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Acta Technica Academiae Scientiarum Hungaricae. 98 (1- 2), pp. 5— 7 (1985)

LIFE AND WORK OF PROFESSOR ARPAD KEZDI

This volume was meant to be handed over to Prof. A. Kezdi on occasion of his
65th birthday, at the 6th Conference on Soil Mechanics and Foundation in Budapest,
first week of October 1984. Unfortunately and much to the sadness of his family,
friends and admirers, this touching ceremonial act could not take place. Prof. A.
Kezdi, Hungarian scientist of international reputation in technical sciences, departed
in the sixty-fifth year of his life.

At the 6th Conference on Soil Mechanics and Foundation in Budapest, many
foreign scientists and friends of the first rank in this special field commemorated
Professor Kézdi, remembering him as an outstanding personality, a colleague who had
gained distinction in his profession.

In recent years the outstanding scientific achievements and extremely rich career
of Professor Kezdi have been praised in quite a number of Hungarian and foreign
periodicals.

A devoted and highly efficient scientist, he paid distinctive attention to the
analysis, and working out, of theoretical problems of soil mechanics significant also in
respect of practical application. He never considered the results of research to be
unquestionable facts, professing that any theoretical method or calculation process
would lose validity beyond a certain limit. He was hundred per cent a scientist,
combining superior talent with a will hard as steel, and with fascinating stamina.

Deeply absorbed in work, he systematized and developed the national and
international geotechnical results, and added new results. The scope of research he was
involved in was wide. He made his mark as a scientist in the fields of soil physics, earth
dynamics, and pile load capacity alike. The results of his scientific work have been
published in 44 books and 150 papers by both home and foreign editors.

A book titled “Soil Mechanics”, a masterpiece in 4 volumes, has been a success
both in Hungary and internationally. Published in Hungarian, German, English,
Spanish, and Russian language between 1969 and 1979, it is still used as a university
text-book in several countries. The first book to bring him international reputation
was “Erddrucktheorien” published by Springer Verlag, Berlin in 1962. Another book
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6 PETRASOVITS. G.

titled “Stabilized Earth Roads” has been published in Hungarian, German, and
English while his book "Soil Physics” in German, English, and Spanish.

He never got tired of making the Hungarian soil mechanics internationally
appreciated. His part in the activities of the International Soil Mechanics and
Foundation Association was decisive for more than a quarter ofacentury. Many times
he attended the conferences of the International Association as chairman, general
report lecturer, or author. His opinion was considered decisive in disputes concerning
terminology at the meetings of the Executive Committee of the Association. In the
period between 1973 and 1977, Professor Kézdi held the office of vice-chairman of the
Association. He was invited to deliver lectures in different parts of the world, and his
firm knowledge earned international appreciation for Hungarian soil mechanics in
many countries.

However, it was not only he who travelled throughout the world. Upon, or
without invitation, visitors of a large number came to meet Professor Kezdi so that the
Geotechnical Department headed by him as well as the Conferences on Soil Mechanics
and Foundation also initiated by him became a meeting-place of internationally
appreciated scientists in the field of soil mechanics.

The large number of invitations Professor Kézdi received as an expert from the
United States, GFR, Italy, Spain, Jugoslavia and other countries reflect his inter-
national reputation. Also, he contributed to the successful solution of the geotech-
nical problems of almost all the most important projects in this country in the course
of the past 35 years.

In addition to research work which was the basis of Professor Kézdi’s
international reputation, he offered maximum also in the university chair, a passionate
teacher to whom university and teaching meant life itself. After his graduation in 1942,
he spent his hard-working life at the Geotechnical Department of the Technical
University Budapest. In 1950 he became head of the Department and stayed in this
post for more than 30 years.

His ambition was to offer the best also in education, and he made enormous
efforts to comply with the requirements imposed upon himself even after his health
had been impaired.

In addition to education, his role in public life both at the university and in
Hungarian science was significant.

Professor Kézdi was Vice-Rector of the university for two terms. He held the
office of vice-chairman of the Scientific Association of Transportation, MTESZ, for
years. He was office-holder of a number of international associations as well as
member of several national scientific or editorial committees.

In appreciation of his outstanding work in the field of both science and
education, Professor Kézdi was awarded the State Prize in 1966 and he was elected
corresponding member of the Hungarian Academy of Sciences in 1970, and member in
1976.
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LIFE AND WORKS OF A. KEZDI 7

Professor Kezdi was Honorary Doctor of Technische Universitit Dresden,
Hochschule fur Bodenkultur Wien, and Honorary Professor of Lima and Ica
universities, Peru. Holder of several orders, he was awarded the Order for Socialist
Hungary on the occasion of his retirement in 1983. All this appreciation encouraged
him to embark upon new and increasingly hard tasks.

Professor Arpad Kézdi was not only passionately interested in his profession but
at the same time had a wide-ranging classical education and was an enthusiast of
classical music.

Itis not only reverence but also the respect for our devoted predecessors working
with outstanding efficiency that has encouraged us to compile this memorial issue to
express our gratitude for the rich professional heritage left to us, which we cherish,
convey to those coming after us, and what we have learned we continue developing.

The spirit devoted to science and higher education remains our model in
professional life.

G. Petrasovits
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PROFESSOR A. KEZDI S PUBLICATIONS
AND THEIR CRITICAL REVIEWS

. Books

Kézdi Arpad:
Cementtalaj utak vizsgalata és méretezése. Kozlekedési Kiad6, Budapest 1951

Kézdi Arpad:
Talajmechanika I. Tank6ényvkiadd, Budapest 1952

Kézdi Arpad:
Talajmechanika Il. Tankdnyvkiadd, Budapest 1954

Kézdi Arpad (Dr. Péczy Mihaly):
Foldmivek 1—H. (Chapters A and B in Volume I, Chapter E in Volume Il.) Tankdnyvkiadd,
Budapest 1957

Kézdi Arpad:
Talajmechanika. Foldmivek (in: “Mérnoki Kézikonyv”, Editor Dr. Palotas Laszl6) (Chapters Il
and IV in Volume 2) M(szaki Kdényvkiad6, Budapest 1957

Kézdi Arpad:
Talajmechanika I. 2. Enlarged edition. Tankényvkiadd, Budapest 1959

Kézdi Arpad:
Chapters 7. Mérndki biolégia (102-115), 12. Talajmechanikai alapfogalmak (153-164), 13. M(iszaki
foldtani vizsgalatok menete és terjedelme (165-172), 17. Az alapozés foldtana (206-228), 20. A
létesitmények épségét veszélyeztet§ tényezék. In Mosonyi E.-Papp F.. "Miszaki Foldtan",
Miszaki Kdnyvkiad6, Budapest 1959

Kézdi Arpad—(Széchy Karoly):
Alagutak, alapozés, foldmivek, talajmechanika. Miiszaki Ertelmez6 Szotar, 10. Terra, Budapest
1960

Kézdi Arpad:
Talajmechanikai praktikum. Tankdényvkiadd, Budapest 1961

Kézdi Arpad—{Markéd Ivan):
Foldmiivek védelme és viztelenitése (Volume 1) MUszaki Konyvkiadd, Budapest 1962

Kézdi Arpad:
Talajmechanikai alapfogalmak. M(szaki foldtani munkak a felszinen. In: ,,Banyészati Kézikdnyv”
(Editor-in-chief Boldizsar Tibor). Sections B and C in chapter 3 in Volume IIl. M(iszaki Kényv-
kiadd, Budapest 1962

Kézdi Arpad:
Erddrucktheorien. Springer-Verlag, Berlin-Gottingen-Heidelberg 1962

Kézdi Arpad—(Marké Ivan):
Féldmvek védelme és viztelenitése. Volume 2. Miiszaki Kdényvkiad6, Budapest 1964

Kézdi Arpad:
Bodenmechanik I-H. Verlag der ungarischen Akademie der Wissenschaften, Budapest, VEB Verlag
flr Bauwesen, Berlin 1964

Kézdi Arpad:
Stabilizalt foldutak. Akadémiai Kiad6, Budapest 1967
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10 PROF. KEZDI'S PUBLICATIONS

Kezdi Arpad:
Handbuch der Bodenmechanik. Bd.l, Bodenphysik. Akadémiai Kiad6, Budapest, VEB Verlag fir
Bauwesen, Berlin 1968
Kézdi Arpéd:
Talajmechanika 1. 3rd enlarged edition, Tankdnyvkiadd, Budapest 1969
Kézdi Arpad—(Marké Ivan):
Erdbauten. Schutz und Entwdsserung. Wemer-Verlag, Dusseldorf 1969
Kézdi Arpad:
Talajmechanika Il. 2nd edition. Tankdnyvkiad6, Budapest 1970
Kézdi Arpad:
Handbuch der Bodenmechanik Bd.2. Bodenmechanik im Erd-, Grund und Strassenbau.
Akadémiai Kiad6, Budapest, VEB Verlag fiir Bauwesen, Berlin 1970
Kézdi Arpad (edited by):
Proceedings of the 4th Budapest Conference on Soil Mechanics and Foundation Engineering (3rd
Danube European Conference). Akadémiai Kiad6, Budapest 1971
Kézdi Arpad:
Talajmechanika I. 4th edition. Reprint of the 3rd enlarged edition. Tankdnyvkiad6, Budapest 1972
Kézdi Arpéd:
Handbuch der Bodenmechanik, Band 3. Bodenmechanisches Versuchwesen. Akadémiai Kiadd,
Budapest, VEB Verlag fur Bauwesen, Berlin 1973
Kézdi Arpad:
Stabilisierte Erdstrassen. Akadémiai Kiad6, Budapest, VEB Verlag fiir Bauwesen, Berlin 1973
Kézdi Arpad:
Handbook of Soil Mechanics. Vol. 1 Soil Physics. Akadémiai Kiad6, Budapest, Elsevier Scientific
Publishing Co.Amsterdam 1974
Kézdi Arpad—(Marké Ivan):
Foéldm(vek. Viztelenités. M(iszaki Kdényvkiadé, Budapest 1974
Kézdi Arpéd:
Chapter 5: Lateral earth pressure. Chapter 19: Pile foundations. In: Winterkorn, H. F., Fang, H. Y.:
Foundation Engineering, Handbook Van Nostrand Reinhold Company, New York /Cincinnatti/
Toronto /London/ Melbourne 1975
Kézdi Arpad:
Manual de la Mecanica de Suelos Tomos Fisica del Suelo. Traduccion: Andres Pesti y Juan C.
Hiedre Lépez. Universidad Central de Venezuela. Ediciones de la Biblioteca, Caracas 1975
Kézdi Arpad:
Talajmechanika IL 3rd edition. Reprint of the 2nd enlarged edition. Tankdnyvkiadd, Budapest
1975
Kézdi Arpad:
Fragen der Bodenphysik. Akadémiai Kiaddé, Budapest, VDI-Verlag, Disseldorf 1976
Kézdi Arpad:
Handbuch der Bodenmechanik. Band 4. Anwendung der Bodenmechanik in der Praxis. Akadémiai
Kiadé, Budapest, VEB Verlag fiir Bauwesen, Berlin 1976
Kézdi Arpad:
Talajmechanika. Példak és esettanulméanyok. Tankdényvkiad6, Budapest 1976
Kézdi Arpad—(Lazanyi L):
Proceedings of the Fifth Budapest Conference on Soil Mechanics and Foundation Engineering.
Akadémiai Kiad6, Budapest 1976
Kézdi Arpad:
Talajmechanikai praktikum. 3rd enlarged edition. Tankdnyvkiad6, Budapest 1976
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Kezdi Arpad:
Talajmechanika 1 5th edition. Reprint of the 4th edition. Tankdnyvkiadé, Budapest 1977
Kézdi Arpad:
Soil Physics. Selected Topics. Akadémiai Kiadd, Budapest 1979. (with Elsevier Scientific Publishing
Company, Amsterdam)
Kézdi Arpad:
Stabilized Earth Roads. Akadémiai Kiadd, Budapest 1979. (with Elsevier Scientific Publishing
Company, Amsterdam).
Kézdi Arpad:
Talajmechanika Il. 4th edition. Reprint of the 3rd edition. Tankdnyvkiad6, Budapest 1979
Kézdi Arpad:
Talajmechanika. Példak és esettanulmanyok. 2nd edition. Reprint of the 1st edition.
Tankonyvkiadé, Budapest 1979
Kézdi Arpad:
Handbook of Soil Mechanics. Volume 2, Soil Testing. Akadémiai Kiadd, Budapest 1980. (Elsevier
Scientific Publishing Company Amsterdam.)
Kézdi Arpad (herausgegeben v.):
Bodenmechanik in der Sowjetunion. Akadémiai Kiadd, Budapest, VDI Verlag GmbH, Diisseldorf
1981
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I1. Papers

Kalcher Arpad:
Szadfalak grafikus méretezése. Viziigyi Kozlemények. Budapest 1943
Kalcher Arpad:
Mérndki biolégia. Technika. Budapest 1944
Kalcher Arpad:
Kozlekedési vonalak tavlati dbrdzolasa. Technika, Budapest 1944
Kalcher Arpéd:
Ujabb kutatasok c6l8pdk teherbirasanak meghatarozasara. Magyar Technika-Altalanos mérnok,
Vol. Il, No. 1, Budapest 1947
Kézdi (Kalcher) Arpad:
A talaj elektromos jelenségei és technikai alkalmazésuk. Vizlgyi Kozlemények, 1947, No. 1-4
Budapest
Kézdi Arpad (Jaky Jozsef):
Az (jjaépiil6 szegedi kozuti Tisza-hid altalajvizsgalata. Magyar Technika-Altalanos Mérnok, Vol.
111, No. 7, Budapest 1948
Kézdi Arpad:
Epiiletek alapozasa homokcélépokkel. Mélyépitéstudomanyi Szemle, Vol. 1, No. 1, Budapest 1951
Kézdi Arpad:
Homoktalajok tomorségének gyors meghatérozasa. Mélyépitéstudomanyi Szemle, Vol. 1, No. 7,
Budapest 1951
Kézdi Arpad:
Einige Probleme der Spannungsverteilung im Boden. Acta Techn. Hung. Vol. Il. Budapest 1951
Kézdi Arpad:
Talajmechanikai kérdések Sztalinvarosban. Epités-Epitészet. Vol. 11l. No. 11-12, Budapest 1951
Kézdi Arpad:
A Balaton északkeleti peremén bekdvetkez6 mozgéasok vizsgalata. Hidrolégiai Kozlony. Vol. 32,
No. 11-12, Budapest 1952
Kézdi Arpad:
Van-e zavartalan talajminta? Mélyépitéstudomanyi Szemle, Vol. 3, No. 1, Budapest 1953
Kézdi Arpad:
Makroporézus talajok vizsgalata roskadas szempontjab6l. M.Tud.Akadémia Misz.
Tud.Oszt.Kézleményei. Vol. XII. No. 1-4 pp. 191-200, Budapest 1954
Kézdi Arpad:
Tomaorités = minéségi foldmunka. Mélyépitéstudomanyi Szemle. Vol. 3, No. 11-12, Budapest 1953
Kézdi Arpad:
A feltoltési anyagok vizsgalata talajfizikai alapozéasi és foldmiépitési szemponthol.
Mélyépitéstudomanyi Szemle, Vol. 5, No. 9, Budapest 1955
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Kézdi Arpad:
Uber die Tragfahigkeit und Setzung von Pfahlgriindungen. In: Gedenkbuch fiir J.Jaky. Akadémiai
Kiad6, Budapest 1955
Kézdi Arpad:
Kisérleti cement-talaj utak épitése és kiprobalasa. Az EpitSipari Miszaki Egyetem Tudomanyos
Kozleményei, Vol. I, No. 1, Budapest 1955
Kézdi Arpad:
Soil Mechanics. Feature article; Applied Mechanics Reviews, Vol 8, 1955, New York N.Y.
Kézdi Arpéd:
Rézsiik allékonysaga. Vizigyi Kozlemények, 1956, No. 1, Budapest 1956
Kézdi Arpad:
Dovolené zatizeni a ssedani zékladu. Inzenyrské Stavby, Vol. 4, No. 10, Praha 1956
Kézdi Arpéd:
Bearing Capacity of Piles and Pile Groups. Proc. 4th Int.Conf.Soil Mech. Found. Engg.Vol.ll.
Butterworths Scientific Publications, London 1957
Kézdi Arpad:
Féldmiivek allékonysaga. Az EpitSipari és Kozlekedési Mszaki Egyetem 1955. évi tudoményos
lilésszakanak el6adasai. Tankonyvkiadd, Budapest 1957
Kézdi Arpéd:
Erfahrungen mit der Zement-Bodenvermdrtelung in Ungarn. Strassen- und Tiefbau. Vol. 9, No. 9,
Heidelberg 1957
Kézdi Arpad:
Cementtalajutak tartéssaga. Mélyépitéstudoményi Szemle, Vol. 7, No. 7-8, Budapest 1957
Kesgn, A.:
Hecyulas cnocobHocTb cBaii. OcHoBaHMS U (hyHAaMeHTbl, Mocksa 1957
Kézdi Arpad:
Earth Pressure on Stiff Retaining Wall, Tilting about the Toe. Brussels Conference 58 on Earth
Pressure Problems; Proceedings, Vol. I, Bruxelles 1958
Kézdi Arpad:
Cing ans de mécanique du sol en Hongrie. Annales de I’Institut Technique du Batiment et des
Travaux Publics. Juillet-AoQt, 1958. Onzieme année. No. 127-128
Kézdi Arpad:
Vplyvy posobiace na stabilitu svahov. Stavebnicky Casopis, Vol. VI., No. 1 Slovenska Akadémia
Vied, Bratislava 1958
Kézdi Arpéd:
Einiges iber Rutschungen im Strassenbau. Strassen- und Tiefbau, Vol. 10, No. 3, Heidelberg 1958
Kézdi Arpad:
Beitrdge zur Berechnung der Spannungsverteilung im Boden. Der Bauingenieur, VVol. 33(1958). No.
2
Kézdi Arpad:
Megjegyzések rézsiik allékonysaganak vizsgalatéhoz. Epités- és Kézlekedéstudoméanyi Kozlemé-
nyek. No. 3-4, Budapest 1959
Kézdi Arpad:
Colépok és colépcsoportok teherbirasa. EpitSipari és Kozlekedési Mszaki Egyetem Tud.Kézi.
Vol. 1V, No. 3, Budapest 1959
Kézdi Arpad:
Earth Pressure on Retaining Wall Tilting about the Toe. Acta Techn. Hung. Tom. XXV, No. 3-4,
Budapest 1959
Kézdi Arpad—(Séndor 1.):
Losung der Differentialgleichung der eindimensionalen Konsolidation mittels Matrissenkalkils.
Acta Techn. Hung. Tom. XXVII, No. 3-4, Budapest 1960
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Kézdi Arpad:
Contributions to the bearing capacity of piles. Acta Techn. Hung. Tom. XXIX, No. 3-4, Budapest
1960

Kézdi Arpad:
Nekolika pitanja, prakticne mehanike tla i fundiranja. Technika, Vol. XV, No. 12, Nase
Gradevinarstvo, Beograd 1960

Kézdi Arpad:
Bemerkungen zur Frage der Tragfahigkeit von Pfahlgruppen. Symposium on Pile Foundations.
Stockholm 1960

Kézdi Arpad:
Untersuchung einiger Grundbruchfélle. Vortage der Baugrundtagung 1960 in Frankfurt am Main.
Deutsche Gesellschaft fur Erd- u. Grundbau, Hamburg 1961

Kesan, A.:
OnbIT CTpoUTENbCTBA Ha /IECCOBbLIX FPYHTax B BeHrpun. B “Bonpockl CTPOUTENLCTBA Ha 1ECCOBbIX
rpyHTtax”, BopoHex 1961

Kézdi Arpad:
A talajmechanika alkalmazéasai a mérnoki gyakorlatban. Kozlekedéstudomanyi Egyesiilet,
Budapest 1961

Kézdi Arpéd:
Colopok teherbirasa. Kozlekedéstudoméanyi Egyesiilet, Budapest 1961

Kézdi Arpad:
The Effectof Inclined Loads on the Stability ofa Fundation. Proc. 5th Int. Conf. Soil Mech. Found.
Engg. Vol. 1, Paris 1961

Kézdi Arpéd:
Utburkolatok alatti sz(ir6rétegek viselkedésének vizsgéalata. Epités- és Kozlekedéstudomanyi
Kozlemények, Vol. 3. No. 4, Budapest 1962

Kézdi Arpad:
Einige Betrachtungen zur Untersuchung der Standsicherheit von Bdschungen. Bauplanung-Bau-
technik. Vol. 17, No. 2, 1963

Kézdi Arpad:
Scherverformungen von Sand. Az EpitSipari és Kézlekedési Miszaki Egyetem Tudomanyos
Kozleményei Vol. X1 No. 5, Budapest 1963

Kézdi Arpad:
Semleges fesziiltség és aramlasi nyomas. Viziigyi Kézlemények, Vol. 1963, No. 1, Budapest 1963

Kézdi Arpad:
Setzungen im L&ss infolge der Erhdhung des Grundwasserspiegels. Proceedings, "Europdische
Baugrundtagung”, Wiesbaden 1963

Kézdi Arpad:
Uber Bodenstabilisierung im Strassenbau. Die Strasse, Vol. 1963, No. 3, Berlin 1963

Kézdi Arpéd:
Diskussionsbeitrag anldsslich des Seminars liber Bodenstabilisierung in Linz, 1963. Mitteilungsblatt
der Forschungsgesellschaft fiir das Strassenwesen im O.1.A. V. 6sterreichische Ingenieur-Zeitschrift,
Vol. 7, 1964

Kézdi Arpéd:
Lectures on Soil Mechanics. Publication of the School of Engineering, Princeton University,
Princeton, N. J 1964

Kézdi Arpéd:
Some properties of packings. In: “Mechanical and Physico-Chemical Properties of Soils.” Highway
Research Record, No. 52. Highway Research Board publication 1177. Washington, D. C 1964
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Kezdi Arpad:
Earth Pressure Theories. Soil Mechanics Lecture Series: Design of Structure to Resist Earth
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[Il. Critical reviews

ERDD RUCKTHEORIEN

Beton-und Stahlbetonbau 7/1964 (W. Berlin)

Kézdi, A.. Erddrucktheorien. Berlin/Gottingen/Heidelberg: Springer-Verlag
1962. Vili, 319 Seiten mit 275 Abb., Gr. — 8°. Gzl. 58,50 DM.

Trotz der Fulle von Einzelaufsdtzen tber den Erddruck und Erdwiderstand und die
hiermit zusammenhdngenden Probleme inden deutschen Fachzeitschriften ist seit
dem lange zurickliegenden Erscheinen der beiden klassischen Erddruckbicher in
deutscher Sprache von Miller-Breslau (1906) und von Krey (1912; 3. stark
erweiterte Auflage und 1. Ausgabe des bekannten Buches 1926) und dem im
Rahmen des ,,Handbuchs fur Eisenbetonbau™ auch bereits 1936 verdffentlichten
Buch von Mund) kein umfassendes Werk mehr herausgekommen, das diese fiir die
Bemessung der mit immer gréReren Abmessungen entstehenden Grundbauwerke
wichtigsten GrélRen zum Inhalt hat. Der Grund hierfiir mag vielleicht darin liegen,
dal} der fiir eine geschlossene Behandlung dieses Themas erforderliche Stoff durch
die neueren erdstatischen Theorien einerseits und durch die Erkenntnisse der
theoretischen und experimentellen Bodenmechanik Uber die wirksamen und
neutralen Spannungen sowie die Scherfestigkeit der Bdden anderseits so
umfangreich und schwierig geworden ist, daR eine zusammenfassende Bearbei-
tung wenig reizvoll erscheint. Um so mehr ist es zu begriiRen, dall von dem
Ordinarius fur Tunnelbau, Erdbau und Bodenmechanik an der Technischen
Universitat Budapest, Professor Dr. techn. Kézdi, ein neues Erddruckbuch in
deutscher Sprache geschrieben und vom Springer-Verlag herausgegeben worden
ist. Es soll die Erddrucktheorien, denen der Ingenieur heute begegnet, kritisch
zusammenfassen, ihre Grundlagen darlegen und die Anwendungsbereiche
abgrenzen. Unter dieser Zielsetzung muR das Buch natiirlich die theoretische Seite
der behandelten Probleme betonen; es erfordert dadurch vom Leser beim Studium
ein erhebliches Mall von Mitarbeit und Konzentration.

In den ersten Kapiteln werden die heute als Grundlage einer Untersuchung
von Erddruckaufgaben anzusehenden Fragen der wirksamen und neutralen
Spannungen im Boden, des Ruhedrucks und der Scherfestigkeit der bindigen und
nichtbindigen Bdden behandelt. Es folgen die Untersuchung der Grundlagen der
Grenzgleichgewichtslehre im Erdreich (Gleitflaichentheorien) und die damit
maogliche strenge Ldsung der beiden Sonderfdlle des Grenzgleichgewichts im
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schwerelosen und im reibungsfreien (vollplastischen) Bodenkdrper sowie die
Betrachtung der Grenzspannungszustdnde im unendlichen Halbraum. Erst dann
werden die auf einer Grenzwertbestimmung fuBenden bekannten eigentlichen
Erddruckverfahren mit Verwendung der ungunstigsten ebenen oder gekrimmten
Gleitflache (Coulomb, Fellenius, Rendulic) und anschlieBRend verschiedene
Theorien, die auf der Plastizitatslehre aufbauen und vor allem fiir die Bestimmung
des Erdwiderstandes von Bedeutung sind (Boussinesq—Résal—Caquot, Soko-
lowski) sowie die Gleichgewichtsmethode von Brinch Hansen beschrieben. In
einem abschliefenden Kapitel wird dann noch auf einige Sonderfélle (Erddruck
zwischen parallelen Wénden, in Silos, auf Rohrleitungen und auf Schéchte oder
Brunnen — rdumlicher Fall — sowie bei Verankerungen) eingegangen.

Das trotz der Fille der behandelten Probleme knapp gefaflte Buch ist ein
Versuch, die von verschiedenen Grundlagen ausgehenden unterschiedlichen
Erddrucktheorien zusammengefalt darzustellen und den einzelnen Verfahren den
ihnen nach der jeweiligen Betrachtungsweise zukommenden Platz zuzuweisen.
Dies ist dem Verfasser ausgezeichnet und mit Verarbeitung von viel eigenem
Gedankengut gelungen. Das Buch von Kézdi wird sich deshalb seinen Platz als
deutsches Standardwerk tber die Grundlagen der Erddrucktheorien erobern und
uber lange Jahre fiir den, der sich hieriiber unterrichten will, unentbehrlich sein.

H. Muhs

Technisch Tijdschrift 3/1962 (Belgium)

Erddrucktheorien. — par A. Kezdi. - 319 pages - 8° - 275 figures. - Springer Verlag
Berlin 1962. - Prix: 58,50 DM.

Née il y a plus de 200 ans, la théorie des poussées des terres n'a cessé de
retenir I'attention des ingénieurs qui au cours de ces deux siécles ont établi de
multiples théories permettant de résoudre les nombreux problémes qui se sont
multipliées depuis, dans l'art de la construction.

Cesthéories ont dépassé depuis longtemps les simples études des calculs de
stabilité des murs de souténement ou les projets de fondations.

Au stade actuel de cette science l'auteur du présent ouvrage ajugé utile d'en
faire le point et de mettre a la disposition des ingénieurs qui désirent I'approfondir,
les bases théoriques des différentes théories anciennes et modernes qui ont été
établies.

Les démonstrations et explications sont faites avec un souci de clarté et de
compréhension. Dans certains cas ces démonstrations sont accompagnées de
tableaux ou diagrammes.

Les différentes théories sont groupées sous plusieurs chapitres dont les
principaux sont les suivants:

— les définitions et calculs des tensions internes,

— résistances aux glissements,
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— équations générales des tensions limites d’équilibre,
— déterminations des valeurs limites des poussées,
— solutions d’aprés la théorie de la plasticité,
— méthodes de détermination des tensions-limites d’équilibre,
— cas particuliers: poussées sur parois verticales, poussées sur canalisations
circulaires, calculs de silos, poussées sur parois circulaires, ancrages.
Ces différents chapitres comprennent une abondante littérature bibliogra-
phique.
Ouvrage trés bien présenté qui sera consulté avec intérét.
F. Thonnard.

Teknisk Ukeblad 42/1962 (Norway)

A. Kézdi: Erddrucktheorien. Springer-Verlag, Berlin, Heidelberg, Gottingen
1962. 319 s. 275 ill. Pris DM 58.50. (2347).

Forfatteren til Springer-forlagets nye bok om jordtrykksteorier er den
ungarske professor Arpad Kézdi som er kjent for sine arbeider innen den teoretiske
geoteknikk. Kézdi har tatt det lgft & sortere den altfor rikholdige litteratur om
jordtrykk og stille sammen de teoretiske arbeider som har interesse for var tids
geoteknikere. Og sett ut fra denne malsetning er oppgaven lykkes. Kézdi har
omhyggelig skilt ut de vesentligste teorier fra Coulomb til Brinch Hansen og
fremstillet dem klart, eksakt og allikevel kortfattet.

Dette har imidlertid bare lykkes ved — noe brutalt — & skille ut empiriske
metoder og resultater av modellforsgk og malinger i marken. Sett fra en praktikers
synspunkt er dette naturligvis en mangel ved boken, idet det sterkt begrenser
muligheten for & vurdere de forskjellige teoriers gyldighet og derved ogsa
anvendelsen av boken ipraksis. Det er sdledes ikke lett & fatte at man kan skrive en
bok om jordtrykk uten & komme inn p& sd viktige problemer som krefter i
avstivninger i byggegroper eller forankrede spuntveggers dimensjonering. Dette
siste problem kunne utmerket godt ha vart behandlet, idet Brinch Hansen jo har
gitt en ren teoretisk lgsning basert pa sin bruddlinjeteori, som Kézdi forgvrig har
stgttet seg sterkt til ved opplegget for boken.

For en geotekniker vil boken sikkert veere til megen nytte. Den teoretiske
geoteknikk er en av hovedhjgrnestenene innen det geotekniske fagomradet, idet
man ved den teoretiske behandling kan undersgke hvordan et materiale med
idealiserte egenskaper oppfarer seg nér det belastes eller deformeres, og man kan
fa en kvalitativ vurdering av hvilke faktorer som er avgjerende for deformasjoner,
jordtrykk osv. At geoteknikeren ved siden av ma vere fortrolig med geologien, med
jordartenes virkelige materialegenskaper og dertil ha en sum av praktisk erfaring for
a kunne anvende den teoretiske geoteknikk i praksis, skal bare medtas for & stille
verdien av et arbeide som det foreliggende iden riktige belysning.

Boken er forgvrig velskrevet og illustrert og utstyrt med vanlig Springer-
kvalitet.

Laurits Bjerrum.
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Ingenigren 22/1962 (Denmark)

Erddrucktheorien. Af A. Kézdi. Springer Verlag, Berlin 1962. VIII+ 319 s., 275
fig. DM 58,50.

Professor Kézdi (fra det tekniske Universitet i Budapest) gennemgar i denne
bog meget grundigt de eksisterende jordtryksteorier. Der er herved givet en
fremragende oversigt over de indtil nu foreliggende Igsningsmetoder, samt
resultaterne af en rekke — mere eller mindre tilnermede — lgsninger. Ifglge
sagens natur omhandler bogen hovedsagelig normale jordtryksproblemer i plan
deformationstilstand, men iet afsluttende kapitel er der dog ogsé behandlet mere
specielle emner som f. eks. silotilstand, jordtryk pa ledninger og rumlige
(aksialsymmetriske) jordtryk. De grundleeggende emner som jordens styrkelere,
beregning af totale og effektive spaendinger, elasticitetsteori og plasticitetsteori er
behandlet i det ngdvendige omfang for forstaelsen af metoderne i bogen.

Som titlen antyder, er fremstillingen begraenset til den mere teoretiske del af
jordtryksberegningerne. Jordtryksteorien for en veeg med vilkérligt omdrejnings-
punkt er saledes fyldestgarende referet, men dens anvendelse pa spunsveagsbe-
regninger er ikke nermere omtalt. Jordtryk pa bgjelige vaegge er i det hele taget
ikke behandlet, formentlig fordi der udover Brinch Hansens ikke findes nogen
egentlig teori, men kun ingenigrmassige, mere eller mindre empiriske metoder.

Med denne begrensning er bogen imidlertid meget fuldstendig, og de
enkelte metoder er behandlet sd indgéende, at man far et virkeligt godt overblik
over forudsetninger, beregningsgang og vigtige resultater.

P& den anden side er det kun de eksisterende metoder, der er givet. Bogen er
sdledes vaesentligst refererende, og der er ikke givet nogen ny, samlet behandling
af jordtryksproblemet. Bortset fra hviletryk, som er et elasticitetsteoretisk fenomen,
er jordtryksteorierne derfor opdelt pa den klassiske made:

1. Ekstremummetoderne, der omfatter Coulombs teori med rette brudlinier,
Fellenius' teori med cirkulaere brudlinier (i ler), og Rendulics teori med
logaritmiske spiraler (i sand).

2. Plasticitetsteorien (traditionelt opfattet som kun vedrgrende rene zone-
brud): Rankines teori med et net af rette brudlinier, samt Jelineks
udvidelse til det generelle Coulombske halvrum; Soholovskis teori, der
0gsad omfatter radialzoner, og Boussinesq-Resal-Caquot's specialmetode
for brudfigurer, ligedannet om et punkt ved ubelastet jordoverflade
(identisk med Karman's).

3. Ligevaegtsmetoden, d. v. s. Brinch Hansens teori med mere generelle
brudfigurer, herunder liniebrud, samt den specielle tilnermede bereg-
ningsmetode for zonebrud.

Man kunne i denne forbindelse gnske en understregning af, at nar et

tilstreekkeligt set ideale forudsatninger er opstillet for jordens plastiske egenska-
ber, vil der veere en og kun en matematisk korrekt lgsning til ethvert giyet
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jordtryksproblem. Derfor bgr de forskellige jordtryksteorier helst betragtes under et
enhedssynspunkt, idet de enten vil veere specialmetoder til bestemmelse af den
korrekte lgsning for hver sin bestemte type grensebetingelser, eller er tilneermel-
sesmetoder, hvis ngjagtighed igen ma afhange af graensebetingelsernes form. Det
havde veret af betydelig verdi, hvis disse forhold var trukket klarere frem,
eventuelt direkte gennem bogens disposition.

Det er beklageligt, men iog for sig naturligt, at iet refererende vaerk af denne
art vil fejl i de angivne metoder ofte ikke blive rettet eller blot kommenteret.
Forfatteren har sdledes ukritisk overtaget metoden med diskontinuitetslinier i
brudzoner fra Prager, Josselin de Jong og Soholovski. Herved kan man formelt
opnd lgsninger i tilfelde, hvor brudfiguren faktisk er kinematisk umulig (f. eks.
under jordoverflader med et udadgéende knakpunkt, d. v. s. hvor vinklen ijord er
mindre end 180°). Som et kuriosum kan det naevnes, at man ved at gennemfgre
denne betragtning konsekvent nar til, at der ikke kan findes brudzoner under et
indadgdende knekpunkt ien jordoverflade (vinklen gennem jord stgrre end 180°).
Ivirkeligheden findes der en statisk bestemt, og 0gsd matematisk korrekt, brudzone
idette tilfeelde, som indeholder to radialzoner. Lgsningen er abenbart ikke angivet i
den af forfatteren kendte litteratur, og derfor ikke refereret.

Det kan ogsa volde misforstdelser, nar forfatteren beklager, at Boussinesg-
Resal-Caquot's metode giver lgsninger for enhver mulig vaegfriktionsvinkel § og
séledes ikke kan siges at vare entydig. For Coulombs jordtryksteori (for aktivt
jordtryk) Kklares dette problem efter Rebhann ved en noget kompliceret be-
tragtning, som kort refereret gar ud pa, at man for veeghaldninger mellem to
bestemte vaerdier kan fastsatte 6, sledes at jordtrykket bliver minimum. Uden for
intervallet ma man enten bruge en vaerdi fundet ved Rankine-zonen eller ma satte
O lig med den faktiske vegruhed.

Det skal hertil bemarkes, at ved et rent zonebrud ma der altid ske bevagelse
mellem jord og veeg, som gar isamme retning i hele veeggens hgjde, 6 er altsa altid
lig med veegruheden. Noget andet er, at zonebrud kun er mulige for et vist omrade
af de indgdende parametre (veghaldning, vegruhed, bevagelse etc.). Uden for
dette omrade har man et stift legeme langs i hvert fald en del af veeggen, og her vil
den fulde vaegruhed muligvis ikke blive mobiliseret.

Fejl af denne art gor, at bogen ikke kan anvendes ukritisk som opslagsbog,
hvis man gnsker den eksakte lgsning pa et givet problem. Den kan imidlertid veere
en udmerket hjelp til at finde en tilnermet lgsning, og som en dybtgdende
orientering om jordtryksteoriernes nuvarende stade er den fremragende. Der
savnes sterkt et sagsregister, selv. om navneregistret vil vere en hjelp for de
lesere, der iforvejen er orienteret i den geotekniske litteratur.

Bent Hansen.
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OcHOBaHUS1 (hyHAAMEHTblI U MEXaHWUKa FPYHTOB
4/1962 (Sovietunion)

Apnag Kesgu: Teopusa faBneHuns rpyHToB. bepinH — MéTTuHreH — eidgens-
6epr, 1962, 319 cTp. (Ha HemMeLKOM fi3biKe)"

B KHUre W3BECTHOrO0 BEHrepckoro y4yeHoro A. Kesgum paccMOTpeHbl
OCHOBHbIe BOMPOCHI TEOPUU JAaB/IEHUS TPYHTa, KOTOPbIe aBTOP BO BBEAEHUW AEeNnT
Ha Tpu rpynnbl: 1) npo6nembl, CBA3aHHbIE C OMNpeAeseHNeM HanpPsAXeHHOro
COCTOSHMS €CTECTBEHHOr0 MaccuBa rpyHTa Nnoj Harpyskoii; 2) 3afayu faBfeHus
rPyHTa Ha OrpaxfeHus, KOTopble MOryT rfepemewiarbCd — Ha MOAMOPHbIE U
WNYHTOBbIE CTEHKU, a TAKXKe HAa CTEHKW CMI0COB; 3) BOMPOCHI AaBeHNs 3aCbINKu
CW/I0CA Ha ero JHuWLLe W FPyHTa Ha NMOA3EMHbIe COOPYXXeHUs.

MeTogbl onpefeneHns faBfeHus rpyHTa nofpasfeneHbl Ha YeTbipe rpyn-
nbl. K nepBoil rpynne oTHeceHbl MeTOAbl, OCHOBAHHbIE Ha TEOPUM YNPYrOCTH, KO
BTOPOM — Ha TeopuM NNaCTUUYHOCTU, K TPETbeil — Ha 3aKOHaxX KMHemMaTuKW U K
4YeTBEPTON — Ha BapuMaLMOHHOM MPUHLKMNE 3KCTPeManbHOCTU. B KHUre oTpax-
€Hbl BCE 3T METOAbI.

B nepBoii rnase U3noXeHa TeOpna HanpsXKeHWiA B rpyHTax. 34ecb paccmoT-
PeHbl TMAPOCTATMYECKOE W KanunnapHoe fAaBfeHUs rPYHTOBOM BOAbl; 3aBUCK-
MOCTb MEXJAY [NaBHbIMW HaMpsHXKeHUAMU U HaANPAXEHUAMMU MO0 HAK/IOHHbIM
nnouiagkam; Hanps>KeHHoe COCTOfHWe TpyHTa Npu MOMOLWMW KPWBbLIX, KPYros
Mopa, anaunca MOMHbIX HANPSXKEHW, OBafia HOPMAa/bHbIX HAaNPXeHUNn u
YeTbIPEX/IMCTHUKA KacaTefibHbIX HanpsXXeHWiA.

Bo BTOpoin rnaBe nNoApo6HO OCBelLeHbl BOMPOCHI [aBNEHUA TPYHTa W
rPyHTOBOW BOAbl B €CTECTBEHHOM MacCuBe.

B TpeTbeli rnaBe pacCMOTPEHO COMPOTWUBAEHWE TFPyHTa CABUTY KakK B
KayecTBe 3aMKHYTO, TaK U B Ka4eCTBe OTKPbITON CUCTEMbI C y4eTOM 1 6e3 yueTa
cuenneHuns. NokasaHa CBA3b MEXAY CABUTalOLWMMWN HANPSAXEHUAMMN U Nepeme-
WEHVUAMWU CABUTa W BAWSAHWE TNPOLO/DKUTENbHOCTM HarpyXeHud. 3T1a rnasa
3aKaH4yMBaeTCsA JaHHbIMM 06 06beMHbIX Becax FPYHTOB B 3aBUCUMOCTM OT MUX
NJOTHOCTU W BNAXHOCTU.

naBa uyeTBepTas MOCBAWEHa OOLIUM YypaBHEHWUAM TEOpPUU MNpPeaenbHOro
paBHOBECMA TpYHTa. B 3aBMCMMOCTWU OT TOro, Kakume U3 TPex MexaHW4ecKux
KOHCTAHT rpyHTa (06BbEMHbIN Bec, yron BHYTPEHHEro TPeHUs, yAenbHOe cLuen-
NeHVe) NPUHUMAKTCA PaBHbIMU HY/O, aBTOP pasnnMyaeT BOCEMb POAOB 3ajad,
Cpeamn KOTOpbIX HAX0AAT MeCTO 3afayu Teopum NAaCTUYHOCTU M Teopumn Cbinyyeid
cpegbl.

B panbHelilweMm W3N0XKEHWW, Kacalolemcs CBA3W MeXAYy XapakTe-
pucTukamm gudepeHynanbHbliX YPaBHEHN U TMHUAMU CKONbXEHUS CbiMyYero
Tena, a TakXxe BblBOfJa ypaBHeHWIi KETTepa, aBTOp B OCHOBHOM MpuUAepXmnBaeTCs
METOAMKN W3N0XKeHUA, npuHaTon B. B. CoKONOBCKUM. Bonblwoii unHTepec
npeacTaBnseT nocnefHuii naparpad 3Toi rnaebl, B KOTOPOM paccmaTpuBaeTcs
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BAMSHME NOBOPOTA CTEHKWN Ha BUJ NOBEPXHOCTU CKOMbXEHUA, MOCTPOEHME Kpyra
Mopa gna gedopmauuii cbinyyero Tena M BO3MOXHble hopMbl 06pa3oBaHus
o6nacteil npefenbHOr0 paBHOBECUS 3a OrpaKAeHUeM Mo XaHCeHy.

B natoli rnase falTcA ypaBHeHWUs MpefesibHOr0 PaBHOBECUS B MOJAPHbIX
KoopAMHaTax Ans HEeBecOMOro Tena, a B LeCToOl — [Ans Tena, NULEHHOrO
BHYTPEHHEr O TPeHuA, T. e. 419 UAeanbHO N1acTUYecKoro Tena. 34ecb npuBefeHsl
peweHns Ans NpefenbHON LEHTPanbHOM Harpysku Ha 3arny6ieHHbIi (yHAa-
MEHT, NS NPefenbHOM HArpy3Ku Ha AHO CKBXWHbI, ANA aKTUBHOIO U NacCUBHO-
ro AaBfieHWs TPyHTa Ha MAOCKYH CTEHKY, ANA MNpPefenbHO BbiCOTbl MIOCKOTMO
0TKOCa W AN JaBNeHUSA TPYHTa Ha KPYyrosyk 0064eNnKy TOHHens.

B rnaeBe cefbMOil ONWCbIBAETCA MNpefefibHOe HanpsXXeHHOe COCTOsHWE
HAK/MIOHHON MNONYNAOCKOCTU W MPUMEHEHMEe Teopun PeHKMHA K onpejeneHuto
HanpsHKeHW, eNCTBYIOWMX NO KOHTYPY 3aKpPenaeHHOro KpyroBoro OTBepCTyHs.
[Oanee paHo peweHne B. B. COKO/IOBCKOIO A48 CbiMy4Yero KavHa.

B BOCbMOWi rnaBe NpuBefeHbl peLleHns Teopumn npeaenbHOro paBHOBECKUS,
OCHOBaHHble Ha MPUHLUMe 3KCTPeMaNbHOCTU. 3[4eCb PacCMOTPEHO: Omnpefen-
eHMe aKTUBHOIO AaBNeHNs MUAeanbHOTO0 CblIMYyYero Tefia Ha NOAMOPHYI0 CTEHKY MO
mMeToay KynoHa, BbIBOA TeopeM PebxaHa, pasnimyHble rpauyeckne nocTpoeHms
4Na onpefeneHns paBHOAENCTBYIOLW e aKTUBHOIO AaB/eHUsA rpyHTa Ha nognop-
HYI CTEHKY, [aB/leHWe Ha Hee OT PaBHOMEPHOW M COCPefOTOUYEHHON HArpy3oK u
cnocob yuyera cuenneHus rpyHTa. MNpuBefeHbl Nogpo6HbIe Tabnuubl KOaphu-
LLMEHTOB aKTUBHOIO faBfieHWUs TPyHTa.

B aToli ke rnase ocBelleHbl MeToAbl ®enneHnyca n PeHAYNMKa, YUMTbIBALO-
Wune KPMBU3HY MOBEPXHOCTU CKOJMIbXEHUA NpWU onpefeneHnn akTUBHOIO AaBsJi-
E€HWS TPYHTa Ha MOAMOPHYI CTEHKY NYTEM MPUHATUA MPOM3BOAALLER 3TON
MOBEPXHOCTU B Ka4yecTBe AYrM OKPY>XXHOCTW WM NOrapuMuyeckoin cnvpanu.

B rnaee f4eBATON M3N0XeHbl 06LMe TeOpUN MPEfENbHOr0 HanpPsXXeHHOro
COCTOSAHMA, OTHOCALWMECA K OMNpefefleHU0 [aBNeHUs TpPyHTa Ha MNOAMOPHbIe
CTeHkun: byccnHecka—Pe3ana—Kako u B. B. Cokon10BCKOTO.

B rnase gecAToi paccCMOTPEHO OnpefefeHne akTUBHOTO AaBNeHNS TPyHTa
Ha MOAMOPHYK CTEHKY MO MeToAy XaHCeHa, ABNAIOLWIEMYCA MO CyLecTBY
npuMeHeHneM ypaBHeHUs KETTepa K pacyeTHOW CXeMe CKO/bXEeHMA 3acbiMKu 3a
NOANOPHON CTEHKOW N0 KPYrnouMANHAPUYECKON NMOBEPXHOCTH.

Lna obneryeHns pacyeToB MO 3TOMY [O0BO/ILHO CNOXHOMY METOAY
NPMBOAATCA BCMAOMOraTe/sbHble Tabnuubl KO3I(PUUMEHTOB, OTHOCALLUXCA K
HanpsaXXeHWAaM, cunam M MOMEHTaM.

B 3Toil e rnaBe paccMaTpuBaeTCs fAaBfeHWe rpyHTa Ha rubkue u
LepoxoBaTble XEeCTKWe LWMNYHTOBbIE CTEHKWU, MOTYLIMWE MUCMNbITbIBATb MEPeMeLy-
EHUSA B TPyHTE.

MocnepHas 11-a rnaBa nocsslieHa 0C06bIM, HO CBA3aHHbIM MeXay Co60i
cniyyasam [aBfieHUa 3emMnu. 3[ecb Mpexne BCero pacCMOTPEHO OMpefeneHue
LaBfieHNs 3eMAK, 3aK/IIOUYEHHOW MexAy napannenbHbIMU CTEHKaMn No MeTomy
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fAAHceHa, [ONONHEHHOMY YYeTOM cuenneHus no Tepuaru. MNpegcTaBnseT UHTEPEC
npMBeLeHHas B KHUMe 3Mtopa BEPTUKaNbHbIX HAMPSXXEHUA, NMeoLwasn MakCumym
nocpefuHe BbICOTbl CTEHOK.

Bo BTOpom naparpade 3TOi rnaebl MOKa3aHo onpegeneHne no metogy A
®EnbMu faBneHne Ha Tpybbl B TpaHLWeEAX M HACbIMNAX, a B TPETbeM — faBNeHue
CbIMy4ero Tena Ha 4HO W CTEHKW cunoca no AHceHy — KEHeHy u no Kako. Mpu
3TOM nNpuBefeHbl (hOpMYyNbl U rpadmku, oTpaxkalowue yBennyeHUe [aBJIEHNA
npu OMOPOXXHEeHUU cunoca. B veTBepToM naparpae pacCMOTPeHbl OCHOBHbIe
peweHunsa, nonydveHHole B. . bepe3aHueBbiM /18 OCECMMMETPUYHbLIX 3ajaud.
HakoHel, B mocnefiHeM naparpafe pacCMOTPEHO COMNPOTUB/IEHWE TpyHTa Y
aHKepHbIX MauT.

Takum o6pa3om, B KHure Apnaga Kesgum wn3noxeH OOWMWPHbIA Kpyr
BOMPOCOB, OTHOCALLMXCA K [aBNE€HUIO TPYHTOB, pacCcCMaTpuBaeMblX B KauyecTse
CbiNy4yux Ten. HekoTopble U3 3TUX BOMPOCOB, a TAKXe TPaKTOBKA APYIUX U3 HUX
NnpeicTaBNAOT HOBWU3HY [/ COBETCKOro yutatend. 3T0O — AumarpamMbl CBA3M
MeXAy HanpsXeHUAMM U NepeMeLleHnaMu rpyHTa npu casure, Knaccugpukaumns
3afia4y npefenbHOro paBHOBECUMSA M METOAOB WX pelleHus, opmbl obnacTeld
npefenbHOro paBHOBECMSA [PYHTa 3a CTEHKOW B 3aBMCUMMOCTM OT Buaa ee
nepeMelLeHns, faBfeHWe TPyHTA Ha TOHHENb, MPOBELEHHbI Ha KOCOrope,
onpegeneHune faBNeHUs TPYHTa Ha NOAMOPHYIO CTEHKY MO MeTo4y XaHCeHa, yyeT
COCPefOTOYEHHOI HarpyskyM Ha MOBEPXHOCTM FPYyHTa 3a MOAMNOPHON CTEHOW U
yYeT CUN CuenneHuns.

BmecTe ¢ TeM 43 Mongd 3peHWs aBTopa BbiNaau MHOTMe BOMPOCHI, TECHO
CBA3aHHbIE C B3ATOM WM TeMOl, KOTOpble 6Gbl MOr/IM 3HAYMTENbHO 060raTuTh
cofiepXXaHue ero KHUru u npubnusnTb ee K TpeboBaHWAM MPaKTUKM. OT0 —
onpejeneHune faBneHnsa rpyHTa Ha 1OMaHyto 1 Ha Nonoryto nojnopHyto CTeHKK, a
TaKXe Ha CTEeHKM C pasrpys3oyHbIMU Maowagkamyv u yrnosoro npogung,
onpefeneHve faBNeHUa TPyHTa HA NOAMNOPHYH CTEHKY OrpPaHWUYeHHON ANWHbI B
YCNOBUAX NPOCTPAHCTBEHHON 3aaun v onpejeneHne AMHAMUYECKOTO faB/eHNs
rpyHTa.

UTo KacaeTca BOMPOCOB KUHEMATUKW, TO OHW B KHUre 3aTPOHYTbI, HO WX
N3N0XeHNe He 0BEEY0 [0 BO3MOXHOCTM MPaKTUYECKOro MCMNoJib30BaHUA ANA
pacueTa AaBfeHNA CbiMyYero Tena ¢ y4eToM BEMYMNHbI NepemelLeHns NoANOPHOWA
CTEeHKMN.

He monyunnm Takxxe OCBELLEHUA B KHUTe rpauyeckue MeTofbl onpejerne-
HUS [aBNeHWs TPyHTa Ha MOAMNOPHbIe CTeHKW, npefoxeHHble C. C. [onyw-
KEBUYEM.

Bonpocbl, cBA3aHHble C [JaBfieHWeM TpyHTa Ha TOHKMEe (WNYHTOBbIE)
CTEHKW, Ha MOJ3eMHbIe COOPYXXEHWS, BONPOChI MPOYHOCTU OCHOBaHWA U yCTOM-
YMBOCTWU OTKOCOB OCBellleHbl HefoCTaTO4yHO. VX nubo He cnefoBano Kacatbcs
COBCEM, CUMTasA, YTO OHM BbLIXOAAT U3 Kpyra BOMPOCOB, pacCMaTPUBAEMbIX B
KHUTe, AM60 UX HYXHO 6blIo paccmoTpeTb 6osee nonHo. OgHakKo nocnegHee
npueesno 6bl K CUILHOMY YBENIMYEHUIO 06beMa KHUTH.
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ABTOp MpuBEN C HagNexalw My ccolikaMn 60MblIne BbIAEPXKKN M3 paboT
B. B. Cokonosckoro u B. I'. bepe3aHueBa. Paj paboT gpyrux COBeTCKUX YUYEHbIX, B
KOTOpPbIX Teopus AaB/IEHUS TPYHTOB U APYTUX CbIMyYUX Tes noayyunna 3HauynTesb-
HOe pa3BUTMEe BO MHOTUX HanpaB/ieHUAX, B KHUTe He Hallen CBOEro OTpaXKeHus.

K [goCTOMHCTBAM KHWUIU cnefyeT OTHECTU CTPOMHOCTb €e MOCTPOeHwus,
CTPOroCTb BbIBOAOB, ACHOCTb W3/10XKEHUA U YeTKOCTb WAMIOCTPaLmii.

HecmoTps Ha wuMerouiMecs HegocTaTku, KHura npod. Apnaga Kesgu
3acny>XnBaeT NONOXKMUTENBHON OLEHKU W NpeAcTaBnseT UHTepPeC 19 COBETCKOro
yunTarens.

I K KneitH

Schweizerische Bauzeitung 38/1962 (Switzerland)

Erddrucktheorien. Von Arpad Kézdi, Professor an der Technischen Universitat
Budapest. 319 Seiten, 275 Abb. Berlin 1962, Springer-Verlag. Preis DM 58.50.

Die Frage nach dem auf eine Stitzmauer wirkenden Erddruck hat seit
Coulomb die Wissenschaftler und die Ingenieure beschaftigt. Bald zeigte sich, daf3
die Fragestellung erweitert werden mufite auf die Untersuchung des Grenzgleich
gewichtes im Boden, wie sie sich bei vielen Aufgaben des Tiefbaues stellt. Viele
Theorien wurden entwickelt, die teils in Vergessenheit gerieten und erst in neuerer
Zeit wieder ihrer Bedeutung gemal Beachtung fanden (z.B. F. Kotter 1893), teils
unbekannt blieben, teils aber zum Gemeingut des Bauingenieurs wurden. Das
Bedurfnis nach einer zusammenfassenden Darstellung dieser Theorien unter dem
Gesichtspunkt des Bodenmechanikers bestand schon lange. Kézdi hat sich dieser
Aufgabe durch stark konzentrierte Darstellung des grofen Gebietes mit Erfolg
unterzogen. Nach einfiihrenden Kapiteln Uber den Spannungszustand im Boden,
den Ruhedruck und einer (bersichtlichen Darstellung der Scherfestigkeit von
Bdden werden die allgemeinen Gleichungen des Grenzgleichgewichtes einge-
hend abgeleitet und angewandt auf den schwerelosen und den reibungsfreien
Korper. Die Behandlung der plastischen Grenzzustande im unendlichen Halbraum
leitet Uber zu den Erddruckproblemen im engeren Sinne: Bestimmung der
Grenzwerte des Erddruckes und Erdwiderstandes nach den verschiedenen
Methoden (Coulomb, Rankine, Fellenius, Rendulic, Caquot, Sokolowski, Brinch
Hansen). Die Behandlung einiger Sonderfélle beschliet das Werk. Druck und
Ausstattung sind vorzuglich. Bei einer Neuausgabe sind neben der Ausmerzung
der unvermeidlichen Druckfehler doch hier und dort gewisse ergdnzende
Bemerkungen oder Hervorhebungen im Texte, zur Erleichterung des Studiums,
anzuraten. Das Buch ist dem fortgeschrittenen Studenten, aber vor allem dem
praktisch tatigen Ingenieur, der seinen Berechnungsmethoden kritisch gegenu-
bersteht und in die Grundlagen der von ihm angewandten Methoden Einblick
gewinnen will, sehr zu empfehlen.

Prof. G. Schnitter, ETH, Zirich
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HANDBUCH DER BODENMECHANIK

Bauplanung-Bautechnik 10/1969 (German Dem. Rep.)

Handbuch fiir Bodenmechanik. Band I. Bodenphysik. Von A. Kézdi. Uberset-
zung aus dem Ungarischen. VEB Verlag fiir Bauwesen, Berlin 1969. 21 cm 29,5
cm, 260 Seiten, 400 Bilder und 37 Tabellen. Leinen 44,— M.

Mit der geplanten Herausgabe des vierbdndigen Handbuches der Bodenme-
chanik wird erstmalig in deutscher Sprache eine nahezu vollstdndige Zusammen-
fassung uber den gegenwartigen Wissensstand in der theoretischen, experimen-
tellen und angewandten Bodenmechanik vorgelegt.

In den neun Kapiteln des ersten Bandes ,,Bodenphysik” werden Fragen der
Zusammensetzung, der Kilassifikation und Struktur der Boden, Fragen der
Wasserbewegung im Untergrund und schlieflich Festigkeits- und Formadnde-
rungseigenschaften der Erdstoffe sowie Stabilitdtsprobleme im Erdreich behan-
delt.

Im Vordergrund des ersten Bandes stehen solche Probleme, die das
Verhalten des Untergrundes und die Eigenschaften der Erdstoffe infolge der
eigenen Druckhaftigkeit im unbelasteten und belasteten Zustand bestimmen.
Hierbei sind besonders die neuesten Erkenntnisse der zeitabhdngigen Vorgénge in
der Bodenmechanik einschliellich der Theologischen Eigenschaften der Erdstoffe
berucksichtigt. Zahlreiche durchgerechnete Beispiele und eine Fulle physikali-
scher sowie bodenmechanischer Kennzahlen vergréfRern das Verstdndnis fir das
disperse Dreistoffsystem.

Besonders ansprechend sind die Darstellungen der physikalischen Kennzah-
len in Dreiecksnetzen.

Der Autor versteht es, die zum Teil sehr komplizierte Thematik der
Konsolidierungstheorie, der Festigkeitslehre oder der Bruchtheorie systematisch
und verstédndlich darzustellen. Er bedient sich hierzu einer klaren mathematischen
Formulierung und sprachlichen Ausdrucksform. Insofern bereitet das Studium der
»Bodenphysik” dem interessierten Leser ein groBes Vergnigen. Es bildet
gleichermaRen fir Studenten und Fachleute ein ausgezeichnetes Lehr- und
Nachschlagewerk. Aus ihm kénnen wesentliche Erkenntnisse zur Ld&sung
praktischer Aufgaben gewonnen werden.

Auf die in Vorbereitung befindlichen drei Bande durfen die Leser schon
heute gespannt sein.

Band I Bodenmechanik im Erd-, Grund- und Strallenbau
Band Il Bodenmechanisches Versuchswesen
Band IV Anwendung der Bodenmechanik in der Praxis

Ewert
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Teknisk Tidskrift 16/1969 (Sweden)

Handbuch der Bodenmechanik, bd 1. Bodenphysik, av Arpad Kézdi. VEB
Verlag fir Bauwesen, Berlin 1969. 260 s., 400 fig., 37 tab. 44 DM.

Ytterligare ett tillskott till den senaste tidens flora av geotekniska handbdcker
ar denna bok. Mera ovanligt torde vara att den kommer fran Osteuropa — en
Osttysk omarbetning av ett aldre ungerskt verk. Den tyska bearbetningen har
medfort en mérkbar utvidgning och mera tidsenlig internationell anpassning.
Sarskilt vardefullt &r anvisningarna till 6steuropeiska arbeten, dven om litteraturfor-
teckningarna som férekommer inte ar sérskilt omfattande.

Handboken kommer i fardigt skick att omfatta fyra band och att behandla
forutom jordfysik (bd 1) speciell och allmén tillampning av geotekniken (bd 2 och
4) samt mattekniska sporsmal pa laboratorium och ifalt (bd 3). Bd 1 ger ett trevligt
intryck saval dispositionsmassigt som typografiskt med pedagogiskt riktig
omvaxling mellan rubriker, text och figurer. Texten &r tydlig och utrymmet for bilder
och tabeller vl avvagt. Det ar heller inget tungt svarhanterligt band utan det synes
verkligen kunna tjana som en praktisk handbok.

Erik Danfors

Bau + Bauindustrie 7/1971 (German Fed. Rep.)

Handbuch der Bodenmechanik. Band Il: Bodenmechanik im Erd-, Grund- und
StraBenbau. Von Prof. Dr. techn. Arpad Kézdi. Deutsche Bearbeitung: Prof. Dipl -
Ing. Walter Kinze, Dresden. Gemeinschaftsauflage des VEB Verlages fiir Bauwe-
sen, Berlin und des Verlages der Ungarischen Akademie der Wissenschaften,
Budapest. Erscheinungsjahr: 1969. Umfang, Format, Ausstattung: 309 Seiten, 553
Abbildungen, 50 Tabellen; DIN A4 Hochformat; Leineneinband.

Im Anschluf3 an den Band Iseines Handbuches, in dem die Grundlagen der
Bodenphysik (Struktur und Kilassifikation der Erdstoffe, Spannungen im Boden,
Wasser im Untergrund Festigkeit und Forméanderung von Erdstoffen etc.)
dargestellt sind, behandelt nun der Verfasser, einer der fihrenden Fachleute auf
dem Gebiet der Bodenmechanik, imvorliegenden Band Il die Bodenmechanik des
Erd-, Grund- und StraBenbaues, die Verbesserung der physikalischen Eigenschaf-
ten von Erdstoffen und die Bodendynamik, also den EinfluR von Schwingungen
auf Erdmassen.

Die theoretischen Zusammenhénge werden anhand mathematischer Ablei-
tungen und ausfihrlicher Erlduterungen dargestellt. Da die Probleme meist von
den grundlegenden Ausgangsgleichungen — z. B. der Elastizitatstheorie — her
angepackt und ihre Ldsungen in knapper, doch anschaulicher Weise vorgefiihrt
werden, nimmt dieses Werk den Rang eines hervorragenden Lehrbuches ein. Die
Diskussion und Beurteilung verschiedener Verfahren oder Ansétze verschiedener
Forscher dienen nicht nur dem Studierenden oder dem wissenschaftlich Tatigen
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bei der kritischen Auseinandersetzung mit dem Stoff, sie helfen auch dem Praktiker
bei der Entscheidung, welche Methode fiir ,,seinen Fall" die zweckméaRigste ist.
Durch diese breite Diskussion der Verfahren vermittelt das Werk einen Uberblick
uber den internationalen Stand der Forschung auf den behandelten Gebieten. Der
praktisch tatige Ingenieur wird aber vor allem in der Fille der gebrauchsfertigen
Anwendungsformeln mit den entsprechenden Aufbereitungen in Form von
graphischen Darstellungen und Tabellen eine wirksame Hilfe bei allen wesentli-
chen Problemen finden.

Die Zahl der Beispiele ist in dem vorliegenden Band ebenso wie Literaturan-
gaben mit Absicht beschrankt. Der Verfasser beabsichtigt ndmlich, im Band Ill, der
das bodenmechanische Versuchswesen behandeln wird, ein fir die ersten drei
Bé&nde geltendes ausfihrliches Quellenverzeichnis zu liefern, wéhrend der
geplante Band IV, der der Anwendung der Bodenmechanik in der Praxis gewidmet
sein wird, mit reichhaltigen Beispielen ausgestattet werden soll.

Zusammenfassend darf gesagt werden, dal3 der vorliegende Band Il dieses
Handbuches der Bodenmechanik eine sehr wertvolle Bereicherung der Literatur
dieser Disziplin darstellt. Hinsichtlich der deutschen Bearbeitung durch Prof. Kinze
bleiben keine Wiinsche offen. Das Werk, gleichermalien fir Studium und Praxis
geeignet, verdient uneingeschrénktes Lob.

Dr.-Ing. E Grasser

Bauplanung-Bautechnik 4/1971 (German Dem. Rep.)

Handbuch der Bodenmechanik. 1. Auflage. Band Il Bodenmechanik im Erd-,
Grund- und StralBenbau. Von A. Kézdi, VEB Verlag fir Bauwesen, Berlin 1970. 21
cm 29,7 cm, 312 Seiten, 553 Bilder und 48 Tabellen. Leinen 52,— M.

Der vorliegende zweite Band des Handbuches der Bodenmechanik —
Bodenmechanik im Erd-, Grund- und Stralenbau — folgt im wesentlichen dem
Arbeitstitel und der Gliederung, wie sie als Anhang im ersten Band angegeben
wurden. Der Verfasser hat sich in diesem Buch die Aufgabe gestellt, den
gegenwartigen internationalen Stand der Kenntnisse auf dem Gebiet der
angewandten Bodenmechanik aufzuzeigen, die durch seine eigenen Veroffentli-
chungen und Forschungsergebnisse wesentlich bereichert wurden. Die tiefgriin-
dige Aussage der behandelten Problematik in der Theorie und in ihrer Anwendung
basiert auf einer umfassenden Einschdtzung der bodenphysikalischen und
bodenmechanischen Grundlagen der Erdstoffe in der Wechselwirkung zwischen
Baugrund und Bauwerk. Dabei kommt den analytischen Zusammenhéngen
hinsichtlich Stabilitdt sowie Spannungs- und Verformungseigenschaften des
Erdstoffes als Bauwerk und Baugrund eine vorrangige Bedeutung zu.

Die Aufdeckung der spannungs- und verformungstheoretischen Zusam-
menhdnge nimmt einen breiten Raum ein und stellt besonders an die mathemati-
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sehen Kenntnisse des Nutzers hohe Anforderungen. In dieser Hinsicht wurde keine
Vereinfachung im Sinne einer Verwésserung zugelassen.

Der Verfasser ist dieser Schwierigkeit begegnet durch eine sehr bersichtli-
che und logische Gliederung des Stoffes und durch das stdndige Bemiihen, die
Entwicklungsschritte und Ergebnisse umfassend und in ausgezeichneter Qualitt
in Bildern und grafischen Darstellungen zu veranschaulichen.

Zum Verstandnis der Problematik trdgt entscheidend das kritische Werturteil
des international anerkannten Fachmannes bei, der eine stdndige Aufgabe darin
sieht, die strengen theoretischen Ld&sungen selbst und mit der Wirklichkeit zu
vergleichen und sorgféltig auszuwerten. Auf diese Weise wird systematisch die
Aufmerksamkeit auf die zusammenhéngenden grundsatzlichen Randbedingun-
gen bei der praktischen Anwendung der Ergebnisse gelenkt und daruber hinaus
das aufgezeigt, was in der weiteren Forschung und Uberpriifung durch die Praxis
einer Losung bedarf.

Im Abschnitt Bodenmechanik der Erdbauten stehen die bekannten Verfah-
ren zur Berechnung der Standsicherheit der Bdschungen, der Spannungen in
D&mmen sowie der Sohlspannungen und Grundbriiche unter Ddmmen im
Vordergrund. Besondere Bedeutung findet dabei die Einschétzung der Faktoren,
die die Standsicherheit der Béschungen beeinflussen, insbesondere die Faktoren
Zeit und Wasser, und das Problem der Definition der Standsicherheit.

Ausgehend von der grindlichen Analyse des Lastsetzungs- und Zeitset-
zungsdiagramms des Baugrundes befalt sich der Abschnitt Bodenmechanik des
Grundbaus mitden Problemen der Grenztragféhigkeit von Flachfundamenten und
Pfahlen sowie mit der Halbraumtheorie der Spannungsverteilung und mit den
Verformungseigenschaften, insbesondere den Setzungen des Baugrundes.

Der Verfasser analysiert eingehend die Wechselwirkung zwischen Baugrund
und Bauwerk sowie die Problematik der mangelhaften Ubereinstimmung der
errechneten mit den in der Praxis gemessenen Setzungen.

Der Abschnitt Bodenmechanik des StraRenbaus beschaftigt sich eingehend
mit dem Aufbau und der Statik der Deckenkonstruktionen, die die Spannungen
und Verformungen aus der Wechselwirkung zwischen Decke und Untergrund
infolge Verkehrslast aufnehmen missen. Die bekannten Verfahren werden auf ihre
Anwendbarkeit hin einer griindlichen Prifung unterzogen. Eine Vielzahl von
Kennzahlen erleichtert die unmittelbar praktische Anwendung der Verfahren.

Zur Verbesserung der physikalischen Eigenschaften von Erdstoffen werden
in einem gesonderten Abschnitt die bekannten Stabilisierungsverfahren ein-
geschéatzt mit dem Ziel, Erdstoffe mit ungunstigen Eigenschaften hinsichtlich
Verdichtbarkeit und Durchldssigkeit zu verbessern und wirtschaftlich einzusetzen.

Der letzte Abschnitt beschéftigt sich im wesentlichen mit dem EinfluR von
Schwingungen auf Erdmassen.

Der vorliegende 2. Band ist ein wiirdiges Glied der Gesamtkonzeption des
Verfassers, ein Standardwerk der gesamten Bodenmechanik zu schaffen, das auf
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Bekanntem und Bewéhrtem aufbaut und die neuesten wissenschaftlichen
Ergebnisse bertcksichtigt.

Die ausgezeichnete Ausstattung des Werkes und die Sorgfalt bei der
Drucklegung tragen wesentlich mit zum Gelingen dieses Vorhabens bei.

Das Buch kann jedem, der sich mit der Bodenmechanik beschéftigt, bestens
empfohlen werden.

Ewert

Bauplanung-Bautechnik 10/1973 (German Dem. Rep.)

Handbuch der Bodenmechanik. 1. Auflage. Band Il Bodenmechanisches
Versuchswesen. Von A. Kézdi. VEB Verlag fiir Bauwesen, Berlin, und Verlag der
Ungarischen Akademie der Wissenschaften, Budapest 1973. 21 cm x 29,5 cm,
284 Seiten, 345 Bilder, 33 Tafeln, 30 Formblatter und 3 Anlagen. Leinen 47,— M.

Der Ill. Band gliedert sich in finf Abschnitte
Erkundung und Aufschlul des Baugrundes
Untersuchungen im Laboratorium
Grundwasseruntersuchungen

Untersuchung der Tragféhigkeit des Baugrundes
Untersuchung von Erdbauten

Bei der Abhandlung des Stoffgebietes ging der Autor davon aus, die
physikalischen und mechanischen Eigenschaften nicht als Selbstzweck zu
bestimmen und zu bewerten, sondern die sie charakterisierenden Kennzahlen fur
die erd- und grundbaupraktische Anwendung zu nutzen zur

Charakterisierung, Beschreibung und Kilassifizierung von Lockergesteinen
— Durchfiihrung von Berechnungen in der Grund- und Erdbaumechanik
— Qualitatsvorgabe und Qualitadtskontrolle im Erdbau.

Es wére allerdings zu wiinschen, daR die Fragen der Anzahl und des
Standortes der Aufschliisse und ihre Représentanz fir die anstehenden Baugrund-
verhéltnisse des Makro- und Mikrostandortes sowie die Probleme der Spezifizie-
rung von Erdstoffproben am Bohrort zur Erhéhung der Abbildgenauigkeit des
Baugrundmodells breiter und differenzierter behandelt werden.

Die Gliederung ist Gbersichtlich und logisch aufgebaut, so daR der
interessierte Fachmann und Studierende sich schnell einen Uberblick iiber den
Inhalt verschaffen kann, aber auch rasch das Detail findet.

Die rd. 400 Bilder, Tafeln und Ubersichten sind sorgfiltig ausgewd&hlt und
informativ im Inhalt. Sie tragen wesentlich zum Verstdndnis der Problematik und
zur Einpragsamkeit des zum Teil schwierigen Stoffes bei.

Den SchluB des 1ll. Bandes bildet ein umfangreiches Quellenverzeichnis von
rd. 600 Literaturangaben namhafter Autoren, die auf diesen Gebiet im internatio-
nalen Malstab ihre Ergebnisse aus Forschung und Praxis verdffentlicht haben.
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Der Verfasser hat mit dem vorliegenden Ill. Band einen weiteren erfolgrei-
chen Schritt getan, die gegenwartigen internationalen Erkenntnisse auf dem
Gebiet des bodenmechanischen Versuchswesens zusammenzufassen und im
gewissen Sinne zu normieren. Das Handbuch wird nicht nur der weiteren
Entwicklung und Vervollkommnung der Theorie und Praxis des bodenmechani-
schen Versuchswesens neue wirksame Impulse geben, sondern auch zur weiteren
Standardisierung im nationalen wie internationalen MaRstab, besonders innerhalb
des RGW, beitragen.

Ewert

Tiefbau-Ingenieurbau-Strassenbau 4/1973 (German Fed. Rep.)

Arpéad Kézdi: Handbuch der Bodenmechanik Band I: Bodenphysik 1968; Band
Il Bodenmechanik im Erd-, Grund- und StralRenbau 1969, Berlin—Budapest.
Gemeinschaftsauflage VEB-Verlag fur Bauwesen Berlin und Verlag der Ungari-
schen Akademie der Wissenschaften, Budapest, 1968/69. Band 1258 Seiten, 395
Bilder, 36 Tabellen. Band Il 309 Seiten, 553 Bilder, 52 Tabellen, Ganzleinen

Der Verfasser, international bekannt durch seine zahlreichen wichtigen
bodenmechanischen und bodenphysikalischen Abhandlungen, Verfasser des in
deutscher Sprache 1964 in denselben Verlagen erschienenen zweibdndigen
Werkes »Bodenmechanik«, legt nach einer fiinfjahrigen Zeitspanne das als
umgestaltetes und erweitertes Werk betitelte »Handbuch der Bodenmechanik« im
GrofRformat vor.

Dem Vorwort von Walter Kinze in Dresden — fast gleichlautend wie das aus
dem Jahre 1964 — folgt in Anlehnung an die Ausgabe des Jahres 1964 in neun
Abschnitten unterteilt die Darstellung der Bodenphysik: 1. Ursprung der Boden
und bodenphysikalische Kennziffern; 2. Bestandteile des Bodens; 3. Klassifikation
der Erdstoffe; 4. Struktur der Erdstoffe; 5. Spannungen im Boden; 6. Bewegung
des Wassers im Untergrund; 7. Festigkeit der Erdstoffe; 8. Forméanderung von
Erdstoffen; 9. Bruchzustdnde im Erdreich und zusatzlich ein Abschnitt Gber
Formelzeichen. Der Verfasser betont die Unabhdngigkeit von seinem fritheren
Werk »Bodenmechanik«. Er ist dazu berechtigt, denn er hat eine wesentliche
Erweiterung des Stoffgebietes unter Gliederung in neun statt urspringlich funf
Kapiteln gebracht.

Er ist Bodenmechaniker und Ingenieur. Dadurch wird es verstandlich, dal er
das Schwergewicht auf die bodenphysikalischen und mechanischen Grundlagen
und Kennziffern legt, weniger auf die genetisch begrundeten, erst die unterschied-
lichen bodenphysikalischen Kennwerte und Verhalten begriindenden physikali-
schen Eigenschaften. Es wadre unbedingt im Rahmen eines Handbuches
erwiinscht, den inzahlreichen Publikationen international manifestierten Grundla-
gen der »festen« und »veranderlichfesten« (festen und pseudofesten) Erd- und
Felsarten die gebihrende Beachtung zu schenken und vor allem die dafur
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maRgebende Literatur anzufihren, z. B. K Keil: Geotechnik und »Der Dammbau,
die dem Autor zweifelsfrei bekannt sind und die vor allem dabei in die Praxis
fihren. Insofern vermifit der Ref. die Wechselbeziehungen zwischen geologischer,
also erdgeschichtlicher und bodenphysikalischer Grundlage.

Seine Ausfuhrungen Uber die Arten der Wasserbindung wéren im Sinne der
Geotechnik, Band Ill, Seite 163 ff., zu ergédnzen. Besonders ist aber das Wesen und
der Unterschied der festen und verdnderlichfesten Gesteine (Bodenarten und
Felsarten) zu berucksichtigen.

In der Disposition der Kapitel und deren Bezeichnung ist der Wechsel der
Bezeichnungen fiir Erdart — als nach »Ohde« sinnvollsten — bemerkenswert, es
wadre zweckméRig, hier eine einheitliche Bezeichnung, z B. Erdart oder, wie im
deutschen Normenwesen, »Bodenart« im Gegensatz zu Felsart, zu wéhlen. Esist—
wie bereits friiher betont — bemerkenswert, daR Handblcher dieser Art nicht von
den hierzu berufenen Ordinarien der deutschen Hochschulen, sondern von
auslandischer Seite verfalit werden. Dies ist wohl ein einzigartiger Vorgang im
Vergleich zu sdmtlichen anderen naturwissenschaftlichen, medizinischen und
technischen Disziplinen.

Band Il. Bodenmechanik im Erd-, Grund- und StraRenbau, dem noch Band
lll: Bodenmechanisches Versuchswesen und Band IV: Anwendung der Bodenme-
chanik in der Praxis folgen sollen, bringt in fiinf Abschnitten im Rahmen eines
erweiterten Handbuches drei Kapitel des Bandes 11aus dem Jahre 1964. Es enthélt
zusétzlich als Abschnitt vier: »Die Verbesserung der physikalischen Eigenschaften
von Erdstoffen« und als fiinften Abschnitt »Bodendynamik von Schwingungen auf
Erdmassen«, wéahrend die Bodenerkundung von friher weggefallen ist.

Auch hier hat der Verfasser unter Bereicherung seiner Ausfiihrungen und
Gedankengéange durch zahlreiche instruktive Abbildungen und mathematische
Ableitungen — sein besonderes Steckenpferd — durch zahlreiche Tabellen und
Bericksichtigung auch auslédndischer Erfahrungen ein umfassendes im wahrsten
Sinne des Wortes giltiges Handbuch fur den Theoretiker und Praktiker verfalit,
woflr man ihm volle Anerkennung und Dank zollen muB. Dies schlieBt nicht aus,
daR auch hier einige Ergdnzungen wiinschenswert erscheinen. Z.B. ist das
Frostkriterium der »festen« und »verdnderlichfesten« Felsarten und die besondere
Frostgefahrlichkeit gerade dieser Gesteine als Sammelbegriff fir Erd- und
Felsarten nicht beriicksichtigt worden, obwohl im Standardwerk von Ruckli
ausdricklich dieses Kriterium als entscheidend aufgefuhrt ist, wahrend wiederum
die des dafiir zustdndigen bekannten Autors fehlt. Auch die Frage der Frostsiche-
rung durch Wasserabwehr, ndmlich durch Stabilisierung und Dichtung frostemp-
findlicher Bodenarten, ist nicht beriicksichtigt, wahrend in die Normen neben den
Erdarten auch die Felsarten — in der BRD seit 1968 und bereits vor 15 Jahren auf
Initiative des Ref. in der DDR — aufgenommen wurden.

