cracking
and service loads can easily be calculated following the equations
developed for the slabs of different boundary conditions. Comparison
of the method is made with the experimental studies of Hung and Nawy
and the results are found to agree satisfactorily with the experi-
mental values.

NOTATION

constants

modulus of elasticity of concrete

moment of inertia of cracked section

gross moment of inertia

modified effective moment of inertia (function)
length of slab specimen in x and y directions
cracking moment

bending 'moment

dimensionless parameter

power coefficients

yield stress of steel

cylindrical strength of concrete

thickness of slab

power coefficient in Branson's equations
intensity of loading

intensity of cracking load

Johansen's load

serviceability load or working load

deflection of slab

experimental deflection and theoretical deflection

6cal
coefficient used as a multiplier in elastic theory
to calculate deflections
factors

Py percentage of reinforcement in x and y directions
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INTRODUCTION

Ultimate strength is usually taken as a basis for the design of
up-to-date concrete structures. The application of this procedure along
with the higher strength of the construction materials permits more slender
structures to be used. If a slab is designed on the basis of the strength
criterion alone, the degree of safety against collapse may be adequate but
at the same'time the performance of the structure at the service load un-
satisfactory. For this reason, the excessive deflection of structural mem
bers and systems must be included in the compliance criteria, the most im-
portant. ones being strength at ultimate loads, deflection at service loads,
and crack widths at service loads. Since the strength consideration alone
generally results in selection of a slab depth, this leads to in-service
problems, in particular, to excessive deflections in slabs.

There are some works based on empirical or semiempirical approach.
Empirical approach was used by Shukla and Mittal /12/ whereas Rangan, and
McMuller /11/, and Gilbert /8/ developed suitable span-depth ration for-
mulae. The semiempirical approach presented by Desayi and Kulkarni /4, 5/
predict the load-deflection curve in the form of piecewise straight lines
upto Johansen's load for restrained and simply supported slabs.

Desayi and Muthu /6, 7/ presented a method for determining load de-
flection curves for simply supported and restrained slabs using a decreasing
moment of inertia function. Deflection is calculated in two steps. First, in
the range of zero to cracking load, elastic plate theory is used while in
the second step the effect of cracking is modelled by selecting a decreasing
mbment of inertia function.

In this work Branson's method /2, 3/ for calculating deflections has
been examined and a procedure is suggested to calculate the load-deflection
behaviour of two-way slabs beyond cracking.

1. DEVHORPVENT CF BRANSONS EQUATION

In this proposed method we calculated deflections in two steps. In
the first step, deflection is calculated from zero load to cracking load. In
the second step, an effective moment of inertia concept is used to model the
reduction in flexural rigidity of the slab along with a factor X
culate deflection of the slab beyond cracking.

, to cal-
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In the first step, in the range of zero to cracking load, deflection
is determined on the basis of the elastic plate theory /13/ and formulae are
determined for different boundary conditions of slabs as:

GaK

E *g

where q < Aoy

Central deflection

Fig. 1. Load deflection curve of two-way slabs

After the onset of cracking, the flexure rigidity decreases. To model
this behaviour, the effective moment of inertia of the slab section as re-
commended by Branson is used in a modified form. Hence the formula for de-
flection for q. > B> 9, will be

t
6 ax (2)
NE “meff
where
Jcr
"meff 7 » (lg- V * 'or ©)

The difference between this equation and that of Branson's as recom-
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mended by ACI 318 /1/ lies in the use of power coefficient m It was found
that the recommended power coefficient, 3, was not suited for use in slabs
due to the higher ratio of qcr/a. Furthermore? the difference between Ig and
I for slabs is considerably larger than for beams and if the stiffness is
not modelled properly this may result in highly underestimated deflections.

To verify these observations, deflections for the three sets of dif-
ferent boundary conditions of Hung and Nawy /10/ slabs were calculated. The
power coefficient of Branson's equation was varied from 1.0 to 4.0 with an
increment of 0.1 and deflections were calculated at working load and at
Johansen's load. The calculated deflections were compared with the experi-
mental deflections taken from the experimental curves of Hung and Nawy. It
was found that the experimental values were always higher than the computed
ones even for a power coefficient by 4 in Branson's formula. As has been
pointed out by Branson /3/ and observed during these calculations, Eqg. (3)
is not very sensitive to its power coefficient. Hence it was decided to use
a power coefficient 4 in further calculations.

In addition to this a factor X wes introduced in the denominator of
deflection formula as done in Eg. (2). The value of X wes determined using
the experimental value of deflection at working load. The values of X ob-
tained for different slabs of different boundary conditions are shown in
Tables 1, 2 and 3. This non-dimensional parameter was further related to the
sectional and strength properties of the slab as follows:

X =Cl . X+ Q@ (4)
where

(9 (5)

The power coefficients in this equation are worked out by an itera-
tive procedure suggested by Holman /9/. During the computations, the best
possible power coefficients were selected which at the same time resulted in
a higher coefficient of correlation with equation (4). The procedure of cal-
culations outlined above is shown in the flow chart in Fig. 2.

Now formulae for three different sets of slabs of different boundary
conditions are developed. Their results are compared with the experimental
values. The theoretical curves obtained are superimposed on the experimental
curves for comparison.
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AStorty

Read data with assumed coefficients
to be used in the program i e, CI
and C2

Find the first power coefficient'a of
—» the equation using the assumed
coefficients

Using the previously worked out power
—» coeff.,find the second power
coefficient 'b’
T ' ~

Recalculate the first power coeff. using
the second coefficient’'b’

y' Is this n.
y' close to the
__No first within the\
n. permissible /
'y limit? |/
\ Yes

Find the value of X'in equation 14

1

Call the least to get coeff. CI and C2 j
Cfor best fit equation

Call the correlation to find the coeff. of n
correlation between J1 and X J

/ Is R N
No / equal to \ yes N
N. permissible |/ S\ °PJ

'K limit 2y /

Fig. 2. Flow chart
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2. BEXAMPLE: SLABS, WITH ALL THE FOUR SUPPORTS BUILT IN

For CT and C4 of series of slabs of Hung and Nawy, /10/ the following
equations were obtained after analysis of their data on the basis of the

principle explained in the preceding part:

X =1.2031 . TO3 X + 0,0997 , (6)
or approximately
(6 a)
where
(7)
or approximately
(7 a

Figure 3 shows the variation of X with X, the coefficient of correla-
tion of Eg. (6) being 0.84.

Using equations (21, (3), (6) and (7), the deflection at an intensity
of g > q > q,, can be calculated. The deflection at q = q, was also cal-
culated using factor X

Fig. 3, Variation of X with x
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N"9- 5. Load deflection curve of

Fig. 4. Load deflection curve of slab CI-2 slab Ca-1

The calculated deflections have been compared with the experimental
values and the results are tabulated in Table 1 as the ratio of experimental
values to the computed values. The mean value and the coefficient of varia-
tion at working load are 1.026 and 16.5 % respectively. At Johansen's load,
these values are 1.193 and 25.77 %respectively. It can be seen that the
proposed method gives good results at working load but the coefficient of
variation is somewhat higher at Johansen's load.

It was observed during the calculation that near Johansen's load,
the effective moment of inertia was almost equal to the cracked moment of
inertia due to the very small ratio of qcr/q in Eg. (3). However, if we want
to improve the results at this stage, we can formulate another factor A and
the value of this can be calculated using the experimental value of deflec-
tion at Johansen's load. The proposed equations (4) and (5) can be developed
for deflection at load intensity qj > q > qW. However, in practice, the
situation at working load is more important than at Johansen's load. Hence
it was decided to use the proposed formulae only.

Figures 4 and 5 show the comparison of curves developed on the basis

of the proposed method and experimentally. The proposed curve is shown in
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Table 1. Comparison of deflections for the sets Cl and C4 of slabs

Ratio of experiment to

Slab Properties computed deflection

X X .
At working load At

Cl-1 0.304 291.22 0.910 1.80
Cl-2 0.413 264.72 1.011 1.020
Cl-3 Square 0.372 252.76 1.082 1.091
Cl-4 (Isotropic) 0.345 244.10 1.153 1.033
Cl-5 0.387 265.56 1.086 1.025
Cl-6 0.524 268.38 0.807 1.176
Cl-7 0.404 287.02 1.101 1.753
C4-1 0.234 141.31 1.137 1.353
C4-2  Rectangular 0.253 123.22 0.979 0.292
C4-3 (Isotropic) 0.192 142.52 1.414 1.4076
C4-4 0.320 130.10 0.799 0.841
C4-5 0.308 130.07 0.832 0.888

Mean 1.026 1.193

Coefficient of variation 16.5 % 25.77 %

the modified form at cracking load where the influence of factor X is also
considered.

3. BEXAVPLE SLABS WITH THE ADJIACENT SUPPORTS BUILT-IN,
AD TWO SUPPCRTS SIMPLY SUPPORTED

The slabs of series C3 and (6 of Hung and Nawy /10/ were used to de-
velop the formula-as explained earlier. The following equations were obtained

X = 3.39274 + 10~7 m X + 0.3705 , (8)

or approximately

X =339 «101m X+ 0,37 8 a)
where
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X = ( S ri-8147 /fsy\-0.28253 @)

-1.8/fsy\ -0.28
9y) y
Ifc

(9 a

The variation of X with X is shown in Fig. 6, the coefficient of
correlation of Eq. (8) being 0.886.

Following Egs (2), (3), (8) and (9), the deflection at an intensity
of g > q > q., can be calculated. Deflection at q = q., was also modified
using factor X . Comparison of the computed and experimental values is
shown in Table 2. The mean value and the coefficient of variation at working
load are 1.012 and 8.64 %respectively. At Johansen's load, these values are
1.294 and 11.67 %respectively.

Table 2. Comparison of deflections for series C3 and G4 of slabs

Ratio of experiment to

Stab Properties computed deflection

\ v
. At Johansen's

At working load load

C3-1 0.464  2.7693X105 1.000 1.375
C3-2 0.381  2.4073X105 1.183 1.475
c33  Square 0.645 9.6526x10*  1.073 1.233
c34 (Isotropic)  ggeg>  55i5ax105  0.957 1.201
C35 0.629 5.9594xI0S 0913 1.465
C81  pectangular  0-529  3.1418xI0S  0.906 1.191
C6-2 (Isotropic) 0.410  1.9858x10"™ 1.073 1.398
C6-3 0.437 1.8746xI0S  0.994 1.011
Mean 1.012 1.294

Coefficient of variation 8.64 % 11.67 %

241



CHHANGANI, 0.P.-LENKEI, P.

Fig. 6. Variation of A with x

Fig. 7. Load deflection curve of slab C3-4
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Fig. 8. Load deflection curve of slab C6-3

Figures 7 and 8 show the comparison of curves developed on the basis
of the proposed method and experimentally. The proposed curve is shown in
modified form at cracking load where the influence of factor A is also con-
sidered. It can be seen that the proposed method is in close ayreement with
the experimental results.

4. BEXAVPLE SLABS WITH THREE SUPPORTS BUILT IN AND ONE SUPPORT
SIMPLY SUPPCRTED

According to the principle as explained earlier, the 9 slabs ofseries
Q2 and G5 of Hung and Nawy's /10/ experiments were examined. The following
equations were found to best comply with equation (10), the coefficient of
correlation being 0.76:
A =21495 . 10'8 . X + 0.2957 , (10)
or approximately,
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X- 215 . 10" X+ 0.30 (10 a)
where 2
_ -2.304/fsy\-0.31/Lx\ /U<
X=(Cgx* gy | (12)
y

Figure 9 shows the variation of A with X

With the use of Egs (2), (3), (10) and (12), the deflection at an
intensity of 9 > d >, can be calculated. A comparison of the computed
and experimental values is shown in Table 3 as the ratio of experimental
values to computed values. The mean value and the coefficient of variation
at working load are 1.018 and 13.16 %respectively. At Johansen's load,
these values are 1.123 and 14.02 %t respectively.

Table 3, Comparison of deflections for slabs sets @ and G

Slab Properties Ratio of experiment to

\ v computed deflection

At working load At Johansen's
load
C2-1 0.376 1.54437xI06 0.892 1131
Cc2-2 0.379 8.27125xI06 1.241 1.045
C2-3  Square 0.565 8.12909X106 0.832 1.023
C2-4 (Isotropic) 0.364 4.18912X106 1.051 0.994
C2-5 0.313 1.80907X106 1.069 1.192
C5-1 Rectangular 0.360 1.42088xI06 0.913 1.072
C5-2 (Isotropic) 0.371 2._54250x_|06 0.944 0.929
C5-3 0.252 S.IOOSOXIOg 1.221 1.488
C5-4 0.305 5.95167X105 1.003 1.233
Mean 1.018 1.123

Coefficient of variation 13.16 % 14.02 %

Figures 10 and 11 show the comparison of the theoretical curves de-
veloped on the basis of the proposed method, superimposed on the experimen-
tal curves. The proposed curves are modified at cracking load where the in-
fluence of factor Xis also taken into account.
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Fig- 9. Variation of X with x

Fig. 10. Load deflection curve of slab C2-4



CHHANGANI, 0.P.-LENKEI, P.

Fig. 11. Load deflection curve of slab C54
CONCLUSION

A method using Branson's equation to calculate deflections in two-
way slabs is presented. Three different sets of formulae applicable to the
slabs of varying boundary conditions are developed. The deflection computed
using this procedure at working load is compared with the experimental re-
sults of Hung and Nawy's /10/ tests;

a/ For slabs with all the four supports built-in, the average value of the
5exp‘°hca]" ratio is 1.026 and the coefficient of variations 16.5 %

b/ For slabs with two adjacent supports built-in and two other supports
simply supported, the average value of the 6 6xp/ 5 caf ratio is 1.012,
and the coefficient of variations 8.64 %

c/ For slabs with three supports built in and one simply supported, the

average value of 5e / g is 1.018, and the coefficient of variations
13.16 %
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It can be seen that the suggested method predicts satisfactorily the

deflections for these three type of slabes. |f more data will be available,

the empirical coefficients of the equations can certainly be improved.

10.

11.

12.

13.
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N THE DYNAMCS OF A MAN'MACHINE SYSTEM
Tran van Dae

(Received: 14 Danuary 1986)

In this work, the dynamics of a man-machine system is dealt
with, where the mechanical part consists of a hydraulic servomecha-
nism and a load acting as inertia. On the basis of the results, the
stability of special cases, and the possibility of a limit cycle are
analyzed, where also the hysteretic backlash is taken into considera-
tion.

INTRODUCTION

Man-machine systems where the mechanical part consists of a con-
trolled process and a servomechanism controlled by an operator are often en-
countered in the different fields of engineering. From the point of view of
control engineering, this part of the system can be modelled as a control
system of negative feedback. A more interesting, rather sophisticated,
problem is to model the operator in respect of control engineering. Several
authors have considered the operator to be a proportional phase lead-lag
element with time delay /2/ while others recommend a model with compensated
integral transfer function of phase-lead character /3/, or a sampled-data
model. No doubt, an element with time delay is found in every model. The
theory of retarded differential difference equation shall be applied to find
an asymptotic solution to the suitably selected state variable.

For given model, necessary and sufficient conditions have been proven
for the stability of such a system /1 to derive the stability maps in
planes of different coefficient and technical parameters. Also, by means of
a simple method /5/, we get to know transient characteristics of quite a
number, and a special, asymptotic, Nyquist plot has been obtained (a case
like this has never been encountered in the literature so far). Here the
question arises as how to apply the Nyquist stability criterion to determi-
nation of the system stability? Will a limit cycle occur in the system if
there exists a hysteretic backlash between the servomechanism and the con-
trolled process (e.g. in case of vehicles with power-assisted steering unit)*

*Dr. Prof. Tran van Dac,Truong DHBK Hanoi (Hanoi Institute of
Technology), Department of Precision Mechanics and Applied Optics Technical
University of Budapest

Akadémiai Kiadd, Budapest
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and if so, limit cycle/s/ of what features, and how many, will occur?

Investigated below are these questions, and some simple illustrative
examples are given. For the sake of a better understanding, first the histo-
ry of the method is dealt with and then the different questions will be dis-
cussed in detail.

1. STRUICTURE STABILITY CRITERIA A\D STABILITY MAPS CF THE SYSTEM
1.1 Structure

Using a human operator model /2/

H(s) = KO(I + Tgs)e THS

a servomechanism with transfer function

Y~(s) = KL/s(T1s + 1)

and a controlled process with transfer function

Y2(s) = 1/3s2

where —human operator's gain
—humen operator's time constant
—humen time delay (or dead time)
—servomechanism gain
—servomechanism time constant
—Iload or inertia

s —Laplace transform variable

Xq —input signal and

xg —output signal as well as

xq —error signal of the complex system,

the block diagram shown in Fig. 1 can be plotted.
For sake of simplicity, x = xg will be used.

Now the complex system can be described by retarded differential dif-
ference equation (RDDE)

—+ A+ Bx(t-]) =1 (1.1)
where
X=[xIf x2, x3, xj T and 0= JDO0,0,0J T

are the column vectors,
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and

constant matrices, while

al =2 ¢o0T

Y HTe

bl n o

1.2 Stability criteria

For the system with the transfer function given in Fig. 1, the sta-

bility criteria can be derived from the following theorem /1/:

Fig. 1.
Theorem: For characteristic equation
0(iy) = M(y) + iS(y) =0

of RDCE (1.1), where
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ReD(iy) = y4 —aOy2 + by sin y + bQcos v,

M(y)

S(y) = ImD(iy) = —-aYy5+ cos y + b sin vy,

and if yk, the zeros of M(y), y £ R+ are arranged so as to
result in yk > Y+p (k=1,2,3,... m; briefly: k=l,m), then the
system w ill be stable provided

i)  syk)i 0 (1.2a)
and
i) kS_E‘I (-1 sign so.) =2 (1.2b)

Here the proof of the theorem is disregarded beacuse you may read it
in detail in /1/. After all, the relationships given in (1.2) are the sta-
b ility conditions for the complex system in question.

1.3 Stability maps

Now the stability conditions set out in (1.2) are given a positive
form. For the stability maps plotted in the planes of parameters a®, a*,
b* and bg, the following equations are available as equations of the bounda-
ry lines of the stability regions:

-alyj +blyj cosyj ~bOSInyj =0 (I-3a)

Vi~ Oyj + blyj yi + b0 cosyj =0 1'3b)

where y* (j =1, « ) zeros of function S(y), y £ER+.

On the basis of the general stability criterion and arrangement of
zeros y”, the location of the stability range that is whether it lies to
the right or to the left from the boundary lines can be determined. The
results are shown in Figs 2 and 3.

Apparently, the use of the stability maps would be more convenient
if they were plotted in the planes of the technical parameters, e.g. in
planes (TH,Te), (?0,J), or Then, for plane (TH.Te),
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Fig. 2b (a* = 0.3)

the stability nmep being shown in Fig. 4.
Similarly, in plane (Tg,J), equations

give the boundary lines for the stability region where
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Fifl. 3a (bQ = 5)

Fig 3b (bQ=5, al = 0.5, 0.0)
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Fig- 4a (An = 100, P = 0.1)

Fig. 4b (Aq = 100)
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"R THtan Yly) T"cos y

(see Fig. 5).
Finally, in plane (TQ,
stability range are equations of the boundary lines of the
(1.6a)

PTe V cos Y - PTuSin

2T, (1.6b)
(see Fig. 6).

The above results can be used (in the form of different stability
maps) to investigate the system that is for analysis or, in a sense, for
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T, s

Fig. 5 (Te =2 [sec] , TH =D.15 [sec] , Kg = 0.6)

synthesis of the system (concerning, as a matter of fact, the structure
shown in Fig. 1).

The examples given later in this work show demonstratively how to use
the stability maps.

2. THE LIMIT CYQE PRCBLEM

If, as shown in Fig. 7, there exists a hysteretic backlash between
the servomechanism and the controlled object at the different connections of
the mechanical transmission line, a limit cycle may take place in the com
plex system. A block diagram equivalent to the appropriate block diagram
algebra can be obtained in this case (Fig. 8).
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Fig. 6 (P =0.1, T] =2.2 [sec] , Te =4 [sec] )

Fig. 7

Actually, the complex system has become nonlinear as a result of
hysteretic backlash, and there exists a closed loop containing a nonlinear
feedforward element and a variable (or non-rigid) feedback element.

As there is only one nonlinearity in the system, the describing
function method is used to detect the lim it cycle taking place in the com
plex system. lherefore, a limit cycle will occur if, and only if, equation
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Fig. B

1 + N(B) ---eme S S — =0 (2.1a)
J(i w) JIN(G wy +i W o+«

-1 Ke(1 +i wTe) e 1w TH
) (2.1b)
N(B) J(i9g)2 T2 (iw )2+2 ¢cQO(i w) +T
where B —amplitude of the sinusoidal input signal of nonlinearity N,

N(B) —describing function of hysteretic backlash
is satisfied /6/.

It is easy to see that the right-hand side of (2.1b) fully agrees
with the transfer function of the linear open-loop system if s =i to . This
fact suggests that the loop transfer function of the system free of feedback
is directly applicable independently of the location of the nonlinearity
that is of whether it is found in the feedforward line or in the feedback
line. Actually, the physical implication, of how a limit cycle is taking place
in the complex system can be better understood on the basis of Fig. 8.

Figure 11 shows that more limit cycles may take place in the man-
machine system, both convergent and divergent ones.

By means of a suitable computer program, the parameters of the lim it
cycle that is’the amplitude and frequency of the input signal of the non-
linearity (see Figs 7 and 8) can be obtained. At the same time, also the
type of the limit cycle can be determined on the basis of the type of inter-
section.
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Fig. 9a
J=61[kg] , AO =0, TQ=0.15 [sec] ;
Te =4 [sec] , Y =22 [sec] , K =0.6
(Nyquist chart having asymptote for stability case)

3. SOME COMVENTS (N THE USE GF THE NYQUIST CRITERION

The system can be s till stable even if the damping ratio of the man-
machine system in question is zero (or negative). However, in this case, the
shape of the Nyquist plot differs from the shape usually obtained. Namely,
the curve has an asymptote in this case so that difficulties are encountered
in application of the Nyquist criterion. The problem lies in that whether or
not point —4 + iO of extended complex plane Y(i u ) is enclosed by the
closed curve containing the infinitely distant point. Our earlier investiga-
tions justified and generalized the applicability of the Nyquist criterion
/1/. Namely, in the direction of frequency increase, near the origin, the
curve continues running clockwisely. Therefore, the conditions under which
the system is stable can be determined. Accordingly, the following practical
rule applies:
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Fig. %
3=61kg] , ¢c0=0, TQ=0.1 [sec] ;
Te = 3.5 [sec] , M| =205 [sec] , KO =0.6
(Nyquist chart having asymptote for instability case)

If there exists an asymptote for the Nyquist curve, this will bifur-
cate extended complex plane Y (i bl ), and the system wiill be stable if, and
only if, point— + iO and the origin lie in the opposite semi-plane (Fig.9),
moreover, also the Nyquist plot do not encircle the critical point —1 + iO.

Essentially, this rule allows of a generalization of the Nyquist
criterion in engineering practice.

4. BEXAVALES

Given below are some simple examples to illustrate the above results.

Reader can follow these examples without any difficulty. Note that
any detail can be found earlier and later in this work so that no detailed
explanations are given here.