Diese wenigen Beispiele mdgen genigen, das Interesse des Autors auf
weniger beachtete und libersehene Tatsachen zu lenken, um seinem Handbuch
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noch mehr Inhalt, noch mehr Vollstdndigkeit und damit noch groReres Gewicht zu
verleihen.

Der VEB-Verlag hat auf holzfreiem Papier das Werk dem internationalen
Standard angepalit und dadurch im Gegensatz zu frither die Voraussetzung fiir den
inneren Wert auch in der vortrefflichen Ausstattung in Wort und Bild gegeben. Als
Ratgeber zum Studium und zur Anwendung in der Praxis verdient das Werk
Beachtung und Verbreitung.

Bauingenieur 53/1978 (German Fed. Rep.)

Kézdi, A.: Handbuch der Bodenmechanik. Bd. IV: Anwendung der Bodenme-
chanik in der Praxis. 295 S., zahlr. Abb. Berlin: VEB Verlag fiir Bauwesen 1976.
Geb. ca. DM 63,30.

Nach 3 Banden tber Bodenphysik, Bodenmechanik im Erd- und Stralenbau
sowie uber Bodenmechanisches Versuchswesen, die sich als Handbticher und
Nachschlagewerke sowohl bei den Studenten wie auch bei den im Beruf
stehenden Ingenieuren einer groRen Beliebtheit erfreuen, ist als Abschlul? dieser
Reihe der 4. Band erschienen, der sich mit der Anwendung der Bodenmechanik in
der Praxis befafit. An 28 Beispielen wird die Vorgehensweise zur L&sung
geotechnischer Aufgaben vorgefiihrt. Ausgehend von den Feld- und Bodenunter-
suchungen wird der Leser Uber die Versuche und Berechnungen nahtlos zu den
sich hieraus ergebenden Entwurfskriterien und Sanierungsvorschladgen gefiihrt.
Die Beispiele sind breit gefachert ausgesucht und erstrecken sich vom Entwurf von
Erdbauten, Bauwerksgriindungen und Stiitzkonstruktionen bis zur Sanierung von
Rutschungen und zu anderweitigen Schadensfdllen. Mit den Abhandlungen gibt
der Autor einen Einblick in seine langjéhrige und vielseitige Erfahrung sowie tber
seine Arbeitsweise als international geschétzter Gutachter. Damit empfiehlt sich
der Abschluflband fir Studenten als ein anschauungsreiches Lehrbuch und dem
Ingenieur, der sich mit den Arbeitsweisen der angewandten Bodenmechanik
vertraut machen will, als ein hilfreiches Nachschlagewerk. Gut ausgewéhlte
Zeichnungen, Diagramme und Literaturhinweise ergdnzen den Text und erleich
tern den Gebrauch dieses empfehlenswerten Anleitungsbandes.

H. Breth, Darmstadt

Zeitschrift fur Angewandte Geologie 6/1977 (German Dem. Rep.)

Kezdi, A.: Handbuch der Bodenmechanik. Band IV — Anwendung der
Bodenmechanik in der Praxis. — VEB Verlag fiir Bauwesen Berlin/Verlag der
Ungarischen Akademie der Wissenschaften Budapest 1976. 292 S., zahlr. Abb.,
M 48,—

Der vierte Band des Handbuchs der Bodenmechanik bietet nach den in den
Banden 1 bis 3 behandelten Grundlagen eine Vielzahl von Beispielen fir
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Begutachtungen aus dem Gesamtbereich des Bauwesens. Ein Beispiel ist
Problemen gewidmet, die im Zusammenhang mit der Gewinnung von Braunkohle
im Tagebau auftreten.

Mit diesem 4. Band wird ein Standardwerk abgeschlossen, zu dem man dem
Verfasser und den Bearbeitern gratulieren kann. Es bietet Geotechnikern,
Bauingenieuren und Bergleuten des Tagebaus das ndtige Grundwissen, das sie zur
Beherrschung ihres Fachgebietes bendtigen. Als Nachschlagewerk, wie als
Lehrbuch ist es hervorragend geeignet.

HANDBOOK OF SOIL MECHANICS

HoBble kHUTK 3a pybexom cepus 6 2/1975
(Soviet Union)

Kézdi A: Handbook of soil mechanics. Soil Physics. Vol. 1. (CnpaBouHoe
noco6uve no mexaHuke rpyHToB) Tom 1. ®wusnka rpyHToB. Budapest,
Akadémiai Kiado6, 1974, 294 p.

PeueH3npyemoe crnpaBoyHoe nocobue COCTOUT M3 YeTblpex TOMOB:

Tom 1. ®n3MKa rpyHTOB.

Tom 2. MexaHuWKa TFpPYyHTOB NpW 3eMASiHbIX paboTax, OCHOBaHUAX W
CTPOUTENLCTBE LOPOT.

Tom 3. JTabopaTopHble W MOMEBbIE UCMbITAHUA TPYHTOB.

Tom. 4. TpUIoXeHNa Mexanukyu rpyHTOB B NPaKTUKe; NpUMepbl 1 onucaHus
aBapwii.

HacTosemy W34aHUIO Ha aHrIMIACKOM fA3blke MpejLecTBOBain Tpu
BEHTepCKUX U [Ba HEMELKUX U3[aHuA CnpasoyHUKa.

Tom 1 «Pusmka rpyHToB» COAEPXUT BBEAEHWE U [eBATb rNas.

B BBefeHUN onpefefieHO MOHATME TEPMUHA «TPYHT» U yKaszaHa 06nacTb
NPMMEHEHNA MeXaHUKW TPYHTOB Kak Hayku, paccMaTpuBaloLeil B3auMogeincT-
BUE MeXAy TrpyHTaMy UK pasMyHOro poga COOpPYXeHUAMU (NoLNOPHbLIMU
CTeHaMu, (PyHAaMeHTamu, MOKpbITMEM fJopor u np.). Cregyet OTMETUTb, YTO
FPYHT B TEXHWYECKOM CMbIC/ie aBTOP ONpefenseT Kak «BepxXHWe C/IoU 3eMHOIA
KOpbl, KOTOPbIE MOALEPKUBAIOT UHXEHEPHbIE COOPYXEHUS U KOTOPbIe ABNAIOTCA
X OCHOBaHMEM, BANAIOLL MM Ha UX NOBefeHNe». DTO ONpefeneHne He BblfeNsaeT B
0Cco6yl0 rpynny ckanbHble MOPOAbl, YTO MPOTUBOPEUUT Kak OduLUanbHON
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«BeHrepckoii cTtaHfapToii knaccudukaumyu reosiorM4ecknx OTNOXeHWA MSZ
14045» (Tabn. 16), Tak U npakTUKe GOMbLIMHCTBA 3apYOeXHbIX U COBETCKMX
CNeunanmncTos.

[anee paccmatpuBaloTca Npob6aeMbl MeXaHWKWU FPYHTOB, K F1aBHEALI UM U3
KOTOPbIX aBTOp OTHOCWUT: Npob6nemy ycTolumsocTW, nNpobnemy pedopmauuni
OCHOBaHMi 1 Npobnemy (ha30BbIX MEPEMELLEHNA B rPyHTax.

B rn. 1 «[poncxoxgeHue rpyHTOB M UX CBOCTBa» NMokasaHo hopMupoBa-
HWe TPYHTOB KakK pPbiX/bIX FOPHbIX NOPOA (HecKanbHbIX) B XOIMUCTOW MECTHOCTH,
cefMMeHTaLUns rpyHTOBbIX YacTuUL, NOA AeiicTBMEM BeTpa (NECChbl) M 3aBUCUMOCTb
COflepXaHua TINuMHbl B TPyHTax, 06pa3oBaBWIMXCA W3 BYNKaHUYECKUX MOPOS
BblBETPMBAHMEM, OT CpeAHel roaosoli Temnepatypbl nopof. B Tabn. 2 ceoiicTea
rPYHTOB 00beAWHEHbl TpWU rpynnbl: | — pa3mepbl yacTuy U ux ceoiictea; Il —
thasoBblii coctaB rpyHToB; Il (a, b, ¢)— NPOYHOCTHbIE, AePOpMaTUBHbIE
CBOWCTBA W rMApaB/IMYECKNE XapaKTepuCTUKW FPYHTOB. Bo BTOpOi nonoBuMHe
3TON Tabnuubl OTMe4YeHbl 06/1aCTM WHXEHEPHOro MCMNOMb30BaHUSA OTAE/NbHbIX
CBOWCTB TPYHTOB.

B rn. 2 paccmatpumBaloTCA COCTaBHbIE YACTW FPYHTOB: TBEPAAa YacTb, Boda U
BO34YX, COOTHOLWEHMEe a3 u npegesnbl KOHCUCTeHUMU TpyHTOB. Cnefyet 3ame-
TUTb, YTO >XXenaTeNbHO OblN0 Obl BbIAENWTb U3 3TOWN rNaBbl CAMOCTOATENbHbI
pa3fen, NocBSILLEHHbIA BeCbMa BaXKHbIM A5 MpefBapuTesibHOW OLEeHKU CTpOM-
TeNbHbIX CBOWCTB FPYHTOB XapakTePUCTUKaM (hM3NYECKOr0 COCTOAHUS TPYHTOB:
OTHOCUTENbHOW MAOTHOCTU CbIMyYUX FPYHTOB W KOHCUCTEHUWUU T[AMHUCTbIX
rPYHTOB.

[anee oxapakTepu3oBaHbl CBOWCTBa BOAbl B rpyHTax (MonekynapHas
CTPYKTypa BOAbl M Nbfa, 06beM BOAbl Kak PYHKLWA Temnepatypbl, ee KUCNoT-
HOCTb, COfepXXaHue cofeid, KaNUANAPHOCTb C YYeTOM U3MEHEHUS BA3KOCTMU BOAbI
C W3MeHeHWeM TemnepaTypbl W Mp ), CYLLECTBEHHO BAMAOLLME HAa CBOMCTBa
rPYHTOB.

MpeacTasneHbl TAKXE BaXHble CBEAEHUSA 0 CXXMMaeMOCTU CMeCu BO3AYX —
Bofa (cur. 46), cOOTHOWeEHUN (a3 B rPyHTe, a MMEHHO: 06 OTHOCUTENIbLHOM
06beMe COCTaBHbIX YacTeld, MPMPOAHOM COZAepP>KaHUM Bnaru B rpyHTax (paccmoT-
PEHO W Ce30HHOEe W3MEHEHWE BAKHOCTM B TPyHTax A0 rny6uHsl 180 cm),
BOLOHACLILLEHHOCTU, NMOPUCTOCTU U KO3 PULMEHTE NOPUCTOCTU, OTHOCUTENb-
HOM NAOTHOCTW U CTeNeHW YNAOTHEHWA HECBA3HbIX FPYHTOB, MMEHLLMX BaXKHOe
3HayeHune 4N OLEHKU (PM3NYeCKOro COCTOAHUA TPYHTOB.

MocnepHwii pasfen rnasbl NOCBALWEH OLEHKE KOHCUCTEHLMMU TAUHUCTbIX
TPYHTOB: ONpejeneHuto npefena Tekyyectn (Ha npubope A. KasarpaHge),
npefena nnacTUYHOCTM (3N1eMEHTApPHbBIM METOLOM TOYBOBELOB) M nNpefena
ycafku. [aHbl MHOTOYWUC/IEHHbIe MPUMepbl U OTMEYEeHa CBA3b KOHCUCTEHLMUM
FTPYHTOB C UX fe)OpMaTUBHbIMMK CBOWCTBaMU.

B rn. 3 «CTpykTypa rpyHTOB» MOAPOOGHO ONUCAaHO CTPOEHWE CbIMy4nx
(rpaBuii, ranbka, Mecok), CBA3HbIX (FIMHUCTbIX) U OPraHUYeCKUX TFPYHTOB W
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npvBeeHbl BaXXHble JaHHbIE 0 MUKPOCTPYKTYPE CBA3HBIX TPYHTOB M 06GpasytoLwmnx
X MWHepanoB (CTPOEHME aTOMHOM peLleTKN FPYHTOBbIX YacTuL, MOBEPXHOCTHAS
aKTMBHOCTb MUHepasnos, (hopMa 4YacTuL, B 3aBUCUMOCTU OT UX MUHEpanornyec-
KOro cocTaBa v np.). B KOHLe rnasbl NoKasaHa poib OPraHNYeckoi CoCcTaBnAko -
LWen B rpyHTax M BpeAHbIX NMPUMeceli B MOPOBOI BOAE.

B rn. 4 «Knaccugmkaums rpyHTOB» MNoApPO6GHO pacCcMOTpPeHbl: obuias
Knaccugpukauus bropo obuiecTseHHbIX gopor CLUA; knaccugurkaumsa no kpyn-
HOCTW 4YacTul, NO npejenaM KOHCUCTEHUWW, CTaHAapTHble Knaccupukaumu
(BeHrpuun, CLLUA un ap.). BaXxHO OTMeTUTb, 4TO CTaHAapTHaa Knaccupukauus
CLUA oTHOCUTCA TOMbKO K FPYHTaM KaK pPbIX/bIM TOPHbIM MOpoAaM BEPXHUX
CN0oeB 3eMnu; CKanbHble e MOPOAbl B Heli HE paccMaTpuBaloTCs.

B rn. 5 «HanpsxeHns B rpyHTax» BHUMaHWe yAeneHo 3P(eKTUBHbIM W
HeRTpanbHbIM HanpsXXeHUsAM B FPYHTE NPU YCTAHOBUBLUEMCS ABUXEHUU BOAbI
(Mpy NpocaymBaHUN), HANPSHKEHUAM NpPU U3MEHEHUN o0bbema rpyHTa (KoMnpec-
CUN C ApeHnpoBaHveM 1 6e3 LPEHNUPOBAHNSA, MPU TPEXOCHOM CXATUWN C YYETOM
KO3(h(pnLMEeHTOB MOPOBOro fasfieHUA No CKeMNTOHY).

B on. 6 «[BWKeHMe BOAbl B FpyHTax» 06CTOATENIbHO OMWCaHbl OCHOBHbIE
BUAblI [ABVWXXKeHUA BOAbl B TPYHTax: rpaBUTALMOHHOE [BWXeHWe, OBYMepHOe
noTeHUWanbHOe TeyeHWe, KanwuaiapHoe [ABMXKeHWEe BOAbl, ApeHaX BOJOHACHI-
LLeHHbIX TPYHTOB, ABUXEHWe BOAbI NPU KOHCONUAALUN TPYHTOB U NOA AelicTBUEM
3N1eKTPNYECKOTO TOKa.

[eTanbHO pacCMOTPeHO rpaBUTaLMOHHOE ABUXXEeHWE BOAbl CKBO3b TPYHT:
namuHapHoe (no 3akoHy fapcu) ntypbyneHTHoe. M3noxeHbl MeToabl onpesen-
eHna Koath(uumueHTa BOoZONpPOHULaeMOCTM ((hunbTpaymum) B NabopaTopHbIX K
MO/IEBLIX YCNOBUAX U NOCTPOEHME TMAPOANHAMMUYECKOW CETKM ABUXEHUS BOAbI B
rpyHTax (npy orpaxfeHuy KOT/N0BaHOB LUMYHTOBbIMWU CTeHKaMu, Noj nnoTuHa-
MU, B flambax v np ).

MpuBeaeHbl NoApo6HbIA BbIBOA AN (EPEHLUNANBHOIO YPaBHEHUA OLHO-
MEPHOI KOHcONMMAauum (ABMXKEHMA NMOPOBON BOAbI NOJL LEACTBMEM BHELIHErO
[aBNeHna) U ero peweHne B o6LLeEM BUAe ANdA Clyyad paBHOMEPHOro, TPeyrofib-
HOro 1 NapabonnMyeckoro pacnpejeneHus ynaoTHAKLWMUX 4aBAeHUIA.

[Janee B aT0li rnaBe npefcTaBfieH BbIBOA AUP(EPEHLNANBHOTO YPaBHEHNA
TPeXMepHOW KOHCOMMAALUN 1 faHa CCbiKa Ha peweHue Kapacpoy— bappoHa u
YnxXNieHHbI MeTog CKOoTTa. ABTOP OTMEYaeT, YTO NPUMEHEHME TEOPUM KOHCONN-
Jauun K onpefeneHnio CKOPOCTW OCafKu COOPYXeHUil Byner pacCMOTPEHO B
TOME 2 HacTosALWero CNpaBo4yHOro nocoobus.

34eCb YMECTHO OTMETUTb, YTO MPUMeEHEHMNE METOAA KOHEUHbIX pa3HoCTel K
3afa4e TPEXMEPHON KOHCONMNAALMM TPYHTOB 6610 pa3paboTaHo ewe B 1937 1. u
C yCNexoM MpPUMEHAN0Ch COBETCKMM Y4eHbiM npod. B. AL ®opuHbIM.

OTa rnaea TaK Xe, Kak v nocnegHsaa rn. 9 «Bonpocbl AaBneHus 3emMan»,
M3N10XeHbl Hanbonee MOMHO W WHTEPecHO. B HMX npuBedeHbl BaxHble ANS
MPakTUKN pacyeTHble MoKasaTenu.
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In. 7 «MPOYHOCTb TFPYHTOB» B OCHOBHOM COJAEPXMWUT TEOPUID MPOYHOCTU
KynoHa — Mopa, yunTbiBaeTCH W HEIMHEAHOCTb AMarpaMmbl CABMra CBA3HbIX
FTPYHTOB; MOAYEPKHYTa TaKXe Heob6XOAMMOCTb yyeTa 3PEKTUBHbLIX Hamnpsxe-
HWiA. Tpu paccMOTPeHWU CONPOTMBAEHUSA CABUTY CBA3HbIX FPYHTOB MOKa3aHa
HeNnHeHas 3aBMCUMOCTb COMPOTUBAEHWUA CABUTY OT TOTa/lbHbIX U 3 (heKTUB-
HbIX HanpskeHWid rpyHTa. CoobuiaeTca TakkKe 0 NpUMeHeHUM (YNOpsSA0YEHMK)
CTPYKTYPb! FUHBLI B NpoLecce AAMTENbHOTO CABUTaA.

CnepyeT OTMeTUTb, 4TO B CleAyHOLWEM W34aHUM CNpaBOYHOro nocobms
XenatenbHO 6b1I0 6bl U3M0XUTL W OMpefeneHne napameTpoB CONPOTUBIIEHUS
CLABUTY CBA3HbIX TPYHTOB MO UCMbITAHWIO €AMHUYHOTO 06pasua rpyHTa.

B rn. 8 «JethopmaLn rpyHTOB» BK/OYEHbl KpaTKUe CBeAeHns o geopma-
LUMSAX MpU OTPaHUYEHHOM CXaTWuu, PeosIorMYecKnUX CBOMCTBAX rPyHTOB, CXXMMae-
MOCTM NPW NOBTOPHbIX Harpy3kax uBHe3arnHoM cxaTuu (npocagke, CTPYKTYPHO-
HeyCTOWUYMBLIX FPYHTOB, HANpUMep NECCOBbIX). IHTepecHble faHHble, MOATBEPXX-
falolme nopagok BeIMYMH, MONMYYeHHbIX COBETCKMMMU crneunanucTaMmu, npusege-
Hbl Ans KoaduuneHTa lMyaccoHa rMHUCTHLIX TPYHTOB, KOTOPbLI He ABAseTcs
4018 HUX BENMUMHOW MOCTOSHHOW, a U3MEHSAeTCA B 3aBUCUMOCTU OT BIAXKHOCTH
rmMH ot 0,2 go 0,4 n B cnydae NAaCTUYHbIX TAMH (gedopmupytowmxca 6e3s
n3meHeHus obvema) — pgo 0,5. lpocagku TPyHTOB paccmMaTpuMBalTCAa B
3aBMCUMOCTU OT CTPYKTYPbI FPyHTa M €ro coctasa, OT Be/IMYMHbI JelCTBYIOLLEr0
fLaBNeHns N OTHOCUTENbHOW NAOTHOCTU TPYHTA.

'n. 9 «<Bonpockl faBneHns 3emnm» Hanbonee NoaHO OCBelLaeT paccmaTpu-
BaeMyt npobnemy Ha 6ase Teopuum NpefenbHOr0 PaBHOBECUS CbiNy4YUX Ten,
MCMONb3yeT Knaccnyeckoe pelweHne KynoHa u ero passutue MoHcene, Pebxa-
HoMm, >Xakm u gp. Ha TOl e TeopeTW4YeCKOW OCHOBE NPOAHaNM3NPOBAHO
fJaBfieHWe nNpyM  4aCcTMUYHO  33faHHONW  KPWUBONMMHEWHOCTM  MNOBEPXHOCTHU
CKOMbXeHuna

[Janee ykasaHbl 06nacTW MCNOMb30BaHUSA TeOpUW [aBNEHUS 3eMNIU B
WHXXEeHEPHOM fefie, XOPOLW O W3/M0XEHO U MOHATUE 06 aKTUBHOM, NacCUHOM U B
COCTOSAHUM NMOKOA AAaBNEHUWN 3eM/IN, YTO unnocTpupyetca (rur. 359) 3aBuCcnMO-
CTbIO MeXJAy nepemelleHNAMU NOANOPHONM CTEHKM M COOTBETCTBYIOLWMM faBre-
Huem 3emnun. CocTaBneHa Tabnuua 3HauyeHWn KO3 puLneHTa LaBEHNS TPYHTOB
B COCTOAHMYU MOKoA. MoApo6HO W3N0XEHO OnpefeneHue AaBneHUs CbIMyyux u
CBA3HbIX TPYHTOB Ha HaK/NOHHble MOAMOPHble CTeHKW. OAHaKo, MO0 MHEHWI0
peueH3eHTa, B popmyne (274) ons aKTUBHOrO M MNAacCMBHOrO [aBNEHUSA He
XBaTaeT TPETLEro CnaraeMoro, 3aBUCALLEro TO/IbKO OT CUENeHus rpyHTa u
BbICOTbl MOAMOPHON CTEHKMU.

B koHue 3TOW rnaBbl nomelleHa Tabn. 36 3HA4YeHWIi BEPTMKAbHbLIX W
FOPU30OHTANbHbIX COCTABMAKLWMX aKTUBHOIO U MAacCUBHOIO JAB/IEHUA 3eM/IN N0
cTporomy peweHuto npod. B. B. Cokonosckoro. Tabnuua paHa Ans Tpex
3HAYEHMUI yrna HaknoHa MOAMNOPHOWN CTEHKW K FOPU3OHTY.
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PeueH3UpyeMoe CNpaBoyYHOE Nocobue npeacTaBnseT co6oil 0UeHb NOHOE,
BECbMa KBaM(PULUPOBAHHOE W3/I0XKEHUE HU3UKKU TPYHTOB MPUMEHUTEIBHO K
npo6nemam MexanuKku rpyHTOB U SIBMISIETCS XOPOLUIMM Noco6UeM ans CTyAeHTOB,
M3yYaKoLWUX MeXaHWUKY TPYHTOB, U WHXEHEPOB, MPUMEHSIOLNX €€ Ha MpaKTUKe.
MepeBof €ro Ha PYycCKWil A3blK 6yaeT BeCcbMa MOJE3HbIM.

yn.-kopp, AH CCCP
H. A LpiToBuy
KHura nonyueHa pefakumeli xypHana

HoBble KHUTM 3a py6exom
Cepus 6 10/1980 (Soviet Union)

Kézdi A: Handbook of soil mechanics. Vol. 2. Soil Testing. PykosoacTso no
MexaHuKe rpyHToB. Tom 2. OnpegeneHne cBoicTB rpyHToB. Budapest: Akadé-
miai Kiadd, 1980, 258 p.

VI3BECTHbIA BeHrepckuin yuyeHoblin npod. A. Kesgn msgan ob6cToATENBHOE
PYKOBOACTBO N0 MEXAHWKE FPYHTOB B YeTbipex TOMax. CHayana OHO BbILLJIO B CBET
Ha HEMELKOM f3blKe, a ceilyac MepeBOAWUTCS Ha AHTMACKWIA. AHTINACKWI
BapuaHT BK/OYaeT: TOM 1 «®Pu3nka rpyHToB» (1974 r.), ToMm 2 «[lofeBble u
nabopaTopHble uccnefoBaHus CBOMCTB rpyHToB» (1980 r.), Tom 3 «MexaHunka
FPYHTOB MpW YCTPOWCTBE BbIEMOK WM OCHOBAHWA B AOPOXHOM CTPOUTENbCTBEX,
TOM 4 «[puMeHeHNe MeXaHWKU TPYHTOB B NpPakTUKe CTpPoMTenbcTBa»l

PeueH3npyemblii TOM 2 COCTOMT U3 BBEAEHWA W NATU rnaB. Bo BBegeHMM
yKa3aHbl 3a4a4u, CBA3aHHbIE C UCCNIeL0BAHUAMM FPYHTOB, OMNCAHO, KakK cregyeT
NPOBOAUTbL UCMbITAHUS TPYHTOB B 1a60PaTOPHbIX W MOMEBbIX YCIOBUSAX C LENbHO
onpefeneHns MHOTOYMCNEHHbIX NOKa3aTeneli, XapakTepusywLnx nx cBoKCTBa.
OTMEYEHO, UTO ANS PeLeHUs WHXEHEPHbIX NMPO6/MeM, CBA3AHHbLIX C TPyHTaMu
OCHOBaHWIA 1 FpyHTaMu, CAyXawWwnumMmn maTepuanom 418 COOpy>XXeHWUin, Heobxoau-
Mbl N3yYeHWE TPYHTOBbIX yCN0BUiA, 0T6OP 06pasLL0B 1, HAKOHeL, nabopaTopHble U
nonesble onpeAeneHns GU3NUYeCKNX CBOMCTB U NX XapaKTeEPUCTUK, NO3BONSIOLLME
npefonpegennTb MNOBeAeHWE TPYHTOB B TeX WM WHbIX HOBbIX YCNOBUAX, B
KOTOPbIX OHW 6yayT HaxoauTbcA. VIMEHHO nocnefHein 3afjayvye W MOCBALLEH
HacToALWMA TOM 2 PYKOBOACTBA.

B rn. 1 «Pa3BefoyHble W3bICKAHUA» COfepXXatcsd nonesHble Tabnuubl, B
KOTOPbIX YKa3aHo, Korfa, rae v Kakue onpefjeneHus cnegyet fenatb, MeTOAbl
pasBefoYHbIX U3bICKAHWI pa3feneHbl Ha KOCBEHHbIe (reon3myeckue, 30HLUPO-
BaHue), nonynpsamele (6ypeHue manbiM guameTpomM, oT6op o6pa3uoB nobobule-
HWe pas3po3HEeHHbIX MaTepuanoB) W NpAMble (MCNbITAHUA HENOCPeACTBEHHO B
KOTNoBaHax W wypdax). OnucaHbl NpumMeHsemoe OypoBoe 060pygoBaHue,
FPYHTOHOCHI, YCTAHOBKW A1 CTAaTUYEeCKOro M AMHaMUYEeCKOro 30HAMPOBaHMA.

Acta Technica Acadeniiae Scientiarum Hungaricae 98, 1985



44 PROF. KEZDI'S PUBLICATIONS

B camoli 601bL0i B KHUTE 1. 2 «J/labopaTopHbIe NCcCnefoBaHNA» paccmMoT-
peHbl UCMonb3yeMble annapatypa v obopyfoBaHue, U3N0XeHa MeTo4uUKa onpe-
LeneHunsa pasMyHbIX CBONCTB, a Takke 06paboTkM pe3ynbTaToB 0NbITOB. O6CTOA-
TeNbHO ONWCaHbl CNefYIOLLNe UCTbITAHWS: ONpefeneHne BAaXHOCTU, 06 bEMHOTO
M yLenbHOro BecoB, CUTOBOI aHann3 v apeoMeTpUYecKnini cnocob onpegeneHus
rpaHynoMeTpuYecKoro coctaBa MenKOANCMEPCHbLIX TPYHTOB, onpefeneHne npe-
penos ATTepbepra c aHanM3MpoBaHMEM BO3MOXHbIX NOrPeLHOCTel, onpegene-
HVWe BOAOHAaCHIWEHHOCTN, KOHCUCTEHLNKN, BOSOMPOHMLLAEMOCTHN.

B rn. 3 «'magporeonornyeckne nccnefoBaHna» BHUMaHUe TakXe YAeneHo
ONbITHbIM OTKauYkam W3 COBEPLUEHHbIX N HECOBEPLUEHHbIX CKBaXKWH. [1puBeaeHbI
hopmMynbl Ans pacyeTa NpU HEOAHOPOAHbIX Tonwax. B rn. 4 «OnpepeneHue
HecyLleli cnoCO6HOCTM NPV MOMOLLM NPOBHON Harpy3KM» ONUcaHbl UCMbITAHUS B
NOJIEBbIX YCNOBUAX NPOBGHOW HArpyskoin mMeTanin4yeckKMmmu LWTamnamu, ycTaHaB-
NNBaeMbIMMN B KOTNI0BaHaxX W CKBaXMWHAX, a TakXKe CTaTUYeCKne UCNbITaHUA CBali.
3aknwuunTtenbHaB . 5 «lccnegoBaHus Ha CTpoinowagkax» MOCBALLEHA
KOHTPO/O 32 YNNOTHEHWEM FPYHTOB, PaANOMETPNUYECKUM UCNBITAHNAM, onpefe-
NIeHW10 MOpOoroBoOro AaBfeHUA AUCTaHLWOHHLIMWU Moponbe3omeTpamu 1 ap.

B kHure 0606LleHO 3HaYMTENIbHOE KONMMYECTBO paboT Mo onpegeneHuto
CBOWCTB FPYHTOB, BbIMONHEHHbIX CAMUM aBTOPOM W YUYEHbIMU APYrux cTpaH. OHa
COLEPXMUT MHOro (hakTUYeCKOro v WINKCTPaTUBHOro MaTtepuana. Kaura npod.
A. Ke3an npeactaBuT HECOMHEHHbIV UHTEPEC ANS HALLUWUX YnuTaTeneld, 1 ee MOXHO
pekoMeHAo0BaTb ANA MepeBOja Ha PYCCKWA A3bIK.

[-p TexH, Hayk, npod.
M. B. MantoLues
KHura nony4yeHa pe,ﬂ,aKLl,I/Ief/‘l XypHana

The structural engineer 8/1982 (England)

Handbook of soil mechanics. Vol. 2. Soil testing. Arpad Kézdi (Amsterdam:
Elsevier, 1980) 258pp. $70.75, Dfl. 145. ISBN 0444 997784. Soil testing is the
second of four volumes that will comprise Professor Kézdi s Handbook of soil
mechanics. The first volume dealt with soil physics.

This second volume covers almost the entire field of soil investigations and is
intended for use as a textbook or manual for laboratory and field testing of soils for
civil engineering purposes. In the first part of the book, the author describes
laboratory tests based on internationally accepted methods. Particularly detailed
descriptions of the testing methods are given, as well as an analysis of possible
sources of error, as reliability of laboratory work depends on painstaking and
precise performance of individual investigations. The second part of the book
covers the most important field investigations where, depending on the specific
objectives, more freedom in the performance of the tests is permissible.
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For the benefit of laboratory personnel, every aspect of each individual test is
described, i.e. definition, test equipment, preparation and performance, data
processing, numerical example, process error. The text is supplemented through-
out by numerous diagrams and tables and an added facility is the provision of
laboratory sheets for measured data, furnished with examples. Soil engineers and
technicians, engineering geologists and civil engineers will all find this book an
invaluable guide.

Geotechnique 2/1981 (England)

Handbook of soil mechanics. Volume 2: soil testing. Arpad Kézdi. Published
jointly by Elsevier Scientific Publishing Company, Amsterdam, and Akadémiai
Kiad6, Budapest. 1980. 206 pages. 308 line drawings, 37 half tones, 34 tables.
$70.75.

The speed with which geotechnology spread throughout the world
undoubtedly contributed greatly to the universal acceptance of a similar procedure
for most soil tests on which this book is based. There are sound arguments for the
International Society to make this more secure following the lead it has given with
the proposed European standards for penetration testing.

Professor Kézdi's handbook will be in four interrelated volumes, which
commence with a volume on soil physics where the theory for the tests is given.
This second one, translated by P. Szoke, represents a revision of Volume Il of the
German edition published in 1973 (reviewed in Géotechnique 30, 469). Detailed
descriptions are given of some 60 different laboratory and field tests, together with
an account of boring and sampling techniques. Particular attention is given to the
test procedure, without reference to Standards, and the precautions to be taken,
often with an analysis of possible errors. The Author is also not afraid to point out
the disadvantages in particular tests and suggests permissible numeric tolerances
in the results of parallel tests. Worked examples with fullpage test sheets occur
frequently.

In the main part on laboratory work, the tests are dealt with under the
following headings: solids tests (density and distribution), phase composition,
Auerberg limits, behaviour against water, chemical tests, effect of moving water
and force effects. The importance given to phase composition, i.e. the volumetric
proportions in a representative sample of solid, liquid and gas, for classification
rather than the liquid and plastic limits, makes the handbook especially useful
when it is necessary to interpret partially saturated soils. For this purpose separate
tests are given, such as water absorption capacity, slaking, capillary rise and
specific collapse coefficient (due to flooding), in addition to examination of the
results. Examples describe the Loess soil. A separate, concise, yet thorough
description is given by Dr L Varga of the triaxial compression test as developed at
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Imperial College, consisting of load frame, cell, compensated mercury pots for
pressure stabilization, manual volume change and mechanical measurement.
Detailed diagrams clearly illustrate the significant individual parts and how they are
assembled. Testing procedures are given for all the established effective strength
tests, as well as an outline of stress path testing and the tensile strength of cohesive
soils.

Testing in the field is sub-divided into the investigation of groundwater,
load-bearing capacity and earthworks. The first named is a selfcontamed section
that describes both the tests and their analysis with interesting illustrated case
histories of long term hydrological conditions in Hungary. Plate loading and pile
tests follow the traditional methods. Earthworks include measurements by
radioactive isotopes and touch upon the instrumentation of earthworks.

Soil and tillage research 2/1982 (Netherlands)

Handbook of Soil Mechanics. Vol. 2 Soil Testing. Arpad Kézdi. Elsevier
Scientific Publishing Company, Amsterdam/Oxford/New York, jointly with Aka-
démiai Kiadd, Budapest, Hungary, 1980. 258 pp., 345 figs., 34 tables, US$61.75/
Dfl. 145.00, ISBN 0-444-99778-4.

Arpad Kézdi'swell-known handbook on soil mechanics is being published in
the English language. Recently, the second volume dealing with soil testing
appeared. The other volumes are:

Vol. 1 Soil Physics;

Vol. 3 Soil Mechanics of Earthworks, Foundations and Highway

Engineering;
Vol. 4 Application of Soil Mechanics in Practice, Examples and Case
Histories.

The volume on soil testing is a translation and revision of a German version of
a Hungarian book on soil mechanics practices. It describes the classical soil
measurements used in civil engineering as routine tests. Many measurements in
agricultural soil mechanics relate to or have been derived from such methods.
Details of the civil engineering methods presented vary slightly between countries
and regions but the book refers mainly to standards accepted in Eastern Europe. In
general, however, regional variations are small enough for the world-wide
significance of this book to be recognized.

The methods are presented in five chapters. “Soil exploration” comprises
exploration by pits and shafts and by drilling and sounding. Taking undisturbed
and disturbed samples is included. The reader will find valuable general remarks on
soil exploration. Kézdi's classification of constructions into seven categories, and
of subsoil conditions into four categories is interesting. For each construction and
subsoil condition category the desired extent and character of soil exploration is
proposed inatable. The chapter on "Laboratory investigation"” forms the main part

Acta Technica Academiae Scientiarum Hungaricae 98, 1985



CRITICAL REVIEWS 47

of thee book. First, the character, order and extent of the required laboratory tests
are discussed, together with their application. This discussion is based on the
construction and subsoil classification mentioned. Then the following tests are
described: measurements concerning density, moisture content and phase
distribution; grain size distribution; determination of the Atterberg limits;
compactibility; water permeability and capillary rise; compressibility; direct shear,
unconfined compression and tri-axial tests as well as tensile strength measure-
ments; determination of organic matter, lime and soluble sulfate contents. In the
chapter on "Investigation of groundwater” measuring methods for pressure, level
and flow of groundwater are found and field determination of the coefficient of
permeability is described. Load tests in the field are discussed in a chapter on
"Investigation of the load bearing capacity”. The final chapter deals with "Earth
work investigations" and describes the most important routine tests for embank-
ment and earth dam constructions. These include the determination of phase
distribution, compactness, shear strength, and pore-water pressure. Subsequent-
ly, some experiments suitable for the evaluation of the soil as a road-foundation
material are explained, for instance the CBR test. Results of earthwork quality
control methods should be available for application as soon as possible. Therefore,
mobile laboratories are also considered in the book.

In general, the book presents a test as follows. At first, a definition of the test
and a short theoretical background are given. Then, the necessary equipment and
aids are listed and extensively described. Most attention is paid to the test
preparation and test performance. Finally, processing of the results is dicussed. In
fact, the book shows the reader how to do the test. This is greatly enhanced by the
presentation of a numerical example on the usual data sheets. If possible, the order
of magnitude and range of the measuring data to be expected are given, and the
sources of error are discussed. Correlations with other mechanical or physical
properties are included.

The descriptions are very extensive and complete. The book is copiously
illustrated with drawings, graphs and photographs. A limited amount of literature is
listed. Text parts not necessary for the "main line" are printed in small type. The
book may be considered as an integral part of Kézdi's standard work on soil
mechanics but it may also be used as an independent work. It can well be
recommended when an extensive and complete documentation on soil testing is
desired or when the aim is to introduce or to improve testing where experienced
laboratory personnel is not available.

A.J. KOOLEN

Bauplanung - Bautechnik 2/1981 (German Dem. Rep.)

Handbook of Soil Mechanics. Band 2 Soil Testing. Von A. Kézdi. Akadémiai
Kiadd, Budapest 1980. 20,5¢cm x 29,5cm, 260Seiten, 345 Bilderund 34 Tabellen.
Gebunden 600,— Ft.
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1973 erschien zum ersten Mal das Buch ,,Bodenmechanisches Versuchs-
wesen" von A. Kézdials Band 3 seines ,,Handbuches der Bodenmechanik". Diese
erste Ausgabe, eine Gemeinschaftsausgabe des Akadémiai Kiadé, Budapest, und
des VEB Verlag fir Bauwesen, Berlin, erschien in deutscher Sprache und war
durch die Bearbeitung von Prof. W. Kirne, Dresden, den Bedingungen in der DDR
durch die Einbeziehung der geltenden Standards und Vorschriften weitgehend
angepalt. So istes nicht verwunderlich, dalR das Buch allen auf diesen Fachgebiet
arbeitenden Kollegen ein unentbehrlicher Ratgeber sowohl fiir die Durchfihrung
von Routineuntersuchungen und das stdndige Bemiihen um die Erhéhung ihrer
Aussagekraft als auch fur die Planung, Vorbereitung und Realisierung seltener
angewandter Versuche, insbesondere der Feldversuche, geworden ist.

Sieben Jahre spéter legt der ungarische Verlag dieses Buch als Band 2 des
»Handbook of Soil Mechanics", dieses Mal in Kooperation mit dem in Fachkreisen
bekannten Elsevier Scientific Publishing Company, Amsterdam, vor.

Die Neuauflage hat die Gliederung des Originals

Abschnitt 1: Bodenuntersuchungen,

Abschnitt 2: Laboruntersuchungen,

Abschnitt 3: Untersuchungen des Grundwassers,

Abschnitt 4: Tragfahigkeitsuntersuchungen,

Abschnitt 5: Untersuchungen fiir Erdarbeiten

beibehalten. Damit werden im 1. Teil die Grundlagen und die Ausfuhrung
von Laboruntersuchungen, im 2. Teil die Feldversuche behandelt.

Der Verfasser hat sich dabei unter Mitwirkung bekannter ungarischer
Fachkollegen erfolgreich bemiht, die doch recht umfassenden, durch neue
theoretische Erkenntnisse und technisch-technologische Weiterentwicklungen
bedingten Fortschritte der Versuchsdurchfihrung und auswertung zu erfassen
und einzuarbeiten. So kann das Werk gleichzeitig als eine Dokumentation der
Entwicklung des bodenmechanischen Versuchswesens in den letzten Jahren
gewertet werden.

Der Verfasser, allgemein bekannt fur sein Bestreben, die Probleme durch die
Analyse der Grundlagen und iohres jeweiligen Zusammenwirkens zu kléaren, legt in
seinen Ausfuhrungen besonderen Wert auf die Darstellung des Einflusses einer
verantwortungsbewuliten Arbeit aller an der Versuchsdurchfiihrung und -
auswertung Beteiligten auf die Losung der Probleme, die aus der Inhomogenitat
des Bodens und den Schwierigkeiten der Probenentnahme resultieren.

Die neue Auflage des ,,Bodenmechanischen Versuchswesens" innerhalb
des ,,Handbuches der Bodenmechanik™ von A. Kézdi ist also in jeder Beziehung
den Fachkollegen sowie den an dieser Thematik interessierten Studierenden
warmstens zu empfehlen. Ihr Studium setzt jedoch die Kenntnis der englischen
Sprache voraus.

Welzien

Acta Technica Academiae Scientiarum Hungaricae 98, 1985



CRITICAL REVIEWS 49

Inzynieria i Budownictwo 8/1980 (Poland)

Kézdi A.: Handbook of Soil Mechanics. Vol. 2. Soil Testing (Podrecznik
mechaniki gruntow. Tom. 2. Badanie gruntow). Wyd. Akadémiai Kiado,
Budapest; Elsevier Scientific Publishing Co., Amsterdam, str. 258, 345 rys.,
wykresow i fotografii, 34 tabl., 30 wzoréw metryk i formularzy, 1 nomogram poza
tekstem.

Czterotomowy podrecznik mechaniki gruntéw jest jednym z wielu dziel
znanego specjalisty w tej dziedzinie Arpada Kézdi, Profesora Politechniki
Budapesztenskiej. Podrecznik ten (oprocz wydan wegierskich) zostat wydany w
jezyku niemieckim. Obecnie ukazat sie drugi tom w jezyku angielskim (tom 1 byt
recenzowany w Inzynieriii Bud. w nr 12/74), przy czym kolejnos¢ tomdw zostata
zmieniona — odpowiada on trzeciemu tomowi wydania niemieckiego z 1973 r. W
porownaniu do poprzednich wydan tekst ulegt modernizacji i rozszerzeniu; m.in.
wprowadzono opisy nowych metod badan, rozbudowano rozdziat poswiecony
badaniu wod gruntowych itd.

Pierwszy rozdziat omawia terenowe metody badan gruntow, uzywany przy
tym sprzet (jak Swidry, sondy itp.), sposoby oceny wynikdw sondowan.
Najobszerniejszy jest rozdziat drugi, poSwiecony zagadnieniom zwigzanym z
laboratoryjnymi badaniami gruntéw, a przede wszystkim mozliwosciom, zaletom i
wadom tych badan. W rozdziale trzecim rozpatrzono badania warunkéw wodnych
w podtozu gruntowym, a wiec rodzajéow wad gruntowych, ich poziomow inapiec,
przeptywéw, przepuszczalnosci warstw réznych gruntéw itd. Rozdziat czwarty
omawia probne obcigzenia podtoza gruntowego in situ: powierzchniowe, w
otworach badawczych, za pdsrednictwem pali. Rozdziat pigty poswiecono
badaniom budowli ziemnych (w tym nasypow): ich zageszczenia, przepuszczal-
nosci itp.

Przydatno$¢ praktyczng ksigzki dla wszystkich zajmujacych sie badaniami
gruntéw lub korzystajagcych z wynikow takich badan nalezy oceni¢ bardzo
wysoko. Daje ona szerokg panorame metod stosowanych w réznych krajach,
pozwala na krytyczng ocene wynikéw badan. Pewng wade stanowi czesty brak
wyraznego podkre$lenia réznic miedzy normami, obowigzujacymi w réznych
krajach oraz skutkéw tych réznic. Cze$¢ zagadniern tego rodzaju zostata
wyjasniona wtornie |, ktory nie jest jednak dostepny dla wielu uzytkownikow tomu
Il, miedzy ich wydaniem uptyneto 6 lat. Uktad merytoryczny ksigzki jest przejrzysty,
jezyk prosty i jasny.

Podsumowujac nalezy stwierdzi¢, ze recenzowana ksigzka stanowi cenng
pozycje réwniez dla czytelnika polskiego, stanowigc prawdziwe kompendium
wiedzy na temat badan podtoza gruntowego dla budownictwa.

Szata edytorska ksigzki jest staranna, zblizona do wydania niemieckiego.
Jedyng wadg jest zmiana rodzaju oprawy (m.in. w wyniku usuniecia obwoluty)
w stosunku do tomu I

Dr inz. Roman Czarnota-Bojarski
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Pozemni stavby 9/1980 (Czechoslovakia)

Pfirucka mechaniky zemin (Handbook of Soil Mechanics). Akadémiai
Kiadd, Budapest 1980, 2. dil (Soil Testing) 253 stran, 30 tabulek, 345 obrazkl. V
anglictiné. Lze objednat v prodejné knih SNTL — Nakladatelstvi technickeé
literatury, Praha 1. Spalena 51.

Clen korespondent madarské akademie véd, prof. Arpad Kézdi, pfedni
evropsky odbornik v oboru mechaniky zemin, jehoz ,,Pfirucka mechaniky zemin" je
v Ceskoslovensku znaméa z pfedchozic vydéani zejména v némcing, vydal v tomto
roce ve spolecném nakladu Akadémiai Kiadé Budapest a Elsevier Scientific
Publishing Company Amsterodam 2. dil této pfirucky v anglictiné. Proti
poslednimu vydani v roce 1973 je zejména druha a tfeti ¢ast tohoto dilu pFirucky
doplnéna o zkousky zemin v trojosém pfistroji v€etné popisu vyhodnoceni zkousek
a o nékteré problémy prizkumu podzemnich vod.

Publikace je rozdélena do péti Casti. V prvni Casti je kniha zaméfena na
metody pouzivané pfi polnich zkouskach, zplsoby odbéru neporuenych vzork( a
metody pouzivané pfi penetranich zkouskach.
na podrobny popis mezinarodné pouzivanych laboratornich zkousek zemin, jejichz
pfesnym provadénim a vyhodnocenim jednotnou metodiku lze pro potfebu
inZenyrskeé praxe charakterizovat individualni vlastnosti zemin. Pravé s ohledem na
praktické potfeby se vénuje autor v této Casti velmi podrobné popisu zkuSebnich
metod a zejména rozboru zdroji moznych chyb. Tato ¢ast obsahuje kromé popisu
postupu pfi zkousSkach porusenych i neporusenych vzorkd nutnych ke stanoveni
zékladnich fyzikalnich vlastnosti zemin jako je mérnd i objemova hmotnost,
pérovitost, zrnitost, vhlkost obsah organickych substanci atd., komplexni popis
vSech laboratornich zkouSek v oboru mechaniky zemin pouzivanych.

Ve treti Casti knihy se autor vénuje problematice hydrogeologického
prizkumu, tlakovym problémdm podzemnich vod, popisu Gerpacich zkou$ek
véetné dprav studni vhodnych pro Cerpaci pokusy, podrobné je popsano polni
stanoveni koeficientu propustnosti.

Ctvrta Gast publikace obsahuje popis a hodnoceni metod pouZivanych pfi
zkouSkach Unosnosti zemin. Rozsahly popis zkouSek pravodhlymi a kruhovymi
zatéZovacimi deskami se stanovenim moduld stladitelnosti je dopInén struénym
popisem zatéZovacich zkouSek pilot.

Ve vsech dilech knihy jsou uvadény pfiklady zaznami vysledkd zkousek ve
zkuSebnich protokolech, Ciselné hodnoty uvadéné v prikladech, v tabulkach a
laboratorni technice zkouek mechanicko-fyzikalnich parametrd zemin a jejich
vyhodnoceni. Zejména tato ¢ast bude vyznamnou pomtickou pracovistim, ktera se
geologickym prizkumem nebo hodnocenim vysledkl prizkumu zabyvaji, tim
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spiSe, ze je postup vyhodnocovani zkouSek témér ve vSech pripadech
demonstrovan na prikladech.

Precizni zpracovani tematiky, Uplnost a Sife popisované problematiky z knihy
Vytvafi nejen ,,Prlvodce" a ucebnici, ale nezbytnou soucast knihovny vsech
odbornych pracovist. Mimofadné kvalitni tisk knihy dava zaruky dlouholetého
privodce kazdého odbornika z oboru mechaniky zemin.

Ing. Jifi Chtost, CSc.

Inzynieria Budownictwo 1/1980 (Poland)

Kézdi A.: Soil Physics. Selected Topics. Str. 160, rys. 215. Akadémiai Kiadd,
Budapest 1979.

Ksiezka omawia wybrane zagadnienia gruntoznawstwa inzynieryjnenego,
zwiezane na ogot z tematyke dotychczasowych prac Autora i niektorych innych
autor6w wegierskich. Zainteresowania Autora okreslaje rowniez zakres
omawiania poszczegdlnych zagadnieni, nie zawsze zgodny z ich naukowym czy tez
praktycznym znaczeniem.

We wstepie (str. 11 +25) poruszone zostaty bardzo r6znorodne i mato ze
sobe zwiezane zagadnienia, od problemow Kklasyfikacji gruntow do ogolnego
oméwienia zagadnien ich reologii. W czesci drugiej (str. 26 + 61) Autor omawia
sktad gruntdw pod wzgledem objetosci ziaren i czestek o réznych wymiarach,
rozktad poréw w zaleznosci od ich rozmiaréw oraz wptyw uziarnienia (p. 2.3 oraz
2.5) na niektora wiasciwosci gruntow, m in. na ich zageszczalno$¢; omowione
zostaty réwniez niektére wihasciwosci 2+ 4-sktadnikowych mieszanin gruntéw
(p. 2.4).

Rozdziat 3 (str. 62 +95) posSwiecony zostat wybranym problemom
wytrzymatosci, zaré6wno gruntow niespoistych (p. 3.1 i 3.2), jak i gruntéw
spoistych (p. 3.3 oraz 3.5); omowiony zostat przy tym pokrétce rowniez problem
wytrzymatosci gruntow na rozcieganie.

Najobszerniejszy jest rozdziat 4 (str. 96 + 153) omawiajecy przeptyw w
gruntach wody i powietrza, z uwzglednieniem pewnych zjawisk o znaczeniu
praktycznym (sufozjg ierozja, str. 119 + 137). Omowiony zostat rowniez przeptyw
w gruntach o stopniu wilgotnosci mniejszym id jednosSci; przemieszczaniu sie
nastomiast wody w gruntach spoistych poswiecono jedynie 3 strony (w tym 5
rysunkow).

Trudno oprze¢ sie wrazeniu, ze Autor przy opracowywaniu omawianej
ksiezki w dos$¢ specyficzny sposob wykorzystat dorobek S$wiatowej literatury
geotechnicznej. Na ogétem 88 pozycji wykazu bibliografii (str. 155+ 158) tylko 2
pozycje se w jezyku rosyjskim, z literatury za$ francuskiej uwzgledniony zostat
jedynie podrecznik mechaniki gruntow A. Caquota iJ. Kérisela; znaczna czes¢
ponadto pozycji to nie prace badawcze, lecz opracowania o charakterze
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podrecznikéw lub monografii. Z polskich prac nie zostata uwzgledniona ani jedna,
mimo istotnéenego dorobku naukowego w zakresie niektdrych zagadnien, np. w
zakresie reologii gruntow.

Powyzsze m.in. wzgledy powoduje, iz mimo przystepnego charakteru
ksiezka moze by¢ polecana raczej dla os6b majecych juz pewne przygotowanie w
zakresie geotechniki; w duzo mniejszym natomiast stopniu moze by¢ przydatna dla
geotechnikow poczetkujecych. Mniej zorientowany czytelnik mégiby na przyktad
odnies¢ wrazenie, ze pomiedzy niektorymi paramerami gruntéw istnieje Sciste
zaleznosci, podczas gdy w rzeczywistosci maje one charakter jedynie luznych
czesto korelacji. Wiele interesujecego materiatu zawartego w omawianej ksiezce
powoduje jednak, ze moze by¢ ona cenne pomoce dla osdb specjalizujecych sie w
odnosnych dziedzinach geotechniki.

Prof, dr hab. Antoni Piaskowski

InZenyrské stavby 11/1979 (Czechoslovakia)

Arpad Kézdi, DrSc.: Soil Physics (Fyzika zemin.) Vydalo nakladatelstvo Akadé-
miai Kiadd, Budapest 1979, 160 str., 215 obr., 6 tab.

Kniha patfi k najzaujimavejSim a najoriginalnejSim teoretickym geotech-
nickym publikaciam, ktoré sa dostali na europsky knizny trh vtomto roku. Nejde o
pracu pfili§ rozsiahlu, ale mimoriadne pozoruhodni svojim obsahom.

V Styroch kapitolach autor prindSa nové poznatky z fyziky zemin a spresfiuje
naSe poznatky o zeminach ako o trojfdzovom systéme, v ktorom tzv. zéakony:
Darcyho, Hooka i Mohrova-Coulombova tedria poruSenia len aproximativne
vystihuju ich spravanie sa — zavislé v znanej miere od vzajomného poméru faz.
Podrobna analyza v prvej kapitole ukazuje, Ze pri posudzovani stavu a vlastnosti
poérovitého prostredia obsahujiceho vodu a vzduch tfeba skdmat viac
charakteristik, ako obvykle uvadzame pri pddomechanickom — fyzikalnom
rozbore. U&elnéjeroziritich zakladné rozdelenie a opatrné narabat'stzv. modelmi
zemin. Odporaca sa skimat' ,,multilateralné" vztahy a premietat ich do zavislosti,
ktoré pouzivame pri vypocCte pretvarania unosnosti, priepustnosti a konsolidacie, a
pomocou nich vysvétl ovat' spravanie sa zemin pri ich rbznom zat azeni. Tento novy
pfistup dokumentuje na odvodeni deformacnej rovnice, do ktdrej zavadza stla-
Citel'nost tak fazy kvapalnej, ako aj tuhej. Stlacenie nerobi teda zavislym iba od
zmény objemu porov, ako je to pri konvencionalnych vypoctoch obvyklé. Pracuje
aj s novymi pojmami — ako je napfiklad potencial pohybu, ktory méa lepSie
vystihnut' Specialne fyzikalné vlastnosti trojfazového systému.

Vdruhej kapitole autor podrobné rezobera kfivky zrnitosti zemin, v§ima si tvar
ich zrn, ich Specificky povrch, ako aj pomérjemnych zrn a skeletu. Pri nestudrznych
zemindch berie do Gvahy ich zhutnitel nost a stabilitu za priesaku. Pri jemnozrn-
nych (stdrznych) materidloch venuje pozornost' predovsetkym pérovym tlakom,
stupfiu nasytenia kapilarnej zény. Dokazuje, Ze pri tychto zeminach préavé
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uvadzané charakteristiky spolu s porovitostou rozhoduju a o tixotropickych
vlastnostiach trojfazového systému (o schopnostiach vytvarat suspenzie), €o
ovplyviiuje aj intenzitu sedimentacie zrn rézneho Specifického povrchu.

Problémy napati — je nazov kapitoly 3, venovanej problemom porusenia a
zemnym tlakom z novych pohladov na zeminu ako trojfazovy systém, ktorého
napatost a pevnostné charakteristiky zavisia od porovitosti a od zastUpeni
jednotlivych faz (tuhej, kvapalnej, a ptynnej), ovplyviiujacich sadrznost (c), ako aj
uhol vndtorného trenia (o), pre ktoré si uvedené viaceré vztahy a diagramy
osvetl'ujuce tuto zavislost'. Podmienky napatosti sa rozoberaji so zretel'om na
vplyv dilatancie a vel'kost' deviatora napatia, ktory ovplyviiuje nielen stabilitu
zemin, ale aj ich spracovatel'nost'.

Kapitola 4 sa zapodieva pohybmi faz, vychadzajic zo zékonitosti kvapalnej
fazy v sthlase s Darcyho zdkonom s uvazenim hodnoty Reynoldsovho Cisla a
velkosti stc€initela hydraulického trenia. Pohybu vody v pieskoch, ktorych stabilita
je tymto pohybom obvykle najvaéSmi ohrozena, je vénovana osobitna Cast tejto
kapitoly. V nej sa vysvétl uje podstata a priCiny rozdielov priepustnosti, stability
zemin, vzniku vyverov, tvorenie bublin v stvislosti so zrnitostou, porovitostou a
podielom jednotlivych faz zeminy. Nemaly vyznam ma obsah ilovitych zemin a ich
mineralogické zloZenie. Pfitom vSak hlavnou charakteristikou ovplyvifiujicou
stabilitu zemin za priesaku zostava ich zloZenie, pérovitosta hydraulicky gradient
prudiacej vody na druhej strané.

Pfehledny zoznam literatdry, autorsky a vécny register dopliuji tato vel'mi
cennu publikaciu, po ktérej siahajd najma ti odbornici, ktori chcu hibSie vniknut do
problémov mechaniky zemin, ako aj ti odbornici — najma projektanti — ktori maju
zaujem o spresfiovanie vypoctov a zdokonal'ovanie navrhovania stavieb. Kniha by
sa mala dostat' do rok kazdému Specialistovi mechaniky zemin, védeckému
pracovnikovi, vsetkym diplomantim a aSpirantom, ktori v nej najdu odraz
najnovsich poznatkov fyzikadlnych vlastnosti zemin, podanych zrozumitel'nou
formou.

Prof. P. Peter, DrSc.

CTpoutenctso
1/1980 (Butgaria)

Arpad Kézdi. Soil physics. Selected topics (®nsuka Ha nousute. M36paHu
npo6nemun). Akadémiai Kiado, Budapest, 1979,160 c., 215 cur. 5Tabn., 88 nur.

I/I3yanaHeTo Ha qJI/ISVI'-IeCKVITe CBOWCTBA Ha MOYBUTE CTaHa HeO6XO,£I'VIMO
npeg BuAa BCe NOHapacTBawiuTe I'I|Z)O6J'I€MI/Il CBbpP3aHM C un3rpaxpaHeto Ha
MHXEHEPHU CbHOPXEeHUS. AEVICTBMETO Ha OFrpoOMHM AWHAMWUYHU U CTaTUYHU
TOBapn BbBPXY 3€MHaTa OCHOBa Ha MHOIo ronemMm W1 TEXKN CbOPBXEHUA
3Ha4YnUTENHO paswnpn obnacTta Ha npunoXeHne Ha 3emMHaTa MeXaHUKa. Tesn
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npo6emMn M3nCKBaT 3a4b/I60OYEH aHaNU3 Ha PU3NYECKNTE CBOWCTBA HA N3XO4HU-
Te matepuanu. ToBa foBeje A0 NOAEM Ha M3cnefoBaTenckaTa paborta B o6nacTrta
Ha (bu3nKarta Ha NoYBUTe, T. €. hU3MKaTa Ha 3bPHECTUTE MaTepuanu, B Lens CBAT:
OTKPUTU 65Xa HOBM 3aKOHW W 3aBUCUMOCTU, KOUTO YNECHABAT KONMYECTBEHOTO
n3paszsBaHe Ha NOBeJeHMeTO Ha noysuTe. MOHACTOALLEM TeopuuTe, NpunaraHu
npv ¢yHAMpaHETO W 3eMHUTe paboTu, ce GasupaT rnaBHO BbLPXY OMNPOCTEHM
npuemaHus nmogenn. OBNKHOBEHO Te He OTUYMTAT 06CTOATENCTBOTO, Ye NOYBUTE
ce CbCTOAT OTTPM MaTepuana ¢ pa3IMyHN CbCTOAHUSA Ha MaTepusaTa U pasnpbCcHa-
TM B efiHa C/IoXXHa cucTtema. 3akoHuTe Ha [apcu, Xyk, Moop, KynoH u gp.
0TpasfABaT C MHOTO rpy6o npubanXeHne NOBeLEeHNETO HA 3bPHECTUTE MaTepua-
nn. [lo ronsMa cTeneH cbBpemeHHaTa M3crefoBaTesicka pabota B o6iacTTa Ha
(hu3mkKata Ha MoyBuTe Uenu fa ce u3bArHat Tesn npubnmxeHuns. Obaue
pe3ynTtatute OT Te3n M3cC/iefiBaHUA ca BCe ole cnabo oTpaseHU B TEOpUUTE U B
npakTukata. Llenta Ha aBTopa, U3BECTEH YUeH B 06/1aCTTa Ha 3eMHaTa nexaHuka u
Y/feH Ha YHrapckata akafemusi Ha HaykuTte, e 4a LOMpUHece 3a NofobpsaBaHe Ha
TOBA MOJIOXKEHME HA HeuwjaTa W 3a M3ACHABaHe Ha CBOMCTBaTa Ha 3bPHECTUTE
mMaTepuanu.

KakTo moka3Ba 3arnaBuMeTo, KHUrata BKAKOYBa HAKOM M3bpaHu npobnemum,
KaTo ce 6a3mpa Ha u3cnefBaHuATa, NpoBejeHn B nabopaTopuaTa Ha KaTegpara no
reoTexHuka npu yHueepcuTeTa B bypaneuia.

ABTOBLT Knacupa MOYBUTE B TPU [NIaBHU TPYMU: MNACHK, NMPEXOAHU MNOYBK
(cuTeH nAcCbK, KaMeHHO 6pawHo, mpax) u ramHa. OcBeH ToBa TOW Knacupa
MOYBMTE CMOpPef OCHOBHWUTE UM MEXaHW4YHW CBOKMCTBA: AKOCT, fedopmayns u
LBUXEHUE Ha (hasuTe.

KHuraTa ce cbcTOM OTTPY YacTu. MNbpBaTa YacT BK/IKOYBA NOHATUATA 3bPHA U
3bPHECTW arperat¥ v CBbP3aHWUTE C TAX ABNEHUA. Pa3npefeneHNEeTo Ha eapuTe
3bpHa ce pasrnexga cnopej TexHus obem, Tbil KaTo cnopeg aBTopa TPaguLMOoH-
HaTa KpvBa Ha 3bPHOMETPUUYHUA CbCTaB He OTpassfBa LOCTOBEPHO pa3Mepa Ha
3bpHaTa nopagum pasnnyHarta uMm opma. Fo-HaTaTbK ce pasrnexgar pasnpege-
NIeHNeTOo Ha pasMepa Ha nopuTe B CUTHO3LPHECTUTE MaTepuanu, 3aBUCUMOCTTa
MeXy 3bpHOMETpUYEeH CbCTaB U YNABTHAEMOCT, HOBWM W3CNeLBaHUA BbpXy
cBOlicTBaTa Ha CMecU OT pas/IMYHM 3bPHECTU MaTepuanu, YMabTHAEMOCT Ha
,MPEXO4HUTE MOYBM.

BTtopata uyacT BKAO4YBa NpobseMum Ha SKOCTTA Ha NACHLLUTE, KOUTO ce
pasrnexjat Kato HeCBbP3aHW WY CBbP3aHW MOYBM B 3aBUCMMOCT OT MABTHOCTTA
M CTeneHTa Ha BOAOHAcULLaHe W Ha ,,NMPEXOLHUTE MOYBU, BbPXY KOWUTO UrpasT
ronaMa ponsg KanuiapHuTe cunu. ABTOPBLT OTAENA chneuuasHO BHUMaHWe Ha
AKOCTTA Ha ONbH W Ha CpA3BaHe Ha CBbP3aHUTE MOYBMU.

B TpeTarta yacT aBTOpPbT pasrnexga c npumepun ot nabopaTtopHu nicnensa-
HUS HAKOM Cnydvan Ha [BM>XKeHUe Ha a3uTe € Uen fa ce NOCTUTHe Mo-fo6po
pasbupaHe Ha ToBa AB/ieHMe. TO MOXe fja Ce Kjlacupa no pasfyHu npusHauu, a
WMEHHO Bb3 OCHOBA Ha CW0OBUTE MONeTa, Npefu3BMKBaLLU ABVXXEHUETO WU
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cpefaTa, B KOATO CTaBa [B/KeHNeTO. HaliBaXXHWUTe CUI0BM NoeTa ca rpaButaLus,
KanunsapHOCT, BaKyym, TEpMOOCMO3a U efleKTpoocmo3a. Pasrnexga ce gBuxe-
HWETO Ha BOfaTa B HacMTeH MACbK, MpomagaHe nof LelACTBMETO Ha BoOAata,
cyosms, eposns, ABUXEHME Ha pa3uTe BTpudasHa cpesa, ABVKEHNE Ha hasmTe
B CBbp3aHM MouBu. KHuWrata € CbBMECTHO MW3JaHWe Ha aHrMIACKM €e3MK Ha
M3paTencTBOTO Ha YHrapckata akagemus Ha HaykuTe Akadémiai Kiadd n Ha
M3BECTHOTO XOJlaHACKO M3[aTencTBO Ha HayyHa nutepatypa Elsevier Scientific
Publishing Company.

Nux. T. MoHoBs

Die Eisenbahntechnik
6/1979 (German Dem. Rep.)

Soil Physics Selected Topics (in engl. Sprache). Von Arpad Kézdi, Budapest:
Akadémiai Kiadé 1979. 160 Seiten, 215 Bilder, Format 16,7 cm x 24,8 cm,
Broschur. ISBN 963 05 1478 8

Als Ergénzung und Fortsetzung zum vierbdndigen, in mehreren Sprachen
erschienenen ,,Handbuch der Bodenmechanik" gibt der Autor in dem vorliegen-
den Werk eine Analyse zum wissenschaftlichen Erkenntnisstand in der Bodenphy-
sik sowie Impulse fir kinftige Forschungsarbeiten auf diesem Gebiet. Das
Anliegen wird besonders im 1. Kapitel (Einfihrung) umfassend dargelegt.
Aufgezeigt wird hierbei, daB die Weiterentwicklung von Berechnungsmethoden
der Bodenphysik nur dann moglich ist, wenn die bisher bekannten bodenphysika-
lischen Teilergebnisse durch ein einheitliches Bild gefalit werden. Dies gilt fir die
drei fundamentalen Erscheinungen ,Festigkeit, Deformation, Phasenbewegung™
gleichermalien.

Mit den Kapiteln 2 bis 4 (Kérner und Kdérnerhaufen, Fragen der Festigkeit,
Einige Félle der Phasenbewegung) stellt der Autor ausgewadhlte Abschnitte der
Bodenphysik unter diesem Aspekt vor. Neue Forschungsergebnisse aus dem
Geotechnischen Laboratorium der Technischen Universitdt Budapest und zahlrei-
che Ergebnisse anderer Forschungseinrichtungen werden einbezogen.

Unter dem Titel ,,Fragen der Bodenphysik™ erschien das vorliegende Buch
1976 in deutscher Sprache. Eswurde mit einer ausfiihrlichen Rezension von Bobe
im Heft 7/1977 der Zeitschrift ,,Bauplanung — Bautechnik" bereits vcrgestellt und
zur vielseitigen Anwendung empfohlen. Vorziige der englischen Ausgabe
gegeniber der deutschsprachigen bestehen darin, daB SI-Einheiten und Symbole
entsprechend den internationalen Empfehlungen herangezogen werden. Mit dem
Buch ,,Soil Physics" (,,Fragen der Bodenphysik") besitzt vor allem der in der
Forschung tatige Ingenieur einen wertvollen Leitfaden, der Wege und Methoden
zum Auffinden bodenphysikalischer GesetzméRigkeiten aufzeigt. Besonders zu
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empfehlen ist diese Literatur als spezielles Lehrmaterial zur Aus- und Weiterbil-
dung von Fachingenieuren fur Baugrundfragen sowie fir Diplomanden des
Fachgebiets Geotechnik. Auf diese Weise |4t sich ein wesentlicher Grundgedan-
ke von A. Keézdi verwirklichen: die rasche Praxiswirksamkeit wissenschaftlicher
Erkenntnisse.

Helga Hubaeek

Geotechnique 12/1980 (England)

Soil physics (selected topics). Arpad Kezdi. Elsevier Scientific Publishing
Company. 1979. US$47.80.

Like Prince Metternich and Dorothea Lieven, Soil Mechanics and Soil
Science have carried on a mild flirtation for upwards of 30 years; meeting
infrequently but each clearly intrigued by the other and wondering what exactly is
on offer. The title of this book may give the impression that an eminent soil engineer
is once again tying to bring the bashful couple together. This is not the case.

One senses that Professor Kezdi shares the feeling of many readers of
Géotechnique that mathematics has been so closely harnessed to the necessarily
experimental approaches used in soil mechanics that there is little room between
for any serious consideration of the physical principles involved.

The book has been written primarily for students at the University of
Budapest, and the soil physics isthat of the Bernard Keen era rather than the purely
thermodynamic approach pioneered by Kenworthy Schofield, although energy
concepts are briefly discussed in the last chapter.

The first third of the slim volume deals with particle size distribution and
particle shape and their influence on compactibility. The treatment isnot new but it
is assembled in an attractive and highly readable manner.

In considering the strength of soil, Professor Kezdi considers first granular
and then cohesive soils. The soil physicist might prefer to reverse this treatment and
first deal more fully with the relationships between strength, pore water pressure
and suction for cohesive soils. However, with admirable economy of space the
author summarizes current thinking on shear strength and critical state soil
mechanics.

The last chapter, entitled 'Cases of phase movement', is concerned almost
entirely with fluid flow in sands. This is perhaps the most useful chapter from the
point of view of the practising engineer. One would have liked to see the treatment
extended to clay soils and the subject of consolidation.

This well-produced and carefully translated book must provide a valuable
supplement to any soil mechanics course, and engineers in general will find it both
stimulating and easy to read.

DC.
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STABILIZED EARTH ROADS

Archiv fur Acker und Pflanzenbau
und Bodenkultur 10/1979 (German Dem. Rep.)

Kézdi Arpad: Stabilized earth roads (Stabilisierte ErdstraRen). Budapest, Akadé-
miai Kiadé 1979, 327 S., 296 Abb., 48 Tab., 256 Lit., Ft 520,—

Zu der ungarischen Originalausgabe ,,Stabilizalt Foldutak" und der 1973
publizierten deutschen Fassung ist 1979 nunmehr eine Uberarbeitete englische
Ausgabe erschienen, die im Umfang und Aufbau der deutschen weitgehend
gleicht. Durch die Auswertung der wesentlichen Literatur bis etwa 1975 und unter
Berticksichtigung der uber mehrere Jahrzehnte vorliegenden umfangreichen
Erfahrungen des Autors wurden bei gleichzeitiger Straffung des Inhaltes —
gegenuber der deutschen Ausgabe —auch einige neue Abschnitte in Kapitel 7 bis
9 aufgenommen.

Nach einleitenden Ausfiihrungen (iber die Bedeutung von stabilisierten
Erdstraen und deren Lésungswege zum Bau werden ausfuhrlich die physikali-
schen, chemischen und bodenmechanischen Grundlagen dargelegt. Mehr als die
Hélfte des Buches wird den Ausfuhrungen in Kapitel 3 bis 7 Uber die mechanische
Stabilisierung sowie den Stabilisierungen mit Zement, Kalk, Bitumen und Teer
bzw. Chemikalien gewidmet. Im 8. Kapitel ,,Entwurf von Stabilisierten Erdstraen”
wird im Detail auf die Anwendungsbereiche der Erdstabilisierung, auf die
technischen Daten derartiger ErdstraBen und auf die Bemessung der StralRenbe-
festigung eingegangen. Im letzten Kapitel werden die Konstruktionsmethoden
und einzelnen Bauphasen dargelegt sowie ein typisches Bauverfahren (in-situ
mixing) nédher ausgefiihrt.

Mit dem vorgelegten Buch werden keine fertigen, abgerundeten ,,Rezepte"
oder ausfuhrlichen Anweisungen zu Konstruktionen und Bauweisen stabilisierter
ErdstraBen unterbreitet, sondern multilaterale Grundlagen geboten bzw. komplexe
Zusammenhédnge dargelegt, um daraus optimale L&sungen abzuleiten, die den
jeweiligen Standortbedingungen und territorialen Ressourcen hinsichtlich der
anzuwendenden Stabilisierungsmittel angepalit sind. Auf diese Weise wird dieses
Buch zu einem unentbehrlichen Ristzeug fir jeden auf diesem Gebiet tatigen
Ingenieur werden, um eine fachgerechte und material-6konomisch fundierte
Stabilisierung der ErdstraRen vom Entwurf bis zur Bauausfilhrung zu sichern. Das
besondere Anliegen des Autors ist es, durch zahlreiche Hinweise und gebotene
Zahlenbeispiele den Praktiker zu bef&higen, selbst die Einflisse und Auswirkun-
gen zu beurteilen, die sich aus den wechselnden Eigenschaften des Untergrundes
und der Erdstoffe ergeben.

Sowohl die Gestaltung und der Druck als auch die Art und Weise der
Wiedergabe von umfangreichen Schwarz-weil3-Abbildungen, von teils recht
komplizierten graphischen Darstellungen, von zahlreichen Tabellen und Formeln
verdienen als besonders gelungen herausgestellt zu werden.

A. Kullmann
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RELIABILITY OF THE PREDICTION
OF THE LOAD-SETTLEMENT DIAGRAM OF A PILE

E. E. De Beer™

The reliability of the prediction of the behaviour of a ringle pile is investigated by using
different methods of evaluation. Results gained by cone penetration test (CPT), method, DPA test,
DPB test and WST test arc compared with large scale tests. It turned out that CPT tests pro-
vide the test result because there is much similarity between the stress field around the cone and
the pile.

Introduction

Numerous are the contributions of Professor Kézdi to the problem of Pile
Foundations (London 1957, Montreal 1965, Budapest 1976, Weimar 1976, Founda-
tion Engineering Handbook 1975, Mexico 1976). In these contributions he stresses the
various parameters influencing the problem, and making a correct prediction based on
laboratory and field tests very difficult. In order to get an idea of our actual capabilities
of such a prognosis it can be worthwhile to describe the predictions made for some
actual pile loading tests, and to compare them with the measured values.

In this contribution the influence of the grouping of the piles will not be
considered, which does not mean that this influence should be neglected, especially for
the problem of the settlements.

General considerations
1. Ultimate bearing capacity — Conventional Rupture Load — Limit Load
A first attempt is to predict the ultimate bearing capacity of a pile. But at first
should be clearly defined what is meant by “ultimate bearing capacity”.
In principle the ultimate bearing capacity of a pile is the load for which the

gradient As :AQ of the settlement increase As to the pile load increase AQ becomes
infinite. However the load-settlement diagram of many test piles do not show such a

* Prof. em. Dr. ir. E. E. De Beer, Keise-lisk Plein 3, B 9300 Aalst, Belgium
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gradient, or if so, this gradient is only reached after relative settlements s:D (D
= diameter of the pile) larger than 30%. Ultimate bearing capacities corresponding to
such large deformations have mostly no longer any practical meaning.

Instead of the wording “ultimate bearing capacity” preference is given to two
other wordings.

“Conventional rupture load” Qcon

The conventional rupture load of the soil surrounding a displacement pile is by
definition the smallest of the two following loads:

1. the load for which the gradient As:AQ becomes infinite,

2. the load for which the relative settlement sb: D becomes equal to 10%, where sb
is the settlement of the base of the pile.

“Limit load"

Besides the notion “rupture load” is defined the notion “limit load” Q..

1 When in adouble log representation ofthe load-settlement diagram ofa loading test,
the points corresponding to the large loads are located on a straight line, the limit
load is by definition the smallest load whose representation is located on that line
(see Fig. 1 point Q,).

2. When in a double log diagram the representative points corresponding to the larger
loads are not located on a straight line, the “limit load” is defined as the load causing
an irreversible relative settlement s:D equal to 2.5% (DIN 1975— 1976).

Thus instead of the vague notion “ultimate bearing capacity” are introduced two
clearly defined notions “conventional rupture load” Q‘onand “limit load” Q,. When
making a prediction, one should clearly indicate to which notion the prediction
belongs.

Load in MN

0,5 1 2 3 45 710

Fig. 1
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Furthermore a prediction limited to one or both of these notions, is in many cases
not sufficient for practical purposes. In fact one should be able to predict the full load-
settlement diagram.

2. Prediction based on the results of laboratory tests

It is very difficult to make a close prediction of the load-settlement diagram of a
pile based on laboratory tests on “undisturbed” samples. There are several reasons for
this.

The bearing capacity of a pile is influenced by all the layers surrounding the pile.
Mostly these layers are heterogeneous and consequently a large number of samples
should be tested to obtain the characteristics of all these layers.

In general the properties of the soil layers show differences from one vertical to
another, making the prediction for a pile not located at the same vertical as the boring
more difficult.

The mantle friction on the pile depends on the stress field induced in the soil by
the placement of the pile, and by the subsequent load on the pile. It is difficult to
simulate these effects in the laboratory.

The rupture load at the base of a circular or square pile for the case of a
cohesionless soil can most approximately be expressed by the equations of Vesic (1972,
1975)

q,= Nga'mO (4)
with om0 = the mean effective stress in the soil mass surrounding the base before
application of the load
avo+ 2ffJ0
‘mGO- ©
av 0 = effective vertical stress in the soil mass,

aho = effective horizontal stress in the soil mass,
°i.0= (6)

The values of K and <«,0 depend not only on the original state of stress in the
considered soil mass (normally consolidated or overconsolidated), but also on the way
the pile has been introduced into the soil (for instance driven piles versus bored piles, or
buried piles).

The value of N* depends not only on the angle of shearing strength <p, but also
on the reduced rigidity index Ir,, defined by

Ir

\+ IrA 7
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in which Ir represents the rigidity index

= £
20+ V) (c"+ «m 0 tan (p)

where

A = the mean unit volumetric strain in the plastic zone surrounding the base,

E — the mean deformation modulus in the elastic zone surrounding the base

v = Poisson ratio of the soil mass.

The value of <g to be used is that corresponding to the mean stress in the soil mass
surrounding the base.

The deformability modulus E and the mean volumetric strain in the plastic zone
can, in principle, be obtained from appropriate oedometric and triaxial tests.

The values of the bearing capacity factor N* are given versus the angle of
shearing resistance cp', with the reduced rigidity index Ir ras a parameter in Figure 2.
The figure also shows the appreciably large influence of the rigidity on the rupture load
of a pile.

The great sensitivity of the results to the values of K, amJ), (p\ E and A
demonstrate how difficult it is to make acorrect prediction of the rupture load of a pile,
depending only on the results of usual laboratory tests.

Angle of shearing resistance,f

Fig. 2

3. Prediction based on the results of CPT tests

The rupture load of the soil surrounding a pile not only depends on the shearing
strength of the soil, but also on its compressibility characteristics, the relative depth of
embedment, the initial stress tensor in the soil and also on the stress tensor produced by
installing the pile. In order to predict the rupture load correctly, it is necessary to know
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all these factors, and it is no easy task to simulate them all in laboratory tests performed
on more or less undisturbed samples.

On the other hand a cone penetration test (CPT test) provides an in situ value
which is influenced by several of these factors.

The degree of similarity between the stress field around the cone and the pile
depends largely on the way the pile has been placed in the soil (driven, jacked, bored,
buried). There is, furthermore, a large scale effect. Approximate methods exist which
take this scale effect into account (Begemann 1963, De Beer 1963, 1971).

An example of the results of a CPT test is given in Figure 3, showing the cone
resistance qcwith depth, obtained by a cone with a diameter of 36 mm. Also shown are
the calculated values of unit rupture load, gr calc, for driven cylindrical piles, with
diameters of 0 188 mm, 270 mm and 619.5 mm derived by the De Beer Method. It is
clearly seen that at most depths the unit rupture load of a driven pile, 619.5 mm
diameter, is much smaller than the qc values, and that it would be a big mistake to
simply transpose the qc values to the pile problem.

qc and qr in MN/rn®
0 0 X) 30 «0 50

Reliability of the prediction of the behaviour of a single pile
by different methods

In order to check the reliability 06f the prediction, the best way is to compare the
scattering of the results obtained by different prediction methods, and when possible to
compare them with the results of pile loading tests (McLelland, 1977). Of course only
predictions introduced before knowing the results of the pile loading tests are to be
considered. Afterwards, it is mostly easy by adopting or adapting some parameters to
get a “fairly good agreement” with the calculated method and the reality.
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1. Driven piles in stiff clay layers

In Belgium the Boom clay is a stiff fissured clay whose shearing strength
characteristics have been determined by several laboratory and field tests. In order to
predict the length needed for a driven pile 0 1.37 m to reach a rupture load Qr= 34 6O
kN use can be made from the CPT results found in the Boom clay (Fig. 4), and from

CPT
Cone resistance, gc in MN/rr

Fig. 4

some experimental factors deduced from the results of pile loading tests performed on
real piles driven in this clay, in order to take account on the scale effect.

Another prediction method is the method of Focht (A method, 1972). The
coefficient Ais an empirical coefficient, deduced from a large number of field tests.

The values obtained with both methods are given in Table I. Both methods give
the same depth of 62.2 m, thus backing each other. However it should be observed that
the CPT method gives a larger base resistance Qhr and a somewhat smaller shaft
resistance Qsr than the A method.

Table I. Pile 0=1.37 m in Boom clay

. Qb, Q.r Qr Depth
Prediction method KN kN KN m
Belgian CPT (M4) 9400 25200 34600 62.2
Focht (2 Method) 6490 28000 34590 62.2
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2. Large scale tests at Houston ( Vesic)

At the Stockholm Conference Vesic (1981) showed the results of predictions
made by 10 eminent specialists in piling problems, as compared to the measured
“ultimate bearing capacity”. The Figure 5 taken from Vesic gives the rather large
scatter between the predicted values.

Vesic based his prediction on the results of the previously performed CPT tests. It
appears that his prediction is one of the nearest to the experimental values.

72028 60 80 HO
Time since driving m days

Fig. 5

3. Test piles at ESOPTIlI — Amsterdam

At the occasion of the Second European Symposium on Penetration Testing at
Amsterdam, the Organizing Committee sent to the participants the data of a soil
investigation at a test site, asking for a prediction of the bearing capacity of a test pile to
be driven at that site.

The available soil data were a CPT test (Fig. 6), a DPA test, a DPB test and a
WST test, all performed according to the European Standard (Tokyo, 1977) and at a
distance of 2 m from the location of the pile. Also available were the results of a boring
performed at a distance of 6 m from the location of the pile, and of the SPT tests
performed according to the European Standard (Tokyo 1977).

The test pile to be tested was a prefabricated concrete pile, 250 mm x 250 mm,
with a length of 15 m and a flat shaped toe, driven to the level —13.00 m NAP.
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0 5 IO 15 20 25 30 35 40 45
qc and g”r in MN/rr7

Fig. 6

Calculation of the conventional rupture load

The unit rupture load under the base ghr is calculated from the cone resistance qc
with the method De Beer (1971) for an equivalent diameter of the pile base Dh, given by

4 X0.25 %0.25
Dh =0.282 m. 9)

The calculations are based on the following data and assumptions:
Phreatic level: 0.70 + NAP
Volume weight above phreatic level: yd= 16 KN/m 3,
beneath phreatic level: yn= 20 kN/m3.
The values ghr, calculated with the computer program of the Université Catholique de
Louvain, are given versus depth on Fig. 6. At the level 13.00 m —NAP of the pile base
one obtains:

=8.6 MN/m2. (10)
The base resistance Qh ris given by
Qb.r=/W , =0.0625 X8.6 = 0.538 MN. (12)

In Belgium, the shaft friction resistance Qs r is usually calculated from the total
lateral friction resistance Qst measured in the CPT test. As the total penetration
resistance was not measured in the CPT test in Amsterdam, the Belgian method could
not be applied.

In place of the usual Belgian method, the shaft friction resistance was deduced
from the values qc of the cone resistance in the following way:

— In sands, the unit friction resistance q,r on displacement piles, is related to the cone
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resistance qc by the following empirical formulae:

Ac A

as.r 200 when qc” 20.0 MN/m2,
Ac

asr= e when qcg 10.0 MN/m2.

67

(12)

(13)

For intermediate values of qc, the value ofgs ris calculated with a formula obtained by

linear interpolation between q j200 and <T150.

In cohesive soils and for displacement piles one disposes on several experimental
data (Carpentier, 1970; De Beer et al, 1977) from which a relationship between the unit
shaft friction gs r on driven prefabricated concrete piles and the cone resistance qc (M4)

is deduced, as shown by the curve 1J of Fig. 7.

qc in MN/m»

Fig. 7

Shaft friction resistance in the hearing stratum

The bearing stratum is a dense sand layer. For the layer between 11.39-NAP and

12.99 m-NAP one has (Fig. 6)
(qo)m= 10.01 MN/m2,

(<neE =0.0667 MN/m2,

and
05.r.1=1M,(b.r.)T,

Ahx= thickness of the layer = 1.60 m,
X, = perimeter of the shaft = 4x0.25 = 100 m,
Qsr_, = 1.60 X 1.00 X0.0667 = 0.107 MN.
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Shaft friction resistance in the soft layers

For each of the considered strata the mean value (qgmofthe cone resistances and
the corresponding values gs,r.i, deduced from Fig. 7 are given in Table II.

Table 1l

Layer (99),,» MN/m2 Ah. 9j.r,i Qi
m — NAP (Fig. 6) L MN/m2 MN
2.19- 3.09 112 0.90 0.030 0.027
3.09- 5.19 0.49 2.50 0.018 0.038
5.19- 6.29 041 1.10 0.016 0.018
6.29- 9.19 123 2.90 0.032 0.093
9.19-10.99 0.67 187 0.035 0.038
10.99-11.39 165 0.40 0.039 0.016

Q,.I’. 2= X 6s.1,1= 0.230 MN

Finally in the last column the estimated total friction resistance Q=% 2 is given:

Qs.r,2 1Q i Qs.r. iXshi- (19)

Shaft friction resistance in the upper sand layer

For the sand layer between 101 +NAP and 2.19—NAP we have

(99m= 7.43 MN/m2, (20)
(<%r)m= =0.0495 MN/m2, (21)
Qs.r.3=*h3Xs(gs,) m= 3.30 X 1.0 X0.0495 = 0.158 MN. (22)
Total shaft resistance:
Qs r=0.107 + 0.230 + 0.158 = 0.495 MN. (23)
Total bearing capacity:
3 r=0.538+0.495 = 1.033 MN. (24)

As the pile base is located beneath the cricital depth in the bearing stratum,
according to the method De Beer, the calculated total bearing capacity Qrcorresponds
to the conventional rupture load (this is the load which in a monotonously increasing
loading corresponds to a settlement of 10% of the pile base diameter, except if before
total rupture should occur).
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Calculation of the pile cap load-settlement diagram

In order to obtain a safe estimation of the pile cap settlement, the residual forces
in the pile due to driving are disregarded. It is assumed that for loads Qbon the pile base
which are much smaller than the rupture load Qhr, the settlements of the soil due to the
lateral displacements can be neglected, and therefore with a sufficient accuracy, the
oedometric law of compressibility of Terzaghi can be applied.

Let us consider a load

0*=-~=7 =0.179 MN. (25)

As the stress level at the pile base generated by the load Qbis in any case smaller
than the stress level during the driving of the pile, not the constant ¢ of virgin
compression, but the recompression constant A has to be introduced.

The settlement of the pile base sb is then given by the expression

. ™"~hif_p0+i(gb-p 0)
sb- LA N -m-mmm e (26>
a pO
with
po = the initial effective stress at a depth h underneath the pile base;
po = the initial effective stress at the level of the pile base;
gb = the considered unit pressure on the base;
i = coefficient giving the variation of the stress increase with depth underneath the
singular point of the pile base (De Beer, 1949);
Ahi = the thickness of the considered sub layer;
A = the recompression constant.
One has:
pO= 18 X0.40+(20-10)(14.10-0.40)= 144.2 KN/m2, 27)
o] 0 179
“e=| = 00625-2864MN/ml <4

In sand safe values of the compression constant C are given by (De Beer, 1949)
(29)
2 Po

po= the initial effective stress at the level where gcis measured. In pure sands the
recompression constant A can at most be 10 times larger than the virgin compression
constant C.

Thus

A g 10C. (30)
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In order to obtain a safe value of the recompression constant A, instead of qc the base

resistance gbr has been introduced:

A=

At the level of the pile base one has

n

N=1°-2T 442

3 qgbr

2 po

10

3 8600

= 895-

(1)

(32)

This value has simply been considered constant over the whole thickness of the
compressed layer.
The calculations of the pile base settlement for Qb= 0.179 MN are given in Table

The calculated settlement amounts to

inm

0.063
0.125
0.188
0.250
0.313
0.375
0.437
0.500
0.563
0.625
0.688
0.750
0.813
0.875
0.937
1.00

Ah
inm

0.0625
0.0625
0.0625
0.0625
0.0625
0.0625
0.0625
0.0625
0.0625
0.0625
0.0625
0.0625
0.0625
0.0625
0.0625
0.0625

h/b

0.125
0.375
0.625
0.875
1125
1375
1.625
1.875
2.125
2.375
2.625
2.875
3.125
3.375
3.625
3.875

sb= 1.508 mm.
Table I11

i Po
kN/m2

1 1445
0.7 145.1
0.46 145.8
0.33 146.4
0.24 147.0
0.19 147.6
0.15 148.3
0.12 148.9
0.10 1495
0.09 150.1
0.08 150.8
0.07 1514
0.06 152.0
0.05 152.6
0.04 153.3
0.03 153.9

KAAb-Po)
kN/m2

2720
1904
1251
898
653
517
408
326
272
245
218
190
163
136
109
82

1°g,0

1.297
1.150
0.981
0.853
0.736
0.653
0.574
0.504
0.450
0.420
0.388
0.354
0.317
0.277
0.233
0.185

(33)

S
in mm

0.209
0.185
0.158
0.137
0.118
0.105
0.092
0.081
0.072
0.068
0.062
0.057
0.051
0.045
0.038
0.030

sb=1.508 mm

Itis assumed that for Qb Qb 1 3 the settlement of the base varies linearly with the

load on the base Qb.

For Qb> Qb J 3the settlements caused by the lateral movement of the soil cannot
longer be neglected and with increasing Qb they become predominant.
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For the value Qbr = 0.538 MN the conventional rupture load is reached, and
consequently the settlement

Dh 282
\,= = -jQ- =28.2 mm. (34)

The assumed relationship sb= F{Qb) is given by the curve OAB of Figure 8.

Mobilization of the shaftfriction resistance

It is assumed that the shaft friction resistance is completely mobilized for a
relative displacement soil-pile shaft of 0.01 Ds (Ds= diameter of the pile shaft). For a
settlement of the pile base s,,=0.012)s, all points of the pile shaft will undergo a
settlement at least equal to 0.01 Ds and therefore the shaft friction resistance will be
completely mobilized.

According to this assumption, for a settlement of the base sb { — 282/100 =
2.82 mm the side friction Qsr = 0.495 MN is completely mobilized.

It is assumed that for sb”sbJ- the mantle friction varies linearly with sb. In
absence of peak shear strength values, for sb> sbj- the mantle friction is considered to
remain constant. The assumed variation of the side friction Q, versus the settlement of
the base is given by the broken line OMN of Figure 8.

From the Figure 8 for a given settlement of the base sb, one obtains the force at
the base Qb and the mantle friction Qs, and consequently the total force on the pile

Q=Qb+ Q.- (3
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Pile cap settlement scar

The pile cap settlement is given by

oot lo.o
EAh 2 EAb

— For instance for:

1.508

QE=0.179MN; sh= 1508 mm; Qs= X0.495 = 0.265 MN,

2.82
E = 30.000 MN/m2; Ah=0.0625m2; EAh= 1875 MN, L=15m,

0.0179x 15000 1 0.265x15000
S = L508+ 1875+ 2 1875 =

= 1.508 + 1.432 + 1.060= 4.000 mm,
0 = ofc+ Rs=0-179+ 0.265 = 0.444 MN.
— Under the conventional rupture load, one obtains
6».,=0.538 MN; Qsr=0.495 MN; s,,r= " =28.2 mm,

0.538x 15000 1 0.495x 15000

= +
Scapr=28.2+ 1875 2 1875

scap,r= 28.2+ 4.304+1.98 = 34.5 mm,

Qr=0.538 + 0.495 = 1.034 MN.

(36)

@7

(38)

(39)

(40)

(41)

The predicted relationship between the pile load and the pile cap settlement is

represented on the Figure 9 by the curve OCD.

Q in MN
0 0,5 1,0
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Critical comparison with the observed values

The Organizing Committee received 36 predictions of the “ultimate bearing
capacity”. But only 13 predicted the full load-settlement diagram. The Belgian
prediction, based on the CPT test in the described way, received the n° 27. On the
Figure 10 the heavy dash dotted curve gives the observed settlement of the pile cap
versus the pile load, as given by the Organizing Committee. The other lines give the 13
predicted load settlement diagrams. The very large scatter of the predicted curves can
easily be observed.

The Belgian prediction n° 27 is represented by an heavier line. It can be seen that
for a given load the predicted settlement is always larger than the real one, the
maximum difference reaching about 100%.

The predicted conventional rupture load (load corresponding to sr b:D = 0.1),
Qr.predicted= 1035 MN is somewhat smaller but does not differ very much with the
measured conventional rupture load of 1.089 MN.

Although based uniquely on the results ofa CPT test, and with rather simple and
crude assumptions a load-settlement diagram is obtained, giving safe results, and
certainly as good as predictions based on other, possibly much more sophisticated
methods.

Pile load in kN
0 250 500 750 000 1250 1500

Fig. 10
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2. Other examples

The method of prediction of the ESOPT 2 Test pile has been given in detail. This
pile was a cylindrical prefabricated concrete pile.

Ofcourse the way of introducing the pile, its geometry, and the nature of the skin
of the shaft play an important role. In Belgium very extensive pile loading tests have
been performed or are underway in order to define empirical factors, which take into
account the influence of the mentioned factors, and are to be introduced in the
prediction method.

Some of the results already obtained can be found in the literature, and are
related to driven H steel piles (De Beer et al, 1981, 1982) to piles introduced by driving
or vibration, and with different geometries (De Beer et al, 1977, 1979, 1981).

Conclusion

The correct prediction of the load-settlement diagram of a pile is a very intricate
problem, as such a diagram is influenced by a large number of parameters which
depend on the way of introduction of the pile, and on its loading history.

In comparison with other laboratory and field tests, the CPT tests present the
advantage that their results are influenced by some of these parameters in an analogous
way as displacement piles are. Therefore it is not astonishing that by using the results of
CPT tests, duly taking into account the scale effect, one can mostly obtain predicted
load-settlement curves which are among the best, obtainable with the methods yet at
disposal.

Prediction exercices, checked against big scale- tests, are the best means to
improve the precision in the prediction of the behaviour of piles.
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BEHAVIOUR OF CLAYS AFTER LOADING

N. Janbu*

The short and longterm stress-strain behaviour of clays after static loading is analysed with
particular emphasize on the effect of stress history. Emphasize is placed on analysing the lateral
changes in stress and strain. Simplified models and numerical examples are used, but even so
information of fundamental nature seem to have emerged from these analyses.

Simplified model

The idealized model is shown in principle in Fig. 1 The main assumptions are as
follows:

— Isotropic initial stress in situ;

— Thin clay layer, i.e. H/B is small;

— Smooth top and bottom of layer;

— Smooth side boundaries, at distance L;

— Plane strain (or axi-symmetry);

— Intermediate stress <42=(0", +<r3)/2.

The clay layer carries an additional load g at a level where the vertical surcharge is
equal to p. Due to the assumptions made the maximum shear stress equals

* Prof. Nilmar Jambu, Norwegian Institute of Technology, Hoegskoleringen 7, 7034 Trondheim,
Norway
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The maximum shear stress trajectories are inclined at +45° with the horizontal.

The major principal stress <, acts vertically under the load, but horizontally
outside the load. Hence, the state of principal stresses are accurately defined over the
entire layer.

Initial stress changes

Immediately after load application the total stress changes become:

Zone L A<jl=q, Aa3=q/2, Aom= 3g/4 = mean,
Aad= q/2=max. deviator,
Zone 2. Aai=q/2, Att3=0, Aam=q/4, Aad=q/2.

To express undrained, excess pore pressure changes, our institute prefers the following
expression, based on total stress change

Au=Aom-DAod. 2

Laboratory experiences have given D-variations from about +0.5 to —0.5. For simple
classification of the clays:

D>0 for OC-clay, max +0.5
D =0 for ‘elastic’ behaviour,
D <0 for NC-clay, min. —0.5.

Using Eg. (2) on the model example one obtains the following initial pore pressure
changes, u,; see Fig. 2.

A 3-2D
Zone 1
Zone 2 :~MN=1=21. (2a)
q 4
[N — EL oo » QC

Fig. 2. Undrained excess pore pressure changes in Zones 1and 2 for different clays. Initial values Aucat time
r=0, theoretically
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A main conclusion to be drawn from Fig. 2 is the following; for zone L

Only in very rare cases (D = —1/2) will excess pore pressure be equal to the excess
load g. In most cases in practice Aut<gq, and theoretically as low as Aut= q/2 for
overconsolidated clays.

Of course, in Zone 2 the excess pore pressure is much lower, the difference
between the Zones is q/2 = constant. The abrupt change over the zone boundary is in
more realistic models substituted by a smooth transition zone, see eg. Janbu (1979).

Knowing the total stress changes and the pore pressures, the effective stress
changes become

d 1+2D Aa'h 2D —1
Zone ].'A(t” a
q 4 7 g 4
Aa'v. 2D—1 Aah 1+2D
Zone 2 , 3)
q 4 q 4

These initial, effective stress changes are illustrated in Fig. 3 as a function of D.
The most important information gathered from Fig. 3 is as follows:

-0 £ 0 0,5 -0,5

Fig. 3. Initial effective stress changes

The immediate effective stress changes under undrained conditions are very
appreciable for all types of clay. Under the load (Zone 1) the effective vertical
stress increases while the horizontal effective stress decreases. Outside the load
(Zone 2) it is opposite.

The magnitude of immediate effective stress changes are illustrated by the following
two examples:
(1) NC-clay, b= —0.3:

A(r'v=0Aq, Aoh= —0Aq in Zone 1,

Aa'v= —O0Aq Ak=0Aq in Zone 2,
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which will lead to horizontal swelling and vertical compression in Zone 1 under the
load, and quite opposite in Zone 2.
(2) OC-clay, D=0.3:

Ao'v=0Aq, Aa'h= —O0Aq in Zone 1
Aa'v= —0.1q, A<h—O0Aq in Zone 2

which shows that immediate elastic vertical compression in Zone 1 dominates.

Initial deformations

The immediate, undrained deformations can now be analysed in terms of
effective stress, since the effective stress changes are known. The one-dimensional
tangent modulus concept, Janbu (1963 and 1967),

will be used, because the ordinary ranges of Af-values in onedimensional compression
and swelling are well known from 20 years of experience for several types of clay.

With a lateral swelling modulus M s the immediate, one dimensional lateral
displacement becomes

1-2D ¢gB

8 M/ @

For saturated soil, this undrained lateral displacement cause an immediate vertical
settlement &0 which corresponds to no volume change equals

o= —-— ——;  for plane strain,
S 4 Ms P
\-2D g H .
i0 - — mmmm— for axi-symmetry .
oi 5N y y ©

Zone 2 must be laterally compressed an amount equals 6hs This compatibility
requirements is satisfied theoretically, for

L_1-2D Mc
B ~ 1+2D M-

when M c¢c= horizontal compression modulus outside the loaded area. Usual ranges of
D- and M-values lead to the conclusion that the expansion of Zone 1 is absorbed by
Zone 2 for an extension L= 10% to 30% of B.
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Since an immediate change in effective stress Aa'v takes place Eq. (3), it leads to an
immediate, elastic vertical compression in Zone 1, equals

1+2D qH
6,.= 6)

~4~ Wc
when M c=vertical compression modulus.
The lateral deformations associated with 6ie are usually small, and an
insignificant lateral compression of Zone 2 is required even if dvol. = 0.
Hence, the initial settlement §in the conventional approach isequal to a sum ofa
no volume change part 6i0 and an elastic part aie, as follows

&:/\,O+diel (7)

The two components of the initial deformation are shown as function of D in Fig. 4,
from which one reads the following trend:

0
0—»

Fig. 4. Components of initial deformations

For a saturated normally consolidated clay with D= —0.5 the initial settlement
consists only of the no volume change component €0, while &= 0. Since Aut=q
for b= —0.5 the subsequent consolidation corresponds to a 100% pore pressure
dissipation. Therefore Sie is to be added to Sc as in the conventional approach.

For a stiff overconsolidated clay with D= +0.5 the initial settlement consists
only of the elastic part 6ie, while 0= 0. Since du, = g/2 and Aa'vi= q12, the Stis
caused directly by Aa'vi. The subsequent consolidation is hence caused by a pore
pressure dissipation of only 50% of g, leading to a consolidation settlement of
only 50% of the theoretical, classical value for M ¢= constant. Hence the 0, = Sieis
already included in the classical value of sc.

Therefore, it is directly wrong to add & and sc for overconsolidated clay, when &C
is calculated for the full load increase q.
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For intermediate clay types, say for D s 0, the initial settlement contains both
components, and now the consolidation due to pore pressure dissipation (&) is
smaller than the classical value 6c for total load q.

These considerations can be included formally in a generalized expression for total,
vertical settlement.

&= &+ daut+ B, (8)
where, theoretically

= K0+ Fe= initial settlement, at i=0,

ocu= consolidation due to dissipation ofdu;approximately over a time tcu, since Aut<gq
most often ¢au< 6c,

6s= creep (rheological, or so-called secondary compression) for t>t,,.

A few comments regarding expression (8) is necessary:

In reality § takes some time, but its timedependency has still not been explored
sufficiently. The required ta is theoretically infinite, but in practice a fairly good
approximate, finite estimate can be made. In the model Ss is estimated for times t~ .tcu,
but in reality creep also occurs during pore pressure dissipation. The adopted
distinction between 6cuand  is therefore made for practical reasons only, due to a lack
of a more realisticcomposite model. Research is going on to obtain a more satisfactory
model for practical engineering purposes.

For numerical examples the following data are assumed (offshore-dimensions
and loads):

o120 kPa, H=20m, RB=80m (circle).

Three types of model clays are selected, classified by their D-values:

NC: D= —0.3, Mc= 12 MPa, M s= 3 MPa,
EL:D= 0, Mc=4 MPa, A/ls=10MPa,
OC:b— 0.3, Mc= 10 MPa, Ms=40MPa.

Using the derived formulas one obtains the numerical results shown in Table 1

Table 1. Numerical examples

.- N t
Clay <Ho+ die—§ o meters A

m m m m A« q N

NC 0.32+0.20=0.52 1.80 2.32 0.90 0.22

EL 0.12+0.15=0.27 0.45 0.72 0.75 0.37

ocC 0.01 +0.10=0.11 0.14 0.25 0.60 0.44

The contribution acu, due to pore pressure dissipation, is added for completeness,
and also the magnitude of dissipated pore pressure du, versus g. Table 1shows that
amounts to 22% to 44% of the total §with the largest value obtained for the OC-clays.
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Pore pressure dissipation

The initial pore pressure Aut will dissipate with time. Theoretically, more than
90% of Au(is dissipated at a time ta equals

toy (9)

where d = drainage path for vertical one-dimensional drainage only, and c,, = coeff. of
cons, (in m2/year).

The corresponding consolidation settlement, 6 due to pore pressure dis-
sipation, becomes

3—2D qgH

Y 4 ~Mc' 10

This means that éie+ 6cu= qH /M c= 6c. The values of SL¥or the three types of clay in the
example are included in Table 1

The time required for pore pressure dissipation will be shorter than expressed by
Eg. (9) because horizontal drainage will also take place. For this example this
horizontal effect is neglected herein.

Creep (or secondary consolidation),

When Aut—0, i.e. t> tcu, a constant state of total and effective stress exists. The
deformation are now creep (rheologically), or so-called secondary consolidation in

geotechnics. For the example shown one can express < as follows (Janbu, 1969) in the
simplest model:

<5=—In—,

r.tru ()

where rs= dimensionless time resistance, or simply the creep number.

If one prefers to estimate creep rate S, at the time t> ta

/1l
<5.= (12

rt
For the three model clays used herein, the proper time-related parameters are:

NC: ¢,,= 3m2yr, r
EL: c,,=10m 2yr, r,= 400,
OC: cv= 25 m2yr, r

When assuming double drainage d= H/2=10m in the example, and with the data
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above one obtains; Egs (9) and (10):

an=1,8m, 045m and 0.14m,
i,, = 33yrs, 10yrs and 4yrs

for the three clays NC, EL and OC respectively.
From Eqg. (11) one finds
=9.0cm, 35cm and 1l1l4cm,
for t-2tcy,

and from Eq. (12):
$=4mml/yr, 5mm/yr and 5mml/yr
at i=t,,.

Settlement versus time

The informations obtained up to now are used to construct the curves for
settlement versus time for the three types of clay, called NC, EL and OC. The result is
shown in Fig. 5.

The indicated point of 50% consolidation is plotted at time tso= 0.2t
according to classical theory for M c= constant, and vertical drainage only.

In reality M increases with depth (particularly for NC-clay) and M increases with
effective stress. A strain theory for consolidation (Janbu 1965) can take these effects into
account and it leads to a faster consolidation process, particularly to begin with. This
effect is in principle included in Fig. 5 for the NC-clay. Horizontal drainage also speeds
up consolidation.

For the OC-clay the concept of M = constant may be a fairly good approxi-
mation. To neglect lateral effects is also reasonable, so no correction is indicated on the
OC-diagram in Fig. 5.

Concluding remarks

The idealized very simple analyses carried out herein has been triggered by acute

problems arising in offshore engineering.

The basic geotechnical reasonings behind these analyses are the following:

— All deformations in granular soil has their main root in the grain skeleton
response, and since the deformations of the grain skeleton is solely dictated by
effective stress changes, irrespective of boundary conditions, it is necessary to
explore the effective stress changes at any time after the load application has
taken place, in order to get insight into the actual soil behaviour at various
times after load application.
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Time in years

0 10 20 30 40 50

Fig. 5. Estimated settlement versus time for the three model clays

The analyses have lead to the following observations:

— The conventional approach of adding initial settlement and 100% con-
solidation settlement is justified only in very rare cases.

— The amount of consolidation settlement due to pore pressure dissipation is
often overestimated by the conventional approach using Aut= g, since in
reality Aut<gq.

— The net result of these deviations is that the portion of the total settlement
that occurs during the early stages after load application is often under-
estimated by the conventional approach while the total value itself is most
likely overestimated, classically (creep neglected).

Ifone adds the influence of increasing M with depth and with effective stress, the
rate of settlement is increased furthermore, particularly during the first part of
consolidation.

The effect of load repetitions (wave action) superimposed on an average state of
stress, is now subject to intense research to be able to predict the changes in rate of
settlement and possible changes in total settlements due to cyclic loads.
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In closing it is strongly emphasized that this oversimplified analyses are carried
out solely for the purpose of trying to identify trends of behaviour which may not be
properly understood as yet. The real behaviour near t=0 requires more intricate
studies. Such studies are urgently needed.
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EVALUATION OF THE SMALL COHESION EXISTING
IN NATURAL SANDS DEEMED TO BE COHESIONLESS

J. Kerisel*

Small cohesion ofsandy media can play an important role in active and passive earth pressure
problems or in arching effects. Because of the problems of taking undisturbed samples from sand the
laboratory investigation of this problem is not possible. Site investigation should be used. Cohesion
can be determined by pulling out a panel or a pile. Results of small and full scale tests and the
theoretical investigation are presented.

Theoretical considerations

In the calculation of foundations and retaining walls relative to sandy media,
one is inclined to refer only to the angle of friction whenever the cohesion is supposed to
be no more than some T.f/m 2i.e. a few tens of KPa. To proceed on such a line is correct
and safe for dry clays retained by walls: they show large fissures through which the rain
can percolate, ruining the cohesion. But it is different for non plastic media. In tropical
countries, for example, the embankments almost vertical of deep cuts in sand often
remain stable in the long term and to neglect the small cohesion of these sands would be
a denial of the reality.

More generally, to neglect a cohesion of some tens of KPa associated with an
angle g=0f 30° leads to an important waste. Fora retaining wall, the multiplicator of C is
then:

tan (p

20 KPa of cohesion only corresponds to — 23 KPa for the thrust which
compensates the thrust of 9 m of cohesionless sand. For a foundation resting on sand,
the influence of the cohesion is still more important. The C multiplicator is:

Kpexpatanip- 1 =3Q
tan 9

20 KPa of cohesion correspond to an allowable additional ultimate pressure of
600 KPa.

*Jean Kerisel, Past President of the International Society of Soil Mechanics and Foundation
Engineering, Simecsol, 115 rue Saint-Dom, 75007 Paris, France
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Driving tunnels or underpinning foundations in sandy soils would be impossible
without this small cohesion which explains all arching effects.

Many small scale models using sands artificially built layer by layer by
compaction are not equivalent to large volume of natural sands not only due to scale
effects but also to the small cohesion existing in the latter.

Many observations have shown that a small cohesion can take place in a
cohesionless medium in-situ after a life of only a hundred ofdays. This cohesion cannot
but increase with time as shown for clays by Bjerrum in his dissertations on ageing
effect. The reasons of this built-in small cohesion in sands are multiple: often chemical
but more generally under compressive stresses, they are due to an attrition followed by
liaisons on small surfaces of grains. Autor had always in mind the construction of the
Tower Maine-Montparnasse in Paris some ten years ago. The builder had to remove a
15 m high fill in sandy material which was worked in 1850 the top of it being the
platform of the tracks in the Montparnasse Railway Station. So important was the
cohesion 120 years after, that the contractor had to use pneumatic picks to remove the
fioll.

Conversely, this small cohesion may be transitory: it has abused many young
children playing in insupported trenches dug in humid sands.

Therefore, an important problem for engineers is to measure this small cohesion.
Laboratory tests on undisturbed samples is almost impossible. The core samples are so
fragile that trimming is a challenge.

How can a C some tens of KPa can be determined by an in-situ test, whatever 4%
To do that, we propose pulling tests. Many tests of this category have been performed
in the past and they have been reported, in particular by Ireland (1957), Sutherland
(1965), Meyerhof (1973), Das (1972) but the difficult problem is the interpretation of the
test. Our interpretation is based:

a) on the corresponding states theorem of Caquot (1934). This theorem shows that
there is a correspondence between a medium C, pand a medium 0, by adding a
spherical vector C/tan (pin every inner point and a vector C/tg (p normal to the outer
surfaces;

b) on our tables, for the calculation of active and passive pressure (1948);

c) on pulling tests in cohesionless sand mixed with a small amount of cement giving
birth to a cohesion which is thus known a priori.

In fact, one knows that beyond a certain depth, the equations ruling pulling tests
are very different from those corresponding to a small depth. The analogy is obvious
with the driving of a pile where down to acertain depth (one meter for small diameters)
there is a relationship between the overburden and both point resistance and lateral
friction.

Here, of course, there is no point resistance but the question is to write correctly
the relationship between lateral friction and yD, y specific weight of the C<p medium, D
depth of the small embedded pile to be pulled.
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Formula

First, let us suppose that we are concerned by an indefinite panel to be pulled; we
call 2r the thickness and D the depth.

Using the corresponding states theorem, the problem may be split into two
others.

Fig. 1L Elements of the problem in a medium C=0, <

a) Medium with weight and friction; no cohesion

When pulling up the panel, a passive pressure will act on a plane AB inclined at
an angle Ato the vertical,  is unknown but for every A we will determine the passive
pressure and optimized A We call b, the passive pressure at point M at unit distance
from B. Its obliquity is called 0 with —<p<0<cp.

In order that b, gives a downwards component (opposed to the pulling force) it is
necessary that: A< 6 < tp.

For a given A we have first to optimize 6 in order to get the maximum vertical
component b, sin (&—A).

For example, with (p= 30°, A=10°, the optimization corresponds to %= 2¢>/3
whatever

We have calculated all the b, optimized in relation with 6 and compared them,
and have found that the max « of the vertical component is obtained always for A=0
that is to say when plane AB is confounded with the lateral surface. Such a result is not
obvious a priori and we have finally the Table 1

Table 1. Maximum max. of the vertical passive pressure K

<pin degrees 20 25 30 35 40
K 0.33 0.40 0.49 0.60 0.72
S for Kk 1 3/4 213 7112 12
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the pulling force in this first problem is therefore equal to:
Q=2xjyD 2k

the factor 2 relates to the two lateral surfaces, or:

1
gip g YOk

k being given by Table 1

b) Weightless medium with C<p#0

We call here H the isotropical tensor C/tan ¢

Fig. 2. Conesive weigntless medium

IfH is applied in every inner point, the equilibrium is not changed. Therefore, we
have only to determine the passive pressure b2 to be brought on plane AB by H applied
on the outer surface BC, being well understood that from the normal component of that
passive pressure we will have to deduce H acting on AB.

For every Aand a given <§ b2 has been determined by the tables of Absi and
Lherminier; afterwards, we have calculated the expression of the vertical component

b2sin G—A—H sin A

and found out the maximum of that expression varying 6 and finally compared the
results for several values of A1 As previously we found that the max. max. is obtained for
A= 0. Finally the max. max. of Qc are shown in Table 2.
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Table 2. Max. max. values of Qc

42 20 25 30 35 40
@ 0.32 0.40 0.49 0.58 0.68
2DH
@ 0.88 0.86 0.85 0.83 0.81
2DC

QJ{2DcC) is decreasing very slowly with pand in the fork 20° to 40° which interests us,
with a max. error of 4%, we can write:

Qc=0.85 X2DC whatever is s
To summarize the total result of the two subproblems
~ = |yDk +0.85C, ®

k given by Table 1
For ¢p=30° and C= 20 KPa for instance

for D 1m 2m

Q/2D in KPa 42+17=211 8.4+17 =254
The second term, even with this small cohesion, is preponderant. Now, is this
formula (1), is the pulling force divided by the screen lateral surface still correct for a pile
of diameter 2R1 In other terms is Q/(2nRD) given by the same formula?

Experimental results reported hereafter seem to show that the answer is yes and
finally if A is the lateral surface of the pile or panel (1) may be rewritten as follows:

% = -jyD k +0.85 C. 2

Experimental results

In all the following experimental tests we speak of net pulling force, i.e. we have
deduced from the total pulling force the weight of the piles or panels.
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a) Small scale pulling tests in sands where it was believed
that C is zero

We have checked the experiments of DAS (1977) with the values given by our
formula (2).

The correlation is good if a cohesion of 4 KPa existed in the sand in which DAS
piles were pulled.

b) Full scale tests

A number of full scale tests were gathered by the Comité d’Etudes de la
Conférence Internationale des Grands Réseaux Electriques (Barraud et al, 1965); the
tests were performed in various countries to determine the stability conditions of
pylons, in Australia by the State Electricity of Victoria (shown by A in Fig. 3), in Poland

Q/A, kPa
10 20 30 40 50

Fig. 3

by Energo projekt (shown by P), in France by Electricité de France (shown by F). The
letters C and K correspond to experiments performed respectively by Cambefort and
Kerisel.

Figure 3 concerns sands with = 35° and C deemed to be zero.

On Figure 3 are drawn two straight lines:
— a dashed one corresponding to formula (2) with ¢p= 35 and C=0,
— another full line corresponding to formula (2) with p= 35° and C increasing with

depth from 7.5 to 15 KPa.

The agreement is reasonably good for the full straight line and the corresponding

assumptions.
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c) Pulling tests in a medium C<pgp0
1. Panels

Full scale tests are very rare for panels.

Exceptionally, we did such a test for the Lyon metro (Kerisel and al, 1972). The
panel 0.60 m thick was 4.90 min length and 7 m in depth. It was made ofconcrete cast in
the Rhone alluviums composed of sand and gravels. The peak value of Q/A measured
was 55 KPa.

<= 35°and C= 12 KPa were measured in a big shear box test. With these values
formula (2) gives 42 KPa: the difference with 55 KPa can be explained by the fact that
35° and 12 KPa were intermediate between peak and residual value.

2. Small scale tests with piles

As explained here above, we built an artificial material which was a Seine sand
mixed with cement (4% in weight). The pulled piles had a diameter of 63 mm.

To vary the experiments, the tests were performed after a setting time of the
cement of 2 days and 8 days.

Fig. 4 gives the shearing strength 1 of the sand, without cement and with 4% of
cement at 2 and 8 days.

B, kPa

Fig. 4. Shearing strength with the box

Now, the pile was coated with a resin (araldite) and placed into a cylindrical hole
worked out with an auger, the hole having a diameter slightly greater than the pile
diameter.

After the time interval necessary for the setting of the resin, the pile is pulled and
Q/A measured (Fig. 5)

In all tests, the pile came up not bare but enveloped with some centimeters of
sand. In formula (2) A has been taken as the lateral cylindrical surface of that sand.

The depths D of the embedded pile were successively 0.25, 0.35 and 0.55 m.
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Fig. 5
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With such depths it can be seen that in formula (2) even o is greater than 45° the
first term is neglectible in front of the second with the cohesion measured in the sand

cement.
Practically with these data

, =085 C, @

C=118—.
" @)

Finally the results of the tests are shown in Table 3.

Table 3
D C coming from experiments in
0.25m 0.35 m 0.55 m Cand plabo
with the box
Sand cement peak residua] peak  residual peak residual
2 days 84 84 64 64 69 65 60 45°
8 days 98 80 95 82 90 75 80 45°

There is a pretty fair agreement between C and measured and deduced from the
pulling tests.

Summary

Small cohesion in sandy media plays an important role in active and passive
pressure as well in arching effects. One must try to measure it carefully. As trimming isa
challenge for such sands, we propose to use in-situ tests and more precisely pulling
tests, using small piles (depth D smaller than 2 m) as shown in Fig. 5. C and ¢>may be
calculated by formula (2) or by the simplified formulas (3) and (4) when D <; 1m and C
greater than 50 KPa.
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SOME EXPERIMENTAL STRESS-STRAIN
RELATIONSHIPS FOR LOESS COLLAPSING SOILS

M. V. M alyshev—V. A. Pustogachev™®

The problems of deformability ofloess soils was investigated on undisturbed samples taken
from a borehole of 30 m depth. Tests were carried out on samples with natural moisture content and
on saturated soil. Collapsibility of loess was tested in both oedometer and triaxial tests. Special
emphasis was placed on analysing the space stress condition by using triaxial testing.

The problems of deformability of loess soils of natural structure and moisture
content taken from the holes 30 m deep through the whole depth of collapsing mass
have been studied in the Laboratory of the Chair of Soil Mechanics, Foundation Beds
and Foundations, MISI after Kuybishev V. V., USSR. These soils according to their
collapsing characteristics refer to Type Il. The deformability of the soils was tested
using oedometer and triaxial compression apparatus. Oedometers were applied to
study the deformability of saturated soils and those of natural moisture content.
Special researches in collapsing deformation were conducted by the method of single
and two curves, the depth at which specimens were taken into consideration. The single
curve method was used in carrying on experiments with wetting soil under a pressure
equal to yH. For the soil specimens taken at different depths it was found that the
collapsing deformation defined under single curve method is always greater (by 20-
50%0) than that defined under two-curve method. The non-linear dependence of relative
collapsibility on pressure was revealed: the higher the pressure, the smaller is the
increment of relative collapsibility.

The deformability of loess soils under conditions of space stressed state was
studied on triaxial compression apparatus. For this purpose several series of
experiments were made. One series was devoted to testing the deformability of soils of
natural moisture content and structure, another series treated soils fully saturated. A
special series of experiments dealt with studying collapsing deformation under triaxial
compression conditions to be discussed below.

The results of studying loess soil deformability at preloading showed that the
dependence of the volumetric deformation on the pressure is linear. Such results were
obtained both for the soils of natural moisture content and for saturated soils. The
Table below gives the moduli of volumetric deformation through the depth of
collapsing soil mass.

¢ Prof. Dr. Sc. M. V. Malyshev—ENG. V. A. Pustogachev, Moscow Civil Engineering Institute,
Sluzovaya, Nabereznaja 8, Moscow-MII4, USSR
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Table
Depth, m 3 7 14 21
Module of volumetric deformation of soils of natural
moisture content, MPa 53 95 18.3 23.0
Module of volumetric deformation of saturated
soils, MPa 12 21 33 55
Moduli correlation 44 45 55 4.2

In case of clay soils the increment of volumetric deformation reduces with the
pressure growth. The linear relationship of the volumetric deformation of loess soils
and the hydrostatic pressure may be accounted for by their high porosity; for instance:
the porosity coefficient for the soils studied varies from 0.9 to 0.6 with depth. For non-
collapsing layers of soil taken at a depth of 27 m and more non-linear relationship was
obtained.

The deformability of loess soils essentially increases when they are wetted. As is
seen in the Table the moduli of volumetric deformation decrease 4-5.5 times. This
change is most considerable at a depth of 14m and these very layers are more
susceptible to collapse than others. It follows that the greater collapsing properties of
the soil, the more considerable is the change of the module of volumetric deformation at
wetting.

The deformability of loess soil both of natural moisture content and saturated
when deviatorily loaded was studied along the line of crushing, the deviatory loading
being applied at hydrostatic pressures of various values. Consideration was taken of
the depth at which the specimen was taken, as the character of the deformation
considerably depends on the prehistory of loading. Special attention was paid to the
studies of soil deformability at the hydrostatic pressure equal to yH.

At the start of the deviatory loading in all the experiments non-linear
dependence was found (ascertained) and linear dependence at the subsequent loading,
vertical and horizontal deformations being essentially non-linear which depends on
the density and moisture content of the soil.

The size of the non-linear section of the chart of the volumetric deformation
dependence on the deviator depends on the rate of preloading and on the moisture
content of the soil. Ifthe hydrostatic pressure is close to yH and the soil is saturated the
relationship is slightly curvilinear. Depending on the density of the soil the non-linear
section of the chart extends up to the deviator

ffi —<j3= 0.02-~0.05 M Pa.

In case the hydrostatic pressure is lower than yH or the soil is of natural moisture
content the non-linear relationship is preserved up to

<7-ff3=0.10-0.15 MPa.
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In both the cases the volumetric deformation makes 1-1.5%. With further
loading linear deformation occurs. Such a behaviour of loess soils can be accounted for
by their structural strength and the availability of water-colloidal bonds between the
soil particles. Until these forces are overcome there exists non-linear relationship, but,
further on, linear relationship becomes pronounced, the prevailing role being played by
the friction forces between the particles (Fig. 1).

a) B,-<[3.MPo

0 01 0,2 0,3 0.4 0,5 0,6

Fig. 1L Graph ofloess soil deformation due to deviator; a) volumetric deformation, b) vertical and horizontal
deformations; 1-soil of natural moisture content, 2-saturated soil

The deformation of soil at the horizontal pressure lower than yH differs
considerably from that described above. Here, the non-linear section is preserved
within 1-1.5% of the volumetric deformation, then comes abrupt destruction of the soil,
at which vertical and horizontal deformations develop intensively, the volumetric
deformation of compaction being observed at it. The value of the deviator when the
destruction of the soil occurs depends on the depth at which the specimen is taken and
on the value of the horizontal pressure.
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The deformation of soil at the horizontal pressure higher than yH is close by its
nature to that at the pressure equal to yH, but the deformation module increases.

Figure 2 shows the graphs of variations of Poisson coefficient and the linear
deformation module at deviatory loading (both being defined by incrementing
deformations for every step of the deviator). For saturated soils the Poisson coefficient
at the starting moment of loading decreased from 0.3 to 0.1, then increased, and at a
certain value ofthe deviator the rectilinear dependence was maintained up to the values
close to 0.5 1f the graph of the coefficient variations is compared with the graph of
changes of volumetric deformation due to the deviator it is seen that the decrease of the
Poisson coefficient corresponds to the non-linear section of the volumetric
deformation. In the same way, but at higher values of the deviator, the Poisson
coefficient decreases for the soil of natural moisture content. It follows that the Poisson
coefficient for loess soil depends essentially on moisture and density.

The linear deformation module for initial steps of the deviator is considerable
(ranging from 25 to 6 MPa). It corresponds to non-linear dependence of volumetric
deformation on the deviator. Further on, it decreases gradually from 4 to 1 MPa.

0)

b) «,-03. MPa

Fig. 2. Variation of deformation characteristics of loess due to deviator; a) Poisson coefficient, b) linear
deformation module; 1-soil of natural moisture content, 2-saturated soil
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If linear deformation moduli of saturated soil and of that of natural moisture
content are compared at the same horizontal pressure equal to yH, they don’t actually
differ, except the initial and final steps of loading. The reason is the following: being
preloaded saturated soil experiences considerable deformation and, consequently, its
density increases as compared to the soil of natural moisture content. Though these
soils differ in their physical state, the effect of the density and moisture of the soils on
their deformability results in the fact that their moduli of linear deformation are
actually the same. It follows that when loess soil is wetted its physical state changes,
collapse occurs but linear deformation module computed from increments remains
unchanged at the linear section of the volumetric deformation variations due to the
deviator.

The collapsing deformation was separately studied. The experiments conducted
on the triaxial compression apparatus were similar to those made using oedometer
when soils are preloaded under the method of single and two-curves. Like in case of
using oedometer the volumetric collapsing deformation received under the single curve

°> oG i MPa

b

Fig. 3. Dependence ofcollapsing deformation on hydrostatic pressure; a) volumetric collapsing deformation,
b) vertical and horizontal collapsing deformation; 1-under the single curve method, 2-under the two curve
method
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method is found to be smaller than that obtained under the two curve method. As to
vertical and horizontal collapsing deformations they are found using the two curve
method in different tests, but under the single curve method the vertical collapsing
deformation may be greater and vice versa, which depends on the rate of wetting the
specimen. The difference of collapsing deformation obtained under these two methods
is accounted for by different effect of water on the soil subjected to no pressure and on
that being under pressure.

If comparison is made of the collapsing deformation of loess soil under some
pressure in the oedometer with the volumetric collapsing deformation in the triaxial
compression apparatus at the same hydrostatic pressure, it is found that in the latter
case the volumetric collapsing deformation will be greater. It is explained by the fact
that the stressed state in the oedometer is different due to side pressure than in the
triaxial compression apparatus at preloading; this difference increases with the growth
of pressure.

The collapsing deformation as dependent of the deviator was studied in the
triaxial compression apparatus. For this purpose three series of tests were carried out.
The soil to be tested was taken at a depth of 14 m where the natural pressure

yH = 0.24 MPa.

In the first series of tests the soil was wetted at different values of the deviator, the
horizontal pressure remaining constant and equal to the natural pressure yH. In the
second series the soil was wetted at different values of the deviator but here, the vertical
pressure remained constant and equal to yH. In the third series of tests the soil was also
wetted at different values of the deviator but this time, it was the average pressure that
remained constant, equal to yH. The results of the tests are cited in Fig. 4.

The tests confirmed that the collapsing deformation is considerably dependent
on the deviator. The volumetric collapsing deformation depends on the deviator and is
considerably dependent of the average pressure. Ifin the first and the third series of tests
the volumetric collapsing deformation always increases with the increase of the
deviator, in the second series it reduces starting from a certain value of the deviator
which occurs due to the decrease of the average pressure. The vertical collapsing
deformation depended to a considerable extent on the deviator: the greater the
deviator, the greater the vertical collapsing deformation, the latter being dependent on
the value of horizontal pressure—the lower the horizontal pressure, the greater the
vertical collapsing deformation. The horizontal collapsing deformation in this case
may be the deformation of compression as well as the deformation of expansion of the
specimen. If the value of the deviator is insignificant, the soil is always compressed
irrespective ofthe value of the horizontal pressure. At larger values of the deviator there
occurs horizontal expansion of the specimen.

Thus, the influence of the stressed state of the soil on its collapsing deformation is
evident.

Ada Technica Academiae Scientiarum Hungaricae 98, 1985



STRESS-STRAIN RELATIONSHIPS 103

a) <V °3- MPa
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Fiy.4. Dependence of collapsing deformation on the deviator; a) volumetric collapsing deformation, b)
vertical and horizontal collapsing deformation; l-at $3= Const, 2-at <, =Const, 3-at o,wer= Const
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BEHAVIOUR OF PILE GROUPS UNDER LOAD
IN GRANULAR SOILS

G. Petrasovits*

Presented in this paper are the results of conventional triaxial tests and of a simulated pile
model test in triaxial cell, proving the effect of test conditions on the value of shear strength
parameters. Furthermore results of laboratory model and in situ tests conducted on pile groups with
different length, number, and spacing of piles are presented.

1. Introduction

Considering interaction between pile and surrounding soil, and the effect of this
interaction on pile load bearing capacity, investigations of changes caused by piles
when driven into the soil are of great importance. Both the load bearing capacity of the
piles and its mechanism shall be taken into consideration in accordance with the actual
conditions. As is well known, increased emphasis has recently been laid on
investigation of point resistance and skin friction, their ratio, and the factors affecting
this ratio. The majority of theories consider the soil to be a continuous elastic material,
although the deformation characteristics are determined empirically. These theories
suppose the angle of shear resistance and cohesion to be constant, independently of the
stresses and stress conditions prevailing. These theories agree in that the point
resistance increases proportionally to the depth of penetration. However, Kérisel’s
tests carried out in the sixties prove that, depending on the pile diameter, a constant
point resistance not increasing above a certain penetration depth occurs. The value of
point resistance and of the depth where it is reached depends significantly on initial soil
compactness.

In these theories, the fact that when the pile is driven into the soil, the soil gets
deformed and the density increases considerably in the vicinity of the pile is not taken
into consideration. At the beginning, the soil gets compacted only under the point
where stress concentration takes place while it yields at the mantle with the initial
density decreasing. With increasing penetration depth, the yield reduces and after
formation of a dense soil core, the soil under the point applies a pressure to the
subsequent strata in horizontal direction. The soil is most compact next to the pile, then
the compactness decreases symmetrically and after a certain distance from the pile,

* Prof. Géza Petrasovits, Technical University Budapest, Geotechnical Department, M{egyetem
rkp. 3, H-1 111 Budapest, Hungary
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neither deformation nor increase in density can be found. With increasing
compactness, not only the stress conditions change but also the modulus of
compressibility increases, this increase being 10— 15 fold under the point while 5— 10
fold next to the mantle. The existing theories leave these variation of soil characteristics
out of consideration.

A theoretical method to determine the distribution of stresses around the pile is,
therefore, necessary, making use of the change of compressibility modulus of soil. This
is particularly important in case of pile groups, especially if the distance between the
piles is less than 3—4 d (diameter).

As is well known from the literature in agreement with many authors’ opinion,
soil deformations caused by pile driving can be detected at distances of up to 3d.

The first works concerning load bearing capacity of pile groups are connected
with Kézdi’s name. In his theoretical and practical studies between 1957 and 1959, he
studied the distribution of horizontal stresses around piles using the passive Rankine
state, determined the variation of skin friction-point resistance ratio versus load, and
set up an equation for the value of friction resistance along the mantle of pile.

Kézdi carried out in-situ large-scale model tests to study the behaviour of pile
groups of different size under load The results showed that in granular soil and with
minimum distance between the piles within a group, the soil fenced by the piles got
compacted to such a degree that it settled together with the piles when load was applied
to the pile group. Therefore, the load bearing area in the depth of pile points increased
significantly and the so called ‘pillar effect’ occurred.

Laboratory tests were carried out by the staff of Geotechnical Department,
Technical University Budapest, with a view to investigate the variation of density, and
modulus of compressibility, of the soil between the piles versus distance between piles,
and to determine numerical values for the variation of compactness and compressi-
bility modulus. Using the finite element method and experimental data, efforts were
made to develop a generalizable theoretical method permitting the variation of
compressibility modulus due to pile driving to be taken into consideration.

2. Effect of the test method on the value
of measured parameters

As iswell known, the technology applied affects the load bearing capacity and the
interaction between soil and piles considerably. Depending on the construction
technology used, the bearing capacity of engineering structures for foundation might
vary considerably, even in case of uniform soil. The effect of technology on both load
bearing capacity and settlement is extremely important in case of foundations in
considerable depths.

The interaction between soil, structure, and technology for shallow and deep
foundation is schematically illustrated in Fig. 1
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Fig. /

The values of load bearing capacity calculated on the basis of laboratory test
results are often considerably lower than those obtained in in-situ tests. This difference
can be attributed to changes in stress conditions due to pile driving, and to mobilized
shear strength along the mantle. It is well known that a displacement of some
millimeters is enough to mobilize the shear strength in dense soil while a multiple of this
displacement is required in soft soil.

Tests were carried out using a model pile built in a large-diameter sample, and
tested in a triaxial test fixture, to simulate shear resistance along the pile mantle in
different soils. The same soil was tested triaxially also under normal conditions.

In non-cohesive soil, the coefficients of shear resistance obtained in conventional
triaxial or direct shear tests are considerably lower than those calculated on the basis of
pile-force. Because of the limited displacement, there may be an increase of 40% in the
angle of internal friction for non-cohesive soils, depending on the initial density.

Figure 2 shows the results of a series of experiments carried out in sand silt and
clay to determine the angle of internal friction. Triaxial tests were made and the angle of
internal friction was found to vary between 30° and 34°, depending on initial
compactness. A model pile ofa diameter of d = 28 mm was driven in a soil sample of the
same compactness and of a diameter of D = 100 mm and a height of H = 200 mm and a
constant volume test was carried out. The surface of the model pile was coated with
synthetic resin and a layer of the sand tested. Thus shear takes place between sand and
sand. For constant volume, considerable higher values were obtained for internal
friction, amounting to ®=34° to 48° depending on initial compactness. An
explanation to this change is the phenomenon of dilatation.

Namely, after shear, a certain kind ofdilatation occurs. As a result, the horizontal
stresses in sands increase considerable. In silt, this phenomenon is less appreciable
while it is not observed in clay at all, that is the same values were obtained for the angle
of internal friction in all methods. The angle of internal friction has been determined in
relation to the initial diameter of the model.

Figure 3 illustrates the compacted zones in a group of 9 piles. As shown in the
Figure, in case of a centre-to-centre distance of 5 D the extent of intersections is
reduced, and there is only a single overlapping of the zones at a relatively large distance
from the different pile axes. If, however, there is a spacing of 2.5 D between the piles
driven in the soil, overlapping of the zones is multiple. It can be clearly seen in the
pattern so obtained that the different piles within the group are surrounded by zones
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Diameter, nm

Fig. 2

with significantly different densities. The number of overlaps is largest at the central
pile, reducing at the so called outer piles,the smallest number ofoverlaps being found at
the corner piles. With the investigation extended to pile groups containing 16 and 25
piles, it can be seen that there is no increase in the number of overlaps nor a change in
the conditions for the 4 piles in the centre of the group of 16 piles as compared with
those in the centre of 9-pile group. Inagroup of9 or more piles, three different pile types
can be distinguished such as internal piles designated I, outer piles designated 0, and
corner piles designated C. On the basis of the number of overlaps, no numerical values
can be determined for the changes in density of the surrounding soil but it indicates the
role of the different piles according to their position within the group.
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Fig. 3 Overlapping of compacted zones for different pile distances

3. Effect of pile length and pile spacing on the load
bearing capacity of pile groups

In spite of the fact that piles are used usually in groups, the behaviour of pile
groups under load has not been comprehensively investigated so far. Laboratory tests,
but first of all field tests included the investigation of a few factors only, and a number of
guestions concerning behaviour of pile groups remained unanswered. Because of the
scientific and practical importance of the problem, the authour tested pile groups with
a view to study the behaviour of the individual piles in the pile group under load.
Studied were
— the variation of magnitude and ratio of point resistance and skin friction versus
group size (number of piles within the group),

— effect of distance between piles,

— effect of pile length,

— effect of location of pile within the group,

— components and magnitude of efficiency coefficient for different pile groups.
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In laboratory experiments, model pile groups of n = 4,9,16,25 piles with a length
of H = 10, 20, 30,40 d and a spacing of a= 2.5, 3.33, 5.0 d were tested in homogeneous
granular soil. The experiments included 140 tests with model piles to investigate the
behaviour of pile groups. Each pile was equipped with a load cell at either end and
driven into the soil.

The load resulting in 10 mm pile penetration was considered to be the limit load
bearing capacity of the pile group. The load applied to the piles was increased
gradually, and settlement, load taken by the piles and that taken by the point of the
piles were measured continuously for each step or load increase. Skin resistance of the
pile was given by the difference between total load applied to the pile, and the load
measured at the point of the pile. This method permitted the magnitude of point
resistance and skin friction and their ratio for different levels of utilization factor of load
bearing capacity to be measured.

Load was increased in steps of about 1/10 of the estimated limit load. Increase of
the load was continued after no settlement had been detectable over 10 minutes under
actual load.

Before analyzing the effect of factors mentioned in the previous chapter, the
author not only had to work up and arrange the abundant experimental data but also
to isolate these effects bearing closely upon each other while at the same time including
them in the same complex of questions and, finally, to represent them in a
demonstrative form.

The problem, difficult enough, was still more complicated by the fact that each
factor proved to be significant in respect of behaviour or both pile groups and
individual piles under load. Any change in one factor modified the effect of other
factors.

The results of experiments concerning the effect of different factors on the load
bearing capacity of pile groups are given below.

As seen in Figs 4a and b showing load-settlement curves for pile groups with
piles of different length (H = 20d, 40d), pile groups with a larger number of piles in them
and a smaller spacing (a= 2.5d) have not reached their load bearing capacity at a
settlement of 16 mm. This can be attributed to the large number of internal piles (I) as
both the corner piles (C) and outer piles (O) have reached their load bearing capacity.
The marginal piles in the group fenced the compacted soil around the internal piles and
loaded the soil on the pile point level, thus contributing to the load bearing capacity of
the group due to the significant increase of their point resistance.

For groups with a larger number of piles, the settlement is 4 to 6 times as much as
for smaller groups, the degree of utilization being the same. This results first of all from
the increased layer thickness of soil involved in load bearing because the soil under the
pile point gets compacted significantly through a layer of a thickness of two pile
diameters. The extent of settlement depends largely on initial soil compactness.
Considering the limited permissible settlement for buildings, the load bearing capacity
of groups with a larger number of piles in them can not be utilized.
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Fig. 4. Load bearing capacity for groups of different size and degree of utilization of load bearing capacity,
H=20d,a=25d
a) Load-settlement curves for groups of n=4, 9, 16, 25 piles
b) Settlement of pile group versus degree of utilization of load bearing capacity

A comparison of the results of experiments with pile groups of different size and
pile length permits the following conclusions to be drawn:

— Increasing pile length results in a higher rate of increase in load bearing capacity of
the group with, however, the settlement not increasing.

— Incase of two pile groups of identical layout and loaded in the same way, increased
settlement occurs for the group where more load is transferred to the soil by the
point of the pile.

This suggests obviously that longer piles are preferable in homogeneous soil.

Figure 3 shows the compacting effect of piles and pile groups driven in the soil. It
can be clearly seen that the compression around piles I, O, C is different, depending on
pile spacing.

Soil density within the area surrounded by piles driven at a spacing ofa=254d
increases by about 20 to 30%. As a result of this compression, the load bearing capacity
of internal piles increases significantly, the outer piles having a higher load bearing
capacity than corner piles.

This effect increases with reducing spacing. Figure 5 shows the load bearing
capacity and point resistance ratio of characteristic piles ofa group ofn —9 piles driven

Acta Technica Academiae Scientiarum Hungaricac 98, 1985



112 PETRASOVITS, G.
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Fig. 5 Load bearing capacity of characteristic piles, and point resistance/total load ratio for different pile
lengths

at a spacing of a= 2.5 d. On the basis of the Figure, the following conclusions can be

drawn:

— Within a group of piles, the load bearing capacity is lowest for the corner piles.

— The point resistance ratio is lowest, and the effect of skin friction is highest for corner
piles within a group.

— The load bearing capacity of internal piles (I) is by 40 to 50% higher than that of
corner piles.

— With increasing load bearing capacity of internal piles, both the point resistance and
the skin friction increase, the increase in skin friction amounting to 15 to 20% while
in point resistance to 40 to 80% as compared with corner piles. Responsibility for
increased load bearing capacity lies in majority on increasing point resistance.

— The behaviour of outer piles (O) represents a transition between internal piles and
corner piles, the mantle friction of outer piles being by 5 to 10% while their point
resistance by 20 to 30% higher than the same values for corner piles.

The considerably higher skin friction of internal piles and outer piles can
obviously be attributed to compacted zones around the piles while the significant
increase in point resistance results from the compacted soil fenced by outer piles and
corner piles as well as from the load applied to the soil by the adjacent piles.

In a 9-pile group with a pile spacing of a= 5.0 d (Fig. 6), the behaviour of the
different piles is rather indistinct although the load bearing capacity of internal piles is
higher also in this group. If the spacing is increased, the ratio of point resistance will
reduce. Here the nonspecific behaviour of the different piles is due to the fact that within
a group with a pile spacing of a=5.0 d, each pile behaves like an independent pile
because of the poor overlap of the compacted zones. Increase in the bearing capacity of
internal piles results from the increased point resistance.

The results of tests concerning effect of pile spacing suggest that the load bearing
capacity is favourably affected by the group effect in case of a pile spacing 0f 3.0 d or less.
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Fig. 6. Load bearing capacity for characteristic piles, and point resistance ratio for different pile lengths

4. Analysis of the results of in-situ pile group tests

In-situ test supervised by Prof. Széchy were carried out, driving piles of a cross
section of 12 X 12 cm and a length of 2.5 m and 3.5 m in silty sand soil. The piles were
driven first to adepth of 20 d (spacing: a= 12cm) and test loaded, then driven to a depth
of 30 d and loaded again. In this way, not only the group effect but also the effect of
length could be studied. Included in the tests were groups of4,5,7,9 piles and with two
different spacings. The spacings were so selected that the area fenced by the piles would
remain the same within series of tests, using a = 5to 9d in one series while a = 2.5 to 3d
in the other series (see Fig. 7).

The load-settlement curves obtained show that the increase in pile length affects
the load bearing capacity favourably. Within the same test series, the load bearing
capacity increases proportionally with the number of piles in a group and with pile
length. Maximum point resistance occurs for a pile length, of 20 d, and no increase of
point resistance is brought about by an increase of the depth ofdriving. The increase in
load bearing capacity is higher for a small-spacing group of type S than for a group of
type G of larger pile spacing due to the increased compactness of fenced soil. The tests
proved that the load bearing capacity is higher for a group of piles of number n than for
independent piles of number n.

It can be seen in Fig. 7 that the load bearing capacity per pile is higher in group S
than in group G. The specific load bearing capacity per pile ingroup S is by 25% while
in group G by 10% higher than that of independent piles, the driving depth being H
=30 d in each case.
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Fig. 7. Load bearing capacity and efficiency of a pile group
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FLOW PRESSURES ON PILES AND PILE GROUPS*

K. Steinfeld**

Behaviour of piles and pile groups subjected to lateral earth pressures due to soil flow and
creep is analysed in this comprehensive study. Experiences gained at construction of embankments,
bridge abutments, slope restoration are collected and presented. Results of earlier and the newest
theoretical investigations are also shown. Author points out that the Gudehus — Leinenkugel’s
method seems to be the best to determine the flow pressures on piles.

1. Introduction

Unfortunately, a soil seldom is seen to flow and creep, namely its displacement
proceeds too slow to be observed.

Even after protracted, important deformation paths, flow phenomena are mostly
not recognized on the terrain by its rough, embossed surface, often permanently altered
by vegetation. Only cracks, displacements at crack surfaces are more perspicuous, that
may, however, not arise even for displacements of the ten cm order, and are soon
concealed by secondary deformations, traffic, rain, plant cultivation, etc.

Flow and creep are normally absent or negligible in brittle, high-strength soils
such as rock or hard clay. Even in granular soils they hardly develop because of the
high shear strength or but slightly near the ultimate strength, but here they are
instantaneous, because of the absence of temporary strength changes due to swelling or
shrinkage.

On the other hand, all cohesive soil types are pron to flow as a function of
softness, the more protracted, the finer grained they are. These processes last for
decades in clays, even, introducing the concept of “delayed compression” suggested by
Bjerrum [1], for centuries or millennia.

Creep and flow processes in these soils, independent of the stress state, are often
described in terms of the concept “rheology” i.e. mechanics of viscous fluids. For soils it
is meant as relative flow displacements between soil particles.

Of course, millennia are no time for geohistory; it’s millions of years that count.
That is why there are only a few soil types of this cohesive, soft class among the small
group only a few millennia old.

* Lecture at the annual meeting of the Federation of Structural Testing Engineers, September 19th,
1983, in Kassel, FRG.

** Prof. Dr. Ing. Karl Steinfeld, Beratender Ingenieur, VBI, VDI, ASCE; Alte Kdnigstrasse 3, 2000
Hamburg 50, BRD
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These are normally termed alluvia, infrequent already in medium highlands of
Germany, as e.g. flood plain soils in river valleys, moors, sometimes as slope flow soils
in form of secondary sediments, erosive soils and the like.

But in all alluvial zones of the world, in marshlands just as in North European
coastal areas, in extended river estuaries often accommodating important harbors with
their living areas, there are complete areas recently arisen and in continuous
development.

Since times immemorial, stable constructions on soft, plastic soil, and even in
shallow water have been built on pile foundations, as so-called pileworks, from Borneo
to Lake Constance.

Piles are applied as foundation structures for an onshore construction if loads of
a solid building mass have to be transferred through a soft, plastic subsoil to a deeper,
solid ground.

Eventual embankments or spread foundations on the soft layers adjacent to
the pile foundation not only compress but laterally displace them, arising flow
phenomena up to soil failure penetrating the pile foundation; they are the most
conspicuous in form of landslides in slopes at pilings under bridge abutment piers.

2. Large-scale experiments in the Netherlands

Netherland’s lowlands have always been areas predestined to these experiments.
In towns such as Rotterdam and Amsterdam, attention was paid to inherent risks of
hazard already before World War Il. This is why building authorities required — in
addition to possible upfills or complementary surface loads (independent of the
reinforcement for vertical loads and driving stresses) — a reinforcement for the
maximum possible bending moment, or for 5 Mpm in common r.c. piles, usual at that
time.

Large-scale experiments made in the '50s by the municipality of Amsterdam
showed bending stresses in piles hence flow processes in cohesive and organic soils to
have an importance much exceeding that assumed earlier.

These tests were made and evaluated by Heyman and Boersma [2]. Figure 1
shows a planned road embankment of 60 m base width and 7 m high, with three steel
piles drive by a pile ram at 30 m in front of the fill, each joined by a mobile tube
accommodating deflectometers for measuring soil displacements due to further fillings.
Bending moments were measured in the relatively rigidly clamped piles.

Soil stratification is seen in the left part of Fig. 1. At a depth ofabout 12 m, dense,
older diluvial glacial sand starts, superposed by sandy, here and there very sandy clays,
underlying, in turn, besides of two marked peat layers, a natural, loose top sand cover
2.6 m thick. This is not so bad a soil condition as usual in alluvial marshlands in
German coastal areas.
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Fig. 1. Horizontal soil movement according to Heyman and Boersma [2]

After having incorporated the testing equipment, the sand embankment was
further filled up in 5 m sections each two weeks, up to a distance of 5 m from the piles
and tubes.

Representation of the soil displacement vs. depth measured by deflectometers in
the tubes shows a 2 cm displacement at the surface of the tested cross section initiated
by the 5 m wide base of the first fill spaced at 25 m, increasing to 30 cm for the last fill
section spaced at 5 m from the test piles. The top sand is fully floated on the top peat.
Just this last phase shows the full displacement to actively penetrate the top peat.

Let us notice first in general that, in turn, in sand zones before a rigidly built-in
mass, much higher resistances develop than in cohesive, soft soils, and second, that
these displacements have no soil failure or the like as concomitant. Solely slight
heaping phenomena were felt on the surface in front of the practically rigidly clamped
piles 30 cm wide, developing bending moments seen in Fig. 2

During filling, bending moment maxima ranged from 20 kNm (or 2 Mpm) at a
distance of 25 m to 140 kNm (or 14 Mpm) at 5 m, and appeared at a depth of about 2.5
m, that is, at the interface of top sand and top peat. The mentioned 5 Mpm moment
specified in Amsterdam was exceeded in the pile already at a distance of 23 m from the
embankment base.

The presented figure has been taken over from a 1967 lecture [3] in this scope,
thus applying the previous units.

The dotted line presents the estimated line load Mp/m per running meter of pile
length, originally rather inaccurately determined from the supporting force maxima of
30 to 130 kN [2], because of the moment distribution unknown to the Author.

The line load on a 30 cm pile exceeds 2 Mp/m already at a distance of 25 m, and 5
Mp/m at about 7.5 m from the embankment; values to be reminded of later.
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Permissible bending moment
in piles, after quoted
authors and K. David

0O 30cm - 5 Mpm
® 50cm ~ 12 Mpm
0 130 cm ~ 130 Mpm

Max. bending moment, Mpm
Supporting force, Mp
Calculated line load on 30cm pile, Mp/m

Fig. 2. Large-scale test results by Heyman and Boersma [2]

Soil characteristics are seen in the top part of Fig. 2, unfortunately only moistures
and densities are given in [2]; shear values are missing.

The top right part of Fig. 2 shows bending moments supported by r. c. piles.
Accordingly, a 30 cm pile can absorb 50 kNm =5 Mpm measured at 23 m from the
embankment, a 50 cm in-situ concrete pile about 120 kNm, and a 0 130 cm large
bored pile some 1300 KNm.

3. Further measurement and test results

Leussink and Wenz [4] refer to further examples of similar displacements
happened at Klockner-Werke, Bremen (FRG). Figure 3 taken over from [4] serves
only to exemplify 30 cm deflections along the flow line measured on 114 cm high
“Doppelpeiners”. Here also consternating failures causing collapse in the pile
foundation arose.

Franke and Schuppener [5] present measurements in the area of highway BAB 7
near Hamburg similar to those in Amsterdam (Fig. 4). In a rest time of 2.5 years,
displacements were measured almost continuously from the surface to a depth of 5m in
8 m clay and peat in front of a 7.5 m high stepped spill dike mass, sloping across the
steps as little as 1:5 (Fig. 5) such as:

at 8 m from the embankment base 12 to 19cm,
at 15 m from the embankment base 4 to 6cm,
at 22 m from the embankment base 3to 5cm.

Also the outermost row oflarge, 0 1.5 m bored piles for the highway was at 22 m
from the spill dike base. The moderate displacement values measured there, and the
great pile dimensions do not admit critical bending stresses, as demonstrated in [5].
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Fig. 3. Craneway foundation on skew piles with bending line after Leussink and Wenz [4]

BAB A7

NN*?25m

Fig. 4. Section of Highway BAB 7 after Franke and Schuppener [5]

Bl s.cm B2 s.on B3 Displacement, s, cm
20 1¢] 5 0

Fig. 5. Displacement measurements in section 1 after Franke and Schuppener [5]
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By the early 70s, Nahrgang [6] made model tests to see how far horizontal flow
displacements propagate from a surface load. Applying the boundary value problem
on an incremental load of width B on a soft subsoil of finite depth H and a size across
limited to 5 B, horizontal displacements vs. subsidence of the given incremental load
shown in Fig. 6 arose.

Fig. 6. Horizontal displacements referred to subsidence after Nahrgang [6]

The load has been referred to the well-known Prandtl ultimate semi-space load
[71:
p={2+n)cu [kN/m2]

where cuis the undrained soil shear strength determined in vane tests. Wenz [8] applies
corresponding Prandtl’s formulae for the ultimate load capacity of a soft full-space
subsoil.

Deformation diagrams in Fig. 6 have been obtained by applying a special
stress/strain relationship between elastic strain and purely plastic flow developed by
Nahrgang as a special material law based on peculiar soil mechanic tests.

As to be seen in Fig. 6a, for 54% of the “Prandtl-load”, hence, for a subsidence
safety 1g«2.0, the horizontal displacement is at the load edge about 40% and at a
distance of 3 B 5%o0fthe subsidence under vertical load. In Fig. 6b, the load amounts to
78% of the subsidence load, that is, ¥—1.3 after Prandtl, the horizontal displacement is
60% at the load edge and at a distance of 3B, only 5% of the subsidence under vertical
loads; anyhow, the vertical subsidence is of course significantly higher under 78% of the
“Prandtl load”.

Numerical FE-calculations on an example yield for a soft layer 10 cm thick
uonder half the Prandtl load, i.e. =2, a vertical subsidence of 20 cm (2% of the
thickness), under the load edge a horizontal displacement of nearly 10cm, and at 23 m
still a displacement of 1 cm (5% of the 2% of thickness).
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The subsidence is already 60 cm under ~ 3/4 of ultimate load hence tj= 1.3,
horizontal displacement is 45 cm under load edge, and 4 cm at a distance of 23 m.

The example shows critical horizontal deformation values near the loaded area
edge (embankment base) to occur much before reaching the usual soil failure safety
factors, demonstrating, in addition, the displacement fields calculated here according
to the special material law and the FE-program to correspond to the velocity field
developed by Prandtl as early as in 1920, provided the soft layer depth is 1-2 times the
represented half-width of the loaded area.

4. Earlier, quasi-classic concept of the effect
of horizontal earth forces on piles

Some examples of bridge abutments selected by the Author earlier, at random
[3] are seen in Fig. 7.

The first example is a bascule bridge at Stutthof near Gdansk, much worrying
young engineers Dr. Erlenbach and Wodtke (becoming later leading road authority
officers), and making them engaged with this problematic for a life.

Already at the construction and backfilling of this engineering structure, the
bascules got constantly clamped, requiring 10cm to be cut off. The right-side abutment
with pier footing and pile heads was displaced by 10 cm to midstream, for not at least
unusual slopes below the bridge, 1:1.5 above, and 1:3 below water level. The access
road upfill amounted to some 7 m. Represented bridges include the bridge across the
river Eider at Breiholz in Schleswig-Holstein, so to say helped to publicity by Leussink
and Wenz [4], where the abutment turned back obviously upon soil failure-like flow
strains, and subsided. Here also, slopes ranged from 1:1.5 to 1:3. The road fill was here
max. 6 m.

Schlote Bridge

Haselholm Bridge

Bascule bridge clamped .
after upfill, twice Ocm cut Heiserfleet Bn

Bridge across the
Eider at Breiholz

Sandv
Likely of sal failure

Fig. 7. Examples for the bending of bridge piles [3]
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Up to the '60s, foundation engineering maintained the view that earth pressure
bilaterally on piles was about equal also in slopes, stable in themselves, exerting no
force on the piles. Sometimes it was conceded that in slightly flowing slopes little
resistance could develop before slender piles. On the other hand, behind a pile pressed
downslope, soon a much higher soil resistance would develop. All these in spite of
clause 5.1.2 “Permanent Soil Loads” in DIN 1072 inserted in the development period
from tentative in 1963 to finalized in 1967:

“Earth pressure loads on thin structural members (e.g. piles, piers, slices of sectioned abutments)
standing in slopes — provided no closer confirmed assumptions have been made — have to be
determined as:

on structures max. 1 m wide for three time the width;

on structures 1to 3 m wide for a width of 3 m;

on structures wider than 3 m for the real width.

For piles driven or bored in grown, stable or previously filled and carefully
compacted stable soils, direct earth pressure load on the piles may be ignored, provided
the soil is able to absorb earth thrust in itself, without taking the bending stiffness of piles
into consideration.”

This part of DIN 1072 has been applied for little else but lost abutments “in
slopes” — usually passing over the last sentence “provided the soil is able to absorb
earth thrust in itself’.

Thus, while earth forces on waterfront structures have always been considered
throughout the height of all the construction, and the safety against landslides
demonstrated by a gliding plane directly below the bulkhead base, free-standing pile
grid and bridge abutment constructions were examined for the absorption of earth
thrust usually only down to the lower grid edge, and the safety to soil failure was
checked as above, by a gliding line below the pile tips.

Thus, checking the earth force course i.e., the safety to soil failure between
bottom edge of abutment wall and piling down to pile tips had been missing.

In the domain of piles and the necessarily (because of interstices) free slopes
before them, stability was tacitly presumed, just as that nothing could happen to the
piles. It was even pointed out — partly with right — that piles prevent slides, without
taking stress and strain constraints in them into consideration.

The subsequent three cross sections are those of bridges where the leading bridge
construction officers of Schleswig-Holstein, Horch and Wodtke had the entire
construction designed for earth thrust.

Without further details, it is obvious that a significant earth pressure acts at least
in level with the pile head, counteracted by zero soil resistance because of the soil
missing in the subway zone.
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5. Recent approach to horizontal forces acting on piles
»

Continuous design for soil pressure differences was the first step to make up the
“structural gap” in the design of abutments on piles.

Earlier experiments by Jager [9] and Foérster [10] made in the "20s and '30s on
relieving bulkheads from soil pressure by means of upper pile grids already showed
them to absorb 90% of the earth thrust if built in sandy soils at a ratio of 0.3 i.e. spaced
at thrice the pile width, and to fully absorb it if spaced at twice the pile width.

In this case the embankment wall or apron wall acts only as sealing against soil
outflow or dribble and not as a supporting structure if piles are of adequate design.