Three typical cases are presented first: the stable case, the unstable
case, and the critical case (where point —1 + iO is intersected by the
Nyquist curve). Then, the problem of the limit cycle will be discussed on
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Fig. 10a
J=6 [kg] , Tg =0.1 [sec] , = 0.01;
Tl =01 [sec] , Te =2 [sec] , Kg =0.6
(stable case; overshooting with M «2)

the basis of the describing function method, using it as a function of di-
mensionless variable h/B. The last point to be discussed is applicability of
the Nyquist criterion, especially for two cases where there exist an asymp-
tote for the curve, one being stable while the other unstable.

Note that the necessary informations are given in each Figure. There-
fore, any misunderstanding can be avoided, and the correctness and accuracy
of the different stability maps and the validity of what has been said above
can be checked on the basis of the Figures (Figs 10 through 12).

5. CONCLUSIONS, ANALYSIS
As has been seen, mathematical tools not very complicated indeed can

be used to answer questions arising in relation with stability and transient
phenomena of a rather complicated system like that discussed here, although
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Fig. 10b
3=6 [kg] , Tg =0.15 [sec] , Q= 0.01;
Tl =2 [sec] , Te =4 [sec] , KO =0.6
(case of instability)

no time function has been given for the system response. However, no dif-
ficulties are encountered theoretically because if the input signal of the
system is a Dirac (delta) function, then the output signal of the system
can be determined by means of formula

ap

2 ( .
x (1) =— Re W (iu cos w td u
S() = (iu )

0

16/ where W(s) is the transfer function of the closed system. Integration
can be simply carried out by means of a computer, and then also error sig-
nal x (t) can be determined. In practice, if the complex system is stable,
the integrand function will be very small in case of high frequencies. Thus
integration can be stopped at a certain frequency value.
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Fig. 10c
0=6 [kg] , TQ=0.1 [sec] , = 0.01;
Tl = 2.02 [sec] , Te = 3.75 [sec] , «e = 0.6

(critical case; sinusoidal oscillation occurs in the system)

The stability maps consist of more disjunct parts of finite or in-
finite number in the planes of different parameters because a perfect cor-
respondence is not always existing between the planes. However, the number
of the stability domains in these parameter planes reduces as damping in-
creases until, finally, they run into each other.

The human influence (as a compensating element) makes the technical
part stable when damping is zero. In other words, without human influence,
the system would certainly be unstable if there were no energy dissipation
in the technical part in a dynamic state.

5.2 Stability maps
5.2/a Stability maps in the planes of coefficients

If there is no damping (& = 0), then, below a certain lim it ao in
coefficient plane (bg, b”), the stability region will be extended by the
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Fig. Ma
J=6 [kg] , TQ=0.1 [sec] , =0.1;
Tl =22 [sec] , Te =4 [sec] , Kg = 0.6
(convergent limit cycle occurs in the system with h/B = 0.05 and
v 0.35/sec)
(The backlash free system is table)

higher value of a®. However, above this limit, the situation is reversed,
moreover, this stability region may even vanish.

It can be seen in plane (a®, b") that the stability range consists
of disjunct domains (Fig. 3).

In case & i 0, the effect of damping is unfavourable for lower
values of a* and b* as several parts of the stability region reduce (Fig.
3b). However, the same parts of the stability region will increase as the
values of a"* and b" increase and finally, beyond a certain limit, the sys-
tem becomes stable provided

M(yJ> <0 , y* £ (0, 1N /2)
as a single condition.
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Fig, lib
J=61[kg] , ¢Q=0.0l, TQ=0.1 [sec] ;
Te =5 [sec] , TH= 1.9 [sec] , KB =0.6
(Case of the unstable backlash free system; C denotes a convergent lim it
cycle and D denotes a divergent limit cycle. The nonlinear system may be
stable with the convergent limit cycle beside a frequency n A?0.6/sec
backlash-amplitude ratioi h/B  0.25)

5.2/b Stability maps in the planes of technical parameters

In plane (T", Te), the stability region consists similarly of more
disjunct parts in case of a negligible damping ratio,, with, however, the
number of these parts not being infinite. The number of these parts and the
parts themselves increase as P and Tg reduce but, in this case, in accord-
ance with a different law (Fig. 4). |If damping is prevailing in the system,
the parts of the stability range will increase and, beyond a certain lim it
of damping, they run into each other. It can be seen in the nmgp that there
exists an extremum for both T and Tg, a fact suggesting that there exist
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Fig. 1ic
6 [kg] , Tg =0.1 [sec] , ¢Q=0;
2.05 [sec] , Tg =4 [sec] , Kg =0.6
(Case of Nyquist chart having unstable asymptote. Point C denotes the con-
vergent limit cycle and point D denotes the divergent case. Parameters of
point C: h/B A* 0.13, u AfO.45 sec)

w
I

optimum states in a sense. For instance, the optimum value of T" can be
found by the operator only after a long practice, and a prompt response of
the operator is required to reach the optimum state where TO is maximum.
Interestingly enough, if the operator's reflex is 'too good (T" 4 0), in-
stability may take place again as a result of 'human fluster'. In case of
Tg~ Tg |, the response of a well experienced operator nay be slow and
T] may assume quite a high value. Thus, there exists a hyperbolic relation-
ship between the operator's experience and attention. On the other hand, we
might be right in saying that instability results from excessively long
dead time. Accordingly, the critical values must be greater than the aver-
age human lag phase.
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Fig. 12a
3=6[kg] , TQ=0.016 [sec] , ¢Q=0;
TH=0.15 [sec] , Te =2 [sec] , KO = 0.6
(Stability case)

Curve 3(Tqg) permits the effect of the technical parameters to be in-
vestigated. It is a matter of fact that the inertia affects the system
stability favourably (Fig. 5). Considering time constant Tg, an optimum in-
terval can be determined on the basis of the asymptotic lines even in case
of slight damping.

Sometimes parameters Tg and ¢ g are of interest as parameters charac-
teristic of oscillation and transients of the mechanical part of the system.
As shown also in Fig. 6, there are notches of an infinitely large number in
the stability region, reducing and becoming more and densely arranged as
they approach the origin. At the same time, a hyperbolic relationsip can be
detected also between these two quantities. It can be showmn that lower
values of T and P increase the stability region, and for given values of
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Fin. 12b
J=61kg] , ¢Q=0, TQ=0.1 [sec] ;
Tg =4 [sec] , TH=2.05 [sec] , Kg = 0.6
(The Nyquist chart having an asymptote for the instability case)

TH, Tg, there is an interval of ¢ g which ensures stability for the complex
system. Values falling outside of this interval make the system unstable
(Fig. 6), and, finally, this interval increases with reducing P and Tg in
full agreement with the fact that the system's aptitude to instability in-
creases as a result of a higher loop gain.

5.2/c Features of the limit cycle

In a man-machine system of a structure described, hysteretic backlash
always results in one or more lim it cycle(s). Considering the nature of
these lim it cycles, there exists a convergent lim it cycle in a relatively
low frequency range in case the system, free of backlash, is stable (as can
be stated on the basis of intersection of the Nyquist curve and the curve of
negative reciprocal describing function —4/N(B) while both convergent and
divergent limit cycles may take place if the system is unstable, the
convergent limit cycle being of lower frequency.

Surprisingly enough, this fact suggests that an a priori unstable
system may become stable (but never asymptotically!) in a state correspond-

270



ON A MAN-MACHINE SYSTEM

ing to the convergent limit cycle if we, in one way or other, could operate
the system in this state. Therefore, nonlinearity affects the system favour-
ably in respect of operability in this case.

5.2/d Again a comment on use of the Nyquist criterion:

In the man-machine system, the non-regular case where there exists an
asymptote for the Nyquist plot may be encountered. In this case, the Nyquist
criterion applies invariably, and the system will be stable if, and only if,
point —4+O and the origin of the extended complex plane, Y(i u ), are sep-
arated by the asymptote, morevoer, also the Nyquist plot do not encircle the
critical point —4+O. However, efforts are usually mede in practice to avoid
such situations if possible, and simpler system structures controllable by
simpler system structure and tools are preferred.
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BOUNDS GF THE NUVERICAL VALLE CF ROTATIONAL FLEXIBILITY
|. Ecsedi*
(Received: 5 September 1986)
The proof of lower and upper bounds of rotational flexibility
of a homogeneous, isotropic, rotationally symmetric disk of variable

thickness, made of linearly elastic material, is based fundamentally
on two minimum theorems of the elasticity theory.

NOTATION

=3

polar co-ordinates
density
angular velocity
radial co-ordinate of 'inner' mantle surface of the disk
radial co-ordinate of 'outer' mantle surface of the disk
Young modulus
Poisson number
radial displacement
o0>> a, normal stresses

specific elongation
N, N, stress resultants (N/m)
U strain energy
H rotational flexibility
\%
J
n

C<mooc g

volume
moment of second order

| auxiliary values
ar> «p >
a natural angular frequency

R ring centre radius
\% ring width,

the other quantities and variables being defined in the text.
1. INTRODUCTION
Figure 1 illustrates a homogeneous, isotropic, rotationally sym
metric disk of variable thicKness, mede of linearly elastic material.
The state of stress, strain, displacement of the disk rotating at

constant angular velocity w can be brought about by solution of the bounda-
ry value problem described by the following equations:

*Dr. |. Ecsedi, H-3524, Miskolc, Klapka Gy. u. 36. 1X/2., Hungary

Akadémiai Kiadd, Budapest



ECSEOI, 1.

IOO h=h(r)

Fig- 1. Rotationally symmetric Fig. 2. Thin ring
disk of variable thickness

N, N Ne | pHrUJ2 =0, (11,

dr r

N@ =0, N(b) =0, (1253
Eh

N= V2(8r+Ve, (1.2),

o= ilEh Llve vey (1.2)2
v

_Cu -
S T a2

where h = h(r) thickness of the disk'
N =har, Wp =biod stress resultants.
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Equilibrium equations (1.1)192”-, show tnat a rotating disk is inves-
tigated where no load is acting upon the inner and outer mantle surface, the
disk being loaded only by the force system distributed over the volume of
density

q. = pw (1.4)

Strain energy U of the disk can be determined by means of formula
b

>
u= Ih E%+N*'2VNN4>] rdr . (1.5)
The quantity defined as

(1.6)

is called rotational flexibility of the disk.

Rotational fle xibility His a function of the shape of the disk,
material constants E, v , and density p . It can be seen that this state-
ment is correct in the following way:

Consider new variables nr, nd > ar> a ¢ >t defined by rule

9%rj No - 9o u.7)1,2
2 . 2
@ X j ed ~ 7 > (1-8)1,2
?
u= 9't . (1.9)

A combination of equations (1.1), (1.2), (1.3), (1.7), (1.8), (1,9)
shows that n , n» , ar> agp ,t are a solution to the boundary value
problem described by the following equations:

dnr
dr phr =0 , (i.io)1

nr(a) =0, nr(b) =0,
Eh
n = L( a + vad), (1.11)1

<1710>2,3
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By (1.11)2
1- V
dt
a9 (1.12),,

It can be seen on the basis of the above formulae that functions
nr =nr(r), Mp =Tkp (r) are determined by constants a, b, function
h = h(r), density p , and material constants E, v

Acombinati%n of formulae (1.5), (1.6), (1.7) give

H=4" J" Ti(nr +@p ~2 ynr nd ) rdr - (1.13)
a
It comes from the comment on equations (1.10), (1.11), (1.12) as well
as from formula (1.13) that the statement to be proved is correct. Also, it

follows from the definition of Hthat it is positive in any case.

Using the relationships found on pages 96 —97 of /1/, it is easy to

show that, in case h = constant, the value of H can be determined on the
basis of the following formula:

H= P2 jr |(b6 —ab)(7 - 6 Vv v 2) +
+ (b4a2 - b2a4)(27 + 18 v +32 v 2)J (1.14)
Figure 2 illustrates a ring of thickness h and width v . Using the
usual approximations, one can write that
ar =0, o = pad 2R. (1ns5)1,2
Formulae (1.5)" 2 anc) relationship
Uu=277f1 ‘h20Y=-|latp2y =~ REvhp2 w4 (1.16)

\'

suggest that the value of rotational flexibility of a thin ring, H, is given
by formula

H=—F Rsvhp2. (1.17)
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The accurate value of the rotational flexibility of a rotationally
symmetric disk of variable thickness can be determined only in some special
cases, like in case h = h (r) is a function of the following shape /1,2/:

h (r) =ho (f)n , (1.18)
n = constant.

In the general case, no accurate (strict) solution to the boundary
value problem described by equations (1.10), (1.11), (1.12) is known and
thus production of the accurate (strict) value of rotational flexibility H
is not possible either. In cases like this, efforts are mede to set limits
to the value of H. This paper has been intended first of all to derive in-
equality relations by means of which lower and upper bounds can be set to
the accurate (strict) value of rotational flexibility without the knowledge
of the accurate (strict) solution to the boundary value problem described
by equations (1.11), (1.12), (1.10).

2. LOARR BOUND

2.1 Theorem
There exists inequality relation

b

f

_ 2 TE /dfw2

HE 2it h pr fdr 5 (dn +

a

df f

¢2*2v dr r rdr (2.1)

where f = f(r) denotes a univariable function, continuous over closed in-
terval a® r”~ b and continuously differentiable at least twice per section,
otherwise arbitrary.
Proof :

The proof of relation (2.1) can be directly obtained from the mini-
mum theorem for potential energy functional applied to the kinematically
possible displacement field written in the following form:

G=1 (r) w2 _ (2.2)
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2.2 Theorem

There exists inequality relation

. hr2 Fdr)2

H >n (2.3)
fi fr<f)2*F*2VF dr

a L

where F = F (r) is a not equally zero function over closed interval

a” r - b, the continuity properties of which complying with those of func-
tion f =f (r) given in theorem 2.1.

Proof:

Let relation (2.1) be applied to function
f (r) = XF () (2.4)

being an arbitrary real constant. From relationship

A . ldFs2 F2
H & 2T X h p r2Fdr- — hi(d?) +
1-V
d F
PV g T rdr (2.5)
so obtained, existing for any possible value — & < X < » of

variable X , relation (2.3) can be obtained by a simple extremum calcula-
tion provided the coefficient of A is non-zero that is

F() j 0, a - 1 L b (2.6)
3. PR BOUND

3.1 Theorem

There exists inequality relation
b

2
Wmof f1 rc , ldes2 _ 2 dc
E, ip [ (dlr}b °aF.
a 7
2V ) pr2cl dr + 4= h p2ridr (3.1),
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where ¢ = ¢ (r) denotes a univariable function, continuous over closed inter-

val a—r —b and continuously differentiable at least once per section,

otherwise arbitrary, which satisfies the homogeneous boundary conditions

given below:

c@ =0, c(( =0

Proof:

38.1>2 3

The proof of the inequality relation (3.1) is based on the minimum
theorem for complementary energy from which it can be obtained by applica-

tion of the statically possible stress field of the following form:

ns dc ?

3.2 Theorem

(3.2)1

(3.2)2

Assume C = C (r) to be a univariable function continuous over closed
interval a—r —b and at least once continuously differentiable, which is
non-equally zero in closed interval a—r —b. Assume furthermore that func-

tion C=C (r) satisfies boundary conditions

C@@ =0, C(b)=Eo0

There exists inequality relation

-f p2«o0* 4}

where
Q=T hrsdr ,
C = 3+ V)rzCdr ,
=11 fg82+rif)'-* *C §| dr

(3.3)

(3.4)

(3.5)

(3.5)2

(3.5)3
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Proof:
Let the inequality relation (3.1) be applied to function

c (r) = XC(r) , (3.6)
where A arbitrary real constant. From relationship
H % p2( A2Q@-2 ACl+ Q) (3.7)

so obtained, relation (3.4) can be calculated by means of simple extremum
calculations.

4. QOMVENTS ON UFFER AND LOAER BOUNDS

4.1 Relation

The brief discussion in connection with relation (2.1) suggests that
a sign of equality in relation (2.1) will apply only if

f(r) =t (r) a—r —b . (4.1)
By means of another brief discussion concerning relation (2.3), it
is possible to show that a sign of equality in relation (2.3) will apply
only if
F(r) =kt (r) a—r —b, (4.2)

where K is a non-zero, otherwise arbitrary, real constant.

4.2 Relation
The discussions associated with relations (3.1), (3.4) suggest that

a sign of equality in relation (3.1) will apply only if

c(r) =— —=(r + vt) , (4.3)
1- Vz uL

while in relation (3.4) only if
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C(r) =K — -—-- *(r— + Vt) , (4.4)
11—V dr

where k is a non-zero, otherwise arbitrary, real constant.
5. AN INEQUALITY RELATION

5.1 Theorem

Let the least natural angular frequency associated with the rota-
tionally symmetric radial free vibration of a rotationally symmetric disk of
variable thickness and of density p on the inner and outer mantle surface
be denoted with a , the momentum of second order of the rotationally sym
metric disk of variable thickness and of density p , calculated for the
axis of rotation, with J while the rotational flexibility of the disk in
guestion with H.

There exists inequality relation

2Haz2 - J. (5.1)
Proof :
It is well knomn that a 2 can be obtained as a solution to the
minimum problem given below: n

l
i orh f(AE)2 2 Loy *fi] dr
2  min 1— V a - dr r dr rJ

p=p(r) 5-2)

;R P2

Function p = p (r) in formula (5.2) in closed interval a—r —b is
a non-equally zero function which is continuous over closed interval
a—r ~ b and at least twice continuously differentiable per section in this
interval.

Assume -that p(r) =t (r) (5.3)
in relation (5.2).

It follows from equations (4.2), (4.3) that
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E dtjt” o

(5.4)

On the basis of the Schwarz inequality, it can be written that

I_Q b
r
( pr htr dr)2 " pr ht2dr (5.5)
J J J
a a a

The inequality relation (5.1) to be verified is directly obtained by combin-
ing relationships (2.3), (2.4), (5.4), (5.5) and formula
b
J=2Tp r*hdr (5.6)

5.2 Relation

It is quite easy to show that the sign of equality in relation (5.1)
applies in case of a ring of width v and thickness h as illustrated in
Fig. 2. Natural angular frequency a of the radial rotationally symmetric
free vibration of the ring can be determined on the basis of formula

«2={f , (5.7)
where
U=— mjV dV=— V=\ E()22itRvh-=
\V4
=e2l vhil , (5.8)
=N J pe2d V =I pe2 V=| pe22R irvH =e2p RvHit (5.9)
\Y4
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In writing relationship (5.8),

Qp= E| (5.10)

has been utilized, where e is the amplitude of radial displacement. It fol-
lows form the above formulae that

(5.11)

PR

On the other hand,
J=2iktR phv (5.12)
in the present case.
By the use of formulae (1.17), (5.11), (5.12), it is possible to
show that what we have said, namely that the sign of equality in relation
(5.1) applies in case of a thin ring, a statement to be proved, is correct.

6. BEXAVPLE FKCR BRINGING ABOUT BOUNCS

6.1 Relation
On the basis of formula (2.3),

F=1, a- r-b (6.1)

1-V2 2 [ W
H > P2 (Ll. —————————————— (6.2)

6.2 Relation

From relation (3.1), the upper bound given below,
b

B A P2 J' hrrdr, (6.3)
a
can be obtained via substitution

c(r) =0 a—r —b . (6.4)
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6.3 Relation

Assume that c (r) =m(r) (6.5)
in relation (3.1), where

Eh /ht I

m(r) = B . (6.6)
v 2 (r dF + v
In this case, the sign of equality applies in relation (3.1) that is
b
_ . fdm\ dm\
H=- . <#+r(dF} 2 vm )
a
b
+ V) op A] dr+ﬂ'j—| h °2r (6.7)
It is easy to accept that
b b

H > (VI m™ ¢ dr- 2@ +V ) I|pr2mdr
h p2r5dr) . (6.8)

In relation (6.8), we have written that
b

b
Jaon . _ d M\ . R _
hdr Mar =— dF <TT> dr merydr =
b (6.9),
m@ =0, m(b) =0 . (6.9)2,3

Now the investigation is limited to the case where

I(\le’ < 0, a™-r~“b. (6.10)

It can be shown by elementary calculation that in this case
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) b
min

k(r) k2 4, (N dr—2 3 +V) pK r2dr

B+y)2

v d dr . (6.11)
dr V

With relationships (6.8) and (6.11) combined, the following theorem is

obtained:
6.4 Theorem
Assume that
dh n z
ar <0 - - (6.12)
Inequality relation
b
H > P2 _r h G+VvYy K (6.13)
a grka
exists in this case.
6.5 Relation
Assume that
h(r) =Arn, n >0. (6.14)

Using inequality relations (6.4) and (6.13), the following bounds
can be brought about in this case:

0 6-n K6-n

H <- E— p2A '?l.-n-_ . (6.15)
H *-5- P A —  6(n) , (6.16)

where >
6(n) - 1- ( yn \‘;’ 3) (ni 6) (6.17)
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For the case n = 6, we obtain by use of the Bernoulli —L'Hospital rule that
~Y~ P2AWlI (]) > H > P2 Aln (]) 6 (6) . (6.18)
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SIMULATION CF THE TIMBER LATTICE SHEL WTHOUT "IN-PLANE" SHEAR CAPACITY
BY DOUBLELAYER COSSERAT SURFACE

J. FLizy*
(Received: 5 September 1986)

Lattice shell as a term is used to describe doubly curved sur-
face formed from a lattice of timber laths bolted together at uniform
spacing. The laths are able to rotate around the bolts freely so a
substituting surface have been found in the field of Cosserat theory.

NOTATION

Tensor notation is used, the Einstein summation convention is regard-
ed as valid, Greek indices can take the values 1 and 2 only.

Nt R membrane forces in the lattice shell
Jap "out-of-plane” moments in the laths
Oa shear forces corresponding to MaRd

Ma3 “in-plane” moments in the laths

naR mag , corresponding stresses, moments and forces in the substituting
la >ma+i continuum shell

la >us displacement vector of the continuum shell

* R >

T 7732 deformati f th i hell

‘a 3 f )1 eformation tensor of the continuum she

a > .

@ 5 | rotation vector of the laths (double-layer Cosserat-surface)
lgB curvature tensor

'»B3

ial3" 1

Ola all* covariant and contravariant derivations

D a partial derivations

G elastic moduli of the timber

op” ||-p; % "out-of-plane”, "in-plane" and torsion inertia of the laths
T b2=b spacing of the lattice
X O differential operator (Pucher)

INTRODUCTION

Lattice shells consisting of timber laths running in two direction,
such as timber lattice roof of the "Mannheim Bundesgartenschau" (1) can be

*0. Fiizy, Hungarian Institute for Building Science (ETD 1113 Budapest,
David F. u. 6., Hungary

Akadémiai Kiad6, Budapest
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used advantageously to cover large areas. The term lattice shell is used in
this paper to describe a doubly curved surface formed from a lattice of tim-
ber laths bolted together at uniform spacing in two directions. When flat,
the lattice is a mechanism with one degree of freedom. After erection, an
element of a lattice shell consists of a parallelogram of four laths.

The method of erection was developed by Professor Otto. The first
structure of this type was erected for the German Building Exhibition, Essen,
1962, (2). In 1965, in collaboration with Professor Rolf Gutbord of Stutt-
gart, he won the design competition of the German Federal Pavilion for
Montreal Expo' 67 (4). The main structure was a large continuous cable net
roof, within the roof there was a timber lattice dom covering an auditorium.

BASIC RELATIONS

General Statements

Due to the method of erection (1), the lattice shell can be consid-
ered sufficiently shallow for all the approximations used in the shallow-shell
theory to be accepted. The laths are set closely enough to substitute the
structure by a surface. The conditions of such an approximation were clari-
fied in (3).