Similar expectations may be made in soft, cohesive, mainly clayey or organic
soils. Unfortunately, it is not so easy to adequately design piles in soft soils for lateral
pressure. Such soils may simply flow away, either piles have or have not been exposed
to the assigned earth thrust difference, in particular, for larger pile spacings.
Irrespective of the earth thrust value dependent on the imposed load and on the shear
strength, the flow around piles depends of course also on the soil stability itself, thus, on
the safety of shear failure, that is, on the shear strength of cohesive layers and on the
slope inclination before pile foundations, namely there is often no bulkhead in front of
e.g. bridge abutments.

For soft, cohesive soils, at least if exposed to high loads. Peck and Raamot [10]
suggest design assumption ofa perfectly plastic material — rather for safety, namely the
assumption of an ideal viscous fluid is quite safe and leads to no utilizable result, in
particular for high loads. Leussink and Wenz [4] state strains to prevail over stresses
under (usually heavily loaded) storage areas on very soft clays and peats, suggesting
strains to be taken as design criteria.

Safety of a piling should primarily refer to members most affected by high soil
strains and the most likely to fail.

Examples for bridges in Fig. 7 clearly show the piles to be the weakest (most
slender) members in the construction, and the most likely to fail under the effect of
lateral soil strains, they being originally conceived as compressive or tensile bars.

In final account, pile deformations depend on the force applied by the
surrounding soil, and on its power for a path long enough; thus, essentially, on soil
shear stresses and shear strains, hence on the stability of the slope. It should be pointed
out that even research on non-linear material laws greatly intensified by com-
puterization in the last decade could not produce stress/strain hypotheses generally
valid for all soil materials. Nahrgang in his work referred to [6] suggested a special
material law for a soft soil, useful for certain boundary values of the model. In spite of
the fair approximation of the test soil between conditions of elasto-plastic rigid failure
and of a viscous fluid, no image is obtained of its behaviour in shear vs. e.g. consistency.

Wenz [8] has been concerned with loads and consistencies where critical lateral
forces arise in piles, in particular, with the determination offorces arising upon the flow
of soil past the piles.
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Flow rate and path essentially depend on the safety to soil failure, they are the
higher, the closer to the ultimate safety, hence to instability in the classical meaning of
the word.

The safety to terrain or soil failure seems to be the first criterion to define the risk
degree and range.

6. Considerations on soil landslides

Stripping e.g. bridges — represented in Fig. 5 with longitudinal sections — of
their structures leads to soil sections in Fig. 8.

Engineers practiced in dam and dike constructions in marshlands would obtain
surprising aspects. A dam of inflected slope 1:1.5 to 1:3 on organic marshy soil is not
stable at all or only if filled in steps with protracted consolidation intervals.
Constructions of dikes even with continuous slopes 1:3 with 3 to 7 m fills as in the
examples above often cause shear failures becoming less frequent only for 1:4.

Obviously, embankment slopes “concealed” here by the structure have to be
considered as critical. All critical gliding planes in Fig. 6 reach much below the grid
structure, causing bending stresses in the piles due to displacement of the gliding soil
mass. By the way, of course, such shear failure analyses on the “undressed” soil section
require soil pressures (as active forces) absorbed before by the superposed closed
abutment wall to be restituted as reactions in the considered vertical soil section parts,
to be reckoned with in design (usually as moment of resistance) (see 4.2 in [13]).

. . Schlote Bridge (B215)
Bridge in the GDR

Haselholm Bridge
Sludge

Bridge across the
Eider at Breiholz

clay

- critical gliding
planes

Fig. 8. Stripped soil sections for bridge examples [3]

Occurrence and knowledge of important soil failures in major ore mines by the
turn of this century is apparent from Fig. 9 due to Peck and Raamot [11]; other
interesting examples of pile failures due to soil flow have been described by Leussink
and Wenz [4], and by Neumayer [12].

It is interesting to see the risk not to be restricted to values below safety limits
admitted in DIN 4084. While in Kiel, 1967, the Author considered safety factors r\= 1.3,
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0 - wall

(after Terzaghi)

Fig. 9. Soil failures near ore deposits after Peck and Raamot [11]

and rj= 1.5 for cohesive soils of consistencies k> 0.5 and k < 0.5, resp., to be satisfactory
against soil failure (except for cohesive, organogenic soils with extremely high water
contents, reacting a priori as viscous fluids) as criteria in pile design for yield pressure —
matching the views of all engineers practiced in this field, and against economical
considerations — and put it on issue [ 15], [3], in 1972 Wenz was right in pointing out
[14] that, according to Nahrgang [6], even for higher safety factors, inadmissible high
strains take place near piles, applying already earlier full flow pressures on them.

This is why the Committee specified under 4.2 of its recommendations [ 13] even
a safety factor as high as 1.8 for heavily organic soil with an ignition loss vgl> 15%
and moisture content 75% as criteria to test whether considerable lateral pressures
on piles may be expected or not.

For consistencies /c”~0.25 — in agreement with Peck and Raamot [11],
Leussink and Wenz [4] and the Author [3] — the expected important soil lateral
displacements justify to examine piles for the absorption of flow forces and of the entire
soil pressure excess in every case.

At a difference from DIN 4084, for any other cohesive soil type, a safety factor n
~ 15 against earth sliding is required if specifically checking the piles in bending shall
be avoided.

For safety factors below the above ones for each soil type, piles must be designed
for lateral pressure.

7. Determination of flow pressure

Various formulae for the line force on a pile of known diameter d vs. ultimate
strength c,, of an undrained cohesive soil flowing past the piles have been compiled in
Fig. 10.

The first one is due to Brinch Hansen and Lundgren [16] developed 1958 from
the soil failure formula known to all check engineers. The shear angle-dependent term
for depth and width is omitted because of the analysis p = 0, and the term for cohesion
contains the depth factor d, = 1.5 developed by Skempton [ 17] as a maximum for large
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Lateral forces on square piles
after Wenz in Mp/m

Brinch- Hansen (1958)
Square pile p=7,5cu d
Round pile (p=6A cu-d)

Schenck - Smoltczyk (1966)
Square pile p=3,A cu d
Round pile (p-26mud)

Wenz (1963)
Square pile pr8.3 d
Round pile (p=7,0 qj d)

cu =undrained ultimate strength

d =pile diameter

Fig. 10. Recent design formulae for lateral pressure on piles [3]

building-in depths. The formula is valid as a scientifically excellent approximate
formula but it is not perfectly true for the flow past limited members.

Formulae developed by Wenz [8] in 1963 are attractive by relying on
theoretically, physically and mathematically unobjectionable flow formulae by
Prandtl [7], besides of being confirmed by detailed model tests.

Formulae by Schenk and Smoltczyk (1966) [18] resulted from the vectorial
addition of pile cross sections flown past at boundary lines incident and leaving at 45°
and deliver much lower values than both formulae above. They represent the possible
lowest lateral friction resistances, neglecting the effect of constriction.

Practical values obtained from the quoted formula by Wenz for square piles have
been plotted in Fig. 10. Accordingly, line loads on 1 m of pile are, for a relatively low,
undrained shear strength of only 5 kN/m2and for 30 cm width, 12.5 Kn/m, for 50 cm
width 21 kN/m, and for 1 m width 42 KN/m; for cu= 20 kN/m2, values grow already to
50 to 166 KN/m.

For shear values this high, the critical gliding planes mostly exhibit already
sufficient soil failure safety factors rj~i.5 — apart from extra high loads in bulk
storages and in storage areas of steelworks. Such high-shear-strength soil types also
exhibit much lower deformabilities in shear, making the design of piles for lateral
pressure a priori needless.

Schemes of calculation underlying those by Wenz [8] are seen in Fig. 11, with
stress fields in the bottom.

The mentioned classic Prandtl formula for the semi-space

p=(2+ n)cud = 5.14cud
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Vertical

bounding

plane E of the! Square pile
semi-space — (considered as stiff)

Movement
direction

a) Subsoil bounded b)Pile fully c)Void space
by vertical plane in soil behind the
E in front of pile
the pile

Fig. Il. Cross section of pile and soil in semi-space and full space after Wenz [8]

refers to the diagram in bottom left. The left-side drawing refers to the full space with a
void behind the pile, expressed by:

p=(2 + 2n)cud = 8.28cu/

corresponding to the value in Fig. 10. The closed full space is presented in the middle
and formulated:

p=(2+ 3n)cud = 11A2cud.

Since values measured by Wenz in his tests fairly agreed with this latter formula,
and the closed full space seemed to be most plausible for constant-volume flow, Wenz
argued for its application in design problems.

Members — among them the Author — of Working Committee 5 for
elaborating the quoted recommendation [13] decided — somewhat Salomonic,
somewhat in the manner of the Papal Court, and also from the aspects of simplification
and economy — to base the design of piles for flow pressure on:

p=10cud [KkN/m]

becoming a routine in the years after 1978 in the FRG.
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8. Sophisticated flow pressure formulae reckoning
with flow rate

Wenz’s study [8] was published in the Leussink era at the Karlsruhe University,
and since then, his successor Gudehus dynamically furthered research in this scope.

Leinenkugel’s thesis [19] published in 1976 aimed at examining the velocity
dependence of the resistance to deformation. A result of that will be presented in Fig.
12.

Fig. 12. Path-controlled test results with different, section-wise constant deformation rates after Leinenkugel
[19]

Deformation, strain has been plotted in abscissa, and shear stress, resistance to
deformation vs. equivalent stress in ordinate. The test started with a strain or
deformation rate of 1% per hour, got abruptly increased to nearly 12% per hour, to
drop again to 1%/h, etc.

Almost directly with the acceleration, resistance to deformation hence shear
resistance also abruptly increases.

To conceive it as a new law in soil mechanics, the share of viscosity in the
resistance may be distinguished by the regular variation of shear resistance, with shear
resistance with feed velocity. The shear rate seems linearly to increase with the
logarithm of shear strain rate e, nearly independent of the strain increase.

Also variations of pressure resp. stress produce little variation in the shear
resistance at constant shear velocity, and Gudehus [20] deduces from the creep law by
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Leinenkugel [19] that for a 1/10 deceleration of creep, stability increases by 109
decrease of e to 1/100 increases the stability by 10%.

Again, this model test result corresponds to the logarithmic law of viscosity
developed by Prandtl as early as in 1928, and, according to Gudehus and Leinenkugel
[22], it can be written in simplified form as:

Acu= lvculn(e/e0) [kN/m2]
where:

Iv— non-dimensional proportionality factor (as a function of the moisture content at
the liquid limit of the tested soil);

Acu— (positive or — mostly — negative) increase of the undrained shear strength;

C,, — undrained shear strength from laboratory test;

£0 — reference velocity in laboratory test (mostly 1%/h in the reference test)

values to be obtained in simple, possibly either path-controlled or load-controlled

triaxial tests.

[22] presents practical values for three soil types, viz. a lacustrine clay of Lake
Constance, a kaolin, and a North-German clay.

Iv values, practically linearly dependent on moisture content, are 2.6 to 4.4%
(clay) at the liquid limit wL

Accordingly, the cu value determined in the laboratory reference test at a rate
e0= 1%/min decreases for 1%/day by 8 to 14%, and for 1%/year by 26 to 36%.

A further thesis submitted in Karlsruhe by Winter [23], examining a flow law
taking variation of undrained shear strength due to flow rate differences into
consideration, presented newly developed FE-methods for numerical solutions for
steady flow motions imposed by significant non-linearities, and demonstrated the
involved solutions to be mathematically correct approximations.

Gudehus and Leinenkugel [22] applied this recent velocity-dependeni
undrained shear strength to calculate the flow pressure in a rather common example, of
a natural and a built slope, flowing — as possible — 1 cm a month, to be:

p=4.5c,d

obtaining less than half of the assumed value suggested by the Committee for designing
the pile for the lateral pressure:

b — 10c,.d

The author deems this new method for determining the flow pressure on piles to
be unobjectionable, both theoretically and physically confirmed, a fair achievement of
theoretical and practical research at Karlsruhe.
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9. Laboratory and field flow velocities

Anyhow, estimation of flow rates is felt actually to be more difficult, and little safe
knowledge is available in this scope.

Practical measurements have shown several abrupt rate changes in slopes; partly
attributable to e.g. precipitations, fluctuations of water level, thixotropy phenomena
and the like, and partly inexplicable.

Shear box instruments, generalized earlier, had been usually load controled.
Krey’s shear box of 6 x 6= 36 cm2surface was regularly load controlled at /36 kg/min,
equivalent to a stress increase of 1 kg/cmz2 in half an hour.

It should be noticed that, in the FRG, change to path control in shear tests, often
involved introduction of 1/36 = 0.03 cm/min — so to say as a comparison or calibration
velocity — corresponding to about:

hourly 1.8 cm,
daily 44 cm,
yearly 160 m,

which, referred to the 6 cm specimen edge, would yield an approximately 0.5%/min or
30%/h deformation or shear rate.

Recent path-controlled shear box instruments operate sometimes in velocity
ranges of 1:1000, and normally, of 1: 100, smoothly adjustable from 0.0001 cm/min to
0.01 cm/min (or 0.1 cm/min), corresponding to

hourly 0.006 y-0.6 (6) cm,
daily 0.144-14 (140) cm,
yearly 0.5450 (500) m.

Again, referring the specimen edge length to rate, strain or deformation rates of
0.1 to 10%/h result, as a rough approximation.

Leinenkugel [19] a priori refers rate to the deformation or strain of the specimen,
usually applying 1%/h as reference value. Referred to the specimen length, an
equivalent control feed rate of approximately = 0.1 cm/h is again obtained.

His Farnell-type biaxial instrument permits constant feed rates of0.0001 cm/min
to 0.4 cm/min, corresponding to:

hourly 0.006 4-24 cm,
daily 0.14 4576 cm,
yearly 0.542100 m

practically similar to those of commercial triaxial instruments.
The bigger model tester of Wenz [8] worked of course much faster, in the range
from 0.2 to 4.5 cm/min. Converted values are:

hourly 124-270 cm,
daily 2.94-65 m,
yearly 14-23 km.
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On the other hand, naturally occurring, protracted flow and creep phenomena
are known with rates, irregarded upper extremal values and values below the
measurement range, ranging from about 0.5 to 30 cm/year, that is, 0.005 to 0.3 m/year.
Comparison of laboratory and field rates shows the latter to be slower by 2 to 4 decimal
powers, even 100000 times lower than those in model tests by Wenz.

2 cm/day horizontal velocities in slopes under constant load are already
catastrophai, entraining immediate building legislational evacuation measures;
practically they are considered as shock-like slope and soil failures.

Wenz reckoned with max. soil flow rates of 1cm/min ~ 15 m/day, knowing that
practically occurring flow displacements were surely slower than that (see p. 56 in [8]).

In conformity with the engineering knowledge of his time, he considered the c,,
value to be independent of rate, and only “dynamic viscosity” — he himself
demonstrated to be negligible — to be rate-dependent.

On the other hand, it is an important and convincing argument in favour of
works by Leinenkugel [19] and Winter [23] that their method, applying model rates
and soil characteristics according to Wenz [8], yielded flow pressures indicated by the
latter, according to Prandtl’s formula

p=(2 +2 ot 3n)cud.

Accordingly, in the version [24] revised by the Road Research Institute, Kéln, of
the chapter “Lateral Pressure on Piles” by the Working Committee “Effect of Backfill
on Constructions” in the Directives first issued in 1977, to be soon published in
“Geotechnik”, the flow pressure formula for single piles will be reduced to:

Pr=lcud [KN/m],

No doubt, this is a conservative (the Author being member of the Committee) but
economical treatment of the problem.

This cautious application of recent theories developed under the guidance of
Gudehus is due, as mentioned, to the insufficient knowledge of naturally occurring flow
rates and of their often unpredictable changes.

Irrespective of that, such important extrapolations of model tests have always to
be considered as critical, until these low flow pressure values get confirmed in large-
scale or in-situ tests.

Besides, in earthworks relatively high rates may practically occur or can be
produced. In tests by Heyman and Boersma [2], the five fillings followed each other
two-weekly, rather slowly for an actual construction, nevertheless exhibiting rates of
0.4 cm/day resp. or 1.57 m/year, much exceeding e.g. the assumed 12 cm/year flow in a
slope described in Chapter 9 of [22] by Gudehus and Leinenkugel.
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10. Pile design for resultant soil pressure

Lateral forces in piles cannot exceed the resultant soil pressure, i.e. difference
between the soil pressure on the load side, and an equivalent soil resistance on the off-
load side, of piles or piling (see 7.8 and 7.9 in [3], and 2.2 and 4.4.2 in [13]).

Soil pressure Ap due to soft layers just loaded, applying the undrained shear
strength (i.e.,, p =0, hence ka= 1) becomes:

ea=yza+Ap-2cu [KN/mZ

and needs but slight deformation paths to be active. Equivalent soil resistance is that
activated as partial resistance for the same deformation path, taken equal to natural
soil pressure (again kp= 1)

cal ep~yzp [kN/m2]
and the resultant soil pressure:
Ae=ca—calep [KN/m2].

In evenly spaced a pile rows normal to the force direction, a single pile is loaded
by:
Eh=aAe [KN/m]

that is, the difference of soil forces acting on the total width of the pile row has to be
divided by the number of piles.

Design value for single piles exposed to lateral pressure is the lowest value
resulting from the soil pressure difference or the flow formula. In assuming the flow
pressure on a single pile, of course, its increase for pile rows as a function of built-in
depth according to Wenz [8] has to be considered. Anyhow, this is only significant if
piles are closer than 3a as seen in Fig. 13.

For further details see Recommendations [ 13] or the recent version of Directives
[24].

Fig. 13. Increase of flow pressure on single piles due to group effect as a function of building-in ratio, after
Wenz [8]
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Let us still mention that, according to outworn views of some pile experts, no
significant lateral pressure acts on the piles if during the consolidation process of each
filling, only deformations |3 cm arise. But then, the soil pressure difference will be
absorbed by single piles if they are dense enough. For spacings over 3d (<i= pile
thickness), Recommendations [13], [24] limit the resultant soil pressure maximum to
3dAe.

Winter deems full development of the flow pressure to be only possible — also
demonstrated by model tests — for a relative displacement of at least 0.\d between pile
and soil, hence e.g. 3 cm for a pile width of 30 cm, the view conventional for this pile
type. For greater pile diameters, no such a linear relationship has been proved to now.

The effect of loads not adjacent to, but at some distance from, the piles depends
— as mentioned — on the deformation arising there in the soil. A design suggestion
made by Horch [26] got adopted in the recent version of Directives [24].

Accordingly, for piles spaced at a distance equal to the soft layer thickness, about
20% of the design lateral pressure, and at twice this spacing about 10% has to be taken
into account.

11. Effect on pile groups

Research on the distribution of such lateral forces in pile groups is going on,
without — as far as | know — satisfying results to now. Neither did works by
researchers from India (Prakash [27], [28]), Australia (Poulos [29] to [34]), and the
USA (Vesic [35], [36]) or general reports by van de Beer [37] and Broms [38] produce
agreeing conceptions.

For pile grids such as those under bridge piers, Horch [26] conceived the
distribution of the resultant soil force over the overall grid width according to Fig. 14a
suggestion adopted by the Road Research Institute for the recent version of Directives
[24], to be generally introduced by the Road Authority.

Essentially it assigns the main part of the lateral force always to the first pile row,
rather than to evenly distribute between piles the lateral force resulting from the soil
pressure difference. If the design is controlled by flow pressure, its full value has to be
assumed for each pile, except if piles are so dense in force direction that — as stated
before— a flow pressure increased as a function of arrangement and spacing of the piles
according to Wenz [8] becomes prevalent.

12. Conclusion
These considerations have been intended to simply and perspicuously present
the latest development, and to point out that lateral forces due to unilateral loads on
piles in soft soil types — where these are normally used — should not be ignored any

more.
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Fig. 14. Distribution of the resultant soil force before pile grids between single piles after Horch [26]

Undeniably, the problematic of piling behaviour has been treated rather briefly.
It seems to be rather complex in research, imposing to be individually treated from
economy aspects.

If flow velocity and drained shear strength values are available, the Author
would suggest to consequently apply the method by Gudehus, Leinenkugel and Winter
[22] from economy and precision aspects.
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SIMILARITIES AND DIFFERENCES
OF WATER MANAGEMENT IN IRAQ AND
IN HUNGARY™*

J. Balogh**

[Received: 14 February 1984]

Having compared the most important features of Iragi and Hungarian water management,
their past, present and future concepts, the author is deeply convinced that the drainage requirement
of the Mesopotamian valley may not be expressed by hundreds of m3s, but by thousands of m3s. A
rough experiment has been made to express by numbers the approach as to how the magnitude of the
drainage requirement of the entire Mesopotamian valley could be estimated. Closer cooperation
between Iraq and Hungary would be advisable in this field.

1. Introduction

Irag and Hungary are two countries significantly different in their natural and
social conditions. Still there are a number of features in their water household that are
similar. The immense quantity ofexperiences and knowledge accumulated in Hungary
as the result of the early development of its water management together with the recent
achievements of the Hungarian agriculture could be utilized for Irag’s Water
Management and Agriculture.

Attempts are made by the author to enlist the most important similar and
different features of Iraq and Hungary.

Climate

Agriculture

Rivers

Drainage and Irrigation as well as the
Concepts of further development.

Finally a rough approach has been prepared estimating drainage requirements
of the Mesopotamian valley.

* The quoted data included in this study are taken over from the referred professional literature.
** J. Balogh, H-1213 Budapest, Damjanich J. u. 159/b.

1* Acta Technica Academiae Scientiarum Hungaricae 98, 1985
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138 BALOGH. J.
2. lIraq

Iraq, this young republic, was one of the centres where civilization and culture
began. At the same time its future is also rich in good hopes although its climate is
extremely arid in the overwhelming part of its territory and large areas are absolute
deserts lraq’s water resources, however, are abundant.

A great part of Iraq’s arid territories is on the flood plain of the two big rivers, the
Tigris and Euphrates, crossing the country.

Considering that the main tasks of water management and land development
affect only this—so called Mesopotamian Valley (Figure 1) —will be dealt with in the
following.

Acta Technica Academiae Scientiarum Hungaricae 98, 1985



WATER MANAGEMENT IN IRAQ AND IN HUNGARY 139

Climate

The climate of Irag is subtropical, continental and arid. Long hot and dry
summers and cooler winters are characteristic. Springs and autumns are short or do
not occur at all. Satisfactory precipitation for rainfed agriculture is only in the northern
part of the country. The humidity ofthe air is generally low, especially in the central and
southern part of the country.

Several characteristic data are included in Table 1

Table |
Average
Region of annual yearly mean summer
precipitation temperature air humidity
mm °C ¥
Mossul 382 194 22—24
Baghdad 134 22.7 12—15
Rutba 110 188 10—13
Basra 117 238 25—30

The temperature [1,2] has a high average, long and lasting maximums in the
summer, meanwhile in winter minimums sometimes reaching even the domain under
the freezing point.

Yearly evaporation is around 2000 mm and more than 60% of it takes place in
the months of June— September. In summer the average daily evaporation is about
10 mm but even 20 mm can frequently be reached. Especially on windy days.

Corresponding to these values the évapotranspiration of crops, supplied well
with water (irrigated) may reach even 15— 16mm/day frequently in summer.

Agriculture

The agricultural production of Irag—husbandry included—is very low.
Intensive large scale farming is very rare and virtually unknown. Productive lands are
in decrease and so is the agricultural population, although the Government made and
makes serious efforts in promoting the organization of farmer cooperatives and state
farms as well as in helping the productive work of individual farmers.

In spite of these efforts the yields of crop production are very low. The average
yields are e.g.:

— barley around 0.8 t/ha
— wheat around 0.6 t/ha
— rice around 1.2 t/ha.
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Although practically all vegetables and fruits can be grown in Irag only a few and
of bad quality may be found on the markets. Perhaps date palms are the only
exceptions that can survive and develop under the hard climate and among the soil
conditions of middle and southern Mesopotamia. The yield of these palms is quite the
only considerable agricultural product that can be exported in great quantities.
Practically all other foodstuff is to be imported.

The livestock in the agriculture is few and of low productive capacity. There are
about 700 thousand heads of cattle, but the weight of an average cow is not more than
150-200 kg.

The hard climate and extensive conditions can be fairly well tolerated by

— arab horses (cca 150000 heads)

— donkeys and mules (cca 450000 heads)

— goats (cca 1,5 million heads)

— water buffaloes (cca 50000 heads) and

— camels as well as

— poultry.

Due to the poor possibilities of plant growing and animal breeding at present the
young generation has abandoned agricultural zones and has been accumulating in
smaller and bigger towns in the country or in the capital. The agrarian population has
decreased to its fraction, and the immigrants of the towns could make a much better
living in the investments of the infrastucture, the developing industry, traffic,
transportation and within it the frame of internal and external commerce.

The rivers

The two big rivers—Tigris and Eufrates—have their sources in Turkey and reach
Iraqg having crossed Syria. Several data can be found in Table 2

Table 2

Length of the rivers (km)

Total Iraqi reaches
Tigris 1718 1418
Eufrates 2333 1213
Shaft' el-Arab 110 110

The entire catchment area of the two rivers covers 705 500 squ. km from which
359 000 squ. km is lIraqi territory. The middle and lower reaches of the two rivers
belong entirely to Iraq, meanwhile the upper one only partly. Schematic longitudinal
sections of the two rivers are presented in Figure 2.

As for the transported water quantities some characteristic data are included in
Table 3.

Acta Technica Academiae Scientiarum Hungaricae 98, 1985



WATER MANAGEMENT IN IRAQ AND IN HUNGARY

I»v«l

above *ea

m

level

Tigris (near Baghdad)
Euphrates (near Hit)

Fig. 2
Table 3

Run offs (1902- 1952)

Average Low

km3year

38.8 15.7

26.4 12.0

Total 65.2* 217

* According to contemporary estimation the average extent
of the irrigated territory was the same as in recent years.
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From the beginning of their middle reaches on, both rivers become meandering.
The rivers are untrained. There is no flood protection. Therefore, floods were
considerably frequent in the past. Due—however—to the big dams and reservoirs
recently built in Turkey, in Syria and in Iraq itself, flood damages can almost be
prevented.

Both rivers have pending riverbeds from the beginning of their middle reaches
down to their confluence. A characteristic cross section of their valleys—after
Buringh—can be studied on Figure 3.

The quality of their transported water is suitable for irrigation and also for
drinking although it contains 200-400 g/m3solved salts. Harmful Na salts, however,
have a share of 30-40 g/m3only. Silt content of the water in the two rivers is significant,
i.e.: 1000-4000 g/m3. Higher during floods and lower during low water periods.

The two rivers were connected with artificial canals already in the distant past
due to the fact, that one of the rivers has higher bed than the other alternavely.

Irrigation

Irrigation—without which agricultural production here is impossible—has its
roots in the prehistoric past. According to our recent knowledge, early primitive
human societies began to build small earth dams in the (periodical) waterways of the
northern hilly region. They observed, namely, that their animals found better grazing
and higher yields of—in the beginning collected— palatable grasses (the ancestors of
the barley and wheat) can be achieved if the ground had previously been soaked with
water.

In this period—6-8 thousand years ago— the valleys of the twin rivers were more
fertile than now. Natural floods of the rivers inundated considerable territories
regularly. Abundant vegetation grew on these lands. Extent grasslands and savannah
had to be found here, since in the Accadian and Babilonian epochs lions were
sculptured on monuments. Lions, however, may live and breed on such territories
where big flocks and herds of herbivorous animals find pastures, enough for them to
live on.

The primitive societies of the hilly regions descended to the river valleys just
because of their fertility. In the beginning settlements were limited to the riversides,
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where natural floods fertilized the depressions. Later on the population occupied
farther and farther lands in the basin and even in the region of the rivers’ confluence.

A new irrigation method had been invented for those arid years, when the level of
the two rivers was not enough to surpass the levees of the pending riverbeds. It
consisted of simply cutting the river levees to let the water expand even at the period of
low water. So fertilizing irrigation reached the lower plain lands of the basin even
during droughts.

Primitive canalization systems were created, after cutting the river levees for
irrigation water diversion and transport, to farther and farther deep lying fertile
territories. The operation and maintenance of these constructions required discipline
and division of work among specialized workers already in the early centuries. In this
way entire states came into being with civilized welfare, flourishing agriculture, lively
commerce, handicrafts and building industry.

Centuries and even thousands of years brought about the development of such
urban states as Babylon, Eridu, Kish, Nimrud, Ninive, Ur, Uruk, etc.

The disadvantages of the primitive irrigation method already existed in these
periods. One part of the irrigation water diverted to the productive lands percolated
below the root zone. The level of the ground water began to rise higher and higher. The
other part of the water quantities, flooding the cropped territories run off along the
gullies and wadis to the deepest depressions, creating lakes, marshes and swamps. The
third part of the irrigation water—that was retained in the root zone,—in the three
phase layer of the soil—evaporated.

As the result of these phenomena, the good quality irrigation water, diverted
from the rivers gradually deposited its

— sediments

into the irrigation canals and

on the surfaces of irrigated lands, while its
— salt contents remained

in the originally sweet water lakes,

in the fertile soils irrigated and

in the ground water.

Due to the extreme evaporative demand of the air, salts have gradually
accumulated in the groundwater, in the lakes and even in the upper layer of the soils
alike. The fertility of the lands began deteriorating parallel with the accumulation of the
salts. New and new distant and more distant territories were taken under irrigation and
the same process has destroyed Mesopotamian agriculture almost entirely.

A strange irrigation practice has finally been developed in a kind of fallow
system. Fifty percent of irrigable land is irrigated in each irrigation season. The
abundant irrigation water percolates through the upper soil layer and takes soluble
salts into the ground water, decreasing the harmful salt concentration in this way in the
root zone. Crop production becomes possible but on a low yield level. Under the other
fifty percent of the irrigable land ground water table rise and salt concentration
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increases in it during the fallow period. But in the next irrigation season this part of the
territory will be irrigated, and the process—described above—makes a low level crop
production possible again.

From the 9 million ha of cultivable land 3-4 million ha is irrigated with the water
resources of the twin rivers. Generally the irrigation method applied is flooding.
Furrow irrigation is adopted only exceptionally on cotton and several vegetables. The
significance of sprinkling and trickling irrigation is negligible.

Drainage

River regulating and flood control would also be included in this chapter. This
activity, however, has far less traditions and roots reaching into the distant past than
has irrigation in Irag. Regulation of the meandering rivers had not begun yet. The few
dams were constructed in this century in Turkey, Syria and even in Iraq solve the main
problems of flood prevention.

On drainage works there are only a few references in ancient inscriptions and on
monuments. It is quite understandable, because due to the relief and the pending
riverbeds, there are only few or no possibilities to drain the excess irrigation or flood
water back into the rivers. The natural runoff and the extreme evaporation partly
solved the removal of the excess water quantities. In the deepest depressions salt water
lakes were created by the accumulating surface runoff and at the outlet of the river
basins along the Shatt al-Arab at the confluence of the rivers and above, marshes
extension came into being due to the permanent increase of the ground water table
under the irrigated lands and the progress of the river delta.

So drainage would have extraordinarily many and important tasks in Irag.
Apart from the necessity of mutual agreement between the countries of the catchment
areas, on river regulating, flood protection and, last but not least, on water resources
division, drainage would have the immense tasks of

i) leading excess irrigation water off the irrigated lands,

ii) decreasing too high ground water levels,

iii) draining off the leachets,

iv) conducting surface waters (excess precipitation and the water cover of

marshes) away.

i) Other irrigation methods than flooding have no traditions here and have no
economic bases either. The excess quantities of irrigation water distributed, run off the
surface to the depressions and percolate into the groundwater instead of being drained
away. After the development of power driven pumping stations lifting back excess
waters was introduced but still only at a few places and with not enough discharge.

ii) The ground water level is high, in the entire Mesopotamian valley. 1—1,5m
can be considered as the average depth of the groundwater table. But this level is
significantly higher than the critical one. For Central Irag namely the critical
groundwater level estimated according to Polinov (1957) is about 3,5 m under the
surface and above this salts are migrating upwards into the soil profile.
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iii) Excess water quantities of flood irrigations have not only rised the
groundwater table but even the salt concentration has been increasing permanently,
since thousands of years. The lack of drainage, with the present irrigation practice the
salts are leached down from one part of the territory by percolating irrigation water.
They are accumulating under the other part and return into the surface layers after
irrigation already during the next fallow season.

Although due to the fortunate soil texture salts can be removed by leaching,
almost all lands of the entire Mesopotamia are saline because of lack of drainage. The
leachates can not be transported away because there are no recipients and transporting
systems either.

iv) Excess water quantities of the heavy showers precipitating locally during
winter have not high influence on the dimensions of the prospective drainage network.
The water cover on the surface of the extent marshes in the south, would have to be
drained off, too.

The magnitude of the marshes is astonishing. Buringh (1960) estimates this
territory at 35.000 km2. This immense territory is covered by water permanently or
periodically. The average depth of this water cover may be estimated to 1-2 m.

These are the main requirements that are to be met by drainage. Without the
solution of these problems restoration of the agriculture can not be solved in the
Mesopotamian valley.

Concepts

The leaders of the Republic of Irag soon recognized that the modernization of
agriculture has a decisive role in the development of the entire national economy.
Serious steps have been taken to improve agrotechniques and to increase irrigation.

However, Buringh (1960) citing his words “It is astonishing that the problem of
soil drainage has not been understood and the first development projects have been
carried out without drainage; consequently these projects were doomed to fail”. This
can be also seen from the following data of Table 4 published by I. S. Zonn and P. D.
Nosenko in the 1.C.1.D. Bulletin in 1982.

Table 4
Characteristic Data on the Prospects of Iragi Water
Management
(1000 ha)

Total area 43492
Cultivated territory 5290

irrigated from it 4300

drained from it 1550
Planned for future irrigation 8000

drainage —
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Considering the explanations above it is clear that now drainage development
has become very urgent. It must be solved in the nearest future, because without proper
drainage, development of irrigation and increase of agricultural production is quite
impossible. But before treating this question a survey is presented on the situation in
Hungary.

3. Hungary

Hungary is a country of temperate climate. Its territory is also crossed by two
rivers, the Danube and the Tisza. Especially in the valley of the Tisza river similar
features can be found as in Mesopotamia.

Climate

Several characteristic data of the climate of the Tisza valley on average
precipitation and temperature are included into Table 5. Climatic belts of Hungary can
be studied on Figure 4. The belt marked as 1. is the most arid. It belongs to the Tisza
valley to the greatest part.

Table 5

Climatic data of the Tisza valley

average precipitation (50 years) 540-610 mm

average precipitation in vegetation season 300-350 mm

minimum precipitation in vegetation season 125-150 mm

maximum precipitation in vegetation season 500-600 mm

average yearly temperature 10 C

air humidity during summer 50-80%
Fig. 4
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Yearly evaporation is about 600 mm. The daily values are fluctuating between 3-
8 mm/day from April to September.

Corresponding these values of the évapotranspiration of crops, well supplied
with water may reach 6-8 mm/day as maximum.

Agriculture

Agricultural production (including husbandry) has reached a considerably high
level. Intensive large scale farming has been developed during the last decades.
Although cultivated lands and agricultural population has decreased due to
industrialization, yields and husbandry products have been increasing continuously.
Some average yields in 1982 were the following

barley 3.3 t/ha
wheat 4.4 t/ha
maize 6.8 t/ha

Orchards, vineyards supply the entire population with fruits, grapes and wines.
Moreover, significant quantities of them are exported. Similar is the situation in
vegetable production.

The livestock in the agriculture is numerous and of high productive capacity. The
average weight of the cows is about 500 kg and their milk production exceeds
3500 kg/year. The structure of animal breeding can well be characterized by the
following numbers for 1982

cattle 1922000
pigs (sow heads) 9035000
sheep 3 183000

The number of horses is negligible and so are those of goats, donkeys, mules etc.
Pro capita meat production of 1982 (Table 6) may best show the productive
capacity of Hungarian agriculture.

Table 6
Meat production of several countries in kg/inhabitant
in 1982
Hungary 145
The Netherlands 137
Belgium, Luxembourg 116
German Democratic Republic m
US.A 109

Only 14%of the active working population is occupied in agriculture, that means
about 1 million persons. It is less than 10% of the entire population.
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The rivers
The Hungarian sections of the two rivers are also middle reaches. Several

characteristic data of the rivers are presented in the following tabulation.

Table 7

Characteristic data of the Hungarian sections of the Danube and Tisza rivers

Length (km) Catchment area (km2)
total Hungarian reaches total in Hungary
Tisza, before . 1477 1477 157186 157 186
after reEulatlon 977 977 157186
Danube 2860 691 817000 93036

The length of the levees built for protecting about 2,5 million ha-s against floods
is more than 4000 km.

The water quantities transported by the two rivers across Hungary can be
estimated

— for the average flow of the Danube at Budapest 71.5 km3/year
— for the average flow of the Tisza at Szeged 21.3 km3/year

The Tisza river was meandering (before its regulation) having reached the
present Hungarian border. Since the riverbed of the Tisza is pending—like the twin
rivers of Mesopotamia—flood waters have found here also an easy way to expand in
the lower flood plain. Permanent and periodical lakes and ponds, marshes and moors
came into being. Figure 5clearly shows the meandering river and the lakes and marshes
before drainage.

It was clear that water management works were to be begun with drainage (and
not irrigation).

Drainage

Conscious and predetermined drainage activity had begun 150 years ago. (Two
centuries after the Turkish occupation of Hungary.) Removal ofexcess waters from the
Tisza valley had begun with

— the regulation of the river, then

— flood protection levees were next built and finally

— excess waters from the surface (lakes, marshes, moores) were drained.

The excess waters were collected and lifted back into the river solving the
following tasks:

— liquidation of periodical and permanent lakes, marshes and moors,

— lowering the ground water table below the 2,0—2,5 m critical depth,

— draining off the surface runoff of the precipitations (irrigation etc.).
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\

Saline and alkaline soils have relatively smaller extent in the Tisza valley—about
0.5 million ha—and moreover they are alkaline and clayey, i.e.: they may not be
reclaimed by leaching alone. But the removal of leachats has also been necessary.

Summing up: the total length of the drainage canals exceeds 30 000 km. The total
discharge capacity of their outlets is about

800 m3s
that means a specific discharge capacity of about
20-25 1/sekm2

relating to the whole drained territory.

Irrigation

Irrigated farming has recently been developing in the Tisza valley, partly because
due to its climate there is generally enough precipitation for the main crops, partly
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because it was never populated too densely during the history, so that irrigation would
have been necessary. Recent development of irrigation has begun together with large
scale farming in the early sixties of this century.

Excess water quantities of irrigation—to be drained off—have never had any
great importance. Itis partly due to the relatively small extent of the irrigated lands (cca
400 thousand ha), on the other hand sprinkling irrigation method has been applied on
the greater part of the irrigated territory.

Concepts

Having achieved the completion of the drainage works significant irrigation
investments are planned for the future, due to the considerable resources available in
Hungary. As for the prospects of drainage development—only relatively small tasks
have been foreseen.

. S. Zonn and P. P. Nosenko give the values of Table 8 for Hungary.

Table 8

Characteristic Data on the Prospects of Agricultural Water
Management in Hungary

(1000 ha)
Total area 9303
Cultivated territory 5471
irrigated from it 487
drained from it 4262
Planned for future irrigation 2013
drainage 238

It can be seen from the above survey that Hungarian agriculture may be listed to
the first ones of the World and itsfurther development has no water management limits.
This position has been achieved by an activity where drainage was first solved and
followed by the development of irrigation.

4. Drainage requirements of Mesopotamia
In areas where water management conditions are similar to Hungary, similar
activity promises to have the best prospectives. It was soon recognized also by the

Government of the young Republic of Iraq, that a well-planned harmony is necessary
in the human activity carried out in the valleys of the twin rivers.
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Existing plan

After many years of preparatory work a “General Scheme of Water Resources
and Land Development in Iraq” was accomplished in 1975 by a team, involving lraqi
and Soviet experts. It is considered as a Master Plan for planning and designing
irrigations and other works of water management. The General Scheme does not deal
at all with marshes and marshy territories. Nevertheless these territories are still
increasing. (Knappen et al. (1953)).

The backbone of the planned centralized drainage system of the General Scheme,
the so called

Main Collector Canal
will have
283 m3s

discharge capacity at its tail section to the Arab Gulf. Above the water quantities
drained off by this network

101 m3s

discharge will directly be drained into the different salty lakes, already existing in the
depressions of Mesopotamia. And finally

15 3s

is planned to be lifted back into the Tigris. This way the total system for the entire
Mesopotamian valley (that has an extension of cca 80000 km2) will represent a specific
drainage capacity of roughly

5.01/s km2

It is thought that this quantity is highly underestimated and has to be considerably
increased. The reexamination of the present values may follow the estimation as below.

Estimation

As has already been mentioned the water quantities to be drained off in the
Mesopotamian valley include four main items. Therefore, the water quantities to be
removed (drainage requirement) from the flood plain between the two rivers may (only)
be estimated by the following formula.

Dr—le+ GW+ L + PC+ Ws

where Dr = Drainage requirement (water quantities to be removed)
K = Excess water quantities of irrigation
Gwi = Lowering the ground water table
L = Leachats (salty water quantities of leaching) to be removed
pe = Excess water quantities of precipitations

ws = Water cover on the surface of the marshes
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Considering that the efficiency of surface flooding irrigations is quite low in the
Mesopotamian valley and essential improvement of it may not be expected—not even
in the future, it can be concluded that excess irrigation water will percolate under the
root zone. This water quantity is to be removed, by all means, because it also contains
harmful salts solved from the upper soil layers. If only 200 mm is estimated as water
application rate for each of the 5 irrigations assumed in one year, then round 1000 mm
is delivered to the irrigated territories yearly. Further—if on the base of F.A.O.
publication (“Drainage Design Factors” 1979)— -30-40% is considered as a
percolating water quantity, it can be estimated to be

350 mm/year.
Gw

Lowering the ground water table is a necessity present almost over the entire
flood plain ofthe twin rivers. Ifonly lowering it by 1-2 m'the existing high ground water
table is taken into account, then another

100 mm/year

is to be drained off from the pore volume of the soil profile—setting it free from
gravitational water.

L+ Pe

Leaching is taken into consideration twice a year apart from the percolating
excess irrigation water. 1f50-100 mm may leach harmful salt concentration out of the 3
phase soil layer thisitem may be estimated to be 100-200 mm pro year. The local excess
precipitations to be removed—on the other hand—can be neglected on estimating
drainage requirement for the entire catchment area of the Mesopotamian valley.

In this way—for the time being not speaking of the marshes,

550-650 mm/year

— as a minimum is to be drained off. It means a specific drainage requirement (total
discharge capacity of the drainage network) of

17-201/s- km2.

This specific drainage requirement would mean that the total discharge of the
drainage outlets (main canal at the tail section outlets to the salty lakes lifting back to
the Tigris) should be

1360- 1600 m3s

for the 8 million ha of irrigated land in the future, instead of the planned cca 400 m3s.
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The above values may not be considered at all as an overestimation because it
means a drainage factor
15—1.8 mm/day

that represents quite a low value even according to the F.A.O. publication referred to
above.

Reclamation of the enormous marshes is unavoidably necessary sooner or later.
This gigantic task needs further investigations. Two main lines of these future but
urgent examinations have to clarify

— the water quantities (depths and area) to be removed and

— where do these water quantities come from (floods of the rivers, underground

seepage, etc.).

Anyhow, if the territory of these marshes can be isolated from restoration of its
water cover, each 1m high water column covering the surface to be drained in a 10
years’ period needs an additional continuous discharge capacity of

100—150 m3/s

over the values mentioned above.

5. Conclusions

In spite of a number of differences between the conditions of water management
in Irag and in Hungary, there are several similarities showing that taking over
Hungarian experiences for the water management of Iraq is possible and
recommendable.

The following most important similar features are to be stressed.

— Riverbeds are pending in the case of Mesopotamia and in the Tisza valley too.

— Extent marshes and moors, permanent and periodical lakes and ponds were
to be drained in the Tisza valley. At the same time such large territories still exist in
Mesopotamia.

— Saline and alkaline soils were and are to be reclaimed on the drained flood
plain of the Tisza valley. This task is still to be solved in Mesopotamia on even larger
territories.

— Saline drain waters were and are to be removed as well as lowering the ground
water table below the critical level was and is necessary in the Tisza valley. The same
task is still to be solved in the Mesopotamian valley too. Etc.

Irag is a developing country which is not able to feed its population without
significant increase in its agricultural production. But this development may not be
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carried out without land reclamation. It seems practical and promising to utilize
experiences, knowledge and know-hows already accumulated and available in the
Hungarian water management and agriculture.

It is therefore thought that the technical and scientific cooperation of the two
countries should include the tasks connected to

Drainage and Agricultural Development of the entire Mesopotamian valley.

Considering that the reclamation of the whole Mesopotamia represents a
gigantic task—that requires decades to realize it—the order of the actions required
fully corresponds to the present situation of both countries. Namely

i) first the existing concepts of drainage are to be revised and detailed according
to the requirements of agricultural development (time required: 1-2 years);

ii) the designs of a smaller pilot drainage basin of satisfactory size could be
prepared, including not only water management works, but also those of agricultural
development (establishing cooperatives and/or state farms, infrastructure, settlements,
schools, roads, etc.) (time required: 2-3 years);

iii) realization of the designs under ii) i.e. construction of all works designed for
the pilot drainage basin should be executed (time required: 3-4 years);

iv) operation of all works (water management and large scale farming) in the pilot
drainage basin should be put into normal operation (time required: 5 years).

v) after several years of experiences with the operation of the pilot drainage
basins the enormous task of reclaiming entire Mesopotamia can be planned, designed
and executed (time required: several decades).
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The publication investigates the optical and electrical properties of the silicon photocells with
7mm2and 100 mm?2 light sensitive surfaces manufactured by the Enterprise for Microelectronics
(Mikroelektronikai Vallalat). After summarizing the production technology of the photocells, it
investigates the influence of the specific resistance of the basic crystal, of the orientation of the
substrate-slice and of the penetration depth of the pn junction on the internal impedance of the
photocells, on the temperature dependency of responsivity and on noise characteristics. It has been
stated that, from the point of view of internal resistance and threshold sensitivity, photocells made of
basic materials with a high specific resistance have proved to be better. The MEV products have been
compared to those produced by Telefunken.

1. Introduction

Semiconducting photodetectors can be used in several fields of industrial
electronics, measuring techniques and electronics for public consumption ranging from
optical telecommunications systems and fibre-optical data transmitters to photo-
meters. Earlier they used to make photodetectors with selenium and then germanium
but they have gradually been replaced by silicon sensors with considerably more
favourable parameters and these can be used within the range of visible light and the
neighbouring infrared up to about the wavelength of 1050 nm.

The best known type of semiconducting photodetectors are the photodiode with
one single pn junction and the PIN (p-intrinsic-n) diode. However, phototransistors
with two pn junctions, photo-Darlingtons that can be made from two transistors and
photothyristors with several pn junctions (TRIAOSs) are also wide spread.

The illuminated pn junction can operate in three different modes, as a
photodetector, as a photodiode or avalanche-photodiode provided with reverse bias
and as a photocell without bias (see e.g. Szentiday [10]).

Up-to-date silicon photocells may be applied in a wide field. They are relatively
cheap photodetectors. Their photo-sensitive territory is large (as big as several sq.
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mm. . .sg. cm), this makes their sensitivity great and the fact that they do not need
reverse bias facilitates their use. In Hungary, it is the Enterprise for Microelectronics
(Mikroelektronikai Vallalat) that makes photocells with a photo-sensitive surface of
7 sg. mm. and 100 sg. mm., in an unencased form. As, up till this moment, we have no
other kind of home-made photodetector at our disposal,1the question arises whether
the Si-photocells can be used in applications satisfying needs for greater precision, i.e.
in territories where till now only imported photodiodes available at higher prices (such
as the PIN-diodes) have been used. The primary goal of our investigation is the more
thorough exploration of this problem.

2. Theoretical part
2.1. The current-voltage characteristic of the illuminated pn junction

When the photosensitive surface of the photodiode is illuminated, the electric
field of the pn junction separates the electron-hole pairs brought about by the light,
thus drifting the electrons into the n and the holes into the p type domain. Setting up a
galvanic relation between the two poles of the photodiode, there is a current flowing in
the circuit whose direction is identical with that of the diode’s reverse current and is
added to it. The photodiode with a reverse bias is a linear device. The photocurrent
changes in direct proportion to the illumination. This is what the number of graphs in
the first quarter expresses in Fig. 1

When operated as a photocell, the pn junction works as a current source
converting light energy into electrical energy. If the photocell’s terminals are short-
circuited, the short-circuit current may be measured, whereas, when unloaded, there is
an open circuit voltage between the two points of the cell. The graphs of the photocell
are in the fourth quarter of Fig. 1 In this domain, the device produces a reverse current
and in the meanwhile on its junction an U Fforward bias voltage comes about. This is a
state of non-balance and it can only be maintained at the expense of the radiation
power used by the photocell.

When short-circuited, similarly to the reverse biased photodiode, the photocell
operates linearly whereas its open circuit voltage changes approximately logarithmi-
cally with illumination. If the corners of the photocell are closed off with an RL
resistance, the work line suiting: the RL value can be plotted. If the light current
increases, the induced photoelectronic current increases as well and is distributed
between the Rb internal resistance of the photocell and the RL load resistance of the
outer circuit. Both when increasing the light current and when increasing R L, the
internal resistance decreases since there is a larger and larger opening voltage coming

11n 1985 Enterprise for Microelectronics developed a phototransistor.
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Fig. I. Current-voltage characteristic graphs of an illuminated pn junction as a function of H illumination a)
photon-voltage range, h) reverse bias range <) avalanche range

about in the junction. Therefore Rbshunts RLand it is the consequence of this that the
response signal changes non-linearly with the illumination.

The equivalent electrical circuit of the photocell operated in short circuit is
identical with the short-circuited photodiode’s switch (Fig. 2.). The photocurrent
induced in the diode is represented by the current generator, whose Rb internal
resistance is the dynamic resistance of the pn junction and the C, junction capacity is
connected to this in a parallel way. In 4.1. we are going to detail the interpretation and
role of the internal resistance of the photocell operated in a short-circuited mode in
connection with the photocell joined to operational amplifiers. In an ideal case, with
perfect short circuiting and very little illumination, the Rbinternal resistance, just like
the internal resistance of the short-circuited photodiode, has a very high value. When
operating as a photocell, the junction-capacity is relatively large, since the depletion
layer of the pnjunction biassed in a forward direction is much narrower as compared to
the depletion layer of the pn junction supplied with a reverse voltage. Apart from this,
c D diffusion capacity arising from charge accumulation is also added to the junction
capacity of the illuminated photocell.

It follows from what has been mentioned above that the impedance of the short-
circuited photocell—according to the substitution switch seen in Fig. 2—is the parallel
resultant of a resistance with high ohm value and of a relatively high value capacity.
However, the internal impedance of the photocells is not constant even when short-
circuited, but depends on illumination and temperature. On increasing the il-
lumination and the temperature, the Rbinternal resistance decreases. The reason for this
may be found in the fact that the charge-carrying pairs induced by light and heat
energy reduce the inner electrical field of the pn junction, the density of the charge-
carriers accumulated in the transition region increases and thus the photocell with the
pn junction behaves more and more like a photo-conductor instead of a rectifier.
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Fig. 2. Equivalent circuit diagram of a photocell

On increasing the illumination and the temperature, the capacity of the pn
junction—most probably—is going to increase to a small extent, mainly as a
consequence of the increase in the diffusion capacity.

2.2. The temperature dependency of the responsivity

The electrical response signal given as a result of a unitary incident light power
output is called responsivity. At a first approach, this depends on the material of the
photocell, the technology it was manufactured by and the size of its photo-sensitive
surface. The spectral responsivity, i.e. the electrical response signal measured as a
function of the wavelength, is also dependent on the material of the photocell and its
constructional characteristics. If we wish to use the photocell for precision measuring
purposes, the temperature dependency of the responsivity also has to be taken into
account.

Most parameters of the semi-conducting devices are, to a smaller or greater
extent, dependent on temperature as Fermi level is a function of temperature [9]. In the
case of photo-sensitive semi-conducting devices, the temperature dependency of the
photo-absorptional properties and the reflexion capacity of the semi-conducting
mono-crystal are also added to this, though this latter is of a negligible extent.

In the case of an illumination perpendicular to the plane of the pnjunction (Fig.
3.) the total current flowing through the plane of the junction may be expressed as

0

Fig. 3. Cross-section diagram of a pn junction for calculating the photon-current. The zero point of the
coordinate system isin the plane of the junction from left of which is the p type domain and right of which is
the n type domain
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where

)

is the diode’s dark current and /fo( is the photo-current. The quantities in relation (2) are

/j the saturation current member in the diode-equation (see formula [16]),
u the voltage applied to the pn junction,
K the Boltzmann constant,
T the temperature and
q the charge of the electron.
The photo-current is
Jfoi= -qAg(0)\_L{+L 2], €))
where
L'=a2L2- 1[alLp ~ aLpeXP(~ awh) SCCh1~ “ th | f\ 4
Li=z212'-1[alL"exp(@wnp)sechif ~aL" thle] ®)
3(0)= 1—R)<P exp (—awp). ®)
In the above formulas,
A is the photo-sensitive territory of the photocell,

</(0) the extent of generation in the plane of the junction at x = 0 point, see Fig. 3.
® the photon-current, i.e. the number of photons at a unit of place and time,
R the reflexion capacity,
nk  the amount of quanta,
wp the width of the layer p,
w,, the width of the layer n,
Lp the hole diffusion length
the electron diffusion length and
a the photo-absorption factor.

The given relations are valid for abrupt pn junctions [1].
Short-circuit current. Ifthe equation system (1)) is solved for the case of U = 0,
the relation

Ik= U

may be obtained for the /* short-circuit current. In practice, the photocells are shaped
in a way so that the illuminated range (in our case the layer with the p type) is chosen to
be very narrow, whereas the opposite side of the junction (the n-type layer) is chosen to
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be relatively wide. In this case the
wp<Ln and wn> L
inequalities are fulfilled and the

oc

L,
L,s 1 [exp (aw )—1] 8

1+LO".L—
approximations may be applied. If the equations (6) and (8) are substituted in (3)

l+alp (eL2—1 &P (ZwR+ =272 | ©

Ifot = CI

may approximately be obtained for the photo-current, where

1-A)d-
The responsivity is
‘p- MSI . 10
where F is the incident light power
he<P
F= — A (n)

In the above formula, h means the Planck-constant, ¢ stands for the velocity of light and
A for the wavelength of the light. Substituting (9) and (11) into (10) we get
Agrik(\-R ) aLp *2L8 \ *2u 1

SP= he 1 *2L 1-1) exp (—ap)+ *2L\- " 12

In equation (12) the a absorption factor and the L,, and L p lengths of diffusion are
temperature dependent, provided we regard rik and R temperature dependency as
negligible. The temperature dependency of a can be estimated based on those said in
the References [5], where the spectral values for a(a) are given for the cases of 300 K and
70 K. Knowing the raw material and the technology used to produce the photocell, and
being familiar with References [8], the value of the diffusion length and its temperature
dependency may approximately be determined.

As the a(A T) absorption factor is a function of both the wavelength and the
temperature, differing temperature factors are to be expected as regarding to the
responsivity in the case of the various wavelengths and pn junctions with varying
penetration depths.

Open circuit voltage. U0 open circuit voltage may also be determined from
equations (1)—2) by substitutions 1=0 and U = U0. In this case

(13
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If the photocell is illuminated and the /fot> /s equation is taken into account,

(14)
f K
Forming the differential quotient of (14) according to temperature
kT d
dr 7 " qg dT No (15)

In this equation, we have the temperature dependent expression of the /fot photo-
current and the Is saturation current member. For Is, we arrive at

Wa
IL,=KTIA
exp ‘T (16)
in the case of silicon, based on References [7]; here WG is the forbidden bandwidth of
silicon and K is a constant non-dependent on temperature. /fot means the short-
circuited current defined previously and its temperature dependency is small as
compared to /, where T is present in the exponent. By presuming that /fots constant,
we get
MVd/n 17
aK W )’

Performing the derivation according to T in (17),

dt/0

dT 18)

may be obtained as a result, where UG= W&qs 1.12 V in the case of silicon.

Ifthe photo-current is not too large as compared to the saturation the member in
brackets in relation (18) is negligible and, for the thermical coefficient of the open circuit
voltage (TK), we may get

dt/p Ua
TK = 19
dT T (19)

As seen, TK is negative, therefore the open circuit voltage decreases when the
temperature increases, contrary to the short-circuited current which generally
increases when the temperature increases.

2.3. Noise, detectibility threshold

The greatest part of the noise of photocells without illumination is caused by the
shot noise that can be calculated with the help of the saturation current member (/,) and
by the thermal noise of the series resistance of the silicon crystal forming part of the
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photocell. Since the photocell can be represented by a current generator, as shown in
Fig. 2., its noise is also generally characterized by noise currents. The effective value of
the shot noise current is

i =2qlsA f 20y
where Af is the band width; the effective value of the thermal noise current is

‘]n21_UTAf 21

where rsc is the series resistance of the crystal. In addition, depending on the
technological procedures, 1/ noise may also arise and this generally becomes
significant under 10 Hz. Noise currents are mostly given in reference to a unitary band
width in units of Ax Hz 1/2

Similarly to other photodetectors, a noise equivalent power (NEP) is
characteristic of the threshold sensitivity of the photocells and this is the value of the
input light that can bring about an electrical output signal level equivalent to the
output noise power arising without the input signal.

According to this, therefore

noise current AXH z“ 12
NEP = -mmmmmmmmmmmeee ’K — . (22)

current sen5|t|V|ty,
Therefore, in order to determine the NEP value of detectors, the effective value of the
noise current and the responsivity in A x W*“1has to be measured. The dimension of
the NEP is W x Hz*“ 12 according to expression (22) [6].

3. Production technology of silicon photocells

In order to manufacture photocells, silicon monocrystal wafers with diverse
specific resistance and diverse crystal orientation were used. So as to ensure a high
value of responsivity, the p +nn + structure seen in Fig. 4. was set up. The backside n +
iayer keeps the charge-carriers induced by the absorbed photons at a distance from the
backside that has a great recombinational velocity. As a result the lifetime of minority
charge-carriers should be approximately identical with the bulk lifetime free of surface
recombination.

T *

4

Fig. 4. Cross-section structure of a MEV made photocell
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As it has already been pointed out, the a light absorptional factor is wavelength
dependent, and, in the case of Si, the light-waves corresponding to the visible range are
in practice absorbed within 5pm. That is why, so as to increase the responsivity, it is
necessary to produce a so called shallow pn junction with a penetration depth as small
as possible.

The technological process was modelled with the help of the HIPREM —1 one-
dimensional process simulation program [12]. The distribution profiles of the
additives estimated for the various cases of raw material and technology variants are
displayed in the a), b), ¢) and d) varieties of Fig. 5. In the figures, C concentration was
shown as a function of d distance taken from the surface of the crystal substrate.

e) d)
Fig. 5. Distribution profile ofadditive density depending on T temperature and f time of diffusion, in the case
of Si wafers with different specific resistances
a)4...6ohm cm, T=890 °C, t=60 min.
b) 4... 6 ohm cm, T =950 °C, t= 60 min.
¢) 1.2 ohm cm, T - 890 °C, i = 60 min.
d) 1.222 ohm cm, T =950 “C, t=60 min.
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The most critical operation during the process of making photocells is the boron
diffusion. This was performed by a modern, planar diffusion source. BN plates were
used for this purpose—arranged as one plate plus two pieces of silicon wafers. The BN
plate— Si wafer arrangement is shown in Fig. 6.

Fig. 6. BN plate Si wafer arrangement

Great attention was paid when placing the quartz boats containing the BN plates
and the silicon wafers into the reactor (the diffusion tube). Ifthe penetration of the boat
takes place too quickly, the carefully adjusted temperature and thermal profile changes
and the silicon wafers are suddenly warmed up; there is a thermal shock. The rapid
placing of the boat deteriorates the reproductibility of the diffusional parameters and
the structural deficiencies caused by the thermal shock manifest themselves as a
recombination center thus reducing the lifetime of minority charge-carriers. Life time
and the L,,, L p diffusion lengths proportional to them influence responsivity according
to equations (9) and (12).

In order to avoid the above mentioned undesirable effects, we applied an
automatic wafer-motion, choosing the speed of the movement to be 12 cm/min, relying
on Kiss’ data [4] and our own results [2].

4. Results of the investigations

The application of the photocells for precision measuring technique purposes
necessitates a thorough and careful exploration of the further parameters—apart from
the data sheet properties—as well as the separate, individual investigation of the
different types, sample by sample. At the same time, it is important, from the point of
view of the manufacturing process as well, to what extent the circumstances of
manufacture effect the optical and electrical parameters of the photocells.

The photocells forming the object of our investigations were classified into
various groups, and from now on we are going to refer to the different varieties
according to this classification.

Photocells made of silicon wafers with a 4... 6 Qcm specific resistance, of n-type
and with <100) crystal orientation were classified into group-a. Samples made of
silicon wafers with 1.. .2 Qcm specific resistance, of n-type and with <111> crystal
orientation belong to group-b. Photocells in these two groups possess a 7 sq. mm.
light-sensitive surface. The raw material ofthose belonging to group-A is identical with
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the raw material of the photocells in group-a, but their light-sensitive surface is 100 sq.
mm. in size. In all groups, there are samples with a penetration depth of 0.1 pm, 0.2 pm
and 0.5 pm. For the sake of comparison we have also examined some photocells made
by Telefunken. We listed the BPW-12 type photocells with 3.8 sq. mm. photo-sensitive
surface, with a TO 18 metal encasement and closed off with a plate-glass sheet into
group-c and we marked the BPW-35 type that has a photo-sensitive surface of
94 sg.mm, and is made without an encasement as group”B. For the sake of clarity, we
summarized the properties of the various groups in Table I.

Table |
Properties of the inspected model groups

Photosensitive surface,

Model group mm2 Property
a 7 4. ..6 ficm, <100>
b 7 1. ..2 item, <111>
o 38 BPW 12, Telefunken
A 100 4. .6 Mer, <100>
B 94 BPW 35, Telefunken

4.1. Impedance investigation of photocells

Based on the equivalent circuit of Fig. 2., the zx internal impedance of the
photocells may be described by the equation

zZ,= — (23)
J\+ (u>CRb)2

where

Rb is the internal resistance,
C =C,+CDthe sum of the junction capacity and the diffusion capacity and
[o9] is the angular frequency of the measuring signal.

During our investigations, we measured the ohm and the capacitive member
separately as a function of the illumination and temperature.

The arrangement of the R b measurement is indicated in Fig. 7. We applied a sine
signal from a signal generator onto the photocell to be measured and connected the
photocell to the input of the operational amplifier with a negative feedback. On
rectifying the voltage signal of the preamplifier, we measured a voltage signal on the
output proportional to the impedance. In the case of a 10 Hz sine signal, as long as the
junction capacity is not very large, the condition (a>CRb)2<?1 from expression (23) is
fulfilled and

ZX'R
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Fig. 7. A block diagram of internal resistance measurements

is obtained. Let us remark at this point that, in the case of photocells with a large
photosensitive surface, where the junction capacity is large, the results were corrected
with the capacitive impedance. When performing the measurements, we mounted the
preamplifier in a separate shielding box, and previously scaled the measuring unit with
the help of resistances of familiar values. The upper limit of measuring resistance can be
marked at 10 MI.

We measured the capacity of the photocell according to a similar principle,
choosing 100kHz as the measuring frequency and applying a fast pA715-type
operational amplifier. The circuit diagram is shown in Fig. 8. If w is sufficiently large, in
equation (23) we get (e CRh)2P 1, and

is fulfilled.

It is ensured with both measurement arrangements that the open-loop
amplification of the operational amplifier should be sufficiently large at the given
measuring frequency for the inversing input to behave as a virtual earthpoint. Thus the
photocell connected to the inversing input is short-circuited; therefore, during the
measurements, the photocells were examined at a work point corresponding to the
short circuit.

50k

Fig. 8. Connection diagram of pre-amplifier used for photocell-capacity measurements
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Results of the Rb-measurement. We examined the temperature dependency of the
internal resistance at between room temperature and + 80 °C in darkness (with zero
illumination). On increasing the temperature, we could observe an exponential
reduction of the internal resistance.

If the function

Rb(T)=RbOexp (*-jJ (24)

is related to the measured values, the Tc parameter characteristic of the extent of the
decrease and the values of the r2 correlational coefficient indicating correlation are
shown in Table I

Table 1l

Temperature coefficient of the internal resistance

Correlational

Sample number T, ¢ coefficient, r2
K| 328 0.982
a-2 27 0.989
a-3 61 0.803
6-1 34 0.991
6-2 28 0.998
6-3 37 0.995
6-4 37 0.998
A-1 25 0.993
A-2 33 0.988
B-1 32 0.985

Measurements taken as functions of illumination were performed at room
temperature. A 250 W iodine-halogenous lamp set for 2850 K colour temperature was
used for this purpose. The accuracy of the lamp’s current was maintained with stability
for three numbers figures. The maximum value of the applied illumination was 8... 10
kix in the case of smaller photocells, whilst, in the case of samples with large photo-
sensitive surfaces, we took measurements up to approximately 1kIx only. Some
characteristic data of the inspected photocells are summarized in Table Il1l. For the
sake of comparison, we have shown the measured values of a photocell belonging to
group-B.

Figure 9. displays the illumination dependency of the internal resistance of
certain typical photocells.

After surveying the results, we may see that the diverse models/samples have
essential differences as to how their internal resistance depends on the illumination.
Internal resistances measured as functions of both darkness and illumination are
substantially greater in the case of cells belonging to group-a as compared to group-/).
Furthermore, you may notice that on increasing the photo-sensitive surface, the
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Table 111

Illumination dependency of internal resistance

Sample Illumination

number 0 Ix 100 Ix 1 klx 5 kix
a-1 >10 MnN 35 M 1.7 MIN 500 kI
a-2 >10 Mii 8.0 MI 1.8 M 500 I
a-3 >10 M >10 MM 2.2 MM 450 KI1
b-1 1.6 M 16 MMM 950 KI 90 K
b-2 4.2 MIN 2.8 MI 1.2 MI 50 kI
b-3 14 MMM 13 MM 830 KI1 95 kI
1>4 430 Kk 360 KI 170 kI 19 kM
A-\ 8.3 MIN 800 kI 6 kI -
A-2 2 MM 650 KI 5 kI -
B-1 1 MM 350 kI <5 KN —

Fig. 9. lllumination dependency of internal resistance
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internal resistance decreases to a great extent. This was manifest in the case of both
home-made and Telefunken-made photocells.

However, if we take the fluctuation of the internal resistance as function of the
changes of light current (Im) per sample, we find that about 14 times as big a light
current was characteristic of the large photocells as a result of the 100 sg.mm, and
7 sq.mm, proportion. As seen in Table 2., the internal resistance of photocells belonging
to group-/1 is approximately of the same value when measured at 100 Ix as the internal
resistance of group-a at 1 kix. This allows us to conclude that the above mentioned two
models do not essentially differ from each other as far as the value of the internal
resistance per surface-unit is concerned.

As for the temperature dependency of the internal resistance, we did not
experience such a characteristic distinction between the various photocell groups.

The degradation of the internal resistance is rather important when utilizing
photocells in practice. In several territories, for instance in the case of colorimeters or
lux-meters where the photocell may substitute for photodiodes with reverse bias
voltage, the photocell is used as a linear element connected via direct current, that is in
short-circuit state. Figure 10. presents a basic connection of this kind, where the
photocell is short-circuited and the amplifier performs a current-voltage trans-
formation. However, as it is well known, the output offset-voltage of the operational
amplifier depends on the resistance of the generator as well. Therefore, the behaviour of
the amplifier will be effected by changes in the internal resistance of the photocell, in its
capacity as generator resistance. Therefore, when connecting it to a current amplifier,
the internal resistance of the photocell operating on short-circuit is going to gain
significance as a heat and illumination dependent parameter.

Let us have a look at the simple diagram in Fig. 10. and check what has been said
by way of calculations. The Rbinternal resistance is a function of T temperature and of
H illumination, and of /fo photo-current indirectly,

Fig. 10. Fitting a photocell to an operational amplifier
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Setting up the total differential of ukio offset voltage,

u du
- ANfOl+ qT AT. (25

e
AUkio= Tj
d,fot

The output fault voltage is

. R.
Ukio—Rv 110+ ~Y +id Ra 1+ R ho-f+ id t
>

+ (1+ ~ ) [t/e/+Clq, (26)

where 110 is the static input current,

10f the input offset current,

uof the input offset voltage

idand udare the drift current and drift voltage respectively arising as an effect of
the 1°C change in temperature and

Rv is the feedback resistance.
Ra the resistance connected to the non inverting input.

Forming the value of Uki0

AU™ ~ - Tr7 [Aa{10~ 12 +ij) ~ {u" +ul]
RK(Ifol-, T . dRb(Ifot; T) it
O T) I SRR DR “
5T 81f
AU ki0:01 If
Ra = Upf/+ ud (28)
| ~0f ]

It becomes evident that A U ki0 can be made zero by properly setting Ra. However, there
ceases to be a compensation and the internal resistance changes in equation (27) may
become significant with the changes ofudand id. Fora complete compensation of Ukio,
the member

also has to vanish from equation (26). This is approximately feasible with an auxiliary
voltage applied to the input of the amplifier.

The effect of the significant internal resistance fluctuations may be reduced by
choosing exigent operational amplifier types. What is necessary, above all, is an
amplifier with small offset and drift current and, as far as possible, you should make
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sure that the operational amplifier and the photocell should have a steady temperature
in the measuring device [ 11].

Measuring capacities. The temperature dependency of the photocells’ capacity
was inspected at temperatures ranging from +22°C... +80°C, with zero il-
lumination. Measurements have shown that capacity increases to a small extent when
the temperature is increased. In Table 1V, we have marked the capacities taken at room

Table IV

The capacity and temperature coefficient of the photocell

Sample number C (22 C), Temperature coefficient

nF pF/°C
a-1 1.20 +297
a-2 0.99 +2.05
a3 0.99 +1.82
b-1 173 +1.20
b-2 171 + 186
b-3 163 + 191
b-A 163 +0.87

temperature and the capacity changes per 1°C as a mean value for the above indicated
range of temperature. As you may see from the table, the capacities of the cells
belonging to group-a are smaller, but the amount of the change is greater than in the
case of the cells belonging to group-b.

The illumination dependency of the photocell-capacity was measured up to
about 3.. .4 kix at room temperature. In the case of greater illuminations, where the
capacity increase is accompanied by a significant decrease in the internal resistance, the
internal impedance of the photocells can no longer be modelled with the simple
substitution diagram seen in Fig. 2. and our measurement produced no appreciable
results. According to our investigations, photocells with 7 sq.mm, of photo-sensitive
surface are not advised for more exigent measuring purposes in cases when they are
illuminated beyond the above mentioned limits (approximately above 200... 300 pA
photo-current).

The percentage of the capacity’s change is displayed in Table V. for certain values
of illumination. In the table, the value belonging to zero illumination was defined as
100%. The illumination dependency of the capacity of two cells belonging to group-a
and to group-b respectively can be seen in Fig. 11.

Investigations concerning capacity may mainly become important when
photocells are applied with alternating signs. Although the photocell belongs to the
slow photodetectors, types with small junction surface are occasionally used for
sensing modulated radiation. Publication [3], where the author acquaints us with a
digital amplitude-modulated system with a photocell sensor is an example of this. The
contacts of the photocell are closed off with an inductance and the value of the

Acta Technica Academiae Scienliarum Hungaricae 98, 1985



172 BERKECZ. | SZENTIDAY, K

Table V

Illumination dependency of the photocell’s capacity

Change ofjunction capacity in percent

Sample with respect to 0 Ix taken as 100%
number
1kix 2 kix 3.5 kix

a1 102 108 134
a-2 103 116 139
a-3 102 104 124
b-1 104 116 145
b-2 102 105 115
b-3 102 104 m
b-A 102 105 122

inductance is selected in a way so that, together with the capacity of the diode, it would
form an oscillating circuit tuned to a carrier frequency. Therefore, the change of the
capacity is going to result in a distuning of the oscillating circuit while the change in the
internal resistance is going to influence the factor of the quality (Q) of the circuit.
A well-known advantage of applying modulated radiation is the elimination of
the effect of background illumination. This is particularly important in the case of

Fig. M. lllumination dependency of photocell-capacity
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optical signal transmission applied in open air. However, if the influence exerted by the
background light on the photocell’s impedance is significant, it indirectly effects the
sign transmission as well.

4.2. Investigating the temperature dependency of the responsivity

A sketch of the arrangement used for measuring the temperature dependency of
the responsivity is seen in Fig. 12. The light source presented in chapter 4.1. was used for
the purpose of illumination. The cooling and heating of the photocell were performed
with the help of a Peltier-cell whose reference side was cooled with flowing water. The
weak pre-vacuum (cca. 5 mbar) applied around the sample served the purpose of

Lamp house Light insulator To the pump

Fig. 12. Measuring arrangement set up for determining the temperature dependency of short circuit current

preventing the vapour from precipitation. The temperature of the photocell under
investigation was taken by a flat, Siemens-made thermistor mounted next to it. This
had previously been calibrated. The short circuit current of the photocells was
measured with the help of an LM 308 operational amplifier. The open circuit voltage
was directly measured with a digital voltmeter (internal resistance: 10 MI). For
investigations with wavelength-dependency, a 620 nm red and a 854 nm infrared
interference band-pass filters were used.

From the measurements we determined the relative change of the electrical
response signal as a function of temperature. The percentage of change was calculated
with the help of the formula

nAT -npgT )

X 100= % 29
UuJTlJd 2 (29)

Acta Technica Academiae Scientiarum Hungaricae 98, 1985



174 BERKECZ, |.-SZENTIDAY. K

where t/fo,(Ti) is the value of the response signal measured at a reference temperature
(room temperature) and the U fot(T) response signal stands for the value measured at
the T temperature in question. In the case without the filters, and 1 kix illumination, the
measurements were performed at temperatures ranging from —10°C to +80°C.
Short-circuit current. In the first group of our measurements, we investigated the
effect exerted on the responsivity by the penetration depth. For this purpose samples
with penetration depth of 0.1 pm, 0.2 pm and 0.5 pm, belonging to models of group-a,
were selected. All the measurements were carried out with red and infrared filters as
well as without filters. Figure 13 shows the temperature dependency of the

Fig. 13. Change ofshort circuit current in percent as a function of temperature measured with the help of red
and infrared filters

responsiveness of 3 pieces of photocells with 0.2 pm penetration depth as an example.
Table VI summarizes the results of the measurements performed, indicating the
percentage change arising between the two temperature limits. As seen, the rate of
temperature dependency is influenced by the penetration depths of the models to a very

Table VI

Measured values of the temperature dependency of responsiveness

Sample property, Difference in % between + 80 “C and -10°C

number with infrared filter with red filter
0.1/1. + 19 -3.5
0.1/2. +4.0 +0.6
0.1/3. + 3.6 +04
0.2/1. +25 -1.2
0.2/2. +4.3 +0.7
0.2/3. +4.0 -0.9
0.5/1. + 3.2 -1.0
0.5/2. +50 -1.0
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small extent, whereas a significant deviance may be experienced when measurements
are taken with red or infrared filters. At this point, let us comment that the results
obtained by measurements performed without a filter approach those obtained with
the infrared filter. The fact that the decisive part of the radiation energy of the lamp with
2850 K colour temperature falls into the domain of the nearby infrared is due to this
explanation.

So as to evaluate the results, we made calculations using correlations 3... 12 in
estimating the extent of temperature dependency. The value of the temperature
dependent parameters was defined from References [5] and [8] and from the
semiconductor material properties of the photocells. Table VII contains the data used
for the calculations and the results.

Table VII
Data and result used when calculating the change in
percent
Data
Wavelength of Absorptional factor, cm" 1
filter, nm r. m
854 720 940
620 4500 5750
Diffusion T T
length, cm temperatures
0.02 0.05
K 0.003 0.003
Results

Differences in % in the cases

Wavelength of ¢ giyerse penetration depths

filter, nm
0.1 pm 0.2 pm 0.5 pm
854 +45 +4.4 +4.1
620 +0.73 +0.69 + 0.60

If the data seen in Table 6. and those obtained by measurements are compared
with those of Table VII and obtained by way of calculations, the weaker temperature
dependency experienced in the red filter-range seems to be proved. Considering that
the calculations are, to a great extent, approximative, for instance the diffusion length
values may vary even in the case of samples taken from one piece, the concordance is
satisfactory and testifies that the short-circuit current of the manufactured photocells
follows the temperature dependency corresponding to what was expected.
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In the second phase of our measurements, we compared photocells belonging to
the different groups. Some characteristic results are shown in Fig. 14. On the whole,
what we experienced was that the short-circuit current of the samples belonging to
group-a showed a stronger temperature dependency than that of group-h. Measure-
ments seen in the figure were taken with infrared filters.

Open circuit voltage. Figure 15. presents some results from measurements of the
temperature dependency of open circuit voltage. The percent rate of change in the open

Fig. 14. Change of short circuit current in percent as a function of temperature in the case of some photocells
belonging to groups a and b measured with the help of an infrared filter

Fig. 15. Change of open circuit voltage in percent as a function of temperature in the case of photocells
belonging to groups a and b measured without filters
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circuit voltage can approximately be justified with correlation (19). On comparing
figures 14 and 15, we may state that the extent of temperature dependency of the short
circuit current and open circuit voltage are in concordance with each other.

The temperature dependency of the open circuit voltage was measured without
colour filters.

4.3. Noise investigations

Noise made by the photocells was measured with the help of a LOCK-IN
amplifier (Princeton Appl. Res. make, Model 124 A., type 184 pre-amplifier). We
previously measured the noise current of the amplifier (/,,,,) with an input left empty and
then took the complete noise current (Ind) after connecting a photocell to the input.
From the two values, the noise current of the photocells was determined with the help
of

L=y/l4-4- (30)

The measurements were performed at room temperature, with zero illumination on
10 Hz, 100 Hz, 1kHz and 10 kHz centre frequencies. The equivalent noise bandwidth
of the amplifier corresponded to 10% of the intermediate frequencies. The effective
value of the noise current referring to a unit of bandwidth was determined from the
measurements taken. It was expressed in Ax Hz 12

The responsivity of the photocells was measured with monochromatic light with
reference to UV-444 calibrated silicon photocells. The half-bandwidth of the light
wave emitted by the monochromator was about 1nm. During our investigations we
determined the wavelength corresponding to the maximum responsivity (Am,) and the
responsivity measurable at this wavelength in

ABW"1lecm2

Ifwe are familiar with the photo-sensitive surface of the photocells, the responsivity can
be expressed in A «W~* dimension.