There occur several problems in the course of the computations so we
attempt to set up differential equations suitable for calculating the in-
ternal forces and deformations of lattice shells of such kind by using a
continuous surface. The special structure considered here cannot take nmem
brane shear forces in the classical sense, but the shear forces acting on
the laths can be connected with the couple-stresses of the micro-polar sur-
face which, in that case, correspond to the "in-plane"” moments rising in
the laths. The rotation f-~1” and f-~2* of the laths about the intersection
point are independent. (See Fig. 1.)

The corresponding forces and stresses acting on the lattice and the
surface shell element are shown on Fig. 2.

The general equations of a Cosserat-surface can be written as
follows (5):
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Fig. 1. Notation

3 n

dag =uallg udbag g3 f
d,, =u,,a -Uvb~*r-£, 6 RYfY geometrical relations
dg3=-uYbyl> -eed3yfY
nas8 la +ga b™a =0

stress equilibrium (1)
n Q1B bBa = Pi
«e . — masg%a-q&- =0

couple-stress equilib-

3 .

m®’lla - maB baB - n«eeal =0 UM

Because in our case we assumed the shell to be shallow and the co-
ordinate system to be rectangular, the difference between the covariant and
contravariant dérivates vanishes and only partial dérivates exist, the equi-
librium equations take the form as follows:

nll,1 +n21,2 + glbll +g2bl2 =0
(2)
nl2,| + n22,2 + qlb2l + g2b22 =0 .

nlibll + ni12b21 + n21b12 + h22b22 + qgl,| + 2,2 = p3 (3)
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Fig. 2. Corresponding forces and stresses

mi, 1+ ne12 «” MO~ onnis g

mi2,1 + 22,2 " Mi3b21 - oapon « G2

mi3 1 —mipl| - M2P12- nize12 =0

ne3,2 - ne2b22 m21b21 ~ n2le2l = °
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It is worth mentioning that in this theory =-m" are the torsion
moments and and are the bending moments. Taking into account that
the value of the permutation tensor is e® =721 ~ *> the ferm °f eds
(5) will be:

m3,1 “ mlbll “ m2bl2 = n12 |

(5,

23,2  m22b22 m21b21 ~ n21j

According to this shell theory the bending moments will be obtained
from the derivative of the independent variable, rotation function f
i.e. from the relative rotation.

Constitutive equations

The theory discussed above differs from the normal bending theory of
shells in that the couple-stresses m” and i*-j exist, so it is justified to
formulate the rotation vector based on the following assumption:

fa e3Ya and 3= 3(1), f3(2) (6)
which means that the rotation vector of the surface point is defined by the

kinematic constraint above and only f3* and f3* components are indepen-
dent variables. In components:

f2 =~u3,2 (7)

f @ f(2)

Based .on that assumption the following simplified constitutive equa-
tions are proposed:

M2 = klud Il where kx = Elop/b

ml = klu3,22
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mA =-m22 = 12 where k2 = (GI*/b (8)
gl =klu3,l
g2 ' k2u3,2
and
m3 =¥34} where ks = Elg /b
nP3 = k3f372) _ @)
n12 k4d12 " kaf 3( 12El.
2) where = J
n2i  kaf3
As f~ ™ and represent the rigid rotation of surface point con-

nected with one of the laths, the relation between d”~ and n” can be de-
duced in the following way (see Fig. 3):

Tz(l) )

|
>

F3(2)

I
S
N

By setting up these simplified constitutive equations further as-
sumptions were adopted, namely:

—the lattice structure has no contraction, so the corresponding
surface must have zero Poisson ratio,

—in the deformation relations in egs (1) the members multiplied
with several components of tensor bag are neglected reasonable the shell
is assumed to be shallow,

—the dimension of the laths are supposed to be similar in the two
directions.

Governing equations of the problem

Substituting the constitutive equations defined above in the equi-
librium equations (2), (3), (4) and (5) and substituting ga from (4) into
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egs (3) and taking into account that = b23 we obtain the following set
of equations:

nil,l + n21,2 cb-Q + "2M2 ~ 2
(10.a)
ni2,| + n22,2 glb2l + g2b22 =0 .
*>
bl + n22022 + A w3 -(m 13b11-m23b12) )1-
—m13b21-ffl23012) , 2+ (10.b)
+b12(n12+n21) = =P
Kafa (1) b
3l3 14 m1bll mi2b12 =  BHA
(11)
2)
K3kz 42) 2222 nPlb2l = -2
where the differential operator is:
x D 0, 1111 +k@— 1,1122+kJ -1, 2222 (12)

Comparing these equations with the results of Kollar's (9) article
we have found that if we neglect the members multiplied by several compo-
nents of the curvature tensor bag (middle column), based on the assump-
tion that the shell is shallow, the egs (10) are essentially the same, but
egs (11) is new in this form. The original form of (5) can be found
in (9) also.

In this paper we supposed the laths have the sare dimensions and
spacing, but in the same way it is possible to derive more general equations
for different laths.

If we accept the same approximations as in (9), the middle column
can be neglected in (10) and (11) and we obtain:

nll,l +n21,2 "'
(13)

nl2,1 + n22,2 =
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11+ n22/22 u3 —P3 (14)

1(? _lyfau> ]_
2

Bagr@

Weé can eliminate n® and n”2 in egs (13) by using egs (9). Egs (11)
can be written in a simpler form if we eliminate the commmon members in

(15)

and in egs (15). Finally, we get the following set of equations:

- (16)
N11 ™ )
n22,2 - K4f§?i a7
n-AbA + n22/22 — (18)
b2 f (1) f (1)
24 x3,11  x3 (19)
b2 f (2) f (2)
24 x3,22° *3 (20)

We have five equations containing five unknown functions n”, n22,
(1) and f

n,j(b/2)3

\
\b

Fig. 3. Constitutive relation between rotation and shear force
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QONCLUSION

Timber lattice shells such as the "Bundesgartenschau" in Mannheim
have been discussed in the paper. The timber laths running in two direc-
tions were positioned originally in plane, the planned shell surface has
been realized by the lifting method while the laths at the edge of the shell
structure still remain in plane. Applying this lifting method the structure
would be charged with "eigenstresses" as bending moment in plane, the shear
forces corresponding to these moments and, when the forces of lifting act no
longer and the laths are fixed along the edges, normal (arch) forces in the
laths also. In this paper we do not intend to deal with the lifting method
and the eigenstresses caused by it.

This paper is focused mainly on the computing method of the forces
due to the outer load. The results should be superposed on the eigenstresses,
to be defined by another computing method.

A substituting continuum is proposed which must fu Ifil the governing
equations (16), (17), (18), (19) and (20). Examining egs (19) and (20) it
can be stated that the rotation fA~ and fw hich are characteristic of
the "in-plane" bending moments, depends only on the boundary conditions, in
the main field of the surface they vanish, egs (19) and (20) being a damped
wave equations. The width of the boundary layer where fA~'1 and exist
depends on the lattice spacing.

From egs (16) and (17) it is plausible that the normal (arch) forces
in the laths depend on one variable only (becauselthe shell cannot take
shear stresses) and so the outer load p* can be balanced by them only in
part, a further part of the load must be balanced by the "out-of-plane" no-
ments and shear stresses according to egs (18).

It is worth mentioning that the boundary layer where f~ "~ and f~ "
differ from zero must not necessarily connected with the edge of the shell.
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OPTIMUM DESIGN CF PLASTIC BAR STRUCTURES FOR SHAHEDOAN
A\D DYNAMC LOADING

S. Kaliszky* and |I. Knébel**
(Received: 28 January 1986)

In this paper, two different problems of optimum design are
presented. The first problem is the optimum design of elastic-per-
fectly plastic bar structures (frames and trusses) under variable
(shakedown) loading while the second one is the optimum design of
rigid-perfectly plastic bar structures under dynamic pressure with
specified displacement constraints. In both cases, nonlinear objec-
tive functions are used. The proposed two methods can be formulated
as a nonlinear programming problem and their solutions are based on
the same iterative procedure. The applications are illustrated by
numerical examples.

INTRODUCTION

The optimum design of elasto-plastic frames under variable repeated
(shakedown) loading with linear objective function was studied among others
by Heyman /14/, Cohn and Parimi /15/. This can be formulated as a linear
programming problem. A few other papers deal with the optimum design of rig-
id-plastic structures under short-time dynamic pressure or impulsive loading
(e.g. /11, 12, 16/). In this case, the problem is more complicated and leads
to nonlinear programming.

The first part of this paper deals with the generalization of the
optimum design methods described in /14/ and /15/ using nonlinear objective
functions and extending the solution to any kind of bar structures (frames,
trusses etc.). In the second part, the general approximate method given in
/11, 12/ will be applied to bar structures under dynamic pressure using
again non-linear objective function. The solution of both problems is based
on the same iterative ‘procedure which was already successfully applied to
the optimum design of elastic structures with displacement constraints and/or
specified internal forces /6, 7, 10/.

*  Prof. S. Kaliszky, Technical University, H -1lll Budapest, Mdlegyetem
rkp. 3., Hungary

m |. Knébel, Research Fellow, Technical University, H -IlIl Budapest,
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2. GEOVETRICAL RELATIONSHIPS

In the fundamental equations of bar structures, among others three
geometrical variables play important role: area A, moment of inertia | and
plastic bearing capacity (plastic moment or yield force N") of the
cross-sections. Assume that the relationships between these variables can be
expressed by formulae

Qp =BAX/ " or A=B (%a 1)

| = COAi/e a=cl 2)

For example in case of frames with rectangular cross-sections and
with given ration b = 2a, one can obtain (Fig. 1/a):

2/3
M " n3/2 or A=2 7! V3 3)
I1=I6§2 or A= N 112 . (4)

Here Gy is the yield stress of the material.
In case of | beams with fixed height b and web thickness v, formulae
(1) and (2) can be approximated by linear relationships (Fig. 1/b):
0 b
M A or A a* 5
h 2 ' “ ab ( )

A, or A « (6)
4

For trusses the relationships are also linear

No = °yA, or A= 1 No . )

3. OPIMUM DESIGN CF STRUCURES SUBJECT TO SHAEDOAN

Consider a linear elastic-perfectly plastic statically r times in-
determinate bar structure with given geometry and constructed of
i =1,2,,..,n prismatic members with cross-sectional areas A", moments of
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a) b)
Fig- 1.

inertia L , plastic bearing capacities Qi and given lengths ~ ~. The struc-
ture is subjected to variable repeated (shakedown) loading. Let us denote
the extremal values of the internal forces calculated from all the possible
combinations of the variable loads and arising in critical cross-sections

j =1,2,...,m with Qjmax and QWmin,respectively. Besides, (R* denote the un-
known self-equilibrating residual internal forces of the critical cross-
sections. Then, the shakedown of the structure can be expressed in the fol-
lowing manner /13/:

qmax * QQ] i Q'pi '
qmin +%' i -Qp'l

The criterion of optimality (minimum volume) is of the form:

(j =1,2,....m (8)

V=H. A =min! (i =1,2,....n) 9)

Besides, the minimum values of the cross-sectional areas or that of the
bearing capacities might be specified

i or . -
A % pe (10)
where Ao and %o are given constants,

Qmax anc* Ajmin aPPearin9 in the inequalities (8) are in nonlinear
relationship with A" and 1* and with @”, respectively:
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Qg = GmaX (A 1) = Qmax Qpi)

(id
gmin  Qmin<A ,li') ~ *jmin~pP

while Qpj can be expressed in linear form in terms of unknown statically in-
determinate forces Xk (k = 1,2 ,...,r):
r

@Rj = kix akj Xk - (12)

Here a” denote constants.
Substituting formulae (1), (2), (11) and (12) in Egs (8) - (10), our
optimum design problem can be formulated as follows:

minimize

V:il| |181%"i, (13)

subject to

Qmax @) * k&1 & % — B
Qmin Qo) + kEI &7 % - pi

P

This is a nonlinear mathematical programming problem, from which
statically indeterminate forces X*, (k =1,2,...,r) and design variables
Qpp (i =1,2,...,n) can be determined. The direct solution of this problem
is, however, fairly complicated and therefore generalizing the idea of
/10, 13/, an iterative solution described below might be applied.

In the first step, let us choose proper initial values for the cross-

sectional areas and denote them with A"°. Using Egs (1) and (2), I.° and
o

(i =12,...m) (14)

'Pi 1 jmax 'jmin
(denoted with Qmax and Qrﬂin ) respectively, can also be determined by
the elastic solution of the structure. Substituting these values in Egs (13)

and (14), we obtain the problem:
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minimize
u(D n r@ia

g (15)
= [ v ]

subject to

mex kB A D1 G
Qfin k& XK@ g (16)

P e

This mathematical programming problem is much simpler than the former
one defined by Egs (13) and (14), since now gP;*. and QP denote constants

JITlaxX Jillin
and therefore the inequalities (16) are linear and only the objective func-
tion (15) is nonlinear. The solution of this problem provides X QP

and Aiﬁl), 1(” respectively. Then the corrected values of Oj.mfx and (j?.n“.l

can be calculated and the procedure described above should be repeated until
the differences between the results of two subsequent steps are su ffi-
ciently small.

The mathematical programming problem with nonlinear objective func-
tion and linear constraints can be solved by the use of the reduced gradient
method elaborated by Wolfe /9/. For the solution, computer programs are
available /8/. According to experience with the solution of different numer-
ical examples, the convergency of the iteration is good and after a few
steps, sufficiently correct results can be obtained.

4. CPNIMM DESIGN CF STRUCTURES SUBJECTED TO DYNAMIC PRESSURE

Consider a rigid-perfectly plastic bar structure (frame or truss)
with given geometry constructed of i =1\2,...,n prismatic members with
cross-sectional areas.A”, plastic bearing capacities @i and given lengths

%". The structure is subjected to high-intensity, short-time dynamic pres-
sure which is normal to the axis of the structure and is expressed in
the form

T(s,t) =p(t) TQAs) , 17)

Here T (s) defines the distribution of the loads along axis s of the struc-
ture and loading parameter function p(t) describes the time variation of the
pressure.
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First let us consider the equivalent quasi-static problem. To cal-
culate a kinematically admissible load multiplier pc for quasi-static load
T (s), we have to consider a yield mechanism which is defined by displace-
ment function w(s) and deformations gq* of plastic parts j =1,2,...,m
(hinges or bars) of the structure. Then, according to the kinematical
theorem of limit analysis /13/, pc can be obtained from formula

m

Pc (18)

where
i

In case of dynamic pressure, the positions of the plastic parts
(hinges or bars) are generally not fixed during the action because of the
inertia forces i.e. the structure undergoes unstationary motion described
by a function w(s,t). After time t*, the structure stops moving and permanent
displacements w* = w(s,tj) remain in the structure. The goal of the dynamic
analysis is to calculate the permanent displacements which should not exceed
given allowable values.

The analysis of the unstationary motion even in case of simple struc-
tures is fairly complicated. Therefore, to simplify the solution, we might
apply a kinematical approximation /11, 12/. According to this method, a
kinematically admissible displacement field has to be superimposed on the
structure and then its motion can be described by a function in a separated-
variable form

w(s,t) = WiHwQs) . (19)

Here wq(s) is any postulated kinematically admissible displacement field
(yield mechanism) and W(t) an unknown displacement parameter function. Using
this approximation, the problem is reduced to the investigation of an equiv-
alent one-degree-of-freedom system the solution of which can be expressed in
close form. Assuming e.g. a square loading parameter function shown in

Fig. 29 the maximum value of W(t) can be obtained as follows /11, 12/:
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(20)

Having Wj, the permanent displacements of the structure can be approximated
by function

w =" wo<s> ' (22)

In Eq. (20), p is the kinematically admissible load multiplier for load
TQ(s) and associated with assumed displacement field wq(s), and K is a con-
stant: L
\' TO(s)wQs) ds
K=72 (22)

n A,
p £ A w”(s)ds

Here p is the density of the material of the structure. The reliability of
the approximation might be improved by using more kinematically admissible
displacement functions woh(s), h =1,2,...,r and calculating the correspond-
ing permanent displacements w” = W”woj(s). Then, their maeximum values are
competent in the design.

Having the results given above and using the square loading param-
eter function of Fig. 2, the optimum design problem can be formulated as
below:

Fig. 2.
minimize
v= Z A (23)
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subject to
- 2 /b :
= AP 4§ ST VY (24)
oh
Mo R
Here
N Qjh 4jh 1 m
4ih Qojh (25)
X P cjia 4h Qi
To(s)woh(s)ds
To(s)woh(s)ds
- (26)
Kh = n 4
woh(s)ds Dh A

W) denotes the specified permissible values of displacement parameter func-
tions Wp(t) and

.
=J To(s)woh(s)ds’ Dh =J woh(s)ds @7

are constants.

With (1), (25) and (26) substituted into Egs (23) and (24) we can
write:

minimize

V= 4 Qpy (i =1,2,....n) (28)

subject to
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Z DinB 01
(29)
"oh

Po' 8

N
e oh Jh ‘2

pe*> £ “iAnV

As it is seen, both the objective function and the design con-
straints are nonlinear functions of design parameters Qp*. To solve the
problem, one can use the same iterative procedure that was described in Sec-
tion 3. First we assume proper initial values for Q" (say Q *), calculate
the right side of Egs (29), and solve the mathematical programming problem
with linear constraints and nonlinear objective function. Obtaining design
variables QpP, we repeat this procedure until the differences between the
results of two subsequent steps are sufficiently small.

5. BEXAVALES

The application of the methods described above will be illustrated
for the structure shown in Fig. 3. The cross-section of the frame is rectan-
gular with ratio b = 2a (see Fig. I/a). Cross-sectional areas A or plastic
moments M = BoA3/2 of the three bars (i = 1,2,3) are the desig}n variables.
The critical cross-sections are at the corners and at the points of applica-
tion of loads (j =1,2,... m=6). Using Eq. (13), the optimality condition
is, as follows:

V = av(3 + 10Mp2* + v/ 3 = min! (30)

a) First suppose that the elasto-plastic structure is subjected to
static variable forces O4 Fl1 &4 5kKNand 0 < F? < 15 kN which can
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Fig. 3.

act separately or in combination, and consider the problem of optimum design
subject to shakedown.

Statically indeterminate forces and X2 of the elastic structure
calculated form P* =5 kN and F2 = 15 kN, respectively are

112.5/1. + 1350/, + 360/1,
X = - - and
1 72/1. + 360/19 + 72/1,
1 (31)

- 1125/12

72/1x + 360/12 + 72/1-j

The corresponding bending moments, and M2 of the critical cross-sec-
tions and residual bending moments Mp* calculated from unknown force Xp are
shown in Table 1. Following Egs (8), the condition of shakedown has the form

max * MRS M
(32)

jmin Rj- pi
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For the minimum values of the areas and plastic moments no restric-
tions are specified, i.e. Ag=MQ=o0.

Table 1
1 MJ1 Mj2 MRj
1 X1 3%x2 3XR
2 —15+Oxj’\ 6X2 6Xr
3 -15+6X1 6X2 6Xr
4 -22.5+6X1 37.5+6X2 6Xr
5 -30+6X1 6X2 6Xr
6 -30+eXjN 6X2 6Xr
First let us assume that 1" = = const and M~ = const

and solve this simple problem. Using Egs (31) and Table 1, mPP and mpP*?
can be obtained and the condition (30) can be replaced by OJ= min! Thfs to-
gether with Egs (32) is equivalent to the usual shakedown problem where,
however, instead of the common shakedown parameter of the loads, it is con-
stant plastic moment MpO” that has to be determined. The solution is shown
in the first row of Table 2.

Assuming now that 1" = = const but M~ (i =1,2,3) are
unknown, let us solve the problem again. The solution of the linear inequali-
ties (32) with the nonlinear optimality condition yields the results shown
in the second row of Table 2.

Using Egs (3) and (4), from these plastic moments the new values of
moments of inertia " can be obtained and then N]r/'r\1pax and I\MDIE can also
be determined. This makes possible the solution of the next mathematical

(2)

Repeating the procedure, after a few steps sufficiently good results

programming problem which yields plastic moments

can be obtained.
As seen in Table 2, the optimum plastic moments deviate significant-
ly from the solution of the frame with constant plastic moment and savings

of 15 %in volume of the frame are obtained. Note that steps 1-5 yield less
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Table 2

steps My e My v
0 258 258 258  192.0
"1 117 258 200 1624
2 9.89 276 203  163.7
3 921 283 206  164.2
4 891 226 207 1645
5 878 287 208  164.6
6 872 288 208 1647
7 8.69 288 208 1647
8 8.67 288 208 1647

volume than the last two ones but the corresponding plastic moments and
moments of inertia are not compatible since they do not fu lfil the inequali-
ties (32).

b) Consider now the dynamic problem when dynamic forces = pQ5 kN
and F2 = PO 15 kN are acting simultaneously and are characterized by the
square loading parameter function of Fig. 2 with values p =1 and
t = 0.05 s. The density of the material is p = 8000 k8/m3 and the per-
missible permanent displacements in vertical and in horizontal directions
are V\}S = 0.25 mand H_ 0.30 mrespectively. The minimum value of the ap-
plicable plastic moment is M =5 k\m

The possible yield mechanisms of the structure are shown in Table 3.
These 4 mechanisms, however, depending on whether the plastic hinges are at
the right or the left hand side of the corners, lead to 12 different load
multipliers (h =1,2,...r = 12). Using Egs (18) and (22), the corresponding
values of and pch are given in Table 3. Then, considering Egs (29), in-
equalities

p_ch

* KP) o} (h =1,2,...r =12) (33)
Po I<h +2 Woh/Qoto

can be constructed which together with the objective function (30) and with
restriction
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(cont.)

Table 3.
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. =5 K\m 34
P|>Nf30 (34)

define the mathematical programming problem.

Since the left sides of Egs (33) are linear functions of design
variables M_., the sare iterative f)rocedure can be used as in the former
example. First, we assume A = A.n = constant and we solve the linear in-
equalities (33) with the nohlinedr objective function for l@ll) .

Then, using values l\/pf), we repeat this procedure. e results of
iteration are shown in Table 4.

Table 4
steps N||3'i Mp2 I\/!)é1 v
0 19.1 19.1 19.1 157.2
1 5.0 26.3 11.8 137.2
2 5.0 24.0 15.3 1377
3 5.0 24.5 14.7 137.9
4 5.0 24.4 14.8 1378
5 5.0 24.4 14.8 1378

Using different values for the duration of pressure denoted with tQ,
one can obtain different optimum solutions. These are given in Table 5. It
can be seen that with the duration of pressure increased, the solution tends
to the results of the optimum design of the corresponding quasistatic problem.

Table 3
vs) My 02 M3 v
0.05 5.0 244 148 1378
0.2 499 250 19.6 1466
1 5.0 250 20.1 1473

5.0 25.0 20.0 1473
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A NBW APPROACH TO X-RAY DIFFRACTION ANALYSIS CF STRESS STATES
IN SLRFACE LAYERS

B. Kampfe and B. Michel*

(Received: 24 June 1986)

Presented in this work are the possible applications of X—+ay
stress analysis. Problems arise for difficult stress states with
gradients of residual stresses arising deep in the sample, gradients
of solid solution, strong textures and shear components of stress
parallel to the surface. For the latter problem a relatively simple
method of investigation is presented which eliminates the other in-
fluencing factors almost completely.

X—+ay stress analysis has found increasing use in the recent ten
years / 1/, /2/ in connection with the possibility of nondestructive determi-
nation of residual stresses in surface layers of materials. Today X-ray
stress analysis is considered an independent field of X-ray diffraction
analysis. The improvement of measuring techniques resulted in a reduced use
of the sin dggmethod /3/ which had been the most widely used method in X-—ray
stress investigations earlier. Gradients of residual stresses and solid
solution concentration deep in the sample, shear stresses parallel to the
surface and textures are the "distortion parameters". On the other hand,
these difficulties led to a continuous methodical improvement of X-ray
stress investigations. In the following, a new method of X-ray stress anal-
ysis is presented. The basis for all diffraction techniques is the measure-
ment of residual strains, using the lattice spacing of selected hkl planes
as internal strain gauges and determining the strains in particular direc-
tions in the sample. In X—+ay measurements, a direction is defined by two
angles, ip and & , @ defining the orientation of the scattering plane
relative to two directions in the sample surface while ¢ the tilt of the
chosen direction in the scattering plane relative to the normal of the sur-
face (see Fig. 1). If the strain in the specimen coordinates is e”p>
strain £ipg measured in the direction defined by ¢ and p will be

given by a simple tensor rotation, where x" is in the direction of the sur-
face normal.

Dr.sc.techn. Bernd Kampfe—Prof. Dr.sc. nat Bernd Michel, Institut far

Mechanik der Akademie der Wissenschaften der DDR, 9010 Karl-Marx-Stadt, PSF
408, DDR

Akadémiai Kiad6, Budapest
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2
Fig. 1. Distinction between sin drmethod and ij>-method

.Y =[en “ s2'f+£12sin2? +e22sin2H> e33]sin2T + £3 3 f13Co s f+e23sin f]sin 2 fl

The traditional X—fay technique is to choose a specific (hkl) dif-
2
fraction line and to determine its shift ( A ) as a function of sin ¢ for

constant p

c const - —€ot md'Ad'
where ®& is the bragg-angle. The e 9@ Vs .'sin2 ¢ plots give simple
linear expressions and good results provided the components of stress normal
to the free surface o”"> a23 anc* 0 33 mm "the sPecimen domain (near
the surface) investigated are nearly zero. Difficulties will arise if this
assumption fails as the investigation is often made after wear, grinding
and other mechanical loads /4 /. The problem of analysis lies then in that
for different angles & , also the diffraction lines are generated in dif-
ferent depths of material below the free surface /5/. Thus the result is
based on points of measurement of different stress states as these must be
other than zero at depths below the free surface. A measurement of the dif-
fraction peaks as a function of ip for constant ¢ solves the problem
(Fig. 1) because the penetration depth of X-rays is independent of ip /6/.

¢ can be varied by rotating the speciman around its surface normal. This
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is easy with most X-ray diffractometer types, and leads only to minor sys-
tematical errors in the measurement. Another remarkable advantage of these
investigation techniques is that the symmetry of residual stress state is
directly reflected in the eip g vs. if plots /7/. In this way, the direc-
tions of main stresses and maximum shear stresses as related to the surface
can be easily determined /8/. The investigations, including a large number
of different materials and stress states /9/, showed that both ¢ and w
diffractometers could be successfully used for the ¢ -method. In applica-
tion with u-diffractometers, the -method yielded better results than the
sin2 ¢ method, especially with the use of a focussing slit. The stresses
and stress states obtained in this way showed a good agreement with the ex-
pected values, especially for shear stresses and position of principal
stress axis.
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BUCKLING ANALYSIS CF COUPLED SHEAR WALLS BY THE MULTI-LAYER SANDWCH MOCHL
Laszl6 P. Kollar*

(Received: 11 March 1986)

It is well knom that the continuum model of a shear wall is a
sandwich beam which consists of 'stiff' and 'soft' layers. The paper
presents the differential equation system of the multi-layer sand-
wich beam, and gives a method and closed formulas to determine the
critical load in case of a concentrated force acting on the top of
the beam The paper also shows that the critical load of a multi-
layer sandwich cantilever is —to a close approximation —equal to
the critical load of a triple-layer sandwich beam i.e. a sandwich
with thick faces.

1. INTRODUCTION

Shear walls are often analysed with the aid of the continuum method
/5,7,8,9/. The replacement continuum of a shear wall is a sandwich construc-
tion consisting of 'stiff' and 'soft' layers.

In this paper we deal with sandwich constructions having n+l stiff
layers which are separated by n soft layers. W suppose that both the soft
and the stiff layers are incompressible in transverse direction. The soft
layers have only shearing rigidities, they are soft (i.e. they exhibit no
resistance at all) in bending and in compression in the vertical direction.
The shear rigidities of the stiff layers are infinite, their bending and
vertical tensile stiffnesses are finite. W assume that the distance between
the axes of two consecutive stiff layers is equal to the width of the soft
layer. In case of n=l (when only one soft layer separates the two stiff
layers), the structure is identical with the 'sandwich with thick faces'
/1/. The sandwich with thick faces has three different rigidities (Fig. 1):
the global bending rigidity (BQ which comes from the tensile stiffnesses of
the faces, the shear rigidity (S) of the core, and the local bending rigidi-
ty (B") of the stiff faces with respect to their oan centroidal axes.

Poméazi has dealt with the stability analysis of multi-layer sandwich
plates in /4/, taking the transverse compressibility of the soft layers into
account, so his model is more general than ours. In the case of Navier-type
boundary conditions, he presented analytical solutions.

*Laszlo6 P. Kollar, H-4122 Budapest, Karap u. 9, Hungary

Akadémiai Kiad6, Budapest
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Fig- 1.

Our sandwich model (which is equal to the model of shear walls devel-
oped by Rosmen /5/) is suited, because of its simplicity, not only to obtain
numerical results but also to draw qualitative conclusions.

The basic idea of approximately replacing a multi-layer sandwich beam
with a sandwich with thick faces has been suggested by Istvan Heged(s.

The paper presents the differential equation system of a multi-layer
sandwich construction under arbitrary distribution of the normal load along
the beam axis, and gives an exact solution for the case of a concentrated
force acting on top of the sandwich cantilever. It is also shoamn that the re-
placement sandwich with thick faces gives in fact a very good approximation
for calculating the critical load of the multi-layer sandwich column.

2. THE BUCKLING DIFFERENTIAL EQUATION SYSTEM CF THE
MULTI-LAYER SANDAICH BEAM

The sandwich construction in Fig. 2 consists of n+tl stiff and n soft

layers. Let the overall height of the beam be H. The local bending rigidities
of the stiff layers are ElI ,...Elj,...EIn.
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We shall denote the stiff layers with 'integer' indices, and the soft layers
with 'half' indices (Fig. 2). In order to obtain qualitative conclusions we
w ill show the derivation for a regular sandwich construction, where the dis-
tances of the centroidal axes of the adjoining stiff layers are equal to
each other, and are denoted with a; the shear rigidities of the soft layers
are equal to each other (denoted with S”#), and the tensile stiffnesses of
the stiff layers are also equal (denoted with EA).

Further notations are: E is the modulus of elasticity, 1" is the
moment of inertia of the i-th stiff layer, Ais the cross-sectional area of
one stiff layer. The shear rigidity of one soft layer is defined by (13).

Let the vertical loads act on every stiff layer with the same distri-
bution p(x) along the x axis. This causes normal forces N(x)=Na(x), where
N is the parameter and a (x) defines the distribution of the normal force.

Since every layer is incompressible in transverse direction, the
horizontal displacements of the stiff layers are equal to each other. Let us
denote the horizontal displacement function with w(x), and the vertical dis-
placement function with u(x,z). The shearing strain of the (i+0.5)-th soft
layer is

Viros () =weo P

We denote with dash the derivative with respect to x. Assume that
due to the negligible bending rigidities of the cores, the shearing strain
is invariable along the horizontal direction between two consecutive
stiff layers.

Let us denote the vertical displacement function of the i-th stiff
layer with u”®, and let us introduce a function

Upa () —u;(x)

'i+0.5 ) = (1)

We can write the previous expression for y g *(x) with the aid of
(1) in the following way, well known in sandwich theory (Fig. 3):

w'(x) = dl+0 5(x) + Yi+Q 5(x) (i=1,2,...n) . (2)

Let us write the equation for equilibrium of the moments at a height
X, with respect to the geometrical center line of the cross-section of the
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beam. The moment of the external forces is

X
ME(x) = j~PH(e) WCx) —w(C)] di
0
We also need its derivative:
X
M'(x) = Z w(x) ( n (¢)dC = (n+l) Na (x) w'(x) . (3)
1 i=0 J 1

0
The moment of the external forces has to be equal to the moment of

internal forces, which consists of two parts:

MiCx) = MA(X) + Mg(x) . (4)

ME£,(x) is due to the bending of the stiff layers, Mg(x) is due to
their compression. From the bending-curvature relationship we obtain:

M*(x) =- B%w"(x) , (5)
where n

BRa =1 EL

A i=0 1
Let us determine the value of My from the deformations. With ug and

4 _q 5 (i=1,2,... ,n) we can determine u™.
i
nix) =m (x) - a Z e g5(x) . (6)
ji=1 J

The vertical force in the i-th layer is

F.(x) =u.'(x) EA, (7)
and the equation of the vertical equilibrium becomes

n

Z F.x) = (n+DN a (x) . (8)

i=0 1

Let us denote with M(x) the conmon vertical displacement of the

layers prior to buckling. We thus have u'(x) = N a (x)/(EA). Using expres-
sions (6-8) we obtain
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W(x) - u'(x) +— £ (n-i+1) ! _Q5(x)

The expression for global bending moment —at height x, with respect
to the geometrical center line of the cross-section —can be written as

Miy(x) =- EAaz2i 5x)(n+1-i)i . 9

This expression becomes much simpler in case of
b (x)= dm j(x)=...... = dn_g 5(x). Denoting with

lg =Aa2y £ (n+l:+)i = Aa2|y n (n+l)(n+2)

the moment of inertia of the stiff layers without their oan local moments of
inertia, and using notation

BQ = EIO = EA a2 -jY n (n+)(n+2) , (10)
we obtain expression
M=- B &d'(x),

which is analogous to the well-known moment-curvature relationship of
bent bars.

Let us differentiate with respect to x the expressions of (5) and
(9), and introduce them into equations = Mj . Using equations (3,4,5,9),
we obtain

(n+hN a (xX)w'(x) i-Bjw"'" (xJ-EAQa"0 i:’:‘1 $._M.3,-(X)(n+l-i)i

Now we have to derive the relationship between ® and Y . Let us
consider the i-th stiff layer, and cut vertically the connecting soft layers
along their middle line. The distributed forces (t and x ) are illustrated
in Fig. 4 with positive sign. Between forces x and displacement u" the fol-
lowing relation holds:
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Y 1-0.5

Fig. 3. Fig. 4.

u.(x)\: Ti-0.5(x) Ti+0.5(x)

+ U (x)\ (12)
EA

and according to the definition of S» ,

Ti+0.5(x) = a Yi+0.5(x) ' 13)

With (12) and (13) we eliminate in(x) from (1) and obtain

®1-0.5(x) = a2EA Yi-1.5" +2 Yi-0.5" Yi+0.5"x"

(i=1,2....... n) (14)

where — because of (13) —

Y-0.5(x) =Yn+0.5(x) =0 (15)

Introducing the following notations:

322



BUCKLING ANALYSIS OF SHEAR WALLS

»

C= -2 -1 $ = q"o 2 | Yzy0_5/\ (16)
-1 2 -1 D2 5M%) YI1_5(x)
12 ®n-0.5(x) ° _Yn-0.5(xj

We can write
b (x) =- CY (X
a2EA

In this equation Cis a tridiagonal matrix, whose inverse is the fol-
lowing one-pair matrix /6/ (i and j are the indices of the rows and columns

respectively):

i(n+1-j)
11 1- 3
r ntl
j(n+l i)
""" e A
n+l
Hence we obtain
Y(x) =- Sk;!l* Q—I d"(x) (18)
Let us express w'(x) with the aid of (2) and (18):
WX =1 (x) - (x) (19)

(11) and (19) constitute the differential equation system of our problem.
With the aid of (19) we can express the function win (11) by ¢ , so we
obtain a differential equation system of the fourth orderl

(+1)N a (x)(® - clthy=-8 @ - gt yazma d
L - b{ ., ' _ =~ (20)
where A is an (nxn) matrix (a dyad):
s = ()] (21)
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In case of n=l (i.e. for a sandwich beam with thick faces) we have
g“l=[o.4 and 0 =[0.5] (22)

so that the equation system (20) degenerates into equation (7) of /2/.

In case of a cantilever built-in at the bottom and free at the top,
the boundary conditions of the differential equation system (20) are the
following: At the bottom (x=H) because of the built-in end u"=0, and
from (1):

®H) =0 . (23.a)

The rotations of the stiff layers are equal to zero (wl=0), so us-
ing also (23.a):
" H) =g . (23.b)

The conditions at the top (x=0) are: Integrating (12) we obtain
uj (0) =u'(0), so that

' (0) = 0 , (23.c)

(and also Mg=0); furthermore there is no bending at the top (M"=0), so
that from w'=0:

® ") =0 . (23.d)
3. SANDWCH CANTILEVER UNDER A GONCENTRATED FORCE ACTING ON THE TOP

In case of a (x)=I, i.e. if there are only concentrated forces acting
on the top of the stiff layers, we can easily solve the differential equa-
tion system (20). The solution which also meets the boundary conditions
(23) is:

® k(x) = dx cos X (k=1,2,...)

Let us substitute this into (20), and divide it by cos(2k-I) nx/(2H).
The lowest eigenvalue belongs to k=Il, so we obtain

2
PE + -4 c1y o = BLYe [l . "2 aZRAp-U B2 w2,
Mz s, MH MH Si H

324



BUCKLING ANALYSIS OF SHEAR WALLS

where | is the unit matrix, and the elements of €$do not depend on Xx;
furthermore

P = (n+tl) N

is the parameter of the load, of which the critical value is P

(24) is a homogeneous linear equation system of ® , which has a
nontrivial solution only if the determinant of the matrix of the equation
system (24) is equal to zero. Using notations

T BI

and H

* 2a2EA
4H2

this condition assumes the following form:

det [(Pcr - hc-b-o6]. (25)
(25) is an equation of the n-th degree for PCr Per % is the root of (25)
with multiplicity (n-1), A being a dyad. Consequently, with the (n-1) root
factors of equation (25) dropped out we obtain a linear equation for the
n-th root.
Let us first examine root Pcr = P* .In this special case, equation
(25) does not contain equation (11). In fact if we take into consideration
that the horizontal displacements of the stiff layers are equal to each
other, i.e.
WO = Wi = eeee = wn , (26)

we obtain trivial solution £ = Q Therefore P is not a critical
load of the structure.

3.1 Critical loads in case of n=Il, 2 and 3
In case of n=l, i.e. if one soft layer separates the two stiff

layers, we will obtain from equation (10):

n . a2EA . 27)
BO . ~2

Let us denote the critical load of a cantilever with rigidity Bg by
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(28)
Considering (22), we obtain the same critical load as in /1,2/:
-n -
cr « fo1*s-1 R (29)
where S =
In case of n=2, we obtain from equations (17) and (21):
The value of determinant (25) is
2 =0
(pcr-pt > N
Using the following notations
S=2S5,
and from (10):
Bb =2 a EA (30)
and
T2 Br
=2D,
PO H

we obtain expression (29) for calculating the critical load of the structure.
The elements of ® are oy 5 = d1 5

We thus have the result that the critical load of a three-stiff-
layer cantilever is equal to the critical load of a cantilever with thick
faces (two-stiff-layer sandwich), where the local bending rigidity is equal
to the sum of bending rigidities of the stiff layers the shear rigidity to
the sum of rigidities of the soft layers while the global rigidity is de-
fined by (30).

In case of n=3 we obtain from equation (17) and (21)
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From equation (25) we can derive the expression for Pcr:

(31)

The elements of z are (Fig. 5a):

'0.5 =1-707 ®1.5 2.5

The exact value (31) of the critical load is closely approximated by the

following approximate formula:

(32)
= p* +
where
2r
it BQ
FO 4H
and from (10)
BQ=5 a2 EA (33)

It can be shown by simple algebraic trasformations that (32) always yields a
greater value for the critical load than (31). The difference becomes maxi-

mm i f =0, and D/Sjj = \fl. In this case:

cr VT+ 1
cr 5‘? V241

so that the error is always less than 1 %

= 1.009859
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Fig. 5.

We could also obtain the same approximate value F  for Fcr assuming that
(Fig. 5b):

0.5 ' pl.5 = d.5 -

In this case, the differential equation system becomes a single
equation of which the eigenvalue is Pcr. With this assumption we rendered
our model somewhat more rigid than the real one; on the other hand, instead
of a sandwich beam with four stiff layers we can examine a replacement sand-
wich with only two stiff layers.

Note that the previous assumption is only valid for the vertical
displacements (u") of the stiff layers: the points at the same height on the
axis of the stiff layers remain on one straight line after deformation. The
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rotations of the layers may be different. The approximation is rather
poor in describing local behaviour ( &g 5~ 1-707 ~), but very good for
the global behaviour (stability, horizontal displacements) of the beam.

3.2 Critical load in case of an arbitrary n

Let us multiply equation (2A) from the left by C. After rearranging,
and introducing notation

(34)
we obtain
€ +§- £ car ot )/x (35)
0
0
0
(£* *)I X

where ay is a row of matrix » (21). The coefficient matrix of equation (35)
is tridiagonal. Let us introduce a new variable 0 defined by equation

2 + =2ch 0 (36)

The inverse of (35) becomes a one-pair matrix /6/ as follows!

'sinh i 0 sinh(n+I-.j) 0

sinh©  sinh(n+l) 0 Y
(37)
sinh 0 sinh(n+I1-i)0 oA
4 sinh 0 sinh(n+l)0 L7
On the right side of equation (35), only the first and the last
terms are different from zero, so that
M-0.5SJ2AT+ ~ sinh(n+l)0 [sinh(n+l-i) O +sinh i 0 . (38)

Multiplying equation (38) by (@ X ), we obtain

A= in+l-i) i sinhl”*i)e, [sinh(fHI-i) 0 +sinhi Q] . (39)

329



KOLLAR, L.P.

The critical load is

pcr= .
We w ill obtain the approximate value of the critical load if we replace the
multi-layer sandwich construction with a simple sandwich with thick faces,
whose replacement rigidities are the following:

S = ns, _ EA® n(nIZI)(n+2)

Eli Bo = (41)

n
= E
i=0

In the next table we calculated the maximum values of ratio "Rer/Pcr f°r
various n values as a function of D/S”

n D/S, P _IP
«Cr cCr
1 arbitrary 1.0000
2 arbitrary 1.0000
3 1.414 1.0099
4 1.000 1.0204
5 0.750 1.0299
6 0.585 1.0381
7 0.469 1.0451
8 0.387 1.0512
9 0.324 1.0564
10 0.276 1.0610
1 0.237 1.0650
12 0.206 1.0685
20 0.089 1.0866
30 0.043 1.0974

The results show that the approximation is good enough also in case
of great n values. (We could obtain the critical values (39) also by means of
the method of finite difference equations. For example, Pomazi /4/ used this
method to calculate the critical loads of sandwich-plates with regular built-
up of the layers.)

4. CONCLUSIONS. THE REPLACEVENT SANDWNCH BEAM

It was showmn in Section 3 that the critical load of a multi-layer
sandwich beam under concentrated forces acting on the top was always very
close to the critical load of an appropriately chosen sandwich beam with
thick faces. So the latter can serve as the replacement model of the pre-
vious one.
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We mey also use the method of replacement in more general cases. In
calculating for critical load (also for loading cases other than concentrat-
ed forces) we can replace the multi-layer sandwich beam with a sandwich with
thick faces (consisting of two stiff layers and one soft layer). lhe rigidi-
ties of the replacement sandwich beam are the following: the shear rigidity
is equal to the sum of the rigidities of the soft layers; the local bending
rigidity is equal to the sum of the bending rigidities of the stiff layers,
and the global bending rigidity consists of the 'Steiner terms' of the stiff
layers:

n
=57
where the number of the stiff layers is n+l, A" is the area of the cross-
section of the i-th stiff layer, and s is its distance from the centroid of
the entire cross-section. lhis approximation is equivalent to the assump-
tion: <tQ6 = ~15 = ... = ®n-0 5 ‘ This a33umPti°n as verY far from
reality, because the values of ¢ are different in general cases, neverthe-
less, the overall behaviour of the beam is not significantly affected by it,
and the approximation based on this simplification yields really
good results.

Based on these principles, we can also substitute a sandwich canti-
lever with thick faces for a multiply coupled shear wall, and we can cal-
culate its critical load also in case of arbitrary load distributions.
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MATHEMATICAL METHOD FCR DETERMINATION CF THERVAL QONTACT RESISTANCE
BEWEN SOLIDIFYING METAL AND M1D

Ice B. Risteski*
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In the classical solution to one dimensional solidifications
Schwarz showed that in case of perfect thermal contact the interface
temperature between the mold and solidifying material was constant.
Adams hypothesized that in actual casting problems with imperfect
thermal contact, one could s till use the interface temperature com
puted by Schwarz's solution but now acting through a film resistance
upon mold and another film resistance upon solidifying metal. The
problem of solidifying a metal by a constant-temperature source act-
ing through a film resistance is solved using the method of succes-
sive approximations. Taking experimental data for depth solidified
vs time, the first problem is solved inversely to determine the film
resistance between the constant-temperature source and the solidify-
ing metal. Osing experimental curves for temperature vs depth at
various times, the second problem is also solved inversely in order
to determine the film resistance between the mold and the constant-
temperature source. The overall film resistance between the mold and
solidifying metal is the sum of the two resistances. Experiments in-
dicate that the two resistances cannot be assumed equal.

NOTATION

Dimensional Quantities

¢ - specific heat

h - film conductance

K - conductivity

L - latent heat of fusion

e arbitrary reference length
t - time

T - temperature

T fusion temperature

X - position

z

- position of freezing front
K=k/p ¢ — diffusivity
p - density

Nondimensional Quantities

- film conductance

- latent heat of fusion
temperature

position

- position of freezing front
- time

<X T
Lo
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1. INTRODUCTION

The most general mathematical solution available for a liquid freez-
ing on a mold is the one-dimensional solution according to Schwarz /1/. The
Schwarz solution is for the case of a semi-infinite liquid at a uniform tem-
perature coming into perfect thermal contact (no interfacial resistance)
with a semiinfinite chill at a uniform temperature below the fusion tempera-
ture of the liquid. One of the important results of the Schwarz solution is
that it predicts an interface temperature that is constant. In the real
world perfect thermal contact is not attainable for different reasons; sur-
face contamination, bridging of surface roughness by the liquid causing
voids, shrinkage of the casting, and so forth.

Ore way to model this resistance to heat flow at the interface is to
assume that there is a film between the mold and the casting that has no
heat capacity but has resistance to the flow of heat and therefore a finite
conductance. In general one would expect the value of the film resistance to
be temperature dependent and possibly dependent on the rate of heat flux.
Practically speaking, the quantification of this film resistance through ex-
perimentation is very difficult. It is difficult because the precise measure-
ment of temperature in the melt and locating the freezing front at various
times are very difficult to do. Also, the correct method of interpreting ex-
perimental results is not always clear. Instrumentation of large castings is
difficult enough; for thin films instrumentation is virtually impossible.
For certain experiments it is possible to analytically determine the inter-
face resistance if the resistance is assumed constant.