Knowing the noise current and the responsivity and based on correlation (22), we
calculated the NEP data characteristic of the threshold sensitivity of the photocells.

The results of the calculations and measurements were summarized in Table
VIII. The value of the noise current measured at 1 kHz and the value of NEP calculated
at 1kHz and Am, were listed in it.

The NEP values of the photocells belonging to group-a are about the same as
those for group-c. However, the threshold sensitivity of the photocells belonging to
group-b is worse by more than one in order of magnitude compared to them.

It is more advisable to compare the photocells made according to the same
technology but with significantly differing photosensitive surfaces with the help of the
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Table Vili

Spectral and threshold sensitivity properties of the inspected photocells

Sample  #x» Responsiveness Photosensitive Noise current at 1kHz NEP (1 kHz, 1 Hz 2m,),
number nm at Am, , AXW 1 surface, mm2  X10“13 A XH z'12 x10“1BW XHz- 12

a—1 870 0.637 7 0.092 0.14
a-2 875 0.549 7 011 0.20
a—3 860 0.546 7 0.092 0.17
b—1 890 0.645 7 21 33
b—2 890 0.603 7 12.0 20.0
b-3 860 0.635 7 15 24
c—1 880 0.421 3.8 0.097 0.23
c—2 880 0.365 38 0.13 0.36
A—1 895 0.507 100 13.0 26.0
A-2 910 0.552 100 13.0 24.0

NEI data (Noise Equivalent Input) instead of with the NEP data as

NEP
NEI= (31)
O
that is, NEI is equivalent to NEP referring to a unit detector surface [10]. As an

example, let us compare samples marked a-2 and A-2,

_2X10 14 _
NEI(&—%)(_ —%? ----- 2.8x10~12 WxHz~1/2xcm 2
and
24x 10 12
NEI(A_2)= —Tu =2.4x 10-12 W x Hz"12xcm 2

The agreement of the NEI data proves that the threshold sensitivity of the MEV made
photocells with a large photosensitive surface falls into the expected order of
magnitude.

The values of the noise current measured as a function of frequency did not show
significant deviations. The smallest noise current arose generally at 100 Hz and 1 kHz.
As an example, Table IX presents the results of noise measurements on some
characteristic samples. Let us note that the accuracy of our noise measurements may be
estimated at about 10%

Table IX

Values of noise currents measured as function of centre frequencies

Frequency, Noise current x 10'13 Ax Hz"12
A-ASample number a—2 6-3 c—2 A-2
10 0.13 29 0.04 22.0
100 0.14 12 0.05 11.0
103 0.11 15 0.13 130
10 0.33 84 0.79 66.0
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5. Conclusions

During our research we investigated the more exacting application opportun-
ities of photocells in relation to manufacturing technology. We have been dealing with
measuring temperature and illumination dependency of the internal impedance of
photocells, with the temperature dependent and wavelength dependent properties of
sensitivity and with investigations on noise and threshold sensitivity.

From the circuitry’s point of view, the internal impedance of photocells is
important when fitting it to the front amplifier. It is the significant temperature and
illumination dependency of the internal impedance of the photodetectors operating in
the photocell operating mode that constitutes its greatest disadvantage over the short
circuited photodiodes. The rather significant illumination dependency of the ohm-
member, the internal resistance, seems to be the most critical. From this aspect, the
photocells belonging to group-a proved to be the best, for in their case, both in
darkness and in an illuminated state, the internal resistance produced a relatively high
value when measured.

When used in devices and applied amidst varied environmental temperatures,
the temperature and wavelength dependency of the responsivity may be very
important. From this respect, the behavior of the photocells belonging to groups a and
b were quite different. In the case of photocells belonging to group-b made of raw
materials with a small specific resistance, the temperature dependency of both the short
circuit current and the open circuit voltage is of a much smaller value than that of
samples belonging to group-a. Among these latter ones, we may find samples whose
temperature factor of their short circuit current reached the 0.2%/K value. The
temperature factor of the open circuit voltage never exceeded the 1%/K value with any
of the samples.

We examined the temperature factor of the short circuit current as a function of
the penetration depth and of the wavelength of the illuminating light as well. In
agreement with theoretical considerations, we found that the temperature factor was
smaller when applying red light than when using infrared illumination.

When measuring small light levels, we must also be familiar with the noise
current and the threshold sensitivity of the photocells. The noise current was measured
in the frequency range of 10 Hz to 10 kHz and the Noise Equivalent Power values were
determined from the measured noise data and the A x W 1sensitivity measured at the
maximum responsivity wavelength. The photocells manufactured at home were
compared with samples made by Telefunken.

We may state that the responsivity of the MEV made photocells is very good, it
approaches the maximum, theoretically attainable value. At the same time there are
significant differences between the various photocell groups from the point of view of
noise and NEP as well.

Surveying our achievements, we may say that for precision measuring technical
purposes it is the photocells belonging to group-a primarily that we would advise for
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use. Its high internal resistance, the relatively small extent of illumination dependency
of the internal resistance, its small noise current and great threshold sensitivity are the
advantages that may be listed. The only real advantage the photocells belonging to
group-b have is the weaker temperature dependency of the responsivity.

Photocells with a 100 sq.mm, photosensitive surface also satisfy the requirements
of fine quality photodetectors, though we would mainly advise them for use as solar
cells.

The applicability of home made photocells is greatly promoted by their
favourable parameters.
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LATERAL BUCKLING OF ELASTICALLY
RESTRAINED ARCHES WITH BUILT-IN SUPPORTS

I. BODI*
[Received: 5 February 1985]

An iterative procedure is presented for the computation of the critical load of arches
elastically restrained against lateral translation and rotation. The procedure is applicable to arches
with arbitrary support systems.

1. Introduction

Several papers have dealt with the lateral buckling of centrally compressed
circular arches [1], [2], [3].

The stability of cantilever arches was analyzed in [3], the critical load of arches
with fork-like supports, elastically restrained against lateral translation was presented
in [ 1] and the stability analysis of arches with fork-like supports, elastically restrained
against lateral translation and rotation was carried out in [2].

The aim of this paper is to present a method for the computation of the critical
load for arches with built-in supports, elastically restrained against lateral translation
and rotation. It will be shown that the method is also applicable to arches with
arbitrary lateral restraint and with arbitrary support systems (boundary conditions).
For tent structures, the characteristics of the elastic restraint were determined in [4].

2. Assumptions and approximations

The assumptions and approximations are identical with those made in [2] and
[3] so that we only present the most important ones:

The material of the arch is homogeneous, isotropic and linearly elastic.

The cross section of the arch is constant and has at least one axis of symmetry
which lies in the plane of the arch.

The arch is subjected to a radially directed, uniformly distributed conservative
load system in the plane of the cross section (Fig. la).

* |. Bédi, H-1052 Budapest, Petéfi S. u. 5 Hungary.
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a.) b.)

Fig. 1. Arch, with built-in supports: la Loading; Ib Geometrical characteristics of the arch

The curvature of the arch is constant and not too great (Fig. Ib).
It follows from this latter assumption that

a) the arch is only subjected to central compression which can be computed from
the formula
N =gR\
b) even the greatest vertical dimension of the cross section can be neglected in

comparison with the radius of the arch, i.e. the approximation

holds (Fig. 2b).

a) b)
Fig. 2. Notations: 2a Arc; 2b Cross section

3. Notations

centroid of the cross section,

shear centre of the cross section,

point of application of the load,

point of application of the lateralelastic restraint,

point of application of the lateral shear restraint,

distance between T and S,

arc length measured along the centroidal line of the arch,

OO NOTAHOD
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L length of the centroidal line of the arch,

| distance betweenP and T,

tc distance between T and C,

tg distance betweenT and G,

R radius of the arc measured at the centroidal line of the arch,

cT(s) function of the lateral translation (y) of the shear centre,

)  function of lateral rotation,

g constant of elastic shear restraint referred to unit length of the arc (kN),
c constant of elastic restraint referred to unit length of the arc (kN/m2)
Elx  bending rigidity of the cross section of the arch,

G/, torsional rigidity of the cross section of the arch,

£/,,  warping rigidity of the cross section of the arch,

N normal force,

ix,iy  radiuses of gyration of the cross section.

4. Differential equations of lateral buckling

The differential equation system of the arch in the state of bifurcation of
equilibrium derived on the basis of the assumptions and approximations given in
Section 2 was presented in [2]. The two differential equations of the forth order with
constant coefficients for lateral translation vT and lateral rotation g assume the form

* . 1 d4rr
R ds4

+ -0 2

with the boundary conditions

valid for arches with built-in ends.
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We shall first determine the particular solutions which satisfy differential
equations (1) and (2) then, from these particular solutions, we shall choose those which
also satisfy boundary conditions (3)—€10). Ifthere are more solutions satisfying both the
system of differential equations and the boundary conditions, then the one which yields
the smallest critical compressive force N CRis considered as the solution to the problem.

5. Solution of the system of differential equations

For the solution of the system of differential equations, we shall rely on the
method presented in [5].

Let us rearrange the system of differential equations by introducing the
differential operators

BU(...)=-£/, d4(§é'4') +[GIT—N(e2+ i2+ i2)+ gf7] n
+ (n)
EL d4(...)
R ds4
GIT EIX
+ +-f+Ne-et,Jd2(§sz)+CiC(---)l (12
(13)

By doing so, we obtain the system of differential equations as

*»1M =T0° (14)
12 L~

Let us determine the determinant of operator matrix L which is also a linear operator:

®+detL=&nNn2°22-% 1. (15)
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In performing the operations, after some rearrangement, we arrive at the symbolic sum
for operator 2\

U—L-l):a\dzg-g"z-l-’[rﬁﬁ Nb,irc_HdSb) "z\r"53‘ng2+NZC,]-rd£K'")+

+[ad+ Nb3+n 2.7 — +[a5+h4] (...), (16)

where we have
N compressive force in the arch

al =EIUlEIXx, (17)

(18)
(19)
(20)
(21

(22)

(23)
(24)
(25)
(26)

@7)

Let us now try to find a scalar function H -f(s) which satisfies the condition

2(H) = det L} //) = 0, (28)
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i.e. if the determinant of operator matrix L vanishes, then function H also satisfies the
matrix equation

Leadj LUH)=0
as is shown in [5].
Having determined scalar function H(s), we substitute it to a row of the
matrixarithmetic adjoint matrix of the operator matrix in (14). By doing so, we arrive at
displacement functions <p(s) and uT(s):

M>)=" u Ne | (29)
(5)— — i€ 12[H(S)]. (30)

Function H satisfying condition (28) can be determined by making use of
expression (16) which requires the solution of the ordinary, linear homogeneous
differential equation of the eighth order with constant coefficients:

d8H 2t Nb détf A ) N
+ + A
ds8 (a )d56+(a3+N 2+ Nc®) ~ r
d2H
*(at+ Nb3+Nch) |, + (ab+ 64)A=0. (31)

We are looking for the solution in the form
H=eX
with which the characteristic equation of the differential equation assumes the form

uiAB+(#2 4' AlI>j)A8+ (n3-mN b 2 'bN 2¢ j)A44*

+ (ad+ Ab3+ [Y2c2)/2+ a5+ 4= 0. (32)
In determining roots Aj, A2,. . ., A8, of the algebraic equation (32), two cases must be
considered.
Case 1

If all roots are single—and this is the usual case—, then the general solution to
differential equation (31) assumes the form

H(s) = Clex's+ C2i2S+ .. . + C 6ex's, (33)

or in a more concise form
H(s)= X cne”® (34)
where Cj, C2, ..., C8are arbitrary constants. By making use of operators (11) and
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(12), we obtain the functions

Ms)=~"ntf(s)= i

and

C,.,einS mA (kn, N)

® )= -¥ I2H(s)= £ C,e"

where we have

A(A,,,N)= —E IX +[G/r- N(e2+i2+il)+giftka+

t—e it
+ N

B(kn,N)=

Case 2.

ctf

+Né-gtrkl- ctC.

BUnN,N),

El*
R 2

187

(35)

(36)

@7

(38)

Multiple roots only emerge in special cases. If A is a (c,-fold root, the general

solution assumes the form
H(s)= (C,0+ Cus+ ...

+ (G20+ G2iS+ ...

+ (GnO+ Gmis+ .. -Cmkm

where we have

+CUI_s*I'V 5+

+ C 2kl~is*2

Iskm 1)eXnt,

ktk, + k2k2+ .. .kmkm= 8,

and
Cio»GjJ.. «CUI_1 ill.

are arbitrary constants.

C10,Cn...C,irl

The general solution in concise form reads

W(s)= ﬂE:liV - Y

and the displacement functions emerge as

(m
T(s)= U
vT(s) |."’):(l

r m
OX)=-2¢ ,2 L'>=(i

j=

Y -i',
0 q

kn—1

o<V

(%1
I

j=o

<V.
J

e+ ...

where '£ ,, and 12 are the linear differential operators defined by (11) and (12).
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6. Boundary conditions
We shall only discuss the case of single roots in detail.

The boundary conditions (3)—€10) of the arch with built-in ends are obtained
from formulae (35) and (36) by derivation:

Ms=0)= Iicn A(kn,N) =0, (39)
ns
vI(s=L)= t C,eXnA(k,,, /=0, (40)
(s=0)= t CrAnA(An,N) =0, (41)
us n= 1
dt; 8
= = N =
L4f6=0)= X C,Vv~(/,.N)=0, (42)
8
<s=0)= £ C,B(4,,N)=0, (43)
n=1
<9s=L)= £ CY"'Bu,,bl)=0, (44)
Ms=0)= X cfi(ANN)= (45)
-alé(s_ O)_ n—l' Cl”'” ( ’ )_01
8 3.
_?38 =L)= )_(I C,ly"R(,,/V)=0. (46)

The above equations for the boundary conditions can be transformed into the system
of linear, homogeneous equations of the eighth order based on the undetermined
coefficients C,, :

~A(XItN) A(/-2, N) ... A(ks,N) mc,- =0,
ex'LA(AI, N) ei2tA(k2,N) ex*LA(A8, N) (o¥i

k xA(Xx,N) k2A (k2,N) n8/1(n8, N)

XiellLA(kx,N) k2e*2LA(k2,N) ... k8XeLA(/.8,N) an
B (kx,N) B(k2,N) ees B(A8,N)

ex,LB{kx, N) eXILB (k2, N) ... ex*1B(k8,N)

k XE (kx,N) k2B (k2,N) A8B(/8, M)

kxex'LB(kx,N) A2eA2lB(k2,N) ... k8ex'LB(k8,N)_ _Cs8
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or in concise form

KeC =0. (48)

Apart from the given geometrical and rigidity characteristics of the arch, the elements
of coefficient matrix K only depend on compressive force N—formula (29) shows that
roots ,JP,. . JBare also functions of N.
Hence the equation
K(/V)C=0 (49)

holds. Solutions different from the trivial solutions can be obtained only if the
determinant of the system of the equation vanishes, i.e. if

detk ((V) = 0 (50)

holds. Every critical compressive force belonging to buckling halfwave « satisfies
condition (50) and the minimum of this series yields the solution to the problem:

Nc,,= min[N{%/]; k= 1,2,3... (51)

7. Solution process

The solution of the problem is obtained by iteration for which we need the
approximate value of the critical compressive force N CR causing lateral buckling:

NCr=min [$& ],
where

= sgeen2 (52)

In this formula N RO represents the critical compressive force which belongs to
buckling half wave k of an arch with built-in ends but without elastic restraint.
According to [3], its value is given by the formula

where a stands for the half central angle of the arc.

According to the example of a beam with built-in ends and with elastic restraint
presented in [6], formula (52) gives a good approximation for critical compressive force
N % .

The derivation in [8] for beams with a straight axis shows that, for c =0, we
obtain the exact value.
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By making use of formulae (17)—27) and (32), first we compute the roots of the
characteristic equation, then we determine the general solution to the characteristic
differential equation by formula (33) and the displacement functions and their
derivatives by formulae (35)-(46). Finally, we obtain the coefficient matrix for the
boundary conditions and its determinant from formula (47). If the determinant
vanishes, our approximation at the beginning of the process was correct, i.e. we used the
exact value of the critical force. If the determinant does not vanish, we repeat the
process by using the reduced value.

WcVAiicR-aN (54)

of the critical force. The process has to be repeated until determinant (47) vanishes or
changes sign.

In the latter case the exact value of the critical force is obtained by the principle of
halving intervals.

8. Application to different boundary conditions

It is advantageous with the method presented in the foregoing that, contrary to
common methods, it is not necessary to choose a system of basis functions which
satisfies the boundary conditions since, knowing characteristic roots, we can directly
determine the form of the functions representing the lateral displacements.

In this way, apart from the fact that the value of N CR has to be chosen at the
beginning, the effect of the boundary conditions only appears at end of the process in
constructing the boundary condition matrix and in the value of its determinant. It
follows that other types of boundary conditions can easily be analized; it is only the
boundary condition matrix which has to be modified according to the conditions
related to the lateral displacements at the supports. Accordingly, we can easily carry
out the lateral stability analysis of arches with different support systems; fork-like
supports at both ends, a fork-like support and a built-in end, two elastic supports or
even diafragms at arbitrary points.

In the case of more complicated support systems when it is more difficult to give a
good approximation for the critical compressive force we may need corresponding
values of the compressive force and the determinant. In the neighbourhood of the
smallest root we have to use smaller increments for the step-by-step iteration to obtain
the exact value of the critical compressive force. We mention here that we computed the
critical force of the arch with fork-like supports presented in [2] by using the above
process and arrived at the same value as in [2].
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9. The role of the warping rigidity

The formulae presented above for the lateral stability analysis of arches,
especially formulae (37) and (38) show that the warping rigidity and the St. Venant
torsional rigidity can always be added to produce a “resultant torsional rigidity” as

where JKis the /cth characteristic root.
This relationship can immediately recognized in the case of arches with fork-like
supports at both ends since the system of eigenfunctions is very simple in their case [2]:

I/j(s)=sink ™ ; ft=1,2,3...

The “resultant torsional rigidity” in this case assumes the form

n2
DTk=GIT+ k2-jj E1HO.

The value of the first term is generally much greater than that of the second one
and consequently the latter term is often neglected, i.e. it is assumed that E1w= 0 holds.
This approximation is only acceptable for cross sections whose primary warping
function with respect to the middle line of the cross section vanishes and the warping
rigidity only comprises the secondary warping functions belonging to points outside
the middle line.

In neglecting the warping rigidity, coefficient (17) of the eighth order term of
characteristic equation (32) vanishes reducing the order of the equation and the
number of the linearly independent solutions to characteristic differential equation (16)
to six. Consequently, displacement functions vT(s) and <p(s) only consist of six terms,
respectively. The neglect of E1a also results in the loss of the two boundary conditions
related to warping so that the coefficient matrix of the boundary conditions is now of
6 x 6 dimensions making the solution of the problem easier.

10. Remarks and suggestions for the numerical analysis

To help to solve some numerical problems emerging through the procedure, we
shall now give some simple programming tricks and methods.

As we have seen, during the procedure we have to determine the determinant of
boundary condition matrix K(N) defined by (47). Since matrix Kis nearly singular even
in the neighbourhood of critical force N CR, mainly to avoid rounding errors, it is
expedient to compute the value of the determinant by using a programming language
(e.g. FORTRAN) in which variables with double accuracy can be defined.
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It is also expedient to factor out appropriate quantities of the columns of the
determinant so that the remaining elements be in the same order of magnitude. We
have to be careful because these reduced values must still remain in the input range of
the computer.

Greater accuracy can also be achieved by setting the origin of the arc length in
the middle of the arch instead of at the built-in end because in this way the values of the
hyperbolic functions in the boundary conditions are in the same order of magnitude.

The singularity of the boundary condition matrix transformed according to the
foregoing can be examined by applying the QR decomposition.

As is known, any real matrix, and matrix K is real, can be decomposed as

K=Q XR,

where Q is a uniterian matrix (i.e. QxQ"'=1)
and R is an upper triangular matrix whose main diagonal only contains non-
negative elements.

This decomposition is numerically stable and mathematically equivalent to the Gram-
Schmidt orthogonalization process applied to the linearly independent columns of
matrix K

In the case of singular matrix K, being Q a uniterian matrix, matrix R must be
singular, i.e. the equation

detR=ru r2.. .r8=0

must hold. It follows that one of the elements of the main diagonal of matrix R must
vanish.

In summary, we can conclude that, using simple transformations, first we have to
produce a matrix with elements of the same order of magnitude but within the input
range of the computer. Then, by applying the QR decomposition, we have to compute
the value of the boundary condition matrix in a numerically stable way.

11. Numerical example

Let us compute the the critical compressive force of the arch with built-in
supports shown in Fig. 3. (The critical force ofan arch with the same characteristics but
with fork-like supports is given in Fig. 2)

The geometrical and rigidity characteristics of the arch are

R=19.30m,
L=24.48 m,
E= 107kN/m2,

G«0.4£ =4x 106 KN/m2,
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Fig. 3. Arch for the numerical example: 3a Elevation, 3b Cross section

E1X= 2048 KNm2,
GIT=2726.5 KNm2,
£/urF 61.4 KNm4,
t=tc=tg= 0.30 m,
e=0,
i2« 0; i*=0.030 m2
The specific characteristics of the elastic restraint referred to unit length of the arc are
c=454kN/m2,
3 =216 kN.
The coefficients of characteristic equation (32) come from formulae (17)—27) as
a,= 1.2575 x 10s, b,= 1.2286 x 102, c,=3.0x10~2,
a2= - 56340 x 106,  b2=-2.8194 X10\  ..=323x10°?
a3= 4.8947 x10s, b3= 3.2208 x10 1,
a4=-1.9192 x 104, b4= - 1465 x 10'
as= 1.0750 x10 2,
The upper bound of the critical compressive force for k = 1is obtained from (53):
ftr 81.01 + 216+ 275.67 = 572.7 kN.

The values of determinant K of the boundary condition matrix belonging to
compressive force N in the iteration steps are compiled in Table 1
The characteristic equation after the ninth, final step assumes the form

1.2583 x 105A8—5.5689 x 106™6—9.2639 x 105M —
—1.1615 x 10M2+ 3.1573 x 10° =0,
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Table 1

Number N det K

of steps
1 538.4 - 10889
2. 452.2 1667.3
3. 495.3 1053.9
4. 516.8 104.12
5. 527.6 -474.61
6. 522.2 -179.11
8. 518.2 34.636
9. 518.9 -0.4518

and its roots take on the values
V 2= +0.127 361ij,
_4=+0.389 679i,
i5 6= +6.665 058,
A7_g= +0.047 886.

The complex pairs of roots only have an imaginary part and the application of
the Euler formula for the exponential function yields scalar function (33) as

H(s) = C, sin (0.127 361s)+ C2cos (0.127 361s) +
+ C3sin (0.389 679s) + C4 cos (0.387 679s) +
+ C5sh (6.665058s)+ C 6ch (6.665 058s) +
+ C7sh (0.047 886s)+ C8sh (0.047 886s).

The functions of lateral displacements can be determined from formulae (35) and
(36). Taking into consideration the remarks and suggestions made in Section 10, we
obtain the boundary condition matrix from (39++46). The elements of the 8 x 8 matrix
are compiled in Table Il. After the ninth step the determinant assumes the value

det K= —0.4518% 0

so we consider the compressive force obtained in the ninth step as the critical
compressive force:

Ac,,= 518.9kN.
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m32388E +02
—61445E + 02
—T71872E + 02
—41218E+ 01
.61576E + 02
—73126E + 00
m88538E + 06
—~B88538E + 06

-.29424E + 01
I5510E + 01
—16059E + 01
m28007E + 02
—93136E —01
—78425E + 01
-.59011E+ 07
5901 IE+ 07

10612E + 08

- 20133E+ 08
—20188E + 08
—11525E + 07
.20131E+08
-.23907E + 06
14747E+ 08
—14747E+ 08

Table 11

The elements of the 8x8 matrix

—96409E + 06
50818E+06
- 44909E+06
78324E + 07
—30449E + 05
-.25640E + 07
—98290E +08
.98290E + 08

- 32388E + 02
—61445E + 02

*71872E + 02
—41210E + 01
-.61576E + 02
—T73126E + 00
—~88538E + 06
- 88538E+ 06

—29424E + 01
—15510E + 01
— 16059E + 01
—28007E + 02
—93136E —01

76425E + 01
—5901 IE+ 07
—>59011E + 07

—10612E + 08
—20133E + 08

*20100E + 08
—11525E + 07
—20131E + 08
—23907E + 06
—I14747E + 08
—14747E + 08

—96409E + 06
-.50818E + 06
—44909E + 06
—78324E + 07
-.30449E + 05

25640E + 07
- 98290E+08
—098290E + 08
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SHEAR DESIGN OF REINFORCED
AND PRESTRESSED CONCRETE ELEMENTS
BY THE NEW CANADIAN CODE

M. P. Collins*P. Lenkei**
[Received: October 1984]

The shear design of reinforced and prestressed concrete members using the “compression
field theory" has been incorporated in the 1984 new Canadian code. The article introduces the theory
and the method of design. A comparison is made between the new Canadian code and other
international and national codes, including the existing and the past Hungarian codes.

Symbols
— width of the member
— width of sheared part of the member
— depth of the member to the centroid of compression reinforcement
— depth of sheared part of the member
— principal compressive stress of concrete

— possible maximum of the principal compressive stresses
—concrete cylinder compressive strength
— vyield stress of steel
— spacing of shear reinforcement

— external shear stress

— area of shear reinforcement

— compressive load acting on the compressed part
— diagonale compressive force

— Young’ modulus for steel

— applied moment

— factored applied moment

— factored axial force

— axial tensile force due to shear (equivalent axial force)
— tensile load acting on the tensioned part

— shear force

m— factored shear force

— normal strain

— principal tensile strain

— principal compressive strain

— tensile strain in transverse steel direction

— tensile strain in x-longitudinal direction

— angle of inclination of principal compressive stress

— to account for low density concrete (A= 1.00 for normal density concrete)
— resistance factor for concrete (®c= 0.6)

— resistance factor for steel

* M. P. Collins, Department of Civil Engineering, University of Toronto, Toronto, Ontario, Canada
** P Lenkei, H-1119 Budapest, Szakasits A. u. 4, Hungary

Acta Technica Academiae Scientiarum Hungaricae 98, 1985
Akadémiai Kiad6, Budapest



198 COLLINS. M P-LENKEI. P
1 Introduction

There was—and actually is—a wide and comprehensive discussion in North
America about the improvement of the shear design of reinforced and prestressed
concrete elements. An important contribution to this process is the shear chapter of the
new Canadian Code “Concrete Structures for Buildings” CSA-A23.3-84, which was
approved in 1984.

This code, besides giving a simplified method which is essentially the well known
and traditional ACI v=vc+Vs procedure (ACI 318-83), introduces a new general
method. The general method, called the Compression Field Theory, is based upon 15
years of extensive research, carried out at the University of Toronto [Mitchell and
Collins (1974), Collins (1978), Collins and Mitchell (1980), Vecchio and Collins (1982)],
and also uses concepts from the plasticity models [Thuerlimann et al (1982), Marti
(1984) and (1985), Mueller (1978)].

The compressionfield theory considers shear as influencing the design of both the
transverse and the longitudinal reinforcement. In its most general form the method
permits the resistance and behaviour of members in shear to be investigated in detail by
performing a sectional analysis which considers the equilibrium, compatibility and
stress-strain requirements for different portions of the section. Such an analysis (see
Fig. ) would show that the shear stress distribution is not uniform, that the direction of

Cross-section ~ Shear-stresses Longitudinal Principal compressive
strains stress trajectories

Fig. 1. Detailed analysis of a beam in shear

principal stresses changes over the depth of the beam and that tensile stresses in the
concrete between the cracks contribute to the shear resistance of the member.

In lieu of the detailed analysis outlined above, the Code permits a more direct
procedure, which concentrates on the conditions at mid-depth of the beam. In this
procedure (see Fig. 2) the shear stresses are assumed to be uniformly distributed over an

r-yv-T-
/ Y

/
/

—~———
—_——
|

~—

/
/

~—

Cross-section Shear-  Longitudinal ~ Sectional forces
stresses strains

Fig. 2. More direct analysis of a beam in shear
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SHEAR DESIGN OF REINFORCED ELEMENTS 199

area b,, wide and d,, deep, the direction of the principal compressive stresses (defined by
angle 0 )is assumed to remain constant over dvand tensile stresses in cracked concrete
are ignored.

2. Stresses and Strains at Mid-Depth of the Beam

The cross-sectional dimensions of the member must be sufficiently large to
ensure that the diagonally cracked concrete is capable of resisting the imposed inclined
compressive stresses (i.e.,/2</2mex).

If the principal tensile stress in the concrete is zero, then the principal
compressive stress in the concrete,/2, will be related to the shear stress on the concrete,
v=Vf/(bvdv), by the following equilibrium equation which can be derived from the
Mohr’s circle in Fig. 3.

(1)

If the concrete at mid-depth is severely deformed (large principal tensile strain £,)
its ability to resist compressive stresses will be substantially reduced. In the Code the
failure value of/ 2 is related to by the following:

10
Ne cf'c 0.8+ 170s ) 2

Fig. 3. Concrete stresses at mid-depth of the beam in web

02-

0
0 2 4 6 8 10 12 H

E X103
Fig. 4. Relating/2,,,, to e.
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This expression was derived from the experimental data obtained from testing
panels in pure shear, [Vecchio and Collins (1982)].

The principal tensile strain, el5is related to the longitudinal strain at mid-depth,
ex, the principal compressive strain (assumed to be —0.002) and the principal strain
direction (assumed to coincide with the principal stress direction) by the following
compatibility equation which can be derived from the Mohr’s circle in Fig. 5.

£i=ex+ (™ +0.002)/tan20 3)

Fig. 5. Strain at mid-depth of the beam

3. Design of Reinforcement

Transverse reinforcement must be provided to equilibrate the outwards thrust of
the diagonal compressive stresses in the concrete. The free body diagram in Fig. 6(a)
demonstrates that, for uniformly loaded beams, the transverse reinforcement within

Fig. 6/a. The “staggering concept” for design of transverse shear reinforcement

the length ofd j tan © may be designed to resist the lowest shear within this length. This
has become known as the “staggering concept” for shear design.

AyQly av v

s tan©®o ~ f ()
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Fig. 6(b) illustrates the way in which the distribution of transverse reinforcement is
determined from the shear envelope. Each step of the required resistance diagram
results in a zone of equally spaced stirrups.

Fig. 6/b. The design of transverse steel

The shear force on the section is resisted by diagonal stresses in the concrete.
Thus in Fig. 2 it is the vertical component of force D which is carrying the shear. The
horizontal component of force D is equivalent to an axial compression on the concrete
of f/tan 0. This unwanted compression needs to be cancelled out by tensile forces in
the longitudinal reinforcement (see Fig. 7). Thus shear

\

tan 0 S

causes compressive stresses in the concrete and tensile stresses in the longitudinal
reinforcement. In terms of the tension in the longitudinal reinforcement the shear is
equivalent to an axial tensile load of f/tan 0.

Q5 Nv

Cross-section

Fig. 7. Longitudinal forces due to shear

4. Choice of 0
In designing a section to resist shear the engineer may choose any value of 0
between 15° and 75°, however the same value must be used in satisfying all of the

requirements of a section.
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Choosing values of 0 less than 45° will result in less transverse reinforcement but
more longitudinal reinforcement being required which is usually an economical trade-
off. As 0 is made smaller f 2 becomes larger. For a constant ex making 0 smaller
increases e{and hence decreases/2max. The lower limit for 0 is set whenf 2 reaches/2max.
The lower the shear stress on the concrete the lower the value of 0 at whichf 2 will equal
/2 max (see Fig. 8).

Fi«/. S. Values of (9 at which/2=/2m»,

The longitudinal strain at mid-depth, ex, (see Fig. 2) can be found by performing a
plane sections analysis for the section under the applied moment, M f, axial force, N f,
and the equivalent axial force Nv, Eqg. (5). Sections with high axial compression,
prestress or low values of moment will have small web deformations (low ex and thus
low £,) and hence will be able to tolerate higher shear stresses.

In lieu of determining ex from a plane sections analysis, the Code permitsex to be
taken conservatively as —0.002.

If the cross-sectional dimensions are adequate it will be possible to choose a
value of 0 which ensures that the concrete does not crush prematurely and that the
transverse reinforcement yields before failure (et>fy/Es). Note from Fig. 5 that et=el
—ex—0.002. A chart such as that shown in Fig. 8 can assist in the choice of 0.

After 0 has been chosen the transverse reinforcement is designed to satisfy Eq. (4)
while the longitudinal reinforcement is designed to resist the equivalent axial tension
N,, in addition to the applied moments, M, and axial loads, N f . Because the influence
of the shear on the longitudinal reinforcement is accounted for directly, the traditional
detailing rules intended for this purpose can be waived.

5. Comparison
To compare the general method of the new Canadian Code with other code
prescriptions an analytical study was performed. It was assumed that no bending

moments, no axial forces and no prestressing occur at the section investigated and that
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the longitudinal reinforcement is adequate for the shear. The spalling of the concrete
cover was neglected. In the calculations no safety factors were included and material
strengths were taken as characteristic strengths. Only stirrups as shear reinforcement
were taken into account.

The results of the comparison calculations between the ACI 318-83 method, the
general method of the new Canadian Code, the CEB MC-78 accurate method, the
USSR SNIP-11-21-75 and the existing Hungarian Code MSz 15022/1—86 and the
previous MSz 15022/1—71 are shown in Fig. 9. The truss angle of 0 for the general
method was chosen as the average of the possible values, approximately corresponding
to a longitudinal strain ex of —0.001 at mid-depth. For the CEB method the values of 0
was chosen of the lowest possible (tan 0 = 3/5).

From Fig. 9. it is clear that the new general method permits higher shear stresses
than the traditional ACI approach and covers all the possible domains of shear
behaviour.

Fig. 9. Comparison of shear provisions of several codes (The vertical lines correspond to minimal shear
reinforcement)

The different codes give a large scatter in predicted shear capacities, the ACI
being the most conservative and the SNIP the highest. In comparing these values one
should take into account, that the CSA permits the use of the staggering concept, which
for a given beam results in designing for lower values of shear.

6. Concluding Remarks
Prestressed concrete, deep beams, corbels, control of diagonal cracking, spalling
of the concrete cover, spacing limits for transverse reinforcement and truss models for

design regions adjacent to supports, concentrated loads or abrupt changes in cross

Ada Technica Academiae Scientiarum Hungaricae 98. 1985



204 COLLINS, M. P.-LENKEL, P.

section, are additional topics covered in the new Canadian Code with the help of the
compression field theory and truss models.

In dealing with all these topics, the aim has been to develop regulations which are

integrated but not complicated, having a clear physical explanation.

References

1 Collins, M. P.: Towards a Rational Theory for RC Members in Shear, Journal of the Structural Division,

2.

ASCE, V. 104, April 1978, 649-666
Collins, M. P.-Mitchell, D.: Shear and Torsion Design of Prestressed and Non-Prestressed Concrete
Beams, Journal of the Prestressed Concrete Institute, V. 25, No. 5, Sept./Oct. 1980, 32-100

. Mitchell, D.-Collins, M. P.: Diagonal Compression Field Theory—A Rational Model for Structural

Concrete in Pure Torsion, Journal of the American Concrete Institute, V. 71, Aug. 1974, 396-408

. Marti, P.: Basic Tools of Reinforced Concrete Beam Design, ACI Journal, Nov.-Dee. 1984
. Marti, P.: The Use of Truss Models in Detailing, to be published in ACI Journal, Nov.-Dee. 1985
. Mueller, P.: Plastische Berechnung von Stahlbetonscheiben und Balken, Juli 1978, Bericht Nr. 83, Institut

fur Baustatik und Konstruktion ETH, Zirich, 160

. Thuerlimann, B. Marti, P.-Pralong, J.-Ritz, P.-Zimmerli, B.: Anwendung der Plastizitaetstheorie auf

Stahlbeton, (Application of the Theory of Plasticity to Reinforced Concrete), Institute of Structural
Engineering, ETH Zirich, 1983, 252

. Vecchio, F.-Collins, M. P.: The Response of Reinforced Concrete to in-Plane Shear and Normal Stresses,

University of Toronto, Dept, of Civil Engineering, Publication No. 82-03, Mar. 1983, 332

Ada Technica Academiae Scientiarum Hungaricae 98, 1985



Ada Technica Academiae Scientiarum Hungaricae, 98 (3— 4), pp. 205— 219 (1985)

TRANSFORMATION OF TIME-VARYING
MULTIVARIABLE LINEAR DISCRETE-TIME
SYSTEMS INTO A PHASE-VARIABLE BLOCK

OF CANONICAL FORM

S. Csapo™*

[Received: 30 August 1984]

Taken as a basis for investigation in this work is a class of time variant multivariable linear
discrete-time systems of order n and input r where r£n and quotient n/r are not whole numbers.
Specified for this class of systems are the necessary and sufficient conditions of transformability into a
phase-variable block canonic (PVBC) form. Transformation of the state equation into PVBC form
has been shown by Fahmy and O'Reilly for the aforementioned class of multivariable linear discrete-
time systems but limited to the case constant in time. Consequently, this work is intended to extend
the relationships deduced by Fahmy and O’Reilly to the case varying with time.

1. Introduction

The state equation of time variant multivariable linear discrete-time systems
over set R of real numbers can be determined by vectorial difference equation

x(k+1) = A(fc)x(fc) + B(fc)u(fc) 1

the initial state being x(/c0)

ke Z whole numbers

\(k)ex n X 1 state vector

uffc)6 U r X1 control vector

A{k)eR"Xn and

B(k)eR nxr properly dimensioned state matrices

X=Rnand

U=R Eucledian spaces,

and accordingly, R" and R" are the state space and control space respectively. Assume
that system matrix A(k) is non-singular and/or that column vectors of number r (r» n)
of input matrix B(/c) are linearly independent for each kez.

Let us introduce on the basis of the work of Fahmy and O’Reilly [1] the
definition of positive whole numbers 5 ® and y. Accordingly, /1is the greatest whole

* S. Csap6, H-5130 Jaszapati, Vordshadsereg u. 57, Hungary
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number which is less than n/r, and
2= n—Ar, O<B<r, (2a)
y=r—g, o<y <r. (2b)
Let a be the smallest whole number for which controllability matrix
Qc«(fco)= [B(ko+ a-1b A(fcO+ a—I)B(/cO+ a—2), ...
. A(/lcO+a-1)A(/cO+a—2) ... A(kO+ I)B(kO0)]

for time ko is of rank n that means that at least one non-singular quadratic matrix of
dimensions nxn could be selectable from matrix Qc s(/c0) e Rn*". In this case, a is the
controllability index [2]. Controllability index for system (1) characterized by
relationships (2):ot= A+ 1 Thus, the state equation of PVBC form associated with
system (1) is defined for time interval k0~ k ~ k 0+

Let us introduce a variable parameter linear transformation by means of
relationship

2(*) = T(*)x(fc) ®)

and assume that there exist an inverse T “1(k) of transformation matrix T(k) e Rn*""for
each k within time interval ko~ k ~ k0+ Athat is

rankT(/c) = n, 0 k™ kO+ A. 4)

With linear transformation in (3) substituted into the state equation given in (1) we
obtain state equation

z(k+1) = A(k)z(k) + Bu(k), KONKAKO+ A (5)

of PVBC form, where
V(k) =T (k+ 1)\ (k)T 1(k), (6a)
B=T(k+ )B(k). (6b)

Configuration of system matrix A(/c)e R'*r variable with time and input matrix
B e Rnx" constant in time:

AK) = T(fc+ DAKT  1(k) =

®0.0 IB.18 ®i.h * ®0.Y QB.B
®y.i ®y.y Qy.B Y KR . m ®YY ®y.i
®0.0 ®fly ®h.I> ®>y %.8 @Y

M k) M2(kk) M3(K) m k) M5{k) . = ma2a(k) M22+1
N(fe) N2(9 N30 N4AK Nseo

N2I(k) ~22+1

Acta Technica Academiae Scientiarum Hungaricae 98, 1985



TRANSFORMATION OF TIMF VARYING LINEAR SYSTEMS 207

Ody Opp
Oy Op
B= T(k+ 1)B(/c) = (7b)
0+Y Qpp
lyy Oyp
- py Ipp
respectively
where 0P, zero matrix,
Ippe R pxp unit matrix, and
M t(k)eRyXR, NI(*)6~ i, i=1,3, ...,2/1+1 (8a)
M,(fc) e RyXy, N,(/c) e R Bxy, i=2,4,... 2/1. (8b)

Configuration of transformation hypermatrix in (3):
T*)= [T, (*), T2(*), ..., T2A, (*), T2Afc), T2, (k)Y ©)]
where the superscript B denotes the block transpose, and
Ti(k)eR Rxn, i=13, ...,22+1 (10a)
T((k)eRyx\ i=2,4.... 241. (10b)

Note that the relationships outlined so far differ from Fahmy and O’Reilly’s
relationships 1983a, 1983b only in that the corresponding matrices are now considered
to be variable with time.

2. Main results

As seen, transformation matrix T(k)eR"*n(9) shall be determined in order to
produce the state equation of PVBC form (5). On the basis of relationship (6a), matrix
equation

AK)T(C)= T(k+DA(K),  KkOWikiiko +/ 1)

can be written. On the basis of (11), taking into consideration system matrix A(k) given
in (7a), relationships

T,(fe)= T,-_2(fc+ \)\(k)e RRx", »= 3,5, 2A+1 (12a)

TIf)= T, 2(fc+ DA(K)ERYX",  i=4,6, ...,2A (12b)
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can be written. After repeated substitution, the following relationships are obtained on
the basis of (12):

»—1\ d-IJ)‘Z
T|(fc)= Tj( A+— —) Mk-j + /=1,3,. ..,2n+ 1, (13a)
. i—2\
Tj(fe)=T2(k+ —— "IH(R2A(k—+ 2 ) 1=2,4,. .., 2k. (13b)

Taking into consideration definition

ﬂ A(/) = Allc -2).. AO k>ko
j =ko
F(k,k0)=)1 if - o (14)
.non-defined if k<koO

of fundamental matrix F (k, k0) e Rn*""of the controlled system given in (1), expressions
(13) can be written also as

T,(fo)=T, (k + F(k + 12~ kA= £<m-1/2Tj(K), (15a)

Tt(k)=T2(k+ ~ W k + 2),2ji{k)- (15b>

For the sake of convenience, a matrix-operator £ has been introduced to (15), which
means for any matrix L(k)e Rp*"

EL(/c)= L(/lc+ I)F(/c+1, k) for each k. (16)

In case matrix L(/c) falls under repetition of the operation determined by operator
E, j-times, we arrive at a result

EjL(k) = £(£" 1W(fc)=E(L(k+j-\)F(k+j-\,k)) =
—L(c+j)F(k +j, k), y=0,1 ... . 17)

The definition of abbreviated symbols (15) is thus obvious on the basis of (17).
According to (15), matrix T (k) (9) will be thus

'T.(K) "T.(fc)

T 2(k) T 2(f0)

Ex~1T 1 (k) ) Tjik + A-1JFik + A-1.k) (19
Ex~1T 2(k) T2{k+ A-1)F(k + k-1,k)

EXT ,(fc) T,(k+ /MF(k + Ax)
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A conditions for the existence of the state equation of PVBC form (5) is that, according
to (6) and in relation with (18), partial matrices

T1(*oXTI(*0+ IX...., T1(fdd+ 2A+I), (19a)
T2(U T 2(fdd+1), ..., T 2(*0+ 2A) (19b)

should exist. Now, the definition of partial matrices T~kje RR*nand T 2(k)eRy*n
follows. If (k—1) is written in place of k in (6b), then we will obtain the following
relationships, taking into consideration the configuration of the input matrix given in
(7b) and of the transformation matrix given in (9):

T,(/c)B(k —1) = Af,r, f=1,3, ..., 22+ 1 (20a)
where the definition of matrix Af,re RR"r

jo,., if 1<22+1

MBI = 2/+ 1
or
T,(fc)B(fc—1)=nr, i=24,...,22 (20b)

where the definition of matrix A],re R yxr

Ay.r=i°l.r if ‘<22
ID,., Oy,] if 1=2
respectively.
Let us multiply equations (12) from the right side by input matrix B(x — 1) and
write (5—1) in place of k. Then we obtain relationships

T(fc—NBAc—2) = T, 2(A)AA—I)B(k—2)= Afr, i=35.. 22+ 1, (21a)
T(rc—NBA—2) = T, 2(0AAc—)B(lc—2)= A\r,  i=4,6......... 22.  (21b)

Leaving now the relationships for i=3 and i=4 in (21) out of consideration,
substituting in accordance with (12) in the expressions left, then writing (x — 1) in place
of k we obtain:

T;(k—2)B(k—3) = Tj_4(k)A(k—I)A(/c —2)B(/c —3) = A?-r,
i—5,7, ..., 22+ 1,
T,(k —2)B(lc —3) = Tj_4(k)A(k—I)A(fc —2)B(/c —3) = Af'r,
i=6,8,..., 22.
It is than easy to see that there exist relationships
THACH)BAC—T—I) = T(2(*)A(fc—1) ... M k-j)W ~j-D =A?r,
(22a)
i=L1L2, ..., 4j i=2/+1 ..., 2A+ 1.
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and
T,(fc)B (*~D=T,-w(*)A(fc-I) ... A(k-j)B (k-j-1)=\r (22b)

i=1.2,...,94; i=2j+2 ....2k
of general form. On the basis of (22b), relationship
T,(/c-j) =T ,-2j(/c)A(/c—1)... \(k-j), A (23)

follows, which will be used later. Let us now puti—2j+1 in place ofiin (22a) and i= 2j
+ 2 in place ofiin (22b), taking into consideration the equation fori= landi= 2in (20)
respectively. Then, using (14), we obtain the following relationships:

T2+,(k-j)B(k-j- 1)=T,K)F(k, k-j)B(k -j- )=A$/+,. (24a)
wherej=o, 1, ..., Aand
A Ofi.r> if j<k,
Ao+ it j—9
and
T2+2(/c-jw k —j — )= T2AK)F(c, k- I)B(k—j — )= AT+2 (24b)
wherej=0,1, ... s —1
oy, if y<a—1

Ilciyy, 0¥ if y=49—
respectively.
Let us introduce an operator E which, for matrix B(k—1I), means

Ek —1)= F(lc, k—1)B(lc—2). (25)

In case matrix Wk—1) falls under repetition of the operation (25) determined by
operator E y-times, we arrive at the result

EB(Kk —1)= E(Ej- 1, - 1)=E(F(k, k-j+ 1k-j)=
=F(k,k-j)B(k-j-\), y=0,I,.... (26)

Using the abbreviated symbols according to (26), the equations of number A+ 1 (24a)
and the equation of number A of (24b) can be combined to obtain one single matrix
equation, as follows:

T.(K) [Blc—1), B (/c-1), ..., Ex~'B(k—1),E Ll k —1)] =

= [0,,.5, <Vy, + (27a)
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and
T2(k)[B(fc- 1), EW, k- 1)......... Ex~2B(k — 1), Ex~1l, - 1)]=
= [Oi>a-iv. I,.,, ®w»]e Ryxxr (27b)
respectively, where the value of k according to (19) c= /0,k0+ 1, . . k0+ 2+ 1 Itcan

be seen that the attainability matrix for time « appears in (27a) according to
attainability index #+ 1

Qrk)=[Wk- 1),EB(k- 1), ..., Ex- k- 1, ExB(k- 1)]=
SWk- D Fkk K- K-2) v F(lc, x - A+ DBUE- 9,
F(k, k- /.lWk - A- 1] e Rnxu+ r. (28)

As can be seen, matrix equation (27a) cannot be inverted at all while matrix equation
(27b) is non-invertible in an ordinary sense for partial matrices T I1(k)e R8x" and
T 2(k)eRyXn respectively. To overcome this difficulty, let us decompose matrix
B(k—l)e R"xr in the following form:

B(/c—1)=[B,(/c —1), B2(fe—1)] (29)
where B,(fe—l)e R"Xy and B2(fc—I)e RnxB. Accordingly, also relationships
El k-1)=[Exbi(k-1), ExB2(k-1Y] (30)
exist where, according to (26),

ESB,(&—I) = F(lc, c—A)B,(/lc—A—I1)eR"il’ (31)
incasej = A
Let us now take into consideration the decomposition according to (30) in
attainability matrix Qr(k) (28). Then, in case column vectors of number y of (31) depend
linearly on column vectors of number &r of matrix Qr(k)e R nX(X+1)r for each « within
time interval k0™ k™ k0 + 24+ 1 that is, if relationship

range [B(fc-1 ), EWwik —1), ..., Ex~1lWk —1)] 3 range \_ExB, (k- 1)],
K=k0,k0+ 1 . . W+ 24+ 1
exists, then matrix equation
TLK)EiB1(k-1) = 0A.y, KQ k Ak 0+ 2X+1 (33)

can be omitted from (27a). Note that relationship (32) is a generalization of Ramar and
Ramaswami’s hypothesis formulated for systems continuous in time in 1971 for
discrete-time systems.

According to (33), the matrix equation given in (27a) can be written as

T,(kK)[B(it—1),E w k-1), . . Ex~4 U «k-1),ExB2(k- 1)]=

=[0,.*, VJeU"-, kOZkAKkO+U + | (34)
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where now the attainability matrix, truncated as compared with (28), appears in the
form of an n x n quadratic matrix:

QH(f)= [B(fc- 1), E L k-\), ..., EA-1B(lc—1), ExB 2(k - 1)]. (35)

Then, taking into consideration the symbols used in (35), the matrix equation given in
(34) can be written in a simpler form:

T 1(k)Qri(fc)= [04ir,1i,i], *0E*S*0 + 2A+I. (36)

It goes now without saying that, for the matrix equation given in (27b), the missing
equation of number (1+ 1) shall be assumed in such a way that quadratic matrix
Qrl(k)e Rn*ngiven in (35) will appear also in (27b). According to (11), matrix equation

M 1(/c)T,(lc) + M 2(lc)T2(/c)+ ... + M2H/C)T2AK) +
+ M2A+1(K) T2+ LU(K)=T 2#+1)A (K), KO K~ K 0+ 2X (37)

can be written. Let us postmultiply (37) by matrix Wk — 1) and take the conditions of
(20) into consideration. The following matrix equation can then be derived:

M2A/c)T2A/c)B(/c- 1) m-MZH. (k) T2X+, (k)Wk-1) =
= T2a(k+1)A(K)B(k-1), KO K it kK 0+ /1 (38)

Let us now substitute matrix LW, k— 1) as decomposed in (29) into (38), taking into
consideration the conditions given in (20) for values i= 21 and /=2A+ 1 Thus, the
existence of equation (38) is possible also if conditions

M 2AK) = T 2q/c+1)A(K)B1(k-1), (39)
kogkg ko+1
M 243+ 1(K) =T 2 k+ )A(fc)B2(fc-1), (40)

are fulfilled. On the other hand, derivation of number (1+ 1) matrix equation
mentioned earlier can obviously be expected only on the basis of (40). The condition
given in (40) can be expressed by means of partial matrix T 2(k) e R yx''only if the matrix
on the left side of (40) is invariable with time that is if condition

"ML (K) = M 24+! = const., kONK~/cO+ 1 (41)

is fulfilled. Taking (41) into consideration, (x—1) can therefore be put in place of x in
(40):

M2l = T2Ak— + D)A(/c—)B2(k—1 —1), kOUkakOo+L (42)
According to the expression given in (23), fory=1—1,

TAHK— +1) = T2()A(K—1)... AA—1+ 1), k0O kAk0+k 43)
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can be written. After substitution of (43) into (42), and taking into consideration the
abbreviated symbols in (26), we obtain the wanted number (A+ 1) matrix equation:

M2a+, = T 2(k)F(k, k- A)B2(k- A- 1)= T2(k)ExB2(k - 1). (44)
Now the matrix equation (27b) including (44) is
T2(fo [B(k—21), ElWwk —1), ...,EX1B(k-\),ExB2(k-1)] =
= [®y.MHi>r> ly.y, Oy>i, M 25+1] e Ryx”, kOS k i k 0+ 24, (45)

where matrix Qrl(k) given in (35) appears. Thus, taking into consideration the symbols
given in (35), matrix equation (45) can be written, as follows:

T2(K)Qri(K) = [0y>2_1)r, 1y, 0y R, M2+j]. 46)

Then, if there exists now the inverse of matrix Q r,(k) e R" *''for each « in time interval k0
Ak Ak 0+ 24+ 1, that is if relationship

rank Q,,(k) = n, kOAKkAKkO+2A+]1 47
is fulfilled, then the matrix equation given in (36) and (46) will be invertible for partial

matrix T, (k) e R&x"'and T2((c)e R y*''respectively, and consequently, matrices (19) can
be calculated in the following form:

Ti (fc)= [0itn,, 1j.fDQrt 1(x), KO K K0+ 2A+1; (48)
T2(K)= [0yi(2-Dr, ly,y,0yR, M22+i]Qr, *(K), ko~ k Ak 0+ 24, (49)

Transformation matrix T(K) (18) for time interval k0™ k i1 k0 + A+ 1can be considered
known on the basis of (48) and (49).

Now we show that in case Q r,(k) is not singular for any k within time interval ko
Ak Ak 0+ X then inverse T ~‘(k) of transformation matrix T(/c) will exist for each «
within time interval ko~ k "k 0+ #

On the other hand, it is easy to see that truncated attainability matrix
Qr,(k) e R" *"for the system of PVBC form (5) can be produced in the following form:

Qr(k)=T(k)QrMm (50)
where
Qrik)=[B, EB,E2B, . . EA~'B, £% ]-

=[B, F(x, k - 1B, F(k, k- 2)B, ...
... F(x, k—5A+ DB, F(x, K—5)B2] e J1""Xx"" (51)

Obviously, also the matrix product on the right side of (50) will result in a matrix of a
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configuration according to (51):

T(K)Q.(k)=
0, ©0 % , e 0,. on, IR.B
Kr O’, or, s« Orr Ir, 1r1, 89+ 1
O‘, O‘, or, Ir, ~2.9 12,89+ 1
o. I, - I-U-1,9-1 ba-1.8 1+2- LA+1
I,., "2 ba.s e Lou-i bsa.a 1+2. 2+1

where partial matrices L,7(k)e R rxr

1=2,3 ..., 4
L. (*)-£-» 1 Tr(/C) £J_1B(c—1J), o 53
L) £ LY - Be=D _q .0 9 (53)
and partial matrices b/ s+ ((K) € RrxR
'('Z)k) EBAK—1),  i= 1,2...90 (54)

As seen, matrix Qr,(fc) is non-singular, moreover, its determinant value is |Qr,(/c)] = 1 In
case relationship

rank Qr,(/c)=n, KONKNKO+ A (55)

is fulfilled, there exists an inverse matrix Q7 1(X) for each « within time interval k0" k
~ k0 + HAand thus the inverse of both sides of (50) can be taken:

Qn 1MT “ Uk) = Q,, 1(k), KONKNKO+ A (56)
From (56), inverse matrix T ~x(k) can be expressed as
TA(k)?Q ri(k)Q~1(k), KOMKAKO + 1. (57)

It follows then that (4) is not an additional condition for change-over to PVBC form (5),
since the fulfilment of relationship (4) that is the condition for the existence of inverse
matrix T ~1(k) has already been specified through relationship (55), according to (47).
According to what has been said so far, we might be right in saying that system (1)
can be transformed into PVBC form (5) for time interval k0~ k ~k 0+ f only if
relationships
range [B(/c—1), EWk - 1), ..., E1~1ul - 1] 3 range \_ EXB2(k - 1)], (58)
rank [B(k- 1), Ewk - 1), ..., Ex~1B(k—1), EB2(K—D]=n (59)

are fulfilled for each x within time interval k0~ k ~ k 0+ 24+ 1
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On the other hand, it can also be seen that partial matrix M23+i(k)R e yXi
assumed to be variable with time in system matrix A(k) must actually be constant in
time if matrix T2(/c) e Ry*""had to be calculated on the basis of (49). Therefore, the state
equation of PVBC form (5) is non-unique, because elements of number y m8 of matrix
M22+i, constant in time, can be selected optionally, independently of each other.

Now we discuss the special case when quotient n/r is a whole number. The
relevant relationships can be easily derived on the basis of what has been said so far.

3. The special case

When positive whole numbers 8 and y for system (1) are defined as
R=n-Xr, O<Bar, (2*a)
y=r—R8, Ory<r (2*b)

then the possibility of quotient n/r being a whole number is not excluded. Accordingly,
in the special case where n/r is a whole number, there exist relationshipsy = 0 and r = g.
Therefore,
n=(A+ Dr

can be written in accordance with (2*), the value of controllability index being d= n/r
= A+ 1 To explain demonstratively: partial matrices of dimensionsy X p in the earlier
relationships will all disappear because of y= 0 while partial matrices of dimensions ?
x g will increase to a size of r x g. Accordingly, transformation matrix (9) will have the
form of

TO(fc)= [TOL(fc), T 02(x), .. ., T 02(/c),TO2+1(/c)]e (9%
where the expression of partial matrices TOi(fc)e R,x " is
To(fc)=Tol+ i-F(fc +i-1,k)=E"'-1TO0IW, i=l,. . A+1. (10*%a)

Now, linear transformation (3):

z(fc) = T O(fc)x(/c). (3%

With transformation (3*) substituted in state equation (1) we obtain a state equation of
PVBC form:

z(fc+ 1) = A0(Ic)z(fc) + BOu(fc), kOAk~k O+ k (5%)

Configuration of time variant system matrix AO(fc)eR"*"":
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AOW = TO(/c+)A(/c)TO 1(fc)=

0,r hr Or, onr o,r
o,r Or, hr onr or,r
(7*a)
0,r Oor, or, or, hr
Ank) V2K Asrg .. m Al Ai+i(*)
and expression of input matrix BOe Rn*r
BO= TO(/c+ )B(Ic) = (7*b)
where Orr zero matrix,
Irre R'*r unit matrix, and
Aj(fc)e Rr=r, i=1,2,.,.,A+ 1.
Using (10*a), configuration of transformation matrix TO(Ic)e Rn*" (9%) is
— |
"Tol(k) ©
E T oi (K) TOL(*+1)F (fc+U)
Ex~ITO0I(k) TOl(fc+ A-1)F(fc + A-l,fc)
EXT 01(K) TOI(k+/)F(k+1 k)
where k=k0,k0+ 1, .. .,k0+ L A condition for the existence of state equation of
PVBC form (5*) is that partial matrices
Toi(/c0), TOL(/co+l), ..., T 01(*0+ 2A+1) (19*a)

exist according to (7*), in relation with (18*). Now, the necessary conditions (58) and
(59) of transformability into PVBC form (5*) are combined in one single condition:

rank [B(fc- 1), EB(k- 1), ..., ExB(k-1)]=n, (59+)

=k=ko 2¥me1,
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where, accordingly, attainability matrix given in (28), but being in this case just of
dimensions nxn, appears:

Br(c)= [B(/c—I),EB(/c-1), ....E*B(fc —1)]6K X" (28%)
Using the symbols given in (28*), condition (59*) can be given also as
rank Qr(fc)=n, kOrk Ak 0+ 2A+1. (47%)
Then, in case of fulfilment of condition (47*), the expression for partial matrices
TO01(l9gR'*n (19%a) is
TOL(f)= [Or>ir, Ir.,1Q,-1(*b kozZkzZko +U + 1. (48%)

As is obvious on the basis of what has been said above, inverse T¢l(k) of
transformation matrix TO(/c) (18*) will exist for each k within time interval k0~ k ~ k 0
+ fAifthe condition given in (47%*) is fulfilled for values k = k0,k0+ 1, ..., k0 + Athat is, if
relationship

rank TO(c)= n, ko™ k :8k0+ H (4%)

will exist. Consequently, fulfilment of relationship (47%) is the necessary and sufficient
condition for transformability into PVBC form (5*). Thus, itis also obvious that in case
quotient n/r is a whole number, there exists only one single state equation of PVBC
form (5*) according to the uniqueness of linear transformation (3%).

Finally, let us discuss the case constant in time.

4. The case constant in time

Taking the results obtained for time variant systems as a starting point, it is easy
to change over to the case constant in time, that means that the relationships first given
by Fahmy and O’Reilly (1983a, 1983b) [1] can be directly derived. It has been assumed
by Fahmy and O’Reilly that the state matrices of the controlled system (1) are
invariable with time. Therefore, Fahmy and O’Reilly determined the conditions of
transformability into PVBC form only for systems constant in time, described by state
equation

x(fc+ 1)=Ax(fc) + Bu(fc) (60)

Discussed in the following are only the most important relationships. In the
present case, the linear transformation given in (3) will have constant parameters:

2(k)=Tx(k) (61)

where the configuration of transformation matrix T g R**"according to (9) is
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in which partical matrices
TeR"*"  [=1,3, ...,22+1, (63a)
T.e/!"1" /=24, ...,22 (63b)
are included accordingly. Now, the state equation of PVBC form (5) can be written as
z{k+ 1)= Az(/c)+ Bu(k) (64)
where the expressions of state matrices on the basis of (7) are
A=TAT_1, (652)
B=TB. (65b)

For the case constant in time, fundamental matrix (14) has the form

A k~ko if k>ko0
F(k-ko)y= |, if k=ko (66,
non-defined, if k<ko.

Since now the expression given in (17) is
ElL=LF()=LAY j=0,1,.. .2 (67)

therefore, partial matrices for the constant case (15) are

T,=£3 12T1=TjF =TIAG )2, i=1,3, .. .21+1,  (68a)

t.=£(-2)2t2=t2F A ~ A =T2A<i 22, =24, .. :,2A. (68b)

Then the expression of transformation matrix (62):
T=[T1T2,. .. TIAG LT2A% LT 1A/]B. (69)

The necessary conditions (58) and (59) of transformability into PVBC form are now
independent of time:

range [B, £B, ..., E*-1B] 3 range [£ B]] , (70a)
rank [B, £B, ..., ExBZ2] =n . (70b)
Since expression (26) takes now the form of
EiB=F()B=AB, j=0,lu.. I,
conditions (70) can be written in the form given by Fahmy and O’Reilly (1983a, 1983b):
range[B,AB, ..., A2_,B]2 range [AT ] , (71a)
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rank [B, AB......... Aa 'B,A%]=n. (71b)

And finally, the expression of partial matrices Tte RRx"and T2e R yxn, changing over
from relationships (48) and (49) to the case constant in time:

(72a)
(72b)

Obviously, inverse T 1 of transformation matrix (69) will exist if the necessary and
sufficient conditions given in (71) are fulfilled.

5. Conclusions

Determined in this work are the necessary and sufficient conditions of
transformation into phase-variable block canonical form (PVBC) for a class of time
variant multivariable linear discrete-time systems where quotient n/r is not a whole
number. The relationships given here are essentially the theorem of Fahmy and
O’Reilly (1983a) extended to the time variant case. It has been shown that partial
matrix M22+1(/c)eRy*/', assumed to be variable with time, of time variant system
matrix A(k) shall necessarily be constant in time —M 2+ (k)= M22+1 = const.—ifin
changing over to the case constant in time, we want to derive the relevant relationships
of Fahmy and O’Reilly (1983a). Consequently, it can be seen that linear transformation
into PVBC form is non-unique in the time variant case like in the case constant in time,
because elements of number y s of partial matrix M 27+, can be selected optionally,
independently of each other. Also, it was seen that the linear transformation unique
only if quotient n/r had been a whole number. Hence, in this case, only one single state
equation of PVBC form is associated with the system. Finally, it was shown that the
results developed here for the case constant in time complied with the relationships are
given by Fahmy and O’Reilly.
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This paper is intended to show that M. M. Fahmy’s and J. O’Reilly’s theorem can be
conveniently applied to the area of time-varying systems. For a class of such systems of discrete-time
the ratio n/ris not an integer, where Nis the number of states and r is the number ofcontrolled inputs.
It can be seen that the time-varying minimum-time dead beat-beat (MTDB) control law appears in
the parameters of a matrix which is constant in time. An example related to the third-order system
shows that the MTDB control law can be determined by means of a scalar parameter.

1. Introduction

The state equation of time variant multivariable linear systems of discrete time
over set R of real numbers can be given as a vectorial difference equation

x(k+ 1)= A(lc)x(Ic)+ B(/c)u(fc), ()

the initial state being x(/c0),

where ke z whole numbers,
x(k) ex n X 1 state vector,
u(/c)eu r X 1 control vector,
\(k)eR nx" and
B(fc)e&' xr are properly dimensioned state matrices,
X= Rnand
U =Rr Euclidean spaces and,

consequently, R" the state space and Rr the control space. Assume that system matrix
A(k) can be inverted and/or the column vectors of number r(r ~ n) of input matrix B(k)
are linearly independent for any ke Z. The solution of state equation (1) for initial state
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(oY)

X(/c) = F(/c, ko)\(ko)y+ X F(/c,/+D)B(i)u(i) 2)

i=*o

where matrix F(fc, k0)e /™" is the fundamental matrix of system (1) according to
definition [3]

k-1
n A@G)=A((fc-H)A(*-2) . N o & k>ko0
i- ko
F(M0O)=" if k=ko ©)]
Unon-defined, if k<ko

Let a be the smallest positive whole number for which controllability matrix
Qc,affco)= [B(fo+ a- 1). F(ko+ a>ko+ a-1)B (k0+ 0t-2), ...

ee F(/cO+ a ko+ 1)B(/cO)] @)

for time ko is of rank n that is relationship

rank Qca/c0)= n (5)

exists. In case (5) is fulfilled, a will be the controllability index [3] for system (1). Assume
that relationship (5) exists for any initial state x(fc0) e R" at any time ko~ 0. In this case,
system (1) is uniformly controllable within time interval ko~kf~k0+ a that is state
vector x(k) (2) must be a zero vector for k= k0 + tx in the form of

x(ko+ a)=0= F(ko+ a, k0)x{k0)+ 'Afm F(/cO+ a,i+1)B(i)u(i), 6)

according to the definition [3] of controllability.
In case (5) is fulfilled, the control series

u(ko),u{ko+1), .. ,u(lcO+a-1) (7

occurring in equation (6) is called minimum-time dead-beat (MTDB) control series.
Hence, MTDB control is defined for controllability index a. With control series (7)
produced by state feedback, the MTDB control law can be defined as

u(k) = K(k)x(k), kK=KO,kO+ I, .. ..kO+ <x-I (8)

where K(x) e R r*" are time variant state feedback matrices. To produce matrices K(k),
controlled system (1) shall be transformed into a phase-variable block canonical
(PVBC) form for time interval k0" k ~k 0+ a—1.
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2. Phase-variable form for a class of multivariable
systems variable with time

For the investigated class of time variant systems, quotient n/r is typically not a
whole number. Thus, following the considerations of [1], [2], let us introduce the
definition of positive whole numbers AR, and y also here. Accordingly, A is the greatest
whole number less than n/r and

=co AT O<g<r, (9a)
y=r~Q > O<y<r. (9b)

Now we can say that a= A+ 1is the controllability index of system (1) characterized by
the relationships in (9).

Let us introduce a linear transformation of variable parameter by means of
relationship

2(k)=T (k) x (k) (10)

and assume that there exists inverse T 1(/c) of transformation matrix T (k)e Rnxn for
any k within interval k0= ~= "0+ Athat is, there exists a relationship

rankT(/c) = n, kOAk Ak 0+ X. (11
By substituting linear transformation (10) into equation (1) we obtain state equation
z(k + )*=A(lc)z(k)+ Bu(fc), KOAKk~AkO+ X (12)

of PVBC form, the configuration of system matrix A(k) e R"*nvariable with time, and
input matrix B eR"*r being given by (13) and (14), respectively:

A(*)=T(-H)A(fe)T-, (*)-

®d.d Y b.fl cd.y cd.d ee °Rr osi. B

®y./» Oy.d Y. Y Oy.d o O’y Oy.d

°d.d ULy °g.8 0/1. Y 0. B 0,y fd.d
M,(/c) M2(fc) M3(k) Xt4(k) M5(fc) .« M2W ~22+ (D)

Ni(fe) N209 N3() NAGQ) n5() +.. Nu() N2+I(%)
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QB.v  QB.8
K Y Qy.R
B = T(/c+)B(fc) = (14)
@By °B.B
Y Qy.B
QR.y iB.B
where Op ™ zero matrix,
Ip,p6 Rpxp unit matrix,
and
Mi(k)eRy*R, Ni(k)eRRxR, i=1,3, ...,2A+1, (15a)
Mt(k)eRyXy, T4i(k)eRR*\ i=2,4,...,22. (15b)

Let the configuration of time variant transformation hypermatrix T(/c) in (10) be
T(c)= [T, k), T 2(k), ..., T2A, (&), T 22(fc), T2A+, (k)Y (16)
where B designated the block transpose, and
Ti(k)eR RXn, /=13, .. .22+ 1, (17a)
T-(l0gRyxn 1=2/4, . .,2/. (17b)

Note that the structure of relationships (10) through (17) complies with what has been
presented in [1], however, the matrices dealt with now shall be considered to be
variable with time.

3. Main results

Given in this section are the necessary and sufficient conditions for the existence
of state equation of PVBC form (12) as well as the method to calculate state feedback
matrices K(/c)e RrXn{k = k0, k0+ 1, ..., [0+ 2) appearing in MTDB control law (8). In
deriving the partial matrices (17) of transformation matrix T(/c) (16), matrix equation

AK)T(k) = T(k+ DA(/c), KOMKAK O+ (18)

that can be written on the basis of (13) shall be taken into consideration. On the basis of
(18), it is easy to realize that the partial matrices (17) can be produced [4] in the
following form:

T,()=Tj e+ FB ~ 'K = e<=12TI(cy
/=1,3, ...22+1 , (19a)
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APPLICATION OF MINIMUM TIME DEAD-BEAT CONTROL LAW 225

T(M)=T2k+trjp (k + b1 kj=r- 2/2T2(k),

i=24, ...2A. (19b)

Operator E introduced in (19) means for any matrix L(k)eRp*n

EL(fc) = L(fc+ \)F(k+\, k) (20)
for each k
Then, by repeating operation (20) relating to matrix L(K) j-times,- we -obtain
relationship

EJL(k) = L(k+j)F(k+j,k), ji=0,1,.... (21)

Thus, on the basis of (21), the definition of abbreviated symbols introduced in (19) is

quite obvious. Transformation matrix T(/c) can therefore be given in accordance with
(19) as

"T,W "Tnk)

T2(*) T2(k)

Ex~I1T,(fc) - T,(* + A-)F(fc + A-l,fc)
£2- ‘T2(k) T2(c+ A-I)F(/c + A-l,fc)
EA,(fc) T,(k + AF(k+ Ak)

Since according to (18), matrix T (k) must exist for each k within interval k055k ;Ek0+ A
+ 1, partial matrices

T,(UT,(fc,,+1), ...,T,(JTo + 2A+1), (23a)
T2(f0), T2(f+1), ..., T 2(*o+ 2)) (23b)

must exist in connection with (22). Then, system (1) can be transformed into PVBC
form (12) for time interval x0# k ~ k 0+ /1 only if necessary and sufficient conditions

range [B(/c—1), EB(/c—1), ..., Ex~IB(k —1)] 2 range [£ /B, (fc —1)] (24)
rank [B(k—1), EB(k- 1), .. .,Ei~1B(k-\), ExB2(k-L} =n (25)"

are fulfilled for each k within time interval kO~ k~ k 0+ 2k+ 1 [4]. Partial matrices

B,(/c-1)e R""'y and B2(c—I)eR"*% result from a decomposition of input matrix
B(/c—21)e Rn*r in a form

B(k—I) = [B,(k —1), B2(c—1)] for each k.
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226 CSAPO, S.

Operator £ introduced in (24) and (25) means for input matrix B(/c—1)
EB(k —\)=F (k,k—1B(/c—2) for each k. (26)

Then a repetition of operation (26) relating to matrix B(k—l)y-times results in
relationship

EB(k—1)= F(c, c—)B(c——1), j=0,1 .. -4, 27

while partial matrices (23) can be calculated as

T,(k)=[0,J%1,.,] X[B(fe—1),£B(/c—1), .. £s- *B(fc-1),E*B2(k-1)Y"
K=k0,k0+ 1, ..., kO+2k + 1 (28a)
T2(k)= [0,,(A_i)r, Iy, 0yB, M 2a+1] X
X[B(lc—1), £B(fc —1), . . £A1B(fc—1), *sB2(Ac—1)]“1 (28b)

[4]. Note that in case necessary condition (25) is fulfilled, linear transformation (10) can
be inverted because in this case there exists inverse matrix T “ 1(k) for each k within time
interval *0£fc£*0 + A[4]. Therefore, necessary conditions (24) and (25) are at the same
time sufficient conditions with respect to the existence of the state equation of PVBC
form given in (12).

In accordance with relationship (28b), partial matrix M 25+1(K) e R yXB of system
matrix A(k) e Rn*n assumed to be time variant earlier, must be necessarily constant in
time

M22+1 (k) = M 22+1= const., for each «. (29)

Accordingly, linear transformation (10) is non-unique as elements of number y R of
partial matrix M22+1 as the parameter matrix, constant in time, can be chosen
optionally. Consequently, state equations of PVBC form (12) of infinite number can be
associated with the controlled system (1).

The condition for operation of MTDB (6) for system (12) can be applied to phase
space R" in the following way:

Z(/cO+ A+ 1)=0= F(/g+ A+ 1,k0)z(k0) +

+ *°fAR(fco+ A+1,/+1)Bu (0 (30)

1=
where the fundamental matrix of system (12) is

F(fc, &)= T(/c)F(/c, k0) T~ 1(k0)
for each k.
For system (12), the MTDB control law:

u(/c) = K(fc)z(fc), k=k0,k0+ 1, . . kO+A (32)

where R(/c) e Rr*nis the state feedback matrix for phase space R". With (31) substituted
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APPLICATION OF MINIMUM TIME DEAD-BEAT CONTROL LAW 227

into (12), we obtain the state equation of the closed system:
z(k + 1)= [A(/c) +BR(/c)]z(/c), kOMk Ak 0+ X, (32)

Let us now substitute the term of control vectors (30) into equation (30). By repeated
use 0of (32), let us express any state z(k)(k0+ \ ~ k » k 0+ £) by means of initial state r (k0).
Then, equation (30) can be written as

0=z(fco+A+ 1)= [A(fcO+ S+ BK(ko + A . ..
.. .[A(fcO+ 1) + BR(fcO+ 1)] [A(fc0) + BK(/c0)]z(k0) (33)

Now, ifeach of matrices K(/c) of number H+ 1in (33) is determined for values k —k0, k0
+ 1, ..fco + din form
—M,(*) -M 2(k -M 2X(k) - M 2X+

(34)
-N (k) -N 2(k) -N 2i(k) -N 21+1(*)J

K(k) =
then the factor matrices in (33) will become constant in time, taking into consideration
the state matrix configuration in (13) and (14):

W = [A(fc) + BK(fc)] =const., koA k Ak 0+ A,

where the expression for matrix W eR"*n constant in time:

OBR.B OR.y IR.B OBy OR.B ] ORB.y OR.R
Oy.8 Oy.y OyBR |y.y Oy.R - oYy 0y.B
OR.8 OBy OBR ORy ORR m °2  iR.g
K R Oy.y Oy.R Oyy Oy.B E 0Yy.Yy 0y.B

°g.3 OBy ORR ORy OB.R m.. =yy ORRB

Taking (35) into consideration, the condition for operation of MTDB (35) takes the
shape

r(k0+ A+ )= W*+1z(/co)=0 . (36)

The condition given in (36) is fulfilled since matrix W (35) is a nilpotent matrix
according to superscript A+ 1

Wi +1=0 37)

With the linear transformation according to (10) substituted into (31), the MTDB
control law (8) can be written in the form

u(k) = K(k)T(k)\(k) = K(k)\(k), kOMk Mk 0+ k (38)
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where the expression for state feedback matrices K(k) for original state space Rn:

-M (K) - M 2(k) M2X(k) ~ M 2X+l

KIO=ROTO= N k) N 2 N2x()  -N 24+1(K)

T(k) (39

Finally, it should be taken into consideration that, in order to produce feedback
matrices K(k) (39) (k= k0, ko+ 1, ..., kO+ A), transformation matrix T(k) (22) and its
inverse T *(k) and then system matrix A(k) from which then matrix K(k) (34) in (39)
becomes known shall be determined. However, it should be mentioned that in case the
sufficient conditions (24) and (25) for transformability into PVBC form (12) are fulfilled,
it is not necessary to calculate transformation matrix T(k) (22) and its inverse T “ 1(k),
nor system matrix A(k) (13) itself to determine feedback matrices K(k) (39), but, instead,
a simpler way can be followed. Namely, with matrix equation (18) taken into
consideration, it can be seen that a simpler formula is obtained on the basis of (18) to
calculate matrix K(k) (39):
- T 2X(k+\)\ (k)

= 2£kN . 40
K(k) ST 22+1(k+ DA(K)D’ k0 2£k~k0+ A (40)

By means of abbreviated symbols (19), the expression for feedback matrix (40) can be
written as

T2(k)l (1)
T,(k)J
where relationships
T+ D)A(K) = T2(k+ AF(fc+ A K) = EfT2(K), (42)
T22+i(k+ DA(K) =T, (k+ A+ DF(k + A+ 1,k) = £'1+1T 1(k) (43)
exist for any k=k0,k0+ 1, .. ., kO+ A
4. Example
To illustrate what has been said so far, let n=3 and r= 2. Let
1 1 o 0 1
A= 0 1 0, Bk= 0 -1 (44)
0 1 Nl e k.

be the state matrices of system (1).
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As seen, now A= /?=y= 1 Thus matrix B(/c—1) can be decomposed as

‘0 1
o B 1 0, B2l—D= -1 (45)
1 e-k+i

The sufficient conditions (24) and (25) of transformability into PVBC form (12) exist
because relationships

range [B(fc—1)] orange [A(fc—I)B,(/c —2)] , (46)
rank [B(/c—1), A(fc—I)B2(fc—2)] =3 (47)
for each k, where
0 1 0
[B(/lc—1), Afc—I)B2([fc—2)]= O -1 -1 . (48)
1 e~k+l 0

Now expressions (28) can be written as
T.(k)=[0, 0, 1] [B(/c—1), Afc—I)B2(c—2)]_1,
T209=[1, 0, m] [Blc—1), Alc—I)B2(k—2)]_1,
of which, by the use of matrix (48)
T,(*)-[-', -1, 0], (49a)
T209=1[ - e kt1-m, -m, 1] (49b)

Transformation matrix T(fc) given in (22) will be in this case

-1 -1 0
T = e *1—m —m 1 (50)
-1 -2 0

Matrices (13) and (14) of the state equation of PVBC form (12) are now:

0 0 1 0 o'
Mk)= e~k—m 1 m B= 1 o
-1 0 2 0 1
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Expression of state feedback matrices K(fc), relating to phase space R", will now be for
values k = k0, ko+ 1

—e~k+m -1 —m

K(*) = 1 0o -2

(52)

According to (39), feedback matrix K(Kk) for original state space R":
\~e~k+ e~k+Il+m e~k+ 2m
K(fc)= R(*)T(*)= | , i (83)
| -
We obtain again (53) by the use of (41):

r-eta2x I F~T2(/c+ A(IC)

L -£ 2Tj(K)J ~L-T,(fc + 2)A(fc+)A(K)J (54)

Thus we know the MTDB control law (8) for the third-order system investigated. By
substituting the control law (8) into the state equation given in (1) we obtain the state
equation of the closed-loop system:

x(fc+1) = W(fc)x(*), KO KA KO+ 2 (55)
where the time variant state matrix, W (k)e R"*n, of the system be the use of matrices
(44) and (53):

2 4 0
W(fc) = [A(fc) + B(fc)K(fc)] = -1 -2 0 . (56)

2¢ k+m Ae k+2m 0

It is also obvious that relationship
x(/c0+ 2) = W(/cO+ D)x(/cO+ 1) = W (ko+1)W (fcO)x(fco)= 0 (57)
shall exist for some initial state \(k0). This is fulfilled because
W(fcO+ I)W(fco)= 0. (58)

On the other hand, the course of the trajectory starting from initial state x(/c0)
obviously depends on the value of scalar parameter m selected optionally.