Adams /2/ has hypothesized that in case of real casting problems the
interface temperature predicted by the Schwarz solution could be used but
now would be acting through a film resistance upon the mold and another film
resistance upon the casting. Figure 1 shows the model of a mold and casting
system with interfacial conductance h. What Adams /2/ proposed is shown in
Fig. 2, where T is the interface temperature predicted by the Schwarz solu-
tion. Mathematically, this has broken the problem into two separate parts; a
mold heated by a temperature source li acting through a film of conductance
hp and a casting cooled by a temperature sink T~ acting through a film of
conductance

Adams took h™ and h2 to be different. Results presented later in
this paper indicate that in general they are different. An exact solution
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L2
- Liquid oo
A &
Fig. 1. Idealized mold-casting Fig. 2. The mold-casting system
system decomposed into two separate problems

for a semiinfinite body, initially at some uniform temperature and heated or
cooled by a constant temperature source acting through a film of constant
conductance is available /1/. The problem of a solidifying liguid chilled by
a constant temperature sink acting through a film of constant conductance
cannot be solved exactly. However, for the case when the liquid is at the
saturation temperature, an analytical solution may be formulated by the
method of successive approximations. This method has been applied by Savino
and Siegel /3/ to the problem of a warm moving liguid solidifying on an iso-
thermal wall. In their problem there was perfect thermal contact between the
liguid and the wall but there was convective heat transfer from the liquid
to the solid-liquid interface.

In this paper the method of successive approximations is applied to
the previously described problem. The solution is finally expressed in such
a way that knowing the thickness solidified vs time, film conductance h™ be-
tween T| and the casting can be found by finding the first zero of a trans-
cendental function. A similar procedure is used to determine film conduc-
tance hj between ™ and the mold. The technique is applied to some experi-
mental results.

2. FORMULATION CF THE PRCBLEM
For the case when the liquid metal is at the fusion temperature, the
problem is governed by the following equations.

In the solidified portion

2T
2 at

Q £ X £
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The boundary conditions

| X=0

and

The initial condition in the liquid is
T=T, |, t =0

Define the following nondimensional parameters

T-T
T = s -,
X = xle ,

Y =z/le ,

where e is an arbitrary reference length,

T=Kklle2 ,

c(Tf - Tx)

The governing equations for the problem then become

(1)

and

(2)
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Initially
T =0, T=0 . (*)

First Eq.(l) is integrated from an arbitrary position in solid X to
solid-liqguid interface Y to obtain

ST il | f 5)
9X 3E E=Y

The first interface condition (3) is now used to find

Y
9 1 . :j: N !
—_— - - -1 - { (6)
X d t iJ 1r T
This result is now integrated from surface X = 0 to an arbitrary point X

TG T) - T, € ) =LX— | Srci) TG dn-@

dt
0
Using the boundary condition (2) and Eg. (6) evaluated at X = 0 gives

TCO, t ) =i -H I - 1=
H 9X O
Y
== Uf-1 \ -H" E-1 (8)

H de H 6 3T
Substitution of (8) into (7) gives

! — . 9T
t (X,J)—L(X+1H) e 1_H d¢

n r

-5 S/\de dn (9)
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Fig. 3. Region of integration Fig. 4. Experimental data for depth
of Eq. (9) solidified vs (time)l/2

With reference to Fig. 3, the order of integration is now changed
according to the following procedure. The slashed region is the domain of
intergration, thus

Applying this procedure to Eg. (9) gives

(10)

The order of differentiation and integration is now changed to find
Y

— \ T'(Cji )dE +
h J

(11)
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Since it is the time to solidify a given thickness that is of in-
terest, write
V=F T)
It is now helpful to transform variables. Although the solution is
unknown at this juncture, if it is unique then there will be an inverse to
the above relation such that

T = F(Y)
Noting that
3 =dvr 3
3T dx 3Y

Eg. (11) may now be written in terms of X and Y:

T'(X,y).-1,L4X . i)1T--1TT1-— Uim 1 (12)
H dt dt 3Y
where
1(X,Y) =’|£_| 8 T (9 ,Y)dc
Y
X o T( C>YdE (13)

In order to prove the validity of changing the order of integration
and differentiation to obtain expression (11) from (10) it is only necessary
to form 3I1(X,Y)/ 9x and apply Leibnitz's rule in differentiation of
integrals with variable limits. Then use the fact that T'(Y,Y)=0 and invert
the transformation from Y to x

Rewriting Eq. (12)

dy = T(X,Y) + 1 (14)
dT L'(x +i)--iH M )
H 3Y
At X Y, T' : 0 so that
av (15)
dx r(y+
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Define Y
G(YY) =ICY,Y) = \ (- + E)T'( ¢,Y)dC
LY

It can be demonstrated that

da(Y) A (X,Y)

ay Ay

Equation (15) thus becomes

dy 1
aT L'(Y + 3 ——
H dy
which can be integrated to give
¢-) - GY)
H

Substituting Eq. (18) into Eqg. (12) gives

T(X
K LY "R &

(16)

17)

(18)

(19)

(20)

W to this point no approximations'’have been made. The differential
equation has been integrated as far as possible, making use of the boundary
conditions in order to obtain a form to which the method of successive ap-

proximations can be applied.

3. SOLUTION

1st Approximation

The first approximation is found by taking G0 and 1=0 in Egs (19)

and (20) to obtain

and
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The first approximation is physically meaningful. It is none other than the
London-Seban solution /4/ for the solidification of a liquid at the fusion
temperature, cooled by a temperature sink acting through a film conductance
H and where the heat capacity effects of the solidified portion have been

ignored. This means that the temperature varies linearly in the solid as can
be seen in Eq. (22).

2nd Approximation

The second approximation is determined by using and T to de-
termine values for Gand | from Egs (13) and (16). Thus
Y
0
and Y X
120Y) =n ST(K )G + € H(¢ Vyde +
Y
+X J TN £ ,Y)d¢
X

Performing these integrations yields

1 1
3H3(Y +-)
H
1
3H3(Y +-)
H
1« *
6 (Y +J)

The following derivatives are then found

(23)

and
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1 X .i)3
=+ Y +-)2 (24)
2 H 3HV

di2
Y,

Equations (23) and (24) are now substituted into Egs (19) and (20) to find
the second approximation

t,+ —(Y+—)2 (25)
1 6 H H  3H3I (Y +V
T =-1+AB , (26)
where
n +x (x +*)3
A=L'(X +—5 +—AX + 5 -—3H__ 6--mr- H_  f
H 2 H (Y +2
H
B=L(Y+39 +—( + ) - Y-x
H 3 H  3HXY +

3rd Approximation

The third and last approximation is determined in the same fashion
that the second approximation was determined. Since only the approximation
for time vs depth is required it will only be necessary to determine 3.
Substituting Eq. (26) into Eg. (16) yields upon integration

Gj =-(1/2 + 1/6DH3)(Y + 1/H)2 + 1/3D(L" + 2/5)(Y + 1/H)5 +

+ 1/2H2 - 1/3DH3(L’ + 1/2)(Y + 1/H)2 + 1/5DH5 (27)
where
D= (Y + 1/H)3(L1 + 1/3) - 1/3H3 . (28)

The third approximation for the time vs depth is
t3= tx- B . (29)
In order to check this solution a comparison was made with Neumann's solu-

tion /1 for the case of infinite surface conductance (zero surface resis-
tance). Neumann's solution is an exact solution for the case of a semiin-
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finite saturated liguid whose surface temperature is held fixed at some tem-
perature below the fusion temperature. It is, thus , a special case of the
Schwarz solution. The third approximation and Neumann's solution agreed
exactly, for all intents and purposes, for a variety of problems. The fol-
lowing example shows that when there is a finite film conductance between
the temperature sink and the solidifying liquid there is a significant dif-
ference between Neumann's solution and the solution developed here as would
be expected.

Example

As an example, consider the problem of liquid tin chilled by a 96°C
sink acting through a film of conductance h=6.02 KWMm2 °C. Table | gives the
pertinent physical properties.

Table | Properties of Tin

K C L

Tf
60.2 WWMC 7300 Kg/m3 0.26 KJKg°C 58.3 KJIKg 232°C
Table 11 shows the time to solidify various depths as predicted by the
Neumann solution and the three approximate solutions x” T3

Table 11 Depth solidified vs time by the Neumann and approximate solutions
when there is a finite film conductance

= =5.02 KWne °C

A : . .
z10 2 m tneus s t2's tj s t fin dif
0.2 0.121 1.15 1.21 1.21 1.21
0.4 0.491 2.52 2.74 2.74 2.74
0.6 1.104 4.15 4.58 4.55 4.55
0.8 1.971 5.97 6.66 6.61 6.61
1.0 3.090 7.90 9.08 8.99 8.99
1.2 4.360 10.20 11.50 11.40 11.40
1.4 6.400 12.60 14.50 14.30 14.30
1.6 7.886 15.60 17.80 17.60 17.60
1.8 9.980 18.40 21.20 20.70 20.70
2.0 12.340 21.30 24.70 24.50 ~

Recall that x" corresponds to the London-Seban solution. The results are
presented in dimensional form.
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Notice that the Neumann solution predicts a much shorter time to
solidify a given depth than any of the approximations. This is because there
is no resistance to heat flow on the surface in the Neumann solution. Also
notice the first approximation tp which is the London-Seban solution, which
predicts a shorter time to solidify a given depth than the other two approx-
imations. This is because in the London-Seban solution the solidified part
cannot store heat but acts merely like a resistance. As can be seen, the ap-
proximate analytical solution agrees well with the finite difference solu-
tion. It was found that the approximate solution was very sensitive to
roundoff error in the computation process and that it was necessary to use
double precision in performing the calculations on an IBM 1130.

4. DETERMINATION CF h FROM EXPERIMENTAL DATA

Experimentally measured values of depth vs time can be used to de-
termine the interfacial film conductance between the mold and casting using
the previously described solution provided that the mold and casting behave
as if they were semiinfinite for the range of measurements to be analyzed
and provided that the melt was initially at or near the saturation tempera-
ture while the mold was initially at some uniform temperature. The procedure
is as follows: First, knowing the initial temperature of the mold and the
thermal properties of the mold and casting, the interface temperature that
would be expected in the case of perfect thermal contact is computed from
the Schwarz solution /1/ which is

1= TE+IL (V 2Terf(X) ! ﬂ (V 2 erf(X) (30)
k2 Kl k2 Ki
where
K, K - thermal diffusivities of the mold and casting,
T1 z — initial mold temperature at t=0,
TPW fusion temperature,
kpk, - thermal conductivities of the mold and casting,
erf — error function, and
X - root of transcendental equation
Xe X "2 erf( X) Tt (31)
Lki ko
with being the specific heat of the casting.
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Knowing Tj from the above equations and the depth solidified in a
given time from experimental data, the value of T" necessary for Eqg. (29)
to be satisfied can be found as follows. Equation (29) is rewritten as

f(h) = t3—rx + & (32)

The correct value of is the first root of f(h) that is, the value of h
that causes f(h) to vanish. This can be accomplished by well known
techniques /5/.

The value of h* between T and the mold is similary determined.
Knowing T” and the temperature at a point in the mold as a function of time
the solution for a semiinfinite body heated by convection can be solved in-
versely to find h™. The solution of this problem is /1/

Tx(x,t) =J1 erfc exp

T72
_2(KIt) o lcl

. erfc (33)
2KU) 12 kx

Thus, the value of h* can be determined by finding the value of h that
satisfies Eq. (33) for given values of T, x, and t.
The total film conductance is then found from

(A

5. APPLICATION TO RESULTS OF AN BEXPERIVENT

Molten tin was solidified on both a copper chill and a steel chill.
The apparatus and the differential thermometry technique used to determine
depth solidified at various times is described in an article by Prates et al
/6/. The temperature of the molten tin was kept as close to the fusion tem-
perature as possible in order to eliminate the effect of superheat. The
ambient temperature was 21°C. Ore problem that could not be eliminated was
stirring of the liquid during the pouring operation. Stirring revealed it -
self as erratic output on the recorder similar to that reported by Prates et
al /6/. This tended to retard the onset of solidification.
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Fig. 5. Comparison of analytical with Fig. 6. Comparison of analyti-
experimental results of depth cal with experimental re-
solidified time for tin on a sults of temperature posi-
copper chill tion in the chill for

various times for tin on a
copper chill
Fig. 7. Comparison of analytical . 8. Comparison of analytical with
with experimental results experimental results of tem-
of depth solidified time perature position in the chill
for tin on a cold rolled for various times for tin on a
steel chill cold rolled steel chiill
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Figure 4 shows the data for the two experiments for depth solidified
vs the square root of time, presented in this way because of perfect thermal
contact depth solidified is proportional to the square root of time. Passing
straight lines through the data shows that they intersect the tl/2
t=3.05 s. This value is used as an estimate of the deadtime prior to the on-

axis at

set of solidification. Table IlIl details the data pertinent to the experi-
ment and the data.

Table 111 Thermal Properties

kW/M°C p,Kg/m3 ¢,KJIKg°C Lf ,K3/Kg Ti,C To, °C
Tin 60.2 7300 0.26 58.3 232 234.0
Copper 394.0 7960 0.386 21
C.RS 67.1 7860 0.628 21

In using Eq. (32) to determine h,, the deadtime of 3.05 s is sub-
tracted from the time for a given depth to solidify. In determining the
values of h, for the chill blocks, no deadtime is used since they commence
warming up immediately. The computed results are given in Table IV.

Table IV Results of Analysis

T " h2  h=(/h1H/h 2)(KWIM2 °C)
Sv-Cu 96.5 155 5.54 4.08
Sn-Fe 140.7 5.25 3.41 2.075

Note that h* and h2 are unequal in both cases. Figure 5 shows a plot
of the depth solidified vs time as predicted by Eg. (29) compared with the
experimental data where the deadtime has been subtracted for the use of tin
solidifying on a copper chill. Figure 8 shows plots of temperature vs depth
into the chill for various times as computed by Eq. (33) compared with ex-
perimental data. Figure 7 and 8 show the same type of results for tin on the
cold rolled steel chill.
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6. DISCUSSION

The method of successive approximations used here provides an ana-
lytical solution for the solidification of a semiinfinite saturated liquid
whose surface is cooled by a temperature sink acting through a film resis-
tance. The method is accurate and wes easily programmed along with the
Schwartz solution to determine the film conductance between a mold and a
casting from the results of an experiment. It has several advantages over
the finite difference technique for these problems where it applies. In
order to determine a film conductance from an experiment using a finite dif-
ference technique, a trial and error procedure that is slow and costly is
required whereas the analytical approach can be used with a root finding
procedure, as outlined in the text, to determine the film conductance auto-
matically and very rapidly.
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By resolving the eccentric load of a single-cell box beam into
a symmetric and an antisymmetric part, we arrive at the solution by
superimposition. The symmetric problem can be easily solved by the
wellknown formulas of the elementary theory of structures. The anti-
symmetric problem, however, is quite complicated and the aim of this
paper is to present a procedure for this problem. The single-cell
box beam consists of perpendicular walls which are connected by
rigid joints. We assume the beam is intersected at the joints and
there hinges are built-in. This "hinged beam' is braced by densely
placed "supporting frames". The procedure presented applies the equa-
tions of elementary theory of strength of materials to the physical
model of this hinged beam and the supporting frames. The beam is
divided into sections and the stresses are determined with the help
of matrix equations.

NOTATION

spring constant at a support,

frame-rigidity (the lateral stiffness of the supporting frame),
length of section i,

modulus of elasticity,

cross sectional area,

dilstanc)e between the stress axes of the two horizontal walls (flange
plates),

perpendicular distance between the upper stress axis and the neutral
axis,

perpendicular distance between the lower stress axis and the neutral
axis,

moment of inertia (second moment of area of the cross sectional
area) about the axis perpendicular to the plane of bending,

nodal point, boundary of a section or reference to a section,
substitute moment of inertia of the vertical wall with the two
horizontal walls,

substitute moment of inertia of the upper horizontal flange plate,
substitute moment of inertia of the lower horizontal flange plate,

horizontal component of the frame reactive force,

distance between the stress-axes of the vertical walls (webs),
length of the beam,

external vertical concentrated force,

resultatnt/shearing force,

shearing force,

vertical co-ordinate perpendicular to the axis of the beam,
horizontal co-ordinate perpendicular to the axis of the beam,

*Dr. J. Szidarovszky, H-1089 Budapest, Bir0 Lajos u. 42., Hungary
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z co-ordinate along the axis of the beam,
a angular displacement,
3 change in angle of the supporting frame,
n displacement,
K built in change in angular displacement
a normal stress,
T shearing stress,
C abscissa.
£ unit matrix.
Subscripts
0 refers to place z=0 or n=0 ,
z refers to place z,
1 refers to place z=Z
i refers to a section or to the boundary of a section,
n refers tothe last section or to the end of the beam or to the
boundary of the last section,
K refers to the cause of the built in angular displacement,
a refers to normal stress,
X refers to shearing stress,
v refers tovertical direction, force or wall,
a refers to lower horizontal wall (flange plate),
f refers to upper horizontal wall (flange plate),
h refers to horizontal-direction, -force or -wall,
p refers to external vertical force,
o} refers to frame-reaction

1. INTRODUCTICN

Demand for constructing bridges and other types of construction
emerged early in the history of mankind. Materials and structural size were
decided on good or bad experiences at that time. It was only later on, when
economic structural arrangements and calculation methods were developed. A
good example for this is the box-beam bridge. The simplest and widely used
version of box-beam bridges is the single-cell box-beam bridge, shown in Fig.l.

The aim of this paper is to analyze the single-cell box-beam bridge
of right angled cross section, subjected to static, vertical, antisymmetric
load with the aid of the theory of strength of materials. W present a uni-
fied method which makes it possible to determine the normal and shearing
stresses of the beam of deformable cross section as accurately as with the
beams subjected to a symmetric load. The effect of the diaphragms and their
stresses are also examined.
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b)
Fig- 1.

This paper establishes the mathematical and physical models and
works out the mathematical procedures. Practical application /6/, the effect
of warping and restrained warping /7/ and certain generalizations as well as
the demonstration of the validity of our assumptions /8/ are given in fol-
lowing papers.

We do not intend to analyze non-elastic behaviour, dynamic response,
the effect of the degree of non-linearity in elasticity, the effect of tem-
perature, creep and shrinkage, local stresses, buckling and the phenomenon
of shear-lag.

1.1 Single-cell box beam

When examining the behaviour of the single-cell box beam subjected
to vertical, eccentrical load, we resolve the external load px into a sym
metric and an antisymmetric part in the planes of the vertical walls of the
box beam. The symmetric part consists of forces px/2 acting downwards in the
planes of the vertical walls and the antisymmetric part is made up from
forces p/2: one acting downwards in the wall and the other acting upwards in
the other wall. The relation between p and p assumes the form as seen in
Figure 2

p=pxs2~1 . (1.1.1)

Fig. 2.

351



SZIDAROVSZKY, /.

In the case of the above resolution, neither the torque nor the
bending moment change and the resolution yields exact cross sectional stress
components in the hinged beam. However, because of the partially built-in
points, the resolution cannot be considered exact for the actual beam.

The symmetric stress components resulting from the symmetric load
can be determined accurately enough for civil engineering calculations with
the equations of the theory of strength of materials, only the effect of
shear-lag modifying the normal stresses should be taken into account in
certain cases.

The analysis of the antisymmetric problem, however, is somewhat more
difficult. Due to the antisymmetric vertical load, the vertical walls of the
box beam develop bending moments and one part of torsion resulting from the
antisymmetric load is accounted for by bending of the vertical walls and the
other part is taken by torsion of the box beam as a whole. It follows there-
fore that

1. Due to the vertical antisymmetrical load, both the horizontal and
the vertical walls are in bending in their planes, i.e.

a) normal stresses and consequently bending deformations develop
in the walls,

b) shearing forces causing shearing deformations also develop in
the walls.

2. The torsion of the whole cross section results in shearing forces
and shearing deformations in both the vertical and the horizontal walls.

3. The shearing deformation causes incompatible deformations in
certain cross sections which develop redundants, i.e. warping developed from
shearing caused by torsion is restricted.

1.2 The analysis of simply supported beam by the matrix method

Let us divide the simply supported beam of length & showmn in Fig. 3
into n sections. Section i subjected to force at point i, lies between
nodal points (i—) and i. The equation

M =M1+R ai (1-2.1)

holds, where FT is the bending moment at nodal point i and FT is the shear-
ing force along the section i and a‘ denotes the length of section i. With
P~ ~ acting at nodal point i-1, we have
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Fig. 3.

% :RI-[ - PI'[ (122)

and on the basis of Egs (1.2.1) and (1.2.2) we can establish the three-mo-
ment equation

“ai-IM-1 @ a ) M —a My, =a a, R (1.2.3a)
where i=1,...,(n-1).

Since the condition M0 at z=0 and z= | holds, the system of equa-
tions (1.2.3a) can be written as

gM = (1.2.3b)

where we have

(al+e2) -a°

ca-j (a2+aj) *-32

(n-Nx(n-I) e -ai+| (ai+ai+l} -a

e -an-l (an-2+an-1} ~an-2
n (arvi+an}

(1.2.4)
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= l\/h (1.2.5)

(n—%)
n-1
= Pi (1.2.6)
(n-1)
r n-1
ala2
* a2a3
K] = s aiaitl o (1.2.7)
(n-Dx(n-1) -
n-1n
Equation (1.2.3b) yields the bending moments as
M= (1.2.8)

and the shearing forces are obtained from Egq. (1.2.1) as

RO=2M - M) (1.2.9)
or, in matrix form, also making use of Egq. (1.2.8), as
R = = Q3P . (1.2.10)
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where we have

R Iﬁ (1.2.10a)
(n)
1
al
1 1
a2 a2
1 1
- ai ai (1.2.11)
(n)x(n-I)
n-1 dn-I
1
and
k3=k2C1 (1.2.12)
nx(n-1)
Fig. 4.