5. Conclusions
For the class (n/r being not a whole number) of multivariable linear systems
variable with time, we have seen a possible method to determine the MTDB control
law, which assumes the existence of a state equation of PVBC form of the system. The

necessary and sufficient conditions of transformability into PVBC form with reference
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APPLICATION OF MINIMUM TIME DEAD BEAT CONTROL LAW 231

to the new results developed in connection with the time variant case [4]. We have seen
that the state equation of PVBC form is non-unique because partial matrix
M 24+ 1(K)e R yxR, assumed to be time variant initially, of time variant system matrix
A(/c) must necessarily be constant in time, M 274+ x(k) = M 29+1= const., for each k. At the
same time, matrix M 253+ appears as a parameter matrix as its elements of number y s}
can be selected independently of each other. Nor state feedback matrices K(k0), R(/cO
+ 1), ..., R(kO+ i) associated with the system of PVBC form are non-unique because
parameter matrix M 21+, appears also in these matrices. As a result, feedback matrices
K(k0), K(ko+ 1),..., R(k0+ Aalso appear in the parameters of matrix M 2a+4 Finally,
it shall be recognized that the new results given here are a generalization of the
relationships given in [1] for the time variant case, a fact easily detectable when
changing over to the case constant in time.
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Let the time-varying, linear, discrete-time controlled system be considered of state n and
input r(rSn) and quotient n/r be non-integer. Assume for the system a trajectory starting from an
initial state and arriving at a final state determined in advance, along which time is minimum. The
minimum-time control problem so defineable can be realized by feedback of state variables of
number n, assumed to be measurable. It will be seen that a possible variation of the required state
control law can be given also on the basis of the theorem outlined previously. Also an example is
presented for a third-order system to demonstrate the conditions.

1. Introduction

A time-varying multivariable, linear, discrete-time system over set R of real
numbers can be given by vector-difference equation

x(k + 1) = A(K)x(fc)+B(/c)u(fc), initial state  x(k0) @
where ke z (integers), x(/c)e Rn - state vector
u(k)eRr - control vector
A(fc)e R**" and B (k)eR"*r - properly dimensioned time-varying state
matrices
R" and Rr - Eucledian spaces, R" being space of states

while Rr control space.

Let rank \(k) = n, and rank B(k) = r for all &6 Z. Let quotient n/r be non-integer for the
class of systems considered. In case of such systems, controllability index a can be given
as

a=2+1 )

where k is the largest positive integer smaller than n/r. (Note that the most important
relationships referred to later in this work are summed up in Appendix.)
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According to (A-3), the movement or trajectory of system (1) for initial state
\(k0) 6 R", assuming some control sequence

uffa*- 11= {u(>u(ro + 1. -, u(fc—1)}, ®)
can be described as
x(k) = opx(k-, k0, x(k0), ulkotk u):
= F(k, k0)x(k0)+ ¥ F(K, i+ DB(i)u(i), @
i=ko

where matrix F(k,k0)eR nxn is the fundamental matrix of system (1) according to
definition (A—4). In relation with controllability index a given in (2), a final state xF
determined in advance can be reached in minimum time along a trajectory starting
from initial state x(k0) by a control sequence

U[1,.K0 + M= {u(/cO),u(/cO+1), .. .,u(/Co+ )} (5)
according to relationship

x{k0+ A+ 1)= xF= ¢px(k0+ A+ 1;k0, X(/c0), u[to,ko+X) =

F(/cO+ A+ 1, k0)x(k0) +
+ * X AF(fc0+ A+ 1,i+ DB(i)u(i). (6)

i=ko
Hence, in this work, the task is to produce the control sequence (5) that satisfies
condition (6) formulated for minimum-time systems.
2. Results

Assume that, starting from an initial state x(fcO) we have arrived along trajectory
(4) at a state x(k) where kO+ 1~k </c0+ ~+1- Thus, for the second section of the
trajectory defined by states x(k) and xF, relationship

X(kO+ A+ 1) = x F= qu(k0+ ~+1 ;«, X(K), ufkko+$) =

= F(fc0+ A+l fc)x(ft) + ki°¥ F(ko+ i+ 1,i+ DBfiY)u(i) ©)
=K

can be written. Using formula (A—9) applying to the inverse of the fundamental matrix,
(7) can be written as follows:

x(k) - F(k, kO+a + Dxf=y - F(k i+ 1)BOXQ. €)]
i=k
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MINIMUM TIME CONTROL OF DISCRETE TIME SYSTEMS 235

Let vector w(/c)n x 1 be introduced by means of relationship
w(fc) = x(k) —F(k, ko + /.+ I)xF kOAk~ "k 0+ A+ 1 ©)]

to designate the left side of (8). Obviously, zero vector will be obtained for value k = k0
+/+ 1lin (9):

W(kO+A + D)=\(k0+ A+ I)-F(/cO+ A+ 1 k0+ A+ I)xF=0. (10)
On the other hand, the initial value of vector w(/c) (9):
w(fc0)= x(k0)- F(k0, k0 + A+ 1)xF (11

Accordingly, on the basis of (9), state sequence
w(/c0), w(/cO+ 1), ..., w(fc+ A), w(kO+ A+ 1)=0 (12)

defined by initial state (11) and final state (10) having zero vector value can be defined.
For space of states (12), we introduce space of states &' of dimension n. It is also
obvious that it is state sequence

X(/c0), x(/cO+1), . .. x(/cO+ A), x(/e0+ A+ |) = xF

that in space of states R" corresponds to state sequence w(k) €W " (k = k0,k0+\, ..., kO
+ A+ 1) given in (12).

For transients w(/c+l) of vectors wi/cJeVF" (k—k0, ko+ 1 .. .,/cO+ A) (12),
assume a fictive system

w(/c+ 1) = \(k)y/{k) + B(k)u(k), initial state w(fc0) (13)

characterized by state matrices \(k) and B{k) of controlled system (1) where control
vector uA9) 6 Rrof system (1) is though to be the input vector. Now we show that initial
state w(/c0)e w* (11) is brought by control sequence (5) carrying initial state x(/c0) e R"
into a final state xF determined in advance into the origin of space wW" according to
discrete state equation (13).

Let the left side, then the right side of (8) be substituted into (13), and F(/e + 1, k)
= A(/c) given in (A-7) be taken into consideration. In this way, relationships

wk+ 1)= A(c)x(K) - F(k + 1, k0 + A+ 1)xf + B(K)u(/c) =

=x(k+ I)-F(/c+ 1, k0+ A+ 1)xF (14)
and
Ko + 4
w(k+l)=AK) X -F(k,i+D)B(i)u(0 + B(Ku(k) =
i=K
=Y —F(k+1,i+1)B(@i)u(), (15)
i=T+1
are obtained, respectively, where k = k0,k0+ 1, . . f0+ A (14) and (15) are obviously
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equal to each other:

X(/lc+ 1)-Ffc+ Lko+n+ DxF= Y —F(/c+ 1 i+ 1)B(u(). (16)
i=K+ 1
(16) can be derived also from (8) since (8) will be true also if (&-t-1) is written in place ofk
in the equation. Assuming an initial state w(k0) and control sequence (3), the trajectory
of fictive system (13):

w(k) = <pjk; k0, w(/c0), uNe,k _,j)= F(k, k0)v/(k0) +

+ F(M+D)B(iju(ij, =~ Okt kO0+1+1 (17)
i=ko

In the sense of 10, trajectory (17) for /c= /00+ / + 1has to arrive at the origin of space w":

ylI(ko+/ + 1)= 0= h,,(/cO+ A+ 1;k0, M k0), a[Ko/H*) =

= F(fc0+ A+ 1, k0) [w(k0)+ kFIF(feO, i+ DB(iu(i)]- (18)
I =Ko

Since F(fcO+ / + 1, ko)w(k0)# 0, equality (18) can be fulfilled only if the value of the term
in brackets is zero vector. As it is this very condition that is supplied by the relationship
(8) written for k —ko0, the equality is fulfilled. Thus result (18) reveals the fact that initial
state w(/cO)e w" (11) of fictive system (13) is carried into the origin of space w" by the
control sequence (5) carrying an initial state x(/c0)e R" of controlled system (1) into
some final state xF determined in advance.

Accordingly, the calculation of control sequence (5) to be determined, fulfilling
condition (6), can be traced back also to space W n. Obviously, control sequence
u[*o*0+A (5) must be a minimum-time dead-beat sequence (MTDB) for initial state
w(k0) (11). Note that a possible way of producing such a sequence is one fulfilling
condition (18) has been discussed in [ 1], in particular for the class of systems considered
in the present work.

On the basis of [1], now the MTDB control law shall be defined for fictive system
(13) in the following shape:

ufc) = KKw(K), k=ko,ko+ 1, ..., k0+k (19)

where matrix K (k)eR r*n—state feedback matrix for fictive system (13).
By substituting (19) into (13) we obtain a homogeneous state equation

w(k + 1)= [A(/c) + B(lo)K(/c)w(/c), KOM K it KO+ N (20)
which then, by introducing matrix
W(/c)= AKK) + B(k)K(Kk) (21)
of dimension nxn, can be simplified:

w(fc+1) = W(/c)w(k), initial state w(k0). (22)
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For an initial state w(kO)e w , the trajectory of system (22)
vi(k) = 4>Jk; k0, w(k0))=F Jk, kO)w(k0), (23)

where Fwk, k0)e R"*" is the fundamental matrix of (22) according to definition

W0 =W (k-DW (k-2).. W (KO, if k> ko
j-to

FJk, k0)= 1, if k=ko (24)
non-defined, if k<ko.

Obviously, (23) can be produced also on the basis of (17) ifcontrol law (19) is substituted
into (17). State w(/c) (23) must be zero vector for /c= /04-A4 L

W(k0+/+ 1)= 0= p,.(*0+ /+ 1;/cO, w(k0))= F Jk 0+ X+ 1, KOw(fe0).

For an initial state w(/co)#0 of non-zero vector value, this condition will exist only if
equality

Fw(ko + A4 1,k0)—[A(/c04 A4 B(c04 AK(c04 A)] [AO4 A—1)4
4 Wko4 A- DK(Fc04 A- 1)]... [Afc0)4 BOK(kO)] = 0 (25)

is fulfilled. As has been shown in [ 1], matrices K(/c) e RrXx"satisfying equation (25) can
be calculated on the basis of relationship

-T 2(k+ A)F(K4A, k

K(9= ( JF( ) kOrNk Ak 0+ A (26)

—T, (k+ Ad-1)F(k 4 Ad-1, K)
where matrices T,(*)e RR*"and T2(*)6 Ry*", respectively, are given in (A-23), if the
necessary and sufficient conditions, (A-20) and (A-21), of transformability into phase
variable block canonical form (A—15) are fulfilled for controlled system (1). By
substituting state w(k) (9) into control law (19), taking into consideration (26), we obtain
for minimum-time systems state control law

u(k)= K(k)x(k) + S(k)xF, k=ko,ko+ 1, ,..,k0+A 27)

wherefork = k0,k04 1, .. ., k04 A the expression for time-varying coefficient matrices
S{k)eRr*n:

T2(k4-A)F(k4-A, kO4A41)

S(fe)= -K(F(k K04 AFL)= o o AG 1) F(k 4 A4 1 KO+ Ad-1)

(28)
The structure of control law (27) reveals the fact that minimum-time control actually
takes place by state variables feedback. By substituting control law (27) into the
trajectory given in (4) for controlled system (1), we obtain the trajectory of the state-
variable feedback system for an initial state \(k0) and a final state xF determined in
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advance:
x(/c) = D(&; ko, XfD))= F Ik, k0)\(k0)+
+ V. FJk, i+ DB(@i)S(i)xF+ Wk - INe - 1)xF (29)
i=ko
where k =k0, ko+\, ..., kO+ A+ I. Ifin (29) fc= /0+ A+1, then, according to (6),
relationship

\(k0+ A+ 1)= xf = B(ko+ A)S(k0 + AxF+

+ t *FJko+ A+ 1 i+ 1)B(/)S(OxF (30)

i=ko

must exist as according to condition (25):

Fw(ko+ A+ 1 /0)= 1y k0 + A). . .W(/cO+ LW(Fc0)= 0. (1)

Obviously, (30) can be fulfilled only if equality

ki “FJ/cO+ A+l,i + )B(i)S(i) + B(/cO+ AS(lco+ A)=I (32)
i=ko
exists. Assume that control vectors aFk) e Rr required to maintain a final state xFe R"
are produced according to the formula given in (27):

uR/c)= K(/c)x(/c) + S(/c)xF, k=ko+ 1+ 1, .., k0O+N (33)

where N ™ A+1—positive integer.

A final state xF determined in advance can obviously be maintained only by
control vectors (33) if relationship x(/c) = xF= X £ exists for times k=k0+ /.+ \, /D + A
+2, ... ko+N, where x£e R" expresses a possible equilibrium state of controlled
system (1). Therefore, if (33) is considered to be an equilibrium control sequence, then
the first to be assumed is that controlled system (1) can be brought to phase-variable
block canonical form (A-15) also for extended interval ko + A+1 %k~ k0+ N. On this
assumption, state feedback-matrices K(/c)e Rrx"(26) will exist also over interval k0 g «
UkO+ N:

—T2([c+A)F(/c+ Ax)

K= _Tjifc+ AFW  +A+flo]r  KOTRTROEN (34)

Since matrices S(k)eRr*n (28) are not defined for values ZcVeO+ A+ |, also the
additional hypothesis that equality (32) will exist also if values /0+ 1, [0+ 2, .. ., are
written there in place of k0. Hence, assume that equality

+1, i+ )B(0S(i) + B(c)S(/c) = | (35)
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exists for all values c= kK0+ A+ I,/cO+A + 2, ... ,k0+ N. Then, assuming that there exist
generalized inverse B +(k) e Rr*nofinput matrix B(k) e R n*rfor all k over interval k = k0
+ A+ 1 . . k0+ N according to relationship [5]

B +(fc) = [B r(k)B</c)]-1Br(Kk), kO+k+\ZkE£kO+N (36)
then a recursive equation is supplied by (35) in the shape given below for calculation of

matrices S(k)e Rr*" in (33)

S(l9)= B (Ol —_V FKfc+ 1,i + 1)B(i)S(i)] @7

i=ko

wherek =k0+ n+ 1 k0+ A+ 2, ..., ko+ N. Note that also a non-recursive relationship
can be given for calculation of matrices S(k) in (33) in case (34) and (36) are fulfilled. If
controlled system (1) is in a possible state ofequilibrium XE, then, by the use of (33), the
following equation can be derived for k= ko+ A+ 1, ..., kO+ N:

0=[A(/c)-1 + B(lc)K(/c)]x,,»+ B{k) St (k)\K. (38)
Using (36), S(A) can be then expressed from (38):
S..(/c)= —B +(/c)[A(/c)—I + B(/c)K(fc)], kO+ X +\*k~kO+ N. (39)

Taking the third-order system considered in [1] as a basis, an example is given below
to demonstrate the conditions.

3. Example

Let n=3 and r= 2 to demonstrate the conditions of movement of the state-
feedback controlled system. On the basis of [1], let

1 1 o' 0 1 -
A(fc) = 0 1 0 Bk\= 0 -1
-e~k+l O 1 1 e k

be the state matrices of system (1).

For controlled system (1) described by state matrices (40), /.= 8 = y=\ and thus
controllability index (2) isa= A+ 1= 2. Since the necessary and sufficient conditions (A-
20) and (A-21), respectively, of transformability into phase-variable block canonical
form (A-15) are fulfilled, matrix T(/c) (A-19) of linear transformation

z(k) = T(k)x(k) (41)
given in (A-14), transforming controlled system

X (k+1) = V(K)x (k) + W K)n (k)

Ada Technica Academiae Scientiarum Hungaricae 98, 1985



240 CSAPO. S

into phase-variable block canonical form

z(k + 1)= A(k)z(k) + Bu(/c) (42
is given as
"Tj(fc) -1 -1 0
T(fo)= T2(K) = K +|—m —m 1 (43)
T,(k+ DA(K) -1 -2 0,

Now the phase-form system matrix, A(/c) (A-16), of phase-variable block canonical
form (42) will be

0 0 1
\(K) =T (k+\)A (k)T I(k) = e k—m 1 m (44)
-1 0 2

In the present case, phase-form matrix B (A-17) will be:

0 0
0 1

Since now R=y =\, matrix M2I+1e Ryl (A-24) constant in time, defined as a

parametric matrix, degenerates into a scalar m2x+i ~ m- Using matrix T(/c) (43), state-

feedback matrices K(/c) from matrix A(/c) (44) can be read in the following shape [1]:
- e k+rm -1

K(k) = . 0 (45)

According to (26), a simpler way offers itself for calculation of matrix K(/c):

—T 2(fc+ NA(K)
—Tj(/c + 2)A(k + I)A(fc)

e k+e k+tl+m e k+2m —1

1 3 0 (46)

Since any initial state \(k0) of the third-order system considered is controllable at any
time k0 2: 0, an initial state can be given also inaform\ (k) where k0 = «k St0. For the sake

of simplicity, assume the value of arbitrary scalar parameter m22+1 to be m=0.
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Matrices S(fc) (28) for any arbitrary time k0= k:

0 .
=- 47
S(fc)=-K(fc)F(M + 2) 1 -1 0j’ (47)
g—e-*-* 0 r

S(fe+l)=-K(fc+)F(*+1,k + 2) I_e - 48)

Further matrices S(k +2), S(/c+ 3), . . S(k+ N) can be calculated on the basis of
recursive relationship

S(Ic) = B+ [I —W(fc)B(fe—I)S(/c—1)] , ke[k +X+1,k + NJ (49)

given in (37), where /V~A + 1 W(/c) in (49) is the time-varying system matrix of the
state-feedback controlled system, which, assuming m =0, can be written as

2 4 0

W(fc) = A(fo) + BUKK(fo)= - 1 -2 0 (50)
2e~k 4e~k 0

and B +(Kk) the generalized inverse of input matrix B(/c) according to (36):

2

B+(k) = 0

(51)
With k + / + 1=[k + 2) written in place of k in (49), using (48), the expression for matrix
S(k + 2):

—e —(1/2)e“*~2

S(k 2)=
k+2a=" 712

(52)
Writing (k+ 3) in place of k in (49) in the knowledge of (52), matrix S(/c + 3) can be
calculated:

k3 __(5/4)e~k~3 1

Stk+3) -23/4 0

(53)

This recursive process can then be continued in a similar way. As an alternative way to
calculate matrices S(/c), a non-recursive relationship is given in (39). According to this
method on the basis of (39),

S,(fc)=-B +(K)[W(/c)-1]1=[~ * 2y fe k i] 54>

where k e [k + A+ 1,k + N. Itcan be seen it is the very matrix S(/c + 2)(52) that occurs if
(k + 2) is written in place of k in (54). Let then the final state determined in advance be

x'=[2, 1 1y, (55)

where vector transpose.
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Let initial state \(Ac) taking place at any arbitrary time « be
x(*)=[I, 4, -1]T. (56)
According to state control law (27):
u(/c)=K(/c)x(/c) + S(fc)xF=[e *+1+5e“*+2, . 10]r,
and as a result, state
x(k +\) = A(K)x(k) + WK)n(k) =
= [15, -6, 15¢ “+1]T
takes place. The next control vector u(/c+ 1) will be
ukk + ) = K(k+D)x(/c + )+ S(k+ I)xF=
= [Te-*-1, —7]T,
which then carries state x(k+ 1) into final state xf (55) determined in advance:
X(fc+ 2)= xF= A(/c+)x(k + I) + B(fc+ Nu(fc+l) =
= [2, 1 1r.
According to (33) and using matrix S(/c + 2) (52), control vector u(k + 2) will be

uF(k + 2)= K(k + 2)x(fc + 2) + S(k + 2)xF=

[2e-k | +(1/2)e-k-2, -1/2]r,

and as a result, we arrive from state x(k + 2) = x F at state
X(fc+ 3)= Ak + 2)x(k + 2) + B(lc+ 2)u(k + 2) =
= [5/2, 3/2, Ir.

As can be seen, the trajectory starting from initial state x{k) (56) passes through final
state x F (55) determined in advance. An explanation for this fact is that none of the
possible equilibrium states x E of controlled system (1) complies with final state x F (55)
as the set of possible equilibrium states x£ of the system is the entire co-ordinate plane
(xt, x3) of space of states R 3.

Let now final state xF determined in advance be identical with a possible
equilibrium state of system (1). Assume e.g.

(57)

Let initial state x(k) be given according to (56) also in this case. Now the sequence
of control vectors and of state:

u(k) = [e~k+1+5e~k+ 2, ]r
x(k+ 1)=[16, -7, 16c k+1]T
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uk+ 1)=[7e"*'] —T]r
x(k+2)=[2, 0, 11T=xF.
According to (33), control vector u(k + 2) will be
uk+2)=uRk+ 2)= Kk + 2)x(k + 2) + S(k + 2)xF=
=[2e“*~*,  O]F, (58)
and as a result, again final state xf (57) takes place:
x(k+ 3)=A(k + 2)x(k + 2)+B(k + 2u(k + 2) =
= [2, 0, 11T=xF.
The next control vector according to (33), taking into consideration matrix S(k + 1) (53)
uk + 3)= uFk + 3)= K(k + 3)x(k + 3) + S(k + 3)xF=
=[x 2 0]r (59)

which brings about again final state (57) xF It is therefore obvious that the state-
feedback system will not leave final state xF(57). Accordingly, the rule of formation of
equilibrium control vectors:

Uk +j) = UF(k +j) = K(k +j)\(k +j) + S(k +j)xF=
= [2e~k~J+I, 0]r, (60)

where x(k+j) —xF= xE for all valuesj~N .

It can be seen in relation with the next example that matrices S#(k) given in (54)
prove definable also for values k, k + 1......... ft+ A Accordingly, matrices S(k) (47) in
control law (27) can be replaced with matrices S,(/c) (54):

u(k) = K(k)x(k) + Sm(k)xF, K6 [K, K+ /V] . (61)

Let the initial state and the final state be given according to (56) and (55),
respectively, also in this case. Now the sequence ofcontrol vectors and state vectors will
be

uk)= [e~k+1+3e~“+2, I"]r,
x(k+1) = [16, -7, \de k+iy,
u(k+ )= [7e-*-1+ 2e-k, -7]r,
x(k+ 2)=[2, 0, 17r=xF,

uk+2)=[2e“*" ] 0]T= uf (k+ 2),
x(k+ 3)=[2, 0, 1Tr=xf.
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A result complying with what has been obtained earlier will be obtained if the
process is continued in further steps.
Let now row-matrix T 2(/c) of transformation matrix T (k) (43) be determined on
the basis of relationship (A-28). According to the definition:
T2()=[-(1/2)e-"+], (\2)e~k+1, 1]. (62)

Now the transformation matrix:

T.0%) -1 -1 o
(k)= t2(K) = -(1/2)c“+1 (\2)e-k+l 1 (63)
TAK+DMk) -1 -2 0

Now phase-form system matrix A(/c) (A-16) will be

\(k) =T (k+\)\(k)T"(k) =

0 1
WU2)<?>-  +e~k 1 —(\/2)e~k (64)
-1 0 2

By the use of (62), feedback matrices R(K):
mt2(fc+)A(fc)
uT,(jk+ 2)A(k+l)A(fc) _
+1+ (1/2)e_* 0O -1 (65)
-D 3 0

Matrices S(/c) can be produced also for matrices R(k) (65) in a similar way. Now
the state control law takes the following shape:

u(fc)= K(/c)x(/c) + S(/c)xF, fce[k,fc + V] (66)

where N~A + 1 A result similar to those obtained earlier will be obtained also by the
use of (66).

4. Conclusions

In this work, a class of linear, discrete, controlled systems of state n and input r(n
j~r), varying with time, has been considered, where quotient n/r is non-integer.
However, it is to emphasize that even within the class mentioned, we restricted
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ourselves to the special case when the necessary and sufficient conditions of
transformability into phase-variable block canonical form were fulfilled [2]. The
applicability of the dimensioning method presented assumes the existence of a system
state equation of phase-variable block canonical form. It was shown that the
development of the minimum-time state control law was directly based on results laid
down in [1].

The required state control law has been obtained in the shape of u(/c) = K (k)\(k)
+ S(/c)xf for values k = kQ, k0+ 1, . . k0+ x, where x is the largest positive integer still
smaller than n/r. Hence K(/c)eK,x" is the state-feedback matrix while matrix
S(k) 6 Rr*"can be considered to be a variable amplification for input vector x Fe R" of
the state-feedback system. It was seen that an initial state \(k0)e Rn of the controlled
system could be carried into a final state \ F, determined in advance, in minimum time
by control steps u(ko), u(/c,,+ 1), == u(/cO+ " the number of which complying with the
value ofcontrollability index a= x + laccording to relationship x (ko + x + 1)= xf. Also
a hypothesis was necessary to derive equilibrium control vectors uF(k) = K (k)x(k)
+ S(k)\h(k= k0O+x+ 1 k0o+ x+ 2, ...,)maintaining final state x r in compliance with a
possible equilibrium state xEof the controlled system. As a result of the hypothesis, a
recursive relationship was obtained for calculation of time-varying matrices
S(c)e Rrx"{k=k0+ x + 1, k04-x + 2, ...,). On the basis of an example given for third-
order systems, it was seen that the hypothesis had been rightly assumed in respect of the
numerical results, at least as far as the conditions arisen after the example were
concerned.

Finally, note that in case there exists relationship xf=0 for the final state
determined in advance, the minimum-time dead-beat control problem outlined in [1]
occurs for some initial state x (k0).

Appendix

Given in Appendix are the necessary and sufficient conditions of transforma-
bility into phase-variable block canonical form for the studied class of controlled
systems, taking the theorems developed in [2] as a basis. The solution of the discrete
state equation describing the controlled system and the most important properties of
the fundamental matrix are also discussed.

I. Solution of the discrete state equation

Let the time-varying multivariable, linear, discrete-time controlled system over
set R of real numbers be given by discrete state equation

x(k + 1)= A(k)x(k) + B(k)u(k), initial state x(k0) (A1)
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where ke z integers,
x(k)eRn state vector,
u(k)eRr control vector,
\(k) e Rn*n and
B(k)eR"*r properly dimensioned state matrices,
R" and Rr Eucledian spaces, R" being spaces of states while R r control
space.

For an initial state x(k0)e R", assuming a control sequence
W -i] = {u(/cO),u(/cO+ 1), .. u(fc—1), (A-2)
the movement or the trajectory of the controlled system (A—1) can be given as
x(/c) = dx(flc; k0, x(/c0), u[todk_i])= F(fe, k0)x (k0)+
+ Y F(fc,i+D)B(Hu(i), (A=3)

[3], [4], where the expression for fundamental matrix F(k, k0)e R"xn:

N1IAN=A(*-D)A(*-2)... A(U if k>ko0
j =ko
F(k,k0)= JI, if k=ko0 (A—4)
tnon-defmed, if k<ko.

Here should the most important properties of the fundamental matrix be enhanced [3].
According to definition (A—4), the fundamental matrix complies with unit matrix
i e Rn*n in case of k = k0:

F(k0,k0)=1- (A-5)
The fundamental matrix satisfies homogeneous equation (u(k) = 0(k)) of (A—1):
F(k+\,k0)—\(k)F (k, k0). (A-6)
It follows from (A-5) and (A-6) that
F(/i0+1,/c0)= A(/c0), F(k+\,k) =MKk). (A-7)
According to the group character of the fundamental matrix
F(/c2,fc0)= H(fc2,fc.)F(*,,/cob (A-8)

for all ko, kjand k2mlt is easy to prove also the theorem concerning the inverse of the
fundamental matrix, according to which

F(/c,, k2)= F~ I(k2,k x), k2>k,. (A-9)
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Namely, on the basis of (A-8),
F(fe2ffc)F (*,,*2=F(*2,*2)= |

will follow if ko= k2- With this equation multiplied with inverse matrix F
from the left side, actually (A-9) is obtained.

2. Phase-variable block canonical form for a class of systems

For the class of systems here considered, n/r is non-integer. Let the definition of
positive integers A /f, and y be introduced by means of relationships

R=n—Ir, O<B<r, (A-10a)
y —r—=8, O<y< r (A-IOb)

[1,2], Abeing the largest positive integer smaller than n/r. Controllability index a of
system (A—1) described by relationships (A-10):

a=9+1. (A—1)

Note that controllability index a is defined as the least positive integer [3] for which the
rank of controllability matrix

QcAl<0)= [B(kO+a- \), F(/cO+ a, k0 + tx— )B(/cO+ a-2), ...
o F(*0+ «,*0+1)B(*0)] (A-12)
is n. Assume that a state x e R" of system (A—1) is controllable at initial time ko i.e.
rank QfJk0)=n . (A—13)

In the present case, system (A—1) shall be transformed into phase-variable block
canonical form for interval ko~ k ~k 0+ L Let a variable parameter linear trans-
formation be introduced by means of relationship [1,2]

z(k) = T(k)x(k), (A-14)

where T (k)eRnx" is a non-singular transformation matrix invariable in time.
Transformation (A—14) carries discrete state equation (A-1) into phase-variable block
canonical form

z(k+ 1) = A(lc)z(/c)+Bu(k), kKOAKk~AkO+A (A-15)

where nme-varying phase-form system matrix A(k)eR"*n and phase-form input

N Ada Technica Academiae Scientiarum Hungaricae 98, 1985



248 CSAPO. S.
matrix Be Rn*r are:

MKk) =T (k+ \)\(k)TI(k) =

m./l (]>y 8.8 Oiy Qp.8 o ®y ()I,.,
b QY VYA ~vy 0. G,

%.p ®y 01/, Oiy Q6.8 ] @y Np
M,(/c) M2(c) M3(f) M4(c) M,(fc) . mm M22(ic) M 2A+t(fc)
N,(fc) N2¢9 N3() N*(*) Ns(*) ... N22(3 INo

and

0y “aff
Q G
B=T(fc+)B(*)= ° (A—L7)
& 0L
Yy q)l,

0/1.y 8.8

respectively.
In (A—16) and (A—17), Op, is a zero matrix, lppeJ1'’x" a unit matrix, and

Mi(k)eRyxB,N i(k)eR BxR, i= 1,3 24+1 (A-18a)
M I(k)eK K\ N I(k)eR RX1, i=24,... 2k. (A-18b)

According to [1], transformation matrix T(/c)eR"x"

T,(/c)
T 2(k)
Tk = kOMKk Ak O+Kk+1 (A9
T.(fc+ A-1)F(fc + /I-1,fc)
T2(lc+ N—I)F(/c + A—1,l0

Trk +yFik +k, k)

where T1()eR *|x"™and T2( )ed >X" Thus system (A—1) can be transformed into
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phase-variable block canonical form only if necessary and sufficient conditions

range [B(fc- 1), F(k, k- 1)B(fc—2)......... F(k,k -k +2)B(k- A+ 1),
F(k, k—J1+ 1)B(k—/)] grange [F(fc, k —)B, (k—A—1) (A—=20)
rank [B(k —1), F(k, k — D)B(k—2), .. F(k, k-J1 +2)B(k-A + 1])
F(fc, k—0+ 1)B(k—/), F(k, K—A)B2(k—1—1)] = n (A-21)
are fulfilled for all k in interval KONk gk 0+ 2/.+ 1[2]. Submatrices B,( *)e RnXy and

B2(¢)e R"*% in (A-20) and (A—21) respectively, result from partition of input matrix
B( +)6 R" *' in the following shape:

B()=[B.( ) B2()]. (A-22)

Submatrices Ti(-)eRBx" and T2(,)eR yx" occurring in transformation matrix
T(k)e R"x" (A-19) can be calculated on the basis of the following relationships”]:

Ti(k) = [0™ 2r, 1,,,-} [B(fc- 1), F(k, k — )B(k —2), ...
.. wF(k,k-A+1)B(fc-A), F(k,k-NB2(k-2-1)]"*
k=ko0,ko+ 1, .. .,KO+ 24+ 1 (A-23a)

T2(k) = [0y (2_ D), M22+,] [B (k- 1), F (M —)B(k —2),
G F(Kk-A+1)B(k-A),F(k,k-A)B2(k-A -1)]-1

k=kO0,k0+ 1, . . kO+22 (A-23b)

Matrix M 22+l e R yxR invariable in time, appearing in (A—23b), can be defined as a
parametric matrix since its elements of number y 3 can be selected optionally,
independently of each other. Accordingly, because of the non-uniqueness of
transformation matrix T(/c) (A—19), the phase-variable block canonical form given in
(A-15) is not unique either.

Note that the following additional statements complete the results arrived at in
[2]. With matrix equation

M 2i +1=T2(k)F(k, k—/)B2(k— —I)=const., (A—24)

omitted from (A-23b), the number of scalar equations included in the system of matrix
equations remaining over is one equation less as compared with number y mn of
unknowns occurring in matrix T2(k)e Ryxn. Therefore, solutions T2(/c) of infinite
number are possible to equation (A-23b) nonincluding (A-24). Equation (A-23b) takes
now the following shape:

T2(*)P(*)=[0,.a_1n1yr0,%,  k0AKkAk O+ 2k (A-25)

8' Acta Technica Academiae Scientiarum Hungaricae 98, 1985



250 CSAPO. S.

where P(/c)eR"xAr is a rectangular matrix:
P(/c) = [B(fc—1), F(/c, c—I)B(lc—2), .. F(k, k—2+ )B(fc—)] . (A-26)

However, from among solutions T2(k) of infinite number to (A-25), a well defined
solution can still be selected, namely by means of the generalized inverse

P+(k)=[PT(k)P(k)YIPT(k)e RAr*n, kO~ k Ak 0+ 2A (A-27)
of matrix P(fc) (A-26) that can be produced in accordance with [5] in the following way:
t 2(f)= [Oy.u- Dr,1y.y,0y/]P +(c), KOk KO + 21 (A-28)

It can be seen that identity will be obtained if (A-28) is substituted into (A-25) because
P +(k)P (k) = 1 e RXrxXr. Hence, a condition for the existence of submatrix T2(k) (A-28)
is the existence of generalized inverse P +(k) (A-27) in interval ko~ k ~ k 0+ 2A for all k.
Note that in this case submatrix M2+, e Ryxg will in general not be constant in time
that is usually it will depend on discrete variable k of time according to M 2/+,(/c).
According to (A-28), transformation matrix T(/c) takes now the place of (A—19) in
accordance with the following structure:

T k)
t 2(0)

t(/c) = KO KA KO+2+ \. (A-29)
T,(k+2-1)F(k +/-1,fc)

T2(k+A-\)F(k +A-\,k)

TI(k+2)F(k +2,k)
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NUMERICAL METHOD FOR THE APPROXIMATE
SOLUTION OF TECHNICAL PROBLEMS*

P. Csonka**

[Received: 2 October 1984]

To solve certain technical problems we need a function which satisfies a given partial
differential equation of the second order, and whose value assumes zero along the boundary of the
domain concerned. This paper presents an approximate solution for these problems by replacing the
governing differential equation by the corresponding difference equation and by approximately
solving this difference equation. In the case ofthe hom ogeneous problem, the paper only presents the
approximate value of the first eigenvalue and determines an approximate function for the first
eigenfunction. The first eigenvalue of the difference equation is determined by using upper and lower
bounds. In the case of the inhomogeneous problem, the results obtained for the homogeneous
problem can directly be used provided that the inhomogeneous part of the difference equation is of
constant sign at the internal points of the domain concerned.

1. Introduction

Many technical problems require the solution of the partial homogeneous
differential equation

02w 82w
. . +/w=0, n
0x2 + 0y2

or of the partial inhomogeneous differential equation

d2u d2u

2
dx2 + 0 ? +K=0 @

in the simply connected domain T, with the boundary conditions w=0 and u=0.
Closed formulae can only be presented for exceptionally simple cases and consequently
practice has developed different approximate methods [1, 2, 3, 4].

The aim of this paper is to present an approximate method for the above
problems. Domain Tis replaced by the rectangular network R of spacing Ax = Ay =h

* This paper is published as a historic example to show what possibilities the method of differences

developed in the twenties and thirties offered for the approximate numerical solution of differential
equations.

** p. Csonka, H-1114 Budapest, Barték B. it 31, Hungary
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and, instead of differential equations (1) and (2), the homogeneous difference equation

A 2w A2w
« o = 3
AFXT + TA)T +:-w=20 3

and the inhomogeneous difference equation

A2u A2u (4)
AX2 + ~A7y~| + Vv—0

defined at the nodal points of network R are introduced. The method to be presented
gives approximate solutions for these difference equations.

2. Notation

To simplify the treatment, it is expedient to use the following notations:

fcvd2?2 dy h2
J 8\\ax2 Ay2 g ¥ ®)
AZ , AZ h2
(6)
4
With these notations we have
&f= ~14f(x,y)-f(x +h,y)-f{x,y+h)-f(x-h,y)-f(x,y-h)], @)
-* /=] [(* +hy)+f(x,y+h)y+/(Xx - hy)+/(X,y- M]. (8)
Further simplifying notations are
MTrl=wmwm x/
2f
and
h2 h2
»=y V' =y He (9a’b)
Difference equations (3), (4) now assume the form
S>w-/'w =0, (10)
&u-v=0. (11)
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3. Basic theorems

Through our derivations we will rely on the following four theorems based on
existing analogies.

Basic Theorem Difference equation (10) with the boundary condition w =0
has as many eigenfunctions W,, W2, ... W,as the number ofthe internal nodal points of
network R. Eigenvalues corresponding to these eigenfunctions are denoted by /,, /2,

where /, is the smallest eigenvalue in absolute value, 12 is the next one, then 13etc,
ie:

/1= 1/21= eee= I»le

Basic Theorem 2.: Eigenfunctions w, , W2, ..., w,, are orthogonalfunctions, i.e.
the expression

Cw,w*=0, 1k (12)
holds where summation must cover every internal nodal point of network R. Every

other function proportional to an eigenfunction is also an eigenfunction. The one of
these which satisfies the condition

ny>?=1 (13)

is called the normal eigenfunction.
Basic Theorem 3.: Every function v which vanishes at the external nodal points,
can be expanded to a series like

f=c,w,+c2wW2+ .. .+C,W,, (14)

where, assuming normal functions w,, the coefficients take on the form
fj=h2” vWj. (14a)
Basic Theorem 4.: Eigenfunction W, is ofconstant sign at every internal nodal
point of network R.
4. Auxiliary theorems

In the following, we shall derive some auxiliary theorems from the basic
theorems introduced in Section 3.

Auxiliary Theorem 1. The homogeneous difference equations
(/w-I\w =0 (15)
and
Hw—I1"w=0 (16)
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have the same eigenfunctions and the relation
["=1-2/; (17)

holds between their eigenvalues.
Combining Egs (5) and (6) we obtain

F=1-231
which, applying to eigenfunction/=w f, yields
M W= W—23 w,-.
Substituting Eq. (10) to this equation, we arrive at
Mw, = W — 2jW = (1—2) W(.

It follows from this equation that, apart from Eq. (15), function w, also satisfies Eq. (16),
i.e. it is an eigenfunction of both difference equations (15), (16) and that the relation (17)
between the eigenvalues N and /** holds.

Auxiliary Theorem 2. The sign of the linearly independent eigenfunctions W,
and wk cannot be the same at every internal nodal point but they cannot be the opposite
either at every internal nodal point.

This auxiliary theorem directly follows from Basic Theorem 2. If this auxiliary
theorem is applied to the case /= 1, k¢ 1, it can be easily seen that, apart from the first
eigenfunction, all the other eigenfunctions are of alternant sign at the internal nodal
points.

Auxiliary Theorem 3. Only one eigenfunction belongs to eigenvalue I'[.

If, apart from w, , another eigenfunction w, independent of w{ belonged to /'/,
then, according to Basic Theorem 4 at every internal nodal point both eigenfunctions
would have the same sign (e.g. positive) or their sign would be opposite (e.g. negative).
According to Auxiliary Theorem 2, however, this is impossible.

Auxiliary Theorem 4. Unequalities

o< /< | (18)

1< (19)

holdfor every /=1,2, ..., n.

Of these statements, it is enough to prove unequality (19) since then unequality
(18) automatically follows.

Through the demonstration, we have to take into consideration that w, = 0 at the
external nodal points and therefore there must be at least one internal nodal point
where the absolute value of w, is maximum. Let us choose such a nodal point and
determine the value of /"' from Eq. (16):

M W

(20)
W,
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Since W lis maximum at this point, there are two possibilities here, namely, | |is
smaller or equal to |w, |.

In the first case unequality (19) automatically holds.

In the second case we have /"= 1or /'/= —1. In this case the value of w, at the
neighbouring points is the same as or the opposite of the value at the point in question.
Passing to one of the four neighbouring points and applying Eq. (20), we find the same
situation as at the point in question. Advancing from point to point, the situation is the
same, till we arrive at a point next to one of the external points. Because of the condition
w, = 0, the neighbouring w, values cannot be equal to the original w,. It follows that this
second case is not a real possibility and therefore the unequality

| <1,

i.e. Auxiliary Theorem 4. holds.

Auxiliary Theorem 5. Eigenvalues f2,...,/" and N\ 12, ..., I, are
symmetrical to 1/2 and 0, respectively.

To prove this theorem, let us choose one of the nodal points as the origin of the
co-ordinate system x, y and assign the function

yMx,y)=(-1)(x+>% (x.y) (21)
as a conjugate function to eigenfunction W;(x, y) where kd].
If, at the point chosen w,(X, y) = wk(x, y) holds—even nodal point— , then we have

HAwk(x, Y)= —.Ifwj(x, y),

HWK(X, Y) = - IFWi(x, y) = - I'jwk(x, y).

The situation is similar when at the point chosen wk(x, y) = —w,-(X, y) holds—odd
nodal point. In this case we have

wwk{x, y) = JTwj(x, y)
and correspondingly
AWK, Y) = wix, Y) = - iwk(x, ).

It follows that function wk is an eigenfunction of difference equation (16), but the
corresponding eigenvalue is the opposite of the eigenvalue of function wj. Eigenvalues
I'i, /2, ..., ["are therefore symmetrical to 0 and consequently eigenvalues I\ ,12, ..., In
are symmetrical to 1/2.

When n is an odd number, the middle eigenvalue of difference equation (16) is 0
and the middle eigenvalue of difference equation (15) is 1/2.

Auxiliary Theorem 6. Iffunction v is of the same sign at every internal nodal
point, then the sign of the expression

Hi,,= C,W,-Cn\WM

constructed from eigenfunctions W, and wn is the same at every internal nodal point.
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It the case of normal eigenfunctions, formula (14a) yields

cl=h2'tvwl, c,=h2Y”vwn
R R

where, according to Basic Theorem 4, the terms in the summation in the formula of
coefficient c, are all of the same sign and, according to Auxiliary Theorem 5., the same
terms in the formula of ¢, are of positive and negative sign. Thus

kJ<kil> (21a)
and, since Auxiliary Theorem 5 yields
[w,| = jwj,

in the expression
Win= CiWl-C, Wn

it is always the first term which dominates, i.e. winis of the same sign at every internal
nodal point.

Auxiliary Theorem 7. If we have c ¢ 0 or C,,#0 in series (14), then, for m
great enough, the asymptotic equality

M mvS cIliW+ (- \)menl'; w,
holds.
T o prove this statement, let us start from series (14) and apply the Ji operation m
times:

v=cll;mwl +c2/2mw2+ ...+c,,-,/:" lwn_1+c,, /™ X. (22)
According to Auxiliary Theorem 5, we have
cjrnr,, ={-\)mcj:mwn,
with which Eq. (22) takes on the form
A»=Cilid+c2/'rw2+...+c, -1C" ,w,-1+ (-1 Tc,/i"w.. (22a)

According to Auxiliary Theorem 3, rIi is a single eigenvalue and from Auxiliary
Theorem 5 we obtain

ilvi>j/;'i<ia Kihwj

and unequality (21a) yields
k.|>]|cj.

It follows that, for m great enough, the expression
e2f2mw2+ ... +c,, 1M 1w,, 1
in formula (22a) is negligible in comparison with the sum of the first and last terms, i.e.

the theorem is proved.
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In the case m <4, instead of S, we can use the sign of equality since for m = 1and
m = 2 there is no internal term in formula (22) at all, and for m= 3, according to
Auxiliary Theorem 5, the medium term vanishes.

AuxiliaryTheorem#. If the network contains at least two positive and at least
two negative internal nodal points, then, in the case of j> 1, ¢] + C*#0, the expression

wlk= Cjwj + CkWk

constructed of conjugate eigenfunctions Wj and wk is alternant or its value varies between
zero and an extreme value at the internal nodal points.

For c,= 0 and ck = 0 the theorem goes without saying since in these cases we have
an expression of wjk of one term which is proportional to either wj or wk and as such it
must change sign at the internal nodal points.

For Ccj» 0, ckg 0, formula (21) related to conjugate eigenfunctions yields

Wik = (Cj-Ck)Wj
at the even nodal points and
Wk = (Cj+ Ck)Wj

at the odd nodal points, so eigenfunction w} has to be multiplied by a constant in both
cases. If neither of these constants takes on zero value, then, according to Auxiliary
Theorem 2, the expression of wkis an alternant one. If, however, we havec—c*= 0, the
expression of wlk can alternate between two values of opposite sign but one of these
values may be zero. The situation is similar when c, + ¢*=0.

In the above Auxiliary theorem two conjugate eigenfunctions were assumed, i.e.
the theorem does not hold for the case k = n —j + 1when wj has no conjugate function.

5. Solution to the homogeneous difference equation

Let us first solve the homogeneous difference equation
Jtfw —1"w =0 (24)
with the boundary condition w=0. We start from Auxiliary Theorem 7. which vyields
HmvE ¢, limw 1+ (- Dmc,, Ijmw,,,
re./T +n-,
o* +a»Sc, /I'r+2w, + (- I)menl'r +W
From these equations we obtain

S m+2t>Sri2. Wmy
and
uT(l+1lr + Ii~* mrS2cl/'r+,wl
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which lead us to the square of the eigenvalue

v
y (25)
and to the first eigenfunction
Clw, = e Lien (26)

21

of the difference equation (24).

Knowing the eigenvalue and the eigenfunction of (24), now we can go back to our
original problem, the computation of the first eigenvalue Aj and the first eigenfunction
w, of the homogeneous difference equation.

% -/> =0, @7)

identical to difference equation (3). The relationship defined by (17) exists between the
eigenvalues of Eqgs (27) and (24), i.e. we have

I".-2@0 o0=2 1-

which, taking into consideration formula (9b), yields the first eigenvalue of difference
equation (3) as

1=
ho (28)

Since, according to Auxiliary Theorem 1, the eigenfunctions of difference
equations (24) and (27) are identical, the first eigenfunction of difference equation (27)
can be computed from formula (26) as

o = (29)

The function
Wi=-Am+iv+ (I —2I\).Stmv (29a)

proportional to function (29) is also a first eigenfunction and the first normal
eigenfunction of difference equation (5) assumes the form

(30)
hJY . I~ m+lv+ (\-21\)Jtmvy"

In the case m< 4, the approximately equal sign = in the above approximate
formulas can be replaced by the sign equality since the formulas presented yield exact
results in this case.

Acta Technica Academiae Scientiarum Hungaricae 98, 1985



APPROXIMATE SOLUTION OF TECHNICAL PROBLEMS 259

Accuracy analysis. The accuracy of the first eigenvalue a, of the
homogeneous difference equation (3) depends on the accuracy of therefore it is
expedient to establish a lower and an upper bound for the value of We start from
expansion (14) and neglect the terms at the beginning and at the end of the series which
vanish together with their conjugates. Applying operation M by m and (m+ 2) times,
respectively, we arrive at the two series:

Jfmv=1I1"rciWI+IjmCjWj+ ... + r ¢ kwk+ i:mcnwn,
(31)
m«m+2» = |'r +2CiWi + Ijm+2GWj+ ...+ rr +2CkWKk+ I;m+2CnWn
According to Auxiliary Theorem 5, we have
F=-/;, -r/+1, [:=-1y
in these series which leads us to
mamV=1T(c IWL- cnw,) + 1im(cjWj-ckwk+ ...,
m«m +2V=1T +2(cIWI-C nWn)+ Ijm+2(CjWj-CkWK)+ ....
Making use of the notation
= =Si< L, (32)

we arrive at the formula

1+s™Ho < |‘_‘0( i CkWk ¢
m«cm +2V "2
=/v )
m«mV ' C:WJ:C_kaYb_ +(

c,w,-Ccnw,

where, in the case of m great enough, quantities O and e are negligible compared to the
other terms. Rearranging the above formula yields

Jo CIWj— CkWk
s7(1-s?) cwiE W OE
m+2V ' -CL,Wn
¢ =/v2 (33)
m«mV m CIWJ— ckwk

T+ S 775N el — +E
Cl W, ~CnWn

In formula (33) the expression
*70-s?)
is always positive and, according to Auxiliary Theorem 6, the expression
=c, w, -C,,w,,

is of the same sign at all the internal nodal points while according to Auxiliary
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Theorem 8, the expression
wik= CjWj~CkWk

is either an alternant one or it varies between zero and an extreme value, provided the
network contains at least two even and at least two odd internal nodal points.
Consequently, the numerator of the big fraction is either an alternant quantity or
(approximately) assumes zero value and its denominator is always positive. We can
conclude that, depending on the place of the external nodal point, the value of the
expression in brackets can be smaller or greater than unity and it may even be
(approximately) equal to unity. It follows that the value of I'2 has to fall between the
greatest and smallest values of quotient Jim+2v/.Jtmv or on its extreme value, i.e.

~AT+2» Hmaog
M mV

When, after a sufficient number of steps, we find that the value of the expression

m#EmM + 2V~ mrm+ 2%~

max Ceomy

is small enough, we can accept the value of I'2 as a good approximation.

There is no need for any accuracy analysis for the cases m <4 andj = (I +n)/2,
since formulas (25) and (26) yield the exact eigenvalue and eigenfunction.

The above accuracy analysis can also be applied to cases where /" or Ik are
multiple eigenvalues.

Remark. When computing the first eigenvalue, it is sufficient to accept rough
estimates at the beginning and the accuracy can be increased later on. It is also
sufficient to rely on a coarse network at the beginning and later on, introducing new
nodal points, the density of the network can be increased. In this way the method is
relatively simple and efficient.

6. Solution to the inhomogeneous difference equation

Let us try to find a solution to the inhomogeneous difference equation
fyu—r=20

identical to difference equation (4) with the boundary condition n= 0. Let us start from
Eq. (14) and apply operation M repeatedly:

AOv=c,w i+ c2w2+ ... +C,,W,,,
sH ,v=cil\wl+C212W2+ ... +C,/"w,,

JgJr2v=cil"2wi+c2122w2+ ... +c,/"2w,,,
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By producing the sum of the above equations we obtain
Xwiv=ciwl Xix+cow2 X rik+ ..-+c;|A,,42(Oc (35)

Since, by virtue of inequality (19), we have |/'*| < 1and according to the formula for the
sum to infinity of geometrical series we have

X

1
T 1T

Eq. (35) can be written as

X 1 1
X - jv= -—— - +C2W2-—- + ...+ CWn-— -
2o” VEOWIT, 1=/ 2 -/,

Swv=.g e o)

Instead of Ik , we can introduce Ik by making use of formula (17). By so doing, we arrive
at

Fo>= »
2 1=% * 4=¥L I*y k (37)

instead of (36). By carrying out operation & on both sides of the equation and taking
into consideration Eg. (15) we obtain

X2 Z 4o - 2, O
According to Eq. (14) the right hand side of this equation represents function v itself, i.e.
2®X #iv=v.
1=0
Eq. (11) shows that function v equals £, so that we have
22 X #v=@u,
1- O
from which we obtain the unknown function u:
(38)

u=2£ ~,v.
i=0
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This formula can be rearranged as
n=2£ (/Jp=2£ Jifl+2(J(mexv+ m+3v+J(m+sv+ .. )+
1=0 ,=0
+2(,J/m+2v + .Ftm+4v+ M m+bv+ ...). (39)

By making use of Eqg. (24), we arrive at
u=2 £ {(,0—=2 jHS$>+2d(mrii)(l + Iff + IffF mm)+
i=0 i=0

+ 2. °8ME2V(1+ N2+ Iff + eee)»

which, applying the formula for the sum to infinity of geometrical series, takes on the

form
m J ]
U=27. 70y + 2.Mm+lv— 772 + 2 N m+2p) 2m

Finally, the solution to the inhomogeneous difference equation (34) reads
n =
«= Z ®ivV+ 0@ +1Iv+j( m+2v). (40)

Remark. Contrary to the homogeneous problem, we cannot start from an
arbitrary function v when establishing the solution to the inhomogeneous problem,
since function v and function Kare defined by relationship (9). Neither can we accept
rough estimates at the beginning of the process, since the terms used at the beginning
also have a great influence on the accuracy of the method.

7. Numerical examples

In the following we shall present two numerical examples to illustrate the above
numerical methods. Both examples refer to the rectangular network shown in Fig. 1
where the spacing is unity, i.e. h= 1 The network contains more than two positive and
more than two negative internal nodal points.

First, we shall present the approximate solution to the homogeneous difference
equation

dw + Aw= 0 (41)

with the boundary condition w=0.
Second, we shall discuss the inhomogeneous difference equation

du+8=0. (42)

with the boundary condition n = 0. With this problem we have v= 8, i.e. Eq. (9a) yields
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Fig. I. Rectangular network

7.1 Approximate solution to the homogeneous difference equation

It is expedient to choose function v for the solution to difference equation (41) as
v= las it appears in the second numerical example, since in this case the results of this
numerical example can be used for the approximate solution of difference equation (42).
Since we intend to use the results for the second numerical example, we have to
compute as exactly as possible from the beginning.

Thefirst eigenvalue

To start with, we need the table for values .rfov (Fig. 2):

The next step is to produce the table for values .M ,v. Function . 4 1 vanishes at
every external nodal point and the values at the internal nodal points are obtained by
applying operation M (production of the mean value). E.g. the value 0.7500 framed in
the table of M xv is obtained by producing the arithmetic mean of the four values
framed in the table of J (0ov. Proceeding in a similar way at the other nodal points, we
obtain the table of values .1 {v (Fig. 3):

By repeating the above process and omitting the zero-values at the external
nodal points, we obtain the table of values M 2v (Fig. 4):
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Fig. 2. Table of values M Ov

Fig. 3. Table of values  xv

Fig. 4. Table of values M 2v
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Fid. 5. Places of the numerical values are marked by full circles

Proceeding in this way, we obtain the tables for .Jt3v, M+v, ..

Leaving

out the symmetrical values (Fig. 5), the table for values .4(bv is obtained as

0.076 447 0.107 468
0.171 449
the table for values .Jt9v as
0.053 734 0.088 040
0.120 347
and finally the table for values as
0.044 020 0.061 811
0.098 615

g*

0.104 204 0.051 957
0.133 225 0.066040
0.095002
0.073 163 0.042576
0.109 189 0.046 296
0.066 613
0.059 951 0.029 865
0.076 605 0.037 941
0.054 595
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Knowing values Ji xov and ,M 8v, we can now produce the table for values  xov/Jt 8w

0.575 824 0.575 157 0.574 992 0.574 802
0.575 185 0.575 005 0.574 515
0.574 672

It can be seen that the values for quotient ./((Xov/Jt8v fall between 0.574 515 and
0.575 824 and their mean value is

N2=0.574 971 .

By making use of this value, we obtain
/',=1(1 —"0.574 971 )= 0.120 866 (43)

from formula (28). We can now use formula (9b) which, with good approximation yields
the first eigenvalue of the homogeneous difference equation:

8
p =0.966926. (44)

If, to obtain greater accuracy, we continue the computation till the deter-
mination of ,M2ov>the first eigenvalue emerges as

A, =0.966 750. (45)

As can be seen, there is only a little difference between (44) and the more accurate (45).

The first eigenfunction

Eigenfunction w, can be approximately obtained from formula (29a). By making
use of the values of the tables for .M~v and J t xov, we obtain the values of wx:

0.084 765 0.128 569 0.115 428 0.062 149
0.189 870 0.159 400 0.073 046
0.105 106

To obtain the normal form of function w ,, we have to produce the squares of the above
values, then the sum of the squares. In our case this sum assumes the value

=0.183 027.
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With h = 1, the denominator of formula (30) for the normal function w, assumes the
value

1. =0.427 817.

We obtain the normal form of the first eigenfunction by dividing the values of the
last table by 0.427 817 computed above. We compiled the approximate values of the
first normal eigenfunction of the homogeneous difference equation at the nodal points
in the following table:

0.198 134 0.300 524 0.269 807 0.145 270
0.443 812 0.372 590 0.170 741
0.245 680

By computing the approximate values of the first eigenvalue and the first
eigenfunction, we have solved the problem of the homogeneous difference equation.

If, to obtain greater accuracy in the computation of the first eigenfunction, we
continue the process till the determination of. //20t\we obtain the more accurate values
of the normal function w, as

0.198 123 0.300 479 0.269 670 0.145 151
0.443 634 0.372 348 0.170 609
0.245 511

The difference between these values and those less accurate ones in the previous table is
negligible.

7.2 Approximate solution to the inhomogeneous difference equation

To obtain an approximate solution to difference equation (42), we use formula
(40) which, for m = 8, yields

B 2
=2 £ UPA- -——jb (.#9 L#10V).
u 1=0 »—J*I ( v v)

8
When computing the term 'EO .if in the above formula, we can make use of the tables
1=

of.ifdv,.//,i\ .. .ffH compiled for the solution of the homogeneousSprobIem. The

sums of the corresponding values of these tables, i.e. the table of values 'EO & v is given
I_
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as
2.847 079 3.801 623 3.654 131 2.553 605
5.057 437 4.553 942 2.730 592
3.210 360

Similarly, values J f9v and .ff xov also come from the tables complied for the solution of
the homogeneous problem. With these values, the table of wvalues
+ 00/ —'2) is as follows:

0.229 994 0.352 567 0.313 188 0.170438
0.515 170 0.437 133 0.198 191
0.285 176

Finally, formula (40) yields the approximate values of the unknown function u as
the double sum of the values of the above two tables:

6.154 146 8.308 380 7.934 638 5.448 086
11.145 214 9.982 150 5.857 566
6.991 072

This is the approximate solution to the inhomogeneous problem.
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TORSION OF BARS WITH A TRIANGULAR
HOLLOW CROSS SECTION

P. Csonka*

[Received: 10 January 1984]

The subject of this paper is to investigate the pure torsion of an elastic prismatic bar whose
cross section is an equilateral triangle with a circular hole in its middle point. The treatment of this
task requires the determination of the stress function of the problem. For this purpose a triple
symmetric expression with two free parameters is chosen as approximation. The values of the
parameters are determined in such a way that the curve defined by the equation of the stress function
passes the corner points of the cross section and at the same time these points are double points of the
curve.

1 Introduction

The purpose of this paper is to present an approximate method for the
determination of the stress function of pure torsion for an elastic prismatic bar whose
cross section is an equilateral triangle with a circular hole in its middle point.

A polar coordinate system O(r, cp) is introduced whose origin 0 is placed in the
centre of the circular hole and the straight ¢p= 0 halves one side of the ground plan
triangle (Fig. 1). The radius of the inscribed and circumscribed circle is denoted by a
and R respectively, while the radius of the circular hole is marked r0.

Fig. 1 Equilateral triangle cross section with a circular hole in its centre

e P. Csonka, H-Il 14 Budapest, Bartok B. Gt 31., Hungary
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The solution of the problem requires the construction of a stress function
F=F(r, cp) satisfying differential equation

d2F 1ar 1 da2F
—— 4 — + — T— = const (1)
dr2 d(p2
as well boundary conditions
F=0 (2)
and
F=const#0 3)

along the outer and inner boundary line of the cross section.

2. Solution of the problem

To produce the stress function of torsion—at least approximately—let us start
from the triple symmetric function

F(r,®=r2—rl + A —"1- cos 3(p+ Brl=0 4

where A and B are constants. This function fulfils a priori conditions (1) and (3), and
when attributing appropriate values to A and B, it also fulfils condition (2). Namely, if
parameters A and B are suitable chosen, the curve corresponding to the function in
guestion—the function curve—consists of three intersecting branches which are nearly
straight in sections between the corner points (Fig. 2).

In order to ensure that the function curve consisting of three intersecting
branches encloses a configuration having nearly the same shape as the given triangle,
the points of intersection of the three branches have to coincide with the three corner
points of the triangle. Since the intersections of the three branches are double points,
conditions

F=0; (5)

—valid for double points—have to be fulfilled at the corner points of the cross section.
As at the three corner points the relations
r=R, c0s3<p= —1; sin3(p=0
are valid, among conditions (5) the third one is a priori fulfilled and the first two are also
fulfilled, if

R2—r} +Bra=0 (6)
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Fig. 2. The three intersecting branches of the function curve

and
R2
2R-2A -0
R& )
hold.
Introducing the simplifying notation

P R 2a
equations (6) and (7) may be transformed as
A{p6—1)—ps—B—I)p3=0,
2p5—3/41+p6)=0
yielding, in turn, A and B

2Ps
A=
3(1+Pe6)”’

P+ 5p2 >
+
31 +p6)

making stress function (4),—so far indefinite— perfectly known.
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3. Accuracy of the method

To check the accuracy of the presented method we need to know the distance Ax
between the points of the function curve and the points of the boundary line of the
triangle. As the greatest Ax is to be expected at the point lying farthest from the corner
points, that is at the middle point of the side of the triangle, we are particularly
interested in its value at this point (Fig. 3).

Fig. 3. Distance between the function curve and the side PQ of the triangle, enlarged 5000 times

For this purpose values of parameters A and B to be attributed to different values
of p have been determined from (8) and compiled in Table 1
Radius vector r, of the function curve at ¢== 0 is obtained from formula

r\-ra+A

Table |

Parameters A and B

p alr0 A B

4 2.0 0.166 625 986 - 4.338 540 396
5 25 0.133 324 801 - 7.335466 530
6 3.0 0.111 108 730 -11.001 028 785
7 35 0.095 237 286 -15.333 888 653
8 4.0 0.083 333015 -20.333 658 852
9 45 0.074 073 935 -26.000 203 221
10 5.0 0.066 666 600 -32.333 466 667
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analogous to (4), which can be brought with notation

to the form

g2+ Aq3~L- A1 +B-1=0),

yielding values g compiled in Table 2. It is to be seen that the value q -a/r 0 is negligibly
small in cases p 2™, that is practically in all cases occurring in practice.

Table 2
Quotient g

p da A

4 2.0 2.004 365
5 25 2.501 437
6 3.0 3.000 578
7 35 3.500 263
8 4.0 4,000 147
9 45 4.500076
10 5.0 5.000045

As a definite example let us look at the cross section to be seen in Figure 1, where
p = 6. For this case we have determined and compiled in Table 3 the values Ax for
different points of the boundary line of the triangle. The greatest value of Ax is
0.000 578a,—a very small value—which is about 40 times (!) smaller, than the thickness
of the boundary line of the triangle in Figure 1

Table 3

Data of the function curve p=b

r/r0 x/r0 1Y\Vr0 x/r0
3.000578 3.000 578 0.000 000 0.000 578
3.10 3.000429 0.799 374 0.000 429
3.25 3.000 269 1.249 354 0.000 269
35 3.000112 1.793 257 0.000 112
4.0 2.999 995 2.646 754 -0.000 005
45 2.999 973 3.354 235 -0.000 027
5.0 2.999978 4.000017 -0.000 022
55 2.999 989 4,771 013 -0.000011
6.0 3.000000 5.196 152 0.000000
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A SPECIAL CASE OF THE PROBLEM OF TORSION
OF HOLLOW-CORE SOLIDS OF REVOLUTION

I. Ecsedi*

[Received 20 September 1984]

The torsion problem of hollow-core solids of revolution made of an elastic material will be
handled by adopting the usual assumptions of the theory of elasticity. Meridian section of the
examined solid of revolution is bounded by coordinate lines of a plane orthogonal curvilinear

coordinate system.

Xl

r.:

FT=rTmcT M<'Tu<Tn
<K(=1,2,3,4)
p=p(r,2)= rer+ zez

e, €,,e.€,86,

Js
Il.. H,,.H,
\%
u
uT and Tu
c

1ig IBa * Yup Yipa | ¥Bip Yip/l

*aR ~*RBa ' Ta*“ * *Bip ¢ *qiB
T

4

p

nm=um

Y= UXx)
u=u(), ~=N0)
G

M

5

VA=<

C= X+ ig

C

Symbols

orthogonal curvilinear coordinates;
orthogonal coordinates in the meridian plane;
boundary curve of the meridian section;
surfaces of revolution;

place vector in the meridian plane;
unit vectors;

arc element;

Lamé coefficients;

Hamiltonian differential operator;
displacement vector;

symbol of scalar multiplication;
diadic products of vectors u and T;
strain tensor;

specific strains;

specific angular rotations;

normal stresses;

shear stresses;

stress tensor;

volume load,;

surface load;

stress function;

auxiliary function;

auxiliary functions;

modulus of elasticity in shear;
torque;

torsional rigidity;

imaginary unit;

complex variables;

constant.

Other magnitudes, variables are interpreted in the text.
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1. Introduction

Assumptions usual in the theory of elasticity will be applied, namely, that:

— deformations and displacements are small;

— the material is homogeneous, isotropic and linear elastic;

— thermal effects are negligible;

— initial stresses and displacements are zero;

— the problem is a quasi-static one.

Meridian section of the tested solid of revolution symmetry is seen in Fig. 1
Boundary surfaces of the solid of revolution are surfaces of revolution dvx, dv2, a¥s,

Fig. I. Meridian section

dVA obtained by rotating curves aTX, aT2, aTs, dTA. Curves <?7)(i=1, 2, 3,4) are
bounded by coordinate lines of orthogonal curvilinear coordinate system af in planer,
z (Fig. 2).

Computations are made in the spatial orthogonal curvilinear coordinate system
(a, < R). Spatial point P is located in terms of polar angle o of the meridian plane
comprising point P, and of orthogonal curvilinear coordinates a, 8 interpreted in the
meridian plane.

In the meridian plane set out by polar angle <p, place vector p of point P is

p = rer+ zel (1.1
where

r=r(a,R), (12

z=z(a,B). (1.3)
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Fig. 2. Coordinate lines

Along lines a, and R of orthogonal curvilinear coordinate system ag, %, and
a= constant, respectively (Fig. 2).
Tangential unit vector of curve 8 = constant ([1], [3]):

1 Op 1 or 1 O
(1.4)
e°= W 'fa = JTx dxer+ ~frx Ifotz
and tangential unit vector of curve a= constant:
1 O 1 O 1
(1.5)

JIBdR = frRdBRer+ IfRdRez-

In formulae above [1]

CEXYLY a9

In consequence of orthogonality

PP OO 0zOx
fa'lR =daw + dadpR= "

(1.8)

In the meridian plane:
(ds)2= HI(dz)2+ H R(dR)2 1.9

expression for the square of the arc element.
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Hamiltonian differential operator v is expressed as ([1], [2])

1 d I d 1 d
V= e 4 e 4 — (1.10)
H* da 1 Hvdtp * HBRBAdRX®
where:
Hv=r(a R). (1.11)
Correctness of
e*=ercos 9+ ezsin 9, (1.12)
eR=ersin 9 —e2cos 9 (1.13)
is understood from Fig. 2.
It should be noted that
cos § = Lar L g (1.14)
" H, da HR dp ¢ '

1 dz 1 dr

1.15
M1'" ~ w,da~ HBJIR' ( )
Elementary calculation may verify the following rules of differentiation:
= COS9 O, (1.16)
dtp
d .
dek =sin 3e,,. (2.17)
d(p
—~N = —er= —c0s 9 ea—sin 9 ee . (1.18)

aep

2. A torsion problem

Torsion problem of the solid of revolution in Fig. 3 will concern a solid with a
displacement vector u=u(a, cp, 8) to be indicated as

u=v(a,R)e (2.1)

Furthermore, “outer and inner mantle surfaces” of the solid, revolution surfaces
<5F, and dv2are assumed to bear no load, and volume load density qto be zero vector at
any point of the solid.

Let the solid of revolution be clamped over surface section dv3, that is

uP)=0 PedV3. (22)
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Fig. 3. Solid of revolution bounded by coordinate surfaces

Furthermore, let surface load p4 acting on surface section dv4 be of the form
P*=pARK- (2-3)

The pair of resultant vectors F, M4 of surface load of density p4 is obtained as

F= Jp4(0)H >2,R)HR(@2,R)dcp | e, dtp=0, (2.4

M A= {2n J p4(/*)H>2,8)HR(x2,R) dR}e.. (2.5)

A in Eqg. (2.5) stands for an arbitrary point along axis z of revolution.
From Egs (2.4) and (2.5) it appears that, however function p4 = p4(B) is specified,
resultant vector F of the load acting on surface section 8V4 is in any case zero vector.
In writing Eqgs (2.3), (2.4), (2.5) it has been made use of the fact that

along curve dT3 a=a, = constant,
along curve d T4 a= a2= constant,
RI—R—R2y
namely along curve dTI R = Ri = constant,
along curve dT2 R = B2 = constant.
Meridian curves dTt(i= 1, 2, 3, 4) are illustrated by Fig. 1

Strain tensor

E=y(uP + Fu) (2.6)

10 Acta Technica Academiae Scientiarum Hungaricae 98, 1985



280 ECSEDI. J

can be produced in form

\d v
e~ 2 da(e*e‘+e‘e,)+

\'d v \%
T 2HRB (ﬁf‘)(*'pT ~p~v' T -IH7v @EPT Gpa) @7

Correctness of Eq. (2.7) may be verified by means of relationships

d v d
1 \ 1 Y (28)
~da xxow e~ dg’
1 dv \ 1 dv o (2 9)
- AB,- .
'd a e*e<p~ eﬂr-.. P dR
written according to Eq. (2.1). After some calculation
e«=¢g,‘ 'ea=0, 2.10
= mEm =0, (2.11)
P=e/£ef=0, (2.12
laR = 7~ =2eN*E*ea=0, (2.13)
1 dv v 1 dH,,
vap Y Zex e e Ha da Hv H. pa -
2.14
Hxpga\H j ’ ( )
2 NmE en Lo
>
Y TidRB
1 dH,, Hv
y A (y (2.15)

Hv HR dR HR dB\H j-

Thereafter the analysis will be restricted to a function v=v(a,R) of the form

u(a, B)=V(a)Hv(a,R). (2.16)
In this case:
= v (2.17)
TXv H, da
,=0. (2.18)

Utilizing the general Hooke’s law

GXx —Ov —OB—1txB —zRp—0 (219)
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at every point of the solid, furthermore

T

(2.20)
o* /l,, da*
Accordingly, stress tensor T can be given in form
T=1(a,R) [eaev + eded , 2.21
introducing notation
(2.22)

It is easy to demonstrate that the surface load value belonging to a stress tensor of this
form is zero vector on surface sections dVvI and dv2, that is

Tn, =P, =0; T n2=p2=0,
namely
n, = -e,,; n2=eo.

While vector of surface load p4 acting on surface section dvz is
p4=T ena=T sea=r(a2,p)*" . (2.23)

This latter agrees with Eq. (2.3).
Expanding
T E=0 (2.24)

expressing the necessary condition of mechanical equilibrium yields

(2.25)
Utilizing
n. 1 8Hfi

2.26
dR H, dix ' ( )

deduced from Egs (1.16), (1.17), (1.18) and
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+ o+ d h e+ 0 | diL 2.27
Ha da ™ Hx ga ( )

yields from Eq. (2.25) the differential equation

L w1 T su= 1 T dane =0 (2.28)
da ~HXHV pa HaH 9 da

for function z = z(a,R).
In writing Eq. (2.27),

(2.29)
has been made use of.
Combining identity
fiH
+ =0 (2.30)
and differential equation (2.28) yields
A(zH 2HR)=0. (2.31)
General solution of (2.31) is taken in the form
1 du
(2.32)
HIHR dR

where U = U{B) isan arbitrary, at least once continuously differentiable, single-variable
function.

Involvement ofthe derivative in (2.32) permits simple deduction of the expression
for moment Mm.
Surface load p acting on a surface with arbitrary coordinates a = a, = constant is
of the form
p = p(ai,R)eip=z(ai,R)eip (2.33)
with moment M = M(a,) about the 2-axis
Bi R2
du
M=2n  H~HPp(at,R) dR = 2n iz dR =2nlU(R2)-U (R 1] (2.34)
B

demonstrating—in agreement with conditions of mechanical equilibrium—that

M = M(a) = constant. (2.35)
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In conformity with Eqgs (2.20) and (2.32):

1 du = H, dL

H;HR dB H, da" (2:36)

Existence of this latter condition guarantees that the field of deformation
produced from the stress tensor field of the form (2.21) meeting equilibrium equations
meets also conditions of compatibility. That is, the problem has only a solution if Eq.
(2.36) exists. Let us have an orthogonal curvilinear coordinate system aR such that in
possession of suitable functions

a = a{a) and b = b(R)
it is:
H* = ®0

e on (2.37)

In this case—elementary calculation may show that only in this case— Eq. (2.36) will
have solution for functions VvV = v(a) and U = U(R), of the form

V(a):Ao]g(c;)dZ::';?(a), (2.38)

UBR)=CRm d ~ = CB(R). (2.39)

Combining Egs (2.34) and (2.39)

M

= 2.40
2nB(R2)’ (240

In conformity with boundary conditions (2.2), function v = K(a) obtained form (2.38)
meets boundary condition

K(@i)= 0. (2.41)

Utilizing (2.38) and (2.40) it is easy to show that

Deformation energy w of hollow core solid of revolution is obtained from:
Bi
-1 j pd-ud6Kd4=y2aJ VEF2M*2,R)HAHTf AR =
W fil
fil
=j V(@22nJ H«2,R)HAHfid R = j MV (a2 (2.43)
fil
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written by making use of

Pr

M =2nj z(a2, B)HIHRdR.

Combining (2.42) and (2.43) yields

I1M2 *«2)
2 2nGB(R2) '

Specified magnitude

= My

is termed torsion stiffness of the hollow-core solid of revolution.

Correctness of

§ 206 202
A<x 2)
and
1 M2
W= — —
2 s
is obvious.
Utilizing (2.20) and (2.44) it may be written
2%

Integrating (2.49), since M = constant,

K(a,)=0
we obtain
a
K(a) o
a) =
2nG h
Bi
This formula directly yields
2nG
S =
da
fO ! an
i J Ha
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It should be stressed that these formulae refer only to the case where Eq. (2.37) is
valid.
Direct consequence of inequalities

Hx>0, Hv>0, HR>0
is non-negativity of s.

3. Isometric orthogonal curvilinear coordinate system

Let us consider analytic complex variable function
r+iz="f(a +iB). 3.1
Its curves a= constant, 8 = constant define an orthogonal curvilinear coordinate

system on plane rz.
Utilizing fundamental results of the complex theory of functions

dr .dz .dr dz (32)
M = da + *da *dR + dB '
where

£=a+iR. (3.3)

In conformity with the Cauchy-Riemann equations,

dr dz (3 4)
da = dp’ ’
dz dr (3 5)
da dR '
It is easy to demonstrate therefrom that
dr dr dz dz
) . (3.6)
dadB + didR =
there is, in fact, an orthogonal, curvilinear coordinate system.
Expressions for the Lamé coefficients:
(3.7)
(3.8)

W iS NS ) -'™._
Since
H.=H,=H
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it is a so called isometric curvilinear coordinate system. In this case, Eq. (2.37) yields

a(a) 1

b®) [r(a,/1)]3" 3.9)

That is, for every case where r(a, R ) can be written as product of two functions aand g a
solution be constructed.

Formula of torsional rigidity will be rather simple in case of an isometric
orthogonal curvilinear coordinate system
2nG
(3.10)
da

| 10(a,/?)]13d/

4. Examples
4.1. Let us consider the orthogonal curvilinear coordinate system defined by
z
a=arctan-, 4.1)
r

R=Jr2+z2. 4.2)

Meridian section for these orthogonal curvilinear coordinates is seen in Fig. 4.
Making use of arc element expressions

dsx=Hxdtx= R da, 4.3)
dsB=HRdR (4.4)
it may be written:
H, =8, (4.5)
HR= 1 (4.6)

Fig. 4. Meridian section bounded by circular arcs and straight lines
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Obviously
r=Hv—R cosa 4.7)

Combining Egs (2.37), (2.38), (2.39), (2.40), (4.5), (4.6) and (4.7)

=1 1
HRHI b(R) k2 cos3a
! 4.9) (4.10
)= 3, b(R) = B2, (4.9) (4.10)
AGR) L 4ae SNA sina, 1, lan(i + 2
q) = = J— J—
cos3a 2cos2a  ”~cos2n 2 : » (@1D)
“4 17 +T
R'-R]
B(R)= R2dB = (4.12)
sin a sin a, 1 K« I/I
V(a) = P+ n , (4.13)
4nG R1—R] \ cos2a C0S2ag 2 a all
tan
i +2")
~ 3M R3-R\ (4.12)
Y7 24 n3-173 '
ANnG (B\-R\)
s = (4.15)
. . tan
sin a, sin a, 1
— + In
cos2a2 cos2?a, 2
tan
While Eqgs (2.32), (4.14) yield
3M 1 3M r2+1z2
T= (4.16)
2n(Rl —R2) cos2a  21t(BI~B\) z2 '
4.2. Let
t=v/r2+ z2, (4.17)
R = Ar tan -. (4.18)
r
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In this case, surfaces of revolution K and dv2 will be cones or revolution with

common vertex (Fig. 5).