On the basis of Figures 4 and 5 we can establish the displacement equations

a?
4.1= °i-TET M-l * 2> -cr-HR 0O '2'1»

and

"1l m “1-6E3— "Ml * 2M>*tTT1R.l .4.2.1
1+1 1+1
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Fig. 5.
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with which the three-moment equation assumes the form

where we introduced

si - Ge:l

i * GF

(1.2.15)

(1.2.16)

(1.2.17)

and a is the angular displacement of the plane perpendicular to the neutral

axis (Fig. 5). With no = nn = 0 as boundary conditions, we have n-1 equa-

tions for rip ..., Mn_1 which, in matrix form, assume the form
Ca = M+GR= M+ M,
h
where *
Mn I'II.
(n-1)
1\6 = = =
(n-Hx(n-1)

2N ja2+aln 6 2ai
?2a3 2(62a3+ 63a2) 63az
*4
(n-Dx(n-1)

én-2an-1  2( n-2an-l+ n-lan-2)

6 n-lan

(1.2.18)

(1.2.19)

(1.2.20)

A n-lan-2

2(6n -lan+Snan -1}

(1.2.2r)
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and
a2z -®P2al (1.2.22)
®2a3 23a2
=5
(n-Nxn
)n-2an-1 ~dn-1lan-2
n-lan "nan-|
Substituting Eg. (1.2.8) into Eg. (1.2.18), we obtain
n=C'1Kim+ gl M=k7P+ P , (1.2.23)
where
Mo=g'l g'ltr (1.2.24)
(n-Hx(n-1)
and
k8 =gl gog'lh (1.2.25)
(n-Dx(n-I)

If the frame-rigidity of the diaphragms at the supports of the box beam is
of finite magnitude, the upper wall as a beam is on elastic supports. Only
the reactive forces of the diaphragms act at the supports so they are the
reactions of the beam. In the case of elastic supports, with spring con-
stants Ag and An, the displacement of section i is obtained from

S

ni = V (1.2.26)
where 1
Vv
1.2.27
L ( )
>1
or, with the help of the shearing forces
(= N.) Rx Z
1 T (1.2.28)
) AA,
which assumes the matrix form
H= G9 R = KI10 £. (1.2.29)
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where we have

=10 ==9=3 (1.2.30)
(n-Dx(n-1)
and
n-al 1
R o
A * ! o
i~ 12 * 2
AQA v
9 - (1.2.31)
(n-Dxn
A- Zn-1 n-l
N
Ao * o)

Combining formulas (1.2.23) and (1.2.29), the formula for the displacement
now emerges as

547p+ (N £10)p-Kp+K p (1.2.32)
where
=1 ==8+10 ° (1.2.33)
(n-Hx(n-1)
W point out that terms and refer to quantities originated from

stresses and shearing forces, respectively.
If the lengths of the sections are the same and the cross section is
constant, the above equations and formulas assume much simpler forms:2

2 -1
102 4
C = a a(;,
(n-Hx(n-1) -1 2-1 (1.2.4/a)
-1 2
2
K, = azl (1.2.7/a)
(n-Dx(n-1)
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-1 1
-1
=2 £
nx(n-1)
nx(n-I) )
K- ®
=4* 6EJ
(n-Nx(n-I)
1 -1
1
K -Z
=5" G~
(n-NHxn
*6
(n-NHx(n-1)
¢ 1F -1
(n-NHx(n-1
-8 ~a-=
(n-Nx(n-)
If
Ao =M
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=2¥s-lazl ="2¢_1

F=5=a= 1" | - F=

(1.2 .11/a)

(1.2.12/a)

(1.2 +21/a)

a3

6EJ 4 >

(1.2 «20/a)

(1_2'24/3)

= 1=UF£

(1.2,23/a)
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n-1 1

n-2
S n-i i , (1.2.31/a)

(n-Hxn
1 n-1
-10 4 fas 1 (1.2.30/a)
(n-Nx(n-1) -

in nAQ =9 =2 = (1.2.33/a)

(n-DHx(n-1)

Let us now introduce relative angular displacements denoted by
(j=1,...,n-1) at the nodal points. According to Fig 6, we have
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i+l (1.2.34)
and

ni = -1 %1 41 (1.2.35)
where denotes the angular displacement along the length of section i.

A derivation, similar to the one which resulted in Eg. (1.2.3), now yields

~a Hi+l + (ai +ai+l) ni- ai+l n1-1 =- a a+iKi>U-2.36)

from which, in a similar way as in the case of Eg. (1.2.8), we obtain the
matrix equation

p1=—gl1l”™ «k , (1.2.37)

K (1.2.38)
(n-1)

n—3

1.3 Basic assumptions

In this paper we use the following assumptions.

1. The box beam is a simply supported beam (Fig. 7).

2. The longitudinal axis of the box beam is perpendicular to the
axes of the two supports (Fig. 7).

[ — The axis of the bridge

Fig. 7.
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3. The box beam has a single-cell cross section (Fig. 8).

Fig. 8.

4. The cross section has a vertical symmetry axis (Fig. 8).

5. The walls meet at rigid joints.

6. The antisymmetric vertical forces of static nature act along the
stress axes of the vertical walls (Fig. 8). (The notion of the stress axis
is defined in /6/ )

7. The stress axes of the walls in the cross section are perpendicu-
lar to each other (Fig. 8).

8. The analysis is carried out according to the first order theory
of the strength of materials and the material of the beamis linearly elas-
tic, homogeneous and isotropic. Only Bernoulli-Navier's assumption is re-
placed by formula (2.3.1).

9. The torsional rigidity of the individual walls is negligible.

Of the above assumptions, No 1 to No 8 are generally accepted assump-
tions frequently used in papers /1/, /2/, I3/, 14/, I5/, but there are also
sore alterations:

1. In the ninth assumption we do not assume, as it is normally as-
sumed, that the walls are thinwalled members, we only assume that the tor-
sional rigidity of the individual walls is negligible.

2. Wedo not stipulate thatthe cross section of the beam is constant.

3. Wedo not stipulate thatthe end-diaphragms are infinitely rigid.

4. \Wedo not stipulate thatthe rigidities of the diaphragms are the

The cases when the cross section is a symmetrical trapezoid or the
beam is subjected to horizontal forces or to couples are analysed in an-

other paper /8/.
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2. THE ANALYSIS CF THE HINGED BEAM

2.1 The model for the analysis

The model of the box beam bridge subjected to antisymmetric load
(Fig. 8) is considered to be a compound structure building of individual
planar walls. W cut the box beam into these individual walls (Fig. 9/b)
and replace the internal forces along the joints by external forces result-
ing in 3 forces and 3 couples (Fig. 10).

Fig- 9.

Fig- 10-
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By connecting the walls by hinged joints along the stress axes we ar-
rive at the hinged beam (Fig. 11). We assume that the torsional rigidities
of the individual walls are negligible so that the hinged beam cannot re-
sist either moments Mz or forces Px- These moments and forces, however,
have to be accounted for, so that we introduce the supporting frames by
building the hinged beam into closed, rigid, densely placed frameworks
whose rigidity eguals the rigidity per unit length of the box beam (Fig.12).

Fig. 11.

Supporting frame

Fig. 12.

2.2 The basic system

In response to the external load, the angles between the straight
lines connecting the joints of the hinged beam undergo alteration (Fig.
13/a). The hinges of the hinged beam and the corner points of the support-
ing frame translate together so that the supporting frame undergoes defor-
mation. The deformation of the supporting frame is caused by the vertical
and horizontal forces (~Qv and -Q) which are transmitted from the hinged
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Fig. 13.

beam to the supporting frame (13/b). Forces -Q and -Q develop M internal
bending moment at the corners of the supporting frame. It follows from the
equilibrium of the frame that forces -Qv and -Q are equivalent to the force
@- @ and -Q act at the opposite corners of the frame and they have a

common action line, the diagonal of the frame (Fig. 14), so they constitute

a couple of zero value.

Fig. 14.

The formula

Q/ ={£Q (2.2.1)

follows from the principle of similar triangles and shows that the external
forces acting on the frame can be characterized by one unknown vector,
vector Q. It follows from Newton's third law that the supporting frame also
transmits forces Qv and Qto the hinged beam (Fig. 13/a). The deformation
of the hinged beam is caused by the vertical external forces P/2 and the
vertical and horizontal reactive forces Q/ and Q

366



ANALYSIS OF SINGLE-CELL BOX BEAMS

We choose the system consisting of the hinged beam and the supporting
frames as the basic system of the statically indeterminate box beam. W
shall determine the unknown reaction Qon the condition that the hinged beam
and the supporting frames develop the same deformation.

2.3 Stresses in the box beam subjected to antisymmetric load

2.3.1 Stresses in the box beam of thin-walled cross section, subjected to
antisymmetric load

If the box beam of thin-walled cross section is subjected to vertical
or horizontal antisymmetric load, the distribution of the stresses in the
walls, according to Bernoulli-Navier's theorem, is linear. If the beam has
a vertical axis of symmetry and the planes of the walls are perpendicular
to each other, the normal stresses are expressed by the formula

a = 9 Xy (2.3.1)

as shown in Fig. 15 where the origin of the co-ordinate system is the zero
point of the stresses.

Fig. 16.

2.3.2 Stresses in the box beam of thick walled cross section, subjected to
antisymmetric load

Let us build in some box bears of thin walled cross section of dif-
ferent size but with the same centroids into each other (Fig. 16). Formula
(2.3.1) is valid to each of these boxes, but with different values of 0 .
If, however, the structural arrangement prevents the neighbouring walls to



SZIDAROVSZKY, J.

slide on each other, even the values of 0 are the sanme for the box beams.

If, due to the structural arrangement, there is no relative slide
along the neighbouring walls, the system of thin-walled box beams built in-
to each other can be replaced by a single thick-walled box beam It follows
that formula.(2.3.1) derived for antisymmetric load is also valid to this
thick-walled box beam In the following, we shall analyse the stresses and
strains on the basis of (2.3.1).

2.3.3 Relations for the normal stresses

The distribution of the normal stresses corresponding to formula
(2.3.1) is shown in Fig. 17/a. This stress diagram can also be obtained by

Fig. 17.

superimposing the diagrams in Figs 17/b. and 17/c.
The resultants of the tensile and compressive stresses in Fig. 17/b
and in Fig. 17/c are forces #\N* and -N* and forces H\2 and -N2, respectively.
The figures also yield

(2.3.2)
N - M2 A2

where ;™ and are constants which only depend on the size of the
cross section.

Forces +N\ and -N* form the couple N*k* and forces -N2 and +N2 form
the couple -N2k2* Since the load is antisymmetric, the moment of the normal
stresses 0 acting on the cross section equals zero, i.e. we have

Nkl _ Nk2=0 > (2.3.3)
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from which, by making use of (2.3.2), we obtain

NL k2 R (2.3.3/a)
N2 Kkl M2 02
Constants anc* }x2 on® depend on the size of the cross sec-
tion of the box beam, so the ratio
al _ >=2 k2 _ hl (2.3.4)
a2 Ki 2

also depends only on the size of the cross section. It follows that, know-
ing stress Op stress a” can be determined.

Based on the foregoing, we can meke some important statements on the
normal stresses in the hinged box beam subjected to antisymmetric load.

1. The principle of superimposition holds. This follows from basic
assumption No 8 in section 1.3.

2. Because of the symmetrical cross section and the antisymmetrical
load, the vertical axis of symmetry coincides with the neutral axis of the
normal stresses o

3. The position of the neutral axis of the horizontal stresses only
depends on the geometrical characteristics of the cross section. Formula
(2.3.4) clearly shows the validity of this statement.

4. The neutral axes belonging to the vertical and the horizontal
antisymmetric loads coincide since, according to (2.3.4), the ratio a a*
does not depend on the load but only on the symmetrical characteristics.

5. If we know the value of the normal stress at an arbitrary point
of the cross section (except at a point on the neutral axis), the stress
diagram can be obtained.

6. The moment of the normal stresses on one side of the symmetry axis
around the symmetry axis is equal to zero. This statement can be proved by
dividing Eq. (2.3.3) by two:

I k2
NN~ NT =0 (2.3.5)

7. The horizontal neutral axis is the centroidal axis of the parts of
the half of the cross section weighted by (x/k) . This statement can be
proved as follows.
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According to Eg. (2.3.5), the moment of the normal stresses around the sym-
metry axis is zero, i.e.

JxdF =0

F
Making use of formula (2.3.1) and denoting the compression area by 1 and
the tensile area by 2, we obtain

9 vy F odeyar (2.3.6)
Py Fa

(2.3.6) by 6 k2, we arrive at

| vp2e-J y Pp2s . (2.3.6/a)
P

F1
With regard to the analogy with the following formulae, we shall take

guantity Kk as equal to the distance between the stress axes of the vertical
walls.

2.4 Analogy between the hinged beam and the bent beam

Weé shall determine the stresses and deformations in the hinged beam
subjected to antisymmetric vertical and horizontal loads using formulae
similar to those of the simply supported beam. First, however, we shall
show that the relationship
I a
f g"2dz =/ glVgdz (2.4.1)
o] o]

holds for any function g=g(z) if the boundary conditions

g=g" =o0 (2.4.2)
are satisfied at z=0 and z= Z .
By applying Eq. (2.4.2)
2| 2| z
. - f - r »£ "
J g"2dz g" g" dz = (gl STo " g g"'dz =
0 Z 0 . 0 ﬂ (2.4.1/a)
= - Jg' g" dz =- (g g"] glv dz:Jgg dz .
0 0 0
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which shows that Egq. (2.4.1) holds.
2.4.1 Formulae for the hinged beam subjected to antisymmetric vertical load

Let the simply supported hinged beam with constant cross section be
subjected to the antisymmetric vertical load g~ and -g”~. The cross sec-
tion is shown in Fig. 18.

Fig. 18.

As with the bent beam, let us express the normal stresses o at
point K=1 of the cross section by the formula

a (2.4.3)

where I.b is the substitute noment of inertia of the vertical wall with the
adjoining horizontal walls and h" is the distance between the neutral axis
and the point marked with 1 in the case of vertical load. Both 1* and h*
are yet unknown. In the following, we shall not take into consideration the
negative sign in formula (2.4.3).

Formula (2.3.1) also yields the normal stress at point 1 as

a 1 9 2 hi (2.4.4)

from which, making use of (2.4.3), we obtain
(2.4.5)

Substituting this into formula (2.3.1) we arrive at
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k. 9 Xy (2.4.6)

or, making use of (2.4.3) once again,
o v O (2.4.7)
1

which can also be obtained directly from (2.3.1).
The vertical translation caused by normal stresses a is obtained

from
z z
if  °1 ff dz dz (2.4.8)
o Ehl Bl
By making use of (2.4.3), this formula can be written as
VA
A ii g" Cz dz mja- (2.4.9)
mn o D

again a similar formula to the one belonging to the bent beam

Taking into consideration the translation caused by the normal stres-
ses and making use of Eg. (2.4.9), the external work of the antisymmetric
vertical forces g » and -g”'; acting on the two vertical walls can be given
as

Le =2 J nadz - ITT _9sIV dz (2.4.10)
0 b 0

Egq. (2.3.1) yields the internal work as

n . I
02 2.2 2 ,.
4 * / j E dF — 4 | Jr6 X"y dF dz
0 F 0 F
B L -J
which, making use of formula (2.4.5) leads us to
L. =1 w2 , y2 dF dz ><2y2 d E g" dz
1 E k21! 2 |
0 o]
(2.4.12)

Formulae (2.4.10) and (2.4.12) must be equal to each other and, making use
of (2.4.1) and taking into consideration the fact that condition (2.4.2) is
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satisfied, we arrive at the substitute moment of inertia as

|b T x2 yz'd'F (2.4.13)

2.4.2 Formulae for the hinged beam subjected to horizontal antisymmetric
forces

In the case of the antisymmetric load system and -gB  the normal
stresses at points 1 and 2 (Fig. 18) can be expressed by the formulae

M _ gk 5 (2.4.14)
21 " 21f
and
— MK (2.4.15)
21, 21,

The above formulae are similar to formula (2.4.3), where 1" and | g are the
substitute moments of inertia of the upper and lower walls in the case of
horizontal, antisymmetric forces. By combining formulae (2.4.14) and
(2.4.15), we obtain

Gl

ay

(2.4.16)

The horizontal translation of the hinged beam subjected to the hori-
zontal antisymmetrical load system g*V and -g"V can easily be derived. A
derivation, similar to the one carried out in the case of the vertical
antisymmetric load system, results in the formulae

of | —S— (2.4.17)
EIf
and
- _al (2.4.18)
%2 Ela
The above formulae are identical to formula (2.4.9).
Figure 17 shows that the ration
h
W1 (2.4.19)
i,
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holds which, introducing (2.4.16), yields

la E

if h2

(2.4.20)

for the ratio of the substitute moments of inertia of the horizontal walls.
Combining formulae (2.4.4) and (2.4.14) we arrive at

6 (2.4.21)
T

Taking into consideration the translation caused by the normal stresses
developed by the external forces, the formula of the esternal work assumes
the form

H I

. gIV{ D dz N1 gaglV(-i- +1)d z (2.4.22/a)
K El Eb

which, making use of ration (2.4.20) and h=hf+h2, can be rewritten as

Z . I

-L ;a * —®gglvVdz-= h g g'V dz (2.4.22)

El* h, EIfhl

If we use formula (2.4.21), we can obtain the internal work of the normal
stresses as

z z
o [ x@y2d¥ g . 22 | C®ydE g
i ZE S 3 212 3 3
F 0 F

(2.4.23)
This formula is similar to formulae (2.4.11) and (2.4.12).
The external work must be equal to the internal work so formulae
(2.4.22) and (2.4.23) yield the substitute moment of inertia of the upper
horizontal wall as

N f x2y2dF (2.4.24)
h hf J

Combining (2.4.13) and (2.4.24) we arrive at
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_ (2.4.25)
h =shn,

and
b (2.4.26)

We shall prove the general validity of the above formulae in Section 2.6.

2.5 Displacements and stresses in the walls of the hinged beam

2.5.1 Deformation caused by the normal stresses developed by the vertical
load

The stresses in the outer fibres of the hinged beam subjected to
vertical forces are given by (2.4.3) as

(2.5.1)

and, on the basis of formulae (2.4.8) and (2.4.9), the vertical displace-
ment of the vertical walls is given as

Vo O
I If dz dz TE?__ (2.5.2)

The relative displacement of the vertical walls is determined by the formula

= a (2.5.3)
wWooE
where we have
| =— (2.5.4)
v 2

In making use of (2.4.3) and (2.4.19), we arrive at the horizontal dis-
placement of the upper and lower horizontal walls as

z
i dz dz = a9 (2.5.5)
v kE 1“1 K EL

and
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2 h, 2h2 ¢
a dz dz (2.5.6)
va KE h, Kk EIU

2.5.2 Deformation caused by the normal stresses developed by horizontal load

Stresses and a2 in the outer fibres caused by horizontal
forces can be determined by making use of formulae (2.4.14), (2.4.25) and
(2.4.15), (2.4.26) as

hhj g
g (2.5.7)

K h

and hh2 o
g (2.5.8)

K 1

Formula (2.4.8) yields the vertical displacement of the vertical walls as
z

1 a. dzdz =--9- (2.5.9)
W Ehl JJ kEIb

The relative displacement of the vertical walls assumes the form

AWV =2 nHV=A " (2.5.10)
HV

where
I =— (2.5.11)

In a similar way, we obtain the horizontal displacement of the upper and
lower walls as
2hh, g

o dz dz =—=- - (2.5.12)
W e Kk Elu

and

(2.5.13)
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Formulae (2.5.5), (2.5.6) and (2.5.10) show that the relative vertical dis-
placement of the vertical walls caused by horizontal forces and the relative
horizontal displacement of the horizontal walls caused by vertical forces
are the same. In other words, if we denote the relative horizontal displace-
ment caused by vertical forces by n,, and the relative vertical displace-
ment caused by horizontal forces by n then the relationship

nWH= nWH=~ (2.5.14)
b

holds. The relative displacement of the horizontal walls is given by

AH= nHa+ nH =72" (2.5.15)

where, on the basis of formulae (2.4.25), (2.4.26), (2.4.17) and (2.4.18),
we have

K2 .

L, =—% . (2.5.16)
H 2h2

2.5.3 Deformation caused by shearing forces in the cross section

In the case of a vertical antisymmetric load system, the vertical
walls cannot transfer horizontal forces to the unloaded horizontal walls
because the walls are assumed to have no torsional resistance. Thus the
horizontal walls are not subjected to horizontal forces and therefore no
shearing force component develops in the cross section of the horizontal
walls (shearing stresses do develop but their resultant vanishes). In a
similar way, in the case of a horizontal load system, the shearing force
component also vanishes in the cross section of the vertical walls.

Let us now cut out a section of thickness dz of the hinged beam.
Figure 19 shows that shearing stresses T and normal stresses a develop on
the adjacent sections. The difference of the normal stresses acting on the
sections is

da =-—— dz . (2.5.17)
6z

Neglecting the initial angular displacement, the displacement of the verti-
cal wall caused by the shearing forces developed by the vertical antisym-
metric load system assumes the form
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n,. - dz (2.5.18)

where Fv represents the substitute cross sectional area of the vertical
wall and Rv stands for the cross sectional resultant of the vertical forces.

The horizontal wall develops no translation due to the shearing
stresses since R0 holds in the horizontal wall so we have

A =0 (2.5.19)

In a similar way, we obtain the horizontal translations caused by
the shearing forces developed by the horizontal antisymmetric forces as

Z
T H dz (2.4.20)
G~
and
dz
at
a (2.5.21)

where F* and Fg represent the substitute cross sectional area of the upper
and lower horizontal walls. In the case of horizontal antisymmetric forces,
the vertical translation of the vertical walls caused by the shearing
stresses vanishes, i.e.
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nH\/T =0 (2.5.22)

holds.

W point out here that during the above derivation we have not re-
stricted analysis to single-cell box beams so the formulae obtained are also
valid for multi-cell box beams provided the distribution of the normal
stresses defined by (2.3.1) is acceptable.

2.6 Generalization of the analogy

The above derivation demonstrates that an analogy exists between the
formulae for the deformations and stresses of the hinged beam and those of
the bent beam.

When deriving formulae (2.4.13), (2.4.24) and (2.4.25) for the sub-
stitute moment of inertia we assumed that the cross section of the beam was
constant and that the boundary conditions were those of the simply support-
ed beam

In the following, we shall present the generalization of the analogy.

Let us consider a hinged beam and only assume that its section of
thickness d z is of constant cross section. The upper flange of the half-
section transfers shearing force t*"dz to the vertical wall along their line
of intersection (Fig. 20). Similarly, the lower flange transfers shearing

Fig. 20.

force tgdz. Making use of (2.4.7), the equilibrium of the normal stresses
and the shearing forces on the upper flange (Fig. 21) yields
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Fig. 21
; r 6o 6al ~ 2 f 2 Jr
tikdz J rr dz x dF = - rr dz kh» J X Y dF
upper flange upper flange
(2.6.1)
Similarly, the equilibrium of the lower flange yields
6 O
t kdz 67 J x2ydF (2.6.2)
lower flange
The external moment —— dz acting on the half-section is equal to
0z 60 .
the sum of the moments of the normal stresses -— dz and the shearing
forces ts and ty,on the vertical wall to axis x:
6M dz dz y dF + t dz +t dz (2.6.2/a)
62z J §z y Fp a b e

vertical wall

Making use of equations (2.4.7), (2.6.1) and (2.6.2), the above equation
takes on the form

S Oj
6M g, Pl s 2 2 E, 22 I x2ydE+ 2 poy ifj
62 6z kM y A j k2
vertical lower upper
wall flange flange
(2.6.3)

The term in braces in the right-hand side of this equation only depends on
the cross section and therefore the relationship between the moment and the
normal stress is independent of the other cross sectional characteristics
and the boundary conditions of the beam It follows that the formulae
derived for the special case are of general validity.
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2.7 Supporting frames

When analyzing the basic system of the statically indeterminate box
beam, we assumed that the hinged beam was supported at its four corner
points by densely placed supporting frames of unit thickness (Fig. 12).

Let us define frame-rigidity as the horizontal force A*. The couple
of zero-value of the two forces

(2.7.1)
acting at the opposite corner points of the supporting frame causes the
(2.7.2)

change in the angle of the straight lines connecting the corner points of
the supporting frames as in Fig. 22.

Fig. 22.

In the case of a horizontal force £, the change in the angle of the frame
is determined by

BS( = Fag (2.7.3)
Making use of the formulae presented in Sections 2.5.1 —2.5.3 and of Fig.

22, the change in the angle i.e. the deformation of the cross section of
the hinged beam is determined by
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X _ rvw + A~ h VT N rHV hvf

(2.7.4)

The deformation of the hinged beam (2.7.4) and the supporting frame (2.7.3)
must be the same, i.e. we have

0, (2.7.5)

Equality (2.7.5) and formulae (2.7.3) and (2.7.4) make it possible to obtain
the reactive forces of the frame. Details of this calculation will be pub-

lished in our following papers /6/, /7/.
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CROSS SECTIONAL CHARACTERISTICS OF SINGLE-CELL BOX BEAMS WITH A
CROSS SECTION OF RECTANGULAR HEVENTS

J. Szidarovszky*

(Received: 25 June 1985)

For the analysis of single-cell box beams formulae of general
validity for the cross sectional characteristics were given in our
previous paper. This paper presents closed formulae for the cross
sectional characteristics of single-cell box beams with a cross sec-
tion made up from rectangular elements.