Fig. 5. Meridian section of a solid bounded by conic surfaces

Obviously, in the actual case
H'= 1,
Hv=acosB,
HBR=tx,

1
®)= -4,

b{R) = cos3R ,

1
B 1('
ORI J S
B(B) —sin B — y sin3@ —sin /?, + y sin3/f, ,
M

2njNsin /(2 sin/),)+ y (sin3/f, -sin 3R 2)

< 3(sin /f2—sin /1,)—{(sin3 2—sin3/f,)

S=2
n 11

M cos /f

X- 2na3 . . . .
na sin R2—y sin3/fl- sin Ri + y sin3/f.

Acta Technica Academiae Scientiarum Hungaricae 98, 1985

(4.19)
(4.20)
(4.21)

4.22)
(4.23)
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M
- 4.28)

. . ) . (r2+z22"
2n7sin 32— Y sin3R2—sin B x+ y Sin3Rl

Substituting R2—n/2, the deduced formulae lend themselves for solids of
revolution with conic surfaces.

4.3, Meridian curve of a hollow-core solid of revolution bounded by ellipse and
hyperbola arcs is seen in Fig. 6.

Fiy. 6. Meridian section bounded by ellipse and hyperbola arcs

Actually:
r=Dsinacosh g, (4.29)

z=Dcosasinh R . (4.30)

Orthogonal curvilinear coordinate system defined by (4.29) and (4.30) may also be
given by complex function

r+iz=Dsin(@a+iR). (4.31)
Elementary calculation yields
Hil=HR=Dy”inh~Tcos"a, (4.32)
Hv=Dsinacosh R , (4.33)
L (4.34)
®) = sih3a” '

b(R) = D3cosh3R , (4.35)

a

tan-2

cos oS a,

A(z)= - —; + ] + 1,n (4.36)

2sin2a  2sin2a, 2 ai

tan >
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B(R)= D'fsinh B + y sinh3R —sinh /i, —y sinh3g {), (4.37)

c= M (4.38)

2a£)y sinh g2+ y sinh3gR2—sinh  —y sinh3R 1

a
tan -
cos a cosa, 2

. _— N !
sm%a sinza. a,

M tan
H(a) = (4.39)
4eGD ”sjn™R2+ ~ sinh3g2—sinh R 2- y sinh3g{

sinh B2+ y sinh3R2—sinh 32—y sinh3R 1

S = 4TrGE>3 (4.40)
. tan
tib W@
sih2a2 & "é',"'h F
tan
\Yi 1
T=

~ar sinh R24"Y sinh3R2—sinh R y—y sinh3B,

cosh g (4.41)
sinzaysinh2a+ cos2a
4.4, Let us consider the orthogonal curvilinear coordinate system in plane rz,

defined by

/(0 = - iDt;2= - iD(tx2- R2)+ 2DaR . (4.42)
Obviously,

r=2DzR, (4.43)

z=D(R2—<0). (4.44)

Eqgs (4.43) and (4.44) show in the actual case coordinate lines to be parabolae normal to
each other (Fig. 7).
Elementary calculation yields

H'=HB=H= |/"(0] =2D J<x2+R2, (4.45)

Hv=2DzR, (4.46)
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Fig. 7. Meridian section bounded by parabola arcs

4.47
a (4.47)
b(/5) = 82)3/i3, (4.48)
1/ 1 1
(4.49)
m 2\<x2 a2 >'
me) = 2 DXVR% g ¥, (4.50)
c= M (4.51)
4nD3(fc-ft)"'
= M 1 4,52
I/I«)_SnDiG(Bt—B4)\n2 a2’ (452)
S-bl O 'fu_\ , (4.53)
5
M
T= 0 (4.54)
4nD\B\-B\)
5. Comments

5./. Figure 8 represents meridian section of a solid of revolution bounded by
concentrical spherical surfaces and a conic surface. In conformity with Fig. 8

Tz,= TsinO, (5.1)
Tr,,= Tcos R, (5.2

Acta Technica Academiae Scientiarum Hungaricae 98, 1985



292 ECSEDI. J.

Fig. 8. Meridian section of a solid bar with conic surface

CoS B = (5.3)

sinB = (5.4)

Utilizing Eq. (4.28) substituting 8 2= n/2, as well as Egs (5.1), (5.2), (5.3), (5.4) yields

) o, (5.5)
2n~E - sih B%—isi'ngﬁ,\ (r2+ z2)il2
M
(5.6)

(2 . .1 .3 \ (r2+ z25/2°
2a1j - sinOi+ y sin3RiJ

The same result as that obtained from Eq. (5.5) is obtained by combining
relationships (p) and (q) on p. 309 of Ref. [3].
5.2. Expression for the displacement vector
u= HvK(a)ep= rT(a)ev (5.7)
shows coordinate surfaces a = constant to rotate rigid bodylike at an angle v(a) about

the z-axis as axis of revolution.

5.3. In conformity with Eq. (5.7), the considered problem of torsion of a solid of
revolution bounded by coordinate surfaces of an orthogonal curvilinear coordinate
system (a, 9 ®) is defined by the following static and kinematic requirements:

ulP)=0 PedV3, (5.8)

p(P)=0 PedVvtvdV2, (5.9)
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u(P)=r.9,, PedV4, (5.10)
gqP)=0 PeV. (5.11)
It should be noted that:
mO= V(tx2) . (5.12)
References

1 Lurje A 1: Teorija uprugosti. lzd. Nauka Glav. red. fiz-mat. lit. Moskva 1971 850-891 cmp
2. Frank-Mises: Die Differetial- und Integralgleichungen der Mechanik und Physik. Dover Publications,

Inc. New York 1961, S. 82-86
3. Timoshenko S. and Goodier I. N.: Theory of Elasticity. Mc. Graw Hill. Book. Comp. Inc. 1951. p. 309
4. Lamé G.: Lecons sur les Coordonnées Curvilignes, Gauthier- Villars. Paris 1859

Acta Technica Academiae Scientiarum Hungaricae 98, 1985






Acta Technica Academiae Scientiarum Hungaricae, 98 (3— 4), pp. 295— 307 (1985)

THE EFFECT OF SOME IMPERFECTIONS
ON THE STRESS OF ONE-BAY
THIN-WALLED CHANNEL PURLINS WORKING
TOGETHER WITH CORRUGATED PLATE-COVER

B. Gosowski*, E. Kubica*, K. Rykaluk*

[Received: 6 March 1984]

A solution of the construction built up of a thin-walled channel purlin initially twisted or
stiffened discreetly against torsion and corrugated sheets has been presented. The purlin is elastically
restrained at a covering made of corrugated sheets and has an upper flange connected with a
covering. Algorithm of the strength calculation of the construction has been derived based on the
second order theory. The effect of the initial torsion and discreet stiffeners on the strain of the cold-
formed purlin has been estimated. Theoretical results have been verified on the part of the full-scale
roof model.

1. Introduction

Screw joints between corrugated plates and U-purlins commonly used because
of their many advantages, are characterized by plastic strains which occur following the
first loading thus producing, in effect, the torsional deflection of the purlins [1]. The
value of the twist depends on the level of the first loading. The torsional deflection that
remains after the first unloading may be treated as initial deflection (geometric
imperfection) for the next loading cycles. Therefore, the problem arises of estimating
the effect of this imperfection on the stress of purlins observed in the next loading cycles.
The solutions of this problem that can be found in the literature (cf. e.g. [2]) cannot be
directly applied in this case since they consider bisymmetric I-purlins only.

In [1] it was shown that the torsional deflection of U-purlin affected the state of
displacements to a greater degree than the state of stresses. Hence, it is very often the
case that the horizontal displacements of the bottom flange resulting from purlin twist
has to be reduced. One of the recent constructional solutions which stiffens U-purlins
with sheet cover was suggested in [3]. The solution was based on experimental
observations. And again, the problem arises of how point stiffening (constructional
imperfections) affects the stress of the purlins.

In this work, a solution is presented for a thin-walled U-purlin working with
corrugated plate-cover. The purlin was pre-deflected torsionally or point-stiffened.
Theoretical results are verified on the full-scale model of a fragment of a roof.

* Institute of Building Engineering of Wroclaw Technical University. Wybrzeze Wyspianskiego 27.
50-370 Wroclaw. Poland
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2. Static-and-strength analysis of a pre-deflected purlin
2.1. Differential equations of equilibrium

For an elementary section of the purlin with defined axis of revolution (point N in
Fig. 1) and torsional pre-deflection @0(x), the following set of differential equations of
equilibrium has been deriveed:

Elyw"" + EL zN[(<>+ ®0)d"T = qz, (1a)
(Ela+ Elzz2pW" - C1,0" + kP + 2byrmMEL: [(® + ®OY*D"]'-
- 2znE/, . [(D+ DO) "W'+ (D+ O] + Elzzn (W'~ wd™)=qz(yN- ys).(1b)

where: E, G are Young’s modulus of elasticity and shear modulus of elasticity
respectively: 1,, /,,, Idare the moments of inertia about axesy, z the sector moment
and the pure torsional moment, respectively; w, ® are linear and angular displacements

Fiy. 1. Cross section of U-purlin with pre-twist

measured with respect to axisy in deformed state and around axis x, respectively; ®0 is
purlin’s torsional pre-deflection; k¢ is the coefficient of elastic fixing of the purlin in
Ccover:

b,= " {y(y2+z2)df —ys\
- F

zZl

F represents the purlin’s cross sectional area. All the remaining symbols are presented
in Fig. 1
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2.2. Solution of the set of equationsfor a purlin with free-ends
For a purlin of length ( which, due to linear and angular displacements, has free
supports at both ends, the boundary conditions of the set (1) are as follows:
w(0) = w(/) =0, w'(0) = w"'(0=0, (2a)
P0) = d()=0, P’O) = P"(0=Q (2b)

Here, the initial torsion can be described by the function:
®0=a0sin™X | 18)

The set (1) with boundary conditions (2) for ®0 and acc. to (3) was solved with
Bubnov-Galerkin orthogonalization method assuming the functions of displacements
in the form of the series:

nnx . nnx
W= £ bnsin— (4)
el *

For the load distributed along the purlin qz= const, and for the coefficient of
elastic fixing k- const., the shape of the purlin’s deformation stays symmetric in
relation to half-span (x = 1/2). Then, in (4), only the terms with odd n should be taken
into consideration. From the ortogonality conditions, the following set of non-linear
algebraic equations with regard to a, and h, coefficients of series (4) was obtained:

51 8 1127 » « n3p*r
P " n Zn ly [II I'I (n2—p2+ r2)2—4n2r2a'"Ur+
£ n3p4 ’ 41*qx
' 3p 1 a (52)
+a°i, (n2—p2+ 1)2—4n2a"J “ TETY'
(o I, G102 ) fc*/i4 "
\Ty +ZNTy) p + "ETYP + "ETyp\ a”~
8 T n3p2r(p2+r2-n2
~n2"bdyLi, i, (n2-p2+7r2)2-4n2r2a"r+
*  n3p2(p2-n2+ 1) UIJ ,
+i°0i (N2—p2+ 1)2—4n2 +
8 np2r[n2p2-(n2-r 2)(n2+ r21x1y)]
+ nZNil i, (n2-p 2+ r2)2-4n2r2 °rb
, 8 3PV -n 2+D L 4/4 ,
g - (5)

nr™a V1 4n2-p2+\)2-1n2bs  n*Ely (YN ys)'

where n, p, r are odd.
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2.3. Determination of the displacements and stresses

After finding a,, and b,, from (5), the displacements ® and w of the purlin can be
determined on the basis of (4) and the displacement v on the basis of ® as follows:

v=z AN = zKlgla,,sinm—'i . 6

Bending moments My and M, and bimoment B are derived from the known
differential equations:

My= —Elyw", M, =EIlv"=ElzzN®", B=-E1I03p". U]

Normal stresses in fibre j defined by the co-ordinates yj, zj, wj of the purlin’s
cross section are calculated as follows:

)

2.4. Numerical example

Numerical calculations were performed for a [ 180 x 65 x 25/2.5 U-purlin. The
cross sectional dimensions of the U-bar (cf. Fig. 1) were 6 = 6.25 [cm], c= 2.375 [cm], h
= 17.75 [cm], g=0.25 [cm]. The span of the purlin was assumed /= 5.88 [m] and the
co-ordinates of the predetermined axis of revolution were yN= 1465 [cm], zN= —9.0
[cm]. Geometric characteristics of the cross section and the material constant are to be
found in [1].

By assuming n= 1 in (4) one arrives at the set (5) in the form:

1z
1+ j + bi 9a
an any(a aoaj + bi (9a)
21z  GldI2 kJ* 8 /

Nly n2Ely n4Ely &7 + «o(i,)
oz Mal61-)-a061)= ;l\Jtziléf;(yNys)- (9b)

This set was solved for selected values of gz and kg while assuming different
values of the purlin’s pre-twist a0= ®onax The increment of the angle of twist in the
purlin’s mid-span @(//2) = ®dTax depending on gz, kg, and a0, is presented in Fig. 2. Itis
clear that the purlin’s pre-twist may have a varying effect on angle ® depending on
coefficient k. For a definite kg, this effect is controlled by the sign of angle ®0 (positive
®0 increases angle ® while negative decreases it).

For qz=2.608 [kN/m] and k= 1.0 [kKNm/m] and ®0= —0.015 [rad], the values
for ai = —0.0810 [rad] and bl =4.59 [cm] were obtained from (9). The displacement
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Fig. 2. The increment of the angle oftorsion ®of the purlin's cross section at its half-span depending on q,, ki
and a,,

components in the purlin’s mid-span thus are: ®Tax= -0.0810 [rad], wnax= 4.59 [cm]
»«~*=0.73 [cm]. The bending moment and the bimoment in the purlin’s mid-span
calculated from (7) are: Mymex= 11.645 [KNm], Mzmax= -0.228 [kNm],
Bmg= —0.018 [KNm?2]. This makes it possible to calculate the stresses from (8) at
particular points of the purlin’s cross section (points from 1 to 6 in Fig. 1). Results are
presented in Table 1

table 1

Normal stresses in the central section of pre-twisted U-purlin [180x65x25/2.5 (/= 5.88 [m], (jx= 2.608
[KN/m], kp= 1.0 [kKNm/m], a0= -0.015 rad)

Point j of the cross

section (cf. Fig. 1) ! 2 3 4 5 6
[N/mm2] -174.6 -238.5 -238.5 238.5 238.5 174.6
<rl=-M,yj/l, [N/mm2] -18.3 -18.3 84 8.4 -18.3 -18.3
oy=Bcoj/l,, [N/mm2] 238 133 -13.0 13.0 —133 -23.8
0j=0j+0j+0] [N/mm2] -169.1 -243.5 -243.1 259.9 206.9 1325
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3. Static and strength analysis of anti-twist point-stiffened purlin
3.10. Differential equation of equilibrium

For a purlin with a fixed axis of revolution of co-ordinates yN, zN which works
with cover and is fitted with additional elastic anti-twist stiffenings spaced along the
span at m points, the set of differential equations of equilibrium [4] is written as:

Elyw™ + ruElr(®"d )" = qz, (10a)
(EIQ+ZIEL)<P""-Gld<P'+ kp®+ £ K, O(X()6 (x-x D+

+ 2byzNEL;(®"®')' - 2zNEly(n"®" + w'-d') +
+ zZNE12(\\"®" - \n>d™) = qz(yN- YS), (10b)

where K d1 is the elastic constant of the i-th point-stiffening of the purlin located at
distance x, from the support, <5(x—x,) is Dirac distribution.

3.2. Solution of the set of equations for free-supported purlin

For a purlin with length 1and with boundary conditions (2), the set of equations
(10) was solved by Bubnov-Galerkin orthogonality method assuming the functions of
displacements to take the form of (4) series.

In the case when the load is uniformly distributed along the purlin gz= const., the
coefficient of elastic fixing k¢= const., and identical point-stiffenings are spaced
symmetrically with regard to the purlin’s half span (K ¢1—K &), then, in series (4) only
those terms with odd n should be made allowances for due to a symmetric form of the
purlin’s deformation. From orthogonality conditions, the following set of nonlinear
(with regard to coefficients a,, and bn) algebraic equations is obtained:.

n3p*r 41%

: . , (11a)
P'b” wnZnly,5, ?i (n2—p2+1r2)2—4n2r2 GG r-*5Ely

[(L 2/0n 5 Gi<2 3 M4 1
[{Ty+ZNTy)P + 7 yP +~bly T P+

2K ®13 ® . MSIX. . pnXi
fA - —

rep.L, | sin—, sin
n tly i=l n=1 1 |

+
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(11b)

where n, p, r are odd.
After solving (11), the displacements and stresses are found similarly as in 2.3.

3.3. Numerical example

Numerical calculations were performed for the purlin identical to the one
described in 2.4. The purlin was additionally stiffened at one (x, =1/2) or two (x, =1/3,
x2= 2//3) points along its length. Taking only one term from each series (4), the set of
equations (11) is reduced to the form:

(12a)

(12b)

where for the purlin stiffened only at one point m = 1and x I = 1/2 and for that stiffened
at two points m =2 and x, = 1/3 and x2= 21/3.

Figure 3 provides a graphical representation of the solution of (12) set for purlin-
corrugated plate system (fcp=1.0 [KNm/m]) with one or two point-stiffenings of
different elastic constants K. Practically, point-stiffenings have no effect on the linear
displacements w but, on the other hand, they considerably reduce angular
displacements ¢ and, thereby, the linear displacements v.

For the purlin with one point-stiffening at its half-span (Kd¢= 3.0 [KNm]),
elastically fixed to the cover (k= 1.0[kKNm/m]) and uniformly loaded (qz= 2.608
[kN/m]), the displacement components at the purlin’s half-span are: 4max= —0.0487
[rad], wnax= 4.59 [cm], rnax= 0.44 [cm], the bending moments and bimoment are
Mymat = 11.638 [KNm], Mz mai= —0.137 [kNm], Brmg,= -0.011 [kNm2]. Normal
stresses at particular points of the purlin’s cross section are given in Table 2.
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Fig. 3. The dependence of the angle of torsion of the purlin’s cross section at its half-span on gz for different
values of Kd:a—purlin with one additional point-stiffening, b—purlin with two additional point-stiffenings

Table 2

Normal stresses in the central section of U-purlin {180 x 65 x 25/2.5 with additional point-stiffening at half-
span (/=5.88 [m], 92= 2.608 [KN/m], k= 1.0 [KN/m], /Ch= 3.0 [KNm])

Pointj of the cross

section (cf. Fig. 1) ! 2 3 4 5 6
0) = MyZj/ly [N/mm2] -174.5 -238.3 -238.3 2383 2383 1745
[N/mm?2] -11.0 -11.0 5.0 5.0 -11.0 -11.0
a" = Buijjl,,, [N/mm2] 143 8.0 -7.8 7.8 -8.0 -14.3
Oj=a)+a)+ < [N/mm2 -171.2 -241.3 -241.1 251.1 2193 149.2

4. Model verification
4.1. Model studies
The purlin was studied on a full-scale model of a fragment of the roof. The model
was constructed in such a way that precise representation of the purlin-roof working

conditions was possible. The purlin studied was a cold-formed U-bar [ 180x65
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X25/2.5, while the covering was made of corrugated plate T 55 x 188 —750, with
thickness 0.75 [mm]. Thejoint between the plate and the upper flange of the purlin was
pre-stressed with screws B-6.3 x 80 at 37.5 [cm] distance using special profiles to
reinforce the plates. The dimensions of the fragment of the roof were 6.0 x 3.6 [m].
The model was examined at the same test stand which was used in [1].
The program of tests included:
1) testing the purlin with pre-twist ®0 (left as a permanent set after the first cycle of
loading) during two successive cycles,
2) testing the purlin with one additional point-stiffening during one cycle of loading.
The point-stiffening had the form of bracket shown in Fig. 4. It was mounted in
the purlin’s half-span with special connection clips as described in [3].

Fig. 4. Fragment of the model—bracket visible

The following parameters were measured during the tests:
— strain at selected points of the purlin’s central section,
— torsion and displacements (horizontal and vertical) of the central section,
— toorsion in the purlin’s support sections,
— displacements of plates in relation to the purlin’s upper flange,
— vertical deflections of extreme purlins of the model.

The results are presented in Figs 5and 6. The increment of the angle of torsion (o)
and the vertical displacement (w) for the pre-twisted purlin ®0T* =a0= —0.015 [rad]
are shown in Fig. 5. The same parameters but for bracket-stiffened purlin are shown in
Fig. 6.
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Fig. 5. Theoretical and experimental dependences of the angle of torsion and vertical displacement on
loading q, for purlin with pre-twist

4.2. Discussion of the results

The results of measurements for the pre-twisted purlin shown in Fig. 5 include
two cycles of loading. Vertical displacements were practically the same in both cycles
and agreed well with the results obtained theoretically from the algorithm presented in
section 2.4. Angles of torsion observed at the purlin’s half-span (understood as the
increments in relation to preliminary angle @0) are, in both cycles, i.e., loading and
unloading, similar in value and their dependence on gz runs around convex curve. This
dependence is similar to that obtained in [1] for the purlin’s unloading after the first
cycle. Fig 5 also presents theoretical curves found by the algorithm described in Section
2.4 in this paper, for three values of coefficient kpand 0= —0.015 [rad]. These results
confirm the thesis put forward in [1] that the coefficient of elastic joint between the
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Fie). 6. Theoretical and experimental dependences of the angle of torsion and vertical displacement on
loading q, for bracket-stiffened purlin

purlin and the cover kg is determined as for unloading in the first cycle (in that case k¢
%1[kNm/m]).

The results obtained for bracket-stiffened purlin are shown in Fig. 6. Vertical
displacements agree well with theoretical results obtained with the algorithm presented
in section 3.3 of this paper. The results of measurements of angle of torsion for loading
and unloading run between theoretical curves determined from 3.3 algorithm where kg
= 1.0[kNm/m] and X®= 3.0 and 5.0 [KNm], In the above algorithm it was assumed
that the function of angle of torsion had the form of sinusoid half-wave. This
assumption was confirmed by the tests.

Normal stresses ax in selected fibres of the central section of the pre-twisted
purlin and the bracket-stiffened purlin are presented in Fig. 7 with points of stress.
These normal stresses were determined from measured strain for qz= 2.608 [kN/m].
For the sake of comparison, theoretical distributions of stresses ax calculated from the
Il order theory were also plotted in the Figure (cf. Tables 1 and 2) as well as the
theoretical distribution of stresses caused by bending in the plane normal to the
covering (acc. to elementary theory).

Stresses ox calculated from the Il order theory for the pre-twisted purlin are
almost identical across the width of the upper flange. At the lower flange, however, clear
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differences occur. Stresses measured at the lower flange confirm this distribution. The
maximum stresses observed in the purlin’s cross section occur at point 4.

Similar distributions of stresses were obtained for the bracket-stiffened purlin,
only the values for the upper flange were smaller and less differentiated for the lower
flange. This was the result of the stiffening effect of the bracket.

200
=S
100
Ne
Qo0 ¢
Theoretical in acc z
100 0 e with a second order theory
d when $0=-0.015 rad
. -—-with a second order theory
1 with stiffeners
200 -—-to elementary theory
Experimental
250
N/mm 2 o =when <% =-0.015 rad

=with stiffeners

Fig. 7. The distribution of normal stresses ox in the central section of U-purlin [ 180 x 65 x 25/2.5

5. Conclusions

Thin-walled U-purlins develop both bending and torsion. The imperfections
discussed in this paper (pre-twist and point-stiffening) affect, in practice, only the
torsional deflexion.

The algorithms presented enable the estimation (acc. to the 1l order theory) of the
stress of single-span U-purlins with the above mentioned imperfections.

Practically, the pre-twist of the purlin does not affect the deflections but exerts a
considerable influence on the angle of torsion. The smaller is the coefficient of the
purlin-cover elastic joint kg the more pronounced is this effect. For a pre-determined
K, the pre-twist <0 may increase or decrease the purlin’s angle of torsion ¢ depending
on whether ® and ®0 have opposite or same signs. Indeed, when the signs of ® and ®0
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are the same, the torsional stiffness of the purlin increases but, at the same time, the
forces acting at the purlin-cover joint increases, too.

Point-stiffenings of the purlin (e.g., with brackets) while having practically no
effect on the deflections decrease significantly the effect of torsion, i.e., the angle of
torsion (to a greater degree) and the stresses (to a smaller degree). During the tests on
the sigle-bracket purlin the angle of torsion was reduced by 50% and the maximum
stresses by 5%.

The coefficient of elasticity of the point-stiffening K ¢ as well as the coefficient of
the purlin-cover elastic joint k¢ should be determined experimentally for each
constructional solution. In the constructional solution presented in this paper K ¢k 4
[KNm] was obtained.
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THE STRESS FUNCTION OF PLANE GRIDS
OF A GENERAL TRIANGULAR NETWORK

l. Hegedds™*
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The paper shows that a stress function, analogous to Airy’sstress function ofelastic discs (i.e.
plates subjected to in-plane loads,) can be used for analyzing stress states of plane grids of a general
triangular network loaded by in-plane boundary loads. The equation of the stress function of a grid
describes an open polyhedron having the same projection network as the network of the grid. The bar
forces are proportional to the changes in slope of the broken surface lines of intersection of the
polyhedron and of planes perpendicular to the bars in question. Having expressed the compatibility
conditions of elastic deformations of the grid in terms of the stress function, a system of linear
equations can be developed for solving the grid problem. The paper also shows the similarities
between the grid problem and the finite difference method for solving analogous disc problems.

Introduction

The author has shown in a previous paper [2] that the stress state of a pin-jointed
single-layer space grid of triangular network can be considered to be the degenerated
stress state of an open polyhedron-shaped membrane shell. This stress state can be
described, analogously to the stress states of the common membrane shells, by using a
stress function which is the analogue of Pucher’s stress function.

Taking the equation F(x,y) of an arbitrary open polyhedron having the same
projection network on the horizontal plane (x, y) as the grid in question, the horizontal
components of bar forces determined by F(x, y) as the stress function of the grid
automatically meet the equilibrium conditions at each joint. Hence, if the joints of the
grid are subjected only to forces perpendicular to the plane (x,y), the equilibrium
condition of the vertical components uniquely determines a vertical external force at
each joint. Inversely: if the grid is loaded by a given set of forces perpendicular to the
plane (x, y), and the boundary conditions of the grid ensure a statically determinate
stresses state, the equilibrium equation determine the stress function of the stress state,
except for three free parameters. These three parameters do not affect the values of the
bar forces, because they only represent the equation of an arbitrary plane.

* |. Hegeds, H-2083 Solymar, Vaci Mihaly u. 10, Hungary
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The stress function of plane grids

Though the problem of pin-jointed single-layer plane grids differs in many
respects from that of space grids, the analogy between the nodal equilibrium conditions
of bar forces ofa plane grid and of projected bar forces of a space grid permits us to use a
stress function in solving plane grid problems, too.

As in the previous case, the stress function of the grid has to be the equation of an
open polyhedron which has the same projection network as the network of the plane
grid. The bar forces are interpreted as the changes in slope of the broken surface lines
which have projections perpendicular to the bar axes containing the projections of the
kneeing points (Fig. 1). It is shown in [2] that this interpretation is in accordance with

Fig. I. The interpretation of a bar force

that of stress states determined by Pucher’s or Airy’s stress functions. The bar forces
determined by the polyhedron automatically satisfy the equilibrium condition at each
unloaded internal point of the network, so that each stress function represents a
statically possible stress state of the grid.

The compatibility of the grid deformations

Assuming that the self-stress state of the grid is zero, the stress state and also the
elastic deformations of the bars depend only on the edge loads. The bar forces have to
meet the equilibrium conditions at each node, and the elastic deformations have to be
compatible.

If a plane grid of triangular network has n internal and m boundary joints, the
number of the bars (i.e. of the bar forces) is

b=2m+ 3n—3,
and the number of static redundants is

r=b+3—2(n+m)=n.
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It follows from the latter equation that the deformations have to meet n
independent compatibility conditions. These conditions can be formulated as follows.
The closest neighbourhood of any internal joint of the grid forms an elementary
grid fragment as shown in Fig. 2a. As can be seen, this grid is statically indeterminate,

FO

Fig. 2. An elementary grid fragment (a), and the relief of its self-stress function (b)

but the number of redundants is always one, so that, the elastic deformations have to
comply with one condition of compatibility. Denoting the bar lengths of the /c-gon
shaped grid fragment by U eeeu4/2*» and the corresponding tensile rigidities by

EAt, ..., EA2K, the compatibility equation can be written as
% N N?
(1)
where /V, , .. ., N % denote the bar forces caused by the loads of the whole grid and
N?...... Ne2k denote the bar forces of the grid fragment belonging to its self-stress state.

Since Eq. (1) can be independently written for n elementary grid fragments, the
set of these equations form the total system of compatibility conditions of the grid.

The boundary conditions

For the actual calculation of bar forces we have to know the nodal values of F at
(n+ m) points as well as the changes in slope of the faces of the polyhedron of F along m
boundary sections, so that the total number of independent data of the stress function
has to be at least (n+ 2m).

If we want to construct the stress function of the grid, subjected to a given
boundary load, we have to set up (n + 2m) independent equations for determining the
required data, or we have to determine 2m of them before using the compatibility
equations.

In case of externally statically determinate grids of triangular network we can
follow the latter way.
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The formal degree of freedom of the external loads is 2m, but the actual one is less
by three, because the loads of the grid have to form a system of equilibrium.
Consequently, we may assume three arbitrary boundary values as the data of the stress
function without losing the possibility of taking into account any system of boundary
loads. We may set, for example, the first and the m-th boundary value equal to zero,
and let the external continuation of the stress function surface between the first and m-
th nodes of the boundary be a horizontal plane coinciding with the plane (x, y). Thus,
the other boundary values and slopes of F can be successively determined by
considering the external loads as if they were bar forces of fictitious bars. The relief of
the external continuation of F has to break over each fictitious bar in such a way that
the changes inslope of the surface lines over the lines of the plane (X, y) perpendicular to
the fictitious bars have to be equal to the fictitious bar forces in question. The changes
in slope are positive or negative values, their signs depending on the signs of stresses in
the fictitious bars. If all signs are correctly assumed, then the relief of the extended
values of F has to be a connected open polyhedron (see e.g. in Fig. 5), and each bdge of
the polyhedron has to lie over the line of action of a boundary force. It is not too
difficult to realize that the diagram of boundary values of F is similar to the moment
diagrarr™ of the boundary loads acting on a bar which takes the shape of a broken line,
congruent with the boundary of the grid. The free end of this bar geometrically
coincides with the fixed one and lies at an arbitrary point of the boundary section
between the first and the m-th boundary nodes. Also the slopes of the external faces of
the polyhedron can be interpreted as shear forces of the same bar.

The presented method of determining the boundary values of F tacitly involves
the assumption that the grid of triangular network covers a simple connected plane
domain. If the domain covered by the grid is multiply connected, in other words, if the
network contains four or more sided polygons without diagonals, the procedure
cannot be used in the simple way as is presented, because the internal boundaries also
need boundary conditions, even if there are no internal boundary loads.

The method also fails if some points of application of the external loads are
internal points of the network.

Both difficulties are analogous to those of using a stress function in the analysis of
elastic discs [1]. The latter can be overcome by using various singular solutions of the
differential equation of the problem [1,4]. The analogies between using stress functions
in either problem suggest the idea of constructing “singular solutions” of the grid
problem, too. To the author’s knowledge the general method of constructing such
“singular solutions” has not yet been worked out.

lllustrative example

Let us use the stress function for calculating the bar forces of the grid shown in
Fig. 3. Let the length of each bar be equal to /, the tensile rigidity ofeach bar be equal to
EA.
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Fig. 2 The network and the loads of the analysed grid.

Since the network of the grid is regular, it is expedient to use an operator
symbolism similar to that of the finite difference method. Accordingly, heavy lines or
circles refer to the places of reference, and circled numbers show the multipliers of the
nodal values of the stress function at their relative place in star-shaped operator
diagrams.

The operators of bar forces and of bar elongations (positive iftension) are shown
in Figs 4a and 4b.

The elementary grid fragments of the grid are regular hexagons with three pairs
of diagonal bars. The relief of their self-stress states is a hexagon based pyramid with
zero external continuation.

The operator of the compatibility equation can be constructed by using the
operators of bar forces and of bar elongations for calculating the bar forces of the sum
in Eq. (1). Its final form is shown in Fig. 4c. A common multiplier containing the actual

Fig. 4. The operators of bar forces (a), of bar elongations (b), and of the compatibility equations (c)
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data of bar lengths and of tensile rigidities also belongs to the operator, but this has
been dropped out, because it has no further role in the calculation.

The arbitrarily assumed boundary values are the zeros at the points of
application of the forces  and Pb and the zero slope of the plane between the lines of
action of these forces. The relief of the extended values of F is shown in Fig. 5.

Fig. 5. The relief of the extended stress function

In order to make the algorithmic use of the operator of the compatibility
equation possible, the network of the grid has to be completed with fictitious nodes.
The values of the stress function at these nodes can easily be calculated from the
boundary values and the slopes of the external continuation.

The nodal values of the stress function calculated from the boundary loads and
by solving the inhomogeneous system of compatibility equations of seven unknowns,
are shown in Fig. 6a: Fig. 6b shows the values of the bar forces as the final result.

Closing remarks

Though our example refers to a grid of regular network and of uniform tensile
rigidities, the presented method can be used in cases of irregular network and varying
rigidities, too. In these cases the operators vary from node to node, but the procedure of
their construction remains the same.

It is worth mentioning that the operator of the compatibility equation shown in
the preceding section is exactly the same as the difference operator which can be used in
solving Airy’sdifferential equation, ifa regular triangular network offinite differences is
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Fig. 6. The nodal values of the stress function (a), and the bar forces of the grid (b)

used. Since the calculation of the boundary values is also the same in both problems,
the solution of the grid can be considered as an approximate solution of the
analogously shaped and loaded continuous disc.

The widely used analogy between the stress states of isotropic discs and of their
replacement by HrennikofT-type grids (square network with two diagonals, the ratio of
cross-sectional areas of the bars forming the squares to those of the diagonals is ~2;
[3]) can also be checked by comparing the operators of the compatibility equations of
the grid shown in Figs 7a. and 7b. with the “biharmonic” difference operator of the

Fig. 7. The operators of compatibility equations of a HrennikofT-type grid (a and b), and the “biharmonic”
difference operator (c)

square network used in solving disc problems shown in Fig. 7c. The comparison shows
that the correlation between the computed stress states of the grid and of the disc may
be much worse in the case of HrennikofT-type grids than in the case of regular
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triangular grids, ifthe networks are loose, because the operators of the Hrennikoff grids
obviously differ from the “biharmonic” operator of square network, while the operator
of the grids of regular triangular network is exactly the same as the “biharmonic”
operator of a regular triangular network.
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This paper introduces the identification method of linear dynamic systems with a known
structure. Usually the identification of the dynamic system is understood as an “inverse” problem in
reference to a "priméar problem which can be presented as a solution ofa set of differential equations.
Thus the “inverse” problem deals with determining the system’s unknown parameters when its
solution and characteristics are given. The case of vibrating systems is considered in this paper. The
method is illustrated by examples given at the end of the paper.

1. Formulation of the problem and its notation

Consider the linear dynamic system

Mx +Rx +Cx=F, @
where
M=[m0], R=[r,], C=[cy] (ij=I,...,n)

are square matrices with constant coefficients of the order n and matrix M is a diagonal
one;

x=*(*)«(*, (%)

and

are vector-functions. In future, for reasons of simplicity, the diagonal elements of
matrix M are written in the form w,,= 1, . In the “primal” problem, the elements of
matrices M, R, ¢, and the right part of system (1) F(t) are known. The task is to find the
solution of system X (t) for fixed initial conditions Y (f0)=Ao. Another possible
approach to the analysis of the “primal” problem deals with the study of the spectral
properties of the dynamic system. In this case, again, matrices M, R, C are known and
vector-function F(f) is a broadband random process with given characteristics. The
problem is to determine the spectral properties ofsolution X (f). Actually, the last task is
to find the set of transfer functions for system (1)—G(s) = (G,(s), ..., G,(S), ..., G,(9))

* V. A Kaminsky, 113114 Moskow, Shluzovaia Naberezknaia 8, USSR 4
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where G,(s)—is a transfer function corresponding to the generalized coordinate Ar,(f) of
the vector-function A'(f). Then the corresponding amplitudo-frequence response
Ai(...,mi, ...,ru, ...,cu...,a) (/=1 .. .n)

and the phase-frequence response
o, (-.,,/n, .. ,,r0, .. ,,cu...,c0) (i=1..n

are to be plotted. These characteristics manifest the properties of the system.

The identification problem of the dynamic system is “inverse” in relation to the
second modification of the “primal” problem. The vector-functions of the amplitudo-
frequence response

a(co) = (ai(w), ..., a,(w), .. .,a,(w))
and of the phase-frequence response

<P(co) = (<p,(co), .. ..<Pi(cD), . . .<p.(a>)

are given. However, the elements of matrices M, R, C are unknown and should be
determined. If the problem is “inverse”, then instead of the amplitudo-f= requence
response a(co) and the phase-frequence response <p(<o) a class of solutions of system (1)
may be given, which were obtained at the broadband spectrum of excitation F(t).
Therefore the “inverse” problem, as a rule, leads to the solution of the overdetermined
set of equations

N, Mk) = a,(wk), D,({, 03k) = (pi(wk)

i=1 ...,n; k=1 ..., K

where: 1) A: (£, wk), D,(c,ak) (i= 1, ..,,n) are expressions obtained from the given
structure of the system (1) and contained unknown parameters m,, rtJ, cu
(i,j= 1, .. ,,n) written as N-dimensional {N =2n2+ n) vector
£=(Ei........ with A=W, (/=] n); £,=ru
(I=n+1 ----n2+n i,7= 1 -. - n); =
(I=n+n2+ 1 ...,n+2n20 i,j=1 ...n).
2)a,(cu), (pi(w)(i= 1, .. n) are measured values of amplitudo-frequence response

and phase-frequence response of system (1) with fixed argument to (abIK and ¢/9,(qjt)
(k= 1, .. K) given for problem (2)).

System (2) contains N unknown values and consists of 2Kn equations where K is
usually taken to be 2k n>n2+ n. The set of equations for system (2) always has a
solution.
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Remark |

Due to the form of amplitudo-frequence response and phase-frequence response,
it is obvious that functions

Ai(£,a)k), DPOE wk) (i=I.... n K=\, K)
are twice differentiable in almost all points of the parameter space except at points {y}
where these functions are discontinuous and unlimited, i..
lim Ai{yp,aix)= * oo
>

Tp-

or lim @,(yp, WK= + 00
Yp~+y

Instead of problem (2), an analogous but stochastic one may be considered

AN, coK=ih((0K), d,(E,wuK = <p,lO B,
i=1 ...,n; k=1 ..., K
where 0,(u>k and <pWK) (i= 1, ..., u;, k=1 .. ., K), are random values for which
M[<J,(WK] = a,(wK), M[<P,l0] = <?,(«*) (€))
D[ai(wR]=i/;*, O[(pA(oR]=<; (i= 1l.... n k=1,..., K)

but dik and d'k are non-negative numbers. By M[Z] and correspondingly by £>[Z] we
mean the mathematic expectation and variance of random value Z. Such formulation
of problem (3) corresponds to the amplitudo-frequence response and the phase-
frequence response received with noises having different characteristics depending on
argument o» In this case the overdetermined set of equations (3) cannot always be
solved in the classical sense. Therefore, in spite of the solution of problem (2)

£*=(e -, T*, nm mm. C?j, ...)
where the identities
m4 (E*wk = a,(cuk, P, (E*,wt)s<p,(ajk (i=lI, k=1,...,K)
are valid, in case (3), only a quasi-solution
<f*=(...,mf.... ffj, .. )
should be sought for which would, to a certain extent, minimize errors

AKC)= | wk—at(O)l,  Al(i)z 10,(", cok)— <p,(cok) |

The geometrical meaning of a quasi solution is the following: in the space of unknown
parameters RN, we are looking for the point  which has the “minimum distance”
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from the set of surfaces

nikc R s :Ai(C, wk)-aj(ek)=0
and
n'aczRN:<P(C,a>K) -(Pi{cok=0 (i=I,...,n; k=1,...,K).
Different expressions may be used as a generalized measure of the simultaneous
deviation of the point ~ from all surfaces nik and n'k .
For example:
1) according to the least square solution

=1t @

2) according to Schteiner’s point of the set of surfaces

e@= 11 @ @+aiEn @)

3) according to Chebyshev’s point of the set of surfaces

$(g) = max {max(d;t(").d;;(i))}- (4")
il

If there is a broadband spectrum F(t), then problem (2) (or (3)) is to minimize the
functional ¢(*) in space RN, that is

i/r({)-nnin (5)

where ¢ (£) can be expressed as (4), (4"), 4.

It is easy to see that is the minimizing point of the functional it(E). Noting
sF(en), S*.(co) (i= 1, . . ri) the energetic spectra of the right part F(t) and components
Ar,(t) of the vector solution respectively and using equality

sxiiy = Aafci, mSTM  (,= 1,

([1] p. 437.) holding to be true for linear dynamic systems, we arrive at founding the
basis for selecting the functional’s (4) kind. This means that the minimization of the
functional is equal to the selection of such system’s parameters (2) (or (3)) for which the
best identification ofsystem (1) will be obtained in the energetic sense.* ldentification of
system (1) using functionals (4') and (4") gives the best coincidence in the Chebysev and
Schteiner sense of the system’s amplitudo-frequence response and phase-frequence
response with real characterisitics. In the following we will consider only the functional
b(C), i.e. equation (4), though all reasonings and the suggested method of solution can
be used for (4") and (4").

* Such interpretation of the functional's kind is valid if point satisfies equations
P (E><om)=<P,lO  (<P,(]*,co») = 4i(a)j)) /=1, ...,n;k=\...... K)

i.e. the phase-frequence response does not influence the determination of parameters.
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Remark 2
Functional

(()K)z_l I w o tw + w fw ) (6)

may be considered instead of functional (4) where

(69

When solving the problem of identification of a dynamic system, the necessity of
marking out any range of frequences in special (or amplitudo-frequence response and
phase-frequence response of any components of vector A'(f)), arises. For this purpose,
weights a|*, Ali corresponding to these frequences and components should be fixed
more than for other frequences and components. In the case when Ak= A[= 1/2Kn
(i=4. . k=1 ..., K) we get (4) with common multiplier 1/2K n, which does not
change the point of minimum £*(£*).

There are two basic approaches to identification. The first one includes
identification of determined systems with filtered noise. Paper [3] can be applied to this
method. In this paper, identification of the dynamic system is accomplished by using
the integral surfaces of system (1), using paper [4]. The identification of linear systems
according to amplitudo-frequence response and phase-frequence response is provided
in [5]. Amplitudo-frequence response and phase-frequence response given in units 20
Ig/l(co) and </>(cu)in Igco may be presented as a spline which is not higher than the
second order and the corresponding transfer function G(S) is a product of some transfer
functions ofelements of the first and second order. The accuracy of such identification
is not high as the approximate characteristics of links are used and, besides, phase-
frequence response is necessary for an unambiguous identification. In [6], the case of
identification of a linear system with the unknown matrix R is considered. Partial
results of identification of non-linear systems are considered in [7], [8] and [9]. The
second approach of the papers deals with the identification of determined systems with
noise. One of the methods of identification of such systems is the usage of the Kalman
filtering method [5] and [10].

2. Existence and uniqueness of the solution of the identification
problem

All the results of this part of the article refer to the case of sequence {wk}
(k=\,2, ... K) where corresponding surfaces ntkand n"k (i= 1, .. .,n\k—1,2, . . K)
are linearly independent at a point £%* of the real set of parameters, i.e. of the
coefficients of matrices M, R, C (of the vector).
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Lemma 1

Ifthe number of the addable sums of the right part of (6) is not less than N, then at
any non-negative Aikand Ak the solution of problem (2)-46H5) ¢* will coincide with the
real set of parameters ¢** of dynamic system (2).

In fact, functional ¥/(G) of (6) is strictly convex and non-negative, where point £%*
transforms in identities

Npere wP):= afcor), F{C** wk= (pi(wk)  (i= 1. . nk= 12, ...)

from which it follows that A'ik(C**) = A"k(G**)=0 ; therefore point ¢** is a point of
global minimum of functional t/r(f). So we obtain the identity £% = £%*, Let’s note that
functional ip(¢) has only one extremum due to strict convexity.

Corollary

Instead of minimization of functional ¢(£) of (6) we may carry out the
minimization of functional

_ A N v
«WK) = <XK) + K:IK +1’_ 1(A| 2«) + i a(i)) U
with
= . (i=l,...,n; k=K +\,..., L) ()]

where E is a sufficiently large number.

Such modification of the functional will lead to the improvement of convergence
of the minimization process.

According to Remark 1and to the kind of functionals (4), (6) and (7), it is easy to
see that they»are twice differentiable in the vicinity of the points suspicious for the

minimum of functionals (4), (6) and (7). The next lemma for functional (4) may be
suggested.

Lemma 2

For any arbitrarily small £>0 there is a sufficiently large integer K so that the
solution of problems (3)-6)-(5) satisfies the inequality || £* —£** || Rn<£ .
In fact, due to the smoothness of functions

NE&;ojk and <Pi(£,wk) (i=1,..., n; k=1,..., K)

conditions (3") and to the independence of random values aflco*) and when iand «
are different, we may assume the distribution of hypersurfaces nik, ritkc R N to be
symmetrical. Therefore, for the minimum point  of functional (6), according to the
law of large numbers, %*->£** takes place if K-t s which was to be proved.
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Functional ¢ (*) may be considered as perturbation of functional of (6) by
small addable sums the value of which depends on the selection of E. Thus functional
®{*) may be represented by tj/{C)=ils(l;)+ (\/E)Z(C) so according fo theorem 6
(perturbation of optimum [ 11] p. 52) we obtain the vicinity of solutions of problems
(3H7H5) and  of problems (3)-(6)-(5). So the following theorem may be formulated
on the basis of the functional properties (4), (6) and (7), lemmas 1,2 and our reasonings.

Theorem

For any.arbitrarily small e>0 there is a sufficiently large intcger L in a way that
the solution c¢* of problems (3H7HD5) satisfies the inequality || £ —£** || Rn < e ON
condition of (8).

Remark 3

When solving problems (3H7H5) under systematic but independent noises in
dimensions &,(biK and <p(co® (i=I,...,n; k=1,...,K) addition of additional
summands to functional t/i(E) improves the accuracy of solving the problem and makes
the process of determining point £* more stable.

Remark 4

Functional (7) in the identification problem (3)—7)—5) may be substituted by
functional

<HElL, . &, VRO rand)

where nx<n and corresponds to the process of identification if there is no information
about some generalized coordinates X io(t)ioe (1,2, ..., n). In this case, lack of
information is partially compensated for by the increase of K, i.e. fuller utilization of
information on amplitudo-frequence response and phase-frequence response.

Remark 5

The results described above are also true for the case when it is necessary to find
only part of the parameters of system (1) (i.e. in the case, when some elements of
matrices M, R, C are known.)

Remark 6

In some cases the following constraints

£)<0 =1,
wy(£) y ©
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wy(£)=0 y=Ti+1, .. T2

can be given a priori for the vector of the parameters that should be found. Then we
have a limited problem of minimization of (3H4H9H5) (or (3)-(6H6'HIH5)).

3. The method of solving the identification problem
and examples

Problem (3H4H9H5) (or (3H6H6'HI9HS5)) which is a limited-constrained
problem of non-linear programming is suggested to be solved by the flexible tolerance
method [12]. Expressions for amplitudo-frequence response and for phase-frequence
response of system (1) can be obtained in the following way. Transform system (1) into a
system of the first order q = Q(¢)gq + B, where (2n x 2n)—matrix Q(¢) and vector B of
dimension 2n will be

0 1 0 0
iLL """ Cl2 ri2 Cuy Cm
mi m { m,
0 0 0 1 0 0
B(E) = cll T2 C22 M2 C2n 2n
m?2 m 2 m 2 m2 m?2 m2
0 0 0 0 0 1
Go rnl on2 r,.2 Ccmn r,n
\bi=0 i¥=2k—1
B *ub2n< )
[bi = Fkkmk i=2k *=1, ..
Let’s introduce vector
co-(ch ca &7 j 0 j/ 2i—1
- ’ 1 j=2i—1

and assume | [<)—s/] | #0 for all £ of sufficiently small vicinity of point £** where /
is the identity matrix. Then i-component of the vectors G(s) is expressed through matrix

Q(¢) and vectors B and C*:

G(s)=C'[-B(£) +s/] xB
and
A (t,aX)=\CI1-Q (t)+jcjkir'B\,
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<<= (E,w)= Arg [CL - Q(G) +jekr\ - 1B]
i=1... n, k= K .

Thus the problem of non-linear programming should be t/>({)-»min with
constraints (9).

Below, we are going to state the identification results of linear dynamic systems
of the 1-st and 2nd order. The identification was performed in the case of one
amplitudo-frequence response and N = 2.

Example 1. A system of the first order x + rx + cx=f. The transfer function of the
system will be G(s)=1/(s2+ rs-|-c) and the amplitudo-frequence response will be

Aw—14/(c-w 22+ r2em2 .
In Table 1, values of the amplitudo-frequence response for £** =(m, r,c) are
given, where m= 1, r = 0.978, ¢ = 264.87.
Table |

w 5 14 15 16 17 18 25

a(w) 4.168x 10-3 148x10“2 2.368x10 2 5.55x10 2 3.404x10 2 1.168x 10“2 2.77x10 3
In Fig. 1 c is plotted as a function of r for different ai.
Example 2. There is a system of the second order Mx + Rx + Cx = F where

m= 0 Ro U 12 c=pn <'JI
0 m2 I 22 br! {22j

External excitation F is applied to m 2, transfer function for x 2 is
(m,s2+r,,s-kch)/[(m,s2+r,, s+ c,,){m2s2+ r22s + c22)-

-(r,28+ Ci2)(r2,5-1-c2,)1,

Fin. 'm System of the first order
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the corresponding amplitudo-frequence response is
A(w)= yJdj +dl/~/gi+gj, f,=c,, -m,c02; cd2=rnco;
01=mIm2a4-(m Ic22 + m2c 11+ r Ur22- r 2lr12)w2+ cu c22- ¢ 21c
2= U"i"22+i'22""u - r 12c21-r 2Ic12)w -(m 1Lr22 + m2ru )(U3.
In Table 2, values of amplitudo-frequence response are given for

C**=(/n, ,m2,rll,rl2,r21,r22,clt ,c12,c21,c22),

where
“4 0 ‘0 o 2000 -1000
M = R = , c =
0 04 0 0 1000 1000
Table 2
w 10 15 19 30 50
a(w) 2.985x10 '3 11 1061 X10“2 7.91 x 10“ 8 X10*

Matrix C is given in the form of

In Fig. 2, ¢, is plotted as a function c2 for different co.

Fig. 2. System of the second order
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SYMMETRICALLY EXCITED ARCHIMEDEAN
TWO-WIRE SPIRAL ANTENNA

J. Kapor*

[Received: 19 December 1983]

Asymmetrically excited archimedean spiral antenna isdiscussed. The literature still owes us a
comprehensive theoretical analysis of the spiral antenna and thus the design of a spiral antenna is
difficult. In this paper, Burdine's Band Theory was further developed and the antenna geometrically
analyzed to give simple and accurate design equations. The spiral windings are represented by
radiating lines which, at any arbitrary radial plane, can be represented by point sources, their
resultant array depending on the method of excitation: end-fire array, or broadside array. From the
point source model, the typical antenna parameters can be determined.

1. Introduction

Since the mid fifties, E. M. Turner’s archimedean spiral antenna [1] has been
widely used in the 500-1200 MHz frequency range (in the aircraft industry, space
communication, space transmission, in actinometers etc.). Despite of its wide use, there
is no analytically elaborated exact theory to describe the operation of the antenna. It
has been empirically developed, and most texts of the theory of mechanism of antenna
operation are based on qualitative considerations [2-7]. In practice, among the
different speculative analyses regarding antenna operation, the “Band Theory” of B. H.
Burdine provides acceptable results [8]. B. H. Burdine considered the antenna as a
simple band wound in the form of a spiral, and explained its radiation mechanism on
the basis of the characteristic current distribution associated with the geometry of a
spiral. The drawback of the “Band Theory” is that it gives neither exact design
equations nor the radiation characteristics in a mathematically precise form, it merely
gives a general outline.

W. L. Curtis demonstrated that the radiation properties of the spiral antennas
could also be analytically calculated from the known current wave travelling in the
arms of the spiral by writing the vector potential function [9]. This method, however,
requires the solution of difficult and complicated integral equations. In this paper we
present a more demonstrative alternative solution to determine radiation character-
istics obtained by further development of the “Band Theory” and by substituting the
spiral antenna with a point radiating system. We also give a geometrical analysis of the
active range of the antenna, what can be considered very useful and generally
applicable in practice. This work also gives the basic design equations of the spiral
antenna.

*J. Kapor, H-I 133 Budapest, Véci u. 88/a, Hungary
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2. Antenna operation, geometrical analysis of active range
Operation

From the “Band Theory” it is known that intensive radiation from the antenna
aperture as a result of the excitation at some frequency “f” occurs only from an annular
surface from the windings in the interior of this surface. As the frequency is changed the
active annular range decreases or increases proportionally to the actual wave length,
which in such a way, fluctuates between the internal and external windings. At the
upper operating frequency the internal windings radiate, while the external windings
radiate at the lower operating frequency. The average diameter (Da) and the direction of
radiation of the active range depends on the polarity of the input supply.

In case of anti-phase excitation maximal radiation intensity occurs axially on

both sides of the antenna (axial mode, Da= (2k —1)-—) . If the input excitation of the
n

antenna is in-phase, the angle of the main direction of radiation is approximately 40° to
the spiral plane, while absolute minimum of radiation intensity lies on the axis of the

antenna | normal mode Da= 2k- J. Let us not deal with the formation of the higher

harmonics (k= 2, 3, 4, ...) but rather analyse the case of the fundamental harmonic
(*= 1

Analysis

Geometrical analysis is made for the self-complementary antenna structure [10],
which shows the most favourable wide-band properties, without loss in generality. In
case of a self-complementary antenna, the conducting band (FI[) and the width of the
insulated space between the conducting arms (wj) are equal (We=wi=W). The
relationships written or proven during the analysis remain valid for any complemen-
tary two-armed structure spiral antenna by using the average width:

The case of non-complementary antenna is not dealt with here. We assume that
current waves travel in the spiral arms, and ignore the waves reflected at the ends. The
propagation constant of the current waves is used to approximate the propagation
constant of plane waves in free space [9].

The plane vector equation of the centre lines of the conducting arms of the
symmetrically supplied two-armed archimedean spiral antenna shown in Figure 1

rl =atp+r0, jii

r2=a(<p-2n)+r0, cp>2n,
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z
Fig. /
where: a — the spiral-constant
<— the azimuthal angle in radian
r0 — the initial radius.
From (1) the pitch is given by
T=r[(n+1)2n] —r[2nn] = 2an 2

On the basis of Fig. 1, and Eg. 2, arm width w can be calculated as follows:

©)
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Taking the band theory as a starting point and extending it, the active aperture area
containing the radiating turns is then defined within the interval enclosed by turns on
which the phases of instantaneous current elements (points Paand P J excised by the
radius drawn in any arbitrary direction deviate *+ n/2 radians from the phase of current
element (point Pc) which is excised by circular perimeter fand which, together with the
aforementioned radius, determines the active interval.

The width of the active interval referring to Fig. 1is then:

Al=(n-1)4W»2NW, 4
where: n — number of turns of one of the spiral arms falling within the active interval.
N — number of turns of both spiral curves within the active region.

Ifwe examine point Pc(which is found on acircular perimeter fAwithin the active
area) at the very instant when the Phase of the current at Pcis zero, then within the area
defined by points P,, and Puw, the neighbouring current-elements along the diameter
drawn in Fig. 1will be equidirectional. At points Paand Prg however, the currents start
diverging.

According to the definition, the time function of the current at point Pcis given by

IP(t)y=10co0s (cut—3 L), (5)

where L-distance covered by the current wave from the point of induction to point Pc.
Consequently the current at points Paand Puis given as follows:

Ip,Jt)=10cos(i)t-BL£5), (6)
<5=NAS n 7
yTnr=2" @

where zls— length between any two consecutive spiral turns.

A Phase difference n between instantaneous currents at points P* and Puwis a
result of accumulation of As path-lengths. Reasonably, the value of As can be
approximated as follows:

(Po+2n <po
ds= J a(pd(p— J cup-d(p=a(2n)2. (8)

<po <po~2n

Taking into consideration the number of turns n, the current phase difference
between Pr and Pwcan be deduced on the basis of Eq. (7):

2Nan2 R =n. 9
Substituting Eq. (9) into Eq. (3) we obtain

ANWR=\. (20)
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Combining Egs (4) and (10) the width of the active area becomes:

B | A

Al=2NW= e an ()
The result obtained by Eq. (11) is, in fact, the fundamental relation which is
necessary for designing the spiral antenna. The equation reveals that the width of the
active area depends only on the wave length. In order to ensure that mainly travelling
waves will develop along the spiral arms, a number-of-turns condition of n> 3 (N > 6)
shall exist on the basis of practical experience, similarly to the multiturn helical
antenna. In practice, the value of n for most cases falls between 3and 8. From Eq. (11)
and the minimum number of turns stipulation, it is then possible to determine the
maximum value of arm width w enabling suitable antenna performance. When
determining a still applicable maximum arm width, we, of course, make use of wave
length 4, associated with the designed upper limit frequency. Accordingly, the

fundamental design equation takes the following shape:

K = |1

W< — A - 12

B(h—1n 8An  4NB’ (29

Condition for the number of turns: N min= 6. Substituting this into the above
equation, the upper value of the arm-width is given as follows:

A A,

T a8n 150" (13

VVnax
Taking into consideration the path-length-increasing effect of the base plate
supporting the antenna:

Wna* = (14)

where eldT” represents the effective relative dielectric constant which, for most
substrates, is nearly unity.

Note that as arm-width ITdecreases, the value of damping factor a increases,
which affects the transmission characteristics of the antenna unfavourably. In the
knowledge of the quality characteristics of the supporting plate and in case of given
gain requirements, it is also possible to give a minimum arm-width w.

Results of the analysis
In the course of geometrical analysis we defined specific limits for the active area
containing the radiating turns. At the excitation frequency, this active area is separated

from all the other turns operating as a transmission line by points P~and Pw. Ofcourse,
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this transition is indistinct in practice. The phase shift of currents at points  and is
+ 7t/2 radians with respect to the current at point Pc. On the basis of Eq. (9), the phase
differences between the current-elements of neighbouring turns are equally n/N.
With the current-elements of width fTshown in Fig. 1 considered to be points,
Fig. 2 has then been plotted to show the phase and amplitude distribution of the

momentary current associated with the point sources within the active region. For the
sake of simplicity, we recorded the time when the value of current at the centre (Pc) of
the active region was /0 and the phase angle zero. At this instant the phase response in
the active region is given by the following function:

=
I
_|
I
3
|

|

|
o=
+
|

(15)
where N must be an even number since the antenna has two arms. At the same time, it
has to be stressed that, owing to the nature of the spiral curve, the turns falling within
the active region are not concentric but open circles and therefore there is a phase
uncertainty of +n/2N within the examined interval.

The amplitude distribution function:

I =10co0s , m=-J ...0... +y. (16)

The current distribution along the examined diameter (@>= 0 plane) changes in time in
accordance with a cos cut function according to the excitation frequency:

/(t) = /0cos *cos cut. a7

while the instantaneous current distribution shown in Fig. 2 turns off or spins in the
direction of winding of the spiral according to the inducing angular frequency.
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Antenna pattern

By analogy with the helical antenna the operation of which is based on travelling
waves, we consider the turns falling within the active region to be transmission lines,
where the combined effect of the turns corresponds to ’end-fire or ’broadside’ arrays,
depending on feed. In determining the radiation pattern, line width IFis reduced to be
infinitely thin and the propagation constant of the wave travelling along the line is
approximated by the propagation constant of the planar wave travelling in free space.

Radiation pattern of the axial-mode antenna
The radiation pattern was determined according to Fig. 3. In the following
calculations, the instant shown in Fig. 3 when the current at the centre of the active

region has just reached its maximum was considered. At this time, the amplitude and
phase distribution of the current associated with the point sources are identical to those

given in Fig. 2. The currents of the point sources excising the cp= 0 plane are
approximated by the average value of the current amplitudes, which in practice gives a
reasonable approximation for design purposes. On the basis of Fig. 4.

€0S <xdot= —Zo- (18)
T
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The phase difference between the currents of the point sources is equally n/N.
The directional factor [11] of the linear array of N isotropic point sources of equal
amplitude and spacing is given by

sin N mp/2
V= 19
I sin /2 (19)
where
* = 2Wflsiny+£ = — siny+£ 20y
Substituting Eg. (20) into Eqg. (19), we obtain
sin (-"-siny + n/2 cos [—siny
1(?) . (21
sin V' shi-Lcmv
iNSm/+ 2NJ 4<VS,n>+ M
The directional factor has a maximum aty=0 and y = n:
1 2N
Ywax N> 6.
) n n
sin
‘2N
Consequently, the relative directional factor is given by
cos | —siny
frn =,y (22)

IV A n
-—-Sin —-Siny+ —7
n \4N 2N

Taking into consideration the fact that N > 6, trigonometrical transformations result in

/1 n\ n
\4 N * 2 N) 2N

The error resulting from the above approximation will be 0% if y=0. The error
increases monotonously with y and will reach amaximum of 12% aty=n/2, if N = 6. As
will be seen later, this error is permissible since the direction corresponding to
maximum error complies with the direction of minimum radiation of the antenna,
which is of no interest. The error within the cone of main radiation remains between 0
and 9% and reaches a maximum at the edges of the main beam. With this error, both
linear arrays arranged symmetrically around the origin in the g>=0 plane may be
replaced by a single radiating point each, with a relative directional factor of
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approximately

Ir= Q% 23)

Two resultant radiation points separated by distance JUn from each other have a
relative directional factor (fre) which may be determined from the principle of pattern
multiplication as follows [12]:

fre ~fr QCb—, (24)

where

ip= - /)siny=2siny. (25)
n
Substituting the value of ¢ into Eq. (24) we obtain

fre=fr cos (sin y). (26)

Since fr only slightly deviates from the isotropic radiating directional factor, (frmin
= 0.97), the effect of the current elements excised by the gp= 0 plane is equivalent to a
point source with a directional factor of approximately

fre ~ cos (sin y). (27)

Equation (27) is the relative directional factor of an isotropic point source system which
gives the directively relation of the field intensity in the =0 plane (the origin is
considered as the phase centre of the point source). Actually, in addition to the current
elements in the region where the (0—0 plane bisects the active range, the current
elements (point sources) of the active annular surface in the (p® 0 plane also contribute
to the formation of the antenna radiating field. According to our definition for the
active range, for a diameter drawn in any direction uy>¢p0 we get two arrays of point
sources symmetrically to the origin, similarly to that shown in Fig. 3, with a phase
difference of n/N between the neighbouring current elements. The average current
values calculated in a similar way as in (18) for the point radiating arrays along the radii
drawn in different directions differ from each other. The combined effect of radiating
lines in accordance with the current distribution at given instant can be characterized
by the momentary current of the different point sources substituting the imaginary
continuous linear arrays on radiating lines (turns). The equivalent point sources are
located on the circular conductor of diameter J1/n shown in Fig. 5 where the
instantaneous current distribution can be described by means of the following function:

2/0
=-"cos <.
n
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On the basis of the momentary current distribution shown in Fig. 5, the circular
conductor, considering the o= 0 plane, can be substituted by a dipole antenna with an
effective length of

h.,= K - cos (sin y).
n

For an arbitrary time t\ depending on the direction of winding of the spiral the position
of the dipole antenna replacing the circular conductor is such as to satisfy @= a'. In
this case, the effective length of the dipole antenna for a left-wound spiral

hx= K m—Cos (sin 3) cos ¢
n

h, =K -?cos (sin 3) sin (28)

Accordingly, at any operating frequency, the spiral antenna can be modelled by
an imaginary dipole antenna located in its geometrical centre, with although linear
'momentary polarization’ but, as a function of time, rotating at the frequency of
excitation in adirection depending on the direction of the spiral winding. Accordingly,
for a right-hand spiral, the equivalent dipole antenna is right-hand while for a left-hand
spiral left-hand circularly polarized. On the basis of the rotating dipole model, the
relative directivity factor of the spiral antenna is given by

/ =cos(sin3). (29)

Characteristics of the directivity factor
The direction of minimum radiation of the antenna is the 3 =n/2 plane. 3= 0 and
3= n are the direction of maximum radiation. There is no zero direction. In the 3 < n/2

and 3>7t/2 cone angle region the directions of rotation of polarization are opposite.
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The value of the relative directional factor symmetrical to the 9 =n/2 plane in the
direction of minimal radiation is /(9) = n/2=0.54. From relation / = 0.707, the half
cone aperture angle for a 3 dB signal level reduction: 9= 52.5°.

Antenna directivity

The directivity is determined by means of the complex effective length of the
spiral antenna. On the basis of the rotating dipole model, the absolute value of the
complex effective length:

IBI= K icos (sin 9), (30)

where K —a factor depending on the geometry of the antenna and the method of feed.
The directivity, using (30) [13] is given by:

Ifil2 2co0s2(sin 9)
D= n (31)
1

an j* cos2(sin 9) sin 9 d9

a=o0
Numerically integrating the function of the denumerator:

J cos2(sin 9) sin 9 d9 = 0.98.

»=0
Therefore, the directivity function of the spiral antenna is given by:

D(9, (p) = 2.03 cos2(sin 9). (32)
In the direction of maximum radiation:

Dimax= 2.03(3.08 dBi).

Radiation impedance

Babinet’s theory can be used to calculate the radiation impedance of the plane
structured antennas. The theory used to determine the input impedance for slot
radiators states that: if the radiation (input) impedance of an antenna cut from a thin
metal plate is known, the following relationship can be written for a slot radiator of
similar profile (complementary)

Z,'22= |, (33)
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where: Z, : impedance of antenna cut from plate
Z 2: radiation impedance of complementary slot radiator
Z0: specific impedance of free space (12071 ohm)

In order to ensure optimum wide band properties, the antenna is generally
prepared in the self complementary form. In this case Z,=Z2=Z for which the
appropriate radiating impedance is 188.5 ohm. The value obtained in practice differs
from the above value which is understandable, since Eq. (33) is for a slot antenna
immersed in a wide metal surface, and the slot antenna is assumed to be thin as
compared with the wavelength. In fact, apart from the antenna’s characteristic
geometry, the actual radiation impedance depends on the substrate material and
feeding geometry.

Constant K and other characteristics of the antenna

Knowing the radiation impedance, the value of constant “K" used in (30) can be
simply determined for ideal self complementary spiral antennas. Using the complex
effective length [13], we can write radiation resistance Rr as

30/2n\2
. |
a-du

Replacing Rr by the impedance (188.5 Ohm) obtained on the basis of Babinet’s

[AN2 ... K2
K2(-|[ =120
(,ﬂ}/ D

theory and writing the earlier determined directivity D = 2.03 we obtain K = s/n. This
leads to the absolute value of the effective length for the self complementary type spiral
antennas

Ifil=Jn —cos (sin ,9).
n

Knowing [fi|, all the important characteristics of the self complementary antenna can
be determined [13].

Modification of radiation characteristics with reflector

Placing a reflecting metal surface at a distance d behind the spiral antenna, the
radiation of antenna can be directed in one direction. Vector E of the wave excited by
the antenna undergoes a phase change of 180" during reflection at the reflector, because
the tangential component of the electric field intensity is zero in the plane of a perfect
conductor. As a result, we have to take into consideration the image effect of an
oppositely directed current (Fig. 6) during calculation of the directivity factor. It has
been proved that the radiation field of a spiral antenna is equivalent to the field of a
dipole rotating at w angular frequency as a result of which the effect of the reflector can
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be examined analogously to the behaviour of a dipole placed horizontally above the
ground plane. Using this substitution, the dipole and its image can be considered as
point sources in the plane placed perpendicularly to the substituted dipole, and their
directivity on the basis of (27)

fr=cos (siny).
The resultant relative directivity factor of the two point sources is given by

[; =/rcos¥72, (€7
where
4=n —fi d- cosy. (35)

Using relation (35) the relative directivity factor as a function ofy and reflector distance
J:

4d
f = cos (sin y) cos cosy (36)

As for any plane indicated by an angle 9 we obtain an expression similar to (36), in
place of y we can write 9:

/ = cos (sin 9) cos cos 9 (37)
According to equation (37) the radiation has its maximum intensity in the main
direction of radiation (9 = 0) when d = k/4. In this case, the relative directivity factor of
the spiral antenna supplied with a reflector operating in axial mode is given by

| = = cos (sin 9) cos (38)

This means that the halfcone aperture angle 9 = 43° corresponds to a 3dB reduction in
signal level.
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Theoretically available gain

On the basis of (38) and similarly to (31), the theoretically available gain of the
spiral antenna supplied with a reflector operating in axial mode as compared with the
isotropic antenna can be determined by the relationship below

cos2(sin3)cos' ™ (1 -cos 3)J
=pD= (39)

2n 2
1 v
4 I c0s2(sin 3) cos2 B—COSB) sin 3d(p d3
n

P=05=0
where the value of the double integral in the denominator using numerical integrating

method:
2n  cos2(sin 3)cos2 2(1-cos 3) sin3d3s —.

Writing the above result in (39), the directivity function:
20 .
D = — cos2(sin 3)c0s2 2 (1~ cos 5 (40)
n

Assuming a lossless antenna and a ground plane of infinite dimension, the theoretically
available gain in the main direction:

Grvei = 6.37 (8 dBi).

In practice, the gain of a spiral antenna printed on an average quality (average tan)
substrate (FR4, G 10), as compared with an isotropic antenna (using cylindrical
reflecting cavity of approximately 2/54 in diameter) is 5-6 dBi at mid-band frequency.
According to the measured data published in [14], values of 5.6-6.9 dBi were measured
using low-loss substrate in the operating band of the spiral antenna.

Summing up

We confirmed B. H. Burdine’s qualitatively based “Band Theory” by a quantitative
analysis of the radiation mechanism. Extending the “Band Theory”, we accurately
defined the range of the radiation channel and, with the antenna considered to be an
elementary radiator forming a broadside array, we determined with reasonable
accuracy the directional index and the theoretically available gain. On the basis of the
point source model used to determine the radiation pattern, we proved that an
antiphase-fed symmetrical (two-wire) spiral antenna is equivalent to a dipole which
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spins around the axis of the antenna at angular frequency as a result of an /0cos wt
excitation applied to the spiral input Depending on the direction of rotation of the
substituting dipole, the antenna produces right or left circularly polarized field. With
the equivalent rotating dipole we can also explain the practical experience that the
spiral antenna keeps its property ofcircular polarization for acomparatively wide cone
angle. In the geometrical analysis of the antenna, we proved practically useful and
generally applicable basic design equations for the two-wire spiral antennas. We
verified that the antenna design is based on the proper choice of only one parameter
which is arm width w. The sharpness of the directional angle of the antenna, in
accordance with the previous analysis, can be considered to be practically independent
of the chosen value of w within the limits determined by the armwidth. We attributed
the larger divergence in a given directional sharpness angle experienced only at the
lower end of the band to the proximity and end effects of the reflector wall. The antenna
gain depends not only on the quality of substrate but also on proper choice of arm
width w. We experienced that if the chosen arm width was too thin, the gain decreased
as a result of a significant increase in the attenuation coefficient. A typical radiation
pattern is shown in Fig. 7. Besides the measured curves, the radiating pattern calculated
on the basis of Eq. (38) is also drawn in dash lines in Fig. 7. The difference between the
two curves with increasing 9 is caused by the fact that for the calculated curve we
assumed an infinite ground plane at a distance of d/4 from the antenna plane while in
practice we mounted the antenna on the support of a metal cavity of approximately
25/A, in diameter and d/4 in depth (where A is the wave length at the lower operating
frequency).

Finally we note that, the relationships derived or given are also valid for a two-
wire closely wound (a <$1) logspiral antenna. This can be easily proven mathematically
by the series expansion of the equation of the logspiral curve:

e’.I+av+‘ﬂV + 2V '<—*V+_“

For small values of “a”, the following approximation is valid
e°v % 14- cup.
Consequently, we have proven that the archimedean spiral antenna can be considered
as an approximation to closely wound logspiral antenna. Therefore, to a good
approximation, our postulated relationships also apply to logspiral antenna.
Acknowledgement
I would like to express my sincere thanks to Dr. Csaba Ferencz and Dr. Istvdn Frigyes for the

valuable discussions.

14 Acta Technica Academiae Scientiarum Hungaricae 98, 1985



References

1 E. M. Turner: Spiral Slot Antenna, Wright-Patterson AFB, Ohio, Techn. Note WCLR-55-8. WADC,

w

0o~NO oA

9.
10.
11
12,
13.

14.

June 1955

. R. Bawer, J. Wolfe: The Spiral Antenna, IRE Nat. Conv. Rec., (1960) 84
. P. Jones, El Taylor, W. Morrow: Design Techniques fora Light Weight High Power Spiral Antenna. IRE

Wesc. Conv. Rec. 4 Part 1, (1960), 107

. A. Kaiser: The Archimedean Two-Wire Spiral Antennas, IRE Trans, on Ant. and Prop. (1960), 32

. R. Donellan: Second-Mode Operation of the Spiral Antenna. IRE Trans, on Ant. and Prop., (1960), 637
. J. Kapor: Diplom’ work (in Hungarian) Technical University of Budapest 1975

. J. Kapor: Spiral Antenna. Radiotechnika, 32 (1982). (in Hungarian)

. H. Burdine, M. McElvery: The Spiral Antenna. Massachusetts Inst, of Techn. Cambridge Res. Lab. of

Electronics, Rept. Nos. 1and 2.

L. Curtis: Spiral Antennas. IRE Trans, on Ant. and Prop., (1960), 298

H. Rumsay: Frequency Independent Antennas. Academic Press 1966.

E. Istvanffy: Waveguides, antennas and propagation. Tankdnyvkiad6, Budapest 1979. (in Hungarian)
B. Szekeres: Antennas. Tankdnyvkiadé, Budapest 1969. (in Hungarian)

J. Kapor: Characterization of Elliptically Polarized Antenna by Complex Effective Length.
Hiradéastechnika 34. (1983) (in Hungarian)

E. Hérmann, R. Reitzig: Experimental Analysis and Selection of Airborne Antennas for Aircraft-to-
Satellite Communication Systems. Frequenz 31 (1977), 11

Ada Technica Academiae Scientiarum Hungaricae 98, 1985



Acta Technica Academiae Scientiarum Hungaricae. 98 (3— 4). pp. 345—366 (1985)

EFFECT OF THE CHANGE OF CROSS
SECTIONAL CHARACTERISTICS ON THE FORCE
DISTRIBUTION OF VEHICLE FRAMES

Kovacs, M.—M ichelberger, P.*—Nandori, E

[Received: November 1984]

Studied here are the properties of the solution of the compatibility equation system
determining the force distribution of statically multiply redundant vehicle frames. In doing so, the
flexibility matrix containing the stiffness figures of the frame elements are modified in such a way that
the cross sectional characteristics in the matrix are treated as variables, taking into consideration the
permissible perturbation. Different methods are used to estimate the deviation occurring in the
internal force distribution of the frame, and these methods are demonstrated by means of practical

examples.
Symbols
B — matrix of size (mx n), m>n, with maximum rank ie rank B=n
R — diagonal matrix of size (m x n), a simple diagonal matrix or diagonal hypermatrix, depending on the
degree of load function
a — vector of elements m
r — vector of elements m with diagonal elements, r"1>0, /= 1,2, ... m,of R
(c) — diagonal matrix with vector c in its diagonal
R — set of real numbers
R’ — real space of dimension s
R — the reference matrix (nominal R) with diagonal r: r°’>0

AR — {re R":(I I)r<r<(l +/)i, 0<n < 1} the possible perturbance range of matrix R
— maximum permissible perturbance parameter, 022" 1

1. Introduction

Like in any steel structure, there may be two types of dimensional inaccuracy in
vehicle frames.

Any machine component is produced with tolerance, its size being close to the
rated dimension but complying with it only seldom. If a close tolerance is used in
production, then minor movements will occur in assembly and also the resulting stress
is negligible. In the opposite case when components of a large tolerance zone are
produced for e.g. economic reasons, major movements occur in assembly and

*P. Michelberger, H-1111 Budapest, Egry J. u. 19-21, Hungary
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consequently, the resulting stresses are not negligible either. Dimensional inaccuracy
may be considerable especially in case of large welded, riveted or bolted structural
elements like vehicle frames.

Calculation of additional stresses resulting from inaccuracy in assembly and/or
dimension in vehicle frames, called kinematic load, is not dealt with here because the
methods to determine these stresses are well known from the literature [1].

The other type of dimensional inaccuracy results from the deviation in profile
size of rolled steel sections built into the vehicle frames. The dimensions of rolled steel
sections together with the applicable manufacturing tolerances are set out in standards.
The permissible value of deviation in cross sectional dimensions (e.g. wall thickness,
height) of rolled steel sections, the so called profile tolerance, varies in the range of
about 0.5 to 2% For cross sectional characteristics (e.g. equatorial moment of inertia),
this value may amount to + 10 to 12%

In case of a highly valuable machine of unit production, determination of the
dimensions of built-in structural elements and thus accurate calculation is possible in
principle. However, in case of series-produced structures, the accurate measurement of
any single supporting member and re-calculation for the unique constructions so
obtained is not feasible indeed.

In the construction of up-to-date vehicle frames where a considerable
gracialization of the frame takes place, it seems to be right to follow with attention the
effect of cross sectional characteristics on the internal force distribution of the frame
according to what has been said above in such a way that also changes due to
dimensional deviation are followed up.

In the dimensioning practice of statically multiply redundant vehicle frames
methods based on matrix force method rather than displacement method are preferred.
Therefore, it isjustified to take the method based on matrix force method as a starting
point for investigations also in this study [2].

To simplify treatment, investigations are carried out for internal forces arising in
intersections, of which ultimate stresses can be obtained by a simple superimposition.

By writing the flexibility matrix (R) produced with the rated cross sectional
characteristics into the fundamental equation of the matrix force method, we obtain the
so called reference equation

BrR Bx=BTRa @)
with solution x, and we investigate the relation of the solution of compatibility
equation

BrR Bx = BrRa 2
to X if R is an element of perturbance range AR.