NOTATION

spring constant at a support,

frame-rigidity (the lateral stiffness of the supporting frame),
length of section i,

width of the upper flange of the beam substituting the vertical wall,
width of the lower flange of the beam substituting the vertical wall,
modulus of elasticity,

substitute cross sectional area,

thickness of the upper horizontal flange plate,

thickness of the lower horizontal flange plate,

thickness of the vertical web plate,

distance between the stress axes of the two horizontal walls (flange
plates) (Fig. 5),

perpendicular distance between the upper stress axis and the neutral
axis (Fig. 5),

perpendicular distance between the lower stress axis and the neutral
axis (Fig. 5),

moment of inertia (second moment of area of the cross sectional area)
about the axis perpendicular to the plane of bending,

nodal point, boundary of a section or reference to a section,
substitute moment of inertia of the vertical wall with the horizontal
walls,

substitute moment of inertia of the upper horizontal flange plate,
substitute moment of inertia of the lower horizontal flange plate,

horizontal component of the frame reactive force,

distance between the stress-axes of the vertical walls (webs) (Fig.5),
length of the beam,

external vertical distributed load,

external vertical concentrated force,

horizontal component of the distributed frame reactive force,
resultant/shearing force,

width of the upper horizontal flange plate,

width of the lower horizontal flange plate,

shearing force,

vertical co-ordinate perpendicular to the axis of the beam,

*Dr. J. Szidarovszky, H-1089 Budapest, Biré Lajos u. 42, Hungary

Akadémiai Kiad6, Budapest
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horizontal co-ordinate perpendicular to the axis of the beam
co-ordinate along the axis of the beam,
warping,
angular displacement,

n change in angle of the supporting frame,
displacement,
built in change in angular displacement,
normal stress,
shearing stress,
abscissa,
unit matrix.

Mo 49 <0 w SN

Subscripts

refers to place z=0 or n=0

refers to place z,

refers toplace z= £,

refers to a section or to the boundary of a section,

refers tothe last section or to the end of the beam or to the bound-
ary of the last section,

refers to the cause of the built in angular displacement

refers to an elastic support,

refers to normal stress,

S5 —7FPNO

- X

refers to shearing stress,

refers tovertical direction, force or wall,
refers to lower horizontal wall (flange plate),
refers to upper horizontal wall (flange plate),
refers to horizontal direction, force or wall,
refers to external vertical force,

refers to frame-reaction.

0T T o ®

1. INTRODUCTION

This paper is to present practical formulae for the calculation of
the cross sectional characteristics of single-cell box beams with a cross
section consisting of rectangular elements.

We shall analyse simply supported single-cell box beams subjected to
antisymmetric load with a cross section consisting of perpendicular walls
and having a vertical symmetry axis. Apart from the assumptions given in
detail in Section 1.3 in /1/, we shall also assume as Assumption No 10 that
the walls of the cross section are of rectangular cross section (Fig. 1).

The physical model and the mathematical methods for the analysis are
given in detail in /1/.

The stresses and deformations developing in the individual walls can
be determined by the formulae of general validity presented in Section 2.5

384



CHARACTERISTICS OF SINGLE-CELL BOX BEAMS

Fig. 1

in /1/. The cross sectional characteristics for the rectangular cross sec-
tion needed for the analysis shown in Fig. 1, however, can also be calculat-
ed in a simpler, more expressive way. It goes without saying that the two
procedures lead us to the same result.

2. THE FRAVE RIGIDITY

Figure 2 shows the geometrical characteristics of the supporting
frame per unit length. |If the closed frame supported below its columns is
subjected to a horizontal force in the axis of its upper horizontal beam,

the upper horizontal beam undergoes translation. By neglecting only insig-
nificant terms, we obtain the frame rigidity /2/ as
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qﬁ\=-_|_ » (2.1)
where
<= g hO (|<-dV\2|<-dV/1+l\l
"t o« 16 ey 3,
and
+-p ho  ((h0 ai/2~ O da2 X—dv| 2k
hdg3 + dg + d3 ) K | 3h2
X- d dv
3k4d3d3,

3. THE BFECT GF VERTICAL ANTISYMVETRIC LOAD ON THE HNGED BEAM

In this section we shall determine the size of two vertical I-beams
which, subjected to antisymmetric load, develop the same stresses and
vertical displacements as the hinged beam subjected to the same antisym-
metric load. The upper flange, the lower flange and the thickness of this
I-beam are denoted by b-, b and f , respectively as in Fig. 8 and the
depth and the thickness of the flanges of the I-beam coincide with the
depth and the thickness of the horizontal plates of the hinged beam

Similarly, we can substitute the hinged beam subjected to horizontal
antisymmetric load for two horizontal beams (Fig. 11).

The moment of inertia of the substitute beam introduced according to
the foregoing coincides, as a special case, with the moment of inertia
derived in Section 2.4 in /1/.

3.1 Equivalent flange-width of the vertical wall

We assume that the torsiional rigidity of the individual walls is
negligible and therefore the vertical walls cannot transfer horizontal
forces Px to the horizontal walls at the hinges (Figs 3 and 4). It follows
that the upper horizontal wall of the hinged beam subjected to vertical
load is not subjected to horizontal load and the sum of stress differences
O o transmitted to the horizontal wall of unit thickness is balanced by
the shearing forces at the joint of the vertical wall (Figs 3 and 6).
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Fig. 3.
Fig. A
Fi9- 5-
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sf

Fig. 6.

Moment equilibrium on the upper horizontal plate of unit thickness

results in (Fig. 6)

from which we obtain
(3.1)
where factor k is yet unknown and the other factors are explained in Fig. 5.

The same force t is transmitted from the two symmetrically placed plates of

width subjected to the stress difference A o0”, i.e. we have
t bj io]j (3.2)
from where, making use of Eq. (3.1), we obtain the equivalent flange-width

as
bf - (3.3)
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According to the foregoing, in regard to stresses, the flange of width s*
can be substituted for a flange of width b”. The same holds for the lower
horizontal plate (Fig. 7), i.e. we have

b (3.4)

3.2 Stress axis of the vertical walls

Factor k, yet unknown, can be determined according to the following.
Shearing force t acts in the vertical plane of the resultant of
stresses A a developing in the vertical wall. Figure 7 shows that the resul-
tant of stresses A a acting in the left-hand wall of unit thickness assumes

the form

AR = —-- Aaz.
2K 2 K
(3.5)
The moment of stresses Ao about the symmetry axis of the cross section
assumes the value
21
M= e Aa, 2 1 <sa- 2dv)3
34 34 K

(s. - d Td +d /3
a \ \ \/ Aa. (3.6)

389



SZIDAROVSZKY, J.

The moment of forces AR
M= ARK Aa?2 (3.7)
is equal to the moment of stresses [a, so we obtain

K =5 —d + - (3.8)

3.3 The equivalent web thickness of the vertical wall

Eg. (3.5) directly shows that, as regard to stresses, the vertical
wall can be substituted for a wall of constant stress with thickness

f =d ' u . (3.9)

3.4 Shearing forces

The neutral axis of stresses o0 developed by the bending moments of
vertical plane coincides with the horizontal centroidal axis of the equiva-
lent beam. Stresses a and T resulting from the vertical load (p/2—h/k)q
can be obtained on the equivalent beam

Stresses t in the (unloaded) horizontal wall can also be determined.
On the basis of Eg. (3.1) and making use of Newton's third law (law of ac-
tion and reaction), we obtain the shearing force transmitted from the ver-
tical wall to the horizontal wall as

t = o fa - (3.10)
6 k 1 1

The same shearing force is also given by
(3.11)

where S represents the static moment of the upper flange of the equivalent
beam about the centroidal axis. Equating formulae (3.10) and (3.11) we ar-
rive at

6k2 S

o1 — (3.12)
1L =%Yg T, R
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The sum of stresses Ad” on the half of the wall (Fig. 6) is

2

24 =-T— o (3.13)
K 4 4K 1

tl = Aal

The difference between t and t* represents the shearing force per length dz
in the middle of the horizontal wall. Making use of Eg. (3.12) we obtain

%6 do oo
'k = Tdf - - h4k1 Aai — Iekr A°l
sj, (Bk - 2s.) 3k- 2s. S
____________ s S (3.14)
5k df AGL= 55 pR
Fig. B

A similar procedure gives the shearing force at the outer joint of the ver-
tical wall. The shearing force assumes the form
S.S. s s st s

t=71d = A0 (= — —- —) d. = —ceeere- d. Jo. (3.15)
1 1k 4 «x 4 1 4k 1

(Fig. 6) or, making use of Eg. (3.12), we obtain

3k s2—s2S
R — i-2-*- R . (3.16)

2sf sf h

The diagram of the shearing forces is given in Fig. 9/a.
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Since the vertical walls do not transmit horizontal forces to the un-
loaded horizontal walls, the resultant has no shearing component in the sec-
tion perpendicular to the longitudinal axis of the horizontal wall. This
fact is also showmn in Fig. 9/a. The area of the diagram of shearing forces

Ta~ in the horizontal walls equals zero.

Similar reasoning shows that in the case of horizontal antisymmetric
load the shearing component of the resultant equals zero in the vertical
walls (Fig. 9/b).

4. THE BFECT (F HORIZONTAL ANTISYMVETRIC LOAD ON THE HNGED BEAM

In the case of horizontal antisymmetric load, regarding normal stres-
ses a , the hinged beam can be substituted for two beams with horizontal
axis.

4.1 Equivalent beans to the horizontal walls

The size of the equivalent beam belonging to the horizontal load wiill
now be determined, in a similar way to the procedure used for the vertical
load.

The horizontal load of the beam is represented by force g transmit-
ted from the supporting frame (Fig. 10). With regard to stresses and de-
flections developed by force q, the upper flange can be substituted for a
beam with web-thickness f* and flange-width c”. In a similar way, the lower
flange can be substituted for a beam with web-thickness f and flange-width
ca (Fig. 11).
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FiO 10-

Fid- 11-
4,2 Stress axis of the horizontal walls
Formulae

h - s (4.1)
b= ix - dfs2)

and d%
M - ni a — (4.2)
z z 2 12 (m2 - dg/?2)

similar to formula (3.8), determine the stress axis of the horizontal walls.

Fig. 12.
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4.3 Equivalent flange-width of the horizontal walls

Proceeding as in section 3.1, moment equilibrium of the vertical wall
of unit thickness (Fig. 12) results in

m m, n MU ni« «

th = AO" ha o (h2 43V +hAT (h2 IV (4.3)

from which we obtain the shearing force transmitted to the upper flange as

Ao 1 2 2 2 R
ti —tfe- m A A mA) + A2A2 A ) (4.4)

Similarly, the formula for the shearing force transmitted to the lower
flange assumes the form

) Zﬂ'ﬁ”l R (h-» 8 Arn n&(h" 2mz) (4.5)

Since now we have

the formulae for the equivalent flange-width assume the form

4.4 Equivalent web-thickness of the horizontal walls

The thickness of the web of the two equivalent beams are determined

from

ff - gf M —dft” (4.10)
and £ ny —d /2

L= U i (4.11)

The above formulae are similar to formula (3.9).
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RELATIONSHIP BEMEEN SAINT-VENANT' S PRINCIPLE AND BERNOULLI-NAVIER' S
THECREM AS VWAL AS BREDT'S FCRMULAE AND WARPING

0. Szidarovszky*

(Received: 5 September 1985)

Saint-Venant's principle of pure torsion and Bernoulli-Navier's
theorem of pure bending are based on different assumptions and seem
to be independent of each other. Nowever, each is a special case of
the theory of Elasticity. The analysis of the single-cell box beam
based on Bernoulli-Navier's theorem also produces Bredt's two formu-
lae and the formula for warping (which were derived from Saint-
Venant's principle), demonstrating that the two theories are not in-
dependent of each other.

NOTATION

Notation is to be found in /4/, except | which is the equivalent
secondary moment of a vertical wall.

1. INTRODUCTION

The physical model of the single-cell box beam with perpendicular
walls is obtained by connecting the walls by hinges at the joints —this
labile structure called the "hinged beam", and the hinged beam is then sup-
ported by densely placed frameworks —the "supporting frames". Applying
Bernoulli-Navier's theorem for the individual wall elements, the mathemati-
cal procedure necessary for the determination of the state of stress is
presented in /1/. Formulae for the reactive forces transmitted from the
supporting frames to the hinged beam are given in /3/.

According to Bernoulli-Navier's theorem, cross-sections which were
plane and perpendicular to the axis of the beam before pure bending remain
plane after pure bending since there are no shearing stresses. In the case
of pure torsion, on the basis of Saint-Venant's principle assuming constant
specific twist caused by the shearing stresses, the warping of the original-
ly plane cross-sections can be derived. Both theories can be considered as
special cases of the theory of Elasticity.

Making use of the results obtained in /1/ and /3/ based on Bernoulli-
Navier's theorems, the aim of this paper is to derive Bredt's two formulae

*Dr. 0. Szidarovszky, H-1089 Budapest, Bir6 Lajos u. 42., Hungary
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and the equation of warping which is prooved on the basis of Saint-Venantls
principle for pure torsion and, so demonstrate that although the two theo-
ries are based on entirely different assumptions they are not independent
of each other.

1.1 Differential equation for the frame-reaction

Formula (1.2. 2/b) in /3/ simplifies if the effect of the shearing
forces is neglected, and so the horizontal component of the reactive force
of the supporting frame is obtained from the differential equation

gV P h4A

(1.1.1)
K El

with four fulfilled boundary conditions.

For a simply supported beam with a constant cross-section we have
g=0 and M0 at z=0 and z= £, so it is expedient to solve Eq. (1.1.1) by us-
ing sinus Fourier series. Let us expand the load and the frame reaction in
the Fourier series

sin - — - (1.1.2)

v
n
e

and
g=£. g sin *y- . (1.1.3)
i=1 1
Substituting formulae (1.1.2) and (1.1.3) and the fourth derivative of the
latter with respect to z into Eq. (1.1.1), after some rearrangement and the
usual application of sinus orthogonality, we arrive at

(1.1.4)
AF4k2El an H
1+ £4
8h o
1.2 Deformation and state of stress for constant cross-sections
1.2.1 Deformation of the hinged beam

If the frame is infinitely flexible, i.e. dft=0, then we have g=0. It
means that the two vertical walls, together with the upper and lower
flanges, take the vertical antisymmetric load p/2 as is presented in Sec-
tion 2.5 in /1/. Onthe basis of formulae (2.5.2), (2.5.5) and (2.5.6) in
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/1/, the relative vertical displacement of the vertical walls and the rela-
tive horizontal displacement of the horizontal walls are obtained from
z

nvv= J\]ff Enrdzdzdzdz
0

and

nvh = nvf + nva = “ E T dzdzdzdz

The rotation of the walls takes on the form

B =_Hvf-—-- lva _ _  TITIT dzdzdzdz (1.2.1)
% h K El

or 1 z
gh -, -, m  etCxy (i-22

showing that the rotation of the horizontal walls and that of the vertical
walls are of the same magnitude but of opposite direction (Fig. 1). It fol-
lows that the whole hinged beam subjected to antisymmetric vertical loads
does not twist (only the single walls) but its cross-section undergoes a
deformation.

> =
~T

1.2.2 Normal stresses in the box beam with an undeformable cross-section

If the cross-section does not change its shape (undeformable cross-
section, Fig. 2), i.e. qA:ﬁ‘>hoIds, then we have B.X:O and Eq. (1.1.1)
simplifies to
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= . (1.2.3)
Th 4
Formula (2.2j.4/b) in /3/ proves the validity of (1.2.3) also for the case
when the effect of shearing forces are taken into account and the warping
is restricted.

The normal stresses at point K=1 caused by the vertical antisymmetric

forces —p/2—h/k)q) (Fig. 5) can be determined from formula (2.4.3) in /1/

as 1 2h h. M h.l M,
al=-— (M- M) (Mp-~) = (1.2.4)
vio 2 p kg AMB-") 4

Making use of formulae (2.4.14) and (2.4.25) in /1/, we obtain the normal
stresses caused by the horizontal antisymmetric loads as

hh, kl\g h.l MP

0, _ (1.2.5)

hi kl 4h 41

By producing the sum of the horizontal and vertical stresses, i.e. formulae

(1.2.4) and (1.2.5), we arrive at the actual normal stresses in the hinged

beam:

h. M h. M
1 P+ ..LP=zg (1.2.6)
41 4

vl ‘hi

The normal stresses assume zero value, showing the fact that no normal
stresses develop from the antisymmetric loads if the cross-section is unde-
formable.

1.2.3 Internal forces and moments in the box beam with an undeformable
cross-section

If the cross-section does not change its shape, then, on the basis
of formula (1.2.3), we obtain the vertical antisymmetric load (Fig. 3)

N ilBE _£
Rq-kina<a (1.2.7)

and the horizontal antisymmetric load

(1.2.8)
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>l"'7
‘s

-
>m

Fig. 3.

acting on the supporting frame. The resultant load acts diagonally and the
ratio of the vertical and horizontal forces is

b
« g ) (1.2.9)
h 4

The hinged beam (Fig. 2) is subjected to the vertical antisymmetrical load

p h p hkxp p

(1.2.10)

2 k4 2 xhd 4

and to horizontal antisymmetric load
(1.2.11)

The ratio of the vertical and horizontal forces is again
P
h

(1.2.12)

4
K4 K
showing that the resultant acts along the other diagonal (Fig. 2).

In the case of an undeformable cross-section, the distributed torques
caused by the vertical and horizontal loads on the hinged beam, i.e.

(1.2.13)
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and
wh = qh:_lﬁﬁh:_Ek (1.2.14)

are equal. In other words, the distributed torque caused by the external
loads is taken in an equal ratio by the horizontal and vertical walls:

M =" mh 4k 4k~ 2k (1.2.15)

1.2.4 Bredt's first law

Since no normal stresses develop in undeformable cross-sections —see
(1.2.6) —the specific shearing forces-do not vary in vertical walls, i.e.
their distribution along the walls is constant.

Resultants R4 and (k/h)Rp/4 caused by the vertical forces p/4 and
by the horizontal forces (k/h)p/4 are distributed between the walls of
height h and k. Consequently, the shearing force per unit length, i.e. the
shear flow assumes the form

> R
t =—— = (1.2.16)
h 4h
in the vertical wall, and
1 K
I
oo N i (1.2.17)

- 4h
in the horizontal wall. The two formulae coincide, i.e. the shear flow is
constant, as is stated in the theory of pure torsion.

The torque acting on the cross-section is obtained by integrating
the distributed torque:

z z
M=dJdmd=-- 1 |pdz (1.2.18)
0 0
tant, we have
z R
M=—«k J dz = x 2~ | (1.2.19)
0
from which we obtain R . Substituting R into formula (1.2.17), we obtain
R Mk
th =78 = ohk (1.2.20)
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for the shear flow. Since the shear flow is constant, the angle of twist of
a rectangular wall element is constant along the wall.
Introducing the formula

A =k h (1.2.21)

for the area limited by the stress axes of the walls, the formula for the
average shearing stress

- (1.2.22)

assumes the form

(1.2.23)

which, in fact, is Bredt's first law. In this formula, however, A" is not
the area limited by the centre-lines of the walls but the area limited by
the stress axes. This difference is due to the fact that the membrane
translation perpendicular to the cross-section is assumed to be linear along
the thickness of walls through Bredt's derivation, while our derivation as-
sumes it to be a parabola of the second order.

We shall demonstrate Bredt's second law in Section 2.

1.2.5 Resolution of the loads acting on the hinged beam

The fact that the resultant of the forces transmitted from the sup-
porting frame to the hinged beam is parallel to the other diagonal and that
the cros's-section of the hinged beam is undeformable suggests that the
loads on the hinged beam should be resolved into the following two parts:
one part only causing angular displacements and the other part only causing
twist (Fig. 1 and Fig. 2). However, it is expedient to resolve the external
loads in another way.

The hinged beam is subjected to two antisymmetric loads: the vertical
load -(p/2—h/k)q) and the horizontal load -g. This load can also be pro-
duced as the sum of two antisymmetric loads: the one is the vertical load
-(p/2—2h/k)g (Fig. 4) and the other is the vertical load i(h/k)q and the
horizontal antisymmetric load iq.
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Fig. 4.

The first part causes the torque

M = _(2~IT q) k = 2ha} > (1.2.24)

the second part develops

M =—qgh—|q kK =- 2 hq . (1.2.25)
and the sum of the two parts represents the whole torque

M o= + M2 o= — : (1.2.26)

Due to the first load, the cross-section only develops deformation
and the second load causes only twist. It follows that a box-beam bridge
balances one part of the external torque as a hinged beam by translation
and the other part as undeformable box beam by twist. In this distribution
of the torque, apart from the size of the cross-section, the direction of
antisymmetric load causing the torque plays an important role. If the
direction of the external forces acting at the opposite corners is parallel
with the diagonal connecting the other two corners (Fig. 2), the box beam
balances the whole torque by twist.

By analysing the effect of torsion, the procedure presented above
shows what proportion of the external torque is balanced by the box beam
resisting as an undeformable twisted beam and what proportion is taken by

the box beam responding as a hinged beam. It follows that the procedure is
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also applicable to the approximate analysis of skew bridges.
Acting as an undeformable twisted beam (Fig. 4/c) the box beam takes

the torque
M =£gh+gh=2qgh (1.2.27)
and performing as a hinged beam (Fig. 4/b) it balances the torque
M =(2~'"Tq)k=2k~ 2hgq (1.2.29)
arising from the antisymmetric vertical load
i f gq) (1.2.28)

2. TAKING INTO ACCOUNT WARPING AND THE EFFECT OF THE DEFORMATION CAUSED BY
THE SHEARING FORCES

The cross-section of the box beam which is plane and perpendicular
to the axis of the beam before loading does not remain plane after the anti-
symmetric loading and the points of the cross-section develop different

axial translations i.e. the cross-section undergoes warping.

2.1 Warping - Bredt's second law

Let the tube-like cross-section be subjected to the vertical antisym-
metric load -(P/2—h/k)Q) and the horizontal antisymmetric load -Q (Fig. 5).

Fig. 5.
In making use of formula (1.2.23), the angular displacement of the horizon-
tal and vertical walls caused by the shearing forces (Figs 6 and 7) is

given by the formulae
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Fig. 7.
R
9 (2.1.1/a)
FfG
and
— a4 2n nib)
'a=7% "B
R h
and '2” ) ER
Yy, Fe (2.1.1/c)

Let us cut through the box beam by two planes. The planes are perpendicular
to the axis of the beam and the distance between them is dz. The angular
displacement of the horizontal and vertical walls in the infinitesimal ele-

ment (Figs 6 and 7) is

ag (2.1.2/a)
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2w,
(2.1.2/b)
and
VI + we (2.1.2/c)
The relative horizontal translations of the points marked with "1" and "2"
on the two vertical sections (Fig. 7) are
Wir=( Yf- af) dz (2.1.3/a)
HG
R 2wy
M2=( Ya~ aa}dz (9 h d (2.1.3/b)
K
FaG
and R h
R w, +w,
-a + -
Ve vyv+ av)dz - G ) dz (2.1.3/c)
\%
The twist per unit length of the horizontal and vertical elements, on the
basis of formulae (2.1.3/a) —(2.1.3/c), assumes the form
1 Mi +M2 R 1
3 = e — =-9 (— +—) (w. + w,) (2.1.4)
v dz h hG F F hk 1 i
f a
and
p 2h n
1 2V Kp K q 2
3. =T — — T e + — (w. + w7) (2.1.5)
n dz « kGFv hk 1 z

If we have an undeformable cross-section,

the twist of the cross-section
and the twist of the elements are the same and, making use of formulae

(1.2.11) and (1.2.15) as well as the formulae
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and

w = + W

we obtain the twist per unit length as

1 2 h M. K K 2h
8 = (— + 09 (— +— +—) (2.1.6)
4h G F, k2F 4hzkzG d[ da dv

which is identical to Bredt's second law. If the cross-section does not
keep its shape, i.e. we have a deformable cross-section, then the deforma-

tion per unit length of the cross-section is

(I
dz

3k -

or, making use of formulae (2.1.4) and (2.1.5),

_ 2hz 4
+t = + _5_) + — W (217)
dz kF\g; Gh Fa FV kzFV hk
from which we obtain warping as
hk dRt h
FH+F R (2.1.8)
4 dz Ff% k2FV 4FVG P

If the upper horizontal flange extends beyond the vertical walls,
then, in the case of pure torsion, no normal stresses develop in the over-
hanging sections so the effect of the shearing stresses is negligible'. It
follows that there must be a break point in the diagram of warping (Fig. 8).

The angle at the break point is

(2.1.9)
G "G k dj G
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Fig. 8.

The warping developing on the hinged beam supported by the support-
ing frames (Egq. 2.1.8) can also be interpreted as the sum of two parts:
warping on the hinged beam and warping on the undeformable cross-section.

According to Section 1.2.5, the vertical antisymmetric load
-(P/2—h/k)Q) and the horizontal antisymmetric load -Q acting on the hinged
beam are equivalent with the vertical load —P/2—2h/k)Q) on the hinged beam
and the sum of the vertical load -(h/k)Q and the horizontal load -Q acting
on the beam of undeformable cross-section.

If the hinged beam is subjected to the antisymmetric vertical load
P/2—2h/k)Q (Fig. 4/b), then, due to the shearing forces, the vertical wall
on the left-hand side translates downwards, the one on the right-hand side
translates upwards and the horizontal walls do not undergo angular dis-
placement, thely only twist. It follows that no warping occurs. This fact
is descriptively shown if we develop the walls into a plane. This load only
develops bending of the vertical walls and so also warping of bending na-
ture (“bending" warping from now on).

If the beam is subjected to the antisymmetric vertical load -(h/k)Q
and the antisymmetric horizontal load -Q (Fig. 4/c), then, because of the
constant nature of the shear flow, all four walls, as plane structures,
develop distortion in such a way that the distortion of the opposite walls
is of opposite direction. That is why generally warping develops, which is
shown in Fig. 6 and in Fig. 7 where the four walls are developed into the
same plane.

Due to the vertical antisymmetric load -(P/2—2h/k)Q), only "bending"
warping wg develops and the vertical antisymmetric load -(h/k)Q and the
horizontal antisymmetric load -Q only cause 'shearing" warping w® (warping
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of shearing nature). As opposed to ‘'‘shearing” warping, in the case of
"bending™ warping, there is no sudden change in the warping diagram at
concentrated forces or at places where the cross-section changes. It fol-
lows that, at concentrated forces and at changes in the cross-section, the
diagram of warping W, presents sudden changes but that of warping w
does not.

If the hinged beam is subjected to the vertical antisymmetric load
-(P/12—2h/k)Q) (Fig. 4/b), we obtain warping from formula (2.1.8) as

hk 0. h 4h h
w = R + R (2.1.10)
a 4 dz 4FVG p 4FVGK q

According to formulae (1.2.3), the vertical antisymmetric load
P=(4h/k)Q acting on the beam with an undeformable cross-section develops
force Q in the horizontal walls of the hinged beam and force

I P- 11 Q=11 Q (2.1.11)

in the vertical walls.

The non-restricted warping caused by the vertical antisymmetric load
-(h/k)Q and horizontal antisymmetric load -Q acting on the undeformable
beam (Fig. 4/c) is given by formula (2.1.8) as

h 4h IFf + F 2h2\ K
R
$:0 e 9 Ry =( A Ry

\%

W

2.1.12)
since we have g”~=0 in this case (undeformable cross-section). The sum of
formulae (2.1.11) and (2.1.12) gives the whole warping represented by
formula (2.1.8).

The fact that warping can be presented in two parts makes it possible
to introduce the equivalent areas F, Pand F .

Due to the vertical antisymmetric load -(P/I—2h/k)Q), no shearing
forces develop in the horizontal walls and the sum of the shearing stresses
is zero. At the vertical walls, as with I-beams, we have
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Fv =dv h (2.1.13)
as a good approximation for the equivalent area.
The vertical shearing force caused by the vertical antisymmetric load
- (h/k)Q and the horizontal antisymmetric load -Q is balanced on the area

Fo=d h . (2.1.14)

and the horizontal shearing force caused by the same load is balanced on
the area

Ff =df k (2.1.15)
and on
Fa = daK ! (2.1.16)

because of the constant nature of the shear flow.

In the case of an undeformable cross-section, we have 87=0 and,
making use of formulae (1.2.3) and (2.1.8) we obtain

2 1
R P

which is identical to the formula presented in /2/.

K

W= — (.Ff + Fa

(2.1.17)

In applying Bernoulli-Navier's theorem we arrived at the fact that
the shear flow is of constant nature. W also obtained Bredt's first
(1.2.23) and second formula (2.1.6) as well as the formula for warping for
pure torsion (2.1.13). These formulae were derived from Saint-Venant's
principle. It follows that Navier's theorem and Saint-Venant's principle
are not independent of each other.
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DESIGN CF STEEL FRAVES BY MULTICRITERION OPTIMIZATION
A Vasarhelyi* —J. Log6**

(Received: 5 September 1986)

The scalar optimization method of multicriterion optimization
is presented for the design of steel frames. The stress and buckling
conditions are satisfied according to the Hungarian Standards (which
are similar to DIN). The effect of using different objective func-
tions was considered. Numerical examples show that form the point of
view design it is not successful if all the boundary conditions are
taken into consideration as objective functions at the same time.

1. INTRODUCTION

The basic idea of multicriterion optimization is very- close to the
process of structural design." In this paper the connection between these
professional domains is presented. The cross-sectional dimensions of steel
frames are designed by multicriterion optimization taking into considera-
tion the stress, buckling and lateral buckling criteria. Numerical examples
illustrate how the dimensions of the cross-sections are influenced by dif-
ferent objective functions.

The problem is solved by an interactive program system which contains
different mathematical methods (weighting objective methods, Guddat's
method and scalarization with parametrical levels).

2 .APPLIED NMATHEVATICAL METHIS

Only there are several methods in our interactive program system.
From among the available methods, scalarization with parametric levels is
presented here because other methods (weighted objectives /3/, /5/, goal
programming /6/ and scalarization of Guddet /3/ are knomn from the litera-
ture, and because of, this method is best suited to solve our problem.

For linear vector optimization problems Brosowski /2/ investigated a
scalarization which led to the following scalar problem:

* A. Vasarhelyi, Dept. Mathematics, Techrical University, Budapest,
Hungary
** (0. LOg6, Dept. Mechanics, Technical University, Budapest, Hungary

Akadémiai Kiado, Budapest
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min ~t JtE£R ax(x) SO, i = hj(x) =0,

j o= 1>eee) A | Pk() - t <yk,

K=1,...,m| (2.1)
where:
X - a scalar,
- vector of unknown,
a,(x) and h.(x) - functions,
n, 1 , m J- number of inequalities, equalities and objective functions

respectively,
- the k-th objective function,
- is the demanded level of the k-th objective function.
By minimizing t in (2.1) such a feasible point x is looked for which
these levels can be chosen as "minimum™. Aslight generalization of the

problem (2.1) is the following scalar problem:

min t [ t(R gi(x=x4&0,i=1,...,n, hjx) =0,
j=1,—,A, Pk(X tzn
K=1,... mj (2.2)
where:
£ Rnand z £ Rn(Rmis the space of objective functions)
z >0, and z are chosen by the user.

The program system produces the vectors ~ and z_ automatically /1/.

A feasible point is selected from the calculated feasible points for
each objective function in which the value of the objective function is
minimum among the feasible solutions.

Let these points be Sp ..., s™.

Choose y_and z vectors automatically as follows:

yi = Pi(si), i =i,....,K, zi :%ZK Pi(si)- ¥Yp i =1,..., K (2.3)

This choice has two advantages:
—the scalarization can be used easily,
—y_and z are independent of the scale of the objective functions.
The Powell-algorithm was used to solve the above scalarization
problem /7/.
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3. OESIGN CF STHEEL FRAVES

At our University a series of experiments were run for steel frames.
Data on structure and loads can be seen on Fig. 1. According to the experi-
ments the load carrying capacity of the frame is 8x33 kN /4/. The balks and
pillars are supported by purlins.

According to the above method this structure has been computed with
different choices of objective functions.

Assuming that —the material is homogeneous, isotropic and linear
elastic, ideal plastic; —the static loads are acting on the nodes; —the
frame is a planar structure. The structure was divided into 12 members.

The internal forces are determined according to the force method.
The unknowns are:

XN —redundant force
XN ... xg —the dimensions of cross-sections (Fig. 1.)

Each section of the members satisfies the equilibrium equations the
compatibility and the linear plastic yield conditions:
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6* s +4 =0 (3.1)
+Fs =0 (3.2)

N*s —k< 0 (3.3)

where :

G — geometric matrix,

s — vector of internal forces,

£ — load vector,

j — displacement vector,

F — flexibility matrix,

N — matrix of yield conditions,

£ — plastic limit stress.

The following conditions of stability have to be satisfied:

Ni

s oy i =1, ees, 12 (3.4)
o |
N
13 BXM. .
11 M S 1 i=1 ..., 12 (3.5)
nl
N By M
| o BY .
+YY1,1M i=1 ..., 12 (3.6)
nl
where:
NI v I\/' normal force and bending moment at the i-th member, respectively,
N M limit normal force and limit bending moment respectively,
fx ' f functions of second order effects in the plane of structure and
y in normal direction to the structure respectively,
(X Ey proportional factors depending on the internal forces,
OX Dy buckling functions.

Y x, Y , ex, ey, *x, <y are presented in the Hungarian Standards
which are similar to DIN. Conditions (3.1), (3.2), (3.3) were substituted
into conditions (3.4), (3.5), (3.6). The geometrical dimensions of the
cross sections were limited by minimal values. In the majority of the cases,
there are two objective functions: the volume of the structure (Cl) and the
minimum shear forces at the supports (C2).
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Cl: min (3.7)
1=1
2 2
@oL Ty min (3.9)
where:
length and cross-section of the i-th member respectively,

TI shear force.

In Table 1 one can see which functions were taken into consideration
as an objective function. In every case the constraints are (3.1), (3.2),
(3.3), (3.4), (3.5), (3.6) and the geometrical limit.

QONCLUSIONS

The choice of the objective functions influences substantially the
dimensions of cross-sections. Taking the stability conditions as objective
functions the dimensions were close to the experimental ones. If the struc-
ture was designed for minimal volume, the same load carrying capacity was
assigned by less volume than at the experimental structure. It is not a
good practice to take too many objective functions into consideration at
the same time.
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?15) rjfct. un- cl
knowns
X2 (mm) 354
X () 6
x4 () 181
X (mm) 10
XN (mm) 281
xj (M) 5
Xy () 140
X9 (mm) 10
x10 (mm) 340

Cl (cm3) 105932

Cl, @
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10

300

155

330

108022

Cl, @

345

173

10

283

152

340

114168

Table 1
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35
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6
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288

152

10

338
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Cl, c2,
3.6

347
8
173
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288
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10

338
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Cl, C2,
35 3.6
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8
178
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288

154
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338

122045
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355
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140

345
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Exp. data
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BOCK REVIEWS

Kalman Z. Horvath: The selection of load-bearing structures for buildings.
Akadémiai Kiad6 Budapest —Elsevier Science Publishers B.V. Amsterdam 1986,
380 pages, 196 figures, 20 tables, subject index.

This book is the English version of the Hungarian book on the same
subject published in 1982 by the Miuszaki Koényvkiad6. Its aim is to present
the creating process of structure design in detail and to represent the con-
siderations that have to be taken into account in selecting the most appro-
priate load-bearing structure for the purpose of the building.

The introductory part of the book presents the different types of
load-bearing structures, sometimes denoting the individual structures by
novel names differing from the ones used by the technical literature. It de-
scribes in detail the equilibrium of forces in the different structure types,
and also the structural and technological problems in connection with their
realization. After systematizing the various types of load-bearing struc-
tures it deals with the executional and operational requirements taking into
consideration the aesthetic, tectonic, static and physical demands.

The next part analyses the designing problem of the load-bearing
structure. The standpoints of the expedient selection of the structure are
shown in a separate chapter for three different tasks, namely for a hall for
industrial or agricultural purposes, for a single-level one-family house,
and for a factory building. The next chapter represents the whole designing
process of the project plan step by step in ten concrete examples and then
continues with the various tasks to be solved when completing the technical
plan and the working drawings in the cases of the same buildings. The last
chapter deals with the structural solution of eleven special buildings in
detail. One part of them has been realized as a result of the author's orig-
inal architectural work, the second one has been accomplished on the basis
of the author's structural design activity. Among the examples discussed in
detail the presentation of the design and construction problem of the load-
bearing structures of the indoor swimming pool in Szombathely, the city of-
fice building in Budapest, Roosevelt square, the educational block of the
Technical College of Traffic and Telecommunication at Gy6r and the hotel
MALBVAHYATT in Budapest is worthy of special interest. The Wine Museum in
Budapest is also an interesting task.

Akadémiai Kiad6, Budapest



BOOK REVIEWS

Throughout the book it is emphasized that a good building can only
be created by an effective cooperation of all partners involved. Besides the
many other related questions the author deals in detail with the advantage
resulting from the application of mushroom floors and with the possibilities
arising from the utilization of structures having larger span than the usual
ones. Beside the main structure the complementary and junction structures
are also examined. The problems of reinforcement of buildings, the question
of dilatation gaps, the problem of hinges and congois and also the expert
solution of isolation tasks are dealt with thoroughly. The various tasks of
building engineering, the diversified problems of the construction itself
have got a high significance through the discussion.

The author's experiences collected during his long professional ac-
tivity of three decades are summarized succesfully in this work. He presents
his observations in an exciting and convincing way demonstrating them with
valuable illustrations, colouring the discussion several times by witty
guotations.

The wealthy treasury of his experiences is valuable not only for the
specialists dealing with the design of load-bearing structures, but also for

those working in other fields of architectural engineering.

P. Csonka

Gy. Mérkus: Kreis- und Kreisringplatten unter periodischer Belastung.
(Periodically loaded circular and annular.) Akadémiai Kiad6 Budapest — \W\er-
ner-Verlag Dusseldrof 1986. 415 pages, 224 Figures, 115 Tables

In structural building, problems are often encountered where determi-
nation of the strain and the cross-sectional forces of circular of annular
plates is required. These problems are usually rather complex problems, and
no direct aid to solve them, or if indeed at all, then only in the simplest
cases, is found in the literature. In engineering practice, technical books
presenting data in the form of a repertory or tables for use by the design-
ing engineer are therefore rather valuable. The author's two earlier books
have been designed for this very purpose, one titled 'Theorie und Berechnung
rotations-symmetrischer Bauwerke' 1967, 1976, 1978 (Theory and calculation
for rotationally symmetric structures) dealing with loads of different types
acting upon circular and annular plates while another work titled ‘'Kreis-
und Kreisringplatten unter antimetrischer Belastung' 1973 (Antimetrically
loaded circular and annular plates) discussing antimetrically loaded circu-
lar and annular plates. A recently issued monograph of large format
(21x23 cm) of the author is a valuable aid in solving problems concerning
periodically loaded circular and annular plates.

In this book, discussion is based on the well-known Kirchhoff theory
of plates. The Kirchhoff formulae as well as the solution of problems dis-
cussed in the book are presented in a dimensionless polar co-ordinate system
by the author. Included in the discussion are the different types of load
and support important from a practical point of view, among them the prob-
lems where the loads are acting only upon some parts of the surface, or some
line sections, or only upon some points, of the plate.

Elescribed in the book after preface and introduction are the differ-
ent symmetric, antimetric, and simple trigonometric load systems taken into
consideration, and then the periodical load systems that can be described by
infinite trigonometric series. The author gives a particular solution of the
differential equation of the circular plate for these load systems, corn-
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pleted with appropriate independent solutions of the homogeneous differen-
tial equation to produce a general solution of the inhomogeneous differen-
tial equation. The solutions presented contain the formulae for strain and
cross-sectional forces of the circular plate.

Utilizing all these results, the author gives actual examples for
circular and annular plates which are important from a practical point of
view. From among the rotationally symmetric problems, he deals only with the
force uniformly distributed in the central area and/or with the case of
plates loaded by concentrated force while concerning other types of load,
reference is made to the author’'s earlier works, similarly to the case of
antimetric load where only the case of concentrated couple acting upon the
central area is discussed. A detailed analysis of the periodically loaded
circular plate case is given for types of load that can be described by a
trigonometric function, and the accurate and/or approximate solution for the
different types of load is presented in the form of infinite and/or finite
Fourier series. The same method is applied also to the case of circular and
annular plates as well circular sector shaped and annular sector shaped
plates periodically loaded along the periphery. The problem of circular and
annular plates periodically loaded along the periphery including, among
others, plates upon which a concentrated force or couple is acting in an ar-
bitrary point is discussed separately. The discussion is extended to the
problem of circular plates combined with the supports in a cantilever-type
structure upon which a concentrated force or couple is acting in an arbi-
trary point. Also the dynamic behaviour of the circular plate supported in
three points is thoroughly studied for the different types of load.

In simpler cases, strain and cross-sectional force formulae ready
for use in the discussed problem are presented while in other cases, the in-
tegration constants required to determine them and in more complicated
cases, equations that can be used to determine the constants are given in
the book. The discussion is backed up by curves indicating the changes of
cross-sectional forces as well as with Figures illustrating the strains. In
case of complex problems, Figures showing the superposition of the different
steps of calculation picture the calculation procedure demonstratively.

In the book, the Tables containing ready solutions worked out for the
different problems are rather practicable. Tabulated in them are data of
strain, and values of moments, of the plate in radial and arc direction in
four subsequent rows each. The layout of the Tables is identical, permitting
the complex problems to be discussed as a combination of the different par-
tial problems.

The book with its rich content, clear-cut treatment of the problems,
and valuable Tables is a fundamental work for engineering practice. To write
it, and to work out the rather involved formulae and the Tables (the latters
containing more than 60 000 numerical data), the author had to take an ardu-
ous work in hand, to make rather sophisticated calculations and to work out
different computer programs. Success attended all these efforts: the book
was a significant contribution to international literature on plates.

Edition of the book also in English would be desirable.

P. Csonka

G. Reinelt: 'The Linear Ordering Problem: Algorithms and Applications’, vol-
ume 8 within series 'Research and Exposition in Mathematics’, 160 pages, has
been issued by Heldermann, Berlin, in English language.
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In optimization theory, one of the most difficult problems is to find
some integer solution and within this, a solution of value 0-1. Combinatorial
optimization with linear ordering is a method suited to solve problems like
this.

Using the graph theory, the linear ordering problem of combinatorial
optimization can be formulated, as follows: for given directed complete
graph of weighted edge, a non-circuital spanning ‘'tournament’ has
to be defined.

A number of practical problems can be treated as a linear ordering
problem. Such a problem is scheduling a machine with restrictions concerning
priority in activities organisation, investigation of individual interests
in market research, triangulation of input-output matrices in economics,
ranging combined comparisons on sociology, evaluation of results of single
combats in sports.

In G Reinelt's monography, first a brief mathematical introduction
is given (graph, polyeder, and complexity theory), and then the use of a
polyedric combinatorial method to solve the linear ordering problem is re-
commended. On the basis of recent results of investigation of polytope plane
structure assigned to the problem, after introduction of the notion of hyper-
plane defined by the system of inequalities of the linear ordering polytope,
the algorithm of the intersecting planes can be produced. With this embedded
in a ramification and separation process tree, a computer-aided solution ap-
plicable to the actual triangular problem dissimilarly to earlier approaches
can be given.

Also different examples are given in the book, among others, for
beer popularity investigations, for evaluation of the results of a football
championship with a higher accuracy than usually.

The book has been designed for use in different fields of sciences
where the apparatus of applied mathematics is used, first of all for
economists.

l. Végo

Gy. Vértes: Structural Dynamics. Akadémiai Kiadd, Budapest, 1986

The author wrote a book consisting of an introductory chapter and two
additional chapter™ worked out in detail.

In Chapter 1, the different dynamic loads and impacts are defined,
and then the effect of dynamic load on the physical properties of steel,
concrete, and reinforced concrete is briefly analyzed.

In Chapter 2, first the one-degree-of-freedom system is studied. Dis-
cussed in this relation are the free and excited vibrations, both damped and
undamped. In the discussion of excited vibration, the author deals with ex-
citation by harmonic forces, vibration due to pulse, and excitation by
forces of arbitrary time function. Included in the discussion of damping are
viscous damping (damping proportionally to velocity) and the method of tak-
ing into consideration frequency-independent internal friction. Also an ex-
ample for the vibration of the one-degree-of-freedom system of nonlinear
rigidity and nonlinear damping (non-proportional to velocity), and another
example for calculation of the elasto-plastic one-degree-of-freedom system
for impulsive load are given in the book.

After the one-degree-of-freedom system, the two-degree-of-freedom
system is studied and formulae are found for calculation of the natural angu-
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lar frequencies and vibrational modes. Also excited, undamped vibration of
the system of two degrees of freedom is discussed by the author.

Multimass systems are studied in the same Chapter. For a system with
discrete mass points (diagonal matrix), free vibration is investigated, with
also the orthogonal properties of eigenvectors included in the investigation
to show how the system can be decomposed into one-degree-of-freedom subsys-
tems in the knowledge of the eigenvectors. Excitation by harmonic forces is
discussed, then directions to take into consideration viscous damping are
given. Also the effect of internal fraction is studied.

Vibrations studies of a beam of constant cross section, considered
to be a continuum, and the use of energy methods for vibrations studies are
then presented. Example is given for the use of the Rayleigh and Rayleigh-
Ritz method. From among methods available for the investigation of dynamic
systems, the method of transfer matrices and its application to both free
vibration and excitation by harmonic forces is discussed, then the author
chanoes over to bar structure studies, discussing the use of the matrix-
displacement method for calculation. The consistent mass matrix of bar
structures, derived with the bending inertia taken into consideration, is
presented.

Chapter 3 of the book deals with dynamic calculations for structures.
Calculation models are shown to calculate the natural frequencies associated
with horizontal vibrations for tower houses with frame and reinforcement
wall as well as with a mixed supporting structure.

The problem of testing of structures for aerodynamical effects is
briefly treated. The author deals with aerodynamical instability and speaks
of what has to be known on Karman's vortices.

In the book, the reader can read of vibrations dangerous to the
building as well as on the effect of vibrations on human organism.

In the different chapters, the author gives first the fundamental
relationships and elements before going into detailed discussion. Thus the
book is a practicable aid in university studies and for engineers involved
in dynamic problems. At the same time, the book offers aid also in practical
problems. References to literature contribute to a thorough study of the
different problems.

J. Gyorgyi
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