Obviously, the relation of the elements of R to R shall be qualified, and the
investigation carried out accordingly.
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2. Deterministic approach

In this case the norms ||R R|| and ||x-x|| are used to measure the relationship
between R and R as well as x and X, respectively, where (and in the following
everywhere) the vector norm is the Euclidean norm while the matrix norm the natural
matrix norm corresponding to it that is the spectral norm [3].

Since
x=(B'RB) 1B'Ra,
and
x=(B'RB) 1B'Ra,
thus
x—x = (B'RB) 1B'Ra—(B'RB) 1B'Ra=
= [(B'RB) 1—B'RB) ‘] B'Ra+(B'RB) 1B'(R-R)a =
= —(B'RB) 1B'(R-R)B(B'RB) 1B'Ra+
+(BrRB) 1B'(R-R)a =
= -(B'RB) 1B'(R—R)[B(B'RB) 1B'Ra-a].
From here
IIx —x|| = H(B'RB)*1B'(R- R) [B(B'RB)“1B'Ra-a]||<
< ||(B'RB) - ‘HIB7(R—R) [B(B'RB)- 1B'Ra-a]||.
Since
u'(B'RB)u (Bu)' R(Bu)u'B" Bu
u'u ~ 11Bull2 Hull2
and

0<wclull<u'Cu< iMt|ul|2

for any positive semi-definite matrix C, where mcis the minimum and M cthe maximum
eigenvalue of matrix C, and wic>0 if C is non-singular. Thus, denoting the minimum
eigenvalue of B'RB by /( and the associated eigenvector by u, we have

u'(B'RB)u
= — ---->m RmBTB> 0,
and therefore the maximum eigenvalue of (B'RB) 1 lies below

1
mKmB, B

Since here mR= min r<§ we obtain the following estimation:

I(B'RB) ‘H< - !

mRMB B min rMmBTB
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On the other hand,

IBr(R-R)[B(BrRB) 1BrRa-a]||<

< M |[R—RI[||B(BrRB)-* BrRal| + ||a]|]<

max r-(o

<M)Et max |[r<O—r(i,|] (Mbtb . + i
) l ( l( min f I)mBTB 1 lia

Consequently,

M se2r max Ir(i|- rO!/ M bto LLPXT
I1x-x la]l<

~8TmB mm g Ytpte . 7

< Meer Amaxr*) /Msrm@l+x)ymaxrgo V
“ 1818 (1—A MIin r'0\ T87TE min r0 /

However, the above obtained estimation is rather rough and disadvantageous in that it
determines a considerable error limit for deviation x —x even in case the same solution
is associated with the perturbed system as with the reference equation (e.g. R = cR or Bx
—a =0 can be solved).

It would be practicable to give an estimation where the identical solutions
associated with the different perturbed Rs were evaluated identically.

Let us denote the set of elements of the permissible perturbance range, resulting
in the same element x as a solution if assumed for the perturbed system,

H#(X)={R = <r>:BrR(Bx-a)=0, re AR},

W x) being the section of a subspace with AR for any x.
Since R is diagonal, thus equation (2) is equivalent to equation

BT<Bx—a>r=0, 3

hence, the elements of ,3?(x) are obtained by solving equation (3).
Let

B= B, 4
B2
B3

be a decomposition of B such as to result in dimension —(nt x n) for B,, —(n2 x n) for
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B2 and (m —ni—n2) x n for B3 and the following relations are satisfied
B,x—a, /0
B2x —a2#0 (5)

B3x -a 3=0,
and

rank =rank B, =n, <n .

It is not excluded that n2= 0 or n, + n2=m that is B2 or B3 are missing (all blocks can
not be missing simultaneously because of the condition m>n). The vector

r=fi
*2
*3
will be a solution of the equation (3) if

r,eARIf M= {r,:1—A)r,<r,<(1 +4)r,, i=1,2,3
B[<B,x —a,)r, + B2<B2x —a2>r2=0 6)

and r3e dK3 is arbitrary.

Ifn2= 0 that is the block B2is missing, then there will be only a trivial solution r,
=0 of (6), the columns of B[ being linearly independent but, according to our
conditions, 0 ¢ ARt. This means that J?(x) is an empty set for any x where B2 is missing
in the partitions (4)—5) of B.

If n2~ 0, then there will exist a matrix L of dimension (n2xn,) resulting in
B2= LB, that is

B[[<B,x —a,)r, +Lr <B2x—a2>r2] = 0.
Since the columns of B[ are linearly independent, this is possible only if
<B,x—a,>r, + Lr <B2x -a 2>r2=0. )
Taking into consideration that <B,x —a,) can be inverted, we have:
r,= —<B,x—a,)-1 Lr<B2x—a2)r2.

Since AR is the Cartesian product of subsets ARt,i= 1, 2, 3, that is AR = ARt X AR2
x dK 3, thus

i{redK:riedRf, i=1,2,3, r,=G(x)r2},
m *>~ {B if n2.0, ,8)
where
G(x)= —<B,x—a,)-1 LT<B2x—a2>. 9
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3. Stochastic approach

Let r be a stochastic vector variable, its elements being random variables with
density function u{1)r(i)). Then the density function of r will be /dr) = 1 //()(-()). Assume
1
that AR is the support of /i(r), that is,

,. I>0 if reAR
M= {~=0 if rtAR

and j /i(r)dr=1.
AR

Let be pea?(x). Using the relationship p {=G (x)p2 we can write

Pl = 'G(x) o" *2
pi E o r3
P3 o E

that is p is a function of independent random variables r2 and r3 and therefore its
distribution function can be written, as follows [4]:

d>(s)= jj N2(r2y3(r3)dr2dr3, (10
D, (x)
where

D.(x). {[; G(X)r2<s!,rz2<s2,
~G(X)r2~
r3~s3, 2 eAR (11

U
<ix(s) is the probability that the random variable p falls within the range

{riri=G(x)r2,(I-A)fi~ri<sy, (I-A)fa2~ra2ns2,
(1 —Af3<ra<s3}

Ifs, moves to the boundary of the range AR, then this range will go over into 4?(x) and
thus

<H1+ Arj, (1+i)f2 (1+ Afz= P(re a?(x))= p{\) (12

p(x) shows, with which probability there exist an flexibility matrix in the perturbation
range such that the corresponding perturbed system would have solution X, that is the
probability of x being a solution to any possible perturbed system. Using (10), the
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calculation of (12) requires the multiple integral

p (x):d‘&o [t2(r2)/i3(r3)dr2 dr3 (13)

to be calculated, where £)(X) is the projection of L, x) on the subspace of dimension n-
nt, expanded by r2, r3. Making use of the independence of r2 and r3 we obtain
X)= f /ca(r)dr J /c2(r)dr,
p(x) o) n 02 (r)

where
D2(x)= {r2e AR2, C(X)r2e dR,}. (14)

Since the first integral is equal to 1because of the density function behaviour, we obtain
as the final form of our estimation:

= J li2(r)dr. 15
|O(X)|:2(X)I(F)r 15)

If Xs= {x € R"™:p(x) = s} #0, then X s will determine the solution set of probability s
while I/)I( :LL\) the possible perturbed flexibility matrices of probability s.
xeX,

As will be seen in the example given, the analytical definition of the integral given
in (15) is very complicated due to the dependence of the range on x even with a small
number of dimensions.

4. Fuzzy approach

Let the degree of acceptability of r for the problem, with a value ofO</r(r)< 1, be
allocated to each r. Here u(r) need not necessarily be a concept taken from the
probability theory although quite often some density function in the form of
/(r)/sup /(r), normed to 1, can be selected to express this degree. /r(r) is often
determined by expert estimate.

Ir,,={(r,/an) :re Rl :R"':>[0, 1]}
is the fuzzy set of matrices R = <r> while /r(r) the membership function of the elements.
HR can be given either with the common degree of acceptability of r as was

defined above or with the membership function /z(r,) for each element. In the latter
case, nR is the Cartesian product of fuzzy sets @r,

/‘*:XiA, = {(r.Mr)):reR",Mr)= mJjn fi,(r(), p,: R-*[0, 1]}. (16)

Here n(r) is not necessarily the common density function normed to 1provided /z,(r() is
a density function normed to 1
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The Equation (2) defines an operator F: KT-»KJ/lwich maps every re R1to a
solution Xe R\

The operator F generates a fuzzy transformation F transforming the fuzzy sets of
Rminto the fuzzy sets of R" with the membership function [5]

V(X)=  sup i)
re F“*(x)
where F “(x)={re Rm:F(r) = x}.
Assume that AR is the support of  that is

e [0,1], if re AR,
FN =", if roAR.

In this case, F" ‘(x) = 4?(x), thus

sg(p) ()

- reu(x 17
v(x) 0 if uw\) =o. (@7
Ifin the system of equations (2) r is considered to be an element of fuzzy set un, then (2)
will go over into a fuzzy equation system the solution of which is also a fuzzy set with a
membership function (16). v(x) gives in what degree can a point of the space be
considered to be the solution of a perturbed system in which the perturbed r is
acceptable in respect of the problem on the level y().

If the membership function ji(r) fulfils the conditions

a) lur)=lonly ifr=r,
b) /i(r) upper semicontinuous i.e.
/r(r*)> lim sup /r(r
(r*)> lim sup /r(")
for any limit point r*
c) /lc= {re Rm:/r(r)>C} bounded and closed for any 0<C< 1,
then the fuzzy solution defined by (17) will have the following properties [6]:

1) If Xj and x2 are a solution each, associated with two different realizations rt
and r2, respectively and if v(x!)>v(x2), then there exist re”(xj) such that
/4r) > fi(r2)- In other words, a ’better’solution can always be realized by a more
"acceptable’ flexibility matrix.

2) v(x)=1only ifre x).

The optimization problem supplying the solution (17) is equivalent to the following
conditional optimization problem

sup 4 (18
r,Ae Kmx¥
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subject to
Mr)>A,

B7<Bx-a>r =0,
re AR.
Ifthe fuzzy set pRis given as a Cartesian product of the fuzzy set of the elements of r the

conditional optimization problem may be given as follows

sup 2
(I, A)eRm * R

subject to
1*,(e,r)>2, i=1,2,..., 1 (19)

B7<Bx- a>r=Q
re AR,

which in the general case isanon-linear programming problem. Using relationships (8)
and (14) the membership function of the fuzzy solution set defined by (17) has the form

v(x)= m%L)J HNCEr2,r2,r3) if J?(x)#0. (20)

Fig. |

5. Examples

5.1. Example
Here
R = <90, 100),
Solution of the reference equation:
X=

With a perturbance constant 2= 0.1

dR = {r:81 <r(1)<99,90<r(2>< 110}.
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a) Deterministic estimation:

Since
Mbtb —M bbt— TBTB—2,
thus
J 201 100/2 ,100
IX~*1£ 2 09 96 (j 1J90+ I|f*"
/210 20 1003 1
ARV it F= — ——F~0.1939936...F.
162 9 729
In the reality

max|x-x|="~F - ~ F=0.0501253.. .F

reAR

that is, we have got a fourfold overestimate.

b) Stochastic estimation

Since At{F) = 0, it isenough to investigate the case where none of the equations of
equation system Bx—A= 0 is fulfilled.
In this case

X
thatis, (7) r,=j » r2
takes the following shape:
D2(\) ="r2e AR2: y " r 2e ARN.

This means that the inequalities

90 < r2< 110, (1)

8l< — r2<99
F—x

must be fulfilled.

Therefore, it is obvious that if x> F then LWL x)=0. As can be confirmed by
calculation, there is no solution to inequality system (21) if 0<x<(81/191)F and x
>(11/21)F either, that is D2(x) and L x) are uniquely empty for these x. Also,
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B1(F-x)

F2 i A <r27110

}o
D2(*)=< (22
99(F —x) .
r2:90<r2< if —F<x”~--F
}m 19 S Ss21

and thus
(rl,r2):r2eD 2(x),rl=y —"r2

#(x)= if 81|:<x< F 23
A 191 S" s 21 (@3)
0 otherwise.

1. Should each co-ordinate of r be uniformly distributed in AR, then, on the basis
of (15), the following es,timate will be obtained (Fig. 2):

1
191x-81F .. 81F 9 ,,
S dr!= 20x f TI9TS X il9f-
81(F ><)
99(F-x)
99F-189x
X) = dr, = f —F<x? —F
PX) 20 20x " s s
90
0 otherwise.

2. Should each co-ordinate of r of normal distribution truncated to AR, with an
expectable value of r and a variation of «i=Xri¥4 (such a selection of the variation
meaning that the perturbance range has been defined with four times the variation so
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that practically the truncation can no longer be observed), then, on the basis of (15), the
following estimate will be obtained (Fig. 3):

pK)
Wii—ji
X (r—a02o{ (r2-100)2]
dr2 dr2
2l ] /LY
81/191 0

0.43 0.0015
0.44 0.1093
0.45 0.6554
0.46 0.9750
0.47 0.9997
9/19 1 1
0.48 0.9981
0.49 0.8875
0.50 0.3446
0.51 0.0356
0.52 0.0004
11/21 0

If, as compared with the variation, the perturbance range is too tight to permit
the truncation to be neglected, then the maximum of p(x) will remain below 1

¢) Fuzzy estimation

Let the common membership function p(r) be the normal density function
truncated to AR normed to 1, with expectable value f and variation

/ft
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Then, according to (20), we have the following problem to solve:

11 (x/(F-x)f2-90p  (r2—100)3-.

max e 2- (9/4)2 (10/4)1 3 24)

r2ePr<x)

where D 2(x) is the same as in the stochastic case that is, defined with (22) for any x for
which it is not empty.
(24) is equivalent to problem

-r,-90
F - X (r2—10)2
mm +

25
rr e Di(x) 81 100 ( )
Solution to (25):

r900(F-x)(x + 9F)

81

J — F<x<0.5199451 ... F
Lot 100x2+ 81 (F —x)2
r =

90 if 05199451 ... F<x< ,*F

Of this,

900x/(x + 9F)
t J 100x2+ 81(F-x)2

90x .
if 05199451 ... F<x<”~F
F -x pal

8
if — F<x<0.5199451 ... F

Thus we obtain the following fuzzy estimation (Fig. 4):

X V(X)
81/191 0.000 . .
0.43 0.000 ...
0.44 0.000 ...
0.45 0.027 ...
0.46 0.299 ...
0.47 0.916 ...
9/19 1
0.48 0.774 ...
0.49 0.182 ...
0.50 0.012 ...
0.51 0.000 ...
0.5199451 0.000 ...
0.52 0.000 ...
11/21
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5.2 Example

, R= <90, 100, 100,90>,

Then, the solution of the reference equation:

rsoy2
721

370
’ 721F]

Let the perturbance constant be A= 0.1, that is

a=

ZIR={r:81<r(1)<99,907r(2)<110,90<r<3*110,81"r(4)"99}.

1) Deterministic estimation:

Since

thus

Hx-x||< (4+2
4.

M btb~ M bbt —4 +2/\/2 y

TBTB=4 - 2//2.

Yy 2
2"% 81 \4_ 272 90
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Calculating with the actual dimensional variations this value is obtained as
[|x-x]| =0.290826

i.e. the overestimation is twofold.

2) Stochastic estimation:

Assume that each co-ordinate of r is of uniform distribution.
Only the range of x>0 will be investigated. With this condition, only one
equality will be fulfilled in equation Bx—a =0 if x is an element of set

T,= j(X,,Xx2)e U2:x2=-J I x x+ F, X, e"O, " -"F

or

T2= |(X,,x2)e R2:x2=—" X, +F, x,e(0,

None of the equations of equation system Bx - a = 0 can be fulfilled in any other Vase.

Let it be designated T3— uT?2).
Tabulated below are the appropriate partitioning of B and a, and matrices L and
G(x) associated.

B3 B, B2 L «3 . «2 G

. ‘0"
1yl 1 yfi -F V2F r"1 1
vz vl 0 IxJUci-y/iFR]

F [-*./(*.—v/2fj

| 0" T-F 1 I-~gilx, —02jc-]
- [i - HL - 0 Lw2r) L gjx2-yflgjxi J

where

= + f
et-xt+J2xt-y/2F

Ifx e T,, then the following unequalities should be fulfilled for the determination
of a?(x):

90”r<2n110,

90~r(3,M110,
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8l <r(d=r(1)<99,

g1< — ! r])_ r(4)< g9

Since the solution set of the above inequality system is empty, thus also 4?(x) and
together with it D2(x) are empty. Therefore

p(x)=0 if xeTx.
If x g T2, then a?(x) will be determined by the system of conditions
90<r(3)< 110,
90<r(2)< 110,
8l<r(@=r(1)<99,
90< — — 7=—r(@= r<d)< 110.

Xx-y/2 F
From here,

D2(x)= {r,2):max (90, 90 (" 2F - x X)/xx)< r@<min (99, 110 (J I F - x x)I1xx)}.
Thus

- —

X1) <r(2)<99yj if xxG # =

- —

2):90<r(2)<99}, if  Xj 4 4
D2(X):q{r() r(2)<99} i ng[ ’ I }
] 110 (*/2F —xXx) . o rion2 11721
r<2:90<r(2)< if Xxj Gl 9 ' 20

otherwise.
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Consequently

99

7z
* - -1 if X
I 50 « > 20(\?1 ! 1 e ].
90<V2F-jci)
x\
99
_ _ : . JV?F
p(¥) = Udr,Z)- 20" if X e 2 "1 ]
10 (VTF-jti)
1 LO>,_Lf!TﬁE_ 19)’ if X,e 10772 tr2
20 2\ X 19 * 20 ].
otherwise.
In this case
H(X)={r6 AR:rtz>D2(\), r()=r@), r@= ——r(2), 90<r3~llo].
Xi J

Range T3 can be divided into 3 disjunct parts designated

Rl= jx elR :x2< —42x1+F x,elo, "F "],

T32= jxe Ul:-y/2xt +F£x2£ - N X, +F Xx,e(0,

TB=jxe R2:x2>- ~ X, + f|.
Solution of the reference equation: x e T32. Let us investigate this range.
Introduce new variables
Fi=0,r<),
Y2 = 921{3)-

If xe TR, then g1 <0, g2<0, thus y, <0, y2<0.
In this case, a?(x) is defined by the following inequalities:

J1=1100,<y, <90#, =H,, 27

fi2= 1K032”y 2<90r/2= H2, (28)
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Of the latter two pairs of inequalities

99n2 v yjl 81-v/2 N2
2 Kk ok ok % 2 Xi~ 2~ 72>

81x2+J ly2<yl<99+J ly2
define a rectangle C with apexes
Ct=(—ly/Ixi +33x2, -33x!-33Y 2x2),
C2= (—33v”™2x1+ 27x2,  33X1-n j2 x 2,
C3=(- 27v/2xj+27x2, —lIxl—21sflx 2,

C4=(-27ul2x1+33x2, -27x,-33Y 2x2).

In the positive range

C4l>cn>c3>c21, if x2>s/lx1

c41>c31>cn >c21, if x2<s/Ixl
and

Ci2<c42< C2< C32, if X2> ~ X

N2 N22 —Ct2< C32, if x2< X,
furthermore

C,>0 and C31>0, NP X

C, <0 and C31<0, if x2<n/2x1

The position of rectangles ¢ and N is determined by the following relations:

h.<€., oxiz o T2y 10
M<cit, if x2> V2 10
~T3~*i+ T3f|
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It can be checked by calculation that the solution of the reference equation falls within a
subrange, satisfying the above relations, where the following relationships apply to the
relation of C to N:
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C2l<hl<HI<O0<C3I*CIllI<C"I
(33

N2 — AFL2 . NR42 . N22 N2

_ A 32_
and

8Lx2+~/1H 2= H\,

and thus trapezium DiD 2D 3D 4 \s obtained from D 2(x) by transformation (26), therefore
9001 - vTyi- 99xi
1 v
p(X)= 4009,y2 I dy2dyl=

1105 2 81\2

-2-y<—2—X
300v/i2gl+ 198x,-81"2x2
4092

_ -402x, —38172x2 + 300y 2I
40(xJ+JIx 2—y 1 F)

Specifically for the solution of the reference equation with F= 1

n(\) = 0.4342...
,9?(X) under conditions (33):

a?(x)={re/lK :(r<,r|3]) 6 0 2(x),

r(D_ _ \[*9\ r(® 02r@
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and

<r,3,< ~"/2ylra)~99x/. (34)

Conditions (29) and (32) define additional subranges where v(x) as a function of x can
be calculated in each independently.

Using normal distribution instead of uniform distribution the complexity of
calculations would have increased additionally because with no primitive function
being available, v(x) could have been determined only for the concrete x instead of for
each range separately.

3) Fuzzy estimation

Let the common membership function /r(r) be given in the shape of

4

0

where /r,(r,)—normal density function normed to 1 with expectable value F and
variation <= y(r, :
(MQ-f(Op
Hi{ry)=e

f*(r) being maximum if quadratic function

is minimum. Here also like in the stochastic case, it is first of all the environment of the
solution of the reference equation that we are interested in. Using (20) and
transformation (26), the following problem shall be solved under conditions
COvi»y2)eDiD2D3Da,
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this is a simple quadratic programming problem for the solution of which quite a
number of machine programmes are available. E.g. it can be solved by means of the
projected conjugate gradient method described in [7].
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USE OF MAXWELL BODY IN GAS PRESSURE
MEASUREMENT BY MEANS OF CRUSHER

Z. KovATS*
[Received: 3 May 1983]

After a briefsurvey of the history of gas pressure measurement, this paper describes a method
where gas pressure is measured by means of crushers. A fundamental problem of this method is that
statically calibrated crushers (copper cylinders) are used for measurement under dynamic conditions
and therefore the measured values are lower than the actual values of pressure. To cope with this
conflict, an empirical solution was found by Lamothe. Taking this as a basis, Sutterlin used the
Maxwell body to model the copper cylinder, and obtained thus a theoretical solution resulting in fair
agreement of the data so calculated with the results of both static and dynamic laboratory
measurements. In this paper the results calculated on the basis of Sutterlin's theory are compared
with the results of gas pressure measurements by piezoelectric methods.

1. Introduction

Gas pressure measurement by means of crusher (copper cylinder) is at present the
most frequently used, and in some experts’ opinion, most accurate method to measure
the gas pressure developing during firing in the barrel of firearms. Firearms are
essentially gas-operated machines where the high-pressure, high-temperature gases of
the powder burning in explosion behind the piston eject the piston (bullet, shot column)
from the barrel. The knowledge of the value of gas pressure is important also for
strength calculations of the barrel and bullet and for calculation of the movement of the
bullet in the barrel. Measurement of the gas pressure prevailing for 10”3 to 10"4
second only is not a simple problem indeed.

The value of gas pressure was determined indirectly by Russian general
Majewski in 1867. He measured initial velocity vO [m/s] of the bullet of mass m [kg] by
means of Le Boulengé’s falling chronograph to obtain muzzle energy E0 [J], and
inferred the magnitude of gas pressure from relationship

()
0
where A cross-sectional area of barrel [m2]
X bullet trajectory [m]
S length of barrel [m]
p  0as pressure [Pa]
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With function p= p(x) unknown, information was obtained by the relationship on the
average value of gas pressure only [1].

In direct methods, the effect of gas pressure (or more precisely, of thrust) resulting
in motion or deformation was measured. The basic element in the so called knife
method was a piston ending in an edge at the outer end, closely fitting while moving in a
radial hole in the wall of the barrel. The edge of the piston (’knife’) was intended as a
result of gas pressure into the copper plate (Radman), bronze plate (Uchatius) or zinc
plate (Schatzl) firmly fixed before the piston. By means of a materials testing machine,
the magnitude of force required to obtain the indentation in the plate upon firing was
then determined. In the knowledge of the cross-sectional area of the piston, the value of
pressure could be calculated from this force.

However, the knife method was displaced by a measurement method invented by
British captain Noble in about 1870. In principle, the method is similar to the knife
method, but here both ends, thus also the outer end, of the piston moving in a radial
hole (possibly extended) in the wall of the barrel are flat plates, the outer end bearing
against a supported lead or copper cylinder, and the gas pressure is calculated from
upset or compression of this cylinder. The process was called crusher after the English
word. The crusher method displaced the knife method because it involved less
uncertainty due to material defect as it measured compression throughout the entire
copper cylinder. (In the knife method, the measurement results will be completely
falsified if the knife cuts into a material defect in the plate.)2

2. Gas pressure measurement by means of crusher

Gas pressure measurement by means of crusher can be used for any kind of
firearms. For pressure measurements of small-calibre weapons and/or ammunitions, a
separate measuring tube with screw-on crusher is required while in cannons, the
crusher is placed into the cartridge case, under the powder (Fig. ).

The procedure of measurement is the same in both methods. Gas pressure acts
upon the face of a piston closely fitting while moving in its hole. The volume of the hole
before the face is filled with a plastic mass in order to avoid interfering effects. The inner
face of the piston within the fixture is surfaced and finished at right angles to the
longitudinal axis i.e. to the direction of motion. The measuring element which is today a
copper cylinder exclusively bears against this inner face. The copper cylinder is fixed in
its place by the face of the cap screw (also surfaced and finished).

Compression of the copper cylinder during firing is measured to an accuracy of
0.01 mm, and the value of pressure associated with this compression is found in the so
called tare table up in the course of calibration of the copper cylinders. (Of course, the
tare table can be used only for given piston cross section.)

The copper cylinders are usually calibrated statically. In one of the calibration
methods, the copper cylinder is supported, then the calibration body (gauge) of definite
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Fig. 1. Crusher measuring heads: a) screw-on; b) place-in

mass is quickly (within about 1ms) applied to the cylinder and kept there for 30s. A
quick relief follows then. In another method, calibration takes place in the so called
free-piston manometer. Here the calibration body is applied to the copper cylinder
gradually, at a slow rate (within about 80 s). Other, dynamic calibration methods were
also attempted without, however, finding wide use [2].

As has been said earlier, the important point here is that the magnitude of
pressure is determined from tare tables in which the values tabulated have been
obtained under static conditions and on the basis of compression of the copper
cylinders as a result of dynamic impacts, a fundamental conflict. Double tare tables
have therefore been set up by Polain, a Belgian [3]*. In Polain’s method, the pressure is
measured by the crusher located in the chamber statically while by crushers located in
other points of the barrel dynamically. Thus in a tare table for the piston of a diameter

* In the numerical example given below, atm is used as the unit of measurement according to Polain’s
original double table.
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0f6.08 mm (and ofasurface 0f29 mm2) ofcopper cylinders of a height 0f4.88 mm and a
diameter of 3 mm, a static pressure of 837 atm and a dynamic pressure of 535 atm is
specified for acompression 0f0.96 mm while a static pressure of 535 atm and a dynamic
pressure of 362 atm for an upset of 0.48 mm (1 atm = 0.980665 bar).

The conflict between static calibration and dynamic measurement can be
resolved only by theoretical studies of the compression of crushers. The first such
attempt was made in the 1920s [2] according to which a thrust of F — A mp acted upon
the crusher, resulting in displacement (upset) x against resistance R of the copper
cylinder. With the mass displaced designated m,

mw - F~R 1>

Although the equation seems to be simple, it involves different variables. E.g. the load is
a function of time: F(t) = Ap{t) because pressure changes in time. On the other hand,
resistance R may be a function of time, upset, deformation rate, temperature, or of a
combination of these factors. At that time, it was believed that

R = kO + kx, (2.2

where k0 and «k are constant. With this, a differential equation of the following shape is
obtained:

=Ap(t)-(k0+ kx). (2.3)

In a static case, the rate of loading is very slow, approximately zero, and acceleration is
negligible.
Total compression xmai is obtained from maximum pressure prai in the following
way:
x - Pmax 70 @.4)

In a dynamic case, the rate of loading is rather high with maximum pressure occurring
almost immediately. If the time of increase of the load is considered to be zero, then

d2x
= Apma, —k0—kx (2.5)

is obtained from (2.3).
By substitution of w2=«/T and x0= (Apmei—k0)/k we obtain the following
differential equation:

2
= co2(x0-X). (2.6)
Solution of this equation:

x0—x = x0cos cor, ie. X = x0(l —cos cor). 2.7
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A maximum of x is obtained at cosm = —1:

*max = 2*0 = 2 - (2.8)

which is exactly twice as much as the value obtained statically (2.4) and thus it verifies
Polain’s table.

3. Lamothe's empirical solution [4]

The compression of copper cylinders of a height of 13 mm and a diameter of
8 mm serving as so called artillery crushers calibrated in free-piston manometer was
measured as a function of load and rate of load (or rate of deformation) by French
engineer and general Lamothe in the 1930s. Then an empirical equation was set up by
Lamothe, supplying data that fairly agreed with the measured value.

The empirical formula shows (with Lamothe’s symbols in it) that Lamothe
accepted Volterra’s theory on the so called hereditary phenomena, on the influence of
the ’prehistory’ of the material in that he assumed load F to be identical with resistance
R of the copper cylinder (action = reaction) so that the equation took the shape of

F=R="f(e)-eX({t) (3.1

where e measured compression
X(t) 'remembering’ function, this latter given as
at” 3.2
X© = b + tx (32)
where the values of a=0.188, b= 1.742 and a= 0.25 were calculated for the tested
crusher on the basis of the results of measurement. It can be seen that ift= 0 then *(r)=0

that is
R = f(e). (3.3)

According to Lamothe, this case represents infinitely high deformation rate, the
tendency in case of dynamic load. Static load tends towards infinitely low deformation
rate. In this case that is if t-t00, then xU)~*a and thus the load will be

R =f(e) —ae. (3.9

It is worth mentioning that Lamothe studied also crushers compressed in
advance. These copper cylinders are loaded statically to experience a deformation ely
then in this deformed condition they are used for pressure measurement when they
experience again a deformation designated e2. According to Lamothe, ifa load applied
to the copper cylinder for time f, brought about a deformation e, of the copper
cylinder, then in the knowledge of second deformation e2, load R2 acting upon the
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same cylinders for time t2 can be calculated, that is

Ri=f(e2)~el tizlh x(ti+t2)~ — x(ti) ~(E2~eX*(i2). (3:5)

Had the copper cylinders been compressed in advance under static conditions indeed,
then t2< since pressure measurement takes always place under dynamic conditions,
that is the following approximating formula is obtained from equation (3.5):

R2=1f(e2)-e2i(t2) (3.6)

which is formally identical with equation (3.1). That means that according to Lamothe,
the load for copper cylinders compressed or not compressed in advance can be
determined in the same way in the knowledge of compression.
Lamothe’s empirical formula can be expressed also in other form.
If
K 2(t)
t

X(t) = (3.7)

and

K2=jX 1()dt, K2(0)=0 (3.9)

then, after substitution of the values into equation (3.1) and adopting independent
variable t —t, the formula is obtained as

de
F=R=m- K(f-T)*:dT 3.9

4. Sutterlin’s solution: generalized Maxwell body [5]

It was worth recalling Lamothe’s empirical formula not only because of their
historical curiosity but also because r. Sutterlin, French engineer and general, had
obtained essentially the same result in a theoretical way. All the measurement results
obtained after the publication of Lamothe’s study were taken into consideration by
Sutterlin, among others, Rougier’s (1938) static experiments, the shooting experiments
run in the same period in Versailles and by the Gavre-committee, and the dynamic
measurements of Habib (USA) started in 1943 and continued for several years, but even
Charbonnier’s experiments to measure warming-up of the crushers in 1900 quite
forgotten since.

In Sutterlin’s study from 1967, it is pointed out above all thatthecrusher has not
become obsolete but it is still the best instrument to measure maximum gas pressure,
first of all in cannons where piezoelectric measurements are difficult for different
reasons.
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Let a visco-elastic element n be connected in parallel with a spring of elasticity

Gx, (Fig. 2). Stress a should act upon the body.

Fig. 2. Maxwell body containing visco-elastic elements of number Nnin addition to the element of variable

elasticity

The value of a:
a=Gxe+ £ GIE,.
The time derivative:
da-r dE , v'r de
di Gocdr + M Gidr'
It may be written that
'vV v d(E- £)
£E Cn-"“-1r —

By removal of
i-n k= Ac

&t oad &y

from the above equation, differential equation

r A" it _ de Yo"
ar Lif M (Gmr XCIX &
and/or an equivalent integral equation

t

(4.1)

(4.2)

(4.3)

(4.4)

(4.5)

. . . de
=G0+ X G N- Nj(t- '

ijexpj i(t-r) didr

(o]
is obtained.

Assume that the spring of elasticity G is of variable elasticity with a modulus of
elasticity of
)
e

(4.6)
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With this, equation (4.1) will take the shape of
= <p(e)+ /2(1 G.e, 4.7

while the integral equation (4.5)

I=<p(e)+ X G, exp . (H dr, (4.8)

or

de

J= <p(fiy+ 1?(le£- izgei 1—exp [_ S H dtdr' (4.9)

A comparison of this equation with (3.9), taking also (3.4) into consideration, shows
that Eqgs (4.9) and (3.9) are equivalent since

a= X Gi (4.10)

and by proper selection of Gfand /g, function K ! (i—T) can be made equal to a function
of the following shape:

Lamothe’s symbols have been left unaltered by Sutterlin but the results he obtained on
the basis of the Maxwell body have been marked with:

where

Of this,
F=1(«)- m-x"dx, (4.12)

where
/(e)=(?(£)+ »):(1 Gie

and function K~ (t) consists of the sum of exponential terms.
The results of measurement taken into consideration by Lamothe are
reproduced to an adequate accuracy by the following function:
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Kf(f)s20(l-<?-104)+ 25(1-e*102") + 55(1-«?*“") +
+50(1 —~10 2)+ 25(1 —e-10 4)+ 13(1 —e-10"%6).

The loads calculated on the basis of Eqs(3.1) and (4.11) suggest that the values of
pressure read from the tare tables are lower than the actual values. Calculated values
are always higher than measured values. As seen in both Lamothe’s and Sutterlin’s
formula, the value of load highly depends on the rate of load.

5. Correction factors to increase the measured values
of gas pressure

The difference between the values of gas pressure calculated on the basis of
equations obtained from the results of experimental measurement and given in the tare
table has been expressed in per cents of the tabulated values of pressure and
diagrammatically illustrated by Sutterlin. Since the difference mentioned and thus the
correction factor expressed in per cents are considerably affected by the rate of load,
this fact had to be taken into consideration. In the diagram shown in Fig. 3, this is
illustrated as the time of gas pressure build-up (load transfer) for four different cases.
According to Sutterlin, the time of load transfer to the copper cylinder in the impact test
is f= 10“4 while build-up of maximum gas pressure takes a time of 3.10 45 in small
arms, 10“3s in light guns, and 3.10”3s in cannons.

°u

—

oo

-

Fig. 3. Incremental correction factors for gas pressure measurement by means ofa 0 3 x 4.9 mm copper
cylinder and a piston of a cross sectional area of 7.5 mm2
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Note that the values of load calculated from the equations are modified by
Sutterlin in accordance with the reduction in strength due to warm-up of the crusher.
(The strength of copper warmed up reduces, the same deformation being brought
about by smaller load due to the reduced strength). A local maximum of the curve of
correction factor occurs therefore e.g. in case of a deformation of about 24% for guns
(namely, the effect of warm-up will be considerable only in case of larger deformations).

6. Comparison of theory and results of measurements

There is a fair agreement between the calculated results of Sutterlin and the
results of measurements obtained in static tare tests and dynamic impact tests, a matter
of fact since the numerical values of the coefficients in the Maxwell body equation have
been obtained on the basis of these results, the loading force and the rate of loading
being known in both cases, while the compression of the copper cylinder measurable.
Since the rate of deformation (rate of loading) during firing falls within the range
between both values, Sutterlin believed that his theoretical results (and the numerical
coefficients) could be interpolated also for actual gas pressure measurement, and
obtained the correction factors in this way. To decide whether or not this idea is
justified, the simplest way is to measure the gas pressure built up in the barrel by some
other method less sensitive to the rate of loading like the use of an apparatus operating
with piezoelectric quartz crystal.

The data given below are based on several hundreds of simultaneous gas
pressure measurements made piezoelectrically or by means of crushers. Let us now
study the ‘correction factors’ obtained in case the values of pressure measured
piezoelectrically are considered ‘actual pressure’. Described below are the conditions
and results of measurements.

6.1 Ball cartridges

Measurements were made in the chamber, at a distance ofabout 25 mm from the
bolt face. The values of pressure measured by means of a 0 4 x 6.5 mm crusher (the
average of 10 firings each) fell in the range 0f2735 to 2991 bar with correction factors of
21% to 21.5% at a pressure build-up time oft= 3.10~4 s according to the diagram (Fig.
3). Pressure values between 3242 bar and 3603 bar were measured piezoelectrically. The
‘correction factor’ calculated as the quotient of the averages of 10 firings ranged
between 18.6% and 22.3%.

These results show a fair agreement with Sutterlin’s results, especially if we
consider that the diagram was plotted for a0 3 x 4.9 mm crusher while we used a 0 4
X 6.5 mm copper cylinder for the measurements (however, the copper cylinders were
rather similar since 3/4.9 = 0.6122 and 4/6.5=0.6153). The pressure build-up time
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ranged from 4.4 <10 4sto 49«10 4sin the piezoelectric gas pressure measurements
(this time was obtaihed by approximation as shown in Fig. 4).

Fig. 4. Gas pressure curve showing the approximative determination of pressure build-up time (r)

6.2 Shotshells

Gas pressure was measured in the chamber also in this case, at a distance of
17.5 mm from the bolt face. A 0 3 x 4.9 mm crusher was used for the measurement, the
same as in plotting the Sutterlin diagram, but with a piston of a cross sectional area of
30 mmz2instead of 7.5 mm2 because of the low pressure values. The average values of
gas pressure for 12/70 calibre shotshells, measured by means of crusher, ranged from
508 bar to 530 bar, corresponding to 2032 bar and 2120 bar respectively, in case of a
piston of a surface of 7.5 mm2. Associated with these pressures as well as with the
pressure build-up time oft = 3+ 10 4on the basis of the diagram is a correction factor of
about 18%. Piezoelectric measurements resulted in a pressure build-up time of
4.2 «10~4and 4.9 «10-4 and in pressure of 558 to 588 bar, the value of correction factor
ranging from 5.2% to 12.8%. These values lie well below the values read in the diagram.

For 16/70 calibre shotshells, pressures of 526 to 689 bar were measured by
crusher, while 568 to 751 bar by piezoelectric pressure gauge. On this basis of the
diagram, the associated values are 2104 bar and 2756 bar for pressure, while 18.6% and
20.7% for correction factor respectively. However, correction factors of only 7.7 to
13.7%are obtained for the pressures measured piezoelectrically. Hence, the difference is
considerable in spite of the fact that the pressure build-up time ranged from 3.5 +10"4s
to 3.9 m10" 4 s that is the conditions of measurement were more similar to those of the
diagram than for the 12/70 calibre.

A value of 2000 bar has been specified for the upper measuring limit of the
piezoelectric pressure gauge by the manufacturer. However, measurements were made
also using a pressure gauge of a measuring limit of 8000 bar. In this case, the pressures
measured by the piezoelectric system lay 31-33% above the values measured by the
crusher, a value lying well above the values of the diagram.
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6.3 Rim fire cartridges

In case of both ball cartridges and shotshells, load was applied to the measuring head
through the holes of case mantle in gas pressure measurements both by crushers and
piezoelectric gauges that is the pressure of powder gases was followed from the
beginning ofcombustion by the measurement. At the same time, the gas pressure of rim
fire cartridges was measured with the measuring head placed in front of the mouth. The
measuring hole became free only after the bullet had been discharged, hence, a
considerable pressure had been prevailing in the barrel at the beginning of
measurement. Accordingly, the gas pressure curves showed a pressure build-up time of
3.10 5sto6.10~5s that is, by an order of magnitude shorter than in the previous cases.

0 3 X4.9 mm crushers with a piston surface of 12 mm2were used to measure the
gas pressure of calibre 22 long rifle cartridges. The measurements resulted in an average
pressure of 1352 bar for which a correction factor of about 18% was given by the
diagram (in case of t = 3.10”4 s). The piezoelectric pressure gauge measured an average
pressure of 1139 bar that is 84.2% of that measured by the crusher. That means that the
‘incremental factor’ became a ‘décrémentai factor’ surprisingly enough because
according to Sutterlin’s theory, the shorther the pressure build-up time that is the
higher the rate of loading, the higher the value of the correction factor.

6.4 Evaluation of measurements

If the value measured piezoelectrically is considered to be the actual pressure,
then
— satisfactory results are obtained by the ‘remembering function’ determined
numerically for a 0 3 x 4.9 mm copper cylinder according to Sutterlin’s theory in
case of ball cartridge measurements,
— the measured values are lower than the calculated values in case of shotshell gas
pressure measurements, while
— in case of measurement in front of the mouth, the values of pressure measured
piezoelectrically lie below the values measured by crusher although the piezoelectric
values should have been considerably higher according to the theory. (If Polain’s
double table were used where a ‘static’ pressure of 1352 bar corresponds to a
‘dynamic’ pressure of 855 bar, a correction factor of 33.2% would be obtained).
It is important that after compression, the copper cylinders became barrel-
shaped with the maximum increase in diameter occurring at halflength even in the last
case where the pressure build-up time was of an order of magnitude of 10~s (that is no
local deformations were observed). This fact is all the more interesting because the
copper cylinders experienced different longitudinal compression or deformation in the
different measurements: 25.5% to 33.8% for ball cartridges, 9.4 to 12.9% (calibre 12/70)
and 13.9 to 18.4% (calibre 16/70) for shotshells while 9.4 to 13.3% for rim fire cartridges.
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Another important fact is that Sutterlin had plotted the correction factor curves
for pressures measured by 0 3 x 4.9 mm crushers with a piston of a cross sectional area
of 7.5 mm2and a mass ofabout 1g, while we used copper cylinders of the same size but
of a mass of about 3 g. Presumably, the mass of the piston moving during pressure
measurement affects the deformation of copper cylinders.

7. Conclusions, problems

Sutterlin’s theoretical approach has been confirmed by gas pressure measure-
ments, and the numerical values of coefficients given by Sutterlin have been found
correct, in case of ball cartridges (infantry ammunition). However, the same theory
failed in case of pressure measurements before the mouth that is in case the measuring
heads were exposed to surge pressure instead of a pressure built up gradually.

No definite opinion can be formed on the results of shotshell pressure
measurements. Although the Maxwell body could possibly be used also here to model
the copper cylinder but the numerical values of the coefficients are inadequate. (The
assumption that the deviation resulted from the relatively small deformation of the
copper cylinder is unacceptable, because a correction factor of 4.2% to 4.6% has been
obtained in the measurement of gas pressure of high-pressure cartridges (so called
force-testing cartridges) while the relative deformation of the copper cylinder ranged
between 27% and 38%).

A significant difference between the measurements serving as a basis for
theoretical approach and those made to confirm the theory lay in the mass of the
piston. Hence, the influence of the mass of the piston and/or the ratio between the mass
of piston and copper cylinder on the results of measurement shall be investigated.

Throughout the above investigations, the assumption that the piezoelectric
gauge measures actual pressures has been taken as the starting point. However, this
cannot be confirmed. Namely, it was found that measuring heads (and measuring
circuits) of different layout measured different pressure values. The values measured
piezoelectrically are also affected by the plastic material in the measuring hole. (To say
nothing of the fact that an average pressure of 570 bar was measured by the
piezoelectric gauge of the same type, with an upper measuring limit of2000 bar, and 677
bar by the gauge of a measuring limit of 8000 bar, as compared with the crusher
pressures of 508 bar and 509 bar respectively, because the latter measuring head was
not recommended for pressures below 800 bar by the manufacturer.) However, it is
important to mention that pressure gauges with a strain gauge glued on the barrel as
the measuring element have also been used recently, and the values measured by means
of these gauges differ from the pressures measured either piezoelectrically or by means
of crushers. Hence, Sutterlin’s theory can not be confirmed by direct measurements yet.

Similar problems are encountered in the measurement of pressure build-up time.
Namely, the time can be read from the piezo-pressure curve only. The difficulty lies in
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that a thin membrane displaces over a distance of 10-6 m before the quartz crystal (in
our case), while a piston of a mass of sam grams over a distance of 10 4 m before the
crusher. Here the question arises whether or not the crusher is ‘delayed’ as compared
with the piezoelectric gauge.

In summing up, we might be right in saying that the use of the Maxwell body to
model the crushers is a promising approach, but no reassuring answer is given by
Sutterlin’s described theory to all the questions arisen.
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First results concerning the fabrication and characterization of Al—thin Si02 pSi MIS solar
cells are presented. Devices with an open-circuit voltage 0f0.24-0.26 V, a short-circuit current of 3-
4mA/cm2 and a power conversion efficiency of 1.5-2.0 per cent under nominal 20mW /cm 2
irradiance have been fabricated.

1. Introduction

The reduction of solar cell fabriaction costs in one of the major goals of research
and development in the area of photovoltaic energy conversion. The production of the
most advanced cells reported so far, based either on Si (~ 17.5% AMI) [1, 2, 3] or on
GaAs (~22% AMI) [4, 5] is still on a small laboratory scale due to the sophisticated
processing required to achieve these high efficiencies. On the other hand Schottky
barrier solar cells are suitable for large scale terrestrial photovoltaic conversion
because they represent a potentially low-cost, low-temperature fabrication technology
[6, 7]. The structure of Schottky barrier type solar cells makes possible the application
ofa homogeneous technological process, which can be implemented economically, and
which can be fully automatized. A further potential advantage is their adaptability to
polycrystalline materials.

If an ultrathin insulator (e.g. oxide) layer is sandwiched between the
semiconductor and metal contact, the performance of the M IS solar cell is considerably
enhanced over the corresponding MS structure [6, 8, 9, 10], while retaining the basic
technological simplicity. The incorporation of a thin film interfacial oxide layer
increases both the open-circuit voltage and the efficiency of the devices [9, 10]. E.g.
MOS solar cells based on p-type Si with semitransparent barriers formed with Cr, Ti,
and Al can exhibit open-circuit voltages in the range of 0.50-0.58 V [8], close to the
theoretical limits achievable with pnjunctionsin Si [11]. According to the literature [8,
9] the open-circuit voltage in Si MOS cells reaches its maximum for Si02thicknesses in
the range of 1.3 to 2.0 nm. A recent comparative study of the fabrication, performance,
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and stability of Al- and Cr-MOS solar cells on p-Si substrates indicates that Al
metallization is the better choice in many respects and leads to more stable devices

[12].

The main technological advantages of MIS solar cells over the pn junction
devices can be summarized as [13]

i) lower temperature of processing;

ii) collecting junction located right at the surface exposed to sunlight;

iii) applicability to polycrystalline materials.

The above discussed features of MIS solar cells make them a promising target for
technological research and development for application in third world environment.

We have fabricated experimental Al-thin Si02-pSi solar cells, with the aim to
develop a simple fabrication technology on the one hand, and to produce solar cells
which can be used as detectors in monitoring solar irradiance at lle-1fe, Oyo State,
Nigeria, and at other similar places in the country where no systematic data for solar
irradiance are yet available [14].

The study of solar irradiance at different places in Nigeria has been commenced
only recently, see e.g. [15, 16]. Nigeria lies in the equatorial belt roughly between 4°30
and 13°50 latitude north. Using standard worldwide maps for daily means of total solar
irradiation (beam and diffuse) incident on a horizontal surface [17], the daily means of
solar radiation over Nigeria as a whole can be estimated as about 3.5 to 5.5 kWh/m2.
The number of average hours of sunshine shows a marked latitudinal variation not
only in Nigeria but in the whole subregion [18], e.g. 8.8 h/day in Sokoto (13°02N, 5°16
E) and 6.3 h/day at Cotonou, Benin (6°20 N, 2°25 E), which in lieu of more detailed data
can be taken as representative data for the northern and southern parts of the country.

In this paper we present the first results on the characterization and properties of
the solar cells fabricated in our laboratory.

2. Solar Cell Fabrication

The solar cell structure consists of a p-type Si slice with a vacuum deposited Al
ohmic contact layer on the back surface, a thermally grown Si02 layer on the front
surface covered with a vacuum deposited semitransparent Al Schottky barrier layer. A
thick Al contact finger completes the structure. The fabrication steps are detailed
below.

ptype Si slices, (111) oriented, 5-20 ohmcm resistivity, 250pm thickness are
lapped on one surface and polished on the other.

After standard chemical cleaning the slices are immediately loaded into the
vacuum chamber of the evaporator and a 50 to 100 nm Al layer is evaporated onto the
lapped surface, (vacuum 3 x 10" Pa).

The back contact is heat treated at about 460 °C in room air for about 30 min.
Simultaneously the top surface is annealed and an estimated 1to 3 nm thin oxide layer
is formed on it.
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The slice is loaded again into the vacuum chamber of the evaporator and a 10 to
15nm Al Schottky barrier layer is deposited onto the top surface (vacuum
3x10 8Pa). Then finally a 100 nm thick contact layer is deposited through a mask.

The effective area of the cells is about 1cm2.

3. Characterization of the Solar Cells

The finished devices were characterized by measurement of -V characteristics in
dark and in artificial light. Besides these the light transmission vs Al layer thickness was
also measured on Al layers deposited onto glass substrates simultaneously with the
deposition of the barrier layer.

Typical dark I-V characteristics of the devices measured at 300 K are shown in
Fig. 1

The forward bias characteristics were analysed assuming non-ideal Schottky
diode behaviour, taking into account also the effect of series resistance, Rs, as

J=A*T2exp (—e®s/kT) (exp (V—IRs)/nkT)- 1)

Fiy. I. Dark | V characteristics of the devices. JO=5x 10 2mA/cm2 n= 4.0, R,= 15 0hm cm2, 1—J0=3
X10'2mA/cm2 N=5.2, R,= 140 ohm cm2
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to obtain the barrier height and the series resistance. In the analysis the Richardson
constant was taken as A* = \20(T*/T0) A/lcm2K2with m*/mo-0.55 being the density-
of-states effective mass of holes in Si. Barrier heights in the range 0f 0.65-0.69 eV were
obtained, with diode nonideality factors, n, ranging from 4 to 6. These latter values
correspond closely to those obtained on Pd-thin Si02-Si diodes with oxide
thicknesses of 1.5 to 3.0 nm [19]. Making use of Norde’s modified current-voltage
analysis [20,21] to evaluate the barrier height, we got 0.69 £0.02 eV, which agrees well
with the results derived from the forward current extrapolated to zero voltage. Both
methods of analysis resulted in a series resistance ranging from 20 to 80 ohms.

The 1-V characteristics of the cells under illumination were measured using a
nominal ~ 20 mW/cm2 light input from a tungsten lamp. This illumination level
corresponds to about 20 per cent of the standard AM 1lirradiance level. The black body
equivalent temperature of the radiation source was estimated as 2620 K using standard
values of the resistance vs temperature dependence of tungsten.

Typical 1-V characteristics of the devices under the above specified illumination
are shown in Fig. 2. From the analysis of the I-V characteristics under illumination the

V (mV]

Fiy. 2. 1-V characteristics of solar cells under ~ 20 mW /cm2illumination. Output power vs voltage curve is
also shown

following parameters were obtained for typical cells: open-circuit voltage: 0.24-0.26 V,
short-circuit current: 3-4mA/cm 2, fill-factor: 0.30-0.35, power conversion efficiency:
1.5-20 per cent. A somewhat conditional extrapolation of these data for AMI
conditions (100 mW/cm2), which has been based on the proportionality of the short-
circuit current to the irradiation level and on the logarithmic dependence of the open-
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circuit voltage on the short-circuit current, neglecting the difference in the spectral
distributions, would give the following values: open-circuit voltage: 0.30-0.35V,
short-circuit current: 14-18 mA/cm2 [14].

4. Discussion

The extrapolated value of the open-circuit voltage is lower than the value of
about 0.6 V given by MOS theory [9]. A comparison with similar measurements, [9],
indicates that the average oxide thickness in our devices is about 1.0-1.2 nm, which is
lower than the value of 1.6 to 2.0 nm necessary to reach the maximum value of the
open-circuit voltage. The short-circuit current which is proportional to the light flux
reaching the silicon material is chiefly limited by the reflection and absorption losses in
the AL barrier layer. These losses according to our measurements on the Al layers
deposited onto glass substrates can be as high as about 65 per cent in an Al layer of
12 nm thickness. A further limiting factor seems to be the excessive series resistance,
which affects both the dark and illuminated I-V characteristics and also the fill-factor.

Nevertheless the parameters obtained on our cells (e.g. energy conversion
efficiency) can be compared with those reported in the literature for similar structures
(i.e. without antireflection coating) [22,23]. According to the theoretical calculations of
Pulfrey and McOuat [24], the conversion efficiency of Schottky barrier type solar cells
depends strongly on the actual barrier height. Using their curves, the theoretical
efficiency for Si based cells with a barrier height of about 0.7 eV is estimated as 3-4 per
cent. The values measured on our cells compare not unfavourably with this theoretical
calculations.

The data for the irradiance and mean sunshine hours in Nigeria referred to in the
first part of this paper imply an average irradiation level of 50 to 60 mW/cm2. Actually,
recent measurements, [16], performed in the period from January to July 1982 at
Birnin Kebbi (1230 N, 4°20 E) recorded a maximum solar irradiance of about 90
mW/cm2 and this normally occured between 12 noon and 1 p.m. Therefore
performance data of solar cells referred to AM lirradiation might serve the purpose of
intercomparison, but for the purposes of field assessment a lower reference level might
also be useful, which should lie somewhat inbetween the 20 mW/cm2 used in this work
and the 100 mW/cm2 corresponding to AMI.

Work is in progress in our laboratory to develop further and to optimize the
device structure.
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IN LARGE GRAPH STRUCTURES
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The paper gives an algorithm for the near optimal solution oflarge multi-centre problems by
the simplification of the original problem. The method avoids nodes having a priori no chance to
become acentre and in this mannerdiminishes the number ofcomputational steps. The paper givesa
description of the computer program and refers to experiments with typical graph structures.

1. Introduction

The multi-centrum problem of the graph theory can be formulated as follows:
Find a location of M centers on the graph so that the distance (or more generally the
weighted distance) required to reach the most remote point of the graph, from any of
the centers, becomes a minimum. In the category of the Al-center problems the optimal
location of the feeding points of power networks, telephone switching centers, plant
locations, public service stations etc. are included. The primary impulse for us is to deal
with the problem and the task of locating the feeding point of a large municipal gas net.

The theoretical aspects of the multicenter location problem is treated in several
papers and modern textbooks [1-4]. Some of these also give little or more convenient
algorithms to solve practical problems. One of the recent contributions, that of
Christofides and Viola reduces the problems to a set covering one and is
computationally relatively effective for solving medium size problems [1]. As a whole,
one can say about the computational methods worked out'so far, is as follows: With
problems of computational character the computing time generally rises very rapidly
with the dimension of the problem.

The same is true for finding the optimal center location by increasing the number
of centers. The upper limit which can be effectively solved with the known location
methods are systems with about 150 nodes and 50 centers. The existing methods are,
therefore, not appropriate to solve such common practical problems, as the optimal
location of the feeding points of energy nets with some hundreds or thousands of nodes
and some tenths or hundreds of feeding points.

To increase the capacity of the centrum location methods, the actual paper
introduces the idea of replacing the original graph structure with its simplified version

* D. Singer, H-1021 Budapest, Nyéki u. 9, Hungary
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guaranteeing a relatively good agreement with the exact solution. The simplified model
is obtained in such a way that all nodes are a priori eliminated from the set of nodes
having no opportunity to be a centre. From the remaining subset of nodes—which we
will call in the followings “favorite” nodes—being generally smaller than the original
set, the M centers can be found with one of the known methods or with a special
method used in the following.

It must be emphasized that the centers obtained after the simplification can be,
but must not be exactly the same as those of the original graph structure, therefore, in
the following, we do not generally speak about centers, but about “dominant nodes”.
The saving of computer time using the method, can be very considerable, mainly by
large problems. The little uncertainty of the results relative to the exact solution, is the
tax to be paid for the augmented efficiency and for avoiding the danger of the
combination explosion.

2. Main steps of the new algorithm

According to the foregoings, the method consists of two main parts, from the
simplification of the original problem and from the procedure of finding the dominant
nodes. The single steps of the algorithm are as follows:

— Finding the shortest path between all N nodes i,j of the graph (may be through to be
intermediate nodes),

— Choosing the favorite nodes having the opportunity to be accepted as dominant
nodes (centers). The favorite nodes will be obtained, ranging the nodes in ascending
order, according to the sum of the path lengths (path weights) incident with the node
and choosing from these the first c*M nodes. M is the number of centers, c is a
constant.

— Determining the regions belonging to the ¢ «M favorite nodes and calculating the
weights G, of these regions.

— The choice of the M dominant nodes from the c mM favorite ones. Each of the
possible choices is characterized by the vector G of its G,-values.

As the dominant node configuration is considered, the vector G = G, where o
denotes the G-vector with minimal relative mean square difference of the vector
elements.

We give now a more detailed explanation to the single steps.3

3. The shortest path between all nodes of weighted graphs

The most straightforward way of determining the shortest path between all
nodes of the graph is to start with the node-to-node matrix D° of the graph. D°
represents the shortest path of the graph for that case when intermediate nodes on the
path are not allowed.
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The element d° of D° is simply the length—or in the general case the weight—of
the branch joining nodes i and j; Fig. 1

Fin. I. Determining the shortest path matrix

From matrix D° a matrix D 1can be derived whose elements djj represent the
path lengths with maximally one intermediate node. Similarly, D 2 represents a path
with maximally two intermediate nodes. One can continue deriving the matrices D 3,
D4 etc. until a full matrix D results having no zero elements. D is the shortest path
matrix of the graph.

Matrix Dmcan be derived from matrix D<m u using the recursive algorithm of
Floyd starting with the node-to-node matrix D° [5]. D° can be directly read from the
graph. Contrary to common use, the zero entries of D° must be changed to oo. The
Floyed algorithm has the following form:

dlj=mm{(dZrl+dZz;1),dTj-1}; m=\,2 ... N . @
For m= land 2, one gets from (1)
4 = min {(ff, +d°1j),d°\,
dfj= min {(d}2+ dBj),d}j}.

Example: The shortest path matrix D of the weighted graph in Fig. 1 is
determined according to ().

! 2 3 4 5 6 7 8 d,=1dt
1 0 2 2 4 5 5 10 7 35
2 2 0 1 6 3 4 6 6 28
3 2 1 0 6 4 3 12 5 33
D 4 4 6 6 0 9 9 6 9 > 49 %)
5 5 3 4 9 0 3 3 5 32
6 5 4 3 9 3 0 6 2 32
7 10 6 12 6 3 6 0 8 51
8 7 6 5 9 5 2 8 0 42
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4. Choice of the favorite nodes

The main idea on which the concept of the method is based, is to radically reduce
the number of nodes from which the centrum nodes can be chosen. By choosing all
nodes N for determining the M centers of the graph, one has totally:

(N\ N

\MJ~ (N-M)IM! ®)

possibilities. If one determines the centers only from ¢ mM favorite nodes, one has only

[cM\ cM!
\'' m)~ M\ _(c—1)A/M

possibilities; c is a small integer constant. It depends on the value of ¢ how large the
reduction of possible alternatives is. The number of combinations is radically
diminished with diminishing c, as can be seen according to (3). The reduction constant ¢
can be varied between the limits 1<c<N/M.

From apractical point of view, the reduction of ¢ has some limits. By small values
of ¢, one has lost the possibility to model the original graph with a simpler one with
sufficient accuracy, because diminishing ¢ means omitting some structural details. The
choice of c must be, therefore, a result of compromise depending on the “regularity” of
the graph. Itis, therefore, not advisable to work with c-values <2. Likewise increasing
value c over 5, to increase the accuracy of the results is generally not advisable because
the strong rise of machine time.

The favourite nodes can be obtained evaluating the weight sums of the rows in
the all-path matrix D

d,= tdij i—1>2, .. .,N (5)
i=1
and rearranging this according to ascending d, values. The first cmM rows in D
constitute its “favourite submatrix” Df . The appropriate nodes are the favourite ones.
Example: The graph in Fig 1should have 3 centers; N = 8, M = 3. We chose for c
the value ¢ = 2. According to the last column of (2), containing the weight sums d(, the
favourite matrix DF becomes

T —
J 1 2 3 4 5 6 7 g
2 2 0 1 4 6 6
5 5 3 4 9 0 5
5 4 3 9 3 0 6 2
D, 6
3 1 0 6 4 3 12 5 ®)
1 0 2 4 5 5 10
g 7 6 5 9 5 2 8 0
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The favourite nodes are here:
1={2,5,6, 3, 1,8};

see vector d, in (2).

5. Determining the dominant nodes

From the c mM favourite nodes the best M-member combination should be
selected as “dominant” node. There exist totally (ff) possibilities to select from thec «M
favourite nodes the dominant ones. The best set of these must fulfil the following
requirements.

To each of the M dominant nodes, there belong “satellite” nodes their distances
(weights) from the dominant node in question is minimal relative to the remaining (M
—1) other dominant nodes. According to this, the “regions” of the dominant nodes can
be defined. To each of the (,,M alternatives to select M dominant nodes belong in this
manner the same number of possible decomposition of the graph in the regions.

We define now M favourite nodes as dominants, iftheir regions are of near equal
weight. The equality is meant here in a relative manner, relative to all other M-
combinations of the c mM favourite nodes. Weight G, of a region will be defined as the
mean value of all inverse distances (weights) d j 1 of the region nodes from node i

G j=ocl,«2, ...,txN,. U

(V, is the number of nodes in the region.

Because the equality of the region weights has in our case no direct geometric
sense, we measure it with the relative mean square difference of the appropriate region
weights G,.

For the fc-th alternative of the M centrum locations the relative mean square
difference of the M region weights Ak is

The Ak—s evaluated, according to (6) and (7), serve as criterions for the choice of the M
dominant nodes from the ¢ « M favourite ones. As the best of all alternatives, one choses
that with the minimal Ak value.

Starting with the Df matrix, the calculation process of the Ak values of the (&M
alternatives can be organized as follows. For illustration purposes we show this on the
foregoing example. According to (4), the number of alternatives for choosing M =3
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dominant centers from ¢ sM = 2. 3= 6 favourite ones are:

31[(2 —1)3]!

Each of these is characterized by a submatrix of . We denote these submatrices with
the appropriate node indices i of the assumed (dominant) center nodes. For the
alternative with the center nodes /= 1,2,3, the submatrices will be:

. 2 3 4 5 6 7 8
i
1 0 2 2 4 5 5 10 7
D)1-2-3 2 2 0 1 6 3 4 6 6 ©)
3 2 1 0 6 4 3 12 5
1 2 3 1 2 3 2 2

The first task is to determine to which center i= {1,2,3} the satellite node j
belongs. This can be done by finding the entries with the minimal values in each column
j and notifying the appropriate i; this i values are notified in (9) under the double line.

One can see that the region of center i = 1consists of nodesj —4, that ofi= 2 from
j=05,7 8 and that of i= 3 fromj = 6.

The dij-s to calculate the weights G, according to (6) can be read from (9)

r -1 11-1
Gi- n/ 14~ 24 8’

+ay=t(t+  + 1) e

The d* relative mean square difference for the centrum combination fc= {1, 2,3} is
according to (8)

K 23=0.161.

In the same manner the drs for the 19 other centrum combinations can be
calculated.

6. Structure of the realized program
The flowsheet of the program (CENTRUM) working according to the described
algorithm can be seen on Fig. 2. The scheme is self-evident and we add some remarks to

the blocks only, where the purposes are not evident from the above considerations.
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Fig. 2. The flow sheet of the CENTRUM program

The given graph structure can have a relatively high order of symmetry and
many row sums of D can be equal or nearly equal. In such cases, it is advisable to
renumber the nodes accidentally. This can be done by block 2. The renumbering of the
nodes can also advisable be for other reasons. If one has some rough estimation
concerning the location of the centers, one can diminish the value of the constant ¢ and
can diminish in this way the computing time too. One number in this case, first ofall M
presumed center nodes and the nodes in their vicinity. The remaining nodes will be,
thereafter, numbered randomly.

The use ofblock 5is optional and is motivated by the following: The program has
to choose ¢ mM favourite nodes from the N total number ones according to the
ascending values du of the D-row sums. It is advisable that the chosen dtj-s should have
minimal values. On the other hand, the subgraph with the c M nodes should be a
simplified model of the original graph and, therefore, it is not appropriate to chose the
c mM favourite nodes with the same or near the same dtj values. Block 5 serves to
maintain a minimal distance O between the du-s of the subgraph nodes. This 6 distance
is maintained by block 5, solving the following inequality:

max (du) —min (d,7)

[max (djj) —min(dij)] >c aMS > » ]

(10
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The inequality is solved for 6 by an iteration process. The meaning of (10) is evident: the
sum ofall ¢ mM distances should not be larger than the difference of the max and min du
values.

On the other hand, the value of c « Mb—for the reason given below—should be
almost as large as the half of this difference.

7. Conclusion

There exist principally three ways to determine the accuracy of heuristic
algorithms:

— by comparison of the results with the results obtained with an exact algebraic
method solving the same problem,

— by comparison of the results with the results obtained with the same algorithm using
other starting values,

— using the algorithm for graph problems, where the location of the centers are
evident according to the symmetry conditions.

In our investigations concerning the ability of the program CENTRUM, we used
the last two possibilities. For demonstration purposes we will here show three centrum
location tasks, where the accuracy of the results are evident from the symmetry of the
topology and the edge-weight relations; see Figs 3,4 and 5. Numbers with underlining
denote node numbers, those without underlining edge weights.

Fig. 3. Centrum location task
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XJ]

N=37
M= 6
E42

Fig. 4. Centrum location task

The data and results of the given sample tasks are summarized in Table I.

Table |
No. of No. of No. of .
Computed centrum locations,
Task nodes centers edges c node numbers
N M E !

Fig. 3. 16 2 16 3 6 13

Fig. 4. 37 6 42 4 6 12 18 24 30 36
Fig. 5. 68 4 131 3 | 34 51 68

One can see that the computed centrum locations are, except Fig. 3 precisely the
same as can be observed directly from the figures. The exact coincidence of the
computed and true centrum locations is, however, not a rule, less or more large
differences can be present.

According to the large number of computer experiments and in accordance with
logical considerations, one can state the followings:

The method represents a relative efficient approximate solution of the multi-
centrum problem for large graph structures, where the existing methods become—
because of the combinatorial explosion—very ineffective.

The accuracy of the algorithm increases with increasing randomness of the
topology and the edge weight distribution. The best the symmetry and the more little
the dispersion of the edge weights, the less accurate are generally the results. The
accuracy can be in all cases augmented by increasing the value of constant ¢, however,
with the expense of a radical increase in computing time. The optimal working
condition for the program is a compromise between the needed accuracy and the
allowed computing time.
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BOOK REVIEWS

G. Dallos-C. Szabo: Random Access Methods of
Telecommunication Channels (in Hungarian)

One of the Hungarian Book publishing com-
panies, the Academic Press has recently launched a
new series of books under the heading: “Latest
results in electronics”. Using the well known photo-
print method, the forthcoming issues in this series
have a significantly shorter publishing time, than
conventional editions. It is the intention of the
Academic Press to publish books on special topics
in electronics, either in Hungarian or in foreign
languages such as English, Russian.

The authors start offwith a survey ofthe random
access methods used in telecommunications, the
characteristics of these methods and those of the
simple and slotted ALOHA channels. Before the
various reservation schemes are tackled or thorough
discussion follows on stability and control
problems.

A special chapter is devoted to those access
methods, which rely on carrier sensing and the
possible procedures of resolving message collisions
are also covered in detail. The authors give an
introducing piece of theoretical analysis of an error
correcting method developed for unslotted ALOHA
channels. In conclusion some practical aspects of
implementing terrestrial interactive terminal net-
works are dealt with.

This book is a very great help for project design
engineers as well as for research personal involved in
data communication problems.

P. Ferenczy

G. Franz (Schriftleiter): Beton-Kalender 1985. Ta-
schenbuch fiir Beton-, Stahlbeton- und Spannbe-
tonbau, sowie fiir die verwandten Facher. Ernst und

Sohn, Verlag fiur Architektur und technische
Wi issenschaften, Berlin 1985.
The manual — the 74the volume of the Beton-

Kalender, — consists of two parts the first of which
has 1030 and the second 1027 pages.

The first part of the manual contains, in ac-
cordance with many years' practice, the theoretical
knowledge necessary for designing structures. The
behaviour of the concrete (J. Bonzel), the different

steel (D. Bertram) and the asbestos cement products
(H. Posch)are presented. It treats of the staticsofbar
structures (H. Duddeck H. Ahrens), designing ofr.c.
units for particular loadings (E, Grasser), buckling
safety of slender structures (K. Kordina-U. Quast).
The last chapter presents the designing of r.c. units
also including the case of partially prestressed
structures (H. Kupfer).

Part 2 discusses the building regulations valid in
the German Federal Republic (H. Goffin). A special
chapter deals with different ways of supporting of
structural units (K. Rahlwes), the problems of r.c.
high-rise blocks (G. Konig-S. Liphardt). The appli-
cation of prestressed concrete (H.
Kupfer-H. Hochreiter), as well as the problems of
different scaffoldings are also discussed (F. Nather).

The editor of the manual, Prof. G. Franz, the
distinguished and generally esteemed expert of r.c.
constructions entrusted the most outstanding per-
sons with the writing of the different chapters. The
authors their task with due diligence,
taking the newest results of science into account. A
manual, as a matter of course cannot cover the full
knowledge ofa subject, nevertheless, it comprises all
the information which a civil engineer need in
practising his profession on the subject in question.
The manual presents all the data in an easily
intelligible manner accompanied by
demonstration figures. Many informative diagrams
and valuable tables make the work of the designing
engineer and the constructor easier.

Eventually, the newest volume of the Beton-
Kalender isjust as useful as the preceding valuable
editions and, by the richness of its contents may
increase the reputation of the editor and authors of
this work.

structures

resolved

numerous

P. Csonka

I. Hajnal-J. Marton—Z. Regele: Construction of
Diaphragm Walls. Publishing House of the Hungar-
ian Academy of Sciences, Budapest 1984

Countless examples all over the world demon-
strate that—provided correctly designed and
applied—the diaphragm wall technology copes with
requirements. Several publications have already
been devoted to various problems of diaphragm
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walls, but until recently, systematization, recapitu-
lation and criticism were missing. This bock is
expected to fill the gap, to further knowledge of
experts of theory and practice in this subject, all over
the world.

This book of 400 pages, complete with great
many figures and a subject index, has been con-
cerned with problems of theory, design, and
practice-construction of diaphragm walls of keen
actualness, world-wide applied in civil engineering.
A valuable feature of the book is to embrace all of
the three important fields of use of diaphragm walls
(road an railway engineering, hydraulic structures,
engineering foundations), proportionately,
without overlapping, thanks to the complementar-
ity of the Authors.

Introductorily, a survey is given—among
others— on the history and phases of arise and
development of the diaphragm wall construction
method in the USA and in Europe. Chapter 2
classifies diaphragm wall structures, and illustrates
the actual realizations in each field of application by
rich graphic matter. Chapter 3 has been concerned
with one of the most essential and most debated
problems of diaphragm wall construction: the
theory of fluid support; beside theoretical funda-
mentals, it describes the most up-to-date design
methods taken either from the international tech-

civil

nical literature or from research results of the
Authors, and illustrates them on numerical
examples.

Chapters 4 and 5 are spent on practical con-
struction. Internationally applied cutting machin-
ery, auxiliary equipment, tools and implements are
presented in particulars, followed by that of the
main phases of technology, with due consideration
to supporting slurry composition and mixing, as
well as to knowledge in the trench fill matter.
Another important feature is description of the
cutting operation itself, including detail problems
such as repair of unavoidable construction defects.

Chapter 6 handles design: from preliminary soil
mechanical tests, through selection of the structure,
to various method of dimensioning. Methods are
presented for determining bottom resistance and
mantle friction—two importantcomponents of load

capacity—illustrated on numerical examples.
Finally, Chapter 7 expounds labour safety and
environmental aspects. In Annex, computer

programs are given to determine trench stability and
load capacity, keeping demands of present-day
engineers in mind.
Each chapter is concluded with a detailed list of
references.
L. Réthati
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M. M ajor: Geschichte der Architektur (History of
Architecture) Vol. 3. Publishing House of the
Hungarian Academy of Sciences, 1984, p. 606

The third volume of the new version ofthis huge
work, surveying the universal history of archi-
tecture, is concerned with the history of recent
architecture. The subject has been treated in two
parts, a shorter one concerning the 19th century
architecture, the foundation laid by capitalist
society, and a longer one separately treating 20th
century architecture of capitalist and socialist
societies. Parts are introduced with the historical
survey of the period, followed by listing its achieve-
ments in cultural history, involving not only atten-
dant arts creations but literary and philosophical
W hat is more, by outlining the
development and achievements of technical, biolog-
ical and other disciplines, the architecture was
integrated into its own age. Development of the
building technology itselfemerges in the analysis of
works of architecture, and so does urbanology
considered as a synthesis of architecture.

When M. Major wrote the first Hungarian
version of this fundamental work nearly thirty years
ago, there was little comprehensive work on the
history of architecture concerned with the creations
of modern times, also relationships were controlled
by subjective aspects. The pioneering work “Space,
Time and Architecture” by Giedion started out from
his connection to Le Corbusier, offering it in an
entertaining, in a lively way all that belongs to the
development of modern architecture, without
taking note of the main body of historicism, rather
typical of European urbanization late in the 19th
century. Of course, Hitchcook’ work centered on
British conditions. Benevolo offered a real, wide-
range analysis, even mentioning the Hungarian
CIRPAC. In his work adjusted to track develop-
ment in consecutive editions, Joedicke wrote the
most concise survey of the history of modem
architecture. The work by M. Major essentially
differed and differs from them, all even in this
edition, by projecting architecture on a social
background, and fitting all typical achievements to
that age. Thereby architecture is not self-contained
any more but integer to a social and cultural
development.

A special merit of this book isthat he devotes an
extensive chapter to each to the architectures
periods of the USSR and Hungary in the part on
socialist architecture. A suggestive description is
given of the avantgardism ofthe young Soviet state,
on the way to historicism in the '30s. It fades after.tjie
'60s and seems a bit short-cut, but since the whole

works as well.
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volume ends with this time, it isunderstandable and
acceptable. Representative illustrations have been
selected from recent Hungarian architecture.

It is difficult to assign data to extend to these
days of such a mighty work, and to track the
variable trends of architectural conception, so it is
understandable that—in conformity with its
subtitle— the book lasts till the mid-'20th century.
And certainly, the survey of modern architecture
becomes increasingly difficult now when—rather
than the scattered creations emerging from a sea of
historicism—entire towns are made up typically of
modern architecture, becoming, in turn, grey their
mass or even with some trends. The volume ends at
this, fanning out of modern architecture, so to say, it
tracks booming of modern architecture up to its
zenith. Understandably, no mention is made of
individual trends, proliferating since the ’60s.

M. Kubinszky

A., Joan: Cavitalia, Vol. 1,
Bucuresti 1984, 337 p.

Editura Acadamiei,

“Cavitation isa most unpleasant hydrodynamic
phenomenon, the harmful effects of which are both
widespread and obvious and seriously handicaps
many phases ofscience and engineering. Conversely,
its basic nature has long been veiled in mystery and
only recently is it beginning to be understood”
(Knapp).

The phenomenon was observed long ago. The
hissing of water flowing through a constricted tube
was observed by Reynolds in 1873 and attributed to
an internal boiling of water under diminished
pressure. Cavitation on the back of the blades of a
propeller was first observed in 1894 by Thornycroft
and Barnaby. ft is not surprising to find that, for a
long period after its identification, rather divergent
views were expressed concerning the physical nature
of cavitation. This divergency appeared in the
theories of the hydrodynamic process and reached a
maximum in the various attempts to concoct
plausible descriptions of the process through which
cavitation produces damage on solid boundaries.

Over the past half century an extensive biblio-
graphy on cavitation has developed. Practically all
treatises are discussions of isolated of the phenom -
ena. This is to be explained by the complexity of the
manifestation. The published few books only cover
some fields of research. Such books are e.g. Pernik:
Problemi kavitacii (Leningrad 1966) which sum-
marizes the theoretical literature of bubble
dynamics, scale effects and some basic hydro-

401

dynamics. Karelin (Moscow 1963) presented a book
on the cavitation problems of centrifugal pumps.
Noskievic: Kavitace (Praha 1969) discusses on
bubble dynamics, the types of cavitation, erosion of
solid surfaces and cavitation in the rotodynamic
machines (turbines, pumps, propellers).

The first book covering the subject as a whole, a
modern treatise in English is Knapp Daily
Hammitt: Cavitation (McGraw-Hill 1970). The
presentation ofthisvolume covers four general topic
areas such as. 1) The basic characteristics and
physical mechanics of hydrodynamic cavitation. 2)
Cavitation damage from the viewpoint of both
hydrodynamic process and the reaction of part-
icular materials. 3) Cavitation study methods and
euipment for research and making tests. 4) Cavita-
tion effects in flow passages and hydraulic equip-
ment and on fixed and free bodies. Each topics is the
subject of particular parts ofthe book, because there
is much interrelation between the areas.

The multiplicity of the research prevented the
elaboration ofall branches of the investigations. For
instance the detection of cavitation by acoustic
methods when the research in the subject began one
decade earlier (Rata: Bruit de Cavitation (1960),
Cormault (1962), Huguenin (1964), Pearsall (1966)
etc.). Therefore, 14 years after the publication this
valuable book, it seems desirable to have a new and
complete summary of this research field.

It is to be hoped that this requirement will be
realized by the books (Vol. I and Il) of professor
Anton. The contents of Vol. 1 are: Cavitation
nucléation and inception, stressing of liquids,
dynamics of the cavitation bubble, cavitation coeffi-
cients, standard cavitating bodies, similitude at
cavitation, scale effects, destruction processes of
solid materials through their impact with raindrops
and liquid jets, mechanism ofthe cavitation induced
breakdown of the materials. The well selected
contents, the excellent treatment of the matter,
moreover the outlined contents in the preface of the
second volume suggests that a comprehensive
treatise is being created from the complete territory
of investigations.

These expectations are supported by the circum-
stance that voluminous review of this kind can be
performed only by a scientist who himself is a
successful researcher in the field of cavitation.. All
these are generally known from professor and
academician Anton.

In the interest of completeness of the work it is
necessary to mention, that in Vol. 1 there are only
short references from the acoustic methods of
detecting the incipient cavitation. It is desirable to
complete this subject, mentioned earlier as a lack in
the book of Knapp et alii.
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It is to be hoped that the large-scale work of publication of the second volumes with great
professor Anton will promote the cavitation re- anticipation.
search activity and itistherefore desirable to publish

these volumes in English. Looking forward to the J. J. Varga
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